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The local formulations of the Markovian interpolating dynamics, which is con-
strained by the prescribed input-output statistics data, usually utilize strictly posi-
tive Feynman–Kac kernels. This implies that the related Markov diffusion pro-
cesses admit vanishing probability densities only at the boundaries of the spatial
volume confining the process. We discuss an extension of the framework to en-
compass singular potentials and associated non-negative Feynman–Kac-type ker-
nels. It allows us to deal with a class of continuous interpolations admitted by
general non-negative solutions of the Schro¨dinger boundary data problem. The
resulting nonstationary stochastic processes are capable of both developing and
destroying nodes~zeros! of probability densities in the course of their evolution,
also away from the spatial boundaries. This observation conforms with the general
mathematical theory~due to M. Nagasawa and R. Aebi! that is based on the notion
of multiplicative functionals, extending in turn the well known Doob’s
h-transformation technique. In view of emphasizing the role of the theory of non-
negative solutions of parabolic partial differential equations and the link with
‘‘Wiener exclusion’’ techniques used to evaluate certain Wiener functionals, we
give an alternative insight into the issue, that opens a transparent route towards
applications. ©1997 American Institute of Physics.@S0022-2488~96!04212-0#

I. MOTIVATION: FROM POSITIVE TO NON-NEGATIVE SOLUTIONS OF PARABOLIC
EQUATIONS

We continue an investigation of the Schro¨dinger boundary data problem1–11of reconstructing
the ‘‘most likely’’ evolution which interpolates between the prescribed input-output statistics
~usually analyzed in terms of nonvanishing probability densities! in a fixed finite-time interval,
interpreted as a duration time of the process.

In the present paper we focus our attention again on stochastic Markov processes of dif
type ~see Ref. 10 for a jump process alternative!, which are associated with the temporally adjo
pair of parabolic partial differential equations:

] tu~x,t !5Du~x,t !2c~x,t !u~x,t !, ] tv~x,t !52Dv~x,t !1c~x,t !v~x,t !. ~1!

Here,c(x,t) is a real function~left unspecified at the moment! and the solutionsu(x,t), v(x,t) are
sought for in the time interval@0,T# under the boundary conditions set at the time-interval bord

r0~x!5u~x,0!v~x,0!, rT~x!5u~x,T!v~x,T!,
~2!

E
A
r0~x!dx5r0~A!, E

B
rT~x!dx5rT~B!.

a!Permanent address: Institute of Theoretical Physics, University of Wroclaw, PL-50 204 Wroclaw, Poland.
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We assume thatr is a probability measure with the densityr(x), andA,B stand for arbitrary
Borel sets in the event space. In the above, suitable units were chosen to eliminate inesse
the present context~dimensional! parameters, and the process is supposed to live in/onR1.

As emphasized in the previous publications,8–11 the key ingredient of the formalism is t
specify the functionc(x,t) such that~the time ordered exponential! exp@2*0

t H(t)dt# can be
viewed as a strongly continuous semigroup operator with the generatorH(t)52D1c(t), asso-
ciated with the familiar12 Feynman–Kac kernel:

S f ,expF2E
0

t

H~t!dtGgD 5E dyE dx f̄~y!k~y,0,x,t !g~x!

5E f̄ ~v~0!!g~v~ t !!expF2E
0

t

c~v~t!,t!dtGdm0~v!. ~3!

Here f ,g are complex functions,v(t) denotes a sample path of the conventional Wiener proc
anddm0 stands for the Wiener measure. Clearly, the kernel itself can be explicitly written in t
of the conditional Wiener measuredm (x,t)

(y,s) pinned at space-time points (y,s) and (x,t),
0<s,t<T:

k~y,s,x,t !5E expF2E
s

t

c~v~t!,t!dtGdm~x,t !
~y,s!~v!. ~4!

As long as we do not impose any specific domain restrictions on the semigroup gen
H(t), the whole real lineR1 is accessible to the process. Various choices of the Dirichle12,8

boundary conditions can be accounted for by the formula~3!. If we replaceR1 by any open subse
V,R1 with the boundary]V, it amounts to confining Wiener sample paths of relevance to re
in ~be interior to! V, which in turn needs an appropriate measuredm (x,t)

(y,s)(v P V) in ~4!. This is
usually implemented by means of stopping times for the Wiener process.7,8,13–15

Let f (x) andg(x) be two real functions such that

mT~x,y!5 f ~x!k~x,0,y,T!g~y! ~5!

defines a bi-variate density of the probability measure:

mT~A,B!5E
A
dxE

B
dy mT~x,y!, ~6!

i.e., a transition probability of the propagation from the Borel setA to the Borel setB to be
accomplished in the time intervalT. In particular, we need the marginal probability densities to
defined:

r0~x!5mT~x,V!, rT~y!5mT~V,y!, ~7!

whereV,R1 is a spatial area confining the process.
Formulas~5! and ~6! can be viewed as special cases of~3!, so establishing an apparent lin

between the Schro¨dinger problem and the Feynman–Kac kernels, together with the related
bolic equations~1!. Assuming that marginal probability measures~7! and their densities are give
a priori, and a concrete Feynman–Kac kernel~4! ~with or without Dirichlet domain restrictions!
is specified, we are within the premises of the Schro¨dinger boundary data problem.

Let V̄5Vø]V be a closed subset ofR1, or R1 itself. For all Borel sets~in the s-field
generated by all open subsets ofV̄) we assume to have knownr0(A) and rT(B), hence the
respective densities as well. If the integral kernelk(x,0,y,T) in the expression~5! is chosen to be
J. Math. Phys., Vol. 38, No. 1, January 1997
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continuousandstrictly positiveon V̄, then the integral equations~7! can be solved5 with respect
to theunknownfunctions f (x) andg(y). The solution comprises two nonzero, locally integrab
functions of the same sign, which are unique up to a multiplicative constant.

If, in addition ~in general it does not happen at all, see, e.g., Ref. 11!, the kernel
k(y,s,x,t), 0<s,t<T, is a fundamental solution16 of the parabolic system~1! on R1, then we
have defined a solution of the system~1! by

u~x,t ![ f ~x,t !5E f ~y!k~y,0,x,t !dy,

~8!

v~x,t ![g~x,t !5E k~x,t,y,T!g~y!dy.

Moreover,r(x,t)5 f (x,t)g(x,t) is propagated by the Markovian transition probability density

p~y,s,x,t !5k~y,s,x,t !
g~x,t !

g~y,s!
,

r~x,t !5E r~y,s!p~y,s,x,t !dy, 0<s,t<T, ~9!

] tr5Dr2¹~br!, b5b~x,t !52
¹g~x,t !

g~x,t !
,

the result, which covers all traditional Smoluchowski diffusions8,17 ~see also Ref. 18!. In that case,
c(x,t) is regarded as time-independent, and the corresponding stochastic process is homo
in time. The Dirichlet boundary data can be implemented as well, thus leading to the S
chowski diffusion processes with natural boundaries.8 Then,k(y,s,x,t) stands for an appropriat
Green’s function of the parabolic boundary-data problem, with the property to vanish a
boundaries]V of V.

Recently,11 an extension of the above formalism was elaborated to encompass situations
the involved Feynman–Kac kernels are strictly positive and continuous, but not necessari
damental solutions of~1! nor even differentiable. They still give rise to~8! and~9! under suitable
regularity conditions for solutions of the parabolic system~1!. Their existence is not in conflic
with the fact thatk(y,s,x,t) itself needs not to be a solution of any differentiable equation.

Let us also mention that for time-independent potentials,c(x,t)5c(x) for all t P @0,T#, a
number of generalizations is available7,8,13–15,19–25to encompass the nodal sets ofr(x) and hence
of the associated functionsf (x),g(x). The drift b(x)5¹ ln r(x)5 ¹r(x)/r(x) singularities do not
prohibit the existence of a well defined Markov diffusion process~9!, for which nodes are unat
tainable. In the considered framework they are allowed only at the boundaries of the con
spatial areaV confining the process.

The problem of relaxing the strict positivity~and/or continuity! demand for Feynman–Ka
kernels is nontrivial3–5with respect to the eventual construction of theuniqueMarkov process~9!.
The recent paper by Aebi26 offers a generalization of the Beurling method,4 to yield a unique pair
of functions f (x) andg(y) comprising~5!–~7! for non-negative generally unbounded kernelsk
which may vanish on sets with positive Lebesgue measure. However, this solution of the S¨-
dinger boundary data problem does not yet provide a concrete stochastic~Markovian! interpola-
tion. In fact, the discussion of Ref. 26 does not employ any intermediate times, so tha
Chapman–Kolmogorov property cannot be established without imposing proper limitations o
construction of the non-negative product measure~notably, the strongly continuous semigrou
dynamics assumption!. This feature,in principle, can be circumvented by invoking the gene
J. Math. Phys., Vol. 38, No. 1, January 1997
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mathematical theory of quantally implemented~Schrödinger! diffusion processes developed
Refs. 7, 14, 26, and 27 that exploits the weak and weak fundamental solutions of parabolic
differential equations related to stochastic processes with the singular creation and killing.

To elucidate the nature of difficulties underlying the issue, we shall consider quantally
vated examples of the parabolic dynamics~1!. The problems associated with the nodes of quan
stationarystates in probabilistic reinterpretations of the quantum dynamics, albeit a delicate
ematical question, have already been solved in a quite satisfactory way by various analytic
probabilistic techniques.

The variety ofnonstationarysituations was addressed in Ref. 15 but, following the traditi
nodal surfaces were always assumed to form space-time boundaries of the considered proc
their inaccessibility from the interior was the major issue~see, e.g., also Refs. 23 and 24!. Alter-
native derivations are based on the notion of stopped Feynman–Kac functionals,13,25 and/or dif-
fusion processes with singular creation and killing.7,14

The spontaneous emergence of nodal sets in the course of thenonstationaryquantum evolu-
tion has not received much attention in the literature devoted to the probabilistic understand
quantum phenomena. As well, the related subject of diffusion processes associated with
non-negativesolutions of parabolic equations seems not to be present in the nonequilib
statistical physics literature. Some hints can be found in Refs. 7, 14, and 27, where the ex
of the Schro¨dinger diffusion process under mild integrability conditions is established: it does
hit the space-time zero set of the probability density of the process. In principle, the proces
divide the space-time state space into several disconnected regions. However, in this c
uniqueness of the process is an open problem.

Moreover, the generality of mathematical arguments utilized in related Refs. 7 and 26
not imply straightforward applications. On the other hand, our preference to deal with familia
theoretical physicists partial differential equations instead of an explicit probabilistic lore sug
we follow the strategy of discussing explicit but illuminating examples that explain the limitat
of the existing theories. Specifically, it amounts to discussing non-negative solutions of par
differential equations and the associated non-negative kernels~Green’s functions in particular!, cf.
Section II. The relation to ‘‘Wiener exclusion’’ techniques to compute certain Wiener functio
is established in Section III, and next utilized to discuss the spontaneous emergence of t~in-
stantaneous! node of the diffusion process in Section IV. In Section V we discuss early Fort3

results in the framework of our parabolic-equations strategy to realize that the continuous
polation between boundary probability densities with noncoinciding nodal structures isa priori
admitted. In this case, the uniqueness of the diffusion process is granted, that is, a peculia
one-dimensional problems with no straightforward extension to higher dimensions.

II. NONLINEAR PARABOLIC DYNAMICS WITH UNATTAINABLE BOUNDARIES: THE
GREEN’S FUNCTION

Things seem to be fairly transparent when the parabolic system~1! allows for fundamental
solutions. However, even in this case complications arise if nodes of the probability densi
admitted. The subsequent discussion has a quantal origin again, and comes from the free¨-
dinger propagationi ] tc52Dc with the specific choice of the initial data:

c0~x!5~2p!21/4x expS 2
x2

4 D→c~x,t !5~2p!21/4
x

~11 i t !3/2
expF2

x2

4~11 i t !G , ~10!

such that our nonstationary dynamics example displays a stable node atx50 for all times.
The parabolic system~1! in this case6 involves the potential function:
J. Math. Phys., Vol. 38, No. 1, January 1997
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c~x,t !5
Dr1/2~x,t !

r1/2~x,t !
5

x2

2~11t2!2
2

3

11t2
,

~11!

r~x,t !5~2p!21/2~11t2!23/2x2 expF2
x2

2~11t2!G .
The polar~Madelung! factorization of Schro¨dinger wave functions implies

R~x,t !5 ln r1/2~x,t !,

x.0→S~x,t !5S1~x,t !5
x2

4

t

11t2
2
3

2
arctant, ~12!

x,0→S~x,t !5S2~x,t !5
x2

4

t

11t2
2
3

2
arctant1p.

AlthoughS(x,t) is not defined atx50, we can introduce continuous functionsf5exp(R2S) and
g5exp(R1S) by employing the step functione(x)50 if x>0 ande(x)51 if x,0. Then, the
candidates for solutions of the parabolic system~1! with the potential~11! would read

v~x,t ![g~x,t !5~2p!21/4~11t2!23/4uxuexpS 2
x2

4

12t

11t2DexpF2
3

2
arctant1pe~x!G ,

~13!

u~x,t ![ f ~x,t !5~2p!21/4~11t2!23/4uxuexpS 2
x2

4

11t

11t2DexpF32 arctant2pe~x!G .
For all x Þ 0 we can define the forward drift

b~x,t !52
“g~x,t !

g~x,t !
5
2

x
2x

12t

11t2
~14!

which displays a singularity atx50. Nonetheless, (br)(x,t) is a smooth function and the Fokker
Planck equation] tr5Dr2“(br) holds true on the whole real lineR1, for all t P @0,T#. Notice
that there is no current throughx50, sincev(x,t)52¹S(x,t)5 xt/(11t2) vanishes at this poin
for all times.

Our functions f (x,t),g(x,t) are continuous onR1, which, however, does not imply thei
differentiability. Indeed, they solve the parabolic system~1! with the potential~11! not onR1 but
on (2`,0)ø(0,1`).

An apparent obstacle arises because of this subtlety: these functions arenot even weak solu-
tions of ~1!, because of

E
2`

1`

] t f ~x,t !f~x!dx1E
2`

1`

“ f ~x,t !“f~x!dx1
1

2E2`

1`

c~x,t ! f ~x,t !f~x!dxÞ0 ~15!

for every test functionf such thatf(0) Þ 0, continuous and with support on a chosen compact
One more obstacle arises, if we notice thatc(x,t), in ~11! permits the existence of the uniqu

bounded and strictly positive fundamental solution for the parabolic system~1!. Then, while
having singled out a fundamental solution and the boundary density datar0(x),rT(x) consistent
with ~11!, we can address the Schro¨dinger boundary data problem associated with~2!, ~3!,
J. Math. Phys., Vol. 38, No. 1, January 1997
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u~x,0!E k~x,0,y,T!v~y,T!dy5r0~x!,

~16!

v~x,T!E k~y,0,x,T!u~y,0!dy5rT~x!,

expecting that a unique solutionu(x,0),v(x,T) of this system of equations implies an identific
tion u(x,0)5 f (x,0) andv(x,T)5g(x,T).

However, it is not the case and ourf (x,t),g(x,t) do not come out as solutions of the Schr¨-
dinger problem, if considered on the whole real lineR1, on which the fundamental solution se
rules of the game.

Indeed, let us assume that~16! does hold true if we chooseu(x,0)5 f (x,0) and
v(x,T)5g(x,T), with f andg defined by~13!. Since, in particular, we have,

g~x,T!E k~y,0,x,T! f ~y,0!dy5g~x,T! f ~x,T!, ~17!

then forx Þ 0 there holds

f ~x,T!5E k~y,0,x,T! f ~y,0!dy. ~18!

Both sides of the last identity represent continuous functions, hence the equality is valid
wise ~i.e., for every x). We know that f (y,0) is continuous and bounded onR1, and
k(y,0,x,T) is a fundamental solution of~1!. Hence the right-hand side of~18! represents a regula
solution of the parabolic equation. Such solutions have continuous derivatives, while our left
side functionf (x,T) certainly does not share this property. Consequently, our assumption lea
a contradiction and~18! is invalid in our case.

It means that the fundamental solution~e.g., the corresponding Feynman–Kac kernel! asso-
ciated with~11! is inappropriate for the Schro¨dinger problem analysis, if the interpolating pro
ability density is to have nodes~i.e., vanish at some points!.

In our case,x50 is a stable node ofr(x,t) and is a time-independent repulsive obstacle
the stochastic process. An apparent way out of the situation comes by considering two no
municating processes, which are separated by the unattainable barrier atx50.15,21,8,28

The function

f1~x,t !5~2p!21/4~11t2!23/4x expS 2
x2

4

11t

11t2DexpS 32 arctant D ,
~19!

xP@0,̀ !, tP@0,T#,

is a regular solution16 of the first initial-boundary value problem for] t f5D f2c f specified by

f1~x,0!5~2p!21/4x expS 2
x2

4 D , f1~0,t !50. ~20!

Then, instead of the fundamental solution, we need to utilize the Green’s function of the pro
To distinguish it from the fundamental Feynman–Kac kernelk we shall denote this Green’
function k1 . Its existence is granted by the very existence of the fundamental solution fo
considered potential~11! ~see Ref. 29!.

The Green’s functionk1(y,s,x,t) is a unique function such that for everyf continuous on
(0,̀ ) and with a compact support, the function
J. Math. Phys., Vol. 38, No. 1, January 1997
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u~x,t !5E
0

`

k1~y,s,x,t !f~y!dy ~21!

is a solution of] tu5Du2c(x,t)u in (0,̀ )3(s,T), with the properties: limt↓s u(x,t)5f(x) for
all x P @0,̀ ), andu(0,t)50 for all t P (s,T#. Moreover, for every (y,s) P (0,̀ )3@0,T) the func-
tion k1 is strictly positive in (0,̀ )3(s,T) andk1(y,s,0,t)50 for all t P (s,T#.

The uniqueness of solutions for the first initial-boundary value problem implies the validi
the semigroup composition rule fork1 ~Chapman–Kolmogorov identity, which anticipates t
Markov property of the constructed stochastic process!.

In this ~uniqueness! connection a more detailed comment is necessary.
For all s P @0,T), the function f1(x,s) can be uniformly approximated by a sequence

continuous functionsfn
s(x) such that, for each natural numbern the support offn

s is compact in
(0,̀ ). There follows that the sequence of solutions of the first initial-boundary value pro
] tu5Du2cu, given by

un~x,t !5E
0

`

k1~y,s,x,t !fn
s~y!dy ~22!

is uniformly convergent to the solutionf1(x,t). It implies that for anys,t we have

f1~x,t !5E
0

`

k1~y,s,x,t ! f1~y,s!dy. ~23!

Now, let us consider

g1~x,t !5~2p!21/4~11t2!23/4x expS 2
x2

4

12t

11t2D expS 2
3

2
arctant D , ~24!

which is the solution of the first initial-boundary value problem for the adjoint parabolic equa

] tv52Dv1cv, g1~x,0!5~2p!21/4x expS 2
x2

4 D , g1~0,t !50, ~25!

for all t P @0,T#. Let k1* denotes the Green’s function of this adjoint equation. For every cont
ous functionf with a compact support in (0,`) the formula

v~y,s!5E
0

`

k1* ~x,t,y,s!f~x!dx, ~26!

with s,t, defines the solution of the first initial-boundary problem for the adjoint equation.
previous arguments~at least forT,1, modulo appropriate rescalings! apply in this case as well
We conclude that there holds

g1~y,s!5E
0

`

k1* ~x,t,y,s!g1~x,t !dx. ~27!

But, we have16

k1* ~x,t,y,s!5k1~y,s,x,t ! ~28!

for all x,y P (0,̀ ), andk1* (x,t,0,s)50. So, we can write
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ess

, an

hich

ed

n

ith

onic
ective

cor-

8 Blanchard, Garbaczewski, and Olkiewicz: Non-negative Feynman–Kac kernels

¬¬¬¬¬¬¬¬¬¬
g1~y,s!5E
0

`

k1~y,s,x,t !g1~x,t !dx ~29!

for y.0, while g1(y,s)50 if y50.
All that finally allows us to introduce the transition probability density of the Markov proc

respecting the stable repulsive boundary atx50 as follows:

p1~y,s,x,t !5k1~y,s,x,t !
g1~x,t !

g1~y,s!
, yP~0,̀ !, xP@0,̀ !, 0<s,t<T. ~30!

The behavior ofp1 at y50 is to some extent irrelevant, and may involve a discontinuity. But
innocent modification on the set of measure zero is allowed, and we choosep(0,s,x,t)5d(x).

It completes the definition of the transition probability density of the Markov process, w
is consistent with the dynamics ofr(x,t). For all xP@0,̀ ), we have r(x,t)
5*0

`p1(y,s,x,t)r(y,s)dy,0<s,t<T, and also*0
`p1(y,s,x,t)dx51 for all y P @0,̀ ).

However, in view ofb1(x,t)52¹g1(x,t)/g1(x,t5 1/x2x (12t)/(11t2), which is singu-
lar at x50, the densityp1(y,s,x,t) cannotby itself be a Green’s function for the associat
Fokker–Planck equation] tr5Dr2¹(br), if considered on the whole ofR1. The equation
] tp15Dp12¹(bp1) holds true in the open set (0,`)3(0,T).

By combining the known results13,15,19–22about the unattainability of nodes by the diffusio
process onR1 ~respectively, onR2), we conclude thatp1(y,s,x,t) (p2 , respectively! is a
transition probability density of the diffusion with the densityr(x,t) in ~11! and the forward drift
b(x,t) in ~14! for which x50 is an inaccessible repelling barrier. It remains in conformity w
situations met in the conservativec(x,t)5c(x) cases, when an~ergodic28! decomposition into the
noncommunicating due to nodes processes, is generic.

It is instructive to add that the existence of a node at timet50 does not automatically imply
its survival for timest.0, and in reverse.

III. SINGULAR POTENTIALS AND THE GROUND STATE DEGENERACY

Our further discussion will concentrate mainly on singular perturbations of the harm
potential, which we shall exploit in below. Therefore, some basic features of the resp
parabolic problem are worth invoking. The eigenvalue problem~the temporally adjoint parabolic
system now trivializes!

2Dg1~x22E!g505D f2~x22E! f ~31!

has well known solutions labeled byEn52n11 with n50,1,2, . . . . In particular,
g0(x)5 f 0(x)5 (1/p1/4) exp(2x2/2) is the unique nondegenerate ground state solution. The
responding Feynman–Kac kernel reads

exp~2tH !~y,x!5k~y,0,x,t !5kt~y,x!5~p!21/2~12exp~2t !!21/2

3expF2
x22y2

2
2

~y exp~2t !2x!2

2 G ,
~32!

] tk52Dxk1~x221!k,

and the invariant probability densityr(x)5 f (x)g(x)5(p)21/2 exp(2x2) is preserved in the
course of the time-homogeneous diffusion process with the transition probability density

p~y,s,x,t !5kt2s~y,x!
g~x!

g~y!
. ~33!
J. Math. Phys., Vol. 38, No. 1, January 1997
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We havep(y,s,x,t)5p(y,0,x,t2s).
Notice the necessity of the eigenvalue correction of the potential, which is indispensa

reconcile the functional form of the forward driftb(x)52“ ln g(x)522x with the general ex-
pression for the corresponding~to the diffusion process! parabolic system potential,13,8

c5c~x,t !5] t ln g1
1

2 S b22 1“bD ~34!

which equalsc(x)5x221 in our case.
Let us pass to the singular~degenerate! problems.
Example 1: The potential7

c~x!5x21
g2

x2~g11!2
g~g11!

uxu21g 2
2g

uxug
, ~35!

with g.0,x P R1, is singular atx50 and is a well defined even function otherwise. We can gi7

a solution to the stationary parabolic system

2Dg1~c21!g505D f2~c21! f ~36!

in terms of

g~x!5 f ~x!5expF2S 1

uxug
1
x2

2 D G . ~37!

In this case, an invariant density up to normalization readsr(x)5( f g)(x)5g2(x) and is inte-
grable onR1. It vanishes atx50 and at both spatial infinities.

By independent arguments15–22we know that a Markov diffusion process preservingr(x) can
be consistently defined. The nodex50 is unattainable in view of the appropriate singularity of t
forward drift:

b~x!52“ ln g~x!5sgnx
2g

uxu11g22x, ~38!

which pushes sample paths away from the node. Hence, there is no communication~realized by
sample paths of the process! betweenR1 andR2 . Like in case ofn.1 eigenfunctions of the
harmonic oscillator, we deal with the totally disjoint~ergodic28! components of the would-be
global21 diffusion.

This feature is nicely manifested in the apparent domain degeneracy of the associated
group generatorH52D1(c21). Namely,Hg50 is simply an eigenvalue problem. Let u
define g1(x,t)5g(x,t) for x.0 and g1(x,t)50 for x<0, and g2(x,t)50 for x>0 while
g2(x,t)5g(x,t) for x,0. The same procedure can be repeated forf→ f6 .

The functionsg1 andg2 ( f1 and f2 , respectively! belong toL2(R1), and are orthogonal on
R1, while corresponding to the same eigenvalue. It is an obvious spectral degeneracy
respective generatorH. As mentioned before, semigroups exp(2tH) with strictly positive kernels
do not have30 generators with the ground state degeneracy. On the other hand, ifS is the~singular!
set of Lebesgue measure zero andR\S hasm or more connected components, then there alw
exists30 a positivec(x) in Lloc

1 (R\S) such that the ground state ofH52D1c is m-fold degen-
erate.

This phenomenon we encounter in connection with~35!. Recall thatLloc
1 comprises equiva-

lence classes of functions which are integrable on compact sets.
Example 2: The canonical~in the context of Refs. 30–35! choice of the centrifugal potentia
J. Math. Phys., Vol. 38, No. 1, January 1997
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cE~x!5x21
2g

x2
2E ~39!

generates a well known spectral solution34,35 for Hg5@2D1cE(x)#g. The eigenvalues

En54n121~118g!1/2, ~40!

with n50,1,2, . . . andg.2 1
8⇒(118g)1/2.A2, are associated with the eigenfunctions of t

form

gn~x!5x~2g11!/2 expS 2
x2

2 DLna~x2!, a5~118g!1/2,

~41!

Ln
a~x2!5 (

n50

n
~n1a!!

~n2n!! ~a1n!!

~2x2!n

n!
→L0

a~x2!51 ,L1
a~x2!52x21a11.

It demonstrates an apparent double degeneracy of both the ground state and of the whole
space of the generatorH. The singularity at x50 does not prevent the definition o
H52D1x212g/x2 since this operator is densely defined on an appropriate subspac
L2(R1). This singularity is sufficiently severe to decouple (2`,0) from (0,̀ ) so that
L2(2`,0) andL2(0,̀ ) are the invariant subspaces ofH with the resulting overall double degen
eracy.

Potentials of the form12,36,37,30

c~x!5x21@dist~x,]V!#23 ~42!

where]V can be identified with]S, andS is a closed subset inR1 of any ~zero or nonzero!
Lebesgue measure, have properties generic to the Klauder’s phenomenon. Because the
paths are known to be Ho¨lder continuous of any order122e,e.0 and of order13 in particular, there
holds *0

t c(v(t))dt5` if v(t)PS for somet. Conversely,*0
t c(v(t))dt,` if v never hits

S. This implies that the relevant contributions to

~ f ,exp@2t~2D1c!#g!5E f̄ ~v~0!!g~v~ t !!expF2E
0

t

c~v~t!!dtGdm0~v! ~43!

come only from the subset of paths defined by

Qt5Fv;E
0

t

c~v~t!!dt,`G ~44!

The above argument might seem inapplicable to the centrifugal problem. However it is not
the discussion of the divergence of certain integrals of the Wiener process, in the cont
Klauder’s phenomenon, it has been proven38 that for almost every path fromx51 to x521
~crossing the singularity pointx50) there holds* t2d

t1duv(t)u21dt5` for any d.0.
To be more explicit: if t15t1(v) is the first time such that the Wiener proce

W(t)5W(t,v) attains the level~location onR1) W(t1)51, then the integral over any right-han
side neighborhood (t1 ,t11d) of t1 diverges:

E
t1

t11d
c~v~ t !21!dt5` ~45!

if *21
11c(x)dx5`.
J. Math. Phys., Vol. 38, No. 1, January 1997
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In case of the left-hand neighborhood oft1 , we have

E
t12d

t1
c~v~ t !21!dt5` ~46!

if *21
0 xc(x)dx5`.
All that holds true in case of the centrifugal potential, thus proving that the only subs

sample paths, which matters in~43! is ~44!. Obviously,Qt include neither paths crossingx50 nor
those which might hit~touch! x50 at any instant. The singularity is sufficiently severe to cre
an unattainable repulsive boundary for all possible processes, which we can associate w
spectral solution~40! and ~41!.

IV. THE SINGULAR POTENTIAL IN ACTION

After the previous analysis one might be left with an impression that the appearance
stable barrier atx50 persisting for allt P @0,T# is a consequence of the initial data choi
c0(0)50 for the involved quantum Schro¨dinger picture dynamics. In general it is not so. F
example,c0(x)5x2 exp(2x2/4), which vanishes atx50, does not vanish anymore for time
t.0 of the free evolution.

On the other hand, somewhat surprisingly from the parabolic~intuition! viewpoint, the node
can be dynamically developed from the nonvanishing initial data and lead to the nonvan
terminal data. This property cannot arise in the standard solutions of the Schro¨dinger boundary
data problem by means of the strictly positive kernels.

Let us consider a complex function:

c~x,t !5~11 i t !21/2 expF2
x2

4~11 i t !GF x2

2~11 i t !2
1

i t

11 i t G , ~47!

which solves the free Schro¨dinger equation with the initial datac(x,0)5 (x2/2) exp(2x2/4). It
vanishes atx50 exclusively at the initial instantt50 of the evolution.

Obviously, there is nothing to prevent us from considering

C~x,t !5c~x,t2a! ~48!

for a.0. It solves the same free equation, but with nonvanishing initial data. However, the
is developed in the course of this evolution at timet5a and instantaneously disintegrated f
times t.a. Here, the Schro¨dinger boundary data problem would obviously involve two stric
positive probability densitiesr0(x)5uC(x,0)u2 andrT(x)5uC(x,T)u2,T.a. At the first glance
it would suggest the utility of the theory,11 based on strictly positive Feynman–Kac kernels,
analyze the corresponding interpolating process. However, this tool is certainly inappropria
cannot reproduce thea priori known dynamics, with the node arising at the intermediate t
instant.

To handle the issue by means of a parabolic system, which we can always associate
quantum Schro¨dinger picture dynamics, let us evaluate the potentialc(x,t) appropriate for~1!.

In view of

r~x,t !5const~11t2!25/2 expF2
x2

2~11t2!GFx
4

4
2x2t21t2~11t2!G ~49!

we have~while settingw1/2(x,t)5@x2/42x2t21t2(11t2)#)
J. Math. Phys., Vol. 38, No. 1, January 1997
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c~x,t !5
Dr1/2~x,t !

r1/2~x,t !
5
1

4 S 2
x

11t2
1“wD 21 1

2 S 2
1

11t2
1D ln wD

5
1

4

x2

~11t2!2
2
1

2

3x222t2x

x4

4
2t2x21t2~11t2!

2
1

2~11t2!

1
1

2

3x222t2

x4

4
2t2x21t2~11t2!

2
1

4 S x322t2x

x4

4
2t2x21t2~11t2!D 2

. ~50!

The expression looks desperately discouraging, but itst↓0 ~i.e., the initial data! limit is quite
familiar and displays a centrifugal singularity atx50:

c~x,0!5
Dr1/2~x,0!

r1/2~x,0!
5
x2

4
1

2

x2
2
5

2
. ~51!

Since the original, dimensional expression for the centrifugal eigenvalue problem is34

S 2
1

2
D1

m2

2
x21

g

x2Dg5Eg, En5mF2n111
1

2
~118g!1/2G , ~52!

with n50,1, . . . , anobvious adjustment of constantsm51/2 andg51 allows us to identify
E55/2 as then50 eigenvalue of the centrifugal HamiltonianH52D1 x2/41 2/x2. Clearly, the
functionc(x,0)5r1/2(x,0)5 (x2/2) exp(2x2/2) is an eigenfunctiong(x) in ~52!.

A peculiarity of the considered example is that it enables us to achieve an explicit insigh
an emergence of the centrifugal singularity and its subsequent destruction~decay! for times
t.a, due to the free quantum evolution. But, what is more important, it involves a very nont
time-dependent semigroup dynamics through the associated parabolic equations. Indeed,
main properties of the corresponding semigroup generator depend on time, and the emerg
centrifugal singularity transforms a nondegenerate Hamiltonian into the degenerate one
particular time instant.

In view of the degeneracy of the ground-state eigenfunction (x2/2) exp(2x2/4) of the cen-
trifugal Hamiltonian, we deal here with the gradually decreasing communication betweenR1 and
R2 , which results in the emergence of the completely separated~disjoint! sets (2`,0) and
(0,1`) at t5a, followed by the gradual increase of the communication for timest.a. By
‘‘communication’’ we understand that the set of sample paths crossingx50 forms a subset of
nonzero Wiener measure.

It also involves a generalization~cf. also Refs. 11, 39, and 29! to time-dependent Feynman
Kac kernels:

S f ,expF2E
s

t

H~t!dtGgD 5E f̄ ~v~s!!g~v~ t !!expF2E
s

t

c~v~t!,t!dtGdm0~v!,

~53!

Qs,t5Fv;E
s

t

c~v~t!,t!dt,`G .
The finiteness condition*s

t c(v(t),t)dt,` surely does not hold true38 if d.0 is sufficiently
small, cf. ~45! and ~46!.

Let us mention that some interesting mathematical questions are left aside in the p
paper. For example, even in case of conventional Feynman–Kac kernels, the weakest p
J. Math. Phys., Vol. 38, No. 1, January 1997
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criterions allowing for their continuity in spatial variables are not yet established. The theory
Nagasawa and R. Aebi7,14,26,27exploits the weak fundamental solutions, thus bypassing the
found issue of the uniqueness of the stochastic process.

V. NON-NEGATIVE SOLUTIONS OF PARABOLIC EQUATIONS AND THE SCHRO¨ DINGER
BOUNDARY DATA PROBLEM ACCORDING TO R. FORTET

As emphasized before, one of the motivations for our analysis was the quantal obser
~exploiting the Born statistical interpretation postulate as the principal building block of
theory! that the temporally adjoint pair of Schro¨dinger equations,

i ] tc~x,t !52DDc~x,t !1
1

2mD
V~x!c~x,t !,

~54!

i ] tc̄~x,t !5DDc̄~x,t !2
1

2mD
V~x!c̄~x,t !,

by means of the polar decompositionc5exp(R1iS) and c̄5exp(R2iS) can be transformed into
the ~hopelessly looking at the first glance! nonlinearly coupled parabolic system of the form~1!:

] tu*5DDu*2
1

2mD
~2Q2V!u* , ] tu52DDu1

1

2mD
~2Q2V!u,

~55!

Q52mD2
Dr1/2

r1/2
, r~x,t !5u* ~x,t !u~x,t !5c̄~x,t !c~x,t !,

for real functionsu5exp(R1S) andu*5exp(R2S). In the above\/2m5D can be set to restore
the traditional notation.

While searching for a probabilistic meaning of the system~55!, we had in fact assumed~see
also Refs. 9 and 11! to have in hand a solution of~54!, so thatr(x,t) was known. Our next step
amounts to replacing the nonlinear parabolic system~55! by the linear one~1! ~with
D5m51), where for each given functional choice ofc(x,t)5 (1/2mD) (2Q2V), all allowed
solutionsu(x,t),v(x,t) were sought for, including the fundamental one. At this point the cru
role of the respective Feynman–Kac kernel was disclosed. Effectively, we have invoke
Schrödinger boundary data problem to pick up the unique solution from among an infini
others, such that the arising probability measure dynamics~if any! is consistent with thea priori
known probability density boundary data.

If the Feynman–Kac kernels are strictly positive, the respective solutions are strictly po
as well, except for the boundaries]V of the spatial area confining the process. Moreover,
continuous and strictly positive kernels we have granted the uniqueness of solutions of the¨-
dinger problem.

Once we admit thenon-negativeFeynman–Kac kernels, we fall into another theoreti
framework, that of non-negative solutions of linear~and nonlinear! parabolic equations.40 Then,
however, the uniqueness of solutions of the Schro¨dinger problem in general is lost.

Since we address the general time-dependent potentials, and as we have seen th
dependent domain properties of semigroup generators are involved, we touch upon an
undeveloped theory of construction of Markov processes associated with time-dependent D
forms and spaces.41,42 The standard theory of forms22 does not work in the case of time
inhomogeneous evolutions.

Beurling4 has attempted to relax the strict positivity condition in more than one spatia
mension, with a partial success only. An earlier analysis due to Fortet3 is of particular importance
J. Math. Phys., Vol. 38, No. 1, January 1997
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in our one-dimensional context. He addressed an issue of the existence and uniqueness
negative solutions of the Schro¨dinger boundary data problem, under an assumption that the k
is continuous and non-negative in one spatial dimension.

Fortet’s integral equations,

r1~x!5 f ~x!E
V2

k~x,y!g~y!dy, r2~x!5g~y!E
V1

f ~x!k~x,y!dx, ~56!

where V1 ,V2 are finite ~or not! intervals in R1, and *V1
r1(x)dx5*V2

r2(y)dy.0, while
k(x,y)>0, r1(x)>0,r2(y)>0, were to be solved with respect to the unknown functio
f (x),g(y), defined respectively onV1 ,V2 .

All functions k(x,y),r1(x),r2(y) are by assumption real and measurable~and integrable! for
x P V1 ,y P V2 . There are, however, the additional assumptions which must be respected:

~i! k(x,y) is continuous, bounded from the above and non-negative almost everywhe
V13V2 , i.e., except for a setS of measure zero comprising bothxs andys in R1,

~ii ! r1(x) andr2(y) are continuous, and
~iii ! let Ā be a closed interval inV1 .

For a non-negative continuous inV2 functions g(y) we demand thatif the integral
G(x)5*V2

k(x,y)g(y)dy is finite almost everywhere on anopensubset ofV1 containingĀ, then

this integral is uniformly convergent onĀ. Analogously with respect toy P B̄,V, with
f (x)→F(y) on V2 .

Under these hypotheses, the integral equations~56! admit a unique solution given in terms o
two functions:

~1! f (x), which is strictly positive and continuous almost everywhere, except for the set of
of r1(x), and

~2! g(y) which has thesamezeros asf (x), is strictly positive almost everywhere and measurab

Hence,g(y) is not necessarily continuous, and one should realize that we must have g
the existence of“ ln g(x,t) as the drift field. If the functiong(x) is continuous, all that fits to ou
previous discussion. However, even in this case some additional restrictions onk(x,y) are nec-
essary to guarantee a differentiability off (x,t)5*k(y,0,x,t) f (y)dy and g(x,t)
5*k(x,t,y,T)g(y)dy, and make them solutions of the time-adjoint parabolic system once w
k(x,y)5k(y,s,x,t),0<s,t<T and select the appropriate Feynman–Kac kernel.

In connection with the previous centrifugal example, the above conditions appear to b
restrictive. Let us therefore invoke another result due to Fortet. Namely, if the above conditio~iii !
is replaced by the demand

E
V2

r2~y!

@*V1
k~z,y!r1~z!dz#

dy,`, ~57!

then a unique non-negative solution of the integral equations~56! comprises a continuous functio
f (x) whose zeros coincide with those ofr1(x). The functiong(y) is measurable and has zeros
r2(x), which are not necessarily in common with those ofr1 .

This result opens a number of interesting propagation scenarios, and deserves a carefu
sis ~with the generalization prospects! in higher dimensions, cf. also for a related discussion
Refs. 43 and 44. Notice that our centrifugal example exhibits in its simplest version an intri
feature of Fortet’s analysis: we are capable of producing probability densitiesr1(x) ~initial! and
r2(y) ~terminal!, which havenoncoincidingsets of zeros. The inquiry into the correspondi
Schrödinger’s interpolating dynamics is quite an appealing problem left to the future investiga
J. Math. Phys., Vol. 38, No. 1, January 1997
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8Ph. Blanchard and P. Garbaczewski, Phys. Rev. E49, 3815~1994!.
9P. Garbaczewski and R. Olkiewicz, Phys. Rev. A51, 3445~1995!.
10P. Garbaczewski, J. R. Klauder, and R. Olkiewicz, Phys. Rev. E51, 4114~1995!.
11P. Garbaczewski and R. Olkiewicz, J. Math. Phys.37, 731 ~1996!.
12B. Simon,Functional Integration and Quantum Physics~Academic, New York, 1979!.
13R. Carmona, inTaniguchi Symposium, PMMP, Katata 1985, edited by K. Itoˆ and N. Ikeda~Academic, Boston, 1987!.
14M. Nagasawa, Prob. Theory Relat. Fields82, 109 ~1989!.
15Ph. Blanchard and S. Golin, Commun. Math. Phys.109, 421 ~1987!.
16A. Friedman,Partial Differential Equations of Parabolic Type~Prentice-Hall, Englewood, NJ, 1964!.
17P. Garbaczewski, Phys. Lett. A178, 7 ~1993!.
18P. Garbaczewski and G. Kondrat, Phys. Rev. Lett.77, 2608~1996!.
19Ph. Blanchard, Ph. Combe, and W. Zheng,Mathematical and Physical Aspects of Stochastic Mechanics, Lecture Notes
in Physics, Vol. 281~Springer-Verlag, Berlin, 1987!.

20E. Nelson,Quantum Fluctuations~Princeton U. P., Princeton, 1985!.
21E. Carlen, Commun. Math. Phys.94, 293 ~1984!.
22M. Fukushima, inMathematics1 Physics, edited by L. Streit~World Scientific, Singapore, 1985!, Vol. 1.
23A. Korzeniowski, Stat. Prob. Lett.8, 229 ~1989!.
24R. G. Pinsky, Ann. Prob.13, 363 ~1985!.
25K. L. Chung and Z. Zhao,From Brownian Motion to Schro¨dinger Equation~Springer, Berlin, 1995!.
26R. Aebi, Z. angew. Math. Phys.46, 772 ~1995!.
27R. Aebi,Schrödinger Diffusion Processes~Birkhäuser, Basel, 1996!.
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Scattering by singular potentials. B. Varying the linear
parameters

T. Dolinszky
KFKI-RMKI, H-1525 Budapest 114, P.O.B. 49, Hungary

~Received 14 August 1995; accepted for publication 5 July 1996!

In part A a convergent WKB~Wentzel-Kramers-Brillouin! expansion has been
developed for the wave function of Schro¨dinger scattering by highly singular po-
tentials. In part B we look for the term-by-term dependence of this series on energy,
coupling constant and orbital angular momentum. While we vary these parameters
each point of fixed value of the new dimensionless radial coordinate invariably
belongs either to the exponential or the trigonometric WKB region. By this tech-
nique, the series was proven to become exact even after the 2nd term both in the
short wavelength, the strong coupling or the high partial wave limits. ©1997
American Institute of Physics.@S0022-2488~96!01912-3#

I. INTRODUCTION

Just as in the nonsingular case, both exact and, if supplemented by error estimatio
approximate solutions are welcome in singular Schro¨dinger scattering if they are available i
closed form. Let us mention some of the wave functions known either explicitely or by quadr

Exact solutionsin explicite form have been found by Vogt and Wannier1 at any energyk2 and
coupling constantg2 in each partial wave of indexl for the potentialU(r )5r24, 0<r , in terms
of Mathieu functions. At zero energy only but still in all partial waves do we know, owing
Khuri and Pais,2 the scattering wave function forU(r )5r2p, 0<r , to be a modified Besse
function. Restricted to zero energy and S-wave, a superposition of modified Bessel fun
solves the problem of scattering byU(r )5r24 exp(a/r), a.0, 0<r , as established by Newton3

Approximate solutions, correct to O$k2n% for k2→0, can be generated by quadrature v
iteratingn- times a Volterra type integral equation if thek250 solution is analytically known in
the partial wave considered and the potential is at least as singular asr22, r→0. If , in addition,
r 4U(r )→` asr→0, even the knowledge in closed form of the$k250, l50% solution is sufficient
for developing the$k2.0, l.0% solution by quadrature, as remarked by Newton.3 Moreover, for
U(r )5r2p, 0<r , the l50 scattering is governed exclusively by the lumped param
P5k12 2/pg2/p because of which the low energy wave functions simultaneously act as
coupling solutions.

Approximate solutions, correct to O$k22b%, k2→` for anyb.0, are expected to be availab
by quadrature in terms of the semiclassical approach. This point has been suggested by a
of studies of thek2→` behavior of the scattering phase shiftd(k2), though at first not of the wave
function itself. Frank4 and Calogero5 concluded to be characteristic of singular scattering that
phase shiftd(k2), if considered a continuous function of energy, decreases beyond all limits w
the energy increases. It was Newton3 who suggested that in singular scattering the WKB appro
should reproduce correctly not only thek2→` but the g2→` and the l→` limits alike.
Dolinszky6 numerically checked this proposition to hold for the caseU(r )5r24, k2→`.
Froemann and Thylwe7 analytically proved that the WKB phase shifts reproduce the exact on
the short wavelength limit if the potential is purely inverse power. Then Dolinszky8 set up a
modified exact phase equation which consists of a bounded trigonometric term added
relevant WKB phase function. It was thus straightforward to analytically prove that the W
phase shifts become exact in the high energy limit for any stage of singularity.

Recall now the modified-WKB expansion of the scattering wave function as obtained in
0022-2488/97/38(1)/16/14/$10.00
16 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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A of the present work.9 Thus there is for singular scattering a convergent WKB series availab
well as the well founded expectation that WKB limits may become exact at asymptotically
values of the linear parameters in the Schro¨dinger equation. Stimulated by these points, we
going to calculate for thenth term,n50,1,2. . . , of that series the orders of magnitude On$k

2%,
On$g

2% and On$ l ( l11)% for k2→`, g2→`, l→` , respectively. We hope to find a term or
group of terms that become dominant over the rest of the expansion in one or more of the
considered.

II. NEW RADIAL COORDINATE

In this section we reword the main formulae of part A developed for the nonrelativ
scattering by the strongly singular potentialg2U(r ) at the energyk2 in the partial wave of index
l . The new point is the introduction of a radial coordinate which suits the WKB approac
variable parameters.

The potentialU(r ) we are interested in should be in the origin highly singular, everywh
repulsive and asymptotically well behaved. Accordingly, we require

r 4U~r !→`, r→0,

U8~r !<0, 0<r ,

r 2U~r !→0, r→`. ~2.1!

Some notations to be frequently used are

l2[
1

8
1 l ~ l11!; p2[$k2,g2,l2%. ~2.2!

The ‘‘master equation’’

k22g2U~R!2
l2

R2 50 ~2.3!

fixes the matching distancer5R uniquely since Eq.~2.3! has by Eqs.~2.1! just one real root

R5R$k2,g2,l2%. ~2.4!

The local wave number square has been introduced as

K2~p2,r !5
1

8r 2
1sgn@r2R~p2!#H k22g2U~r !2

l2

r 2 J , ~2.5!

which has the noteworthy property of nowhere vanishing. Notice, however, that it involves i
sign factor the variable parameterp2, because of which integrals inr do not, in general, commute
with variations ofp2. To cure this point, we define the dimensionless radial coordinatet by putting

t[
r

R~p2!
, @F~p2;r !# r5R~p2!t[F̃~p2;t !. ~2.6!

Accordingly, the local wave number square expression is recast as

K̃2~p2;t !5
1

8R2t2
1sgn~ t21!H k22g2U~Rt!2

l2

R2t2 J . ~2.7!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The Schro¨dinger equation which governs scattering reads now

H 1

R2

d2

dt2
1k22g2U~Rt!2

l ~ l11!

R2t2 J ũ 1~ t !50. ~2.8!

Henceforward, we omit as a rule the tildes over the functions of thet-variable. Nevertheless
the argumentst,t8,t9, . . . will remind us that we treat a transformed function. The 0-order re
ence functions are therefore

w6~ t ![
k1/2

K1/2~ t !
exp@6v~ t !#, t,1, ~2.9!

w6~ t ![
k1/2

K1/2~ t !
@C6 cosv~ t !1S6 sin v~ t !#, t.1, ~2.10!

where

v~ t ![RE
1

t

dt8 K~ t8!, t,1, ~2.11!

v~ t ![
p

4
1RE

1

t

dt8 K~ t8!, t.1. ~2.12!

One obtains by smoothly matching the functions~2.9! and ~2.10! at t51

C15223D, S1523D121/2,

C25223D121/2, S2523D,

D52l2~ l !2R3g2@U8~r !# r5R . ~2.13!

The iteration scheme reads

w0
1~ t ![w1~ t !,

wn
1~ t ![RE

0

t

dt8G~ t,t8!D~ t8!wn21
1 ~ t8!, n51,2,3 . . . . ~2.14!

Here the resolvent is given by

G~ t,t8!52
1

2k
@w1~ t !w2~ t8!2w2~ t !w1~ t8!#, ~2.15!

while the residual potential between the physical and reference problems is

D~ t !52
1

4R2 H 54 SK2~ t !8

K2~ t ! D 22 K2~ t !9

K2~ t !
1
12sgn~ t21!

2t2 J . ~2.16!

The scattering wave function can be developed into an absolute convergent series in term
higher order smooth-WKB waves:
J. Math. Phys., Vol. 38, No. 1, January 1997
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u1~ t !5(
0

`

wn
1~ t !, 0<t. ~2.17!

Observe instead of the 3 independent linear parameters there are 4 constants,k2,g2,l2,R, present
in Eq. ~2.7!. Elimination of one of the abundant parameters after the other via Eq.~2.3! leads to 3
additional expressions each of which is equivalent to Eq.~2.7!. The alternatives are

K2~ t !5
1

8R2t2
1sgn~ t21!H g2@U~R!2U~Rt!#2

l2

R2 S 1t2 21D J , ~2.18!

where the explicitk2 is absent from the parameters, further

K2~ t !5
1

8R2t2
1sgn~ t21!H k22S k22 l2

R2D U~Rt!

U~R!
2

l2

R2t2 J , ~2.19!

whence the explicit coupling constant has been removed, finally

K2~ t !5
1

8R2t2
1sgn~ t21!H k2S 12

1

t2D1g2F 1t2U~R!2U~Rt!G J , ~2.20!

whence the explicitl2 was cleared away. The variation of a given linear parameter will be d
by selecting from Eqs.~2.l8!–~2.20! just the one which does not explicitly contain the parame
varied. Then it will be the matching distanceR that carries in each case the entire variati
considered.

III. VARIABLE MATCHING DISTANCE

The question of how the matching distance varies with the linear parameters of the S¨-
dinger equation can be answered for the potential

U4~r !5
r 0
2

r 4
~3.1!

in any partial wave at any energy and coupling constant, by Eq.~2.3!, exactly as

R4~p
2!5

21/2

2k
$l21@l414g2k2r 0

2#1/2%1/2. ~3.2!

We extract the following asymptotical expressions

R4~p
2!→S g

kr0
D 1/2r 0→0, k2→`,

→S g

kr0
D 1/2r 0→`, g2→`,

→
l

k
→`, l2→`. ~3.3!

Hence one concludes for strongly singular, everywhere repulsive and monotonous potenti
analogous behavior

R~p2!→0, k2→`; R~p2!→`, g2→`; R~p2!→`, l→`. ~3.4!
J. Math. Phys., Vol. 38, No. 1, January 1997
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An interpretation we use concerning the symbolp2 of Eq. ~2.2!:

p2→` meansk2→`, or g2→`, or l→`. ~3.5!

We include in the discussion potentials of four classes constructed by combining expon
or power singularity of the core with exponential or power decay of the tail. The examples w
products of a core and a tail factor, parametrized as follows:

a5$A,a%, b5$B,b%, ~3.6!

Uab~r ![
1

r 0
2Ua~r !Ub~r !, ~3.7!

to be supplemented by the definitions

UA~r ![expSAr0r D ; Ua~r ![S r 01r

r D a, a>4; ~3.8!

UB~r ![expS 2Br

r 0
D , Ub~r ![S r 0

r1r 0
D b, b>2. ~3.9!

Notice that

Uab~r !→
1

r 0
2Ua~r !, r→0;

→
1

r 0
2Ub~r !, r→`. ~3.10!

Further notation also implies dropping dummy subscripts as follows

RAb~p2!→RA~p2![
A

2ln~kr0 /g!
r 0→0, k2→`, ~3.11!

Rab~p2!→Ra~p
2![S g

kr0
D 2/ar 0→0, k2→`, ~3.12!

RaB~p2!→RB~p2![
2ln~g/kr0!

B
r 0→`, g2→`, ~3.13!

Rab~p
2!→Rb~p

2![S g

kr0
D 2/br 0→`, g2→`, ~3.14!

Rab~p2!→R0~p
2![S l

kr0
D r 0→`, l→`. ~3.15!

Knowledge of the matching coefficients goes back to that of the constantD as involved in Eqs.
~2.13!. The respective asymptotical expressions read in the usual limits;

DAb~p2!→DA~p2![
A~kr0!

2

2ln~kr0 /g!
→`, k2→`, ~3.16!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Dab~p2!→Da~p
2![a@~kr0!

12 2/ag2/a#2→`, k2→`, ~3.17!

DaB~p2!→DB~p2![8S kr0B D 2ln3S g

kr0
D→`, g2→`, ~3.18!

Dab~p
2!→Db~p

2![b@~kr0!
12 2/bg2/b#2→`, g2→`, ~3.19!

Dab~p2!→D0~p
2![2l2~ l !→`, l2→`. ~3.20!

Note the common property of the 4 potential classes and the 3 parameter limits that all
coefficients of Eqs.~2.13! increase beyond all bounds in each case. Moreover, for pure power
and/or tail factor of the potential they depend in the short wave and/or strong coupling limit o
linear parameters exclusively via the lumped parameterPs(k,g), where

Ps~k,g!5k12 2/sg2/s, ~3.21!

with s5a ands5b, respectively.
We need a number of asymptotical relationships, which are extracted from Eqs.~2.13! and

~3.16!–~3.20! and read

D~p2!→`, C6~p2!→2`, S6~p2!→`, p2→`, ~3.22!

as well as

C6~p2!

S6~p2!
→21;

C1~p2!

C2~p2!
→1;

S1~p2!

S2~p2!
→1, p2→`. ~3.23!

IV. VARIABLE LOCAL WAVE NUMBERS

The first step to finding the dominant contributions to the expansion~2.17! in the limits
considered we look for the dominant contributions to each of the alternative expressions~2.18!,
~2.19! and ~2.20!. For potentials of the type~3.7! Eqs.~3.4! and ~3.10! combine by Eqs.~3.11!–
~3.15! to

Uab~Rt!→
1

r 0
2Ua~Rat !, t,`, k2→`,

→
1

r 0
2Ub~Rbt !, t.0, g2→`,

→
1

r0
2Ub~R0t!, t.0, l2→`. ~4.1!

Short wavelengths. These problems should be treated by incorporting the asymptotical mat
distance formalas~3.11!–~3.12! into the exact Eq.~2.18! with due regard to Eq.~4.1!. One thus
gets for an exponential type of singularity:

KAb
2 ~ t !→KA

2~ t ![k2US kr0g D 2~1/t 21!

21U, k2→`. ~4.2!

Hence we extract for the residual potential~2.16!
J. Math. Phys., Vol. 38, No. 1, January 1997
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DAb~ t !→DA~ t ![
24ln4~kr0 /g!

A2t4r 0
2 , k2→`. ~4.3!

For power type of singularity the analogous results read

Kab
2 ~ t !→Ka

2~ t ![k2U 1ta 21U, k2→`, ~4.4!

Dab~ t !→Da~ t ![
1

t2 F 5a2

16~12ta!2
2
a~a21!

4~12ta!G , k2→`, ~4.5!

Strong coupling.The relevant formulas rest on Eq.~2.19! combined with the matching distance
~3.13! and ~3.14!. One obtains thus for the case ofexponential typeof decay

KaB
2 ~ t !→KB~ t ![

1

r 0
2 S kr0g D 2tg2, 0,t,1,

→k22
l ~ l11!B

2t ln~g/kr0!

1

r 0
2 , t.1,

g2→` ~4.6!

as well as

DaB~ t !→DB~ t ![
B2

16r 0
2 , t,1;

[
l ~ l11!B3

16k2r 0
4g2ln3~g/kr0!t

, t.1;

g2→`. ~4.7!

For potentials with power type of tail one obtains in turn

Kab
2 ~ t !→Kb

2~ t ![k2U 1t2 21U, g2→`. ~4.8!

Notice the independence of the r.h.s. of the nonlinear parameterb, a property due to the use of th
t-language. As to the residual potential, a short calculation supplies

Dab~ t !→Db~ t ![
~kr0 /g!4/b

64r 0
2t2~12tb!2

@5b214b~b11!u12tbu1~12tb!2@12sign~12t !##, g2→`.

~4.9!

High partial waves.The underlying exact local wavenumber formula is Eq.~2.20!, which is to be
combined with the asymptotical expression~3.15! of the matching distance to yield

Kab
2 ~ t !→Kg

2[k2U12
1

t2U, l2→` ~4.10!

for the local wave number, while for the residual potential
J. Math. Phys., Vol. 38, No. 1, January 1997
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Dab~ t !→Dg~ t ![
k2

2g2t2 F 25

2~12t2!2
1

3

12t2
2
12sign~12t !

4 G , l2→`. ~4.11!

Observe that these formulas do not depend at all on nonlinear parameters and reproduce
unperturbed case. Also interesting is to compare the strong coupling formulas of the pow
tail, Eqs. 4.8–~4.9!, taken atb52, with the relevant expressions~4.10!–~4.11! of the high order
partial waves.

An important conclusion as to the physics of singular scattering is that, at least for pote
separable into core and tail factors, thet-dependent short wavelength smooth-WKB expressi
rest exclusively on the nonlinear parameters that specify the core while the strong coupling
formulas depend exclusively on the nonlinear parameters that govern the behavior of the po
tail. This statement has been verified off the origin along the entiret-axis and its straightforward
demonstration relied just upon thet-language we used.

V. RAPID CONVERGENCE

We are going to find in this section the terms of the series~2.17! which become dominan
while one of the linear parameters of the Schro¨dinger equation increases beyond all limits. W
expect that in each of these limits the first few terms will prevail over the rest of the expan

There are 4 potential classes, Eqs.~3.6!–~3.7!, and 3 asymptotical cases,k2,g2,l2→`, to be
treated. The discussion is simplified by some common properties of the different potential c
and parameter limits. As to the exponential WKB region, we extract from Eqs.~4.2!, ~4.4!, ~4.6!,
~4.8! and ~4.10! combined with the respective Eqs.~3.11!–~3.15! that

R~p2!K~p2;t !→`, t,1, p2→`, ~5.1!

where, as ususal, the symbolp2 stands for the triadk2,g2,l2 while p2→` means that one of thes
parameters increases unboundedly. The same set of equations furnishes in the trigonometri

R~p2!K~p2;t !→b~p2!k~ t !, t.1, p2→`. ~5.2!

Hereb(p2) is independent oft while k(t) does not involvep2. Notice also that

k~ t !.0, b~p2!→`, t.1, p2→`. ~5.3!

Owing to the definition~2.11!, Eq. ~5.1! is sufficient for proving

@v~p2;t8!2v~p2;t !#→2`, t8,t,1, p2→`, ~5.4!

while the definition~2.12! implies by Eq.~5.2! that

v~p2;t !→b~p2!E
1

t

dt8 k~ t8!, t.1, p2→`. ~5.5!

The above relationships establish connections between the 0th and the 1st order contribu
the series~2.17!, as defined atn51 by Eq.~2.14!. The treatment will be separated according to t
relative positions of the triadt8,t,1 on thet-axis.

The ‘‘exponential-exponential’’ contribution is understood as@see Eq.~2.15!#

G~ t,t8!w0
1~ t8!5

1

K~ t8!
@12exp2@v~ t8!2v~ t !##w0

1~ t !, t8,t,1, ~5.6!

which is still exact and becomes asymptotically by Eq.~5.4!
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G~ t,t8!w0
1~ t8!→

1

K~ t8!
w0

1~ t !, t8,t,1, p2→`. ~5.7!

Observe the resolvent acts as somed-function.
The ‘‘exponential-trigonometric’’ contribution reads by Eqs.~2.14!–~2.15! and ~2.9!–~2.10!

G~ t,t8!w0
1~ t8!5

1

2K~ t8!
@w0

1~ t !2exp$2v~ t8!%w0
2~ t !#, t8,1,t. ~5.8!

The large parameter limit of this expression is

G~ t,t8!w0
1~ t8!→

1

K~ t8!
w0

1~ t !, t8,1,t, p2→`, ~5.9!

which is formally identical with Eq.~5.7!.
The treatment of the ‘‘trigonometric-trigonometric’’ contribution requires some auxiliary c

cepts and theorems. In the trigonometric region we introduce a superpositionw0
!(t) of the zero-

order WKB solutionsw0
1(t) andw0

2(t) as

w0
!~ t ![

k1/2

K1/2~ t !
@2S1 cosv~ t !1C1 sin v~ t !#, t.1, ~5.10!

with C1 andS1 taken from Eqs.~2.13!. The resolvent reads in this part of the (t8,t) plane by Eqs.
~2.10! and ~2.15! by some trigonometry in exact form as

G~ t,t8!52
sin@v~ t !2v~ t8!#

K1/2~ t !K1/2~ t8!
, 1,t,t8. ~5.11!

The constant Wronskian implied here is by Eq.~2.13! given by

W$w0
1~ t !;w0

2~ t !%522, ~5.12!

and has thus been absorbed by another constant.
Henceforward we return to the asymptotical parameter values. As a preparation, we che

trigonometric identity

~A cosbx1B sin bx!sinb~y2x!5Asinby cos2bx2B cosby sin 2bx2
1

2
A cosby sin 2bx

1
1

2
B sin by sin 2bx. ~5.13!

When multiplied by an integrable functionf (x) the integration of this equation in the variab
x leads to

E
a

b

dx@A cosbx1B sin bx# f ~x! sin b~y2x!→
1

2
@A sin by2B cosby#E

a

b

dx f~x!, b→`.

~5.14!

Notice the constantsA andB as well as the functionf (x) may still depend on the parameterb.
We want to relate the higher order terms in Eq.~2.17! to the zero order one at large values

the linear parameters. The formulas to be derived will appear simple by the notation
J. Math. Phys., Vol. 38, No. 1, January 1997
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q~ t ![R
D~ t !

K~ t !
, ~5.15!

Q~ t1 ,t2![E
t1

t2
dt8 q~ t8!, ~5.16!

which definitions involve the concepts of Eqs.~2.7! and ~2.16!.
Contribution n51. We get in the exponential region by Eqs.~2.14! and ~5.7!

w1
1~ t !→w0

1~ t !Q~0,t !, t,1, p2→`. ~5.17!

Observe that each quantity involved here does depend on the parametersp2. As regards the
trigonometric region, the definitions~2.14!, ~5.10! and ~5.16! combine with the asymptotically
valid expressions~5.9!, ~5.11! and ~5.14! to

w1
1~ t !→w0

1~ t !Q~0,1!1w0
!~ t !Q~1,t !, t.1, p2→`. ~5.18!

Contribution n52. The incorporation of the concepts~5.15!–~5.16! into the definition~2.14!
@n52# yields by Eq.~5.17! for the exponential region exclusively

w2
1~ t !→RE

0

t

dt8 D~ t8!G~ t,t8!w0
1~ t8!E

0

t8
dt9 q~ t9!, t,1, p2→`. ~5.19!

Owing to Eq.~5.7!, this formula can be rewritten in terms of Eq.~5.15! again in the exponentia
region only as

w2
1~ t !→w0

1~ t !E
0

t

dt8 q~ t8!E
0

t8
dt9 q~ t9!, t,1, p2→`, ~5.20!

which in turn can identically be recast by Eq.~5.16! as

w2
1~ t !→

1

2!
w0

1~ t !Q~0,t !2, t,1, p2→`, ~5.21!

to be compared with Eq.~5.17!. As to the trigonometric region, one has to work with both E
~5.17! and ~5.18!. Repeated applications of the asymptotical expressions~5.14! lead then after
some rearrangement to

w2
1~ t !→

1

2!
$w0

1~ t !@Q~0,1!22Q~0,1!Q~1,t !#1w0
!~ t !Q~1,t !2%, t.1, p2→`. ~5.22!

Contribution n53. This term of the series~2.17! is obtained in the exponential region by E
~5.21! while in the trigonometric region by Eqs.~5.21!–~5.22! as input. Namely,

w3
1~ t !→

1

3!
w0

1~ t !Q~0,t !3, t,1, p2→`, ~5.23!

as well as
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w3
1~ t !→1w0

1~ t !H 1

3!
Q~0,1!31

1

2!
Q~0,1!Q~1,t !2J

1w0
!~ t !H 2

1

3!
Q~1,t !31

1

2!
Q~0,1!2Q~1,t !J , t.1, p2→`. ~5.24!

Contributions n>4. The asymptotical expression of the general term in Eq.~2.17! is in the
exponential WKB region invariably quite simple:

wn
1~ t !→

1

n!
w0

1~ t !Q~0,t !n, t,1, p2→`. ~5.25!

The rather complicated exact formula of the trigonometric region will be replaced here b
order-estimation. It reads

wn
1~p2;t !→w0

1~p2;t !O$Q~p2;0,t !n%1w0
!~p2;t !O$Q~p2;1,t !n%, t.1, p2→`.

~5.26!

Note the inclusion of the parameter symbolp2 in the argument.
We conclude from Eqs.~5.25! and~5.26! that it is the behavior ofQ(p2;t1 ,t2) of Eq. ~5.16!

that is crucial for the rapid convergence of the expansion~2.17! in the large parameter limit. To
get an estimation, we consider first itst-derivativeq(p2;t) of Eq. ~5.15! thep2→` expressions of
which will be extracted below from the previous section. In the rest of this section we a
assume the factorization of the potential as implied in Eq.~3.7!. The further parametrization o
quantities such asq(t) andQ(t) will be obvious.

Short wavelengths. Eqs. 4.2–~4.3! and~3.11! imply for exponentialsingularity of the core
that by the definition of the functionq(t) through Eq.~5.15!

qAb~ t !→qA~ t ![2
ln3~kr0 /g!

Agt4 S g

kr0
D ~1/2t![12sgn~ t21!]

, k2→`. ~5.27!

For power singularity one obtains from Eqs.~4.4!–~4.5! and ~3.12! that

qab~ t !→qa~ t ![@~kr0!!12 2/ag2/a]21ta/222u12tau21/2F 5a2

16~12ta!2
2
a~a21!

4~12ta!G , k2→`.

~5.28!

Recognize thek2 or g2 dependence appears exclusively via the lumped parameterP of Eq. ~3.21!,
which works in the pure power case owing to the negligibility of the fixed centrifugal term
the singular core.

Strong coupling. Forexponentialtail, in the exponential region Eq.~5.15! becomes by Eqs
~4.6!–~4.7! and ~3.13!

qaB~ t !→qB~ t ![
B

8
lnS g

kr0
D S g

kr0
D t 1g t,1, g2→`, ~5.29!

while in the trigonometric region it reads asymptotcally

qaB~ t !→qB~ t ![2
3~ l ~ l11!B3

16t4~kr0!ln~g/kr0!
, t.1, g2→`. ~5.30!

For power tail, Eqs.~4.8!–~4.9! and ~3.14! yield inside the matching point
J. Math. Phys., Vol. 38, No. 1, January 1997
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qab~ t !→qb~ t ![2tb/222~ u12tbu!2 3/2@5b224b~b11!~12tb!14~12tb!2#, t,1, g2→`,
~5.31!

while beyond it

qab~ t !→qb~ t ![@~kr0!
12 2/bg2/b#21tb/222u12tbu2 5/2@5b214b~b11!~ tb21!#, t.1, g2→`.

~5.32!

High partial waves. Independently of the shape of the potential, Eqs.~4.10!–~4.11! and
~3.15! imply, for any core and any tail, in the exponential WKB region the behavior

qab~ t !→qg~ t ![
1

2t
~12t2!2 1/2F 25

2~12t2!2
1

3

12t2
2
1

2G1l , l2→`, ~5.33!

while along the trigonometric region everywhere

qab~ t !→qg~ t ![
1

2t
~ t221!2 1/2F 25

2~ t221!2
1

23

t221G1l , l2→`. ~5.34!

Check the largel2 -formula~5.34! by the strong coupling expression~5.32! by putting in the latter
b52 andg5l.

Exact solutions at p2→`. Let us now consider the fraction

Z0,1
2,3~p2;t ![

w2
1~p2;t !1w3

1~p2;t !

w0
1~p2;t !1w1

1~p2;t !
. ~5.35!

Recall the large-parameter formulas~5.17!–~5.18!, ~5.21!–~5.22! and~5.23!–~5.24! of the first few
terms of the iteration series, the order of magnitude of which can be written in terms o
concepts~5.15!–~5.16! as

Z0,1
2,3~p2;t !5O$Q~p2;0,t !%, p2→`. ~5.36!

One extracts then from the integrability- in-t of the large-parameter expressions~5.29!–~5.34! by
means of the definitions~5.15!–~5.16! that, for short wavelengths, for strong coupling and hi
orbital angular momenta alike,

Q~p2;t0 ,t !→0, p2→`. ~5.37!

Owing to the order estimations by Eqs.~5.25!–~5.26!, ratios of general pairs of neighboring term
of the expansion~2.17! can be estimated. The conclusion is that the sum of the 0th and 1st
terms dominates the rest of the expansion by certain orders of magnitude of the increas
rameter. This means concerning the exact solution of the Schro¨dinger equation that

u1~p2;t !→w0
1~p2;t !1w1

1~p2;t !, 0<t, p2→`. ~5.38!

For ‘‘separable’’ potentialsUab(r ) of Eq. ~3.7! one can recast Eq.~5.38! for the case of short
waves by Eqs.~4.2!–~4.5! and for strong coupling by means of Eqs.~4.6!–~4.9! to get in the
former case

uab
1 ~p2;t !→w0a

1 ~p2;t !1w1a
1 ~p2;t !, k2→`, ~5.39!

which involves exclusively parameters of the core, and for the latter case

uab
1 ~p2;t !→w0b

1 ~p2;t !1w1b
1 ~p2;t !, g2→`, ~5.40!
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which in turn rests entirely on parameters of the potential tail. One also extracts from Eq.~5.38!
by Eqs.~4.10!–~4.11! and~3.15! that scattering in the highest partial waves reproduces in 1st o
the unperturbed motion even in the case of highly singular scattering potentials.

VI. DISCUSSION

The essential features of the present approach will become clear perhaps by making co
son between the Born series and the WKB series, then between the standard WKB and the
smooth-WKB approaches as well as between the usualr -language and thet-language introduced
here .

Both the smooth-WKB expansion and one of the alternatives of the Born series re
integral equations of the Volterra type to be solved by iteration. The underlying reference s
is in the case of the Born series the unperturbed scattering problem while in the present ap
a kind of zero order WKB approximation. The domain of applicability covers in the Born ca
class of nonsingular scattering potentials while in the smooth-WKB case a class of highly sin
interactions. The conditions of convergence concern in both cases exclusively the shape
potential and do not involve restrictions on the linear parameters. Rapid convergence, i.
possibility of an early cut-off of the series, exists in the Born approach for weak coupling or
wavelengths while in the smooth-WKB approach both for strong coupling, short waves and
orbital angular momenta. The asymptotically exact solutions for the respective paramet
supplied by the single leading term of the Born series but only by the sum of the first two
of the smooth-WKB expansion. The cut-off error decreases beyond these terms monoto
with the order of the approximation in the respective limit, a feature common for both typ
expansions.

Another aspect may be a comparison between the ‘‘standard’’ WKBA’s and the sm
WKBA underlying the present treatment. There are, in fact, two standard variants of the
classical approximation. Each of them implies along the entirer -axis a single strength of the
centrifugal contribution, takenl ( l11) or (l1 1

2)
2, respectively. The smooth-WKBA, in turn, s

multaneously involves both of these coupling constants, the former in the core region and th
in the tail region of the physical potential. Both variants of the standard WKBA work with lo
wavenumber concepts which have zeroes at the classical turning points, while its analogue
smooth-WKBA does not vanish anywhere. The wave functions of both standard WKBA’s de
singularities at the respective turning points while the smooth-WKB solutions are everyw
bounded. In the standard approaches the connection between the exponential and trigon
WKB regions across the turning point requires tedious effort while smooth fitting at the mat
point of the present approach means a routine task.

Finally, we comparer -language tot-language within the smooth-WKBA. The local wave
number squareK(p2;r )2 changes analytical form at thep2-dependent matching point, while it
t-language analogueK̃(p2;t)2 does the same always att51. An integral-in-r involving this
function should be in general decomposed into integrals over the exponential and trigono
regions, with parameter dependent limits of integration. A limit-in-p2 may imply, e.g., taking
p2→` simultaneously in the integrands and the limits of integrals. Variation of the paramete
an integral-in-t of a function of K̃(p2;t)2 means in turn simply variation of the integrand
Moreover, thet-language smooth-WKB approach conspicuously demonstrates that in highly
gular scattering the exact solution rests for short wavelengths exclusively on the core wh
strong coupling alone on the potential tail, for the highest partial waves in turn it becomes en
insensitive to the potential shape.
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Non-Abelian topological mass generation
in four dimensions

Dae Sung Hwanga) and Chang-Yeong Leeb)
Department of Physics, Sejong University, Seoul 143-747, Korea

~Received 7 June 1996; accepted for publication 2 July 1996!

We study the topological mass generation in the 4 dimensional non-Abelian gauge
theory, which is the extension of Allenet al.’s work in the Abelian theory. It is
crucial to introduce a one form auxiliary field in constructing the gauge invariant
non-Abelian action which contains both the one form vector gauge fieldA and the
two form antisymmetric tensor fieldB. As in the Abelian case, the topological
couplingmB ` F, whereF is the field strength ofA, makes the transmutation
amongA andB possible, and consequently we see that the gauge field becomes
massive. We find the BRST/anti-BRST transformation rule using the horizontality
condition, and construct a BRST/anti-BRST invariant quantum action. ©1997
American Institute of Physics.@S0022-2488~96!03312-9#

I. INTRODUCTION

Allen, Bowick and Lahiri1 found an interesting mechanism which they called topolog
mass generation in 4 dimensions. They studied the Abelian gauge theory which contains the
field A and the second rank antisymmetric tensor fieldB, and incorporated the topological term
B ` F in the action as

S 5
1

2EM4

~H`*H2F`* F1mB`F !, ~1!

whereH5dB, F5dA, and* is the Hodge star~duality! operator. The action~1! is invariant under
the gauge transformation

A→A1da, B→B1db, ~2!

and gives the equations of motion

d*H5mF, d* F5mH. ~3!

The coupled equations in~3!, which can be considered as a generalization of the London e
tions, give rise to the massive Klein-Gordon equations

~h1m2!F50, ~h1m2!H50, ~4!

which show that the fluctuations ofF andH are massive.
The above mechanism of Allenet al.worked nicely in the Abelian theory, and provided a ne

method of mass generation for the gauge field while preserving the gauge symmetry. So it
tempting to extend this mechanism to the non-Abelian theory. At first glance, it seems that w
do this extension by simply putting the trace operation in front of the action~1!, and by covari-
antizing the gauge transformation~2!. However, there is a difficulty in this naive approach. T
H ` *H term in the action, which is the kinetic term for the antisymmetric tensor field, is

a!Electronic address: dshwang@phy.sejong.ac.kr
b!Electronic address: leecy@phy.sejong.ac.kr
0022-2488/97/38(1)/30/9/$10.00
30 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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invariant under the gauge transformation. This fact causes a difficulty already at the classica
and is related to the geometrical aspect that is intrinsic to the second rank antisymmetric
field ~non-Abelian Kalb-Ramond field!.2 This problem has been studied by many, and first sol
by Thierry-Mieg and Baulieu.3 The BRST quantization with the inclusion of the one form gau
field A was also studied in Refs. 4 and 5. These studies show that in the theory with the
Abelian antisymmetric tensor field it is necessary to introduce a one form auxiliary fie
constructing a gauge invariant kinetic term and a BRST invariant quantum action. The purp
this paper is to apply the above result to the non-Abelian generalization of the topological
generation mechanism of Allenet al..

In section II, we obtain the BRST and anti-BRST transformation rule by applying the
called horizontality condition. We also explain why and how the one form auxiliary fiel
necessitated and solves the previously mentioned difficulty.6 In section III, we explain how the
topological mass generation mechanism of Allenet al.occurs in the non-Abelian case. In sectio
IV, we construct the quantum action based on the BRST and anti-BRST symmetry of sect
Section V constitutes the conclusion.

II. BRST AND ANTI-BRST SYMMETRY

One might expect that the non-Abelian generalization of the action~1! could be achieved by
the following actionS̄ which is obtained from~1! by simply replacingF5dA andH5dB with
F5dA1AA andH[DB5dB1@A,B#

S̄ 5
1

2EM4

Tr~H*H2F* F1mBF!, ~5!

with the wedge (̀ ) product between forms to be understood hereafter. We then should c
whether the actionS̄ in ~5! is invariant under the gauge transformation

dA5De05de01@A,e0#, dB52@e0 ,B#1De1 . ~6!

Now, the actionS̄ is invariant only under the part of the transformation related withe0. It is not
invariant under the full transformation~6!: The first term of the actionS̄ , which is the kinetic term
of the two form fieldB, is not invariant. This is because, in contrast to the usual two f
curvature which transforms asdF52@e0 ,F#, the corresponding curvature for theB field,
H5DB, does not transform asdH52@e0 ,H# under the full transformation~6!. Therefore, we
need some additional ingredient in order to have an invariant action forB. We may understand this
situation from the existence of a constraint in the non-Abelian theory which is induced from
equation of motion given by the action~5!, that is, the constraintDD*H5@F,*H#50 from the
equation of motionD*H1mF50. In order to untie this constraint Thierry-Mieg and Baulieu3

and Thierry-Mieg and Ne’eman4 introduced the one form auxiliary fieldK. This was done in the
following manner: In order to implement the constraint, a Lagrange multiplier term shoul
added into the Lagrangian. However, simply adding a term likeK@F,*H# does not do the job
because of a newly produced constraint. The correct expression for the kinetic term in th
grangian which does not produce further constraints is obtained by replacingH5DB in ~5! with
a newH8,4

H8[DB2DDK. ~7!

With the introduction of the one form auxiliary fieldK and its accompanying ghost~classically a
gauge parameter!, theH8 in ~7! transforms asdH852@e0 ,H8# under the full transformation~6!,
as we shall see below. Thus we successfully get the gauge invariant kinetic term for theB field.
On the other hand, the topological termmBF is gauge invariant by itself. Thierry-Mieg an
Baulieu3 studied the quantization of antisymmetric tensor gauge theory whose action m
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consisted of this topological term~modulo a term of auxiliary field!, and found that it was
necessary to introduce a new auxiliary field at the quantum level which represents an
symmetry of the action. This auxiliary field is again related with the constraint from the equ
of motion in the non-Abelian gauge theory, and in fact it is rooted in the gauge symmetry o
previous classical auxiliary fieldK, and is the ghost for theK field. We shall see below how thi
prescription works nicely.

Now, we get into the BRST/anti-BRST transformation rule. Here, we use the so-called
zontality condition to get the BRST/anti-BRST transformation rule.5,7–11First we illustrate this in
the usual Yang-Mills case. The horizontality condition is in essence the Maurer-Cartan equa
the direction of the gauge group of the principal fiber bundle with a doubled structure-g
G ^G ,

F̃[d̃Ã1ÃÃ5F, ~8!

where

Ã5Am dxm1AN dyN1AN̄ dȳN̄[A1a1ā,

d̃5d1s1 s̄, d5dxm ]m , s5dyN ]N , s̄5dȳN̄ ] N̄ ,

F5dA1AA5 1
2Fmn dx

m dxn.

Here,y and ȳ denote the coordinates in the direction of the gauge group of the principal
bundle. Now~8! yields the BRST/anti-BRST transformation rule for the Yang-Mills case

~dx!1~dy!1:sAm5Dma, ~dx!1~dȳ!1: s̄Am5Dmā,

~dy!2:sa52aa, ~dȳ!2: s̄ā52āā, ~9!

~dy!1~dȳ!1:sā1 s̄a52@a,ā#.

However, in order to fix the transformation rule completely, we need to introduce an aux
field for the last equation of~9!

sā[t; s̄a52t2@a,ā#, st50, s̄t52@ā,t#. ~10!

This completes the BRST/anti-BRST transformation rule for the Yang-Mills case. Note that
we used the graded commutator, that is, for instance@a,ā#5aā1āa because of the anticom
muting character ofa ’s. The graded commutator is used throughout this paper.

For the two form antisymmetric tensor fieldB, we first consider the horizontality condition fo
the modified field strengthH8 in ~7!

H̃8[D̃B̃2D̃D̃K̃5DB2DDK[H8, ~11!

where

D̃[d̃1@Ã, #,

B̃[ 1
2Bmn dx

m dxn1BmN dxm dyN1BmN̄ dxm dȳN̄1 1
2BMN dyM dyN1BMN̄ dyM dȳN̄

1 1
2BM̄N̄ dȳM̄ dȳN̄[B2b2b̄1f1r1f̄,
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K̃[Km dxm1KN dyN1KN̄ dȳN̄[K1k1k̄,

H[DB[ 1
6Hmnr dx

m dxn dxr,

H8[H2DDK[ 1
6H8mnr dx

m dxn dxr.

This horizontality condition for theH8 now yields the BRST/anti-BRST transformation rule f
theB and its ghosts

~dx!2~dy!1:sBmn52@a,Bmn#2D [mbn]2@k,Fmn#,

~dx!2~dȳ!1: s̄Bmn52@ā,Bmn#2D [mb̄n]2@ k̄,Fmn#,

~dx!1~dy!2:sbm52@a,bm#1Dmf,

~dx!1~dȳ!2: s̄b̄m52@ā,b̄m#1Dmf̄, ~12!

~dx!1~dy!1~dȳ!1:sb̄m1 s̄bm52@a,b̄m#2@ā,bm#1Dmr,

~dy!3:sf52@a,f#, ~dȳ!3: s̄f̄52@ā,f̄#,

~dy!2~dȳ!1: s̄f1sr52@a,r#2@ā,f#, ~dy!1~dȳ!2:sf̄1 s̄r52@a,f̄#2@ā,r#,

whereD [mbn][Dmbn2Dnbm , andDm[]m1@Am , #. The horizontality condition~11! for the
B field implies

B̃2D̃K̃5B2DK. ~13!

This we can see by operatingD̃ on the left hand side of~11!

D̃D̃~B̃2D̃K̃ !5@ F̃,B̃2D̃K̃#.

Due to the previous horizontality condition~8!, F̃5F, one can write

@ F̃,B̃2D̃K̃#5@F,B̃2D̃K̃#.

However, the right hand side of the last equation should be purely horizontal, and we g
desired result~13!.3 The condition~13! now yields the BRST/anti-BRST transformation rule f
theK field and its ghosts

~dx!1~dy!1:sKm52@a,Km#1Dmk2bm ,

~dx!1~dȳ!1: s̄Km52@ā,Km#1Dmk̄2b̄m ,
~14!

~dy!2:sk52@a,k#1f, ~dȳ!2: s̄k̄52@ā,k̄ #1f̄,

~dy!1~dȳ!1:sk̄1 s̄k52@a,k̄ #2@ā,k#1r.

Again, these BRST/anti-BRST equations from the two horizontality conditions,~11! and~13!, do
not fix the BRST/anti-BRST transformation rule completely, and we need extra auxiliary field
b ’s, f ’s andr, andk ’s
J. Math. Phys., Vol. 38, No. 1, January 1997
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sb̄m[mm ; s̄bm52mm2@a,b̄m#2@ā,bm#1Dmr,

sr[n; s̄f52n2@a,r#2@ā,f#,
~15!

sf̄[n̄; s̄r52n̄2@a,f̄#2@ā,r#,

sk̄[u; s̄k52u2@a,k̄ #2@ā,k#1r,

and the nilpotency of thes and s̄ operators fix the remainder

smm5sn5sn̄5su50,

s̄mm52@ā,mm#2@Dma,f̄#2Dmn̄2@b̄m ,t#,

s̄n52@ā,n#2@aa,f̄#2@a,n̄#2@r,t#, ~16!

s̄n̄52@ā,n̄#2@f̄,t#, s̄u52@ā,u#2@ k̄,t#2n̄.

Equations~12! and ~14!–~16! constitute a complete set of the BRST/anti-BRST transforma
rule. One can check that the above BRST/anti-BRST algebra is closed, that is,s25 s̄250, and the
modified field strength for theB field, H8 in ~7!, transforms like the usual field strength as w
mentioned earlier,

sH8mnr52@a,H8mnr#.

As we explained earlier, the BRST/anti-BRST invariant classical action now can be writt
terms withH8, the modified field strength forB, and the modifiedB field, B85B2DK

S o5
1

2EM4

Tr~H8*H82F* F1mB8F !.

However, the last term in the aboveS o is different frommBF only by a total derivative term,
2Tr@d(mKF)#. Thus, for convenience, we shall use the termmBF instead ofmB8F for our
non-Abelian action

S 5
1

2EM4

Tr~H8*H82F* F1mBF!. ~17!

This action is invariant up to a total derivative under the BRST/anti-BRST transformation in~12!
and ~14!–~16!.

Lahiri12 found a similar non-Abelian classical action. In that work, he found the class
symmetry of the action which corresponds to the ghostsa andb in ~12!. However, in Ref. 12, the
remaining classcial symmetry of the action related to the ghostk in ~14!, which is essential for
successful quantization of the action, was not noticed. In a different context, Niemi13 also consid-
ered the mass generation phenomenon of the vector gauge boson in the Higgs mechanism
theB ` F coupling to the Yang-Mills action.

III. NON-ABELIAN TOPOLOGICAL MASS GENERATION

In order to see how the topological mass generation phenomenon occurs in the non-A
case, we first look into the equations of motion of our action~17!
J. Math. Phys., Vol. 38, No. 1, January 1997
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D*H85mF,

D* F5mH1$2B*H81*H8B1D~K*H81*H8K !%, ~18!

DD*H850.

From ~18! we have

D* ~D* F !5m2F1mD* J1D* $2B*H81*H8B1D~K*H81*H8K !%,

D*D*H85m2H1m$2B*H81*H8B1D~K*H81*H8K !%, ~19!

DD*H850,

where

H85DB2DDK5DB2@F,K#, H5DB,

J5@F,K#5 1
6 Jmnl dx

m dxn dxl.

After some work we have the following equations from~19!:

~DmDm1m2! 12Fab1~2Fm
aFbm2 1

6m«mnl
a Db Jmnl!

1Da$2@ 1
2Bmn ,

1
6Hmnb8 #1Dm~@Kn ,

1
6Hmnb8 # !%50,

~DmDm1m2! 16Habg1 1
2 $Dm~@Fam ,Bbg#1@Fab ,Bgm#2Da Jmbg!1@Fa

m ,H8mbg#%

1m$2@ 1
2Bab ,

1
6Hmnl8 #1Da~@Kb ,

1
6Hmnl8 # !%«mnl

g50, ~20!

@Fmn,Hmna8 #50.

The equations of motion forF andH are equivalent to the Abelian counterpart~4! up to higher
order terms which correspond to interaction terms. This will be apparent when we consid
propagators for these fields below. The last equation corresponds to our original constrai
now this appears naturally as the equation of motion for the auxiliary fieldK.

Now we write the Lagrangian including gauge fixing terms for theA andB fields to get the
propagators for these fields

L5TrF2
1

12
Hmnr8 H8mnr2

1

4
FmnF

mn2
m

8
emnrsBmnFrs2

1

2z
~]mA

m!22
1

2j
~DmB

mn!2G ,
~21!

whereHmnr8 5D [mBnr]2D [mDnKr] . The bare propagators for theA andB fields are given by

nam,bn
A 52

dab@gmn2~12z!pmpn /p
2#

p2
,

namn,bhs
B 52

dab

p2
@gm[hgs]n2~12j!gm[hps]pn /p

21~12j!gn[hps]pm /p
2#, ~22!

wherea,b are group indices, andm,n,h,s are space-time indices. TheA2B vertex is given by

Va,b
mn,l5 imemnrlprdab , ~23!
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wheremn are polarization tensor indices for theB field, andl is that of theA field. Because of
this two pointA2B vertex, we have to take this exchange effect, which we call ‘‘transmutatio
into account when we consider theA or B propagator. Suppressing the group indices, we find
the combined propagator for theA field, ñ A, is given by

ñ mn
A ~p!5nmn

A 1nmm8
A Vls,m8nls,l8s8

B Vl8s8,n8nn8n
A

1•••. ~24!

As in Ref. 1, we note that

Vls,m8nls,l8s8
B Vl8s8,n852m2~gm8n82pm8pn8/p2![um8n8, ~25!

and obtain the same result for the combinedA propagator except for the group indices which w
suppress here

ñ mn
A 5nmn

A 1nmm8
A um8n8nn8n

A
1nmm8

A um8rnrr8
A ur8n8nn8n

A
1•••52

gmn2pmpn /p
2

p22m2 1
z

p4
pmpn .

~26!

By choosingz50, which corresponds to the Landau gauge for theA field, we can immediately
see that the combinedA propagator has a pole atp25m2. This feature is the same topologic
mass generation phenomenon found in Ref. 1, but now for the non-Abelian case. As in the A
case, theA field has two physical degrees of freedom and theB field has one for each gauge grou
index14when the topologicalB ` F term is absent. Introduction of this topological term makes
exchange betweenA andB fields possible. Thus as we saw above, it appears that theA field
absorbs theB field and becomes massive, and vice versa. This phenomenon is somewhat
to the Higgs mechanism as explained in Ref. 1.

IV. QUANTUM ACTION

We write the BRST and anti-BRST invariant quantum Lagrangian as3,9

LQ5LC1LQ8 ~27!

with

LQ85Tr@ss̄~2 1
2AmA

m1a1āa1 1
4BmnB

mn1a2b̄mbm1a28f̄f1a29
1
2 r2!#, ~28!

andLC given by ~17!. It is useful in the following calculation to note that

Tr@ss̄~••• !#5s Tr@ s̄~••• !#5ss̄ Tr@~••• !#. ~29!

From ~12! and ~14!–~16!, we get each term in~28! as

Tr@ss̄~ 1
2AmA

m!#5Tr@s~Am~]mā!!#5Tr@Am~]mt !2~]mā !~Dma!#, ~30!

Tr@ss̄~ āa!#5Tr@ tt1t@a,ā#2aaāā#, ~31!

Tr@ss̄~ 1
2BmnB

mn!#52Tr@s~Bmn~D [mb̄n]1@ k̄,Fmn#!!#

52Tr@Bmn~D [mmn]1@~Da! [m,b̄n] #1@u,Fmn#1@ k̄,@a,Fmn##!

1~D [mb̄n]1@ k̄,Fmn#!~D [mbn]1@a,Bmn#1@k,Fmn#!#, ~32!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Tr@ss̄~ b̄mbm!#5Tr@s~ b̄mm
m1~Dmf̄!bm2b̄m~Dmr!1@b̄m ,b̄

m#a!#

5Tr@mmm
m2mm~Dmr22@a,b̄m#!1~Dmn̄!bm1b̄m~Dmn!1@~Dma!,f̄#bm

1b̄m@~Dma!,r#2@b̄m ,b̄
m#aa1~Dmf̄!~Dmf2@a,bm#!#, ~33!

and

Tr@ss̄~f̄f!#52Tr@ss̄~ 1
2 r2!#5Tr@2n̄n2n̄@a,r#1n@a,f̄#1aa@r,f̄##. ~34!

We plug~30!–~34! into ~28!, and integrate out overt,mm , n, andn̄, which is equivalent to setting

t52
1

2 S 1a1 ]mA
m1@a,ā# D ,

mn5
1

2 S 2
1

a2
DmB

mn1Dnr22@a,b̄n# D , ~35!

n52
a2
a3
Dmbm2@a,r#, n̄52

a2
a3
Dmb̄m2@a,f̄#,

wherea3[a282a29. Then we obtain

LQ85TrF2
1

4a1
~]mA

m1a1@a,ā# !22
1

4a2
~~DmB

mn12a2@a,b̄n# !222~DmB
mn12a2@a,b̄n# !

3~Dnr!!1
1

a3
~a2Dmb̄m1a3@a,f̄# !~a2Dnbn1a3@a,r#!1~]mā!~Dma!2a1aaāā

1a3aa@r,f̄#2 1
2~~D [mb̄n]1@ k̄,Fmn#!~D [mbn]1@a,Bmn#1@k,Fmn#!

1Bmn~@~Da! [m,b̄n] #1@u,Fmn#1@ k̄,@a,Fmn##!!1a2~@~Dma!,f̄#bm1b̄m@~Dma!,r#

2@b̄m ,b̄
m#aa1~Dmf̄!~Dmf!2 1

4 ~Dmr!~Dmr!2~Dmf̄!@a,bm#!G . ~36!

The first three terms of~36! correspond to gauge fixing terms for the gauge fieldA, for the
antisymmetric tensor fieldB, and for the ghost-antighost fieldsb,b̄ of theB field, respectively.
Note that the first generation ghost-antighost fieldsb,b̄ of the second rank tensor fieldB need
only one gauge fixing condition, because they behave like conjugate fields, as we can se
their kinetic term located in the third line of~36!, and they haver as their common ghost~one of
the second generation ghosts forB). We further notice that the gauge fixing terms for theA and
B fields in our quantum action are the same type as we used in section III, and the
parametersz andj in ~21! correspond to 2a1 and 2a2 in ~36!, respectively.

In the quantum action~36!, there are no kinetic terms for the auxiliary fields, one form fie
K and its ghosts, etc., as we expected. Also, if we count the propagating degrees of freedom
quantum action~36!, we can see that two phycical degrees of freedom remain for theA field, and
only one physical degree of freedom for theB field remains, but there is no physical degree
freedom for the one form classcial auxiliary fieldK. This is consistent with our propagato
analysis in the previous section.
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V. CONCLUSION

By incorporating a one form auxiliary field, we have been able to extend the Abelian a
for topological mass generation in 4 dimensions to the non-Abelian case. This one form au
field was essential in constructing the gauge invariant kinetic action for the antisymmetric t
field, and also in finding a consistent BRST/anti-BRST symmetry for the theory which con
one form gauge and two form antisymmetric tensor fields. Basically, this auxiliary field is eq
lent to a Lagrange multiplier though we need a special combination for the Lagrange mul
term in the action, and it resolves the constraint which appears in the naively extended
Abelian action from the Abelian one. In fact, the inclusion of the auxiliary field was the key to
successful construction of the non-Abelian version of the topological mass generation in 4 d
sions. The mechanism of topological mass generation was the same as in the Abelian ca
topological coupling termmB ` F makes the transmutation between the vector field and
antisymmetric tensor field possible, and consequently the vector gauge field becomes mas
vice versa. The counting of physical degrees of freedom in the BRST/anti-BRST invariant
tum action, two from the vector field and one from the antisymmetric tensor field for each g
group index, also confirms this transmutation. In finding the BRST/anti-BRST symmetry, we
the geometrical ‘‘horizontality condition’’ scheme and obtained a consistent set of the BRST
BRST transformation rule. In constructing the quantum action, we followed the Baulieu
Thierry-Mieg’s method3,9 for constructing BRST/anti-BRST invariant quantum action of t
Yang-Mills theory, and the method worked nicely also for our system which is compose
vector and antisymmetric tensor fields. We hope that the realization of non-Abelian topolo
mass generation in this paper will raise further interests in this mechanism.
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Geometrical approach to inverse scattering
for the Dirac equation

Wolf Junga)
Inst. f. Reine u. Angew. Mathematik, RWTH Aachen, Templergraben 55,
D-52062 Aachen, Germany

~Received 24 July 1996; accepted for publication 16 August 1996!

The high-energy-limit of the scattering operator for multidimensional relativistic
dynamics, including a Dirac particle in an electromagnetic field, is investigated by
using time-dependent, geometrical methods. This yields a reconstruction formula,
by which the field can be obtained uniquely from scattering data. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!02701-1#

I. INTRODUCTION

For self-adjoint operatorsH0 andH5H01V with H0 having continuous spectrum, the wav
operators are defined byV6 5 s 2 limt→6` eiHte2 iH0t. If they exist onH and their ranges equa
Hac(H), the scattering system is called complete and the scattering operatorS 5 V1* V2 is
unitary.1 The inverse problem is to determineV, givenS ~andH0!. In Refs. 2–5, Enss and Wede
show that for the Schro¨dinger operatorH0521/2 D and a translation in momentum space
v5vv, vPSn21 the high-energy-limit of the scattering operator is given by

~F,iv~e2 ivxSeivx21!C!→E
2`

1`

dt ~F,V~x1vt!C! as v→` ~1!

for suitableF, C. The short-range potentialV, a multiplication operator, can be uniquely reco
structed from this X-ray transform. This approach generalizes to multiparticle systems and
range potentials.

Following these ideas, we use time-dependent, geometrical methods to study relativistic
tum mechanics, in particular the Dirac equation with the free HamiltonianH05a•p1bm. The
main result is Theorem 3.2:

s2 lim
v→`

e2 ivxNWS6e
ivxNW5expH 2 i E

2`

1`

~A07v•A!~xNW1vt !dtJ ~2!

from which the electromagnetic field~A0,A! may be reconstructed. HereS6 describe the scatter
ing of positive/negative energy states in the Foldy–Wouthuysen-representation, andxNW is the
Newton–Wigner position operator. TheAi are supposed to be continuous and to decay integra
i.e., *0

` dR supuxu>RuA i(x)u , `. In Ref. 6 Ito has given a similar reconstruction formula for t
high-energy-limit of the scattering amplitude using stationary methods, forAiPC2 satisfying
uAi~x!u,cuxu232«.

The charge e is incorporated in Ai , furthermore, we let c5\51. Note that
2*2`

1` ~A07v•A!~x1vt!dt is the classical action of a particle moving along a line with veloc
v, as expected in the semi-classical limit. Introducing suitable units and lettingc→` in the r.h.s.
of ~2! yields exp$i*2`

1` v•A~x1vt!dt%, which has been obtained by Arians7 as the high-energy-
limit of S for a Schro¨dinger particle in an electromagnetic field.

a!Electronic mail: jung@iram.rwth-aachen.de
0022-2488/97/38(1)/39/10/$10.00
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For mathematical quantum mechanics we refer to Refs. 8, 9, 1, and for the Dirac equa
Ref. 10. In Sec. II we studyH0 5 Ap21m2, which is similar to the Dirac operator, while bein
easier to handle. In Sec. III we examine the reconstruction formula for the Dirac equation,
is proved in Sec. IV. Various generalizations are discussed in Sec. V.

II. RECONSTRUCTION FORMULA FOR THE SCALAR RELATIVISTIC HAMILTONIAN

We considerH5L2~Rn! andH0 5 Ap21m2 withm>0 andp52i¹. This scalar Hamiltonian
H0 is self-adjoint on the Sobolev-spaceH

1~Rn! as its domain. It may be considered as a model
relativistic quantum mechanics, since the symbols of the Klein–Gordon- and the Dirac eq
have the eigenvalues6 Ap21m2.

Definition 2.1 (Short-range Potentials): A symmetric multiplication operator V is calle
short-range potential, if it is H0-bounded with relative bound,1 and satisfies

iVAp21121F~ uxu.R!iPL1~@0,̀ !,dR!. ~3!

F~...! denotes multiplication with the characteristic function of the indicated region inx-space.
This definition corresponds to that of the Schro¨dinger case.2–5 Local singularities ofV are

possible: If, e.g.,n.1,p.n andVPLp1L` with iVx(uxu . R)iLp1L` P L1(@0,̀ ),dR), thenV is
short-range.~The norm is defined byi f iLp1L`: 5 inf$i f 1ip 1 i f 2i`u f 5 f 1 1 f 2%.! For n53, a
Yukawa-potential is also admitted, if the coupling constant is small. For a short-range potenV
andH5H01V the completeness of the scattering system follows from Theorem 2.1 in Ref

For CPH, the x-representation is given byc~x! and the Fourier transformĉ~p! yields the
momentum representation ofC. The position operatorx generates translations in momentu
space, in particular for anyv5vvPRn

e2 ivxHeivx5e2 ivx~Ap21m21V~x!!eivx5A~p1v!21m21V~x!.

Lemma 2.2 (Integrable Bound): Let V be a short-range potential. ForC with ĉPC0
` there

are v0.0, hPL1~R! such that

iVe2 iH0teivxCi<h~ t ! for tPR, uniformly in v>v0 . ~4!

This v-independent integrable bound will be crucial to apply the dominated convergence the
in the proof of Theorem 2.3.

Proof:We first show that there arec, v0.0 such that

ue2 iH0teivxAp211Cu~x!,
c

~11utu!~n13!/2 for uxu,
utu
2
,v.v0 . ~5!

This follows by a non-stationary phase estimate~see Ref. 10, p. 33, Ref. 1, p. 37!, from

~e2 ivxe2 iH0teıvxAp211C!~x!5~2p!2n/2E dpeit f ~p;x,t,v!Ap211ĉ~p! ~6!

with f 5 (p • x/t 2 A(p1v)21m2), since there is av0.0 such thatu¹p f u.1/4 forux/t u,1/2,v.v0 ,

pPsupp(ĉ). Also ]p
b f is bounded there forubu.0, and]p

g(Ap211ĉ(p)) is bounded forugu>0.
Now we consider
J. Math. Phys., Vol. 38, No. 1, January 1997
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ie2 ivxVe2 iH0teivxCi5 IVAp21121HFS uxu.
utu
2 D1FS uxu,

utu
2 D J

3e2 i tA~p1v!21m2Ap211C I
< IVAp21121FS uxu.

utu
2 D I •iAp211Ci

1iVAp21121i• IFS uxu,
utu
2 De2 iH0teivxAp211C I .

The first term is inL1 by ~3! and the second is bounded byc̃/(11utu)3/2 by ~5!. j

This decomposition is motivated by the geometrical idea that the wave-packet is concen
aroundvt, where the potential is small, and that it is small around the origin, where the pote
may be large.

Theorem 2.3 „High-Energy-Asymptotics of S…: For a short-range potential V the high
energy limit of the scattering operator is given by

s2 lim
v→`

e2 ivxSeivx5expH 2 i E
2`

1`

V~x1vt !dtJ , ~7!

the integral being convergent for a.e.xPRn.
Proof: It is sufficient to consider the dense set ofC with ĉPC0

`.

e2 ivxV1e
ivxC5C1E

0

`

dt
d

dt
e2 ivxeiHte2 iH0teivxC

5C1 i E
0

`

dt ei ~A~p1v!21m21V~x!!tV~x!e2 iA~p1v!21m2tC

5C1 i E
0

`

dt ei ~A~p1v!21m22v1V~x!!tV~x!e2 i ~A~p1v!21m22v !tC.

With v5vvwe find (A(p1v)21m2 2 v 1 V) ——→
v→`

v • p1 V in the strong resolvent sense an
the exponential converges strongly~see Ref. 8, Theorems VIII.25,21!. VAp21121 is bounded and

e2 i ~A~p1v!21m22v !tAp211C ——→
v→`

e2 ivptAp211C.

The integrand is bounded byh(t) independent ofv.v0 by Lemma 2.2. Using the dominate
convergence theorem~for the Bochner-integral12! we conclude that

lim
v→`

e2 ivxV1e
ivxC5C1 i E

0

`

dtei ~vp1V~x!!tV~x!e2 ivptC5 lim
s→`

ei ~vp1V~x!!se2 ivpsC. ~8!

In the special case of continuousV with integrable decay,~8! is shown to equal
exp$i*0

`dtV~x1vt!%C by considering the family of unitary operatorsU(s) 5 eivpse2 i (vp1V(x))s,
which satisfies the differential equation

iU̇ ~s!5eivpsV~x!e2 i ~vp1V~x!!s5V~x1vs!U~s!
J. Math. Phys., Vol. 38, No. 1, January 1997
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and U~0!51, as does exp$2i*0
sdtV~x1vt!%. For generalV we use the decompositio

V5V12V2 , V6>0 and chooseVn,6PC0
0 with Vn,6↗V6 a.e. LetVn :5Vn,12Vn,2 . The

estimate of the integral by an integrable functionh from Lemma 2.2 also holds forV6 ,Vn,6 ,Vn ,
uniformly in n. Again, by applying the dominated convergence theorem once more, we de

lim
v→`

e2 ivxV1e
ivxC5C1 i lim

n→`
E
0

`

dtei ~vp1Vn!tVne
2 ivptC5 lim

n→`

expH i E
0

`

dtVn~x1vt !J C.

Also we see that for a subsequence limn→` exp$i*0
`dtVn,68 (x 1 vt)% exists for a.e.xPRn, therefore

*0
`dtV6~x1vt! exists for a.e. x since for a.e. x the monotone convergenceVn,68 (x

1 vt)↗V6(x 1 vt) holds for a.e.tPR. We considerV2 similarly and find

s2 lim
v→`

e2 ivxV6e
ivx5expH i E

0

6`

dtV~x1vt !J . ~9!

UsingS5 V1* V2 we get the desired reconstruction formula

w2 lim
v→`

e2 ivxSeivx5expH 2 i E
2`

1`

V~x1vt !dtJ . ~10!

The unitarity ofe2 ivxSeivx and of its weak limit imply the strong convergence. j

The proof suggests the following physical interpretation: If the velocity of a particle
proaches 1~i.e., the speed of light!, the spreading of the wave-packet is negligible and the
kinematics reduce to a pure translation.

Theorem 2.4 „Injectivity of the Scattering Map …: Consider n.1 and
V :5$VPC0~Rn,R!u iVx~uxu.R!i`PL1([0,`),dR)%. Then the scattering map:

V →L~H!,

V°S5S~H0 ,H01V!,

is injective, i.e., S determines V uniquely.
The casen51 cannot be treated with our methods. The case of more generalV shall be a topic

of further research, the difficulties arising from the non-injectivity of the exponential functio
Proof: Theorem 2.3 yields exp$2i*2`

1` V~x1vt!dt% as a continuous function ofx, thus giving
*2`

1` V~x1vt!dt up to a fixed multiple of 2p. This X-ray transform is obtained uniquely, since
must vanish asuxu→` orthogonal tov. If *2`

1` dtV~x1vt!50, then consideringvt as polar
coordinates forRn yields

05E
Sn21

dvE
2`

1`

dtV~x1vt !52E dy
V~x1y!

uyun21 . ~11!

To show thatV is determined uniquely, we examine the casen52 first. HereVPL2 and
1/upu12«PLloc

2 imply 1/upu12«V̂PLloc
1 . As a tempered distribution

05S 82 lim
«→0

2

uxu11« *V. ~12!

We conclude that
J. Math. Phys., Vol. 38, No. 1, January 1997
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S 82 lim
«→0

2

upu12« V̂50,

thereforeV̂~p!50 a.e. Forn.2, this argument shows that the restriction ofV to any 2-plane inRn

is determined uniquely. j

III. RECONSTRUCTION FORMULA FOR THE DIRAC EQUATION

Let H:5L2~Rn,Cm! andH0:5a•p1bm with m>0 and anticommuting, symmetric, unitar
matricesa1,...,an ,b. The most interesting case isn53, m54. H0 is self-adjoint onH

1~Rn!. The
symbol of H0 has the eigenvalues6E, with the abbreviationE 5 1Ap21m2. V shall be a
symmetric-matrix-valued function. Under conditions analogous to Def.2.1 the scattering sys
complete,11,10 but we need more restrictive conditions to prove the following theorem. An e
tromagnetic field is described byV5A02a•A, where2gradA0 is the electric and rotA the
magnetic field. ForvPSn21 we make the decompositionV 5 V1,v 1 V2,v with V6,v : 5 1/2(V
6 a • vVa • v), which yields@V1,v ,a • v# 5 0 and$V2,v ,a • v% 5 0. For the e.m. field we ge
V1,v 5 A0 2 a • vv • A. As operators, theAi are functions of the standard position operatorx,
which generates momentum translations in the standard representation. We will discuss th
native Newton-Wigner position operatorxNW below.

Theorem 3.1„High-Energy-Asymptotics of S for the Dirac Equation…: Suppose the com
ponents of the symmetric-matrix-valued multiplication operator V are continuous with integ
decay, i.e. iVF~uxu.R!iPL1([0,`),dR), and the matrices V1,v(x), xPRn commute, i.e.
@V1,v(x1),V1,v(x2)# 5 0 for x1,x2PRn.Then

s2 lim
v→`

e2 ivxSeivx5expH 2 i E
2`

1`

V1,v~x1vt !dtJ . ~13!

For an electromagnetic field this isexp$2i*2`
1`~A02a•vv•A!~x1vt!dt%.

If the condition@V1,v(x1),V1,v(x2)# 5 0 is violated, the exponential must be replaced b
time-ordered product. Theorem 3.1 will be proved in the next section, after having examin
consequences. Theorem 3.2 gives a modified reconstruction formula, adapted to positive
states. Theorem 3.3 shows how to obtain the electromagnetic field from scattering data. A g
matrix-valued potential cannot be recovered from~13!, since forV5bF, F real-valued we have
V1,v50.

Form.0 and

b5S 1 0

0 21D
consider the Foldy–Wouthuysen-transform

U~p!5AE1m

2E S 11b
ap

E1mD ,
which diagonalizesH0 :U~a–p1bm!U215Eb. The Foldy–Wouthuysen-representation ofC is

given by ĉFW~p!5U~p!ĉ~p!. S is decomposed to

SFW5SS1 0

0 S2
D ,
J. Math. Phys., Vol. 38, No. 1, January 1997
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where S6 are unitary operators onL2~Rn,Cm/2! and describe the scattering of electrons w
positive/negative energy. The Newton–Wigner position operatorxNW is the generator of momen
tum translations in the FW-representation and acts oncFW as multiplication with the coordinate
function. It is given byU* ~p!xU~p! in the standard representation. In contrast tox, the operator
xNW does not mix the states with positive/negative energy. This suggests to inves
e2 ivxNWSeivxNW, which is decomposed toe2 ivxNWS6e

ivxNW, where the restriction of the Newton
Wigner position operator to the positive/negative energy subspaces is also denoted byxNW .

Theorem 3.2 „High-Energy-Asymptotics of S6…: Suppose that A0, A are continuous with
integrable decay. Then

s2 lim
n→`

e2 ivxNWS6e
ivxNW5expH 2 i E

2`

1`

~A07v–A!~xNW1vt !dtJ . ~14!

Thus the limit ofS1 acts on positive energy states independent of spin.
Proof: In the standard representation, Theorem 3.1 yields

e2 ivxNWSeivxNW5U* ~p!e2 ivxU~p!SU* ~p!eivxU~p!

5U* ~p!U~p1v!e2 ivxSeivxU* ~p1v!U~p!

——→
v→`

U* ~p!
1

&

~11ba–v!e2 i*2`
1`

~A02avv–A!~x1vt !dt

3
1

&

~12ba–v!U~p!

5U* ~p!e2 i*2`
1`

~A02bv–A!~ i¹p1vt !dtU~p!,

where we used 1/&~11ba–v!a–v1/&~12ba–v!5b. By changing to the FW-representation, th
above expression becomes

expH 2 i E
2`

1`

~A02bv–A!~xNW1vt !dtJ .
The block-structure ofb yields the desired result. j

Theorem 3.3 „Injectivity of the Scattering Map …: Consider n.1 and
V :5$~A0,A!uAiPC0~Rn,R!,iAix~uxu.R!i`PL1([0,`),dR), APL2~Rn,Rn!%. Then the scattering
map:

~A0 ,A!°S1

is injective onV except for gauge-invariance, i.e., S1 determines A0 uniquely andA up to a
gradient. ThusE52gradA0, B5rotA are determined uniquely.

A cannot be determined uniquely, for ifl is vanishing at̀ , thenS remains unchanged whe
A is replaced byA1¹l. This corresponds to the facts that the phase of a wave-function at a s
point has no physical meaning, and that only rotA is measurable.

Proof:With Theorem 3.2 we geta~x,v!:5*2`
1`~A02v–A!~x1vt!dt as in Theorem 2.4. Now

1/2~a~x,v!1a~x,2v!!5*2`
1`A0~x1vt!dt, which determines A0 uniquely, and

1/2~a~x,2v!2a~x,v!!5*2`
1`v–A~x1vt!dt, which determinesA up to a gradient~Lemma 3.4!.j
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t

h is

45Wolf Jung: Inverse scattering for the Dirac equation

¬¬¬¬¬¬¬¬¬¬
To prove that lemma we need the extra assumptionAPL2. In Ref. 6, Lemma 3.4 a differen
way to reconstructB5rotA is proposed, which does not needAPL2 butAPC1 with B decaying
integrably.

Lemma 3.4 (Reconstruction of A): Forn.1, considerAPC0ùL2~Rn,Rn! having integrable
decay. ThenA is determined up to¹l by *2`

1`dtv–A~x1vt!.
Proof: As in ~11! one has

E
Sn21

dv vE
2`

1`

dtv–A~•1vt !52
xxT

uxun11*A,

which is a bounded, continuous function ofx. We will show that*2`
1` dtv–A~x1vt!50 implies

A5¹l for a l vanishing at̀ . In the casen53 one finds

S 2 xxTuxu4D
∧

5Ap

2

1

upu S 12
ppT

upu2DPL21L` and Ap

2

1

upu S 12
ppT

upu2D ÂPL11L2,

thus

2
xxT

uxu4*
A52p2S 1upu

Â2
p

upu3
p–ÂD ∨

PL21L`. ~15!

Now *2`
1` dtv–A~x1vt!50 implies Â5~p/upu2!p–Â a.e., thusA5¹l for a lPLw

6 . For n.3, the
proof is similar, but forn52 it must be modified to include aS 8-limit as in ~12!. j

Remark: In the Coulomb-gauge divA50 ~in the sense ofS 8!, A is determined uniquely by
the integral transform: Forn52, one has

E
2`

1`

dtA~x1vt !5vE
2`

1`

dtv–A~x1vt !,

and the proof of Theorem 2.4 applies to the componentsA1 ,A2 . For n53, ~15! implies

E
S2
dv vE

2`

1`

dtv–A~x1vt !52p2S 1upu
ÂD ∧

.

For n.3, the factor 2p2 must be replaced by 2p (n11)/2/G~~n11!/2!.

IV. PROOF OF THEOREM 3.1

We first discuss two preparatory lemmata:
Lemma 4.1 (Approximation of S): Let V be a matrix-valued multiplication operator, whic

H0-bounded with relative bound,1 and satisfies

iVAp21121F~ uxu.R!iPL1~@0,̀ !,dR!.

Then forF,C with f̂,ĉPC0
` there isv0.0 such that

lim
t→`

~F,e2 ivxeiH0te2 i2HteiH0teivxC!5~F,e2 ivxSeivxC! ~16!

uniformly in v.v0.
Proof:We first note that forf̂PC0

` there arec,v0.0 such that
J. Math. Phys., Vol. 38, No. 1, January 1997
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ue2 iH0teivxAp211Fu~x!,
c

~11utu!~n13!/2 for uxu,
utu
2
, v.v0 . ~17!

This is shown as in Lemma 2.2 by observing that

e2 ivxe2 iH0teivx5e2 iA~p1v!21m2t
P1,v1eiA~p1v!21m2t

P2,v ~18!

with

P6,v5
1

2 S 16
a~p1v!1bm

A~p1v!21m2D
and that]p

g(P6,vAp211f̂(p)) is bounded forugu>0. Using the same decomposition as in t
proof of Lemma 2.2, we findhPL1 such thatiVe2 iH0teivxFi < h(t) for tPR, v>v0 . Now

iV1e
ivxF2eiHte2 iH0teivxFi5 I i E

t

`

ds eiHsVe2 iH0seivxF I<E
t

`

ds h~s!→0 as t→`

uniformly in v.v0 . We treatV2 andC analogously, and the result forS is obtained. j

Lemma 4.2 (Limit for finite t): Suppose V has bounded, continuous components and s
@V1,v(x1),V1,v(x2)# 5 0.Then for all t.0

s2 lim
v→`

e2 ivxeiH0te2 i2HteiH0teivx5expH 2 i E
2t

t

dsV1,v~x1vs!J . ~19!

Proof: According to Theorem X.69 in Ref. 9, we have the Dyson-expansion

eiH0te2 i2HteiH0tC5 (
n50

`

~2 i !n E
2t,t1,...,tn,t

dtn•••dt1V~ tn!•••V~ t1!C ~ t.0,CPH!

with V(s) 5 eiH0sVe2 iH0s. In the momentum representation it is easily shown t
s2 limv2`(e

2 ivxe2 iH0seivx2e2 iav(v1vp)s)50, thus

lim
v→`

E
2t

t

ds~e2 ivxV~s!eivx2eiav~v1vp!sVe2 iav~v1vp!s!C50.

From a•vV6,v5 6 V6,va•v we conclude

eiav~v1vp!sVe2 iav~v1vp!s5eiav~v1vp!sV1,v e2 iav~v1vp!s1eiav~v1vp!sV2,v e2 iav~v1vp!s

5eiavvpsV1,v e2 iavvps1ei2avvseiavvpsV2,v e2 iavvps.

The Riemann–Lebesgue Lemma yields

lim
v→`

E
2t

t

ds ei2avvseiavvpsV2,v e2 iavvpsC50

and thus limv→` *2t
t ds e2 ivxV(s)eivxC 5 *2t

t dsW(s)C withW(s) 5 eiavvpsV1,ve
2 iavvps. By

induction, it is shown that
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lim
v→`

e2 ivxE
2t,t1,...,tn,t

dtn•••dt1V~ tn!•••V~ t1!e
ivxC

5E
2t,t1,...,tn,t

dtn•••dt1W~ tn!•••W~ t1!C

5
1

n! E@2t,t#n
dtn•••dt1W~ tn!•••W~ t1!C5

1

n! S E
2t

t

dsW~s! D nC.

Here the time-ordering in the integral was resolved becauseW(s) is a family of multiplication
operators satisfying [W(s1),W(s2)]50 for s1 ,s2PR, which follows from @V1,v(x1),V1,v(x2)#
5 0 and@a • v,V1,v(x)# 5 0, observing thatW(s) 5 1/2(11 a • v)V1,v(x1 vs) 1 1/2(12 a
• v)V1,v(x 2 vs). This decomposition also yields*2t

t dsW(s) 5 *2t
t dsV1,v(x 1 vs). The

Dyson-series converges uniformly inv, thus limv→` and(n50
` may be interchanged. j

Proof of Theorem 3.1:The hypotheses of Lemmata 4.1, 4.2 are fulfilled. Forf̂,ĉPC0
` an

e/3-trick shows: The uniform convergence in~16! entails that the following limits may be inter
changed.

lim
v→`

~F,e2 ivxSeivxC!5 lim
v→`

lim
t→`

~F,e2 ivxeiH0te2 i2HteiH0teivxC!

5 lim
t→`

lim
v→`

~F,e2 ivxeiH0te2 i2HteiH0teivxC!

5 lim
t→`

S F,expH 2 i E
2t

t

dsV1,v~x1vs!J C D
5S F,expH 2 i E

2`

`

dsV1,v~x1vs!J C D .
A density argument yields weak convergence, and the unitarity ofe2 ivxSeivx and of its weak limit
imply the strong convergence. j

V. SUMMARY AND GENERALIZATIONS

ForH0 5 Ap21m2 we obtained exp$2i*2`
1` V~x1vt!dt% fromS for very general short-range

V, but the reconstruction ofV was only accomplished for continuousV with integrable decay.
For H05a•p1bm we obtained exp$2i*2`

1`~A02v•A!~xNW1vt!dt% from S1 for continuous
Ai with integrable decay. The proofs of Theorems 3.1, 3.2 extend to the case ofVPL` with
iVAp21121F(uxu . R)i P L1(@0,̀ ),dR). We expect these Theorems to be true for general sh
rangeA0, but this is not yet proved. Lemma 4.1 holds under very general conditions, bu
Dyson-expansion in 4.2 demands thatV should be bounded.

The Aharanov–Bohm-experiment suggests to consider the casen52 with the magnetic field
B5rotAPC0

0. This requires the following modifications:

~a! GivenB with *BÞ0, there is noA of integrable decay, but there are vector potentials w
uA~x!u,c/uxu andx/uxu•A~x! decaying integrably. IfÃ5A1¹l, thenL~x!5limr2` l~rx! ex-
ists and may beÞ0.

~b! Choosing a special gauge with supp~A! in a cone as in Ref. 7, Theorems 3.1, 3.2 are sho
to remain valid for thisA.

~c! In a different gauge Ã we find S̃65eiL(6p)S6e
2 iL(7p) and conclude that also

e2 ivxNWS̃6e
ivxNW→exp$2i*2`

1`(A07v•Ã)(xNW1vt)dt%.
~d! The gauge-invariance ofS is lost, but we expect all physically measurable quantities to
J. Math. Phys., Vol. 38, No. 1, January 1997
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gauge-independent. Under the idealized assumption that phase-differences are measu
interference-experiments, the high-energy-limit ofS1 yields a~x,v!5*2`

1`~A02v
•A!~x1vt!dt up to an additive constant~depending onv!. But A0 is supposed to deca
integrably, thus the symmetric part ofa~x,v! is determined uniquely, from whichA0 is
obtained.

~e! Lemma 3.4 is not applicable, but at leastBPC0
1 may be obtained from the following formul

involving differentiation in the direction ofÃ orthogonal tov:

E
2`

1`

dtB~Ãs1vt !5
d

ds E2`

1`

dtv•A~Ãs1vt ! for Ã5~v2 ,2v1!
T. ~20!

Finally we mention that the Klein–Gordon equation for a charged spin-0-particle can be trea
the same way as the Dirac equation, since the Dyson-expansion also applies to the 2-H
space-formalism. We find the same result

e2 ivxNWS6e
ixNW→expH 2 i E

2`

1`

~A07v•A!~xNW1vt !dtJ . ~21!
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Lattice topological field theory on nonorientable surfaces
V. Karimipour and A. Mostafazadeha)
Institute for Studies in Theoretical Physics and Mathematics, P. O. Box 19395-5746,
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P. O. Box 11365-9161, Tehran, Iran
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The lattice definition of the two-dimensional topological quantum field theory@Fu-
kumaet al., Commun. Math. Phys.161, 157~1994!# is generalized to arbitrary~not
necessarily orientable! compact surfaces. It is shown that there is a one-to-one
correspondence between real associative* -algebras and the topological state sum
invariants defined on such surfaces. The partition andn-point functions on all
two-dimensional surfaces~connected sums of the Klein bottle or projective plane
andg-tori! are defined and computed for arbitrary* -algebras in general, and for the
group ringA5R[G] of discrete groupsG, in particular. © 1997 American Insti-
tute of Physics.@S0022-2488~96!00912-7#

I. INTRODUCTION

The introduction of topological field theory~TFT! by Witten,1,2 its axiomatization by Atiyah,3

and the novel approach of employing the TFT techniques to attack problems of topolog
geometry1,2,4,5 have motivated many authors to provide tools for rigorous construction of
models.6–9

In the framework of lattice topological field theory~LTFT!, a rigorous construction shoul
inevitably start with a triangulation of the manifold under consideration. In three dimensions~resp.
two dimensions! the basic observation6 ~resp. Refs. 10 and 11! has been that the 6j -symbols of
Uq„sl~2,C!… and a large class of other algebras~resp. structure constants of associative algeb!
obey the symmetries of a tetrahedron~resp. triangle! and satisfy identities which may be inte
preted geometrically in terms of glued tetrahedra~resp. triangles!. Associating state sums~parti-
tion functions! with a triangulation, one could show that the partition function is independen
the triangulation, i.e., it is a topological invariant.

In the basic definition of TFT,3 which is motivated by the path integral examples of Witte
and in the lattice models constructed afterwards, the orientability of the underlying manifold
a crucial role. To the best of our knowledge, state sum models on nonorientable manifold
not yet been constructed, even in two dimensions. The aim of the present paper is to const
general terms, topological state sums~partition functions! and observables on nonorientable tw
dimensional surfaces.

In our opinion, this direction of generalization of TFT deserves consideration for two rea
The first of these is a possible relevance of topological correlation functions on nonorien
surfaces to the open string theory.12 The second and a more fundamental reason is that mathe
cally, topological invariants are well defined for orientable as well as nonorientable mani
whereas the axioms of TFT,3 which are based on the path integral formulation of quantum fi
theory, and the state sum models mentioned above, rely heavily on the orientability of the
fold. Therefore, it is desirable to see if one can generalize state sum invariants to also co
nonorientable cases. Although our considerations are restricted to two dimensions, our bas
seems to be generalizable to three dimensions as well.

The paper is organized as follows: In Sec. II, a brief review of LTFT on orientable surfac

a!Current address: 412 Physics Lab, University of Alberta, Edmonton, AB, Canada T6G 2J1.
Electronic mail address: alimos@phys.ualberta.ca
0022-2488/97/38(1)/49/18/$10.00
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presented. In Sec. III, the definition of state sums on nonorientable surfaces is given a
generalized local~Matveev! moves are introduced accordingly. It is shown that the state sum
defined, are invariant under these moves, provided that a set of consistency conditions are f
Thus, the state sums are sensitive only to the topological properties of the surface. In Sec. I
shown how real associative*-algebras provide the general solution of the consistency conditi
In Sec. V, the observables are defined and for all* -algebras the correlations on all two
dimensional surfaces are calculated. Section VI is devoted to the study of a particular ex
where the*-algebra is taken to be the group ring of a discrete group.

II. DEFINITION OF LTFT ON ORIENTED SURFACES (Ref. 1)

Let S be a closed oriented surface of genusg and Tg be a triangulation ofS. Then the
partition function of the lattice model associated withTg is defined as follows: First, for an
oriented triangleD in Tg , one makes a coloring according to its orientation. That is, one giv
set of color indices running from 1 toN to three edges of the triangle. One then assigns a com
numberCabc to a triangle with ordered color indicesa,b,c ~Fig. 1!. Here it is assumed thatCabc

is symmetric under cyclic permutations of the indices:

Cabc5Cbca5Ccab .

Note, however, thatCabc is not necessarily totally symmetric. Next, all the triangles ofTg are
glued by contracting their indices with a metricgab ~Fig. 2!. Thus one obtains a complex-value
function ofgab andCabc for each triangulationTg , and one interprets it as the partition functio
of the lattice model,Z5Z~Tg!.

Alternatively, the construction of the partition function can be done in the dual graphTg* of
Tg . Here one assignsCabc to the vertices andgab to the links~Fig. 3!. One further assumes tha
(gab) has its inverse (gab), and raises or lowers indices using these matrices. One should
choose the coefficientsCabc andg

ab such that the partition function is invariant under any loc
changes in the triangulationTg or in the dual diagramTg* .

A possible set of local moves which relates any two triangulations is the two-dimens
version of the Matveev moves. These are the fusion transformation~Fig. 4! and the bubble
transformation~Fig. 5!. Figure 6 demonstrates an interpretation of the fusion transformation in
triangulationTg . In Ref. 10, it is claimed that the bubble transformation can be expressed on
the dual diagramTg* . However, we would like to emphasize that it also has a clear interpreta
in Tg . The meaning of the bubble transformation becomes clear only when one combines

FIG. 1. Colored triangles with complex valuedCabcs.

FIG. 2. Gluing two triangles.
J. Math. Phys., Vol. 38, No. 1, January 1997
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FIG. 3. The propagatorgab and the three-point vertex in the dual diagram.

FIG. 4. Fusion transformation inTg* .

FIG. 5. Bubble transformation inTg* .

FIG. 6. Fusion transformation inTg .

FIG. 7. Bubble transformation applied to a vertex inTg* .
J. Math. Phys., Vol. 38, No. 1, January 1997
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the fusion transformation. In fact, we can add a vertex to the left side of both diagrams in
and obtain Fig. 7. Now we perform a fusion transformation in the right-hand figure to obtain
8. However, this last equality is nothing but the barycentric subdivision inTg ~Fig. 9!.

Invariance of the partition functionZ~Tg! under the first and the second Matveev mov
enforces the following constraints on the parametersCabc andg

ab, respectively:

Cab
pCpc

d5Cbc
pCap

d , ~1!

gab5Cac
dCbd

c . ~2!

In Ref. 10, it is shown that every semisimple associative algebraA provides a solution of these
constraints. The coefficientsCab

c are identified with the structure constants of the associa
algebra. In view of the definition of the structure constants in terms of a basis$fa :a51,...,N%,

fafb5Cab
cfc . ~3!

Equation~1! is the expression of the associativity of the algebra, whereas Eq.~2! yields the metric
gab in terms of the structure constants. Note that if we definegab :5^fa ,fb&, then the cyclic
symmetry ofCabc is expressed by

^fa ,fbfc&5^fafb ,fc&.

In order forgab to have an inverse, the algebra should be semisimple. One then has the foll
theorem:10

Theorem 1:There is a one-to-one correspondence between the set of all LTFTs on orien
surfaces, as defined above, and the set of all semisimple associative algebras.

Note that if one considers the regular representation of the algebraA,

@p~fa!#
c
b5Cab

c , ~4!

then one finds

FIG. 8. Barycentric subdivision inTg* .

FIG. 9. Barycentric subdivision inTg .
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ace

ngle

ngle,

53V. Karimipour and A. Mostafazadeh: LTFT on nonorientable surfaces

¬¬¬¬¬¬¬¬¬¬
gab5tr~@p~fa!#@p~fb!# !, ~5!

Cabc5tr~@p~fa!#@p~fb!#@p~fc!# !. ~6!

The latter equations manifestly demonstrate the symmetry ofgab and the cyclic symmetry of
Cabc .

III. GENERALIZATION OF LTFT TO ARBITRARY COMPACT SURFACES

Consider a closed~possibly nonorientable! surfaceS, a fixed triangulationSa of S, and equip
each triangle ofSa with an arbitrary orientation. Note that here we useSa rather thanTg to denote
a particular triangulation~indexed bya!, for convenience. Denoting the number of triangles ofSa

by F, one has 2F possible ways of assigning orientations to the triangles. We shall callSa together
with such an assignment alocally oriented triangulationof S. Locally oriented triangulations
corresponding toSa are labeled bySa,k, k51,2,...,2F. We shall denote the set of allSa,ks by S̃a

and the set of all locally oriented triangulations ofS by S̃, i.e.,

S̃a:5$Sa,k:k51,...,2F%,

S̃:5øaS̃a.

We shall construct the partition function as a real-valued mapZ:$Sak:;S,a,k%→R. By its
topological invariance we mean that for a fixed surfaceS, this map has a constant value onS̃.
Topologically, this means thatZ should be invariant under the following local moves in the sp
S̃:

~a! Flipping: With a fixed triangulation we can change the orientation of any arbitrary tria
and thereby move in the subsetsS̃a.

~b! Matveev moves: These enable us to interpolate between different subsetsS̃a and S̃b in S̃.

To construct the partition function, we proceed as follows: To each locally oriented tria
carrying the color indicesa, b, andc, we assign a real numberCabc according to the orientation
of the triangle~Fig. 10!. Each pair of triangles with adjacent edges labeled bya andb are glued
together by means of contracting their indices using two types of matrices,gab or sab, according
to whether the orientations of the adjacent triangles are compatible or not, respectively~Fig. 11!.
For brevity, we shall call two adjacent triangles with~in!compatible orientations(in)compatible
triangles.

FIG. 10. Colored oriented triangle with realCabcs.

FIG. 11. Gluing two oriented triangles.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



rtition

ry
case,

of
ir and

54 V. Karimipour and A. Mostafazadeh: LTFT on nonorientable surfaces

¬¬¬¬¬¬¬¬¬¬
Consistency of this prescription requiresCabc to be cyclically symmetric, andg
ab andsab to

be symmetric in their indices:

Cabc5Cbca5Ccab , ~7!

gab5gba, sab5sba. ~8!

In the dual diagram, we associate a vertex to each triangle, a double line~propagator! to each
common edge of two compatible triangles, and a twisted double line~twisted propagator! to each
common edge of two incompatible triangles. Thus, the numbersCabc , g

ab, andsab are assigned
to the vertices, propagators, and twisted propagators, respectively~Fig. 12!.

Contracting all the indices, one obtains a real number which we interpret as the pa
function of the lattice model based on the locally oriented triangulationSa,k. The next step is to
find out the conditions onCabc , g

ab, andsab that would imply the invariance ofZ under flipping,
i.e.,Z5Z~S̃a!, and Matveev moves, i.e.,Z5Z~S̃!.

Consider a locally oriented triangulationSa,k and change the orientation of an arbitra
triangle inSa,k while the orientations of the rest of the triangles are kept unchanged. In this
one of the cases depicted in Fig. 13 may happen. In view of Fig. 13, invariance ofZ under
flipping leads to the following relations:

gaa8gbb8gcc8Ca8b8c85saa8sbb8scc8Ca8c8b8 , ~9!

saa8gbb8gcc8Ca8b8c85gaa8sbb8scc8Ca8c8b8 . ~10!

Next, we require invariance ofZ under local Matveev moves. Consider an arbitrary pair
adjacent triangles. Without loss of generality, we assign compatible orientation to this pa
perform the first Matveev move~Fig. 14!. Invariance ofZ under this move yields the following
relation forCabcs:

FIG. 12. Oriented vertices, twisted and untwisted propagators.

FIG. 13. Flipping transformation inTg .
J. Math. Phys., Vol. 38, No. 1, January 1997
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Cda
pCpb

c5Cab
pCdp

c . ~11!

Next, perform a barycentric subdivision of an arbitrary oriented triangle,~Fig. 15!. This yields the
following relation:

gab5Cac
dCbd

c . ~12!

Note that once we have chosen the orientation of the triangles, the orientation of the new tri
obtained after affecting the Matveev moves is not arbitrary. It is dictated by the external ed
the subdiagram where the Matveev moves take place.

Thus we have shown that the conditions~9!–~12! are the necessary and sufficient conditio
for the invariance of the partition function under the local moves in the spaceS̃. In the next
section, we shall provide the general solution of these conditions.

IV. GENERAL SOLUTIONS

Let A be an associative semisimple*-algebra over the field of real numbersR, with the
*-operations:A→A, satisfying s25 id and s(ab)5s(b)s(a). Further, suppose thatA is
equipped with an inner product^,&:A3A→R and s is self-adjoint with respect to this inne
product.

In an arbitrary basis $fa :a51,...,N%, s is expressed by a matrix (sa
b), i.e.,

f̂a5sfa5sa
bfb , and the conditions ons take the following form:

sa
bsb

c5da
c ~ involutiveness!, ~13!

Cba
csc

c85sa
a8sb

b8Ca8,b8
c8 , ~antihomomorphism!, ~14!

sab5sba ~self-adjointness!. ~15!

Note that

sab5^fa ,sfb&5^fa ,sb
b8fb8&5sb

b8gab85sba .

Also,

FIG. 14. Fusion transformation inTg .

FIG. 15. Barycentric subdivision inTg .
J. Math. Phys., Vol. 38, No. 1, January 1997
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sb
a5gaa8sa8b5gaa8sba85sb

a .

One can use Eqs.~13! and ~15! to write Eq.~14! in the following equivalent form:

Cba
c5sa

a8sb
b8sc8

cCa8,b8
c8 . ~16!

Defining the metric as before, i.e., according to Eq.~12!, we find that Eqs.~14! and ~16! are
precisely the necessary relations~9! and ~10! for the formulation of LTFT on arbitrary~not
necessarily orientable! compact surfaces. In fact, the relation with* -algebras can be seen qui
naturally, if one translates Fig. 13 into the dual language~Fig. 16!, where a vertex shows th
fusion of two elements of the algebra. In the remainder of this article, we shall use a single
rather than a double line, to indicate a propagator and a single line with a dot to indicate a t
propagator, for simplicity.

In view of these considerations, we have proven the following.
Theorem 2: There is a one-to-one correspondence between the set of all LTFTs on

dimensional compact surfaces (orientable or not) defined as above, and the set of all sem
real associative* -algebras. We conclude this section by recalling a couple of examples of a
ciative real* -algebras:

~1! Let A be the algebra of realn-dimensional matricesMn~R! with the inner product
^a,b&5tr(abt) ands be the transpose operations(a)5at. A natural basis ofMn~R! is provided
by the matrices Ei j with i , j51,...,n defined by (Ei j )kl :5d ikd j l . We then have
^Ei j ,Ekl&5gi j ,kl5Nd ikd j l , g

i j ,kl5(1/N)d ikd j l , ands i j ,kl5Nd i ld jk .
~2! Let A5R(G) be the group ring of a finite groupG. For any two elementsa andb of G,

we definê a,b&5tr[p(a)p(b)], wherep denotes the regular representation ofG, and induce an
inner product onR(G) by linear extension. We also choose the*-operation to be the~linear
extension of the! group inversion,s(a):5a21. Then, it is easy to check thats is self-adjoint:

^a,s~b!&5tr@p~a!p~b21!#5@p~a!#cd@p~b21!#dc5Cad
cCb21c

d5d~ad,c!d~b21c,d!

5d~ab21c,c!5uGuda,b5^s~a!,b&,

whered(a,b):5dab is the Kronecker delta function, i.e.,

d~a,b!:5H 1, if a5b,

0, if aÞb.

FIG. 16. Flipping transformation inTg* .
J. Math. Phys., Vol. 38, No. 1, January 1997
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V. PHYSICAL OBSERVABLES AND CORRELATION FUNCTIONS

Let S be a~compact and connected! surface with ann-component boundary. The boundary
S is homeomorphic to the union ofn disjoint circles. AlthoughS itself may not be orientable
each component of its boundary may be oriented. Let us assign the color indicesa1 , a2 ,...,an to
the n circles comprising the boundary. We denote such a surface and a locally oriented tr
lation of it by Sa1 ,...,an

and Sa1 ,...,an
a,k , respectively. We shall define the partition functio

Z(Sa1 ,...,an
a,k ), such that it will be completely independent of the triangulation and will dep

only on the color indices and the orientations of the boundary components. For definition
partition function we use exactly the same set of rules as for the closed surfaces plus the
ing:

Every boundary element with index a, whose orientation is (in)compatible with that o
triangle adjacent to it, corresponds to a (twisted) untwisted external line in the dual diagram
17). Two different surfaces are glued along their common boundary when the orientations
boundaries are opposite.

We define the insertion of the operatorsOa(a51,2,...,N) into the correlation functions a
creating a loop boundary with a fixed color indexa and summing over all other color indices o
the triangulation. We denote the correlation functions ofOa1

,...,Oan
on a closed surfaceS by

^Oa1
•••Oan

&S . Next, we prove the following.

Theorem 3: The value ofZ(Sa1 ,...,an
a,k ) is independent of the triangulation, i.e., Z

5Z(Sa1 ,...,an
).

Proof: We should only take care of the triangles adjacent to the external lines. Cons
flipping in the triangle adjacent to a boundary component~Fig. 18!. In the dual diagram this
flipping is demonstrated also by Fig. 16. We know that due to Eqs.~9! and ~10!, the partition-
function is invariant under such moves. In Fig. 18, we may also consider other possibilities f
orientations of the boundary components and the triangles, and see that the invariance
correlation functions imposes no extra conditions besides Eqs.~9! and ~10!.

Note, however, that the correlation functions are invariant under a reversal of the orien
of all the boundary components. This marks aZ2-symmetry of our construction. In particular, th
implies that the one-point functions do not depend on the orientation of the boundary. This
to the fact that although one can compare two different orientations of a given boundary co
nent, one cannot compare the orientations of two different boundary components. Thus
impossible to assign an intrinsic value~6! to a given orienatation. This then means that for a fix
set of indices on then boundary components ofS, one can define 2n21 different correlation
functions. In the next section, we shall see how one can obtain all these 2n21 different correlation
functions from the knowledge of only one of them.

FIG. 17. Triangle adjacent to a boundary component.

FIG. 18. Flipping a triangle adjacent to a boundary component.
J. Math. Phys., Vol. 38, No. 1, January 1997
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In the remainder of this section, we present some explicit calculations.
Calculation of correlation functions:In the following we pursue the calculation, in gener

terms and without specifying the underlying algebra, of the following quantities:
the partition function of

A—the sphere,
B—the projective plane,
C—the Klein bottle,

the one-point functions on
D—the sphere,
E—the projective plane,
F—the Klein bottle,

and finally,
G—the two-point function on the sphere,
H—the three-point function on the sphere, and
I—the partition and correlation functions on arbitrary compact surfaces.

We shall see that observables D, E, F, and H can be used as building blocks for the calcula
all correlation functions on arbitrary compact surfaces, i.e., I. In our graphical calculation
shall use the identities depicted in Fig. 19.

Next, we pursue the computation of the following.

A. Partition function of the sphere S2

We can always normalize the partition function of the sphere to unity. For future us
present in Fig. 20 the simplest triangulation of the two-sphere together with its dual graph.~Note
that the multiple arrows on the edges of some of triangles are used to mean that they ar
identified. They are not to be confused with the single arrows which specify the orientations
boundary components.! By performing the second Matveev move in the dual graph, we see
the dual diagram ofS2 is a circle. Therefore we have

FIG. 19. Graphical identities.

FIG. 20. A triangulation of the sphere and its dual diagram.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



wn in
rm-
ated in

also
tain

ave

Fig.
s

and

59V. Karimipour and A. Mostafazadeh: LTFT on nonorientable surfaces

¬¬¬¬¬¬¬¬¬¬
Z~S2!5Z~& !5Z~s !51.

B. Partition function of the projective plane RP2

A simple triangulation of the projective plane and the corresponding dual graph is sho
Fig. 21. In order to compute the partition function, first we simplify the dual diagram by perfo
ing the first and then the second Matveev moves in the lower area. The result is demonstr
Fig. 22. From the latter diagram we obtain

Z~RP2!5Cca
bCdb

ascd. ~17!

C. Partition function of the Klein bottle K

Figure 23 shows a triangulation of the Klein bottle and its dual diagram, where we have
indicated how to simplify the dual diagram using Matveev moves. In view of Fig. 23, we ob

Z~K !5Cb8c8
aCcbas

cc8sbb8. ~18!

D. One-point function on the sphere (disk)

Removing the interior of a circle from the sphere and fixing an indexa on the circle~Fig. 24!,
we obtain the one-point function on the sphere, which is topologically a disk. Hence, we h

^Oa&S25Cab
b . ~19!

E. One-point function on the projective plane (Mobius strip)

The simplest triangulation of the one-point function on the projective plane is shown in
25. This is obtained by removing the interior of a circle fromRP2. Topologically, this correspond
to the Mobius strip. In view of Fig. 25, we have

^Oa&RP25Cabcs
bc. ~20!

F. One-point function on the Klein bottle

In order to compute the one-point function on the Klein bottle, we cut a disk in Fig. 23,
obtain Fig. 26. The latter leads to

FIG. 22. A simplified dual diagram forRP2.

FIG. 21. A triangulation ofRP2 and its dual diagram.
J. Math. Phys., Vol. 38, No. 1, January 1997
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^Oa&K5Cab
cCcd8

e8Ced
bsdd8se8

e . ~21!

G. Two-point functions on the sphere

According to the orientations of the boundaries there are two different two-point function
the sphere depicted in Fig. 27 which we callhab andjab . One can find the simplest triangulatio
of hab andjab by representing both of them as rectangles with two identified sides. Accordin
Fig. 27,

hab5Cac
dCdb

c , ~22!

jab5ha
b8sb8b . ~23!

Gluing twohs or twojs, one can verify the following identities:

ha
bhb

c5ha
c , ha

bjb
c5ja

bhb
c5ja

c , ha
bjb

c5ha
c . ~24!

In fact, the first identity is the same as in the orientable case. The remaining two identitie
consequences of Eq.~23!. The significance of Eqs.~24! will be emphasized below.

In Ref. 10, it is shown thath is a projection onto the centerZ(A) of the algebraA, i.e.,
ha

bCbcd5ha
bCbdc , which implies

;fPA: hfPZ~A!,
~25!

;f̃PZ~A!: hf̃5f̃.

Moreover, in view of Eq.~23!, j also acts as a projector to the centerZ(A), although it is not a
proper projection due to the last relation in~24!.

Note that by gluingjab to any boundary component of the surface, we can change its
scribed orientation. Thus the correlation functions corresponding to different assignments
orientation to the boundary components may be obtained in this way from a given one.

At this stage, we would like to relabel the indices of the basis$fa :a51,...,N% of A in such
a way that the firstM indices label the basis ofZ(A):

A5 %

a51

N

Rfa5Z~A! %Zc~A!:5S %

a51

M

RfaD % S %

i5M11

N

Rf i D . ~26!

FIG. 23. A triangulation of the Klein bottle and its dual diagram.

FIG. 24. A triangulation of the disk.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Sinceh5(ha
b) is a projector ontoZ(A) and Eq.~25! holds,h takes the following form in the new

basis:

~hab!5Fhab5gab 0

0 0G ,
~ha

b!5Fha
b5da

b 0

0 0G , ~27!

~hab!5Fhab5gab 0

0 0G .
An interesting observation is thats induces aZ2-grading of the centerZ(A), although it does

not induce such a grading on the whole algebraA. Thus, we have

Z~A!5Z1~A! %Z2~A!5S %

a151

M1

Rfa1D % S %

a25M111

M

Rfa2D , ~28!

wheresfa6 5 6fa6, and

Z1~A!Z1~A!,Z1~A!,

Z1~A!Z2~A!,Z2~A!, ~29!

Z2~A!Z2~A!,Z1~A!.

H. Three-point functions on the sphere

The simplest triangulation for the three-point function on sphere, with the prescribed or
tions as shown in Fig. 28, leads to a dual diagram consisting of threeh s joint at a vertex.10 Thus,
we have

Nabc :5^OaObOc&5ha
a8hb

b8hc
c8Ca8b8c8 . ~30!

FIG. 25. A triangulation of the Mobius strip.

FIG. 26. A triangulation of the one-point function on the Klein bottle.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Note that in view of Eqs.~27!,

Nabg5Cabg . ~31!

Other choices of orientations on the boundary components correspond to replacing someh s byj s
in Eq. ~30!.

Since every insertion of operatorOa ~to obtain a multi-point function! is necessarily subject to
the projection byh or j, the following theorem10 also generalizes to the case considered in
paper.

Theorem 4: The set of physical observables is in one-to-one correspondence with the c
Z(A) of the real associative* -algebra A associated with the LTFT. In particular, the number of
independent physical operators is equal to the dimension of Z(A).

In view of Eq. ~31! and theZ2 grading ofZ(A) demonstrated by Eqs.~29!, we can regard
Oa1 andOa2 as ‘‘bosonic’’ and ‘‘fermionic’’ observables. This terminology is motivated by t
following ‘‘selection rules:’’

Na1b1g25Na2b2g250.

I. Case of general compact surfaces

To compute the correlation functions of other compact surfaces, we appeal to the follo
result:

Theorem 5: The one-point functions on the sphere Da , the Klein bottleK a , the projective
planeMa , and the three-point function on sphere Nabg can be used as building blocks to find an
correlation function on any compact connected surface by gluing.

Proof: First note that by gluing a diskDa to a three-point functionNabg on the sphere, one
obtains the two-point functionhab on the sphere. Gluinghab to Nabg , one obtains a handle
operator which is used in the construction of surfaces of higher genus. Furthermore, gluingNabg

to anyn-point function yields an (n11)-point function on the same surface. Next, one can g

FIG. 27. A triangulation of the two-point functions onS2.

FIG. 28. A three-point function onS2 with a prescribed orientation on the boundary components.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Ma ~resp.K a! to the (n11)-point function on a genusg orientable surfaceSg to obtain the
n-point function on the nonorientable surfaceSg#RP

2 ~resp.Sg#K !. According to the classifi-
cation theorem for two-dimensional surfaces,13 this exhausts all the possibilities of the multi-poi
functions on arbitrary compact surfaces.

These considerations can be expressed in an algebraic language by defining the matr

~Nb!a
g :5Nab

g ,

the vectorsv,M, andK with components

va :5tr~Na!, Ma , K a ,

respectively, and the matrix

Ñ:5 (
a51

M

vaNa .

Denoting byg the genus of the surface, we will then have for the orientable surfacesSg

^Oa1
•••Oan

&g505~Na2
Na3

•••Nan21
!a1

an, ~32!

^Oa1
•••Oan

&g515tr~Na1
Na2

•••Nan
!, ~33!

^Oa0
&g5~Na0

Na1
•••Nag

!va1
va2

•••vag
5~Ñg21v!a0

, ~34!

^Oa1
•••Oan

&g5^Oa1
•••Oan

Oan11
&g50^Oan11

&g5~Na2
•••Nan

Ñg21v!a1
, ~35!

Z~Sg!5va1
•••vag

^Oa1
•••Oag

&g505v tÑg22v, ~36!

and for nonorientable surfaces

Z~Sg#K !5K a^Oa&g5K tÑg21v, ~37!

Z~Sg#RP
2!5Ma^Oa&g5M tÑg21v, ~38!

^Oa&Sg#K
5~K tÑg!a , ~39!

^Oa&Sg#RP
25~M tÑg!a , ~40!

^Oa1
•••Oan

&Sg#K
5^Oa1

•••Oan11
&g50^Oan11

&Sg#K
5~Na2

•••Na2
ÑgK !a1

, ~41!

^Oa1
•••Oan

&Sg#RP
25~Na2

•••Nan
ÑgM!a1

, ~42!

where the superscript ‘‘t ’’ stands for the ‘‘transpose.’’

VI. EXAMPLE: THE GROUP RING A5R(G)

In this section we deal with the special case whereA5R[G]:5 % aPGRa is a group ring
associated with a finite groupG of order uGu. In this case, one has

Cab
c5d~ab,c!. ~43!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The group ringA is naturally a real* -algebra with the*-operation given by linear extentio
of

s~a!:5a21 ;aPG. ~44!

Using Eqs.~43! and ~44!, we have

gab5uGud~a,b21!, ~45!

Cabc5uGud~abc,1!, ~46!

sab5uGud~a,b!. ~47!

Similarly, we find

gab5
1

uGu
d~a,b21!, ~48!

sab5
1

uGu
d~a,b!, ~49!

sb
a5sb

a5d~a,b21!, ~50!

In view of these equations, we may easily compute

hab5^OaOb&05
uGu
h@a#

d~@a#,@b21# !. ~51!

Here, [a] denotes the conjugacy class ofa, i.e.,

@a#:5$bPG:b5gag21,gPG%,

andh@a# is the number of elements of [a]. Furthermore, we have

ha
b5hacg

cb5
1

h@a#
d~@a#,@b# !, ~52!

jab5ha
cscb5

uGu
h@a#

d~@a#,@b# !, ~53!

ja
b5jacg

cb5
1

h@a#
d~@a#,@b21# !. ~54!

Next, we consider some specific examples:
~1! The partition function for the sphereS2:

Z~S2!5Z~& !5CabcCa8b8c8g
aa8gbb8gcc85

1

uGu (
a,b,c

d~abc,1!d~a21c21b21,1!51. ~55!

~2! One-point function onS2 @the disk (D)#:

^Oa&S25Cab
b5(

b
d~ab,b!5uGud~a,1!. ~56!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~3! The partition function for the projective planeRP2:

Z~RP2!5Cab
cCdc

bsda5
1

uGu (
a,b,c,d

d~ab,c!d~dc,b!d~d,a!5
1

uGu (
a

d~a2,1!.

The sum in the latter equation can be split into a sum over the distinct conjugacy classeb],
followed by a sum over the elements belonging to each class,aP[b]. Then, in view of the identity

(
aP@b#

d~a2,1!5
uGu
h@b2#

d~@b2#,1!,

one finally has

Z~RP2!5(
@b#

1

h@b2#
d~@b2#,1!. ~57!

~4! One-point function onRP2 @the Mobius strip~M!#:

^Oa&RP25Ma5Cabcs
cb5Cab

csc
b5(

b,c
d~ab,c!d~c,b21!5(

b
d~ab,b21!5:Ga

1/2. ~58!

Here,Ga
1/2 is the number of elements ofG whose square equalsa. Note thatGa

1/2 is a function of
[a]. To see this suppose thatbi , i51,...,Ga

1/2, are such thatbi
25a. Then for all gPG, bi8 :

5 gbig
21 have theproperty thatbi8

2 5 gag21 5 a8 P @a#. Thus,Ggag21
1/2

5 Ga
1/2.

~5! The partition function of the Klein bottle~K !:

Z~K !5Cb8c8
a Ccbas

cc8sbb85(
@a#

1

h@a#
d~@a#,@a21# !. ~59!

~6! One-point function onK :

^Oa&K5Cab
mCmd8

e8 Ced
bsdd8se8

e5(
@b#

1

h@b#
d~@ab#,@b21# !. ~60!

We conclude this section emphasizing the fact that all the correlation functions are fun
of the conjugacy classes. This is to be expected since the physical observables are relate
center of the algebra and the center is spanned by the conjugacy classes. Furthermore, the
observables being functions only of the conjugacy classes can be expressed in terms
characters of the irreducible representations of the group.

VII. CONCLUSION

In this article, it is shown how in two dimensions one can formulate state sums on no
entable compact manifolds. Pursuing the same approach as in the treatment of the orientab
one encounters the problem of the lack of a canonical orientation for the nonorientable su
This manifests itself in the lack of a canonical prescription for the assignment of orderedCabcs to
the triangles of a given triangulation. The solution offered above involves the following t
steps:

~1! introduction of locally oriented triangulations;
~2! generalization of the Matveev moves, i.e., inclusion of flipping transformation;
~3! employing the*-structure of real associative* -algebras to ensure the topological invariance

the partition and correlation functions.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Thus, at a more fundamental level, theZ2-obstruction of nonorientability leads to the requireme
of the existence of a*-structure for the underlying algebra of any LTFT on nonorientable m
folds.

A similar problem exists in three dimensions where adjacent tetrahedra with incomp
orientations are present in any triangulation. It seems that our approach may be applied
case, as well.
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Ergodic properties of quantized toral automorphisms
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We study the ergodic properties for a class of quantized toral automorphisms,
namely the cat and Kronecker maps. The present work uses and extends the results
of Klimek and Leśniewski @Ann. Phys.244, 173–198~1996!#. We show that quan-
tized cat maps are strongly mixing, while Kronecker maps are ergodic and non-
mixing. We also study the structure of these quantum maps and show that they are
effected by unitary endomorphisms of a suitable vector bundle over a torus. This
allows us to exhibit explicit relations between our Toeplitz quantization and the
semiclassical quantization of cat maps proposed by Hannay and Berry@Physica D
1, 267–290~1980!#. © 1997 American Institute of Physics.
@S0022-2488~96!03012-5#

I. INTRODUCTION

A. What is ergodicity?

Quite distinct from its classical counterpart, there remains as yet no well-accepted conc
quantum ergodicity. Several inequivalent yet very natural approaches have been introduc
the one hand, a system is deemed ‘‘quantum ergodic’’ if it has a well-defined classical limit w
is itself ergodic.1–5On the other hand, the original~and today largely obsolete! notion of quantum
ergodicity proposed by von Neumann defines, roughly speaking, a system as quantum erg
any observable is eventually distributed over the eigenstates according to the weight o
eigenstate.

Let us discuss this latter notion first. LetH be a Hilbert space,U a *-algebra of operators on
H, andF a unitary quantum evolution operator~called also the propagator!. Then the quantum
system is ‘‘quantum ergodic’’ if for all observablesAPU, and anywPH,

lim
M→`

1

M (
0<m<M21

~w,FmAF2mw!5 (
n50

`

ucnu2~wn ,Awn!, ~I.1!

wherecn is thenth Fourier coefficient of a vectorw with respect to the eigenstates ofF spanning
H, w5(ncnwn . Although the physical motivation behind this definition is indeed appealin
leads unfortunately to quite unexpected and somewhat counterintuitive results. First of
applies only to systems whose propagators have purely discrete spectra. Furthermore, it
readily shown that any system whose propagator spectrum is simple~e.g., the one-dimensiona
harmonic oscillator with generic frequency! is, as a consequence of this definition, quant
ergodic.

In Refs. 3, 4, and 1, a system is defined as quantum ergodic if the time average@which is
essentially the left-hand side of~I.1!# smears the quantum mechanics onto a ‘‘classical limit sta
plus a quantum mechanical correction which vanishes asymptotically in the classical limit
existence of such a state is a highly nontrivial result and a quantum system does not have
such a ‘‘classical limit.’’ In Ref. 1, quantum ergodicity of a class of quantum dynamical syst
called ‘‘Gelfand–Segal systems,’’ are studied. By definition, a Gelfand–Segal system has a
gator whose spectrum is discrete. This concept of quantum ergodicity seems to be parti
0022-2488/97/38(1)/67/17/$10.00
67J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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useful in systems which arise as quantizations of the geodesic flow on a compact manifold
notion of ergodicity is intrinsically semiclassical and we will not use it in this paper. Fo
discussion of quantized toral automorphisms within this framework, see Refs. 2 and 6.

B. Overview

In this paper we study the ergodic properties of a class of quantum dynamical systems
spectra are continuous. The examples we discuss are the quantized cat and Kronecker m
work within the algebraic quantization scheme which emphasizes the role of observables in
tum kinematics and dynamics. In the context of toral automorphisms, such a scheme w
cussed in Ref. 7. That paper contains also an extensive list of references to the original lite
concerning quantized toral automorphisms and algebraic quantization. A particularly natur
convenient choice of the algebra of observables turns out to be theC* -algebraU\ generated by
Toeplitz operatorsT\( f ) on the Bargmann space withZ2-invariant symbolsf . These Toeplitz
operators are simply anti-Wick ordered quantizations of classical observables. The two pro
which make Toeplitz quantization very natural are~i! Toeplitz quantization is positivity preserv
ing,

T\~ f !>0, if f>0, ~I.2!

and ~ii ! Toeplitz quantization is continuous in the symbol,

iT\~ f !i<i f i` , ~I.3!

wherei•i is the operator norm, and wherei•i` is the sup norm. These properties have import
consequences for the study of the semiclassical limit of the quantum system.

The results established in this paper have the form

lim
M→`

1

M (
0<m<M21

FmAF2m5t\~A!I , ~I.4!

whereA is an element ofU\ , and wheret\ is a trace onU\ . This trace is invariant under th
quantum dynamics and reduces to the classical ensemble average in the limit as\→0. It can be
thus thought of as the quantum ensemble average. The limit in~I.4! is in the sense of weak
topology. This property, the equality of the time and spatial averages, may be taken as a
matic’’ definition of quantum ergodicity. Within the abstract theory ofW* - ~or C* -! dynamical
systems it is, however, well known that it may be derived from more fundamental properties
system. For example, ergodicity~i.e., extremality! of the statet\ , and asymptotic abelianess imp
~I.4!.

C. Organization of material

The paper is organized as follows. In Sec. II we present the classical maps, briefly r
some of the results of Ref. 7 relevant to this paper, in particular the quantum time evo
operator in Bargmann space, and introduce a tracet\ on the algebra of observables. The quan
zation of the dynamics derived in Ref. 7 together with the concept of the trace enable us to
ergodicity and mixing of the cat map in Sec. III. That is,~i! the time average of an observab
converges weakly in the large time limit to the trace of that observable, and~ii ! for observables A
and B, t\(F

MAF2MB) converges in the large time limit to the productt\(A)t\(B). Results,
similar to the results of this section, had been known to mathematicians for a long time.8,9 In the
mathematical physics literature, related results, within a different quantization scheme, had
ously been discussed in Ref. 10. In Sec. IV we show that the quantum Kronecker map is e
but not mixing. In Sec. V, we study the structure of the quantized cat maps. For the valu
J. Math. Phys., Vol. 38, No. 1, January 1997
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Planck’s constant satisfying the geometric quantization ‘‘integrality condition,’’ we construc
isomorphism between the Bargmann space and the Hilbert space of sections of a vector
over the torus. Under this isomorphism, the algebra automorphism defining the quantum c
becomes a unitary vector bundle endomorphism. We choose a natural~local! trivialization of this
bundle and compute matrix elements of the bundle endomorphism representing the quan
map. This establishes a connection between our scheme and the semiclassical quantizat
posed originally in Ref. 11. Section VI contains similar results for the quantized Kronecker m

II. QUANTIZED TORAL AUTOMORPHISMS

A. Classical maps

We begin here with a brief review of the systems we shall study. We restrict ourselves t
of the simplest and well-known maps of the torus: Arnold’s cat map and the Kronecker map
a more thorough treatment we refer the reader to Refs. 12, and 13.

The cat map is a linear automorphism of the torus, with one step classical evolution
sented by an elementgPSL~2,Z!,

g5S a b

c dD . ~II.1!

It can be readily verified thatutr~g!u.2 corresponds to uniformly hyperbolic dynamics, wh
utr~g!u,2 yields elliptic motion. Since we are interested in chaotic dynamics, we restrict ours
to utr~g!u.2. In this case, the dynamics evolves locally along two linearly independent eige
tors which are not orthogonal. Indeed, the slopes are irrationally related. The two eigenval
~II.1! m1 andm2 satisfy

m1m251, ~II.2!

with um1u.1 andum2u,1 corresponding to flow along unstable and stable axes, respectively.
As in Ref. 7, we write the dynamics

~x1 ,x2!→~ax11bx2 ,cx11dx2! ~II.3!

in terms of the complex variablez5(x11 ix2)/& via

z→āz1b z̄. ~II.4!

The factor of& in the denominator serves to make the transformation (x1 ,x2)→z a symplecto-
morphism. Note thata andb are simply the complex cat map parameters, with

a5„a1d1 i ~b2c!…/2,
~II.5!

b5„a2d1 i ~b1c!…/2,

and

uau22ubu251. ~II.6!

The classical Kronecker map is an even simpler automorphism of the torus defined by

~x1 ,x2!→~x11v1 ,x21v2!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~or equivalentlyz→z1v,! where we assume thatv1 andv2, and 1 are rationally independent.
is a well-known result, see, e.g., Ref. 13, that the map is ergodic; however, because of its
uniform motion, it is not mixing.

B. Quantization

We shall use the quantization presented in Ref. 7. For a full account of the method the
is referred to the original paper. Here we only summarize the results.

We work in a Bargmann representation with a Hilbert spaceH2~C, dm\! consisting of entire
functions on C which are square integrable with respect to the meas
dm\(z)5(p\)21 exp(2uzu2/\)d2z. Quantizations of classical functions over phase space~which
are ‘‘functions’’ over the quantized phase space! generate naturally a quantum mechanical alge
of observables. Of course, a particular choice of quantization must be given. We choose, as
1, the anti-Wick quantization, and define the algebra of observables to be theC* -algebraU\

generated by Toeplitz operators withZ2 invariant symbols. A Toeplitz operator with symbolf is
given by

T\~ f !w~z!5E
C
ezw̄/\ f ~w!w~w!dm\~w!. ~II.7!

The Hilbert spaceH2~C, dm\! carries a unitary projective representation of the group of tran
tions ofC given by

U~z!w~z!5e~ z̄ z2uzu2/2!/\w~z2z!, ~II.8!

with the property

U~z!U~j!5ei Im~ z̄ j !/\U~z1j!. ~II.9!

Consider the following operators:

U5U~2 i\pA2!, V5U~\pA2!. ~II.10!

These operators are generators of the algebraU\ , and obey the commutation relation

UV5eilVU, ~II.11!

wherel54p2\.
Quantum cat dynamics in the Bargmann representation are affected by the unitary ope

Fw~z!5uau21/2 expS 2
b̄z2

2\a D E
C
expS w̄z

\a
1

bw̄2

2\a Dw~w!dm\~w!. ~II.12!

Indeed, it was shown explicitly that forU andV defined in~II.10!,

U85FUF215e2 ilab/2UaVb,
~II.13!

V85FVF215e2 ilcd/2UcVd.

Furthermore, thisF has a well-defined\→0 limit yielding the desired classical dynamics.
J. Math. Phys., Vol. 38, No. 1, January 1997
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For the Kronecker map, the unitary operator which affects the dynamics is readily shown
K5U(2v):

KUK215e2p iv1U, KVK215e2p iv2V, ~II.14!

wherev5(v11 iv2)/&.

C. Trace

We also need a trace on the algebraU\ . Let wPH2~C, dm\! be an arbitrary vector of norm
one. ForSPU\ we define

t\~S!5E
T2

~U~ l !w,SU~ l !w!d2l . ~II.15!

This functional has a number of remarkable properties which we summarize in the the
below.

Theorem II.1: The functionalt\ has the following properties:
(1) It is a state onU\ ;
(2) Its value is given by

t\~UmVn!5dm0dn0 ; ~II.16!

(3) It is a trace onU\ .
In particular,t\ is independent of the choice ofw and it follows from~II.16! thatt\ coincides

with the standard trace on the quantized torus.
Proof: ~1! Indeed,t\ is continuous,

ut\~S!u<E
T2

iSiiU~ l !wi2d2l5iSi ,

positive,

t\~S†S!5E
T2

iSU~ l !wi2 d2l>0,

and normalized,

t\~ I !5E
T2
„U~ l !w,U~ l !w…d2l5E

T2
iwi2 d2l51.

~2! This is a direct calculation:

t\~UmVn!5E
T2
„w,U~2 l !U~2 imp\A2!U~np\A2!U~ l !w…d2l

5E
T2
eipA2~m Re l1n Im l !

„w,U~2 l2 imp\A2!U~ l1np\A2!w…d2l

5E
T2
e2ipA2~m Re l1n Im l !12ip2\mn~w,U„~n2 im!p\A2…w!d2l

5E
0

1E
0

1

e2ip~mx1ny!12ip2\mn dxdy~w,U„~n2 im!p\A2…w!5dm0dn0 .
J. Math. Phys., Vol. 38, No. 1, January 1997
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~3! This follows from ~2!. h

Remark: Notice that ifwPH2~C, dm\! is chosen to be the ground statew051, then

w l~z!:5U~ l !w0~z!5e l̄ z/\2u l u2/2\5e2u l u2/2\ (
n50

`
1

n!
~ l̄ A†/\!nw0~z!, ~II.17!

whereA† is the creation operator. Thus the trace of the operatorS is the sum over the coheren
states basis representation restricted to the fundamental domain of the expectation valueS.

Another interesting fact aboutt\ is that its value on a Toeplitz operator is equal to the integ
of the symbol of that operator. This is quite remarkable in that with our choice of quantization
quantum expectation value yields exactly the classical value independent of Planck’s cons

Theorem II.2: For any symbol fPC~T2!,

t\„~T\~ f !…5t~ f !. ~II.18!

wheret (f) is the phase-space integral of f over the torus.
Proof: It is sufficient to prove this forf a pure harmonic. The general case will follow b

linearity and continuity. Let

f z~z!:5e2p2\uzu2e2p~ z̄ z2z z̄ !5ep2\~m21n2!e2p i ~nx1my!, ~II.19!

wherez5(m2 in)/&, m,nPZ. Then, using~II.7!, we find

T\~ f z!5UnVme2p2i\mn ~II.20!

Using part~2! of Theorem II.1, we conclude that

t\„T\~ f z!…5dm0dn05E
T2
f z~z!d2z,

as claimed. h

III. ERGODIC PROPERTIES OF THE QUANTIZED CAT MAP

A. Mixing

In this section we study the ergodic properties of the quantized cat map. We prove th
dynamics generated by this map has a property which is a quantum mechanical analog
strong mixing property. Furthermore, we show that the quantized cat dynamics is ergodic
sense that the time average of an observable tends to its ensemble average given by thet\ .
The results established in this section had previously been proved in Refs. 8–10 within a di
quantization scheme and by different methods.

Theorem III.1: ~Strong mixing! For any A,BPU\ ,

lim
M→`

t\~FMAF2MB!5t\~A!t\~B!. ~III.1!

Proof:We proceed in two steps.
Step 1:We assume first thatA5T\( f z) andB5T\( f h), with f z and f h of the form ~II.19!.

We have to show that the limit in~III.1! is 1, if z5h50, and 0 otherwise. A direct calculation~see
Section III of Ref. 7! shows that

FT\~ f z!F
215T\~ f g21z!, ~III.2!

and consequently
J. Math. Phys., Vol. 38, No. 1, January 1997
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FmT\~ f z!F
2m5T\~ f g2mz!. ~III.3!

Furthermore, as a consequence of~II.20!,

T\~ f z!T\~ f h!5e~z,h!T\~ f z1h!, ~III.4!

wheree~z,h! is such that

ue~z,h!u51, e~0,h!5e~z,0!51. ~III.5!

As a consequence,

t\„F
MT\~ f z!F

2MT\~ f h!…5e~g2Mz,h!t\„T\~ f g2Mz1h!…

5e~g2Mz,h!E
T2
f g2Mz1h~z!d2z.

If z5h50, then the above expression is equal to 1. Forz50 andhÞ0, *T2f h(z)d
2z 5 0. LetzÞ0

andhÞ0. Sinceg is hyperbolic, there isM0 such that for allM>M0 , g2Mz1hÞ0, and thus
*T2f g2Mz1h(z)d

2z5 0, for allM>M0 .
Step 2: As a consequence of Step 1,~III.1! holds for any A5A0 :5T\( f ) and

B5B0 :5T\(g), wheref andg are finite linear combinations of simple harmonics. Any elem
of U\ is a norm limit of such operators. Using the continuity oft\ and unitarity ofF we obtain the
inequality

ut\~FMAF2MB!2t\~A!t\~B!u<ut\~FMA0F
2MB0!2t\~A0!t\~B0!u1ut\„F

MA0F
2M

3~B2B0!…u1ut\~A0!uut\~B2B0!u1ut\„F
M

3~A2A0!F
2MB0…u1ut\~A2A0!uut\~B0!u1ut\~FM

3~A2A0!F
2M~B2B0!!u1ut\~A2A0!uut\~B2B0!u

<ut\~FMA0F
2MB0!2t\~A0!t\~B0!u12~ iA0iiB2B0i1iA

2A0iiB0i1iA2A0iiB2B0i !,

from which ~III.1! follows. h

As a corollary, we obtain the following mixing property for observables which are Toe
operators.

Corollary III.2: For f,gPC~T2!,

lim
m→`

t\„F
mT\~ f !F2mT\~g!…5t~ f !t~g!. ~III.6!

Proof: This is a consequence of~II.18!. h

B. Ergodic theorem

Now we formulate the ergodic theorem for the quantized cat dynamics. For an operaS,
define its time average over a period of timeM :

^S&M :5
1

M (
0<m<M21

FmSF2m. ~III.7!

The theorem below asserts that for anyAPU\ , the sequencêA&M converges tot\(A)I in the
weak operator topology.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Theorem III.3: ~Ergodicity of the quantized cat map! For any APU\ , andw,cPH2~C, dm\!,

lim
M→`

~w,^A&Mc!5t\~A!~w,c!. ~III.8!

Proof:We proceed in three steps.
Step 1:LetA5T\( f z), wheref z is a simple harmonic. Ifz50, then^A&M5I , and~III.8! holds

trivially. Let zÞ0; we have to show that

lim
M→`

„w,^T\~ f z!&Mc…50. ~III.9!

Assume now thatw andc are normalized coherent states of the form~II.17!, w5wj , andc5wh .
Then

~wj ,T\~ f z!wh!5E
C
wj~z! f z~z!wh~z!dm\~z!

5e2~ uju222jh̄1uhu2!/2\22p2\uzu212p~ z̄ j2zh̄ !,

and so

u~wj ,T\~ f z!wh!u<e22p2\uzu212p~ uju1uhu!uzu.

Consequently,

u„wj ,^T\~ f z!&Mwh…u<
1

M (
0<m<M21

e22p2\ug2mzu212p~ uju1uhu!ug2mzu

<
1

M (
0<m<M21

e2O~1!um1u2m→0,

wherem1 is the eigenvalue ofg with um1u.1.
Step 2:By means of Step 1,~III.9! holds forw5w0 andc5c0 which are finite linear combi-

nations of coherent states. Any vector inH2~C, dm\! is a norm limit of such elements. Observ
also that the time average of an operator obeys the following inequality:

i^S&Mi<iSi . ~III.10!

This leads to the inequality

u„w,^T\~ f z!&Mc…u<u„w0 ,^T\~ f z!&Mc0…u1iT\~ f z!i

3~ iw2w0iic0i1iw0iic2c0i1iw2w0iic2c0i !,

which yields~III.9!.
Step 3:As a consequence of Step 2,~III.8! holds for anyA5A0 :5T\( f ), wheref is a finite

linear combination of simple harmonics. Any element ofU\ is a norm limit of such operators
Using the continuity oft\ and ~III.10! we obtain the inequality

u~w,^A&Mc!2t\~A!~w,c!u<u~w,^A0&Mc!2t\~A0!~w,c!u12iA2A0iiwiici ,

and our claim follows. h
J. Math. Phys., Vol. 38, No. 1, January 1997
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A simple corollary to the above theorem is the following result. It states that the time av
of a quantum observableT\( f ) ~namely the anti-Wick quantization of the classical observablef !
converges weakly to the ensemble average of the classical observablef .

Corollary III.4: For fPC~T2!, andw,cPH2~C, dm\!,

lim
M→`

„w,^T\~ f !&Mc…5t~ f !~w,c!. ~III.11!

IV. ERGODIC PROPERTIES OF THE QUANTIZED KRONECKER MAP

We turn now to ergodicity of the Kronecker map. In this section, we let^•&M denote the time
average defined by~III.7!, with F replaced byK. First, we prove the ergodic theorem for th
quantized Kronecker dynamics. It states that the time averages of an observable converge
to its ensemble average~this is a somewhat stronger property than Theorem III.3 which invo
weak convergence of time averages!.

Theorem IV.1: ~Ergodicity of the quantized Kronecker map! For APU\ ,

lim
M→`

i^A&M2t\~A!I i50. ~IV.1!

In particular, for fPC~T2!,

lim
m→`

i^T\~ f !&M2t~ f !I i50. ~IV.2!

Proof: Let f5 f z , where f z is given by ~II.19!, with the corresponding Toeplitz operato
T\( f z). Then

KmT\~ f z!K
2m5empA2~zv̄2 z̄ v!T\~ f z!, ~IV.3!

and so

^T\~ f z!&M5
1

M (
0<m<M21

empA2~zv̄2 z̄ v!T\~ f z!.

This is equal to 1 ifz50, while for zÞ0,

i^T\~ f z!&Mi<O~1!iT~ f z!i /M5O~1!/M .

Simple continuity arguments similar to Step 3 in the proof of Theorem III.3 conclude
proof of ~IV.1!. h

True to its classical origins, while the quantum Kronecker map is ergodic, it is not mixi
Theorem IV.2: The quantized Kronecker map is not mixing in the sense of (III.1).
Proof: We construct a counterexample. We takeA to be the Toeplitz operator for the pur

harmonic,A5T\( f z), wherezÞ0, andB5T\( f2z). Then, by means of~IV.3!, ~II.18!, and~III.4!,

ut\~KmAK2mB!2t\~A!t\~B!u5ut\„K
mT\~ f z!K

2mT\~ f2z!…2t~ f z!t~ f2z!u

5ut\~empA2~zw̄2 z̄w!T\~ f z!T\~ f2z!!u51

uniformly in m. Thus the Kronecker map does not satisfy the mixing condition. h
J. Math. Phys., Vol. 38, No. 1, January 1997
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V. THE STRUCTURE OF THE QUANTIZED CAT MAP

A. Notation

The quantization method used in Ref. 7 and in the present paper is convenient to study
properties of the quantized cat dynamics. In this section we establish a connection betwe
quantization method of the cat dynamics to the previous quantization schemes.11,14 In the special
case ofu50 andg of the structure

S odd even

even oddD or S even odd

odd evenD , ~V.1!

which was referred to as ‘‘quantizable’’ in Ref. 11, we reproduce exactly the result of Ref. 1
in these earlier works, we restrict Planck’s constant to satisfy the integrality condition

\51/2pN. ~V.2!

We introduce the following notation:

X:5U~2 i /A2!, Y:5U~1/A2!, ~V.3!

and observe that as a consequence of~II.11!,

@X, Y#50. ~V.4!

The operatorsX andY generate an action of the groupZ2 onH2~C, dm\!. We also verify easily
that,

@X, U#50, @X, V#50,
~V.5!

@Y, U#50, @Y, V#50,

and soX andY are in the commutant ofU\ . Finally, we note that

X5UN, Y5VN. ~V.6!

B. Automorphic forms

We shall call a holomorphic functionf on C a Z2-automorphic formif

Xf~z!5e2p iu1f~z!, Yf~z!5e2p iu2f~z!, ~V.7!

whereu5~u1,u2!PT2. In other words,Z2-automorphic forms are simultaneous generalized eig
vectors ofX andY. LetH\~u! denote the space of allZ2-automorphic forms with fixedu. Clearly,
fPH\~u! is uniquely determined once defined on the fundamental dom
D5[0, 1]3[0, 1],R2. The spaceH\~u! has a natural inner product defined as an integral o
this domain:

~f1 ,f2!5E
D

f1~z!f2~z!dm\~z!. ~V.8!
J. Math. Phys., Vol. 38, No. 1, January 1997
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@Note a similar integral over the entire complex planedoes not converge, hence the
Z2-automorphic forms are not inH2~C, dm\!.# This inner product is aZ2 version of the familiar
Petersson inner product. In the following lemma we construct a natural orthonormal basis f
spaceH\~u!.

Lemma V.1: (i) The following functions are elements ofH\~u!:

fm
~u!~z!5Cm~u!e2Npz212A2p~u11m!z(

kPZ
e2Npk222p~u11 iu21m!k12A2Npkz, ~V.9!

where

Cm~u!:5~2/N!1/4e2p~u11m!2/N22p iu2m/N. ~V.10!

They are periodic in m,

fm1N
~u! 5fm

~u! , ~V.11!

and furthermore,

f0
~u! ,...,fN21

~u! ~V.12!

are orthonormal vectors inH\~u!.
(ii) The spaceH\~u! has dimension N. Consequently, the functions (V.12) form an ortho

mal basis forH\~u!.
Remark:We observe that our basis functions~V.9! can be written in terms of the Jacobiq

functions~see, for example, Ref. 15!:

fm
~u!~z!5Cm~u!e2Npz212A2p~u11m!zq„2 iA2Nz1 i ~u11 iu21m!,iN…,

where

q~v,t!5(
kPZ

eipk
2t12p ikv.

Expressions similar to~V.9! have been used before; see, e.g., Ref. 16, and references there
Proof: ~i! Usual arguments show that~V.9! converges on compact subsets ofC and thus

defines an entire function. It can be readily checked thatXfm
(u)(z) 5 e2p iu1fm

(u)(z), Yfm
(u)(z)

5 e2p iu2fm
(u)(z), and sofm

(u)PH\~u!. The periodicity condition~V.11! can be verified easily.
To show thatfm

(u), 0<m<N21, form an orthonormal set, we compute

~fm
~u! ,fn

~u!!5Cm~u!Cn~u! (
k,lPZ

e2Np~k21 l2!22p~u12 iu2!k22p~u11 iu2!l22p~mk1nl !N

3E
D
e2Npuz1 z̄ u212A2p~u11m1Nk! z̄12A2p~u11n1Nl !z d2z

5Cm~u!Cn~u! (
k,lPZ

e2Np~k21 l2!22p~u12 iu2!k22p~u11 iu2!l22p~mk1nl !N

3E
0

1

e22Npx212p„2u11m1n1N~k1 l !…x dxE
0

1

e22p i „m2n1N~k2 l !…y dy.
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LetmÞn. Since bothm andn are between 0 andN21, the expressionm2n1N(k2 l ) does not
vanish and so (fm

(u) ,fn
(u))50. Letm5n. Then

~fm
~u! ,fm

~u!!5NuCm~u!u2(
kPZ

e22Npk224p~u11m!kE
0

1

e22Npx214p~u11m1Nk! dx

5NuCm~u!u2(
kPZ

E
0

1

e22Np~x2k!214p~u11m!~x2k!

5NuCm~u!u2E
R
e22Npx214p~u11m! dx5NuCm~u!u2~2N!21/2e2p~u11m!2/N51,

and the claim is proved.
~ii ! We proceed in steps.
Step 1:We shall first show thatfPH\~u!, when considered as a function ofz, has exactlyN

zeros inside any fundamental domain. Observe thatfPH\~u! satisfies

f~z21/A2!5e2A2pNz1Np/2p12p iu2f~z!,
~V.13!

f~z1 i /A2!5e2A2pNiz1Np/212p iu1f~z!.

Using the argument principle of elementary complex analysis and~V.13!, we readily see thatf
has preciselyN zeros inside a fundamental domain.

Step 2:For a torus, the Riemann–Roch theorem17 can be stated as follows. For any divisorD,

r ~D21!5degD1 i ~D !. ~V.14!

Recall that a divisorD 5 P1
n1•••Pk

nk is the collection of pointsP1 ,...,Pk on the torus, with integers
n1 ,...,nk assigned to each point. Note that implicitly we assign to all other pointsn50. The
inverseD21 of the divisorD is simplyD21 5 P1

2n1•••Pk
2nk. An example of a divisor is the set o

zeros (nj.0) and poles (nj,0) of a meromorphic functionf . We denote such a divisor by (f ).
Similarly, given a meromorphic one-formv we denote its divisor by~v!. An order relation among
divisors can be defined as follows: forD1 5 P1

n1•••Pk
nk, D2 5 P1

n1•••Pk
mk, D1>D2 , if nj>mj , for

all j . The degree of a divisor degD is defined by degD5( jnj . We set r (D) equal to the
dimension of the vector spaceL(D) of meromorphic functionsf such that (f )>D. Likewise,
i (D) is the dimension of the space of meromorphic one-formsv such that (v)>D.

We now takeD to be the zero divisor off. As a consequence of Step 1, degD5N.
Furthermore,17 for degD.0, i (D)50. Thus we see that

r ~D21!5N. ~V.15!

Step 3:Notice that forfPH\~u! andfm
(u) given by ~V.9!, the quotients,

cm~z!:5fm
~u!~z!/f~z!, ~V.16!

define meromorphic functions on the torus. By means of part (i ) of the theorem, they are linearl
independent. Since by construction (cm)>D21, the result of Step 2 implies that the s
$c0 ,...,cN21% spansL(D21). Suppose now thatf is linearly independent off0 ,...,fN21. It
follows that 1,c0 ,...,cN21 are linearly independent, which contradicts~V.15!. h

Remark:The space*T2
%
H\(u)du is thus the Hilbert space of square integrable sections o

N-dimensional vector bundleQT\
2→T2. The bundleQT\

2 does not admit a global continuou
section and is thus topologically nontrivial.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



l

or

79Klimek et al.: Quantized toral automorphisms

¬¬¬¬¬¬¬¬¬¬
C. Direct integral

In the next lemma, we construct an isomorphism betweenH2~C, dm\! and the direct integra
of the spacesH\~u!. Under this isomorphism, the actions ofU andV are block diagonal. Let
fm P *T2

%
H\(u)du be an~discontinuous inu! element defined byfm(u,z)5fm

(u)(z), 0<u j,1.
Lemma V.2: There is an isomorphism

k:H2~C, dm\!→E
T2

%

H\~u!du, ~V.17!

such that

kUk21fm~u,z!5e2p i ~u11m!/Nfm~u,z!,
~V.18!

kVk21fm~u,z!5e2p iu2 /Nfm11~u,z!.

Proof:We set forwPH2~C, dm\!,

k~w!~u,z!:5 (
m,nPZ2

XmYnw~z!e22p imu122p inu2, ~V.19!

and verify easily thatk~w!~u,•!PH\~u!. Forc P *T2
%
H\(u)du we set

k21~c!~z!:5E
T2

c~u,z!du, ~V.20!

and note thatk21~c!PH2~C, dm\!. We verify thatk andk21 are inverse to each other. Indeed, f
wPH2~C, dm\!,

~k21k~w!!~z!5E
T2

k~w!~u,z!du

5E
T2

(
m,nPZ

XmYnw~z!e22p imu122p inu2 du5w~z!.

Now, letf P *T2
%
H\(u)du. Expanding in a Fourier series, we have

f~u,z!5 (
m,nPZ

f̂m,n~z!e22p imu122p inu2,

wheref̂m,n(z) 5 *T2f(u,z)e
2p imu112p inu2 du. Consequently,

„kk21~f!…~u,z!5 (
m,nPZ

XmYnk21~f!~z!e22p imu122p inu2

5 (
m,nPZ

XmYnE
T2

f~h,z!dh e22p imu122p inu2

5 (
m,nPZ

E
T2

f~h,z!e2p imn112p innh2 dh e22p imu122p inu25f~u,z!,

proving thatk is an isomorphism.
J. Math. Phys., Vol. 38, No. 1, January 1997
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We will prove the first of the identities~V.18! only; the proof of the second one is identica
The calculation goes as follows:

Uk21fm~z!5E
T2
Cm~u!e2Np~ iz/NA221/4N2!2Np~z1 i /NA2!212A2p~u11m!~z1 i /NA2!

3(
kPZ

e2Npk222p~u11 iu21m!k12A2Npk~z1 i /NA2! du

5~2N!21/4E
T2
e2p~u11m!2/N22p iu2m/N2Npz212A2p~u11m!z12p i ~u11m!/N

3(
kPZ

e2Npk222p~u11 iu21m!k12A2Npkz du

5E
T2
e2p i ~u11m!/Nfm~u,z!du.

HencekUk21fm(u,z) 5 e2p i (u11m)/Nfm(u,z). h

D. Matrix elements

We now wish to reformulate the quantum cat dynamics on the direct integral s
*T2

%
H\(u)du. We begin with the following lemma, which demonstrates that the quantum ev

tion operatorF yields a smooth endomorphism of the bundleQT\
2 . Recall thatF is the integral

operator given by~II.12!.
Lemma V.3: ForfPH\~u!,

XFf~z!5e2p i ~g21u1Dg21!1Ff~z!,

YFf~z!5e2p i ~g21u1Dg21!2Ff~z!,

where

Dg5~Nab/2,Ncd/2!. ~V.21!

Consequently, F maps unitarilyH\~u! ontoH\(g
21u 1 Dg21).

Proof: Using ~II.12!, ~V.3!, and~II.9!, we compute

XFf~z!5uau21/2e2pN~ iz/A221/4!1pNb̄ ~z1 i /A2!2/aNE
C
e2pNw̄~z1 i /A2!/a1pNbw̄2/a22pNuwu2f~w!d2w.

Making the change of variablesw85w2221/2(b1 id) and usingXf(z) 5 e2p iu1f(z) and
Yf(z) 5 e2p iu2f(z) we may reduce this, after some straightforward algebra, to

XFf~z!5e2 ipNbd12p i ~u1d2u2b!Ff~z!

5e2p i ~g21u1Dg21!1Ff~z!.

Similarly,

YFf~z!5e2p i ~g21u1Dg21!2Ff~z!,

and the lemma is thus proved. h
J. Math. Phys., Vol. 38, No. 1, January 1997
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An equivalent way of stating the above lemma is in the form of the following commuta
relations:

F21XF5e2p i ~Dg21!1XdY2b,
~V.22!

F21YF5e2p i ~Dg21!2X2cYa.

Theorem V.4: (i) Under the isomorphismk, the action of the evolution operator F is given b

kFk21f~u,z!5Ff~gu1Dg ,z!, ~V.23!

with the understanding that, on the right-hand side of this equation, F acts on the z variab.
(ii) The matrix elements of the operator F,

~fm
~ ũ ! ,Ffn

~u!!5E
D

fm
~ ũ !~z!Ffn

~u!~z!dm\~z!, ~V.24!

where

ũ5g21u1Dg21,

are explicitly given by

~fm
~ ũ ! ,Ffn

~u!!5~Nb!21/2 expS in2 Dexp2p i

N
~mũ22nu2!

3 (
0<r<ubu21

exp~22p ir u2!exp
ip

Nb
Fg~m1 ũ1 ,n1Nr1u1!, ~V.25!

whereexp(in)52 ia/uau, and where

Fg~x,y!5ax222xy1dy2. ~V.26!

Proof: Part (i ) of the theorem is a straightforward consequence of the previous lemma
we leave the details to the reader.

To prove part~ii !, we note first the following fact. IfA,B,C,D,EPC are such that ReA.0,
and ~ReA!2.~ReB1ReC!21~Im B2Im C!2, then

E
C
exp~2Auwu21Bw21Cw̄21Dw1Ew̄!dwdw̄

5
2p

AA224BC
exp

~D1E!2~A224BC!2„A~D2E!12~EB2CD!…2

4~A2B2C!~A224BC!
. ~V.27!

Let em
(u)(z) be the following function:

em
~u!~z!5Cm~u!e2Npz212A2p~u11m!z. ~V.28!

Note that

Xem
~u!~z!5e2p iu1em

~u!~z!, ~V.29!

and
J. Math. Phys., Vol. 38, No. 1, January 1997
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Ykem
~u!~z!5e2p iku2em

~u!~z!e2Npk212A2pNkz22p~u11 iu21m!k. ~V.30!

As a consequence of~V.30!,

fm
~u!5(

k
~e22p iu2Y!kem

~u! , ~V.31!

an identity which we will find useful later. As a consequence of~V.27!, for any rPZ,

E
C
em

~ ũ !~z!FYren
~u!~z!dm\~z!5~Nb!21/2 expS in2 Dexp2p i

N
~mũ12nu1!exp

ip

Nb
„a~m1 ũ1!

2

22~m1 ũ1!~n1Nr1u1!1d~n1Nr1u1!
2
…. ~V.32!

Consider now the sum:

(
0<r<ubu21

e22p ir u2E
C
em

~ ũ !~z!FYren
~u!~z!dm\~z!

5 (
0<r<ubu21

e22p ir u2(
k,l

E
D
XkYlem

~ ũ !~z!XkYlFYren
~u!~z!dm\~z!.

Using the commutation relations~V.22! as well as~V.29! and ~V.31!, we can rewrite it as

(
0<r<ubu21

e22p ir u2(
k,l

e2p i „2k ũ11~dk2cl !u11k~Dg21!11 l ~Dg21!2…

3E
D
Ylem

~ ũ !~z!FY2bk1al1ren
~u!~z!dm\~z!

5 (
0<r<ubu21

(
k,l

E
D

~e22p i ũ2Y! lem
~ ũ !~z!F~e22p iu2Y!2bk1al1ren

~u!~z!dm\~z!

5(
k,l

E
D

~e22p i ũ2Y! lem
~ ũ !~z!F~e22p iu2Y!ken

~u!~z!dm\~z!

5E
D

fm
~ ũ !~z!Ffn

~u!~z!dm\~z!,

which, together with~V.32! proves the theorem. h

The sum in~V.25! is a generalized Gauss sum which, for the case ofg of the form~V.1! and
u50, reduces to the Gauss sum studied in Ref. 11.

VI. THE STRUCTURE OF THE QUANTIZED KRONECKER MAP

Using the isomorphism we introduced in the previous section, we construct here the qua
Kronecker dynamics on*T2

%
H\(u) du. In analogy with Theorem V.4, we have the followin

result.
Theorem VI.1: (i) Under the isomorphismk, the action of the evolution operator K is give

by

kKk21f~u,z!5U~2v!f~u1Nv,z!, ~VI.1!
J. Math. Phys., Vol. 38, No. 1, January 1997
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where U(2v) acts on the z variable.
(ii) The matrix elements of the evolution operator K,

~fm
~ ũ ! ,Kfn

~u!!5E
D

fm
~ ũ !~z!Kfn

~u!~z!dm\~z!,

where

ũ5u2Nv,

are explicitly given by

~fm
~ ũ ! ,Kfn

~u!!5exp„2p iv2~u12Nv1/2!…dmn . ~VI.2!

Proof: The proof of~i! follows by a simple calculation involving Fourier series. To prove~ii !,
we verify by an explicit computation that

Kfm
~u!5e2 iNpv1v212p iv2u1fm

~u2Nv! . h
~VI.3!
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Displacement-operator squeezed states. I. Time-dependent
systems having isomorphic symmetry algebras
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In this paper we use the Lie algebra of space-time symmetries to construct states
which are solutions to the time-dependent Schro¨dinger equation for systems with
potentialsV(x,t)5g(2)(t)x21g(1)(t)x1g(0)(t). We describe a set of number-
operator eigenstates states,$Cn(x,t)%, that form a complete set of states but which,
however, are usually not energy eigenstates. From the extremal state,C0 , and a
displacement squeeze operator derived using the Lie symmetries, we construct
squeezed states and compute expectation values for position and momentum as a
function of time,t. We prove a general expression for the uncertainty relation for
position and momentum in terms of the squeezing parameters. Specific examples,
all corresponding to choices ofV(x,t) and having isomorphic Lie algebras, will be
dealt with in the following paper~II !. © 1997 American Institute of Physics.
@S0022-2488~97!02201-9#

I. INTRODUCTION

Recently,1 we have described the unsolved problem of how to define, for all systems, g
alized squeezed states by the displacement-operator method. As a means to further elucid
problem, we here undertake a study of systems where there is a Bogoliubov transform
allowing displacement-operator squeezed states to be defined. These states can then be r
the ladder-operator squeezed states by this Bogoliubov transformation.

Specifically, we will discuss time-dependent systems which have isomorphic symmetry
bras. The isomorphism in the space-time symmetry algebras guarantees the existence of t
mations which transform the time-dependent Schro¨dinger equation for all of these problems into
‘‘time-independent’’ Schro¨dinger equation for a one-dimensional harmonic oscillator. The p
ence of such a transformation means that the Bogoliubov transformation, discussed in Re
1, exists and the displacement-operator squeezed states occur.

In the following paper~II ! we explicitly construct squeezed states for special cases:
~well-known! harmonic oscillator, the free particle, the linear potential, the harmonic oscil
with a uniform driving force, and the repulsive oscillator.

In nonrelativistic quantum mechanics, time-dependent systems in one spatial dimensi
be described by solutions to the time-dependent Schro¨dinger equation

S 1C~x,t!50, ~1!

where the Schro¨dinger operator,S 1 , is

S 15]xx12i ]t22V~x,t!. ~2!

a!Electronic mail: mmn@pion.lanl.gov
b!Electronic mail: truax@acs.ucalgary.ca
0022-2488/97/38(1)/84/14/$10.00
84 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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The interaction,V(x,t), that we will consider here has the form

V~x,t!5g~2!~t !x21g~1!~t !x1g~0!~t !, ~3!

where the coefficients,g( j )(t), j51,2,3, are differentiable and piecewise continuous, but oth
wise arbitrary. We denote the solution space of Eq.~1! by F S1

.
There are several common problems subsumed by the potentialV(x,t) in Eq. ~3!. We will

discuss these individual cases in paper II. However, as we will be able to see in Section II,
these problems have isomorphic space-time symmetry algebras.2–4 We will exploit this fact to
algebraically calculate, in Section III, states of the number operator for all such isomo
systems.

These solution spaces are analogues of the number-operator states of the harmonic os3

and, in the case of the harmonic oscillator, they are indeed the usual number-operator st
addition, for the harmonic oscillator they also correspond to the energy eigenstates. Howe
general, for other potentials this will not be the case. Nevertheless, these solution spaces
utilized in the calculation of properties of both coherent states4 and squeezed states, for the gene
time-dependent potential~3! and also for the specific cases we will come to in paper II.

Coherent5–7 and squeezed states8–12 have received considerable attention in the literature
number of contexts. In Section IV, we examine definitions of squeezed states in the light
results of the Lie symmetry analysis of Section II. In Section V, we calculate expectation v
for position and momentum. We go on, in the next section, to obtain the uncertainties in po
and momentum, and the uncertainty relation whenV(x,t) is given by Eq.~3!.

II. SYMMETRY

The generators of space-time symmetries have the general form,2,3

L5A~x,t!]t1B~x,t!]x1C~x,t!. ~4!

ForL to be a symmetry of Eq.~1!, thenLC(x,t) must be a solution of Eq.~1! if C(x,t) is a
solution. For this to be true,L must satisfy the equation13

@S 1 ,L#5l~x,t!S 1 , ~5!

wherel is an as yet undetermined function ofx andt. The set of all suchL form a Lie algebra,
and the space-time Lie symmetry group is obtained accordingly.14

The Lie group of space-time symmetries and its corresponding Lie algebra have
identified2,3 for systems with the interaction~3!. The maximal, complex kinematical algebra is
(1,1)Lw1

c . The generators of the space-time symmetries have the general form

J25j]x2 ix j̇1 iC , ~6!

J15 j̄]x2 ix j̄
˙

1 i C̄ , ~7!

I51, ~8!

M25 i Ff1]t1S 12ḟ1x1E1D ]x2
i

4
f̈1x

22 ixĖ11
1

4
ḟ11 iD11 ig0f1G , ~9!

M15 i Ff2]t1S 12ḟ2x1E2D ]x2
i

4
f̈2x

22 ixĖ21
1

4
ḟ21 iD21 ig0f2G , ~10!
J. Math. Phys., Vol. 38, No. 1, January 1997
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M35 i Ff3]t1S 12ḟ3x1E3D ]x2
i

4
f̈3x

22 ixĖ31
1

4
ḟ31 iD31 ig0f3G . ~11!

The functionj of t and its complex conjugatej̄ are constructed from two real solutions,x1 and
x2 , of the differential equation

ä12g~2!~t !a50. ~12!

We choose the Wronskian,W(x1 ,x2)5x1ẋ22ẋ1x251. The complex solutions of Eq.~12! are
then,

j~t!5
1

A2
~x11 ix2!, ~13!

and its complex conjugate,j̄. Their Wronskian is

W~j,j̄ !5jj̄
˙

2j
˙
j̄52 i . ~14!

We now define the remaining auxiliaryt-dependent functions. To begin,

C ~t!5E t

drj~r!g~1!~r!5c~t!1C o, ~15!

whereC o is a complex integration constant and the functionc(t) is defined as

c~t!5E
to

t

drj~r!g~1!~r!. ~16!

We shall taketo50 from this point onward and in paper II. In addition, we have

f1~t!5j2, f2~t!5 j̄2, f3~t!52jj̄, ~17!

E1~t!52j~ iQ1,21C !, E2~t!5 j̄~ iQ2,12C̄ !,
~18!

E3~t!5j~ iQ2,12C̄ !2 j̄~ iQ1,21C !,

D1~t!52 1
2 ~ iQ1,21C !2, D2~t!52 1

2 ~ iQ2,12C̄ !2,
~19!

D3~t!5~ iQ1,21C !~ iQ2,12C̄ !,

where

Q1,25
1
2 jof3

og~1!~0!2q1,21 iC o,
~20!

Q2,15
1
2 j̄of3

og~1!~0!2q2,11 i C̄ o,

andq1,2 andq2,1 are complex integration constants15 such thatq̄1,25q2,1 and Q̄1,25Q2,1.
Two integration constants appear in each of the equations~20!. Without loss of generality, we

can chooseq1,2 such thatQ1,250, and similarly, we selectq2,1 such thatQ2,150. The choices for
the remaining integration constants,C o and C̄ o, will be dictated by the physics of each ind
vidual system. Therefore, using Eqs.~17! through~19!, we shall drop all references toQ1,2 and
Q2,1. In addition, we define
J. Math. Phys., Vol. 38, No. 1, January 1997
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jo5j~0!, j̄o5 j̄~0!, f3
o5f3~0!,

~21!

j̇o5 j̇~0!, j̄
˙o5 j̄

˙
~0!, ḟ3

o5ḟ3~0!.

Note thatf3
o is a real number sincef3 is a real function oft.

In the general case, calculations of expectation values are much simpler in terms
complex algebra and the complex functions in Eqs.~13! and ~15! through~19!. However, when
working with actual examples, the real functionsx1 , x2 , and the real counterparts of Eqs.~13!
and ~15! are more advantageous. In this paper, we shall use the complex functions. But in
II, where we work with specific cases, we will transform all equations to expressions in term
real functions.

The operators in Eqs.~6! through~11! satisfy the following~nonzero! commutation relations:

@J2 ,J1#5I , ~22!

@M1 ,M2#52M3 , @M3 ,M6#562M6 , ~23!

@M3 ,J2#52J2 , @M3 ,J1#51J1 , ~24!

@M2 ,J1#52J2 , @M1 ,J2#51J1 . ~25!

A number of formulae relating thet-dependent functions in Eqs.~15! through~19! are proven in
the Appendix. They are useful in establishing the commutation relations~23! to ~25! as well as Eq.
~26! below.

With these commutation relations, we see that the generatorsJ6 and I form a complexified
Heisenberg–Weyl algebra,w1

c , and the operatorsM3 andM6 close under su~1,1!. Therefore,
we have the Schro¨dinger algebra in one spatial dimension:

~S A!1
c5su~1,1!Lw1

c .

In the following section, we will restrict our analysis to a Lie subalgebra of (S A)1
c consisting

of the operatorsM3 , J6 , and I . From the commutation relations in Eqs.~22! and ~24!, we
recognize that these operators form a one-dimensional oscillator algebra, os~1!. It should be noted
that the operatorJ1 is the Hermitian conjugate ofJ2 . Also, I is clearly Hermitian. Lastly, the
following identity can be demonstrated:

M35
1
2 f3S 11J1J21 1

2 . ~26!

This will prove useful in calculating the Casimir operator for os~1!.

III. EIGENSTATES OF THE NUMBER OPERATOR

Now we select the operators$M3 ,J6 ,I % which satisfy the commutation relations

@M3 ,J6#56J6 , @J2 ,J1#5I . ~27!

As mentioned above, we refer to this subalgebra of (S A)1
c as the oscillator subalgebra and deno

it by os~1!. It has the Casimir operator

C5J1J22M352 1
2 f3S 12

1
2 , ~28!

which commutes with all the generators in os~1!. The second equality in Eq.~28! follows from Eq.
~26!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The fact that all the operators in (S A)1
c are constants of the motion onF S1

follows from Eq.
~5!.3 We select two commuting constants of the motion,C andM3 , and obtain a set of commo
eigenvectors. Also, we require that these eigenvectors satisfy the time-dependent Schr¨dinger
equation~1! with potential~3!. TheJ6 act as ladder operators on the eigenvalues ofM3 . There
are three classes of irreducible representations of os~1!.16 We are only interested in the represe
tation in which the spectrum ofM3 , Sp(M3), is bounded below. Therefore, we have t
following:3

M3um&5~m1 1
2!um&, Cum&52 1

2 um&, ~29!

J1um&5Am11um11&, J2um&5Amum21&. ~30!

The condition that the spectrum ofM3 , Sp(M3), be bounded below is that

J2u0&50, ~31!

which defines the extremal state for this representation space.
The statesCm are called number-operator states because they are eigenfunctions of the

ber operatorJ1J2 , where

J1J2um&5~C1M3!um&5mum&. ~32!

~Note that we go back and forth betweenCm and the Dirac–Fock notationum&). It is important to
keep in mind that the generators of os~1! may involve an explicit time dependence. Furthermo
the eigenstates ofM3 are solutions to the time-dependent Schro¨dinger equation and are no
eigenstates of the Hamiltonian except, as we shall see, in the case of the harmonic os
Therefore, the number-operator states are not generally energy eigenstates. However,
provide a convenient, complete basis for our purposes.4

From Eqs.~29! and~31!, we can calculate the specific form of the wave functions. From
first equation in~29!, we obtain a first-order partial differential equation forCm which can be
integrated by the method of characteristics.2,15,17This method leads toR-separation of variables13

and yields

Cm~x,t!5exp$ iR~x,t!%cm~z!Jm~h!, ~33!

where theR-factor is

R~x,t!5
1

4

x2

f3
~ḟ32ḟ3

o!1
x

f3
1/2S E3

f3
1/22

E3
o

~f3
o!1/2

1
1

2
B3f3

oD , ~34!

and theR-separable coordinates are

z5
x

f3
1/22B3 , h5t. ~35!

Theh-dependent function,Jm , is

Jm~h!5S f3
o

f3
D 1/4S joj̄~h!

j̄oj~h!
D 1/2~m11/2!

exp@2 i ~L3~h!1G~0!~h!!#, ~36!

whereE 3
o5E3(0) from Eq. ~18! is a real constant. The real numberf3

o is given in Eq.~21!.
Furthermore,B3(t) is defined by the first equality
J. Math. Phys., Vol. 38, No. 1, January 1997
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B3~t!5E
0

t

ds
E3~s!

f3
3/2~s!

5b3~t!2b3~0!, ~37!

where

b3~t!5
1

f3
1/2@ i ~jC̄2 j̄C !#, ~38!

is a real function oft. See the Appendix~formula I! for a proof of the second equality in Eq.~37!.
In addition, we define

G~0!~t !5E
0

t

dsg~0!~s!, ~39!

and

L3~t!5E
0

t

dsS E3
2~s!

f3
2~s!

1
D3~s!

f3~s! D 2B3S E3
o

~f3
o!1/2

1
1

4
B3

2ḟ3
oD . ~40!

Applying J2 to C0 from Eq. ~33! produces a first-order ordinary differential equation inz
for c0 . Solving this equation leads to a normalized extremal-state wave function of the for

C0~x,t!5S 1

pf3
oD 1/4 exp~2b3

2~0!/2! exp$ iR%exp@2~12 iu1!z
21~b3~0!1 iu2!z#

3S f3
o

f3
D 1/4S joj̄~h!

j̄oj~h!
D 1/4 exp@2 i ~L3~h!1G~0!~h!!#, ~41!

where

u15
1

2
ḟ3
o , u25

E3
o

~f3
o!1/2

. ~42!

The wave function for the state with quantum numberm has the form

Cm~x,t!5S 1

m! D
1/2S 12D

m/2S j̄o

jo
D 1/4 exp$ iR~x,t!%cm~z!S f3

o

f3
D 1/4S j̄

j
D 1/2~m11/2!

3exp@2 i ~L3~h!1G~0!~h!!#, ~43!

where

cm~z!5Hm~z2b3~0!!S 1

pf3
oD 1/4 expF2

1

2
~12 iu1!z

21~b3~to!1 iu2!zG ~44!

andHm(z2b3(0)) is Hermite polynomial given by the Rodrigues formula

Hm~z2b3~0!!5~2 !m exp@z222b3~0!z#]z
m exp@2z21b3~0!z#. ~45!
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
IV. COHERENT AND SQUEEZED STATES

In notation modified for the present problem, we review the general formalism
displacement-operator states.

A. Coherent states

The displacement-operator coherent states,18,19Ca , for the systems described by the Schr¨-
dinger equations~2! and ~3!, are defined by

ua&5D~a!u0&, ~46!

wherea is a complex number and the displacement operator

D~a!5exp~aJ12āJ2!, ~47!

is unitary. The stateC0 is the extremal state~41! in the number-operator basis, discussed in
previous section. Computationally, a more convenient form for the displacement operator is
by the expression

D~a!5exp~2 1
2uau2!exp~aJ1!exp~2āJ2!. ~48!

B. Squeezed states

The generalized squeezed stateua,z& can be obtained from

ua,z&5D~a!S~z!u0&, ~49!

wherez is a complex parameter andS(z), the squeeze operator, is

S~z!5exp~zK12 z̄K2!. ~50!

The stateu0& is the extremal number-operator state~41!. The operatorsK6 andK 3 are

K25 1
2J2

2 , K15 1
2J1

2 , K 35J1J21 1
2 . ~51!

These three operators satisfy an su~1,1! Lie algebra with commutation relations

@K1 ,K2#52K 3 , @K 3 ,K6#56K6 . ~52!

Notice the difference between the definition ofK0 in Reference 1 and the operator,K 3 , defined
above. We have

K 352K0 , K65K6 . ~53!

This difference is reflected in the commutation relations above but does not affect the rem
calculations in any way. The operatorsK2 , K1 , andK 3 have the important properties

~K2!†5K1 , ~K1!†5K2 , ~K 3!
†5K 3 , ~54!

that is, the operatorsK2 andK1 are Hermitian conjugates whileK 3 is Hermitian. Therefore,
the squeeze operatorS(z) is unitary.

The commutation relations of theK6 andK 3 with J6 are

@K2 ,J2#50, @K1 ,J2#52J1 , @K 3 ,J2#52J2 ,
~55!

@K2 ,J1#5J2 , @K1 ,J1#50, @K 3 ,J1#51J1 .
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
We can expressS(z) more conveniently through the Baker–Campbell–Hausdorff9,20 rela-
tions as

S~z!5exp~g1K1!exp~g3K 3!exp~g2K2!, ~56!

whereg2 , g1 , andg3 are analytic functions ofz and z̄

g252
z̄

uzu
tanhuzu, g15

z

uzu
tanhuzu,

~57!
g352 ln~coshuzu!.

The analytical mappingsg6 andg3 are referred to as canonical coordinates of the second k
Most of our calculations will be carried out with canonical coordinates of the second kind.

A definition of squeezed states that is different than Eq.~49! can be given by

uz,a&5S~z!D~a!u0&. ~58!

We refer to the squeezed state in Eq.~49! as the (a,z)-representation and to that in Eq.~58! as the
(z,a)-representation. The order of the parametersz anda indicates the order the two operato
S(z) andD(a) have been applied to the extremal state.

Although explicit knowledge of the squeezed-state wave functions is not necessary for
putation of expectation values of functions of position and momentum, it is often importa
have some representation for them. One approach is to write them as expansions in te
eigenstates of the number operator. According to Eq.~41!, the extremal state is a Gaussia
function. Starting with the definition~49! and the operators~48! for D(a) and~56! for S(z), we
have

ua,z&5e21/2 uau2eaJ1e2 āJ2eg1K1eg3K3eg2K2u0&. ~59!

Given Eq.~31!, the definition~51!, and the fact thatK 3u0&5(1/2)u0&, we obtain

ua,z&5e1/2~g32uau2!eaJ1e2 āJ2eg1K1u0&. ~60!

Next, using the relationship

e2 āJ2eg1K15e~g1K12g1āJ1!e2 āJ2, ~61!

and since@K1 ,J1#50, we find that

ua,z&5e1/2~g32uau2!eg1K1e~a2g1ā !J1u0&. ~62!

Expanding the exponentials about the identity, noting Eq.~30!, and using
um&5A(1/m!)J1

mu0&, we get double summations in terms of the odd and even eigenstates

ua,z&5e1/2~g32uau2!H (
m50

` F (
n50

m A~2m!!

~2n!!

~a2g1ā !2ng1
m2n

2m2n~m2n!! G u2m&

1 (
m50

` F (
n50

m A~2m11!!

~2n11!!

~a2g1ā !2n11g1
m2n

2m2n~m2n!! G u2m11&J , ~63!

whereg6 and g3 are given by Eq.~57!. We can derive an expression foruz,a& in a similar
manner, obtaining
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uz,a&5e1/2~g31a2g22uau2!3H (
m50

` F (
n50

m A~2m!!

~2n!!

a2ne2ng3g1
m2n

2m2n~m2n!! G u2m&

1 (
m50

` F (
n50

m A~2m11!!

~2n11!!

a2n11e~2n11!g3g1
m2n

2m2n~m2n!! G u2m11&J . ~64!

We shall compare expectation values for the two representations of squeezed states in t
section.

V. EXPECTATION VALUES FOR SQUEEZED STATES

In this section we calculate the expectation values of position and momentum in bo
(a,z)- and the (z,a)-representations for potentials of the type~3!, where we now use the defini
tions

a5uaueid, z5reiu, r5uzu. ~65!

We will derive the phase-space trajectories for systems with the general potential~3!.
Note that

x5 j̄J21jJ11 i ~jC̄2 j̄C !, ~66!

p5 j̄
˙
J21 j̇J11 i ~ j̇C̄2 j̄

˙
C !. ~67!

The proof of Eqs.~66! and~67! is easily demonstrated. We need only the Wronskian~14! and the
definitions~6! of J2 and ~7! of J1 . We see that

j̄J21jJ15x2 i ~jC̄2 j̄C !,
~68!

j̄
˙
J21 j̇J152 i ]x2 i ~ j̇C̄2 j̄

˙
C !.

By rearranging Eqs.~68!, we obtain Eqs.~66! and ~67!.
We compute the expectation values in both the (a,z)- and (z,a)-representations. LetO be an

operator. Then, we have the expectation value^O & of O in each of the representations

^O &~a,z!5^a,zuO ua,z&,5^0uS21~z!D21~a!OD~a!S~z!u0&, ~69!

^O &~z,a!5^z,auO uz,a&.5^0uD21~a!S21~z!OS~z!D~a!u0&. ~70!

For position and momentum operators in the (a,z)-representation, we have

S21~z!D21~a!xD~a!S~z!5X2~t!J21X1~t!J11X0~t!I , ~71!

S21~z!D21~a!pD~a!S~z!5Ẋ2~t!J21Ẋ1~t!J11Ẋ0~t!I , ~72!

where we define the coefficients

X2~t!5 j̄~eg32g2g1e
2g3!2jg2e

2g35 j̄ coshr1j
z̄

r
sinh r5 j̄ coshr1je2 iu sinh r ,

~73!
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¬¬¬¬¬¬¬¬¬¬
X1~t!5je2g31 j̄g1e
2g35j coshr1 j̄

z

r
sinh r5j coshr1 j̄eiu sinh r , ~74!

X0~t!5aj̄1āj1 i ~jC̄2 j̄C !5uau@eidj̄1e2 idj#1 i ~jC̄2 j̄C !, ~75!

and we have used Eqs.~57! and ~65!. In the (z,a)-representation, we find that

D21~a!S21~z!x~t!S~z!D~a!5X2~t!J21X1~t!J11Y0~t!I , ~76!

D21~a!S21~z!p~t!S~z!D~a!5Ẋ2~t!J21Ẋ1~t!J11Ẏ0~t!I , ~77!

where the coefficientY0(t) is

Y0~t!5aX21āX11 i ~jC̄2 j̄C !

5~aj̄1āj!coshr1
~a z̄j1āzj̄ !

r
sinh r1 i ~jC̄2 j̄C !

5uau@~ j̄eid1je2 id!coshr1~ j̄ei ~u2d!1je2 i ~u2d!!sinh r #1 i ~jC̄2 j̄C !, ~78!

and we have used Eq.~65! in the last identity.
Since we havê0uJ2u0&5^0uJ1u0&50, we find that the expectation value for position in t

(a,z)-representation is

^x~t!&~a,z!5X0 , ~79!

whereX0 is given by Eq.~75!. The expectation value for momentum in this representation is

^p~t!&~a,z!5Ẋ05aj̄
˙

1āj
˙
1 i ~ j̇C̄2 j̄

˙
C !5uau@eidj̄

˙
1e2 idj̇ #1 i ~ j̇C̄2 j̄

˙
C !. ~80!

At time t50, let xo andpo be the initial position and momentum, respectively. Then, we ha

^x~0!&~a,z!5xo5aj̄o1ājo1 i ~joC̄ o2 j̄oC o!,
~81!

^p~0!&~a,z!5po5aj̄
˙o1ā j̇o1 i ~ j̇oC̄ o2 j̄

˙
C o!.

By making use of the Wronskian att5to ,

a5 i ~poj
o2xoj̇

o!1 iC o. ~82!

Substituting fora and ā in Eqs.~79! and ~80!, we get the general expressions

^x~t!&~a,z!5 i $@ j̄~t!jo2j~t!j̄o#po1@j~t!j̄
˙o2 j̄~t !j̇o#xo%1 i ~j~t!c̄~t!2 j̄~t !c~t!!, ~83!

^p~t!&~a,z!5 i $@ j̄
˙
~t!jo2 j̇~t !j̄o#po1@ j̇~t!j̄

˙o2 j̄
˙
~t!j̇o#%1 i ~ j̇~t!c̄~t!2 j̄

˙
~t!c~t!!, ~84!

wherec(t) is defined by Eq.~16!.
The expectation values in the (z,a)-representation are calculated in a similar way. For po

tion, we have

^x~t!&~z,a!5Y0 , ~85!
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whereY0 is given in Eq.~78!. For momentum, we obtain

^p~t!&~z,a!5Ẏ0 ~86!

5~aj̄
˙

1ā j̇ !coshr1
a z̄j̇1āzj̄

˙

r
sinh r1 i ~ j̇C̄2 j̄

˙
C !

5uau@~eidj̄
˙

1e2 idj̇ !coshr1~ei ~d2u!j̇1e2 i ~d2u!j̄
˙
!sinh r #1 i ~ j̇C̄2 j̄

˙
C !.

~87!

From the initial conditions, we get the relationships

uau@eid coshr1e2 i ~d2u! sinh r #5 i ~poj
o2xoj̇

o!1 iC o, ~88!

and its complex conjugate. When these equations are substituted into Eqs.~85! and~87!, we obtain
results which are identical to Eqs.~83! and ~84!, respectively, in the (a,z)-representation. Since
the expectation values of position and momentum are identical in both the (z,a)- and
(a,z)-representations, when we write the expectation values of position and momentum in
of the initial position and momentum, we will now drop the representation labels in Eqs.~83! and
~84!.

VI. UNCERTAINTY PRODUCTS FOR SQUEEZED STATES

Next we want to evaluate Heisenberg uncertainty product, (Dx)(Dp), where

~Dx!25^x2~t!&2^x~t!&2, ~Dp!25^p2~t!&2^p~t!&2. ~89!

In the (a,z)-representation the uncertainty in position~89! can be calculated using Eqs.~66! and
~79!:

~Dx!~a,z!
2 5X1X21X0

22X0
25X1X2 , ~90!

whereX2 andX1 are given by Eqs.~73! and ~74!, respectively. In the (z,a)-representation we
find the same result, since

~Dx!~z,a!
2 5X1X21Y0

22Y0
25X1X2 , ~91!

where we have employed Eq.~85!. Because Eqs.~90! and ~91! are identical, we simply write

~Dx!25X1X2 ~92!

5jj̄ cosh 2r1 1
2 ~ j̄2eiu1j2e2 iu!sinh 2r , ~93!

where we have made use of Eqs.~73! and~74!. Similarly, we find that the uncertainty in momen
tum is independent of the representation, and we obtain

~Dp!25Ẋ1Ẋ2 , ~94!

5 j̇ j̄
˙
cosh 2r1 1

2 ~ j̄
˙2eiu1 j̇2e2 iu!sinh 2r .

~95!

Therefore, in either representation, the uncertainty relation in position and momentum is

~Dx!2~Dp!25X1X2Ẋ1Ẋ2 . ~96!
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¬¬¬¬¬¬¬¬¬¬
Substituting forX2 andX1 , we have

~Dx!2~Dp!25jj̄j̇ j̄
˙
cosh2 2r1 1

4 ~ j̄ 2eiu1j2e2 iu!~ j̄
˙2eiu1 j̇2e2 iu!

3sinh2 2r2 1
2 @ j̄ j̄
˙
~jj̄
˙

1 j̇ j̄ !eiu1jj̇~jj̄
˙

1 j̇ j̄ !e2 iu#cosh 2r sinh 2r , ~97!

in terms of the complex functions.
Finally, replacingj and j̄ by Eq.~13!, we obtain an expression for the uncertainty produc

terms of the real functions,x1 andx2 . This result,

~Dx!2~Dp!25 1
4@11~x1ẋ11x2ẋ2!

2#1 1
8 $@113~x1ẋ11x2ẋ2!

2#1@~x1ẋ12x2ẋ2!
2

2~x1ẋ21ẋ1x2!
2#cos 2u12~x1ẋ12x2ẋ2!~x1ẋ21ẋ1x2!sin 2u%sinh2 2r

2 1
4 ~x1ẋ11x2ẋ2!@~x1ẋ12x2ẋ2!cosu1~x1ẋ21ẋ1x2!sin u#sinh 4r , ~98!

is more revealing and prepares us for paper II.~Notice that whenz50, then expression~97! or
~98! reduces to the usual uncertainty product for coherent states.4!
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APPENDIX: PROOFS OF SELECTED IDENTITIES

In this Appendix, we prove four formulae which interrelate time-dependent auxiliary f
tions. We refer the reader to Section II for the definitions of the special functions required
proofs. The first three formulas are helpful for calculating the commutation relations of Eqs~23!
to ~26!. Formula IV derives Eq.~37!.

Formula I.

1

2
ḟ3b3~t!1

E3

f3
1/25 if3

1/2~ j̇C̄2 j̄
˙
C !. ~A1!

Proof: Using the definitions off3 andb3 , we have

1

2
ḟ3b31

E3

f3
1/25

1

2
ḟ3b31f3ḃ3 . ~A2!

From Eq.~A11!, we see that

ḃ352
1

2

f3

f3
b31

i

f3
1/2. ~A3!

Multiplying by f3 and rearranging, we obtain

1

2
ḟ3b31f3ḃ35

i

f3
1/2, ~A4!

and we are done.
Formula II.
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f̈3

f3
2
1

2

ḟ3
2

f3
2 524g21

2

f3
2 . ~A5!

Proof: Substituting forf3 , we obtain

f̈3

f3
2
1

2

ḟ3
2

f3
2 52

~ j̈ j̄12j̇ j̄
˙
!

f3
22

~ j̇ j̄1jj̄
˙
!2

f3
2 ~A6!

5
28g2jj̄

f3
14

j̇ j̄
˙

f3
22

~ j̇ j̄1jj̄
˙
!2

f3
2 , ~A7!

524g222
~jj̄
˙

2 j̇ j̄ !2

f3
2 . ~A8!

To obtain Eq.~A7! from Eq. ~A6!, we used the differential equation~12! for the solutionsj and
j̄. Then using the Wronskian~14! in Eq. ~A8!, we get~A5!.

Formula III.

2
Ė3

f3
2

ḟ3E3

f3
2 522g12

2

f3
3/2 b3 . ~A9!

Proof: Substituting the definitions forE3 andf3 , we observe that

2
Ė3

f3
2

ḟ3E3

f3
2 522

~ j̇C̄1 j̄
˙
C12g1jj̄ !

f3
12

~ j̇ j̄1jj̄
˙
!~jC̄1 j̄C !

f3
2

522g12
2

f2
2 @2~jj̄

˙
2 j̇ j̄ !jC̄1~jj̄

˙
2 j̇ j̄ !j̄C #522g12

2i

f3
2 ~jC̄2 j̄C !.

~A10!

When we combine Eq.~A11! with ~A10!, we obtain the desired result.
Formula IV, Eq. ~37!.

B3~t!5b3~t!2b3~0!, ~A11!

where

b3~t!5
i ~jC̄2 j̄C !

f3
1/2 . ~A12!

Proof: Recall that we have chosenQ1,25Q2,150. From the definitions ofE3 andB3 in Eqs.
~18! and ~37!, respectively, we have

B35E
0

t

ds
E3

f3
3/252E

0

t

ds
jC̄

f3
3/22E

0

t

ds
j̄C

f3
3/2. ~A13!

Inserting the Wronskian and the definition off3 yields the result
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B352
i

23/2E0
t

dsC̄ ~s!
j~s!~j~s!j̄

˙
~s!2 j̇~s!j̄~s!!

j~s!3/2j̄3/2
2

i

23/2E0
t

dsC ~s!
j̄~s!~j~s!j̄

˙
~s!2 j̇~s!j̄~s!!

j~s!3/2j̄3/2

5
i

21/2E0
t

dsC̄ ~s!dS j1/2~s!

j̄1/2~s!
D 2

i

21/2E0
t

dsC ~s!dS j̄1/2~s!

j1/2~s! D . ~A14!

Integrating by parts, we have

B3~t!5
i

21/2
C̄ ~s!S j1/2~s!

j̄1/2~s!
D U

0

t

2
i

21/2
C ~s!S j̄1/2~s!

j1/2~s! D U
0

t

5
i

21/2S C̄ ~t!
j1/2~t!

j̄1/2~t!
2C̄ o

~jo!1/2

~ j̄o!1/2
D 2

i

21/2S C ~t!
j̄1/2~t!

j1/2~t!
2C o

~ j̄o!1/2

~jo!1/2D . ~A15!

Rearranging this expression, we get

B3~t!5
i

f3
1/2~j~t!C̄ ~t!2 j̄~t !C ~t!!2

i

~f3
o!1/2

~joC̄ o2 j̄oC o!, ~A16!

which is just Eq.~A11! given the definition ofb3(t) in Eq. ~A12!.
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In this paper, results from the previous paper~I! are applied to calculations of
squeezed states for such well-known systems as the harmonic oscillator, free par-
ticle, linear potential, oscillator with a uniform driving force, and repulsive oscil-
lator. For each example, expressions for the expectation values of position and
momentum are derived in terms of the initial position and momentum, as well as in
the (a,z)- and in the (z,a)-representations described in I. The dependence of the
squeezed-state uncertainty products on the time and on the squeezing parameters is
determined for each system. ©1997 American Institute of Physics.
@S0022-2488~97!02101-4#

I. INTRODUCTION

In paper I, we discussed the general problem of the squeezed states for time-dep
systems in one spatial dimension described by the Schro¨dinger equation

S 1C~x,t!50, ~1!

where the Schro¨dinger operator,S 1 , is

S 15]xx12i ]t22V~x,t!. ~2!

The interaction,V(x,t), that we considered has the form

V~x,t!5g~2!~t !x21g~1!~t !x1g~0!~t !, ~3!

where the coefficients,g( j )(t), are differentiable, piecewise continuous, but otherwise arbitr
The solution space of~1! was denoted byF S1

. We obtained the generalized squeezed states
this system and discussed their properties.

However, there are several common, well-known systems subsumed by the po
V(x,t) in ~3!. Let g be the 3-tupleg5(g(2)(t),g(1)(t),g(0)(t)). Then, for example, when

g5( 12 v2,0,0), we are dealing with the simple harmonic oscillator~HO!. If g5(0,0,0), then we

have a free particle~FP!. For the driven harmonic oscillator~DHO!, we haveg5( 12 v2,g(t),0).
Two other systems of interest are the linear potential~LP!, whereg5(0,g(t),0), and the repulsive

oscillator~RO! for whichg5(2 1
2 V2,0,0). For both LP and DHO, we investigate the specific c

g(t)5k/2, wherek is a real constant. As is clear from I, all of these systems have isomor

a!Electronic mail: mmn@pion.lanl.gov
b!Electronic mail: truax@acs.ucalgary.ca
0022-2488/97/38(1)/98/17/$10.00
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¬¬¬¬¬¬¬¬¬¬
space-time symmetry algebras.1–3 Then, from our general results, we algebraically calculate
lution spaces for all these isomorphic systems and hence obtain their properties.

In Section II, for convenience, we present a resume´ of results from I. The time-dependen
functions and symmetry operators for each of the systems mentioned above are calcul
Section III. Expectation values and uncertainty products for squeezed states for each o
examples are presented and discussed in Section IV. Finally, we summarize and comment
results in Section V.

II. RESUMÉ OF GENERAL RESULTS

The generators of space-time symmetries were given in Eqs.~6! through~11! in I and will not
be repeated here. The specific nature of thet-dependent solutions of the Schro¨dinger equation
were determined in Section III of I. We called these solutions ‘‘number-operator states.’’ Som
the real and complext-dependencies are important here and we repeat their definitions b
Note that the complexified Lie algebra os~1! is useful for computing expectation values for po
tion and momentum operators. However, when dealing with specific examples, we have fo
easier to compute expectation values in terms of realt-dependent functions.

The functionj of t,

j~t!5
1

A2
~x1~t!1 ix2~t!!, ~4!

and its complex conjugate,j̄, are complex solutions of the second order differential equation

ä12g2~t!a50. ~5!

The t-dependent functions,x1 andx2 , are real, linearly independent solutions of Eq.~5!. The
properties of these solutions are given in detail in I and in Refs. 1, 2, and 4.

The remaining auxiliaryt-dependent functions of interest in this paper are

C ~t!5c~t!1C o, ~6!

whereC o is a complex integration constant andc(t) is the definite integral

c~t!5E
0

t

drj~r!g~1!~r! ~7!

and

f1~t!5j2, f2~t!5 j̄2, f3~t!52jj̄, ~8!

The complex functionC can be written4 in terms of real functionsC 1 andC 2

C ~t!5
1

A2
~C 1~t!1 iC 2~t!!, ~9!

where

C n~t!5cn~t!1C n
o ~10!

and
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¬¬¬¬¬¬¬¬¬¬
cn~t!5E
0

t

drxn~r!g~1!~r!, ~11!

for n51,2. The complex integration constantC o and its complex conjugate are related to the r
integration constants,C 1

o andC 2
o by

C o5
1

A2
~C 1

o1 iC 2
o!. ~12!

Also, we define the following initial values for the real and complex functions:

jo5j~0!, j̄o5 j̄~0!, f3
o5f3~0!, ~13!

x1
o5x1~0!, x2

o5x2~0!, f̂3
o5f̂3~0!. ~14!

The coherent and squeezed state parameters are,

a5uaueid, z5reiu, r5uzu. ~15!

The expectation values of position and momentum in terms of complex functions and
position and momentum are given by

^x~t!&5 i $@ j̄jo2jj̄o#po2@jj̄
˙o2 j̄ j̇o#xo%1 i ~j c̄2 j̄c!, ~16!

^p~t!&5 i $@ j̄
˙
jo2 j̇ j̄o#po1@ j̇ j̄

˙o2 j̄
˙
j̇o#%1 i ~ j̇ c̄2 j̄

˙
c!, ~17!

where for the (a,z)-representation

a5 i ~poj
o2xoj̇

o!1 iC o, ~18!

and in the (z,a)-representation,

uau@eid coshr2ei ~u2d! sinh r #5 i ~poj
o2xoj̇

o!1 iC o. ~19!

This is similar for their complex conjugates.
Now we write the expectation values of position and momentum explicitly in terms of

t-dependent functions. These are more useful in constructing properties of squeezed sta
specific systems. The expectation value for position is

^x~t!&5~x2x1
o1x1x2

o!po2~x1ẋ2
o2x2ẋ1

o!xo1x1c22x2c1 , ~20!

and for momentum is

^p~t!&5~ ẋ2x1
o1ẋ1x2

o!po2~ ẋ1ẋ2
o2ẋ2ẋ1

o!xo1ẋ1c22ẋ2c1 . ~21!

The coherent and squeezed state parameters can also be expressed in terms of the initial
and momentum and the initial values of the realt-dependent functions. For th
(a,z)-representation, the equations are
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
uau25 1
2 @~ ẋ2

oxo2x2
opo2C 2

o!21~x1
opo2ẋ1

oxo1C 1
o!2#,

~22!

tan d5
x1
opo2ẋ1

oxo1C 1
o

ẋ2
oxo2x2

opo2C 2
o .

For the (z,a)-representation, we have

uau@cosd coshr2 cos~u2d!sinh r #5A1
2~ ẋ2

oxo2x2
opo2C 2

o!,

~23!
uau@sin d coshr2 sin~u2d!sinh r #5A1

2~x1
opo2ẋ1

oxo1C 1
o!.

Frequently, we wish to use the expressions for the expectation values of position and mom
in terms of the parametersa andz. We give both the (a,z)- and (z,a)-representations in terms o
real t-dependent functions only. The complex expressions can be found in paper I.

The (a,z)-representation
Substituting Eqs.~4! and ~9! into Eqs.~73! and ~74! from paper I, we calculate real expre

sions for^x(t)& (a,z) and ^p(t)& (a,z) :

^x~t!&~a,z!5A2uau~x1 cosd1x2 sin d!1x1C 22x2C 1 ~24!

and

^p~t!&~a,z!5A2uau~ ẋ1 cosd1ẋ2 sin d!1ẋ1C 22ẋ2C 1 . ~25!

The (z,a)-representation
Substituting Eqs.~4! and ~9! into Eqs.~79! and ~81! from paper I, we obtain the following

expressions for̂x(t)& (z,a) and ^p(t)& (z,a) :

^x~t!&~z,a!5A2uau$x1@cosd coshr2 cos~u2d!sinh r #

1x2@sin d coshr2 sin~u2d!sinh r #%1x1C 22x2C 1 , ~26!

^p~t!&~z,a!5A2uau$ẋ1@cosd coshr2 cos~u2d!sinh r #

1ẋ2@sin d coshr2 sin~u2d!sinh r #%1ẋ1C 22ẋ2C 1 , ~27!

The uncertainty product is representation independent and its expression in terms of th
t-dependent functions,x1 andx2 , is given by Eq.~93! in paper I.

III. EXAMPLES

A. Harmonic oscillator (HO)

For the harmonic oscillatorg5( 12 v2,0,0) and the differential equation~5! has the form

ä1v2a50. ~28!

Two real solutions are

x15
1

Av
cosvt, x25

1

Av
sin vt. ~29!

Using Eq.~4!, the two complex solutions are
J. Math. Phys., Vol. 38, No. 1, January 1997
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j5A 1

2v
eivt, j̄5A 1

2v
e2 ivt, ~30!

from which we obtain the three functionsf1 , f2 , andf3 :

f15
1

2v
e2ivt, f25

1

2v
e22ivt, f35

1

v
. ~31!

Therefore, the generators in Eqs.~6! to ~11! in paper I have the form

J25A 1

2v
eivt~]x1vx!, J15A 1

2v
e2 ivt~2]x1vx!, ~32!

M25
1

2v
e2ivtS i ]t2vx]x2v2x22

1

2
v D , ~33!

M15
1

2v
e22ivtS i ]t1vx]x2v2x21

1

2
v D , ~34!

M35
i

v
]t . ~35!

B. Free particle (FP)

In this specific case,g5(0,0,0) and Eq.~5! becomes

ä50, ~36!

which has real solutions,

x151, x25t. ~37!

The two complex solutions can be calculated directly using Eq.~4! and they are

j5A 1
2~11 i t!, j̄5A 1

2~12 i t!. ~38!

The remainingt-dependent functions can be obtained from Eqs.~8!:

f15
1
2 ~11 i t!2, f25

1
2 ~12 i t!2, f3511t2. ~39!

Therefore, the generators in Eqs.~6! to ~11! of paper I can be written as

J25A 1
2$~11 i t!]x1x%, J15A1

2$2~12 i t!]x1x%, ~40!

M25
i

2 H ~11 i t!2]t1 i ~11 i t!x]x1
i

2
x21

i

2
~11 i t!J , ~41!

M15
1

2 H ~12 i t!2]t2 i ~12 i t!x]x1
i

2
x22

i

2
~12 i t!J , ~42!

M35
i

2 H ~11t2!]t1tx]x2
i

2
x21

1

2
tJ . ~43!
J. Math. Phys., Vol. 38, No. 1, January 1997
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We have presented the generators in this and the previous example out of general interest.
not show them in subsequent examples since they are usually long and not needed. In a
described by the potential in Eq.~3!, the calculations for which the generators are required can
be done in general.~See Section III of paper I.! All wave functions and expectation values can
obtained by computing the appropriatet-dependent functions and substituting them into expr
sions for the desired quantities. This is where the strength of this methodology lies.

C. Linear potential (LP)

Here we haveg5(0,g(t),0) and the differential equation is~36!. The two real solutions are
~37! and the two complex solutions are~38!. Setg(0)5go .

The t-dependent function,C is defined in Eq.~10!, wherec(t) is

c~t!5A 1
2E

0

t

drg~r!~11 ir!. ~44!

The complex conjugate,c̄(t), can be obtained directly from Eq.~44!. The two generatorsJ2 and
J1 can be written as

J25A 1
2$~11 i t!]x1x2 iC %,

~45!
J15A 1

2$2~12 i t!]x1x1 i C̄ %.

The commutator ofJ2 andJ1 is

@J2 ,J1#5I . ~46!

To determine the integration constants,C o andC̄ o, calculate the operatorJ1J21 1
2 and find

that

J1J21 1
2 5 1

2 $2~11t2!]xx12i tx]x1A2@ i ~11 i t!C̄1 i ~12 i t!C #]x

1x21 iA2~ C̄2C !x1 i t1C C̄ %. ~47!

Taking the limit ast→0, we have

lim
t→0

$J1J21 1
2 %5 1

2 $2]xx1 iA2~ C̄ o1C o!]x1x21 iA2~ C̄ o2C o!x1C oC̄ o%, ~48!

which is a Hamiltonian for a displaced oscillator if we chooseC o to be pure imaginary and se

C o5
i

A2
go . ~49!

Therefore, we find that

lim
t→0

$J1J21 1
2 %5 1

2 $2]xx1x21 iA2gox1 1
2go

2%. ~50!

Then, we see that

C5c~t!1
i

A2
go , C̄5 c̄~t!2

i

A2
go . ~51!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Onceg(t) is known, the remainingt-dependent functions can be found and the symmetry g
erators constructed from Eqs.~6! to ~11! in paper I.

For example, suppose that we choose

g~t!5
k

2
, ~52!

wherek is a real constant. Then,go5k/2, and we have for the complex functionC ,

C ~t!5
k

4A2
@2t1 i ~21t2!#. ~53!

We will need the real functionsC 1 and C 2 , as well as the values of the real integratio
constantsC 1

o andC 2
o . They can be evaluated with the help of Eqs.~9! through~12!. For arbitrary

g(t), we have

C 1~t!5c1~t!5E
0

t

drg~r!, ~54!

C 2~t!5c2~t!1C 2
0 , ~55!

where

c2~t!5E
0

t

drg~r!r, ~56!

and

C 1
o50, C 2

o5go . ~57!

Wheng(t) is a constant,k/2, then

C 1~t!5c1~t!5
k

2
t, ~58!

C 2~t!5c2~t!1C 2
0 , ~59!

where

c2~t!5
k

4
t2, ~60!

and

C 2
o5

k

2
. ~61!

D. Driven harmonic oscillator (DHO)

For this system, we haveg5( 12 v2,g(t),0), where g(t) is a real function oft and
g(0)5go . The differential equation forx1 andx2 is ~28!. The real solutions are given in~29! and
the complex solutions in~30!. The function,C , can be written as in Eq.~6! with
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c~t!5A 1

2vE0
t

drg~r!eivr. ~62!

From Eq.~62! and its complex conjugate all the remainingt-dependent functions can be found,
needed.

The two operatorsJ6 are

J25A 1

2v
eivt$]x1vx1 iA2ve2 ivtC %, ~63!

J152A 1

2v
e2 ivt$]x2vx1 iA2ve1 ivtC̄ %. ~64!

Repeating the procedure of the previous subsection, computing the operatorJ1J21 1
2, and

taking the limitt→0, we obtain the integration constant

C o52
i

vA2v
go , ~65!

and its complex conjugate.
For the specific case when

g~t!5go5
k

2
, ~66!

k being a real number, we have

C52
ik

~2v!3/2
eivt. ~67!

The real functions areC 1 andC 2 and have the form of Eq.~10! where

c1~t!5E
0

t

drg~r!cosvr, c2~t!5E
0

t

drg~r!sin vr, ~68!

with real integration constants

C 1
o50, C 2

o52
1

v3/2go . ~69!

Wheng(t)5k/2, Eqs.~68! become

c1~t!5
k

2v3/2 sin vt, c2~t!52
k

2v3/2 ~12 cosvt!, ~70!

with real integration constants

C 1
o50, C 2

o52
1

2v3/2k. ~71!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



,
uting
s.

a
states.

he op-

lated

case,
initial

ndent

106 M. M. Nieto and D. R. Truax: Displacement-operator squeezed states.

¬¬¬¬¬¬¬¬¬¬
E. Repulsive oscillator (RO)

In this final example we haveg5(2 1
2 V2,0,0). Equation~5! becomes

ä2V2a50. ~72!

This differential equation has two real solutions:

x15
1

AV
coshVt, x25

1

AV
sinhVt. ~73!

Using Eq.~4!, the two complex solutions are

j5
1

A2V
@coshVt1 i sinhVt#,

~74!

j̄5
1

A2V
@coshVt2 i sinhVt#.

For each of the model systems discussed above, their Schro¨dinger algebras are isomorphic
(S A)1

c5su(1,1)Lw1
c . An explicit operator basis for each system can be obtained by substit

the appropriate functions for each example into Eqs.~6! to ~11! of paper I. As examples, see Eq
~32! to ~35! for the harmonic oscillator and Eqs.~40! to ~43! for the free particle.

In each case, the subalgebra of operators$M3 ,J6 ,I % forms a basis for an oscillator algebr
os~1!. Therefore, each of the examples above will have a complete set of number-operator
Only, for HO will these states be energy eigenstates since, in that case,M3 is proportional to the
energy operator. For the remaining examples, there may be no simple interpretation for t
eratorM3 .

IV. SQUEEZED STATES FOR SPECIFIC EXAMPLES

Explicit calculation of coherent states for HO, FP, DHO, LP, and RO have been calcu
elsewhere.3 These results are contained as specific examples,z50, of our results here.

The specifict-dependent functions that we need were developed in Section III. In each
we express the expectation values for position and momentum in three ways: in terms of the
position and momentum@Eqs.~20! and~21!#, in the (a,z)-representation@Eqs.~24! and~25!#, and
in the (z,a)-representation@Eqs.~26! and ~27!#. However, the parametersuau, d, uzu, andu are
defined in terms ofxo andpo differently in the (a,z)- and (z,a)-representations—Eqs.~22! and
~23!, respectively. Finally, for each system we give the uncertainty product, which is indepe
of representation.

A. Harmonic oscillator (HO)

Combining Eqs.~20! and~21! with the real functions~29! for the oscillator, we find that the
expectation values for position and momentum in terms ofxo andpo , are

^x~t!&5
1

v
~po sin vt1vxo cosvt!, ~75!

^p~t!&5po cosvt2vxo sin vt. ~76!

In the (a,z)-representation, using Eqs.~24! and ~25!, we obtain
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
^x~t!&~a,z!5A2

v
uau cos~vt2d!, ~77!

^p~t!&~a,z!52A2vuau sin~vt2d!, ~78!

wherea andz are defined in Eq.~15!. In addition, according to Eq.~22!, we have

uau25
1

2v
~po

21v2xo
2!, d5 tan21S po

vxo
D . ~79!

Note that in this representation, these expectation values are independent of the squeeze
eters,uzu and u. This is because both coherent and squeezed states follow the classical m
xcl(t) andpcl(t). The differences are that the squeezed state is a Gaussian wave packet
width oscillates with time and it has a time-dependent uncertainty product, as we come to b

With Eqs.~26! and ~27!, we find that, for the (z,a)-representation,

^x~t!&~z,a!52uau$cos~vt2d!coshr2 cos~vt1d2u!sinh r %, ~80!

^p~t!&~z,a!522vuau$sin~vt2d!coshr2 sin~vt1d2u!sinh r %, ~81!

with the connection~23! to the initial position and momentum

uau@cosd coshr2 cos~u2d!sinh r #5Av

2
x0 ,

~82!

uau@sin d coshr2 sin~u2d!sinh r #5A 1

2v
po .

From Eq.~82!, we find the identity

1

2v
~po

21v2xo
2!5uau2@cosh 2r2 cos~u22d!sinh 2r #. ~83!

The uncertainty in position and momentum are

~Dx!25
1

2v
$cosh 2r1 cos~2vt2u!sinh 2r % ~84!

and

~Dp!25
v

2
$cosh 2r1 cos~2vt2u!sinh 2r %, ~85!

respectively. Therefore, the uncertainty product is

~Dx!2~Dp!25
1

4
@11 sin2~2vt2u!sinh2 2r #5

1

4 F11
sin2~2vt2u!

4 S s22 1

s2D
2G , ~86!

where5–7

s5exp r ~87!
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¬¬¬¬¬¬¬¬¬¬
is the ‘‘squeeze parameter.’’ The uncertainty relation~86! is identical to Eq.~30! in Ref. 5 after a
suitable choice for the phaseu.

For z real and positive, the squeezed-state wave function is

css~x!5@ps2#21/4 expF2
~x2xo!

2

2s2
1 ipoxG , ~88!

with \/mv51. For a more general expression for the squeezed state wave function, see R

B. Free particle (FP)

Substituting the real functions~37! into Eqs.~20! and~21!, we get the expectation values fo
position and momentum in terms ofxo andpo :

^x~t!&5xo1pot, ~89!

^p~t!&5po . ~90!

In the (a,z)-representation, we obtain

^x~t!&~a,z!5A2uau@cosd1t sin d#, ~91!

^p~t!&~a,z!5A2uausin d, ~92!

where

A2uaucosd5xo , A2uausin d5po , ~93!

and

uau25
1

2
~po

21xo
2!, d5tan21S poxoD . ~94!

For the (z,a)-representation, we find that

^x~t!&~z,a!5A2uau$cosd coshr2 cos~u2d!sinh r1t@sin d coshr2 sin~u2d!sinh r #%,
~95!

^p~t!&~z,a!5A2uau$sin d coshr2 sin~u2d!sinh r %, ~96!

where

A2uau@cosdcoshr2 cos~u2d!sinh r5xo ,
~97!

A2uau@sin d coshr2 sin~u2d!sinh r5po ,

and we have the relationship

1
2 ~xo

21po
2!5uau2@cosh 2r2 cos~u22d!sinh 2r #. ~98!

The uncertainty in position is given by

~Dx!25 1
2 @11t2#cosh 2r2 1

2 $@12t2#cosu12t sin u%sinh 2r , ~99!

and the uncertainty in momentum is
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~Dp!25 1
2 @cosh 2r1 cosu sinh 2r #. ~100!

Therefore, the uncertainty product is

~Dx!2~Dp!25 1
4 $11t21@t2 cosu2t sin u#sinh 4r %

1@ 1
2 1 3

2 t22 1
2 ~12t2!cos 2u2t sin 2u#sinh2 2r . ~101!

C. Linear potential (LP)

When the interaction is linear, we use the time-dependent functions computed in Section
Calculating the expectation values of position and momentum in terms of the initial position
momentum, we find

^x~t!&5xo1pot1E
0

t

drg~r!r2tE
0

t

drg~r!, ~102!

^p~t!&5po2E
0

t

drg~r!. ~103!

For the particular case ofg(t)5k/2, we find a constant,

^x~t!&5xo1pot2
k

4
t2, ~104!

^p~t!&5po2
k

2
t. ~105!

To connect to the (a,z)-representation, we would have

uau25
1

2
@~x02go!

21po
2#, d5tan21S po

xo2go
D . ~106!

For the (z,a)-representation, Eqs.~23! become

uau@cosd coshr2 cos~u2d!sinh r #5A1
2~xo2go!,

~107!

uau@sin d coshr2 sin~u2d!sinh r #5A1
2po .

We can combine these two equations into one to yield

uau@cosh 2r2 cos~u22d!sinh 2r #5 1
2 ~po

21xo
222goxo1go

2!. ~108!

To obtain the corresponding equations for constantg(t), replacego by k/2 in each of the above
equations.

For the (a,z)-representation, the corresponding expectation values forx andp are

^x~t!&~a,z!5A2uau@cosd1t sin d#1E
0

t

drg~r!r1go2tE
0

t

drg~r!, ~109!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



is

r

110 M. M. Nieto and D. R. Truax: Displacement-operator squeezed states.

¬¬¬¬¬¬¬¬¬¬
^p~t!&~a,z!5A2uau sin d2E
0

t

drg~r!. ~110!

Wheng(t)5k/2, we find from the previous two equations that

^x~t!&~a,z!5A2uau@cosd1t sin d#2
k

4
t21

k

2
, ~111!

^p~t!&~a,z!5A2uausin d2
k

2
t. ~112!

For the (z,a)-representation, we see that

^x~t!&~z,a!5A2uau$cosd coshr2 cos~u2d!sinh r1t@sin d coshr2 sin ~u2d!sinh r #%

1E
0

t

drg~r!r1go2tE
0

t

drg~r!, ~113!

^p~t!&~z,a!5A2uau$sin d coshr2 sin~u2d! sinh r %2E
0

t

drg~r!. ~114!

Wheng(t)5k/2,

^x~t!&~z,a!5A2uau$cosd coshr2 cos~u2d!sinh r1t@sin d coshr2 sin~u2d!sinh r #%

2
k

4
t21

k

2
, ~115!

^p~t!&~z,a!5A2uau$sin d coshr2 sin~u2d!sinh r %2
k

2
t. ~116!

The uncertainties in position and momentum are given by Eq.~99! and~100!, respectively. There-
fore, the uncertainty product~101! is still valid for a system with a linear interaction since it
independent ofg(t).

D. Driven harmonic oscillator (HDO)

Referring to the results of Section III D and Eqs.~20! and ~21!, the expectation values fo
position and momentum are presented below.

~a! In the (xo ,po)-representation:

^x~t!&5
1

v
~po sin vt1vxo cosvt!

1
1

v H cosvtE
0

t

drg~r!sin vt2 sin vtE
0

t

drg~r! cosvtJ , ~117!

^p~t!&5po cosvt2vxo sin vt2 sin vtE
0

t

drg~r!sin vt2 cosvtE
0

t

drg~r!cosvt,

~118!

where, for the (a,z)-representation
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uau25
1

2v S po21v2xo
21goxo1

1

v2go
2D , d5tan21

vpo
v21go

. ~119!

For the (z,a)-representation, the connecting formulas are

uau@cosd coshr2 cos~u2d!sinh r #5A1

2SAvxo1
1

v3/2goD ,
~120!

uau@sin d coshr2 sin~u2d!sinh r #5A 1

2v
po .

~b! In the (a,z)-representation:

^x~t!&~a,z!5A2

v
uaucos~vt2d!1~x1C 22x2C 1!, ~121!

^p~t!&~a,z!52A2vuausin~vt2d!1~ ẋ1C 22ẋ2C 1!. ~122!

~c! In the (z,a)-representation:

^x~t!&~z,a!52uau$cos~vt2d!coshr2 cos~vt1d2u!sinh r %1~x1C 22x2C 1!, ~123!

^p~t!&~z,a!522vuau$sin~vt2d!coshr2 sin~vt1d2u!sinh r %1ẋ1C 22ẋ2C 1 .
~124!

In each of~b! and ~c! above, we have

x1C 22x2C 25
1

v H cosvtE
to

t

drg~r!sin vr2 sin vtE
to

t

drg~r!cosvrJ , ~125!

and

ẋ1C 22ẋ2C 252 sin vtE
to

t

drg~r!sin vr2 cosvtE
to

t

dsg~r!cosvr. ~126!

Wheng(t)5k/2, explicit expressions of expectation values forx andp can be obtained. From
Eqs.~117! and 118!, we find

^x~t!&5
1

v
~po sin vt1vxo cosvt!1

k

2v2 ~cosvt21!, ~127!

^p~t!&5po cosvt2vxo sin vt2
k

2v
sin vt. ~128!

For the (a,z)-representation, applying Eqs.~121! and ~122!, we find that

^x~t!&~a,z!5A2

v
uaucos~vt2d!2

k

2v2 , ~129!

^p~t!&~a,z!52A2vuausin~vt2d!. ~130!

Making use of Eqs.~123! and ~124!, we obtain for the (z,a)-representation,
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^x&5A2

v
$cos~vt2d!coshr2 sin~vt1d2u!sinh r %2

k

2v2 , ~131!

^p&52A2vuau$sin~vt2d!coshr2 sin~vt1d2u!sinh r %. ~132!

The connecting formulas for this case can be obtained from Eqs.~119! and~120! by substituting
go5k/2.

Expressions for the uncertainties in position and momentum,~84! and ~85!, respectively,
derived for HO remain valid here. As a consequence, the uncertainty product~86! holds for DHO.

E. Repulsive oscillator (RO)

Referring to Section III E, for the time-dependent functions for the repulsive oscillator
find the the expectation values in the (xo ,po)-representation are

^x~t!&5
1

V
@po sinhVt1Vxo coshVt#, ~133!

^p~t!&5po coshVt1Vxo sinhVt. ~134!

For the (a,z)-representation, we obtain

^x~t!&~a,z!5A2

V
uau@coshVt cosd1 sinhVt sin d#, ~135!

^p~t!&~a,z!5A2Vuau@sinhVt cosd1 coshVt sin d#, ~136!

where we have

xo5A2

V
uaucosd, po5A2Vuausin d, ~137!

and

uau25
1

2V
~po

21V2xo
2!. ~138!

In the (z,a)-representation, we see that

^x~t!&~z,a!5A2

V
uau$@cosd coshr2 cos~u2d!sinh r #coshVt

1@sin d coshr2 sin~u2d!sinh r #sinhVt, ~139!

^p~t!&~z,a!5A2Vuau$@cosd coshr2 cos~u2d!sinh r #sinhVt

1@sin d coshr2 sin~u2d!coshVt!%, ~140!

where we have
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xo5A2

V
uau@cosd coshuzu2 cos~u2d!sinh uzu#,

~141!
po5A2Vuau@sind coshuzu2 sin~u2d!sinhuzu].

In addition, we have the identity

1

2V
~po

21V2xo
2!5uau2@cosh 2r2 cos~u2d!sinh 2r #. ~142!

We obtain the uncertainty product directly from Eq.~93! of paper I. We have

~Dx!2~Dp!25 1
4 ~11 sinh2 2Vt!2 1

4 sinh
2 2Vt sin u sinh 4r ,1 1

8 $113 sinh2 2Vt

1 cosh2 2Vt cos 2u%sinh2 2r . ~143!

Initially, the Gaussian wave packet describing this state satisfies the minimum uncertainty
tion, but spreads out over time.

V. DISCUSSION

All quantum systems described by a Schro¨dinger equation~2! with potential~3! have isomor-
phic symmetry algebras, designated by (S A)1

c or its oscillator subalgebra os~1!
5 $M3 ,J6 ,I %. This isomorphism means that for each such system it is possible to const
complete set of eigenstates of the operatorM3 and the Casimir operator,C, of os~1!. These states
form a representation space for os~1!. They are also eigenstates of the number opera
J1J2 , constructed from the ladder operators,J6 , of os~1!. This is a consequence of th
relationship between the operatorsM3 andK 3 ~Eq. ~28! of paper I!. Only for HO do these state
correspond to energy eigenstates.

In Sec. III of paper I, we showed that the extremal state is a Gaussian function. For all
systems discussed in this paper, the limit ast→0 ofK 3 is a time-independent oscillator Hami
tonian~HO, FP, RO! or a time-independent driven oscillator Hamiltonian~LP, DHO!. ~See Secs.
III C and III D of this paper.! Therefore, each system has effectively been transformed by
R-separable coordinates, (z,h) ~Sec. III, paper I!, into a time-independent oscillator or a drive
oscillator.

In the general treatment of paper I, we computed squeezed-state wave functions for b
(a,z)- and (z,a)-representations.@See Eqs.~63! and ~64! of I.# Each of them were written a
expansions in eigenstates of the number operator. We may think of these expansions as re
ing transformed Gaussian functions.8 Expectation values for position and momentum, uncerta
ties in position and momentum, and their uncertainty product were derived.

In the (a,z)-representation, according to Eqs.~24! and ~25!, ^x& and ^p& depend only ona
and not onz. Sincea is fixed by the initial position and momentum,z is free to vary.@See Eq.
~22!.# However, in the (z,a)-representation, according to Eqs.~26! and ~27!, the expectation
values depend upon all four parametersuau, d, r, andu. From Eq.~23!, we can determine any two
of these in terms of the initial position and initial momentum. A third way of expressing
expectation values ofx andp is in terms of initial position and momentum.@See Eqs.~20! and
~21!.# This way is independent of the complex parametersa andz, and therefore is identical fo
both representations. Only then are the relationships between the four parameters,a, d, r , and
u, and the initial position and momentum sensitive to which representation we are using.

The expectation values ofx and p satisfy the classical equations of motion and descr
classical trajectories in phase space: for HO the trajectory is an ellipse; for FP it is a straigh
for LP it is a parabola; for DHO it is a displaced ellipse, and for RO it is a hyperbola.
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The uncertainty products do not depend ona, but do depend onz. Also, they are independen
of representation. For HO and DHO the time-dependence of the uncertainty product is lin
the squeeze parameter,z. If z50, then the uncertainty product is minimized. Whenz Þ 0, there is

an oscillation in the uncertainty product, subject to (Dx)2(Dp)2> 1
4 . For the other three system

the uncertainty product increases with time, starting from a state of minimum uncertainty
Gaussian wave packet for these three systems will eventually dissipate.
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Construction of a complete set of states in relativistic
scattering theory
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The space of physical states in relativistic scattering theory is constructed, using a
rigorous version of the Dirac formalism, where the Hilbert space structure is ex-
tended to a Gel’fand triple. This extension enables the construction of ‘‘a complete
set of states,’’ the basic concept of the original Dirac formalism, also in the cases of
unbounded operators and continuous spectra. We construct explicitly the Gel’fand
triple and a complete set of ‘‘plane waves’’—momentum eigenstates—using the
group of space–time symmetries. This construction is used~in a separate article! to
prove a generalization of the Coleman–Mandula theorem to higher dimension.
© 1997 American Institute of Physics.@S0022-2488~96!01612-X#

I. INTRODUCTION

Scattering experiments are among the main sources of experimental information abo
fundamental interactions in the subatomic range, therefore, any theory that is intended to d
these interactions, should provide predictions of scattering amplitudes. Much information
these amplitudes can be obtained using only very basic and well established assumptions
example, the fundamental postulates of quantum mechanics. This is the approach ofthe theory of
the S-matrix ~see, for example, Ref. 1!. Results obtained with such an approach naturally hav
wide range of validity and are applicable in any theory of fundamental interaction. They c
derived from the present standard model, but are also expected to remain valid when an im
fundamental description is found.

In the study of general properties of quantum mechanics it is natural to use Dirac’s ‘‘bra’
‘‘ket’’ formalism,2 because of its remarkable elegance and simplicity. The essence of its u
ness is the use ofa complete set of states$^au% to form a representation of the unity operator

I[Saua&^au, ~1.1!

which then can be used to represent various expressions in terms of vector components^auc& and
matrix elementŝ a8uAua& of operators. In scattering scenarios, a key role is played by the
mentum operator and one would like to ‘‘diagonalize’’ it, i.e., to take as a complete set of s
a set of its eigenvectors~‘‘plane waves’’!. However, the spectrum of the momentum operato
continuous and the application of the Dirac formalism, in its original form, to such operators
well defined, since they do not have a complete set of eigenvectors in the usual sens
formalism is, therefore, unsuitable for rigorous analysis of scattering theory.

An improved version of the Dirac formalism was developed,3–5 using the theory of
distributions.6 In this formalism, the Hilbert space structure is extended to aGel’fand triple
~F,H,F8! ~also calledrigged Hilbert space!, whereH is the Hilbert space of states,F is a dense

a!Electronic mail: oskar@shum.cc.huji.ac.il
b!On sabbatical leave from the School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of
Sciences, Tel-Aviv University, Ramat-Aviv, Israel; also at Department of Physics, Bar-Ilan University, Ramat
Israel, Electronic mail: horwitz@sns.ias.edu
0022-2488/97/38(1)/115/24/$10.00
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subspace ofH, andF8 is thedual of F—the space of continuous linear functionals onF. With
an appropriate choice ofF, a ~generalized! complete set of eigenvectors of an operator with
continuous spectrum can be found among elements ofF8 and most of the elegance of the origin
formalism can be recovered.

In this work we use the improved formalism~following the presentation of Antoine4,5!, to
construct a complete set of plane waves for relativistic scattering theory. In the spirit of the t
of theS-matrix, we use only very basic assumptions and state them explicitly, to make app
the range of validity of the results. The construction relies on the symmetry of the theory und
group of~restricted! space–time transformations: translations, rotations, and boosts. We co
an arbitrary dimension of space–time and assume the symmetry group to be~isomorphic to!
P (r ,s)—the inhomogeneous pseudo orthogonal group of signature (r ,s)—with arbitrary r ,s.
Eventually we restrict ourselves tos51 and the complete space of plane waves is constructed
this case.

The structure of this article is as follows: In Sec. II, the space of states is realized as a
of functions over momentum space; in Sec. III a Gel’fand triple and a complete set of plane
are constructed. Section IV illustrates the use of the construction by rederiving some fa
relations and formulas~a further use of this construction is made in Ref. 7!. Finally, in Sec. V, we
comment on the assumptions made and on possible extensions. Appendix A provides a
description of the Dirac formalism used in this work. Appendix B summarizes some rele
properties ofP (r ,s).

II. THE SPACE OF STATES

In this section we construct an explicit realization of the space of states as a space of fun
over momentum space, using the space–time symmetry. In relativistic scattering theory, the
Hs of physical states is a direct sum of~complex, separable! Hilbert spaces

Hs5 %

n50

`

H s
~n! , ~2.1!

whereH s
(n) is the space ofn-particle states~thus called ‘‘n-particle space’’! and is~isomorphic

to! a closed subspace of the completed tensor product ofn one-particle spaces:

H s
~n!,H ~n!5 ^

1

n

H ~1!. ~2.2!

The elements ofH s
(n) are those elements ofH (n) which have the right symmetry properties wi

respect to the exchange of identical particles.
TheS-matrix S is assumed to be a unitary operator onH s .

A. The Poincare´ symmetry in H (1)

A symmetry transformation of theS-matrix is defined to be a unitary or antiunitary opera
U in Hs which satisfies the following:

~1! H ~1! is U-invariant, i.e.,U turns one-particle states into one-particle states.
~2! U acts on many-particle states in accordance to their relation to the tensor product o

particle states:
U~f1^•••^ fn!5~Uf1!^•••^~Ufn! ~2.3!

@and thus, according to property~1!, ;n,H s
(n) is U-invariant#;

~3! U commutes withS.

The invariance under~restricted! space–time transformations implies:
J. Math. Phys., Vol. 38, No. 1, January 1997
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Assumption 2.1:
There exists a connected groupP 08 of symmetries of S which is locally isomorphic toP (r ,s).

The connectedness implies, among other things, thatP 08 does not contain antiunitary element
According to property~1! of the symmetries ofS, H ~1! is P 08-invariant and thus constitutes
representation space ofP 08 . Any representation ofP 08 is naturally also a representation of th
universal covering groupP of P 08 which is ~because of the local isomorphism! globally isomor-
phic to the universal covering group of the identity component~the largest connected subgrou!
P 0[P 0(r ,s) of P (r ,s).8–9 Wigner10 and Bargmann11 showed that this representationU ~1! is in
general a~strongly! continuous unitary projective representation~called also ‘‘ray representation’
or ‘‘representation up to a phase’’!.

Assumptions:
2.2 U~1! is a true representation ofP (that is with no extra phase12).
2.3 U~1! has only type I factors (Ref. 8, p. 145), Ref. 13.
The second assumption means that U~1! is expressible in terms of irreducible representatio

and since these are identified with particle types (see the discussion in the introduction of R
this requirement is actually part of the physical interpretation.

As explained in Appendix B 1, the most general such representation is of the following
~as usual, isomorphism between Hilbert spaces will be treated as equality!:

U ~1!5E
I
dr~a!Ua, Ua5~xpma

La!~P ~pma
!!↑P ~2.4!

and the representation space is:

H ~1!5E
I

%

dr~a!Ha , Ha5L mma

2 ~ T̂ ma
,H~La!!, ~2.5!

whereI is an index set,r is a measure onI ~determined byU ~1! up to equivalence!, and for each
aPI :

~i! T̂ ma
~the ‘‘ma-mass shell’’! is an orbit of the ‘‘Lorentz group’’L05O 0(r ,s), in the

‘‘momentum space’’T̂ , andmma
is the nontrivialL0-invariant Radon measure onT̂ ma

~unique, up to a multiplicative constant!; the nontriviality and theL-invariance ofmma

imply that it is nondegenerate~it does not vanish on open sets!.
~ii ! pma

is the representative ofT̂ ma
@as chosen in Appendix B, e.g., for the timelike orbits

O ~r ,1!, p5(p,0,...,0),which in four dimensions corresponds to the rest frame#.
~iii ! La is an irreducible continuous unitary representation of the little groupL(pma

) of pma

~whereL is the universal covering group ofL0! in the ~complex separable! Hilbert space
H~La!.

~iv! Ha is the space ofmma
-square-integrable functions onT̂ ma

, taking values inH~La!.
~v! Ua is the irreducible~continuous and unitary! representation ofP in Ha , induced byLa:

@Ua~L,a!f#~p!5eip•aLa~D~L,p!!f~L21p! ~2.6!
where

D~L,p!5Lp
21LLL21p

and;p P T̂ ma
,Lp is inL and satisfiesLppma

5 p; thusD(L,p) P L(pma
).

We want to treat the elements ofH ~1! as vector-valued functions onT̂ . For this, we assume
that the order of thedr~a! integration can be arranged to be
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
E
I
dr~a!•••5E

M

dm̂~m!E
I ~m!

dr~a!••• , ~2.7!

wherem̂ is a measure on a set of orbits$T̂ mumPM% and for eachmPM, I (m):5$aPI uma5m%
is the set of indices of all irreducible components ofU ~1! with the ‘‘mass’’m. ~This assumption
should be satisfied ifI is not pathological.! In this case we have@compare to Eq.~II.5!#:

H ~1!5E
M

%

dm̂~m!E
T̂ m

%

dmm~p!H~m!, H~m!:5E
I ~m!

%

dr~a!H~La! ~2.8!

andU ~1! gets the form@compare to Eq.~2.6!#: for pPT̂m ,

@U ~1!~L,a! f #~p!5eip•aL ~p!~D~L,p!! f ~L21p!, ~2.9!

whereL (p)5* I (m)dr(a)La is the ~reducible! unitary representation ofL(pm) in H(m).
The momentum support of the elements ofH ~1! is restricted toT̂F : 5 ømPMT̂ m . This will

be called ‘‘the ~one particle! physical region inT̂’’ and it is the spectrum of the momentum
operator inH ~1!.

B. Representing Hs as a function space

The next step is to extendU ~1! from P to AP , the Lie algebra ofP . This is done by
identifying the elements ofP andUP , the universal enveloping algebra ofAP , as distributions
on P with compact support, and then defining a representation ofE8~P !, the space of all such
distributions. In this procedure, we follow Antoine5 and it is described in Appendix B 2~refer also
to Appendix A for notation and terminology!. The results can be summarized as follows:

If
C1. (Ca ,H(La),Ca8 ) is a Gel’fand triple:

~a! Ca is a complete nuclear space, embedded inH~La! densely and continuously,
~b! Ca8 is the strong dual ofCa ,

C2. the restriction ofLa to Ca is a smooth representation ofL(pma
) by continuous operators

in Ca :

~a! Ca is L
a-invariant,

~b! for eachD P L(pma
), La~D! is a continuous operator inCa ,

~c! for eachcPCa , the functionD°La~D!c is a smooth function fromL(pma
) toH~La!,

C3. the mapp°Lp is smooth onT̂ma
,

then
R1. the triple (Fa ,Ha ,Fa8 ), whereFa is defined by

Fa :5D~ T̂ ma
;Fa!, ~2.10!

is a Gel’fand triple, having properties~1a! and ~1b! of (Ca ,H(La),Ca8 ),
R2. the restriction ofUa to Fa is a smooth representation ofP by continuous operators inFa

@i.e.,Ua has the properties~2a!, ~2b!, and~2c! of La#,
R3. in Fa , U

a is naturally extended to a continuous*-representation ofUP @actually, of all of
E8~P !# by continuous operators~the elements ofUP being represented by differential operato
on T̂ma

!:

Ua~A!Ua~B!5Ua~AB!, ;A,BPUP ,
J. Math. Phys., Vol. 38, No. 1, January 1997
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Ua~A†!,@Ua~A!#* , ;APUP .

so if A is symmetric~A†5A! thenUa is Hermitian.
R4. if APUP satisfies the Nelson–Stinespring criterion~A is elliptic—when considered as

differential operator onE~P !—or there existsBPUP symmetric and elliptic for which
[Ua(A),Ua(B†B)]50 onFa! then

Ua~A†!5@Ua~A!#*

@Ua(A†) is the closure ofUa(A†) in Ha! so if A is symmetric thenUa(A) is essentially self
adjoint,14

R5. if A,BPUP are represented by essentially self adjoint operatorsUa(A), Ua(B) then:

Ua~A! and Ua~B! strongly commute⇔@A,B#50. ~2.11!

In this situation~i.e., under the conditions C1 and C2! it is possible to representH ~1! as a
space of complex-valued functions. LetP5Pm be the ‘‘momentum’’ operator~the generator of
translations:iPm5]/]amua50!. From Eq.~2.6! one gets that

;wPFa , @Ua~Pm!w#~p!5pmw~p!

soP is diagonal inFa ~it also demonstrates all the results R3, R4, and R5!. Using results R4 and
R5 and the irreducibility ofUa, we choose a~finite! abelian setJ5$Ji% of symmetric elements o
UP such that for eacha P I ,$Ua(P),Ua(J)% is a complete system of strongly commuting s
adjoint operators and we diagonalize it, using von Neumann’s complete spectral theorem~Ref. 10,
p. 54!. This diagonalization will only affectH~La! ~which is, in a generalized sense, an eige
pace ofP! so we get

H~La!.L na

2 ~sa!, ~2.12!

wheresa is the spectrum ofUa(J) andna is a spectral measure onsa . Therefore:

Ha5L mma

2 ~ T̂ ma
;H~La!!.L mma

3na

2 ~ T̂ ma
3sa! ~2.13!

and for eachwPFa~,Ha!, p P T̂ ma
, lPsa :

@Ua~Pm!w#~p,l!5pmw~p,l!, ~2.14!

@Ua~Ji !w#~p,l!5l iw~p,l!. ~2.15!

Turning now toH ~1!, we have

H~m!5E
I ~m!

%

dr~a!H~La!5L rm

2 ~V~m!!, ~2.16!

where

V~m!:5$@al#uaPI ~m!,lPsa%

and

E
V~m!

drm~a,l!••• :5E
I ~m!

dr~a!E
sa

dna~l!•••
J. Math. Phys., Vol. 38, No. 1, January 1997
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thus ~compare to Eq.~2.8!!:

H ~1!5L m
2 ~V! ~2.17!

where

V:5$~p,l,a!umPM,pPT̂ m ,@al#PV~m!%5$~p,l,a!uaPI ,pPT̂ ma
,lPsa%

and

E
V
dm~p,l,a!•••5E

M

dm̂~m!E
T̂ m

dmm~p!E
I ~m!

dr~a!E
sa

dna~l!•••

Then-particle space is, according to Eq.~2.2!16

H~n!5 ^

1

n

Lm
2 ~V!5L mn

2
~Vn! ~2.18!

where

Vn:5V3•••3V ~n factors! ~2.19!

and the measuremn is defined by

E
Vn
dmn~~p,l,a!n!••• :5E

V
dm~p1 ,l1 ,a1!•••E

V
dm~pn ,ln ,an!••• ~2.20!

III. THE COMPLETE SET OF PLANE WAVES

At this point we introduce further assumptions about the signature of space–time an
spectrum of particle types:

Assumptions:
3.1L05O 0~r ,1!, r>3 and a momentum p in the physical regionT̂ F is timelike~pm p

m.0!
and in the forward light cone~E.0! (thus m can be recognized as a generalized mass
5 Apmp

m; see Appendix B for notation).
3.2 I is countable (thusr is a purely atomic measure) and$ma%aPI is a nondecreasing

sequence.
From now on, we also assume that the mapp°Lp was chosen to be smooth andLpm

5 1,
;mPM.

A. The one-particle space

Assumption 3.1 means thatL0(pm)5O 0(r ), which is a compact group. SincerÞ2, it is at
most doubly covered byL(pm)5Ō 0(r ), thereforeL(pm) is also compact, so all its irreducibl
representations are finite dimensional:;aPI , dimH~La!,`. This implies that:
~1a! H~La! is a nuclear space~Ref. 17, p. 520!;
~1b! sinceLa is continuous, it is smooth~even analytic—Ref. 8, p. 322!;
thus all the requirements for the extension ofUa toUP are satisfied withCa5H~La!.

Assumption 3.1 also implies that all the ray representations ofP are ~equivalent to! true
representations,12 so assumption 2.2~in Sec. II A! is satisfied.

Assumption 3.2 means that:
~2a! M ~the mass spectrum! is a countable set of discrete points in~0,̀ ! ~with no accumulation
points!. Thus
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
H ~1!5 %

mPM

L mm

2 ~ T̂ m ,H~m!!; ~3.1!

~2b! For eachmPM, I (m) ~the set of indices of all irreducible components ofU ~1! with the
‘‘mass’’ m! is finite:

H~m!5 %

aPI ~m!

H~La!, L ~p!5 %

aPI ~m!

La, wherem5Apmp
m ~3.2!

~2c! U ~1! is a direct sum of irreducible representations:

H~1!5 %

aPI
Ha , U ~1!5 %

aPI
Ua. ~3.3!

Combining both assumptions, we get:
~3a! H(m) is finite-dimensional and since it is~identified with! a space of functions, we have:

H~m!5CN~m! ~N~m!:5dimH~m!! ~3.4!

thus operators inH(m) ~e.g.,L (p)! are matrices.
~3b! V ~defined in Eq.~2.17!! is a countable union of orbits. Since each orbit is a separable sm
manifold, so isV.

The measurem on V takes the form:

E
V
dm~p,l,a!•••5 (

aPI
E
T̂ ma

dmma
~p! (

lPsa

•••5 (
mPM

E
T̂ m

dmm~p! (
@al#PV~m!

••• ~3.5!

@compare to Eq.~2.17!# and since on each orbitT̂ m , mm is a nondegenerate~L-invariant!
Radon measure, so ism on V.
Writing everything as a function on the momentum space, it is frequently convenient to
H(p), N(p), V(p), andI (p) instead ofH(m), etc., wherem 5 Apmp

m.
Now we are able to identify the structure of the space of states required by the Dirac fo

ism ~see Appendix A 2!. Recalling thatH ~1!5L m
2~V!, we define:

F~1!:5D~V!. ~3.6!

SinceI is countable, it can be chosen to be a set of natural numbers, so the operatorâ defined by

@â f #~p,l,a!:5a f ~p,l,a!,; fPH ~1! ~3.7!

is self adjoint and diagonal. Recognizing thatL m
2~V! is the spectral decomposition ofH ~1! with

respect to the system$â,U (1)(Pm),U (1)(Ji)%, one obtains that this is a complete system
strongly commuting self adjoint operators. Next, we recognize that

F~1!5 (
aPI

Fa ~3.8!

~a topological direct sum of locally convex spaces: the set offinite sums of elements o
$Fa%aPI @Ref. 17 p. 515# so ~according to result R3 of Sec. II B! all the above operators, whe
restricted toF~1! are continuous operators inF~1!. Thus~F~1!,H ~1!,F~1!8! is a Gel’fand triple with
all the properties required, so all the results described in Appendix A apply here. In particula
set$^p,l,au%(p,l,a)PV , defined~m-almost everywhere! by

^p,l,auw!:5w~p,l,a!,;wPF~1! ~3.9!
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is a ‘‘complete orthonormal’’ system of eigenbras of$â8,U (1)(Pm)8,U (1)(Ji)8% ~in the sense
explained in Appendix A 4!.

In the following, to simplify notation, the indices@al# will be usually omitted, making the
summations implicit~‘‘matrix multiplication’’ !; ^p,l,au and dm(p,l,a) are abbreviated bŷpu
anddm(p).

B. The total space

Then-particle space is@see Eq.~2.18!#

H ~n!5L mn
2

~Vn!,

whereVn is a separable smooth manifold andmn is a nondegenerate Radon measure~see result 3b
in Sec. III A!. This suggests that the natural choice forF(n) is

F~n!:5D~Vn!, ~3.10!

obtaining a Gel’fand triple@F(n),H (n),F(n)8#.
For eachpn5(p1 ,...,pn)PVn we define:

^pnu:5^p1u ^ ••• ^ ^pnu ~3.11!

and sincê 1
nD 8~V! is a ~dense! subspace ofD 8~Vn! ~Ref. 17, p. 417!, we get

^pnuPF~n!8 ~3.12!

with the action~for mn-almost allpnPVn!

^pnuw!5w~pn!,;wPF~n!. ~3.13!

For w,cP^1
nD~V!, we have

~cuw!5~c,w!H~n!5)
i51

n

~c i ,w i !H~1!

5)
i51

n E
V
dm~pi !c i~pi !w i~pi ! ~3.14!

5E
Vn
dmn~pn!~cupn&^pnuw!. ~3.15!

This is exactly the Parseval equality@compare to Eq.~A12!# which means that$^pnu% is a com-
plete orthonormal system of bras in the sense that the operator

I n:5E
Vn
dmn~pn!upn&^pnu ~3.16!

is the embedding ofF(n) into F(n)8 and plays the role of the identity operator in the Dir
formalism.18

Next, we define

H:5 %

n51

`

H ~n!, F:5 (
n51

`

F~n! ~3.17!
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obtaining a Gel’fand triple~F,H,F8!. SinceF(n) is a closed subspace ofF, F(n)8 is a quotient
space ofF8 and can be naturally identified as a~closed! subspace ofF8, by defining

^F~m!8uF~n!&}dmn . ~3.18!

Therefore we get

F85 )
n51

`

F~n!8, ~3.19!

~the set ofarbitrary infinite sums! and the embedding ofF into F8 is

I :5 (
n51

`

I n5 (
n51

` E
Vn
dmn~pn!upn&^pnu. ~3.20!

Finally, we define

Fs :5FùHs , Fs
~n! :5F~n!ùHs

~n! ~3.21!

obtaining the Gel’fand triples (Fs ,Hs ,Fs* ) and (;n) (Fs
(n) ,Hs

(n) ,Fs
(n)8), equipped with the

complete systems of bras defined above.

C. Matrix elements

Let APLx~F;F8!. As stated in Appendix A 3, this space contains all the spacesL~F!, L~H!,
L~F;H!, Lx~H;F8!, andL~F8! where ‘‘L ’’ denotes ‘‘linear’’ and ‘‘Lx’’—‘‘antilinear.’’ More-
over,Fs is a closed subspace ofF so if A P Lx(Fs ;Fs8), it can always be extended continuous
to all of F by definingAf :50 for each fPH which is orthogonal toFs . This means that
Lx(Fs ;Fs8), and all the corresponding spaces of continuous mappings, are also embedde
rally in Lx~F;F8!.

To define the matrix elements ofA, we decompose it to ‘‘elements’’ acting between states
definite number of particles. Lett n be the natural~continuous isomorphic! embedding ofF(n) in
F, andt n8, the dual mapping~this is the natural projection ofF8 on F(n)8!. We define

A~m,n!:5t m8At n~PL3~F~n!;F~m!8!! ~3.22!

obtaining, for eachw,cPF

~cuAw&5(
m,n

~cmuA~m,n!wn& ~3.23!

~with the notationw5(nw
n, wnPF (n) and the same forc!.

Now we can apply the kernel theorem~see Appendix A 4!, obtaining

~cmuA~m,n!wn&5E
Vm3Vn

dmm~qm!dmn~pn!cm~qm!A~m,n!~qm,pn!wn~pn!, ~3.24!

where^A(m,n)&PD8(Vm3Vn) is the kernel that corresponds toA(m,n). Denoting

^qmuAupn&:5A~m,n!~qm,pn! ~3.25!

we obtain@combining Eqs.~3.23! and ~3.24!#
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¬¬¬¬¬¬¬¬¬¬
~cuAw&5(
m,n

E
Vm3Vn

dmm~qm!dmn~pn!~cuqm&^qmuAupn&^pnuw! ~3.26!

so we see that, as in the general formalism, the expression~3.20! for I can be formally inserted
between the factors of~cuAuw&.

IV. APPLICATIONS

In this section we illustrate the formalism derived above by rederiving familiar relations
formulas using the new language. The resemblance to the original Dirac formalism is appar
unlike the original formalism, in the present formulation all the expressions have a well de
meaning.

A. The representation U(1)

From Eq.~2.9! we obtain

^puU ~1!~L,a!uw&5@U ~1!~L,a!w#~p! ~4.1!

5eip•aL ~p!~D~L,p!!^L21puw! ~4.2!

so the action ofU ~1! on the base vectors is

^puU ~1!~L,a!5eip•aL ~p!~D~L,p!!^L21pu. ~4.3!

Here ^pu is considered as a column vector—because when acting onuw!, it produces a column
vector inH(p)—thus up& is recognized as a row vector.

It is more customary to write the expression forU (1)(L,a)up& and this is equal to
~^puU (1)(L,a)* !†, where the dagger denotes the matrix conjugation inH(p) ~and not the adjoint
defined in Appendix A 4!. U (1)(L,a) is unitary and (L,a)215(L21,2L21a) ~see Appendix B!,
so

U ~1!~L,a!up&5@^puU ~1!~L21,2L21a!#†

5@e2 ip•L21aL ~p!~D~L21,p!!^Lpu#†

5uLp&eip•L
21aL ~p!~D~L21,p!!†.

L (p) is a unitary representation and

D~L21,p!215~Lp
21L21LLp!

215LLp
21LLp5D~L,Lp!

so ~since alsop•L21a5a•Lp!

U ~1!~L,a!up&5uLp&eia•LpL ~p!~D~L,Lp!! ~4.4!

and explicitly, with components:

U ~1!~L,a!up,l,a&5eia•LpLa~D~L,Lp!!l8luLp,l8,a&. ~4.5!

This also implies that the matrix elements ofU ~1! are

^p8uU ~1!~L,a!up&5eia•LpL ~p!~D~L,Lp!!dm~p82Lp! ~4.6!

or, in components:
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^p8,l8,a8uU ~1!~L,a!up,l,a&5eia•Lpda8aL
a~D~L,Lp!!l8ldm~p82Lp! ~4.7!

and indeed, one gets

^puU ~1!~L,a!uw!5E
V
dm~p!^puU ~1!~L,a!up8&^p8uw!. ~4.8!

B. Generators of symmetry

Let g(t) be a one-parameter symmetry group ofS. As such, it is represented inH~1! by a
unitary representationU ~1!. Thegenerator Ag of U

(1)(g(t)) is defined by

~cuAgw&:5
1

i

d

dt
~c,U ~1!~g~ t !!w!U

t50

, ;w,cPF~1! ~4.9!

and it is assumed to be an element ofLx~F~1!;F~1!8!. ~This means, in particular, that the derivativ
exists for eachw,c and the function thus obtained is continuous inc and w.19! If g(t) is a
subgroup ofP , this assumption is certainly satisfied:F~1! was intentionally constructed to make
generator of such a group a continuous operator inF~1!.

The unitarity ofU ~1!:

U ~1!~g~ t !!*5U ~1!~g~ t !21!5U ~1!~g~2t !! ~4.10!

implies thatAg is self adjoint~as an element ofLx~F~1!;F~1!8!: A†5A!:

~cuAg
†w&5~wuAgc&5

1

i

d

dt
~w,U ~1!~g~ t !!c!U

t50

52
1

i

d

dt
~c,U ~1!~g~ t !!*w!U

t50

52
1

i

d

dt
~c,U ~1!~g~2t !!w!U

t50

5
1

i

d

dt
~c,U ~1!~g~ t !!w!U

t50

5~cuAgw&. ~4.11!

Next we turn to multiparticle states.Ag
(m,n) is defined naturally by:

~cmuAg
~m,n!wn&:5

1

i

d

dt
~cm,U~g~ t !!wn!U

t50

, ;cmPF~m!,wPF~n!. ~4.12!

SinceU does not change the number of particles, neither doesAg , so

Ag
~m,n!50, ;mÞn. ~4.13!

For c5^1
nc i , w5^1

nw i in ^1
nF~1! we have

~cuAg
~n!w&5

1

i

d

dt F)i51

n

~c i ,U
~1!~g~ t !!w i !GU

t50

5(
i51

n

~c i uAgw i&)
jÞ i

~c j ,w j ! ~4.14!

so at least between elements of^1
nF~1!:

Ag
~n!5~Ag^ I ^ ••• ^ I !1~ I ^Ag^ ••• ^ I !1•••1~ I ^ I ^ ••• ^Ag! ~4.15!

~to be extended to arbitrary elements ofF(n), Ag
(n) must be continuous!.

Finally, g(t), being a group of symmetries of theS-matrix S, satisfies [U(g(t)),S]50. This
implies that for eachw, cPF,
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~S*c,U~g~ t !!w!5~Sw,U~g~2t !!c!. ~4.16!

Differentiating, one gets~whenS*c, SwPF!

~S*cuAgw&5^AgcuSw!. ~4.17!

In particular, ifS andAg are operators inF then

@Ag ,S#50 in F. ~4.18!

Also, if Ag is a continuous operator inF ~e.g., a generator ofP ! then Eq.~4.18! holds, with the
commutators defined to be

@Ag ,S#5Ag8S2SAg , ~4.19!

whereAg8 is the dual ofAg andS is considered as an operator fromF to F8.

C. Scattering amplitudes

We have assumed~see the beginning of Sec. II! that theS-matrix S is unitary. This implies
that it is continuous inHs and, therefore, can be identified as an element ofLx~F;F8!. As such,
it has a corresponding kernel^S& ~more precisely, each elementS(m,n)PL~H (n);H (m)!, as defined
in Section III C, has a corresponding kernel^S(m,n)&PD(Vm3Vn)!. The momentum operatorP
is a generator ofP . Applying Eq. ~4.15! we get

@Pw#~p1 ,...,pn!5~p11•••1pn!w~p1 ,...,pn!, ;wP ^

1

n

F~1! ~4.20!

and applying Eq.~4.18!, we get, for allwP^1
nF~1!,

05~@P,S#w!~qm!5~@P,S~m,n!#w!~qm! ~4.21!

5E dmn~pn!S (
1

m

qj2(
1

n

pi D ^qmuSupn&w~pn!dmn~pn!,

~4.22!

and hence

S (
1

m

qj2(
1

n

pi D ^qmuSupn&50; ~4.23!

obviously this holds also forS2I replacingS, whereI is the identity operator inH. This implies
that ^S2I & is of the form~Ref. 20, Vol. 1!

^S2I &52 i ~2p!dddS (
1

m

qj2(
1

n

pi D ^T&, ~4.24!

whered5r11 is the dimension of the momentum space,2i (2p)d is a conventional normaliza
tion factor, and^T& is a generalized function on the submanifold ofVm3Vn defined by the
constraint

(
1

m

qj2(
1

n

pi50. ~4.25!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



d, we

e pros-

m
group,
s

ion of
the

127O. Pelc and L. P. Horwitz: Complete set of states

¬¬¬¬¬¬¬¬¬¬
~This is the precise formulation of energy-momentum conservation! so finally:

^S~m,n!&5^I ~m,n!&2 i ~2p!dddS (
1

m

qj2(
1

n

pi D ^T~m,n!&. ~4.26!

The ~generalized! values of^T& are called ‘‘scattering amplitudes.’’

D. The optical theorem

Since the indices@al# are omitted,̂ qmuTupn& is a~matrix! operator fromH(pn):5 ^ 1
nH(pi)

to H(qm) ~defined similarly! and the integrationdmn(pn) is actually overT̂ F
n[P1

nT̂ F . In this
section, an asterisk denotes the Hermitian conjugation of matrices. Bearing all this in min
now show that the unitarity ofS leads to
The Optical Theorem:

^pnuTupn&2^pnuTupn&†5 i (
m50

` E
T̂ F

m
dmm~qm!~2p!dddS (

1

m

qj2(
1

n

pi D ^pnuTuqm&†^qmuTupn&.

~4.27!

Proof:
The unitarity ofS implies that:

~ I2S!* ~ I2S!5~ I2S!1~ I2S!* . ~4.28!

Writing the corresponding equation for kernels@using expression~4.24! for ^I2S&# we get

05^pnu@~ I2S!1~ I2S!*2~ I2S!* ~ I2S!#ur l&

5 i ~2p!dddS (
1

n

pi2(
1

l

r kD H ^pnuTur l&2^pnuTur l&†

2 (
m51

` E
T̂ F
m
dmm~qm!i ~2p!dddS (

1

m

qj2(
1

n

pi D
3^pnuTuqm&†^qmuTur l&J ~4.29!

so for(1
npi5(1

l r k , the expression in$ % must vanish. In particular, forr l5pn. j

V. COMMENTS AND SUPPLEMENTS

In this section we discuss the assumptions used for the construction, emphasizing th
pects for relaxing some of them.

A. Other signatures and orbits

In Sec. III we assumed signatures of the type~r ,1! and representations with momentu
support in the forward light cone. All this was needed to assure the compactness of the little
which implies that its irreducible representation spaces$H~La!% are finite-dimensional. This play
a key role in the construction of the Gel’fand triple. IfH~La! is of infinite dimension, it is never
nuclear~Ref. 17, p. 520! andLa is, in general, not smooth. Therefore the choiceCa :5$H~La!%
made in Sec. III A cannot satisfy in this case the requirements of Sec. II B for the construct
a Gel’fand triple suitable forAP . If L

a itself is induced by a finite dimensional representation,
J. Math. Phys., Vol. 38, No. 1, January 1997
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spaceCa can be constructed by the same procedure described in Sec. II C forFa . Using this
procedure,Fa can be constructed for any representation which can be built by a sequen
inductions, starting with a finite-dimensional representation.

The infinite dimension of$H~La!% may cause another complication. In this case, the spect
sa @of the operatorJ used to represent$H~La!% as a space of functions—Eq.~2.12!# is not
necessarily discrete. If it is continuous,V @defined in Eq.~2.17!# is not a countable union of orbit
so to considerV as a smooth separable manifold, one must include a differential structure osa ;
this must be taken into account when checking the smoothness of functions onV. If the spectrum
is mixed,V is a union of manifolds of different dimension.

Finally, the choice of signature~r ,1! and momenta in the forward light cone has also
physical significance. In this regionp0 is bounded from below~positive!, thus suitable to be
interpreted as the energy. In any other case@except for the forward lightlike momenta in the ca
of signature~r ,1!# the orbits are unbounded in all directions, and therefore the canonical ene
not well defined@recall that the energy is distinguished from other components of the mome
by being positive and this in an invariant—and therefore well defined—statement only in the
of signature~r ,1!#.

B. The particle-type spectrum

A particle type is identified with an irreducible representation ofP . The assumption that it is
a true representation~assumption 2.2 of Sec. II A! is used in the extension of the representationU
from P to its algebraAP ~see Appendix B 2!. WhenU is a genuine projective representatio
~with a nontrivial phase!, Ũ @defined by Eq.~B23!# is not a representation ofE 8~P ! ~it doesn’t
conserve multiplication!.

The discreteness of the set of particle types~assumption 3.2 of Sec. III! was used@with the
finiteness of dimH~La!# to identify V as a countable union of orbits, as discussed in Sec. V

VI. CONCLUSIONS

In this work we constructed explicitly and rigorously a basis of ‘‘plane waves’’—momen
~generalized! eigenstates—for the space of states used to describe relativistic scattering. W
ploited the assumedP 0 symmetry, and used the theory of induced representations and the
ture of Gel’fand triples. To combine rigor and clarity we used a rigorized version of Dirac’s ‘‘b
and ‘‘ket’’ formalism. We develop this formalism further and introduce a convenient nota
which distinguishes bra’ŝ•u, u•& from ket’s ~•u, u•!.21 This notation made it possible to use th
‘‘complete set of states’’ to decompose expressions into ‘‘vector components’’ and ‘‘matrix
ments’’ in almost the same flexibility as in the original formalism. We demonstrate this flexib
in a few examples. A further demonstration is given in Ref. 7, where the construction o
present work is used to prove an extension of the Coleman–Mandula theorem.

APPENDIX A: THE DIRAC FORMALISM

1. Conventional terminology

a. Spaces of operators

~In this subsection,E,F are topological vector spaces over the complex field!

~1! L(E,F): the space of continuous linear mappings fromE to F;
~2! Lx(E,F): the space of continuous antilinear mappings fromE to F; (L(E,F) andLx(E,F) are

naturally @antilinearily# isomorphic!;
~3! L(E):5L(E,E) andLx(E):5Lx(E,E);
~4! E8:5L(E;C): ‘‘the dual of E’’; the space of continuous linear functionals onE; when

endowed with the ‘‘strong dual topology,’’ it is called ‘‘the strong dual’’;
~5! Ē8:5Lx(E,C).
J. Math. Phys., Vol. 38, No. 1, January 1997
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When E is reflexive ~which means that it is the strong dual of its strong dual! then ~Ē8!8 is
naturally ~antilinearily! isomorphic toE and therefore is denoted byĒ.

b. Spaces of functions

@In this subsection,V is a separable smooth~differentiable! manifold,m is a measure onV,
andH,H(x) are Hilbert spaces#

~1! *V
%dm(x)H(x): a direct integral of Hilbert spaces. An element of this space is a vector

f:xPV°f~x!PH~x!.
This is a Hilbert space with respect to the inner product

~ f ,g!:5E
V
dm~x!~ f ~x!,g~x!!H~x!

where (,)H(x) is the inner product inH(x);

~2! L m
2~V;H!:5*V

%dm(x)H: the space ofm-square-integrable functions fromV toH;
~3! E~V;H!: the spaceC`~V;H! of smooth~infinitely differentiable! functions onV, with values

inH, equipped with the ‘‘Schwartz topology’’~uniform convergence on every compact set
V of the functions and all their derivatives!;

~4! D~V;H!: the spaceCc
`~V;H! of those elements ofC`~V;H! that have compact suppor

equipped with the ‘‘Schwartz topology.’’@A sequence of functionswkPF converges in this
topology iff they have a common compact subset ofV containing their supports and for eac
differential operatorD, the sequence$Dwk% converges uniformly@Ref. 22, p. 147#. The
elements ofD~V;H! are called~H-valued! ‘‘test functions onV.’’
These topologies were introduced by Schwartz23 and are nuclear~Ref. 15, p. 69! and
complete.17 D~V;H! is also reflexive17;

~5! D8~V;H!: the strong dual ofD~V;H!. Its elements are called~H-valued! ‘‘distributions on
V’’;

~6! E8~V;H!: the strong dual ofE~V;H!. Consists of those elements ofD8~V;H! that have
compact support.

@WhenH5C, the field of complex numbers, this label is omitted, e.g.,Lm
2~V,C!5L m

2~V!.#

2. The space of states

The space of states is a Gel’fand triple~originally called ‘‘rigged Hilbert space’’ by Gel’fand
et al.20!—a triplet ~F,H,F8! of topological vector spaces with the following properties:

~1! H is a complex separable Hilbert space;
~2! F is a dense subspace ofH, equipped with a finer topology~more open sets; this is equivale

to the statement that the embedding ofF in H is continuous!;
~3! F8 is the strong dual ofF ~i.e., the topological dual, equipped with the strong du

topology17!.

In the present context, it is further required thatF be complete, ‘‘nuclear’’15,17 and reflexive~F
is the strong dual ofF8!.

The space of states is equipped with a ‘‘complete set of commuting observables’’$Ai%:
mutually strongly commuting self adjoint operators which, when restricted toF are continuous in
the topology ofF.24 According to the complete spectral theorem of von Neumann~Ref. 15, p. 54!,
H is isomorphic toLm

2~V!, whereV is the combined spectrum of$Ai%. The observables are s
chosen thatV is a separable differentiable manifold~or a discrete union of such manifolds!, m is
a non degenerate Radon measure onV andF5D~V!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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3. The elements in the formalism

The types of vectors in~F,H,F8!:
ket vectors:elementsuw!,uc!,... of F and elements~wu,~cu,... of F̄;
normalizable vectors:elementsf ,g,... ofH;
bra vectors:elementŝ ju,^zu,... of F8 and elementsuj&,uz&,... of F̄8.

There are three products

~1! ( f ,g)H is the inner product~linear ing! in H ~the subscriptH is usually omitted!;
~2! ^juw! is the dual action between̂ju and uw! ~the Dirac ‘‘bracket’’!;
~3! ~wuj& is the dual action between~wu and uj& ~this would deserve the name ‘‘ketbra’’...!.

Note that by definition

~wuj&5^juw!. ~A1!

The operators are elements ofLx~F;F8!, a space containing also the spacesL~F!, L~H!, L~F8!,
L~F;H!, andLx~H;F8! ~after identifyingH andF as subspaces ofF8 and restricting mappings
fromH andF8 to F!.

4. Definitions

The mapf° f 8 defined by

^ f 8uw!:5~ f ,w!, ;wPF ~A2!

is the natural~antilinear! embedding ofH as a~sequentially! dense subspace ofF8. ~The prime in
f 8 is usually dropped.!
A* denotes the Hilbert-space-adjoint of an operatorA in H.
A†PLx~F;F8!, ‘‘the adjoint’’ of APLx~F;F8!, is defined by

^A†cuw!:5~cuAw&,;w,cPF. ~A3!

If A~F!,H ~so thatA* is uniquely defined!, then for eachwPF

A*w is defined⇔A†wPH ~A4!

and in this caseA*w5A†w, soA† is the extension to all ofF8 of the restriction ofA* to F.
B8PL~F8!, ‘‘the dual’’ of BPL(F), is defined by

^B8juw!:5^juBw!,;wPF, jPF8 ~A5!

and satisfies, for eachcPF

B8c85B†c~5~B*c!8, when defined! ~A6!

soA8 extendsA† ~and thus alsoA* ! from F to F8.
The following definitions are made:~for BPL(F), w,cPF, jPF8!

^juBuw!:5^juBw!~5^B8juw!!, ~A7!

^cuBuw!:5^c8uBuw!5~c,Bw!, ~A8!

and whenB*c is defined, also

~cuBuj&:5^juB* uc!5~B*cuj&. ~A9!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The ~generalized! basis of bras forF suggested naturally by this construction is:

$^xuuxPV%, ~A10!

where~for m-almost allxPV! ^xu is defined by

^xuw!:5w~x!, ;wPF. ~A11!

This is a ‘‘complete, orthonormal’’25 system of eigenvectors ofA in the sense that the following
relations are satisfied:

~1! The Parseval equality:

~c,w!5E
V
dm~x!~cux&^xuw!, ;w,cPF. ~A12!

~1! The eigenvalue equation:

^xuAiw!5xi^xuw!, ;wPF,xPV ~A13!

or more briefly

Ai8jx5xijx . ~A14!

Generalizing Eq.~A11!, we denote~for jPF8!

^jux&[j~x!, ^xuj&[j̄~x!, ~A15!

the generalized ‘‘values’’ of the generalized functionsj and j̄. ~j̄ is defined bŷ j̄uw): 5 ^juw̄).!
Finally, the matrix elementŝxuAuy& of an operatorAPLx~F;F8! are defined to be the generalize
‘‘values’’ of the kernel^A&PD8~V3V! satisfying

~cuAuw!5E
V
dm~x!E

V
dm~y!~cux&^xuAuy&^yuw!. ~A16!

~Such a kernel does exist, by ‘‘the kernel theorem’’ of Schwartz, which states~Ref. 17, p. 531!
that there is a natural isomorphism betweenLx~F;F8! andD8~V3V!.!

5. The rules

All the above definitions obey the following three rules:

~1! Whenever two of the expressions (f ug&, ^ f ug) and (f ,g) are defined~i.e., whenf ,gPH and
at least one of them is inF!, they are equal:

~ f ug&5^ f ug!5~f,g!5E
V
dm~x!f~x!g~x!. ~A17!

The same is true for (f uBug&, ^ f uBug), and (f ,Bg).
~2! The conjugate of a bracket product~e.g.,^u! or ~uu!! is the product of the conjugates in rever

order ~if this last product is defined!, where under conjugation...:
wPF:~wu↔uw!, jPF8:^ju↔uj&, APLx~F;F8!:A↔A†. ~A18!

~3! In any well defined expression of the form~cuA1•••Akuw! or ^xuA1•••Akuw) or
^xuA1•••Akuy&, the expression

I:5E
V
dm~x!ux&^xu ~A19!

can be formally inserted between any two factors to obtain a decomposition in terms of co
J. Math. Phys., Vol. 38, No. 1, January 1997
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nents and matrix elements@note that the Parseval equality~A12! is the simplest example of thi
rule#. Mathematically,I is the embedding ofF into F̄8 and ofF̄ into F8.

This is very close to the original rules introduced by Dirac, but there are some complicatio

~1! The conjugate of a brâju is uj&, which is also a bra and in general not a ket~since not every
bra has a corresponding ket! so the conjugate of a ketuw! should be seen as a ket~wu ~this is
why the kets and the bras are denoted by different symbols!.

~2! The conjugate of an operatorAPLx~F;F8! is the adjointA†. This works fine between kets bu
between a bra and a ket@whenAPL(f)#, for the conjugate expression to be defined,
Hilbert-space-adjointA* must be defined@see Eq.~A9!#.

~3! In the original Dirac formalismI is the identity operator and not an embedding, therefore
formalism is not recovered here fully; not every expression allowed by the formalism is
defined.

APPENDIX B: THE GROUP P (r ,s )

O (r ,s), called ‘‘the pseudo-orthogonal group of signature (r ,s),’’ is the group of all linear
transformations inRr1s

x°x85Lx ~B1!

@whereL is a real (r1s)3(r1s) matrix# that conserves the quadratic formx•x, where

~B2!

P (s,r ), called ‘‘the inhomogeneous pseudo-orthogonal group,’’ is the group of all affine tr
formations

x°x85Lx1a,

where LPO ~r ,s!,aPRr1s. ~B3!

The composition law inP (r ,s) is @according to Eq.~B.3!#

~L2 ,a2!~L1 ,a1!5~L2L1 ,L2a11a2! ~B4!

and the inverse is

~L,a!215~L21,2L21a! ~B5!

thusP (r ,s) is the semidirect product ofT r1s , the translation group inRr1s, and ofO (r ,s).
O 0(r ,s) and P 0(r ,s) denote the identity component~the largest connected subgroup! of

O (r ,s) andP (r ,s), respectively, andŌ 0(r ,s) andP̄ 0(r ,s) denote their universal covering group
To simplify notation,P 0(r ,s), P̄ 0(r ,s), O 0(r ,s), Ō 0(r ,s), andT r1s will be abbreviated byP 0,
P , L0, L, andT , respectively.

There is a homomorphism fromL ontoL0. Its kernel is
12 N (r )^N (s) whereN (r ) is a

cyclic group:

N ~r !5H Z1 r51

Z r52

Z2 r>3.

~B6!

T is connected and simply connected, therefore
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t

d

t

133O. Pelc and L. P. Horwitz: Complete set of states

¬¬¬¬¬¬¬¬¬¬
~1! P 0 is a semidirect product ofT andL0.
~2! P is a semidirect product ofT andL.
~3! The homomorphism fromL ontoL0 extends naturally to a homomorphism fromP ontoP 0,

with the same kernel, thereforeP 0 is the quotient group

P 05P /~N ~r ! ^N ~s!!. ~B7!

The homomorphism fromP ontoP 0 identifies any~projective or true! representation ofP 0 as a
~projective or true! representation ofP . Such a homomorphism, fromP to P 08 ~also with an
Abelian discrete kernel!, exists for any connected groupP 08 which is locally isomorphic toP 0.

1. Induced representations of P

T is an Abelian group~isomorphic toRr1s! and thus its dualT̂ —the set of nonequivalen
irreducible continuous unitary representations ofT —consists of characters:

T̂ 5$xp :a°eip•a,;aPT upPRr1s%. ~B8!

T̂ is isomorphic toRr1s and will be called ‘‘the momentum space’’~following the physicists’
terminology in the four-dimensional case!. P acts naturally onT̂ :

~L,a!:p°L0p, ~B9!

whereL0PL0 is the image ofLPL ~notice that from now onL denotes an element ofL and not
of L0, although it corresponds to an element ofL0!. T acts trivially, so we can say that onlyL
acts. This action will be denoted simply byLp. It decomposesT̂ into orbits. These are classifie
according to the ‘‘stability group’’L(p)5$LPL uLp5p% of their elements~also called ‘‘isot-
ropy group’’ or ‘‘little group’’ !. To classify the orbits, we denote26:

p1 the vector of the firsts components ofp, p2 the vector of the lastr components ofp.
If r ,s.1 the orbits are characterized bypmp

m5p1
2 2p2

2 ~pmp
m50 splits to two orbits:p50

andpÞ0!. If s51, some of the orbits split to two:p1.0 andp1,0 and similarly forr51. Table
I lists the orbits, a representativep0 of each orbit and the little group ofp0.

Given an orbitT̂ m ~for simplicity, unless otherwise stated, the subscriptm is here an abstrac
symbol of an arbitrary type of orbit and not necessarily the timelike massm 5 Apmp

m!, a repre-
sentativepmPT̂ m , and a unitary representationL of L(pm) in a ~complex separable! Hilbert

TABLE I. The orbits ofL05O 0(r ,s) ~~6! refers to the cases5r51!.

Splitting
Representative

Symbol Characterization s51 r51 p0 L0(p0!

T̂ m

(m.0)
p1
2 2p2

2 5m2.0
T̂ m

1: p1.0

T̂ m
2: p1,0

(m,0,...,0)
(2m,0,...,0) O 0(r ,s21)

T̂ im

(m.0)
p1
2 2p2

2 5( im),0
T̂ im

1 : p2.0

T̂ im
2 : p2.0

(0,...,0,m)
(0,...,0,2m)

O 0(r21,s)

T̂ 0
1(6): p1.0 ~1,0,...0,~6!1!

T̂ 0
2(6): p1,0 ~21,0,...0,~6!1!

T̂ 0 p125p2
2 Þ0

T̂ 0
(6)1: p2.0 ~~6!1,0,...0,1!

T̂ 0
(6)2: p2,0 ~~6!1,0,...0,21!

T̂ 0
0 p50 ~0,...,0! 00~r ,s!
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spaceH(L), L induces a representationU of P in Lmm

2 (T̂ m ,H(L)), wheremm is the nontrivial

L0-invariant Radon measure onT̂ m @which exists, since bothL0 andL0(pm) are unimodular,
and is unique up to a multiplicative constant#. First, one chooses for eachpPT̂ m , an elementLp

of L that satisfiesLppm5p, and thenU is defined by:

@U~L,a! f #~p!:5eip•aL~D~L,p!! f ~L21p!,

where

D~L,p!:5Lp
21LLL21pPL~pm!. ~B10!

For convenience, we chooseLpm
5 1 to obtain

@U~Lp! f #~p!5 f ~pm!, ;pPT̂ m , ~B11!

@U~D! f #~pm!5L~D! f ~pm!, ;DPL~pm!. ~B12!

U is denoted by

U5~xpm
L !~P ~pm!!↑P ~B13!

indicating that it is a representation of all ofP ‘‘lifted’’ from a representationxpm
L of a subgroup

P (pm) of P . This is a unitary representation and ifL and the mappingp°Lp are continuous then
so isU.

The set$pm% of representatives of the orbits~as chosen in Table I! is obviously a measurable
set in T̂ so, according to Mackey’s theorem~Ref. 15, p. 279!, every unitary representation ofP
is equivalent to an induced representation and it is irreducible iff the inducing representatio~the
one on the little group! is irreducible. Thus an irreducible unitary representation onP is charac-
terized by an orbit and an irreducible unitary representation of the little group of this o
Combining this with the theory of decomposition of a continuous unitary representationU ~Ref.
15, p. 162! and with the assumption that the factors ofU are all of typeI , one obtains that the mos
general form ofU is as described in Sec. II B.

2. Extending the representation to generators

We denote:
AP : the Lie algebra ofP ~generators ofP !,
UP : the universal enveloping algebra ofAP ~polynomials in elements ofAP !.
P is a separable smooth manifold so the spacesE~P ! andE8~P ! ~see Appendix A 1 b! are

well defined.E8~P ! is a * algebra with respect to
multiplication ~a ‘‘convolution’’!: for eachT1, T2PE8~P !, T1*T2 is defined by

E
P

~T1*T2!~x! f ~x!dx:5E
P3P

T1~x!T2~y! f ~xy!dxdy, ; fPE~P ! ~B14!

and
involution ~‘‘conjugation’’!: The conjugateT† of TPE8~P ! is defined by

E T†~x! f ~x!dx:5E T~x! f †~x!dx, ; fPE~P ! ~B15!

wheref†(x):5 f (x21).
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e

-

135O. Pelc and L. P. Horwitz: Complete set of states

¬¬¬¬¬¬¬¬¬¬
Now Ap is, by definition, the tangent space toP at the identitye. Thus, in a coordinate
neighborhood (x1 ,...,xn) of the identityx50, APAp is expressed by

Af5ai
]

]xi
f ~x!ux5052E S ai ]

]xi
d~x! D f ~x!dx, ; fPE~P ! ~B16!

soA acts inE~P ! as a distribution: a linear combination of derivatives ofde ~thed-function with
support in the identitye of P : def5 f (e)!. This identifiesUP naturally with a sub-* -algebra of
E8~P !:

UP.Ee8~P !:5$TPE8~P !usupp~T!,$e%% ~B17!

which is spanned by derivatives ofde , whileAP is the subspace of first order derivatives. W
denote byTA P Ee8(P ) the distribution corresponding toAPUP and we get:

TAB5TA*TB , ;A,BPUP , ~B18!

TA†5TA
† , ;APUP , ~B19!

where the involution ofAPAP is defined byA†:52A and extended toUP by (AB)†:5B†A†.
This means that the mapA°TA is an asterisk isomorphism fromUP ontoEe8(P ).

P is also embedded naturally inE~P ! by the mapx°Tx :5dx in the following sense:

~1! Txy5Tx*Ty , ;x,yPP so x°Tx is an isomorphism,
~2! if etA is a one-parameter subgroup ofP , generated byAPAP then

TAf5
d

dt
f~etA!U

t50

5FE d

dt
detA~x!f~x!dxGU

t50

~B20!

and this means that
d

dt
TetAU

t50

5TA5T~d/dt!~etA!ut50
. ~B21!

Now let L be an irreducible unitary representation ofL(pm) in H(L), inducing a represen
tationU onH 5 Lmm

2 (T̂ m ;H(L)), as defined in Appendix B 1, and suppose:

~1! ~C,H(L),C8! is a Gel’fand triple:C is a complete nuclear space, embedded inH(L) densely
and continuously,

~2! the restriction ofL to C is a smooth representation ofL(pm) by continuous operators inC:
~a! C is L-invariant,
~b! for eachDPL(pm), L~D! is a continuous operator inC,
~c! for eachcPC, the functionD°L~D!c is a smooth function fromL(pm) toH(L) ~an

element ofE~L(pm);H(L)!,

~3! the mapp°Lp is smooth onT̂ m ~this can always be satisfied!.

Defining

F:5D~ T̂ m ;C!, ~B22!

we get:

~1! ~F,H,F8! is a Gel’fand triple with all the properties in~1!,
~2! the restriction ofU to F is a smooth representation ofP by continuous operators inF.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The smoothness ofU in F allows the definition:

Ũ~T!w:5E
P

d~L,a!T~L,a!U~L,a!w, ;TPE 8~P !, wPF. ~B23!

Observing that

U~L,a!5Ũ~d~L,a!!, ~B24!

we see that the natural extension ofU toUP is

U~A!:5Ũ~TA! ~B25!

and it can be shown~Ref. 5, p. 2285! thatU has the properties~3!, ~4!, and~5!, enumerated in Sec
II B.

SYMBOL LIST

AP The Lie algebra ofP ~Appendix B 2!.
D~L,p! 5Lp

21LLL21p ~Appendix B 2!.
D(X) The space of smooth functions onX with comact support~Appendix

A 1 b!
E(X) The space of smooth functions onX. ~Appendix A 1 b!
F,Fs ,F

(n),Fs
(n),Fa The F spaces in the corresponding Gel’fand triples~F,H,F8! ~see

Appendix A 2 and the list ofH spaces below!.
H The ~Hilbert! space of states~Appendix A 2!.
Hs The space of physical~symmetrized! states~Sec. II!.
H (n) The space ofn-particle states~Sec. II!.
H s

(n) The space ofn-particle physical states~Sec. II!.
Ha The space of states with one particle of typea ~Sec. II A!.
H~La! The representation space ofLa ~Sec. II A!.
H(m) Defined in Sec. II B.
I The set of ‘‘particle types’’~Sec. II A!.
I (m) The set of particle types with massm ~Sec. II A!.
J The ~generalized! ‘‘spin’’ operator—complementing the momentum

Pm to a complete set of commuting observables~Sec. II B!
L m

2(X) The space ofm-square-integrable functions onX ~Appendix A 1 b!.
L The universal covering group ofL0 ~Appendix B!.
L0 The connected~generalized! Lorentz group~Appendix B!.
L(p) The little group ofpPT̂ ~Appendix B 1!.
La An irreducible representation of the little groupL(pma

) ~Sec. II A!.
L (p) The representation of the little groupL(p) ~Sec. II A!.
L(E),L x(E) Spaces of operators~Appendix A 1 a!.
Lp Defined in Appendix B 1.
M The ‘‘mass’’ spectrum~Sec. II A!.
ma The ‘‘mass’’ of thea representation~Sec. II A!.
m~p,l,a! The measure onV ~Sec. II B!.
m̂ A measure on the mass spectrumM ~Sec. II A!.
mm A measure on them-mass shellT̂ m ~Sec. II A!.
na A measure on the spectrumsa of J ~Sec. II B!.
V The combined spectrum ofPm, J and â in H~1! ~Sec. II B!.
V(m) 5$@al#uaPI (m),lPsa% ~Sec. II B!.
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Vn 5V3•••3V ~n factors! ~Section II B!.
P The universal covering group ofP 0 ~Appendix B!.
P 0 The connected~generalized! Poincare´ group ~Appendix B!.
Pm The momentum operator~Sec. II B!.
pm A representative of the orbitT̂ m ~‘‘the rest frame’’!, as chosen in

Appendix B 1.
r~a! A measure on the setI of particle types~Sec. II A!.
S TheS-matrix ~Sec. II!.
sa The spectrum ofJ in Ha ~Sec. II B!.
T̂ ‘‘The momentum space’’—the dual of the translation group~Appendix

B 1!.
T̂ m An orbit of L in the momentum spaceT̂ ~Appendix B 1!.
T ma The spectrum of the momentum operator inHa ~Sec. II A!.
T̂ F The spectrum of the momentum operator inH~1! ~Sec. II A!.
Ua The ~irreducible! representation ofP in Ha ~Sec. II A!.
U ~1! The representation ofP in H~1! ~Sec. II A!.
UP The universal enveloping algebra ofAP ~Appendix B 2!.
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Generalization of the Coleman–Mandula theorem to higher
dimension

Oskar Pelca)
Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
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The Coleman–Mandula theorem, which states that space–time and internal sym-
metries cannot be combined in any but a trivial way, is generalized to an arbitrarily
higher spacelike dimension. Prospects for further generalizations of the theorem
~spacelike representations, larger timelike dimension, infinite number of particle
types! are also discussed. The original proof relied heavily on the Dirac formalism,
which was not well defined mathematically at that time. The proof given here is
based on the rigorous version of the Dirac formalism, based on the theory of
distributions. This work also serves to demonstrate the suitability of this formalism
for practical applications. ©1997 American Institute of Physics.
@S0022-2488~96!01512-5#

I. INTRODUCTION

A. The Coleman–Mandula theorem

Symmetry plays a key role in modern physics, and in the investigation of the foundatio
physics in particular. Symmetry considerations were found extremely useful in the understa
of physical phenomena~e.g., particle classification, selection rules! and in the formulation of
theories describing a given physical system. To a great extent, the choice of a symmetry gr
the system determines its properties.

In a relativistic theory, this group must contain~as a subgroup! the Poincare´ group: transla-
tions, rotations, and Lorentz transformations. In 1967, Coleman and Mandula1 proved a theorem
which puts a severe restriction on the groups that can serve as physical symmetry groups

They proved that~this is a loose statement of the theorem; a more precise one will follow!: if

~1! the S matrix is not trivial and is such that the elastic scattering amplitudes are ana
functions ofs ~the squared center-of-mass energy! and t ~the squared momentum transfer!,

~2! the mass spectrum of the one particle states is a~possibly infinite! set of isolated points, al
positive, and there is a finite number of particle types with a given mass,

~3! G is a connected symmetry group of theS matrix which contains the Poincare´ group and is
generated, at least locally, by generators~‘‘infinitesimal symmetry transformations’’! repre-
sentable as integral operators in ‘‘momentum space’’ with distributions as kernels,

then
G is locally isomorphic to the direct product of the Poincare´ group and an internal symmetr
group ~‘‘internal’’ means symmetries that commute with the Poincare´ group!.
The implications of the theorem are far reaching. It implies that, at least in the doma

classical groups, and under the stated assumptions of the theorem, there is no connection

a!Electronic mail: oskar@shum.cc.huji.ac.il
b!On sabbatical leave from the School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of
Sciences, Tel-Aviv University, Ramat-Aviv, Israel; also at Department of Physics, Bar-Ilan University, Ramat
Israel; Electronic mail: horwitz@sns.ias.edu
0022-2488/97/38(1)/139/34/$10.00
139J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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the space–time symmetries and the other symmetries—those ‘‘mixing’’ different particle ‘‘typ
~e.g., charge, flavor, color!. This means that the properties and structure of the Poincare´ group are
of no help in choosing the set of other symmetries. But the most important implication is
symmetries cannot relate particles with different mass and spin and thus the hope to desc
full variety of particle types through symmetry considerations was destroyed.

The possibility of supersymmetry was not envisaged by Coleman and Mandula and the
duction of supersymmetries in 1973~by Volkov and Akulov2 and independently by Wess an
Zumino3! offered a bypass of their theorem. However, most of the ideas in the theorem ap
supersymmetries as well and in 1974 they were exploited by Haag, Łopuszan´ski, and Sohnius4 to
put severe restrictions on the possible supersymmetries.

The set of supersymmetries constitutes a ‘‘graded Lie algebra’’~GLA! which is a generali-
zation of a Lie algebra and thus the supersymmetries are interpreted as infinitesimal sym
transformations. A GLAA is a direct sum of two vector spaces: The spaceA0 of even
~‘‘bosonic’’ ! elements, related by commutators, and the spaceA1 of odd~‘‘fermionic’’ ! elements,
related by anticommutators.~A0 is an ordinary Lie algebra so the Coleman–Mandula theo
applies to it directly.!

Haaget al. proved that~this is also a loose statement! if:

~1! assumptions 1 and 2 of the Coleman–Mandula theorem are satisfied,
~2! the elements ofA are ~infinitesimal! symmetries of theS-matrix,

then

~1! the bosonic generators, except those of the Poincare´ group are all translation invariant Lorent
scalars~i.e., generators of internal symmetries!,

~2! the fermionic generators are translation invariant Majorana spinors,
~3! the commutators and anticommutators are determined to a large extent~details will not be

given here!; in particular, if there are no internal symmetries, they are determined uniqu

B. Extension of the theorem

In the following we discuss some motivations for extending the Coleman–Mandula the
to higher dimensions.

Manifestly covariant relativistic quantum mechanics has been formulated as a theory
evolution of events in space–time.5,6 The wave functions are square integrable functions on
four-dimensional space–time. The principle strategy in developing the theory is to take the S¨-
dinger formulation of nonrelativistic quantum mechanics in three-dimensional space and ge
ize it, with appropriate interpretations, to the relativistic space–time of events. In particul
Ref. 5, the wave functions are parametrized by a universal world timet which is the analog of the
nonrelativistic time as an evolution parameter, and evolution int is generated by a Hamiltonian
like operatorK, which is a function of space and time coordinates and their canonical conju
coordinates—momentum and energy.~This must be a Lorentz-invariant function, in order to ha
the manifest relativistic covariance of dynamical evolution.! For example, for a spinless particle
one may take

K5
pmp

m

2M
1V~r!

~with the signature2111! where V~r! is a real function ofr[xmx
m5x22t2 and M is a

parameter~with the dimension of mass!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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It is important to notice that here$pm% are four independent variables, so the massm
[ Apmp

m is a dynamical variable and not a fixed parameter. It is obviously connected with th
that space and time coordinates are all independent dynamical variables,5 so it is an intrinsic
property of every theory of this kind.6

Recalling the Coleman–Mandula theorem, we see that it is not valid here because it as
a discrete mass spectrum. Indeed, in the formulation of a theory of electromagnetic interac5

one gets, through the requirement of gauge invariance~in the same way that classical electroma
netism introduced the Lorentz symmetry!, a five-dimensional symmetry group:P ~4,1! or P ~3,2!
@whereP (r ,s) denotes the inhomogeneous pseudo-orthogonal group of signature (r ,s)# and this
is not a direct product of the Poincare´ groupP ~3,1! and another group.7 So the Coleman–Mandula
theorem and its extension to supersymmetry are not available here to guide us in the choice
symmetries of a system.8

However, a further analysis suggests that Coleman–Mandula’s assumptions can be g
ized to this framework in accordance with all the other changes. The assumptions about th
spectrum were actually assumptions about the number of particle types, since a particle ty
identified with an irreducible representation of the Poincare´ group in the Hilbert space of one
particle states and such a representation has a definite mass. But in the higher dimensiona
a change in mass is not interpreted as a change of particle type. For example, in the free~V50!
spinless theory,m [ Apmp

m is a constant of the motion and with an appropriate calibration it
be put equal toM . It is therefore possible to interpretM ~or some function ofM ! as the intrinsic
‘‘mass’’ of the particle described, while interactions take the particle off ‘‘mass shell.’’

Thus, a particle type cannot be identified here with an irreducible representation ofP ~3,1!.
But if we have a higher-dimensional symmetry group, as suggested by the generalized fo
electromagnetism, an irreducible representation of this group may be an adequate candida
identified with a particle type. So it seems that in the theorem that should be the analog
Coleman–Mandula theorem here, the Poincare´ group should be replaced by the larger symme
group and the massm [ Apmp

m should be replaced by the analog Casimir operator in the la
group. This is the type of theorem that will be proved in this work. In this theorem, theP ~3,1!
group will be replaced byP ~r ,1!. A further generalization toP (r ,s) would also be desirable
however in considering more than one timelike direction, there are several complications an
not clear if such a generalization is possible. This issue is discussed in Sec. IV A.

This work may also be relevant to the recent developments of Kaluza–Klein type theori
the construction of grand unified or string theories, where one deals with generalized spac
manifold of many dimensions@with signature, e.g.,~d21,1!#. However, in applying the theorem
proved here to these cases, the meaning of the assumptions on the spectrum of the
operator introduced above must be carefully considered.

There exist generalizations of the Coleman–Mandula theorem in other directions: cand
for symmetry generators defined by conserved currents are studied in Ref. 9; more gener
erators and nonlocal charges are considered in Ref. 10; Galilean field theories are studied
11 and massless particles are considered in Ref. 12.

C. The mathematical formulation

The proof of the original Coleman–Mandula theorem relies heavily on the ‘‘bra’’ and ‘‘k
formalism of Dirac, using a basis of ‘‘plane-wave states,’’ matrix elements of operators in
basis,d-functions, etc. The original formalism, due to Dirac13 ~confined to a Hilbert space! is not
well defined and thus is not suitable for a formal mathematical proof. Here we use a rig
version of this formalism,14 based on replacing the traditional Hilbert space by a Gel’fand tri
In Ref. 15 this approach was used to construct the basis of plane-wave states in a~well-defined!
J. Math. Phys., Vol. 38, No. 1, January 1997
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generalized sense and to give a precise meaning to other concepts used in this context,
generators of symmetry and scattering amplitudes. The results of Ref. 15 are extensivel
throughout this work and they are summarized in Appendix A.

D. The structure of this work

We begin, in Sec. II with a concise description of the main concepts needed for the fo
lation and proof of the theorem—the space of states, theS-matrix, symmetries, etc. Then a precis
statement of the theorem is given. In Sec. III the theorem is proved along the lines descri
Ref. 1. In Sec. IV we comment on the theorem proved and on possible further extension
pendix A collects the notation and definition of all the concepts used in the text and in App
B some technical properties of two-body scattering are derived.

II. THE THEOREM

A. The scenario

In relativistic scattering theory, the spaceHs of physical states is a direct sum of~complex,
separable! Hilbert spaces

Hs5
n50

`

% Hs
~n! , ~2.1!

whereHs
(n) is the space ofn-particle states~thus called ‘‘n-particle space’’! and is~isomorphic to!

a closed subspace of the completed tensor product ofn one-particle spaces:

Hs
~n!,H~n!5 J

1

n

H~1!. ~2.2!

The elements ofHs
(n) are those elements ofH (n) which have the right symmetry properties wi

respect to the exchange of identical particles. This symmetry is not relevant in the subs
analysis, therefore we consider the larger space

H5
n50

`

% H ~n!. ~2.3!

According to the rigorized Dirac formalism,14H belongs to aGel’fand triple ~F,H, F8! of
topological vector spaces, whereF is embedded inH continuously as a dense subspace andF8
is the ~strong! dual ofF. This also induces a corresponding Gel’fand triple for any closed s
space ofH.

TheS-matrixS is assumed to be a unitary operator onHs . It can be identified as an eleme
of Lx~F;F8!—a continuous antilinear map fromF to F8—and as such, it has a correspondi
kernel̂ S& @more precisely—kernelŝS(m,n)& P D(Vm3 Vn)].

A symmetry transformation of theS-matrix is defined to be a unitary or antiunitary opera
U in Hs which satisfies the following:

~1! H~1! is U-invariant, i.e.,U turns one-particle states into one-particle states.
~2! U acts on many-particle states in accordance to their relation to the tensor product o

particle states:
U~f1^•••^ fn!5~Uf1!^•••^~Ufn! ~2.4!

~and thus, according to property 1,;n,Hs
(n) is U-invariant!.

~3! U commutes withS.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Under the assumptions of the theorem, including translation invariance ofS, it can be shown
that its kernel̂ S& has the following form:

^S~m,n!&5^I ~m,n!&2 i ~2p!dddS (
1

m

qj2(
1

n

pi D ^T~m,n!&, ~2.5!

where d is the dimension of the momentum space,2i (2p)d is a conventional normalization
factor, and̂ T& is a generalized function of the momentaqj ,pi , restricted to the domain defined b
the constraint

(
1

m

qj2(
1

n

pi50. ~2.6!

The values of̂ T& are called ‘‘scattering amplitudes.’’

B. The statement of the theorem

The assumptions:~See the remarks in Sec. IV!

~1! G is a connected group of symmetries of theS-matrix S.
~2! ~Lorentz invariance! G contains a subgroupP 08 , locally isomorphic toP ~r ,1!, the inhomo-

geneous pseudo orthogonal group of Lorentzian signature~r ,1!, wherer>3.
~3! All particle types correspond to positive-energy timelike representations ofP , the universal

covering group ofP 08 ~i.e., the spectrumT̂ F of the momentum operatorP in the spaceH~1!

of one-particle states is contained in the forward light cone:

;pPT̂ F , pmp
m.0, E[p0.0.

~4! ~Particle finiteness! The number of particle types is finite.
~5! ~Existence of generators! G is generated, at least locally, by generators represented in

one-particle spaceH ~1! by ~generalized! integral operators in momentum space, with dist
butions as kernels~i.e., there is a neighborhood of the identity inG, such that each element i
that neighborhood belongs to a one parameter subgroupg(t) and there exists
AgPL3~F~1!;F~1!8! that satisfies:

cuAgw.5
1

i

d

dt
~c,U~1!~g~t!!w!ut50, ;w,cPF~1!, ~2.7!

whereU ~1! is the representation ofG in H~1!.
~6! ~Analyticity! The scattering amplitudes^T& are regular functions of the momenta. The amp

tudes^T~2,2!& for scattering between two-particle states

~p1,p2!→~p18 ,p28!
are analytic functions of~see Appendix B 1!

s5~p11p2!
2, t5~p182p1!

2

in some neighborhood of the physical region.
~7! ~The occurrence of elastic scattering.! The amplitudes for elastic scattering of two particles

not vanish identically.

The result obtained: Gis locally isomorphic to the direct product ofP 08 and an internal symmetry
group.
J. Math. Phys., Vol. 38, No. 1, January 1997
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III. THE PROOF

The proof of the theorem is naturally divided into three parts. Each part is built as a seq
of lemmas and ends with a proposition which states the final results of that part. The first two
are completely independent and the last part uses only the propositions of the preceding p

The proof is based on an analysis of the generators ofG, concluding that these are alway
sums of generators ofP and generators of internal symmetry transformations. The analysis w
performed on a spaceA of operators that includes the set of generators as a subspace~but a
priori may be larger!. In Appendix B 2 it is shown that,F~2! is S~2,2!-invariant. This allows the
following definition:

Definition:A is the set$A% of elements of L3~F~1!;F~1!8! for which A† ‘‘commutes’’ with the
S-matrix S inF~1!3F~1! in the sense:

~S*cuA†w&5^AcuSw!, ;w,cPF~1!3F~1!, ~3.1!

where

Aw:5~A^ I1I ^A!w5~Aw1! ^ w21w1^ ~Aw2!. ~3.2!

The properties ofA are as follows:

~1! Each generator ofG is a ~self-adjoint! element ofA ~see Appendix A 8!.
~2! A is a vector space and it is a closed subspace ofD8~V3V!: each sum or integral o

elements ofA which converges inD8~V3V! is inA.
~3! If APA and~L,a!PP thenU (1)(L,a)8AU(1)(L,a)PA @sinceF~1! isU~P !-invariant andS

commutes withU~P !#.
~4! If A,BPA, F~1! is invariant underA andB andAB,BAPL3~F~1!;F~1!8! then [A,B]PA.

~Notice thatA is not necessarily a Lie algebra: forA,BPA, AB or BA may be undefined.!

Part 1:
This part analyzes the dependence of elements ofA on the momentum. LetA be an element of
A and f a test function on the momentum space@an element ofD~T̂ !#. We define

f •A:5E
T

daU~1,a!8AU~1,a!) f̃ ~a!, ~3.3!

where f̃ is the Fourier transform off :

f̃ ~a!:5E
T̂

dp

~2p!d
f ~p!eip•a. ~3.4!

Lemma 1:
f •A is inA and its matrix elements are:

^p8u f •Aup&5 f ~p82p!^p8uAup& ~3.5!

which implies that

supp@~ f •A!w#,supp~w!1supp~ f !. ~3.6!

Proof:
For eachw,cPF~1!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~cu~ f •A!w&5E
T

da f̃~a!~cuU~1,a!8AU~1,a!w&

5E
T

daE
T̂

dq

~2p!d
f ~q!eiq•aE dm~p8!dm~p!e2 ip8•a~cup8&^p8uAup&^puw!eip•a

5E dm~p8!dm~p!~cup8&^p8uAup&^puw!E
T

daE
T̂

dq

~2p!d
f ~q!ei @q2~p82p!#•a

5E dm~p8!dm~p!~cup8&^p8uAup&^puw! f ~p82p!,

where the second to last equality is due to Fubini’s theorem for distributions. The last
identifies^ f •A& as a distribution onV3V @an element ofD8~V3V!#, thus f •A is inA @accord-
ing to properties~2! and ~3! of A#. Now if p8Psupp@( f •A)w# then there existspPsupp~w! for
which ^p8u f •Aup&Þ0. Using Eq. ~3.5!, this implies that f (p82p)Þ0, which means that
Dp[p82p is in supp(f ), so for eachp8Psupp@( f •A)w# we have

p85p1Dp, where pPsupp~w! and DpPsupp~ f !. j

Let
0ÞDp0PT̂ ,r.0,DR be a ball of radiusr aroundDp0, and f a test function onT̂ , with

support contained inDR.

It will be shown that in such a situation, forr sufficiently small,f •A vanishes becausef •AÞ0
would contradict the occurrence of elastic scattering@assumption~7! of the theorem#. To show
this, we will construct regions inT̂ such that states with support in these regions are not conne
by the S-matrix. For this it is needed to analyze the action off •A in momentum space. The
momentum support of elements ofF~1! @and thus also of elements ofF~1!8# is contained in ‘‘the
physical region’’T̂ F , which is a~finite! union of orbits$T̂ m%mPM ~each orbit being anr dimen-
sional hyperboloid, see Fig. 1!. According to Eq.~3.6!, to have (f •A)wÞ0 for somewPF~1!,
supp~w! must containpPT̂ F for which there existsDpPDR that satisfiesp1DpPT̂ F . In other
words,p1DRmust intersectT̂ F nontrivially. The set of all points inT̂ m satisfying this condition
is

Rm :5T̂ mù~ T̂ F2DR!. ~3.7!

We have therefore shown that

R:5 ø
mPM

Rm ~3.8!

obeys the following lemma:
Lemma 2:
If wPF(1) is such that Rùsupp~w!50 then ( f •A)w50.
This lemma will be used to construct states annihilated byf •A. To do this, we must describ

R:

Rm5T̂ mù~ T̂ F2Dp01~Dp02DR!! ~3.9!

andDp02DR is ar-neighborhood of the origin soT̂ F1(Dp02DR) is ar-neighborhood ofT̂ F

and thusRm is a neighborhood ofT̂ mù~T̂ F2Dp0! in T̂ m . The situation is described in Fig. 2
J. Math. Phys., Vol. 38, No. 1, January 1997
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This is a cross section of the momentum space at the plane (px ,E) ~where thex axis was chosen
in the direction ofDpW 0!. Each shaded area is~the cross section of! T̂ ma

2DR ~for some represen

tative orbit T̂ ma
! which is identified as ar-neighborhood ofT̂ ma

2Dp0 ~denoted by a dashe
line!. In this cross section,Rm is a union of intervals, the intersection of the hyperbolaT̂ m with the
shaded areas. Since this is a cross section, each interval represents a band in the full mo
space. These bands are described in Fig. 3. This is a projection ofT̂ m on the hyperplane orthogo
nal to theE-axis~since the situation is rotationally symmetric aroundDpW 0, py can represent all the
spacelike directions orthogonal topx!.

Explicitly, T̂ mù(T̂ ma
2 Dp) is the solution of

E25m21pW 2, ~E1DE!25ma
21~pW 1DpW !2. ~3.10!

In the (px ,py) plane it is characterized by the equation

DE2py
21Dm2px

21~Dm21m22ma
2 !Dppx5

1
4~Dm21m22ma

2 !22DE2m2 ~3.11!

~whereDm2:5DE22Dp2, Dp:5iDpW i5Dpx!

~1! for Dm250:

Dp2~py
21m2!1~m22ma

2!@Dppx2
1
4~m

22ma
2!#50, ~3.12!

~2! for Dm2Þ0:

DE2py
21Dm2Spx1 Dp

2

Dm21m22ma
2

Dm2 D25DE2

Dm2 F14 ~Dm21m22ma
2!22Dm2m2G. ~3.13!

In Figs. 2 and 3 two situations are described:

~1! Dm2.0: the intersection~when not empty! is bounded—elliptic.
~2! Dm2<0: the intersection~when not empty! is unbounded however it is always bounded fro

the direction2DEDpW ~i.e., in the direction ofDpW if DE is negative and in the opposit
direction if DE is positive!.

FIG. 1. The physical regionT̂ F .
J. Math. Phys., Vol. 38, No. 1, January 1997
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~3! For Dm250 this is a parabola.
~4! For DE250 this is a straight line parallel to they axis.
~5! Otherwise it is a hyperbola~only one branch!.

The width of the bands depends onr and it may become infinite forr too large~e.g., if DR
contains the origin,R will obviously cover all ofT̂ F!. We chooser small enough so that the ban
will be bounded from the direction2DEDpW .

FIG. 2. A cross section of the momentum space at the plane (px ,E).
J. Math. Phys., Vol. 38, No. 1, January 1997
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In the following, (f •A)† must be considered as well asf •A. Using Eq.~3.5! one obtains:

~ f •A!†5 f †•A†, where f †~p!5 f ~2p!,;p. ~3.14!

Let R† andRm
† denote the regions inT̂ F that correspond to (f •A)† asR andRm to f •A.

Now it is possible to proceed with the proof. Letp08 P T̂ m for somemPM.
Lemma 3:

FIG. 3. A projection ofT̂ m on thepW -hyperplane.
J. Math. Phys., Vol. 38, No. 1, January 1997
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There exist three different momenta p0 ,q0 ,q08 P T̂ m which are not in R̄øR† ~R̄ denotes the
closure of R inT̂ F and the same forR†! and satisfy

p01q05p081q08 .

Proof:
Rm is a finite union of bands concentrated aroundT̂ mù~T̂ F2Dp!. The analysis above

showed that each band is bounded from the direction2DE0DpW 0 and thus so isRm . To consider
Rm
† , all that is needed is to changeDp0→2Dp0 @according to Eq.~3.14!#. This leaves2DE0DpW 0

unchanged soRm
† is bounded from the same direction asRm . ThusRmøRm

† is concentrated in a
‘‘half-hypersurface,’’ andp0 ,q0 ,q08 can always be chosen in the other half. j

With p0 , q0, andq08 of lemma 3, we choose neighborhoodsRp ,Rq of p0 andq0, respectively, in

T̂ m such thatRp ,Rq ,Rq8 :5(Rp1Rq2p08)ùT̂ m andRmøRm
† are disjoint. It is easy to see tha

such a choice is possible. Moreover,Rq8 thus defined is a neighborhood ofq08 in T̂ m . ~This is
because the tangent hyperplanes toT̂ m at p0 andq0 are not parallel soRp1Rq2p08 is a neigh-
borhood ofq08 in T̂ .!

Now let xPF~1! and denotew8:5( f •A)x~PF~1!8!.
Lemma 4:
If w,c,c8PF~1! have support in Rp , Rq andRq8, respectively, then:

^w8^ c8u~S2I !~w ^ c!!50. ~3.15!

Proof:
SinceRq andRq8 are disjoint, we have~c8uc!50 and thus

^w8^ c8uI ~w ^ c!!5^w8uw!~c8uc!50.

SinceRp , Rq , andRq8 do not intersectR andR†, w, c, andc8 are annihilated byf •A and
( f •A)† ~according to Lemma 2! so:

~ f •A!~x ^ c8!5@~ f •A!x# ^ c81x ^ @~ f •A!c8#5w8^ c8

and

~ f •A!†~w ^ c!50.

Combining this with the commutativity of (f •A)† with S we have:

^w8^ c8uS~w ^ c!!5^~ f •A!~x ^ c8!uS~w ^ c!!5~S* ~x ^ c8!u~ f •A!†~w ^ c!&50.
j

Lemma 5:
f •A50.
Proof:
According to lemma 4@and using Eq.~A35!#

E dm~p8!dm~q8!dm~p!dm~q!dd~p1q2p82q8!w8~p8!c8~q8!^p8,q8uTup,q&w~p!c~q!50

for eachw,c,c8PF~1! with support inRp ,Rq ,Rq8, respectively. Suppose, by contradiction, th
p08 is in supp~w8!. This implies that

^p08 ,p1q2p08uTup,q&50,
J. Math. Phys., Vol. 38, No. 1, January 1997
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wheneverpPRp , qPRq , andp 1 q 2 p08 P Rq8 . This region corresponds to an open set in t
(s,t) plane, so the analyticity of̂T~2,2!& @assumption~6! of the theorem# implies that it vanishes for
any momenta inT̂ m . In particular, the elastic scattering amplitudes vanish for particles with m
m, in contradiction to assumption~7! of the theorem.

So p8 is not in the support ofw8. Sincep8 is arbitrary, this means thatw850, i.e., x is
annihilated byf •A and sincex is arbitrary, this means thatf •A50. j

Finally, summarizing this part, we have:
Proposition 1:
The momentum support of^A& for any APA is restricted to the submanifold ofT̂ F3T̂ F

determined by the constraint p85p.
Proof:
Lemma 5 showed that for each 0ÞDpPT̂ there is a neighborhoodDR of Dp such that for

eachfPD~T̂ ! with support inDR, f •A50. Since

^pu f •Aup8&5 f ~p2p8!^puAup8&,

this means thatA vanishes~as a distribution! at the region

$~p,p8!PT̂ F3T̂ Fup2p8PDR%.

In particular, if p82p5Dp then ~p,p8! is not in the support of̂A& and this is true for any
DpÞ0. j

Part 2:
This part analyzes the structure of the elements of

B:5$BPAuB is self adjoint and@P,B#50% ~3.16!

where [P,B]:5P8B2BP is an element ofLx~F~1!;F~1!8!

~P8 is the dual ofP and is an element ofL~F8!!.

^p8u@P,B#up&5~p82p!^p8uBup& ~3.17!

thus for each selfadjoint elementB of A:

BPB⇔^p8uBup&5d~p82p!B~p!,

whereB(p) is a generalized function on the submanifold ofV3V, characterized by the constrain
p85p ~Ref. 16, vol. 1, p. 209!, which is a matrix-valued generalized function onT̂ F . As an
operator~from F~1! to F~1!8! BPB acts by multiplication:

~Bw!~p!5B~p!w~p!;wPF~1! ~3.18!

@notice that this is a matrix multiplication,B(p) being a Hermitian matrix#.
Most of the analysis will be performed on elements of

B `:5$BPBuB is a smooth function ofpPT̂ F%. ~3.19!

For eachpPT̂ F andBPB `, B(p) is an operator inH(p) @N(p)-dimensional matrix#. Accord-
ing to Eq.~3.18!, BPB ` is a continuous operator inF~1! and since it is self adjoint, it is extende
continuously by its dualB8 to F~1!8. Its action on ‘‘plane waves’’ is:

B8up&5up&B~p! ~3.20!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~recall from Appendix A 6 thatup& is a row vector!
Lemma 1:
L acts inB andB ` as a group of automorphisms.
For eachBPB, ~L,a!PP ,

@U~L,a!8BU~L,a!#~p!5L ~p!~D~L,p8!!†B~p8!L ~p!~D~L,p8!! ~3.21!

where p8:5Lp.
@Throughout this section, a dagger denotes the Hermitian conjugation of~matrix! maps between
the spacesH(pn).# This follows directly from the expression for̂ cuU(L,a)8BU
3(L,a)uw&~w,cPF~1!!, using also theL-invariance ofm.

The traceless parts:
Let BPB `, pPT̂ F . The traceless part ofB(p) is

B* ~p!5B~p!2
1

N~p!
1~p!tr B~p!, ~3.22!

where~see Appendix A 4 for review of notation!

~1! N(p) is the dimension ofH(p);
~2! 1(p) is the identity operator inH(p);
~3! the trace trB(p) of B(p) is:

tr B~p!:5 (
@a,l#PV~p!

B@a,l#@a,l#~p!

~notice that throughout this section, the asterisk does not denote the Hilbert-space-adjoin!. Let
B * denote the set of all traceless parts of elements ofB

`:

B * :5$B* uBPB `%. ~3.23!

Lemma 2:
L acts onB * as a group of automorphisms: for eachLPL, BPB `

U~L!8B*U~L!5@U~L!8BU~L!#* . ~3.24!

Proof:
Using Eq.~3.21! we obtain:

tr@~U~L!8BU~L!!~p!#5tr@L ~p!~D~L,Lp!!†B~Lp!L ~p!~D~L,Lp!!#5tr@B~Lp!#.

Therefore, using Eq.~3.22!, we have

@U~L!8B*U~L!#~p!5L ~p!~D~L,Lp!!B* ~Lp!L ~p!~D~l,Lp!!5@U~L!8BU~L!#* ~p!. j
~3.25!

In the next subsection it will be shown that this action is trivial. To do this we show now thatB *
is a Lie algebra of matrices. We say thatp2PT̂ F

2 is anull pair if there exists 0ÞhPH~p2!, such
that ^q2uTup2&h vanishes as a function ofq2PT̂ F

2 ~in physicists’ terminology this implies tha
‘‘plane waves’’ with this combination of momenta, spins, and particle types do not scatter
tically!. We now show thatB* is determined by its value for one non-null pair~and thereforeB *
is, indeed, a Lie algebra of matrices!. This will be shown by stages, in the next four lemmas.

As an element ofA, B acts on two-particle states according to:

Bw5~B^ I1I ^B!w, ;wPF~1!3F~1!, ~3.26!
J. Math. Phys., Vol. 38, No. 1, January 1997
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therefore

~Bw!~p,q!5B~p,q!w~p,q!, ~3.27!

where

B~p,q!:5B~p! ^1~q!11~p! ^B~q!. ~3.28!

The trace ofB(p,q) is

tr B~p,q!5N~q!tr B~p!1N~p!tr B~q!. ~3.29!

Therefore the traceless partB* (p,q) of B(p,q) is

B* ~p,q!5B~p,q!2
1

N~p!N~q!
1~p! ^1~q!tr B~p,q!5B* ~p! ^1~q!11~p! ^B* ~q!,

~3.30!

which means that

B* ~p,q!50⇔B* ~p!50 and B* ~q!50. ~3.31!

Lemma 3:
If for p,qPT̂ F , (p,q) is a non-null pair andB* (p,q)50 then for eachLPL(p1q),
B* (Lp,Lq)50

Proof:
Let LPL(p1q) @a ‘‘rotation’’ in the ‘‘center of mass’’ of (p,q)#. We denotep8:5Lp,

q8:5Lq. Since B* (p,q)50, B(p,q) is a scalar matrix so it commutes wit
L (p)(D(L,p8))^L (q)(D(L,q8)). Thus Eq.~3.21! reduces in this case to

B~p8,q8!5@U~L21!BU~L!#~p,q!. ~3.32!

As an element of a Lie group,L belongs to some one-parameter subgroupL~u! of L(p1q)
~analytic inu! which is generated inF~1! by a continuous operatorJ ~see Appendix A 8!:

U~L~u!!w5eiuJw, ;wPF~1!. ~3.33!

A Taylor expansion inu gives:

U~L~u!21!BU~L~u!!5e2 iuJBeiuJ5 (
n50

`
un

n!
F J

n~B! ~3.34!

@the left-hand side is a holomorphic~operator valued! function of u, thus the right-hand side
converges absolutely for allu# whereF J is an operator onL~F~1!! defined by

F J~C!:5 i @J,C#, ;CPL~F~1!!. ~3.35!

In the following we prove that ifCPB ` satisfiesC* (p,q)50 then so doesF J(C). This implies,
by induction, that for each integern, @F J

n(B)#(p,q) is scalar. Combining Eqs.~3.32! and ~3.34!
we conclude thatB(p8,q8) is scalar, which means thatB* (p8,q8)50, as claimed. So it is left to
show that [J,B] * (p,q)50.
B(L(u)p)[(e2 iuJBeiuJ)(p) is a smooth function ofu andp so

i @J,B#~p!5
d

du
~e2 iuJBeiuJ!U

u50
J. Math. Phys., Vol. 38, No. 1, January 1997
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is also smooth inp. SinceB andJ are self adjoint, so isi [J,B] and according to property~4! of
A, i [J,B] is an element ofA. So we can conclude thati [J,B]PB `.

Suppose thatB* (p8,q8)Þ0. B(p8,q8) is diagonalizable~since it is Hermitian! and since it is
not scalar, it has at least two different eigenvalues, so at least one of themb8 is different from the
~unique! eigenvalueb of B(p,q). Let hPH(p,q) be an eigenvector ofB(p8,q8) belonging tob8.
B commutes withS ~as a self adjoint element ofA! so we have@using Eq.~3.20!#

05h†^p8,q8u@B,S#up,q&h5@B~p8,q8!h#†^p8,q8uSup,q&h2h†^p8,q8uSup,q&@B~p,q!h#

5~b82b!h†^p8,q8uSup,q&h.

For LÞ1 this becomes

h†^p8,q8uTup,q&h50. ~3.36!

@Here we use the fact thatL is inL(p1q) which means thatp81q85p1q# so the assumption
thatB* (p8,q8)Þ0 leads to Eq.~3.36!. We are going to show that Eq.~3.36! cannot be satisfied fo
L51. This implies, since the left-hand side of Eq.~3.36! is continuous inu, that Eq.~3.36! is not
satisfied also in some neighborhood of the identity so in this neighborhoodB* (p8,q8)50,

B~p8,q8!5~e2 iuJBeiuJ!~p,q!5B~p,q!1 iu@J,B#~p,q!1O ~u2!.

SinceB* (p,q)50 and foru sufficiently smallB* (p8,q8)50, we have [J,B] * (p,q)50.
Finally we must show that Eq.~3.36! cannot be satisfied forL51, i.e.,

h†^p2uTup2&hÞ0 ~3.37!

for any 0ÞhPH~p2!, wherep25(p,q). The expression

h†^p2uTuqm&†^qmuTup2&h ~3.38!

is non-negative~being the norm of̂ qmuTup2&h!. Sincep2 is non-null, there existsq0
2PT̂ F

2 for
which ^q0

2uTup2&hÞ0, and sincêT~2,2!& is analytic, expression~3.38! is positive in some neigh-
borhood ofq0

2. Using the optical theorem~see Appendix A 9! we, therefore, obtain

0,E
T̂
F

m0
dm2~q2!~2p!ddd~q11q22p12p2!h

†^p2uTuq2&†^q2uTup2&h

<
1

i
h†~^p2uTup2&2^p2uTup2&†!h52 Im~h†^p2uTup2&h!. ~3.39!

For p1 ,p2PT̂ m , let S(p1 ,p2) be the set of all the spacelike parts of elements ofT̂ m that can be
transformed top1 by an element ofL(p11p2). If p11p250 thenL(p11p2) is the rotation
group soS(p1 ,p2) is a sphere around the origin containingpW 1 andpW 2. In general,S(p1 ,p2) is the
transformation of such a sphere by theL-transformationLp11p2

and it can be shown that it is
~r21 dimensional! ellipsoid, symmetric aroundpW 11pW 2 and longer in this direction than in th
other ones.

Lemma 4:
If for p1 ,p2PT̂ m , (p1 ,p2) is non-null and B* (p1 ,p2)50 then for each q1PS(p1 ,p2),

B* (q1)50.
Proof:
J. Math. Phys., Vol. 38, No. 1, January 1997
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By definition,q1PS(p1 ,p2) iff q1PT̂ m and there existsq2PT̂ m for which q11q25p11p2
@q2 is the momentum transformed top2 by the element ofL(p11p2) which transformsq1 to p1#.
Since (p1 ,p2) is non-null andB* (p1 ,p2)50, lemma 3 implies thatB* (q1 ,q2)50 so according to
relation ~3.31!, B* (q1)50.

Lemma 5:
If, for r.0, each pPT̂ m with upW u5r satisfies B* (p)50 then there exists r8.r such that for

each p8PT̂ m which satisfiesupW 8u<r 8, B* (p8)50.
Proof:
We constructp1 ,p2PT̂ m with upW 1u5upW 2u5r for which pm5(m,0,...,0) is inS(p1 ,p2). This

requirement is equivalent to

p11p22pmPT̂ m ~3.40!

which gives a condition on the angleu betweenpW 1 andpW 2:

2Am21r 25m1Am214r 2 cos2~u/2!. ~3.41!

This equation has a~unique positive! solution foru which is an increasing function ofr /m. Thus
the required momenta exist and they satisfypW 1ÞpW 2Þ2pW 1~0ÞuÞp!.
Now define

r 8:5max$upW 8uupW 8PS~p1 ,p2!% ~3.42!

@the maximum exists sinceL(p11p2) is compact and acts continuously inT̂ m#. Considering the
form of S(p1 ,p2), the fact thatpW 1ÞpW 2 implies thatS(p1 ,p2) is not contained entirely inside thi
sphere which means thatr 8.r . S(p1 ,p2) is connected@this comes from the connectedness
L(p11p2)# thus it contains momenta with any magnitude in the range@0,r 8#.

Let p8PT̂ m for which upW 8u<r 8. One can always perform a rotation around the origin, tra
forming p1 andp2 to putpW 8 onS(p1 ,p2). This rotation does not change the magnitude ofpW 1 and
pW 2 so we still haveB* (p1)5B* (p2)50 which means@by Eq. ~3.31!# that B* (p1 ,p2)50. If
(p1 ,p2) is non-null then lemma 4 implies thatB* (p8)50. If (p1 ,p2) is null, a slight deformation
of p2 preservingupW 2u5r can be made to changes5(p11p2)

2 and since null pairs exist only fo
isolated values of (s,t) @according to assumptions~6! and ~7!#, we will get a non-null pair. This
implies thatp8 is on a boundary of a region in whichB* vanishes so, by the continuity ofB* , we
obtainB* (p8)50. j

Lemma 6:
If p,qPT̂ m are different and such that(p,q) is non-null and B* (p,q)50 then B* vanishes

on T̂ m .
Proof:
First assumepW 1qW 50 and define

r :5sup$r 8uB* ~p8!50 for all p8PT̂ m with upW 8u<r 8%. ~3.43!

Lemma 4 implies that for eachp8PT̂ m with upW 8u5upW u, B* (p8)50, so, by Lemma 5,r>upW u
.0.

Assume, by contradiction, thatr is finite. By definition, for eachp8PT̂ m with upW 8u,r ,
B* (p8)50 so if p8PT̂ m satisfiesupW 8u5r , it is on the boundary of a region in whichB* vanishes,
thus, by continuity,B* (p8)50. Looking back at lemma 5 one observes that it contradicts
maximality of r . Thereforer5` which means thatB* vanishes onT̂ m .

Returning to the general case~wherepW 1qW Þ0!, define:

p8:5Lp1q
21 p, q8:5Lp1q

21 q, B8:5U~Lp1q
21 !BU~Lp1q!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~this is a transformation to the ‘‘rest frame’’ ofp1q!. Equation~3.31! implies thatB(p) andB(q)
are scalars and thus commute withL (p). Therefore, Eq.~3.21! gives

B8~p8!5L ~p!~D~Lp1q ,p!!†B~p!L ~p!~D~Lp1q ,p!!5B~p!

and in the same wayB8(q8)5B(q), thus

B8* ~p8,q8!5B* ~p,q!50.

The pair (p8,q8) is non-null since it was obtained from a non-null pair by
L-transformation which does not change theS-matrix; thereforeB8 satisfies the assumptions o
the lemma andpW 81qW 850, so the first part implies thatB8*50. SinceB*5U(Lp1q)B8*U(Lp1q

21 )
~according to lemma 2! this means that alsoB*50. j

From property~4! ofA and the definitions ofB,B `, andB * , it follows thatB * is a real Lie
algebra. IfB1 andB2 are inB ` then so isi [B1 ,B2] and

i @B1* ,B2* #5 i @B1 ,B2#*PB* . ~3.44!

Denote byB m* the set of restrictions of elements ofB * to one orbitT̂ m~mPM!. This is a real
Lie algebra of smooth functions fromT̂ m toH(m). ForB* P B m* , p P T̂ m , B* (p) is a traceless
HermitianN(m)3N(m) dimensional matrix which is an element of the Lie algebra su(N(m)) of
the group SU(N(m)). Therefore, forp,qPT̂ m , B* (p,q) can be identified as an element
su(N(m))%su(N(m)) which is a finite dimensional compact Lie algebra. The mapping

B*°B* ~p,q! ~3.45!

is a homomorphism for the Lie algebra structure and lemma 6 implies that if (p,q) is non-null,
this homomorphism is an isomorphism~injective! which implies~since non-null pairs exist! that
B m* can be identified as a subalgebra of a compact Lie algebra~of matrices!. As such, its structure
is

B m*5Bs%Bc ~a direct sum of ideals!, ~3.46!

whereBs is a semisimple compact Lie algebra;Bc is the center ofB m* , an abelian Lie algebra
The action ofL on the traceless parts:

According to lemmas 1 and 2,L acts onB m* as a group of automorphisms and this acti
preserves the commutator:

@U21B1U,U
21B2U#5U21@B1 ,B2#U, ;B1 ,B2PBm* . ~3.47!

We use this to prove:
Lemma 7:
Bs andBc areL-invariant
Proof:
For setsS1 ,S2,B m* , denote [S1 ,S2] the real vector space spanned by

$@B1 ,B2#uB1PS1 ,B2PS2%, ~3.48!

UB m*U
215B m* and@Bc ,B m* # 5 0 so

@U21BcU,B m* #5U21@Bc ,UB m*U
21#U50 ~3.49!

thusU21BcU,Bc , i.e.,Bc is L-invariant.
J. Math. Phys., Vol. 38, No. 1, January 1997
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@Bc ,B m* # 5 0 implies that@B m* ,B m* # 5 @Bs ,Bs# and the semisimplicity ofBs implies
that@Bs ,Bs# 5 Bs ; therefore

U21BsU5U21@B m* ,B m* #U5@U21B m*U,U
21B m*U#5@B m* ,B m* #5Bs ,

which means thatBs is L-invariant. j

Lemma 7 means thatL acts as a group of automorphisms in each of the idealsBs andBc . The
representation ofL ~as a group of automorphisms! is a homomorphism so its kernel is a norm
subgroup ofL. L0 is a simple group which means that it does not have nontrivial nor
subgroups~that is other thanL0 itself and$e%, wheree is the identity inL0!. L05L/Z2 ~since
r>3; see Appendix A 1!, ThereforeZ2 is the only nontrivial normal subgroup ofL. To show that
L is represented trivially~the kernel isL! it is enough to show that the kernel is not contained
Z2. This will be done in the next two lemmas.

Lemma 8:
L acts trivially inBs .
Proof:
The connected part of the group of automorphisms of a compact semisimple Lie alge

known to be the corresponding compact semisimple group, so the representation ofL inBs is a
homomorphism fromL to a compact group. SinceL andL05L/Z2 are not compact and
therefore cannot be contained in a compact group, the kernel must be all ofL. j

Lemma 9:
L acts trivially inBc .
Proof:
We choosep,q P T̂ m such that (p,q) is non-null andpW 1qW 50 @so thatL(p1q)5O 0(r ), the

connected part ofO (r )#. Sincer>3, L(p1q) contains a one-parameter subgroup of rotatio
R~u! aroundpW . R~u! does not changep andq therefore it is represented inB m* by L (p)^L (q)

acting on the matricesB* (p,q). R~u! is abelian thus its~finite dimensional! irreducible represen-
tations in a complex Hilbert space are one-dimensional. LetB be an element of the comple
extension ofBc which transforms irreducibly underR~u!. In the following we will show that ifB
does not transform trivially thenB cannot commute with its adjoint, in contradiction to th
commutativity ofBc . To show this, we need an explicit representation for the matrixB(p,q). Let
J be the generator of (L (p)^L (q))(R(u)). This is a Hermitian matrix~sinceL (p) is unitary! and
thus diagonalizable, so we assume that the diagonalization has been performed. In this
B(p,q), abbreviated in the following byB, can be seen as a block matrixB5$Bi j %, where each
block Bi j connects the eigenspaces of the eigenvaluesi and j of J. The action ofR~u! on B is

B °
R~u!

e2 iuJBeiuJ5e2 iukB, ~3.50!

wherek is some real number. By optionally switchingB with B† one can always havek>0 so we
assume that it is so. Differentiating Eq.~3.50!, one obtains:

@J,B#5kB.

This means thatB is a ‘‘ladder operator’’ forJ: if hPH(p,q) satisfiesJh5 jh thenJ(Bh)5( j
1k)(Bh), and this implies thatBi j can be nonzero only ifi2 j5k. (B†) i j5(Bji )

† so we have:

~BB†! i j5(
l
Bil ~Bjl !

†5Bi ,i2k~Bj , j2k!
†5d i j Bi ,i2k~Bj , j2k!

† ~3.51!

and in the same way

~B†B! i j5d i j ~Bi1k,i !
†Bi1k,i . ~3.52!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Let l be the maximal eigenvalue ofJ for whichBl ,l2kÞ0 @H(p,q) is finite-dimensional andBÞ0
so the maximum exists#. This implies thatBl ,l2k(Bl ,l2k)

†Þ0 ~since each element is a sum
squares!. Now the commutativity ofBc implies thatBB

†5B†B therefore Eqs.~3.51! and~3.52!
give

~Bl1k,l !
†Bl1k,l5Bl ,l2k~Bl ,l2k!

†Þ0. ~3.53!

This means thatBl1k,lÞ0 and the maximality ofl implies thatk50 which means thatB trans-
forms trivially. SinceB is arbitrary, this implies thatJ acts trivially which means that the kerne
of the representation contains a one parameter group, which cannot be contained inZ2. Therefore
the kernel is all ofL.

The general form of the elements ofB:

The triviality of the action ofL in B* ~Lemmas 7, 8, and 9! implies that:
Lemma 10:
For each BPB `, pPT̂ m , the traceless part has the form

B
@al#@a8l8#
* 5Baa8

* dll8 , ~3.54!

i.e.,B* is independent of p and it commutes with L(p).
Proof:
Lemmas 7, 8, and 9 imply that for eachLPL

U~L21!B*U~L!5B* , ~3.55!

which means~by Eq. ~3.21!! that for eachpPT̂ m

B* ~p!5L ~p!~D~L,p8!!†B* ~p8!L ~p!~D~L,p8!!, ~p85Lp!. ~3.56!

Recall ~from Appendix A 7 a! that

D~L,p!5Lp
21LLL21p , ~3.57!

where

Lppm5p, Lpm
51.

From this it follows thatD(Lp ,p)51. Using this in Eq.~3.56! gives

B* ~pm!5L ~p!~D~Lp ,p!!†B* ~p!L ~p!~D~Lp ,p!!5B* ~p!, ~3.58!

thereforeB* is independent ofp. Equation~3.57! also implies that

D~L,pm!5L, ;LPL~pm!. ~3.59!

Using this in Eq.~3.56! gives @sinceB* (p8)5B* (p)#

@B* ,L ~p!~D!#50, ;DPL~pm! ~3.60!

and Eq.~3.54! follows from this by Schur’s lemma.
Lemma 11:
For each BPB `, if p,q,p8,q8PT̂ m satisfy p1q5p81q8 then

tr B~p!1tr B~q!5tr B~p8!1tr B~q8! ~3.61!
J. Math. Phys., Vol. 38, No. 1, January 1997
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which means thattr B(p) is a linear (real) function of p:

tr B~p!5amp
m1b. ~3.62!

Proof:
Lemma 10 implies that

B~p,q!5B* ~p,q!1
1

N~m!2
1~p,q!tr B~p,q!, ~3.63!

whereB* is some constant Hermitian matrix. Following a similar procedure as in the proo
lemma 3, we take some eigenvectorhPH(p,q) of B* belonging to some eigenvalueb. Equation
~3.63! implies that for eachp,qPT̂ m , h is an eigenvector ofB, with the eigenvalue

b1
1

N~m!2
tr B~p,q!5b1

1

N~m!
~ tr B~p!1tr B~q!!. ~3.64!

Therefore we obtain

05h†^p8,q8u@B,S#up,q&h5
1

N~m!
@ tr B~p8!1tr B~q8!2tr B~p!2tr B~q!#h†^p8,q8uSup,q&h

and, as in lemma 3, this implies that for a non-null pair, trB(p)1tr B(q) is locally L(p1q)-
invariant. SinceL(p1q) is connected, this means global invariance and since each null pai
limit of non-null pairs andB(p) is continuous inp, this holds also for null pairs. j

To extend these results fromB ` toB, we define, for eachBPB, fPCc
`~L!

Bf :5E
L

dL f ~L!U~L!8BU~L!, ~3.65!

wheredL is the Haar measure ofL.
Lemma 12:
For each BPB, fPCc

`~L!, Bf is an element ofB `.
Proof:
Let w, cPF~1!.

~cuBfw&5E
L

dL f ~L!E
T̂ F

dm~p!c~L21p!†L ~p!~D~L,p!!†B~p!L ~p!~D~L,p!!w~L21p!

5 (
mPM

E
T̂ m

dm~p!E
L

d~LpL! f ~LpL!c~L21pm!†L ~p!~D~LpL,p!!†B~p!L ~p!

3~D~LpL,p!!w~L21pm!,

wherepm5Lp
21p ~the last equality is due to Fubini’s theorem for distributions and the fact

multiplication byLp is a bijection inL!. From Eq.~A23! we obtain

D~LpL,p!5LLL21pm
~ independent ofp! ~3.66!

therefore~using theL-invariance ofdL and recalling thatL (p) is determined bym!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~cuBfw&5 (
mPM

E
L

dLc~L21pm!†L ~p!~LLL21pm

†
!F E

T̂ m

dm~p!B~p! f ~LpL!GL ~p!

3~LLL21pm
!w~L21pm!

5 (
mPM

E
L

dLc~Lpm!†L ~p!~L21LLpm
† !F E

T̂ m

dm~p!B~p! f ~LpL
21!G

3L ~p!~L21LLpm
!w~Lpm!.

EachLPL can be decomposed uniquely toL5LpD where p5Lpm and D5Lp
21LPL(pm)

therefore

E
L

dL•••5E
T̂ m

dm~p!E
LpL~pm!

dL•••

and this gives

~cuBfw&5E
T̂ F

dm~p!c~p!†Bf~p!w~p!, ~3.67!

where

Bf~p!5E
LpL~pm!

dLL ~p!~L21Lp!
†F E

T̂ m

dm~p8!B~p8! f ~Lp8L
21!GL ~p!~L21Lp!.

Now the smoothness ofBf(p) follows from the analyticity ofL and the smoothness off , Lp and
L (p).

Now it is possible to conclude with the following.
Proposition 2:
On each orbitT̂ m , BPB has the form

B~p!5B1Iamp
m, ~3.68!

where B is a Hermitian matrix of the form

B@al#@a8l8#5Baa8dll8

and $am% is a real vector.
Proof:
For BPB ` it is a direct result of lemmas 10 and 11. Lemma 12 implies that for e

fPCc
`~L!, Bf is inB ` so it has the form~3.68!, therefore so doesB. j

Part 3:
In this part, the results of the preceding parts~propositions 1 and 2! are combined to prove the

statement of the theorem.
Let APA. Proposition 1 states that the support of^A& is restricted to the submanifold o

T̂ F3T̂ F defined by the constraintp82p50. This implies~Ref. 16, Vol. 1! that ^A& is a polyno-
mial in the derivatives ofd(p82p). In other words,̂ A& is a differential operator~of finite order
N!:

^p8uAup&5d~p82p! (
n50

N

AmW
~n!~p!

1

i n
]

]pm1
•••

]

]pmn
, ~3.69!
J. Math. Phys., Vol. 38, No. 1, January 1997
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where the coefficientsAmW
(n)(p) are generalized~matrix valued! functions on T̂ F and implicit

summation overmW 5(m1 ,...,mn) is assumed. Moreover,T̂ F consists ofisolatedorbits ~since the
one-particle mass spectrum is finite!, therefore the derivatives inA are tangent to the orbits~which
means that on each orbitT̂ m , A is a polynomial in

¹m5
]

]pm2
pmpn

m2

]

]pn

and this implies that

@A,PmP
m#50. ~3.70!

Combining Eqs.~3.69! and ~3.70! with proposition 2, we obtain:
Lemma 1:
For each self adjoint element A ofA, AmW

(N) belongs toB. As such, it has the form

AmW
~N!~p!5IanmW p

n1BmW , BmW @al#@a8l8#5BmW aa8dll8 ~3.71!

and if N>1 then

BmW 50, anm1m2•••mN
52am1nm2•••mN

. ~3.72!

Proof:
From @AmW

(n) ,Pn#50 and []/]pm ,Pn]5dn
m it follows that

i @ i @••• i @A,PmN
#••• ,Pm2

#,Pm1
#5AmW

~N! .

Property~4! ofA implies thatAmW
(n) is inA. A andPm are Hermitian thus so isAmW

(N) . Finally
@AmW

(N) ,P#50 thereforeAmW
(N) is inB and proposition~2! gives its general form~3.71!.

For N>0, property~4! of A implies that

@@•••@A,PmN
#••• ,Pm3

#,Pm2
#PA.

Therefore, from Eq.~3.70! it follows that

05 i @ i @••• i @A,PmN
#••• ,Pm2

#,Pm1
Pm1#~p!5AmW

~N!~p!pm15IanmW p
npm11BmW p

m1. ~3.73!

It can be shown that$pnpm% and $pm% are all linearly independent functions onT̂ m which
means that Eq.~3.72! follows from Eq.~3.73!. j

Before stating the final result, one has to determine the form of the generators involved
generators ofP can be obtained by differentiating the explicit expression~A.22! for the represen-
tation with respect to a parameter of a one-parameter subgroup ofP . The generators of ‘‘internal’’
symmetry transformations are recognized by their commutativity with all elements ofP ~and their
general form is determined using the methods described in part 2!. This gives

Lemma 2:
A generator ofL is of the form

A~p!5B~p!1Iamnp
m
1

i

]

]pn
, B@al#@a8l8#~p!5daa8Bll8

a
~p!, ~3.74!

where B(p) is a Hermitian matrix; $amn% is a real antisymmetric matrix(amn52anm).
A generator ofT is of the form
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ent

sizing

-

spaces

the
of
ce

tructed
vely for

161O. Pelc and L. P. Horwitz: Coleman–Mandula in higher dimension

¬¬¬¬¬¬¬¬¬¬
A~p!5Iamp
m, ~3.75!

where$am% is a real vector.
A generator of an internal symmetry is of the form

A~p!5B, B@al#@a8l8#5Baa8dll8 . ~3.76!

Now it is possible to state and prove the final result.
Proposition 3: A self adjoint element A ofA is a linear combination of generators ofP and

generators of internal symmetries.
Proof:

N50: From lemma 1 we obtain:

A~p!5A~N!~p!5Ianp
n1B, B@al#@a8l8#5Baa8dll8 ~3.77!

and this is recognized as a sum of a generator of translations~the first term! and a generator
of an internal symmetry~the second term!.
N51: From lemma 1 we have

Am
~1!~p!5Ianmp

n, anm52amn ~3.78!

which implies that

A~p!5A~0!~p!1Ianmp
n
1

i

]

]pm
. ~3.79!

The second term is the space part of a generator ofL. Subtracting this generator fromA one
obtains a zero-order~self adjoint! element ofA which was already shown to satisfy the statem
of the proposition.
N.1: anmW is symmetric inmW @by Eq. ~3.69!#. Combining this with Eq.~3.72! one obtains:

anm1m2•••52am1nm2•••52am1m2n•••5am2m1n•••5am2nm1•••52anm2m1•••52anm1m2•••

soanmW 5 0 which implies thatAmW
(N) 5 0 in contradiction to the fact thatA is of orderN. ThusN is

either 0 or 1. j

IV. COMMENTS AND SUPPLEMENTS

In this section we discuss the assumptions of the theorem proved in this work, empha
the prospects for relaxing some of them.

A. Other signatures and orbits

The theorem was proved for signatures of the type~r ,1! ~assumption 2! and for representa
tions with momentum support in the forward light cone~assumption 3!. All this was needed to
assure the compactness of the little group, which implies that its irreducible representation
$H~La!% are finite-dimensional. The finiteness of the dimension of the spaces$H(m)% ~which are
direct sums of$H~La!%! is essential to all of part 2 of the proof and also plays a key role in
construction of the base of plane-wave states.15 It was used to construct, using the method
induced representations, a spaceFa in which the generators ofP are represented. Such a spa
can be constructed for any representation which can be built by asequenceof inductions, starting
with a finite-dimensional representation. Perhaps the proof of the theorem may also be cons
for such types of representations by applying the methods described in chapter 3 successi
each stage of induction.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The infinite dimension of$H~La!% may cause another complication. In this case, the spect
sa ~of the operatorJ used to represent$H~La!% and a space of functions—see Appendix A 3! is
not necessarily discrete. If it is continuous,V ~defined in Appendix A 4! is not a countable union
of orbits so to considerV as a smooth separable manifold, one must include a differential stru
on sa ; this must be taken into account when checking the smoothness of functions onV. If the
spectrum is mixed,V is a union of manifolds of different dimension.

Finally, the choice of signature~r ,1! and momenta in the forward light cone has also
physical significance. In this regionp0 is bounded from below~positive!, thus suitable to be
interpreted as the energy. In any other case@except for the forward lightlike momenta in the ca
of signature~r ,1!# the orbits are unbounded in all directions, and therefore the canonical ene
not well defined.@Recall that the energy is distinguished from other components of the mome
by being positive and this in an invariant~and therefore well defined! statement only in the case o
signature~r ,1!.#.

The restrictionr>3 was used twice. In lemma 9 of part 2 of the proof, it assured the exist
of a one-parameter subgroup of the little group of a timelike momentum. It also assured that
projective representations ofP are~equivalent to! true representations~this is true for any signa-
ture (r ,s) with r1s>317!. This was the main motivation in replacingP 08 with its covering group
P . The problem with projective representations is that they do not lead naturally to a repre
tion of the generators of the group.

B. The particle-type spectrum

In part 1 of the proof it was assumed that the mass spectrum is bounded; for part 2,H(m)
must be finite-dimensional, which implies that the number of particles with the same mass m
finite; and for part 3@Eq. ~3.70!# the mass spectrumM must consist of isolated points. Combinin
all this, one finds that the number of particle types must be finite.

It might be possible to extend part 1 of the proof to an unbounded mass spectrum~as sug-
gested by Coleman and Mandula1!, so, considering the other restrictions, the mass spectrum c
be an infinite increasing sequence, diverging to infinity. But some modifications are needed.
~Sec. III A! that the requirement of a bounded spectrum was used to show the existenc
sufficient variety of physical momenta outside the regionR̄øR† ~lemma 3!. In the case of an
unbounded mass spectrum,RmøRm

† is spread over all ofT̂ m for Dp0 in the forward light cone,
therefore the required momenta must be looked for between the bands ofRmøRm

† . The width of
the bands is determined byr ~the radius of the support of the functionf used to constructf •A!,
but it also depends on the angle of intersection ofT̂ m andT̂ ma

~see Fig. 3!, therefore it cannot be
bounded uniformly. Roughly speaking, the width increases with the distance from the origin
the intervals between the masses don’t increase accordingly, they will start to overlap far e
from the origin. With these considerations it is possible to show:

Propositions:
If M5$ma% is an increasing sequence andlima→` ma11/ma51 (which means that$ma%

increases slower than any geometric series) then, for timelikeDp and fora sufficiently large, the
(elliptic) bands overlap completely.
This implies that under the assumptions of the proposition,T̂ m\R̄ is bounded, therefore forp08
large enough, the momenta satisfying Lemma 3 do not exist, so the proof for this case c
proceed as described in Sec. III.

Attempts to deal with this problem can be made in two different approaches.

~1! Investigation of the conditions onM in which the existence of the required momenta can
assured: Using the same methods used to prove the above proposition one may e
conditions onM for which at least on one-half ofT̂ m the bands occupy arbitrarily sma
portions ofT̂ m . This seems sufficient to show the existence of the required momenta, b
proof may be quite complicated technically.
J. Math. Phys., Vol. 38, No. 1, January 1997
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~2! Investigation of conditions onM in which, for a givenr.0 the required momenta exist fo
p08 in some region ofT̂ m that approaches all ofT̂ m at the limit r→0. The arguments of par
1 imply now that the support off •A is outside this region. It remains to show what this sa
aboutA.

C. The assumptions on the scattering amplitudes

The regularity of the scattering amplitudes is used only in lemma 3 of part 2 of the proo@see
Eq. ~3.39!#, to state that the integrands in the right-hand side of

2 Im~h†^p2uTup2&h!5 (
m50

` E
T̂ F

m
dmm~qm!~2p!dddS (

1

m

qj2(
1

2

pi D h†^p2uTuqm&†^qmuTup2&h

are non-negative and thus so are the integrals. If an analogous argument for distributions
given to show that the integrals are non-negative~in the sense of generalized functions! then it will
not be necessary to assume anything about amplitudes between states with more than t
ticles.

The analyticity of^T~2,2!& is used many times but most of the time only the analyticity
elastic scattering amplitudes~those connecting states with the same types of particles! is really
needed. The only use of the full amplitude is to show theS~2,2!-invariance ofF~2! and there it is
enough to assume that it is smooth. However the distinction between elastic and not
amplitudes seems rather artificial, since by performing an internal transformation~mixing particle
types! the ‘‘new’’ elastic amplitudes are linear combinations of ‘‘old’’ inelastic amplitudes. S
an argument might be used to show that the analyticity of the elastic amplitudes in fact impli
analyticity~or at least the smoothness! of ^T~2,2!&. Realizing that the ‘‘diagonal’’ of̂T~2,2!& consists
only of elastic amplitudes, this seems somehow related to the result that a sesquilinear f
determined by its diagonal, i.e., as a polarization of the form:

~x,y!5
1

2
@~x1y,x1y!2 i ~x1 iy ,x1 iy !#1

i21

2
@~x,x!1~y,y!#.

D. Supersymmetry

The proof of the theorem refers actually only to the algebra of generators of symmetry~and
not to the symmetry group!, therefore most of it can be applied also to supersymmetric genera
as observed in Ref. 4. To include supersymmetry, one has to modify slightly the definitionA
~at the beginning of Sec. III!. In this caseA is a direct sum

A5A0%A1PL3~F~1!;F~1!8!

and the ‘‘even’’ and ‘‘odd’’ elements are distinguished by their action inF~1!3F~1!. Forw1 either
purely even~bosonic! or purely odd~fermionic!, andw2 arbitrary,~IV B ! is replaced by

Aw:5~A^ I6I ^A!w5~Aw1! ^ w26w1^ ~Aw2!, ~4.1!

where the minus sign refers toA andw1 both odd and the plus sign to all other combinations~this
form can be deduced from the Fock representation of the space of states, where the genera
bilinears of creation and destruction operators!. Compared to the original definition~in Sec. III!,
we observe thatA0 is the originalA and therefore the theorem applies fully toA0. As for all
of A, among its properties enumerated at the beginning of Sec. IV, only the last one
modification:
48. If APAi , BPA j , ~i , j50 or 1!, F~1! is invariant underA andB andAB,BAPL3~F~1!;F~1!8!
thenAB2(21)i j BAPA.
J. Math. Phys., Vol. 38, No. 1, January 1997
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This property was not used in part 1, so proposition 1 holds for all ofA. In particular, all the
generators have the form~Eq. 3.69! and commute with the ‘‘mass’’ operatorP2. Property~48!
entered the proof only in its second part, after lemma 6, where it lead to the conclusion thaB*
is a Lie algebra. This obviously translates here to the statement thatB* is agradedLie algebra.
Lemma 6 of part 2~together with the form ofA0, as given by the theorem! was the starting point
of Ref. 4 and since it continues to hold in general dimension, one can proceed as in Re
determine the general form ofA.

V. CONCLUSIONS

In this work we investigated the generalization of the Coleman–Mandula theorem to h
dimension. It states that the group of symmetries of the~nontrivial, Poincare´-invariant! scattering
matrixS can contain, in addition to the Poincare´ symmetries, only Poincare´-invariant symmetries
~note that this does not exclude a richer symmetry of the action!. The theorem was proved fo
arbitrarily higher spatial dimension and for a finite number of particle types, all of them mas
Further generalization requires more involved analysis and this was discussed in some deta
last section.

To put the analysis on a firm basis, with minimal loss in clarity, we used a rigorized ve
of the Dirac formalism, developed in Ref. 14 and applied in Ref. 15 to scattering scenarios. U
other rigorous formulations of quantum mechanics, in this formalism it is possible to us
complete set of plane-wave states’’ to decompose expressions into ‘‘vector components
‘‘matrix elements’’ with almost the same flexibility as in the original Dirac formalism. This wo
should also be seen as a demonstration of this flexibility.

APPENDIX A: SUMMARY OF NOTATION AND CONCEPTS

1. The group P (r ,s )

~1! P 0[P 0(r ,s) is the restricted~identity component of! inhomogeneous pseudo-orthogon
group of signature (r ,s).

~2! L0[O 0(r ,s) is the homogeneous part ofP 0(r ,s).
~3! T [T r1s is the translation group inRr1s.
~4! P andL are the universal covering groups ofP 0 andL0, respectively.

P ~P 0! is the semidirect product ofT andL~L0!. The theorem is proved fors51 and r>3
~assumption 2! and these are the values assumed also in the Appendices. For these
L05L/Z2.

2. The momentum space

~1! T̂ , ‘‘the momentum space’’: the dual of the translation groupT .
~2! T̂ m , ‘‘a mass shell’’: an orbit ofL in T̂ ; assumed to be in the forward light cone~assumption

3 of the theorem!, so the elements$p% of T̂ m are characterized by the ‘‘mass’’m 5 Apmp
m.

~3! mm : theL-invariant nontrivial Radon measure onT̂ m ~unique up to a multiplicative con
stant!; it is nondegenerate, in the sense that it does not vanish on open sets.

~4! M, ‘‘the one-particle mass spectrum’’: the set of masses of the particles of the sy
assumption 4 of the theorem implies that it is a finite set.

~5! T̂ F : 5 ømPMT̂ m : the physical region inT̂ for one-particle states.

3. The space Ha of a-states

A particle typea is identified with an irreducible representationUa of P in the space of
one-particle states.Ha—‘‘the a-states space’’ is the representation space ofUa ~the space of all
possible states in which there is one particle and it is of typea!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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After a spectral decomposition ofHa , one gets:

Ha5 %

lPsa

Lmma

2 ~ T̂ ma
!, ~A1!

where

~1! T̂ ma
, ‘‘the ma-mass shell’’ is the spectrum of the momentum operatorP in Ha .

~2! sa is the spectrum of the operatorJPUP ~whereUP denotes the universal envelopin
algebra of the Lie algebra ofP ! which supplementsP to a complete system of commutin
observables inHa ; assumption 3 of the theorem implies thatsa is a finite set;

so, for eachfPHa

@Ua~Pm! f #~p,l!5pm f ~p,l!, ~A2!

@Ua~Ji ! f #~p,l!5l i f ~p,l!. ~A3!

4. The one-particle space H (1)

H ~1!5 %

aPI
Ha5Lm

2 ~V! ~A4!

where

~1! I is the set of particle types~a finite set according to assumption 4 of the theorem!;
~2! V: 5 $(p,l,a)ua P I ,l P sa ,pP T̂ ma

% ~it is anr -dimensional separable smoothmanifold!;
~3! m is the ~nondegenerate Radon! measure onV defined by

E
V
dm~p,l,a!•••5(

aPI
(

lPsa

E
T̂ ma

dmma
~p!••• ~A5!

Considering an element ofH ~1! as a vector-valued function on the momentum spaceT̂ , we write:

H ~1!5 %

mPM

Lmm

2 ~ T̂ m ,H~m!!, ~A6!

where

~1! I (m):5$aPI uma5m% is the set of particle types with massm;
~2! V(m):5$[al] uaPI (m),lPsa% ~this is a finite set according to assumptions 3 and 4 of

theorem!;
~3! N(m) is the number of elements inV(m);
~4! H(m)5CN(m) ~theN(m)-dimensional complex Hilbert space!.

Whenm 5 Apmp
m,I (p),V(p),N(p),H(p) stand forI (m), etc.

With this approach,m can be seen as a measure onT̂ F :

E
V
dm~p,l,a!•••5E

T̂ F

dm~p! (
@al#PV~p!

••• , ~A7!

where

E
T̂ F

dm~p!••• :5 (
mPM

E
T̂ m

dmm~p!••• . ~A8!
J. Math. Phys., Vol. 38, No. 1, January 1997
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5. The full space of states

Then-particle spaceH s
(n) is a closed subspace of

H ~n!5 ^

1

n

Lm
2 ~V!5Lmn

2
~Vn! ~A9!

@the bar denotes closure inLmn
2 (Vn)# where

~1! Vn:5V3•••3V ~n factors!
~this is a separable smooth manifold!;

~2! mn is the ~L-invariant nondegenerate Radon! measure defined by

E
Vn
dmn~pn,ln,an!••• :5E

V
dm~p1 ,l1 ,a1!•••E

V
dm~pn ,ln ,an!••• ~A10!

or, in vector notation:

E
T̂ F
n
dmn~pn!••• :5E

T̂ F

dm~p1!•••E
T̂ F

dm~pn!••• , ~A11!

whereT̂ F
n :5T̂ F3•••3T̂ F ~n factors!.

The elements ofH s
(n) are those elements ofH (n) which have the right symmetry properties wi

respect to exchange of identical particles.
The spaceHs of all physical states is

Hs5 %

n50

`

H s
~n! ~A12!

and thus it is a closed subspace of

H5 %

n50

`

H ~n!. ~A13!

For fPH we write

f5(
n

f n, f nPH ~n!. ~A14!

For f nP ^ 1
nH~1! we write

f n5 ^

i
f i
n , f i

nPH ~1!. ~A15!

For wPH(n), pnPVn, w(pn) is a vector in

H~pn!:5 ^

1

n

H~pi !. ~A16!
J. Math. Phys., Vol. 38, No. 1, January 1997
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6. Gel’fand triples

The Gel’fand triples~see Sec. II A! for the various spaces defined above are obtained
defining:

for Ha :Fa :5 % lPsa
D~ T̂ ma

!

for H ~1!:F~1!:5D~V!5 % aPIFa

for H ~n!:F~n!:5D~Vn!

for H s
~n! :Fs

~n! :5F~n!ùH s
~n!

for H:F:5 % n50
` F~n!

for Hs :Fs :5FùHs5 % n50
` Fs

~n! . ~A17!

~The direct sums are as defined for locally convex spaces and are the sets offinite sums of
elements.!

The commuting set of observables includes the components of the momentum operaPm

therefore the basis elements are ‘‘plane waves’’:

$^pnuun50,1,...,pnPT̂ F
n% ~A18!

and the expression that plays the role of the identity operator is

I :5 (
n50

` E
T̂ F

n
dmn~pn!upn&^pnu. ~A19!

The matrix elementŝqmuAupn& of an operatorAPLx~F;F8! are the generalized ‘‘values’’ of the
kernels^A(m,n)&PD8(Vm3Vn) satisfying

~cuAuw!5 (
m,n50

` E
T̂ F

m
dmm~qm!E

T̂ F
n
dmn~pn!~cuqm&^qmuAupn&^pnuw!. ~A20!

Sincew(pn) is a vector inH(pn)[^1
nH(pi), Eq. ~A20! implies the following interpretation:

^pnuw! ~and therefore alsôpnu) is a column vector of dimension dimH(pn);
~cuqm& ~and therefore alsouqm&! is a row vector;
^qmuAupn& is a matrix operator fromH(pn) toH(qm).

7. The representation U of P

a. The irreducible representation U a in Ha

We denote

pm :5~m,0,...,0! ~‘‘the rest frame’’! ~A21!

and choose a smooth functionp°Lp from T̂ m to L obeying:

~1! Lpm
5 1 ~the unit matrix!,

~2! Lppm5p, ;pPT̂ m .

NowUa is @for all ~L,a!PP , fPHa , p P T̂ ma
#

J. Math. Phys., Vol. 38, No. 1, January 1997
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@Ua~L,a! f #~p!5eip•aLa~D~L,p!! f ~L21p!, ~A22!

whereD~L,p! is defined by

D~L,p!5Lp
21LLL21pPL~pma

! ~A23!

andLa is a continuous unitary irreducible matrix representation of the little groupL(pma
), which

in this case is the universal covering group ofO (r ).

b. The representation in H

The representation inH ~1! is U (1)5 % aPIU
a so @for all ~L,a!PP , fPH ~1!, pPT̂ F#

@U ~1!~L,a! f #~p!5eip•aL ~p!~D~L,p!! f ~L21p!, ~A24!

where L (p)5 % aPI (p)L
a is the ~reducible! unitary representation ofL(pm) in H(m) (m

5Apmp
m).

The representationU (n) in ^1
nH ~1! is

U ~n!~ f 1^ ••• ^ f n!5~U ~1! f 1! ^ ••• ^ ~U ~1! f n!, ; f iPH~1!. ~A25!

This is extended toH (n) by continuity and toH by linearity.

c. The matrix elements of U (1)(P )

The action ofU ~1! on the base vectors is

U ~1!~L,a!up&5uLp&eia•LpL ~p!~D~L,Lp!! ~A26!

and with components:

U ~1!~L,a!up,l,a&5eia•LpLa~D~L,Lp!!l8luLp,l8,a&. ~A27!

The matrix elements ofU ~1! are

^p8uU ~1!~L,a!up&5eia•LpL ~p!~D~L,Lp!!dm~p82Lp! ~A28!

and with components:

^p8,l8,a8uU ~1!~L,a!up,la&5eia•Lpda8aL
a~D~L,Lp!!l8ldm~p82Lp!. ~A29!

8. Generators of symmetry

A one-parameter symmetry groupg(t) of S is represented inH (n) by a unitary representation
U (n). The generatorAg

(n) of U (n)(g(t)) is defined by

~cuAg
~n!w&:5

1

i

d

dt
~c,U ~n!~g~ t !!w!U

t50

, ;w,cPF~n!. ~A30!

Ag[Ag
1 is assumed~assumption 5 of the theorem! to be an element ofLx~F~1!;F~1!8! ~a continuous

antilinear map fromF~1! to F~1!8! and it is self-adjoint. Ifg(t) is a subgroup ofP , Ag is, by
construction ofF~1!, a continuous operator inF~1! ~and therefore certainly satisfies assumption!.

Between elements of%1
nF~1!:

Ag
~n!5~Ag^ I ^ ••• ^ I !1~ I ^Ag^ ••• ^ I !1•••1~ I ^ I ^ ••• ^Ag!. ~A31!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Being a generator of symmetry,Ag satisfies~whenS*c, SwPF!

~S*cuAgw&5^AgcuSw!. ~A32!

In particular, ifS andAg are operators inF then

@Ag ,S#50 in F. ~A33!

Also, if Ag is acontinuous operator inF ~e.g., a generator ofP ! then, Eq.~A33! holds, with the
commutators defined to be

@Ag ,S#5Ag8S2SAg , ~A34!

whereAg8 is the dual ofAg andS is considered as an operator fromF to F8.

9. Scattering amplitudes

TheS-matrixS, being unitary, can be identified as an element ofLx~F;F8!. As such, it has a
corresponding kernel̂S& ~more precisely—kernelŝS(m,n)&PD(Vm3Vn)!.

The translation invariance ofS implies that^S& has the following form

^S~m,n!&5^I ~m,n!&2 i ~2p!dddS (
1

m

qj2(
1

n

pi D ^T~m,n!&, ~A35!

whered5r11 is the dimension of the momentum space,2i (2p)d is a conventional normaliza
tion factor and^T& is a generalized function on the submanifold ofVm3Vn defined by the
constraint

(
1

m

qj2(
1

n

pi50. ~A36!

~This is the precise formulation of energy-momentum conservation.! The values of̂ T& are called
‘‘scattering amplitudes.’’

SinceS is L-invariant,^T& depends only onL-invariant quantities. In particular, its depen
dence on the momenta is only throughL-invariant functions of the momenta.

The unitarity ofS leads to
The Optical Theorem:

^pnuTupn&2^pnuTupn&†5 i (
m50

` E
T̂ F

m
dmm~qm!~2p!dddS (

1

m

qj2(
1

n

pi D ^pnuTuqm&†^qmuTupn&

~A37!

where a dagger denotes the Hermitian conjugation of~matrix! maps between the spacesH(pn).

APPENDIX B: TWO-PARTICLE SCATTERING

1. The L-invariant variables

The scattering amplitudes depend on the momenta throughL-invariant functions. We show
here that for the scattering between two-particle states

~p1 ,p2!→~p18 ,p28! ~B1!
J. Math. Phys., Vol. 38, No. 1, January 1997
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~where the momenta are, according to assumption 3 of the theorem, in the forward light!
these functions can be chosen to be the traditional

s:5~p11p2!
2 ~B2!

and

t:5~p182p1!
2. ~B3!

Explicitly we show that s and t determine the momenta in the process~B1! up to an
L-transformation~represented by anL0 transformation!.

We start with the identity

~p11p2!
25m1

21m2
212E1E222pW 1•pW 2 . ~B4!

SincepW 1•pW 2<upW 1uupW 2u,E1E2 , we have (p11p2)
2.0, which means thatp11p2 is timelike and

can be transformed, by anL0-transformation to the ‘‘rest frame,’’ wherepW 11pW 250. Then one can
perform a rotation~an element ofO 0(r ), which is anL0-transformation!, to alignpW 1 along thee1
axis, obtainingpW 15(p,0,...,0). TheequalitypW 11pW 250 is not affected by this transformation, s
pW 25(2p,0,...,0) and theconclusion is that the initial state is characterized by one variablep, that
can be expressed by the invariant variable

s5~p11p2!
25m1

21m2
212A~m1

21p2!~m2
21p2!22p2 ~B5!

@if m15m25m, this simplifies tos54(m21p2).#
Momentum conservation gives

pW 181pW 285pW 11pW 250. ~B6!

Substituting (p8)2 5 (pW 18)
2 5 (pW 28)

2 in the energy conservation equation, one obtains:

A~~m18!21~p8!2!1A~~m28!21~p8!2!5A~m1
21p2!1A~m2

21p2! ~B7!

and this has at most one solution for~p8!2. ~Such a solution exists iffAs> m18 5 m28 ; for an elastic
scattering (mi8 5 mi) this isp85p.!

It is left to determine the direction ofpW 18 . Rotating aroundpW 1, one can bringpW 18 to the (e1e2)
plane ~notice that such rotation doesn’t affectpW 1 ,pW 2 and p11p2!. So, to characterize the fina
state, it is enough to give the angle betweenpW 1 andpW 18 , and this can be expressed by the invaria
variable t5(p12p18)

2.

2. The S(2,2)-invariance of F(2)

In this subsection we show thatF~2! is S~2,2!-invariant and comment about theS-invariance of
F.

First consider the support of (Sw)m for an arbitrarywPF. SinceS conserves energy an
momentum, (p18 ,...,pm8 ) can be in the momentum support of (Sw)m only if there exists an intege
n and (p1 ,...,pn) in the momentum support ofwn that satisfies(1

mpj8 5 (1
npi . For eachn, the

momentum support$(p1 ,...,pn)uw
n(p1 ,...,pn)Þ0% of w is bounded inT̂ F

n ~where T̂ F is the
‘‘physical region’’ in T̂ , see Appendix A 2! and thus$(1

npi uw
n(p1 ,...,pn)Þ0% is bounded in the

momentum spaceT̂ . w has a finite number of nonvanishing components$wn%, thus
$(1

npi un50,1,...,wn(pn)Þ0% is also bounded~being a finite union of bounded sets!. So we con-
clude that for (p18 ,...,pn8) in the momentum support of (Sw)m, (1

mpj8 is restricted to a bounded se
in T̂ , and in particular,(1

mEj8 is bounded. But$pj8% are in the forward light cone, soEj8 . 0, ; j ,
J. Math. Phys., Vol. 38, No. 1, January 1997
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and thus eachEj8 is bounded separately.pW j8 is bounded byEj8 sopj is bounded inT̂ . Therefore the
momentum support of (Sw)m is bounded inT̂ F

m and thus compact; the finite dimension
H(p18 ,...,pm8 ) then implies that (Sw)m has compact support inVm.

The smoothness ofS(2,2)w[(Sw)2, for wPF~2! follows from the analyticity of the scattering
amplitudeŝ T~2,2!&, so we can conclude thatS~2,2!w is in F~2!.

If, in addition, all the scattering amplitudes are smooth, one can show thatF is S-invariant.
ForwPF, the smoothness of the scattering amplitudes implies that (Sw)m is smooth and the abov
analysis shows that supp(Sw)m is compact, which means that (Sw)mPF (m). It is left to show that
(Sw)m50 for m large enough. This follows from

(
1

n

Ei5(
1

m

Ej8>(
1

m

ma j
>m inf~M! ~B8!

since Inf~M! is positive~according to assumption 3 and 4 of the theorem!, so form large enough,
Eq. ~B8! cannot be satisfied.

SYMBOL LIST

A The space of symmetry generators~Sec. III!.
B The translation invariant self adjoint elements ofA ~Proof, Part 2!.
B

` The smooth elements ofB ~Proof, Part 2!.
B* The traceless parts of elements ofB` ~Proof, Part 2!.
D~L,p! 5 Lp

21LLL21p ~Appendix A 7 a!.
D(X) The space of smooth functions onX with compact support.
F,Fs ,F

(n),Fs
(n) The F spaces in the corresponding Gel’fand triples~F,H,F8! ~see Ap-

pendix A 6 and the list ofH spaces below!.
H The ~Hilbert! space of states~Sec. II A!.
Hs The space of physical~symmetrized! states~Sec. II A!.
H (n) The space ofn-particle states~Sec. II A!.
Hs

(n) The space ofn-particle physical states~Sec. II A!.
H(p) The representation space ofL(p) ~Appendix A 7 b!.
H(m) The representation space ofL(pm) ~Appendix A 7 b!.
L The universal covering group of the connected~generalized! Lorentz

group ~Appendix A 1!.
L(p) The little group~stability group! of pPT̂ .
L (p) The representation of the little groupL(p) ~Appendix A 7 b!.
L(E,F) The space of~continuous! linear maps fromE to F.
Lx(E,F) The space of~continuous! antilinear maps fromE to F.
Lp Defined in Appendix A 7 a.
M The ‘‘mass’’ spectrum~Appendix A 2!.
m~p,l,a! The measure onV ~Appendix A 4!.
V The combined spectrum ofPm, J and â in H~1! ~Appendix A 4!.
V(m) 5$[al] uaPI (m),lPsa% ~Appendix A 4!.
P The universal covering group of the connected~generalized! ~Poincare´!

group ~Appendix A 1!.
pm 5~m,0,...,0! ~‘‘the rest frame’’!—a representative of the orbitT̂ m ~Appen-

dix A 7 a!.
S TheS-matrix ~Sec. II A!.
T̂ ‘‘The momentum space’’—the dual of the translation group~Appendix

A 2!.
T̂ m An orbit of L in the momentum spaceT̂ ~Appendix A 2!.
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T̂ F The spectrum of the momentum operator inH~1! ~Appendix A 2!.
U ~1! The representation ofP in H~1! ~Appendix A 7 b!.
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Geometrical stochastic control and quantization
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Department of Mathematics, Northwestern University,
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A class of diffusion processes controlled by the geometry of the manifold on which
they evolve is considered. The kinetic energy of such diffusions is shown to be a
geometric object expressed in terms of the curvature and torsion tensors. This gives
rise to an action functional leading to a variational principle, from which a non-
trivial critical geometry with nonvanishing torsion emerges. The resulting criticality
condition is related to the Schro¨dinger equation in a manner that reproduces the
features of Nelson’s stochastic approach to quantum mechanics. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!01201-2#

I. INTRODUCTION

In Nelson’s stochastic mechanics,1,2 the motion of a particle is described by a diffusion on
Riemannian manifoldM serving as the configuration space. Nelson’s diffusions are related t
solutions of the Schro¨dinger equation. In particular, they lead to the same probabilistic predict
about the position of the particle as the corresponding Schro¨dinger wave function. As was dem
onstrated in Nelson’s original paper,1 such diffusions satisfy an equation of motion, known as
Nelson–Newton law, which resembles Newton’s second law of classical mechanics:mass
3acceleration5force. This parallel between stochastic and classical~deterministic! mechanics
was further elaborated by Yasue3,4 and Guerra and Morato,5 who obtained stochastic versions
the variational principles of mechanics~see also Refs. 2, 6!. Another variational principle, leading
to critical paths on the manifold of probability densities, was described by Lafferty in Re
Furthermore, a variational principle in relativistic stochastic mechanics was established b
present author in Ref. 8.

In each of these approaches the objects controlling the diffusion, be it the configuration
trajectories~or rather variations thereof!, forward velocity fields, or density paths, are intrinsica
related to the diffusion itself. By contrast, in the present paper control is achieved by mean
geometric object independently of the diffusion, the evolution of the latter being fully determ
by the geometry of the manifold.

Namely, the diffusion onM is obtained by isometrical rolling of the manifoldM along a
standard Brownian motion inRdim M, which can be described by the system of stochastic dif
ential equations~7!. This construction is also known as stochastic development.9 It generalizes the
deterministic concept of rolling a Riemannian manifold along a smooth curve. The only geom
object directly involved in~7! is a metrical connectionGjk

i . ~The construction also involves a
auxiliary orthonormal framezj

i , but the resulting diffusion is independent of it.! We therefore
identify the connection coefficientsGjk

i as possible control parameters, subject to the condition
the connection should be metrical, which can be regarded as a constraint on the para
Alternatively ~and equivalently!, the components of the torsion tensor can be used as co
parameters.

In our approach the form of the action functional requires that the notion of kinetic en
should be extended to the case of diffusionsx(t) of type ~7! and expressed in purely geometr
terms. The definition of kinetic energy in Sec. III is influenced by the treatment in Ref. 2, Se

a!Current address: Division of Mathematics, University of Glamorgan, Mid Glamorgan CF37 1DL, Wales, United
dom. Electronic mail: tzastawn@glam.ac.uk
0022-2488/97/38(1)/173/9/$10.00
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However, since we allow arbitrary~not necessarily symmetric! metrical connections, a differen
class of diffusionsx(t) is involved. Also, our argument resting on the Itoˆ formula is quite different
and mathematically rigorous. As a result, kinetic energy becomes a geometric object expre
terms of contractions of the curvature and torsion tensors and their covariant derivatives; se~16!.
This resembles formula~9.4! in Nelson’s book2 in that the Pauli–DeWitt curvature termR/12
also appears. In Sec. IV a vector potential is introduced by invoking the Cameron–Girsa
Martin theorem to change the underlying probability measure.

In Sec. V the criticality condition for the action as a functional of the connection coeffici
~or of the torsion tensor! is found. It is remarkable that the critical metrical connection is gener
nonsymmetric, leading to a nontrivial geometric structure onM with nonvanishing torsion. A new
variational principle is thereby established, based on controlling the geometry of the ma
rather than the diffusion itself. Finally, this is shown to lead to the Schro¨dinger equation, repro-
ducing the results of Nelson’s stochastic mechanics in a new setting.

The physical implications can probably be best understood by drawing an analogy~even if
quite remote! with general relativity, where the dynamics is also embodied in geometry, w
particle trajectories are thought of as passive~kinematical! participants evolving as prescribed b
geometry. Incidentally, the geodesics representing particle trajectories in general relativity
obtained by isometrical rolling along straight lines. This is clearly in analogy with the constru
of diffusions by isometrical rolling of the manifold along Euclidean Brownian motion.

II. NOTATION AND PRELIMINARY INFORMATION

Throughout this paperM will denote a Riemannian manifold of finite dimension with met
tensorgi j (x), wherexPM . The coefficientsgjk

i (x) of the Levi-Civitàconnection are defined by

g jk
i 5 1

2g
il ~] jglk1]kgjl2] lgjk!, ~1!

gi j being the inverse matrix togi j . Here and in what follows] i5]/]xi and the standard summa
tion convention on upper and lower indices applies. The corresponding covariant derivativ
be denoted by“i . For example, for a vector fieldAi ,

“ jA
i5] jA

i1g jk
i Ak.

The curvature tensorRi jkl and the scalar curvatureR are defined by

Ri jkl5gim~]kg l j
m2] lgk j

m1gkn
m g l j

n2g ln
mgk j

n !, R5gil gjkRi jkl .

The geodesic equation reads as

ẍi1g jk
i ~x!ẋ j ẋk50.

For any xPM and any tangent vectorvPTMx the unique geodesic passing throughx with
velocity v when t50 will be denoted byh(t;x,v). This gives rise to the exponential map

expx v5h~1;x,v !,

which is a diffeomorphism from a neighborhood of 0 inTMx to a neighborhood ofx in M . The
componentsv i of v can thus be used as local coordinates in a neighborhood ofx, known as the
normal coordinates atx ~NCx for brevity!. This means that

~expx v ! i5v i , in NCx .

In particular, since expx v5x for v50, we havexi50 in NCx .
J. Math. Phys., Vol. 38, No. 1, January 1997
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According to the well-known Cartan lemma, in normal coordinates the derivatives o
metric tensorgi j can be expressed in terms of the components of the curvature tensorRi jkl and
their derivatives. In particular,

] igjk~x!50, in NCx , ~2!

] i] jgkl~x!5 1
3„Rikl j ~x!1Rjkl i ~x!…, in NCx . ~3!

We shall denote byGjk
i the coefficients of an arbitrary metrical connection onM , that is, one

that satisfies the condition

] igjk5G i j
l glk1G ik

l gjl , ~4!

but is not necessarily symmetric, so that the torsion tensor,

T jk
i 5G jk

i 2Gk j
i , ~5!

will be nonzero, in general. In fact, the unique metrical connection that is symmetric, i.e. suc
G jk
i 5Gk j

i , is the Levi-Civitàconnection with coefficientsg jk
i defined by~1!. The converse rela-

tionship to~5! expressingGjk
i in terms ofT jk

i is slightly more complicated and reads as

G jk
i 5 1

2g
il ~] jglk1]kgjl2] lgjk!1 1

2~T jk
i 1gkmg

inT n j
m1gjmg

inT nk
m !. ~6!

The above formula~6! together with~5! defines a one-to-one correspondence between tor
tensors and metrical connections onM .

Now letw(t) be a standard Brownian motion inRdim M. It can be transferred to the Rieman
ian manifoldM with the aid of a metrical connectionGjk

i by a procedure known as stochas
development or isometrical rolling of the manifold alongw(t). The resulting processx(t) onM is
defined by the system of stochastic differential equations~of the Stratonovich type, as designate
by the symbol+!,

dxi5zj
i +dwj ,

dzj
i52Gkl

i ~x!zj
l +dxk. ~7!

Here the auxiliary vectorszj form an orthonormal frame inTMx . It follows by a standard
argument thatx(t) is a Markovian diffusion onM with the generator

D5 1
2~g

i j ] i] j2G i] i !, ~8!

whereG i5gjkG jk
i . The probability density ofx(t) with respect to the measureAgdx generated by

the Riemannian metric onM , whereg is the determinant ofgi j , will be denoted byr(x,t). This
means that

Ef„x~ t !…5E
M
f ~x!r~x,t !Ag~x!dx,

for any bounded Borel measurable functionf on M . The density satisfies the forward diffusio
equation~Fokker–Planck equation!,

] tr5D * r, ~9!

where] t5]/]t andD * is the formally adjoint operator toD with respect to the measureAgdx on
M , that is,
J. Math. Phys., Vol. 38, No. 1, January 1997
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E
M

@D* f ~x!#g~x!Ag~x!dx5E
M
f ~x!@Dg~x!#Ag~x!dx,

for any two compactly supported smooth functionsf andg onM .
For details on stochastic calculus on manifolds, in particular Brownian motion and stoc

development, the reader is referred to Refs. 9–12. All relevant information about Riema
manifolds and normal coordinates can be found, for example, in Ref. 13.

III. THE KINETIC ENERGY OF A DIFFUSION

Let Gjk
i be a metrical connection onM andx(t) the corresponding diffusion onM as defined

by ~7!. We consider the expression~independent of local coordinates!

Uh„x~ t !…5 1
2gi j „x~ t !…Et$@expx~ t !

21 x~ t1h!# i@expx~ t !
21 x~ t1h!# j%. ~10!

Here Et$•%5E$•ux(t)% is the conditional expectation, givenx(t). Since the trajectories of a
diffusion are continuous,Uh„x(t)… is defined for every sufficiently small positiveh for a.e.
trajectory ofx(t). In normal coordinates the above expression takes the form

Uh„x~ t !…5 1
2gi j „x~ t !…Et$x

i~ t1h!xj~ t1h!%, in NCx~ t ! . ~11!

If x(t) were a differentiable curve onM with velocity ẋ(t)PTMx(t) , then the ordinary kinetic
energyU=1

2gi j (x) ẋ
i ẋ j could clearly be defined byUh5h2U1o(h2).

However, for a diffusion x(t) defined by ~7! it turns out ~see below! that
Uh5~h/2!dimM1o(h). With a view to setting up a variational principle in whichGjk

i are to play
the role of control parameters, one can ignore the presence of the term~h/2!dimM , which is the
same for every metrical connectionGjk

i onM , and define the kinetic energyU by

Uh~x!5~h/2!dim M1h2U~x!1o~h2!. ~12!

Below we demonstrate thatUh can indeed be written in this form and we compute the kine
energyU.

The Itô formula ~e.g., see Refs. 9, 12, and 14! implies that for any smoothf ,

Et f „x~ t1h!…5 f „x~ t !…1E
t

t1h

EtD f „x~s!…ds5 f „x~ t !…1hEtD f „x~ t !…1o~h!, ~13!

D being the generator~8! of x(t). The second equality holds becauseEt D f „x(s)…→D f „x(t)… a.s.
ass→t by the continuity of trajectories. We takef (x)5xixj and evaluate

D~xixj !5gi j ~x!2 1
2x

iG j~x!2 1
2x

jG i~x!. ~14!

Thus, sincexi50 in NCx , we find, with the aid of~13!, that

Uh~x!5
h

2
gi j ~x!D~xixj !1o~h!5

h

2
gi j ~x!gi j ~x!1o~h!5

h

2
dim M1o~h!, in NCx ,

as mentioned above.
But to compute the kinetic energyU as defined by~12!, we must evaluateUh to within o(h

2).
To this end we apply the Itoˆ formula again, this time to the integrand in~13!:
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
Et f „x~ t1h!…5 f „x~ t !…1E
t

t1hHD f „x~ t !…1E
t

s

EtD D f „x~r !…drJ ds
5 f „x~ t !…1h D f „x~ t !…1

h2

2
D D f „x~ t !…1o~h2!. ~15!

The last equality holds becauseEtDD f „x~s!…→DD f „x(t)… a.s. ass→t by the continuity of
trajectories. Now, formulas~11! and ~15! with f (x)5xixj imply ~12!, where

U~x!5 1
4 gi j ~x!D D~xixj !5 1

4 gi j ~x!D@gi j ~x!2 1
2 x

iG j~x!2 1
2 x

jG i~x!#

5 1
8 gi j ~x!gkl~x!]k] lg

i j ~x!2 1
4 ] iG

i~x!1 1
8 gi j ~x!G i~x!G j~x!, in NCx .

The last two equalities follow by~2!, ~8!, and~14!.
We wish to expressU in geometric terms~independently of local coordinates!. By contracting

the appropriate indices in the metrical condition~4!, we find with the aid of ~2! that
G i(x)1gi j (x)Gk j

k (x)50 andGjk
k (x)50 in NCx . By ~5!, it follows that

G i~x!5gi j ~x!„G jk
k ~x!2Gk j

k ~x!…5gi j ~x!T jk
k ~x!, in NCx .

Furthermore, on differentiating both sides of the metrical condition~4!, using Cartan’s lemma in
the form ~3!, and contracting the appropriate indices, we arrive at the ident
] iG

i(x)1gi j (x)] iGk j
k (x)52 1

3R(x) andgi j (x)] iG jk
k (x)5 1

3R(x) in NCx . It follows that

] iG
i~x!52 2

3R~x!1gi j ~x!„] iG jk
k ~x!2] iGk j

k ~x!…52 2
3R~x!1gi j ~x!“ iT jk

k ~x!, in NCx .

From ~3! and the fact thatgi j gi j5dimM , we find that

gi j ~x!gkl~x!]k] lg
i j ~x!52gi j ~x!gkl~x!]k] lgi j ~x!52 2

3R~x!, in NCx .

The above formulas enable us to write the kinetic energy as

U5 1
8g

i jT ik
k
T j l

l 2 1
4 g

i j
“ iT jk

k 1 1
12R, ~16!

which is clearly independent of local coordinates because it contains only contractions of t
and their covariant derivatives.

In the presence of a scalar potentialV the corresponding LagrangianL5U2V to be used in
the control problem in Sec. V is therefore given by

L5 1
8g

i jT ik
k
T j l

l 2 1
4g

i j
“ iT jk

k 1 1
12R2V. ~17!

IV. VECTOR POTENTIAL

To account for the presence of a vector potentialA5Ai] i on M , in addition to a scalar
potentialV, we use the Cameron–Girsanov–Martin~CGM! theorem to change the probabilit
measureP underlying the construction ofx(t) in ~7!. Let P̃ be a new measure absolutely co
tinuous with respect toP with density

dP̃

dP
5expH E

0

T

^b~ t !,dW~ t !&2
1

2 E
0

T

ub~ t !u2 dtJ ,
bi(t) being the components ofA„x(t)… in the framez(t),
J. Math. Phys., Vol. 38, No. 1, January 1997
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A„x~ t !…5bi~ t !zi~ t !.

By ~•,•! and u•u we denote the standard Euclidean scalar product and norm inRdim M. Note that+
designates the Stratonovich stochastic integration. Sincew(t) is a Brownian motion underP, it
follows by the CGM theorem that

w̃~ t !5w~ t !2E
0

t

b~s!ds

is a Brownian motion underP̃. The system of stochastic differential equations~7! can be written
in terms ofw̃(t):

dxi5zj
i +~dw̃j1bjdt!5zj

i +dw̃j1Aidt,

dzj
i52Gkl

i ~x!zj
l +dxk.

It follows that x(t) is a Markov diffusion underP̃ with generator

D̃5D1A. ~18!

The last formula has a close analog in classical mechanics, where the velocity vecto
V 5v i] i can be regarded as a counterpart ofD . As is well known, a vector potential can b
introduced by changingv i to the generalized momentav i1Ai , which amounts to replacingV by
Ṽ 5V 1A. In the stochastic case the CGM theorem achieves a similar effect by way of cha
the probability measure, which gives rise to~18!.

V. CONTROL AND QUANTIZATION

Using the Lagrangian~17!, we define the action functionalI in a fixed time interval@0,T# by

I5ẼE
0

T

L„x~s!…ds. ~19!

We also define a stochastic analogS(x,t) of Hamilton’s principal function by

S„x~ t !,t…52ẼtE
t

T

L„x~s!…ds. ~20!

Clearly, we have

I52ẼS„x̃~0!,0…, ~21!

~] t1D̃ !S5L. ~22!

These definitions and relationships resemble the corresponding formulae in Sec. IV of Ref.
difference is that here we considerI andS as functionals of the torsion tensorT , the components
T jk

i 52T k j
i of this tensor playing the role of control parameters. Since there is a one-to

correspondence between torsion tensorsT and metrical connectionsG on M , an equivalent ap-
proach is to considerI andSas functionals depending onG and use the connection coefficientsGjk

i

as control parameters, subject to the constraint that the connection must be metrical, i.e
satisfy ~4!.

Consider a one-parameter family of torsion tensorsT l ~or, equivalently, metrical connection
Gl! depending smoothly onlP~2e,e!. The corresponding diffusion onM defined by~7! will be
J. Math. Phys., Vol. 38, No. 1, January 1997
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denoted byxl(t) and its generator underP̃ by D̃l . Let Ll be the corresponding Lagrangian~17!,
I l the action functional~19!, andSl the Hamilton principal function~20!.

We say that a torsion tensorT ~or, equivalently, the corresponding metrical connectionG! is
critical if

dIl
dl U

l50

50,

for every smooth parametrizationT l with T 5T 0 such that the corresponding diffusionsxl(t)
have the same initial distribution att50 for all lP~2e,e!.

Let us takeT l of the form

~T l! jk
i 5T jk

i 1l~ajd k
i 2akd j

i !/~dim M21!, ~23!

aj being an arbitrary one-form field onM .
Sincexl~0! are identically distributed andSl„xl(T),T…50 for all l, we can use~21!, ~22!, and

the Itô formula to compute the action increment

I l1dl2I l52Ẽ@Sl1dl„xl1dl~0!,0…2Sl„xl~0!,0…#

5Ẽ@~Sl1dl2Sl!„xl1dl~T!,T…2~Sl1dl2Sl!„xl1dl~0!,0…#

5ẼE
0

T

~] t1D̃l1dl!~Sl1dl2Sl!„xl1dl~ t !,t…dt

5ẼE
0

T

@~Ll1dl2Ll!„xl1dl~ t !…2~D̃l1dl2D̃l!Sl„xl1dl~ t !,t…#dt.

Now, using~23!, we find from~17! that

dLl

dl U
l50

5
1

4
T i j

j ai2
1

4
“ ia

i .

Furthermore, using~6! to expressGi in ~8! in terms of the torsion tensor and substituting~23! for
the latter, we get

dD̃l f

dl
U

l50

52
1

2
ai “ i f ,

for any scalar fieldf . From the above it follows that

dIl
dl U

l50

5ẼE
0

TS dLl

dl
2
dD̃lS

dl
DU

l50

„x~ t !,t…dt

5ẼE
0

TS 14 T i j
j ai2

1

4
“ ia

i1
1

2
ai “ iSD „x~ t !,t…dt

5ẼE
0

TF S 14 T i j
j 1

1

4
“ i ln r̃1

1

2
“ iSD ai G„x~ t !,t…dt,
J. Math. Phys., Vol. 38, No. 1, January 1997
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wherex(t)5xl(t)ul50 andr̃(x,t) is the density ofx(t) underP̃. The integration-by-parts formula
is used in the second equality above. This expression must be equal to zero for anyai , which
implies the criticality condition

1
2T i j

j 1“ i lnAr̃1“ iS50. ~24!

The above argument demonstrates that~24! is a necessary condition for critical control. A simila
computation in the opposite direction shows that~24! is also a sufficient condition. The following
theorem has therefore been established.

Theorem: A torsion tensorT [or, equivalently, the corresponding metrical connectionG, see
(5) and (6)] is critical if and only if the above condition (24) is satisfied.

By ~24!, using~8!, ~17!, and~18!, we can write~22! as the Hamilton–Jacobi equation

] tS1
1

2
~“ jS1Aj !~“

jS1Aj !2
1

2

“ j“
jAr

r
1F50, ~25!

whereF521
2AjA

j 2 1
12R1V.

The density r̃(x,t) of x(t) under P̃ satisfies the following forward diffusion equatio
~Fokker–Planck equation! analogous to~9!:

] tr̃5D̃ * r̃,

where D̃* is the adjoint operator toD̃ with respect to the measureAgdx generated by the
Riemannian metricgi j onM . ExpressingD̃ by means of~8! and~18! and using~6! together with
the criticality condition~24!, we can write the above equation forr̃ in the form of the continuity
equation,

] tr̃1“ j@~“
jS1Aj !r̃ #50. ~26!

If we now set

c5Ar̃eiS, ~27!

then ~25! and ~26! turn out to be equivalent, respectively, to the real and imaginary parts o
Schrödinger equation,

i
]c

]t
5
1

2
~2 i“ j1Aj !~2 i“ j1Aj !c1Fc.

The above variational principle can therefore be thought of as a geometrical stochastic qu
tion procedure.

VI. CONCLUSION

It is remarkable that the criticality condition~24! gives rise to a nontrivial geometry with
nonvanishing torsion. This result appears to be physically significant in view of the fact tha
corresponding principal functionS turns out to be the phase of a Schro¨dinger wave functionc.
Moreover, the probability densityr̃ of the diffusionx(t) controlled by this nonvanishing torsio
~or, equivalently, the corresponding metrical connection! through~7! is consistent with that com
puted from the wave function, sincer̃5ucu2 by ~27!.

This also means that the principal features of Nelson’s stochastic mechanics have been
duced using a class of diffusions controlled by the torsion tensor. A new variational prin
underlying Nelson’s theory has thus been established, in which control is achieved by varyi
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geometry of the manifold independently of the diffusion itself. This is in contrast to all prev
approaches, where control was intrinsic to the diffusion process, the geometry having bee
in advance.

This result may be regarded as a step toward a still more general approach in which the
tensorgi j would be used to control the diffusionx(t) instead of being assumed equal to the kine
metric in front of the expectation in~10!, as suggested in Refs. 5 and 15. Since the metric en
the equations~7! definingx(t) through the connection coefficientsGjk

i , the present approach base
on varying the metrical connection for a fixed metric may then become a part of a larger pi
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Three-dimensional electromagnetic inverse scattering
for biisotropic dispersive media

Sailing He and Vaughan H. Westona)
Department of Electromagnetic Theory, Royal Institute of Technology,
S-100 44 Stockholm, Sweden

~Received 20 June 1996; accepted for publication 18 September 1996!

The time-domain inverse problem of determining the three-dimensional parameter
functions for the biisotropic dispersive medium is considered. Maxwell’s equations
are rewritten in terms of the tangential fields. Time domain wave-splitting of Max-
well’s equations is applied to the total field that is generated by a dipole exterior to
the scattering medium. The structure of the electromagnetic fields is analyzed, and
the transport equations are given. The reconstruction condition is derived for a
layer-stripping approach. ©1997 American Institute of Physics.
@S0022-2488~97!02601-7#

I. INTRODUCTION

Recently, considerable attention has been focused on wave propagation, radiation an
ance in biisotropic media in view of their potential usefulness in a variety of applications.1–4 In the
electric engineering, the reciprocal biisotropic media are referred as chiral media, which hav
manufactured by numbers of groups~cf., e.g., Ref. 5!. Electromagnetic chirality addresses th
effects of handedness in electrodynamics, which entails magnetoelectric coupling in the co
tive relations. The microscopic structure of such media consists of particles~like helices! which
have a specific handedness, i.e., whose mirror images cannot be made to coincide with the
particles by means of translations and rotations. In the present paper, we consider the
problem for this type of medium in the time domain.

The method we use is based on the concept of wave splitting. By wave splitting we me
decomposition of the total wave into two components which propagate in opposite direction
invariant imbedding idea combined with the time-domain wave-splitting technique was first
in one-dimensional direct and inverse scattering problems for planar stratified media~cf., e.g.,
Refs. 6–9 and earlier references given there!. Wave splitting for high dimensional scalar field
was introduced by Weston~cf. Refs. 10–14!, and has been implemented numerically for so
planar or non-planar stratified cases.15–17 Recently, a Green function approach based on w
splitting has been introduced.18 In contradistinction to the invariant imbedding method, the sys
of equations for the Green functions is linear and is suitable for parallel processing.19 Therefore,
it yields a more efficient and faster algorithm for the inverse problem as compared to the inv
imbedding approach. In particular, in the case of three dimensional media the Green fu
approach allows a simpler handling of the singularities~cf. Refs. 20, 21!.

Wave splitting of Maxwell’s equations in high dimension was first introduced by Westo
Ref. 22, and was extended to an anisotropic case in Ref. 23. Mathematically the up- and
going condition is represented by a linear relationship involving the tangential fields on a pla
the present paper, we will apply the wave-splitting of Maxwell’s equations in Ref. 22 to
inverse problem of determining the three-dimensional parameter functions for the biiso
dispersive medium~where the reflected field is produced by a dipole exterior to the scatte
medium!. The paper is organized as follows. In Sec. II, the problem is formulated and Maxw
equations are rewritten in terms of the tangential fields. In Sec. III, time domain wave-splitti

a!Permanent address: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
0022-2488/97/38(1)/182/14/$10.00
182 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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Maxwell’s equations is applied to the total field that is generated by a dipole exterior to
scattering medium, the structure of the electromagnetic fields generated by a dipole exterio
scattering medium is analyzed, and the wave splitting is used to derive a reconstruction co
for a layer stripping approach when the susceptibility kernels have non-zero initial values~e.g.,
Debye model!. The reconstruction condition for the case when the susceptibility kernels have
initial values~e.g., Lorentz model! is derived in Sec. IV.

II. PROBLEM FORMULATION

In the present paper we consider a three dimensional scattering medium which is descri
the following Maxwell’s equations in a Cartesian coordinate systemx[(x1 ,x2 ,x3)

¹3E52] tB, ~1!

¹3H5] tD, ~2!

with the constitute relations

D5e~x!E1G~x,t !*E1K~x,t !*H, ~3!

B5m~x!H1L~x,t !*E1F~x,t !*H, ~4!

where* denotes a time convolution integral

f ~x,t !* g~x,t !5E
0

t

f ~x,t2t8!g~x,t8!dt8.

As shown in Ref. 24, Eqs.~3! and~4! are the most general time-domain constitutive relations
a biisotropic, dispersive medium that is reciprocal. If the susceptibility kernelsK5L50, the
medium is the usual isotropic dispersive medium.K andF describe the cross coupling betwee
the electric and magnetic field, and thus the medium with non-zeroK and/orF is called the
biisotropic medium.

The following notation will be employed for the transverse components of a p
x5(x1 ,x2 ,x3),

x[~x1 ,x2!, x5~x,x3!.

We assume that the scattering medium lies below the planex352\ ~\.0 is a small quantity! and
that the regionx3>2\ is free space, i.e.,

e5e0 , m5m0 , G5K5L5F50, x3>2\, ~5!

wheree0 andm0 are constants. The permittivitye(x) and the permeabilitym(x) are assumed to be
continuous everywhere and continuously differentiable in the inhomogeneous half-spacex3,2\.
The susceptibility kernelsG(x,t), K(x,t), L(x,t) andF(x,t) are assumed to be continuous inx,
and continuously differentiable int for t.0. The point source is located above the inhomogene
half-space.

We assume that the fields are identically zero in the half-spacex3,0 for the timet<0, i.e., the
initial conditions are

E~x,0!50, H~x,0!50, for x3,0. ~6!

The following notation will be used for the partial derivative
J. Math. Phys., Vol. 38, No. 1, January 1997
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] i5
]

]xi
, i51,2,3.

We consider the fields in the inhomogeneous half-spacex3,2\, and thus all the equations in th
rest of this section are forx3,2\. The third component of the Maxwell’s equations gives

e] tE31G* ] tE31K* ] tH35]1H22]2H1[ f 1 ,

m] tH31L* ] tE31F* ] tH352@]1E22]2E1#[2 f 2 .

The above two equations can be rewritten in the following form

@ I1P* #F ] tE3

] tH3
G5F f 1

e

2
f 2
m

G , ~7!

whereI is the 232 identity matrix and

P[FP11 P12

P21 P22
G5F G

e

K

e

L

m

F

m

G . ~8!

One can show that Eq.~7! can be rewritten in the following form

F ] tE3

] tH3
G5@ I2Q* #F f 1

e

2
f 2
m

G , ~9!

where the 232 matrixQ satisfies

Q1P*Q5P. ~10!

One can determineQ from P with the following equations

FQ11

Q21
G1FP11 P12

P21 P22
G* FQ11

Q21
G5FP11

P21
G ,

FQ12

Q22
G1FP11 P12

P21 P22
G* FQ12

Q22
G5FP12

P22
G ,

or determineP from Q with the following equations

FP11

P12
G2FQ11 Q21

Q12 Q22
G* FP11

P12
G5FQ11

Q12
G ,

FP21

P22
G2FQ11 Q21

Q12 Q22
G* FP21

P22
G5FQ21

Q22
G .
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Rewriting Eq.~9! as

E35
1

e
] t

21f 12] t
21~q11* f 1!2] t

21~q12* f 2!, ~11!

H352
1

m
] t

21f 22] t
21~q21* f 1!2] t

21~q22* f 2!, ~12!

where

q[Fq11 q12

q21 q22
G5F Q11

e
2
Q12

m

Q21

e
2
Q22

m

G , ~13!

and the notation]t
21 is for the time integral, i.e.] t

21f (x,t)5*0
t f (x,t8)dt851* f (x,t).

The first two components of Maxwell’s equation~1! with the constitutive relation~4! can be
written in the following form

]3ET52I 2~m] tHT1Lt*ET1Ft*HT1L0ET1F0HT!1¹TE3 , ~14!

whereLt[] tL, L0[L(x,0), etc., and

I 25F 0 1

21 0G , ¹TE3[F ]1E3

]2E3
G , ET[FE1

E2
G , etc.

Using Eq.~11! it follows from Eq. ~14! that

]3ET52I 2~m] tHT1Lt*ET1Ft*HT1L0ET1F0HT!1~] t
21J1/e2] t

21Jq11* !HT2] t
21Jq12*ET ,

~15!

where

Jp5F2]1~p]2! ]1~p]1!

2]2~p]2! ]2~p]1!
G , p5

1

e
, q11, etc. ~16!

Similarly, one has

]3HT5I 2~e] tET1Gt*ET1Kt*HT1G0ET1K0HT!2~] t
21J1/m1] t

21Jq22* !ET2] t
21Jq21*HT .

~17!

Equations~15! and~17! are the equivalent Maxwell’s equations in terms of the tangential fieldsET

andHT .
Wave splitting. The total tangential fieldET can be decomposed into up-going componentET

1

and down-going componentET
2 by the following formula22

ET5ET
11ET

2 , ~18!

where
J. Math. Phys., Vol. 38, No. 1, January 1997
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ET
65

1

2 SET6
1

e
Nx3

HTD , ET
65FE1

6

E2
6G . ~19!

The operatorNx3
in Eq. ~19! is defined as follows. Consider the following mixed problem in

lower half-spacex3,x3
0, 0,t,T,

~i! ¹3E52m~x,x3
0!]tH, ¹3H5e~x,x3

0!]tE, x3,x3
0,

~ii ! E~x,0!5H~x,0!50, x3,x3
0,

~iii ! Hi~x,x3
0 ,t!5hi~x,t!, i51,2, 0,t,T,

then the solution at the limiting planex35x3
0 will give

ET52
1

e
Nx

3
0Fh1h2G , x35x3

0,

i.e.,

Nx
3
0Fh1h2G52eET , x35x3

0. ~20!

Note that in the above mixed problem, the medium is not the original physical medium
medium with only transverse inhomogeneity and withG5K5L5F50. Therefore,E1 andE2

only have physical meaning as up- and down-going waves in the homogeneous region2\<x3,0
but not inside the inhomogeneous mediumx3,2\. Note that the input reflection data in th
inverse problem are measured on the surfacex352\ whereE1 andE2 have physical meaning a
reflected and incident fields, respectively. For a detailed analysis of this wave splitting, se
22. This wave-splitting will be used to find the condition for the reconstruction in the follow
sections.

III. FIELD STRUCTURES AND THE CONDITION FOR THE RECONSTRUCTION

Consider the point source described by the following equations

¹3E52] tB,

¹3H5] tD1 ld~x2x0!Q~ t !,

or

¹3E52] tB1 ld~x2x0!Q~ t !,

¹3H5] tD,

where l is an arbitrary vector associated with the orientation of the electric~or magnetic! dipole
located at positionx0 andQ(t) is the Heaviside step function, i.e.,

Q~ t !5 H1,0, t>0
t,0. ~21!

The electromagnetic fieldsẼ andB̃ generated by a dipole with an arbitrary time-varying functi
f (t) instead of the above step functionQ(t) are related withE andB as follows,
J. Math. Phys., Vol. 38, No. 1, January 1997
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Ẽ5~] tE!* f ~ t !, B̃5~] tB!* f ~ t !. ~22!

For a point sourceld(x2x0)Q(t), the electromagnetic fields will have the following stru
ture:

E~x,t !5E~0!~x!d~ t2t!1E~1!~x!Q~ t2t!1E~2!~x!•~ t2t!Q~ t2t!1••• , x3,0, ~23!

H~x,t !5H~0!~x!d~ t2t!1H~1!~x!Q~ t2t!1H~2!~x!•~ t2t!Q~ t2t!1••• , x3,0, ~24!

wheret(x) is the arrival time from the source pointx0 to the field pointx, which satisfies the
Eikonal equation

u¹tu25me. ~25!

Since the scattering medium lies below the planex352\ and the input reflection data are me
sured on the surfacex352\, we only need to consider the fields in the regionx3,2\. All
equations in the remaining part of the paper only hold in the regionx3,2\ and this condition will
be suppressed in most of the equations hereafter.

In the following part of this section, we will show that the up-going waveET
1 inside the

inhomogeneous medium has the following property

ET
1~x,t5t!5

1

2
g~x![

1

2 Fg1~x!

g2~x!G , ~26!

whereg is related to the parameters at the pointx, as will be determined below in this sectio
This condition will play a key role in the reconstruction.

Using the definition of the operatorNx3
, one considers the following mixed problem in

lower half-spacex3,x3
0,0 ~cf. Eqs.~15! and ~17!!

~ i ! ]3ĒT1m~x,x3
0!I 2] tH̄T2] t

21J1/eH̄T50, x3,x3
0, ~27!

]3H̄T2e~x,x3
0!I 2] tĒT1] t

21J1/mĒT50, x3,x3
0 ~28!

~where the medium in the above mixed problem is not the original physical medium but a me
with only transverse inhomogeneity, i.e.,]3e~x,x3

0!5]3m~x,x3
0!50, and withG5K5L5F50!,

~ i i ! ĒT~x,0!5H̄T~x,0!50, x3,x3
0, ~29!

~ i i i ! H̄T~x,x3
0,t !5HT~x,x3

0,t ![HT
~0!d~ t2t!1HT

~1!Q~ t2t!1••• , x35x3
0, ~30!

then the solution at the limiting planex35x3
0 will give

ĒT~x,x3
0,t !52

1

e
Nx

3
0HT , x35x3

0. ~31!

From Eqs.~26! and ~31!, one has

g~x,x3
0!52ET

1~x,x3
0,t!5ET~x,x3

0,t!1
1

e
Nx

3
0HT~x,x3

0,t!5ET~x,x3
0,t!2ĒT~x,x3

0,t!. ~32!

The solution for the mixed problem inx3<x3
0 has the following structure

ĒT~x,t !5ĒT
~0!~x!d~ t2 t̄ !1ĒT

~1!~x!Q~ t2 t̄ !1ĒT
~2!~x!•~ t2 t̄ !Q~ t2 t̄ !1••• , ~33!
J. Math. Phys., Vol. 38, No. 1, January 1997
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H̄T~x,t !5H̄T
~0!~x!d~ t2 t̄ !1H̄T

~1!~x!Q~ t2 t̄ !1H̄T
~2!~x!•~ t2 t̄ !Q~ t2 t̄ !1••• . ~34!

Comparing Eq.~34! with Eq. ~30! at x35x3
0, yields

t̄5t, x35x3
0, ~35!

H̄T
~ i !5HT

~ i ! , i50,1,2,..., x35x3
0. ~36!

Furthermore, from the Eikonal equation one has

]3t̄5]3g, x35x3
0. ~37!

Substituting Eqs.~23! and~24! into Eq. ~15!, and matching the coefficient of each singular ter
yield

2~]3t!ET
~0!1mI 2HT

~0!2
1

e
JHT

~0!50, ~38!

]3ET
~0!2~]3t!ET

~1!1mI 2HT
~1!2J1/e

~1!HT
~0!2

1

e
JHT

~1!1I 2~L0ET
~0!1F0HT

~0!!

1q11~x,0!JHT
~0!1q12~x,0!JET

~0!50, ~39!

where

J5F2]1t]2t ~]1t!2

2~]2t!2 ]2t]1t
G ,

J1/e
~1!HT

~0!5F ]1F1e ~]2t!H1
~0!G1

1

e
~]1t!]2H1

~0! 2]1F1e ~]1t!H2
~0!G2

1

e
~]1t!]1H2

~0!

]2F1e ~]2t!H1
~0!G1

1

e
~]2t!]2H1

~0! 2]2F1e ~]1t!H2
~0!G2

1

e
~]2t!]1H2

~0!
G .

~40!

Similarly, from Eqs.~27!, ~33! and ~34! one has

2~]3t̄ !ĒT
~0!1mI 2H̄T

~0!2
1

e
J̄H̄T

~0!50, ~41!

]3ĒT
~0!2~]3t̄ !ĒT

~1!1mI 2H̄T
~1!2 J̄1/e

~1!H̄T
~0!2

1

e
J̄H̄T

~1!50, ~42!

with similar definitions forJ̄ and J̄1/e
~1! as forJ andJ1/e

~1! ~replacingt with t̄!. Comparing Eq.~41!
with Eq. ~38! at x35x3

0, one has~cf. Eqs.~35!–~37!!

ĒT
~0!5ET

~0! , x35x3
0. ~43!

From Eqs.~39! and ~42!, one has

ET
~1!2ĒT

~1!5~]3t!21@~]3ET
~0!2]3ĒT

~0!!1I 2~L0ET
~0!1F0HT

~0!!

1q11~x,0!JHT
~0!1q12~x,0!JET

~0!#, x35x3
0. ~44!
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¬¬¬¬¬¬¬¬¬¬
Therefore, from the above two equations and Eq.~32! one obtains

g~x,x3
0!5~]3t!21@]3ET

~0!2]3ĒT
~0!#1~]3t!21F I 2~L0ET

~0!1F0HT
~0!!1

G0

e2
JHT

~0!2
K0

em
JET

~0!G
~45!

~note thatq11(x,0)5Q11(x,0)/e5P11(x,0)/e5G0/e
2, q12(x,0)52K0/em!.

As shown in the Appendix, the transport equations forE~0! andH~0! are as follows

~¹t•¹!E~0!52
1

2 F¹2t2
¹t•¹m

m
1~mG02eF0!GE~0!2

E~0!
•¹~em!

2em
¹t2

1

2
m~K01L0!H

~0!,

~46!

~¹t•¹!H~0!52
1

2 F¹2t2
¹t•¹e

e
1~mG02eF0!GH~0!2

H~0!
•¹~em!

2em
¹t1

1

2
e~K01L0!E

~0!.

~47!

From thexj , j51,2, component of the transport Eq.~46!, one has

(
i51

3

~] it!] iEj
~0!52

1

2 F¹2t2
¹t•¹m

m
1~mG02eF0!GEj

~0!2
E~0!

•¹~em!

2em
] jt2

1

2
m~K0

1L0!Hj
~0! , j51,2. ~48!

Similarly, one has~from a corresponding transport equation forĒT
(0)!

(
i51

3

~] i t̄ !] i Ē j
~0!52

1

2 F¹2t̄2
¹Tt̄•¹Tm

m G Ēj
~0!2

ĒT
~0!
•¹T~em!

2em
] j t̄, j51,2.

From the above two equations withx35x3
0, one obtains~cf. Eqs.~43!, ~35! and ~37!!

~]3t!@]3Ej
~0!2]3Ēj

~0!#52
1

2 F ~]3
2t2]3

2t̄ !2
]3t•]3m

m
1~mG02eF0!GEj

~0!2
E3

~0!]3~em!

2em
] jt

2 1
2 m~K01L0!Hj

~0! , j51,2, x35x3
0.

From the Eikonal equation, one can show that

]3
2t2]3

2t̄5 1
2 ~]3t!21]3~em!, x35x3

0.

Therefore, using the above two equations it follows from Eq.~45! that

g5Fv1

v2
G1~]3t!21F I 2~L0ET

~0!1F0HT
~0!!1

G0

e2
JHT

~0!2
K0

em
JET

~0!G , ~49!

where
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¬¬¬¬¬¬¬¬¬¬
v j52
1

2
~]3t!22H F]3~em!

2]3t
2

]3t•]3m

m
1~mG02eF0!GEj

~0!

1
]3~em!

em
] jtE3

~0!1m~K01L0!Hj
~0!J , j51,2. ~50!

Using the condition~26! with g(x) related to the parameters at the pointx as given by Eq.
~49!, one can achieve a reconstruction by a layer stripping approach, as described in detail i
25, 26. If the four dispersion kernels have the following forms:

G~x,t !5G̃~x!g~ t !, K~x,t !5K̃~x!k~ t !, L~x,t !5L̃~x!l ~ t !, F~x,t !5F̃~x! f ~ t !, ~51!

then using a set of point sources at different locations and/or with different polarizations~no more
than 3 different polarizations at each location!, one may simultaneously reconstructe(x), m(x)
andG̃(x) ~if g~0!Þ0!, K̃(x) ~if k~0!Þ0!, L̃(x) ~if l ~0!Þ0!, F̃(x) ~if f ~0!Þ0!. In the Debye model
for a dispersive medium,27 one has

g~ t !5a expS 2
t

t0
D .

One notes thatg~0!Þ0 in the Debye model.

IV. CASE WHEN g(0)5k (0)5 l (0)5f (0)50

In the Lorentz model for a dispersive medium, one has27

g~ t !5vp
2 sin~nt !

n
exp~2Gt !.

One notes thatg~0!50 ~but ~(d/dt)g!~0!Þ0! in the Lorentz model. In this section we consider t
case when

g~0!5k~0!5 l ~0!5 f ~0!50 ~52!

in Eq. ~51!. For such a case,g(x) ~given by Eq.~49!! does not contain any information of an
susceptibility kernel at the pointx, and thus the condition~26! cannot be used to reconstruct th
spatial dependence of any susceptibility kernel. One needs to find another useful condition
case to reconstruct the spatial dependence of the susceptibility kernels. In this section we
that

e~x!5e0 , m5m0 ~53!

in the whole space.
Substituting Eqs.~23! and ~24! into Maxwell’s equations~1! and ~2! ~with the constitutive

relations~3! and ~4!!, and matching the coefficients for theQ~t2t! term, yields

¹3E~1!2¹t3E~2!52m0H
~2!1Lt~x,0!E~0!1Ft~x,0!H~0!, ~54!

¹3H~1!2¹t3H~2!5e0E
~2!1Gt~x,0!E~0!1Kt~x,0!H~0!. ~55!

Operating with ‘‘¹t3’’ on both sides of Eq.~54! and using Eqs.~A7!, ~A8!, ~55!, yields
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¬¬¬¬¬¬¬¬¬¬
¹t3~¹3E~1!!2¹t3~¹t3E~2!!52m0¹t3H~2!1m0Lt~x,0!H~0!2e0Ft~x,0!E~0!

52m0¹t3H ~1!1e0m0E
~2!1m0Gt~x,0!E~0!

1m0Kt~x,0!H~0!1m0Lt~x,0!H~0!2e0Ft~x,0!E~0!.

~56!

From theQ~t2t! terms of¹•D50, one has

¹t•E~2!5¹•E~1!.

Thus,

¹t3~¹t3E~2!!5~¹t•E~2!!¹t2~¹t•¹t!E~2!5@¹•E~1!#¹t2m0e0E
~2!.

Furthermore, using Eqs.~A5! and ~A9!, one obtains

¹t3~¹3E~1!!52E~1!3~¹3¹t!1¹~¹t•E~1!!2~¹t•¹!E~1!2~E~1!
•¹!¹t

5¹~¹•E~0!!2~¹t•¹!E~1!2~E~1!
•¹!¹t,

2m0¹3H~1!5¹3@¹3E~0!2¹t3E~1!#5¹3¹3E~0!2@~¹•E~1!!¹t2E~1!~¹•¹t!

1~E~1!
•¹!¹t2~¹t•¹!E~1!#.

Substituting the above three equations into Eq.~56!, yields the transport equation forE~1!

~¹t•¹!E~1!52 1
2 ~¹2t!E~1!1 1

2 ¹2E~0!2 1
2 @m0Gt~x,0!2e0Ft~x,0!#E~0!2 1

2 m0@Kt~x,0!

1Lt~x,0!#H~0!. ~57!

Similarly, one can derive the transport equation forH~1!

~¹t•¹!H~1!52 1
2 ~¹2t!H~1!1 1

2 ¹2H~0!2 1
2 @m0Gt~x,0!2e0Ft~x,0!#H~0!1 1

2 e0@Kt~x,0!

1Lt~x,0!#H~0!. ~58!

Condition for the reconstruction. From the results in the previous section, one has the foll
ing equations for this case

t̄5t, x35x3
0, ~59!

]3ĒT
~0!5]3ET

~0!, x35x3
0, ~60!

ĒT
~1!5ET

~1!, x35x3
0, ~61!

and ~cf. Eq. ~48!!

(
i51

3

~] it!] iEj
~0!52

1

2
~¹2t!Ej

~0! , j51,2. ~62!

Differentiating Eq.~62! with respect tox3, yields

(
i51

3

@~] i]3t!] iEj
~0!1~] it!] i]3Ej

~0!#52
1

2
@]3~¹2t!#Ej

~0!2
1

2
~¹2t!]3Ej

~0! . ~63!
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Similarly, one has

(
i51

3

@~] i]3t̄ !] i Ē j
~0!1~] i t̄ !] i]3Ēj

~0!#52
1

2
@]3~¹2t̄ !#Ēj

~0!2
1

2
~¹2t̄ !]3Ēj

~0! . ~64!

Eq. ~64!–Eq. ~63! at x35x3
0, yields

]3
2Ēj

~0!5]3
2Ej

~0! , j51,2. ~65!

Since~cf. Eq. ~57!!

~¹t̄•¹!Ē~1!52 1
2 ~¹2t̄ !Ē~1!1 1

2 ¹2Ē~0!, ~66!

Eq. ~57!–Eq. ~66! at x35x3
0, yields ~cf. Eqs.~61! and ~65!!

]3ET
~1!2]3ĒT

~1!52 1
2 ~]3t!21$@m0Gt~x,0!2e0Ft~x,0!#ET

~0!1m0@Kt~x,0!1Lt~x,0!#HT
~0!%.

~67!

Substituting Eqs.~23! and ~24! into Eq. ~15!, and considering the coefficients ofQ~t2t! terms,
one obtains

]3ET
~1!2~]3t!ET

~2!1I 2@m0HT
~2!1Lt~x,0!ET

~0!1Ft~x,0!HT
~0!#2J1/e0

~1! HT
~1!

2
1

e0
JHT

~2!1~] tq11!~x,0!JHT
~0!1~] tq12!~x,0!JET

~0!50. ~68!

Similarly, one has

]3ĒT
~1!2~]3t̄ !ĒT

~2!1m0I 2H̄T
~2!2 J̄1/e0

~1! H̄T
~1!2

1

e0
J̄H̄T

~2!50. ~69!

Eq. ~68!–Eq. ~69! at x35x3
0, yields ~using Eq.~67!!

b~x![ET
~2!2ĒT

~2!

52
1

2
~]3t!21H ~]3t!21@m0Gt~x,0!2e0Ft~x,0!#I22Lt~x,0!I 21

2

e0m0
Kt~x,0!JJ

3ET
~0!2

1

2
~]3t!21H ~]3t!21m0@Kt~x,0!1Lt~x,0!#I22Ft~x,0!I 22

2

e0
2 Gt~x,0!JJHT

~0!

~70!

~note that (] tq11)(x,0)5(1/e0)(] tQ11)(x,0)5(1/e0)(] tP11)(x,0)5(1/e0
2)Gt(x,0), (] tq12)(x,0)

52(1/e0m0)Kt(x,0)).
The condition for the reconstruction is

ET
1~x,x3

0,t!5 1
2 b~x!~ t2t!Q~ t2t!1••• , ~71!

i.e.,

b~x!52@] tET
1#~x,t!. ~72!
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¬¬¬¬¬¬¬¬¬¬
Therefore, one can use a set of point sources at different locations and/or with different po
tions ~no more than 3 different polarizations at each location! to simultaneously reconstructG̃(x)
~if gt~0!Þ0 as in the Lorentz model!, K̃(x) ~if kt~0!Þ0!, L̃(x) ~if l t~0!Þ0!, F̃(x) ~if f t~0!Þ0!, with
the notationsgt as the time derivative ofg(t).

V. CONCLUSION

Time domain wave-splitting of Maxwell’s equations has been applied to fields in an inho
geneous biisotropic dispersive medium. The structure of the electromagnetic fields has be
lyzed. A reconstruction condition has been derived, which can be used in a layer-strippin
proach as described in e.g. Refs. 25 and 26.

ACKNOWLEDGMENT

The partial support of the Swedish Research Council for Engineering Sciences is gra
acknowledged.

APPENDIX: TRANSPORT EQUATIONS FOR E (0) AND H(0)

Since the scattering medium is source-free, one has

¹•D50, x3,2\, ~A1!

¹•H50, x3,2\. ~A2!

All equations in this appendix only hold in the regionx3,2\ and this condition will be sup-
pressed in all the equations hereafter. Substituting Eqs.~23! and~24! into Eqs.~A1! and~A2!, and
matching the coefficient of thed8~t2t!, d~t2t! terms, respectively, yields

E~0!
•¹t50, ~A3!

H~0!
•¹t50, ~A4!

E~1!
•¹t5

1

e
¹•~eE~0!!, ~A5!

H~1!
•¹t5

1

m
¹•~mH~0!!. ~A6!

Similarly, substituting Eqs.~23! and ~24! into Eqs.~1! and ~2! with the constitutive relations~3!
and ~4!, and matching the coefficients of the each singular term, yields

¹t3E~0!5mH~0!, ~A7!

¹t3H~0!52eE~0!, ~A8!

¹3E~0!2¹t3E~1!52mH~1!1L0E
~0!1F0H

~0!, ~A9!

¹3H~0!2¹t3H~1!5eE~1!1G0E
~0!1K0H

~0!. ~A10!

From Eqs.~A7! and ~A8!, it follows that

¹t3~¹t3E~0!!5m¹t3H~0!52meE~0!,

i.e.,
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¬¬¬¬¬¬¬¬¬¬
~¹t•E~0!!¹t2~¹t•¹t!E~0!52meE~0!,

which gives the Eikonal equation~25! ~cf. Eq. ~A3!!.
Operating with ‘‘¹t3’’ on both sides of Eq.~A9!, yields

¹t3~¹3E~0!!2¹t3~¹t3E~1!!52m¹t3H~1!1L0¹t3E~0!1F0¹t3H~0!

52m¹t3H~1!1mL0H
~0!2eF0E

~0!. ~A11!

Since~cf. Eqs.~A10! and ~A5!!

2m¹t3H~1!52m¹3H~0!1meE~1!1mG0E
~0!1mK0H

~0!,

¹t3~¹t3E~1!!5~¹t•E~1!!¹t2~¹t•¹t!E~1!5F1e ¹•~eE~0!!G¹t2meE~1!,

it follows from Eq. ~A11! that ~cf. Eq. ~A7!!

¹t3~¹3E~0!!2F1e ¹•~eE~0!!G¹t52m¹3H~0!1~mG02eF0!E
~0!1m~K01L0!H

~0!.

~A12!

Since

¹t3~¹3E~0!!52E~0!3~¹3¹t!1¹~¹t•E~0!!2~¹t•¹!E~0!2~E~0!
•¹!¹t

52~¹t•¹!E~0!2~E~0!
•¹!¹t,

m¹3H~0!5m¹3F 1m ¹t3E~0!G
5¹3~¹t3E~0!!1

1

m
¹m3~¹t3E~0!!

5@~¹•E~0!!¹t2E~0!~¹•¹t!1~E~0!
•¹!¹t2~¹t•¹!E~0!#

1
1

m
@~¹m•E~0!!¹t2~¹m•¹t!E~0!#,

F1e ¹•~eE~0!!G¹t5~¹•E~0!!¹t1
E~0!

•¹e

e
¹t,

one obtains the transport Eq.~46! for E~0! from Eq.~A12!. In an analogous way one can derive t
following transport Eq.~47! for H ~0!.
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The Kowalewski top: A new Lax representation
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The 232 monodromy matrices for the Kowalewski top on the Lie algebrase~3!,
so~4!, andso~3,1! are presented. The corresponding quadraticR-matrix structure is
the dynamical deformation of the standardR-matrix algebras. Some tops and Toda
lattices related to the Kowalewski top are discussed. ©1997 American Institute of
Physics.@S0022-2488~96!02712-0#

I. INTRODUCTION

The main object for investigation is the Kowalewski top~KT! in the classical and quantum
mechanics. In classical mechanics the system under consideration is a special case of mot
heavy rigid body with a fixed point, discovered by Kowalewski in 1889~Ref. 1!. It represents a
symmetric top in a constant homogeneous field. The principal momenta of inertia rela
I 1 :I 2 :I 351:1:1/2 and the center of mass located in the equatorial plane. In the body fram
components of the angular momentuml i and the Poisson vectorgi , i51,2,3 are generators of th
Lie algebrae~3! with the Poisson brackets

$ l i ,l j%5e i jk l k , $ l i ,gj%5e i jkgk , $gi ,gj%50, i , j ,k51,2,3, ~1!

and with the fixed Casimir operators

J25~g,g!5a; J35~ l ,g!5b.

Integrals of motion for the KT are given by

J15H5 1
2~ l 1

21 l 2
212l 3

2!2g1 , J45k1k25~ l1
2 22g1!~ l2

2 22g2!, ~2!

In quantum mechanics the KT has been introduced by Laporte2 ~for the quasiclassical approac
see Ref. 3!.

The KT are generalized to the Kowalewsky gyrostat with the following Hamiltonian:

H5 1
2~ l 1

21 l 2
212l 3

212g l 3!2g1 . ~3!

The gyrostat momentum proportionalg is perpendicular to the equatorial plane. This system
their counterparts on the Lie algebrasso~4! andso~3,1! have been considered in Ref. 4.

Our main objective is to construct the Lax representations and their quantum counterpa
all these systems.

As a tool for investigations we will apply linear and quadraticR-matrix algebras in the
quantum and classical inverse scattering method.5 Let us consider an algebra generated by n
commutative entries of the matrixT(u) satisfying the famous bilinear relation~ternary relation!

R~u2v !T
1

~u!T
2

~v !5T
2

~v !T
1

~u!R~u2v !, ~4!

a!Electronic mail: atsiganv@snoopy.niif.spb.su
0022-2488/97/38(1)/196/16/$10.00
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or the quaternary relation

R~u2v !T
1

~u!S~u1v !T
2

~v !5T
2

~v !S~u1v !T
1

~u!R~u2v !, ~5!

whereweuse the standard notationsT
1

(u) 5 T(u) ^ I ,T
2

(v) 5 I ^ T(v) andmatricesR(u) andS(u)
are solutions of the Yang-Baxter equation. For historical reasons, these algebras are ca
algebras of monodromy matrices. Equations~4! and ~5! are called the fundamental commutat
relation ~FCR! and the reflection equations~RE!,6 respectively. If we consider a simple finite
dimensional Lie algebraa and ana-invariantR-matrix, then the algebra of monodromy matric
~4!, after a proper specialization, gives the YangianY~a! introduced by Drinfeld, while the algebr
of monodromy matrices~5! corresponds to the twisted Yangians.7

We will consider the finite-dimensional irreducible representations of algebras~4!–~5!, which
are polynomials on the spectral parameteru, only. The entries of the monodromy matrixT(u) are
constructed from the generators of Yangiant i j (u) by the rule

T~u!5(
i , j

N

t i j ~u! ^Ei jPY~a! ^End~CN!, t i j ~u!5(
a

t i j
aua, ~6!

whereEi j are the standard matrix units. The matrix tracet(u) of the matrixT(u)

t~u!5tr T~u!5 (
k51

Tkk~u! ~7!

yields a commutative family of operatorsJk

@ t~u!,t~v !#50, t~u!5(
k
Jku

k, u,vPC ~8!

which are integrals of motion of some quantum integrable system.
In the classical limit algebras of monodromy matrices~4! and~5! transform into the quadratic

Sklyanin algebras

$T
1

~u!,T
2

~v !%5@r ~u2v !,T
1

~u!T
2

~v !#, ~9!

$T
1

~u!,T
2

~v !%5@r ~u2v !,T
1

~u!T
2

~v !#1T
1

~u!s~u1v !T
2

~v !2T
2

~v !s~u1v !T
1

~u!. ~10!

Here matricesr (u) ands(u) are the classicalr -matrices,R(u)511hr (u)1O(h2) by h→0 and
similarly for matrixS(u).

If one substitutesT511eL1O(e2), r5er and let e→0, then we get the linearR-matrix
algebra

$L
1

~l!,L
2

~m!%5@r 12~l,m!,L
1

~l!#1@r 12~l,m!,L
2

~m!#, ~11!

~see the review in Ref. 8!. We will start with the 434 Lax representation for the KT given b
Reyman and Semenov-Tian-Shansky,8 which obeys~11!.

Following a general scheme,5,8 the Lax pairs
J. Math. Phys., Vol. 38, No. 1, January 1997
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dL~l!

dt
1@L~l!,M ~l!#50, ~12!

for the matricesL~l! andT(u) are constructed by the linear and quadratic algebras~11!–~10!.
Below we fix notationsL~l! andT(u) for the monodromy matrices, which satisfy to linear~11!
and to quadratic~9! algebras of the monodromy matrices, respectively.

It is well known, that in classical mechanics some Lax matrices have been proposed f
KT. ~For a complete list and discussion, see Ref. 8.! All these matrices with the spectral parame
areN3N matrices byN.2. If we want to use the method of separation of variables or to cons
the KT in quantum mechanics we can, of course, try to adjust these matrices, for exa
applying the experience of Sklyanin.9

However, the separated equations for KT in the quasiclassical approach look like equ
inherent in the inverse scattering method with quadraticR-matrix relations.3 For the quantization
of the KT, we prefer to construct a new monodromy matrix for the KT in the 232 auxiliary space.
To build such a matrix, we will use a known matrix in larger auxiliary space, which satisfi
linearR-matrix algebra~11!.

So, we want to obtain a 232 matrix with entries defined on universal enveloping algebra fr
theN3N matrix with entries belonging to the loop algebra. For this purpose we will often us
geometrical10 and algebraic11 connections of the tops one~3! and the Toda lattices. As a settle
ment, we are obliged to introduce the additive deformations of the basic algebraic relations~4!–~9!
and we obtain a Lax triad for the KT

dL~l!

dt
1@L~l!,M ~l!#5N~l!, ~13!

where matrixN~l! is a traceless matrix. The trace of the matrixL~l! is a generating function o
integrals of motion. This situation is analogous to the introduction of the dynamicalr -matrices on
loop algebras,12,13 where for description of the concrete integrable systems in the given me
we were forced to expand the framework of theR-matrix formalism to the new quality type o
R-matrix.

II. AXIALLY SYMMETRIC NEUMANN’S SYSTEM

Let us recall some results about the Toda lattices in the classical mechanics~see Refs. 5 and
14!. For the periodic Toda lattices associated with the root system ofAN type the corresponding
Lax matrix is given by

L~l!5S pN eNN21 0 ... 0 e1Nl21

eNN21 pN21 eN21N22 ... 0 0

A � � � p2 e21

e1Nl21 0 ... 0 e21 p1

D , ~1!

whereejn 5 e(qj2qn)/2 and (pj ,qj ) are pairs of canonically conjugate variables. The determin
curve of the Lax matrixL~l! is defined by the matrixL(l,u)5uI2L(l). It is a three diagonal
matrix and we can introduce the monodromy matrix in a two dimensional auxiliary space.5 It reads

T~u!5TN~u!TN21~u!...T1~u!5S A B

C DD ~u!, Tk~u!5S u2pk 2eqk

e2qk 0 D . ~2!

Entries ofT(u) are the following functions of the minors ofL~l!:
J. Math. Phys., Vol. 38, No. 1, January 1997
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A~u!5p@detL~l,u!#l5` , B~u!52eq1 detL ~N,N!~l,u!,
~3!

C~u!5eqN detL ~1,1!~l,u!, D~u!5@l2 detL~l,u!#l50 ,

whereL ( j ,k)(l,u) means the matrix obtained by removing thej column andk row of the matrix
L(l,u). The quantum operatorT(u) is constructed from the classical matrix~3!. It obeys the FCR
~4! with the rationalR-matrix ofXXX type. For the Toda lattices associated with the Lie algeb
of the seriesBn , C n andDn , a similar correspondence has been introduced in Ref. 15. S
relations can be helpful for the non-three diagonal matrices. For instance, the monodromy m
for the Toda lattices associated with the root systems ofDN type have been constructed by th
manner.

Let us start with the following Lax matrix for the KT8

L~l!5S g
g2

l
l2

2g3
l

2
g1

l
2g

g3
l

2 l1

l1
2g3

l
22l 31g 22l2

g1

l

g3
l

2 l2 2l1
g2

l
2l 32g

D , ~4!

using natural notationsl65 l 16 i l 2 , g65g16 ig2 .
The Lax representation~4! has been applied by solution of the equation of motion in Ref

The 333 matrix L ~1,1!~l! constructed byL~l! ~4!, in our notation, describes the Goryache
Chaplygin top,16 which has also a monodromy matrix on 232 auxiliary space satisfying the
Sklyanin brackets~9!.17

Motivated by representation~3!, we introduce the monodromy matrixT0(u)

A~u!5@detL ~1,1!,~3,3!~l,u!#l50 , B~u!5@ il detL ~1,1!,~3,4!~l,u!#l50 ,

C~u!5@2 il detL ~1,1!,~4,3!~l,u!#l50 , D~u!5@2l2 detL ~1,1!,~4,4!~l,u!#l50 ,

T0~u!5S A B

C DD ~u!5S u222ul32 l 1
22 l 2

2 i ~ug12g3l1!

i ~ug22g3l2! g3
2 D . ~5!

Introduction of the gyrostat parameterg is equivalent to the shift of the spectral parameteru→(u
2g) and we putg50 for a while.

This matrix corresponds to the axially symmetric Neumann’s system

J15H5 l 1
21 l 2

22g3
2, J45m5 l 3 , ~6!

~or to the particular case of the general Lagrange top18!.
The monodromy matrixT0(u) ~5! has been introduced before in Ref. 11 by use of an

morphism of universal enveloping algebras, which exist in the one-parameter subset of orO

~J25(g,g)5a2 and J35( l ,g)50! only. At the levelJ35( l ,g)50 matrix T0(u) ~5! obeys the
Sklyanin brackets~9! with the rationalR-matrix of theXXX type5
J. Math. Phys., Vol. 38, No. 1, January 1997
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r5
2i

u2v S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D 5
2i

u2v (
i51

3

s i ^ s i5
h

u2v
P, ~7!

whereP is a permutation operator of auxiliary spaces andh52i .
At J35( l ,g)50 the spectral invariants of the Lax matrixT0(u) are the generating function

of the integrals of motion~6! and of the Casimir operators~1!, respectively,

t0~u![tr T0~u!5u222uJ42J1 , ~8!

D0~u![detT0~u!5u2J2 . ~9!

So, the matrixT0(u) ~5! describes a completely integrable system in the one-parameter sub
orbitsO ~J25(g,g)5a2 andJ35( l ,g)50! in e~3!* .

However, in contrast with Ref. 11, the matrixT0(u) ~5! was obtained by the matrixL~l! ~4!
defined on a whole phase space and the Lagrange top is a complete integrable system
general orbitsO ~J25(g,g)5a2 andJ35( l ,g)5b! in e~3!* .18 Therefore, in the next section, w
investigate the matrixT0(u).

III. DEFORMATION OF THE SKLYANIN BRACKETS

According to Refs. 12 and 13, we can introduce an additive deformation of the algeb
monodromy matrices. One simple deformation of the matrixT0(u) has been considered in Ref
11 and 12

T1~u!5T0~u!1S m

g3
2 0

0 0
D 5T0~u!1mSD21 0

0 0D mPR. ~1!

The corresponding new Hamiltonian readsHnew5Hold1m/g3
2, whereHold is a Hamiltonian~6!.

Matrix T0(u) ~5! and modified matrixT1(u) ~1! obey the same quadraticR-matrix algebra~9!.
The main advantage of this deformation is an alteration of the Hamiltonian without an alte
of theR-matrix algebra.

Let us introduce two matrices

F~u!52u~ l ,g!g3
21S 1 0

0 0D 52uJ3SD21/2 0

0 0D , T~u!5T0~u!1F~u!. ~2!

Matrix T(u) is an additive deformation of the matrixT0(u) and they are coupled by certai
deformation of the Sklyanin brackets~9!. In Sec. VII, the similar dynamical deformations will b
considered for the Toda lattice associated with the Lie algebraG 2.

Theorem 1:For an arbitrary magnitude of the Casimir operatorJ35( l ,g) matricesT0(u) ~5!
andT(u) ~2! obey the following relations:

$T
1

0~u!,T
2

0~v !%5@r ~u2v !,T
1

~u!T
2

~v !#5@r ~u2v !,T
1

0~u!T
2

0~v !#1W~u,v,l j ,gj !, ~3!

$T
1

~u!,T
2

~v !%5@r ~u2v !,T
1

~u!T
2

~v !#1T
1

~u!s2T
1

~v !2T
1

~v !s2T
1

~u!1T
2

~u!s1T
2

~v !2T
2

~v !s1T
2

~u!.
~4!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The corresponding matrices have the form

W5@r ~u2v !,F
1

~u!T
2

~v !1T
1

~u!F
2

~v !#,
~5!

r5
hP

u2v
5

2i

u2v (
i51

3

s i ^ s i , h52i

s15
2hu~ l ,g!

4g3
3~u2v !

~ I1s3! ^ ~ I2s3!5
2huJ3
g3
3~u2v ! S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D , ~6!

s2~u,v !5Ps1~v,u!P, ~7!

wheresi are Pauli matrices andP is a permutation operator of auxiliary spaces.
The proof is a direct but lengthy computation.
According to Ref. 5, the Lax representation is constructed by using deformedR-matrix struc-

ture

Ṫ0~u!5$H,T~u!%5@M ~u!,T~u!#, ~8!

Matrix M (u) is derived from the algebraic relations~3! using the definition of the Hamiltonian

H5Fv@ tr T0~v !#5Fv@ t0~v !# with Fv@z~v !#[z~v !uv50 . ~9!

This matrix equal to

M ~u!52Fv tr2@ I ^T~v !•r ~u2v !#5F 2h

u2v SA~v !2D~v ! B~v !

C~v ! D~v !2A~v !
D G

v50

. ~10!

HereA, B, C andD are entries of theT(u) ~5! and tr2 means trace in the second auxiliary spa
More precisely,

Ṫ0~u!5@M ~u!,T~u!#5@M ~u!,T0~u!#1N, N524J3S 0 2 l1

l2 0 D .
It is either a Lax pair at the levelJ350 or a Lax triad for an arbitrary magnitude ofJ3. This Lax
representation is a compatibility condition for the following linear problems:

T~u!w~u!2lw~u!5c~u!,

dw~u!

dt
1M ~u!w~u!50,

~11!
dc~u!

dt
1M ~u!c~u!5N~u!w~u!,

wherew is so-called Baker-Akhiezer function at the levelJ35( l ,g)50.
Now the invariants are trace ofT0(u), which remains a generating function of the integrals

motion ~8!, and determinant ofT(u)
J. Math. Phys., Vol. 38, No. 1, January 1997
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t0~u!5tr T0~u!5u222um2H, D~u!5detT~u!5u2J2 . ~12!

The dual determinant ofT0(u) and trace ofT(u) are the dynamical variables

D0~u!5detT0~u!5D~u!22J3g3u, t~u!5tr T~u!5t0~u!1
2J3u

g3
. ~13!

So, we obtained some starting point for a machinery of the inverse scattering method.
we introduce the quantum counterpart of the presented deformation and consider a Lax re
tation for the Goryachev-Chaplygin top. Then we will try to apply the standard scheme rela
the reflection equations.6

IV. QUANTUM AXIALLY SYMMETRIC NEUMANN’S SYSTEM

Let variablesl i ,gi , i51,2,3 be generators of the Lie algebrae~3! with commutator relations

@ l i ,l j #52 ihe i jk l k , @ l i ,gj #52 ihe i jkgk , @gi ,gj #50, i , j51,2,3.

The quantum operatorT0(u) related to a classical monodromy matrix~5! has the form

T0~u!5S u222l 3u2 l 1
22 l 2

22 1
4 i ~g1u2 1

2$g3 ,l1%!

i ~g2u2 1
2$g3 ,l2%! g3

2 D , ~1!

here braces$,% mean an anticommutator. OperatorT0(u) ~1! at the levelJ35( l ,g)50 obeys the
FCR ~4! with theR-matrix of theXXX typeR(u)5u1 ihP.11

We introduce two additional matrices

F~u!5
~u2 ih!J3

g3
S 1 0

0 0D , T~u!5T0~u!1F~u!. ~2!

Below the spectral parameteru in theF(u) is always shifted by the constantih.
Theorem 2: By the arbitrary values of the Casimir operatorJ35( l ,g) operatorT0(u) ~1!

obeys the following deformation of the FCR~4!:

R~u2v !T
1

0~u!T
2

0~v !2T
2

0~v !T
1

0~u!R~u2v !5W~u,v,l j ,gj !,

W~u,v,l j ,gj !5@F
1

~u!T
2

0~v !1T
1

0~u!F
2

~v !,R~u2v !#, ~3!

where@,# stands for a matrix commutator. The proof is a straightforward calculation.
The deformed FCR~3! assumes other forms

R~u2v !~T
1

0T
2

01F
1

T
2

01T
1

0F
2

!5~T
2

0T
1

01F
1

T
2

01T
1

0F
2

!R~u2v !,

R~u2v !T
1

T
2

2T
2

T
1

R~u2v !5~@F
1

,T
2

0#1@T
1

0 ,F
2

# !R~u2v !

~for the sake of brevity we have omitted the argumentsu,v in the last two formulas!.
The generating function of the quantum integrals of motions is the trace ofT0(u)

t~u!5tr T0~u!, @ t~u!,t~v !#50.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The quantum determinant detqT(u) is the central element now

D~u![detq T~u!5~u221/4!J2 . ~4!

By using the deformation of the FCR~3!, the quantum Kowalewski top will considered in th
Sec. VIII.

V. THE GORYACHEV-CHAPLYGIN TOP

The axially symmetric Neumann’s system related to the two-particle Toda lattice associa
the root systemA2.

11 It is well known that the Goryachev-Chaplygin top~GCT! is related to the
three-particle Toda lattice associated with the root systemA3.

10 Now we present relations be
tween the corresponding Lax representations.

The Goryachev-Chaplygin top~GCT! represents a symmetric top in a constant homogene
field with the principal momenta of inertia satisfyingI 1 :I 2 :I 351:1:1/4 and the center of mas
located in equatorial plane. The Hamiltonian of the GCT is

J15H5 1
2~ l 1

21 l 2
214l 3

2!2g1 . ~1!

It is completely integrable in the one-parameter subset of orbitsO ~J25(g,g)5a2 and
J35( l ,g)50! in e~3!* .

The GCT has been investigated in the quantum inverse scattering method by Sklyanin17 and
generalized in Ref. 19. It was a starting point for these investigations.

For construction of the monodromy matrix for the GCT, we recall the basic results of Re
Lemma 1:Let the monodromy matrixT(u)PY~g!^End~C2! obeys the FCR withR-matrix of

theXXX type. If exist such elementKPY~g! that

@K~u!,A~u!#5@K~u!,D~u!#50,

@K~u!,B~u!#5hB~u!, @K~u!,C~u!#52hC~u!,

then the monodromy matrix

T1~u!5S u2p1K beiq

ge2 iq 0 D S A~u! eiqB~u!

e2 iqC~u! D~u!
D PY~g%w! ^End~C2!, ~2!

where generators ofw are [p,q]52 ih andb,gPC, obeys the FCR as well. The proof consists
the fact that the two matrices in the product~2! obey the FCR~4! with oneR-matrix and their
entries mutually commute.

Definition of the monodromy matrixT1(u) ~2! can be rewritten in another form

T1~u!5S e2 iq/2 0

0 eiq/2D S u2p1K b

g 0 D S A~u! B~u!

C~u! D~u!
D S eiq/2 0

0 e2 iq/2D , ~3!

which we can consider as some kind of gauge transformation of standard rule in the qu
inverse scattering method.5

Lemma 2:Let the matrixT(u)PY~g!^End~C2! be a finite-dimensional irreducible represe
tation of the algebra of monodromy matrices~4!, which is a polynomial of spectral parameteru.
If the entries of the matrixT(u) have the following asymptotic behavior:

A~u!5uN2a1u
N211a2u

N221..., B~u!5b1u
N211...,

C~u!5c1u
N211..., D~u!5d1u

N221... , ~4!
J. Math. Phys., Vol. 38, No. 1, January 1997
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then, the elementK5a1 obeys the conditions of Lemma 1. RepresentationsT(u) andT1(u) ~2!
are related to the integrable systems with the following integrals of motion:

t~u!5tr T~u!5uN2a1u
N211~a21d1!u

N221...,

t1~U !5tr T1~u!5uN112puN1~a21a1
22pa11bc11gb1!u

N211...,

where operatorp has a continuous spectra. For the proof we have to substitute the asympto~4!
to FCR ~4!.

These Lemmas have been introduced toR-matrices ofXXX andXXZ types in Ref. 20 by
considering the classical and relativistic Toda lattices in the Jacoby systems of coordinat
using these Lemma’s and the matrixT0(u) ~1! we obtain the new monodromy matrixT1(u) with
entries

A~u!5~u2p12l 3!S u222l 3u2 l 1
22 l 2

22
1

4
2

m221/4

g3
2 D 1 ib@ug22$g3 ,l2%/2#,

B~u!5eiq@ i ~u2p12l 3!~ug12$g3 ,l1%/2!1bg3
2#,

~5!

C~u!5e2 iqFu222ul32 l 1
22 l 2

22
1

4
2

m221/4

g3
2 G ,

D~u!5 ig~ug12$g3 ,l1%/2!.

Matrix T1(u) at the levelm51/2 has been introduced in Ref. 17 and generalized for an arbi
magnitude ofm in Ref. 19.

VI. REFLECTION EQUATIONS AND THE KOWALEWSKI-CHAPLYGIN-GORYACHEV
TOP

Consider representationsU(u) of twisted Yangians related to the reflection equations~5!–
~10!. The algebra of the monodromy matrices~4! and its classical counterpart~10! have two
important automorphismsT(u)→Ts(u)

Ta~u!5s2T~u!s2'~T21! t~u!, Ti~u!5s2T
t~2u!s2'T21~2u!. ~1!

The symbolTt means a transposition matrix and symbolsTa andTi are related to a antipod ma
and a involution map, respectively, in theory of quantum groups.6

In the classical mechanics monodromy matrixU(u) related to reflection equation can b
constructed as

U~u!5T1~u!T2~u!, ~2!

with the matricesT6 defined by

T2~u!5T1~u!K2~u!T1
i ~u!, T1

t ~u!5T2
t ~u!K1

t ~u!T2
a~2u!.

Here matricesTj (u), j51,2 obey the Skylanin brackets~9! with some matrixr (u), K6(u) are
known solutions to the reflection equation~10! with the same matrixr (u) ands(u1v)5r (u1v).
The matricesT6(u) ~2! obey the classical reflection equation as well.6

Consider a simpleC-number solutions of RE~5! K6(u), which correspond to various bound
ary conditions for integrable systems.6 For the rationalR-matrix ofXXX type matricesK6(u) are
given by
J. Math. Phys., Vol. 38, No. 1, January 1997
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K2~u,a1 ,b1 ,g1!5S a11ub1 u

ug1 a12ub1
D .

~3!

K1~u,a2 ,b2 ,g2!5S 2a21ub2 2ug2

2u 2a22ub2
D .

For instance, the boundary matricesK6~3! are applied to construct the monodromy matrices
the Toda lattices associated to theBn andC n root systems.

6

By taking the matrixT1(u2g) ~1! with the gyrostat parameterg and matricesK6(u) ~3! we
construct the new monodromy matrixU(u) as ~2! (T2(u)5I ). At the level J350 we get the
completely integrable system with integrals of motion defined by the trace ofU(u). The Hamil-
tonian of this system is equal to

H5 l1l212l 3
22 i ~a1g12a2g2!1 1

2~g1g1
2 2g2g2

2 !1
m

g3
22 ig3~b1l12b2l2!

22i l 3~b2g22b1g1!1g~2l 31 ib1g12 ib2g2!, ~4!

If g5b15b250, the integrable system with the Hamiltonian~4! can be identified with the
Kowalewski-Chaplygin-Goryachev top.11

In quantum mechanics, operatorsT6(u) are

T2~u!5T~u2g!K2S u2
h

2 Ds2T
t~2u2g!s2 , T1~u!5K1S u1

h

2 D . ~5!

Here operatorsT(u) andK6(u) are representations of the monodromy matrix algebras relate
FCR ~4! and RE~5! with quantum matricesR(u) andS(u1v)5R(u1v2h), respectively.

Thus, we describe the eight parameters family~a j ,b j ,g j with j51,2;m,g! of completely
integrable at the levelJ35( l ,g)50 systems on the Lie algebrae~3! in the quantum inverse
scattering method~for comparison see Ref. 21!.

VII. TODA LATTICE ASSOCIATED TO THE LIE ALGEBRA G 2

The family of tops introduced in the previous section can be associated with the two-pa
Toda lattices related to the root systemBC 2.

11 The remaining non-trivial two-root system isG 2.
We hope that consideration of the monodromy matrix in the two dimensional auxiliary spac
the corresponding Toda lattice gives us some background for a search of the non-standa
representation for the KT.

The groupG 2 is of rank two and dimension 14 and it has two simple rootsa1 anda2. The
Weyl group ofG 2 is the permutation group of order 3 with inversion, generated byt1 andt2,

t1 :~a1 ,a2!→~a22a1 ,a2!, t2 :~a1 ,a2!→~2a1 ,a223a1!. ~1!

The root system is easier to describe in the standard basis in a large spaceR3. We will use tree
pairs of canonically conjugate variables (qj ,pj ) with a linear constraint(qj5(pj50. The non-
constrainted system can be obtained by using the following canonical transformation:

q1→)q11q21
q3
3
, q2→22q21

q3
3
, q3→2)q11q21

q3
3
,

p1→
p1

2)
1
p2
6

1p3 , p2→2
p2
3

1p3 , p3→2
p1

2)
1
p2
6

1p3 ,
J. Math. Phys., Vol. 38, No. 1, January 1997
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which transforms the corresponding Hamiltonian to the natural form.
According to Ref. 14, the Lax representation is equal to

L5S 2b3 2a1 0 0 0 0 0

21 2b2 2a2 0 0 0 0

0 21 2b1 22a1 0 0 0

0 0 21 0 2a1 0 0

0 0 0 1 b1 a2 0

0 0 0 0 1 b2 a1

0 0 0 0 0 1 b3

D ,

where b15p32p1 , b25p12p2 , b35p32p2 ,

a15ea15eq12q2, a253ea253e22q11q21q3, ~2!

It is a three diagonal matrix and, therefore, we can easily obtain the corresponding mono
matrix in the two dimensional auxiliary space.5

Let us define three matricesL j (u)

L15S u2p12p2 2eq12q2

e2q11q2 0 D , L25S u2p32p1 23eq32q1

3e2q31q1 0 D ,
~3!

L35S u2p32p2 2 1
3 e

q32q2

1
3 e

2q31q2 0
D ,

and two boundary matricesT6(u)

K25S 2 u

0 2D , K15S 0 0

2u 0D , T25L1K2T1
s , T15L3

sK1L3 , ~4!

The monodromy matrix for the open Toda lattice associated with the algebraG 2 is equal to

U~u!5T1~u!L2~u!T2~u!L2
s~u!,

U~u!52u det~L2uI !52u81h1u
61H2u

41h3u
2, ~5!

wherehj are integrals of motion. This form for matrixU(u) is a more symmetrical form for the
Weyl group~1!. For the affine algebraG 2

~1! we have to substitute a new matrixT1(u) into ~5!

T15S ~u2p!eq1~u1p!e2q

3
2
1

9
~eq2e2q!2

2~u22p2!
~u1p!eq1~u2p!e2q

3

D ,

wherep5p32p2 andq5q32q2.
The Poisson brackets relations for the matricesLk(u) ~3! have the following polylinear form:
J. Math. Phys., Vol. 38, No. 1, January 1997
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$L j

1

~u!,Lk
2

~v !%5d jk@r ~u2v !,L j

1

~u!Lk
2

~v !#1~12d jk!~21!2 j2k~@r 1 ,L j

1

~u!#1@r 2 ,Lk
2

~v !# !,

j>k, j ,k51,2,3. ~6!

Here r (u2v) is a standardR-matrix of theXXX type ~5! and the independent from spectr
parameter matricesr 1,2 are given by

r 152 1
4~ I2s3! ^ ~ I1s3!, r 25Pr1P, ~7!

@in comparison with~4!#. Locally (j5k) these Poisson brackets relations are the stand
Sklyanin brackets and therefore, matricesT6(u) ~4! obey the standard non-dynamical RE~5!.

By using this polylinear algebra and factorization~5!, the basic property of trace of a mono
dromy matrixU(u)

$t~u!,t~v !%50, t~u!5tr U~u!,

can be easily proved.
If we assume that some representationU(u) associated with the root systemG 2 cannot be

expanded on the simplest factors as above, then we must introduce a more complicated dy
R-matrix structure. Consider two matricesT(1,2)(u) defined by

T~1!~u!5L2~u!L1~u!, T~2!~u!5L3~u!L2~u!L1~u!. ~8!

Their Poisson brackets relations are calculated from the polylinear algebra~6! and we can prove
that we cannot close these relations at the quadraticR-matrix algebra by using only theC-number
R-matrices. These Poisson brackets relations have the form of the deformed Sklyanin brack~4!
with the dynamical matricessk5ak(p,q)r k , k51,2 ~7!. Here expressions for the dynamic
coefficientsak(p,q) are simply recovered from~6!.

MatricesT( j ) have one common property for their traces

t ~ j !~u!5 T~ j !~u!5un1h1u
n211h2u

n221h3 , j51,2, n5 j11,

$t ~1!~u!,t ~1!~v !%5u2v, $t ~2!~u!,t ~2!~v !%5~u2v !~uv1u1v11!,

$hi ,hk%51, i.k, i ,k51,2,3,

and, of course, these traces do not generate functions of integrals of motion.
The corresponding matricesT2

( j )(u)5T( j )K2T
( j )s obey the dynamical deformations of th

classical reflection equation~9!

$T2

1

,T2

2

%5@r ~u2v !,T2

1

T2

2

#1T2

1

r ~u1v !T2

2

2T2

2

r ~u1v !T2

1

1W~u,v,pj ,qj !, ~9!

whereW(u,v,pj ,qj ) is matrix-function of spectral parameters and of dynamical variables.
choose the simplest form for the dynamical deformations of the RE~9!. Of course, matrixW can
be presented as the various combinations ofT2

( j ) and proper dynamicalR-matrices. Maybe, these
combinations will more deeply reflect a structure of the Weyl group ofG 2 ~1!.

We have to emphasize here that matricesT2
( j ) relate to at most then another factorization of t

monodromy matrixU(u) ~5!

U~u!5T1~u!T2
~1!~u!5K1~u!T2

~2!~u!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Recall that the monodromy matrixT0(u) ~5! for the Neumann’s system is closely connected to
matrix T(u) ~2! for the Toda lattice. However, the structure of the phase spaces are differ10

Therefore, for the Toda lattice 232 matrix T(u) are factorized on the one-particle matrices~2!.
The corresponding matrixT0(u) in e~3!* cannot be expanded on the simplest factors. Then for
some integrable system associated with the exceptional algebraG 2 we could get the monodromy
matrix U(u) without the simplest expansion as~5!.

VIII. THE LAX TRIAD FOR THE KOWALEWSKI TOP

Motivated by the previous example we will look at the non-factorable monodromy matri
the KT. Let boundary matricesK6 be

K1~u!5S 2a2 0

2u 2a2
D , and K2~u!5S a1 u

0 a1
D , ~1!

~in comparison with~4!!.
The monodromy matrixU(u)5K1T0(u)K2T0

i (u)5K1T2 , with T0(u) given by~5!, corre-
sponds to theKT in the one-parameter subset of orbitsO ~J25(g,g)5a2 and J35( l ,g)50!.
Now we try to take up such additive deformation that the deformed monodromy matrix i
scribed by theKT on whole phase spaceJ3Þ0. Notice, that for the deformed Sklyanin brackets~3!
the mapsT(u)→Ts(u) ~1! are the automorphisms as well.

Theorem 3: For the Kowalewski top on the Lie algebrae~3! with integrals of motion

J15H5~ l1l212l 3
2!2 i ~a1g11a2g2!, J25~g,g!5a2,

~2!
J35~ l ,g!, J45k1k25~ l1

2 12ia2g1!~ l2
2 12ia1g2!,

the monodromy matrixU(u) is given by

U~u!5K1~u!T2~u!. ~3!

Here

T2~u!5S A~u! B~u!

C~u! A~2u!
D 5T0~u!K2~u!T0

i ~u!1G2

5T0~u!K2~u!T0
i ~u!1uJ3S i l 2u1a1g3 2ia1l1

0 i l 2u2a1g3
D . ~4!

More precisely,

A~u!52 iu~u3g21~g3l222l 3g2!u21~2 ia2a11g1k2!u2g3l1k2!,

B~u!5u522~ l1l212l 3
22 ia1g1!u31 l1

2 k2u,

C~u!52u3g2
2 1g3

2k2u.

Matrix U(u) ~3! obeys the Lax representation in the form

dU~u!

dt
5@K1M2 ,U~u!#1K1N2 , ~5!
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
M252i S 2 ig2 21

0 ig2
D , ~6!

N25uJ3S 3l2u22 l1k2 0

2ig3k2 23l2u
21 l1k2

D . ~7!

Trace of monodromy matrixU(u) is a generating functions of integrals of motion

t~u!52u612u4J12u2~J412a1a2J2!, ~8!

Matrix T2(u) has typical to RE~10! symmetry propertyT2
i (u)5T2(u), which relates to the

involutions on the phase space. It reflects the corresponding symmetry of the Jacobian of s
curve defined by the 434 matrixL~l! ~4!.

For calculation of the corresponding Poisson structure we expressT2(u) through matrices
T0(u) andF(u) ~5–2!, which have the known Poisson structure~3!. Assume

sa5S 1 0

0 0D 5
I1s3

2
, sb5S 0 0

0 1D 5
I2s3

2
, ~9!

then the monodromy matrixT2(u) ~4! is equal to

T2~u!5T0~u2g!K2~u!T0
i ~u2g!1@T0~u2g!sb1

1
2 sb~T0~u2g!2T0

i ~u1g!s2!sa#

3K2~u!Fi~u2g!1F~u2g!K2~u!

3@saT0
i ~u2g!1 1

2 sb~T0
i ~u2g!2T0~u1g!!sa#. ~10!

Here

T0
i ~u2g!5s2T0

t ~2u2g!s25s2T0
t ~2~u1g!!s2 ,

and we introduce a shift of the spectral parameteru→u2g for description of the Kowalewsk
gyrostat. Then the trace ofU(u) is a generating function of integrals of motion for th
Kowalewski gyrostat

t~u!52u612u4~J11g2!2u2~J412a1a2J22g2~2J11g2!!22ga1a2J2 ,

J15H5~ l1l212l 3
212g l 3!2 i ~a1g11a2g2!,

J45k1k224g~ l 31g!l1l224igg3~a1l11a2l2!.

Next by using factorization~10! and the deformed Skylyanin brackets~3!, we can prove that
matrix T2(u) obeys the following deformations of the classical reflection equation:

$T2

1

,T2

2

%5@r ~u2v !,T2

1

T2

2

#1T2

1

r ~u1v !T2

2

2T2

2

r ~u1v !T2

1

1W~u,v,l j ,gj !. ~11!

For theKT ~g50! the dynamical matrixW(u,u,l j ,gj ) is given by
J. Math. Phys., Vol. 38, No. 1, January 1997
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W~u,v,l j ,gj !5uvJ3S a~u,v ! b~u,v ! 2b~v,u! 0

c~u,v ! a~u,2v ! d~u,v ! 2b~2v,u!

2c~v,u! 2d~v,u! a~2u,v ! b~2u,v !

0 2c~2v,u! c~2u,v ! a~2u,2v !

D , ~12!

where

a~u,v !5 ik2~g3~u
22v2!22g1l2~u2v !!,

b~u,v !56l2u
2v222l1k2~u224l 3u1 l1l21v2!,

~13!
c~u,v !52g3k2~g3l222ug2!,

d~u,v !54ig3k2~u21 l1l2!.

Dynamical matrixW(u,v,l j ,gj ) can be expressed in the terms of the matricesT0, F andR by
using the representation~10! and the deformed Sklyanin brackets~3! as well.

The Lax representation~5! are constructed from this deformedR-matrix brackets~11! accord-
ing to Ref. 5, as for the Neumann’s system~8!. The Lax triad has an additive freedom for th
matrix M , we always can pass from the Lax triad (U,M ,N) to triad (U,M1M1 ,N1[L,M1]).
Our choice~6! is fixed by the Lax pair at the levelJ35( l ,g)50, which relates to a pure reflectio
equation~10!.

We understand, that we present a few artificial constructions in comparison with the con
tion of the Lax representation on loop algebras by Reyman and Semenov-Tian-Shansky.8 How-
ever, we have some new positive properties of the proposed Lax representation.

Under the following transformation of universal enveloping algebras and of definitio
matrix T2(u)

k2→k261/4 and T2~u!→T2~u!7 ik2u
2s3/4, ~14!

the new monodromy matrixU(u)5K1(u)T2(u) describes the Kowalewski top on the Lie alg
brasso~4! andso~3,1! with integrals of motion introduced in Ref. 4.

Monodromy matrix for the quantum Kowalewski top can be obtained according to a ge
scheme.6 Substituting into definition of monodromy matrix~10! quantum operatorsT0(u) and
F(u) ~1-2! and boundary matricesK6(u6h/2), we obtain the quantumU-operator for the Kow-
alewski top. This means that the trace of thisU-operator is a generating function of true integra
of motion in quantum mechanics

t~u![tr U~u!, @ t~u!,t~v !#50,

J15H5 l 1
21 l 2

212l 3
22 ia1g12 ia2g2 ,

J45
1
2 $k1 ,k2%12h2$ l1 ,l2%. ~15!

Here operatorsk6 have been defined in~2! and braces$.% are the anticommutator of quantum
operators. OperatorT2(u) obeys the deformation of quantum reflection equation

R~u2v !T2

1

~u!R~u1v2h!T2

2

~v !2T2

2

~v !R~u1v2h!T2

1

~u!R~u2v !5W.

Here quantum matrixW(u,v,l j ,gj ) is obtained by application of the deformed FCR~3! to the
operatorT2(u) defined by~10!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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IX. CONCLUSIONS

We present a monodromy matrix on 232 auxiliary space for classical and quantu
Kowalewski top. This matrix relates with the additively deformed reflection equation~11!. Defor-
mationsW(u,v,l j ,gj ) ~12! depend on the spectral parameters and the dynamical variables
dynamical deformation of quadraticR-matrix algebras can be considered as an analog of dyn
cal r -matrices for linearR-matrix algebras.12,13

However, this complication of the inverse scattering method will be justified if it enables
describe quite a wide set of integrable systems, such as a linear dynamicalR-matrix, or to solve
completely such nontrivial systems as the Kowalewski top. We hope to obtain such confirm
in forthcoming publications.
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Hamiltonian structure for degenerate AKNS systems
Gulmaro Corona-Coronaa)
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

~Received 27 September 1995; accepted for publication 8 February 1996!

There is a family of degenerate AKNS systems for which the full theory of generic
AKNS systems does not directly extend. The linear space of potentials still has a
natural Poisson structure, but the scattering method used by Beals and Sattinger to
show complete integrability for the generic AKNS systems fails for the degenerate
case. A Poisson structure is not induced on the scattering side as in the generic
case. As a consequence, the problem of complete integrability for degenerate
AKNS systems still is an open question. In addition, contrary to the generic case,
the Lax pair gives flows for degenerate integrable systems that are nonlocal. In
general, they do not exist, and they are no longer linear on the scattering side.
Necessary conditions for their existence and for linear evolution in the scattering
side are found. ©1997 American Institute of Physics.@S0022-2488~96!01206-6#

I. INTRODUCTION

Nonlinear systems such as the nonlinear Schro¨dinger ~NLS! and three-wave interaction sys
tems may be associated to the first-order operator

Dx5]x2zJ2q, ~1.1!

whereJ is a traceless diagonaln3n matrix having distinct eigenvalues~n52,3, respectively!, and
q is an off-diagonal matrix-valued function on the real lineR. These systems in fact form part o
a family of hierarchies of systems which is parametrized by the set of traceless matrices
kernel of adJ. This family has been called the AKNS systems or AKNS flows. They posse
Hamiltonian structure where all of these flows are involution.

Using the scattering theory for AKNS systems to study this structure, it has been prove
these systems are completely integrable and a method to construct action-angle variables h
given ~cf. Ref. 1!. For example, for the 333 AKNS systems

J5S l1 0 0

0 l2 0

0 0 l3

D , l1Þl2Þl3 , q5S 0 q12 q13

q21 0 q23

q31 q32 0
D ,

q(x) has six dimensions at each pointx, and it can be shown that on the scattering side th
commuting flows are needed for the complete integrability~cf. Ref. 1!. Two arise from the Lax
pair and are linear on the scattering data. The third flow does not arise from a Lax pair
nonlinear on the scattering side.

In recent years, experimental and theoretical research with fiber optics has led to the st
systems associated to operator~1.1! where, for instance,J5diag~1,21,21! has repeated eigenva
ues~cf. Ref. 2!. The systems associated to the operator~1.1! with the traceless matrix

a!Current address: Edif H, Universidad Auto´noma Metropolitana, Av. San Pablo 180, Azcapotzalco 02200, Me´xico.
0022-2488/97/38(1)/212/14/$10.00
212 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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J5 iS 2 0 0

0 21 0

0 0 21
D ~1.2!

include the coupled nonlinear Schro¨dinger system~cf. Ref. 3!

ut5 iuxx12iu~ uuu21uvu2!, v t5 ivxx12iv~ uuu21uvu2!. ~1.3!

We shall refer to the systems associated to the operator~1.1! whereJ has repeated eigenvalue
as degenerate AKNS systems and those whereJ has distinct eigenvalues as generic AKNS sy
tems in order to distinguish these two types of systems. The full theory for generic AKNS sy
does not extend directly to degenerate AKNS systems. The Hamiltonian structure of the g
AKNS systems does not depend on the eigenvalues ofJ ~cf. Ref. 4!; hence the degenerate AKN
systems also possess a Hamiltonian structure. In Ref. 5 the scattering theory for generic
systems~cf. Ref. 6! is extended for the degenerate case.

These facts lead naturally to the following question: can the method for proving com
integrability for generic AKNS flows obtained in Ref. 1 be extended for the degenerate A
systems? The goal of this paper is to explore this question.

In the case of the AKNS systems associated to the operator~1.1! with the matrixJ of ~1.2! the
potentialq takes the form

q5S 0 q12 q13

q21 0 0

q31 0 0
D .

For eachx, q has four dimensions; in analogy with the generic case we expect the H
tonian structure induced on the scattering side, if it exists, to have two degrees of freedom.
case from the Lax pair we get a four-parameter family of flows. However, among them onl
is local and the other consists of nonlocal flows that do not exist in general. As a result we
have one flow linear on the scattering side from the Lax pair. Again in analogy with the ge
case a second flow for the complete integrability should be found on the scattering side. We
expect this flow to be nonlinear in the scattering side and not arise from a Lax pair.

This paper is organized as follows.
In Sec. II, we study the Hamiltonian structure of degenerate AKNS systems by usin

method developed in Ref. 1. To simplify the discussion we consider the operator~1.1! with the
matrix J of ~1.2!. The standard method in the generic case~see Ref. 1! does not give a Hamil-
tonian structure on the scattering side.

In Sec. III we study the properties of the flows given by the Lax pair for degenerate sys
For each traceless matrixm, [J, m]50, there is a family of matrix-valued functionsFk(m,q),
k>0, of q and its derivatives. Ifm is not a scalar multiple of the matrix~1.2!, then the flows
qt5[J, Fk(m,q)], k>1 are nonlocal. The scattering datav(j,t) evolves as in the generic case b
not the scattering matrixs(j,t). In general, these flows do not exist fork.1. We find necessary
conditions for their existence~see Theorem 3.12!.

In Sec. IV we give some conclusions of the results found in Secs. II and III. The m
conclusion is that the method used to show complete integrability for the generic case fails
degenerate case.
J. Math. Phys., Vol. 38, No. 1, January 1997
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II. FAILURE OF THE JACOBI IDENTITY

A. Poisson bracket for degenerate AKNS systems

Let J be the traceless diagonaln3n matrix given by

J5S l1I1
�

lnIn
D ~2.1!

where Ii , i51,...n, are identity matrices, whose sizeski , i51,...,n, respectively satisfy
k11•••1kn5n, andl1.•••.ln .

We adopt the notation used in Ref. 5. Leta be in the space ofn3n matricesMn . Then
aPMn may be written as~cf. Ref. 5!

a5~ ãii8!1<i,i8<n ~2.2!

such that the orders of the matrix blocksãii ,...,ãnn , match those ofI1,...,In , respectively. The
matrices in~2.2! are called theJ-blocks ofa.

The matrixa is calledJ-diagonal if itsJ-blocksãii8 5 0 as long asiÞi8. For example, if

J5S 2 0 0

0 21 0

0 0 21
D , ~2.3!

then anyJ-diagonal matrixm has the form

m5S m11 0 0

0 m22 m23

0 m32 m33

D .
A matrix a is called off-J-diagonal if itsJ-blocks ãii50. We have thatmPker adJ if and

only if m is J-diagonal, andaPadJ(Mn) if and only if a is J-off-diagonal~cf. Ref. 5!.
We consider systems associated to the first-order operator~2.1! with the degenerate matrix

~2.1!. We call them degenerate AKNS systems. Now the potentialq is a J-off-diagonal-valued
function whose entries are in the Schwartz class. The linear space of all suchq is denoted byPJ .
For instance, ifJ is the matrix~2.2!, the elements ofPJ have the form

q5S 0 q12 q13

q21 0 0

q31 0 0
D ~2.4!

with qjk in the Schwartz class.
As in the generic case we furnishPJ with the inner product,

^p,q&5E
2`

`

tr@p~x!q~x!#dx ~2.5!

and with the Poisson bracket

$G ,H%5E
2`

`

trJ“G“H dx ~2.6!
J. Math. Phys., Vol. 38, No. 1, January 1997
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for a pair of functionalsG ,H defined onPJ . HereJ5adJ and“G and“H are their gradients
with respect to the inner product~2.5!.

It is proved in Refs. 7 and 4 that the bracket~2.6! satisfies the Jacobi identity for functiona
whose density and gradient are in the algebra of the polynomials inq and its derivatives. For
instance, trqqx is an element of that algebra. On the other hand, trq*2`

x q dy is inA but not a
polynomial inq andqx . A proof that the Jacobi identity is true for functionals whose gradi
only has entries in the Schwartz class is found in Ref. 8~see also Ref. 9!. Hence on the potentia
side we have a Poisson bracket as in the generic case.

B. Elements of scattering theory for degenerate AKNS systems

We give a summary of the basic definitions and results of the scattering theory related
this paper~cf. Refs. 5 and 3!.

As in the generic case, givenqPPJ there are unique solutionsf and c of the first-order
system

S ddx2zJ2q~x! Dc50, zPC, ~2.7a!

which are normalized by the asymptotic conditions

lim
x→2`

f~x,z!e2xzJ5I, lim
x→`

c~x,z!e2xzJ5I. ~2.7b!

By a similar argument given to establish~2.7!, there exists a matrixs(j) with dets51 such that

f~x,j!5c~x,j!s~j!, jPR. ~2.8!

The matrix-valued functions is also called the scattering matrix associated toq.
As in the generic case~cf. Ref. 5!, there is a unique meromorphic matrix-valued functi

l (x,z), which is defined for ImzÞ0 andxPR, such that

l x5z@J,l #1ql, ~2.9a!

lim
x→2`

l5I, sup
xPR

i l ~x,z!i,`. ~2.9b!

Moreover,

lim
x→`

l ~x,z!5diagonal matrix lim
z→`

sup
xPR

i l ~x,z!2Ii50, ~2.9c!

l;(
j50

`

l j~x!z2 j , z→`, l 05I. ~2.9d!

The asymptotic expansion~2.9d! is uniformly valid asz tends to` in each half-plane. As conse
quences of~2.9a! and ~2.9b!, the detl is constant and detl (x,z)51.

The functionl is called the eigenfunction associated toq; as in the generic case, it defines
matrix v called the scattering data by

l1~j!5 l2e
xjJv~j!e2xjJ, jPR, ~2.9e!

where as beforel6(x,j) 5 limz→j6 l (z,x).
In analogy with the generic case, define
J. Math. Phys., Vol. 38, No. 1, January 1997
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SLJ
65$aPSL~n!:ãii850 if 6~i2i8!.0%,

~2.10!
SLJ,0

J 5$aPSLJ
6 :p0

J~a!5I%.

Here, as in~2.2!, the matricesãii8 are theJ-blocks ofa, andp0
J denotes the projection on th

J-diagonal matrices. We also have, givenz, Im zÞ0, the projectionp6
J on SLJ

6sgn(Imz) . Note that
these projections depend onz. However, this fact will be clear from the context.

As in the generic case, the scattering matrix may be uniquely factored as

s5s6v6
21, s6PSLJ

6 , v6PSLJ,0
7 ~2.11a!

~cf. Refs. 4–6 and 10!. The scattering datav is related to the scattering matrixs by

v5v2
21v1 . ~2.11b!

We also have the unique factorization

s65u6d6 , d65p0
Js6 , u6PSL0,J

6 . ~2.11c!

The matrix-valued functiond6 is related tod~z!5limx→2` l (x,z) by

d6~j!5 lim
z→j6

d~z!. ~2.11d!

Since detl51, detd51. Define

r ~x,z!5 l ~x,z!d21~z!. ~2.12a!

The matrix-valued functionr has the same properties asl but it is normalized at̀ by the
condition limx→` r (x,z)5I. As we did forl , we may definer6(x,j) 5 limz→j6 r (x,z), jPR, and
find a matrix-valued functionu of j such that

r1~x,j!5r2e
xjJu~j!e2xjJ, u5u2

21u1 , ~2.12b!

whereu6 are given in~2.11c!.

C. Failure of Jacobi identity for degenerate case

As in the generic case we consider the functionals onPJ given by the entries of the scatterin
matrix s5(sjk).

If G is a functional with density inA, then the bracket$sjk ,G % is well defined. However, jus
as in the generic case, the bracket between the entries of the scattering matrix is not well
in the classical sense but proceeding exactly as in the generic case~see Refs. 1 and 10!, we obtain
the following.

Theorem 2.1:The bracket$sjk ,sl m% is defined in the distribution sense and is given explic
by

$sjk~j!,sl m~h!%5„sjk~j!,sl m~h!…d~j2h!1^sjk~j!,sl m~h!&
1

j2h
p.v., ~2.13a!

wherep.v. denotes the principal value distribution and

~sjk ,sl m!~s!5p isjm~s!sl k~s!@sgn~ l 82 j 8!2sgn~m82k8!#, ~2.13b!

^sjk ,sl m&~s,s8!5sl k~s!sjm~s8!@d j 8l 82dk8m8#. ~2.13c!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Here sgn 050 and the subscripts with a prime(8) denote the corresponding coordinates of t
J-blocks of s in which sjk and sl m are entries, respectively.

From now on, to simplify the discussion, we suppose thatJ is the diagonal matrix~2.1!. Given
a pair of smooth functionsf , g on GL~3!, define the bracket (f ,g) by

~ f ,g!~a!5
i

p (
jk,l m

~ajk ,al m!~a!
] f

]ajk
~a!

]g

]al m
~a!, ~2.14!

where (ajk ,al m)(a) is defined as in~2.13c! in terms of theJ-blocks ofa. According to~2.13c!,
the bracket between entries in the sameJ-block is zero. For example,

~a12,a13!5~a22,a32!5~a22,a33!50. ~2.15a!

By a direct calculation, for instance, we have

~a13,a22!~a!52a12a23, ~a32,a13!~a!5a12a33,
~2.15b!

~a12,a32!~a!52a12a32, ~a12,a22!~a!52a12a22.

In contrast to the generic case, the bracket~2.14! is not a Poisson bracket since the Jacobi iden
fails. For example, the cyclic sum

(„~a22,a32!,a13…~a!5a12~a23a322a33a22!5a12A11, ~2.16!

whereA11 denotes the 11th cofactor ofa, is not identical zero in GL~3!.
Denote byDJ the set ofJ-diagonal matrices, i.e.,

DJ5H S a11 0 0

0 a22 a23

0 a32 a33
D PGL~3!J .

Then we can check that the bracket~,! is identically zero onDJ .
Using similar relations as that in~2.16!, we obtain the following result.
Theorem 2.2:The bracket (2.14) satisfies the Jacobi identity on a submanifold N ofGL~3! if

and only if N#DJ .
Proof:We have seen that the bracket~,! is null onDJ ; therefore, it is a Poisson bracket on th

space.
Now suppose that the bracket~,! satisfies the Jacobi identity on the submanifoldN of GL~3!

and letaPN. We shall prove by contradiction thatai j50 for 3> i.1, j51, andi51, 3> j.1.
Suppose, for example, thata12Þ0. By a similar procedure to obtain~2.16!, we get the rela-

tions

(„~a22,a32!,a13…~a!5a12A11, („~a32,a12!,a13…~a!5a12A21,

(„~a13,a12!,a22…~a!5a12A31.

HereAjk denotes thejkth cofactor of the matrixa, respectively. Hence by assumption, we get th
A115A215A3150, therefore, deta5a11A111a21A211a31A1150. This is a contradiction with the
fact that detaÞ0, therefore,a1250. The other cases are similar. h

Example:Considerq(x) 5 e2x2e12, wheree12 denotes the unit matrix with a 1 in the12th
entry and zeroes elsewhere. Clearlyq is Schwartz class. We can check that
J. Math. Phys., Vol. 38, No. 1, January 1997
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s~q!5S 1 a~j! 0

0 1 0

0 0 1
D , a~j!5e2~9/4!k2.

Hence the associated scattering matrixs is, in general, notJ-diagonal.

III. FLOWS FOR DEGENERATE INTEGRABLE SYSTEMS

A. Recursion relations

Let q be inPJ and letl be the associated eigenfunction~see Sec. II B!. In the sequelm denotes
a J-diagonal traceless matrix which is not a scalar multiple ofJ in ~3.3!. Define the matrix-valued
functionF by F5 lm l21. Proceeding as in the generic case~cf. Refs. 4 and 10!, we find that the
coefficientsF j , j>0, of this asymptotic expansion are given by the recursion relations

F05m, @J, F j11#5F ddx2q, F j G5
dFj

dx
2@q, F j #. ~3.1!

Fix a positive integerk and set

Dx5
]

]x
2zJ2q, Dt5

]

]t
2(

j50

k

F jz
k2 j . ~3.2!

Just as in the generic case, the recursion relations in~3.1! gives the identity~cf. Refs. 4 and 10!

@Dx , Dt#5qt2F ]

]x
2q, FkG5qt2@J, Fk11#. ~3.3!

Thus [Dx ,Dt]50 if and only if

qt5@J, Fk11#5F ]

]x
2q, FkG . ~3.4!

The expressions ofFk(m) in terms of the potentialq are complicated and contain no loc
terms. However, those ofFk(J) are considerably simpler. The flows for this case are

qt5q, qt52
J0
3
qx , qt52

1

9
~qxx12q3!, qt5

J0
27

„qxxx13~q2qx1qxq
2!….

If in the third flow above we substitute the potential

q5 iS 0 2u 2v

ū 0 0

v̄ 0 0
D ,

we find thatu andv are related by the coupled NLS system~1.3!. Note that in this case all of them
are local. In fact we have~cf. Refs. 4, 9, and 10! the following.

Theorem 3.1:Fk~J!, k>1, are local but Fk~m!, k>1, are nonlocal.
The proof of the locality ofFk(J) is exactly as in the generic case~cf. Refs. 4, 9, and 10!. The

other part of the proof may be done by induction~see Ref. 9!.
A matrix-valued smooth functionH[u] is called a gradient if there is a functionalH with

density inA such that“H5H. HereH is called the potential ofH.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Proposition 3.2: Letm be a J-diagonal matrix andJ5adJ. Then

~I2p j !F1~q,m!5J21@q, m#

is a gradient and its potentialH1
m is given byH1

m(q)5^J21(mq),q&.
Proof: The variationdHm with respect toq is given by

dHm5^J21~qm!,dq&1^J21~dqm!,q&. ~3.5!

Since J21 is skew-symmetric wrt product in~3.5!, ^J21(dqm),q&52^dqm,J21q&, and m is
J-diagonal, J21(qm)5mJ21q. With this at hand, we havêJ21(dqm),q&52^dqm,J21q&
52^mJ21q,dq&52^J21mq,dq&. Inserting this in~3.5! gives

dHm5^J21~qm!,dq&2^J21~mq!,dq&5^J21@q, m#,dq&.

This proves Proposition 3.2. h

Lemma 3.3: Let qPPJ and l be the associated eigenfunction to q and d~z!5limx→` l~x,z!. For
large enoughz, Im zÞ0, defineHJ(z)5tr J log d(z). Then“HJ5F~J!, where F~J!5l21 Jl.
Hence F~J! is a gradient.

To prove this, we require the following result:
Proposition 3.4: Let d~z! as in Lemma 3.3. Then the variationd tr J log d with respect to q is

given byd tr J log d5tr Jd21dd, wheredd is the variation of d with respect to q.
Proof: For large enoughz, Im zÞ0, logd~z! is well defined and analytic since limz→` d~z!5I.

In fact we have that logd5(k51
` (21)k21/k(d2I!k. Hence

d tr J log d5 (
k51

`
~21!k21

k
tr Jd@~d2I!k#. ~3.6!

We also haved[(d2I!k]5( j50
k21(d2I!jdd(d2I!k212 j and [J, dd]50 since [J,d]50. Hence

tr Jd[(d2I!k]5( j50
k21 tr J(d2I!jdd(d2I!k212 j5k tr J(d2I!k21dd. Substituting this in ~3.6!,

d tr J log d5(k50
` (21)kd tr J(d2I!kdd5tr Jd21dd, which is the required result. h

Proof of Lemma 3.3:We can now proceed as in the generic case~cf. Ref. 10!. Sincel is the
eigenfunction associated withq, we have thatl x5z[J, l ]1ql. Hence (d l )x5z[J,d l ]1qd l1dql.
This and a short calculation give

~ l21d l !x5@J, z l21d l #1 l21dql. ~3.7!

By ~2.9b!, limx→2` l5I, and limx→` l5d, henced l→0 asx→2`. Therefore,

l21d l→H 0 as x→2`,

d21dd as x→1`,

since limx→` l5d. Thus~3.7! implies that

d21dd5E
2`

`

~ l21d l !x dx5E
2`

`

~@zJ, l21d l #1 l21d l !dx.

This together with Proposition 3.2 gives

dHJ5d tr J log d5tr Jd21dd5^J,@zJ,l21d l #&1^J,l21dql&.

Since^J,[zJ, l21d l ] &50 by definition ofF(J), we finally obtain

dHJ5^ lJl21,dq&5^F~J!,dq&. h
J. Math. Phys., Vol. 38, No. 1, January 1997
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Theorem 3.5: If Fk~J!, k.0, are the coefficients of the asymptotic expansion of F~J!, then
they are gradients. Their potentialsHk

J are given the kth coefficient of the asymptotic expansio
ofHJ~z!, respectively.

Proof: Expanding logd(z) in inverse powers ofz, we getHJ(z);( j50
` z2 jH j

J. Since
F;( j50

` z2 jF j and by Lemma 3.3,“H5F, we can conclude that“H j5F j , j>0. h

We next calculate the Poisson bracket among the functionalsH j
J.

Theorem 3.6:The Hamiltonian functionalsH j
J andH1

m are all of them in involution, i.e.,
$H j

J,Hk
J%50 and $H j

J,H1
m%50. In addition, if m8 is another J-diagonal matrix, then

$H1
m ,H1

m8%5^qJ21q,@m, m8#&.
Proof: We know that limx→6` F j (J)50 and F j (m), j.0, is bounded. Hence

limx→6` F j (J)Fk(m)50. We also have the recursion relationJF j (m)5DqF j21(m) for j>1.
GivenqPPJ , defineDq5d/dx2adq. If f ,g are matrix-valued differentiable functions ofx,

then trDq( f )g5(d/dx)~tr f g!2tr fDqg. Substitute f5F j (J) and g5Fk(m). Then
^JF j (J),Fk(m)&5^DqF j21(J),Fk(m)&5^JF j21(J),Fk11(m)&. Hence after a finite process, we o
tain ^JF j (J),Fk(m)&5^JF0(J),Fk1 j (m)&. SinceJF05[J, F0]50, ^JF j (J),Fk(m)&50. By Propo-
sition 3.2,$H j

J,H1
m%5^JF j (J),F1(m)&50. On the other hand, if we replacem with J, by Theorem

3.5, $H j
J,Hk

J%5^JF j (J),Fk(J)&50. This proves the first part of the theorem.
For the second part, letm8 be anotherJ-diagonal matrix. Since“H1

m5J21[q, m] and simi-

larly for “H1
m8 , we have

tr JF1~m!F1~m8!5tr J“H1
m
“H1

m85tr@q, m#J21@q, m8#5tr q†m, J21@q, m8#‡. ~3.8!

Using the facts thatJ21(qm)5J21(q)m sincem is J-diagonal ~mJ21q5mJ21!, and that trAB
5tr BA for any two matricesA, B, we obtain

tr q†m, J21@q, m8#‡52tr qmm8J21~q!2tr qJ21~q!m8m5tr qJ21q@m, m8#,

where again we have used thatJ21 is skew-symmetric. Substituting in~3.8!, we find

$H1
m ,H1

m8% 5 *2`
` tr JF1(m)F1(m8) 5 2*2`

` tr qJ21q@m, m8# 5 ^qJ21q,@m, m8#&. h

Remark 3.7:For large enoughz the functionalHm~z!5tr m log d~z! is well defined. However,
the proof that “Hm5F(m), given in Lemma 3.3, fails. Thus we can not assert t
$H j

J,Hk
m%5^JF j (J),Fk(m)&, whereHk is the kth coefficient in the asymptotic expansion

Hm~z!.

B. Evolution of the scattering data

Using similar arguments of the generic case~cf. Ref. 11!, we arrive at the following result~see
also Ref. 9!:

Theorem 3.8:Let q(t)5q(x,t)PPJ , tP[0, T), satisfy qt5[J, Fk11], for a fixed k>0 and
let v(j,t) be its scattering data. Thenv(j,t) evolves according to the equationv(j,t)
5etj

kmv(j,0)e2tjkm.
Lemma 3.9: Let q be inPJ . Then](zkF)1/]x2[ zJ1q, (zkF)1]5[J, Fk11], k>0.
Proof: A direct calculation shows the result. h

Proposition 3.10: Let qPPJ and let the associated eigenfunction be l. Th
d(z)5 limx→` l~x,z! exists. In addition,d(z) is J-diagonal and

d~z!5I1E
2`

`

p0
J
„q~x!l ~x,z!…dx. ~3.9!

Proof: Similar to that of the generic case~cf. Refs. 5 and 6!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Lemma 3.11: Let q(t)5q(x,t)PPJ , tP[0,T), and let l~x,z,t! be the associated eigenfunctio
Suppose that qt 5 @J, Fk11(m,q)#, t P @0, T). Thend~z,t!5limx→` l~x,z,t! satisfies the integral
equation

d~z,t !5etz
kmd~z,0!e2tzkm1E

0

t

e~ t2t!zkmp0
J~ lim

x→`

~zkF !12zkm!d~z,t!e2~ t2t!zkm dt.

Proof: By Proposition 3.10, we have

d~z,t !5I1E
2`

`

p0
J
„q~x,t !l ~x,z,t !…dx. ~3.10!

Since [J, Fk11(m,q)] is integrable and] tq5[J, Fk11(m,q)], qt is integrable. By Lemma 3.9
] tl is bounded. Hence] td exists and can be calculated by differentiating~3.10! under the integral
sign:

d t5E
2`

`

p0
J~qtl1qlt!dx. ~3.11!

Sinceqt5[J, Fk11], Lemma 3.9 gives

] tq5
]~zkF !1

]x
1@~zkF !1 , zJ1q#. ~3.12!

Solving the equation~2.5a! for ql, we obtain thatql5 l x2z[J,l ]. Hence

z@~zkF !1 , J# l1~zkF !1ql5~zkF !1l x1z„@~zkF !1 , J# l2~zkF !1@J, l #…

5~zkF !1l x1z@~zkF !1l ,J#.

Thus,

„@~zkF !1 ,zJ1q#1q~zkF !1…l5~zkF !1l x1z@~zkF !1l , J#. ~3.13!

The identities in~3.12!, ~3.13!, and Lemma 3.9 give

qtl1qlt5„~zkF !1l …x1z@~zkF !1l , J#2zkqlm.

Substituting this in~3.11! and using the fact that [J, (zkF)1] is an off-J-diagonal matrix-valued
function of x, we obtain

] td5E
2`

`

p0
J~ql ! tdx5E

2`

` ]~p0
J~zkF !1l !

]x
dx2zkS E

2`

`

p0
J~ql !dxDm.

Hence

] td5p0
J
„~zkF !1l …u2`

` 2zk~d2I!m5p0
J
„ lim
x→`

~zkF !12zkm…d1zk@m, d#. ~3.14!

Rewriting this in suitable form and integrating both sides of this equation over the interval [t]
with respect tot, we get the result. h

Theorem 3.12:Suppose that for tP[0, T) and k>1, q(t)5q(x,t)PPJ evolves according
to qt5[J, Fk11(q,m)]. Then for all tP[0, T),
J. Math. Phys., Vol. 38, No. 1, January 1997
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p0
J~F j„`,q~ t !,m…!PRa adm, j51,...,k. ~3.15!

In particular,

p0
J
„F j~`,q0 ,m!…PRa adm, j51,...,k, ~3.16!

is a necessary condition for the existence of a local solution of the initial value prob
qt5[J, Fk11(q,m)], qu t505q0 .

Whenm is a diagonal matrix, (3.15) means that

p0~F j„`,q~ t !,m…!50, j51,...,k, ~3.158!

wherep0 denotes the projection on the diagonal matrices.
Proof:Multiplying both sides of the equation in~3.14! by zk21 and solving forF1„`,q(t),m…,

we get F1„`,q(t),m…5d t2z[m, d]2( l52
k p0

Jz12 lFl„`,q(t),m…d. Since by ~2.9a! and ~2.12b!
l→1, l t→0 asz→`, the integral representation~3.11! for d t gives thatd t→0 asz→`. On the
other hand, by Proposition 3.10,d→I asz→`. Thus limz→` z@m,d# exists and

F1„`,q~ t !,m…52 lim
z→`

z@m, d#. ~3.17!

Since adm(Mn) is a linear subspace ofMn , therefore closed, andz@m, d#Padm(Mn), we con-
clude thatF1„`,q(t),m…Padm(Mn).

By a similar argument to deduce~3.17!, we obtain

F2„`,q~ t !,m…5z22kd t2z~F1„`,q~ t !,m…2z@m,d#!2(
l53

k

p0
Jz22 lFl„`,q~ t !,m…d.

Continuing with this finite process, we get~3.15!.
Whenm is diagonal, Lemma 3.11 and the fact that any two diagonal matrices commute

p0„d(z,t)2d(z,0)…5*0
t p0„limx→`(z

kF)1d(z,t)…dt. The left-hand side is a bounded function
the variablez; in fact, its limit asz→` is zero since limz→` d(z,t)5I, for tP[0, T). Hence, the
polynomial inz, *0

t p0 limx→` (zkF)1dt,tP[0, T), must be identically zero. Therefore, the pol
nomial limx→` p0(z

kF)[0, tP[0, T). As before we havep0Fl(`,m,q)50, l51,...,k. h

C. Evolution of the scattering matrix

Corollary 3.13: Suppose q~x,t!PPJ , tP[0, T) evolves according to] tq5[J, F1(q,m)]. Then
the scattering matrix evolves as s(j,t)5etms(j,0)e2tm, tP[0, T).

Proof: Let r (x,z,t) be the eigenfunction associated toq(x,t). Let u(j,t), jPR, tP[0, T) be
the matrix satisfyingr15r2e

xjJu(j,t)e2xjJ @see~3.19a! and ~3.19b!#. v andu can be uniquely
factored asv5v2

21v1 and u5u2
21u1 with v1 , u2PSL0,J

1 , v2 , u1PSL0,J
2 @see ~2.11! and

~2.12b!#. SinceF0→m as x→`, we can prove thatu(j,t)5etmu(j,0)e2tm as we did forv in
Theorem 3.8. Sincem is J-diagonal, the conjugateetmv6(j,0)e

2tm of v6(j,0) remains in SL0,J
7 .

On the other hand, by the uniqueness of the factorization forv(j,t), we get that
v6(j,t)5etmv6(j,0)e

2tm. Similarly, u6(j,t)5etmu6(j,0)e
2tm.

Now Lemma 3.3 withk50 implies thatd(z,t)5etmd(z,0)e2tm,uzu.0. Taking limits whenz
approachesj from the upper and lower half-planes, respectively@see ~2.11d!#, we obtain
d6(j,t)5etmd6(j,0)e

2tm, jPR. Since the scattering matrix is uniquely factored in terms ofv6 ,
u6 , andd6 as s(j,t)5u6(j,t)d6(j,t)v6(j,t)

21, jPR, t>0 @see~2.11a! and ~2.11c!# we get
s(j,t)5etmu6(j,0)d6(j,0)v6(j,0)

21e2tm5etms(j,0)e2tm, which proves the Corollary. h
J. Math. Phys., Vol. 38, No. 1, January 1997
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Corollary 3.14: Suppose that q(t)5q(x,t)PPJ , tP[0, T), evolves according to
] tq5[J, Fk11(m,q)], k>1, and p0

JF j (`,q(0),m)Þ0 for some1< j<k. Then the scattering

matrix s(j,t) does not evolve according to s(j,t) 5 etj
kms(j,0)e2tjkm.

Proof: Supposes evolves ass(j,t) 5 etj
kms(j,0)e2tjkm. As in the previous Corollarys(j,0)

can be uniquely factored ass(j,0)5u6(j,0)d6(j,0)v6
21(j,0). Hence

s~j,t !5etj
kmu6~j,0!e2tjkmetj

kmd6~j,0!e2tjkm
„etj

kmv6~j,0!e2tjkm
…

21.

Sinceetj
km is J-diagonal, we have found anotherJ-triangular factorization fors(j,t). Since this

factorization is unique, we have in particular thatd1(j,t) 5 etj
kmd1(j,0)e

2tjkm. By Lemma 3.11,
after taking the limit from the upper half-plane, we obtaind1(j,t) 5 etj

kmd1(j,0)e
tjkm

1 *0
t
„(jkF)1 2 jkm…d1(j,t)dt. Comparing the expressions ford1(j,t), we conclude that

*0
t
„(jkF)12jkm…d1(j,t)dt50, jPR. Thus„(jkF)12jkm…d1(j,t)50, and therefore, we hav

(jkF)12jkm50. ThusFl„`,q(t),m…50, l51,...,k. In particular,F j„`,q(0),m…50. This con-
tradicts the assumption onF j„`,q(0),m…. Hence s does not evolve according tos(j,t)
5 etj

kms(j,0)e2tjkm. h

Lemma 3.15: Let q(t)5q(x,t)PPJ for tP[0, T). Suppose that the eigenfunction l~x,z,t!
associated to q(t) is analytic in6Im z.0, qt(x,t)PPJ , tP[0, T). In addition, assume that the
scattering datav(j,t) of q(t) evolves according tov(j,t) 5 etz

kmv(j,0)e2tzkm, k>0. Then
qt5[J, Fk11(q,m)].

This Lemma was proved in Ref. 11 for the generic case. We found that the proof is still
for the present case~cf. Refs. 9 and 11!.

Remark 3.16:Let q0PP and lets(j,0) be its scattering matrix. Fort.0, suppose that there i
aq(t)PPJ whose scattering matrixs(j,t) 5 etj

kms(j,0)e2tjkm. Then

d6~j,t !5p0
J
„s6~j,t !…5etj

kmp0
J
„s6~j,0!…e2tjkm5etj

kmd6~j,0!e2tjkm. ~3.18!

Hence by Proposition 4.15 and~3.18!, we haved(z,t) 5 etz
kmd(z,0)e2tzkm. Sinced(z,t)→I as

z→`, the entries ofd~z,0! must decay rapidly enough. For example, form5 i diag~1,21,0!, and
k51,

d~z,t !5S d11~z,0! 0 0

0 d22~z,0! d23~z,0!e2 i t z

0 d32~z,0!eit z d23~z,0!
D .

Thus forz, Im z.0,ud23~•,0!u needs to decay faster thane2t Im z, which, in general, may not occur
Thuss(j,t) as defined before may not be the scattering matrix of a potentialq, i.e.,s(j,t) may be
outside of the range of the scattering transform.

Theorem 3.17:Let q~t!5q~x,t!PPJ
for tP[0, T). Suppose that the eigenfunction l~x,z,t! as-

sociated to q~t! is analytic in6Im z.0, qt~x,t!PPJ , tP[0, T) and that the scattering matrix s~z,t!
of q~t! evolves according to

s~j,t !5etz
kms~j,0!e2tzkm. ~3.19!

Then qt5[J, Fk11(m,q)], and for all j51,...,k,p0
JFj„`,m,q(t)…50, tP[0, T). In particular,

p0
JF j„`,m,q~0!…50, j51,...,k, ~3.20!

is a necessary condition in order for the scattering matrix s~j,t! of q~t! to evolve according to
(3.19).
J. Math. Phys., Vol. 38, No. 1, January 1997
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Proof: By assumption on the evolution of the scattering matrixs(j,t), we can prove as in
Theorem 4.17 that the scattering datav(j,t) of q(x,t) is determined by the scattering datav(j,0)
of q(x,0) by v(j,t) 5 etj

kmv(j,0)e2tjkm, i.e., v t5[m, v]. By Lemma 4.18,] tq5[J, Fk11].
Hence Lemma 4.15 with an argument as in Corollary 13 gives limx→` p0

J
„(jkF)12jkm…50,

jPR. This occurs if and only ifp0
JF j„`,m,q(t)…50 for j51,...k, tP[0, T). h

Remark 3.18:If we replacem with J in the above discussion, the locality ofFk(J,q) implies
that (zkF)1(`,J,q)50. Therefore, Lemma 3.11 impliesd(z,t)5d(z,0), tP[0, T].

Theorem 3.8 and Lemma 3.15 withJ instead ofm implies that the scattering data and sc
tering matrix linearly evolve as in the nondegenerate case:

Theorem 3.19:q~•,t!, tP[0, T), evolves according to qt5@J, Fk11~J,q!#, k>0, if and only if
the scattering matrix and scattering data evolve according to

] ts~j,t !5jk@J, s~j,t !#, ] tv6~j,t !5jk@J, v6~j,t !#.

IV. CONCLUSIONS

In the last section we showed that some of the basic results in the generic theory break
in the degenerate case. For example, we can not extend the proof of Lemma 3.3 for aJ-diagonal
matrix m, which is not a multiple scalar ofJ since ker adJ is not Abelian. Hence“HmÞF(m),
whereHm5tr m log d. Consequently, the proof of Theorem 3.5 to show that the flow

qt5@J, Fk11~m!#, k>1, ~4.1a!

is Hamiltonian fails. Theorem 3.6 ensures that the family flows

qt5@J, Fk11~J!#, k>0, ~4.1b!

are Hamiltonian, but the existence of a second hierarchy of flows in involution withH j
J still is an

open problem. Furthermore, for eachmPker adJ wherem is not a multiple scalar ofJ, only the
flow qt5[J, F1(m)] is Hamiltonian, not the entire hierarchy~4.1a!, andFk(m), k>1, are no
longer local~Theorem 3.1! in contrast to the generic case.

By Theorem 3.8 and Lemma 3.15, the potentialq(t) evolves according to~4.1a! if and only
if its scattering data evolves asv t5[m, v] as in the generic case. However, by Lemma 3.11~see
Theorem 3.12! its existence is now restricted by condition~3.15! on the initial dataq(0)5q(x,0).
In addition, since condition~3.15! is stronger than~3.18!, the flowv t5[m, v] is not equivalent to
the flow st5[m, s], and the scattering matrixs no longer evolves according to the latter flow
in the generic case. It is now necessary that the initial dataq(0) satisfy pJF j„m,q(0)…50,
j51,...,k ~see Theorem 3.12!. The existence of the flows~4.1a! is also restricted since it is
required thatpJF j„m,q(0)…PRa adm, for all j51,...,k.

By Theorem 3.19, the flows~4.1b! form a family of commuting flows that are linear in th
scattering data and scattering matrix as in the generic case.

The skew symmetric form~2.14! no longer satisfies the Jacobi identity in the degenerate c
therefore complete integrability for the Hamiltonian hierarchy~4.1b! and construction of the
action-angle variables are open problems even in this simplest case. There exist at lea
alternatives to explore them: consider the same Poisson bracket~2.6! but find some other way to
make precise the notion of complete integrability; or find another Poisson bracket onPJ instead of
that in ~2.6! and apply the scattering method.
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An inverse scattering transform for the MKdV equation
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The MKdV equation of normal dispersion with non-vanishing boundary value is
solved by the inverse scattering transform method. An affine parameter is intro-
duced to avoid double-valued functions of the usual spectral parameter. In terms of
it the inverse scattering transform is performed and the inverse scattering equation
of Zakharov–Shabat form as well as of Marchenko form is derived. Dark multi-
soliton solutions are found formally by means of the Binet–Cauchy formula. The
asymptotic behaviors in the limits ofutu→` are derived as expected. ©1997
American Institute of Physics.@S0022-2488~96!00806-7#

I. INTRODUCTION

Some years ago, after developing an inverse scattering transform for the NLS equat
anomalous dispersion with vanishing boundary value by Zakharov and Shabat,1 an inverse scat-
tering transform for the MKdV equation of anomalous dispersion with vanishing boundary v
was set by Wadati.2 The main features of the inverse scattering transform for the MKdV equa
are that the poles of the transmission coefficient either lie on the positive imaginary axis
located in pairs symmetrically about the imaginary axis in the upper half plane of the sp
parameter. The former case corresponds to soliton solutions and the later case to breath
tions.

Soon afterward, for the NLS equation of normal dispersion with non-vanishing boun
value an inverse scattering transform with some revision was also developed by Zakharo
Shabat.3 And a new type of soliton solutions called dark soliton solutions was obtained. Thes
kinds of solitons were found with their uses in the ultra-short pulse propagation along o
fibers in the anomalous dispersion regime and in the normal dispersion regime, respectiv
Hasegawa and Tappert.4,5

The problem to solve the MKdV equation of normal dispersion with non-vanishing boun
value was not settled because it is more complicated and it seems not pressing in p
Recently, the problem was examined in the papers6,7 as an example to illustrate the method
Darboux transformation. It was found to be an expression of the simplest solution which is
dark single soliton by these authors. It is regular and satisfies the MKdV equation. Accord
the procedure provided in these two papers, one can obtain an expression of the next
solution which is, according to these authors, called dark 2-soliton solution. However, it is sin
and does not have the expected asymptotic behaviours in the limitutu→`. Hence it may not be
considered as dark 2-soliton solution. From these two papers, for the MKdV equation of n
dispersion with non-vanishing boundary value one merely obtain a simplest solution whic
dark single soliton-like solution or a dark solitary wave solution.
0022-2488/97/38(1)/226/21/$10.00
226 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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In this paper, the same problem is examined by using the inverse scattering transfo
Zakharov and Shabat3 with special attention to the real condition of solutions of the MKd
equation. In the original paper of Zakharov and Shabat,3 Riemann surface is introduced as r
quired by the double-valued function of the spectral parameterl. To avoid complexity due to it,
in the derivation it is reasonable to use an affine parameterz as mentioned by Faddeev an
Takhtajan8 so that the parameterl and a quantityk appearing in the derivation can be express
as single-valued functions of it. This simplifies the derivation. After reviewing the usual prope
of the Jost solutions, special properties of the Jost solutions under the reduction transforma
examined in detail. It is shown that poles of transmission coefficient are located on a
semi-circle with radiusr centered at origin of plane of complexz. And poles are located in pai
symmetrically with respect to the imaginary axis to ensure the reality of solutions. Inverse
tering equations of Zakharov–Shabat form are found. Then an explicit expression of
N-soliton solution is derived and its asymptotic behaviors in the limitutu→` are derived as
expected. Hence the MKdV equation of normal dispersion with non-vanishing boundary valu
have dark multi-soliton solutions. Inverse scattering equations of Marchenko form are de
also. Finally, the usual soliton solutions of the KdV equation are shown to be generated fro
dark soliton solutions of the MKdV equation with non-vanishing boundary value by a Muira-
transformation and a Galilean transformation.

II. MKdV EQUATION WITH NON-VANISHING BOUNDARY VALUE

The MKdV equation of normal dispersion is of the form

ut1uxxx26u2ux50. ~1!

We now develop an inverse scattering transform for solving it with non-vanishing boundary v

uuu→r as x→6`, ~2!

wherer is a positive constant.
Associated with~1!, we introduce the essential ideas behind Lax’s approach.9 Consider a pair

of equations in the form

]xF~z!5L~z!F~z!, ~3!

] tF~z!5M ~z!F~z!, ~4!

where

L~z!52 ils31U, ~5!

M ~z!52 i4l3s314l2U2 il~U21Ux!s31~2U32Uxx!, ~6!

U5S 0 u

u 0D , ~7!

andl is the usual spectral parameter. However, as we shall see later, a quantityk appearing in the
derivation is a double-valued function ofl. It is convenient to introduce an other parametez
called affine parameter and to considerl andk as a single-valued function ofz, such that8

l5 1
2~z1r2z21!, k5 1

2~z2r2z21!. ~8!
J. Math. Phys., Vol. 38, No. 1, January 1997
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In the limit of uxu→`, from ~2! we have

L~z!→L0~z!52 ils31U0 , U05rs1 . ~9!

Now ~3! reduces to

]xE~x,z!5L0~z!E~x,z!. ~10!

Continuous spectrum consisted of reall, satisfyingl2>r2. In this case, we can choose matr
solutionE(x,z) in the form

E~x,z!5S 1 2 irz21

irz21 1 D e2 ikxs3. ~11!

Jost solution of~3!, defined by the boundary condition

C~x,z!→E~x,z! as x→1`, ~12!

obviously satisfies the following integral equation,

C~x,z!5E~x,z!2E
x

`

dy E~x,z!E21~y,z!$U~y!2U0%C~y,z!. ~13!

The boundary value condition~12! clearly holds. Applying operator$]x2L0(z)%, the resulting
equation is obviously equivalent to~3!.

~13! is an integral equation of Volterra type, and the properties ofC(x,z) obtained from it by
iteration are somewhat complicated. As usual, we assume thatC(x,z) is expressed as the follow
ing integral representation:

C~x,z!5E~x,z!1E
x

`

dy K~x,y!E~y,z!, ~14!

whereK(x,y) is a 232 matrix function independent ofz and satisfying

K~x,1`!50. ~15!

Substituting~14! into ~3!, and integrating by part to eliminatel, we obtain

K~x,x!2s3K~x,x!s31U~x!2U050, ~16!

Kx~x,x!1s3Ky~x,x!s32U~x!K~x,y!1s3K~x,y!s3U050, y.x. ~17!

From these two equations the standard procedure8 shows that the representation~14! is right.
Similarly, in the limit of x→2`, defining

F~x,z!→E~x,z!, ~18!

we have an integral representation

F~x,z!5E~x,z!1E
2`

x

dy N~x,y!E~y,z!, ~19!

where
J. Math. Phys., Vol. 38, No. 1, January 1997
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N~x,2`!50. ~20!

III. PROPERTIES OF THE JOST SOLUTIONS

In the plane of complexz, we draw a circle with radiusr, centered at O, which we sha
simply call ther-circle. The plane of complexz is decomposed into 4 regions by the real axis a
the r-circle. We have obviously the following correspondences:

z real, l real,l2>r2, k real

z on ther2circle, l real,l2<r2, k pure imaginary,uku<r.

Realz corresponds clearly to the continuous spectrum ofl, and realk. In this case,~10! has two
independent solutions with two components,E

•1(x,z) and E
•2(x,z). From ~14!, ~3! has two

independent solutions with two components,C
•1(x,z) andC

•2(x,z). Similarly, from~19!, ~3! has
other two independent solutions with two componentsF

•1(x,z) andF
•2(x,z). However, these

two pairs of solutions are linearly dependent. As usual, we introduce the monodromy m
T(z):

F~x,z!5C~x,z!T~z!, ~21!

where

T~z!5S a~z! b̃~z!

b~z! ã~z!
D . ~22!

For realz, from ~5! and ~10! we have

s1L~x,z!s15L~x,z! ~23!

and

s1E~x,z!s15E~x,z!. ~24!

From the boundary conditions~12! and ~18! we then obtain

s1C~x,z!s15C~x,z!, s1F~x,z!s15F~x,z!. ~25!

As usual, we write

C~x,z!5~ c̃~x,z!c~x,z!!, F~x,z!5~f~x,z!f̃~x,z!!, ~26!

~25! and ~26! lead to

c̃~x,z!5s1c~x,z!, f̃~x,z!5s1f~x,z!. ~27!

From ~25!, we have

s1T̄~z!s15T~z!, ~28!

and then

ã~z!5a~z!, ~29!

b̃~z!5b~z!. ~30!
J. Math. Phys., Vol. 38, No. 1, January 1997
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From ~21! we have

f~x,z!5a~z!c̃~x,z!1b~z!c~x,z!, ~31!

for example. It is obvious that

detC~x,z!5detF~x,z!5detE~x,z!512r2z22, ~32!

and thus

detT~z!51, ua~z!u22ub~z!u251. ~33!

From ~21! we have

C~x,z!5F~x,z!T21~z!, ~34!

and

T~z!5C21~x,z!F~x,z!. ~35!

~35! is explicitly expressed as

a~z!5~12r2z22!21W@f~x,z!,c~x,z!#, ~36!

b~z!5~12r2z22!21W@c̃~x,z!,f~x,z!#, ~37!

ã~z!5~12r2z22!21W@c̃~x,z!,f̃~x,z!#, ~38!

b̃~z!5~12r2z22!21W@f̃~x,z!,c~x,z!#, ~39!

where the Wronkian is defined by

W@f~x,z!,c~x,z!#5det~f~x,z!c~x,z!!, ~40!

for example.
With the aid of~24! and ~25! we have

s1K~x,y!s15K~x,y!, ~41!

namely,

K22~x,y!5K11~x,y!, K12~x,y!5K21~x,y!, ~42!

and similar relations forN(x,y).
From the integral representation of the Jost solutionC(x,z), ~14!, it is easily seen that

c(x,z) can be analytically continued into the upper half plane of complexz, andc̃(x,z) into the
lower half plane. In fact, we have

c~x,z!e2 ikx5S 2 irz21

1 D 1E
x

`

dy K~x,y!S 2 irz21

1 D e2 ik~x2y!. ~43!

In the upper half plane of complexz, Im k.0, the exponent of the integrand is not only bound
but also decayed on account ofy.x. c(x,z)e2 ikx can be analytically continued into the upp
half plane of complexz. Thusc(x,z), and similarlyf(x,z), can be analytically continued into
J. Math. Phys., Vol. 38, No. 1, January 1997
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the upper half plane of complexz. In the same way,c̃(x,z) andf̃(x,z) can be analytically into
the lower half plane of complexz. From ~36! and ~38! we can see thata(z) and ã(z) can be
analytically continued into the upper and the lower half plane of complexz, respectively.

Whenz is complex, some of the above formulas need to be slightly modified. For exam
~27! and ~29! are replaced by

c̃~x,z̄ !5s1c~x,z!, f̃~x,z̄ !5s1f~x,z!, ~44!

and

ã~ z̄ !5a~z!, ~45!

respectively. Butb(z) and b̃(z) can not be analytically continued out of the real axis ofz in
general, unlessuu(x)2ru is on compact support.

IV. PROPERTIES UNDER THE REDUCTION TRANSFORMATION

Since two values ofz correspond to the same value ofl, we shall consider the reductio
transformation properties of the Jost solutions, namely, the properties under the transform

z→r2z21, ~46!

which leads to

l→l, k→2k. ~47!

From ~11!, ~14! and ~19!, we have

E~x,r2z21!5r21zE~x,z!s2 , ~48!

and

C~x,r2z21!5r21zC~x,z!s2 , F~x,r2z21!5r21zF~x,z!s2 , ~49!

or

c̃~x,r2z21!5 ir21zc~x,z!, c~x,r2z21!52 ir21zc̃~x,z!, ~50!

f~x,r2z21!5 ir21zf̃~x,z!, f̃~x,r2z21!52 ir21zf~x,z!. ~51!

And we have also

ã~r2z21!5a~z!, ~52!

b̃~r2z21!52b~z!, z real. ~53!

From ~14! and ~19!, in the upper half plane ofz, whenuzu→`, it is easily seen that

c~x,z!e2 ikx5S 01D 1O~ uzu21! ~54!

and
J. Math. Phys., Vol. 38, No. 1, January 1997
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f~x,z!eikx5S 10D 1O~ uzu21!. ~55!

Asymptotic behaviors in the limit ofuzu→0 can be simply by using~50! and ~51!,

ir21zc~x,z!e2 ikx5S 10D 1O~ uzu! ~56!

and

2 ir21zf~x,z!eikx5S 01D 1O~ uzu!. ~57!

Therefore, in the upper half plane ofz, we have

a~z!511O~ uzu21! uzu→`, ~58!

a~z!511O~ uzu! uzu→0. ~59!

a(z) is analytic in the upper half plane ofz, it may have zeros. Supposezn is one of them, we
have

a~zn!50. ~60!

From ~3! we obtain an equation with an Hermitian operator. Its eigenvaluesl must be real. Since
discrete eigenvalueln is real, and the correspondingzn must be in the half plane ofz, hence
zn is located on the semi-circle of ther-circle in the upper half plane ofz on account of the above
mentioned correspondence. We thus write

zn5ln1kn , kn5 ikn , kn.0, ~61!

and

ln
21kn

25r2. ~62!

From ~36!, at zn , one of zeros ofa(z), we have

f~x,zn!5bnc~x,zn!, ~63!

wherebn is independent ofx. From ~45! we can see thatz̄n is a zero ofã(z) in the lower half
plane ofz,

ã~ z̄n!50. ~64!

From ~38!, at z̄n , we have

f̃~x,z̄n!5b̃nc̃~x,z̄n!, ~65!

whereb̃n is independent ofx. Since

r2zn
215 z̄n , ~66!

from ~44!, ~50! and ~51!, we obtain two relations
J. Math. Phys., Vol. 38, No. 1, January 1997
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b̃n5b̄n ~67!

and

b̃n52bn , ~68!

respectively. Hence,bn is pure imaginary.
We now show that the zerozn of a(z) must be simple zero,

ȧ~zn!Þ0, ȧ~zn![
d

dz
a~z!uz5zn

. ~69!

From ~36! and on account of~63! and~65!, by means of a procedure similar to that in the case
vanishing boundary condition, we can obtain

ȧ~zn!52 ibnE
2`

`

dxc1~x,zn!c2~x,zn!. ~70!

On the other hand, from~50! we have

c1~x,zn!52 irzn
21c2~x,zn!. ~71!

Hence~70! becomes

ȧ~zn!52bnrzn
21E

2`

`

dxuc2~x,zn!u2. ~72!

It yields ~69! and

cn[2
bn

ȧ~zn!zn
.0. ~73!

Similarly, we have

ã~ z̄n!50 ~74!

and

c̃n[2
b̃n

a8 ~ z̄n!z̄n
5 c̄n5cn , ~75!

since

ȧ~zn!52a8 ~ z̄n!r
22z̄ n

2 . ~76!

V. CONDITION OF REALITY OF THE SOLUTIONS

The standard procedure8 yields

a~z!5)
n

z2zn

z2 z̄n
expH 1

2p i E2`

`

dz8
ln~11ub~z8!u2!

z82z J . ~77!

In the direct scattering transform, we know that
J. Math. Phys., Vol. 38, No. 1, January 1997
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b~z!→0, ~78!

in the case ofuzu→` or uzu→0, since both correspond toulu→`. The expression ofa(z), ~77!
satisfies the condition~59! in the limit of uzu→`. We have

a~z!5)
n

zn

z̄n
1O~ uzu! as uzu→0. ~79!

We now discuss why it tends to 1.
From ~3! and ~11! we have

]xC~2 z̄ !5~2 ils31U !C~2 z̄ ! ~80!

and

E~2 z̄ !5E~z!. ~81!

We thus obtain

C~2 z̄ !5C~z!, ~82!

namely,

c~2 z̄ !5c~z!, c~2 z̄ !5c̃~z!. ~83!

With the aid of~81! and ~82! from ~14! we obtain

K~x,y!5K~x,y!. ~84!

Together with~41! we have

K11~x,y!5K22~x,y!5 real, ~85!

K12~x,y!5K21~x,y!5 real. ~86!

It ensures reality of the solutions.
For F(z) we have equations similar to~81! and ~82!. Hence we have also

a~2 z̄ !5a~z!. ~87!

It means that ifzn is a zero ofa(z), then2 z̄n is also a zero ofa(z), namely, poles ofa(z) are
located in pairs symmetrically about the imaginary axis. We write

z ň52 z̄n , ~88!

or ň5N1n, in the case ofN pairs of zeros ofa(z). From ~83! and a similar equation for
f(z) we have

f~z ň!5b̄nc~z ň!, ~89!

i.e.,

bň5b̄n . ~90!
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We have also

ȧ~z ň!52 ȧ~z ň!, ~91!

and then

cň5 c̄n5cn . ~92!

Supposea(z) haveN pairs of zeros as given above, then~79! tends obviously to 1.

VI. INVERSE SCATTERING TRANSFORM

We define

Q~x,z!5H a~z!21f~x,z!, for Im z.0,

c̃~x,z!, for Im z,0,
~93!

a(z)21f(x,z) is analytic in the upper half plane ofz, except atzn , n51,2, . . . , it hassimple
poles.c̃(x,z) is analytic in the lower half plane. On the real axisQ has a jump such that

r ~z!c~x,z!5a~z!21f~x,z!2c̃~x,z!, ~94!

where

r ~z!5
b~z!

a~z!
, ~95!

since~31!. In the upper and lower half planes,Q has the following limits

$Q~x,z!2E
•1~x,z!%eikx5O~ uzu21! asu zu→`,

$Q~x,z!2E
•1~x,z!%eikx5O~1! as uzu→0, ~96!

on account of~54!, etc.
By Cauchy integral formulae, we have

$Q~x,z!2E
•1~x,z!%eikx5

1

2p i R dz8
$Q~x,z8!2E

•1~x,z8!%eik8x

z82z
, ~97!

where the integral contour in the plane ofz is similar to that in the paper of Zakharov and Shaba1

The part of residues in the right side of~97! is

R~x,z!52 (
n51

2N
1

z2zn
cnzn .c~x,zn!e

iknx. ~98!

The part of integral along the real axis is

I ~x,z!5
1

2p i E2`

`

dz8
1

z82z
r ~z8!c~x,z8!eik8x. ~99!

Whenz is in the lower half plane, the final result is

c̃~x,z!2E
•1~x,z!5$R~x,z!1I ~x,z!%e2 ikx. ~100!
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This is an inverse scattering equation of Zakharov–Shabat form. In the limit ofuzu→`, we find
from ~14!

c̃2~x,z!5 irz21e2 ikx2 i2z21K21~x,x!e2 ikx1O~ uzu22!. ~101!

Hence the solution of the MKdV equation is expressed as

u~x!5r22K21~x,x!5 lim
uzu→`

$2 i zc2~x,z!eikx%, ~102!

or

u~x!5r1 i(
n51

2N

cnznc2~x,zn!e
iknx1

1

2p i E2`

`

dz8r ~z8!c2~x,z8!eik8x. ~103!

We now determine the time dependence. We have in the limit ofx→2`

f~x,t,z!→S 1

irz21D e2 ikx, ~104!

which is obviously independent oft. By standard procedure, we introduce a function oft andz
such that

$] t2M ~x,t,z!%h~ t,z!f~x,t,z!50. ~105!

In the limit of x→2`, it tends to

] th~ t,z!1 ik~4l212r2!h~ t,z!50, ~106!

which gives

h~ t,z!5e2 ik~4l212r2!t. ~107!

On the other hand, we have from~31!

f~x,t,z!5a~ t,z!c̃~x,t,z!1b~ t,z!c~x,t,z!, ~108!

wheret is a pure parameter in the above derivation. Substituting it into~105!, we obtain

$] t2M ~x,t,z!%h~ t,z!$a~ t,z!c̃~x,t,z!1b~ t,z!c~x,t,z!%50. ~109!

In the limit of x→`, it tends to

] t$h~ t,z!a~ t,z!%1 ik~4l212r2!h~ t,z!a~ t,z!50 ~110!

and

] t$h~ t,z!b~ t,z!%2 ik~4l212r2!h~ t,z!b~ t,z!50. ~111!

These two equations give

] ta~ t,z!50, ~112!

] tb~ t,z!2 i2k~4l212r2!b~ t,z!50. ~113!
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Hence we find

a~ t,z!5a~0,z!, ~114!

b~ t,z!5b~0,z!ei2k~4l212r2!t. ~115!

At zn , from ~63! a similar procedure leads to

] tbn~ t !2 i2kn~4ln
212r2!bn~ t !50 ~116!

and

bn~ t !5bn~0!ei2kn~4ln
2
12r2!t. ~117!

Hence we have also

r ~ t,z!5r ~0,z!ei2k~4l212r2!t, ~118!

cn~ t !5cn~0!ei2kn~4ln
2
12r2!t. ~119!

VII. EXPLICIT SOLUTIONS IN THE CASE OF REFLECTIONLESS

In the case of reflectionless, noting~50!, the inverse scattering equation~100! reduces to

ir21zmc2~x,zm!5 ir21zme
ikmx2 (

n51

2N
1

z̄m2zn
cnznc2~x,zn!e

i ~kn1km!x, ~120!

and the expression of the solution is simply

uN~x,t !5r1 i(
n51

2N

cnznc2~x,zn!e
iknx. ~121!

To solve it, we introduce

Cn5 iAcnr21znc2~x,zn!, ~122!

f n5Acne2knx, ~123!

gn5 ir21znf n , ~124!

Bnm5 f n
r

i ~ z̄m2zn!
f m . ~125!

The equation~120! can be expressed as

Cm5gm2 (
n51

2N

CnBnm , ~126!

and the expression of the solution~121! is

uN~x,t !5r1r (
n51

2N

Cnf n . ~127!
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¬¬¬¬¬¬¬¬¬¬
Write them in matrix form,

C5g2CB, ~128!

C5g~ I1B!21, ~129!

uN~x,t !5r$11Cf T%5r$11g~ I1B!21f T%5r
det~ I1B1 f Tg!

det~ I1B!
5r

det~ I1B8!

det~ I1B!
, ~130!

where

B85B1 f Tg, ~131!

namely,

Bnm8 5Bnm1 f ngm5 f n
1

i ~ z̄m2zn!
r21znzmfm . ~132!

By simple algebraic procedure, we have

det~ I1B!511(
r51

2N

(
1<n1,n2,•••,nr<2N

B~n1 ,n2 , . . . ,nr !, ~133!

where

B~n1 ,n2 , . . . ,nr !5)
n,m

f n
2@ i ~ z̄m2zn!#

21)
n,m

@ i ~ z̄m2 z̄n!#@ i ~zm2zn!#r
r , ~134!

n,mP$n1 ,n2 , . . . ,nr%. ~135!

It is simply expressed as

B~n1 ,n2 , . . . ,nr !5)
n

Fn)
n,m

Uzn2zm

z̄n2zm
U2, ~136!

where

Fn5
r

i ~ z̄n2zn!
f n
2 , ~137!

which is positive, regardlessx and t. Therefore, det(I1B) is always positive, and thenuN is
regular.

Similarly, we have

det~ I1B8!511(
r51

2N

(
1<n1,n2,•••,nr<2N

B8~n1 ,n2 , . . . ,nr ! ~138!

and

B8~n1 ,n2 , . . . ,nr !5)
n

Fnr
22zn

2)
n,m

Uzn2zm

z̄n2zm
U2. ~139!
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¬¬¬¬¬¬¬¬¬¬
We note this expression can be obtained by simple replacementFn→Fnr
22zn

2 from the expres-
sion ~136!.

VIII. A SINGLE DARK SOLITON SOLUTION

We note that

Cň5C̄n ,gň5ḡn ,Bňm̌5B̄mn , ~140!

and

f ň5 f n5 real, Fň5Fn5 real. ~141!

WhenN51, we have

det~ I1B!511B~1!1B~ 1̌!1B~1,1̌!511F11F 1̌1F1F 1̌Uz12z 1̌

z̄12z 1̌
U2. ~142!

Noting

~r22z1z 1̌!
251, ~143!

we obtain

det~ I1B!5112F11F1
2
l1
2

r2
. ~144!

Similarly, we have

det~ I1B8!511B8~1!1B8~ 1̌!1B8~1,1̌!511S z1
r D 2F11S z 1̌

r D 2F 1̌1F1F 1̌Uz12z 1̌

z̄12z 1̌
U2.

~145!

We finally obtain

det~ I1B8!511
~z1

21 z̄1
2!

r2
F11F1

2
l1
2

r2
. ~146!

It is obvious that

det~ I1B8!2det~ I1B!5
~z12 z̄1!

2

r2
F1524

k1
2

r2
F1 . ~147!

Introducing

G15F1

l1

r
5eQ1, ~148!

we can express

Q1522k1~x2x11~4l1
212r2!t !, ~149!

wherex1 is a real constant. The dark 1-soliton solution is
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¬¬¬¬¬¬¬¬¬¬
u1~x,t !5r22
k1
2

r

1

~11~ ul1u/r!coshQ1!
, ~150!

which was obtained previously.6,7

IX. ASYMPTOTIC BEHAVIORS OF THE DARK N-SOLITON SOLUTION

Note the following limits

Fn→H 0, as x→1`,

`, as x→2`,
~151!

we simply have

det~ I1B!, det~ I1B8!→1 as x→1` ~152!

and

det~ I1B8!

det~ I1B!
→

B8~1,2, . . . ,N!

B~1,2, . . . ,N!
5 )

n51

N S zn
r D 2S z̄n

r D 251. ~153!

Hence the solution has right non-vanishing boundary value.
Suppose

lN,lN21,•••,l1 . ~154!

Denoting the vicinity of$x:x2xj1(4l j
212r2)t;0% by V j , then these vicinities must be sep

rated from left to right as

VN , VN21 , . . . , V1 , ~155!

when t→`. In the vicinityV j , we have

x2xn1~4ln
212r2!t→2`, Fn→`, n, j ,

x2xm1~4lm
2 12r2!t→`, Fm→0, m. j . ~156!

Remain the terms of the highest order, we have

det~ I1B!'B~1,2, . . . ,j21,1̌,2̌, . . . ,~ ǰ21!!1B~1,2, . . . ,j21,j ,1̌,2̌, . . . ,~ ǰ21!!

1B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!, ǰ !1B~1,2, . . . ,j21,j ,1̌,2̌, . . . ~ ǰ21!, ǰ !.
(157)

From ~136! we can find

B~1,2, . . . ,j21,j ,1̌,2̌, . . . ~ ǰ21!!

B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!
5F jv j

~1 ! , ~158!

and

v j
~1 !5)

n
Uz j2zn

z̄ j2zn
U2, ~159!
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where

nP$1,2, . . . ,j21,1̌,2̌, . . . ,ǰ21%. ~160!

Similarly, we have

B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!, ǰ !

B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!
5F ǰv ǰ

~1 !
, ~161!

v
ǰ

~1 !
5)

n
Uz ǰ2zn

z̄ ǰ2zn
U2. ~162!

We also have

B~1,2, . . . ,j21,j ,1̌,2̌, . . . ~ ǰ21!, ǰ !

B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!
5F jF ǰv j

~1 !v
ǰ

~1 !Uz j2z ǰ

z̄ j2z ǰ
U2. ~163!

Since

v j
~1 !5 )

n51

j21 Uz j2zn

z̄ j2zn
U2)

n51

j21 Uz j1 z̄n

z̄ j1 z̄n
U2, ~164!

we find

v j
~1 !5 )

n51

j21 S kj2kn
kj1kn

D 2. ~165!

We find also

v j
~1 !5v

ǰ

~1 !
. ~166!

Therefore we find

det~ I1B!'B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!H 112F j
~1 !1F j

~1 !2Uz j2z ǰ

z̄ j2z ǰ
U2J , ~167!

where

F j
~1 !5F jv j

~1 ! . ~168!

Similarly, we have

det~ I1B8!'B8~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!H 11
~z j

21 z̄ j
2!

r2
F j

~1 !1F j
~1 !2Uz j2z ǰ

z̄ j2z ǰ
U2J .

~169!

Noting

B~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!5B8~1,2, . . . ,j21,1̌,2̌, . . . ~ ǰ21!!5 )
n51

N

~Fn!
2, ~170!
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we finally find in the vicinityV j , whent→`,

uN'u1
~1 !~x,z j !5r22

kj
2

r

1

~11~ ul j u/r!coshQj
~1 !!

, ~171!

where

Qj
~1 !522kj~x2xj1~4l j

212r2!t2Dj
~1 !!, ~172!

Dj
~1 !5

1

2kj
ln v j

~1 ! . ~173!

Hence whent→` we find

uN'(
j51

N

u1
~1 !~x,z j !2~N21!r. ~174!

When t→2`, repeating the above procedure, we obtain

uN'u1
~2 !~x,z j !5r22

kj
2

r

1

~11~ ul j u/r!coshQj
~2 !!

, ~175!

in the vicinity V j , where

Qj
~2 !522kj~x2xj1~4l212r2!t2Dj

~2 !!, ~176!

Dj
~2 !5

1

2kj
ln v j

~2 ! , ~177!

v j
~2 !5 )

m5 j11

N S kj2km
kj1km

D 2. ~178!

Hence in the limitt→2` we have

uN'(
j51

N

u1
~2 !~x,z j !2~N21!r. ~179!

In the vicinity of V j , the dark singlej th soliton remains its form in the course from
t→2` to t→`, but its center has additional displacement,

Dj5Dj
~1 !2Dj

~2 ! . ~180!

Hence, the solutionuN does have soliton characteristic. We have shown regularity ofuN , there-
fore, uN is indeed a darkN-soliton solution of the MKdV equation of normal dispersion wi
non-vanishing boundary value.

X. MARCHENKO EQUATION

We now derive an inverse scattering equation of Marchenko form. Whenz is real, we simply
write j. By changing variablej→2r2j21, we can show
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¬¬¬¬¬¬¬¬¬¬
E
2`

`

dje2 ikx5E
2`

`

djr2j22e2 ikx54pd~x!, ~181!

E
2`

`

djj21e2 ikx50. ~182!

We can see also

E
2`

` 1

j2z8
e2 ikx5H 2p ie2 ik8x, x,0, Imz8.0,

22p ie2 ik8x, x,0, Imz8,0.
~183!

We then have

E
2`

`

djE
•1~x,j!E

•2~y,j!Ts15E
2`

`

djE
•2~x,j!E

•1~y,j!Ts154pd~x2y!. ~184!

From ~100! we have

c̃~x,j!2E
•1~x,j!5$R~x,j!1I ~x,j!%e2 ikx, ~185!

wherej meansj2 i0. Multiplying (4p)21E
•2(y,j)

Ts1 from right, integrating with respect toj
from 2` to `, in the case ofy>x, we obtain

K~x,y!52
i

2(n51

2N

cnznc~x,zn!E•2~y,zn!
Ts12

1

4pE2`

`

dj8r ~j8!c~x.j8!E
•2~y,j8!Ts1 .

~186!

Substituting~14! into ~187!, we obtain

K~x,y!1F~x1y!1E
x

`

dzK~x,z!F~z1y!50, y.x, ~187!

where

F~x1y!5
i

2(n51

2N

cnznE•2~x,zn!E•2~y,zn!
Ts11

1

4pE2`

`

dj8r ~j8!E
•2~x,j8!E

•2~y,j8!Ts1 .

~188!

Substituting the expression ofE
•2(x,z) into ~197!, we have

F~x1y!52
1

2(n51

2N

cnS r

i zn
D ~12 irzn

21!eikn~x1y!

1
1

4pE2`

`

dj8
r ~j8!

i j8 S r

i j8
D ~12 irj821!eik8~x1y!. ~189!

~188! is an inverse scattering equation of Marchenko form. With~11! the above expression can b
written as
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¬¬¬¬¬¬¬¬¬¬
F~x1y!52 (
n51

N

cnS r kn

kn r
D e2kn~x1y!1

r

2pE0
`dj8

i j8
r ~j8!S 1 2 ik

2 ik 1 D eik8~x1y!. ~190!

In the case of reflectionless,F(x1y) is simply expressed as

F~x1y!52 (
n51

N

cnS r kn

kn r
D e2kn~x1y!. ~191!

Writing

K~x,y!5 (
n51

N

K~x,kn!e
2kny, ~192!

then obtain

K~x,kn!2cnS r kn

kn r
D e2knx1(

m

1

km1kn
K~x,km!cnS r kn

kn r
D e2~km1kn!x50. ~193!

From it we can obtain also an explicit expression for the darkN-soliton solution of the MKdV
equation. But the procedure is more complicated than that starting from the inverse sca
equations of Zakharov–Shabat form~100!.

XI. CONNECTIONS WITH THE SOLITON SOLUTIONS OF THE KdV EQUATION

Supposeu(x,t) is one of the dark multi-soliton solutions of the MKdV equation, introduc
functionw(x,t) by

w~x,t !5u~x,t !21ux~x,t !2r2, ~194!

which is just a Miura transformation10 with a minor revision, and using a Galilean transformati

X5x16r2t, T5t, ~195!

we obtainW(X,T)

W~X,T!5w~X26r2T,T! ~196!

satisfies the KdV equation

WT1WXXX26WWX50, ~197!

and vanishing boundary value condition,

W→0 as uXu→`. ~198!

From the Jost solutions for the MKdV equation,c1(x,z) andc2(x,z), for example, we define

x~x,z!5c1~x,z!1c2~x,z!. ~199!

Then we find

H d2

dx2
1l22~u~x!21ux~x!!J x~x,z!50, ~200!
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¬¬¬¬¬¬¬¬¬¬
or

H d2

dX2
1k22W~X!J x~X,z!50, ~201!

on account of~196! and~197!. ~201! is a 1-dimensional Schro¨dinger equation and just the first La
equation of the KdV equation. The integral representation of the Jost solutions is

x~X,z!5E0~X,z!1E
X

`

dYM~X,Y!E0~Y,z!, ~202!

where

E0~X,z!5E~X,z!121E~X,z!225~2 irz2111!eikX ~203!

and

M ~X,Y!5K~X,Y!121K~X,Y!22. ~204!

From the Marchenko equation for the MKdV equation,~188!, we can obtain the Marchenk
equation for the KdV equation:

M ~X,Y!1G~X1Y!1E
X

`

dZ M~X,Z!G~Z1Y!50, Y.X, ~205!

where

G~X1Y!5F~X1Y!121F~X1Y!22. ~206!

In the case of reflectionless,G(X1Y) is simply

G~X1Y!52 (
n51

N

cn~r1kn!e
2kn~X1Y!. ~207!

In comparing~207! with the corresponding formula of the usual inverse scattering transform o
KdV equation by Gardneret al.,11 we can see thatcn in the usual formula is replaced b
cn(r1kn) which leads to merely alternative expressions of centers of soliton and is imma
Hence, the soliton solutions generated by a Muira-type transform and a Galilean transfo
equivalent to the usual soliton solutions of the KdV equation.

XII. CONCLUDING REMARKS

The MKdV equation of normal dispersion plus non-vanishing boundary value is solve
means of an inverse scattering transform method. An inverse scattering equation of Zakh
Shabat form as well as of Marchenko form are derived. Dark multi-soliton solutions are f
explicitly. Regularity and the desired asymptotic behaviors in the limits ofutu→` are shown. To
the MKdV equation of anomalous dispersion with vanishing boundary value there exist bre
solutions. In the present case, to the MKdV equation of normal dispersion with non-vani
boundary value there is no such solution.

In the case of dark soliton, the boundary value~its module and phase! depends on time when
corrections present, the usual perturbation theory either based upon the inverse sc
transform12–14 or using Green function expansion15–18 can not be used. Recently, a perturbati
theory based upon Green function expansion for dark soliton cases is propurted by Konot
J. Math. Phys., Vol. 38, No. 1, January 1997
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Vekslerchik.19 However, the basic proposal on the completeness relation for the square
functions is questionable, since in the case of merely a single pole of the transformission
cient, the Jost functions and thus the squared Jost functions are found explicitly, one can d
verify it and see that the off-diagonal parts of the proposed completeness relation are not sa
It is obvious that to develop a perturbation theory involving dark solitons is a problem t
settled. Hence perturbation theory for a real equation with corrections is reasonable first ow
its boundary value without phase. The present work is necessary for this purpose.

If one develops a reasonable perturbation theory for the MKdV equation with correctio
the case of non-vanishing boundary value, with the above transformations one should d
well-known perturbation theory for the KdV equation with corrections. This is a criterion to
help for further research.
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Orthogonal polynomials and the finite Toda lattice
Alex Kasman
Department of Mathematics, University of Georgia

~Received 11 March 1996; accepted for publication 12 August 1996!

The choice of a finitely supported distribution is viewed as a degenerate bilinear
form on the polynomials in the spectral parameterz and the matrix representing
multiplication byz in terms of an orthogonal basis is constructed. It is then shown
that the same induced time dependence for finitely supported distributions which
gives thei th KP flow under the dual isomorphism induces thei th flow of the Toda
hierarchy on the matrix. The corresponding solution is anN particle, finite, non-
periodic Toda solution whereN is the cardinality of the support ofc plus the sum
of the orders of the highest derivative taken at each point. ©1997 American
Institute of Physics.@S0022-2488~97!00501-X#

I. INTRODUCTION

Recent interest in the Toda lattice1 has stemmed from its role in relating theories of quant
gravity to soliton theory.2 This correspondence is given by a measuredr determined by the
partition function~i.e., the ‘‘specific heat’’! of matrix models which is interpreted as an inn
product on time-dependent polynomials in the spectral parameter.3 In that construction, the poly-
nomials are written in terms of an orthogonal basis with respect to this nondegenerate
product and the Toda lattice is determined as the matrix representing multiplication in the sp
parameter.

The present paper replaces integration with respect to the measuredr by an arbitrary finitely
supported distribution. It is then shown that the same correspondence between orthogona
nomials and integrable systems continues to hold in the case of the induced degenerate
form. This relates the Toda hierarchy to techniques for the construction oft-functions of the KP
hierarchy4,5 using finitely supported distributions.

It should be noted that there is an intersection of the construction developed below an
discussed in the opening paragraph. In particular, finitely supported distributions which are
combinations of Dirac delta functions can be represented as Stieltjes integrals with resp
Heaviside functions.6 The solutions constructed from such distributions by the method below
known7 and are the same as those which would be given by the corresponding measure. Ho
finitely supported distributions involving differentiation~i.e.,m i.0) and the Toda lattices which
they generate are discussed here for the first time.

II. ASSOCIATING A JACOBI MATRIX TO A DISTRIBUTION

Let c be the finitely supported distribution

c5(
i51

m

dl i
+(
j50

m i

a i j ]z
j , ~2.1!

wheredl is the delta function evaluating its argument atz5l, the constantsl i P C are distinct,
]z is the differential operator]/]z , anda i j P Cwith a im i

Þ 0. ~In fact, the discussion to follow only
depends uponc as determined up to a nonzero constant multiple, and so the coefficientsa i j can
be viewed as elements ofPN 21C.! Then letN be the integer
0022-2488/97/38(1)/247/8/$10.00
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N 5m1(
i51

m

m i ,

wherem andm i are as in~II.1!.
Associated toc we have the symmetric bilinear form onC@z# defined by

^p,q&5c~pq!.

Note that given two polynomials

p5 (
i51

n21

a iz
i , q5 (

i51

n21

b iz
i

of degree less thann,

^p,q&5~a0 , . . . ,an21!•Tn•S b0

A

bn21

D
where

Tn5S c~1! . . . c~zn21!

A � A

c~zn21! . . . c~z2n21!
D . ~2.2!

A. The annihilator of c

Any function sufficiently differentiable on the support ofc acts on the right by composition

c+p~ f !5c~p f !.

In particular, we may associate toc its annihilator inC@z#.
Definition II.1: For any distributionc, let I c,C@z# denote the ideal

I c5$pPC@z#uc+p[0%.

Lemma II.1: Let c be written in the form(II.1) and let

sc~z!5)
i51

m

~z2l i !
m i11.

Then Ic is the ideal generated bysc(z):

I c5scC@z#.

Proof: Sincec + sc[0, it is clear thatsc(z)C@z#,I c . Then, letp(z) P I c be written in the
form

p~z!5q~z!r ~z!, r ~z!5)
i51

m

~z2l i !
g i, ~2.3!
J. Math. Phys., Vol. 38, No. 1, January 1997
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whereq(z) P C@z# is such thatq(l i) Þ 0. Suppose thatg j,m j11 for some particular 1< j<m.
Then for the polynomial

s~z!5~z2l j !
m j2g j)

iÞ j
~z2l i !

m i11

we have that the distribution

c+r +s5kdl j
, k5~m j ! !a jm j

Þ0,

is a nonzero distribution evaluating its argument atl j without differentiation. But then, sincec
+ p5c + qr[0 wehave that

05c+qr„s~z!…5c+rs„q~z!…5kq~l j !,

which implies thatq(l j )50, contradicting the assumption. Consequently, each element oI c
written in form ~II.3! hasg i>m i11 andI c,sc(z)C@z#.

Since degsc5S i51
m (m i11)5N , we then have the following.

Corollary II.1: There exists a polynomial pP C@z# with deg p5n such that c+ p[0 if and only
if n>N .

B. A basis for C@z#

The choice of a generic distributionc uniquely specifies a basis forC@z# as follows.
Definition II.2: For any positive integeri , let t i denote the determinant

t i5uTi u,

whereTi is the symmetric matrix described in~II.2!. We say thatc is regular if t i Þ 0 for
i51, . . . ,N . LetP denote the vector space of polynomials of degree less thanN . If c is regular,
then the Gram–Schmidt orthogonalization specifies a unique basis$p0 , . . . ,pN 21% of P such
that

pi~z!5zi1O~zi21!

and which is orthogonal with respect to the form^•,•&. Furthermore, sincetN 21 Þ 0 the form is
nondegenerate onP and so

^pi ,pi&Þ0, i50, . . . ,N 21.

It will now be supposed thatc is in fact regular and that the polynomialspi for
i50, . . . ,N 21 have been fixed by the Gram–Schmidt orthogonalization. We may then de

pN 1 i~z!5zisc~z!, i50,1, . . . .

By Lemma II.1,pN 1 i P I c , and so it is in the kernel of the form. Therefore, the basis of mo
polynomials$pi u i>0% for C@z# is orthogonal with respect to the form, but the form is degener

C. The tri-diagonal matrix

The significance of the basis specified in the preceding section is that multiplication bz is
represented as a tri-diagonal Jacobi matrix in terms of this basis.

Proposition II.1: There exist numbers ai and bi in C such that

zpi5pi111bipi1aipi21
J. Math. Phys., Vol. 38, No. 1, January 1997
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for all i.0.
Proof: Since each polynomialpi is monic of degreei , we certainly have

zpn5pn111(
j50

n

a j pj

for some constantsa j . But then applying the functional^pi ,•& to zpn yields

^pi ,zpn&5^zpi ,pn&5^pi111bipi1aipi21 ,pn&,

which is zero ifi,n22. On the other hand, one could also compute this as

^pi ,zpn&5^pi ,a i pi&5a i^pi ,pi&.

If i,N , then^pi ,pi& Þ 0 and soa i50. Finally, for i>N , the claim is true by construction sinc
zpi5pi11.

Proposition II.2: Denote by An the constant̂ pn ,pn&. Then
~i! An5anAn21 ,
~i! an Þ 0 forn50, . . . ,N 21,
~iii ! An /Ak5an•••ak11 for k,n,N .

Proof: The first relationship can be found by using the fact that^zp,q&5^p,zq& and so

^zpn ,pn21&5^pn11 ,pn21&1bn^pn ,pn21&1an^pn21 ,pn21&5an^pn21 ,pn21&

is also equal to

^pn ,zpn21&5^pn ,pn&,

producing the desired result.
Then, by the nondegeneracy of the bilinear form onP , we have that

anAn215An5^pn ,pn& Þ 0 for 0<n<N 21. The final claim clearly follows from the first by a
inductive argument.

Associate toc theN3N tri-diagonal matrix

L5S b0 1 0 0 0 . . .

a1 b1 1 0 0

0 a2 b2 1 0

A � � �

D .
Outside of the principalN 3N minor, this matrix is simply the shift matrix with 1s along th
super-diagonal and zeroes elsewhere. Note thatL corresponds to multiplication byz in C@z# with
basis$pi%. This is particularly important in the next result.

Notation:Denote byL j ,k
i the element in thej th column andkth row of the matrixLi . Note that

sinceL is indexed byN3N, the top left corner isL0,0
i and notL1,1

i as one might expect.
Proposition II.3: ^zipk ,pn&5Ln,k

i An .
Proof: By orthogonality, the only significant term inzipk is thepn term in its expansion in the

orthogonal basis. However, this is simplyLn,k
i pn . So ^zpk ,pn&5^Ln,k

i pn ,pn&5Ln,k
i An .

By the symmetry of the form used in Proposition II.3, we then also have the following.
Corollary II.2: Ln,k

i An5Lk,n
i Ak .
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ion.

ive
t
ethod

s the
nt way

r

rchy.

ants

ct
by

ial

251Alex Kasman: Orthogonal polynomials and the finite Toda lattice

¬¬¬¬¬¬¬¬¬¬
III. TIME DEPENDENCE

Now suppose thatc is an arbitrary, i.e., not necessarily regular, finitely supported distribut
To it we associate the time-dependent distribution

ĉ5c+ exp(
i51

`

t iz
i .

Note thatN ĉ5N c and, moreover,s ĉ5sc since neither the support nor the highest derivat
taken at each point is affected by this composition. Whenevert5(t1 ,t2 , . . . ) is chosen such tha
ĉ is regular, we may associate to it a basis of polynomials and a tri-diagonal matrix by the m
of the preceding section. Thus, one is led to consider a basis$pi(z,t)% of polynomials and a
time-dependent matrixL(t) which are defined wheneverĉ is regular.

Note:This time dependence for distributions was introduced in Ref. 8 because it induce
KP flow on the Sato Grassmannian under the dual isomorphism. In fact, this is a convenie
to prove the next claim:

Proposition III.1: The distribution cˆ is regular for almost every value oft5(t1 ,t2 ,•••).
Proof: By Corollary II.1 the distributions c+ zi are linearly independent fo

n50, . . . ,N 21. Then the determinantstn are nonzero, time-dependent functions

tn~ t!5U ĉ~1! ••• ĉ~zn!

�

ĉ~zn! ĉ~z2n21!
U

5U c~exp(t iz
i ! •••

]n21/]t1
n21c~exp(t iz

i !

�

]n21/]t1
n21c~exp(t iz

i ! . . . ]2n21/]t1
2n21c~exp(t iz

i !
U .

In fact, if we letVĉ,n denote the set of polynomials in the kernel of the distributionsĉ + zi for
i50, . . . ,n, then the Hilbert closure ofz2nVĉ,n is the a pointWn(t) in the Sato GrassmannianGr
and the Wronskian determinant above gives the corresponding tau function for the KP hiera4

So, we can cite Ref. 9 to show that these functions have isolated zeros. The distributionĉ is then
regular on the complement of the zeros of thet-functionst i for i50, . . . ,N 21.

Note:Tau functions determined from symmetric Wronskian matrices or Hankel determin
of the form above are known to be associated with finite Toda lattices.10–12

IV. DIFFERENTIAL EQUATIONS

This section will determine differential equations satisfied by the matrixL(t) in the temporal
variablet i . Throughout the remainder, prime (8) will be used to denote the derivative with respe
to this variable. Since the form̂•,•& is now taken to be the time-dependent form specified
ĉ, its derivative is given by the following lemma.

Lemma IV.1:̂ p,q&85^zip,q&1^p8,q&1^p,q8&.
Proof:

^p,q&85„c~eSt j z
j
pq!…85c„eSt j z

j
~zipq1p8q1pq8!)5^zip,q&1^p8,q&1^p,q8&.

The leading coefficients of the polynomialspn are constant, and so they satisfy different
equations of the form

pn85 (
k50

n21

Ck
npk . ~4.1!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Define the time-dependent functionsCk
n by this formula. In fact, sinces ĉ is constant in time,

pn850 for n>N .

Thus, it is clear thatCk
n50 for n>N .

Proposition IV.1: The coefficients Ck
n for k,n,N in (IV.1) can be written either as

Ck
n52

An

Ak
Ln,k
i ~4.2!

or

Ck
n52Lk,n

i . ~4.3!

In particular, Ck
n50 if i,n2k.

Proof: This can be seen by differentiating the equation

^pn ,pk&50

because then you get

^zipn ,pk&1^pn8 ,pk&1^pk8 ,pn&50

which ~using Proposition II.3! implies that

Ck
nAk52Ln,k

i An .

Sincek,N , Ak Þ 0 and we may solve forCk
n yielding ~IV.2!. Then, substituting forAn by the

formula in Corollary II.2,

Ck
nAk52Lk,n

i Ak

which leads to the equivalent form~IV.3!. Furthermore, it is elementary to determine th
Ln,k
i 50 if i,n2k merely from the tri-diagonal form of the matrix.
The main result of the present paper is the equations of motion satisfied byai andbi .
Theorem IV.1: The dependence of the distribution cˆ on the time variable ti induces the

equations of motion

bn85an11Ln11,n
i 2anLn,n21

i ~4.4!

and

an85~bn2bn21!Ln21,n
i 1Ln21,n11

i 2Ln22,n
i . ~4.5!

Proof: Since the actions of]/]t i and multiplication byz commute, we can equate the coe
ficients ofpn in z(pn8) and (]/]t i)(zpn).

zpn85z (
j50

n21

Cj
npj5 (

j50

n21

Cj
n~pj111bjpj1ajpj21!

and so the coefficient ofpn is justCn21
n . Alternatively,

]

]t i
~pn111bnpn1anpn21!5pn118 1bn8pn1bnS (

j50

n21

Cj
npj D 1an8pn211pn218 an
J. Math. Phys., Vol. 38, No. 1, January 1997
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and the coefficient ofpn is justCn
n111bn8 . Equating these and making use of~IV.2! yields the

equation of motion~IV.4!. ~Here we takeL0,21
i 50 to handle the boundary casen50.!

Similarly, equating the coefficients ofpn21 in these same expressions we get that

bn21Cn21
n 1Cn22

n 5bnCn21
n 1an81Cn21

n11 .

Using the substitution~IV.3! and solving foran8 gives the desired form~IV.5!. ~Again,L1,21
i 50 to

handle the casen51.!
The equations~IV.4! and~IV.5! are one form of the Toda hierarchy and can be written in

Lax form

]

]t i
L5@L,~Li !2#,

where the minus subscript indicates the projection to the lower triangular part. Since the
diagonal elements are the only nonzero elements outside the principalN 3N minor, this is in
fact anN -particle finite nonperiodic Toda lattice.

Theorem IV.2: Let c be any finitely supported distribution and cˆ5c + expStiz
i. Then the

corresponding matrix L is anN particle finite nonperiodic Toda lattice.

V. REMARKS

As usual,3 one may write the functionsai(t) andbi(t) in terms of thet-functionst i(t):

ai5
t it i12

t i11
2 , bi5

]

]t1
log

t i11

t i
,

for i50, . . . ,N 21 wheret0[1. This is an easier way to construct the solution correspondin
a distributionc than determining the orthogonal basis of polynomials as above.

The pointsWi P Gr described in Proposition III.1 are clearly seen to be related by the form

zWi11,Wi

and are therefore related by Darboux transformations. As shown in Ref. 10, these are precis
Darboux transformations which preserve theN-boson form of the corresponding KP solution
The geometric spectral data is a line bundle over a rational curve with one singularity intro
by bringing together the points on a desingularization with coordinatesl i and multiplicity
m i1 i11. The inclusion of the coordinate rings induces covering maps from the more singu
the less singular curves.

One may wish to consider the moduli space of all distributionsc with some given value of
N so as to have a moduli ofN -particle nonperiodic Toda solutions. The different forms ofc
leading to anN -particle system are indexed by the Young diagrams of withN blocks. Given
such a Young diagram, a distribution may be specified by attaching a distinct valuel i P C to each
column and a constanta i j P C to the j11st block in the column. The different diagrams lead
qualitatively different behaviors in the corresponding solutions. In particular, thet functions give
KP solitons when the Young diagrams consists entirely of columns of length one and, al
tively, they give rational KP solutions when the Young diagram has only one column.
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Period lengths of cellular automata cam -90 with memory
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Cellular automataca-90 have states 0 and 1, and their dynamics, driven by the
local transition rule 90, can be simply represented with Laurent polynomials over a
finite field F25$0,1%. Cellular automatacam-90 with memory, whose configura-
tions are pairs of those ofca-90, are introduced as a useful machinery to solve
certain equations on configurations, in particular, to compute fixed or kernel con-
figurations ofca-90. This paper defines a notion of linear dynamical systems with
memory, states their basic properties, and then studies some period lengths of
one-dimensional and two-dimensional cellular automatacam-90 with memory.
© 1997 American Institute of Physics.@S0022-2488~97!00401-5#

I. INTRODUCTION

As is well known cellular automata have been initially introduced by von Neumann
model of self-reproducing systems and Wolfram1,2 recognized it as a mathematical model
complex systems. Many authors1–3 have investigated dynamical behaviors of finite additive c
lular automata. In their pioneering work,1 Martin, Oldlyzko, and Wolfram studied many funda
mental properties of additive cellular automata with cells arranged around a circle, by
Laurent polynomials. Explicit formulas for period lengths of limit cycles of additive cellu
automata of such type were found by Guan and He.3 Manna and Stauffer4 analyzed phase trans
tions of all nearest-neighbor cellular automata on square lattices without memory, and da5

studied critical behavior at the transition to chaos of several binary mixtures of cellular auto
and also the fractal dimensions associated with the damage spreading and the propagation
damage. By means of an extensive numerical study of elementary cellular automata B6

proposed a topological classification of cellular automata, complementary to that Wolfram d
from the attractor globality.

Kawaharaet al.7 studied the period lengths of cellular automata on square lattices with
90, by an algebraic formalization of configurations and transition functions with Lau
polynomials.1,2 In this paper we introduce a notion of cellular automatacam-90 with memory
associated to one- and two-dimensional cellular automataca-90 with rule 90 and then study
period lengths of cellular automatacam-90 with memory. The main results will be stated
Theorems 4.2, 4.4, and 4.5.

Now we will explain a motivation why we introduce a notion of cellular automata w
memory. A two-dimensional cellular automatonca-90(m,n) is basically defined as follows
~where m and n are integers. 1!: A configuration c5(ci , j ) of ca-90(m,n) is an
(m21)3(n21) matrix over a prime fieldF25$0,1%(5Z/2Z), that is,ci , j50 or 1. The next
configurationd(c)5„d(c) i , j… of c is given by a formula

d~c! i , j5ci21,j1ci , j211ci , j111ci11,j mod 2

for i51,2, . . . ,m21 and j51,2, . . . ,n21. Here we assume the null boundary conditi
c0,j5cm, j5ci ,05ci ,n50. That is, ca-90(m,n) is regarded as a linear dynamical syste
(F2

(m21)(n21) ,d). In studying dynamical behaviors of linear systems it is a fundamental wor
determine all kernel configurationsc such thatd(c) i , j50 mod 2 for i51,2, . . . ,m21 and
0022-2488/97/38(1)/255/12/$10.00
255J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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j51,2, . . . ,n21. After all, to compute kernel configurations ofca-90(m,n), one has to solve the
following system of equations by the definition of the transition functiond:

~* !ci21,j1ci , j211ci , j111ci11,j50 mod 2

for i51,2, . . . ,m21 and j51,2, . . . ,n21. Let ci denote the i th row vector of c for
i51,2, . . . ,m21, that is, ci5(ci ,1 ,ci ,2 , . . . ,ci ,n21). Consider a linear transformatio
t:F2

n21→F2
n21 such that

t~x1 ,x2 ,x3 , . . . ,xn22 ,xn21!5~x2 ,x11x3 ,x21x4 , . . . ,xn231xn21 ,xn22!

for each vector (x1 ,x2 ,x3 , . . . ,xn22 ,xn21) P F2
n21. @Note thatt is just the transition function of

ca-90(n).# Then the equation (*) is equivalent to

ci115t~ci !1ci21 mod 2 ~ i51,2, . . . ,m21!,

wherec05cm50. Given the first rowc1 of a solutionc5(ci , j ) of (*), one cancalculate all other
rowsc2 ,c3 , . . . ,cm21 in order and thencmmust be a zero vector. This motivates an idea of a n
linear systemt̂(c,d)5„t(c)1d,c…, which will be called a linear system with memory associa
to ca-90(n)5(F2

n21 ,t). A more general notion of linear systems with memory will be defined
Sec. II. An important property of a linear system with memory is a fact that its transition fun
is injective. Hence, whenever the configuration space is finite, all configurations lie on some
cycles and so the main interest of its dynamical behavior will be focused on period lengths o
cycles, which are one of the important topological indexes of dynamical systems.

The paper is organized as follows. In Sec. II we first introduce a notion of linear systems
memory associated to linear systems over a general field and define the characteristic polyn
deeply related with transition functions of cellular automataca-90(m). Then the fundamenta
properties on iterations of transition functions of linear systems with memory are stated.
some well-known explicit formulas of the characteristic polynomials overF2 ~or modulo 2! are
recalled. In Sec. III we review some fundamentals on one-dimensional cellular auto
ca-90(m) and two-dimensional cellular automataca-90(m,n) needed in Sec. IV. Almost al
results stated in Sec. III have already been shown in Refs. 7 and 8, but the proofs are simp
self-contained. In Sec. IV we prove the main theorems on period lengths of particular confi
tions of cellular automatacam-90(m) andcam-90(m,n) with memory, by using results obtaine
in the previous sections.

II. LINEAR SYSTEMS WITH MEMORY

A linear systemover a fieldF is a pair (X,j) of a vector spaceX over F and a linear
transformationj:X→X, which will be called the transition function~or dynamics! of (X,j). A
vector ofX will be called a configuration of (X,j).

As stated in the Introduction the notion of linear systems with memory is motivated
useful machinery to solve certain kinds of equations on configurations in higher-dimens
linear systems.

In this section we present a general theory of abstract linear systems with memory, whic
be applicable in Sec. IV. We now define linear systems with memory associated to linear sy
over a general field.

Definition 2.1: Let(X,j) be a linear system over a fieldF. The linear system (X,ĵ) with
memory associated to (X,j) is constructed as follows. A configuration of (X,ĵ) is a pair (c,d) of
vectors c and d ofX. The transition functionĵ of (X,ĵ) is defined by

ĵ~c,d!5„2j~c!2d,c…
J. Math. Phys., Vol. 38, No. 1, January 1997
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for all configurations (c,d) of(X,ĵ). h

As stated above we assume thatX is a vector space over a general field whose character
number may not be 2.@When the characteristic number is equal to 2, that is, in mod 2 case,
obvious that„2j(c)2d,c…5„j(c)1d,c….#

It is trivial that the transition functionĵ of (X,ĵ) is a linear transformation onX % X and is
injective. Thus, wheneverX is finite, ĵ is bijective and all configurations (c,d) of (X,ĵ) are
always on limit cycles.

In the rest of this section we assume that (X,j) is a linear system over a fieldF. For a
polynomial p(z)5a01a1z1•••1akz

k over F with an indeterminatez we define the extended
linear transformationp(j):X→X of j by p(j)c5a0c1a1j(c)1•••1akj

k(c) for all c P X. It is
trivial that p(j) is a linear transformation onX. The main interest of the paper is concerned w
period lengths of limit cycles in (X,ĵ). The period lengths are generally dominated by the prop
of iterations of ĵ. In order to explicitly compute the iterations the characteristic polynom
w0(z),w1(z),w2(z), . . . will be introduced by induction as follows:

w0~z!50,w1~z!51 and wk12~z!52zwk11~z!2wk~z!, k>0.

For example,w2(z)52z,w3(z)5z221,w4(z)52z312z,w5(z)5z423z211, and so on.
The following lemma shows how iterations of transition functions of linear systems

memory can be computed by the characteristic polynomials.
Lemma 2.2: Let(c,d) be a configuration of(X,ĵ). Then the equality

ĵk~c,d!5„wk11~j!c2wk~j!d,wk~j!c2wk21~j!d…

holds for all positive integers k. In particular,ĵk(c,0)5„wk11(j)c,wk(j)c…, where0 denotes the
zero vector of X.

Proof: For k51 the equality is trivial from

ĵ~c,d!5„2j~c!2d,c…5„w2~j!c2w1~j!d,w1~j!c2w0~j!d…

by w0(j)c50,w1(j)c5c, and w2(j)c52j(c). Assume that the equality is valid fork with
k>1. Then

ĵk11~c,d!5 ĵ„wk11~j!c2wk~j!d,wk~j!c2wk21~j!d…

5~2j„wk11~j!c2wk~j!d…2$wk~j!c2wk21~j!d%,wk11~j!c2wk~j!d!

5„$2jwk11~j!c2wk~j!c%2$2jwk~j!d2wk21~j!d%,wk11~j!c2wk~j!d…

5„wk12~j!c2wk11~j!d,wk11~j!c2wk~j!d….
h

As the first application of the last lemma we can easily prove how the period length
configuration with zero memory is related with a simple property expressed by an extended
transformation of transition functions. That is, we claim the following :

Proposition 2.3: Let c be a configuration of(X,j) and k a positive integer.

~a! If wk(j)c50, thenwk1 i(j)c52wk2 i(j)c for all i50,1, . . . ,k .
~b! If wk(j)c50, then ĵ2k(c,0)5(c,0) .
~c! If ĵ2k(c,0)5(c,0), thenjwk(j)c50. h

Note that the characteristic polynomialwk(z) is the characteristic polynomial of
(k21)3(k21) matrix, that is,
J. Math. Phys., Vol. 38, No. 1, January 1997
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wk~z!5U2z 21

21 2z 21

� � �

21 2z 21

21 2z

U
for all integersk.1.

Cellular automataca-90, which will be discussed later, are linear systems over a prime
F25$0,1% of characteristic 2. It is well known that the characteristic polynomi
w0(z),w1(z),w2(z), . . . overF2 ~or modulo 2! satisfy some specific formulas, which will b
useful in computing period lengths of configurations of cellular automata with memory asso
with ca-90.

Proposition 2.4: Let i and u be positive integers and k a non-negative integer. Then fo
characteristic polynomialsw0(z),w1(z), . . .over F2 the following holds:

~a! w2i21(z)5$w i21(z)%
21$w i(z)%

2 andw2i(z)5z$w i(z)%
2 ,

~b! w2ki(z)5z2
k21$w i(z)%

2k andw2ki21(z)5$w i21(z)%
2k1$w i(z)%

2kS j51
k z2

k22 j ,
~c! w2k(z)5z2

k21 andw2k21(z)5S j51
k z2

k22 j ,
~d! w2k(2u21)(z)5z2

k21S j51
u z2

k(2u22 j ). h

III. CELLULAR AUTOMATA ca -90

In this section we recall some fundamentals on one-dimensional cellular auto
ca-90(m) and two-dimensional cellular automataca-90(m,n) for the later study of the paper
Almost all results stated in the section have been showed in Refs. 7 and 8, but this sectio
give them simpler and self-contained proofs.

In what follows we assume thatm is an integer.1. LetF2@x# be the polynomial ring over a
prime fieldF25$0,1% of characteristic 2 with an indeterminatex, andF2@x#/(x2m21) a quotient
ring of F2@x# by an ideal (x2m21) generated by a polynomialx2m21. A polynomial in the
quotient ringF2@x#/(x2m21) is sometimes called aLaurentpolynomial Ref. 1. Define Lauren
polynomials tm( i )5xi1x2 i in F2@x#/(x2m21) for all integers i . In particular, we set
tm5tm(1)(5x1x21). @We will omit a suffixm in tm( i ) and tm unless confusion occurs.#

The following gives a list of the basic properties of Laurent polynomialst( i ) in the quotient
ring F2@x#/(x2m21).

Proposition 3.1: In the quotient ring F2@x#/(x2m21) the following holds for integers i, j and
a non-negative integer k:

~a! t(0)5t(m)50,
~b! t(2 i )5t( i ),
~c! t2

k
5t(2k),$t( i )%2

k
5t(2ki ),

~d! t( i )t( j )5t( i2 j )1t( i1 j ),
~e! t(2m1 i )5t( i ),
~f! t(m1 i )5t(m2 i ). h

Making use of Laurent polynomialstm( i ) we define one-dimensional cellular automa
ca-90(m). The algebraic formulation ofca-90(m) enables us to apply the multiplicative structu
of the quotient ringF2@x#/(x2m21) to a theoretical study of cellular automata.

Definition 3.2: A configuration c of a cellular automaton ca-90(m) is a Laurent polynomial
J. Math. Phys., Vol. 38, No. 1, January 1997
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c5 (
i51

m21

ci t~ i !

in the quotient ring F2@x#/(x2m21), where ci50 or 1 for all integers i51,2, . . . ,m21. The
transition functiont of ca-90(m) is defined byt(c)5tc for every configuration c. A configura
tion a of ca-90(m) is a particular configuration whose all cells have the state1, that is,
a5S i51

m21t( i ). h

If a configurationc of ca-90(m) satisfies thatci5cm2 i for all integersi51,2, . . . ,m21,
then it is called symmetric. For example,a defined above is one of symmetric configuratio
(a15a25•••5am2151).

The following proposition states some basic behaviors of the characteristic polyno
w0(t),w1(t),w2(t), . . . and Laurent polynomialst( i ) in cellular automataca-90.

Proposition 3.3: In a cellular automaton ca-90(m) the following holds for a positive intege
i and a non-negative integer k:

~a! t$t(1)1t(2)1•••1t( i )%5t(1)1t( i )1t( i11),
~b! ta5t(1)1t(m21),
~c! t( i )a5t( i )1t(m2 i ),
~d! w i(t)t5t( i ),
~e! wm(t)c50 for all configurations c,
~f! wm21(t)t( i )5t(m2 i ),
~g! $w i(t)%

2kt(m22k)5t(m22ki ). In particular w i(t)t(m21)5t(m21). h

For an odd integerm the least positive integeru satisfying 2u561( modm) is called the
multiplicative suborder modulo mof 2, which will be denoted by sord~2; m). The existence of
positive integersu such that 2u561( modm) follows from the Fermat–Euler theorem on fun
damental number theory.

The period length of a particular configurationa5S j51
m21t( j ) of ca-90(m) is roughly deter-

mined by the multiplicative suborder ofm modulo 2. Using the results of the last proposition th
fact will be proved in the following

Proposition 3.4: Let m be an odd integer>3, k a positive integer, and u5sord(2;m). Then
the following holds:

~a! t2
u21a5a in ca-90(m),

~b! t2
k(2u21)t2

k21a5t2
k21

a in ca-90(2km),
~c! $t(m)%2

k21
a50 and $t(m)%2

k
50 in ca-90(2km).

@Note thatt5t2km5t2km ~1! in ~b! and t(m)5t2km(m) in (c).#

Proof: ~a! As 2u5m(2r11)61 for an integerr , it follows from 3.1~c!, ~e!, and~f! that

t2
u
5t~2u!5t„m~2r11!61…5t~m61!5t~m21!

in ca-90(m). Hence using 3.3~d!, ~f!, and~g! we have

t2
u21t~ j !5t2

u21w j~ t !t5w j~ t !t
2u5w j~ t !t~m21!5t~m2 j !

and so

t2
u21a5 (

j51

m21

t2
u21t~ j !5 (

j51

m21

t~m2 j !5a.

~b! First note that

t2
k1u

5t~2k1u!5t„2km~2r11!62k…5t~2km22k!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



c-
sser-
ials

n

260 Y. Kawahara and H. Y. Lee: Period lengths of cellular automata cam-90

¬¬¬¬¬¬¬¬¬¬
and

t2
k21

(
j51

m21

t~2kj !5 (
j51

m21

$t~2kj22k21!1t~2kj12k21!% @by 3.1~d!#

5t~2k21!1t~2km22k21!5t2
k21

a @by 3.3~c!#

in ca-90(2km). Hence we have

t2
k~2u21!t~2kj !5t2

k~2u21!$t~ j !%2
k

@by 3.1~c!#

5t2
k~2u21!$w j~ t !t%2

k @by 3.3~d!#

5$w j~ t !%
2kt2

k1u

5$w j~ t !%
2kt~2km22k!

5t~2km22kj ! @by 3.3~g!#

and so

t2
k~2u21!t2

k21
a5t2

k~2u21!t2
k21

(
j51

m21

t~2kj !

5t2
k21

(
j51

m21

t2
k~2u21!t~2kj !

5t2
k21

(
j51

m21

t~2km22kj !5t2
k21

a.

~c! It is immediate from 3.1~a! and ~c! and 3.3~c! that $t(m)%2
k
5t(2km)50 and

$t(m)%2
k21

a5t(2k21m)a5t(2k21m)1t(2km22k21m)50. h

Recall that the assertions~a! and ~b! of the last proposition were proved by using the inje
tivity of transition functions and the substitution operators in Refs. 7 and 8. However, the a
tions ~a! and ~b! have been derived from only the basic properties of the Laurent polynom
t( i ) and the characteristic polynomialsw j (t).

In what follows we assume thatm andn are integers.1. LetF2@x,y# be the polynomial ring
over a prime fieldF25$0,1% with two indeterminatesx and y, andF2@x,y#/(x2m21,y2n21) a
quotient ring ofF2@x,y# by an ideal (x2m21,y2n21) generated by two polynomialsx2m21 and
y2n21. A polynomial in the quotient ringF2@x,y#/(x2m21,y2n21) is sometimes called aLau-
rent polynomial. Define Laurent polynomialstm( i )5xi1x2 i andsn( j )5yj1y2 j for all integers
i and j . In particular, we settm5tm(1)(5x1x21) and sn5sn(1)(5y1y21). Further we set
am5( i51

m21tm( i ) and bn5( j51
n21sn( j ). The following proposition gives elementary formulas o

Laurent polynomialstm( i ) andsn( j ). @We will omit suffixesm andn in tm( i ),tm ,am ,sn( j ),sn ,
andbn unless confusion occurs.#

Proposition 3.5: In the quotient ring F2@x,y#/(x2m21,y2n21) the following holds for inte-
gers i, j and a non-negative integer k:

~a! t(0)5t(m)50, s(0)5s(n)50;
~b! t(2 i )5t( i ), s(2 j )5s( j );
~c! t2

k
5t(2k), $t( i )%2

k
5t(2ki ), s2

k
5s2

k
, $s( j )%2

k
5s(2kj );

~d! t( i )t( j )5t( i2 j )1t( i1 j ), s( i )s( j )5s( i2 j )1s( i1 j );
~e! t(2m1 i )5t( i ), s(2n1 j )5s( j );
~f! t(m1 i )5t(m2 i ), s(n1 j )5s(n2 j ). h
J. Math. Phys., Vol. 38, No. 1, January 1997
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Making use of Laurent polynomialst( i ) and s( j ) we reformulate two-dimensional cellula
automataca-90(m,n), which is essentially the same as the combinatorial one stated in the
duction. The algebraic formulation ofca-90(m,n) enables us to apply the multiplicative structu
of the quotient ringF2@x,y#/(x2m21,y2n21) to a further study of cellular automata.

Definition 3.6: A configuration c of a cellular automaton ca-90(m,n) is a Laurent polynomial

c5 (
i51,j51

m21,n21

ci , j t~ i !s~ j !

in the quotient ring F2@x,y#/(x2m21,y2n21), where ci , j P F2 for all i and j with 1< i<m21
and 1< j<n21. The transition functiond(5dm,n) of ca-90(m,n) is defined byd(c)5(t1s)c
for every configuration c. A configuration ab of ca-90(m,n) is particular configuration whose
cells all have the state1, that is,

ab5 (
i51,j51

m21,n21

t~ i !s~ j !.

The next configuration to ab is denoted bya(5am,n), that is,a5(t1s)ab. h

Note that the configuration spaceca-90(m,n) consisting of all configurations is an (m21)
3(n21)-dimensional vector space overF2 with a basis $t( i )s( j ): i51,2, . . . ,m21 and
j51,2, . . . ,n21% ~cf. Ref. 8!.

The configurationa5(t1s)ab5t(1)b1t(m21)b1as(1)1as(n21) of ca-90(m,n) is il-
lustrated by Fig. 1.

The period length of a particular configurationa5(t1s)a of ca-90(m,n) is roughly deter-
mined by the multiplicative suborders ofm and n modulo 2. Using the results 3.4 fo
ca-90(m) this fact will be proved in the following.

Corollary 3.7: Let m and n be odd integers>3, and k and l positive integers. Se
h5max(k,l) and w be the least common multiple of u5sord(2;m) and v5sord(2;n). Then the
following holds:

~a! (t1s)2
w21a5a in ca-90(m,n),

~b! (t1s)2
h(2w21)(t1s)2

h21a5(t1s)2
h21a in ca-90(2km,2ln),

Proof: ~a! Recall thatt2
u21a5a in ca-90(m) ands2

n21b5b in ca-90(n) by 4.4~a!. Then as
2w21 is a multiple of 2u21 and 2v21 we have

~ t1s!2
w21a5~ t2

w
1s2

w
!ab5tt2

w21ab1ass2
w21b5tab1asb5a.

in ca-90(m,n).

FIG. 1. The configurationa5(t1s)ab of ca-90(m,n).
J. Math. Phys., Vol. 38, No. 1, January 1997
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~b! As t2
h(2w21)t2

h
a5t2

h
a in ca-90(2km) and s2

h(2w21)s2
h
b5s2

h
b in ca-90(2ln) from

2.3~b! it follows that

~ t1s!2
h~2w21!~ t1s!2

h21a5~ t1s!2
w1h

ab5~ t2
w1h

1s2
w1h

!ab5~ t2
h
1s2

h
!ab5~ t1s!2

h21a.
h

IV. CELLULAR AUTOMATA cam -90 WITH MEMORY

In this section we discuss one- and two-dimensional cellular automatacam-90 with memory
associated toca-90. As stated in Sec. II, all configurations ofcam-90 lie on limit cycles and the
set of associated period lengths is one of important topological parameters concerned w
dynamical property ofcam-90. After reviewing a few basic formulas of the characteristic po
nomialswn(z) mod 2, we study some properties of period lengths of limit cycles on which ce
particular configurations lie.

First we recall one-dimensional cellular automatacam-90(m) with memory.
Definition 4.1: A configuration of one-dimensional cellular automaton cam-90(m) with

memory is a pair(c,d) of configurations c and d of ca-90(m). The transition functiont̂ of
cam-90(m) is defined byt̂ (c,d)5(tc1d,c) for all configurations(c,d) of cam-90(m).

For example it is easy to see thata5t(1), ta50, and t̂(ta,0)5(ta,0) in cam-90(2), that
a5ta5t(1)1t(2),t̂(ta,0)5(ta,ta),t̂ 2(ta,0)5(0,ta), andt̂ 3(ta,0)5(ta,0) in cam-90(3), and
thata5t(1)1t(2)1t(3),ta5t(1)1t(3),t̂(ta,0)5(0,ta), and t̂ 2(ta,0)5(ta,0) in cam-90(4).

The following theorem is a basic result on period lengths of configurations of one-dimens
cellular automatacam-90(m) with memory.

Theorem 4.2: Let(c,d) be a configuration of cam-90(m). Then

~a! t̂2m(c,d)5(c,d),
~b! t̂m(c,d)5(c,d) if and only if both c and d are symmetric.
~c! If m.4, then the period length K(m) of a limit cycle on which a particular configuration

(ta,0) of cam-90(m) lies is equal to m.

Proof: ~a! Note that wm(t)c50 for all c of ca-90(m) by 3.3~e!. Hence w2m(t)c
5 t$wm(t)%

2c50 and

w2m11~ t !c5w2m21~ t !c5wm1m21~ t !c5wm2m11~ t !c5w1~ t !c5c

by 2.3~a!, which claimst̂ 2m(c,d)5(c,d). ~This means that the period lengths of all limit cycl
are divisors of 2m.!

~b! First note thatwm(t)c50 andwm(t)d50 from 3.3~e!. Also from 2.3~a! it follows that
wm11(t)c5wm21(t)c. Hence by 2.2 we have

t̂ m~c,d!5„wm21~ t !c,wm21~ t !d….

However, 3.3~f! means thatwm21(t) is a reverse operator on configurations ofca-90(m).
~c! Recall from 3.3~d! thatw i(t)t5t( i ) for i>0. Then using 2.2 and 3.3~c! we have

t̂ i~ ta,0!5„w i11~ t !ta,w i~ t !ta…5„t~ i11!a,t~ i !a…5„t~ i11!1t~m2 i21!,t~ i !1t~m2 i !…

for all i>0. From this one can observe that the least positive integeri such that
t̂ i(ta,0)5(ta,0) is equal tom. @Note that if m is even thent(m/2)1t(m2m/2)50, but
t(m/211)1t(m2m/221) Þ t(1)1t(m21)5ta.] h

Figure 2 indicates the period length of a limit cycle on which a configura
„t(1)1t(2),0… of cam-90(5) lies is equal to 10.

Now we recall two-dimensional cellular automatacam-90(m,n) with memory.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Definition 4.3: A configuration of two-dimensional cellular automaton cam-90(m,n) with
memory is a pair(c,d) of configurations c and d of ca-90(m,n). The transition functiond̂ of
cam-90(m,n) is defined by d̂(c,d)5„(t1s)c1d,c… for all configurations (c,d) of
cam-90(m,n). h

Theorem 4.4:Let m and n be odd integers>3, and let k and l be positive integers. Then t
following statements hold for the period length K(m,n) of a limit cycle on which a particular
configuration(a,0) of cam-90(m,n) lies.

~a! K(m,n)u22w21,
~b! K(2km,2ln)u2h11(22w21),
~c! K(2km,2l)u2hm for l>2,
~d! K(2k,2l)52h for k,l>2 and(k,l ) Þ (2,2),

where h5max(k,l), u is the multiplicative suborder of2 modulo m,v is the multiplicative sub-
order of 2 modulo n, and w is the least common multiple of u andv.

Proof: ~a! It suffices to see thatw22w(t1s)a5a andw22w21(t1s)a50 by 2.2. The former
follows from

w22w~ t1s!a5~ t1s!2
2w21a5a

by 3.7~a! since 2w21u22w21. The latter is obtained by the following computation

w22w21~ t1s!a5(
j51

2w

~ t1s!2
2w22 ja5(

j51

w

$~ t1s!2
2w22 j1~ t1s!2

2w22 j1w
%a

5(
j51

w

~ t1s!2
2w22 j1w

$~ t1s!2
j ~2w21!a1a%50

since (t1s)2
w21a5a by 3.7 ~a!.

~b! It suffices to see thatw2h(22w21)(t1s)a50 from 2.3~b!. Note that

FIG. 2. An example of transitions ofcam-90(5).
J. Math. Phys., Vol. 38, No. 1, January 1997
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FIG. 3. The configurationt(2k22)b1t(2k22k22)b of ca-90(2k,2l).

FIG.4. The configurationt(2k22)b1 t(2k2 2k22)b1 as(2k22)1 as(2k2 2k22) of ca2 90(2k,2k).

FIG.5. The configurationt(m2 1)b1 t(m1 1)b1 as(n2 1)1 as(n1 1) of ca2 90(2m,2n).
J. Math. Phys., Vol. 38, No. 1, January 1997
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w2h~22w21!~ t1s!a5~ t1s!2
h21(

j51

2w

~ t1s!2
h~22w22 j !a

5~ t1s!2
h21(

j51

w

$~ t1s!2
h~22w22 j !1~ t1s!2

h~22w22 j1w!a%

5(
j51

w

~ t1s!2
h~22w22 j1w!$~ t1s!2

j2h~22w21!11%~ t1s!2
h21a50

since (t1s)2
h(2w21)(t1s)2

h21a5(t1s)2
h21a by 3.7~b!.

~c! It suffices to see thatw2h21m(t1s)a50 from 2.3~b!. Note that

w2h21m~ t1s!a5~ t1s!2
h2121wm„~ t1s!2

h21
…a

5~ t1s!2
h21

wm„~ t1s!2
h21

…ab

5t2
h21

wm~ t2
h21

!ab5t2
h2121wm~ t2

h21
!tab5w2h21m~ t !tab50

since (t1s)2
h21

ab5t2
h21

ab by s2
l21
b50 andw2k21m(t)ta5t(2k21m)a50.

~d! It is immediate from 3.4~c! that

w2h21~ t1s!a5~ t1s!2
h21

ab5~ t2
h21

1s2
h21

!ab50.

Hence by Lemma 2.3~b! we have d̂2
h
(a,0)5(a,0), which provesK(2k,2l)u2h. To see

K(2k,2l)52h it suffices to show (t1s)w2h22(t1s)a Þ 0 by the virtue of 2.3~c!. Now one may
assumeh5k without loss of generality.

~ t1s!w2k22~ t1s!a5~ t1s!~ t1s!2
k2221~ t1s!ab5~ t1s!~ t2

k22
1s2

k22
!ab.

~i! In the case ofk. l>2. As s2
k22

b50 we have

~ t1s!w2k22~ t1s!a5~ t1s!t~2k22!ab5~ t1s!$t~2k22!b1t~2k22k22!b%Þ0.

The configurationt(2k22)b1t(2k22k22)b of ca-90(2k,2l) is illustrated by Fig. 3.
~ii ! In the case ofk5 l>3. We have

~ t1s!w2k22~ t1s!a5~ t1s!$t~2k22!b1t~2k22k22!b1as~2k22!1as~2k22k22!%Þ0.

The configurationt(2k22)b1t(2k22k22)b1as(2k22)1as(2k22k22) of ca-90(2k,2k) is
illustrated by Fig. 4. h

Theorem 4.5: Let m and n be odd integers>3, and let k and l be positive integers. Then t
period length K(2km,2ln) of the configuration(a,0) in cam-90(2km,2ln) is even.

Proof: Assume that K(2km,2ln) is odd, that is, K(2km,2ln)u22w21. Then
d̂2

2w21(a,0)5(a,0) and soa5w22w(t1s)a5(t1s)2
2w21a in ca-90(2km,2ln). However, by the

result in Ref. 7 it is impossible if at least one ofk andl is greater than 1. Thus it suffices to inspe
the case ofk5 l51. Recall thatt2(2

u21)ta5ta @by 3.4~b!# and t2
u21ta5t(m21)1t(m11)

in ca-90(2m). @For 2u5(2r11)m61 for some integer r . If r is even then
t2

u
5t(2u)a5t(m61), and if r is odd then t2ut(2m1m61)5t(m71). Hence t2

u21ta

5t(m71)a5t(m21)1t(m11) in ca-90(2m).# Thus t2
w21ta5t2

u21ta5t(m21) 1 t(m11)
in ca-90(2m). Similarly s2

w21sb 5 s(n21)1s(n11) in ca-90(2n). Therefore we have
J. Math. Phys., Vol. 38, No. 1, January 1997
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w22w~ t1s!a5~ t1s!22
2w21a5~ t1s!2

w21~ t1s!2
w212~2w21!a5~ t1s!2

w21a5~ t2
2w

1s2
2w

!ab

5t~m21!b1t~m11!b1as~n21!1as~n11!

Þt~1!b1t~2m21!b1as~1!1as~2n21!~5a!

in ca-90(2m,2n). This proves that K(2m,2n) is even. The configurationt(m21)b
1 t(m11)b1as(n21)1as(n11) of ca-90(2m,2n) is illustrated by Fig. 5. h
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Advection diffusion past a strip. I. Normal incidence
Charles Knessl
Department of Mathematics, Statistics, and Computer Science, University of Illinois at
Chicago, 851 South Morgan Street, Chicago, Illinois 60607-7045

Joseph B. Keller
Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford,
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~Received 22 April 1996; accepted for publication 26 July 1996!

The concentrationp(x,y) of particles moving by diffusion and advection or drift is
analyzed. The motion is impeded by an impenetrable strip that is parallel to thez
axis. It is assumed thatp satisfies the linear advection-diffusion equation with a
boundary condition on the strip. It is also assumed thatp51 at infinity. This
problem is solved asymptotically forvL/D@1, wherev is the drift velocity,D is
the diffusion coefficient, and 2L is the strip width. It is found thatp is large on the
side of the strip facing the incident flow, thatp is small in the shadow behind the
strip, and thatp is nearly constant elsewhere. The case of a strip normal to the
incident flow is rather different from that of a strip oblique to the flow. Methods of
asymptotic analysis are used. ©1997 American Institute of Physics.
@S0022-2488~96!04012-1#

I. INTRODUCTION

The flux of particles in a fluid usually consists of a diffusive part2D “p and an advective or
drift part vp, wherep~x! is the particle concentration,D is the diffusion coefficient, andv is the
drift velocity. The velocityv may result from motion of the fluid~advection!, or from an electrical
or gravitational field acting on the particles~drift!. Conservation of particles in a steady sta
implies that the divergence of the flux vanishes. Therefore whenD andv are constant,p satisfies
the elliptic partial differential equation,

2D Dp1v–“p50. ~1.1!

We wish to investigate the effect of an impenetrable obstacle upon the particle concent
Impenetrability requires that the normal component of flux must vanish on the obstacle surfS:

n–~2D “p1vp!50, on S. ~1.2!

Heren is the unit normal toS. We shall assume thatp has the constant value one at infinity:

p→1, as uxu→`. ~1.3!

Whenv50, ~1.1! is Laplace’s equation and~1.2! is the Neumann boundary condition]p/]n
50, so the solution of~1.1!–~1.3! is p51 everywhere. Thus, in this case the obstacle has no e
on the concentration. However, whenv5uvu is large, we expect the obstacle to block the flow a
to cast a ‘‘shadow,’’ i.e., to produce an accumulation of particles on its front or ‘‘illuminate
side and a depletion of particles on its back or ‘‘dark’’ side. We shall show that this is indee
case whenvL/D@1, whereL is a typical dimension of the obstacle. For simplicity, we shall ta
the obstacle to be a strip of width 2L parallel to thez axis.
0022-2488/97/38(1)/267/16/$10.00
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The problem formulated above, withS a circular cylinder of radiusL, was studied by Phillip,
Knight, and Waechter.1 They were considering the flow of groundwater around a cylindr
obstacle. They obtained an exact solution forp as an infinite series, by separation of variables, a
they evaluated it for small values ofvL/D.

The same problem was considered by Alexander and Lebowitz2 as one of several models o
the ‘‘Brazil nut effect.’’ This is the segregation of particles of different sizes as a consequen
shaking in a gravitational field, which is supposed to explain why large nuts are always fou
the top of a can of mixed nuts. They stated that the solution of Phillipet al.1 has the qualitative
features described above.

II. FORMULATION

First we treat the case of a strip normal to the direction of drift, which we take to be in
positive direction along thex axis ~see Fig. 1!. We choose the origin at the center of the strip, a
we use the half-widthL as the unit of length. Then the strip occupies the interval21<y<1 of the
y axis, and the problem~1.1!–~1.3! can be rewritten as

pxx1pyy22cpx50, ~2.1!

px22cp50, x50, 21<y<1, ~2.2!

p→1, as x21y2→`. ~2.3!

Here c5vL/2D. In addition, we require thatp be finite at the edges of the strip. We note th
p(x,y) is independent ofz.

III. FRONT BOUNDARY LAYER

We shall solve this problem asymptotically forc large. We expect particles to hit the illum
nated side of the slit,x502, and to accumulate in a thin boundary layer there. Then they
diffuse along the boundary to the ends, and be carried away by the flow. Therefore, we
construct a boundary layer expansion valid nearx502, 21,y,1. We begin by introducing the
stretched variablej5cx and writing

p~x,y!511Q~j,y!. ~3.1!

Then ~2.1! and ~2.2! become

c2~Qjj22Qj!1Qyy50, ~3.2!

Qj~0,y!22Q~0,y!52, uyu,1. ~3.3!

We now assume thatQ has the expansion

Q~j,y!5c2Q01cQ11Q21c21Q31c22Q41O~c23!. ~3.4!

Substituting~3.4! into ~3.2! and ~3.3!, and equating coefficients of like powers ofc, yields

Qj ,jj22Qj ,j52Qj22,yy , Q215Q22[0, ~3.5!

Qj ,j~0,y!22Qj~0,y!52d j2 , uyu,1. ~3.6!

In view of ~2.3!, we also require that

Qj~j,y!→0, as j→2`. ~3.7!
J. Math. Phys., Vol. 38, No. 1, January 1997
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For j50 and j51, the solutions of~3.5! and ~3.6! that satisfy~3.7! are

Q0~j,y!5F~y!e2j, ~3.8!

Q1~j,y!5G~y!e2j. ~3.9!

Now we use~3.8! in ~3.5! with j52, and we can write the resulting equation in the form

~e22jQ2,j!j52F9~y!. ~3.10!

FIG. 1. A strip parallel to thez axis and of width 2 intersects thex,y plane along the interval fromy521 to y511 on
the y axis. The direction of advection is parallel to thex axis from left to right, as is indicated by the arrow. Thus t
direction of advection is perpendicular to the strip.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The solution of~3.10! that satisfies~3.7! is

Q2~j,y!52
j

2
e2jF9~y!1H~y!e2j. ~3.11!

Upon applying the boundary condition~3.6! to ~3.11!, we find thatF9(y)524, and hence

F~y!522y21B01B1y. ~3.12!

Sincep is even iny, F must also be even soB150. Furthermore,Q0 must vanish near the edge
in order that the boundary layer solutionp511Q match with the edge expansion. Therefo
F~61!50 soB052, and we have

Q0~j,y!52~12y2!e2j. ~3.13!

The result~3.13! shows that the concentration of particles on the illuminated side of the
has a parabolic profile in they direction. This can be explained as follows. Consider a o
dimensional diffusion of particles along the intervaluyu,1 of they axis, with a uniformly distrib-
uted source of strength 4. Suppose that particles that reach the pointsy561 are absorbed. Then
the concentrationP(y) satisfies the equations

2P9~y!54, uyu,1, P~1!5P~21!50.

The solution isP(y)52(12y2).
By using~3.9! in ~3.5! with j53, solving and applying~3.6! and~3.7!, we find thatG9(y)50.

Then sinceG must be even, we haveG(y)5a1 , where a1 is a constant to be determined
Similarly, by using~3.11! in ~3.5! with j54, we find thatH(y)5a2 is constant. Now we have
found the first three terms in~3.4!, so we can write

p~x,y!511Q~j,y!5112c2~12y2!e2j1a1ce
2j1~2j1a2!e

2j1O~c21!. ~3.14!

We shall determinea1 anda2 by matching this expansion with an expansion valid near the up
edge.

IV. EDGE BOUNDARY LAYER

To find the expansion valid near the upper edge, we setj5cx, h5c(y21) and

p~x,y!5R~j,h!5cR0~j,h!111R1~j,h!1O~c21!. ~4.1!

Then from~2.1! and ~2.2! we find thatR0 andR1 satisfy the following equations:

R0,jj22R0,j1R0,hh50, ~j,h!PR22$~0,h!:h<0%, ~4.2!

R0,j~0,h!22R0~0,h!50, h,0, ~4.3!

R1,jj22R1,j1R1,hh50, ~j,h!PR22$~0,h!:h<0%, ~4.4!

R1,j~0,h!22R1~0,h!52, h,0. ~4.5!

In addition to these homogeneous equations, the expansion~4.1! must match with the bound
ary layer expansion~3.14!. By settingy511c21h in ~3.14!, we can write this condition as
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



to
gral

r

271C. Knessl and J. B. Keller: Advection-diffusion. I. Normal incidence

¬¬¬¬¬¬¬¬¬¬
112c2@12~11c21h!2#e2j1a1ce
2j1~2j1a2!e

2j;cR0~j,h!111R1~j,h!,

as h→2`, j,0. ~4.6!

Upon equating coefficients ofc andc0 we obtain the matching conditions

R0;e2j~a124h!; h→2`, j,0, ~4.7!

R1;e2j~2j22h21a2!; h→2`, j,0. ~4.8!

The problems~4.2!–~4.5!, ~4.7!, and ~4.8! for R0 andR1 correspond to a strip that extends
infinity in the negativeh direction. They can be solved easily by converting them to inte
equations of the Wiener–Hopf type, as we shall now show.

We representR0 by an integral of a densityg(z) in the form

R0~j,h!5]jS E
2`

0

ejK0„Aj21~h2z!2…g~z!dzD 5ejE
2`

0

~]j11!K0„Aj21~h2z!2…g~z!dz,

~4.9!

whereK0 is the modified Bessel function of order zero. Then~4.2! is satisfied automatically. Now
the left side of~4.3! can be written as

R0,j22R05ejE
2`

0

~]j
221!K0„Aj21~h2z!2…g~z!dz52ej]h

2E
2`

0

K0„Aj21~h2z!2…g~z!dz,

~4.10!

since (]j
21]h

221)K0@Aj21(h2z)2#50 for jÞ0 or h.0. Thus the boundary condition~4.3!
will be satisfied ifg~•! satisfies the integrodifferential equation

d2

dh2 S E
2`

0

K0~ uh2zu!g~z!dzD 50, h,0. ~4.11!

We seth*52h and g(z)5h(2z). The integral in~4.11! must be a linear function ofh, say
A01A1h. It follows thath~•! must satisfy the Wiener–Hopf integral equation

E
0

`

K0~ uh*2zu!h~z!dz5A02A1h* , h*.0. ~4.12!

To solve this we denote byf~h* ! the left side of~4.12! whenh*,0 and introduce the Fourie
transforms,

H1~a!5E
0

`

eiah*h~h* !dh* , F2~a!5E
2`

0

eiah*f~h* !dh* ,

E
2`

`

K0~ uh* u!eiah* dh*5
p

A11a2
. ~4.13!

Then ~4.12! becomes

p

A11a2
H1~a!5

i

a
A01

1

a2 A11F2~a!, ~4.14!
J. Math. Phys., Vol. 38, No. 1, January 1997
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which can be rearranged to give

p

Aa1 i
H1~a!2e2 ip/4S 11

1

2
ia D S iA0

a
1
A1

a2D
5S iA0

a
1
A1

a2D FAa2 i2e2 ip/4S 11
1

2
ia D G1Aa2 iF2~a!.

~4.15!

The left side of~4.15! is analytic and bounded in the upper half-plane Im~a!.0, while the right
side is analytic and bounded in the lower half-plane Im~a!,1. It follows from Liouville’s theorem
that the left side is a constant. By lettinga→` in the upper half-plane, we see that this const
must equalA0e

2 ip/4/2, and hence

H1~a!5
Aa1 i

p F SA01
1

2
A1D i

a
1
A1

a2G . ~4.16!

We must now determine the constantsA0, andA1, as well asa1, which appears in~4.7!. If
A01

1
2A1Þ0 then we haveH1(a)5O(uau21/2) asa→` in the upper half-plane. But then from

~4.13! it follows thath(z) behaves ash(z);~const!z21/2 asz→01 and thusg(z);~const!~2z!21/2

as z→02. To compute R0 from ~4.9! we must integrateg(z) against the function
]jK0„Aj21(h2z)2…, which behaves as a dipole nearj5h5z50. If g(z) is singular atz50 then
R0 will not be finite at~j,h!5~0,0! and thusp will not be finite at the edge. Therefore, we mu
haveA01

1
2A150. ThenH1(a)5O(uau23/2), g(z) ; (const)A2z, andR0 andp will be finite at

the upper endpoint of the strip. Inverting the Fourier transform in~4.13! leads to

h~h* !5
1

2p E
C1

e2 iah*

a2 Aa1 i
A1e

2 ip/4

p
da, ~4.17!

where the contourC1 goes along the reala axis and is indentedabovea50. Noting that the
integrand in~4.17! has a double pole ata50 and a branch point ata52i , we find thatg(z)
5h(2z) is given by

g~z!5
A1

p S z2
1

2D1
A1

p2 E
0

`

ez~11s!
As

~11s!2
ds, z,0. ~4.18!

From ~4.9!, we have thus determinedR0 up to the multiplicative constantA1.

V. MATCHING

We next examine the matching condition~4.7!. To evaluate~4.9! ash→2`, we note that the
major contribution to~4.9! will come from z'h. We therefore replace the upper limit on th
integral by1` and use the approximation@cf. ~4.18!# g(z);A1(z21/2)/p, z→2`. Since

E
2`

`

K0„Aj21~h2z!2…dz5pe2uju,

we have ash→2`,
J. Math. Phys., Vol. 38, No. 1, January 1997
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R05]jE
2`

0

ejK0„Aj21~h2z!2…g~z!dz;]jE
2`

`

ejK0„Aj21~h2z!2…
A1

p S z2
1

2Ddz
5S h2

1

2D A1

p
]jE

2`

`

ejK0„Aj21~h2z!2…dz

5A1~h2 1
2!]j~e

je2uju!

5~2h21!A1e
2j, j,0. ~5.1!

Comparing this to~4.7! yields

A1522, a152. ~5.2!

We have now determined completely the leading termR0 in the expansion~4.1!, and the first two
terms in~3.14!.

We proceed to calculateR1 by representing it as

R1~j,h!5]jE
2`

0

ejK0„Aj21~h2z!2…g1~z!dz. ~5.3!

We use~5.3! in the boundary condition~4.5! and seth*52h with g1(z)5h1(2z) to obtain

2
d2

dh2 E
0

`

K0~ uh*2zu!h1~z!dz52. ~5.4!

This can be easily solved by using the Wiener–Hopf method and making note of the bound
condition. The final result forg1(z) is

g1~z!5
C

p S z2
1

2D1
C

p2 E
0

`

ez~11s!
As

~11s!2
ds1

1

p S 2z21z1
1

4D
2

2

p2 E
0

`

ez~11s!
As

~11s!3
ds, z,0. ~5.5!

To determine the constantC we use the matching condition~4.8!. As h→2` andj,0, we
replace the upper limit on the integral in~5.3! by `, approximateg1(z) by the first and third terms
in the right side of~5.5!, and use the identity

E
2`

`

v2K0~Aj21v2!dv5pej~12j!, j,0.

We thus obtain

R1;e2j~2j2122h21C~2h21!12h1 1
2!; h→`, j,0. ~5.6!

We now compareR1 given by ~4.8! with R1 given by ~5.6!, and we find

C521, a25
1
2. ~5.7!

We now have the first three terms in powers ofc in expansion~3.14! and the first two terms in
~4.1!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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VI. ALTERNATE REPRESENTATION

Later we will examine asymptotic forms ofp(x,y) in other regions of the (x,y) plane. They
can be obtained by using~4.1! for p and evaluating the various integrals asymptotically.
evaluate them it will be convenient to obtain alternate integral representations for the fun
R0 , R1 . From these the asymptotic expansions will be obtained easily by using the saddle
method.

We first compute the Fourier transform ofR0 overh:

F @R0#5E
2`

`

eiahR0~j,h!dh. ~6.1!

From tables of integrals we have

E
2`

`

K0~AX21Y2!eiZX dX5
p

A11Z2
exp~2uYuA11Z2!. ~6.2!

Using ~4.9!, ~4.18!, ~5.2!, and~6.2! we obtain

F @R0#5]jH ejE
0

`F112z

p
2

2

p2 E
0

`

e2z~11s!
As

~11s!2
dsGe2 iazdz

p

A11a2
exp~2ujuA11a2!J

5]jH ej2ujuA11a2

A11a2 F 1ia 1
2

~ ia!2
2
2

p E
0

` As
~11s!2

1

11s1 ia
dsG J , ~6.3!

whereF @R0# is analytic in the strip21,Im~a!,0. Since

2

p E
0

` As
~11s!2

1

11s1 ia
ds5

2

p E
2`

` y2

~11y2!2
1

11y21 ia
dy52

1

a S 2a 1 i D1
2~11 ia!

a2A11 ia
,

~6.4!

we obtain from~6.3!

F @R0#5
22~12~sgnj!A11a2!

a2A12 ia
exp@j2ujuA11a2#.

Inverting the Fourier transform~6.1! leads to the integral representation

R0~j,h!5
ej

p E
C2

~sgnj!A11a221

a2A12 ia
e2 iahe2ujuA11a2 da, ~6.5!

whereC2 goes along the real axis and is indentedbelowa50. An analogous calculation applie
to ~5.3! shows thatR1 has the representation

R1~j,h!5
ej

2p E
C2

~sgnj!A11a221

a2A12 ia
S 12

2

ia De2 iahe2ujuA11a2 da. ~6.6!

Expressions~6.5! and~6.6! appear to be nonsmooth along the linej50. However, it is possible to
show thatR0 andR1 are smooth along the rayj50,h.0. Along the rayj50,h,0 these functions
J. Math. Phys., Vol. 38, No. 1, January 1997
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are discontinuous, but this is to be expected since this ray corresponds to the strip. The
derivatives ofR0 , R1 are also discontinuous alongj50, h,0 but the flux of particles@cf. ~2.2!#
is continuous since it is zero on either side of the strip.

We shall now summarize our results, which give the explicit forms of the expansions~3.14!
and ~4.1!.

Result 1:The solutionp(x,y,c) of ~2.1!–~2.3! can be expanded as follows.
Front expansion~j5cx,0,21,y,1!:

p~x,y!511e2cx@2c2~12y2!12c~11x!1 1
2#1O~c21!.

Upper edge expansion@j5cx, h5c(y21), y.0#:

p~x,y!;cR0~j,h!111R1~j,h!,

whereR0 andR1 are given by~6.5! and ~6.6!.
Lower edge expansion: the same as upper edge expansion withh5c(212y) andy,0.

VII. UNIFORM EXPANSION

Before examining asymptotic properties ofR0 andR1, we briefly sketch an alternate approa
to the solution of the boundary value problem~2.1!–~2.3!. We set

p511ecxE
21

1

~c1]x!K0„cAx21~y2z!2…G~z!dz. ~7.1!

Then ~2.1! is satisfied exterior to the strip and~2.2! will be satisfied ifG~•! satisfies the integra
equation,

2
d2

dy2 E21

1

K0~cuy2zu!G~z!dz52c, uyu,1. ~7.2!

We analyze this equation by the method of matched asymptotic expansions asc→`. We first
construct an ‘‘outer’’ approximation toG(y), which is valid in the interior of the interval21,y
,1, and then two boundary layer approximations, which are valid, respectively, in the re
12y5O(c21) and y115O(c21). Since clearlyG(y)5G(2y), it is sufficient to analyze the
first boundary layer. We omit the details and state only the final result, which is a uni
asymptotic approximation toG(y):

G~y!5
1

p Fc2~12y2!1c1
3

4G1G @c~12y!#1G @c~11y!#1O~est!, ~7.3!

G ~z!52
e2z

p2 E
0

`

e2zsF 2As
~11s!3

1
~2c11!As

~11s!2
Gds. ~7.4!

HereO(est) stands for terms that are exponentially small, uniformly foruyu<1. We note that
G ~z! decays exponentially asz→` and thus the termG [c(12y)] is important only neary511
and the termG [c(11y)] is important only neary521. We call these terms boundary lay
corrections to the outer approximation, which is the first term on the right side of~7.3!.

By expanding~7.1! with ~7.3! for G, asc→`, cx5j,0 anduyu,1, we can easily regain the
front expansion in Result 1. From~7.1! and~7.3! we can also obtain the approximation~4.1!. To
see this, sety511h/c, x5j/c in ~7.1! and ~7.3!. For h5O~1! ~indeed for anyy.0! we can
J. Math. Phys., Vol. 38, No. 1, January 1997
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neglect the third term in~7.3! and extend the lower limit on the integral in~7.1! from 21 to2`.
The errors caused by these approximations are exponentially small, and then~7.1! becomes the
same as~4.1! with ~4.9!, ~4.18!, ~5.3!, and~5.5!.

We have obtained a uniform asymptotic expansion ofp, which we describe in the following
Result 2:The solution of~2.1!–~2.3! can be expressed as~7.1! with G~•! a solution of~7.2!

that satisfiesG~61!50. A uniform asymptotic approximation toG~•! is given by~7.3! with G ~•!
given by ~7.4!.

VIII. NONUNIFORM EXPANSIONS

Result 2 gives a uniform asymptotic approximation top, which can be used forc→` for any
point (x,y). However, we can give much simpler results for points that are not close to e
~0,61!. To do so we expand the edge expansions in Result 1 asymptotically asc→`. We will
show that the form ofp is different in different regions, and they are sketched in Fig. 2. Si
p(x,y)5p(x,2y), it is enough to considery.0. In most regions we will find thatp is either
exponentially small or exponentially close to unity. We will obtain the two leading terms in
expansion ofp where it is small, and ofp21 where it is small.

Consider now the integrals in~6.5! and ~6.6!. The integrand in~6.5! has branch points a
a56i , a double pole ata50 if j,0, and is analytic ata50 if j.0. The integrand in~6.6! also
has branch points ata56i , a triple pole ata50 if j,0, and a simple pole ata50 if j.0. We
considerAj21h2→`, which means we are not close to (x,y)5~0,1!. In this limit the integrals
~6.5! and ~6.6! have saddle points where

d

da
@2 iah2ujuA11a2#50

or

a5as[
2 ih

Aj21h2
. ~8.1!

Thus the saddle point lies on the imaginary axis and satisfies Im~as!P~21,0! if h.0 and
Im~as!P~0,1! if h,0. If h50, thenas50, so the saddle point coalesces with the pole ata50. If
uhu@uju, then the saddle point approaches one of the branch points. It is convenient to seta5sinhZ
in ~6.5!. Since

~12 ia!21/25
1

coshZ FcoshZ21 i sinh
Z

2G ,
we obtain

R05
ej

p E
C2

sgnj coshZ21

sinh2 Z FcoshZ21 i sinh
Z

2Gexp@2 ih sinhZ2ujucoshZ#dZ. ~8.2!

This representation has no branch points and the saddle point is atZ5 ia, where

sin a5
2h

Ah21j2
, cosa5

uju

Ah21j2
. ~8.3!

Consider firstj.0 andj,h→1`. This corresponds to region A in Fig. 2. Now sgnj511 and
J. Math. Phys., Vol. 38, No. 1, January 1997
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sgnj coshZ21

sinh2 Z
5

1

coshZ11
.

We shift the contourC2 in ~8.2! into a horizontal contour that goes through the saddle p
Z5 ia, where2p/2,a,0. This is in fact a steepest descent contour. Evaluating the integral
the new contour by Laplace’s method yields

FIG. 2. A sketch of the various regions in the (x,y) plane that require separate asymptotic analyses. Regions F an8
make up the ‘‘darkest’’ shadow, which becomes less ‘‘dark’’ in regions E and E8. The highest concentration occurs on th
front of the strip in region B.
J. Math. Phys., Vol. 38, No. 1, January 1997
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R0;A 2

pr1

ej2r1

11cosu1
Fcosu1

2
1sin

u1

2
2

1

2r1

3 sin~u1/2!1cos~u1/2!

11cosu1
1O~r1

22!G ,
~8.4!

where

r15Aj21h25cAx21~y21!2, ~8.5!

andu1 is defined byr1 cosu15j, r1 sinu15h. We restrictu1 to the range2p/2,u1,3p/2 so
that u152p/2 corresponds to the ‘‘shadow’’ side of the strip andu153p/2 to the illuminated
side. Foru1P~0,p/2! we havea52u1 . For a fixed (x,y), the error in~8.4! is O(c

22). A similar
calculation shows that the leading-order approximation toR1 in this range ofj andh is

R1;
ej2r1

A2pr1

1

11cosu1
F12

2

sin u1
GFcosu1

2
1sin

u1

2 G . ~8.6!

We can easily show that~8.4! and ~8.6! remain valid forp/2,u1,p, and are thus valid for
0,u1,p. Both ~8.4! and ~8.6! break down whenu1'p, since 11cosp50. Expression~8.4!
remains valid for2p/2,u1<0, but ~8.6! has a singularity atu150. Sincep;cR0111R1 , we
now have a two-term asymptotic approximation top in region A ~cf. Fig. 2!. In this regionp is
nearly equal to the uniform concentration at infinity, with a deviation that is exponentially s

Next we consider the limitj.0,h→2`, which corresponds tou1'2p/2. This means we are
considering points close to the strip and on the shadow side. The approximation~8.4! breaks down
nearu1'2p/2 since cos~u1/2!1sin~u1/2!'0, so that the second term in~8.4! becomes compa
rable in magnitude to the first term. Similar problems occur in~8.6!. For j.0,h→2` the saddle
point Z5 ia→ ip/2. We shift the contour in~8.2! by settingZ5u1 ip/2, and thus obtain

R05
ej

p E
2`

`
& i sinh~u/2!

11 i sinhu
e2 i j sinhue2uhucoshu du. ~8.7!

For a fixedj and uhu→`, this is a Laplace-type integral whose asymptotic expansion ma
obtained by expanding the integrand for smallu and scalingu to beO~uhu21/2!. The first two terms
are

R0;
eje2uhu

Apuhu3/2
F11j2

3

uhu S 11j1
1

2
j21

1

6
j3D1O~h22!G . ~8.8!

Now consideru1'p, wherej,0. The saddle point in~6.5! is now close to the double pole a
a50. We thus expand the integrand abouta50 and then scalea 5 u/A2j. On the parabolic scale
whereh→`, j→2` with h/A2j fixed, we obtain

R052
2

p
e2jA2jE

C2

e2u2/2e2 iuh/A2jF 1u2 1
1

A2j

i

2u
1•••Gdu. ~8.9!

The remaining integrals may be expressed in terms of the parabolic cylinder functions,
leads to

E
C2

e2u2/2

u2
e2 iuA du52A2pE

A

`

~u2A!e2u2/2 du,
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E
C2

e2u2/2

u
e2 iuA du5 iA2pE

A

`

e2u2/2 du.

Hence,

R05A28j

p
e2jH E

h/A2j

`

e2u2/2F S u2
h

A2j
D 1

1

2A2j
Gdu1O~j21!J . ~8.10!

As h→2`, ~8.10! becomes~224h!e2j, which agrees with~4.7!. In a similar manner, we expan
R1 and obtain

R1;
2

p i
e2jE

C2

S 1

a3 1
1

8a D eja2/2e2 iah da5A2

p
e2jE

h/A2j

` F jS u2
h

A2j
D 21 1

4Ge2u2/2 du.

~8.11!

As h→2`, the right side of~8.11! becomes~2j22h211/2!e2j, which agrees with~4.8!.
Whenu1 is in the range~p,3p/2#, the saddle point~8.1! lies on the positive imaginary axis

In deforming the contourC2 we must thus consider the contribution from the pole ata50. Then
~8.2! becomes

R052p i @residue atZ50#1E
SD

~••• !dZ, ~8.12!

where~•••! is the same integrand as in~8.2! and SD is the steepest descent contour through
saddle pointZ5 ia. We have 2p i @residue atZ50#5~224h!e2j and the integral over SD ca
again be approximated by~8.4!. But the latter is exponentially smaller than the residue from
pole, so that

R0;~224h!e2j, ~8.13!

and a similar calculation shows that

R1;~2j22h21 1
2!e

2j. ~8.14!

These asymptotic relations hold for 3p/2<u1,p, which shows that the expansion we previous
constructed near the illuminated side of the strip@cf. ~3.14!# is actually valid in the entire region
x,0, uyu,1.

Finally, we considerR1 for u1 in the range@2p/2,0#. For j.0, the integrand in~6.5! is
analytic ata50 but that in~6.6! has a simple pole ata50. For a fixedh and j→`, the saddle
pointas in ~8.1! becomes close to the pole, which indicates a transition in the asymptotic beh
of R1. First we takeu1'0 and expand the integrand in~6.6! ~with j.0! neara50. Retaining only
leading-order terms leads to

R1;
ej

2p E
C2

1

2 S 22

ia De2 iahe2je2ja2/2 da52
1

2p i EC2

1

v
e2v2/2e2 ihv/Aj dv

52
1

A2p
E

h/Aj

`

e2v2/2 dv. ~8.15!

For 2p/2,u1,0, the saddle point in~6.6! lies on the positive imaginary axis and we thus ha

R152p i @residue ata50#1E
SD

~••• !da, ~8.16!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



o

280 C. Knessl and J. B. Keller: Advection-diffusion. I. Normal incidence

¬¬¬¬¬¬¬¬¬¬
where SD is the steepest descent contour througha5as . Sincej.0 we now have 2p i @residue at
a50#521 and thusR1;21 and 11R1 is approximately given by the right side of~8.6!, since this
corresponds to the saddle point contribution. Thus, for2p/2,u1,0, p;cR0111R1 is expo-
nentially small. To obtain an approximation toR1 valid for u1'2p/2, we write~6.6! for j.0 as

11R15
ej

2p E
C1

A11a221

a2A12 ia
S 12

2

ia De2 iahe2jA11a2 da

5
ej

2p E
2`

`
& i sinh~u/2!

11 i sinhu
e2 i j sinhueh coshu du, ~8.17!

where we have seta5sinhZ and then shifted the contour by settingZ5u1 ip/2. Forh→2` we
evaluate the last integral by Laplace’s method and obtain

11R1;
3

2Ap
eje2uhu 11j

uhu3/2
. ~8.18!

With ~8.8! and ~8.18! we have a two-term approximation top in the regionx5c21j5O(c21),
x.0, 0,y,1.

For u1'0, the approximation~8.4! for R0 remains valid. By settingd1 5 Ax21(y21)2 we
note that sin~u1!5(y21)/d1 , cos~u1!5x/d1 , and then~8.4! simplifies to

cR0;
1

A2p
FAc

x
e2z2/21

z

2x
e2z2/21O~c21/2!G , z5S cxD

1/2

~y21!, ~8.19!

for z5O(1), c→`. Sincez5h/Aj, ~8.15! and~8.19! combine to give a two-term approximation t
p in the limit c→`, x.0, y215O(c21/2).

Now we shall summarize our asymptotic results forp(x,y). We write the final results in terms
of (x,y). The regions A–F and A8–F8 are depicted in Fig. 2.

Result 3:Asymptotic expansions forp(x,y) asc→` for the indicated regions in the (x,y)
plane are given by the following:~i! region A: y.1,

p~x,y!;11A 2c

pd1
ec~x2d1!H cos~u1/2!1sin~u1/2!

11cosu1
2

1

cd1

3 sin~u1/2!1cos~u1/2!

2~11cosu1!2

1
1

2c S 12
2

sin u1
D cos~u1/2!1sin~u1/2!

11cosu1
J ,

d15Ax21~y21!2, sin u15
y21

d1
, cosu15

x

d1
;

~ii ! region B:x,0, 21,y,1,

p~x,y!;11e2cx@2c2~12y2!12c~11x!1 1
2#;

~iii ! region C:x,0, y215O(c21/2),

p~x,y!;11A2

p
e2cxE

z*

` H 2c3/2A2x~v2z* !1c@11x~v2z* !2#1
1

4 J e2v2/2 dv,
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z*5A c

2x
~y21!;

~iv! region D:x.0, y215O(c21/2),

p~x,y!;
1

A2p
e2z2/2FAc

x
1

z

2xG112
1

A2p
E
z

`

e2v2/2 dv,

z5Ac

x
~y21!;

~v! region E:x.0, 0,y,1,

p;pE~x,y!5pA~x,y!21, where pA is the region A approximation;

~vi! region F:x5c21j5O(c21), j.0, 0,y,1,

p~x,y!;
ejec~y21!

Apc~12y!3/2
F11j2

3

c~12y! S 11j1
1

2
j21

1

6
j3D1

3

2c
~11j!G ;

~vii ! region G:x5c21j5O(c21), y511c21h511O(c21),

p~x,y!;cR0~j,h!111R1~j,h!,

whereR0 andR1 are given by~6.4! and ~6.5!.
The regions A8, C8, D8, E8, F8, G8 are the reflections of regions A, C, D, E, F, G, through t

x axis. The asymptotic expansions in the former set of regions may be obtained by usingp(x,y)
5p(x,2y). For x.0 and y'0, we havep(x,y);pE(x,y)1pE8(x,y), wherepE, pE8 are the
approximations in regions E and E8 with pE8(x,y)5pE(x,2y). For x5c21j5O(c21), j.0, and
y'0 we havep(x,y);pF(x,y)1pF8(x,y), wherepF(x,y)5pF8(x,2y) is the region F approxi-
mation.

These results show that in regions A, B, and C the concentrationp is exponentially close to
unity, which is the uniform concentration at infinity. There is a sharp change in the asymptot
p21 on crossing the raysy561, x,0. In the regionx,0, uyu,1 there is an additional concen
tration of particles that arises from those that hit the illuminated side of the strip and then d
into region B. For a fixedx,0, this additional concentration is exponentially small~of the order
e2cx!, since the large drift tends to keep these particles close to the strip. The concentration
to deviate from unity by anO~1! amount when2x.c21 log c, and forx5O(c21) the concen-
tration becomes very large [O(c2)]. In the regionsy.1 andy,21, the concentration deviate
from the uniform value unity due to particles that reach these regions upon interacting wi
strip. The formula in region A in Result 2 shows that the most likely interaction is for particle
reach the edgex50, y511 of the strip, and then diffuse into region A.

Near the edges of the strip,~regions G, G8! the concentration is still large [O(c)], but smaller
than on the illuminated side, since now particles are being advected away towardx5`. These
particles are most likely to be advected along the raysx.0, y561, and then formulas in region
D and D8 show that the concentration of particles isO(Ac) along these rays. This is true untilx
becomes sufficiently large@x5O(Ac)#, at which point a particle has had sufficient time to diffu
in the y direction.

For uyu,1, x.0 the concentration is exponentially small, as is evident from the approx
tions in regions E and F~and also E8 and F8!. To penetrate into this shadow region, the partic
must deviate significantly from the basic flow. Asc→`, only an exponentially small fraction o
J. Math. Phys., Vol. 38, No. 1, January 1997
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the particles undergo this deviation. In regions E and F it is most likely that a particle will firs
to the upper edge of the strip, and then enter E or F. In contrast, for regions E8 and F8 the particles
are most likely to first reach the lower edge of the strip and then enter E8 or F8.
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On solutions of constrained KP equations
Ignace Loris and Ralph Willox
Dienst Theoretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussel, Belgium

~Received 1 August 1996; accepted for publication 15 August 1996!

We derive solutions of general Wronskian form for the~vector! constrained KP
hierarchies. As one explicit example we discuss rational solutions. In order to
introduce our method, we give a direct, elementary proof of the existence of
Wronskian solutions for thel -modified KP hierarchies~l :0,1,...!. © 1997 Ameri-
can Institute of Physics.@S0022-2488~97!02001-X#

I. INTRODUCTION

The Kadomtsev–Petviashvili~KP! hierarchy takes a central position in the study of integra
systems. Reductions of this hierarchy of nonlinear partial differential equations include the
equation~as a 2-reduction!, the AKNS hierarchy~as a 1-constraint!, and many others. One of th
principal themes in this area of research is the determination of exact solutions—such as
solutions, rational solutions,... —to such equations. From this viewpoint, the ‘‘bilinear meth1

turns out to be especially well suited for discovering large classes of solutions.
In this note we shall, in an explicit way, prove the existence of some particular determi

type solutions to the KP, thel -modified KP~l :0,1,2,...! and thek-constrained KP~k:1,2,...! hier-
archies of equations. The results are valid immediately for all the equations~at all orders! in these
hierarchies. Nonetheless, our calculations remain straightforward and, in the cases where s
were already known, represent a valuable alternative.

The KP hierarchy is introduced by considering the pseudodifferential ope
L5]x1u2]x

211u3]x
221••• @where the coefficients depend on the variabletI5(t15x,t2 ,t3 ,...)#

and its associated linear problem,2

Lc5lc, c tn
5Bnc, ~1!

whereBn is the differential part of the operatorLn ~B15]x ,B25]x
212u2 ,...!. The KP hierarchy is

then obtained as the set of equations given by the compatibility conditions,

Ltn5@Bn ,L# or
]Bm

]tn
2

]Bn

]tm
5@Bn ,Bm#. ~2!

In order to describe solutions of the KP hierarchy, we shall use the formulation in terms
tau-function.3 The KP hierarchy can be rewritten in the following concise manner:2

Resl@t~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50 ;tI,tI8 ~3!

@we setj(tI,l)5Sn51
` lntn and t(tI2eI (l))5t(x2l21,...,tn2l2n/n,...)# where the residue is

taken atl5`. More generally, one has the so-calledl -modified KP hierarchies in bilinear form

Resl@l l t̃~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50 ~4!

with l :0,1,2,... .@At l50 one should identifyt̃ with t to obtain Eq.~3!.# For every value ofl ,
relation~4! is equivalent2 to an infinite set of partial differential equations~expressible in terms o
Hirota’s D-operator! for the functionst and t̃,
0022-2488/97/38(1)/283/9/$10.00
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(
j50

`

pj~22yI !pj1 l11~D̃ !e( i51
` yiDit• t̃50 ;yI , ~5!

where the Schur polynomialspi(t) are defined byej(tI,l)5S i50
` pi(tI)l

i and the Hirota
D-operator1 is defined by

P~D ! f •g5@P~]y! f ~ tI1yI !g~ tI2yI !#yI 50I
~6!

for some polynomialP. Dti
is abbreviated byDi and D̃ stands for~D1 ,D2/2,D3/3,...!.

Particular examples of these equations include, atl50 @by expanding relation~5! and taking
the coefficient ofy3#,

~4D1D323D2
22D1

4!t•t50 ~7!

which is the ‘‘bilinear form’’ of theKP equation, (ut3 2 12uux 2 u3x)x 2 3u2t2 5 0, with
u5]x

2 log t; or at l51 a modified KP equation,

~D22D1
2!t̃•t50 ~8!

as the term independent ofyI in expression~5!. We use subscripts to denote partial derivativ
e.g., f nx stands for thenth x-derivative of f , etc.

A classic example of tau-functions giving rise to solutions for Eq.~3! are the Wronskians,4,5,6

t5W~w1 ,w2 ,...,wN!5uwI ,wI x ,...,wI ~N21!xu[det@w i ,~ j21!x#1< i , j<N ~9!

for anyN and for anywI 5(w1 ,...,wN)
T satisfyingwI tn 5 wI nx ;n. This result is implied by Ref. 4

for the KP Eq.~7! and by Refs. 5 and 6 for all the equations in this hierarchy. The existenc
such solutions can be traced back to Ref. 7, and is intimately linked to the iterative use of Da
transformations on the underlying KP linear problem.8 It will be shown however that a direc
verification of such solutions is possible on the bilinear Eq.~4! itself. Besides the advantage o
being elementary and of covering all values ofl :0,1,2... at once, this technique also has the vir
of being extendable to solutions for the constrained hierarchies.

Recently,9,10 considerable interest has been shown in the~vector! constrained KP hierarchy
~also known ask-constrained KP hierarchy!, which is defined by restricting the KP pseudodiffe
ential operatorL to those for which

Lk5Bk1(
i51

m

qi]x
21r i with qi ,tn5Bnqi and r i ,tn52Bn* r i ~10!

for m functions qi and r i with k some positive integer~A * indicates the formal adjoint
(]x)*52]x , etc.!. Examples of the reduced hierarchies include the AKNS hierarchy or
Yajima–Oikawa hierarchy. A bilinear formulation of thek-constrained KP hierarchy was obtaine
in Ref. 10 by introducingsi and ri ~qi5r i /t and r i5s i /t!; in this way, the constrained KP
hierarchy can equivalently be written as

Resl@l21t~ tI2eI ~l!!r i~ tI81eI ~l!!ej~ tI2 tI8,l!#5t~ tI8!r i~ tI! i :1...m, ~11!

Resl@l21s i~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#5t~ tI!s i~ tI8! i :1...m, ~12!
J. Math. Phys., Vol. 38, No. 1, January 1997
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(
i51

m

r i~ tI!s i~ tI8!5Resl@lkt~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#. ~13!

These relations correspond to an infinite set of PDE’s for the fieldss i ,r i ( i :1...m) and t. It
should be pointed out that using the formulation~11!–~13! of the constrained KP hierarchy, onl
some very special solutions were obtained in Ref. 10.

In the casem51, significant results~such as an alternative bilinear form indicating the effe
of the reduction procedure on the tau-functions! were obtained in Ref. 11, making it possible f
the authors to derive a broad class of solutions. In this note, we show how to extend
solutions to the casem>1. In particular, we include rational solutions, a subset of which co
sponds to the rational solutions of thek-reduced hierarchy.

The remaining two sections of this manuscript are organized as follows: Section II deals
the solutions to the bilinearl -modified KP equations. First, we give an elementary proof
Wronskian-type solutions to these equations. Notwithstanding the fact that these were a
described,4–6 we believe that it is worthwhile to include our alternative proof here for the reas
cited above. Crucial elements of this proof will be used again in Sec. III in order to find a su
subset of KP Wronskian solutions that satisfy the additional equations~11!, ~12!, ~13!. Contained
in this subset we shall find generalizations of the rational solutions of thek-reduced hierarchy.

II. SOLUTIONS TO THE KP HIERARCHIES

In this section we prove the existence of Wronskian solutions for equations~4! ~of which Eq.
~3! is a special case!. Since these bilinear equations~4! contain the functionst ~and t̃ ! evaluated
at tI2eI ~l! and attI1eI ~l!, we shall commence by deriving an expression forw~tI6eI ~l!! for the
elementsw occurring in Eq.~9!, in order to facilitate this evaluation.

Lemma 1:

pn~1,1/2,1/3,...!51 ;n ~14!

pn~21,21/2,21/3,...!5H 1 n50

21 n51

0 n.1

. ~15!

Proof:

(
n50

`

pn~1,1/2,1/3,...!l
n5exp~l1l2/21l3/31••• !5exp~2 log~12l!!5~12l!215 (

n50

`

ln.

~16!

Formula~14! now follows from comparing coefficients in the left and right hand side of exp
sion ~16!. The second equality is proven in a similar fashion. h

Lemma 2:If w tn
5 wnx ;n, then

w~ tI2eI ~l!!5w~ tI!2l21wx~ tI!, ~17!

w~ tI1eI ~l!!5 (
n50

`

l2nwnx~ tI!. ~18!

Proof:
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



286 I. Loris and R. Willox: On solutions of constrained KP equations

¬¬¬¬¬¬¬¬¬¬
w~ tI2eI ~l!!5expS 2 (
n51

`
l2n

n
] tnDw

5expS 2 (
n51

`
l2n

n
]x
nDw

5 (
n50

`

pn~21,21/2,21/3,...!l2n]x
nw5S 12

]x
l Dw5w~ tI!2l21wx~ tI!.

The second relation~18! is proven in a similar fashion. h

Lemma 3:If w tn
5 wnx ;n, then:

(
m50

`

wmx~ tI8!pm~ tI2tI8!5w~ tI!. ~19!

Proof:

(
n50

`

pn~ tI2tI8!]x
nw~ tI8!5expS (

n
~ tn2tn8!]x

nDw~ tI8!

5expS (
n

~ tn2tn8!] tnDw~ tI8!5w~ tI81~ tI2tI8!!5w~ tI!. ~20!

h

We are now ready to prove general Wronskian-type solutions to thel -modified KP hierar-
chies.

Theorem 1: The ~bilinear! l -modified KP hierarchy

Resl@l l t̃~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50 ~21!

has solutions:

H t5W~w1 ,...,wN!

t̃5W~w1 ,...,wN ,wN11 ,...,wN1 l !
, ~22!

where thewi ( i :1...N1 l ) are required to satisfy:w i ,tn
5 w i ,nx ;n.

Proof: Using relations~17! and ~18! in lemma 2, one easily finds

t̃~ tI2eI ~l!!5 (
j50

N1 l

~21! jl2 j uwI ,...,wI ~N1 l2 j21!x ,wI ~N1 l2 j11!x ,...,wI ~N1 l !xu, ~23!

t~ tI1eI ~l!!5 (
n50

`

l2nuwI ,wI x ,...,wI ~N22!x ,wI ~N211n!xu. ~24!

Using the expansion expj(tI2tI8,l)5(k50
` lkpk(tI2tI8), the residue~21! becomes
J. Math. Phys., Vol. 38, No. 1, January 1997
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(
j50

N1 l

~21! j (
n50

`

pn~ tI2tI8!

3uwI 8,wI x8 ,...,wI ~N22!x8 ,wI ~N1 l2 j1n!x8 uuwI ,...,wI ~N1 l2 j21!x ,wI ~N1 l2 j11!x ,...,wI ~N1 l !xu, ~25!

where we have written a prime for those functions we evaluate attI8. The summation overn can
be computed with the help of Lemma 3:

(
n50

`

pn~ tI2tI8!]x
nwI ~N1 l2 j !x8 5wI ~N1 l2 j !x~ tI!. ~26!

Thus, expression~25! becomes

(
j50

N1 l

~21! j uwI ,...,wI ~N1 l2 j21!x ,wI ~N1 l2 j11!x ,...,wI ~N1 l !xuuwI 8,wI x8 ,...,wI ~N22!x8 ,wI ~N1 l2 j !xu.

~27!

The summation overj can also be computed explicitly,

(
j50

N1 l

~21! jw i ,~N1 l2 j !xuwI ,...,wI ~N1 l2 j21!x ,wI ~N1 l2 j11!x ,...,wI ~N1 l !xu

5detF w1 w1,x ••• w1,~N1 l !x

w2 w2,x ••• w2,~N1 l !x

A A � A

wN1 l ••• ••• wN1 l ,~N1 l !x

w i w i ,x ••• w i ,~N1 l !x

G5W~w1 ,w2 ,...,wN1 l ,w i !50, i :1...N. ~28!

So we find that the residue~21! reduces to

uwI 8,wI x8 ,...,wI ~N22!x8 ,0Iu50 ~29!

for the Wronskian determinantst and t̃ in Eq. ~22!. h

III. SOLUTIONS TO THE CONSTRAINED KP HIERARCHIES

In this section we prove the existence of a general class of solutions to the constrain
equations. For this purpose we shall use a slightly different bilinear form than the one giv
Sec. I. In order to be able to make use of Theorem 1, we shall replace equations~11!, ~12! by the
equivalent equations~31! and ~32!.11 Thus, the following bilinear form of thek-constrained KP
hierarchy will be used:

Resl@t~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50, ~30!

Resl@lr i~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50 i :1...m, ~31!

Resl@lt~ tI2eI ~l!!s i~ tI81eI ~l!!ej~ tI2 tI8,l!#50 i :1...m, ~32!

(
i51

m

r i~ tI!s i~ tI8!5Resl@lkt~ tI2eI ~l!!t~ tI1eI ~l!!ej~ tI2 tI8,l!#. ~33!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The interested reader will have no difficulty establishing the existence of the solution~given in
Theorem 2! on the bilinear form given in the Introduction, the crucial relation~33! remaining the
same as the relation~13! of the introduction.

A. General solutions

Theorem 2: The equations~30!–~33!, i.e., thek-constrained KP hierarchy, have solutions

t5W~ f 1 , f 1,tk,...,f 1,N1tk, f 2 , f 2,tk,...,f 2,N2tk,...,f m,Nmtk!,

s i5W~ f 1 ,...,f 1,N1tk,...,f i , f i ,tk,...,f i ,~Ni21!tk
,...,f m ,...,f m,Nmtk!, ~34!

r i5W~ f 1 ,...,f 1,N1tk,...,f i , f i ,tk,...,f i ,~Ni11!tk
,...,f m ,...,f m,Nmtk! ~ i :1...m!,

where them functionsf i ( i :1...m) are required to satisfyf i ,tn 5 f i ,nx ;n.
Proof: Relations~30! and~31!, ~32! are satisfied as a result of theorem~1! for l50 andl51,

respectively.
For the proof of the remaining relation~33!, we shall denote the entries in the determinant

t ~in Eq. ~34!! by wI 5(w1 ,...,wN)
T; then, again using the expansion expj(tI2tI8,l)

5(k50
` lkpk(tI2tI8), we find that the residue

Resl@lkt~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!# ~35!

becomes

(
j50

N

~21! j (
n50

`

pn~ tI2tI8!uwI 8,wI x8 ,...,wI ~N22!x8 ,wI ~N2 j1n1k!x8 uuwI ,...,wI ~N2 j21!x ,wI ~N2 j11!x ,...,wI Nxu.

~36!

The summation overn can be computed with the help of Lemma 3:

(
n50

`

pn~ tI2tI8!]x
nwI ~N1k2 !x8 5wI ~N1k2 j !x~ tI!. ~37!

Hence, expression~36! becomes

(
j50

N

~21! j uwI ,...,wI ~N2 j21!x ,wI ~N2 j11!x ,...,wI NxuuwI 8,wI x8 ,...,wI ~N22!x8 ,wI ~N2 j1k!xu. ~38!

The summation overj in expression~38! can be computed as
J. Math. Phys., Vol. 38, No. 1, January 1997
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(
j50

N

~21! jw i ,~N2 j1k!xuwI ,...,wI ~N2 j21!x ,wI ~N2 j11!x ,...,wI Nxu

5detF w1 w1,x ••• w1,Nx

w2 w2,x ••• w2,Nx

A A � A

wN ••• ••• wN,Nx

w i ,kx w i ,~k11!x ••• w i ,~N1k!x

G
5W~w1 ,w2 ,...,wN ,w i ,tk

! i :1...N ~39!

5 H 0 if iÞN111,N11N212,...,N11•••1Nm1m
~21!shrh if i5N11N21•••1Nh1h h:1...m ~40!

since (w1 ,...,wN) 5 ( f 1 , f 1,tk,...,f 1,N1tk,...,f m ,...,f m,Nmtk). The factor (21)sh arises from the
change of sign which is necessary to bring the rows in determinant~39! in the same order as in th
expression forrh in Eq. ~34!. Hence we have shown that

Resl@lkt~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#5uwI 8,wI x8 ,...,wI ~N22!x8 ,wÎ u, ~41!

wherewÎ 5 (0,0,...,(2 1)s1r1,0,...,(2 1)smrm)
T ~m nonzero entries!. Expanding the determinan

in Eq. ~41! along the last columnwÎ shows that:

Resl@lkt~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#5(
i51

m

r i~ tI!s i~ tI8!. ~42!

This completes the proof of relation~33! and Theorem 2. h

B. Rational solutions

In this paragraph we give some examples of the solutions found in Sec. III A. Let us tak
instancem51 in Eq. ~34!. If we choose Schur polynomials as entries in the determina
f 15pN(tI) for some integerN, then we know thatf 1,tn 5 f 1,nx ;n ~the resultingq5r/t, r5s/t and
u5]x

2 log t are obviously rational functions!. Hence we can build a polynomial solution~34! for
r, t, ands,

s~ tI!5det@pN2 j2ki~ tI!#0< i , j<N121 ,

t~ tI!5det@pN2 j2ki~ tI!#0< i , j<N1
, ~43!

r~ tI!5det@pN2 j2ki~ tI!#0< i , j<N111 ,

where we have used the fact thatpi ,tm(tI) 5 pi2m(tI) ; i ,m ~when one takespi(tI)50 for i,0!.
From these rational solutions for thek-constrained KP hierarchy~at m51! one easily finds

rational solutions for thek-reduced equations by assuring thatq50. @Constraint~10! then becomes
Lk5Bk which is exactly what one imposes for thek-reduction.# This can be accomplished b
choosingN such thatN2ki,0 at i5(N111), thus ensuring that the last row in the determin
for r only contains zeroes and hence thatr50. For this particular choice of the parameters o
then finds thatt is independent oftk(t tk 5 0) and hence we obtain a rational solution for t
k-reduced KP hierarchy.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Finally, we would like to point out that a more general polynomial constrained KP
function ~for m51! can have the form,

t~ tI!5detF(
N

ANpN2 j2ki~ tI!G
0< i , j<N1

~44!

for some finite set of constants$AN%. Rational solutions in the casem>1 are just as easily
obtained from Eq.~34!.

IV. CONCLUSIONS

In this paper we gave an elementary proof of the Wronskian solutions to the bil
l -modified KP hierarchies. Although the existence of Wronskian solutions to the KP hierarch
long been established,5,6,8an alternative proof~covering the case of the modified KP hierarchies
well! is presented for reasons of completeness and simplicity. Moreover, an important part
proof was incorporated in the determination of solutions of the constrained KP hierarchy.

Section III dealt with~general! solutions to the constrained KP hierarchies. A straightforw
calculation yielded Wronskian solutions made up out of consecutivetk derivatives ofm functions
f i ~f i : arbitrary solutions off i ,tn 5 f i ,nx ;n!. As an example we gave some rational solutio
which were seen to be a generalization of the rational solutions to thek-reduced hierarchies~in
which the tau-functions are independent oftk!.

Considering expression~34! for a constrained KP tau-functiont, one sees that~in this par-
ticular case! the tk-derivative oft is a sum ofm KP tau-functions@i.e.,m functions that satisfy the
KP bilinear identity~3!#, which is precisely the geometrical interpretation of thek-constrained KP
hierarchy.12,13 Our results represent a generalization of results obtained using Dar
transformations14 and an explicitation of solutions described using dressing operator techniqu15

All our proofs acted directly on the bilinear expressions@like Eq. ~3! and Eq.~4!# and employed
only elementary techniques.

ACKNOWLEDGMENTS

The authors are affiliated to the Belgian National Fund for Scientific Research~N.F.W.O.!:
R.W. as a senior research assistant and I.L. as a research assistant. They also wish to ackn
the support of the Belgian Government through IUAP III.

1R. Hirota, ‘‘Direct Methods in Soliton Theory,’’ inSolitons, edited by R. K. Bullough and P. J. Caudrey~Springer,
Berlin, 1980!, pp. 157–176.

2E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, ‘‘Transformation Groups for Soliton Equations,’’ inProceedings of the
RIMS Symposium on Non-Linear Integrable Systems-Classical Theory and Quantum Theory, Kyoto, edited by M. Jimbo
and T. Miwa~World Scientific, Singapore, 1983!, pp. 39–119.

3M. Jimbo and T. Miwa, ‘‘Solitons and Infinite Dimensional Lie Algebras,’’ Publ. RIMS Kyoto Univ.19, 943–1001
~1983!.

4N. C. Freeman and J. J. C. Nimmo, ‘‘Soliton Solutions of the Korteweg de Vries and the Kadomtsev-Petvi
Equations: the Wronskian Technique,’’ Proc. R. Soc. London Ser. A389, 319–329~1983!.

5Y. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro, ‘‘An Elementary Introduction to Sato Theory,’’ Prog. Theor.
Suppl.94, 210–241~1988!.

6J. J. C. Nimmo, ‘‘Wronskian Determinants, the KP hierarchy and Supersymmetric Polynomials,’’ J. Phys. A22, 3213–
3221 ~1989!.

7D. V. Chudnovsky and G. V. Chudnovsky, ‘‘Multisoliton Formula for Completely Integrable Two-Dimensional
tems,’’ Lett. Nuovo Cimento25, 263–265~1979!.

8W. Oevel and W. Schief, ‘‘Darboux Theorems and the KP Hierarchy,’’ inApplications of Analytic and Geometric
Methods to Nonlinear Differential Equations, edited by P. A. Clarkson~Kluwer Academic, Dordrecht, 1993!, pp.
193–206.

9Y. Cheng, ‘‘Constraints on the Kadomtsev-Petviashvili Hierarchy,’’ J. Math. Phys.33, 3774–3782~1992!.
10Y.-J. Zhang and Y. Cheng, ‘‘Solutions for the Vectork-constrained KP Hierarchy,’’ J. Math. Phys.35, 5869–5884

~1994!.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ar

291I. Loris and R. Willox: On solutions of constrained KP equations

¬¬¬¬¬¬¬¬¬¬
11I. Loris and R. Willox, ‘‘Bilinear Form and Solutions of thek-constrained Kadomtsev-Petviashvili Hierarchy’’ to appe
in Inverse Prob.

12J. van de Leur, ‘‘A Geometrical Interpretation of the Constrained KP Hierarchy’’~preprint, 1996!.
13J. van de Leur, ‘‘The vectork-constrained KP Hierarchy and Sato’s Grassmannian’’~preprint, 1996!.
14H. Aratyn, E. Nissimov, and S. Pacheva, ‘‘Virasoro Symmetry of Constrained KP Hierarchies,’’ hep-th/9602068~pre-
print, 1996!.

15W. Oevel and W. Strampp, ‘‘Wronskian Solutions of the Constrained KP Hierarchy,’’ J. Math. Phys.37, 6213–6219
~1996!.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s
eing

d

ng the
uni-

tion

tant

.

es,

¬¬¬¬¬¬¬¬¬¬
Exotic coherent structures in the (2 11) dimensional
long dispersive wave equation

R. Radha and M. Lakshmanan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University,
Tiruchirapalli-620024, India

~Received 1 March 1996; accepted for publication 3 September 1996!

In this paper, we investigate the integrability aspects of the~211! dimensional
coupled long dispersive wave~2LDW! equation introduced recently by Chakra-
varty, Kent, and Newman and establish its Painleve´ ~P-! property. We then deduce
its bilinear form from theP analysis and use it to construct wave type solutions for
the field variables. We then identify line solitons for the composite field variable
‘‘ qr ’’ which eventually helps to bring out the peculiar localization behavior of the
system by generating localized structures~dromions! for the composite field from
out of only one ghost soliton driving the boundary. We have then extended this
analysis to multidromion solutions. ©1997 American Institute of Physics.
@S0022-2488~96!02612-6#

I. INTRODUCTION

In recent years, there has been a growing interest in~211! dimensional soliton system
particularly after the advent of ‘‘dromions’’ which are exponentially localized structures b
driven by the boundaries unearthed by Boiti and co-workers1,2 and Fokas and Santini3 ~1990!.
These studies have geared up the pursuit of integrable models in~211! dimensions. The standar
and most widely used method is to generalize the well known~111! dimensional integrable
equations to two spatial dimensions by introducing a new independent variable preservi
basic feature of~111! dimensional integrable equations. Another method is to turn to the ‘‘
versal’’ integrable system, namely, the self-dual Yang–Mills~SDYM! field equation.4–6 Some
new integrable~211! dimensional equations have been generated from the SDYM equa7

either by using gauge transformation or through geometric consideration~symmetry reduction!.
Recently, Chakravarty, Kent, and Newman8 have introduced a new~211! dimensional long dis-
persive wave~2LDW! equation by symmetrically reducing the SDYM equation. The resul
equation has the form

lqt1qxx22aE ~qr !x dh50, ~1a!

lr t2r xx12r E ~qr !x dh50, ~1b!

where]h5]x2l]y andl are constant parameters. Equation~1! is the ~211! dimensional gener-
alization of the one dimensional long dispersive wave equation.9,10 It is interesting to note that Eq
~1! reduces to the single nonlocal equation introduced recently by Fokas11

ilqt1qxx22qE uqux
2 dh50, ~2!

when r5q* and t→ i t . Equation~2! arises in plasma physics under appropriate circumstanc12

and it admits exponentially localized solutions and satisfies the Painleve´ property.13
0022-2488/97/38(1)/292/8/$10.00
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In this paper, we take up the coupled evolution equation~1! as such, and address ourselves
the integrability aspects of the equation apart from unearthing localized solutions. The plan
paper is as follows. In Sec. II, we carry out the singularity structure analysis of Eq.~1! and confirm
its Painleve´ nature. In Sec. III, we obtain the Hirota bilinear form and generate line solitons fo
composite field ‘‘qr ’’ after constructing wave type solutions for the component field variableq
andr . We then generate localized solutions for the composite field and extend it to multidrom
in Sec. IV. Section V contains a short discussion of the results.

II. SINGULARITY STRUCTURE ANALYSIS

To investigate the singularity structure analysis14 of Eq. ~1!, we make the following transfor-
mation:

~qr !x5Vh , ~3!

whereV is some arbitrary potential so that Eq.~1! is converted into a system of three coupl
partial differential equations

lqt1qxx22qV50, ~4a!

lr t2r xx12rV50, ~4b!

~qr !x5Vh . ~4c!

Considering a local Laurent expansion in the neighborhood of a noncharacteristic sin
manifold f(x,h,t)50, ~fx ,fhÞ0!, we assume the leading orders of the solutions of Eq.~1! to
take the form

q5q0f
a, r5r 0f

b, V5V0f
g, ~5!

whereq0, r 0, andV0 are analytic functions of (x,h,t) anda, b, andg are integers to be evaluated
Substituting Eq.~5! in Eq. ~4! and balancing the most dominant terms, we get

a5b521, g522 ~6!

with

q0r 05fxfh , V05fx
2. ~7!

To find the resonances, we now substitute the Laurent series of the solutions

q5q0f
211•••1qjf

j211••• ,

r5r 0f
211•••1r jf

j211••• ,

V5V0f
221V1f

211•••1Vjf
j221••• , ~8!

into Eq. ~4! and equate the coefficients offj23 to zero to give

F j ~ j23!fx
2 0 22q0

0 2 j ~ j23!fx
2 2r 0

~ j22!fxr 0 ~ j22!fxq0 2~ j22!fh

GF qr
V
G50. ~9!
J. Math. Phys., Vol. 38, No. 1, January 1997
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From the condition for the existence of nontrivial solutions to Eq.~9!, we obtain the resonanc
values as

j521,0,2,3,4. ~10!

The resonance atj521 indicates the arbitrariness of the singular manifoldf(x,h,t)50,
while Eq. ~7! shows the arbitrary nature of eitherq0 or r 0 corresponding toj50. To prove the
existence of arbitrary functions at the other resonance valuesj52,3,4, we substitute the Lauren
series~8! into Eq. ~4!. Collecting the coefficients of~f22,f22,f22! and solving the resultan
equations, we get

q15
21

6fx
2fh

@3lfhq0f t2q0fhfxx14fxfhq0x22q0
2r 0x12q0fxfxh#, ~11a!

r 15
21

6fx
2fh

@23lr 0fhf t14fxfhr 0x12r 0fxfxh22r 0
2q0x2r 0fhfxx#, ~11b!

V152fxx . ~12!

Again, collecting the coefficients of~f21,f21,f21!, we have

2fx
2q212q0V25lq0t1q0xx22q1V1 , ~13a!

2fx
2r 212r 0V25r 0xx2lr 0t22r 1V1 , ~13b!

~q0r 11r 0q1!x5V1h . ~13c!

As Eq. ~13c! is identically satisfied, we are left with only two equations~13a! and~13b! for three
unknowns and hence one of them must be arbitrary~which corresponds toj52!. Now, collecting
the coefficients of~f0,f0,f0!, we get

lq1t1lq2f t1q1xx12q2xfx1q2fxx22q1V222q2V152q0V3 , ~14a!

lr 1t1lr 2f t2r 1xx22r 2xfx2r 2fxx12r 1V212r 2V1522r 0V3 , ~14b!

q3r 0fx1r 3q0fx2V3fh

52@r 0q2x1r 1q1x1r 1q2fx1r 2q0x1q0r 2x1q1r 1x1q1r 2fx1q2r 0x#1V2h .

~14c!

From the above equation, it is evident that eitherq3 or r 3 is arbitrary~corresponding toj53! asV3
obtained from Eqs.~14a! and ~14b! can be shown to be identical. Similarly, by gathering t
coefficients of~f1,f1,f1!, we can prove that one of the set of functions (q4 ,r 4 ,V4) is arbitrary
~j54!. Thus the general solution$q,r ,V% (x,h,t) of Eq. ~4! admits the required number o
arbitrary functions without the introduction of any movable critical manifold, thereby passing
Painlevétest. Thus Eq.~4! is expected to be integrable.

III. HIROTA’S BILINEAR FORM AND LINE SOLITONS

We now proceed to extract other integrable properties like Ba¨cklund transformation, bilinear
form, line solitons, and dromions~if admissible!. To start with, we now construct the auto
Bäcklund transformation by truncating the Laurent series~8! at the constant level term, that is
qj5r j50 for j>2 andVj50 for j>3, to give
J. Math. Phys., Vol. 38, No. 1, January 1997
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q5q0f
211q1 , r5r 0f

211r 1 ,
~15!

V5V0f
221V1f

211V2 ,

where the pair of functions (q,q1), (r ,r 1), and (V,V2) satisfy Eq.~4! while q0, r 0, andV0 are
given by Eq.~7! andV1 by Eq. ~12c!. Substituting the vacuum solutionq15r 15V250 in Eq.
~15!, we have the dependent variable transformation as

q5
q0
f

5g/f, ~16a!

r5
r 0
f

5h/f, ~16b!

V5
fx
2

f22
fxx

f
52

]2

]x2
log f, ~16c!

where we have made use of the values ofV0 and V1 to construct the above transformatio
Substituting the above transformations in Eq.~4!, the Hirota’s bilinear form becomes

~lDt1Dx
2!g•f50, ~17a!

~lDt2Dx
2!h•f50, ~17b!

DxDhf•f522gh. ~17c!

We now expand the functionsg, h, andf in the form of a power series as

g5eg~1!1e3g~3!1••• , h5eh~1!1e3h~3!1••• , f511e2f~2!1e4f~4!1••• . ~18!

Substituting Eq.~18! into Eq.~17! and comparing various powers ofe, we obtain the following set
of equations:

e:lgt
~1!1gxx

~1!50, ~19a!

lht
~1!2hxx

~1!50, ~19b!

e2:fxh
~2!52g~1!h~1!, ~20!

e3:lgt
~3!1gxx

~3!52~lDt1Dx
2!g~1!

•f~2!, ~21a!

lht
~3!2hxx

~3!52~lDt2Dx
2!h~1!

•f~2!, ~21b!

e4:2fxh
~4!1DxDhf~2!

•f~2!522~g~1!h~3!1h~1!g~3!!, ~22!

and so on. To generate line soliton solutions, one has to first solve Eq.~19! explicitly. Solving Eqs.
~19a! and ~19b!, we have

g~1!5(
i51

N

exp~x i !, x i52pix1sih2
pi
2

l
t1ci ,
J. Math. Phys., Vol. 38, No. 1, January 1997
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h~1!5(
i51

N

exp~x i8!,x i852pi8x1si8h1
pi8

2

l
t1ci8 , ~23!

wherepi , pi8 , si , si8 , ci , andci8 are real constants.
To generate one soliton solution, we putN51 to give

g~1!5exp~x1!, h~1!5exp~x18!. ~24!

Substituting Eq.~24! into Eq. ~20!, we get

fxh
~2!52exp~x11x18!. ~25!

Integrating this equation, we obtain the particular solution

f~2!5exp~x11x1812c!, exp~2c!51/~p11p18!~s11s18!. ~26!

Substituting Eqs.~24! and~26! into Eqs.~21! and~22!, one can indeed chooseg~3!, h~3!, andf~4!

to be zero so that the series~18! truncates. Thus we have the wave type solutions

q5

expS 2p1x1s1h2
p1
2

l
t1c1D

11expS 2@p11p18#x1@s11s18#h1
1

l
@p18

22p1
2#t1c12c D ~27a!

and

r5

expS 2p18x1s18h1
p18

2

l
t1c18D

11expS 2@p11p18#x1@s11s18#h1
1

l
@p18

22p1
2#t1c12c D , ~27b!

wherec 5 c1 1 c18 . The potentialV is now described by a line soliton

V52~p11p18!2/4 sech2 1
2~x11x1812c!. ~28!

Further, from Eq.~27!, we find the interesting fact that the composite field ‘‘qr ’’ is described by
the line soliton

Q5qr5
~p11p18!~s11s18!

4
sech2 1

2~x11x1812c!. ~29!

It is evident from Eqs.~28! and ~29! that as the combined parameter (p1 1 p18)→0, both the
potentialV and the composite field ‘‘qr ’’ vanish @by choosing the constantsc1 andc18 in Eq. ~23!
appropriately#. But, when only (s11s1)→0, the composite field ‘‘qr ’’ which denotes the physica
quantity *2`

x Vh dx8 alone vanishes whereas the potential survives and is driven by the
soliton15 as

V52
~p11p18!2

4
sech2 1

2~2@p11p18#x1 1
l@p18

22p1
2#t1c1!. ~30!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ntity
her

the

ng

struct

297R. Radha and M. Lakshmanan: Exotic coherent structures in the 2LDW equation

¬¬¬¬¬¬¬¬¬¬
This indicates the possibility of extracting localized structures for the physical qua
‘‘ qr ’’ 5*2`

x Vh dx8. Thus the~211! dimensional long dispersive wave equation exhibits rat
peculiar behavior in the sense that it is not the physical fieldsq or r , but the quantity
‘‘ qr ’’ 5*2`

x Vh dx8 which is exponentially localized. This is reminiscent of the behavior of
~211! dimensional breaking soliton equation.16 It should also be noted that the physical fieldsq
and r are only being driven by wave type solutions@Eq. ~27!# and only the physical quantity
‘‘ qr ’’ 5*2`

x Vh dx8 assumes the line soliton form@Eq. ~29!#.

IV. DROMIONS

To generate a~1,1! dromion, we now take the ansatz

f511exp~x1!1exp~x2!1K exp~x11x2!, ~31!

whereK is some positive constant andx1 andx2 now take the special form

x15p1x2
p1
2

l
t, x25s1h. ~32!

Substituting Eq.~31! with Eq. ~32! into Eq. ~17c!, one obtains

~12K !p1s1 exp~x11x2!5gh. ~33!

This equation suggests that the functionsg andh take the form@see Eqs.~17!#,

g5c1 exp~x1!, h5c2 exp~x2!, c1c25~12K !p1s1 . ~34!

Substituting Eqs.~34! and ~31! in Eqs.~16a! and ~16b!, we get

q5g/f5
c1 exp~x1!

~11exp~x1!1exp~x2!1K exp~x11x2!!
K.0, ~35a!

r5h/f5
c2 exp~x2!

~11exp~x1!1exp~x2!1K exp~x11x2!!
K.0. ~35b!

It can be seen that both the field variablesq and r are again bounded, but nondecaying alo
certain lines~line solitons!. But, the physical quantity ‘‘qr ’’ 5*2`

x Vh dx8 is described by a~1,1!
dromion as

qr5E
2`

x

Vh dx85
~12K !p1s1 exp~x11x2!

~11exp~x1!1exp~x2!1K exp~x11x2!!2
K.0, ~36!

which is exponentially localized. This can be easily generalized to multidromions. To con
~1,2! dromions, we now take

f511exp~x1!1exp~x2!1exp~x3!1K@exp~x11x2!1exp~x11x3!#,
~37!

x15p1x2
p1
2

l
t, x25s1h, x35s2h.

Substituting this equation in Eq.~17c!, we obtain

~K21!@p1s1 exp~x11x2!1p1s2 exp~x11x3!#52gh. ~38!
J. Math. Phys., Vol. 38, No. 1, January 1997
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This equation again suggests that

g5c1 exp~x1!, h5c2 exp~x2!1c3 exp~x3! ~39!

so that the parameters obey the conditions

c1c25~12K !p1s1 , c1c35~12K !p1s2 . ~40!

Using Eqs.~37! and ~39!, we get the~1,2! dromion solution as

~qr !125E
2`

x

Vh dx8

5
~12K !exp~x1!@p1s1 exp~x2!1p1s2 exp~x3!#

~11exp~x1!1exp~x2!1exp~x3!1K@exp~x11x2!1exp~x11x3!# !2
. ~41!

This expression describes an exponentially localized solution with one bound state in thex direc-
tion and two bound states in theh direction. The above analysis can be further generalized
~1,N! dromions. It has the form

~qr !1N5E
2`

x

Vh dx85
~12K !p1 exp~x1!( i51

N si exp~x i11!

@11( j51
N11 exp~x j !1K exp~x1!( i51

N exp~x i11!#
2 , ~42!

which represents one bound state in thex direction andN bound states in theh direction. It can
be recalled that the~211! dimensional breaking soliton equation exhibits the same type
behavior16 possessing~1,N! dromions.

A natural question will arise whether one can construct~N,1! dromion~N.1! and then (N,M )
dromions by extending the above procedure. Unfortunately, such an extension leads to in
tencies and hence the problem of constructing (N,M ) dromions remains open.

V. CONCLUSION

In this paper, we have investigated the integrability aspects of the~211! dimensional long
dispersive wave equation introduced by Chakravarty, Kent, and Newman and establish
Painlevéproperty. We have then derived its bilinear form from theP analysis and deduced lin
soliton solutions for the composite field ‘‘qr.’’ We have also brought out the peculiar localizatio
behavior of the 2LDW equation by generating dromions for the physical qua
‘‘ qr ’ ’ 5*2`

x Vh dx8 ~composite field! and generalized it to~1,N! dromions. This shows that on
can identify physically interesting localized entities in~211! dimensional soliton equations~like
the composite field in the 2LDW equation! even though the field variables themselves are
localized.
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A path integral for turbulence in incompressible fluids
W. D. Thacker
Parks College, Saint Louis University, Cahokia, Illinois 62206

~Received 5 December 1995; accepted for publication 18 September 1996!

In this paper a classical path integral is formulated for incompressible fluids that
evolve according to the Navier–Stokes equation. The path integral propagates
probability distributions deterministically on the spacegvol of solenoidal velocity
fields. We construct a set ofISp~2! charges associated with the geometry ofgvol
and its Poisson structure, and a pair of supersymmetry charges connected with the
Hamiltonian. These charges generate exact symmetries of the classical path integral
when the viscosity is set equal to zero. When the effect of dissipation is included,
the charges associated with the Poisson structure and the Hamiltonian are no longer
conserved. Charges that generate Kolmogorov scaling and Galilean transformations
are also constructed. The classical path integral is formulated in terms of vorticity
as well. © 1997 American Institute of Physics.@S0022-2488~97!01901-4#

I. INTRODUCTION

Turbulence1,2 in fluids is a rich and fascinating phenomenon that continues to elude a fu
mental understanding.3 On the one hand, we know the underlying equations,4

]va~x,t !
]t

52
1

r

]P

]xa
2vb

]

]xb
va1n ¹2va ~1.1!

and

“–v~x,t !50, ~1.2!

for an incompressible fluid. On the other hand, we are unable to account for the great com
of turbulent flows. In a turbulent fluid the velocity and pressure are subject to wild and e
fluctuations, which do not seem to be in direct response to the forces driving the flow.

One line of research, the dynamical systems approach,5 attempts to describe turbulence
deterministic chaos. When the Reynolds number becomes high enough the nonlinearity o~1.1!
causes solutions to become unstable against small perturbations. At the same time, dissipa
to limit the effective number of degrees of freedom for large times. The result is a str
attractor,6 where the motion is confined to a finite region in phase space while within that re
trajectories differing infinitesimally in initial conditions diverge from one another exponenti
Various scenarios have been proposed for the transition from laminar to turbulent flow a
Reynolds number increases.6–9 These models are usually based on simplified systems of evolu
equations. Turbulence is expected to be a generic feature of such systems. However, we
like to have a more precise picture of how turbulence in real fluids arises from the Navier–S
equation~1.1!. Thus far such a theory is lacking.

Another line of research is the statistical theory of turbulence.1,2,10 This approach treats th
velocity field ~after pressure has been eliminated! as a random variable and aims to calcula
correlation functions. An infinite hierarchy of equations relates these correlation functions.
ous assumptions concerning the probability distribution are introduced in an effort to clos
hierarchy. Recently11 the machinery of conformal field theory has been brought to bear on
problem for the case of turbulence in two dimensions. An essential ingredient in the stat
approach is the introduction of a random stirring force,10 which simulates the production of
0022-2488/97/38(1)/300/21/$10.00
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stationary probability distribution with desired properties such as homogeneity and isotropy.12 The
turbulent probability distributions are believed to have universal properties independent
stirring forces. We would like to understand how the turbulent probability distributions arise
the dynamics of the Navier–Stokes equation under the action of driving forces that ar
necessarily random.

This paper is the beginning of an attempt to build a bridge between the dynamical system
statistical approaches to turbulence. The basis of our approach is a path integral for determ
systems. Path integrals13 have proved to be remarkably fruitful in applications to quantum m
chanics, quantum field theory, and statistical mechanics. Recently a path integral for cla
mechanics has been developed.14 This path integral is constructed directly from the determinis
equations of motion. At the same time, it propagates distributions of points in phase spa
therefore lends itself to a statistical description of dynamical systems. The classical path in
contains, in addition to the bosonic variables, fermionic ones that give information about d
tions among classical trajectories. Correlations among the fermionic variables are related
Lyapunov exponents.15 The classical path integral has symmetries that uncover the sympl
geometry of phase space14 and ergodic properties of Hamiltonian systems.16

In this paper a classical path integral is developed for fluids that obey Eqs.~1.1! and ~1.2!.
Other functional integrals for turbulence have appeared in the literature.17,18 The classical path
integral presented in this paper is unique, first, because it is deterministic. No noise te
introduced in the form of a random stirring force. Second, the classical path integral incorp
fermionic variables that give additional information about the dynamics.

This paper is organized as follows. In Sec. II we review the construction of the classica
integral for finite-dimensional dynamical systems and the symmetries that it has when the s
is Hamiltonian. We also extend previous work by giving the path integral expression fo
propagator of the Hopf characteristic functional, which, in principle, contains all of the equal
correlation functions. In Sec. III we construct the classical path integral for fluids, using
velocity field as the fundamental variable and explore the symmetries connected with the sp
velocities and its Hamiltonian structure. In Sec. IV we investigate the space–time symmetr
the classical path integral, including Kolmogorov scaling and the transformations of the Ga
group. In Sec. V we construct the classical path integral in the vorticity representation. Sect
contains some concluding remarks and indicates directions for future research.

II. THE CLASSICAL PATH INTEGRAL FOR FINITE-DIMENSIONAL SYSTEMS

In previous work14 a path integral was developed specifically for classical Hamiltonian
tems. The same construction, however, can be applied to any deterministic system,

ḟa~ t !5Va
„f~ t !…, ~2.1!

wherefa (a51,...,N) are the dynamical variables andVa~f! are the components of the vecto
field, which determines the flow on phase space.

A dynamical system may exhibit chaotic behavior, which makes it impractical to track
vidual trajectories. Instead, we are interested in ensembles of systems described by the
distribution %~f!. The classical path integral gives an expression for the kernelK(f,tuf0 ,t0),
which propagates the distribution according to

%~f,t !5E K~f,tuf0 ,t0!%~f0 ,t0!d
Nf0 . ~2.2!

For a deterministic system the kernel is just given by a delta function,

K~f,tuf0 ,t0!5dN„f2fcl~ t;t0 ,f0!…, ~2.3!
J. Math. Phys., Vol. 38, No. 1, January 1997
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wherefcl~t;t0,f0! is the unique solution of Eq.~2.1! satisfying the initial conditionf~t0!5f0.
Slicing the interval [t0 ,t] into M11 equal pieces, we get

dN„f2fcl(t;t0 ,f0)…5E dN~f2fM !)
j51

M

dN„f j2fcl~ t j ;t j21 ,f j21!…d
Nf j . ~2.4!

In the continuum limit this goes over into

K~f,tuf0 ,t0!5E
f0

f

D8fd̃@f2fcl#, ~2.5!

where the prime in the measure indicates that the initial and final points are held fixed
functional integration. The functional delta function forces the system to lie on the clas
trajectory. Using a functional generalization of the formula

dN~f2f root!5dN„F~f!…UdetF ]Fa

]fbGU, ~2.6!

whereF~f!5„F1(f),...,FN~f!… and F~f!50 is assumed to have a unique solutionfroot, we
obtain

d̃@f2fcl#5 d̃@ḟ2V~f!#UdetF] tdba2 ]Va

]fbGU. ~2.7!

We can now Fourier transform the delta function on the right-hand side of~2.7!, using an auxiliary
field La , and exponentiate the determinant via the anticommuting variablesCa,C̄b to arrive at the
classical path integral for the kernel,

K~f,tuf0 ,t0!5E
f0

f

D8f DL DC DC̄dN„C~ t0!…exp@ iS̃#, ~2.8!

whereS̃5 * t0
t dt L̃ is the classical path integral~CPI! action with the Lagrangian

L̃5La@ḟa2Va~f!#1 iC̄aF] tdba2 ]Va

]fbGCb. ~2.9!

SinceL̃ contains only first derivatives in time, we can immediately read off the associated
Hamiltonian,

H̃5LaV
a1 iC̄a

]Va

]fb C
b. ~2.10!

Notice thatH̃ has been constructed directly from the equations of motion. It exists eve
systems that are not Hamiltonian.

The arena for the classical path integral is a superspace spanned by the bosonic va
~f,L! and the fermionic variables (C,C̄). In ~2.8! the Grassmann variablesCa are saturated at the
initial point through the insertion of the delta functiondN„C(t0)….

19 The integration overC andC̄
then yields the determinant in~2.7!. Actually, it turns out14 that this determinant is equal to unit
for Hamiltonian systems. Therefore, if we are only interested in the propagation of scalar d
distributions%~f! in Hamiltonian systems, we can omit the Grassmann variables. Howeve
shall find that the Grassmann variables yield important physical information about dyna
systems.
J. Math. Phys., Vol. 38, No. 1, January 1997
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If we fix C at the initial and final endpoints of the classical path integral we obtain the ke

K~f,C,tuf0 ,C0 ,t0!5E
f0 ,C0

f,C

D8f DL D8C DC̄ exp@ iS̃#, ~2.11!

which propagates functions%̃(f,C) on the superspace spanned byf andC according to

%̃~f,C,t !5E dNf0 d
NC0 K~f,C,tuf0 ,C0 ,t0!%̃~f0 ,C0 ,t0!. ~2.12!

Using standard techniques13 we can derive from the classical path integral the followi
equal-time graded commutators:20

^@fa,Lb#&5^faLb2Lbf
a&5 idb

a ,
~2.13!

^@C̄a ,C
b#&5^C̄aC

b1CbC̄a&5db
a ,

while all other graded commutators vanish. In particular, thefa’s commute among themselves fo
all values of the indicesa andb, showing that we are doing classical mechanics and not quan
mechanics. The operator algebra~2.13! can be realized by differential operators,

La52 i
]

]fa , C̄a5
]

]Ca , ~2.14!

and multiplicative operatorsfa and Ca acting on functions%̃(f,C,t). An arbitrary function
%̃(f,C,t) can be expanded in products ofC’s,

%̃~f,C,t !5 (
p50

N
1

p!
%a1•••ap

~p! Ca1•••Cap. ~2.15!

These are the physical states of the theory. They can be used to calculate expectation va
observablesO(f,L,C,C̄) as follows:

^O~f,L,C,C̄!&5E dNf dNC O~f,L,C,C̄!%̃~f,C,t !. ~2.16!

The physical states propagating according to~2.12! obey the Schroedinger-like equation,

] t%̃~f,C,t !52 iH̃%̃~f,C,t !, ~2.17!

where

H̃52 iVa
]

]fa2 iCb
]Va

]fb

]

]Ca ~2.18!

is the CPI Hamiltonian operator obtained by substituting~2.14! into ~2.10! and ordering the
differential operators to the right. Each term in the sum~2.15! then behaves like ap-form that is
Lie transported along the vector fieldV,

] t%̃
~p!~f,C,t !52 iH̃%̃ ~p!~f,C,t !52 l V%̃ ~p!~f,C,t !

52
1

p!
~Va]a%a1•••ap

~p! 1p~]a1V
a!%aa2•••ap

~p! !Ca1•••Cap. ~2.19!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



c-
ll call
oing

rms
oring

nts,
lues of

304 W. D. Thacker: Turbulence in incompressible fluids
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In previous publications14–16,21we have referred toC andC̄ as ghosts and antighosts, respe
tively. However, in order to avoid the impression that they are somehow unphysical, we sha
them forms and antiforms. We can gain further insight into the physical role of the forms by g
over to a Heisenberg picture in which the states are fixed and the variables„f(t),L(t),C(t),C̄(t)…
evolve according to the Euler–Lagrange equations,

ḟa5Va, ~2.20!

L̇a52
]Vb

]fa Lb2 iC̄e

]2Ve

]fa ]f f C
f , ~2.21!

Ċa5
]Va

]fb C
b, ~2.22!

CG a52C̄b

]Vb

]fa . ~2.23!

@These can also be derived as Heisenberg equations of motion using~2.13! and ~2.10!.# We see
that in the Heisenberg picture the forms behave as Jacobi fields. Equation~2.22! is just Jacobi’s
equation for the first-order deviationdfa(t) from the classical trajectoryf(t).

Gozzi and Reuter15 have shown that certain expectation values involving forms and antifo
are related to the Lyapunov exponents, which give information about how quickly neighb
trajectories diverge from one another. Consider the operator

O b
a~T,f0!5Ca~T!C̄b~0!d N

„f~0!2f0…, ~2.24!

with the vacuum expectation value,

^O b
a~T,f0!&5E Df DL DC DC̄ O b

a~T,f0!d
N
„C~2`!…expF i E

2`

`

dt L̃G . ~2.25!

The trace of this expectation value is related to the one-dimensional Lyapunov exponentl~1!~f0!
by

l~1!~f0!5 lim
T→`

1

T
ln„^O a

a~T,f0!&…, ~2.26!

wheref0 is usually taken to lie on a periodic orbit. Higher-dimensional Lyapunov expone
which measure the rate of growth of volumes in phase space, are related to expectation va
operators of the form

O f~T;f0!5Ca1~T!•••Caf~T!C̄af
~0!•••C̄a1

~0!d N
„f~0!2f0…. ~2.27!

An important object in the theory of turbulence is the Hopf characteristic functional.2 The
finite-dimensional analog is the characteristic function of the distribution%~f!,

F~u,t !5^exp@ iuaf
a~ t !#&5E dNf0 %~f0!exp@ iuafcl

a ~ t;t0 ,f0!#, ~2.28!
J. Math. Phys., Vol. 38, No. 1, January 1997
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whereu5~u1,...,uN! is a variable dual tof. Equal-time correlation functions can be derived fro
the characteristic function by functional differentiation,

^fa1~ t !•••far~ t !&5~2 i !r
] r

]ua1•••]uar
F@u,t#. ~2.29!

The characteristic function evolves according to the Hopf equation,22

]F@u,t#

]t
5 iuaV

aS 2 i
]

]u DF@u,t#. ~2.30!

Solutions of the Hopf equation are propagated by the turbulence kernel17 K(u,u0 ;t,t0), according
to

F~u,t !5E dNu0 K~u,u0 ;t,t0!F~u0 ,t0!. ~2.31!

Let us develop an expression for the turbulence kernel in terms of the classical path inte17

We start by returning to the definition of the characteristic function

F~u,t !5E dNf0 %~f0!exp@ iuafcl
a ~ t;t0 ,f0!#

5E dNf0 d
Nf d N

„f2fcl~ t;t0 ,f0!…%~f0!exp@ iuaf
a#

5E dNf0 d
Nf K~f,tuf0 ,t0!%~f0!exp@ iuaf

a#. ~2.32!

Inserting~2.8! into ~2.32! we obtain

F~u,t !5E Df DL DC DC̄ exp@ iuaf
a#exp@ iS̃#%~f0!. ~2.33!

But %~f0! is just the inverse Fourier transform,

%~f0!5E dNu0
~2p!N

F@u0 ,t0#exp@2 iu0af0
a#. ~2.34!

Substitution of~2.34! into ~2.33! and comparison with~2.31! then yields the classical path integr
expression for the turbulence kernel,

K~u,u0 ;t,t0!5E Df DL DC DC̄ exp@ i ~uaf
a2u0af0

a!#exp@ iS̃#. ~2.35!

When the Grassmann part ofS̃ is omitted,~2.35! corresponds to the functional integral of Rosen17

for the turbulence kernel. In fact, integratingf~t0! andf(t) out of ~2.35! we get delta functions
that allow us to identifyL with u at the limits, leading to

K@u,u0 ;t,t0#5E
L5u0

u

Df D8L expF i E
t0

t

dt8~faL̇a1Va~f!La!G . ~2.36!

Since we are treating the forms as dynamical variables that carry important information,
generalize the characteristic function to
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
F̃@u,x̄,t#5E dNf0 d
NC0 %̃~f0 ,C0!exp@ i „uafcl

a ~ t;t0 ,f0!1x̄aCcl
a ~ t;t0 ,f0 ,C0!…#

5E dNf0 d
NC0 d

Nf dNC exp@ i ~uaf
a1x̄aC

a!#K~f,C,tuf0 ,C0 ,t0!%̃~f0 ,C0!,

~2.37!

which we shall call the characteristic superfunction, since it contains both the bosonic variabua
and the fermionic variablesx̄a . The characteristic superfunction is propagated by the turbule
superkernel,

K̃@u,u0 ;x̄,x̄0 ;t,t0#5E Df DL DC DC̄ exp@ i ~uaf
a2u0af0

a1x̄aC
a2x̄0aC0

a!#exp@ iS̃#

5E
L5u0 ,C̄5x̄0

u,x̄
Df D8L DC D8C̄ expF i E

t0

t

dt8~faL̇a1 iCaCG a1H̃!G .
~2.38!

Equal-time correlation functions involvingf and C can be calculated from the characteris
superfunction~2.37! by using a generalization of~2.29!. In general, we are interested in multitim
correlation functions among all the variables~f,L,C,C̄!. These can be derived by function
differentiation from the generating functional,

Z@Jf ,JL ,JC ,JC̄#5E Df DL DC DC̄ expS i E dt~L̃1Jf•f1JL•L1JC•C1JC̄•C̄! D
3%̃„f~2`!,C~2`!…, ~2.39!

where here a dot indicates contraction over the phase space indexa.
Let us now specialize to Hamiltonian systems and consider the symmetries of the cla

path integral. LetN52n be the dimension of phase space. In a Hamiltonian system there
functionH~f! and a set of Poisson bracketsvab5$fa,fb% such that the vector fieldV in Eq. ~2.1!
is given by

Va5ha[vab
]H

]fb . ~2.40!

If there is a nondegenerate two-form with componentsvab wherevabvbc5dc
a, then the phase

space is a symplectic manifold.
In Ref. 14 we found that for Hamiltonian systemsS̃ is invariant under the transformation

generated by theISp~2! charges given in canonical coordinates by

Q5 iCaLa , Q̄5 iC̄av
abLb Qf5CaC̄a

~2.41!

K5 1
2 vabC

aCb, K̄5 1
2 vabC̄aC̄b .

TheseISp~2! generators can be interpreted in terms of the symplectic geometry of phase sp
we identify the formsCa with differential formsdfa on phase space and let the generators
through the graded commutator, we find that theQ is the exterior derivativeon phase-space
Motivated by analogy with the exterior derivative on the orbit space of gauge theory, we cQ
J. Math. Phys., Vol. 38, No. 1, January 1997
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the BRST charge.23 The anti-BRST chargeQ̄ is the symplectic dual to the exterior derivativ
lowering the form number by one.K is the symplectic 2-form whileK̄ is its dual, andQf is the
operator for form number.

The generators~2.41! are not the only charges that commute with the CPI HamiltonianH̃.
For every constant of the motionI ~f! we can construct the conserved charges,

NI5@Q,I #, N̄I5@Q̄,I #, Ĩ5 i @Q̄,@Q,I ##. ~2.42!

The third chargeĨ generates the Lie derivative along the Hamiltonian vector field correspon
to I ~f!. In particular, let us apply this construction to the HamiltonianH~f! itself. Consider the
following two combinations:24

QH5Q2bNH5CaS iLa2b
]H

]faD ,
~2.43!

Q̄H5Q̄1bN̄H5C̄av
abS Lb1b

]H

]fbD ,
whereb is an arbitrary complex parameter. It is easy to verify16 that

@QH ,QH#5@Q̄H ,Q̄H#50 ~2.44!

and

@QH ,Q̄H#52ibH̃ . ~2.45!

Equation~2.45! shows that the anticommutator ofQH and Q̄H is the CPI Hamiltonian, and thu
these operators are genuinesupersymmetrygenerators while theQ andQ̄ of Eq. ~2.41! are BRST
and anti-BRST operators, they are nilpotent, and anticommute with each other.

In Ref. 16 it was shown that this supersymmetry is connected with ergodic properti
Hamiltonian systems. Let us consider what states are annihilated by these supercharges
restrict our attention to observablesO with form number zero, we need only consider sta
%̃(f,C) with form number 2n to obtain a nonvanishing result from the Grassmann integratio
~2.16!. Then

QH%̃5CaS ]a2b
]H

]faD %̃~f,C!50, ~2.46!

automatically, and

Q̃H%̃~f,C!5
]

]Ca vabS ]a1b
]H

]fbD %̃~f,C!50, ~2.47!

is satisfied16 only if

%̃~f,C!5ke2bH~f!C1•••C2n, ~2.48!

wherek is a constant. This result tells us that the supersymmetric invariant state has to be a
state, whereb can be identified with the inverse temperature.25,26 This state is ergodic since i
depends only on the Hamiltonian. Now, when the sypersymmetry is unbroken, the only g
state%̃0 with H̃%̃050 is the supersymmetric invariant state~2.48!. Therefore, if the supersym
metry is unbroken, then the system is ergodic.~See Ref. 16 for more details on this argument!
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
The symmetry generators~2.41! and ~2.43! were derived for Hamiltonian systems. A fluid
however, is not a Hamiltonian system because of dissipation. It is therefore of interest to
tigate to what extent these symmetries are preserved by a general dynamical system~2.1!. The
chargesQ̄, K, andK̄ are constructed fromvab andvab, which exist only when the phase space
a symplectic manifold, or, at least a Poisson manifold, in which casevab exists. That leaves the
chargesQ andQf . The form-number chargeQf will always be conserved. It is easy to verify th

@Qf ,H̃#50, ~2.49!

for any H̃ given by ~2.10!. For the BRST charge we find

@Q,H̃#5 iCb
]

]fb

]Va

]fa . ~2.50!

The BRST charge is conserved if and only if the divergence of the flow V is constant on
space,

]Va

]fa 5const. ~2.51!

This will turn out to be the case for fluids. For Hamiltonian systemsVa5ha the stronger condition
]ha/]fa50 is satisfied, as a glance at~2.40! reveals. To construct the otherISp~2! charges we
would need to find antisymmetric tensor fieldsvab andvab that are Lie transported byV. For the
supersymmetry we would need to construct a pair of Grassmann-odd charges for whi
anticommutator yields~2.10!. In this paper we shall be less ambitious. Instead, we shall cons
ISp~2! charges and supercharges that generate exact symmetries for the classical path int
the incompressible fluid when the viscosity is set equal to zero and then check which on
preserved by the dissipation.

III. THE CLASSICAL PATH INTEGRAL FOR INCOMPRESSIBLE FLUIDS

Let us consider the fundamental fluid equations~1.1! and ~1.2!. We can use the incompress
ibility condition ~1.2! to eliminate the pressure term in~1.1!, thus obtaining1 an evolution equation
for the velocity field alone,

]va~x,t !
]t

52
]

]xb
Dac~“ !~vbvc!1n ¹2va, ~3.1!

where

Dab~“ !5dab2]aD21]b ~3.2!

is the operator which projects every vector field onto its solenoidal, or divergence-free parD21

being the inverse of the Laplacian given in position space by

D21f ~x!5E d3yS 2
1

4pux2yu D f ~y!.

The pressure can be obtained from the velocity according to

P~x,t !5D21S 2r
]va

]xb
]vb

]xaD . ~3.3!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



is

ds
ts
rvative

c

he
uids.

ble use
ch as

le

309W. D. Thacker: Turbulence in incompressible fluids
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Therefore, at any instant in timet the state of an incompressible fluid of constant density
specified by the velocity fieldv~x,t!.

The configuration space of an incompressible fluid is the groupDvol of volume-preserving
diffeomorphisms on the region occupied by the fluid.27 The space of divergence-free vector fiel
~velocity fields! is the Lie algebraG vol of Dvol . The classical path integral will propagate poin
in this space. The dynamics of an incompressible fluid can be separated into a conse
evolution given by the Euler equation

]va~x,t !
]t

52
]

]xb
Dac~“ !~vbvc! ~3.4!

plus dissipation coming from the termn ¹2va in the Navier–Stokes equation~3.1!. The Euler
equation can be formulated as a Hamiltonian system,28,29where the Hamiltonian is just the kineti
energy,30

H@v#5
1

2 E d3x v~x!–v~x!. ~3.5!

The canonical coordinates for this Hamiltonian formulation are the Clebsch variables31 l~x,t) and
m~x,t), which are related to the velocity of an incompressible fluid by

va~x,t !5Dab~“ !S l~x,t !
]

]xb
m~x,t ! D . ~3.6!

In terms of the Clebsch variables the Poisson bracket is given by the simple expression

$F@l,m#,G@l,m#%5E d3xF dF

dl~x!

dG

dm~x!
2

dF

dm~x!

dG

dl~x!G . ~3.7!

Substituting~3.6! into ~3.5! and using~3.7!, one can obtain Hamilton’s equations of motion forl
andm.

In spite of the simple form of the Poisson bracket~3.7!, there are several reasons why t
Clebsch variables are not convenient for the formulation of the classical path integral for fl
First, these variables become multivalued for topologically nontrivial flows,32 which have nonva-
nishing helicity,

I5E d3x~“3v!–v. ~3.8!

Second, the Clebsch variables do not have a simple physical interpretation. We want to be a
the classical path integral to calculate correlation functions among physical quantities su
velocity or vorticity. Third, when dissipation is brought back into the picture,~3.6! must be
substituted into the full Navier–Stokes equation~3.1!. Then it is no longer possible to disentang
the equations for]m/]t and]l/]t from each other.

For these reasons we have chosen to use the noncanonical variablesv. Using ~3.6! to express
~3.7! in terms of velocities, we obtain the Poisson bracket29

$F@v#,G@v#%5~“3v!–S dF

dv
2“D21

“–

dF

dv D3S dG

dv
2“D21

“–

dG

dv D , ~3.9!
J. Math. Phys., Vol. 38, No. 1, January 1997
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with an implicit integration overx. It is often convenient to Fourier transform to wave-vec
space, where the gradient acts through multiplication byk and the inverse Laplacian acts simp
on each Fourier component according to

D21f ~k!52
1

uku2
f ~k!.

In wave-vector space the Poisson bracket is given by

$F@v#,G@v#%5E d3k1 d
3k2~2p!23i ~k11k2!3v~k11k2!S dF

dv~k1!

2
k1

uk1u2
k1–

dF

dv~k1!
D3S dG

dv~k2!
2

k2
uk2u2

k2–
dG

dv~k2!
D . ~3.10!

From this we derive the tensor

vab~k1 ,k2![$va~k1!,v
b~k2!%5

i

~2p!3
@Dac~k1!k2

cDbe~k2!v
e~k11k2!

2Dac~k1!k1
eDbe~k2!v

c~k11k2!#, ~3.11!

for the Poisson structure, where1

Dab~k!5dab2
kakb

uku2
~3.12!

is the Fourier transform of the operatorDab~“! given by ~3.2!. Using the Hamiltonian in wave-
vector space,

H@v#5
1

2 E d3k~2p!3v~k!–v~2k!, ~3.13!

we can derive the Hamiltonian vector field

ha~k!5E d3k8 vab~k,k8!
dH

dvb~k8!
52 i E d3k8 kbDac~k!vb~k8!vc~k2k8!

5E d3k8 Mabc~k!vb~k8!vc~k2k8!, ~3.14!

where1

Mabc~k!52
i

2
@kcDab~k!1kbDac~k!# ~3.15!

is the Fourier transform of

Mabc~“ !52 1
2 @]cDab~“ !1]bDac~“ !#. ~3.16!

In analogy to the finite-dimensional case, let us introduce the auxiliary fieldsL, formsC and
antiformsC̄, which each have three space indices and can be expressed as functions of eithx or
k. We use the following conventions for the Fourier transformation betweenx space andk space:
J. Math. Phys., Vol. 38, No. 1, January 1997
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va~x!5E d3k va~k!eik–x, va~k!5E d3x

~2p!3
va~x!e2 ik–x,

Ca~x!5E d3k Ca~k!eik–x, Ca~k!5E d3x

~2p!3
Ca~x!e2 ik–x,

~3.17!

La~x!5E d3k

~2p!3
La~k!e2 ik–x, La~k!5E d3x La~x!eik–x,

C̄a~x!5E d3k

~2p!3
C̄a~k!e2 ik–x, C̄a~k!5E d3x C̄a~x!eik–x.

In analogy to~2.13!, these variables satisfy the graded commutators,

@La~x!,vb~x8!#52 ida
bd3~x2x8!, @La~k!,vb~k8!#52 ida

bd3~k2k8!,
~3.18!

@C̄a~x!,Cb~x8!#5da
bd3~x2x8!, @C̄a~k!,Cb~k8!#5da

bd3~k2k8!.

The CPI HamiltonianH̃0 for the conservative part of the evolution is given in analogy to~2.10!
by

H̃05E d3k La~k!ha~k!1 i E d3k d3k8 C̄a~k!
dha~k!

dvb~k8!
Cb~k8!

5E d3k d3k8@2 iLa~k!kbDac~k!vb~k8!vc~k2k8!

1C̄a~k!@kcDab~k!1kbDac~k!#vc~k2k8!Cb~k8!#

5E d3k d3k8 Mabc~k!@La~k!vb~k8!vc~k2k8!12iC̄a~k!vc~k2k8!Cb~k8!#. ~3.19!

In position spaceH̃0 is given by

H̃05E d3x@La~x!Mabc~“ !„vb~x!vc~x!…12iC̄a~x!Mabc~“ !„Cb~x!vc~x!…#. ~3.20!

The dissipative part of the evolution is generated by

H̃d5nE d3x„La~x!¹2va~x!1 iC̄a~x!¹2Ca~x!…, ~3.21!

in position space or

H̃d52nE d3k„La~k!uku2va~k!1 iC̄a~k!uku2Ca~k!…, ~3.22!

in wave-vector space. The total CPI Hamiltonian is then

H̃5H̃01H̃d . ~3.23!

It generates the evolution according to~3.1!. Including the appropriate kinetic terms we obtain t
CPI Lagrangian for incompressible fluids in the velocity representation,
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



gral

ation.
force

e CPI

our
ately,
uation.
lds

tional
e

n

s of

312 W. D. Thacker: Turbulence in incompressible fluids

¬¬¬¬¬¬¬¬¬¬
L̃5L–v̇1 i C̄–Ċ2H̃, ~3.24!

where here the dot indicates integration overx or k as well as contraction over the spatial indexa.
In addition, the velocity field must satisfy the subsidiary condition“–v50. We can account

for this condition according to the prescription of Sec. II by adding the terms

E d3x@h~x,t !“–v~x,t !1 i j̄~x,t !“–C~x,t !#,

to the CPI Lagrangian. Sinceh andj̄ do not propagate, we integrate them out of the path inte
leaving

d̃@“–v#d̃@“–C#,

in the measure.
We may wish to add an external force to the action to counteract the effects of dissip

Since we want the path integral to contain information about how small variations in driving
induce variations in flow,33 we would introduce the Grassmann variableCf~k,t! along with the
force f~k,t!, both of which are taken to be divergence-free, so that the terms to be added to th
Lagrangian are

L̃ f5L–f1C̄–Cf. ~3.25!

Now, in the full LagrangianL̃1L̃ f , L multiplies the forced Navier–Stokes equation whileC̄
multiplies the Jacobi equation for the first-order variation in velocity. We emphasize that in
approach the external force need not be random. This is a deterministic path integral. Ultim
we hope to understand turbulence as deterministic chaos arising from the Navier–Stokes eq

The physical states%̃@v,C,t# are now functionals on the superspace containing velocity fie
and their first-order variations, the forms. They are propagated by the kernel

K ~ f ,Cf !
@v,C,tuv0 ,C0 ,t0#5E

v0 ,C0

v,C
D8@v#D@L#D8@C#D@C̄#d̃@“–v#d̃@¹–C#

3expF i E
t0

t

dt8~L̃1L̃ f !G . ~3.26!

Similarly, we can construct the Hopf functional, turbulence kernel, and the generating func
as in Sec. II. Only the solenoidal parts of the fieldsL andC̄ contribute to the path integral, sinc
they are both contracted with divergence-free vectors in every term ofL̃1L̃ f . Every vector field,
for exampleL, can be decomposed into a solenoidal partLsol plus the gradient of a scalar functio
“L. Therefore each term in the CPI action involvingL has the form

E d3x~Lsol1“L !–w5E d3x~Lsol–w2L“–w!5E d3x Lsol–w,

wherew is a divergence-free vector field constructed fromv.34

Now, let us consider theISp~2! and supersymmetry charges, which are exact symmetrie
the CPI action whenH̃d is omitted. The BRST charge is

Q5 i E d3x La~x!Ca~x!5 i E d3k La~k!Ca~k!. ~3.27!
J. Math. Phys., Vol. 38, No. 1, January 1997
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It acts as an exterior derivative on the spaceG vol of solenoidal velocity fields. An explicit calcu
lation reveals thatQ is conserved, not only by the conservative, but also by the dissipative pa
the evolution,

@Q,H̃#50. ~3.28!

This comes about becauseH̃d is linear inv and therefore the dissipative part of the flow onG vol
satisfies~2.51!. The BRST charge generates an exact symmetry of the classical path integra
form number charge,

Qf5C–C̄ ~3.29!

also generates an exact symmetry. Physically, this just means that the form number of an
%̃@v,C# is conserved.

The otherISp~2! charges are constructed fromvab~k,k8!, given in ~3.11!, and its inverse
vab~k,k8! ~if it exists!. The dual to the symplectic form is given explicitly by

K̄5
1

2 E d3k d3k8 vab~k,k8!C̄a~k!C̄b~k8!5
i

2 E d3k d3k8

~2p!3
@Dac~k!k8cDbe~k8!ve~k1k8!

2Dac~k!keDbe~k8!vc~k1k8!#C̄a~k!C̄b~k8!52E d3xv–~C̄–“C̄!. ~3.30!

Some care must be taken in the construction of the anti-BRST charge since we are work
noncanonical coordinates. In Ref. 21 it was shown that whenv is not constant on phase space, w
must modify Eq.~2.41! for Q̄ by adding the term21

2(]vab/]fe)CeC̄aC̄b , in order to obtain a
conserved charge that can still be interpreted as the symplectic dual to the exterior deri
Applying the infinite-dimensional generalization of this construction,

Q̄5 i E d3k d3k8vab~k,k8!C̄a~k!Lb~k8!

2
1

2 E d3k d3k8 d3k9
dvab~k,k8!

dvc~k9!
Cc~k9!C̄a~k!C̄b~k8!, ~3.31!

we obtain

Q̄5E d3k d3k8~2p!23@Dac~k!keDbe~k8!2Dae~k!k8eDbc~k8!#

3Fvc~k1k8!C̄a~k!Lb~k8!1
i

2
Cc~k1k8!C̄a~k!C̄b~k8!G . ~3.32!

TakingL andC̄, as well asv andC, to be solenoidal vector fields, and Fourier transforming,
obtain the simpler expression

Q̄5E d3x„iv–~L,C̄!1C–~C̄–“C̄!…, ~3.33!

where

~L,C̄!5L–“C̄2C̄–“L

is the Lie bracket of vector fields.
J. Math. Phys., Vol. 38, No. 1, January 1997
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K̄ and Q̄ both commute withH̃0; they are exact symmetries of Euler’s equation. Howev
they are not conserved by the dissipative part of the evolution,

@K̄,H̃d#5 inE d3x~¹1
22¹2

22¹3
2!v–~C̄–“C̄!,

~3.34!

@Q̄,H̃d#5 inE d3x~¹1
22¹2

22¹3
2!„iv–~L,C̄!1C–~C̄–“C̄!…,

where¹1
2 acts on the first slot,¹2

2 acts on the second slot, and¹3
2 acts on the third slot for each

term to the right. The Poisson structure is not Lie transported by the dissipative part o
evolution.

The supersymmetry charges are constructed from the Hamiltonian~3.13!,

QH5Q2b@Q,H#5E d3x C~x!–„iL~x!2bv~x!…,

~3.35!

Q̄H5Q̄1b@Q̄,H#5E d3x„v–~ iL1bv,C̄!1C–~C̄–“C̄!….

They satisfy

@QH ,Q̄H#52ibH̃0 . ~3.36!

They each commute withH̃0 but they are not conserved by the dissipative part of the evolu

@QH ,H̃d#522ibnE d3x C~x!–¹2v~x!, ~3.37!

@Q̄H ,H̃d#5 inE d3x~¹1
22¹2

22¹3
2!„v–~ iL,C̄!1C•~C̄–“C̄!…1b~¹1

21¹2
22¹3

2!v–~v,C̄!.

~3.38!

The supersymmetry is broken as a result of dissipation. In Sec. II we saw that the supersym
state is the Gibbs state. The probability distribution for turbulence is not Gibbsian in the ve
field, and a central problem is to understand how non-Gibbsian distributions arise.11,35,36 An
interesting topic for future research is the relationship between the explicit breaking of supe
metry in the classical path integral and the appearance of non-Gibbsian stationary states.

IV. KOLMOGOROV SCALING AND GALILEAN INVARIANCE

The symmetries found in the previous section are connected with the spacegvol of velocity
fields and its Hamiltonian structure. The Euler equation also possesses space and time sym
From the CPI Lagrangian~3.24! we can derive for every symmetry the Noether charge,

Qa52H̃
]

]ea dt1E d3xF2S La

]va

]xb
1 iC̄a

]Ca

]xb D ]

]ea dxb1La

]

]ea dva1 iC̄a

]

]ea dCaG
~4.1!

~ea being the parameter of the transformation!. In this section we construct the symmetry charg
for Kolmogorov scaling and the generators of the Galilean group.

The Euler equation is symmetric under the rescaling of space and time,37

x→x85lx, t→t85l12ht, v→v85lhv. ~4.2!
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
Kolmogorov38 assumed that this symmetry holds statistically for the Navier–Stokes equatio
used it to derive spectral properties of turbulence. The requirement that the energy flux thro
given length scale is scale invariant then leads toh5 1

3 in Eq. ~4.2!. The Noether charge tha
generates the symmetry~4.2! in the classical path integral is

QK52~12h!tH̃1E d3xF2xbS La

]va

]xb
1 iC̄a

]Ca

]xb D1h~Lav
a1 iC̄aC

a!G . ~4.3!

This charge is conserved in the zero viscosity limit. In the presence of dissipation we have

d

dt
QK5~h11!H̃d . ~4.4!

The CPI action is exactly symmetric under spatial translations,

dxa5ea, dv5dC50, ~4.5!

and rotations

dxa5«abcxbec, dva5«abcvbec, dCa5«abcCbec. ~4.6!

The generators for~4.5! and ~4.6! are given, respectively, by

QTa52E d3xS Lb

]vb

]xa
1 iC̄b

]Cb

]xa D ~4.7!

and

QRj5E d3xF2S La

]va

]xb
1 iC̄a

]Ca

]xb D « jbcxc1~Lbv
c1 iC̄bC

c!« jbcG . ~4.8!

The velocity field transforms inhomogeneously under Galilean boosts

v~x,t !→v~x2ut,t !1u.

Since shifting all velocities by a constant amount should not affect deviations among velo
we assume that

C~x,t !→C~x2ut,t !.

Thus, taking

dx52t du, dv5du, dC50, ~4.9!

we find the generator for Galilean boosts

QBj5E d3xFL j~x!2tS La

]va

]xj
1 iC̄a

]Ca

]xj D G . ~4.10!

Eliminating surface terms and assuming thatv andC are solenoidal, we find thatQBj is conserved.

V. THE CLASSICAL PATH INTEGRAL IN THE VORTICITY REPRESENTATION

Migdal36 has argued that the fluctuations in the velocity field are too strong forv to be the
useful variable in studies of turbulence with infinite Reynolds number. Moreover, the lac
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
invariance of the velocity under Galilean boosts~4.9! results in infrared divergences in the two
point correlation function of velocities. The vorticityV~x,t!5“3v~x,t!, on the other hand, is
invariant under boosts,

V~x,t !→V~x2tu,t !,

and consequently the vorticity correlation functions have no infrared divergences. This i
reason why vorticity may be the more appropriate variable for the study of turbulence.

Vorticity has played an increasingly important role in the modeling of turbulence.39While the
velocity field is distributed throughout the flow, vorticity tends to concentrate in localized reg
which can be modeled40 as a collection of vortex filaments. As a generalization of work41 con-
cerning the statistical mechanics of vortices in two space dimensions, it has been suggeste42 that
three-dimensional turbulence can be understood as a near-equilibrium process in a vortex

In this section we shall formulate the classical path integral in terms of vorticity. At this s
we do not make any assumptions about the support of the vorticity field, as in Refs. 39–4
work directly from the equation of motion,

] tV5V–“v2v–“V1n DV. ~5.1!

The solenoidal velocity field can always be recovered from the vorticity by means of the re

v~k!5rot21V~k!5 i
k3V~k!

uku2
,

~5.2!

v~x!5rot21V~x!52
1

4p E d3y
~x2y!3V~y!

ux2yu3
.

In terms of the Clebsch variables, the vorticity is given by

V5“l3“m. ~5.3!

Expressing~3.7! in terms of vorticity we then obtain29

$F@V#,G@V#%5E d3x V~x!–F rot dF

dV
~x!3rot

dG

dV
~x!G

52E d3k d3k8~2p!23V~k1k8!–F S k3
dF

dV~k! D3S k83
dG

dV~k8! D G , ~5.4!

from which we read off

vab~k,k8!52
1

~2p!3
Vc~k1k8!«cde«d fa«egbkfk8g. ~5.5!

Expressing the Hamiltonian in terms of vorticity,

H@V#52
1

2 E d3k~2p!3
V~k!–V~2k!

uku2
, ~5.6!

we find as a result of

ha~k!5E d3k8 vab~k,k8!
dH@V#

dVb~k8!
, ~5.7!
J. Math. Phys., Vol. 38, No. 1, January 1997
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the Hamiltonian vector field on the space of vorticities,

h~k!5 i E d3k8 k3„rot21V~k8!3V~k2k8!…. ~5.8!

Again we introduce the fieldsL, C, andC̄ that are tied to the vorticity and obey the comm
tation relations~3.18!, vorticity taking the place of velocity. We construct the CPI Hamiltonian
the conservative part of the evolution according to~3.19!, obtaining

H̃05 i E d3k d3k8@L~k!–k3„rot21 V~k8!3V~k2k8!…

1 i C̄~k!–k3„rot21 C~k8!3V~k2k8!1rot21 V~k8!3C~k2k8!…# ~5.9!

or

H̃05E d3x@L~x!–“3„rot21 V~x!3V~x!…1 i C̄~x!–“3„rot21 C~x!3V~x!

1rot21 V~x!3C~x!…#. ~5.10!

The dissipative part of the CPI Hamiltonian is

H̃d5nE d3x„La~x!¹2Va~x!1 iC̄a~x!¹2Ca~x!…

52nE d3k„La~k!uku2Va~k!1 iC̄a~k!uku2Ca~k!…. ~5.11!

The CPI Lagrangian is

L̃5L–V̇1 i C̄–Ċ2H̃02Hd . ~5.12!

Since the vorticity is solenoidal, the delta functionals,

d̃@“–V#d̃@“–C#

need to be included again in the classical path integral measure. The classical path integr
Lagrangian~5.12! propagates physical states of the form%̃@V,C,t#.

The BRST and form number charges again generate exact symmetries. In the vorticity
sentation the dual to the symplectic form is given by

K̄52E d3k d3k8 V~k1k8!–„k3C̄~k!…3„k83C̄~k8!…5E d3x V~x!–„“3C̄~x!…3„“3C̄~x!….

~5.13!

The anti-BRST charge is given in the vorticity representation by

Q̄5E d3k d3k8~2p!23@2 iV~k1k8!–„k3C̄~k!…3„k83L~k8!…

1 1
2 C~k1k8!–„k3C̄~k!…3„k83C̄~k8!…# ~5.14!

or
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
Q̄5E d3xF iV~x!–„“3C̄~x!…3„“3L~x!…2
1

2
C~x!–„“3C̄~x!…3„“3C̄~x!…G . ~5.15!

The supersymmetry charges, constructed as in Sec. III, are given by

QH5E d3x Ca~x!„iLa~x!2b D21Va~x!… ~5.16!

and

Q̄H5E d3x@V~x!–„“3C̄~x!…3„i“3L~x!2b rot21 V~x!…

2 1
2 C~x!–„“3C̄~x!…3„“3C̄~x!…#. ~5.17!

K̄, Q̄, QH , andQ̄H generate exact symmetries of the classical path integral without viscosity
they are not conserved in the presence of dissipation. Their commutators withH̃d are analogous
to ~3.34!, ~3.37!, and~3.38!.

VI. CONCLUSIONS

We have constructed a classical path integral for incompressible fluids based on the de
istic equation of motion~3.1!. This formalism treats an incompressible fluid as a dynamical sys
on the spaceG vol of velocity fields. The path integral also lends itself to a statistical descriptio
turbulence by propagating ensembles of velocity fields onG vol . The probability distribution of
fully developed turbulence would then be stationary under this propagation.

A particularly important feature of the classical path integral is the presence of ferm
variables that encode information about deviations among trajectories onG vol . Expectation values
of operators analogous to~2.24! and ~2.27! can be used to study the stability of flows near t
onset of turbulence.

Another formulation of the classical path integral, perhaps more useful for the stud
turbulence, has been constructed, taking vorticity as the fundamental variable. This version
path integral can be used as the starting point for approximation schemes in which add
assumptions are introduced about the support of the vorticity field,39,40e.g., that it is concentrated
in filaments. It would be interesting to investigate whether the classical path integral propa
probability distributions on the space of vorticities toward equilibrium distributions of the k
suggested in Ref. 42.

The classical path integral possesses a set of symmetries associated with the geometryG vol
and its Hamiltonian structure. An additional set of symmetries is connected with scaling
Galilean transformations of space and time. These symmetries can be used to derive
Takahashi identities, which yield relations among the correlation functions.

There are other symmetries that pose difficulties for this framework. They are associate
the Lagrangian invariants such as helicity~3.8! and the circulation

GC @v#5 R
C

v–dl. ~6.1!

Let us concentrate on the circulation. In the integral~6.1! the loopC follows the flow of the fluid.
We can introduce the position variableX~t,u! for points on the loop to rewrite~6.1! as follows:

GC5E
0

2p

duE d3x
]X~ t,u!

]u
–v~x,t !d3„x2X~ t,u!…. ~6.2!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Taking into account the Eulerian evolution of the velocity field~3.4! and the fact that

]X~ t,u!

]t
5v„X~ t,u!,t…, ~6.3!

we find that the circulation is conserved. Now, we would like to construct conserved charg
the classical path integral from~6.1! according to the prescription~2.42!. Naively, we could
suppose that the functional derivative with respect to velocity acts only on the velocity in~6.1!.
Then we would find that

NG5 R C–dl.

But this is not conserved. In fact, we find that

d

dt R C–dl5 R CaVab dlb, ~6.4!

with Vab5]avb2]bva, the components of the vorticity two-form. The problem is to find
sensible expression for the variational derivative with respect to the velocity of loops that
with the velocity.

This brings in another question of great importance. How can we use the classica
integral to propagate global flow structures such as eddies, vortex sheets, and vortex ce36,39

Such structures move under the action of diffeomorphisms inDvol . The classical path integra
propagates velocity fields inG vol . Perhaps some additional variables43 are needed in the formu
lation of the classical path integral.
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The separation of variables for some constrained flows of soliton hierarchies are
shown. The Lax matrix andr -matrix ~either constant or dynamical type! are used to
construct the separation variables and separation equation for the constrained flows.
© 1997 American Institute of Physics.@S0022-2488~96!00312-X#

I. INTRODUCTION

In recent years the study of separation of variables of a completely integrable Hamilt
system has attracted some attention~see, for example, Refs. 1–7!, since the separation variable
serve usually as raw material for constructing action-angle variables and integrating equat
motion. It is found2 that for the classical integrable systems solved by the inverse scatt
method the standard construction of the action-angle variables using the poles of the B
Akhiezer function is in fact equivalent to the separation of variables. For some kind
K-dimensional integrable Hamiltonian systems~K-DIHS! a general approach of using their La
matrix andr -matrix to introduce the separation variables is proposed in Ref. 6.

The constrained flows of soliton hierarchy, which are reduced from the auxiliary linear p
lem associated with the soliton hierarchy via the explicit or higher-order constraints re
potential and eigenfunction, have been studied in a number of papers~see, for example, Refs
8–12!. Many constrained flows are found to be related to mechanical systems, for example,
the constrained flows of the KdV hierarchy there are the Garnier system and the He´lon–Heiles
system.9,12 The constrained flows of the AKNS hierarchy possess the form of multiwave inte
tion equation.13,14 Also it is shown in Refs. 9 and 11 that some kinds of solutions for sol
equations can be obtained by solving two commutingx- and tn-constrained flows. So it is o
significance to study the separation of variables of constrained flows of the soliton hierarch

It is known15 that the Lax representation for constrained flows can always be deduced
the adjoint representation of the eigenvalue problem. However, so far the separation of va
only for the constrained flows of equations of KdV type were studied.1,4,5,7 In the present paper
we will show the separation of variables of constrained flows for other types of soliton equa
It will be shown that the Lax matrix and either the constant or dynamicalr -matrix may provide an
effective way to construct the separation variables and separation equations for constraine
of soliton equations.

In the next section we will show how to use the Lax matrix andr -matrix to find the separation
variables and separation equations for the constrained flows of AKNS hierarchy. In the
section an effective way for constructing the separation variables and separation equatio
constrained flows is presented. Then we give one more example, the constrained flow of
hierarchy with dynamicalr -matrix, to further illustrate the method.

II. SEPARATION OF VARIABLES FOR THE CONSTRAINED FLOWS OF THE AKNS
HIERARCHY

The AKNS eigenvalue problem16 reads

S f1

f2
D
x

5US f1

f2
D , U~l,u!5S 2l q

r l
D , u5S qr D , ~2.1!
0022-2488/97/38(1)/321/9/$10.00
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which is associated with the following AKNS hierarchy:

utn5J
dHn11

du
,

dHn11

du
5LnS rqD ,

where

J5S 0 2

2 0D , L5
1

2 S ]x22r ]x
21q 2r ]x

21r

22q]x
21q 2]x12q]x

21r
D .

The constrained flow of the AKNS hierarchy consists of replicas of~2.1! for N distinctlj and
of restriction of the variational derivatives for conserved quantitiesHk0

~for any fixedk0! andlj

~for more details, see Refs. 9 and 11!:

F1,x52LF11qF2 , F2,x5rF11LF2 , ~2.2a!

dHk0

du
5(

j51

N
dl j

du
5S 12D

k0S ^F2 ,F2&
2^F1 ,F1&

D , ~2.2b!

wherek0 is an integer,L5diag~l1,...,lN!, F i5(f i1,...,f iN)
T, i51,2.

The Lax representation for~2.2! is given by14,15

Mx5@U, M #[UM2MU, M5S A~l! B~l!

C~l! 2A~l!
D . ~2.3!

For example, whenk052, ~2.2! becomes a~N11!-DIHS

Qx5
]H̃2

]P
, Px52

]H̃2

]Q
, ~2.4!

whereQ5(f11,...,f1N,r )
T, P5(f21,...,f2N,q)

T, and

H̃252^LF1 ,F2&1 1
2^F2 ,F2&q2 1

2^F1 ,F1&r .

The Lax matrixM for ~2.4! reads

A~l!52l1
1

4 (
j51

N
f1 jf2 j

l2l j
, B~l!5q2

1

4 (
j51

N f1 j
2

l2l j
, ~2.5a!

C~l!5r1
1

4 (
j51

N f2 j
2

l2l j
. ~2.5b!

It is found from ~2.5! that with respect to the standard Poisson bracket we have

$A~l!,A~m!%5$B~l!,B~m!%5$C~l!,C~m!%50, ~2.6a!

$A~l!,B~m!%5
1

2~m2l!
@B~m!2B~l!#, ~2.6b!

$A~l!,C~m!%5
1

2~m2l!
@C~l!2C~m!#, ~2.6c!
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$B~l!,C~m!%5
1

m2l
@A~m!2A~l!#. ~2.6d!

Denote

M1~l!5M ~l! ^ I , M2~m!5I ^M ~m!,

whereI is the 232 unit matrix. Then~2.6! gives rise to the classical Poisson structure for~2.4!,

$M1~l!,M2~m!%5@r ~l,m!,M1~l!1M2~m!#, ~2.7!

where ther -matrix is given by

r ~l,m!5
1

m2l
P, P5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D . ~2.8!

The independent integrals of motionF ( j ), j51,...,N11, for ~2.4! are given by

1

2
Tr M2~l!5A~l!21B~l!C~l!5l21F ~1!1

1

2 (
j51

N
F ~ j11!

l2l j
, ~2.9a!

F ~1!5qr2 1
2^F1 ,F2&, ~2.9b!

F ~11 j !52l jf1 jf2 j1
1

2
qf2 j

2 2
1

2
rf1 j

2 1
1

8 (
k51,kÞ j

N
~f1 jf2k2f1kf2 j !

2

lk2l j
, j51,...,N.

~2.9c!

As pointed out in Ref. 17, a consequence of~2.7! gives rise to

$F ~ j !,F ~k!%50, j ,k51,...,N11, ~2.10!

which implies that~2.4! is completely integrable in the sense of Liouville.18 In general, we can
show that ~2.2! can be transformed to aK-DIHS by introducing the Jacobi–Ostrogradisk
coordinates.9,11

For a K-DIHS with K independent integrals of motionF ( j ) in involution, $F ( j ),F (k)%50,
j ,k51,...,K, the separation of variables is understood as the construction ofK pairs of canonical
variablesvk ,uk , k51,...,K,2,3,4,6

$vk ,v j%5$uk ,uj%50, $vk ,uj%5d jk , j ,k51,...K, ~2.11!

andK functionsCj such that

C j~v j ,uj ,F
~1!,...,F ~K !!50, j51,...,K, ~2.12!

which are the separation equations.
We now show how to find variables of separation for the constrained flows~2.2! by using

~2.4! as a model. We will introduce the separation variables as
J. Math. Phys., Vol. 38, No. 1, January 1997
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B̄~uk![B~uk!22A~uk!2C~uk!52uk1q2r2
1

4 (
j51

N
~f1 j1f2 j !

2

uk2l j
50, k51,...,N11,

~2.13a!

vk5Ā~uk![2A~uk!22B~uk!522uk22q1
1

2 (
j51

N
f1 j~f1 j1f2 j !

uk2l j
, k51,...,N11.

~2.13b!

Below we write explicit formulas foruk andvk from ~2.13!. Set

B̄~l![B~l!22A~l!2C~l!52l1q2r2
1

4 (
j51

N
~f1 j1f2 j !

2

l2l j
52

R~l!

K~l!
, ~2.14!

where

K~l![)
j51

N

~l2l j !5(
i50

N

~21! ia il
N2 i , R~l![ )

j51

N11

~l2uj !5 (
i50

N11

~21! ib il
N112 i ,

~2.15!

wherea05b051 and

a15(
j51

N

l j , a25(
j51

N

(
k5 j11

N

l jlk , ~2.16a!

b15 (
j51

N11

uj , b25 (
j51

N11

(
k5 j11

N11

ujuk ,... . ~2.16b!

Taking a residuum at the polelj leads to

~f1 j1f2 j !
2528

R~l j !

K8~l j !
528

Pk51
N11~l j2uk!

PkÞ j~l j2lk!
, j51,...,N, ~2.17a!

where the prime denotes differentiation with respect tol. Multiplying both sides of~2.14! by
K~l!, we find

q2r52a122b152(
j51

N

l j22(
j51

N11

uj . ~2.17b!

From ~2.4!, ~2.13!, ~2.14!, and~2.17!, one gets

„B̄x~l!…l5uk
5qx2r x2

1

2 (
j51

N
~f1 j1f2 j !~f1 j ,x1f2 j ,x!

uk2l j
5vk~q2r12uk!52vk~a12b11uk!,

and

„B̄x~l!…l5uk
522

R8~uk!

K~uk!
ukx ,

which yield
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vk52
R8~uk!ukx

~a12b11uk!K~uk!
52

P jÞk~uk2uj !ukx
~( j51

N l j2( jÞkuj !P j51
N ~uk2l j !

, k51,...,N11.

~2.17c!

In a similar way as in Refs. 2–4 and 6, we obtain the following.
Proposition 1:The coordinatesuk andvk defined by~2.13! @or ~2.17!# are canonically con-

jugated.
Proof: The definition~2.13a! implies that

uk5uk~g1 ,...,gN11!,

where

g j5~f1 j1f2 j !
2, j51,...,N, gN115q2r .

Then a direct calculation shows that

$uk ,uj%50, k, j51,...,N11. ~2.18a!

From ~2.6!, we obtain

$vk ,B̄~m!%5$Ā~uk!,B̄~m!%5$Ā~l!,B̄~m!%l5uk
1Ā8~uk!$uk ,B̄~m!%

5
1

uk2m
B̄~m!1Ā8~uk!$uk ,B̄~m!%,

and

05$vk ,B̄~uj !%5$vk ,B̄~m!%m5uj
1B̄8~uj !$vk ,uj%,

which together with~2.18a! lead to

$vk ,uj%52
1

B̄8~uj !
S B̄~m!

uk2m
D

m5uj

2
Ā8~uk!

B̄8~uj !
@$uk ,B̄~uj !%2B̄8~uj !$uk ,uj%#5dk j .

~2.18b!

Then it follows from~2.6a!, ~2.18a!, and~2.18b!

$vk ,v j%5$Ā~uk!,Ā~uj !%

5$Ā~l!,Ā~m!%l5uk ,m5uj
1Ā8~uj !$vk ,uj%1Ā8~uk!$uk ,v j%

2Ā8~uk!Ā8~uj !$uk ,uj%50.

This completes the proof.
Notice that

1
4Ā~l!22B̄~l!B~l!5A~l!21B~l!C~l!.

The separation equations follow from~2.9! and ~2.13!:

vk
254Fuk21F ~1!1

1

2 (
j51

N
F ~ j11!

uk2l j
G , k51,...,N11. ~2.19!

This method can be applied to all the constrained flows~2.2!.
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III. AN EFFECTIVE WAY TO SHOW SEPARABILITY OF CONSTRAINED FLOWS

Let consider aK-DIHS obtained from a constrained flow of a soliton equation. There
systematic method to construct the Lax representation for thisK-DIHS.15 Suppose that the Lax
matrix for theK-DIHS is given by

M5S A~l! B~l!

C~l! 2A~l!
D . ~3.1!

Then theK independent integrals of motion can be obtained from

A~l!21B~l!C~l!5C~l,F ~1!,...,F ~K !!. ~3.2!

The involutivity of F (1),...,F (K) follows from the r -matrix and Poisson structure for~3.1! like
~2.7!.17

Let us define

B̄~l!5d1
2~l!B~l!22d1~l!d2~l!A~l!2d2

2~l!C~l!, ~3.3a!

Ā~l!5gFA~l!2
d2~l!

d1~l!
B~l!G , ~3.3b!

where g is some constant. By properly choosingd1~l!, d2~l!, and g, we may introduce the
separation variablesvk anduk as

B̄~uk!50, vk5Ā~uk!, k51,...,K. ~3.4!

According to Ref. 6, we obtain the following useful way to show the separability for constra
flows.

Proposition 2:If the Ā~l!, B̄~l!, anduk , k51,...,K, defined by~3.3! and ~3.4! satisfy

$uk ,uj%50, k, j51,...,K, ~3.5a!

$Ā~l!,B̄~l!%5
1

m2l
@B̄~l!2B̄~m!#, $Ā~l!,Ā~m!%50, ~3.5b!

then the coordinatesvk anduk , k51,...,K, defined by~3.4! are canonically conjugated and th
separation equations have the form

vk
25g2C~uk ,F

~1!,...,F ~k!!, k51,...,K. ~3.6!

Proof: In exactly the same way as for the Proposition 1 we can show thatvk and uk ,
k51,...,K, defined by~3.4! are canonically conjugated by using~3.5!. It is easy to see that

Ā~l!22g2B̄~l!B~l!5g2@A~l!21B~l!C~l!#5g2C~l,F ~1!,...,F ~K !!,

which together with~3.4! gives rise to~3.6!. This completes the proof.
The previous section indicates that for the constrained flows of the AKNS hierarchy we

d1~l!5d2~l!51 and g52 in ~3.3!. For the constrained flows of the KdV hierarchy and t
Jaulent–Miodek hierarchy as well as other hierarchies of KdV type we taked1~l!51, d2~l!50,
andg51 in ~3.3!.1,4,5,7We now apply this proposition to one more example. Consider the foll
ing Tu eigenvalue problem:19
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¬¬¬¬¬¬¬¬¬¬
S f1

f2
D
x

5US f1

f2
D , U~l,u!5S 2l1 1

2q r

r l2 1
2q
D , u5S qr D . ~3.7!

The constrained flow of the Tu hierarchy is defined as for that of the AKNS hierarchy given i
previous section. The first constrained flow reads20

F1,x52LF11
1

2G
~^F2 ,F2&2^F1 ,F1&!F112GF25

]H̃

]F2
, ~3.8a!

F2,x52GF11LF22
1

2G
~^F2 ,F2&2^F1 ,F1&!F252

]H̃

]F1
, ~3.8b!

H̃52^LF1 ,F2&1G~^F2 ,F2&2^F1 ,F1&!, G5A^F1 ,F2&.

The Lax representation for~3.8! reads

Mx5@U, M #[UM2MU, M5S A~l! B~l!

C~l! 2A~l!
D , ~3.9!

with

A~l!52
1

2
l1(

j51

N
f1 jf2 j

l2l j
, B~l!5G2(

j51

N f1 j
2

l2l j
, ~3.10a!

C~l!5G1(
j51

N f2 j
2

l2l j
. ~3.10b!

With respect to the standard Poisson bracket one gets

$A~l!,A~m!%50, $B~l!,B~m!%5
1

G
@B~l!2B~m!#, ~3.11a!

$C~l!,C~m!%52
1

G
@C~l!2C~m!#, ~3.11b!

$A~l!,B~m!%5
2

m2l
@B~m!2B~l!#, ~3.11c!

$A~l!,C~m!%5
2

m2l
@C~l!2C~m!#, ~3.11d!

$B~l!,C~m!%5
4

m2l
@A~m!2A~l!#1

1

G
@B~l!1C~m!#, ~3.11e!

which gives rise to the following Poisson structure for~3.8!:

$M1~l!,M2~m!%5@r 12~l,m!, M1~l!#2@r 21~l,m!, M2~m!#, ~3.12!

where ther -matrix is given by
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¬¬¬¬¬¬¬¬¬¬
r 12~l,m!5
2

m2l
P1

1

2G
S, r 21~l,m!5r 12

p ~l,m!, S5s3^ s1 ,

whereP is the permutation matrix given by~2.8! andsi is the Pauli matrix. Here ther -matrix r 12
depends not only on the spectral parameters but also on the dynamical variablesC1,C2 throughG,
and is called a dynamicalr -matrix. The independent integrals of motionF ( j ), j51,...,N, for ~3.8!
are given by

C~l,F ~1!,...,F ~N!![A~l!21B~l!C~l!5
1

4
l21(

j51

N
F ~ j !

l2l j
, ~3.13!

F ~ j !52l jf1 jf2 j1G~f2 j
2 2f1 j

2 !1 (
k51,kÞ j

N
~f1 jf2k2f1kf2 j !

2

lk2l j
, j51,...,N.

A consequence of~3.12! gives rise to

$F ~ j !,F ~k!%50, j ,k51,...,N,

which implies that~3.8! is completely integrable in the sense of Liouville.
Let taked1~l!51, d2~l!50, andg51

2 in ~3.3! and introduce the separation variablesvk anduk
as

B̄~uk![B~uk!5A^F1 ,F2&2(
j51

N f1 j
2

uk2l j
50, k51,...,N, ~3.14a!

vk5Ā~uk![
1

2
A~uk!52

1

4
uk1

1

2 (
j51

N
f1 jf2 j

uk2l j
, k51,...,N, ~3.14b!

Then ~3.14a! implies that

uk5uk~g1 ,...,gN!, g j5
f1 j
2

A^F1 ,F2&
, j51,...,N. ~3.15!

It is easy to check from~3.15! that

$uk ,uj%50, k, j51,...,N.

The formulas~3.11! indicates thatĀ~l! andB̄~l! satisfy~3.5!. Thus Proposition 2 guarantees th
vk anduk defined by~3.14! are canonically conjugated, and the separation equations are

vk
25

1

4 F14 uk
21(

j51

N
F ~ j !

uk2l j
G , k51,...,N. ~3.16!

Set

B~l!5A^F1 ,F2&2(
j51

N f1 j
2

l2l j
5A^F1 ,F2&

R~l!

K~l!
, ~3.17!

where
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¬¬¬¬¬¬¬¬¬¬
K~l![)
j51

N

~l2l j !, R~l![)
k51

N

~l2uk!.

In the same way as for~2.17!, we obtain from~3.14!

f1k
2 52A^F1 ,F2&

R~lk!

K8~lk!
52A^F1 ,F2&

P j51
N ~lk2uj !

P jÞk~lk2l j !
,

~3.18!

vk5
R8~uk!ukx
8K~uk!

5
P jÞk~uk2uj !ukx
8P j51

N ~uk2l j !
, k51,...,N,

whereA^F1 ,F2&, in fact, is an integral of motion for~3.8!.
Also, this method is valid for all constrained flows of Tu hierarchy.

IV. CONCLUSION

Since the Lax representation for constrained flows of soliton hierarchy can always be de
from the adjoint representation of the eigenvalue problem, Proposition 2 may provide an eff
way to find separation variables and separation equations for constrained flows with eithe
stant or dynamicalr -matrix. This way can be applied to other constrained flows of soliton h
archies.
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Gauge invariant perturbations of black holes. II.
Kerr space–time

Joe F. Q. Fernandesa) and Anthony W. C. Lunb)
Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia
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We cast the perturbed Bianchi identities into a form involving only tetrad and
coordinate-gauge invariant field quantities. From the perturbed Bianchi identities
we then derive a system of gauge invariant wavelike gravitational perturbation
equations. These are the Teukolsky equation, a gauge invariant analog of the
Regge–Wheeler equation, and a new gravitational perturbation equation. The Bi-
anchi identities also provide the transformations between the perturbation equa-
tions. In particular, the transformation between the Teukolsky equation and the
analog of the Regge–Wheeler equation arises in this way. This work extends our
previous analysis of the perturbations of the Schwarzschild black hole to the Kerr
case. ©1997 American Institute of Physics.@S0022-2488~96!03512-8#

I. INTRODUCTION

The transformations linking the Bardeen–Press1 and Regge–Wheeler2 equations for the gravi-
tational perturbations of the Schwarzschild black hole have been the subject of much invest
~see Refs. 3 and 4!. The motivation for understanding these transformations was to constr
Regge–Wheeler-like equation for the gravitational perturbations of the Kerr space–time~see Refs.
4 and 5!.

In our earlier work6 ~hereafter Paper I!, we showed how the perturbed Bianchi identities in t
Schwarzschild background may be written in a form involving only certain natural gauge inva
perturbed field quantities. By gauge invariant we mean invariant under infinitesimal coord
transformations and infinitesimal Lorentz transformations.

The importance of such gauge invariant field quantities in the Newman–Penrose appro
perturbations was extensively clarified by Stewart and Walker.7 However, they considered onl
the spin-weight62 gravitational and spin-weight61 electromagnetic perturbation equations
vacuum Petrov type D background space–times, and investigated the conditions under
these equations are decoupled, gauge invariant, and separable. Thus they clarified in de
results of Bardeen and Press1 and Teukolsky8 for the special cases of the Schwarzschild and K
space–times.

The quantities introduced below are related to the perturbed Weyl scalars and the per
spin coefficients in Schwarzschild background, and comprise a set of six gauge invariant g
tional fields of spin-weights62, 61, and 0~of which there are two!. In part, their significance is
that they can also be expressed as naturally gauge invariant combinations of the relevant pe
metric components. After rewriting the perturbed Bianchi identities, the integrability condi
provide a system of six gauge invariant gravitational wave equations and the transform
identities relating them to one another. Thus the transformations between the Bardeen–Pr
Regge–Wheeler equations arise in a gauge invariant manner from the perturbed Bianchi ide

The approach to perturbations developed in Paper I is heavily dependent upon the ab
expand in spin-weighted spherical harmonics, which in turn requires the introduction of co
nates. In the Kerr case, expansion into tensorial spheroidal harmonics is not possible in g

a!Electronic mail address: joeff@fermat.maths.monash.edu.au
b!Electronic mail address: lun@vaxc.cc.monash.edu.au
0022-2488/97/38(1)/330/20/$10.00
330 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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However, our techniques do generalize in a natural way, with the advantage that we a
required to make any use of coordinates at all in our perturbation analysis. Thus we will de
strate that the approach which we used in the Schwarzschild case can be extended to t
electromagnetic and gravitational perturbations of the Kerr space–time. To a large exte
success of these techniques is due to the geometry of the background space–time.

As in the Schwarzschild case, we begin with an investigation of the electromagnetic p
bations of the Kerr space–time. The reason is that, since it is a vacuum space–time, the pe
Maxwell scalars are gauge invariant in the Kerr background, and hence they are much sim
handle than their gravitational counterparts. In this case the electromagnetic perturbation eq
arise quite naturally from the integrability conditions for the perturbed Maxwell equations. T
equations are the spin-weight61 Teukolsky8 equations and the Fackerell–Ipser9 equation, which
are the Kerr analogs of the~electromagnetic! Bardeen–Press and Regge–Wheeler equations.
transformations between the equations may also be derived from the Maxwell equation
require certain higher-order commutators.

This work provides a model for dealing with the more complicated gravitational perturbat
The Bianchi identities~like the Maxwell equations! are gauge invariant,

£u~R
a
b@cd;e#!50,

whereRa
b@cd;e# refers to the background space–time, andua is an arbitrary vector field~refer to

Refs. 7 and 10!. However, unlike the Maxwell scalars, the individual Newman–Penrose
quantities in the perturbed Bianchi identities are not gauge invariant, with the exception oC4B
and C0B. The new field quantities which arise naturally in our approach, like those in
Schwarzschild case, are gauge-independent boost- and spin-weighted quantities, related
perturbed Newman–Penrose Weyl scalars and spin coefficients.

After identifying the gauge invariant field quantities, the perturbed Bianchi identities ma
cast into a form involving only these quantities. The perturbed Bianchi identities then give r
gauge invariant wavelike perturbation equations for our field quantities, and the transform
which relate one to another. The equations are the well-known spin-weight22 Teukolsky equa-
tion, the~gauge invariant! Kerr analog of the Regge–Wheeler equation, and a new gauge inva
gravitational perturbation equation. The transformations between these equations follow
certain higher-order commutation relationships, which we derive from the Newman–Penrose
mutators.

Sasaki and Nakamura5 and Chandrasekhar4 derived Regge–Wheeler-like equations, wi
short-range effective potentials, for the perturbations of Kerr space–time. In the Schwarz
case, we have already seen~Paper I! how their gauge-dependent coordinate results follow from
perturbed Bianchi identities in a gauge invariant and geometric manner, and how they are
a much broader picture of perturbations, within the context of the Newman–Penrose appr

The Kerr analog of the gauge invariant Regge–Wheeler equation, which is presented
in not decoupled and,prima facie, not separable. However, there is a sense in which we
modify this equation to get complete agreement with the transformation derived from a coor
point of view by Sasaki and Nakamura.5 Thus we will establish a link with the work of Chan
drasekhar and Sasaki and Nakamura in the Kerr case as well.

The results presented in this paper reduce to their correct Schwarzschild counterparts
limit p50,C25C̄2. In particular this means that the work presented in Paper I may also be
coordinate-free. In the following, perturbed quantities will be denoted by a subscriptB, while all
other quantities are understood to be background quantities.

Preliminary work on the gauge invariant perturbations of Kerr space–time have been re
elsewhere.11 In Refs. 11 and 12 we presented some preliminary results for the Reiss
Nordström case.
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
II. PRELIMINARIES

Describing Kerr space–time in the Newman–Penrose formalism, we have

k5s5l5n5F05F15F25C05C15C35C450.

Furthermore

AC253%C2 , A8C2523mC2 ,
~2.1!

ZC253tC2 , Z8C2523pC2 ,

and one can prove the identity13

%

%̄
5

m

m̄
5

p

t̄
5

t

p̄
. ~2.2!

These identities, in conjunction with the Newman–Penrose commutators, allow a more com
description of the derivatives of the spin-coefficients in the Kerr background. In particular,

A%5%2, Z%5~%2 %̄ !t, Z8%52%~ t̄1p!2p~%2 %̄ !,

A8m52m2, Z8m52~m2m̄ !p, Zm5m~t1p̄ !1t~m2m̄ !,
~2.3!

At5%~t1p̄ !, A8t52Zm, Zt5t2,

Ap52Z8%, A8p52m~t̄1p!, Z8p52p2;

A8%2Z8t52%m̄2tt̄2C2 , Am2Zp5 %̄m1pp̄1C2 ,
~2.4!

Am1A8%5Zp1Z8t50;

and

Am5%m1p~p̄1t!1
1

2
C21

%

2%̄
C̄2 ,

where%Þ0 andpÞ0.
Using this information and the Newman–Penrose commutators, we may derive the follo

commutation relation for weighted quantities of type (p,q):

XA2S a1
p

2D%2S b111
q

2D %̄C XZ2S a1
p

2D t1S b2
q

2D p̄C2XZ2S a1
p

2D t

1S b112
q

2D p̄C XA2S a1
p

2D%2S b1
q

2D %̄C5qZ%̄ , ~2.5!

wherea and b are arbitrary constants. The other commutators can be obtained from~2.5! by
complex conjugation and applying the GHP14 prime. These identities simplify our computation
greatly. Recall that under conjugation (p,q) becomes (q,p) and under the prime (p,q) becomes
(2p,2q).
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
III. ELECTROMAGNETIC PERTURBATIONS: AN ILLUSTRATION

The fundamental equations governing the electromagnetic perturbations in the Kerr
ground are the perturbed Maxwell equations:15

~A2% !F2B5~Z812p!F1B , ~3.1!

~A812m!F1B5~Z2t!F2B , ~3.2!

~A81m!F0B5~Z22t!F1B , ~3.3!

~A22% !F1B5~Z81p!F0B . ~3.4!

From the integrability conditions for the perturbed Maxwell equations we obtain four w
equations in the following way. Operating on~3.1! with ~A812m1m̄! and on equation~3.2! with
~Z812p2t̄!, and making use of the primed version of the commutation relation~2.5!, setting
(p,q)5(0,0) and (a,b)5(2,0),16 we eliminateF1B to obtain

@~A812m1m̄ !~A2% !2~Z812p2 t̄ !~Z2t!#F2B50. ~3.5!

From Eqs.~3.3! and ~3.4! we have

@~A22%2 %̄ !~A81m!2~Z22t1p̄ !~Z81p!#F0B50. ~3.6!

Similarly from Eqs.~3.1! and ~3.2!, and~3.3! and ~3.4!,

@~A2%2 %̄ !~A812m!2~Z2t1p̄ !~Z812p!#F1B50, ~3.7!

@~A81m1m̄ !~A22% !2~Z81p2 t̄ !~Z22t!#F1B50. ~3.8!

In fact, Eqs.~3.7! and ~3.8! are identical, as can be seen by using the commutators@A, A8# and
@Z, Z8#, and~2.4!.

Equations~3.5! and~3.6! are, respectively, the spin-weight21 and11 Teukolsky8 equations.
The spin-weight 0 equations~3.7! and ~3.8! are, in fact, just the Fackerell–Ipser9 equation, and
they reduce to the electromagnetic Regge–Wheeler equation in the Schwarzschild limi
Teukolsky equations are separable, but the Fackerell–Ipser equation is not. However, the
sense in which Eq.~3.7!, when expressed in coordinate form, can be made separable, and
discussed below in Sec. V B. The separable equation which results has a short-range e
potential.

The Maxwell equations also give rise to transformation identities relating the four w
equations~3.5!–~3.8!. For example, acting on~3.5! with ~A22%2%̄!, we have

~A22%2 %̄ !@~A812m1m̄ !~A2% !2~Z812p2 t̄ !~Z2t!#F2B50. ~3.9!

Now, from the complex conjugate of the commutator~2.5!, with (p,q)5(21,21) and (a,b)
5( 32,

3
2), we have

~A22%2 %̄ !~Z812p2 t̄ !5~Z813p2 t̄ !~A2%2 %̄ !2Z8%.

With (p,q)5(22,0) and (a,b)5(2,0), ~2.5! yields

~A2%2 %̄ !~Z2t!5~Z2t1p̄ !~A2% !.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Therefore, putting these together, we derive the following commutation relation for quantiti
(p,q) type ~22,0!:

~A22%2 %̄ !@~A812m1m̄ !~A2% !2~Z812p2 t̄ !~Z2t!#

5@~A22%2%̄ !~A812m1m̄ !2~Z813p2 t̄ !~Z2t1p̄ !#~A2% !1~Z8% !~Z2t!. ~3.10!

Similarly using the primed version of~2.5! @with (p,q)5(0,0) and (a,b)5(2,0)# and the complex
conjugate of~2.5! @with (p,q)5(21,21) and (a,b)5( 32,

3
2)#, we have

@~A22%2 %̄ !~A812m1m̄ !2~Z813p2 t̄ !~Z2t1p̄ !#~Z812p!

5~Z813p2 t̄ !@~A2%2 %̄ !~A812m!2~Z2t1p̄ !~Z812p!#2~Z8% !~A812m! ~3.11!

for quantities of type~0,0!.
Using the two commutation relations~3.10! and ~3.11! together with the Maxwell equation

~3.1! and~3.2! we may relate the wave equations~3.5! and~3.7! as follows. From Eqs.~3.9! and
~3.10! we have

05~A22%2 %̄ !@~A812m1m̄ !~A2% !2~Z812p2 t̄ !~Z2t!#F2B

5@~A22%2 %̄ !~A812m1m̄ !2~Z813p2 t̄ !~Z2t1p̄ !#

3~A2% !F2B1~Z8% !~Z2t!F2B . ~3.12!

Now, from ~3.1!, the right-hand side of this relation becomes

@~A22%2 %̄ !~A812m1m̄ !2~Z813p2 t̄ !~Z2t1p̄ !#~Z812p!F1B1~Z8% !~Z2t!F2B .

The commutator~3.11! allows this to be rewritten

~Z813p2 t̄ !@~A2%2 %̄ !~A812m!2~Z2t1p̄ !~Z812p!#F1B

1~Z8% !~Z2t!F2B2~Z8% !~A812m!F1B .

Finally, the combination~Z2t!F2B2~A812m!F1B vanishes identically by~3.2!, and we get

~A22%2 %̄ !@~A812m1m̄ !~A2% !2~Z812p2 t̄ !~Z2t!#F2B

5~Z813p2 t̄ !@~A2%2 %̄ !~A812m!2~Z2t1p̄ !~Z812p!#F1B50. ~3.13!

Similarly, by repeated use of the commutator~2.5! and the Maxwell equations~3.1! and~3.2!
we can show that

~Z22t1p̄ !@~A812m1m̄ !~A2% !2~Z812p2 t̄ !~Z2t!#F2B

5~A813m1m̄ !@~A2%2 %̄ !~A812m!2~Z2t1p̄ !~Z812p!#F1B50. ~3.14!

The other Maxwell equations~3.3! and~3.4! allow us to prove similar relationships between Eq
~3.6! and ~3.8!. These follow from~3.13! and ~3.14! by applying the prime operator, and so w
not be given here.

Lastly, operating on Eq.~3.1! with ~A23%!, using the complex conjugate of~2.5! and Eq.
~3.4! we have

~A23% !~A2% !F2B5~Z813p!~Z81p!F0B . ~3.15!
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This relationship, as well as its primed version, is known as the Teukolsky–Starobinsky id
for electromagnetic perturbations. It is well known that this identity relates the Teukolsky e
tions of opposite spin-weight in the electromagnetic case.

All of the results of this section are valid in the Schwarzschild limitp50, C25C̄2 . In fact,
we recover exactly the results of Sec. II of Paper I.

IV. GRAVITATIONAL PERTURBATIONS

A. Rewriting the Bianchi identities

The fundamental equations for the gravitational perturbations are the~gauge invariant! per-
turbed Bianchi identities.17 After linearization in the Kerr background we have

~A2% !C4B5~Z814p!C3B23lBC2 , ~4.1!

~A22% !C3B5~Z813p!C2B1~Z813p!BC2 , ~4.2!

~Z2t!C4B5~A814m!C3B23nBC2 , ~4.3!

~Z22t!C3B5~A813m!C2B1~A813m!BC2 , ~4.4!

~A81m!C0B5~Z24t!C1B13sBC2 , ~4.5!

~A812m!C1B5~Z23t!C2B1~Z23t!BC2 , ~4.6!

~Z81p!C0B5~A24% !C1B13kBC2 , ~4.7!

~Z812p!C1B5~A23% !C2B1~A23% !BC2 . ~4.8!

The following Ricci identities relating the perturbed spin coefficients will also be used:

~A81m1m̄ !lB2~Z81p2 t̄ !nB52C4B , ~4.9!

~A2%2 %̄ !sB2~Z2t1p̄ !kB5C0B , ~4.10!

~Z2t!B%1~Z2t!%B2Z8sB52 %̄tB2 %̄Bt1~m2m̄ !kB2C1B , ~4.11!

ZlB2~Z81p!Bm2~Z81p!mB52m̄pB2m̄Bp1~%2 %̄ !nB2C3B , ~4.12!

~A81m!Bp1~A81m!pB2AnB52 t̄Bm2 t̄mB2~t1p̄ !lB2C3B , ~4.13!

A8kB2~A2% !Bt2~A2% !tB52p̄B%2p̄%B2~p1 t̄ !sB2C1B . ~4.14!

For reasons of convenience, we have chosen to use a slightly different set of six Ricci ide
than in Paper I.

To put the Bianchi identities into a form which more closely resembles the Maxwell equa
of the previous section, we define the following gauge invariant quantities:

C̃3B :5~Z814p!C3B23lBC2 ,

C̃2B :5~Z815p!@~Z813p!C2B1~Z813p!BC2#22C3B~Z8% !23C2~AlB!,
~4.15!

C̃2B8 :5~Z25t!@~Z23t!C2B1~Z23t!BC2#12C1B~Zm!13C2~A8sB!,
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C̃1B :5~Z24t!C1B13sBC2 .

These are weighted quantities of (p,q)-type ~23,1!, ~22,2!, ~2,22!, and ~3,21!, respectively.
Notice that each of our field quantities has spin-weight22 or 12. The correspondence betwee
these field quantities and the quantities which we found in the Schwarzschild case18 are

C̃3B↔Z8Ĉ3B , C̃2B↔Z8Z8Ĉ2B ,

C̃2B8 ↔ZZĈ2B8 , C̃1B↔ZĈ1B .

In the present work the origin of the quantities~4.15! is clear. First,C̃3B is simply defined as
the right-hand side of the Bianchi identity~4.1!. The field quantityC̃2B is then found by operating
on ~4.2! with ~Z815p! and using the complex conjugate of the commutator~2.5!, with (p,q)
5(22,0) and (a,b)5(0,3). The left-hand side becomes

~Z815p!~A22% !C3B5~A23% !~Z814p!C3B12C3B~Z8% !

5~A23% !~C̃3B13C2lB!12C3B~Z8% !.

Simplifying this, using Eqs.~2.1!, we get

~A23% !C̃3B5~Z815p!@~Z813p!C2B1~Z813p!BC2#22C3B~Z8% !23C2~AlB!

and the right-hand side definesC̃2B. Thus, in particular, each of~4.15! is gauge invariant, and this
is discussed in detail below.

Now the Bianchi identities may be expressed solely in terms of the gauge invariant qua
~4.15!:

~A2% !C4B5C̃3B , ~4.16!

~A23% !C̃3B5C̃2B , ~4.17!

@~Z814p2 t̄ !~Z2t!13C2#C4B5~A814m1m̄ !C̃3B , ~4.18!

~A814m1m̄ !C̃2B5@~Z814p22t̄ !~Z22t!1~~Z81 t̄ !t2~A1 %̄ !m!#C̃3B2~%2 %̄ !

3~A814m1m̄ !C̃3B13@~2%2 %̄ !C22~Z8% !~Z2t!#C4B . ~4.19!

From now on, we consider only half of the Bianchi identities. The results for the others ma
obtained by applying the prime operator. Notice that~4.18! and ~4.19! mean that the choice o
gauge invariant quantities is self-consistent. That is, onceC̃3B is specified by~4.1!, Eq. ~4.3! may
be rewritten solely in terms of the known quantitiesC̃3B andC4B. Similarly, onceC̃2B is given by
~4.2!, Eq. ~4.4! may be expressed consistently in terms of our field quantities. This should b
great surprise, since the Bianchi identities are themselves a consistent set of equations,
have not added any information to the system.

To show that the identities~4.18! and ~4.19! are identical to~4.3! and ~4.4!, respectively,
requires some work. For example, acting on~4.3! with ~Z814p2t̄!, using the primed version o
the commutator~2.5! @(p,q)5(22,0) and (a,b)5(3,0)# and the Ricci identity~4.9! we have

~Z814p2 t̄ !~Z2t!C4B5~A814m1m̄ !„~Z814p!C3B23lBC2…23C2C4B .

So ~4.3! and ~4.18! are identical.
On the other hand, to derive~4.19!, operate on~4.4! with ~Z813p2t̄!:
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~Z813p2 t̄ !~Z22t!C3B5~Z813p2 t̄ !@~A813m!C2B1~A813m!BC2#. ~4.20!

Using @Z, Z8#, Zp1Z8t50 from ~2.4! andpp̄5tt̄ from ~2.2!, the left-hand side of this equatio
becomes

~Z1p̄2t!~Z814p!C3B2@~p1 t̄ !Z1~p̄1t!Z81~m2m̄ !A

1~%2 %̄ !A822~C22%m!12~~Z1p̄1t!p!]C3B

or

~Z1p̄2t!C̃3B13C2~Z12t1p̄ !lB2@~p1 t̄ !Z1~p̄1t!Z81~m2m̄ !A

1~%2 %̄ !A822~C22%m!12~~Z1p̄1t!p!]C3B ~4.21!

using the definition ofC̃3B and Eq.~2.1!.
Next, from ~@A8,Z8#C2!B we have

@~A81m̄ !BZ81~A81m̄ !ZB8 #C25@~Z82 t̄ !BA81~Z82 t̄ !AB82lBZ1nBA#C2 ,

or, alternatively, using Eq.~2.1! and collecting terms

@~A813m1m̄ !~Z813p!B2~Z813p2 t̄ !~A813m!B#C2

53C2@~A81m̄ !pB1~A81m̄ !Bp2~Z82 t̄ !mB2~Z82 t̄ !Bm2tlB1%nB .

The right-hand side of this simplifies upon substitution, using the Ricci identities~4.12! and~4.13!.
The result is

@~A813m1m̄ !~Z813p!B2~Z813p2 t̄ !~A813m!B#C2

53C2@~A12%2 %̄ !nB2~Z12t1p̄ !lB22C3B#. ~4.22!

Also, from the prime of the commutator~2.5!, with (p,q)5(0,0) and (a,b)5(3,0), we have

~Z813p2 t̄ !~A813m!C2B5~A813m1m̄ !~Z813p!C2B .

Putting these together, the right-hand side of Eq.~4.20! becomes

~A813m1m̄ !@~Z813p!C2B1~Z813p!BC2#

23C2@~A12%2 %̄ !nB2~Z12t1p̄ !lB22C3B#. ~4.23!

Therefore, thelB term cancels from left- and right-hand sides, and Eq.~4.20! becomes

~Z1p̄2t!C̃3B5~A813m1m̄ !@~Z813p!C2B1~Z813p!BC2#

1@~p1 t̄ !Z1~p̄1t!Z81~m2m̄ !A1~%2 %̄ !A814C212%m

12~~Z1p̄1t!p!#C3B23C2~A12%2 %̄ !nB . ~4.24!

We now wish to act on Eq.~4.24! with ~Z815p2t̄!. Using the primed version of the com
mutator~2.5!, with (p,q)5(21,1) and (a,b)5( 92,2

1
2), we have
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~Z815p2 t̄ !~A813m1m̄ !5~Z815p2 t̄ !~~A815m2m̄ !22~m2m̄ !!

5~A813m12m̄ !~Z815p!2Z8m̄22~Z82 t̄ !~m2m̄ !,

so ~Z815p2t̄! acting on the first term on the right-hand side of~4.24! produces

~A813m12m̄ !C̃2B13C2~A812m̄ !AlB12~Z8% !~A813m12m̄ !C3B

12C3B~A8Z8% !2~Z8m̄12~Z82 t̄ !~m2m̄ !!~A22% !C3B , ~4.25!

where we have also used the definition ofC̃2B and the Bianchi identity~4.2!.
From the third term on the right-hand side of Eq.~4.24! we get

23~Z815p2 t̄ !C2~A12%2 %̄ !nB523C2@~A1%2 %̄ !~Z81p2 t̄ !13~Z8% !#nB

using the complex conjugate of~2.5!, with (p,q)5(23,21) and (a,b)5( 32,2
1
2). Now using the

Ricci identity ~4.9! and the Bianchi identity~4.3! this becomes

23C2~A1%2 %̄ !~A81m1m̄ !lB13@~Z8% !~Z2t!2C2~A1%2 %̄ !#C4B

23~Z8% !~A814m!C3B . ~4.26!

The middle term on the right-hand side of Eq.~4.24! presents some dilemma due to i
complicated nature. However, using the appropriate commutators we can move the~Z815p2t̄!
through the operator, with the aim of replacing the term~Z814p!C3B which results with
C̃3B13lBC2 . After a lengthy calculation, using Eqs.~2.1!–~2.4! and the Newman–Penros
commutators, we have

~Z815p2 t̄ !@~p1 t̄ !Z1~p̄1t!Z81~m2m̄ !A1~%2 %̄ !A814C212%m12~~Z1p̄

1t!p!#C3B5@~p1 t̄ !Z1~p̄1t!Z81~~Z81p2 t̄ !~ p̄1t!!1~m2m̄ !~A2% !1~%2 %̄ !~A8

1m̄ !14C212%m12~~Z1p̄1t!p!#C̃3B13C2HlB1GC3B , ~4.27!

where

H[@~p1 t̄ !~Z13t!1~p̄1t!~Z823p!1„~Z81p2 t̄ !~ p̄1t!…1~m2m̄ !~A12% !

1~%2 %̄ !~A823m1m̄ !14C212%m12„~Z1p̄1t!p…#,

G[@2~p1 t̄ !@4~Zp!1~m2m̄ !A1~%2 %̄ !A822~C22%m!#24p„~Z82 t̄ !~ p̄1t!…

1„~Z82 t̄ !~m2m̄ !…A12~m2m̄ !„Z8%2~A2% !p…1„~Z81p!~%2 %̄ !…A8

24~%2 %̄ !„~A81m̄ !p…12~~Z81p2 t̄ !„2C21%m1~Z1p̄1t!p…!#.

The coefficients oflB cancel identically with the contributions from~4.25! and ~4.26!, as do the
coefficients ofC3B. To check this requires the use of@A, A8#, and Eqs.~2.1!–~2.4!. Combining all
terms the result is

~Z815p2 t̄ !~Z1p̄2t!C̃3B5~A813m12m̄ !C̃2B13@~Z8% !~Z2t!2C2~A1%2 %̄ !#C4B

1@~p1 t̄ !Z1~p̄1t!Z81„~Z81p2 t̄ !~ p̄1t!…1~m2m̄ !~A2% !

1~%2 %̄ !~A81m̄ !14C212%m12„~Z1p̄1t!p…#C̃3B . ~4.28!
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This may be simplified by collecting terms, replacingAC4B according to~4.16!, and replacing
AC̃3B according to Eq.~4.17!. Finally we have precisely~4.19!:

~A814m1m̄ !C̃2B53@~2%2 %̄ !C22~Z8% !~Z2t!#C4B2~%2 %̄ !~A814m1m̄ !C̃3B

1@~Z814p22t̄ !~Z22t!1~~Z81 t̄ !t2~A1 %̄ !m!#C̃3B .

We note that

~Z81 t̄ !t2~A1 %̄ !m52~Z8t!2C222%m̄.

B. Gauge invariance

The gauge independence of each of~4.15! is guaranteed by its relationship to the manifes
gauge invariant quantityC4B in the perturbed Bianchi identities above. In any case, it is a m
exercise to check that the field quantities are indeed gauge invariant. A combined infinite
coordinate-gauge transformation and infinitesimal Lorentz transformation has the following
~see Ref. 10!:

C4B°C4B ,

C3B°C3B13vC2 , ~4.29!

lB°lB1~Z81p!v.

Thus

C̃3B :5~Z814p!C3B23lBC2

°~Z814p!C3B13C2~Z81p!v23lBC223C2~Z81p!v5C̃3B .

On the other hand, using Eq.~4.2!, C̃2B may be written

C̃2B5~Z815p!~A22% !C3B22C3B~Z8% !23C2~AlB!.

A quick calculation reveals that, under the gauge transformations,C̃2B becomes

C̃2B°C̃2B13C2@~Z812p!~A1% !2A~Z81p!22~Z8% !#v.

The terms involvingv on the right-hand side vanish identically, using the complex conjugat
the commutator~2.5!, with (p,q)5(22,0) and (a,b)5(0,0).

C. Gravitational perturbation equations

The perturbed Bianchi identities~4.16!–~4.19! provide a system of wavelike gravitationa
perturbation equations in the following way. Acting on~4.16! with ~A814m1m̄! and using~4.18!
we see that

@~A814m1m̄ !~A2% !2~Z814p2 t̄ !~Z2t!23C2#C4B50. ~4.30!

This is the usual spin-weight22 Teukolsky equation for the gravitational perturbations.
To derive the other gravitational perturbation equations we proceed as follows. Operat

~4.18! with ~A22%2%! we get

~A22%2 %̄ !~A814m1m̄ !C̃3B5~A22%2 %̄ !@~Z814p2 t̄ !~Z2t!13C2#C4B . ~4.31!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Now from the complex conjugate of~2.5! @with (p,q)5(23,21) and (a,b)5( 32,
5
2)#,

~A22%2 %̄ !~Z814p2 t̄ !5~Z815p2 t̄ !~A2%2 %̄ !23~Z8% !

and ~2.5! @with (p,q)5(24,0), (a,b)5(3,0)#,

~A2%2 %̄ !~Z2t!5~Z2t1p̄ !~A2% !.

Hence, using~2.1!, Eq. ~4.31! becomes

~A22%2 %̄ !~A814m1m̄ !C̃3B5~Z815p2 t̄ !~Z2t1p̄ !~A2% !C4B13C2~A1%2 %̄ !C4B

23~Z8% !~Z2t!C4B .

From ~4.16! this may be rewritten as a wavelike perturbation equation forC̃3B:

@~A22%2 %̄ !~A814m1m̄ !2~Z815p2 t̄ !~Z2t1p̄ !23C2#C̃3B

53@C2~2%2 %̄ !2~Z8% !~Z2t!#C4B . ~4.32!

In a similar fashion, using~4.17! and~4.19! we derive the following perturbation equation fo
C̃2B:

@~A23%22%̄ !~A814m1m̄ !2~Z815p22t̄ !~Z22t1p̄ !1„~A1 %̄ !m2~Z81 t̄ !t…#C̃2B

56%C2~%2 %̄ !C4B13%C2C̃3B24~Z8% !~Z2t1p̄ !C̃3B

12~t1p̄ !~Z8% !C̃3B1C̃3B~A22%̄ !@~Z81 t̄ !t2~A1 %̄ !m# ~4.33!

Using ~2.1! and ~2.4!, the right-hand side simplifies to

6%C2~%2 %̄ !C4B22~Z8% !~2Z23t1p̄ !C̃3B12C̃3B@~A22%̄ !Z8t2%̄~Z1p̄ !p#.

In this form, it is easy to recover the Schwarzschild result, since the right-hand side collap
p50 andC25C̄2 ~which implies%5 %̄ !.

The identities~4.17! and~4.19! also allow us to derive another perturbation equation forC̃3B.
The resulting equation can be seen to be identical with~4.32!, as we would expect, using th
Newman–Penrose commutators@A, A8# and @Z, Z8#. Equivalent forms of equation~4.32! are

@~A814m1m̄ !~A23% !2~Z814p22t̄ !~Z22t!1„~A1 %̄ !m2~Z81 t̄ !t…#C̃3B

53@~2%2 %̄ !C22~Z8% !~Z2t!#C4B2~%2 %̄ !~A814m1m̄ !C̃3B ~4.34!

or

@~A814m1m̄ !~A22%2 %̄ !2~Z814p22t̄ !~Z22t!12C22C̄212%̄m13~Zp!2~Z8p̄ !#C̃3B

53@~2%2 %̄ !C22~Z8% !~Z2t!#C4B . ~4.35!

Furthermore, we may derive a higher-order decoupled equation governingC̃3B from Eq.
~4.32!, using the commutator~2.5!, Eqs.~2.1! and~2.3!, and the Bianchi identity~4.16!. The result
is
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$~A26%2 %̄ !„~A24%2 %̄ !@~A22%2 %̄ !~A814m1m̄ !2~Z815p2 t̄ !~Z2t1p̄ !23C2#

23@C2~2%2 %̄ !2~Z8% !~Z2t1p̄ !#…26%C2~%2 %̄ !%C̃3B50. ~4.36!

This equation is fourth order in time, and hence may include solutions which are unphysical
is, the solution space is larger than for Eq.~4.32!. However, such equations may be useful if t
background geometry does not give rise to separable wave equations. Below, in Sec. V
consider how a second-order equation forC̃3B may be derived from~4.32!.

D. Transformations between the perturbation equations

As with the Maxwell equations of the previous section, the Bianchi identities now
provide natural transformation identities relating the perturbation equations above.

From the complex conjugate of~2.5! @with (p,q)5(23,21) and (a,b)5( 32,
5
2)#,

~A22%2 %̄ !~Z814p2 t̄ !5~Z815p2 t̄ !~A2%2 %̄ !23~Z8% !, ~4.37!

and using~2.5! @with (p,q)5(24,0), (a,b)5(3,0)#,

~A2%2 %̄ !~Z2t!5~Z2t1p̄ !~A2% !, ~4.38!

we derive the following commutation relation for quantities of (p,q)-type ~24,0!:

~A22%2 %̄ !@~A814m1m̄ !~A2% !2~Z814p2 t̄ !~Z2t!23C2#

5@~A22%2 %̄ !~A814m1m̄ !2~Z815p2 t̄ !~Z2t1p̄ !23C2#~A2% !

23@C2~2%2 %̄ !2~Z8% !~Z2t!#. ~4.39!

Now, from ~4.16! and ~4.30!, and using~4.39!, we see that

05~A22%2 %̄ !@~A814m1m̄ !~A2% !2~Z814p2 t̄ !~Z2t!23C2#C4B

5@~A22%2 %̄ !~A814m1m̄ !2~Z815p2 t̄ !~Z2t1p̄ !23C2#C̃3B

23@C2~2%2 %̄ !2~Z8% !~Z2t!#C4B , ~4.40!

and thus we derive the perturbation equation forC̃3B from ~4.30! by differentiation.
For the transformation fromC̃3B to C̃2B we use the perturbation equation~4.34! for C̃3B.

First, from Eq.~2.3! we see that

A~%2 %̄ !5~%2 %̄ !~A1%1 %̄ !.

Now acting on Eq.~4.34! with ~A23%22%̄! produces

~A23%22%̄ !@~A814m1m̄ !~A23% !2~Z814p22t̄ !~Z22t!1~~A1 %̄ !m2~Z81 t̄ !t !#C̃3B

53~A23%22%̄ !@~2%2 %̄ !C22~Z8% !~Z2t!#C4B2~%2 %̄ !~A22%2 %̄ !~A814m

1m̄ !C̃3B . ~4.41!

From Eq.~4.32! the right-hand side of this becomes

3~A24%2 %̄ !@~2%2 %̄ !C22~Z8% !~Z2t!#C4B2~%2 %̄ !@~Z815p2 t̄ !~Z2t1p̄ !13C2#C̃3B
~4.42!
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¬¬¬¬¬¬¬¬¬¬
or

2~%2 %̄ !@~Z815p2 t̄ !~Z2t1p̄ !13C2#C̃3B

13C2~2%2 %̄ !C̃3B16%C2~%2 %̄ !C4B23~Z8% !~Z2t1p̄ !C̃3B

from ~2.5! @with (p,q)5(24,0) and (a,b)5(3,0)#, Eqs.~2.1!, ~2.3!, and~4.16!, and using the fact
that ~A23%!Z8%50.

Now using the complex conjugate of the commutator~2.5! @with (p,q)5(22,0) and (a,b)
5(2,3)# and ~2.5! @(p,q)5(23,1), (a,b)5( 72,

2
1)#

~A23%22%̄ !~Z814p22t̄ !~Z22t!

5~Z815p22t̄ !@~Z22t1p̄ !~A22%2 %̄ !1~Z%̄ !#22~Z8% !~Z22t!.

Applying this toC̃3B, usingZ%5t(%2%) from Eq. ~2.3!, and making some simplifications, w
have

~A23%22%̄ !~Z814p22t̄ !~Z22t!C̃3B

5~Z815p22t̄ !~Z22t1p̄ !C̃2B1@~%2 %̄ !~Z815p2 t̄ !1„~Z82 t̄ !~%2 %̄ !…#

3~Z2t1p̄ !C̃3B22~Z8% !~Z22t!C̃3B .

Therefore, the left-hand side of Eq.~4.41! becomes

@~A23%22%̄ !~A814m1m̄ !2~Z815p22t̄ !~Z22t1p̄ !1~~A1 %̄ !m2~Z81 t̄ !t !#

3~A23% !C̃3B2~%2 %̄ !~Z815p2 t̄ !~Z2t1p̄ !C̃3B2~~Z82 t̄ !~%2 %̄ !!

3~Z2t1p̄ !C̃3B12~Z8% !~Z22t!C̃3B1C̃3B~A22%̄ !@~A1 %̄ !m2~Z81 t̄ !t#.

Combining left and right sides and from~2.3! we see that

@~A23%22%̄ !~A814m1m̄ !2~Z815p22t̄ !~Z22t1p̄ !1~~A1 %̄ !m2~Z81 t̄ !t !#

3~A23% !C̃3B

53%C2C̃3B16%C2~%2 %̄ !C4B2C̃3B~A22%̄ !@~A1 %̄ !m2~Z81 t̄ !t#

12~Z8% !~t1p̄ !C̃3B24~Z8% !~Z2t1p̄ !C̃3B ,

which becomes the equation~4.33! for C̃2B, using~4.17!. Thus we have derived equation~4.33!
from ~4.32! by differentiation.

The transformation fromC4B to C̃2B is achieved by a combination of the above transform
tions; that is,

C̃2B5~A23% !~A2% !C4B . ~4.43!

This transformation identity agrees with the results of Sasaki and Nakamura3,5 and
Chandrasekhar,4 in the sense described below. The essential feature of the transformation is
consists of twoA operators.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



cond-

d
n time,
ibility

tetrad

are

343J. F. Q. Fernandes and A. W. C. Lun: Gauge invariant perturbations of black holes. II

¬¬¬¬¬¬¬¬¬¬
V. COORDINATE RESULTS

Here we will consider two important issues. First, whether it is possible to derive a se
order perturbation equation forC̃3B and, second, how~4.43! gives rise to a transformation from
the Teukolsky equation to a~separable, homogeneous! Regge–Wheeler-like equation.

A. Second-order perturbation equation for C̃3B

As mentioned above, higher-order equations like~4.36! may be of use if the backgroun
geometry does not give rise to separable wave equations. However, since it is fourth order i
Eq. ~4.36! may contain solutions which are unphysical. Therefore we investigate the poss
that a second-order equation forC̃3B may be derived from~4.32!, using the fact thatC4B satisfies
the Teukolsky equation, which is separable.

Kerr space–time may be described in the Newman–Penrose formalism using the null
~see Ref. 4!

l a5
1

D
~r 21a2,D,0,a!,

na5
1

2~r 21a2 cos2 q!
~r 21a2,2D,0,a!, ~5.1!

ma5
1

~r1 ia cosq!A2
~ ia sin q,0,1,i cosecq!,

with

D:5r 222Mr1a2

whereupon, in addition tok5s5l5n5e50, we have4

%52
1

S
, m52

D

2S2S̄
, g5m1

r2M

2SS̄
, b5

cot q

S̄2A2
,

p5
ia sin q

S2A2
, t52

ia sin q

SS̄A2
, a5p2b̄,

and

C252
M

S3

or

S:5~r2 ia cosq!5S 2
M

C2
D 1/3.

So, in the absence of the rotation group SO~3! in the background, the complex curvatureC2
canonically defines the coordinatesr andq in this way. In the absence of curvature, while bothM
andC2 vanish individually, their quotient is well behaved. Thus the coordinate results below
also valid in the Schwarzschild and flat space–time cases.

From ~2.1!, we have
J. Math. Phys., Vol. 38, No. 1, January 1997
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AS52%S, A8S5mS, ZS52tS, Z8S5pS. ~5.2!

It is well known that 4S4C4B satisfies the coordinate form of the Teukolsky equation,
that this may be separated4,8 according to the ansatz

4S4C4B5G22~r !S22~q!eimw1 ivt.

Furthermore, from Ref. 4,

L21L2
†S225~6av cosq2x!S22 ~5.3!

wherex is the separation constant, and

L0 :5SA2m̄a
]

]xa 5
]

]q
1av sin q1m cosecq,

L 0
† :5S̄A2m̄a

]

]xa 5
]

]q
2av sin q2m cosecq,

L j :5L01 j cot q,

Lk
† :5L0

†1k cot q

for quantities with the givent- andw-dependence.
Using the derivatives ofS above, Eq.~4.18! may be written

@~Z82 t̄ !~Z13t!13C2#S
4C4B5S4~A814m1m̄ !C̃3B . ~5.4!

Now, S4C4B can be isolated if we are able to divide by the eigenvalue of the operator o
left-hand side. If this is possible, then substitution into the right-hand side of~4.32! produces a
second-order wavelike equation forC̃3B. This is analogous to the approach we used in Pape

SinceC4B is of (p,q)-type ~24,0!, we have

~Z82 t̄ !~Z13t!S4C4B5~ d̄13a1b̄2 t̄ !~d14b13t!S4C4B .

Expanding in coordinates according to the tetrad~5.1!, and assuming the time and azimuth
dependence as given above, it is not difficult to show that this becomes

1

2SS̄
FL21L 2

†2
6ia sin q

S
~av sin q1m cosecq2cot q!1

6a2 sin2 q

S2 GS4C4B

or, from ~5.3!,

1

2SS̄
F6av cosq2x2

6ia sin q

S
~av sin q1m cosecq2cot q!1

6a2 sin2 q

S2 GS4C4B .

Hence, in coordinates, and adopting the separation ansatz above, Eq.~5.4! may be written

S4C4B5AS4~A814m1m̄ !C̃3B

or

C4B5A~A814m1m̄ !C̃3B , ~5.5!
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where

A21:5
1

2SS̄
F6av cosq2x2

6ia sin q

S
~av sin q1m cosecq2cot q!

1
6a2 sin2 q

S2 2
6M S̄

S2 G .
Substituting~5.5! into the right-hand side of Eqs.~4.32!, we derive

@~A22%2 %̄ !~A814m1m̄ !2~Z815p2 t̄ !~Z2t1p̄ !23C2#C̃3B

53@C2~2%2 %̄ !2~Z8% !~Z2t!#A~A814m1m̄ !C̃3B ,

which may be simplified to produce the following second-order decoupled, although pa
nonseparable, perturbation equation forC̃3B:

@~A1%~W 22!2 %̄ !~A814m1m̄ !2~Z815p2 t̄ !~Z2t1p̄ !23C2#C̃3B50, ~5.6!

where

W 52
3

%
@C2~2%2 %̄ !2~Z8% !~Z2t!#A.

This second-order equation looks quite similar to the one found in Paper I, governin
spin-weight21 perturbed gravitational fieldĈ3B. In fact in the limita→0, it is straightforward to
show that

W 5
6r 2C2

x26r 2C2
,

in complete agreement with the Schwarzschild case.

B. Deriving a Regge–Wheeler-like equation

In light of the results of the previous section, one may consider how to derive a si
second-order decoupled equation forC̃2B. In the absence of such an equation, it is worthwh
investigating the possibility of deriving, from the Teukolsky equation, a gravitational perturb
equation which is separable, decoupled and short range. If it also reduced to the Regge–W
equation for gravitational perturbations in the Schwarzschild limit, this equation would be a
gous to, and in some respects more useful than, the equation~4.33! above. The value of such a
equation is well understood: while the Teukolsky equation in coordinates is separable, it co
long-range terms in its effective potential. On the other hand, Eq.~4.33! is not separable, bu
reduces to the Regge–Wheeler equation, with short-range effective potential, in the Schwar
limit. Using coordinate-based and gauge-dependent methods, Chandrasekhar,4 and Sasaki and
Nakamura5 constructed transformations between the Teukolsky equation and a Regge–Wh
like perturbation equation, possessing all of the these desirable properties.

Before proceeding further with the gravitational case, we briefly consider the separabi
the electromagnetic perturbation equations. The electromagnetic Teukolsky equation in c
nates is separable but possesses a long-range effective potential. On the other hand, the Fa
Ipser equation is not separable, but reduces to the Regge–Wheeler equation for electrom
perturbations of the Schwarzschild space–time. The Regge–Wheeler equation is both se
J. Math. Phys., Vol. 38, No. 1, January 1997
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and short range. The analogous question in this case then, is how can one construct a se
equation for the electromagnetic perturbations of Kerr space–time, with short-range eff
potential, and which also reduces to the Regge–Wheeler equation?

Consider the identity

F̃1B :5~Z812p!F1B5~A2% !F2B , ~5.7!

which relates the Teukolsky field quantityF2B to F1B. The reason we use~5.7!, rather than

~pZ1tZ8!F1B5p~A81m!F0B1t~A2% !F2B

or

~mA1%A8!F1B5m~Z81p!F0B1%~Z2t!F2B ,

which follow from the Maxwell equations, will become evident when we consider the gra
tional case below.19

From Eq.~3.12! it is clear thatF̃1B satisfies

@~A22%2 %̄ !~A812m1m̄ !2~Z813p2 t̄ !~Z2t1p̄ !#F̃1B52~Z8% !~Z2t!F2B , ~5.8!

which is neither decoupled or separable, but which reduces to the Regge–Wheeler equatio~more
preciselyZ8 acting on the Regge–Wheeler equation! in the Schwarzschild limit, after expanding i
coordinates and spin-weighted spherical harmonics.

From Eqs.~5.2!, ~5.7! can be written

F̃1B5
1

2S
AS 2S2F2B

S D . ~5.9!

Define the new quantity

R21 :52S3F̃1B . ~5.10!

In the Schwarzschild limit, this becomes

R2152r 3Z8F1B

or, in coordinates,

R215A2r 2L0F1B .

This quantity is separable~in the Schwarzschild case!, and the radial part satisfies the Regg
Wheeler wave equation.

The identity~5.9! may be written

R215S2D0S T21

S D , ~5.11!

where

T2152S2F2B5G21~r !S21~q!ei ~mw1vt !

is the usual Teukolsky field variable, and
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D0 :5 l a“a5
]

]r
1

~r 21a2!iv

D
1
aim

D
.

While T21 is separable in the sense described above, it is clear thatR21 is not.
Introducing the slightly modified quantity

R21* 5S
*
2
D0S T21

S*
D

whereS* 5 Ar 21a2, we see thatR21* is separable, and in fact it coincides with~5.11! when
a→0. Following the argument presented in Sasaki and Nakamura,5 it is possible to show tha
R21* also satisfies an equation with short-range effective potential. The proof is quite compli
and is best achieved using an algebraic computing package. The equation reduces to the
Wheeler equation for electromagnetic perturbations in the Schwarzschild case, by construc
is in this sense that the Fackerell–Ipser equation which we considered previously can be
separable~see also Ref. 4!.

Now, following this line of argument, the transformation identity~4.43!, which relates the
spin-weight22 Teukolsky equation to the equation~4.33! for C̃2B, can be written

C̃2B5
1

4S2 AAS 4S4C4B

S2 D . ~5.12!

Defining the new quantity

R22 :54S5C̃2B , ~5.13!

we see that, analogously to the electromagnetic result above, the radial part of this qu
corresponds to the Regge–Wheeler field in the Schwarzschild case, satisfying the Regge–W
gravitational wave equation in coordinates~after expanding in spin-weighted spherical harmo
ics!.

Thus, our transformation identity becomes

R225S3D0D0S T22

S2 D . ~5.14!

Now, while T22 is separable, it would seem thatR22 is not separable. Therefore, introducing

R22* :5S
*
3
D0D0S T22

S
*
2 D , ~5.15!

we see thatR22* is separable, and it coincides with~5.14! whena→0. In fact, in the Schwarzs
child limit, ~5.15! compares very favorably with our Schwarzschild result@Paper I, Eq.~3.85!#
and, as discussed at length in Paper I, agrees with the transformation provided by Sas
Nakamura5 and Chandrasekhar.4 In the Kerr case, the relation~5.15! is precisely the one which
Sasaki and Nakamura found from another point of view@see Sasaki and Nakamura’s5 equation
~2.13!, with f5g5h51#. As shown by Sasaki and Nakamura, the quantityR22* satisfies a~ho-
mogeneous, decoupled and separable! Regge–Wheeler-like differential equation~with short-range
effective potential! in the Kerr case, after separating the variables in the usual way.

So in both the electromagnetic and gravitational cases, the Teukolsky equations m
transformed into Regge–Wheeler-like equations. These equations have short-range effec
tentials, and agree with the Regge–Wheeler wave equation in coordinates, when the a
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
momentum parameter vanishes. Now, if it were possible to reconstructC4B andF2B from the
quantitiesRS* , we could completely determine our gauge invariant field quantities as well.

Further coordinate results, including the coordinate expansion of the perturbation equ
will be left for future consideration.

VI. DISCUSSION

As in the Schwarzschild case, we have been able to derive a system of gauge in
perturbation equations from the perturbed Bianchi identities. This is possible after the iden
tion of the natural gauge invariant field quantities which arise in the perturbed Bianchi iden
and after the identities are rewritten in a form involving only these quantities.

The perturbed Bianchi identities also yield transformations which link each perturbation
tion to each other. In this paper we have only considered the transformationsC4B→C̃3B→C̃2B. In
a more complete treatment of the perturbations of the Kerr space–time, the transformations
opposite direction will also have to be investigated, and we leave this for future consider
These results give gauge invariant and geometric meaning to the transformations deriv
Sasaki and Nakamura3,5 and Chandrasekhar4 between the Teukolsky equation and a Regg
Wheeler-like equation. The essential feature of this transformation is that it consists of a p
radial differential operators, after specifying the time and angular dependence.

Importantly, much of the structure embedded in the perturbed Bianchi identities in
Schwarzschild background is also present in the Kerr case. However, the presence of a
momentum manifests itself in three important ways:

First, unlike in the Schwarzschild case, where the background is spherically symmetric
we are not able to expand the perturbed fields in spherical harmonics, in general. The conse
is that our gauge invariant field quantities each have spin-weight22 ~or 12!. Furthermore, this
suggests that a simple gauge invariant spin-weight 0 gravitational perturbation equation do
exist in the Kerr case.

Second, the~wavelike! gravitational perturbation equations are not homogeneous in gen
In fact, the only homogeneous wave equation which arises in this way is the well-known Te
sky equation. However, we have shown how a higher-order decoupled perturbation equat
C̃3B can be derived, and how a decoupled second-order wave equation forC̃3B may be found,
after the introduction of coordinates. Importantly, each equation reduces to its correct Sch
child form whenp50 andC25C̄2 ~which corresponds toa50!.

Third, whereasC4B can be made separable in the usual sense by multiplication
~r2 ia cosq!4 ~see Refs. 4 and 8!, the same may not be true forC̃3B or C̃2B. This can be seen
clearly, for example, whenC̃2B is written in terms ofC4B in Eq. ~5.14!, and the issue has bee
addressed by Sasaki and Nakamura3,5 and Chandrasekhar,4 as well as above. In particular, we hav
shown how the transformation identities arising from the perturbed Maxwell equations an
perturbed Bianchi identities suggest how to construct the transformations from the Teuk
equations to separable, decoupled, and homogeneous Regge–Wheeler-like equations, and
relates to the work of Sasaki and Nakamura.5

Given the success of the techniques presented in treating the perturbations of the Sch
child and Kerr space–times, our attention turns to the electrovac cases. In the Reissner–No¨m
case, these techniques can be extended to treat the coupled gravitational–electrom
perturbations.20 We have been able to rewrite the perturbed Bianchi identities and Maxwell e
tions in terms of the gauge invariant gravitational and electromagnetic perturbation field qua
which arise in that case. The integrability conditions provide equations for the cou
gravitational–electromagnetic perturbations of the Reissner–Nordstro¨m space–time. The result
in the Reissner–Nordstro¨m case throw some light on the complicated nature of the coupling o
electromagnetic perturbations to the geometry, without the added complexity of angular m
tum in the background space–time. In the spin-weight 0 case, the equations decouple,11,12provid-
ing two Regge–Wheeler-like equations for the electromagnetic and gravitational perturbati
J. Math. Phys., Vol. 38, No. 1, January 1997
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Reissner–Nordstro¨m space–time. This extends the work of Price21 on the spin-weight 0 pertur
bations of Schwarzschild space–time, and also agrees precisely with the results of Mon22

thus establishing a link between the Newman–Penrose and Hamiltonian approaches to pe
tions.

It is hoped that this work will lead to a deeper understanding of the perturbations of sp
times, and will enable the extension of this approach further to the perturbations of the
Newman space–time. Although the perturbations of the Kerr–Newman space–time have
many attempts at clarification previously, our preliminary results indicate that these gauge
ant techniques may be applied in that case as well. The main problem to be addressed will
to the combined effects of angular momentum and charge in the background. Nevertheless,
hopeful that we can derive similar results for the coupled electromagnetic–gravitational per
tions of the Kerr–Newman black hole, and this will be the subject of a future communicati
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Dynamics of compact homogeneous universes
Masayuki Tanimoto,a) Tatsuhiko Koike,b) and Akio Hosoyac)
Department of Physics, Tokyo Institute of Technology, Oh-Okayama 2-12-1, Meguro-ku,
Tokyo 152, Japan

~Received 16 May 1996; accepted for publication 15 August 1996!

A complete description of dynamics of compact locally homogeneous universes is
given, which, in particular, includes explicit calculations of Teichmu¨ller deforma-
tions and careful counting of dynamical degrees of freedom. We regard each of the
universes as a simply connected four-dimensional space–time with identifications
by the action of a discrete subgroup of the isometry group. We then reduce the
identifications defined by the space–time isometries to ones in a homogeneous
section, and find a condition that such spatial identifications must satisfy. This is
essential for explicit construction of compact homogeneous universes. Some ex-
amples are demonstrated for Bianchi II, VI0, VII 0, and I universal covers. ©1997
American Institute of Physics.@S0022-2488~96!02512-1#

I. INTRODUCTION

In relativistic and observational cosmology, we often use a simplified space–time m
having restricted dynamical degrees of freedom. In particular, the well-known homogeneou
isotropic ~FRW! models,1 in which the spatial sections are assumed to be homogeneous
isotropic, have been successful. On the other hand, a wider class of models, known as the
homogeneous models,2–4 in which the spatial sections are assumed to be homogeneous bu
isotropic, have been largely used in relativity and quantum cosmology.3,5,6 In the models excep
type IX, each spatial section has been regarded asopen. The open topology, however, is not a so
possibility. For example, the ‘‘open’’ model in the homogeneous and isotropic models, whic
constant negative spatial curvature, and belongs to Bianchi type V, can be regarded to be s
compact if spatial points are appropriately identified with some discrete subgroup of the iso
group. The purpose of this paper is, in fact, to investigate a class of the models in which
spatial section hascompacttopology. The compactness of space is physically reasonable due
finite spatial volume.

The crucial point of the arguments in this paper is that the compactness of locally hom
neous space, in general, brings about new degrees of freedom of deformations, known in
ematics as Teichmu¨ller deformations. They preserve the local geometry but change the globa
This can be easily understood if we regard the Teichmu¨ller deformations of a compact locall
homogeneous space as a homogeneous space~i.e., a covering space! with varying identifications.
A space spanned by independent Teichmu¨ller deformations and its coordinates are referred to
theTeichmu¨ller spaceand theTeichmu¨ller parameters, respectively. We shall shed light on the
degrees of freedom of the Teichmu¨ller deformations, which in fact have been often disregarded
far. The field of~211!-gravity7 was exceptional, but we shall take a somewhat different appro
The Teichmu¨ller deformations are of great interest, because they would carry part of the dyn
cal degrees of freedom. We shall give a complete framework to do a concrete analysis conc
the Teichmu¨ller deformations. We also carefully count the total dynamical degrees of freed

a!Present address: YITP, Kyoto University, Kyoto 606-01, Japan.
Electronic mail address: tanimoto@yukawa.kyoto-u.ac.jp

b!Present address: Department of Physics, Keio University, Hiyoshi, Yokohama, Kanagawa 230, Japan.
Electronic mail address: koike@rk.phys.keio.ac.jp

c!Electronic mail address: ahosoya@th.phys.titech.ac.jp
0022-2488/97/38(1)/350/19/$10.00
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In Ref. 8, referred to as I hereafter, we presented a treatment of three-dimensional co
homogeneous Riemannian manifolds, which will be a basis of our arguments in the presen
We, there,~1! gave the possible eight types~a–h! of homogeneous universal covers, which a
closely related to Thurston’s eight geometries,9,10 ~2! classified compact quotients~a1/1,b/1, etc.!,
and ~3! gave Teichmu¨ller spaces by explicitly finding embeddings of covering groups in
isometry groups of the universal covers, which enables us to perform explicit calculation
investigate the dynamics of compact homogeneous universes, we must first show how w
adapt such knowledge of compact homogeneous three-manifolds in the context of relativity
dimensions.

Our strategy to this will be as follows. We begin with considering a four-dimensional un
sal cover ((4)M̃ ,g̃ab), which is a simply connected Lorentzian manifold, and then take identifi
tions in ((4)M̃ ,g̃ab) so as to make each three-surface (M̃ t ,h̃ab) compact. To utilize our knowledge
about compact homogeneous three-manifolds, we translate the identifications in ((4)M̃ ,g̃ab) into

those in (M̃ t ,h̃ab). We find that the identifications must beextendible isometriesof (M̃ t ,h̃ab),
which have natural extention in ((4)M̃ ,g̃ab). We make (M̃ t ,h̃ab) compact by the action of a

discrete subgroupG of the group EsomM̃ t,IsomM̃ t of extendible isometries, where IsomM̃ t is
the isometry group of (M̃ t ,h̃ab). Once givenG,EsomM̃ t on (M̃ t ,h̃ab), all necessary identifica

tions in ((4)M̃ ,g̃ab) are automatically determined by the natural extension ofG. The quotient
((4)M ,gab) is a solution of a local equation, e.g., Einstein’s equation, if and only if (

(4)M̃ ,g̃ab) is
a solution of the same equation.

The organization of this paper is as follows. In Sec. II, we first give the definition of Te
müller deformations, and then briefly review the classification of compact homogeneous
manifolds given in I. In Sec. III, we establish the prescription for identifications, and dis
possible four-dimensional universal covers. We also discuss how we can eliminate the ‘‘g
degrees of freedom, and thereby we give how to find the dynamical degrees of freedom. I
IV, we apply the framework of the previous section to concrete models. There, we give the
development of the Teichmu¨ller parameters, establish the dynamical variables, and give the n
ber of the dynamical degrees of freedom for each case. The final section is devoted to concl
We employ the abstract index notation~see, e.g., Ref. 4! throughout this paper.

II. PRELIMINARIES

We give definitions of Teichmu¨ller deformations in the first subsection. In the next subsect
we briefly sketch the classification scheme, given in I, of compact homogeneous three-man
though we will not duplicate the results of the classification. This will be helpful for the su
quent discussions. For the explicit results, see Tables 1 and 211 in I, and section V of I. We
consider only complete Reimannian manifolds, and shall drop the word ‘‘complete’’ hereaf

A. Teichmü ller deformations

We define Teichmu¨ller deformations of a Riemannian manifold (M ,hab) as follows.
Definition 1 (Teichmu¨ller deformations): Let (M,hab) be a Riemannian manifold. Then, smoo

and nonisometric deformations of hab are called Teichmu¨ller deformations if they leave the un
versal cover (M̃,h̃ab) globally conformally isometric.

In this definition, a globally conformal isometry means a conformal isometry withconstant
conformal factor. For definition of coverings, see, e.g., Ref. 12.

Teichmüller deformations are, in other words, deformations induced by variations of a
ering groupG of the universal cover (M̃ ,h̃ab). Here, a covering groupG is a representation~or an
embedding! of the fundamental groupp1M into IsomM̃ , the isometry group of (M̃ ,h̃ab), where
M can be realized asM̃ /G. We denote the space of all covering groups as Rep~p1M ,IsomM̃ !.
Note that not all variations ofG correspond to independent Teichmu¨ller deformations. In fact, two
Riemannian manifoldsM̃ /G8 andM̃ /G are isometric if
J. Math. Phys., Vol. 38, No. 1, January 1997
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G85a+G+a21 ~1!

holds for an isometryaPIsomM̃ . G8 is called theconjugationof G by a. If we denote the
equivalence relation by conjugation as;, the Teichmu¨ller space, Teich(M ,h̃ab), for M and h̃ab ,
is defined as

Teich~M ,h̃ab!5Rep~p1M ,IsomM̃ !/;. ~2!

Although in this paper we are interested only in locally homogeneous metrics, it is w
noting that the definition of Teichmu¨ller deformations here concerns wider classes of metrics.
example, even though the universal cover admits only one Killing vector, the quotients
smoothly deform if we smoothly vary the identifications along the Killing orbit.

B. The classification of compact homogeneous three-manifolds

We briefly sketch the classification scheme, given in I, of compact homogeneous
manifolds.

Consider a pair (M ,G) of a manifoldM and a groupG acting transitively onM with compact
isotropy subgroup. Note that we can construct a homogeneous manifold (M ,hab) by first giving an
arbitrary metric at a pointp in M , averaging it by the isotropy subgroup, then finally sending it
the actions ofG. SinceG is transitive, the resulting metrichab is guaranteed to be homogeneou
The isometry group of (M ,hab) would be isomorphic toG, or containG as a subgroup of the
isometry group. Note that if we give various metrics atp, then we obtain many homogeneo
metrics onM . Hence the pair (M ,G) can be considered as an equivalence class of homogen
manifolds whose isometry groups are isomorphic toG, or containG as a subgroup of the isometr
groups. Such a pair (M ,G) is called ageometry. If two geometries (M ,G) and (M ,G8) have an
inclusion relationG,G8, then (M ,G) is called asubgeometryof (M ,G8). If geometry (M ,G) is
not a subgeometry of any geometry, then (M ,G) is called amaximalgeometry, and if geometry
(M ,G) does not have any subgeometry, then (M ,G) is called aminimalgeometry.

Our starting point of classification of compact homogeneous manifolds is following Th
on’s theorem.9

Theorem 1: Any maximal, simply connected three-dimensional geometry which adm
compact quotient is equivalent to the geometry~M, IsomM! where M is one of E3, H3, S3, S23R,
H23R, SL~2,R!, Nil, andSol.

A brief proof and accounts of the eight geometries in the theorem are found in Ref. 10
Note that this theorem concerns onlymaximalgeometries. This seems, however, too restric

for our purpose. For example, while we are interested in the closed FRW universe, of wh
spatial section corresponds to maximal geometry„S3,SO~4!…, we are also, and maybe mor
interested in the Bianchi IX universe, of which a spatial section is subgeometry„S3,SU~2!… of
geometry„S3,SO~4!…. Hence we should concern allnonmaximalgeometries which admit compac
quotients, too. The above theorem, however, is still of great use, because of the followin
That is, the ‘‘maximized’’ geometry of any nonmaximal geometry admitting a compact quo
must admit a compact quotient, because the group of the maximal geometry must conta
covering group which makes the nonmaximal geometry compact, and it must make the m
geometry compact. This simple fact and Thurston’s theorem lead us to the investigation
possible subgeometries of Thurston’s eight maximal geometries. Of course, we must note t
all subgeometries of the eight geometries admit compact quotients. We need to check ex
that the subgeometry certainly admits a compact quotient.

Although, as we have seen, the use of ‘‘geometry’’ is convenient to carry out classificati
homogeneous manifolds, it is useful to switch to the conventional ‘‘Riemannian manifold’’
resentation for physical applications. As we have noted, a geometry is an equivalence c
homogeneous Riemannian manifolds. LetR be the set of all homogeneous manifolds belonging
J. Math. Phys., Vol. 38, No. 1, January 1997
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a geometry, and letR̄ be the quotient set ofR by all possible diffeomorphisms and global
conformal transformations. Our classification for all possible universal covers admitting com
quotients is described in terms ofR̄s. In I, we labeled thoseR̄s as ‘‘a1, a2, b, c,...,h’’. For each
element of quotientR̄, we choose a representative element (M ,hab), and call metrichab the
representative metricor thestandard metric, whose explicit form for each type is also given in

In getting the standard metrics, the Bianchi–Kantowski–Sachs–Nariai~BKSN!
classification13–15 is useful, which concerns all minimal three-geometries.

Theorem 2: Any minimal, simply connected three-dimensional geometry is equivale
~M,G! where M5R3,G5one of Bianchi I to Bianchi VIII groups; M5S3, G5Bianchi IX group; or
M5S23R, G5SO~3!3R.

This is useful in that the invariant metrics for these groups are well known. These geom
are called the BKSN minimal geometries. We take this opportunity to show the corresponde
Thurston’s eight geometries and the BKSN minimal geometries, which is shown in Table I.~Such
a correspondence was first pointed out by Fagundes16 without referring to subgeometry.!

It should be noted that anR̄ does not always correspond to a single geometry, though
converse is true. For example, consider Bianchi I minimal geometry~R3,R3!, where the leftR3

stands for the manifold homeomorphic toR3, while the rightR3 stands for the three-dimension
translation group acting on the manifoldR3. Then the correspondingR is the set of Riemannian
manifolds ~R3, hab!s, wherehab5hmn(dx

m)a(dx
n)b with hmn being positive definite symmetric

333 matrix. All such~R3,hab!s, however, are isometric to~R3,hab!, wherehab is the standard
Euclid metric hab5dmn(dx

m)a(dx
n)b . We thus haveR̄5$~R3,hab!%. On the other hand, it is

manifest that maximal geometry„R3,IO~3!… also gives rise to the sameR̄, since IO~3! is the
isometries ofhab . ~The R̄ of this example is classified to typea2 in our classification. Similarly,
Bianchi types II, VII0, and VI0 give rise, respectively, to universal cover typesb, a1, and f , on
which compact models will be discussed specifically in subsequent sections.!

Let us summarize the actual procedure for our classification. First, list Thurston’s eigh
ometries and all their subgeometries. Enumerate all possible compact quotients of Thurston
geometries, and check whether the subgeometries admit them. Find outR̄s for the subgeometrie
which admit a compact quotient. Note that this includes the explicit determinations of the sta
metrics. This completes the classification of the universal covers which admit a compact qu
The classification of the compact quotients that those universal covers admit can be carried
using the results in Refs. 17–19. The Teichmu¨ller parameters are usually defined as compone
of the identification generators acting on the standard metric. Our classification, as a
consists of the classification of universal covers, the classification of compact quotients
explicit parametrizations of the Teichmu¨ller spaces.

TABLE I. The correspondence between Thurston’s maximal geometries and BKSN minimal geometries. BI is an
viation for Bianchi I group, and similar for BII, BIII, etc. KSN is equivalent to IsomS23IsomR. The missing Bianchi
types IV and VIa do not admit compact quotients.

Thurston’s maximal geometries BKSN minimal geometries

~E3,IsomE3! ~R3,BI!, ~R3,BVII 0!
~H3,IsomH3! ~R3,BV!, ~R3,BVII a!
~S3,IsomS3! ~S3,BIX!

~S23R,IsomS23R! ~S23R,KSN!
~H23R,IsomH23R! ~R3,BIII !

„SL~2,R!, Isom SL~2,R!… ~R3,BVIII !, ~R3,BIII !
~Nil,Isom Nil! ~R3,BII!
~Sol,Isom Sol! ~R3,BVI0!
J. Math. Phys., Vol. 38, No. 1, January 1997
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III. THE FRAMEWORK OF CONSTRUCTION

In the first subsection, we show a method of construction of compact homogeneous univ
and then in the second subsection, we discuss the dynamical degrees of freedom of a sy
compact homogeneous universes. Note, however, that the second subsection is not indepe
the first one. Our construction of a system of compact homogeneous universes is completed
discussions there.

A. Universal covers and identifications

We mean by a compact homogeneous universe a smooth Lorentzian four-manifold ((4)M ,gab)
which admits a foliation by compact homogeneous spatial leaves~sections!, and denote the uni-
versal cover of ((4)M ,gab) as ((4)M̃ ,g̃ab). It is important that ((4)M ,gab) inherits all the local
properties from ((4)M̃ ,g̃ab) by a covering map. Hence, we can think that the local and the gl
geometries are carried by the universal cover ((4)M̃ ,g̃ab) and the covering map, respectively, an
thus we can look into them separately. First, we shall consider how we can take the coverin
or ‘‘identifications,’’ when a universal cover ((4)M̃ ,g̃ab) is given. After that, we shall conside
what universal covers are appropriate for our purpose.

The identifications in ((4)M̃ ,g̃ab) act on each homogeneous three-section (M̃ t ,h̃ab) of
t5const, wheret parametrizes the homogeneous sections of ((4)M̃ ,g̃ab). For simplicity, we omit
the argumentt of the metrich̃ab as far as no confusions occur. Let IsomM̃ t be the isometry group
of (M̃ t ,h̃ab). It is very important to note that wecannotmake, in general, the homogeneo
three-manifold (M̃ t ,h̃ab) compact by the action of a discrete subgroup of IsomM̃ t , since for
((4)M ,gab) to be a smooth Lorentzian manifold, the covering group,G, of the section needs to
preserve the extrinsic curvature, as well as the spatial metric. To give a suitable prescrip
compactification, we convert this requirement of the smoothness of ((4)M ,gab) into the following
statement: Since ((4)M ,gab) is obtained by taking identifications in (

(4)M̃ ,g̃ab), for any two points

which are identified, there should exist an isometry of ((4)M̃ ,g̃ab) @not of (M̃ t ,h̃ab)# which maps
one to the other. Hence, if we define theextendible isometry groupof (M̃ t ,h̃ab),
EsomM̃ t,IsomM̃ t , as below, then we obtain a complete prescription for construction
compact homogeneous universe, as shown subsequently.

Definition 2 (Extendible isometry group): Let(M̃ t ,h̃ab) be a spatial section of(
(4)M̃ ,g̃ab). An

extendible isometry is the restriction on M˜t of an isometry of(
(4)M̃ ,g̃ab) which preserves M

˜
t . They

form a subgroup ofIsomM̃t . We call it the extendible isometry group, and denote it
Esom (M̃ t ,

(4)M̃ ), or simply EsomM̃t . Obviously, an extendible isometry aPEsomMt has the
natural extension on(4)M̃ which is an element ofIsom ~4!M̃ and preserves M˜t . We call such the
natural extension on(4)M̃ the extended isometry of a, or simply the extension of a.

Proposition 1: The identifications on an initial surface(M̃ t ,h̃ab) must be implemented in
Esom (M̃ t ,

(4)M̃ ),

G,Esom~M̃ t ,
~4!M̃ !, ~3!

to get a compact homogeneous universe out of a given four-dimensional universal
((4)M̃ ,g̃ab). Moreover, the identifications acting on whole(

(4)M̃,g̃ab) are determined by the action
of the extension ofG on (4)M̃ .

For example, Kasner-type metric,

ds252dt21t2p1 dx21t2p2 dy21t2p3 dz2, ~4!

wherep1–p3 are constants, has Euclid spaces as its spatial part. Suppose (M̃ t ,h̃ab) is such a
Euclid space, where the metric is given by

dl25t2p1 dx21t2p2 dy21t2p3 dz2. ~5!
J. Math. Phys., Vol. 38, No. 1, January 1997
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As long as a generic case is concerned wherepa’s are all different, the~continuous! isometries of
the four-metric~4! are only the translations generated by]/]x, ]/]y, and]/]z, which form group
R3. Since they all preserve the spatial sections, we find Esom0 M̃ t.R3. ~Esom0 M̃ t is the identity
component of EsomM̃ t , and similar for Isom0 M̃ t .! On the other hand, rotations generated
vector

k3[2t2~p12p2!y
]

]x
1tp12p2x

]

]y
, ~6!

and the similar vectors obtained by permutations of indices also form an intrinsic isometry g
SO~3!, of (M̃ t ,h̃ab). This shows Esom0 M̃ tÞIsom0 M̃ t.ISO~3!. On a homogeneous sectio
(M̃ t ,h̃ab), if we choose a covering groupG in EsomM̃ t such as to make (M̃ t ,h̃ab) compact, we
obtain a compact homogeneous universe as a four-dimensional manifold through Proposit

We now discuss what universal covers are appropriate for our purpose. If the topolo
(4)M is fixed, then manifold(4)M̃ is uniquely determined. Hence we only need to consi
possible metrics,g̃abs. Let us consider the case where each homogeneous spatial section (M̃ t ,h̃ab)
corresponds to a Bianchi minimal geometry. It is also straightforward to adapt the follo
description for the KSN minimal geometry. By the definition of our compact homogeneous
verses, the metric should be of the form

ds252N2~ t,x!dt21hab~ t !„Na~ t,x!dt1sa
…„Nb~ t,x!dt1sb

…, ~7!

where ~t,x! are local coordinates,sa the invariant one-forms, anda,b,..., run from 1–3. The
spatial metrichab(t)s

asb is, indeed, homogeneous on each sectiont5const.
For a metric with generic lapse and shift functions, the extendible isometry group EsoM̃ t

contains only the identity element so that we cannot use the prescription for the compactific
One might argue that there would remain the possibility of finding a discrete groupG8 for the
compactification if the lapse and shift functions have some periodicity. However, such a di
group does not contain continuous parameters. Since we are interested in the case of m
number of continuous parameters in the initial identifications, we demand that EsomM̃ t is tran-
sitive and therefore the lapse and shift functions are independent of the spatial coordinatex:

ds252N2~ t !dt21hab~ t !„Na~ t !dt1sa
…„Nb~ t !dt1sb

…. ~8!

This metric takes the following form:

ds252dt21hab~ t !sasb, ~9!

by the induced map of a diffeomorphism which preserves each homogeneous section oft5const.
We shall mainly focus on this type of metrics hereafter.

We here comment on an intuitive prescription for identifications, which is also useful pa
larly for the metric~9!. Note that the normal geodesics emerging from a sectionM̃ t are uniquely
defined, provided that they are parametrized by proper timet. We refer to the exponential ma
exptna(t) which is defined with respect to the normal vector fieldna(t) on M̃ t as thenormal
map. @The image ofM̃ t by the normal map exptna(t) is not generallyM̃ t8 for somet8 when
considering metric~7!. For metric~9!, we of course have exptna(t): M̃ t→M̃ t1t .# Obviously, if
two points,a and b, on M̃ t are identified, any two points mapped by the normal map sho
continue to be identified,

;tPR; „exp tna~ t !…~a!;„exp tna~ t !…~b!. ~10!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Hence, we can determine how the identifications evolve in time, in terms of geodesics in a
four-dimensional universal cover. For the metric~9!, since the hypersurface-orthogonal geodes
coincide with thet-axes, we immediately obtain the following useful proposition.

Proposition 2: In terms of the coordinates~t,x! of metric (9), if at the initial surface t5t0 an
identification is specified as~t0 ,x!;~t0 ,ax!, where a is a free action on the coordinate space, th
at any time t we must have~t,x!;~t,ax!.

That is, if we take identifications in EsomM̃ t on an initial surface of the metric~9!, and
describe them in terms of the spatial coordinatesx, then the description of the identifications hold
for any timet.

By Proposition 2, one might conclude that no interesting global, i.e., Teichmu¨ller, deforma-
tions occur for the metric~9!, since the identifications on each homogeneous section in term
the spatial coordinates do not vary with time. However, this is not the case. Remember th
Teichmüller deformations are defined with respect to the intrinsic geometries of the th
dimensional sections (Mt ,hab). Variation of metric with time does cause Teichmu¨ller deforma-
tions with time, and if there exists a difference between EsomM̃ t and IsomM̃ t , as in the example
below Proposition 1, the situation becomes much richer. We will comment on this point ag
the end of the next subsection.

B. Dynamical degrees of freedom

Let us consider a universe characterized by an initial data set (hab ,Kab), wherehab andKab

are the spatial metric and the extrinsic curvature of the initial spatial sectionM . To give a possible
(hab ,Kab) in the case thatM has nontrivial topology and (hab ,Kab) is locally homogeneous, we
first need to coverM with some open patchs, define coordinates for each patch, and g
transformation function for each overlap of two patchs. That is, we need to set an atlas. Afte
if we give an (hmn ,Kmn) on a point with respect to the coordinates defined in a patch, we can
(hmn ,Kmn)

20 to all points in the patch by the transitive group action, and finally assign the va
of the data set to all patchs by the transformation functions and the group actions. Hen
information of the data (hab ,Kab) is equivalent to the information of the value of (hmn ,Kmn) on
a point and the way of taking transformation functions if patchs are fixed. However, it can
easily imagined that it is very difficult to count the number of possible (hmn ,Kmn)s and the
number of possible ways of taking transformation functions up to diffeomorphism. We ca
complish this counting, using coverings, as follows.

As stated in the previous subsection, we think that a set,U, of universal covers, ((4)M̃ ,g̃ab)s,
carries the degrees of freedom of local geometry like local curvatures, and the covering m
the degrees of freedom of global geometry like Teichmu¨ller parameters. In this approach, it
evident that we need to eliminate the degrees of freedom of all possible diffeomorphisms inU. We
introduce the equivalence relation inU by diffeomorphisms, and denote the resulting set
universal covers asŪ. If we fix a homogeneous surface (M̃ t ,h̃ab) in a u[((4)M̃ ,g̃ab)PŪ,21 and
supposeG,EsomM̃ t makes (M̃ t ,h̃ab) compact, then we can identify a pair (u,G) with a compact
homogeneous universe through Proposition 1. We denote the set of (u,G)s of all possibleGs for
a fixedu asCu . If G85f+G+f21 holds for afPEsomM̃ t , then the resulting compact homog
neous universe, (u,G8), is isometric to (u,G). In this sense, the freedom of taking conjugations
G by EsomM̃ t also corresponds to ‘‘gauge’’ freedom~cf. Sec. II A!. Introducing the equivalence
relation inCu by the conjugations, we get the quotient setC̄u . Now, our dynamical system,C̄, of
compact homogeneous universes is equivalent to the setC̄[$cucPC̄u ,uPŪ%.

If we choose a homogeneous section arbitrarily for each element inC̄, we will have a set,Ī ,
of initial data sets, (hab ,Kab)s, on a fixed compact three-manifold. InĪ , there are no element
which are isometric to each other, since for any different elements inC̄ they are nonisometric, and
the development of an initial data set is unique. The setĪ is therefore equivalent to the set w
considered at the beginning of the subsection.

The following proposition is now trivial.
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



mo-
r-
f
the

on with
mber of
rs
’s

s.
erses

h
en
-
the

e
es of

l

e

this

t

t. We

l

357Tanimoto, Koike, and Hosoya: Dynamics of compact homogeneous universes

¬¬¬¬¬¬¬¬¬¬
Proposition 3: The number, dim C̄, of degrees of freedom of a system of compact ho
geneous universes is the sum of the number, dim Ū, of the degrees of freedom of the fou
dimensional universal covers up to isometry, and the number, dim C̄u , of degrees of freedom o
initial identifications, i.e., covering groups on an initial section, up to conjugations taken by
extendible isometry group.

Hereafter, by a construction of compact homogeneous universes, we mean a constructi
explicit determination of representatives of the universes in the above sense, so that the nu
arbitrary parameters in a universal cover should be dimŪ, and the number of arbitrary paramete
in the identification generators should be dimC̄u . Note that for vacuum solutions of Einstein
equation for Bianchi class A22 ~i.e., types I, II, VI0, VII 0, VIII, and IX! and type V, the metric
componentshab(t) in Eq. ~9! are ‘‘diagonalizable,’’ i.e., become diagonal by diffeomorphism
Hence we will begin with the diagonal form metric to construct compact homogeneous univ
on Bianchi class A or type V.

Note that we take conjugations for (M̃ t ,h̃ab) only by EsomM̃ t to obtain the initial identifi-
cation parameters as stated in Proposition 1, while the Teichmu¨ller parameters are defined wit
respect to conjugations by full IsomM̃ t ~cf. Sec. II A!. Roughly speaking, the difference betwe
the freedom of EsomM̃ t and that of IsomM̃ t corresponds to the freedom of giving initial ‘‘ve
locities’’ of Teichmüller parameters, as we will see more explicitly through the examples in
next section.

IV. FOUR COMPACT HOMOGENEOUS UNIVERSE MODELS

In this section, we construct four explicit models of compact homogeneous universe, thb/1,
f1/1, a1/1, anda2/1 models. For each model, we count the number of dynamical degre
freedom and give the time development of the Teichmu¨ller parameters.

To get the Teichmu¨ller parameters of a compact section (Mt ,hab), we need to compare two
mathematical representations, i.e., (M̃ t ,h̃ab) with the covering groupG, and the standard universa
cover (M̃ ,h̃ab

std) with the covering group,A, parametrized by the Teichmu¨ller parameters.~In I, the
standard metrics were called the representative metrics.! HereG andA are generated by the sam
number,n, of generators,$gi% and $ai% ( i51,...,n), respectively;$gi% and $ai% satisfy the same
multiplication rule of an extendible isometry group. We can get the Teichmu¨ller parameters by
finding the automorphism of EsomM̃ which relates the two sets of generators. We shall do
first for theb/1 model, where we will see the mosttypical calculation to get Teichmu¨ller param-
eters. Then thef1/1 anda1/1 models follow. Finally, for thea2/1 model, we present a differen
method in getting the time development of the Teichmu¨ller parameters.

Our universal cover metrics are synchronous@Eq. ~9!# and diagonal~see Sec. III B!.

A. The b /1 model: A compact model on Bianchi II geometry

We start with the multiplication rule of Nil~5Bianchi II group!,

S g1g2
g3
D S h1h2

h3
D 5S g11h1

g21h2

g31h31g1h2
D , ~11!

whereg,hPNil, and we shall use superscripts to denote the components of a group elemen
use the same components (x1,x2,x3)[(x,y,z) as coordinates ofM̃ t . The action of Nil onM̃ t is
defined by the left action on (x,y,z)PNil. A Nil-invariant ~diagonal! metric is given by

dl25h11 dx
21h22 dy

21h33~dz2x dy!2, ~12!

wherehaa ~a51–3! are constants, i.e., independent of (x,y,z). The four-dimensional universa
cover metric of our concern is of the form
J. Math. Phys., Vol. 38, No. 1, January 1997
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ds252dt21dl2, ~13!

with haa being functions oft. The vacuum solution is, of course, known, but we proceed w
calculation, leavinghaa free, since they are complicated functions in the synchronous gauge
moreover, it enables us to apply the result also to models other than the vacuum model.

We consider manifold ‘‘b/1 (n51),’’ classified in I, which is probably the most stereotypic
compact manifold modeled on Bianchi II geometry. The fundamental groupp1 is given by@see
Eq. ~118! in I#

p15^g1 ,g2 ,g3 ;@g1 ,g2#g3
21,@g1 ,g3#,@g2 ,g3#&. ~14!

The topology ofb/1 is illustrated in Fig. 1.
To represent the generators ofp1, gis, in EsomM̃ t5Nil, we put them as

gi5S gi1gi2
gi

3
D , i51–3, ~15!

and substitute these in the relations ofp1 @Eq. ~14!#. We then get the following.

g15S g11g1
2

g1
3
D , g25S g21g2

2

g2
3
D , g35S 0

0
ḡ3

3
D , ~16!

whereḡ3
3[ g1

1g2
22g1

2g2
1Þ0.

We then consider the possible conjugations by EsomM̃ t5Nil. For the conjugation ofgis by
h5(h1,h2,h3)PNil ~for typographical convenience, we sometimes write components of g
horizontally!, we have

hg1h
215S g1

1

g1
2

g1
31h1g1

22h2g1
1
D , hg2h

215S g2
1

g2
2

g2
31h1g2

22h2g2
1
D , hg3h

215g3 .

~17!

FIG. 1. The topology ofb/1. Letters A and F show how the front and back sides are identified. The right and left side
the top and bottom sides are identified normally. The five arrows shows actions ofgis, illustrating the first relation in Eq.
~14!, g3g2g15g1g2 .
J. Math. Phys., Vol. 38, No. 1, January 1997
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We can make the third components ofg1 and g2 zero if we takeh as h15(g1
3g2

12g1
1g2

3)
/ḡ3

3, h25(g1
3g2

22g1
2g2

3)/ḡ3
3. After all, our representation ofp1 in Nil reduces to

g15S g11g1
2

0
D , g25S g21g2

2

0
D , g35S 0

0
ḡ3

3
D . ~18!

The nonvanishing four independent components in thesegis determine the initial identifications in
the universal cover with metric~13!.

To proceed further calculations, we here cite the definition given in I of the Teichm¨ller
parameters forb/1 and some related properties. We denote the standard universal cov
(R3,h̃ab

std), where the standard metrich̃ab
std is given by@Eq. ~75! in I#

dl25dx21dy21~dz2xdy!2. ~19!

Any compact homogeneous three-manifold classified inb/1 is globally conformally isometric to
manifold (R3,h̃ab

std)/A, whereA is a covering group whose generators are given by

a15S a110
0
D , a25S a21a2

2

0
D , a35S 0

0
a1

1a2
2
D . ~20!

Then, the Teichmu¨ller parameters aret5(a1
1 ,a2

1 ,a2
2) @Eq. ~129! in I#. We can see that the ma

su :S xy
z
D→S RuS xyD

z1zu~x,y!
D ~21!

is a one-parameter isometry for (R3,h̃ab
std), whereRu is the rotation matrix by angleu, andzu is

defined by

zu~x,y![ 1
2„~x

22y2!cosu22xy sin u…sin u. ~22!

We here remark thatsu is not an element of EsomM̃ t but of IsomM̃ t , and therefore
EsomM̃ tÞIsomM̃ t in theb/1 model. For an elementhPNil, conjugation bysu is given by

suS h1h2
h3
D su

215S RuS h1h2D
h31zu~h1,h2!

D . ~23!

Note that metric~12! is rewritten as

dl25
h11h22
h33

„dx821dy821~dz82x8dy8!2… ~24!

with
J. Math. Phys., Vol. 38, No. 1, January 1997
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S x8

y8

z8

D 5S Ah33
h22

x

Ah33
h11

y

h33

Ah11h22
z

D , ~25!

wherehaa are regarded as constants. If we view this coordinate transformation as a diffe
phism and drop the constant conformal factor of metric~24!, the resulting metric coincides wit
the standard metric~19!. This diffeomorphism is obviously an element of the HPDs,8,23 from the
form of metric ~24!, so that the transformation (x,y,z)→(x8,y8,z8) is an ~outer-! automorphism
of Nil. The image ofgis, which acts on metric~24! @or metric ~19!#, is

g185S g1 18g1
28

0
D , g285S g2 18g2

28

0
D . ~26!

Here,

g1
185Ah33

h22
g1

1, g1
285Ah33

h11
g1

2, g2
185Ah33

h22
g2

1, g2
285Ah33

h11
g2

2. ~27!

Generatorg3 is automatically determined byg1 andg2 @see Eq.~18!#, so we will concentrate on
g1 andg2 and the images of them by automorphisms. Since Eq.~26! is not of the form of Eq.~20!,
it does not yet give the Teichmu¨ller parameters. To get them, we take a conjugation of Eq.~26! by
the ~full ! isometry of Nil, which is given by Nil itself withsu . We can ‘‘rotate’’ the two-
dimensional vectors (gi

18 ,gi
28) ( i51,2) by conjugations bysu @Eq. ~23!#, leaving the third

components zero by a conjugation by Nil like the way we obtained Eq.~18!. So, we arrive at

a15hsu1
g18su1

21h215S A~g1
18!21~g1

28!2

0
0

D ~28!

and

a25S g2 18 cosu12g2
28 sin u1

g2
18 sin u11g2

28 cosu1
0

D 5
1

A~g1
18!21~g1

28!2
S g1 18g2 181g1

28g2
28

g1
18g2

282g1
28g2

18

0
D , ~29!

where

cosu15
g1

18

A~g1
18!21~g1

28!2
, sin u15

2g1
28

A~g1
18!21~g1

28!2
, ~30!

andh is an element of Nil. Using Eq.~27!, we obtain the final form of the Teichmu¨ller parameters:

a1
15Ah33

h22
~g1

1!21
h33
h11

~g1
2!2,
J. Math. Phys., Vol. 38, No. 1, January 1997
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a2
15

1

a1
1 S h33h22

g1
1g2

11
h33
h11

g1
2g2

2D , a2
25

ḡ3
3

a1
1

h33

Ah11h22
. ~31!

In Eq. ~31!, parametersg1
1, g1

2, g2
1, g2

2, and henceḡ3
3 are constants, andhaas are functions

of t. The metric componentsh11, h22, andh33 are determined by substituting Eqs.~13! and ~12!
into Einstein’s equation, and moreover we must exclude the degrees of freedom of HPDs
them~see Sec. III B!. Hence, the number of free parameters that the metric components can
coincides with the known number of degrees of freedom of the conventional~open! Bianchi
models.24 For the vacuum Bianchi II, the number of free parameters in the metric functions is
i.e., dimŪ52. With the four parameters specifying the initial identifications, dimC̄u54, the total
number of dynamical degrees of freedom of the present vacuumb/1 model is six~cf. Proposition
3!. The dynamical variables are the Teichmu¨ller parametersa1

1, a2
1, and a2

2, and the total
volume

v5~ ḡ3
3!2Ah11h22h33. ~32!

Remember that the Teichmu¨ller parameters are defined with respect to the standard univ
cover which is isometric to the universal cover (M̃ t ,h̃ab) up to a global conformal factor. In fact
it is clear that, if we know the values of them, we can completely construct the original com
three-manifold.

Additional remarks:We end this subsection with some common remarks to the subseq
subsections, which will be helpful for understanding the rather unique concept employed thr
out this section. Since as in Sec. II any compact locally homogeneous three-manifold can
be smoothly specified by some Teichmu¨ller parameters, curvature parameters, and the volume
are regarding them, rather thanhaas, as the dynamical variables of the compact homogene
universe. In theb/1 case, they are the four parameters (a1

1 ,a2
1 ,a2

2 ,v), as pointed out.~There are
no curvature parameters in this case.! One remark we want to emphasize here is that we are on
standpoint that we donot ask whether or not such the dynamical variablesdirectly fulfill some
dynamical differential equations, since we do not need them to obtain the time development
‘‘dynamical variables.’’~We will, however, discuss this problem in a separate work. See also
V.! Of course, this is not to say we do not need Einstein’s equation. The role of Eins
equation in our calculation is to fix the universal cover, i.e., to fixhaas.

One of the main conclusions in this subsection was that once the universal cover is se
by Einstein’s equation, we automatically get the time development of the dynamical var
through Eqs.~31! and~32!. In this sense, Eqs.~31! and~32! are thekinematicalrelation between
the universal cover and the dynamical variables. Another remark is therefore the fact that e
some matter fields are included and the form ofhaas accordingly vary, Eqs.~31! and ~32! are
invariant. Correspondingly, while the degrees of freedom, dimŪ, of the universal cover may vary
those, dimC̄u , of the initial identifications are invariant.

B. The f1/1(n ) model: the compact Bianchi VI 0 model

The multiplication rule of Sol~5Bianchi VI0 group! is given by

S g1g2
g3
D S h1h2

h3
D 5S g11e2g3h1

g21eg
3
h2

g31h3
D , ~33!

whereg,hPSol. We can easily check that the one-forms
J. Math. Phys., Vol. 38, No. 1, January 1997
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s15
1

A2
~ezdx1e2zdy!, s25

1

A2
~2ezdx1e2zdy!, s35dz ~34!

are invariant under the left action of Sol if (x,y,z) is identified with an element of Sol. We
therefore have the following invariant metric:

dl25h11~s1!21h22~s2!21h33~s3!2. ~35!

As in the case of Bianchi II, the four-dimensional universal cover metric is Eq.~13! with the above
dl2. In contrast to the Bianchi II case, the isometries and the extendible isometries coi
IsomM̃ t5EsomM̃ t5~Sol plus three discrete elements!. For future use, we present one of th
three discrete elements here. It is

h:~x,y,z!→~2x,2y,z!. ~36!

The fundamental groupp1 of a compact manifold modeled on Bianchi VI0 geometry is given
by @See Eq.~145! in I#

p15^g1 ,g2 ,g3 ;@g1 ,g2#,g3g1g3
21g2

21,g3g2g3
21g1g2

2n&, ~37!

where unu.2. Because of the coincidence of the two isometry groups, we need not do
calculations to find embeddings ofp1 in EsomM̃ t other than those shown in I. We simply sho
the results.

Let

c3[ ln
un1An224u

2
. ~38!

If n.2, thene2c3 andec3 are the eigenvalues of matrix (21
0

n
1), and so are2 e2c3 and2 ec3, if

n,22. Let (u1 ,v1) and (u2 ,v2) be the normalized eigenvectors corresponding to the two eig
values, i.e.,

S u1v1D5
1

Aunu SAun1An224u

2

Aun2An224u

2

D , S u2v2D5
1

Aunu SAun2An224u

2

Aun1An224u

2

D . ~39!

Then we can embed the generators ofp1 in EsomM̃ t as @see Eqs.~156! and ~157! in I#

g15S a0u1
a0u2
0

D , g25S a0v1
a0v2
0

D , g35S 0
0
c3
D ~40!

for n.2, or

g15S a0u1
a0u2
0

D , g25S a0v1
a0v2
0

D , g35h+S 0
0
c3
D ~41!
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for n,22, whereh is defined in Eq.~36!. We thus find that the parameter for the initi
identifications is onlya0 in Eq. ~40! or ~41!.

Before giving the time development of the Teichmu¨ller parameters, we take this opportuni
to present a pictorial account to the topology of a compact Sol:f /1(n). Manifold f /1(n) is a torus
bundle overS1. The relation~37! implies thatg1 andg2 generate the fiber torus. We can unde
stand the topology off /1(n) by observing the gluing map generated byg3 which maps generator
of a torus to another generators of a torus. From the relation~37!, we observe that

g̃1[g3g1g3
215g2 , g̃2[g3g2g3

215g2
ng1

21. ~42!

This means thatg3 maps a parallelogram spanned byg1 and g2 on anx–y plane to another
parallelogram spanned byg̃1 andg̃2 on anotherx–y plane@Fig. 2~A! and 2~B!#. If we ‘‘cut’’ and
translate the second parallelogram by the actions ofg1 andg2 , then we can take a fundament
region as a parallelopiped of which the bottom and top surfaces are spanned byg1 andg2 @Fig.
2~B! and 2~C!#. When identifying the bottom surface to the top, the surface is stretched byn times,
and then folded.@A geodesic congruence along thez axis in f /1(n) will therefore behave ex-
tremely chaotically after a journey over some periods.#

Let us return to the operation to identify the Teichmu¨ller parameter. Note that we can tran
form the spatial metric~35! into

FIG. 2. The topology off /1(n54). g1 and g2 span a parallelogram in ax–y, say z5z0 , plane ~A!. The stretched
parallelogram, shown in~B!, spanned byg̃15g2 and g̃25g2

4g1
21 in z5z01c3 plane, can be identified by the actions o

g1 ,g1g2
21 ,...,g1g2

24 with the parallelogram spanned byg1 andg2 in a way that letters A–E in~B! label the corresponding
regions. The corresponding regions in~A! are labeled by the same letters. So, the up and down sides of the parallelo
in ~C!, which shows a fundamental region off1/1(4), areidentified as indicated by circles and triangles. The front a
back sides and the right and left sides are identified in the trivial way.
J. Math. Phys., Vol. 38, No. 1, January 1997
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dl25h33F12 Ah11
h22

~ez8 dx81e2z8 dy8!21
1

2
Ah22

h11
~2ez8 dx81e2z8 dy8!21dz82G , ~43!

where

S x8

y8

z8

D 5S ~h11h22!
1/4

Ah33
x

~h11h22!
1/4

Ah33
y

z

D . ~44!

The transformation (x,y,z)→(x8,y8,z8) defined by Eq.~44! is an automorphism of Sol. So, th
appropriate action of identifications on (x8,y8,z8) is given by

g185
~h11h22!

1/4

Ah33
S a0u1

a0u2
0

D , g285
~h11h22!

1/4

Ah33
S a0v1

a0v2
0

D , g385S 0
0
c3
D , ~45!

for n.2, org38 5 h + (0,0,c3) for n,22. This already coincides with the parametrization of t
Teichmüller space, i.e., the only Teichmu¨ller parameter is

a~ t !5
~h11h22!

1/4

Ah33
a0 . ~46!

It is worth noting that we can observe from Eq.~45! that the Teichmu¨ller deformations off1/1(n)
are the variations of the ratio of the area of the fiber torus to the length of the baseS1.

The dynamical variables~in configuration space! are the Teichmu¨ller parametera, the three-
volume v5h11h22h33(a0)

4 up to a function depending onn, and the curvature paramete
l5ln(h11/h22). The number of dynamical degrees of freedom is four; one is fora0, and three are
for the parameters contained in the four-dimensional universal cover.

C. The a1/1 model: a compact model on Bianchi VII 0

The multiplication rule of Bianchi VII0 group is given by

S g1g2
g3
D S h1h2

h3
D 5S S g1g2D1Rg3S h1h2D

g31h3
D , ~47!

whereg,hPBianchi VII0 group, andRg3 is the rotation matrix by angleg3. The one-forms

s15cosz dx1sin z dy, s252sin z dx1cosz dy, s35dz ~48!

are invariant under the left action of Bianchi VII0. Hence the invariant metric is

dl25h11~s1!21h22~s2!21h33~s3!2. ~49!

As usual, the four-dimensional universal cover metric is Eq.~13! with the abovedl2. Since, as in
the Bianchi VI0 case in the previous subsection, the isometries and the extendible isometr
(M̃ t ,h̃ab) coincide, IsomM̃ t5EsomM̃ t5~Bianchi VII0 group plus three discrete elements!, our
calculations to do will be similar to those in the Bianchi VI0 case.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The compact three-manifold we consider here isa1/1, which is homeomorphic to the three
torusT3. The three generators,g1 , g2 , andg3 , of the fundamental group ofa1/1 are hence all
commutative.

The embedding of the fundamental group in EsomM̃ t up to conjugacies by
EsomM̃ t~5IsomM̃ t! is already given in I, which reads

g15S g1
1

0
2lp

D , g25S g2
1

g2
2

2mp
D , g35S g3

1

g3
2

2np
D , ~50!

wherel , m, andn are integers.
To obtain the time development of the Teichmu¨ller parameters, we, as usual, first note that

can transform the spatial metric~49! into

dl25h33SAh11
h22

~cosz8 dx81sin z8 dy8!21Ah22
h11

~2sin z8 dx81cosz8 dy8!21dz82D ,
~51!

where

S x8

y8

z8

D 5S ~h11h22!
1/4

Ah33
x

~h11h22!
1/4

Ah33
y

z

D . ~52!

Here, the metric~51! coincides with the standard metric, given in I, of Bianchi VII0 up to global
conformal factor.

Since the transformation (x,y,z)→(x8,y8,z8) is an automorphism of the Bianchi VII0 group,
we can easily obtain the actions on the standard metric~51! of the generators~50!. We immedi-
ately get

a15S a1
1

0
2lp

D , a25S a2
1

a2
2

2mp
D , a35S a3

1

a3
2

2np
D , ~53!

where

ai
j5

~h11h22!
1/4

Ah33
gi

j , ~ i , j !5~1,1!,~2,1!,~2,2!,~3,1!, and ~3,2!. ~54!

Here,ais are the images ofgis by the automorphism, anda1
1–a3

2 are the Teichmu¨ller param-
eters.

To summarize, the five constantsg1
1–g3

2 determine the initial identifications on an initia
surface in ((4)M̃ ,g̃ab). The universal cover (

(4)M̃ ,g̃ab) have three arbitrary parameters in vacuu
and hence the number of the dynamical degrees of freedom is 8~5513!. We have seven dynami
cal variables: the five Teichmu¨ller parameters, the curvature control parameterl5ln(h11/h22), and
the three-volumev 5 Ah11h22h33 det(g1,g2,g3).
J. Math. Phys., Vol. 38, No. 1, January 1997
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D. The a2/1 model: a compact model on Bianchi I

In this subsection, we give the time development of the Teichmu¨ller parameters of theb2/1
model (.T3) on vacuum Bianchi I, by a method other than the one of finding an automorp
explicitly. This is done by calculating invariants under the automorphisms, such as leng
minimal loops and angles between the loops of the compact homogeneous manifold. To th
we introduce a matrix representing such invariants as follows.

Let G be a covering group acting on (M̃ ,h̃ab). For aPG andpPM̃ , let the mapga,p :R→M̃
be thegeodesicsatisfying

ga,p~0!5p, ga,p~1!5a~p!. ~55!

Then, we define the mapvp :G→Vp by relatingG to the geodesic generator atp:

vp~a!5
dga,p~l!

dl U
l50

. ~56!

Finally, let all the independent generators ofG beai ( i51,...,n). Then theloop matrixdefined by

Hi j ~p!5h̃„vp~ai !,vp~aj !… ~57!

will contain all the information concerning the global geometry ofM5M̃ /G. Here, we have
dropped the abstract indices of the metric and the vectors on the rhs. It is worth noting thap
dependence ofHi j (p) decides whetherM is locally homogeneous or globally homogeneous. T
is, if Hi j (p) is independent ofp, thenM is globally homogeneous, and if not so, then homo
neity ofM is local.

We are in a position to calculate the time development of thea2/1 model in vacuum. Our
four-dimensional universal cover is the Kasner solution5~R4,g̃ab!, where with the usual coordi
nates (t,x,y,z), g̃ab is given by Eq.~4! with s[p11p21p3515(p1)

21(p2)
21(p3)

2. Each
homogeneous spatial section is given by~R3,h̃ab! with h̃ab being Eq.~5!. The covering group may
be generated by three commuting generators, for which we write

gi5S gi1gi2
gi

3
D , i51–3. ~58!

Here, the action ofgi on p5(x0 ,y0 ,z0) on ~R3,h̃ab! is given by

giS x0y0
z0
D 5S gi11x0

gi
21y0

gi
31z0

D . ~59!

Since the extendible isometry group of each slice is isomorphic to the commutative groupR3, we
see that no nontrivial conjugation occurs. This implies that we cannot simplify the compone
gis more than the original form of Eq.~58!.

We can at this point count the dynamical degrees of freedom of the present model. Im
ately can we see that the Kasner parameter carries the part of dynamical degrees of freedo
universal cover, dimŪ51, while gi

as in Eq. ~58! carry the part in the initial identifications
dim C̄u59. The total dynamical degrees of freedom is therefore 10~5dim Ū1dim C̄u! ~cf. Propo-
sition 3!.

Now, return to the procedure to get the Teichmu¨ller parameters. We can easily find th
geodesics satisfying Eq.~55!, and then get the generator atp as follows:
J. Math. Phys., Vol. 38, No. 1, January 1997
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ggi ,p
~l!5S gi1l1x0

gi
2l1y0

gi
3l1z0

D , vp~gi !5S gi1gi2
gi

3
D . ~60!

From this, we have

Hi j ~p!5h̃„vp~gi !,vp~gj !…5 (
a51

3

t2pagi
agj

a . ~61!

On the other hand, any flatT3 (a2/1) can be implemented in the standard Euclid metric

dl25dx21dy21dz2 ~62!

with six Teichmüller parameters25 in three generators

a15S a110
0
D , a25S a21a2

2

0
D , a35S a31a3

2

a3
3
D . ~63!

Components ofvp(ai) is the same as Eq.~60! with gi
j replaced byai

j with a1
25a1

35a2
350.

Using Eq.~62! as h̃, we have

Hi j5ai
1aj

11ai
2aj

21ai
3aj

35S ~a1
1!2 a1

1a2
1 a1

1a3
1

~a2
1!21~a2

2!2 a2
1a3

11a2
2a3

2

~sym! ~a3
1!21~a3

2!21~a3
3!2

D . ~64!

We set equal the two expressions Eqs.~64! and ~61! to getai
j as time functions with initial

parametersgi
a. Elementary calculations lead to the following results:

~a1
1!25(

a
t2pa~g1

a!2, a2
15S (

a
t2pag1

ag2
aD Y a1

1, a3
15S (

a
t2pag1

ag3
aD Y a1

1,

~65!

~a2
2!25D2/~a1

1!2, a3
252a2

3S (
a

t2~s2pa!ḡ3
aḡ2

aD /D2, a3
35~detg!2t2s/D2,

whereD2 [ (at
2(s2pa)(ḡ3

a)2, s[(apa51, andḡi
a is the (i ,a)th cofactor of the matrix (gi

a).
It would be useful, especially in gettinga33, to note that the determinant ofHi j is given by

detH5~detg!2t2s5~a1
1!2~a2

2!2~a3
3!2. ~66!

V. CONCLUSIONS

We have given a general method of construction of compact homogeneous universes.
accomplished by taking identifications in a universal cover ((4)M̃ ,g̃ab). The universal cover mus
satisfy Einstein’s equation, and the degrees of freedom of all the possible diffeomorphisms
be subtracted. The identifications in the universal cover are implemented by a discrete subg
the extendible isometries, EsomM̃ t . At this stage, one takes the conjugations by EsomM̃ t , and
finally we can obtain a system of compact homogeneous universes which is free from any
morphisms, i.e., the free parameters in the metric and in the identifications are the dyn
degrees of freedom of the system. This method of construction is evidently applicable t
system of compact homogeneous universes~i.e., compact models on the Bianchi class A, class
and the Kantowski–Sachs–Nariai models!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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We have considered the dynamical variables of the system to be parameters specifying
sections completely. In this sense, the Teichmu¨ller parameters are dynamical variables, as well
the three-volume and the possible curvature parameters. It is important to note that the numf ,
of dynamical degrees of freedom is less than double the number,d, of dynamical variables. As we
have seen in the explicit examples, not all of the initial velocities can be arbitrarily chose
some cases,f is less than 2d by 2. This could be explained by the Hamiltonian constraint. In
other cases, however,f is less than 2d22. These could be well understood if we study wheth
the dynamical system admits a canonical structure. This is also needed in canonical quan
of compact homogeneous universes. This problem will be discussed in a separate work.

Although we focused on the time developments of the Teichmu¨ller parameters and the dy
namical degrees of freedom, our framework of compact homogeneous universes should be
in a wide variety of problems in astrophysics, observational cosmology, fundamental proble
relativity, quantum cosmology, and quantum gravity. For example, the behavior of geodesic
compact universe can become chaotic~cf. Sec. IV B!, which in fact may provide an interestin
cosmological model. The problem of strong cosmic censorship for compact homogeneou
verses is also of great interest, which is being investigated by some groups.~See, e.g., Ref. 26.!
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Nonlinear deformations of the enveloping algebra of su~2!, involving two arbitrary
functions ofJ0 and generalizing the Witten algebra, were introduced some time ago
by Delbecq and Quesne. In the present paper, the problem of endowing some of
them with a Hopf algebraic structure is addressed by studying in detail a specific
example, referred to asAq

1~1!. This algebra is shown to possess two series of
~N11!-dimensional unitary irreducible representations, whereN50,1,2,... . To al-
low the coupling of any two such representations, a generalization of the standard
Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and
extension of the deforming functional technique is introduced: variant because a
map between two deformed algebras, suq~2! andAq

1(1), isconsidered instead of a
map between a Lie algebra and a deformed one, and extension because use is made
of a two-valued functional, whose inverse is singular. As a result, the Hopf struc-
ture of suq~2! is carried over toAq

1~1!, thereby endowing the latter with a double
Hopf structure. In the second step, the definition of the coproduct, counit, antipode,
andR-matrix is extended so that the double Hopf algebra is enlarged into a new
algebraic structure. The latter is referred to as a two-color quasitriangular Hopf
algebra because the correspondingR-matrix is a solution of the colored Yang–
Baxter equation, where the ‘‘color’’ parameters take two discrete values associated
with the two series of finite-dimensional representations. ©1997 American Insti-
tute of Physics.@S0022-2488~96!01412-0#

I. INTRODUCTION

Quantized universal enveloping algebras, also calledq-algebras, refer to some specific defo
mations of~the universal enveloping algebra of! Lie algebras, to which they reduce when th
deformation parameterq is set equal to one.1 The simplest example ofq-algebra,
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c!Electronic mail: ludu@roifa.ifa.ro
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suq~2![Uq~su~2!!, was first introduced by Sklyanin,2 and independently by Kulish an
Reshetikhin3 in their work on Yang–Baxter equations. A Jordan–Schwinger realization of suq~2!
in terms ofq-bosonic operators was then derived by Biedenharn4 and Macfarlane.5 Since then,
suq~2! has been applied in various branches of physics. It has been found suitable, for instan
the solution of deformed spin-chain models,6 as well as for the approximate description of rot
tional spectra of deformed nuclei,7 superdeformed nuclei,8 and diatomic molecules.9

In addition to the usual version of the deformed su~2! algebra, namely suq~2!, several gener-
alized forms of the algebra have been introduced. Deformations involving one arbitrary fun
of J0 were independently proposed by Polychronakos10 and Rocˇek.11 Their representation theor
is characterized by a rich variety of phenomena, which might be of interest in applicatio
particle physics. Bonatsoset al.12 considered a subclass of these algebras having a represen
theory as close as possible to the usual su~2!, so that they might prove useful in applications
nuclear and molecular physics similar to those mentioned above in connection with suq~2!.

Deformations of su~2! involving two arbitrary functions ofJ0 were introduced by Delbecq an
Quesne.13 Contrary to the former deformations, for which the spectrum ofJ0 is linear as for su~2!,
the latter give rise to exponential spectra. Such spectra did recently arouse much interest in
contexts, for instance in connection with alternative Hamiltonian quantization,14 exactly solvable
potentials,15 q-deformed supersymmetric quantum mechanics,16 andq-deformed interacting boson
models.17

From a mathematical viewpoint,q-algebras are just special classes of Hopf algebras.1,18 One
of the basic data defining a Hopf algebra is the so-called comultiplication rule. The latter pla
important role in representation theory since it allows one to define a product of two indepe
representations that is still a representation. Hence, for suq~2!, for instance, Wigner–Racah calcu
lus can be developed in much the same way as for the standard su~2! Lie algebra~see, e.g., Ref.
19 and references quoted therein!.

The existence of a comultiplication rule for more general deformations of su~2! is an impor-
tant problem, which remains largely unsolved. In principle, a coproduct can be induced fro
ordinary coupling rule for su~2!10,20 by the deforming functional technique.21 However such a
procedure leads in general to complicated and untractable coproducts. More direct method
recently used to construct a coproduct for some Polychronakos–Rocˇek algebras~PRAs!22 and for
another deformation of su~2! involving a single function ofJ0.

23

In the present paper, we shall address the problem of endowing some Delbecq–Quesn
bras ~DQAs! with a Hopf algebraic structure. For such a purpose, we shall use a varian
extension of the deforming functional technique, wherein functionals mapping PRA generat
those of some DQAs will be determined. By considering the special case where the PRA re
to suq~2!, we shall obtain DQAs whose Hopf algebraic structure can be inferred from th
suq~2!.

This procedure will be carried out in detail for a specific example of DQA, referred t
Aq

1~1!, which will be shown to have two sets of~N11!-dimensional unitary irreducible repre
sentations~unirreps!, whereN50,1,2,... . For such an algebra, the functional to be considered
be two-valued, so the same will be true for the resulting Hopf algebraic structure. The mean
this property will be clarified as far as representation theory is concerned.

To allow the coupling of any two representations ofAq
1~1!, we shall be led to enlarge th

double Hopf structure of the algebra into a generalized Hopf structure, obeying extended c
ciativity, counit, and antipode axioms, which we propose calling a two-color Hopf algebra
shall indeed prove that the generalized coproduct noncocommutativity is controlled by a ge
izedR-matrix, satisfying the colored Yang–Baxter equation,24–31where the ‘‘color’’ parameters
take two discrete values associated with the two sets of unirreps with the same dimension t
algebra possesses.

This paper is organized as follows. In Sec. II, deforming functionals mapping PRAs to D
are introduced with special emphasis on the case where the PRA is suq~2!. The algebraAq

1~1! is
J. Math. Phys., Vol. 38, No. 1, January 1997
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introduced in Sec. III. In Sec. IV, the theory developed in Sec. II is applied to endowAq
1~1! with

a double Hopf algebraic structure. In Sec. V, the latter is enlarged into a generalized
structure, and the correspondingR-matrix is studied in Sec. VI. Section VII contains som
concluding remarks.

II. DEFORMING FUNCTIONALS MAPPING PRAs TO DQAs

PRAs are associative algebras overC generated by three operatorsj 05( j 0)
†, j1 , and

j25( j1)
†, satisfying the commutation relations10,11

@ j 0 , j1#5 j1 , @ j 0 , j2#52 j2 , @ j1 , j2#5 f ~ j 0!, ~2.1!

wheref (z) is a real, parameter-dependent function ofz, holomorphic in the neighborhood of zero
and going to 2z for some values of the parameters. These algebras have a Casimir operato
by

c5 j2 j11h~ j 0!5 j1 j21h~ j 0!2 f ~ j 0!, ~2.2!

in terms of another real functionh(z), related tof (z) through the equationh(z)2h(z21)5 f (z).
In the case wheref (z) is al-degree polynomial, an explicit expression forh(z) has been found
by Delbecq and Quesne13 in terms of Bernoulli polynomials and Bernoulli numbers.

In the case of polynomial functionsh(z), f (z), the PRA can be identified with the linear spa
spanned by the monomials

j2
mj 0

nj1
p , where m,n,pPN. ~2.3!

The above basis is not unique, because we can consider other bases corresponding to
normal orderings, such as the following ones:

j1
mj 0

nj2
p , where m,n,pPN, ~2.4!

or

j 0
mj1

n j2
p , wherem,n,pPN. ~2.5!

Any normal ordering is actually permitted.
DQAs differ from PRAs by the replacement of Eq.~2.1! by13

@J0 , J1#5G~J0!J1 , @J0 , J2#52J2G~J0!, @J1 , J2#5F~J0!, ~2.6!

where the generatorsJ05(J0)
†,J1 ,J25(J1)

† are now denoted by capital letters to distingui
them from those of PRAs, and their commutators involve two real, parameter-dependent fun
of z, F(z), andG(z), holomorphic in the neighborhood of zero, and going to 2z and 1 for some
values of the parameters, respectively. These functions are further restricted by the assu
that the algebras have a Casimir operator given by

C5J2J11H~J0!5J1J21H~J0!2F~J0!, ~2.7!

in terms of some real functionH(z), holomorphic in the neighborhood of zero. The latter restr
tion implies thatF(z), G(z), and H(z) satisfy the consistency conditionH(z)2H(z2G(z))
5F(z).
J. Math. Phys., Vol. 38, No. 1, January 1997
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As in the case of the PRA, the existence of polynomial functionsG(z), F(z), implies that the
DQA can be identified with the linear space spanned by the monomials

J2
mJ0

nJ1
p , wherem,n,pPN. ~2.8!

We must notice here that in general, if the functionG(z) is not invertible, only the norma
ordering~2.8! is permitted and different orderings, as in the cases~2.4! and~2.5!, are not allowed.

Let us now try to find a deforming functional that converts the PRA generators into oper
satisfying the commutation relations of a DQA. For such a purpose, we first remark that th
equation in Eq.~2.1! can be rewritten as

~ j 021! j15 j1 j 0 . ~2.9!

Then, for every entire functionp(z), one can prove

p~ j 021! j15 j1p~ j 0!. ~2.10!

Let us consider the equation

p~z!2p~z21!5G~p~z!! ~2.11!

for a given functionG(z). If this equation has a solutionp(z) that is an entire function, then Eq
~2.10! can be written as [p( j 0), j1]5G(p( j 0)) j1 . Similarly, one finds [p( j 0), j2]
52 j2G(p( j 0)).

The above equations suggest that a correspondence between the PRAs and the DQA
exist. In terms of the functionp(z), the first two relations in Eq.~2.1! can indeed be reduced to th
first two relations in Eq.~2.6! with the identification

J05p~ j 0!, J15 j1 , J25 j2 . ~2.12!

Assumingp is invertible, the third defining equation~2.1! of a PRA can then be reduced to th
third defining equation~2.6! of a DQA with the identification

F+p5 f or F5 f +g , where g5p21, ~2.13!

and f +g means the composition of the two functions, i.e., (f +g)(z)5 f (g(z)). The correspondence
between the relevant Casimir operators, given in Eqs.~2.2! and ~2.7!, similarly implies

H+p5h or H5h+g. ~2.14!

The existence of the map transferring the commutation relations~2.1! to the commutation
relations~2.6!, using the functionp(z), does not mean that the algebra generated by Eq.~2.12! is
the same as the DQA. This fact is evident in the case where the functiong(z) is a polynomial,
because the map~2.12! transfers the PRA basis given by Eq.~2.3! to the basis

J2
mg~J0!

nJ1
p , wherem,n,pPN, ~2.15!

and the latter constitutes a subspace of the linear space~2.8! defining the DQA. Hence, we hav
shown the following proposition:

Proposition 1: If there exists an invertible entire function p(z) satisfying the equations
J. Math. Phys., Vol. 38, No. 1, January 1997
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p~z!2p~z21!5G~p~z!! and F+p5 f ,

then the PRA, defined by the commutation relations

@ j 0 , j1#5 j1 , @ j 0 , j2#52 j2 , @ j1 , j2#5 f ~ j 0!,

is mapped through the generator mapping P:

J05p~ j 0!, J15 j1 , J25 j2 ,

into the DQA, defined by the commutation relations

@J0 , J1#5G~J0!J1 , @J0 ,J2#52J2G~J0!, @J1 , J2#5F~J0!.

For a given DQA, the existence of a solutionp(z) of Eq. ~2.11! implies that the algebraic~and
eventually the coalgebraic! structure of the root algebra PRA can be mapped to the DQA ge
ated byP.

Let us consider the special case where the PRA is suq~2!, i.e., the functionf ( j 0) in Eq. ~2.1!
is given by

f ~ j 0!5@2 j 0#q , ~2.16!

where [x] q[(qx2q2x)/(q2q21) denotes aq-number andq is either a real number or a phase.4,5

Throughout this paper, we shall assume thatqPR1. The functionh( j 0) of Eq. ~2.2! can be taken
ash( j 0)5[ j 0] q[ j 011]q .

The Hopf algebraic structure of suq~2!1,18 is defined in terms of a comultiplication mapD:
suq~2!→suq~2!^su q~2!, a counit mape:suq~2!→C, and an antipode mapS:suq~2!→suq~2!, given
by

D~ j 0!5 j 0^111^ j 0 , D~ j6!5 j6 ^qj 01q2 j 0^ j6 ,

e~ j 0!5e~ j6!50, ~2.17!

S~ j 0!52 j 0 , S~ j6!52q61 j6 ,

respectively. These maps satisfy the following relations:

~D ^ id!+D~a!5~ id^ D!+D~a!,

~e ^ id!+D~a!5~ id^ e!+D~a!5a, ~2.18!

m+~S^ id!+D~a!5m+~ id^S!+D~a!5i+e~a!.

Herea denotes any element of suq~2!, m its multiplication map,m: suq~2!^suq~2!→suq~2!, andi
its unit map,i: C→suq~2!, defined bym(a^b)5ab andi~l!5l1, respectively, where 1 is the un
element of suq~2!. In addition,D ande are algebra homomorphisms,

D~ab!5D~a!D~b!, D~1!51^1, e~ab!5e~a!e~b!, e~1!51. ~2.19!

The functionsF(J0) andH(J0) of Eqs.~2.13! and ~2.14! become
J. Math. Phys., Vol. 38, No. 1, January 1997
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F~J0!52
~f~J0!!22~f~J0!!22

q2q21 ,

H~J0!5
q21~f~J0!!21q~f~J0!!222q2q21

~q2q21!2
,

~2.20!

where

f~z![q2g~z!.

The Hopf algebraic structure of suq~2! can then be transferred to that member of the DQA
whose functionF(J0) is given by Eq.~2.20!, provided the functiong(z) can be determined. I
should be noticed that the solution of Eq.~2.11! is not a trivial task in general. In the next section
we shall proceed to study a special case, which proves tractable.

III. THE LINEAR G(J 0) CASE

Let us consider the case where the functionG(J0) is linear, i.e.,

G~J0!511~12q!J0 , ~3.1!

and theq values are restricted to the interval 0,q,1 ~note that the algebras withq.1 are related
to those with 0,q,1 by an automorphism!. The DQAs, corresponding to Eq.~3.1! and to func-
tionsF(J0) that are polynomials of degreel in J0, have been studied in Ref. 13, where they a
denoted byAa2a3•••al21q

1 (l,1), in terms of some extra real parametersa2, a3,..., al21, entering

the definition ofF(J0). In particular, the representation theory of the algebrasAq
1~2,1! @equiva-

lent to Witten’s first deformation32 of su~2!#, andAp,q
1 ~3,1! has been studied in detail. In th

respect, the pointz5(q21)21, whereG(z) vanishes, appears as a singular point. The unirr
indeed separate into two classes according to whether the eigenvalues ofJ0 are contained in the
interval ~2`, ~q21!21!, or in the interval~~q21!21,1`!. In addition, there is a one-dimension
unirrep corresponding to the eigenvalue~q21!21 of J0.

With a linear choice like Eq.~3.1! for G(z), Eq. ~2.11! can be easily solved. One finds
family of solutions

pd~z!5
12dq2z

q21
, ~3.2!

where any real, nonvanishing value of the parameterd is acceptable. The functionspd are entire
functions, which are invertible as

pd
21~z!5gudu~z!5

ln~~~11~12q!z!2/udu2!
ln~1/q2!

5
ln~G2~z!/udu2!

ln~1/q2!
. ~3.3!

If z is real, the range ofpd ~and consequently the domain ofpd
21! is the interval~2`, ~q21!21!

or ~~q21!21,1`! according to whetherd,0 or d.0. In the case of the linearG(J0) model, Eq.
~2.20! gives

F~J0!52
~G~J0!/udu!22~G~J0!/udu!22

q2q21 ,

~3.4!

H~J0!5
q21~G~J0!/udu!21q~G~J0!/udu!222q2q21

~q2q21!2
.

J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



.

t

l
r is

by
tors

n

375Bonatsos et al.: Two-color quasitriangular Hopf algebra

¬¬¬¬¬¬¬¬¬¬
Without loss of generality, we can setd561, because anyuduÞ0 would lead to similar results
Therefore, we shall henceforth usep6(z) and its inversep6

215g(z). In this case,

p6
21~z!5g~z!5

ln~~~11~12q!z!2!

ln~1/q2!
5
ln~G2~z!!

ln~1/q2!
. ~3.5!

As for any PRA,j1 is the raising generator, while for the DQA with linearG(J0), J1 ~resp.
J2! is the raising generator in the interval~~q21!21,1`! corresponding tod511 ~resp.~2`,
~q21!21!, corresponding tod521!, one has to use there the mapp1(z) ~resp. p2(z)!. The
function g(z) is well-behaved everywhere onR, except in the neighborhood of the poin
z5(q21)21.

Let us denote byAq
1~1! the DQA generated from suq~2! by the mappingpd , with d561:

Pd :suq~2!→Aq
1~1!. ~3.6!

By a procedure similar to that used in Ref. 13, it can be easily shown thatAq
1~1! has no

infinite-dimensional unirrep, but has two~N11!-dimensional unirreps for anyN50,1,2,... . The
corresponding spectrum ofJ0 is given by

md5
12dq2~N22n!/2

q21
, n50,1,...,N, d561, ~3.7!

with maximum and minimum eigenvalues

Jd5
12dq2dN/2

q21
, 2 j d5

12dqdN/2

q21
, ~3.8!

respectively. The unirrep specified byJ1 ~resp. J2! is entirely contained in the interva
~~q21!21,1`! ~resp.~2`, ~q21!21!!. For both unirreps, the eigenvalue of the Casimir operato
given by

^C&5H~gd!, ~3.9!

where

gd5
12dq2N/2

q21
.

In the carrier spaceVJd
of the unirrep characterized byJd, whose basis vectors are specified

the values ofJd and md, the Aq
1~1! generators are represented by some linear opera

FJd
(A), APAq

1~1!, defined by

FJd
~J0!uJd,md&5mduJd,md&,

FJd
~J2!uJd,md&5AH~gd!2H~qmd21!uJd,qmd21&, ~3.10!

FJd
~J1!uJd,md&5AH~gd!2H~md!uJd,q21~md11!&.

IV. DOUBLE HOPF STRUCTURE OF THE ALGEBRA Aq
1(1)

The theory developed in Sec. II can be applied provided one replaces the entire functiop(z)
by the functionsp1(z) andp2(z) given by Eq.~3.2!, with d561.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The functionalspd can be used to transfer the coalgebra structure and the antipode map
suq~2! to Aq

1~1!. The existence of two functionals however leads to similar properties for
latter. According to whetherp1 or p2 is employed, one obtains a comultiplication mapD1 or D2 ,
defined by

Dd~J0!5D~pd~ j 0!!5
1

q21
~1^12dq2 j 0^q2 j 0!,

~4.1!
Dd~J6!5D~ j6!5 j6 ^qj 01q2 j 0^ j6 .

The operatorsDd~J0!, Dd~J6! satisfy the commutation relations~2.6! and from the properties of th
comultiplication~2.18! and ~2.19!, they satisfy the equation

Dd~J0!5pd~D~ j 0!!, ~4.2!

and hence correspond to a representation of the algebraAq
1~1! characterized byd.

The above relations define the comultiplication rules as morphismsDd from the algebra
Aq

1~1! to the algebra suq~2!^suq~2!.
By using the generator mappingPd associated with the functionalpd , as defined in Proposi

tion 1 and Eq.~3.6!, we can go from the algebra suq~2!^suq~2! to the algebraAq
1~1!^Aq

1~1!,

Pd ^Pd :suq~2! ^suq~2!→Aq
1~1! ^Aq

1~1!. ~4.3!

The above map transfers the Hopf structure of the algebra suq~2! to a Hopf-like structure and we
obtain the following proposition:

Proposition 2: The algebraAq
1~1! is equipped with comultiplication, counit, and antipo

maps, given by

Dd~J0!5
1

q21
~1^12dG~J0! ^G~J0!!,

Dd~J6!5d~J6 ^ ~G~J0!!211G~J0! ^J6!,
~4.4!

ed~J0!5
12d

q21
, ed~J6!50,

Sd~J0!52J0~G~J0!!21, Sd~J1!52qJ1 , Sd~J2!52q21J2 ,

respectively. BothD1 , e1 , S1 , andD2 , e2 , S2 satisfy the Hopf algebra axioms (2.18) and (2.1
but the former are only valid for the representations ofAq

1~1!^Aq
1~1! with eigenvalues o

D1~J0! in the interval ~~q21!21,1`!, whereas the latter act in~2`, ~q21!21!. The algebra
Aq

1~1! is therefore endowed with a double Hopf algebraic structure.
Remark:Contrary to the comultiplication and counit maps, the antipode one does not d

explicitly upond.
As a consequence of Eq.~4.4!, from the operatorswN/2(a), aPsuq~2!, representing the suq~2!

generators in the~N11!-dimensional unirrep carrier spacevN/2, spanned by the vectorsuN/2,N/2
2n&, n50,1,...,N,4,5

wN/2~ j 0!UN2 , N22nL 5SN22nD UN2 , N22nL ,
wN/2~ j2!UN2 , N22nL 5A@n11#q@N2n#qUN2 , N22n21L , ~4.5!
J. Math. Phys., Vol. 38, No. 1, January 1997
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wN/2~ j1!UN2 , N22nL 5A@n#q@N2n11#qUN2 , N22n11L ,
one obtains the operatorsFJd

(A), APAq
1~1!, representing theAq

1~1! generators inVJd
as fol-

lows:

FJd
~J0!uJd,md&5mduJd,md&,

FJd
~J2!uJd,md&5A@n11#q@N2n#quJd,qmd21&, ~4.6!

FJd
~J1!uJd,md&5A@n#q@N2n11#quJd,q21~md11!&.

On the right-hand side of Eq.~4.6!, N andn have to be replaced by their expression in terms
Jd andmd, obtained by inverting Eqs.~3.7! and~3.8!. The results can be written as in Eq.~3.10!,
which was constructed by a direct procedure. They also confirm thatAq

1~1! has no infinite-
dimensional unirrep.

Considering now an~N111!-dimensional unirrep ofAq
1~1!, characterized byJ1

d, in a carrier

spaceVJ1
d
, and another~N211!-dimensional unirrep of the same, specified byJ2

d, in a carrier space

VJ2
d
, one can couple them by using the coproductDd to obtain a reducible representation ofAq

1~1!

in VJ1
d

^ VJ2
d
. The corresponding operatorsFJ1

dJ2
d
(A), APAq

1~1!, are given by

FJ1
dJ2

d
~J0!~ uJ1

d ,m1
d& ^ uJ2

d ,m2
d&)5

1

q21
~12dG~m1

d!G~m2
d!!uJ1

d ,m1
d& ^ uJ2

d ,m2
d&,

FJ1
dJ2

d
~J2!~ uJ1

d ,m1
d& ^ uJ2

d ,m2
d&)

5A@n111#q@N12n1#qq
~N222n2!/2uJ1

d ,qm1
d21& ^ uJ2

d ,m2
d&

1q2~N122n1!/2A@n211#q@N22n2#quJ1
d ,m1

d& ^ uJ2
d ,qm2

d21&, ~4.7!

FJ1
dJ2

d
~J1!~ uJ1

d ,m1
d& ^ uJ2

d ,m2
d&)

5A@n1#q@N12n111#qq
~N222n2!/2uJ1

d ,q21~m1
d11!&

^ uJ2
d ,m2

d&1q2~N122n1!/2A@n2#q@N22n211#quJ1
d ,m1

d&

^ uJ2
d ,q21~m2

d11!&,

wherem1
d, m2

d are defined in terms ofn1, n2, respectively, in the same way asmd in terms ofn
@see Eq.~3.7!#.

Such a reducible representation can be decomposed into a direct sum of~N11!-dimensional
unirreps, characterized byJd, and whose basis statesuJ1

dJ2
dJdmd& can be written as

uJ1
dJ2

dJdmd&5 (
m1

d ,m2
d

^J1
dm1

d ,J2
dm2

duJdmd&DQuJ1
d ,m1

d& ^ uJ2
d ,m2

d&, ~4.8!

in terms of some Wigner coefficients^J1
dm1

d ,J2
dm2

duJdmd&DQ . From the relation between the rep
resentations ofAq

1~1! and those of suq~2!, it follows that

^J1
dm1

d ,J2
dm2

duJdmd&DQ5 KN1

2

N1

2
2n1 ,

N2

2

N2

2
2n2UN2 N

2
2nL

q

, ~4.9!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



wo
on

d one.

n

tes of an
ously

el,

378 Bonatsos et al.: Two-color quasitriangular Hopf algebra

¬¬¬¬¬¬¬¬¬¬
where the quantity on the right-hand side is an suq~2! Wigner coefficient.19 It follows from the first
formula in Eq.~4.4! that the Wigner coefficient~4.9! can be different from zero only if

md5
1

q21
~12dG~m1

d!G~m2
d!!. ~4.10!

It is worth noting that up to now no comultiplication rule is available for coupling t
unirrepsJ1

1 andJ2
2, or J1

2 andJ2
1. The purpose of Sec. V will be to show that the comultiplicati

rule definition can be extended so as to allow the coupling of any twoAq
1~1! unirreps. This

extension will lead us to enlarge the double Hopf structure of the algebra into a generalize

V. GENERALIZED HOPF STRUCTURE OF THE ALGEBRA Aq
1 (1)

To connect the two types of unirreps specified byd511 and d521, respectively, let us
introduce some linear operatorsTJ

d
:VJd→VJ2d

, whereJd may be any unirrep label, as given i
Eq. ~3.8!. They are defined by their action on theVJd

basis vectorsuJd,md& as follows:

TJ
d
uJd,md&5uJ2d,m2d&. ~5.1!

Such operators will be referred to as transmutation operators as they change the basis sta
~N11!-dimensional unirrep into those of its companion with the same dimension. They obvi
satisfy the relation

TJ
2d
TJ

d
5I J

d
, ~5.2!

whereI J
d
denotes the unit operator inVJd

.
By applyingTJ

d
on both sides of Eq.~4.6! and using Eqs.~5.1!, ~5.2!, and ~3.7!, it can be

easily proved that for anyAq
1~1! generatorA,

TJ
d
FJd

~A!TJ
2d

5FJ2d
~s~A!!, ~5.3!

wheres :Aq
1~1!→Aq

1~1!, defined by

s~J0!5
2

q21
2J0 , s~J6!5J6 , ~5.4!

is an involutive automorphism of the algebraAq
1~1!. This clearly shows that at the algebra lev

the operators is responsible for the transmutation.
Let us definesd :Aq

1~1!→Aq
1~1! by

sd5 H ids if d511
if d521

. ~5.5!

The basic mappingPd of Eq. ~3.6! transforms under Eq.~5.5! as follows:

szh+Ph5Pz , ~5.6!

wherez, h561. This equation is equivalent to the commuting diagram
J. Math. Phys., Vol. 38, No. 1, January 1997
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suq~2! →
Ph

Aq
1~1!

Pz↓ ↓szh

Aq
1~1! ↔

id
Aq

1~1!

. ~5.7!

We can now extend the comultiplication and antipode maps,Dd andSd~d561!, of Eq. ~4.4!
by setting

Dd
z,h~A!5~szd ^ shd!+Dd~A!, Sd

z~A!5szd+Sd~A!, ~5.8!

wherez, h, d561, while leaving unchanged the counit maped , defined in the same equation. W
note that in particular,

Dd
d,d5Dd , Sd

d5Sd . ~5.9!

By using Eqs.~4.4!, ~5.4!, and~5.5!, we obtain

Dd
z,h~J0!5

1

q21
~1^12dzhG~J0! ^G~J0!!,

Dd
z,h~J6!5hJ6 ^ ~G~J0!!211zG~J0! ^J6 ,

~5.10!

Sd
z~J0!5

1

q21
~12zd~G~J0!!21!,

Sd
z~J6!52q61J6 .

Alternatively,Dd
z,h , ed , andSd

z can be defined directly in terms of the comultiplication, coun
and antipode mapsD, e, S of suq~2!, as well as the mapPd , by the commuting diagrams

suq~2! →D suq~2! ^suq~2!

Pd↓ ↓Pz ^Ph

Aq
1~1! →

Dd
z,h

Aq
1~1! ^Aq

1~1!

,

suq~2! →e C

Pd↓ l id

Aq
1~1! →

ed

C

,

suq~2! →
S

suq~2!

Pd↓ ↓Pz

Aq
1~1! →

Sd
z

Aq
1~1!

.

~5.11!

As shown in the Appendix,Dd
z,h , ed , andSd

z transform undersd as follows:

~smz ^ snh!+Dd
z,h5Dr

m,n+srd , ~5.12!

ed+sdz5ez , ~5.13!

szh+Sd
h5Sm

z +smd . ~5.14!

By using Eqs.~5.12!–~5.14! and the Hopf algebra axioms~2.18!, ~2.19!, satisfied byDd , ed ,
andSd , or alternatively the diagrammatic method of the Appendix, we obtain

Proposition 3: The algebraAq
1~1! is endowed with a generalized Hopf algebraic structu

whose comultiplication, counit, and antipode maps, Dd
z,h , ed , Sd

z , defined in Eqs. (5.10) and (4.4
satisfy the following generalized coassociativity, counit, and antipode axioms:
J. Math. Phys., Vol. 38, No. 1, January 1997
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~Dm
z,h

^ id!+Dd
m,n~A!5~ id^ Dr

h,n!+Dd
z,r~A!, ~5.15!

~ez ^ shd!+Dd
z,h~A!5~szd ^ eh!+Dd

z,h~A!5A, ~5.16!

m+~Sz
m

^ smh!+Dd
z,h~A!5m+~smz ^Sh

m!+Dd
z,h~A!5i+ed~A!, ~5.17!

where A denotes any element ofAq
1~1!, m andi are the multiplication and unit maps ofAq

1~1!,
d, z, h, m, n, r take any values in the set$21,11%, and no summation over repeated indices
implied. Moreover, Dd

z,h and ed are algebra homomorphisms, while Sd
z is both an algebra and a

coalgebra antihomomorphism.
Remark:In principle, the multiplication and unit maps ofAq

1~1! should be distinguished from
those of suq~2!, but as no confusion can arise, for simplicity’s sake we use the same notatio

By using the generalized coproductDd
z,h , any ~N111!- and ~N211!-dimensional unirreps of

Aq
1~1!, specified byJ1

z and J2
h , respectively, can now be coupled to provide two reduci

representations inVJ1
z

^ VJ2
h
, which are characterized byd511 andd521, respectively. From Eq

~5.10!, we obtain for the corresponding operatorsFd
J1

zJ2
h

(A), APAq
1~1!,

Fd
J1

zJ2
h

~J0!~ uJ1
z ,m1

z& ^ uJ2
h ,m2

h&)5
1

q21
~12dq2~N11N222n122n2!/2!uJ1

z ,m1
z& ^ uJ2

h ,m2
h&,

Fd
J1

zJ2
h

~J2!~ uJ1
z ,m1

z& ^ uJ2
h ,m2

h&)5A@n111#q@N12n1#qq
~N222n2!/2uJ1

z ,qm1
z21& ^ uJ2

h ,m2
h&

1q2~N122n1!/2A@n211#q@N22n2#quJ1
z ,m1

z& ^ uJ2
h ,qm2

h21&,

~5.18!

Fd
J1

zJ2
h

~J1!~ uJ1
z ,m1

z& ^ uJ2
h ,m2

h&)5A@n1#q@N12n111#qq
~N222n2!/2uJ1

z ,q21~m1
z11!&

^ uJ2
h ,m2

h&1q2~N122n1!/2A@n2#q@N22n211#quJ1
z ,m1

z&

^ uJ2
h ,q21~m2

h11!&.

By comparing Eq.~5.18! with Eq. ~4.7!, we note that thed-type reducible representation inVJ1
z

^ VJ2
h
coincides with the reducible representation inVJ1

d
^ VJ2

d
, previously considered. Therefor

the same transformation decomposes both representations into a direct sum of~N11!-dimensional
unirreps characterized byJd. Hence, the states

uJ1
zJ2

hJdmd&5 (
m1

z ,m2
h

^J1
zm1

z ,J2
hm2

huJdmd&DQuJ1
z ,m1

z& ^ uJ2
h ,m2

h&, ~5.19!

with

^J1
zm1

z ,J2
hm2

huJdmd&DQ5 KN1

2

N1

2
2n1 ,

N2

2

N2

2
2n2UN2 N

2
2nL

q

, ~5.20!

span the carrier space of the unirrepJd in VJ1
z

^ VJ2
h
.

It should be stressed that the spaceVJ1
z

^ VJ2
h
does not contain two~N11!-dimensional unir-

reps, characterized by J1 and J2, respectively, for N in the range
uN12N2u,uN12N2u12,...,N11N2 , but a single one, which may be considered as that specifi
by J1 or that specified byJ2, according to whether the coproductD1

z,h or D2
z,h is used. In other
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ional
rep

the

ists

381Bonatsos et al.: Two-color quasitriangular Hopf algebra

¬¬¬¬¬¬¬¬¬¬
words, a given linear combination of statesuJ1
z ,m1

z& ^ uJ2
h ,m2

h&, as that contained in Eq.~5.19!,
may be regarded as a basis state of a unirrepJ1 or J2, whereJ1 andJ2 are determined fromN
by using Eq.~3.8! @and in the same way, the correspondingm1 or m2 is determined fromN and
n by using Eq.~3.7!#.

For instance, the stateuJ1
1 ,J1

1& ^ uJ2
1 ,J2

1&, whereJ1
15J2

15(Aq(Aq11))21, corresponding to
N15N251, n15n250, may be considered as the highest-weight state of the three-dimens
unirrep characterized byJ15q21, or the lowest-weight state of the three-dimensional unir
specified byJ25(q11)/(q21), both of these states corresponding toN52 andn50 in Eqs.
~3.7! and ~3.8!,

uJ1
1 ,J1

1& ^ uJ2
1 ,J2

1&5uJ1
1J2

1J15q21,m15q21&5uJ1
1J2

1J25
q11

q21
,m25

q11

q~q21!
&.

~5.21!

By direct use of Eq.~5.10!, we indeed obtain for instance

D1
1,1~J0!~ uJ1

1 ,J1
1& ^ uJ2

1 ,J2
1&)5q21~ uJ1

1 ,J1
1& ^ uJ2

1 ,J2
1&),

D2
1,1~J0!~ uJ1

1 ,J1
1& ^ uJ2

1 ,J2
1&)5

q11

q~q21!
~ uJ1

1 ,J1
1& ^ uJ2

1 ,J2
1&), ~5.22!

D6
1,1~J1!~ uJ1

1 ,J1
1& ^ uJ2

1 ,J2
1&)50.

In Sec. VI, we shall examine how the universalR-matrix definition valid for suq~2!, hence for
the double Hopf structure ofAq

1~1!, can be extended to the generalized Hopf structure of
latter.

VI. GENERALIZED R-MATRIX OF THE ALGEBRA Aq
1(1)

It is well known18 that suq~2! is a quasitriangular Hopf algebra, which means that there ex
an invertible elementRPsuq~2!^suq~2! ~completed tensor product!, called the suq~2! universal
R-matrix,

R5q2 j 0^ j 0(
n50

`
~12q22!n

@n#q!
qn~n21!/2~qj 0 j1 ^q2 j 0 j2!n, ~6.1!

such that its comultiplicationD and its opposite comultiplicationDop[t +D @wheret is the twist
map, defined byt(a^b)5b^a# only differ by a conjugation byR,

Dop~a!5RD~a!R21, aPsuq~2!, ~6.2!

and in addition

~D ^ id!~R!5R13R23, ~ id^ D!~R!5R13R12. ~6.3!

By applying the mapPd ^Pd , considered in Eq.~4.3!, to the suq~2! R-matrix, given in Eq.
~6.1!, we obtain an invertible elementRd of Aq

1~1!^Aq
1~1! ~completed tensor product!,

Rd5q2 logq~dG~J0!! ^ logq~dG~J0!! (
n50

`
~12q22!n

@n#q!
qn~n21!/2~~G~J0!!21J1 ^G~J0!J2!n.

~6.4!
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It can be easily checked that it satisfies with respect to the comultiplicationDd , defined in Eq.
~4.4!, and the opposite comultiplicationDd

op[t+Dd , relations similar to Eqs.~6.2! and ~6.3!,
namely

Dd
op~A!5RdDd~A!~Rd!21, APAq

1~1!, ~6.5!

~Dd ^ id!~Rd!5R13
d
R23

d , ~ id^ Dd!~Rd!5R13
d
R12

d . ~6.6!

Hence,Aq
1~1! has a double quasitriangular Hopf structure with a double universalR-matrixRd,

d561, whereR1 ~respectively,R2! corresponds to the coalgebra structure and antipode~D1 ,
e1 , S1! @respectively,~D2 , e2 , S2!#, and therefore acts in the interval~~q21!21,1`! ~respec-
tively, ~2`, ~q21!21!!.

It is worth noting that as direct consequences of Eqs.~6.5!, ~6.6!, and of the Hopf algebra
axioms ~2.18!, ~2.19!, satisfied byDd , ed , Sd , the doubleR-matrix Rd, d561, satisfies the
relations

R12
d
R13

d
R23

d 5R23
d
R13

d
R12

d , ~6.7!

~ed ^ id!~Rd!5~ id^ ed!~Rd!51, ~6.8!

~Sd ^ id!~Rd!5~ id^Sd
21!~Rd!5~Rd!21, ~6.9!

which are similar to well-known properties of the suq~2! R-matrix.18 In particular, Eq.~6.7! shows
that bothR1 andR2 are solutions of the~ordinary! Yang–Baxter equation~YBE!.

Turning now to the generalized Hopf structure introduced in Sec. V, let us consid
Aq

1~1!^Aq
1~1! ~completed tensor product! the four elements

Rz,h5~szd ^ shd!~Rd!, z,h561, ~6.10!

where, on the right-hand side,d takes any value in the set$21,11% and no summation over it is
implied. From Eqs.~5.4!, ~5.5!, and~6.4!, it follows that the explicit form ofRz,h is given by

Rz,h5q2 logq~zG~J0!! ^ logq~hG~J0!! (
n50

`
~12q22!n

@n#q!
qn~n21!/2~~zG~J0!!21J1 ^ hG~J0!J2!n.

~6.11!

We also note thatRd,d5Rd.
By now using Eqs.~5.8!, ~5.12!–~5.14!, ~6.5!, ~6.6!, and~6.10!, we easily obtain
Proposition 4: The generalized Hopf algebra, defined in Proposition 3 of the previous se

has a generalized universalR-matrix made of four invertible piecesRz,h,z,h561, as defined in
Eq. (6.10) or (6.11), which satisfy the following properties:

~smz ^ snh!~Rz,h!5Rm,n, ~6.12!

t+Dd
h,z~A!5Rz,hDd

z,h~A!~Rz,h!21, APAq
1~1!, ~6.13!

~Dz
l,m

^ snh!~Rz,h!5R13
l,n
R23

m,n , ~slz ^ Dh
m,n!~Rz,h!5R13

l,n
R12

l,m . ~6.14!

From the results of Proposition 4 or, more simply, by combining definitions~5.8!, ~6.10!, and
properties~5.12!–~5.14!, ~6.12!, with Eqs. ~6.7!, ~6.8!, and ~6.9!, we find that the latter can be
generalized as follows:

Corollary 1: The generalized universalR-matrix ofAq
1~1! satisfies the relations
J. Math. Phys., Vol. 38, No. 1, January 1997
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R12
z,h
R13

z,m
R23

h,m5R23
h,m
R13

z,m
R12

z,h , ~6.15!

~ez ^ id!~Rz,h!5~ id^ eh!~Rz,h!51, ~6.16!

~Sz
l

^ smh!~Rz,h!5~slz ^ ~Sh
m!21!~Rz,h!5~Rl,m!21. ~6.17!

In particular, Eq.~6.15! shows that the generalizedR-matrix ~6.11! is a solution of the
colored YBE,24–31where the color parametersz,h,m take discrete values in the set$21,11%. We
therefore propose to call~Aq

1(1),1,m,i,Dd
z,h ,ed ,Sd

z ,Rz,h;C! a two-color quasitriangular Hop
algebra overC.

VII. CONCLUDING REMARKS

In the present paper, we did construct a DQA, denoted asAq
1~1!, which has two series o

~N11!-dimensional unirreps, whereN50,1,2,..., and we did show that it can be endowed wit
generalized quasitriangular Hopf structure, providing us with composition laws for all coupl
unirreps. This new algebraic structure was termed a two-color quasitriangular Hopf algeb
cause the corresponding generalizedR-matrix satisfies the colored YBE, where the color para
eters take two discrete values.

It should be noted that various approaches have been previously used to construct solu
the colored YBE.24–30 In the works of Akutsu and Deguchi,25 and Geet al.,26 an infinite-
dimensional representation of slq~2! was considered and the color parameter was introduced a
value of the corresponding Casimir operator. To get finite-dimensional matrix solutions o
colored YBE,q had to be restricted to a root of unity. In the approach pioneered by Burdı´k and
Hellinger,27–29 deformations of a non-semisimple Lie algebra, such as glq,s~2!, were considered
then the color parameter was taken as the eigenvalue of the extra Casimir operator, relat
the invariant u~1! subalgebra. Another method, proposed by Kundu and Basu-Mallick,30 used a
symmetry transformation of the YBE@for glq(N)# to derive solutions of the colored one.

Another alternative approach was used in the present work. The color parameter now tu
to be related with an involutive automorphism of the algebra considered. Its two-valuedne
direct consequence of this property and contrasts with its continuous character in previo
proaches. However, as in the work of Geet al.,25 this parameter serves to distinguish between
representations of the algebra with the same dimension.

It is also worth pointing out that here the color parameter does not make any appearance
algebra defining relations, as it is only needed in the generalized coalgebraic structure an
pode. This again contrasts with both the colored Fadeev–Reshetikhin–Takhtajan algeb
colored quantum group@generalizing both GLq~2! and GLp,q~2!#, recently constructed by
Basu–Mallick,29 where the color parameter enters both the algebraic structure definition an
generator realization, while the coalgebraic structure remains free from such dependence.

The two-color quasitriangular Hopf algebra considered here bears some similarity t
colored quasitriangular Hopf algebras previously introduced by Ohtsuki,31 which are also charac
terized by the existence of a colored universalR-matrix. There are however some differenc
between both algebraic structures, the most striking one being the fact that the generalized
tiplication depends upon two color parameters in Ref. 31, instead of three in the present w

Construction of other DQAs with a generalized Hopf structure similar to that considered
present paper, as well as the investigation of possible relationships with other colored alg
structures, might be some interesting problems for future study.
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APPENDIX: DIAGRAMMATIC PROOFS OF EQUATIONS (5.12)–(5.14) AND (5.15)–(5.17)

In this Appendix, we prove Eqs.~5.12!–~5.14! and~5.15!–~5.17! by combining the diagram-
matic definitions~5.11! of the generalized coproduct, counit, and antipode with the action~5.7! of
s6 on the basic mappingPd , and the diagrammatic representation of standard Hopf alg
axioms.18 In the following diagrams, the shorthand notationsH andA are used for suq~2! and
Aq

1~1!, respectively.
Equations~5.12!–~5.14! are given by the inner low rectangular, the outer square, and the o

rectangular diagrams hereunder, respectively:

~A1!

~A2!

~A3!

Equation~5.15! corresponds to the outer rectangular diagram:

~A4!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The two parts of Eq.~5.16! are given by the outer rectangular diagrams:

~A5!

~A6!

and

Finally, the two parts of Eq.~5.17! correspond to the right-hand lower rectangular diagra

~A7!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Algebraic expressions for irreducible bases of icosahedral
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The recently discovered point-group symmetrized boson representation~SBR! is
constructed for the icosahedral groupI h. With the aid of the SBR, succinct alge-
braic expressions for the irreducible bases and irreducible matrices have been
found. Irreducible bases for non-regular representations can be found easily from
those of the regular representation without projections. Explicit expressions of the
irreducible bases are given for the moleculeB12H12 for several important cases. It
is shown that, far from being ‘‘chaotic’’ in structure, the 120 irreducible matrices of
I h have a high degree of symmetry in that the 14 400 entries can be reproduced
from a few dozen entries according to three rules. ©1997 American Institute of
Physics.@S0022-2488~96!00712-8#

I. INTRODUCTION

One of the most fascinating aspects of Nature is the existence of a variety of objects
animate and inanimate, with high symmetry. The icosahedral symmetry is the highest po
geometric symmetry and has been known since the Greek epoch. However until recent ti
was thought that no molecule with this symmetry exists and therefore that it had no ph
interest.1 This belief turned out to be wrong. Now several molecules with this symmetry
known, for example, borohydrideB12H12

22~1962!, dodecadhedraneC20H20 ~1983! and fullerene
or buckyballC60 ~1985! ~see references in Ref. 2!. In addition to icosahedral symmetric structur
on the molecular level, there is a more pervasive existence of icosahedral symmetry in the c
of many virons. These include the rhinoviruses involved in the common cold as well as
dangerous viruses that are causative agents in the diseases such as polio, rubella and poss
AIDS ~see references in Ref. 2!.

The discovery of the fullerene molecule,3 and of the superconductivity of its compounds, h
invoked great enthusiasm for further study of this subject.4,5 As is well known, by taking advan-
tage of the symmetry, the amount of work needed to calculate eigenvalues and eigenvectors
reduced drastically. In addition, symmetry analysis neatly classifies these eigenvalues an
vides a method for organizing experimental data. This is especially so for the highest po
point-group symmetryI h .

The irreducible basis for a regular representation ofI h involves 120 terms and is too cumbe
some to use. Recently a powerful symmetrization procedure is offered,6 and applied to the high-
overton stretching vibrations of the octahedral molecules.7 This procedure is called the poin
group symmetrized boson representation, or symmetrized boson representation~SBR! for short.
The advantages of the SBR are that its basis vectors have a clear physical picture and sy
adapted bases for any concrete cases can be constructed in algebraic form once for all for
point group without any projection procedure.

The first purpose of this paper is to use the SBR to derive algebraic expressions f
irreducible basis ofI h , and show that they can be expressed by at most 12 terms. For the firs
0022-2488/97/38(1)/387/24/$10.00
387J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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explicit and succinct expressions of the irreducible bases are given for several important c
the moleculesB12H12.

The second purpose is to describe a new development which enables us to obtain al
expressions for the irreducible matrices of a point group. The irreducible matrices for
generators of the groupI h have been given by several authors.

2,8 The irreducible matrices for the
whole group were obtained by brutal force, i.e., by matrix multiplication in Ref. 9. As an a
native, using a code based on the eigenfunction method~EFM!,10,11 Liu et al.12 calculated all the
irreducible matrices for theI.C5 group chain by diagonalizing the third kind of complete set
commuting operators~CSCO-III! of I , 7C1C819C̄8, in the group space, whereC,C8 andC̄8 are
the first kind of CSCO, the CSCO-I, of the groupI , and the cyclic groupsC5 andC̄5, respectively,
C̄5 being the subgroup of the intrinsic point groupĪ ~see Sec. II!. If one looks at the irreducible
matrices given either in Ref. 9 or Ref. 12, one notices thousands of entries without any ob
symmetry. Therefore there is a paradox here. The higher symmetry a group has, the more
otic’’ appear its irreducible matrices. Is this true? Is there no reflection of the high symmetry
irreducible matrices? We will show that actually the irreducible matrices have a very high
metry. The reason that they appeared chaotic previously was the failure to solve the pu
rearrangement, just like the thousands of small pieces of a jig-saw puzzle which seem c
before being arranged into a coherent picture.

The paper is organized in the following way. We begin with an introduction to the groupI and
I h , its three realizations and its CSCO-I, -II, and -III in Sec. II. Then we will follow the st
given in ~Ref. 6! for deriving the algebraic expression for the irreducible basis of the groupI and
I h . The first step, the construction of the point-groupC5 symmetrized bases is carried out in Se
III, the irreducible bases ofB12H12 for regular and non-regular representations are derived in S
IV and Sec. V. The irreducible basis in the configuration space is transformed into that
group space, leading to an algebraic expression for the irreducible matrix elements in Sec. V
a summary of the method is given in the final section.

II. THE GROUP I AND ITS CSCO-I, -II, AND -III

The groupI h , the symmetry group of a regular icosahedron shown in Fig. 1, is a d
product of the groupI with the inversion group (e, Î ). The vertices of the upper~lower! part of the
are labeled 126 (18268), see Fig. 1. The groupI has

6 five-fold axes~joining the two opposite vertices!, j51, . . . ,6,
10 three-fold axes~joining the center of the two opposite faces!, C3,j , j51, . . . ,10,
15 twofold axes~joining the midpoints of two opposite edges!, C2,j , j51, . . . ,15.
The rotation axes are listed in Table I.
The groupI has 60 elements denoted asRa ,a51, . . . ,60 withR15E ~identity! and the

remaining 59 rotation operators given below

FIG. 1. Icosahedron withI h symmetry. The 12 vertices represents 12 vibrational bonds, divided into two sets
‘‘horizontal’’ set ~1,2,3,4,5,18,28,38,48,58) and the vertical set~6,68).
J. Math. Phys., Vol. 38, No. 1, January 1997
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C5,j
k ~ j51, . . . ,6;k561,62!, C3,j

k ~ j51, . . . ,10;k561!,

C2,j~ j51, . . . ,15!. ~1!

The 60 elements are divided into five classes with five class operators designated as

C15E,

C25(
j51

6

~C5,j1C5,j
21!5 (

a52

13

Ra , C35(
j51

6

~C5,j
2 1C5,j

22!5 (
a514

25

Ra , ~2!

C45(
j51

10

~C3,j1C3,j
21!5 (

a526

45

Ra , C55(
j51

15

C2,j5 (
a546

60

Ra ,

where we used the convention thatCl , j[Cl , j
1 .

Although the algebraic expressions we are going to derive are independent of the s
realization for the groupI , for definiteness let us consider a special realization, namely con
the stretching vibration of the moleculeB12H12, which has the icosahedral symmetry with bor
atoms sitting at the vertices of an icosahedron. As in Ref. 6, the 12 B-H bonds are divided in
sets, the ‘‘horizontal’’ bonds 1–5 and 18–58, and the vertical bonds 6 and 68. Under the inversion
operationÎ , the vertices, or the bonds, are interchanged,x↔x8,

x85 Î x, x5 Î x8. ~3!

Assume that there is a statew0 in which the bonds 1–6(18–68) havea–f (a–f) vibration
quanta, or vibrons, respectively. Let us stipulate that the ascending orders for the bond indic
the occupation numbers are 1–5, 18–58, 6, 68 anda–e, a–e, f ,f, respectively. Then the stat
w0 will be the normal order state,6 and designated by

w05uabcde f))[uabcdeabgde ff)[u1a2b3c4d5e18a28b38g48d58e6 f68f). ~4!

Under the inversion operation, the occupation numberroman↔greek, denoted as

a5 Î a, a5 Îa•••,

TABLE I. The rotation axes of the groupI .

C5,1 C5,2 C5,3 C5,4 C5,5 C5,6

18→1 28→2 38→3 48→4 58→5 68→6

C3,1 C3,2 C3,3 C3,4 C3,5

n126a n236 n346 n456 n516

C3,6 C3,7 C3,8 C3,9 C3,10

,1248b ,2358 ,3418 ,4528 ,5138

C2,1 C2,2 C2,3 C2,4 C2,5 C2,6 C2,7 C2,8

16c 148 45 358 36 26 12 248

C2,9 C2,10 C2,11 C2,12 C2,13 C2,14 C2,15

258 23 46 56 15 138 34

an126 means an axis from the origin to the center of the triangle 126.
b,1248 means an axis from the origin to the center of the triangle 1248.
c16 is the axis from the origin to the midpoint of the line connecting 1 and
6.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Since an operation of the groupI induces the transformation of two sets of bonds, it
convenient to introduce the dual coordinate-permutation operator

$ i jk •••%[~ i jk ••• ! Î ~ i jk ••• !5~ i jk ••• !~ i 8 j 8k8••• !,
~5!

$ i 8 jk8l 8•••%[~ i 8 jk8l 8••• ! Î ~ i 8 jk8l 8••• !5~ i 8 jk8l 8••• !~ i j 8kl ••• !,

and the dual state-permutation operator

$abc•••%[~abc••• ! Î ~abc••• !5~abc••• !~abg••• !,
~6!

$b f ec•••%[~b f ec••• !~bfeg••• !,

where (i jk •••) is the cycle permutation operator for the bond indices, while (abc•••) is the
cycle permutation operator for the occupation number~or state indices6!.

As illustrated in Ref. 6, for each point group there are three realizations:
1. The groupI is isomorphic to a subgroup of the coordinate-permutation groupS12, which is

still denoted byI . The group operatorsRa of I are listed in Table II, where the symbol for the du
permutation~5! is used.

2. The groupI is isomorphic to a subgroup of the state-permutation groupS 12, which is
denoted byI with group elementsRa . The operators ofI are also given in Table II, where th
symbol for the dual permutation~6! is used. The group operators ofI andI are commutative and
related to one another by the index permutation,

H a b c d e

1 2 3 4 5J [S a b c d e a b g d e f f

1 2 3 4 5 18 28 38 48 58 68 68
D . ~7!

3. The intrinsic point groupĪ with group elementsR̄a . Ī commutes with and is anti
isomorphic toI . The state-point groupI can be regarded as a realization of the intrinsic po
group Ī on the product space~4!. The relation between the two isR̄a5(Ra)

21 .
According to Ref. 12, the CSCO-I, or the CSCO for short, of the groupI is the class operato

C2 given in Eq.~2!. It has five distinct eigenvalues which label the five inequivalent irreps oI .
The correspondence between the eigenvaluen and the irreps are shown below

irreps A F1 F2 G H

n 12 8 cosS p

5 D 28 cosS 2p

5 D 23 0.
~8!

The CSCO of the groupI h consists of two operators, the class operatorC2 and the inversionÎ .
The CSCO-II, the analogue of (J2,Jz) for SO(3), of thegroupI , depends on the choice of th

group chain. It is convenient to choose the group chainI.C5. The CSCO of the cyclic group
C5 is C5z5R2. The CSCO-III ofI consists of the following three operators:

C5(
j51

6

~C5,j1C5,j
21!, C85C5z5expS 2

2pJz
5 D , ~9!

C̄85C̄5z5expS 2
2p J̄z
5 D ,

whereJz andJ̄z are the projections of the angular momentum onto the third axis of the labor
and body-fixed frames, respectively.
J. Math. Phys., Vol. 38, No. 1, January 1997
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An important fact is that the CSCO of the groupsI andI are equal, i.e.,C5C . As empha-
sized in Ref. 6. in the SBR the bond indices have been symmetrized and hidden, and it is
easier to diagonalize the operatorC instead ofC. Therefore in the representation space~4!, the
CSCO-III of I is taken as

C5 (
a52

13

Ra , C85C5z5~12345!, C̄85C̄5z5C 5z
215~aedcb!, ~10!

where the state-permutationsRa are given in Table II.
A key point in the eigenfunction method is that the problem of finding the irreducible bas

the regular representation space is converted to that of finding the simultaneous eigenvector
CSCO-III ofG, i.e., of solving the eigenvalue equations

S C

C8

C̄8
D cr

~n! r̄ 5S n

r

r̄
D cr

~n! r̄ . ~11!

TABLE II. The group operators of andI andI .

2(321)a:C5,6 4(521):C5,1 6(721):C5,4 8(921):C5,5

$12345% $2653848% $12586838% $1642838%
$abcde% $b fegd% $abefg% $a fdbg%
10(1121):C5,3 12(1321):C5,2 14(1521):C5,6

2 16(1721):C5,1
2

$14868285% $1485836% $13524% $2548638%
$adfbe% $adec f% $acebd% $bed fg%

18(1921):C5,4
2 20(2121):C5,5

2 22(2321):C5,3
2 24(2521):C5,2

2

$15838268% $1438628% $16854828% $1586483%
$aegbf% $adg fb% $afedb% $ae fdc%

26(2721):C3,1 28(2921):C3,6 30(3121):C3,9
21 32(3321):C3,7

$126%$3548% $1482%$3568% $1683%$2845% $1684%$2583%
$ab f%$ced% $adb%$cef% $afc%$bde% $afd%$bec%

34(3521):C3,2 36(3721):C3,5 38(3921):C3,8
21 40(4121):C3,4

21

$1584%$236% $165%$2438% $13848%$2568% $1283%$465%
$aed%$bc f% $a fe%$bdg% $agd%$bef% $abc%$d fe%

42(4321):C3,10
21 44(4521):C3,3 46:C2,1 47:C2,2

$1385%$2684% $15828%$346% $16%$25%(338)(448) $148%$238%(558)(668)
$age%$bfd% $aeb%$cd f% $a f%$be%(cg)(dd) $ad%$bg%(ee)( ff)

48:C2,3 49:C2,4 50:C2,5 51:C2,6

$268%$45%(118)(338) $128%$358%(448)(668) $24%$36%(118)(585) $13%$26%(448)(558)
$bf%$de%(aa)(cg) $ab%$ge%(dd)( ff) $bd%$c f%(aa)(ee) $ac%$b f%(dd)(ee)

52:C2,7 53:C2,8 54:C2,9 55:C2,10

$12%$468%(338)(558) $158%$248%(338)(668) $258%$348%(118)(668) $23%$568%(118)(448)
$ab%$df%(cg)(ee) $ae%$bd%(cg)( ff) $be%$cd%(aa)( ff) $bc%$ef%(aa)(dd)

56:C2,11 57:C2,12 58:C2,13 59:C2,14

$35%$46%(118)(228) $14%$56%(228)(338) $15%$368%(228)(448) $138%$458%(228)(668)
$ce%$d f%(aa)(bb) $ad%$e f%(bb)(cg) $ae%$cf%(bb)(dd) $ag%$de%(bb)( ff)

60:C2,15 1
$168%$34%(228)(585) identity
$af%$cd%(bb)(ee) identity

a2(321):C5,6 meansR25R3
215C5,6 for I , andR25R3

215C 5,6 for I .
J. Math. Phys., Vol. 38, No. 1, January 1997
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Since the eigenvalues of the operatorC8 (C̄8) are exp„ 2 2mp i /5… (exp„ 2 2m̄p i /5…), sometimes
it is more convenient to use the integerm(m̄) instead of complex numbersr( r̄) as indices. In the
following, we will often switch back and forth between the indicesr andm. According to Ref. 10
the eigenvectorcr

(n) r̄[cm
(n)m̄ gives the componentm associated with the point groupI with m̄ as

the multiplicity label of the irrepn, but at the same time it gives the componentm̄ associated with
the intrinsic point groupĪ with m as the multiplicity label of the irrepn. The labeling for the
irreducible basis ofI is shown in Table III.

Our strategy for solving the set of eigenvalue equations~11! is
1. Decompose the regular representation spaceLg of I with dimensionality 60 into 5 eigens

pacesLm with dimensionality 12 ofC5z ,

Lg5 (
m522

2

%Lm . ~12!

2. Decompose the eigenspacesLm into the common eigenspacesLmm̄ of (C5z ,C̄5z),

Lm5 (
m̄522

2

%Lmm̄. ~13!

3. Construct the representation matrixM of C in the spaceLmm̄. A diagonalization of the
matrix M will give the irreducible basis ofI . However the elements ofM are algebraic expres
sions instead of numerical values, and it is far more difficult to diagonalize such a matrix. F
nately, we know beforehand which eigenvalue occurs how many times~the multiplicity of the
eigenvalue ofC ) in Lmm̄, and thus the eigenvalue problem can be converted into the proble
solving a set of homogeneous linear equations. The multiplicities of the eigenvaluesn of the
operatorC are easily obtained from Eq.~8! and Table III, and the results are given in Table I
Notice that all the multiplicities are equal to or less then one, a reflection of the fact tha
CSCO-III is a complete set of commuting operators in the regular representation space.

4. Use the assimilation procedure to derive the irreducible basis for non-regular represe
spaces.

Below we will follow the above four steps to obtain the algebraic expressions for the irre
ible bases.

TABLE III. The labeling of the IRB ofI .

cm
(m)m̄ c0

(A)0 c1,021
(F1)1,021 c2,022

(F2)2,022 c2,1,2122
(G)2,1,2122 c2,1,0,2122

(H)2,1,0,2122

TABLE IV. The multiplicity of the eigenvalues ofC in the eigenspaceL umu,um̄u of (C5z ,C̄5z).

A F1 F2 G H

umu,um̄u 12
8 cosSp5D 28 cosS2p

5 D 23 0

2,2 1 1 1
2,1 1 1
2,0 1 1

1,1 1 1 1
1,0 1 1

0,0 1 1 1 1
J. Math. Phys., Vol. 38, No. 1, January 1997
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III. THE C5-SYMMETRIZED BOSON REPRESENTATION

Before embarking on step 1, let us first discuss a molecule withC5 symmetry, whose five
bonds are labeled 1,2,3,4,5. Suppose further that there is a state in which the bonds
occupied bya,b,c,d ande vibration quanta, respectively. Such a state is denoted by

uabcde)[u1a2b3c4d5e&[u~12345!abcde&. ~14!

We index the occupation numbera–e asa1–a5. Then the stateuabcde) is the normal order state.
6

Applying the projection operator of the groupC5 to uabcde), we can easily construct the irre
ducible basis ofC5, called theC5 symmetrized basis,

uabcde;&[uabcde;&r5Pruabcde)

5u~123451r* 234511r* 2345121r* 3451231r* 451234!abcde&

5uabcde)1rubcdea)1r2ucdeab)1r3udeabc)1r4ueabcd), ~15!

where

Pr5(
j50

4

~C5z!
jr* j . ~16!

In the following the subscriptr in uabcde;&r will be suppressed for simplicity, and will be
restored only when it is necessary. The symmetrized basisuabcde;& is an eigenvector of
(C5z ,C 5z):

C5zuabcde;&5ruabcde;&, C 5zuabcde;&5r* uabcde;&, ~17!

and has the symmetries

uabcde;&5rubcdea;&5r* ueabcd;&. ~18!

Note that the bond indices are symmetrized and hidden in the expressionuabcde;&. The
implication is that instead of specifying how many vibration quanta~vibrons! are in each bond, we
only need to specify that there area,b,c,d,e quanta distributed over the five bonds with the cyc
symmetryr.

A distinguishing feature of the symmetrized bases is that the assimilation is very simp
can be seen from the following examples:

uabcd;&[uabcd0;&5u~12341r* 23451r* 234511r245121r5123!abcd&,

uabc;&[uabc0;&5u~1231r* 2341r* 23451r24511r512!abc&,

uabc;&[uab0c;&5u~1241r* 2351r* 23411r24521r513!abc&,

uab;&[uab0;&5u~121r* 231r* 2341r2451r51!ab&, ~19!

uab;&[ua0b;&5u~131r* 241r* 2351r2411r52!ab&,

ua;&[ua0;&5u~11r* 21r* 231r241r5!a&.

The physical meaning of the basis vectorsuabc;&,uab;&,uabc;&,uab;& can be seen clearly in
Fig. 2. uabc;&(uab;&) denotes three~two! adjacent bonds havinga,b,c(a,b) vibration quanta,
while uabc;&,(uab;&) denotes three~two! non-adjacent bonds havinga,b,c(a,b) vibration quanta.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Now turn to the groupI . The normal order statew0 in Eq. ~14! is extended to that given in Eq
~4!. The normalized eigenvector ofC5z is denoted byw1, andA5w1 is equal to

A5w15uabcde; f &&[uabcde,abgde; ff&5Pruabcdeabgde ff)5(
j50

4

~C 5z!
jr j uabcde f)).

5uabcde f))1rubcdea f))1r2ucdeab f))1r3udeabc f))1r4ueabcd f)), ~20!

where we introduced the shorthand notationuabcde; f && for uabcde,abgde; ff&. Notice that
w1 is normalized but notuabcde; f &&. As in Ref. 6, the charactersabcdebefore the semicolon in
the ket vectoruabcde; f && indicate the occupation number of the vibrons for the ‘‘horizonta
bonds, while that after the semicolon for the ‘‘vertical’’ bonds.

Similarly to Eq.~18!, the basis has the symmetries:

uabcde; f &&5rubcdea; f &&5r* ueabcd; f &&. ~21!

From~19!–~20! we obtain the assimilation for the basisuabcde; f && listed in Table V. In doing
assimilation, the following special cases are to be noted:

u0;a&&5u;a&&55dr,1u6a68a&,

ua;0&&5ua;&&5u1a18a&1r* u2a28a&1•••1r* 4u5a58a&, ~22!

uaaaaa;&&55dr,1u~12345!aaaaa~1828384858!aaaaa&.

FIG. 2. The distribution patterns for the statesuabc;&,uabc;&,uab;&,uab&.

TABLE V. Assimilation of the symmetrized basis

uabcd0,f && uabc0;f && u0abc; f && uab0c; f && uc0ab; f && uab0;f &&
uabcd; f && uabc; f && ruabc; f && uabc; f && r2uabc; f && uab; f &&

u0ab; f && ua0b; f && ua00b; f && uab0;f && u0ab; f && ua0b; f &&
ruab; f && uab; f && r22uab; f && uab; f && ruab; f && r22uba; f &&

ua0;f && u0a; f && ua0;f && u0a; f &&
ua; f && rua; f && ua; f && r2ua; f &&
J. Math. Phys., Vol. 38, No. 1, January 1997
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To generate the 12-dimensional eigenspaceLm in ~12! of C5z , we apply the 12 five-fold
rotations of the state-point-groupI to w15uabcde; f && and obtain Table VI. From Table VI we
have

w15uabcde; f &&, w35R4w
15ua fdbg;e&&,

w55R8w
15u f cabe;d&&, w75R6w

15ubead f ;c&&, ~23!

w95R10w
15udec fa;b&&, w115R12w

15udb feg;a&&.

The other six basis vectors can be generated in the following way:

w25R53w
15uedgba;w&&, w45R4w

25ucbdwa;e&&,

w65R8w
25uebagw;d&&, w85R6w

25uwdaeb;g&&, ~24!

w105R10w
25uawged;b&&, w125R12w

25ucewbd;a&&,

whereR535C 2,8 is a two-fold rotation. The 12 basis vectorsw1–w12 form the eigenspaceLm or
Lr of the operatorC5z , which is a representation space for the operatorC , called the
C5-symmetrized boson representation~SBR!.

IV. IRREDUCIBLE BASES OF B12H12 FOR REGULAR REPRESENTATION

The original 60-dimensional group space is reduced to 12-dimensional eigenspaceLr . To get
the expression for irreducible basis ofI which is ‘‘analytic’’ in the quantum numberr̄, and to
further reduce the space, we construct the common eigenspaceLmm̄ or Lr r̄ of (C5z ,C̄5z), i.e., to
combinew1,...,w12 into eigenvectorswr r̄

i of C̄5z5(aedcb). It is easy to show thatw1 andw2 are
already eigenvectors ofC̄5z with the eigenvaluesr̄5r andr* , respectively;

C̄5zw
15ueabcd; f &&5rw15 r̄w1, ~25!

C̄5zw
25udgbae;f&&5r*w25 r̄w2. ~26!

Therefore we have

wr r̄
1 5w1d r̄ r , wr r̄

2 5w2d r̄ r* . ~27!

TABLE VI. The action of 12 five-fold rotations ofI on uabcde; f &&.

R2 R4 R8 R6 R10 R12

$abcde% $b fegd% $a fdbg% $abewg% $adwbe% $adec f%

Riw
1 ubcdea; f && ua fdbg;e&& u f cabe;d&& ubead f;c&& udec fa;b&& udb feg;a&&

r*w1 w3 w5 w7 w9 w11

R3 R7 R11 R13 R5 R9

$aedcb% $agweb% $aebwd% $a f ced% $bdge f% $agbd f%

Riw
1 ueabcd; f && uga fdb;e&& ue f cab;d&& u f bead;c&& uadec f;b&& ugdb fe;a&&

rw1 rw3 rw5 rw7 rw9 rw11
J. Math. Phys., Vol. 38, No. 1, January 1997
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Applying C̄5z5(aedcb) to w3–w12, we get Table VII. Using Table VII, it is easy to obta
the other two common eigenvectors of (C5z ,C̄5z) by using the projection operatorP̄ r̄ of the
intrinsic groupC̄5,

P̄ r̄ 5(
j50

4

~C̄5z!
j r̄* j , ~28!

wr r̄
3 5

1

A5
P̄ r̄w35

1

A5
~w31uw51u2w71u3w91u4w11!, ~29!

wr r̄
4 5

1

A5
P̄ r̄w45

1

A5
~w41sw61s2w81s3w101s4w12!, ~30!

where

u5 r̄* r, s5~ r̄r!* . ~31!

TheC53C̄5 symmetrized base vectorswr r̄
1 –wr r̄

4 form the common eigenspaceLr r̄ of the op-
erators (C5z ,C̄5z) and the representation they carry is called the double SBR. It is to be note
the dimension of the subspaceLr r̄ depends on the values ofr andr̄, and ranges from 4 to 2~for
detail, consult the text following Eq.~44!!.

To construct the representation matrix ofC in Lr r̄ , we need first find its representation matr
in the spaceLr . By adding up the 12 items in Table VI we get

C uabcde; f &&5~r1r* !uabcde, f &&1~11r!~ ua fdbg;e&&1u f cabe;d&&1ubead f ;c&&

1udec fa;b&&1udb feg;a&&). ~32!

By index replacements, from Eq.~32! we can get the action ofC on w2–w12. Using the
symmetry, Eq.~21!, to express the resulting vectors in terms of the basis vectorsw1–w12, we get
the action ofC on the 12 symmetrized basis vectors, shown in Table VIII. For example,

C w35~11r* !~w11w11!1~r1r* !w31~11r!w51r* ~11r* !w81r2~11r!w10. ~33!

It is interesting to note that the upper and lower parts of Table VIII are complex conjugate t
another.

Combining Eqs.~27!–~30! and Table VIII, we can get the representative matrix ofC in the
subspaceLr r̄ . Its transpose has the following form:

M̃5S ~r1r* !d r̄ r 0 A5~11r* !d r̄ r 0

0 ~r1r* !d r̄ r* 0 A5~11r!d r̄ r*

A5~11r!d r̄ r 0 rr̄*1 r̄r*1X1 X2

0 A5~11r* !d r̄ r* X2* rr̄1r* r̄*1X1

D , ~34!

TABLE VII. The action of C̄5z5(aedcb) on w3 2w12

w3 w5 w7 w9 w11

C̄5zw
i rw5 rw7 rw9 rw11 rw3

w4 w6 w8 w10 w12

C̄5zw
i r*w6 r*w8 r*w10 r*w12 r*w4
J. Math. Phys., Vol. 38, No. 1, January 1997
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where

X15r1r*1 r̄1 r̄* , X25~11r* !~ r̄21 r̄3!. ~35!

The eigenvaluesr and r̄ of the operatorsC5z and C̄5z are

r[rm5expS 22mp

5
i D , r̄[rm̄5expS 22m̄p

5
i D . ~36!

Substituting~36! into ~34! yields

M̃[M̃ ~mm̄!52S c2mdm̄m 0 bmdm̄m 0

0 c2mdm̄,2m 0 bm* dm̄,2m

bm* dm̄,m 0 c2m1c2m̄1c2~m2m̄! dmm̄

0 bmdm̄,2m dmm̄
* c2m1c2m̄1c2~m1m̄!

D , ~37!

where

cm5cosSmp

5 D , em5expSmp

5
i D5r21/2,

bm5A5emcm , dmm̄52~2 !m̄emcmcm̄ . ~38!

TABLE VIII. The action ofC on w i

w1 w3 w5 w7 w9 w11

C w1 r1r* 11r 11r 11r 11r 11r
C w3 11r* r1r* 11r 11r*
C w5 11r* 11r* r1r* 11r
C w7 11r* 11r* r1r* 11r
C w9 11r* 11r* r1r* 11r
C w11 11r* 11r 11r* r1r*

C w2

C w4 r(11r) r2(11r)
C w6 r* (11r* ) (11r* )
C w8 r(11r) (11r)
C w10 r2(11r) r* (11r* )
C w12 (11r* ) (11r)

w2 w4 w6 w8 w10 w12

C w2 r1r* 11r* 11r* 11r* 11r* 11r*
C w4 11r r1r* 11r* 11r
C w6 11r 11r r1r* 11r*
C w8 11r 11r r1r* 11r*
C w10 11r 11r r1r* 11r*
C w12 11r 11r* 11r r1r*

C w1

C w3 r* (11r* ) r2(11r)
C w5 r(11r) (11r)
C w7 r* (11r* ) (11r* )
C w9 r2(11r) r(11r)
C w11 (11r) (11r* )
J. Math. Phys., Vol. 38, No. 1, January 1997
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It is noted that the matrixM (m̄m) is Hermitian and has the following symmetries:

M ~mm̄!5M̃ ~mm̄!*5M ~2m,2m̄!* . ~39!

With the introduction of~36!, wr r̄
i can be written aswmm̄

i , and the phasesu ands in ~31!
become

u5e2~m̄2m!, s5e2~m̄1m!. ~40!

The eigenvectorcr
(n) r̄[cm

(n)m̄ of C can be expressed as

cm
~n!m̄5A5hn

g (
i51

4

Amm̄
n ~ i !wmm̄

i , ~41!

where the factorA5hn /g is chosen for later convenience, withhn andg(560) representing the
dimension of the irrepn and the order of the groupG, respectively.

The column vectorA5(A(1), . . . ,A(4))col satisfies the following matrix equation

M̃Amm̄
n 5nAmm̄

n . ~42!

From Eq.~37! for M̃ and Eq.~41! we infer that

Amm̄
n ~1!5dm̄m , Amm̄

n ~2!5dm̄,2mAmm̄
n ~2!, ~43!

while from Eq.~39! we deduce that

A2m,2m̄
n ~ i !5Am,m̄

n ~ i !* . ~44!

The eigenvalue equation~42! is solved for each possible value ofm,m̄. Thanks to the infor-
mation contained in Table IV, the eigenvaluesn are known beforehand. With known eigenvalu
of n substituted into~42!, we only need to solve a set of homogeneous linear equations
degree equal to 4~for m5m̄50), equal to 3~for umu5um̄u51,2), and equal to 2~for umu
Þu m̄u). The only freedom is the over-all phases of the eigenvectors. We adopted the same
convention as in Ref. 12. For practical purposes, for each irrepn we only need to calculate on
component, the principal component, since owing to the Wigner–Eckart theorem, that is
need to calculate the matrix elements of any irreducible tensor of the group. For the
A,F1 ,F2 andH, we choose the components withm50 ~which are real! as the principal compo-
nents, while for the irrepG which does not have them50 component, we choose the one wi
m52 as the principal component.

The eigenvectors for the principal components are given in Table IX. The other compo
should one need them, can be obtained from Table X.

The algebraic expressions for the principal components of irreducible basis,cm
(n)m̄ in Table IX

can be rewritten in a more appealing form:

A5A 1
12 ~w11w21w831w84!00

F um̄u,0
0 5 1

2Fw12w22
~2 !m̄

A5
~w832w84!G

00

, m̄51,2,

F um̄u,0
m̄ 5A 1

10 ~2 !m̄~w832w84!0m̄ , m̄561,62,
J. Math. Phys., Vol. 38, No. 1, January 1997
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G2
m̄5

1

A3 F S 21m̄

4
w11

22m̄

4
e*w2D

2

2A1
5 ~e22w831ew84!2m̄G , m̄562, ~45!

G2
m̄52

2

A15
@c32m̄e22w831c31m̄ew84#2m̄ , m̄561,

H0
05A 5

12 @w11w22 1
5~w831w84!#00,

H0
m̄5

~2 !m̄

A10
~w831w84!0m̄ , m̄561,62.

where

wr r̄8 i [A5wr r̄
i , i53,4 , ~46!

is not normalized.
The compactness of Eq.~45! for the irreducible basis of the icosahedral group in the dou

SBR is impressive. However, the basis vectors in the double SBR do not have a clear ph
picture and it is preferable to express the irreducible basis in terms of the SBR. Subst
~29!–~30! into ~45!, it is found that the principal components for the irrepsn5F1 ,F2 andH have
the property thatc (n)2m̄5(c (n)m̄)* . Sincem̄ is the multiplicity label and the multiplicity separa
tion can be chosen freely, we can take the real and imaginary parts ofc (n)m̄ as the irreducible
bases. The components withr51 ~or m50) are

TABLE IX. IRB of I for principal components.

Ri
a R1 R53 R5 R24

mm̄ n wm
1 wm

2 wmm̄83 b wmm̄84

0,0 A 1 1 1 1

0,0 F1 1 21 A 1
5 2A 1

5
0,61 F1 A 2

5 2A 2
5

0,0 F2 1 21 2A 1
5 A 1

5
0,62 F2 2A 2

5 A 2
5

2,2 G 1 2A 1
5e

22 2A 1
5e

2,1 G 2A 4
5c2e

22 A 4
5c1e

2,21 G A 4
5c1e

22 2A 4
5c2e

2,22 G e* 2A 1
5e

22 2A 1
5e

0,0 H 1 1 2
1
5 2

1
5

0,61 H
2

A6
5

2
A6
5

0,62 H A6

5

A6

5

aThe entries are equal toDmm̄
n (Ri)* , see Eq.~76!.

bwmm̄8 i 5A5wmm̄
i ,i53,4, are un-normalized.
J. Math. Phys., Vol. 38, No. 1, January 1997
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A5A 1
12 (

i51

12

w i , F1
~1!5A 1

20 FA5~w12w2!2(
i53

12

~21! iw i G ,
F1

~2!5A 1
10 @~w32w4!1c2~w52w61w112w12!2c1~w72w81w92w10!#,

F1
~3!5A 1

10 @s2~w52w62w111w12!1s1~w72w82w91w10!#,

TABLE X. IRB of I h for non principal components.

Ri
a R1 R53 R5 R24

m,m̄ n wm
1 wm

2 wmm̄83 wmm̄84

1,1 F1 1 A 4
5c1e* 2A 4

5c2e
22

1,0 F1 A 2
5e* A 2

5e
22

1,21 F1 2e2 2A 4
5c2e* A 4

5c1e
22

2,2 F2 1 2A 4
5c2e

22 A 4
5c1e

2,0 F2 A 2
5e

22 A 2
5e

2,22 F2 e* A 4
5c1e

22 2A 4
5c2e

1,2 G A 4
5c2e* 2A 4

5c1e
22

1,1 G 1 2A 1
5e* 2A 1

5e
22

1,21 G 2e2 2A 1
5e* 2A 1

5e
22

1,22 G 2A 4
5c1e* A 4

5c2e
22

2,2 H 1 4
5c1

2e22 2
4
5c2

2e

2,1 H
4
5c1e

22 4
5c2e

2,0 H A 6
5 e22 2 A 6

5 e

2,21 H 2
4
5c2e

22 2
4
5c1e

2,22 H 2e* 4
5c2

2e22 2
4
5c1

2e

1,2 H 2
4
5c1e* 2

4
5c2e

22

1,1 H 1 2
4
5c2

2e* 4
5c1

2e22

1,0 H A 6
5 e* 2 A 6

5 e22

1,21 H e2 2
4
5c1

2e* 4
5c2

2e22

1,22 H
4
5c2e*

4
5c1e

22

aSee the note in Table IX.
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F2
~1!5A 1

20 FA5~w12w2!1(
i53

12

~21! iw i G ,
F2

~2!5A 1
10 @~w32w4!2c1~w52w61w112w12!1c2~w72w81w92w10!#,

F2
~3!5A 1

10 @s1~w52w62w111w12!2s2~w72w82w91w10!#, ~47!

H ~1!5A 1
10 F5~w11w2!2(

i53

12

w i G ,
H ~2!5A 1

10 @~w31w4!2c1~w51w61w111w12!1c2~w71w81w91w10!#,

H ~3!5A 1
10 @s1~w51w62w112w12!2s2~w71w82w92w10!#,

H ~4!5A 1
10 @~w31w4!1c2~w51w61w111w12!2c1~w71w81w91w10!#,

H ~5!5A 1
10 @s2~w51w62w112w12!1s1~w71w82w92w10!#,

where the superscript is the multiplicity label, and

cm5cosSmp

5 D , sm5sinSmp

5 D . ~48!

For the components withr5exp(2 4p/5 i )52e ~orm52)

G~1!5A 1
15 @A5w12e22~w31w51w71w91w112w12!2ew42e21w61e2w81w10#,

G~2!5A 1
15 @A5w22e2~w41w61w81w102w111w12!2e21w32ew51e22w71w9#,

~49!

G~3!5A 4
15 @c2~2e22w31ew51e21w72e2w92w11!1c1~ew42e2w62e22w81e21w102w12!#,

G~4!5A 4
15 @c1~e22w31e2w52ew71w92e21w11!1c2~2ew41e22w61w81e2w102e21w12!#,

Notice that all thew i in ~47! are associated withr51(m50), while those in ~49! to
r52e(m52). Equations~47–49! are valid for all cases.

The extension to the groupI h is trivial; we write

c
r

~n i0
! r̄

5A 1
2 ~11 i 0Î !cr

~n! r̄ 5A5hn

g (
i51

4

Ar r̄
~n!~ i !wr r̄ ,i0

i ,

wherewr r̄ ,i0

i is obtained fromwr r̄
i in Eqs.~27!–~30! by the following substitutions

uABCDE;F&&→uABCDE;F&& i05A1
2 ~ uABCDE;F&&1 i 0uÃB̃C̃D̃F̃;F̃&&) ~50!

5 i 0uÃB̃C̃D̃Ẽ;F̃&& i0, ~51!
J. Math. Phys., Vol. 38, No. 1, January 1997
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whereÃ is the complement ofA, e.g., if A5b then Ã5b, and vice versa. In other words, th
algebraic expressions for the groupI h are obtained from those for the groupI by adding the
subscripti 0 to w1-w12 in Tables IX–X and Eqs.~47!–~49!. Notice that the subscripti 051(2) of
the eigenvaluen plays the same role as the subscriptsg(u) in the Mulliken notation of the irrep
labels.

Equations~47!–~49! give the irreducible bases ofB12H12 for the most general case.

V. IRREDUCIBLE BASES OF B12H12 FOR NON-REGULAR REPRESENTATIONS

Up to now we have derived the algebraic expression of the irreducible basis for the
general case. Allowinga-w to take the values of successive integers, the total numberv of vibrons
in such a case isv5( i51

12 i578. The dimension of the space withv578 for a molecule with
n5 12 bonds isdn,v5( v

n1v21)53.651 967 631013. In practice we will deal with cases of ver
low value ofv. For each case the assimilation procedure can be done with the help of Table
its analogues, in the same way as in the case ofOh .

In the following we give the explicit expressions for three cases.
Case 1. Onlya anda Þ 0
From ~23!–~24! and Table V, and using the symmetries~21!, ~51! we can get the assimilation

for this case: There are only two linearly independent vectors which can be chosen as

w15ua;0&&r,i0
5ua;&&r,i0

5ua,a;&r ,1 i 0ua,a&r ,

~52!
w115u0;a&&r,i0

5u;a&&r,i0
55dr,1@ u6a68a&1 i 0u6a68a&].

The others are related to them as

w25w45r* i 0w
1, w35rw95w1, w65w85r2w1,

~53!
w55w75r2i 0w

1, w105 i 0w
1, w125 i 0w

11.

From ~47!–~49! and the above equations as well as the factr51(2e) for m50(2) we get
the irreducible bases~ignoring the norm!

Ag55ua;&&0,11u;a&&0,1 , F1u5A5ua;&&0,21u;a&&0,2 ,
~54!

F2u5A5ua;&&0,22u;a&&0,2 , Hg5ua;&&0,12u;a&&0,1 .

Now consider a simpler case witha5v and a50. Eq. ~52! remains true with
ua;&&→uv;&,u;a&&→u;v&. The vectoruv;&(u;v&) in the SBR has a clear picture that it represent
state which hasv vibrons concentrating on one of the ‘‘horizontal’’~vertical! bonds with cyclic
symmetryr and inversion symmetryi 0. It is seen that as far as finding the irreducible base
concerned, we can always work in the SBR. Only for computing a Hamiltonian matrix, d
need to switch back to the ‘‘coordinate representation’’ with explicit bond indices. For exam

uv;&5u1v;&5Pi0Pru1v&5Pi0~ u1v&1r* u2v&1r* 2u3v&1r2u4v&1ru5v&),

u;v&5u;6v&5Pi0Pru6v&55dr1~ u6v&1 i 0u68v&), ~55!

where

Pi0511 i 0Î .
J. Math. Phys., Vol. 38, No. 1, January 1997
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Substituting~55! into ~54!, we get the explicit form for the irreducible bases of the ca
a5v,

Ag5(
i51

6

u i v1 i 8v&, F1u5(
i51

5

u i v2 i 8v&1A5u6v268v&,

F2u5(
i51

5

u i v2 i 8v&2A5u6v268v&, Hg5(
i51

5

u i v1 i 8v&25u6v168v&. ~56!

Notice that all the irreducible bases in Eq.~56! refer to them50 component and it shows that th
decomposition of the 12-dimensional reducible representation is

125Ag%F1u%F2u%Hg . ~57!

The decomposition~57! can be checked by using the character theory. To compute the cha
of a reducible representation, we only need to know the operation of a single element in
class. From Table II, these single operators can be chosen as

12C5 :R25$12345%, 12S10: Î R25~128348518238458!,

12C5
2 :R145$13524%, 12S10

2 : Î R145~138528418358248!,

15C2 :R535$158%$248%~338!~668!, 15s: Î R535$15%$24%,

20C3 :R345$1584%$236%, 20S6 : Î R345~154185848!~238628368!.

~58!

From Eq.~58! it is seen that the state vectorsu6& and u68& are invariant underR2 andR14, while
u3&, u38&, u6& andu68& are invariant underÎ R53. The characters of the reducible representation
x(e)512,x(15C5)5x(15C5

2)52, x(15s)54, and the characters of all other classes are zero
is easy to check that the decomposition~57! is correct.

Although a knowledge of the decomposition of a given reducible representation is not n
sary for finding the explicit expression of its irreducible bases~since the algebraic solution of th
irreducible bases yields automatically the decomposition as a by product!, it is beneficial to know
it before hand for time-saving. Therefore in the following before finding the irreducible base
always first calculate the characters of a reducible representation and the multiplicities.

Case 2:a5b51.
There are only three linearly independent vectors :

w15u12;&, w35u148;&, w95r* u1;6&, ~59!

where

u148;&5Pi0Pru148&5Pi0~ u148&1r* u258&1r* 2u318&1r2u428&1ru538&),

u1;6&5Pi0Pru16&5Pi0~ u16&1r* u26&1r* 2u36&1r2u46&1ru56&). ~60!

The other nine vectors are related to the above as

w25r22i 0w
1, w45rw3, w55r2i 0w

1,

w65rw1, w75r2i 0w
3, w85r* i 0w

3, ~61!
J. Math. Phys., Vol. 38, No. 1, January 1997
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w105r i 0w
9, w115r2w9, w125r* i 0w

9.

According to Eq. ~58!, the basis vectorsu284& and u248& are invariant underR53, while
u15&,u1858&,u36& and u3868& are invariant underÎ R53. Therefore the characters of the reducib
representation are:x(e)530,x(15C2)52, x(15s)54, and the characters of all other classes
zeros. The decomposition of the 30 dimensional representation is easily found as

305Ag%F1u%F2u%Gg%Gu%2Hg%Hu . ~62!

From ~47!–~49! we obtain the irreducible bases as follows

Ag5w11w31w9, Hg52w12w32w9, Hg85w32w9

Gg5A5w124s1s2e* ~w31w9!, F1u5w112c1w
9, F2u5w122c2w

9, ~63!

Hu5w3, Gu5~A512!w114c1s2e* iw
324c1c2e*w9.

It should be emphasized again that in both sides of Eq.~63! the component indicesm50 for the
irrepsA,F,H andm52 for the irrepG are ignored for simplicity.

Case 3:a5c51.
There are only three linearly independent vectors :

w15u13;&, w35u158;&, w85r2u1;68&. ~64!

The other nine vectors are related to the above as

w25r2i 0w
1, w45w3, w55r2i 0w

3, w65r22i 0w
3,

w75 i 0w
8, w95r2w1, w105 i 0w

1, w115r2i 0w
8, w125r22w8.

According to Eq. ~58!, the basis vectorsu158& and u185& are invariant underR53, while
u24&,u2848&,u368& andu386& are invariant underÎ R53. Thus the characters of the reducible rep
sentation arex(e)530,x(15C2)52, x(15s)54, and the characters of all other classes are ze
The decomposition is identical to~62!.

The irreducible bases are

Ag5w11w31w8, Hg52w12w32w8, Hg85w32w8,

Gg5A5w124s1s2e* ~w31w8!, F1u5w122c2w
8, F2u5w112c1w

8, ~65!

Hu5w3, Gu5~A522!w124c2s1e* iw
314c1c2e*w8

.

VI. ALGEBRAIC EXPRESSIONS FOR THE IRREDUCIBLE MATRICES OF Ih

We are going to show that the coefficientsAr r̄
n ( i ),i51,2,3,4 give the irreducible matrix

elements for four coset representatives, and those for all other group elements can be simpl
from them. To this end we first transform the eigenvector Eq.~41! into a new form.

The basis vectorw i can be generated by applying an operator` i to w1,

wr
i 5` iwr

1 , i51, . . . ,4 ~66!
J. Math. Phys., Vol. 38, No. 1, January 1997
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with `15E~identity!. The operators̀ i can be found in the following way: According to Eq
~23!–~24! and Table II we have

`25R535$ae%$bd%~cg!~ fw!, `35R45$b fegd%,
~67!

`45H w1

w4J 5H abcde f

cbdwaeJ 5$acd f e%5R25.

From Eqs.~20!, ~27! and ~66! we have

wr r̄
1 5

1

A5
Prw0d r̄ r ,

wr r̄
2 5

1

A5
Pr`2w0d r̄ r*5

1

A5
Prp2

21w0d r̄ r* . ~68!

Using Eqs.~66! and ~68!, Eqs.~29!–~30! are recast into the following form

wr r̄
i 5

1

A5
P̄ r̄ ` iwr

15 1
5P̄

r̄ ` iP
rw05

1
5P̄

r̄Prpi
21w05

1
5P

rpi
21P r̄w0 , i53,4. ~69!

In deriving ~68! and~69! we used the fact that the state-point group and intrinsic group comm
with the coordinate point group,

@` i ,Ra#50, @C̄5z ,Ra#50, ~70!

and acting on the normal order state we have6

` iw05pi
21w0 , C̄5zw05C5zw0 .

Eq. ~41! is rewritten as

cr
~n! r̄ 5A5hn

g (
i51

4

Ar r̄
~n!~ i !wr r̄

i . ~71!

Inserting~68!, ~69! into ~71! and deleting the normal order statew0, the irreducible basiscr
(n) r̄ in

the configuration space becomes the normalized generalized projection operator. Multipl
with Ahn /g we get the generalized projection operatorPr r̄

(n) ,

Pr r̄
~n!5

hn

g F(
i51

2

Ar r̄
~n!~ i !Prpi

211
1

A5 (
i53

4

Ar r̄
~n!~ i !Prpi

21P r̄ G . ~72!

On the other hand, a double coset factored from for the generalized projection operato

Pr r̄
~n!5

hn

g F(
i51

2

Dr r̄
~n!~pi

21!*Prpi
211(

i53

4

Dr r̄
~n!~pi

21!*Prpi
21P r̄ G , ~73!

wherep15E andp2
21 are the right coset representatives, whilep3

21 andp4
21 are the double-cose

representatives with respect to the cyclic groupC5. From Eq.~67! and Table II we obtain the cose
representativespi

21
J. Math. Phys., Vol. 38, No. 1, January 1997
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p15E, p2
215R53, p3

215R5 , p4
215R24. ~74!

It is easy to show that

C5zp2
215p2

21C5z
21 , ~75!

i.e., the left and right cosets ofp1
21 andp2

21 coincide.
Comparing~72! with ~73! gives

Dr r̄
~n!~pi

21!5D iAr r̄
~n!~ i !* , for i5124, ~76!

where

D i5H 1, for i51,2,

1

A5
, for i53,4.

~77!

Therefore the coefficientsAr r̄
(n)( i )* multiplied byD i directly give the irreducible matrix element

for the coset representativespi
21 .

Any group element ofI can be identified with an element in a double coset with respect to
subgroupC5:

Ra[Rjik5C5z
j pi

21C5z
k . ~78!

The irreducible matrix elements ofRa can be factored:

Dr r̄
~n!~Ra!5D ~r!~C5z

j !Dr r̄
~n!~pi

21!D ~ r̄ !~C5z
k !5r j r̄kDr r̄

~n!~pi
21!. ~79!

From Eq.~36! and~79!, we obtain the algebraic expression for the irreducible matrix elem
of the groupI h

D
mm̄

~n i0
!
~Rjik !5 i 0e

22~mj1m̄k!Dmm̄
n ~pi

21!, for j ,k50,...,4; i 0561. ~80!

Equation~80! shows that the irreducible matrix of all the elements in the samei -th double coset
differ from that of the coset representativepi

21 only by the phase factorse22(mj1m̄k) 5 e2N ,
which has only ten distinct values,6(1,e,e2,e22,e21), for any integerN . Using the group table
given in the Appendix of Ref. 12 we can obtain the indicesj ik for each group element ofI , as
shown in Table XI.

According to Eq.~76!, from Table IX and Table X, we can immediately write down t
irreducible matrices for the coset representatives~we remind the reader that the row~column! are
labeled in order of decreasingm(m̄) values as specified in Table III!:

DF1~R53!52S 0 0 e22

0 1 0

e2 0 0
D , ~81!

DF2~R53!5S 0 0 e

0 21 0

e* 0 0
D . ~82!
J. Math. Phys., Vol. 38, No. 1, January 1997
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DF1~R5!5DF2~R24!*5A1
5S 2c1e A2e 22c2e

2A2 1 2A2
22c2e* A2e* 2c1e*

D , ~83!

DF1~R24!5DF2~R5!5A1
5S 22c2e

2 A2e2 2c1e
2

A2 21 A2
2c1e

22 A2e22 22c2e
22D . ~84!

DG~R53!5S 0 0 0 e

0 0 2e22 0

0 2e2 0 0

e* 0 0 0
D , ~85!

DG~R5!52A1
5S e2 2c2e

2 22c1e
2 e2

22c2e e e 2c1e

2c1e* 2e* 2e* 22c2e*

e22 22c1e
22 2c2e

22 e22
D , ~86!

DG~R24!52A1
5S e* 22c1e* 2c2e* e*

2c1e
2 e2 e2 22c2e

2

22c2e
22 e22 e22 2c1e

22

e 2c2e 22c1e e
D . ~87!

TABLE XI. The indices (j ik ) for the group elements ofI .

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

~010! ~110! ~410! ~333! ~030! ~130! ~332! ~234! ~431! ~031!

R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

~233! ~432! ~134! ~210! ~310! ~441! ~042! ~243! ~344! ~342!

R21 R22 R23 R24 R25 R26 R27 R28 R29 R30

~443! ~144! ~240! ~040! ~141! ~433! ~034! ~440! ~142! ~444!

R31 R32 R33 R34 R35 R36 R37 R38 R39 R40

~242! ~044! ~241! ~032! ~133! ~334! ~430! ~340! ~143! ~331!

R41 R42 R43 R44 R45 R46 R47 R48 R49 R50

~230! ~043! ~341! ~131! ~232! ~434! ~420! ~343! ~220! ~132!

R51 R52 R53 R54 R55 R56 R57 R58 R59 R60

~033! ~041! ~020! ~120! ~140! ~231! ~330! ~442! ~320! ~244!
J. Math. Phys., Vol. 38, No. 1, January 1997
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DH~R53!5S 0 0 0 0 2e

0 0 0 e22 0

0 0 1 0 0

0 e2 0 0 0

2e* 0 0 0 0

D , ~88!

DH~R5!5 1
5S 4c1

2e2 4c1e
2 A6e2 24c2e

2 4c2
2e2

24c1e 24c2
2e A6e 24c1

2e 4c2e

A6 2A6 21 2A6 A6
4c2e* 24c1

2e* A6e* 24c2
2e* 24c1e*

4c2
2e22 24c2e

22 A6e22 4c1e
22 4c1

2e22

D , ~89!

DH~R24!5 1
5S 24c2

2e* 4c2e* 2A6e* 24c1e* 24c1
2e*

24c2e
2 4c1

2e2 2A6e2 4c2
2e2 4c1e

2

A6 2A6 21 2A6 A6
4c1e

22 4c2
2e22 2A6e22 4c1

2e22 24c2e
22

24c1
2e 24c1e 2A6e 4c2e 24c2

2e

D . ~90!

Concerning the structure of these matrices, note first that the irreducible matrices f
elementR53 can be written in the following compact form:

D ~n!~R53!52anti-diag$e22m%, for H n5F1 , m51,0,21

n5F2 , m52,0,22

n5G, m52,1,21,22

, ~91!

DH~R53!5anti-diag$e22m%, for m52,1,0,21,22. ~92!

Next we turn our attention to the remaining matrices which contain additional horizonta
vertical lines. These have been added in order to call attention to the special symmetry
matrices, as we now explain.

From ~44! and~81!–~90! we have the symmetries for the matrices of the coset representa
pi

21 , i52,3,4:

up-down symmetry: D2m,2m̄
~n! ~pi

21!5Dm,m̄
~n! ~pi

21!* ,

right-left symmetry: Dm,2m̄
~n! ~pi

21!56Dm,m̄
~n! ~pi

21!uc1↔c2
. ~93!

From ~80! and ~93! we have the symmetries for arbitrary operators

up-down symmetry: D2m,2m̄
~n! ~Rjik !5Dm,m̄

~n! ~Rjik !* ,

right-left symmetry: Dm,2m̄
~n! ~Rji 0!56Dm,m̄

~n! ~Rji 0!uc1↔c2
. ~94!
J. Math. Phys., Vol. 38, No. 1, January 1997
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It is seen that the irreducible matrices of the icosahedral groupI have a very high symmetry
The whole matrix of a coset representative is reproduced from its sub-matrix associate
m,m̄>0 ~sitting at the upper left-hand corners in the matrices of Eqs.~83!–~90! by the ‘‘code’’ in
Eq. ~93!, while the matrices of the elements in thei -th coset are reproduced from the matrix of t
coset representativepi

21 by the ‘‘code’’ in Eq. ~80!. It is worth mentioning that a single equatio
Eq. ~80! gives10 matrices fori51,2 and50 matrices fori53,4. This shows the power of th
algebraic expression for the irreducible matrices.

All the 60360 irreducible matrix elements of the groupI have been obtained numerically in12

and are listed in Table III of Ref. 12. The algebraic solutions given here are totally in agree
with the numerical results. To facilitate the comparison between the two, the 30 symbols u
Ref. 12 are listed in Table XII. Notice that although the group table and the irreducible ma
in Ref. 12 are the same as in this paper, the same group elementRa stands for different permu
tations and the two permutation operators of the sameRa are obtainable from each other by th
following replacement,

S 1 2 3 4 4 6 7 8 9 10 11 12

6 1 48 58 3 2 5 38 68 18 4 28
D ~95!

where the integers 1–12 are the bond indices used in Ref. 12.

VII. SUMMARY AND DISCUSSION

The point-group symmetrized boson representation~SBR! provides not only a simple way o
expressing an irreducible basis in terms of reducible ones, so that the assimilation proce
comes very simple, but also, combined with the eigenfunction method, provides a meth
reducing the regular representation of any finite group, thereby yielding algebraic expressio
the irreducible matrices of the group. Algebraic expressions for the irreducible matrix eleme
any operator ofI h have been worked out and the tedious matrix multiplication for constructin
the irreducible matrices from those of the generators can be dispensed with.

It turns out that there is a very high symmetry in the irreducible matrix elements ofI h :
Among the 1203120 entries, only a few dozen form the ‘‘kernel’’ or ‘‘gene.’’ The whole array
1203120 entries can be reproduced from this gene according a definite ‘‘code.’’ In this exa
once more we have a glimpse of the beauty of hidden symmetry.

In this paper the icosahedral group is realized on a space with 12 equivalent bonds ass
vibrational mode. It also could be realized with 20, 60 or 240 bonds~as for the molecules
C20H20,C60,C80 or C240) associated with other modes, e.g., the electron excitation mode
other realizations, all we need to do is to reinterpret the normal order statew0 and the vectors in
the SBR ,w i ,i51, . . .,12. The irreducible bases forC20H20,C60, andC240will be discussed in our
next paper.13

TABLE XII. The symbols used in Ref. 8.

A B D E F G H L M N

A 1
5 A 4

5c1 2A 2
5 A 4

5c2
2

1
5

4
5c1

2 4
5c2

2 A 6
5

2
4
5c2

4
5c1

a b d e f g h j k m
e22 A 4

5c1e*
2e 2A 4

5c2e
2 A 2

5e* 2A 2
5e

22 2A 4
5c2e* A 4

5c1e
22 2A 1

5e
22 2A 1

5e*

n p q r s t u v w y
4
5c1

2e22 2
4
5c2

2e*
4
5c1e

22 2
4
5c1e

4
5c2e* 2

4
5c2e

2 A 6
5 e22 2 A 6

5 e
4
5c2

2e22 2
4
5c1

2e*
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Drinfeld constructions of the quantum affine superalgebra
Uq(gl(m /n̂ ))

Heng Fan,a) Bo-yu Hou, and Kang-jie Shia)
Institute of Modern Physics, Northwest University, P.O. Box 105, Xian, 710069,
People’s Republic of China

~Received 9 April 1996; accepted for publication 27 August 1996!

We apply the method of the central extensions introduced by Reshetikhin and
Semenov–Tian–Shansky to the case of the Perk–Shultz model. By using the
method proposed by Frenkel–Ding, we establish the Drinfeld constructions of the
quantum affine superalgebra Uq„gl(m̂/n)…. © 1997 American Institute of Physics.
@S0022-2488~96!03612-2#

I. INTRODUCTION

The quantum Yang–Baxter equation~YBE! arises in a number of problems of quantum fie
theory and statistical physics.1,2 Drinfeld and Jimbo have independently discovered a fundame
algebraic structure underlying its solutions.3–6 They found that the universal enveloping algeb
U(g) of any Kac–Moody algebrag admits as a Hopf algebra of a certainq-deformation Uq(g).

7,8

The so-called quantum Kac–Moody algebra Uq(g) is first constructed in terms of generators a
relations. Later, Faddeev, Reshetikhin, and Takhtajan gave a realization of Uq(g) by means of the
spectra-parameter-independent Yang–Baxter equation in the framework of the quantum
scattering method.9–11

It is known that the affine Kac–Moody algebraĝ associated to a simple Lie algebrag admits
a simple realization as an extended Cartan matrices of the corresponding loop a
g^C @t,t21#.12 Drinfeld found a realization of the algebra Uq(ĝ) associated with this extende
Cartan matrices, which was called quantum affine algebras.13 Later in the framework of the
quantum inverse scattering method, Reshetikhin and Semenov-Tian-Shansky incorpora
central extensions in the ‘‘RLL formalism.’’14 Using this method, they gave another realization
the quantum affine algebras Uq(ĝ). Frenkel and Ding have established an explicit relation betw
the two realization. They have shown that there is an isomorphism between the two realizat
the case of quantum affine algebra Uq„gl(n)̂….

15

Recently, quantum superalgebra Uq„gl(m/n)… have been attracting a great deal of inter
from both mathematicians and physicists, which was largely motivated by their applicatio
exactly solvable lattice models in statistical physics and knot theory. The originalR matrix of the
Yang–Baxter equation associated to the quantum superalgebra Uq„gl(m/n)… was introduced by
Perk and Shultz.16 Later, Rice and Zhang related the Perk–Shultz model to the supersymm
t2J model, which is connected with high-Tc superconductivity.

17,18Karowskiet al.have used the
algebraic nested Bethe ansatz method to solve the Uq„gl~2/1!…-invariant t–J model. They also
constructed a complete set of states for this model.19–22

However, few studies have been done for the case of quantum affine superalgebra.
paper, we will obtain the Drinfeld constructions of the quantum affine superalg
Uq„gl(m/n̂)…. It is known that one application of Drinfeld’s construction is to find a free fi
realization of quantum affine superalgebra Uq„gl(m/n̂)…. Using the method introduced by Jimb
et al., one could calculate the correlation functions, which is an important aim of statis
physics.23 In this paper, we assume that the central extensions’ method proposed by Resh
and Semenov-Tian-Shansky can also be applied to the quantum superalgebra Uq„gl(m/n)… case,

a!Also at CCAST~World Laboratory!, P.O. Box 8730, Beijing 100080, People’s Republic of China.
0022-2488/97/38(1)/411/23/$10.00
411J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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which means that we naturally find a realization of quantum affine superalgebra Uq„gl(m/n̂)….
Then follows the method proposed by Fenkel and Ding; we are led to the Drinfeld constru
of quantum affine superalgebra Uq„gl(m̂/n)…. When n50, the results presented in this pap
reduces to the Uq„gl(n)̂… case, which have already been obtained by Frenkel and Ding.

This paper is organized as follows: In Sec. II, we recall the Drinfeld–Jimbo definition
Uq„gl(m/n)… as follows from the Faddeev–Reshetikhin–Takhtajan formulation. In Sec. III,
apply the definition of Reshetikhin and Semenov-Tian-Shansky to quantum supera
Uq„gl(m/n)…. We will also introduce the main theorem proposed by Frenkel and Ding. In Sec
as the first step of our calculations, we will deal with the case ofN52. In Sec. V, we will obtain
the Drinfeld constructions of quantum affine superalgebra Uq„gl(m/n̂)…. Section VI contains some
conclusions and discussions of this paper. Some detailed calculations are presented in the
dix.

II. QUANTUM SUPERALGEBRA U q(gl( m /n ))

In this section, we start from YBE, by using the quantum inverse scattering method, we o
Drinfeld–Jimbo definitions of quantum superalgebra Uq„gl(m/n)…. TheR matrix under consider-
ation reads as

R~x!5(
i51

m

~xq2x21q21!Eii ^Eii1 (
i5m

m1n

~x21q2xq21!Eii ^Eii1(
iÞ j

~x2x21!Eii ^Ej j

1(
i, j

x~q2q21!Ei j ^Eji1(
i. j

x21~q2q21!Ei j ^Eji , ~1!

providing a solution of the YBE,

R12S xyDR13~x!R23~y!5R23~y!R13~x!R12S xyD . ~2!

As usual, R12(x), R13(x), and R23(x) act in C N
^C N

^C N with R12(x)5R(x)^1,
R23(x)51^R(x), etc., where 1<i , j<N, and we denoteN5m1n. It is known that the operato
representation of the YBE is theN3N matrix L j (x) satisfying the following equation:

R12S xyDL1~x!L2~y!5L2~y!L1~x!R12S xyD , ~3!

whereLi(x) is defined on the product space of thei th auxiliary space and a quantum space.
general, we assumeL(x) to be invertible, i.e. it has only isolated zeros. It is straightforward to
thatL(x) has an obvious representation if the quantum space is identified with auxiliary spa
which case the operator equation simply reduces to the original YBE. The monodromy mat
aM3M square lattice is defined by

T~x!5LM~x!•••L1~x!; ~4!

it also fulfills the YBE,

R12S xyDT1~x!T2~y!5T2~y!T1~x!R12S xyD , ~5!

as follows from Eq.~3!.
In order to obtain Drinfeld–Jimbo definitions of quantum superalgebra Uq„gl(m/n)…, it is

convenient to write theR matrix as
J. Math. Phys., Vol. 38, No. 1, January 1997
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R~x!5xR12x21R2 , ~6!

whereR1 andR2 are the upper triangular and lower triangular, respectively. Correspondingly
L operators can also be written as

L~x!5xL12x21L2 . ~7!

Similarly, L6 are the upper and lower triangular, respectively, and the diagonal elements ofL6 are
invertible,L6 have inverse~L6!21.

From the definition of theR matrix, L6 can be written as the following:

L2 i
i 5 Hqwi, i<m,

s iq
2wi, m, i<m1n; ~8!

L2 i
i1155

~q2q21!qS 2
1

2 (
jÞ i ,i11

wj D 21

f i , i,m,

~q2q21!qS 2
1

2 (
jÞm,m11

wj2wm11D 21

smfm , i5m,

~q2q21!qS 12 (
jÞ i ,i11

wj D 21

s i f i , m, i,m1n;

~9!

L1 i
i 5 H q2wi,

s iq
wi,

i<m,
i.m; ~10!

L1 i11
i 55

2~q2q21!eiqS 12 (
jÞ i ,i11

wj D 21

, i,m,

2~q2q21!emqS 12 (
jÞm,m11

wj1wm11D 21

, i5m,

2~q2q21!s ieiqS 2
1

2 (
jÞ i ,i11

wj D 21

, m, i,m1n;

~11!

wi ,ei , f i are the generators of classical superalgebra gl(m/n) in the graded Cartan–Chevalle
basis, the matricessi are defined as

s i5diag~1,...,1,21,1,...,1!,

where21 is thei th element, the off-diagonal elements ofsi are zeros.
Remark: It is straightforward to write the off-diagonal elements ofL6 as:

L2 i
i115(q2q21) f i ,L1 i11

i 52(q2q21)ei . The reason that we writeL6 as Eqs.~9! and ~11! is
that it is more convenient to use these forms to get the Drinfeld–Jimbo definition of qua
superalgebra Uq„gl(m/n)….

In the limit x→`,0, the Yang–Baxter relation~3! becomes as

R6L16L2e5L2eL16R6 , ~12!

wheree51,2, respectively,L165L6 ^1, L2651^L6 . It is known that Eq.~12! are the defin-
ing relations of Uq„gl(m/n)…. Recall the definition of monodromy matrixT(x), in the limit
x→`,0, we can also find

R6T16T2e5T2eT16R6 . ~13!
J. Math. Phys., Vol. 38, No. 1, January 1997
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T6 are the comodule ofL6 , and Eq.~13! gives the same defining relations of Uq„gl(m/n)… as Eq.
~12!. From Eq.~4! we obtain the elements ofT6 as follows:

T2 i
i 5 Hq2M /2qWi, i<m,

q2M /2s̃ iq
2Wi, m, i<m1n; ~14!

T2 i
i1155

a2qS 2
1

2 (
jÞ i ,i11

Wj D 21

Fi , i,m,

a2qS 2
1

2 (
jÞm,m11

Wj2Wm11D 21

s̃ iFi , i5m,

q2Ma1qS 12 (
jÞ i ,i11

Wj D 21

s̃ iFi , i,m,m1n;

~15!

T1 i
i 5 HqM /2q2Wi, i<m,

qM /2s̃ iq
Wi, m, i<m1n; ~16!

T1 i11
i 55

2a1EiqS 12 (
jÞ i ,i11

Wj D 21

, i<m,

2a1EmqS 12 (
jÞm,m11

Wj1Wm11D 21

i5m,

2qMa2s̃ iEiqS 2
1

2 (
jÞ i ,i11

Wj D 21

, m, i,m1n;

~17!

with a65q61/2(q2q21) and

s̃ i5s i ^ s i ^ ••• ^ s i , i5m11,...,m1n, ~18!

q6Wi5q6wi ^ ••• ^q6wi, i51,...,m1n, ~19!

Xi5(
j51

M

q2hi /2^ •••q2hi /2^xi
jth

^qhi /2^ ••• ^qhi /2, i,m, ~20!

Xm5(
j51

M

q2hm/2^ ••• ^q2hm/2^xm
jth

^ ~sm11q
hm/2! ^ ••• ^ ~sm11q

hm/2!, ~21!

Xi5(
j51

M

qhi /2^ ••• ^qhi /2^xi
jth

^ ~sm11sm12•••s i11q
2hi /2^ •••

^ ~sm11sm12•••s i11q
2hi /2!, m, i,m1n, ~22!

whereXi5Ei , Fi , xi5ei , f i , respectively.hi5wi2wi11 andhm5wm1wm11. In the caseM52,
these formulas define a Hopf algebraic structure operation coproduct. For convenience, we
the spectra-parameter-independent Yang–Baxter relation~12! explicitly as

R
6 j 1 j 2

i1i2 T
6k1

j 1 Te jk2

j 2 5Te j 1

i1 T
6 j 2

i2 R
6k1k2

j 1 j 2 , ~23!

here, summation over repeated indices are assumed. By taking special values of the free
i 1 , i 2 , k1 , k2 , we find the Drindeld–Jimbo definition of quantum superalgebra Uq„sl(m/n)…,
J. Math. Phys., Vol. 38, No. 1, January 1997
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qHiqH j5qHjqHi, qHiF jq
2Hi5qai jF j , qHiEjq

2Hi5q2ai jEj ,

@Fi ,Ei #5
qHi2q2Hi

q2q21 , iÞm,

@Fm ,Em#15
qHm2q2Hm

q2q21 ,

Em
2 5Fm

2 50, @Fi ,Ej #50, iÞ j ,

~Fi !
2Fi112~q1q21!FiFi11Fi1Fi11~Fi !

250,
~24!

~Ei !
2Ei112~q1q21!EiEi11Ei1Ei11~Ei !

250,

with Hi5Wi2Wi11, Hm5Wm1Wm11, iÞm. Hereai j is an element of the ‘‘graded’’ Cartan
matrix. Note that Eq.~24! is the definition relations for Uq„sl(m/n)…; if we useWi instead ofHi ,
we will find the definition relations for Uq„gl(m/n)…. The reason that we write out relations fo
Uq„sl(m/n)… instead of relations of Uq„gl(m/n)… is that one can find more explicitly that thi
algebra is a superalgebra.

So, we have shown that we can define the quantum superalgebra Uq„sl(m/n)… by using the
quantum inverse scattering method.

Remark: Drinfeld–Jimbo definition of quantum superalgebra~24! by generators and relation
is valid for an arbitrary generalized Cartan matrices. Thus, the choice of an extended C
matrix of gl(m/n) yields the quantum affine superalgebra Uq„gl(m/n̂)….

As mentioned in the Introduction, Frenkel and Ding have shown that there is an isomor
between two realizations of quantum affine algebra Uq„gl(n)̂…. We assume that this isomorphis
still holds for the case of Uq„gl(m/n̂)…. That is to say: using the central extensions of the ‘‘RL
formalism,’’ we can get the defining relation of quantum affine superalgebra Uq„gl(m/n̂)….

III. QUANTUM AFFINE SUPERALGEBRA AND FRENKEL–DING THEOREM

We have shown above that we can obtain a Drinfeld–Jimbo definition of quantum su
gebra Uq„gl(m/n)… by using the quantum inverse scattering method proposed by Fad
Reshetikhin, and Takhtajan. It is known that Reshetikhin and Semenov-Tian-Shansky ha
fined a central extension of the ‘‘RLL formalism’’ which is called Reshetikhin-Semenov-T
Shansky algebra~RSA! in this paper. Later, Frenkel and Ding have found an explicit relat
between RSA and Drinfeld’s quantum affine algebra which to a great extent is parallel t
realization of affine Lie algebra in the standard Lie bracket form. In this section, we will intro
RSA and the main theorem proposed by Frenkel and Ding which we call the Frenkel–
theorem.

Definition 1: Reshetikhin–Semenov–Tian-Shansky algebra is generated by L6(z) and L̃6(z),
satisfying

RS zwDL16~z!L2
6~w!5L2

6~w!L1
6~z!RS zwD , ~25!

RS z1

w2
DL11~z!L2

2~w!5L2
2~w!L1

1~z!RS z2

w1
D , ~26!

RVV* S zwDL16~z!L̃2
6~w!5L̃2

6~w!L1
6~z!RVV* S zwD , ~27!
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RVV* S z1

w2
DL11~x!L̃2

2~w!5L̃2
2~w!L1

1~z!RVV* S z2

w1
D , ~28!

RV* VS z1

w2
D L̃11~z!L2

2~w!5L2
2~w!L̃1

1~z!RV* VS z2

w1
D , ~29!

RV* V* S zwD L̃16~z!L̃2
6~w!5L̃2

6~w!L̃1
6~z!RV* V* S zwD , ~30!

RV* V* S z1

w2
D L̃11~z!L̃2

2~w!5L̃2
2~w!L̃1

1~z!RV* V* S z2

w1
D , ~31!

where z65zq6c/2, c is the central charge. V5CN, V* is the dual of V. The three more
R-matrices acting on V̂ V* , V* ^V, and V* ^V* are defined, respectively, as

RVV* ~z!5„R~z! t2…21, ~32!

RV* V~z!5„R~z!21
…

t1, ~33!

RV* V* ~z!5R~z! t1t2; ~34!

here t1 ,t2 represent transposition in the first and second space, respectively.
Reshetikhin–Semenov-Tian-Shansky algebra with the defining relations above is an ass

tive algebra. The coproduct is defined by

DL6~z!5L6~zq6~1^c/2!! ^̇L6~zq7~c/2^1!!, ~35!

DL̃6~z!5L̃6~zq6~1^c/2!! ^̇ L̃6~zq7~c/2^1!!. ~36!

The antipode is given by

S„L6~z!…5L̃6~z! t. ~37!

Remark:The defining relations of RSA listed above are not independent from each othe
example, Eqs.~25! and~26! are one set of independent relations, since one can get~27!–~31! by
using Eqs.~25! and ~26!. Equations~30! and ~31! are another set of independent relations, etc

We should note

L6~z!L̃6~z! t5 id. ~38!

are required by Eq.~37!. The expansion direction ofR(z/w) can be chosen inz/w or w/z, but for
relation~26!, the expansion direction ofR(z/w) should be only inz/w. This concept will be used
in the following calculations.

In this paper we take theR matrix to be the most general supersymmetric case~1!, and we
assume the Frenkel–Ding theorem still true for this case. Thus, by applying Frenkel–Ding
rem, we can obtain the defining relations of quantum affine superalgebra Uq„gl(m/n̂)…. We extend
the Frenkel–Ding theorem as follows.

Frenkel–Ding Theorem.L6(z) have the following unique decompositions:
J. Math. Phys., Vol. 38, No. 1, January 1997
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L6~z!5S 1 ••• 0

e2,1
6 ~z! �

e3,1
6 ~z! A

A

eN,1
6 ~z! ••• eN,N21

6 ~z! 1

D S k1
6~z! ••• 0

A � A

0 ••• kN
6~z!

D
3S 1 f 1,2

6 f 1,3
6 ~z! ••• f 1,N

6

A � ••• A

f N21,N
6 ~z!

0 1

D , ~39!

where ei , j
6 (z), f j ,i

6 (z) and ki
6(z) ( i. j ) are elements in RSA and ki

6(z) are invertible,

Xi
2~z!5 f i ,i11

1 ~z1!2 f i ,i11
2 ~z2!, ~40!

Xi
1~z!5ei11,i

1 ~z2!2ei11,i
2 ~z1!, ~41!

where z65zq6c/2; thenq6c/2, Xi
6(z), kj

6(z), i51,...,N21, j51,...,N give defining relations of
quantum superalgebra Uq„gl(m̂/n)….

Note that the elementsei , j
6 (z), f j ,i

6 ( i. j ), andki
6(z) can be uniquely defined byL6(z). In

what follows, we take notationsf i
6(z),ei

6(z) instead off i ,i11
6 (z),ei11,i

6 (z).
The original Frenkel–Ding theorem defines an isomorphism between two realizatio

quantum affine algebra Uq„gl(m̂)…. But to the authors’ knowledge, there are still no Drinfelds-ty
relations for quantum affine superalgebra Uq„gl(m/n̂)…. We extend the Frenkel–Ding theorem
the supersymmetricR-matrix case, that is, we can get the Drinfelds-type defining relations
Uq„gl(m/n̂)… case from RSA with the help of the Frenkel–Ding theorem.

To end this section, we write the inversions ofL6(z) as

L6~z!215S 1 2 f 1
6~z! •••

A � A

2 f N21
6 ~z!

0 ••• 1

D S k1
6~z!21 ••• 0

A � A

0 ••• kN
6~z!21

D
3S 1 ••• 0

2e1
6~z! �

A � A

••• 2eN21
6 ~z! 1

D , ~42!

follows from the Frenkel–Ding theorem, Eq.~39!.

IV. CASE N52

Before we deal with theN52 case, let us first list some relations that are useful in
following calculations. By using the defining relations of RSA, we find

R21S zwDL26~z!L1
6~w!5L1

6~w!L2
6~z!R21S zwD , ~43!
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R21S z2

w1
DL22~z!L1

1~w!5L1
1~w!L2

2~z!R21S z1

w2
D , ~44!

L2
6~z!21L1

6~w!21R21S zwD5R21S zwDL16~w!21L2
6~z!21, ~45!

L2
1~z!21L1

2~w!21R21S z1

w2
D5R21S z2

w1
DL12~w!21L2

1~z!21, ~46!

L1
6~w!21R21S zwDL26~z!5L2

6~z!R21S zwDL16~w!21, ~47!

L1
2~w!21R21S z1

w2
DL21~z!5L2

1~z!R21S z2

w1
DL12~w!21, ~48!

L1
1~w!21R21S z2

w1
DL22~z!5L2

2~z!R21S z1

w2
DL11~w!21, ~49!

For theN52 case,L6(z) and its inversionsL6(z)21 can be written explicitly as

L6~z!5S k1
6~z! k1

6~z! f 1
6~z!

e1
6~z!k1

6~z! k2
6~z!1e1

6~z!k1
6~z! f 1

6~z!
D , ~50!

L1
6~z!215S k16~z!211 f 1

6~z!k2
6~z!21e1

6~z! 2 f 1
6~z!k2

6~z!21

2k2
6~z!21e1

6~z! k2
6~z!21 D . ~51!

From the definition of theR matrix, one can find that there are three types ofR matrices when
N52:

Type 1: R21S zwD5S 1 0 0 0

0
z2w

zq2wq21

w~q2q21!

zq2wq21 0

0
z~q2q21!

zq2wq21

z2w

zq2wq21 0

0 0 0 1

D , ~52!

Type 2: R21S zwD5S 1 0 0 0

0
z2w

zq2wq21

w~q2q21!

zq2wq21 0

0
z~q2q21!

zq2wq21

z2w

zq2wq21 0

0 0 0
wq2zq21

zq2wq21

D , ~53!
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Type 3: R21S zwD5S wq2zq21

zq2wq21 0 0 1

0
z2w

zq2wq21

w~q2q21!

zq2wq21 0

0
z~q2q21!

zq2wq21

z2w

zq2wq21 0

0 0 0
wq2zq21

zq2wq21

D , ~54!

We take the type 2R matrix as an example, tedious but almost the same calculations can a
made for type 1,3R-matrices. From Eqs.~43!–~46! the following relations can be obtained:

k1
6~z!k1

6~w!5k1
6~w!k1

6~z!, ~55!

k1
1~z!k1

2~w!5k1
2~w!k1

1~z!, ~56!

k2
6~z!k2

6~w!5k2
6~w!k2

6~z!, ~57!

w2q2q21z1

z1q2w2q
21 k2

1~z!k2
2~w!5

w1q2q21z2

z2q2w1q
21 k2

2~w!k2
1~z!. ~58!

In the following calculations, we will only use Eqs.~47!–~49!. Notice that one can also obtain th
same results by using other relations. We find

k1
6~z!k2

6~w!5k2
6~w!k1

6~z!, ~59!

z12w2

z1q2w2q
21 k2

2~w!21k1
1~z!5k1

1~z!k2
2~w!21

z22w1

z2q2w1q
21 , ~60!

z22w1

z2q2w1q
21 k2

1~w!21k1
2~z!5k1

2~z!k2
1~w!21

z12w2

z1q2w2q
21 . ~61!

Thus, all the relations betweenk1
6(z),k2

6(z) have been obtained. From relations~47!–~49!, we can
also get

2
z2w

zq2wq21 f 1
6~w!k2

6~w!21k1
6~z!

52k1
6~z! f 1

6~w!k2
6~w!211

w~q2q21!

zq2wq21 k1
6~z! f 1

6~z!k2
6~w!21, ~62!

2
z62w7

z6q2w7q
21 f 1

7~w!k2
7~w!21k1

6~z!

52k1
6~z! f 1

7~w!k2
7~w!211

w6~q2q21!

z7q2w6q
21 k1

6~z! f 1
6~z!k2

7~w!21, ~63!
J. Math. Phys., Vol. 38, No. 1, January 1997
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2k2
6~w!21e1

6~w!k1
6~z!1

z~q2q21!

zq2wq21 k2
6~w!21e1

6~z!k1
6~z!

52
z2w

zq2wq21 k1
6~z!k2

6~w!21e1
6~z!, ~64!

2k2
7~w!21e1

7~w!k1
6~z!1

z6~q2q21!

z6q2w7q
21 k2

7~w!21e1
6~z!k1

6~z!

52
z72w6

z7q2w6q
21 k1

6~z!k2
7~w!21e1

7~w!. ~65!

Using Eqs.~59!–~61!, we obtain

k1
6~z!21f 1

6~w!k1
6~z!5

zq2wq21

z2w
f 1

6~w!1
w~q2q21!

w2z
f 1

6~z!, ~66!

k1
6~z!21f 1

7~w!k1
6~z!5

z7q2w6q
21

z72w6
f 1

7~w!1
w6~q2q21

w62z7
f 1

6~z!, ~67!

k1
6~z!e1

6~w!k1
6~z!215

zq2wq21

z2w
e1

6~w!1
z~q2q21!

w2z
e1

6~z!, ~68!

k1
6~z!e1

7~w!k1
6~z!215

z6q2w7q
21

z62w7
e1

7~w!1
z6~q2q21!

w72z6
e1

6~z!. ~69!

Recall the definition ofX1
6(z); with the help of Eqs.~66!–~69!, we get

k1
6~z!21X1

2~w!k1
6~z!5

z7q2wq21

z72w
X1

2~w!, ~70!

k1
6~z!X1

1~w!k1
6~z!215

z6q2wq21

z62w
X1

1~w!. ~71!

We can also find the following relations from Eqs.~47!–~49!,

z2w

zq2wq21 f 1
6~w!k2

6~w!21k1
6~z! f 1

6~z!5
z2w

zq2wq21 k1
6~z! f 1

6~z! f 1
6~w!k2

6~w!21, ~72!

z2w

zq2wq21 k2
6~w!21k1

6~z! f 1
6~z!52

z~q2q21!

zq2wq21 k1
6~z! f 1

6~w!k2
6~w!21

1
wq2q21z

zq2wq21 k1
6~z! f 1

6~z!k2
6~w!21, ~73!

z62w7

z6q2w7q
21 f 1

7~w!k2
7~w!21k1

6~z! f 1
6~z!5

z72w6

z7q2w6q
21 k1

6~z! f 1
6~z! f 1

7~w!k2
7~w!21,

~74!
J. Math. Phys., Vol. 38, No. 1, January 1997
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z62w7

z6q2w7q
21 k2

7~w!21k1
6~z! f 1

6~z!52
z7~q2q21!

z7q2w6q
21 k1

6~z! f 1
7~w!k2

7~w!21

1
w6q2q21z7

z7q2w6q
21 k1

6~z! f 1
6~z!k2

7~w!21, ~75!

so we can derive

zq212wq

z2w
f 1

6~z! f 1
6~w!1

z~q2q21!

z2w
f 1

6~w! f 1
6~w!

5
wq2zq21

z2w
f 1

6~w! f 1
6~z!1

wq2q21z

zq2wq21

w~q2q21!

w2z
f 1

6~z! f 1
6~z!, ~76!

z7q
212w6q

z72w6
f 1

6~z! f 1
7~w!1

z7~q2q21!

z72w6
f 1

7~w! f 1
7~w!

5
w6q2z7q

21

z72w6
f 1

7~w! f 1
6~z!1

w6q2z7q
21

z7q2w6q
21

w6~q2q21!

w62z7
f 1

6~z! f 1
6~z!. ~77!

Similarly, we can also get relations fore1
6(z),

wq2zq21

z2w
e1

6~z!e1
6~w!1

wq2zq21

zq2wq21

z~q2q21!

w2z
e1

6~z!e1
6~z!

5
zq212wq

z2w
e1

6~w!e1
6~z!1

w~q2q21!

z2w
e1

6~w!e1
6~w!, ~78!

w7q2z6q
21

z62w7
e1

6~z!e1
7~w!1

w7q2z6q
21

z6q2w7q21

z6~q2q21!

w72z6
e1

6~z!e1
6~z!

5
z6q

212w7q

z62w7
e1

7~w!e1
6~z!1

w7~q2q21!

z62w7
e1

7~w!e1
7~w!. ~79!

So, we have

X1
1~z!X1

1~w!52X1
1~w!X1

1~z!, ~80!

X1
2~z!X1

2~w!52X1
2~w!X1

2~z!. ~81!

Insert Eqs.~59!–~61! into Eqs.~72! and ~74!; we have

k2
6~w!21f 1

6~z!k2
6~w!5

wq2zq21

z2w
f 1

6~z!1
z~q2q21!

w2z
f 1

6~w!, ~82!

k2
7~w!21f 1

6~z!k2
7~w!5

w6q2z7q
21

z72w6
f 1

6~z!1
z7~q2q21!

w62z7
f 1

7~w!. ~83!

Thus

k2
6~z!21X1

2~w!k2
6~z!5

wq212z7q

z72w
X1

2~w!. ~84!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Same-type relations holds also fore1
6(z);

k2
6~w!e1

6~z!k2
6~w!215

wq2zq21

z2w
e1

6~z!1
w~q2q21!

w2z
e1

6~w!, ~85!

k2
7~w!e1

6~z!k2
7~w!215

w7q2z6q
21

z62w7
e1

6~z!1
w7~q2q21!

w72z6
e1

7~w!. ~86!

So

k2
6~z!X1

1~w!k2
6~z!215

wq212z6q

z62w
X1

1~w!. ~87!

Finally, let us calculate relations betweene1
6(z) and f 1

6(z). From relations~47–49!, we have

w~q2q21!

zq2wq21 @k1
6~w!211 f 1

6~w!k2
6~w!21e1

6~w!#k1
6~z!

2
wq2zq21

zq2wq21 f 1
6~w!k2

6~w!21e1
6~z!k1

6~z!

52e1
6~z!k1

6~z! f 1
6~w!k2

6~w!211
w~q2q21!

zq2wq21

3@k2
6~z!1e1

6~z!k1
6~z! f 1

6~z!#k2
6~w!21, ~88!

w7~q2q21!

z6q2w7q
21 @k1

7~w!211 f 1
7~w!k2

7~w!21e1
7~w!#k1

6~z!

2
w7q2z6q

21

z6q2w7q
21 f 1

7~w!k2
7~w!21e1

6~z!k1
6~z!

52e1
6~z!k1

6~z! f 1
7~w!k2

7~w!211
w6~q2q21!

z7q2w6q
21

3@k2
6~z!1e1

6~z!k1
6~z! f 1

6~z!#k2
7~w!21. ~89!

From the above relations, one can obtain

@ f 1
6~z!,e1

6~w!#5
z~q2q21!

z2w
k2

6~w!k1
6~w!212

z~q2q21!

z2w
k2

6~z!k1
6~z!21, ~90!

@ f 1
6~z!,e1

7~w!#5
z7~q2q21!

z72w6
k2

7~w!k1
7~w!212

z6~q2q21!

z62w7
k2

6~z!k1
6~z!21. ~91!

Considering that Eq.~91! should be expanded inw/z andz/w respectively; we have

@X1
1~w!,X1

2~z!#5~q2q21!$d~zw21q2c!k2
2~w1!k1

1~w1!212d~zw21qc!k2
1~z1!k1

1~z1!21%.
~92!

Hered(z) 5 (nPZz
n is a formal series, and we also have used the formula
J. Math. Phys., Vol. 38, No. 1, January 1997
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dS zwD f ~z!5dS zwD f ~w!. ~93!

We will not present here the detailed calculations for type 1 and type 3Rmatrices, but just list
the main results.

Type 1:

ki
6~z!ki

6~w!5ki
6~w!ki

6~z!, ~94!

ki
1~z!ki

2~w!5ki
2~w!ki

1~z!, i51,2, ~95!

k1
6~z!k2

6~w!5k2
6~w!k1

6~z!, ~96!

z62w7

z6q2w7q
21 k2

7~w!21k1
6~z!5

z72w6

z7q2w6q
21 k1

6~z!k2
7~w!21, ~97!

k1
6~z!21X1

2~w!k1
6~z!5

z7q2wq21

z72w
X1

2~w!, ~98!

k1
6~z!X1

1~w!k1
6~z!215

z6q2wq21

z62w
X1

1~w!, ~99!

~zq212wq!X1
2~z!X1

2~w!5~zq2wq21!X1
2~w!X1

2~z!, ~100!

~zq2wq21!X1
1~z!X1

1~w!5~zq212wq!X1
1~w!X1

1~z!, ~101!

k2
6~z!21X1

2~w!k2
6~z!5

z7q
212wq

z72w
X1

2~w!, ~102!

k2
6~z!X1

1~w!k2
6~z!215

z6q
212wq

z62w
X1

1~w!, ~103!

@X1
1~w!,X1

2~z!#5~q2q21!$d~zw21q2c!k2
2~w1!k1

2~w1!212d~zw21qc!k2
1~z1!k1

1~z1!21%.
~104!

Results for the type 1R matrix have already be presented in Ref. 15.
Remark:In the original work of Frenkel and Ding, the left-hand side of Eq.~104! is written as

[X1
1(z),X1

2(w)]. We doubt this result is a type error. In most cases, we do write the left-hand
of Eq. ~104! as [X1

1(z),X1
2(w)], but in this paper, we use a different notations, which were a

used in Ref. 15.
Next, let us present the results for the type 3R matrix.
Type 3:

ki
6~z!ki

6~w!5ki
6~w!ki

6~z!, ~105!

w7q2q21z6

z6q2w7q
21 ki

7~w!21ki
6~z!5

w6q2q21z7

z7q2w6q
21 ki

6~z!ki
7~w!21, i51,2, ~106!

k1
6~z!k2

6~w!5k2
6~w!k1

6~z!, ~107!
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z62w7

z6q2w7q
21 k2

7~w!21k1
6~z!5

z72w6

z7q2w6q
21 k1

6~z!k2
7~w!21, ~108!

k1
6~z!21X1

2~w!k1
6~z!5

wq2z7q
21

z72w
X1

2~w!, ~109!

k1
6~z!X1

1~w!k1
6~z!215

wq2z6q
21

z62w
X1

1~w!, ~110!

~wq212zq!X1
2~z!X1

2~w!5~wq2zq21!X1
2~w!X1

2~z!, ~111!

~wq2zq21!X1
1~z!X1

1~w!5~wq212zq!X1
1~w!X1

1~z!, ~112!

k2
6~z!21X1

2~w!k2
6~z!5

wq212z7q

z72w
X1

2~w!, ~113!

k2
6~z!X1

1~w!k2
6~z!215

wq212z6q

z62w
X1

1~w!, ~114!

@X1
1~w!,X1

2~z!#5~q2q21!$d~zw21q2c!k2
2~w1!k1

2~w1!212d~zw21qc!k2
1~z1!k1

1~z1!21%.
~115!

So, we have obtained Drinfeld constructions for theN52 case. These results are also the first s
of calculations for generalN.

V. QUANTUM AFFINE SUPERALGEBRA U q(gl( m /n̂ ))

In this section, we will extend the results of theN52 case to the caseN53, and finally to
generalN.

For anN53 case, we take them52, n51 case as an example that is related to the supers
metric t–J model. The calculation for other types ofR matrices is almost the same. TheR matrix
for m52, n51 case reads from relation~1! as

R~x!5(
i51

2

~xq2x21q21!Eii ^Eii1~x21q2xq21!E33^E331~x2x21!(
iÞ j

Eii ^Ej j

1(
i, j

x~q2q21!Ei j ^Eji1(
i. j

x21~q2q21!Ei j ^Eji . ~116!

We first divide theN53 case into twoN52 cases; theR matrix is divided into a type 1R
matrix ~1<i , j<2! and type 2R matrix ~2<i , j<3!. Correspondingly, we writeL6(z), respec-
tively, as

L6~z!5S 1 0

e1
6~z! 1D S k1

6~z! 0

0 k2
6~z!

D S 1 f 1
6~z!

0 1
D ~117!

and

L6~z!5S 1 0

e2
6~z! 1D S k2

6~z! 0

0 k3
6~z!

D S 1 f 2
6~z!

0 1
D . ~118!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Because we have studied theN52 case in Sec. IV, and relations for thek1
6(z), k2

6(z), e1
6(z),

f 1
6(z) case and thek2

6(z), k3
6(z), e2

6(z), f 2
6(z) case have already been obtained, respectiv

we only need to get relations betweenk1
6(z), e1

6(z), f 1
6(z) andk3

6(z), e2
6(z), f 2

6(z). From the
Frenkel–Ding theorem,L6(z) andL6(z)21 take the forms

L6~z!5S k1
6~z! k1

6~z! f 1
6~z! *

e1
6~z!k1

6~z! * *

e3,1
6 ~z!k1

6~z! * *
D , ~119!

L6~w!215S * * *

* 2 f 2
6~w!k3

6~w!21

k3
6~w!21@e2

6~w!e1
6~w!2e3,1

6 ~w!# 2k3
6~w!21e2

6~w! k3
6~w!21

D .
~120!

Here, we do not need to know the exact form of elements in position* .
For convenience, we rewrite Eq.~47! and Eqs.~48! and ~49! explicitly as

~L1
6~w!21! j 1

i1R21S zwD
k1 j 2

j 1i2

L2
6~z!k2

j 25L2
6~z! j 2

i2R21S zwD
j 1k2

i1 j 2

„L1
6~w!21

…k1

j 1, ~121!

„L1
7~w!21

…j 1

i1R21S z6

w7
D
k1 j 2

j 1i2

L2
6~z!k2

j 25L2
6~z! j 2

i2R21S z7

w6
D
j 1k2

i1 j 2

„L1
7~w!21

…k1

j 1, ~122!

where i 1 , i 2 , k1 , k2 are free indices, summation overk1 , k2 are assumed. By taking speci
values of free indicesi 1 , k1 , i 2 , k2 , we can find the following relations:

k1
6~z!k3

6~w!5k3
6~w!k1

6~z!, ~123!

z62w7

z6q2w7q
21 k3

7~w!21k1
6~z!5k1

6~z!k3
7~w!21

z72w6

z7q2w6q
21 , ~124!

e1
6~z!k3

6~w!5k3
6~w!e1

6~z!, ~125!

e1
6~z!k3

7~w!5k3
7~w!e1

6~z!, ~126!

k3
6~w! f 1

6~z!5 f 1
6~z!k3

6~w!, ~127!

k3
7~w! f 1

6~z!5 f 1
6~z!k3

7~w!, ~128!

k1
6~z! f 2

6~w!5 f 2
6~w!k1

6~z!, ~129!

k1
6~z! f 2

7~w!5 f 2
7~w!k1

6~z!, ~130!

e2
6~w!k1

6~z!5k1
6~z!e2

6~w!, ~131!

k1
6~z!e2

7~w!5e2
7~w!k1

6~z!, ~132!

e2
6~w! f 1

6~z!5 f 1
6~z!e2

6~w!, ~133!
J. Math. Phys., Vol. 38, No. 1, January 1997
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e2
7~w! f 1

6~z!5 f 1
6~z!e2

7~w!, ~134!

f 2
6~w!e1

6~z!5e1
6~z! f 2

6~w!, ~135!

f 2
7~w!e1

6~z!5e1
6~z! f 2

7~w!. ~136!

One can prove that these relations are true for allN53 caseR matrices.
Then, leti 153, k151, i 252, k251; we have

2
z2w

zq2wq21 e1
6~z!k1

6~z!k3
6~w!21e2

6~w!

5
w~q2q21!

zq2wq21 k3
6~w!21@2e3,1

6 ~w!1e2
6~w!e1

6~w!#k1
6~z!

2dS zwD k36~w!21e2
6~w!e1

6~z!k1
6~z!1

z~q2q21!

zq2wq21 k3
6~w!21e3,1

6 ~z!k1
6~z!,

~137!

2
z72w6

z7q2w6q
21 e1

6~z!k1
6~z!k3

7~w!21e2
7~w!

5
w7~q2q21!

z6q2w7q
21 k3

7~w!21@2e3,1
7 ~w!1e2

7~w!e1
7~w!#k1

6~z!

2dS z6

w7
D k37~w!21e2

7~w!e1
6~z!k1

6~z!1
z6~q2q21!

z6q2w7q
21 k3

7~w!21e3,1
6 ~z!k1

6~z!.

~138!

Hered(z/w)51 for the casem52 orm53, d(z/w)5(wq2zq21)/(zq2wq21) for the casem51
or m50. From this two equations, we find~see the Appendix!

~z2w!X1
1~z!X2

1~w!5~zq2wq21!X2
1~w!X1

1~z!, m52 or m53, ~139!

~z2w!X1
1~z!X2

1~w!5~wq2zq21!X2
1~w!X1

1~z!, m51 or m50. ~140!

Similar calculation can also be performed forXi
2(z), i51,2. Here we just list the final results:

~zq2wq21!X1
2~z!X2

2~w!5~z2w!X2
2~w!X1

2~z!, m52 or m53, ~141!

~wq2zq21!X1
2~z!X2

2~w!5~z2w!X2
2~w!X1

2~z!, m51 or m50. ~142!

Next, by tedious but straightforward calculation, we can obtain the cubic relations that a
the first time in theN53 case. It is known that there are four types ofRmatrices whenN53. The
cubic relations for these four cases are listed, respectively, in the following. Casem53,

$X1
6~z1!X1

6~z2!X2
6~w!2~q1q21!X1

6~z1!X2
6~w!X1

6~z2!

1X2
6~w!X1

6~z1!X1
6~z2!%1$z1↔z2%50, ~143!

$X2
6~z1!X2

6~z2!X1
6~w!2~q1q21!X2

6~z1!X1
6~w!X2

6~z2!

1X1
6~w!X2

6~z1!X1
6~z2!%1$z1↔z2%50; ~144!
J. Math. Phys., Vol. 38, No. 1, January 1997
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casem52,

$X1
1~z1!X1

1~z2!X2
1~w!2~q1q21!X1

1~z1!X2
1~w!X1

1~z2!

1X2
1~w!X1

1~z1!X1
1~z2!%1$z1↔z2%50, ~145!

$~z1q
212z2q!@X2

1~z1!X2
1~z2!X1

1~w!2~q1q21!X2
1~z1!X1

1~w!X2
1~z2!

1X1
1~w!X2

1~z1!X2
1~z2!#%1$z1↔z2%50, ~146!

$X1
2~z1!X1

2~z2!X2
2~w!2~q1q21!X1

2~z1!X2
2~w!X1

2~z2!

1X2
2~w!X1

2~z1!X1
2~z2!%1$z1↔z2%50, ~147!

$~z1q2z2q
21!@X2

2~z1!X2
2~z2!X1

2~w!2~q1q21!X2
2~z1!X1

2~w!X2
2~z2!

1X1
2~w!X2

2~z1!X2
2~z2!#%1$z1↔z2%50; ~148!

casem51,

$~z2q
212z1q!@X1

1~z1!X1
1~z2!X2

1~w!1~q1q21!X1
1~z1!X2

1~w!X1
1~z2!

1X2
1~w!X1

1~z1!X1
1~z2!#%1$z1↔z2%50, ~149!

$X2
1~z1!X2

1~z2!X1
1~w!1~q1q21!X2

1~z1!X1
1~w!X2

1~z2!

1X1
1~w!X2

1~z1!X2
1~z2!%1$z1↔z2%50, ~150!

$~z2q2z1q
21!@X1

2~z1!X1
2~z2!X2

2~w!1~q1q21!X1
2~z1!X2

2~w!X1
2~z2!

1X2
2~w!X1

2~z1!X1
2~z2!#%1$z1↔z2%50, ~151!

$X2
2~z1!X2

2~z2!X1
2~w!1~q1q21!X2

2~z1!X1
2~w!X2

2~z2!

1X1
2~w!X2

2~z1!X2
2~z2!%1$z1↔z2%50; ~152!

casem50,

$X1
6~z1!X1

6~z2!X2
6~w!1~q1q21!X1

6~z1!X2
6~w!X1

6~z2!

1X2
6~w!X1

6~z1!X1
6~z2!%1$z1↔z2%50, ~153!

$X2
6~z1!X2

6~z2!X1
6~w!1~q1q21!X2

6~z1!X1
6~w!X2

6~z2!

1X1
6~w!X2

6~z1!X2
6~z2!%1$z1↔z2%50. ~154!

Thus, we have extended the calculation from theN52 case to the caseN53, and all relations for
theN53 case have been obtained. Similarly, we use the same technique that has been use
divide theN11 case into twoN cases, and suppose that we know all relations for the generN
case, so what we need to know is only the relations betweenk1

6(z), e1
6(z), f 1

6(z) and kN
6(z),

eN21
6 (z), f N21

6 (z). For this purpose, we writeL6(z) andL6(w)21, respectively, as

L6~z!5S k1
6~z! k1

6~z! f 1
6~z! •••

e1
6~z!k1

6~z! ••• A

A •••
D , ~155!
J. Math. Phys., Vol. 38, No. 1, January 1997
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L6~w!215S ••• ••• A

A ••• 2 f N21
6 ~w!kN21

6 ~w!21

••• 2kN21
6 ~w!21e1

6~w! kN
6~w!21

D . ~156!

Using relations~121! and ~122!, we have

k1
6~z!kN

6~w!5kN
6~w!k1

6~z!, ~157!

z62w7

z6q2w7q
21 kN

7~w!21k1
6~z!5

z72w6

z7q2w6q
21 k1

6~z!kN
7~w!21, ~158!

k1
6~z!eN21

6 ~w!5eN21
6 ~w!k1

6~z!, ~159!

k1
6~z!eN21

7 ~w!5eN21
7 ~w!k1

6~z!, ~160!

k1
6~z! f N21

6 ~w!5 f N21
6 ~w!k1

6~z!, ~161!

k1
6~z! f N21

7 ~w!5 f N21
7 ~w!k1

6~z!, ~162!

kN
6~z!e1

6~w!5e1
6~w!kN

6~z!, ~163!

kN
6~z!e1

7~w!5e1
7~w!kN

6~z!, ~164!

kN
6~z! f 1

6~w!5 f 1
6~w!kN

6~z!, ~165!

kN
6~z! f 1

7~w!5 f 1
7~w!kN

6~z!, ~166!

f 1
6~z!eN21

6 ~w!5eN21
6 ~w! f 1

6~z!, ~167!

f 1
6~z!eN21

7 ~w!5eN21
7 ~w! f 1

6~z!, ~168!

e1
6~z! f N21

6 ~w!5 f N21
6 ~w!e1

6~z!, ~169!

e1
6~z! f N21

7 ~w!5 f N21
7 ~w!e1

6~z!, ~170!

f 1
6~z! f N21

6 ~w!5 f N21
6 ~w! f 1

6~z!, ~171!

f 1
6~z! f N21

7 ~w!5 f N21
7 ~w! f 1

6~z!, ~172!

e1
6~z!eN21

6 ~w!5eN21
6 ~w!e1

6~z!, ~173!

e1
6~z!eN21

7 ~w!5eN21
7 ~w!e1

6~z!. ~174!

These relations are true for all types ofR matrices. Note that we restrict hereN.3. Thus, for
generalN, we have found the Drinfeld’s-type relations for Uq„gl(m/n̂)….

It is known that Grinfeld independently found a realization of the quantum affine alg
Uq„sl(n)̂…, which to some extent plays the roles of the loop algebra in the undeformed
Frenkelet al.extended Drinfeld’s construction to the quantum affine algebra Uq„gl(n)̂…. Here, we
further extended these results to quantum affine superalgebra Uq„gl(m/n̂)….
J. Math. Phys., Vol. 38, No. 1, January 1997
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Definition 2:Uq„gl(m/n̂)… is an associative algebra with unit 1 and central q6c/2, the gen-
erators are represented in terms of the generating functions Xi

6(z),kj
6(z) in a formal variable z,

i51,...,N21, j51,...,N. Here we denote N5m1n. These generating functions satisfy the fo
lowing relations:

ki
6~z!kj

6~w!5kj
6~w!ki

6~z!, iÞ j , ~175!

ki
1~z!ki

2~w!5ki
2~w!ki

1~z!, i<m, ~176!

w2q2q21z1

z1q2w2q
21 ki

1~z!ki
2~w!5

w1q2q21z2

z2q2w1q
21 ki

2~w!ki
1~z!, m, i<m1n, ~177!

z72w6

z7q2w6q
21 ki

7~z!kj
6~w!5

z62w7

z6q2w7q
21 kj

6~w!ki
7~z!, j. i , ~178!

ki
6~z!21Xi

2~w!ki
6~w!5

z7q2wq21

z72w
Xi

2~w!, i<m, ~179!

ki
6~z!21Xi

2~w!ki
6~z!5

wq2z7q
21

z72w
Xi

2~w!, m, i<m1n21, ~180!

ki11
6 ~z!21Xi

2~w!ki11
6 ~z!5

z7q
212wq

z72w
Xi

2~w!, i<m21, ~181!

ki11
6 ~z!21Xi

2~w!ki11
6 ~z!5

wq212z7q

z72w
Xi

2~w!, m< i<m1n21, ~182!

ki11
6 ~z!Xi

1~w!ki11
6 ~z!215

z6q
212wq

z62w
Xi

1~w!, i<m21, ~183!

ki11
6 ~z!Xi

1~w!ki11
6 ~z!215

wq212z6q

z62w
Xi

1~w!, m< i<m1n21, ~184!

~zq212wq!Xi
2~z!Xi

2~w!5~zq2wq21!Xi
2~w!Xi

2~z!, i<m21, ~185!

Xm
2~z!Xm

2~w!52Xm
2~w!Xm

2~z!, ~186!

~wq212zq!Xi
2~z!Xi

2~w!5~wq2zq21!Xi
2~w!Xi

2~z!, m11< i<m1n21, ~187!

~zq2wq21!Xi
1~z!Xi

1~w!5~zq212wq!Xi
1~w!Xi

1~z!, i<m21, ~188!

Xm
1~z!Xm

1~w!52Xm
1~w!Xm

1~z!, ~189!

~wq2zq21!Xi
1~z!Xi

1~w!5~wq212zq!Xi
1~w!Xi

1~z!, m11< i<m1n21, ~190!

~z2w!Xi
1~z!Xi11

1 ~w!5~zq2wq21!Xi11
1 ~w!Xi

1~z!, i<m21, ~191!

~z2w!Xi
1~z!Xi11

1 ~w!5~wq2zq21!Xi11
1 ~w!Xi

1~z!, m< i<m1n21, ~192!

~zq2wq21!Xi
2~z!Xi11

2 ~w!5~z2w!Xi11
2 ~w!Xi

2~z!, i<m21, ~193!
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~wq2zq21!Xi
2~z!Xi11

2 ~w!5~z2w!Xi11
2 ~w!Xi

2~z!, m< i<m1n21, ~194!

@Xi
1~w!,Xj

2~z!#5~q2q21!d i j $d~zw21q2c!ki11
2 ~w1!ki

2~w1!21

2d~zw21qc!ki11
1 ~z1!ki

1~z1!21%. ~195!

The cubic realtions take the form

$Xi
6~z1!Xi

6~z2!Xi11
6 ~w!2~q1q21!Xi

6~z1!Xi11
6 ~w!Xi

6~z2!

1Xi11
6 ~w!Xi

6~z1!Xi
6~z2!%1$z1↔z2%50, i<m21, ~196!

$Xi11
6 ~z1!Xi11

6 ~z2!Xi
6~w!2~q1q21!Xi11

6 ~z1!Xi
6~w!Xi11

6 ~z2!

1Xi
6~w!Xi11

6 ~z1!Xi11
6 ~z2!%1$z1↔z2%50, i<m22, ~197!

$~z1q
72z2q

6!@Xm
6~z1!Xm

6~z2!Xm21
6 ~w!2~q1q21!Xm

6~z1!Xm21
6 ~w!Xm

6~z2!

1Xm21
6 ~w!Xm

6~z1!Xm
6~z2!#%1$z1↔z2%50, ~198!

$~z2q
72z1q

6!@Xm
6~z1!Xm

6~z2!Xm11
6 ~w!1~q1q21!Xm

6~z1!Xm11
6 ~w!Xm

6~z2!

1Xm11
6 ~w!Xm

6~z1!Xm
6~z2!#%1$z1↔z2%50, ~199!

$Xi11
6 ~z1!Xi11

6 ~z2!Xi
6~w!1~q1q21!Xi11

6 ~z1!Xi
6~w!Xi11

6 ~z2!

1Xi
6~w!Xi11

6 ~z1!Xi11
6 ~z2!%1$z1↔z2%50, i>m, ~200!

$Xi
6~z1!Xi

6~z2!Xi11
6 ~w!1~q1q21!Xi

6~z1!Xi11
6 ~w!Xi

6~z2!

1Xi11
6 ~w!Xi

6~z1!Xi
6~z2!%1$z1↔z2%50, i>m11. ~201!

It is known that for the Chevalley generators of superalgebras, we should have extra
relations.24–27It seems that Eqs.~198! and~199! and Eqs.~191!–~194! are related with these extr
Serre relations. We propose that these extra Serre relations take the form

$~z1q
72z2q

6!@Xm
6~z1!Xm

6~z2!Xm21
6 ~w1!Xm11

6 ~w2!2~q1q21!Xm
6~z1!

3Xm21
6 ~w1!Xm

6~z2!Xm11
6 ~w2!#1~z11z2!~q

72q6!Xm21
6 ~w!

3Xm
6~z1!Xm

6~z2!Xm11
6 ~w2!1~z2q

72z1q
6!@~q1q21!Xm21

6 ~w1!Xm
6~z1!Xm11

6 ~w2!Xm
6~z2!

1Xm21
6 ~w1!Xm11

6 ~w2!Xm
6~z1!Xm

6~z2!#%1$z1↔z2%50; ~202!

this can be proved by direct calculation. Here, we should point out that a recent work by Ya
has presented a complete Serre relations for affine Lie superalgebras.26

VI. SUMMARY AND DISCUSSIONS

In conclusion, we have extended Drinfeld’s construction from Uq„gl(n)̂… case to the genera
quantum affine superalgebra Uq„gl(m/n̂)….

Recently, much more attention has been paid to the model studied in this paper, there a
kinds of reasons. From the physics point of view, this model is interesting. Whenn51, the model
reduces into the q-deformed version of the generalized supersymmetric t–J model withm com-
ponents, which is closely related with high-Tc superconductivity. The Hamiltonian of the mod
under consideration contains a spin hopping term and nearest neighbor spin–spin inter
J. Math. Phys., Vol. 38, No. 1, January 1997
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Karowski et al. have studied the Bethe ansatz eigenvalue and eigenvector problem for the
m52, n51; we have generalized this results to the case whenm,n are general integers.28 In the
casem5n52, we can get a new electronic strong interaction model that is the generalizati
the model proposed by Essleret al.29 Second, in mathematics, we know that there are still
Drinfeld’s-type relations for quantum affine superalgebra Uq„gl(m/n̂!…. What is needed to do nex
is that one should find the Hopf algebra structure for Uq„gl(m/n̂)…. It is known that Jimboet al.
have proposed a method to calculate the correlation functions; one step of this method is to
free-field realization of the quantum affine algebra. Several papers have given the free-fiel
ization of Uq„sl(n)̂… for n52,3, and further, forn, is general.30–34So, one work next is to find a
free-field realization of Uq„gl(m/n̂)…, and, further, to calculate the correlation functions for t
model studied in this paper. A vertex operator representation35–37 for the quantum affine supera
gebra Uq„gl(m/n̂)… is also interesting.

As mentioned in this paper, we assume that the Frenkel–Ding theorem is still correct f
model under consideration. The reason is that from theR matrix, we find that the supersymmetr
of theR matrix only represented by elements in the diagonal; the nondiagonal elements a
same as the elements of theAm21 Rmatrix. On the other hand, in the process of our obtaining
Drinfeld–Jimbo definition of quantum superalgebra by the quantum inverse scattering meth
find that only generators in the diagonal have been changed. So we should propose tha
decompositions ofL6(z) for the supersymmetric case, onlyki

6(z),i.m could be changed to a
product ofki

6(z) and a factor, we can absorb this factor intoki
6(z), thus we can say the Frenkel

Ding theorem is still correct for the supersymmetricR matrix. We know that the generatin
functionski

6(z),Xi
6(z) can are expanded in a formal series in terms of generators. Becaus

reason we have argued thatki
6(z),i.m have absorbed a factor, the expansion type

ki
6(z),i.m is different from the expansion type forki

6(z),i<m which have been expande
explicitly in terms of the generators by a formal varible.15
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APPENDIX

Multiply both sides of Eq.~137! from the left byk3
6(w) and from the right byk1

6(z)21, with
the help of Eqs.~123! and ~125!. We can rewrite Eq.~137! as

~q2q21!@ze3,1
6 ~z!2we3,1

6 ~w!#5~zq2wq21!d~z/w!e2
6~w!e1

6~z!2w~q2q21!e2
6~w!e1

6~w!

2~z2w!e1
6~z!e2

6~w!. ~A1!

Shift the spectrum parameter fromz,w to z2 ,w2 and z1 ,w1 ; we then have the following
relations, respectively:

~q2q21!@ze3,1
1 ~z2!2we3,1

1 ~w2!#5~zq2wq21!d~z/w!e2
1~w2!e1

1~z2!2w~q2q21!e2
1~w2!

3e1
1~w2!2~z2w!e1

1~z2!e2
1~w2!, ~A2!

~q2q21!@ze3,1
2 ~z1!2we3,1

2 ~w1!#5~zq2wq21!d~z/w!e2
2~w1!e1

2~z1!2w~q2q21!e2
2~w1!

3e1
2~w1!2~z2w!e1

2~z1!e2
2~w1!. ~A3!
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Similarly, multiply from both sides of Eq.~138! from the left byk1
7(w) and from the right by

k1
6(z)21, with the help of Eqs.~124! and ~126!. We have

2
z62w7

z6q2w7q
21 e1

6~z!e2
7~w!5

w7~q2q21!

z6q2w7q
21 @2e3,1

7 ~w!1e2
7~w!e1

7~w!#2dS z6

w7
De27~w!e1

6~z!

1
z6~q2q21!

z6q2w7q
21 e3,1

6 ~z!. ~A4!

Shift the spectrum parameter fromz,w to z2 ,w1 andz1 ,w2 , respectively, we have

~q2q21!@ze3,1
1 ~z2!2we3,1

2 ~w1!#5~zq2wq21!d~z/w!e2
2~w1!e1

1~z2!)2w~q2q21!e2
2~w1!

3e1
2~w1!2~z2w!e1

1~z2!e2
2~w1!, ~A5!

~q2q21!@ze3,1
2 ~z1!2we3,1

1 ~w2!#5~zq2wq21!d~z/w!e2
1~w2!e1

2~z1!2w~q2q21!e2
1~w2!

3e1
1~w2!2~z2w!e1

2~z1!e2
1~w2!. ~A6!

Cancel the termse3,1
6 (z7); we find

~zq2wq21!d~z/w!@e2
2~w1!e1

1~z2!1e2
1~w2!e1

2~z1!e2
1~w2!e1

1~z2!2e2
2~w1!e1

2~z1!#

5~z2w!@e1
1~z2!e2

2~w1!1e1
2~z1!e2

1~w2!2e1
1~z2!e2

1~w2!2e1
2~z1!e2

2~w1!#. ~A7!

Thus

~z2w!X1
1~z!X2

1~w!5d~z/w!~zq2wq21!X2
1~w!X1

1~z!. ~A8!
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Soliton curvatures of surfaces and spaces
B. G. Konopelchenkoa)
Dipartimento di Fisica, dell’Universita´ di Lecce e Sezione INFN, 73100 Lecce, Italy

~Received 17 April 1995; accepted for publication 13 May 1996!

An intrinsic geometry of surfaces and three-dimensional Riemann spaces is dis-
cussed. In the geodesic coordinates the Gauss equation for two-dimensional Rie-
mann spaces~surfaces! is reduced to the one-dimensional Schro¨dinger equation,
where the Gaussian curvature plays a role of potential. The use of this fact provides
an infinite set of explicit expressions for curvature and metric of surface. A special
case is governed by the KdV equation for the Gaussian curvature. Integrable dy-
namics of curvature via the KdV equation, higher KdV equations, and 211-
dimensional integrable equations with breaking solitons is considered. For a special
class of three-dimensional Riemann spaces the relation between metric and scalar
curvature is given by the two-dimensional stationary Schro¨dinger or perturbed
string equations. This provides us an infinite family of Riemann spaces with ex-
plicit scalar curvature and metric. Particular class of spaces and their integrable
evolutions are described by the Nizhnik–Veselov–Novikov equation and its higher
analogs. Surfaces and three-dimensional Riemann spaces with large curvature and
slow dependence on the variable are considered. They are associated with the
Burgers and Kadomtsev–Petviashvili equations, respectively. ©1997 American
Institute of Physics.@S0022-2488~97!01801-X#

I. INTRODUCTION

Curvature is a key object in a number of problems of physics and mathematics associate
two-dimensional~surfaces! and three-dimensional Riemann spaces.

Dynamics of interfaces, surfaces, and fronts is an important ingredient of numerous non
phenomena in classical physics. They are, for instance, surface waves, growth of crystals,
gation of flame fronts, deformation of membranes, dynamics of vortex sheets, many proble
hydrodynamics associated with motion of boundaries between regions of differing densitie
viscosities.1–4 In some cases such dynamics can be modelled by the nonlinear partial differ
equations~PDEs!, which describe an evolution of surfaces in time.

Quantum field theory and statistical physics are the important customers of surface
Starting with Polyakov’s paper5 a number of papers have been devoted to the study and app
tion of the integral over random surfaces in gauge field theories, string theory, quantum g
and statistical physics.6–8

Three-dimensional Riemann space is evidently one of the basic elements of the gener
tivity. First, any metric in general relativity can be converted into the form in which only
spatial part is the Riemann one~synchronic system of coordinates!. Then, the initial value problem
in general relativity is naturally formulated in terms of three-dimensional Riemann space–tim9,10

So the analysis of the initial data requires the study of three-dimensional Riemann spaces
In mathematics the differential geometry of surfaces has been completed, in essence

end of the 19th and the beginning of the 20th century.11–14 Basic differential equations tha
describe surfaces in the three-dimensional space have been studied in detail from various p
view. A study of the interrelation between the special types of surfaces and nonlinear PDE
been one of the classical problem of differential geometry.11–14The Liouville equationwxy5expw

a!Also at the Budker Institute of Nuclear Physics, Novosibirsk-90, Russia.
0022-2488/97/38(1)/434/24/$10.00
434 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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and the sine-Gordon equationwxy5sinw that describe the minimal and pseudospherical surfa
respectively, are the best known examples. In particular, a general solution of the Lio
equation has been found in Ref. 15. Bianchi12 and Bäcklund16 introduced symmetry transforma
tion of a new type~now known as the Ba¨cklund transformation! for the sine-Gordon equation
which allows us to construct new pseudospherical surfaces from a given one. A less k
example is provided by the equationwxy5expw2exp~22w!, which describes surfaces with th
so-called Tzitzeica property.17,18

The theory of three-dimensional Riemann spaces is not as complete as the theory of su
Various PDEs arise within the study of different problems associated with three-dimens
spaces,19,20and reviews.21,22One of the main obstacles to the study of two- and three-dimensi
Riemann spaces and their dynamics is a lack of explicit exact solutions of the correspo
PDEs. So the solvable cases when the associated PDEs can be integrated analytically are
interest.

A new tool to solve nonlinear PDEs was discovered in 1967 by Gardneret al.23 This method
@inverse spectral transform~IST! method# allows us to effectively solve a number of nonline
PDEs with two and three independent variables, which appear in various fields of physic
applied mathematics.24–31A key element of the IST method is the representation of the nonlin
PDE as the compatibility condition of certain systems of linear equations for the so-called e
~wave! function. Nonlinear PDEs integrable by the IST method possess a number of rema
properties: soliton solutions, infinite number of conservation laws, infinite symmetry gro
Bäcklund and Darboux transformations, special Hamiltonian structures, and so on~see Refs.
24–31!. In particular, it was shown that the Liouville, sine-Gordon, and Tsitseica equation
integrable by the IST method.

The sine-Gordon and Liouville equations have been the first nonlinear PDEs, which rev
a deep connection between the differential geometry and soliton equations. After that, s
connection has been discussed many times. It was observed in Ref. 32 that the Gauss–We
equations of the surface created by a special motion of relativistic string can be viewed as
of spectral problems whose compatibility condition gives the so-called Lund–Regge syste
geometric interpretation of the 232 matrix spectral problem in terms of pseudospherical surfa
has been given in Ref. 33. The formulations of the 111-dimensional soliton equations in terms
vector bundles has been discussed in Ref. 34. The characterization of the modified Kortew
Vries equation as the relation between local invariants of certain foliation on a surface of co
nonzero Gaussian curvature has been proposed in Ref. 35. The detailed study of the no
integrable equations that describe pseudospherical surfaces was given in a series of pap36–38

An extension of the sine-Gordon equations and Ba¨cklund transformations for the negative consta
sectional curvature submanifolds in the Euclidean spaceR2n21 has been considered in Ref
39–40. The IST method has been applied to such a generalization in Ref. 41. Multidimen
Gauss–Codazzi equations and corresponding nonlinear equations have been considered in
The Darboux and Lame systems that describe, respectively, the triply conjugate and trip
thogonal systems of surfaces,11–19 their exact solutions, and transformation properties have b
discussed recently in Refs. 43–45.

An approach that uses the powerful tool of the IST method to contrust explicit surface
been proposed in Ref. 46. Within such a ‘‘soliton surfaces approach’’ one starts with the s
of 111-dimensional linear problemscx5Pc, cz5Qc and then construct explicit formulas for th
immersion of one parameter families of surfaces. Interesting results in this direction have
obtained in Ref. 47. A different approach has been proposed recently in Ref. 48. It is based
use of the two-dimensional linear problems to induce surfaces inR3 and then generate the
integrable dynamics via the corresponding 211-dimensional integrable systems. Integrable d
namics of surface that carry conjugate nets has been studied in Ref. 49.

A common feature of all these different approaches was that they treated surfaces e
J. Math. Phys., Vol. 38, No. 1, January 1997
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cally, i.e. as embedded into the three-dimensional Euclidean space. The PDEs that descr
embedding have been interpretated and used in one manner or another.

In the present paper, in contrast, we will consider the intrinsic geometry of surfaces
three-dimensional Riemann spaces, which is formulated without any reference to the enve
spaces. Our main goal here is to describe exactly solvable cases for which metric and curva
given by explicit formulas and to establish interrelation between the intrinsic geometry of
mann spaces and multidimensional integrable equations.

Intrinsically a surface is characterized by the metric and the Gaussian curvature th
connected to each other by the Gauss equation. A starting point of our approach is the fact
the geodesic coordinates a metric is of the formds25dx21H2 dy2 while the Gauss equation i
nothing but the one-dimensional Schro¨dinger equation,

Hxx1K~x,y!H50, ~1.1!

whereK(x,y) is the Gaussian curvature. Using this observation, we construct a wide cla
metrics and curvatures given explicitly.

In particular, we will present the Gaussian curvature and metric in terms of multi-Bargm
potentials and the Riemannu functions parametrized by arbitrary functions ony. Then we will fix
the dependence on this variabley by the requirement that an additional linear equation forH be
satisfied. Consequently, the curvature obeys the Korteweg–de Vries~KdV! equation. As a result
we construct the surfaces, the Gaussian curvature of which is nothing but solitons of the
equation. We also present the integrable dynamics of surfaces of revolution and generic s
via the KdV and higher KdV equations. The solitonic and more general evolutions of the Gau
curvature are given. An important type of integrable evolutions is given by the 211-dimensional
integrable equations with breaking solitons. The exact solutions of such equations provi
explicit evolutions of the curvature of the shock wave type.

Solitonic curvatures and their integrable dynamics inherit all remarkable properties o
KdV equation. An infinite set of integrals of motion is among them. In our case they are the g
characteristics of surface that are preserved by integrable dynamics.

Emphasize that the metricds25dx21H2 dy2 is the metric of a generic surface written in th
geodesic coordinates. So, all the results for surface presented in this paper are relevan
surfaces.

In the case of the three-dimensional Riemann space a situation is quite different. W
consider Riemann spaces with metrics reducible to the formds25dx26dy21H2(x,y,z)dz2,
whereH(x,y,z) is a function. For such a metric the formula that expresses a scalar curvatR
via the coefficients of the metric is converted into the linear equation

Hxx6Hyy2
1
2RH50, ~1.2!

i.e. to the two-dimensional Schro¨dinger or perturbed string equation. Using the known results,
get a wide class of the three-dimensional Riemann spaces with explicit exact scalar curvatu
particular, in terms of the Prymu functions. There are different classes of solutions of Eq.~1.2!
with different behavior of the scalar curvature atx21y2→`.

A dependence ofR on z can be fixed by the requirement thatHz5A(•••]x ,]y)H, whereA is
linear differential operator. In this case the scalar curvatureR obeys the Nizhnik–Veselov–
Novikov equation or its higher analogs, which are solvable by the IST method. As a resu
solitons of the NVN equation define the special soliton three-dimensional Riemann space
integrable time evolutions of such Riemann spaces is given by the equation from the
hierarchy.

We also present several nonlinear PDEs associated with the three-dimensional Ri
spaces with the particular diagonal metrics. The 211-dimensional generalizations of the Liouville
sine-Gordon, and Tsitseica–Dood–Bullough—••• equation are among them. Surface and thr
J. Math. Phys., Vol. 38, No. 1, January 1997
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dimensional Riemann spaces with large Gaussian or scalar curvature and slow dependence
variable are considered too. The linear equations~1.1! and ~1.2! are reduced to the equation

hX1k~X,Y!h50, ~1.3!

which defines a Hopf–Cole transformation and to the one-dimensional perturbed heat equ

hY1hXX1r ~X,Y,Z!h50, ~1.4!

respectively. The integrable dependence of curvatures on the variablesY andZ and integrable
evolutions of curvatures are governed by the Burgers equation and its hierarchy@for ~1.3!# and by
the Kadomtsev–Petviashvili equation and its hierarchy for~1.4!.

II. SOME FORMULAS FROM THE DIFFERENTIAL GEOMETRY OF SURFACES AND
SPACES

So we will consider two-dimensional surfaces with the linear element~first fundamental form!

dx25E dx212F dx dy1G dy2, ~2.1!

whereE, F, andG are functions on the local coordinatesx andy of a surface~see Refs. 11–14!.
The basic invariant characteristic of the intrinsic geometry of a surface is the Gaussian cur
K5R1212/H, where R1212 is the nonzero component of the Riemann tensorRabgd and
H5AEG2F2.11–14The Gaussian curvatureK(x,y) and the metric of a surface are related by t
Gauss equation11–14

K5
1

2H F S F

HE
Ey2

1

H
GxD

x

1S 2H Fx2
1

H
Ey2

F

EH
ExD

y

G . ~2.2!

In a special coordinate system on a surface the Gauss equation~2.2! may have a very simple
form. The Liouville and sine-Gordon equations are the classical examples.11–14 If one chooses
E5G50, then the coordinate curves are the minimal lines and the Gauss equation~2.2! is reduced
to ~ln F!xy1KF50 or to the equationwxy1K expw50, whereF5expw. For the constant Gauss
ian curvatureK it is the Liouville equation. Further, for the choiceF50,E5cos2 u,G5sin2 u, one
has the lines of curvature as the coordinate curves. Then, for the constant negative cu
K522a2 the Gauss equation ~2.2! is nothing but the sine-Gordon equatio
uxx2uyy5a2 sinu.11–14

Thus, for the different choices of metric~or systems of coordinates! on a surface the Gaus
equation~2.2! is reduced to the different simple PDEs. Note that these equations arise with
analysis of the pure intrinsic geometry of surfaces. We also emphasize that the only well-s
such nonlinear PDEs~Liouville and sine-Gordon equation! correspond to the case of consta
Gaussian curvature.

For three-dimensional Riemann spaces with the metricds25( i ,k51
3 gik dx

i dxk the curvature
tensorRiklm has only three independent components.50 Moreover, the metric always can be co
verted into the diagonal form51

ds25e1H1
2~dx1!21e2H2

2~dx2!21e3H3
2~dx3!2, ~2.3!

whereei561. For the diagonal metric the scalar curvatureR 5
def

( i ,k,l ,m51
3 gil gkmRiklm is given by

the formula50
J. Math. Phys., Vol. 38, No. 1, January 1997
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R5 (
ı,k51

3
Rikki

Hi
2Hk

2

5 (
i ,k51

3
1

HiHk
Fek ]

]xi S 1Hi

]Hk

]xi D 1ei
]

]xk S 1

Hk

]Hi

]xk D 1
eiekem
Hm
2

]Hi

]xm
]Hk

]xmG , ~2.4!

wheremÞ i , mÞk.

III. GEODESIC COORDINATES AND EXPLICIT FORMULAS FOR GAUSSIAN
CURVATURE

In the present paper we will describe surfaces in a system of coordinates that is well kno
the differential geometry, but to the best of our knowledge has not been used for the stu
nonlinear PDEs associated with the surfaces.

This is the geodesic system of coordinates for whichE51, F50, and the linear element~2.1!
is of the formdx25dx21G dy2. 11–14The name is due to the fact that the curvesy5const is a
geodesic. Under the conditionsg(x50,y)50, gx(x50)51 one has the so-called geodesic po
coordinates.11–14Note that the metricdx25dx21G dy2 is the metric of a generic surface but
referred to the geodesic coordinates. In such a metric the Gauss equation~2.2! is of the form
K52G1/2(G1/2)xx . In the terms of variableH25G the linear element of the surface and t
Gauss equation look like

ds25dx21H2 dy2 ~3.1!

and

Hxx1K~x,y!H50. ~3.2!

Equation ~3.2! is linear and seems too simple and not as attractive as the Liouville
sine-Gordon equation discussed above. However, just its linearity and nonrigidity~the variabley
is involved as a parameter! provide us a freedom and flexibility in construction of the surfac
explicitly and in formulation of the associated nonlinear PDEs.

In particular in the caseK5const the corresponding surfaces are well studied~see Refs.
11–14!. They are the spherical or pseudospherical surfaces of constant curvature. Here w
consider the case of variableK(x,y).

First we note that Eq.~3.2! is closely connected with the one-dimensional stationary Sc¨-
dinger equation,

2cxx1U~x,y!c5l2c. ~3.3!

Namely, identifying

H~x,y!5Rec~x,y;l0!, K~x,y!52U~x,y!1l0
2, ~3.4!

wherel0 is an arbitrary real or pure imaginary value of the spectral parameterl and Re denotes
a real part of complex number, one gets~3.2!. Thus all exactly solvable cases for the Schro¨dinger
equation~3.3! provide us the surfaces~referred to as their geodesic coordinates! with the explicit
expressions for the Gaussian curvatureK(x,y) and the metric„H(x,y)…. Note that the variabley
is contained in these formulas as a parameter. There are a number of solvable cases
Schrödinger equation.24–28,52,53A wide class of exact solutions of Eq.~3.3! is given by the multi-
Bargmann potentials:24–28,52

K~x,y!52~ ln detA!xx1l0
2~y!, ~3.5!
J. Math. Phys., Vol. 38, No. 1, January 1997
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whereA is N3N matrix with the elements

Ank5dnk1
bn~y!

an~y!1ak~y!
exp@2„an~y!1ak~y!…x#, ~3.6!

and an(y),bn(y) (n51,...,n) are arbitrary distinct positive functions. In our case the kno
formula forc~x,y,l!52,24–28also gives

H~x,y!5ReS e2 il0x1 (
n51

N
detA~n!

detA

e2~an~y!1 il0!x

an~y!1 il0~y!D , ~3.7!

where the matrix elements of the matrixA(n) are given by~3.6! with the substitution of the las
column by the column2bn exp~2anx! (n51,...,N). In the simplest caseN51 one has

K~x,y!5
2a2~y!

cosh2„a~y!x2g~y!…
1l0

2~y!,

~3.8!

H~x,y!5ReS il0~y!1a~y!tanh„a~y!x2g~y!…

il0~y!1a~y!
e2 il0xD ,

whereg(y)51
2 ln[b(y)/2a(y)] anda(y),b(y) are arbitrary functions.

Choosing decreasing atuyu→` functions asa(y) and l(y), one obtains the surface, th
Gaussian curvature of which tends to zero asx21y2→`. Similarly, the proper choice of function
an(y),bn(y) for the general potential~3.5! provides us the surfaces with the Gaussian curva
vanishing at infinity.

A different type of surface is associated with the harmonic oscillator-type potential in~3.3!.
For instance, choosingU(x,y)5 1

4y
4x2, one has the harmonic oscillator with the frequencyy2,

with the eigenvaluesl25y2(n1 1
2), n50,1,2,..., and eigenfunctionscn(x,y)5Cn exp(2x2

3y2/4)Hn(xy/&), whereCn is a normalization constant andHn are Hermite polynomials.53

Correspondingly for a surface one has

K~x,y!52 1
4y

4x21y2~n1 1
2!, Hn~x,y!5cn~x,y!. ~3.9!

So, for such surfacesK(x,y)→` asx21y2→` while H(x,y)→0 and, hence,ds2→dx2 as
x21y2→`.

The conditionsG(x50,y)50, Gx(x50,y)51, which specify the polar geodesic coordinat
also have a simple interpretation within the theory of the Schro¨dinger equation. Indeed, let u
consider the three-dimensional stationary Schro¨dinger equation2~D1U! c5Ec with the spheri-
cally symmetric potentialU(x1 ,x2 ,x3)5U(x), wherex25x1

21x2
31x3

2. Separating the variables i
the spherical coordinates@c5R(x)Ylm~u,w!#, one gets for the functionx(x), defined byR(x)
5x(x)/x, the following one-dimensional Schro¨dinger equation,53

2xxx1SU~x!1
l ~ l11!

x2 Dx5Ex , x.0, ~3.10!

wherel is the angular momentum. Solutionx of Eq. ~3.10! for l51 obeys the conditionsx~x50!
50, xx~x50!•••5const.53

So the solution of Eq.~3.10! with l51 defines the polar geodesic coordinates of the surf
with the Gaussian curvature

K52U~x!2
2

x2
1E. ~3.11!
J. Math. Phys., Vol. 38, No. 1, January 1997
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In particular, choosing the Coulomb potential2a(y)/x, wherea(y) is some positive function
on y as the potentialu(x) and using the well-known formulas~see Ref. 53!, one gets

K~x,y!5
a~y!

x
2

2

x2
2

a2~y!

4n2
~3.12!

and

Hn~x,y!5Cne
2xa~y!/nFS 2n12,4,

xa~y!

n D , ~3.13!

wheren51,2,3,..,F is the hypergeometric function andCn is a normalization constant.
Using other exactly solvable cases for the three-dimensional Schro¨dinger equation,52,53 one

can construct explicitly the polar geodesic coordinates, Gaussian curvature, and metric
other families of surfaces.

The above examples provide us the noncompact surfaces. Surfaces for which one
variablesx,y are changed on the finite integral can be constructed with the use of the so-c
finite-gap solutions of the Schro¨dinger equation~3.3!. These solutions are of the form24,25,28

U~x,y!52@ ln u„U~y!X1V~y!…#xx1const ~3.14!

and

c~x,y!5
u„A~g!1Ux1V…u~V!

u„A~g!1V…u~Ux1V!
expS xE v D , ~3.15!

whereu is the Riemannu function,U,V,A are matrices of periods for the hyperelliptic curveg.
These solutions are periodic inx. Note that the dependence of all parameters in~2.14!–~3.15! on
the variabley is not fixed. In particular, choosing in the formulas~3.14! and~3.15! the parameters
with the periodic dependence ony, one gets via~3.4! the compact surfaces referred to as th
geodesics.

The simplest solution of such a type is of the form~see Refs. 24, 25, and 28!

U~x!52P~x!, ~3.16!

whereP is the Weierstrass function. We will consider surfaces defined by the formulas of the
~3.14!, ~3.16! in a separate paper.

IV. SOLITON GAUSSIAN CURVATURE OF SURFACES

In general, one can prescribe any dependence ofK(x,y) andH(x,y) on the variabley.
One way to fix the dependence ony is to require that the functionH obeys the additiona

linear equationHy5A(K,Kx ,]x)H, whereA is some differential operator. Having in mind th
H5c(x,y,l5l0) wherec obeys Eq.~3.3!, we require that in addition to Eq.~3.3! the function
c obeys the equation of the type

cy5A~U,Ux ,...,]x!c, ~4.1!

where A is the linear differential operator in]x5]/]x . The compatibility of ~4.1! and ~3.3!
guarantees the preservation of~3.2! in y. On the other hand, the compatibility condition of~3.3!
and~4.1! is equivalent to the nonlinear PDE forU. ChoosingA5c]x , wherec is a constant, one
getsU5U(x1cy), and henceK5K(x1cy). A nonlinear equation arises with the choice ofA as
the third-order operator, namely, if
J. Math. Phys., Vol. 38, No. 1, January 1997
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cy14cxxx26Ucx23Uxc50. ~4.2!

The compatibility condition of~3.3! and ~4.1! is equivalent to the equation~ly50!

Uy1Uxxx26UUx50. ~4.3!

Consequently, the Gaussian curvatureK obeys the equation

Ky16l0
2Kx1Kxxx16KKx50. ~4.4!

Equations~4.3! and ~4.4! are nothing but the famous Korteweg–de Vries~KdV! equation.
This equation in integrable by the inverse spectral transform~IST! method.23–31The basic idea of
the method is to generate a solvable nonlinear PDE via the compatible system of linear PDE
variable coefficients.23–31Our approach to surfaces is just motivated by this main idea of the
method.

Thus, the choice~4.2! means that the Gaussian curvature of a surface obeys the KdV equ
~4.4! while the coefficientH(x,y) of the metric ~3.1! is given by the KdV eigenfunctionc
evaluated atl5l0. The KdV equation~4.3! has the remarkable exact solutions called solito
Consequently, one has the surfaces with solitonic curvature and a corresponding solitonic
The simplest soliton surface has~l5l0! ~see Refs. 24–31!

k~x,y!5
2a2

cosh2@a~x24a2y!2x0#
, H~x,y!5tanh@a~x24a2y!2x0#, ~4.5!

wherea andx0 are arbitrary constants. The multisoliton solutions of the KdV equation~4.3!, and
thus, the multisoliton surfaces are given by the formulas~3.5!–~3.7!, with l05const,a5const, and
bn 5 bn0 exp 8an

3y, wherebn0 are constants. Note that the Gaussian curvatureK(x,y) described
by these formulas is bounded on the whole surface. More general finite-gap solutions of th
equation periodic inx and, correspondingly, the surfaces are given by the formulas~3.14!, ~3.15!
with U5const,V5V0y1W0 , whereV0 andW0 are constants. Then-gap elliptic potentials of
Lame and Ince24 K(x,y)5[n(n11)/2]P(x2ay), whereP is the Weierstrass function, is th
particular case of the above solutions.

Not only the Gaussian curvatureK obeys the nonlinear PDE~KdV equation! but also the
coefficientH(x,y) of the metric. Indeed, from~3.3! one can expressU via c: U5l21cxx/c.
Substituting this expression into~4.2!, one gets

cy16l2cx1cxxx23
cxcxx

c
50. ~4.6!

HenceH(x,y) obeys the equation

Hy16l0
2Hx1Hxxx23

HxHxx

H
50. ~4.7!

So the metric coefficientH(x,y) obeys the KdV eigenfunction equation~4.7!. This equation
is also integrable by the IST method.54 In terms of the variableV5ln H, Eq.~4.7! with l050 looks
like

Vy1Vxxx26V2Vx50. ~4.8!

It is nothing but the modified KdV equation, which is also a well-known soliton equation.24–28

The KdV equation has a number of remarkable properties: infinite sets of integrals of m
Darboux and Backlund transformations, and corresponding nonlinear superposition formu
J. Math. Phys., Vol. 38, No. 1, January 1997
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grangian, Hamiltonian, and bi-Hamiltonian structure, and so on.24–30The solitonic surfaces inheri
all these specific properties. For instance, using the Darboux transformation, one finds the
ing Wronskian representation55 of soliton surface:

K~x,y!5K0~x,y!1 ln W~c1 ,...,cn!xx , H~x,y!5
W~c1 ,...,cn ,c!

W~c1 ,...,cn!
, ~4.9!

wherec1,...,cn , c are different solutions of Eq.~3.3! with the potentialU0(x,y).
There is an infinite family of nonlinear PDEs associated with the problem~3.3!. It is the

so-called KdV hierarchy. Higher KdV equations are equivalent to the compatibility conditio
~3.3! and Eq.~4.1!, whereA is the operator of 2n11th order.24–29All these higher KdV equations
can be used to fix the dependence ofK andH on y. The corresponding explicitK andH are given
by the formulas~3.5!–~3.7! with an5const andbn5bn0 exp„(2an)

2n11y…. The whole KdV hi-
erarchy is characterized by a very important quantity, the so-called,t function.14–17 One has
U(x,y)52~ln t!xx . SoK(x,y)52~ln t!xx1l0

2.

V. INTEGRABLE EVOLUTIONS OF GAUSSIAN CURVATURE

In this section we will describe the integrable evolutions~deformations! of surfaces referred to
as their geodesic coordinates. So we assume that the coefficientH of the metric and the Gaussia
curvatureK depend on an additional time variablet: H5H(x,y,t)K5K(x,y,t). We will look for
those evolutions onH andK in time t which preserve the relation~3.2!. We will consider here
three different types of such evolutions.

A. Surfaces of revolution

By definition, a surface of revolution is the surface generated by a plane curve when the
of the curve is made to rotate about a line in the plane.11–14For such surfacesH and, consequently
K, depend only onx. To construct integrable evolutions of such surfaces in timet we assume tha
K5K(x,t), H5H(x,t) and we will look for evolutions that preserve~3.2! in time.

In virtue of the relation~3.4! we have to look for the evolutions int that preserve~3.3!. They
are given by the compatibility condition of Eq.~3.3! and the linear equation of the type~4.1! with
the substitutiony→t, i.e. by the compatibility condition of the system

2cxx1U~x,t !c5l2c,
~5.1!

c t5A~U,Ux ,...,]x!c,

whereA is a linear differential operator. These evolutions are given obviously by the equa
from the KdV hierarchy.24–29By virtue of ~3.4! the evolutions we are interested in are given by
KdV hierarchy for the Gaussian curvatureK(x,t) and by the corresponding hierarchy of th
KdV-eigenfunction equations forH(x,t). In this section we put, for simplicity,l050 in the
relation~3.4!. The simplest integrable evolution is described by the KdV equation for the Gau
curvature,

Kt1Kxxx16KKx50, ~5.2!

and by the equation

Ht1Hxxx23
HxHxx

H
50, ~5.3!

for the metric. In terms ofV5ln H, Eq. ~5.3! is nothing but the mKdV equation,
J. Math. Phys., Vol. 38, No. 1, January 1997
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Vt1Vxxx26V2Vx50.

The evolutions of the surface described by the KdV hierarchy are very specific ones.
there is an infinite class of evolutions given by explicit formulas. They are the particular ca
~3.5!–~3.7! with l050, an5const,]bn/]t58an

4, namely24–29

K~x,t !52~ ln detA!xx , ~5.4!

where

Ank5dnk1
bn0

an1ak
exp@2~an1ak!x18an

3t# ~5.5!

and

H~x,t !511 (
n51

N
e2anx

an

detA~n!

detA
. ~5.6!

The simplest evolution is given by the famous KdV soliton,

K~x,t !5
2a2

cosh2@a~x24a2t !2x0#
, H~x,t !5tanh@a~x24a2t !2x0#, ~5.7!

wherex0 is an arbitrary constant.
For the higher KdV equations that are associated with the operatorA in ~5.1! of the 2n11th

order, the explicit evolutions are given by the formulas~5.4!–~5.7! with the substitution
8an

3t→(2an)
2n11t.

Further, the IST method allows us to solve~linearize! the initial value problem for the KdV
equation ~and higher KdV equations! according to the schemeU(x,t50)→T(l,t
50)→T(l,t)→U(x,t), whereT(l,t) is the so-called, inverse problem data~see Refs. 25–29!.
The use of this scheme provides us the solution~linearization! of the initial value problem for the
integrable evolutions of the surfaces of revolution described above. One can also calculate
the asymptotics ofK(x,y) andH(x,t) at larget for givenK(x,0) andH(x,0).

The KdV equation possesses an infinite set of integrals of motion. They are of the form~see
Refs. 24–29!

Cn5E
2`

1`

dx Pn211~x,t !, ~5.8!

where the densitiesPm are calculated by the recurrent relation

Pm115Pmx1 (
k51

m21

PkPm2k , m51,2,3,...,

~5.9!
P152U~x,t !.

All P2n wheren51,2,3,..., are total derivatives. So the nontrivial integrals are given by~5.8!.
Consequently, for all integrable evolutions of surfaces of revolution described above on

an infinite set of characteristics of surfaces that are preserved in time. The simplest such inv
are
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C15E dx K~x,t !, C25E dx K2~x,t !,

~5.10!

C35E dx~Kx
222K3!, C45E dx~Kxx

2 15K2Kxx15K4!.

In general, the integrable evolutions of surface of revolution possess all the remarkab
tures and properties of the KdV hierarchy.

The integrable evolution of surfaces of revolution are closely connected with the integ
evolutions of plane curves, which have been discussed in Refs. 56–59. Indeed, let us co
following Refs. 56–59, a plane curve and its integrable evolution in time. The simplest non
integrable evolution is described by the mKdV equationv t1vsss212v2vs50, wherev(s,t) is the
curvature of the curve ands is the arclength. Then, at each moment we rotate this curve abou
fixed line in the plane. As a result at eacht we get the surface of revolution and, consequently,
time evolution of such a surface. Our generating curve is now lying on the surface
v(y,t)5Kg

(x), whereKg
(x) is the geodesic curvature of the curve. For the metric of the form~3.1!

the Gaussian curvatureK and the geodesic curvature of the curvex5const are connected by th

Liouville formulaK 5 2(Kg
(x))x 2 Kg

(x)2.11–14But it is nothing but the well-known Miura transfor
mation that relates the solutions of the mKdV and KdV equations~22.3!. Note that the above
consideration demonstrates the geometric meaning of the Miura transformation.

B. Generic surfaces

Another way of introducing the dynamics of a surface is to fix they dependence ofK(x,y)
andH(x,y) by one of the equations from the KdV hierarchy@say by the KdV equation~4.4! itself#
and then fix the evolution int by the other equation from the hierarchy. The common solut
K(x,y,t) of the KdV equation~4.4! and a higher such KdV equation~Kt1]x

2n11K•••50! gives us
the evolution of the generic surface. Explicit evolutions of this type are of the form~3.5!–~3.8!
with an5const andbn5bn0 exp„8an

3y1(2an)
2n11t….

Another possibility for fixing the dependence ofK andH on y and simultaneously for the
determination of the evolution in timet consists of the consideration of the compatible system
Eq. ~3.3! and an equation of the form

c t1 f ~]x
21K !cy1 (

n51

M

Un~x,y,t !]x
nc50, ~5.11!

wheref ~a! is an arbitrary polynom andUn are functions. The compatibility condition of~3.3! and
~5.11! is equivalent to the 211-dimensional integrable equation forK. Such integrable equation
have been proposed in Ref. 60 and then have been discussed by several authors.26,61,62 These
integrable PDEs possess the so-called breaking solitons~see Ref. 60!. One of the simplest equa
tions of this type looks like62

Kt1Kxxy14KKy12Kx~]x
21Ky!50. ~5.12!

For Eq.~5.12! the linear problem~5.11! is of the form

c t12~]x
21K !cy12~]x

21Ky!cx13Kyc50. ~5.13!

Equation~5.12! has an infinite set of integralsCn5**dx dy Pn(x,y), where the densitiesPn

are given by the formulas~5.9!–~6.2!. So the first such integrals of motion are
J. Math. Phys., Vol. 38, No. 1, January 1997
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C15E E dx dy K~x,y,t !, C25E E dx dy K2~x,y,t !, C35E E dx dy~Kx
212K3!,... .

~5.14!

Thus, there exists an infinite set of global characteristics of surface that are invariant und
evolution of the type~5.12!.

The multisoliton-like solutions of Eq.~5.12! and the correspondingH(x,t) are given by the
formulas ~3.5!–~3.7!, where the functionsan(y,t) and bn(y,t) obey the equations
ant14an

2any50, bnt14an
2bny50.26,62 The one-soliton is of the form62

K~x,y,t !5
2a2~y,t !

cosh2@a~x,t !x2g~y,t !#
, H~x,y,t !5tanh@a~y,t !x2g~y,t !#, ~5.15!

where the functionsa andg obey the equations

a t14a2ay50, g t14a2gy50. ~5.16!

VI. SCALAR CURVATURE OF THREE-DIMENSIONAL RIEMANN SPACE VIA THE
TWO-DIMENSIONAL SCHRÖDINGER OR STRING EQUATIONS

The Gauss equation~2.2! for the two-dimensional Riemann spaces connects the Gaus
curvatureK to the three coefficientsE,F,G of the metric~2.1!. But two of these three function
can always be transformed away by the appropriate change of variablesx andy. Consequently, the
line element~3.1! and Eq.~3.2! describe, in fact, the generic two-dimensional Riemann space
all the results of the previous sections are relevant to all surfaces.

The situation is different for the three-dimensional Riemann spaces. Using the transform
of coordinates, one can, at most, convert the metricgik into the diagonal form~2.3!.51 As a result,
for a generic space equation~2.4!, which is the analog of the Gauss equation, is highly under
termined with respect to the metric. Equation~2.4! for given scalar curvatureR becomes well
determined for special Riemann spaces for which there is only one independent function
H1 ,H2 ,H3 . Constraints onH1 ,H2 ,H3 that characterize such Riemann spaces can be of diffe
types.

We start with the simplest case for whichH151, H251. In this case the metric~2.3! and Eq.
~2.4! are of the form

ds25dx22s2 dy21H2~x,y,z!dz2 ~6.1!

and

2~Hxx2s2Hyy!1 1
2R~x,y,z!H50, ~6.2!

where we denotex5x1 , y5y2 , z5z3 , e15e351, e252s2, s2561, H35H.
The formulas~6.1!, ~6.2! are the natural three-dimensional extensions of the formula~3.1! and

~3.2!. One can use and treat them in a manner similar to that described in the previous sect
surfaces.

Equation~6.2! can be represented in the form

2~]x
22s2]y

2!c1U~x,y,z!c5Ec, ~6.3!

where

1
2R5U2E, H5c. ~6.4!
J. Math. Phys., Vol. 38, No. 1, January 1997
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In the cases2521 @Euclidean type metric~6.1!#, Eq. ~6.3! is the two-dimensional stationar
Schrödinger equation, while ats251 one has the perturbed string equation.

Exact solutions of Eq.~6.3! provide us three-dimensional Riemann spaces with the sc
curvature and metric given by explicit formulas.

Properties of Eq.~6.3! are different for the different signs ofs2. First we will consider the case
s2521. The Schro¨dinger equation,

2~]x
21]y

2!c1Uc5Ec, ~6.5!

has been studied in great detail during the last ten years.63–78Wide classes of exact solutions o
Eq. ~6.5! have been constructed. They are different for the casesE.0, E,0, andE50. We will
present typical examples of these solutions.

E5a2.0. Rational nonsingular solutions of~6.5! have been found in Ref. 70. Using them
one gets the real-valued scalar curvature,

R~x,y,z!522a222~]x
21]y

2!ln detA, ~6.6!

whereA is a 4N34N matrix with elements

Anm5 iadnmS x1 iy2
x2 iy

gn
2~z!

1gnD 1
12dnm

lm~z!2ln~z!
, n,m51,...,4N, ~6.7!

and the functionsln(z),lm(z) obey the following conditions~see Ref. 70!:

l2n1252l2n11 , l2n112l2n125
1

l2n11
,

~6.8!

l4n215
1

l4n23
, l4n5

1

l4n12
, l4n215

2

l4n23l4n23
, n51,...,N.

Correspondingly the coefficientH of the metric is of the form

H~x,y,z!5ReFe~2 ik/2!„l~z!~x1 iy !1~x2 iy !/l~z!…S 11 (
m51

4N
wm

l~z!2lm~z!D G , ~6.9!

where the quantitieswi are defined by the equation

(
m51

4N

Anmwm51, ~6.10!

andl(z) is an arbitrary function onz.
E52a2,0. Solutions of Eq.~6.3! with an arbitrary number of functional parameters~arbi-

trary functions! have been constructed in Ref. 67. Using these solutions, one gets the
curvatures and metric parametrized by an arbitrary number of functions of the single variabl
simplest case looks like~see Ref. 67!,

R~x,y,z!52a222~]x
21]y

2!ln E
ulu51

udlu f ~l,z!ea„l~x2 iy !1~x1 iy !/l…, ~6.11!

H~x,y,z!5
a2

* ulu51udlu f ~l,z!ea@l~x2 iy !1~x1 iy !/l# , ~6.12!
J. Math. Phys., Vol. 38, No. 1, January 1997
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where f (l,z) is an arbitrary function on the real variablez and complex variablel.
A very wide class of exact solutions of Eq.~6.5! and, consequently, the explicit scalar curv

turesR(x,y,z) and metricsH(x,y,z), can be constructed by the]̄-dressing method.30–31

The caseE50 is much more complicated than those ofEÞ0. It has been studied in Ref. 75
A very general class of solutions of Eq.~6.5! with E50 that are periodic in the variablesx and

y have been constructed in the papers.63,64,66,72,74They provide us the three-dimensional Riema
spaces with

R~x,y,z!5E22~]x
21]y

2!ln u@U~x1 iy !1V~x2 iy !2e/P#,

H~x,y,z!5
u„U~x1 iy !1V~x2 iy !2h~p!2e/P…u~e/P!

u„U~x1 iy !1V~x2 iy !2e/P…u„h~p!2e/P…

3exp@~x1 iy !V1~p!1~x2 iy !V2~p!#,

~6.13!

whereu is the Prymu function,U,V, are the corresponding matrices of periods the, paramete
which are functions onz, andV1(p),V2(p),h(p) are certain Abel’s integrals~see Refs. 72–74!.
Choosing the parameters inU,V,W,V i ,h as periodic onz functions, one is able to construct th
compact three-dimensional Riemann spaces with the scalar curvature and metric given by~6.13!.
This problem will be discussed in a separate paper.

Note that the solutions of Eq.~6.5! with U50, which can be easily constructed, using t
Fourier transform, describe the Riemann spaces with the constant scalar curvatureR52E. It is
known that the properties of these spaces are different for different signs ofR.19–22So the exact
formulas presented above forE.0, E,0 describe the Riemann spaces with essentially differ
properties.

Now let us consider the Riemann spaces with the metric of the pseudo-Euclidean type,
cases251. Equation~6.3! is of the form

2~]x
22]y

2!c1U~x,y,z!c5Ec. ~6.14!

It is the perturbed string equation atE50 or the perturbed telegraph equation atEÞ0. Here we
will use only three simplest solutions of Eq.~6.14! constructed in Ref. 79.

The caseEÞ0. One gets31,79

R~x,y,z!522E1
E„a~z!2b~z!…2

a~z!b~z!cosh2 1
2@„a~z!2b~z!…~x1y!1E~x2y!/a~z!b~z!1g~z!#

,

~6.15!

H~x,y,z!5A~z!
cosh@ 1

2 „a~z!1b~z!…~x1y!1E~x2y!/a~z!b~z!1d~z!#

cosh@ 1
2 „a~z!2b~z!…~x1y!1E~x2y!/a~z!b~z!1g~z!#

,

wherea(z), b(z), g(z), d(z), andA(z) are arbitrary real functions.
The case E50. Using the formulas~6.30!, ~6.32! from Ref. 79, one has

R~x,y,z!5
4a~z!b~z!

cosh2„a~z!~x1y!1b~z!~x2y!1g~z!…
,

~6.16!

H~x,y,z!5A~z!
cosh@„a~z!~x1y!2b~z!~x2y!1d~z!…#

cosh@a~z!~x1y!1b~z!~x2y!1g~z!#
,

wherea(z), b(z), g(z), d(z), andA(z) are arbitrary real-valued functions.
J. Math. Phys., Vol. 38, No. 1, January 1997
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And finally, a very simple solution of~6.14! with E50 from Ref. 79 and the correspondin
scalar curvature and the metric:

R~x,y,z!52
6@x1y2a~z!~x2y!#222b2~z!

@„x1y2a~z!~x2y!…21b2~z!#2
,

~6.17!

H~x,y,z!52
g~z!

„x1y2a~z!~x2y!…21b2~z!
,

wherea(z), b(z) andg(z) are arbitrary functions.

VII. SOLITONS OF THE NIZHNIK–VESELOV–NOVIKOV EQUATION AS THE SCALAR
CURVATURE

Similar to the two-dimensional case~Sec. IV!, one can specify the dependence of the sca
curvatureR on the variablez by the requirement thatH ~and, hence,c! obeys an additional linea
PDE compatible with Eq.~6.2!. So, we consider the Riemann spaces such that the scalar curv
and metric obey the linear system of equations,

2~]x
22s2]y

2!H1 1
2RH50, ~7.1!

Hz1Ã~R,...,]x ,]y!H50, ~7.2!

whereÃ is a linear partial differential operator or, equivalently, in terms ofU andc:

2~]x
22s2]y

2!c1Uc5Ec, ~7.3!

cz1Ã~U,...,]x ,]y!c50. ~7.4!

The compatibility condition for the system~7.3!, ~7.4! is equivalent to the nonlinear PDE fo
U. Considering the infinite family of operatorsÃ of the form Ã5a(]x1 i ]y)

2n11

1b(]x2 i ]y)
2n111••• , n51,2,3,..., one gets the infinite hierarchy of the nonlinear PDEs, wh

is called the Nizhnik–Veselov–Novikov hierarchy. The simplest and lowest member of this
archy in terms ofR is of the form

Rz1aRjjj1bRhhh23a~RW2j!j23b~RW1h!h50, W1j5W2h5 1
2R, ~7.5!

where the variablesj andh are defined by]j5]x2s]y , ]h5]x1s]y . Fors2521, j5h̄, where
the overbar denotes a complex conjugation anda5b. For this equation the linear problem~7.2!
looks like

Hz1aHjjj1bHhhh23aW2jHj23bW1hHh50. ~7.6!

Equation~7.5! is known as the Nizhnik–Veselov–Novikov~NVN! equation. In the cases51
it has been discovered in Ref. 8 and ats2521a5b51 it has been introduced in Ref. 64.

The NVN equation is integrable by the IST method. Its properties are different for the
s251,s2521 andE.0,E,0,E50.30,31,66–80Note that expressingR viaH with the use of~7.1!:
whenR52(Hjh/H) one getsW1j5W2h5Hjh . As a result, Eq.~7.6! becomes the closed non
linear PDE for the coefficientH of the metric. This equation is integrable by the IST method to54

The exact solutions of the NVN equation provide us the explicit expression for the scalar c
ture and metricH. Here we will present only a few examples of solitonic scalar curvatures
metric.
J. Math. Phys., Vol. 38, No. 1, January 1997
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We start with the cases2521, i.e., with the Veselov–Novikov~VN! equation~a5b51!. At
E5a2.0 there are the rational nonsingular solutions of the NV equation70 and, consequently, the
corresponding scalar curvatures and metrics. They are given by the formulas~6.6!–~6.10!, where
all ln (n51,...,4n) are constants andgn(z)5gn013(a2ln

22a3/ln
4)z, wheregn0 are arbitrary

constants. For such Riemann spacesR→22a2 as x21y21z2→`, except the lines
x1 iy2(x2 iy)/ln

213(aln
22a3/ln

4)z5Cn5const.
At E52a2,0 the scalar curvatureR and metricH given by~6.11! and~6.12! obey the VN

equation~7.5! for the functions of the form70

f ~l,z!5 f 0~l!expFa3S l31
1

l3D zG , ~7.7!

where f 0~l! is an arbitrary function.
Solutions of the VN equation periodic inx and y and corresponding scalar curvatures a

metrics are given by~see Ref. 64, 66, 71–73!

R~x,y,z!52E22~]x
21]y

2!ln u@U~x1 iy !1V~x2 iy !1Wz2e/P#,
~7.8!

H~x,y,z!5
u„U~x1 iy !1V~x2 iy !1W~z!2h~p!2e/P…u~e/P!

u„U~x1 iy !1V~x2 iy !1Wz2e/P…u~h~p!2e/P!
,

whereUzVz5Wz50 andW is defined similar toU,V.
The solitions of the Nizhnik equation~s251! are quite different. The simplest soliton sol

tions and, hence, soliton scalar curvature and metric are given by the formulas

R~x,y,z!

522E1
E~a2b!2

ab cosh2@ 1
2 ~a2b!~x1y!2E~1/a21/b!~x2y!1~a321/a31b321/b3!z1g#

,

~7.9!

H~x,y,z!5A
cosh@ 1

2 ~a1b!~x1y!1E~1/a11/b!~x2y!1d#

cosh@ 1
2 ~a2b!~x1y!2E~1/a21/b!~x2y!1~a321/a31b321/b3!z1g#

,

wherea,b,d,g,A are arbitrary real constants.
There are also the multisoliton solutions of the Nizhnik equation withEÞ0 and, hence, the

multisolitonic scalar curvature and metric.
The Nizhnik equation possesses the exact solutions that depend on an arbitrary num

functional parameters. The simplest of them and, consequently, the scalar curvature is
form76 ~EÞ0!

R54]j ln~a1b!]h ln~a1b!, ~7.10!

wherea~j,t! andb~h,t! are arbitrary solutions of equations,

az2ajjj50, bz2bhhh50. ~7.11!

A very interesting class of exact solutions of the Nizhnik equation atE50 consists of the
exponentially localized solutions~see Refs. 78–81!. Using the simplest of them one gets th
following scalar curvature:

R52
2ab

~gA21B211dA B211 fA21B1d f AB!2
, ~7.12!
J. Math. Phys., Vol. 38, No. 1, January 1997
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where

A5exp 1
2~aj2a3z!,

B5exp 1
2~bh2b3z!,

anda,b,g,d, f are arbitrary real constants.
Using other known exact solutions of the NVN equation~see Refs. 64–81!, one can easily

multiply the number of explicit expressions for the scalar curvature and metric for the t
dimensional Riemann spaces. It would be of great interest to pick up those that are relev
some problems of the three-dimensional Riemann spaces, both in mathematics and phys
only note here that the difference in properties of the linear problem~7.1! in the casess251 and
s2521 and, correspondingly, of the Nizhnik~s251! and Veselov–Novikov equation~s2521!
apparently demonstrates the difference between the Riemann spaces with the metric of
clidean and pseudo-Euclidean types.

VIII. NONLINEAR PDEs ASSOCIATED WITH SCALAR CURVATURE

In this section we will describe other examples of the diagonal metric of the three-dimens
Riemann space for which Eq.~2.4! is reduced to the equation for a single dependent variable. H
we pute151, e252s2, e3521, s2561.

The first example corresponds to

H15H25H, H351. ~8.1!

In terms of functionw defined asH5expw, Eq. ~2.4! looks like

wxx2s2wyy1
1
2R~x,y,z!e2w1~2wzz13wz

2!e2w50. ~8.2!

At wz50 andR5const, Eq.~8.1! is reduced to the Liouville equation~12R52K!. The choice

H15cosu, H25sin u, H351, ~8.3!

reduces Eq.~2.4! to the following;

uxx1s2uyy1
1
4R sin u1sin u~uzz2

1
2uz

2!50. ~8.4!

This equation forR5const is, apparently, the three@or ~211!#-dimensional generalization o
the 111-dimensional sine-Gordon equation.

Our third example is associated with the Riemann space with the metric

H15cosv, H25sin v, H35vz , ~8.5!

wherev(x,y,z) is a function. The corresponding equation~2.4! is of the form

S vzx

cosv D
x

sin v2s2S vzy

sin v D
y

cosv,1 1
2~vx

2!z1
1
2~vy

2!z1~vxx1s2vyy!vz

5~ 1
2R13!sin v cosvvz . ~8.6!

This equation is also the 211-dimensional generalization of the 111-dimensional sine-
Gordon equation. The diagonal metric of the form~8.5! has been used in the last century with
the study of the triply conjugate and triply orthogonal systems of surfaces~see Refs. 11–14!.

And finally we choose
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H15ew, H25ew, H35wz . ~8.7!

In this case Eq.~2.4! becomes

~wxx1wyy!z1~wxx1wyy!wz5~2 1
2R23!e2wwz . ~8.8!

Integrating this equation with respect toz, one can represent~8.8! as the system

wxx1wyy2ue2w1e2w50,
~8.9!

uz1Re3w wz50.

In the case of the scalar curvatureR independent onz, the second equation~8.9! implies
u52[R(x,y)/3]e3w1A(x,y), whereA(x,y) is an arbitrary function and the system~8.9! becomes

wxx1wyy2A~x,y!e2w1S 11
R~x,y!

3 De2w50. ~8.10!

For constantA andR, Eq.~8.10! is nothing but the Tsitseica–Dodd–Bullough–••• equation. At the
caseR50 the relevance of this equation to the theory of the three-dimensional Riemann s
has been pointed out for the first time by Dryuma.43,44 Equation~8.10! with constantA andR is
integrable by the IST method. Its exact solutions provide us the Riemann metric with co
scalar curvature.

The general system~8.9! can be treated as the Tsitseica–Dodd–Bullough–••• system with the
scalar curvatureR(x,y,z) as the external source. The integrability of Eqs. 8.2,~8.4!, ~8.6!, and
~8.9! by the IST method is an open problem.

For the completeness we also present here Eq.~2.4! associated with the metric

ds25H2~dx21dy21dz2!. ~8.11!

In terms of the functionw defined byH5w2, it is of the form

wxx1wyy1wzz2
R

8
w550. ~8.12!

It is a well-known equation. Several important problems of the three-dimensional Rie
spaces are related to the study of Eq.~8.12!, for instance, the Yamabe problem.19–21

One of the ways to multiply solvable cases of Eq.~2.4! may consist of the use of th
conformal correspondence between the metrics. By definition, the metricsgik and g̃ik are confor-
mal, if50

g̃ik5e2fgik , ~8.13!

wheref is some function. Scalar curvatures of the corresponding Riemann spaces are con
by the relation50

R̃5e2fFR12 (
i , j51

3

gik
]f

]xi
]f

]xj
14 (

i , j51

3

gi j S ]2f

]xi ]xj
2 (

i , j51

3

G i j
k ]f

]xkD G , ~8.14!

whereGi j
k are Christofel symbols associated with the metricgik .

Here we will prove that the metrics~8.7! and~6.1! and, correspondingly, Eqs.~8.9! and~6.2!
are conformal. We will consider the cases2521. First, we representH from ~6.2! in the form
H52(e2w)z5e2wwz . Then since
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ds~8.7!
2 5e2wds~6.1!

2 , ~8.15!

the metrics~6.1! and ~8.7! are conformal withf5w. Further, calculating the Christofel symbo
Gi j
k for the metric ~6.1! with H52(e2w)z and using the formula~6.2! for R, one finds the

right-hand side of the relation~8.14! with f5w.
It is

2e22wFwxx1wyy13e2w1
1

wz
~wxxz1wyyz!G . ~8.16!

Then the relation~8.14! gives rise to Eq.~8.8! or system~8.9! with the substitutionR→R̃.
On the other hand, starting with the metric~8.7!, using Eq.~8.8!, one gets from the relation

~4.11! Eq. ~6.2! with H52(e2w)z . Thus, the Tsitseica–Dodd–Bullough–••• equation~8.9! and
the Schro¨dinger equation~6.2! ~s2521! are ‘‘conformal’’ to each other.

IX. SLOW MODULATIONS OF PSEUDOSPHERICAL SURFACES AND BURGERS
EQUATION

In Secs. III–V we have considered generic surfaces. Now we will discuss a particular cl
surfaces with slow dependence of curvatureK on the variablex.

We start with the consideration of surfaces with the constant negative Gaussian cur
K521/4e2 and the corresponding coefficient of metrixH5ex/2e. Then we have a surface wit
slow dependence onx, on the background of this surface, i.e., let

K5k~ex,y!2
1

4e2
, H5h~ex,y!ex/2e, ~9.1!

wheree is a small parameter andk andh are some smooth functions. Substituting the express
~9.1! into Eq. ~3.2!, one obtains in the leading order~zero order ine! the following equation:

hX1k~X,Y!h50, ~9.2!

where

X5ex, Y5y. ~9.3!

Here we have used the method of treating the slow modulations that is well known i
theory of linear and nonlinear waves.82

Thus for the surfaces with large negative Gaussian curvature~21/4e2! and slow modulation
along the geodesics~y5const! the Gaussian equation is reduced to a very simple linear equa
~9.2!. This relation~9.2! defines nothing but well-known Hopf–Cole transformation,83,84

k~X,Y!52~ ln h!X . ~9.4!

The dependence on the variableY can be fixed similar to the previous cases by the requ
ment thatH obeys the additional equation

hY1 f ~k,kX ,kXX ,...!h50, ~9.5!

wheref is a function. It is easy to see that the equationhY1Fh50 whereF is a linear differential
operator inX is equivalent to~9.4! modulo Eq.~9.2!.

The compatibility condition of the system~9.2! and~9.5! is equivalent to the nonlinear PDE

kY5 f X . ~9.6!
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It is clear that, on the one hand, any 111-dimensional equation of the form~9.6! with an
arbitrary functionf (k,kX ,kXX ,...) can berepresented as the compatibility condition of the syst
~9.2!, ~9.5!. On the other hand, the linear system~9.2!, ~9.5! is useless, in general, from the poi
of view of construction of solutions of the nonlinear PDE~9.6!. Except one case when Eq.~9.6! is
linearizable by Hopf–Cole transformation~9.4!. It is the well-known Burgers equation82

kY1kXX22kkX50, ~9.7!

or the higher Burgers equation,

kY14kXXX212kX
2212kkXX212k2kX50, ~9.8!

or any higher member of the Burgers hierarchy. IfK obeys Eq.~9.7! or ~9.8!, then due to the
Hopf–Cole transformation~see Ref. 82! the coefficienth of the metric obeys the linear equatio

hY1hXX50 ~9.9!

or

hY14hXXX50. ~9.10!

So, given any solution of Eq.~9.9!, one gets via~9.4! the solution of the Burgers equatio
~9.7!. The same is true for the whole Burgers hierarchy.

An integrable evolution in time of the surfaces discussed above can be defined via the
tional linear equation,

ht1G~k,kX ,...!h50, ~9.11!

whereG is some function. The corresponding dependence ofK on t is given by one of the highe
Burgers equations, for instance, by Eq.~9.8!, with the substitutionY→t. Correspondingly the
functionh evolves in time according to Eq.~9.10!, with the substitutionY→t.

The Burgers equation possesses the solutions of the shock waves type~see Ref. 82!. Thus the
surfaces discussed in this section admit the formation and evolution of the Gaussian curva
the shock wave type.

X. THREE-DIMENSIONAL RIEMANN SPACES WITH LARGE SCALAR CURVATURE,
SLOW DEPENDENCE ON ONE VARIABLE AND THE KADOMTSEV–PETVIASHVILI
EQUATION

All equations, discussed in Secs. VI–VIII, contain the variablesx andy on an equal footing,
symmetrically. Here we will consider the Riemann spaces~for definiteness withs2521!, such
that the dependence of the metric~6.1! and the scalar curvatureR on one variable~sayy! is slow
in comparison with the dependence onx.

Namely, we will consider the spaces with the scalar curvature and the metric of the fo

R5r ~x,ey,z!1
1

4e2
,

~10.1!
H5h~x,ey,z!ey/2e,

wheree is a small parameter andr ,h are smooth functions. Atr50, h51 one has the backgroun
three-dimensional Riemann space with large, constant positive scalar curvature 1/4e2 and metric
ds25dx21dy21ey/e dz2.
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Substituting expressions~10.1! into Eq.~6.2!, keeping the zero order ine terms, and denoting
X5x, Y5ey, Z5z, one gets

hY1hXX1r ~X,Y,Z!h50, ~10.2!

where h5h(X,Y,Z). Thus for such spaces Eq.~6.2! is reduced to a parabolic open. Such
reduction for Eq.~6.5! has been pointed out for the first time by Zakharov~Ref. 71!.

The one-dimensional perturbed heat equation~10.2! is well known in the theory of solitons. I
is associated with the Kadomtsev–Petviashvili equation.24–31

There is an infinite class of exact solutions of Eq.~10.2!. The so-called line multisolutions ar
given by the formulas

r52~ ln detA!XX , ~10.3!

h5e2l~Z!X2l2~Z!YH F11
2

p (
k,m51

n
f k~Z!

l~Z!2bk~Z!
~A21!mk

3exp~„am~Z!1bk~Z!…X1„bk
2~Z!2am

2 ~Z!…Y1gm~Z!!G J , ~10.4!

whereA is then3n matrix with the matrix elements,

Ake5
2

p

f k~z!

bk~Z!1ae~Z!
exp@„ae~z!1bk~Z!…X1„bk

2~Z!…2„ak
2~Z!…Y#, ~10.5!

andak(Z),bk(Z),lk(Z), f k(Z) (k51,...,n), l(Z) are arbitrary real functions, andn is an arbi-
trary integer.

The simplest solution of this type~n51! is of the form

r5
„a~Z!1b~Z!…2

2
cosh22@„a~Z!1b~Z!…X1„b2~Z!2a2~Z!…Y1g~Z!#. ~10.6!

A very general class of solutions of the linear equation~10.2! that are periodic inX andY is
given by formulas24–29

r52@ ln u„U~Z!X1V~Z!Y1W~Z!…#XX ,
~10.7!

h5
u„A~g!1U~Z!X1V~Z!Y1W~Z!…

u„A~g!1W~Z!…u„W~Z!X1V~Z!Y1W~Z!…
expSXE v11YE v2D ,

whereu is the Riemannu function,U,V,W,A are matrices of periods for the hyperelliptic curv
the parameters of which are arbitrary functions onZ; *v1, *v2 are certain Abelian integrals.

Similar to the previous cases, one can fix the dependence onZ by the requirement that the
coefficienth of the metric obeys an additional linear equation of the type

hZ1F~r ,r X ,r Y ,]X!h50, ~10.8!

whereF is a linear differential operator. The compatibility condition of the linear system~10.2!,
~10.8! is equivalent to the nonlinear PDE forr . The simplest PDE of this type is of the form

r Z1r XXX16rr X13]X
21r YY50, ~10.9!

for which
J. Math. Phys., Vol. 38, No. 1, January 1997
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hZ14hXXX16rhX1~3r X23]X
21r Y!h50. ~10.10!

Equation~10.9! is the famous Kadomtsev–Petviashvili~KP! equation. It is integrable by the
ST method.24–31 An infinite class of multisolutions of the KP equation is given by the formu
~10.3!–~10.6! with ak , bk , l, f k5consts andgk524(ak

31bk
3)Z1gk0, wheregk0 are arbitrary

constants. The solutions of the KP equation periodic onX andY are given by the formulas~10.7!
with U, V5const,W(Z)5W0Z1W̃0 , whereW0 ,W̃0 are constant matrices of periods.

All these solutions describe the three-dimensional Riemann spaces with explicitly given
curvature and metric.

Note that the coefficienth of the metric obeys a nonlinear PDE too. Indeed, expressingr via
h by the use of~10.2!, substituting this expression into~10.10!, and denotingh5expw, one
obtains~see Ref. 54! the modified KP equation,

wZ1wXXX16w2wX26wX ]X
21wY13 ]X

21wYY50. ~10.11!

This equation is integrable by the IST method. Wide classes of the exact explicit solu
have been calculated for Eq.~10.11!.31

The dependence onZ can also be fixed by any higher KP equation that corresponds to
operatorF in ~10.8! of the order 2n11, n52,3,4,...,N.

The KP equation~10.9! has a number of remarkable properties: infinite symmetry gro
infinite sets of conservation laws and integrals of motion, Darboux and Ba¨cklund transformations
and Hamiltonian and Lagrangian structures~see Refs. 24–31!. It would be of interest to under
stand the geometric meaning of all these properties.

The integrable evolution of the Riemann spaces of the type~10.1! can be defined similar to the
previous cases. In particular, it can be given by one of the higher KP equations. Then the co
solutionr (X,Y,Z,t) of the KP equation~10.9! and higher KP equation provides us the integra
dynamics of the three-dimensional spaces with the KP solitonic scalar curvatures. The corre
ing exact solutions describe these integrable evolutions by explicit formulas.

The spaces of the KP type discussed above can be described within thet-function approach to
the KP hierarchy in terms of the pseudodifferential operators85 Such a formulation reveals th
interrelation between the approach presented in this paper and other algebraic and alge
metrical methods in the string theory and two-dimensional quantum field theory.68

In conclusion, there is a remark about the connection of the integrable of the Burger
surfaces described in Sec. IX and the KP-type three-dimensional Riemann spaces. Let us
surface, the scalar curvature of which obeys the Burgers equation~9.7! and let it evolve in the
variableZ according to the higher Burgers equation~9.8! ~with the substitutionY→Z!.

Which type of three-dimensional space is generated by this motion? It is not difficult to c
that if k(X,Y,Z) obeys both Eqs.~9.7! and~9.8! @with the substitutionY→Z in Eq. ~9.8!# then the
function

r52kX~X,Y,Z! ~10.12!

obeys the KP equation.
Thus, an integrable motion of a surface of the Burgers type forms a three-dimensiona

mann space of the KP type. The fact that the common solution of the Burgers and higher B
equation is a solution of the KP equation was known in soliton theory~see Refs. 86 and 87!. The
geometrical interpretation of this fact, presented here, points out the possible geometrical
cations of the method of constructing the multidimensional integrable system by glueing t
several 111-dimensional integrable equations.
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¬¬¬¬¬¬¬¬¬¬
The nonlinear soliton equations for the Gaussian and scalar curvature presented abov
fest the existence of the integrable intrinsic geometries of surfaces and space and their int
dynamics. An important problem now is to find the physical phenomena or models, which m
described by such solitonic curvatures.
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Gravitational energy of conical defects
José W. Malufa) and Andreas Kneip
Universidade de Brası´lia, C.P. 04385, 70.919-970 Brası´lia DF, Brazil

~Received 11 December 1995; accepted for publication 26 July 1996!

The energy densityeg of asymptotically flat gravitational fields can be calculated
from a simple expression involving the trace of the torsion tensor. The integral of
this energy density over the whole space yields the Arnowitt–Deser–Misner
~ADM ! energy. Such energy expression can be justified within the framework of
the teleparallel equivalent of general relativity, which is an alternative geometrical
formulation of Einstein’s general relativity. In this paper we applyeg to the evalu-
ation of the energy per unit length of a class of conical defects of topological
nature, which include disclinations and dislocations~in the terminology of crystal-
lography!. Disclinations correspond to cosmic strings, and for a space–time en-
dowed with only such a defect the well known expression of energy per unit length
is obtained precisely. However for a pure space–time dislocation the total gravita-
tional energy is zero. ©1997 American Institute of Physics.
@S0022-2488~96!03912-6#

I. INTRODUCTION

It is believed that phase transitions in the early universe can give rise to topological de
which can lead to very important cosmological consequences.1 In order to understand the forma
tion of galaxies and cluster of galaxies it has been suggested that these structures have
from the gravitational instability of small density fluctuations. One of the major unresolved
mological problems is the origin of these initial density fluctuations. One possibility is tha
latter are due to cosmic strings.2,3 For this reason cosmic strings have been widely studied in
literature.

In the terminology of crystallography4,5 cosmic strings correspond to disclinations, which
one possible defect in a crystal. To our knowledge, other common crystal defects like disloc
have not yet been considered in the various cosmological models. From a geometrical p
view, disclinations and dislocations are conical singularities in a flat, four-dimensional Loren
space–time, i.e., they can be described by a metric which is flat away from ther50 axis, but with
a coordinate singularity that cannot be removed. Tod6 has recently considered these defects i
unified fashion. He generalized an argument due to Vickers,7 according to which a conical singu
larity like a cosmic string can be interpreted in terms of ad-function of curvature supported in th
origin of the (x,y) plane, say. Tod extended this idea to conical singularities of the disloca
type and argued likewise that instead of interpreting the latter as defects in an otherwi
Minkowski space–time, one can alternatively consider a flat Minkowski space–time end
with a delta function of torsion as a source in ther50 axis.

In this paper we will calculate the gravitational energy of the field configuration considere
Tod, which includes altogether disclinations and dislocations. We will obtain the energy pe
length along the defect axisr50. For a metric field which describes a disclination only the ene
per unit length turns out to beexactlythe same of the cosmic string. Together with other previ
calculations of the energy of black hole configurations, this result supports the validity o
present energy expression.

For the dislocations the result is remarkable. The energy per unit length of these def

a!Electronic mail: wadih@guarany.cpd.unb.br
0022-2488/97/38(1)/458/8/$10.00
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zero, when the integration extends over the whole three-dimensional space. This result ma
significance for cosmology. It may be conjectured that a physical, cosmological dislocation
a very low energy to be formed, and hence should play an important role in phase transitions
early universe.

The difficulty in obtaining an expression for localized energy density in the framework o
Hilbert–Einstein action integral has led to the widespread belief that the gravitational e
cannot be localized. We do not share this idea. The energy density of the gravitational field
naturally obtained from the Hamiltonian formulation of the teleparallel equivalent of gen
relativity ~TEGR!.8 The TEGR is an alternative geometrical formulation of Einstein’s gen
relativity. The gravitational field in the TEGR is described by the tetrad field, and its dynam
dictated by Einstein’s equations. Therefore this is not an alternative theory of general rela
The gravitational energy density for asymptotically flat geometries has been presented an
fied in Ref. 9.

In Sec. II we present the mathematical preliminaries of the TEGR, its Hamiltonian form
tion, and the expression of the energy for an arbitrary asymptotically flat space–time. W
calculate the energy inside a surface of constant radiusr 0 for both the Schwarzschild and the Ke
solutions. In Sec. III we present the calculation of the energy of conical defects.

II. THE TEGR IN HAMILTONIAN FORM

Notation:Space time indicesm,n,... and local Lorentz indicesa,b,... run from 0 to 3. In the
311 decomposition latin indices from the middle of the alphabet indicate space indices acc
to m50,i , a5(0),(i ). The tetrad fieldeam and the spin connectionvmab yield the usual definitions
of the torsion and curvature tensors:Ra

bmn5]mvn
a
b1vm

a
cvn

c
b2..., Tamn5]me

a
n1vm

a
be

b
n2...

The flat space–time metric is fixed byh~0!~0!521.
In the TEGR the tetrad fieldeam and the spin connectionvmab are completely independen

field variables. The latter is enforced to satisfy the condition of zero curvature. The Lagra
density in empty space–time is given by8

L~e,v,l!52ke~ 1
4T

abcTabc1
1
2T

abcTbac2TaTa!1elabmnRabmn~v!, ~1!

wherek51/16pG, G is the gravitational constant;e5det(eam), labmn are Lagrange multipliers
andTa is the trace of the torsion tensor defined byTa5Tbba .

The equivalence of the TEGR with Einstein’s general relativity is based on the identity

eR~e,v!5eR~e!1e~ 1
4T

abcTabc1
1
2T

abcTbac2TaTa!22]m~eTm!, ~2!

which is obtained by just substituting the arbitrary spin connectionvmab5
0vmab(e)1Kmab in the

scalar curvature tensorR(e,v) in the left-hand side;0vmab(e) is the Levi–Civita connection and
Kmab5

1
2ea

leb
n(Tlmn1Tnlm2Tmnl) is the contorsion tensor. The vanishing ofRa

bmn~v!, which is
one of the field equations derived from Eq.~1!, implies the equivalence of the scalar curvatu
R(e), constructed out ofeam only, and the quadratic combination of the torsion tensor. It a
ensures that the field equation arising from the variation ofL with respect toeam is strictly
equivalent to Einstein’s equations in tetrad form. LetdL/deam50 denote the field equation satis
fied byeam . It can be shown by explicit calculations that

dL

]eam 5
1

2 HRam~e!2
1

2
eamR~e!J .

~We refer the reader to Refs. 8 and 9 for additional details.!
J. Math. Phys., Vol. 38, No. 1, January 1997
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It is important to note that for asymptotically flat space–times the total divergence in Eq~2!
doesnot contribute to the action integral. Therefore the latter does not require additional su
terms, as it is invariant under coordinate transformations that preserve the asymptotic struc
the field quantities.10

The Hamiltonian formulation of the TEGR can be successfully implemented if we fix
gaugev0ab50 from the outset, since in this case the constraints~to be shown below! constitute a
first classset.8 The conditionv0ab50 is achieved by breaking the local Lorentz symmetry of E
~1!. We still make use of the residual time independent gauge symmetry to fix the usua
gauge conditione(k)

05e(0)i50. Because ofv0ab50,H does not depend onPkab, the momentum
canonically conjugated tovkab . Therefore arbitrary variations ofL5pq̇2H with respect toPkab

yield v̇kab50. Thus in view ofv0ab50, vkab drops out from our consideration. The above gau
fixing can be understood as the fixation of aglobal reference frame.

Under the above gauge fixing the canonical action integral obtained from Eq.~1! becomes8

ATL5E d4x$P~ j !kė~ j !k2H%, ~3!

H5NC1NiCi1SmnP
mn1

1

8pG
]k~NeT

k!1]k~P jkNj !. ~4!

N and Ni are the lapse and shift functions,Pmn5e( j )
mP ( j )n, and Smn52Snm are Lagrange

multipliers. The constraints are defined by

C5] j~2keT
j !2keSki jTki j2

1

4ke S P i jP j i2
1

2
P2D , ~5!

Ck52e~ j !k] iP
~ j !i2P~ j !iT~ j !ik , ~6!

with e5det(e( j )k) andT
i5gike( j ) lT( j ) lk , T( j ) lk5] le( j )k2]ke( j ) l . We remark that Eqs.~3! and~4!

are invariant underglobal SO~3! and general coordinate transformations.
We assume in this section the asymptotic behaviore( j )k'h jk1

1
2hjk(1/r ) for r→`. In view of

the relation

1

8pG E d3x] j~eT
j !5

1

16pG E
S
dSk~] ihik2]khii ![EADM , ~7!

where the surface integral is evaluated forr→`, we note that the integral form of the Hamiltonia
constraintC50 may be rewritten as

E d3xH keSki jTki j1
1

4ke S P i jP j i2
1

2
P2D J 5EADM . ~8!

The integration is over the whole three-dimensional space. Given that] j (eT
j ) is a scalar density,

from Eqs.~7! and ~8! we define the gravitational energy density enclosed by a volumeV of the
space as10

Eg5
1

8pG E
V
d3x] j~eT

j !. ~9!

It must be noted that this expression is also invariant under global SO~3! transformations.
We will briefly recall two applications ofEg . Let us initially consider a spherically symmetr

geometry and fix the triadse(k) i as
J. Math. Phys., Vol. 38, No. 1, January 1997
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e~k!i5S el sin u cosf r cosu cosf 2r sin u sin f

el sin u sin f r cosu sin f r sin u cosf

el cosu 2r sin u 0
D . ~10!

(k) is the line index andi is the column index. The functionl(r ) is determined by

e22l512
2mG

r
.

The one forme(k)5e(k)rdr1e(k)udu1e(k)fdf yields

e~k!e~k!5e2ldr21r 2du21r 2 sin2 udf2.

Therefore the triads given by Eq.~10! represent the spatial section of the Schwarzschild solut
We can easily calculateeg51/8pG] i(eT

i) associated to Eq.~10!. We obtain

eg5
1

G

]

]r
@r ~12e2l!#. ~11!

The energy inside a spherical surface of arbitrary radiusr 0 can be calculated from Eq.~11!. It is
given by10

Eg5r 0H 12S 12
2mG

r 0
D 1/2J . ~12!

This is exactly the expression found by Brown and York11 in their analysis ofquasilocalgravi-
tational energy. They define a general expression for quasilocal energy as minus the prop
rate of change of the Hilbert–Einstein action~with surface terms included!, in analogy with the
classical Hamilton–Jacobi equation which expresses the energy of a classical solution as
the time rate of change of the action. The application of their procedure to the Schwarz
solution yields Eq.~12!. Note that whenr 0→` we findE5m.

The definition~9! for the gravitational energy can also be successfully applied to the
black hole.12 In terms of Boyer and Lindquist coordinates13 ~t,r ,u,f! the spatial section of the Ker
metric is given by

ds25
r2

D
dr21r2du21

S2

r2
sin2 udf2 ~13!

with the following definitions:

D5r 222mr1a2, r25r 21a2 cos2 u,

S25~r 21a2!22Da2 sin2 u.

a is the specific angular momentum defined bya5J/m. In the definitions above we have mad
G51. The triads appropriate to the three-metric above are given by
J. Math. Phys., Vol. 38, No. 1, January 1997
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e~k!i5S r

AD
sin u cosf r cosu cosf 2

S

r
sin u sin f

r

AD
sin u sin f r cosu sin f

S

r
sin u cosf

r

AD
cosu 2r sin u 0

D . ~14!

Indeed, defining again the one-forme(k)5e(k)rdr1e(k)udu1e(k)fdf we easily find that
e(k)e(k)5ds2 is given by Eq.~13!.

There is another set of triads that yields the Kerr solution, namely, the set which is dia
and whose entries are given by the square roots ofgii . This set is not appropriate for our purpose
and the reason can be understood even in the simple case of flat space–time. In the lim
botha andm go to zero Eq.~14! describes flat space: the curvatureand the torsion tensor vanis
in this case. However, for the diagonal set of triads~again requiring the vanishing ofa andm!,

e~r !5dr, e~u!5rdu, e~f!5r sin udf,

some components of the torsion tensor do not vanish,T~2!1251, T~3!135sinu, andEg calculated
out of the diagonal set above diverges when integrated over the whole space. Moreover, i
flat space form of Eq.~14!, i.e., whenm5a50, that can be brought to a diagonal form
Cartesiancoordinates, and not the diagonal form above in spherical coordinates. Thus the a
totic behaviore( j )k'h jk1

1
2hjk(1/r ) when r→` can only be achieved by means of Eq.~14!.

In Ref. 14 we have obtained the expression of the energy contained within a surfa
constant radiusr5r 0 :

Eg5
1

4 E
0

p

du sin uH r1
S

r
2

AD

rS
~2r ~r 21a2!2a2 sin2 u~r2m!!J

r5r0

. ~15!

In the limit of slow rotation, namely, whena/r 0!1 all integrals in the expression above c
be calculated, andEg finally reads

Eg5r 0S 12A12
2m

r 0
1
a2

r 0
2 D 1

a2

6r 0
F21

2m

r 0
1S 11

2m

r 0
DA12

2m

r 0
1
a2

r 0
2G . ~16!

This is exactly the expression found by Martinez15 who approached the same problem by me
of Brown and York’s procedure. However the present approach is more general than that
15. The energy given by Eq.~15! can be calculated by means of numerical integration for
value ofa. On the other hand Brown and York’s procedure requires the embedding of an arb
two-dimensional surface of the Kerr type in the reference spaceE3, a construction which is no
possible in general15 ~the evaluation of the energy in Ref. 15 is only possible in the limita/r 0!1!.

III. CONICAL DEFECTS

The calculations of the previous section support the correctness of expression~9! for the
energy of the gravitational field. In Ref. 10 expression~9! was justified in the framework o
asymptotically flat gravitational fields. The action integral of the TEGR for compact space–
differs from the one for asymptotically flat geometries by a surface~boundary! term and conse
quently the two Hamiltonian densities also differ by a surface term. However the Hamilt
J. Math. Phys., Vol. 38, No. 1, January 1997
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constraint is the same for both kinds of geometries~except, of course, for the possible presence
additional terms; had we added a cosmological constant to the Lagrangian density, such
would also appear in the Hamiltonian constraint!.

We have seen from Eq.~8! that the integral form of the Hamiltonian constraint equation m
be written asC5H2EADM50 for asymptotically flat space–times. We will assume here that
is a general feature of gravitational theories, namely, we will assume that for an arbitrary geo
the Hamiltonian constraint equation may be written in integral form asC5H2E50. Therefore
we will tentatively evaluate the energy of simple well known geometries which are not as
totically flat by means of Eq.~9!. In the following we will evaluate the latter for the class
geometries considered by Tod.6 Such a class of geometries is particularly suitable for our purpo
since the energy per unit length of a cosmic string isa priori known.

We will consider conical singularities along thez axis, in an otherwise flat Minkowski space
time, described by the metric

ds252~dt1adf!21dr21b2r 2df21~dz1gdf!2, ~17!

wherea, b, andg are real constants andf runs from 0 to 2p. The metric is everywhere flat excep
at the axisr50. Fora5g50 andb,1 the metric describes a cosmic string type singularity. Th
b parametrizes a disclination. As shown in Ref. 6,a and g parametrize dislocations, in th
terminology used in crystallography. The metric as given above has also been conside
Gal’tsov and Letelier.16 The spatial section of Eq.~17! reads

gi j5S 1 0 0

0 d2 g

0 g 1
D , ~18!

whered2[b2r 21g22a2. The corresponding triads are given by

e~k! j5S cosf 2d sin f 2
g

d
sin f

sin f d cosf
g

d
cosf

0 0 A12
g2

d2

D . ~19!

Recall that (k) and j are the line and column index, respectively. Note that if we m
a5g50, b51, Eq. ~19! can be brought to a diagonal form in Cartesian coordinates by mea
a coordinate transformation. Initially we evaluate the components of the torsion tensor:

T~1!125
]

]r
~2d sin f!2

]

]f
~cosf!5~12d8!sin f,

T~1!135
]

]r S 2
g

d
sin f D2

]

]z
~cosf!5

g

d2
d8 sin f,

T~1!235
]

]f S 2
g

d
sin f D2

]

]z
~2d sin f!52

g

d
cosf,

T~2!1252~12d8!cosf,
J. Math. Phys., Vol. 38, No. 1, January 1997
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T~2!1352
g

d2
d8 cosf, T~2!2352

g

d
sin f,

T~3!1250, T~3!135
d8

d

g2/d2

A12 g2/d2
,

T~3!2350,

where the prime denotes differentiation with respect tor . We wish to evaluate Eq.~9! and for this
purpose we need the expression ofTi . After a long but simple calculation we obtain

T15
1

d
~12d8!2

g2

d22g2

d8

d
, T25T350.

Together withe 5 Ad22g2, the energy density can now be easily obtained and integrated.
energyEg contained within a cylindrical region with lengthL and radiusr 0 is given by

Eg5
L

4
A12

g2

d2 H 12S d2

d22g2D b2r 0
d J . ~20!

We will consider next the three individual situations in which the metrics are parametrize
only one of the parameters.

~i! a5g50: The metric parametrized byb only describes a disclination. Expression~20!
reduces to

Eg5
L

4
~12b!. ~21!

This is precisely the energy per unit length for a cosmic string.1 We note thatEg above
does not depend on the radius of integrationr 0. Therefore we may conclude that the who
energy is concentrated along the defect axisr50.

~ii ! a50, b51: In this case we have a simple dislocation parametrized byg. We are mostly
interested in the value ofEg for very large values ofr 0. From Eq.~20! we obtain

Eg'2
g2

8

L

r0
2 . ~22!

Therefore in the limit when bothL and r 0 go to infinity, namely, when the integration i
performed over the whole three-dimensional space,Eg vanishes. Thus the total energy o
the dislocation is zero. However, in the limitr 0→0 we findEg→2L/4.

~iii ! b51, g50: For this metric expression~20! reduces to

Eg5
L

4 S12
1

A12 a2/r 0
2D .

For large values ofr 0 we obtain

Eg'2
a2

8

L

r0
2. ~23!

Therefore the total energy corresponding to this disclination is also zero. In the limitr 0→a
we observe thatEg→2`.

We observe that whereas for a disclination the whole energy per unit length is concen
along the defect axis, for both types of dislocations the energy is distributed over the
three-dimensional space.
J. Math. Phys., Vol. 38, No. 1, January 1997
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IV. COMMENTS

By means of expression~9! for the energy of the gravitational field we have obtained
correct value of the energy per unit length of a cosmic string. This fact is a good indication th
Hamiltonian constraint may be generically written asC5H2E50, which is the assumption we
made in this paper. It also supports the conjecture that expression~9! might have a universa
character, since it yields the expected values of energy for totally distinct space–times, n
Kerr-type and conical space–times.

From the results of Sec. III we conclude that dislocations are more likely to appear as a
of cosmological phase transitions in the early universe than disclinations~cosmic strings!. The
energy of an actual, physical dislocation might be nonvanishing, but anyhow we would exp
to be very small. The situation here is very much similar to what happens in a real crysta
well known that disclinations require too much energy to be formed in crystals, whereas di
tions are more favorable defects since they require much less energy~see, for instance, Secs. 6.3
and 6.5 of Ref. 5 for a discussion as to why the energy cost for a disclination in a crys
prohibitively high!. In order to understand the vanishing of the total gravitational energy
dislocations, let us consider the metric for whicha50, b51 ~case II!. As discussed by Tod,6 this
metric can be transformed into a flat metric if we define a new coordinateZ5z1Z0f/2p
5z1gf. The associated Burgers vector is determined byZ052pg. We know, however, that the
energy of an actual dislocation in a crystal depends not only on the Burgers vector but also
extra quantity, the rigidity modulusm. Such quantity is not given in Eq.~17!. This fact might
explain why the total energy of the dislocations above is zero. Disclinations and dislocatio
concepts used in the deformation models of crystals and metals. We conclude from our a
that dislocations of the type considered here might be as well useful concepts in cosmo
models.
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Fock space representation of differential calculus
on the noncommutative quantum space

A. K. Mishra and G. Rajasekarana)
Institute of Mathematical Sciences, C.I.T. Campus, Madras - 600 113, India
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A complete Fock space representation of the covariant differential calculus on
quantum space is constructed. The consistency criteria for the ensuing algebraic
structure, mapping to the canonical fermions and bosons and the consequences of
the new algebra for the statistics of quanta are analyzed and discussed. The concept
of statistical transmutation between bosons and fermions is introduced. ©1997
American Institute of Physics.@S0022-2488~96!01212-1#

I. INTRODUCTION

Quantum groups, quantum vector spaces and the underlying notion of deformations
substantially enriched the arena of mathematics and mathematical physics. Formulations
covariant differential calculi on noncommuting ‘‘quantum’’ spaces, and their Fock space re
tions have recently attracted much attention.1–5 The reinterpretation of these differential calculi
terms of creation and annihilation operators have led to various generalizations of Heise
canonical commutation relations and enabled one to introduce particles which obey gene
quantum statistics.6–8

In the present communication, it is shown that the existing scheme of mapping the differ
calculus to Fock space is incomplete. Whereas the co-ordinates of the quantum plane are id
with creation operators, no such identification has been made with regard to the co-ordinate
exterior quantum plane. We complete this scheme by introducing an additional set of creati
annihilation operators, and obtain the associated commutation relations.

The Fock space corresponding to the noncommuting differential calculus describes the
of two distinct kinds of quanta, bosonic and fermionic. A nontrivial consequence of the pr
formalism concerns the possibility of statistical transmutation between these bosons and fer
This transmutation vanishes when the deformation is removed.

In the next section, we briefly recapitulate the essentials of the differential calculus o
quantum space. The various steps leading to the construction of the associated Fock sp
outlined in Sec. III. This is followed by Sec. IV which is on statistical transmutation. Consist
conditions for the Fock space are discussed in Sec. V. The algebraic structure is completed
VI where we also give the relationship between the new algebra and the canonical alge
fermions and bosons. Sec. VII is devoted to some concluding remarks.

II. DIFFERENTIAL CALCULUS ON THE QUANTUM PLANE

The ‘‘quantum’’ space or plane is characterized by noncommuting coordin
xi ( i51,...,n) satisfying theq-commutation relation:

xixj2qxjxi50, for i, j , ~1!

where the deformation parameterq is a real number. The differential calculus in the quant
space is constructed using three sets of basic entities, viz.~i! coordinatesxi , ~ii ! derivatives
]/]xi and ~iii ! differentials or coordinates of the exterior quantum planedxi , together with the

a!Electronic mail: mishra@imsc.ernet.in; graj@imsc.ernet.in
0022-2488/97/38(1)/466/10/$10.00
466 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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q-commutation relations among these. In addition to~1!, the required relations are taken to be1,3

the following set~throughout the paper, we shall takei, j , in any relation involvingi and j ,
unless otherwise specified!:

]

]xi

]

]xj
2
1

q

]

]xj

]

]xi
50, ~2!

]

]xi
xi2q2xi

]

]xi
511~q221! (

k5 i11

n

xk
]

]xk
, ~3!

]

]xi
xj2qxj

]

]xi
50, ~4!

]

]xj
xi2qxi

]

]xj
50, ~5!

dxidxj1
1

q
dxjdxi50, ~6!

~dxi !
250, ~7!

xidxi2q2dxixi50, ~8!

xidxj2qdxjxi2~q221!dxixj50, ~9!

xjdxi2qdxixj50, ~10!

]

]xi
dxi2

1

q2
dxi

]

]xi
2S 1q2 21D (

k51

i21

dxk
]

]xk
50, ~11!

]

]xi
dxj2

1

q
dxj

]

]xi
50, ~12!

]

]xj
dxi2

1

q
dxi

]

]xj
50. ~13!

We can also introduce the exterior differentiald

d5(
i
dxi

]

]xi
. ~14!

It can be verified that, as a consequence of the relations~1!–~13!, the exterior differential while
operating on functionsf andg of the coordinatesxi satisfies Leibnitz rule :

d~ f g!5~d f !g1 f ~dg!. ~15!

III. TOWARDS FOCK SPACE REALIZATION

A partial Fock space realization of the differential calculus has been constructed throug
mapping6,8,9
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
xi→bi
† , ~16!

]

]xi
→bi , ~17!

where bi and bi
† are annihilation and creation operators and one assumes the existenc

vacuum stateu0& annihilated by allbi ’s:

bi u0&50. ~18!

These operators satisfy the following algebra obtained from~1!–~5!:

bi
†bj

†2qbj
†bi

†50, ~18!

bibj2
1

q
bjbi50, ~28!

bibi
†2q2bi

†bi511~q221! (
k5 i11

n

bk
†bk, ~38!

bibj
†2qbj

†bi50, ~48!

bjbi
†2qbi

†bj50, ~58!

Note that~28! and~58! are the Hermitian conjugates of~18! and~48! respectively. In order to have
the complete Fock space realization of the differential calculus, one has to take the following
steps.

~A! Mapping ofdxi to a creation operator

dxi→ f i
† . ~19!

Consequently,~6!–~13! lead to

f i
†f j

†1
1

q
f j
†f i

†50, ~68!

f i
†f i

†50, ~78!

bi
†f i

†2q2f i
†bi

†50, ~88!

bi
†f j

†2q f j
†bi

†2~q221! f i
†bj

†50, ~98!

bj
†f i

†2q fi
†bj

†50, ~108!

bi f i
†2

1

q2
f i
†bi2S 1q2 21D (

k51

i21

f k
†bk50, ~118!

bi f j
†2

1

q
f j
†bi50, ~128!
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
bj f i
†2

1

q
f i
†bj50. ~138!

Thus, using the mapping relations~16!, ~17!, ~19!, the entire algebra of$x, ]/]x ,dx% given by
~1!–~13! has been converted to the algebra of$b†,b, f †% given by ~18!–~138!.

~B! Once the creation operatorf i
† has been introduced, the existence of the annihila

operator follows through the Hermitian conjugation, i.e.,f5( f †)†. As an immediate consequenc
we have the following additional relations obtained by taking Hermitian conjugate of~68!–~138!:

f j f i1
1

q
f i f j50, ~20!

f i f i50, ~21!

f ibi2q2bi f i50, ~22!

f jbi2qbi f j2~q221!bj f i50, ~23!

f ibj2qbj f i50, ~24!

f ibi
†2

1

q2
bi
†f i2S 1q2 21D (

k51

i21

bk
†f k50, ~25!

f jbi
†2

1

q
bi
†f j50, ~26!

f ibj
†2

1

q
bj
†f i50. ~27!

We assume that the vacuum state is annihilated by all thef i ’s also :

f i u0&50. ~28!

~C! In the above Eqs.~18!–~138!, ~20!–~27!, the commutation properties between all pairs
operators except the pairf and f † have been specified. In order to complete the algebraic struc
for the Fock space realization, we have to know the commutation betweenf and f †. We shall
achieve this final step in Sec. VI.

IV. STATISTICAL TRANSMUTATION

In this section, we examine the nature of the Fock space generated by the creatio
annihilation operators satisfying the algebra given in the last section. The Fock space con
the vacuum stateu0& defined in~18! and~28! together with the set of states obtained by letting a
product of an arbitrary number of creation operatorsbi

† , f j
† act onu0&.

Because of~78!, we see that thef-quanta obey Pauli’s exclusion principle while there is
such restriction on theb-quanta. Hence we shall call thef andb as fermions and bosons respe
tively, although they are not to be identified with the canonical fermions and bosons.

The algebra of the operatorsb, b†, f and f † given in Sec. III is not invariant under the phas
transformation:
J. Math. Phys., Vol. 38, No. 1, January 1997
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¬¬¬¬¬¬¬¬¬¬
bi → eif ibi ; bi
† → e2 if ibi

†

f i → eic i f i ; f i
† → e2 ic i f i

†J , ~29!

wheref i andc i are arbitrary real numbers. As a consequence, the Fock states constructe
these operators do not have definite values forni andmi , whereni andmi are the number of
bi and f i quanta respectively. However, the algebra is invariant under the above transform
~29! if f i5c i . Hence the Fock states do have definite values fort i , the total number of quanta o
index i ~including bosons and fermions! : t i5ni1mi . Further, invariance of the algebra is aga
restored if allf i andc i are independent ofi and this implies that the Fock states have defin
values for the total number of bosonsn5( i ni and the total number of fermionsm5( i mi .
However, note that if we specifyt i for all i andn, m will be redundant, sincem5( i t i2n.

The new feature of the Fock space which allows the bosons and fermions to be trans
into each other so that only the totalt i can be specified rather thanni andmi separately, can be
calledstatistical transmutation. Actually, every such transmutation of a boson into fermion fo
particular index always goes with the simultaneous transmuation of a fermion into boson for
other index so that the total number of bosons and the total number of fermions is cons
Hence, considering the bosons alone, one can recognize an index transmutation also and s
for the fermions.

Because of statistical transmutation, a multiparticle state containing bosons and fermio
a new kind of exchange property, which can be read off from~98!. For the state vector containin
bi f j ( i, j ), exchange of the bosonbi and the fermionf j leads to a state that is a linear superp
sition of the state vector containingf jbi with the state vector containingf ibj .

Statistical transmutation is a nontrivial complication in the construction of new Fock s
and so one may even question the existence of such a Fock space. In the next two sections
give an affirmative answer to this question.

V. CONSISTENCY CONDITIONS

Let c denote any of the annihilation operatorsbi or f i and c
† denotebi

† or f i
† We can

classify the algebraic relations of Sec. III, into two categories~i! cc† relations ~38!–~58!,
~118!–~138!, ~25!–~27!, ~ii ! cc relations~28!, ~20!–~24!. ~The c†c† relations~18!, ~68!–~108! are
just Hermitian conjugates of thecc relations and hence are not independent.! It is an important
fact which does not seem to be well recognized, that within the framework of Fock spac
cc relations are not independent of thecc† relations. For, given the vacuum state defined by E
~18! and~28!, and the rules for the commutation ofc andc† given by thecc† relations,all matrix
elements in the Fock space can be computed. Hence anycc relation which is imposed will be
either inconsistent with thecc† relations, or derivable from thecc† relations, if consistent.

To derive thecc relations from thecc† relations, we proceed as follows.10 Let Qi j
a be a

quadratic in c’s such as the left-hand side of any of thecc relations ~28!, ~20!–~24!, with a
denoting the equation number. By using thecc† algebra~38!–~58!, ~118!–~138!, ~25!–~27!, we
shall show that

Qi j
ack

†5 (
bl mt

Fi jk
ab,l mtct

†Ql m
b , ~30!

whereFi jk
ab.l mt is someq-dependent number. Applying this equation again, we get

Qi j
ack

†cp
†5 (

bl mt
(

guvs
Fi jk

ab,l mtF l mp
bg,uvsct

†cs
†Quv

g . ~31!
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Thus,Qi j
a can be pushed to the right of any string of creation operatorsck

†cp
† ... . Also note that the

string of creation operators can containb† and f † in arbitrary order. Allowing both sides o
equations such as~30! or ~31! to act onu0&, the right-hand-side vanishes because of~18! and~28!
and so we see thatQi j

a acting on any Fock stateck
†cp

† ...u0& gives zero. Hence we may write th
operator identity:

Qi j
a 50 ~32!

which are thecc relations. Thus,~30! are the necessary and sufficient conditions for the existe
of the cc relations and they are also the consistency conditions for the Fock space realiza

After a straightforward computation, we get the following results wherei, j .

Qi j
28bk

†5q2bk
†Qi j

28 , for kÞ i or j

5q3bj
†Qi j

281q~q221! (
a5 j11

n

ba
†Qia

28 , for k5 j

5q3bi
†Qi j

281q~q221! (
a5 i11

j21

ba
†Qaj

282~q221! (
a5 j11

n

ba
†Qja

28 , for k5 i , ~33!

Qi j
28 f k

†5
1

q2
f k
†Qi j

28 , for kÞ i or j

5
1

q3
f j
†Qi j

282
1

q2
~12q2! (

a51

i21

f a
†Qai

281
1

q3
~12q2! (

a5 i11

j21

f a
†Qia

28, for k5 j

5
1

q3
f i
†Qi j

281
1

q3
~12q2! (

a51

i21

f a
†Qaj

28, for k5 i , ~34!

Qi j
20bk

†5
1

q2
bk
†Qi j

20, for kÞ i or j

5
1

q3
bj
†Qi j

201
1

q5
~12q4!bi

†Qii
211

1

q3
~12q2!

3 (
a5 i11

j21

ba
†Qia

201
1

q4
~12q2! (

a51

i21

ba
†Qai

20, for k5 j

5
1

q3
bi
†Qi j

201
1

q3
~12q2! (

a51

i21

ba
†Qaj

20, for k5 i , ~35!

Qii
21bk

†5
1

q2
bk
†Qii

21, for kÞ i

5
1

q4
bi
†Qii

211
1

q3
~12q2! (

a51

i21

ba
†Qai

20, for k5 i , ~36!

Qii
22bk

†5bk
†Qii

22, for kÞ i

5bi
†Qii

221~12q2! (
a51

i21

ba
†Qai

241
1

q
~q221! (

a5 i11

n

ba
†Qia

24, for k5 i , ~37!
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Qi j
23bk

†5bk
†Qi j

23, for kÞ i or j

5
1

q
bj
†Qi j

231
1

q
~12q2! (

a51

i21

ba
†Qai

241
1

q
~12q2!bi

†Qii
221

1

q
~12q2! (

a5 i11

k21

ba
†Qia

23, for k5 j

5qbi
†Qi j

232
1

q2
~q221!2(

a51

i21

ba
†Qaj

241
1

q2
~q221!bj

†Qii
221

1

q
~q221! (

a5 i11

j21

ba
†Qja

23

1
1

q
~q221! (

a5 j11

n

ba
†Qja

24, for k5 i , ~38!

Qi j
24bk

†5bk
†Qi j

24, for kÞ i or j

5qbj
†Qi j

241
1

q
~q221! (

a5 j11

n

ba
†Qia

24, for k5 j

5
1

q
bi
†Qi j

241
1

q
~12q2! (

a51

i21

ba
†Qaj

24, for k5 i . ~39!

We see that all the above equations are of the form~30!. This is not the complete set o
consistency conditions; to get these we will need the commutation properties betweenf and f †

which are yet to be obtained. However, the validity of the consistency conditions~33!–~39!
already points to the existence of an underlying Fock space and encourages us to find it.

VI. COMPLETION OF THE FOCK SPACE REALIZATION

We find the required Fock space by showing that theb, f system is in fact related to th
canonical bose-fermi systemb̃, f̃ defined by the usual algebra~for all i andk):

@ b̃i ,b̃k
†#5d ik; @ b̃i ,b̃k#50, ~40!

$ f̃ i , f̃ k
†%5d ik; $ f̃ i , f̃ k%50, ~41!

@ b̃i , f̃ k
†#50; @ b̃i , f̃ k#50, ~42!

and their Hermitian conjugates where@x,y# and$x,y% denote the usual commutator and antico
mutator respectively. The relationship is given by the transformation equations:

bi
†5q(k. i ÑkS @Ñi #

Ñi
D 1/2b̃ i

† , ~43!

f i
†5q(p, i M̃ p2SpÑp2Ñi f̃ i

†1~12q2!(
k, i

q(p,kM̃p2SpÑp2(k<p< i ÑpS @Ñk11#@Ñi #

~Ñk11!~Ñi !
D 1/2b̃ i

†b̃k f̃ k
†

~44!

and their Hermitian conjugates. The operatorsÑi and M̃ i are the number operators of theb̃, f̃
system:

Ñi5b̃ i
†b̃i ; M̃ i5 f̃ i

† f̃ i ~45!
J. Math. Phys., Vol. 38, No. 1, January 1997
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and they satisfy the usual commutation relations:

@Ñi ,Ñk#5@M̃ i ,M̃ k#5@Ñi ,M̃ k#50, ~46!

@Ñi ,b̃ k
†#5d ikb̃ k

† ; @M̃ i ,b̃ k
†#50, ~47!

@M̃ i , f̃ k
†#5d ik f̃ k

† ; @Ñi , f̃ k
†#50. ~48!

In ~43! and ~44! the square bracket enclosing a single object@L# is defined by

@L#5
q2L21

q221
511q21q41•••q2~L21!. ~49!

Using ~43! and~44!, the algebra given by~18!–~138!, ~20!–~27! can be verified by straightforward
but long computations.

The transformations~43! and~44! can be inverted~for q Þ 0) to give

b̃i
†5q2(k. i ÑkS Ñi

@Ñi #
D 1/2bi†, ~50!

f̃ i
†5q2(p, i M̃ p1(pÑp1Ñi f i

†1q2i~q221!q2(p, i M̃ p1(p, i Ñp2(p. i Ñp(
k, i

q22kbi
†bkf k

† . ~51!

The transformation given by~43! and~44! is our central result. This establishes the compl
Fock space of theb, f system, since the latter has been expressed in terms of theb̃, f̃ system which
operates on the canonical Fock space of bosons and fermions.

Nevertheless, one might still want to know theq-commutation relations betweenf and f †.
These are now derivable from~43! and ~44!. After a long computation we get

f i f j
†1q f j

†f i5q~12q2!bj
†biAi j for i, j , ~52!

f i f i
†1 f i

†f i5Bi2~12q2!2 ((
k, i ,k8, i
kÞk8

f̃ k
† f̃ k8b̃ k8

† b̃kCikk8, ~53!

whereA, B andC are functions of the number operatorsÑi andM̃ i :

Ai j5S q22(k> i Ñk1~12q2!(
k, i

@Ñk1M̃ k#q
22(p>kÑpDq2(p, i M̃ p22(pÑp, ~54!

Bi5q2(p, i M̃ p22(pÑp22Ñi1(
k, i

~12q2!2$@Ñk#@Ñi11#

2~12q2!21M̃ k~q
2Ñi2q2Ñk!%q2(p,kM̃p22(k<p< i Ñp22(pÑp, ~55!

Cikk85S @Ñk#@Ñk811#

Ñk~Ñk811!
D 1/2q2Ñi1~(p,k81(p,k!M̃p2~(p1(k<p< i1(k8<p< i !Ñp. ~56!

The right hand side of~53! contains the canonical operatorsb̃, f̃ and these can be reexpressed
terms ofb, f using the inverse relations~50! and~51!; we have not written them in that form sinc
the expressions would be longer.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Further, one may like to specify the commutation relations ofÑi and M̃ i with respect to
b, f ,b† and f † since these will be required for the closure of the algebra. These are~for all i and
k)

@Ñi ,bk
†#5d ikbk

† , ~57!

@M̃ i ,bk
†#50, ~58!

@M̃ i , f k
†#5d ik f k

†2~12q2!(
m

Dimkbk
†bmfm

† , ~59!

@Ñi , f k
†#5~12q2!(

m
Dimkbk

†bmfm
† , ~60!

together with the Hermitian conjugates of these relations, where

Dikm5d ikumkq
2~k2m!22(p>kÑp2u ik$dmiq

222(p. i Ñp2umi~12q2~Ñi11!!q2~ i2m!22(p> i Ñp%.
~61!

In Eq. ~61!, u ik is defined to be 1 fori,k and zero otherwise.
Although we have given thef f † relations~52!, ~53! supplemented by~57!–~61! for the sake

of exhibiting the complete algebra ofb, f system and thus completing the Fock space represe
tion of the differential calculus on the noncommuting quantum space, the alternative w
expressing our result in terms of the transformation equations~43! and ~44! is simpler and more
transparent.

In particular, the origin of the transmutations discussed in Sec. IV becomes clear now
~44! shows that the fermionic operatorf i

† creates not only fermionf̃ i but also the bosonb̃i , at the
same time converting the bosonb̃k into fermion f̃ k for all k, i .

Relations of the type~43! which can be called generalized Klein–Jordan–Wigner relations
known from the earlier literature11,12but the relation~44! which leads to the idea of transmutatio
is new.

VII. DISCUSSION

We have constructed here the complete Fock space associated with the differential calc
the quantum space. The algebraic relations between the creation and annihilation operato
ning the Fock space have been derived and their internal consistency established.

The present formalism leads to the notion of statistical transmutation between different
of quanta residing in the generalized Fock space. Consequently, the number operators fo
vidual quanta are not conserved, only certain partial sums of number operators are conse

We have been able to map the entire set of new creation and annihilation operators
creation and annihilation operators for canonical fermions and bosons. Because of the exist
such transformations, we can say that as far as the underlying Fock space is concern
deformations leading to covariant differential calculus do not lead to anything fundamentally
What one gets is only a different avatar of the canonical algebra of fermions and bos10

however with statistical transmutation. Thus the formalism presented here demystifies th
commutative differential calculus on which so much recent work has been done, by providi
representation in a linear vector space which is a composite of canonical fermionic and b
spaces.

The insight gained through this understanding of the noncommutative differential calcu
terms of Fock space may prove useful for further lines of investigation. Some of these are
J. Math. Phys., Vol. 38, No. 1, January 1997
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~a! Is it possible to have a nontrivial deformation of the differential calculus that does
require the statistical transmutation? This may require the dropping of the Leibnitz rule~15!.

~b! More general transmutations can be introduced if we replace~43! and ~44! by

bi
†5Fib̃ i

†1(
j
Gi j f̃ i

† f̃ j b̃ j
† , ~62!

f i
†5Hi f̃ i

†1(
j
Ki j b̃ i

†b̃ j f̃ j
†, ~63!

whereb̃i and f̃ i are canonical boson and fermion annihilation operators andFi ,Gi j ,Hi andKi j are
functions of the canonical number operators as well as one or more deformation param
Hence, the path is open, to construct a variety of new deformed differential calculi. One ma
remark that transformations of the type~62! and~63! can be used to describe the transmutation
any two species of canonical quanta ; both may be bosons or fermions.

Differential calculus is generated by three operators (x,]/]x ,dx), whereas Fock space i
spanned by (b†,b, f †, f ). What is the significance of the additional operatorf , with regard to
differential calculus? A possible answer may be provided in the context of the Lagrangia
Hamiltonian dynamics in quantum space13 in which theq-deformed differential calculus plays a
essential role. One may introduce the velocityẋ as the differentialdx divided bydt wheret, the
time, is taken to be a commuting number. The dynamical formalism will require the calculus
extended to the derivative]/] ẋ. For this extended calculus, one may have the mapping:

x→b†;
]

]x
→b; ẋ→ f †;

]

] ẋ
→ f . ~64!

Finally we note that the transformations linking the new operators to canonical ope
become ill-defined whenq→0 or 6`. For such singular values ofq, new kinds of statistics
~‘‘null statistics’’! living in new Fock spaces~‘‘Fock spaces of frozen order’’! emerge.14 Statistical
transmutation can be incorporated into the null statistics too, leading to newer structures.
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On quantization of Z 2-graded algebras
A. I. Mudrov
St. Petersburg State University, Physics Institute, Theoretical Department,
198904 Ulyanovskaya 1, Stary Petergof, St. Petersburg, Russia

~Received 3 January 1996; accepted for publication 15 July 1996!

Quantization ofZ2-graded Lie bialgebras viewed as a generalization of sl~2! is
investigated. A method of building multiparameter solutions is developed. We
study the role of the quantum double construction in the selected class and prove
that a quantized coboundaryZ2-graded Lie bialgebra contains a quasitriangular
Hopf subalgebra. ©1997 American Institute of Physics.
@S0022-2488~96!02911-8#

I. INTRODUCTION

Quantum Lie groups and algebras were introduced within the quantum inverse sca
method and originally used as an instrument to build solutions of the quantum Yang–B
equation. Due to a peculiar mathematical structure they have numerous applications i
theory, spectroscopy, noncommutative analysis, and gradually acquire the role of a conv
language for quantum physics. Quantum groups or, speaking mathematically, Hopf algebr
interesting not only in connection with the Yang–Baxter equation, but also due to the role
classical prototypes play in physics and geometry. While there are not universal metho
constructing deformations of solvable Lie algebras, quantum semisimple groups have bee
ciently well studied.1,2 The first example to be discovered was the algebraUq„sl~2!…, which gave
push to development of this branch of mathematical physics. In a certain sense, it shares th
properties of other semisimples. Thus, they contain samples ofUq„sl~2!… associated with regula
sl~2! subalgebras. The points in common are also the role of the quantum double and that
Cartan subalgebra. Success of the theory caused efforts to apply its methods to investiga
types of Lie algebras. We mention Ref. 3, in this connection, which studies the double o
commutative function algebra on the Borel subgroup. It develops the idea of Ref. 4, whe
simplest case of sl~2! has been considered. On the other hand, the analysis shows that the
example is embedded into a wide class, which admits a regular theory presented in this pap
following properties of sl~2! are crucial for the definition of this class.

~i! Z2-grading. An involutory isomorphism on sl~2! is defined as identical on the Carta
subalgebra and multiplying by21 on the linear sum of the non-nil root subspaces.

~ii ! Cocommutativity of the Cartan subalgebra.
~iii ! Possibility of representing the dual algebra sl* ~2! as a semidirect sum of the positive an

negative~with respect to the grading! Abelian subspaces.

Most such Lie bialgebras are nonsemisimple@except for direct sums of sl~2!-s#. A typical situation
is when the adjoint action of the Cartan subalgebra cannot be diagonalized. We suggest
structing method which shows that this class is quite numerous. Bialgebras of this type pr
admit quantization possessing characteristic features of Drinfeld’s theory, the role of the qu
double, and the general form of the universalR-matrix in particular.

The paper is organized as follows. After preliminary definitions we study a subclass of
tum algebras which further serves as an elementary structural block. Its stability with respec
dualization procedure is verified. Then we show that the quantum double operation applied
subclass preserves the category involved. The main result completes the paper and sugg
the deformation of a coboundaryZ2-graded Lie bialgebra contains a quasitriangular Hopf sub
gebra. Let us proceed to precise formulations.
0022-2488/97/38(1)/476/8/$10.00
476 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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II. QUANTIZATION AND DUALITY

A Lie bialgebra~L ,L* ! is calledZ2-gradedif there exists an involutory mappings:L→L such
that the pair~s,st! is an isomorphism of~L ,L* !. According to Ref. 1, the cobracket onL belongs
to the space of one-cocycles with values inL`L . Working with theZ2-graded version of the
theory, we demand that acoboundary Lie bialgebrashould have its classicalr -matrix being
s-invariant.

As a linear space,L splits into the sumH%V of the eigenspaces, wheresH5H andsV52V.
Similar decomposition takes place in the dual algebra:L*5H*%V* . Sinces respects a Lie
structure, one have@H, H#,H, @H, V#,V, @V, V#,H. We confine ourself with the study only o
the setB of the pairs with commutativeH, H* , andV* . It implicates in particular that the algebr
L* is isomorphic to a semidirect sumH*xV* of two Abelian subalgebras. Let us select t
subclassB0,B in which bothL andL* can be represented in this way. It is easy to see thaB

andB0 form categories where arrows are homomorphisms consistent with grading.
Further, we use the results of Refs. 5 and 6 briefly sketched below. Let us choose a

(Hi),H, ~Xm!,V, and associate matrices (Ai)n
m and ~aj !n

m with the adjoint action of the Abelian
algebrasH andH* on the linear spacesV andV* . Then the general form of Lie bracket onL and
its dual will be

@Hi , Hj #50, @Hk ,Xm#5XnAkm
n , @Xn ,Xm#5H•Dnm ,

dXm5H•am
n

^Xn2Xn ^H•am
n , dHi50,

where ‘‘•’’ means summation over the Latin indices. The bialgebra condition imposed onL and
L* is

a iAk5Aka
i , ad~a j !Di5ad~a i !Dj ,

(
i

~a i
^Ai1Ai ^ a i !p50.

By p we mean the projector fromV^V to the subspace of skew-symmetric tenso
pns

mr51
2~dn

mds
r2ds

mdn
r!. The following theorem has been proved in Ref. 6.

Theorem 1:Quantization is a functor fromB to the category of Hopf algebras.
The assertion follows from the explicit formulas found in Refs. 5 and 6:

DXm5exp~H•a!m
n

^Xn1Xn ^exp~2H•a!m
n ,

DHi5Hi ^111^Hi ,

@Hi ,Hk#50, @Hi ,Hm#5Xn~Ai !m
n ,

@Xn ,Xm#5S sinh„ad~a!•H…

ad~a!•H
D•H D

nm

.

It is easy to see that the correspondence~L ,L* !→Uq~L ! is natural. We introduce the notationsH
andH0 for the categories of quantum algebras whose classical limit belongs toB and toB0,
respectively.

Turning to the commutation relations, we can see that the multiplication structure con
have been subjected to deformation so as to ensure compatibility with the new coproduc
right-hand side of the latter equality is treated as a function on the Abelian groupH* with values
in V*`V* . It is the unique solution of the functional equation
J. Math. Phys., Vol. 38, No. 1, January 1997
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F~x1y!5ead~x!F~y!1e2ad~y!F~x! ~1!

with the ‘‘initial data’’ ] iF(0)5Di .
The rest of the paragraph is devoted to the detailed study of the categoryH0. It is important

for the field of scalars to be algebraically closed, so we think of it as complex. The formula
the commutation relations implies that the product inUq~L !PH0 remains classical. The dualiza
tion procedure is a natural transformation ofB0. We shall prove that, within certain assumptio
concerning the deformation parameter, it brings forth the transition to the dual Hopf algebra
categoryH0. Let Spec~H%H* !,H*%H be the set of weights of the action ofH%H* onV, and
let ~l,l! be the squared norm of a vectorlPH*%H with respect to the canonical scalar produ
The following proposition plays the key role in our investigation.

Lemma 1: Hopf albegras Uq~L* ! and Uq* (L ) are isomorphic unless for som
lPSpec~H%H* ! the number e~l,l! is a primitive root of unity.

The numbers~l,l!, lPSpec~H%H* !, are exactly the eigenvalues of the matrix~a•A!n
m . To

put deformation into effect, it is sufficient to multiplyai by a scalar. So the required condition
met for a dense subset of values of the deformation parameter.

Let us define the functionalsz̃,h P Uq* (L ) by the formulas

^z̃m,w~H !c~X!&5w~0!]mc~0!, ^h j ,w~H !c~X!&5] jw~0!c~0!.

Having introduced the variableszm[(e(1/2)A•h)n
mz̃n, one can check that the linear space spanned

~hi ,zm! is endowed with the Lie structure ofL* , and in the basis~hi ,zm! the coproduct has the
canonical form. Thus we have built a mapUq(L* )→Uq* (L ), and it is evidently natural: any arrow
L1→L2 in the categoryB0 generates the commutative diagram

Uq~L2* !←Uq~L1* !

↓ ↓
Uq* ~L2!←Uq* ~L1!.

The fact that the vertical arrows are bijective will be checked through mathematical inducti
n5dim~V!. Having representedUq~L ! as the linear sum% k50,.. ,̀ U~H!P̃k @similar decomposition

holds forUq~L* !#, whereP̃k is the space of monomials inX̃m5(e(1/2)a•H)m
nXn of degreek, we

can factorize matrix elements of the pairing:

^z̃m1•••z̃mmw~h!,c~H !X̃n1
•••X̃nn

&5^z̃m1•••z̃mm,X̃n1
•••X̃nn

&^w~h!,c~H !&dn
m .

Suppose first thatL5L1[HxC. It follows from the recurrent formula

^z̃m,X̃m&5^z̃m21
^ z̃,D~X̃m!&5S (

k50,...,m21
e2k~l,l!D ^z̃m21,X̃m21&

that the pairing is nondegenerate if and only ifem(l,l)Þ1 for an arbitrary integerm. In the general
case, we selectH%H* -invariant subspaceṼn21,Ṽ5Span(X̃m) of codimension 1. The exac
sequence

0→Ṽn21→Ṽ→Ṽ1→0,

Ṽ1 ; C, generates the commutative diagram
J. Math. Phys., Vol. 38, No. 1, January 1997
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0 ← U~Ṽn21* ! ← U~Ṽ* ! ← U~Ṽ1* ! ← 0

i ↓ ↓ ↓ i

0 ← U* ~Ṽn21! ← U* ~Ṽ! ← U* ~Ṽ1! ← 0,

where the vertical arrows are the restrictions of the mappingUq(L* )→Uq* (L ) to the subalgebras
of polinomials inz̃m. They are bijective, except maybe the middle one. It has been demons
for the right arrow while for the left one this is true due to the recurrent assumption. Referri
the homological lemma about five homomorphisms,7 we state that the mappingU(Ṽ* )→U(Ṽ)
and thereforeUq(L* )→Uq* (L ) is an isomorphism, too.

We shall show how to build Lie bialgebras of the classB0. The compatibility condition on
matrices (a i ,Aj ) consists in that they must commute with each other and satisfy the equati

(
i

~a i
^Ai1Ai ^ a i !p50. ~2!

Let us consider a linear spaceV of dimensionn11 and denoteH the Abelian algebra spanned b
the matrices (Nk)n

m5dn1k
m , k,m,n50,...,n. Let S,Sym~H^H! be the set of symmetric solution

of

Ei jNi ^Njp50. ~3!

AssumingAj5Nj , a i5Ei jNj , EPS, we satisfy Eq.~2! and thus obtain a Lie bialgebra belongin
to B0. As to the setS, it forms an11-dimensional linear space and consists of matrices

E5S 0 0 ••• l0

0 0 ••• l1

••• ••• ••• •••

0 l0 ••• ln21

l0 l1 ••• ln

D
with free parametersl0,...,ln . Indeed, the coordinate form of Eq.~3! is

u~m2s!u~r2n!Em2s,r2n5u~m2n!u~r2s!Em2n,r2s, ~4!

where

u~x!5 H1, x>0;
0, x,0.

Equation~4! goes over into itself under the transmutationsm↔r ands↔n. We distinguish two
cases:

~i! There is the only side of~4! with a vanishingu-function. We assume that the indices a
ordered in their values ass<m,n<r.

~ii ! None of theu-functions turns into zero. This time we locate the indices in the sequ
s<n<m<r.

Any other disposition ofs, n, m, r is obtained from these two via the symmetry group of t
equation.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Turning to the first possibility, we introduce the variablesx5m2s>0, z5n2m.0, andy5r
2n>0. Equation~4! goes over intoEx,y50 for everyx andy,0<x1y,n. This means that all the
matrix elements above the skew diagonal are equal to zero.

Investigating the second case, consider the variablesx5n2s>0, z5m2n>0, and y5r
2m>0. The only condition uponx,z,y is the inequality 0<x1z1y<n. Equation~4! acquires the
form of Ex,y5Ez,z1x1y making the statement evident.

III. QUANTUM DOUBLE AND QUASITRIANGULARITY

According to Ref. 1, the quantum doubleD~A! is built on the tensor productA ^ Aop* of an
algebraA and opposite toA* , with additional relations between them. Applied toA5Uq~L !PH0,
this procedure results in the following commutation rules:

@Hi , Hk#50, @h i , hk#50,

@Xm , Xn#50, @zm, zn#50,

@Hk , Xm#5XnAkm
n , @Hk , zm#52znAkn

m ,

@hk, zm#52znan
km , @hk, Xm#5Xnam

kn ,

@zm, Xn#5~e2~1/2!~A•h1a•H !2e~1/2!~A•h1a•H !!n
m .

Generatorszm P Uq* (L )op are expressed through the functionalsz̃n,h i defined in the previous

paragraph:zm5( z̃ ne(1/2)A•h)n
m .

To make sure that the formulas have the form given by Theorem 1, we introduce a
symmetric bilinear pairingB determined byB~V,V!50, B~V* ,V* !50, andB~V* ,V!51

2^V* ,V&.
Here^,& is the canonical scalar product. Now one can see that the value of the commutator@zm, Xn#
is a solution of functional equation~1!, the initial data being

Di~z,X!5B~@h i ,z#,X!2B~z,@h i ,X# !, Di~z,X!5B~@Hi ,z#,X!2B~z,@Hi ,X# !.

The coproduct inD~A! is as follows:

DHi51^Hi1Hi ^1,

DXk5Xn^ ~e2~1/2!a•H!k
n1~e~1/2!a•H!k

n
^Xn ,

Dhm5hm
^111^ hm,

Dzm5zn
^ ~e2~1/2!A•h!n

m1~e~1/2!A•h!n
m

^ zn.

Thus we have proved the proposition.
Lemma 2: The quantum double of Uq~L !PH0 belongs toH.
To be more specific, the classical limit ofUq~L ! is aZ2-graded Lie bialgebra called the doub

of L and denotedD~L !. It is built up on the linear sum ofL and, taken with the opposite Lie
bracket, its dualL* .1

The results of Lemma 1 make it possible to write down the general expression fo
universalR-matrix1 in D„Uq~L !…, LPB0. Basic elementsX̃m5(e(1/2)a•H)m

nXn can be ordered, for
example, by filtering due to the action ofH%H* on V:

H→•••→L k21→L k→•••→L .
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Every term of this sequenceL k is a biideal inL , and the factorspaceL k/L k21 is isomorphic to the
complex fieldC. Matrix elementŝ z̃m1•••z̃mm,X̃n1

•••X̃nm
& of the pairing are associated with a

invertible operator on the space spanned by ordered monomials inX̃m . Let V be its inverse. The
universalR-matrix is expressed through the basic elements via the formula

R5eh ^H (
n1<...<nk
m1<...<mk
k50,... ,̀

Vm1•••mk

n1•••nk z̃m1•••z̃mk^ X̃n1
•••X̃nk

.

It has the same structure as in the case ofUq„sl~2!… except for rather sophisticated dependence
V on matricesAi andaj .

Now we shall formulate the main findings of our investigation, which are, in a certain s
the converse to Lemma 2.

Theorem 2: The quantization of a coboundaryZ2-graded Lie bialgebra contains a quasitri
angular Hopf subalgebra.

To begin with, consider a twist8 of a quantum algebraUq~L !PH. An element exp(E),
EPH`H, defines onUq~L ! a new coproductD̃5Ad(eE)+D. The straightforward computation
shows that the resulting algebra also belongs toH, and the new matricesã i are simply expressed
through the old ones:ã i5a i12Ei jAj . Since quantization is natural~Theorem 1!, our further
analysis will be carried out at the Lie bialgebra level. It follows from the general theory1 that the
solution of the classical Yang–Baxter equation specifies a homomorphismr :L*→L , whereas the
transposed mappingr t respects the Lie structure modulo permutation of the factors. Their im
L1[rL* , L2[r tL* and the linear sumL11L2 are subbialgebras inL . Therefore, one can
suppose thatL5L11L2 . Because ofZ2-compatibility, r is generally written in the form of
r5Ei jHi ^Hj1BmnXm ^Xn . TensorE

i j can be thought of as symmetric since otherwiser would
be replaced byr2 1

2(E2Et). Such a substitution is entirely correct as it results in twistingUq~L !

with the elemente2(1/4)(E2Et). Twist does not violate quasitriangularity and, as shown abo
preserves the categoryH. Taking into account thatL5L11L2 , we conclude that ther -image of
H* covers the wholeH. Therefore, the symmetric bilinear formEPH^H is nondegenerate. Le
~zm!,V* be the basis dual to~Xm!. We assign to everyhPH* an operatorD~h!:V→V* , in
accordance with the ruleD(h)(X)5^[X, Xm],h&zm. Bilinear form B is also associated with a
linear mapping:zm°BmnXn . Besidesr being a solution of the classical Yang–Baxter equation
must havead-invariant symmetric part. These two conditions together result in the system

1
2~B1Bt!D~h!5A„r ~h!…, ~5!

BtD~h!B50, ~6!

BD~h!Bt50. ~7!

When deriving these equations we made use of the fact thatr restricted to the subspaceH* defines
a nondegenerate scalar product.

From~6! one can see that the adjoint representation of the subalgebraH is fully determined by
the operatorsB andD. This is also true forH* :

a~h!5 1
2D~h!~B2Bt!. ~8!

The kernel ofr t annihilates the image ofr , consequentlyr t is an antiisomorphismL1*→L2 . It is
natural to consider the mapid% r t: D~L1!→L5L11L2 . We intend to prove that this linea
surjection is a homomorphism. To simplify formulations we shall suppose thatL1* viewed as a
subalgebra inD~L1! has the Lie bracket opposite to that ofL1* ,L* .
J. Math. Phys., Vol. 38, No. 1, January 1997
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The operatorid% r t preserves the Lie structure when restricted to each direct addend
rately, and we must check that it is also permutable with the commutator@L1 , L1* #. The adjoint
action of the positive subalgebra onV1 % V1* ,D(L1) is represented by the matrices

H→S A1 0

0 2A1
t D , H*→S a1

t 0

0 2a1
D .

Here we used the notationsA1 [ Auv1
anda1 [ auv

1
* for the restricted operators. They are foun

from formulas~5!–~8!: A1„r ~h!…51
2BD~h! anda1~h!521

2D~h!Bt. Thus we have two commuta
tive squares

D~L1!.V1* →
r t V2,L

ad~H!↑ ↑ad~H!

D~L1!.V1* →
r t V2,L

D~L1!.V1 →
id

V1,L

ad~H* !↑ ↑ad„r t~H* !…

D~L1!.V1 →
id V1,L

We arrive at the conclusion that the operatorid% r t intertwines the adjoint actions of the algebr
H%H*,D~L1! andH,L .

To complete the proof we must verify thatid% r t is consistent with the Lie bracket restricte
to V1 ^ V1* . In other words, the following diagram should be commutative:

V2 →
id V

——→
D~h! V*

——→
idt V1*

r t↑ i

V1* →
id

D~L1!
——→
D„h % r ~h!…

D* ~L1!
——→

idt V1*

.

Evaluating the bottom line one finds D„h%r ~h!…~z!5^@z, Xm#,h1r ~h!&zm

52~A1
t
„r ~h!…~z!1a1~h!~z!!5D(h)Bt(z) for all z P V1* . Taking into account thatr

tuv
1
* coincides

with Bt, one comes to the result required.

IV. CONCLUSION

It has been shown that the methods of the quantization theory for semisimple Lie algebr
generalized on the categoryB of Z2-graded algebras. The similarity manifests itself not only
the algorithm of quantization and the formula for the universalR-matrix, but also in the role of the
numberslPSpec~H%H* !. If en(l,l)51 for some integern, the relationUq(L* ) ; Uq* (L ) is
broken, and the action of the quantum algebraUq~L ! on its quantum group by invariant differen
tial operators has a nontrivial kernel. The difference is that normally the adjoint representat
the Cartan subalgebra analog is not diagonalized. For this reason the structure of matrix el
of the pairing between mutually dual Hopf algebras appears to be rather complicated and m
difficult to compute the universal matrix explicitly. Nevertheless, this task is solvable for e
given algebra and its representation provided that the generators~Xm!PV are represented by
nilpotent operators. Thus one can build new matrix solutions of the quantum Yang–Baxter
tion, which are physically interesting.

The results of this paper elucidate constructions of Ref. 6 where quantization of a wider
of Lie bialgebras was studied. Hopf algebras with a dual group being a semidirect composi
two Abelian ones was investigated by a method based on the quantum duality principle.9,10 Thus
we have shown that the technique developed in Ref. 6 yields quasitriangular solutions.
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Nonlinear operators and their propagators
Charles Schwartz
Department of Physics, University of California, Berkeley, California 94720

~Received 9 April 1996; accepted for publication 11 October 1996!

Mathematical physicists are familiar with a large set of tools designed for dealing
with linear operators, which are so common in both the classical and quantum
theories; but many of those tools are useless with nonlinear equations of motion. In
this work a general algebra and calculus is developed for working with nonlinear
operators: The basic new tool being the ‘‘slash product,’’ defined byA(11eB)
5A1eA/B1O(e2). For a generic time development equation, the propagator is
constructed and then there follows the formal version of time dependent perturba-
tion theory, in remarkable similarity to the linear situation. A nonperturbative ap-
proximation scheme capable of producing high accuracy computations, previously
developed for linear operators, is shown to be applicable as well in the nonlinear
domain. A number of auxiliary mathematical properties and examples are given.
© 1997 American Institute of Physics.@S0022-2488~97!03301-X#

I. INTRODUCTION

Physicists are familiar with a large set of mathematical tools for dealing with linear opera
This comes mostly from work in quantum theory but also shows up in classical theory. How
when it comes to nonlinear equations of motion, most of those familiar tools are useless. Th
a few specific nonlinear equations that have been studied and solved; and with many othe
commonly resorts to a forcible ‘‘linearization.’’ In the domain of numerical computations o
low order approximation techniques are known for general nonlinear equations.1

In this paper we develop a general algebra and calculus for nonlinear operators, wi
starting definitions given in Sec. II. The basic new tool is the ‘‘slash product’’ of two opera
A/B, defined byA(11eB)5A1eA/B1O(e2). This quantity has a number of interesting pro
erties which are explored in Secs. III and IV. For a generic time development equation
propagator is constructed in Sec. V and then in Sec. VI there follows the formal version of
dependent perturbation theory, in remarkable similarity to the linear situation. Section VI
plores how the further machinery of quantum theory might look if it were not a linear theor
Sec. VIII a nonperturbative approximation scheme capable of producing high accuracy com
tions, previously developed for linear operators, is shown to be applicable as well in the non
domain. A number of auxiliary mathematical results are given in four Appendices.

II. GENERAL PROPERTIES

A nonlinear operatorA acts on some input quantityc transforming it into an output quantity
f,

f5Ac. ~1!

One might use the alternative notationf5A~c! to emphasize that the operatorA acts onc like a
function and not by mere multiplication, which is the mode of a linear operator; but we shall
other uses for parentheses and would prefer to avoid this confusion.

OperatorsA,B,C,••• ~I shall use capital letters for operators! can act in sequence, giving u
multiplication which is associative but not commutative.

ABCc5A~B~C~c!!!. ~2!
0022-2488/97/38(1)/484/17/$10.00
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Assuming that the quantitiesc, f can be added and multiplied by ordinary numbers~denoted
by lower case lettersa,b,c,...! we have addition of operators which is associative and comm
tive

A5B1C5C1B; ~3!

and we have scalar multiplication on the left,A5bC, which is not the same asCb. The symbols
1 and 0 play dual roles, as the unit and null operators as well as ordinary numbers.

The distributive law holds on one side,

~A1B!C5AC1BC ~4!

but not on the other side,

A~B1C!ÞAB1AC. ~5!

However, assuming some continuity in the set of operators, we can define a generalized der
which will allow us to do some things with expressions of the sort given in~5!. In the limit of
e→0,

A~B1eC!5AB1e$A,B,C%1O~e2!. ~6!

III. THE SLASH PRODUCT

A simpler definition of this generalized derivative is the following:

A~11eB!5A1eA/B1O~e2!. ~7!

This new operatorA/B—called the ‘‘slash product ofA andB’’—will be the most useful tool
in the analysis that follows. Assuming that the operatorB in ~6! has an inverse, we can identif

$A,B,C%5~A/CB21!B. ~8!

If we use the representation of the operators as functions, as in~2!, then we see tha
A/Bc51/e(A(c1eB(c))2A(c))5A8(c)B(c).

A most important property of the slash product is that it is linear in both of its argume
Linearity in the first argument,

~aA1bB!/C5aA/C1bB/C, ~9!

follows directly from ~4! and ~7!. Scaling in the second argument for real numbersb,

A/bB5bA/B ~10!

follows from scaling the parametere in the definition~7!. And linearity in the second argumen

A/~B1C!5A/B1A/C, ~11!

can be shown as follows:
J. Math. Phys., Vol. 38, No. 1, January 1997
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A~11eB1eC!5A1eA/~B1C!1O~e2!5A~11eC!~11eB!1O~e2!

5~A1eA/C!~11eB!1O~e2!5A~11eB!1eA/C~11eB!1O~e2!

5A1eA/B1eA/C1O~e2!. ~12!

Note that there is no ambiguity in writing, as in~10! above,bA/B to meanb(A/B). In fact, if
L is a linear operator~of which ordinary numbers are a special case! then, (LA/B)5L(A/B) can
be written asLA/B. Also, for linear operatorsL, we note thatL/B5LB; thus slash products
become ordinary products when we have all linear operators. Be aware, however, thatA/L is not
equal toAL, and in particularA/1 is not equal toA, unlessA is linear. Considering the nul
operator 0, the statementA050 is a restriction upon the class of nonlinear operatorsA which we
shall study; but the equations 0A50/A5A/050 are true in any case.

In general I shall writeABC/DEF without parentheses to mean (ABC)/(DEF); but paren-
theses are required to specify other things, such as (A/B)C or multiple slash products such a
A/(B/C)—which is not the same as (A/B)/C—etc. Note, however, that multiple slash produc
are linear in each one of their factors, regardless of how the parentheses are drawn. In expr
like 1/2 or tn/n! which do not involve any operators, the / symbol means ordinary division.

Another important property is found from the following calculation. Here we assume tha
operatorB has an inverse; and••• meansO~e2!.

AB~11eC!5AB1e~AB!/C1•••5A~B~11eC!!5A~B1eB/C1••• !

5A~11e~B/C!B211••• !B5~A1eA/CB1••• !B. ~13!

Here, we have introduced the important definition

CB[~B/C!B21, ~14!

which is the generalization of a similarity transformation. One readily shows that (CB)D5CDB ;
and the new identity for the slash product is,

~AB!/C5~A/CB!B. ~15!

Although multiple slash products are not associative, I shall use the notationA/B/C/•••/Z to
mean the particular order (•••((A/B)/C)/•••)/Z. In addition, I shall use a shorthand notation f
this multiple slash product of a single operator:

A∧n[A/A/A/•••/A ~n factors A! ~16!

where

A∧15A51/A and A∧051 ~17!

make this consistent with

A∧n115A∧n/A. ~18!

IV. FURTHER PROPERTIES OF /

We can define higher order slash products by continuing the expansion in Eq.~7!

A~11eB!5A1eA/B1~1/2!e2A//B1O~e3!. ~19!

As shown in Appendix A, these higher terms may be reduced to multiple applications of the
slash product; for example,
J. Math. Phys., Vol. 38, No. 1, January 1997
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A//B5~A/B!/B2A/~B/B!. ~20!

The expressionA//B ~which vanishes ifA is a linear operator! is linear in the first argumen
A, but is more complicated~quadratic! in the second argumentB. The calculation in Appendix A
also leads us to the identity,

~A/B!/C2A/~B/C!5~A/C!/B2A/~C/B!. ~21!

Suppose thatF andG are two operators that depend on some parameterl and we write
F85dF/dl. Now calculate the derivative of the product,

~FG!851/e~~F1eF8!~G1eG8!2FG!51/e~FG1e~F/G8G21!G1eF8G2FG1O~e2!!

5F8G1~F/G8G21!G5$F8F211~G8G21!F%FG. ~22!

In the special case whereF is a linear operator, the / can be dropped and~22! reads like the usua
rule for the derivative of a product; but this result is more general. An interesting special ca
~22! is whenF is taken to be the operator inverse ofG

G21852G21/G8G21. ~23!

Extending equation~22! we have

~FGH!85$F8F211~G8G21!F1~~H8H21!G!F%FGH. ~22a!

Using the identity (CB)B21 5 C, one can deduce an inversion formula for the slash produ

If A5B/C, then C5~B21/AB21!B. ~24!

V. PROPAGATORS

Problems of interest concern differential equations of the form

dc

dt
5Ac, ~25!

wherec5c (t) but we assume for the moment that the nonlinear operatorA is independent oft.
Solutions of this equation are given in terms of some operatorE(A,t), which we call the propa-
gator forA

c~ t !5E~A,t !c~0!. ~26!

The propagator should obey the composition law

E~A,t1!E~A,t2!5E~A,t11t2! ~27!

and we have

E~A,0!51. ~28!

There is also a scaling law, implied by the structure of Eq.~25!,

E~aA,t !5E~A,at!. ~29!

In the special case whereA is a linear operator,E(A,t) is just the exponential function o
argumenttA.
J. Math. Phys., Vol. 38, No. 1, January 1997
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For a simple example, consider the nonlinear operatorAc5pcq. The differential equation
~25! is readily solved and we get this formula for the propagator

E~A,t !c5@c12q1tp~12q!#1/~12q!. ~30!

In what follows we shall assume that a power series expansion exists for the propaga
least for sufficiently small values oft. The basic operator equation, writingdt for d/dt, is

dtE~A,t !5AE~A,t ! ~31!

so that the power series starts as 11tA1••• . To see what the later terms look like, take anoth
derivative of~31!. Writing E for E(A,t) and using~22!

dt
2E5dt~AE!5~A/~dtE!E21!E5~A/A!E5A∧2E. ~32!

Repeating this procedure any number of times, then taking the limitt50, yields the terms in
the infinite power series.

E~A,t !5( tn/n! A∧n. ~33!

It is interesting to take the derivative of this power series.

dtE~A,t !5( ntn21/n! A`n5( tn/n! A`n115E~A,t !/A, ~34!

where we have used the linear property of the slash product. Thus we have the special iden
propagators

AE~A,t !5E~A,t !/A, ~35!

which is not easily verified by multiplyingA times the series~33!.
Now consider the general case when the operatorA is time dependent.

dtc~ t !5A~ t !c~ t !. ~36!

The propagator must now be given two time variables

c~ t2!5E~A;t2 ,t1!c~ t1!, ~37!

where

E~A;t,t !51. ~38!

Taking the derivative of~37! with respect tot2 yields the equation

d/dt2E~A;t2 ,t1!5A~ t2!E~A;t2 ,t1! ~39!

while taking the derivative of~37! with respect tot1 yields

d/dt1E~A;t2 ,t1!52E~A;t2 ,t1!/A~ t1!. ~40!

With these two equations, one can now prove the general group property

E~A;t3 ,t2!E~A;t2 ,t1!5E~A;t3 ,t1! ~41!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



nt of

r
-

-

t

489Charles Schwartz: Nonlinear operators and their propagators

¬¬¬¬¬¬¬¬¬¬
as follows: Take the derivative of the expression on the left hand side of~41! with respect tot2
and, using both~39! and~40!, show that the result is 0; then, since this product is independe
the value oft2, one can sett25t1 , and the right hand side of~41! is obtained.

The power series solution for the propagator is easily constructed by using Eq.~40!

E~A;t,t0!5( E dt1•••E dtnUA~ tn!/A~ tn21!/•••/A~ t2!/A~ t1!, ~42!

where the symbolU selects the region of then-dimensional integration space for which

t0<t1<t2<•••<tn21<tn<t ~assuming thatt0<t !. ~43!

This result reverts to~33! whenA is independent of the time. One might give this series~42! the
symbolic nameT/exp(* t dt8 A(t8)), whereT/ is read, ‘‘time ordered slash products.’’

VI. PERTURBATION THEORY

We consider the equation

dc

dt
5Ac1Bc; ~44!

and assuming we know the propagatorE(A;t2 ,t1) we want to study the full propagato
E(A1B;t2 ,t1), expanded in a power series in the small operatorB. We start with the decompo
sition

E~A1B;t2 ,t1!5U~ t2 ,t1!E~A;t2 ,t1! ~45!

introducing the operatorU; and we take the time derivatived/dt1 and use~40!, assumingA is
time-independent, to arrive finally at

d/dt1U~ t2 ,t1!52U~ t2 ,t1!/BE~ t2 ,t1! ~46!

where I use the shorthand:BE(t2 ,t1)5(E(A;t2 ,t1)/B(t1))E
21(A;t2 ,t1). This would be called the

‘‘perturbation operator in the interaction representation.’’
Equation~46! is of the form of~40! and so we can write the power series analog of~42! to

obtain the result

U~ t,t0!5( E dt1•••E dtnUBE~ t,tn!/BE~ t,tn21!/••••••/BE~ t,t2!/BE~ t,t1!, ~47!

Further manipulation of the terms in~47! allows one to rewrite this result as follows:

E~A1B;t,t0!5( E dt1•••E dtnU~~•••~~E~A;t,tn!/B~ tn!!

3E~A;tn ,tn21!/B~ tn21!!E~A;tn21 ,tn22!/••• !E~A;t2 ,t1!/B~ t1!!E~A;t1 ,t0!

~48!

which provides the familiar interpretation of a sequence of interactions (B) connected by propa
gators~E, derived fromA!.

One more thing of interest is a power series forBE , when bothA andB are time-independen
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BE5~E/B!E215( tn/n!Sn . ~49!

A direct computation, similar to those done earlier, yields the result

dtBE5A/BE2BE /A; ~50!

and thus, using once more the linear properties of the slash product,

Sn5A/Sn212Sn21 /A[@A/Sn21# ~51!

defining the ‘‘slash commutator.’’ The series forBE then has the familiar form with repeate
commutators

S05B,

S15@A/B#5A/B2B/A,

S25@A/@A/B##5A/~A/B!2A/~B/A!2~A/B!/A1~B/A!/A. ~52!

Using the identity~21! one can rewrite the last line of~52! as (A/A)/B22(A/B)/A1(B/A)/
A. One also has a Jacobi identity for the general [A/[B/C]].

VII. FURTHER MACHINERY OF QUANTUM MECHANICS

Suppose we consider a Schrodinger equation

idtC5HC, ~53!

whereH is a general nonlinear operator. The wave functionC depends on the timet as well as the
coordinate variablesx and perhaps other variables. Equation~53! will have a propagatorE5E
(2 iH ,t), which we use~formally! to construct the Heisenberg picture, in which the coordina
and other variables become time dependent. IfF is any function or operator made up from the
variables in the Schrodinger picture, then we construct the Heisenberg representation of thF as
follows:

FE5~E/F !E21 ~54!

and calculate

dtFE52 iH /FE1FE / iH5@2 iH /FE#. ~55!

If U is some symmetry operator, with the infinitesimal formU511eS, then its application to
some general operatorA can be considered in two forms, each of which has the group prop

UAU215A1e~SA2A/S!1••• ~56!

or

~U/A!U215A1e@S/A#1••• . ~57!

For more, see Appendix D.
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In order to get stationary states, one needs to put some kind of restriction upon the operH:
It should be time independent and Hermitian in the linear case. So much of the usual mac
of quantum mechanics depends upon this linearity, we should not expect too much in the no
case; but several results can be carried over.

The first thing we require, even for a nonstationary state, is conservation of total proba
We shall keep the usual definition thatC*C is the probability density for this complex time
dependent wave function, which is defined on some set of coordinates we shall refer to sim
x. We require,

E C*C dx51 ~58!

and calculate

idtE C*C dx505E C* ~HC!dx2E ~HC!*C dx. ~59!

This is our condition onH for any stationary state.
For example, the following nonlinear Hamiltonian satisfies this condition:

H5HL1A, and AC5 f ~C*C!C, ~60!

whereHL is a linear operator, Hermitian in the usual sense, andf is a real function of its
argument. With this model~60! put into the time-dependent equation~53!, one can separate ou
the time dependence in the usual manner,C5exp~2ivt!c, and get the time-independent~non-
linear! Schrodinger equation,

HLc1 f ~c*c!c5vc. ~61!

If we add the normalization condition*c*c dx51, then this is an eigenvalue problem—althou
not a linear one.

For example, the equation

2d2c

dx2
1ac~c*c!q5vc ~62!

has an eigenfunction of the formc5c~sech(bx)!p. Actually, a family of such solutions can b
gotten from this one by translation and boosting; a state moving with velocityv has frequency
v11/4v2, thus giving what looks like a ‘‘rest energy’’ as the result of an eigenvalue problem

Variational principles may also be constructed for equations like~61!.

J@c,c* #5E dx$c*HLc1g~c*c!%2l H E dxc*c21J ~63!

is stationary about solutions of~61!, if f5g8 andl5v. Note that the stationary value ofJ is not
v.

VIII. THE PRODUCT APPROXIMATION FOR A COMPLICATED PROPAGATOR

A typical problem of interest looks like the following differential equation, which involv
two operators, linear or nonlinear, but assumed time independent

dtc5Ac1Bc5~A1B!c. ~64!
J. Math. Phys., Vol. 38, No. 1, January 1997
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NeitherA norB is assumed to be small enough to allow a perturbation solution; but we do as
that we can construct and use the separate propagatorsE(A,t) andE(B,t). Our objective is to
construct accurate approximations to the propagatorE(A1B,d), where d is a small but not
infinitesimal time interval. We shall start by looking at the first few terms of the power se
expansion

E~A1B,d!511d~A1B!1~1/2!d2~A1B!/~A1B!1O~d3!

511dA1dB1~1/2!d2~A/A1A/B1B/A1B/B!1O~d3!. ~65!

A first step, as is commonly done with linear operators,2 is to construct a symmetric produc
of the separate propagatorsE(A,d) andE(B,d)

R~A,B,d!5E~A,d/2!E~B,d!E~A,d/2!. ~66!

Using the expansions and the computational rules given above, we find that

R~A,B,d!5E~A1B,d!1O~d3!. ~67!

This is our first major result: Formula~66! uses three steps with the individual propagators
approximate the complete propagator to second order accuracy.

The best way to study, and then remove, the higher order differences between the exa
approximate propagators is not to continue with the power series expansions of the exact
gatorsE, but rather to represent the quantityR as the exact propagator for some new operatoX

R~A,B,d!5E~X,d!, ~68!

whereX depends onA, B andd ; and there will be an expansion,

X~A,B,d!5X1~A,B!1dX2~A,B!1d2X3~A,B!1••• ~69!

which can be determined, term by term, from any given series expansion forR. What follows is
a generalization of results previously derived for linear operators by M. Suzuki.3

Making use of the results found in Appendix B, one can readily calculate:X250 and
X352(1/24)[(A12B)/[A/B]]. But we do not really need to carry out such calculations, as
following simple arguments suffice.

ClearlyX1(A,B)5A1B; and each termXm will first appear in the power series forR at order
d m. The symmetric construction ofR guarantees the exact relation

R~A,B,d!R~A,B,2d!51 ~70!

from which we infer that

X~A,B,2d!5X~A,B,d!. ~71!

Thus half of the terms in~69! disappear~we already knew this form52!

X5X11d2X31d4X51••• . ~72!

Now we proceed to build on these results to get higher order accuracy, following the ge
scheme used previously for linear operators. First, the given differential equation may hav
number of operators.

dtc5( c, ( 5A1B1C1•••1Z. ~73!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The technique given in the standard literature for computing with such a general problem is
only to first order in the time intervald.4 Our second order approximation for the propaga
E~(,d! is

R~d!5E~A,d/2!E~B,d/2!•••E~Z,d!•••E~B,d/2!E~A,d/2! ~74!

which we can represent asE((1d2X31d4X51...,d).
Now we seek to eliminate theX3 terms by constructing the product

V3~d!5R~bd!R~gd!R~bd! ~75!

with certain values of the numbersb andg. For this analysis we need to expand the propaga
~whereA andB are any operators!

E~A1eB,d!5E~A,d!1edB1O~e2,ed2!

5~11edB1O~e2,ed2!!E~A,d!

5E~A,d!~11edB1O~e2,ed2!!. ~76!

Note here that we are expanding in bothe andd independently. That is, we are extracting n
the complete derivative ofE(A1eB,d), but only the leading term of that derivative expanded
a power series ind.

Now we are ready to calculate the product of two ‘‘close’’ propagators

E~A1e1B,d1!E~A1e2B,d2!

5E~A,d1!E~A,d2!~11e1d1B1••• !~11e2d2B1••• !

5E~A,d11d2!~11~e1d11e2d2!B1••• ! ~77!

where••• means next higher order terms ind as well ase.
Proceeding in this manner we calculate

V3~d!5E~S,~2b1g!d!~11~2b31g3!d3X31O~d4!!. ~78!

Finally, we fix the free parameters with the conditions

2b1g51 and 2b31g350 ~79!

and we have the fourth order accurate approximation:

V3~d!5E~S1O~d4!,d!. ~80!

Again, the symmetric construction gives usV3~d! V3~2d!51 and makes the error go down n
one but two orders ind. I have programmed numerical computations of the time-depen
nonlinear Schro¨dinger equation~in one space dimension! and found great improvements in acc
racy and efficiency by using this fourth order method.

We can now proceed systematically to eliminate the higher order error, two orders ind at each
step. Thus to sixth order accuracy,

V9~d!5V3~bd!V3~gd!V3~bd!5E~S1O~d6!,d!, ~81!

where these new coefficients are determined by

2b1g51 and 2b51g550. ~82!
J. Math. Phys., Vol. 38, No. 1, January 1997
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These results are identical in form with those previously derived for linear operators.3

The foregoing analysis was based upon the assumption that the separate operatorsA,B,...,
allowed us to obtain and use their exact individual propagatorsE(A,d), etc. Looking back, we see
that we can work with considerably less. The key is in the construction ofR~d!, Eq. ~74!, and its
subsequent use, Eq.~75! et seq.

There are really only two simple requirements:

R~d!511dS1O~d2! and R~d!R~2d!51; ~83!

once these two requirements are met, all the higher order accuracy of theVs will follow.
One simple approximation for any propagator is

E~A,d!'~12~d/2!A!21~11~d/2!A! ~84!

and this may be substituted in~74! without loss of accuracy. One can go even farther. F
example, with two operators, one may use

R~A,B,d!5~12~d/2!A!21E~B,d!~11~d/2!A! ~85!

or

R~A,B,d!5~12~d/2!A!21~12~d/2!B!21~11~d/2!B!~11~d/2!A!. ~86!

APPENDIX A: HIGHER ORDER SLASH PRODUCTS

Here, we shall look at the higher terms in the expansion

A~11eB!5A1eA/B1~1/2!e2A//B1~1/6!e3A///B1••• . ~A1!

Start by expanding the following product in one way.

A~11eB!~11eC!5A$11eC1eB~11eC!%

5A~11eC1eB1e2B/C1~1/2!e3B//C1••• !

5A1eA/~C1B1eB/C1~1/2!e2B//C!

1~1/2!e2A//~C1B1eB/C!1~1/6!e3A///~C1B!1••• . ~A2!

And now expand it another way.

A~11eB!~11eC!5$A1eA/B1~1/2!e2A//B1~1/6!e3A///B1•••%~11eC!

5A1eA/C1~1/2!e2A//C1~1/6!e3A///C1eA/B

1~1/2!e2A//B1~1/6!e3A///B1e2~A/B!/C1~1/2!e3~A/B!//C

1~1/2!e3~A//B!/C1••• . ~A3!

Next we compare expressions order by order in powers ofe. The zeroth and first order term
are familiar. In second order we find

A/~B/C!1~1/2!A//~B1C!5~1/2!A//C1~1/2!A//B1~A/B!/C. ~A4!

SettingC5xB, wherex is a variable number

xA/~B/B!1~1/2!~11x!2A//B5~1/2!x2A//B1~1/2!A//B1x~A/B!/B. ~A5!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Then, choosingx521, we get the first result

A//B5~A/B!/B2A/~B/B!, ~A6!

and also, substituting back in~A4!, we get the identity

~A/B!/C2A/~B/C!5~A/C!/B2A/~C/B!. ~A7!

Now, going on to third order terms in a similar fashion, we find

A/~B//C!1~A/~C1B!!/~B/C!1~A/~B/C!!/~C1B!

2A/~~C1B!/~B/C!!2A/~~B/C!/~C1B!!1~1/3!A///~C1B!

5~1/3!A///C1~1/3!A///B1~A/B!//C1~A//B!/C. ~A8!

Again, settingC5xB, we get

x2A/~B//B!1x~11x!~A/B!/~B/B!1x~11x!~A/~B/B!!/B2x~11x!A/~B/~B/B!!

2x~11x!A/~~B/B!/B!1~1/3!~11x!3A///B

5~1/3!x3A///B1~1/3!A///B1x2~A/B!//B1x~A//B!/B. ~A9!

Choosingx521, yields the identity~not really new!

A/~B//B!5~A/B!//B2~A//B!/B. ~A10!

And substituting this back in the previous equation finally yields

A///B5A/~B/~B/B!!1A/~~B/B!/B!1~~A/B!/B!/B22~A/~B/B!!/B2~A/B!/~B/B!

5~~A/B!/B!/B12A/~~B/B!/B!23~A/~B/B!!/B. ~A11!

If we use the representation of the operators as functions, then, starting
A/Bc5A8(c)B(c), we find

A//Bc5A9~c!B~c!B~c!, ~A12!

A///Bc5A-~c!B~c!B~c!B~c!. ~A13!

APPENDIX B: FORMULAS WITH THE EXPONENTIAL

If X(t) is a linear operator depending on a parametert, then an important formula is this
involving the t-derivative of the exponential function ofX

e2Xdt e
X5E

0

1

ds e2sX~dtX!esX . ~B1!

Here, we shall derive the analogous formula for a general nonlinear operatorX5X(t) and our
nonlinear version of the exponential function,

E~X!511X1~1/2!X/X1~1/6!X/X/X1•••5(
n

1/n! ~X/ !n21X, ~B2!

where I use the convention, noted after Eq.~15! that the repeated slash products are grouped w
the left-hand factors most interior.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Take thet derivative of ~B2!, which is easy because of the linear properties of the s
products

dtE~X!5(
n

(
m,n

1/n! ~X/ !m~dtX!~ /X!n2m21 ~B3!

5E
0

1

ds(
n

(
m

sm/m! ~12s!n/n! ~X/ !m~dtX!~ /X!n. ~B4!

Now the infinite sum overm can be carried out because the terms (X/)m sit at the interior of all
the multiple slash products

dtE~X!5E
0

1

ds(
n

~12s!n/n!E~sX!/~dtX!~ /X!n. ~B5!

In order to collapse the sum overn, we shall need another general formula

(
n

1/n!B~ /A!n5BE~A!. ~B6!

This may be proved by replacingA by tA and then taking the derivative with respect tot. For the
special caseB5A, this is equation~35!.

Thus we have our result, generalizing~B1!

dtE~X!5E
0

1

ds~E~sX!/~dtX!!E~2sX!E~X!. ~B7!

And, following the results given after equation~49!, we can write

~dtE~X!!E~2X!5(
n

1/~n11!! ~@X/ !n~dtX!#n ~B8!

in terms of the repeated slash commutators.
Several useful results may be obtained from the above formulas. First, we can sho

generalization of the famous Baker–Campbell–Hausdorff theorem for the product of expone
of operators

E~ tA!E~ tB!5E~X~ t !! ~B9!

with X(t)5tX11t2X21t3X31••• andX1 obviously5A1B. Taking thet derivative of Eq.~B9!,
using ~22! and ~49!–~51! for the left hand side and using~B8! for the right hand side we can
equate coefficients of each power oft. Then we see that each of the higher orderX’s is expressed
in terms of slash commutators built up from the operatorsA andB. When we let the operators b
linear, then the slash-commutators become ordinary commutators andE(A) becomes the ordinary
exponential. Thus, the algebraic structure of this theorem is identical in the case of non
operators to what it is for linear operators. We find

X15A1B; X251/2@A/B#; X351/12@~A2B!/@A/B##; etc. ~B10!

And from this it follows that, if [A/B]50, then

E~A!E~B!5E~A1B!5E~B!E~A!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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A second result is obtained by considering the symmetric product,

W~ t !5E~ tA!E~ tB!E~ tA!5E~X~ t !!. ~B11!

SinceW(2t) W(t)51, we conclude that

X~ t !5tX11t3X31t5X51••• . ~B12!

To determine theX’s we again calculate thet derivative ofW, using now Eq.~22a!, and we get,

~dtW~ t !!W~2t !52A1B2t2/2@~A1B!/@A/B##1••• . ~B13!

Then we again use~B8! and, comparing terms, find the results

X152A1B and X3521/6@~A1B!/@A/B##. ~B14!

A third new result follows from Eq.~B6!

BE~A!5E~AB!B, ~B15!

which I leave for the reader to verify. If one replaces the operatorB by the operatorE(B), then
one has

E~B!E~A!E~B!215E~A8!, ~B16!

where

A85AE~B!5~E~B!/A!E~B!215(
n

1/n! ~@B/ !nA#n. ~B17!

This reads as the generalized relation between elements of a Lie Group and the correspond
algebra. The exponentialeA of a linear operator is replaced byE(A) for the nonlinear operator
and the usual commutator used in the Lie algebra is replaced by the slash commutator.

An alternative representation forE(X) is the limit,N going to infinity, of (111/N X)N; and
some previous results are readily derived from this.

While many of the above relations involvingE(A) could be called trivial in the case of linea
operators, this author finds it remarkable that they hold true in the case of general non
operators.

APPENDIX C: SOME OTHER INFINITE SERIES

Here, we shall look at some other infinite series of operators. First, lets find the expansi
the operator

V5V~ t !5~12tA!215( tnVn~A!. ~C1!

Taking the derivatived/dt and using equation~23! we find

dtV5V/AV5~1/t !V/~V21!5( ntn21Vn . ~C2!

Substituting~C1! into ~C2! and equating like powers oft, we find the relation
J. Math. Phys., Vol. 38, No. 1, January 1997
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Vn51/~n21! (
0,m,n

Vm /Vn2m. ~C3!

Starting withV051 andV15A, we thus find

V25A/A, V351/2~A/A!/A11/2A/~A/A!,

V45~1/3!$V1 /V31V2 /V21V3 /V1%,etc. ~C4!

The general termVn(A) is a linear combination of all the distinct ways of writing the multip
slash products ofn factorsA. To verify this last statement, note that Eq.~C3! provides the
necessary step in the proof by induction. The number of such terms in eachVn is equal to

2~24!n21~1/2!!/ @n! ~1/22n!! #.

The above result can be used in connection with the general equation (A1),

A~11tB!5( tn/n!A/nB, ~C5!

whereA/0B5A, A/1B5A/B, A/2B5A//B, etc. Take thet-derivative of Eq.~C5! and get:

( @ tn21/~n21!! #A/nB5~1/t !$A/@12~11tB!21#%~11tB!

52~1/t !H (
m.0

~2t !mA/Vm~B!J ~11tB!. ~C6!

Using ~C5! once again, and equating like powers oft, we find the result

A/nB52 (
m.0

@~n21!! ~21!m/~n2m!! #~A/Vm~B!!/n2mB. ~C7!

With this we can recursively derive former results,~A6! and~A11!, and go on to higher orders, fo
example,

A////B526A/V416~A/V3!/B23~A/V2!//B1~A/V1!///B. ~C8!

For another exercise, consider the infinite series

G~A,p!5( 1/pn11A`n. ~C9!

If we were dealing with linear operators, this would be the same as the first series~C1!, but in
general it is different. This seriesG(A,p) would arise, for example, if one took the Laplac
transform of the propagatorE(A,t) given by Eq. ~33!. One can readily derive the algebra
identity,

pG~A,p!2G~A,p!/A51. ~C10!

This is not something one can readily ‘‘solve’’ forG; however, this equation is immediatel
amenable to perturbation theory. If we replaceA by A1lB, wherel is a small parameter, and w
expand
J. Math. Phys., Vol. 38, No. 1, January 1997
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G~A1lB,p!5( lnGn ,

then we get the relations

pG02G0 /A51, pGn2Gn /A5Gn21 /B. ~C11!

Still another variation involves a quantity, denoted byA;n, which is the sum of all distinct
ways of writing the multiple slash products ofn factorsA. This is similar to the quantityVn(A)
considered above, but with all numerical coefficients equal to 1. Starting withA;15A, we have
the recursion formula

A;n5 (
0,m,n

A;m/A;n2m. ~C12!

Consider now the infinite sum

Y5 (
n.0

A;n. ~C13!

This satisfies the equation,

Y/Y5Y2A ~C14!

so we have found one solution to the general ‘‘quadratic equation’’ involving nonlinear oper
and slash products. The other solution~which does not go to zero whenA vanishes! is more
complicated; it is not equal to 12Y.

APPENDIX D: SYMMETRY OPERATORS

This concerns symmetry and invariance in the dynamical nonlinear equations. LetU be some
operator that produces a transformation of the coordinates or the functionsc

c85Uc, ~D1!

where we have an original equation of motion

dtc5Ac. ~D2!

Let us calculate

dtc85~1/e!$U~c1edtc!2Uc%5~1/e!$U~11eA!c2Uc%5~U/A!c5~U/A!U21c8.
~D3!

Thus in order forU to be called a symmetry operation the equation for the transformed fun
c8 should be identical in form to the original equation forc. That is, we require the dynamica
operatorA to obey the invariance equation

~U/A!U215A. ~D4!

If U is a linear operator, this looks like the familiar rule~without the slash! but in general this is
different.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Suppose the dynamical equation has not just one operatorA but a sum of operators, sayA1B,
each of which individually satisfies the requirement~D4!. One can then readily prove tha
(U/(A1B))U215A1B. But note that this would not be so without the presence of the s
symbol, unlessU is a linear operator.

1W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes in C, 2nd ed.~Cambridge
University Press, Cambridge, 1992!, Chap. 19.

2See, for example, Paul DeVries,A First Course in Computational Physics~Wiley, New York, 1994!, ‘‘The Pseudo-
Spectral Method,’’ p. 380.

3M. Suzuki, Phys. Lett. A146, 319 ~1990!; see also Z. Tsuboi and M. Suzuki, Int. J. Mod. Phys. B9, 3241~1995!, and
other references given in these papers.

4Reference 1, p. 856, ‘‘Operator Splitting Methods Generally,’’ equations~19.3.20!.
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Graded contractions of symplectic Lie algebras
in collective models

J. Tolar
Department of Physics and Doppler Institute, Faculty of Nuclear Sciences
and Physical Engineering, Czech Technical University, Brˇehová7,
CZ-115 19 Prague 1, Czech Republic

P. Trávnı́ček
Institute of Atmospheric Physics, Czech Academy of Sciences,
Bočnı́ II, čp. 1401, CZ-141 31 Prague 4, Czech Republic

~Received 30 May 1996; accepted for publication 30 September 1996!

All Z23Z2-graded contractions preserving space isotropy and the grading induced
by the time reversalQ and the discrete canonical transformationK exchanging
coordinates and momenta are found for the Lie algebrasC2[sp~2,C!, sp~2,R!,
C3[sp~3,C!, andsp~3,R!. Some properties and physical aspects of these contrac-
tions are discussed, especially in connection with the algebraic formulation of
nuclear collective models. ©1997 American Institute of Physics.
@S0022-2488~97!01101-8#

I. INTRODUCTION

Symmetries can be related by standard morphisms, such as the inclusion of one Lie alg
another. However, since the pioneering work of Wigner and Ino¨nü,1 40 years ago, a wider class o
relations among symmetry algebras has been studied—Wigner–Ino¨nü contractions of Lie alge-
bras.

The recent modifications2 of Wigner’s approach make the vast variety of contractions of
algebras more accessible to an exhaustive description: one reduces the scope of study tocontrac-
tions preserving a fixed grading by a finite Abelian group G. A complete classification of such
contractions then becomes possible. In addition, it allows one to consider simultaneously s
Lie algebras that admit a given grading. Thus for all classes one has only to solve one cont
problem for the chosenG.

In the papers3,4 we have studied graded contractions of Lie algebras that are related t
basic space–time symmetries—the Poincare´, de Sitter, and conformal groups. From the physi
point of view it is important to retain, under contraction, rotational symmetry as well as
discrete symmetries of space inversion and time reversal. The resulting limited scheme
algebras contains only those with generators that have well-defined transformation pro
under space rotations, and inversions of space and time, which generateG5Z23Z2.

Here we turn our attention to the dynamical symmetries found in the algebraic formulatio5 of
nuclear collective models. They were obtained by extending the algebraic Bohr–Mottelson
of nuclear rotations and quadrupole vibrations. The most comprehensive dynamical Lie alg
the noncompact symplectic algebrasp~3,R! of dimension 21. Its generators in the microscop
Hilbert space of anN-particle system correspond to the physical quantities

Qi j5 (
a51

N21

%a i%a j , monopole and quadrupole tensor,

Ki j5 (
a51

N21

pa ipa j , kinetic energy and quadrupole momentum tensor,
0022-2488/97/38(1)/501/23/$10.00
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Li j5 (
a51

N21

~%a ipa j2%a jpa i !, angular momentum, ~1!

Si j5 (
a51

N21

~%a ipa j1%a jpa i2 i\d i j !, monopole and quadrupole vibrational momentum.

These quantum collective observables are one-body bilinear products constructed from the
position and momentum operators%a i , pa j , i , jP $1,2,3%, such that all particles can be consider
on the same footing interchangeably. The complexification ofsp~3,R! is denoted byC3 in the
Cartan classification. A related algebraic structure is involved in the model of an affinely
body;6 such a model in dimension 2 was investigated in Ref. 7.

The paper is organized as follows. In Sec. II we recall the general notion of graded contr
of a Lie algebra and introduce our notations. In Sec. III we describe how theQ3K grading of the
Lie algebras is constructed. The section is divided into two parts: in the first one we di
C3[sp~3,C! andsp~3,R!, while in the second one we discussC2[sp~2,C! andsp~2,R!. In Sec.
IV we introduce physical assumptions under which theQ3K-graded contractions are compute
These contractions are presented in a compact matrix form~48!–~50!. Section V contains the full
list of the explicit forms of theQ3K-graded contractions ofC3, sp~3,R!, C2, andsp~2,R!. We
comment on our results in Sec. VI. In Appendix A the definitions8 of sp~N,C!, sp~N,R!, and
sp(P,Q), P1Q5N are collected. Also explicit forms of the bases ofC3, sp~3,R!, C2, and
sp~2,R! adapted to the considered grading are given there. In Appendix B we show the
spondence between the generators of canonical transformations formingsp~3,R!, sp~2,R! and the
bases listed in Appendix A.

II. NOTION OF GRADED CONTRACTIONS

We summarize the basic concepts and also introduce some useful notations.
Definition 1: Lie algebra graded by a finite Abelian group.2 Let G be a given finite Abelian

group. Let us suppose that the Lie algebraL is decomposed as a linear space into a direct sum
~grading! subspaces,

L5 %

iPG
L i , ~2!

such that the commutation relations inL have the graded structure, i.e., for every choice
elementsxPL i andyPL j we have

@x,y#5z, ~3!

wherez belongs to the grading subspaceL i1 j , as long as the commutator differs from zero. F
simplicity of notation we write

0Þ@L i ,L j ##L i1 j , i , jPG. ~4!

Then the Lie algebraL is calledgradedby the finite Abelian groupG.
In this paper we shall use a special notation forG5Z23Z2. Lie algebraL is Z23Z2 graded,

if it is possible to decomposeL into the direct sum of four subspaces,

L5L00%L01%L10%L115 %

a,bP$0,1%

Lab , ~5!

such that
J. Math. Phys., Vol. 38, No. 1, January 1997
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0Þ@Lab ,Lgd##La1g,b1d , a,b,g,dP$0,1%, ~6!

with subscripts added modulo 2. We will denote the subscripts shortly by

a[00, b[01, c[10, d[11; ~7!

then ~5! and ~6! can be written as

L5La%Lb%Lc%Ld5 %

iP$a,b,c,d%

L i , ~8!

0Þ@L i ,L j ##L i1 j , i , jP$a,b,c,d%, ~9!

with the addition rules

a1a5a, a1b5b, a1c5c, a1d5d,

b1b5a, b1c5d, b1d5c,

c1c1a, c1d5b,

d1d5a.

~10!

Definition 2: Graded contraction of a Lie algebra.2 TheG-graded contractionLe of L is
defined as a Lie algebra that has the same linear space structure asL, but with modified com-
mutation relations

0Þ@L i ,L j #e5
def

e i , j@L i ,L j ##e i , jL i1 j , i , jPG, ~11!

where the contraction parametersei , j ~zero or not! satisfy

e i , j5e j ,i , ~12!

and are such that the Jacobi identity is never violated. The last requirement leads to the so
first basic set of contraction equations,2

e i , jek,i1 j5e j ,ke i , j1k , i , j ,kPG, ~13!

which the contraction parameters must satisfy. For contractions of the complex or real Lie
bras, the parametersei , j are complex or real, respectively.

We introduce the following notation for the commutator of elements of a Lie algebra:

b

A

a••• c ⇔ @a,b#5c. ~14!

Let us show as an example the transcription of the commutation relations of the matrices,
J. Math. Phys., Vol. 38, No. 1, January 1997
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504 J. Tolar and P. Trávnı́ček: Graded contractions of symplectic Lie algebras

¬¬¬¬¬¬¬¬¬¬
a15 is15S • i

i •

D;
1

2
i ~K112Q11!,

b15 is25S • 1

21 •

D;
1

2
~K111Q11!, ~15!

c15 is35S i •

• 2 i D;
1

2
iS11,

which composesp~1!. The dots replace zeros, ands1, s2, s3 are the Pauli matrices,

s15S • 1

1 •

D , s25S • 2 i

i •

D , s35S 1 •

• 21D . ~16!

Commutation relations of matrices~15! can be written in terms of~14! as

~17!

For C3 @as well as forsp~3,R!# the following abbreviations will be used:

@a,b#5c
@a,b#5~d16d2!c
@a,b#5~1d62d!c

@a,b#5dc
@a,b#5c1d~d16d2!

⇔
⇔
⇔
⇔
⇔

@ai ,bj #5e i jkck ,
@ai ,bj #5~d i j116d i j21!ci ,
@ai ,bj #5~d i11 j6d i21 j !ci ,
@ai ,bj #52 d i j cj ,
@ai ,bj #5e i jkck12d i j ~di116di21!,

~18!

wherei , j ,kP$1,2,3%, di j is the Kronecker symbol,ei jk is the totally skew-symmetric Levi-Civita`
tensor withe12351, and ini61, j61 cyclic change~modulo 3! of indices is understood.

III. Q3K-GRADED STRUCTURE

For the definitions of symplectic Lie algebras in general and for suitable choices of ba
particular, we refer to Appendix A.

A. Lie algebras C3 and sp (3,R)

Let us considersp~3,R! first. It consists of 636 matrices~A2! @also see~A12!#, further
denoted byL. From the adopted physical point of view, it is the Lie algebra of the subgrou
linear canonical transformations of six-dimensional phase spaceR6 @with coordinates (xi ,pj ),
i , jP$1,2,3%#. The set of its infinitesimal generators is given by all quadratic polynomials inxi ,pj .
In Appendix B, a convenient set of independent physical generators is given by simple qua
expressions. Furthermore the explicit one-to-one correspondence~B4! between the two realiza
tions of sp~3,R!—the quadratic generators~or real symmetric matricesB!, and matricesL—is
given there.
J. Math. Phys., Vol. 38, No. 1, January 1997
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As in Refs. 3 and 4 we start from the observation that each involutive automorphism of
algebraL of the form

x°TxT21, xPL, ~19!

automatically induces aZ2 grading ofL. Namely,La are the eigenspaces of

TxT215~21!ax, xPLa , aP$0,1%, ~20!

and satisfy~4!:

xPLa , yPLb⇒T@x,y#T215~21!a1bz⇔zPLa1b . ~21!

We are going to use two convenient transformations of finite orderT that generate a
Z23Z2-graded structure onsp~3,R! and have concrete physical meaning as physically partic
discrete transformations of the phase space.

The first one is the linear canonical transformation,

xi→pi ,

pj→2xj , i , jP$1,2,3%, ~22!

exchanging the coordinates and momenta. It can be represented by the matrix

K5S • • • 1 • •

• • • • 1 •

• • • • • 1

21 • • • • •

• 21 • • • •

• • 21 • • •

D , ~23!

acting on vectors~p
x!. Its properties,

tK5K21, K25P⇒K45P25I, ~24!

whereP is the generator of space inversion~35! andI is the unit matrix, imply thatK is of order
4.

Using ~24!, Eq. ~20! can be equivalently expressed in the two realizations:

~x,p! tKBKS xpD5~21!a~x,p!BS xpD ⇔
~117!

KLK215~21!aL. ~25!

Although K is an element of finite order 4, explicit calculation~28!–~30! shows thataP$0,1%,
henceK acting onsp~3,R! induces ‘‘only’’ theZ2 grading.

In order to determine a basis ofsp~3,R! consisting of eigenmatrices of~20! with eigenvalues
61, we shall perform a simple calculation forsp~3!. According to ~104!, the elements of
sp(3)[sp(3,0) can be written in block form,

L5S Z11 Z13

2Z̄13 Z̄11
D 5S A11 iA2 C11 iC2

2C11 iC2 A12 iA2
D , ~26!
J. Math. Phys., Vol. 38, No. 1, January 1997
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where matricesAi ,Cj , i , jP$1,2% are real 333 matrices,Cj are symmetric; sinceA11 iA2 should
be skew Hermitian, it follows that

tA152A1 , i.e., A1 is real skew symmetric,

tA25A2 , i.e., A2 is real symmetric. ~27!

Simple calculation gives

KS A11 iA2 C11 iC2

2C11 iC2 A12 iA2
DK215S A12 iA2 C12 iC2

2C12 iC2 A11 iA2
D , ~28!

or

KLK215L̄, LPsp~3! ~29!

~the bar denotes complex conjugation of all elements of a matrix!, and consequently

K Re~L !K215~11!Re~L !,
~30!

K Im~L !K215~21!Im~L !.

From ~30! it follows that the eigenmatrices corresponding to eigenvalues11 and21 of the
automorphism~20! generated by discrete canonical transformationK are real and purely imagi
nary, respectively. Moreover,sp~3! matrices are skew Hermitian by definition and hence r
eigenmatrices have to be skew symmetric and purely imaginary eigenmatrices have to b
metric. We refer to formulas~A9!, ~A11!, and ~A12! in Appendix A, where explicit bases fo
sp~3! @andsp~3,C!#, sp~2,1!, andsp~3,R! are given.

The secondinvolutive automorphism~20! @commuting with~25!#, which provides another
Z2-graded structure onsp~3,R! is generated by the linear operation of time reversal,

xi→xi , pj→2pj , i , jP$1,2,3%. ~31!

It can be represented by matrixQ,

Q5S 1 • • • • •

• 1 • • • •

• • 1 • • •

• • • 21 • •

• • • • 21 •

• • • • • 21

D , ~32!

acting on the phase spaceR6. Using

KQ52QK, ~33!

two equivalent realizations of Eq.~20! are

~x,p! tQBQS xpD5~61!~x,p!BS xpD ⇔
~117!

QLQ2152~61!L. ~34!
J. Math. Phys., Vol. 38, No. 1, January 1997
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Note that the correct behavior of generators under time reversal is given by the relation on th
which involves physical generators.

We also note that space inversionP,

xi→2xi , pj→2pj , i , jP$1,2,3%, ~35!

does not yield an interestingZ2 grading ofsp~3,R!, because~20! is fulfilled with a50 for all
elements.

Finally we combine the time reversalQ ~32! and the discrete canonical transformationK ~23!
to get the followingZ23Z2-graded structure ofC3, sp~3!, andsp~3,R!,

C3[sp~3,C!5 %

abP$0,1%

Lab5L00%L01%L10%L11

5spanC$g% %spanC$c,f% %spanC$b,e% %spanC$a,d%, ~36!

sp~3!5spanR$g% %spanR$c,f% %spanR$b,e% %spanR$a,d%, ~37!

sp~3,R!5spanR$2L% %spanR$2S% %spanR$~K1Q!% %spanR$2~K2Q!%. ~38!

Definitions ~A9! of the generatorsg[$g1 ,g2 ,g3%, c[$c1 ,c2 ,c3%, f[$ f 1 , f 2 , f 3%, b[$b1 ,b2 ,b3%,
e[$e1 ,e2 ,e3%, a[$a1 ,a2 ,a3%, d[$d1 ,d2 ,d3% are given in Appendix A. For definitions~B1!,
~B5! of the physical generatorsL[$L12,L23,L31%, S[$1/2S11,1/2S22,1/2S33,S12,S23,S31%,
K[$1/2K11,1/2K22,1/2K33,K12,K23,K31%, Q[$1/2Q11,1/2Q22,1/2Q33,Q12,Q23,Q31% see Appendix
B.

B. Lie algebras C2 and sp (2,R)

Here let us briefly summarize the corresponding results for the cases ofC2 andsp~2,R!. The
discrete canonical transformation~22! and the time reversal~31! are represented by matrices

K5S •

•

21
•

•

•

•

21

1
•

•

•

•

1
•

•

D , Q5S 1 • • •

• 1 • •

• • 21 •

• • • 21

D , ~39!

acting on the phase spaceR4. Suitable bases forsp~2! @and sp~2,C!#, sp~1,1!, andsp~2,R! are
given in Appendix A by~A4!, ~A7!, and~A8!.

TheZ23Z2-graded structure ofC2, sp~2!, andsp~2,R! induced by involutive automorphism
~20! generated byT[Q andT[K is then given by

C2[sp~2,C!5 %

abP$0,1%

Lab5L00%L01%L10%L11

5spanC$g% %spanC$c1 ,c2 , f % %spanC$b1 ,b2 ,e% %spanC$a1 ,a2 ,d%,

~40!

sp~2!5spanR$g% %spanR$c1 ,c2 , f % %spanR$b1 ,b2 ,e% %spanR$a1 ,a2 ,d%, ~41!
J. Math. Phys., Vol. 38, No. 1, January 1997
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sp~2,R!5spanR$2L12% %spanR$2 1
2 S11,2

1
2 S22,2S12% %spanR$ 1

2 ~K111Q11!,
1
2 ~K22

1Q22!,~K121Q12!% %spanR$2 1
2 ~K112Q11!,2

1
2 ~K222Q22!,2~K122Q12!%.

~42!

Definitions ~A4! of the generatorsg, c1 , c2 , f , b1 , b2 , e, a1 , a2, d are given in Appendix A.
Physical generators ofsp~2,R! are given by~B7!.

IV. Q3K-GRADED CONTRACTIONS

A. Lie algebras C3 and sp (3)

In Fig. 1, the commutation relations ofsp~3! ~orC3! are presented in the form modified by th
contraction parameters real~or complex!, respectively,e i , j , i , jP$a[00,b[01,c[10,d[11%. If
all e i , j , i , jP$a,b,c,d% are equal to 1, we have the commutation relations ofsp~3! ~or C3! in the
noncontracted form~trivial contraction!.

It is convenient to store the information about the zeros of noncontracted commutation
tions in the~symmetric! matrix2 k. In many cases the grading of a Lie algebra is nongeneric,
some commutators@L i ,L j #, i , jPG are identically zero before contraction. Then the correspon
ing elements ofk are set to zero. The commutation relations ofsp~3! ~orC3! determine the matrix
k without zeros,

k5S 1 1 1 1

1 1 1

1 1

1

D . ~43!

In Ref. 2, among other cases, also thegenericZ23Z2-graded structure was considered. It wa
shown that there exist 41 inequivalent~normalized! solutions of the basic set of contraction
equations~13!,

e i , jek,i1 j5e j ,ke i , j1k , i , j ,kPZ23Z2 . ~44!

The scaling transformation,

FIG. 1. Commutation relations ofsp~3! @orC3[sp~3,C!# modified by the contraction parameterse i , j , i , jP$a[00,b[01,
c[10, d[11%.
J. Math. Phys., Vol. 38, No. 1, January 1997
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l i→
w

l i85ai l i , 0ÞaiPF, l iPL i , iP$a,b,c,d%, ~45!

of the basis elements of the graded complex~F[C! or real ~F[R! Lie algebra modifies the
commutation relations into

@ l i ,l j #5 l i1 j→
w

@ l i8 ,l j8#5
aiaj
ai1 j

l i1 j8 , i , jP$a,b,c,d%. ~46!

In this way those contraction parameterse i j , i , jP$a,b,c,d% that differ from zero can be
normalized2 to 61. Consequently, we solve~44! over $0,1% when we want to find all nonisomor
phic Q3K-graded contractions of thecomplexLie algebraC3[sp~3,C!. To find all nonisomor-
phic Q3K-graded contractions of thereal Lie algebrasp~3!, we solve ~44! over $21,0,1%.
Changes of signs in the commutators lead to different graded contractions, i.e. to, in ge
nonisomorphic real Lie algebras. At the same time, we have to consider the scaling trans
tions~45!, ~46!, because they may lead to simultaneous changes of some signs in the commu
such Lie algebras are isomorphic, i.e. the corresponding graded contractions are equivale

In order to preserve the usualO~3!-transformation properties of the generators as phys
quantities also in the contracted Lie algebras~e.g., vectors remain vectors, pseudovectors rem
pseudovectors after contraction!, we want to study theQ3K-graded contractions ofC3 andsp~3!
under the followingphysical assumptions.

~i! Space isotropy: the rotational invariance of space means that the form of all commu
relations involvingg52L remains unchanged after contraction.9

~ii ! The behavior of generators under time reversalQ is preserved through contraction.~Parity
11 is preserved automatically, because the generators are quadratic forms on phase spac!

~iii ! The extra discrete symmetryK between coordinates and momenta is added since
characteristic of the harmonic oscillator Hamiltonian that appears in the numerous treatme
nuclear collective models.

In agreement with~i! we keep the contraction parametersea,a , ea,b , ea,c , andea,d equal to 1,
i.e. we never change the commutation relations involving generatorsg. This assumption restricts
the whole set of contraction equations~44! to the set of three independent equations,

eb,b5eb,deb,c , ec,c5eb,cec,d , ed,d5ec,deb,d . ~47!

From them, in agreement with~ii !, ~iii !, the Q3K-graded contractions ofC3 and sp~3! were
computed. Of course, our contractions are contained in the set of 41 possibleZ23Z2-graded
contractions of a genericZ23Z2-graded Lie algebra.2

Equations~47! yield the following three types ofQ3K-graded contractions:

e15S 1 1 1 1

êbb êbc êbbêbc
21

êbcecd ecd

êbbecdêbc
21

D , ~48!

e35S 1 1 1 1

• êbc •

êbcecd ecd

•

D , ~49!
J. Math. Phys., Vol. 38, No. 1, January 1997
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e2,45S 1 1 1 1

• • ebd

• ecd

ecdebd

D ; ~50!

ê i j means thatei jÞ0. Explicit results are given in Sec. V.

B. Lie algebras C2 and sp (2)

The above procedure can be applied~with minor modifications! also tosp~2! ~or C2!. Their
commutation relations modified by the contraction parameters in the basis~105! are shown in Fig.
2.

Although the entrykaa of matrix k vanishes, the set ofQ3K-graded contractions ofsp~2,R!
~or C2! under the same physical assumptions~i!, ~ii !, ~iii ! is the same as given in Sec. IV A, Eqs
~48!, ~49!, and~50!.

V. LIST OF Q3K-GRADED CONTRACTIONS

A. Complex Lie algebra C3

For the complex Lie algebraC3[sp~3,C!, Eqs.~47! solved over$0,1% result in eight continu-
ousQ3K-graded contractions ofC3. For thee matrices we use the notation introduced in Refs.
4, and 9.

The matrixe1 @Eq. ~48!# provides two continuousQ3K-graded contractions ofsp~3,C!, eR1

~trivial! andeA1.

eR15S 1 1 1 1

1 1 1

1 1

1

D :sp~3,C! ——→
eR1

sp~3,C!, ~51!

eA15S 1 1 1 1

1 1 1

• •

•

D :sp~3,C! ——→
eA1

gl~3,C!L ,iS{” T12;~K1Q!,i ~K2Q! , ~52!

{” denoting the semidirect sum.
The second matrixe3 ~49! yields two continuous contractionseR3 andeA3:

FIG. 2. Commutation relations ofsp~2! @or C2[sp~2,C!# modified by the contraction parameterse i , j , i , jP$a[00,b[01,
c[10, d[11%.
J. Math. Phys., Vol. 38, No. 1, January 1997
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eR35S 1 1 1 1

• 1 •

1 1

•

D :sp~3,C! ——→
eR3

gl~3,C!L ,~K1Q!{” T12;iS,i ~K2Q! , ~53!

eA35S 1 1 1 1

• 1 •

• •

•

D :sp~3,C! ——→
eA3

so~3!L{” $@T6;iS%T6;i ~K2Q!#{” T6;~K1Q!%

5so~3!L{” $T6;iS¹@T6;i ~K2Q! %T6;~K1Q!#%

5so~3!L{” L iS,~K1Q!,i ~K2Q! , T6;i ~K2Q!,C L, ~54!

whereC L denotes the center ofL iS,(K1Q),i (K2Q) .
The third matrixe2,4 ~50! yields the remaining four continuous contractionseR2, eA2, eR4, and

eA4:

eR25S 1 1 1 1

• • 1

• 1

1

D :sp~3,C! ——→
eR2

gl~3,C!L ,i ~K2Q!{” T12;iS,~K1Q! , ~55!

eA25S 1 1 1 1

• • 1

• •

•

D :sp~3,C! ——→
eA2

so~3!L{” $@T6;iS%T6;~K1Q!#{” T6;i ~K2Q!%

5so~3!L{” $T6;iS¹@T6;~K1Q! %T6;i ~K2Q!#%5so~3!L{” L iS,~K1Q!,i ~K2Q! , T6;~K1Q!,C L,

~56!

eR45S 1 1 1 1

• • •

• 1

•

D :sp~3,C! ——→
eR4

so~3!L{” $@T6;~K1Q! %T6;iS#{” T6;i ~K2Q!%

5so~3!L{” $T6;~K1Q!¹@T6;iS%T6;i ~K2Q!#%

5so~3!L{” L iS,~K1Q!,i ~K2Q! , T6;iS,C L, ~57!

eA45S 1 1 1 1

• • •

• •

•

D :sp~3,C! ——→
eA4

so~3!L{” T18;iS,~K1Q!,i ~K2Q! . ~58!
J. Math. Phys., Vol. 38, No. 1, January 1997
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B. Complex Lie algebra C2

Below theQ3K-graded contractions ofsp~2,C! are listed,

sp~2,C! ——→
eR1

sp~2,C!, ~59!

sp~2,C! ——→
eA1

gl~2,C!L ,iS{” T6;~K1Q!,i ~K2Q! , ~60!

sp~2,C! ——→
eR3

gl~2,C!L ,~K1Q!{” T6;iS,i ~K2Q! , ~61!

sp~2,C! ——→
eR2

gl~2,C!L ,i ~K2Q!{” T6;iS,~K1Q! , ~62!

sp~2,C! ——→
eA3

so~2!L{” $@T3;iS%T3;i ~K2Q!#{” T3;~K1Q!%

5so~2!L{” $T3;iS¹@T3;i ~K2Q! %T3;~K1Q!#%

5so~2!L{” L iS,~K1Q!,i ~K2Q! , T3;i ~K2Q!,C L, ~63!

sp~2,C! ——→
eA2

so~2!L{” $@T3;iS%T3;~K1Q!#¹T3;i ~K2Q!%

5so~2!L{” $T3;iS¹@T3;~K1Q! %T3;i ~K2Q!#%

5so~2!L{” L iS,~K1Q!,i ~K2Q! , T3;~K1Q!,C L, ~64!

sp~2,C! ——→
eR4

so~2!L{” $@T3;~K1Q! %T3;iS#{” T3;i ~K2Q!%

5so~2!L{” $T3;~K1Q!¹@T3;iS%T3;i ~K2Q!#%

5so~2!L{” L iS,~K1Q!,i ~K2Q! , T3;iS,C L, ~65!

sp~2,C! ——→
eA4

so~2!L{” T18;iS,~K1Q!,i ~K2Q! . ~66!

C. Real Lie algebra sp (3)

Solved over$21,0,1%, Eqs. ~47! give 27 different contraction matrices. Under the scal
transformation~45!, ~46! involving the simultaneous sign changes ofeb,c , eb,d , andec,d , one finds
that among 27 solutions, only 14 contraction matrices are independent. Among them are
contractionseR1, eR2, eR3, eR4, eA1, eA2, eA3, eA4 already obtained in Secs. V A and V B. Th
remaining six contractions are additionaldiscreteQ3K-graded contractions of the real Lie alg
bra sp~3! given by the contraction matrices

eR1d15S 1 1 1 1

21 1 21

1 1

21

D , eR1d25S 1 1 1 1

1 21 21

21 1

21

D ,

J. Math. Phys., Vol. 38, No. 1, January 1997
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eR1d35S 1 1 1 1

21 21 1

21 1

1

D , eA1d5S 1 1 1 1

21 21 1

• •

•

D , ~67!

eR2d5S 1 1 1 1

• • 21

• 1

21

D , eR3d5S 1 1 1 1

• 21 •

21 1

•

D .
In the first step we take four contractions ofsp(3):eR1 ~continuous and trivial!, eR1d1, eR1d2,

eR1d3 ~all discrete! ~see Fig. 3!. In the second step we apply all remaining contractions to eac
these four contractions and classify the physically different results. It is important to specify
we will consider two differentQ3K-graded contractions ofsp~3! asphysically equivalent.

From themathematicalpoint of view the situation is clear and the in-equivalent results
Z23Z2 grading are generally given by 41 contraction matrices listed in Ref. 2. Of them on
contraction matrices survive due to our physical assumptions~i!–~iii !. We still have to be careful
In the case ofsp~3! the reason is the following: the subspacesL01, L10, andL11 have equal
dimensions as well as the same structure of commutators, which differ only by signs.
clearly, different discrete contraction matriceseR1d1, eR1d2, eR1d3, which ‘‘play’’ only with the
signs of the commutators, may provide isomorphic results.

From thephysicalpoint of view we cannot automatically take two isomorphic graded c
tractions as physically equivalent, because the contraction can exchange the~physical! role of the
physical generators.

We start from the real Lie algebrasp~3! represented by matrices~A5! for P53, Q50. In
schematic form the commutation table ofsp~3! ~see Fig. 1! is

FIG. 3. Contraction scheme for the discreteQ3K-graded contractionseR1da, aP$1,2,3% of sp~3!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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, ~68!

where$c, f % denotes spanR$c,f%, etc.
Now we shall look at the discrete contractionseR1da, aP$1,2,3%, in detail.

a51: Contraction matrixeR1d1 yields the commutation relations

~69!

of sp~3,R! with generators~A12!. We denote this result bysp~3,R!1.
a52: Contraction matrixeR1d2 leads to the commutation relations@the left-hand side of~71!#

satisfied by the matrices

ia1 , ia2 , ia3 , ib1 , ib2 , ib3 ,

id1 , id2 , id3 , ie1 , ie2 , ie3 , ~70!

c1 , c2 , c3 , f 1 , f 2 , f 3 , g1 , g2 , g3 .

We note that matricesib j , jP$1,2,3% and ie3 do not belong tosp~3!, sp~2,1!, or sp~3,R!.
However, upon exchanging rows and columns in the commutation table,

~71!
J. Math. Phys., Vol. 38, No. 1, January 1997
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we obtainsp~3,R! @see the previous case~69!# in which the role of generatorsc,f andb,ehas
been exchanged.~The exchange of generators was possible only because the subspaceL01,
L10, andL11 have the same structure.! We denote this result bysp~3,R!2.

a53: eR1d3 leads to the commutation relations@the left hand-side of~73!#

ib1 , ib2 , ib3 , ic1 , ic2 , ic3 ,

ie1 , ie2 , ie3 , i f 1 , i f 2 , i f 3 ,

a1 , a2 , a3 , d1 , d2 , d3 , g1 , g2 , g3 .

~72!

Also in this case we are free to exchange rows and columns in the commutation table a
as to change the sign of some generators with the resulting commutation table

~73!

of sp~3,R! in which the role of generatorsa, d, andb, ehas been exchanged. We denote t
result bysp~3,R!3.
In order to see physical inequivalence of the above results we exhibit the correspo

physical generators in the Table I.
The real Lie algebrassp~3!, sp~3,R!a , aP$1,2,3% are mutually connected by discrete contra

tions, as shown in Fig. 3. We are especially interested in the classification of all phys
inequivalentQ3K-graded contractions ofsp~3,R![sp~3,R!1. Below, in the first and second co
umns, we list itseight continuous contractions:

sp~3,R!1→
eR1

sp~3,R!1 ←
eR1d1

sp~3!, ~74!

sp~3,R!1→
eR2

gl~3,R!L ,~K2Q!{” T12;S,~K1Q! ←
eR1d1–eR2

sp~3!, ~75!

sp~3,R!1→
eR3

u~3!L ,~K1Q!{” T12;S,~K2Q! ←
eR1d1–eR3

sp~3!, ~76!

TABLE I. Correspondence between the generators of thesp~3! and the generators of its discreteQ3K-graded contractions
sp~3,R!a , aP$1,2,3%.

Physical generators Generators ofsp~3!

Generators ofsp~3,R!a

a51 a52 a53

Angular momentum 2L 2L 2L 2L
Monopole and quadrupole
vibrational momentum

iS 2S i ~K1Q! S

~Kinetic energy and quadrupole
momentum tensor!
1~monopole quadrupole tensor!

~K1Q! ~K1Q! iS 2i ~K2Q!

~Kinetic energy and quadrupole
momentum tensor!
2~monopole quadrupole tensor!

i ~K2Q! 2~K2Q! 2~K2Q! 2i ~K1Q!
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



.
tion

oth
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sp~3,R!1→
eA1

gl~3,R!L ,S{” T12;K ,Q ←
eR1d1–eA1

sp~3!, ~77!

sp~3,R!1→
eR4

so~3!L{” LS,K ,Q, T6;S,C L ←
eR1d1–eR4

sp~3!, ~78!

sp~3,R!1→
eA2

so~3!L{” LS,K ,Q, T6;~K1Q!,C L ←
eR1d1–eA2

sp~3!, ~79!

sp~3,R!1→
eA3

so~3!L{” LS,K ,Q, T6;~K2Q!,C L ←
eR1d1–eA3

sp~3!, ~80!

sp~3,R!1→
eA4

so~3!L{” T18;S,K ,Q ←
eR1d1–eA4

sp~3!. ~81!

The third column involving the corresponding contractions ofsp~3! is presented for comparison
The operation– is the commutative composition of matrices defined in Ref. 2 by the multiplica
of equally placed elements. We also note that the following identities are satisfied:

eR2d5eR1d2–eR2, ~82!

eR3d5eR1d3–eR3, ~83!

eA1d5eR1d3–eA1. ~84!

There are stillthree discrete contractions,

sp~3,R!1→
eR2

u~3!L ,i ~K2Q!{” T12;S,~K1Q! ←
eR1d1–eR1d2–eR2

sp~3!, ~85!

sp~3,R!1→
eR3

gl~3,R!L ,i ~K1Q!{” T12;S,~K2Q! ←
eR1d1–eR1d3–eR3

sp~3!, ~86!

sp~3,R!1→
eA1

u~3!L ,iS{” T12;K ,Q ←
eR1d1–eR1d3–eA1

sp~3!, ~87!

D. Real Lie algebra sp (2)

As mentioned in Sec. IV B, the set ofQ3K-graded contraction matrices is the same for b
C3 andC2. Hence the discussion of Sec. V C can be taken over forsp~2! with few modifications
only.

Starting from the real Lie algebrasp~2! with the basis~B4! the three discreteQ3K-graded
contractionseR1da, aP$1,2,3% yield three physically inequivalentsp~2,R!a , aP$1,2,3% Lie alge-
bras~see Fig. 4!,

sp~2! ——→
eR1d1

sp~2,R!1 , ~88!

sp~2! ——→
eR1d2

sp~2,R!2 , ~89!

sp~2! ——→
eR1d3

sp~2,R!3 . ~90!

Of course we are consideringsp~2! as a ‘‘two-dimensional’’ version ofsp~3! with the cor-
responding physical interpretation according to Table I.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Below theeight continuousQ3K-graded contractionseb, bP$R1,R2,R3,R4,A1,A2,A3,A4%
of sp~2,R!1 are listed,

sp~2,R!1→
eR1

sp~2,R!1 ←
eR1d1

sp~2!, ~91!

sp~2,R!1→
eR2

gl~2,R!L ,~K2Q!{” T6;S,~K1Q! ←
eR1d1–eR2

sp~2!, ~92!

sp~2,R!1→
eR3

u~2!L ,~K1Q!{” T6;S,~K2Q! ←
eR1d1–eR3

sp~2!, ~93!

sp~2,R!1→
eA1

gl~2,R!L ,S{” T6;K ,Q ←
eR1d1–eA1

sp~2!, ~94!

sp~2,R!1→
eR4

so~2!L{” LS,K ,Q, T3;S, C L ←
eR1d1–eR4

sp~2!, ~95!

sp~2,R!1→
eA2

so~2!L{” LS,K ,Q, T3;~K1Q!,C L ←
eR1d1–eA2

sp~2!, ~96!

sp~2,R!1→
eA3

so~2!L{” LS,K ,Q, T3;~K2Q!,C L ←
eR1d1–eA3

sp~2!, ~97!

sp~2,R!1→
eA4

so~2!L{” T9;S,K ,Q ←
eR1d1–eA4

sp~2!. ~98!

The additionalthree discretecontractions ofsp~2,R!1 are

sp~2,R!1→
eR2

u~2!L ,i ~K2Q!{” T6;S,~K1Q! ←
eR1d1–eR1d2–eR2

sp~2!, ~99!

sp~2,R!1→
eR3

gl~2,R!L ,i ~K1Q!{” T6;S,~K2Q! ←
eR1d1–eR1d3–eR3

sp~2!, ~100!

sp~2,R!1→
eA1

u~2!L ,iS{” T6;K ,Q ←
eR1d1–eR1d3–eA1

sp~2!. ~101!

In the third column of~88!–~101! the corresponding contractions ofsp~2! are given.

FIG. 4. Contraction scheme for the discreteQ3K-graded contractionseR1da, aP$1,2,3% of sp~2!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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VI. DISCUSSION OF RESULTS

Our results can be summarized in a simple graphical form; Fig. 5. ForC3 ~as well asC2! there
are eight continuousQ3K-graded contractions described by eight vertices of the cube. In the r

FIG. 6. Physically relevant subalgebras ofsp~3,R! ~Ref. 5!.

FIG. 5. Contraction scheme for allQ3K-graded contractions ofsp~3,R! andC3 Lie algebras@as well as ofsp~2,R! and
C2#.
J. Math. Phys., Vol. 38, No. 1, January 1997
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cases ofsp~3,R! andsp~2,R!, six additional discrete contraction matrices were found. Three
them,eR1da, aP$1,2,3%, are shown in Fig. 3@see Fig. 4 forsp~2! andsp~2,R!a# to connectsp~3!
and three isomorphic subalgebrassp~3,R!a , aP$1,2,3% in C3. They differ in physical content, a
can be seen in Table I. For our purposes, only the generators ofsp~3,R!1 have the right corre-
spondence to the physical generatorsL , S, K , Q ~see Appendix B!. The other two isomorphic Lie
algebrassp~3,R!a , aP$2,3% should be considered as physically inequivalent.

The contracted Lie algebras are explicitly given in Eqs.~74!–~81!, ~85!–~87! @~88!–~101! for
sp~2,R!#. They may be compared with the Lie algebraic theory of nuclear collective mode
this respect not all of them are useful, however. The Lie algebras of physically relevant dyna
symmetries, which have been used in nuclear theory, are presented~with their inclusions! in Fig.
6.5 Besidessp(3,R)L ,S,K ,Q itself, Fig. 6 contains those Lie subalgebras, which can be identifie
parts of~continuously! contracted Lie algebras, namely, those given in Eqs.~76!, ~77!, and~81!
involving the contraction matriceseR3, eA1, andeA4, respectively~also see Fig. 7!:

u~3!L ,~K1Q!,u~3!L ,~K1Q!{” T12;S,~K2Q! , ~76!

gl~3,R!L ,S{” T6;Q,gl~3,R!L ,S{” T12;K ,Q , ~77!

so~3!L{” T5;Q,so~3!L{” T18;S,K ,Q . ~81!

The discrete contractions do not yield applicable symmetries.
The Lie algebras of Fig. 6 have been used as spectrum generating algebras, which, by

Hermitian irreducible representation, generate the Hilbert space of the system. For instan
mass quadrupole collective model corresponds to an irreducible representation of the Lie a
MQC 5 gl(3,R)L ,S{” T6;Q . It represents an algebraic formulation of the phenomenological Bo
Mottelson collective model of nuclear rotations and quadrupole vibrations, where, except rot
and homogeneous deformations, all other degrees of freedom of the many particle syst
frozen. The transition to the subalgebras@like CM~3! or Rot~3!# of MQC corresponds to still more
simplified models with still less degrees of freedom. Let us note that the physical represen
of the dynamical algebras can be understood here as representations of the correspond
tracted Lie algebras, where some generators of the ideal are trivially represented. For a d
exposition we refer to Ref. 5 and further references given there.
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APPENDIX A: SYMPLECTIC LIE ALGEBRAS

In this paper we have used the following definitions of Lie algebras8 sp~N,C!, sp~N,R!,
sp(P,Q),

sp~N,C!5H S Z1 Z2

Z3 2 tZ1
D UZi , iP$1,2,3% complex N3N
matrices, Z2 and Z3 symmetricJ , ~A1!

sp~N,R!5H SX1 X2

X3 2 tX1
D UXi , iP$1,2,3% real N3N
matrices, X2 and X3 symmetricJ , ~A2!

sp~P,Q!5

{
S Z11 Z12 Z13 Z14

tZ̄12 Z22
tZ14 Z24

2Z̄13 Z̄14 Z̄11 2Z̄12
tZ̄14 2Z̄24 2 tZ12 Z̄22

D UZi j , iP$1,2%,
jP$1,2,3,4%,
complex matrices;
Z11 and Z13 of or-
der P, Z12 and Z14
are P3Q matri-
ces, Z11 and Z22
are skew Hermiti-
an, Z13 and Z24
are symmetric.

}
, ~A3!

whereP1Q5N.
Q3K-graded structure ofC2 is well visible when we choose the generators in the form

ak5 is1^ dk , bk5 is2^ dk ,

ck5 is3^ dk , kP$1,2%,
~A4!

d5 is1^ s1 , e5 is2^ s1 ,

f5 is3^ s1 , g5 i I^ s2 ,

wheres1, s2, ands3 are the Pauli matrices~16!, I is the 232 unit matrix, elements of 232
matricesdk , kP$1,2% are

$dk% i j5
def

d ikdk j , i , jP$1,2%, ~A5!

where i and j correspond to the rows and columns, respectively, and finally^ is the tensor
product of matrices conventionally defined by

S a b

c dD ^ S A B

C DD 5
defS aA aB bA bB

aC aD bC bD

cA cB dA dB

cC cD dC dD

D . ~A6!

All complex skew-Hermitian matrices~A4! satisfy more restrictive requirements than e
pressed by~A1!, concretely they satisfy conditions~A3! for P52, Q50, i.e., they form also a
basis of the real compact formsp~2!.

We note that the basis ofsp~1,1! consists of matrices,
J. Math. Phys., Vol. 38, No. 1, January 1997
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a1 , a2 , b1 , b2 , c1 , c2 , id, ie, i f , ig, ~A7!

and the basis ofsp~2,R! consists of~real! matrices,

ia1 , ia2 , ic1 , ic2 , id, i f , b1 , b2 , e,g. ~A8!

TheQ3K-graded structure ofC3 is apparent when we choose its basis in the form

ak5 is1^ dk8 , bk5 is2^ dk8 ,

ck5 is3^ dk8 , dk5 is1^ ek
2,

~A9!
ek5 is2^ ek

2, f k5 is3^ ek
2,

gk5I^ ek , kP$1,2,3%,

wheres1, s2, ands3 are the Pauli matrices~16!, I is the 232 unit matrix, elements of 333
matricesdk8 , ek

2, ek , kP $1,2,3% are

$dk8% i j5
def

d ikdk j , $ek
2% i j5

def

e i jk
2 ,

~A10!

$ek% i j5
def

e i jk , i , jP$1,2,3%,

wherei and j correspond to the rows and columns, respectively.
All complex skew-Hermitian matrices~A9! satisfy more restrictive requirements than e

pressed by~A1!, concretely they satisfy conditions~A3! for P53,Q50, i.e. they also form a basi
of the real compact formsp~3!.

We note that the basis ofsp~2,1! consists of matrices,

a1 , a2 , a3 , b1 , b2 , b3 , c1 , c2 , c3 ,
~A11!

id1 , id2 , d3 , ie1 , ie2 , e3 , i f 1 , i f 2 , f 3 , ig1 , ig2 , g3 ,

and the basis ofsp~3,R! consists of~real! matrices,

ia1 , ia2 , ia3 , b1 , b2 , b3 , ic1 , ic2 , ic3 ,
~A12!

id1 , id2 , id3 , e1 , e2 , e3 , i f 1 , i f 2 , i f 3 , g1 , g2 , g3 .

APPENDIX B: PHYSICAL GENERATORS

The simplest formulas for physical generators~1! of sp~3,R! are obtained forN51:

qi j5xixj ~monopole and quadrupole tensor!,

ki j5pipj ~kinetic energy and quadrupole momentum tensor!,
~B1!

l i j5xipj2xjpi ~angular momentum!,

si j5xipj1xjpi ~monopole and quadrupole vibrational momentum!,

wherei , jP$1,2,3%. These generators under the Poisson brackets,
J. Math. Phys., Vol. 38, No. 1, January 1997
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$ f ~xi ,pj !,g~xi ,pj !%5
def ] f

]xi

]g

]pi
2

]g

]xi

] f

]pi
, i , jP$1,2,3%, ~B2!

generatesp~3,R!.
There is an important relation between the realization~B1! and the usual matrix realization o

sp~3,R!. Namely, each real quadratic form can be written in the form

b~xi ,pj !5~x,p!B S xpD , ~B3!

with the real symmetric matrixB uniquely defined. Then the usual matrix realization ofsp~3,R!
by matricesL with the commutator [L1 ,L2]5L1L22L2L1 is one-to-one related with~B2!, ~B3!:

B52 1
2 KL, ~B4!

whereK is the nonsingular matrix of the symplectic form@K is equal to matrix~23! generating the
discrete canonical transformation~22!#. If expressed in terms of the basis~A4!, theL matrices that
correspond to quadratic forms~B1! are

Qi j5d i j ~bj1 ia j !1 1
2 e i jk~ek1 idk!,

Ki j5d i j ~bj2 ia j !1 1
2 e i jk~ek2 idk!,

~B5!
Li j52e i jkgk ,

Si j52 i ~2d i j cj1e i jk f k!, i , j ,kP$1,2,3%.

We also need the inverse relations

gk52e i jkLi j , ck5
1
2 iSkk ,

f k5 i e i jkSi j , bk5
1
2 ~Kkk1Qkk!,

~B6!
ek5 i e i jk~Ki j1Qi j !,

ak5
1
2 i ~Kkk2Qkk!, dk5 i e i jk~Ki j2Qi j !.

The physical generators ofSp~2,R! transformations in the phase spaceR4 are represented by
434 L matrices,

Qi j5d i j ~bj1 ia j !1 1
2 ~12d i j !~e1 id !,

Ki j5d i j ~bj2 ia j !1 1
2 ~12d i j !~e2 id !,

~B7!
Li j52g,

Si j52 i @2d i j cj1~12d i j ! f #, i , jP$1,2%.
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Krein duality for compact quantum groups
Shuzhou Wanga)
Institut des Hautes E´ tudes Scientifiques, 35, route de Chartres,
91440-Bures-sur-Yvette, France

~Received 11 June 1996; accepted for publication 19 August 1996!

We define noncommutative Krein algebras and extend the classical Krein duality
for compact groups to compact quantum groups. ©1997 American Institute of
Physics.@S0022-2488~97!03201-5#

I. INTRODUCTION

The subject of this paper originated from the author’s intention to find a satisfactory noti
compact quantum groups that includes both compact groups and Woronowicz’s compact
quantum groups.1 Of the latter there are many highly nontrivial examples~see, for instance, Refs
1–7!. Recall that the classical Krein duality theorem says that there is a one-to-one corre
dence between compact groups and commutative Krein algebras~see Refs. 8–10!. Therefore,
compact groups and commutative Krein algebras are essentially the same. In view of thi
natural to define compact quantum groups as suitably defined Krein algebras~commutative or
not!. A careful examination of the traditional definition of commutative Krein algebras soon le
the author to a suitable definition of the noncommutative ones~see Definition II.3 below!. At the
same time, the author found a natural and satisfactory definition of compact quantum gro
Ref. 11 ~namely, Definition II.1 below, see also Refs. 4 and 5!. In this paper, we prove tha
compact quantum groups are the same as~not necessarily commutative! Krein algebras, so we
have a quantum Krein duality. Namely, for every compact quantum groupG, there is a canonica
Krein algebraK(G) associated with it; and conversely, for every Krein algebraA, there is a
canonical compact quantum groupH~A! associated with it; and the canonical Krein algeb
K~H~A!! associated with the compact quantum groupH~A! is isomorphic toA. Therefore, this
generalizes the classical Krein duality for compact groups to compact quantum groups.

Our proof of the quantum Krein duality uses only elementary techniques in the theory oC*
algebras, and is technically much simpler than the traditional proofs of the classical Krein d
~see Refs. 8–10!.

In contrast with the Krein duality in this paper, Woronowicz formulates in Ref. 3 a Tannaka–
Krein duality based on the study of thecategoryof finite dimensional representations of compa
matrix quantum groups. Woronowicz proves that the category of finite dimensional unitary
resentationRG of a compact matrix quantum groupG is a complete concrete monoida
W* -category with a generator and conjugation; and conversely, every complete concrete mo
W* -categoryR with a generator and conjugation is the category of finite dimensional un
representations of a compact matrix quantum group. At the end of the paper, we will
Woronowicz’s version of the Tannaka–Krein duality for the more general compact qua
groups without proof, because the proof in this more general case is essentially the same a
case of compact matrix quantum groups. There are more axioms in Woronowicz’s Tannaka–
duality than in the quantum Krein duality of this paper. It is an interesting problem whether w
eliminate some of the axioms from Woronowicz’s Tannaka–Krein duality.

a!Electronic mail: szwang@ihes.fr; Present address: Department of Mathematics, University of California, Berkel
94720; Electronic mail: szwang@math.berkeley.edu
0022-2488/97/38(1)/524/11/$10.00
524 J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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II. THE MAIN DEFINITIONS

Notation.For every natural numberd and every* -algebraA,Md(A) denotesMd^A, namely,
the*-algebra ofd3d matrix with entries inA ~The symbolMd will also denoteMd~C!, whereC
is the algebra of complex numbers!; U(d) denotes the usuald3d unitary group. For every matrix
V5(v i )PMd(A), V* is the adjoint matrix ofV ~this defines the ordinary* -operation onMd(A)!:
the (i , j )th entry ofV* is v j i* ; V̄ 5 (v i j* ) denotes the conjugate matrix ofV: the (i , j )th entry ofV̄
is v i j* .

First we recall the notion of compact quantum groups~cf. Refs. 1, 4, 5, 11–14!.
II.1. Definition: A Woronowicz Hopf C* -algebra is a unitalC* -algebraA together with a

dense*-subalgebraA generated byui j
a ~whereaPN and i , jP$1,...,da%, andN is any set!, a

C* -homomorphismF: A→A^A, and a linear algebra-antihomomorphismk :A→A, such that,

~1! The matrixua5(ui 
a ) is a unitary element ofMda

^ A, for all aPN;

~2! ForaPN, andi , jP$1,...,da%,F(ui 
a ) 5 (k51

da uik
a

^ uk j
a ;

~3! For aPA, k(k(a* )* )5a; and foraPN, (id^ k)(ua)5(ua)21.

We denote the above Woronowicz HopfC* -algebra by~A,A,F,k!, or simply byA.
A morphism from a Woronowicz HopfC* -algebraA1 to anotherA2 is a unitalC* morphism

p: A1→A2 such that

~p ^ p!F15F2p.

Woronowicz HopfC* -algebras form a category under these morphisms.
We define the category ofcompact quantum groupsto be the dual category of the catego

of Woronowicz HopfC* -algebra.~The dual category of a given category is a category hav
objects in one to one correspondence with those of the given category, but having arro
morphisms reversed.! Thus compact quantum groups are the same as Woronowicz
C* -algebras, except the former have a more geometric flavor. For each Woronowicz
C* -algebraA, we call the corresponding compact quantum groupthe compact quantum group
of A, and will useGA to denote it. Conversely, ifG is a quantum group, we will call the
corresponding Woronowicz HopfC* -algebrathe Woronowicz Hopf C* -algebra ofG, we will
useAG to denote it.

II.2. Remarks:~1! We use the spatialC* -tensor product for allC* -algebras unless otherwis
specified.

~2! The dense*-subalgebraA above is a very special kind of Hopf* -algebra. The following
definition gives an intrinsic characterization of such Hopf* -algebras, as will be shown in the ne
section.

II.3. Definition: ~See p. 162 of Ref. 10, or see Refs. 8 and 9! A Krein algebra is a * -algebra
A with identity over the complex numbers together with a linear basisB of A satisfying the
following properties:

~K1! The setB is the union of pairwise disjoint setsVp 5 $v i j
p % i , j51

dp , wherepPN andN is any
set, anddp is a natural number. We identify the setVp with the matrix (v i j

p ).
~K2! Among theVp’s, we have the 131 matrix (I ), whereI is the identity of the algebraA.
~K3! For eachpPN, there existsp̄PN ~shown to be unique in III.2 below!, and an invertible

scalar matrixSp such thatV
p 5 SpV

p̄Sp
21.

~K4! For each pairp,qPN, there exists a scalar unitary matrixTpqPU(dpdq), together with
r 1 ,...,rmPN ~not necessarily distinct!, such that

Vp
^Vq5Tpq~V

r1% ••• %Vrm!Tpq
21.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The symbolVp
^Vq denotes the element ofMdpdq

(A) defined by~be cautious with the order o
the productsv i j

pvkl
q !!

Vp
^Vq5(

i jkl
ei j
p

^ekl
q

^v i j
pvkl

q ,

whereei j
p P Mdp

andekl
q P Mdq

are the canonical matrix units satisfying

ei j
p ei 8 j 8

p
5d j i 8ei j 8

p , ekl
q ek8 l 8

q
5d lk8ekl8

q .

~K5! In the decomposition~K4! of Vp
^Vq, the 131 matrix (I ) appears at most once, and

appears if and only ifp̄5q.
~K6! For all pPN, the matrixVp is unitary, that is

(
r51

dp

v j r
p ~vkr

p !*5d jkI , (
r51

dp

~v rk
p !* v r j

p 5dkI .

We denote the above Krein algebra by~A,B! or simplyA.
Let A andA8 be Krein algebras. ThenA is said to beisomorphic to A8 if there is a

*-algebra morphismp : A→A8 and a 1-1 map~also denotedp! p : N→N8, such that

dp~p!5dp , p~v i j
p !5v i j8

~p~p!! .

The mapp is clearly a*-isomorphism of* -algebras. We do not distinguish between isomorp
Krein algebras.

II.4. Remarks:Note the slight differences between the axioms~K3! and ~K6! of the above
noncommutative Krein algebra and those of the ordinary~commutative! Krein algebra~see Ref.
10!. In the classical definition of commutative Krein algebras, the matrixSp in ~K3! is assumed to
be unitary; this is no longer the case in the theory of quantum groups, because the conjuga
unitary representation is not necessarily unitary@e.g.,SmU~2!#. In the quantum setting, we nee
both identities in~K6! to insure that theVp’s are unitary.

III. PROOF OF THE DUALITY THEOREM

From Refs. 1 and 4, we see that the dense algebraA in definition II.1 is a Krein algebra.
More precisely, we have

III.1. Theorem: For each compact quantum group G, we have a canonical Krein algebra
(more precisely, a class of isomorphic Krein algebras) associated with it. Namely, the
subalgebraA of the C* -algebra AG associated with the compact quantum group G has a (c
of) Krein algebra structure(s).

We will call the Krein algebra obtained in III.1 theKrein algebra of the quantum group G,
and denote it byK(G).

The next goal is to prove a converse of III.1. Namely, for every Krein algebra, there
natural compact quantum group~Woronowicz HopfC* -algebra! associated to it~see Theorem
III.5 below!. To do this, we need some preparation.

III.2. Lemma: For the Krein algebraA in II.3, we have
~1! The map p° p̄ is a 1-1map fromN onto itself such that p% 5p.
~2! For each pPN there is a nonzero complex number cp such that

Sp̄5cp~S̄p!
21,

where S̄p denotes the complex conjugate of Sp .
J. Math. Phys., Vol. 38, No. 1, January 1997
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Proof: The following proof is a modification of the one in~30.7! of Ref. 10. Because there ar
some errors and obscurities involving the subscripts in that proof, we write down a more de
proof. To get the proof of~30.7! of Ref. 10, simply replace the phrase ‘‘the invertible matric
Sp’’ by the phrase ‘‘the unitary matricesSp ;’’ it will then be obvious from our proof that the
numbercp is of modulus 1 in this case.

~1! From ~K3!, we haveSp
21VpSp 5 Vp̄. It follows that

Vp% 5Sp̄
21~Sp

21VpSp!Sp̄5Sp̄
21S̄p

21VpS̄pSp̄ .

Thusv i j
p% is a linear combinationv i j

p . Since the coefficientsv i j
p% andv i j

p belong toB, andv i j
p andvkl

q

are linearly independent of each other forpÞq, we see thatp% 5p.
~2! Using the computation in~1!, we have

Vp5Sp̄
21S̄p

21VpS̄pSp̄ .

PutT 5 S̄pSp̄ . Then the above equation can be written as

v i j
p5(

rs
t̃ irv rs

p ts j5(
rs

t̃ ir ts jv rs
p , t̃

where (t̃ ir )5T21 and i , j51,...,dp . Using the fact that thev i j
p ’s are linearly independent, we

compare their coefficients.
For i5 j , we get the two equationst̃ i i t i i51 andt̃ ir tsi50 for all (r ,s)Þ( i ,i ). For iÞ j , we get

two more equations,t̃ i i t j j51 andt̃ ir ts j50 for all (r ,s)Þ( i , j ). From the first and the third of thes
equations we obtain

t i i5 t̃ i i
215t j j

for all i , j . Put cp5t i i . Taking r5 i in the fourth equation and using the fact thatt̃ i iÞ0, we get
ts j50 for all sÞ j . Therefore,T5cpI , which is the same as

Sp̄5cp~S̄p!
21.

Note that it is very easy to make the mistake of assuming the matrixT 5 S̄pSp̄ to be unitary in the
proof of the above lemma. In the commutative case~i.e., the case of compact groups!, we have
unitary matricesSp andSp̄ 5 cp(S̄p)

21 5 cpSp
t as asserted in Ref. 10.

III.3. Lemma: Let A be any* -algebra.
~1! For all V,V8PMm(A) and W,W8PMn(A),

~VsV8! ^ ~WsW8!5~V^W!s~V8^W8!,

where VsV8 is the element of Mm(A^A) defined by

VsV85 (
i , j ,k51

m

ei j ^v ik^vk j8 ,

ei j being the canonical matrix units of the ordinary m3m matrix algebra Mm over the complex
numbers.

~2! Let Vi P Mni
(A), where ni are positive integers and i51,...,m. Put

D5V1%V2••• %Vm5diag~V1 ,V2 ,...,Vm!.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Then we have

DsD5 %

1< i<m
~VisVi !.

~3! For any DPMn(A), and any scalar unitary matrix WPUn , we have

WDW21sWDW215W~DsD !W21.

Proof: Straightforward.
III.4. Lemma: For a fixed Krein algebraA, define a linear functional h by h(v i j

p )50 if
(v i j

p )Þ(I ), and h(I )51. Then we have

~1! For all aPA, h(a* a)>0, and h(a* a)50 if and only if a50;
~2! For the GNS-representation of h, each operator La is bounded, where La is the operator

defined by Lax5ax, for all xPA.

Proof: Let j p be the antilinear map onC
dp with matrix Jp5Sp

21 under the standard basis. On
may check that the proof of Proposition 3.5 of Ref. 3 can be carried over to our setting~pay
special attention to antilinear algebra!!. This proves~1!. The proof of~2! is an easy exercise usin
~K6!.

Remark:The functionalh is in fact the Haar functional on a compact quantum group.
III.5. Theorem: For every (isomorphism class of) Krein algebra(s)A, there is a (or an

isomorphism class of, to be more precise) compact quantum group(s) associated with it,
will be denoted by H~A!, whose Krein algebra isA. That is, we have an isomorphism
A>KH~A! of Krein algebras.

Proof: Fix the Krein algebraA together with the matricesSp andTpq . LetA be the universal
unital C* algebra generated by thev i j

p ’s subject to the following relations~K28!–~K68!:
~K28! Among $Vp%5$(v i j

p )%, we have the 131 matrix (I ), where I is the identity of the
algebraA;

~K38! For allpPN,Vp 5 SpV
p̄Sp

21;
~K48! For all p,qPN, we have

Vp
^Vq5Tpq~V

r1% ••• %Vrm!Tpq
21;

~K58! In the decomposition~K4! of Vp
^Vq, the 131 matrix (I ) appears at most once, and

appears if and only ifVp 5 SpV
qSp

21;
~K68!. For all pPN,

(
r51

dp

v j r
p ~vkr

p !*5d jkI , (
r51

dp

~v rk
p !* v r j

p 5dk jI .

Lemma III.4 together with the fact that each (v i j
p ) is a unitary matrix imply that the universa

C* -norm exists onA. Namely, there is a boundedC* norm on the*-algebraA.
PutUp5VpsVp. ThenUp P Mdp

(A ^ A). We show that theUp’s satisfy the relations
~K28!–~K68!.

~K28! Obvious.
For ~K38!, use~K3! and Lemma III.3.~3!. We have

Ūp5V̄psV̄p5SpV
p̄Sp

21sSpV
p̄Sp

215Sp~V
p̄sVp̄!Sp

215SpU
p̄Sp

21.

For ~K48!, use~K4! and Lemma III.3.~1–3!. We compute,
J. Math. Phys., Vol. 38, No. 1, January 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ve

529Shuzhou Wang: Krein duality for compact quantum groups

¬¬¬¬¬¬¬¬¬¬
Up
^Uq5~VpsVp! ^ ~VqsVq!5~Vp

^Vq!s~Vp
^Vq!

5~Tpq~V
r1% ••• %Vrm!Tpq

21!s~Tpq~V
r1% ••• %Vrm!Tpq

21!

5Tpq~~Vr1% ••• %Vrm!s~Vr1% ••• %Vrm!!Tpq
21

5Tpq~~Vr1sVr1! % ••• % ~VrmsVrm!!Tpq
21

5Tpq~U
r1% ••• %Urm!Tpq

21.

For ~K58!, I ^ I appears in the decomposition

Up
^Uq5Tpq~U

r1% ••• %Urm!Tpq
21,

if and only if I ^ I 5 Urk 5 VrksVrk for some 1<k<m if and only if I 5 Vrk for some 1<k<m if
and only if I appears in the decomposition

VpsVq5Tpq~V
r1% ••• %Vrm!Tpq

21.

Therefore,I ^ I appears in the above decomposition at most once. When it appears, we haVp

5 SpV
qSp

21. Using Lemma III.3.~3!, we get

Up5VpsVp5~SpV
qSp

21!s~SpV
qSp

21!5SpU
qSp

21.

That isUp 5 SpU
qSp

21.
Finally, ~K68! is obvious.
Therefore, by the universal property of theC* -algebraA, there is aC* morphism

F:A→A^A,

such that

F~v i j
p !5ui j

p5(
k
v ik
p

^vk j
p .

To define the antipode

k:A→A,

putWp5(Vp)21, that isWij
p5(v j i

p )* . LetB be the opposite algebra~forgetting the*-structure!!
of A. Use+ to denote the product onB.

A routine computation shows that the inverse of the element

Vp
^Vq5(

i jkl
ei j
p

^ekl
q

^v i j
pvkl

q

of Mdpdq
(A) is given by

~Vp
^Vq!215(

i jkl
ei j
p

^ekl
q

^ ~v lk
q !* ~v j i

p !* .

That is,
J. Math. Phys., Vol. 38, No. 1, January 1997
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~Vp
^Vq!215(

i jkl
ei j
p

^ekl
q

^wi j
p +wkl

q 5Wp
^Wq.

On the other hand,

Vp
^Vq5Tpq~V

r1% ••• %Vrm!Tpq
21,

so we have

~Vp
^Vq!215Tpq~~Vr1!21

% ••• % ~Vrm!21!Tpq
215Tpq~W

r1% ••• %Wrm!Tpq
21.

From these we see that

Wp
^Wq5Tpq~W

r1% ••• %Wrm!Tpq
21.

Define a linear map

k:A→B

by

k~v i j
p !5wi j

p .

Since$v i j
p % is a basis forA, we see that the above map is a well defined linear map.

We claim that the mapk is an algebra morphism, therefore it is an algebra antimorphism f
A intoA.

To see this, using the linearity ofk, and the fact that$v i j
p % is a basis forA, we only need to

check thatv i j
pvkl

q is mapped ontowi j
pwkl

q under the mapk. But this follows immediately from the
linearity of k ~again!! and the equations

Vp
^Vq5Tpq~V

r1% ••• %Vrm!Tpq
21,

and

Wp
^Wq5Tpq~W

r1% ••• %Wrm!Tpq
21.

Lastly, we show thatk(k(a* )* )5a, for all aPA.
Since k is an algebra antimorphism, we only need to check the above equation fo

elementsv i j
p . Using

Vp5SpV
p̄Sp

21, Vp̄5Sp̄V
p%Sp̄

215Sp̄V
pSp̄

21, Sp̄5cp~Sp!
t

@see Lemma III.2.~2!#, and lettingsp( i j ), s̃p( i j ), t i j and t̃ i j denote, respectively, the (i , j )th entry
of the matricesSp , (Sp)

21, S̄pSp̄ , and (S̄pSp̄)
21, we compute

k~k~v i j
p* !* !5kS kS (

kl
sp~ ik !vkl

p̄ s̃p~ l j ! D * D 5kS (
kl

~sp~ ik !k~vkl
p̄ !s̃p~ l j !!* D

5kS (
kl

~sp~ ik !~v lk
p̄ !* s̃p~ l j !!* D 5kS (

kl
sp~ ik !v lk

p̄ s̃p~ l j ! D
5(

kl
sp~ ik !~vkl

p̄ !* s̃p~ l j !5 (
klmn

sp~ ik !sp̄~km!vmn
p s̃p̄~nl !s̃p~ l j !
J. Math. Phys., Vol. 38, No. 1, January 1997
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5(
mn

timt̃n jvmn
p 5(

mn
cpd im

1

cp
dn jvmn

p 5v i j
p .

That is,k(k(v i j
p * )* )5v i j

p .
Thus we have obtained a compact quantum group from a given Krein algebraA. Denote it by

H~A!.
To finish the proof of the theorem, we need to show thatA>KH~A!. To do this, we need the

following lemma. LetH be a finite dimensional Hilbert spaceH. We will view B(H)^1 as a
subalgebra ofB(H)^A and will identify it with the algebraB(H); so for CPB(H) and
VPB(H), Tr(CV) will mean ~Tr^1!(C^1)V. For the notion of representations of compa
quantum groups, see Refs. 1 and 4.

III.6. Lemma: Let GA be a compact quantum group, and let VPB(H)^A be any n dimen-
sional (n is finite) representation of GA . Then the following are equivalent:

~1! The representation V is irreducible;
~2! For all nonzero CPB(H), we haveTr(CV)Þ0.

Proof of the Lemma:~1!⇒~2!. Assume thatV5(v i j ) with respect to some orthogonal basis
its representation space. Then thev i j ’s are linearly independent. Therefore, ifC is a nonzero
matrix, we have

Tr~CV!5(
i j

ci jv j iÞ0.

~2!⇒~1!. Assume~2! is true. LetH0 be a nonzero invariant subspace ofH. Then by an
obvious generalization of Proposition 5.1 of Ref. 1,H0

' is also invariant and we haveV 5 VH0

%VH
0
'. Let

C5SOH0

CH0

CH
0
'

OH
0
'D

be any nonzero matrix ofMn , whereOH0
andOH

0
' are the zero matrices corresponding to the z

operators onH0 andH0
' , respectively. Then

Tr~CV!5Tr~VC!5TrS VH0

VH
0
'
D S OH0

CH
0
'

CH0
OH

0
'
D 5TrS OH0

VH0
CH

0
'

VH
0
'CH0

OH
0
'

D 50,

which is a contradiction. This completes the proof of the lemma.
We now come back to the proof of Theorem III.5. For everyVp, define a unitary representa

tion Up of H~A! by Up5Vp. ThatUp is a unitary representation ofH~A! follows from

~ id^ F!~Up!5UpsUp,

by the definition ofF.
We claim that the set$UpupPN% is a complete set of mutually inequivalent irreducib

representations of the compact quantum groupH~A!.
If for somepÞq, with p, qPN, we haveUp>Uq, then we can find a unitary scalar matrixW

such thatUp5WUqW21. This contradicts the fact that thev i j
p ’s andvkl

q ’s are linearly independen
of each other. Thus all of these representations are mutually inequivalent.

To see that these representations are irreducible, we invoke Lemma III.6. LetC P Mdp
be any

nonzero scalar matrix. Then by the linear independence of$v i j
p %, we have
J. Math. Phys., Vol. 38, No. 1, January 1997
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Tr~CUp!5(
i j

ci jv j i
pÞ0.

An easy application of the quantum Peter–Weyl orthogonal relations~see, e.g., Lemma 1.4.
of Ref. 4! shows that these irreducible representations exhaust all irreducible representat
H~A!. Thus the claim is proved.

Now the isomorphism of the two Krein algebras in question is clear, and the proof of The
III.5 is complete.

III.7. Some Discussions.~1! Let G be a compact group. Fix a commutative Krein algebraA

in the isomorphism class of Krein algebras ofG. Namely, let the irreducible representatio
(ui j

p )PpPN:5Ĝ and the corresponding unitary matricesSp andTpq all be fixed. Let$ũi j
p % be a

new set of symbols andÃ the universal unital* -algebra generated byũi j
p satisfying the following

relations~K29!–~K69!:
~K29! Among Ũp’s, we have the 131 matrix (I ), whereI is the identity of the algebraÃ;

~K39! For allpPN, Ũp 5 SpŨ
p̄Sp

21;
~K49! For all p,qPN,

Ũp
^ Ũq5Tpq~Ũ

r1% ••• % Ũrm!Tpq
21;

~K59! In the decomposition~K4! of Ũp
^ Ũq, the 131 matrix (I ) appears at most once, and

appears if and only ifŨp 5 SpŨ
qSp

21;
~K69! For all pPN, we have

(
r51

dp

ũjr
p ~ ũkr

p !*5d jkI , (
r51

dp

~ ũrk
p !* ũr j

p 5dk j I .

Then it is easy to show thatÃ is a Krein algebra. Therefore, we get a compact quantum gr
H~Ã! as in Theorem III.5. Let us denoteH~Ã! by G̃. Is G̃ a compact group? It looks like a ver
‘‘noncommutative’’ ~in the sense of noncommutative geometry! quantum group, but it is in fact a
compact group isomorphic toG! That isHK(G).G, which is the converse of Theorem III.5 fo
the compact groupG.

To see why this is so, we define an isomorphismp of Krein algebras fromA to Ã as
follows. For eachui j

p , let p(ui j
p )5ũ i j

p . Since$ui j
p % is a basis for the vector spaceA, the above

p extends to a linear map fromA to Ã. Using ~K4! and ~K49!, we see thatp is actually an
algebra morphism, and it is clearly an epimorphism. Therefore, by the universal propertyÃ,
we conclude thatA is in fact isomorphic toÃ. Consequently,G̃ is a compact group.

By the universal property ofG̃, we see that there is a continuous injective group homom
phism fromG into G̃. Now by an easy modification~almost verbatim! of the argument in section
11 of Chapter 11 of Ref. 15, we see thatG.G̃.

~2! It is natural to expect that the converse of Theorem III.5 is also true for arbitrary com
quantum groups. But unfortunately, this depends on how we define the notion of isomorph
compact quantum groups.

One natural definition of isomorphism would be this: Two compact quantum groups
isomorphic if their WoronowiczC* -algebras are isomorphic, namely, there is an isomorphism
the underlyingC* -algebras that respects the coproducts. For this definition, the converse o
is false in general. This can be seen by taking the compact quantum groupG of the reduced group
C* -algebraCr* (F2) of the free groupF2 on two generators~see Ref. 1!. In this caseHK(G) is the
full group C* -algebraC* (F2) of the free group on two generators, soHK(G) andG are not
isomorphic as compact quantum groups in the sense that the associated WoronowiczC* -algebras
are not even isomorphic asC* -algebras. The main cause of this is that in the noncommuta
setting there exist nonamenable objects such asF2. For an ordinary compact groupG, the GNS
J. Math. Phys., Vol. 38, No. 1, January 1997
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representation of the commutative algebraC(G) with respect to the Haar measure ofG is faithful.
But this breaks down in the noncommutative case: the Haar state forC* (F2) is not faithful and its
associated GNS representation is not faithful.

As in the case of ordinary discrete groups, for a general compact quantum groupG, there are
two canonicalC* -algebras associated with it~cf. Ref. 12!: the full C* -algebraCf(G) ~denoted
Cp(G) in Ref. 12! and the reducedC* -algebraCr(G), both of which are Woronowicz Hop
C* -algebras. By considering all* -representations of the underlying Hopf* -algebra ofCr(G), we
recover the fullC* -algebraCf(G). Because of this, we can say thatCr(G) andCf(G) ~and those
in between them! are the same compact quantum group. From the view point that all the~quan-
tum! group theoretical information aboutG can be recovered fromCr(G), we can say that the
nuance betweenCf(G) andCr(G) is analytical~or C* -algebraic!, not group theoretical. We ca
now take the following definition: Two compact quantum groups are said to be isomorphic if
is an isomorphism of the underlying dense Hopf* -algebras. With this definition, we can see eas
that the converse of III.5 is also true. Namely, we haveHK(G).G for every compact quantum
groupG. This definition is equivalent to the following: Two compact quantum groups are
morphic if the associated fullC* -algebras are isomorphic as Woronowicz HopfC* -algebras~cf.
II.1!.
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After this work was done, M. S. Dijkhuizen and T. H. Koornwinder independently reach
notion of CQG algebras by a slightly different approach,16,17which is equivalent to the notion o
compact quantum groups, and therefore to the notion of Krein algebras in this paper. Howe
Refs. 16 and 17 the axioms of Hopf* -algebras are postulated as a part of the notion of C
algebras, while in our setting the axioms of Hopf* -algebras are derived from those of Kre
algebras. Thus in a sense our result in this paper is stronger than the one in Refs. 16 and 1
different points of view, Effros and Ruan18 and Van Daele19 also independently introduce notion
of discrete quantum groups, which, by duality, are equivalent to the notion of compact qua
groups, and therefore to the notion of Krein algebras in this paper.

APPENDIX A: WORONOWICZ’S TANNAKA–KREIN DUALITY

In this Appendix, we generalize Woronowicz’s Tannaka–Krein duality for compact m
quantum groups3 to the case of compact quantum groups. Since the proofs are essentially the
as those in Ref. 3, we only state the results.

A.1. Definition:For the notions ofcomplete concrete monoidalW* -category R with gen-
erators and conjugation, model for R and R-admissible pair, see section 1 of Ref. 3.
The following theorem generalizes Theorem 1.2 of Ref. 3~see also Ref. 4!.

A.2. Theorem: Let A be a Woronowicz Hopf C* -algebra with the notation as in Definition
II.3. Let G be the corresponding compact quantum group. Then the class of all finite dimen
unitary representations RG endowed with the natural structures is a complete concrete mono
W* -category with generators$ua%aPN and conjugation.

As the converse to Theorem A.2, we have the following theorem that generalizes Theore
of Ref. 3.

A.3. Theorem: Let R5(R,$Hr%rPR ,$Mor(r ,s)%r ,sPR ,•,$a%aPN) be a complete concrete
monoidal W* -category with generators$a%aPN and conjugation, whereN is any set (note that we
always haveaPR by definition). Then there is a unique universal R-admissible pair
(A,$ua%aPN) with a uniquely determined model(A,$ur% rPR) for R such that
J. Math. Phys., Vol. 38, No. 1, January 1997
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~1! The algebra A has a natural Woronowicz Hopf C* -algebra structure; therefore A (thus R!
determines a canonical compact quantum group G.

~2! For all rPR, the associated ur is a unitary representation of G. Moreover, any finite
dimensional unitary representation of G can be obtained in this way.

~3! For all r ,sPR,tPB(Hr ,Hs), we have(t^ I )ur5us(t^ I ) if and only if tPMor(r ,s).
~4! For all r ,sPR, we have ur •s5ursus.
A.4. Remarks:~1! If G is a compact matrix quantum group, replacing the phrasea complete

concrete monoidal W* -category with generators$ua%aPN and conjugationby the phrasea com-
plete concrete monoidal W* -category with a generator u and conjugationat the end of Theorem
A.2, we obtain Theorem 1.2 of Woronowicz.3

Similarly, if the categoryR in Theorem A.3 has one generator, we obtain Theorem 1.3
Woronowicz.3

~2! The discussions in III.7 also apply to Woronowicz’s Tannaka–Krein duality. Tak
compact groupG. Apply Theorem A.3 toRG . Then the associated Woronowicz HopfC* -algebra
A as constructed in A.3 is the same asC(G); namely, the converse of A.3 is true forG. Thus we
obtain the classical Tannaka–Krein duality for compact groups. Similarly, if we as in III.7 letR be
the category of finite dimensional representations of the compact matrix quantum group
reduced groupC* -algebra of the free group on two generators, the algebraA obtained by applying
Theorem A.3 toR is the full groupC* -algebra of the free group on two generators. Therefore
converse of A.3 is false if we do not have the an appropriate notion of isomorphism of qua
groups, as is the converse of III.5.
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Symmetrizable quantum affine superalgebras
and their representations

R. B. Zhang
Department of Pure Mathematics, University of Adelaide, Adelaide, S. A., Australia

~Received 14 May 1996; accepted for publication 3 July 1996!

Aspects of the algebraic structure and representation theory of the quantum affine
superalgebras with symmetrizable Cartan matrices are studied. The irreducible in-
tegrable highest weight representations are classified, and shown to be deforma-
tions of their classical counterparts. It is also shown that Jimbo-type quantum affine
superalgebras can be obtained by deforming universal enveloping algebras of or-
dinary ~i.e., nongraded! affine algebras supplemented by certain parity operators.
© 1997 American Institute of Physics.@S0022-2488~96!01312-6#

I. INTRODUCTION

Quantum affine superalgebras are of great importance for the study of supersymmetri
grable models in statistical mechanics and quantum field theory. Recent research has al
cated that such algebraic structures may play a significant role in characterizing vacua o
dimensional supersymmetric Yang–Mills theories and string compactifications. Apart from
physical applications, quantum affine superalgebras are interesting from a mathematical p
view as well. They have many similarities to the ordinary~i.e., nongraded! quantum affine alge-
bras, thus a thorough investigation of their structures should be possible. It is also hoped
representation theory can be developed for them, which will be workable in applications. On
quantize the affine superalgebras following Drinfeld and Jimbo relatively easily, once a p
understanding of the Serre type of presentations at the classical level is achieved. Howeve
more effort seems to be required in order to develop their representation theory, as there
exist severe difficulties at the classical level. Although various special results are known
area, e.g., the classification of the finite-dimensional irreducible representation
Uq„ĝl

(1)(mun)…, there has been no attempt to study the quantum affine superalgebras sys
cally.

The aim of this note is to investigate the structure and representation theory of the qu
affine superalgebras with symmetrizable Cartan matrices. Their classical counterparts, whic
classified by Kac,1 constitute the only class of affine superalgebras with a well-developed re
sentation theory. One of our results is the classification of the irreducible integrable highest-w
representations of these quantum affine superalgebras. We will generalize Lusztig’s meth2 to
show that such representations are in one-to-one correspondence with the irreducible int
highest-weight representations of the associated classical affine superalgebras. Another
that quantum affine superalgebras can be obtained by deforming the universal enveloping a
of ordinaryaffine algebras supplemented by certain parity operators, wherein some kind of B
Fermi transmutation is exhibited. This result will be useful physically, e.g., for showing eq
lences of various integrable models. Mathematically, it also bears considerable implications
classification of quantum affine superalgebras and representation theory. In this note, we w
the result to show a correspondence between the representations of the super and ordina
tum affine algebras.

The arrangement of the paper is as follows. In Sec. II we define the Drinfeld type of qua
affine superalgebras and examine some of their algebraic features from the point of vi
deformation theory. In Sec. III we classify the integrable highest weight irreps, and in Sec. I
study the aforementioned Bose–Fermi transmutation.
0022-2488/97/38(1)/535/9/$10.00
535J. Math. Phys. 38 (1), January 1997 © 1997 American Institute of Physics
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II. QUANTUM AFFINE SUPERALGEBRAS

Let A5(Ai j ) i , j50
n be the Cartan matrix of an affine Lie superalgebra which satisfies

following conditions:

aii52, ai j<0, iÞ j ,

ai j50 iff aji50, ai jP2Z, if iPQ,

whereQ is a nonempty subset of the index setI5$0,1,...,n%. Such Cartan matrices are calle
symmetrizable, and the affine Lie superalgebras associated with them have been classifie
are given by the Dynkin diagrams in Table I.

In Table I, a diagram hasn11 nodes with thei th node being white ifi¹Q, and black ifiPQ.
The i th and j th nodes are connected by max (uai j u,uaji u) lines; if uai j u.uaji u, the lines are en-
dowed with an arrow pointing towards thei th node. The numerical marks for the diagram will b
denoted byai , i50,1,...,n, which satisfy the condition( j50

n ai j aj50.
We denote byg(A,Q) the complex affine superalgebra associated with the Cartan matrA

and the subsetQ,I . Let H* be the dual vector space of the Cartan subalgebra ofg(A,Q). Then
H* has a basis$L0 ,a i ,iPI %, where theai are the simple roots. A nondegenerate bilinear fo
~.,.! on H* can be defined in the standard way, satisfying

2~a i ,a j !

~a i ,a i !
5ai j ,

2~L0 ,a i !

~a i ,a i !
5d i0 , ~L0 ,L0!50.

An appropriate normalization for the form can always be chosen such that

~am ,am!51 ;mPQ,

and we will work with this normalization throughout.

TABLE I. Dynkim diagrams of the symmetrizable affine Lie superalgebras.
J. Math. Phys., Vol. 38, No. 1, January 1997
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The Drinfeld model of quantum affine superalgebraÛt„g(A,Q)… is a Z2-graded associative
algebra over the ringC†[ t] ‡, with q5exp (t), completed with respect to thet-adic topology of
C†[ t] ‡. It is generated by the elements$d,hi ,ei , f i ,iPI %, subject to the relations

kiki
2151, kikj5kjki , @d,ki

61%50,

@d,ei%5d i0ei , @d, f i%52d i0f i , kiej5q~a i ,a j !ejki ,

ki f j5q2~a i ,a j ! f jki , @ei , f j%5d i j
ki2ki

21

qe i2qe i
; i , jPI ,

~Adei !
12ai j ~ej !50, ~Adf i !

12ai j ~ f j !50 ; iÞ j ,

~1!

where

ki5qhi,

e i5H 1, if ~a i ,a i !51,
1, if ~a i ,a i !52,
2, if ~a i ,a i !54.

All the generators are chosen to be homogeneous, withd,hi ,iPI , andej , f j , j¹Q, being even,
andem , f m ,mPQ being odd. For a homogeneous elementx, we define [x]50 if x is even, and
[x]51 when odd. The graded commutator@.,.% represents the usual commutator when any one
the two arguments is even, and the anticommutator when both arguments are odd. The
operation Ad is defined by

Adei~x!5eix2~21!@ei #@x#kixki
21ei ,

Adf i~x!5 f ix2~21!@ f i #@x#ki
21xki f i .

For x being a monomial inejs or f js, it carries a definite weightv(x)PH* . Then Adei(x)
5 eix2 ( 2 1)@ei #@x#q„a i ,v(x)…xei , andsimilarly forAdf i(x).

The quantum affine superalgebraÛt„g(A,Q)… has the structures of aZ2-graded Hopf algebra
with a comultiplication

D~d!5d^111^d, D~hi !5hi ^111^hi ,

D~ei !5ei ^ki11^ei , D~ f i !5 f i ^11ki
21

^hi .

A counit and an antipode also exist, but we shall not spell them out explicitly, as they will n
used here. Our main concern in this letter is the algebraic structures and the representation
quantum affine superalgebras.

An important fact is that as aZ2-graded associative algebra,Ût„g(A,Q)… is a deformation of
the universal enveloping algebraU„g(A,Q)… of g(A,Q) in the sense of Ref. 3, that is, being
topologically free C†@t#‡ module, Ût„g(A,Q)… is isomorphic to the C†@t#‡ module
U„g(A,Q)…†@t#‡, consisting of power series int with coefficients inU„g(A,Q)…, and there also
exists the algebra isomorphismÛt„g(A,Q)…/tÛt„g~A,Q!…>U„g~A,Q!…. This of course is a stan
dard fact in the theory of quantum groups.4,5 However, proving it is a highly nontrivial matter, an
is well out of the scope of this article.

To make things more explicit, letm be the associative multiplication ofU„g(A,Q)…. Denote
by mt the associative multiplication ofÛt„g(A,Q)…. Then mt is a C†@t#‡ bilinear mapmt :
U„g(A,Q)…†@t#‡^̂U„g~A,Q!…†@t#‡→U„g(A,Q)…†@t#‡ of the formmt5m1( i51

` t im( i ), wherem is
J. Math. Phys., Vol. 38, No. 1, January 1997
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the multiplication ofU„g(A,Q)…, and ^̂ is the tensor product completed with respect to thet-adic
topology ofC†@t#‡. Them( i ): U„g(A,Q)…^U„g(A,Q)…→U„g~A,Q!… areZ2-graded vector space
maps, which are homogeneous of degree zero. Associativity ofmt imposes stringent conditions o
the mapsm( i ). In particular, the first nonvanishingm( i ) must be a two-cocycle in the language
Hochschild cohomology. In view of the fact that the Drinfeld quantum affine algebras are
trivial deformations of the universal enveloping algebras of the associated affine algebra
expect the deformations defining the quantum affine superalgebras also to be nontrivial.

Consider aÛt„g(A,Q)… moduleVt , with the module action denoted by+t . If Vt is a free
C†@t#‡ module, thenVt5V†@t#‡, with V5Vt/tVt a complex vector space. Assume that for a
givenaPU„g(A,Q)…,Ût„g~A,Q!…, vPV,Vt ,

a+ tv5a+v1o~ t !PV†@ t#‡,

where + represents aC bilinear mapU„g(A,Q)…^V→V. Then + defines a module action o
U„g(A,Q)… on V. To see that our claim is indeed correct, consider another elem
bPU„g(A,Q)…,Ût„g(A,Q)…. Then

b+ t@a+ t~v1tVt!#5mt~b,a!+ tv1tVt5m~b,a!+v1tVt .

Conversely, let the complex vector spaceV be aU„g(A,Q)… module, with the module action

+. If there exists aC†@t#‡ bilinear map+t : U„g(A,Q)…†@t#‡^̂V†@t#‡→V†@t#‡, such that for anya,
bPU„g(A,Q)…,Ût„g~A,Q!…, vPV,V†@t#‡,

a+ tv5a+v1o~ t !PV†@ t#‡, a+ t~b+ tv !5mt~a,b!+ tv,

thenV†@t#‡ furnishes aÛt„g(A,Q)… module. In this case, we say that theÛt„g(A,Q)… module
~V†[ t] ‡,+t! is a deformation of theU„g(A,Q)… module ~V,+!, and the representation o
Ût„g(A,Q)… afforded by~V†[ t] ‡,+t! is the deformation of the representation ofU(g(A,Q)) fur-
nished by~V,+!. ~Note the difference between our definition of deformation of modules and th
Ref. 6.! We will call the deformation trivial if there exists a C†[ t] ‡ linear map
F t5 id1tf11t2f21••• : U„g(A,Q)…†@t#‡→U„g~A,Q!…†@t#‡ such that a+ tv5F t(a)+v,
;aPÛt„g(A,Q)…, vPV†[ t] ‡, where + is C†[ t] ‡-linearly extended toÛt„g(A,Q)…. Needless to
say, not all representations ofU„g(A,Q)… can be deformed into representations ofÛt„g(A,Q)…. It
is a very interesting problem to characterize the deformability of aU„g(A,Q)… module in co-
homological terms, and we hope to return to the problem in the future. We should also m
that if an irreducible representation can be deformed at all, then the deformation must be

III. INTEGRABLE HIGHEST WEIGHT MODULES

Let us first construct the irreducible highest weightÛt„g(A,Q)… modules. We will omit the
symbolsmt and +t from our notations whenever confusion is not likely to arise. LetUq

1 be the
Z2-graded subalgebra ofÛt„g(A,Q)… generated by thehi , ei , i50,1,...,n, together withd, and
Nq

2 that generated by thef i , i50,1,...,n. Let v1
L

^C†[ t] ‡ be a one-dimensionalUq
1 module

satisfying

hiv1
L 5~L,a i !v1

L , eiv1
L 50, ; i50,1,...,n, dv1

L 50.

We construct theC†[ t] ‡ module

V̄t~L!5Ût„g~A,Q!…^Uq
1v1

L ,
J. Math. Phys., Vol. 38, No. 1, January 1997
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which is clearly isomorphic toNq
2

^v1
L , and, therefore, is spanned by the elements of the f

f i1f i2...f i p ^ v1
L , i sPI , pPZ1 . ~We will omit the tensor product sign̂ from such expressions

hereafter.! Define a bilinear action ofÛt„g(A,Q)… on V̄t~L! by

d~ f i1f i2••• f i pv1
L !52(

s51

p

d i s0f i1f i2••• f i pv1
L ,

ki~ f i1f i2••• f i pv1
L !5q~L2(s51

p a i s
, a i ! f i1f i2••• f i pv1

L ,

~2!
f i~ f i1f i2••• f i pv1

L !5 f i f i1f i2••• f i pv1
L ,

ei~ f i1f i2••• f i pv1
L !5(

s51

p

d i i s(21)@ei #(k51
s21

@ f i k
# f i1f i2••• f̂ i s••• f i pv1

L

3
q~L2(r5s11

p a i r
, a i s

!2q2~L2(r5s11
p a i r

, a i s
!

qe i s2q2e i s
.

All the relations of ~1! are clearly satisfied, except the Serre relations among theeis. SetSi j
5 (Adei)

12ai j (ej ), iÞ j . It is a consequence of the ‘‘quadratic’’ relations that@Si j , f k%50. Thus for
all iÞ j ,

Si j ~ f i1f i2••• f i pv1
L !50,

and V̄t~L! indeed yields aÛt„g(A,Q)… module.
This module is in general not irreducible, but contains a maximal proper submoduleM ~L!

such that

Vt~L!5V̄t~L!/M ~L!

yields an irreducibleUq(g(A,Q)) module, which is called an irreducible highest-weight mod
with highest weightL. The image ofv1

L under the canonical projection is the maximal vector
Vt~L!. Standard arguments show that up to isomorphisms,Vt~L! is uniquely determined by its
highest weight.

Following the terminology of the representation theory of Lie algebras, we call aÛt„g(A,Q)…
moduleVt integrable if allei and f i act onVt by locally nilpotent endomorphisms, namely, for an
vPVt , there exists a non-negative integermv,` such that

~ei !
mvv5~ f i !

mvv50 ; iPI .

Consider the irreducible highest weightÛt„g(A,Q)… moduleVt~L! with highest weightL and
maximal vectorv1

L . It is obviously true that theei always act onVt~L! by locally nilpotent
endomorphisms. However, nilpotency of thef i action imposes strong conditions on the high
weight.

For a fixed i¹Q, the elementsei , f i , and hi generate aUqe i„sl(2)… subalgebra of
Ût„g(A,Q)…. In order for (f i)

mv1
L to vanish,L must satisfy the condition 2(L,a i)/(a i ,a i)PZ1 .

When mPQ, we have normalized~am ,am!51. Now e5em , f5 f m , h5hm generate a
Uq„osp~1u2!… subalgebra,

@h, e#5e, @h, f #52 f , e f1 f e5
qh2q2h

q2q21 .
J. Math. Phys., Vol. 38, No. 1, January 1997
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Sincef mv1
L50 for a large enoughm, butv1

LÞ0, there must exist an integerk, 0,k,m, such that
f kv1

LÞ0, and f k11v1
L50. Applying e to f k11v1

L , we arrive at

e fk11v1
L 5

q~k11!/22q2~k11!/2

~q2q21!~q1/22q21/2!
@q~L,am!/~am ,am!2k/22~21!kq2~L,am!/~am ,am!1k/2# f kv1

L 50,

which requires 2~L,am!/~am ,am!5k, andkP2Z1 . In fact,
the irreducible highest weight Uˆ t„g(A,Q)… module Vt~L! with highest weightL is integrable

if and only if

2~L,a i !

~a i ,a i !
PZ1 ; iPI ,

2~L,am!

~am ,am!
P2Z1 ;mPQ. ~3!

Note the presence of the second condition requiring the Dynkin labels associated with th
simple roots be non-negativeevenintegers, which is not needed in the case of ordinary quan
affine algebras. We prove the assertion following the strategy of Ref. 2. As pointed out earli
theei act onVt~L! by locally nilpotent endomorphisms. We have also seen that under the g
conditions ofL, the maximal vectorv1

L of Vt~L! is annihilated by a sufficiently high power o
eachf i , iPI . Now consider the elementw 5 f i1f i2••• f i pv1

L . We use induction onp to prove the

nilpotency of the action of thef i onw. Assume thatx 5 f i2••• f i pv1
L is annihilated by (f i)

m, ; iPI .
Then (f i1)

mw5 ( f i1)
m11x5 0. ForjÞ i 1, consider (f j )

m2aji 1w5 ( f j )
m2aji 1f i1x. By using theSerre

relation (Ad fj )
12aji 1f i1 5 0, we can express (f j )

m2aji 1f i1 as aC†[ t] ‡ linear combination of the
elements (f j )

2aji 1
2n f i1( f j )

m1n, n 5 0,1,..., 2 aji 1, which all annihilatex. Hence, (f j )
m2aji 1w

50.
As Vt~L! can be generated by repeatedly applying thef i to the maximal vectorv1

L , a subset
B of all the elements of the formf i1f i2••• f i pv1

L provides a basis ofVt~L! overC†[ t] ‡. Hence we
have proved that allei and f i act onVt~L! by locally nilpotent endomorphisms, andVt~L! is
integrable.

Let V~L! be the vector space overC with the basisB. Then as aC†[ t] ‡ module,
Vt(L)5V(L)†[ t] ‡. Our earlier discussions assert thatV(L)>Vt(L)/tVt(L) carries a natural
U„g(A,Q)… module structure, andVt~L! is a deformation ofV~L!. It follows the integrability of
Vt~L! that V~L! is integrable as aU„g(A,Q)… module. It is also of highest weight type, and
cyclically generated by the maximal vector with weightL. A result of Ref. 1 states that a
integrableU„g(A,Q)… module is completely reducible. ThusV~L!, being cyclically generated
must be irreducible. Also recall that every integrable irreducible highest weightU„g(A,Q)… mod-
ule is uniquely determined by an elementLPH* satisfying the same conditions as~3!. Thus,

every irreducible integrable highest-weight Ut„g(A,Q)… module is a deformation of an irre
ducible integrable highest-weight U„g(A,Q)… module with the same highest weight, and all su
irreducible U„g(A,Q)… modules can be deformed.

Note that the integrable lowest-weight irreps of the quantum affine superalgebras c
studied in the same way, and the above result applies as well. It should also be mention
Kac’s character formula1 for the integrable highest-weight irreps ofU„g(A,Q)… still works in the
quantum case.

IV. JIMBO MODEL AND BOSE–FERMI TRANSMUTATION

The Jimbo version of quantum affine superalgebraUq„g(A,Q)… is a Z2-graded associative
algebra over the complex number fieldC, generated by the elements$d,ki ,ki

21 ,ei , f i ,iPI %,
subject to the same relations as~1!, but withq now being regarded as a nonzero complex para
eter. Nevertheless, it is possible to formulate the Jimbo-type ‘‘quantization’’ within the frame
of deformation theory.5
J. Math. Phys., Vol. 38, No. 1, January 1997
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We still setq5exp(t), and lett i5te i . Define

Si5
ki2ki

21

qe i2q2e i
, Ci5

ki1ki
21

2
.

The relations of~1! involving ki
61 can now be reexpressed in terms ofSi andCi ,

@d, Ci #50, @d, Si #50,

CiSj5SjCi , ~Ci !
22~Si !

2 sinh2 t i51,

Ciej2ejCi cosh@ t~a i ,a j !#5ejSi sinh t i sinh@ t~a i ,a j !#,

Siej2ejSi cosh@ t~a i ,a j !#5ejCi sinh@ t~a i ,a j !#/sinh t i ,

Ci f j2 f jCi cosh@ t~a i ,a j !#52 f jSi sinh t i sinh@ t~a i ,a j !#,

Si f j2 f jSi cosh@ t~a i ,a j !#52 f jCi sinh@ t~a i ,a j !#/sinh t i ,

@ei , f j%5d i j Si ,

while the Serre relations remain the same. We can now regardUq„g(A,Q)… as generated byd, Ci ,
Si , ei , f i for any tPC. Furthermore, for a fixedt0PC, andt5t01t, we can considert as a formal
parameter, and define the formal Jimbo quantum affine superalgebraUq„g(A,Q)… as a properly
completedC†@t#‡ algebra generated byd, Ci , Si , ei , f i with the same relations. The
Uq„g(A,Q)… is a deformation ofUexp(t0)

„g(A,Q)….
At t050, Uexp(t0)

„g(A,Q)… is isomorphic to an extension of the universal enveloping alge
of g(A,Q) by theCi , which satisfyCi

251. Explicitly,

U1„g~A,Q!…5U„g~A,Q!…^CZ2
^ ~n11! ,

whereCZ2
^ (n11) is the group algebra of the Abelian group generated by theCi . Therefore, strictly

speaking, the Jimbo model ofUq„g(A,Q)… is not a deformation ofU„g(A,Q)…, but rather an
extension ofU„g(A,Q)… by some parity operators.

More interesting is the case whent05 ip. At t50, the relations become

@d, Ci #50, @d, Si #50,

CiSj5SjCi , ~Ci !
251,

Ciej5~21!~a i ,a j !ejCi , Ci f j5~21!~a i ,a j ! f jCi ,

Siej2~21!~a i ,a j !ejSi5~21!~a i ,a j !1e i~a i ,a j !ejCi ,

Si f j2~21!~a i ,a j ! f jSi52~21!~a i ,a j !1e i~a i ,a j ! f jCi ,

@ei , f j%5d i j Si

and the Serre relations read

~adei !
12ai j ~ej !50, ~ad fi !

12ai j ~ f j !50, iÞ j ,

with
J. Math. Phys., Vol. 38, No. 1, January 1997
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adei~x!5eix2~21!~a i ,v~x!!1@x#@ei #xei ,

ad fi~x!5 f ix2~21!~a i ,v~x!!1@x#@ei #x f i .

These are the defining relations for the complex associative algebraU21„g(A,Q)…, which,
unfortunately, are rather complicated, and not very illuminating. However, by applying ce
inner automorphisms constructed out of theCi , we can cast the relations into a more famili
form.

For definiteness, let us considerB(1)(0, n). Sets i5Pk5 i
n Ck , and define

D5d, Hi5~21!e iCiSi , Ei5s i11~s1!
d i0ei , Fi5s i~s1!

d i0f i .

Now something rather intriguing happens: these elements donotobey the defining relations of th
affine superalgebraB(1)(0, n). Instead, they generate the universal enveloping algebra of
twisted ordinary~i.e., nongraded! affine Lie algebraA2n

(2). Recall that the universal envelopin
algebra ofA2n

(2) and that ofB(1)(0, n) are totally different algebraic structures, although th
underlying vector spaces@ignoring theZ2 grading in the case ofB(1)(0, n)# are isomorphic.
Nevertheless,Uq„B

(1)(0, n)… can be obtained as a deformation of the universal enveloping alg
of A2n

(2) supplemented byn11 parity operators: a kind of transmutation between the ordinary af
algebra~which is bosonlike! and affine superalgebra~which is fermionlike! takes places upon
quantization. Such a transmutation was found in the case of osp~1u2n! and so~2n11! in Ref. 7,
providing a natural explanation for the observation made by Rittenberg and Scheunert8 that there
was a one-to-one correspondence between the tensorial irreducible representations of so~2n11!
and the finite-dimensional irreducible representations of osp~1u2n!.

Note that theCi generate the group algebra of the Abelian groupZ2
^ (n11). When acting by

conjugation on the elements of theA2n
(2) generators, they give rise to parity factors, i.e.,6 signs.

We introduce the notationU(A2n
(2))qCZ2

^ (n11)to illustrate the fact thatU21„B
(1)(0, n)… is the

universal enveloping algebra ofA2n
(2) supplemented by theCi .

A case by case study shows that such Bose–Fermi transmutation occurs with other
superalgebras as well; we have

U21„B
~1!~0, n!…>U~A2n

~2!!qCZ2
^ ~n11! , n.1,

U21„B
~1!~0, 1!…>U~A2

~2!!qCZ2
^2,

U21„A
~2!~0, 2n21!…>U~Bn

~1!!qCZ2
^ ~n11! ,n.2,

~4!
U21„A

~2!~0, 3!…>U~C2
~1!!qCZ2

^3,

U21„C
~2!~n11!…>U~Dn11

~2! !qCZ2
^ ~n11! ,

U21„C
~2!~2!…>U~A1

~1!!qCZ2
^2.

However, theA(4)(0, 2n) series proves to be an exception,

U21„A
~4!~0, 2n!…>U„A~4!~0, 2n!…qCZ2

^ ~n11! , n51,2,..., ~5!

where no Bose–Fermi transmutation has been observed.
The transmutation between ordinary quantum affine algebras and quantum affine sup

bras can also be realized at the level of representations. Consider an irreducible integrable h
weight moduleVt~L! of the Drinfeld quantum affine superalgebraÛt„g(A,Q)… studied in the last
section. Note thatt enters the formulas~2! throughq. Thus by specializingt to a complex number
J. Math. Phys., Vol. 38, No. 1, January 1997
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t5 ip1t, with t a generic complex parameter, we obtain fromVt~L! a module of the Jimbo
quantum affine superalgebraUq„g(A,Q)…, which we denote byV̌q~L!. If g(A,Q) is one of the
affine superalgebras appearing in~4!, then the representation ofUq„g(A,Q)… furnished byV̌q~L!
can be realized by an irreducible integrable highest-weight representation of the ordinary qu
affine algebraU2q„g(A,B)…, whereg(A,B), appearing on the right-hand sides of~4!, is the
ordinary affine Lie algebra with the same Cartan matrixA, but with all generators being even.

For the sake of concreteness, consider again the case ofUq„B
(1)(0, 2n)…. Denote byD, Ei ,

Fi , (Ki)
61 the generators ofU2q(A2n

(2)), while the generators ofUq„B
(1)(0, 2n)… are still denoted

by d, ei , f i , (ki)
61. Since the Cartan subalgebras ofB(1)(0, 2n) andA2n

(2) are isomorphic, we will
make no distinctions between them.

Let W̌2q~L! be an irreducibleU2q(A2n
(2)) module with highest weightL satisfying the con-

ditions ~3!. As a complex vector spaceW̌2q~L! admits the weight space decomposition

W̌2q~L!5 %

v<L

Wv,

where eachWv is finite dimensional, and (a i ,v)PZ,; iPI . Define aUq(B
(1)(0, 2n)) action on

W̌2q~L! by

dw5Dw, kiw5~21!~a i , v!Kiw,

eiw5~21!~b i112b1d i0 ,v1a i !Eiw,

f iw5~21!~b i2b1d i0 , v1a i !Fiw ;wPWv,

whereb i5( r5 i
n a r . Direct calculations show that this definition indeed preserves the defi

relations ofUq„B
(1)(0, 2n)…, thus turningW̌2q~L! into aUq„B

(1)(0, 2n)… module. This module is
clearly irreducible, and has highest weightL. Thus it is isomorphic toV̌q~L!. Observe that the
subset ofH* satisfying~3! exhausts all the integral dominant weights forB(1)(0, 2n). Therefore,
every irreducible integrable highest-weight representation ofUq„B

(1)(0, 2n)… can be realized this
way.

In a similar way we can show that the same result also holds for other affine superalg
Let g(A,Q) be an affine superalgebra appearing in (4). Then each irreducible integr

highest weight representation of Uq„g(A,Q)… can be realized by a representation
U2q„g(A,B)… of the same kind.

However, the converse is not true. There exist integrable irreps ofU2q„g(A,B)… with highest
weights not satisfying the second condition of~3!.

1V. G. Kac, Adv. Math.30, 85 ~1978!.
2G. Lusztig, Adv. Math.70, 237 ~1988!.
3M. Gerstenhaber, Ann. Math.78, 267 ~1963!.
4V. G. Drinfeld, Leningrad Math. J.1, 321 ~1989!.
5P. Bonneau, M. Flato, M. Gerstenhaber, and G. Pinczon, Commun. Math. Phys.161, 125 ~1994!.
6M. Lesimple and G. Pinczon, J. Math. Phys.34, 4251~1993!.
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Addendum: On the ionization of a Keplerian binary system
by periodic gravitational radiation [J. Math. Phys. 37,
3997–4016 (1996)]

C. Chicone
Department of Mathematics, University of Missouri, Columbia, Missouri 65211

B. Mashhoon
Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211

D. G. Retzloff
Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211

~Received 9 September 1996; accepted for publication 17 September 1996!

@S0022-2488~97!02401-8#

In our paper,1 two equations have incorrect forms due to printing errors. The last equatio
p. 4004 should read

FL~e,l ,g!5U2m~e!sin~2g12ml !1
d

4
@~a2b!Um~e!sin~2g1ml !#

and, similarly, the last equation on p. 4007 should read

05
d

dq
@PDD~G~q!,0!Y8~q!#U

q50

5PD2D~h,0!~G8~0!,Y8~0!!1PDD~h,0!Y9~0!.

Inclusion of radiative damping in our model due to gravitational radiation reaction is expe
to lead to transient chaotic effects.2

1C. Chicone, B. Mashhoon, and D. G. Retzloff, ‘‘On the ionization of a Keplerian binary system by periodic gravita
radiation,’’ J. Math. Phys.37, 3997–4016~1996!.

2C. Chicone, B. Mashhoon, and D. G. Retzloff, ‘‘Gravitational ionization: a chaotic net in the Kepler system,’’ pre
~1996!.
0022-2488/97/38(1)/544/1/$10.00
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Operator ordering index method for multiple commutators
and Suzuki’s quantum analysis

Mitsuo Abea) and Noriaki Ikedab)
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan

Noboru Nakanishic)
12-20 Asahigaoka-cho, Hirakata 573, Japan

~Received 12 July 1996; accepted for publication 13 August 1996!

General formulas are presented for the multiple commutator involving a function of
an operatorA in terms of~multiple! commutators involvingA by using ‘‘operator
ordering indices.’’ It is pointed out that this analysis essentially reproduces the
quantum analysis, proposed by Suzuki very recently, in a more transparent way.
Extension to the case of several operators is also made in an elegant form.
© 1997 American Institute of Physics.@S0022-2488~97!00102-3#

I. INTRODUCTION

Some years ago,1,2 we encountered and solved the following problem. LetA andF be some
operators andf (z) be an analytic function ofz. Without assuming†@A, F], A‡50, how can
@f (A), F# be expressed in terms of@A, F#? A general formula for expressing@f (A), F# in terms
of @A, F# was given by introducing two mutually commuting operatorsAL andAR , where the
indicesL ~5left! andR ~5right! indicate operator ordering with respect to@A, F#. We may call
this analysis ‘‘operator ordering index method.’’

On the other hand, very recently, Suzuki3–5 has proposed a differential analysis off (A) with
respect to an operatorA. His definition of operator derivative is

d f~A!

dA
5
f ~A!2 f ~A2dA!

dA
, ~1.1!

wheredA is a new operator commuting withA. He has made a detailed analysis about the hig
derivative (d/dA)nf (A). He has called his analysis ‘‘quantum analysis.’’

There is a parallelism between both analyses because both commutator and differentia
derivations. Suzuki’sdA corresponds to ourAL2AR if we identify A with AL .

The purpose of the present paper is to extend our operator ordering index method
multiple commutator. We again find the parallelism between our analysis and Suzuki’s. How
our formulas are more transparent than his corresponding ones. This fact enables us to
general explicit formulas for both (d/dA)nAk(k.0) and (d/dA)nA2k(k.0), which Suzuki did
not give.

The present paper is organized as follows. In Sec. II, we briefly review our previous ana
In Sec. III, we extend our operator ordering index method to the multiple commutator. In Se
the general explicit formulas are given for the cases off (A)5Ak(k.0) andA2k(k.0). In Sec.
V, we compare Suzuki’s quantum analysis with ours. In Sec. VI, we extend our analysis
case of a function of several variables.

a!Electronic mail address: abe@kurims.kyoto-u.ac.jp
b!Electronic mail address: nori@kurims.kyoto-u.ac.jp
c!Electronic mail address: nbr-nakanishi@msn.com
0022-2488/97/38(2)/547/9/$10.00
547J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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II. REVIEW OF OUR PREVIOUS WORK

Quantum field theory is usually solved in the interaction picture. However, such an app
is not appropriate for quantum gravity. We have therefore developed a new method for s
quantum field theory in the Heisenberg picture.6–8 For this purpose, we have set up a Cauc
problem for the full-dimensional commutator between a pair of field operators by using a
equation and equal-time commutation relations. Here, we have encountered a mathematic
lem, which may be stated as follows in its simplest version.1

Let A andF be operators andf (z) be an analytic function ofz. Express@f (A), F# in terms of
@A, F# without assuming the commutativity between@A, F# andA.

We have solved this problem in the following way. Cauchy residue theorem implies

@ f ~A!, F#5
1

2p i R dz f~z!F 1

z2A
, F G5

1

2p i R dz f~z!
1

z2A
@A, F#

1

z2A
. ~2.1!

Substituting the remainder-theorem formula

f ~z!5 f̂ @1#~w,z!~z2w!1 f ~w! ~2.2!

with w5A into ~2.1!, we have

@ f ~A!, F#5
1

2p i R dz f̂@1#~A,z!@A, F#
1

z2A
1
f ~A!

2p i R dz
1

z2A
@A, F#

1

z2A
. ~2.3!

The second term vanishes because of a double pole. In order to calculate the first term ex
in the general form, we write

A5A~1! if A lies in the left of @A, F#,

A5A~2! if A lies in the right of @A, F#.

~We useA~1! andA~2! instead ofAL andAR , respectively.! We regardA~1! andA~2! as if they were
two different operators. But, of course, they are mutually commutable. With this notation,~2.3!
becomes

@ f ~A!, F#5 f̂ @1#~A~1! ,A~2!!@A, F# ~2.4!

because of Cauchy residue theorem.
From ~2.2!, the expression forf̂ @1# is

f̂ @1#~A~1! ,A~2!!5
f ~A~1!!2 f ~A~2!!

A~1!2A~2!
. ~2.5!

It is important to note that this function issymmetricin A~1! and A~2!. If we setA(1)5A and
A(1)2A(2)5dA , ~2.5! becomes~1.1!, but this symmetry is implicit in the latter.

III. MULTIPLE COMMUTATORS

It is rather straightforward to extend our method to the multiple commutator. For exampl
a double commutator, our analysis becomes as follows.

Since
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



549Abe, Ikeda, and Nakanishi: Operator ordering index method

¬¬¬¬¬¬¬¬¬¬
F F 1

z2A
, F1G , F2G5F 1

z2A
@A, F1#

1

z2A
, F2G5

1

z2A
†@A, F1#, F2‡

1

z2A

1
1

z2A
@A, F1#

1

z2A
@A, F2#

1

z2A

1
1

z2A
@A, F2#

1

z2A
@A, F1#

1

z2A
, ~3.1!

we have

†@ f ~A!, F1#, F2‡5 f̂ @1#~A~1! ,A~2!!†@A, F1#, F2‡1F 1

2p i R dz f̂@1#~A,z!

3@A, F1#
1

z2A
@A, F2#

1

z2A
1~F1↔F2!G . ~3.2!

We rewrite the second term of~3.2! by using

f̂ @1#~w1 ,z!5 f̂ @2#~w1 ,w2 ,z!~z2w2!1 f̂ @1#~w1 ,w2! ~3.3!

as follows:

1

2p i R dz f̂@2#~A~1! ,A~2! ,z!@A, F1#@A, F2#
1

z2A
1
f̂ @1#~A~1! ,A~2!!

2p i R dz@A, F1#

3
1

z2A
@A, F2#

1

z2A
5 f̂ @2#~A~1! ,A~2! ,A~3!!@A, F1#@A, F2#. ~3.4!

Here, as before, the subscript in the parentheses indicates operator ordering:A~1!, A~2!, andA~3! are
mutually commutable operators;A~1! lies on the left of the first commutator,A~2! lines in between
the first one and the second one, andA~3! lies on the right of the second one.

From ~3.3! and ~2.5!, we obtain

f̂ @2#~A~1! ,A~2! ,A~3!!5
f̂ @1#~A~1! ,A~2!!2 f̂ @1#~A~1! ,A~3!!

A~2!2A~3!
5(

i51

3
f ~A~ i !!

~A~ i !2A~ j !!~A~ i !2A~k!!
,

~3.5!

where (i , j ,k) is a cyclic permutation of~1,2,3!. It should be noted that~3.5! is totally symmetric
in A~1!, A~2!, andA~3!.

It is now straightforward to show by mathematical induction that thenth commutator can be
expressed as follows:

@•••†@ f ~A!, F1#, F2‡,...,Fn#5 f̂ @1#~A~1! ,A~2!!@•••†@A, F1#, F2#,...,Fn]1•••

1 f̂ @m#~A~1! ,...,A~m11!!

3(
all

@m factors of admissible~multiple! commutators#1•••

1 f̂ @n#~A~1! ,...,A~n11!! (
all permutations

n!

@A, F i1
#•••@A, F i n

#, ~3.6!
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¬¬¬¬¬¬¬¬¬¬
where ‘‘admissible multiple commutator’’ is a multiple commutat
@•••†@A, F i1

#, F i2
‡,...,F i s

# such thati 1, i 2,•••, i s .

The function f̂ [n] is recursively defined by

f̂ @n#~A~1! ,...,A~n11!!5
f̂ @n21#~A~1! ,...,A~n!!2 f̂ @n21#~A~1! ,...,A~n21! ,A~n11!!

A~n!2A~n11!
. ~3.7!

It is a totally symmetricfunction, as is seen from its explicit expression

f̂ @n#~A~1! ,...,A~n11!!5 (
i51

n11
f ~A~ i !!

Pm51
n ~A~ i !2A~ j m!!

, ~3.8!

where (i , j 1 ,...,j n) is a cyclic permutation of~1,2,...,n11!.
The formula~3.8! is not convenient because it has operators in the denominators. It is

convenient to introduce the Feynman parametrization in the following way.
We first note that~2.5! is rewritten as

f̂ @1#~A~1! ,A~2!!5E
0

1

da f 8~aA~1!1~12a!A~2!!, ~3.9!

where f 8 denotes the first derivative off . It is easy to show by mathematical induction that

f̂ @n#~A~1! ,...,A~n11!!5E
D
dna f ~n!S (

i51

n11

a iA~ i !D , ~3.10!

where f (n) denotes thenth derivative off and

E
D
dna@* #[E

0

1

da1•••E
0

1

dan11dS 12 (
i51

n11

a i D @* #. ~3.11!

The formula~3.10! is alsomanifestly totally symmetricin A(1),...,A(n11).

IV. SPECIAL CASES

The following generalized beta-function formula is well known:9

E
D
dnaF )

i51

n11

a i
l i21Y S (

i51

n11

a iwi D lG5F )
i51

n11

G~l i !Y G~l!G•F1Y )
i51

n11

wi
l iG ~4.1!

with l[(i51
n11l i . By using this formula, we can calculatef̂ [n] explicitly in some special cases.

First, we consider the case of

f ~z!5zk ~k.0!. ~4.2!

Evidently, (zk̂) @n# [ 0 for n.k. Hence we assumen<k. From~3.10!, we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
~zk̂!@n#~A~1! ,...,A~n11!!5
k!

~k2n!! ED
dnaS (

i51

n11

a iA~ i !D k2n

5k! E
D
dna (

k1>0,...,kn11>0
( i ki5k2n

)
i51

n11
~a iA~ i !!

ki

ki !

5( ak1 ,...,kn11)i51

n11

A~ i !
ki, ~4.3!

where

ak1 ,...,kn11
[

k!

P i51
n11ki !

E
D
dna )

i51

n11

a i
ki. ~4.4!

Settingwi51 andl i5ki11 in ~4.1!, we obtain

ak1 ,...,kn11
5S k!Y )

i51

n11

ki ! D •F )
i51

n11

G~ki11!Y GS (
i51

n11

~ki11!D G . ~4.5!

Since

(
i51

n11

~ki11!5~k2n!1~n11!5k11, ~4.6!

~4.5! reduces toak1 ,...,kn11
5 1. We thus find

~zk̂!@n#~A~1! ,...,A~n11!!5 (
k1>0,...,kn11>0

( i ki5k2n

N

)
i51

n11

A~ i !
ki, ~4.7!

where the numberN of the terms in~4.7! is calculated by settingA( i )51 in the first line of~4.3!
and in ~4.7!:

N5
k!

~k2n!!n!
. ~4.8!

Next, we consider the case

f ~z!5z2k ~k.0!. ~4.9!

From ~3.10!, we have

~z2 k̂!@n#~A~1! ,...,A~n11!!5~21!n
~k1n21!!

~k21!! E
D
dnaF1Y S (

i51

n11

a iA~ i !D k1nG . ~4.10!

Inserting 15(( i51
n11a i)

k21 into the integrand of~4.10!, we obtain
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¬¬¬¬¬¬¬¬¬¬
~z2 k̂!@n#~A~1! ,...,A~n11!!5~21!n~k1n21!! (
k1>0,...,kn11>0

( i ki5k21

S 1Y )
i51

n11

ki ! D E
D
dna

3F )
i51

n11

a i
kiY S (

i51

n11

a iA~ i !D k1nG ~4.11!

Settingwi5A( i ) andl i5ki11 in ~4.1!, we find

~z2 k̂!@n#~A~1! ,...,A~n11!!5~21!n (
k1>0,...,kn11>0

( i ki5k21

N8 S 1Y )
i51

n11

A~ i !
ki11D . ~4.12!

The numberN8 of the terms in~4.12! is calculated by settingA( i )51 in ~4.10! and in ~4.12!:

N85
~k1n21!!

~k21!!n!
. ~4.13!

The formula~4.7! can also be derived in the following way. To calculatef̂ [n] , it is unnecessary
to distinguishF1,...,Fn . Hence we setF[F15•••5Fn . Then there is a generating function
multiple commutators:

e2tF f ~A!etF5 (
n50

`
tn

n!
@•••†@ f ~A!, F#1 , F‡2 ,...,F#n , ~4.14!

where subscripts of square brackets are written for sake of indicating the commutator multip
Accordingly,

@•••†@Ak,F#1 , F‡2 ,...,F#n5S ddtD n~e2tFAketF!U
t50

5S ddtD n~e2tFAetF!kU
t50

5S ddtD nS (
m50

`
tm

m!
@•••†@A, F#1 ,F‡2 ,...,F#mD kU

t50

5 (
m1>0,...,mk>0

( jmj5n

S n!Y )
j
mj ! D )

j51

k

@•••†@A, F#1 , F‡2 ,...,F#mj
.

~4.15!

We can calculaten!(zk̂) @n# by taking out the terms in whichmj50 or 1 for all js, that is, in which

mk1115mk11k2125•••5mk11•••1kn1n51, mj50, otherwise, ~4.16!

wherek11•••1kn115k2n @see~4.6!#. Hence we obtain~4.7!.
Finally, we note that iff (A) is expandable into a Taylor or Laurent series, we can write do

the explicit formula off̂ [n] (A(1),...,A(n11)) by using~4.7! or ~4.7! and ~4.12!.
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V. COMPARISON WITH SUZUKI’S QUANTUM ANALYSIS

Suzuki3–5 starts with the Gaˆtaux derivation10

d f~A!5 lim
h→0

f ~A1hdA!2 f ~A!

h
, ~5.1!

whereh is a c-number. Since [A, dA]Þ0, in general, he introduces a special operator~inner
derivation! dA , which is defined by

dA•Q[@A, Q# ~5.2!

for any operatorQ and by

@A, dA#50. ~5.3!

With dA , ~5.1! is rewritten into the form of

d f~A!5 f 1~A,dA!•dA. ~5.4!

He then defines the quantum derivative off (A) by

d f~A!

dA
5 f 1~A,dA!. ~5.5!

The above consideration is extended to thenth order derivative. One may write

dnf ~A!5 lim
h→0

(
j50

n
~21!n2 j

hn S nj D f ~A1 jhdA!. ~5.6!

GeneralizingdA to dj ( j51,2,...,n), which is defined by

d j~dA!n5~dA! j21~dAdA!~dA!n2 j , ~5.7!

he rewrites~5.6! into the form of

dnf ~A!5 f n~A,d1 ,...,dn!~dA!n ~5.8!

and defines

dnf ~A!

dAn
5 f n~A,d1 ,...,dn!. ~5.9!

As stated in the Introduction, both differentiation and commutator are derivations. Suz
formula ~5.9! is reproduced from our formula~3.6! by settingF[F15•••5Fn and

†@A, F#,F‡50, ~5.10!

which corresponds tod(dA)50. With ~5.10!, ~3.6! reduces to

@•••†@ f ~A!, F#1 , F‡2 ,...,F#n5n! f̂ @n#~A~1! ,...,A~n11!!@A, F#n. ~5.11!

Two formulas~5.8! and ~5.11! have the following complete correspondence:
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¬¬¬¬¬¬¬¬¬¬
dA⇔@A, F#,

dnf ~A!⇔@•••†@ f ~A!, F#1 , F#2 ,...,F] n , ~5.12!

f n~A,d1 ,...,dn!⇔n! f̂ @n#~A~1! ,...,A~n11!!

with

A⇔A~1! ,
~5.13!

d j⇔A~ j !2A~ j11! ~ j51,2,...,n!.

Thus f n andn! f̂
[n] are equivalent.

There is, however, an important difference between Suzuki’s analysis and ours. As e
sized in Sec. III,f̂ [n] is totally symmetricin A(1),...,A(n11). On the other hand,f n has no such
manifest symmetry inA,d1 ,...,dn . Indeed, his expression corresponding to~3.8! is very compli-
cated.

Another difference is that no limiting procedure is employed in our analysis. This enabl
to avoid any consideration on the norm, which is a cumbersome mathematical procedure.

VI. EXTENSION TO THE SEVERAL-VARIABLE CASE

So far, we have restricted our consideration to a single-variable functionf (A). Practically, we
need to discuss the case of a several-variable functionf (A1 ,...,Am), where [Ai , Aj ]50. We can
generally reduce the latter case to the former one in the following way:

f ~A1 ,...,Am!5
1

~2p i !m R dz1••• R dzmS f ~z1 ,...,zm!Y )
j51

m

~zj2Aj !D
5

1

~2p i !m R dz1••• R dzmf ~z1 ,...,zm!~m21!! E
D
dm21b

3S 1Y F (
j51

m

b j~zj2Aj !GmD
5E

D
dm21bF~A;b1 ,...,bm!, ~6.1!

whereF is a function of asinglevariable

A[(
j51

m

b jAj , ~6.2!

defined by

F~A;b1 ,...,bm![
~m21!!

~2p i !m R dz1••• R dzmF f ~z1 ,...,zm!Y S (
j51

m

b j zj2AD mG . ~6.3!

Now, we calculate the multiple commutator by substituting~6.1! into ~3.6!. Without loss of
generality, we may confine our consideration to its last term:
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¬¬¬¬¬¬¬¬¬¬
E
D
dm21bF̂ @n#~A~1! ,...,A~n11! ;b1 ,...,bm! (

~ i1 ,...,i n!
@A, F i1

#•••@A, F i n
# ~6.4!

with ~6.2!. For simplicity, we setF[F15•••5Fn . Since [A, F]5( jb j [Aj , F], ~6.4! is rewrit-
ten as

n! (
j 151

m

••• (
j n51

m

f̂ @n1 ,...,nm#~A1~1! ,...;...;Am~1! , ...!)
k51

n

@Ajk
, F#, ~6.5!

wherenj denotes the number ofj ks such thatj k5 j and

f̂ @n1 ,...,nm#[E
D
dm21b)

j51

m

b j
nj
•F̂ @n#~A~1! ,...,A~n11! ;b1 ,...,bm!. ~6.6!

Substituting~6.3! into ~6.6! and using~3.10!, we have

f̂ @n1 ,...,nm#5
~m1n21!!

~2p i !m E
D
dna R dz1••• R dzmf ~z1 ,...,zm!E

D
dm21b

3H )
j51

m

b j
njY F (

j51

m

b j S zj2 (
i51

n11

a iAj ~ i !D Gm1nJ . ~6.7!

Theb integration is carried out by means of~4.1!. We find

f̂ @n1 ,...,nm#5
P j51

m nj !

~2p i !m E
D
dna R dz1••• R dzmS f ~z1 ,...,zm!Y )

j51

m Fzj2 (
i51

n11

a iAj ~ i !Gnj11D
5E

D
dna f ~n1 ,...,nm!S (

i51

n11

a iA1~ i ! ,...,(
i51

n11

a iAm~ i !D , ~6.8!

wheref (n1 ,...,nm)(z1 ,...,zm)[ ]z1
n1•••]zm

nmf (z1 ,...,zm).
This formula is a natural generalization of~3.10! to the case of several variables, that is, t

correspondence

S ]

]A1
D n1•••S ]

]Am
D nmf⇔n! f̂ @n1 ,...,nm# ~6.9!

holds.
Note Added in Proof:Professor M. Suzuki has informed us that he found the formula

dnAR/dAn independently.
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Relativistic point interaction with Coulomb potential
in one dimension

Stefan Benvegnùa)
Fakultät für Mathematik, Ruhr-Universita¨t-Bochum, Universita¨tsstrasse 150,
D-44780, Bochum, Germany

~Received 2 July 1996; accepted for publication 8 October 1996!

The Dirac Hamiltonian in one space dimension is investigated under the influence
of a potential of the form2g/uxu. The corresponding~four-parameter! family of all
self-adjoint extensions is given and described via the boundary form. The resolvent
is calculated and the spectrum is studied. Furthermore, we examine the zero mass
case. In the nonrelativistic limit we obtain the four-parameter family of Schro¨dinger
operators with the Coulomb potential. ©1997 American Institute of Physics.
@S0022-2488~97!02901-0#

I. INTRODUCTION

In nonrelativistic quantum mechanics the Schro¨dinger operator with point interaction plays a
important role as an exactly solvable mathematical model. The interaction is situated at a d
set of points and serves as an approximation to more complex physical situations. These
have been extensively studied since the early work of Kronig and Penney1 in 1931 ~for a survey
see Ref. 2!.

But there exists also a relativistic model which is provided by the Dirac operator and a
shall see the most interesting case is found in one dimension. In fact some relativistic corre
in condensed matter physics are of one-dimensional character.3 The ~time independent! Dirac
operator with point interaction has been investigated in high energy particle physics4,5 and in
connection to many other topics such as Klein paradox,6,7 Saxon–Hutner conjecture8,9 and surface
states.10–15They are considered in the finite center case16 as well as in the infinite periodic cente
case7,12,15,17–25where the model is often called according to Kronig and Penney. The relativ
delta potentials are examined also under various other aspects26–40and one should likewise men
tion the discussion of self-adjoint extensions of the Dirac operator in three space dimensio41–44

where strong singularities have to be present to render the model nontrivial. Many pro
related to the Dirac equation~which are concerning amongst others group theoretic struc
supersymmetry and field theoretic aspects! are described in the book of Thaller.45 Let us now turn
to the introduction of the model.

The description of a relativistic quantum particle moving without interaction~V50! is given
by the Dirac equation,

i\
]

]t
c~x,t !5~2 i\ca–“1mc2b!c~x,t !5H0c~x,t !,

where“ denotes the gradient andai , i51,...,d, ~the components of thed-vectora! andb are
self-adjointn3n complex matrices with the following properties:

a ıak1aka i52d ik , i ,k51,...,d,
~1.1!

a ib1ba i50, b251.

a!Graduiertenkolleg ‘‘Geometrie und mathematische Physik.’’ Electronic mail: stefan.benvegnu@rz.ruhr-uni-bochu
0022-2488/97/38(2)/556/15/$10.00
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The HamiltonianH0 acts on functionsc taking values inCn~Rd! and as Hilbert spaceH we take
the complex spaceL2~Rd!n. n has to be even and the cased51,2 can be handled withn52 ~then
a andb can be represented by Pauli matrices! while for three dimensional spacen54 is needed.

Here, the dimension of the configuration space is of crucial importance because if we a
for simplicity the singular potential to be concentrated at the pointp thenH0uC

0
`(Rd\{ p}) is essen-

tially self-adjoint for d.1 but has a four parameter family of self-adjoint extensions46 if the
dimension of the configuration space equals one.

In view of point interactions it is now natural to consider potential functions which
singular at one point. The most ‘‘simple’’ potential for this purpose is the inverse distance fun
and in accordance with the Coulomb potential in three dimensions one takes the absolute

In the remainder the potential2g/uxu will be called, according to the literature, ‘‘Coulom
potential’’ although it coincides only in three space dimensions and with positive coupling
stant g with the Coulomb interaction.~Models of this type are also sometimes called ‘‘on
dimensional hydrogen atoms.’’! Their physical relevance is shown, for example, in the investi
tion of atoms or excitons in ‘‘quantum wires’’47 or in the description of electrons near the surfa
of liquid Helium.48

One first considers functions with support away from the point where the potential dev
its singularity ~here for convenience taken to coincide with the originx50 of the coordinate
system!. Therefore, the real line is divided into twoa priori disconnected parts which admit in
next step the linking via appropriate conditions~characterized by the boundary form49! on func-
tions approaching this point.

Because one already starts with a symmetric operator with Coulomb interaction, one h
simple expression which could be the base of a Krein method. But since the differential equ
are of first order they allow a direct integration to find the resolvents.

II. DIRAC HAMILTONIAN

To start the investigation of the effect of the potential2g/uxu on the one-dimensional Dira
Hamiltonian we first have to define the operator and to seek for its deficiency index which m
the same as searching for a basis of the deficiency subspace. As in the situation with thre
dimensions, where beginning at a certain value of the strength of the interaction the addin
Coulomb interaction destroys the essential self-adjointness of the Dirac Hamiltonian onC0

`~R3!4,
we expect also in one space dimension that the operator has several self-adjoint exte
Indeed, this is seen to be true even for every real value of the coupling constantg. In the
remainder we will assumeg to be nonzero~the caseg50 has already been discussed in Ref. 4!.

We consider the time independent part of the Dirac operator, the Dirac HamiltonianH0 where
for d51 we have“5d/dx anda as well asb are one of the Pauli matrices

s15S 01 1
0D , s25S 0i 2 i

0 D , s35S 10 0
21D , ~2.1!

respectively.
To separate large from small components~which means that in the nonrelativistic limit onl

one component is left over in the matrix of the resolvent! one usually takesa5s1 and b5s3
which is known as ‘‘Dirac representation.’’ But in view of the differential equations we would
to have the derivatives in the diagonal and choosea5s3 andb52s1, which corresponds for zero
mass to a basis of right and left moving spinors~‘‘chiral representation’’!. These two representa
tions are related to each other by a unitary transformation.

The matrixMg of the Dirac Hamiltonian with Coulomb interactionHg reads
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
Mg5S 2 i\c

d

dx
2mc2

2mc2 i\c
d

dx

D 2
g

uxu S 10 0
1D , ~2.2!

and the domain ofHg is given by

D~Hg!5C0
`~R\$0%! ^C25C0

`~R\$0%,C2!,

which is a dense subset of our Hilbert spaceH5L2~R!^C25L2~R,C2!. The constants\ andc are
nonzero real numbers and forHg being a symmetric operator it is necessary to choose alsogPR.
It turns out that the adjoint operatorHg* is given on the domain

D~Ĥg* !5$vPHuvPWloc
2,1~R\$0%,C2!,MgvPH%. ~2.3!

Our next step is now to check whetherHg admits self-adjoint extensions. So we look at t
deficiency index~dimKi ,dimK2 i! of its closure. Here,

Kz5ran~Hg2z!'5ker~Hg*2 z̄!

is the deficiency subspace.
We denote bye the constant which takes the value 1 for positive and21 for negativex ~if e

is used as subscript we will write a shorthand1,2 instead of11,21, respectively!.
Lemma II.1: For the constants A1 and A2PC let

Ae5 HA1

A2

for x.0,
for x,0. ~2.4!

An arbitrary element of the deficiency subspace Nz̄ is given by

vz~x!5AeS mc2ca,b~2kuxu!
i ~ iz1e\ck!@ca,b~2kuxu!1bca11,b11~2kuxu!# D ~2kuxu!b/2e2kuxu, ~2.5!

where

a5e
ig

\c
2

zg

~\c!2k
5

ig

~\c!2k
~ iz1e\ck!, b5e2

ig

\c
,

\ck5A~mc2!22z2, Rek.0. ~2.6!

andca,b is the confluent hypergeometric function of the second kind.50

Because it is explicitly seen in~2.6! that the parametersa andb do depend one, that is, they
are different depending on whether the positive or negative semiaxis is considered, no su
will be attached to it to simplify the notation in the sequel.

After this reasoning one can answer the question about the deficiency indices for the op
Ĥg . Because we have the solutionvz which is inL

2~R,C2! for both valuesz56 i , it seems at first
sight that the deficiency index is~1,1! but in fact ourv is already a linear combination of tw
linearly independent~and even orthogonal! solutions which we shall callv1 andv2 and which read

vz
1~x!5H vz~x! for x.0,

0 for x,0,
J. Math. Phys., Vol. 38, No. 2, February 1997
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and

vz
2~x!5H 0 for x.0

vz~x! for x,0,
~2.7!

That this decomposition is possible comes from the fact that functions belonging to the defic
subspaceNz need not be continuous at the origin~they do not even need to have a limit there!.

In conclusion we summarize these facts in
Theorem II.2: The deficiency index of Hˆ g is ~2,2! and a basis of the deficiency subspacez

for zPC\$~2`,2mc2#ø@mc2,`!% is given byvz
1 and vz

2 in ~2.7!.
Hence there exists a four-parameter family of self-adjoint extensions.

III. SELF-ADJOINT EXTENSIONS

To characterize the elements in the deficiency subspace and therefore also the possib
adjoint extensions ofĤg according to their behaviour at zero, i.e., for small values ofx, we use
the method of boundary forms.49,51So we observe that foru,v P D(Ĥg* ) the following formula
holds:

^Ĥg* u,v&2^u,Ĥg* v&

5 lim
«↘0

H E
2`

2«

dx~Ĥg* u~x!,v~x!!2E
2`

2«

dx~u~x!,Ĥg* v~x!!

1E
«

`

dx~Ĥg* u~x!,v~x!!2E
«

`

dx~u~x!,Ĥg* v~x!!J
52 i\c lim

«↘0
@ ū1~x!v1~x!1ū2~x!v2~x!#2«

« . ~3.1!

Now we take asu andv two arbitrary elements of the deficiency subspace of the form~2.5! with
coefficientsAe

u andAe
v, respectively. The behavior of these functions for smallx can be inferred

from that one ofca,b . The components ofu read~note thata depends onz!

ue,1~x!5Ae
umc2

G~12b!

G~11a2b!
~2kuxu!b/2@11O~ u2kxu!#5De,1

z ~u!~2kuxu!b/2@11O~ u2kxu!#,

ue,2~x!5Ae
ui ~ iz1e\ck!

G~11b!

G~11a!
~2kuxu!2b/2@11O~ u2kxu!#

5De,2
z ~u!~2kuxu!2b/2@11O~ u2kxu!#, ~3.2!

and because of the strong oscillating behavior we introduced new constantsDe,1
z (u), De,2

z (u)
which describe the elementsu of the deficiency subspace for smallx,

D1,1
z ~u!5 lim

x↘0
~2kuxu!2b/2u1~x!, D2,1

z ~u!5 lim
x↗0

~2kuxu!2b/2u1~x!,

~3.3!
D1,2
z ~u!5 lim

x↘0
~2kuxu!b/2u2~x!, D2,2

z ~u!5 lim
x↗0

~2kuxu!b/2u2~x!.

Remark III.1: De
u defined by~3.3! are the ordinary limits ifg50. The definition of De

z is
applicable on any uP D(Hg* ) because such an element is represented by a sum of vectors
the domain of Hˆ g and the deficiency subspaces Nz and Nz̄ . For uPD~Ĥg! it holds that
J. Math. Phys., Vol. 38, No. 2, February 1997
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D1
z (u)5D2

z (u)50.
If we look uponDe,1

z (u) andDe,2
z (u) as components of a vectorD6(u) we can characterize th

self-adjoint extensions in
Theorem III.2: Let LPM2~C! be the matrix satisfying

L1S 10 0
21DL5S 10 0

21D . ~3.4!

The self-adjoint extensions of the symmetric operator Hˆ
g are given by Hg

L5Mg with

Mg5S 2 i\c
d

dx
2

g

uxu
2mc2

2mc2 i\c
d

dx
2

g

uxu
D

on the domain

D~Hg
L!5$wPD~Hg* !uD1w5LD2w%, ~3.5!

and with the components of D6 , defined by~3.3!.
Remark III.3: If we define instead of D6 the mapping

G1:D~Hg* !{u°SD1,1
z ~u!

D2,2
z ~u! D PC2, G2:D~Hg* !{u°SD2,1

z ~u!

D1,2
z ~u! D PC2,

we can describe all self-adjoint extensions with the unitary matrix V by

G2w5VG1w,

though it is not always possible to pass from one description to the other unless limiting cas
admitted.

IV. RESOLVENT OF THE SELF-ADJOINT EXTENSIONS

The construction of the resolventRg(z)5(Hg2z)21 of the Dirac Hamiltonian with2g/uxu-
interaction is equivalent to the problem of solving the differential equation

~Hg2z!x5w, wPL2~R,C2!, ~4.1!

for the functionx. BecauseHg is a first order differential operator, one first solves the homo
neous equation

~Hg2z!x50, ~4.2!

which has the formal solutionx(x)5A(r(x),s(x))T1B( r̃(x),s̃(x))T, A,BPC, and then varies
the constants, i.e., one makes the ansatz

x~x!5A~x!S r~x!

s~x! D1B~x!S r̃~x!

s̃~x! D
to solve the inhomogeneous equation~4.1!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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By studying the deficiency subspace one automatically gets a general system of solut
the homogeneous equation which we are able to use now. Furthermore, we have to ta
account the conditions imposed on functions belonging to the domain of the self-adjoint e
sionsHg

V. For them it holds

D1~x!5LD2~x!, ~4.3!

whereL̂ is the matrix given in Theorem III.2 and the ‘‘generalized boundary values’’D1~x! and
D2~x! are defined by~3.3!, i.e., the mapping

D~Hg* !{x°D6~x!5 lim
x→06

S ~2kuxu!2b/2x1

~2kuxu!b/2x2
D , ~4.4!

wherex→06 means the limitx→0 from above and below, respectively. Furthermore,

lim
x→0

~2kuxu!2b/2H r~x!

r̃~x!J 5mc2H G~12b!

G~11a2b!

1
J ,

lim
x→0

~2kuxu!b/2Hs~x!

s̃~x!J 5 i ~ iz1e\ck!H G~11b!

G~11a!

0
J .

After these considerations we give the resolvent of the self-adjoint extensions of the op
Hg in the

Theorem IV.1: Let U(x) denote the Heaviside step function, which is1 for positive argu-
ments and0 otherwise. Furthermore letL̂ be the matrix

L5vS PQ̄ Q

P̄ D , uPu22uQu25uvu51, P,QPC. ~4.5!

The integral kernel Rg
L(x,y) of the resolvent Rg

L of Hg
L is given by

Rg
L~x,y!5

1

\c~mc2!2me
H @U~x2y!2U~2y!#S ir~x!s̃~y!

2s~x!s̃~y!

r~x!r̃~y!

is~x!r̃~y! D 2@U~x2y!2U~x!#

3S i r̃~x!s~y!

2s̃~x!s~y!

r̃~x!r~y!

i s̃~x!r~y! D 1F 1G S 11U~x!F Q̄l21 P̄m2

m1
21G D ~U~2y!v~Q̄l1

2Pm1!2U~y!m1!1U~x!U~2y!v
Q̄

m1
G S ir~x!s~y!

2s~x!s~y!

r~x!r~y!

is~x!r~y! D J , ~4.6!

with

le5
G~12b!

G~11a2b!
, me5

i ~ iz1«\ck!

mc2
G~11b!

G~11a!
, ~4.7!

a, b and k from~2.6!, and

G5Pl2m11Qm2m12Q̄l2l12 P̄l1m2 ~4.8!

on the domainran~Hg
L!5H.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The functionsr, r̃, s and s̃ are

r~x!5mc2Ca,b~2kuxu!~2kuxu!b/2e2kuxu,

r̃~x!5mc2Fa,b~2kuxu!~2kuxu!b/2e2kuxu,

s~x!5~ iz1e\ck!@Ca,b~2kuxu!1bCa11,b11~2kuxu!#~2kuxu!b/2e2kuxu,

s̃~x!5~ iz1e\ck!@Fa,b~2kuxu!2Fa11,b11~2kuxu!#~2kuxu!b/2e2kuxu, ~4.9!

whereF is the hypergeometric function of the first kind.50

V. SPECTRUM

The point spectrum can be obtained from the poles of the resolventĤg
L . Looking at the form

of the resolvent we deduce that
~1! the point spectrum consists of the zeros ofG which was defined in~4.8!,

05Pl2m11Qm2m12Q̄l2l12 P̄l1m2 ,

and
~2! the essential spectrum given by the set

sess~Ĥg
L!5$~2`,2mc2#ø@mc2,`!%

is absolutely continuous.
Remark V.1: We note thatm as well asl cannot be zero for zP(2mc2,mc2).
Also nearg50 the point spectrum consists of zeros ofG(z). In the representation witha5s1

andb5s3 we can compare the results with those obtained in Ref. 46. After the unitary tran
mationL can be written as

L̂5vS A
2 iC

iB
D D , uvu51, AD2BC51, A,B,C,DPR,

where we denote the transformed quantities by a hat. So we get

Ĝ5~l22m2!~l11m1!A1~l21m2!~l1

1m1!iB1~l22m2!~l12m1!iC2~l21m2!~l12m1!D. ~5.1!

If we setg50, it holds

l6ug5051, m6ug505
i

mc2
~ iz6\ck!,

and with ~5.1! this yields

mc2

2
Ĝug505 i\ck~A1D !1~mc22z!iB1~mc21z!iC.

Thus we obtain

z65mc2
B22C26uA1DuA~A2D !214

~B2C!21~A1D !2
, ~5.2!
J. Math. Phys., Vol. 38, No. 2, February 1997
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for

6e~A1D !~B2C!A~A2D !214.~A1D !~B1C!.

Now we turn to the case where the total mass is approximately given by the rest mass
system.

VI. NONRELATIVISTIC LIMIT

For the nonrelativistic limit one has to subtract the rest mass from the energy~the spectral
parameterz! which corresponds to a substitutionz→z1mc2 and subsequently to perform th
limit c→`. Again we do this in the unitarily transformed representation.

Theorem VI.1: LetW andM denote the Whittaker functions52 andc(w)5G8(w)/G(w) the
logarithmic derivative of the gamma function.

The nonrelativistic limit R̃g
L(x,y) of the integral kernel Rˆ g

L(x,y) reads in the norm-resolven
sense

R̃g
L~x,y!5R̃g,D~x,y!1

m

\2
G2~11ã !

2

s~A1D !1s2B̃1C̃
H ~11U~x!@v~A1sB̃!21# !

3~~sB̃1D !U~2y!2v̄U~y!!1v
m

\2
B̃U~2y!U~x!J

3W2ã ,1/2~2k̃uxu!W2ã ,1/2~2k̃uyu!S 1
0

0

0
D . ~6.1!

with ã52mg/\2k̃, k̃ 5 A22m/\2z and

s5 k̃12
mg

\2 S c~11ã !22c8~1!2 lnS ã

2 D D . ~6.2!

Here, R̃g,D(x,y) is the part of the resolvent which is independent of the boundary condition,

R̃g,D~x,y!5
m

\2

G~11ã !

k̃
$e~y!@U~x2y!2U~2y!#W2 ā ,1/2~2k̃uxu!M2 ā ,1/2~2k̃uyu!

2e~x!@U~x2y!2U~x!#W2 ā ,1/2~2k̃uyu!M2 ā ,1/2~2k̃uxu!%S 1
0

0

0
D . ~6.3!

Remark VI.2: In this connection we state the following identities:

e~y!@U~x2y!2U~2y!#5U~xy!U~ uxu2uyu!,

e~x!@U~x2y!2U~x!#52U~xy!U~ uyu2uxu!,

furthermore, it holdsG~1!51 andc~1!5G8~1!52e where e denotes the Euler constant.
The point spectrum is again obtained from the poles and residues, respectively, of the

vent ~6.1!. Here, we note that only in the attractive caseg.0 it exists a singular spectrum whic
is independent of the boundary conditions. It is derived from the poles ofG~11ã! and reads

zn
~D !52

m

\2

g2

2n
, n51,2,3,... .
J. Math. Phys., Vol. 38, No. 2, February 1997
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We derive the remaining eigenvalues of the Hamiltonian from the zeros of the denomi
B̃s21(A1D)s1C̃50, or

s65
2~A1D !6A~A2D !214

2B̃
. ~6.4!

This can be compared with the investigations in Ref. 53 although there the boundary
tions for the Schro¨dinger operator (HBw)(x)521/2w9(x)2g/uxuw(x) are chosen in such a wa
that they correspond to a self-adjoint matrix~m5\51!,

S limx↘0~2gw~x!ln~ ugux!1w8~x!!

limx↗0~2gw~x!ln~2ugux!1w8~x!! D5BS limx↘0w~x!

limx↗0w~x! D
with

B5S r

z̄

z
l D , l,rPR,zPC.

The partR̃g,D of the resolvent corresponds to the Dirichlet boundary conditions withz50 and
r5l5`.

If one sends nowg→0 in ~6.4! one gets the nonrelativistic limit of the pure poi
interaction.54,55 Thus the nonrelativistic limit and the limit of a vanishing Coulomb poten
commute.

VII. ZERO MASS

Until now we supposed throughout a nonvanishing mass. This was indeed an importan
in our method of solving the differential equation. We reduced two coupled first order equa
to one equation of second order.

The situation is completely different if the massm is zero. For then, the equations decoup
and we obtain two separate first order equations, one for each component. The solutions t
are, compared with those of the case with nonzero mass, relatively simple and can be writte
immediately.

S 2\c
d

dx
2z2

g

uxu
0

0 i\c
d

dx
2z2

g

uxu
D S x1~x!

x2~x!
D 50, ~7.1!

where as alwaysxÞ0. So we have the two separate equations

2 i\cx18~x!2S z1
g

uxu Dx1~x!50, ~7.2!

i\cx28~x!2S z1
g

uxu Dx2~x!50, ~7.3!

which we can integrate straightforwardly to

x1~x!5Ãee
~ ızx1e ig lnuxu!/~\c!5Ãeuxue ig/~\c!ek0x, ~7.4!

x2~x!5B̃euxu2eıg/~\c!e2k0x, Ã6 ,B̃6PC, ~7.5!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where we putk05 iz/(\c) and use the same notation concerninge as in the previous sections
Thus the general solution to~7.1! is

xz~x!5ÃeS 10D uxueıg/~\c!ek0x1B̃eS 01D uxu2eıg/~\c!e2k0x. ~7.6!

Note that herek0 is not simplyk given in ~2.6! for m50 becausek was defined to have a positiv
real part whereask0 can take any value in the complex plane. It iskum505k0 for Rek0.0 and
kum5052k0 for Rek0,0.

To see which of the elements~7.6! are inL2~R! we have to distinguish between positive a
negative real part ofk0 or, expressed in terms ofz, whether we have negative or positive imag
nary part ofz ~Rek0.0⇔Im z,0!, respectively. We get

v~x!5H AeS Q~2x!

Q~x! D uxu2 ig/~\c!e2ek0x for Im z,0,

BeS Q~x!

Q~2x! D uxu ig/~\c!eek0x for Im z.0,

~7.7!

and a basis of the deficiency subspace can therefore be written as follows:

v1~x!5 H v~x!

0
for x.0,

for x,0

and

v2~x!5 H0v~x!

for x.0,
for x,0, ~7.8!

which implies that the deficiency index is~2,2!.
The discussion from Sec. III maintains its validity also at this place but the limitsDe(v)

defined by~4.4! involve the constantsk and so it is advantageous to introduce new ones, ada
to the situation for zero mass. With

D~Hg,0* !{v°D̃6~x!5 lim
x→06

S uxu2e ig/~\c!v1
uxueıg/~\c!v2

D , ~7.9!

where we summarize again inx→06 the limits from above and below, we obtain

D̃1~v !5S 0
A1

D , D̃2~v !5SA2

0 D . ~7.10!

Hence the self-adjoint extensions ofHg,05Hgum50 are those, where the functionsv of the defi-
ciency subspace satisfyD̃1(v)5LD̃2(v). More precisely,

Theorem VII.1: Let D̃e be the limits defined in~7.9!.
The domains of the self-adjoint extensions of Hg,0 are given by

D~Hg,0
L !5$wPHuMg,0wPH, D̃1

w 5LD̃2
w %, ~7.11!

whereL and M are the matrices introduced in Sec. III which satisfy relation~3.4! and where we
have set Mg,05Mgum50.

We continue with the determination of the resolvent in the same manner as for nonzero
We want to solve
J. Math. Phys., Vol. 38, No. 2, February 1997
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~Hg,0
L 2z!x5w, wPH,

for x, i.e.,

2 i\cx18~x!2S z1
g

uxu Dx1~x!5w1 , ~7.12!

i\cx28~x!2S z1
g

uxu Dx2~x!5w2 . ~7.13!

Supposing that

x1~x!5Ãe~x!uxue ig/~\c!ek0x, x2~x!5B̃e~x!uxu2e ig/~\c!e2k0x, ~7.14!

we find

Ãe8~x!5
i

\c
uxu2eıg/~\c!e2k0xw1~x!, B̃e8~x!52

i

\c
uxue ig/~\c!ek0xw2~x!. ~7.15!

To proceed, we can agree to take Imz,0 and integrate subsequently which leads to

Ã1~x!5
i

\c E0
x

dy y2 ig/~\c!e2k0yw1~y!1ã1 ,

Ã2~x!52
i

\c Ex
0

dyuyu ig/~\c!e2k0yw1~y!1ã2 , ~7.16!

for Ae(x) and to

B̃1~x!52
i

\c E0
x

dy yig/~\c!ek0yw2~y!1b̃1 ,

B̃2~x!5
i

\c Ex
0

dyuyu2 ig/~\c!ek0yw2~y!1b̃2 , ~7.17!

for Be(x).
Now we turn to the square integrability of the functionsx. One sees for positivex thatx1 can

only be inL2~R! iff

ã1~x!52
i

\c E0
`

dy y2 ig/~\c!e2k0yw1~y!, ~7.18!

whereasx2 already is, and for negativex it must hold for that reason

b̃2~x!52
i

\c E2`

0

dyuyu2 ig/~\c!ek0yw2~y! ~7.19!

and herex1 can be seen to be inL2~R! without further assumptions.
In addition the ‘‘generalized boundary conditions’’D̃1(x)5L̂D̃2(x) must hold for the func-

tions x to insure that thewPH are mapped onto the domain ofĤg,0
L . From ~7.14! and ~7.16!,

~7.17! we directly read off that
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¬¬¬¬¬¬¬¬¬¬
D̃e5S ãe

b̃e
D , ~7.20!

where two of the constants, namely,ã1 and b̃2 are determined by the above formulas~7.18! and
~7.19!. Hence the following theorem holds

Theorem VII.2: Let us denote by U the Heaviside step function and le
U1(x,y)5U(y2x)(U(x)1U(2y)) andU2(x,y):5U(x2y)(U(2x)1U(y)).

The resolvent Rˆ g,0
L of Ĥg,0

L is given by

R̂g,0
L ~• !52

i

\c E2`

`

dyH S U1~x,y!S uxue~x!

uyue~y!D ig/~\c!

0

0 U2~x,y!S uyue~y!

uxue~x! D ig/~\c!D e2k0ux2yu

1
1

P S U~2x!U~y!v̄ 2U~2x!U~2y!Q

U~x!U~y!Q̄ U~x!U~2y!v D uxyu2 ig/~\c!e2k0~ uxu1uyu!J ~• !, ~7.21!

with the in ~4.5! defined matrixL̂,

L̂5vS PQ̄ Q

P̄ D , uPu22uQu25uvu51, P,Q,PC.

Remark VII.3: Because P cannot be zero in view ofuPu22uQu251, the point spectrum is
empty and hence there are no bound states.
An especially compact form of the resolvent is obtained if we impose the ‘‘trivial bound
conditions’’ L̂51, that isã15ã2 and b̃15b̃2 . They allow to write~7.21! as follows:

R̂g,0
1 52

i

\c E2`

`

dyS U~y2x!S uxue~x!

uyue~y!D ig/~\c!

0

0 U~x2y!S uyue~y!

uxue~x! D ig/~\c!D e2k0ux2yu.

~7.22!

As a final remark let us note that because of the special structure of the operatorĤg for zero
mass, no matter which form the function for the interaction has, the system in the massles
will always have deficiency indices~2,2! and the resolvent can be given explicitly as far as
integral of the interaction term can be stated explicitly.

Let us illustrate this fact on the potentialguxua with aÞ21, real. The general solution to

S 2 i\c
d

dx
2z2guxua 0

0 i\c
d

dx
2z2guxua

D S x1~x!

x2~x! D50, ~7.23!

is then
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¬¬¬¬¬¬¬¬¬¬
xz~x!5ÃeS 10DexpS e
ig

\c~a11!
uxua11Dek0x1B̃eS 01DexpS 2e

ig

\c~a11!
uxua11De2k0x.

~7.24!

We then get, for example, concerning the derivatives ofÃe andB̃e @corresponding to Eq.~7.15! for
the Coulomb potential#

Ãe8~x!5
i

\c
expS 2e

ig

\c~a11!
uxua11De2k0xw1~x!,

B̃e8~x!52
i

\c
expS e

ig

\c~a11!
uxua11Dek0xw2~x!, ~7.25!

which shows that for the interactions withaÞ21 we only have to replace the termuxue(x) ig/(\c) in
the formulas with the Coulomb potential by

expS e
ig

\c~a11!
uxua11D

to obtain the corresponding formulas in the present case.
But since the adding of a mass means the adding of a bounded self adjoint operator

basic properties hold also for the more complicated potential functions.
Remark VII.4: Finally, we want to point out that if one supposes a potential function wit

absolute value, thee will be absent ina andb. If we define the Dirac operator on the half-lin
~0,̀ !, the deficiency index is~1,1! and the self-adjoint extensions can be parametrized [accord
to Eq. (3.1)] by the phasev,

D1,15vD1,2 uvu51, vPC.
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Bound states in Galilean-invariant quantum field theory
S. R. Corley and O. W. Greenberg
Center for Theoretical Physics, Department of Physics, University of Maryland,
College Park, Maryland 20742-4111

~Received 16 August 1996; accepted for publication 29 October 1996!

We consider the nonrelativistic quantum mechanics of a model of two spinless
fermions interacting via a two-body potential. We introduce quantum fields asso-
ciated with the two particles as well as the expansion of these fields in asymptotic
‘‘in’’ and ‘‘out’’ fields, including such fields for bound states, in principle. We limit
our explicit discussion to a two-body bound state. In this context we discuss the
implications of the Galilean invariance of the model and, in particular, show how to
include bound states in a strictly Galilean-invariant quantum field theory. ©1997
American Institute of Physics.@S0022-2488~97!02102-6#

I. INTRODUCTION

The representations of the Galilean group relevant to quantum theory are ray represen
with a nontrivial phase discovered by Bargmann.1 The Bargmann phase leads to the Bargma
mass superselection rule that the mass of a bound state must be exactly the sum of the m
its constituents. We analyze bound states in strictly Galilean-invariant theories, taking acco
the Bargmann phases. Our technique is the Haag expansion2 of the fields that appear in th
Hamiltonian in normal-ordered products of asymptotic~in- or out-! fields. We refer to a finite
order Haag expansion used as an approximation technique as the N quantum approxima~or
approach!, and in short, the ‘‘NQA.’’ We use the representation theory of the Galilean grou
Bargmann to constrain the form of the Haag expansion and derive the Schro¨dinger equation for
bound states, the unitarity relation for elastic scattering, and other relations in a unified wa
derive the relation between the in- and out-asymptotic fields for bound states by constructi
out-field as the asymptotic limit of the product of the fields of the constituents at separated
integrated with the bound state amplitude that serves as the wave function.

In Sec. II, we introduce the two-body model that we consider. In Sec. III, we derive
transformation properties of the Haag amplitudes under Galilean transformations. We take
show that the Bargmann mass-dependent phases that occur in Galilean-invariant theories c
that we can consider breakup and rearrangement processes in which the initial particle
different masses from the final particles. As just mentioned, the Bargmann superselectio
requires that the sum of the masses that occur in thep2/2m kinetic terms is absolutely conserve
in all processes. In Sec. IV, we investigate the anticommutation relations of the interacting
in terms of their Haag expansions and obtain relations~as examples, the relation between t
bound-state amplitudes with different legs on- and off-shell, and elastic unitarity! among the
amplitudes, independent of the specific dynamics of a given theory. In Sec. V, we apply the
to the bound state problem and show that the Haag amplitude describing this state is j
Schrödinger wave function. To our knowledge this is the first description of a bound state in w
Galilean invariance is strictly maintained. In Sec. VI, we apply the NQA to the two-body sca
ing problem and show that the corresponding amplitude yields theT-matrix after removal of its
off-shell leg. In Sec. VII, we construct the asymptotic fields for a bound state as the integra
the bound-state wave function of the product of the fields for the elementary constituents
composite system. Here we differ from the proposals of Nishijima3 and of Zimmermann,4 who
construct bound states as products of the constituent fields at the same point. In Sec. V
conclude with a summary and the outlook for further research.
0022-2488/97/38(2)/571/11/$10.00
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II. TWO-BODY MODEL

We consider a model in the Heisenberg picture with two spinless nonrelativistic Fermi fi
A~x,t! andB~x,t!, with the Hamiltonian

H5
1

2mA
E d3x “xA

†~x,t !–“xA~x,t !1
1

2mB
E d3x “xB

†~x,t !–“xB~x,t !

1E d3x d3y B†~y,t !A†~x,t !VAB~ ux2yu!A~x,t !B~y,t !; ~1!

for simplicity we assumed anAB interaction, but noAA or BB interaction. We assumeV is
smooth, not too long ranged, and not too singular at the origin. We wantV to be well-behaved
enough that the weak asymptotic limit we introduce just below exists. Since this is a very tec
issue, we are deliberately vague about the necessary conditions. The literature on this issue
traced from articles and references in Ref. 5. The equation of motion forA~x,t! is

i ] tA~x,t !52
1

2mA
“x

2A~x,t !1E d3y B†~y,t !VAB~ ux2yu!B~y,t !A~x,t !. ~2!

Some calculations are simpler in momentum space, therefore we define

A~x,t !5E d3k dE e2 i ~Et2k•x!Ã~k,E!, ~3!

VAB~ ux2yu!5
1

~2p!3
E d3q eiq•~x2y!ṼAB~ uqu!. ~4!

Transforming the equation of motion to momentum space yields

SEA2
kA
2

2mA
D Ã~kA ,EA!5E dEB d

3kB dEB8 d3kB8 dEA8 d3kA8d~EA1EB2EB82EA8 !

3d~kA1kB2kA82kB8 !B̃†~kB ,EB!ṼAB~ ukB82kBu!B̃~kB8 ,EB8 !Ã~kA8 ,EA8 !.

~5!

The asymptotic~in- or out-! fields for ~possibly composite! particles are characterized by their re
energyE, massm, and spinJ. We will suppress the spin in what follows. The definitions of t
asymptotic fields associated with the interacting fieldA~x,t! are

Ain~out!~x,t !5 lim
t8→7`

E D~x2y,t2t8;0,mA!A~y,t8!d3y, ~6!

where the limit is the weak limit of the smeared operators, and

D~x,t;E,m!5
1

~2p!3
E dv d3k dS v2E2

k2

2mDe2 ivt1 ik•x. ~7!

The asymptotic fields forB~x,t! are defined in an analogous way. We give the definition of
asymptotic fields for composite particles in Sec. VII. The asymptotic limit in momentum spa
often useful in calculations,
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ã in~out!~k,E!5 lim
t8→7`

dSE2
k2

2mD E dE8 ei ~E2E8!t8Ã~k,E8!. ~8!

Either form of the definition of the asymptotic limits makes clear that the asymptotic fields
the free equations of motion,

i ] tC
in~out!~x,t !5SE2

1

2m
¹2DCin~out!~x,t !, ~9!

and also the free-field anticommutation or commutation relations,

@Cin~out!~x,t !,C†in~out!~y,t8!#65D~x2y,t2t8;E,m!. ~10!

Note that

D~x,0;E,m!5d~x!, ;E,m. ~11!

Using translation invariance, the Haag expansion of the interacting fieldA~x,t! in terms of
in-fields takes the following form in position space~with an analogous expansion for theB field!:

A~x,t !5Ain~x,t !1(
i
E d3xB d

3xi f B; i~x2xB ,t2tB ;x2xi ,t2t i ! ~12!

3B†in~xB ,tB!~ABi! in~xi ,t i !1E d3xB d
3x8 d3xB8

3 f B;AB~x2xB ,t2tB ;x2x8,t2tB8 ;x2xB8 ,t2tB8 !

3B†in~xB ,tB!Ain~x8,t8!Bin~xB8 ,tB8 !1••• . ~13!

Because the asymptotic fields obey free equations, the Haag amplitudes obey free equa
each individual argument. A simple way to see this is to note that the convolution in position
becomes a product in momentum space, so that the momentum arguments of the Haag am
are multiplied by energy shell delta functions contained in the asymptotic fields. Thus on
on-energy shell part of the Haag amplitudes enters and the position space Haag amplitude
the free equations. Since both the asymptotic fields and the Haag amplitudes obey the fre
tions, the integrals are independent of the timestB ,t i and of tB ,t8,tB8 because of the translatio
invariance of the Schro¨dinger scalar products. We label the Haag amplitude that is the coeffi
of a product of~asymptotic! creation and annihilation operators by the labels of the operators
two-body (AB) bound state in leveli is labeled byi .

We define

Cin~x,t !5~2p!23/2E dE d3k dSE2EC2
k2

2mC
De2 iEt1 ik–xcin~k!, ~14!

@cin~k!,c†in~ l!#15d~k2 l!, ~15!

f B; i~x,t;x8,t8!5
1

~2p!3
E d3k1 d

3k2

3expS i k1
2

2mB
t2 ik1–x2 i S 2e i1

k2
2

2mAB
D t81 ik2–x8D f̃ B; i~k1 ,k2!, ~16!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and similar definitions for other Fourier transforms chosen so that powers of 2p are absent from
the momentum-space formulas. The result is

Ã~k,E!5~2p!23/2ain~k!dSE2
k2

2mA
D 1E d3kB d

3ki dSE1
kB
2

2mB
1e i2

k i
2

2mAB
D

3d~k1kB2k i ! f̃ B; i~kB ;k i !a
in†~kB!ai

in~k i !

1E d3kB d
3kB8 d3k8 dSE1

kB
2

2mB
2

k82

2mA
2

kB8
2

2mB
D

3d~k1kB2k82kB8 ! f̃ B;AB~kB ;k8,kB8 !ain†~kB!ain~k8!ain~kB8 !1••• . ~17!

~We use the abbreviationmAB5mA1mB .! Note that we are expanding in terms of in-fields; the
are analogous expansions in terms of out-fields. In the next section we derive the constra
the f ’s that follow from Galilean invariance.

III. GALILEAN INVARIANCE

Bargmann showed that the unitary projective representations~i.e., representations up to
factor! of the Galilean group that occur in the quantum mechanics of nonrelativistic par
cannot be reduced to vector~i.e., true! representations. This contrasts with the situation for
Poincare´ and Lorentz groups, and—indeed—most other physically interesting groups, whe
representations can be reduced to true representations. As already mentioned twice, the
mass parameter in the phases leads to the Bargmann superselection rule that the sum of th
~that appear in the kinetic terms! must be conserved in every process. Nonetheless, bound s
can be formed and particles can be created and annihilated, provided the Bargmann supers
rule is obeyed.

Note, for example, that if we were to assign rest energiesmA andmB to particlesA andB then
a bound state of these particles with binding energye would have energyE5mAB2e1k2/2mAB ,
rather thanE5mAB2e1k2/2~mAB2e!, as one might expect from the nonrelativistic limit of
relativistic bound state with rest energymAB2e. Another manifestation of this effect is that for th
same bound state the momentum would transform under Galilean boosts ask→k1mABv, rather
than ask→k1~mAB2e!v.

If the projective representation has the form

U~G2!U~G1!5v~G2 ,G1!U~G2G1!, ~18!

then another projective representation is equivalent to this if the other representation has th
systemv8(G2 ,G1)5[f(G2)f(G1)/f(G2G1)]v(G2 ,G1), wheref has modulus one. This arbi
trariness allows simplification of some formulas.

Bargmann gives as the Galilean transformation of a nonrelativistic scalar wave functio

„T~G!c…~x,t !5e2 iu„G,~x,t !…c„G21~x,t !…, ~19!

whereG~x,t!5~Rx1vt1a,t1b! andu„G,~x,t!…5m~1/2v2t2v–x!. The Galilean transformation is
labeled by~a,b,R,v!, wherea andb are space and time translations,R is a rotation, andv is a
boost. To infer the corresponding transformation for a nonrelativistic scalar field, we requir
J. Math. Phys., Vol. 38, No. 2, February 1997
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U~G!A~c!U†~G!5A~cG!, cG~x,t !5„T~G!c)~x,t !5e2 iu„G,~x,t !…c„G21~x,t !…, ~20!

A~c!5E A~x,t !c~x,t !dt d3x. ~21!

We find that

U~G!A~x,t !U†~G!5e2 iuA„G,G~x,t !…A„G~x,t !…,

uA„G,G~x,t !…5mA@ 1
2v

2~ t1b!2v–~Rx1vt1a!#. ~22!

If the field has spins, thenA on the left-hand side is replaced byAi andA on the right-hand side
is replaced by(jAjD ji

(s)(G), whereD (s) is a representation ofSU~2!, which is the little group in
this case. The corresponding transformation holds forB with mB replacingmA . Asymptotic fields
transform the same way. The implications of the transformation law for the Haag amplitud
found by transforming the interacting field in two ways:~1! act on the Haag expansion withU(G)
as on the left-hand side of Eq.~22! and redefine the integration variables; and~2! multiply the
Haag expansion by the phase factor on the right-hand side of Eq.~22! and replace~x,t! byG~x,t!.
The two amplitudesf B; i and f B;AB obey

f B; i„G~xA2xB ,tA2tB!;G~xA2xi ,tA2t i !…

5eiuA„G,G~xA ,tA!…1 iuB„G,G~xB ,tB!…2 iuAB„G,G~xt ,t i !…

3 f B; i~xA2xB ,tA2tB;xA2xi ,tA2t i !, ~23!

f B;AB„G~xA2xB ,tA2tB!;G~xA2xA8 ,tA2tA8 !;G~xA2xB8 ,tA2tB8 !…

5eiuA„G,G~xA ,tA!…1 iuB„G,G~xB ,tB!…2 iuA„G,G~xA8 ,tA8 !…2 iuB„G,G~xB8 ,tB8 !…

3 f B;AB~xA2xB ,tA2tB ;xA2xA8 ,tA2tA8 ;xA2xB8 ,tA2tB8 !. ~24!

Note thatuAB is independent of the bound statei because of the Bargmann mass superselec
rule. The combination of phases in the first of these is

uA„G,G~xA ,tA!…1uB„G,G~xB ,tB!…2uAB„G,G~xi ,t i !…

52
1

2
v2~mAtA1mBtB2mABti !2v•R~mAxA1mBxB2mABxi !. ~25!

The transformation law isnotsatisfied by having a delta function in the space and time coordin
identifying the coordinates~xi ,t i! with the center of mass of particlesA andB, although at equal
times such a delta function does occur for the space coordinates. The way in which the tra
mation laws are satisfied is best seen in momentum space, where the corresponding tran
tions in momentum space are

„V~G!f…~k,E!5e2 iV„G,~k,E!…f„G21~k,E!…, ~26!

V„G,~k,E!…5~k2mv!–a2~E2 1
2mv

2!b, ~27!

whereG~k,E!5~Rk1mv,E1v•Rk1mv2/2!, andG21~k,E!5„R21~k2mv!,E2k–v1mv2/2…. The
momentum space transformation law for the field is induced in parallel with the derivation o
position space law. The result is
J. Math. Phys., Vol. 38, No. 2, February 1997
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W~G!A~k,E!W†~G!5e2 iVA„G,2G~k,E!…A„G~k,E!…, ~28!

whereVA„G,2G~k,E!…5~E1v–Rk!b2Rk–a. In the transformation law for the Haag amplitude
all the phase factors cancel and the result for—say—the second term in the Haag expan
what one would expect naively,

f̃ B; i~kB ;k i !5 f̃ B; i„R~kB2mBv!;R~k i2mABv!…. ~29!

Thus we can choose thev5k i /mAB so that the bound-state momentum vanishes and eliminate
second argument off B; i ,

f̃ B; i~kB ;k i !5 f̃ B; i S kB2
mB

mAB
kt ,0D[F̃B; i S kB2

mB

mAB
k i D . ~30!

For the spinless case,F̃B,i~k!5F̃B; i~Rk!. All these results are exact, valid in any Galilean fram
The extension to fields with spin is straightforward. It is worth noting that the Poincare´ transfor-
mation law in a relativistic theory is simpler than the Galilean transformation law we have
derived for a nonrelativistic theory, because the Bargmann phase is absent for the Poincare´ group.

Taking account of Galilean invariance, the position-space Haag amplitude is

f B; i~x,t;x8,t8!5~2p!23E d3k d3ki

3expF i SmB1
1

2mB
S k1

mB

mAB
k i D 2D t2 i S k1

mB

mAB
k i D –xG

3expF2 i S 2e i1
k i
2

2mAB
D t81 ik i–x8G3 f̃ B; i~k;0!. ~31!

The integral overk i can be done, but the result is complicated and not useful, except whe
times are equal, in which case the result is both simple and useful,

f B; i~xA2xB ;xA2xi !5dS xi2 mAxA1mBxB
mAB

DFB; i~xA2xB!, ~32!

FB; i~x!5E d3k e2 ik–x f̃ B; i~k;0!. ~33!

Using the constraints due to Galilean invariance, the Haag expansion inx space at equal time
takes the form

A~x!5Ain~x!1(
i
E FB; i~x2xB!B† in~xB!~ABi! inSmAx1mBxB

mAB
Dd3xB

1E d3r 8 d3r FB;AB~r 8;r !B
† in~x2r 8!AinS x1

mB~r2r 8!

mAB
DBinS x2

mAr1mBr 8
mAB

D1••• .

~34!

In momentum space, the expansion is
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ã~k,E!5
1

~2p!3/2
a in~k!dSE2

k2

2mA
D 1E d3kB dSE1

kB
2

2mB
1e i2

~k1kB!2

2mAB
D

3F̃B; i SmAkB2mBk

mAB
Dbin †~kB!ci

in~k1kB!

1E d3kB d
3pB d

3p dSE1
kB
2

2mB
2

p2

2mA
2

pB
2

2mB
D

3d~k1kB2p2pB!F̃B;ABSmAkB2mBk

mAB
;
mApB2mBp

mAB
D

3bin †~kB!ain †~p!bin~pB!1••• . ~35!

Hereci
in is the annihilation operator for the bound state ofA andB in statei .

IV. TWO-BODY BOUND STATE

To derive the equation for the two-body bound state, we insert the Haag expansion eq
~13! in the equation of motion, Eq.~2!, renormal order, and equate the coefficients of the te
with the operatorsB† in(ABi)

in. After commuting or anticommuting with the relevant in-fields, t
result is

S i ]

]t
1

1

2mA
¹x
22V~ ux2xBu! D f B;ı~x2xB ,t2tB ;x2xi ,t2t i !50. ~36!

It is convenient to eliminate the time derivative by using]/]t52]/]tB2]/]t i , the independence
of the Schro¨dinger scalar product on the time and the free equations satisfied by the in-fie
find free equations for thetB and t i dependences off B; i . The results are

S i ]

]tB
1

1

2mB
¹xB
2 D f B; i50, ~37!

S i ]

]t i
2e i2

1

2mAB
¹xi
2 D f B;ı50. ~38!

The equation without time derivatives is

F2
1

2mA
¹x
22

1

2mB
¹xB
2 1V~ ux2xBu!G f B; i5S e i2

1

2mAB
¹xi
2 D f B; i . ~39!

Now using Eq.~32!, we find the usual Schro¨dinger equation forFB; i ,

F2
1

2m
¹ r AB
2 1V~rAB!GFB; i52e iFB; i ,

1

m
5

1

mA
1

1

mB
, ~40!

where the reduced mass enters. This establishes thatFB; i is the Schro¨dinger wave function of the
bound state. Note that the bound-state amplitude is givenexactlyin any reference frame in term
of the amplitude in the rest frame of the bound state.~The corresponding statement also holds
other amplitudes, as well as for relativistic theories.!
J. Math. Phys., Vol. 38, No. 2, February 1997
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V. TWO-BODY SCATTERING

Two-body scattering is described in position space at equal times by the amplitude

f B;AB~xA2xB,0;xA2yA,0;xB2yB,0!5FB;AB~xA2xB ;yA2yB!d~R82R!, ~41!

FB;AB~x;y!5~2p!23/2E d3k8 d3k fB;AB~k8;2k,k!exp i @2k8–~xA2xB!1k–~yA2yB!#,

R85
mAxA1mBxB

mAB
, R5

mAyA1mByB
mAB

. ~42!

We prefer to discuss two-body scattering in momentum space, using the amp
f̃ B;AB~kB ;pA ,pB!, which is the coefficient of the termbB

in †(kB)a
in(pA)b

in(pB) in the Haag expan-
sion of Ã~k,E!. The procedure for finding the equation forf̃ B;AB is analogous to that for the
two-body bound-state amplitude. We find

S pA22~pA1pB2kB!2

2mA
1
pB
22kB

2

2mB
D f̄ B;AB~kB ;pA ,pB!

5ṼAB~ ukB2pBu!1E d3kB8 ṼAB~ ukB2kB8 u! f̃ B;AB~kB8 ;pA ,pB!. ~43!

Galilean invariance relatesf̃ B;AB at arbitrary momenta to itself in the center of mass,

f̃ B;AB~kB ;pA ,pB!5 f̃ B;AB„R~kB2mBv!;R~pA2mAv!,R~pB2mBv!…. ~44!

By choosingv5~pA1pB!/mAB , we can replacef̃ B;AB by a function of one fewer variable,

f̃ B;AB~kB ;pA ,pB!5F̃B;AB~k;p!, ~45!

where here and below,k 5 (mAkB 2 mBkA)/mAB , p5 (mApB 2 mBpA)/mAB , andwe used conser
vation of momentum to introducekA . The momentap andk are the center-of-mass momenta
particleB in the initial and the final state, respectively. The elastic scattering equation beco

1

2m
~p22k2!F̃B;AB~k;p!5Ṽ~ uk2pu!1E d3k8 Ṽ~k2k8!F̃B;AB~k8;p!. ~46!

The solution is the Born series,

F̃B;AB~k;p!5G̃R~k;p!Ṽ~ uk2pu! ~47!

1G̃R~k;p!E d3k8 Ṽ~ uk2k8u!G̃R~k8;p!Ṽ~ uk82pu!1••• , ~48!

G̃R(k;p)5@(p22k2)/2m2 i e#21.

The amplitudeF̃B;AB is closely related to theT-matrix element forAB scattering. The
S-matrix element is

S~kA ,kB ;pA ,pB!5^0ubout~kB!aout~kA!ain †~pA!bin †~pB!u0&. ~49!

In order to eliminate the out-fields in terms of the in-fields we need the definitions, given abo
Eq. ~6!,
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ain~out!~x,t !5 lim
t→1`

E
t85t

d3x8 D~x2x8,t2t8;mA ,mA!A~x8,t8!, ~50!

whereD was defined in Eq.~7!. The nonrelativistic analog of the reduction formula follows fro
calculating*d3x8 dt8 ]/] t8D(x2 x8,t 2 t8;mA ,mA)A(x8,t8) in twoways: performing the integra
and carrying out the derivative. The result5 is

Aout~x,t !2Ain~x,t !5E d3x8 dt8 D~x2x8,t2t8;mA ,mA!S ] t82
i

2mA
¹x8
2 DA~x8,t8!. ~51!

Fourier transforming this yields

1

~2p!3/2
„aout~k!2ain~k!…522p i SE2

k2

2mA
DA~k,E!. ~52!

Note that a factor ofd~E2k2/2mA! has been removed from this equation; thus the right-hand
is nonvanishing~and there is scattering! only whenA~k,E! has a pole atE2k2/2mA50. Since
a† out~k!u0&5a† in~k!u0& for stable particles, the only out operator in theS-matrix element
^0ubout(kB)aout(kA)A† in(pA)b

† in(pB)u0& that must be eliminated using Eq.~52! is aout~kA!. The
result is

S~kA ,kB ;pA ,pB!5d~kA2pA!d~kB2pB!22p idS kA
2

2mA
1

kB
2

2mB
2

pA
2

2mA
2

pB
2

2mB
D

3d~kA1kB2pA2pB!S kA
2

2mA
1

kB
2

2mB
2

pA
2

2mA
2

pB
2

2mB
D F̃B;AB~k;p!, ~53!

where againk andp are defined below Eq.~45!. Thus the reducedT matrix for elastic scattering
on the momentum shell6 is

t~kA ,kB ;pA ,pB!5S pA
2

2mA
1

pB
2

2mB
2

kA
2

2mA
2

kB
2

2mB
D F̃B;AB~k;p!. ~54!

We emphasize that because the Haag amplitude is the scattering amplitude with one leg o
it contains the information necessary for calculations in the three-body sector. This contras
the on-shell scattering amplitude, which does not suffice for such calculations.

VI. ANTICOMMUTATION RELATIONS

In this section we show that the canonical~equal time! anticommutation relations of the
Lagrangian fields imply general relations among Haag amplitudes, independent of the equat
motion of the specific theory. For example, the vanishing of the canonical anticommutator [A,B]1

at equal times, considered for the coefficient of the bound state in-field for statei , gives

FA; i~y2x!5FB; i~x2y![Fi~x2y!, ~55!

where we took (ABi) in~R!52(BAi) in~R! because of the Fermi statistics ofA andB. This shows
that the apparent asymmetry in the treatment of the constituents of the bound state, due to
that the Haag amplitude that serves as the two-body wave function of the (AB) bound state in the
Haag expansion of theA field has theA particle off-shell and theB particle on-shell, while these
roles are interchanged for the amplitude for the same bound state in the Haag expansion oB
field, is not a real asymmetry. These two amplitudes determine each other uniquely. The
gous result for the off-shell elastic scattering amplitudes is
J. Math. Phys., Vol. 38, No. 2, February 1997
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FB;AB~x2y;r !5FA;BA~y2x;2r ![FAB~x2y;r !. ~56!

Again the two apparently different off-shell amplitudes uniquely determine each other.
The consequence for elastic scattering is

t~kA ,kB ;pA ,pB!2„t~pA ,pB ;kA ,kB!…*

5~2p!5/2E d3qA d
3qB dS kA

2

2mA
1

kB
2

2mB
2

qA
2

2mA
2

qB
2

2mB
D

3d~kA1kB2qA2qB!t~kA ,kB ;qA ,qB!„t~pA ,pB ;qA ,qB!…* , ~57!

wherek andp are as defined below Eq.~45!. This is elastic unitarity.
The canonical anticommutator [A,A†]1 at equal times leads to a generalization of unitari

1

~2p!3/2
„F̃B;AB~k;p!1F̃B;AB* ~p;k!…5(

i
F̃B; i~k!F̃B; i* ~p!1E d3q FB;AB~k;q!F̃B;AB* ~p;q!,

~58!

where againk andp are as defined below Eq.~45! and we have used momentum conservati
kA1kB5pA1pB . By taking the appropriate limit, we recover the elastic unitarity relation,
~57!. Taking into account the relations between the Haag amplitudes in the expansions ofA and of
B, these are all the independent two-body relations obtained from the anticommutation rel

There are also quadratic relations between the amplitudes for the (ABi) and (AB j) bound
states and the amplitudes for the breakup of these bound states due to scattering with theA or B
particle. Since this involves a higher sector, we do not give this relation here.

VII. CONSTRUCTION OF THE ASYMPTOTIC FIELD FOR THE BOUND STATE

In this section we show how to construct the asymptotic field for the bound state fro
product of Lagrangian fields. The procedure is to multiply the appropriate Lagrangian fie
separated space points, integrate with the bound-state amplitude in the relative coordina
take the asymptotic limit. The result is

~ABi! in~out!~x,t !5 lim
t→7`

E
t85t

d3x8D~x2x8,t2t8;2e i ,mAB!Fi* ~w!

3
1

2 FBS y2
mA

mAB
w,t8D ,AS y1

mB

mAB
w,t8D G

2

d3w. ~59!

A straightforward calculation shows that these limits are (ABi) in~out!~x,t! for t→7` and the
leading terms fort→6` are (ABi)out~in!~x,t!. This is what we expect. The higher terms in t
Haag expansion for (ABi)out~in!~x,t! are in a higher sector that we do not discuss here.

VIII. SUMMARY AND OUTLOOK FOR FURTHER WORK

We have derived many results of the nonrelativistic quantum mechanics of two-particle
tems in a unified way with particular attention to Galilean invariance, taking into account the
that the representations of the Galilean group in quantum mechanics are necessarily rep
tions up to a factor, rather than vector representations. We established the physical interpr
of the Haag amplitudes: the Haag amplitude for the simplest term with the two-body bound
operator is precisely the Schro¨dinger wave function of the two-body bound state. This interpre
tion will carry over to explicitly covariant relativistic theories, where the corresponding H
amplitude will be a three-dimensional object, but will be covariant. Of course in the relativ
J. Math. Phys., Vol. 38, No. 2, February 1997
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case, a bound state that is mainly a two-body state will also have amplitudes to be compo
more particles. We constructed the asymptotic field for a composite particle as the weak li
a product of the fields of the constituent particles weighted with the bound-state amplitude
composite particle. We plan later to apply theN quantum formalism described here to sever
particle systems, including scattering processes involving bound states and rearrangeme
sions. In these cases, this formalism differs markedly from the usual methods, such as the F
analysis of three-body problems. We do not discuss here the problems that arise when the
of particles increases without bound; for example, in the thermodynamic limit. See Narnhofe
Thirring9 for a discussion. The use of our techniques in relativistic theories has been conside
Ref. 7, among other places. This reference shows that, at least in the weak-coupling appr
tion, the technique we discuss here can be used to find bound states in relativistic theori
have also solved the Nambu–Jona-Lasinio model in the one-loop approximation with the
expansion.8 Although calculations based on the operator field equations are not the most po
way to study relativistic theories, the references just cited show that this can be a useful w
study such theories. We are presently studying approximations in which we do not assume
coupling, in collaboration with Umino. We hope that this method will serve as an alternative t
Bethe–Salpeter equation in relativistic problems. We also plan to construct variational prin
based on the Haag expansion for both nonrelativistic and relativistic theories.
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Octonionic algebra being nonassociative is difficult to manipulate. We introduce
left/right octonionic barred operators which enable us to reproduce the associative
GL~8,R! group. Extracting the basis ofGL~4,C !, we establish an interesting con-
nection between the structure of left/right octonionic barred operators and generic
434 complex matrices. As an application we give an octonionic representation of
the four-dimensional Clifford algebra. ©1997 American Institute of Physics.
@S0022-2488~97!00701-9#

I. INTRODUCTION

Semi-simple Lie groups, classified in four categories, orthogonal groups, unitary gr
symplectic groups and exceptional groups, were respectively associated with real, co
quaternionic and octonionic algebras. Thus, such algebras became the core of the classific
possible symmetries in physics.1–4

We know that the anti-Hermitian generators ofSU~2,C ! can be represented by the thre
quaternionic imaginary unitse1 , e2 , e3 :

e1↔S i 0

0 2 i D , e2↔S 0 21

1 0 D , e3↔S 0 2 i

2 i 0 D . ~1!

It permits any quaternionic numbers or matrix to be translated into a complex matrix bunot
necessarily vice-versa. In fact, to define the most general 232 complex matrix, we need eight rea
numbers. This problem is solved by introducing the barred quaternion 1ue1 ~↔i 1232! which allows
us to obtain a faithful quaternionic representation ofGL~2,C !.5

Exploiting the barred operator idea, we find the following 16 quaternionic operators

1, Q, 1uQ, e1uQ, e2uQ, e3uQ, ~2!

whereQ[(e1 ,e2 ,e3). These operators become essential to formulate special relativity with
quaternions,6 allowing us to overcome the difficulties which in the past did not permit a~real!
quaternionic version of special relativity. Besides, they can be used to give a representa
GL~4,R!. The situation can be summarized as follows:

GL~2,C !↔q1pue1 , GL~4,R!↔q1pue11r ue21sue3 ,

with q, p, r , s quaternionic numbers.

a!Electronic mail address: deleos@le.infn.it
b!Electronic mail address: khaled@le.infn.it
0022-2488/97/38(2)/582/17/$10.00
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Inspired by this sequence we try to extend it and find an isomorphism between octonion
838 real@or 434 complex# matrices. Obviously a first difficulty is the following: The octonion
algebra is nonassociative whereasGL~8,R! @or GL~4,C !#, satisfying the Jacobi identity, is asso
ciative. This seems a hopeless situation.

In this paper, we introduce left/right octonionic barred operators which enables us to
translation rules between 838 real matrices and octonionic numbers. On our road we also fin
interesting isomorphism between the structure of left/right octonionic barred operators, on th
hand, and 434 complex matrices, on the other hand.

This article is organized as follows: In section II, we give a brief introduction to the o
nionic division algebra. In section III, we discuss octonionic barred operators and explain the
to distinguish between left-barred and right-barred operators. In section IV, we investiga
relation between barred octonions and 838 real matrices. In this section, we also give the tra
lation rules between our octonionic barred operators andGL~4,C ! and as an application we writ
down octonionic representations of the four-dimensional Clifford algebra. Two appendices
taining explicit octonionic representation ofGL~8,R! andGL~4,C !, are included. Our conclu
sions and future developments are drawn in the final section.

II. OCTONIONIC ALGEBRA

A remarkable theorem of Albert7 shows that the only algebras,A, over the reals, with unit
element and admitting a real modulus functionN(a) ~aPA! with the following properties,

N~0!50, ~3a!

N~a!.0 if aÞ0, ~3b!

N~ra !5ur uN~a! ~rPR!, ~3c!

N~a1a2!<N~a1!1N~a2!, ~3d!

are the reals,R, the complex,C , the quaternions,H ~H in honor of Hamilton8!, and the
octonions,O ~or Graves–Cayley numbers9,10!. Albert’s theorem generalizes famous nineteen
century results of Frobenius11 and Hurwitz,12 who first reached the same conclusion but with t
additional assumption thatN(a)2 is a quadratic form.

In addition to Albert’s theorem on algebras admitting a modulus functionN(a), we can
characterize the algebrasR, C ,H andO by the concept ofdivision algebra~in which one has no
nonzero divisors of zero!. A classical theorem13,14 states that the only division algebras over t
reals are algebras of dimensions 1, 2, 4, and 8, the only associative division algebras over t
areR, C andH, whereas thenonassociativealgebras include the octonionsO ~an interesting
discussion concerning nonassociative algebras is presented in Ref. 15!. For a very nice review of
aspects of the quaternionic and octonionic algebras see Ref. 16 and the recent book by Ad17 In
this paper we will deal with octonions and their generalizations.

We now summarize our notation for the octonionic algebra and introduce useful eleme
properties to manipulate the nonassociative numbers. There is a number of equivalent w
represent the octonions multiplication table. Fortunately, it is always possible to choose an
normal basis (e0 ,...,e7) such that

O5r 01 (
m51

7

rmem ~r 0,...,7 reals!, ~4!

whereem are elements obeying the noncommutative and nonassociative algebra

emen52dmn1emnpep ~m,n,p51,...,7!, ~5!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with emnp totally antisymmetric and equal to unity for the seven combinations

123, 145, 176, 246, 257, 347 and 365

~each cycle represents a quaternionic subalgebra!. The norm,N~O !, for the octonions is defined by

N~O !5~O †O !1/25~OO †!1/25~r 0
21...1r 7

2!1/2, ~6!

with the octonionic conjugateO † given by

O †5r 02 (
m51

7

rmem . ~7!

The inverse is then

O215O †/N~O ! ~OÞ0!. ~8!

We can define anassociator~analogous to the usual algebraic commutator! as follows:

$x,y,z%[~xy!z2x~yz!, ~9!

where, in each term on the right-hand side, we must, first of all, perform the multiplicatio
brackets. Note that for real, complex and quaternionic numbers the associator is trivially nu
octonionic imaginary units we have

$em ,en ,ep%[~emen!ep2em~enep!52emnpses , ~10!

with emnps totally antisymmetric and equal to unity for the seven combinations

1247, 1265, 2345, 2376, 3146, 3157 and 4567.

Working with octonionic numbers the associator~9! is in general nonvanishing; however, th
‘‘alternative condition’’ is fulfilled:

$x,y,z%1$z,y,x%50. ~11!

III. LEFT/RIGHT-BARRED OPERATORS

In 1989, writing a quaternionic Dirac equation,18 Rotelli introduced abarred momentum
operator

2u i @~2u i !c[2c i #. ~12!

In recent papers,19 partially barred quaternions,

q1pu i @q,pPH#, ~13!

have been used to formulate a quaternionic quantum mechanics and field theory. From the
point of group structure, these barred numbers are very similar to complexified quaternion20

q1I p ~14!

~the imaginary unitI commutes with the quaternionic imaginary unitsi , j , k!, but in physical
problems, like eigenvalue calculations, tensor products, and relativistic equations solution
give different results.
J. Math. Phys., Vol. 38, No. 2, February 1997
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A complete generalization for quaternionic numbers is represented by the following b
operators:

q11q2u i1q3u j1q4uk @q1, ...,4PH#, ~15!

which we callfully barred quaternions, or simply barred quaternions. They, with their 16 linea
independent elements, form a basis ofGL~4,R!. They are successfully used to reformulate Lo
entz space–time transformations6 and write down a one-component Dirac equation.21

Thus, it seems to us natural to investigate the existence ofbarred octonions

O 01 (
m51

7

Omuem @O 0, ...,7 octonions#. ~16!

Nevertheless, we must observe that an octonionicbarredoperator,aub, which acts on octonionic
wave functions,c,

@aub#c[acb,

is not a well defined object. ForaÞb the triple productacb could be either (ac)b or a(cb). So,
in order to avoid the ambiguity due to the nonassociativity of the octonionic numbers, we ne
define left/right-barred operators. We will indicateleft-barred operators bya!b, with a and b
which represent octonionic numbers. They act on octonionic functionsc as follows:

@a!b]c5~ac!b. ~17a!

In similar way we can introduceright-barredoperators, defined bya~b,

@a~b#c5a~cb!. ~17b!

Obviously, there are barred-operators in which the nonassociativity is not of relevance, like

1)a51~a[1ua.

Furthermore, from Eq.~11!, we have

$x,y,x%50,

so

a)a5a~a[aua.

At first glance it seems that we must consider the following 106 barred-operators:

1,em,1uem ~15 elements),

emuem ~7!,

em)en ~mÞn! ~42!,

em~en ~mÞn! ~42!,

~m,n51,...,7!.

Nevertheless, it is possible to prove that each right-barred operator can be expressed by a
combination of left-barred operators. For example, from Eq.~11!, by posingx5em andz5en , we
quickly obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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em~en1en~em[em!en1en!em . ~18!

So we can represent the most general octonionic operator by only left-barred objects,

O 01 (
m51

7

Om)em @O 0, ...,7 octonions#, ~19!

reducing to 64 the previous 106 elements. This suggests a correspondence between ou
octonions~19! andGL~8,R! ~a complete discussion about the above-mentioned relationsh
given in the following section!.

IV. TRANSLATION RULES

The nonassociativity of octonions represents a challenge. We overcome the problems
the octonions nonassociativity by introducing left/right-barred operators. We discuss in the
subsection their relation toGL~8,R!. In that subsection, we present our translation idea and
some explicit examples which allow us to establish the isomorphism between our octo
left/right-barred operators andGL~8,R!. In subsection IV B, we focus our attention on the gro
GL~4,C !,GL~8,R!. In doing so, we find that only particular combinations of octonionic bar
operators give us suitable candidates for theGL~4,C !-translation. Finally, in subsection IV C, w
explicitly give two octonionic representations for the Dirac gamma-matrices~and consequently we
are able to write down, for the first time, octonionic representations for the four-dimens
Clifford algebra!.

A. Relation between barred operators and 8 38 real matrices

In order to explain the idea of translation, let us look explicitly at the action of the oper
1ue1 ande2 , on a generic octonionic functionw:

w5w01e1w11e2w21e3w31e4w41e5w51e6w61e7w7 @w0, ...,7PR#. ~20!

We have

@1ue1#w[we15e1w02w12e3w21e2w32e5w41e4w51e7w62e6w7 , ~21a!

e2w5e2w02e3w12w21e1w31e6w41e7w52e4w62e5w7 . ~21b!

If we represent our octonionic functionw by the following real column vector,

w↔1
w0

w1

w2

w3

w4

w5

w6

w7

2 , ~22!

we can rewrite Eqs.~21a! and ~21b! in matrix form,
J. Math. Phys., Vol. 38, No. 2, February 1997
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1
0 21 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 21 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 21 0 0 0

0 0 0 0 0 0 0 21

0 0 0 0 0 0 1 0

2 1
w0

w1

w2

w3

w4

w5

w6

w7

2 51
2w1

w0

w3

2w2

w5

2w4

2w7

w6

2 , ~23a!

1
0 0 21 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

0 0 0 0 0 0 21 0

0 0 0 0 0 0 0 21

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

2 1
w0

w1

w2

w3

w4

w5

w6

w7

2 51
2w2

w3

w0

2w1

2w6

2w7

w4

w5

2 , ~23b!

In this way we can immediately obtain a real matrix representation for the octonionic b
operators 1ue1 ande2 . Following this procedure we can construct the complete set of transla
rules for the imaginary unitsem and the barred operators 1uem ~appendix A!. In this paper we will
use the notation of Refs. 22–24:Lm andRm will represent the matrix counterpart of the octonion
operatorsem and 1uem ,

Lm↔em and Rm↔1uem . ~24!

At first glance it seems that our translation does not work. If we extract the matrices c
sponding toe1 , e2 ande3 , namely,

L151
0 21 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 21 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 21 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 21 0

2 ,
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L251
0 0 21 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

0 0 0 0 0 0 21 0

0 0 0 0 0 0 0 21

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

2 ,
L351

0 0 0 21 0 0 0 0

0 0 21 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 21

0 0 0 0 0 0 1 0

0 0 0 0 0 21 0 0

0 0 0 0 1 0 0 0

2 ,
we find

L1L2ÞL3 . ~25!

In obvious contrast with the octonionic relation

e1e25e3 . ~26!

This bluff is soon explained. In deducing our translation rules, we understand octonions as o
tors, and so they must be applied to a certain octonionic function,w, and not upon another
‘‘operator’’. So the octonionic relation

e3w@5~e1e2!w# ~27a!

is translated by

L3w, ~27b!

whereas

e1~e2w!@Þe3w# ~28a!

becomes

L1L2w@ÞL3w#. ~28b!

We have to differentiate between two kinds of multiplication, ‘‘•’’ and ‘‘ 3’’. At the level of
octonions, one has

e1•e25e3 , ~29!
J. Math. Phys., Vol. 38, No. 2, February 1997
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but at level of octonionic operators

e13e2Þe3 . ~30!

For em and 1uem , we have simple ‘‘3’’-multiplication rules. In fact, utilizing the associato
properties we find

em~enw!5~emen!w1~emw!en2em~wen!, ~31a!

~wem!en5w~emen!2~emw!en1em~wen!. ~31b!

Thus,

em3en[2dmn1emnpep1em)en2em~en , ~32a!

@1uen#3@1uem#[2dmn1emnpep2em)en1em~en . ~32b!

The previous relation can be soon rewritten in matrix form as follows:22

LmLn[2dmn1emnpLp1@Rn ,Lm#, ~33a!

RnRm[2dmn1emnpRp1@Lm ,Rn#. ~33b!

Introducing a new matrix multiplication, ‘‘+’’, related to the standard matrix multiplication~row
by column! by

Lm+Ln[LmLn1@Rn ,Lm#, ~34!

we can quickly reproduce the nonassociative octonionic algebra

Lm+Ln52dmn1emnpLp . ~35!

Working with left/right-barred operators we show how the nonassociativity is inherent in
representation. Such operators enable us to reproduce the octonions nonassociativity by th
algebra. Consider, for example,

@e3!e1]w[~e3w!e15e2w02e3w11w22e1w32e6w42e7w51e4w61e5w7 . ~36!

This equation will be translated into

1
0 0 1 0 0 0 0 0

0 0 0 21 0 0 0 0

1 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 21 0 0 0

0 0 0 0 0 21 0 0

2 1
w0

w1

w2

w3

w4

w5

w6

w7

2 51
w2

2w3

w0

2w1

w6

w7

2w4

2w5

2 , ~37!

whereas

@e3~e1#w[e3~we1!5e2w02e3w11w22e1w31e6w41e7w52e4w62e5w7 ~38!
J. Math. Phys., Vol. 38, No. 2, February 1997
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will become

1
0 0 1 0 0 0 0 0

0 0 0 21 0 0 0 0

1 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

0 0 0 0 0 0 21 0

0 0 0 0 0 0 0 21

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

2 1
w0

w1

w2

w3

w4

w5

w6

w7

2 51
w2

2w3

w0

2w1

2w6

2w7

w4

w5

2 . ~39!

The nonassociativity is then reproduced since left- and right-barred operators like

e3)e1 and e3~e1

are represented by different matrices. The complete set of translation rules for left/right-b
operators is given in appendix A.

The matrix representation for left/right-barred operators can be quickly obtained by su
multiplications of the matricesLm andRm . Let us clear up our assertion. By direct calculations
can extract the matrices which correspond to the operators

em)en and em~en ,

which we call, respectively,

Mmn
L and Mmn

R .

Our left/right-barred operators can be represented by an ordered action of the operatorsem and
1uem , and so we can related the matricesMmn

L andMmn
R to the matricesLm andRm :

Mmn
L [RnLm , ~40a!

Mmn
R [LmRn . ~40b!

The previous discussions concerning the octonions’ nonassociativity and the isomor
betweenGL~8,R! and barred octonions, can be now, elegantly, presented as follows.

1. Matrix representation for octonions nonassociativity

Mmn
L ÞMmn

R @RnLmÞLmRn for mÞn#. ~41!

2. Isomorphism between GL(8, R) and barred octonions

If we rewrite our 106 barred operators by real matrices,

1, Lm , Rm ~15 matrices!,

M[LmRm5RmLm ~7!,

Mmn
L [RnLm ~mÞn! ~42!,

Mmn
R [LnRm ~mÞn! ~42!,
J. Math. Phys., Vol. 38, No. 2, February 1997
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~m,n51,...,7!,

we have two different basis forGL~8,R!:

~1! 1, Lm , Rm , RnLm ,

~2! 1, Lm , Rm , LmRn .

We now remark some difficulties deriving from the octonions’ nonassociativity. When
translate from barred octonions to 838 real matrices there is no problem. For example, in
octonionic equation

e4$@~e6w!e1#e5%, ~42!

we quickly recognize the following left-barred operators,

e4~e5 and e6!e1 .

We can translate Eq.~42! into

M45
L M61

L w. ~43!

In going from 838 real matrices to octonions we should be careful in ordering. For exampl

ABw ~44!

can be understood as

~AB!w ~45a!

or

A~Bw!. ~45b!

The first choice is related to the ‘‘3’’ multiplication ~different from the standard octonioni
multiplication!. In order to avoid confusion we translate Eq.~44! by Eq. ~45b!. In general

ABC...Zw[A~B~C...~Zw!...!!. ~46!

B. Relation between barred operators and 4 34 complex matrices

Some complex groups play a critical role in physics. No one can deny the importan
U~1,C ! or SU~2,C !. In relativistic quantum mechanics,GL~4,C ! is essential in writing the Dirac
equation. HavingGL~8,R!, we should be able to extract its subgroupGL~4,C !. So, we can
translate the famous Dirac-gamma matrices and write down a one-component octonionic
equation.25

Let us show how we can isolate our 32 basis ofGL~4,C !: Working with the symplectic
decomposition of octonions

c5S c1

c2

c3

c4

D ↔c11e2c21e4c31e6c4 @c1,...,4PC ~1,e1!#. ~47!
J. Math. Phys., Vol. 38, No. 2, February 1997
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we analyze the action of left-barred operators on our octonionic wave functionsc. For example,
we find

@1ue1#c[ce15c11e2~e1c2!1e4~e1c3!1e6~e1c4!,

e2c52c21e2c12e4c4*1e6c3* ,

@e3!e1]c[~e3c!e15c21e2c11e4c4*2e6c3* .

Following the same methodology of the previous section, we can immediately note a
spondence between the complex matrixi 1434 and the octonionic barred operator 1ue1 :

S i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 i

D↔1ue1 . ~48!

The translation does not work for all barred operators. Let us show it, explicitly. For exam
we cannot find a 434 complex matrix which, acting on

S c1

c2

c3

c4

D ,

gives the column vector

S 2c2

c1

2c4*

c3*
D or S c2

c1

c4*

2c3*
D ,

and so we have not the possibility to relate

e2 or e3)e1

with a complex matrix. Nevertheless, a combined action of such operators gives us

e2c1~e3c!e152e2c1 ,

and it allows us to represent the octonionic barred operator

e21e3)e1 ~49a!

by the 434 complex matrix

S 0 0 0 0

2 0 0 0

0 0 0 0

0 0 0 0

D . ~49b!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Following this procedure we can represent a generic 434 complex matrix by octonionic barre
operators. The explicit correspondence rules are given in appendix B.

We conclude our discussion concerning the relation between barred operators and 434 com-
plex matrices, noting that the 32 basis elements ofGL~4,C ! can be directly extracted from the 6
generators ofGL~8,R!. It is well known that any complex matrix can be rewritten as a real ma
by the following isomorphism:

1↔1232 and i↔2 is2 .

The situation at the lowest order is

GL~2,R! generators: 1232 , s1 , 2 is2 , s3 ;

GL~1,C ! isomorphic: 1232 , 2 is2 .

In a similar way~choosing appropriate combinations of left-barred octonionic operators, in w
only 61232 and6 is2 appear! we can extract fromGL~8,R! the 32 basis elements ofGL~4,C !.
For further details see appendix B.

C. Octonionic representations of the four-dimensional Clifford algebra

We show explicitly two octonionic representations for the Dirac gamma-matrices.26

1. Dirac representation

g05
1

3
2
2

3 (
m51

3

emuem1
1

3 (
n54

7

enuen , ~50a!

g152
2

3
e62

1

3
ue61e5)e32e3)e52

1

3 (
p,s51

7

eps6ep)es , ~50b!

g252
2

3
e72

1

3
ue71e3)e42e4)e32

1

3 (
p,s51

7

eps7ep)es , ~50c!

g352
2

3
e42

1

3
ue41e7)e32e3)e72

1

3 (
p,s51

7

eps4ep)es . ~50d!

2. Majorana representation

g05
1

3
e72

1

3
ue71e3)e42e5)e21e6)e12

1

3 (
p,s51

7

eps7ep)es , ~51a!

g15
2

3
e11

1

3
ue11e5)e42e4)e51

1

3 (
p,s51

7

eps1ep)es , ~51b!

g25
2

3
e71

1

3
ue71e4)e32e3)e41

1

3 (
p,s51

7

eps7ep)es , ~51c!

g35
2

3
e31

1

3
ue31e7)e42e4)e71

1

3 (
p,s51

7

eps3ep)es . ~51d!
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V. CONCLUSIONS

The modern notion of symmetry in physics heavily depends upon using the associativ
groups. So, at first glance, it seems that octonions have not any relation with our physical
Having a nonassociative algebra needs special care. In this work, we introduced a ‘‘trick’’ w
allowed us to manipulate octonions without useless efforts, namelybarred octonions.

This paper aimed to give a clear exposition of the potentiality ofbarred numbers. Their
possible applications could occur in different fields, like group theory, quantum mechanics
nuclear physics. We preferred in our work to focus our attention on the mathematical su
Physical applications are investigated elsewhere.19,25,27

We summarize the more important results found in previous sections:
M—Mathematical Contents

~M1! The introduction of barred operators~natural objects if one works with noncommutativ
numbers! facilitates our job and enables us to formulate a ‘‘friendly’’ connection between 838
real matrices and octonions.

~M2! The nonassociativity is reproduced by left/right-barred operators. We consider
operators the natural extension of barred quaternions, recently introduced in literature.5,19

~M3! We tried to investigate the properties of our barred numbers and studied their s
characteristics in order to use them in a proper way. After having established their isomorph
GL~8,R!, life became easier.

~M4! The connection betweenGL~8,R! and barred octonions gives us the possibility
extracting the octonionic generators corresponding to the complex subgroupGL~4,C !. This step
represents the main tool to manipulate octonions in quantum mechanics.

~M5! To the best of our knowledge, for the first time, an octonionic representation fo
four-dimensional Clifford algebra appears in print.

I—Further Investigations
We conclude with a listing of open questions for future investigations, whose study lea

further insights.
~I1! How may we complete the translation? Note that translation, as presented in this

works for 4n34n matrices. What about odd-dimensional matrices?
~I2! From the translation rules we can extract the multiplication rules for generic octon

barred operators. This will allow us to work directly with octonions without translations.
~I3! Inspired from Eq.~34!, we could look for a more convenient way to express the n

nonassociative multiplication~for example, we can try to modify the standard multiplication ru
row by column!.

~I4! A last interesting research topic could be to generalize the group theoretical structu
our barred octonionic operators.

Many of the problems on this list deal with technical details although the answers to som
be important for further development of the subject.

We hope that the work presented in this paper demonstrates that octonions may cons
coherent and well-defined branch of theoretical research. We are convinced that octonions
sent largely uncharted and potentially very interesting terrain for theoretical investigations.

ACKNOWLEDGMENTS

The authors would like to thank P. Rotelli for invaluable conversations and suggestions
of us ~K.A.K.! gratefully acknowledges the warm hospitality of the Lecce Physics Departm
where this paper was prepared. The authors also thank the referee for improvements to thi

APPENDIX A: OCTONIONIC REPRESENTATION OF GL(8,R)

In this appendix we give the translation rules between octonionic left/right-barred ope
and 838 real matrices. In order to simplify our presentation we introduce the following nota
J. Math. Phys., Vol. 38, No. 2, February 1997
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$a,b,c,d%~1![S a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

D , $a,b,c,d%~2![S 0 a 0 0

b 0 0 0

0 0 0 c

0 0 d 0

D , ~A1a!

$a,b,c,d%~3![S 0 0 a 0

0 0 0 b

c 0 0 0

0 d 0 0

D , $a,b,c,d%~4![S 0 0 0 a

0 0 b 0

0 c 0 0

d 0 0 0

D , ~A1b!

wherea, b, c, d and 0 represent 232 real matrices.
From now on, withs1, s2, s3 we represent the standard Pauli matrices:

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~A2!

The only necessary translation rules that we need to know explicitly are the following:

e1↔$2 is2 ,2 is2 ,2 is2 , is2%~1! , 1ue1↔$2 is2 ,is2 ,is2 ,2 is2%~1! ,

e2↔$2s3 ,s3 ,21,1%~2! , 1ue2↔$21,1,1,21%~2! ,

e3↔$2s1 ,s1 ,2 is2 ,2 is2%~2! , 1ue3↔$2 is2 ,2 is2 ,is2 ,is2%~2! ,

e4↔$2s3 ,1,s3 ,21%~3! , 1ue4↔$21,21,1,1%~3! ,

e5↔$2s1 ,is2 ,s1 ,is2%~3! , 1ue5↔$2 is2 ,2 is2 ,2 is2 ,2 is2%~3! ,

e6↔$21,2s3 ,s3 ,1%~4! , 1ue6↔$2s3 ,s3 ,2s3 ,s3%~4! ,

e7↔$2 is2 ,2s1 ,s1 ,2 is2%~4! , 1ue7↔$2s1 ,s1 ,2s1 ,s1%~4! .

The remaining rules can be easily constructed remembering that

em↔Lm ,

1uem↔Rm ,

emuem↔Mmm
L [RmLm ,

Mmm
R [LmRm ,

em)en↔Mmn
L [RnLm ,

em~en↔Mmn
R [LmRn .

For example,
J. Math. Phys., Vol. 38, No. 2, February 1997
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e1ue1↔S 2 is2 0 0 0

0 2 is2 0 0

0 0 2 is2 0

0 0 0 is2

D S 2 is2 0 0 0

0 is2 0 0

0 0 is2 0

0 0 0 2 is2

D 5$21,1,1,1%~1! ,

e3)e1↔S 2 is2 0 0 0

0 is2 0 0

0 0 is2 0

0 0 0 2 is2

D S 0 2s1 0 0

s1 0 0 0

0 0 0 2 is2

0 0 2 is2 0

D 5$s3 ,s3 ,1,21%~2! ,

and

e3(e1↔S 0 2s1 0 0

s1 0 0 0

0 0 0 2 is2

0 0 2 is2 0

D S 2 is2 00 0

0 is2 0 0

0 0 is2 0

0 0 0 2 is2

D 5$s3 ,s3 ,21,1%~2! .

Following this procedure any matrix representation of right/left-barred operators can be obt
Using Mathematica,28 we have proved the linear independence of the 64 elements which repr
the most general octonionic operator

O 01 (
m51

7

Om)em .

So our barred operators form a complete basis for any 838 real matrix and this establishes th
isomorphism betweenGL~8,R! and barred octonions.

We conclude this appendix giving a compact notation for the 64 left-barred operato~a
similar trick works for the right ones!.

Form,n51,...,7 (mÞn) anda,b51,...,7~labels of the rows and columns of the correspon
ing matrixX!, we have

em)en1en)em↔Xab5H 22, a,b5m,n;n,m,

0, otherwise.
~A3a!

em11uem↔Xab5H 22, a,b50,m,

12, a,b5m,0,

0, otherwise.

~A3b!

For the minus combination, after introducing the indexp defined byemen5emnp (mÞn), we
have the following rules:

em)en2en)em↔Xab5H 2eabp , a,b5a,b~Þm,n!,

2, a,b50, p;p,0,

0, otherwise;

~A4a!

em21uem↔Xab5H 22eabm, a,b5a,b,

0, otherwise.
~A4b!
J. Math. Phys., Vol. 38, No. 2, February 1997
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APPENDIX B: OCTONIONIC REPRESENTATION OF GL(4,C )

We give the action of barred operators on octonionic functions:

c5c11e2c21e4c31e6c4 @c1, ...,4PC ~1,e1!#.

In the following we will use the notation

e2→$2c2 ,c1 ,2c4* ,c3* %

to indicate

e2c52c21e2c12e4c4*1e6c3* .

As occurred in the previous appendix we need to know only the action of the barred ope
em and1uem :

e1→$e1c1 ,2e1c2 ,2e1c3 ,2e1c4%, 1ue1→$e1c1 ,e1c2 ,e1c3 ,e1c4%,

e2→$2c2 ,c1 ,2c4* ,c3* %, 1ue2→$2c2* ,c1* ,c4* ,2c3* %,

e3→$2e1c2 ,2e1c1 ,2e1c4* ,e1c3* %, 1ue3→$e1c2* ,2e1c1* ,e1c4* ,2e1c3* %,

e4→$2c3 ,c4* ,c1 ,2c2* %, 1ue4→$2c3* ,2c4* ,c1* ,c2* %,

e5→$2e1c3 ,e1c4* ,2e1c1 ,2e1c2* %, 1ue5→$e1c3* ,2e1c4* ,2e1c1* ,e1c2* %,

e6→$2c4 ,2c3* ,c2* ,c1%, 1ue6→$2c4* ,c3* ,2c2* ,c1* %,

e7→$e1c4 ,e1c3* ,2e1c2* ,e1c1%, 1ue7→$2e1c4* ,2e1c3* ,e1c2* ,e1c1* %.

From the previous correspondence rules we immediately obtain the others barred ope
We give, as example, the construction of the operatore4! e7. We know that

e4→$2c3 ,c4* ,c1 ,2c2* % and 1ue7→$2e1c4* ,2e1c3* ,e1c2* ,e1c1* %.

Combining these operators we find

$2e1~2c2* !* ,2e1c1* ,e1~c4* !* ,e1~2c3!* %,

and so

e4)e7→$e1c2 ,2e1c1* ,e1c4 ,2e1c3* %.

As remarked at the end of subsection IV B, we can extract the 32 basis elements ofGL~4,C !
directly by suitable combinations of 64 basis elements ofGL~8,R!. We must choose the comb
nation which have only1232 and2 is2 as matrix elements. Nevertheless we must take car
manipulating our octonionic barred operators. If we wish to extract fromGL~8,R! the 32 ele-
ments which characterizeGL~4,C ! we need to change the octonionic basis ofGL~8,R!. In fact,
the natural choice for the symplectic octonionic representation,

c5~w01e1w1!1e2~w21e1w3!1e4~w41e1w5!1e6~w61e1w7!,

requires the following real counterpart,

w̃5w01e1w11e2w22e3w31e4w42e5w51e6w61e7w7 ,
J. Math. Phys., Vol. 38, No. 2, February 1997
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whereas we used in subsection IV A the following basis:

w5w01e1w11e2w21e3w31e4w41e5w51e6w61e7w7 .

The changes in the signs ofe3w3 and e5w5 imply a modification in the generators o
GL~8,R!. For example,e2 ande3! e1 now read

e2[$21,1,2s3 ,s3%~2! and e3)e1[$1,1,s3 ,2s3%~2! ,

i.e., the change of basis induces the following modifications:

1
s3 .

Their appropriate combination gives

e21e3)e1
2

[$0,1,0,0%~2! ——→
complexifingS 0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

D ,
as required by Eq.~49b!.
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Canonical gauges in the path integral for parametrized
systems

Rafael Ferraro
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, Ciudad Universitaria-Pabello´n I, 1428 Buenos Aires, Argentina and Instituto
de Astronomı´a y Fı́sica del Espacio, Casilla de Correo 67-Sucursal 28, 1428 Buenos
Aires, Argentina

Claudio Simeone
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, Ciudad Universitaria-Pabellon I, 1428 Buenos Aires, Argentina

~Received 5 August 1996; accepted for publication 3 September 1996!

It is well known that—differing from ordinary gauge systems—canonical gauges
are not admissible in the path integral for parametrized systems. This is the case for
the relativistic particle and gravitation. However, a time dependent canonical trans-
formation can turn a parametrized system into an ordinary gauge system. It is
shown how to build a canonical transformation such that the fixation of the new
coordinates is equivalent to the fixation of the original ones; this aim can be
achieved only if the Hamiltonian constraint allows for an intrinsic global time.
Thus the resulting action, describing an ordinary gauge system and allowing for
canonical gauges, can be used in the path integral for the quantum propagator
associated with the original variables. ©1997 American Institute of Physics.
@S0022-2488~97!02002-1#

I. INTRODUCTION

When the transition amplitude for a gauge system is written as the sum over all histories
exponential of the gauge-invariant action, the path integral diverges because of the inte
over the non physical degrees of freedom. This difficulty can be solved by imposing g
conditions which select one path from each class of physically equivalent paths. Admi
gauges are those which can be reached from any path by performing gauge transform
leaving invariant the action. A gauge transformation is generated by the first class cons
Ga(q

i ,pi),

@Ga ,Gb#5Cab
c~qi ,pi !Gc . ~1.1!

Under a gauge transformation the action changes by an endpoint term

deS 5Fea~t!S pi ]Ga

]pi
2GaD G

t1

t2

. ~1.2!

If the constraints are linear and homogeneous in the momenta, as in Yang–Mills theorie
endpoint term~1.2! vanishes. If not, as it happens with generally covariant systems as the
tivistic particle and gravitation, the action is invariant under a gauge transformation only
gauge parametersea~t! vanish at the endpoints. Thus the admissible gauges in the path integr
generally covariant systems are those which can be reached from any path by means of a
transformation mapping the boundaries onto themselves. This is a serious limitation to the
conditions to be used in the path integral: canonical gauge conditions@i.e., those of the type
0022-2488/97/38(2)/599/12/$10.00
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x~q,p,t!50# cannot be used with generally covariant systems because, since the action h
gauge freedom at the boundaries, they would imply a restriction on the initial and final qua
states.

This difference was taken as the main distinction between ordinary gauge systems an
erally covariant systems.1 However, the gauge freedom at the endpoints can be recovered
action is modified by appropriate endpoint terms, as has been recently shown for s
systems.2,3

We will develop a method to obtain these terms for a generic parametrized system h
only one constraintH, by taking them as the consequence of a time-dependent canonical
formation such that one of the new momenta, sayP0, coincides with the Hamiltonian constrain
H. Then, the new variables (Qm,Pm), mÞ0, will be observables~although not conserved!, while
Q0 will be pure gauge. In the new variables the constraint is linear and homogeneous
momenta; thus the actionS(Qi ,Pi) will have gauge freedom at the endpoints and a canon
gauge condition will be admissible. In addition, the canonical transformation will be built in
a way that the quantum stateuqi& is equal touQi&. Then the actionS(Qi ,Pi), which is stationary
on the classical trajectory when theQ’s are fixed at the boundaries, will result appropriate
computing the propagator^q8uq&.

II. PARAMETRIZED SYSTEMS

The action of a parametrized system reads

S @qi ,pi ,N#5E
t1

t2S pi dqidt
2NHDdt, ~2.1!

whereH is the null Hamiltonian and the lapse functionN~t! is the Lagrange multiplier enforcing
the constraintH50. The constraint implies the existence of nonphysical variables, which lea
an action with some kind of invariance or symmetry.

Under arbitrary changes ofq, p, andN it is obtained

dS 5pidq
i ut1

t21E
t1

t2F S q̇i2N
]H

]pi
D dpi2S ṗi1N

]H

]qi D dqi2HdNGdt. ~2.2!

The action is stationary on the classical path when the endpoint values ofqi are fixed.
The action~2.1! has two different types of invariance:
~1! Invariance under a reparametrization

dqi5e~t!
dqi

dt
, ~2.3!

dpi5e~t!
dpi
dt

, ~2.4!

dN5
d~Ne!

dt
~2.5!

with e~t1!505e~t2!. This transformation is called a reparametrization because it is equivale
changet by t1e~t! on the path given byqi~t! andpi~t!, the integral

E
t1

t2
N~t!dt
J. Math. Phys., Vol. 38, No. 2, February 1997
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remaining unchanged. The invariance of the action~2.1! under a reparametrization means thatt is
not the time but a physically irrelevant parameter. When a system is described by an actio
that of ~2.1!, the solutions of the dynamical equations are not parametrized byt but are

qi5qi S E t

N dt D , pi5pi S E t

N dt D . ~2.6!

So the ‘‘proper time’’*tN dt, instead oft, plays the role of time. When equations~2.6! can be
globally solved for*tN dt @i.e., *tN dt5t(q,p)#, it is said that the system has a global pha
time t(q,p).4

~2! Invariance under a gauge transformation

deq
i5e~t!@qi ,H#5e~t!

]H

]pi
, ~2.7!

dep
i5e~t!@pi ,H#52e~t!

]H

]qi
. ~2.8!

Then

deS 5pideq
i ut1

t22E
t1

t2Fe~t!S q̇i ]H

]qi
1 ṗi

]H

]pi
D1HdeNGdt. ~2.9!

As deN cannot be generated byH, it can be defined

deN5 ė, ~2.10!

and then

deS 5pideq
i ut1

t22E
t1

t2 d

dt
~eH !dt5Fe~t!S pi ]H

]pi
2H D G

t1

t2

. ~2.11!

On the classical path, where Hamilton equations hold, the reparametrization~2.3!–~2.5! is equiva-
lent to a gauge transformation with parameterNe and the boundary restrictionse~t1!505e~t2!.

If the constraintH is not linear and homogeneous in the momenta, as is usual when one
with parametrized systems, the action is not gauge-invariant unless the restrictions

e~t1!505e~t2! ~2.12!

are added.
Gauge invariance is usually regarded as the consequence of the existence of spurious

of freedom. However, gauge invariance of parametrized systems is related to reparametr
invariance; i.e., the physically irrelevant variable is not a canonical variable but is the paramt.
t is not the time but the time can be hidden among the dynamical variables. This is the case
a global phase time exists~the Jacobi action is an example of a parametrized action which ha
a global phase time!.5 As a result, the path integral for such a system does not depend ont1, t2,
but only on the initial and final values ofqi . Hence, the path integral for a parametrized syst
corresponds to the probabilitŷqi 8uqi&.

The restrictions~2.12! make impossible to fix the gauge in the path integral by impos
conditions on the canonical variables of the form

x~q,p,t!50, ~2.13!
J. Math. Phys., Vol. 38, No. 2, February 1997
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~‘‘canonical gauges’’!. This type of gauge conditions are not admissible when the constraint
not linear and homogeneous because, due to the restrictions~2.12!, there is no gauge freedom a
the endpoints, and then~2.13! would imply a restriction on the initial and final quantum states1

Admissible gauges in the path integral are those which can be carried tox50 by means of a
gauge transformation leaving the action invariant. Let us consider a trajectory which differs
the conditionx50 by an infinitesimal quantityD; the gauge transformation which makes t
variables reach the gauge condition must be such that

dex52D. ~2.14!

In order to have only one solutione~t! with the boundary conditions~2.12!, ~2.14! should be a
second order differential equation in the parametere. SincedeN5 ė, the most obvious gauge
condition could be given by a function ofṄ, namely,1

x5Ṅ50. ~2.15!

Any particular choice ofN~t! can be carried toṄ50 by successive infinitesimal gauge transfo
mationsdeN5 ė; these transformations are possible because there are no restrictions onė, but only
on e at the endpoints. Gauges like~2.15! are called ‘‘derivative gauges.’’ Although the gaug
condition~2.15! does not fix the value ofN, but only says thatN is constant on the trajectory, th
value ofN is determined by the variational principle itself when the data att1 andt2 are enough
for knowing the global phase timet(q,p) at the endpoints. In fact,N5Dt/Dt. So no ambiguities
are left on the classical trajectory.

The practical value of having linear and homogeneous constraints led to distinguish
ordinary gauges systems from all others by calling them systems withinternal gauge symmetries.
However, there is not a true conceptual difference between both classes of systems: interna
symmetry can be no more than a consequence of a particular choice of variables, and an
priate transformation (qi ,pi)→(Qi ,Pi) can eliminate the restrictionse~t1!505e~t2! on the admis-
sible gauges, allowing us to impose canonical gauge conditions in the path integral.3

III. THE ENDPOINT TERMS

As we have seen, the general form of the variation of the action under a gauge transfor
is that of an endpoint term@see ~2.11!#. It is then possible to achieve gauge freedom at
endpoints by means of including appropriate endpoint terms in the action. These terms hav
obtained in Ref. 2 for the parametrized free particle and the free relativistic particle.

In this work we develop a method that gives the appropriate endpoint terms for a parame
system in a general way, by seeing them as a consequence of having performed a ca
transformation. If the endpoint terms are calledB, the gauge-invariant action of a parametriz
system reads

S @qi ,pi ,N#5E
t1

t2S pi dqidt
2NHDdt1B, ~3.1!

where, as it follows from~2.11!, it is clear that it must be

deB5F2e~t!S pi ]H

]pi
2H D G

t1

t2

~3.2!

to havedeS50 for any gauge transformation.
Let us consider a complete solutionW(qi ,am ,E) of the t-independent Hamilton–Jacob

equation
J. Math. Phys., Vol. 38, No. 2, February 1997
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HS qi , ]W

]qi D5E. ~3.3!

If E and the integration constantsam are matched to the new momentaP̄0 and P̄m respectively,
then W(qi ,P̄j ) can be regarded as the generator function of a canonical transform
(qi ,pi)→(Q̄i ,P̄i) defined by the equations

pi5
]W

]qi
, Q̄i5

]W

] P̄i
, K̄5NP̄0 . ~3.4!

As the transformation is canonical, it is clear that

@Q̄m,P̄0#5@Q̄m,H#50, @ P̄m ,P̄0#5@ P̄m ,H#50, ~3.5!

which means thatQ̄m and P̄m are ~conserved! observables describing thereducedsystem.
The dynamical evolution forQ̄0

dQ̄0

dt
5@Q̄0,K̄#5N@Q̄0,P̄0#5N

is solved byQ̄05*tN dt. If Q̄0 is globally well defined, thenQ̄0 is a global phase time.
The action

S̄@Q̄i ,P̄i ,N#5E
t1

t2S P̄i

dQ̄i

dt
2NP̄0D dt ~3.6!

describes a parametrized system with a constraint which is linear and homogeneous in t
menta. Therefore the actionS̄ has gauge freedom at the boundaries, and does not need end
terms. Canonical gauges are then admissible in a path integral with the actionS̄. A canonical
gauge can be chosen to bex5Q̄02g(t), meaning thatN(t)5g8(t) on the classical trajectory.

The actionS̄ can be related withS by noting that

pi dq
i5d~W2Q̄i P̄i !1 P̄i dQ̄

i ,

as it follows from~3.4!. Then

S̄5E
t1

t2S pi dqidt
2NHDdt1@Q̄i~qi ,pi !P̄i~q

i ,pi !2W#t1

t2 ~3.7!

and the endpoint terms making the actionS gauge-invariant are

B̄5@Q̄i~qi ,pi !P̄i~q
i ,pi !2W#t1

t2; ~3.8!

the property~3.2! is straightforwardly verified by these terms.

IV. THE VARIABLES TO BE FIXED AT THE ENDPOINTS

We have succeeded in identifying the reduced system, described by the coordinat
momenta (Q̄m,P̄m), and in getting the action~3.6! which has gauge freedom at the boundari
The added endpoint terms do not change the dynamical equations, but change the quantiti
fixed at the endpoints in order to get the trajectories from the variational principle. The action~3.6!
requires fixing theQ̄i ’s at the endpoints~actually only theQ̄m’s should be fixed, sinceP̄050 on
J. Math. Phys., Vol. 38, No. 2, February 1997
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the classical trajectory!. So S̄ is appropriate to computêQ̄i 8uQ̄i&5^Q̄m8,Q̄08uQ̄m,Q̄0&—remind
that Q̄0 is the global phase time—by means of a path integral allowing for canonical ga
However, our aim is to computêqi 8uqi&, instead of^Q̄i 8uQ̄i&; but ^Q̄i 8uQ̄i& is not equal to
^qi 8uqi&, because the choice of theQ̄i ’s does not fix the same quantum state that the choice of
qi ’s does. In fact, Eqs.~3.4! and~3.5! tell us that the variables (Q̄m,P̄m) are conserved on classica
trajectories. While any classical trajectory can be characterized by the choice of theqi ’s at the
endpoints, in the new variables this is done by the choice of the conserved observables (Q̄m,P̄m),
and theQ̄0’s at the endpoints. Thus new and original variables play different roles in chara
izing states or histories, and the amplitudes^qi 8uqi& and ^Q̄i 8uQi& have different meanings.

However, one can look for a propagator equal to^qi 8uqi& by performing a canonical transfor
mation (Q̄m,P̄m)→(Qm,Pm) in the reduced space. If this transformation ist-dependent the Hamil-
tonian will change; then the observablesQm will not be conserved, and one could succeed
getting the wished propagator. Let us consider the canonical transformation generated by

F~Q̄,P!5P0Q̄
01 f ~Q̄m,Pm ,t!. ~4.1!

Then

H5 P̄05
]F

]Q̄0
5P0 ,

Q̄05
]F

] P̄0

5Q0. ~4.2!

The transformation (Q̄m,P̄m)→(Qm,Pm) is generated byf (Q̄m,Pm ,t). Q
m and Pm are observ-

ables, because their Poisson brackets withP05H are zero, but are not conserved because t
evolution is governed by the nonzero Hamiltonian

K5K̄1
]F

]t
5NP01

] f

]t
~4.3!

~h[] f /]t is the Hamiltonian for the reduced system!.
The additional endpoint term

@QiPi2F#t1

t25@QmPm2 f ~Q̄m,Pm ,t!#t1

t2

depends only on observables; then it is gauge-invariant. This means that the action

S@Qi ,Pi ,N#5E S Pi

dQi

dt
2NP02

] f

]t Ddt ~4.4!

also has gauge freedom at the endpoints~which appears to be obvious if we regard that after
new canonical transformation generated byf the constraint remains linear in the momenta!.

The actionS[Qi ,Pi ,N] describes a non parametrized system with internal gauge symm
For this systemt is the time, butQ0 is pure gauge~of course, the roles oft andQ0 are inter-
changeable sinceQ0 is a global phase time!. Then, the gauge can be fixed in the path integral
means of a canonical gauge.

The action~4.4! is appropriate to compute the amplitude^Qi 8,t2uQ
i ,t1&

^Qi 8,t2uQi ,t1&5E DQ0 DP0 DQ
m DPm DN d~x!u@x,P0#ueiS, ~4.5!
J. Math. Phys., Vol. 38, No. 2, February 1997
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wherex is any admissible canonical gauge, andu@x,P0#u is the Fadeev–Popov determinant. Let
pay attention to the fact that this amplitude depends ont1 and t2, because the new actionS is
gauge-invariant but is not invariant under reparametrizations. Of course, the path integration
~4.5! is nothing but the path integral for the reduced system: The functional integrationN
enforces the path to lie on the constraint hypersurface, then by usingx[Q02g(Qm,t)—which
gives the endpoint values ofQ0 in terms of the endpoint values ofQm andt—one integrates inQ0

andP0 to obtain^Qm8,t2uQ
m,t1&.

In the propagator~4.5!, S is related to the original action by

S5E
t1

t2S pi dqidt
2NHDdt1B, ~4.6!

where

B[@Q̄i P̄i2W1QmPm2 f #t1

t2 ~4.7!

can be expressed as a function of the original canonical variablesqi andpi .
As the generatorf (Q̄m,Pm ,t) has not been defined yet, one can try to define it in such a

that ^Qi 8,t2uQ
i ,t1&(5^Qm8,t2uQ

m,t1&) coincides with^qi 8uqi&. In order to reach this aim on
must check that

~1! The constraint is such that it admits a canonical gaugex̃ ~satisfying [x̃,H]'” 06! depending
only on t, qi . Then x̃50 definest as a functiont5t(qi). If so, one says that there exists a
intrinsic time.7

If this requirement is fulfilled, one chooses the generatorf (Q̄m,Pm) in such a way that
~2! The gauge-invariant coordinatesQm behave as coordinates on the surfacex̃50, so mean-

ing that a particular choice ofQm andt defines a pointqi in the original configuration space.
In that case,uQmt&5uqi&. However, the path integral~4.5! is gauge invariant; then, not onl

x̃ but any canonical gauge condition can be used in~4.5!. So the path integral~4.5! is equal to the
propagator̂ qi 8uqi& when the generatorf (Q̄m,Pm) is chosen according to the prescription 2.

A practical way to understand the prescription 2 comes of considering Eq.~4.6!. In fact, while
the actionS is stationary on the classical trajectory when the values ofQm are fixed att1 andt2,
the actionS on the right-hand side requires the fixation of theqi ’s. In order that both set of
variables are equivalent in the gaugex̃50, the generatorf (Q̄m,Pm) should be such that the
endpoint terms vanish on the constraint hypersurface when the gaugex̃50 is used,

B[@Q̄i P̄i2W1QmPm2 f #t1

t2uP050,x̄ 5050. ~4.8!

If so, the paths will be weighted by the original actionS .
In the next section we shall apply this way of choosing the generatorf in several examples

V. EXAMPLES

A. Parametrized free particle

This is the system obtained when the timet is included among the dynamical variables of
free particle. The parametrized particle is then described by the original variablesq andp, plus t
and its conjugate momentumpt . The action of this system is

S ~q,p,t,pt ,N!5E ~pq̇1ptṫ2NH!dt ~5.1!

with
J. Math. Phys., Vol. 38, No. 2, February 1997
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H5pt1
p2

2m
. ~5.2!

~By solving the constraint forpt the action of a nonrelativistic particle is recovered.! A complete
solution of thet-independent Hamilton–Jacobi equation is

W~q,t,P̄,P̄0!5 P̄q1S P̄02
P̄2

2mD t. ~5.3!

The gauge defining an intrinsic time isx̃[t2T(t) ~for any monotonous functionT! and the
appropriate functionf making the endpoint terms vanish in this gauge is

f ~Q̄,P,t!5Q̄P1
P2

2m
T~t!.

The original variables (qi ,pi) are then related to the new ones by

Q05t, Q5q2
P

m
~ t2T~t!!,

~5.4!

pt5P02
P2

2m
, p5P.

On the constraint surfaceP050 the endpoint terms read

B5F2
p2

2m
~ t2T~t!!G

t1

t2

~5.5!

and vanish in the gaugex̃50. The amplitudêq8t8uqt& can be written as

E DtDptDqDpDNd~x!u@x,H#uexpS i Et1

t2S pt dtdt
1p

dq

dt
2NHD dt2 i F p22m ~ t2T~t!!G

t1

t2D
~5.6!

but, since the action is gauge-invariant, the amplitude can be computed inany canonical gauge.
For instance, one can choosex[t50, and obtain

^q8tuqt&5E DqDp expS i E
t1

t2Fp d

dt S q1
p

m
T~t! D 2

p2

2m

dT

dt Gdt D
5E DQDP expS i E

t1

t2S P dQ

dt
2

P2

2m

dT

dt D dt D . ~5.7!

The endpoint values ofQ and t are related to the endpoint values ofq and t by the gauge
condition x̃[t2T(t)50, in which the endpoint terms vanish

Qu x̄ 505q, T~t!u x̄ 505t. ~5.8!

The path integral for the free particle is then recovered, as could be expected from the fa
the reduced system has the Hamiltonian
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h5
P2

2m
.

Compare Ref. 2.

B. Relativistic free particle

The Hamiltonian constraint of this system is

H5
1

2m
~p0

22p22m2!. ~5.9!

The t-independent Hamilton–Jacobi equation has two different solutions:

W6~x,x0,P̄,P̄0!5 P̄x6x0AP̄212mP̄01m2. ~5.10!

The gaugex̃[x02T(t) defines an intrinsic time. The generatorf making the endpoint terms
vanish whenx̃50 andP050 is

f ~Q̄,P,t!5Q̄P7T~t!AP21m2. ~5.11!

The relation between original and new variables is

Q056
mx0

AP212mP01m2
,

Q5x6
Px0

AP212mP01m2
7

PT~t!

AP21m2
,

~5.12!
p056AP212mP01m2,

p5P.

On the constraint surface the endpoint terms are

B5F7
m2~x02T~t!!

AP21m2 G
t1

t2

, ~5.13!

and vanish in the gaugex̃50. The amplitudê x8x08ux x0& is equal to

E Dx0 Dp0 Dx Dp DN d~x!u@x,H#uexpS i Et1

t2S p0 dx0dt
1p

dx

dt
2NHD dt

7 im2F x02T~t!

Ap21m2G
t1

t2D , ~5.14!

but it can be computed in any canonical gauge; by choosingx[x050 the following result is
obtained:
J. Math. Phys., Vol. 38, No. 2, February 1997
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^x8x08ux x0&5E Dx Dp expS i Et1

t2
p
dx

dt
dt6 iF m2T~t!

Ap21m2G
t1

t2D , ~5.15!

where, with the choicex[x050,

E
t1

t2
p
dx

dt
dt6F m2T~t!

Ap21m2G
t1

t2

5E
t1

t2F p d

dt S x7
pT~t!

Ap21m2D 6Ap21m2
dT

dt Gdt

5E
t1

t2FP dQ

dt
6AP21m2

dT

dt Gdt. ~5.16!

The endpoint values ofQ andt are related to those ofx0 andx by the gauge condition such tha
the endpoint terms vanish

Qu x̃505x, T~t!u x̃505x0. ~5.17!

As it could be expected, the Hamiltonian of the reduced system is

h57AP21m2,

and the path integral for a free relativistic particle is obtained.

C. A more general constraint

A complete solution of the Hamilton–Jacobi equation is mostly difficult to obtain. There
simple case in two dimensions, generalizing the former examples, which can be applied to
minisuperspace models in cosmology. Let us consider a Hamiltonian constraint

H~f,V,pf ,pV!5g~f,V!~pf
22pV

2 !1V~f,V!, ~5.18!

whereg~f,V! andV~f,V! are positive definite functions.
Let us use null coordinates defined as

u5R1~f1V!, v5R2~f2V!,

whereR1,2 are some monotonous functions. Then

1
4~pf

22pV
2 !5R18~f1V!R28~f2V!pupv . ~5.19!

In the case that the potential can be written as

V~f,V!5g~f,V!L1~f1V!L2~f2V! ~5.20!

one can factorize out a positive definite factor inH by choosingR1,28 as the positive definite
functionsL1,2/2

H5V~f,V!@pupv11#. ~5.21!

The function in brackets is a constraintH8 equivalent toH, since the potential is positive definite
Therefore the canonical transformation can be generated by means of a complete solution
t-independent Hamilton–Jacobi equation associated with

H85pupv11.
J. Math. Phys., Vol. 38, No. 2, February 1997
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In such a caseP0 will not beH butH8. Anyway, the constraintH will be linear and homogeneou
in the new momentumP0. The new variablesQm and Pm will be observables, because the
Poisson brackets withH will be zero on the constraint surface.

The generator functionW is

W5 P̄u1
~ P̄021!

P̄
v. ~5.22!

The gaugex̃[v2T(t) defines an intrinsic time. The generator functionf is

f ~Q̄,P,t!5Q̄P1
T

P
~5.23!

and the new variables are related to$u,pu ,v,pv% by

Q05
v
P
, Q5u1

v
P2 S 12

T

v
2P0D ,

~5.24!

pu5P, pv5
P021

P
.

On the constraint surfaceP050 the endpoint terms read

B5F 2P ~v2T~t!!G
t1

t2

, ~5.25!

and clearly vanish in the gaugex̃50. The boundaries in the path integral are given by

Tu x̃505v5R2~f2V!,

Qu x̃50,P0505u5R1~f1V!.

VI. CONCLUSIONS

In Ref. 2 it has been signaled that a generally covariant system and an ordinary gauge
are not conceptually different. In fact, differences between both kinds of systems, which se
to be an obstruction to the use of canonical gauges in the path integral for generally cov
systems,1 can be saved by improving the action principle with appropriate endpoint terms.2,3 In
this way the action is endowed with gauge freedom at the boundaries.

The improved action can be still modified by the addition of gauge invariant endpoint te
One can take advantage of this possibility to build the endpoint terms in such a way tha
cancel out on the constraint hypersurface when a gauge defining an intrinsic time—t5t(qi)—is
used. This means that the dynamical variables to be fixed in the variational principle fo
improved and the original action, respectively, define the same physical state in both ca
warranting that the improved action can be used in the path integral to compute the qu
propagator̂ qi 8uqi& for the original variables.

However, not all systems have an intrinsic time. For instance, the constraint of an ideal8

H52p21q

does not admit a gauge conditionx~q,t! because [x,H]52p]x/]q vanishes on the constrain
surface whenp50. In this case the solution of thet-independent Hamilton–Jacobi equation is
J. Math. Phys., Vol. 38, No. 2, February 1997
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W56 2
3~q2 P̄0!

3/2,

and the global phase timeQ̄0 results in

Q̄05
]W

] P̄0

56Aq2 P̄05p.

Then the gauge choice necessarily involves the momentump. In this case it is said that the syste
has anextrinsic time.7

The endpoint terms can be seen as the consequence of at-dependent canonical transform
tion; we have shown how this transformation can be generated in the case of a param
system with a constraintH. In this kind of systems, the constraint means that the time param
t has no physical meaning. The canonical transformation that generates the appropriate e
terms is such thatt is the time in the new system, while one of the dynamical variables—Q0—is
pure gauge, as it happens in ordinary gauge systems.

Finally we have shown that the procedure to find the generator functionW, leading to the
identification of the reduced space, can be simplified by appropriately scaling the constrain
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Relativistic quantum mechanics on the SL(2,R)
space–time

T. Fülöpa)
Institute for Theoretical Physics, Eo¨tvös University, Budapest, Hungary

~Received 16 February 1996; accepted for publication 16 October 1996!

The Schro¨dinger-type formalism of the Klein–Gordon quantum mechanics is
adapted for the case of theSL~2,R! space–time. The free particle case is solved, the
results of a recent work are reproduced while all the other, topologically nontrivial
solutions and the antiparticle modes are also found, and a deeper insight into the
physical content of the theory is given. ©1997 American Institute of Physics.
@S0022-2488~97!03101-0#

I. INTRODUCTION

Recently the classical and quantum mechanics of the zero spin particle moving freely
SL~2,R! group manifold were examined in Ref. 1. The theory of the system was constructe
Hamiltonian reduction, a method becoming increasingly popular nowadays in the field oW

algebras and integrable models~for references see Ref. 1!. This problem is of interest because
a number of aspects. From the point of view of conformal field theory this system is the
particle analog of theSL~2,R! WZNW model, having an analogous reparametrization invaria
property. From the aspect of string theory the system can be considered to describe the ‘‘
of-mass motion’’ of a~WZNW! string on theSL~2,R! space–time. The problem is also of intere
from the point of view of general relativity because it offers an example of an exactly solv
quantum system on a curved space–time background.

After constructing the classical theory, the authors in Ref. 1 quantize the system by c
ering unitary, irreducible representations of the algebra formed by the symmetry currents
sponding to the left and right translation invariance. The results set some interesting problem
questions. One of them is that, due to the representations given in Ref. 1, the value of the m
the particle cannot be arbitrary. Only a discrete series is allowed for the possible mass value
plausible to conjecture that this condition is of topological origin. The topology of theSL~2,R!
group manifold isR23S 1, and the presence of a compact dimension would be responsible fo
mass quantization condition. Then we may ask whether this condition is necessary for a con
solution or the other mass values also correspond to additional—consistent, while topolo
‘‘nontrivial’’—solutions. The idea is that if the condition holds then the wave function of
particle is single valued around theS 1 direction, while for other mass values a nontrivial consta
phase factor would be present.

Another question is that one expects the appearance of antiparticle modes, similarly as
case of Minkowski space–time. It would be nice to find them, too, as a natural part o
complete space of states. Third, in the usual cases of nonrelativistic quantum mechanics o
tum mechanics on Minkowski space–time the state space, the Hamiltonian, etc., of a qu
system suppose that initially an inertial reference frame has been chosen. What is the corre
ing step in the case of theSL~2,R! space–time? Special attention has to be payed to this prob
as the space–time in question is a curved one.

Finally, it would be interesting to answer some other questions concerning the forma
including how to define observables and expectation values or how to handle the case w
external field is present.

a!Electronic mail: fulopt@hal9000.elte.hu
0022-2488/97/38(2)/611/11/$10.00
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¬¬¬¬¬¬¬¬¬¬
In this paper these questions will be answered. Our method is the adaptation o
Schrödinger-type formalism of the special relativistic Klein–Gordon quantum mechanics to
case of theSL~2,R! space–time. The advantage of using this extension of the Klein–Go
framework is that in this way the physical properties of the system become more transparen
formalism makes the particle and antiparticle modes and the corresponding charge symmet
visible, and provides the theory a consistent physical interpretation~including, e.g., the definition
of observables and expectation values!.

The paper is organized as follows: in Sec. II the results of Ref. 1 are presented. The nec
ingredients of the formalism of the quantum mechanics of the spin zero particle on Minko
spacetime are summarized in Sec. III. The properties of theSL~2,R! space–time and the choice o
a suitable reference frame on it are discussed in Sec. IV. In Sec. V the formalism presented
III is set on theSL~2,R! space–time. The resulting theory is solved in the free particle case in
VI. The left and right symmetric aspects of the free system are discussed in Sec. VII.

II. QUANTIZATION VIA HAMILTONIAN REDUCTION

SL~2,R! is a three dimensional Lie group, the naturally arising metric is

hmn~x!5 1
2Tr@g

21]mgg
21]ng# ~1!

@with a local parametrizationx°g(x)PSL~2,R!#. This smooth metric is nondegenerate a
proves to be of Lorentz signature, thusSL~2,R! can be considered as a 211 dimensional curved
space–time.

The classical and the quantum theory of a free particle on theSL~2,R! space–time is con-
structed in Ref. 1 as follows. Classically the action

I 052kE dtAhmn~x!ẋmẋn ~2!

describes a particle of massk.0, with xm(t) denoting the trajectory of the particle. The actionI 0
can be obtained from a more appropriate quadratic actionI by imposing a given constraint. Thi
first class constraint arises as a consistency condition on the canonical momenta of the syI ,
and the local gauge symmetry it generates is nothing but the reparametrization invariance
system. Then, according to the method of Hamiltonian reduction, the reduced phase space
obtained by factorizing the constrained surface with respect to the gauge symmetry.

In addition to the reparametrization invariance the system is invariant under the left and
transformationsg° f g, g°g f̃21, f , f̃PSL~2,R!. The reduced phase space is found to be of
form OK3O2K , whereOK andO2K are the coadjoint orbits of the left, respectively, the rig
transformations passing through a fixed timelike vectorK arbitrarily chosen fromsl~2,R!, the Lie
algebra ofSL~2,R!. The left and right symmetry currents parametrize the reduced phase spac
form two independentsl~2,R! algebras under the Poisson brackets.

The quantum theory is obtained in Ref. 1 via quantizing the reduced phase space. U
irreducible representations of the algebrasl~2,R! formed by the symmetry currents onOK and
O2K are sought. The state space is spanned by the tensorial product of two such represen
which have to share the same value for the Casimir due to a mass shell condition. Such
~denoted byunL ,nR&! is labeled by two non-negative integers. The quantum commutation rela
for the left current in an appropriate basis are

@L0 ,L1#522iL 2 , @L1 ,L2#52iL 0 , @L2 ,L0#522iL 1 . ~3!

With L65L17 iL 2 one finds
J. Math. Phys., Vol. 38, No. 2, February 1997
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L0unL ,nR&52~nL1 j !unL ,nR&,

L1unL ,nR&52A~nL12 j !~nL11!unL11,nR&, ~4!

L2unL ,nR&52A~nL2112 j !nLunL21,nR&.

In a similar manner, the action of the right current on the states is

R0unL ,nR&522~nR1 j !unL ,nR&,

R2unL ,nR&522A~nR12 j !~nR11!unL ,nR11&, ~5!

R1unL ,nR&522A~nR2112 j !nRunL ,nR21&,

where j 5 1
2(1 1 A11k2). As in Ref. 1 the left and right representations are chosen from

discrete seriesDj
6,2 j has to take one of the values32,

4
2,
5
2,••• . Consequently, the mass of the partic

is not arbitrary but must come from a discrete series of allowed values.
The statesunL ,nR& are eigenstates of the energy and the angular momentum, which ope

can be identified as12(L02R0), respectively,
1
2(L01R0), the corresponding eigenvalues a

nL1nR12 j , respectively,nL2nR . The energy levels are positive definite and spaced integr
the angular momentum takes integer values.

III. THE QUANTUM MECHANICS OF THE ZERO SPIN PARTICLE ON MINKOWSKI
SPACE–TIME

To recall the basic elements of the Schro¨dinger-type formalism of the quantum mechanics
the zero spin particle on Minkowski space–time we follow the approach of Feshbach and Vi3

This formalism is the close analogy of the one of the spin1
2 particle case and gives a consistent a

well-interpretable one-particle quantum theory.
We start from the Klein–Gordon equation for a particle with massk and electric chargee in

the presence of an electromagnetic potentialAm5(A0,Ak)5~A0,A!

~DmDm2k2!c50, ~6!

whereDm5]/]xm2 ieAm ~we work in\5c51!. Our purpose is to reformulate~6! as an equation
of the form i (]C/]t)5HC with an appropriateC. This can be achieved by consideringD0c as
an independent degree of freedom and introducing the two-component column vectorC with
componentsc andD0c. More precisely, later convenience suggests to defineC as

C5S w
x D5

1

&

S c1
i

k
D0c

c2
i

k
D0c

D . ~7!

Then ~6! can be rewritten as

i ~]w/]t !5
1

2k S 1i “2eAD 2~w1x!1~k2eA0!w,

~8!

i ~]x /]t !52
1

2k S 1i “2eAD 2~w1x!2~k1eA0!x,

the operatorH can be read off from~8!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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From ~6! the current four-vector defined asj m5const.~c*Dmc2c.c.! proves to be conserved
One can expressj m with C as well, for example, the density readsj 05C*s3C5w*w2x*x ~sk

denotes the Pauli matrices!. The densityj 0 is not positive definite,j m is interpreted not as the
probability current but as the charge current. IfC satisfies the equationi (]C/]t)5H(e)C then
the charge conjugate wave function

Cc5S x*
w* D ~9!

satisfiesi (]Cc/]t)5H(2e)Cc @whereH(2e) differs fromH(e) only by the sign of the electric
charge#, the density corresponding toCc is Cc*s3Cc 5 2C*s3C. Thus we can see that th
theory actually describes two degrees of freedom with opposite charges~a particle and an anti-
particle! and has a fundamental charge symmetry. The advantage of usingw and x as the two
components of the wave function is that this property becomes apparent. In the nonrela
limit the two degrees of freedom decouple and lead to two independent Schro¨dinger equations of
the usual form.

If *C*s3C d3x is positive/negative then letC be called ‘‘positive,’’ respectively ‘‘negative,’’
and be normalized so that this integral be11, respectively,21, expressing that the charge of su
a state is1e, respectively,2e.

The inner product that turns out to be appropriate for this formalism is

~C1 ,C2!5E C1*s3C2d
3x5E ~w1*w22x1* x2!d

3x. ~10!

This inner product is not positive definite, the space of the wave functions is not a Hilbert s
on the contrary to the nonrelativistic case. Physical quantities correspond to Hermitian ope
acting on theC2s where Hermiticity, the expectation value of an operator and such notion
defined with respect to the inner product~10!. An interesting consequence of the indefiniteness
the inner product is that the eigenvalues of an operator are not necessarily expectation va
well. For example, ifAm50 then the expectation value of the Hamiltonian in an eigenstate
eigenvalueE is uEu.0. Similarly, the expectation value of the kinetic energy operator of
general caseAmÞ0 always proves to be positive definite.

We remark that further interpretation issues and the case of the neutral particles ar
discussed in Ref. 3.

IV. THE SL(2,R) SPACE–TIME

The Schro¨dinger-type formalism of the Klein–Gordon quantum mechanics required
choice of an inertial reference frame on the Minkowski space–time. As we want to adap
formalism for theSL~2,R! space–time, we have to solve the nontrivial problem of finding
analogous step on the curved space–time ofSL~2,R!.

Let us consider the choice of a reference frame on the Minkowski space–time the follo
way. We start by choosing a timelike vector field on the space–time. Then we construct spa
hypersurfaces being orthogonal to the integral curves corresponding to this vector field. Th
coordinate is introduced as the parameter along the integral curves and the space coordin
introduced to parametrize the hypersurfaces. An inertial reference frame is such a special re
frame that the vector field chosen is constant, the same timelike vector~absolute or four-velocity!
is attached to each space–time point, the integral curves are parallel straight lines and the o
nal hypersurfaces are parallel hyperplanes. In other words, we produce an inertial reference
by considering an absolute velocity vector in a space–time point and then we shift this tim
vector by a parallel translation to all the other space–time points.
J. Math. Phys., Vol. 38, No. 2, February 1997
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It is this translation idea that is appropriate to define the analog of an inertial reference
onSL~2,R!. Let us choose its identity element as one of the space–time points and let us co
a timelike vectorU in its tangent space, i.e., insl~2,R!. Then we shift this vector to the tangen
space of a space–time pointg by the natural translationgU ~where this multiplication means
simply the multiplication of matrices!. However, an important difference from the Minkowski ca
is that now the left and the right translation are not equal,gUÞUg, as a consequence of th
noncommutativity of the groupSL~2,R!. Thus we can define a ‘‘left-inertial reference frame’’ an
a ‘‘right-inertial reference frame’’ corresponding to the two possibilities of translation. Moreo
not only gU andUg can be chosen naturally, but also the average1

2(gU1Ug) ~the ‘‘middle-
inertial reference frame’’!. Straightforward calculations show that for each of these three time
Killing vector fields the metric~1! is time independent. The middle-inertial reference frame ha
additional advantageous property: The space–time mixed components ofhmn prove to be zero.
That is why we choose the middle-inertial reference frame for the following considerations

Now let us make use of the fact that, for a fixedU, a gPSL~2,R! can be given in the form
etU/2eCetU/2, wheretP@0,2p! andCPsl~2,R!, C is orthogonal toU; any sucht andC uniquely
characterizes an element ofSL~2,R!. ~This statement can be proven with the aid of the form
ejksk 5 coshR11 sinhR/Rj ksk ,R

25 j kj k.!Accordingly,] tg5 1
2(gU1Ug) ~C is kept fixed!. Thus

by a coordinatizationC5C(x1,x2) and withx05t we obtain a middle-inertial coordinate syste
corresponding toU. For example, in polar coordinates:x15r , x25q, C5r cosqX1r sinqY
@with X andY fixed such that (U,X,Y) is an orthonormal basis insl~2,R!# the metric tensor read

$hmn%5S 2cosh2 r 0 0

0 1 0

0 0 sinh2 r
D . ~11!

Remarkably, the topology ofSL~2,R! is R23S 1—the timelike geodesics are the close
ones—, hence this manifold cannot be covered with a single open coordinate patch. How
middle-inertial coordinate system covers the wholeSL~2,R! if we identify t52p with t50. This
way we can avoid the use of multiple patches.

We mention that the elements ofSL~2,R! can be given also in the formejXehYetU, wherej,
hPR andtP@0,2p!. Later we will make use of this fact, too.

V. RELATIVISTIC QUANTUM MECHANICS ON THE SL(2,R) SPACE–TIME

To build up the relativistic quantum theory on theSL~2,R! space–time we follow the steps o
Sec. III. Now the Klein–Gordon equation reads

~D̃mD̃m2k2!c50, ~12!

whereD̃m5“m2ieAm ~“m denotes the covariant derivative!. In a middle-inertial coordinate sys
tem the metric is time independent and its space–time mixed components are zero, thus re
~12! as a first order equation in the variableC introduced as in the flat case@cf. ~7!,
Dm5]m2 ieAm# yields

i ~]w/]t !5
1

2k

1

h00A2h
D j~A2hhjkDk!~w1x!1

k

2 F S 12
1

h00Dw2S 11
1

h00DxG2eA0w,

~13!

i ~]x/]t !52
1

2k

1

h00A2h
D j~A2hhjkDk!~w1x!1

k

2 F S 11
1

h00Dw1S 1

h00
21DxG2eA0x,
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whereh is the determinant of the metric,j ,k51,2. The corresponding Hamiltonian can be read
from ~13!.

The inner product to be introduced as the analog of the special relativistic one must s
some requirements, i.e., to be invariant under space→space transformations (x1,x2)→(x18,x28)
and to ensure that the Hamiltonian be symmetric and the charge be conserved. The resu
appearance of a weight function in the integral~10!

~C1 ,C2!5E C1*s3C2A2h~2h00!d2x5E ~w1*w22x1* x2!A2h~2h00!d2x. ~14!

It can be checked easily that the fundamental charge symmetry keeps valid withou
modifications of the formulae of the Minkowski case. Similarly, the definition of observables
expectation values, as well as all other interpretation issues, also can be adapted appro
from the special relativistic formalism.

We mention that the considerations of this section are applicable not only for theSL~2,R!
space–time but, more generally, for any static space–time, i.e., for such curved space–tim
have a time independent metric with zero space–time mixed components~in a suitable coordina-
tization!.

VI. THE FREE MASSPOINT

Now let us solve the eigenvalue problem for the Hamiltonian of the free system. The
Hamiltonian is time independent—following from the time independence of the metric—,
HC5EC impliesC(t)5exp~2iEt!C~0! ~in the following this time dependence will always b
understood to the eigenfunctions!. Thus w(t)5exp~2iEt!w~0! and x(t)5exp~2iEt!x~0!, and,
consequently,c(t)5exp~2iEt!c~0!. As a result, an eigenfunctionC can be expressed by mean
of c only ~!!, from ~7! one finds

C5
1

& S 11
E

k

12
E

k
D c5S 1

&

S 11
E

k Dc

1

&

S 12
E

k Dc
D . ~15!

The inner product of aC1 with eigenvalueE1 and aC2 with eigenvalueE2 can also be expresse
with the correspondingc1 andc2

~C1 ,C2!5
E11E2

k E c1*c2A2h~2h00!d2x. ~16!

Substituting the connection betweenC and c into HC5EC and working in polar
coordinates—an appropriate concrete space coordinatization, cf.~11!—gives

] r
2c12 coth 2r ] rc1

1

sinh2 r
]q
2c1

E2

cosh2 r
c2k2c50. ~17!

We can expandc into Fourier series in the variableqP@0,2p!, thus expressing it as a linea
combination of the functions exp(imq), mPZ. A term of this series is of the form

cm,E5Wm,E~r !eimqe2 iEt, ~18!

the correspondingCm,E is an eigenfunction of the angular momentum operatorJ52 i ]q as well,
hence determining all theCm,Es means the common diagonalization ofH andJ.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Equation~17! implies an ordinary differential equation onWm,E . This equation can be turne
into the hypergeometric equationz(12z)d2w/dz21[c2(a1b11)z]dw/dz2abw50 in the
new variable z5tanh2 r and with a5 j1(uEu1umu)/2, b5 j1(2uEu1umu)/2, c511umu,
w5z(12c)/2(12z)(c2a2b21)/2Wm,E , wherej 5 1

2(1 1 A11k2) ~for the conventions and propertie
used concerning the hypergeometric equation see Ref. 4 or 5!. A solution of the hypergeometric
equation~with fixed a, b andc! is the hypergeometric functionF(z)[F(a,b;c;z).4 We choose

G~z![G~a,b;c;z!5F~z!E
1

z dz

zc~12z!a1b2c11F~z!2
~19!

as a linearly independent solution,7 the other solutions are linear combinations ofF andG. F and
G are regular on~0,1!, in spite of eventual nodes ofF.

Now let us search for a maximal orthogonal system of the eigenfunctions.Cm1 ,E1
and

Cm2 ,E2
are orthogonal ifm1Þm2 because of theirq dependence. Thus it is enough to examine

casem15m25m. Then (Cm,E1
,Cm,E2

), expressing with the correspondingw1 andw2, is

const.E
0

1

zc21~12z!a11b12cw1*w2 dz ~20!

~now a11b15a21b2 andc15c25c!. With the aid of the hypergeometric equation it is not ha
to prove that

E
p

q

zc21~12z!a1b2cw1*w2 dz5
1

a2b22a1b1
Fzc~12z!a1b2c11Sw1*

dw2

dz
2
dw1*

dz
w2D G

p

q

.

~21!

From the power series

F~z!511
ab

c
z1

a~a11!b~b11!

2c~c11!
z21O ~z3!

the z'0 asymptotic behavior ofF, F8, G, andG8 can be determined. Concerning thez'1
behavior of these functions, using Ref. 4 one findsF(z)'k1f 1(z), F8(z) ' k1f 18(z),
G(z)'k2f 2(z) and G8(z) ' k2f 28(z) if b¹Z0

2 while F(z)'k3f 2(z), F8(z) ' k3f 28(z),
G(z)'k4f 1(z) andG8(z) ' k4f 18(z) if bPZ0

2 . Here,

f 1~z!512
~c2a!~c2b!

a1b2c21
~12z!, f 2~z!511

ab

a1b2c11
~12z!,

k15G~c!G~a1b2c!/G~a!G~b!, k252@k1~a1b2c!#21, ~22!

k35~21! ubuG~c!G~a2c11!/G~c2b!G~a1b2c11!, k45@k3~a1b2c!#21

~we remark that in our casea andc are always positive!.
By using these asymptotics we find that forp→0 ~21! diverges if at least one of the corre

spondingws is aG ~except ifm50 and the otherw is anF, however, this case proves be of n
interest! and converges if bothws areFs. Thus only theFs are present in an orthogonal system
eigenfunctions. Forq→1 the integral~21! of anF1 and anF2 tends to zero ifb1 ,b2PZ0

2 , diverges
if b1 ,b2¹Z0

2 , otherwise it tends to a nonzero finite value. Consequently, the parameterb of anF
appearing in an orthogonal system must be a nonpositive integer. To have a maximal
orthogonal eigenfunctions all suchbs have to be considered, which meansuEu52 j1umu,2j1umu
J. Math. Phys., Vol. 38, No. 2, February 1997
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11,••• . Hence for any mass valuek.0 there exists a unique maximal orthogonal set of eig
functions, namely,$Cm,Eum50,61,62,...;E56(2 j1umu),6(2 j1umu11),•••%.

We mention here that ifb is a nonpositive integer thenF(a,b;c;z) is nothing but the Jacob
polynomial, more precisely,F(a,b;c;z)5(ubu)!/(c) ubuPubu

(c21,a1b2c)(122z).4 Two further re-
marks are thatwm,E[5F(a,b;c;z)] and the correspondingWm,E does not depend on the sign ofm
andE, and that the vanishing of the special case (Cm,E ,Cm,2E) is ensured not by the vanishin
of the integral in~20! but by the vanishing of the constant standing before this integral@cf. the
factor (E11E2) in ~16!#.

With the aid of Refs. 4 and 5 and the completeness property of the Jacobi polynomials o
verify the completeness of this system of eigenfunctions.

After normalization the eigenfunctionsCm,E are of the form

Cm,E~ t,r ,q!5
~2 i ! umu

&

S 11
E

k

12
E

k

DA k

2p

G~a!G~c2b!

G~c!2G~a2c11!G~12b!
z~c21!/2

3~12z!~a1b2c11!/2F~a,b;c;z!eimqe2 iEt, ~23!

wherez5tanh2(r )—the complex phase factor (2 i ) umu is introduced for later convenience. Co
cerning our identification (t52p)[(t50) we can observe that if 2j is not an integer value then
a—space-,m-, andE-independent, hence fortunately harmless~see Sec. VII!—phase factor ap-
pears betweenCm,E(t52p) andCm,E(t50).

Similarly to the Minkowski case, the energy eigenstates with positive eigenvalue prove
‘‘positive’’ ~see Sec. III! and those with negative eigenvalue are ‘‘negative.’’ The positive w
functions are the particle states, and the negative ones are the antiparticle states. Here, we
how naturally the antiparticle modes appear in our approach.

Now let us introduce the notationukL ,kR& for the eigenstate~23!, where kL5(E2m)/2,
kR5(E1m)/2. The possible values ofkL andkR are such thatukLu,ukRu5 j , j11,j12,••• and for
positive eigenstates bothkL andkR are positive while for a negative state both are negative. W
these notations

HukL ,kR&5~kL1kR!ukL ,kR& and JukL ,kR&5~kR2kL!ukL ,kR&. ~24!

VII. SYMMETRY PROPERTIES

Comparing our results with Ref. 1~see Sec. II! we can see that our investigation reproduc
the findings of Ref. 1, while it gives account of the antiparticle states and the topolog
nontrivial casesj¹$32,

4
2,•••% as well.~The quantum numberskL ,kR provide a bit more convenien

possibility for a common labeling of the positive and negative eigenstates, this is the reaso
we shiftednL andnR to kL andkR by an appropriate6j .! Also, the choice of a timelike vectorK
in Ref. 1 corresponds here to a choice of a middle-inertial reference frame based on an a
velocity valueU. What is left is to verify the symmetry properties of the energy eigenstates in
approach, and to discuss why in Ref. 1 only the topologically trivial cases are found.

The left and right translationsg° f g, g°g f̃21 naturally lead to the representation
[Dl( f )c](g)5c( f21g), [Dr( f̃ )c](g)5c(g f̃ ) on ac : SL~2,R!→C. The corresponding infini-
tesimal generators, which give a representation of the Lie algebra elementsU, X, andY, are

l U52]q2] t ,

l X52cos~q1t !] r1coth r sin~q1t !]q1tanh r sin~q1t !] t ,
J. Math. Phys., Vol. 38, No. 2, February 1997
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l Y52sin~q1t !] r2coth r cos~q1t !]q2tanh r cos~q1t !] t ,
~25!

r U52]q1] t ,

r X5cos~q2t !] r2coth r sin~q2t !]q1tanh r sin~q2t !] t ,

r Y5sin~q2t !] r1coth r cos~q2t !]q2tanh r cos~q2t !] t .

The transformationsDl( f ),Dr( f̃ ) are symmetries of the system, i.e., they transform a solutio
~12! to another solution of it, as can be verified by means of the infinitesimal generators.

We are interested in the representation of the left and right translations on theCs, which can
be obtained fromDl andDr using the relation between ac and the correspondingC @cf. ~7!#

DL~ f !C5
1

&

S Dl~ f !c1
i

k
] t@Dl~ f !c#

Dl~ f !c2
i

k
] t@Dl~ f !c#

D , ~26!

and the analogous formula forDR( f̃ ). The action of the infinitesimal generators ofDL andDR on
a C can be written as

LkS w
x D5S l kw1

i

2k
@] t ,l k#~w1x!

l kw2
i

2k
@] t ,l k#~w1x!

D ~27!

~k stands forU,X,Y! and similarly forRk . As one can check, theLks andRks satisfy the same
commutation relations as thel ks and r ks. The operatorsL05(1/i )LU , L15(1/i )LX and
L25(1/i )LY satisfy ~3!. The action ofL0 and L65L17 iL 2 on an energy eigenstate can b
determined by a straightforward if lengthy calculation involving Ref. 4, the result is

L0ukL ,kR&52kLukL ,kR&,

L1ukL ,kR&52A~kL1 j !~kL112 j !ukL11,kR&, ~28!

L2ukL ,kR&52A~kL211 j !~kL2 j !ukL21,kR&.

With the analogously defined operatorsR0, R1, R2, andR6 one finds

R0ukL ,kR&522kRukL ,kR&,

R2ukL ,kR&522A~kR1 j !~kR112 j !ukL ,kR11&, ~29!

R1ukL ,kR&522A~kR211 j !~kR2 j !ukL ,kR21&.

The linear subspaces spanned by the positive, respectively the negative, energy eigens
invariant subspaces of the left and right transformations. Hence both the left and the right
sentations are a direct sum of two irreducible representations, similarly to what happens in th
of Minkowski space–time. For the sake of simplicity, in the following we will consider
positive subspace and the left translations only, the parallel discussion of the negative su
and/or for the right translations is straightforward.
J. Math. Phys., Vol. 38, No. 2, February 1997
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If jP$32,
4
2,•••% then the eigenvalues ofL0 are integers so the operatorsei tL0 5 etLU give a

continuous representation of the one-parameter subgroupetU of SL~2,R!. Thus the identification
of t50 and t52p does not give any problem. For other values ofjetLU is not continous in
t50[2p. Hence in these cases the representation~28! of the algebrasl~2,R! cannot be exponen
tiated to a continous representation of the groupSL~2,R!. However, the eigenvalues of the oper
tor L̃05L0—$2 j % are integers~$2 j % denotes the fractional part of 2j !. Correspondingly, for
arbitrary js, let us introduce the mappingD̃L

j that maps a group elementejXehYetU to the operator

ejLXehLYei t L̃0 5 ejLXehLYetLUe2 i t$2 j %. In the special casesj5 3
2,
4
2,••• this D̃L

j gives the representa
tion DL , and for the other values ofj D̃ L

j is a ray representation. The infinitesimal generators
this ray representation,L̃X5LX , L̃Y5LY andL̃U5 i L̃ 0 , form a central extension of the Lie algeb
sl~2,R!

@ L̃U ,L̃X#52L̃Y , @ L̃X ,L̃Y#522L̃U22$2 j % i , @ L̃Y ,L̃U#52L̃X , ~30!

the constant 2$2 j % plays the role of the commutator cocycle.@To prove thatD̃L
j is indeed a ray

representation it is enough to verify that~30! fulfills the conditions for a central extension, see R
6.# We can see that, by carrying out the shiftL̃X→LX , L̃Y→LY , L̃U→LU on the central extension
we arrive at a representation of the algebrasl~2,R!. Conversely, starting from an arbitrary unita
irreducible representation ofsl~2,R! ~indexed by aj.1!, an appropriate redefinition yields suc
infinitesimal operators that can be exponentiated to a continuous unitary ray representation
left translation symmetry. In the casesj5 3

2,
4
2,••• this ray representation is indeed a representat

The situation corresponds to the following general picture. A symmetry group is repres
on the Hilbert space of a quantum theory, in general, by a continous unitary ray represen
The infinitesimal generators of the ray representation give a central extension of the Lie alge
the group. If the symmetry group is semisimple then the commutator cocycle can be transf
out by an appropriate shift of the infinitesimal generators, the new infinitesimal operators s
the commutation relations of the Lie algebra with no central elements. Thus we arrive at a u
representation of the Lie algebra.

Hence we can see that in Ref. 1 only those cases are presented where a representatio
symmetry group occurs, the ray representation cases are not found. The reason of this is
Ref. 1 only those irreducible unitary representations ofsl~2,R! are considered, which provide
representation ofSL~2,R! as well. The analysis above shows that the othersl~2,R! representations
are also relevant in our physical system.

To make our considerations complete, in the end let us verify that the phase factor app
betweenCm,E(t52p) and Cm,E(t50) in the ray representation cases does not lead to
physical inconsistency. Fortunately, this phase factor is space-,m-, andE-independent, thus it is
simply an overall constant phase factor for all the wave functions. It causes a discontinuity
wave functions only in the time variable@at (t52p)[(t50)#, while the inner product involves
integration over the space variables~cf. Sec. V!, and observables, such as the momentum or
angular momentum, include derivations with respect to the space variables. A constant
factor does not change the expectation value of an observable or the inner product of two
functions, thus an expectation value or an inner product calculated att50 is the same as att52p.
So we can see that the physically observable quantities allow the identification (t52p)[(t50),
the presence of the phase factor does not disturb the physical interpretation issues and lea
inconsistency.
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Massive spin-2 propagators on de Sitter space
Cl. Gabriela),b) and Ph. Spindelc)
Mécanique et Gravitation, Universite´ de Mons-Hainaut, 15, avenue Maistriau,
B-7000 Mons, Belgium

~Received 4 March 1996; accepted for publication 6 September 1996!

We compute the Pauli–Jordan, Hadamard, and Feynman propagators for the mas-
sive metrical perturbations on de Sitter space. They are expressed both in terms of
mode sums and in invariant forms. ©1997 American Institute of Physics.
@S0022-2488~97!02602-9#

I. INTRODUCTION

The apparently simplest model of space–time beyond Minkowski space is de Sitter spa
high ~maximal! degree of symmetry makes it the typical framework to investigate quantum
theory outside flat space.

One of the essential ingredients of quantum field theory are the various Green’s functio
the fields. For the scalar field on de Sitter space, the first work on the subject is, to the best
knowledge, the paper by Ge´héniau and Schomblond.1 These authors have used the harmonic
property of de Sitter space, i.e., the possibility to solve the Klein–Gordon equation by a fun
depending only on the geodesic distance, to obtain the expression of the Pauli–Jordan pro
D(x,y). Soon after, Cahenet al.2 have obtained the expression of the analogous Green’s func
S(x,y) for the spinorial field. Their method consisted essentially of computingS(x,y) first with y
fixed at the origin of a coordinate patch, and then, to generalize the expression so obtained
arbitrary couple of points by using parallel transport. Later, Schomblond and one of the auth
this work ~Ph.S! have obtained a Fock space description of the scalar,3 spinorial and vectorial4

propagators by computing them as mode sums. The main result in Ref. 3 was that by im
invariance conditions~with respect to the isometries of the space! and fixing the behavior at shor
distances of the propagator, a uniqueness theorem holds. All ambiguities about the defini
particles, expressed by arbitrary Bogoljubov’s transformations, are resolved. At the same
Candelas and Raine5 obtained a similar result using the harmonicity properties of the spac
write a Schwinger representation of the Feynman propagator, depending only on the ge
distance and satisfying a regularity boundary condition~imposed on the kernel of the Schwing
representation!.

Let us emphasize that, for the massless scalar field~hF50!, it is impossible to obtain a fully
de Sitter invariant vacuum state. This result was first noticed by Spindel6 and independently
rediscovered in 1982 by Vilenkin and Ford.7 It has been discussed in detail by Allen an
Folacci.8,9 Allen has also obtained explicitly de Sitter invariant representations for the Gre
functions of the spinorial, vectorial, and gravitational fields,10–12 under the assumptiona priori
that these Green’s functions could be expressed in terms of products of functions of the ge
distance with maximally symmetric bispinors or bitensors.

A drawback of this geometrical construction of the Green’s functions is that we hav
information about the existence of an underlying Fock space, i.e., a vacuum state suc
expectations values of fields products with respect to it give the corresponding Green’s fun
Actually, for the gravitational field, the situation is the same as for the massless spin-0 field:1 there
exists de Sitter invariant Green’s functions, but no corresponding vacuum state. Representa

a!Aspirant du FNRS.
b!Electronic mail: gabriel@sun1.umh.ac.be
c!Electronic mail: spindel@sun1.umh.ac.be
0022-2488/97/38(2)/622/17/$10.00
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these Green’s functions have been obtained by Allen and Turyn12,13 and by Antoniadis and
Mottola.14 Both results, which differ only by gauge choice, are obtained as analytic continu
of Green’s functions built on the Euclidean 4-sphere. A direct evaluation of the gravitat
propagator as mode sums in physical space~de Sitter space! has been done by Tsamis an
Woodard.15 Their construction leads to a result analogous to the one already obtained fo
massless, minimally coupled scalar field: there is no de Sitter invariant vacuum state f
massless spin-2 field.

In this article, we shall perform the calculation of the propagator for the ‘‘massive sp
field.’’ More precisely, we consider the gravitational perturbation field equations introduce
Lichnerowicz,16 which corresponds to a mixture of spin-0 and spin-2 fields. In Sec. II, we s
marize the field equations and remind the mode sums representations of the various prop
In the third section, we specialize the field equations on~311! de Sitter space and solve the
explicitly on a half de Sitter space. We then obtain the propagators by summing modes. In S
we establish coordinate-free and manifestlyO~4,1! invariant representations of the propagator.
Sec. V, we discuss quickly the analytic continuation of the modes and propagators on the
Sitter space.

II. METRIC PERTURBATION ON EINSTEIN SPACE

Following Lichnerowicz,16 we write the equations of motion for ‘‘massive metric perturb
tions’’ on an Einstein background space (Rab5Lgab) as

dRab~h!5mhab , ~1!

wheredRab ~h! denotes the terms linear in the components of the tensorh in the expansion of the
Ricci tensor evaluated on the metricg85g1h. The factorm on the right-hand side of Eq.~1! is
related to a mass term asM252~L2m!. This definition of mass is meaningful becauseM250
corresponds to pure gravity. Hereafter, we shall denote bym/R2522m the eigenvalues of the
quadratic Casimir operatorI 1 considered by Bo¨rner and Du¨rr,17 who have used the notation
m2522m andm05 in @see Eq.~47!#.

From the Bianchi identities, written for the metricg8, we deduce that solutions of Eq.~1!
automatically satisfy the de Donder conditions:

~m2L!“a\ab50. ~2!

In these equations, as in the rest of this paper, we have introduced the Einsteinian conjugat
\ab5hab2 1

2gabhm
m, and the covariant derivatives refer to the Levi–Civita connection built on

metric g that is used to lower and raise the indices. Consequently, Eq.~1! is equivalent to the
system constituted by Eq.~2! and

hhab12Rasbrh
sr22~L2m!hab50. ~3!

A particular solution of Eqs.~2! and ~3! is given by

hab5“a “bf1~L2m!gabf, ~4!

whenf satisfies the scalar field equation:

hf12mf50. ~5!

This scalar field is proportional to the trace:

hm
m5~4L26m!f, ~6!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and describes the spin-0 content ofh, which is a mixture of spins 0 and 2. Equation~1! can be
derived from the Lagrangian

L5 1
2“

ahbg
“

mhnr~gamgbnggr2gargbmggn2gmbgnagrg1gmngragbg1gabggmgnr

2gamgbggnr!2
m

2
habhmn~gamgbn1gangbm2gabgmn!

[ 1
2“

ahbg
“

mhnrQabg,mnr2
m

2
habhmnPab,mn , ~7!

which is unique, up to trivial transformations~rescaling and addition of divergences!. From it we
deduce the expression of a conserved current, a sesquilinear form on the space of c
solutions of Eq.~1!:

Ja~h,k!5 i ~h* bg
“

mknr2kbg
“

mh* nr!Qabg,mnr , ~8!

and, by integration on a Cauchy surfaceS, a symplectic structure:

h* k5E
S
dsa Ja~h,k!52~k* h!*52~k* * h* !. ~9!

If $Ah% is a complete set of positive frequency modes, labeled by the indexA, and satisfying the
relations

Ah* Bh5dAB ,
Ah* * Bh*52dAB ,

Ah* * Bh505Ah* Bh* , ~10!

we may obtain as mode sums the usual Green’s functions of the quantum fieldĥ associated to the
classical fieldh. The Pauli–Jordan propagatorD(x,y), defined by the commutator@ĥ(x),ĥ(y)#, is
given by

D~x,y!52 i(
A

Ah~x!Ah* ~y!2Ah* ~x!Ah~y!, ~11!

while the symmetric~often called Hadamard! propagatorD1(x,y), defined as the vacuum expe
tation value of the anticommutator^$ĥ(x),ĥ(y)%&, is

D1~x,y!5(
A

Ah~x!Ah* ~y!1Ah* ~x!Ah~y!, ~12!

and the Feynman propagatorDF(x,y):

DF~x,y!5 1
2@D1~x,y!1 i e~x,y!D~x,y!#, ~13!

wheree(x,y)561 according to the pointx is in the future or the past ofy.

III. FIELD EQUATIONS ON DE SITTER SPACE

The four-dimensional de Sitter spaceH4 can be seen as the homogeneous coset s
O~4,1!/O~3,1!, i.e., as the sphere of equations:

hABX
AXB5R2 ~A,B50,...,4!, ~14!

imbedded in a five-dimensional~flat! Minkowski spaceM5. Using the parametrization
J. Math. Phys., Vol. 38, No. 2, February 1997
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l5
R2

X42X0 , xi5
RXi

X42X0 ~ i51,2,3!, ~15!

the metric induced onH4 reads as

g5
R2

l2 S 2dl21(
i

~dxi !2D . ~16!

de Sitter space–time is a space of constant curvature:Rabgd5~L/3!(gaggbd2gadgbg), the relation
between the cosmological constantL and the radiusR of the space beingL53/R2.

On de Sitter space Eq.~3! becomes equivalent to

h\ab1~ 8
3L22m!\ab2 2

3Lgab\t
t50. ~17!

Hereafter we shall in a first step restrict ourselves to the chartl.0, which covers only one-half o
the full de Sitter space. It is the domain corresponding to the causal past of a physical ob
~regionO in Fig. 1!.

To solve the system of equations~17! we have found it useful to use the rescaled quanti
introduced in Ref. 15:

kmn5
l2

R2 \mn , ~18!

and to pass to the Fourier transformed variables:

Kmn~l,p!5
1

~2p!3/2
E d3p e2 ip–xkmn~l,x!, ~19!

wherep•x5(ip
ixi.

FIG. 1. Penrose diagram of de Sitter space~Ref. 20!. RegionO ~l.0! corresponds to the causal past of observersx5cost,
l.0. Their common future event horizonH is the boundary of the two coordinate patches~l.0,x! and~l,0,x!. Dashed
lines representx5cost world lines.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Moreover, it is natural to express these Fourier components in a local frame adapted
vectorp. To this aim, we introduce the four vectorsu(a)(p! whose components with respect to th
natural coordinate frame (]l ,]xi) are

u~0!
a 5~1,0,0,0!,

u~3!
a 5~0,pi /p!, p5A(

i
~pi !2,

u~1,2!
a 5~0,e~1,2!

i !, with (
i
pie~1,2!

i 50. ~20!

They satisfy the orthogonality relations

gmnu~a!
m ~p!u~b!

n ~p!5
R2

l2 hab . ~21!

We shall also make use of the projector on the space-like directions orthogonal top:

'm
n 5dm

n 1
l2

R2 ~u~0!mu~0!
n 2u~3!mu~3!

n !5
l2

R2 ~u~1!mu~1!
n 1u~2!nu~2!

n !. ~22!

Once expressed in this frame, the components of~19! split into longitudinal and transverse part

KL5u~3!
a K0a5

pi

p
K0i , ~23!

Ka
'5~0,Ki

'!5~0,' i
jK0 j !, ~24!

KLL5u~3!
a u~3!

b Kab , ~25!

Ka
L'5~0,Ki

L'!5u~3!
m 'a

nKmn , ~26!

Kab
''5'a

m'b
nKmn , ~27!

K0a
''5Ka0

''50. ~28!

Conversely, the components of~19! with respect to the natural frame read as

K0i5u~3!
i KL1Ki

' , ~29!

Ki j5u~3!
i u~3!

j KLL1u~3!
i K j

L'1u~3!
j Ki

L'1Ki j
'' . ~30!

In terms of these variables, Eq.~2! splits into

K̇002 ipKL2
4

l
K002

1

l
K50, ~31!

K̇L2 ipKLL2
4

l
KL50, ~32!
J. Math. Phys., Vol. 38, No. 2, February 1997
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K̇ i
'2 ipKi

L'2
4

l
Ki

'50, ~33!

where we have denoted, by dots, derivatives with respect tol and byK the trace of\mn :

K52K001(
i
Kii5\m

m52hm
m . ~34!

Equations~17! written withm522mR2 become

K̈002
6

l
K̇001S p21 161m

l2 DK001
4

l2 K50, ~35!

K̈L2
4

l
K̇L2

2i

l
pK001S p21 101m

l2 DKL50, ~36!

K̈ j
'2

4

l
Kj

'1S p21 101m

l2 DKj
'50, ~37!

K̈LL2
2

l
K̇LL1S p21 61m

l2 DKLL2
4i

l
pKL2

2

l2 ~K1K00!50, ~38!

K̈ j
L'2

2

l
K̇ j
LL1S p21 61m

l2 DKj
L'2

2i

l
pKj

'50, ~39!

K̈ j l
''2

2

l
K̇ j l

''1S p21 61m

l2 DKjl
''2

2

l2 ' j l ~K001K !50. ~40!

Summing the appropriate equations~35!, ~38!, ~40!, we recover with the help of Eqs.~31!–~33!
the trace equation~5! written in terms of its Fourier transformed variable:

K̈2
2

l
K̇1S p21 m

l2DK50. ~41!

The general solution of this equation is given by a combination of Hankel functions~see Ref. 18!:

K~l,p!5~lp!3/2@a~p!Hn0
~1!~lp!1b~p!Hn0

~2!~lp!#, ~42!

with

n05 iAm2 9
4 ~43!

and

Hn
~1!~lp!5ein~p/2!Hn

~1!~lp!5@Hn
~2!~lp!#* , ~44!

whereHn
~1! , Hn

~2! are the usual Hankel functions defined in Ref. 18.
From Eqs.~4! and ~5! and Eq.~35! we obtain@assumingm14Þ2n(n11), nPZ, see the

comment after Eq.~66!#

K005Q2
l2

3~m14! S 3l K̇2S p22 3

l2DK D , ~45!
J. Math. Phys., Vol. 38, No. 2, February 1997
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whereQ is the general solution of the homogeneous part~K50! of Eq. ~35!:

Q5~lp!7/2@c~p!Hn
~1!~lp!1d~p!Hn

~2!~lp!#, ~46!

and here

n5 iAm1 15
4 . ~47!

From these solutions and Eq.~31! we obtain algebraically theKL component:

KL5
2 i

p F Q̇2
4

l
Q1

l2p2

3~m14! S K̇1
1

l
K D G . ~48!

In the same way Eq.~32! gives immediately

KLL5
1

p2 F2l Q̇1S p21 m24

l2 DQG2
l2

3~m14! F1l K̇2S p21 m13

l2 DK G . ~49!

Equation~37! is decoupled from the others. Its general solution is

Kj
'5~lp!5/2@cj~p!Hn

~1!~lp!1dj~p!Hn
~2!~lp!#, ~50!

wherecj ~p! anddj ~p! are 3-vectors orthogonal top andn is again given by Eq.~47!. This leads
directly, thanks to Eq.~33!, to

Kj
L'52

i

p S K̇ j
'2

4

l
Kj

'D . ~51!

Finally it remains to solve Eq.~40! for Kjl
''. The general solution of the homogenous part is s

given by a combination of Hankel functions of the same indexn @see Eq.~47!#:

Qjl
''5~lp!3/2@cjl ~p!Hn

~1!~lp!1djl ~p!Hn
~2!~lp!#, ~52!

while a particular solution can be expressed in terms ofQ andK, leading to the general solutio

Kjl
''5Qjl

''2' j l F 1

3~m14!
„lK̇2~31m!K…1

1

2p2l2 „2lQ̇1~m24!Q…G . ~53!

The integration constantscjl ~and similarlydjl ! can be expressed with the help of the projec
~22! as

cjl ~p!5(
m,n

S' jm' ln2
1

2
' j l'mnDEmn~p!, ~54!

whereEmn~p! is arbitrary. This form ensures thatcjl is transverse top and traceless in order to
verify Eq. ~30!.

To be complete we still have to check that the longitudinal components~48!, ~49!, and~51!,
obtained from the divergence equations, are really solutions of the second-order equation~36!,
~38!, and~39!. They are!

Now we may write a complete set of modes, solutions of Eqs.~2! and ~17! as

\mn~l,x,p!5
eip–x

~2p!3/2
R2

l2 Kmn~l,p!. ~55!
J. Math. Phys., Vol. 38, No. 2, February 1997
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However, instead of considering their natural components it is more useful to split the m
according to their spin contents. Indeed, such a decomposition leads automatically to orth
modes and it will just remain to normalize them. So we shall write the general complex so
of the field equations as

\̂mn~l,x!5(
I
E d3p@aI~p!\mn

I ~l,x,p!1bI
1~p!\mn

I* ~l,x,p!#, ~56!

where the indexI runs over six values corresponding to the spin-0 and spin-2 content of the
~see the appendix for the explicit form of the modes!.

If we assume that the amplitudesaI~p!, bI~p! are operators obeying usual canonical comm
tation relations:

@aI~p!,aI
† ,~p8!#5d II 8d~p2p8!,

@bI~p!,bI 8
†

~p8!#5d II 8d~p2p8!, ~57!

@aI~p!,aI 8~p8!#5@bI~p!,bI 8~p8!#5@aI~p!,bI~p8!#5•••50,

the modes\mn
I have to be normalized tod3~p2p!.

Anticipating the discussion of Sec. V, we impose now that all modes depend only onH~2!

functions, with their various ‘‘d’’ coefficients equal to 1. This choice is compatible with th
commutation relations~57!. It results from the requirements that~1! the Green functions are d
Sitter invariant, and~2! they have the same short distance behavior as in flat space. The c
cients of normalization of the modes with respect to the scalar product~9! are displayed in the
Appendix. Inserting these modes in the general expression of the Green’s functions~13!, we
obtain

D00,0808~x;y!5
R4

6~m14!~m1 15
2 !

S 3l ]l2“x–“y1
3

l2D S 3l8
]l82“x–“y1

3

l28DDn0
~p!

1
2R4

3~m16!~m14!
~“x–“y!

2Dn~p!, ~58!

D00,08 i 8~x;y!5
R4

6~m14!~m1 15
2 !

] i 8S 3l ]l2“x–“y1
3

l2D S ]l81
1

l8DDn0
~p!

2
2R4

3~m16!~m14!
] i 8~“x–“y!S ]l82

2

l8DDn~p!, ~59!

D00,i 8 j 8~x,y!5
R4

6~m14!~m1 15
2 !

h i 8 j 8S 3l ]l2“x–“y1
3

l2D S ]l8
l8

2
31m

l28 DDn0
~p!

1
R4

6~m14!~m1 15
2 !

] i 8] j 8S 3l ]l2“x–“y1
3

l2DDn0
~p!

2
2R4

3~m16!~m14!
h i 8 j 8 S ]l8

l8
1

m

2l28D ~“x–“y!Dn~p!

2
2R4

3~m16!~m14!
] i 8] j 8S 3l8

]l81“x–“y1
3m

2l28DDn~p!, ~60!
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D0i ,08 j 8~x,y!5
R4

6~m14!~m1 15
2 !

] i] j 8S ]l1
1

l D S ]l81
1

l8DDn0
~p!1

2R4

3~m16!~m14!

3] i] j 8S ]l2
2

l D S ]l82
2

l8DDn~p!1
R4

2~m16!
h i , j 8~“x–“y!

1

ll8
Dn~p!

2
R4

2~m16!
] i] j 8

1

ll8
Dn~p!, ~61!

D0i , j 8k8~x,y!5
R4

6~m14!~m1 15
2 !

h j 8k8S ]l1
1

l D S ]l8
l8

2
31m

l28 D ] iDn0
~p!

1
R4

6~m14!~m1 15
2 !

] i] j 8]k8S ]l1
1

l DDn0
~p!2

2R4

3~m16!~m14!
h j 8k8] i S ]l2

2

l D
3S ]l82

m

2l28DDn~p!2
R4

2~m16!
h i j 8]k8

1

ll8 S ]l82
3

l8DDn~p!

2
R4

2~m16!
h ik8] j 8

1

ll8 S ]l82
3

l8DDn~p!2
2R4

3~m16!~m14! S 2
3

2
1

3

4n
~m

13! D ] i] j 8]k8
1

l8
Dn11~p!2

2R4

3~m16!~m14! S 2
3

2
2

3

4n
~m

13! D ] i] j 8]k8
1

l8
Dn21~p!1

2R4

3~m16!~m14!
] i] j 8]k8S ]l2

2

l DDn~p!, ~62!

D i j ,k8 l 8~x,y!5h i jhk8 l 8H R4

6~m14!~m1 15
2 !

~l]l232m!~l8]l8232m!Dn0
~p!

1
2R4

3~m16!~m14! S ]l

l
1

m

2l2D S ]l8
l8

1
m

2l28D Dn~p!2
R4

2~ll8!2
Dn~p!J

1h i j ]k8] l 8H R4

6~m14!~m1 15
2 !

~l]l232m!

l2 Dn0
~p!1

2R4

3~m16!~m14!

3S ]l

l
1

m

2l2DDn~p!2
1

ll8

2R4

3~m16!~m14!

24m190236n212mn

16n2
Dn21~p!

2
1

ll8

2R4

3~m16!~m14!

24m190136n112mn

16n2
Dn11~p!J

1hk8 l 8] i] j H R4

6~m14!~m1 15
2 !

~l8]l8232m!

l28
Dn0

~p!1
2R4

3~m16!~m14!

3S ]l8
l8

1
m

2l28DDn~p!2
1

ll8

2R4

3~m16!~m14!

24m190236n212mn

16n2
Dn21~p!

2
1

ll8

2R4

3~m16!~m14!

24m190136n112mn

16n2
Dn11~p!J 2~h i l ] j]k8
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¬¬¬¬¬¬¬¬¬¬
1h ik8 ] j] l 81h j l 8 ] i]k81h j l 8 ] i]k8!
R4

2~m16!

1

ll8 S 12n18m130

16n2
Dn21~p!

1
212n18m130

16n2
Dn11~p!D 1~h i l 8h jk81h ik8h j l 8!

R4

2~ll8!2
Dn~p!

1] i] j]k8] l 8
2R4

3~m16!~m14! H m16

4~m1 15
2 !

Dn0
~p!1

41m

1914m
Dn~p!

1
1

4~n21!2 H 23~41m!~61m!

60116m
23~m14!S 121

3

4n D 2
2
9~m131n!

60116m J Dn22~p!1
1

4~n21!2 H 3~41m!~61m!

60116m

23~m14!S 2
1

2
1

3

4n D 22 9~m132n!

60116m J Dn12~p!J , ~63!

where

Dn0
~p!5 i

p

4R2

~ll8!3/2

~2p!3
E d3k eik–~x2y!

„Hn0
~1!~lk!Hn0

~2!~l8k!2Hn0
~2!~lk!Hn0

~1!~l8k!…

5
21

8pR2

~ 1
42n0

2!

cos~n0p!
e~l2l8!TF 2F1S 322n0 ,

3

2
1n0,2,

11p

2 D G , ~64!

and a similar representation forDmn,rs
1 (x,y) andDmn,rs

F (x,y), whereDn0
is replaced, respectively

by

Dn0
~1!~p!5

p

4R2

~ll8!3/2

~2p!3
E d3k eik–~x2y!

„Hn0
~1!~lk!Hn0

~2!~l8k!1Hn0
~2!~lk!Hn0

~1!~l8k!…

5
1

8pR2

~ 1
42n0

2!

cos~n0p!
RF 2F1S 322n0 ,

3

2
1n0,2,

11p

2 D G ~65!

and

Dn0

F ~p!5
1

16pR2

~ 1
42n0

2!

cos~n0p! 2F1S 322n0 ,
3

2
1n0,2,

11p

2
2 i e D . ~66!

The occurrence of the factor sec~np! in Eqs.~64! and~65! implies that the special values ofn5n
11

2, i.e.,m145n(n11), need a special analysis. These values of the index of the modes c
spond to eigenvalues of the Laplace-Beltrami operator on the 4-sphereS4, i.e., situations where the
analytic continuation of the propagators built onS4 onto de Sitter space fails.14 In these cases de
Sitter invariant states do not exist; the invariant propagators describe expectations values
field with respect to a density matrix.

IV. INVARIANT REPRESENTATION OF THE GREEN’S FUNCTIONS

The ~l,x! coordinates~15! cover only one-half of de Sitter space corresponding to the ca
past of a physical observer~regionO in Fig. 1!. This domain is bounded by a future event horiz
J. Math. Phys., Vol. 38, No. 2, February 1997
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@X05X4 in Eq. ~15!# and is invariant under a seven-parameter subgroup of the full de Sitter g
O ~4,1!. This group is isomorphic toR0

13E~3!, as it is obvious from the writing~16! of the metric.
It consists of theE~3! Euclidean motions preserving( i(dx

i)2 in Eq. ~16! and the dilatations
l°kl, x°kx.

On this domain we may express the Green’s functions in terms of obviously geometr
invariant quantities. Let us consider two points (P,Q) belonging toO and denote byXA andYA

~A50,...,4! their coordinates in the embeddingM5 space. The tangent vectors at the ends of
unique geodesic inO joining them are

TP
A5

YA2pXA
Rup221u1/2

, TQ
A5

2XA1pYA

Rup221u1/2
, ~67!

where

p5
hABX

AYB

R2 [
X.Y

R2 5
lP
21lQ

2 2~xP2xQ!2

2lPlQ
. ~68!

The componentsVQ
A of the vectorVP

A parallelly transported fromP to Q are

VQ
A5VP

A2
~TP .V!

TP .TP
TP1

V.TQ
TQ .TQ

TQ , ~69!

andVQ
A5VP

A when the geodesic is a null one (TP .TP505TQ .TQ).
We deduce immediately from this expression theM5 components of the tensor of parall

transport fromP to Q:

QB
A85dB

A82
XA8XB1YA8YB1XA8XB2pYA8YB

R2~p11!
. ~70!

In the ~l,x! coordinate, withr5xQ2xP , the components of these objects read as

TP
a5S lQ

2 2lP
22r 2

2lQ
,

lP

lQ
r i D 1

R2up221u1/2
,

TQ
a85S 2

lP
22lQ

2 2r 2

2lP
,

lQ

lP
r i D 1

R2up221u1/2
, ~71!

and

Qb
a85S lQ

lP

~lQ1lP!21r 2

~lQ1lP!22r 2
r i

~lQ1lP!

lP
2 ~p11!

r j 8~lQ1lP!

lP
2 ~p11!

lQ

lP
d i j 81

r i r j 8

lP
2 ~p11!

D . ~72!

Following Allen10 we have to consider the five invariant bitensors defined by
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O1
ab,m8n85gabgm8n8, O2

ab,m8n85TP
aTP

bTQ
m8TQ

n8 ,

O3
ab,m8n85~Qam8Qbn81Qam8Qbn8!,

~73!

O4
ab,m8n85~gabTQ

m8TQ
n8TP

aTP
bgm8n8!,

O5
ab,m8n854TP

(aQb) (m8TQ
n8) .

Using the previous expressions of the components ofTP , TQ , andQ and expliciting the action of
the derivatives in Eqs.~58!–~63!; we obtain by identification invariant expressions of the Gree
functions. The details of the calculations are very tedious and we do not reproduce them he
illustrate the method, we shall consider only the case of the massive vector field. It has
demonstrated in Ref. 6 that the~l,l8! component@in the coordinates system~15!# of the Feynman
propagator, defined by the equation (gabh2Rab2M2gab)D

Fbg850, is given by

Dl8
Fl

~x,y!52
R2

l82
1

M2 ~“x–“y!F S ll8

R2 D 2Ds
F~p!G , ~74!

with

s5 iAM2R22 1
4. ~75!

The other components are given by similar expressions~differential operators acting on invarian
functions of p, Ref. 6!. On the other hand, the most general maximally symmetric invar
bitensor with the same index structure as the vectorial propagator reads as the combinatio

Qa8
a F~p!1TP

aTQa8
G~p!. ~76!

So, the vectorial invariant Feynman propagatorDg8
Fb

can be written as

Dg8
Fb

5Qg8
b a~p!1TP

bTQg8
b~p!, ~77!

for some functionsa(p),b(p). Equation~74! can be reexpressed as a function ofp andj5l/l8:

Dl8
Fl

~x,y!52
1

M2 S l2

R F 3

ll8

d

dp
2S r

ll8D
2 d2

dp2GDs
F~p! D

52
1

R2M2 F3j
d

dp
2j~2p2j2j21!

d2

dp2GDs
F~p!, ~78!

thanks to Eq.~68!. Comparing this expression with the~l,l8! component of Eq.~77!, in which the
terms are grouped together according to their powers ofj, we may identify the coefficientsa(p)
andb(p) of the decomposition:

a~p!5
1

m2R2 F3p d

dp
1~p221!

d2

dp2GDs
F~p!, ~79!

b~p!5
1

m2R2 F3~12p!
d

dp
1~12p2!

d2

dp2GDs
F~p!, ~80!
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and possibly use the other components of the propagator to check the results. They are in
ment with those given in Ref. 10.

A similar calculation involving only two types of components,D00,08 i 8 andD00,i 8, j 8, allows to
determine the invariant form of the propagator:

DFmn,r8s8~p!5a~p!O1
mn,r8s81b~p!O2

mn,r8s81g~p!O3
mn,r8s81d~p!O4

mn,r8s81e~p!O5
mn,r8s8 ,

~81!

with

a~p!5
2

3~m14!~m16!
H 2~m16!@~p221!~m18!12#Dn

F2p@2~m16!~p221!18#Dn
F8

2~p221!

1
@~p221!~m215m19!2m#Dn0

F 1@p~p221!~2m13!24p#Dn0

F8

p221
J , ~82!

b~p!5
2

3~m14!~m16!
„$ 2~m16!@~m18!~p221!220p228#Dn

F1@~p221!~2p~m16!

110~m12!!2112p280#Dn
F8/p221%1 @~p221!~m2216m!22m~10p114!#Dn0

F

1@~p221!~8mp248p14m264!2802112p#Dn0

F8/p221 …, ~83!

g~p!5
2

3~m14!~m16!
H ~m16!@3~p221!~m18!24#Dn

F1@~p221!6p~m16!216p#Dn
F8

4~p221!

2
mDn0

F 14pDn0

F8

p221
J , ~84!

d~p!5
2e~p221!

3~m14!~m16!
H 2~m16!@~p221!~m18!112#Dn

F2@~p221!~m16!2p148p#Dn
F8

2~p221!

1
m@~p221!~m21!26#Dn0

F 1p@~p221!5m224#Dn0

F8

p221
J , ~85!

e~p!5
2e~p221!

3~m14!~m16!
H ~m16!@3~p221!~m18!220p24#Dn

F

1@~p221!„6p~m16!110~m12!…216~p15!#Dn
F8/4~p221!

1
2m~115p!Dn0

F 1@~p221!~m216!24~p15!#Dn0

F8

p221
J , ~86!

whereDn
F8 5 (d/dp)Dn

F .

V. SCALAR GREEN’S FUNCTION REVISITED

In Ref. 3 we have shown that the Green’s functions of the scalar field equation on the d
O ,
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¬¬¬¬¬¬¬¬¬¬
~h2M2!w[S l2

R2 ~2]l
21¹2!1

2l

R
]l2M2Dw50, ~87!

can be written as a superpositions of modes expressed in terms of Hankel functions:

up~l!5
Ap

2R
l3/2@c~p!Hn0

~1!~lp!1d~p!Hn0
~2!~lp!#eip•x,

n05 iAm2R22 9
4, ~88!

with ud~p!u22uc~p!u251, and c~p!d~2p!2c~2p!d~p!50, the last conditions resulting from th
normalization conditionup*up85d3~p2p8!. These conditions are not sufficient to fix the vacuu
~the positive frequency modes!. If we impose the vacuum to be invariant with respect to
seven-parameter isometry group ofO , extra~necessary! conditions appear. The coefficientsc~p!
andd~p! have to be constant. The resulting Green’s functions still depend on three param
Definite values of these parameters are obtained by imposing that the short distance singu
of the Feynman propagator are the same as in flat space:

lim
s→1

s2DF~s!5
21

2p2 , where p5coshS s

RD . ~89!

Then one obtains:

c50, d51, ~90!

because the phase ofd becomes irrelevant. The Feynman propagator forMÞ0 is given by

DF~x,y!5
1

16pR2

~M2R222!

cosn0p
FS 321n0 ,

3

2
2n0 ;2;

11p

2
2 i e D . ~91!

while for M50 one obtains3

DF~x,y!5
1

4p2R2 F 1

12p
2 lnUll8

R2 ~p21!U1cteG2
i

4pR2 e~l2l8!„d~p21!1u~p21!…,

~92!

which is onlyE~3! invariant. We plan to discuss the physical significance of this choice of m
in a forthcoming publication.19

Up to now, all the expressions of the modes that we have considered were defined onlyO .
If we extend the definition ofl andx by Eq.~15! on the full de Sitter space~except on the horizon
H, i.e. the 3-surfaceX45X0!, we may analytically continue the modes by considering the beh
ior of a wave packet nearH. Typically, such a wave packet behaves as

w~l,x!5E Ap

2R
ulu3/2Hn

2~lp!
eip–x

~2p!3/2
f ~p!d3p;E ulu

A2pR
ei ~p/4!e2 i ~pl2p–x! f ~p!d3p.

~93!

The Kirchoff ~Poisson! formula giving the solution of the massless scalar wave equation in
space ensures that this expression remains finite on the horizon, despite the presence
divergent factorulu. The continuation of the modes across the horizon is obtained by looking i
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regionl,0 which combination of Hankel functions have an asymptotic expansion that ma
with the one used in Eq.~93!. This leads us immediately to an expression of the modes valid
the full de Sitter space:

up~l!5
Ap

2R
ulu3/2@u~l!Hv0

~2!
„~l2 i e!p…2 iu~2l!Hv0

~1!
„2~l2 i e!p…#

eip–x

~2p!3/2
. ~94!

Inserting this expressions of modes in integrals like those considered in Eqs.~64! and ~65!, we
conclude that the expression~91! is valid on whole de Sitter space, withp still given by Eq.~68!
whatever are the signs ofl andl8.

Note that the regionŌ5H4\O is isometric toO but with time running in the opposite way
This is in accord with the fact that it is precisely the Hankel functionH~1!(ulpu) that is coupled
toH~2!(ulpu), these two functions being of opposite frequencies on bothO and Ō . Finally, also
note that by the continuationR° iR we obtain invariant expressions of Green’s functions
anti-de Sitter space.
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APPENDIX: EXPLICIT FORM OF THE MODES

We have collected in this appendix the explicit expressions of the modes we have u
obtain the propagators. They are expressed for eachp in the base$e05]0,e1,e2,e35p/p%. They
read as

\mn
S ~p,l,x!5S O1 0 0 O3

0 O7 0 0

0 0 O7 0

O3 0 0 O5

D 1

~lp!2
Ap
NS

eip•x~lp!3/2H iAm29/4
~2! ~lp!, ~A1!

\mn
TT~p,l,x!5S 1 0 0 O2

0 O6 0 0

0 0 O6 0

O2 0 0 O4

D 1

~lp!2
Ap
NTT

eip•x~lp!7/2H iAm115/4
~2! ~lp!, ~A2!

\mn
'1~p,l,x!5S 0 1 0 0

1 0 0 O2

0 0 0 0

0 O2 0 0

D 1

~lp!2
Ap
N'

eip•x~lp!5/2H iAm115/4
~2! ~lp!, ~A3!

\mn
'2~p,l,x!5S 0 0 1 0

0 0 0 0

1 0 0 O2

0 0 O2 0

D 1

~lp!2
Ap
N'

eip•x~lp!5/2H iAm115/4
~2! ~lp!, ~A4!
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\mn
''1~p,l,x!5S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D 1

~lp!2
Ap
N''

eip•x~lp!3/2H iAm115/4
~2! ~lp!, ~A5!

\mn
''2~p,l,x!5S 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

D 1

~lp!2
Ap
N''

eip•x~lp!3/2H iAm115/4
~2! ~lp!, ~A6!

where

O15„3l]l2~lp!213…, ~A7!

O25
2 i

p S ]l2
4

l D , ~A8!

O35 ipl2S ]l1
1

l D , ~A9!

O45S 2

lp2
]l111

m24

~lp!2D , ~A10!

O55~l]l2„~pl!21m13…!, ~A11!

O65S 2
1

p2l
]l1

42m

2~pl!2D , ~A12!

O75~l]l232m!. ~A13!

These modes are orthogonal for the scalar product~9!. In order that they satisfy the orthonorma
ization condition~10!, their coefficients must be chosen, up to a phase, as

NS5
1

R
A208p2~m14!Sm1

15

2 D , ~A14!

NTT5
1

R
A48p2~m16!~m14!, ~A15!

N'5
1

R
A64p2~m16!, ~A16!

N''5
1

R
A64p2. ~A17!

1J. Géhéniau and Ch. Schomblond, Acad. R. Belgium Class. Sci.,LIV , 5ème Série, 1147~1968!.
2M. Cahen, J. Ge´héniau, M. Günther, and Ch. Schomblond, Ann. I.H.P.XIV , 325 ~1971!.
3Ch. Schomblond and Ph. Spindel, Ann. Inst. Henri Poincare´ XXV , 67 ~1976!.
4Ch. Schomblond and Ph. Spindel, Acad. Ry. Belgium Class Sci.LXII , 5eme Se´rie, 124~1976!.
5P. Candelas and D. J. Raine, Phys. Rev. D12, 965 ~1975!.
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e,

638 Cl. Gabriel and Ph. Spindel: Massive spin 2 propagators on de Sitter space

¬¬¬¬¬¬¬¬¬¬
6Ph. Spindel, ‘‘Quantification des champs en relativite´ générale,’’ Ph. D. thesis, Universite´ de l’Etat àMons, 1978.
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The quartic oscillator
Wolfgang Lay
Universität Stuttgart, Institut fu¨r Theoretische und Angewandte Physik, Stuttgart, Germany

~Received 31 October 1995; accepted for publication 20 August 1996!

The quantum quartic oscillator is treated on the basis of a singularity-analytic
approach to the central two-point connection problem of the triconfluent case of
Heun’s differential equation. We split off the asymptotic factors by means of a
specific linear transformation of the independent variable and represent the solution
in terms of a Jaffe´ expansion. The result is a fourth-order linear difference equation
of Poincare´–Perron type the asymptotic behavior of which is significant for the
connection problem. This is investigated by means of the Birkhoff-set of the dif-
ference equation and leads to the exact eigenvalue-condition of the problem.
© 1997 American Institute of Physics.@S0022-2488~97!01602-2#

I. INTRODUCTION

The quartic oscillator in quantum mechanics has caused a lot of publications since it ap
as a scientific problem in the third decade of this century~see Ref. 1 and references therein!. This
seems understandable since it is the natural generalization of the harmonic oscillator that
solved so simply in terms of generalized polynomials and the spectrum of which is charact
by integer numbers. However, the quartic oscillator resisted an exact solution a long per
time. Only numerical or asymptotic approximations were available and an exact solution
symmetric oscillator in the sense that one can ‘‘in principle’’ calculate its spectrum an
eigenfunctions with arbitrary accuracy was accessible only in the last decade by applying a
sophisticated method.2–4

In the following we outline an approach to the exact solution of the quantum quartic osci
applicable to the symmetric as well as to the nonsymmetric one that is not based on asym
methods but on the observation that the differential equation for the quartic oscillator is a sp
triconfluent case of Heun’s differential equation.5 This equation was investigated by means o
singularity-analysis and the quantum problem is an application to its central two-point conn
problem.6 There are approaches in the literature that use some aspects of our method~see Ref. 7!
but it does not seem to be worked out in such a detail as we do it here.

The basic theoretical problem we want to treat here is the following: If—as is the ca
‘‘classical’’ eigenvalue problems in mathematical physics—an ansatz of a solution of a differ
equation results in asecond-orderdifference equation for its coefficients the eigenvalues
determined by a particular solution which is characterized by its asymptotic behavior for
values of the index and is normally called ‘‘recessive.’’ Thus if we represent the general so
as a linear combination of just this particular solution and a linear independent one which c
chosen arbitrary the eigenvalue problem can be decided just by asking whether we got the
sive solution of the difference equation or not. This can be done by well-operating cont
fraction methods.

If we do not get difference equations of second but of higher order we do no more h
one-to-one relation between eigensolutions of the differential equation and one specific par
solution of the resulting difference equation. We then have a twofold problem: First we ha
find out which of the particular solutions of the difference equation are recessive thus yie
eigensolutions of the differential equation and, second, we have to find an appropriate num
algorithm for calculating the eigenvalues which is in fact mainly a conceptual task.

Our aim in this paper is to exhibit a concept which can cope with this problem. We do
elaborate the general procedure which is going to be published8 but intend to demonstrate how th
0022-2488/97/38(2)/639/9/$10.00
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method works by calculating the spectrum of the quartic oscillator. We shall show that i
central connection problem is hidden an additional parameterz0 having the form of an extra
singularity of the underlying differential equation. By applying converging Jaffe´ expansions9 we
come out with a fourth-order difference equation of Poincare´–Perron type, the general solution o
which can be calculated by means of a high-index asymptotic from which we can deriv
eigenvalue condition.

The numerical calculation, however, and its typical problems need a detailed discussion
put in a separate work.10 There, we not only demonstrate that our method works quite well
calculating the spectrum of symmetric potentials but it will also be shown that our method is
applicable to nonsymmetric ones.

As we have mentioned above the method here is a result of a more thorough investigatio
it is necessary for calculating the spectrum of the quartic oscillator. Therefore, it is not surp
that it can be applied to a large set of differential equations, namely, to all equations of H
class. This class comprises Heun’s differential equation and its confluent and special cas~for
details and a classification scheme see Ref. 11! the total number of which is 34.

II. JAFFÉ EXPANSIONS AND BIRKHOFF SETS

We are looking for the values ofD0 such that the Schro¨dinger equation of the most gener
quartic oscillator

d2y

dz2
1@D01D1z1D2z

21D3z
31D4z

4#y50, zPR ~1!

has solutionsy5y(z) for which

E
z52`

z5`

y2~z!dz,` ~2!

holds. The parametersD04D4 are supposed to be real,D0 is the spectral parameter andD4 is
negative. By means of a scaling transformation we can choose eitherD150 orD350. Although
the formulas are given in full we will tacitly assume in the following thatD350 and make use o
this at the end of the section.

We solve the problem by splitting it into two parts: first, we look for solutions on the pos
real axis@0,1`# and second we look for solutions which are quadratic integrable on the neg
axis @2`,0#. At the end, we match these two solutions in order to get the eigenvalues.

A. The eigenvalue problem on the positive real axis

Here, we take solutions of~1! in the form

y5expS nz1
kz2

2
1

hz3

3 D ~z1z0!
aw~z!. ~3!

h can take two values, namely,

h152A2D4, h251A2D4. ~4!

It is clear, that we have to takeh1 here in order to get the reasonable asymptotic behavior asz→`.
k, n, anda are then determined in dependence on the value ofh by

k52
D3

2h
, n52

D21k2

2
, a52

D112kn12h

2h
. ~5!
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The exponential and the power term in~3! are chosen such that the full asymptotic behavior of
solutions forz→` is represented. Moreover, an extra singularity of the differential equation
w(z) is generated by introducing the additional parameterz0 . It is a virtual parameter in the sens
that it does not affect the physical problem. On the other hand, it will turn out below to bec
necessary in order to deal with the mathematical problem in such a way that it can be carr
to an appropriate numerical algorithm.

It will become clear below that we have to choosez0 such that its real part is positive
Moreover, we choose it being real. The reason for this choice is that it should not gen
complex-valued quantities. The absolute value is not significant here, but is important for nu
cal reasons.

w(z) satisfies the differential equation

d2w

dz2
1Fg2z21g1z1g01

g21

z1z0
G dwdz1Fd01 d21

z1z0
1

d22

~z1z0!
2Gw50 ~6!

the parameters of which are given in the Appendix.
In a second step we change the independent variablez according to

x5
z

z1z0
~7!

getting from~6! the equation

~x21!4
d2w

dx2
1(

i50

3

G ix
i
dw

dx
1(

j50

2

D j x
jw50 ~8!

the parameters of which are also given in the Appendix. Equation~7! is a linear transformation o
the independent variable which is known in mathematical physics for more than 60 years n12

It puts the positive real axis onto the compact interval@0,1#. The reason why we need thi
transformation is that we now can investigate the asymptotic behavior ofy(z) for z→` at the
finite point x51.

B. The eigenvalue problem on the negative real axis

Solving the problem on the negative real axis, we take solutions of~1! in the form

y5expS nz1
kz2

2
1

hz3

3 D ~2z1z0!
aw~z!. ~9!

As aboveh can once again take the two values given in~4!. The parameterz0 is also taken as
above, namely, positive and real by the same reasons as discussed in the foregoing secti

w(z) satisfies the differential equation~6! but with different parameters which can be seen
the Appendix and the termsz1z0 replaced byz2z0 .

The transformation of the independent variablez reads

x5
z

z2z0
~10!

getting from ~6! an equation of the form~8! the parameters of which are again given in t
Appendix. Equation~10! puts the negative real axis onto the compact interval@0,1# the reason of
which is the same as already discussed above.
J. Math. Phys., Vol. 38, No. 2, February 1997
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C. The difference equation

As we have seen, solving the eigenvalue problem of the differential equation~1! on the
positive and on the negative real axis our method leads to the same equation~8!. In both cases the
solutionsw(x) of ~8! we take as a simple power series

w~x!5 (
n50

`

anx
n ~11!

which is called a Jaffe´ expansion. Equation~11! expresses the fact that every solution of~1! is
holomorphic atz5x50. The radius of convergenceR of the series~11! isR51. The reason for
this is that within the open diskuxu,1 there is no other singularity of the differential equation~8!.
Since we have split off the possible asymptotic behaviors of the boundary-value solutio
equation~1! by carrying out the transformation~3! the solutionsy(z) will take this behavior only
when the series~11! are convergent not only within the circleuxu51 but, moreover, also atx51.
This can be seen from Abel’s limiting value theorem~see Ref. 13 p. 419!. For the series~11! to
become convergent atx51 it is necessary and sufficient that the coefficientsan tend to zero
sufficiently fast. Thus we now turn our attention to the coefficientsan and their asymptotic
behaviour forn→`.

The coefficientsan are solutions of the following fourth-order linear difference equation:

a0 , a1 arbitrary,

2a21G0ka11D0a050,
~12!

6a31~2G028!a21~G11D0!a11D1a050,

S 11
a2

n
1

b2

n2 Dan121S 241
a1

n
1

b1

n2 Dan111S 61
a0

n
1

b0

n2 Dan1S 241
a21

n
1

b21

n2 Dan21

1S 11
a22

n
1

b22

n2 Dan2250, n>2.

The quantitiesa i , b i , i522412 in ~12! are given in the Appendix. Equation~12! comprises
initial conditions such that after having fixeda0 anda1 the solutions can be calculated recursive
Moreover, we see that forn→` all the coefficients of~12! tend to finite values. Difference
equations having this property are called being of Poincare´–Perron type~see Refs. 14–16!.

The difference equation~12! has four particular solutions which can be represented asy
totically for n→` by ~see Refs. 17–20!

sl~n!5expS (
m51

m53

g lmn
~42m!/~4!D nr lF11

Cl1

n1/4
1
Cl2

n2/4
1•••G , l5144. ~13!

Solutions of the form~13! are called Birkhoff-solutions. The totality of all Birkhoff solutions
called the Birkhoff-set~see Ref. 21 p. 274!. By means of a Birkhoff-set we can symbolical
represent the general solution of~12! by

an5(
l51

4

Llsl~n!as n→` ~14!

with coefficientsLl being not dependent onn but only onD04D4 .
The coefficients of~13! can be calculated by elementary means. If we suppose
J. Math. Phys., Vol. 38, No. 2, February 1997
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(
i522

i512

a iÞ0 ~15!

then we can write them as

g115
4

3
A4 2 (

i522

i512

a i5
4

3
A4 2 (

i50

i513

G i ,

g2152g11, g315 ig11, g4152 ig11,

g1252
2a21a12a2122a22

2A2( i522
i512a i

52
G02G222G3

2A2( i50
i513G i

,

g225g12, g3252g12, g4252g12, ~16!

g1352
1

24~2( i522
i512a i !

5/4 @232a2
2216a2~4a2117a22!25a1

222a1~20a2111a21132a22!

14a0
224a0~a1110a21a21110a22!25a21

2 240a21a22232a22
2 #,

g2352g13, g3352 ig13, g435 ig13,

r 15r 25r 35r 452 1
8~2a222a2223!.

On the positive real axis we get

2 (
i50

i513

G i52g2z0
3 ~17!

and

G02G222G352g2z0
31g1z0

2, ~18!

whereas on the negative real axis we get

2 (
i50

i513

G i51g2z0
3 ~19!

and

G02G222G351g2z0
31g1z0

2. ~20!

As a result, we see that on the positive real axis we have

g115
4

3
A4 2g2z0

3 ~21!

and

g1252
1

2
A2g2z0

32
g1z0

2

2A2g2z0
3

~22!
J. Math. Phys., Vol. 38, No. 2, February 1997
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while on the negative real axis we get

g115
4

3
A4 1g2z0

3 ~23!

and

g1252
1

2
A1g2z0

32
g1z0

2

2A1g2z0
3
. ~24!

According to~4! g2 can admit two values. For to meet the condition~2! we have to take

g21522A2D4 ~25!

for the solution on the positive real axis and

g22512A2D4 ~26!

for the solution on the negative real axis. This means that in both cases we get

g115
4

3
A4 2A2D4z0

3 ~27!

and therefore a positive real value. We already mentioned that the parameterD3 can be taken as
zero without losing generality. As one can see from the formula~A1! in the Appendix this means
g150. Therefore, from~22! and ~24! we see thatg12 is negative real for the solution on th
positive real axis as well as for the solution on the negative real axis which is an impo
statement for the following.

We see from~13!–~17! that the solutions of the difference equation~12! either increase or
decrease exponentially asn tends to infinity. It is a crucial point now that exponentially decreas
solutionsan of ~12! cause the series~11! to converge atx51 while exponentially increasing one
make~11! diverging atx51 ~see Ref. 22!. Thus solving the eigenvalue problem means that
have to look for valuesD0 such that the solutionan of ~12! is decreasing in the limitn→`. The
coefficientsLl , l5144 in ~14! depend on the parametersDj , j5044 of the differential equa-
tion. In particular they depend onD0 . We already mentioned thatg11 in ~16! is positive and real.
We see from~17!–~26! that according to our choice ofz0 by taking into account only a leading
order asymptotic thusg i1 i5144 in ~13! we would assume that the general solution of t
difference equation~12! consists of one particular solution@represented bys2(n) in the Birkhoff-
set# that is exponentially decreasing, of one particular solution that is exponentially incre
[s1(n)] and of two particular solutions@s3(n) and s4(n)# which are oscillating. By taking into
account the next higher order thus the exponentsg i2, i5144 in ~13! we, however, see that th
three Birkhoff-solutionss1(n), s3(n), ands4(n) increase exponentially whiles2(n) decreases as
n tends to infinity.

The parameterD0 is the spectral parameter of the problem. Therefore, we may assume fo
moment that all the other parameters of the differential equation~1! are taken constant. Then w
may state what is the quantization-condition for the quartic oscillator: The set of valuesD0 for
which

L1~D0!5L3~D0!5L4~D0!50, L2~D0!Þ0 ~28!
J. Math. Phys., Vol. 38, No. 2, February 1997
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holds@whereLi , i5144 are the coefficients in~14!# for the two difference equations~12! related
to the positive and the negative real axis under the additional restriction that the solutions~3!, ~9!,
and~11! of the differential equation match atz5x50 is the spectrum of the quartic oscillator. Th
matching conditions are given by

y1~z50!5y2~z50!,
dy1

dz U
z50

5
dy2

dz U
z50

. ~29!

One may first suspect that spectrum of the quartic oscillator depends on the choice ofa0 anda1 in
~12! but this is not so.

The conditions~29! are relations between the coefficientsa0 anda1 in ~12! ~related to the
positive and negative real axis! leaving one degree of freedom namely a normalization cons
For details see Ref. 10.

III. CONCLUSION

We have seen in the preceding sections that the quartic oscillator can be solved w
introducing approximations. Dealing with a central two-point connection problem of the tri
fluent case of Heun’s differential equation on the positive and on the negative real axi
matching these two solutions at the origin leads to the exact eigenvalue-conditions for calcu
the spectrum.

The connection problems are solved by applying a linear transformation of the depe
variable of the differential equations in such a way that first the full asymptotic behavior o
solutions are split off and secondly an additional singularity of the resulting differential equ
is generated. A subsequent linear transformation of the independent variable maps the p
resp., negative real axis onto a compact interval. The resulting differential equation can be
by a simple power series which is actually called ‘‘Jaffe´ expansion.’’ Its coefficients are solution
of a fourth-order difference equation of Poincare´–Perron type which is investigated by means
its Birkhoff-set showing the complete asymptotic behavior of the solutions when the ind
tending to infinity.

As an important result we have shown that in the leading-order calculation one part
solution of the difference equation is increasing and one is decreasing while the two rem
ones are oscillating. A second-order calculation, however, shows that these oscillating so
are increasing, too. This is a surprising result. Because of the fact that we are dealing
Hermitian operator in quantum mechanics we would have expected that only one particula
tion is increasing while three are decreasing. Nevertheless, as we shall see in a forthcomin
the eigenvalue spectrum of the quartic oscillator can be calculated numerically already by
into account only the one increasing solution of the difference equation which does not osc
This suggests that there is a relation among the coefficients of the three increasing solution
Birkhoff-set. Because of the fact that the solution is real-valued it is clear that the sum o
coefficients between the two oscillating solutions is zero. However, there is expected to
further relation between the coefficients of the oscillating solutions and the exponentially inc
ing one. This relation, however, is not yet known.
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APPENDIX: PARAMETER CALCULATIONS

Here, we give the parameters of the differential equations~6! and ~7! for the solution on the
positive and on the negative real axis and the parameters of the difference equation~12!.

For the solution on the positive real axis the parameters of equation~6! are given by

g252h, g152k, g052n, g2152a,

d05D01n21k2a$2hz022k%,
~A1!

d215a@2hz0
222kz012n#, d225a~a21!,

and those of equation~7! are

G352g2112, G25g2z0
32g1z0

21g0z013g2126,

G15g1z0
222g0z023g2116, G05z0g01g2122, ~A2!

D25d22 , D152d21z022d22 , D05d0z0
21d21z01d22 .

For the solution on the negative real axis onlyd0 changes to

d05D01n21k1a$2hz012k%

while all the other parameters remain the same as given in~A1!. The parameters of~7! solved on
the negative real axis are

G352g2112, G252g2z0
32g1z0

22g0z013g2126,

G15g1z0
212g0z023g2116, G052z0g01g2122, ~A3!

D25d22 , D15d21z022d22 , D05d0z0
22d21z01d22 .

The coefficients of the difference equation~12! are given by

a2 :53, b2 :52, a1 :5G024, b1 :5G0 , a0 :5G126, b0 :5D0 ,

a21 :5G2112, b21 :5D12G228, a22 :5G325, b22 :5D222G316.
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4A. Voros, J. Phys. A27, 4653~1994!.
5A. Duval, in Heun’s Differential Equations, edited by A. Ronveaux~Oxford University Press, London, 1995!.
6W. Lay, Habilitationsschrift, Universita¨t Stuttgart, 1995.
7R. Blankenbecler, T. DeGrand, and R. L. Sugar, Phys. Rev. D21, 1055~1980!.
8W. Lay and S. Yu. Slavyanov, ‘‘Algebraic algorithms for solutions of the central two-point connection proble
Heun’s class of differential equations’’~in preparation!.

9E. A. Solov’ev, Sov. Phys. JETP54, 838 ~1981!.
10K. Bay and W. Lay, ‘‘The spectrum of the quartic oscillator’’~submitted for publication!.
11S. Yu. Slavyanov, W. Lay, and A. Seeger, inHeun’s Differential Equations, edited by A. Ronveaux~Oxford University
Press, London, 1995!.
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Massless fields in plane wave geometry
R. R. Metsaev
Department of Theoretical Physics, P.N. Lebedev Physical Institute, 117924,
Leninsky Prospect 53, Moscow, Russia

~Received 19 April 1996; accepted for publication 19 June 1996!

Conformal isometry algebras of plane wave geometry are studied. Then, based on
the requirement of conformal invariance, a definition of masslessness is introduced
and gauge invariant equations of motion, subsidiary conditions, and corresponding
gauge transformations for all plane wave geometry massless spin fields are con-
structed. Light cone representation for elements of conformal algebra acting as
differential operators on wavefunctions of massless higher spin fields is also evalu-
ated. Interrelation of plane wave geometry massless higher spin fields with ladder
representation ofu~2,2! algebra is investigated. ©1997 American Institute of
Physics.@S0022-2488~96!01112-7#

I. INTRODUCTION

The plane wave1 has been actively studied from various points of view in the context of b
field theory~see Refs. 2–5! and string theory~see Refs. 6–12!. One of the remarkable propertie
of the plane wave is that it provides a nonperturbative solution to the classical equations of m
of superstring effective field theory. It is this property that has inspired a renewed interest
plane wave in recent years. At present time a significant role of the plane wave is beyond
Due to that, it is highly desirable to study the questions related to fields propagating in plane
geometry~see Ref. 5!.

In this paper we study the following questions related to massless fields:~1! definition of
masslessness in four-dimensional plane wave geometry;~2! gauge invariant equations of motio
and corresponding gauge transformations as well as subsidiary conditions;~3! relation of plane
wave geometry massless fields to ladder representations.

The paper is organized as follows. In Sec. II we shall review isometry algebras of va
plane wave backgrounds and construct complete expressions for generators, i.e., corres
orbital and spin parts. In Sec. III we shall consider conformal isometry algebras. We pr
complete manifest expressions for elements of conformal algebras, i.e., corresponding
spin, and conformal boost parts. In Sec. IV, based on conformal invariance, we shall constru
equations of motion for all, lower as well as higher, massless spin fields. These equatio
supplement by corresponding gauge transformations and subsidiary conditions. We study th
equation of motion for massless field and demonstrate an existence a nonzero energy lowe
for a massless field. We construct also a light cone representation for elements of a con
algebra acting as differential operators on a wavefunction of massless field. In Sec. V we
demonstrate explicitly the manner in which the infinity chain of plane wave geometry mas
spin fieldsl50,61/2,61,63/2,62,... ~every state appears once! can be embedded into ladde
representation of the u~2,2! algebra. By using ladder representations we demonstrate also
Minkowski and plane wave geometry massless fields are related to each other. In Sec. VI w
describe possible applications of our results. Appendices A and B detail certain mathem
manipulations.
0022-2488/97/38(2)/648/20/$10.00
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II. ISOMETRY ALGEBRAS

A. General case

The metric for a general gravitational–electromagnetic plane wave can be read as foll

ds252dudv12„f ~u!z21 f̄ ~u!z̄21F~u!zz̄…du222dzdz̄. ~2.1!

Note that~2.1! is sometimes called an exact plane wave. The metric~2.1! is written in coordinates
(u,v,z,z̄). In what follows it will be convenient to use the coordinatesxm5(u,v,z i), wherezi are
given by

z5~z11 i z2!/&, z̄5~z12 iz2!/&. ~2.2!

All the variablesu, v, and zi range from2` to 1`. Throughout this paper, unless otherwi
specified, we use the following notation and conventions:~1! the indicesi , j , andk run over 1,2;
~2! z2, ]2, and~z]! stand forz iz i , ] i] i , andz i] i respectively, where] i5]/]z i , z i5z i .

In Ref. 11 ~see also Ref. 2! the various plane waves have been classified according to
number of Killing symmetries they possess:

I

II

III

IV

f ~u!

0

0

fÞ0

f ~u!

F~u!

FÞ0

F~u!

F

F~u!

dim ~Killing sym!

7

6

6

5

where f andF without argument stand foru-independent constants. Note that the I and II ca
~vanishing Weyl tensor! are usually called purely electromagnetic plane wave, while one of
particulars of III and IV whenF(u)50 ~vanishing Ricci tensor! is called a purely gravitationa
plane wave. The Killing vectors for I–IV can be read as~see also Refs. 11 and 12!

I

II

III

IV

Pv ,

Pv ,

Pv ,

Pv ,

PC ,

PC ,

PC ,

PC.

Pu,

Pu,

Ji j ,

Ji j ,

where

Pv5]v , Pu5]u , ~2.3!

l ~PC!5Ci8z i]v1Ci] i , ~2.4!

l ~Ji j !52z i] j1z j] i , ~2.5!

and prime indicates partial derivative with respect tou. HereCi satisfy the following second-orde
differential equation:

C912 f̄ ~u!C̄1F~u!C50, ~2.6!

whereC5(C11 iC2)/&, C̄5(C12 iC2)/&. In ~2.4!, ~2.5!, and below a notationl (G) is used to
indicate the fact that corresponding expression on the rhs provides only the orbital part of a
elementG.
J. Math. Phys., Vol. 38, No. 2, February 1997
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B. I and II cases

The I and II cases have a rotation Killing vector~2.5!. Due to that we are able to introduc
spin-s tensor fieldsFm1 ,...,ms, where the spins can be associated with eigenvalue ofJi j . Since the
expressions~2.3!–~2.5! provide only orbital parts they should be accompanied by correspon
spin parts. To derive spin parts we proceed as follows. First of all, we would like to pass to ta
space tensor fields. To do that we should introduce a local frame. One convenient cho
specified by the frame one-formseA 5 em

Adxm with

ds252eUeV2eiei , eU5du,
~2.7!

eV5dv1 1
2F~u!z2du, ei5dz i .

The connection one-forms, defined by

deA1vA
B`eB50, vAB52vBA,

are then given by

vVi52F~u!z ieU. ~2.8!

Dual formseA to ~2.7!, eA~eB!5dA
B, read as

eU5]u2
1
2F~u!z2]v , eV5]v , ei5] i . ~2.9!

Now we introduce the tangent space tensor fields in the usual manner:

FA1 ,...,As5em1

A1•••ems

AsFm1 ,...,ms. ~2.10!

Then to avoid cumbersome tensor expressions we introduce creation and annihilation operaaA
and āA which satisfy

@ āA , aB#52hAB , hUV5hVU51, h i j52d i j , ~2.11!

and construct a Fock space vector

uF&5aA1•••aAsF
A1 ,...,Asu0&, āAu0&50. ~2.12!

Now the nonvanishing spin parts of isometry algebra under consideration are given by

s~Ji j !5Mi j , s~PC!5Ci8MVi , ~2.13!

where the elementsMAB constitute so~3,1! algebra

@MAB , MCD#5hACMDB1••• ~2.14!

~for details see Appendix A!.

III. CONFORMAL ISOMETRY ALGEBRAS

The purpose of this section is to get a manifest representation for elements of a con
isometry algebra of plane wave geometry. This representation will be used throughout the
Before moving to the details, let us comment on the I and II cases. Since for these cases th
tensor vanishes, the conformal algebra in question is isomorphic to the so~4,2! algebra. For these
J. Math. Phys., Vol. 38, No. 2, February 1997
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cases we also establish the isomorphism explicitly, i.e., we take each element of the con
algebra calculated to an element of so~4,2! algebra taken in the Lorentz basis.

As usual we solve the equations for conformal Killing vectors

“mjn1“njm5 1
2 gmn“rjr. ~3.1!

The result of the solution can be summarized as follows:

I
II
III
IV

Pv ,
Pv ,
Pv ,
Pv ,

PC ,
PC ,
PC ,
PC ,

Ji j ,
Ji j ,

D,
D,
D,
D,

TA ,
TA ,
Pu,

KC ,
KC ,

Ku ,
Ku ,

where

l ~TA!5 1
4z

2A9]v1A]u1
1
2A8~z]!,

l ~KC!5z i„vCi82 1
2z

2F~u!Ci…]v1Ciz i]u1Ci8z i~z]!1~vCi2
1
2z

2Ci8!] i ,
~3.2!

l ~Ku!5„v22 1
4F~u!~z2!2…]v1

1
2z

2]u1v~z]!,

l ~D !52v]v1~z]!.

The functionsCi satisfy the equation~2.6! which for the I and II cases can be rewritten as follow

Ci91F~u!Ci50. ~3.3!

The functionA is relevant only for the I and II cases and it satisfies the following third-or
differential equation:

A-14F~u!A812F8~u!A50. ~3.4!

Note that for the I case the isometry elementPu is included intoTA .
Now let ya , a51,2, andYa , a51,2,3, be independent solutions of the equation

y91F~u!y50 ~3.5!

and ~3.4!, respectively. Consider the following brackets:

$Ya ,yb%[Yayb82 1
2ybYa8 , $ya ,yb%[yayb , $Ya ,Yb%[YaYb82YbYa8 . ~3.6!

It is easy to prove that$Ya ,yb% and $ya ,yb%, $Ya ,Yb% satisfy the equations~3.5! and ~3.4!,
respectively. In other words, the following decompositions hold true:

$Ya ,yb%5 f ab
a ya , $ya ,yb%5 f ab

a Ya , $Ya ,Yb%5 f ab
c Yc . ~3.7!

An interesting fact is that theya andYa equipped with commutation relations~3.7! constitute the
superalgebra osp~2,1! ~for proof, see Appendix B!. Now we are able to write down the commu
tation relations of our algebra:

@D, PC#52PC , @D, Pv#522Pv , @D, KC#5KC , @D, Ku#52Ku , ~3.8!

@PC , PB#5W~Ci ,Bi !Pv , @KC , KB#5W~Ci ,Bi !Ku , ~3.9!
J. Math. Phys., Vol. 38, No. 2, February 1997
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@TY1, TY2#5T$Y1 ,Y2%
, ~3.10!

@TY , PC#5P$Y,C% , ~3.11!

@TY , KC#5K $Y,C% , ~3.12!

@Ku , PC#52KC , ~3.13!

@Pv , KC#5PC , ~3.14!

@PC , KB#5T$Ci ,Bi %
1W~Ci ,Bj !~

1
2d i j D1Ji j !, ~3.15!

where we introduce

W~Ci ,Bj ![CiBj82BjCi8 .

Note that due to Eq.~3.3!, theW does not depend onu.
Now we are going to prove that the algebra of commutators of~3.9!–~3.15! is isomorphic to

that of the usual conformal so~4,2! algebra. To do that we prefer to use the ‘‘tensor’’ form of t
algebra under consideration. First of all, let us write the general solution to~3.3! as follows:

Ci5C0i
1y11C0i

2y2, y65~y16 iy2!/AW,

whereC0i
6 are some constants whiley1 andy2 are real-valued solutions to~3.5!. For definiteness

we consider theW.0 case. Note that three independent solutions to~3.4! can be written in terms
of y6 as follows:

Y05y1y2, Y665~y6!2.

Then we introduce desired generators

Pi
65

]

]C0i
6 PC , Ki

65
]

]C0i
6 KC ,

Pu[TY0, J66[TY66.

Commutation relations between these elements can be readily derived from those of~3.9!–~3.15!.
The elements $D,Pv ,Ku%, $Pu ,J

66%, and Ji j form three commutative subalgebra
K[so~2,1!^so~2,1!^so~2!, respectively:

@D,Pv#522Pv , @D,Ku#52Ku , @Pv ,Ku#5D, ~3.16!

@J66,Pu#562iJ66, @J11,J22#54iPu . ~3.17!

All remainder elements, which areV[Pi
6 ,Ki

6, transform in their representations [V,K]PV:

@D,Pi
6#52Pi

6 , @D,Ki
6#5Ki

6 , ~3.18!

@Pi
6 ,Ku#5Ki

6 , @Ki
6 ,Pv#52Pi

6 , ~3.19!

@Pi
6 ,Pu#56 iPi

6 , @Ki
6 ,Pu#56 iKi

6 , ~3.20!

@J66,Pi
7#562iPi

6 , @J66,Ki
7#562iKi

6 , ~3.21!
J. Math. Phys., Vol. 38, No. 2, February 1997
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@Pi
6 ,Jjk#5d i j Pk

62d ikPj
6 , @Ki

6 ,Jjk#5d i j Kk
62d ikK j

6 , ~3.22!

and satisfy the following commutation relations between each other [V,V]PK:

@Pi
1 ,Pj

2#52id i j Pv , @Ki
1 ,Kj

2#52id i j Ku , ~3.23!

@Pi
6 ,Kj

7#5d i j Pu6 i~d i j D12Ji j !, ~3.24!

@Pi
6 ,Kj

6#5d i j J
66. ~3.25!

In other words, the algebra under consideration has the Cartan-like decomposition

G5VœK.

Before formulating our statement, let us decomposePi
6 andKi

6 into real pieces

Pi
65Pi7 iJv i , ~3.26!

Ki
656 iKi1Jui . ~3.27!

Now we are in a position to show explicitly an isomorphism between the algebra above an
elements of conformal so~4,2! algebra taken in the Lorentz basis. Our statement is that the
erators defined by

Pu5
1
2Pu1

1
4 ~J111J22!,

K v5
1
2Pu2

1
4 ~J111J22!,

~3.28!

D5
1

2
D1

i

4
~J112J22!,

Juv5
1

2
D2

i

4
~J112J22!,

Pv5Pv , Pi5Pi , Ku5Ku , K i5Ki ,

Jv i5Jv i , Jui5Jui , Ji j5Ji j ,

satisfy the familiar commutation relations of the so~4,2! algebra

@Jmn ,Jrs#5hmrJsn1••• , @D,Pm#52Pm ,

@Pm ,Jrs#5hmrPs1••• , @D,Km#5Km ,

@Km ,Jrs#5hmrKs1••• , @D,Jmn#50,

@Pm ,K n#5hmnD2Jmn , @Pm ,Pn#50, @Km ,K n#50,

where nonvanishing elements ofhmn are given byhuv5hvu51 andh i j52d i j . Making use of
~3.16!–~3.27!, this statement can be easily proved. For future reference let us describe how w
generators above with those taken in the six-dimensional frame. We introduceJAB , A,B5~m,5,6!,
as
J. Math. Phys., Vol. 38, No. 2, February 1997
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Pm5~J5m1J6m!/&, Km5~J5m2J6m!/&,
~3.29!

Jmn5Jmn , D5J56,

which satisfy the well-known commutation relations

@JAB ,JCD#5hACJDB1••• ,

wherehuv5hvu5h5552h1152h2252h6651.
Now we would like to write down the expressions for the spin parts of the conformal alg

elements. The procedure of evaluation is the same that we used for the spin parts of is
algebra~see Appendix A!. The result is given by

s~TA!5 1
2A9z iMVi1

1
2A8~D12MVU!,

s~KC!5„vCi82F~u!z i~zC!…MVi1CiMUi1~zC8!~D1MVU!1z iCj8Mi j ,
~3.30!

s~Ku!52 1
2F~u!z iz

2MVi1z iMUi1vD,

s~D !5D.

Let us comment on the expressions above. As is seen from~2.3!–~2.5! and~3.2! the little algebra
which leaves the pointx50 invariant is given by eleven elements that are six homogene
Lorentz transformationsMAB , dilatation D, and special conformal transformation
kA5(kU ,kV ,k i). The expressions~3.30! include onlyMAB andD parts. As usual, thekA part of
the conformal algebra can be obtained by considering the homogeneous so~4,2! transformations.
The result is given by

k~TA!5 1
2A9kV ,

k~KC!52F~u!~Cz!kV2~C8k!,

k~Ku!5kU2 1
2F~u!z2kV ,

wherekA transforms in vector representation of the so~3,1! algebra:

@kA , MBC#5hABkC2hACkB .

Note that@D,kA#50, while the commutator@D,MAB# can be read from~A1!, ~A2!, and ~2.11!.
Finally, the complete expressions for conformal generators read as

G5 l ~G!1s~G!1k~G!. ~3.31!

IV. MASSLESS FIELDS

A. Gauge invariant equations of motion

With conformal algebra at our hands we are ready to provide a constructive definitio
massless fields living in plane wave geometry. Notice from now on we restrict ourselves to
case because for this case only there exists a conserved energy Killing vector. By analog
Minkowski and de Sitter spaces we define plane wave geometry massless fields as those
wave equations are conformal invariant. Now let us construct relevant wave equations.

First of all let us collect results concerning the manifest expressions for isometry al
elements. From now on to simplify our expressions we shall putF51. Then making use~2.4! and
~3.3! one gets
J. Math. Phys., Vol. 38, No. 2, February 1997
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Pu5]u , Pv5]v , ~4.1!

Pi
65e7 iu~] i7 iz i]v7 iMVi!, ~4.2!

Ji j52z i] j1z j] i1Mi j . ~4.3!

From the commutation relations which satisfy the generators above@see~3.22! and ~3.23!# it is
readily seen that the algebra under consideration has the following Levy decomposition:

G5NœS,

whereS is a ‘‘semisimple’’ algebra so~2! spanned byJi j while N is a maximal solvable idea
~radical! spanned byPu ,Pv ,Pi

6. Note that theN is nothing but a six-dimensional Heisenbe
algebraH6. This fact can be readily seen from~3.20! and~3.23!. As is known, the Killing metric
for theH6 is degenerate. By analogy with the Poincare algebra one might replace it by a c
invariant symmetric nondegenerate bilinear form. In turns out that there exist two forms: th
form leads to the following second-order operator,

Q52PuPv2
1
2Pi

1Pi
22 1

2Pi
2Pi

1 , ~4.4!

and it is an analog ofp2, while the second form leads to

Ql5e i j Ji j Pv1 ie i j Pi
1Pj

2 , ~4.5!

which is the helicity operator@for definition of ei j , see~4.47!#.
To clarify the algebra structure from the point of view of space–time transformations, le

rewrite our algebra in terms ofPi andJv i @see~3.26!#:

Pi5cosu] i2sin uz i]v2sin uMVi , ~4.6!

Jv i5sin u] i1cosuz i]v1cosuMVi , ~4.7!

which satisfy the commutation relations

@Pi , Jjk#52d i j Pk1d ikPj ,

@Jv i , Jjk#52d i j Jvk1d ikJv j ,

@Pu , Jv i #5Pi , @Pi , Jv j #5d i j Pv ,

@Pu , Pi #52Jv i .

From the expressions~4.1!, ~4.6!, and~4.7! it is clear that the generators

Pu , Pv , Pi

do not leave pointxm50 invariant, while rotation generators~i.e., their orbital parts!

Ji j , Jv i

leave the pointxm50 invariant. In other words, the generatorsPu , Pv , andPi can be interpreted
as curved counterparts of translation elements of the Poincare algebra whileJi j and Jv i are
counterparts of the Lorentz subalgebra. In terms of these generators the first Casimir opera@see
~4.4!# reads as
J. Math. Phys., Vol. 38, No. 2, February 1997
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Q52PuPv2PiPi2Jv iJv i . ~4.8!

Now we are ready to discuss two possible definitions of masslessness based on con
algebra. The first definition is formulated as the following requirements on the wavefunctio

@G, Q#uF&50, ~4.9!

whereG are all of the elements of conformal algebra. The second definition actually is bas
so-called sim~3,1! algebra, which is the isometry algebra combined with dilatation~see Ref. 13!.
Since elements of isometry algebra commutate withQ, the second definition amounts to th
condition

@D, Q#uF&50, ~4.10!

which should, strictly speaking, be accompanied by certain things~see below!. Note that for the
case of Minkowski space–time the second definition describes all massless states provi
considerations of Poincare algebra representations. A surprising fact discovered in Ref. 14
the first definition describes all massless states only for the case of four-dimensional~d54!
Minkowski space–time. Namely, in Ref. 14 it was demonstrated that for the massless rep
tations of Poincare algebra ind.4 the first definition leads to so-called degenerate representa
which constitute only a subset of all massless states. This result for the case of massles
sentations of an anti-de Sitter algebra has been generalized in Ref. 15, i.e., it seems th
phenomena is an inherent feature of all massless fields irrespective of the manifolds whe
propagate. Since we are considering four-dimensional space–time we expect that the first
tion describes all massless representation, i.e., there are no restrictions on allowed value
Below, among other things, we will demonstrate that this is indeed the case.

Let us start with the second definition. Because of the relation@see~3.16!, ~3.18!, and~3.26!#

@D, Q#522Q,

we conclude that wave equation for massless fields must read

QuF&50. ~4.11!

As is known in four-dimensional space–time, all massless fields can be described by me
totally symmetric tensor fields, i.e., in terms of potentials. In this case to provide a com
description of massless fields the equation of motion~4.11! must be supplemented by correspon
ing gauge transformation and subsidiary conditions. Now we are going to establish such
tions and gauge transformation.

First of all, due to~4.1! and ~4.2! one has the following representation for the operatorQ:

Q52eUeV2eiei22z iMVieV2MViMVi , ~4.12!

where the dual formseA are given by~2.9!. Then we introduce the gauge transformation

duF&5Rua& ~4.13!

and postulate the following subsidiary conditions:

R̄uF&50 ~divergencelessness!, ~4.14!

āAāAuF&50 ~ tracelessness!, ~4.15!

āV
2 uF&50, ~4.16!
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where the operatorsR and R̄ are defined by

R[aADA , R̄[āADA , DA5eA
mDm ,

andDm is a Lorentz covariant derivative

Dm[]m1 1
2vm

ABMAB .

From ~2.8! it is readily seen thatDm5]m2dm
u z iMVi where a relevant representation forMAB is

given by ~A1!. The ua& in ~4.13! is a parameter of gauge transformation. If theuF& is a degree-s
monomial in the oscillatoraA , then theua& is a degree-~s21! monomial inaA . We impose onua&
the following equation of motion:

Qua&50 ~4.17!

and the subsidiary conditions

R̄ua&50 ~divergencelessness!, ~4.18!

āAāAua&50 ~ tracelessness!, ~4.19!

āVua&50. ~4.20!

Let us make a few comments on the gauge transformation and subsidiary conditions above
~4.14!, ~4.18!, ~4.15!, and ~4.19! these are nothing but familiar conditions of divergencelessn
and tracelessness respectively formulated on tangent space tensor fields. The conditions~4.16! and
~4.20! are less familiar. These can be rewritten in the following covariant fashion:

RABā
AāBuF&50, RABā

ADBua&50, ~4.21!

whereRAB52dA
UdB

U is the Ricci tensor in tangent space. Note that the second subsidiary con
from ~4.21! is equivalent to~4.20! provided]vua&Þ0.

Making use of~4.17!–~4.20! and commutation relations

@R, R̄#5Q12MViMVi ,

@R, Q#50, @R̄, Q#50,

@ āAāA , R#522R̄, @aAaA , R̄#52R,

one can make sure that gauge transformation~4.13! respects the equation~4.11! and subsidiary
conditions~4.14!–~4.16!.

Now we are going to prove the following main result of this subsection.
Proposition:Let the gauge parameterua& satisfy~4.17!–~4.20!. Then the equation~4.11! and

subsidiary conditions~4.14!–~4.16! supplemented by gauge transformation~4.13! describe the
uFtr

~0!& which ~1! depends only on transversal oscillatorai ; and~2! satisfies the equation of motio

h0uF tr
~0!&50 ~4.22!

and tracelessness condition in transversal directions

āi āi uF tr
~0!&50, ~4.23!

where in~4.22! h052eUeV2eiei is the second-order operator for massless scalar field
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h052]u]v2z2]v
22]2. ~4.24!

Note that~4.23! tells us that actually there are only two polarization degrees of freedom, w
~4.22! expresses the fact that these physical degrees of freedom satisfy the same equa
motion as the spinless~scalar! field. In these respects there is analogy with massless field
Minkowski space–time.

Proof: From ~4.16! and ~4.20! it follows

uF&5uF~0!&1aUuF~1!&, ~4.25!

ua&5ua~0!&, ~4.26!

where generating functionsuF~0!&, uF~1!&, andua~0!& are independent ofaU . Now substituting~4.25!
into ~4.11! we get foruF~0!& and uF~1!& the following equations of motion:

QuF~0!&12~z iaieV2aV1aiMVi!uF~1!&50, ~4.27!

QuF~1!&50. ~4.28!

By substituting~4.25! into ~4.13! we get the gauge transformations

duF~0!&5„aV~eU2z iMVi!2aiei…ua~0!&, ~4.29!

duF~1!&5eVua~0!&, ~4.30!

and by substituting~4.25! into ~4.14! and ~4.15! we obtain the constraints

~ āUeV2āiei !uF~0!&2~eU2z iMVi!uF~1!&50, ~4.31!

~ āUeV2āiei !uF~1!&50, ~4.32!

āi āi uF~0!&12āUuF~1!&50, ~4.33!

āi āi uF~1!&50. ~4.34!

By using~4.17!–~4.19! and~4.26! we repeat the procedure above forua~0!& and get the following
equation of motion and constraints:

Qua~0!&50, ~4.35!

~ āUeV2āiei !ua~0!&50, ~4.36!

āi āi ua~0!&50. ~4.37!

Now taking into account thatuF~1!& andua~0!& satisfy the same equations of motion@see~4.28! and
~4.35!# as well as the same constraints@see~4.32!, ~4.34!, ~4.36!, and~4.37!# we can, due to~4.30!,
impose the following light conelike gauge:

uF~1!&50. ~4.38!

By substituting the gauge~4.38! into ~4.33! and ~4.31! we get

āi āi uF~0!&50, ~4.39!
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~ āUeV2āiei !uF~0!&50. ~4.40!

Constraint ~4.39! tells us that uF~0!& is a traceless tensor with respect to transversal ind
i 1 ,...,i s . The solution to~4.40! can be written as

uF~0!&5expS 2
ei
eV

āiaVD uF tr
~0!&, ~4.41!

where subscript~tr! indicates the fact thatuFtr
~0!& depends only on the transversal oscillatorai . By

substituting~4.41! into ~4.39! we get~4.23!, while by substituting~4.41! and~4.38! into ~4.27! we
arrive at~4.22!. The proposition is proved.

In conclusion of this subsection let us note that helicity operatorQl from ~4.5! is realized on
uFtr

~0!& as follows:

QluF tr
~0!&5e i j M i j ]vuF tr

~0!&,

and as is easily seen takes two values equal to6lpv .

B. Light cone representation for conformal algebra

In this subsection by making use of the first definition we shall derive the expression
elements of conformal algebra acting as differential operators on the solution of~4.22! and defined
on a surface of initial conditionsu50. In other words we are going to investigate the complete
of equations which follows from~4.9!. As is well known, the complete set of equations is obtain
by performing double conformal boost, i.e., the complete set of equations is given by [G, Q] uF&
50 as well as†G,[G, Q] ‡uF&50. Note that the set of equations in question can be rewritten
form which is manifestly invariant with respect to conformal algebra:

TAB50, ~4.42!

where

TAB5$JAC ,JCB%1 1
3hABJCDJCD ,

where$a,b%[ab1ba. These equations we analyze on the surface of initial conditionsu50 and
make use of light conelike gauge

MVi50. ~4.43!

Note that we prefer to pass from wavefunctionF(u,v,z i) to its Fourier modes with respect tov,
i.e., in what follows we shall replace operator]v by 2ipv .

Again one has the equation of motion~4.11!, making use of which as well as~4.12! and~4.43!
we get on-mass shell condition

~]uF!uu505
i

2pv
~]22pv

2z2!F~pv ,z!.

Now making use of~3.28! and ~3.31! we are able to learn restrictions which impose~4.42! on
MAB , D, and kA . Because the analysis of Eqs.~4.42! is straightforward but very tedious, w
outline the procedure of solution and present the results.

FromT1V50 one gets

MUV5 1
2~12D!,
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while from T1 i50 we learn

MUi52
i

pv
Mi j ] j1

i

pv
] i .

Making use of these results we derive from equationsT2250, T2 i50, andT1250,

kV50, k i50, D51, ~4.44!

respectively, while fromT1 i50 one gets

kU5
i

2pv
M2, M2[Mi jM i j .

Now collecting all results above we get the following light cone representation for the gene
of conformal group acting on the wavefunction of plane wave geometry massless fieldsF~pv ,z!:

~6 !Pu5
i

2pv
]2, ~6 !Pv52 ipv , ~6 !Pi5] i ,

Ji j52z i] j1z j] i1Mi j , Jv i52 iz i pv , ~4.45!

Juv52 ivpv , Jui5v] i1
i

2pv
z i]

22
i

pv
Mi j ] j ,

~6 !Ku5vD1
i

4pv
z2]22

i

pv
z iM i j ] j1

i

2pv
M2, ~6 !K v52

i

2
z2pv ,

~6 !K i52z iD1 1
2z

2] i1Mi j z j , D52 ivpv1z j] j11.

Note that while writing the final representation~4.45! we have assigned1 and2 to particles and
antiparticles, respectively, and have putpv.0 for both particles and antiparticles. It should
emphasized that all analysis above is sensitive to space–time dimension because from the e
Ti j50 it follows

$Mik ,M jk%5d i j M
2. ~4.46!

It is the equation~4.46! that leads to degenerate representation in higher space–time dimen
d.4 ~see Refs. 14 and 15!. Fortunately, in four dimensions, due to relations

Mi j5 ie i jl, e i j52e j i , e1251, ~4.47!

the equation~4.46! does not impose of any restriction on helicity valuel.

C. Energy lowest value

In this subsection we are going to demonstrate one interesting phenomena of massles
in plane wave geometry. Namely we would like to show explicitly that~1! energy operator
iPu~iPuF5 i]uF) is bounded from below~above! for particles~antiparticles! and~2! it takes only
discrete values.

As we have shown physical degrees of freedom of massless arbitrary spin fields satis
equation
J. Math. Phys., Vol. 38, No. 2, February 1997
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~2]u]v2z2]v
22] i

2!F50. ~4.48!

First of all we introduce a radial variableh and anglef by

z5
Ah

2Aupvu
eif. ~4.49!

Note that in~4.49! we use the complex variablez given by~2.2!. Then we pass to Fourier mode
with respect tou, v, andf, i.e., we put

]uF52 ipuF, ]vF52 ipvF, ]fF5 ikF,

k50,61,62..., and use the substitution

F5e2h/2h uku/2v~h!. ~4.50!

As a result, one has a differential equation for degenerate hypergeometric function

hv91~g2h!v82av50, ~4.51!

where in~4.51! prime indicates partial derivative with respect toh while g anda are given by

g5uku11, a5 1
2~2pu sign pv1uku11!, ~4.52!

where signpv51~21! for pv.0 ~pv,0!. Solution to~4.51! is v5F~a,g,h!. It is straightforward
now verify ~see Ref. 16! that in order forF @see~4.50!# to be square-integrable, one should ta
a52n, wheren50, 1,... . For sucha thev is nothing but the generalized Laggere polynom
v5Ln

(uku)~h!. Now taking into account~4.52!, we arrive at the following spectrum forpu :

pu5sign pv~2n1uku11!. ~4.53!

Note that with to respect the dimensionfull parameterF we should multiply the rhs of~4.53! by
AF. The pv.0 corresponds to particles whilepv,0 corresponds to antiparticles. Note that
contrast to particles in Minkowski space–time, thepu does not reach zero value:

pv.0; min pu51,

pv,0; maxpu521.

In this respect plane wave geometry massless particles are similar to anti-de Sitter m
particles~see Refs. 17–19!. The analogy to de Sitter particles can be drawn further. First of
there exists vacuum stateuvac& defined byPi

2uvac&50. Second, leveln states can be obtained b
operating withPi

1 on the vacuum:Pi1
1 ...Pin

1uvac&. Note that making use of equationQuvac&50

and ~4.8! we immediately obtain the lowest energy value mentioned above.

V. LADDER REPRESENTATION

In this section we would like to make contact with Ref. 20. In Ref. 20~see also Ref. 21! it was
demonstrated that a chain of massless representations of Poincare algebra consisting of all
statesl50,61

2,61,... ~where every state appears just once! can be embedded into a ladder repr
sentation of u~2,2! algebra. We will demonstrate that the same chain of plane wave geom
massless states can also be embedded into the same ladder representation. As result we
to show explicitly the manner in which Minkowski and plane wave geometry massless field
related to each other.
J. Math. Phys., Vol. 38, No. 2, February 1997
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A second long-term motivation of our interest in ladder representation comes from r
progress in the problem of massless higher spin fields dynamics.22 Namely, for the case of anti-de
Sitter space–time in Ref. 22 it was demonstrated that to construct self-consistent interac
massless higher spin fields it is necessary, among other things, to introduce the chain anti-d
massless fields which consists of every spin just once. Due to that, it is strongly believe
ladder representations can get interesting applications in future studies of massless high
fields interactions and deserve further investigation.

Let us briefly describe how the ladder representation is constructed~for details, see Refs. 20
and 23!. Define the operator-valued four-component spinorw5~wa! and w̃5w*b5(w̃a),
a51,2,3,4, and impose the commutation relations

@wa, w̃b#5db
a , ~5.1!

where

b56g0 ~5.2!

andgm are Diracg-matrices subjected as usual to relation

$gm ,gn%52hmn , hmn5diag~1,21,21,21!.

The signs1 and2 in ~5.2! and below correspond to representations which are associated
particle or antiparticle, respectively. Now the ladder representation of u~2,2! is defined by

JAB5w̃ SABw, C15w̃w,

where

SAB5$Smn ,S5m ,S6m ,S56%,

Smn5
1

4
@gm , gn#, S565

i

2
g5 ,

S5m52
i

2
gm , S6m5

1

2
gmg5 .

Note thatSAB satisfy the same commutations relations asJAB . We use the following representa
tion for g-matrices:

gm5S 0 s̄m

sm 0 D , sm5~1,s i !, s̄m5~1,2s i !,

wheresi , i51,2,3, are usual Pauli matrices. Note thatsu,v are given bysu5~s01s3!/& and
sv5~s02s3!/&. Theg5 is defined byg55g0g1g2g3.

To carry out the reduction we should rewrite the elements of the u~2,2! algebra as differentia
operators acting on functions ofpv andzi . To do that let us consider the space of Hillbert spa
of finite norm functions where the norm is defined by

~ f ,g!5E d2z1d
2z2f ~z1 ,z2!g~z1 ,z2!. ~5.3!

Now we choose the following representation for operator-valued four-component spinorw
J. Math. Phys., Vol. 38, No. 2, February 1997
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w5S l
6t D , l5S ]z1

z̄2
D , t5S z̄1]z2

D , ~5.4!

where we introduce two-component spinorsl5~la! and t5~ta!, a51,2, which satisfy the com-
mutation relations

@la, tb* #5db
a , @ta, lb* #5db

a .

Due to ~5.3! we have the following involution rules (]/]z)*52]/]z andz*5 z̄, i.e.,

w̃5~t* ,6l* !, l*5~2] z̄1
,z2!, t*5~z1 ,2] z̄2

!.

Making use of~3.29! and ~5.4! we derive the following representation for elements of u~2,2!
algebra in Lorentz basis

~6 !Pm52
i

&

l*sml, ~6 !Km52
i

&

t* s̄mt,

Jmn5l*smnt1t* s̄mnl, D5 1
2 ~t* l2l* t!,

C15l* t1t* l,

which is very convenient for practical calculations. Making use of this representation we g
following expressions for generators:

~6 !Pu5 i]z1] z̄1
, ~6 !Ku5 i]z2] z̄2

, Juz52]z1] z̄2

~6 !Pv52 iz2z̄2 , ~6 !K v52 iz1z̄1 , Ju z̄ 5] z̄1
]z2,

~6 !Pz52 iz2]z1, ~6 !K z52 iz̄1] z̄2
, Jvz52 z̄1z2 ,

~6 !Pz̄ 5 i z̄2] z̄1
, ~6 !K z̄ 5 iz1]z2, Jv z̄ 5z1z̄2 ,

Juv52 1
2~z1]z11z2]z21] z̄1

z̄11] z̄2
z̄2!,

D5 1
2~z1]z12z2]z21] z̄1

z̄12] z̄2
z̄2!,

Jz z̄ 5 1
2~z1]z12z2]z22] z̄1

z̄11] z̄2
z̄2!,

C15z1]z11z2]z22] z̄1
z̄12] z̄2

z̄2 .

Now we link the variablespv andzi with z1 andz2 as follows:

z5 i
z1
z2
, pv5z2z̄2 , f5

i

2
ln
z̄2
z2
, pv.0, fP@0, 2p#,

where we again use the complex variablez given by~2.2! and introduce an additional variablef.
Note that in contrast to Minkowski space–time~see Ref. 20!, wherezi are linked with lightlike
momentumpm , in our casezi are linked with momentumpv as well as space coordinateszi . It is
clear that the functionf (z1 ,z2) can be rewritten as a certain function of new variab
F~pv ,z i ,f!:
J. Math. Phys., Vol. 38, No. 2, February 1997
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f ~z1 ,z2!5F~z i ,pv ,f!.

The corresponding measure from~5.3! in terms of new variables is given by

d2z1d
2z25pvd

2zdpvdf.

Making use of chain rules

]z15
i

z2
]z , ]z25

1

z2
S 2z]z1 ipvv2

i

2
]fD ,

and their analog for]/] z̄, one gets the following representations for generators acting on
functionsF(pv ,z i):

Ji j52z i] j1z j] i1
1
2e i j ]f , Jv i52 iz i pv , Juv52 ivpv ,

Jui5v] i1
i

2pv
z i]

22
i

2pv
e i j ] j]f ,

~6 !Ku5vD1
i

4pv
z2]22

i

2pv
z ie i j ] j]f1

i

4pv
]f
2 , ~5.5!

~6 !K v52
i

2
z2pv , ~6 !K i52z iD1 1

2z
2] i1

1
2e i j z j]f ,

D52 ivpv1z j] j11, C152 i]f22,

where in the last expressions we go back tozi @see~2.2!#. Note that forPm the results are the sam
as in~4.45!. Now expandF~pv ,z i ,f! in Fourier series with respect tof over the interval@0, 2p#:

F~pv ,z i ,f!5
1

A2p
(

l50,61/2,61,...
Fl~pv ,z i !e

2ilf. ~5.6!

Note that each term under sum in~5.6! transforms into an irreducible representation of u~2,2! for
which C1 is diagonal and takes the values

C152~l21!, l50,6 1
2,61,6 3

2,..., ~5.7!

where

]f52il. ~5.8!

By substituting~5.8! into ~5.5! and~4.47! into ~4.45! we take one and the same expression. Th
we have proved completely that by decomposing the ladder representation into irreducible
sentations of the u~2,2! algebra, we get a chain of plane wave geometry massless states
helicities displayed in~5.7! where each state is included just once. The corresponding norm is
decomposed into direct sum as

~F,G!5(
l
E pvdpvd

2zFl~pv ,z!Gl~pv ,z!.

At the end of this section we would like to demonstrate how Minkowski and plane w
geometry massless fields are related to each other. A reason for such an interrelation com
J. Math. Phys., Vol. 38, No. 2, February 1997
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the fact that chains of Minkowski as well as plane wave geometry massless fields realize th
commutation relations~5.1!. To demonstrate such interrelation explicitly let us recall one of
results of Ref. 20. In Ref. 20 it was shown that for the case of Minkowski massless fields
necessary to choose the following representation for operator-valued four component spinwMin

wMin5S lMin

6tMin
D , lMin5S z̄1z̄2D , tMin5S ]z1

]z2
D . ~5.9!

Please compare with our choice for the case of plane wave massless fields~5.4!. Now what needs
to be demonstrated is thatw andwMin are related by unitary transformation

w5UwMin ,

where the matrixUPU~2,2!-group, i.e., it should satisfy

U*bU5b.

Our statement is that such a intertwine matrix exists and is given by

U5S 0 0 61 0

0 1 0 0

61 0 0 0

0 0 0 1

D .
VI. CONCLUSION

We have constructed free equations of motion for plane wave geometry massless fie
arbitrary spin. We believe that this result can get interesting development and applications.
briefly outline the following obvious applications. First of all, the equations in question coul
easily generalized to five-dimensional plane wave geometry. Therefore, making use of the
dure of dimensional reduction, one could get a description of four-dimensional massive arb
spin fields. From this point of view this result can get applications in systematical analys
string massive states spectrum. Another interesting potential application our result can ge
problem of introducing an interaction into the theory of massless higher spin fields. Note th
the case of anti-de Sitter geometry this problem, at least at classical level, has been solved r
in Ref. 22. One can speculate that for the case of plane wave geometry higher massless sp
this problem also has a positive solution. Note that in Ref. 22 it was demonstrated that it
spectrum of anti-de Sitter massless states related to the u~2,2! algebra ladder representations th
lead to self-consistent interaction of anti-de Sitter massless higher spin fields. Therefor
strongly believed that our results related to ladder representations can also get interesting
cations in the problem of interaction of plane wave geometry massless higher spin fields. B
detailed investigation of these questions is too involved, we hope to study them in future
cations.
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APPENDIX A: SPIN PART OF CONFORMAL ALGEBRA

For the case of the vector field~s51!, the Lie derivative

LjF
m1 ,...,ms5jn]nFm1 ,...,ms2 (

k51

s

Fm1 ,...,n,...,ms]njmk

can be rewritten in terms ofFA @see~2.10!# as follows;

LjF
A5jm]mFA2eB

mFB]mjA1dV
AF~u!~jUz iF i2FUz ij i !,

where we introducej A5em
Ajm. Now it is clear how the last expression can be generalized to

case of arbitrary rank tensor field. Making use of generating function@see~2.12!#, the Lie deriva-
tives can be written as

LjuF&5GuF&,

where

G5jm]m1eA
m]mjBaBā

A1aVz iF~u!~2jUāi1j i āV!.

The first term on the rhs corresponds to the orbital part and shall be denoted byl (G), while the
rest is called as spin part and shall be denoted bys(G). Now we are going to rewrites(G) in a
more invariant manner, namely in terms ofMAB @see~2.14!# which, in a space of totally symmet
ric tensor fields~2.12!, has the following representation:

MAB52aAāB1aBāA . ~A1!

Making use of~3.1! one can make sure that the following relations hold true:

]vj
i5] ij

U, eU
m]mjV52F~u!z ij i , ]vj

U50,

and

2eU
m]mj i1] ij

V5z ijU, eU
m]mjU1]vj

V5 1
2 ~¹j!.

With the help of these relations and~A1!, the expression fors(G) can be rewritten as

s~G!52]vj
VMVU1„] ij

V2F~u!z ijU…MVi1]vj
iMUi1

1
4~¹j!~D12MVU!2 1

2] ij jM i j ,

where

D52aVāU2aiāi . ~A2!

Note that while derivings(G) we taken into account only~3.1!. Taking into account equations fo
isometry Killing vector“mjn1“njm50 we arrive at~2.13!. It is clear that the last representatio
for s(G) is valid not only for totally symmetric tensor fields, but for those of arbitrary symme
as well.

APPENDIX B: SUPERALGEBRA OSP (2,1)

In this Appendix we prove the following interesting statement: ifya andYa are independen
solutions of the equations~3.5! and~3.4!, respectively, then the algebra~3.7!, where the brackets
are defined by~3.6!, is isomorphic to superalgebra osp~2,1!. To prove the statement we choose t
following solutions of Eq.~3.4!:
J. Math. Phys., Vol. 38, No. 2, February 1997
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Y15y1
2, Y25y2

2, Y35y1y2 . ~B1!

For such a choice ofYa the determinant of Eq.~3.4! is equal to22W3, whereW is a determinant
of ~3.5!:W 5 y1y28 2 y2y18 . Note thatW5const. Becauseya form independent solutions of~3.5!,
i.e.,WÞ0, theYa in ~A1! also form independent solutions of Eq.~3.4!. Now the statement can b
proved by direct calculation. Actually, making use of~B1! and ~3.6!, it is easy to derive the
following commutation relations:

$J0 ,J6%56J6 , $J1 ,J2%522J0 , ~B2!

$J6 ,R7%57R6 , $J0 ,R6%56 1
2 R6 , ~B3!

$R6 ,R6%5J6 , $R1 ,R2%5J0 , ~B4!

where the notationJ05Y3/W, J15Y2/W, J25Y1/W, R15y2 , andR25y1 has been used. Th
relations ~B2!–~B4! are nothing but the commutation relations of osp~2,1! superalgebra. The
statement is proved.
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Fermion determinants and effective actions
C. Mukku
Department of Mathematics and Statistics, School of Mathematics and Computer/
Information Sciences, University of Hyderabad, Hyderabad-500 046, India

~Received 18 February 1994; accepted for publication 17 September 1996!

Configuration space heat-kernel methods are used to evaluate the determinant and
hence the effective action for a SU~2! doublet of fermions in interaction with a
covariantly constantSU~2! background field. Exact results are exhibited that are
applicable toany Abelian background on which the only restriction is that
(B22E2) andE•B are constant. Such fields include the uniform field and the plane
wave field. The fermion propagator is also given in terms of gauge covariant
objects. An extension to include finite temperature effects is given and the prob-
ability for creation of fermions from the vacuum at finite temperature in the pres-
ence of an electric field is discussed. ©1997 American Institute of Physics.
@S0022-2488~97!01102-X#

I. INTRODUCTION

Effective actions are the one tool that allow us to probe for quantum effects in a manne
mimics classical studies. It has grown into an important tool since its most famous and pe
one of the first examples—that of the Euler–Heisenberg Lagrangian obtained by ‘‘integ
out’’ the fermions in QED.

However, the impetus to study effective actions did not come until the work of Schwinge
DeWitt. Schwinger,1 in his inimitable style, constructed the effective action for QED usin
powerful and elegant technique, frequently referred to as the proper-time method.
Schwinger worked in flat space, DeWitt2 generalized his techniques to curved spaces and rel
the method to the heat equation. For the first time Schwinger had not only rederived the E
Heisenberg Lagrangian but went on to find the effective action for QED in the presence
plane-wave background field.

More recently, the method was revived by Shore,3 who formalized the ideas of Brown an
Duff4 with the techniques of Schwinger to enable the calculation of effective actions for
Abelian gauge theories with covariantly constant background fields. We shall have more
about such fields in the paper. Shore’s work has also been generalized to include the eff
finite temperature.5 It has also been shown6 how the method enables one to find the effect
actions for the electroweak theorySU(2)L3U(1)Y . However, all these have dealt with only th
bosonic sectors of the gauge theories and fermionic contributions have been neglected. T
exception being Ref. 7, where it was shown that the method could be applied to fermions b
zero and at finite temperatures equally well. However, Ref. 7 dealt with fermions transfor
under an adjoint representation of SU~2! with an eye to applicability to supersymmetric theorie

More recently, there has been a resurgence of interest in the study of quantum fie
external backgrounds both at zero and finite temperatures.8 In this paper, we consider a doublet o
fermions transforming under the fundamental representation of SU~2! and interacting with a SU~2!
Yang–Mills background gauge field. The heat-kernel method is applied to find the exact p
gator and effective action contributions coming from vacuum polarization effects of the ferm
á la Euler–Heisenberg for the SU~2! gauge fields satisfying a covariant constancy condition.
0022-2488/97/38(2)/668/14/$10.00
668 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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II. PROPAGATORS, EFFECTIVE ACTIONS, AND HEAT KERNELS

Given a differential operatorD(x,y), the corresponding heat equation is given by

E dz D~x,z!G ~z,y;s!52
]G

]s
, ~1!

where the kernelG (x,y,s) is required to satisfy the following boundary condition:

lim
s→01

G ~x,y;s!5d~x,y!, ~2!

d(x,y) being the Dirac delta function. The propagator or Green’s functionG(x,y) for the operator
D(x,y) is obtained by a simple proper time (s) integration,

G~x,y!5E
0

`

dsG ~x,y;s!. ~3!

Of course, it is understood that the kernelG (x,y;s) and the Green’s functionG(x,y) will carry all
the indices that the operatorD(x,y) carries.

Effective actions upto one loop quantum effects are related to functional determinan
operators obtained by considering quadratic fluctuations in the classical fields. More precise
one loop effective action is obtained by a Legendre transformation of the generating function
the connected Green’s function.9 The standard formula for fermions is

G~A!5 ln detD, ~4!

whereG[A] is the effective action functional andA the background field~s!. This dependence on
the background field~s! comes, of course, from the operatorD(x,y), which contains the back
ground field~s! A.

Formal manipulations on ln detD can be carried out to yield

G@A#5 ln detD52Tr E
0

` ds

s
G ~x,y;s!. ~5!

This formula holds as long as the operatorD has no zero eigenvalues. Traditionally, one exclud
such zero modes from consideration to evaluate the effective action and later includes their
through collective mode methods. For the purposes of this paper, we assumeD has no zero
eigenvalues. Equations~3! and ~5! tell us that to evaluateG(x,y) andG[A], all we require is a
solution to the heat equation~1!. This is where the power of the proper-time or heat-kernel met
is manifest. Before we proceed to findG (x,y;s), we have to note that in Eq.~5!, Tr denotes a
composite trace a´ la DeWitt; it is a trace over both discrete labels carried byG (x,y;s) as well as
its continuous indices; in particular,

trx,yE
0

` ds

s
G ~x,y;s!5E dnxE dny dn~x,y!E

0

` ds

s
G ~x,y;s!. ~6!

III. DETERMINANTS FOR DIRAC OPERATORS

In this section, we shall examine the particular Dirac operator that concerns us. Notation
conventions can be found in the Appendix. The particular form of the Dirac equation we con
is

~gmDm1m!c~x!50. ~7!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The Dirac propagatorS(x,y), satisfies

~gmDm1m!S~x,y!5d~x,y!. ~8!

Since the spinorc(x) is in reality a doublet,c i(x); i51,2, we must have

„~gmDm! i j1md i j …Sjk~x,y!5d ikd~x,y!, ~9!

having made the ‘‘internal’’ SU~2! indices explicit. For the rest of the paper, all indices will
suppressed unless otherwise required. The Dirac operator and the Laplacian have been
extensively in the mathematical literature. The spectrum of the Laplacian has been used
information on the geometrical properties of manifolds~‘‘can one hear the shape of a drum?’!
while the Dirac operator on manifolds has given topological information through the Atiy
Singer index theorem and its generalizations.10 Here we shall solve our problem for the determ
nant of the Dirac operator by converting it into a study of the covariant Laplacian. From Eq~8!
we can write

S~x,y!5~gmDm1m!21d~x,y!, ~10!

implying

S~x,y!52~gmDm2m!@2~g•D !21m2#21d~x,y!. ~11!

The Green’s functionG(x,y) for the covariant Laplacian,

D5„2~g•D !21m2
…, ~12!

is defined by

„2~g•D !21m2
…G~x,y!5d~x,y!. ~13!

By using the properties of theg matrices and

@Dm ,Dn#52 igFmn , ~14!

given theDm5]m2 igAm , Fmn5]mAn2]nAm1 ig[Am ,An], we find

D5„2~D !21 1
2g~s•F !1m2

…, ~15!

where

smn5
i

2
@gm ,gn# ~16!

ands•F5smnFmn . Equation~13! now takes the following form:

„2~D !21 1
2g~s•F !1m2

…G~x,y!5d~x,y!. ~17!

The associated heat equation may be written down as

S 2~D !21
1

2
g~s•F !1m2DG ~x,y;s!52

]

]s
G ~x,y;s!. ~18!

From Eqs.~3! and ~5!, it is clear that a solution of~18! will give us both the effective action a
well as the Green’s function and hence the Dirac propagator through Eq.~10!. While it is easy to
J. Math. Phys., Vol. 38, No. 2, February 1997
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exponentiate the constant mass term in~18!, the ‘‘magnetic moment’’ term~s•F!, requires a
different approach. A perturbative solution is possible through the trace of the heat kerne
coefficients of the series are known to be invariants of the underlying manifold. In our case,
invariants include invariants of the gauge field. This particular method has been used exte
for studying gravitational interactions.2,11 Following the ideas of Refs. 12 and 3, we impose
condition on the background field. Since we do not wish to break the gauge symmetry
background field, we shall impose a gauge covariant condition:

DmFnr50. ~19!

For an Abelian gauge field, this condition would imply a constancy of the background
However, for non-Abelian gauge fields,~19! implies that only an Abelian component survive
being gauged away to zero through a gauge transformation.3 Equations~18! and ~19! admit the
following solution:

G ~x,y;s!5
s2n/2

~4p!n/2
F~x,y!expH 2

1

4
~x2y!m„gF cot~gsF!…mn~x2y!nJ

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J expH 2

1

2
gs~s•F !2m2sJ , ~20!

where

F~x,y!5P expH igE
x

y

Am~z!dzmJ ~21!

is a path-dependent phase factor with the line integral being taken over the straight line pat
x to y. It ensures the correct gauge properties for the kernelG (x,y;s). From~5! we see thatG[A]
is then given by

G@A#52
1

2
TrE

0

` ds

s

s2n/2

~4p!n/2
F~x,y!expH 2

1

4
~x2y!m„g,F cot~gsF!…mn~x2y!nJ

3expH 2
1

2
tr ln@~gsF!21sin~gsF!#J expH 2

1

2
gs~s•F !2m2sJ . ~22!

From Eq.~20!, it is clear that

lim
s→0

G ~x,y;s!5 lim
s→0

s2n/2

~4p!n/2
expH 2

1

4s
~x2y!2J , ~23!

which shows that indeedG (x,y;s) satisfies the boundary condition as required since the exp
sion on the rhs in~23! is just the Gaussian representation of the Dirac delta function. It is also
that the asymptotic series one usually adopts for the heat kernel when dealing with ar
background fields has been ‘‘summed up.’’13 Such a summing up has been made possible by
covariant constancy condition given in~19!, implying that all derivative terms in the asymptot
series are put to zero. In the next section we shall consider the trace over Dirac indices in~22!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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IV. DIRAC TRACES

Equation~22! has three sets of indices that need to be traced over; they are Lorentz, in
gauge group, and Dirac spinor indices. As far as the spinor indices are concerned, only on
contains them. The calculation is much easier if we carry out the traces over the spinor i
first. Let us write

D~s!5trD exp$2 1
2gs~s•F !%, ~24!

where trD denotes a trace over the Dirac spinor indices. Noting that

1
2$smn ,sab%5dmadnb2dmbdna1 i emnabg5 , ~25!

where$,% denotes the anticommutator. We can therefore write

~ 1
2s•F ! i j

25 1
2~F

2! ı1
1
2g5~F*F ! i j , ~26!

whereF25FmnFmn ;F*F5( i /2)FmnemnabFab . SinceFmn is a non-Abelian gauge field, makin
the group indices explicit, we haveFmn5Fmn

a Ta, where (Ta) i j are the fundamental representatio
matrices of SU~2! satisfying

@Ta,Tb#5 i eabcT, ~27!

and we chooseTa5 1
2s

a, wheresa,a51,2,3, are the Pauli matrices~see the Appendix!. Equation
~26! reduces to

~ 1
2s•F ! ı

2 5 1
2$~Fmn

a Fmn
b !1g5~Fmn

a
*Fmn

b !% 1
4~sasb! ı j . ~28!

Using obvious symmetry properties of this expression, we have

~ 1
2s•F ! i j

252~F21g5F̄
2!mmd i j , ~29!

where the following gauge invariant quantities,

~F2!mn5 1
4~Fms

a Fsn
b ! ~30!

and

~ F̄2!mn5 1
4~Fmn

a
•Fsn

b ! ~31!

have been defined. Finally, since the eigenvalues ofg5 are6i , we can write the eigenvalues of th
operator~ 12s•F! as

~ 1
2s•F ! ı8 56 i tr~F26 i F̄ 2!1/2d ı j ~32!

and

D~s!5trD exp$2 1
2gss•F%5d ı j4R cosh$ igs@ tr~F26 i F̄ 2!#1/2%, ~33!

whereR stands for ‘‘real part of.’’ This completes the purpose of this section—that of evalua
the trace over the Dirac spinor indices. In the next section we shall go on to consider the oth
sets of discrete indices—Lorentz and group.
J. Math. Phys., Vol. 38, No. 2, February 1997
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V. LORENTZ AND GROUP INDEX TRACES

To carry out traces over the Lorentz and group indices, we notice first that objects such aFmn
a

carry both Lorentz and group indices. A method has thus to be devised allowing us to disen
these two sets of indices. This is in general made possible through the definition of proj
operators. Two projection operators have already been introduced for precisely such a purp
the group that we are dealing with: SU~2!. The first is3

Rmn
i j 5„d i jdmn2~F2!ms

21Fsl
i Fln

j
…. ~34!

The second is7

Qi j
mn5„d i jdmn2~F26 i F̄ 2!21

ms~Fsl
i Fln

j 6 i *Fsl
i Fln

j !…. ~35!

It is easy to verify that both of these are projection operators:

Rms
i j Rsn

jk 5Rmn
ik ~36!

and

Qms
i j Qsn

jk 5Qmn
ik , ~37!

where two simple consequences of the covariant constancy condition are utilized:

@Fmn ,Fab#505@Fmn ,*Fab#. ~38!

However, these two projection operators rely on the fact that the representation matric
adjoint representation matrices. We have to consider what happens when the matrices ar~2!
fundamental representation matrices. SinceDmFab50 implies that [Fmn ,Fab]50, we have that

Fmn
a Fab

b 5Fab
b Fmn

a , ~39!

and therefore consider

~F2!mn i j5Fml
a Tik

a Fln
b Tk j

b . ~40!

SinceTi j
a are SU~2! fundamental representation matrices,

Ti j
a5 1

2s i j
a , ~41!

it is easy to see that

~F2!mn i j5
1
4Fml

a Fln
b d i j1

1
8Fml

a Fln
b @sa,sb# i j . ~42!

From Eq.~39! we see that the second term on the rhs is zero. Therefore we write

~F2!mn i 5~F2!mnd i j ; ~43!

we notice that the group indices have been separated rather trivially from the Lorentz in
There is clearly no need to define any projection operator here. We may, for convenience
write

~F2!mnı j5~F2!msPsn
i j , ~44!

where
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Pmn
i j 5d ı jdmn , ~45!

and clearly, it follows that

~F2n!mn i j5„~F2!ms
n
…Psn

i j ; n>1. ~46!

The required simplifications now follow:

exp$2 1
2tr ln@~gsF!21sin~gsF!#% i j5exp$2 1

2tr ln@~gsF!21 sin~gsF!#%d i j ~47!

and

~gF cot gsF! i j
mn5~„gF cot~gsF!…mn!d i j . ~48!

Therefore

exp$2 1
4~x2y!m„gF cot~gsF!…mn

i j ~x2y!n%5d i j exp$2 1
4~x2y!m„gF cot~gsF!…mn~x2y!n%,

~49!

whereF is the square root of the matrixF2. We should note here that this particular expone
„gF cot(gsF)… appears multiplied by factors of (x2y), implying that its contribution to the
effective action or the propagator vanishes upon tracing over thex,y indices. However, at finite
temperature, its contribution would be nonzero and the result in Eqs.~48! and~49! would be useful
then. This completes our discussion on the traces over the Lorentz and group indices. In th
section we shall make explicit the effective actionG[A].

VI. EFFECTIVE ACTIONS, ETC.

We have seen that the effective action for our SU~2! fundamental fermions in interaction wit
a covariantly constant SU~2! gauge field can be written as

G@A#52
1

2
Tr E

0

` ds

s

s2n/2

~4p!n/2
F~x,y!expH 2

1

4
~x2y!m„gF cot~gsF!…mn~x2y!nJ

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J expH 2

1

2
gs~s•F !2m2sJ . ~50!

Using the results of the last two sections on Dirac, Lorentz, and group traces along with E~6!,
we find

G@A#52
1

2
trgroupE dnxE

0

` ds

s

s2n/2

~4p!n/2
R cosh$ igs@ tr~F21 i F̄ 2!#1/2%

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J exp$2m2s%. ~51!

Before proceeding, we must remember that any quantum calculation involves the appeara
infinities and therefore a process of regularization and renormalization has to be carried o
know that the proper-time method is an ‘‘invariant regularization’’ method1 and so we need only
worry about subtracting the infinities in~51!. It is well known that in the proper-time integration
the traditional UV~UltraViolet! infinities arise in the limit ofs→0 while IR ~InfraRed! infinities
arise at the upper limit of the integration:s→`, i.e., the short distance behavior is given bys→0
and the behavior at large scales is given bys→`. In this paper, we shall not worry about th
infinities or their structure. They have been well studied in the literature, and while they are u
J. Math. Phys., Vol. 38, No. 2, February 1997
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for the study of renormalization properties, we are more interested in the finite structure
effective actions. To this end, we simply extract the infinities in the proper-time integration of~51!
and subtract the terms from the integrand, leaving a finite expression forG[A]. Note that the mass
term in the exponent in~51! tells us that there will be no divergent terms in the integrand fors→`;
hence no IR divergences. While in four dimensions~n54!, in the limit of s→0, divergences will
arise from terms that are, at most, quadratic ins. Therefore, expanding the integrand in powers
s and subtracting terms up tos2, we find a finiteG[A]; we shall carry out these subtractions at t
end. Using~47! we can write~51! in a form where the group indices are explicit:

G@A#52
1

2
trgroupE

0

` ds

s E dnx
s2n/2

~4p!n/2
4R cosh$ igs@ tr~F21 i F̄ 2!#1/2%d i j

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J exp~2m2s!. ~52!

Therefore

G@A#52E
0

` ds

s E dnx
s2n/2

~4p!n/2
~53!

34R cosh$ igs@ tr~F21 i F̄ 2!#1/2%

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J exp~2m2s!. ~54!

Now, we are required to find the eigenvalues ofF2 in order to expressG[A] in terms of the two
Abelian gauge invariants:

F 15
1
4Fmn

a Fmn
a ~55!

and

F 25
1
4Fmn

a
*Fmn

a . ~56!

Since an Abelian group admits only these two invariants, the fact that our non-Abelian
satisfying the covariant constancy condition~19! and hence~38! tells us that we shall also hav
only these two invariant Lorentz scalars appearing. The eigenvalues ofF2 ~and hence ofF̄2! are3

f652F 16AF 1
21F 2

2, ~57!

with each eigenvalue occurring with a degeneracy factor of 2. It follows then that

expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J 5

g2s2Af1Af2

sin~gsAf1!sin~gsAf2!
, ~58!

where

Af65
i

&

@~F 11 iF 2!
1/26~F 12 iF 2!

1/2#, ~59!

or
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expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J 5

g2s2F 2

T cosh~gsX!
, ~60!

with

X252~F 11 iF 2!, ~61!

and T denoting the ‘‘imaginary part of.’’ Noting that trF252F 1, and igsA@ tr(F21 i F̄ 2)#
52gsX, we can finally write

G@A#52
1

2 E dnxE
0

` s2n/2

~4p!n/2
4HR cosh~gsX!S 2g2s2F 2

T cosh~gsX! D J exp~2m2s!. ~62!

In writing the final expression, we have cheated just a little. Because we have the du
Fmn ,*Fmn appearing inG[A], the space–time dimension must be four so that*F is also a two
form along withF. Also, as early as Eq.~25!, because of the appearance ofg5 and emnab , we
should have putn54. The reason we have not done so at that stage is that for the case of a
magnetic background field,F 250 and soG[A] can live in space–time dimensions>4—after the
Dirac traces are done. However, notice that we do not really need to go ton dimensions~usually
done for regularizing purposes! because regularization has been affected by the proper-time
as long as the proper-time integration is carried out last.1 For zero field, the fermions are free an
therefore the effective action must go to zero. Thus, in four dimensions,

G@A#52
1

4p2 E
0

`E d4xH g2s2F 2S R cosh~gsX!

T cosh~gsX! D21J exp~2m2s!. ~63!

Comparing this with the expression obtained by Schwinger@Eq. ~3.44! of Ref. 1# shows the
changes brought about by going to a non-Abelian group, SU~2! and its fundamental represent
tion, from the QED result. One may say that Eq.~62! is for SU~2! QCD, what Schwinger’s resul
is for U~1! QED and we see that for covariantly constant fields, the contribution from the do
is simply twice the QED result. In some sense, a decoupling has taken place. To conclu
section, let us consider the UV infinities ofG[A]: Expanding the integrand arounds50 and
retaining terms that lead to divergences, we find the following:

2
1

6p2 E
0

`

g2
ds

s
Te2m2s. ~64!

Adding the classical Lagrangian to the one-loop effective Lagrangian, we write the final res
the following form:

G@A#52H 11
g2

6p2 E
0

` ds

s
e2m2sJ F 12

1

4p2 E
0

` ds

s3
e2m2s

3H g2s2F 2S R cosh~gsX!

T cosh~gsX! D 212
2

3
g2s2F 1J . ~65!

In the next section we shall find the propagators for the fermions using our results for the
kernel before proceeding to consider finite temperature effects.
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VII. PROPAGATORS

In this section we shall exhibit the propagator for our SU~2! doublet fermions using the
relationship between the Green’s function for the Laplacian and the propagator exemplifi
Eqs.~3!, ~10!, and~11!,

S~x,y!52~gmDm2m!E
0

`

ds G ~x,y;s!. ~66!

SinceDmFab50, it is easy to show3 thatDmF(x,y) is given by

DmF~x,y!5
i

2
Fml~x!F~x,y!~x2y!l5

i

2
F~x,y!Fml~y!~x2y!l . ~67!

Therefore the propagator is simply

S~x,y!5E
0

` s2n/2

4p)n/2 Fm2
i

2
gmFmn~x!~x2y!n2

1

2
~gF cot gFs!mn~x2y!nGF~x,y!

3expH 2
1

4
~x2y!m~gF cot gsF!mn~x2y!nJ

3expH 2
1

2
tr ln@~gsF!21sin~gsF!#J expH 2

1

2
g~s•F !s2m2sJ . ~68!

Note that this is the exact propagator for SU~2! fundamental fermions in an external SU~2! gauge
field satisfying the covariant constancy condition~19!. In addition, since we have seen that the
is a simple separation of the group and Lorentz indices,S(x,y) can be reduced to

S~x,y!5E
0

` s2n/2

4p)n/2 Fm2
i

2
gmFmn~x!~x2y!n2

1

2
~gF cot gFs!mn~x2y!nG

3F~x,y!
g2s2F 2

T cosh~gsX!
expH 2

1

4
~x2y!m~gF cot gsF!mn~x2y!nJ

3expH 2
1

2
g~s•F !s2m2sJ . ~69!

This is as much of a simplification as one can achieve without further specialization o
background fields~such as to a purely magnetic field!. In the next section, we shall extend o
considerations to include finite temperature effects using the imaginary time formalism.

VIII. FINITE TEMPERATURE EFFECTS

After the pioneering work on finite temperature effects in gauge theories,14 there has been a
resurgence of interest in the subject in recent years. On the one hand, nonequilibrium phen
are being tackled while equilibrium thermodynamics is being applied~through both the imaginary
and real time formalisms! to the study of QED and QCD plasma formations. This has become
important, as the progress in the study of heavy-ion collisions holds promise of new develop
leading to a better understanding of the structure of matter in extreme environments.

In this paper, we shall apply the imaginary time formalism as modified for applicab
through the heat kernel,7,5 to find the finite temperature corrections to the effective action
J. Math. Phys., Vol. 38, No. 2, February 1997
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configuration space, the heat-kernel method can be generalized to include finite tempera
fects through the method of images and the finite temperature heat kernel,G b(x,y;s) is con-
structed from the zero temperature kernel,G (x,y;s) as follows:5

G b~x,y;s!5 (
p52`

`

~21!pG ~x2plb,y;s!, ~70!

where ~21!p ensures the correct boundary conditions for the fermions,b51/kT, with k being
Boltzmann’s constant andl is a unit vector in the time direction. The generalization of the ln
is straightforward and is given by

ln detbD52Tr E
0

` ds

s
G b~x,y;s!52Tr (

p52`

`

~21!pE
0

ds

s
G ~x2plb,y;s!, ~71!

while the Green’s function is given as

Gb~x,y!5E
0

`

dsG b~x,y;s!5E
0

`

ds (
p52`

`

~21!pG ~x2plb,y;s!. ~72!

From Eq.~20! it is easy to see that

G b~x,y;s!5
s2n/2

~4p!n/2 (
p52`

`

F~x2plb,y!expH 2
p2b2

4
lm„gF cot~gsF!…mnlnJ

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J expH 2

1

2
gs~s•F !2m2sJ . ~73!

In this expression, the phase factorF(x2plb,y) is the only term that needs to be dealt with
little care, as it leads to nonequilibrium situations along with a loss of gauge covariance. F
special case of purely magnetic fields, however, it reduces to unity. At this stage, for simp
we shall impose a second condition on the background field by requiring

F~x2plb,y!51. ~74!

A brief discussion of the consequences of such a restriction has been given in Ref. 5 while
detailed analysis may be found in Ref. 15, where they argue~for the case of QCD! that periodic
configurations for which this condition does not hold, contribute negligibly to the effective ac
For our purposes, it is sufficient to assume that this additional condition holds and we note th
only term that is affected by the finite temperature corrections is the term conta
„gF cot(gsF)…, the term that drops out of the zero temperature effective action. In particula
Dirac spinor index traces will be identical to the zero temperature case. Thus, as the finit
perature effective action,Gb[A] is given by

Gb@A#52
1

2
Tr E

0

` ds

s

s2n/2

~4p!n/2 (
p52`

`

expH 2
p2b2

4
lm„gF cot~gsF!…mnlnJ

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#J expH 2

1

2
gs~s•F !2m2sJ , ~75!

we can carry out the Dirac traces, and simplifying the expression, we find
J. Math. Phys., Vol. 38, No. 2, February 1997
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Gb@A#52
1

2
Tr E

0

` ds

s

s2n/2

~4p!n/2 (
p52`

`

4R cosh$ igs@ tr~F21 i F̄ 2!#1/2%

3expH 2
1

2
tr ln@~gsF!21 sin~gsF!#2m2sJ . ~76!

For the group index traces, we see from Eq.~48! that

@lm„gF cot~gsF!…mnln# i j5d i j @lm„gF cot~gsF!…mnln#5d i j „gF cot~gsF!…00. ~77!

Hence,

Gb@A#52
1

4p2 E
0

` ds

s3 E d4x (
p52`

`

expH 2
p2b2

4
„gF cot~gsF!…00J

3~R cosh$ igs@ tr~F21 i F̄ 2!#1/2%!H g2s2Af1Af2

sin~gsAf1!sin~gsAf21!
J e2m2s. ~78!

The evaluation of„gAF2 cot(gsAF2)…00, can be carried out either by constructing the diagona
ing matrix or by noting thatF, F2, and „gAF2 cot(gsAF2)…00 are all diagonalized by the sam
diagonalizing matrix. Simple matrix algebra then gives

„gF cot~gsF!…005~gAF2 cot~gsAF2!!005E2
cot~gsAf2!2cot~gsAf1!

~Af22Af1!
, ~79!

where we notice that the expected loss of covariance has taken place with an appearanc
electric field. Unfortunately, due to the appearance of singular structures, it is not possi
deduce the result in the case of a purely electric or purely magnetic field from that given i
~78! for the general case. We can return to the expression in Eq.~49! along with the result from
~58! to find that for either a pure magnetic or pure electric field, we can write

„gF cot~gsF!…005gAf1 cot~gsAf1!, ~80!

and of course, in the limit of a zero field, this reduces to~1/s!, as it should. Let us conclude thi
section by examining the singular structure of the integrand inGb[A] for the case of a purely
electric background field. For the case of a purely electric background field, the integrand
effective actionGb[A] has a termgE cot(gsE) as in the case of Ref. 1. The singularities therefo
lie at proper timessn5np/gE. Normally ~as at zero temperature!, this would lead to an imaginary
contribution toG[A]. But for nonzero temperatures, we notice that we have an exponent w
nonzero contribution. Therefore, we have the interesting result that for a purely electric
ground field, the imaginary part of the effective action gets an additional exponential factor.
are some fermionic systems in 211 dimensions that seem to show signals of a phase trans
from zero to nonzero temperatures.16 A more detailed analysis of the exponent in Eq.~78! with its
temperature dependence is needed for a better understanding of the behavior of the doubl
presence of a general covariantly constant background field. Further work on this aspect
paper is under progress. For the purposes of this paper, this completes the study of finite te
ture corrections. In the next section we shall present our conclusions along with prospe
future work and associated applications.
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e used
nt
form
both
ator in
finite
result
where
ture,
d study

high-
reover,
more

sed in

680 C. Mukku: Fermion determinants and effective actions

¬¬¬¬¬¬¬¬¬¬
IX. CONCLUSIONS

In this paper we have shown how the Euclidean configuration space heat kernel can b
to find the effective Lagrangian for SU~2! doublet fermions interacting with a covariantly consta
SU~2! Yang–Mills field. The result is exact and mimics that of Schwinger. Since both a uni
field and a plane-wave field satisfy the covariant constancy condition, our result holds for
these background configurations. We have also been able to write down the exact propag
such backgrounds by virtue of having a closed form solution of the heat equation for
temperature through the imaginary time formalism and the method of images, has yielded a
that suggests a phase transition. For a purely electric background field, we have a situation
the probability for pair creation from the vacuum, while being nonzero at zero tempera
vanishes for nonzero temperatures. This warrants further investigation and a more detaile
is in progress. The most important future work we envisage is to utilize the SU~2! propagators to
study SU~2! QCD plasma formations. Since much experimental work is being focussed on
energy collisions and the quark–gluon plasma. Such studies would be most relevant. Mo
from a gauge theoretic point of view, the calculations presented in this paper point toward a
complete analysis of effective actions for unified gauge theories such asSU(2)L3U(1)Y .

APPENDIX: NOTATIONS AND CONVENTIONS

In this Appendix, we give a set of consistent notations and conventions that have been u
the text. The Dirac matrix algebra satisfies

$gm ,gn%52dmn ; mn50,1,2,3. ~A1!

Braces signify an anticommutator:$a,b%5ab1ba. While

gm
251; gm

†5gm ; m50,1,2,3 ~A2!

and

g i5S 0 s i

s i 0 D ; i51,2,3, ~A3!

where

s15S 0 1

1 0D ; s25S 0 2 i

i 0 D ; s35S 1 0

0 21D ~A4!

are the Pauli matrices. We also define

g05S I 2 0

0 2I 2
D ; I 25S 1 0

0 1D ; ~A5!

and

g55 ig0g1g2g3 ; g5
†52g5 ; g5

2521. ~A6!

This implies thatg5 has~6i ! as eigenvalues with multiplicity two. Defining

smn5
i

2
@gm ,gn#, ~A7!

it is easy to establish that
J. Math. Phys., Vol. 38, No. 2, February 1997
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1
2$smn ,sab%5dmadnb2dmbdna1 i emnabg5 . ~A8!

Last, the SU~2! algebra is chosen to satisfy the following Lie bracket:

@Ta,Tb#5 i eabcTc; a,b,c,51,2,3, ~A9!

while the generators of the fundamental representation are chosen to be

Ta5 1
2 sa, a51,2,3. ~A10!
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Prepotentials of N52 SU(2) Yang–Mills theories coupled
with massive matter multiplets

Yűji Ohta
Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-Hiroshima
739, Japan

~Received 12 August 1996; accepted for publication 10 September 1996!

We discussN52 SU(2) Yang–Mills gauge theories coupled withNf(52,3) mas-
sive hypermultiplets in the weak coupling limit. We determine the exact massive
prepotentials and the monodromy matrices around the weak coupling limit. We also
study that the double scaling limit of these massive theories and find that the
massiveNf21 theory can be obtained from the massiveNf theory. New formulae
for the massive prepotentials and the monodromy matrices are proposed. In these
formulae,Nf dependences are clarified. ©1997 American Institute of Physics.
@S0022-2488~97!01601-0#

I. INTRODUCTION

Non-perturbative properties of four dimensionalN52 supersymmetricSU(2) Yang–Mills
gauge theory was discussed by Seiberg and Witten.1,2 One of the important discoveries in the
investigations was the fact that the quantum moduli space of theN52 SU(2) Yang–Mills theory
coupled with or withoutNf hypermultiplets could be identified with the moduli spaces of cert
elliptic curves which controlled the low energy properties. They could determine the exac
pressions for the monopole and dyon spectrum and the metric on the quantum moduli space
approach was extended to, for example, the other gauge theory with or without matters.3–8 In Ref.
9, the quantum moduli space ofN52 SU(2) Yang–Mills theories coupled with mass-less hyp
multiplets was studied, but our knowledge of the massive theories is poor in contrast with th
of the mass-less theories. Of course Seiberg and Witten qualitatively discussed these m
theories in Ref. 2, but we cannot say that we have enough quantitative understanding o
massive theories because the quantitative analyses on them have not ever been sufficiently
out.

For this reason, we discussed the simplest massive theory, i.e.,Nf51 theory, in the weak
coupling limit as an instructive example.10 In Ref. 10, we did not discuss the other asymptotic fr
theories, i.e.,Nf52 and 3, because there were several technical obstacles in the computati
the periods. However, for the massiveNf51, we could find the exact prepotential and the mon
dromy matrix by using Picard–Fuchs equation.10 We observed that the Picard–Fuchs equat
was a third order differential equation. Its solutions could not be expressed by a hypergeo
function in contrast with the mass-less theory but they gave interesting information for the m
Nf51 theory. For example, theNf50 theory can be regarded as a low energy version of
massiveNf51 theory2 and it must be obtained from the massiveNf51 theory in the double
scaling limit, but we could explicitly show how the massiveNf51 theory flowed to theNf50
theory by using those solutions. On the other hand, since the massiveNf51 theory can be
regarded as a low energy theory of the massiveNf52 theory, we are sure that the results of R
10 can be obtained from the massiveNf52 theory in the double scaling limit. In general, th
massiveNf21 theory can be considered as a low energy theory of the massiveNf theory.
Therefore in order to determine the general structure of these massive gauge theories, w
extend the results of Ref. 10. For these reasons, we discuss the massiveNf52 and 3 theories in
the weak coupling limit in this paper. In the text, we mainly discuss the massiveNf52 theory
0022-2488/97/38(2)/682/15/$10.00
682 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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because all mathematical expressions in the massiveNf53 theory are lengthy. Therefore, w
summarize the results for the massiveNf53 theory in Appendix C.

The paper consists of the following sections. In section II, we derive the Picard–Fuchs
tion of the massiveNf52 theory and its solutions in the weak coupling limit. The order of
differential equation is three as well as that of the massiveNf51 equation. We discuss th
monodromy around the weak coupling limit in the end of this section. The monodromy matri
be arranged to 333 matrix due to the order of the differential equation. In addition to this, we
see that the monodromy matrix should be quantized by the winding numbers for the residu
derive the prepotential and instanton contributions for it in section III. The double scaling lim
this theory is discussed in section IV. We can find that the instanton expansion coefficients
prepotential completely coincide with those of Ref. 10 in the double scaling limit. Finally, se
V is a summary. We summarize our results as some useful formulae forN52 SU(2) Yang–Mills
gauge theories weakly coupled withNf (Nf50,...,3) matter multiplets. In particular, gener
formulae of the two periods of the meromorphic one-form, the monodromy matrices and the
prepotentials are proposed. We emphasis thatNf dependences are clarified by these results.

II. Nf52 PICARD–FUCHS EQUATION

Quantum moduli space of theN52 SU(2) Yang–Mills theory coupled with two massiv
hypermultiplets can be described by the following hyperelliptic curve,

y25S x22u1
L2
2

8 D 22L2
2~x1m1!~x1m2!, ~2.1!

and the meromorphic one-form8

l25
A2xdx
4p iy F ~x22u1L2

2/8!~2x1m11m2!

2~x1m1!~x1m2!
22xG , ~2.2!

whereu is the gauge invariant parameter,m1 andm2 are masses of the hypermultiplets andL2 is
a dynamically generated mass scale of the theory. We can also describe the sameNf52 theory by
an elliptic curve.2

This curve has four branching points. In the weak coupling limit (u→`), they will behave as

x152
L2

2
2Au1

1

Au
F2

L2
2

16
1

L2

4
~m11m2!G1

L2

16u
~2m11m2!

21•••,

x252
L2

2
1Au1

1

Au
FL2

2

16
2

L2

4
~m11m2!G1

L2

16u
~2m11m2!

21•••,

~2.3!

x35
L2

2
2Au1

1

Au
F2

L2
2

16
2

L2

4
~m11m2!G2

L2

16u
~2m11m2!

21•••,

x45
L2

2
1Au1

1

Au
FL2

2

16
1

L2

4
~m11m2!G2

L2

16u
~2m11m2!

21••• .

We can take the cuts to run counter-clockwise fromx3 to x1 asa-cycle and fromx3 to x4 as
b-cycle. The intersection number isaùb51. We can regard the curve as a genus one Riem
surface.

The period integrals ofl2 are defined by
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



he
extra’’

selves
d

en-

extra
y should

ss
-
an find

assive
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a2~u!5 R
a
l2 , ~2.4!

aD
2 ~u!5 R

b
l2 . ~2.5!

Herea2(u) is identified with the scalar component of theN51 chiral multiplet andaD
2 (u) is its

dual.1,2 In the mass-less theory, the abovea andb constitute canonical homology bases of t
torus, but in the massive theory they should be replaced with loops so as to enclose the ‘‘
poles corresponding tox52m1 ,2m2. We will often useP25rgl2, whereg is a suitable one-
cycle on the curve, as a representative of the periods.

It is more convenient to study the Picard–Fuchs equation than the period integrals them
in order to see the behaviour nearu5`. The massiveNf52 Picard–Fuchs equation is a thir
order differential equation which is given by

d3P2

du3
1S D28

D2
2
8D2

B2
D d2P2

du2
2
16

D2
SC22

A2D2

B2
D dP2

du
50, ~2.6!

where

A252L2
628L2

4@3~m1
21m2

2!2u2m1m2#1256u2~m1
21m2

222u!

132L2
2@2u214m1

2m2
2114m1m2u2~m1

21m2
2!~3u16m1m2!#,

B258L2
4264L2

2m1m21256@3u~m1
21m2

2!22u224m1
2m2

2#,

C25L2
424L2

2@3~m1
21m2

2!24u212m1m2#132@3u~m1
21m2

2!26u222m1
2m2

2#, ~2.7!

D2532@3~m1
21m2

2!24u#,

D25L2
8248L2

6m1m2216L2
4@27~m1

41m2
4!236u~m1

21m2
2!18u216m1

2m2
2#

1512m1m2L2
2@9u~m1

21m2
2!210u228m1

2m2
2#14096u2~m1

22u!~m2
22u!

andD285dD2 /du. HereD2 coincides with the discriminant of the curve. Equation~2.6! can be
obtained from the massiveNf53 Picard–Fuchs equation in the double scaling limit. See App
dix C. Note that~2.6! does not show any symmetry over theu-plane. From~2.6! and~2.7!, we can
easily find that this differential equation has regular singular points corresponding toD250 and
B250. We are also interested in the property near the discriminant loci which correspond to
mass-less states, but the calculations near such singuralities are not so easy, although the
be discussed elsewhere.

When both of the hypermultiplets have zero mass,~2.6! exactly reduces to

~L2
4264u2!

d2P2

du2
216P250. ~2.8!

We set the integration constant to zero because~2.8! can be directly obtained using mass-le
meromorphic one-form. The globalZ2 symmetry over theu-plane is now recovered. This sym
metry can appear when and only when both of the matters are mass-less. Therefore we c
that the masses play a role to break the global symmetry. Equation~2.8! was studied in Ref. 9.

The reader may notice that the order of~2.6! is three whereas that of~2.8! is two. The
mathematical background of this fact was discussed in Ref. 10 in the case of the m
J. Math. Phys., Vol. 38, No. 2, February 1997
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685Yűji Ohta: Prepotentials of SU(2) Yang–Mills with matters

¬¬¬¬¬¬¬¬¬¬
Nf51 theory, so we briefly state here only the essence. First, recall that the massive merom
one-form has extra simple poles corresponding tox52m1 and 2m2. Since an operation o
differentiating overu and integrating overx reduces the order of poles by one, the reduction w
require one step more than the mass-less case whenl2 is massive. Therefore the order of~2.6! and
~2.8! differs by one. For more complete treatment, see Refs. 10 and 11.

Next, let us try to calculate the solutions to~2.6!. In order to accomplish it in the wea
coupling limit, we introducez51/u. We find that the solutions to the indical equation for~2.6! are
0, 21/2,21/2 ~double roots!. The solutionr0(z) corresponding to the index 0 is some consta
e2 which may depend onL2 , m1 andm2,

r0~z!5e2 . ~2.9!

At first sight, this constant solution is trivial but it is important and has non-trivial meanings in
massive theory, as was explicitly shown in Ref. 10. In fact, this corresponds to the re
contributions ofl2 and we can rewrite~2.9! as

r0~z!5 linear combination ofn1 andn2 , ~2.10!

wheren1 andn2 are residues ofl2. These constants will be determined in the comparison of
lower order expansion of the period integrals with fundamental solutions to the Picard–
equation. On the other hand, there are two independent solutions corresponding to the
21/2. One of them is

r1~z!5z21/2(
i50

`

a2,i z
i , ~2.11!

where the first several expansion coefficientsa2,i are given in Appendix A. We find thata2,n can
be represented by a polynomial ofL2

2im1
j m2

k with 2n52i1 j1k, where i , j , and k are non-
negative integers. Herer1 coincides with a hypergeometric function in the mass-less limit.9 The
other solution behaves logarithmic. It is

r2~z!5r1~z!ln z1z21/2(
i51

`

b2,i z
i , ~2.12!

where the first several coefficientsb2,i are given in Appendix B;b2,n can also be represented by
polynomial ofL2

2im1
j m2

k with 2n52i1 j1k as well. Note that these polynomials are actua
homogeneous and have obviousZ2 symmetry, i.e., invariance underm1↔m2.

We can express the periods~2.4! and ~2.5! as a linear combination ofr0 , r1 and r2 by
comparison with the lower order expansion of the period integrals. The results will be

a2~u!5
r1~z!

A2
1n1n11n2n2 , ~2.13!

aD
2 ~u!5Ar2~z!1Br1~z!1n18n11n28n2 , ~2.14!

where

A52
iA2
2p

, B5
iA2
2p

~2214 ln 21p i22 ln L2!,
~2.15!

J. Math. Phys., Vol. 38, No. 2, February 1997
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n152
A2
4
m1 , n252

A2
4
m2.

We have identifiedn1 andn2 in the comparison. Both of the periods are now ‘‘quantized’’ by t
winding numbersni andni8 . This fact is characteristic to massive theories.

To end this section, let us comment on the monodromy. From~2.13! and~2.14!, we can easily
find that the monodromy matrixM2,̀ aroundu5` acts to the column vectorv25

t(aD
2 ,a2 ,e2) as

v2→M2,̀ •v2, i.e.,

S aD
2

a2

e2
D→S 21 2 m2

0 21 2

0 0 1
D S aD

2

a2

e2
D , ~2.16!

wheree25n1n11n2n2 andm252(n182n1)/n152(n282n2)/n2. Note that in the mass-less lim
we can easily recover the monodromy of the mass-lessNf52 theory.9

Finally, since the residue contributions can appear also in the periods near the regular s
points, the monodromy matrices near them will be quantized as well. Of course mass-less t
do not have such residue contributions, so we can conclude that the monodromy matrix
quantized, in general, only in massive theories.

III. PREPOTENTIAL

We can obtain the prepotentialF 2 from the relation

aD
2 5

dF 2

da2
. ~3.1!

For that purpose, we should expressaD
2 as a series ofa2. However, sincea2 has constant terms

it is convenient to useã25a22n1n12n2n2 as a new variable. ThenaD
2 will be expanded as

aD
2 5n18n11n28n21A2ã2~B2A ln 222A ln ã2!1

A

A2 H 1

2ã2
~m1

21m2
2!2

1

6144ã 2
3 @3L2

4

1384L2
2m1m22256~m1

41m2
4!#1

1

30720ã 2
5 @45L2

4~m1
21m2

2!1256~m1
61m2

6!#1•••J .
~3.2!

Therefore the prepotential will be

F 25 i
ã 2

2

p F12 lnS ã2L2
D 21S 211

ip

2
1
5

2
ln 2D 2

A2p

4i ã2
~n18m11n28m2!

2
ln ã2

4ã 2
2 ~m1

21m2
2!1(

i52

`

F i
2ã 2

22i G , ~3.3!

where the first few coefficients of the prepotential are given by

F 2
252

L2
4

8192
1

1

96
~m1

41m2
4!2

L2
2

64
m1m2 ,
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
F 3
25

3L2
4

16384
~m1

21m2
2!1

1

960
~m1

61m2
6!, ~3.4!

F 4
252

5L2
8

268435456
1

1

5376
~m1

81m2
8!2

5L2
6

393216
m1m22

5L2
4

32768
m1
2m2

2 .

We find that these expansion coefficients have the same structure asa2,n or b2,n . In the mass-less
limit, we can easily recover the result of Ref. 9.

The reader may notice that this massive prepotential contains a curious term proportio
(m1

21m2
2)ln ã2, but we can observe that

F s
25(

i51

2 S ã22 mi

A2D
2

lnS ã22 mi

A2D 1(
i51

2 S ã21 mi

A2D
2

lnS ã21 mi

A2D
5~m1

21m2
2!S ln ã21

3

2D 14ã 2
2 ln ã22

m1
41m2

4

24ã 2
2 2

m1
61m2

6

240ã 2
4 1•••. ~3.5!

Therefore we can rewrite~3.3! as

F 25 i
ã 2

2

p F12 lnS ã2L2
D 21S 211

ip

2
1
5

2
ln 2D 2

A2p

4i ã2
~n18m11n28m2!1 ln ã2

1
3

8ã 2
2 ~m1

21m2
2!2

1

4ã 2
2
F s

21(
i52

`

F̃ i
2ã 2

22i G , ~3.6!

where

F̃ 2
252

L2
4

8192
2

L2
2

64
m1m2 ,

F̃ 3
25

3L2
4

16384
~m1

21m2
2!, ~3.7!

F̃ 4
252

5L2
8

268435456
2

5L2
6

393216
m1m22

5L2
4

32768
m1
2m2

2 .

IV. DOUBLE SCALING LIMIT

In this section, we discuss the double scaling limit (m2→`,L2→0, m2L2
25L1

3 fixed) of the
massiveNf52 theory. We may scalem1 instead ofm2, holdingm1L2

2 fixed. Since the low energy
theory of the massiveNf52 can be regarded as the massiveNf51 theory,2 we can check the
consistency of our calculation by the double scaling limit. Discussions on the double scaling
for the massiveNf51 theory, i.e., reduction from the massiveNf51 to theNf50 theory, can be
found in Ref. 10.

First, let us discuss the Picard–Fuchs equation~2.6!. In the double scaling limit, coefficient
~2.7! will be

A2→A2dsl564m2
2
•~4u223m1L1

3!,

B2→B2dsl564m2
2
•~12u216m1

2!,

C2→C2dsl532m2
2
•~3u22m1

2!, ~4.1!
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
D2→D2dsl532m2
2
•3,

D2→D2dsl5216m2
2
•@27L1

6232m1L1
3~9u28m1

2!2256~m1
2u22u3!#.

We can rewrite these coefficients to more convenient forms

A2dsl5264m2
2A1 , B2dsl5264m2

2B1 , C2dsl5232m2
2C1 ,

~4.2!
D2dsl5232m2

2D1 , D2dsl5216m2
2D1 ,

whereA1, etc., are the coefficients of the massiveNf51 Picard–Fuchs equation. See Appendix
It is interesting to note thatA2dsl, etc., arem2

2 multiples ofA1, etc., respectively. From~4.2!, we
find that ~2.6! in the double scaling limit reduces to

d3P2

du3
1S D18

D1
24

D1

B1
D d2P2

du2
2
32

D1
SC12

A1D1

B1
D dP2

du
50. ~4.3!

This looks like the Picard–Fuchs equation for the massiveNf51 theory.10 However, since it is
unclear whetherP2 always reduces toP1, the period integral of the massiveNf51 theory, there
is no assurance that the solutionP2 to ~4.3! equals toP1 exactly.

In fact, l2 in the double scaling limit will behave as

l2→
A2xdx
4p i ỹ

Fx22u

2 S 1

x1m1
1

1

x1m2
D22xG

5
A2xdx
4p i ỹ

F x22u

2~x1m1!
22x1

x22u

2m2
S 12

x

m2
1••• D G

5l11
A2xdx
4p i ỹ

•

x22u

2m2
S 12

x

m2
1••• D , ~4.4!

whereỹ 25(x22u)22L1
3(x1m1) is the curve for the massiveNf51 theory andl1 is its mero-

morphic one-form. We find thatl2 in the double scaling limit consists ofl1 and an extra
one-form. Of course, this extra one-form underm2→` vanishes, but we can expect that dive
gences related to largem2 should appear in our solutions because we have calculated all quan
under the premise thatL2 ,m1 andm2 are finite. However we can drop the divergences beca
the heavy quark can be integrated out in taking the double scaling limit.2 Then,P2 in ~4.3! will be
equal toP1 up to irrelevant divergences.

For example, for the residue contributions, we can eliminate ‘‘n2’’ which depends onm2

while keepingn1. We can show thata2 in the double scaling limit coincides witha1, the corre-
sponding period in the massiveNf51 theory. This fact means thata2 does not receive any effect
originated from the extra one-form. On the other hand, the effects are non-trivial foraD

2 . In order
to extract them, it is better to rearrange it bya2. Namely, we will be able to divideaD

2 into the
convergent part and the divergent one. For that purpose, it is convenient to use~3.2!. Then we can
actually see that the expansion coefficients in the double scaling limit are a sum of the finit
and the divergent one. Since this divergence depends only onm2, we can eliminate it. In this case
aD
2 coincides with the corresponding periodaD

1 of the massiveNf51 theory. In fact, we can easily
find that we can obtainaD

1 if we drop them2 dependences of~3.2! and rewrite it as a series o
u, but the constantsA and B which correspond to the initial conditions for the Picard–Fuc
equation should be replaced with those of the massiveNf51 theory.10
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¬¬¬¬¬¬¬¬¬¬
Dropping these divergences and integratingaD
2 over ‘‘a1’’ to obtain the prepotential in the

double scaling limit, we find that the instanton expansion coefficients are

F̃ 2
2→2

1

64
L1
3m1 , F̃ 3

2→
3L1

6

16384
, F̃ 4

2→2
5L1

6m1
2

32768
. ~4.5!

These are nothing other than the instanton expansion coefficients of the massiveNf51 theory!10

The other asymptotic leading terms coincide with those of the massiveNf51 after the replace-
ment ofA andB, we do not write them down here. These can be easily obtained from~5.4! with
Nf51 ~see below!. In this way, we can obtain the prepotential of the massiveNf51 theory.

V. SUMMARY

We have studied the moduli space ofN52 SU(2) Yang–Mills gauge theory coupled with
Nf52,3 massive matter multiplets and clarified the relation between the massive theorie
double scaling limit. Though we have mainly stated on the massiveNf52 theory in the previous
sections, by using the results in Appendix C and Refs. 5 and 10, we can write the periods
massiveNf (Nf 5 0,...,3) theory as

aNf
~u!52

A2
4 (

i51

Nf

nimi1
1

2
A2uF11(

i51

`

aNf ,i
~LNf

42Nf ,m1 ,...,mNf
!u2 i G ,

~5.1!

aD
Nf~u!52

A2
4 (

i51

Nf

ni8mi1 i
42Nf

2p
ãNf

~u!lnS u

LNf

2 D 1Au(
i50

`

aDi
~LNf

42Nf ,m1 ,...,mNf
!u2 i ,

whereaNf ,i
(LNf

42Nf ,m1 ,...,mNf
) andaDi

(LNf

42Nf ,m1 ,...,mNf
) are homogeneous polynomials o

order 2i and are invariant under the obviousZNf
symmetry. Then, from~5.1! we can easily find

that the monodromy matricesMNf ,`
’s around u5` act to the column vectorsvNf

5 t(aD
Nf ,aNf

,eNf
) asvNf

→MNf ,`
•nNf

and are given by

MNf ,`
5S 21 42Nf mNf

0 21 2

0 0 1
D , ~5.2!

whereeNf
5n1n11•••1nNf

nNf
, mNf

52nNf
8 /nNf

2(42Nf). The non-trivial relations among the

winding numbers are

Nf51

Nf52

Nf53

•••

n1n285n2n18 ,

n1n2n385n1n28n35n18n2n3 .

~5.3!

As for the prepotentialsF Nf
, we have established that they are given by the following sim

formulae,

F Nf
5 i

ã Nf

2

p FNf21

4
lnS ãNf

LNf
D 2

1F 0
Nf2

A2p

4i ãNf

(
i51

Nf

ni8mi1
Nf

2
ln ãNf

1
1

4ã Nf

2 S 32(i51

Nf

mi
22F s

Nf D
1(

i52

`

F̃ i
Nf~LNf

42Nf ,m1 ,...,mNf
!ã Nf

22iG , ~5.4!
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¬¬¬¬¬¬¬¬¬¬
where

F s
Nf5(

i51

Nf S ãNf
2
mi

A2D
2

lnS ãNf
2
mi

A2D 1(
i51

Nf S ãNf
1
mi

A2D
2

lnS ãNf
1
mi

A2D , ~5.5!

and F 0
Nf ’s are some calculable constants independent ofLNf

and mi . Here we have used

ãNf
5aNf

2(n1n11•••1nNf
nNf

). Note thatF̃ i
Nfs are homogeneous polynomials.

Finally, we comment on some open problems. Though we have restricted ourselves with
discussions in the weak coupling limit, it is important to quantitatively investigate in the st
coupling region. However, since there are many technical obstacles to accomplish it in the m
theories, it may be useful to do it by using some integrable systems.12,13If the investigations in the
strong coupling region are done, we will be able to sufficiently understand the properties of
massive asymptotic free gauge theories. In addition to this, we should also check whethe
formulae can be obtained by some field theoretical method.
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APPENDIX A: EXPANSION COEFFICIENTS (I)

The first several coefficients ofr1 are

a2,051,

a2,150,

a2,252
1

1024
~L2

4164L2
2m1m2!,

a2,35
3L2

4

1024
~m1

21m2
2!,

a2,452
15L2

4

4194304
~L2

41256L2
2m1m214096m1

2m2
2!, ~A1!

a2,55
35L2

6

2097152
~m1

21m2
2!~3L2

21128m1m2!,

a2,652
105L2

6

4294967296
@L2

613072L2
2~m1

41m2
4!1576L2

4m1m2136864L2
2m1

2m2
21262144m1

3m2
3#.

APPENDIX B: EXPANSION COEFFICIENTS (II)

The first several coefficients ofr2 are

b2,15
1

2
~m1

21m2
2!,

b2,25
1

3072
@3L2

41256~m1
41m2

4!#,

b2,35
m1
21m2

2

30720
@15L2

41960L2
2m1m211024~m1

42m1
2m2

21m2
4!#,
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¬¬¬¬¬¬¬¬¬¬
b2,45
1

58720256
@91L2

8271680L2
4~m1

41m2
4!11048576~m1

81m2
8!23584L2

6m1m2

1917504L2
2~m1

5m21m1m2
52L2

2m1
2m2

2!#, ~B1!

b2,55
m1
21m2

2

377487360
@1935L2

82215040L2
4~m1

41m2
4!14194304~m1

81m2
8!

1687360L2
6m1m213440640L2

4m1
2m2

214194304~m1
4m2

42m1
2m2

62m1
6m2

2!

13932160L2
2~m1m2

51m1
5m22m1

3m2
3!#,

b2,65
1

283467841536
@1793L2

12217554944L2
8~m1

41m2
4!2103809024L2

4~m1
81m2

8!

2297792L2
10m1m212214592512L2

2~m1
9m21m1m2

9!2146792448L2
8m1

2m2
2

11453326336L2
4~m1

6m2
21m1

2m2
6!22860515328L2

6m1
3m2

32272498688L2
6~m1m2

51m1
5m2!

12147483648~m2
121m1

12!#.

APPENDIX C: RESULTS OF THE MASSIVE Nf53 THEORY

In this appendix, we summarize the results for the massiveNf53 theory. We use the sam
notations as in the text, unless we mention otherwise.

In this theory, its quantum moduli space can be described by the following hyperelliptic c

y25F~x!22G~x!, ~C1!

and the meromorphic one-form,

l35
A2xdx
4p iy FF~x!G8~x!

2G~x!
2F8~x!G , ~C2!

where

F~x!5x22u1L3Sm11m21m3

8
1
x

4D ,
~C3!

G~x!5L3~x1m1!~x1m2!~x1m3!.

The prime denotes the differentiation overx. Four branching points of~C1! in the weak coupling
limit are given by

x15
L3

8
1Au1

AL3

2
u1/41

AL3

4u1/4Sm11m21m31
L3

16D1
L3

16Au
~m11m21m3!1•••,

x25
L3

8
1Au2

AL3

2
u1/42

AL3

4u1/4Sm11m21m31
L3

16D1
L3

16Au
~m11m21m3!1•••,
~C4!
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¬¬¬¬¬¬¬¬¬¬
x35
L3

8
2Au1 i

AL3

2
u1/42

iAL3

4u1/4 Sm11m21m31
L3

16D2
L3

16Au
~m11m21m3!1•••,

x45
L3

8
2Au2 i

AL3

2
u1/41

iAL3

4u1/4 Sm11m21m31
L3

16D2
L3

16Au
~m11m21m3!1•••.

Then the two periods ofl3 are defined by

a3~u!5 R
a8

l3 , aD
3 ~u!5 R

b8
l3 , ~C5!

where a and b are loops which may enclose the ‘‘extra’’ poles corresponding
x52m1 ,2m2 ,2m3. We can identify the canonicala-cycle with a loop which encloses the tw
branching points fromx4 to x1 counter-clockwise and the canonicalb-cycle with a loop from
x1 to x2 as well.

UsingP35rgl3, whereg is a suitable one-cycle on the curve, we can obtain the mas
Nf53 Picard–Fuchs equation

d3P3

du3
1S D38

D3
2
4D3

B3
D d2P3

du2
2
256

D3
SC32

A3D3

B3
D dP3

du
50, ~C6!

where

A35L3
4K1~K32L11S1!12048u2~3u21N222uK2!

14L3
3@22K5210S1K212S1N112L322H41u~K31L1118S1!#

1256L3@2u3K126S1N214S2K112u2~K31L1212S1!2u~3L313S1N1214S1K2!#

132L3
2@25u2K21u~2K4118N226S1K1!26L412S1K312S1L126S2#,

B354K2~L3
2u116L3S11128u2!18N2~L3

2296u!2S1~L3
31192L3u!

2256~u324S2!28L3
2K4 ,

C35L3
3~K31L1116S1!18L3

2~2K426K1S1116N229uK2!

1512~11u322S226u2K213uN2!

164L3@23L323u2K1112S1K21u~4K314L1242S1!23S1N1#,

D35K2~L3
21256u!248L3S12192~u21N2!,

D3521048576~u51L3S3!232L3
5S1K214096u2~L3

21256K2!

1L3
6~K422N2!26144L3

3S1~2K41N2!212288L3
2~9N412S2K2!

1128L3
4~2K6213S223L4!1u3@32768L3

2K21131072~11L3S128N2!#

1u2@2048S1~211L3
31512S1!2128L3

4K221310720L3S1K2

28192L3
2~4K4123N2!#1u@64L3

5S1126624L3
3S1K2

11179648L3S1N21256L3
4~4N22K4!116384L3

2~5S219L4!#,
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¬¬¬¬¬¬¬¬¬¬
Si5~m1m2m3!
i , Ki5m1

i 1m2
i 1m3

i ,
~C7!

Li5m1
i ~m2

21m3
2!1m2

i ~m3
21m1

2!1m3
i ~m1

21m2
2!,

Ni5~m1m2!
i1~m2m3!

i1~m3m1!
i ,

H45m1
4~m21m3!1m2

4~m31m1!1m3
4~m11m2!.

In the double scaling limit (L3→0, m3→`, L3m35L2
2 fixed), they will be

A3→A3dsl58m3
2A2 , B3→B3dsl52m3

2B2 ,

C3→C3dsl516m3
2C2 , D3→D3dsl522m3

2D2 , ~C8!

D3→D3dsl5256m3
2D2 .

Using these coefficients, we can obtain~2.6! as a resultant of the double scaling limit.
The fundamental solutions to~C6! nearu5` (z51/u) are given by

r̃0~z!52
A2
4 (

i51

3

nimi ,

r̃1~z!5z21/2(
i50

`

a3,i z
i , ~C9!

r̃2~z!5 r̃1~z!ln z1z21/2(
i51

`

b3,i z
i ,

where

a3,051,

a3,152
L3
2

1024
,

a3,252
3L3

4

4194304
2

L3
2

1024
~m1

21m2
21m3

2!2
L3

16
m1m2m3 , ~C10!

a3,352
5L3

6

4294967296
2

3L3
4

2097152
~m1

21m2
21m3

2!1
3L3

3

16384
m1m2m3

1
3L3

2

1024
~m1

2m2
21m2

2m3
21m3

2m1
2!,

a3,452
175L3

8

70368744177664
2

15L3
6

4294967296
~m1

21m2
21m3

2!1
15L3

5

67108864
m1m2m3

2
15L3

4

1048576F14 ~m1
41m2

41m3
4!2~m1

2m2
21m2

2m3
21m3

2m1
2!G

2
15L3

3

16384
m1m2m3~m1

21m2
21m3

2!2
15L3

2

1024
m1
2m2

2m3
2,
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¬¬¬¬¬¬¬¬¬¬
and

b3,15m1
21m2

21m3
21

L3
2

512
,

b3,25
L3
4

4194304
1

L3
2

1024
~m1

21m2
21m3

2!2
L3

8
m1m2m31

1

6
~m1

41m2
41m3

4!,

~C11!

b3,352
L3
6

12884901888
2

L3
4

4194304
~m1

21m2
21m3

2!2
L3
3

4096
m1m2m3

1
L3
2

128F 316~m1
41m2

41m3
4!1m1

2m2
21m2

2m3
21m3

2m1
2G

1
L3

16
m1m2m3~m1

21m2
21m3

2!1
1

15
~m1

61m2
61m3

6!,

b3,452
265L3

8

422212465065984
2

3L3
6

2147483648
~m1

21m2
21m3

2!1
L3
5

67108864
m1m2m3

1
L3
4

524288F1316~m1
41m2

41m3
4!17~m1

2m2
21m2

2m3
21m3

2m1
2!G2

L3
2

1024F52 ~m2
21m3

2!~m1
2m2

2

1m2
2m3

21m1
4!1

5

6
~m1

61m2
61m3

6!161m1
2m2

2m3
2G2

31L3
3

16384
m1m2m3~m1

21m2
21m3

2!

1
L3

32
m1m2m3~m1

41m2
41m3

4!1
1

28
~m1

81m2
81m3

8!.

From the lower order expansion of the periods, we find that

a3~u!5
r̃1~z!

A2
1(

i51

3

nin i ,

~C12!

aD
3 ~u!5A8r̃2~z!1B8r̃1~z!1(

i51

3

ni8n i ,

where

A852
iA2
4p

, B85
iA2
4p

~8 ln 2212p i22 ln L3!, n i52
A2
4
mi . ~C13!

Then the monodromy of the periods nearu5` will be
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¬¬¬¬¬¬¬¬¬¬
a3→2a312(
i51

3

nin i ,

~C14!

aD
3→2aD

3 1a31(
i51

3

~2ni82ni !n i .

Prepotential will be

F 35 i
ã 3

2

p F14 lnS ã3L3
D 21 1

4
~9 ln 2222p i !2

A2p

4i ã3
(
i51

3

ni8mi2
ln ã3
4 (

i51

3

mi
21(

i52

`

F i
3ã 3

22i G ,
~C15!

where first few instanton expansion coefficients are given by

F 2
352

L3
4

67108864
2

L3
2

8192
~m1

21m2
21m3

2!2
L3

64
m1m2m31

1

96
~m1

41m2
41m3

4!,

F 3
35

3L3
4

67108864
~m1

21m2
21m3

2!1
L3
3

65536
m1m2m31

3L3
2

16384
~m1

2m2
21m2

2m3
21m3

2m1
2!

1
1

960
~m1

61m2
61m3

6!, ~C16!

F 4
352

5L3
8

9007199254740992
2

5L3
6

206158430208
~m1

21m2
21m3

2!2
7L3

5

536870912
m1m2m3

2
5L3

4

67108864F14 ~m1
41m2

41m3
4!15~m1

2m2
21m2

2m3
21m3

2m1
2!G

2
5L3

3

393216
m1m2m3~m1

21m2
21m3

2!2
5

32768
L3
2m1

2m2
2m3

21
1

5376
~m1

81m2
81m3

8!.

We can easily find that~C16! coincide with those of Ref. 9 when the three hypermultiplets
mass-less and that these coefficients does not vanish in general whileF 2n11

3 (n.0) vanish in the
mass-less limit. Note that we can rewrite these coefficients by usingF̃ i

3 , although we do not
rewrite them here.

APPENDIX D: Nf51 PICARD–FUCHS EQUATION

In this appendix, we briefly summarize theNf51 Picard–Fuchs equation. For more syste
atic explanations, see Ref. 10. The curve and the meromorphic one-form of theNf51 theory is
given by

y25~x22u!22L1
3~x1m1! ~D1!

and

l15
A2xdx
4p iy F x22u

2~x1m1!
22xG , ~D2!

respectively. Then the Picard–Fuchs equation is given by
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¬¬¬¬¬¬¬¬¬¬
d3P1

du3
1
3D11D18~4m1

223u!

D1~4m1
223u!

d2P1

du2
2
8@4~2m1

223u!~4m1
223u!13~3L1

3m124u2!#

D1~4m1
223u!

dP1

du
50,

~D3!

where

D1527L1
61256L1

3m1
32288L1

3m1u2256m1
2u21256u3, ~D4!

andD185dD1 /du. HereD1 is the discriminant of the curve. Introducing the following notation

A1524u213m1L1
3, B15212u116m1

2, C1523u12m1
2 , D1523, ~D5!

we can write~D3! more simply as

d3P1

du3
1S D18

D1
2
4D1

B1
D d2P1

du2
2
32

D1
SC12

A1D1

B1
D dP1

du
50, ~D6!

where the prime denotes the differentiation overu.
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Quantum-classical correspondence using projection
operators

Roland Omnès
Laboratoire de Physique The´orique et Hautes Energies,a! Universitéde Paris-Sud,
Bâtiment 211, 91 405 Orsay Cedex, France

~Received 1 July 1996; accepted for publication 16 July 1996!

Classical properties, associated with a large phase space domain with a smooth
boundary as compared to the Planck constant, are shown to be expressed quantum-
mechanically by a family of quantum projection operators with the help of known
theorems in microlocal analysis. Under the conditions of Egorov’s theorem, the
conservation of this correspondence under classical/quantum dynamics is asserted.
© 1997 American Institute of Physics.@S0022-2488~97!00901-8#

I. INTRODUCTION

One of the keystones of quantum mechanics is Bohr’s correspondence principle. Alt
often simplified as an asymptotic limit of quantum dynamics toward classical dynamics
\→0, it was never so bluntly formulated by its author. Our purpose in the present paper is a
aspect of it, namely to provide a common framework for quantum properties~associated since von
Neumann1 with projection operators in Hilbert space! and classical properties giving the positio
and momentum coordinates of a classical system in phase space within some error bound
made a major advance in this direction2 when, extending an idea due to Wigner,3 he associated a
quantum observableA with a functiona(q,p) in phase space. Since then, this ‘‘Weyl calculu
has become an important part of mathematics included in microlocal analysis, or pseudodi
tial calculus.4,5 One can then guess that, among the various techniques in semiclassical p
~WKB, coherent states, ...! this one is best suited to the problem at hand.

Another hint in the same direction has come from the interpretation of quantum mechan
consistent histories6–8 ~see Ref. 9 for a review!. It suggested that a classical property may
associated with an equivalence class of projection operators in Hilbert space, this equiv
expressing an insensitivity at the quantum level to a too sharp precision in the boundary of a
space domain. It also suggested which topology should be used to express that these oper
near each other: the trace norm, which is central in microlocal analysis but poorly controll
algebraic methods.

These ideas are further developed in the present paper. The main results were propose
time ago,10,9 the priority being then to develop the consistent history framework. Physical
were essential but the proofs needed improvement, to say the least. Better ones will be give
which is possible because the physically interesting results turn out to be corollaries of k
mathematical theorems. The approach will also be different. One introduced formerly som
venient operators~the so-called ‘‘quasiprojectors’’!, which were then directly used in quantu
considerations but were puzzling some physicists. One will therefore make a point to work
with classes of projection operators~to also be called projectors!, the quasiprojectors being a
intermediate step in the construction of the relevant projectors.

In Sec. II we define the relevant operators. In Sec. III we recall some formulas and the
from microlocal analysis. In Sec. IV we show how some regularizing symbols, well know
mathematics, generate the operators we need in physics. In Sec. V we consider ‘‘exclusion
how two different phase space regions can be very sharply distinguished. In Sec. VI we de

a!Laboratoire associe´ au Centre National de la Recheche Scientifique.
0022-2488/97/38(2)/697/11/$10.00
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the dynamical aspects of correspondence, which enters under the heading of Eg
theorem.12,5,13 These ideas have been found essential for reconciling quantum probabilism
classical determinism.9

In an accompanying paper, the present techniques are applied to a different problem, n
space localization of a relativistic particle.

II. ORIENTATION AND DEFINITIONS

A. Cells

The propositions occurring in classical physics can most often be expressed by stating
representative point (q,p) of a system is in some phase space cellC. A cell will be defined as a
connected simply connected bounded set, big enough for the quantum uncertainty relation
of no importance.

To be precise about the last point, let the~finite! dimension of phase space be 2n. The position
coordinatesq are supposed to have the dimension of a length. One introduces two scales (L,P) for
length and momentum, to be chosen later. When necessary, a simple metricL22 dq21P22 dp2

on an open set in phase space containingC will be introduced. The variables (q8,p8)5(q/L,p/L)
are nondimensional. Other scale parameters that will be used frequently are defined by

s5L~\/2LP!1/2, t5P~\/2LP!1/2, st5\/2, s/L5t/P. ~2.1!

The ‘‘number of semiclassical states’’ inC is N(C)5V(C)(LP/\)n, whereV(C) is the
dimensionless phase space volume ofC in the metrics dq821dp82. It is also given by
m(C)/(2p\)n, where m(C) is the Liouville volume ofC. Let A(]C) denote the~2n21!-
dimensional area of the boundary]C in the dimensionless metrics. The geometric ratiou5A(]C)/
V(C) will play an important role in many estimates and the scales (L,P) may be chosen so tha
N(C)5(LP/2p\)n and the value ofu is minimal.

The cell will be said to beregular ~one might also say ‘‘classical’’! if

N1/n5LP/~2p\!@1, q!~LP/\!1/2. ~2.2!

The first condition, expressing that the cell is big enough, is obviously classical. The s
condition imposes some loose constraints on the shape ofC: It should be bulky enough and it
boundary smooth enough well above the scale of Planck’s constant. This condition will n
satisfied, for instance, if the cellC represents the outcome of a chaotic classical motion reac
the scale of\.

B. Families of projection operators

Two kinds of norms will be used for an operatorA in L2(Rn): the usual Hilbert normiAi and
the trace norm,

iAi tr5TruAu, with uAu5~AA†!1/2. ~2.3!

They are linked by the inequality

uTr~AB!u<iAi•iBi tr , ~2.4!

which is very useful when one applies the consistent history formalism to classical physics
Some families of projectors will be used. LetE be a projector with TrE5N@1. Another

projectorE8 is said to be equivalent toE in the trace class~N,e!,e!1, if

Tr E85N•„11O~e!…, TruE2E8]5N.O~e!. ~2.5!
J. Math. Phys., Vol. 38, No. 2, February 1997
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@One could, of course, replace the sloppy notationO~e! by some inequalities involving definite
constants of the order of 1.# The subspaces associated with two equivalent projectors are near
other in the following sense:~i! Their dimensions are comparable, both of them being of the o
of N. ~ii ! One can find two bases in these subspaces, where aboutN pairs of vectors, one in eac
basis, are very near, whereas typicallyNe vectors in one basis have no neighbor in the other ba

An operatorF is a quasiprojector in the class ofE if it is self-adjoint, of trace class, compac
~so that its spectrum is discrete!, and furthermore

0<F<I , ~2.6a!

Tr F5N•„11O~e!…, ~2.6b!

Tr~F2F2!5N•O~e!, ~2.6c!

TruE2Fu5N•O~e!. ~2.6d!

Two quasiprojectorsF andF8 equivalent toE also belong to the equivalence class. Given
quasiprojectorF in the class, one can construct a projector in the class by using a bas
eigenstates ofF, considering the eigenvalues$lk% of F and replacinglk by 1 ~resp., 0! if lk>

1
2

~resp.,1
2!.

The basic trick in the construction of a quantum logic for classical physics9 consists in using
quasiprojectors, which are easy to construct analytically, and to obtain from them true proj
operators. Each one of them expresses a specific quantum property whereas all of them
equivalently the same classical property, up to unessential details occurring at the scale o\.

III. SOME RESULTS IN MICROLOCAL ANALYSIS

A. Symbols

We shall use the Weyl calculus for pseudodifferential operators,7 Chap. 18.5 in Ref. 5, which
provides the only sensible correspoˆndence between quantum observables and classical dyna
variables.4 A pseudodifferential operatorA with aC` symbola(q,p) acts on a functionu in L2 by

Au~q!5E aS 12 ~q1q8!,pDeip•~q2q8!/\u~q8!dq8 dp~2p\!2n. ~3.1!

It should be recalled at this point that, though one is using Fourier integrals, one needs
assume that the configurationq-space isRn. This is one of the great ‘‘microlocal’’ virtues o
pseudodifferential calculus.

We shall be most often interested in symbols belonging to the Schwartz classC0
` so that the

precise definition of the various symbol classes will not be essential. One can use, howev
definiteness the seminorms

Cab5sup~q,p!@~11L22q21P22p2!~ uauu1bu2m!/2L uauPubuu]q
a ]p

ba~q,p!u#, ~3.2a!

or the more conventional ones,13

Cab5sup~q,p!@~11P21upu!~rubu2duau2m!L uauPubuu]q
a ]p

ba~q,p!u#, ~3.2b!

each one of them defining a specific symbol classSm as a Fre´chet space.
J. Math. Phys., Vol. 38, No. 2, February 1997
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B. Products

It will be convenient to use a special notation for Poisson parentheses and their iteration
phase space coordinates (q,p) can be denoted byX5$Xm%, with m5~j ,a!, jP$1,2,...,n%,
aP~1,2!, Xj15pj , Xj25qj . Defining emn5eabd jk for n5~k,b!, the ordinary Poisson parenthes
$a,b% can be written as

a$ %b5emn ]ma ]nb, ~3.3!

and iterated Poisson parentheses, to be written as a$ %rb, are defined by iteration of the operat
$ % acting on a couple (a,b).

Consider the productC5AB of two operatorsA andB with symbolsa andb, respectively, in
the classesSm andSm8. Its symbol is

c~q,p!5E a~q1q8,p1p8!b~q1q9,p1p9!exp@2i ~q9•p82q8•p9!/\#

3dq8 dp8 dq9 dp9~p\!22n, ~3.4!

and its kernel,

KC~q,q8!5E aS 12 ~q1q9!,pDbS 12 ~q81q9!,p8Dexp@ i ~q•p2q8•p82 iq9•p1 iq9•p8!/\#

3dp dp8 dq9~2p\!22n. ~3.5!

Semiclassical developments in powers of\ are obtained from

c~q,p!5 (
k50

s21 S 2 i\

2 D ka$ %kb1r s , ~3.6!

ur s~q,p!u<K~\/LP!s~11L22q21P22p2!~m1m82s!/2, ~3.7a!

K<C
1

s!
sup$L ~ uau1ua8u!P~ ubu1ub8u!u]q

a ]q8
a8 ]p

b ]p8
b8

3@\sem1n1•••emsns ]m1•••]ms
a~q,p!]n1•••]ns

b~q8,p8!#u%, ~3.7b!

C being a constant of the order of 1. Similar expressions hold with the seminorms~3.2b!. The
supremum in~3.8! is taken over (q,p,q8,p8)PR4n and the derivation indices are such th
0<uau1ua8u1ubu1ua8u<n11.

C. Traces

The trace ofA is simply given by

Tr A5E a~q,p!dq dp~2p\!2n. ~3.8!

When estimating the trace norm of an operatorA with symbola(q,p), it is convenient to intro-
duce the function

da~q,p!5supu]q
a ]p

ba~q1q8,p1p8!u, ~3.9!

with L22q21P22p2<\2, uau1ubu5n11. Then one has14
J. Math. Phys., Vol. 38, No. 2, February 1997
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TruAu<C1iaiL11C2idaiL1, ~3.10!

C1 andC2 being two constantsO~1!.

IV. CONSTRUCTING PROJECTION OPERATORS

The aim of this section is to construct explicitly a family of equivalent projectors for a reg
cell. For this equivalence class~N,e!, N is the ‘‘number of semiclassical states’’ defined in~2.2!
ande5u~\/LP!1/2, u being the ‘‘area to volume ratio’’ previously introduced. As an intermedi
step in the construction, one must introduce some convenient quasiprojectors. This can b
with the help of coherent states, or more directly, by defining convenient symbols. Both
niques are useful in applications.

A coherent state is a Gaussian wave functiongqp normalized inL
2 with average valuesq and

p for position and momentum. One will takes as defined in Eq.~2.1! to be the uncertainty in the
position coordinates~and thereforet for the momentum uncertainty!. A quasiprojector can then b
directly defined by

Fg5E
C
ugqp&^gqpudq dp~2p\!2n. ~4.1!

As an instructive example due to Daubechies, taken51 andC as the regionq2/L21p2/P2<R2.
Fg commutes with the oscillator Hamiltonianq2/L21(\/ i ]/]q)2/P2, and its eigenfunctions are
therefore Hermite functionsfn . Evaluating explicitly (fn ,Fgfn), one obtains for thenth eigen-
value ofFg the incomplete gamma function,

ln5S 1n! D E0R2/2tn exp~2t !dt.

It is thus found that only a fraction 1/AN of the eigenvalues depart from a close neighborhood
the set$1,0%, with two elements,N5pR2LP/\ being the number of eigenvalues close to 1.

One can also define a quasiprojectorF through its symbolf (q,p): Using nondimensiona
coordinates, one defines amargin M of C as a region insideC at a distance from]C at most equal
to ~\/LP!1/2. The symbolf (q,p) is a function belonging toS`, equal to 1 inC\M and to 0 outside
C. A more special but similar definition consists in introducing the characteristic functionc ~equal
to 1 inC and to 0 outside! and a functionf(q,p) in S` having a compact support of radiuss and
such that*f dq dp51. The convolutionf * c is then a convenient symbol for a quasiproject
One can recoverFg as a special case by using instead

f~q,p!5~p\!2n exp@2q2/~2s2!2p2/~2t2!#. ~4.2!

It should be noticed that these definitions always give rise to a compact self-adjoint op
so that its spectrum is discrete. This is becauseFg is a Hilbert–Schmidt operator and, forF,
because its symbol is inS`.

The various definitions of quasiprojectors are (N,e) equivalent, as shown by the two follow
ing lemmas.

Lemma 1:

0<Fg<I , 2C~\/LP!<F<I „11C~\/LP!…, ~4.3!

whereC is a constant of the order of 1.
Lemma 2:

Tr Fg5N@11O~e!#, ~4.4!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Tr F5N@11O~e!#, ~4.5!

TruF2Fg)u5NO~e!. ~4.6!

Proof of Lemma 1: Fg>0 is obvious. Replacing the integration domainC by R2n in the
integral~2.1!, one obtains the identity operator.I2Fg is therefore given by a similar integral ove
R2n\C, from whichFg<I follows.

Consider nowF. The proof of the inequalities~4.3! rests upon the so-called ‘‘sharp Ga˚rding
inequality,’’ 11 which makes precise how negative an operator can be with a positive symbol
is a deep and highly technical result in pseudodifferential calculus, and it will be convenie
only for brevity, to rely directly upon the results and notations of Ref. 5, as given there b
basic Theorem 18.6.8 and Lemma 18.6.10.

One introduces the metric

g~x,p!5~LP/\!@dx2 L221dp2 P22#,

and the symplectic form

s~x,p;x8,p8!5~p.x82p8.x8!/\.

The dual metricgs is defined by Eq.~18.5.7! in Ref. 5 by

gs~x8,p8!5sup~x,p!@s2~x,p;x8,p8!/g~x,p!#,

which gives in the present case

gs~x,p!5g~x,p!.

Rather than the operatorF with symbol f (x,p), one may use the operatorF1 with symbol
f (x,p)1/2, which has the same properties. One can writeF5F1

21K, where the symbolk(x,p) of
K is given to leading order byk1(x,p)52(\2/8) f 1$ %2f 1 . When estimatingk1(x,p) at a given
point (x,p) in the margin of the cellC, one can perform a linear canonical change of coordina
to bring one coordinate axis along the direction of the normal to]C containing (x,p), i.e., along
the direction where the derivatives off 1 are greatest. Sincek1 is invariant under that transforma
tion, this symbol is found to be of the order of\/LP. Denoting bykmin the minimum ofk1(x,p),
the symbolk2(x,p)5(LP//\) @k1(x,p)2kmin# is positive andO~1!.

Consideringm vectors in the tangent space of phase space (t1 ,t2 ,...,tm), themth differential
of k2 is defined in Ref. 5, Sec. 18.4 by

uk2um
g 5sup$t j %uk2

~m!~x,p,t1 ,t2 ,...,tm!u)
j51

m

g~ t j !1/2.

The first few differentials~m50,1,2,...! areO~1! with our choice of metric. One can then use t
sharp Ga˚rding inequality, for instance in the form given by Lemma 18.6.10 in Ref. 5. It shows
the operatorK2 with symbol k2(x,p) is bounded byK2>2CI with C5O(1). The inequality
2C(\/LP)<F, with another constantO~1!, follows immediately. The inequalityF<I (11C(\/
LP)) is obtained similarly by consideringI2F in place ofF.

Proof of Lemma 2:One has

^gqpugq8p8&5exp@2~q2q8!2/~4s2!22~p2p8!2/t21 i ~p82p!.~q81q!/~2\!#. ~4.7!

To get Eq.~4.4!, one writes
J. Math. Phys., Vol. 38, No. 2, February 1997
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Tr Fg5E
CY5C

~2p\!22n dq dp dq8 dp8^gqpugq8p8&. ~4.8!

ReplaceC3C by C3C8, whereC85CøM 8, M 8 being a margin of]C similar toM but outside
C. It is easily shown from Eq.~4.7! that the integral overC3C8 differs from the integral over
C3R2n by a quantity of order exp~2\/LP!. The integral overC3R2n givesN. The integral over
C3M 8 is bounded byN(\/LP)1/2u, from which the estimate~4.4! follows.

To prove the estimate~4.5!, one uses Ho¨rmander’s formula~3.10!, the calculations being
straightforward. To prove Eq.~4.6!, one introduces the intermediate operator

F25E ugqp&^gqpu f ~q,p!dq dp~2p\!2n.

One has triviallyFg2F2>0 so that TruFg2F2u5Tr(Fg2F2)5NO~e! by the same proof as
Eq. ~4.4!. But an explicit calculation shows that the symbol off 2 is f *f, with f as given in~4.2!.
Considering TruF2F2u, one finds that the second termid( f 2 f 2)iL1 in the estimate~3.10! is
negligible, whereas the first term isO(Ne).

It remains to show that the operators we have introduced are quasiprojectors, i.e., the f
ing.

Lemma 3:

TruF2F2u5NO~e!, TruFg2Fg
2u5NO~e!. ~4.9!

Proof: The first results follows from the estimate~3.10! for a trace norm, using the fact tha
f2 f 2 is only different from 1 in the margin. As forFg , since 0<Fg<I , one has
TruFg2Fg

2u5Tr(Fg2Fg
2), which is easily estimated using Eq.~4.7!.

Remarks:
~1! The choice ofe one started with is essential for the equivalence between the two na

definitions of a quasiprojector. It was also shown previously to be the best possible one.10 It is
often called the ‘‘classicality’’ parameter. One will come back in the next section to the fact
it is only algebraically small in\1/2, which is what one would expect15 but not really extremely
small.

~2! The metric that has been used is rather arbitrary. One may wonder whether the
depend upon this choice. There are strong indications that the true minimum ofu would be
obtained through a more involved process, where one covers]C by a family of neighborhoods
then use local coordinates where]C is represented by an equationXn5constant and introduce
finally convenientlocal metrics similar to our one. From this one could deduce that und
canonical change of coordinatesX→X8, one hasu8,Cu, C being an upper bound onu]Xm/]X8nu.
This has not been proved, however, in detail.

V. EXCLUSION

Quasiprojectors have apparently a serious inconvenience because the associated erro\1/2

may be not small enough from a conservative standpoint, so that the logical propositio
classical physics would not be precise enough consequences of quantum logic. One shoul
ever, consider how these propositions are used in practice. It is true that the proposition ‘‘(q,p) is
in C’’ excludes its contrary ‘‘(q,p) is in R2n\C’’ with a probability of ordere, small but not
extremely small. This is due to the fact that one cannot sharply exclude the points (q,p) very close
to ]C outsideC. When one considers, however, two classical statements that must be s
exclusive, they correspond to two cellsC andC8 rather far from each other. One may think, f
instance, of two different experimental results indicated by two classically static~or still moving!
J. Math. Phys., Vol. 38, No. 2, February 1997
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positions of a pointer. This is typically the case where the two properties should be str
exclusive and the corresponding projectors should satisfyEE85E8E50 with a very good accu-
racy. This is what one is going to show.

One will use for simplicity the same metric for the two cells with fixed scales (L,P). To
define the distance betweenC andC8 ~CùC85B!, let (q,p)P]C and (q8,p8)P]C8 be two
points, such thatD25L22(q2q8)21P22(p2p8)2 is minimal. Microlocal analysis5 shows, in
general, thatiEE8i decreases more rapidly than any power ofD\/(LP). This rapid decrease
expresses exclusion betweenE andE8, but its precise form depends on the Schwartz functio
entering the symbols from whichE andE8 are constructed. This looks somewhat obscure
down-to-earth physicists who prefer a more intuitive statement of exclusion, even if less ge
Here is a convenient example: Let two quasiprojectorsFg and Fg8 for C andC8 be given by
integrals~4.1!. The symbolc(q,p) of FgFg8 can be computed after a few Gaussian integration

c~q0 ,p0!5E
C3C8

~2p\!22n dq dq8 dp dp8~p\!2n exp~2F!,

F5~2s2!21@q02~q1q8!/2#21~2t2!21@p02~p1p8!/2#21~8s2!21

3~q2q8!21~8t2!21~p2p8!22 ip0 .~q2q8!/\1 iq0 .~p2p8!/\. ~5.1!

Using ~3.10!, this implies

TruFgFg8u<C exp~2D2LP/4\!, ~5.2!

with C5O(1).
This bound upon quasiprojectors can be extended to a bound involving true projectorsE and

E8 that are generated byFg and Fg8 . Let lk , fk ~resp.,l j8 ,f j8! denote the eigenvalues an
eigenvectors ofFg ~resp.,Fg8!. Let (k denote a summation over all values ofk and(k8 a sum-
mation over the indicesk such thatlk>

1
2. One has, up to negligible corrections in\/LP,

Tr~FgFg8!5(
k, j

lkl j8u~f j8 ,fk!u2<TruFgFg8u,

iEEu8i25(
j 8k8

u~f j8 ,fk!u2u~fk ,u!u2<S (
j 8k8

u~f j8 ,fk!u2D iui2,

so that

iEE8i2<(
j 8k8

u~f j8 ,fk!u2<4(
k, j

lkl j8u~f j8 ,fk!u2,

and therefore@with C5O(1)#,

iEE8i<C exp~2D2LP/2\!, ~5.3!

showing how good exclusion can really be.

VI. DYNAMICS

The correspondence between canonical transformations in phase space and unitary t
mations in Hilbert space goes back to Dirac and it was made more explicit by Egorov. Ego
theorem12,5,13 is concerned with a canonical transformation (q8,p8)5F(q,p). One considers an
operatorA with symbola(q,p)PSm and the operatorA8 having a symbol that is obtained from
J. Math. Phys., Vol. 38, No. 2, February 1997
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a(q,p) by a canonical change of coordinates:a85a0F(q,p)5a„q8(q,p),p8(q,p)…. Egorov’s
theorem gives conditions under which there exists a unitary transformationU in L2, such that

A85UAU211 lower-order terms. ~6.1!

The lower-order terms are operators with lower-order symbols. The correspondence is ex~no
lower-order terms! in two cases: for linear canonical transformations and for aC` change of
coordinatesq85z(q). In both cases the result follows from elementary algebra. Egorov’s theo
takes, of course, explicit care of the neighborhoods in which (q,p) and (q8,p8) must stand, the
kind of symbols to be used, conditions onF, general properties of the lower-order terms, and
on. The trouble is that these restrictions can be chosen in various ways and there are quit
theorems of that type.

Take, for instance, a canonical transformation with a generating functionf(q8,p) so that
p85]f/]q8, q5]f/]p. It may result from a Hamiltonian flow giving at a given time the acti
S(q,q8), from which f(q8,p) is obtained by a Legendre transform:f5p8•q2S. Among the
cases where Egorov’s theorem is most conveniently stated,13 the canonical transformation i
homogeneous, i.e.,q8(q,lp)5q8(q,p), p8(q,lp)5lp8(q,p), l.0. This occurs with a purely
kinetic Hamiltonianh(q,p)5gjk(x)p

jpk. There are many other cases for which the theor
holds, though apparently an exhaustive list does not exist. In some cases, one can be surea priori
that the theorem cannot hold: for instance iff is obtained from a chaotic motion extending dow
to scales of order\. Another example occurs when there is a potential barrier and some cla
trajectoriesG in phase space starting fromC just touch the barrier. Other trajectories initially ne
G will strongly diverge since they can be reflected or not and there is no theorem forC. Similarly,
suppose there is again a barrier, apparently not dangerous because all the classical tra
starting fromC are reflected. Suppose, however, that the barrier is extremely narrow. This m
that some derivatives of the potential are very large and, via seminorms of symbols, the so
‘‘lower-order’’ terms will blow up.

The symbols we are interested in are, of course, associated with quasiprojectors. It may
that a coherent state approach provides a convenient setup, for instance, with the Hamilto
tion h(q,p)5p2/2m1V(q). The results by Hagedorn16 are very useful in that case, and they c
be taken as a substitute for Egorov’s theorem. Anyway, the general status of quasiclassical
is essentially this: One has the feeling that the results~amounting to a ‘‘correspondence prin
ciple’’ ! should be very general except when ‘‘physical’’ reasons forbid it. But the mathema
techniques, however powerful they may be, do not cover all the cases one encounters
situations~or at least we cannot make sure of that with full confidence!.

A conservative approach consists in finding at least some estimates for the validity of B
‘‘correspondence’’ that can be easily applied. One therefore considers a HamiltonianH with a
~Weyl! symbolh(q,p) belonging toS2. As a Hamilton function,h(q,p) defines a Hamiltonian
flow: (q,p)→(q8,p8) after a timet. One also considers an initial regular cellC, with a definite
symbol f (q,p) giving a representative quasiprojectorF. One assumes that the Hamiltonian flo
C→C8 generates a cellC8 that is also regular and has a representative quasiprojectorF8. One
makes the strong assumption that some version of Egorov’s theorem ensures
a8(q8,p8)5a„q(q8,p8),p(q8,p8)… is aS` symbol. The task is then reduced to an estimate of
errors in ‘‘correspondence,’’ as they are expressed by the difference betweenF8 and
F(t)5U21(t)FU(t), whereU(t)5exp~2iHt /\!. Note that this the transformation law of a sta
operator and not Heisenberg operators.

The scales (L,P) will be fixed once and for all. Liouville’s theorem shows thatN5N8. One
will use the overall coordinatesX5$Xm%5(q,p) with greek indices,X85$Xa%5(q8,p8) with
latin indices. One denotes]a]b•••X

m by Aab•••
m. BoundsB1 ,B2 ,..., on these derivatives will be

defined by, for instance,

B35sup~ uAa
lAc

mAe
nu,uAa

lAbc
m u,uAabc

l u!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The Heisenberg equationi\ ]F(t)/]t52[H,F(t)] becomes, in view of Eq.~3.6!, an equa-
tion for the symbolf (t),

] f ~q,p,t8!

]t8
1$h, f ~ t8!%52S h224Dh$ %3f ~ t8!, ~6.2!

to be used for 0<t8<t, higher-order terms being neglected. Putting the right-hand side of
~6.2! equal to 0, one obtains a Liouville equation with the simple solutionf 0(X

a,t8)5 f „Xm(Xa)…,
f being the symbol of the initialF and the reference time beingt8. Notice thath(Xm)5h(Xa).
One then looks for a solutionf (t8)5 f 0(t8)1 f 1(t8) of Eq. ~6.2!. Up to terms of third order in\,
one has

] f 1~X
a,t8!

]t8
1eab ]ah~Xa!]bf 1~X

a,t8!52S h224Dh$ %3f 0~ t8!. ~6.3!

Notice that for any pair of functions (f ,g), one has

f $ %3g5eabecdee f ]a]c]ef ]b]d] fg ~6.4!

5elmenrest ]l]n]t f ]m]r]tg

13eabecdAa
lAbc

m Ad
n~]l]n f ]mg2]m f ]l]ng!

13eabecdAac
l Abd

m enr ]l]n f ]m]rg

13eabecdee fAa
lAbc

m Ade
n Af

r~]l]n f ]m]rg2]m]r f ]l]ng!

13eabecdee fAac
l Abde

m Af
n~]l]n f ]mg2]m f ]l]ng!

1eabecdee fAa
lAc

mAe
nAbd f

r ~]l]m ]n f ]rg2]r f ]l]m]ng!

1Xm$ %3Xn ]m f ]ng. ~6.5!

The fact that the first term in Eq.~6.5! has the same formal expression as the right-hand
in Eq. ~6.4! is well known. The time-dependent canonical change of coordin
f 1(X

a,t8)5 f 1„X
a(Xm,t8),t8…5:g1(X

m,t8) replaces Eq.~6.3! by

]g1
]t8

5S h22

24 Dh$ %3f 0~ t8!,

where Eq.~6.5! should be used for the right-hand side. This gives

g1~ t !52S h22

24 D E
0

t

h$ %3f 0~ t8!dt8. ~6.6!

One can now use these relations for an estimate of the relevant quantities, to get
straightforward and tedious calculations,

TruF82F~ t !u5N•O~z!, ~6.7!

with

z5sup0<t8<tS e8,eB1~ t !,\
2t~LP!23S supU ]3h~Xa!

]3Xm~ t8!
U DB3~ t8! D . ~6.8!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Notice the meaning of the result and particularly when the correspondence breaks dow
occurrence ofe8 excludes a too evolved chaotic motion. The boundsB1 andB3 would also givez’s
of the order of 1 after a finite time if there is a positive Lyapunov exponent~i.e., once again
chaos!. Assuming thatC8 is a cell excludes the marginal crossing of a barrier. A very narr
barrier that is not crossed classically but can be quantum-mechanically would manifest it
]3h/]3Xm. It would be interesting to find other cases of exception.

A remarkable feature of the results is that the validity of the quantum/classical correspon
is completely controlled by classical calculations. Numerical examples will be published
where, showing how the present gross estimates can be improved in practice. The applica
these results to the validity of classical logic and determinism, with the corresponding
attributed to quantum fluctuations, have been given elsewhere.9 Considerations about exclusio
similar to those in Sec. V show that determinism is quite often exponentially valid if a deter
istic logical implication ‘‘(q,p)PC at time 0’’ ⇒ ‘‘( q8,p8) P C18 at time t ’’ is applied to a cell
C18.C8 rather than strictly toC8.
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Localization of relativistic particles
Roland Omnès
Laboratoire de Physique The´orique et Hautes Energies,a) Universitéde Paris-Sud,
Bâtiment 211, 91 405 Orsay Cedex, France

~Received 1 July 1996; accepted for publication 16 July 1996!

In order to discuss localization experiments and also to extend the consistent his-
tory interpretation of quantum mechanics to relativistic properties, the techniques
introduced in a previous paper@J. Math. Phys.38, 697 ~1997!# are applied to the
localization of a photon in a given region of space. An essential requirement is to
exclude arbitrarily large wavelengths. The method is valid for a particle with any
mass and spin. Though there is no proper position operator for a photon, one never
needs one in practice. Causality is valid up to exponentially small corrections.
© 1997 American Institute of Physics.@S0022-2488~97!01001-3#

I. THE PROBLEM OF LOCALIZATION

The use of consistent or decohering histories for interpreting quantum mechanics1–3 has now
been rather well understood in the nonrelativistic case.4,5 The next step should be to extend it
cases where special relativity is important. This problem looks very different whether one co
ers properties having to do with fields, or particles. Some properties concerning fields, stat
instance that the value of a scalar field is in some interval have been considered by Blen6

whereas Ishamet al. proposed general techniques for this kind of questions.7

The present paper is specifically concerned with properties~or histories! dealing with par-
ticles, not fields. The simplest kind of such a property states that the momentum of a relat
particle is in a given range and it is easily expressed by a projection operator~projector!. The
problem is much more difficult for space localization. It has a long story that must be recal
avoid misunderstandings.

Things are very simple in the nonrelativistic case. The property according to which a no
ativistic particle is located in a space regionV is expressed by a definite projector in Hilbert spa
which belongs to the spectral decomposition of a well-defined position operatorX5i\]/]p.

The relativistic problem is much more difficult. One can still try to use a position operatX
in a given reference frame.8–12Newton and Wigner9 proposed sensible axiomatic requirements
X and they obtained an expression for it, exhibiting, however, serious drawbacks: The po
operator is well defined for a particle with nonzero mass, but it does not exist for a ma
particle when the spin is larger than12.

9,12 In the case of a spin-12 particle with a unique helicity
state, the position operator does not exist, so that photons and massless neutrinos are ex

There are, moreover, serious difficulties with causality, which are best shown in the cas
massless spinless particle, in a definite reference frame: One can use eigenstates ofX to build a
projectorE, expressing that the particle in a space regionV at time zero,

E5E
V
ux&^xudx. ~1.1!

At a later timet, E becomesU21(t)EU(t) with U(t)5exp~2iH /\!, H being the free particle
Hamiltonian. According to causality, one would expect that, if the particle is located inV at time
zero, it should remain in the future ofV at a later timet. One finds, however, that the probabilit

a!Laboratoire associe´ au Centre National de la Recheche Scientifique.
0022-2488/97/38(2)/708/8/$10.00
708 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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to find the particle at timet in some regionV8 outside the future ofV is nonzero when one use
for V8 a projector analogous to~1.1!. The decrease of this probability with the distanceD from V8
to V is rather slow, likeD22(D2t)22 in units wherec51.

This question has been investigated thoroughly by Hegersfeldt and others,13–17 who have
shown that the conflict with causality holds under very general assumptions. Assuming tha
exists a position operator~with commuting components!, whatever it might be, the probability fo
the particle to be outside the future ofV can never behave like an exponential exp@2K(D2t)#.
The consequences of this situation were expressed in a rather dramatic way by Bacry,18 who
claimed that the classical derivation of special relativity by Einstein becomes inconsistent
cannot assert the localization of a light signal in a sufficiently precise way. Be it for that reas
another, much effort has been made to solve this problem, often with great ingenuity. I
noticed for instance that a more satisfactory approximate localization could be obtained by
up the condition that the product of two projection operators associated with noninters
regions should be zero,19,20or giving up the commutativity of the position components21 or using
regions with fuzzy boundaries.22 Some of these features will reappear here, perhaps more cle

The present work is based upon three remarks:~i! Though one needs a projection operator
assert a localization property, this does not mean that a position operator should exist.~ii ! One
may suspect intuitively that many difficulties come from the fact that arbitrary large wavelen
are present when a particle is sharply located in a definite space region. These waveleng
manifest themselves at a later time, spoiling causality.~iii ! One can construct projectors by usin
quasiprojectors to start with, as was done in a previous paper23 ~hereafter denoted by I!. One can
thus express localization while excluding large wavelengths.

When these remarks are worked out, one gets a reasonable and satisfactory formula
localization, valid for any mass and spin. As a matter of fact, we shall be mainly concerned
massless particles, considering in Sec. II the case of a massless and spinless particle. T
result is a statement of causality involving an exponential decrease in (D2t). This is extended to
nonzero spin and to definite helicity states in Sect. III, which is restricted for brevity to the ph
case. Causality remains good, transversality is conserved under time evolution, and simple
explain why there is no position operator in that case. The projection operators deriving fro
quasiprojectors through a change of eigenvalues~as done in I, Sec. II!, seem therefore to expres
conveniently all that is needed for theoretical and practical applications, the logical state
about a relativistic particle as well as the description of an actual position measurement.

II. LOCALIZING A MASSLESS PARTICLE

Consider a specific inertial reference system. LetV5$pupmin<upu<pmax%, wherepmax can be
arbitrarily large butpmin is strictly nonzero. This condition excludes very large waveleng
Consider a volumeV in space and the domainC5V3V in phase space.C will be taken as a
regular cell, as defined in I.

The restriction on wavelength is not only mathematically convenient but also empiri
relevant since quantum electrodynamics shows that a detector of finite size has a vanishi
ciency for detecting photons with arbitrary large wavelength.

One will start from an irreducible representation of the Poincare´ group.24–26The Hilbert space
of momentum wave functions for a particle with a conveniently chosenp-dependent direction for
spin components has a scalar product,25

^u8uv8&5E (
m

um8 ~p!* vm8 ~p!dp~p0!
21,

wherem is a spin index. Notice that one must use a specific reference system when sta
localization proposition~entering, for instance, in a consistent history! or when expressing the
result of a position measurement~in which case the measuring apparatus provides the refer
J. Math. Phys., Vol. 38, No. 2, February 1997
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system!. Since covariance is not the same issue as causality, it will be convenient to drop
riance and to use the framework given in I by introducing different wave functionsum(p)
5 p0

21/2um8 (p) with the ordinaryL
2 scalar product,

^uuv&5E (
m

um8 ~p!* vm8 ~p!dp. ~2.1!

The algebra of operators in this noncovariant Hilbert space is easily worked out and the
ordinary operators inL2, the spin components being defined, however, in ap-dependent frame
The time evolution operator is (P21m2)1/2, involving no Dirac matrices, since there are n
negative energy states in the irreducible representation.25

We shall concentrate on the spin-zero case in the present section. The operatorX5 i\]/]p,
acting on theL2 wave functions, is in fact the Newton–Wigner position operator. According
~Sec. IV!, one can then define a class of~N,e! equivalent projectors for the cellC, the parameters
~N,e! being given by Eq.~I.2.2!. It is convenient to construct these projectors by using as
intermediate step a quasiprojector with symbolx*f, x being the characteristic function ofC and
f the Gaussian function~I.4.2! with parameters~s,t! defined by Eq.~I.2.1!. The scales (L,P) to
be used in the present case are often such thatL is a typical length scale for the space regionV and
P5pmax, so that, if the shape of]V is simple, e5~\/2Lpmax!

1/2. Notice that, if pmin→0 and
pmax→`, e→0 and the limit is a projector, which, according to Eq.~I.3.1!, has the usual form
~1.1!.

Let us next consider exclusion, i.e., the fact that two nonintersecting space regionsV andV8
are associated with projectorsE andE8, such thatEE85E8E50 with a very good approximation
This result follows from Eq.~I.5.3!: Let D denote the distance betweenV and V8 and
L05inf~L,L8!. Remembering thatD is now a true distance~and not a dimensionless one!, Eq.
~I.5.3! gives @with C5O ~1!#

iEE8i<C exp~2D2pmax/2L0\!,
iEE8i<C exp~2Dpmax/2\!,

for D,L0 ,
for D.L0 .

~2.2!

One has a more significant result with causality: A massless particle is localized in a
region V at time zero and its possible wavelengths are larger than some definite
l052p\/pmin . A detector insensitive to wavelengths larger thanl0 occupies a small volumeV8 in
the same reference system.V8 is outsideV and their distance is denoted byD. The question is to
find the probabilityP for the detector to register the particle at a timet,D ~or more properly
D/c!, or at least an upper bound. Such a bound is given by the following.

Proposition: In the conditions just stated, one has, withC5O ~1!,

P<C@V8pmax
3 ~2p\!23#@pmin~D2t !/\#21/2 exp@2pmin~D2t !/\#. ~2.3!

The rather lengthy proof of this result is given in the Appendix. It may be mentioned
Mourad,27 using the previous results,28 has shown that a quantity similar toP decreases more
rapidly than any power in (D2t)/l0, though not obtaining a more precise estimate. The pre
result establishes the exponential validity of causality, in contrast with the no-go theorem
tained by Hegersfeldt16 by using exact position projectors. One may also expect that the b
~2.3! is still grossly overestimated. It is shown for instance in the Appendix that an obs
wishing to test causality as well as possible can play upon the efficiency of the detecto
momentum so as to obtain the much better bound,

P,CV8~pmin /\!1/2~D2t !25/2 exp@2pmin~D2t !/\#. ~2.4!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Even that is probably not the last word. Examination of the proof in Appendix A strongly sug
that one could obtain along the same lines a bound foriE8E(t)i by using the sharp Ga˚rding
inequality29 ~E8 andE being defined in the Appendix!. This has not been fully proved but it woul
lead to a bound,

P<C@\/pmin~D2t !#1/2 exp@2pmin~D2t !/\#, ~2.5!

probably the best possible one, with no special fitting of the detector. One might also try to e
this approach to a truly relativistic situation, where the detector is moving. An apparently ade
formalism has been introduced by Iagolnitzer.30 Finally, an interesting problem would be t
extend this analysis to a curved space–time, but the difficulty is of course that there is no Po´
group with which to start.

III. PARTICLES WITH SPIN AND HELICITY

There is no special difficulty in extending the previous results to massless spin-1
2 particles,

except for some tedious algebraic manipulations of gamma matrices if one insists on using
wave functions. The case of photons is much more interesting since previous approaches
to deny their localization.

We shall consider only the case of photons. One starts again from a representation
Poincare´ group, using a three-component wave functioncj (p) ~j51,2,3!. The transversality of
photons is expressed by the condition

pjc j~p!50. ~3.1!

One can see easily why the Newton–Wigner approach encounters a difficulty: When act
a transverse wave function, the operatorX5 i\]/]p violates the transversality condition. N
spin-dependent correction can remedy that defect, as can be shown by group theory.12 One can
nevertheless use projectors generated by quasiprojectors as follows.

The symbols of operators are now considered to be 333 matrices whose elements depe
upon (x,p). The symbol of the operatorPT that projects upon transverse states isd jk2(pjpk/p

2).
A quasiprojector for the volumeV can then be defined as the operator product,

FT
R5PTFRPT , ~3.2!

whereFR is the operator with matrix symbolf (x,p).d jk , the functionf (x,p) being the symbol of
the zero-spin quasiprojector. One can use Eq.~I.3.6! to compute the operator product~3.2! so that
to first order in the Planck constant, the symbol ofFT

R is given by

f R~x,p!.Fd jk2S pjpkp2 D G1S i\2p2D S ] f R
]xm

D @d jmpk2dkmpj #1••• . ~3.3!

The results previously obtained for the case of spin zero continue to hold with the pr
definition. One must be careful, however, because the derivatives or order 3 and hig
(pjpk/p

2) blow up whenpmin→0. An analysis along the lines of the Appendix shows that th
are further corrections of order@l0/D#5 exp@22pD/l0# when one tries to apply exclusion o
causality down to distancesD ~or with D replaced byD2t for causality!. This is, however, of no
practical consequence. Transversality is not affected by time evolution becauseH commutes with
PT .

Two remarks are in order:~i! Similar results hold for the localization of a photon with
definite helicity or for a one-component neutrino. One has only to replace the transverse pro
PT in Eq. ~3.2! by the corresponding helicity projector in momentum space.~ii ! It is impossible to
go to the limitpmin→0. The projector obtained from quasiprojectors does not give in this lim
J. Math. Phys., Vol. 38, No. 2, February 1997
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family of spectral projection operators from which a position operator could be derived.
seems to indicate that the definition of localization we have introduced is generic and the exi
of a Newton–Wigner position operator, valid only in special cases, does not provide a conv
approach.

IV. CONCLUSIONS

The localization of a relativistic free particle can be defined when describing experimen
formulating logical properties entering histories. This is true whatever the mass and spin
particle. One must use classes of equivalent projectors associated with regions of phase sp
excluding too large wavelengths. Previous difficulties are simply explained. Causality, if no
covariance, is recovered and is shown to be valid up to exponentially small corrections, in
contrast with the theorems of impossibility relying upon the standard approach. Presumab
bounds on causality can still be improved. Some applications will be given elsewhere.

APPENDIX: PROOF OF EQ. (2.3)

This appendix gives the proof of Proposition 1 in Sec. II. One considers a massless p
localized in a space regionV at time zero, large wavelengths being excluded. A detecto
contained in a regionV8 outsideV, at a distanceD from V and one wants to estimate th
probability for the particle to be detected inV8 at timet.0, assumingD.t. The regionV8 will be
taken to be macroscopic though small enough. Units where\51 will be used. We shall not be
interested in precise values of some constants of the order of 1 and the notationC for such a
constant will be used, with different numerical values in different equations.

1. Algebraic preliminaries

One considers two cellsC andC8 in phase space, as introduced in Sec. II, projecting upoV
andV8, respectively. Let two projectorsE8 andE be associated with them~within their equiva-
lence classes!. Since the particle is inC at time zero, its density operator satisfies Tr(Er)51,
which implies@E,r#50. Denoting the eigenstates ofE with eigenvalue 1 by$fk%, one has

r5(
k

rkufk&^fku, with (
k

rk51 and 1>rk>0,

and therefore

r~ t !5(
k

rkufk ,t&^fk ,tu.

Let $f j8% denote the eigenstates ofE8 with eigenvalue 1. Consider the probability for detecting
particle inV8:

P5Tr@E8r~ t !#5(
jk

rku^f j8ufk ,t&u2<supk(
j

u^f j8ufk ,t&u2<(
jk

u^f j8ufk ,t&u25Tr„E8E~ t !….

When the projectorsE andE8 are generated by two quasiprojectorsF andF8 by replacing the
eigenvalues>1

2 ~resp.,.1
2! by 1 ~resp., 0!, as explained in I, Sec. II, one gets

P<4 Tr„F8F~ t !…. ~A1!

2. Quasiprojectors

A symbol for a quasiprojectorF for C will be taken asf (x,j) exp~2j2/2P2!, wheref (x,j)51
if xPV, j2>p0

2 and zero otherwise,p0 being a shorter convenient notation forpmin and the
J. Math. Phys., Vol. 38, No. 2, February 1997
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exponential damping factor replacing the cutoff atpmax, i.e.,P5pmax. It may be noticed that this
function is notC` and one might have to smooth it for some other applications, but this will
be found necessary for our purpose.

After going back to a covariant Hilbert space metric if necessary, one finds that under
evolution F becomesF(t)5U†(t)FU(t), with U(t)5exp~2iHt !, the symbol ofH(t) being
v~j!5~j 2!1/2 for a massless particle. Applying twice exact Eq.~I.3.4! for an operator product, one
finds that the symbolf (x,p,t) for the operatorF(t)5U(t)FU†(t) is given by

f x,j,t)5E f ~x1u,j!dS j2
1

2
~z1z8! Dexp@2 i „v~z!t2z.u…

1 i „v~z8!t2z8.u…#.~2p!23du dz dz8. ~A2!

The relative simplicity of this expression is due to the fact that the HamiltonianH depends only
upon momentum.

A quasiprojector associated withV8 can be defined in terms of coherent states as in~I.4.1! by

F85E
V83R3

ugqp&^gqpuexpS 2
p2

2P2Ddq dp~2p!23, ~A3!

with Gaussian wave functionsgqp,

gqp~x!5~2ps2!23/4 exp@2~x2q!2/4s21 ip.x#. ~A4!

The lengths will be chosen later on. For the time being, one only assumes

s!D, t51/2s@p0 . ~A5!

It will be convenient to isolate a ‘‘local component’’ ofF8 by fixing q, the integral overq being
performed later, i.e.,

Fq95E
up].p0

ugqp&^gqpuexpS 2
p2

P2Ddp. ~A6!

3. The quantity to be evaluated

A direct calculation using Eq.~I.3.1! for the action of the operatorF(t) on the functiongqp
gives

A5Tr„Fq9F~ t !…5E f ~x1u,j!expF2
~x2q!2

2s2 2
~j2p!2

2t2
1 i „v~z!t2z.u…2 i „v~z8!t2z8.u…

2
p2

2P22
j2

2P2GdS j2
1

2
~z1z8! D ~2p!26 dx du dp dj dz dz8. ~A7!

SinceV8 is macroscopically small, only the regions inV nearest toV8 will be important. One
can then takeq on thex axis in space at an abscissa near2D andV as the semi-infinite region
x1u>0, the transverse components ofx1u ranging from2` to 1`. One can then integrate
uponx2u, upon the transverse components ofx1u, which give delta functions for the transvers
component ofz2z8, then integrate upon the transverse components ofp. Denoting byn the unit
vector in thex-direction, this gives
J. Math. Phys., Vol. 38, No. 2, February 1997
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A5Cs3t2E expF2
~j.n2p!2

2t2
2

h2

8t2
1 ih~y1D !2

j2

2P22
p2

2P2 1 i ~v2v8!t Gdy dp dh d3j.

~A8!

All the variables are one dimensional exceptj. One defined h5~z2z8!.n and
~v,v8!5@~j6hn/2!2#1/2. The domain of integration isuju.p0, upu.p0 , y.0, hPR.

4. A first evaluation

We shall apply the saddle-point method to evaluateA, becauset is a small quantity. The
justification of this method and its limitations will have to be considered carefully, but we
first perform an indicative calculation, which provides a convenient orientation. Let us deno
F the exponent in the integral~A8!. The saddle point occurs where the derivative]F/]h50. This
equation is easily solved and the result put back inF to find the dominant contribution. One find
that this dominant term is obtained when the transverse components ofj are zero, whenj.n56p0
andy50 ~because of the integration ranges! and whenv(z)52z for z56p06h0/2, h0 being the
saddle point given in this extreme case by

h0524i t2~D2t !, ~A9!

whereas the dominant exponent is

F05F~h0!522t2~D2t !2. ~A10!

Notice finally that the second derivative]2F/]h2 at h5h0, which is needed for the complet
evaluation of the integral, is 1/4t2.

5. Justification and limits of the saddle point method

For a given value ofuju, the functionsv andv8 are analytic functions ofh for h complex in
the diskuhu<2uju. Our saddle-point analysis is therefore correct as long asuh0u<2p0. Notice that
the best value one can get is obtained for

t25p0/2~D2t !, h0522ip0 , F052p0~D2t !. ~A11!

Let us therefore choose this ‘‘best’’ value fort. Physically, it means that a physicist, wanting
test causality as well as possible though aware that one must exclude too large wavelengths
adapt the unavoidable fuzziness of the detector boundaries in the best possible way. One c
easily obtain a bound for the contribution of the integration rangeuhu.2p0 with this value oft by
integrating~A8! over y ~this could also have been done in the saddle-point part! and integrating
over the absolute value of the integrant. One thus get a bound for this contribution, given

CP3@p0~D2t !#21/2 exp@2p0~D2t !#. ~A12!

This bound has the same exponential factor than the saddle-point contribution, but its coe
is much larger. One must therefore take it as giving the result.

6. Final estimate

Integrating overq in the volumeV8 of the detector and reintroducing the previous notatio
one finds that the probability of detectionP satisfies

P<C@V8pmax
3 ~2p\!23#@pmin~D2t !/\#21/2 exp@2pmin~D2t !/\#. ~A13!
J. Math. Phys., Vol. 38, No. 2, February 1997
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It diverges whenpmax→`, which is obviously a spurious consequence of too broad estimates.
can remedy this defect by noticing that the only mathematical constraint onpmax is to be much
larger thant in the Gaussian integrals. This means that, choosing again the best device, o
go as far as replacingpmax in the bound~A13! by Kt, K being a constant that is logarithmicall
of the order of 1. This is because one needs only that exp~2K2! be of the order of the experimenta
errors one can tolerate. If extremely small errors of the order ofe2100 are considered, they imply
only a conditionK.10. Such a number will still be considered as being of the order of 1 and
gets the final bound,

P,CV8~pmin /\!1/2~D2t !25/2 exp@2pmin~D2t !/\#. ~A14!
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Aharonov–Bohm scattering: The role of the incident wave
Seiji Sakodaa) and Minoru Omoteb)
Department of Physics, Hiyoshi, Keio University, Hiyoshi, Yokohama 223, Japan

~Received 9 July 1996; accepted for publication 26 August 1996!

The scattering problem under the influence of the Aharonov–Bohm~AB! potential
is reconsidered. By solving the Lippmann–Schwinger~LS! equation we obtain the
wave function of the scattering state in this system. In spite of working with a plane
wave as an incident wave we obtain the same wave function as was given by
Aharonov and Bohm. Another method to solve the scattering problem is given by
making use of a modified version of Gordon’s idea, which was invented to consider
the scattering by the Coulomb potential. These two methods give the same result,
which guarantees the validity of taking an incident plane wave as usual to make an
analysis of this scattering problem. The scattering problem by a solenoid of finite
radius is also discussed, and we find that the vector potential of the solenoid affects
the charged particles, even when the magnitude of the flux is an odd integer as well
as a noninteger. It is shown that the unitarity of theSmatrix holds provided that a
plane wave is taken to be an incident one. ©1997 American Institute of Physics.
@S0022-2488~97!02301-3#

I. INTRODUCTION

Since Aharonov and Bohm~AB! have discussed a scattering problem of a charged particl
a solenoid in order to clarify the significance of the vector potential in the quantum theory,1 many
people have considered the same problem from various viewpoints.2 As is well known, there are
two approaches to deal with a scattering problem in the quantum theory. The first approac
find a stationary state describing the scattering process by solving a time-independent Schr¨dinger
equation. The second one is to study the time development of a wave packet with respe
time-dependent Schro¨dinger equation. Most people as well as Aharonov and Bohm have ana
the scattering by means of the first approach,3–8 and some people have discussed the same p
lem with the second approach.9–11As we see in the following, however, in spite of these efforts
seems not to be clear what is an incident wave in this scattering process. In this paper we
to answer this question with the first method because there seems to be lacking a co
interpretation of the stationary wave function in the literature.

A system of charged particles interacting with the solenoid is described by a Hamilton

Ĥ5
1

2m H p̂2
e

c
A~ x̂!J 2, ~1.1!

where the electromagnetic vector potentialA is given by

A~x!5
F

2pr
~2sin w,cosw!, ~x,y!5~r cosw,r sin w!.

In order to study the scattering of the charged particles we solve the time-independent Schro¨dinger
equation,

a!Electronic mail: sakoda@cc.hc.keio.ac.jp
b!Electronic mail: omote@cc.hc.keio.ac.jp
0022-2488/97/38(2)/716/22/$10.00
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ĤcE~r ,w!5EcE~r ,w!, ~1.2!

to find an eigenfunction that describes the scattering process of charged particles.
Since the Hamiltonian commutes with the angular momentum, it can be easily shown

most general solution of~1.2! is given by

cE~r ,w!5 (
n52`

1`

cne
inw

un1au~kr !, E5
~\k!2

2m
, ~1.3!

whereJn(x) denotes the Bessel function ofnth order and we have puta52eF/2p\c. In ~1.3!,
cn’s are arbitrary constants to be determined by physical requirements. Our main interest he
in the following is to ask what should be the correct choice for the coefficientscn’s to describe the
scattering process.

It has been asserted by Aharonov and Bohm and many other authors that the incident w
this scattering problem, when the incident beam comes from the positivex axis, should be a
modulated plane wavee2 ikr cosw2iaw to make the probability current of the incident wave co
stant. To fulfill this requirement the coefficients have been taken to becn5(2 i ) un1au. In the case
of nonintegrala, however, the incident wave becomes a multivalued function. We may say
from a physical point of view it seems quite unsatisfactory to take such a multivalued
function as an incident one. We should also note that, for sufficiently larger , the term due to the
vector potential does not contribute to the dominant part of the current, even if we take a
wave as an incident wave function. Thus, it is not conclusive to argue that the incident mod
wave gives the condition to determine those constants ascn5(2 i ) un1au.

It will be, therefore, instructive to reconsider the scattering problem from other viewpoin
this paper we try to find the wave function to describe the scattering process using two dif
ways. The first one is to solve the Lippmann–Schwinger~LS! equation, which will be a standar
method to consider the scattering problem of a quantum system, taking a plane wave
incident state instead of the modulated one. If we adopt the Born expansion to solve t
equation, we will soon meet a difficulty because the perturbative method does not work f
present problem, as is shown in Refs. 6 and 7. Then we find an exact solution of the LS eq
with the aid of the Feynman kernel. The second method is an application of Gordon’s idea,
is proposed to discuss the scattering problem by the Coulomb potential.12 The idea may have bee
introduced to avoid the difficulty caused by the long-ranged nature of the Coulomb poten
formulating a scattering theory. This method will also be useful to examine scattering proble
other potentials with a long-range effect. It will be shown that these two methods give the
wave function to describe the scattering state given by AB.1

If a5integer, a further discussion is needed since the solution of the Schro¨dinger equation for
an infinitely thin solenoid does neither vanish nor be defined at the origin in that case. To e
the impenetrability of the solenoid, even for integrala, we assume a solenoid to have a fin
radius and consider this issue by generalizing the second method.

The plan of this paper is as follows. In Sec. II we give the Feynman kernel with effects o
solenoid potential using the path integral method. Section III is devoted to solving the LS eq
exactly with the aid of the Feynman kernel, and the explicit form of the wave function wil
obtained. In Sec. IV Gordon’s method will be argued and its generalization to a system
solenoid with a finite radius will be done in Sec. V. Notes on AB’s result will be found in Sec.
Conclusions and discussions in comparison with other’s results are made in Sec. VII.
J. Math. Phys., Vol. 38, No. 2, February 1997
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II. THE FEYNMAN KERNEL WITH EFFECTS OF THE SOLENOID POTENTIAL

Since the complete set of the eigenfunctions,

1

A2p
einwJun1au~kr !, n50,61,62,...

for the Hamiltonian with effects of the solenoid are known, we can immediately find an expre
of the Feynman kernel,

K~xF ,xI ;T!5^xFue2 iĤ T/\uxI&, ~2.1!

as its spectral representation,2,9,10

K~xF ,xI ;T!5E
0

`

k dk e2 i\k2T/2m
1

2p (
n52`

1`

ein~wF2w I !Jun1au~krF!Jun1au~krI !. ~2.2!

To verify this expression, it suffices to notice the following facts:~i! it obeys the time-dependen
Schrödinger equation;~ii ! it is apparently single valued with respect to bothxF andxI ; and~iii ! it
has the correct limit

lim
t→0

K~xF ,xI ;t !5d2~xF2xI !, ~2.3!

which follows from

1

Aab
d~a2b!5E

0

`

k dk Jn~ak!Jn~bk! @Re~n!.21,a,b.0#, ~2.4!

and

(
n52`

1`

einu52pd~u! @2p,u,p#. ~2.5!

If we carry out the integration with respect tok in ~2.2!, we obtain

K~xF ,xI ;T!5
m

2p i\T (
n52`

1`

expH im

2\T
~r F

21r I
2!J I un1auS mr Fr I

i\T Dein~wF2w I !. ~2.6!

By use of~2.2! or ~2.6! we can proceed to solve the LS equation. In this section, however
would like to give another derivation of~2.2! because there seems to be some confusion in
path integral construction of the Feynman kernel in the literature.13–16 Among them, the most
typical one would be the interpretation of its expression asthe sum over winding number, such as

K~xF ,xI ;T!5 (
m52`

1`

e2 ia~wF2w I22mp!Km~xF ,xI ;T!, ~2.7!

whereKm ~xF ,xI ;T! comes from paths going around the solenoidm times in an anticlockwise
way, and the factore2p ima is a one-dimensional representation of the fundamental group o
configuration space. In the following, however, we show thatthe sum over winding number is no
essential, and that the sum in~2.7! is to be interpreted as a result of the reformulation with the
of the Poisson sum formula for the expression obtained using the usual path integral meth
J. Math. Phys., Vol. 38, No. 2, February 1997
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achieve this we will make use of the completeness relations of both eigenvectorsux& of x with
eigenvaluex, and eigenvectorsup& of p̂ with eigenvaluep, in formulating the path integral. As is
easily recognized, the single valuedness of~2.7! is the consequence of these relations.17

Now we give the path integral derivation for the Feynman kernel of this system. Definin
exponential operator by

e2 iĤ T/\5 lim
n→`

S 12
i e

\
Ĥ D N, e5

T

N
, ~2.8!

and using the completeness of the statesux&, we obtain

K~xF ,xI ;T!5 lim
N→`

E )
i51

N21

d2x~ i !)
j51

N

^x~ j !uS 12
i e

\
Ĥ D ux~ j21!&. ~2.9!

Then, with the aid of the completeness of the statesup&, we can express the infinitesimal versio
of the Feynman kernel as

^xuS 12
i e

\
Ĥ D ux8&5 lim

d→0
E d2p

~2p\!2
expH i

\
p~x2x8!2

d

2
p2J F12

i e

\

1

2m H p2
e

c
Ā~x,x8!J 2G ,

~2.10!

whereĀ~x,x8!5$A~x!1A~x8!%/2.
After shifting the integration variablep by

p°p1
e

c
Ā~x,x8!,

we can rewrite~2.10! as

^xuS 12
i e

\
Ĥ D ux8&5expH ie

\c
Ā~x,x8!~x2x8!J lim

d→0
E d2p

~2p\!2

3expH i

\
p~x2x8!2

1

2 S d1
i e

\m Dp2J . ~2.11!

Carrying out the Gaussian integration with respect top and noting that

Ā~x,x8!~x2x8!5
F

4p S r 8r 1
r

r 8D sin~w2w8!, ~2.12!

we obtain

^xuS 12
i e

\
Ĥ D ux8&5 lim

d→0

meid

2p i\e
expF imeid2\e

$r 21r 8222rr 8 cos~w2w8!%

2
ia

2 S r 8r 1
r

r 8D sin~w2w8!G , ~2.13!

where we have made a change of variables from the Cartesian coordinate to the polar ond
in ~2.13! has been renamed 12 i\md/e°e2 id.
J. Math. Phys., Vol. 38, No. 2, February 1997
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To find the kernel for a finite time intervalT, we need to performN21 integrations with
respect tox’s in ~2.9!. For this purpose, the form of the exponent in~2.13! is extremely inconve-
nient. To overcome the difficulty it is useful to rewrite

mrr 8

\e
eid cos~w2w8!1

a

2 S r 8r 1
r

r 8D sin~w2w8!

5H S mrr 8

\e
eidD 21 a2

4 S r 8r 1
r

r 8D
2J 1/2 cos~w2w82ue!

5
mrr 8

\e
eidA11tan2ue cos~w2w82ue!, ~2.14!

where

tan ue5
\ea

2mrr 8
e2 idS r 8r 1

r

r 8D . ~2.15!

Upon integration with respect tox or x8, the Gaussian part in the integrand and will dominate
sufficiently smalle. We may, therefore, regard components ofx2x8 asO~e1/2!. Then it follows
that

1

2 S r 8r 1
r

r 8D511O~e1/2!. ~2.16!

~Note, however, that the same argument does not hold true forw2w8.! Recalling that we may
discard terms ofO~er! for r.1, in the exponent of a path integral, we can replace the definitio
tanue by

tan ue5
\ea

mrr 8
e2 id$11O~e1/2!%5ue$11O~e1/2!%.

Thus we obtain

expF2 i
mrr 8

\e
eid cos~w2w8!2

ia

2 S r 8r 1
r

r 8D sin~w2w8!G
5expF2 i

mrr 8

\e
eidA11u2 cos~w2w82ue!G$11O~e3/2!%

5 (
n52`

1`

I unuS mrr 8

i\e
eidA11ue

2Dein~w2w82ue!$11O~e3/2!%. ~2.17!

Whene becomes small, the argument of the modified Bessel function grows to allow us to
its asymptotic form. Then keeping terms up toO~e! in the exponent, we obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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I unuS mrr 8

i\e
eidA11ue

2De2 inue

5A i\e

2pmrr 8
e2 id expFmrr 8i\e

eid2
i\e

2mrr 8
e2 idH ~n1a!22

1

4 J G$11O~e3/2!%

5I un1auS mrr 8

i\e
eidD $11O~e3/2!%. ~2.18!

Substituting it into~2.17!, we arrive at

expF2 i
mrr 8

\e
eid cos~w2w8!2

ia

2 S r 8r 1
r

r 8D sin~w2w8!G
5 (

n52`

1`

I un1auS mrr 8

i\e
eidDein~w2w8!$11O~e3/2!%. ~2.19!

Therefore the infinitesimal kernel~2.13! is now rewritten as

K~x,x8;e!5^xuS 12
i e

\
Ĥ D ux8&

5 lim
d→0

meid

2p i\e (
n52`

1`

expH 2
meid

2i\e
~r 21r 82!1 in~w2w8!J

3I un1auS mrr 8

i\e
eidD $11O~e3/2!%. ~2.20!

Here a comment is needed; in obtaining the result of~2.18! we have discarded the possibility o
using the modified Bessel function of negative order since it breaks the regularity of the ker
the origin.

It is now straightforward to see that the multiplication rule holds:

E d2x K~x2 ,x;e!K~x,x1 ;e!5K~x2 ,x1 ;2e!, ~2.21!

since the integration with respect to the angle variable is trivial, and we may make use
formula

E
0

`

r dr e2ar2Jm~pr !Jm~qr !5
1

2a
e2~p21q2!/4aIm S pq2aD , ~2.22!

which holds foruarg(a) u,p/2, Re~m!.21, p,q.0. Repeated use of the rule~2.21! ~and putting all
d’s to 0 after integration! will lead us to

K~x,x8;T!5
m

2p i\T (
n52`

1`

expH im

2\T
~r 21r 82!J I un1auS mrr 8

i\T Dein~w2w8!. ~2.23!

Thus~2.6! is again obtained by the usual formulation of a path integral. Here it should be no
that the sum over winding numbers in formulating the path integral is not essential.
J. Math. Phys., Vol. 38, No. 2, February 1997
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III. THE WAVE FUNCTION OF A SCATTERING STATE AS A SOLUTION OF
LIPPMANN–SCHWINGER EQUATION

In this section we obtain the wave function for the scattering state of charged par
scattered by the solenoid. It is known that, for the present problem, the Born approximatio
to give a reliable answer because we cannot avoid a divergent integral*0

r dr8 J0
2(kr8)/r 8, even in

its first order.6,7 The iterative method to solve the LS equation will also be unsatisfactory for
same reason. Therefore we need to solve it in an exact way with the aid of the Feynman
given in ~2.23!.

The LS equation for the system reads as

cE~r ,w!5uE~r ,w!1cS~r ,w!,
~3.1!

cS~r ,w!5E
0

`

r 8 dr8E
2p

1p

dw8^xu~E2Ĥ1 i e!21ux8&
\2

2mr 82
a~22i ]w81a!uE~r 8,w8!,

where we have taken an incident plane waveuE(r ,w) 5 eikr cosu ~u5w2w0! as an eigenstate of th
free Hamiltonian, andw0 indicates the direction of the incident beam. From~2.23!, we can easily
obtain the Green’s function in the above by Laplace transform,

^xu~E2Ĥ1 i e!21ux8&5E
0

` dT

i\
ei ~E1 i e!T/\^xue2 iĤ T/\ux8&. ~3.2!

By puttingE5\2k2/2m, it turns out to be

^xu~E2Ĥ1 i e!21ux8&5
m

2i\2 (
n52`

1`

ein~w2w8!$u~r2r 8!H un1au
~1! ~kr !Jun1au~kr8!

1u~r 82r !Jun1au~kr !H un1au
~1! ~kr8!%, ~3.3!

where use has been made of a formula,

E
0

`

p dp
Jn~ap!Jn~bp!

p22k22 i e
5

p i

2
Hn

~1!~ak!Jn~bk! @Re~n!.21,a>b.0#, ~3.4!

andu(x) is the step function.
Substituting~3.3! and partial wave expansion of the plane waveuE(r ,w) into the integrand of

cS(r ,w), we obtain

cS~r ,w!5 (
n52`

1`

$An~r !H un1au
~1! ~kr !1Bn~r !Jun1au~kr !%e

inu1 i unup/2, ~3.5!

where

An~r !5
p

2i
a~2n1a!E

0

r dr8

r 8
Jun1au~kr8!Junu~kr8!,

~3.6!

Bn~r !5
p

2i
a~2n1a!E

r

` dr8

r 8
H un1au

~1! ~kr8!Junu~kr8!.

Making use of a formula of an indefinite integral for cylindrical functions~represented byZm and
Z̃n for the sake of convenience!,
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s
ion
ven by
ident
nce.

723S. Sakoda and M. Omote: Aharonov–Bohm scattering

¬¬¬¬¬¬¬¬¬¬
E dx

x
Zm~ax!Z̃n~ax!52

ax

m22n2
$Zm11~ax!Z̃n~ax!2Zm~ax!Z̃n11~ax!%

1
Zm~ax!Z̃n~ax!

m1n
~mÞn!, ~3.7!

we obtain

An~r !5
ip

2
kr$Jun1au11~kr !Junu~kr !2Jun1au~kr !Junu11~kr !%

2
ip

2

a~2n1a!

un1au1unu
Jun1au~kr !Junu~kr ! ~3.8!

and

Bn~r !52
ip

2
kr$H un1au11

~1! ~kr !Junu~kr !2H un1au
~1! ~kr !Junu11~kr !%

1
ip

2

a~2n1a!

un1au1unu
H un1au

~1! ~kr !Junu~kr !1e2 i ~ un1au2n!p/2. ~3.9!

By a simple calculation with the aid of Lommel’s formula,

Jn11~x!Hn
~1!~x!2Jn~x!Hn11

~1! ~x!5
2i

px
,

we have

$An~r !H un1au
~1! ~kr !1Bn~r !Jun1au~kr !%e

inu1 i unup/2

52Junu~kr !e
inu1 i unup/21Jun1au~kr !e

inu1 inp2 i un1aup/2. ~3.10!

Then ~3.5! can be rewritten as

cS~r ,w!52eikr cosu1 (
n52`

1`

Jun1au~kr !e
inu1 inp2 i un1aup/2. ~3.11!

We thus find that the total wave function for the scattering state is given by

cE~r ,w!5 (
n52`

1`

Jun1au~kr !e
inu1 inp2 i un1aup/2. ~3.12!

It is very interesting to recognize that by puttingw05p, the solution of the LS equation coincide
with the wave function obtained by AB.1 But we have to remember that in solving the LS equat
we take the plane wave as an incident wave and that the resulting scattered wave is gi
~3.11!. In spite of the fact that the total wave function is the same as that of AB, both the inc
wave and the scattered wave in this section are different from those of AB as a conseque

Next, we proceed to find the differential cross section by use of the scattered wave~3.11!. In
view of ~3.8! and ~3.9!, we notice thatAn(r )5O„(kr)0… while Bn(r )5O„(kr)21

… for large kr.
Then we easily obtain the asymptotic form of the scattered wavecS(r ,w) from ~3.5! as
J. Math. Phys., Vol. 38, No. 2, February 1997
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cS~r ,w! ;
r→`

(
n52`

1`

An~`!H un1au
~1! ~kr !einu1 i unup/2, ~3.13!

whereAn~`! is found from~3.8! to be

An~`!52 i sin$~ un1au2unu!p/2%. ~3.14!

Using the asymptotic form of the Hunkel functions and~3.14! for An~`! in ~3.13!, we are led to

cS~r ,w!;
1

A2pkr
eikr2 ip/4 (

n52`

1`

~e2idn~a!21!einu, ~3.15!

where the phase shift in thenth partial wave is given by

dn~a!5 H 2pa/2
1pa/2

~n1@a#>0!,
~n1@a#,0!. ~3.16!

Here and in the following we denote the integral part ofa by @a# and its nonintegral part by$a%
to write a5@a#1$a%.

Here we introduce a regularization parametere for the sum in~3.15! so that it is defined as an
Abel sum because the phase shift does not decrease at all whenunu becomes large, and definef ~u!
as

f ~u!5 lim
e→0

e2 i @a#u

A2pk
H (
n50

1`

~e2 ipa21!einu2ne1 (
n51

1`

~eipa21!e2 inu2neJ . ~3.17!

Then, performing the sum of geometric series and making use of a symbolic relation,

lim
e→0

1

x2a6 i e
5P

1

x2a
7 ipd~x2a!,

denoting the principal value byP, we finally obtain in terms of the scattering amplitudef ~u!,

cS~r ,w!;
1

Ar
eikr2 ip/4f ~u!,

~3.18!

f ~u!5A2p

k H ~cospa21!d~u!1 i
sin pa

p
e2 i @a#uP

1

eiu21 J .
Although the total wave function happens to have exactly the same form as the result o

as mentioned previously, the scattering amplitude~3.18! disagrees with that of AB in Ref. 1 o
Ref. 3 by thed function term. Nevertheless, this disagreement can be discarded when we h
interest in the differential cross section only for nonforward direction~uÞ0!, since we cannot well
separate the scattered and unscattered particles in the forward direction experimentally. A
in the nonforward direction, the differential cross section is thus given by

ds~a!5
1

2pk

sin2 pa

sin2~u/2!
du. ~3.19!
J. Math. Phys., Vol. 38, No. 2, February 1997
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In this sense the scattering amplitude of AB describes the physics appropriately. However
take into account the unitarity of theSmatrix, thed function for the forward direction cannot b
neglected, as is pointed out by Ruijsenaars.5 A more detailed description of the property of theS
matrix for this system is given in Appendix B.

IV. ANOTHER DERIVATION OF THE SCATTERING STATE

Here we consider another approach to the problem by using a modified version of Go
idea, which has been proposed in the analysis for the scattering of a charged particle
Coulomb potential.12 The essence of the method is to prepare the asymptotic region describ
the free Hamiltonian a far distance from the solenoid in order to overcome some diffic
caused by the long range effects of the solenoid field. To this aim we introduce a modified
potential,

A55
F

2p S 1r 022 1

R2D rew ~0!r!r 0!,

F

2p S 1r2
r

R2Dew ~r 0,r!R!,

0 ~R,r !,

~4.1!

wheret0 is the radius of the shielded solenoid. It should be noticed that in the regionR,r the
vector potential does not affect charged particles. To go back to the original AB problem w
putR→` after solving the Schro¨dinger equation for this system. In this section, we first deal w
the scattering by an infinitely thin solenoid~r 050!, and then we generalize the analysis to the c
of a finite size~r 0.0! solenoid in the next section.

In the asymptotic region (r.R) where the vector potential is absent, the solution of
Schrödinger equation is given by eigenstates of the free Hamiltonian, and the wave funct
describe the scattering statecII ~t,w! will be given by

c II ~r ,w!5eikr cosu1 (
n52`

1`

anHn
~1!~kr !einu ~u5w→w0!, ~4.2!

wherean’s are constant coefficients to be determined in the following. In the scattering re
~0,r<R! the wave functioncI~r ,w! is subject to

ĤIc I~r ,w!5
\2k2

2m
c I~r ,w!, ~4.3!

ĤI52
\2

2m F] r21 1

r
] r1

1

r 2 H ]w1 iaS 12
r 2

R2D J 2G . ~4.4!

Assuming the partial wave expansion forcI~r ,w!,

c I~r ,w!5 (
n52`

1`

einuc I,n~r !, ~4.5!

F] r21 1

r
] r2

1

r 2 H n1aS 12
r 2

R2D J 21k2Gc I,n~r !50, ~4.6!

and making a change of variabler°z5a(r /R)2 with c I ,n5Wn/Az, we obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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Wn91H 2
1

4
1

l1n/2

z
2

~n/2!221/4

z2 JWn50. ~4.7!

In the above we have putn5n1a, l5(k/R)2/(4a), and a prime denotes the differentiation wi
respect toz. The general solution of~4.7! is given by a linear combination of the Whittake
functions,

Wn~z!5bnMl1n/2,unu/2~z!1cnMl1n/2,2unu/2~z!, ~4.8!

wherebn andcn are arbitrary constants andMk,m(z) is defined by

Mk,m~z!5zm11/2e2z/2
1F1~m2k11/2;2m11;z!

5zm11/2e2z/2(
l50

`
G~2m11!G~m2k1 l11/2!

G~2m1 l11!G~m2k11/2!

zl

l !
. ~4.9!

The regularity of the wave function at the origin implies that the coefficientcn of the singular
solutionMl1n/2,2unu/2(z) in ~4.8! must vanish. Therefore the solution for the scattering regio
given by

c I~r ,w!5 (
n52`

1`

einu
bn

Az
Ml1n/2,unu/2~z!. ~4.10!

To determine the coefficientsan in ~4.2! andbn in ~4.10!, we require the continuity of the
wave function itself as well as its derivative in the normal direction on the surfacer5R. These
conditions may be imposed on each partial wave independently to give

an~R!5
1

2
einp/2H p̄n~R!

pn~R!
21J , ~4.11!

bn~R!5
Aa

2
einp/2

Hn
~2!~kR!1e2idn~Ria!Hn

~1!~kR!

Ml1n/2,unu/2~a!
. ~4.12!

Herepn(R) in ~4.11! is defined by.

pn~R!5kR$Hn21
~1! ~kR!2Hn11

~1! ~kR!%Ml1n/2,unu/2~a!22Hn
~1!~kR!$~a22l2n21!Ml1n/2,unu/2~a!

1~ unu12l1n11!Ml1n/211,unu/2~a!%, ~4.13!

and we have pute2idn(Ria) 5 p̄n(R)/pn(R) because it should be identified with the phase shift
thenth partial wave. Thus, we obtain a solution in the scattering region,

c I~r ,w!5 (
n52`

1`
1

2
einp/2

Hn
~2!~kR!1e2idn~Ria!Hn

~1!~kR!

Ml1n/2,unu/2~a!

R

r
Ml1n/2,unu/2S ar 2

R2 D , ~4.14!

and also in the asymptotic region,

c II ~r ,w!5eikr cosu1
1

2 (
n52`

1`

Hn
~1!~kr !$e2idn~Ria!21%. ~4.15!

We putR→` in ~4.14! and ~4.15! by making use of the well-known asymptotic forms
cylindrical functions and that of the Whittaker function,
J. Math. Phys., Vol. 38, No. 2, February 1997
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Mk,m~z!;
1

Ap
G~112m!k2m21/4z1/4 cos~2Akz2mp2p/4!, ~4.16!

for Re(k)@uzu,umu, Re(z).0 in ~4.13! to obtain the phase shift

dn~`;a!52~ unu2n!p/2.

Then the coefficients of the scattered wave in the asymptotic region are found to be

an~`!5 1
2e

inp/2$e2 i ~ unu2n!p21%. ~4.17!

WhenR becomes large, the coefficientbn(R) in the solution of the scattering region behaves
bn(R);ei (n2unu/2)p$(kR)2/(4a)% unu/2/G(unu11). Recalling the definition of the Whittaker func
tion and a relation between the hypergeometric functions,

lim
b→`

1 F1~b;g;z/b!50F1~g;z!, ~4.18!

we observe

Rbn~R!

Aar
Ml1n/2,unu/2S ar 2

R2 D ——→
R→`

~kr/2! unu

G~11unu!
ei ~n2unu/2!p

0F1S 11unu;2S kr2 D 2D . ~4.19!

By recognizing

~x/2! unu

G~11unu! 0F1S 11unu;
2x2

4 D5Junu~x!,

we finally obtain the solution for the scattering region,

c I~r ,w!5 (
n52`

1`

Junu~kr !e
inu1 i ~n2unu/2!p, ~4.20!

as well as that for the asymptotic region,

c II ~r ,w!5eikr cosu1
1

2 (
n52`

1`

ein~u1p/2!$e2 i ~ unu2n!p21%Hn
~1!~kr !. ~4.21!

Thus, we have found that in the largeR limit the solutioncI~r ,w! in the scattering region ha
the same form as the one that was obtained in the previous section through the LS equa
should be noticed, however, that in this approach the wave functioncII ~r ,w! describes the scat
tering state in the asymptotic region far from the solenoid. From~4.21! we find that the incident
wave is given by the plane wave and that the scattered wave is given by the second term o~4.21!
denoted bycII ,S~r ,w!,

c II ,S~r ,w!5
1

2 (
n52`

1`

ein~u1p/2!$e2 i ~ unu2n!p21%Hn
~1!~kr !. ~4.22!

If we take the limitr→` of cII ,S~r ,w!, we again obtain the same scattering amplitude as in
previous section. Thus we conclude that the two approaches to discuss the scattering pro
this system give the same result.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Here it is better to give a comment on the relation between the methods explained here
the previous section. In finding the scattering amplitude in Sec. III, information on the scat
has been given by the asymptotic behavior of the wave function that corresponds tocI~r ,w! in this
section. On the other hand, in this section,cII ~r ,w! describes asymptotic behavior of the scatter
state, as has been shown above. The fact that these two methods give the same resu
consequence of the existence of the limitR→` in both cI~r ,w! andcII ~r ,w! simultaneously. In
other words, we may say that the Aharonov–Bohm scattering problem accepts the plane w
a piece of its asymptotic wave function. In this regard, we are reminded of the need of a
careful treatment in the same analysis of the scattering by the Coulomb potential.

V. THE SCATTERING BY A SOLENOID WITH A FINITE RADIUS

As is easily seen from~3.12! or ~4.20!, the whole wave function of the scattering state neit
vanishes nor is defined at the origin. Therefore the analyses in the preceding sections are
isfactory on this point. Fortunately the idea developed in the previous section is easily gene
to the system with a solenoid of finite radius. Repeating the same procedure with finiter 0, we
obtain

c I~r ,w!5 (
n52`

1`

einu1 i ~n2unu/2!pH Junu~x!2
Junu~a!

H unu
~1!~a!

H unu
~1!~x!J , ~5.1!

c II ~r ,w!5eix cosu2
1

2 (
n52`

1`

ein~u1p/2!H 11e2 i ~ unu2n!p
H unu

~2!~a!

H unu
~1!~a! JHn

~1!~x!, ~5.2!

wherea5kr0 and x5kr and the wave function is assumed to vanish in the region 0,r<r 0 .
Again from the solution in the asymptotic region we can easily find the scattered wave,

cS~r ,w!52
1

2 (
n52`

1`

ein~u1p/2!H 11e2 i ~ unu2n!p
H unu

~2!~a!

H unu
~1!~a! JHn

~1!~x!, ~5.3!

and its asymptotic form for largex,

cS~r ,w!;
1

Ar
eix2 ip/4f ~u!,

~5.4!

f ~u!52
1

A2pk
(

n52`

1`

einuH 11e2 i ~ unu2n!p
H unu

~2!~a!

H unu
~1!~a! J .

The first term in the scattering amplitude exactly cancels the corresponding term from the in
plane wave. Therefore theSmatrix for the system is just a multiplication of a complex number
unit modulus:

Sn52e2 i ~ unu2n!p
H unu

~2!~a!

H unu
~1!~a!

~ uSnu51!, ~5.5!

on each eigenspace of the angular momentum. Hence the unitarity of theSmatrix is evident.
Let us denotea5@a#1$a% again to write

f ~u!52A 2

pk
e2 i @a#uH e2 ipa/2(

n50

`

einuAn
1~a!1eipa/2(

n51

`

e2 inuAn
2~a!J , ~5.6!
J. Math. Phys., Vol. 38, No. 2, February 1997
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whereAn
6~a! is given in terms of the Bessel and the Neumann functions by

An
1~a!5

1

Hn1$a%
~1! ~a!

H cosS pa

2 D Jn1$a%~a!2sinS pa

2 DNn1$a%~a!J , ~5.7!

An
2~a!5

1

Hn2$a%
~1! ~a!

H cosS pa

2 D Jn2$a%~a!1sinS pa

2 DNn2$a%~a!J . ~5.8!

The total cross section is then found to be

s~a!5
4

k H (
n50

`

uAn
1~a!u21 (

n51

`

uAn
2~a!u2J . ~5.9!

This result explains an interesting feature of this system:s~a! is apparentlyperiodic in a with
period2 ~not 1!.

Unlike the caser 050 ~extremely thin solenoid!, the wave function is strictly subjected to th
boundary conditionc~r 0,w!50, even whena5integer. Thus the solenoid is completely impe
etrable to the charged particles. Here let us consider the special case ofa5integer. The explicit
form of s is found to be

s ~even!5
4

k

J0
2~a!

J0
2~a!1N0

2~a!
1
8

k (
n51

` Jn
2~a!

Jn
2~a!1Nn

2~a!
, ~5.10!

for a5even integer, and

s ~odd!5
4

k

N0
2~a!

J0
2~a!1N0

2~a!
1
8

k (
n51

` Nn
2~a!

Jn
2~a!1Nn

2~a!
, ~5.11!

for a5odd integer. Whena tends to 0, these two formulas behave in quite different ways.
formula ~5.10! is nothing but a total cross section of two-dimensional hard core scattering
thus tends to 0 witha→0 asp2/k$log~a/2!%2. This result simply means that in the case ofa5even
integer charged particles are not affected by the solenoid at all. On the other hand, the fo
~5.11! grows up to` in the same limit since it has the Neumann function instead of the Be
function in the numerator of each term. Therefore the total cross section of AB scatterin
a5odd integer diverges when the radius of the solenoid tends to 0. This singular behavior
common feature of the total cross section, except for the casea5even integer. If we notice that th
partial cross section for largen immediately approaches 4 sin2~pa/2!/k, even for finitea, we
conclude that the singularity is not the consequence of putting the radius of the solenoid infi
small. This result implies the important fact that the vector potential can affect the ch
particles, even in the case ofa5odd integer, which is a different conclusion from that of AB.

Apart from the divergence of the total cross section considered above, the unitarity ofS
matrix on each eigenspace of angular momentum is expected from~5.5!. This fact is also recog-
nized from a different point of view. According to the discussion given in Appendix A,
generalized optical theorem~A1!, which is rewritten in terms of partial wave decomposition o
scattering amplitudef ~u!5Sn52`

1` einu f n as

u f nu252
1

A2pk
~ f n1 f n* !, ~5.12!

is equivalent to the unitarity of theSmatrix. In our problemf n is given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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f n52A 2

pk
An6@a#

6 ~a!e7 ipa/2, ~5.13!

where the upper and the lower signs correspond ton1@a#>0 or n1@a#,0, respectively. Then
condition ~5.12! reads as

uAn
6~a!u25 1

2$e
7 ipa/2An

6~a!1e6 ipa/2An
6* ~a!%, ~5.14!

and is easily verified.
As for the system with an infinitely thin solenoid, an explicit form of theSmatrix is found and

the operator identityŜ†Ŝ5ŜŜ†51 can be verified directly. This is given in Appendix B.

VI. RESULT OF AB AND THE UNITARITY OF THE S-MATRIX
As will be shown in Appendix B, theS-matrix of the AB scattering is proven to be unitar

Here we consider the relation between the scattering amplitude~3.18! and that of AB in connec-
tion with theS-matrix. Through this consideration we present a note on AB’s decompositio
the total wave function into the incident and the scattered waves.

The wave function of the scattering state is given by

ca~r ,w!5 (
n52`

1`

Junu~x!ein~u1p!2 i unup/2, x5kr, u5w2w0 , n5n1a. ~6.1!

By use of the integral representation of the Bessel functions,

Jn~x!5
1

2p i ECdt ex sinh t2nt @Re~x!.0#, ~6.2!

we can immediately convert~6.1! into its integral representation,10,11,18

ca5
1

2p i ECdt ex sinh tH e2at2 ipa/2

12e2t1 iu1 ip/21
e2~12a!t2 iu1 i ~11a!p/2

12e2t2 iu1 ip/2 J , ~6.3!

for 0<a,1 ~See Fig. 1 for the contourC!. Whena has an integral part~a5@a#1$a%!, the wave
function is obtained byca5e2 i [a](01p)c$a% . We may, therefore, consider only the case
0<a,1. Making a change of variable, we can further rewrite~6.3! as

FIG. 1. Schla¨fli’s contour of the integral representation ofJn(x). C: 2ip1`→1ip1`.
J. Math. Phys., Vol. 38, No. 2, February 1997
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ca5
1

2p i EC1

dt e2 ix cosht
e~12a!t

et1eiu
1

1

2p i EC2

dt e2 ix cosht
e~12a!t

et1eiu
, ~6.4!

where the contoursC1 andC2 are depicted in Fig. 2. On change of variablet°u5et, there arises
a multivalued functionu2a in the integrand. Therefore we need to deal with it with due care. If
recall that our solution for the scattering state,uC~1!~k,w0!& in Appendix B has been obtained from
the LS equation, we immediately notice that we have only one way to deform the contour to
the residue theorem to the integral on theu plane~see Fig. 3!. Another option for the deformation
Fig. 4, obviously corresponds to another solutionuC~2!~k,w0!&. As is seen from Fig. 3, we can
make use of the residue theorem to the contour integration around the unit circle only whenuÞ0.
Then we obtain

ca5eix cosu2 ia„u2sgn~u!p…2
sin pa

p E
2`

1`

dt
e~12a!t

et2eiu
eix cosht ~uÞ0!, ~6.5!

where

sgn~u!5 H 1
21

~0,u<p!,
~2p<u,0!. ~6.6!

FIG. 2. ContoursC1 andC2 . C1 : 2ip/21`→1i3p/21`, C2 : ip/22`→2i3p/22`.

FIG. 3. Contour of theu plane corresponding touC~1!~k,w0!&. A branch cut appears on the negative Re(u) axis. If u50, we
cannot adopt the residue theorem because the pole is located just on the branch cut.
J. Math. Phys., Vol. 38, No. 2, February 1997
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If we interpret the modulated plane wavecmod 5 eix cosu2ia„u2sgn(u)p… as anincident wave, the
second term of~6.5! will be regarded as a scattered wave. Then we will obtain the Aharon
Bohm scattering amplitudef AB~u! with the aid of the stationary phase approximation from

2
sin pa

p E
2`

1`

dt
e~12a!t

et2eiu
eix cosht;

1

Ar
eikr2 ip/4f AB~u!.

So far the amplitudefAB~u! has not been treated in any connection with theS-matrix of the theory.
Here it is important to note that we cannot define anS-matrix from ~6.5! becauseca in ~6.5! is not
defined foru50. Therefore it is inappropriate to decompose the total wave function in the
given above for considering the relation between theS-matrix andfAB~u!. To find a definition of
theS-matrix for this scattering problem, we need the asymptotic form of the total wave func

ca;A2p

x Fe2 ix1 ip/4d~u1p!1eix2 ip/4H cospad~u!1A k

2p
f AB~u!J G . ~6.7!

It should be then compared with~A5! and with the discussion in Appendix A. For the present ca
theS-matrix should be defined by

Ŝ5cospa11 f̂ AB , ~6.8!

which is nothing but the result given in~B8!. By equating both expressions in~6.8! and that in
~B9!, we find

f̂5~cospa21!11 f̂ AB , ~6.9!

as the relation of the two scattering amplitudes. Therefore*2p
1pduuf AB~u!u2 cannot be interpreted a

the total cross section. As a consequence,fAB~u! does not obey the unitarity condition~A7!.
Rather, it satisfies an operator relation,

f̂ AB
† f̂ AB5sin2 pa12cospa~ f̂ AB

† 1 f̂ AB!,

because theS-matrix is unitary, as will be shown in Appendix B. In terms of the amplitude its
it is expressed as

FIG. 4. Another contour on theu plane corresponding touC~2!~k,w0!&. The branch cut appears in the opposite~backward!
direction for this case.
J. Math. Phys., Vol. 38, No. 2, February 1997
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E
2p

p

dw f AB* ~w2w f ! f AB~w2w i !5
2p

k
sin2 pad~w f2w i !,

becausefAB~u! satisfies

f AB* ~2u!1 f AB~u!50.

VII. RESULTS AND DISCUSSIONS

In this paper the scattering problem, first discussed by Aharonov and Bohm,1 has been recon
sidered. We have examined how the charged particle is scattered by the solenoid, taking
wave as an incident wave in two ways; by solving the Lippmann–Schwinger equation; a
applying Gordon’s idea to the present situation. Furthermore, the scattering problem by a so
of finite radius has been considered from the second viewpoint to ensure the impenetrability
solenoid.

We have shown that the two methods considered in this paper give the same wave fu
that represents the scattering state, and that the results for the infinitely thin solenoid are
the same as was obtained by AB as far as the total wave function is concerned. However, it
be stressed again that the incident wave taken in this paper is different from that of AB to
in the disagreement in the scattering amplitude of this paper to that of Ref. 1 or Ref. 3 by the
proportional to thed function. It is the appearance of thed function of the forward direction tha
guarantees the unitarity of theS-matrix. On this point, our result agrees with that by Ruijsenaa5

In Sec. VI we have discussed the result of AB and have given an explanation for the reaso
we need thed function, in addition to the scattering amplitude given by AB.

We also have shown that thed-function term in the scattering amplitude makes the scatte
cross section nonzero, even in the case ofa5odd integer, as well as in the case of nonintegrala.
It is better to make a comment for the case of integrala. If we perform a change of variables,

„c~r ,w!,A~x!…°„c8~r ,w!,A8~x!…5S eiawc~r ,w!,A~x!1
\c

e

a

r
ewD ,

in the Schro¨dinger equation~1.2! or Feynman kernel~2.6!, then regard it as a gauge transformati
for integrala, it seems that there is no AB effect for that case. But it is not true because this c
a change in the strength of the magnetic field at the origin. Furthermore, the new wave func
not defined at the origin, which will break the single valuedness of the wave function. Her
may refer to the same argument for the vector potential given in Refs. 19 and 20.

Regarding the behavior of charged particles interacting with the solenoid, two different
nomena have been discussed: the first observable effect of the magnetic flux involved
solenoid is a shift of the interference pattern of two electron beams and the second is scatte
an electron by the vector potential that describes the magnetic field inside the solenoid. The
has been established experimentally21 in a slightly modified situation, though it has no detail
explanation from a theoretical viewpoint. On the other hand, the latter has been discussed b
people, mainly from theoretical interest, but has never been confirmed by any experiment
ertheless, in the literature, it has been broadly believed without proof that these two phen
share a common feature when the total fluxa varies. For example, as was suggested by AB,1 it is
often said that the absence of the scattered wave for integrala in the scattering problem explain
the experimental evidence21 that a pattern of the fringes is not shifted at all for integrala. Here we
may ask a question of whether the heuristic way, given by AB to understand the interfe
experiment, can be explained by a solution of the scattering problem or not. If we follow
discussion, as was done by AB, that the phase of the asymptotic form of the wave fu
depends on the way of how to approach the forward direction, i.e., from the upper or lower
and regard these two approaches as substitutes for two coherent beams in the interference
J. Math. Phys., Vol. 38, No. 2, February 1997
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ment, then the answer to the question may be positive. However, it will be clear that the
replacement has no justification because, as was pointed out by Berry,4 the wave function for the
scattering problem may contain everywiring waveso that its square modulus cannot be identifi
with that in an interference experiment. Consequently we cannot give any complete expla
for the effect in an interference experiment in terms of a solution of a scattering problem a
We need a more precise description of the experimental circumstance. The asymptotic form
solution of the scattering problem will be useful only when an experiment is planned in s
way that one~or more! coherent beam~s! will be scattered by a solenoid. The experiment
Tonomuraet al.21 will be regarded as an example of such ones.
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APPENDIX A: UNITARITY AND OPTICAL THEOREM IN TWO-DIMENSIONAL
SCATTERING

We provide in this appendix a note on two-dimensional scattering theory for complete
Suppose we have two solutions,ck~r ,w;w0! andck(r ,w;w08), for a scattering problem correspond
ing to different incident beams of a same energy. They are assumed to have the asym
behavior,

ck~r ,w;w0!;eikr cosu1
1

Ar
eikr2 ip/4f ~u! ~u5w2w0!, ~A1!

ck~r ,w;w08!;eikr cosu81
1

Ar
eikr2 ip/4f ~u8! ~u85w2w08!, ~A2!

where the phase factore2 ip/4 has been introduced for later convenience. If we assume the Ha
tonian to be Hermitian, it is straightforward to obtain

E
2p

1p

dw$ck* ~r ,w;w08!] rck~r ,w;w0!2ck~r ,w;w0!] rck* ~r ,w;w08!%50, ~A3!

as a consequence of the Schro¨dinger equation. Takingr sufficiently large and using the asymptot
form of the wave functions, we immediately find

E
2p

1p

dw f * ~w2w08! f ~w2w0!52A2p

k
$ f ~w082w0!1 f * ~w02w08!%. ~A4!

This is the generalized optical theorem and is nothing but thec-number version of the unitarity o
theS-matrix. To see this, let us define theS-matrix for the wave function given in~A1!. From the
asymptotic form of the wave function,

ck~r ,w;w0!;A2p

kr Fe2 ikr1 ip/4d~u1p!1eikr2 ip/4H d~u!1A k

2p
f ~u!J G , ~A5!

we can find a definition of operatorsŜ and f̂ ,

Ŝ511 f̂ , ~ŜF !~w!5F~w!1A k

2p E
2p

1p

dw0 f ~w2w0!F~w0!. ~A6!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Then unitarity of the operatorŜ reads as

f̂ † f̂52~ f̂1 f̂ †!, ~A7!

which is equivalent to~A4!.
As a special case of~A4! or ~A7!, we can easily obtain the optical theorem just by putt

w05w08 ,

s52A2p

k
2 Re„f ~0!…. ~A8!

APPENDIX B: S-MATRIX OF THE AB SCATTERING

Taking a plane wave,

^xuF~k,w0!&5
1

2p
eikr cosu ~u5w2w0!, ~B1!

as an eigenstate of the Hamiltonian~Ĥ0! of a free particle, we obtain

^xuC~1 !~k,w0!&5
1

2p (
n52`

1`

Junu~kr !e
inu1 inp2 i unup/2, ~B2!

^xuC~2 !~k,w0!&5
1

2p (
n52`

1`

Junu~kr !e
inu1 i unup/2, ~B3!

as solutions of LS equations,

uC~6 !~k,w0!&5uF~k,w0!&1~E2Ĥ6 i e!21VuF~k,w0!&. ~B4!

Here we again abbreviaten1a by n. A matrix element of theS operator is given in terms o
uC~1!~k,w0!& and uC~2!~k,w0!& by

^F~p,wp!uŜuF~q,wq!&5^C~2 !~p,wp!uC~1 !~q,wq!&. ~B5!

Making use of the explicit form ofuC~6!~k,w0!&, we can easily obtain

^C~2 !~p,wp!uC~1 !~q,wq!&5 (
n,n852`

1`
1

~2p!2
E
0

`

r dr E
2p

1p

dw Jun8u~pr !Junu~qr !

3e2 in8~w2wp!1 in~w2wq!2 i un8up/21 inp2 i unup/2

5
1

Apq
d~p2q!

1

2p (
n52`

1`

ein~wp2wq!12idn, ~B6!
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wheredn5~n2unu!p/2. It is then straightforward to see

^F~p,wp!uŜ†ŜuF~q,wq!&5E
0

`

k dkE
2p

1p

dw
1

Apk
d~p2k!

1

Akq
d~k2q!

3
1

~2p!2 (
n,n852`

1`

e2 in~w2wp!22idnein8~w2wq!12idn8

5
1

Apq
d~p2q!d~wp2wq!. ~B7!

In the same wayŜŜ†51 can be verified. Therefore theS-matrix of the AB scattering is unitary. By
performing the sum in~B6!, we can further rewrite

^F~p,wp!uŜuF~q,wq!&5
1

Apq
d~p2q!H cospad~u!1 i

sin pa

p
ei @a#uP

1

eiu21 J . ~B8!

Recalling the expression~3.18! for the scattering amplitudef ~u! given in Sec. III, we find a
fundamental operator relation,

Ŝ511 f̂ . ~B9!

Furthermore, if we introduce common eigenstates ofĤ0 and of the angular momentum by

uF̃~k,n!&5
1

A2p
E

2p

1p

dw einwuF~k,w!& ~n50,61,62,...!, ~B10!

the operatorŜ is diagonalized as

Ŝ5E
0

`

k dk (
n52`

1`

uF̃~k,n!&^F̃~k,n!ue2idn, ~B11!

to convince us that the solution of the LS equation assures the unitarity of theSmatrix as well as
its commutability withĤ0.
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Natural renormalization
Oliver Schnetza)
Institut für theoretische Physik III, Staudtstrasse 7, 91058 Erlangen, Germany

~Received 24 June 1996; accepted for publication 29 July 1996!

A careful analysis of differential renormalization shows that a distinguished choice
of renormalization constants allows for a mathematically more fundamental inter-
pretation of the scheme. With this set ofa priori fixed integration constants differ-
ential renormalization is most closely related to the theory of generalized functions.
The special properties of this scheme are illustrated by application to the toy ex-
ample of a free massive bosonic theory. Then we apply the scheme to the
w4-theory. The two-point function is calculated up to five loops. The renormaliza-
tion group is analyzed and the beta-function and the anomalous dimension are
calculated up to fourth and fifth order, respectively. ©1997 American Institute of
Physics.@S0022-2488~97!00301-0#

I. INTRODUCTION

With the proof of renormalizability of non-Abelian gauge theories in the early 1970s,
problem of giving a perturbative definition of a renormalizable quantum field theory was so
~e.g., Ref. 1!. However, explicit calculations in the commonly used dimensional regularization
often tedious. This kept the interest in alternative prescriptions alive.

Quite recently differential renormalization2–4 has been proposed. For practical calculatio
this renormalization scheme provides two major advantages. First, it allows us to regulariz
renormalize in one step. No explicit regulators or counterterms are needed. Second, it is p
to keep the space–time dimension fixed. This is particularly useful for dimension-specific th
like the chiral electroweak sector of the standard model.

We start by analyzing differential renormalization from a purely mathematical point of v
Differential renormalization is usually formulated in four-dimensional coordinate space by wr
divergent amplitudes as Laplacians@we restrict ourselves to Euclidean signiture,x45(x2)2,
h5S i] i

2] of less divergent expressions. For example,

1

x4
52

1

4
h
1

x2
lnS x2L0

2D , 1

x6
52

1

32
hh

1

x2
lnS x2L1

2D for xÞ0. ~1!

HereL0 andL1 are arbitrary integration constants which are kept for dimensional reasons
Initially ill-defined integrals are now regularized by the convention that the Laplacian sh

act on the left and the surface term is ignored. According to this rule the singular Fourier
forms of x24 andx26 can be derived from the well-defined Fourier transform ofx22 ln(x2/L2)
@calculated below, Eq.~55!#,

E
diff ren

d4x

4p2

eix•p

x4
[2

1

4E d4x

4p2 ~heix•p!
1

x2
lnS x2L0

2D 52
1

4
lnS p2

L̄0
2D , ~2!

E
diff ren

d4x

4p2

eix•p

x6
[2

1

32E d4x

4p2 ~hheix•p!
1

x2
lnS x2L1

2D 5
1

32
p2 lnS p2

L̄1
2D , ~3!

a!Electronic mail address: schnetz@pest.physik.uni-erlangen.de
0022-2488/97/38(2)/738/21/$10.00
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whereL̄0(1)52/(eCL0(1)) andC50.5772156 . . . is theEuler constant.
The central point in this paper is to exhibit the meaning of the above prescription

one-dimensional integrals. To this end we perform the convergent angular integrals in~2! and~3!
which leaves us with a radial integral*0

`dr that diverges atr50. We finally split this integral into
a convergent part*0

` which can be evaluated and a singular part*0
1 which is kept. These entirely

well-defined manipulations lead to

E d4x

4p2

eix•p

x4
52

1

2 S lnS eCupu
2 D 2E

0

1dr

r
2
1

2D , ~4!

E d4x

4p2

eix•p

x6
5

1

16
p2S lnS eCupu

2 D 2E
0

1dr

r
2

5

4D 1
1

2 S E
0

1dr

r 3
1
1

2D . ~5!

Now we compare this result with Eqs.~2! and ~3! derived by differential renormalization. Firs
notice that the second term on the right-hand side of Eq.~5! has nop2-dependence at all. To mak
the right-hand side proportional top2 we define

E
0

1dr

r 3
[2

1

2
. ~6!

This leads us finally to the equations

E
0

1dr

r
52

1

2
2 ln L052

5

4
2 ln L1 . ~7!

Equations~6! and ~7! can be seen as one-dimensional definitions of differential renormaliza
However, Eq.~7! naturally relates the renormalization constants via

lnS L1

L0
D52

3

4
. ~8!

For a ratioL1 /L0 different from exp~23/4!, the one-dimensional interpretation of differenti
renormalization is not possible.

We will see in the next section that all ratios of renormalization constants are fixe
consistency conditions. Differential renormalization with thesea priori fixed ratios will be called
‘‘natural renormalization.’’

It was shown4 that differential renormalization provides a self-consistent definition of ren
malizable field theories, without refering to the ratioL1 /L0 as given in Eq.~8!. Moreover, in
some cases it is convenient to adjust the ratios of renormalization constants according to p
requirements.5 In particular for gauge theories it is useful to fix some ratios by Ward identities2,6,7

However, depending on the gauge, some of these ratios may differ from the prescriptions w
The treatment of gauge theories in natural renormalization is still under investigation; fir
tempts have been successful.8

The main advantage of allowing for the above one-dimensional reduction and demandin
~6!–~8! is that differential renormalization can be understood on a much more general footin
will see Sec. II C that Eqs.~6! and~7! are almost standard in the theory of generalized functio
Thus it becomes possible to replace the recipes of differential renormalization by mathema
more fundamental definitions.

In contrast to differential renormalization, natural renormalization is neither connecte
coordinate nor to momentum space. One has the freedom to choose the most convenien
sentation for the respective problem.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The first example where natural renormalization becomes advantageous is the toy the
free massive bosons discussed in Sec. III A. The mass is treated as two-point interaction
leads by powercounting to a nonrenormalizable theory in coordinate space. With standard
ential renormalization it becomes necessary to adjust infinitely many constants. It will turn ou
these constants coincide with thea priori fixed ratios of our approach. This makes it possible
recover the right result immediately within natural renormalization. This does not happen
dentally, as can be shown in a general theorem.

The main application of this paper will be thew4-theory in Sec. III D. We focus our attentio
to the calculation of the two-point Green’s function. It will turn out that thew4-theory performs
almost as if it was made for our renormalization scheme: Most Feynman diagrams of a given
precisely match into a formula which allows us to calculate their sum without evaluating s
graphs. This enables us to calculate the two-point function up to five loops.

Finally the renormalization group is discussed. Theb-function and the anomalous dimensio
g are determined up to fourth and fifth order in the coupling, respectively.

II. DEFINITION OF THE RENORMALIZATION SCHEME

A. Comparison with differential renormalization

We start with a generalization of the ideas presented in the Introduction. Repeated appl
of the equation

h f ~x2!5
4

x2
]

]x2
x4

]

]x2
f ~x2! ~9!

leads to

hn11
1

x2
lnS x2L2D524n11n! ~n11!!

1

x2n14 for xÞ0, n50,1, . . . . ~10!

Note that these equations hold strictly only forx Þ 0 and may be modified byd(x)-terms@cf. Eq.
~20!#. In a renormalizable field theory one needs only a finite number of these equa
(n50,1 for thew4-theory!; however, it will turn out to be useful to look at the general case.

The functionx22n24 has no well-defined Fourier transform whereasx22 ln(x2/L2) has@cf. Eq.
~55!#. The differentially renormalized Fourier transform of the right-hand side of Eq.~10! is now
determined by the left-hand side with the Laplacian translated as2p2 :2

E
diff ren

d4x

4p2

eix•p

x2n14[
p2n

~24!n11n! ~n11!!
lnS p2

Ln
2D . ~11!

We have introduced different renormalization scalesL̄n for eachn to stress that they are integra
tion constants whicha priori are independent from each other and may differ by arbitrary pos
factors. TheLn are interpreted as renormalization scales.

Our analysis starts with the introduction of polar coordinates,

E d4x

4p2

eix•p

x2n14 5
1

pE0
p

dq sin2 qE
0

`

dr r22n21eir upu cosq, ~12!

where we have chosen thez axis to be parallel top. We evaluate the convergentq-integral and
split the r -integral into a convergent part of*1

` which is evaluated and a part*0
1 that diverges at

zero and has to remain unchanged.
The calculations are in principle straightforward but tedious.8 The result is (S0

21[S1
0[0)
J. Math. Phys., Vol. 38, No. 2, February 1997
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E d4x

4p2

eix•p

x2n14 5 (
k50

n21
p2k

2~24!kk! ~k11!! S E01 dr

r 2n22k11 1
1

2n22kD
1

2p2n

~24!n11n! ~n11!! S 2E
0

1dr

r
1 lnS eCupu

2 D 2
1

2~n11!
2 (

k51

n
1

kD . ~13!

From a mathematical point of view we wantp-independent integrals to givep-independent re-
sults. So, we are forced to make the following definitions in order to regain the result obtain
differential renormalization~11!:

E
0

1 dr

r 2n22k11 52
1

2n22k
~14!

and

E
0

1dr

r
52 ln Ln2

1

2n12
2 (

k51

n
1

k
. ~15!

Equation~14! is the analytic continuation of the formula

E
0

1

dr r n5
1

n11
~16!

to n,21. Equation~15! shows that within our approach we cannot equate the renormaliza
scalesLn among each other. We find instead

ln Ln5 ln L2
1

2n12
2 (

k51

n
1

k
~17!

for some scaleL. The difference lnLi2ln Lj for any i Þ j is a well-defined nonzero rationa
number. If one violates Eq.~17!, one changes the definition of convergent integrals or gener
p dependences fromp-independent divergent integrals. In the differentially renormaliz
w4-theoryL0 andL1 are usually equated which, however, does not destroy the self-consisten
the theory since it is encorporated in the freedom of choosing the renormalization scheme

An overall factor in the renormalization constants is irrelevant, so we choose renormaliz
scaleL according to

E
0

1dr

r
52 ln L. ~18!

Notice that the left-hand side of this equation has no explicitL dependence. One assum
r21 to have the implicit localL term2 ln L•d(r) in a similar way as the differentially renorma
ized version ofx24 acquires the local renormalization dependence2 1

4 ln L0
2
•4p2d(4)(x) @cf. Eq.

~2!#.

B. First results

‘‘Natural renormalization’’ corresponds to differential renormalization with theLn defined
via Eq. ~17!. It gives a generalization of the usual definition of integrals.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The renormalization scaleL is kept for ‘‘dimensional reasons.’’ If we integrate over dime
sionful parameters, thenL combines with other ln terms to provide a scalar argument of
logarithms. HereL is not a cutoff@notice that the integrals over higher-order poles~14! areL
independent#, it is neither large nor small~cf. Sec. III A!.

We summarize the above discussion by giving our definition for the singular Fourier t
form (L̄52/eCL);

E d4x

4p2

eip•x

x2n14 5
p2n

~24!n11n! ~n11!! S lnS p2L̄2D 2
1

n11
22(

k51

n
1

kD . ~19!

Moreover, we can derive this equation in the spirit of differential renormalization by Fo
transforming and translating the Laplacianh as2p2. However, then we have to addd(x) terms
in Eqs.~1! and ~10! which are now uniquely fixed as

hn11
1

x2
lnS x2L2D 524n11n! ~n11!!

1

x2n14 1S 2(
k51

n
1

k
1

1

n11D hnd~x!. ~20!

The fundamental divergent integrals~16! and ~18! are easily generalized to

E
0

1

dr r n ln m~r !5
~21!mm!

~n11!m11 , nÞ21, mPN0 , ~21!

E
0

1

dr
lnm~r !

r
52

lnm11~L!

m11
, mPN0 . ~22!

It is not possible to introduce different renormalization scalesLm in Eq. ~22! as can, for example
be seen by comparing the (m11)-fold one-dimensional convolution ofur u21 with the (m11)st
power of the Fourier transform ofur u21.

So far we have only discussed singularities located at zero. By translation we can sh
poles to any point ofR. At infinity, however, one could introduce a new renormalization sc
L` according to

E
1

`dr

r
5 ln L` . ~23!

HereL should be proportional toL` for dimensional reasons and it is very convenient to se

L5L` . ~24!

@By Fourier transforms, for example, singularities at zero are mapped to singularities at in
Equation~19! could also be obtained by an (n12)-fold convolution ofp22 ~the Fourier transform
of x22). In this case the integrals are divergent at infinity and our result would depend onL` .
Comparison with~19! leads to~24!.8#

This allows us to generalize Eq.~23! to

E
1

`

dr r n lnm~r !52
~21!mm!

~n11!m11 , nÞ21, mPN0 , ~25!

E
1

`

dr
lnm~r !

r
5
lnm11~L!

m11
, mPN0 , ~26!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and together with Eqs.~21! and ~22! we get

E
0

`

dr r n lnm~r !50. ~27!

All the integrals defined so far can be summarized by the convention

0n[`n[0 ;nÞ0, ln 0[ ln `[ ln L. ~28!

Note that these equations are symmetric under the interchange of zero and infinity which
from the close connection to analytic continuation.

We close this section with some remarks on changing variables. Integrals that conve
infinity may be shifted by definition. However, a naive rescalingr°ar in Eq. ~18! leads to

E
0

1/adar

ar
5E

0

1dr

r
1E

1

1/adr

r
52 ln~aL!Þ2 ln L. ~29!

To keep Eq.~18! invariant under rescalings one has to treat the lower limit zero like a variable
write *0

1dr/r5*0/a
1/adr/r5 ln(1/a)2 ln(0/a)52 ln L. Or, equivalently, one rescales the renorm

ization scaleL according toL°L/a. If, like in Eq. ~16!, the integral does not depend onL,
rescalings do not affect the result. For more complicated variable substitutions it is always a
priate to return to the original variables before one approaches the limits~cf. the bipyramide graph
in Sec. III D!.

C. Relation to the theory of generalized functions

We recognized already in the last section that Eq.~14! can be understood in the context
analytic continuation. In order to include Eq.~18! into this concept one has to ‘‘care for dimen
sions’’ and multiply the integrand by the dimensionless factor (r /L)a, a°0,

E
0

1

dr r nS rL D a

5
L2a

n1a11
,

which gives (n11)21 for a50, n Þ2 1, anda212 ln L for n521. If, according to Eq.~28!,
we replacea21 by zero we are back at~18!. Note that analytic continuation is only correct if on
uses the factor (r /L)a and if there exists ana-region in C where the integral converges. Th
prescription differs from dimensional regularization by the absence of the surface areaVa11. In
general thea dependence ofVa11 cannot be compensated by a redefinition of the renormaliza
scale.

There are other contexts in which we can understand the renormalization scheme s
contour integrals in the complex plane or lattice theory which generalizes the Riemann
prescription and eventually provides a purely numerical definition of divergent integrals.8 Here we
present the relation to the theory of generalized functions.

Assume we are interested in an integral which contains the generalized functionf that is given
as a derivative of another generalized functionF85 f . With a test functionw we obtain~e.g., Ref.
9!

E
2`

1`

dx f~x!w~x![~ f ,w![~F8,w![2~F,w8![2E
2`

1`

dx F~x!w8~x!. ~30!

If w is sufficiently constant at the poles ofF, the right-hand side converges and can be use
define the integral on the left-hand side.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Let us take, for example,f (x)5xlQ(x);Q(x)51 for x.0 and Q(x)50 for x,0. We
choosew5Q(12uxu) where the edges atx561 may be smoothed to beC`. In the limit where
this becomes irrelevant we have forl Þ2 1

~ f ,w!5E
0

1

dx xl[2E
0

`

dx
xl11

l11
„2d~x21!…5

1

l11
, ~31!

which coincides with our renormalization rule~16!. Forl521 we may takeF(x)5 ln(x)Q(x) and
get

E
0

1dx

x
52E

0

`

dx ln~x!„2d~x21!…50, ~32!

which is Eq.~18! for L51. The same holds for Eqs.~21! and ~22!.
To see what happened with the renormalization scaleL we have to notice that the abov

calculation is ambiguous. There exist several functionsF which have the same derivative. On th
real line they differ by a constant which is irrelevant since the test functionw vanishes at6`.

In general, however, the number of undetermined parameters equals the number of d
nected pieces of the integration domain. A singularity of the integrandf at the origin splitsR into
two disconnected partsR2 andR1. Each of the functionsF(x)1C1DQ(x) is with the same
right an integral off (x) on the real line. However, they give different results to the integrals~31!
and ~32!,

E
0

1

dx xl[2E
2`

`

dxSCl1Q~x!S xl11

l11
1DlD D „d~x11!2d~x21!…5

1

l11
1Dl , ~33!

E
0

1dx

x
[2E

2`

`

dx„C211Q~x!~ ln x1D21!…„d~x11!2d~x21!…5D21 , ~34!

where all theCl andDl can be chosen separately.
The way out of this ambiguity is to change the topology of the integration domain. We

compactifyR to R̄ by adding`(52`). Since forl,21 the integral overxl is well defined at
infinity, we can defineF over R̄\$0%, which is again a connected domain with one integra
constant. TheDlQ(x) term is discontinuous at infinity and thus no longer allowed in Eq.~33!.
The integral*0

1dx xl acquires again the unique value (l11)21.
For l>21 the integral diverges at infinity and the glueing is not possible. However

l.21 the integral is finite atx50 and can be defined on the connected domainR. Just for the
casel521 the ambiguity remains since the integral is divergent both at zero and infinity.
function lnuxu can only be defined onR2øR1 and one should keep the arbitrary constantD21 in
Eq. ~34!. With the more intuitive relabelingD2152 ln L we are back at Eq.~18!.

In practice the introduction of the renormalization scaleL is a matter of convenience. It wil
turn out to be useful to have this parameter at hand. In principle one could setL51 using the
standard theory of generalized functions and recoverL in physical results by getting the dimen
sions right in logarithmic terms.

III. APPLICATIONS

Now we turn to physical applications. In the following we are mainly concerned with f
dimensional integrals which we normalize according to
J. Math. Phys., Vol. 38, No. 2, February 1997
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E dx[E
R4

d4x

~2p!2
and d~x!5~2p!2d~4!~x!. ~35!

This eliminates all irrelevant factors ofp from the theory. We get, for example,*dx d(x)51 and
*dx eip•x5d(p). Analogouslyn-dimensional integrals are normalized by (2p)(2n/2). The metric
is always Euclidean.

A. A toy example: The free massive bosonic theory

As a first test let us calculate the four-dimensional free massive boson propagator in c
nate space. The result is well known:

D~x!5E dp
e2 ip•x

p21m2 5
m

uxu
K1~muxu!

5
1

x2
1
m2

4 (
k50

`
~m2x2/4!k

k! ~k11!! S lnSm
2x2

4 D2C~k12!2C~k11! D . ~36!

The propagatorD is perfectly well defined. However, it is not analytic atm50 since the series
contains logarithmic terms inm.

Now let us treat the mass (2m2) as a two-point interaction and study perturbation the
aroundm50.

~37!

The free propagator in four dimensions is

E dp
1

p2
e2 ip•x5

1

x2
, ~38!

and therefore

D~x!5
1

x2
2m2E dx1

1

~x2x1!
2

1

x1
2 1~2m2!2E E dx1dx2

1

~x2x1!
2

1

~x12x2!
2

1

x2
2 1••• .

~39!

Since the ‘‘coupling’’ has mass dimension, the terms become more divergent with every ord
the expansion is nonrenormalizable. However, we can treat the integrals according to our ru
obtain an unambigous result which contains by construction only one renormalization scalL.

In order to evaluate the integrals we can useh(x2x1)
2252d(x2x1) and Eq.~2! to derive

a recursive formula. Here it is even simpler to remember that thenth term is the Fourier transform
of p22n. Equation~19! gives

Dnat ren~x!5
1

x2
1 (

k50

`

~2m2!k11E dp
1

p2k14e
ip•x

5
1

x2
1
m2

4 (
k50

`
~m2x2/4!k

k! ~k11!! S lnS L2x2

4 D2C~k12!2C~k11! D . ~40!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



finite
ption,
t a

egral

space
ls
no

rging
from

gral

t

-

746 Oliver Schnetz: Natural renormalization

¬¬¬¬¬¬¬¬¬¬
One could study the renormalization group by looking at rescalings ofL. In fact, comparison with
Eq. ~36! shows that the situation is even simpler. We just have to equateL5m to obtain precisely
the correct result. This does not happen accidentally as we will see in the next section.

The differentially renormalized result can be obtained by using Eq.~11! instead of Eq.~19!:

Ddiff ren~x!5
1

x2
1
m2

4 (
k50

`
~m2x2/4!k

k! ~k11!! S lnS Lk
2x2

4 D 22CD . ~41!

It is necessary to adjust the infinitely many parametersLk precisely according to thea priori
settings~17! of our scheme.

Dimensional regularization of the integrals in Eq.~39! leads to a series in 42n with a simple
pole:

Ddim reg~x!5
1

x2
1
m2

4 (
k50

`
~m2x2/4!k

k! ~k11!! S 2

42n
1 lnS D2x2

2 D2C~k11! D . ~42!

Since the series is nonrenormalizable, it is not possible to renormalize by introducing a
number of counter terms. If one nevertheless tries to follow a minimum subtraction prescri
one misses a term2C(k12) to obtain the correct result. In the next section we will presen
general method that allows us to calculate this term.

B. A theorem on singular expansions

Let us summarize what we did in the last section. We started from a well-defined int
*dp exp(2ip•x)/(p21m2) which we tried to expand into a series atm50. To this end we ex-
panded the integrand into a power series*dp exp(2ip•x)Sk50

` (2m2)kp22k22. The interchange of
the sum and the integral led us to the perturbation series in coordinate
Sk50

` (2m2)k*dp exp(2ip•x)p22k22. This interchange is obviously illegal. First, the integra
diverge atp50. Second, we obtain a power series inm and we know that the correct result has
such representation but contains logarithmic terms inm @Eq. ~36!#. Although the integrand is
analytic atm50 the integral is not. So, necessarily, the expansion is wrong and the dive
integrals reflect this fact. We want to study the issue of how to reconstruct the true result
such an incorrect, singular expansion.

Let us slightly generalize the situation and look for the expansion of an inte
I (a)5*dx f(x,a) into a series ata50. The integrand has a Taylor~or Laurant! series
f (x,a)5Ska

k f (k)(x,0)/k!, but in general we cannot expect that the series ofI (a) is given by the
integrals over the coefficientsf (k)(x,0) since the integrals may diverge. We define

DI ~a!5E dx f~x,a!2(
k

ak

k! E dx f~k!~x,0!, ~43!

and conclude thatDI (a) will only be zero if I (a) is analytic ata50. SoDI (a) gives the part of
the expansion ofI (a) that cannot be reached by standard perturbation theory.

We callDI the nonperturbative part of the expansion.A priori we know almost nothing abou
it. However, in many cases whereI (a) is not analytic ata50 one can calculateDI (a) by the
following theorem.

Theorem: Assume the integrals*dx f(k)(x,0) are regular atx Þ 0. If there exists a neighbor
hood ofx50, a50, wheref can be written asf5S l f l with f l (x,a) integrable atx50 and the
f l
(k)(x,0) having the following properties

f l
~k!~ uxu,0!}uxun~k,l !lnm~k,l !~ uxu! with ~44!
J. Math. Phys., Vol. 38, No. 2, February 1997
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given l : lim
k→`

n~k,l !/k,0 or f l
~k!~x,0![0 for almost all k and ~45!

given k:n~k,l !>0 for almost all ~all up to a finite number! l , ~46!

then

DI ~a!5(
l

E dx fl ~x,a!. ~47!

Note that all the integrals may diverge and have to be defined according to the rules given
The range of integration can beRn or R1; subsets can be taken into account by using s
functions.

Proof (sketch):Without restriction we can assume that the support off is a little ball B«

aroundx50 since the integrals over the remaining domain are regular and therefore d
contribute toDI . Moreover, we can assumeuau to be small, so that we can writef as a sum over
f l . Since thef l are integrable atx50 one gets for sufficiently small«

E
B«

dx f~x,a!5(
l

E
B«

dx fl ~x,a!5(
l

E
Rn
dx fl ~x,a!2(

l
E
Rn/B«

dx(
k

ak

k!
f l

~k!~x,0!.

In the second integral the singularity atx50 is excluded and~45! assures that the sum can b
interchanged with the integral for small enougha, yielding

E
B«

dx f~x,a!5(
l

E
Rn
dx fl~x,a!1(

l
(
k

ak
k! S EB«

2E
Rn

D dx fl
~k!~x,0!.

Now we can use the central argument of the proof. The last integral over the entireRn vanishes
since@Eq. ~44!# it is proportional to*0

`dr r N lnM(r) and all those integrals are zero in our reno
malization scheme@Eq. ~27!#. We finally use Eq.~46! to interchange the second sum overl with
the sum overk and the integral. Therefore

DI ~a![E
B«

dx f~x,a!2(
k

ak

k! EB«

dx f~k!~x,0!5(
l

E
Rn
dx fl ~x,a!.

h

Now let us use the theorem to deriveDI (m2) of the scalar bosonic theory. We ge
f (p,m2)5e2 ip•x/(p21m2). Expanding the exponential yieldsf (p,m2)5S l (2 ip•x) l /„l !(p2

1 m2)…[S l f l (p,m
2). Moreover, f l

(k)(p,0)5(2 ip•x) l (21)kk!p2222k/l ! and f l
(k)(upu,0)

}u pu l 2222k meets Eqs.~44!–~46!. We can apply the theorem and obtain

DI nat ren~m
2!5 (

l 50

` E d4x

4p2

~2 ip•x! l

l ! ~p21m2!
5 (
l 50

`
~2 i uxu! l

l !

1

pE0
p

dq sin2 q cosl qE
0

`dppl 13

p21m2 .

~48!

The q-integral vanishes for oddl . The divergentp-integral can be reduced to fundamen
integral as follows:*0

` dp p2l 13/(p21m2)5*0
`p dp„(p21m2)2m2

…

l 11/(p21m2). With Eq.
~27! we obtain (2m2) l 11*0

`p dp/(p21m2)5 1
2(2m2) l 11 ln(p21m2)u0

`51
2(2m2) l 11 ln(L2/m2)

@with Eq. ~28!; more precisely *0
`p dp/(p21m2)5*0

1p dp/(p21m2)1*1
`dp„p/(p21m2)

21/p…1*1
`dp/p5 1

2 ln(11m22)21
2 ln(11m2)1ln L5ln L/m#. The result is proportional to

ln(L/m) and vanishes thus forL5m. This confirms the explicit calculation of the last section.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The above theorem holds for any space–time dimension. Hence it should as well be p
to apply it to the dimensionally regularized result and ‘‘correct’’ Eq.~42! by adding the nonper-
turbative part. We start with then-dimensional analogon of Eq.~48!. All integrals are standard an
one obtains

DI dim reg~m
2!5 (

l 50

`
~2 i uxu! l

l !

Vn21

~2p!n/2
L42nE

0

p

dq sinn22 q cosl qE
0

`dp pl 1n21

p21m2

5 (
l 50

`
m2~2x2m2! l

2l 12l ! S m2

2L2D ~n24!/2

GS 42n

2
2l 21D

5 (
l 50

`
m2l 12x2l

4l 11l ! ~ l 11!! S 2
2

42n
2C~ l 12!1 lnS m2

2L2D D1O ~42n!. ~49!

Together withDdim reg @Eq. ~42!# the renormalization scale drops out and one obtains the
propagator.

So, in the example of a free massive bosonic theory, we do not have to go throug
standard renormalization business. One can use the above theorem instead. The simples
expand the propagator is using natural renormalization; however, dimensional regularization
eventually to the same result.

In a realistic field theory with dimensionless coupling the situation is slightly different.
path integral isa priori ill defined and the renormalization scale an intrinsic parameter of
theory~like, for example, in the integral*0

1dx/x52 ln L). It makes no sense to equate the ren
malization parameterL with the coupling. However, it is challanging to try to generalize t
theorem to path integrals providing a nonperturbative but analytic definition of a quantum
theory.

Anyway, the theorem on its own is useful in many elementary mathematical applica
Integrals like *0

bdx/(xn1an), *0
1dx lnm(x/L)/(x1a), *0

`dx e2bx/(x1a)n, *0
`dx e2bx2a/x, etc.,

can be expanded ata50 by virtue of the theorem.8

C. Fourier transforms

Before we start to studyw4-theory it is useful to discuss Fourier transforms since ma
Feynman amplitudes are determined by multiplications and convolutions.

To this end we generalize the Fourier transforms discussed in the beginning@Eq. ~19!#. It is
convenient to derive the result by analytic continuation. A straightforward calculation g
@L̄52/(eCL)#.

E d4x

~2p!2
eip•x

x2n14 S x2L2D 2a

5
p2n

22n12 S p2
L̄2D a

e22CaG~2n2a!

G~n121a!
[

p2n

22n12 S p2
L̄2D a

(
l 521

`

an,l a l ,

~50!

where

(
l 521

`

an,l a l 5
G~2n2a!

G~12a!

G~11a!

G~n121a!
expS (

k51

`
2z~2k11!

2k11
a2k11D . ~51!

Now it is easy to determine all Fourier transforms of the formx22n24 lnm(x2/L2). To produce the
logarithms we divide Eq.~50! by am and pick up the finite term in thea-expansion:
J. Math. Phys., Vol. 38, No. 2, February 1997
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E dx
lnm~x2/L2!

x2n14 eip•x5~21!mm!
p2n

22n12 (
l 521

`

an,l gl 2mS p2
L̄2D , ~52!

wheregl (p
2/L̄2) is the finite term of (p2/L̄2)aa l at a50. We obtaingl 5 lnul u(p2/L̄2)/ul u! for

l <0. For l positive gl (p
2/L̄2)50 for all p Þ 0. A more detailed calculation8 shows that

p24g1(p
2/L̄2)5 1

4d(p).
Let us take, for example,n51 yielding S l 521

` a1,l a l 5 1
2a

212 5
41

17
8a1„2 49

641
1
3z(3)…a

2

1 O (a3) and therefore@cf. Eq. ~19!#

E dx eip•x
1

x6
5

1

16
p2S 12 lnS p2L̄2D 2

5

4D , ~53!

E dx eip•x
ln~x2/L2!

x6
5

1

16
p2S 2

1

4
ln2S p2

L̄2D 1
5

4
lnS p2

L̄2D 2
17

8 D . ~54!

Heren521 givesS l 521
` a21,l a l 511 2

3 z(3)a31O (a5), thus

E dx eip•x
1

x2
5

1

p2
, E dxeip•x

ln~x2/L2!

x2
52

ln~p2/L̄2!

p2
. ~55!

With n522 we finally obtain the standard formula*dx eip•x5d(p). Less obvious is
*dx eip•xln(x2/L2)524p241d(p).

D. The massless w4-theory

The first serious test of the renormalization scheme is the discussion of thew4-theory. Note
that once the Feynman rules and the propagator are fixed, the results are unique. Ther
freedom to choose a certain subtraction scheme.

We keep our integral normalization of (2p)22 which results in a rescaling of the coupling b
(2p)2. Sog is related to the usual ‘‘irrationalized’’ coupling via

g

4
5

l

16p2 . ~56!

The Feynman diagrams we are concerned with are depicted in Figs. 1~a!–1~u!. The corresponding
amplitudes are labeled byGa , . . . ,Gu . With natural renormalization we have the freedom
switch between coordinate and momentum space. However, most often it is convenient to s
calculation in coordinate space where, at least at higher loops, the Feynman rules are
transparent. The final result is given in momentum space to make it easier to compare it with
work.

1. Simple results

The free propagator~a! in Fig. 1 is given byGa5p22.
The loop in the diagram~b! in Fig. 1 gives rise to a term*dp p22 in momentum space or a

term (x2x)225022 in coordinate space. Both expressions are set to zero in our sch
Gb50. In this aspect it behaves like dimensional regularization.

More generally, diagrams that contain tadpole insertions give zero and can be dropped
remains true for any number of internal lines the tadpole may have:Gc50. The reason is that in
a massless theory a tadpole insertion can only give rise to a number times a mome
J. Math. Phys., Vol. 38, No. 2, February 1997
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conservingd-function. On the other hand it has dimensionp2 and the only number with this
scaling property is zero. In our renormalization schemeL̄2 occurs only in combination with
logarithms.

Moreover, due to translation invariance and Eq.~27!, all vacuum bubbles vanish:Gu50. So,
only connected diagrams contribute to the two-point function. Altogether this reduces the nu
of relevant Feynman diagrams considerably.

Diagram ~d! in Fig. 1 for n51 is the sunset diagram. It was already calculated in the l
section. The triple line givesx26 which transforms into momentum space as (p/4)2„12 ln(p/L̄)

2

2 5
4…. Together with the two external legs and the symmetry factor

1
6 we obtain

Gd,15S g4D 2 1p2S 112 lnS p2L̄2D 2
5

24D . ~57!

2. Chain graphs

We call diagrams of type~d! in Fig. 1 chain graphs. To any order there exists one chain gra
and, if we disregard the vanishing diagrams with tadpoles, the only remaining diagrams up to
loops are chain graphs.

FIG. 1. Feynman diagrams of thew4-theory.
J. Math. Phys., Vol. 38, No. 2, February 1997
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It is possible to calculate chain graph amplitudes for anyn by Fourier transformation. In
momentum space the series of bubbles gives rise to thenth power of 14„2 ln(p/L̄)211… @cf. Eq.
~19!#. A final convolution withp22 @use Eq.~9! as suggested in Sec. III A# provides the result as
an nth order polynomial in ln(p/L̄)2 with purely rational coefficients. Including the symmet
factors and the external legs we obtain forn>2 ~the casen51 has an extra symmetry whic
changes the symmetry factor from 22n to 1

6)

Gd,n5S g4D
n11 1

p2
n!

2n11(
k50

n

~21!k
lnn2k~p/L̄!2

~n2k!! (
l 50

k
222l 2k

l !
. ~58!

There is a nice way to compile this result by a generating function. If we multiplyGd,n with the
factor an53n22 for n>2, a151, it reproduces the leading logarithms of the fullw4 two-point
function correctly. The result may be seen as some approximation to the propagator. We

(
n51

`
anGd,n

n!
5

g

9p2S ~p2/eL̄2!3g/8

9~11g/4!221
2
1

8D . ~59!

We easily read off

Gd,25S g4D 3 1p2S 18 ln2S p2
L̄2D 2

5

8
lnS p2

L̄2D 1
15

16D ~60!

Gd,35S g4D 4 1p2S 116 ln3S p2L̄2D 2
15

32
ln2S p2

L̄2D 1
45

32
lnS p2

L̄2D 2
109

64 D , ~61!

Gd,45S g4D 5 1p2 S 132 ln4S p2L̄2D 2
5

16
ln3S p2

L̄2D 1
45

32
ln2S p2

L̄2D 2
109

32
lnS p2

L̄2D 1
239

64 D . ~62!

3. Four loops

Before we start with the analysis of four and five loops a word of caution is in orde
general it is not sufficient to define the integral over generalized functions for defining a
theory, since also products of generalized functions appear. In principle, for example, one
consider terms likex2d(x) since they might give finite contributions after multiplication wi
x22.

In the following we do not care about such terms. The main message of the next two s
tions is to show that there is a miraculous matching of Feynman amplitudes in the natural
malization scheme that makes calculations easy. This matching is not affected by the
problems nor are the leading logarithms of the results. This is confirmed by the existence
renormalization group equation studied in Sec. III D 6.

Diagrams~e!, ~f!, ~g!, and ~h! of Fig. 1 to be evaluated. HereGe is basically the square o
Gd,1 :

Ge5S g4D 4 1p2 S 1

144
ln2S p

L̄
D 22 5

144
lnS p

L̄
D 21 25

576D . ~63!

Gf can be calculated with Fourier transforms. Adding propagators from the interior loop t
exterior lines we obtain@see Eqs.~53!–~55!#
J. Math. Phys., Vol. 38, No. 2, February 1997
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1

x6
→
F p2

42 S 12 lnS p
L̄
D 225

4D →p24
1

42p2S 12 lnS p
L̄
D 22 5

4D →F 1

42x2S 2
1

2
lnS xL D 22 5

4D
→
x24

1

42x6 S 2
1

2
lnS xL D 22 5

4D →F p2

44S 18 ln2S p
L̄
D 225

8
lnS p

L̄
D 21 17

16
2
5

8
lnS p

L̄
D 1

25

16D .
Together with the external lines and the symmetry factor1

12 one gets

Gf5S g4D 4 1p2S 196ln2S p2L̄2D 2
5

48
lnS p2

L̄2D 1
7

32D . ~64!

We are left with two diagrams each of which cannot be calculated by Fourier transformation
have the same symmetry factor1

4. This makes it possible to use a formula which is specific to f
dimensions.

~65!

This equation holds up to a total derivative proportional to

]

]xm S 1

~x2x1!
2

xm2x2
m

~x2x2!
2

1

~x2x3!
2 2

xm2x1
m

~x2x1!
4

1

~x2x3!
2D ~66!

@notice that (]/(]xm)(xm2x1
m)/(x2x1)

45 1
2d(x2x1)]. After integration overx the total derivative

vanishes and we obtain

~67!

Thus we need not solve each of the complicated diagrams~g! and~h! of Fig. 1 separately.@We do
this in the next subsection. The single results will be more complicated than the sum. Each
amplitudes~g! and ~h! in Fig. 1 has az ~3!-dependence that cancels in the sum.# Their sum is
equal to two chain diagrams.

Equation~65! can be interpreted as integration by parts which also proved to be useful w
dimensional regularization.10 However, only in natural renormalization it allows one to calcul
the sum of diagrams without evaluating single graphs. One should take this as a hint that
lating single diagrams is in general not an appropriate method to evaluate higher-order pe
tion theory. All diagrams~or at least groups of diagrams! of a given order should be treated as
unit and calculated together. This strategy will be even more useful in the next section:

Gg1Gh5S g4D 4 1p2S 18 ln3S p2
L̄2D 2

19

16
ln2S p2

L̄2D 1
65

16
lnS p2

L̄2D 2
169

32 D . ~68!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



into

tion

s to the
tors

a

. 1:

ill be
e

of Eq.
hich

753Oliver Schnetz: Natural renormalization

¬¬¬¬¬¬¬¬¬¬
4. Five loops

Apart from the trivial diagram

Gi5S g4D 5 1p2 S 196 ln3S p2L̄2D 2
5

64
ln2S p2

L̄2D 1
5

24
lnS p2

L̄2D 2
25

128D ~69!

and the five loop chain graph, Eq.~62!, ten diagrams have to be evaluated. These graphs split
three classes:~1! Diagrams that can be solved by Fourier transforms~j!–~l! of Fig. 1. Let us call
such diagrams Fourier graphs.~2! Diagrams that can be reduced to Fourier graphs via integra
by parts~m!–~r! of Fig. 1. ~3! The nonplanar diagram~s! of Fig. 1 that we call the bipyramide
graph.

Fourier graphs:Every graph that reduces under the replacement of multiple lines

and interated lines

by a simple line

to the free propagator can be solved with Fourier transforms. The calculations are analogou
evaluation of diagram~f! in Fig. 1 in the last section. Including the respective symmetry fac
1
12 ,

1
24, and

1
8 we get

Gj5S g4D 5 1p2 S 196 ln3S p2
L̄2D 2

25

192
ln2S p2

L̄2D 1
97

192
lnS p2

L̄2D 2
269

384D , ~70!

Gk5S g4D 5 1p2 S 1

144
ln3S p2

L̄2D 2
5

64
ln2S p2

L̄2D 1
59

192
lnS p2

L̄2D 2
173

384
1

1

36
z~3!D , ~71!

Gl5S g4D 5 1p2 S 196 ln3S p2
L̄2D 2

5

32
ln2S p2

L̄2D 1
57

64
lnS p2

L̄2D 2
209

128
1

1

24
z~3!D . ~72!

For future use we calculate the improper four-loopw4-diagram~t! where the dotted line means
‘‘( 21)-fold’’ propagator (x2y)12. The result is~with a symmetry factor of132!

Gt5S g4D 4 1p2 S 148 ln3S p2L̄2D 2
5

32
ln2S p2

L̄2D 1
17

32
lnS p2

L̄2D 2
49

64
1

1

12
z~3!D . ~73!

Integration by parts:We determine the following symmetry factors for the diagrams in Fig
~m!: 1

8, ~n!: 1
8, ~o!: 1

4, ~p!: 1
4, ~q!: 1

8, ~r!: 1
2.

The idea is to use Eq.~65! to relate the above graphs among each other. Sometimes it w
necessary to multiply Eq.~65! by (x12x2)

2,(x12x3)
2, or (x22x3)

2. since these factors ar
independent ofx they do not affect partial integration with respect tox. However, if these factors
do not combine with propagators (x12x2)

22, etc., one obtains improperw4-graphs like diagram
~t! of Fig. 1. In most cases it is possible to eliminate those graphs by a second application
~65!. In the following table we denote first the graph we start from, then the variables w
J. Math. Phys., Vol. 38, No. 2, February 1997
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correspond to (x,x1 ,x2 ,x3) in Eq. ~65! ~according to Fig. 1!, occasionally the variables of
second application of Eq.~65!, and finally the resulting equation including the symmetry facto

Graph (x,x1 ,x2 ,x3) (x,x1 ,x2 ,x3) Equation

~p! ~2,1,4,3! — Gp1Go52Gm2 1
2gGg

~r! ~3,4,1,2! — 1
2Gr5Gq2

1
4gGh

~r! ~3,4,2,1! ~2,4,1,5! 1
2Gr12Gn12Gm54Gd,42

1
2gGh2gGd,3

~m! ~2,3,5,1! ~4,3,1,5! 2Gq1Go12Gm54Gd,42
1
2gGh2gGd,3

~g! ~2,1,4,3! — Gh52Gg12Gd,32
1
2gGd,2 @Eq. ~67!#

~g! ~2,1,3,4! — Gg54Gt2
1
4gGd,2

— — — gGt512Gk1
5
32Gd,2 @Eqs.~60!, ~71!, ~73!#

~74!

The last equation can explicitly be checked by looking at the amplitudes. We recognize tha
are only four equations to evaluate six five-loop diagrams. However, summing up the firs
equations gives

2Gm12Gn12Go1Gp1Gq1Gr58Gd,42~g/4!•~2Gg15Gh18Gd,3!. ~75!

With the last three equations in the table we can express the left-hand side completely in te
Fourier amplitudes of thew4-theory:

2Gm12Gn12Go1Gp1Gq1Gr58Gd,4136Gk218~g/4!Gd,31
29

2
~g/4!2Gd,2

5S g4D 5 1p2 S 14 ln4S p2
L̄2D 2

27

8
ln3S p2

L̄2D 1
299

16
ln2S p2

L̄2D
2
809

16
lnS p2

L̄2D 1
1853

32
1z~3!D . ~76!

The graphs~m!, ~n!, and~o! of Fig. 1 are not symmetric under interchange of the external le
Therefore we have to count them twice in the two-point function and the left-hand side bec
exactly the combination we want to calculate.

The bipyramide graph: The bipyramide graph~s! of Fig. 1 is the first nonplanar two-poin
graph and commonly regarded as the most complicated five-loop diagram. It was first calc
in 1981 within dimensional regularization by Chetyrkin and Tkachov.10 Recently it was analyzed
within differential renormalization by Smirnov.11

So it is a good candidate to test the power of our calculation scheme. We work in coor
space. It is convenient to introduce a quaternionic notation. The inversion of a quaterniox is
given byx°1/x which can be understood in the four-vector language as inversion of the leng
x(uxu°uxu21) and a reflection at thez axis ~the direction of the unit quaternion 1!. The square
(x2y)2 becomes the square of the absoluteux2yu2; however, we stick to the brackets in th
following calculation to keep the notation more transparent.

The variables (x,a,b,c,y) correspond to (1,2,3,4,5) in Fig. 1. We have to calculate
following integral:

E da db dc
1

~x2a!2~x2b!2~x2c!2
1

~a2b!2~a2c!2~b2c!2
1

~a2y!2~b2y!2~c2y!2
.

~77!

The external legs are amputated; they can easily be added in the end.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The integral is convergent at infinity~it is logarithmically divergent ata5b5c5y and
a5b5c5z) and therefore the integration variablesa,b,c can be shifted byy. With z5x2y we
have

I ~z!5E da db dc
1

a2b2c2
1

~a2b!2~a2c!2~b2c!2
1

~z2a!2~z2b!2~z2c!2
. ~78!

With the inversionsa851/a, b851/b, andc851/c one obtains (d4a5a828d4a8)

E da8 db8 dc8
1

a86b86c86
1

S z2
1

a8D
2S z2

1

b8D
2S z2

1

c8D
2

1

S 1a8
2

1

b8D
2S 1a8

2
1

c8D
2S 1b8

2
1

c8D
2

5
1

z6E da8db8dc8
1

S a82
1

zD
2S b82

1

zD
2S c82

1

zD
2

1

~b82a8!2~c82a8!2~c82b8!2
.

A shift a95a821/z, b95b821/z, andc95c821/z yields

1

z6E da9 db9 dc9
1

a92b92c92
1

~a92b9!2~a92c9!2~b92c9!2
. ~79!

It seems that we have lost thez dependence in the integral. However, since the integral is
divergent, this is not the case as we will see soon.

We finally use the rescalingb95a9u andc95a9v to obtain

1

z6E da9

a94
E duE dv

1

~12u!2 u2~u2v !2 v2~v21!2
. ~80!

Theu- andv-integral is finite and gives a positive number. It can be evaluated using Gegen
polynomial techniques~e.g., Refs. 12 and 2!. Most efficiently one uses the identity

uuvu
~u2v !2

5
1

pE2`

`

dPS uuu
uvu D

iP

(
n51

`

nCn21~ û• v̂ !
1

~n21P2!
~81!

and the orthogonality relation

1

2p2E dx̂ nCn21~ ŷ• x̂!mCm21~ x̂• ẑ!5dn,mnCn21~ ŷ• ẑ! ~82!

to obtain

E duE dv
1

~12u!2 u2~u2v !2 v2~v21!2
5
1

pE2`

`

dP(
n51

`
n2

~n21P2!3
5
3

8
z~3!. ~83!

The angular integral in*da9/a94 gives 2p2. Including the normalization 1/4p2 @Eq. ~35!# one is

left with the radial integral12*0
`dua9u/ua9u5 1

2 ln(ua9u)ua950
a95` . If we would have started with an

integral in thea9-variable this integral would give zero. However, as discussed at the end of
II B, it is now essential to reintroduce the original variablea before approaching the limits. Sinc
a95(1/a)2(1/z)
J. Math. Phys., Vol. 38, No. 2, February 1997
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E
0

`dua9u
2ua9u

5
1

2
lnS U 1a2

1

z U D
a5z

a50

5
1

2
lnS uz2au

uazu D
a5z

a50

5
1

2 S lnS 1L D2 lnS L

z2D D5
1

2
lnS z2L2D . ~84!

Collecting all pieces we have finally found

I ~z!5
3

16
z~3!

1

z6
lnS z2L2D . ~85!

The transformation to momentum space is given by Eq.~54!. Including the external legs and th
symmetry factor16 we obtain

Gm5S g4D 5 1p2 S 12 z~3!ln2S p2
L̄2D 2

5

2
z~3!lnS p2

L̄2D 1
17

4
z~3!D . ~86!

Comparing with dimensional regularization10 gives the minimum coincidence that both results a
proportional toz~3!. It is not possible to be more precise since in Ref. 10 only the singular
was calculated. Note that the techniques we used cannot be generalized to dimensions d
from four.

It is also hard to compare our result with the one gained by differential renormalization in
11 since the author restricted himself to regularize the amplitude and did not evaluate the
complicated integrals over the integral variables.

5. The two-point Green’s function

Collecting all results from the last sections we obtain for the full propagator of
w4-theory

G~p!5
1

p2 S 11S g4D 2S 112 lnS p2L̄2D 2
5

24D 1S g4D 3S 18 ln2S p2
L̄2D 2

5

8
lnS p2

L̄2D 1
15

16D
1S g4D 4S 316 ln3S p2

L̄2D 2
59

36
ln2S p2

L̄2D 1
1535

288
lnS p2

L̄2D 2
121

18 D
1S g4D 5X 932 ln4S p2L̄2D 2

1045

288
ln3S p2

L̄2D 1S 3733192
1
1

2
z~3!D ln2S p2

L̄2D
2S 164332

1
5

2
z~3!D lnS p2

L̄2D 1
3697

64
1
383

72
z~3!C1O ~g6!. ~87!

Comparison with differential renormalization2

G diff ren~p!5
1

p2 S 11S g4D 2 112lnS p2L̄2D 1S g4D 3S 18 ln2S p2L̄2D 2
3

8
lnS p2

L̄2D D 1••• D ~88!

shows that only the leading logarithms coincide. Notice that one never gets ln-independen
in Ref. 2.

If L̄ is rescaled according to lnL°ln L̄11 in Eq. ~88! the logarithmic terms coincide with
that of Eq.~87!. The ln-independent terms can be adjusted via a momentum independent res
by 12 3

24(g/4)
21 11

16(g/4)
3. However, at this point it is not clear whether the differences disapp

after appropriate redefinitions also at higher orders.
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a
ng the

e
er
l

ed, it
d. The
ce of a

to the

of a
e by
was

uch a

urba-

ur
reen’s

r
f many

alyti-
rucial
ia

757Oliver Schnetz: Natural renormalization

¬¬¬¬¬¬¬¬¬¬
6. The renormalization group

It is possible to extract theb-function and the anomalous dimensiong from the two-point
function alone if one assumes thatb andg are independent ofL̄. Moreover, the existence of
renormalization group equation is a nontrivial test for the renormalization scheme. Compari
coefficients in

S ]

] ln L̄
1bS g4D ]

]~g/4!
12gS g4D DGS g4 ,L̄,pD 50 ~89!

yields

bS g4D53S g4D
2

2
17

3 S g4D
3

1S 794 112z~3! D S g4D
4

1O ~g5!, ~90!

gS g4D5
1

12S g4D
2

2
5

96S g4D
4

1
191

192S g4D
5

1O ~g6!. ~91!

The first two terms ofb and the first term ofg are standard. The coefficient in front of th
z(3) term also coincides with other schemes.2,13However, for example, the vanishing third-ord
and the z ~3!-independent fifth-order term ofg is specific to our scheme. In differentia
renormalization2 one obtains b(g/4)53(g/4)22 17

3 (g/4)
31„31112z(3)…(g/4)41•••,g(g/4)

5 1
12(g/4)

22 3
8(g/4)

31••• .

IV. RESULTS AND OUTLOOK

A new renormalization scheme was proposed. It provides all amplitudes fully renormaliz
has no explicit cutoff or counterterms, and allows us to keep the space–time dimension fixe
scheme defines all integrals in an unambiguous way; it thus corresponds to a definite choi
subtraction prescription.

The renormalization scheme emerges from differential renormalization by ana priori fixing of
all integration constants at their mathematically most natural values. It is closely related
theory of generalized functions.

We demonstrated how to use this renormalization scheme if applied to the toy problem
two-point ~mass! interaction in coordinate space. Although this theory is nonrenormalizabl
powercounting, it was possible to recover the correct result within our scheme. A theorem
presented that allowed us in a more general framework to reconstruct the full result from s
singular expansion. With this theorem it was possible~but more complicated! to regain the true
result even for the dimensionally regularized toy model which failed to give the correct pert
tion series.

The main application of our scheme was thew4-theory. Equations that are very special to fo
dimensions and to our renormalization prescription enabled us to calculate the two-point G
function up to five loops@Eq. ~87!#. Most remarkable was the observation that at~four! five loops
the diagrams are organized in such a way that a~one-! two fold underdetermined system of linea
equations could be solved for the sum over certain diagrams. This made the evaluation o
single graphs needless.

We were left with the nonplanar five-loop graph which could as well be calculated an
cally in our renormalization scheme. It is obvious that the dimension of space–time plays a c
role in the calculation of the bipyramide graph~as it does for the matching of diagrams v
J. Math. Phys., Vol. 38, No. 2, February 1997
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integration by parts!. Only in four dimensions the coupling becomes dimensionless. The resu
conformal symmetry was used via the inversiona°a21 as the most essential step in the eva
ation of the integrals.

The two-point function was compatible with the renormalization group and it was possib
extract theb-function up to fourth and the anomalous dimensiong up to fifth order in the
coupling.

For future work the idea of grouping certain classes of diagrams and calculating thei
without refering to single graphs appears especially promising to us. We expect that the ma
of amplitudes persists to some extent at higher orders. In this way perturbation theory co
simplified and even analytical results beyond the fifth order may be possible.~Recent calculations
confirm this for the sixth order ofw4-theory.! Most desirable would be to find the general structu
that organizes the amplitudes to groups that can be evaluated via integration by parts. G
questions of renormalizability and the problems related to the multiplication of generalized
tions have to be investigated more carefully.

A goal of obvious importance is the application of natural renormalization to gauge the
In general one has to avoid conflicts between Ward identities~reflecting gauge symmetry! and the
renormalization scheme. This problem is already present in two dimensions and can be so
using the transverse~Landau! gauge. The Schwinger model can be solved within this framew
by summing up the whole perturbation series~e.g., the fermion correlation function!.8 The key
tool is, similar to thew4-theory, to calculate whole classes of Feynman diagrams without ev
ating single amplitudes. In four dimensions first results are promising; however, for QED we
not yet found how to group diagrams to simplify the calculations.
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Symmetries of decoherence functionals
S. Schreckenberga)
Blackett Laboratory, Imperial College, South Kensington,
London SW7 2BZ, United Kingdom

~Received 29 May 1996; accepted for publication 17 September 1996!

The basic ingredients of the ‘‘consistent histories’’ approach to quantum theory are
a spaceUP of ‘‘history propositions’’ and a spaceD of ‘‘decoherence function-
als.’’ In this article we consider such history quantum theories in the case where
UP is given by the set of projectorsP ~V ! on some Hilbert spaceV . Using an
analog of Wigner’s theorem in the context of history quantum theories proven
earlier, we develop the notion of a ‘‘symmetry of a decoherence functional’’ and
prove that all such symmetries form a group which we call ‘‘the symmetry group of
a decoherence functional.’’ We calculate for the case of standard quantum
mechanics—when looked at from the perspective of the history program—some of
these symmetries explicitly and relate them to some discussions that have appeared
previously. © 1997 American Institute of Physics.@S0022-2488~97!01302-9#

I. INTRODUCTION

The decoherent histories approach to quantum theory has received much attention o
last years. One of its main features is that the notion of a history proposition as an entity is
into the framework for such a theory from the very start. This amounts to an entirely new app
to quantum theory as has been discussed by various authors.1–4

In Ref. 4, Isham argued—by looking at standard quantum mechanics from the point of
of the history program—that the mathematical structure of such theories is best describ
separating the ingredients into a space of history propositions,UP , and a space of decoheren
functionals,D , both of which can be specified with the aid of certain algebraic properties. In
case of finite-dimensional quantum mechanics when investigated at a finite sequence ofn time-
ordered, but otherwise arbitrary, time pointst1,t2,•••,tn , these spaces are given b
UP5P ~V n! the set ofSchrödinger pictureprojectors on then-fold tensor product spaceV n :
5 H t1

^ H t2
^ ••• ^ H tn

of the single time Hilbert spacesH t i
. The ‘‘histories,’’ that is, time-

ordered sequences of Schro¨dinger picture projection operators (a t1
,a t2

,...,a tn
), commonly used

in the formalism of decoherent histories, are uniquely associated with a subset ofP ~Vn!, that is
given by homogeneousprojection operators of the formah : 5 a t1

^ a t2
^ ••• ^ a tn

P P (V n). The
classification theorem for decoherence functionalsdPD shows that—for an arbitrary finite
dimensional Hilbert spaceV —complex-valued, bounded decoherence functionalsd:P ~V !
3P ~V !→C, which have to fulfill the requirements of

Hermiticity : d~a,b!5d~b,a!* ;a,bPP ~V !,

Positiv i ty : d~a,a!>0 ;aPP ~V !,

Additiv i ty : d~a % b,g!5d~a,g!1d~b,g!

Normalization : d~1,1!51, ~1.1!

a!Electronic mail: stschr@ic.ac.uk
0022-2488/97/38(2)/759/11/$10.00
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are in one-to-one correspondence with certain operatorsX5X11 iX2PXD onV ^V according to
the rule

d~a,b!5trV ^V ~a ^ bX! ~1.2!

with the restriction that

~a!X†5MXM with M ~ uv& ^ uw&):5uw& ^ uv&, ;uv&,uw&PV ,

~b!trV ^V ~a ^ aX1!>0, ~1.3!

~c!trV ^V ~X1!51.

XD denotes the set of all such operatorsXd . In particular this holds true ifV 5V n . For standard
quantum mechanics—when looked at from the perspective of the history program—the de
ence functional is associated with an operator

X~H,r t0
,r t f

!5
1

trH~r t0r t f~ t f !!
X̃~H,r t0

,r t f
! ~1.4!

onV ^V . For homogeneous propositions about historiesah : 5 a t1
^ a t2

^ ••• ^ a tn
the value of

d(H,r t0,r t f )
(ah ,bh) is evaluated to be

d~H,r t0
,r t f

!~ah ,bh!5
1

trH~r t0r t f~ t f !!
trV ^V ~ah^ bhX̃~H,r t0

,r t f
!!

5
1

trH~r t0r t f~ t f !!
trH~C̃ah

† r t0C̃bh
r t f~ t f !!, ~1.5!

where the ‘‘class’’ operatorC̃ah
3 is defined to be

C̃ah
:5a t1

~ t1!a t2
~ t2!•••a tn

~ tn! ~1.6!

with $a t i
(t i): 5 e( i /h)H(t i2t0)a t i

e2(1/h)H(t12t0)% being the associated Heisenberg picture operat
It is this expression from which the operatorX(H,r t0

,r t f
) originally had been derived. The operat

X̃(H,r t0
,r t f

)—defined onV ^V —associated with the decoherence functionald(H,r t0,r t f )
P D is

given by6

X̃~H,r t0
,r t f

!5@U~ t1 ,t0!
†r t0U~ t1 ,t0! ^U~ t2 ,t1!

†
^ ••• ^U~ tn ,tn21!

†#

^ @U~ t2 ,t1! ^U~ t3 ,t2! ^ ••• ^U~ tn ,tn21! ^U~ t f ,tn!r t fU~ t f ,tn!
†#

3~R~n! ^1t1^1t2^ ••• ^1tn!S~2n!~R~n! ^1t1^1t2^ ••• ^1tn!, ~1.7!

where the last three lines involve universal operatorsR(n) ,S(2n) that arise by rewriting products o
operators—as they appear in Eq.~1.5!—in terms of tensor-products via the use of the mathem
cal identity5

trH~A1A2•••Am!5tr^Hm~A1^ ••• ^AmS!, ~1.8!
J. Math. Phys., Vol. 38, No. 2, February 1997
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whereAi denote operators on the Hilbert spaceH, andS represents a certain universal opera
on ^Hm. Therefore, the operatorsR(n) ,S(2n) are system independent. Thus this opera
X̃(H,r t0

,r t f
) contains essentially only the initial and final density operatorsr t0,r t f and the time-

evolution operatorU( l i ,l i21). For a more detailed account of the formalism used here see R
4 and 6.

One important result of this separation into a space of history propositionsUP and decoher-
ence functionalsD is that the decoherence functionaldPD can be thought of as the ‘‘dynamical’
content of a history quantum theory. In the case of standard quantum mechanics looked a
the point of view of the history program, one sees explicitly thatd(H,r t0,r t f )

P D carries the knowl-

edge of the initial and final conditions as well as of the Hamiltonian. History proposit
aPP ~V ! are given by Schro¨dinger-picture projection operators and provide thus only the ‘‘ki
matical’’ input of the quantum theory: Their properties specify the Hilbert spaceV .

In standard quantum mechanics symmetries of a physical system represented by a
tonian operatorH on a Hilbert spaceH are often described in terms of operatorsA onH that
commute withH. In order to understand how this comes about it is crucial to distinguis
standard quantum mechanics between the notions of asymmetry, a physical symmetry, and a
symmetry of an operator.

On a complex Hilbert spaceH symmetries—as defined by Wigner—are represented
unitary or antiunitary operatorsU onH that are characterized by the property of leaving
modulus of the inner product of any pair of two vectorsuv&,uw& invariant, that is,

u^v,w&u25u^Uv,Uw&u2. ~1.9!

Wigner’s theoremasserts that aphysical symmetry, that is, an affine one-to-one map on the spa
of rays in a Hilbert space, that preserves orthogonality between the rays, are in one-to-one
spondence with symmetries and can thus be implemented by a unitary or antiunitary opera
H.

Given an operatorA onH the symmetries of the operator Aare then defined to be all thos
symmetriesUA, that commute withA, that is, [UA,A]50. As a result, it holds that

u^vuAuw&u5u^UAvuAuUAw&u ;v,wPH. ~1.10!

In the case of quantum mechanics, the Hilbert spaceH is given by the Hilbert spaceH t at a
single time-point tPR. In case thatA is given by unitary evolution operatorU(t,t0)
5 e2 iH (t2t0) of a quantum mechanical system, the symmetries of this operator are given
unitary operatorseiK onH t which commute withU(t,t0). On the level of the~anti-! Hermitian
operatorsK andH one requires that [K,H]50.

We would like to understand how such concepts find their place in a theory that plac
emphasis on ‘‘history propositions’’ and ‘‘decoherence functionals.’’ Recall that the two m
ingredients of a history quantum theory are the space of history propositionsUP that—in the case
we are considering—is given by the set of projectorsP~V ! on a finite-dimensional Hilbert spac
V , and the space of decoherence functionalsD . Decoherence functionalsdPD are associated
with operators XdPXD on V ^V and both are intertwined through the express
d~a,b!5trV ^V ~a^bXd!.

In a companion paper6 we proved an analog of Wigner’s theorem for history quantum th
ries. We defined the notion of a ‘‘homogeneous symmetry’’~HS! and of a ‘‘physical symmetry of
a history quantum theory’’~PSHQT! and showed that PSHQT are in one-to-one corresponde
with HS. Therefore, every PSHQT can be induced by a unitary operatorÛ^ Û on V ^V as
follows:

UP3UP : a ^ b°ã ^ b̃:5ÛaÛ†
^ ÛbÛ† ;aPP ~V !
J. Math. Phys., Vol. 38, No. 2, February 1997
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XD: Xd°Xd̃ :5~Û^ Û !Xd~Û
†

^ Û†!. ~1.11!

As a consequence of this transformation the invariance

d~a,b!5d̃~ ã,b̃ ! ~1.12!

for all dPD and alla,bPP~V ! follows by the property of the trace, see Eq.~1.2!. Thus a PSHQT
possesses the properties of~i! mappingUP3UP into itself and ~ii ! mappingXD into itself and
~iii ! leaving the valued~a,b! invariant for all a, bPP ~V ! and dPD . Two history quantum
theories that are related by a PSHQT are called ‘‘physically equivalent;’’ this definition turn
to be compatible with the one introduced in Ref. 7.

In Sec. II we use this analog of Wigner’s theorem to introduce the notion of ‘‘symmetrie
a decoherence functional’’ in analogy to the definition of a symmetry of an operator in sta
quantum mechanics. These elements are shown to form a group which we call ‘‘the sym
group of a decoherence functional.’’ Furthermore, it is shown—by calculating for history qua
mechanics some of these symmetries explicitly—how this definition seems to capture the
ematical essence of some related discussions that have appeared in the literature.8,9 In the closing
Sec. III we mention some ways one could try to proceed in order to find a satisfactoryphysical
interpretation of the symmetries considered in this article.

II. SYMMETRIES OF DECOHERENCE FUNCTIONALS

A. Definition

Every history quantum theory is determined by the choice of a particular decoherence
tional dPD that is kept fixed in course of the investigation. We are therefore led to the follow
definition of symmetries of decoherence functionals:

Definition: For a fixed decoherence functionaldPD , thesymmetriesof d are determined by
those unitary or antiunitary transformationsÛ on V , such that

d~a,b!5d~ÛaÛ†,ÛbÛ†! ;a,bPP ~V !. ~2.1!

The following proposition shows that symmetries of a decoherence functional possess a
nient characterization in terms of commuting operators.

Proposition:The setSd of symmetries of a decoherence functionaldPD is given by

Sd :5$Û^ ÛPAut~V ^V !:@Xd ,Û^ Û#50%. ~2.2!

Thus for every finite-dimensional Hilbert spaceV ,XdPXD , it holds that

@Xd ,Û^ Û#50⇔trV ^V ~a ^ b@Xd2Û†
^ Û†XdÛ^ Û# !50 ;a,bPP ~V !. ~2.3!

Proof: SinceXd5X11 iX2 we have to show commutativity for the real and imaginary p
separately. In Ref. 6 it was shown that for eachX5X11 iX2PXD there exist two ONB
$uei&%,$ubi&% on V such thatX can be written as

X5(
i , j

l i j X1
~ i j !1 i(

l ,m
k lmX2

@ lm# , ~2.4!

where

X1
~ i j !5 1

2~Puei &
^Puej &

1Puej &
^Puei &

!;
J. Math. Phys., Vol. 38, No. 2, February 1997
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l i j5l j i ,(
i , j

l i j51, (
i , j

aiil i j aj j>0, l i jPR ~2.5!

and

X2
@ lm#5 1

2~Publ &
^Pubm&2Pubm& ^Publ &

!;

~2.6!
k lm52kml , k lmPR.

Here,Pubi &
denotes the projection operator onto the subspace ofV spanned by the vectorubi&PV .

Thus for the real part, we have to show that

@Puei &
^Puej &

1Puej &
^Puei &

,Û^ Û#50

⇔trV ^V ~a ^ b@Puei &
^Puej &

1Puej &
^Puei &

2~Puei &
Û

^Puej &
Û 2Puej &

Û
^Puei &

Û !# !50 ;a,bPP ~V !,

~2.7!

whereas for the imaginary part we must show that

@Pubi &
^Pubj &

2Pubj &
^Pubi &

,Û^ Û#50

⇔trV ^V ~a ^ b@Pubi &
^Pubj &

2Pubj &
^Pubi &

2~Pubi &
Û

^Pubj &
Û 2Pubj &

Û
^Pubi &

Û !# !50 ;a,bPP ~V !.

~2.8!

HerePuei &
Û is defined asPuei &

Û : 5 Û†Puei &
U. We first consider the real part ofdPD . By assumption,

it is true that

trV ~aPuei &
!trV ~bPuei &

!1trV ~aPuej &
!trV ~bPuei &

!

5trV ~aPuei &
Û !trV ~bPuej &

Û !1trV ~aPuej &
Û !trV ~bPuei &

Û ! ;a,bPP ~V !. ~2.9!

Since this has to hold forall a,bPP ~V ! we choose now
a 5 Puei &

andb 5 Puej &
. Thus

15trV ~Puei &
Puei &
Û !trV ~Puej &

Puej &
Û !1trV ~Puei &

Puej &
Û !trV ~Puej &

Puei &
Û !. ~2.10!

a5Puei &
5b. Thus

trV ~Puej &
Puei &
Û !trV ~Puei &

Puej &
Û !50. ~2.11!

a5Puej &
5b. Thus

trV ~Puei &
Puej &
Û !trV ~Puej &

Puei &
Û !50. ~2.12!

Assuming that trV (Puei &
Puei &
Û ) 5 0 leads via Eq.~2.10! to the condition that

15trV ~Puei &
Puej &
Û !trV ~Puej &

Puei &
Û !, ~2.13!
J. Math. Phys., Vol. 38, No. 2, February 1997
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that, sinceÛ is either unitary or antiunitary, can only be fulfilled forÛ being a transposition. But
since this has to hold for all orthogonal pairsuei&,uej&, this contradicts the unitarity or antiunitarit
of Û. Therefore, we conclude that trV (Puei &

Puej &
Û ) 5 0. This leads to the condition

15trV ~Puei &
Puei &
Û !trV ~Puej &

Puej &
Û !. ~2.14!

SinceÛ is aunitary or antiunitaryoperator, it follows that

utrV ~Puei &
Puej &
Û !u<1 ;uei&PV . ~2.15!

This shows that the equality~2.14! holds if and only if@Puei &
^ Puej &

,Û ^ Û# 5 0. This concludes
the proof for the real part.

For the imaginary part we are led to the condition

trV ~aPubi &
!trV ~bPubj &

!2trV ~Pubj &
!trV ~bPubi &

!

5trV ~aPubi &
Û !trV ~bPubj &

Û !2trV ~aPueb&
Û !trV ~bPubi &

Û ! ;a,bPP ~V !. ~2.16!

Since this has to hold forall a,bPP ~V ! we choose now
a 5 Pubi &

andb 5 Pubj &
. Thus

15trV ~Pubi &
Pubi &
Û !trV ~Pubj &

Pubj &
Û !2trV ~Pubi &

Pubj &
Û !trV ~Pubj &

Pubi &
Û !. ~2.17!

Since—by applying Gleason’s theorem to the Hilbert spaceV ^V —it holds that

trV ~Pubi &
Pubj &
Û !trV ~Pubj &

Pubi &
Û !5trV ^V ~Pubi &

^Pubj &@Û
†

^ Û†~Pubj &
^Pubi &

!Û^ Û# !>0,

~2.18!

it follows that

trV ~Pubi &
Pubi &
Û !trV ~Pubj &

Pubj &
Û !>1 ; i , jP$1,2,...,dimV %. ~2.19!

But, sinceÛ is unitary or antiunitary, the number 1 is the maximum from which we conclude

trV (Pubi &
Pubj &
Û )trV (Pubj &

Pubi &
Û ) 5 0. By the same reasoning as before this leads to@Pubi &

^ Pubj &
,Û

^ Û# 5 0 which concludes the proof for the imaginary part. h

B. Discussion

Since a symmetry of a decoherence functional is represented by aunitary or antiunitary
operatorÛ, it preserves the algebraic relations among history propositionsaPP ~V !. For ex-
ample, orthogonal elementsa,bPP ~V ! are mapped into elementsa8,b8 that are also orthogonal
Therefore, because it also preserves the value of the decoherence functional on pairs of
propositions, consistent sets ofdPD are mapped into new consistent sets to which thesame
values ofdPD are associated. Recall10 that in the formalism used here,consistent sets of histor
propositions with respect to a particular dPD correspond to certain partitions of the unit opera
on V into mutually orthogonal projectors$a i% i51

m<dim V such that

d~a i ,a j !5d i j d~a i ,a i ! ; i , jP$1,2,...,m%. ~2.20!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The properties~1.1! of dPD ensure that the valuesd(a i ,a i) determine a probability distribution
on the boolean algebra generated by the$a i% i51

m<dim V . Thus one can think of symmetries of
decoherence functional as a way of generating new consistent sets from given ones. A stud
symmetries of a decoherence functional will therefore reduce the number of algebraic equ
representing the consistency requirements.

SinceXd5X11 iX2 , Eq. ~2.2! is equivalent to the two conditions

@X1 ,Û^ Û#50 and @X2 ,Û^ Û#50, ~2.21!

which express the invariance requirement for the real and imaginary part ofXd , respectively.
Since for eachXd its real and imaginary part can be expanded with the aid of two, in gen
differentbases ofV , we see that requiring the complex value ofdPD to be invariant is a much
stronger requirement than invariance of the values for the real partRd alone. It is interesting to
note that the following Corollary holds.

Corollary: The following two requirements for the invariance of the real part of the deco
ence functionals are equivalent:

Rd~a,b!5Rd~ÛaÛ†,ÛbÛ†! ;a,bPP ~V !

⇔d~a,a!5d~ÛaÛ†,ÛaÛ†! ;aPP ~V !. ~2.22!

This shows that requiring the invariance of the ‘‘diagonal part’’d~a,a! forces the entire real part
Rd~a,b!, of dPD to be invariant under a symmetry transformation.

Proof: The proof is similar to the one presented for the proposition. We start with the ex
sion d~a,a!. Expand the real partX1 of Xd in terms of elementary decoherence functional1

2

(Puei &
^ Puej &

1 Puej &
^ Puei &

) with respect to a certain basis$uei&% of V . Evaluation ofd~a,a! for
a 5 Puei &

, a 5 Puej &
anda 5 Puei &

1 Puej &
leads to [X1 ,Û^ Û]50which equals the condition for th

invariance of the values ofRd~a,b! for all a,bPP ~V !. h

A slightly more subtle observation is the following: Since we are dealing with a uni
operator which preserves the algebraic relations among history propositions, the propert
consistent set of being a partition of unity isalwayspreserved under this mapping. To preserve
valueof the decoherence functionals on the elements of the consistent sets, only the ‘‘diag
values ofdPD , d~a,a!, have to remain invariant. This leads to the requirement

d~a,a!5d~ÛaÛ†,ÛaÛ†! ;aPP ~V !, ~2.23!

which, as we have seen, isnotequivalent to the vanishing of the commutator, i.e., [Xd ,Û^ Û]50.
It only leads to the weaker condition

trV ^V ~a ^ aXd!5trV ^V ~a ^ a@Û†
^ Û†XdÛ^ Û# !, ;aPP ~V !. ~2.24!

Therefore, the sets of transformations$Û% obtained by enforcing condition~2.1! or ~2.23!, can,a
priori , be different. It suggests itself to call the transformations determined by~2.23! weak sym-
metries of a decoherence functional, since one only requires the commutator [Xd ,Û^ Û] to
vanish weakly, meaning that

@Xd ,Û^ Û#5D Û , ~2.25!

whereD Û is any operator onV ^V , such that

trV ^V ~a ^ aD Û!50, ;aPP ~V !. ~2.26!
J. Math. Phys., Vol. 38, No. 2, February 1997
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This ensures that condition~2.23! is met. We denote the set of weak symmetries of a decoher
functional bySd

w. Every ÛPSd is also a weak symmetry, i.e.,Sd,Sd
w, but the converse is in

general not true. In view of the Corollary above, these weak symmetries commute with th
part ofX1 of Xd so that this is a condition on the commutator [X2 ,Û^ Û] between the imaginary
partX2 and the symmetry transformation.

Weak symmetries possess the property of mapping a consistent set$ai%, i.e., a set for which
the consistency conditions hold, into a partition of unity$a i8%, for which d(a i8 ,a i8) defines a
probability distribution. But, it has not been shown that this new set is alsoconsistent, i.e., obeys
d(a i8 ,a j8) 5 0 for all iÞ j . Thus we are led to the question of whether or not the consiste
conditionsd(a i ,a j )50 determineall partitions of unity$ai% on whichd(a i ,a i) defines a prob-
ability distribution. Only then can we be sure that weak symmetries map consistent sets into
consistent sets. But this is certainlynot the case. One convinces oneself immediately that
should be investigating this question for the consistency conditionRd(a i ,a j )50, since the van-
ishing of the imaginary part of the decoherence functional is unimportant in this context. I
question can be answered in the affirmative, this would be a strong argument in favor of
Rd(a i ,a j )50 as consistency conditions. In that case, the property of defining a proba
distribution on a partition of unity would be equivalent to the consistency condit
Rd(a i ,a j )50.

C. The structure of Sd

The purpose of this section is to introduce the notion of a ‘‘symmetry group ofdPD .’’
Definition/Proposition:The setSd :5$Û^ ÛPAut~V ^V !:[Xd ,Û^ Û]50% of symmetries of

a decoherence functionaldPD possesses the structure of a group. This group is calledthe sym-
metry group of d.

Proof: The unit element is given by the unit operator1^1. Multiplication is defined by
multiplication of operators. A calculation shows that [Xd ,ÛV̂^ ÛV̂]50 so thatÛV̂^ ÛV̂PSd
wheneverÛ^ Û,V̂^ V̂PSd . The unique inverse (Û^ Û)21 is given byÛ†

^ Û†. We have to show
that

Û^ ÛPSd⇔Û†
^ Û†PSd . ~2.27!

This can be shown as follows:

@Xd ,Û^ Û#50⇔XdÛ^ Û2Û^ ÛXd50

⇔Û†
^ Û†Xd

†2Xd
†Û†

^ Û†50

⇔Û†
^ Û†MXdM2MXdMÛ†

^ Û†50,
~2.28!

sinceXd
† 5 MXdM . Using the propertiesMM51^1 andM (Û†

^ Û†)M5Û†
^ Û†, one concludes

that ~2.28! is equivalent to

@Û†
^ Û†,Xd#50. ~2.29!

This concludes the proof. h

It is interesting to ask for the structure of the setSd
w of weak symmetries ofd. This set will,

in general, not be closed under the operations of multiplication and taking the inverse as d
above. A quick calculation shows that
J. Math. Phys., Vol. 38, No. 2, February 1997
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@Xd ,ÛV̂^ ÛV̂#5D Û~V̂^ V̂!1~Û^ Û !D V̂ , ~2.30!

so that the commutator will, in general, not vanish weakly. It would be interesting to see wh
or not for these transformations a kind of ‘‘Dirac-bracket’’ can be introduced along the follow
lines:

@Xd ,Û^ Û#D:5@Xd ,Û^ Û#2D Û . ~2.31!

Thus it follows that

@Xd ,ÛV̂^ V̂V̂#D5D Û~V̂^ V̂!1~Û^ Û !D V̂2D ÛV̂ . ~2.32!

Defining an operatorD on the space of operators byD(Û ^ Û): 5 D Û , we see that to require

D Û~V̂^ V̂!1~Û^ Û !D V̂2D ÛV̂ . ~2.33!

to vanish weakly is certainly fulfilled ifD possesses the property of being a derivation on the sp
of transformationsÛ^ Û. In this case, the setSd

w would be closed under multiplication; ifÛ is an
element ofSd

w, its inverse will, in general, not be an element ofSd
w. It seems that some insigh

could be gained by such an analysis once a formulation of constraint analysis in the his
formalism is achieved.

D. History quantum mechanics

We want to investigate, for ordinary nonrelativistic quantum mechanics when looked at
the perspective of the history program, whether or not this definition of symmetries is o
value. Again, history propositionsaPUP are given by projectorsa P P (V n) 5 P ( ^ i51

n
H t i

).
The particular decoherence functional is given by expression~1.7!.

Can we find any symmetriesÛ on V n of this d(H,r t0,r t f )
in the sense specified above? Co

sider a transformationQti
P B(H t i

), a t i
°Qti

a t i
Qti
† on all Hilbert spacesH t i

associated withn

time-points (t t,t2,•••,tn); chooseÛ: 5 Qt1
^ Qt2

^ ••• ^ Qtn
. ThenXd8 [ Û†

^ Û†XdÛ ^ Û

contains the following terms:

Qt1
†U~ t1 ,t0!

†r t0U~ t1 ,t0!Qt1
, Qti

†U~ t i ,t i21!
†Qti21

,

Qti
†U~ t i ,t i21!Qti21

, Qtn
†U~ t f ,tn!r t fU~ t f ,tn!

†Qtn
.

The requirement that@Û ^ Û,X(H,r t0
,r t f

)# 5 0 is certainly fulfilled if we choose the same unitaryQ

for all times t i and require it to commute with the unitary evolution operatorU(t i ,t i21), that is,
with the HamiltonianH,[Q,H]50. Furthermore, we notice thatQ has to commute with the initia
and final density matrices, i.e.,@Q,r t0# 5 0 5 @Q,r t f#.

These examples of symmetries of the standard decoherence functional are the easiest
find and are exactly those one obtains by transforming the triple (H,r t0,r t f) by an appropriate,
fixed unitary transformation onH. One can read them off the form~1.5! of the decoherence
functional almost immediately.8,9 The virtue of the derivation presented here is that it is associ
with a well defined operatorÛ5Q^Q^ ••• ^Q, n times, onV which fulfills the requirement of
definition ~2.2!. Thus a symmetry of a decoherence functional is not just determined by ope
Q that commute with the Hamiltonian at a fixed ‘‘time-slice;’’ they take the initial and fi
conditions into account and are more to be regarded as ‘‘space–time’’ symmetries of the s
since we have tied together the properties at different time-slices via the tensor product ope
J. Math. Phys., Vol. 38, No. 2, February 1997
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The appearance of the commutator ofQ with the HamiltonianH signals that Noether’s
theorem enters the stage in a somewhat disguised form. An explicit understanding of the
relationship would certainly further the understanding of symmetries of decoherence funct
as defined here. I give a few remarks in the closing section.

III. SUMMARY AND OUTLOOK

In this article we used the analog of Wigner’s theorem in the context of history qua
theories6 in order to define the notion of a ‘‘symmetry of a decoherence functional.’’ We h
seen that these symmetries can be characterized transparently in terms of the vanishing
commutator [Xd ,Û^ Û]50 between the operatorXd uniquely associated withdPD and the
operatorÛ^ Û associated with the symmetry transformation. It has been shown that the
symmetries of a decoherence functional forms a group, called ‘‘the symmetry group ofdPD .’’
We calculated explicitly some symmetries for the case of history quantum mechanics which
be related to certain examples discussed in Refs. 8 and 9.

Physical symmetries of history quantum theories and symmetries of decoherence func
have now acquired a definite mathematical interpretation as transformations on the sp
history propositions and on the space of decoherence functionals. But this does not do jus
the importance that symmetries play in almost every physical theory. One would like to us
results presented here to gain a better insight into thephysicalmeaning of PSHQT. Usually, this
means to obtain an interpretation of such symmetries of history quantum theories or decoh
functionals at aclassical level; an interpretation which is then happily taken over to the ‘‘qu
tized’’ theory. Thus we are led to try to obtain, for example, history quantum mechanics
certain process of ‘‘quantization’’ from a ‘‘classical history theory’’ for classical mechanics
turns out that history quantum mechanics can indeed be obtained this way via the aid of ahistory
group.11 Symmetries of history quantum theories and decoherence functionals then corresp
certain transformations on a ‘‘space of histories.’’ Details will appear elsewhere.

Even though we gained some insight into the properties of symmetries of decoherence
tionals I did not attempt in this paper to tackle questions related to the meaning of ‘‘cons
quantities’’ in this history formalism. This is a difficult issue since in its conception his
quantum theories are timeless. These problems have to some extent been discussed in R
a satisfactory explanation remains to be found. While searching for such an explanation an
tigation of properties of symmetries of a decoherence functional—as proposed in this art
might provide further clues to unravel its full significance.
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In this paper we compare various formulas for the leading term of the amplitude of
the splitting of the eigenvalues of semiclassical Schro¨dinger operators with multiple
wells. © 1997 American Institute of Physics.@S0022-2488~97!00201-6#

I. INTRODUCTION

The aim of this paper is to compare various results concerning the amplitude of the sp
of the low-lying eigenvalues of the semiclassical Schro¨dinger operator

P~h!52
h2

2
Dx1V~x!, x5~x1 ,..,xn!PRn, ~I.1!

in the case where the potentialV(x) has multiple wells.
Let us consider first the case of dimensionn51.
Let V be a smooth potential onR such that

V~x!>0, V~x!5V~2x!, V~x!50 iff x56a ~a.0!,

V9~6a!5v2.0 and there exists«.0 such thatV21~ #2`,«]) is compact. ~I.2!

It is well known that, forh sufficiently small, the operatorP(h) has an increasing sequence
eigenvalueslp(h), p>1, such that

l2p21~h!;l2p~h!5
v

2
~2p21!h1O p~h

2!,

~I.3!
l2p~h!2l2p21~h!5O p~h

`!

ash→0. ~Here the notationO p means that the estimates depends onp.)
A heuristic presentation of the splittingl2p(h)2l2p21(h) can be found in Landau-Lifshitz

~see also Ref. 1!. A rigorous proof of this result has been done by E. M. Harrell~see also Refs. 2
and 3!. In Refs. 4 and 5, the author proves that, if we denote bymp(h) thepth eigenvalue of the
Dirichlet realization ofP(h) in the interval ]2a1h,M @ ~or ]2M ,a2h@) with M.0 sufficiently
large andh.0 sufficiently small and bytp

2(h),tp
1(h)52tp

2(h) the solution in ]2a,a@ of the
equationV(x)5mp(h), we have

l2p~h!2l2p21~h!5
v

2
h~Bp1O p~h!!expS 2~1/h!E

tp
2

~h!

tp
1

~h!A2~V~x!2mp~h!!dxD , ~I.4!

where

a!Electronic mail: sordoni@dm.unibo.it
0022-2488/97/38(2)/770/26/$10.00
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Bp5
1

~p21!!
p21/2222pS 2p21

e D ~2p21!/2

. ~I.5!

The Harrell approach is different from the Landau-Lifshitz’s method~that is based on comple
WKB technique! and uses theorems of comparison for ordinary differential equations.

An important contribution, in the case of arbitrary dimensionn, has been given by B. Simo
in Refs. 6–8. For the operator~I.1! satisfying~I.2! ~in the one-dimensional case!, a consequence o
his results is the following formula:

lim
h→0

hln~l2p~h!2l2p21~h!!52S0 , ~I.6!

whereS0 is the Agmon distance between the two wells, i.e.,

S05E
2a

a
A2V~x!dx. ~I.7!

However, in the papers mentioned above there are no results concerning the amplitude~or the
prefactor! of the splitting.

In 1977, E. Gildener and A. Patriscioiu~see Ref. 9!, using nonrigorous methods based
path-integrals, found an explicit formula for the leading term of the amplitude of the splittin
the particular case where the potentialV is V(x)5a(x22a2)2 with a.0.

Using similar arguments, S. Coleman in Ref. 10~see also Ref. 11! generalized this result to a
arbitrary class of smooth potentials satisfying~I.2!.

This approach~called in the physical literature the instanton’s method! appears as a very
efficient way~but not rigorous! to find the right formulas.

Actually, the Coleman results permit us to compute the leading term of the amplitude o
splitting of the two lowest eigenvalues of a Schro¨dinger operator with double well potentials b
the knowledge of the instantons between the wells, i.e., the solution of the Newton eq
y95V8(y(t)) @associated to the Hamiltonianj2/22V(x)] joining together6a at time6`.

In order to state the Coleman formula, let us fix some notations.
For a fixedT.0 and a smooth functionf :R→R, we denote by detT(2] t

21 f (t)) the infinite
product

)
j>1

m j
T~ f !, ~I.8!

wherem j
T( f ) is the j th eigenvalue of the Dirichlet problem

S 2
d2

dt2
1 f ~ t ! Duj5m j

T~ f !uj , uj~2T/2!5uj~T/2!50, ~I.9!

and by detT8(2] t
21 f (t)) the product over all them j

T( f ) except the first one. Then, the Colema
formula for the splitting of the first two eigenvalues of the semiclassical Schro¨dinger operator~I.1!
with potentialV satisfying~I.2! in the case of dimensionn51 is the following:

l2~h!2l1~h!;hKe2S0 /h, ~I.10!

whereS05*2a
a A2V(x)dx is the Agmon distance between the wells and

K5 lim
T→1`

2S S0
2phD

1/2U detT~2] t
21v2!

detT8~2] t
21V9~y~ t !!!

U1/2. ~I.11!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Strictly speaking, Coleman’s statement of~I.10! and ~I.11! ~and its proof! is not mathematically
rigorous in the sense that the infinite products in~I.11! diverge, the meaning of detT8 in Ref. 10 is
not always clear and the notation; is not precise. However, here we show that Colema
formula ~I.10! and ~I.11! is essentiallycorrect.

In 1984, B. Helffer and J. Sjo¨strand~see Refs. 12 and 13! started to investigate carefully th
interaction matrix of Schro¨dinger operators with multiple wells in the case of arbitrary dimens
n.

In particular, in the one-dimensional case and when the potentialV satisfies~I.2!, their results
give

l2p~h!2l2p21~h!5h~3/2!2p~Ap1O p~h!!e2S0 /h, ~I.12!

where

Ap5A 2V~0!

~p21!!
2pvp21/2p21/2F lim

«→0
«2~p21!

3expS 22E
2a1«

0

@~~A2V~x!!82~2p21!v!/2A2V~x!# dxD G . ~I.13!

It is proved in Refs. 13 and 14 that formulas~I.12! and~I.13! agree with Harrell’s formulas~I.4!
and ~I.5!.

The first part of this paper is devoted to reformulating~I.12! and~I.13! in terms of instantons
~Section II! and to compare~I.12! and ~I.13! with Coleman’s formula~I.10! and ~I.11! ~Section
III !. For this purpose, we need to compare the spectrum of a one-dimensional Schro¨dinger opera-
tor onR with the spectrum of its Dirichlet realization in a box@2T/2,T/2#, asT→1`. This is
done in Appendix A and B.

Using the results of Ref. 15, it is also possible to give a new formulation of~I.12! and~I.13!
in terms of the first eigenvalues ofH5:2d2/dt2 1 V9(y(t)) and of the phase shift~see, for
example, Ref. 16! of the scattering matrix associated to the pairH andH05:2d2/dt2 1 v2.

Recently, S. Yu. Dobrokhotov, V. N. Kolokol’tsov, and V. P. Maslov in Ref. 17 found
explicit formula for the leading term of the amplitude of the splitting of the two low-lyi
eigenvalues of a Schro¨dinger operator with symmetric wells in the case of an arbitrary dimen
n, using techniques quite different from those of Refs. 12 and 13. The main interest of the fo
given in Ref. 17 consists in the possibility of writing the leading term of the amplitude onl
terms of the solutions of a system of ordinary differential equations of second order with Dir
boundary conditions related to the instantons between the wells. Some applications of this f
have been developed in Refs. 18 and 19~see also the references given there!.

In Section IV we show how we can easily recover the formula given in Ref. 17 from
results contained in Refs. 12 and 13. This is of course not surprising, but it is interesting to
direct verification without coming back to the splitting formula itself.

In Section V we state a formula analogous of Coleman’s formula~I.10! and ~I.11! for the
amplitude of the splitting in then-dimensional case~see also Ref. 20!.

II. THE HELFFER-SJÖSTRAND FORMULA FOR THE SPLITTING IN THE ONE-
DIMENSIONAL CASE

Let us consider the Schro¨dinger operator

P~h!52
h2

2

d2

dx2
1V~x! ~II.1!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with V(x) satisfying~I.2!.
The Newton equation associated to the HamiltonianH5j2/2 2 V(x) with potential2V is

y9~ t !5V8~y~ t !!, ~II.2!

and it is easy to see that~II.2! has a unique~up to translation! solution satisfying the boundar
conditions

y~6`!56a, y8~6`!50. ~II.3!

Actually, the second order equation~II.2! with conditions~II.3! at 6` is equivalent to the first
order equation

y8~ t !5A2V~y~ t !!, y~6`!56a. ~II.4!

On the other hand, if we fix a real numbert1, and we denote by

t:@2a,a#→R

the increasing function

t~y!5t11E
0

y 1

A2V~x!
dx, ~II.5!

then the inverse oft, say y(t), is a solution of~II.4! and is the unique solution that satisfie
y(t1)50. We call this solutiony(t) an instanton of centert1 for P(h).

Without loss of generality we can supposet150 ~and this will be implicitly done all along the
paper!. Notice thaty(t) is odd and that

S05E
2a

a
A2V~x!dx5iy8~ t !iL2~R!

2 . ~II.6!

Then, Helffer–Sjo¨strand’s formula~I.12! and ~I.13! can be rewritten as follows.
Proposition II.1: Let P(h) be the Schro¨dinger operator (II.1) with potential V satisfying (I.2)

Then

l2~h!2l1~h!5h1/2~A11O ~h!!e2S0 /h ~II.7!

as h→0, with

A152v1/2p21/2 lim
t→2`

y8~ t !

evt . ~II.8!

Proof: Notice that, sincey(t)→2a for t→2`, we can rewrite the term

C05: lim
«→0

expS 22E
2a1«

0

@~~A2V~x!!82v!/2A2V~x!#dxD ~II.9!

in ~I.13! as

C05 lim
t→2`

expS 2E
y~ t !

0

@~~A2V~x!!82v!/A2V~x!#dxD . ~II.10!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Now, making the change of variablesx→s with y(s)5x in ~II.10!, we obtain

C05 lim
t→2`

e2* t
0

@y9~s!/y8~s!#ds

evt 5
1

A2V~0!
lim

t→2`

y8~ t !

evt . ~II.11!

III. THE COLEMAN FORMULA FOR THE SPLITTING

In this section we recover the Coleman formula for the splitting from the Helffer-Sjo¨strand’s
one, in the one-dimensional case. The result is the following:

Theorem III.1: Let P(h) be the Schro¨dinger operator (II.1) with potential V satisfying (I.2
and let y(t) be the instanton of center0 for P(h).

Then

l2~h!2l1~h!5h1/2~G̃11O ~h!!e2S0 /h ~III.1!

as h→0, with

G̃152S S02p D 1/2v lim
T→1`

S )
j>2

m j
T~v2!

m j
T~V9~y!! D

1/2

. ~III.2!

Herem j
T(V9(y)) (resp.:m j

T(v2)5v21 j 2p2/T2) are the eigenvalues of the Dirichlet realizatio
HT of H5:2 d2/dt21V9(y(t)) (resp.: H0,T of H05:2d2/dt21v2) in the interval
I T5@2T/2,1T/2#.

Proof: Let us start by comparing the first eigenvalue and the first eigenfunction ofH and
HT .

The results of Appendix B give the following:
Lemma III.2: The operator H52d2/dt21V9(y(t)) has nonnegative Dirichlet spectrum an

nonempty discrete spectrum contained in@0,v2@ .
The first eigenvalue of H,m1(V9(y)) vanishes and the associated eigenfunction is the der

tive of the instanton solution t→y8(t).
If we denote byv1 the normalized strictly positive eigenfunction of H,v15y8/iy8iL2(R) , and

by g1,T the first normalized eigenfunction of HT , we have

U g1,T8 ~6T/2!

v18~6T/2!
U52~11o~1!!, ~III.3!

as T→1`. Moreover,

lim
t→6`

e6vtv1~ t !5
1

AS0
lim

t→6`

e6vty8~ t !5a.0, ~III.4!

and the first eigenvaluem1
T(V9(y)) of HT has the following behavior as T→1`:

m1
T54va2e2Tv~11o~1!!. ~III.5!

Proof: Let us observe that, sinceV9(y(t)) is smooth and converges tov2 as t→6`, then
H has a discrete spectrum in ]2`,v2@ .

Differentiating ~II.2!, it is easy to check thaty8 is a nonidentically 0 eigenfunction ofH
corresponding to the eigenvalue 0~see Ref. 21!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Sincey8 is strictly positive~see~II.5!!, then 0 is the infimum of the spectrum ofH. Moreover,
sinceV9(y(t))5v21O (y(t)2(6a)) as t→6` and y(t)2(6a)5O (e7vt) for t→6` ~see
Ref. 22, Section 3!, thenV9(y(t))2v2 is rapidly decreasing and~III.3! follows from Proposition
B.2.

Classical ODE results~see, for example, Ref. 23!, the oddness ofy(t) and~II.6! give ~III.4!.
Finally, from ~III.3!, ~III.4! and ~B10! we get

lim
T→1`

m1
T~V9~y!!

e2Tv 5 lim
T→1`

2

d

dT
m1
T

ve2Tv 54va2

and this yields~III.5! h

Using the notation of Appendix A, let us denote byc(t,0,V9(y)) ~resp.:c(t,0,v2)) the
solution of the Cauchy problemHc50 ~resp.:H0c50) with Cauchy datac ut52T/250 and
c ut52T/28 51.

Then we have the following.
Lemma III.3: We have:

c~T/2,0,V9~y!!5v21~11o~1!! ~III.6!

as T→1`.
Proof: Sincec(t,0,V9(y)) andv1 verify the same equationHu50 andv1(t)Þ0 for any t,

then we can rewritec(t,0,V9(y)) in terms ofv1 as follows:

c~ t,0,V9~y!!5v1~ t !v1~2T/2!E
2T/2

t ds

v1~s!2
.

Hence, taking into account thatv1 is even and that limT→1` v1(T/2)/v18(T/2)52v21, we obtain

c~T/2,0,V9~y!!5v1~T/2!2E
2T/2

T/2 ds

v1~s!2
5v21~11o~1!!.

h

End of the proof of Theorem III.1: Sincey8(t) is even, we can rewrite~II.7! and ~II.8! as

l2~h!2l1~h!5h1/2~A11O ~h!!e2S0 /h ~III.7!

with

A152
Av

Ap
~ lim
T→1`

y8~T/2!evT/2!. ~III.8!

Hence, using~III.3!, ~III.4!, and~III.5! we obtain

A152S S02p D 1/2aA2v52S S02p D 1/2 lim
T→1`

S m1
T~V9~y!!evT

2 D 1/2

52S S02p D 1/2 lim
T→1`

~m1
T~V9~y!!sinh~vT!!1/2. ~III.9!

Using ~III.4!, Lemma III.3 and Proposition A.1 we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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sinh~vT!5Tv)
j>1

m j
T~v2!

~ j 2p2/T2!
~11o~1!!

and

)
j>1

m j
T~v2!

m j
T~V9~y!!

5T)
j>1

m j
T~v2!

~ j 2p2/T2!

1

c~T/2,0,V9~y!!
5Tv)

j>1

m j
T~v2!

~ j 2p2/T2!
~11o~1!! .

Hence

A152S S02p D 1/2 lim
T→1`

S m1
T~v2!)

j>2

m j
T~v2!

m j
T~V9~y!! D

1/2

~III.10!

and this ends the proof of Theorem III.1. h

Using the results of Ref. 15, we can rewrite~III.2! in terms of the eigenvalue
m2(V9(y)),m3(V9(y)), . . .,mk(V9(y)) of H less thanv2 and of the phase shifts(l) of the
scattering matrixS(l) associated to the pairH andH0 ~so that detS(l)5e22ips(l)) .

Actually Corollary 3.2 in Ref. 15 states that

l2~h!2l1~h!5h1/2~B11O ~h!!e2S0 /h ~III.11!

ash→0, with

B152S S02p D 1/2S )
j52

k

m j~V9~y!!D 21/2

expS 2
1

2 E
v2

1`

s~l!l21dl D . ~III.12!

Remark III.4: Using the previous arguments and starting from formulas (I.12) and (I.13)
Ref. 13) it could be possible to find a formula analogous to formulas (III.2) and (III.12) for
splitting of higher levelsl2p(h)2l2p21(h), p.1.

Remark III.5: The previous results can be also applied to a one-dimensional Schro¨dinger
operator P(h) with smooth periodic potential V of period a such that V(x)>0,
V(x)5V(a2x), V(x)50 iff x P Za and V9(x)5v2 for x P Za. In such a case, it is shown in Re
14 that the lengthdp(h) of the pth band Bp(h) of the spectrum of P(h) is given by

dp~h!52h3/22p~Ap1O p~h!!e2S0 /h, ~III.13!

where Ap has an expression analogous to (I.13). Hence, arguing as before, it could be poss
recover the results of Ref. 10, Section 2.4, and Ref. 11, Section 10.1.

Remark III.6: Using the previous arguments, it could be possible to check that the (heu
Coleman formula for the amplitude of the imaginary part of the ground-state resonance in
one-dimensional cases (see Section 2.4 in Ref. 10) essentially agrees with the (rigorous) H
Sjöstrand formulas contained in Proposition 11.1 of Ref. 24. Actually, in the case of a Schro¨dinger
operator (II.1) with smooth potential V such that

lim
x→6`

V~x!57`, V8~x!50 iff x5x0 or x5 x̃0 , x0, x̃0 ,

~III.14!
with V~x0!50, V9~x0!5v2 and V~x1!50 for x1.x0

(see Ref. 24, Section 11, picture 1), the Helffer-Sjo¨strand formula for the imaginary part o
ground-state resonance z(h) can be rewritten as follows:
J. Math. Phys., Vol. 38, No. 2, February 1997
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Im z~h!52h1/2~A11O ~h!!e22S0 /h, ~III.15!

where

A15
1

2
Avp21/2S lim

t→2`

y8~ t !

evt D , ~III.16!

where S0 is the Agmon distance between x0 and x1 and y(t) is the ‘‘bounce’’ of center0. This
means that y(t) is the solution of the Newton equation associated to the Hamilton
H5j2/22V(x) with potential2V:

y9~ t !5V8~y~ t !!, ~III.17!

satisfying y(0)5x1 and the boundary conditions

y~6`!5x0 , y8~6`!50, ~III.18!

and corresponds to move from x0 to x1 and to come back from x1 to x0 under the classical
equation of motion associated to the potential turned upside down.

Notice thatv2(t)5:y8(t)/2AS0 is a normalized eigenfunction corresponding to the eig
value 0 of H52d2/dt21V9(y(t)) and, sincev2(t) has a unique zero, then0 is the second
eigenvalue of H.

Starting from (III.15) and (III.16) (see Ref. 24, Proposition 11.1) and arguing as in the p
of Theorem III.1, it could be possible to recover the Coleman formula (2.49) in Ref. 10 fo
amplitude of the imaginary part of the ground-state resonance.

IV. THE n-DIMENSIONAL CASE

The purpose of this section is to recover the results of Ref. 17 on the amplitude of the sp
of the two low-lying eigenvalues of Schro¨dinger operators with double well potentials, starti
from the results of Refs. 12 and 13.

Let us consider the Schro¨dinger operator~I.1! in arbitrary dimensionn and let us suppose

~H1! VPC`~Rn!, V>0, lim
uxu→1`

V~x!.0;

~H2! V is symmetric with respect to a hyperplaneG, i.e., if we denote by

S the matrix associated to this reflection, thenV~Sx!5V~x!;

~H3! V21~0!5$x̄1%ø$x̄2%, x̄25Sx̄15” x̄1 and

Hess V~ x̄1!5S Hess V~ x̄2!S is a positive definite matrix;

~H4! there exists a unique minimal geodesicg ~with respect to the

Agmon metric) joining x̄1 and x̄2 and this geodesic intersectsG

transversally at a unique pointx̄.

We denote bydj (x)5d(x,x̄ j ) the Agmon distance betweenx and x̄ j associated to the metri
2V(x)dx2 and byS05d( x̄1 ,x̄2) the Agmon distance between the wells. Notice that, by symme
d2(x)5d1(Sx).
J. Math. Phys., Vol. 38, No. 2, February 1997
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Moreover, we assume that the restriction ofd1(x)1d2(x) to G has a nondegenerate minimu
at x̄, i.e.,

~H5! d1~x!1d2~x!>S01
1

C
d~x,x̄!2 for xPG.

In the following we denote byv j
2 , j51,..,n, v1

2<v2
2< . . .<vn

2 , the positive eigenvalues o
Hess V( x̄1)5SHess V( x̄2)S. We setV5diag(v1 ,..,vn).

In the following we call instantony(t) of centert1 between the two wells the solution of th
equationy9(t)5“V(y(t)) with y(2`)5 x̄1 ,y(1`)5 x̄2, andy(t1)5 x̄, that realize a minimum
of the action*Ruy8(t)u2dt.

This is a reparametrization of the~unique! minimal geodesicg mentioned above~see Refs. 25,
26, 12, 6, and 8!. We remark that, thanks to assumptions (H1)2(H4), y(t)5Sy(2t12t), for any
t. Notice that~see Ref. 12, Prop. 6.5! the function ]2`,t1@ { t→y(t) is an integral curve of
¹d1 and the function ]t1 ,1`@ { t→y(t) is an integral curve of2“d2.

As before, without loss of generality, we suppose thatt150.
In the following statement, we recall the Helffer-Sjo¨strand results on the splitting of the tw

lowest eigenvaluel2(h)2l1(h) of the operatorP(h) contained in Ref. 12 and starting from th
result we recover the ones of S. Yu. Dobrokhotov, V. N. Kolokol’tsov, and V. P. Maslov.17 We
have the following.

Proposition IV.1: Let us consider the Schro¨dinger operator (I.1) and suppose tha
(H1)2(H5) holds. We have

l2~h!2l1~h!5h1/2~A11O ~h!!e2S0 /h ~IV.1!

as h→0, with

A152~detM !21/2A2V~ x̄!
Av1v2 . . .vn

Ap
lim

t→2`

detZ~ t !

eE t
. ~IV.2!

Here S05iy8iL2(R)
2 , E5( j51

n v j and Z(t) is the unique matrix solution of the system:

Z9~ t !5Hess V~y~ t !!Z~ t !, t,0,
~IV.3!

Z~0!5I , Z~2`!50.

Moreover, if Q is the matrix of the orthogonal transformation inRm such that, in the new
coordinates, the first orthogonal coordinate is collinear to y8(0), then M is the
(n21)3(n21) minor of the matrix

B5QZ8~0! tQ ~IV.4!

obtained by deleting the first column and the first row.
Proof: Let us start the proof of Proposition IV.1 by studying the system of ordinary diffe

tial equations~IV.3!.
We have the following lemma.
Lemma IV.2: The equation

Hu~ t !5:S 2
d2

dt2
1Hess V~y~ t !! Du~ t !50 ~IV.5!

has a unique matrix solution Z2(t) (resp.: Z1(t)) satisfying
J. Math. Phys., Vol. 38, No. 2, February 1997
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HZ2~ t !50, t,0

Z2~0!5I , Z2~2`!50. S resp.: HZ1~ t !50, t.0,

Z1~0!5I , Z1~1`!50 D .
Moreover, Z2 (resp.: Z1) is the matrix solution of the Cauchy problem

Z28 ~ t !5Hess d1~y~ t !!Z2~ t !, t,0,

Z2~0!5I

S resp.:Z18 ~ t !52Hess d2~y~ t !!Z1~ t !, t.0,

Z1~0!5I
D ,

and

detZ2~ t !5expS 2E
t

0

Dd1~y~s!!dsD for t<0, detZ1~ t !5expS 2E
0

t

Dd2~y~s!!dsD
for t>0. ~IV.6!

Proof: In the following we prove the results only fort<0 . The caset>0 is analogous.
Let us consider the Hamiltonian system associated toP(h). If z P Rn is in a small neighbor-

hood of x̄ , let us denote by (x(t,z),j(t,z)),t<0, the unique solution of the Hamiltonian system

] tx5j, ] tj5¹V~x!, x~0,z!5z, j~0,z!5¹d1~z!. ~IV.7!

Then @~see Ref. 12!# x(t,z) verifies the equation

] tx5¹d1~x!, x~0,z!5z, ~IV.8!

and conversely, ifx(t,z) is the solution of~IV.8!, then the pair (x(t,z),j5x8(t,z)) is the unique
solution of ~IV.7!.

Notice thatx(t,x̄)5y(t). Let us consider now

A5S ]x

]z
~ t,z!,

]j

]z
~ t,z! D . ~IV.9!

Then A is the uniquen32n matrix solution of the variational system:

5 ] tA5S 0 I

Hess V~x~ t,z!! 0
D A

A~0!5~ I ,Hess d1~z!!.

~IV.10!

HenceB5:(]x/]z)(t,z) verifies

] tB5Hess d1~x~ t,z!!B, B~0!5I , ~IV.11!

and conversely, ifB is a solution of~IV.11!, then (B,] tB) is the unique solution of~IV.10!. Take
now z5 x̄ and define

Z2~ t !5:
]x

]z
~ t,x̄!. ~IV.12!

Then3n matrix Z2(t) verifies
J. Math. Phys., Vol. 38, No. 2, February 1997
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Z29 ~ t !5Hess V~y~ t !!Z2~ t ! ~IV.13!

and

Z28 ~ t !5Hess d1~y~ t !!Z2~ t ! ~IV.14!

with initial conditionZ2(0)5I .
Notice that

Z28 ~0!5Hess d1~ x̄!. ~IV.15!

Since Hessd1(y(t)) is bounded for anyt<0 and its limit, ast→2`, is a positive definite
matrix, thenZ2(t) is defined for allt<0 and lim

t→2`
Z2(t)50. MoreoverZ2(t) is the Wronsk-

ian of the system of linear differential equations,

W85Hess d1~y~ t !!W, ~IV.16!

and thenu5:detZ2(t) verifies the equation

u85Tr Hess d1~y~ t !!u, u~0!51. ~IV.17!

Hence

detZ2~ t !5expS 2E
t

0

Tr Hess d1~y~s!!dsD 5expS 2E
t

0

Dd1~y~s!!dsD . ~IV.18!

Finally, let us check that the matrix solution of the system~IV.3! is unique. Actually,
Hess V(y(t))5Hess V( x̄1)1O (uy(t)2 x̄1u) as t→2` and ~see Ref. 22, Section 3!
uy(t)2 x̄1u5O (ev1t) as t→2`.

Hence~see, for example, Ref. 27, Problem 29, Ch. 3!, the equation

Hc52
d2

dt2
c1Hess V~y~ t !!c50

has a fundamental system of matrix solutions (V2(t),W2(t)) such that

V2~ t !5~ I1o~1!!exp~ tAHess V~ x̄ 1!!, W2~ t !5~ I1o~1!!exp~2tAHess V~ x̄ 1!!

as t→2`, and any matrix solution of the equationHc50 can be written as

V2~ t !A1W2~ t !B

for somen3n constant matricesA andB.
As a consequence,Z2(t)5V2(t)V2(0)

21 and any bounded matrix solutionZ̃(t) must be of
the form Z̃(t)5Z2(t)C for some constant matrixC.

SinceZ2(0)5I , Z̃(0)50 impliesC50 and the uniqueness of~IV.3! follows. h

Remark IV.3: Notice that, since in our case y(2t)5Sy(t) and d2(x)5d1(Sx), then

Z1~ t !5SZ2~2t !S for t<0.

In the following, we denote simply by Z(t) the matrix Z2(t).
End of the proof of Proposition IV.1:Let us recall formulas (3.25)8 in Ref. 12 for the splitting

of the two lowest eigenvalues ofP(h):
J. Math. Phys., Vol. 38, No. 2, February 1997
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l2~h!2l1~h!522h2E
G
f1~s!

]f1

]n
~s!ds mod O ~h`!e2S0 /h, ~IV.19!

where f1 is the first eigenfunction of the Dirichlet realization ofP(h) on some open se
M15$x P Rn ; d(x,x̄1),S, d(x,x̄2).h% with S.2S0 andh.0 sufficiently small.

Here]/]n denotes the normal derivative with respect to the hypersurfaceG. It is well known
that, in a neighborhoodU( x̄) of x̄ and, in particular, onGùU( x̄), f1 has the following WKB
expansion~see Ref. 12!:

f1~x!5h2n/4~a0,1~x!1O ~h!!e2d1~x!/h ~IV.20!

and

]f1

]n
~x!52h2n/421~a0,1~x!1O ~h!!

]d1
]n

~x!e2d1~x!/h. ~IV.21!

Thanks to assumption (H5), we can apply the stationary phase theorem in~IV.19! and we obtain

l2~h!2l1~h!5h1/2~A11O ~h!!e2S0 /h, ~IV.22!

where

A152a0,1
2 ~ x̄!

]d1~ x̄!

]n
p~n21!/2~det~Hess d1uG!~ x̄!!21/2. ~IV.23!

Let us observe that

]d1
]n

~ x̄!5 K“d1~ x̄!,
y8~0!

uy8~0!u L 5uy8~0!u5A2V~ x̄!. ~IV.24!

Moreover, sincea0,1 is the first term of the amplitude of the WKB expansion forf1 then, by
construction,a0,1 verifies the following transport equation~along the geodesic!:

d

dt
a0,1~y~ t !!52

1

2
~Dd1~y~ t !!2E !a0,1~y~ t !!. ~IV.25!

Hence, from~IV.25!, we obtain

a0,1~ x̄!5a0,1~ x̄1!S lim
t→2`

e2* t
0Dd1~y~s!!ds

eE t D 1/2. ~IV.26!

A comparison with the first normalized eigenfunction of the harmonic oscillator associated
well x̄1 gives ~see Ref. 12!

a0,1~ x̄1!5
~v1•••vn!

1/4

pn/4 . ~IV.27!

Hence~see Ref. 26, Theorem 4.4.8!

A152A2V~ x̄!
Av1v2 . . .vn

Ap
~det~Hess d1uG!~ x̄!!2 1/2 lim

t→2`
S e2* t

0Dd1~y~s!!ds

eE t
D 1/2. ~IV.28!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Taking into account~IV.15! and applying Lemma IV.2, formula~IV.2! follows.
h

Remark IV.4: It is possible to check that Proposition 4.1 holds also if we replaced ass
tions (H2) and (H4) by

~H2!8 V~x!5V~2x!, i.e., V is symmetric with respect to the origin;

~H4!8 There exists a unique minimal geodesicg ~with respect to the

Agmon metric) joining x̄1 and x̄2 and this geodesic intersects

transversally at a unique pointx̄50 a hyperplaneG .

Remark IV.5: In the case when there is a finite number of minimal geodesicsgk joining x̄1
with x̄2, then, in formula (IV.2), we must take the sum over all such geodesics.

Remark IV.6: Under suitable conditions (see Ref. 12, Theorem 5.9) a formula analogo
(IV.2) holds also for the coefficients of the interaction matrix associated to the lowest e
levels.

V. THE COLEMAN FORMULA FOR THE SPLITTING IN THE n-DIMENSIONAL CASE

In this section we show that a formula analogous to the Coleman formula for the spl
holds in any dimensionn. The main result is the following:

Theorem V.1:Let us consider the Schro¨dinger operator (I.1) and suppose that(H1)2(H5)
holds. We have

l2~h!2l1~h!5h1/2~A11O ~h!!e2S0 /h ~V.1!

as h→0, with

A152S S02p D 1/2v1 lim
T→1`

S )
j>2

m j
T~V2!

m j
T~Hess V~y!! D

1/2

. ~V.2!

Here m j
T(Hess V(y)) (resp.: m j

T(V2)) are the eigenvalues of the Dirichlet realization HT of
H5:2d2/dt21Hess V(y(t)) (resp.: H0,T of H05:2d2/dt21V2) on the interval
I T5@2T/2,T/2#.

Proof: The proof of the theorem follows the same lines of the proof of Theorem III.1.
First, we compare the spectrum ofH with the one of its Dirichlet realization in the interva

I T .
Second, we compare the behavior ast→1` of the matrix Z(t) with the behavior of

c(t)5:c(t,0,Hess V(y)) @that is the solution ofHc50, c(2T/2)50, c8(2T/2)5I ] and we
use Proposition A.1 to relate the det(c(T/2)) with the product of the eigenvalues contained
formula ~V.2!, asT→1`. Let us start with some reductions.

Possibly by making a orthogonal change of variables we can assume thatS is the diagonal
matrix S5diag(21,1, . . . ,1).

Hencey8(0)5A2V( x̄)e1 with e15(1,0,...,0) and thefirst column ofZ(t) ~say Z1(t)) is
proportional toy8(t), i.e.,Z1(t)5y8(t)/A2V( x̄).

Since Hessd1(y(0))y8(0)52Hess d2(y(0))y8(0)52SHess d1(y(0))Sy8(0), then
y8(0)5A2V( x̄)(1,0,..0)PKer@Hess d1(y(0))1SHess d1(y(0))S#.

This implies that the element (1,1) of the matrix Hessd1(y(0)) must be zero.
Hence
J. Math. Phys., Vol. 38, No. 2, February 1997
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Hess d1~y~0!!5S 0 tg

g M D ~V.3!

for some (n21)-dimensional vectorg.
Moreover assumption (H5) guarantees thatM is a nondegenerate, positively define

(n21)3(n21) matrix.
Let us start by comparing the first eigenvalue and the first eigenfunction ofH andHT .
The results of Appendix B give the following:
Lemma V.2: Under the assumptions of Theorem V.1, the oper

H52d2/dt21Hess V(y(t)) has non-negative Dirichlet spectrum and nonempty discrete s
trum.

The first eigenvalue of H,m1(Hess V(y)), vanishes and the associated eigenfunction is
derivative of the instanton solution t→y8(t).

Moreover,

y8~2T/2!5g1e
2v1T/2~11o~1!!, y8~T/2!5Sg1e

2v1T/2~11o~1!! ~V.4!

as T→1`, with g1 eigenfunction ofHess V( x̄1) associated to the eigenvaluev1
2. In particular,

uy8~6T/2!u5be2v1T/2~11o~1!! ~V.5!

for some positive number b, as T→1`.
If we denote byv1 the normalized strictly positive eigenfunction of H,v15y8/iy8iL2(R) , and

by g1,T the first normalized eigenfunction of HT , we have

ug1,T8 ~6T/2!u
uv18~6T/2!u

52~11o~1!! ~V.6!

as T→1` and the first eigenvaluem1
T(Hess V(y)) of HT has the following behavior:

m1
T~Hess V~y!!54v1

b2

S0
e2v1T~11o~1!! ~V.7!

as T→1`.
Proof: Let us observe thatH is a non-negative self-adjoint operator. Actually, for any functi

uPC0
`(R,Rn),

E
R
^Hu~ t !,u~ t !&dt5S E

2`

0

1E
0

1` D ~ uu8~ t !u21^Hess V~y~ t !!u~ t !,u~ t !&!dt5I1II .

Notice that, since the matrixZ(t) is invertible for t<0, from ~IV.13! and ~IV.14! we get, for
t<0,

Hess V~y~ t !!5~Hess d1~y~ t !!!21S ddtHess d1~y~ t !! D . ~V.8!

Hence, using integrations by part and Cauchy-Schwartz inequality, we get

I5E
2`

0 S uu8~ t !u21uHess d1~y~ t !!u~ t !u21 K S ddtHess d1~y~ t !! Du~ t !,u~ t !L Ddt
>^Hess d1~ x̄!u~0!,u~0!&.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Arguing in the same way, we obtain

II>^SHess d1~ x̄!Su~0!,u~0!&.

Hence@taking into account~V.3!#, we have

E
R
^Hu~ t !,u~ t !&dt>K S 0 0

0 2M D u~0!,u~0!L >0.

This implies that the spectrum ofH is contained in@0,1`@ .
SinceHy8(t)50, m1(Hess V(y))50 is the first eigenvalue ofH.
Moreover, if f is anL2-solution ofHf (t)50, thenf is a linear combination of the column o

the matrixZ2(t) for t<0 ~resp.:Z1(t) for t>0) ~see Lemma IV.2!. Then f 85Hess d1(y(t)) f
for t,0 and f 852Hess d2(y(t)) f52SHess d1(y(2t))Sf for t.0.

Hence, using~V.8! and integrating by parts, we obtain

05E
R
^Hf ~ t !,u~ t !&dt5K S 0 0

0 2M D f ~0!,u~0!L
for anyu P C0

`(R,Rn). As a consequence, iff P L2 satisfiesHf (t)50, then (0
0
2M
0 ) f (0)50, i.e.,

f (0) must be proportional toe1. This proves that the space of eigenfunctions
m1(Hess V(y))50 has dimension one, i.e.,m1(Hess V(y))50 is simple.

Formulas~V.4! and~V.5! are consequence of the results of Ref. 22, Section 3. Formula~V.6!
follows from ~B11!.

Formula~V.7! is a consequence of~B10!, ~V.5! and ~V.6!. h

Remark V.3: Notice that, in general, the previous arguments (see also Ref. 28) shows t
dimension of the space of eigenfunctions ofm1(Hess V(y))50 is equal to the dimension of th
kernel of

Hess d1~ x̄!1SHess d1~ x̄!S5Hess d1~ x̄!1Hess d2~ x̄!.

Using the notation of Appendix A, let us denote byc(t,0,Hess V(y)) ~resp.:c(t,0,V2)) the
n3n matrix-solution of the Cauchy problemHc50 ~resp.: H0c50) with Cauchy data
c ut52T/250, c ut52T/28 5I .

We have the following.
Proposition V.4: Under the same assumptions of Theorem V.1, we have

detZ~2T/2!

e2ET/2 5
~detM !1/2

2~n21!/2~P j51
n v j !

bAv1

A2V~ x̄!
S e~v21...1vn!T

detc~T/2,0,HessV~y!! D
1/2

~11o~1!! ~V.9!

as T→1`.
Before proving Proposition V.4, let us show how, using this statement, we can end the

of Theorem V.1.
Proof of Theorem V.1:Using ~V.9!, ~IV.2! can be rewritten as

A152A2V~ x̄!
~P j51

n v j !
21/2

2~n21!/2Ap

bAv1

A2V~ x̄!
lim

T→1`

e2v1T/2S eE T

detc~T/2,0HessV~y!! D
1/2

. ~V.10!

Notice that from~A2! and ~A3!, we get
J. Math. Phys., Vol. 38, No. 2, February 1997
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detc~T/2,0,V2!

detc~T/2,0,HessV~y!!
5)

j>1

m j
T~V2!

m j
T~Hess V~y!!

5
22neE TP j51

n v j
21

detc~T/2,Hess V~y!!
~11o~1!! ~V.11!

with E5( j51
n v j , asT→1`.

From ~V.10! and ~V.11! we obtain

A152A2

p
bAv1 lim

T→1`

e2v1T/2

~m1
T~Hess V~y!!!1/2

v1S )
j>2

m j
T~V2!

m j
T~Hess V~y!! D

1/2

~V.12!

and, taking into account~V.7!, ~V.2! follows immediately. h

Proof of Proposition V.4:In order to prove Proposition V.4, we need to compare the beha
of Z(2T/2) with that ofc(T/2,0, HessV(y)) asT→1`. Using the fact thatZ andc satisfy
~for t<0) the same equation, we writec in term of some quantities related toZ and its inverse.
For this reason, we start the proof of the proposition by proving some results on the m
Z(t).

LetQ be the orthonormal matrix such thatQ* Hess V( x̄1)Q5V2. The same arguments use
at the end of Lemma IV.2 show that the behavior ofZ(t) as t→2` is the following:

Z~ t !5@Q1o~1!#V21eVtB ~V.13!

for some constantn3n matrix B5(0
a

B̃

tu
) with aÞ0 and detB̃Þ0. Moreover, since

detZ(t)5e2* t
0Tr Hess d1(y(s))ds.0 for t<0, we can suppose, without loss of generality, th

a.0 and detB̃.0 ~if it is not, changeQ into 2Q). A comparison with ~V.5! gives
a5v1b/A2V( x̄).

Lemma V.5: We have

detZ~ t !5” 0 for any tPR. ~V.14!

Proof: We have seen that~V.14! holds for t<0. Moreover, let us notice that, sinc
SHess V(y(2t))S5Hess V(y(t)), then

W~ t !5:SZ~2t !S ~V.15!

is another matrix solution of

v9~ t !5Hess V~y~ t !!v~ t ! ~V.16!

for anyt P R.
On the other hand, fort<0, any solution of~V.16! can be written

Z~ t !SA1E
0

t

Z21~s!Z21* ~s!KdsD ~V.17!

for some matricesA andK. Hence, fort>0,

SZ~ t !S5W~2t !5Z~2t !SA1E
0

2t

Z21~s!Z21* ~s!KdsD . ~V.18!

SinceI5SZ(0)S5Z(0)A5A, we haveA5I .
J. Math. Phys., Vol. 38, No. 2, February 1997
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On the other hand,SZ8(0)S52Z8(0)2Z21* (0)K, i.e.,

K52S Hess d1~y~0!!S2Hess d1~y~0!!5S 0 0

0 22M D . ~V.19!

Suppose now that there existst̄.0 such that detZ( t̄)50. Taking into account tha
detZ(2 t̄)Þ0, we must have

detS I1E
0

2 t̄
Z21~s!Z21* ~s!KdsD 50, ~V.20!

i.e., *0
2 t̄ Z21(s)Z21* (s)Kdsmust have21 as eigenvalue, i.e.,

S E
2 t̄

0

Z21~s!Z21* ~s!dsD S 0 0

0 2M D v52v ~V.21!

for some vectorv5(v1 ,v8) with nonzero vectorv85(v2 ,...,vn).
This implies that

0>22^v8,Mv8&5E
2 t̄

0 UZ21* ~s!S 0 0

0 2M D vU2ds>0, ~V.22!

which is impossible sinceM is positive definite. h

Thanks to the invertibility ofZ(t) for any t P R, we can writec(T/2,0, HessV(y(t))) @that
we denote simply byc(T/2)] in terms ofZ and its inverse.

Actually, as we have seen before, any solution of~V.16! can be written in the form

Z~ t !SB1E
0

t

Z21~s!Z21* ~s!CdsD ~V.23!

for some matricesB andC.
Sincec(t) verifies ~V.16! with Cauchy datac(2T/2)50 andc8(2T/2)5I , we have

c~ t !5Z~ t !S E
2T/2

t

Z21~s!Z21* ~s!dsDZ* ~2T/2! ~V.24!

and, in particular,

c~T/2!5Z~T/2!S E
2T/2

T/2

Z21~s!Z21* ~s!dsDZ* ~2T/2!. ~V.25!

In the following four lemmas, we express the behavior ofc(T/2) asT→1` in terms of the
behavior ofZ(2T/2) given by~V.13!:

Lemma V.6: We have

Z~2T/2!S E
2T/2

0

Z21~s!Z21* ~s!dsDZ* ~2T/2!5
1

2
QV21Q* ~ I1o~1!! ~V.26!

asT→1`.
Proof: It is sufficient to notice that, fort,0, Z(t) satisfy
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



787V. Sordoni: Instantons and splitting

¬¬¬¬¬¬¬¬¬¬
Z8~ t !5Hess d1~y~ t !!Z~ t !, t,0,
~V.27!

Z~0!5I ,

and that

lim
t→2`

Hess d1~y~ t !!5Hess d1~ x̄1!5QVQ* .

h

The behavior ofZ(t) as t→1`, is given by the following:
Lemma V.7: We have

Z~T/2!5S~Q1o~1!!FV21e2VT/2B1eVT/2S 0 0

0 B̃21M
D GS ~V.28!

asT→1`.
Proof: Equations~V.18! and ~V.19! give

Z~T/2!5SZ~2T/2!S2SZ~2T/2!S E
2T/2

0

Z21~s!Z21* ~s!KdsDS ~V.29!

withK5 (0
0

22M
0 !.

By ~V.13!, we have

SZ~2T/2!S5S~Q1o~1!!V21e2VT/2BS. ~V.30!

On the other hand, from Lemma V.6, we obtain

2SZ~2T/2!S E
2T/2

0

Z21~s!Z21* ~s!KdsDS52
1

2
SQV21Q* ~ I1o~1!!Z21* ~2T/2!KS.

~V.31!

Notice that Z21* (2T/2)5@Q1o(1)#eVT/2VB21* with B21*5(
p B̃21*

1/a 0
) for some

(n21)-dimensional vectorp. Hence

2SZ~2T/2!S E
2T/2

0

Z21~s!Z21* ~s!KdsD S5S@Q1o~1!#eVT/2S 0 0

0 B̃21*M D S.
~V.32!

Equations~V.30!, ~V.29!, and~V.32! give ~V.28!. h

Lemma V.8: We have

Z~T/2!S E
2T/2

0

Z21~s!Z21* ~s!dsD Z~2T/2!*

5
1

2
S~Q1o~1!!FV21e2VT/2B1eVT/2S 0 0

0 B̃21*M D GSB21eVT/2~Q*1o~1!! ~V.33!

asT→1`.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Proof: The statement follows from Lemma V.6 and Lemma V.7 by taking into account
expression ofZ(2T/2) asT→1` given by ~V.13!. h

Lemma V.9: In the same assumptions of Theorem V.1 we have

Z~T/2!S E
0

T/2

Z21~s!Z21* ~s!dsDZ* ~2T/2!

5 1
2S~Q1o~1!!eVT/2B21*SB* e2VT/2V21@Q*1o~1!# ~V.34!

asT→1`.
Proof: Notice that

Z~ t !S E
0

t

Z21~s!Z21* ~s!dsD 5SZ~2t !S E
2t

0

Z21~s!Z21* ~s!dsDS ~V.35!

since both sides satisfy the equationHu50 with the same Cauchy data att50. Hence, by~V.13!
and ~V.26!, we have

Z~T/2!S E
0

T/2

Z21~s!Z21* ~s!dsDZ* ~2T/2!5SZ~2T/2!S E
2T/2

0

Z21~s!Z21* ~s!dsDSZ* ~2T/2!

5 1
2S~Q1o~1!!eVT/2B21*

3SB* e2VT/2V21~Q*1o~1!!. ~V.36!

h

End of the Proof of Theorem V.1:Using~V.25!, Lemma V.7, Lemma V.8, and Lemma V.9 w
obtain

c~T/2!5 1
2S~Q1o~1!!V21e2VT/2BSB21eVT/2~Q*1o~1!!

1 1
2S~Q1o~1!!eVT/2B21*SB* e2VT/2V21~Q*1o~1!!

1 1
2S~Q1o~1!!eVT/2S 0 0

0 B̃21*M D SB21eVT/2~Q*1o~1!!.

~V.37!

Let us compute the determinant ofc(T/2).
If we multiply ~V.37! on the rhs and on the lhs by (

0 e2V8T/2
1 0

) with V85diag(v2 ,..,vn), we
obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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detc~T/2!52e~v21..1vn!T

3detS 12 ~ I1o~1!!V21S e2v1T/2 0

0 e2V8TD BSB21S ev1T/2 0

0 I D ~ I1o~1!!

1
1

2
~ I1o~1!!S ev1T/2 0

0 I D B21*SB* S e2v1T/2 0

0 e2V8TD V21~ I1o~1!!

1
1

2
~ I1o~1!!S 0 0

0 B̃21*MB̃21D ~ I1o~1!!D , ~V.38!

i.e.,

detc~T/2!5exp~~v21...1vn!T!detS S v1
21 0

0 1
2 B̃

21*MB̃21D 1o~1!D
5exp~~v21...1vn!T!v1

21212n~det B̃!22~detM !~11o~1!!. ~V.39!

Hence

det B̃5S exp~~v21...1vn!T!

detc~T/2! D 1/2v1
21/22~12n!/2~detM !1/2~11o~1!!. ~V.40!

On the other hand,

detZ~2T/2!

e2ET/2 5S )
j51

n

v j D 21

a~det B̃!~11o~1!! ~V.41!

and, from~V.40! and ~V.41!, we obtain

detZ~2T/2!

e2ET/2 5a
~P j51

n v j !
21

2~n21!/2v1
1/2 ~detM !1/2S exp~~v21...1vn!T!

detc~T/2! D 1/2~11o~1!!. ~V.42!

This proves~V.9!. h

Remark V.10: It is easy to check that, if we replace assumptions(H2) and (H4) with
assumptions(H2)8 and (H4)8, Theorem V.1 still holds. Actually, in this case, we can take as
matrix S the matrix2I and, by making an orthogonal change of variables, we can assume thG
is given by$x P Rn ; x150%.

Remark V.11: For a formula analogous to formula (III.12) in the n-dimensional case we
to Ref. 20.

Example: Let us consider

P~h!52
h2

2
Dx1W~x!, x5~x1 ,...,xn!PRn, ~V.43!

with
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W~x!5
1

2(k51

n

~xk2xk11!
21 (

k51

n

V~xk!, ~V.44!

where V(t) is a one-dimensional double well potential satisfying (I.2) (see Refs. 17 and 18).@Take
for example V(t)5(t22a2)2.] Moreover we set xn115x1. If q(t) is the instanton of center0 for
V(t) joining6a at time6`, then y(t)5(q(t),q(t),..,q(t)) is the unique instanton of center0 of
W(x) joining the two minima x15(2a,..,2a), x25(a,..,a) of W and moreover y(t) intersect
G5$x P Rn; ( j51

n xj50% transversally only at the origin.
Hence, assumptions(H1), (H2)8, (H3), and (H4)8 hold.
A direct calculation gives

Hess W~y~ t !!5S f ~ t ! 21 ... ... 21

21 f ~ t ! 21 0 ...

... ... ... ... ...

... 0 ... f ~ t ! 21

21 .. ... 21 f ~ t !

D
with f(t)521V9(q(t)).

Moreover there exists an orthogonal matrix Q such that

tQHess W~y~ t !!Q5diag~l1~ t !,...,ln~ t !! ~V.45!

with

l j~ t !54 sin2S p~ j21!

n D1V9~q~ t !!. ~V.46!

Let us prove that P(h) satisfy assumption(H5).
Since H52d2/dt21Hess W(y(t)) is unitary equivalent to the diagonal syste

H̃5diag(2d2/dt21l1(t),...,2d2/dt21ln(t)) and l1(t)5V9(y(t)),l2(t),... , ln(t) ~see
(V.45), (V.46)), then it is easy to check that the its first eigenvalue (which is0) is simple.

This implies (see Remark V.3) that the kernel ofHess d1(0)1SHess d2(0)S is one dimen-
sional and therefore that the restriction of the Hessian of d1(x)1d2(x) to the orthogonal of the
minimal geodesic (which is straight line) is nondegenerate at the point x5̄0.

The previous results (see also Refs. 15 and 20) give the following formula for the splitt
the first two eigenvalue of P(h):

l2~h!2l1~h!5h1/2~A11O ~h!!e2S0 /h

as h→0, with

S05niq8iL2~R!
2

and

A152S S0
2p D 1/2S )

j51

p

)
k51

n

~ j ,k!Þ~1,1!

1v214 sin2S p~k21!

n D D 21/2

3expS 2
1

2 (
k51

n E
0

` s~l!

l1v214 sin2@p~k21!/n#
dl D .
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Here m1,...,mp denotes the eigenvalues of h52d2/dt21V9(q(t))2v2 less than0, m152v2

and s(l) is the phase shift of scattering matrix associated to the pair(h,h0) with
h052d2/dt2.
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APPENDIX A: A THEOREM ON INFINITE PRODUCT OF EIGENVALUES

Proposition A.1: For fixed T.0, let us denote by IT the interval @2T/2,T/2#. If R
{ t→F(t) is a real symmetric matrix-valued smooth function, the Cauchy problem

S 2
d2

dt2
1F~ t ! Dc5lc c~ t;l,F ! ut52T/250 c8~t;l,F!ut52T/25I , ~A1!

has a unique smooth matrix-solutionc(.;l,F) and, for any tP I T , c(t;l,F) is a matrix-valued
entire function ofl.

The spectrum of the Dirichlet realization HT of H5:2d2/dt21F(t) on the interval IT is
given by an infinite sequence of real numbersm j

T(F), j>1, which is bounded from below an
tends to1`.

For anyl P C we have

Udetc~T/2,l,F !

detc~T/2,0,O!
U5Udetc~T/2,l,F !

Tn U5U)
j>1

m j
T~F !2l

m j
T~O!

U ~A2!

(here O stands for the null matrix).
Proof:See, for example, Ref. 29, Ch. 1,2, for the scalar case and Ref. 30 for the matrix ch

Remark A.2: In the particular case where F5V2 is constant with eigenvaluesv j
2, we have

detc~T/2,0,V2!5)
j51

n

v j
21 sinh~v jT!522neET)

j51

n

v j
21~11o~1!! ~A3!

as T→1` whereE5( j51
n v j .

APPENDIX B: DIRICHLET PROBLEM WITH VARIABLE BOUNDARY

Let us consider an3n real symmetric matrix-valued smooth functionR { t→F(t) and let us
suppose that there exist two positive matricesA6 such that

lim
t→6`

F~ t !5A6 . ~B1!

In the following we denote by 0,a1
6<a2

6< . . .<an
6 the eigenvalues ofA6 and by

a5Inf$a1
2 ,a1

1%.
In this section we compare the discrete part of spectrum of the operator

H52
d2

dt2
1F~ t ! ~B2!

on R with the spectrum of its Dirichlet realization onI T5@2T/2,T/2#, asT→1`.
We have the following:
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ing

n

e

r

to

hat, if

792 V. Sordoni: Instantons and splitting

¬¬¬¬¬¬¬¬¬¬
Proposition B.1: LetR { t→F(t) be a real symmetric matrix-valued smooth function verify
(B1). Suppose that H52d2/dt2 1 F(t) has k eigenvaluesm j , j51,...,k, strictly less thana
below its essential spectrum and letm j

T j P N, be the eigenvalues of the Dirichlet realizatio
HT of H in IT . Then, for any1< j<k, there exists

lim
T→1`

m j
T5:m j

` . ~B3!

Moreover,

m j
T5m j1Õ ~e2TAa2m j ! ~B4!

and, in particular,

m j
`5m j . ~B5!

Here f5Õ (e2at) means that, for anyd.0, f5O d(e
2(a2d)t) as t→1`.

Proof: If l i(t), i51,...,n, denote the eigenvalues ofF(t) andc5:Inf
i51,...n

(Inf
tPR

l i(t)),

thenF(t)2cI is non-negative and therefore all them j
T2s are bounded from below byc. More-

over, since for 1< j<k, the mapR1 { T→m j
T P R is nonincreasing, then there exists th

lim
T→1`

m j
T5:m j

` By using an Agmon-type inequality~see Ref. 31!, it is easy to prove the

exponential decay of the first eigenfunctionsgj ,T(t) ~resp.:v j (t), j51,...,k) of HT ~resp.: ofH!
for large values oft<T/2 ~resp.: large values oft). More precisely, we have that, fo
j51,...,k,

S E
utu>T/2

uv j~ t !u2dtD 1/21S E
utu>T/2

uv j8~ t !u
2dtD 1/25Õ ~exp~2~T/2!Aa2m j !! ~B6!

asT→1` and if p5max $ j ;m j
`,a%, then, for 1< j<p,

S E
T/2>utu>T8/2

ugj ,T~ t !u2dtD 1/21S E
T/2>utu>T8/2

ugj ,T8 ~ t !u2dtD 1/25Õ ~exp~2~T8/2!Aa2m j
`!!

~B7!

if T,T8→1`, T>T8. ~Here Õ is uniform with respect toT,T8.!
Using ~B6! and ~B7! and the techniques of Ref. 12, Section 2, we can obtain~B4! and ~B5!.
Let us sketch the proof.
Let us choose«.0 such thatmk14«,a. Using Proposition 2.5 of Ref. 12, it is possible

prove that thenm j
`.mk13« for j>k11 and that$m j

`; jPN%ù(mk1«/2,mk12«)50” . This im-
plies that, if we chooseI «5@c,mk1«#, there existsT«.0 such that, forT>T« ,

Sp~HT!ùI «5$m1
T , . . . .,mp

T%, with p<k,

and

Sp~HT!ù~~ I «1B~0,«!!\I «!50” .

Following the same techniques used in the proof of Proposition 2.4 of Ref. 12, we obtain t
we choose a functionxh,T P C0

`(I T) with xh,T51 for utu<(12h)T/2 and we set
ÊT5span$xh,T gj

T; j<p% andE5Sp (H)ùI « , then
J. Math. Phys., Vol. 38, No. 2, February 1997
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dW ~ ÊT ,E !5dW ~E ,ÊT!5Õ S expS 2
T

2
Aa2mk

`D D
asT→1`. @HeredW (F 1 ,F 2)5Sup

vPF 1 ,ivi51
(Inf

wPF 2
iv2wiL2(R,Rn)).]

This implies thatp5k and ~see Ref. 12, Corollary 2.14!

m j
T5m j1Õ ~exp~2TAa2mk

`!!. ~B8!

In particular,

m j
`5m j .

Taking small intervals centered in eachmk and repeating these arguments, we can improve~B8!
and obtain~B4! h

In order to compare the behavior of the first eigenfunctions ofH andHT we will strength the
assumptions onF.

In the following we suppose thatF(t) converges toA6 as t→6` sufficiently fast, i.e.,

iF~ t !2A6i<C^t&2~11«! ~B9!

for some«.0, ast→6`.
Proposition B.2: LetR { t→F(t) be a real symmetric matrix-valued smooth function verify

(B1) and (B9). Let us take jP $1,...,k% such thatm j is a simple eigenvalue of H and denote
v j and by gj ,T the normalized eigenfunctions associated tom j andm j

T , respectively. We have

d

dT
m j
T52

1

2
ugj ,T8 ~2T/2!u22

1

2
ugj ,T8 ~T/2!u2<0 ~B10!

and

lim
T→1`

ugj ,T8 ~6T/2!u
uv j8~6T/2!u

52 ~B11!

for j51,...,k.
Proof: The first statement follows from formula~1.21! of Ref. 32 that can be easily genera

ized to the case of systems, when the eigenvalue is simple.
Assumption~B9! on F guarantees that there exist two matrix solutionsV2(t) andW2(t)

~resp.:V1(t), W1(t)) of H2m j having the following asymptotic behavior ast→7`:

V2~ t !5exp ~ tAA22m j !~ I1o~1!!, W2~ t !5exp~2tAA22m j !~ I1o~1!!, t→2`,

V1~ t !5exp~2tAA12m j !~ I1o~1!!, W1~ t !5exp ~ tAA12m j !~ I1o~1!!, t→1`.

Hencev j (t)5V2(t)bj
2 as t→2` andv j (t)5V1(t)bj

1 as t→1` for some vectorbj
6 .

Let us now choose a functionb P C`(R;@0,1#), such thatb(t)51 for t>1 andb(t)50 for
t<1/2 and set, fort P I T ,

xj ,T~ t !5v j~ t !2b~ t !V1~T/2!W1~T/2!21W1~ t !bj
12b~2t !V2~2T/2!W2~2T/2!21W2~ t !bj

2.
~B12!

Let us show thatxj ,T(t) is a good candidate to approximate the eigenfunctiongj ,T of HT for T
large. Notice that, ifT>2,
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xj ,T~6T/2!50 ~B13!

and that, from~B7!, we have

uixj ,TiL2~ I T!21u5O ~exp~2~T/2!Aa2m j !! ~B14!

for T→1`. Moreover,xj ,T(t) verifies

Hxj ,T~ t !5m j xj ,T~ t !1Rj ,T~ t ! ~B15!

with

iRj ,TiL2~ I T!5O ~exp~2TAa2m j !!. ~B16!

Let us show now thatxj ,T is close to the first eigenvaluegj ,T in theL2-norm.
Let b j be the gap betweenm j and the rest of the spectrum ofH.
Taking into account~B8! and choosingT sufficiently large, we can conclude there is a gap

order at leastb j /2 betweenm j
T and the rest of the spectrum ofHT . Applying Proposition 2.5 of

Ref. 12 and using~B12!, ~B14!, ~B15!, and~B16!, we obtain

ixj ,T2gj ,TiL2~ I T!5O ~exp~2TAa2m j !!. ~B17!

Standard arguments also give

ixj ,T2gj ,TiH1~ I T!5O ~exp~2TAa2m j !! ~B18!

and, Sobolev immersion theorem, we get

Sup
tPI T

~ uxj ,T~ t !2gj ,T~ t !u1uxj ,T8 ~ t !2g1,T8 ~ t !u!5O ~exp~2TAa2m j !!. ~B19!

In particular

uxj ,T8 ~6T/2!2gj ,T8 ~6T/2!u5O ~exp~2TAa2m j !!. ~B20!

Since@see~B12!#

xj ,T8 ~6T/2!5v j8~6T/2!2V6~6T/2!W6~6T/2!21W68 ~6T/2!bj
652v j8~6T/2!~11o~1!!

~B21!

asT→1`, from ~B20! and ~B21! we obtain

ugj ,T8 ~6T/2!u
uv j8~6T/2!u

52~11o~1!! ~B22!

asT→1` and this ends the proof of Proposition B.2. h
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Topological Casimir energy for a general class
of Clifford–Klein space–times

Floyd L. Williams
Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003

~Received 6 June 1996; accepted for publication 6 September 1996!

Using zeta regularization we compute the vacuum energy for free massless scalar
fields on ultrastatic space–timesR3(G\X), whereX is an arbitrary noncompact
irreducible rank 1 symmetric space andG is a cocompact torsion free subgroup of
isometries ofX. The spacesX include hyperbolic manifolds on which previous
authors have focused. Specifically, using a general trace formula, we extend the
work of Bytsenko, Goncharov, Zerbini~and others!, whereX5SO1(m,1)/SO(m),
to the other classical rank 1 symmetric spacesX5SU(m,1)/U(m), SP(m,1)/
~SP(m)3SP~1!!, and the exceptional spaceX5F4(220)/Spin~9!. We find in general
that the trivial unitary character ofG always induces a negative topological com-
ponent of the energy. ©1997 American Institute of Physics.
@S0022-2488~97!02202-0#

I. INTRODUCTION

Evaluation of the topological Casimir effect for massless scalar fields~or spinor fields! on
various space–times such asXG5R3(G\X) has become a very exciting and important issue
areas of quantum field theory, quantum cosmology, and hadronic physics.1–10Here,G is a discrete
group acting on a manifoldX. Interest abides even in cases where dimXGÞ4. Initial investiga-
tions appear in the fundamental papers,11,12 for X5R,3 S3. Follow-up work in Refs. 13–15 in-
volves the case in whichX is a Lobachevsky hyperbolic space. Also compare Refs. 16–27.

Since these hyperbolic spaces are but special examples of a general noncompact irre
rank 1 symmetric spaceX, results of Refs. 13–15, for example, are naturally extendible to
larger class of spaces provided one has available the proper mathematical machinery and
In the present work we carry out such an extension. In the latter three papers, also compar
18 and 28, the key point is to meromorphically continue Minakshisundaram–Pleijel type
functions29 using the Selberg trace formula and the logarithmic derivativecG of the Selberg zeta
function attached toG\X. The meromorphic continuation of zeta functions of this type, wh
evaluation at the point21/2 provides for the regularized vacuum energy~when dimX is even!,
and of such zeta functions defined in the more general context of a rank 1 symmetric spa
explicitly worked out, in fact, by the author in Ref. 30; also cf. Refs. 31–34. To express our re
directly in terms ofcG , as is done in the physics literature, we need only interchange a ce
summation and integration, which strictly speaking, requires some mathematical justificatio
provide the justification by presenting a bound forcG , possibly of independent interest. W
evaluate the Casimir effect for all topologically inequivalent configurations of fields onXG .

II. ZETA REGULARIZATION

Canonical quantization of a scalar field yields a formal expression

Ev~G,x!5
1

2 ( l j
1/2 ~2.1!

for the Casimir energy, where$l j% j>0
` is the set of eigenvalues~with multiplicity! of the Laplacian

2DG on smooth sections of a vector bundle overG\X induced by a finite-dimensional unitar
0022-2488/97/38(2)/796/13/$10.00
796 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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representationx of G; cf. Refs. 3, 11, 12, and 35. Letx also denote the character ofx. Because of
the minus sign attached toDG , the eigenvalues are labeled to satisfy 05l0,l1,l2,•••;
lim j→` l j5`. We work with a general characterx of G. Now the series in~2.1! has no chance o
converging. To provide a meaning forEv(G,x), we first interpret the series as12 the value of the
zeta function

DG~s;x!5(
j51

`
nj~x!

l j
s ~2.2!

at s52 1
2, wherenj (x) is the multiplicity of l j . The series~2.2!, however, generally converge

only for Res.d/25 1
2 dimX, and is holomorphic ins in this 1

2 plane. It is clear therefore that if
second, the functionDG(s;x) admits a meromorphic continuation at least to Res.2~1/21e! for
somee.0, and if this continuation@which we also denote byDG(s;x)# is holomorphic ats5
21/2, then we may regardEv(G,x) as well defined by assigning it the value

1
2DG(21/2;x). This

method of definingEv(G,x) is called zeta regularization.18,26We will also work with zeta func-
tions having a parameterb.0

DG~s;b,x!5(
j50

`
nj~x!

~b1l j !
s . ~2.3!

III. CLIFFORD–KLEIN SPACE–TIMES MODELED ON A SYMMETRIC SPACE

In this section we introduce the specific space–times on which we investigate the C
effect. They are a direct, natural generalization of the hyperbolic Clifford–Klein space–t
considered in Ref. 15. Thus in Ref. 15,X5Xm5SO1(m,1)/SO(m) with dimensiond5m, and
G,Gm5SO1(m,1) is a torsion-free discrete subgroup such thatG\Gm is compact. The specia
casesm52,3 are studied, for example, in Refs. 13, 14, and 28. Note that form52,X2 is the upper
1/2 plane andG\X2 is the typical compact Riemann surface of genus>2.Gm is an example of a
noncompact connected rank 1 simple Lie group with finite center, andKm5SO(m) is a maximal
compact subgroup ofGm . The corresponding hyperbolic Lobachevsky spaceXm5Gm/Km is an
example of a noncompact connected irreducible rank 1 symmetric space; see Ref. 36.

In general, letG be any noncompact connected rank 1 simple Lie group with finite cente
K,G be a maximal compact subgroup, and letG,G be a torsion-free discrete subgroup such t
G\G is compact. ThusX5G/K is the typical noncompact connected irreducible rank 1 symme
space. By the Cartan classification~up to local isomorphism!,36 there are only four possibilities fo
G. These are listed in Table I, with other information for later use. Also see the Appendix.

The space–times we shall work with are thus of Clifford–Klein typeXG5R3(G\X), where
X5G/K with (G,K) taken from Table I. AgainG,G is a cocompact torsion-free discrete su
group.

TABLE I. Rank 1 simple groups.

G K d5dimX r0 CG

SO1(m,1),m>2 SO(m) m (m21)/2 (22m24G(m/2)2)21

SU(m,1),m>2 U(m) 2m m (22m21G(m)2)21

SP(m,1),m>2 SP(m)3SP~1! 4m 2m11 (24m11G(2m)2)21

F4(220) Spin~9! 16 11 ~221G~8!2!21
J. Math. Phys., Vol. 38, No. 2, February 1997
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IV. THE LOGARITHMIC DERIVATIVE cG

To the data (G,K,G) and a finite-dimensional unitary representationx of G, there is attached
a Selberg zeta functionZG(s;x);

37 also see Refs. 32, 34, 38–44. As indicated in Sec. I, it is
logarithmic derivativecG(s;x) of ZG(s;x) which is the important mathematical object in terms
which the vacuum energy is neatly expressed. We shall give the definition ofcG(s;x) in the
general context in which we are working. The additional notation introduced to definecG(s;x)
will be needed in fact for other purposes.

Let G5KAN be an Iwasawa decomposition ofG, and leta0 , n0 denote the Lie algebras o
A,N; see the Appendix for this data. The assumption that the rank ofG is 1 simply means tha
dim a051, saya05RH0 for a suitable basis vectorH0 . We normalize the choice ofH0 by
b(H0)51, whereb:a0→R is the positive root which definesn0 . That is, for the Lie-algebrag0
of G, n05gb %g2b for

gb5$ZPg0u@H,Z#5b~H !Z for every HPa0% ~4.1!

with g2b similarly defined. The spacesgb , g2b ~with possiblyg2b5$0%! are given in the Appen-
dix. H0 , b are given as follows for the classical cases in Table I. LetF5R, C, or H ~5the
quaternions! for G5SO1(m,1), SU(m,1), or SP(m,1),m>2, respectively. Then

H05F 0 0 ••• 0 e

0

A

0

e t 0

G , ~4.2!

where

e5F 10A
0
GPFm.

b:a0→R is given byb(rH 0)5r for rPR. One may regard a quaternion as a 232 matrix

q5F Z W

2W̄ Z̄
G

with Z, WPC.
GivengPG, gÞ1, one can findtg.0 andmgPK satisfyingmga5amg for everyaPA such

thatg is G conjugate tomg exptgH0 ; i.e., for somexPG, xgx215mg exptgH0 . By Ref. 45 in
fact we can computetg as follows: For Ad denoting as usual the adjoint representation ofG on its
complexified Lie algebrag5g0

c

etg5max$ucuuc5an eigenvalue of Ad~g!% ~4.3!

in caseG5SO1(m,1), with ucu replaced byucu1/2 in the other three cases of Table I.
We obtain a functionC(g) defined onG2$1% by

1

C~g!
5er0tgudetn0~Ad~mg exp tgH0!

2121!u, ~4.4!
J. Math. Phys., Vol. 38, No. 2, February 1997
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wherer0 is given in Table I.
An elementdPG2$1% is called primitive if it cannot be expressed in the formg1

j for someg1
in G and some positive whole numberj.1. One knows that everygPG2$1% has a unique
representationg5d j (g), wheredPG2$1% is a primitive element andj (g)>1 is a whole number.46

Thus we obtain a second functionj (g) on G2$1%. Finally, let CG,G be a complete set o
representatives inG of its conjugacy classes. That is, anygPG is conjugate to some elementg1 in
CG ~i.e., g2gg2

215g1 for someg2 in G! and any pair of elements inCG are nonconjugate. The
functioncG is defined by Gangolli in Ref. 37

cG~s;x!5 (
gPCG2$1%

x~g!tg j ~g!21C~g!e2~s2r0!tg ~4.5!

for Res.2r0. A constantk appears in the definition ofcG in Ref. 37, and the notation there differ
slightly from ours. But Fried has shown in Ref. 39 that we may assume thatk51. We are denoting
by x the character ofx which should cause no confusion. Thus in~4.5!, x~g! is a complex number
defined as trace of the operatorx~g!, gPG. cG is a holomorphic function in the

1
2 plane Res.2r0

and admits a meromorphic continuation to the full complex plane. Also Gangolli and others
shown that there is a meromorphic functionZG(s;x) on C such that ZG8 (s;x)/ZG(s;x)
5 cG(s;x). ZG(s;x) suitable normalized is the Selberg zeta function attached to (G,K,G,x). Our
attention, however, shall be confined tocG .

We shall also need theK-Bessel functionKn(s), nPC, defined by

Kn~s!5
1

2 E
0

`

e2s/2~ t11/t !tn21 dt ~4.6!

and the entire functionsKn(s;d,a), Ln(s;d,a) defined ford, a.0 by

Kn~s;d,a!5E
R

r 2n sech2 ar

~d1r 2!s
dr,

~4.7!

Ln~s;d,a!5E
R

r 2n11~cschar !sechar

~d1r 2!s
dr.

V. A TRACE FORMULA

We are now in position to quote results obtained in Refs. 30 and 33, whose applicatio
lead directly to the computation of regularized Casimir energyEv for the space–times
XG5R3(G\X), X5G/K, of Sec. III. The basic tool is a trace formula for the series~2.2! and
~2.3!, which provides for their meromorphic continuation ins to the full complex plane. As
pointed out in the introduction,EV is then obtained by evaluation at the points521/2. First we
consider the series~2.3!, whereb.0. Then we consider the slightly more difficult limiting cas
b50 represented by the series~2.2!. ForG5SO1(m,1) we distinguish the case of evenm52n
from the case of oddm52n11, n>1. As we see from Table I, the manifoldX5G/K is always
even-dimensional, apart from the caseG5SO1(2n11,1). Again letd5dimX.

The trace formula will involve Harish–Chandra’sC function which controls the spherica
harmonic analysis onX, asuC(r )u22 is the spherical Plancherel density. We shall not need de
of such matters, for which the reader may consult Refs. 34, 36, 47, but only thatuC(r )u22 is given
as follows ~by the normalization of Haar measure onG as in Refs. 30 and 33 which we sha
employ!
J. Math. Phys., Vol. 38, No. 2, February 1997
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uC~r !u225

{
CGprP~r !tanhpr for G5SO1~2n,1!

CGprP~r !F tanhp

2
r

or

coth
p

2
r
G for G5SU~m,1!

with the cotangent
choice for m even

CGprP~r !tanh
p

2
r for G5SP~m,1! or F4~220!

CGpP~r ! for G5SO1~2n11,1!

}
, ~5.1!

where CG is given in Table I, and whereP(r ) is an even polynomial of degreed22 for
GÞSO1(2n11,1), and of degreed2152n for G5SO1(2n11,1).P(r ) is given in Table II.

Haar measure onG induces aG-invariant measuredx on G\G and we write vol(G\G)

5
def

*G\G1 dx, as usual. Note that theV(F) in Ref. 15 corresponds to our notation vol(G\G), though
these differ by a positive multiple corresponding to a difference in normalization of measur

Theorem 5.2„Trace Formula…: Let (G,K,G) be as in Sec. III:G is one of the four groups
of Table I. Letx be a finite-dimensional unitary representation ofG and letx also denote the
character ofx. Fix b.0. Then the seriesDG(s;b,x) in ~2.3! converges absolutely for Res.d/2,
is holomorphic ins in this domain, and for Res.d/2

DG~s;b,x!5
x~1!vol~G\G!

4p
I ~s;b!1

1

G~s!
TG~s;b,x!, ~5.3!

where

I ~s;b!5E
R

uC~r !u22dr

~b1r0
21r 2!s

~5.4!

is holomorphic ins in Res.d/2, and extends meromorphically to the full complex plane;

TABLE II. Plancherel polynomials.

G P(r )

SO1(2n,1), n>1

)
j52

n Fr21Sn2j1
1

2D
2G5)

j50

n22 Fr21 ~2j11!2

4 G
SO1(2n11,1),n>1

)
j51

n

@r21~n2j!2#5)
j50

n21

@r21j2#

SU(m,1),m>2

)
j51

m21 Fr24 1
~m22j!2

4 G
SP(m,1),m>2 Fr211

4 G)
j53

m11 Fr24 1Sm2j1
3

2D
2GFr24 1Sm2j1

5

2D
2G

F4(220) Fr211

4 G2Fr24 1S32D
2G2Fr24 1S52D

2GFr24 1S72D
2GFr24 1S92D

2G
J. Math. Phys., Vol. 38, No. 2, February 1997
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TG~s;b,x!5
p21/2

@2Ab1r0
2#s21/2 (

gPCG2$ l %
x~g! j ~g!21C~g!tg

s11/2K2s11/2~ tgAb1r0
2! ~5.5!

whose summands are discussed in Sec. IV, is an entire function ofs. Apart from the case
G5SO1(m,1) with m odd, the meromorphic extension ofI (s;b) is holomorphic except for pos
sibly a simple pole ats51,2,..., ord/2. uC(r )u22 is given by~5.1! and Tables I and II andr0 is
given by Table I.

By Theorem 5.2 we see that apart from the caseG5SO1(m,1) withm52n11 odd in Table
I the regularized vacuum energyEv(b) with positive parameterb is always finite and is given by

Ev~b!5
1

2 Fx~1!vol~G\G!

4p
I S 2

1

2
;bD1

1

G~21/2!
TGS 2

1

2
;b,x D G ~5.6!

which we shall make more explicit later; cf.~2.1!.

1

2G~21/2!
TG~2 1

2;b,x!

is called the topological component ofEV(b). As noted in Ref. 15 forG5SO1(2n11,1), I (s;b)
indeed has a pole ats521/2 ~as we shall also note later! and thusEv cannot be obtained by th
method available for even-dimensionalX. One must use instead formula~8! of Ref. 15. In Ref. 15
there is a minor error on page 1368. Namely, in the product

)
j50

M21 F r 21 ~2 j11!2

4 G
of Eq. ~20! there, theM21 should be replaced byM22 @5n22 in our notation of Table II for
G5SO1(2n,1)# and thus the summation fromj50 toM21 in Eq.~22! there should be fromj50
to M22. We prove Theorem 5.2 in Ref. 33 by taking Mellin transform of the Selberg t
formula and justifying the application of Fubini’s theorem. See Eqs. 4.6,~4.7!, and ~4.21! in
particular in Ref. 33; also see Ref. 30.

Using ~5.1! one can obtain a more explicit form forI (s;b) in ~5.4! by writing P(r ) in Table
II as

P~r !5 (
j50

d/221

a2 j r
2 j for GÞSO1~2n11,1!,

~5.7!

P~r !5(
j50

n

a2 j r
2 j for G5SO1~2n11,1!,

for suitable coefficientsa2 j . One can then proceed as in Refs. 30 and 33~also see Ref. 31 for the
caseG5SO1~2,1!>SL(2,R)!. By Theorem 4.14 of Ref. 30

E
R

r 2 j11 tanhar

~d1r 2!s
dr5

a j !

2 (
l50

j
K j2 l~s2 l21;d,a!

~ j2 l !! ~s21!~s22!•••~s2~ l11!!
~5.8!

for Res. j11, j>0 @which is the case forj in ~5.7! for Res.d/2#, whereKm(s;d,a) is the entire
function given in~4.7! for d,a.0. Using cothar5tanhar1~cschar!sechar one has
J. Math. Phys., Vol. 38, No. 2, February 1997
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E
R

r 2 j11 cothar

~d1r 2!s
dr5

a j !

2 (
l50

j
K j2 l~s2 l21;d,a!

~ j2 l !! ~s21!~s22!•••~s2~ l11!!
1L j~s;d,a!, ~5.9!

whereL j (s;d,a) is the entire function of~4.7!. Thus for Res.d/2 and forGÞSO1(m,1), SU(p,1)
with m odd andp even

I ~s;b!5
a~G!

2
CGp (

j50

d/221

a2 j j !(
l50

j K j2 l~s2 l21;b1r0
2,a~G!!

~ j2 l !! ~s21!~s22!•••~s2~ l11!!
, ~5.10!

where

a~G!5H p for G5SO1~2n,1!

p

2
for G5SU~p,1!with p odd or G5SP~m,1!,F4~220!

J . ~5.11!

ForG5SU(p,1) with p even and Res.d/25p

I ~s;b!5CGp (
j50

p21

a2 jF p

4
j !(
l50

j K j2 l S s2 l21;b1r0
2,

p

2 D
~ j2 l !! ~s21!~s22!•••~s2~ l11!!

1L j S s;b1r0
2,

p

2 D G ,
~5.12!

wherer0
25p2 by Table I. ForG5SO1(2n11,1) and Res.(d/2)5(2n11)/(2),

I ~s;b!52CGp(
j50

n

a2 jE
0

` r 2 j

~b1r0
21r 2!s

dr,

5
CGp

G~s! (
j50

n

~b1r0
2! j1~1/2!2sG~ j1 1

2!G~s2 j2 1
2!a2 j , ~5.13!

wherer0
25n2 by Table I.

Formulas ~5.10!, ~5.11!, ~5.12!, and ~5.13! provide for the meromorphic continuation o
I (s;b) to the full complex plane, as asserted in Theorem 5.2. We see also that for the sol
G5SO1(m,1) withm odd I (s;b) has a pole ats521/2, as noted earlier. One can also obtain
meromorphic continuation ofI (s;b) by writing, for example, tanhar5122(11e2ar)21, in line
with Refs. 18 and 15, and using

E
0

` r 2 j11

~d1r 2!s
dr5

d j112s

2

j !

G~s!
G~s2 j21! ~5.14!

for Res.j11, to conclude that

I ~s;b!52CGp (
j50

d/221

a2 jF ~b1r0
2! j112sj !

2~s21!~s22!•••~s2~ j11!!
22E

0

` r 2 j11dr

~b1r0
21r 2!s~11e2a~G!r !G ,

~5.15!

say in the casesG5SO1(2n,1), SU(2n11,1), SP(m,1), F4(220), for Res.d/2. But then one has
to provide an argument that the integral
J. Math. Phys., Vol. 38, No. 2, February 1997
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E
0

` r 2 j11dr

~d1r 2!s~11e2ar!

admits a meromorphic continuation ins.
Next we express the entire functionTG(s;b,x) in ~5.5! in terms of the logarithmic derivative

cG(s;x) of Sec. IV. By page 959 of Ref. 48, formula 8

K ~1/2!2s~xa!5
Ap

G~12s! S 2ax D s2~1/2!E
0

`

e2~ t1a!x~2at1t2!2s dt ~5.16!

for Res,1, x,a.0. Choosea 5 Ab1r0
2, x5tg for gPCG2$1%, and interchange the summatio

in ~5.5! with the integration in~5.16! ~an interchange which we justify later!

TG~s;b,x!5
1

G~12s!
E
0

`

(
gPCG2$1%

x~g! j ~g!21C~g!tge
2~ t1a!tg~2at1t2!2s dt,

5
1

G~12s!
E
0

`

CG~r01t1a;x!~2at1t2!2s dt, ~5.17!

for Res,1,a5 Ab1r0
2, by~4.5! asr0 1 t 1 Ab1r0

2 . 2r0 for b.0, t>0.
Validation of the interchange of summation and integration will be based on the follo

estimate, wheree0.0 is chosen so thattg>e0 for everygPCG2$1% ~which is possible by Refs
46 and 49!.

Theorem 5.18: There are positive constantsM1 , M2 ~which depend onG,x! such that
uC(s;x)u <M1e

2e0 Res1M2e
2e0 Res/@12 e2(Res22r0)# forRes.2r0.

One can prove Theorem 5.18 by adopting the arguments of the proof of the Scholium i
30, using thatux~g!u<x~1! for all gPG ~sincex is unitary! and the fact thatC(g) < Ce2tgr0 for all
gPCG2$1% for a suitable constantC, as one can show. On a domain Res>2r01e for somee.0

onehas@12 e(Res22r0)#21< @12 e2e#21. Hence forM e 5
( i )
M11 M2@12 e2e#21, onehas

Corollary 5.19: Given e.0 there is a constantM e.0 @see ~i!# such that uCG(s;x)u
< M ee

2e0 Reson Res>2r01e.
Now givenb.0 fixed choosee 5 e(b) 5 Ar0

21b 2 r0 . 0. Then fort>0, t 1 r0 1 Ab1r0
2

5 t 1 2r0 1 e > 2r0 1 e. That is, Corollary 5.19 provides a constantMb.0 such that fora
5 Ar0

21b, uCG(t 1 r0 1 a;x)u < Mbe
2e0(t1r01a) 5 Mbe

2e0(r01a)e2e0t for t>0. ForCb

5Mbe
2e0(r01a),s5Res,uCG(t1 r01 a;x)(2at1 t2)2su <Cbe

2e0t(2at1 t2)2s for t>0,where

E
0

`

e2e0t~2at1t2!2s dt,` ~5.20!

for any e0 ,a.0 for s,1, which shows that*0
`CG(t1r01a;x)(2at1t2)2s dt converges abso

lutely for Res,1, a 5 Ab1r0
2, b.0. We also see that

E
0

`

(
gPCG2$1%

ux~g! j ~g!21C~g!tge
2~ t1a!tg~2at1t2!2sudt

<x~1!E
0

`

(
gPCG2$1%

j ~g!21C~g!tge
2~ t1a!tg~2at1t2!2s dt

5x~1!E
0

`

CG~r01t1a;1!~2at1t2!2s dt,` ~5.21!
J. Math. Phys., Vol. 38, No. 2, February 1997
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for s,1. Hence we may apply Fubini’s theorem in case Res,1, which therefore justifies the
earlier interchange of summation and integration. AsG(s)G(12s)5~p!/~sinps!, we arrive at the
following main theorem; see~5.17!.

Theorem 5.22:LetCG(s;x) be the logarithmic derivative of Selberg’s zeta function; see S
IV. Then in the trace formula~see Theorem 5.2! the entire function

TG~s;b,x!

G~s!

is given by

TG~s;b,x!

G~s!
5
sin ps

p E
0

`

CG~r01t1a~b!;x!~2a~b!t1t2!2sdt ~5.23!

on the domain Res,1 for a(b) 5 Ab1r0
2, b.0, where the integral converges absolutely on t

domain. The meromorphic continuation of the integralI (s;b) in ~5.4! to the full complex plane is
given by Eqs. 5.10,~5.11!, ~5.12!, and~5.13!.

By Eq. ~5.6! and Theorem 5.22 the regularized Casimir energyEv(b) ~apart from the case
G5SO1(m,1) withm odd! is given as follows:

Ev~b!5
1

2

x~1!vol~G\G!

4p
I S 2

1

2
;bD 2

1

2p
E
0

`

CG~r01t1Ab1r0
2;x!~2Ab1r0

2t1t2!1/2 dt

~5.24!

for the positive parameterb, whereI (21/2;b) is given by takings521/2 in the right-hand side
of Eq. ~5.10! or Eq. ~5.11!. In particular for the trivial representationx51 of G, the topological
component of the energy@the second term in~5.24!# is always negative.

VI. THE LIMITING CASE b50

With some care we can extend the discussion of Sec. V to cover the caseb50. Note first that
I (s;b) ~for Res.d/2! andTG(s;b,x) in ~5.4! and~5.5! are well defined also forb50. It is shown
in Sec. 5 of Ref. 33 that the seriesDG(s;x) in ~2.2! converges absolutely for Res.d/2 in which
case

DG~s;x!5
x~1!vol~G\G!

4p
I ~s;0!1

TG~s;x!

G~s!
~6.1!

for a suitable functionTG(s;x) for which

TG~s;x!

G~s!

is entire; cf.~5.3!.
Moreover, on the domain Res,0

TG~s;x!5TG~s;0,x!. ~6.2!

Since~5.8! and~5.9! hold for anyd.0, the formulas~5.10!, ~5.12!, and~5.13! hold for b50, and
thus they serve to computeI (s;0). Corollary 5.19 was the sufficient tool which we used to rewr
the second term in~5.3!. To rewrite the second term in~6.1!, however, we need the stronge
estimate given in Theorem 5.18. We begin with
J. Math. Phys., Vol. 38, No. 2, February 1997
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Proposition 6.3:The integral*0
`CG(t12r0 ;x)(2r0t1t2)2s dt converges absolutely fo

Res,0.
Note that this integral is obtained from the one in~5.23! by takingb50 there. Proposition 6.3

follows from Theorem 5.18: Fort.0, s5Res

uCG~ t12r0 ;x!~2r0t1t2!2su<M1e
2e02r0e2e0t~2r0t1t2!2s1M2e

2e02r0e2e0t~2r0t1t2!2s

3~12e2t!21, ~6.4!

where

E
0

1

e2e0t~2r0t1t2!2sdt, E
1

`

e2e0t~2r0t1t2!2sdt, E
1

`

e2e0t~2r0t1t2!2s~12e2t!21 dt

converge fors,1 ase0, 2r0.0. For the convergence of*0
1e2e0t(2r0t 1 t2)2s(1 2 e2t)21 dt,

however, one needss,0.
Next we consider the application of Fubini’s theorem so that we might arrive at the versi

~5.17! for b50. For e.0, s5Res

E
e

1

(
gPCG2$1%

ux~g! j ~g!21C~g!tge
2~ t1r0!tg~2r0t1t2!2sudt

<x~1!E
e

1

CG~r01t1r0 ;1!~2r0t1t2!2s dt ~6.5!

as in ~5.21!, where

lim
e→01

E
e

1

CG~r01t1r0 ;1!~2r0t1t2!2s dt ~6.6!

exists fors,0 by Proposition 6.3. Similarly,

E
1

`

(
gPCG2$1%

ux~g! j ~g!21C~g!tge
2~ t1r0!tg~2r0t1t2!2sudt ~6.7!

exists fors,0 ~in fact for s,1 by the proof of Proposition 6.3!. It follows that we may apply
Fubini’s theorem when Res,0

E
0

`

CG~ t12r0 ;x!~2r0t1t2!2s dt

5 lim
e→01

E
e

1

(
gPCG2$1%

x~g! j ~g!21C~g!tge
2~ t1r0!tg~2r0t1t2!2s dt

1E
1

`

(
gPCG2$1%

x~g! j ~g!21C~g!tge
2~ t1r0!tg~2r0t1t2!2s dt

5 (
gPCG2$1%

x~g! j ~g!21C~g!tgE
0

`

e2~ t1r0!tg~2r0t1t2!2s dt

5
G~12s!

Ap~2r0!
s21/2 (

gPCG2$1%
x~g! j ~g!21C~g!tg

s1~1/2!K ~1/2!2s~ tgr0!

5G~12s!TG~s;0,x!5G~12s!TG~s;x!
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by ~5.5!, ~5.16!, and~6.2!. That is@cf. ~5.23!#
Theorem 6.9:The second term in~6.1! is given by

TG~s;x!

G~s!
5
sin ps

p E
0

`

CG~ t12r0 ;x!~2r0t1t2!2s dt ~6.10!

on the domain Res,0, a domain on which the integral converges absolutely.
Apart from the caseG5SO1(m,1) withm odd~again see Ref. 15 for a discussion of this ca!

the Casimir energyEV of ~2.1! is given by

Ev5
1

2

x~1!vol~G\G!

4p
I S 2

1

2
;0D2

1

2p E
0

`

CG~ t12r0 ;x!~2r0t1t2!1/2 dt ~6.11!

by ~6.1! and Theorem 6.9, whereI (21/2;0) is obtained by takings521/2 andb50 in the
right-hand side of Eq.~5.10! or ~5.11!. In particular forx51, the topological component ofEv @the
second term in~6.11!# is always negative.

APPENDIX: LIE GROUP STRUCTURE

For the reader’s convenience some structure data for the groupsG of Table I is recalled. For
I n5the identity matrix of ordern let

I pq5F2I p 0

0 I q
G , Jn5F 0 I n

2I n 0 G , Kpq5F I pq 0

0 I pq
G .

Then SO(p,q)5
def

$gPGL(p1q,R)udetg51
gtIpqg5Ipq%,

SU~p,q!5
defHgPGL~p1q,C!U detg51

gtI pqḡ5I pqJ ,

SP~p,q!5
defHgPGL~2~p1q!,C!UgtKpqḡ5Kpq

gtJp1qg5Jp1qJ .
The groups SU(p,q), SP(p,q) are connected. SO1(p,q) is defined as the connected component
the identity in SO(p,q). The groupF4(220) is a real form of the complex Lie group with excep
tional Lie algebraF4 with Dynkin diagrams—s5s—s. There are many such real form
F4(220) is the unique one for which the integerd defined as dimG/K2dimK has the value220.
Note that indeed from Table I,d5162dim Spin~9!5162938/25220. Again letF5R, C, or H
for G5SO1(m,1), SU(m,1), or SP(m,1), respectively. Then in the notation of Sec. IV

A5F cosht 0 sinh t

0 I 0

sinh t 0 cosht
G , a05RH0 for H0 in ~4.2!

n05gb %g2b for

gb5F 0 X̄t 0

2X 0 X

0 X̄t 0
G , g2b5F Y 0 2Y

0 0 0

Y 0 2Y
G ,
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N5F 11Y2 1
2uXu2 X̄t 2Y1 1

2uXu2

2X I X

Y2 1
2uXu2 X̄t 12Y1 1

2uXu2
G ,

where for

q5F Z W

2W̄ Z̄
GPH, q̄5F Z̄ 2W

W̄ Z
G ,

and whereX is a column vector inFm21, YPF with Ȳ52Y if F5C or H, g2b50 if F5R. A
through discussion of the general structure theory of semisimple Lie groupsG and symmetric
spacesG/K is given in Ref. 36. Ifp andq denote the dimension ofgb , g2b ~overR! we see that
p5m21, 2(m21), 4(m21), q50,1,3~by the conditionȲ52Y! for F5R, C, H, respectively.
The numberr0 in Table I is defined asr05

1
2(p12q). We see therefore thatr05

1
2(m21), m,

2m11 for F5R, C, H, respectively. ForF4(220) one knows thatp58, q57; hencer0511.
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Exact solutions of linearized Schwinger–Dyson equation
of fermion self-energy
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The Schwinger–Dyson equation of fermion self-energy in the linearization ap-
proximation is solved exactly in a theory with gauge and effective four-fermion
interactions. Different expressions for the independent solutions, which, respec-
tively, submit to irregular and regular ultraviolet boundary condition are derived
and expounded. ©1997 American Institute of Physics.@S0022-2488~97!03501-9#

I. INTRODUCTION

Owing to nonlinearity of the Schwinger–Dyson~SD! equation1–7 of the fermion self-energy,
together with running of the gauge coupling constant being included in, it is scarcely possi
obtain an analytic solution of the equation. As a result, one usually has to solve it by num
method.8–10 However, one could still get some analytic solutions of the SD equation if s
linearization approximation to the equation is made. The resulting analytic solutions will be
useful for discussions of chiral symmetry breaking. In this paper, we will derive and expoun
general exact analytic solutions of the SD equation of fermion self-energy in the lineariz
approximation.

Consider a theory with vectorial gauge and chirally invariant effective four-fermion inte
tions. When running of the gauge coupling constant is taken into account, the SD equation
fermion self-energyS~p2! in the Landau gauge, after Wick rotation and angular integration,
have the following form:11

S~p2!5m0~L!1
3C2~R!

16p2 E
0

L2

dk2
k2S~k2!

k21S2~k2!

ḡ2„max~p2,k2!…

max~p2,k2!
1
hd~R!

2p2 E
0

L2

dk2
k2S~k2!

k21S2~k2!
,

~1.1!

m0 is the bare fermion mass,L is the ultraviolet~UV! momentum cutoff,C2(R) is the eigenvalue
of the squared Casimir operator of the ‘‘color’’ gauge group in the representationR of the fermion
field c with the dimensiond(R), h is the strength of the chirally invariant four-fermion interactio
[( c̄c)22(c̄g5c)

2], andḡ2 „max(p2,k2)… is the conventional approximation of the running gau
coupling constantḡ2„(p2k)2… defined by

ḡ2„max~p2,k2!…5 H ḡ2~p2!,ḡ2~k2!,
if p2.k2,
if k2.p2. ~1.2!

Set

x[p2, y[k2. ~1.3!

Equation~1.1! will be reduced to that

a!Electronic mail: zhoubr@sun.ihep.ac.cn
b!Mailing address.
0022-2488/97/38(2)/809/12/$10.00
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S~x!5m01
3C2~R!

16p2b0
F 1

xt~x!
E
0

x

dy
yS~y!

y1S2~y!
1E

x

L2

dy
S~y!

t~y!„y1S2~y!…G
1
hd~R!

2p2 E
0

L2

dy
yS~y!

y1S2~y!
. ~1.4!

In Eq. ~1.4! we have used a continuous Ansatz6 of the running gauge coupling constant,

ḡ2~q2!51/b0t~q2!, ~1.5!

where

t~q2!5 lnS q2m2 1j D ~1.6!

and

b05F11C2~G!2(
f
4T~Rf !Nf G Y 48p2, ~1.7!

with the standard denotations in gauge theory. In the flavor sum(f in Eq. ~1.7!, besides the
fermions corresponding toc, all the lighter colored fermions will also be included. The sc
parameterm is optional and the parameterj is required to be greater than 1 so as to avoid
infrared ~IR! singularity of ḡ2(q2).

The integral equation~1.4! is equivalent to the following differential equation:

v~x!S9~x!1@v8~x!11#S8~x!52
b

t~x!

S~x!

@x1S2~x!#
, ~1.8!

together with the IR boundary condition

S8~0!52
b

2~ ln j!S~0!
, ~1.9!

and the UV boundary condition

H F11
a

b
xt~x!Gv~x!S8~x!1S~x!J

x5L2

5m0~L!, ~1.10!

where

b5
3C2~R!

16p2b0
, a5

hd~R!

2p2 ~1.11!

and

v~x!5F1x1
1

~x1jm2!t~x!G
21

. ~1.12!

We emphasize the following points:~1! The nonlinearity of Eq.~1.8! is embodied in the term on
the right-hand side of the equation.~2! The IR boundary condition~1.9! comes from thex→0 limit
of the equation
J. Math. Phys., Vol. 38, No. 2, February 1997
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S8~x!5b
d

dx S 1

xt~x! D E0xdy yS~y!

y1S2~y!
, ~1.13!

which is a result of Eq.~1.4!. Since Eq.~1.13! is valid for anyx, we can define the IR boundar
condition by Eq.~1.13! at some nonzero value ofx, instead of atx50, if (8(x) is calculable at that
value ofx. This fact will have a close bearing on the actual solution of the following linearized
equation.~3! The term in Eq.~1.4! relevant to the four-fermion interactions contains nox and
hence appears only in the UV boundary condition~1.10! rather than in Eq.~1.8! itself.

In Sec. II we will state the linearization approximation for Eq.~1.8! and a necessary change
the IR boundary condition of the solution. In Sec. III the derivation of the general ana
solutions of the linearized SD equation will be given in detail and Sec. IV will be devoted to s
discussions on forms and features of the independent solutions.

II. THE LINEARIZATION APPROXIMATION

The nonlinear SD equation~1.4! or ~1.8! has no analytic solution. Some analytic solutio
could be obtained merely in the linearization approximation of the equation. To see how to
this approximation, we first consider the IR and UV asymptotic solutions of Eq.~1.8!.

In the region wherex is small, Eq.~1.8! becomes

xS9~x!12S8~x!1
b

~ ln j!

S~x!

@x1S2~x!#
50. ~2.1!

Suppose((x) has the form

S~x!5xs~a01a1x1a2x
21••• !, when x is small, ~2.2!

and substituting Eq.~2.2! into the IR boundary condition~1.9!, i.e.

lim
x→0

S8~x!S~x!52
b

2 ln j
, ~2.3!

we obtain that

lim
x→0

$a0
2sx2s211~2s11!a0a1x

2s1@~s11!a1
212~s11!a0a2#x

2s111•••%52
b

2 ln j
. ~2.4!

The only possibility to satisfy Eq.~2.4! with a reala0 is to sets50. With this result, substituting
Eq. ~2.2! into Eq. ~2.1! we will have

2a116a2x112a3x
21•••1

b

~ ln j!a0
2 Fa02S 1a0 1a1D x1S 1a03 13

a1
a0
2 1

a1
2

a0
2a2D x21•••G50.

~2.5!

Thus we may expressa1 ,a2 ,a3 ,... by means ofa0[S~0! and write down the solution of Eq.~2.1!
in the smallx region, which is consistent with the IR boundary condition~1.9! as follows:

S~x!5S~0!H 12
b

2~ ln j!S2~0!
x1

b

6~ ln j!S4~0! S 12
b

2 ln j D x2
2

b

12~ ln j!S6~0! F12
5b

3 ln j
1

b2

3~ ln j!2Gx31•••J , ~2.6!
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whereS~0! is a finite constant.
In the region wherex→`, we may have two possible assumptions:~1! S2(x)>x and ~2!

S2(x),x. If S2(x)>x is assumed, the asymptotic form of Eq.~1.8! will become that

xS 12
1

ln xDS9~x!1S 22
1

ln xDS8~x!52
b8

~ ln x!S~x!
, b85

b

11l
, with l<1, ~2.7!

where the ratiox/S2(x) at x→` in the denominator of the right-hand side of Eq.~2.7! has been
replaced approximately by the constantl. This replacement will not change the essential beha
of the asymptotic solution. Equation~2.7! remains to be a nonlinear equation. The exact form
its asymptotic solution is, in general, unknown. However, we can always suppose a typica
of the solution, such as the form of the conventional power function, so as to examine wheth
assumption thatS2(x)>x whenx→` could be consistent with Eq.~2.7! or not. Thus we set tha

S~x!;C~ ln x!rxs, ~2.8!

whereC is a constant, then Eq.~2.7! may be reduced to

C$2r ~r21!~ ln x!r221r ~r22s21!~ ln x!r221@r ~2s11!2s2#~ ln x!r21

1s~s11!~ ln x!r%xs2152
b8

C
~ ln x!2r21x2s. ~2.9!

WhensÞ0,21, the leading term on the left-hand side isCs(s11)~ln x!rxs21, whose equality to
the right-hand side requires that

r52r21, s2152s, Cs~s11!52b8/C, ~2.10!

and they give thatr521/2, s51/2, andC2524b8/3. The results demandS2(x);x/ln x, contra-
dictory to the assumptionS2(x)>x. Whens50 or 21, the leading term on the left-hand side
C[ r (2s11)2s2] ~ln x!r21xs21, whose equality to the right-hand side requires that

r2152r21, s2152s, C@r ~2s11!2s2#52b8/C, ~2.11!

and they give thatr50, s51/2, andC254b8. The results51/2 is obviously opposite to the
presuppositions50 or21. Therefore, the assumptionS2(x)>x whenx→` cannot be consisten
with Eq. ~2.7!, at least this is true for the supposed asymptotic form~2.8! of the solution. Alter-
natively, we may assume thatS2(x),x when x→`. In this case, Eq.~1.8! approximately be-
comes that

S 12
1

ln xD xS9~x!1S 22
1

ln xDS8~x!52
b

~ ln x!

S~x!

x
, ~2.12!

noting that Eq.~2.12! has now been linearized. We may still substitute the trial solution~2.8! into
Eq. ~2.12! and obtain the algebraic equation

@r ~2s11!2s2#~ ln x!r21xs211s~s11!~ ln x!rxs2152b~ ln x!r21xs21, ~2.13!

where the nonleading terms such as~ln x!r22, ~ln x!r23, etc. have been neglected. Equation~2.13!
could be satisfied if the term with~ln x!rxs21 is removed by setting

s~s11!50, ~2.14!

i.e. s50 or s521. Thus we will obtain the UV asymptotic solution ofS(x) with the form
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S~x!5AS ln x

m2D 2b

1
B

x/m2 S ln x

m2D b21

. ~2.15!

The fact that the UV asymptotic form~2.12! of Eq. ~1.8! has been linearized indicates that t
nonlinearity of Eq.~1.8! is important only in the IR region. Actually, the linearization appro
mation of Eq.~1.8! is a good one, not only in the UV region but also in the mediate momen
region, wherex is not very small. The approximation can be made by replacingS2(x) in the
denominator of the nonlinear term in Eq.~1.8! by S2~0! and this will result in the following
linearized version of Eq.~1.8!:

v~x!S9~x!1@v8~x!11#S8~x!52
b

t~x!

S~x!

@x1S2~0!#
. ~2.16!

Generally, theS2~0! on the right-hand side of Eq.~2.16! may also be replaced by some consta
which will be viewed as the average value ofS(x) over the smallx region. So the linearized
equation~2.16! will be qualitatively correct for smallx, where nonlinearity is important.

To make it be easy to solve Eq.~2.16! analytically we take two further assumptions. One
them is to suppose that

S2~0!5jm2. ~2.17!

This is permissive since both the IR parameterj and the scale parameterm are undetermined
theoretically. Of course, the constraint thatj.1 will demand thatS2~0!.m2. Another assumption
is that the coefficientv(x) @Eq. ~1.12!# in Eq. ~2.16! is replaced approximately by

v~x!.
t~x!

11t~x!
~x1jm2!. ~2.18!

This approximation is valid if

x

jm2 F11
1

ln~x/m21j!G@1. ~2.19!

The condition~2.19! could impose some constraints onj. Let x/jm2>r , then Eq.~2.19! will
become that

1

ln@~r11!j#
@
12r

r
. ~2.20!

The inequality~2.20! is obviously valid forr>1 and it may be changed into that

j!
1

r11
er /~12r !, for 0,r,1. ~2.21!

Hence, in the case withr,1, j will have an upper bound. The upper bound will decrease asr goes
down. Although for some values ofr we could obtain the constraint onj, which is allowed by
phenomenenlonogy~for example, ifr53/4 then the constraint will be 1,j!11.477!, in the fol-
lowing we preferr51 to r,1, i.e. we will use the assumption~2.18! continuously down to the
scalex5jm2 without the need to consider any upper bound ofj.

Under the assumptions~2.17! and~2.18!, the linearized equation~2.16! may be reduced to the
following form that
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t~x!

11t~x!
~x1jm2!S9~x!1H 22

t~x!

@11t~x!#2 J S8~x!52b
S~x!

t~x!~x1jm2!
. ~2.22!

The solution of Eq.~2.22! must submit to the UV boundary condition~1.10!, and some IR
boundary condition as well. Since Eq.~2.22! is inapplicable in the region wherex,jm2, we will
not be able directly to use the IR boundary condition~1.9! at x→0. Instead, as was indicated i
Sec. I, we may now use Eq.~1.13! and the asymptotic solution~2.6! of S(x) in the smallx region
to give a new IR boundary condition atx5jm2, i.e.

S8~x!ux5jm25b
d

dx S 1

xt~x! D U
x5jm2

E
0

jm2

dy
yS~y!

y1S2~y!
, ~2.23!

where we have also made the assumption that the solution~2.6! of S(x) in the smallx region will
be approximately extended tox5jm2. The use of the IR boundary condition~2.23! instead of Eq.
~1.9! will allow us to be able both to solve Eq.~2.22! exactly and analytically and to includ
partially the IR nonlinearity of Eq.~2.10!.

It is noted that the scales of physical chiral symmetry breaking will generally be in the re
wherex.jm2, it is reasonable to use Eq.~2.22! to discuss such a kind of problem. The assum
tions that the approximation~2.18! and the solution~2.6! are extended tox5jm2, respectively,
from above and from below will at most numerically affect the IR boundary condition~2.23! of
Eq. ~2.22! and not produce an essential impact on physical conclusions.

III. SOLUTIONS OF THE LINEARIZED EQUATION

We will find out the exact independent solutions of the linearized equation~2.22!. Instead of
x, let t to be the new variable, then Eq.~2.22! may be changed into

t

11t
S9~t!1F11

1

~11t!2GS8~t!1b
S~t!

t
50. ~3.1!

Assume the exact solution of Eq.~3.1! has the form

S~t!5estt r f ~t!, ~3.2!

wheres and r are constants to be determined. Substituting Eq.~3.2! into Eq. ~3.1! and dividing
each term of the equation byestr r11, we will obtain the differential equation satisfied byf ~t! as
follows:

~t11! f 9~t!1@~2s11!t12~r1s11!12~r11!/t# f 8~t!1$s~s11!t1@2s~r11!1s2

1r1b#1@r ~r11!12s~r11!12b#/t1@r ~r11!1b#/t2% f ~t!50. ~3.3!

The UV ~t→`! asymptotic solutions of Eq.~3.1! may be obtained from Eq.~3.3! by taking
f ~t![const and setting the first and the second term in the coefficient off ~t! to be equal to zeros
as well as neglecting all the terms with the orders 1/t and above. The results are denoted by

S irreg
UV ~t!5t2b and S reg

UV5e2ttb21. ~3.4!

Equation~3.4! is obviously consistent with the UV asymptotic form~2.15! of S(x). In order to
find out the exact solutions of Eq.~3.1! with the UV asymptotic forms~3.4!, we must set the first
and the fourth term in the coefficient off ~t! in Eq. ~3.3! to be equal to zeros, i.e.,

s~s11!50 ~3.5!
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¬¬¬¬¬¬¬¬¬¬
and

r ~r11!1b50. ~3.6!

Equation~3.5! will make S(x) have the correct UV asymptotic form~3.4! and Eq.~3.6!, whose
left-hand side is just the coefficient of 1/t2, can also be obtained from the smallt limit of Eq. ~3.1!
by settingS~t!;tr , hence it certainly contains the smallt behavior of Eq.~3.1!. Since ther given
by Eq. ~3.6! takes complex values, the corresponding solutions ofS~t! will include complex
constants. However, a physical solution may be a real linear combination of the two real co
nents of a complexS~t!.

Equation~3.5! gives thats50 ands521. We will discuss the two cases, respectively.
~1! s50. In this case, the solution~3.2! becomesS~0!~t!5tr f ~0!~t!. Then from Eq.~3.3!, the

equation off ~0!~t! can be changed into

~z22z! f ~0!9~z!2@z22g~z21!# f ~0!8~z!2~az2b! f ~0!~z!50, ~3.7!

where

z52t, ~3.8!

g52~r11!, ~3.9!

a5b1r . ~3.10!

Equation~3.7! could be solved by means of a confluent hypergeometric~Kummer! function.12

Noting that if uzu→`, then Eq.~3.7! becomes

z f~0!9~z!1~g2z! f ~0!8~z!2a f ~0!~z!50, ~3.11!

which is just the confluent hypergeometric equation with the solutionf (0)51F1(a;g;z). Hence,
the solution of Eq.~3.7! may be written to be that

f ~0!~z!5a 1F1~a;g;z!1g~z!, ~3.12!

wherea is a constant. Substituting Eq.~3.12! into Eq. ~3.7! and considering that1F1(a;g;z)
obeys Eq.~3.11!, we obtain that

~z22z!g92@z21g~12z!#g81~b2az!g5az 1F18~a;g;z!2a~b2a! 1F1~a;g;z!.
~3.13!

It is seen that the left-hand sides of both Eq.~3.13! and Eq.~3.7! have the same form. In view o
the fact that1F1(a;g;z) has been used inf (0)(z), we may assume that

g~z!5cz 1F18~a;g;z!, ~3.14!

where c is a constant. Substituting Eq.~3.14! into Eq. ~3.13!, we will meet the terms with

1F19(a;g;z) and1F1-(a;g;z). However, they can be changed into some combinations of the te
with only 1F1(a;g;z) and 1F18(a;g;z) by means of Eq.~3.11!. In this way, Eq.~3.13! will be
reduced to

c~g/221!z 1F18~a;g;z!2ca 1F1~a;g;z!5az 1F18~a;g;z!2a~b2a! 1F1~a;g;z!,

which demands that
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¬¬¬¬¬¬¬¬¬¬
a2~g/221!c50, 2~b2a!a1ac50. ~3.15!

Thea andc have a nonzero solution if and only if

a2~g/221!~b2a!50, ~3.16!

which is obviously satisfied based on Eqs.~3.9!, ~3.10!, and ~3.6!. As a result, we havea5g/2
215r if c51 is taken. From this we will have the solution of Eq.~3.7! with the form

f ~0!~z!5S g

2
21D 1F1~a;g;z!1z

d

dz 1F1~a;g;z!, ~3.17!

and the corresponding

S~0!~t !5t rF S g

2
21D 1F1~a;g;2t!2

a

g
t 1F1~a11;g11;2t!G . ~3.18!

Depending on the UV asymptotic form, the physically relevant real solutions will have the
lowing two kinds of forms:

S irreg
~0! ~t !

S reg
~0!~t ! J 5

Ai
~0!

Ar
~0!J t21/22 ihF S g

2
21D 1F1~a;g;2t!2

a

g
t 1F1~a11;g11;2t!G1c.c.,

~3.19!

where one of two roots of the algebraic equation~3.6! of r ,

r52 1
22 ih, h5Ab2 1

4, ~3.20!

has been definitely chosen@choosing the other rootr52 1
21ih has no difference because th

physical solutions depend on only the two real components ofS~0!~t!#. The complex constantsAi
(0)

andAr
(0) will be determined, respectively, by the UV asymptotic conditions

S irreg
~0! ~t ! ——→

t→`
S irreg
UV ~t!5t2b ~3.21!

and

S reg
~0!~t ! ——→

t→`
S reg
UV~t!5e2ttb21. ~3.22!

By using the asymptotic formula of the confluent hypergeometric function,12

1F1~a;g;2t! ——→
t→` G~g!

G~a! e
2t~2t!a2g1

G~g!
G~g2a! t2a, ~3.23!

we can write

S irreg
~0! ~t !

S reg
~0!~t !

J ——→
t→`

2bFAi
~0!

Ar
~0!J G~g!

G~g2a! 1c.c.Gt2b1FAi
~0!

Ar
~0!J G~g!

G~a! ~21!a2g111c.c.Ge2ttb21.

~3.24!

The conditions~3.21! and ~3.22! will lead to

Ai
~0!5 i ~21!a

p

b sinh~2ph!uG~a!u2
G~a!

G~g!
~3.25!

and
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Ar
~0!5 i

G~a!

G~g!

sin~pa!

sinh~2ph!
. ~3.26!

~2! s521. In this case the solution~3.2! becomesS~21!~t!5e2ttr f ~21!~t!, and from Eq.~3.3!,
f ~21!~t! submits to the equation

t~t11! f ~21!9~t!2@t22~g22!t2g# f ~21!8~t!2~ āt1g2b! f ~21!~t !50, ~3.27!

where

ā511r2b. ~3.28!

The solutionf ~21!~t! can be expressed by1F1(ā;g;t). Assume that

f ~21!~t !5ā 1F1~ ā;g;t!1 c̄t 1F18~ ā;g;t!. ~3.29!

Substituting Eq.~3.29! into Eq. ~3.27! and considering that1F1(ā;g;t) satisfies the equation

t 1F19~ ā;g;t!1~g2t! 1F18~ ā;g;t!2ā 1F1~ ā;g;t!50, ~3.30!

we obtain that

@2ā1~b1ā !c̄#t 1F18~ ā;g;t!1@~ ā1b2g!ā1ā c̄# 1F1~ ā;g;t!50,

which demands that

2ā1~b1ā !c̄50, ~ ā1b2g!ā1ā c̄50. ~3.31!

The condition on whichā and c̄ have a nonzero solution,

ā1~b1ā !~b1ā2g!50, ~3.32!

is certainly satisfied in view of Eqs.~3.28!, ~3.6!, and ~3.9!. Hence, if takingc̄51 we then will
haveā5b1ā5r115g/2 and

f ~21!~t !5
g

2 1F1~ ā;g;t!1t
d

dt 1F1~ ā;g;t!, ~3.33!

and correspondingly,

S~21!~t !5e2tt rFg2 1F1~ ā;g;t!1
ā

g
t 1F1~ ā11;g11;t!G . ~3.34!

The real solutionsSirreg
~21!~t! andSreg

~21!~t! can be expressed by

S irreg
~21!~t !

S reg
~21!~t !J 5

Ai
~21!

Ar
~21!J e2tt21/22 ihFg2 1F1~ ā;g;t!1

ā

g
t 1F1~ ā11;g11;t!G1c.c., ~3.35!

where the complex constantsAi
(21) andAr

(21) will be determined, respectively, by the UV a
ymptotic conditions

S irreg
~21!~t ! ——→

t→`
S irreg
UV ~t!5t2b ~3.36!

and
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S reg
~21!~t ! ——→

t→`
S reg
UV~t!5e2ttb21. ~3.37!

By using the asymptotic formula of the confluent hypergeometric function,

1F1~ ā;g;t! ——→
t→` G~g!

G~ā !
ett ā2g1

G~g!
G~g2ā !

e2 ipāt2 ā, ~3.38!

we obtain from Eqs.~3.36! and ~3.37! that

Ai
~21!5 i ~21!a

G~ā !

G~g!

sin~pā!

sinh~2ph!
~3.39!

and

Ar
~21!52 i

p

b sinh~2ph!uG~ā!u2
G~ā!

G~g!
. ~3.40!

IV. SOME DISCUSSIONS OF SOLUTIONS

We will show that among the four real solutionsS irreg
(s) andS reg

(s) ~s50,21! derived above, only
two ones are linearly independent, consistent with the general conclusion that a secon
differential equation has two independent solutions.

In fact,S~0!~t! andS~21!~t! differ by only a constant. Denote

S~0!~t !5t r f ~0!~t !; ~4.1!

then f ~0! will obey Eq. ~3.7! or

t~t11! f ~0!9~t!1@t21g~t11!# f ~0!8~t!1~at1b! f ~0!~t !50. ~4.2!

Now write

f ~0!~t !5e2th~t!, ~4.3!

then it is easy to verify thath~t! obey the equation

t~t11!h9~t!2@t22~g22!t2g#h8~t!2~ āt1g2b!h~t!50, ~4.4!

which has the same form as Eq.~3.27! of f ~21!~t!. It follows from this thath(t)} f (21)(t). Hence

S~0!~t !5e2tt rh~t!}e2tt r f ~21!~t !5S~21!~t !, ~4.5!

i.e. S~0!~t! andS~21!~t! differ at most by a constant, and both are linearly dependent.
This conclusion may also be reached directly from the explicit expressions ofS~0!~t! and

S~21!~t!. By means of the property of the confluent hypergeometric function,12

1F1~a;g;2t!5e2t
1F1~g2a;g;t!, ~4.6!

we can expressS~0!~t! in Eq. ~3.18! by

S~0!~t !5e2tt rF S g

2
21D 1F1~g2a;g;t!2

a

g
t 1F1~g2a;g11;t!G . ~4.7!

From Eqs.~3.9!, ~3.10!, and~3.28! we see that
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g2a5ā11. ~4.8!

By Eq. ~4.8! and the recurrence relation12

g 1F1~ ā11;g;t!5t 1F1~ ā11;g11;t!1g 1F1~ ā;g;t!, ~4.9!

we may rewrite Eq.~4.7! in the form

S~0!~t !5e2tt r S g

2
21D F 1F1~ ā;g;t!1

1

g S 12
a

g/221D t 1F1~ ā11;g11;t!G
5e2tt r

g22

2 F 1F1~ ā;g;t!1
2

g

ā

g
t 1F1~ ā11;g11;t!G

5
g22

g
e2tt rFg

2 1F1~ ā;g;t!1
ā

g
t 1F1~ ā11;g11;t!G

5
g22

g
S~21!~t !, ~4.10!

where Eqs.~3.6!, ~3.9!, ~3.10!, ~3.28!, and the expression~3.34! for S~21!~t! have been used
Equation~4.10! shows thatS~0!~t! andS~21!~t! differs by only the constant~g22!/g indeed. By
comparing Eq.~4.7! with Eq. ~4.10! and using the relation~4.6!, we see that the equality

S g

2
21D 1F1~a;g;2t!2

a

g
t 1F1~a11;g11;2t!

5
g22

g
e2tFg2 1F1~ ā;g;t!1

ā

g
t 1F1~ ā11;g11;t!G , ~4.11!

is valid. From this equality it may be verified that the real solutions in Eqs.~3.19! and ~3.25!
satisfy the relations

S irreg
~0! ~t !5S irreg

~21!~t ! and S reg
~0!~t !5S reg

~21!~t !. ~4.12!

It is emphasized that in the verification of Eq.~4.12!, the equality~4.11!, hence the relation~4.6!,
plays a key role. Since the constantsAi

(0), Ar
(0), Ai

(21), andAr
(21) are determined through the UV

asymptotic form ofS irreg
(s) (t) andS reg

(s)(t) ~s50,21! this means that the relation~4.6! must keep to
be valid also in the UV asymptotic region. It is just this requirement that determines the sele
of the phase factors in the asymptotic expansions~3.23! and ~3.38!.

In summary, the linearized Schwinger–Dyson equation~3.1! of the fermion self-energy in the
theory with a running gauge coupling constant has two linearly independent real solutions th
be considered as the complex solutionS~0!~t! or S~21!~t! or the pairs of real solutions
@Sirreg~t![Sirreg

~0! ~t!5Sirreg
~21!~t!,Sreg~t![Sreg

~0!~t!5Sreg
~21!~t!#. The physical solutions should be som

linear combination of theSirreg~t! andSreg~t! with the combination coefficients to be determin
by the IR and UV boundary conditions~2.23! and ~1.10!. The application of these physica
solutions to problem of chiral symmetry breaking will be discussed elsewhere.
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Motion of strings in the plane: A solvable model. I
F. Calogeroa)
Dipartimento di Fisica, Universita´ di Roma ‘‘La Sapienza,’’ 00185 Roma, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy

~Received 13 May 1996; accepted for publication 5 September 1996!

By taking appropriately then→` limit of a ~recently introduced! eight-parameter
family of solvable~classical, nonrelativistic! n-body problems in the plane, asolv-
able eight-parameter family of models is introduced, each of which describes the
motion in the plane of a string~possibly composed of several pieces!. In this paper
the equations of motionwhich characterize these models are displayed, the tech-
nique to ‘‘solve’’ them is outlined, andspecial solutionsare exhibited~for certain
models, quite explicitly!. A more detailed analysis of the phenomenology of the
string motions entailed by these models is postponed to future papers. ©1997
American Institute of Physics.@S0022-2488~97!00402-7#

I. INTRODUCTION

Recently thesolvable n-body problem in the plane has been introduced,1 which is character-
ized by the Newtonian~‘‘acceleration equal force’’! equations of motion

r̈ j5~aR1a I ẑ∧ ! ṙ j1~bR1b I ẑ∧ !r j1 (
k51,kÞ j

n

ur j2r ku22f jk , j51,2,...,n, ~1.1a!

f jk52$ ṙ j@ ṙ k•~r j2r k!#1 ṙ k@ ṙ j•~r 2r k!#2~r j2r k!~ ṙ j ṙ k!%

1~lR1l I ẑ∧ !$~ ṙ j1 ṙ k!@r j
22~r j•r k!#2r j@r k•~ ṙ j1 ṙ k!#

1r k@r j•~ ṙ j1 ṙ k!#%1~mR1m I ẑ∧ !$r j@r j
222~r j•r k!#1r kr j

2%. ~1.1b!

Here, to display the rotation-invariant character of these equations of motion in the plane, w
the ‘‘three-dimensional’’ notationr [(xj ,yj ,0), ẑ[~0,0,1!, ẑ∧r j[(2yj ,xj ,0). Note the presence
of the eight~arbitrary! ‘‘coupling constants’’aR , a I , bR , b I , lR , l I , mR , m I .

An aspect of this model~or rather, of this eight-parameter family of models! which is crucial
for its solvability is the possibility to rewrite it in the following neat form,1

z̈j5a żj1bzj1 (
k51,kÞ j

n

~zj2zk!
21@2żj żk1lzj~ żj1 żk!1mzj

2#, j51,2,...,n, ~1.2!

in terms of thecomplexvariableszj5xj1 iy j ~and moreover via the positionsa5aR1 ia I ,
b5bR1 ib I , l5lR1 il I , m5mR1 im I!. Thereby the motion of the particles identified by th
coordinatesr j (t) in thephysicalplane coincides with the motion of the pointszj (t) in thecomplex
plane. The rotation invariance of the equations of motion~1.1! corresponds to the invariance o
~1.2! under the complex rotationzj→zj8 5 exp(iu)zj @indeed~1.2! is clearly invariant under the
more general scale transformationzj→zj8 5 czj #.

a!On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva,
Rome.
0022-2488/97/38(2)/821/9/$10.00
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The solution of the equations of motion~1.2! is achieved via the one-to-one invertible no
linear transformation relating then zeroszj (t) of a polynomial of degreen in z, to its n coeffi-
cientscm(t):

)
j51

n

@z2zj~ t !#5zn1 (
m51

n

cm~ t !zn2m. ~1.3!

Indeed the nonlinear flow~1.2! of the n complex quantitieszj (t) gets mapped via~1.3! into a
linear decoupled evolution of then complex quantitiescm(t),

c̈m~ t !5@a1l~n2m!# ċm~ t !1m@b1 1
2m~2n2m21!#cm~ t !, m51,2,...,n, ~1.4!

which entails the following explicit time dependence of thesen coefficients:1

cm~ t !5cm
~1 ! exp@nm

~1 !t#1cm
~2 ! exp@nm

~2 !t#, ~1.5a!

nm
~6 !5 1

2$a1l~n2m!6~@a1l~n2m!#212m@2b1m~2n2m21!# !1/2%. ~1.5b!

Hence the transformation~1.3!, relating then ‘‘particle coordinates’’zj (t) to then ‘‘collec-
tive coordinates’’cm(t), opens the possibility tosolve the n-body problem characterized by th
equations of motion~1.2! @or, equivalently,~1.1!#, and to thereby analyze the rich phenomenolo
of the corresponding motions.1,2

This paper presents results that obtain from those outlined above via the assumption t
numbern of particles diverge, and moreover that their positions agglutinate into a~finite! line in
the plane~‘‘string’’ !. Hereafter the time-dependent configuration of this string~possibly composed
of several pieces! is represented by the values taken, in the complex plane, by the com
quantityz(s,t), as the parameters varies in the interval 0<s<1. Our main purpose in this pape
is to display the equation of motion obtained in this manner:

z̈~s,t !5~a22l!ż~s,t !1~b22m!z~s,t !1PE
0

1

ds8@z~s,t !2z~s8,t !#21

•$2ż~s,t !ż~s8,t !1lz~s,t !@ ż~s,t !1 ż~s8,t !#1m@z~s,t !#2%, ~1.6a!

or equivalently

z̈~s,t !5~a2l!ż~s,t !1~b2m!z~s,t !1PE
0

1

ds8@z~s,t !2z~s8,t !#21

•$2ż~s,t !ż~s8,t !1l@ż~s,t !z~s8,t !1z~s,t !ż~s8,t !#1mz~s,t !z~s8,t !%, ~1.6b!

or equivalently, using the physical real vector variabler (s,t),

r̈ ~s,t !5@aR22lR1~a I22l I !ẑ∧# ṙ ~s,t !1@bR22mR1~b I22m I !ẑ∧#r ~s,t !

1PE
0

1

ds8ur ~s,t !2r ~s8,t !u22f@r ~s,t !,r ~s8,t !#, ~1.6c!

with f~r j ,r k![f jk as given by~1.1b!.
This last form of the ‘‘string equation’’ displays clearly the analogies with, and the differe

from, the corresponding equation, see~1.1!, for then-body case@we also refer to the discussio
given above, in then-body context, for the notation employed in~1.6c!, as well as for the
invariance of~1.6! under rotations in the plane and under rescaling#.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The presentation of this solvablestring equation in the planeis the main result of this paper
In Sec. II we indicate how this equation of motion has been obtained, and we thereby justi
claim that it is asolvableequation. In Sec. III we identify some special models, correspondin
restricted choices of the four complex~eight real! coupling constants, which possess remarka
features, such asperiodic solutions forany initial data, orsimilarity solutions~for special initial
data!, ormulti-ring solutions whose time evolution can be exhibited in remarkably explicit fo
We postpone, however, to future papers a more systematic treatment of the solutions o
models. Finally, in Sec. IV we tersely outline the~simpler! case in which the time evolution i
characterized by equations of motion of first, rather than second, order in time.

II. DERIVATION AND SOLVABILITY OF THE STRING EQUATION

We take as starting point the formula~1.3!, which we conveniently rewrite as follows:

11 (
m51

n

cm~ t !z2m5)
j51

n

@12zj~ t !/z#, ~2.1a!

namely,

logF11 (
m51

n

cm~ t !z2mG5(
j51

n

log@12zj~ t !/z#. ~2.1b!

We now take then→` limit, assuming that the zeroszj (t) in this limit go over, withunit
density, into the line described, in the complexz-plane, by the functionz(s,t), 0<s<1. Then
~2.1b! yields

logF11 (
m51

`

cm~ t !z2mG5E
0

1

ds log@12z~s,t !/z#, ~2.2a!

namely,

(
m51

`

cm~ t !z2m5211expH E
0

1

ds log@12z~s,t !/z#J . ~2.2b!

This is our basic formula: it describes a nonlinear mapping between the complex coeffi
cm(t), m51,2,..., and the complex functionz(s,t) of the real parameters, 0<s<1. Of course we
must assume here that, for sufficiently large values ofuzu, the series on the left-hand side of th
equation converges; for other values ofz, it is then defined by analytic continuation. In any ca
it is quite clear that, given the quantityz(s,t), 0<s<1, the coefficientscm(t) are uniquely defined:
the series in the left-hand side of~2.2b! can be considered as the asymptotic expansion at larz
of the function ofz appearing on the right-hand side, so that

c1~ t !52E
0

1

dsz~s,t !, ~2.3a!

c2~ t !5
1

2 H F E
0

1

dsz~s,t !G22E
0

1

ds@z~s,t !#2J , ~2.3b!

and so on.
The following formula is then easily obtained by hitting~2.2b! with the operator
J. Math. Phys., Vol. 38, No. 2, February 1997
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]2

]t2
2lz

]2

]z]t
1
1

2
mS z ]

]zD
2

2a
]

]t
1S b2

1

2
m D z ]

]z
:

(
m51

`

z2mH c̈m~ t !1~2a1lm!ċm~ t !1F2b1
1

2
m~m11!Gmcm~ t !J

5expH E
0

1

ds log@12z~s,t !/z#J E
0

1

ds@z2z~s,t !#21
•F2 z̈~s,t !1~a2l!ż~s,t !

1~b2m!z~s,t !1PE
0

1

ds8@z~s,t !2z~s8,t !#21

•$2ż~s,t !ż~s8,t !1l@ż~s,t !z~s8,t !1z~s,t !ż~s8,t !#1mz~s,t !z~s8,t !%G . ~2.4!

Herea, b, l, andm are arbitrary complex constants.
It is clear from this formula that, ifz(s,t) evolves according to thenonlinear integrodiffer-

ential string equation (1.6), so that the right-hand side of this equation vanishes, then the co
cientscm(t) evolve according to thelinear decoupled ODEs

c̈m~ t !1~2a1lm!ċm~ t !1m@2b1 1
2m~m11!#cm~ t !50, m51,2,..., ~2.5!

which entail that the left-hand side of~2.4! also vanishes. But these equations are easily solv

cm~ t !5cm
~1 ! exp@ ivm

~1 !t#1cm
~2 ! exp@ ivm

~2 !t#, ~2.6a!

vm
~6 !5

i

2 S 2a1lm6H ~2a1lm!214Fb2
1

2
m~m11!GmJ 1/2D . ~2.6b!

Theconstants cm
(1) ,cm

(2) are of course defined, in the context of the initial-value problem
the string equation~1.6!, by the requirement that~2.2b! and its time-derivative hold, withcm(t)
given by~2.6!, at theinitial time ~say, att50!. Hence the solution of the initial-value problem fo
the singular integrodifferential string equation~1.6! is reduced to solving forz(s,t) the integral
equation@implied by ~2.2a!#

E
0

1

ds log@12z~s,t !/z#5F~z,t !, ~2.7a!

F~z,t !5 logF11 (
m51

`

cm~ t !z2mG , ~2.7b!

whereF(z,t) is theknownfunction which is obtained by inserting in~2.7b! the expression~2.6a!
of the coefficientscm(t). Note that, byz-differentiation, these equations yield

E
0

1

dsz~s,t !/@z2z~s,t !#5G~z,t !, ~2.8a!

G~z,t !5z]F~z,t !/]z. ~2.8b!
J. Math. Phys., Vol. 38, No. 2, February 1997
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We stop at this point our description of the solvability of the string equation~1.6!; a more
detailed analysis is postponed to future papers. In the following section we present some fi
which are directly implied by the above treatment.

III. SPECIAL MODELS AND SOLUTIONS

In this section we indicate some special models@obtained from the string equation~1.6! by
imposing some restrictions on the four complex coupling constantsa,b,l,m# for which qualitative
and quantitative statements, concerning the behavior of the string solutions, can be made
basis of the results of the preceding Section or by direct computation.

A. Models with periodic solutions for arbitrary initial data

If the quantitiesvm
(6), see~2.6b!, are, forall positive integervalues ofm, integer multiplesof

a real quantityv, clearly the quantitiescm(t), see~2.6a!, areall periodic int with periodT52p/
v; hence the functionF(z,t), see~2.7b!, is periodic int with the same periodT, and this property
carries over, via~2.7a!, to the string functionz(s,t). We may therefore conclude that, under su
circumstances, the motion of the string induced by~1.6! is periodic in t with periodT for any
initial conditions.

It is on the other hand easily inferred, from the explicit expression~2.6b!, that these circum-
stances indeed prevail if the following restrictions on the coupling constantsa, b, l, andm hold:

a5 ik1v, b5~k12k3!k2v
2, l52 i ~k21k3!v, m522k2k3v

2, ~3.1a!

with v real andk1 ,k2 ,k3 integers, implying

vm
~1 !5~k11k3m!v, vm

~2 !5k2mv. ~3.1b!

Here theintegers k1, k2, andk3 arearbitrary, except for the obvious conditions required to ens
that neithervm

(1) nor vm
(2) vanish, for anypositive integervalue ofm.

B. Models with similarity solutions

It is easily seen that, if the four coupling constantsa,b,l,m satisfy the single~generally
complex! restriction

~m22b!212al~m22b!12a2m50, ~3.2!

then the integrodifferential equation~1.6! possesses the ‘‘similarity’’ solution

z~s,t !5z~s!exp~ht ! ~3.3!

with z(s) arbitrary and

h5~m22b!/~2a!. ~3.4!

The verification that~3.3! with ~3.4! satisfies~1.6! @provided~3.2! holds# can be easily done
by direct computation; in this case the linear and the nonlinear parts of~1.6b! vanish separately.

C. Multi-ring solutions, and models for which their evolution can be explicitly
displayed

It is easily seen that the integrodifferential evolution equation~1.6! admits then-ring solution

z~s,t !5rm~ t !exp~2ipns!, ~m21!/m<s,m/n, m51,2,...,n. ~3.5!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Indeed, the insertion into~1.6! of this ansatz, that clearly represents a string composed on
distinct circular rings centered at the origin and of radiiurm(t) u, m51,2,...,n, yields for the
complex quantitiesrm(t) the evolution equations

r̈m~ t !5@a2~11m/n!l2~2/n!Lm~ t !#ṙm~ t !1$b2@11~m2 1
2!/n#m2~l/n!Lm~ t !%rm~ t !

2~1/n!@ ṙm~ t !#2/rm~ t !, m51,2,...,n, ~3.6a!

Lm~ t !5 (
m851

m21

ṙm8~ t !/rm8~ t !. ~3.6b!

To write this formula, and always below, we use the usual convention that sets to zero the
of a summation if the upper limit is smaller than the lower limit; henceL0(t)[0. We moreover
assume, without loss of generality, that the radiiurm(t) u are labeled so that

urm~ t !u.urm11~ t !u, m51,2,...,n21. ~3.6c!

This system of nonlinear, triangularily coupled, ODEs, follows from~1.6!, ~3.5!, and ~3.6c!
via the formula

PE
~m21!/n

m/n

ds8 exp~2ipns8!/@r2 exp~2ipns!2r1 exp~2ipns8!#

52n21r1
21e~ ur2 /r1u21!, m51,2,...,n; 0<s<1, ~3.7a!

e~x!5H 1 if x.0,
1
2 if x50,

0 if x,0.
~3.7b!

The dynamical system~3.6! is clearly rotation-invariant@indeed, more generally, it is invarian
under any rescaling transformation,rm(t)→rm8 (t) 5 crm(t)#; hence it can also be interpreted
describing the motion ofn particles in the plane, via the usual~see Sec. I! identification of the
physicalplane with thecomplexplane. Indeed, in terms ofphysical ‘‘particle coordinates’’r j (t),
the dynamical system~3.6! can be rewritten as follows:

r̈ j5$aR2~11 j /n!lR1@a I2~11 j /n!l I # ẑ∧% ṙ j1$bR2@11~ j2 1
2!/n#mR

1@b I2@11~ j2 1
2!/n#m I # ẑ∧%r j1~1/n!r j

22@r j ṙ j
222ṙ j~ ṙ j•r j !#

1~1/n!(
k51

j21

r k
22$2@r k~ ṙ j• ṙ k!2 ṙ j~ ṙ k•r k!2 ṙ k~ ṙ j•r k!#

1~lR1l I ẑ∧ !@r k~ ṙ k•r j !2r j~ ṙ k•r k!2 ṙ k~r j•r k!#%,

j51,2,...,n @r k.r k11 , k51,2,...,n21#. ~3.8!

The system~3.6! can be, more conveniently, also rewritten via the position

rm~ t !5c exp@wm~ t !#, m51,2,...,n, ~3.9!

with c a complex constant which plays no role due to the scale invariance of the model
yields
J. Math. Phys., Vol. 38, No. 2, February 1997
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ẅm~ t !5@a2~11m/n!l2~2/n!Ḟm~ t !#ẇm~ t !1b2@11~m2 1
2!/n#m2~l/n!Ḟm~ t !

2~1/n!@ẇm~ t !#2, m51,2,...,n, ~3.10a!

Fm~ t !5 (
m851

m21

wm8~ t !. ~3.10b!

Since this system corresponds to a special configuration of thesolvablestring equation~1.6!,
it must itself besolvable. Here we limit our consideration to the special case characterized b
restrictions

b5l5m50, ~3.11!

which entail that~3.10a! can be easily integrated once@after division byẇm(t)#, and then once
more „after exponentiation and multiplication by exp@wm(t)/n#…. We thus obtain

wm~ t !5wm~0!1n logF11n21ẇm~0!E
0

t

dt8 exp~at8!•exp$~2/n!@Fm~0!2Fm~ t8!#%G .
~3.12!

And evaluating this expression sequentially form51, form52, and so on, we get the remarkabl
completely explicit, neat formula

wm~ t !5wm~0!1n log~$11Ḟm11~0!~an!21

3@exp~at !21#%/$11Ḟm~0!~an!21@exp~at !21#%!, ~3.13!

of course withFm defined by~3.10b!. Via ~3.9! this yields

rm~ t !5rm~0!~$11cm11~an!21@exp~at !21#%/$11cm~an!21

3@exp~at !21#%!n, m51,2,...,n, ~3.14a!

cm5 (
m851

m21

ṙm8~0!/rm8~0!, ~3.14b!

which provides the completely explicit solution of the initial-value problem for the dynam
system in the plane~3.6!, in the special case~3.11!.

Note that this special case~3.11! is identified by the requirement that the equation of mot
~1.6! for the string in the plane, as well as the equations of motion~3.6! @or, equivalently,~3.8!#,
describing an-body problem in the plane, betranslation-invariant. Also note that in this case, i
a is imaginary,a5ia IÞ0, the motion is, forarbitrary initial conditions,periodic with period
T52p/aI @see~3.14a!#; this is consistent with the analysis of Sec. III A.

The case~3.11! also includes the ‘‘simplest’’ case, characterized by the additional cond
a50 ~so thatall coupling constants vanish!. Then the above formulas, including in particul
~3.14a!, remain valid, with the terma21@exp(at)21# replaced byt.

IV. EVOLUTION EQUATIONS OF FIRST (RATHER THAN SECOND) ORDER IN TIME

In this section we display quite tersely the form that the main results of this paper take,
consideration is restricted to evolution equations of first, rather than second, order in time.

The evolution equation~1.6a! for the motion of the string in the plane is then replaced by
J. Math. Phys., Vol. 38, No. 2, February 1997
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ż~s,t !5~b22m!z~s,t !1PE
0

1

ds8@z~s,t !2z~s8,t !#21

•$lz~s,t !@ ż~s,t !1 ż~s8,t !#1m@z~s,t !#2%, ~4.1a!

or equivalently,

~12l!ż~s,t !5~b2m!z~s,t !1PE
0

1

ds8@z~s,t !2z~s8,t !#21

•$l@ ż~s,t !z~s8,t !1z~s,t !ż~s8,t !#1mz~s,t !z~s8,t !%, ~4.1b!

or, still equivalently, but in thephysical real plane-vectorsrepresentation,

ṙ ~s,t !5@bR22mR1~b I22m I !ẑ∧#r ~s,t !1PE
0

1

ds8ur ~s,t !2r ~s8,t !u22
•$~lR1l I ẑ∧ !~@ ṙ ~s,t !

1 ṙ ~s8,t !#$@r ~s,t !#22@r ~s,t !•r ~s8,t !#%2r ~s,t !$r ~s8,t !•@ ṙ ~s,t !1 ṙ ~s8,t !#%1r ~s8,t !

3$r ~s,t !•@ ṙ ~s,t !1 ṙ ~s8,t !#%!1~mR1m I ẑ∧ !~r ~s,t !$@r ~s,t !#222@r ~s,t !•r ~s8,t !#%

1r ~s8,t !@r ~s,t !#2!%. ~4.1c!

The solvability of this nonlinear integrodifferential equation is still provided by the trans
mation ~2.2b! @or, equivalently,~2.7!#, but now the time evolution of the coefficientscm(t) is
given, rather than by~2.6!, by the simpler formula

cm~ t !5cm~0!exp$tm@b2 1
2~m11!m#/@11~m22!l#%. ~4.2!

Henceall solutions of~4.1! are periodic in time with periodT52p/v if l50, b5ik1v, m52ik2v
with v real and k1 and k2 integers @arbitrary except for the restrictionk12(m11)k2Þ0 for
m51,2,...#.

It is also easily seen that~4.1b! admits the similarity solution

z~s,t !5z~s!exp@ t~b2m!/~12l!# ~4.3!

with z(s) arbitrary, provided there holds the single~generally complex! condition

l~2b23m!1m50. ~4.4!

Finally, it is easily seen that~4.1! also possesses, as~1.6!, multi-ring solutions of type~3.5!;
but now the evolution equations for the complex ‘‘radii’’rm(t) are simpler than~3.6a!, namely
they read

ṙm~ t !5@am1bmLm~ t !#rm~ t !, m51,2,...,n, ~4.5a!

Lm~ t !5 (
m851

m21

ṙm8~ t !/rm8~ t !, ~4.5b!

am5$b2@11~m2 1
2!/n#m%/@12~12m/n!l#, ~4.5c!

bm52l/@n2~n2m!l#, ~4.5d!

and they have the explicit solution
J. Math. Phys., Vol. 38, No. 2, February 1997
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rm~ t !5rm~0!exp@cmt#, m51,2,...,n, ~4.6a!

with

c15a1 , ~4.6b!

cm5am1bm (
m851

m21

cm8 , m52,3,...,n. ~4.6c!

1F. Calogero, ‘‘A solvablen-body problem in the plane. I,’’ J. Math. Phys.37, 1735–1759~1996!.
2F. Calogero and J. Xiaoda, ‘‘A solvablen-body problem in the plane. II’’~to be published!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The von Karman equations, the stress function,
and elastic ridges in high dimensions

Eric M. Kramera)
The James Franck Institute and the Department of Physics, The University of Chicago,
Chicago, Illinois 60637

~Received 2 August 1996; accepted for publication 10 September 1996!

The elastic energy functional of a thin elastic rod or sheet is generalized to the case
of anM -dimensional manifold inN-dimensional space. We derive potentials for
the stress field and curvatures and find the generalized von Karman equations for a
manifold in elastic equilibrium. We perform a scaling analysis of an
M21-dimensional ridge in anM5N21-dimensional manifold. A ridge of linear
size X in a manifold with thicknessh!X has a widthw;h1/3X2/3 and a total
energyE;mhM(X/h)M25/3, wherem is a stretching modulus. We also prove that
the total bending energy of the ridge is exactly five times the total stretching
energy. These results match those of A. Lobkovsky@Phys. Rev. E53, 3750~1996!#
for the case of a bent plate in three dimensions. ©1997 American Institute of
Physics.@S0022-2488~97!02402-X#

I. INTRODUCTION

The crumpling of a thin elastic sheet is mediated by the formation of a network of na
ridges.1 Plastic deformation of the material in the neighborhood of these ridges leads t
ubiquitous linear scars in crushed paper, aluminum foil, and car bodies.2–4 It was recently discov-
ered by Witten, Lobkovsky, and others that this phenomenon can be accounted for using
elasticity theory.5–7 The scaling laws for a ridge were first derived by Witten and Li using a Fl
type argument. A ridge of lengthX in a sheet of thicknessh and Young’s modulusY was found
to have a total elastic energyE;Yh3(X/h)1/3 and a widthw;h1/3X2/3. Lobkovsky confirmed this
result with a scaling analysis of the von Karman equations describing a thin, semi-infinite
with a single ridge. He also verified these results with detailed simulations.

One important result of this analysis is the discovery that the stresses and curvatures
rapidly to zero in the direction transverse to the ridge. The length scale of this decay is the
width. We therefore interpret ridge formation as aconfinementof the elastic stress field.8 Although
there is a qualitative appreciation that confinement is the result of the competition betwe
in-plane strains and the curvatures of the plate, a deeper theoretical understanding is still l
In particular there is no proof of confinement under generic boundary conditions. We have
working towards this goal. In a companion paper we prove that a thin plate must have regi
nonzero strain if it is to fit into a small sphere.9 It remains to be shown that these regio
necessarily assemble themselves into a network of ridges.

To understand the causes and consequences of stress confinement, it is useful to exam
higher-dimensional analogs of a crumpled sheet. For example, a thin plate crumpled i
dimensions does not have to stretch, and we expect there is no stress confinement in this
this paper we present the simplest field theory describing the strains and curvatures of a de
elastic manifold in higher dimensions. We also perform a scaling analysis for a ridge in
systems.

There is considerable precedent for examining higher-dimensional systems for insigh
membrane elasticity. Most notable are studies of the so-called ‘‘crumpling transition’’ of a

a!Electronic mail: kramer@rainbow.uchicago.edu
0022-2488/97/38(2)/830/17/$10.00
830 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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elastic membrane in thermal equilibrium.10–12That work focuses on the way thermal fluctuatio
and self-avoidance renormalize the elastic constants of a thin elastic sheet. The field theory
developed in perturbation theory around a convenient, higher dimension. In this paper we
exclusively at zero temperature and the word ‘‘crumpling’’ refers to compression by ext
forces.

In elasticity theory it is common to approximate a thin plate by its center surface
centroid.13,14 A three-dimensional plate is thereby described using a two-dimensional man
The elastic energy functional for the centroid is found by integrating out the components
stress and strain tensors which are transverse to the long directions. The mathematical ana
these approximations and their range of validity is the subject of the theory of thin e
shells.15–17 In this paper we use the standard methods of shell theory to derive the elastic e
of anM -dimensional manifold embedded inN-dimensional space. We treat the manifold as
centroid of anN-dimensional elastic solid with an infinitesimal thicknessh in N2M directions.
The resulting energy functional has pieces quadratic in the strains, curvatures, and torsions
manifold. We take a functional derivative of the energy to find the equations of static equilib
For a plate in three dimensions these equations are called the von Karman equations, first
down by Theodore von Karman in 1910.18 We will refer to our general result by the same nam
Our derivation has several new elements.

It is noteworthy that the elastic energy of a thin plate may be written in terms of two s
potentials. Thestress functionx, introduced by Airy in 1863, is the source of in-plane stresses.19,20

The bending potential fis the source of curvatures. Similarly, studies of a deformed solid o
use the tensor stress functionxab , introduced by Maxwell in 1870.21,22 In this paper we presen
the generalization of these potentials for arbitraryM andN. Our derivation of the von Karman
equations reveals a role for the stress function as the Lagrange multiplier of a geometric con
in the energy functional. ForM.2 the stress function is a gauge field.

Next we turn our attention to the ridge structure. The width of the ridge in a plate scale
w;h1/3X2/3, so in the limith!X the ridge is approximately one-dimensional and straight. Ana
gously, the ridges in anM -dimensional manifold are expected to be approximat
(M21)-dimensional and to have no curvature. Indeed, simulations of a solid elastic ball cr
by a sphere in four dimensions show that the elastic energy is concentrated into flat,
structures.1 As mentioned above, Lobkovsky has done a thorough analysis of an isolated rid
the case of a semi-infinite sheet in three dimensions.6 We repeat his analysis for the case of
M -dimensional, semi-infinite manifold bent into a ridge inM11-dimensional space. We find tha
a ridge with linear sizeX has a widthw;h1/3X2/3 and a total energyE;YhN(X/h)M25/3. Lastly,
we prove that the total energy due to the curvature of the ridge is exactly five times the ener
to the strains. These results match correctly onto the solution for a bent plate in
dimensions.6,23

In Sec. II we review the differential geometry of a weakly strainedM -dimensional manifold
embedded inN-dimensional space. In Sec. III we derive the elastic energy of this manifold a
thin limit of anN-dimensional elastic solid. In Sec. IV we present the generalization of the s
function and the bending potential. Then we make a variational derivation of the von Ka
equations. In Sec. V we generalize the scaling analysis of Lobkovsky to a ridge inM.2. In Sec.
VI we summarize our conclusions.

II. DIFFERENTIAL GEOMETRY REVIEW

In this section we review the differential geometry of a weakly strainedM -dimensional
manifoldM embedded inN-dimensional spaceRN. By weak strains we mean~1! the strains are
small compared to unity and~2! the derivatives of the strains are small compared to the o
relevant inverse lengths~curvatures and torsions!. These are the usual assumptions of thin pl
theory.14 Note that they do not prohibit arbitrarily large deformations of the manifold. With th
J. Math. Phys., Vol. 38, No. 2, February 1997
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assumptions the math simplifies considerably. A treatment of the topics in this section usi
full apparatus of differential geometry may be found in Refs. 24 and 25.

The manifold is flat in the absence of external forces, so it can be parameterized b
Euclidean coordinate patch$xW5xi êi P M for i P @1,M #; xi50 for i P @M11,N#% where$êi% are
the Euclidean basis vectors. We will refer to (xa ;a P @1,M #) as themanifoldcoordinate patch and
denote it with Greek subscripts. Any deformation ofM can then be represented as a continuo
maprW(xa) from the manifold coordinates toRN. At each point on the deformed manifold there
an M -dimensional tangent space spanned by the tangent vectorstWa5]arW. The metric on the
manifold is thengab5 tWa• tWb and the strain tensor isuab5(1/2)(gab2dab).

We treat all relevant quantities to lowest order in the strains. This immediately give
gab5dab1O(u), so there is no need to distinguish the covariant components of a tensor fro
contravariant components. The Christoffel symbols areGab

g 5]buag1]aubg2]guab1O(u2).25

Thus,Da5]a1O(u) and covariant derivatives are just partial derivatives to leading order. G
desics are approximately straight lines in the manifold coordinates.

The extrinsic curvature tensor for the manifold is defined asKW ab5Da tWb']a tWb . It is straight-
forward to show that the components of this tensor are normal to the tangent space. We sta

tWa•KW bg5 tWa•]b tWg5]b~ tWa• tWg!2]b tWa• tWg5]b~dag!2KW ab• tWg52 tWg•KW ab. ~1!

This quantity is therefore odd under a cyclic permutation of the indices. Three such permut
gives tWa•KW bg52 tWa•KW bg50.

We choose a set of orthonormal basis vectors$n̂(a)(xb)% to span the (N2M )-dimensional
normal space at each point on the manifold. Note that we use Greek-in-parenthesis for the
index (a) P @M11,N#. In this basis the extrinsic curvature tensor becomesKW ab5Cab

(g)n̂(g) where
Cab
(g)5n̂(g)•KW ab and summation over repeated indices is implied. We will refer to theN2M

tensorsCab
(g) as the normal components of the extrinsic curvature tensor. Note thatCab

(g)5Cba
(g) and

KW ab5KW ba sinceKW ab']a]brW.
It is useful to expand the derivatives of the normal vectors in the full basis$ tWa ,n̂(a)%,

]an̂
~b!52Cag

~b! tWg2ta
~b!~g!n̂~g!, ~2!

where we have defined the torsionsta
(b)(g)(x)52n̂(g)•]an̂

(b) and where we have use
05]a( tWg•n̂

(b))5 tWg•]an̂
(b)1Cag

(b) . Equation~2! is the generalization of the Weingarten map f
a plate.25 Taking one derivative ofn̂(a)•n̂(b)5d (a)(b) gives us the antisymmetry property for th
torsionsta

(b)(g)52ta
(g)(b) .

The last quantity we will need is the intrinsic curvature tens
Rabmn5KW am•KW bn2KW an•KW bm .

25 In the normal basis, this becomes

Rabmn@C#5Cam
~g!Cbn

~g!2Can
~g!Cbm

~g! . ~3!

The intrinsic curvature tensor is related to the strain tensor via the generalization of G
Theorema Egregium,

Rabmn@u#52uam,bn1uan,bm2ubn,am1ubm,an1O~u2!, ~4!

where indices to the right of a comma indicate partial derivatives. Equations~3! and~4! together
giveRabmn@C#5Rabmn@u#. This is one version of thegeometricvon Karman equation, so calle
because it expresses the geometric constraint relating the extrinsic curvature and the stra
straightforward to verify this equation by substituting the definition of the strain tensor
Rabmn@u# and differentiating.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The intrinsic curvature tensor will be most useful to us in the linear combination

Gab5Ranbn2
1

2
dabRmnmn . ~5!

This is the Einstein curvature tensor, familiar from general relativity.26 It is symmetric
Gab5Gba and satisfies the conservation law]aGab50. Taking the appropriate contractions
the geometric von Karman equation gives us

Gab@C#5Gab@u#. ~6!

III. THE ELASTIC ENERGY FUNCTIONAL

In this section we obtain an expression for the elastic energy of anM -dimensional manifold
M via the thin limit of anN-dimensional solidN . Versions of this calculation for a rod and pla
may be found in Refs. 13 and 14.

To begin we consider the elastic energy functional for an arbitraryN-dimensional solid. We
keep the assumption of small strains used in the last section, but we relax the condition
derivatives. As before, there is a Euclidean coordinate patch (xi) covering the undeformed man
fold $xW5xi êi P N for i P @1,N#%. This is thematerialcoordinate patch, denoted by Latin indice
Under the application of external forces the solid assumes an embeddingrW(x). The tangent space
of the solid is the fullRN and the tangent vectors aretW i(x)5] i rW. The metric isgi j (x)5 tW i• tW j and
the strain tensor isui j5(1/2)(gi j2d i j ).

Two consequences ofui j!1 are ~1! the volume element of the deformed soliddrN(x) is
well-approximated by the volume element of the undeformed soliddxN and~2! the elastic energy
of the material only needs to be calculated to second order in the strains. The most general
functional quadratic in the strains and consistent with an isotropic material is

E@u#5E
N

dxNS mui j
21

l

2
uii
2 D , ~7!

where m and l are the Lame´ coefficients.14 It is useful to rewrite this equation
E5(1/2)*dxNs i j ui j where

s i j ~x!52mui j1ld i j ukk ~8!

is the stress field conjugate toui j . The stress field satisfies the conservation lawDis i j50.
By analogy with the treatments of a rod and sheet, we assume thatN 5M3BN2M(h) where

BN2M(h) is an (N2M )-ball of infinitesimal radiush. The choice of a spherical ‘‘cross-section
is important to preserve the full rotational symmetry in the normal space ofM. The material
coordinate patch becomes$xW5xi êi P M for i P @1,M #; ( i5M11

N xi
2<h2%. We refer to the

long directions as themanifold coordinates and denote them with Greek indices. We r
to the short directions as thenormal or transversecoordinates and denote them with Gree
in-parenthesis. For clarity we relabel the transverse coordinatesz (a)5x(a) , so that
(xi)5(x1 ,x2 , . . .xM ,z (M11) ,z (M12) , . . . z (N)).

The M -dimensional surface satisfyingz (a)50 is the centroid of N . When the transverse
degrees of freedom are integrated out it is the centroid which becomes the manifoldM. Under the
application of external forces the centroid deforms to some equilibrium embed
rWc(x)5rW(x,z50). All the quantities discussed in the previous section are well-defined with
spect to this embedding. With the exception ofCab

(l) andta
(s)(l) , we will denote quantities calcu

lated on the centroid with a superscriptc.
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



aylor

ormal

ection

lative

in

n

as

rces

834 Eric M. Kramer: The von Karman equations in high dimensions

¬¬¬¬¬¬¬¬¬¬
The first step in deriving the elastic energy functional for the centroid is to make a T
expansion of the embeddingrW(x,z) in z,

rW~x,z!5rWc~x!1z~m!aW
~m!~x!1

1

2
z~m!z~n!bW

~m!~n!~x!1•••, ~9!

whereaW (m)(x)5] (m)rW(x,z)uz50 andbW
(m)(n)(x)5] (m)] (n)rW(x,z)uz50. Recall that in Sec. II we had

the freedom to choose an arbitrary set of torsions due to the rotational symmetry of the n
space. Here we make the natural assignmentn̂(m)(x)5aW (m)/uaW (m)u. With this identification the
torsions of the normal basis are the torsions of the deformed solid.

To calculate the energy we need to solve foraW (m) and bW (m)(n) in terms of uab
c , Cab

(m) ,
ta
(m)(n) , and their derivatives. We make the following assumptions:~1! uab

c !1, Cab
(l)!1/h, and

ta
(s)(l)!1/h. We will see that these are necessary to satisfy the small strain conditionui j!1. ~2!
The smallest length scalel over which the strains, curvatures, and torsions vary satisfiesl @h.
We therefore write the most general expressions consistent with the rotational and refl
symmetries of the problem to first nontrivial order,

aW ~m!5~11a1uaa
c !n̂~m!,

~10!
bW ~m!~n!5b1~Caa

~m!n̂~n!1Caa
~n!n̂~m!!1b2d

~m!~n!~Caa
~l!n̂~l!!,

wherea1, b1, andb2 are dimensionless constants to be determined. The corrections are of re
orderO(u,hC,ht, andh/l ). A more detailed account of the derivation of Eq.~10! may be found
in Appendix A. Note thataW (m) andbW (m)(n) are independent oftWa andta

(m)(n) , primarily because the
torsions are antisymmetric underm↔n. If the cross-section ofN is not rotationally symmetric,
then there are additional possibilities in Eq.~10!. This may couple the torsions to the curvatures
a nontrivial way and complicate the resulting theory considerably.

The tangent vectors to first nontrivial order are

]arW5 tWa
c1z~m!$2Cag

~m! tWg2ta
~m!~g!n̂~g!%,

~11!
]~a!rW5~11a1ugg

c !n̂~a!1b1z~m!~Caa
~a!n̂~m!1Cgg

~m!n̂~a!!1b2z~a!~Cgg
~l!n̂~l!!,

and the components of the strain tensor are

uab5uab
c 2z~m!Cab

~m! , ua~b!52
1

2
z~m!ta

~m!~b! ,

~12!

u~a!~b!5a1ugg
c d~a!~b!1b1z~m!~d~a!~b!Cgg

~m!!1
b11b2
2

~z~a!Cgg
~b!1z~b!Cgg

~a!!.

From this it is clear that our assumption~1! above is equivalent to the small strain conditio
ui j!1. Also note that the transverse derivatives of the strain tensor] (a)ui j are ofO(C,t) and are
not negligible. Only the manifold derivatives]aui j can be safely neglected to leading order,
assumed in Sec. II.

We derive the energy for a portion of the manifold far from the regions where external fo
are applied. We therefore have the boundary conditions (a)(b)uz5h50. Combined with the con-
servation lawDis i j50, we haves (a)(b)50 everywhere. This condition specifiesu(a)(b)
uniquely. Referring to Eq.~8!,

s~a!~b!52mu~a!~b!1ld~a!~b!ukk50, ~13!
J. Math. Phys., Vol. 38, No. 2, February 1997
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sou(a)(b);d (a)(b) andb11b250. Substituting the trace of the strain tensor,

ukk5uaa
c 2z~m!Caa

~m!1~N2M !~a1uaa
c 1b1z~m!Caa

~m!!, ~14!

into Eq. ~13! gives usa152b152c0 wherec05l/(2m1(N2M )l). Thus

u~a!~b!52c0d~a!~b!~ugg
c 2z~m!Cgg

~m!!, ~15!

ukk5c1~ugg
c 2z~m!Cgg

~m!!, ~16!

wherec152m/(2m1(N2M )l).
Substituting Eqs.~12! and ~16! into the expression for the strain Eq.~8! gives

sab52m~uab
c 2z~m!Cab

~m!!1c1ldab~ugg
c 2z~m!Cgg

~m!!,
~17!

sa~b!52mz~m!ta
~m!~b! , s~a!~b!50.

The elastic energy equation~7! becomes

E5E
M

dxME
BN2M~h!

dzN2MH m~uab
c 2z~m!Cab

~m!!21c1
l

2
~ugg

c 2z~m!Cgg
~m!!21

m

4
~z~m!ta

~m!~b!!2J .
~18!

Since the transverse coordinates are being integrated overBN2M, terms odd inz (m) vanish and we
have finally

E@u,C,t#5E
M

dxMH mc~~uab
c !21c0~uaa

c !2!1k~Cab
~m!Cab

~m!1c0Caa
~m!Cbb

~m!!1
k

4
~ta

~m!~n!ta
~m!~n!!J ,

~19!

where

mc5mE
BN2M~h!

dzN2M ~20!

is the effective stretching modulus and

k5mE
BN2M~h!

dzN2Mz~1!
2 ~21!

is the effective bending modulus of the thin manifoldM. The integral in Eq.~20! is just the
volume of a sphere with radiush,

E
Bd~h!

dzN2M5
1

d
hdSd , ~22!

whereSd52pd/2/G(d/2) is the area of a unit sphere ind dimensions. The integral in Eq.~21! is
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
E
Bd~h!

dzdz~1!
2 55

2

3
h3, d51,

p

4
h4, d52,

1

d12
hd12B~3/2,d22!Sd21 , d.2,

~23!

whereB(a,b)5G(a)G(b)/G(a1b) is the beta function.27

We can rewrite the elastic energy using conjugate fields,

E@u,C,t#5
1

2EMdxM$sab
c uab1Mab

~m!Cab
~m!1Ta

~m!~n!ta
~m!~n!%, ~24!

where

sab
c ~x!52mc~uab

c 1c0dabugg
c ! ~25!

is the resultant strain field,

Mab
~m!~x!52k~Cab

~m!1c0dabCgg
~m!! ~26!

is the bending moment field, and

Ta
~m!~n!~x!5

1

2
kta

~m!~n! ~27!

is the torsional moment field. Equation~24! is the full elastic energy functional for a thin elast
manifold. We will frequently refer to the term quadratic in the strains as the stretching energ
the term quadratic in the curvatures as the bending energy.

We henceforth drop the superscriptc and assume that all quantities refer to the centr
manifoldM.

IV. THE POTENTIALS AND THE VON KARMAN EQUATIONS

A. The case M>2

Note that Eq.~24! does not explicitly couple the strains to the curvatures of the manifold.
strains and the curvatures are implicitly coupled because they are both defined via derivat
the embeddingrW(x). However, a naive functional derivative of Eq.~24! with respect touab gives
the trivial and incorrect resultsab50. Previous authors, working with a thin plate in thr
dimensions, have solved this problem by working in a special coordinate system which is ap
mately tangent to one point on the manifold. In this frame, known as the Monge represen
the embedding isrW(x)5@xa1ua(x),w(x)# and the derivatives ofuW (x) andw(x) are assumed to
be small everywhere. To leading nontrivial order the strain tensor isuab5(1/2)
3(ua,b1ub,a1w,aw,b) and the extrinsic curvature tensor isCab5w,ab . Functional derivatives
are then taken with respect toua andw and the correct equations are obtained.28

We choose to work instead with the field variablesuab , Cab
(m) , and their potentials. The

advantages are~1! we work exclusively in the manifold coordinates, so there is no need fo
approximately tangent frame,~2! it is easier to treat the boundary conditions, and~3! we discover
a new interpretation for the stress functions of Airy and Maxwell.19,21,22 Due to some small
differences, we focus here on the caseM.2 and return to the caseM52 in the next subsection
J. Math. Phys., Vol. 38, No. 2, February 1997
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The coupling between the strain and the curvature is completely accounted for by the geo
von Karman equation, Eq.~6!. We therefore add the Lagrange multiplier term,

Ex@u,C,x#5
1

2EMdxMxab~Gab@C#2Gab@u# !, ~28!

to the total elastic energy equation~24!. We will see that the Lagrange multiplierxab(x) is the
tensor stress function.

One may ask why it is sufficient to use the Einstein curvature tensorGab rather than the full
intrinsic curvature tensorRabmn . Gab is symmetric ina↔b and constrained by the conservatio
law Gab,a50, so a naive count of the independent degrees of freedom givesM (M21)/2.
Rabmn is symmetric ina↔b andm↔n, and antisymmetric in (ab)↔(mn), so in principle it has
M (M21)(M22M12)/8 independent components. However, Eq.~4! shows that for small strains
the intrinsic curvature tensor is linear in the strain tensoruab . The strain tensor is symmetric an
constrained by the conservation of the resultant stress tensor, so it hasM (M21)/2 independent
components. The Einstein curvature tensor is therefore the most economical choice. The a
tive forms for the Lagrange multiplier termxabmnRabmn andxabRambm both yield the correct von
Karman equations for the fieldssab andCab

(l) , but the Lagrange multiplier is not identical to th
stress function.

If the normal basis has zero torsion we can define a bending potential for each n
component of the extrinsic curvature tensor. In the remainder of this paper we assume there
external torsional moments acting on the manifold. Because the torsions are not coupled
strains or to the curvatures in Eqs.~24! and~28!, the solution is simplyta

(m)(n)(x)50. With this we
can prove the Codazzi–Mainardi relation

]aCbg
~l!5n̂~l!

•~]aKW bg!1~]an̂
~l!!•KW bg5n̂~l!

•~]a]b tWg!1~2Cad
~l! tWd!•KW bg

5n̂~l!
•~]bKW ag!5]bCag

~l! . ~29!

We have used the simplified Weingarten map]an̂
(l)52Cab

(l) tWb and the orthogonality condition
tWa•n̂

(b)50. The Codazzi–Mainardi relation is analogous to the zero-curl condition on a v
field. It allows the definition of a scalar potentialf (l)(x) via Cab

(l)5]a]b f
(l).

There is a novel form for the Einstein curvature tensor which greatly simplifies the variat
derivatives taken below. We begin by defining thedouble curloperator, valid forM.2,

~d.c.!abmn5
1

~M23!!
eagmt1•••tM23

ebdnt1•••tM23
]g]d

5dabdmn¹22dandbm¹22dab]m]n1dan]b]m1dbm]a]n2dmn]a]b , ~30!

whereet1•••tM
is the Levi-Civita tensor,

et1•••tM
5H 11 ~t1 ,t2 , . . . ,tM ! even permutation of~1,2,3,. . . ,M !,

21 ~t1 ,t2 , . . . ,tM ! odd permutation of~1,2, . . . ,M !,

0 otherwise.

~31!

The double curl is antisymmetric ina↔m andb↔n and symmetric in (am)↔(bn) ~compare to
Rabmn). It satisfies]a(d.c.)abmn50 by construction. The Einstein curvature tensor may be w
ten asG@u#ab5(d.c.)abmnumn orG@ f #ab5(d.c.)abmn@(1/2)f ,m

(l) f ,n
(l)#. These expressions are ea

ily verified by substitution.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Now we can write the full expression for the energy functional, including the Lagra
multiplier,

E@u, f ,x#5E
M

dxM
1

2
$sab@u#uab1k~ f ,mn

~l! f ,mn
~l! 1c0f ,mm

~l! f ,nn
~l!!%1xab~d.c.!abmnS 12 f ,m~l! f ,n

~l!2umnD .
~32!

Taking a functional variation with respect touab and integrating the Lagrange multiplier ter
twice by parts gives

dE5E
M

dxMdumn~smn2~d.c.!mnabxab!1
1

~M23!!

3eagmt1•••tM23
ebdnt1•••tM23

]g~dumnxab,d2dumn,dxab!, ~33!

where we have used the symmetry ofuab andxab . The first term in Eq.~33! gives a conservation
law for the resultant stress tensor. TakingdE/duab50,

sab5~d.c.!abmnxmn . ~34!

This is a restatement of the conservation law]asab50. Equation~34! is the defining equation for
Maxwell’s stress function inM53.21,22We see that the stress function is a Lagrange multipl
This interpretation persists even whenM5N53 and the extrinsic curvature tensor is identica
zero @take f (l)50 in Eq. ~32!#. Equation~34! also provides a natural generalization of the str
function to higher dimensions.

One can verify by substitution that the stress tensor remains unchanged under the loca
transformationsxab→xab1(1/2)(ja,b1jb,a) where ja(x) is an arbitrary vector field.29 The
tensor stress function is therefore a gauge field withM (M21)/2 physical degrees of freedom
This agrees with the fact that the stress tensor itself hasM (M21)/2 independent components.

The second term in Eq.~33! is a perfect differential. Using Gauss’ Law to rewrite it as
integral over theM –1-dimensional boundary of the manifold]M gives

dEu]M5
1

~M23!!
eagmt1•••tM23

ebdnt1•••tM23
E

]M
dxM21m̂g~dumnxab,d2dumn,dxab!,

~35!

wherem̂ is the unit outward normal defined in the tangent space ofM. The application of this
term to a specific problem depends on the boundary conditions imposed at]M.

Taking the functional variation ofE with respect tof (l) and integrating by parts gives

dE5E
M

dxMd f ~l!~2k~11c0!¹
4f ~l!2 f ,ab

~l! ~d.c.!abmnxmn!

12k]g~d f ,g
~l! f ,nn

~l!1c0d f ,n
~l! f ,gn

~l!2~11c0!d f
~l! f ,ggn

~l! !

1
1

~M23!!
eagmt1•••tM23

ebdnt1•••tM23
]g~d f ~l! f ,mn

~l! xab,d2d f ,d
~l! f ,mn

~l! xab!, ~36!

where there is no sum on (l). The second and third terms are perfect differentials and ma
written as a condition on]M. TakingdE/d f (l)50, the first term gives

2k~11c0!¹
4f ~l!5 f ,ab

~l! ~d.c.!abmnxmn , ~37!
J. Math. Phys., Vol. 38, No. 2, February 1997
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which may be rewritten in the more familiar form

Mab,ab
~l! 5sabCab

~l! . ~38!

This is theforce von Karman equation, which expresses the balance of forces on a trans
section of the thin manifold.

To complete our discussion of the von Karman equations, we write the Einstein curv
tensor in terms of the stress function. First invert Eq.~25! to get

uab5
1

2m
~sab2c2dabsgg!, ~39!

wherec25l/(2m1Nl). Then

Gab@x#5
1

2m
$~d.c.!abmn~d.c.!mnstxst2c2~d.c.!abmm~d.c.!nnstxst%

5
1

2m
$~c321!~dab¹4xss2dab¹2xst,st2¹2xss,ab!1c3xst,abst1¹4xab

2¹2xas,bs2¹2xbs,as%, ~40!

wherec35(M22)@2m1(N2M12)l#/(2m1Nl).
We thus have several alternative expressions for the von Karman equations, depend

which fields are most convenient. In terms of the extrinsic curvature and strain tensors, we
Eqs. ~6! and ~38!. In terms of the bending potentials and the stress function we h
Gab@ f #5Gab@x# and Eq.~37!.

B. The case M52

In this section we rederive the von Karman equations for a thin plate. Although the equ
of the three-dimensional problem have been discussed in detail by several authors, our var
derivation of the force von Karman equation is particularly transparent.6,13,14,20The only change
from the previous section is that the tensor double curl operator is not defined forM52. Instead
we use the scalar operator

~d.c.!ab5eamebn]m]n5dab¹22]a]b . ~41!

WhenM52, the intrinsic curvature tensor has only one independent component, whic
take as the generalization of the Gaussian curvature,

kG@C#5
1

2
Rabab@C#5C11

~l!C22
~l!2C12

~l!C12
~l! . ~42!

It is straightforward to verify thatkG@u#52(d.c.)abuab andkG@ f #52(d.c.)ab(
1
2f ,a
(l) f ,b

(l)).
The elastic energy is

E@u,C,x#5E
M

dxM
1

2
$sab@u#uab1Mab

~l!Cab
~l!%1x~2kG@C#1kG@u# !, ~43!
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
E@u, f ,x#5E
M

dxM
1

2
$sab@u#uab1k~ f ,ab

~l! f ,ab
~l! 1c0f ,bb

~l! f ,bb
~l! !%

1x~d.c.!abS 12 f ,a~l! f ,b
~l!2uabD , ~44!

where the Lagrange multiplierx(x) is a scalar field. Taking the functional derivativ
dE/duab50 gives sab5(d.c.)abx. Thus, ]asab50, and x is the scalar stress function o
Airy.20,6

In terms of the stress function,kG@x#5@(12c2)/2m#¹4x, and the geometric von Karma
equation is

1

m
~12c2!¹

4x52~d.c.!ab~ f ,a
~l! f ,b

~l!!. ~45!

The force von Karman equation is found viadE/d f (l)50 to be

2k~11c0!¹
4f ~l!5 f ,ab

~l! ~d.c.!abx, ~46!

which reproduces Eq.~38!.

V. THE RIDGE

A. Boundary conditions

In this section we discuss the picture of a ridge as aboundary layerand find a simple
boundary condition which yields a ridge for generalM . Previous analytic studies of stress co
finement have been limited to the case of a thin plate (M52) inR3. In Ref. 6, Lobkovsky treated
the case of a single ridge in isolation and analyzed the resulting von Karman equations to
order in the thickness. He found that a ridge of lengthX has an elastic energyE;mh2(X/h)1/3 and
a widthw;h1/3X2/3.

We develop the concept of the ridge as a boundary layer by treating the thicknessh as a
tunable parameter. We start withh50. Since the width of a ridge scales likeh1/3, the zero
thickness limit of a ridge is a straight line of zero width. The geometry of the ridge, shown in
1, is two flat plates which meet at a nonzero angleD. The curvatures are obviously singular on th
line and zero elsewhere. The intuitive reason for this behavior is thatk/m;h2, so there is no
energy cost for curvatures whenh50. Whenh is made nonzero, the plate can achieve a low
total energy by smoothing out the singularity and trading stretching energy for bending
resulting balance generates a new length scale, which is the width of the ridge. This pictu
remain essentially unchanged whenM.2. The important point is that the ridge is a bounda
layer which regularizes theh50 singularity.

Lobkovsky began with the semi-infinite strip$2`,x1,`,2X/2<x2<X/2%. Then he as-
sumed the presence of~unspecified! normal forces acting at the boundaryx256X/2 sufficient to
deform the strip into the ridge shown in Fig. 1. The boundary conditions
Cab(x1 ,6X/2)50, sab(x1 ,6X/2)50, and f (x1 ,6X/2)5aux1u. The first two conditions are
chosen for convenience. It is the third condition which determines the shape of the ridge
potential f plays the role of the normal coordinate. The dihedral angle of the resulting rid
D5p22a.

The generalization of this geometry toM.2 is straightforward. We limit our discussion to th
hypersurfaceN5M11, since this captures the most important features of the general case1 We
take for ourh50 ridge the singular boundary between twoM -dimensional regions with zero
curvature. As discussed in Ref. 9, such a boundary can have no curvature in the material
nates or inRN. Our boundary conditions must be consistent with this ridge.
J. Math. Phys., Vol. 38, No. 2, February 1997
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We take for our undeformed manifold the semi-infinite domain$2`,x1,`, xāêā P C for
ā P @2,M #% ~see Fig. 2!. The material coordinatex1 is perpendicular to the ridge andC is an
arbitrary, simply connected cross-section. The ridge is imposed by some~unspecified! normal
forces sufficient to create the ‘‘kinked’’ potentialf u]M5aux1u. For simplicity we take
Cabu]M50 andsabu]M50. The solution to the von Karman equations whenh50 is the singular
ridge f (x)5aux1u.

B. Scaling analysis

To begin a scaling analysis of the von Karman equations we need to decide which fie
work with. Since the stress functionxab is a gauge field inM.2, it is convenient to work directly
with the stress tensorsab . We use the bending potentialf (1) instead of the curvature tenso
Cab
(1) because of the obvious advantages of a scalar. SinceN5M11 we can drop the norma

index. The geometric and force von Karman equations are then

~d.c.!abmn~ f ,m f ,n!5
1

m
~d.c.!abmn~smn2c2dmnsgg!, ~47!

FIG. 1. The ridge in a semi-infinite strip whenh50 andh.0. We have labeled theh50 ridge to show the ridge length
X, the dihedral angleD, and the manifold.

FIG. 2. The manifold coordinate system (x1 ,x2 ,x3) for the semi-infinite rodR13C . The position of the planar ridge is
indicated in grey.
J. Math. Phys., Vol. 38, No. 2, February 1997
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2k~11c0!¹
4f5sab f ,ab . ~48!

Now convert to the dimensionless quantities

f̌5 f /X , šab5
X2

2k~11c0!
sab and x̌a5

xa

X
, ~49!

whereX is a length scale characterizing the cross-sectionC . Including the conservation law, th
dimensionless equations are

]ašab50, ~50!

~d.c.!abmn~ f̌ ,m f̌ ,n!5e2~d.c.!abmn~šmn2c2dmnšgg!, ~51!

¹4 f̌5šab f̌ ,ab , ~52!

wheree252k(11c0)/(mX
2);(h/X)2. As for a bent plate in three dimensions, we expect

ridge solution to be valid when 0,e!1. Note that a naive count of Eqs.~50!–~52! gives
M (M11)/21N constraints onM (M11)/21N2M field variables. This set is not overdete
mined because the argument of the double curl has the local gauge fre
( )mn→( )mn1(1/2)(jm,n1jn,m) where jW (x) is an arbitrary vector field. The geometric vo
Karman equation therefore represents onlyM (M21)/2 independent constraints.

The e50 limit is the h50 limit. As discussed in the previous section, the solution to t
reduced problem is the singular ridgef̌5aux̌1u. We might hope to solve for thee.0 ridge as a
perturbation about this solution. Howevere multiplies the highest derivative ofšab . It is there-
fore a singular perturbation and naive approaches fail.

To find the exponents which characterize the ridge, we make the following rescalings:

s̃115edš11, s̃1ā5esš1ā , s̃ ā b̄5e tš ā b̄ ,
~53!

f̃5eb f̌ , x̃15ebx̌1 , and x̃ā5e0x̌ā ,

where we distinguish the coordinates parallel to the ridge with a barred Greek indexā P @2,M #.
Note that f̃; x̃1 is required by the boundary condition, so they scale with the same power oe.

To solve for the exponents we start with the conservation law Eq.~50!. Grouping terms of like
order ine gives

eb2d]1s̃111e2s] ās̃ ā150, ~54!

eb2s]1s̃1b̄1e2t] ās̃ ā b̄50. ~55!

Assuming none of the rescaled quantities vanish, this impliess5d2b and t5d22b.
The rescaled force von Karman equation is

~e2b]1
21e0] ā

2 !2 f̃5e2b2d~ s̃ab f̃ ,ab!. ~56!

If b>0 this equation is dominated by the lowest order terms ineb as e→0 and 052b2d. If
b,0 then 4b52b2d.

The rescaled geometric von Karman equation hasM (M11)/2 components, one for eac
component ofGab . For the scaling analysis they can be grouped into four classesG11, G1ā ,
Gā ā ~no sum!, andGā b̄ . Assuming none of the relevant terms vanish, we only need to cons
one example from each class. TheG11 component is
J. Math. Phys., Vol. 38, No. 2, February 1997
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e22b~ f̃ ,ā b̄ f̃ ,ā b̄2 f̃ ,ā ā f̃ ,b̄ b̄ !52e22d$e2bs̃ ā b̄ ,ā b̄1e2bc4s̃ ā ā ,b̄ b̄1e0c2~M22!s̃11,b̄ b̄%, ~57!

wherec4512(M22)c2. We have made extensive use of the conservation laws̃ab,a50 and the
symmetries of the problem to simplify the expression. The other components are deriv
Appendix B. A careful analysis shows that all components yield the same constraint o
exponents. If this were not the case, the equations for the exponents would be overdeterm
b>0 then Eq.~57! gives22b522d. If b,0 then22b522d12b.

The constraints on the exponents are only solvable ifb,0. The unique solution is

b52
1

3
, d51

2

3
. ~58!

These are identical to the exponents found by Lobkovsky for the ridge in (M52,N53).6 There
are a variety of geometric intuitions associated with these exponents. The most important
the ridge width is characterized by the transverse curvature viaw;1/C11. Thus

w;e2bX;h1/3X2/3. ~59!

We refer the reader to Ref. 6 for a fuller discussion of the ridge geometry.
It is instructive to consider the rescaled ridge energy to leading order ine,

E5E
M

~XMe2bdx̃ M !H 1

2m S 2k~11c0!

X2 e2d12bD 2~ s̃ ā b̄
2

2c2s̃ ā ā
2 !1kS eb

X D 2~11c0!C̃ 11
2 J .

~60!

Gathering terms and using the geometric von Karman constraintd24b52 gives

E5mhM~cse
2M25b1cbe

2M121b!, ~61!

wherecs and cb are dimensionless constants due to the stretching and bending energy, r
tively. In this form it is clear how the value ofb, and hence the width, is generated via the bala
between strains and curvatures. As the widthw;e2b is increased, the bending energy decrea
and the stretching energy increases. The ridge chooses the valueb521/3 which minimizes the
total energy. Thus

E;mhMe2M15/3;mhM~X/h!M25/3. ~62!

Furthermore, Eq.~61! fixes exactly the ratiocb /cs . At the minimum,

]E

]b U
b521/3

5mhM ln~e!~25cse
2M25b1cbe

2M121b!ub521/350. ~63!

This reduces tocb /cs55, which means the bending energy is exactly five times the stretc
energy in an asymptotic ridge. As noted in the Introduction, this ratio also holds
(M52,N53).23

VI. CONCLUSIONS

In this paper we derive the equations of static equilibrium for anM -dimensional elastic
manifold embedded inN-dimensional space. We define the potentialsxab and f (l) on the mani-
fold. These are the higher-dimensional analogs of the stress functionx and the bending potentia
f of a thin plate in three dimensions. We find a novel interpretation for the stress function a
Lagrange multiplier of the geometric von Karman equation in the elastic energy functional o
manifold.
J. Math. Phys., Vol. 38, No. 2, February 1997
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We go on to consider the properties of anM –1-dimensional ridge in anM.2-dimensional
manifold. The scaling is essentially identical to that found by Lobkovsky for a ridge inM52.6 We
find that a ridge of linear sizeX in a manifold of thicknessh has a widthw;h1/3X2/3 and a total
elastic energyE;mhM(X/h)M25/3, wherem is a stretching modulus. The scaling analysis a
fixes exactly the ratio of bending energy to the stretching energy in a ridgeEbend/Estretch55.
These results are valid in the thin limith!X. Although our calculations are explicitly for a ben
hypersurfaceN5M11, unpublished theory and simulations lead us to expect no change i
ridge exponents whenN.M11.

The purpose of this work was primarily as an aid to future studies of crumpling in h
dimensional systems. In particular, in future papers we will discuss the phenomenon of spo
ous ridge formation as a mechanism of stressconfinement.1,9 The elastic energy and ridge expo
nents derived here are an essential foundation for that work. We should point out that the s
analysis in this paper is in no way a guarantee that these ridges will form in a crumpled ma
The question of how the elastic energy is distributed is best resolved in combination with
puter simulations and, for (M52,N53), experiments. As an example of the way ridge format
can fail, we note that whenN.2M a manifold with a free boundary can make its stretch
energy zero everywhere. Since the ridge structure depends on the competition between b
and stretching energy, no ridge formation is possible.
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APPENDIX A: COMMENTS ON THE TAYLOR EXPANSION

Begin by expandingaW (m) andbW (m)(n) in the full basis$ tWa ,n̂(a)%,

aW ~m!5aa
~m! tWa1a~m!~n!n̂~n!,

bW ~m!~n!5ba
~m!~n! tWa1b~m!~n!~l!n̂~l!. ~A1!

The coefficients (aa
(m) ,a(m)(n),ba

(m)(n) ,b(m)(n)(l)) are functions ofuab
c , Cab

(m) , ta
(m)(n) , and their

derivatives. We require that the expressions for the coefficients in terms of these quantitie
the correct number of free manifold and normal indices~there may be an arbitrary number o
contracted indices!. This is necessary and sufficient for their correct behavior under reflections
rotations of the manifold and normal coordinates.

Note that ba
(m)(n) and b(m)(n)(l) must be even underm↔n since bW (m)(n)(x)

5] (m)] (n)rW(x,z)uz50. This is whyb3ta
(m)(n) tWa is not a valid term. Note also thatta

(m)(m)50.
We require that the coefficients have the correct units. Consider the following additions

expression foraW (m):

aW 8~m!5~ ã2Cab
~m!Cab

~n!1ã3ta
~m!~l!ta

~l!~n!!n̂~n!1~ ã4ta
~m!~n!Cab

~n!1ã5Cab,b
~m! ! tWb . ~A2!

SinceaW (m) is dimensionless the constantsã j must have units of (length)2. The only length scale
available is the thicknessh, so we write ã j5ajh

2. The expressions are therefore
O(h2C2,h2t2,h2Ct, andh2C/l ), respectively. Although these terms are assumed small, the
J. Math. Phys., Vol. 38, No. 2, February 1997
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not necessarily negligible compared touab
c . One can verify, however, that their contribution to t

energy is negligible compared to the curvature and torsion terms in Eq.~24!. Similar arguments
lead to the form forbW (m)(n).

In the theory of thin shells it is known that the centroid deformations alone are not suffi
to describe the behavior near the boundary of the shell. The full three-dimensional problem
be solved there. As a consequence, any energy functional derived via a Taylor series expan
the thickness is not uniformly convergent near the boundary. For a detailed discussion o
considerations, we refer the reader to Ref. 16 and the references therein.

APPENDIX B: SCALING OF THE FORCE VON KARMAN EQUATION

Assuming none of the relevant terms vanish, we only need to consider one example from
of the three classesG1ā , Gā ā ~no sum!, andGā b̄ . Dropping the tilde notation, theG12 equation
is

2e2b~ f ,12f ,ā ā2 f ,1ā f ,2ā !52e22d~e3bs12,111ebs12,ā ā1ebc4s11,121e3bc4sā ā ,12!. ~B1!

Defining dotted Greek indicesȧ P @3,M #, theG22 equation is

2e0~ f ,1ḃ f ,1ḃ2 f ,11f ,ḃḃ!1e22b~ f ,ȧḃ f ,ȧḃ2 f ,ȧȧ f ,ḃḃ!

52e22d$c4~e2bs11,111e0s11,ḃḃ1e4bsā ā ,111e2bsā ā ,ḃḃ!1e4bs22,111e2bs22,ā ā%

~B2!

and theG23 equation is

2e0~ f ,23f ,112 f ,21f ,31!12e22b~ f ,23f ,ḃḃ2 f ,2ḃ f ,3ḃ!

52e22d~e0c4s11,231e2bc4sā ā ,231e4bs23,111e2bs23,ā ā !. ~B3!

If b>0, then all three equations give the constraint22b522d in agreement with theG11

component. Ifb,0, then all three give 0522d14b, again in agreement withG11.
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Stress-energy-momentum tensors in constraint field
theories

Gennadi A. Sardanashvily
Department of Theoretical Physics, Physics Faculty, Moscow State University,
117234 Moscow, Russia

~Received 18 April 1995; accepted for publication 29 July 1996!

We observe no conventional energy-momentum conservation law in classical field
theory, but relations involving different stress-energy-momentum tensors which
differ from each other in currents of Noether type. They can be conserved if some
internal symmetries present. The key point is that different solutions of the same
constraint field model require different stress-energy-momentum tensors. We show
that the stress-energy-momentum of affine-metric gravity as like as the Noether
current in gauge theory is reduced to a superpotential on shell. ©1997 American
Institute of Physics.@S0022-2488~97!01402-3#

I. INTRODUCTION

In present work, we investigate stress-energy-momentum~SEM! conservation laws in field
theories with degenerate Lagrangian densities. Most contemporary field models are of this

The SEM conservation laws do not exhaust all energy-momentum differential conserv
laws, but SEM flows are globally defined quantities invariant under internal symmetries.

We follow the geometric approach to field theory when classical fields are describe
sections of a bundleY→X and their dynamics is phrased in terms of jet manifolds.1–4

As a shorthand, one can say that thek-order jet manifoldJkY of a bundleY→X comprises the
equivalence classesj x

ks, xPX, of sectionss of Y identified by the firstk11 terms of their Taylor
series at a pointx. Given fibered coordinates (xl,yi) of Y→X, thek-jet manifoldJkY is endowed
with the adapted coordinates (xl,yi ,yL

i ), uLu5r<k, where we exploit the multi-indexL for
collections of numbers (l1 ...l r) modulo rearrangements. There is the inverse system of the a
bundles

X←
p

Y←
p0
1

J1Y••• ←
pk21
k

JkY ←
pk
k11

••• .

Remark:All mappings throughout are of classC`. Manifolds are real, Hausdorff, finite
dimensional, second-countable, and connected. ByT is meant the tangent functor on manifold
and J denotes the jet functor on bundles. Given a bundleY→X, by VY is meant the vertical
subbundle of the tangent bundleTY of Y, andV*Y→Y is the vertical cotangent bundle ofY. We
use the conventional symbolŝ, ~, `, and4 for tensor, symmetric, exterior, and interior pro
ucts, respectively.

We are concerned with the first order Lagrangian formalism, for the most contemporary
models are described by first order Lagrangian densities. This is not the case for the Ein
Hilbert Lagrangian density of the metric gravitation theory which belongs to the special cla
second order Lagrangian densities whose Euler–Lagrange equations also are of the order5 In
the first order Lagrangian formalism, the configuration space of fieldss:X→Y is the first jet
manifoldJ1Y of Y. A first order Lagrangian density onJ1Y is defined to be an exterior horizonta
density

L:J1Y→`
n

T*X, n5dim X,
0022-2488/97/38(2)/847/20/$10.00
847J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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L5L~xm,yi ,ym
i !v, v5dx1`•••`dxn.

Remark:It is convenient to identify exterior formsfPVk on finite order jet manifoldsJkY
with their pullbacks into the graded algebra limitV of the direct system

VX→
p*

V0→
p0
1*

V1→
p1
2*

••• →
pk21
k*

Vk→••• .

The ~local! generating elements ofV are the horizontal formsdxl and the contact forms
uL
i 5dyL

i 2yL1l
i dxl. The moduleVm,V of m-forms admits the canonical decomposition

Vm5Vm,0
% Vm21,1

% ••• % V0,m

in subspaceshk :V
m→Vk,m2k of k-contact forms. Accordingly, the extrerior differentiald on V

is decomposed into the sumd5dV1dH of the vertical differentialdV and the total differentialdH
where

dHf5dxm`dmf, dm5]m1ym
i ] i1••• ,

dH+dH50, dV+dV50, dV+dH1dH+dV50.

We are based on the first variational formula in order to discover differential conserv
laws in Lagrangian field theories.6–8 We can restrict our consideration to vector fields on the
manifold J1Y which are the jet lift of vector fields on the bundleY. These vector fields preserv
the Cartan distribution onJ1Y.1

Let u5ul]l1ui] i be a projectable vector field onY→X corresponding to a 1-paramete
group of bundle isomorphisms ofY and

j 1u5ul]l1ui] i1~dlu
i2ym

i ]lu
m!] i

l

its jet lift ontoJ1Y. Given a Lagrangian densityL, we have the following canonical decompositio
of the Lie derivative ofL along j 1u:

L j 1uL[uVcEL1dHh0~ j
1ucJL!, ~1!

whereuV5(ucu i)] i is the vertical part ofu,

EL5~] i2dl] i
l!Lu i`v5d iLu i`v ~2!

is the Euler–Lagrange operator, andJL is some Lepagean equivalent ofL on J1Y.
Remark:One can get the first variational formula~1! both in the framework of the calculus o

variations and as the (k51) particular case of the canonical decomposition

Vk,n5Ek%dHVk,n21

such that

ek5pr1+dV :Ek21→Ek

is the variational map@e.g.,e1(L)5EL#.
9 It enables us to apply the first variational formula also

the polysymplectic Hamiltonian formalism.
On the kernel of the Euler–Lagrange operator~2! ~or simply on shell!, the first variational

formula ~1! results in the weak identity
J. Math. Phys., Vol. 38, No. 2, February 1997
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L j 1uL'dHh0~ j
1ucJL!,

~3!
]lu

lL1@ul]l1ui] i1~dlu
i2ym

i ]lu
m!] i

l#L'dl@~ui2umym
i !] i

l
L1ulL#,

called the transformation law of the flow

h0~ j
1ucJL!52T lvl , vl5]lcv. ~4!

If L j 1uL 5 0, we obtain the conservation law

0'2dH~T lvl!5dl@p i
l~ui2umym

i !1ulL#v, p i
l5] i

l
L. ~5!

On solutionss of the Euler–Lagrange equations, the weak equality~5! comes to the differentia
conservation law

0'd~s* ucJL!52
d

dxl T
l~s!v,

~6!
T l~s!5~p i

l~um]ms
i2ui !2ulL!.

The gauge theory of exact internal symmetries and the gravitation theory on bund
geometric objects are two examples of field models where the Lie derivatives of Lagra
densities are equal to zero. In both theories, the conserved flowT is brought into the form

T 5W1dHU5~Wl1dmU
lm!vl , ~7!

whereW'0 andU is a horizontal (n22)-form onJ1Y→X. In this case, one says that the flo
T is reduced to the superpotentialU.7,8,10

The flowsT ~4! which differ from each other indH-closed forms make obviously the sam
contribution into the first variational formula~1! and into the weak transformation law~3!. For
instance, different Lepagean equivalents ofL ~see Ref. 11! lead to the flows~4! which differ from
each other in the superpotential term

T 2T 85dm@~ui2yn
i un!ci

lm#vl , ~8!

whereci
lm52ci

ml are ~local! skew-symmetric functions onY. We here do not discuss this am
biguity. Hereafter, byJL is meant the Poincare´–Cartan form

JL5Lv1p i
l~dyi2ym

i dxm!`vl .

Building on the relation~8!, one can repeat all calculations for another Lepagean equivalen
Remark:Given a differential conservation law, it may happen that a conserved quantity,

canonical energy-momentum tensor, is not globally defined, but with accuracy to localdH-exact
forms. The first variational formula provides us with the flow which is well-behaved.

It is readily observed that the weak identity~3! is linear in a vector fieldu. Therefore, one can
consider superposition of the weak identities~3! corresponding to different vector fields. Fo
instance, ifu andu8 are projectable vector fields onY projected onto the same vector field onX,
the difference of the corresponding weak identities~3! results in the weak identity~3! for the
vertical vector fieldu2u8.

Accordingly, every projectable vector field onY projected onto a vector fieldt on X is
represented by the sum of some lift oft ontoY and a vertical vector field onY. Transformation
J. Math. Phys., Vol. 38, No. 2, February 1997
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laws with respect to vertical vector fields on a bundleY→X are of the Noether type which ar
examplified by the conservation laws in gauge theory.7,8 The corresponding flow~6! is the Noether
flow

T l52p i
lui .

The flow ~6! associated with a vector field onY which is a lift of some vector field onX is a SEM
flow. Thus every transformation law derived from the first variational formula~1! appears to be
the superposition of a Noether type conservation law and a SEM transformation law.

Let us examine the SEM transformations laws. We refer to Ref. 12 where the general
of SEM tensors is introduced, to Refs. 7 and 10 where the SEM conservation laws in gauge
and gravitation theory on bundles of geometric objects are investigated and the concep
superpotential is developed, and to Ref. 13 where the SEM flows are considered in the fram
of the polysymplectic Hamiltonian formalism.

In the general case, a vector fieldt on the baseX gives rise to a vector field onY only by
means of a connection on the bundleY→X.

Remark:Recall the 1:1 correspondence between the global sections

G5dxl
^ ~]l1Gl

i ] i !

of the affine bundleJ1Y→Y and the connections on the bundleY. They constitute the affine spac
modeled on the linear space of soldering 1-forms onY. For instance, a linear connectionK on the
tangent bundleTX of X and the dual connectionK* on the cotangent bundleT*X read

Kl
a52Knl

a ~x!ẋn, Kal* 5Kal
n ~x!ẋn .

The curvature of a connectionG is theVY-valued horizontal 2-form

R5 1
2Rlm

i dxl`dxm
^ ] i , Rlm

i 5]lGm
i 2]mGl

i 1Gl
j ] jGm

i 2Gm
j ] jGl

i .

Every connectionG yields the first order differential operator termed the covariant differentia

DG :J
1Y→T*X^

Y
VY, DG5~yl

i 2Gl
i !dxl

^ ] i .

In particular, a sections of Y→X is called the integral section forG if G+s5J1s.
Let t5tm]m be a vector field onX and

u5tG5tm~]m1Gm
i ] i !

its horizontal lift ontoY→X by a connectionG on Y. The weak identity~3! takes the form

L j 1tG
L'2dl~tmT G

l
m!v ~9!

or

~]m1Gm
i ] i1dlGm

i ] i
l!L'2dlT G

l
m , ~10!

where

T G
l

m5p i
l~ym

i 2Gm
i !2dm

l
L

is termed the SEM flow relative to the connectionG. We here restrict ourselves to this particul
case of SEM tensors.12
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



, the
tic

the
ns

ing.
rs

re, it
e to
the

me-
ector

me-
hern–

851Gennadi A. Sardanashvily: Stress-energy-momentum tensors in field theories

¬¬¬¬¬¬¬¬¬¬
For instance, let us choose the trivial local connectionGm
i 50. In this case, the identity~9!

recovers the well-known transformation law

]L

]xm 1
d

dxl T 0
l

m~s!'0 ~11!

of the canonical energy-momentum tensor

T 0
l

m~s!5p i
l]ms

i2dm
l
L.

This fails to be a well-behaved object. It is not a SEM flow in general. At the same time
transformation law~11! is well-defined as we show in the framework of the polysymplec
Hamiltonian formalism~see Sec. IV!.

Remark:A Lagrangian densityL depending on background fields can be defined as
pullback L5f* L tot of a Lagrangian densityL tot on some total configuration space by sectio
fA(x) describing background fields. The pullback of the first variational formula forL tot by f*
takes the form of the first variational formula~1! for L where

]lL5~]l1]lfA]A1]l]mfA]A
m!f* L tot .

For instance, let a Lagrangian densityL depend on a background metricg on the baseX. In this
case, we have

]mL52tb
aAugu$ma

b %, ugu5udet~gmn!u,

where$ma
b % are the Christoffel symbols of the metricg and

tb
a5gagtgb , tmnAugu52

]L

]gmn ,

by definition, is the metric energy-momentum tensor. Then, the SEM transformation law~10!
takes the form

2tb
aAugu$ma

b %1~Gm
i ] i1dlGm

i ] i
l!L'2dlT G

l
m .

The problem of SEM conservation laws in constraint field theories consists in the follow
Since the jet bundleJ1Y→Y is affine, a polynomial Lagrangian density of a field theory facto

L:J1Y→
DG

T*X^

Y
VY→`

n

T*X ~12!

by the covariant differentialDG relative to some connectionG on Y. However, the connectionG
in expression~12! fails to be uniquely defined if a Lagrangian density is degenerate. Therefo
is not obvious what SEM flow is the true energy-momentum flow, for the SEM flows relativ
different connectionsG andG8 onY differ from each other in the Noether flow associated with
vertical vector fieldtc~G2G8! on Y.

Remark:One finds clear illustration of this phenomenon in the framework of the ti
dependent mechanics whenY→R, and there is the 1:1 correspondence between the vertical v
fields and the connections onY.14

In particular, it follows that if a Lagrangian density possesses only broken internal sym
tries, the SEM flow fails to be conserved. For instance, the Lagrangian density of the C
J. Math. Phys., Vol. 38, No. 2, February 1997
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Simons topological field model is not gauge invariant, while the Euler–Lagrange opera
globally defined.15 As a consequence, SEM flows are not conserved, whereas the cons
quantity is not gauge invariant~see Sec. II!.

We utilize the polysymplectic Hamiltonian formalism where canonical momenta corres
to derivatives of fields with respect to all world coordinates in order to analyze the SEM co
vation laws in constraint field theories.16–19The corresponding phase space is the Legendre bu

P5`
n

T*X^

Y
TX^

Y
V*Y→

pPY

Y ~13!

coordinatized by (xl,yi ,pi
l). Every Lagrangian densityL on J1Y implies the Legendre morphism

L̂:J1Y→
Y

P, pi
m+L̂5p i

m .

The Legendre bundle~13! carries the generalized Liouville form

u52pi
ldyi`v ^ ]l

and the corresponding polysymplectic form

V5dpi
l`dyi`v ^ ]l . ~14!

We say that a connection onP→X is a Hamiltonian connection if the formgc V is closed. Then,
a Hamiltonian formH on P is defined to be an exterior form such that

dH5g cV ~15!

for some Hamiltonian connectiong. The key point lies in the fact that every Hamiltonian for
admits splitting

H5pi
l dyi`vl2pi

lGl
i v2H̃Gv5pi

l dyi`vl2Hv, ~16!

whereG is a connection onY→X. Then, the equality~15! comes to the Hamilton equations

yl
i 5]l

i
H, ~17a!

pil
l 52] iH. ~17b!

For the sake of simplicity, we keep our analysis of SEM conservation laws in the frame
of the Lagrangian formalism, but refer to some results obtained in the framework of the poly
plectic Hamiltonian formalism.

If a Lagrangian density is regular, the polysymplectic Hamiltonian formalism is equivale
the Lagrangian one. If a Lagrangian density is not regular, the Euler–Lagrange equatio
underdetermined, and the additional gauge-type conditions are required. In the framework
polysymplectic Hamiltonian formalism, these gauge-type conditions appear automatically as
of the Hamilton equations~17a!. The key point consists in the fact that, given a degene
Lagrangian density, one must consider a family of different associated Hamiltonian forms in
to exhaust all solutions of the Euler–Lagrange equations. Such a complete family almost a
exists for quadratic or affine Lagrangian densities of field models.17,18 Moreover, Hamiltonian
forms from such a family differ from each other only in connectionsG in the splitting~16!. These
connections are responsible for different gauge-type conditions mentioned above. They are
connections which one should utilize in construction of the SEM flows.
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It follows that, in general, there is no SEM flow which is convenient for a whole constr
field model. In particular, every solution of the Yang–Mills equations implies the correspon
SEM flow which consists with the symmetrized canonical energy-momentum tensor.

Turn now to the important peculiarity of field theories on the bundles of geometric ob
T→X exemplified by tensor bundles and the bundle of linear connections onX.10 In this case,
there exists the canonical liftt̃ of a vector fieldt on the baseX onto the bundleT. In fact, such
canonical lift is the particular case of the horizontal lift of a vector fieldt by means of the
connection onX which meetst as the integral section. One can think of the vector fieldst̃ on a
bundle of geometric objectsT as being associated with the~local! 1-parameter groups of th
holonomic isomorphisms~covariant transformations! of T induced by the~local! 1-parameter
groups of diffeomorphisms of its baseX. In particular, ifT5TX they are the tangent isomor
phisms. Hense,L j 1 t̃ L 5 0 is the general covariance condition of a Lagrangian densityL on J1T.

Metric and affine-metric gravitation theories exemplify field models on bundles of geom
objects.

In the purely metric gravitation theory,20 the SEM conservation law corresponding to t
invariance of the Hilbert–Einstein Lagrangian density under general covariant transform
takes the form

d

dxm T
m'0, T m'

d

dxl U
ml, ~18!

where

Uml52
A2g

2k
~glnt ;n

m 2gmnt ;n
l ! ~19!

is the well-known Komar superpotential and the symbol ‘‘;n’’ denotes the covariant derivative
with respect to the Levi-Civita connection. It was shown that the SEM flow of any Lagran
density depending on the scalar curvature of a torsionless connection reduces always to the
superpotential.21 This analysis has been extended to the case of any linear connectionK onX and
of arbitrary Lagrangian densityL which depends on a curvature ofK and which is invariant unde
general covariant transformations.8,22The corresponding SEM conservation law is brought into
form ~18! where

Uml52
]L

]Rnml
a ~]nta1Ksn

a ts! ~20!

is the generalized Komar superpotential.
From physical viewpoint, it means that the energy-momentum of affine-metric gravity as

as the Noether currents in gauge theory~see Sec. II! becomes quasilocal on shell.
Note that dependence of the superpotential~20! on the vector fieldt reflects the fact that the

SEM conservation law~18! is maintained under covariant transformations.

II. CONSERVATION LAWS IN GAUGE THEORY

Let P→X be a principal bundle with a structure Lie groupG which acts freely and transi
tively on P on the right

r g :p°pg, pPP, gPG. ~21!

A principal connectionA on the principal bundleP→X is defined to be aG-equivariant
connection onP, i.e.,
J. Math. Phys., Vol. 38, No. 2, February 1997
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j 1r g+A5A+r g

for each canonical morphism~21!. There is the 1:1 correspondence between the principal con
tions on a principal bundleP→X and the global sections of the quotient

C:5J1P/G→X. ~22!

This is an affine bundle modeled on the vector bundle

C̄5T*X^ ~VP/G!.

Given a bundle atlasCP of P, the bundle of principal connectionsC is provided with the
bundle coordinates (xm,km

m) so that, for every sectionA of C,

~km
m+A!~x!5Am

m~x!

are the coefficients of the local connection 1-form onX with respect to the atlasCP. The first
order jet manifoldJ1C of the bundleC is coordinatized by (xm,km

m ,kml
m ). There exists the canoni

cal splitting

J1C5C̄1 %

C
C̄25~J2P/G! %

C
~`
2

T*X^

C
VGP!,

~23!
kml
m 5 1

2~S lm
m 1F lm

m !5 1
2~kml

m 1klm
m 1cnl

mkl
nkm

l !1 1
2~kml

m 2klm
m 2cnl

mkl
nkm

l !,

overC.
In case of unbroken gauge symmetries, the total configuration space of gauge theory

product

J1Y3
X
J1C, ~24!

whereY5(P3V)/G is a vector bundle associated withP→X. Sections ofY→X describe matter
fields. Every principal connectionA on P yields the associated connection

GA5dxl
^ @]l1Al

m~x!I m
i
j y

j] i #

on Y, whereI m are the generators of the structure groupG acting on the standard fiberV of the
bundleY.

To get the Noether conservation laws, let us consider the verticalG-equivariant~gauge!
isomorphismsF of P such that

r g+F5F+r g , gPG. ~25!

They yield the vertical isomorphisms of the bundle of principle connectionsC and the
P-associated bundleY. Let uG denote a vertical vector field associated with a~local! 1-parameter
group of isomorphisms~25! of P. The corresponding vertical vector field on the productC3XY
reads

uG5~]mam1cnl
mkm

l an!]m
m1amIm

i
j y

j] i5~um
Al]lam1um

Aam!]A , ~26!

wheream(x) are the local components ofuG on P, and the collective indexA is employed.
Hence, Lagrangian densityL on the configuration space~24! is gauge invariant if we have th

strong equalityL j 1uG
L 5 0 for any vertical vector fielduG ~26!.
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In this case, the first variational formula~1! leads to the equality

~um
Aam1um

Am]mam!dAL1dl@~um
Aam1um

Am]mam!]A
l
L#50,

wheredAL are the variational derivatives~2! of L. Due to arbitrariness of local functionsam(x),
this equality is equivalent to the system of the equalities

um
AdAL1dm~um

A]A
m
L!50, ~27a!

um
AmdAL1dl~um

Am]A
l
L!1um

A]A
m
L50, ~27b!

um
Al]A

m
L1um

Am]A
l
L50. ~27c!

These equalities on shell come to the well-known Noether identities for a gauge invarian
grangian densityL

dm~um
A]A

m
L!'0, ~28a!

dl~um
Am]A

l
L!1um

A]A
m
L'0, ~28b!

um
Al]A

m
L1um

Am]A
l
L50. ~28c!

The weak identities~28a!–~28c! play the role of necessary and sufficient conditions in or
that the weak conservation law

dl@~um
Aam1um

Am]mam!]A
l
L#'0 ~29!

be maintained under the gauge transformations. It means that, if the equality~29! takes place for
a given parameter functiona(x), it remains true for arbitrary deviationsa1d of a. As a conse-
quence, we observe that, in virtue of the equalities~27b! and ~27c!, the conserved Noether flow
can be brought into form

T l52~um
Aam1um

Am]mam!]A
l
L5amum

AldAL2dm~amum
Am]A

l
L!,

and, on shell, it is reduced to the superpotential

Ulm52amum
Am]A

l
L.

From physical viewpoint, it means that, on shell, the currentJm
m5um

ApA
m ~e.g., the familiar

electric current in the electromagnetic theory! becomes a quasilocal quantity, for it reduces to
pure boundary termdl]m

lmL. Therefore, the identity~28a! is a corrolary of the identities~28b! and
~28c!.

Turn now to the SEM conservation laws in gauge theory. For the sake of simplicity
restrict our consideration to gauge theory without matter fields.

On the configuration space~23!, the conventional Yang–Mills Lagrangian densityLYM of
gauge potentials in the presence of a background world metricg on the baseX is given by the
expression

LYM5
1

4e2
amn
G glmgbnF lb

m
F mn

n Auguv, ~30!

whereaG is a nondegenerateG-invariant metric in the Lie algebra ofG.
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Given a symmetric connectionK on the baseX, every principal connectionB onP gives rise
to the connection

Gml
m 5]mBl

m2cnl
mkm

nBl
l 2Klm

b ~Bb
m2kb

m! ~31!

on the bundleC.
Let t be a vector field on the baseX and

tBK5tl$]l1@]mBl
m2cnl

mkm
nBl

l 2Klm
b ~Bb

m2kb
m!#]m

m% ~32!

its horizontal lift ontoC by means of the connection~31!. For every vector fieldt, one can choose
a suitable connectionK on X which hast as an integral section. In this case, the horizontal
~32! of the vector fieldt comes to its canonical lift

tB5tl]l1@tl~]mBl
m2cnl

mkm
nBl

l !1]mtb~Bb
m2kb

m!#]m
m ~33!

on C by means of a principal connectionB on P.6

One can think of the vector field~33! is being associated with a~local! 1-parameter group o
G-equivariant isomorphisms ofC projected to nonidentity diffeomorphisms ofX. Hence, the Lie
derivative of the Lagrangian density~30! alongtB comes to

L j 1tB
LYM5~]ltlLYM1tl]lLYM2F mn

m ]ltmpm
nl!v.

The corresponding SEM transformation law takes the form

]ltlLYM2tmtb
aAugu$ma

b %2F mn
m ]ltmpm

nl'dl@pm
nl~tm~]nBm

m2cnl
mkn

nBm
l !1]ntm~Bm

m2km
m!

2tmknm
m !1dm

l tmLYM#, ~34!

where

tb
a5

1

Augu
~pm

na
F bn

m 2db
a
LYM !

is the metric energy-momentum tensor of gauge potentials.
Let A be a solution of the Yang–Mills equations. In accordance with the Hamilton equa

~66!, let us consider the lift~33! of the vector fieldt on X onto C by means of the principa
connectionB5A. In this case, the SEM transformation law~34! on the critical sectionA takes the
form

tmtb
aAugu$ma

b %'tm
d

dxl ~pm
nlFmn

m 2dm
l
LYM !,

and thus it comes to the covariant conservation law

Augutm;l
l '0. ~35!

Note that, in general case of the principal connectionB, the corresponding SEM transforma
tion law ~34! differs from the covariant conservation law~35! in the Noether conservation law

dl~pm
nluGn

m !'0,

where
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uG5~]nam1cnl
mkn

l an!]m
n , am5tm~Bm

m2Am
m!

is the vertical vector field~26! on C.
It should be emphasized that, in order to get the energy-momentum transformation law~35!,

the gauge symmetry of the Lagrangian density~30! has been used.
The Chern–Simons Lagrangian density

LCS5
1

2k
amn
G ealmka

m~F lm
n 1 1

3cpq
n kl

pkm
q !v ~36!

of gauge model on a 3-dimensional baseX is not gauge invariant.15 At the same time, it provides
the globally defined Euler–Lagrange operator

ELCS
5
1

k
amn
G ealmF lm

n dka
m v.

Let us examine the SEM transformation law in the Chern–Simons model.
Given a vector fieldt on the baseX and its lift tB ~33! onto the bundleC by means of a

sectionB of C→X, we compute

L j 1tB
LCS5

1

k
amn
G ealmda~tnBn

mkml
n !v.

The corresponding SEM transformation law takes the form

dlS T l2
1

2k
amn
G ealmtnBn

mkml
n D'0, ~37!

where

T l5pn
ml@tnkmn

m 2tn~]mBn
n2cpq

n km
pBn

q!2]mtn~Bn
n2kn

n!#2dn
ltnLCS

is the standard SEM flow relative to the lifttB of the vector fieldt.
Given a critical sectionA, we consider the lift~33! by means of the principal connectio

B5A. Then, the conservation law~37! comes to the conservation law

d

dxl S 2
1

6k
tleanmcnpqAa

nAn
pAm

q D'0. ~38!

Thus we observe that, since the gauge symmetry of the Chern–Simons Lagrangian de
broken, the conserved quantity in the conservation law~38! is not the SEM flow, and it fails to be
gauge-invariant.

III. ENERGY-MOMENTUM OF AFFINE-METRIC GRAVITY

Field theories on bundles of geometric objectsT when a Lagrangian density is invariant und
covariant transformations ofT give us the example when SEM flows are conserved.

Let t5tm]m be a vector field on the manifoldX. There exists its canonical lift

t̃5Tt5tm]m1]ntaẋn
]

] ẋa ~39!

onto the tangent bundleTX of X.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Building on ~39!, one can construct the canonical lift

t̃5tm]m1@]nta1ẋb1 ...bk

na2 ...am1•••2]b1
tnẋnb2 ...bk

a1 ...am 2•••#
]

] ẋb1 ...bk

a1 ...am
~40!

of t onto the tensor bundle

T5~ ^

m

TX! ^ ~ ^

k

T*X!

and its canonical lift

t̃5tm]m1@]ntakbm
n 2]btnknm

a 2]mtnkbn
a 2]bmta#

]

]kbm
a ~41!

onto the bundleCLX of the linear connections onX.
Let T be a bundle of geometric objects andL a Lagrangian density onJ1T which satisfies the

general covariance condition

L j 1 t̃ L50 ~42!

for any vector fieldt on X. Building on the first variational formula~1!, one then gets the wee
conservation law

0'dHh0~ t̃ cJL!. ~43!

We show that the conserved quantity is reduced to a superpotential.
At first, we consider tensor fields. LetT→X be a tensor bundle coordinatized by (xl,yA)

where the collective indexA is employed. Given a vector fieldt onX, its canonical liftt̃ ~40! on
T reads

t̃5tl]l1ua
Ab]bta]A . ~44!

In this case, the equality~42! and the weak identity~43! take the coordinate form

]a~taL!1ua
Ab]bta]AL1dm~ua

Ab]bta!]A
m
L2ya

A]bta]A
b
L50, ~45!

0'dl@~ua
Ab]bta2ya

Ata!]A
l
L1tlL#. ~46!

Due to the arbitrariness of the functionsta, the equality~45! is equivalent to the system o
equalities

]lL50, ~47a!

da
b
L1ua

AbdAL1dm~ua
Ab]A

m
L!2ya

A]A
b
L50, ~47b!

ua
Ab]A

m
L1ua

Am]A
b
L50. ~47c!

Substituting the relations~47b! and~47c! into the weak identity~46!, we get the conservation law

0'dl@2ua
AldALta2dm~ua

Al]A
m
Lta!#, ~48!

where the conserved current is reduced to the superpotential
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ulm~t!5ua
Al]A

m
Lta.

It is readily observed that this superpotential arises since the liftt̃ ~44! depends on the
derivatives of the components of the vector fieldt. Therefore, the superpotential terms are t
standard attributes of SEM flows in field models on bundles of geometric objects.

To illustrate phenomenon of hidden energy, we shall utilize Proca fields described by se
of the cotangent bundleT*X as the matter source of affine-metric gravity.

Let us examine the SEM transformation law of Proca fields in the presence of a backg
metricg onX. The configuration space of this model isJ1T coordinatized by (xl,km ,kml), where
km5 ẋm are the induced fiber coordinates ofT*X. On this configuration space, the Lagrangi
density of Proca fields is written as

LP5F2
1

4g
gmagnbF abF mn2

1

2
m2gmlkmklGAuguv, ~49!

whereF mn5knm2kmn .
Let t be a vector field on the baseX and

t̃5tm]m2]atnkn

]

]ka

its canonical lift ontoT*X. Then, the corresponding SEM transformation law

L j 1 t̃LP'dl@pnl~2]ntmkm2tmknm!1tlL#, pml52
1

g
gmaglbF baAugu,

~3! takes the form

2]ltmtm
lAugu2tmtb

aAugu$ma
b %'dl@2tmtm

lAugu1tnkndlL2dm~pmltnkn!#,
~50!

2tm
lAugu5pnlF nm1m2gnlkmknAugu1dm

l
LP .

A glance at the expression~50! shows that the SEM flow of the Proca fields

T l~t!5tmtm
lAugu2tnkndlL1dm~pmltnkn! ~51!

is the sum of the usual metric energy-momentum tensor and the term

Ql~t!52tnkndlL1dm~pmltnkn! ~52!

which is the particular case of the superpotential term in the expression~48!. This term, however
does not make any contribution into the differential conservation law~50! which comes to the
usual form

~ tm
lAugu! ;l'0.

At the same time, the superpotential term~52! in the SEM flow ~51! reflects the partial
invariance of the Lagrangian density~49! under covariant transformations broken by the ba
ground metric field. We shall see that, in gravitation theory, when the covariant transform
are exact, the total superpotential term contains the energy-momentum tensor of Proca field
the Proca field model examplifies the phenomenon of localized hidden energy which is disp
if the covariant transformations are broken.
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We consider now the affine-metric gravitational model where dynamic variables are a ps
Riemannian metric and a general linear connection onX.

Let LX→X be theGL~4,R!-principal bundle of linear frames in the tangent spaces toX.
Linear connections are represented by global sections of the quotient bundle

CLX5J1LX/GL1~4,R!.

Let Sg→X be the bundle whose global sections are pseudo-Riemannian metrics onX. For the

sake of simplicity, we shall identifySg with the open subbundle of the tensor bundle~
2

T*X.
The total configuration space of the affine-metric gravity is

J1Y5J1~Sg3
X
CLX! ~53!

coordinatized by (xl,gab,kbl
a ,gm

ab ,kblm
a ).

We assume that a Lagrangian densityL of the affine-metric gravitation theory on the co
figuration space~53! depends on the metric coordinatesgab and the curvature tensor

Rbnl
a 5kbln

a 2kbnl
a 1ken

a kbl
e 2kel

a kbn
e .

In this case, we have the relations

]L

]kbn
a 5ps

bnlkal
s 2pa

snlksl
b , pa

bnl5]a
bnl

L52pa
bln .

Let the Lagrangian densityL be invariant under covariant transformations.
Given a vector fieldt on X, its canonical lift onto the bundleSg3CLX reads

t̃5tl]l1~gnb]nta1gan]ntb!
]

]gab 1@]ntakbm
n 2]btnknm

a 2]mtnkbn
a 2]bmta#

]

]kbm
a .

~54!

For the sake of simplicity, let us employ the compact notation

t̃5tl]l1~gnb]nta1gan]ntb!]ab1~ua
Ab]bta2ua

Aeb]ebta!]A .

Since

L j 1 t̃L50, ~55!

we have the weak conservation law

0'dl@]A
l
L~ua

Ab]bta2ua
Aeb]ebta2ya

Ata!1tlL#, ~56!

where

]A
l
Lua

Aeb5pa
ebl ,

]A
e
Lua

Ab5pa
gmekgm

b 2ps
bmekam

s 2ps
gbekga

s 5]a
be
L2ps

gbekga
s .

Due to the arbitrariness of the functionst a, the equality~55! implies the equality

da
b
L1A2gTa

b1ua
Ab]AL1dm~ua

Ab!]A
m
L2ya

A]A
b
L50, ~57!
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where one can think of

A2gTa
b52gbn]naL

as being the metric energy-momentum tensor of general linear connections.
Substituting the termya

A]A
bL from the expression~57! into the conservation law~56!, we

bring the latter into the form

0'dl@2A2gTa
lta1]A

l
L~ua

Ab]bta2ua
Aeb]ebta!2]ALua

Alta2]A
m
Ldm~ua

Al!ta#.

After separating the variational derivatives, we find that the SEM conservation law~56! of affine-
metric gravity comes to the superpotential form~18!

0'dl@22glmtadamL2~kgm
l da

gm
L2kam

s ds
lm
L2kga

s ds
gl
L!ta1da

el
L]et

a2dm~da
lm
L!ta#

2dldmU
lm, ~58!

where the superpotentialU is the generalized Komar superpotential~20!.
Let us consider the total system of the affine-metric gravity and the Proca fields. I

presence of a general linear connection, the Lagrangian densityLP ~49! is naturally generalized
through the covariant derivatives and depends on the torsion

F mn5knm2kmn2Vnm
s ks .

It is readily observed that, in this case, the superpotential term in the energy-momentum fl
the Proca fields@see~52!# is eliminated due to the additional contribution

2dm~]a
lm
LPta!.

In this case, the SEM conservation law of gravity and Proca fields takes the form~58! whereL
now is the total Lagrangian density of affine-metric gravity and Proca fields, butU reduces to the
generalized Komar superpotential.

It means that the total energy-momentum of affine-metric gravity becomes quasilocal on
It should be noted that SEM flows of affine-metric gravity relative vector fields onSg3CLX

which are not the canonical lifts~54! fail to be conserved since a Lagrangian densityL(gab,Rbnl
a )

is not invariant under vertical isomorphisms ofSg3CLX in general.

IV. HAMILTONIAN CONSERVATION LAWS

LetP be the Legendre bundle~13! coordinatized by (xl,yi ,pi
l) andJ1P the 1-jet manifold of

P→X coordinatized by (xl,yi ,pi
l ,ym

i ,pim
l ).

Every connectionG on Y→X gives rise to the connection

G̃5dxl
^ @]l1Gl

i ] i1~2] jGl
i pi

m2Knl
m pj

n1Kal
a pj

m!]m
j #

on P→X whereK* is a linear symmetric connection onT*X. The equality

G̃cV5d~G cu!

shows thatG̃ is a Hamiltonian connection and that

HG5G cu5pi
l dyi`vl2pi

lGl
i v

is a Hamiltonian form.
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Lemma:LetH be a Hamiltonian form. For any exterior horizontal densityH̃5H̃v onP→X,
the formH1H̃ is a Hamiltonian form. Conversely, ifH andH8 are Hamiltonian forms, their
differenceH2H8 is an exterior horizontal density onP→X.16,17

It follows that Hamiltonian forms constitute an affine space modeled on the linear space
exterior horizontal densities onP→X. Hence, every Hamiltonian form onP can be given by the
expression~16! whereG is some connection onY→X. Moreover, every Hamiltonian formH
yields the momentum morphism

Ĥ:P→
Y
J1Y, yl

i +Ĥ5]l
i
H,

and the associated connectionGH5Ĥ+0̂ on Y, where 0̂is the global zero section ofP→Y. As a
consequence, we have the canonical splittingH 5 HGH

2 H̃.
The Hamilton operatorEH of a Hamiltonian formH is defined to be the first order differentia

operator

EH :J
1P→ `

n11

T*P,
~59!

EH5dH2V̂5@~yl
i 2]l

i
H!dpi

l2~pil
l 1] iH!dyi #`v

on P→X, where V̂ is the pullback of the polysymplectic form~14! onto J1P. It yields the
Hamilton equations~17a! and ~17b!.

Turn to the relations between Lagrangian and Hamiltonian formalisms. A Hamiltonian
H is called associated with a Lagrangian densityL if it satisfies the equalities

L̂+ĤuQ5IdQ , Q5L̂~J1Y!, ~60a!

H5HĤ1L+Ĥ, L~xl,yj ,]l
j
H!5pi

m]m
i
H2H, ~60b!

whereQ is called the Lagrangian constraint space.
It should be emphasized that there are different Hamiltonian forms associated with the

degenerate Lagrangian density as a rule. We restrict our consideration to degenerate Lag
densities which are~i! semiregular when the preimageL̂21(q) of each pointqPQ is a connected
submanifold ofJ1Y and ~ii ! almost regular whenL̂ is a bundle overQ. All Hamiltonian forms
associated with a semiregular Lagrangian densityL coincide with each other on the Lagrangia
constraint spaceQ, and the Poincare´–Cartan formJL is the pullback

JL5H+L̂, p i
lyl

i 2L5H~xm,yi ,p i
l!, ~61!

of any such Hamiltonian formH by the Legendre morphismL̂. In this case, the following relation
between solutions of the Euler–Lagrange equations and solutions of the Hamilton equation
place.23

Proposition:Let a sectionr of P→X be a solution of the Hamilton equations~17a! and~17b!
for a Hamiltonian formH associated with a semiregular Lagrangian densityL. If r lives on the
Lagrangian constraint spaceQ, the sections5pPY+r of Y→X satisfies the Euler–Lagrang
equations forL. Conversely, given a semiregular Lagrangian densityL, let s be a solution of the
corresponding Euler–Lagrange equations. LetH be a Hamiltonian form associated withL so that

Ĥ+L̂+J1s5J1s.

Then, the sectionr5L̂+J1s of P→X is a solution of the Hamilton equations~17a! and~17b! for
H.
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We say that a family of Hamiltonian formsH associated with a semiregular Lagrangi
density L is complete if, for each solutions of the Euler–Lagrange equations, there exists
solution r of the Hamilton equations for some Hamiltonian formH from this family so that

r5L̂+J1s, J1s5Ĥ+r , s5pPY+r . ~62!

Proposition:Let L be a semiregular and almost regular Lagrangian density. Then on an
neighborhood of each point ofQ, there exists a complete family of local associated Hamilton
forms.

The most of field models possess almost regular and semiregular quadratic Lagrangia
sities, and the complete families of associated Hamiltonian forms exist.18,19 Moreover, the con-
figuration space splits in the dynamic sector and the gauge sector consisting with the kerna
Legendre morphism. As an immediate consequence of this splitting, a part of the Hamilton
tions ~17a! comes to the gauge-type conditions independent of the momenta coordinates.

In particular, let us examine the gauge theory on the bundleC ~22!. The Legendre bundle ove
the bundleC is

PC5`
n

T*X^TX^

C
@C3C̄#* .

It is coordinatized by (xm,km
m ,pm

ml).
Given the Lagrangian densityLYM ~30! on the configuration space~23!, the corresponding

Legendre morphism takes the form

pm
~ml!+L̂YM50, ~63a!

pm
@ml#+L̂YM5e22amn

G glagmbF ab
n Augu. ~63b!

Equation~63a! defines the Lagrangian constraint space of gauge theory.
Every principal connectionB on P gives rise to the connection

GB
ml
m 5 1

2@cnl
mkl

nkm
l 1]mBl

m1]lBm
m2cnl

m~km
nBl

l 1kl
nBm

l !#2$ml
b %~Bb

m2kb
m!

on C @which differ from the connection~31! in a soldering form#. For all these connections, th
Hamiltonian forms

HB5pm
ml dkm

m`vl2pm
mlGBml

m v2H̃YMv,
~64!

H̃YM5
e2

4
aG
mngmnglbpm

@ml#pn
@nb#ugu21/2,

are associated with the Lagrangian densityLYM and constitute a complete family.
GivenHB , the corresponding Hamilton equations are

]lpm
ml52clm

n kn
l pn

@mn#1cml
n Bn

l pn
~mn!2$ln

m %pm
~ln! , ~65!

]lkm
m1]mkl

m52GB~ml!
m ~66!
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plus the equation~63b!. Equations~63b! and ~65! restricted to the constraint space~63a! are the
familiar Yang–Mills equations. Different Hamiltonian forms~64! lead to the different equation
~66!. Equation~66! is independent of canonical momenta and plays the role of the gauge
condition. Its solutions are examplified byk(x)5B.

There are different ways to discover differential conservation laws on solutions of the H
ton equations. To simplify calculations, we here utilize the following construction.13

Given a Hamiltonian formH ~16! on the Legendre bundleP ~13!, let us consider the La-
grangian density

LH5~pi
lyl

i 2H!v ~67!

on the configuration spaceJ1P. It does not depend on the velocitiespim
l of the momentum

coordinates.
The following is readily observed.
~i! The Poincare´–Cartan formJLH

of the Lagrangian density~67! consits with the Hamil-
tonian formH.

~ii ! The Euler–Lagrange operator~2! of the Lagrangian density~67! is exactly the Hamilton
operator~59! of the Hamiltonian formH.

~iii ! As a consequence, the Euler–Lagrange equations forLH recover the Hamilton equation
~17a! and ~17b! for H.

Then, one can apply the first variational formula~1! to the Lagrangian density~67! in order to
get the differential conservation laws in the framework of the polysymplectic Hamiltonian
malism.

Every projectable vector fieldu on Y→X gives rise ontoP as follows:

ū5um]m1ui] i1~2]mu
mpi

l2] iu
jpj

l1]mu
lpi

m!]l
i . ~68!

In case of the vector fieldū ~68! and the Lagrangian densityLH ~67!, the first variational formula
~1! takes the form

L j 1 ūLH[ūVcEH1dHh0~ ūcH !. ~69!

On the kernal of the Hamilton operatorEH , the identity~69! comes to the weak identity

pi
lyl

i ]mu
m2]l~ulH!2ui] iH1~dlu

i2]m
i
H]lu

m!pi
l

'dl@pi
l~ui2]m

i
Hum!1ul~pi

m]m
i
H2H!#. ~70!

If L j 1 ūLH 5 0, then we get the weak conservation law

0'2dH~ T̄ vl

l !5dl@pi
l~ui2]m

i
Hum!1ul~pi

m]m
i
H2H!#v. ~71!

On solutionsr of the Hamilton equations, the weak equality~71! comes to the weak differentia
conservation law

0'2
d

dxl T̄
l~r !v

of the flow

T̄ l~r !52@r i
l~ui2]m

i
Hum!1ul~r i

m]m
i
H2H!#. ~72!
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The following assertion describes the relations between differential conservation laws
grangian and Hamilton formalisms.

Proposition:Let a Hamiltonian formH be associated with a semiregular Lagrangian den
L. Let r be a solution of the Hamilton equations ofH which lives on the Lagrangian constrain
spaceQ ands the associated solution of the Euler–Lagrange equations forL so that they satisfy
the conditions~62!. In virtue of the relations~60b! and ~61!, we have

T̄ ~r !5T ~Ĥ+r !, T̄ ~ L̂+J1s!5T ~s!, ~73!

whereT is the flow ~6!.
In particular, lett be a vector field onX andtG its horizontal lift ontoY→X by a connection

G on Y. We have the corresponding flow

T̄ G
l

m5pi
l]m

i
H̃G2dm

l ~pi
n]n

i
H̃G2H̃G!, ~74!

whereH̃G is the Hamiltonian density in the splitting~16! of H with respect to the connectionG.
The relations~73! shows that, on the Lagrangian constraint spaceQ, the flow ~74! can be treated
as the Hamiltonian SEM flow relative the connectionG.

The weak transformation law~70! of the Hamiltonian SEM flow~74! takes the form

2~]m1Gm
j ] j2pi

l] jGm
i ]l

j !H̃G1pi
lRlm

i '2dlT̄ G
l

m . ~75!

Let us now consider the first variational formula~69! when the vector fieldū on P is the
horizontal lift of a vector fieldt on X by means of Hamiltonian connection onP→X which is
associated with the Hamiltonian formH. We have

ū5tm~]m1]m
i
H] i1g im

l ]l
i !.

In this case, the corresponding SEM flow reads

T̄ l52tl~pi
m]m

i
H2H!, ~76!

and the weak transformation law takes the form

2]mH1dl~]m
i
Hpi

l!']m~pi
l]l

i
H2H!. ~77!

A glance at the expression~77! shows that the SEM flow is not conserved, but we can write
transformation law

2]mH1dl@]m
i
Hpi

l2dm
l ~pi

n]n
i
H2H!#'0.

This is exactly the Hamiltonian form of the canonical energy-momentum transformation law~11!
in the Lagrangian formalism which thus appears as fundamental as the SEM transformation
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The interacting-free quantum stochastic limit of quantum
field theory
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The Quantum Stochastic Limit of a quantum mechanical particle coupled to a
quantum field without the neglect of the response details of the interaction~i.e., not
making the dipole approximation! is made following the scheme of Accardi and Lu
and the corresponding Quantum Stochastic Structure is derived. The stochastic
sector for the noise is constructed and is shown to be of a qualitatively new type.
We also include a physical discussion on the limit noise which obeys Interacting-
Free statistics and include a new shorter proof of the noise convergence and also a
new construction of Interacting-Free Fock Space. ©1997 American Institute of
Physics.@S0022-2488~97!02501-2#

I. INTRODUCTION

The theory of stochastic processes has many deep connections with quantum field theo
path integral approach of Feynman,1 in particular, reveals close analogies between quantum
theory in real time and Brownian motion. An important line of research which has deepene
connection in recent years is that of quantum stochastic approximations: here one consider
systemS ~quantum mechanical! coupled to an infinite reservoirR ~a bosonic quantum field!, the
Hamiltonian for the combined system and reservoir takes the formH5HS1HR1lHI where only
the interactionHI couplesS to R. A Gaussian state~e.g., vacuum or thermal! is prescribed for the
reservoir and one makes a separation of time scales~van Hove limit!: time t being rescaled as
t/l2 followed by the limit l→0. In an approach pioneered by Accardi, Frigerio and Lu,2 one
constucts suitable collective reservoir fields in which to examine the limiting behavior of ob
ables and these collective fields have the property of themselves converging to basic qu
stochastic processes~typically quantum brownian motion!. This fact was exploited by Accardi, Lu
and Volovich3 to establish a~quantum! stochastic sector in quantum field theory.

The original scope of Ref. 2 was very limited due to the fact that almost all the stan
simplifying assumptions~vacuum state, rotating wave approximation, dipole approximation, e!
were made in order to make an already complicated problem accessible. However, sinc
these assumptions have been removed with relative ease.4 The connection between the quantu
stochastic limit theory~when applied to an atomic system of bound states: i.e., whenHS has
discrete spectrum! and the standard application of theGolden Ruleto the same problem has bee
explained in Accardi, Gough and Lu.5

Recently the problem of considering a system with continuous spectrum without recou
the dipole approximation has been tackled.6 The surprising feature which emerges is that, by n
including all the details of the interaction betweenS and R, the limit quantum noise has
qualitatively new character. Instead of inheriting the Bose statistics ofR, the noise in fact obeys a
non-linear modification of the Free statistics. The original notion of Free-ness is du
Voiculescu7 and in the context of quantum stochastic theory was first studied by Ku¨mmerer and
Speicher.8,9 We shall use the termInteracting-Free to describe the noise studied here: the not

a!Electronic mail: jgough@thphys.may.ie
0022-2488/97/38(2)/867/15/$10.00
867J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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of Interacting Fock space over a Fock Module necessary to describe the limit noise was intro
however by Lu.10

The goal of this paper is to extend the notion of~quantum! stochastic sector so that th
interacting-free field limit can be included.

II. THE PHYSICAL MODEL

As a system we consider a quantum mechanical particle with spin zero and unper
HamiltonianHS :

HS5
p2

2m
. ~II.1!

Herep is canonical momentum with canonical position denoted byq: @qj ,pl #5 i\d j ,l .
The reservoir is taken, for transparency, to have spinless bosonic quanta. We den

a†(k) the creation operator for a reservoir quantum of momentumk. Along with its adjoint
a(k) we have the canonical commutation relations

@a~k!,a†~k8!#5d~k2k8!. ~II.2!

The unperturbed Hamiltonian for the reservoir is taken to be

HR5E dk \v~k!a†~k!a~k!, ~II.3!

wherev(k)>0 gives the dispersion relation for the quanta of the reservoirR.
The unperturbed evolution operator for combinationS1R is then

Vt
05expH t

i\
~HS^1R11S^HR!J . ~II.4!

The interaction between the particle and field takes the form

HI5D~p!A~q!, ~II.5!

whereD(p) is an observable of the system and

A~q!5E dk $g~k!e2 ik.q
^a†~k!1ḡ~k!eik.q^a~k!%. ~II.6!

A(q) is the potential of the field and naturally depends on the particle’s positionq. The form
factor g is taken to be a Schwartz function onR3. We shall assume that@D(p),A(q)#50, so
HI is self adjoint. For the situation of an electron coupled to the QED field, the reservoir q
~photons! have polarization and we can choose the Coulomb gauge so thatD(p)[2(e/m)p
commutes withA(q): in this case we would of course have a vector product. In our case, in o
to study the field in detail with the only simplifying assumption that the quanta be spinles
make the assumption thatD is proportional to 1S and drop it entirely. This in fact changes ve
little in the qualitative description of the limiting noise.

We remark that the reverse situation is considered in most other treatments: that i
assumes thatD is p-dependent whileA is q-independent. In such cases, we say that the fiel
responseless: then there is the replacement

A °A85E dk $g~k!a†~k!1ḡ~k!a~k!%. ~II.7!
J. Math. Phys., Vol. 38, No. 2, February 1997
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In the QED case this is the dipole approximation. NowA8 is trivial and a test systemS, under this
replacement, cannot obtain any measurable information about the individual modes of th
~because this is precisely the detail which is elided inA8). The situation of a responseless fie
has already been studied in the quantum stochastic limit and it is known that a quantum bro
motion emerges.2

Our objective is then to make a study of theresponsiveinteraction

HI5c†~g!1c~g!, ~II.8!

where we introduce the combined~interacting! fields

c†~g!5E dk g~k!e2 ik.q
^a†~k!,

c~g!5E dk ḡ~k!eik.q^a~k!. ~II.9!

The total Hamiltonian is taken to be

Hl5$HS^1R11S^HR%1lHI , ~II.10!

wherel is a non-zero coupling constant.
The van Hove scaling limit has, in previous applications to quantum stochastic limits,

gested the use of collective operator fields of the following type

ct,l
] ~g!:5lE

0

t/l2

dt Vt
0†c]~g!Vt

0 . ~II.11!

The limit of such collective operators in the vacuum fieldCR of the reservoir was obtained in Re
6. The limiting fields, denoted byC](g,t), do not satisfy Bose commutation relations but,
account of the response factor exp$7ik.q% which couples the system to all modes of the fie
satisfy a modified version of the free relations.

The Weyl operators offer a straightforward means to study the unperturbed evolution
response factors so we review them now.

For a,b P R3, we define the Weyl operatorW(a,b) to be the unitary operator

W~a,b!5ei ~a.p1b.q!. ~II.12!

They satisfy

~1! W~a,b!5eia.peib.qe2 i\a.b/25eib.qeia.pei\a.b/2.

~2! W~a1 ,b1!W~a2 ,b2!5W~a11a2 ,b11b2!expH i\2 ~a1 .b22a2 .b1!J or more generally,

~3! W~a1 ,b1! . . .W~an ,bn!5WS (
j
aj ,(

j
bj D expH i\2 (

j, l
~aj .bl2al .bj !J .

~4! W~a,b!†5W~2a,2b!.

Under the unperturbed evolution we havept5p,qt5q1(t/m)p and so the Weyl operators evolv
as shown below
J. Math. Phys., Vol. 38, No. 2, February 1997
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Vt
0†W~a,b!Vt

05ei ~a.pt1b.qt!5ei S Sa1
t
mDp1b.qD5WS a1

t

m
b,bD .

Therefore we have

Vt
o†c†~g!Vt

05E dk g~k!eiv~k!tWS 2
t

m
k,2kD ^a†~k!. ~II.13!

III. THE QUANTUM STOCHASTIC SECTOR

The results of Accardi, Lu and Volovich3 can be summarized as follows: forv.0 let

Bt,l
† ~g!:5lE

0

t/l2

dtE dk g~k!ei [v~k!2v] ta†~k!, ~III.1!

which is the collective operator describing a responseless field. Asl→0 one shows that
Bt,l

] (g) converges to bosonic quantum Brownian motionB](g,t) satisfying

@B~g,t !,B†~ f ,s!#5min~ t,s!~gu f !, ~III.2!

where

~gu f !:5E
2`

1`

dtE dk ei [v~k!2v] tḡ~k! f ~k![E dk d~v~k!2v!ḡ~k! f ~k!. ~III.3!

Now v can be interpreted as a probing frequency: that isv is a frequency associated toD under
rotating wave approximation and in principle different test systems~having different resonan
v) reveal further information about the reservoir. However in this case the detailed informat
restricted by the responseless assumption.

The noise fieldsbl
](u,k) defined by

bl
†~u,k!:5

1

l
eivu/l

2
a†~k! ~III.4!

so that

Bt,l
] ~g![E

0

t

duE dk g~k!b]~u,k!, ~III.5!

then converge in the limitl→0 in the vacuum state to the quantum white noiseb](u,k) satis-
fying

@b~u,k!,b†~u8,k8!#52pd~u2u8!d~v~k!2v!d~k2k8!. ~III.6!

The results of this paper can then be summarized as follows. Introducing the density oper

al
†~u,k!:5

1

l
Vu/l2
0†

@e2 ik.q
^a†~k!#Vu/l2

0 ~III.7!

we have the limit~in law! al
†(u,k)→a†(u,k) where

a†~u,k!5E
2`

1`

dt eiv~k!tWS 2
t

m
k,2kD ^a†~u,t,k! ~III.8!
J. Math. Phys., Vol. 38, No. 2, February 1997
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anda](u,t,k) satisfy themodified Free relations

a~u,t,k!a†~u8,t8,k8!5d~u2u8!d~2t2t8!d~k2k8!. ~III.9!

The limiting collective operatorC†(g,t) may then be expressed as

C†~g,t !5E
0

t

duE
2`

1`

dtE dk g~k!eiv~k!tWS 2
t

m
k,2kD ^a†~u,t,k!. ~III.10!

Note: we can introduce fieldsa](t,k) satisfying the relations

a~t,k!a†~t8,k8!5d~2t2t8!d~k2k8! ~III.11!

and set

C†~g,t !5ux [0,t]& ^ E
2`

1`E dk g~k!eiv~k!tWS 2
t

m
k,2kD ^ a†~t,k!,

C~g,t !5^x [0, t] u ^ E
2`

1`E dk ḡ~k!e2 iv~k!tWS t

m
k,kD ^ a~t,k!, ~III.12!

whereu f & is -ket and̂ f u is bra- for f P L2(R). If we have an ordered product ofC](gj ,t j ) then
we will have an associated ordered product of bras and kets: the simple algebraic rule appli
is that whenever a bra is immediately to the left of a ket they form a scalar product and c
taken to one side. Thus, for instance,

^au•ub&5^a,b&[E
2`

1`

dt ā~ t !b~ t !,

^a1u•ub1&•^a2u•ub2&5^a1 ,b1&^a2 ,b2&,

while

^a1u•^a2u•ub2&•ub1&5^a1 ,b1&^a2 ,b2&.

It is the compatibility of the bra-ket formalism with the free statistics that allows the descriptio
C†(g,t) as algebraic tensor product ofL2(R) with theW^ a]-operators~cf. remark b in section
IV !.

IV. THE LIMIT PROCESS C](g ,t )

In the following we shall adopt the convention that) j51
n Xj5Xn . . .X1 and that, for any

operatorX, X0:5X while X1:5X†. A sequence«5$e2n , . . . ,e1% P $0,1%2n will be referred to as
non-trivial if the expression̂CR ,) j51

2n ae j(kj )CR. is not identically zero. Clearly, there mus
be an equal number of creators and annihilators if the expectation above is to be non
Suppose« is non-trivial and letM5(mn , . . . ,m1) denote the set of creator indices~i.e.,
emj

51) ordered so thatmh,mh11. Let M
c then denote the~unordered! set of annihilator index

positions. To guarantee non-triviality we also require the condition that for allr51, . . . ,2n

]$m8PMc:m8<r %<max$h:mh<r %. ~IV.1!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The odd correlation functions clearly vanish in the reservoir vacuum state due to Gaussianit
even correlators will be given below. They where first computed by Accardi and Lu,6 however we
include here a shorter proof~Theorem 1!.

Before this we give a brief account of Free statistics. LetT be a space of test functions wit
inner product̂ .,.&. Let b(g), b†(g) be operators~for eachg P T) andC a vector such that

b~g!†5b†~g!, b~g!C50 ~IV.2!

and

b~g!b†~ f !5^g, f & ~IV.3!

for all g, f P T. The operatorsb](g) are said to satisfyfree statisticsor free relations. C is
referred to as thevacuum vector. An explicit construction can be given on Fock space,G(T)5
% n51

` (^
nT), overT by takingb†(g) to be the mapping :f1^ . . . ^ fn°g^ f1^ . . . ^ fn . In

this case, its adjoint isb(g):f1^ . . . ^ fn°^g,f1&f2^ . . . ^ fn . The vacuum vector is then th
FockvacuumC:51 % 0 % 0 . . . .

Now it is easily seen that̂C,) j
2nbe j(gj )C& is not identically zero provided« is again

non-trivial. However the relations~IV.3! give that

K C,)
j

2n

be j~gj !CL 5)
j

n

^gm̄j
,gmj

&, ~IV.4!

where (m̄n , . . . ,m̄1) is the unique ordered sequence which agrees withMc as a set and satisfies~i!
m̄j.mj and ~ii ! ;h51, . . . ,n we have

m̄h.mj.mh⇔m̄h.m̄j.mh . ~IV.5!

Remark (a):Condition ~i! comes from having to arrange) j51
2n bj (gj ) in normal order. Note

that the logical negation of~ii ! also holds, that is ifmj lies outside of$m̄n , . . . ,mn% then so too
doesm̄j , andvice versa.

The set ofn pairs$(m̄n ,mn):h51, . . . ,n% as above is called theWigner or non-crossingpair
partition of «. We may compare Bose and Free statistics as follows: in both cases the
moments vanish in the vacuum state, however, even moments can be written as a sum over
partitions of twi-point functions in the Bose case but only the Wigner pair partition occurs in
free case.

Remark (b):We have already met an example of freeness in our algebraic rule for bra
kets in the last section: the indentification

ua&[b†~a!, ^bu[b~b!, ~IV.6!

for T[L2(R), now makes this rule definite.
Theorem 1:Let « P $0,1%2n be non-trivial then

K )
j51

2n

Ce j~gj ,Tj !L :5 liml→0K CR ,)
j51

2n

cTj ,l
e j ~gj !CRL ~IV.7!

5)
j51

n

min~Tm̄j
,Tmj

!E
2`

`

dtm1
. . . E

2`

`

dtmn
E d3k1 . . . E d3kn

3 )
h51

n H ḡm̄h
~kmh

!smh
expH i Fv~kmh

!1
\

2m
ukmh

u2GtmhJ
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of a
s that
entum
d cre-
this

as all

ices
e

tor

873John Gough: Interacting-free quantum stochastic limit

¬¬¬¬¬¬¬¬¬¬
3expH 2
i

m
p.(

j51

n

kmj
tmjJ expH i\m (

h,r51

n

tmh
kmh

.kmr
x~m̄r ,mr !

~mh!J , ~IV.8!

where$(m̄j ,mj ): j51, . . . ,n% is the Wigner~non-crossing! partition of$1, . . . ,2n% associated with
«. If « is trivial then ~IV.7! vanishes.

The origin of this limit can be explained as follows. In principle the 2n-point correlations
before the limit can be expressed~due to the bosonic nature of the reservoir and our choice
Gaussian state! in terms of all possible pair partitions. Now retaining the response term mean
for each emission and absorption of a reservoir quantum we keep the details of the mom
recoil of the system particle, and so enforcing strict momentum conservation. A contracte
ation and annihilation pair survives the stochastic limit only if it is energetically balanced:
amounts to the Golden Rule. However the only complete set of pair partitions which h
contracted pairs energetically balanced~and here we must have momentum conservation! is the
Wigner pair partition, if one exists.

Proof:Fore P $1,0%, we have

cT,l
e ~g![lE

0

T/l2

dtE dk ge~k!exp$ i ~21!ev~k!t%

3WS ~21!et

m
k,~21!ekD ^ae~k!. ~IV.9!

Here we set

g0~k!5ḡ~k!, g1~k!5g~k!. ~IV.10!

For«5$e2n , . . . ,e1% P $1,0%2n non-trivial, we have

K CR ,)
j51

2n

cTj ,l
e j ~gj !CRL 5l2n)

j51

2n H E
0

Tj /l
2

dt jE d3kj gj
e j~kj !exp$ i ~21!e jv~kj !t j%J

3)
l51

2n

WS ~21!e jt j
m

kj ,~21!e jkj D K CR ,)
h51

2n

aeh~kh!CRL ,
~IV.11!

but

K CR ,)
h51

2n

aen~kh!CRL 5 (
$M8[Mc:mn8,mh;h%

)
h51

n

d~km
n8
2kmn

!, ~IV.12!

that is, we sum over all possible pair contractions of creator–annihilator ind
$(mh8 ,mh):h51, . . . ,n% whereM 85(mn8 , . . . ,m18) is equivalent toM

c as a set. As we produc
contractions by moving terms to normal order, we clearly need only considermh8.mh however:
that is to say the pair contraction (mh8 ,mh) only comes about from having to move the annihila
a(km

h8
) from the left to the right ofa†(kmh

).

Therefore we may write

K CR ,)
j51

2n

cTj ,l
e j ~gj !CRL 5 (

$M8[Mc:mn8,mh;h%
)
h51

n

J. Math. Phys., Vol. 38, No. 2, February 1997
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3H l2E
0

Tm8h /l
2

dtm8hE0Tmh
/l2

dtmh
E dkmh

ḡm8h~kmh
!gmh

~kmh
!

3exp$ iv~kmh
!tmh

%J )
l51

2n

WS ~21!e lt l
m

kl ,~21!e lkl D , ~IV.13!

where the product of Weyl operators must be accompanied by the relevant assig
kmj

5km8 j for eachM 8 considered in the sum.
Now, using the rule for multiplying Weyl operators and mindful of our product convent

we have that

)
l51

2n

WS ~21!e l
t l
m
kl ,~21!e lkl D 5expH 2

i\

2m (
1< j, l<2n

~21!e j1e lkj .kl~t j2t l !J
3WS (

1< l<2n
~21!e l

t l
m
kl , (

1< l<2n
~21!e lkl D .

~IV.14!

Momentum balance requires that

(
1< l<2n

~21!e lkl50, ~IV.15!

so the correlation function is independent ofq and therefore diagonal inp.

(
1< l<2n

~21!e l
t l
m
kl52

1

m (
1<h<n

~tmh
2tm8h!kmh

. ~IV.16!

The phase associated withM 8 is then

2 i\

2m (
l51

2n

(
j, l

~21!e j1e lkj .kl~t j2t l !

5
2 i\

2m (
h51

n H (
15 j

j,m8h

~21!e jkj .km8h~t j2tm8h!2 (
15 j

j,,mh

~21!e jkj .kmh
~t j2tmh

!J
5

2 i\

2m (
h51

n H (
a

m8a,m8h

km8a
.km8h~tm8a

2tm8h!2 (
b

mb,m8h

kmb
.km8h~tmb

2tm8h!

2 (
g

m8g,mh

km8g
.kmh

~tm8g
2tmh

!1 (
d

md,mh

kmd
.kmh

~tmd
2tmh

!% ~IV.17a!

and putting together the first term with the third and second with fourth

5
2 i\

2m (
h51

n H (
a

m8a,mh

kma
.kmh

~tmh
2tm8h!
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2 (
b

mb,mh

kmb
.kmh

~tmh
2tm8h!2 (

a

mh,m8a,m8h

kma
.kmh

~tm8a
2tmh

!

2 (
b

mh,mb,m8h

kmb
.kmh

~tmb
2tm8h!2kmh

.kmh
~tmh

2tm8h!J . ~IV.17b!

We now undergo a change of variables

H umh
5l2tmh

tmh
5tmh

2tm8h
. ~IV.18!

This gives

K CR ,)
j51

2n

cTj ,l
e j ~gj !CRL

5 (
$M8[Mc:mn8,mh;h%

)
h51

n H E
0

Tmh
dumh

E
2umh

~Tm8h
2umh

!/l2

dvmh
E dkmh

3ḡm8h~kmh
!gmh

~kmh
!exp$ iv~kmh

!vmh
%J WS 2

1

m(
h51

n

vmh
kmh

,0D
3expH 2 i\

2m (
h51

n H (
a

m8a,mh

kma
.kmh

vmh
2 (

b

mb,mh

kmb
.kmh

vmh

1 (
a

mh,m8a,m8h

kma
.kmh

~vma
2vmh

1~uma
2umh

!/l2!

2 (
b

mh,mb,m8h

kmb
.kmh

~2vmh
1~umb

2umh
!/l2!2ukmh

u2vmh
J J . ~IV.19!

By an application of the Riemann-Lebesgue lemma, we have that the oscillatory factors of th
eik

2u/l2 cause the associated term to vanish in the limitl→0. By examining the phase in~IV.19!
we see that, for each fixedh51, . . . ,n and for anya

mh,ma,mh8⇔mh,ma8,mh8 ~IV.20!

but this only possible for the Wigner partition. Hence onlyM 85M̄ survives the limit. Only in this
case is the phase term independent ofumh

,h51, . . . ,n and explicitly it equals

expH 2 i\

2m (
h51

n H (
a

m̄a,mh

kma
.kmh

vmh
2 (

a

ma,mh

kma
.kmh

vmh
2 (

a

mh,ma,m̄a,m̄h

kma
.kmh

vma
2ukmh

u2J J .
~IV.21!

The first three terms can be combined to read as
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2 i\

2m (
h,a51

n

$x~m̄a ,n]~mh!2x~ma ,n]~mh!2x~ma ,m̄a!~mh!%kma
.kmh

vma

5
i\

m (
h,a51

n

kma
.kmh

vma
x~ma ,m̄a!~mh!, ~IV.22!

where we reversed the roles ofa andh in the third term. The final term is then just

expH i\

2m (
h51

n

ukmh
u2vmhJ . ~IV.23!

It is now evident that the 2n-point function takes the form indicated in the statement of
theorem.

We remark that the form of the correlation functions can be simplified. Letl mh
denote the

particle’s momentum after the emission vertexC†(gmh
,tmh

), by momentum conservation we hav

l mh
5p2\ (

r

mr,mh,m̄h,m̄r

kmr
, ~IV.24!

that is, l mh
equals the incoming free momentump minus the sum of all emitted but not ye

reabsorbed reservoir quanta momenta: as the structure is non-crossing this means that we s
reservoir quanta with momentumkmr

which have been emitted before the vertexmr,mh but not
yet reabsorbedm̄r.mh ~and som̄r.m̄h). Let \D( l ,k) be the energy violation associated wi
each vertex, that is

\D~ l ,k!:5
1

2m
u l2\ku21\v~k!2

1

2m
u l u2

⇒D~ l ,k!52
1

m
l .k1v~k!1

\

2m
uku2. ~IV.25!

Then we have

K )
j51

2n

Ce j~gj ,Tj !L
5 )

h51

n

min~Tm̄j
,Tmj

!E
2`

1`

dtmn
. . . E

2`

1`

dtm1
E dkmn

. . . E dkm1

3)
r51

n

$ḡm̄r
~kmr

!gmr
~kmr

!exp$ iD~ l mr
,kmr

!tmr
%%. ~IV.26!

V. INTERACTING FOCK SPACE

The theory of Interacting Fock Space was developed in Refs. 6 and 10. We give a s
different presentation of it in this section. LetK,L 2(R3) denote the subspace of Schwar
functions such that for allf ,g P K one has

E
2`

1`

dt u^ f ,eiVtg&u,`, ~V.1!
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whereV denotes multiplication byv(k) onL 2(R3). For f ,g P K we have shown

^C~ f ,t !C†~g,s!&5min~ t,s! ~ f ug!, ~V.2!

where

~Fug![~ f ug!p5E
2`

1`

dtE dk f̄~k!g~k! eiD~p,k!t. ~V.3!

Now ( f ug) is an element ofP , the ~commutative! C* -algebra generated by$eix.p:x P R3%. The
subscriptp shall not be displayed in general. We shall denote byKP theP -right-linear span of
K andL P

2 (R3,K ) the algebraic tensor product ofL 2(R3) andKP . The two point function
suggests that we study the bilinear form (.u.):L P

2 (R3,K )3L P
2 (R3,K )°P defined by

~a ^ f ub ^g!:5^a,b&L 2~R!~ f ug!. ~V.4!

Next we wish to construct ann-particle space overL P
2 (R3,K ) using the 2n-point function to

define then-fold inner product. That is, construct(nL P
2 (R3,K ) out of ^

nL P
2 (R3,K ) with

~x [0,t1]
^ f 1!(•••(~x [0,tn]

^ f n!u~x [0,s1]
^g1!(•••(~x [0,sn]

^gn!):

5^C~ f n ,tn!•••C~ f 1 ,t1!C
†~g1 ,s1!•••C

†~gn ,sn!&. ~V.5!

The above 2n-point function corresponds to the completerainbowdiagram: it equals

min~s1 ,t1!•••min~sn ,tn!

3E
2`

`

dt1 . . . E
2`

`

dtnE dk1•••E dkn f̄ 1~k1!g1~k1!••• f̄ n~kn!gn~kn!

3eiD~p,kn!tneiD~p2kn ,kn21!tn21•••eiD~p2kn2kn212•••2k2 ,k1!t1. ~V.6!

However, introducing the transform

F5F~k!°F̃5F̃p :5E
2`

1`

dtE dk F~k!eiD~p,k!t ~V.7!

and the convolution

G̃* F̃5G̃* F̃p :5E
2`

1`

dtE dk G̃p2kF~k!eiD~p,k!t

5E
2`

`

dt1E
2`

`

dt2E dk1E dk2 G~k1!F~k2!e
iD~p,k2!t2e1D~p2k2 ,k1!t1 ~V.8!

we can write the correlator more succinctly as

min~s1 ,t1!•••min~sn ,tn!~ f 1ug1!* •••* ~ f nugn!p . ~V.9!

Note that the repeated application of the convolution is not associative and we shall a
understand the~inductively defined! convention

F̃1* F̃2* •••* F̃n :5@ F̃1* F̃2* •••#* F̃n . ~V.10!
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We are therefore lead to the indentification

~~a1^ f 1!(•••(~an^ f n!u~b1^g1!(•••(~bn^gn!!:

5^a1 ,b1&L 2~R!•••^an ,bn&L 2~R! ~ f 1ug1!* •••* ~ f nugn!, ~V.11!

or on absorbing theL 2(R) term

~f1(•••(fnuc1(•••(cn!:5~f1uc1!* •••* ~fnucn!. ~V.12!

The inner product (.u.) on (nL P
2 (R3,K ) does not factor, as in the case wi

^
nL P

2 (R3,K ), and for this reason we refer to(nL P
2 (R3,K ) as theinteracting n-particle

space.
So now we have two notions of product onP : the ordinaryC* -algebra product and now th

non-associative convolution* . Likewise, in addition to the usual module product, we can int
duce a new product* :P3L P

2 (R3,K )°L P
2 (R3,K ) having the property that, for allc,b P P

andf ,gPLP
2 (R3,K ),

~ f uc* g!5c* ~ f ug! ~V.13!

and

b* c* g5~bc!* g. ~V.14!

The mapping :c°(c*.) defines a module homomorphism fromP toB(L P
2 (R3,K )). We note

that we can write

~f1(f2uc1(c2!5~f1uc!* ~f2uc2!5~f2u~f1uc1!*c2! ~V.15!

and by induction

~f1(•••(fnuc1(•••.(cn!5~fnu~fn21u•••~f2u~f1uc1!*c2!•••*cn21!*cn!. ~V.16!

The interacting Fock spaceis then defined as

G I~L P
2 ~R3,K !!:5 %

n50

`

~(nL P
2 ~R3,K !!, ~V.17!

where we take(0L P
2 (R3,K )5P .

The creation operatorA†(f), f P LP
2 (R3,K ), onG I(L P

2 (R3,K )) is then defined by

A†~f!:(nL P
2 ~R3,K !°(n11L P

2 ~R3,K !

:c1(•••(cn°f(c1(•••(cn . ~V.18!

Its formal adjoint is denotedA(f) and we see

~f1(•••(fn21u A~f! c1(•••(cn!5~f(f1(•••(fn21uc1(•••cn!

5~fn21u•••~f1u~fuc1!*c2!•••*cn!. ~V.19!

As a result we may write the action of the annihilator as

A†~f!:(nL P
2 ~R3,K !°(n21L P

2 ~R3,K !
J. Math. Phys., Vol. 38, No. 2, February 1997
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:c1(•••(cn°~fuc1!*c2(•••(cn . ~V.20!

To complete our construction of the noise space we need to specify the state; this will j
the expectation in the vacuum stateF given by

F51P %0%0%0••• . ~V.21!

For example, we have the four-point functions

~FuA~f4!A~f3!A
†~f2!A

†~f1!F!5~f3(f4uf2(f1!5~f3uf2!* ~f4uf1! ~V.22!

and

~FuA~f4!A
†~f3!A~f2!A

†~f1!F!5~f4uf3!~f2uf1!. ~V.23!

The second one is easily computed once one realizes that (QuA(f)A†(c)F)5(fuc)(QuF) for
allQ P G I(L P

2 (R3,K )).
The limit operatorsC](g,t) are then described mathematically by

C]~g,t !:5A]~x [0,t] ^g!, ~V.24!

with expectation given bŷ .&5(Fu.F). One easily sees that the correlators, to all orders,
given by this prescription.

VI. THE INTERACTING-FREE STOCHASTIC SECTOR OF QUANTUM FIELD THEORY

Define an operatorA†(a ^ f ), for a P L2(R) andf P K , by

A†~a ^ f !:5ua& ^ E
2`

`

dtE dk f~k!eiv~k!tWS 2
t

m
k,2kD ^ a†~t,k! ~VI.1!

with adjoint

A~a ^ f !5^au ^ E
2`

`

dtE dk f̄~k!e2 iv~k!tWS t

m
k,kD ^ a~t,k!, ~VI.2!

where the operatorsa] satisfy the scaled free relations

a~t,k!a~t8,k8!5d~t822t!d~k2k8!. ~VI.3!

Let C denote the vacuum state

a~t,k!C50. ~VI.4!

The two-point functions are given by

^C,A~a2^ f 2!A
†~a1^ f 1!C&5^a2u•ua1&E

2`

`

dt2E dk2

3E
2`

`

dt1E dk1 f̄ 2~k2!e
2 iv~k2!t2f 1~k1!e

iv~k1!t1

3WS t2
m
k2 ,k2DWS 2

t1
m
k1 ,2k1D d~k12k2!d~t122t2!
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



hose

iring
entro
ry of

ac-

m,

ch to

880 John Gough: Interacting-free quantum stochastic limit

¬¬¬¬¬¬¬¬¬¬
5^a2 ,a1&E
2`

`

dtE dk f̄2~k!e2 iv~k!t f 1~k!

3eiv~k!2tWS t

m
k,kDW(2

2t

m
k,2k)

5^a2 ,a1&E
2`

`

dtE dk f̄2~k! f 1~k!eiv~k!tWS 2
t

m
k,0Dei\t

2m uku2

[^a2 ,a1&~ f 2u f 1!. ~VI.5!

The four point functions are also easily obtained

^C,A~a4^ f 4!A~a3^ f 3!A
†~a2^ f 2!A

†~a1^ f 1!C&

5^a4u.^a3u.ua2&ua1&E
2`

`

dt4E dk4E
2`

`

dt1E dk1 f̄ 4~k4!e
2 iv~k4!t4f 1~k1!e

iv~k1!t1

3E
2`

1`

dtE dk f̄3~k! f 2~k!eiv~k!te~ i\t/2m! uku2

WS t4
m
k4 ,k4DWS 2

t

m
k,2kDWS 2

t1
m
k1 ,2k1D d~k12k4!d~t122t4!

5^a4 ,a1&^a3 ,a2&E
2`

`

dt8E dk8E
2`

`

dtE dk f̄4~k8! f 1~k8! f̄ 3~k! f 2~k!eiv~k!

32tWS 2
t

m
k2

t8

m
k8,0DexpH i\2muk8u2t8J expH i\mk.k8tJ

5^a4 ,a1&^a3 ,a2&~ f 3u f 2!* ~ f 4u f 1!. ~VI.6!

It is clear that the operatorsA†(a ^ f ) defined above reproduce the same correlations as t
introduced in the last section.
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Tau-functions and dressing transformations for
zero-curvature affine integrable equations
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The solutions of a large class of hierarchies of zero-curvature equations that in-
cludes Toda- and KdV-type hierarchies are investigated. All these hierarchies are
constructed from affine~twisted or untwisted! Kac–Moody algebrasg. Their com-
mon feature is that they have some special ‘‘vacuum solutions’’ corresponding to
Lax operators lying in some Abelian~up to the central term! subalgebra ofg; in
some interesting cases such subalgebras are of the Heisenberg type. Using the
dressing transformation method, the solutions in the orbit of those vacuum solu-
tions are constructed in a uniform way. Then, the generalized tau-functions for
those hierarchies are defined as an alternative set of variables corresponding to
certain matrix elements evaluated in the integrable highest-weight representations
of g. Such definition of tau-functions applies for any level of the representation, and
it is independent of its realization~vertex operator or not!. The particular important
cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-
Abelian affine Toda theories are discussed in detail. ©1997 American Institute of
Physics.@S0022-2488~97!00702-0#

I. INTRODUCTION

In this article we shall be concerned with the generalization of the Hirota method of cons
ing the solutions of hierarchies of nonlinear integrable models. In particular, we shall study
connections through a large and important class of solutions which can be constructe
uniform way using the underlying structure of affine Kac–Moody algebras of those hierarc

Out of the different available methods for solving integrable partial differential equations
Hirota method has proved to be particularly useful. This method started with the work
Hirota,1 who discovered a way to construct various types of explicit solutions to the equa
and, in particular, their multiple soliton solutions. The idea is to find a new set of variables, c
the ‘‘tau-functions,’’ which then satisfy simpler—originally bilinear—equations known as Hir
equations. For instance, the tau-function of the Korteweg–de Vries equation~KdV!,
] tu5]x

3u16u]xu, is related to the original variable by the celebrated formula

u52]x
2 ln t. ~1!

Such a tau-function satisfies a bilinear Hirota equation,2 and the exact multi-soliton solutions ar
found by considering truncated series expansions oft in some arbitrary parametere, e.g.,
t511et~1!1•••1ent (n).

a!Electronic mail address: laf@axp.ift.unesp.br
b!Electronic mail address: miramont@fpaxp1.usc.es
c!Electronic mail address: joaquin@fpaxp1.usc.es
0022-2488/97/38(2)/882/20/$10.00
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More recently, the Hirota method has been used to obtain the multi-soliton solutions of
~Abelian! Toda equations3–6 ~the method was originally applied to the sine–Gordon equatio
Ref. 7!. The success of the method depends crucially on the choice of the change of va
between the Toda fieldsf and the Hirota’s tau functionsti , namely,

f52(
i50

r
2

a i
2 a i ln t i , ~2!

whereai are the simple roots of the associated affine untwisted Kac–Moody algebra.
A priori, the origins of formulas likeu52]x

2 ln t or ~2! seem quite mysterious and unmo
vated. Nevertheless, for a large class of integrable equations, they have a remarkable
theoretical interpretation within the so-called tau-function approach pioneered by the Jap
school~see, for example, Ref. 8!. Actually, this approach manifests the deep underlying conn
tion of the integrable hierarchies of partial differential equations with affine Kac–Moody alge
a connection that is also apparent in the seminal work of Drinfel’d and Sokolov,9 where integrable
hierarchies of equations are constructed in zero-curvature form.

The tau-function approach has been largely clarified by the work of Wilson10,11 and of Kac
and Wakimoto.12 In this latter reference, the authors construct hierarchies of integrable equa
directly in Hirota form associated to vertex operator representations of Kac–Moody alge
then, the tau-functions describe the orbit of the highest-weight vector of the representation
the corresponding Kac–Moody group. On the other hand, the work of Wilson provides the
theoretical interpretation of the change of variables between the tau-functions and the n
variables in the zero-curvature approach for several well-known integrable equations like Kd
modified KdV ~mKdV!,10 and nonlinear Schro¨dinger11 ~see also Ref. 13!. In these articles, the
change of variables is obtained by using a particular version of the well-known dressing tra
mations of Zakharov and Shabat.14

Using Wilson’s ideas, the connection between the generalized Hirota equations of Ka
Wakimoto and the zero-curvature equations of Ref. 15 has been established in Ref. 16. It is
noticing that the class of integrable equations of Ref. 15 is large enough to include practica
the generalizations of the Drinfel’d–Sokolov construction considered so far in the literature
therefore, it is desirable to have the tau-function description of all those integrable hierarch
integrable equations. The reason why the results of Ref. 16 do not apply for all the integ
hierarchies of Ref. 15 is that the generalized Hirota equations of Ref. 12 are constructed in
of level-one vertex operator representations of simply laced affine Kac–Moody algebras, wh
integrable hierarchies of Ref. 15 require a definition of the tau-functions in terms of arb
highest-weight representations.

Another important restriction in the results of Ref. 16 is that they do not include the impo
class of integrable equations known as generalized Toda equations; e.g., they do not exp
change of variables~2!. Nevertheless, inspired by the results of Ref. 16, a definition for
tau-functions of the Toda equations has been proposed in Ref. 17.

The aim of this paper is to generalize the results of Refs. 16 and 17 in order to clarif
definition and relevance of tau-functions for a large class of integrable equations including
the integrable hierarchies of Ref. 15 and the non-Abelian generalizations of the Toda equat
our approach, the central role will be played by the dressing transformations in the m
described by Wilson.10,11This way, we will construct explicit solutions of certain nonlinear in
grable equations by dressing some ‘‘vacuum solutions.’’ Actually, we will recognize the rele
equations by inspecting the properties of the resulting solutions. This is reminiscent of th
function approach of Ref. 12, where the tau-functions are defined as the elements of the or
highest-weight under the Kac–Moody group, and the generalized Hirota equations are ju
equations characterizing those orbits; thus, the solutions and the equations are obtained
J. Math. Phys., Vol. 38, No. 2, February 1997
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neously. In contrast, with our method we do not expect to produce all the solutions of the res
equations, but only a subset that is conjectured to include the multi-soliton solutions.

The paper is organized as follows. In Sec. II we describe the type of hierarchies we are
to consider, discuss their vacuum solutions, and construct solutions using the dressing tr
mation method. In Sec. III we define the tau-functions for all these hierarchies using integ
highest-weight representations of affine Kac–Moody algebras and generalizing some
known for level-one vertex operator representations. In Sec. IV we specialize our results
generalized mKdV~and KdV! hierarchies of Ref. 15, and to the Abelian and non-Abelian affi
Toda theories. Conclusions are presented in Sec. V, and we also provide an appendix w
conventions about Kac–Moody algebras and their integrable highest-weight representation

II. VACUUM SOLUTIONS AND DRESSING TRANSFORMATIONS

Nonlinear integrable hierarchies of equations are most conveniently discussed by asso
them with a system of first-order differential equations,

LNC50, ~3!

whereLN are Lax operators of the form

LN[
]

]tN
2AN , ~4!

and the variablestN are the various ‘‘times’’ of the hierarchy. Then, the equivalent zero-curva
formulation is obtained through the integrability conditions of the associated linear problem~3!,

@LN , LM#50. ~5!

An equivalent way to express the relation between the solutions of the zero-curvature equ
and of the associated linear problem is

AN5
]C

]tN
C21. ~6!

The class of integrable hierarchies of zero-curvature equations that will be studied h
constructed from graded Kac–Moody algebras in the following way~we have briefly summarized
our conventions concerning Kac–Moody algebras in the Appendix!. Consider a complex affine
Kac–Moody algebrag5ĝ%Cd of rankr , and an integer gradation of its derived algebraĝ labelled
by a vectors5(s0 ,s1 ,...,sr) of r11 non-negative co-prime integers such that

ĝ5 %

iPZ
ĝı~s! and @ ĝi~s!, ĝ j~s!##ĝi1 j~s!. ~7!

We have in mind basically two types of integrable systems. The first one corresponds
generalized Drinfel’d–Sokolov hierarchies considered in Refs. 15, and 16, which are gene
tions of the KdV-type hierarchies studied in Ref. 9. In particular, and using the parlance o
original references, we will be interested in the generalized mKdV hierarchies, whose constr
can be summarized as follows~see Ref. 15 and, especially, Ref. 16 for details!. Given an integer
gradationsof ĝ and a semi-simple constant elementEl of gradel with respect tos, one defines the
Lax operator

L[]x1El1A, ~8!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where the components ofA are the fields of the hierarchy.18 They are functions ofx and of the
other times of the hierarchy taking values in the subspaces ofĝ with grades ranging from 0 to
l21. For each element in the center of Ker~adEl! with positives-gradeN, one constructs a loca
functional of those fields,BN , whose components take values in the subspacesĝ0~s!,...,ĝN~s!.
Then,BN defines the flow equation

]L

]tN
5@BN , L#, ~9!

and the resulting Lax operatorsLN5]/]tN2BN commute among themselves.15

The second type of integrable systems corresponds to the non-Abelian affine
theories.17,19–21Given the integer gradations of ĝ, one chooses two constant elementsE6 l in
ĝ6 l~s! and introduces two Lax operators

L15]12BF1B21, L25]22]2BB
211F2. ~10!

The fieldB is a function ofx6 taking values in the group obtained by exponentiating the ze
graded subalgebraĝ0~s!. As for the other fields, the functionsF6 can be decomposed a
F65E6 l1(m51

l21 Fm
6, andFm

1 andFm
2 take values ingm~s! andg2m~s!, respectively. Then, the

condition [L1 , L2]50 provides the equations of motion of the theory, where]6 are the deriva-
tives with respect to the light-cone variablesx6 . The well-known Abelian affine Toda equation
are recovered with the principal gradation,s5~1,1,...,1!, andl51. They possess an infinite numb
of conserved charges in involution,22 and these charges can be used to construct a hierarch
integrable models through an infinite number of Lax operators that commute among themse23

The non-Abelian versions of the affine Toda equations are obtained with generic gradationss and
Fm

650,17,19,21while the most general case withFm
6Þ0 corresponds to the coupling of the latt

systems with~spinor! matter fields.20

An important common feature of all those hierarchies is that they possess trivial solu
which will be called ‘‘vacuum solutions.’’ These particular solutions are singled out by
condition that the Lax operators evaluated on them lie on some Abelian subalgebra ofg, up to
central terms. Then, the dressing transformation method can be used to generate an
solutions out of each ‘‘vacuum.’’ Moreover, it is generally conjectured that multi-soliton solut
lie in the resulting orbits. As a bonus, the fact that we only consider the particular subs
solutions connected with a generic vacuum allows one to perform the calculations in a
general way and, consequently, our results apply to a much broader class of hierarchies.

For a given choice of the Kac–Moody algebrag and the gradations, let us consider Lax
operators of the form~4! where the potentials can be decomposed as

AN5 (
i5N2

N1

AN,i , where AN,iPĝi~s!, ~11!

N2 andN1 are nonpositive and non-negative integers, respectively, and the timestN are labelled
by ~positive or negative! integer numbers. The particular form of these potentials will be c
strained only by the condition that the corresponding hierarchy admits vacuum solutions
they take the form

AN
~vac!5 (

i5N2

N1

cN
i bi1rN~ t !c[«N1rN~ t !c. ~12!

In this equation,c is the central element ofĝ, andbiPĝi~s! are the generators of a subalgebraŝ
of ĝ defined by
J. Math. Phys., Vol. 38, No. 2, February 1997
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ŝ5$biPĝi~s!,iPE,Zu@bi , bj #5 ib icd i1 j ,0%, ~13!

wherebi are arbitrary~vanishing or nonvanishing! complex numbers such thatb2 i5b i , andE is
some set of integers numbers. Moreover,cN

i are also arbitrary numbers, andrN(t) areC-functions
of the timestN that satisfy the equations

]rN~ t !

]tM
2

]rM~ t !

]tN
5(

i
ib icM

i cN
2 i . ~14!

These vacuum potentials correspond to the solution of the associated linear problem gi
the group element~6!

C~vac!5expS (
N

eNtN1g~ t !cD , ~15!

where the numeric functiong(t) is a solution of the equations

]g~ t !

]tN
5rN~ t !1

1

2 (
M ,i

ib ıcN
i cM

2 i tM . ~16!

In terms of the associated linear problem, one can define an important set of transform
called ‘‘dressing transformations,’’ which take known solutions of the hierarchy to new solut
Regarding the structure of the integrable hierarchies, these transformations have a deep m
and, in fact, the group of dressing transformations can be viewed as the classical precurso
quantum group symmetries.24 Denote byĜ2~s!, Ĝ1~s!, and Ĝ0~s! the subgroups of the Kac–
Moody groupĜ formed by exponentiating the subalgebrasĝ,0~s![% i,0ĝi~s!, ĝ.0~s![% i.0ĝi~s!,
andĝ0~s!, respectively. According to Wilson,10,11 the dressing transformations can be described
the following way. Consider a solutionC of the linear problem~3!, and leth5h2h0h1 be a
constant element in the ‘‘big cell’’ ofĜ, i.e., in the subsetĜ2~s!Ĝ0~s!Ĝ1~s! of Ĝ, such that

ChC215~ChC21!2~ChC21!0~ChC21!1 . ~17!

Notice that these conditions are equivalent to say that bothh andChC21 admit a generalized
Gauss decomposition with respect to the gradations. Then

Ch5@~ChC21!2#21C5~ChC21!0~ChC21!1Ch21 ~18!

is another solution of the linear problem. In order to prove it, introduce the nota
g0,6[(ChC21)0,6 and]N[]/]tN , and consider

]NChCh21
52g2

21]Ng21g2
21~]NCC21!g2

5]Ng0g0
211g0]Ng1g1

21g0
211g0g1~]NCC21!g1

21g0
21. ~19!

Then, the first identity implies that]NChCh21
P % i<N1

ĝi(s), and the second that]NChCh21
P

% i>N2
ĝi(s). Consequently,

AN
h5

]Ch

]tN
Ch21

P %

i5N2

N1

ĝi~s!, ~20!

and, taking into account~11!, it is a solution of the hierarchy of zero-curvature equations.25

For anyh lying in the big cell ofĜ, the transformation
J. Math. Phys., Vol. 38, No. 2, February 1997
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Dh :C°Ch or AN°AN
h ~21!

is called a dressing transformation, and an important property is that their composition law fo
just from the composition law ofĜ, i.e.,Dg+Dh5Dgh .

26

Now, the orbit of the vacuum solution~15! under the group of dressing transformations can
easily constructed using Eqs.~18! and~20!. For any elementh of the big cell ofĜ, let us define

Q215~C~vac!hC~vac!21
!2 , B215~C~vac!hC~vac!21

!0 ,
~22!

Y5~C~vac!hC~vac!21
!1 , and V5B21Y.

Then, under the dressing transformation generated byh,

C~vac!°Ch5QC~vac!5VC~vac!h21, ~23!

or, equivalently,AN
(vac) becomes

AN
h2rN~ t !c5QeNQ211]NQQ21P %

i<N1

ĝi~s!

5VeNV211]NVV21P %

i>N2

ĝi~s!, ~24!

Equations~22! and ~24! summarize the outcome of the dressing transformation met
which, starting with some vacuum solution~12!, associates a solution of the zero-curvature eq
tions~5! to each constant elementh in the big cell ofĜ. The construction of this solution involve
two steps. First, Eqs.~24! can be understood as a local change of variables between the co
nents of the potentialAN and some components of the group elementsQ, B, andY.

The second step consists in obtaining the value of the required components ofQ, B, andY
from Eq. ~22!. This is usually done by considering matrix elements of the form

^muQ21B21Yum8&5^mue(NeNtNhe2(NeNtNum8&, ~25!

where um& and um8& are vectors in a given representation ofg. The appropriate set of vectors
specified by the condition that all the required components ofQ, B, andY can be expressed in
terms of the resulting matrix elements. It will be shown in the next section that the required m
elements, considered as functions of the group elementh, constitute the generalization of th
Hirota’s tau-functions for these hierarchies. Moreover, Eq.~25! is the analog of the so-calle
solitonic specialization of the Leznov–Saveliev solution proposed in Refs. 17, 20, and 27–
the affine~Abelian and non-Abelian! Toda theories.

Consider now the common eigenvectors of the adjoint action of theeN’s that specify the
vacuum solution~12!. Then, the important class of multi-soliton solutions is conjectured to
respond to group elementsh which are the product of exponentials of eigenvectors

h5eF1eF2•••eFn, @eN , Fk#5vN
~k!Fk , k51,2,...,n. ~26!

In this case, the dependence of the solution upon the timestN can be made quite explicit:

^muQ21B21Yum8&5^mu)
k51

n

exp~e(NvN
~k!tNFk!um8.& ~27!

We emphasize that not all solutions of the type~27! are soliton solutions, but we conjecture th
the soliton and multi-soliton solutions are among them. By soliton we mean a solution localiz
space that travels without dispersion, and that keeps its form when scattered by other s
J. Math. Phys., Vol. 38, No. 2, February 1997
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suffering just a shift in its position with respect to the one it would have if not for the scatte
The conjecture that multi-soliton solutions are associated with group elements of the form~26!
naturally follows from the well-known properties of the multi-soliton solutions of affine To
equations and of hierarchies of the KdV type, and, in the sine-Gordon theory, it has been ex
checked in Ref. 30. Actually, in all these cases, the multi-soliton solutions are obtained in te
representations of the ‘‘vertex operator’’ type where the corresponding eigenvectors are nilp
Then, for each eigenvectorFk there exists a positive integer numbermk such that (Fk)

mÞ0 only
if m<mk . This remarkable property simplifies the form of~27! because it implies thateFk 5 1
1 Fk 1 ••• 1 (Fk)

mk/mk!, which provides a group-theoretical justification of Hirota’s method.
An interesting feature of the dressing transformations method is the possibility of relatin

solutions of different integrable equations. Consider two different integrable hierarchies w
vacuum solutions are compatible, in the sense that the corresponding vacuum Lax op
commute. Then, one can consider the original integrable equations as the restriction of a
hierarchy of equations. Consequently, the solutions obtained through the group of dressing
formations can also be understood in terms of the solutions of the larger hierarchy, which im
certain relations among them. We will show in Sec. IV that this possibility generalizes the
known relation between the solutions of the mKdV and sine–Gordon equations.

III. THE TAU-FUNCTIONS

According to the discussion in the previous section, the orbits generated by the gro
dressing transformations acting on some vacuum provide solutions of certain integrable
chies of equations. Making contact with the method of Hirota, the generalized ‘‘tau-functi
that will be defined in this section constitute a new set of variables to describe those solution
of the characteristic properties of these variables is that they substantially simplify the ta
constructing multi-soliton solutions.17 The group-theoretical interpretation of this property h
already been pointed out in the previous section. Tau-functions are given by certain matr
ments in an appropriate representation of the Kac–Moody groupĜ. Moreover, the tau-functions
corresponding to the multi-soliton solutions are expected to involve nilpotent elementsĜ,
which is the origin of their remarkable simple form.

The tau-function formulation of the generalized Drinfel’d–Sokolov hierarchies of Ref. 15
already been worked out in Ref. 16, which, in fact, has largely inspired our approach. How
there are two important differences between our results and those of Ref. 16. First, our ap
applies to the affine Toda equations too and, second, it does not rely upon the use of~level-one!
vertex operator representations.

At this point, it is worth recalling that the solutions constructed in Sec. II are comple
representation independent. In contrast, our definition of tau-functions makes use of a speci
of representations of the Kac–Moody algebraĝ called ‘‘integrable highest-weight’’ representa
tions, which are briefly reviewed in the Appendix. The reason why these representations are
‘‘integrable’’ is the following. For an infinite-dimensional representation, it is generally not p
sible to go from a representation of the algebraĝ to a representation of the corresponding gro
Ĝ via the exponential mapx ° ex. However, the construction does work if, for instance, t
formal power series terminates at a certain power ofx, or if the representation space admits a ba
of eigenvalues ofx. These conditions, applied to the Chevalley generators ofĝ, single out this
special type of representation.

The generalized tau-functions will be sets of matrix elements of the form indicated o
right-hand side of~25!, considered as functions of the group elementh. They are characterized b
the condition that they allow one to parametrize all the components ofQ, B, andY required to
specify the solutions~24! of the zero-curvature equations~5!. As we have discussed before, th
tau-functions corresponding to the multi-soliton solutions are expected to have a very simple
However, in contrast with the original method of Hirota, we cannot ensure in general tha
equations of the hierarchy become simpler in terms of this new set of variables.
J. Math. Phys., Vol. 38, No. 2, February 1997
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First, let us discuss the generalized Hirota tau-functions associated with the componentB.
In Eq. ~25!, these components can be isolated by considering the vectorsum0& of an integrable
highest-weight representationL~s̃! of g which are annihilated by all the elements inĝ.0~s!, i.e.,
Tum0&50 and^m0uT850 for all TPĝ.0~s! andT8Pĝ,0~s!, respectively. Then, the correspondin
tau-functions are defined as31

tm0 ,m08
~ t !5^m08uC

~vac!hC~vac!21
um0&5^m08ue

(NeNtNhe2(NeNtNum0&, ~28!

and, in terms of them, Eq.~25! becomes just

^m08uB
21um0&5tm0 ,m08

~ t !. ~29!

By construction,ĝ0~s! always contains the central elementc of the Kac–Moody algebra, bu
it is always possible to split the contribution of the corresponding field in~29!. Let sqÞ0 and
consider the subalgebrag̊ of g generated by theei

6 with i50,...,r but iÞq, which is a semisimple
finite Lie algebra of rankr ~g̊ is always simple ifq50!. Then,ĝ0~s!5„ĝ0~s!ùg̊…%Cc and, corre-
spondingly,B can be split asB5b exp(nc). Here,n is the field alongc, andb is a function taking
values in the semisimple finite Lie groupG̊0 whose Lie algebra isĝ0~s!ùg̊. SinceK̃5( i50

r ki
∨s̃i

is the level of the representationL~s̃!, Eq. ~29! is equivalent to

^m08uB
21um0&5e2nK̃^m08ub

21um0&5tm0 ,m08
~ t !. ~30!

Moreover, it is always possible to introduce a tau-function for the fieldn. Let us consider the
highest-weight vectoruvq& of the fundamental representationL(q), which is obviously annihilated
by all the elements ing̊. Therefore,

^vquB21uvq&5e2nkq
∨
5tvq ,vq~ t ![tq

~0!~ t !, ~31!

which leads to

^m08ub
21um0&5

tm0 ,m08
~ t !

„tq
~0!~ t !…K̃/kq

∨ and n52 ln
tq

~0!~ t !

kq
∨ . ~32!

Finally, recall that the vectorsum0& form a representation of the semisimple Lie groupG̊0.
Therefore, ifL~s̃! is chosen such that this representation is faithful, Eq.~32! allows one to obtain
all the components ofb in terms of the generalized tau-functionstm0 ,m08

andtq
~0! . Notice that, in

this case, the definition of generalized tau-functions coincide exactly with the quantities inv
in the solitonic specialization of the Leznov–Saveliev solution proposed in Ref. 29.

Let us now discuss the generalized tau-functions associated with the components ofQ. Con-
sider the gradations of g involved in the definition of the integrable hierarchy. For eachsiÞ0, let
us consider the highest-weight vector of the fundamental representationL( i ) and define the~right!
tau-function vector

ut i
R~ t !&5C~vac!hC~vac!21

uv i&5e(NeNtNhe2(NeNtNuv i&. ~33!

Notice thatut i
R(t)& is a vector in the representationL( i ). Therefore, it has infinite components, an

it will be shown soon that the role of the Hirota tau-functions will be played by a finite subs
them. Taking into account thatuv i& is annihilated by all the elements ing.0~s!, Eq. ~25! implies

Q21B21uv i&5ut i
R~ t !&, i50,...,r and siÞ0. ~34!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The definition~33! is inspired by the tau-function approach of Refs. 12, 16, and 17. Howe
in Ref. 16, and Ref. 17, the authors consider a unique tau-functionuts(t)&PL~s!. In fact, one could
equally consider different tau-functionsuts8(t)& associated with any integrable representat
L~s8! such thatsi8 Þ 0 if, and only if,siÞ0. According to Eq.~A6!, all these choices lead to th
same results, but ours is the most economical.

Since, for any integrable representation, the derivationds can be diagonalized acting onL~s!,
these tau-functions vectors can be decomposed as

ut i
R~ t !&5 (

2 jPZ<0
ut i

R~2 j !~ t !&, di ut i
R~2 j !~ t !&52 j ut i

R~2 j !~ t !&, ~35!

where we have used thatQPĜ,0~s! andBPĜ0~s!, anddi indicates the derivation correspondin
to the gradation withsj5d j ,i ~see the Appendix!. Moreover, the highest-weight vector is a
eigenvector of the subalgebraĝ0~s! and, consequently, ofB. Therefore,

ut i
R~0!~ t !&5B21uv i&5t i

~0!~ t !uv i&, ~36!

whereti
(0)(t) is aC-function, not a vector ofL( i ), whose definition is32

t i
~0!~ t !5^v i ueSN«NtNhe2SN«NtNuv i&[tv i ,v i~ t ! ~37!

@compare with Eq.~31!#. Therefore, Eq.~34! becomes

Q21uv i&5
1

t i
~0!~ t !

ut i
R~ t !&, ~38!

which is the generalization of Eq.~5.1! of Ref. 16 for general integrable highest-weight repres
tations ofg. Equation~38! allows one to express all the components ofQ in terms of the com-
ponents ofut i

R(t)& for all i50,...,r with siÞ0 @for instance, by using the positive definite He
mitian form ofL( i )#. However, it is obvious that only a finite subset of them enter in the defini
of the potentialsAN through Eq.~24!.

In exactly the same way, one can introduce another set of ‘‘left’’ tau-function vectors thr

^t i
L~ t !u5^v i uC~vac!hC~vac!21

, ~39!

which leads to

^v i uY5^t i
L~ t !u

1

t i
~0!~ t !

, ~40!

and allows one to express all the components ofY in terms of the components of^t i
L(t)u for all

i50,...,r with siÞ0.
Summarizing, the generalized Hirota tau-functions of these hierarchies consist of the su

functionstm0 ,m08
and of components ofuti

R& and^ti
Lu required to parametrize all the components

the potentialsAN in Eq. ~24!. Then, for the multi-soliton solutions corresponding to the gro
elementh specified in~26!, their truncated power series expansion follows from the poss
nilpotency of the eigenvectorsFk in these representations. For instance, ifn51 in ~26! and
F1
mum0&5F1

muv i&50 unlessm<m1 , then
J. Math. Phys., Vol. 38, No. 2, February 1997
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tm0 ,m08
~ t !5 t̃ m0 ,m08

0
1 t̃ m0 ,m08

1
1•••1 t̃

m0 ,m08

m1 5 (
k50

m1 1

k!
ekSNvNtN^m08uF1

kum0&, and

~41!

ut i
R~ t !&5 (

k50

m1 1

k!
ekSNvNtNF1

kuv i&.

IV. EXAMPLES

The orbits generated by the group of dressing transformations acting on the vacuum co
rations described in Sec. II provide solutions of the generalized mKdV equations of Ref. 15
of the non-Abelian affine Toda equations. In this section we will characterize the approp
choices forŝ, and derive the relation between the original variables and their tau-functions i
simplest cases in order to illustrate the main issues of our formalism. Moreover, these exa
show how the usual definitions of tau-functions in Abelian Toda equations3,4 are precisely recov-
ered.

For simplicity, we will restrict ourselves to vacuum solutions associated with untwisted a
Kac–Moody algebras, although our construction applies also to the twisted case. Then, it w
convenient to use the realization ofĝ as the central extension of the loop algebra of simple fin
Lie algebrag, such that

ĝ5$u~m!uuPg,mPZ% %Cc, g[g~1!5ĝ%Cd,

@u~m!, v ~n!#5@u, v#~m1n!1m Tr~uv !cdm1n,0 , ~42!

@d, u~m!#5mu~m!, @c, d#5@c, u~m!#50,

where Tr~••! denotes the Cartan–Killing form ofg. Then, the Chevalley generators ofg~1! are

ei
65H E6a i

~0! , for i51,...,r ,

E6a0
~61! , for i50,

hi5
2

a i
2 a i•H

~0!1cd i ,0 , ~43!

wherea052Sı51
r kia i is minus the highest root ofg normalized asa0

252,Ea is the step operato
of the roota, andH is an element of the Cartan subalgebra ofg ~H and a live in the same
r -dimensional vector space!.

We will also use the notation

ĝ<k~s!5 %

i<k
ĝi~s!, ĝ>k~s!5 %

i>k
ĝi~s!, ~44!

and denote byP>k[s] andP,k[s] the projectors ontoĝ>k(s) and ĝ,k(s), respectively.
Different choices of the subsetŝ introduced in~13! lead to solutions of different integrabl

hierarchies. However, particularly interesting vacuum solutions arise whenŝ is a subset of a
Heinsenberg subalgebra ofg, which, up to the central elementc, are special types of maximally
commuting subalgebras whose precise definition can be found in Ref. 33. In particular,
g5g~1!, they correspond to the affinization of a Cartan subalgebra ofg by means of an inner
automorphism. This implies that the inequivalent Heisenberg subalgebras ofg~1! are classified by
the conjugacy classes of the Weyl group ofg.33 Consequently, their structure is

H@w#5C c1 (
iPI @w#1ZN@w#

CL i , @L i , L j #5 icd i1 j ,0 , ~45!
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where [w] denotes a conjugacy class of the Weyl group ofg, andI [w] is a set ofr integers>0 and
,N[w] . The set$c,L i u iPI [w]1ZN[w]% is a basis ofH[w] whose elements are graded with respe
to the associated [w]-dependent gradationsw5(s0

w ,...,sr
w). The gradationsw fixes the setI [w] and

the integerN[w]5( i50
r kisi

w, wherek051, k1 ,...,kr are the labels of the extended Dynkin diagra
of g, which also specify its highest roota0.

A. Generalized mKdV and KdV hierarchies

Let Li be an element of a Heisenberg subalgebraH[w] of g~1! whosesw-grade isi.0, and
consider the subalgebra

ŝ5Cent„Ker~adL i !…ùĝ>0~s
w!#H@w#ùĝ>0~s

w!, ~46!

where by Cent~•! we mean the subalgebra of~•! generated by the elements which commute, up
the central elementc, with all elements of~•!. Then,ŝ gives rise to the vacuum solution

AN
~vac!5LN1rN~ t !c, ~47!

which is labelled by the set of integersN such that ŝùĝN~sw! is not empty, and where
LNP ŝùĝN~sw!. To compare with Eq.~12!, N250, N15N, andcN

j 5d j ,N . According with Eq.
~24!, the orbit of solutions generated by the group of dressing transformations acting o
vacuum consists of the Lax operators

LN
h5QS ]

]tN
2LNDQ212rN~ t !c5

]

]tN
2 P>0@sw#~QLNQ21!2rN~ t !c, ~48!

whereQ is defined in~22! and it will be understood as a function of the group elementh.
Then, Eqs.~48! provide solutions for one of the generalized Drinfel’d–Sokolov hierarchie

Ref. 15~see also Ref. 16!. In particular, for the generalized mKdV hierarchy associated with
Lax operator

L5
]

]x
2L2q̃[L i , ~49!

whereL5Li , x5t i , and

q̃Pĝ>0~s
w!ùĝ, i~s

w!. ~50!

In order to prove it, let us briefly summarize its construction. It is based on the existence
unique transformation such that

FLF215
]

]x
2L2h, ~51!

whereF5expy with yPIm~adL!ùĝ,0~s
w!, andhPKer~adL!ùĝ, i~s

w! are local functionals of
the components ofq̃ and theirx-derivatives@notice that Ker~adL! is non-Abelian in general#.
There is a difference between the situation in Ref. 15 and the situation in Ref. 16 and here
q̃ may have a component along the central element ofg~1!, say q̃5q1qcc, where q is the
component ofq̃ in the loop algebra ofg. Then, it is straightforward to show thatF andh2qcc
depend only on the components ofq. The hierarchy consists of an infinite set of commuting flo
associated with the elementsLN in ŝ, and they are defined by the zero-curvature equations
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ent

h
bras.
t

the

can

tions
er-

f com-

ns are

chies
rg

893Ferreira, Miramontes, and Sánchez Guillén: Tau-functions for zero-curvature equations

¬¬¬¬¬¬¬¬¬¬
F ]

]tN
2 P>0@sw#~F21LNF!, LG50. ~52!

Moreover, sinceF is a differential polynomial ofq and it does not depend onqc , this flow
equation induces a flow equation forq which can be written in the form

]q

]t j
5F j S q, ]q

]x
,

]2q

]x2
,••• D , ~53!

for some polynomial functionsF j . In contrast, the corresponding equation for the compon
along the central element ofg~1! is ]Nqc52]x(F

21LNF)c , where~•!c is the component of •
alongC c. SinceF depends only onq, this shows thatqc is not a real degree of freedom, whic
is the reason why these hierarchies can be associated both with Kac–Moody or loop alge

Let us consider the mKdV hierarchy~52! constrained by the condition tha
hPKer~adL!ùĝ,0~s

w!. Since all the vanishing components ofh in ĝ>0~s
w! are functionals ofq̃,

this implies a constraint on the mKdV field, and it is easy to check that it is compatible with
flow equations. Then, using~51! and introducing a nonlocal functionalx of q such that
xPexp„Ker~adL!ùĝ,0~s

w!… and]xxx215h, the Lax operator becomes

L5QS ]

]x
2L DQ211~xLx21!c5

]

]x
2P>0@sw#~QLQ21!1~xLx21!c , ~54!

whereQ5F21xPĜ2(sw). Moreover, the Lax operators that define the flows of the hierarchy
be written as

]

]tN
2P>0@sw#~F21LNF!5

]

]tN
2P>0@sw#~QLNQ21!2~x21LNx!c . ~55!

This, compared with~48!, shows that the orbit generated by the group of dressing transforma
acting on the vacuum solution~47! actually consists of solutions of the generalized mKdV hi
archy associated with the Lax operator~49!.

Equations~49! and~54! provide the change of variables betweenq̃ and the components ofQ,
and they show that only the finite number of terms ofQ with sw-grade ranging from2i to 21 are
required. Therefore, in this case, the generalized tau-functions correspond to a finite set o
ponents of the vectorsuti

R(t)& in the fundamental integrable representationsL( i ) such thatsi
wÞ0.

Let us remark that this case is covered by the results of Ref. 16 only if these representatio
of level one, which means that thatsi

wÞ0 only if ki
~51.

As a specific example, let us discuss the Drinfel’d–Sokolov generalized mKdV hierar
associated to a simple finite Lie algebrag. They are recovered from the principal Heisenbe
subalgebra, which is graded with respect to the principal gradationsp5~1,1,...,1!, and the Lax
operator~49! where, in this case,

L5L15(
i50

r

ei
1 and q̃5(

i50

r

qihi . ~56!

The change of variables betweenq̃ and the components ofQ follows from ~49! and ~54! by
writing

Q5exp~u211••• !PĜ2~sp!,

with u21Pĝ21~sp!, which leads to
J. Math. Phys., Vol. 38, No. 2, February 1997
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q̃5@u21 , L#. ~57!

The relation betweenu21 and the tau-functions has to be obtained from Eq.~38!. Consider the
decompositionu215(i50

r aiei
2 for some functionsaj . Then~38! implies that

(
i50

r

aiei
2uv j&52

1

t j
~0!~ t !

ut j
R~-1!~ t !&. ~58!

Moreover, since the times are labelled by positive integers~the exponents ofg plus its Coxeter
number times some non-negative integer! andLN annihilates the highest-weight vectors forN.0,
Eq. ~33! reduces to

ut j
R~ t !&5eSNtNLNhuv j&, ~59!

and Eq.~37! becomes

t j
~0!~ t !5^v j ueSNtNLNhuv j&. ~60!

Then, Eqs.~58! and ~59! imply that

aj52
1

t j
~0!~ t !

^v j uej
1eSNtNLNhuv j&, ~61!

but ^v j uej
15^v j uL1, which, taking into account~60!, finally leads to

aj52
]

]x
ln t j

~0!~ t !. ~62!

Therefore, using~57!, the resulting change of variables is

q̃5(
i50

r
]

]x
ln t i

~0!~ t !hi5(
i51

r
]

]x
lnS t i

~0!~ t !

t
0
~0!ki

∨
~ t !

D 2

a i
2 a i•H

~0!1t0
~0!~ t !c, ~63!

whereki
∨5(a i

2/2)ki , which shows thatt0
~0!(t),...,t r

(0)(t) are the Hirota tau-functions in this cas
In general, whenŝ,ĝ>0~s!, as in~46!, the construction presented in Secs. II and III can s

be generalized by introducing an auxiliary gradations*<s with respect to the partial ordering o
Ref. 15. Then, the new Lax operators would be defined such that

ANPĝ>0~s* !ùg̃<N~s!, ~64!

and the analog of the dressing transformation~18! involves the factorization

ChC21PĜ2~s* !Ĝ0~s* !Ĝ1~s* !. ~65!

Now, if ŝ is of the form given by Eq.~46!, the orbit of the vacuum solution~47! provides solutions
for the generalized~partially modified! KdV hierarchies of Ref. 15, and it leads to the correspo
ing generalizations of the Hirota tau-functions.16

In addition, the form of the new Lax operator~64! is invariant under the gaug
transformations15

LN°ULNU
215US ]

]tN
2ANDU21, ~66!
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whereU is an exponentiation of elements of the algebra

P[ĝ0~s* !ùĝ<0~s! ~67!

In terms of the associated linear problem, the gauge transformation~66! corresponds toC°UC,
with UPP. This opens the possibility of considering different gauge equivalent definitions o
dressing transformation~18! @with the decomposition~17! being replaced by~65!#, e.g.,

C°UCh5@~ChC21!2U
21#21C5@U~ChC21!0#~ChC21!1Ch21, ~68!

leading to gauge equivalent solutions of the zero-curvature equations. It is worth pointing o
the group of gauge transformations~66! is not trivial even ifsw5s. However, along the article, we
only consider the dressing transformations defined by~18!, which is equivalent to a partial gaug
fixing prescription for the transformations~66! ~an alternative prescription is used, e.g., in R
30!.

B. Generalized non-Abelian Toda equations

Now, for a given Heisenberg subalgebraH@w# of g~1!, let us choose a positive integerl and
consider the vacuum solution

Al
~vac!5L l , A2 l

~vac!5L2 l1 l t lc, ~69!

associated to the subalgebra generated byL6 lPH@w#ùĝ6 l~s
w!. In ~12!, this solution corresponds

to l15 l , l250, ~2l !150, ~2l !252l, cl
j5d j ,l , c2 l

j 5d j ,2 l , rl50, andr2 l5 l t l , and it is equiva-
lent to the following solution of the associated linear problem:

C~vac!5exp~L tt l1L2 l t2 l1
1
2l t l t2 lc!. ~70!

If l.1, we will only be interested in the orbit of solutions generated by the dressing tran
mations associated with the elements of the subgroupĜ( l ) formed by exponentiating the subalg
bra

ĝ~ l !5 %

kPZ
ĝkl~s

w!. ~71!

However, let us indicate that the orbit generated by the full Kac–Moody group acting on~69!
provides solutions for the generalized affine non-Abelian Toda equations of Ref. 20. Then,C~vac!,
h, and, consequently,C~vac! hC~vac!21, are inĜ( l ), which implies

Q5expS (
kPZ.0

u2klD 511u2 l1•••PĜ2
~ l !~sw!, u2klPĝ2kl~s

w!,

~72!

Y5expS (
kPZ.0

zklD 511z l1•••PĜ1
~ l !~sw!, zklPĝkl~s

w!.

Therefore, using Eqs.~24!, the orbit of solutions generated by the group of dressing transfor
tions acting on~69! is given by

Al
h5L l1@u2 l ,L l # ~73!

5L l2B21] lB, ~74!

A2 l
h 5L2 l1]2 lu2 l1 l t lc ~75!

5B21L2 lB1 l t lc. ~76!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Using Eqs.~74! and ~76!, the zero-curvature equation@L l
h, L2 l

h #50 becomes

] l
2~B21] l

1B!5@L l , B
21L2 lB#2 lc, ~77!

which shows thatB̂ 5 elt l t2 l cB is a solution of a generalized non-Abelian affine Toda equa
where6t6 l play the role of the light-cone variablesx65x6t, andB̂ is the Toda field.17,19,22,21,34

It is well known that these equations can be understood as the classical equations of mo
certain two-dimensional relativistic field theories, and Lorentz invariance is manifested th
the symmetry transformationx6→l61x6 .

However, the solutions provided by the dressing transformation method satisfy addi
constraints. Actually, the comparison of~73! with ~74! shows that

B21] lB5@L l , u2 l #PIm~adL l !, ~78!

and ~24! and ~76! imply that

]2 lBB
2152@L2 l , z2 l #PIm~adL2 l !. ~79!

These constraints break the well-known chiral symmetry

B°h2~ t2 l !Bh1~ t l ! ~80!

of the affine Toda equation~77!, whereh6(t6 l) take values in the subgroupsĜ6 formed by
exponentiating the subalgebras Ker~adL6 l!ùĝ0~s

w!. Moreover, Eqs.~78! and ~79! have a nice
interpretation as gauge-fixing conditions for certain local~chiral! symmetries of the underlying
two-dimensional field theory.17,35

The dressing transformation method allows one to relate the resulting solutions of the
Abelian Toda~77! and generalized mKdV~52! equations. The crucial observation is that the L
operatorL l

h corresponding to~74! can also be viewed as the Lax operator of a generalized mK
hierarchy. Then, according to~49!, the relation isL5Ll , x5t l[x1 , and q̃52B21] lB. This
provides a~locally! noninvertible map from solutions of the non-Abelian Toda equation (B) into
solutions of the mKdV equation (q̃), which generalizes the known relation between solutions
the sine–Gordon and mKdV equations. However, ifl.1, notice that the resulting mKdV Lax
operator is constrained by the conditionq̃52B21] lBPĝ0~s

w!, a constraint that is compatibl
only with a subset of the flows that define the mKdV hierarchy. In order to make this rel
concrete, let us consider the subalgebra

ŝ†5@Cent„Ker~adL l !…ù %

kPZ>0
ĝkl~s

w!#øCL2 l , ~81!

and the associated vacuum solution

Akl
~vac!5 HLkl , if k>0,

L2 l1 l t lc, if k521. ~82!

Then, the orbit generated by the group of dressing transformations induced by the elementsĜ( l )

provide joint solutions of both the non-Abelian Toda equation~77! and the mKdV hierarchy of
equations restricted to the flows generated by the timestkl .

36 Recall that, both in the mKdV and
non-Abelian Toda equations, the solutions provided by the dressing transformation method
additional constraints. In the generalized mKdV equations, these constraints are given
condition thathPĝ,0~s

w! @see Eq.~51! and the discussion leading to~54!#. As for the non-Abelian
Toda equation, the so-obtained solutions satisfy the identities~78! and ~79!. However, since, in
this caseq̃52B21] lBPĝ0~s

w!, Eq. ~51! implies that hPĝ<0~s
w!, and that q̃ 5 P0@sw#(h)
J. Math. Phys., Vol. 38, No. 2, February 1997
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1 @L l ,w2 l #, whereF511w2l1••• . All this shows that the constrainthPĝ,0~s
w! corresponds

precisely to Eq.~78!. In contrast, Eq.~79! involves the timet2 l and, hence, it does not have a
interpretation in terms of the mKdV hierarchy associated withq̃.

Finally, let us discuss the tau-functions for these non-Abelian Toda hierarchies. Equ
~74! and ~76! show that the non-Abelian Toda equation~77! is a partial differential equation fo
the Toda fieldB. Actually, this remains true if we consider the hierarchy of equations assoc
with the vacuum solution~82!. Therefore, in this case, the generalized Hirota tau-functions
respond to the set of variablestm0 ,m08

(t), and the change of variables is provided by Eq.~29!. This
shows that the vectorsum0& have to be chosen in some integrable representation ofg~1! such that
they form a faithful representation ofĜ0~s

w!. It is worth mentioning that Eqs.~73! and ~75!
suggest the possibility of describing these hierarchies in terms of the components ofQ. Actually,
those equations manifest the existing relations between the tau-functionstm0 ,m08

(t) and the com-

ponents ofuti
R(t)& that provide the tau-functions of the associated mKdV hierarchy. Howe

these relations are nonlocal and, therefore, not very useful in practice in the general case.
Equation~28! shows that the proposed generalized tau-functionstm0 ,m08

(t) are precisely the
matrix elements involved in the solitonic specialization of the Leznov–Saveliev solution of
29. Therefore, using the map between the solutions of non-Abelian Toda and mKdV equatio
dressing transformation method relates the resulting orbit of solutions of the latter with the
tonic specialization of the Leznov–Saveliev solution, originally formulated in the context of a
Toda equations. Then, since it can be justified that the solitonic specialization singles the
solutions out from the general Leznov–Saveliev solution,27,28,37the observed relation supports th
conjecture that the orbits of solutions generated by the group of dressing transformations a
contain all the multi-soliton solutions of the equations.

The simplest example is provided by the Abelian affine Toda equations, which are re
with the Drinfel’d–Sokolov mKdV hierarchies discussed in Sec. IV A. Therefore, they are re
ered from the principal Heisenberg subalgebra andl51, with

L15(
i50

r

ei
1 and L215(

i50

r

ki
∨ei

2 . ~83!

The Toda field takes values inĝ0~sp!, which is generated byh0 ,...,hr . This implies that

B5expS 2(
i50

r

f ihi D 5exp~2f•H~0!2f0c!, ~84!

and, hence, the generalized Hirota equations are justtv i ,v i8(t) 5 t i
(0)(t), for i50,...,r . The relation

between the components ofB and the tau-functions follows from Eq.~29!:

^v i uB21uv i&5ef i5t i
~0!~ t !, for i50,...,r , ~85!

which leads to

f5(
i50

r

ln t i
~0!~ t !

2

a i
2 a i , f05 ln t0

~0!~ t !, ~86!

which, compared with~63!, exhibits the relation with the mKdV hierarchies, and agrees with
change of variables~2! used in Refs. 3–6.
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V. CONCLUSIONS

In this article, we have studied a special type of solution of a large class of nonlinear
grable zero-curvature equations. The class of integrable models is constructed from affine~both
twisted and nontwisted! Kac–Moody algebras, and is characterized by exhibiting trivial solutio
referred to as ‘‘vacuum solutions,’’ such that the corresponding Lax operators take values in
Abelian subalgebra up to the central term. Then, we have considered the orbits of so
generated by the group of dressing transformations acting on those vacua. It is important to
that the relevant integrable models are not constructed explicitly. In contrast, their zero-cur
equations are found only as the equations satisfied by this particular class of solutions.
similar to the tau-function approach of Ref. 12 where the equations defining the integrable
archy of bilinear Hirota equations are derived from the property that their solutions lie in the
of a highest-weight vector generated by a Kac–Moody group. The resulting class of inte
models includes the generalizations of the Drinfel’d–Sokolov hierarchies of mKdV~and KdV!
type constructed in Ref. 15, and the generalizations of the sine–Gordon equation kno
Abelian and non-Abelian affine Toda equations.17,19–21

The motivation for studying this particular type of solution is to find the generalizations o
Hirota tau-functions for the relevant integrable systems. First of all, it is generally assume
the orbit of solutions generated by the group of dressing transformations contain all the
soliton solutions of the integrable hierarchy.30 Then, according to the method of Hirota, th
generalized tau-functions provide an alternative set of variables that largely simplify the ta
constructing the multi-soliton solutions. In this case, we have identified those new variable
specific matrix elements evaluated in the integrable highest-weight representations of the
Moody algebra.

In particular, for the generalizations of the Drinfel’d–Sokolov hierarchies of mKdV~and
KdV! type, our results constitute a generalization of the results of Ref. 16 to the general case
the relevant integrable representations are neither of level-one nor of vertex type. Moreov
the non-Abelian affine Toda equations, our results show that the suitable generalizations
Hirota tau-functions correspond to the matrix elements involved in the solitonic specializati
the general Leznov–Saveliev solution.29 Actually, this is a remarkable result since it links th
orbits of solutions under consideration with the solitonic specialization of Ref. 29. Then, sinc
solitonic specialization arises as a prescription to single the multi-soliton configurations out
the general solution, our result supports the conjecture that all the multi-soliton solutions lie
orbit generated by the group of dressing transformation acting on some vacuum.

In this article we have only considered integrable systems of zero-curvature equation
structed from Kac–Moody algebras. However, there are many other important integrable h
chies formulated by means of pseudo-differential operators, and it would be interesting to
tigate the implications of our results for the definition of generalized Hirota tau-functions in t
cases.38 In particular, it has been recently shown in Ref. 39 how matrix generalizations of bot
Gelfand–Dickey and the constrained KP hierarchies can be recovered from the construc
Ref. 15. Therefore, at least in these important cases, it should be possible to translate dire
definition of tau-functions into the context of those integrable systems.
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APPENDIX: INTEGRABLE HIGHEST-WEIGHT REPRESENTATIONS

An affine Kac–Moody algebrag of rank r is defined by a generalized Cartan matrixa of
affine type of orderr11 ~and rankr !, and is generated by$hi , ei

6, i50,...,r % andd subject to the
relations40

@hi , hj #50, @hi , ej
6#56ai , jej

6 ,

@ei
1 , ej

2#5d i , jhi , ~adei
6!12a i , j~ej

6!50, ~A1!

@d, hi #50, @d, ei
6#56d i ,0e0

6 .

The elementsei
6 are Chevalley generators, and$h0 ,...,hr ,d% span the Cartan subalgebra ofg.

The algebrag has a centerC c generated by the central elementc5( i50
r ki

∨hi , whereki
∨ are the

labels of the dual Dynkin diagram ofg ~the dual Kac labels!, and in all casesk0
∨51.

The differentZ-gradations ofg are labeled by setss5(s0 ,...,sr) of non-negative integers
Then the gradation is induced by a derivationds such that

@ds, hi #5@ds, d#50, @ds, ei
6#56siei

6 . ~A2!

In particular, the derivationd corresponds to the so-called homogeneous gradations5~1,0,...,0!.
The definition of integrable representations makes use of the following property. An ele

xPg is said to be ‘‘locally nilpotent’’ on a given representation if for any vectoruv& there exists
a positive integerNv such thatx

Nvuv& 5 0. Then, an integrable highest-weight representationL~s!
of g is a highest-weight representation ofg where the Chevalley generators are locally nilpoten40

It can be proven thatL~s! is irreducible and thatuvs& is the unique highest-weight vector ofL~s!.
The highest-weight vector ofL~s! can be labelled by a gradation,s5(s0 ,s1 ,...,sr) such that

ei
1uvs&5~ei

2!si11uvs&50, ~A3!

hi uvs&5si uvs&, dsuvs&50, ~A4!

for all i50,...,r. Notice that the eigenvalue ofds is arbitrary, and thatds can be diagonalized actin
on L~s!. The eigenvalue of the centerc on the representationL~s! is known as the levelk

cuvs&5(
i50

r

ki
~hi uvs&5S (

i50

r

ki
~si D uvs&, ~A5!

hencek 5 ( i50
r ki

∨si P Z > 0. OnL(s) there is a notion of orthogonality by means of a~unique!
positive definite Hermitian formH such thatH~uvs&,uvs&![^vsuvs&51. Finally, L~s! can be ‘‘inte-
grated’’ to a representation of the Kac-Moody groupĜ, which is then generated just by th
exponentials of the generators ofg.33,40,41

We will use the notationuv i& for the highest-weight vector of the ‘‘fundamental’’ represen
tion L( i ) wheresj5d j ,i , anddi for the corresponding derivation. In terms of these fundame
highest-weight vectors,uvs& can be decomposed as

uvs&5 ^

i50

r

$uv i& ^si%. ~A6!
J. Math. Phys., Vol. 38, No. 2, February 1997
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It follows from its definition that the highest-weight vector ofL~s! is annihilated byĝ.0~s!,
and that it is an eigenvector ofĝ0~s! with eigenvalues

hi uvs&5si uvs&, dsuvs&50,
~A7!

ej
2uvs&50 when sj50.

Then, the representation of the subgroupsĜ1~s!, Ĝ2~s!, andĜ0~s! on L~s! are actually generated
by exponentiating the generators ofĝ.0~s!, ĝ,0~s!, andĝ0~s!, respectively.

For simply laced affine Kac–Moody algebras, all the fundamental integrable represent
of level one are isomorphic to the basic representationL~0!, which can be realized in terms o
vertex operators acting on Fock spaces.33,42Then, the other fundamental integrable representat
of level.1 can be realized as submodules in the tensor product of several fundamental lev
representations. Moreover, the fundamental integrable representations of nonsimply laced
Moody algebras can be constructed from those of the simply laced algebras by folding the28,43
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Advection–diffusion past a strip. II. Oblique incidence
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Advection and diffusion of particles past an impenetrable strip is considered when
the strip is oblique to the advection or drift velocity. The particle concentration
p(x,y) is determined asymptotically for large values ofvL/D, wherev is the drift
velocity,D is the diffusion coefficient, and 2L is the width of the strip. The results
complement those of Part I, which treated a strip normal to the drift velocity.
© 1997 American Institute of Physics.@S0022-2488~97!00802-5#

I. INTRODUCTION

The concentrationp(x,y) of particles diffusing and being advected in the positivex direction
is considered. The goal is to determine the effect of blocking by a strip parallel to thez axis and
oblique to the advection direction. See Fig. 1. In Part I,1 we determined the blocking effect of
strip normal to this direction. Just as in that case,p satisfies the dimensionless advection-diffusi
equation

pxx1pyy22cpx50. ~1.1!

Herec5vL/2D wherev is the drift velocity,D is the diffusion coefficient, and 2L is the width of
the strip. On the strip, which makes the angleb, 0,b,p/2, with they axis, the normal componen
of flux vanishes:

@px~x,x cot b!22cp~x,x cot b!#cosb2py~x,x cot b!sin b50, uxu,sin b. ~1.2!

At infinity, we assume that

p→1 as x21y2→`. ~1.3!

In addition, at the edges (x,y)56~sinb,cosb! we require thatp be finite.
To solve this problem, we assume thatc is large and use asymptotic analysis. In Sec. II

construct the boundary layer solution on the front of the strip. In Sec. III we give an inte
representation ofp in terms of a densityH~•! for which we derive an integrodifferential equatio
We also obtain an asymptotic expansion ofH at points away from the edges of the strip. In Se
IV we determine the expansions ofH in boundary layers at the two edges of the strip, and ma
them to the expansion valid away from the edges. Then we combine the expansions to
uniform expansion ofH, and use it in the integral representation to get a uniform asymp
expression forp. In Sec. V we evaluate the integral asymptotically to obtain simpler nonunif
approximations forp valid in various regions of the plane. They reveal the qualitative behavio
p in the ‘‘illuminated’’ and ‘‘shadow’’ regions, on the boundaries of these regions, etc. Th
nonuniform approximations are summarized in Sec. VI. The results can be described and
preted in terms of edge-diffracted rays and diffraction coefficients, as in the geometrical the
diffraction.2
0022-2488/97/38(2)/902/24/$10.00
902 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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II. FRONT BOUNDARY LAYER

We expectp to be large in a thin boundary layer on the front or illuminated side of the s
To determinep there we introduce the tangential coordinatet and the normal coordinaten,
defined by

n5x cosb2y sin b, t5x sin b1y cosb. ~2.1!

We also define the stretched normal coordinatej5cn. Then the strip occupies the intervaln50,
utu,1, while ~1.1! and ~1.2! become the following equations forP(j,t)5p(x,y):

c2Pjj1Ptt22c2Pj cosb22cPt sin b50, ~2.2!

Pj22P cosb50, j50, utu,1. ~2.3!

For j,0 we seekP in the form

P~j,t,c!5cP~1!~j,t !1P~0!~j,t !1c21P~21!~j,t !1••• . ~2.4!

Substituting~2.4! into ~2.2!, ~2.3!, and~1.3! and equating coefficients of the first three powers
c yields

Pjj
~1!22 cosbPj

~1!50, j,0,

Pj
~1!22 cosbP~1!50, j50, utu,1, ~2.5!

P~1!→0, j→2`.

FIG. 1. Cross section of a strip of width 2L which makes the angleb with they axis. The advection velocity is along th
x axis, to the right. The half-widthL of the strip is the unit of length, so the tangential coordinatet extends from21 to 1
along the strip. The axis of the normal coordinaten is shown, withn negative on the front side of the strip, upon whic
the incident particles impinge.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Pjj
~0!22 cosbPj

~0!52Pt
~1! sin b, j,0,

Pj
~0!22 cosbP~0!50, j50, utu,1, ~2.6!

P~0!→1, j→2`.

Pjj
~21!22 cosbPj

~21!52Pt
~0! sin b2Ptt

~1! , j,0,

Pj
~21!22 cosbP~21!50, j50, utu,1, ~2.7!

P~21!→0, j→2`.

The solution of~2.5! is, with A(t) undetermined,

P~1!~j,t !5A~ t !e2j cosb. ~2.8!

Upon using~2.8! in ~2.6!, and then solving~2.6! for P~0!, we obtain

P~0!~j,t !511@A8~ t !j tanb1B~ t !#e2j cosb. ~2.9!

Then imposing uponP~0! the boundary condition atj50, we find thatA8(t)52 cosb/tanb so
A(t)52(t1a0)cosb/tanb with a0 an undetermined constant. Now we proceed to~2.7!, using
~2.8! and ~2.9! with the value forA(t) which we have just found. We integrate the different
equation fromj50 to j52`, use the boundary condition, and find thatB8(t)50, soB(t)5a1
wherea1 is an undetermined constant.

We can now use our results~2.8! and ~2.9! for P~0! andP~1! in ~2.4!, and setj5cn, to get

p~x,y,c!5P~cn,t,c!511F2c cos2 b

sin b
~ t1a0!12cn cosb1a1Ge2cn cosb1••• , n<0.

~2.10!

The constantsa0 anda1 are as yet undetermined. However,~2.10! shows thatp is large, of order
c, in the front boundary layer, which is of thicknessO(c21). This concentration is smaller tha
theO(c2) value for the caseb50, which we found in Part I. The reason why it is smaller is th
in the oblique case there is a nonzero component of advection along the strip, so the partic
carried along the strip toward the downstream edge att51. We will show in~5.41! thata051 and
a151/sinb. Thus theO(c) term in~2.10! vanishes at the upstream edget521, andp has anO~1!
value there.

III. AN INTEGRODIFFERENTIAL EQUATION

To obtainp(x,y) in the entire domain, we shall reformulate the problem~1.1!–~1.3! as an
integrodifferential equation which we shall solve asymptotically. First we subtract 1 fromp, and
then we remove the factorecx from the difference. The resultq5e2cx(p21) satisfies the modi-
fied Helmholtz equationDq5c2q. It is convenient to expressq(n,t) in terms of the normal and
tangential coordinates introduced above. Then we have

p511ecxq~n,t !, ~3.1!

where

Dq5c2q, ~3.2!

qn2cq cosb52ce2ct sin b cosb, n50, utu,1. ~3.3!
J. Math. Phys., Vol. 38, No. 2, February 1997
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In addition,q is finite at the endpoints of the interval.
Now we seek a solution of the form

q~n,t !5cosb~]n1c cosb!E
21

1

e2cv sin bH~v!K0@c$~v2t !21n2%1/2#dv. ~3.4!

Since the modified Bessel functionK0 of c times the distance from (n,t) to ~0,v! is a solution of
~3.2!, the expression~3.4! for q satisfies~3.2!. Upon using~3.4! in the boundary condition~3.3!,
we get

~]n
22c2 cos2 b!E

21

1

e2cv sin bH~v!K0@c$~v2t !21n2%1/2#dv52ce2ct sin b, n50, utu,1.

~3.5!

We can rewrite~3.5! by first using~3.2! to replace]n
2K0 by (c

22] t
2)K0 so that~]n

22c2 cos2 b!K0
becomes~2] t

21c2 sin2 b!K0. Then we multiply~3.5! by ect sinb and bring this factor into the
integrand on the left. The result is

~2] t
212c sin b] t!E

21

1

H~v!e2c~v2t !sin bK0~cuv2tu!dv52c, utu,1. ~3.6!

Equation~3.6! is an integrodifferential equation for the unknown functionH~v!. To solve it
we shall construct three asymptotic approximations toH~v!, one outer expansion valid in th
region21,v,1 away from the endpoints, and one boundary layer expansion valid near
endpoint.

For 21,v,1 we expandH as

H~v!5cH0~v!1H1~v!1O~c21!. ~3.7!

We note that forc large the kernel of the integrand in~3.6! behaves like a multiple ofd~v2t!.
Therefore, we expand eachHj ~v! aboutv5t and then use the two identities

E
2`

`

e2cz sin bK0~cuzu!dz5
p

c
secb,

E
2`

`

e2cz sin bzK0~cuzu!dz52
p

c2
sec2 b tanb. ~3.8!

By using ~3.7! and these identities in~3.6!, we obtain from~3.6! the equation

p secb~2c sin b] t2] t
2!HH0~ t !2

1

c
@H1~ t !2secb tanbH08~ t !#1O~c22!J 52c. ~3.9!

Next we equate coefficients ofc and ofc0 in ~3.9! and we getp tanbH08(t) 5 1 andH18(t)
5 0. Integration yields

H0~ t !5
t

p tanb
1C0 , H1~ t !5C1 . ~3.10!

Then ~3.7! becomes
J. Math. Phys., Vol. 38, No. 2, February 1997
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H~v!5cS v

p tanb
1C0D1C11O~c21!, uvu,1. ~3.11!

The integration constantsC0 andC1 will be determined by matching the outer expansion~3.11! to
the two boundary layer expansions, which we shall now obtain.

IV. BOUNDARY LAYER EXPANSIONS

To findH neart521 we introduce the boundary layer coordinatew, the integration variable
v, and the unknown functionG defined by

t5211c21w, v5211c21v, H~v!5cG~v !. ~4.1!

Then we can write~3.6! as

@2]w
212 sinb]w#c2E

0

2c

G~v !e~w2v !sin bK0~ uw2vu!dv52c, w.0. ~4.2!

We expandG as

G~v !5G0~v !1c21G1~v !1••• . ~4.3!

Upon using~4.3! in ~4.2! and equating coefficients ofc0 andc21 we get

L@G0#[@2]w
212 sinb]w#E

0

`

G0~v !e~w2v !sin bK0~ uw2vu!dv50, w.0. ~4.4!

L@G1#52, w.0. ~4.5!

We shall solve~4.4! and ~4.5! by the Wiener–Hopf method, so we denote the left sides
~4.4! and ~4.5! for w,0 by C~0!(w) andC~1!(w), respectively. We define the one-sided Four
transforms

Ĝj~a!5E
0

`

eiawGj~w!dw, c2
~ j !~a!5E

2`

0

eiawC~ j !~w!dw, j50,1. ~4.6!

Fourier transforming~4.4! and ~4.5! leads to the two equations

pa~a22i sin b!

@11~a2 i sin b!2#1/2
Ĝ0~a!5c2

~0!~a!, ~4.7!

pa~a22i sin b!

@11~a2 i sin b!2#1/2
Ĝ1~a!52

2

ia
1c2

~1!~a!. ~4.8!

After multiplying ~4.7! by ~a2i sinb2i !1/2 and using the behavior of both sides at infinity, w
conclude that both sides are constant, sayD0, so that

Ĝ0~a!5
D0~a2 i sin b1 i !1/2

pa~a22i sin b!
. ~4.9!
J. Math. Phys., Vol. 38, No. 2, February 1997
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This function has a pole in the upper half of thea plane ata52i sinb. UnlessD050,G0(w) will
grow exponentially asw→`, and thus it cannot match to the outer approximation. There
D050 and thenG0(v)50, so~4.3! yieldsG(v)5c21G1(v)1••• . This and~4.1! show thatH(v)
5O(1) for v115O(c21). Imposing this condition on~3.11! yields

C05
cot b

p
. ~4.10!

Next we solve~4.8! by the Wiener–Hopf method and get

Ĝ1~a!5
~a2 i sin b1 i !1/2

a~a22i sin b!

1

p FD12
2

ia
e2 ip/4~11sin b!1/2G , ~4.11!

whereD1 is a constant. SinceĜ1(a)5O(uau23/2) asa→` in the upper half-plane, we see th
p(x,y) will be finite at the lower endpoint of the strip. The expression in~4.11! has a pole at
a52i sinb. This would lead to an exponentially growingG1(w), which could not match to the
outer approximation. We must haveĜ1 analytic ata52i sinb, which determinesD1 as

D152
e2 ip/4~11sin b!1/2

sin b
~4.12!

and then~4.11! becomes

Ĝ1~a!52e2 ip/4
~11sin b!1/2

sin b

~a2 i sin b1 i !1/2

pa2 . ~4.13!

Inverting the Fourier transform, noting thatĜ1 has a double pole ata50 and a branch point a
a5i sinb2i , we obtain

G1~w!5
cot b

p Fw1
1

2~12sin b!G2
~11sin b!1/2

p2 sin b E
0

` s1/2e2~12sin b1s!w

~s112sin b!2
ds. ~4.14!

This is the leading term in the boundary layer neart521.
As w→`, ~4.14! becomes

G1~w!;
cot b

p Fw1
1

2~12sin b!G5
cot b

p Fc~ t11!1
1

2~12sin b!G . ~4.15!

ThenH(v)5G1(v)1O(c21) will match to ~3.11! if C0 is given by~4.10! andC1 by

C15
cot b

2p

1

12sin b
. ~4.16!

Thus we have uniquely determined the outer approximation~3.11! as

HOUT~v![
cot b

p Fc~v11!1
1

2~12sin b!G1••• . ~4.17!

Now, to determineH in the boundary layer neart51, we introduce the new independe
variableu, the integration variablev, and the unknown functionF defined by

t512u/c, v512v/c, H~v!5cF~v !. ~4.18!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Then from~3.6! we find thatF satisfies

@2]u
222 sinb]u#c

2E
0

2c

F~v !e2~u2v !sin bK0~ uu2vu!dv52c, u.0. ~4.19!

We set

F~v !5F0~v !1
1

c
F1~v !1••• . ~4.20!

Then by using~4.20! in ~4.19! and equating coefficients ofc0 andc21 we get

L@F0#[@2]u
222 sinb]u#E

0

`

F0~v !e2~u2v !sin bK0~ uu2vu!dv50, u.0, ~4.21!

L@F1#52, u.0. ~4.22!

We shall solve~4.21! and ~4.22! by the Wiener–Hopf method also, so we denote their left si
for u,0 by F~0!(u) andF~1!(u), respectively. Then we define

F̂ j~a!5E
0

`

eiavF j~v !dv, f2
~ j !~a!5E

2`

0

eiavF~ j !~v !dv; j50,1. ~4.23!

Fourier transformation of~4.21! and ~4.22! yields

@a212ia sin b#
p

@11~a1 i sin b!2#1/2
F̂0~a!5f2

~0!~a!, ~4.24!

@a212ia sin b#
p

@11~a1 i sin b!2#1/2
F̂1~a!52

2

ia
1f2

~1!~a!. ~4.25!

We multiply both sides of~4.24! by @a1i sinb2i #1/2 and conclude that both sides of th
resulting equation are regular and bounded, so they are constant. ThusF̂0~a! is given by

F̂0~a!5
~a1 i sin b1 i !1/2

pa~a12i sin b!
D2 . ~4.26!

HereD2 is a constant which will be determined by matchingF(v) to the outer expansion. Th
solution of~4.26! shows thatF̂0(a)5O(uau23/2) asa→` in the upper half-plane. It follows tha
F(v)5O(v1/2) asv→` so ~4.1! shows thatH(v) 5 O(A12v) asv→1. Then~3.4! shows that
q(n,t), and hencep(x,y) are finite at the upper edge of the strip.

To solve~4.25! we perform a Wiener–Hopf factorization of the right side and use the be
ior of the factors ata5` to obtain

F̂1~a!5
~a1 i sin b1 i !1/2

pa~a12i sin b!
D32

2e2 ip/4~12sin b!1/2

ia2p

~a1 i sin b1 i !1/2

a12i sin b
~4.27!

Now ~4.20! for F(v) can be written in terms of the inverse Fourier transform as

cF~v !5
1

2p E
C1

@cF̂0~a!1F̂1~a!1O~c21!#e2 iav da ~4.28!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The contourC1 goes along the real axis in thea plane and is indented abovea50. From~4.26!
and ~4.27! it follows that F̂0 has simple poles ata50 anda522i sinb, and a branch point a
a52i2 i sinb; F̂1 has the same singularities asF̂0 except that the pole ata50 is a double pole.
Evaluating explicitly the contour integrals in~4.28! gives

cF~v !;~cD21D3!
eip/4

p H 2
~11sin b!1/2

2 sinb
1

~12sin b!1/2

2 sinb
e22v sin b

1
1

p E
0

` s1/2e2~11sin b1s!v

~s11!22sin2 b
dsJ 1

cot b

p F 1

2 sinb
2

1

2~sin b11!
2vG

2
12sin b

2p sin2 b
e22v sin b2

2

p2 ~12sin b!1/2E
0

` s1/2e2~11sin b1s!v

~s111sin b!2~s112sin b!
ds.

~4.29!

Now we asymptotically match~4.29! to the outer expansion~4.17!. Settingv512v/c in
~4.17! gives

HOUT~v!5
cot b

p
~2c2v !1

cot b

2p~12sin b!
1••• . ~4.30!

This must agree with the expansion ofcF(v) asv→1`. Expanding~4.29! asv→1` amounts
simply to dropping the integrals and the other exponentially decaying terms. Then matching~4.29!
to ~4.30! yields equations forD2 andD3 which give

D252
4e2 ip/4 cosb

~11sin b!1/2
, D35e2 ip/4

~cot b22 secb!

~11sin b!1/2
. ~4.31!

This completes the determination of the upper boundary layer.
To obtain a uniform asymptotic approximation ofH(t) we add the outer expansionHOUT

given by ~4.17! to the two boundary layer approximations~4.14! and ~4.29!, and subtract from
each of them the part they have in common withHOUT. Thus we write

H~ t !;HOUT~ t !1HBL1@c~12t !#1HBL2@c~11t !# ~4.32!

HereHBL1 is obtained from~4.29! by retaining only those terms that decay exponentially asv→`
and using~4.31! for D2 andD3:

HBL1~u!52
4c cosb2cot b12 secb

p~11sin b!1/2 H ~12sin b!1/2

2 sinb
e22u sin b

1
1

p E
0

` s1/2e2~11sin b1s!u

~s11!22sin2 b
dsJ 2

12sin b

2p sin2 b
e22u sin b

2
2

p2 ~12sin b!1/2E
0

` s1/2e2~11sin b1s!u

~s111sin b!2~s112sin b!
ds. ~4.33!

Similarly HBL2 is obtained from~4.14! by omitting the cotb term:

HBL2~w!52
~11sin b!1/2

p2 sin b E
0

` s1/2e2~12sin b1s!w

~s112sin b!2
ds. ~4.34!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The leading terms inHOUT andHBL1 areO(c) and the next terms areO~1!, while the leading term
in HBL2 is O~1!.

By using ~4.32! in ~3.4! we get a uniform approximation forq(n,t), and then by usingq in
~3.1! we get a uniform approximation forp(x,y). We summarize this in

Result 1: The solutionp of ~1.1!–~1.3! can be written as

p~x,y!511ecx cosb@c cosb1]n#E
21

1

K0@c$~ t2v!21n2%1/2#e2cv sin bH~v!dv,

~4.35!

whereH~•! satisfies the conditionsH~61!50 and the equation

F2
d2

dt2
12c sin b

d

dtG E21

1

H~v!e2c~v2t !sin bK0~cuv2tu!dv52c, utu,1. ~4.36!

For c→` with 0,b,p/2, a uniform asymptotic approximation toH~•! is

H~ t !;
cot b

p Fc~ t11!1
1

2~12sin b!G1HBL1@c~12t !#1HBL2@c~11t !#, ~4.37!

whereHBL1~•! andHBL2~•! are given by~4.33! and ~4.34!. When ~4.37! is used forH, ~4.35!
gives a uniform asymptotic approximation ofp(x,y).

We can simplify~4.35! by replacingK0 by its integral representation

K0@c$n21~ t2v!2%1/2#5
1

2 E
2`

`

e2cunu coshzeic~v2t !sinh z dz. ~4.38!

Then the integral in~4.35! becomes

E
21

1

K0@c$n21~ t2v!2%1/2#e2cv sin bH~v!dv

5
1

2 E
2`

`

e2cunucoshze2 ict sinh zH E
21

1

H~v!eicv~sinh z!e2cv~sin b! dvJ dz. ~4.39!

Next we use~4.37! for H in ~4.39! and we consider separately the inner integrals of the three te
in ~4.37!.

After settingD5c~i sinhz2sinb! we evaluate the integral ofHOUT and get

cot b

p E
21

1 Fc~v11!1
1

2~12sin b!GeDv dv5
cot b

p FceDS 1D2
1

D2D1ce2DS 1D 1
1

D2D
1S c1

1

2~12sin b! D eD2e2D

D G . ~4.40!

We denote byP1
1 and P1

2 the terms on the right side of~4.40! proportional toeD and e2D,
respectively, so that the integral equalsP1

11P1
2. We denote the integrals ofHBL2 andHBL1 by

P2 and P3, respectively. After some calculation we obtain their asymptotic values forc large.
Then we addP1

2 to P2 andP1
1 to P3 to get

P1
21P2;

ce2D

pD2

~11sin b!1/2

sin b
~12 i sinh z!1/2, ~4.41!
J. Math. Phys., Vol. 38, No. 2, February 1997
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P1
11P3;g1

eD

c

~11 i sinh z!1/2

~sinh2 z1sin2 b!
2
2eD

pc

~12sin b!1/2~11 i sinh z!1/2

~sin b2 i sinh z!2~sin b1 i sinh z!
, ~4.42!

with

g15
24c cosb1cot b22 secb

p~11sin b!1/2
. ~4.43!

The sum of the expressions in~4.41! and ~4.42! is the value of the inner integral in~4.39!,
apart from terms exponentially small inc which were neglected in obtainingP2 andP3. When
this sum is used in~4.39!, and the result is substituted into~4.35!, it yields another uniform
asymptotic approximation ofp(x,y). We present it as

Result 2: An alternate uniform asymptotic approximation ofp(x,y) is

p~x,y!;11
cosb

2p
ecx@ec sin bI21e2c sin b~cJ1I1!#, ~4.44!

where

I25
~11sin b!1/2

sin b E
2`

`

e2cunucoshze2 ic~ t11!sinh z
cosb2sgnn coshz

~ i sinh z2sin b!2 Fcoshz22 i sinh
z

2Gdz,
~4.45!

J524~12sin b!1/2E
2`

`

e2cunucoshzeic~12t !sinh z
cosb2sgnn coshz

sinh2 z1sin2 b Fcoshz21 i sinh
z

2Gdz,
~4.46!

I15~12sin b!1/2E
2`

`

e2cunucoshzeic~12t !sinh zS 1

sin b
2

2

cos2 b
2

2

sin b2 i sinh zD
3
cosb2sgnn coshz

sinh2 z1sin2 b Fcoshz21 i sinh
z

2Gdz. ~4.47!

The integralI2 results from integrating~4.41! while I1 andJ come from integrating~4.42!. In
obtaining these forms of the integrals, we have used the normal and tangential coordinatesn and
t and the identities

~16 i sinh z!1/25coshS z2D6 i sinhS z2D ,
and

cot b22 secb

~11sin b!1/2
5~12sin b!1/2F 1

sin b
2

2

cos2 b G .
V. NONUNIFORM ASYMPTOTIC APPROXIMATIONS

We shall now expand~4.44! for c large to obtain simpler expressions forp which reveal its
qualitative behavior in various regions of the (x,y) plane. The integralI2 can be simplified
J. Math. Phys., Vol. 38, No. 2, February 1997
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everywhere, except near the lower endpoint of the strip, wheren5O(c21) andt5211O(c21).
Similarly, I1 and J can be simplified except near the upper endpoint, wheren5O(c21) and
t511O(c21).

We consider first the half-planen.0, which is the same asx.y tanb. Since sgnn511,

sgnn coshz2cosb

sinh2 z1sin2 b
5

1

coshz1cosb
.

Then theJ integrand has no poles in the range2p/2,Im(z),p/2. It has saddle points where

d

dz
@ unucoshz1 i ~ t21!sinh z#50.

This equation has a solution in the stripuIm(z) u,p/2 at z5 izs , where

sin zs52
t21

d1
, coszs5

unu
d1

, d15@n21~ t21!2#1/2. ~5.1!

We define the angleu1 by

n5d1 cosu1 , t215d1 sin u1 , 2
p

2
,u1,

3p

2
, ~5.2!

so that~d1 ,u1! are polar coordinates in the (n,t) plane relative to the pointn50, t51 ~see Fig.
2!. For n.0 we haveuu1u,p/2 andzs52u1 .

The asymptotic value ofJ is obtained by shifting the integration contour, which is the r
axis in thez plane, into the horizontal contour through the saddle pointizs . The new contour is a
steepest descent contour, and on itJ can be evaluated easily using Laplace’s method. The resu

FIG. 2. Various regions of thexy plane are shown, within which different asymptotic expansions of the concentratip
are valid. Some of these regions are described in Sec. V, after~5.44!, and the expressions forp in them are given in Sec.
VI.
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J;JSD54S 2p

cd1
D 1/2~12sin b!1/2e2cd1H cos

u1

2
1sin

u1

2

cosu11cosb
1

1

cd1

3F2

sin2 u1S cosu1

2
1sin

u1

2 D
~cosu11cosb!3

1

~112 sin u1!S sin u1

2
2cos

u1

2 D
2~cosu11cosb!2

G1O~c22!J .
~5.3!

In ~5.3! we give the first two terms in the expansion ofJ since, in~4.44!, J is multiplied byc,
whereasI1 ,I2 are not. To obtain two term approximations top we will need the first two terms
for J and only the leading term forI1 . We have shown that~5.3! is valid for uu1u,p/2, but by
consideringn,0, we can show that this approximation remains valid for2p/2,u1,p2b. When
u15p2b, cosu11cosb50 and the right side of~5.3! becomes infinite, so a new approximatio
is needed there.

We define the ‘‘shadow’’ as$(x,y):x.y tanb anduyu,cosb%. This corresponds to regions
and E8 in Fig. 2. We will show that in the shadow the concentration of particles is exponen
small for c→`. The shadow side of the strip corresponds ton501 and uyu,cosb. There
u152p/2 so that the leading term in~5.3! vanishes, while the second term does not vanish. T
indicates a nonuniformity in the asymptotic behavior. Foru1'2p/2, we setj5cn5O(1) and
shift the integration contour inJ by settingz5u1 ip/2, which leads to

J54~12sin b!1/2E
2`

`
21/2i sinh

u

2

cosb1 i sinhu
e2 i j sinhue2c~12t !coshu du. ~5.4!

Here we have used coshz5 i sinhu, sinhz5 i coshu and cosh(u/21 ip/4)1 i sinh(u/2
1 ip/4)521/2i sinh~u/2!. For c(12t)→`, we evaluate~5.4! by Laplace’s method, after expand
ing the integrand aboutu50. The first two terms inJ are

J5
4Ap~12sin b!1/2

cosb@c~12t !#3/2
e2c~12t !

3H j1
1

cosb
2

3

c~12t ! F16 j31
1

2 cosb
j21

1

cos2 b
j1

1

cos3 bG1O~c22!J . ~5.5!

We shall now simplify the expression~5.3! for J on and near the rayu15b. From Fig. 2, we
see thatu15b is the same asy5cosb, x.sinb, which is the upper boundary of the shado
region. We define

D5S c

x2sin b D 1/2~y2cosb!. ~5.6!

Then forc→` with D fixed, we have
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d15@n21~ t21!2#1/25@~x2sin b!21~y2cosb!2#1/25x2sin b1
D2

2c
1O~c22!,

e2cd15e2c~x2sin b!e2D2/2@11O~c21!#,
~5.7!

cosu15cosb2
sin b

~x2sin b!1/2
D

c1/2
1O~c21!,

sin u15sin b1
cosb

~x2sin b!1/2
D

c1/2
1O~c21!.

Using these approximations in~5.3!, we obtain, forD5O~1!,

J52S 2p

c D 1/2e2c~x2sin b!e2D2/2F 1

~x2sin b!1/2
1

D

c1/2~x2sin b!2 cosb
1O~c21!G . ~5.8!

Next we expandI1 asymptotically forc→` in the half-planen.0. From~4.47! we note that
I1 has the same saddle point~s! asJ. However,I1 also has a simple pole atz52 ib. If u1.b, this
pole lies above the saddle point atz5 izs52 iu1 . If 2p/2,u1,b, then the pole lies below the
saddle. Thus, if we shift the contour into the horizontal contour through the saddle point, we

I1522p i residue~2 ib!1ISD
1 , u1.b,

~5.9!

I15ISD
1 , 2

p

2
,u1,b.

Here ISD
1 is the integral along the steepest descent contour through the saddle point. From~4.47!,

we find that

22p i residue~2 ib!5e2cxec sin b
2p

cosb
~5.10!

and the leading-order approximation toISD
1 is

ISD
1 ;~12sin b!1/2e2cd1S 2p

cd1
D 1/2 cos

u1

2
1sin

u1

2

cosu11cosb F 2

sin b2sin u1
1

2

cos2 b
2

1

sin b G .
~5.11!

Equations~5.9!–~5.11! give the asymptotic behavior ofI1 , whenu1 is not close tob or to2p/2.
Whenu1'b, the saddle point ofI1 is close to the pole. Then we shift the contour inI1 down

by settingz52 ib1u, and we expand the integrand for smallu. In this way we get

I1;2
1

2 E
C1

2

iu cosb
e2c~x2sin b!2 ic~y2cosb!u2c~x2sin b!u2/2 du

52
e2c~x2sin b!

i cosb E
C1

e2 iDve2v2/2
1

v
dv5

~2p!1/2

cosb
e2c~x2sin b!E

2`

D

e2v2/2 dv. ~5.12!

Whenu1'2p/2, we setj5cn and shift the contour upward by lettingz5u1 ip/2. This leads
to
J. Math. Phys., Vol. 38, No. 2, February 1997
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I15~12sin b!1/2E
2`

`

e2 i j sinhu2c~12t !coshu

& isinhS u2D
cosb1 i sinhu

3F 2

cos2 b
1

2

coshu1sin b
2

1

sin bGdu. ~5.13!

For j fixed andc(12t)→`, this is a Laplace-type integral with the major contribution comi
from u5O(c21/2). The leading term is

I1;
e2c~12t !

@c~12t !#3/2
p1/2~12sin b!1/2

cosb F 2

cos2 b
1

sin b21

sin b~sin b11!GFj1
1

cosbG . ~5.14!

Next we expandI2 for c→` andn.0. We define

n5d2 cosu2 , t115d2 sin u2 , d25@n21~ t11!2#1/2, ~5.15!

and note thatd25@~x1sinb!21~y1cosb!2#1/2 is the distance tox,y from the lower endpoint of
the strip. The angleu2 ranges over23p/2,u2,p/2. Thus the shadow side of the strip corr
sponds to u152p/2 and u25p/2, while the illuminated side corresponds tou153p/2,
u2523p/2. From~4.45!, we see that the integrand inI2 has saddle point~s! wheren sinhz1 i (t
11)coshz50. This occurs atz 5 izs8 where

coszs85
n

d2
, sin zs85

t11

d2
. ~5.16!

Thus for uu2u,p/2 we havezs8 5 2u2 . Forn.0, I2 also has a simple pole atz52 ib. We will
need to construct four different expansions forI2 , valid in the respective rangesp/2.u2.b,
u2'b, u2,b, andu2'p/2.

If u2.b, the saddle pointizs8 lies below the pole at2ib, while if u2,b, the opposite is true
DenotingI SD

2 the integral over the horizontal contour that passes through the saddle point, we

I2522p i residue~2b!1ISD
2 , u2.b

~5.17!
I25ISD

2 , u2,b.

From ~4.45! we find that the residue is, forn.0,

22p i residue~2 ib!52e2cx2c sin b
2p

cosb
, ~5.18!

and that the leading-order approximation toISD
2 is

ISD
2 ;

~11sin b!1/2

sin b
e2cd2S 2p

cd2
D 1/2 cosb2cosu2

~sin u22sin b!2 Fcosu2

2
2sin

u2

2 G . ~5.19!

Thus ~5.17!–~5.19! give I2 for u2Þb.
Whereu25p/2, the right side of~5.19! vanishes, so an improved approximation is use

there, i.e., near the shadow side of the strip. To obtain it we consideru2'p/2, shift the contour by
settingz5u2 ip/2, and setj5cn. Then we evaluate the resulting integral by Laplace’s met
and we obtain forc(11t)→`
J. Math. Phys., Vol. 38, No. 2, February 1997
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I21
2p

cosb
e2cx2c sin b;

~11sin b!1/2

sin b

e2c~ t11!

~12sin b!2
p1/2

@c~ t11!#3/2
@j cosb11#. ~5.20!

We note that~5.19! asymptotically matches to~5.20! for u2 nearp/2 since foru2↑p/2 we have
cos~u2/2!2sin~u2/2!5~12sinu2!1/2;[n2/2(t11)2] 1/25j/[21//2c(t11)].

Whenu2'b, the saddle point and the pole are close to each other. Then we shift the co
down by settingz52 ib1u, indent aboveu50, and expand the integrand for smallu. By using
the relations

cosb2coshz; i sin b~z1 ib!, i sinh z2sin b; i cosb~z1 ib!,

2cn coshz2 ic~ t11!sinh z52c~x1sin b!S 11
u2

2 D2 ic~y1cosb!u1O~u3!,

we obtain

I2;
~11sin b!1/2

i cos2 b
e2cx2c sin bFcosb

2
2sin

b

2G E
C1

e2 icu~y1cosb!2c~x1sin b!u2/2u21 du

5
e2cx2c sin b

i cosb E
C1

e2w2/2e2 iD1w
1

w
dw

52
~2p!1/2

cosb
e2cx2c sin bE

2`

D1
e2v2/2 dv, D15

c1/2~y1cosb!

~x1sin b!1/2
. ~5.21!

This result is valid forc→` with D15O~1!.
We have now obtained asymptotic expansions forJ, I1 , and I2 for all regions in the half

planen.0. To obtain the asymptotic expansion ofp(x,y) for n.0, we simply use these expan
sions in~4.44! and determine which terms are the dominant ones. First we consideru1.b and
u2.b, which is the part of region A that lies in the half planen.0 ~cf. Fig. 2!. In this region it
is easy to show thatec sinbISD

2 is exponentially smaller thane2c sinbJSD. Thus, using~5.3!, ~5.9!–
~5.11!, and~5.17!–~5.19!, we obtain

p;11
cosb

2p
ec~x2sin b!~cJSD1ISD

1 !. ~5.22!

Whenu1'b ~and henceu2.b!, we still haveec sinbISD
2 ! e2c sinbI1 . Now the approximation to

J is given by~5.8! and that toI1 is given by~5.12!. From ~5.17! and ~5.18!

11ecx
cosb

2p
ec sin bI25ecx

cosb

2p
ec sin bISD

2

and thusp is asymptotically given by

p;~2p!21/2H S 2c1/2 cosb

~x2sin b!1/2
1

D

x2sin b D e2D2/21E
2`

D

e2v2/2 dvJ . ~5.23!

HereD is defined by~5.6!. Note thatD5O~1! corresponds to region D in Fig. 2.
When u1,b and u2,b, we see thate2c sinbJSD is exponentially smaller thanec sinbISD

2 .
From ~5.17! and ~5.18! it follows that
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p;11ec~x1sin b!
cosb

2p
ISD

2 ~5.24!

whereISD
2 is given by~5.19!. Whenu1,b andu2'b, i.e., on the lower boundary of the shadow

we still haveec sinbI2 @ ce2c sinbJSD. Thus we have forD15O~1!,

p;~2p!21/2E
D1

`

e2v2/2 dv, D15
c1/2~y1cosb!

~x1sin b!1/2
. ~5.25!

In the shadow region, wheren.0 anduyu,cosb, we haveu1,b andu2.b and hence

p;ecx
cosb

2p
@ec sin bISD

2 1e2c sin b~ ISD
1 1cJSD!#, ~5.26!

whereISD
2 , ISD

1 , andJSD are respectively given by~5.19!, ~5.11!, and~5.3!. Now we compare the
exponential growth rates of the various terms in~5.26!. We have

~JSD,ISD
1 !e2c sin b5O~e2c sin be2c@~x2sin b!21~y2cosb!2#1/2!

ISD
2 ec sin b5O~ec sin be2c@~x1sin b!21~y1cosb!2#1/2!.

These are comparable when2sinb2d15sinb2d2 or

@n21~ t11!2#1/22@n21~ t21!2#1/252 sinb, n.0.

In terms of (x,y) this defines the curve

y5y0~x![
sin 2b

2 cos 2b
@2x1@x21cos 2b#1/2#, bÞ

p

4
,

~5.27!

y5
1

4x
, b5

p

4
.

This is a portion of a hyperbola that is sketched in Fig. 2. The curve intersects the shadow
the strip at the point (x,y)5~sin2 b,sinb cosb!. As b→01, y0(x) collapses to thex axis. For
y.y0(x), we haveec sinbISD

2 exponentially smaller thane2c sinbISD
1 , and the opposite is true fo

y,y0(x). Thus~5.26! simplifies to

p;ec~x2sin b!
cosb

2p
~cJSD1ISD

1 !, y.y0~x!, ~5.28!

p;ec~x1sin b!
cosb

2p
ISD

2 , y,y0~x!. ~5.29!

Wheny'y0(x), p is asymptotic to the sum of the right sides of~5.28! and~5.29!. The curve
y0(x) divides the shadow region into the two parts E and E8 ~cf. Fig. 2!. To reach region E a
particle is much more likely to have first hit the upper edge of the strip, and to reach E8 it is likely
to have hit the lower edge. The regions F and F8 are neighborhoods of the shadow side of the s
in E and E8, respectively. The expansions forp in F and F8 can be obtained by using~5.5!, ~5.14!,
and~5.20! in ~4.44!. We recall that along the shadow side of the stripu152p/2, u25p/2 and F
corresponds ton.0, n5O(c21) with sinb,t,1 while F8 corresponds to2sinb,t,sinb.
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Finally, we comment that forn.0 an alternate integral representation can be obtained fJ
given by ~4.46!. To get it we apply]n2cosb to ~4.46! and we obtain

]nJ2c cosbJ524c~12sin b!1/2E
2`

`

e2cn coshz1 ic~12t !sinh zFcoshz21 i sinh
z

2Gdz
524c~12sin b!1/2E

2`

`

e2cd1 coshv cosh
v
2 Fcosu1

2
1sin

u1

2 Gdv, ~5.30!

where we have shifted the contour by settingz52 iu11v.
In view of the identities

E
0

`

e2z cosht coshnt dt5Kn~z!, K1/2~z!5S p

2zD
1/2

e2z,

the right side of~5.30! becomes

24c~12sin b!1/2Fcosu1

2
1sin

u1

2 G S 2p

cd1
D 1/2e2cd1. ~5.31!

Using

cos
u1

2
1sin

u1

2
5~11sin u1!1/25S 11

t21

@n21~ t21!2#1/2D
1/2

,

we integrate~5.30! with respect ton and thus obtain

J54~2pc!1/2~12sin b!1/2E
n

`

ec~n2w!cosbe2c@w21~ t21!2#1/2

3F11
t21

@w21~ t21!2#1/2G
1/2 1

@~ t21!21w2#1/4
dw, n.0.

Upon settingz5w1[w21(t21)2] 1/2, we get

J54~2pc!1/2~12sin b!1/2E
n1d1

`

ecn cosb~2z!21/2F11
t21

z G
3expF2

c

2
~11cosb!z2

c

2
~12cosb!

~ t21!2

z Gdz, n.0. ~5.32!

We have used~5.32! to check the various asymptotic formulas forJ.
Next we derive the asymptotic expansions forp(x,y) in the half-planen,0, where sgnn5

21. We begin with~4.44!, shift the integration contours downward, and write the result as

p;11
cosb

2p
ecx@ec sin b Ĩ21e2c sin b~cJ̃1 Ĩ1!#. ~5.33!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The integralsĨ2 , Ĩ1 , andJ̃ are given by~4.45!–~4.47!, respectively with the integration contour
being horizontal lines within the strip2p/2,Im(z),2b. Their integrands all have poles a
z52 ib, sincen,0. Thus in shifting the contours down to the indicated strip we must t
account of the residues from these poles. However, a straightforward calculation shows t
three residues, each multiplied bye6c sinb, add up to zero. This shows thatp is indeed given by
~5.33!, which is more convenient to use than~4.44! for some values of (x,y) in the half-plane
n,0.

The I2 integrand has a double pole atz52 ib, theJ integrand has simple poles atz56 ib,
and theI1 integrand has a double pole atz52 ib and a simple pole atz51 ib. The integrands
J and I1 have saddle points where

d

dz
@n coshz1 i ~12t !sinh z#5n sinh z1 i ~12t !coshz50.

This equation has a solution in the stripuIm(z) u,p/2 at z5 i z̃s where

cos z̃s52
n

d1
, sin z̃s52

~ t21!

d1
, d15@n21~ t21!2#1/2. ~5.34!

Since in the half-planen,0 we havep/2,u1,3p/2, it follows thatz̃s5u12p. Let SD denote the
horizontal contour through the saddle pointz5 i z̃s . Then

Ĩ15 ĨSD
1 , J̃5 J̃SD;

p

2
,u1,p2b, ~5.35!

Ĩ152p i res~2 ib,I1!1 ĨSD
1 , ~5.36!

J̃52p i res~2 ib,J!1 J̃SD;p2b,u1,p1b,

Ĩ152p i @res~2 ib,I1!1res~ ib,I1!#1 ĨSD
1 , ~5.37!

J̃52p i @res~2 ib,J!1res~ ib,J!#1 J̃SD;p1b,u1,
3p

2
.

We use the notation res(z0 ,I ) to denote the residue of theI integrand at the polez0.
As u1 increases fromp/2 to 3p/2, z̃s increases from2p/2 to p/2. For2p/2,z̃s,2b, the

saddle lies below both poles; for2b,z̃s,b the saddle lies between the poles; forb,z̃s,p/2 the
saddle lies above both poles. In~5.35!–~5.37! we have shifted the horizontal contours wi
2p/2,Im(z),2b into the steepest descent~SD! contours, and also considered the relev
contributions from the poles. By asymptotically expanding the integrals over the SD contou
find that J̃SD has the same expansion asJSD, which is given by~5.3!. Also, the leading term for
ĨSD

1 is the same as~5.11!. The residues at1ib will play no role in the asymptotics, and after
lengthy calculation we find that forn,0

2p i res~2 ib,J!58p
cosb

sin b
ec~sin b2x!c2cn cosb, ~5.38!

2p i res~2 ib,I1!5
4p

sin b
ec~sin b2x!e2n cosbFcn sin b1c~ t21!cosb1

1

2 cosb G . ~5.39!
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We can show easily that on the illuminated side of the strip, whereu1'3p/2 andu2'23p/2,
the dominant terms in the expansions ofĨ1 and J̃ come from the poles at2ib, and that the
contribution fromĨ2 is negligible. Thus we have

p;11e2cn cosb cosbF 2c

sin b
~n sin b1t cosb1cosb!1

1

sin b cosbG . ~5.40!

This should agree with the expansion~2.10!, and it does agree provided that

a051, a15
1

sin b
. ~5.41!

This completes the determination of the expansion on the illuminated side of the strip, whe
concentration isO(c). An alternate derivation of~5.40! can be made by using~4.17! in ~3.4! and
asymptotically evaluating the integral forcn5O(1) andutu,1. This amounts to simply replacin
the region of integration by~2`,`!. Evaluating the resulting integral~s!, we regain~5.40!.

Next we examine the integralĨ2 , which has a double pole atz52 ib and saddle points wher
n sinhz2 i (t11)coshz50. In the rangeuIm(z) u,p/2, there is a saddle point atz 5 i z̃ s8 where

cos z̃ s852
n

d2
, sin z̃ s852

~ t11!

d2
, d25@n21~ t11!2#1/2. ~5.42!

We havez̃ s8 5 u2 1 p and asu2 increases from23p/2 to2p/2, z̃ s8 increases from2p/2 top/2.
Shifting the contour forĨ2 into the steepest descent contour throughi z̃ s8 , we obtain

Ĩ25 ĨSD
2 , 2

3p

2
,u2,2b2p, ~5.43!

Ĩ252p i res~2 ib,I2!1 ĨSD
2 , 2b2p,u2,2

p

2
. ~5.44!

It is easy to show that the leading term in the expansion ofĨSD
2 is the same as that forISD

2 , as given
by ~5.19!.

We use~5.35!–~5.37!, ~5.43!, and ~5.44! to obtain the asymptotic expansion forp in the
half-planen,0. First we considerp/2,u1,p2b, which implies that23p/2,u2,2b2p. This
corresponds to the part of region A in Fig. 2 that lies in the half-planen,0. By using~5.38! and
~5.39! we find that res(2 ib,J)@JSD, res(2 ib,I1)@ISD

1 and since sinb2d2,2sinb2d1 , the
contribution fromISD

2 is negligible. Hence

p;11
cosb

2p
ec~x2sin b!~cJSD1ISD

1 !,

which is the same result as in region A,n.0. Similar considerations show that the approximati
in region A8, n.0, remains valid forn,0 if 2p/2.u2.2p2b.

In view of ~4.44!

ec sin b res~2 ib,I2!1e2c sin b@c res~2 ib,J!1res~2 ib,I1!#50 ~5.45!

and if 2p/2.u2.2p2b, then certainlyu1.p2b. Now consider the region whereu1.p2b
andu2,2p2b, which corresponds to region B in Fig. 2. In terms of (x,y), region B is the strip

2cosb,x sin 2b1y cos 2b,cosb, n,0 @x,y tanb#. ~5.46!
J. Math. Phys., Vol. 38, No. 2, February 1997
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In terms of (n,t), region B is211unutanb,t,11unutanb, n,0, which is precisely the reflec
tion of the shadow region in the linen50. In region B we have res~2ib,J! and res~2ib,I1!
exponentially larger thanJSD and ISD

1 and the contribution fromISD
2 is negligible. It follows from

~5.36!, ~5.37!, and ~5.43! that p is asymptotically given by~5.40!. This shows that the approxi
mation valid near the illuminated side of the slit remains valid in the entire region B.

Now consider the transitions between regions A and B, and also A8 and B. In Fig. 2 we denote
these transition regions by C and C8, and the precise scaling is

Region C: x sin 2b1y cos 2b5cosb1O~c21/2!,

Region C8: x sin 2b1y cos 2b52cosb1O~c21/2!.

In region C we haveec sinbĨ2 ! e2c sinb(Ĩ1 ,cJ̃) andu1'p2b, so that the poles at2ib in theJ and
I1 integrands are close to the saddle points. We first consider the integralJ̃ and shift the contour
upward by settingz52 ib1v, indenting below the pole. We expand the integrand for smav
using the relations

cosb1coshz

cosh2 z2cos2 b Fcoshz21 i sinh
z

2G5

cos
b

2
1sin

b

2

2 iv sin b F11
iv~sin b21!

2 cosb sin b
1O~v2!G ,

~5.47!

n coshz1 i ~12t !sinh z5n cosb1~12t !sin b1@2n sin b1~12t !cosb#v

1 1
2@n cosb1~12t !sin b#v21O~v3!. ~5.48!

We also definez andD* by

v5
zc21/2

@~ t21!sin b2n cosb#1/2
, D*5

n sin b1~ t21!cosb

@~ t21!sin b2n cosb#1/2
Ac. ~5.49!

Then we obtain

J̃;
4 cosb

i sin b
ec~sin b2x!e2cn cosbE

C2

e2 iD* ze2z2/2
1

z F11
i

2Ac
z

Au1

sin b21

cosb sin bGdz,

~5.50!

where u15(t21)sinb2n cosb. We have also used the fact that, in region
~12t!cosb2n sinb5O(c21/2). Evaluating the integral in~5.50! we find that

ec~x2sin b!
cosb

2p
cJ̃5

4 cos2 b

sin b
e2cn cosb

c

A2p
H E

D*

`

e2v2/2 dv

1
1

2Ac
sin b21

sin b cosb

1

A~ t21!sin b2n cosb
e2~D* !2/21O~c21!J .

~5.51!

An analogous calculation shows that
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ĩ15ec~sin b2x!e2cn cosb~2p!1/2
2

sin b H F E
D*

`

~D*2v !e2v2/2 dvG~cu1!1/2
1

1

2 cosb E
D*

`

e2v2/2 dv1O~c21/2!J . ~5.52!

By combining~5.51! and ~5.52! we obtain a two-term approximation in the transition region
and asD*→2` this expression matches to the region B approximation.

In region C8 we have u2'2b2p and u1.p2b. Hence, cJ̃1 Ĩ1;2p i @c res~2ib,J!
1res~2ib,I1!# and thus

p;@region B approximation#1
cosb

2p
ec~x1sin b! Ĩ2 . ~5.53!

In the last integral the saddle point is close to the double pole at2ib. Evaluating this integral by
the standard procedure we obtain

Ĩ252
2

sin b
e2c~x1sin b!e2cn cosb~2p!1/2

3H ~cu2!
1/2E

D1*

`

~D1*2v !e2v2/2 dv1
1

2 cosb E
D1*

`

e2v2/2 dv1O~c21/2!J ~5.54!

where

u25~ t11!sin b2n cosb, D1*5S cu2D
1/2

@n sin b1~ t11!cosb#. ~5.55!

Expressions~5.53!–~5.55! combine to give the approximation in region C8. AsD1*→ 1 `, ~5.53!
reduces to the region B approximation, and asD1*→ 2 `, ~5.53! matches to the approximation i
region A8. This completes the asymptotic analysis.

VI. SUMMARY OF THE NONUNIFORM EXPANSIONS

The nonuniform expansions obtained in Sec. V are summarized in
Result 3: Let d6 , u6 , and j be defined by d65[n21(t71)2] 1/2, n5d1 cosu1 ,

t215d1 sinu1 , n5d2 cosu2 , t115d2 cosu2 , andj5cn. Furthermore, let

JSD54S 2p

cd1
D 1/2~12sin b!1/2e2cd1H cos

u1

2
1sin

u1

2

cosu11cosb
1

1

cd1

3F ~112 sin u1!S sin u1

2
2cos

u1

2 D
2~cosu11cosb!2

2

sin2 u1S cosu1

2
1sin

u1

2 D
~cosu11cosb!3

G J ,
ISD

1 52S 2p

cd1
D 1/2~12sin b!1/2e2cd1

cos
u1

2
1sin

u1

2

cosu11cosb F 1

sin b
2

2

cos2 b
2

2

sin b2sin u1
G ,
J. Math. Phys., Vol. 38, No. 2, February 1997
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ISD
2 5S 2p

cd2
D 1/2 ~11sin b!1/2

sin b
e2cd2

~cosb2cosu2!

~sin u22sin b!2 Fcosu2

2
2sin

u2

2 G ,

y0~x!5H 1

2
tan 2b@2x1Ax21cos 2b#, x.sin2 b, bÞ

p

4
,

1

4x
, x.

1

2
, b5

p

4
,

J15
4p1/2~12sin b!1/2

cosb@c~12t !#3/2
e2c~12t !H j1

1

cosb
2

3

c~12t ! Fj36 1
j2

2 cosb
1

j

cos2 b
1

1

cos3 b G J ,
I 1

15
p1/2~12sin b!1/2

cosb@c~12t !#3/2
e2c~12t !F 2

cos2 b
1

sin b21

sin b~sin b11!GFj1
1

cosbG ,
I 1

25
p1/2~11sin b!1/2

@c~12t !#3/2
e2c~11t !

j cosb11

sin b~12sin b!2
,

D5S c

x2sin b D 1/2~y2cosb!, D15S c

x1sin b D 1/2~y1cosb!,

D*5S cu1D
1/2

@n sin b1~ t21!cosb#, u15~ t21!sin b2n cosb,

D1*5S cu2D
1/2

@n sin b1~ t11!cosb#, u25~ t11!sin b2n cosb.

Asymptotic approximations forp(x,y) asc→` are different in the various regions indicated
Fig. 2, and these are given below.

~i! Region A:b,u1,p2b, cd1@1:

p;11
cosb

2p
ec~x2sin b!~cJSD1ISD

1 !.

~ii ! Region A8: 2p2b ,u2 ,b, cd2 @1:

p;11
cosb

2p
ec~x1sin b!ISD

2 .

~iii ! Region B:ux sin 2b1y cos 2bu,cosb, n.0:

p;11e2cn cosbH 2c cosb

sin b
@~ t11!cosb1n sin b#1

1

sin b J .
~iv! Region C:x sin 2b1y cos 2b5cosb1O(c21/2), n,0, cd1@1:
J. Math. Phys., Vol. 38, No. 2, February 1997
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p;11e2cn cosb~2p!21/2H F4 cos2 b

sin b
c1

1

sin bG E
D*

`

e2v2/2 dv

12S cu1D
1/2 ~sin b21!cosb

sin2 b
e2~D* !2/212~cu1!

1/2E
D*

`

~D*2v !e2v2/2 dv
cosb

sin b J .
~v! Region C8: x sin 2b1y cos 2b52cosb1O(c21/2), n,0, cd2@1:

p;11
2 cotb

~2p!1/2
e2cn cosbE

2`

D1* F ~cu2!1/2~D1*2v !1
1

2 cosb Ge2v2/2 dv.

~vi! Region D:y5cosb1O(c21/2), x.sinb ~n.0!, cd1@1:

p;
1

~2p!1/2 H S 2c1/2 cosb

~x2sin b!1/2
1

D

x2sin b D e2D2/21E
2`

D

e2v2/2 dvJ .
~vii ! Region D8: y52cosb1O(c21/2), x.2sinb ~n.0!, cd2@1:

p;
1

~2p!1/2
E

D1

`

e2v2/2 dv.

~viii ! Region E:y0(x),y,cosb, n.0, cd1@1:

p;
cosb

2p
ec~x2sin b!~cJSD1ISD

1 !.

~ix! Region E8: 2cosb,y,y0(x), n.0, cd2@1:

p;
cosb

2p
ec~x1sin b!ISD

2 .

~x! Region F:n5j/c5O(c21), n.0, sinb cosb,y,cosb:

p;
cosb

2p
ec~x2sin b!~cJ11I 1

1!.

~xi! Region F8: n5j/c5O(c21), n.0, 2cosb,y,sinb cosb:

p;
cosb

2p
ec~x1sin b!I 1

2 .

~xii ! Region G:n5O(c21), t215O(c21):

p;
cosb

2p
ec~x2sin b!~cJ1I1!.

~xiii ! Region G8: n5O(c21), t115O(c21):
J. Math. Phys., Vol. 38, No. 2, February 1997
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p;11
cosb

2p
ec~x1sin b!I2 .

The contour integralsI1 , J, andI2 are defined in~4.45!–~4.47!. Wheny'y0(x), n.0, p is the
sum of the two expressions valid in regions E and E8. When n5O(c21), n.0, and
y'cosb sinb, p is the sum of the expressions valid in regions F and F8.

This result shows thatp is exponentially small in the shadow region, which is the union
regions E and E8. In regions A, A8, and B,p is exponentially close to one, except in the part
region B that is close to the illuminated side of the strip, wherep5O(c). Near the upper edge o
the strip~region G!, p5O(c) while near the lower edge~region G8! we havep5O(1). A particle
that hits the strip is typically convected along it toward the upper edge, and is then conv
towardx51` along the rayy5cosb, x.sinb. Along this ray the concentration remains larg
O(c1/2), for any fixedx.0.
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The flow of the G2 periodic Toda lattice
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In the study of the generalized periodic Toda lattices, Mark Adler and Pierre van
Moerbeke showed that the flow of theG2 periodic Toda lattice has a 2-dimensional
sub-Abelian variety of a 3-dimensional Prym variety as its Hamiltonian torus. In
this paper it is shown that the 2-dimensional torus is a Prym–Tjurin variety and is
explained in terms of the Weyl group ofG2. This example is small enough to be
explicitly computable. ©1997 American Institute of Physics.
@S0022-2488~97!02302-5#

I. INTRODUCTION

Adler and van Moerbeke1,2 show that theA, B, C, D and G2 periodic Toda systems o
Bogoyavlensky linearize on a Prym variety. For theA, B, C andD systems the Prym is the flow
torus. However, for theG2 system, the flow torus is identified as a 2-dimensional subtorus
3-dimensional Prym. They identified the 2-dimensional flow torus as an Abelian variety
compute its polarization.3 In this paper, we use the methods of Kanev4 and the authors5,6 to
identify the flow torus of theG2 periodic Toda lattice as a Prym–Tjurin variety showing
relationship to a finite group action~the Weyl group!. Also presented is a three parameter vers
of the periodicG2 Toda lattice.

II. NOTATION AND BACKGROUND

We first establish our notation. LetG be a simply connected complex semisimple Lie gro
with Lie algebrag andH a Cartan subgroup~a maximal torus asG is semisimple! with Lie
algebrah. Denote the Weyl group byW5NH/H, the normalizer ofH modulo the centralizer ofH
which isH. A choice of Weyl chamber determines a basis of simple rootsD. The real span of
D5$a1,...,ar% is a Euclidean subspace ofh* , the dual vector space of the Cartan subalgebrah with
inner product ^,& given by the dual of the Killing form. The weight lattice i
$lPh* u~2^l,a&!/~^a,a&!PZ ;aPD%. The Weyl groupW acts on the weight lattice by the coadjoi
action: (nH•l)(X)5l~Adn21X! for XPh. The stabilizer inW of a weightl will be denotedSl .

Let the subscript
*
refer to the regular elements in an algebra. Letp: G/H3h

*
→g

*
be given

by p(gH,h)5Adgh. This map is a regular cover with group of covering translationsW. The
action is given by (nH)•(gH,h)5~gn21H,Adnh! for nPNH . Let A be a morphism from an
irreducible algebraic curveP to a Lie algebrag with im(A)ùg

*
Þ0. ThenA21~g

*
! is a Zariski

open set inP ~i.e.,P\finite set! denotedP
*
. We callP the parameter space as it is the domain

the spectral parameter occurring in the Lax equation.
If r is a representation, then the curve$(s,z)PP3Cudet(rA(s)2z)50% is in general reduc-

ible and decomposes via the dominant weights. These pieces are independent of the repres
in that they depend only on the weights. Ifml is the multiplicity of the weightl in r, then

det~rA~s!2z!5)
l

~pl~s,z!!ml,

wherel runs through the dominant weights.5
0022-2488/97/38(2)/926/20/$10.00
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Let Yl denote the normalization of the variety defined bypl(s,z)50. This is the notion of
spectral curve used by Kanev.4 These curves themselves may decompose. In the first paper5 the
irreducible components were referred to as the spectral curves and a complete classificat
given. LetYl*

be the inverse image ofP
*
in Yl .

Let Y
*
be the pullback of

G/H3h*
↓

P*
——→

A
g* ,

Y
*
is a principalW bundle. LetY be the completion ofY

*
. We callY the master curve. From

Theorem 135 and its proof, we have
Proposition 1: Ifl is a weight then Yl*

>Y
*
/Sl . Moreover Yl*

is the pullback of

~G/H3h* !/Sl

↓

P*
——→

A
g* .

We useYl andY/Sl interchangeably. Note that ifSl andSg are conjugate subgroups ofW
thenYl>Yg as quotients ofW bundles and as varieties.

We introduce notation for some functions onY and Yl . Let the composite
Y
*
→G/H3h

*
→h

*
beh. Given a weightl, the compositel+h:Y

*
→C will be denotedyl . This

map is meromorphic onY and descends toyl : Yl→C. The action ofW on the curveY induces
an action on the meromophic functions via (w• f )(x)5 f (w21

•x).
Proposition 2: If wPW then w•yl5yw•l .
Proof: If xPY, then

~w•yl!~x!5yl~w21~x!!5l+h+w21~x!5l+w21+h~x!5~w•l!~h~x!!5yw•l~x!.
h

If wPW andV is a 1-form then letw•V5w21*V. In this wayW acts onH1~Y;O !.
Proposition 3: Ifg1,...,gk are weights, wPW, and fi : C

k→C for i51,...,k, then

w•(
i51

k

f i~yg1
,...,ygk

!dyg i
5(

i51

k

f i~yw•y1,...,yw•gk!dyw•g i.

Proof: If v is a tangent vector atp thenw
*
21(v) is a tangent vector atw21(p). So,

w•(
i51

k

f i~yg1
,...,ygk

!dyg i
~v !5(

i51

k

f i~yg1
,...,ygk

!dyg i
~w
*
21~v !!

5(
i51

k

f i~yg1
+w21,...,ygk

+w21!d~yg i
+w21!~v !

5(
i51

k

f i~yw•g1,...,yw•gk!dyw•g i~v !.

h

J. Math. Phys., Vol. 38, No. 2, February 1997
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Let JacX be the Jacobian of a curveX. If X is reducible, then JacX is Pic0X. Suppose that
p : X1→X2 is a possibly disconnected ramified cover of curves. Thenp21: X2→X1 will be the
inverse correspondence obtained by pulling back a point with its multiplicities. This is some
called the norm map. There are induced maps on divisors and so on the Jacobians which w
p : JacX1→JacX2 andp* : JacX2→JacX1. We usep* for the map induced byp21. It is the
pullback of bundles. We allowp to denote both the forward map on bundles as well as the orig
map or correspondence on curves. Note thatp + p* : JacX2→JacX2 is multiplication by the degree
of the cover~assuming the degree is the same for each component ofX2!.

If X is an irreducible curve a choice of a basis for the space of holomorphic differentialsX
determines an isomorphism of Pic0X with a complex torusCg/L as follows. Pic0X is the space of
holomorphic line bundles with Chern class zero. An element of Pic0X is completely determined by
the divisor of a meromorphic section, i.e., the element of the free Abelian group generated
points ofX given by the zeros minus the poles of the section, counted according to their m
plicities. The Chern class is given by the degree of the divisor. The divisor of a meromo
section of a line bundle in Pic0X has the same number of zeros as poles.

The holomorphic differentials on a curve of genusg form a complex vector space of dimen
sion g. Let v1,...,vg be a basis for the space of holomorphic differentials andv̄5(v1 ,...,vg)
denote the vector of holomorphic differentials whose entries are the given basis elemen
c1 ,...,c2g be cycles that represent generators for the homology groupH1~X,Z!. The integrals
*civ̄ generate a lattice inCg which will be calledL. While L depends on the choicev1,...,vg , it

does not depend on the choicec1 ,...,c2g.
Given a basis of holomorphic differentials there is a map from divisors of degree zero toCg/L

called the Abel–Jacobi map. It sends a divisorD to *Dv̄5~*Dv1,...,*
Dvg!. Here, the integral

*Dvi means the following. The divisorD may be written as( j51
k Pj2( j51

k Qj , where each point
appears as many times as its multiplicity. Choose a pathtj from Qj to Pj for each of thek pairs
of points, then*Dv i 5 ( j51

k *t j
v i . According to Abel’s theorem, if the value of the integral

taken moduloL, then it is independent of how theP’s andQ’s are paired and the pathstj chosen.
The map from Pic0X to Cg/L given by applying the Abel–Jacobi map to the divisor of a me
morphic section is an isomorphism of Abelian varieties.

A basis of holomorphic differentials also provides coordinates for the tangent space
trivial line bundle of Pic0X. The coordinates arise via the differential of the map from Pic0X to
Cg/L which mapsTtr Pic

0X to T~0,...,0!C
g/L'Cg.

The Weyl groupW for g acts on the master spectral curve. A group of automorphisms
curve also acts naturally on the Jacobi variety of the curve, on the space of holomorphic
entials on the curve, and on the tangent space at the identity of the Jacobi variety of the
Consequently there is an action onCg which will be described.

The differentialdw pushes forward tangent vectors, i.e.,dw:TyY→Tw•yY. Hence one can
pull back holomorphic differentials onY by (w*h)vy5h(dw v)w•y , whereh is a holomorphic
differential,vy is a tangent vector at a pointy, and (dwv)w•y is a tangent vector at the pointw•y.
This gives theW action mentioned above on the space of holomorphic differentials
w•h5(w21)*h. In particular, suppose in a local coordinatez, a holomorphic differential takes
the form h5f (z)dg(z). Then wPW acts by w( f (z)dg(z))5(w• f )(z)d(w•g)(z)
5 f (w21

•z)(dg+dw21)(z).
The action ofW on divisors is the linear extension of the action ofW as automorphisms of the

curve. The action ofW on Cg/L commutes with the Abel–Jacobi map, i.e.,w
•(*Dv1 ,...,*

Dvg)5(*w•Dv1 ,...,*
w•Dvg)5(*Dw*v1 ,...,*

Dw*vg)5(*Dw21
•v1 ,...,*

Dw21

•vg). If the action ofW on holomorphic differentials is represented by a matrixMw by means of
the choice of basis of holomorphic differentials, thenw acts onCg or Cg/L by the inverse
transpose matrix (Mw

21) t.
A Prym–Tjurin variety is an Abelian variety that arises from a self-correspondence

curve. Specifically, a self-correspondenceC on a curveX induces an endomorphism of JacX,
J. Math. Phys., Vol. 38, No. 2, February 1997
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which we also denoteC. If this endomorphism satisfies a quadratic polynomial of the fo
C21qC50, whereq is an integer, then the image of the endomorphismC is an Abelian subva-
riety of JacX called a Prym–Tjurin variety. Some authors, e.g., Birkenhake and Lange,7 use
another definition involving a principal polarization as well. Here, we follow Kanev who pro
the existence of the required type of principal polarization under an additional condition.8

Kanev identified Prym–Tjurin varieties in the Jacobians of some spectral curves.4 This was
generalized and expressed in terms of group theory.6 In particular, ifl is a weight, then there is a
Prym–Tjurin variety Turl Y,JacY. Each element of the group ringZ[W] may be viewed as a
correspondence on the master curveY. The Killing form may be rescaled to a form̂,&1 such that
^l,g&1PZ for any pair of weightsl andg. ThenPl5(wPW^l,w21

•l&1 w lies in Z[W]. Under
theZ[W] action on modulesPl is an integral multiple of projection onto the subspace genera
by the elementsl in copies of the irreducible submodules isomorphic toh. HencePl satisfies a
quadratic polynomial and the image of the induced endomorphismPl : JacY→JacY is a Prym–
Tjurin variety which we denote Turl Y. These respect the action of the Weyl group in th
w•Turl Y5Turw•l Y. The varieties Turl Y are discussed in detail in previous work6 including a
formula for their dimensions and some particular information in the case of the Lie algebg2
which plays the leading role in this paper.

III. THE LIE ALGEBRA g2

The Lie algebrag2 is 14-dimensional. Following Ref. 1 p. 295 we take as coordina
(t11,t12,t13,t21,t22,t23,t31,t32,x1 ,x2 ,x3 ,y1 ,y2 ,y3) except that ourx’s are the negatives of those i
Ref. 1. The corresponding symbolsTi j , Xi , andYi will denote the standard basis with respect
these coordinates. The vectorsT11 andT22 span a Cartan subalgebra. It is convenient to use
alternative namesH1 for T11 andH2 for T22.

The first fundamental representation acts on a 7-dimensional vector space and has
weightl1. Here is the matrix for an element whose coordinates are given above.

S t11 t12 t13 &x1 y2 2y3 0

t21 t22 t23 &x2 2y1 0 y3

t31 t32 2t112t22 &x3 0 y1 2y2

&y1 &y2 &y3 0 2&x3 2&x2 2&x1

x2 2x1 0 2&y3 t111t22 2t23 2t13

2x3 0 x1 2&y2 2t32 2t22 2t12

0 x3 2x2 2&y1 2t31 2t21 2t11

D .

The second fundamental representation is the adjoint representation wherebyg2 acts on itself
via X:Y→adXY5[X,Y]. It has highest weightl2. The Killing form on g2 is the bilinear form
^X,Y&5tr adX adY . Inspection of the adjoint representation gives^H1 ,H1&5^H2 ,H2&516, and
^H1 ,H2&58.

The roots ofg2 with respect to the Cartan subalgebrah spanned byH1 andH2 lie in the span
of the coordinatest11 andt22 ~thought of as linear maps fromh to C!. We name the short rootsbi

and the long rootsgi as in the picture.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Diagram 1.

The Weyl group isW5Z23S3. The generator of the summandZ2 is denotedt and acts as the
inversion21 on the roots. The summandS3 is the permutation group. The six reflections inW are
shown in the picture, each next to the line it fixes. The action ofW on the roots is

tns•b i5~21!n1signsbs21~ i ! ,

tns•g i5~21!ngs21~ i ! .

Table I expresses the rootsbi and gi in terms of t11 and t22. A simple baseD5$a1,a2% is
indicated along with the corresponding fundamental weightsl1 andl2. In the adjoint representa
tion h acts ong2 by diagonal matrices in the basis we are using. Table I identifies these
elements as root vectorsXa . Finally, duality pairs each roota with an elementTa of h. The
elementsTa for which ^Ta ,H&5a(H), ;HPh are also listed.

Definition: ~Reference 11, p. 147! A Chevalley basis is a choice of root vectorsXa and
elements Ha i for $ai% a base for the root system that satisfy for any rootsa andb
J. Math. Phys., Vol. 38, No. 2, February 1997
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~1! [Xa ,X2a]5Ha52Ta/^a,a&
~2! [Xa ,Xb]5ca,bXa1b . If a1b is a root then ca,b

2 5(r11)2, whereb2ra,...,b1qa is
thea-string throughb. Also ca,b52c2a,2b .

As a base for the root system takea152b3 and a252g1. For i51,2,3 we haveHb i
524Tb i

and Hg i
58Tg i

.
Proposition 4: The basis Ha152H112H2, Ha2

52H11H2, and T12,T13,T21,T23,T31,T32,
X1 ,X2 ,X3 ,Y1 ,Y2 ,Y3 is a Chevalley basis forg2.

IV. THE DIFFERENTIAL EQUATIONS

The next proposition presents theg2 periodic Toda lattice equations. Note that2b3 and2g1
form a simple base for theg2 root system and that2g3 is minus the highest root. Let$Xa% be a
Chevalley basis.

Proposition 5: The Lax equation dA/dt5[A,B] where

A~ t !5a1~ t !~X2b3
1Xb3

!1a2~ t !~X2g1
1Xg1

!1a3~ t !~s
21X2g3

1sXg3
!1b1~ t !H11b2~ t !H2

and

B~ t !5a1~ t !~X2b3
2Xb3

!1a2~ t !~X2g1
2Xg1

!1a3~ t !~s
21X2g3

2sXg3
!

is equivalent to Hamilton’s equations

dqi
dt

5
]H

]pi
,

dpi
dt

52
]H

]qi

for the two particle system with total energy

H~q1 ,q2 ,p1 ,p2!5 1
2~p1

21p2
2!1e~1/) !q11e2~)/2!q11~1/2!q21e2q2

via the change of coordinates

a1~ t !5
1

2A6
e~1/2) !q1~ t !,

TABLE I. Roots ofTa.

Roota Xa X2a Ta

l15b15t111t22 Y3 X3
1

24
~H11H2!

b252t11 Y1 X1
1

24
~22H11H2!

2a15b352t22 Y2 X2
1

24
~H122H2!

2a25g152t111t22 T21 T12
1

8
~2H11H2!

g252t1122t22 T32 T23 2
1

8
H2

l25g352t111t22 T13 T31
1

8
H1
J. Math. Phys., Vol. 38, No. 2, February 1997
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a2~ t !5
1

2&
e2~)/4!q1~ t !1~1/4!q2~ t !, a3~ t !5

1

2&
e2~1/2!q2~ t !,

b1~ t !5
21

2)
p1~ t !1

1

4
p2~ t !, b2~ t !5

1

2)
p1~ t !.

The coordinatea2(t) may be regarded as superfluous. It can be eliminated using
a54a1

3a2
2a3 is a constant of the motion. Botha andc1 in the next lemma occur as coefficients

the polynomial defining the lowest genus spectral curve.
Lemma 6: The Hamiltonian is the constant of the motion

H5 1
2^A~ t !,A~ t !&58~3a1

21a2
21a3

21b1
21b1b21b2

2!58c1 .

Lemma 7: Theg2 Toda lattice equations are

ȧ15a1b2 , ȧ25a2~b12b2!, ȧ35a3~22b12b2!,

ḃ152~a1
22a2

21a3
2!, ḃ2524a1

212a2,

where ˙5 d/dt.
Corollary 8: Leta152b3, a252g1, anda352g3. Let s1, s2, and s3 be three parameters

The equations of the previous lemma are equivalent to the Lax equation dA/dt5[A,B] where

A~ t !5a1~ t !~s1Xa1
1s1

21X2a1
!1a2~ t !~s2Xa2

1s2
21X2a2

!

1a3~ t !~s3Xa3
1s3

21X2a3
!1b1~ t !H11b2~ t !H2

and

B~ t !5a1~ t !~s1Xa1
2s1

21X2a1
!1a2~ t !~s2Xa2

2s2
21X2a2

!1a3~ t !~s3Xa3
2s3

21X2a3
!.

Proof:We compute out [A,B]. There are three kinds of terms.
An important point in Bogoyavlensky’s construction of the family of periodic Toda lattice

that the roots$ai% satisfy@Xa i
,Xa j

# 5 0 for i unequal toj . Consequently, fori not equal toj

@ai~siXa i
1si

21X2a i
!,aj~sjXa j

2sj
21X2a j

!#5aiaj~sisj@Xa i
,Xa j

#1si
21sj

21@X2a i
,X2a j

# !.

Reversing the roles ofi and j reverses the sign due to the anticommutivity of the bracket. So
sum of all terms of this kind is zero.

The second kind of terms are similar, but withi5 j .

@ai~siXa i
1si

21X2a i
!,ai~siXa i

2si
21X2a i

!#522ai
2@Xa i

,X2a i
#522ai

2Ha i
.

Summing these terms gives2 2(a1
2Ha1

1 a2
2Ha2

1 a3
2Ha3

) which, as will be seen, is the summan
of [A,B] in the Cartan subalgebra, and so should match up withḃ1H11ḃ2H2 .

Finally, there are terms of the form

@b1H11b2H2 ,ai~siXa i
2si

21X2a i
!#5aia i~b1H11b2H2!~siXa i

1si
21X2a i

!.

This givesȧi5aia i(b1H11b2H2).
The rest follows by computing out the elements ofh in terms of a basis. h
J. Math. Phys., Vol. 38, No. 2, February 1997
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V. RELATIONSHIP TO THE NOTATION OF BOGOYAVLENSKY

This system was first described in Bogoyavlensky’s paper, ‘‘On Perturbations of the Periodic
Toda Lattice,’’ 9 in particular in Sec. 4 entitled The Hamiltonian Systems Connected with Sim
Lie Algebras. Bogoyavlensky does not use a Chevalley basis: instead of$Xa%, where
[Xa ,X2a]5Ha , he uses$ea%, where [ea ,e2a]5Ta which he identifies witha. The$ea% have the
advantage that̂ea ,e2a&51.

Bogoyavlensky shows how to produce a Hamiltonian system for any ‘‘admissable’’ s
roots. A set$ai% of roots is admissable ifa i2a j is not a root for anyi unequal toj . The proof of
Theorem 8 shows the use of admissability. The Hamiltonian system associated with an adm
set of roots is given in two forms:

~1! Hamilton’s equations, in canonical coordinates,
~2! a Lax equation.

Let q andp be time-dependent elements ofh. The Hamiltonian is

H~q,p!5 1
2^p,p&1( e2a i ~q!

which may be put into coordinates by means of a basis$hi% for h by putting q5(qihi and
p5(pihi . The version in Theorem 5~Corollary 7! uses an orthonormal basis whereh1 is a unit
vector in the direction ofH2b3

andh2 is a unit vector in the direction ofHg3
.

The generalizations of the Toda lattice use the admissable set of rootsa1,a2,...,an11, where
a1,...,an is a simple base for the root system andan11 is minus the highest root relative to th
base. The linear dependence of this admissable set of roots leads to a Casimir, i.e., a con
the motion that when used as an alternative Hamiltonian gives the zero Hamiltonian vecto
~and hence permits the reduction of the system by only one dimension instead of two!. Reference
1, p. 291 attributes the observation of this Casimir to Kostant. Let(kia i50 be the linear rela-
tionship among the roots. The Casimir is

a~ t !5) ekia i ~q~ t)).

In particular for theg2 algebra, the rootsa152b3, a252g1, anda352g3 satisfy the relation
3a112a21a350. Bogoyavlensky writesl j 5 ea i (q). Since our Lax equation uses the Chevall
basisXa instead ofea , we use

aj5
2

^a j ,a j&
ea j ~q! .

The extra constant factors are inconsequential in forming the Casimir. We use the constan
motiona54a1

3a2
2a3 which shows up as a coefficient in the polynomial defining the lowest ge

spectral curve.

VI. SPECTRAL CURVES

Proposition 9: The following two descriptions specify the same set of monic polynomi
the variable z.

~1! The roots of p(z) are of the forml1, l2, l3, 2l1, 2l2, and2l3 with l11l21l350.
~2! p(z) has the form z2(z22c1)

21c.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Proof: Both descriptions specify polynomials with only even powers ofz, so have roots of the
form 6l1,6l2,6l3. Expand out

~z22l1
2!~z22l2

2!~z22l3
2!5z62~l1

21l2
21l3

2!z41~l1
2l2

21l1
2l3

21l2
2l3

2!z22l1
2l2

2l3
2.

The proposition asserts that a certain relationship between the coefficientsc2 of z
2 andc4 of z

4 is
equivalent tol11l21l350 modulo the freedom to rename any of theli as2li . The relationship
is

054c22c4
254~l1

2l2
21l1

2l3
21l2

2l3
2!2~l1

21l2
21l3

2!2

5~l11l21l3!~l11l22l3!~l12l21l3!~2l11l21l3!.

The equivalence of the two descriptions follows from the factorization. h

Let r1 be the first fundamental representation ofg2 as 737 matrices.
Proposition 10: The characteristic polynomial p(z)5det~r1(M )2zI! for any element MPg2

has the form p(z)5(2z)(z2(z22c1)
21c).

Proof: The coefficients ofp(z) are polynomial functions ofM . The assertion can be inter
preted as claiming that certain polynomial functions are uniformly zero ong2. Namely, if
p(z)52z71a6z

61a5z
51•••1a0 , the assertion isa6(M )5a4(M )5a2(M )5a0(M )50 and

4a3(M )2a5(M )250. It is sufficient to verify that these identities hold for the regular eleme
which are a generic subset ofg2. Each regular element is in a unique Cartan subalgebra an
conjugate to an element in the standard Cartan subalgebra represented by a diagonal matr
form diag(t11,t22,2t112t22,0,t111t22,2t22,2t11). The entries on the diagonal are the roots of
characteristic polynomialp(z), which is unchanged under conjugation. By Proposition 9,p(z) has
the specified form. h

Remark:The previous proposition can also be verified directly by computing and inspe
the characteristic polynomial of an arbitrary element ofg2. Specific~lengthy! formulas forc1 and
c can be obtained.

Remark:The same proof applies to other representations. A Cartan subalgebra can be
sented as diagonal matrices. The entries on the diagonal for an elementHPh are the weights of
the representation applied to the elementH.

Proposition 11: The characteristic polynomial ofr1(A) for the element

A~ t !5a1~ t !~s1Xa1
1s1

21X2a1
!1a2~ t !~s2Xa2

1s2
21X2a2

!

1a3~ t !~s3Xa3
1s3

21X2a3
!1b1~ t !H11b2~ t !H2

is

det~r1~A!2zI!5~2z!~z2~z22c1!
21c01a~s1

3s2
2s31s1

23s2
22s3

21!!,

where

a54a1
3a2

2a3 ,

c153a1
21a2

21a3
21b1

21b1b21b2
2,

c0524a1
624a1

4a2
218a1

4a3
224a1

2a2
2a3

224a1
2a3

418a1
4b1

224a1
2a2

2b1
22a2

4b1
2

28a1
2a3

2b1
224a1

2b1
418a1

4b1b2210a1
2a2

2b1b222a2
4b1b228a1

2a3
2b1b2

12a2
2a3

2b1b228a1
2b1

3b212a2
2b1

3b22a1
4b2

226a1
2a2

2b2
22a2

4b2
212a1

2a3
2b2

2

12a2
2a3

2b2
22a3

4b2
222a1

2b1
2b2

214a2
2b1

2b2
222a3

2b1
2b2

22b1
4b2

212a1
2b1b2

3

12a2
2b1b2

322a3
2b1b2

322b1
3b2

32b1
2b2

4.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The particular case we use iss151, s251, ands35s.
Let r2 be the second fundamental representation ofg2, that is, the adjoint representation a

14314 matrices.
Proposition 12: Let XPg2. If the characteristic polynomial of the first fundamental represe

tation of X is

p1~z!5det~r1~X!2zI!5~2z!~z2~z22c1!
21c!

then the characteristic polynomial of the second fundamental representation of X is

p2~z!5det~r2~X!2zI!5z2~z2~z22c1!
21c!~z2~z223c1!

2227c24c1
3!.

Proof: The weights ofr1 are 0,6b1,6b2,6b3. The weights ofr2 consist of those ofr1 along
with another copy of 0 and6g1,6g2,6g3. The set of weights$6gi% are the same set as$b i2b j u i
unequal toj %. The roots of the characteristic polynomials are related in the same manner
weights. If 0,6l1,6l2,6l3, wherel11l21l350, are the roots ofp1(z)5det~r1(X)2zI! then
0,0,6l1,6l2,6l3,6~l12l2!,6~l12l3!,6~l22l3! are the roots ofp2(z)5det~r2(X)2zI!. It is
apparent that (2z)p1(z) is a factor of p2(z) and the remaining factor is
(z22(l12l2)

2)(z22(l12l3)
2)(z22(l22l3)

2) which by Proposition 9 has the form
z2(z22k1)

21k. It is only necessary to express thek’s which are symmetric functions ofl1,l2,l3,
in terms of thec’s to complete the proof.

Claim: k153c1
On the one hand

2k15~l12l2!
21~l12l3!

21~l22l3!
252~l1

21l2
21l3

2!22~l1l21l1l31l2l3!.

On the other hand, sincel11l21l350,

l1
21l2

21l3
25~l21l3!

21~l11l3!
21~l11l2!

252~l1
21l2

21l3
2!12~l1l21l1l31l2l3!.

So

22~l1l21l1l31l2l3!5l1
21l2

21l3
2.

Hence

2k153~l1
21l2

21l3
2!56c1

and sok153c1 .
Claim: k5227c24c1

3.
Again start withl11l21l350. Then l3

25l1
212l1l21l2

2 so 22l1l25l1
21l2

22l3
2. Conse-

quently,~l12l2!
252~l1

21l2
21l3

2!23l3
254c123l3

2. The coordinates may be permuted to get f
mulas for the other two factors ofk. Then

k52~l12l2!
2~l12l3!

2~l22l3!
2

52~4c123l3!
2~4c123l2!

2~4c123l1!
2

5264c1
3148c1

2~l1
21l2

21l3
2!236c1~l1

2l2
21l1

2l3
21l2

2l3
2!127l1

2l2
2l3

2

5264c1
3196c1

3236c1
3227c524c1227c,

where we have used 2c15l1
21l2

21l3
2, c52l1

2l2
2l3

2 andl1
2l2

21l1
2l3

21l2
2l3

25c1
2, this last following

from Proposition 9. h
J. Math. Phys., Vol. 38, No. 2, February 1997
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VII. DIFFERENTIALS ON THE SPECTRAL CURVES

Recall the functionsyl of Proposition 2. Proposition 15 tells us that the polynomia
PwPW(z2yw•l) is a factor of the polynomial det~rl(A)2zI!. The curveYl is the normalization
of the curve defined byPwPW(z2yw•l)50. In particular, forg5g2,

det~r1~X!2zI!5~2z!S )
wPW

~z2yw•l1! D .
Let yb i

be denotedzi where theb and g weights are shown in diagram 1. Note that b
Proposition 2 and the fact thaty2l52yl , the action of the Weyl group is

tns•zi5~21!n1sign szs21~ i !

which also induces the action on 1-forms.
Let P(z)5z2(z22c1)

21a(s1s21)1c0 with c1, c0PC and letYl1
be the curve defined by

$(s,z)uP(z)50%, i.e., the nontrivial component of ther1 spectrum. The polynomialP factors over
its splitting field as

F)
i51

3

~z2zi !GF)
i51

3

~z1zi !G .
Let Y→Yl1

→CP1 be the master curve coveringYl1
and the parameter space.Y is the smallest

regular branched cover ofCP1 aboveYl1
~Proposition 55!, and so the field of rational functions o

Y is the splitting field. Letz1 be the lift of thez coordinate toY. Hencez1 5 yl1
in the notation of

proposition 2. The Galois group isZ2% S35W.
The lemma below implies that the factorization ofP is

@z~z22c1!2 iAc01a~s1s21!#@z~z22c1!1 iAc01a~s1s21!#.

Lemma 13: z1(z1
22c1)5zj (zj

22c1) for j51,2,3.
Proof: The two sums of triples of roots ofP are zero,z11z21z350 and2z12z22z350. If

an additional triple of roots sum to zero, then one root is zero, e.g., ifz11z22z350 thenz350.
Sincez is not a factor ofP, there are only two triples. The sum of the roots in the factorz(z2

2 c1) 2 iAc01a(s1s21) is zero since the coefficient ofz2 is zero. h

SupposeQ(z)5z2(z22c1)
21c0 and

b~z!5AQ~z!2

a2
24.

On the curveY the functionsQ(zi) andb(zi) do not depend oni . In particularb(z)5s2s21.
Lemma 14: The curve Yl1 is hyperelliptic with

H zmdzb~z!
5

zmdz

~s2s21!
Um50,1,2,3,4J

a basis of holomorphic differentials.
Proof: This is a standard result. See Ref. 10, pp. 96–98. h

Lemma 15: The differentials on Y satisfy the following relations:

~1!
dz3
b

52
dz1
b

2
dz2
b

,
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~2!
z3dz3
b

52
z1dz1
b

2
z2dz2
b

,

~3!
z3
2dz3
b

5
1

2 S z12dz1b
1
z2
2dz2
b D 2

1

2
c1 S dz1b 1

dz2
b D ,

~4!
z3
3dz3
b

52
z1
3dz1
b

2
z3
2dz2
b

,

~5!
z3
4dz3
b

52
z1
4dz1
b

2
z2
4dz2
b

1
3

2
c1 S z12dz1b

1
z2
2dz2
b D 2

1

2
c1
2 S dz1b 1

dz2
b D .

Proof: We will examine only the numerators as the denominators are allb. We note the
following relations fromy(y2 2 c1) 5 6 iAa(s1s21)1c0:

~ i! z11z21z350 and dz352dz12dz2.

Also, zi(zi
22c1)56 iAa(s1s21)1c05z1z2z3 so z1

22c15z2z352z2(z11z2),

~ ii ! z1
21z2

25c12z1z2 and 2z1dz112z2 dz252z1 dz22z2 dz1 .

The last relations are

~ iii ! z1
32c1z15z2

32c1z25z3
32c1z3 ,

3z1
2 dz12c1 dz153z2

2 dz22c1 dz253z3
2 dz32c1 dz3

which follows from Lemma 13. We use the notationv i5z1
i dz11z2

i dz2 .
~1! follows from ~i!, dz352v0.
From ~ii !,

~ iv! z1 dz21z2 dz1522v1 .

Now,

z3 dz35~z11z2!~dz11dz2! by ~i!

5z1 dz11z2 dz21z2 dz11z2 dz1

5v122v1 by ~iv!

52v1

which shows~2!.
From ~iii !,

3z3
2 dz353z2

2 dz22c1 dz21c1 dz3 and 3z3
2 dz353z1

2 dz12c1 dz11c1 dz3 .

adding the two previous equations, 6z3
2 dz353v22c1v012c1 dz3 . From ~1!, z3

2 dz35
1
2v2

2 1
2c1v0 which shows~3!.
To prove~4! we first need an identity

z1
2z2 dz21z1z2

2 dz15z1z2~z1 dz21z2 dz1!

5~c12z1
22z2

2!~22!~z1 dz11z2 dz2! by ~ii ! and ~ iv!

522c1v112v312~z1
2z2 dz21z1z2

2 dz1!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Solving for z1
2z2 dz21z1z2

2 dz1 ,

~v! z1
2z2 dz21z1z2

2 dz152c1v122v3 .

Now,

z3
3 dz352~z11z2!z3

2 dz3 by ~i!

52 1
2~z11z2!~z1

2 dz11z2
2 dz2!1

c1
2

~z11z2!~dz11dz2! from ~3!

52 1
2v32

1
2~z1

2z2 dz11z1z2
2 dz2!1 1

2c1v11
1
2c1~z2 dz11z1 dz2!

52 1
2v32

1
2z1z2~z1 dz11z2 dz2!1 1

2c1v11
1
2c1~22v1! by ~iv!

52 1
2v32

1
2~c12z1

22z2
2!~z1 dz11z2 dz2!2 1

2c1v1 by ~ii !

52 1
2v32

1
2c1v11

1
2v31

1
2~z1

2z2 dz21z1z2
2 dz1!2 1

2c1v1

52c1v11
1
2~2c1v122v3! by ~v!

52v3

which proves~4!.
In order to prove~5! we need some identities.
By ~iv! we have,

2z1~z1 dz21z2 dz1!2z2~z1 dz21z2 dz1!52z1~z1 dz11z2 dz2!12z2~z1 dz11z2 dz2!.

So,

2~z1
2 dz21z2

2 dz1!52v213z1z2~dz11dz2!

52v213~c12z1
22z2

2!~dz11dz2! by ~ii !

52v213c1v023v223~z1
2dz21z2

2dz1!.

Hence solving forz1
2 dz21z2

2 dz1 ,

~vi! z1
2 dz21z2

2 dz152 1
2v21

3
2c1v0 .

Now,

z1z2v05~c12z1
22z2

2!~dz11dz2! by ~ii !

5c1v02v22~z1
2dz21z2

2dz1!

5c1v02v22~2 1
2v21

3
2c1v0! by ~vi!

~vii ! z1z2v052 1
2v22

1
2c1v0 .

Now,

z1z2v25~c12z1
22z2

2!~z1
2 dz11z2

2 dz2! by ~ii !

5c1v22v42z1
2z2

2~dz11dz2!

5c1v22v42z1z2~z1z2v0!

5c1v22v42z1z2~2 1
2v22

1
2c1v0! by ~vii !

5 1
2z1z2v21c1v22v41

1
2c1z1z2v0

5 1
2z1z2v21c1v22v41

1
2c1~2 1

2v22
1
2c1v0! by ~vii !.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Hence,

z1z2v25
1
2z1z2v21c1v22v42

1
4c1v22

1
4c1

2v0

and solving,

~viii ! z1z2v2522v41
3
2c1v22

1
2c1

2v0 .

Finally,

z3
4 dz35z3z3

3 dz3

52~z11z2!~2z1
3dz12z2

3dz2! by ~4!

5v41~z1
3z2 dz11z1z2

3 dz2!

5v41z1z2v2

5v422v41
3
2c1v22

1
2c1

2v0 by ~viii !

and

z3
4dz352v41

3
2c1v22

1
2c1

2v0

which shows~5!. h

VIII. DECOMPOSITION OF THE SPACE OF HOLOMORPHIC DIFFERENTIALS

We now consider representations ofW with an eye to decomposing theZ[W] module
H1~Y;O ! into irreducible summands. All the representations are complex except where note
x~21,1!, x~21,21!, and x~1,21! be the 1-dimensional representations whose characters
x~21,1!~t

es!5~21!e, x~21,21!~t
es!5~21!e dets, andx~1,21!~t

es!5dets, respectively. LethG2
and

hA2
be theG2 Cartan and theA2 Cartan, wheret acts trivially onhA2

, i.e., the inflation of theS3

representationhA2 toW.
Lemma 16: Letv(zi)5c1(dzi)/(b(z))23(zi

2 dzi)/(b(z)). The following five subspaces of th
space of holomorphic differentials on Y are the indicated representations. Here, ^ & denotes the
span of the set.

K dz1b~z!
,
dz2
b~z!L .K 3z14 dz1b~z!

1c1v~z1!,
3z2

4 dz2
b~z!

1c1v~z1!L .hG2
,

K z1 dz1b~z!
,
z2 dz2
b~z! L .K z13 dz1b~z!

,
z2
3 dz2
b~z! L .hA2

,

^v~z1!&.x~21,21!.

Compare these subspaces to the decomposition ofC@W/Sl1
# given in Proposition 20.6

Proof: The Weyl group action on the differentials as determined by Proposition 3 is

tns•
zi
m dzi
b~z!

5~21!~n1signs!~m11!
zs21~ i !
m dzs21~ i !

b~z!
.

To check that the subspaces are invariant one uses the group action and Lemma 15. Con
J. Math. Phys., Vol. 38, No. 2, February 1997
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tns•
dzi
b~z!

56
dzs21~ i !

b~z!
.

Now,

dz3
b~z!

52
dz1
b~z!

2
dz2
b~z!

so K dz1b~z!
,
dz2
b~z!L is W invariant.

For ^v(z1)&, t
ns • v(z1) 5 6v(zs21i). However,v(z1)5v(zi) for i51,2,3 as this is~iii ! from

the proof of Lemma 15.
To check

K 3z14dz1b~z!
1c1v~z1!,

3z2
4 dz2
b~z!

1c1v~z1!L ,
we compute 3z3

4 dz3/b(z) 1 c1v(z3),

523S z14 dz1b~z!
1
z2
4 dz2
b~z!

D 1
9

2
c1S z12 dz1b~z!

1
z2
2 dz2
b~z!

D 2
3

2
c1
2S dz1b~z!

1
dz2
b~z!

D 1c1v~z1!

by ~5! of Lemma 15,

53S 2z1
4 dz1
b~z!

2
1

2
c1v~z1! D 1

1

2
c1v~z1!13S 2z2

4 dz2
b~z!

2
1

2
c1v~z1! D 1

1

2
c1v~z1!

52S 3 z14 dz1b~z!
1c1v~z1! D 2S 3 z24 dz2b~z!

1c1v~z1! D
and so the subspace is invariant.

To verify each representation one can apply an idempotent in the group ringC[W] which is
projection onto the factor of that type. For a representationr with characterxr the idempotent is
Er5(wPWxr(w)w. The relevant idempotents are

EhG2
5 1

6@2e22t1t~1,2,3!1t~1,3,2!2~1,2,3!2~1,3,2!#,

EhA2
5 1

6@2e12t2t~1,2,3!2t~1,3,2!2~1,2,3!2~1,3,2!#,

Ex~21,21!
5 1

12@e2t2~1,2!2~1,3!2~2,3!1~1,2,3!1~1,3,2!1t~1,2!

1t~1,3!1t~2,3!2t~1,2,3!2t~1,3,2!#.

Now,

EhG2

dz1
b~z!

5
dz1
b~z!

,

EhG2

3z1
4 dz1
b~z!

1c1v~z1!5
3z1

4 dz1
b~z!

1c1v~z1!,

EhA2

z1 dz1
b~z!

5
z1 dz1
b~z!

,
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EhA2

z1
3 dz1
b~z!

5
z1
3 dz1
b~z!

,

Ex~21,21!
v~z1!5v~z1!.

TheW invariant subspaces are the claimed representations since they contain those represe
and are of the same dimension. h

Proposition 17: As aC[W]-module,

H1~Y;O !>hG2
% hG2

% hA2
% hA2

% x~21,21! % x~1,21! % x~21,1! .

Proof: By the previous proposition,H1~Y;O ! contains the first five summands. Since bo
vector spaces on each side of the isomorphic sign have dimension 11, we need only sho
x~1,21! andx~21,1! are inH

1~Y;O !. By Theorem 17,6 and the remark that follows its the stateme
the multiplicity of x in H1~Y;C! is

^x,H1~Y;C!&5( ~dim x2dim x I x!2dim x~Euler char of P!,

where the sum is taken over the ramification points ofp:Y→P and for each ramification poin
pPP, a choicexPp21(p) has been made;I x,W is the subgroup that fixesx; andx I x is the fixed
point set ofI x in x. By Lemma 35,6 there are two points withI x5~1,2!, two points withI x5t(1,2),
and two points with I x5t(1,2,3). Now, ~1,2!Px~21,1! and t~2,3!Px~1,21!, so
^x~21,1!,H

1~Y;C!&525^x~1,21!,H
1~Y;C!&. Noting that ^x,H1~Y;C!&51

2^x,H
1~Y;O !&, completes the

proof. h

Sincez is the coordinate ofYl1
, we use the ordered basis

S 3z4dzb
1c1v~z!,

dz

b
,
zdz

b
,
z3dz

b
,v~z! D

to determine coordinates onTe JacYl1
as discussed in Sec. II. On the curveY, we use the ordered

basis

S 3z14 dz1b
1c1v~z1!,

3z2
4 dz2
b

1c1v~z1!,
dz1
b

,
dz2
b

,
z1dz1
b

,
z2dz2
b

,
z1
3dz1
b

,
z2
3dz2
b

,v~z1!,d10,d11D ,
where^d10&>x~1,21!, and^d11&>x~21,1!. Let h i5(3zi

4 dzi)/(b)1c1v(z1) for i51, 2, or 3.
We usee1 ,...,en to denote the standard basis inCn.
Proposition 18: In the above ordered basis of holomorphic differentials and in the stan

basis inC11, Te JacY decomposes as follows:

^e1 ,e2& % ^e3 ,e4& % ^e5 ,e6& % ^e7 ,e8& % ^e9& % ^e10& % ^e11&

>hG2
* % hG2

* % hA2
% hA2

% x~21,21! % x~1,21! % x~21,1! ,

where the isomorphism preserves the ordered summands.
Proof: If gPW acts on the ordered differentials via the matrixM (g), theng acts onTe JacY

byM (g)21t as described in Sec. II. This is the dual to the representation onH1~Y;O !. The chosen
basis onH1~Y;O ! breaksM (g) into blocks corresponding to the representations in Proposition
J. Math. Phys., Vol. 38, No. 2, February 1997
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Since each of the irreducible constituents are complexifications of real orthogonal represen
they are isomorphic to their duals. h

IX. PRYM–TJURIN VARIETIES

We now determine the Prym–Tjurin varieties by specifying their tangent spaces at the
tity. Proposition 18 identified two copies ofhG2

* in Te JacY. By Schur’s lemma, the isomorphism

^e1 ,e2& > hG2
* and^e3 ,e4& > hG2

* are unique up to multiplication by scalars. Hence the span

weightl P hG2
* is determined in each copy. These two lines generate the tangent spaceTe Turl Y.

Proposition 19: Inside the twoC[W]-submoduleŝe1 ,e2& and ^e3 ,e4& of Te JacY that are
isomorphic tohG2

* , the lines spanned byl1 P hG2
* are spanned by2e12e2 and2e32e4 , respec-

tively.Consequently,Turl1 Y5 $2ke12ke212le32 le4uk,lPC%.

Proof: By Lemma 9,6 if Pl5(wPW^l,w21
•l&w, thenPl :hG2

* →hG2
* is a multiple of projec-

tion ontoCl. Rescaling the Killing form so that̂l1,l1&52 as in Humphreys’ p. 6511 and using
diagram1,oneobtains the factored formPl1

5 (e2 t)(e2 (2,3))(2e1 (1,2)1 (1,3)).Wecompute
the group action on^e1 ,e2&, the action on ^e3 ,e4& is identical. Recall that (tns)•h i

5(21)n1signshs21( i ) , and that (t
ns) • (*Dh1 ,*

Dh2) 5 ( 2 1)n1signs(*Dhs(1) ,*
Dhs(2)). By

Lemma 15 and the definition ofhi , h352~h11h2!. These properties determine the group act
as follows~where*Dh i5r i!

tn~1,2!•~r 1 ,r 2!5~21!n1signs~r 2 ,r 1!,

tn~2,3!•~r 1 ,r 2!5~21!n1signs~r 1 ,2r 12r 2!,

tn~1,3!•~r 1 ,r 2!5~21!n1signs~2r 12r 2 ,r 2!,

tn~1,2,3!•~r 1 ,r 2!5~21!n1signs~r 2 ,2r 12r 2!,

tn~1,3,2!•~r 1 ,r 2!5~21!n1signs~2r 12r 2 ,r 1!.

The action on these differentials shows thatPl1
h1 5 6h1, and Pl1

h2 5 23h1, hence
Pl1

(r 1 ,r 2) 5 (6r 1 , 2 3r 1) P Cl1. Therefore, 2e12e2 is amultiple ofl1and likewise for 2e32e4 .
By the remarks after Lemma 9,6 Turl Y5Im Pl , wherePl :JacY→JacY and by Proposition 15,6

Turl,hG2
* -type of JacY. The rest of the proposition follows. h

Note that the dimension of Turl Y is 2.
Proposition 20: Te Turl1 Yl1

,Te JacYl1
is ^e1 ,e2& in the basis e1 ,...,e5 on Te JacYl1

.

Furthermorepl1
* (r 1 ,r 2,0,0,0)5(2r 1 ,2r 1,2r 2 ,2r 2,0,...,0)PTe JacY.

Proof: The mappl1
:Y→Yl1

is a twofold cover.pl1
* :Turl1 Yl1

→Turl1 Y is an isogeny

~Theorem 136!, and so Turl1 Y is 2-dimensional.

In a sufficiently small neighborhood of the identitydpl1
* :Te JacYl1

→Te JacY and

pl1
* :JacYl1

→JacY can be identified with the same map from a neighborhood of 0P̄C5 to a

neighborhood of 0̄PC11. Supposer̄5(r 1 ,r 2 ,r 3 ,r 4 ,r 5) is an element of this neighborhood and l
D be a divisor of degree zero onYl1

whose image under the Abel–Jacobi map isr̄ , then

pl1
* D5S Epl1

21
D

h1 ,Epl1

21
D

h2 ,...,Epl1

21
D

d11D .
If pl1

* ( r̄ ) P Turl1 Y, then the coefficient ofe5 for pl1
* ( r̄ ) is zero. Hence,
J. Math. Phys., Vol. 38, No. 2, February 1997
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05Epl1

21
D z1 dz1

b
5Epl1

21
D

pl1
*
z dz

b
52ED z dz

b
52r 3 .

Similarly, r 45r 550. The last equality follows, sincepl1
:Y→Yl1

is a twofold cover. The first
part is shown.

We have that

Epl1

21
D

h15Epl1

21
D

pl1
* S z4dzb 1c1v~z! D52ED S z4dzb 1c1v~z! D52r 1 .

Therefore,r 1e11( i52
5 r iei°2r 1e11( i52

11 t iei . If D representsr̄ P Te Turl1 Yl1
, then by the

previous proposition,r 1e11r 2e2°2r 1e12r 1e21( i53
11 t iei . Similarly, for r 2. Finally, since

dpl1
* ( r̄ ) P Turl1 Y, t i50 for i>5 andpl1

* (r 1 ,r 2,0,0,0)5 (2r 1 , 2 r 1,2r 2 ,2r 2,0,...,0). h

X. THE VELOCITY VECTOR OF THE g2 TODA FLOW

The derivative of thel1 flow can be found in coordinates using Theorem 5.312 and specifically
the formula at the beginning of step 2 of its proof. The idea is from Adler and van Moerbeke2 pp.
322–323 which in turn utilizes van Moerbeke and Mumford.13

Here is a statement of the derivative formula specialized to the case we need.
Theorem 21:Suppose that dA/dt5[A,B], where A and B are N3N matrices, whose entrie

are polynomials in s and s21 with coefficients that are complex-valued functions of t. Let X be an
irreducible component (normalized) occurring with multiplicity one in the spectral curve defi
by det(A(s)2zI)50. Let X` denote the points on X with either s5`, s215`, or z5`.

Select any integer i from1 to N. Let f(t):X→CN be the eigenvector of A(s,t) with eigenvalue
z and with the ith entry normalized to1. LetL(t) be the ith entry of the vector B f. LetD(t) be
the divisor of the meromorphic section f(t) of the eigenvector bundle on X.

Then for any holomorphic differentialv on X,

lim
t→0

E
D~0!

D~ t !
v52 (

PPX`

Res
P

~L~0!v!,

whereResP denotes taking the residue at P of the differential.
Theorem 22:On the curve Yl1,

lim
t→0

E
D~0!

D~ t ! z1
k dz1

s2s21 5 H 22a,
0,

if k54
if k50,1,2 or 3.

Proof:We use the formula cited above that gives the derivatives as a sum of residues
residue will be computed in a local coordinate.

For the representation ofg2 with highest weightl1 we use the matricesA andB given by
Adler and van Moerbeke.1 The reader can also obtain these by writing the Lax equation
Proposition 5 in matrix form using the matrix given for a general element ofg2. The curveYl1

is
defined by

z622c1z
41z21c01a~s1s21!50.

The nonaffine portion ofYl1
consists of two points:P wherez5`, s5`, and s2150, andQ

wherez5`, s50, ands215`. At each pointt5z21 is a local coordinate. From the equation
the curvez61•••1a(s1s21) we get the Laurent series fors. At P: z5`, s5`, s2150
J. Math. Phys., Vol. 38, No. 2, February 1997
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z5t21, s5
21

a
t261•••, s2152at61••• ,

zk dz

s2s21 5
~ t2k!~2t22 dt!

21

a
t261•••

5~2at42k1••• !dt for k50,1,2,3,4.

At Q: z5`, s50, s215`

z5t21, s52at61•••, s215
21

a
t261••• ,

zk dz

s2s21 5
~ t2k!~2t22 dt!

2
21

a
t261•••

5~1at42k1••• !dt for k50,1,2,3,4.

An eigenvector ofA(s) with eigenvaluez is given by the vector (Dk1,Dk2,...,Dk7) of minors
of A2zI, where ifAi j is the submatrix ofA2zI obtained by deleting rowi and columnj , then
D i j5(21)i1 j detAi j . The rowk may be chosen arbitrarily. Here, we takek54 and normalize the
eigenvector so that the fourth entry is 1 by dividing through byD44. The result was checked usin
other choices of the rowk. With these choices

L5~Bf !45
2&a1~D431D45!

D44
.

Inspection of the submatrices ofA2zI shows the lowest power oft in D44 comes fromz
6, so that

D445t261••• . This holds at eitherP orQ sinceD44 is a polynomial inz with no terms usings or
s21.

We now examine the numerator ofL at P. The lowest power oft is t27. There is no
contribution fromD43 while from D45 we get22&a1

2a2
2a3sz since in inspecting the determinan

of the submatrixA45 reveals two relevant terms, each equal to&a1
2a2

2a3sz and there sum is
multiplied by ~21!415. Recall that a54a1

3a2
2a3 . Then the numerator ofL at P is

1asz1•••52t271••• . So at P we haveL(t)52t211••• . The holomorphic differentials
vk5(zk dz)/(s2s21) for k50,1,2,3 have a zero atP so ResP Lvk50 for k50,1,2,3. The dif-
ferentialv45(z4 dz)/(s1s21) takes the form~2a1•••! dt at P so ResP Lv45a.

The same calculation may be carried out at the pointQ. In the numerator ofL, now D45
contributes nothing to the term that gives the lowest power oft while D43 provides
~21!413(22&a1

2a2
2a3s

21z), so the numerator ofL at Q is 2as21z5t271••• . So, atQ,
L(t)5t211••• . As with P the differentialsvk5(zk dz)/(s2s21) have a zero atQ for
k50,1,2,3, so ResQ Lvk50 for k50,1,2,3. AtQ the differentialv45(z4 dz)/(s2s21) takes the
form ~1a1•••! dt, so ResQ Lv45a.

Hence

lim
t→0

E
D~0!

D~ t !
vk52~Res

P
Lvk1Res

Q
Lvk!

and

2~Res
P

Lvk1Res
Q

Lvk!5 H 22a,
0,

if k54
if k50,1,2, or 3. h
J. Math. Phys., Vol. 38, No. 2, February 1997
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Corollary 23: The G2 Toda flow linearizes onJacYl1

Proof: The velocity vector inTe Jac Yl1
is

S lim
t→0

E
D~0!

D~ t ! 3z4 dz

b
1c1v~z!, lim

t→0
E
d ~0!

D~ t ! dz

b
,..., lim

t→0
E
D~0!

D~ t !

v~z!D 5~26a,0,0,0,0!

by Theorems 21 and 22. This vector is inTe Turl1Yl1
by Proposition 20. h
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Euclidean two-dimensional gravity with torsion
M. O. Katanaeva)
Steklov Mathematical Institute, Vavilov St., 42, 117966, Moscow, Russia

~Received 31 August 1995; accepted for publication 17 October 1996!

Two-dimensional gravity with torsion is considered assuming Euclidean signa
ture of the metric. A general solution of the Euler–Lagrange equations is found
in the conformal gauge. Extremals and geodesics are found and analyzed. All
global Euclidean solutions are explicitly constructed and classified. Besides the
constant curvature Riemann surfaces of arbitrary genus there are a large number
of compact and noncompact surfaces of nonconstant curvature and non-
trivial torsion possessing conical singularities. The relation between Lorentz and
Euclidean global solutions is analyzed. ©1997 American Institute of Physics.
@S0022-2488~97!02801-6#

I. INTRODUCTION

Gravity models in two dimensions have attracted great interest in the last few years for a
two reasons. First, they are toy models helping us to understand gravity in four dimen
Especially concerning global structure of the solutions~for example, black holes! and quantiza-
tion. Second, two-dimensional gravity models are closely related to string theory which is a
attractive model both from physical and mathematical points of view.

One of the most popular two-dimensional gravity models is the dilaton gravity mod1–7

which arises as an effective model in the string theory. Quite independently geometric
dimensional gravity with torsion was proposed.8–17 ~A general review of gravity with torsion and
nonmetricity in arbitrary dimensions can be found in Ref. 18.! It was also introduced in the contex
of string theory to provide dynamics for a world sheet zweibein already at the classical level
models turned out to be integrable and have black hole solutions thus providing a good labo
for mathematical investigations. Recently, it was realized that this similarity is not a coincid
and the dilaton gravity is a special case of two-dimensional gravity with torsion.19 Two-
dimensional gravity with torsion is a more general theory which, besides the black hole
solutions, also contains an important class of solutions corresponding to surfaces of co
curvature and zero torsion.20–22

In this paper we investigate global or maximally continued solutions of two-dimensi
gravity with torsion corresponding to the Euclidean signature metric. It concludes explicit
struction and classification of global solutions of the model given in Refs. 23–25 for the Lo
signature of the metric. As a result we show that two-dimensional gravity with torsion yields
classification of surfaces with curvature and torsion. Besides compact Riemann surfaces o
trary genus with a given constant curvature metric and zero torsion, the classification inclu
much wider class of compact and noncompact surfaces with nonconstant curvature and n
torsion. These surfaces possess a rich structure of conical singularities. The classification o
solutions in the Lorentz case25,26 in essence coincides with that for Euclidean signature of
metric. At the same time there are some important and unexpected properties. For examp
global solution for the Lorentz metric represented by a number of smoothly glued together P
diagrams27 breaks into a set of disconnected global solutions for positive and negative de
Euclidean metrics.

For positive definite Euclidean metric, positive definite coupling constants, and non-neg

a!Electronic mail: katanaev@class.mian.su
0022-2488/97/38(2)/946/35/$10.00
946 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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cosmological constant the action of two-dimensional gravity with torsion is positive defi
Therefore, one can raise the question of how to find all complete minimal surfaces to the
quadratic in curvature and torsion. The answer is simple: The only smooth orientable co
complete surfaces minimizing the action of two-dimensional gravity with torsion are com
Riemannian surfaces of arbitrary genus with a given constant curvature metric and zero t
This is one of the corollaries of the classification of the surfaces with curvature and torsion

The solved problem is more general. We have explicitly constructed all surfaces with sm
zweibein and SO~2!-connection which ~i! satisfy the Euler–Lagrange equations of tw
dimensional gravity with torsion and~ii ! are maximally continued. The last requirement mea
that any extremal and geodesic can be continued to the infinite value of the canonical param
both directions or it ends up at a singular point were curvature and torsion become singula
classification arises as a solution to this problem for all values of the coupling constants
Lagrangian. There are compact and noncompact surfaces with nontrivial torsion having on
ing vector field. Compact surfaces with torsion have at least one conical singularity, while
compact surfaces may be smooth.

In the present paper we consider only the matterless model. Coupling to matter in the L
case is considered in Refs. 28–32. The Euclidean two-dimensional gravity with torsion and
general Lagrangian appears in Ref. 13.

The analysis of the Euclidean solution is very similar to the Lorentz case. In Sec. I
describe the action, notations, and state the problem. In Sec. III a general local solution
Euler–Lagrange equations is given in the conformal gauge. In Sec. IV we discuss the co
curvature surfaces. To analyze the surfaces with nontrivial torsion we fix the conformal inva
remaining in the conformal gauge in Sec. V. The form and completeness of the extrema
geodesics are analyzed in Secs. VI and VII respectively. In Sec. VIII we show how extrema
geodesics must be continued. In Sec. IX we give classification of all maximally continued
faces. In Sec. X the area and the value of the action for each surface is computed. In Sec
consider two physically interesting cases describing black holes and changing topology of sp
time. There we compare the Lorentz and the Euclidean signature solutions.

II. THE ACTION

Let us consider an orientable two-dimensional manifold33,34 or a surfaceM with a given
zweibein ea

a and SO~2!-connection va
ab5Baeab, a,b, . . .51,2, a,b, . . .51,2, where

eab52eba, e1251, is the totally antisymmetric second rank tensor. We use Greek indices to
to some local coordinate systemza onM and Latin indices to refer to an orthonormal basis in t
tangent space which is defined up to arbitrary local SO~2!-rotation. In terms of zweibein and
SO~2!-connection the curvature and torsion of a surface are given by the following express

Rab
ab52 1

2 eabeabR, Tab
a5ea

aTb2eb
aTa ,

where the scalar curvatureR and the trace of torsion tensorTb are defined as follows:

R52eab]aBb , Tb5ea
a~]aeb

a2]bea
a!2Baeab .

Here and in what follows, transformation of Greek indices into Latin ones and vice ver
performed by using the zweibein field and its inverseea

a. For example,eab5ea
aeb

beab .
The metricgab and the metric connectionGab

g are expressed in terms of zweibein a
SO~2!-connection in the usual way

gab5ea
aeb

bhab , ~1!

¹aeb
a5]aeb

a2Gab
geg

a2va
abebb50. ~2!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



.

ure

nver-

te for
is

nge
.
lem.

in
r
of the

sic
up at
eed a
ion
tions
e or
e it is
licit
aria-

steps.
some
mplete-

r–

948 M. O. Katanaev: Euclidean two-dimensional gravity with torsion

¬¬¬¬¬¬¬¬¬¬
We consider the Riemannian case when the metric is either positive definite,hab5dab , or nega-
tive definite,hab52dab . The Lorentz signature,hab5diag(12), was solved in Refs. 25 and 26

Let us consider the following action:

I5E
M
d2zeLG , e5detea

a, ~3!

where the LagrangianLG of two-dimensional gravity with torsion equals to the sum of curvat
squared term, torsion squared term, and a cosmological constantl

LG5 1
4 gR21 1

2 bTaT
a1l. ~4!

Here,g andb are arbitrary coupling constants. The Lagrangian is not invariant under the i
sion of the metric

ea
a→ea

a, va
ab→va

ab, hab→2hab , gab→2gab ,

which changes the sign of the torsion squared term. The action is clearly positive defini
positive definite Euclidean metric andg,b.0, l>0. For negative definite Euclidean metric it
positive definite forg.0, b,0, andl>0.

The action~3! is the most general invariant action yielding second order Euler–Lagra
equations for zweibein and SO~2!-connection which are considered as independent variables

For a fixedM , finite and positive definite action one has a well defined variational prob
Considering different surfacesM , one gets variety of variational problems.

One way to state the problem for a givenM is to specify boundary conditions for the zweibe
and the SO~2!-connection. It can be done in a gauge invariant manner.37 We shall solve anothe
invariant problem using the notions of extremals and geodesics. Namely for all values
coupling constants we explicitly construct all triples (M ,ea

a,va
ab) whereea

a andva
ab satisfy

the Euler–Lagrange equations, andM is maximally continued, that is any extremal and geode
can be continued in both ways either to infinite value of a canonical parameter or they end
a singularity at finite value of a canonical parameter. Then to find out what surfaces are ind
true extremal surface, one simply has to check positive definiteness and finiteness of the act~3!.

Let us note that solving the variational problem with a given boundary or sewing condi
for zweibein and SO~2!-connection one gets an extremal surface which is either complet
incomplete. If it is complete then the surface coincides with one of our solutions. Otherwis
diffeomorphic only to a part of one of the maximally continued surfaces. In this way exp
construction of all extremal maximally continued surfaces includes all other solutions of v
tional problems for two-dimensional gravity with torsion.

The classification of surfaces with curvature and torsion given below includes several
First, we find a general solution of the Euler–Lagrange equations in the conformal gauge in
domain. Then, we solve equations for extremals and geodesics, analyze their form and co
ness, and continue the solution when necessary.

III. SOLUTION OF THE EULER–LAGRANGE EQUATIONS

Varying the action~3! with respect to SO~2!-connection and zweibein one obtains the Eule
Lagrange equations

g¹aR2bTa50, ~5!

2b¹aTb1gab~ 1
2 bTgT

g1 1
4 gR22l!50, ~6!

where¹a denotes the covariant derivative.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Let us consider the casebg.0. To simplify the form of the equations we introduce dime
sionless coordinates

x5A b

2g
z1, y5A b

2g
z2 ~7!

and define complex coordinates

z5x1ıy, z̄5x2ıy.

The transformation~7! is defined only forbg.0. Later we shall see that there are solutio
with positive and negative definite metric,ds2.0 andds2,0. In the opposite case,bg,0, the
minus sign must be added under the square root in~7!, and solutions withds2.0 andds2,0
change their places.

To solve equations of motion we choose the conformal gauge

ea
a5ewda

a, ~8!

wherew(j) is some field. The corresponding Riemannian metric has the form

gab56e2wdab , ~9!

for positive and negative definite metric.
In dimensionless coordinates the coupling constants enter the Euler–Lagrange equatio

through one dimensionless cosmological constant

L5
4lg

b2 . ~10!

Theorem 1: For any solution of the Euler–Lagrange equations (5) and (6) in the conform
gauge there exists a scalar function f such that theSO~2!-connection has the form

Ba5eab]b~w2 f !, ~11!

where two functionsw and f satisfy the following system of equations:

24 f z z̄6~ f 22L!e2w50, ~12!

24wz z̄6~ f 21 f2L!e2w50, ~13!

f zz1 f z
222wzf z50, ~14!

f z̄ z̄1 f z̄
222w z̄ f z̄50. ~15!

The6 sign in Eqs. (12) and (13) corresponds to negative and positive definite Riemannian m
Inversely, for any two functionsw and f satisfying Eqs. (12)–(15), the zweibein and the

SO~2!-connection constructed using formulas (8) and (11) satisfy the Euler–Lagrange equations
(5) and (6).

The proof of this theorem is lengthy but straightforward. In the Lorentz case the detai
given in Ref. 23 and are not repeated here. The simplest way to get Eqs.~12!–~15! from the
Lorentz case is to make the rotationy→ıy or x→ıx which transforms the Lorentz metri
ds25dy22dx2 into the negative and positive definite Riemannian metric correspondingly.
J. Math. Phys., Vol. 38, No. 2, February 1997
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So we reduced the Euler–Lagrange equations for zweibein and SO~2!-connection to the over-
determined system of two real and one complex equation for two real valued functionsf and
w. A general solution of these equations is given by the following theorem.

Theorem 2: Let D be an arbitrary connected two-dimensional domain on the complex p
z where f,w P C2(D) and one partial derivative fz or f z̄ either equals identically zero or every
where differs from zero. Then any solution of Eqs. (12)–(15) in D belongs to one of the tw
classes:

~i! f z50 or f z̄50,

f56AL, ~16!

e2w5
F8F̄8

~aFF̄1bF1b̄F̄1d!2
, ~17!

where two real constants a,d, and one complex constant b satisfy the condition

ad2bb̄57
AL

4
. ~18!

One must choose either upper or lower signs in Eqs. (16) and (18).
~ii ! f zÞ0 or f z̄Þ0,

f5u~F1F̄ !, ~19!

e2w5u8F8F̄8eu, u8.0, ~20!

whereu is the real valued one argument function defined by the ordinary differential equat

4u856@~u222u122L!eu1A#, A5const. ~21!

The6 sign in the Eq. (21) corresponds to negative and positive definite Riemannian metric
A is an arbitrary constant.

In both cases F(z) is an arbitrary holomorphic nonconstant function defined in some do
K, D#KùK̄. The first case exists only forL>0.

Proof: ~i! If f z50 or f z̄50, then f equals the constant~16! with arbitrary sign as the
consequence of Eq.~12!. Here,L must be non-negative. So requirementsf z50 and f z̄ are
equivalent. In this case Eqs.~14! and ~15! are satisfied, and Eq.~13! reduces to the Liouville
equation

24wz z̄7ALe2w50, ~22!

which has the well known general solution~17!.
~ii ! In the casef z Þ 0 or f z̄ Þ 0, Eq.~14! can be divided onf z and integrated to give

ln f z1 f22w1F̃~ z̄!50,

whereF̃( z̄) is an arbitrary antiholomorphic function. Introducing the new functionF( z̄) by the
differential equation

F8~ z̄!5eF̃~ z̄ !Þ0, ~23!

one obtains
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



asily

he
one

ount
must
Then
h lines
m.
orem 2

auge,
scalars.

951M. O. Katanaev: Euclidean two-dimensional gravity with torsion

¬¬¬¬¬¬¬¬¬¬
f zF8~ z̄!ef22w51, ~24!

and its complex conjugate

f z̄F8~z!ef22w51. ~25!

As a consequence of~24! and ~25! we get

f z
F8~z!

5
f z̄

F8~ z̄!
. ~26!

By definition ~23! the derivativeF8 Þ 0. So one can always go to new coordinates

z,z̄→F1F̄,F2F̄,

and Eq.~26! means that the solutionf depends only on one real coordinateF1F̄

f5u~F1F̄ !, ~27!

whereu is some real valued one argument function to be determined. Then, Eq.~24! yields Eq.
~20!. We see that the functionu must satisfy the requirement

u8.0,

in order for the conformal factor to be positive. Substitution of~27! and~20! into Eq. ~12! yields

24u96~u22L!euu850,

where the6 sign corresponds to negative and positive definite metric. This equation is e
integrated to give Eq.~21!, whereA is an arbitrary integration constant.

The next step is to show that Eq.~13! is satisfied. Differentiating Eq.~14! with respect toz̄,
excluding the mixed derivatives by means of Eq.~12!, and dividing the result byf z one obtains
Eq. ~13!. Here, we need the solutionf to be three times the differentiable function and t
derivative f z must differ from zero. The last requirement is satisfied by the assumption. The
argument functionu defined by Eq.~21! is clearly infinitely differentiable functionu P C`(D).
F(z) is an arbitrary holomorphic function in some domainK, D#KùK̄. So the third derivatives
exist. h

In the conditions of Theorem 2 we assume that in the domainD one of the partial derivatives
f z or f z̄ either identically equals zero or everywhere differs from zero. To take into acc
solutions for which a partial derivative equals zero in a single point or along some line one
divide this domain into smaller domains referring these points and lines to the boundary.
Theorem 2 yields a general solution inside the smaller domains. In the Lorentz case suc
really exist. They are the horizons, and the solution can be smoothly continued across the25 In
the Euclidean case the behavior of extremals and geodesics is quite different, and The
yields, in fact, maximally continued solution as we shall show later.

To get deeper insight in the solution of the Euler–Lagrange equations in the conformal g
let us compute the scalar curvature and the torsion squared term, which are space–time
Straightforward calculations show that

R57
b

g
u, TabcT

abc564
b

g
u8e2u, ~28!
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where signs7 and6 correspond to positive and negative definite metric. Remember that we
choose only those branches ofu which have positive derivativeu8 due to Eq.~20!. Thus the first
part of theorem 2 describes space–times of constant curvature and zero torsion, while the
part describes space–times of nonconstant curvature and nonzero torsion. In this way the
curvature completely defines the Riemann–Cartan geometry on a surface.

The value of the constant curvature is determined by the coupling constants in the Lagr

R057
b

g
AL572Al

g
, Tabc50. ~29!

We see that for a given signature of the metric the solution describes constant curvature s
of both signs.

IV. CONSTANT CURVATURE SURFACES

Due to Theorem 2 any surface with a given constant curvature metric and zero torsion m
an extremal surface to the action~3!. For given values of coupling constants in the Lagrangian,
nonzero constant curvature can be positive and negative. For each value of the curvature w
two choices for a metric. It may be either positive or negative definite. So the surfaces of co
positive and negative curvature and positive definite Euclidean metric are equivalent to surfa
constant negative and positive curvature and negative definite metric correspondingly, b
changing the sign of the metric results in changing the sign of the scalar curvature.

Let us compute the value of the action for constant curvature surfaces with positive de
metric. Substitution of the solution~29! into the action~3! yields

I 05E
M
d2je~ 1

4 gR0
21l!5 1

2 gR0
23~area!52pgR0x, ~30!

where we used the relation between the Euler numberx, the scalar curvature, and the area

4px~M !5E
M
d2jeR05R03~area!.

It is well known35 that any complete connected constant curvature surface with pos
definite Euclidean metric is globally isometric to one of the following surfaces

S2/G, where G,O~3!, if R.0,

R2/G, where G,E~2!, if R50,

H2/G, where G,O~2,1!, if R,0,

whereS2, R2, andH2 are two-dimensional sphere, plane, and hyperbolic plane, andG denotes a
transformation group which acts freely and properly discontinuous.O(3) andO(2,1) are the
orthogonal groups.E(2) is the semidirect product of rotationsO(2) and translationsR2. Analysis
of all possible transformation groupsG shows that there are only two positive curvature surfac
They are two-dimensional sphereS2 by itself, which is an orientable surface, and two-dimensio
nonorientable projective planeP2. It is clear that the integral~30! for the sphere is finite, and thu
it is the only orientable extremal surface of constant positive curvature and positive definite m
for two-dimensional gravity with torsion. The projective plane is a nonorientable surface, an
integral~30! is not defined. The problem admits also the same surfaces but with negative co
curvature and negative definite metric.
J. Math. Phys., Vol. 38, No. 2, February 1997
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For zero torsion and zero curvature surfaces the action equals identically zero. So we h
whole plane, cylinders, and toruses, as the only extremal surfaces. There is also complete
entable Mo¨bius strip with zero curvature metric and zero torsion.

For negative constant curvature and positive definite metric we have orientable hype
plane and compact connected Riemann surfaces without boundaries of genus greater or eq
g>2. For all compact surfaces and only for them the action is finite, and all of them are ext
surfaces of two-dimensional gravity with torsion. There are also compact nonorientable su
which are connected sums of projective planes.

All Riemannian surfaces discussed above are known to be complete surfaces. Thus w
the following theorem first proved in Ref. 36.

Theorem 3: All compact connected orientable Riemannian surfaces without boundary
with a given constant curvature metric and zero torsion are the only complete compact s
connected extremal surfaces of two-dimensional gravity with torsion.

In fact, we have proved that the Riemannian surfaces are extremal surfaces of
dimensional gravity with torsion. In the following sections we explicitly construct all other m
mally continued surfaces with nonconstant curvature and nonzero torsion. It turns out that al
compact solutions have conical singularities, and therefore the following construction com
the proof of the theorem that the compact Riemannian surfaces are theonly extremal surfaces o
two-dimensional gravity with torsion.

V. CONFORMAL INVARIANCE

It is well known that the conformal gauge for a metric fixes the isothermal coordinates
a conformal transformation

z→z8~z!,
dz8

dz
Þ0.

The conformal gauge for a zweibein also fixes the coordinate system up to a conformal tra
mation, but in this case it must be accompanied by the local SO~2!-rotation. This conformal
transformation was considered in detail in the Lorentz case.24 Therefore, we formulate here onl
the final theorem which may be proved directly.

Theorem 4: Equations (12)–(15) are covariant under the conformal transformation

z85z8~z!,
dz8

dz
Þ0,

~31!

w8~z8,z̄8!5w~z,z̄!1
1

2 S ln dzdz8 1 ln
dz̄

dz̄8
D , f 8~z8,z̄8!5 f ~z,z̄!.

Here,w8 and f 8 denote the transformed functions in the new coordinate system.
The remaining conformal symmetry may be used to simplify a general solution give

Theorem 2. Indeed, due to the conditionF8Þ0, it is always possible to choose a new coordin
systemz→F(z). Then a general solution given by the second part of Theorem 2 will depend
on x, u5u(2x). Of course due to the rotational symmetry in thex,y plane one could always go
to the other coordinate system where the solution would depend on the coordinate alon
direction in thex,y plane.

For F(z)5z the conformal factor~20! takes a simple form

e2w5u8eu, u8.0, ~32!
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which will be used in the following sections. So the explicit solution given by the second pa
Theorem 2 after fixing the conformal symmetry may be summarized as follows. First, one
solve Eq.~21! for both signs. Then for positive and negative definite metric one must s
branches with positive derivative. These branches yield the only dependence of the scalar
ture on thex coordinate. Equations~32! and ~11! yield the zweibein and theSO(2)-connection
satisfying the Euler–Lagrange equations of two-dimensional gravity with torsion.

Let us note the relation with the Lorentz case. We see that positive and negative d
metrics correspond to homogeneous and static Lorentz solutions after fixing the conf
invariance.24

The first order differential Eq.~21! defines the solution up to one integration constant co
sponding to the shift along thex axis. Qualitative behavior of solutions to Eq.~21! was analyzed
analytically and numerically for all values of constantsL andA,23 and we will not repeat this
analysis here. The solutionu has up to four branches. For the highest branch it is defined on
half plane, while for the other branches it is defined on the whole plane. Any branch is an infi
differentiable function. So after fixing the invariance completely,F(z)→z, the second part of
Theorem 2 yields an infinitely differentiable solution defined either on the half or on the w
plane.

VI. EXTREMALS

Solution of the Euler–Lagrange equations is a very important step in the analysis o
model, but it is not sufficient for the proper interpretation of gravity models, where the metr
itself arises as a solution of the Euler–Lagrange equations. In this section we analyze ext
for the surfaces equipped with the metric given by part~ii ! of Theorem 2. Extremalsza(t), where
t is the canonical parameter, are defined entirely by the metric. They satisfy the following s
of equations:

z tt
a52G̃bg

az t
bz t

g , ~33!

whereG̃bg
a are Christoffel’s symbols~the Levi-Civita connection! for a given metric~1!. Here the

index t denotes the derivative with respect to the canonical parameter. In the conformal gau~8!
these equations are equivalent to one complex equation or its complex conjugate

ztt522wzzt
2 , ~34!

z̄tt522w z̄ z̄ t
2 . ~35!

This system of ordinary nonlinear differential equations can be integrated explicitly.
Let us note that equations for extremals are invariant under the transform

gab→2gab , and thus its solution depends only on the conformal factor but not on the ass
tion of whether the metric is positive or negative definite. So both cases will be treated sim
neously.

Without loss of generality we may assume thatztÞ0, because otherwise the extremal will b
a point. This means that in the Euclidean case there is no analog to a null extremal for the L
signature metric.

Dividing Eqs.~34! and ~35! by zt and z̄t one gets

ztt
zt

1
z̄tt

z̄t
522

dw

dt
. ~36!

This equation can be integrated and we get one of the first integrals
J. Math. Phys., Vol. 38, No. 2, February 1997
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ztz̄t5Ce22w, C.0. ~37!

whereC is an arbitrary real positive constant. This first integral exists for an arbitrary confo
factorw, and does not depend on the Euler–Lagrange equations. From geometric point of v
means that the length of an extremal can be always chosen as the canonical parameter. Ind
length of an extremal equals to

ds256e2w dz dz̄56C dt2,

due to Eq.~37!.
It is not difficult to get another first integral using the explicit solution of the Euler–Lagra

equations. To this end we divide Eqs.~34! and ~35! by zt
2 and z̄ t

2 and use Eq.~32!,

ztt
zt
2 52

u9

u8
2u8, ~38!

z̄tt

z̄ t
2

52
u9

u8
2u8. ~39!

The difference of these equations yields another first integral

2
1

zt
1
1

z̄t
2

1

ıC1
50, C1Þ0, ~40!

whereC1 is an arbitrary real nonzero constant. Using the first integral~37! it can be rewritten in
the form

~zt2 z̄t!ıC15Ce22w.

So instead of one complex equation~34! we get two first integrals

xt
21yt

25Ce22w, ~41!

22ytC15Ce22w, ~42!

or

xt56
C

2C1
e22wAC2e

2w21, ~43!

yt52
C

2C1
e22w, ~44!

where

C25
4C1

2

C
.0. ~45!

Now we are able to analyze the behavior of extremals defined by Eqs.~43! and ~44!. Let us
call these lines general type extremals. Their form is defined by the equation
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



nity

ses cor-
at

o the

e

al

r their
hether
ctor

he

956 M. O. Katanaev: Euclidean two-dimensional gravity with torsion

¬¬¬¬¬¬¬¬¬¬
dy

dx
56

1

AC2e
2w21

56
1

AC2u8eu21
, ~46!

while the canonical parameter is defined by one of the equations~43! or ~44!. The only and
important difference of Eq.~46! from that in the Lorentz case is the minus sign before the u
under the square root.

We call these extremals general type extremals because there are also degenerate ca
responding tozt1 z̄t50 or zt2 z̄t50. Indeed, let the conformal factor have local extremum
some pointx1. That is,

wz~x1!5w z̄~x1!5w8~x1!50. ~47!

The right-hand side of Eqs.~34! and~35! equals zero at this point. In terms ofu Eq. ~47! for the
point x1 can be written in the form

w85
1

2 S u9

u8
1u8D50,

or

2~u22u112L!eu1A50, ~48!

whereu5u(2x1). This follows from the expression for the conformal factor~32! and the defining
equation foru ~21!. Then through this point goes a straight degenerate extremal parallel t
y axis

z~ t !5x11ıy~ t !, ~49!

where y(t) satisfies equationytt50 as the consequence of Eq.~34!. We see that degenerat
extremals have the form

z~ t !5x11ı~C3t1C4!,

whereC3 andC4 are arbitrary constants,C3 Þ 0. Making linear transformation of the canonic
parameter one gets

z~ t !5x11ıt. ~50!

These degenerate extremals are obviously always complete. The sufficient condition fo
existence is the existence of local extrema of the conformal factor, and it does not matter w
one has local minimum or maximum. In two-dimensional gravity with torsion the conformal fa
may have up to three local extrema.25

Besides degenerate extremals parallel to they axis, there are straight extremals parallel to t
x axis of the form

z~ t !5x~ t !1ıy0 , ~51!

which go through every pointy0. For these extremals Eq.~34! takes the form

xtt
xt
2 52

dw

dt
, ~52!

where we have only total derivatives. It can be easily integrated
J. Math. Phys., Vol. 38, No. 2, February 1997
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xt5C5e
2w, C5Þ0.

Rescaling the canonical parameter one finally gets

xt5
1

ew 5
1

Au8eu
. ~53!

This analysis exhausts all possible solutions to Eqs.~34! and~35! and thus proves the follow
ing theorem.

Theorem 5:On the surface equipped with the zweibein satisfying the Euler–Lagrange equa-
tions of two-dimensional gravity with torsion and corresponding to nonzero torsion any extr
in isothermal coordinates belongs to one of the following three classes.

~a! General type extremals are defined by Eq. (46), the canonical parameter being defin
Eq. (43) or (44).

~b! Straight degenerate extremals (50) parallel to the y axis and going through local ext
of the conformal factor (47) or (48).

~c! Straight extremals (53) parallel to the x axis and going through every point.
This theorem yields the form of all extremals for the surface. To proceed further let us

these extremals in two typical cases and then analyze their completeness. First we cons
caseL51, 0,A,2 f 1, where

2 f 152~A522!exp~~A521!/2!,

corresponding to the Penrose diagram ST12 for the Lorentz signature solution.25 In this case the
solution of Eq.~21! with the plus sign has only one branch defined on the half linex,0 and is
shown in Fig. 1. It has a positive derivative, and we must choose the plus sign in Eq.~21!. Thus
this branch defines the Euclidean solution with negative definite metric.u5u(2x) is a monotonic
function with singularity at the origin. For these values of the constants the qualitative behav
the conformal factor is shown in Fig. 2. It is defined on the half planex,0, is singular at
x50, goes to zero asx→2`, and has one local minimum and maximum.

The behavior of the conformal factor for the Euclidean and Lorentz case coincides, b
general type extremals are quit different due to the minus sign under the square root in~46!.

FIG. 1. Solution of Eq.~21! with the plus sign forL51, 0,A,2f 1. It has only one monotonic branch with singularity
the origin.
J. Math. Phys., Vol. 38, No. 2, February 1997
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General type extremals are parametrized by a constantC2. For any value ofC2 there exist one,
two, or three points where the square root is zero, and the tangent vector to the extremaldy/dx is
parallel to they axis. Solid horizontal lines in Fig. 2 show the range ofx where the expression
under the square root is positive for different values ofC2.0. It defines the domain in thex,y
plane where the general type extremal is defined for a givenC2. First, there are extremals whic
start and end at the singular linex50 and have one turning point where the square root is z
They are marked by the letterg in Fig. 2. Second, there are general type extremals denotedo
which oscillate around the maximum atx1 and have two turning points. Oscillating extremals ex
only for the finite range ofC2 defined by the constantsL andA.

Let us make a comparison with the Lorentz case.25 There is the plus sign under the squa
root, but the constantC2 may take both positive and negative values. Negative values oC2

describe timelike extremals, and for them the allowed region where the square root is positi
above the graph of the conformal factor in Fig. 2. In the Euclidean case the allowed regio
below the graph of the conformal factor.

Now we consider the behavior of general type extremals in detail. First, we prove tha
point x̃ at which the square root in Eq.~46! is zero,

C2e
2w~ x̃ !51,

is really a turning point. Indeed, this equation defines local extremum of the extremal given b
functionx5x(y). If w8( x̃) Þ 0, then near this point Eq.~43! for the canonical parameter takes th
form

dx

dt
;Aux2 x̃ u, ~54!

and the integral

t;E x̃ dx

Aux2 x̃ u

FIG. 2. The conformal factor forL51, 0,A,2 f 1. Degenerate extremals go through pointsx1 andx2 ~d!. General type
extremals either start and end at the singular linex50 ~g! or oscillate around the local maximumx2 ~o!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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converges. So the pointx̃ is reached at a finite value of the canonical parameter. At the same
near this point Eq.~44! takes the form

dy

dt
;const.

So near the turning pointt;y, and the turning point is reached at a finite value ofy. It is clear that
oscillating general type extremals are complete, because they make infinite number of
oscillations.

If the degenerate extremal goes also through the pointx̃, x̃ 5 x1, then in Eq.~43! the square
root is zero and in the neighborhood of this point we have

dx

dt
;ux2 x̃ un/2, n>2.

The integral

t;E x̃ dx

ux2 x̃ un/2

diverges. So the pointx̃5x1 is reached by these general type extremals at infinite value of
canonical parameter and at infinite value of the coordinatey because in this caset;y too. We see
that these extremals are complete at pointx̃5x1.

To finish the qualitative analysis of general type extremals, we must analyze their beh
near the singular linex50. Here, the tangent vector goes to zero,dy/dx→0, becauseu,u8, and
e2w→`. Near the singular point Eq.~43! takes the form

dx

dt
;e2w;~u8eu!21/2.

The integral of this equation

t;E0

dxAu8eu;E`

duAeu

u8
;E`du

u

diverges. So near the singular point the general type extremals are parallel to thex axis and
complete. The corresponding extremals are shown in Fig. 3.

For another typical example we setL51, A,22 and consider the lower branch of th
solution of Eq.~21!. In the Lorentz case it is described by the Penrose diagram HR3. Qualit
behavior of the solution of Eq.~21! with the plus sign is shown in Fig. 4. The lower branch h
negative derivative. So we must choose the minus sign in Eq.~21! corresponding to positive
definite Euclidean metric. Qualitative behavior of the conformal factor is shown in Fig. 5. I
one maximum and goes to zero asx→6`. The analysis of general type extremals coincides w
that in the previous case. It is clear that all general type extremals, are oscillating because
value ofC2 in ~46! there are two turning points. All typical extremals for this case are show
Fig. 6.

For some values of the cosmological constantL and the constant of integrationA instead of
one maximum in Fig. 5, the conformal factor has two maxima and one local minimum, c
sponding to Penrose diagrams HR6, HR9, or HR12 in Ref. 25. In this case we have three
erate extremals and three types of general type extremals oscillating around two maxima
qualitative behavior is clear, and we do not draw them explicitly. Completeness of all extrem
given by the following theorem.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Theorem 6: All general type and degenerate extremals are complete. Straight extre
parallel to the x axis are complete whenu→6AL,` or u→2`, A50. They are incomplete
whenu→B Þ6 AL or u→2`,AÞ0.

Proof: Completeness of all general type extremals was already proved. Completen
degenerate extremals follows immediately from~50!. To analyze completeness of straight extr
mals parallel to thex axis we must consider six different cases. Whenx→6`, u can have five
limits: B Þ 6AL,6ALÞ0, AL50, 2`, for different branches. The asymptotics foru→6AL
Þ 0 are similar for both signs and are considered as a single case. The last limitu→2` consists
of two different cases,AÞ0 andA50. The sixth case corresponds to the singular lineu→`,

FIG. 3. Extremals for the conformal factor shown in Fig. 2. There are oscillating general type extremals,~o!, nonoscillating
general type extremals,~g!, degenerate extremals,~d!, and straight extremals parallel to thex axis ~s!.

FIG. 4. Solution of Eq.~21! with the plus sign forL.1, A,22. It has two monotonic branches. The highest branch
singularity at the origin and goes toB asx→2`. The lower branch is defined on the whole line.
J. Math. Phys., Vol. 38, No. 2, February 1997
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x→0. Completeness of the straight extremals depends on the asymptotic behavior of the s
u analyzed in Ref. 25. Whenu→B Þ6 AL, then

u;B6eW8x, W85const,

x→2`~W8.0!, x→`~W8,0!.

For definiteness we consider the limitx→`. Equation for the canonical parameter~53! in this case
takes the form

FIG. 5. The conformal factor forL51, A,22. Degenerate extremal goes through maximum pointx3 ~d!. General type
extremals oscillate around the maximum of the conformal factor~o!.

FIG. 6. Extremals for the conformal factor shown in Fig. 5. There are only oscillating general type extrema~o!,
degenerate extremal~d!, and straight extremals parallel to thex axis ~s!. Nonoscillating general type extremals are abse
J. Math. Phys., Vol. 38, No. 2, February 1997
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dx

dt
;e~1/2! W8x,

and the integral

t;E`

dx e2 ~1/2! W8x

converges. So extremals are incomplete asu→B Þ6 AL.
Whenu→6AL, we have two different asymptotics forL.0 andL50. If L Þ 0 the asymp-

totic is

u;6AL7
1

ALe6ALx
, x→6`.

The equation for the canonical parameter now takes the form

dx

dt
;x,

and the integral

t;E`dx

x

diverges. This proves that in this case the straight extremals are complete.
If u→AL50, then

u;
1

A2x
, x→2`.

The equation for the canonical parameter takes the form

dx

dt
;~2x!3/4,

and the integral

t;E2` dx

~2x!3/4

diverges. We see that the extremals are complete.
For u→2` there are two cases with different asymptotics. IfA Þ 0, then

u;Ax,

and Eq.~53! for the canonical parameter can be written in the form

t;E2`

du eu/2.
J. Math. Phys., Vol. 38, No. 2, February 1997
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This integral converges, and the extremals are incomplete. IfA50, then in the limitu→2`
Eq. ~21! takes the form

u8;u2eu. ~55!

The canonical parameter in this case is defined by the integral

t;E2`

duAeu

u8
;E2`du

u
.

It diverges, and the extremals are complete.
Near the singular line,x50, equation foru has the form~55!. The canonical parameter nea

the singular line is defined by the divergent integral

t;E`

duAeu

u8
;E`du

u
.

So straight extremals near the singular linex50 are complete. h

We proved that extremals are incomplete only in two cases. First, they are incomple
those branches ofu which tend toB Þ6 AL at infinities,x→6`. In Sec. VIII we shall show how
they must be continued. In the second case of incomplete straight extremals,u→2`, AÞ0,
x→6` the extremals cannot be continued because there the scalar curvature and tors
singular. This singularity located at a finite distance corresponds to black or white hole singu
for the Lorentz signature metric.

VII. GEODESICS

The analysis of geodesics on a surface equipped with the zweibein and SO~2!-connection of
two-dimensional gravity with torsion corresponding to nonzero torsion follows closely to tha
extremals. Geodesics are defined entirely by the metrical connection and satisfy the foll
system of equations:

z tt
a52Gbg

az t
bz t

g , ~56!

whereGbg
a is the metrical connection constructed from zweibein and SO~2!-connection using the

metricity condition~2!. The canonical parameter is also denoted byt.
In the conformal gauge~8! these equations are equivalent to one complex equation o

complex conjugate

ztt522wzzt
21uzzt

22u z̄ z̄tzt , ~57!

z̄tt522w z̄ z̄t
21u z̄ z̄t

22uzztz̄t . ~58!

These equations can be integrated in the same way like the equations for extremals~34! and
~35!.

Without loss of generality we assume thatztÞ0, because otherwise the geodesic will be
point. So in the Euclidean case there is no analog to the null geodesic.

Dividing Eqs. ~57! and ~58! by zt and z̄t one gets the same equation~36! as in the case of
extremals. Thus we have the same first integral~37! for general type geodesics. It means that
length of a geodesic can be always chosen as the canonical parameter. One can easily s
this is a general property of geodesics in Riemann–Cartan geometry which does not depe
specific model.

To get another first integral we divide Eqs.~57! and~58! by zt
2 andz̄ t

2 and take the difference
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



the

sics

sics

964 M. O. Katanaev: Euclidean two-dimensional gravity with torsion

¬¬¬¬¬¬¬¬¬¬
ztt
zt
2 2

z̄tt

z̄ t
2

5u8
~zt1 z̄t!~zt2 z̄t!

ztz̄t
, ~59!

or

2
ztt
zt

2
z̄tt

z̄t
1
ztt2 z̄tt
zt2 z̄t

5u8~zt1 z̄t!5
du

dt
~60!

where we assumed thatzt2 z̄tÞ0. The integral of this equation has the form

2
1

zt
1
1

z̄t
2

1

ıC1e
2u 50,

whereC1 is an arbitrary real nonzero constant. It differs from the integral~40! for extremals only
by the factore2u in the third term. We see that one can use all formulas for extremals with
replacement

C1→C1e
2u, C2→C2e

22u,

where the constantC2 is defined by Eq.~45!.
In this way instead of~43! and~44! we get the parametric equations for general type geode

xt56
C

2C1
e22w1uAC2e

2w22u21, ~61!

yt52
C

2C1
e22w1u, ~62!

and the first order differential equation for the form of the geodesic

dy

dx
56

1

AC2e
2w22u21

56
1

AC2u8e2u21
, ~63!

where we used the relation between the conformal factor and the scalar curvature~32!.
Let us consider degenerate cases. Ifzt1 z̄t50, then there are straight degenerate geode

parallel to they axis and going through those pointsx0 where the torsion squared term~28! or the
function

u8e2u ~64!

has local extrema. Indeed, Eq.~57! for straight geodesics of the form~49! reduces to

ıytt52~w82u8!yt
2 . ~65!

So without loss of generality we may consider degenerate geodesics of the form~50! where the
point x1 is defined by the equation

u92u8250,

or

2~u21!eu2A50.
J. Math. Phys., Vol. 38, No. 2, February 1997
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One can easily check that these equations define local extrema of the functionu8e2u entering Eq.
~63!. All degenerate geodesics are complete because they differ from degenerate extrema~50!
only by the value ofx1.

Besides degenerate geodesics parallel to they axis, there are straight geodesics parallel to
x axis of the form~51! which go through every pointy. For these geodesics Eq.~34! coincides
with Eq. ~52!. Thus straight geodesics parallel to thex axis coincide with the straight extremal

Theorem 7:On the surface equipped with the zweibein andSO~2! connection satisfying the
Euler–Lagrange equations of two-dimensional gravity with torsion and corresponding to non
torsion any geodesic in isothermal coordinates belongs to one of the following three class.

~a! General type geodesics are defined by Eq. (63), the canonical parameter being defi
Eq. (61) or (62).

~b! Straight degenerate geodesics (50) parallel to the y axis and going through local ext
of the function (64).

~c! Straight geodesics (53) parallel to the x axis and going through every point.
This theorem yields the form of all geodesics for the surface. To proceed further, let us

geodesics in two particular cases covering essential properties and then analyze their co
ness. First we consider the caseL51, 0,A,2 f 1 corresponding to the Penrose diagram ST
for the Lorentz signature solution.25 We have already drawn all typical extremals for these val
of the constants in Fig. 3. The qualitative behavior of the torsion squared term is shown in F
In fact, here we have drown the behavior of the minus torsion squared term because the
branch corresponds to the negative definite metric@see Eq.~28!#. It is defined on the half plane
x,0, is singular atx50, goes to infinity asx→2`, and has one minimum atx1.

The behavior of the torsion squared term for the Euclidean and the Lorentz case coincid
the general type geodesics are quite different due to the minus sign under the square root~63!.
For some values ofC2 there exist one or two points where the square root is zero, and the ta
vector to the extremaldy/dx is parallel to they axis. Solid horizontal lines in Fig. 7 show th
range ofx where the expression under the square root is positive for different values ofC2.0. It
defines the domain in thex,y plane where the general type geodesic is defined. In contra
general type extremals for these values of the constants, there are no oscillating gener
geodesics. They start and end either at the singular linex50 or at infinityx52`. Some of them
have one turning point where the square root is zero.

FIG. 7. The torsion squared term forL51, 0,A,2 f 1. Degenerate geodesic goes through the pointx1 ~d!. General type
geodesics start and end either at the singular linex50 or at the infinityx52` ~g!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Let us analyze the behavior of general type geodesics in detail. First, we prove that the
x̃ at which the square root in~63! is zero,

C2e
2w~ x̃ !22u~ x̃ !51,

is really a turning point. Indeed, this equation defines local extremum of the functionx5x(y). If
w8( x̃)2u( x̃) Þ 0, then near this point Eq.~61! for the canonical parameter has the same form~54!
as for a general type extremal. This proves that near this point qualitative behavior of extr
and geodesics is the same.

If through the pointx̃ goes the degenerate geodesic,x̃5x1, and the square root in~63! is zero,
then the analysis repeats that for the extremals. Thus the pointx̃5x1 is complete. Near the
singular linex50 the tangent vector goes to zero,dy/dx→0, because the function~64! has the
asymptotic

u8e2u;u2→`

and goes to infinity. Here Eq.~43! coincides with the equation for general type extremals

dx

dt
;A C2

u8eu,

and the geodesics are complete.
To complete the analysis of general type geodesics we must analyze their behavior

regionu→2`. Here is the essential difference between general type extremals and geodes
general type extremal reaches this infinity because it must have a finite turning point for any
of C2. In contrast, general type geodesics can reach this infinity. Here we must distin
between two cases,A Þ 0 andA50. In the example considered aboveA.0 ~see Fig. 7!, but the
analysis is also valid forA,0. If A Þ 0, then

xt→6
C

2C1A
AC2Ae

2 ~A/2! x→6`, ~66!

yt→2
C

2C1A
→const. ~67!

As x→2` the tangent vector to the geodesic obviously goes to zero,

dy

dx
→0.

Equation~66! yields the asymptotic behavior of the canonical parameter. The integral

t;E2`

dx e~A/2! x

is convergent, and the geodesics are incomplete. Equation~67! shows that in this regiony;t. It
means that a general type geodesic has an asymptotic parallel to thex axis because the infinity
x→2` is reached at finitet and therefore at finite value ofy.

The caseA50 is different. In the regionu→2` Eqs.~61! and ~62! take the form

xt;
1

Au8eu
;

1

ueu→`, ~68!
J. Math. Phys., Vol. 38, No. 2, February 1997
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yt;
1

u8
;

1

u2eu→`. ~69!

At the same time the tangent vector goes to zero

dy

dx
;
1

u
→0,

and the integral

t;E2`du

u

diverges. So the general type extremals are complete and have no asymptotics because
valuex→2` is reached at infinite value ofy as shows the following simple asymptotic:

y;E` dt

u2eu ;E2` du

u3eu .

This completes the qualitative analysis of general type geodesics at the infinityu→2`.
All types of geodesics for the example shown in Fig. 7 are drawn in Fig. 8. There a

oscillating general type geodesics. Nonoscillating general type geodesics, start and
x→2` or x50. The degenerate geodesic goes through the pointx where the torsion square
term has minimum. There is also the infinite number of straight geodesics parallel to thex axis and
going through every pointy.

To finish the qualitative analysis of geodesics we consider the lower branch of the solut
Eq. ~21! corresponding toL51, A,22 ~see Fig. 4!. For this choice of constants the behavior
the conformal factor and typical extremals are shown in Figs. 5 and 6. Qualitative behavior
torsion squared term is shown in Fig. 9.

FIG. 8. Geodesics for the torsion squared term shown in Fig. 7. There are nonoscillating general type geode~g!,
degenerate geodesics~d!, and straight geodesics parallel to thex axis ~s!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The torsion squared term has no local extremum. Therefore, there are no degenerate ge
and oscillating general type geodesics. All general type geodesics start and end at
u→2`, x→`, where they have asymptotics parallel to thex axis. In contrast to the previou
case, the infinityu→2` is reached at the right because the constantA is negative. At this infinity
they are incomplete. There are also straight geodesics parallel to thex axis. Geodesics for this cas
are shown in Fig. 10.

For some values of the cosmological constantL and the constant of integrationA torsion
squared term for the lowest branch of the solutionu may have local maximum and minimum. Fo
example, see Penrose diagrams HR10–12 in Ref. 25. In this case besides geodesics show
10 we have two degenerate extremals and general type geodesics oscillating around loca
mum of torsion squared term. Their behavior is clear, and we have the following theorem.

Theorem 8: All general type geodesics are complete except those going to the in
u→2` for A Þ 0.All degenerate geodesics are complete. Straight geodesics parallel to the

FIG. 9. The torsion squared term for the lower branch in the caseL51, A,22. It has no local extremum.

FIG. 10. Geodesics for the torsion squared term shown in Fig. 9. All general type geodesics start and end at the
x→` whereu→2` ~g!. They are incomplete and have asymptotics parallel to thex axis. Through every pointy goes also
a straight geodesic parallel to thex axis ~s!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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are complete whenu→6AL, ` or u→2`, A50.They are incomplete whenu→B Þ A6L or
u→2`, AÞ0.

So geodesics are incomplete only in three cases. Two cases consist of straight ge
parallel tox axis whenu→B Þ AL or u→2`, A Þ 0. The third case corresponds to general ty
geodesics going to the infinityu→2`, A Þ 0. This infinity is already incomplete due to th
straight geodesics, but there are no general type extremals going there. This is the only qua
difference between extremals and geodesics.

Let us briefly compare extremals and geodesics in the Euclidean and the Lorentz
Straight extremals and geodesics parallel to thex axis and degenerate ones exist in both cases
their behavior is the same. For negative definite metric they correspond to straight extrem
homogeneous Lorentz solution, and the whole picture must be turned to the right angle
extremals and geodesics in the Euclidean case are absent. Behavior of general type extrem
geodesics is quite different in Lorentz and Euclidean cases.

VIII. CONTINUATION OF EXTREMALS AND GEODESICS

Analysis of extremals and geodesics in the last two sections shows that solutions with no
torsion are incomplete only in two limits

x→6`, u→BÞ6AL

and

x→6`, u→2`, AÞ0.

In the first limit extremals and geodesics must be continued while in the second limit no co
ation is necessary because scalar curvature and torsion become singular.

The limit u→B Þ6 AL is reached only by coinciding straight extremals and geodesics
allel to thex axis. For definiteness let us consider the highest branch ofu for L.1, A,22. The
solution of Eq.~21! for these values of the constants was shown in Fig. 4. This choice o
constants corresponds to a black hole solution in the Lorentz case, the highest branch
represented by Penrose diagram ST1. In this case qualitative behavior of the conformal fac
torsion squared term is the same and is shown in Fig. 11. The absence of local extremum
that there is no degenerate extremal or geodesic. General type extremals and geodesics d
their qualitative behavior is the same as shown in Fig. 12. For this choice of the constant
straight extremals

FIG. 11. Qualitative behavior of the conformal factor and torsion squared term for the highest branch ofu shown in Fig.
4. Both functions have no local extremum, are singular at the origin, and go to zero asx→2`.
J. Math. Phys., Vol. 38, No. 2, February 1997
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are incomplete asx→2`. Let us note that all geometric quantities defined by the func
u→B are finite in this limit. Therefore, according to the requirement of maximal continuation
extremals and geodesics must be continued.

On the half planex<0 where the solution is defined we have two smooth geometric st
tures: metric and connection. If possible, they must be continued smoothly. First we look
metric. The solution does not depend ony, and we can always identify pointsy andy1L. This
identification makes the half cylinder with the circumferenceL ~measured with the flat Euclidea
metric in the coordinatesx,y) from the half planex<0 and obviously preserves infinite differen
tiability of all geometric quantities including smoothness of extremals and geodesics. In thi
one gets a half cylinder in thex,y coordinates. Let us analyze this surface in terms of the inte
geometry defined by the zweibein and SO~2!-connection found as the solution of the Eule
Lagrange equations.

The circumference of the cylinder atx50 is infinite when measured with the metric~1!
because the conformal factor diverges here~see Fig. 11!. Analysis of extremals and geodesics
the previous sections shows that this singular boundary is complete and lies, in fact, at i
when measured in terms of the internal metric.

On the other side of the cylinder,x→2`, the circumference tends to zero because so does
conformal factor. It means that the other side of the cylinder is, in fact, a point. It lies at a
distance because all extremals and geodesics are incomplete asx→2`. So in terms of the interna
metric we do not have a half cylinder but a surface similar to one sheet hyperboloid shown i
13. Soon we shall show that at the vertexx→2` the surface for most values ofL has a conical
singularity. At the moment the important fact is that this is a single point, and straight extre
and geodesics must be continued in the way shown in Fig. 14. So two straight extrem
geodesics going through pointsy andy1L/2 are two halves of one complete extremal starting a
ending atx50.

Let us check the smoothness of the SO~2!-connection near the vertexu→B. Using relations
~11! and ~32! in the original dimensionlessx,y coordinates one gets

FIG. 12. Behavior of extremals and geodesics for the highest branch ofu shown in Fig. 4. All general type extremals an
geodesics start and end at the singularityu(0)5`. Straight extremals start at the singularity and end
u(x→2`)→B. All extremals and geodesics are incomplete at the left,x→2`, and complete at the originx50.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ba5eab]b~w2u!5ea1
u92u82

u8
,

because in our case all functions depend only onx. This formula allows one to compute the lim
of the connection on the vertex

Bx50, By5
1
4 ~B21L!eB.

Let us consider the parallel displacement of an arbitrary SO~2! vectorVa along a small circle with
the center at the vertex. In thex,y coordinates it is a straight vertical segment2L/2<y<L/2. The
infinitesimal change of the vector has the form

dVa52dza BaeabV
b52dv eabV

b,

wheredv is the rotation angle. In the limitx→2` one gets the total deficit angle

FIG. 13. The half cylinderx<0, y5y1L ~a! from the point of view of internal geometry~b!. The boundaryx50 has
infinite circumference and is located at infinite distance when measured with the internal metric. The boundaryx→2` has
zero circumference and lies at finite distance. In general, the surface has here a conical singularity.

FIG. 14. The continuation of the straight extremals and geodesics on the half cylinderx<0, y5y1L. Two straight lines
going through pointsy andy1L/2 are two halves of one complete extremal or geodesic.
J. Math. Phys., Vol. 38, No. 2, February 1997
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nv5E
L/2

L/2

dv5
L

4
~B21L!eB. ~70!

We see that in general the surface has a conical singularity at the vertex. Only when the
angle equals 2p or when the parameter

L5
8p

~B21L!eB
~71!

the surface has no singularity. In this case we have an infinitely smooth surface with infi
smooth zweibein and SO~2!-connection satisfying the Euler–Lagrange equations of tw
dimensional gravity with torsion. Topologically it is a plane. The infinite smoothness of
solution near the vertex was proved in Ref. 38 by the explicit construction in the parti
coordinate system defined by the torsion components.

To construct the complete solution we made an identificationy5y1L, whereas the origina
solution was defined on the whole half plane. It is clear that the half plane by itself is the univ
covering space for the surface shown in Fig. 13 with the vertex removed.

Let us discuss the uniqueness of the continuation of extremals and geodesics. In th
u→B the conformal factor~for any branch ofu and for any valueB includingB56AL) tends
to zero. Therefore, the length of the straight segment2L/2,y,L/2 tends to zero asx→2` for
any finite constantL. To get the whole half plane we must consider the limitL→`. First, we note
that L cannot depend onx because geometric quantities will not be smooth. Indeed, the s
curvature by itself will be a smooth function but its gradient will not. So to define the limit
postulate that the length of the vertical segment2L/2<y<L/2 tends to zero whenu→B,
L→`. In other words, the left boundary of a half plane is assumed to be a point in terms o
internal geometry. It is clear that in this case the considered continuation of extremals an
desics is unique.

In the example considered above the identification yields a noncompact surface. For
values of the constantsL and A we may obtain compact complete surfaces correspondin
bounded middle branches ofu defined on the whole line. These branches are monotonic and
finite limits asx→6`. Let us denote them byB1 andB2. The corresponding solutions are defin
on the whole plane. IfB1,2 Þ 6AL then as in the previous example we identify the linesy and
y1L making a cylinder inx,y coordinates, Fig. 15~a!. In terms of the metric of two-dimensiona
gravity with torsion the infinite boundaries of the cylinder lie at finite distance and have
length. Therefore they may be naturally added to the surface. In this way we get a compact s

FIG. 15. The cylinder corresponding to a bounded middle branch ofu in x,y coordinates~a!. The same surface from the
point of view of internal geometry~b!. In general, it is a compact complete surface with two conical singularities.
J. Math. Phys., Vol. 38, No. 2, February 1997
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having, in general, two conical singularities, Fig. 15~b!. Adjusting the parameterL according to
Eq. ~71! one can always get rid of one conical singularity but not both because the valuesB1 and
B2 are always different.

We see that part~ii ! of Theorem 2 yields, in fact, a maximally continued solution in t
Euclidean case when the extremals and geodesics are identified at the point whereu→B
Þ6 AL. It is easy to show that the only transformation group acting freely and properly dis
tinuous is the translation on an arbitrary nonzero vectorL along they axis. Indeed, the transfor
mation group must preserve the scalar curvature oru(x) which is a monotonic function along th
x direction and does not depend ony. Therefore, the identification can be made only along
y axis. It is well known that the only transformation group acting freely and properly discon
ous on a line is the translation on some nonzero vectorL. The vectorL cannot depend onx
because then the gradient of the scalar curvature will be a discontinuous function. Thus par~ii ! of
Theorem 2 explicitly describes all universal covering spaces while the identification disc
above yields all possible quotient surfaces.

Note that there is no way to get a nonorientable surface because we cannot identify
with differentx. For example, the identification of the linesy andy1L in the opposite directions
like in construction of the Mo¨bius strip results in a discontinuous scalar curvature.

If u→B56AL for some branch ofu, then no continuation is necessary because extrem
and geodesics are complete. For definiteness let us consider the branch2AL,u,` correspond-
ing to the Penrose diagram ST2. In the Euclidean case the surface is noncompact. Mak
identificationy;y1L one gets the surface shown in Fig. 16. Here, the vertexu52AL lies at
infinity because this point is complete, and the circumference tends to zero because the co
factor does the same. The singularityu→` lies at the infinite distance. The total Penrose diagr
is the universal covering space for this surface. Qualitative behavior of the surface in the
u→AL50 is the same.

IX. CLASSIFICATION OF SURFACES WITH CURVATURE AND TORSION

The continuation of the solution described in the previous section is relevant to any bran
u having the limitsu→B Þ6 AL asx→6`. So the classification of all maximally continue
surfaces reduces to the classification of branches of the solution of Eq.~21! for all values ofL and
A. In fact, the classification given in Ref. 25 is more subtle taking into account the existenc
the number of degenerate extremals and geodesics. In the Lorentz case we have 30 t
Penrose diagrams for different values ofL and A. There are 12 triangle ST1–12, 6 rhomb
SR1–6 diagrams corresponding to static solutions, and 12 rhombus diagrams HR1–12
sponding to homogeneous solutions. The letters S,H,T, and R in the names of Penrose d
come from the words static, homogeneous, triangle, and rhombus. Each Penrose diagram
sponds to a definite branch ofu and has the unique combination of degenerate extremals
geodesics. In the Euclidean case each Penrose diagram by itself corresponds to the ma
continued universal covering space of two-dimensional gravity with torsion. So the list of Pe

FIG. 16. A noncompact complete surface with the vertexu→2AL placed at infinity.
J. Math. Phys., Vol. 38, No. 2, February 1997
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diagrams classifies all possible universal covering spaces while all other surfaces may be o
by the identificationy andy1L for some constantL defining conical singularities.

Triangle and rhombus Penrose diagrams ST1–12 and SR1–6 describe Euclidean so
with negative definite metric. Rhombus Penrose diagrams HR1–12 describe Euclidean so
with positive definite metric.

So in the Euclidean case we have 30 types of universal covering spaces for each P
diagram. In Figs. 17–19 we draw the corresponding factor spaces for visualization. Here, we

FIG. 17. Twelve surfaces corresponding to static triangle Penrose diagrams ST1–12.
J. Math. Phys., Vol. 38, No. 2, February 1997
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the limiting values ofu, degenerate extremals and geodesics. The latter are marked by two st
Remember that for some value ofL ~71! conical singularity located at one of the poin
B,B1 ,B2 ,B3 may disappear. Each surface corresponds to some interval of the constantsL and
A listed in Table 2 of Ref. 25. For different sets ofL andA there is no diffeomorphism preservin
the zweibein and SO~2!-connection even between the surfaces of the same type. Some o
surfaces differ by topology. For the same topology they differ by the number of degen
extremals and geodesics.

We summarize basic properties of Euclidean global solutions in Table I. The numb
conical singularities may differ from its maximum by unity. This list exhausts all maxim
continued surfaces with zweibein and SO~2!-connection satisfying the Euler–Lagrange equatio
of two-dimensional gravity with torsion. We see that there are only two compact surfaces SR
HR1. Each of them has one or two conical singularities depending on the value ofL. So in the
case of nonzero torsion there is no complete compact smooth surface, and one gets Theor
the calorrary of the classification.

X. THE AREA AND THE VALUE OF THE ACTION

Let us compute the areaS of the surface assuming finiteness in they direction,
2L/2<y<L/2. Using the form of the conformal factor~32! and Eqs.~7! one obtains

S5E
M
d2ze5

2gL

b E
2`

~0 or `!

dx u8eu5
gL

b E
u1

u2
du eu5

gL

b
~eu22eu1!, ~72!

whereu1 and u2 are two limiting values of the solutionu5u(2x). Here,u2.u1 because we
choose the branches with positive derivativeu8.0. We see that the area of the surface diver
only whenu251`. ~Penrose diagrams ST1–12.! All other surfaces have finite areas. For e
ample, the area of the compact surface SR1 is equal to

FIG. 18. Six surfaces corresponding to static rhombus Penrose diagrams SR1–6.
J. Math. Phys., Vol. 38, No. 2, February 1997
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SSR15
gL

b
~eB22eB1!.

Note that even noncompact surfaces of the type SR and HR have finite areas.
In the same way one may compute the value of the action~3! for the surfaces with nontrivia

torsion. Using formulas~28! and ~32! one obtains

FIG. 19. Twelve surfaces corresponding to homogeneous rhombus Penrose diagrams HR1–12.
J. Math. Phys., Vol. 38, No. 2, February 1997
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I5
2gL

b E
2`

~0 or1`!

dx u8euS b2

4g
u26

b2

g
u8e2u1l D5

bL

4 E
u1

u2
du eu~u264u8e2u1L!

5
bL

4
~2ueu24eu12Leu2Au!uu1

u2,

~73!

where Eq. ~21! is used. The lower and upper limits of integration may be equal
u152`,B,B1 ,B2 ,B3 andu25B,B1 ,B2 ,B3 ,1`. The action is clearly finite for finite values o
u1,2. At u251` the action diverges for all values ofL andA. At u152` the action converges
for A50 and diverges forA Þ 0.

According to~73! the action is finite only for the surfaces SR1–3, SR5, HR1,2. Only in
last two cases is the metric and the action positive definite. For the surfaces SR the me
negative definite and the value of the action may be negative. Thus we have two extremal s
with nontrivial torsion. The surface HR1 is compact and has at least one conical singularity
surface HR2 is noncompact and may be smooth depending on the value ofL. Although the
surfaces with torsion are either noncompact or have conical singularities they are by themse
great physical interest.

XI. BLACK HOLES AND CHANGING TOPOLOGY OF SPACE IN TIME

Two-dimensional gravity with torsion for Lorentz signature metric has global solution
scribing a pair of black and white holes similar to the Kruskal extension of the Schwarzs
solution in four dimensions. Another interesting example describes changing topology of sp
time. In the present section we discuss the Euclidean version of these solutions having
surprising and unexpected features.

In the Lorentz case the black hole solution appears, for example, forL,0 andA,0 as a
unique maximally continued solution. It is described by four Penrose diagrams smoothly
together as shown in Fig. 20~a!. Here, hollow and filled circles denote incomplete and comp
points, respectively. The left and right universes are the two triangle Penrose diagrams
Interiors of black and white holes are described by two rhombus Penrose diagrams HR3.
diagrams are glued together along the horizons denoted by the dashed lines. The value ofu at the
horizons equalsB.

The same Euler–Lagrange equations for the Euclidean signature metric have com
different global solutions. First of all one smooth maximally continued surface with the Lor
signature metric breaks into four disjoint surfaces. The breaking occurs along the horizons
that horizons in the Lorentz case are null lines of zero length. In the Euclidean case ho
become points and also have zero length. Each of the Penrose diagrams becomes the u
covering space for one of the surfaces shown in Fig. 20~b!. For visualization we draw the surface
after the identificationy;y1L whereL satisfies Eq.~71! and the conical singularity is absent.
is interesting that the left and right universes correspond to the solutions with negative d
Euclidean metric while the interiors of black and white holes correspond to the positive de
metric.

TABLE I. Properties of global Euclidean solutions.

ST1,3–6 ST2,7,9,11 ST8,10,11
Penrose diagrams SR2,3 SR5 SR6 SR1 SR4

HR2 HR4 HR1 HR3,5–12
Completeness 1 1 2 1 2

Compactness 2 2 2 1 2

Max number of
conical singularities 1 0 0 2 1
J. Math. Phys., Vol. 38, No. 2, February 1997
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It is a common belief that the Euclidean solution may be obtained from the Lorentz one b
Wick rotation of the time coordinatet→ıt. In this way one gets the solution with the Euclide
negative definite metric. But there is another way to get the nonequivalent Euclidean solutio
positive definite metric by making the complex rotation of all space coordinatess→ıs for the
same Lorentz solution. This transformation is not equivalent to the Wick rotation of time co
nate if the action is not invariant under the inversion of the metricgab→2gab . Thus one
maximally continued Lorentz solution gives rise to two nonequivalent Euclidean solutions c
sponding to positive and negative definite metric.

There is another interesting consequence. Two-dimensional gravity with torsion demon
large variety of noncompact Euclidean solutions most of them having conical singularities
considered example shows that one will hardly take into account a black hole solution consi
Euclidean solutions defined only on smooth compact surfaces.

Let us consider another physically interesting Lorentz solution and its Euclidean version
L50 andA522 the unique maximally continued solution for the Lorentz signature metri
shown in Fig. 21~a!. In contrast to the black hole solution the central saddle point, whereu50, is
complete. So the central point must be excluded from the space–time, and making cont
spacelike slices one sees that there is a ‘‘moment’’ when the space is represented by two
nected infinite lines instead of one. The corresponding Euclidean solution consists of four d
nected maximally continued surfaces shown in Fig. 21~b! with positive and negative definite
metrics. All surfaces are noncompact. In contrast to the black hole solution, the Euclidean s
is also noncompact at the point whereu→0.

XII. CONCLUSION

In this paper we elucidated global solutions, extremals, and geodesics of the Euclidea
dimensional gravity with torsion. We have explicitly constructed and classified all maxim
continued surfaces with smooth zweibein and SO~2!-connection satisfying the Euler–Lagrang
equations for the Euclidean signature metric. The classification turns out to be essentially th
as in the Lorentz case and includes compact and noncompact surfaces with and without

FIG. 20. The black hole solution in the Lorentz~a! and the Euclidean case~b!. One smooth connected surface in th
Lorentz case is represented by four disconnected surfaces in the Euclidean case. The value ofL is chosen in such a way
that conical singularities are absent.
J. Math. Phys., Vol. 38, No. 2, February 1997
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singularities. In the Lorentz case one maximally continued solution is represented by a num
Penrose diagrams glued smoothly together. The corresponding maximally continued Euc
solution is given by a number of disconnected surfaces with positive and negative definite E
ean metric, each Penrose diagram representing one maximally continued surface. This see
a general property. Indeed, one global Lorentz solutions contains, in general, a number o
zons. Crossing the horizon the Lorentz interval changes its sign. In the Euclidean version ch
the sign means that metric must be positive and negative definite on different sides of the ho
If metric is nondegenerate then the Euclidean solution must be given by a number of discon
manifolds with positive and negative definite metric.

The necessity to consider both negative and positive definite metric in the Euclidean
follows from the fact that the Euler–Lagrange equations are not invariant under the transform
gab→2gab , and thus the corresponding solutions are nonequivalent. For instance, the La
ian for Yang–Mills fields interacting with scalars is not invariant under this transformation
even in this simple situation one must consider both positive and negative metric, for exam
the Euclidean path integral. Following these lines of thought one faces the problem. If the
is positive definite for positive definite metric then positive definiteness will be lost for neg
definite metric.
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The universal anomalies and condition for anomaly-free
high-order Virasoro algebra

Chao-zheng Zha and Wei-zhong Zhao
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We construct the anomalous Ward identity for high-order Virasoro gravity and give
the general calculation to obtain the anomaly-free condition. ©1997 American
Institute of Physics.@S0022-2488~97!01202-4#

I. INTRODUCTION

W-gravity is a higher-spin generalization of gravity and is the gauge theory of localW-algebra
symmetries. It is known that there are two categories of anomalies for the two-dimen
W-gravity, i.e., universal anomalies and matter-dependent anomalies.1,2 UniversalW-gravity
anomalies depend only on the gauge fields and not on the matter fields. Those anomalies
all the theories of matter coupled toW-gravity. In fact, the universal anomalies are closely rela
to the central charge of theW` algebra. The matter-dependent anomalies arise from diagrams
external matter fields. Those anomalies generally arise in theories with nonlinearly re
W-symmetries.W` gravity that is a linear realization is discussed in Ref. 3. So there are
universal anomalies. In order to obtain a reasonable theory ofW` gravity, the universal anomalie
can be simply cancelled against contributions from theW` ghosts that arise when integrating ov
theW` gauge fields. ForW` algebra, the condition for anomaly-free was given in Refs. 4 an
In order to calculate the anomaly-free condition for the central charge the BRST currentj (z) was
constructed in these papers. Then the integralQ5(1)/(2p i )*dz j(z) is the BRST charge. In
terms of nilpotency for the BRST chargeQ and generalized Riemann zeta function regularizati
the condition for anomaly-freeW` is given, i.e.,c522. Because the structure ofW` algebra is
more complex, these papers did not give the general calculation. The nilpotency condition
W` algebra were calculated only for the first three orders, i.e., fors52,3,4.5 In Ref. 4, the
regularized anomalies had been calculated up to the spin-18 level by using the alge
computing techniques.

Recently, high-order Virasoro gravity was constructed.6 Because the form of the high-orde
Virasoro is simpler than that ofW` algebra, it is much more convenient in discussing anoma
In this paper, we will construct the anomalous Ward identity for high-order Virasoro gravity
give the general calculation to obtain the condition for anomaly-free high-order Virasoro alg

II. THE UNIVERSAL ANOMALIES

W` algebra is proposed as follows:7

@Vm
i ,Vn

j #5 f 0
i j ~m,n!Vm1n

i1 j211q2f 2
i j ~m,n!Vm1n

i1 j231q4f 4
i j ~m,n!Vm1n

i1 j25

1•••q2sf 2s
i j ~m,n!Vm1n

i1 j22s211q2icim
2i11d i jdm1n,0 , ~1!

where the conformal spin indexi of the generatorVm
i is equal to conformal spin minus 1. Th

a!Mailing address.
0022-2488/97/38(2)/981/8/$10.00
981J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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commutator [Vm
i ,Vn

 ] give rise to those generators with conformal spin indices ofi1 j2p with p
odd. The central term involves a factor ofd i j which excludes the central terms in the commutat
between generators of unequal spins.

High-order Virasoro algebra~HOVA! is given8

@Lm
k ,Ln

k1r #5 (
p51

k

~21!p~Ck
pBp

n1k1r2Ck1r
p Bp

m1k!Lm1n
2k1r2p2 (

p5k11

k1r

~21!pCk1r
p Bp

m1kLm1n
2k1r2p

1~21!k1r11
1

2

~k1r !!k!

~2k1r11!!

~m1k!!C

~m2k2r21!!
dm1n,0 , ~2!

whereLm
k are the generators of HOVA and can be given as follows:

Lm
k 5~21!kZm1k

dk

dZk
~3!

and

Ck
p5

k!

~k2p!!p!
, ~4!

Bp
nH 50, p.n,

5
n!

~n2p!!
, p<n.

~5!

The commutators in HOVA admit a series of generators of conformal spin indices of 2k1r
2p, not only with k odd but also withk even, whereas the commutators of generators w
unequal conformal spins also accommodate central terms. It is obvious that the form of HO
more simple than that ofW` algebra. In fact, theW` algebra can be expressed in terms of line
combinations of HOVA.9

HOVA can be realized linearly in terms of the following bilinear currents:

Vi~z!5~21! i] iw~z!]w!~z!, ~6!

where w is a free complex scalar. Then the HOVA, given in terms of the operator-pro
expansions for the bilinear currents, takes the form

Vi~z!Vi1r~w!5~21!~ i1r11!
1

2

i ! ~ i1r !!C

~z2w!2i1r122 (
p5 i11

i1r

~21!pCi1r
p p!

~z2w!p11 V2i1r2p~w!

1 (
p51

i H p! @Ci
p2~21!pCi1r

p #

~z2w!p11 V2i1r2p~w!

1 (
q51

p
~p2q!!Cı

pCp
p2q

~z2w!p2q11 ]qV2i1r2p~w!J
5~21! i

i ! ~ i1r !!C

2~2i1r11!!
]z
2i1r11 1

z2w
2F (

p51

i1r

Ci1r
p ]z

p2 (
p51

k

Ci
p]w

p G V2i1r2p~w!

z2w
.

~7!

For chiral HOVA gravity,6 the action is
J. Math. Phys., Vol. 38, No. 2, February 1997
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S5E d2zS ]zw* ] z̄w2(
i>1

AiV
i D , ~8!

whereAi is the gauge field andVi is the corresponding vector current. The actionS is invariant
under the following transformations:

dkiw5~21! iki]z
i w ~9!

and

dAi5] z̄ki1 (
p>1

(
j51

i1p21

~21!p@Cj
pAj]

pki2 j1p2Ci2 j1p
p ki21p]

pAj #. ~10!

In order to derive the anomalous Ward identity, we integrate out the matter fields from the
~8!, then the effective action is, in terms of operator expection values,

e2G~Ai !5E Dw expS 1p E d2zS ]zw* ] z̄w2(
i>1

AiV
i D D 5K expS 2

1

p E (
i>1

AiV
i D L . ~11!

Varying ~11! with respect toAk(z), we have

dG

dAi~z!
5
1

p K Vi~z!expS 2
1

p E (
j>1

AjV
j D L . ~12!

Using ~7! and ~12!, we obtain

] z̄

dG

dAi~z!
5
1

p K ] z̄V
i~z!expS 2

1

p S (
j>1

AjV
j D D L eG

5
1

p K 1p E d2w] z̄F ~21! i11
i ! j !C

2~ i1 j11!!
]z
ı1 j11 1

z2w

1 (
p51

j

Cj
p]z

p Vi1 j2p~w!

z2w
2 (

p51

i

Ci
p]w

p Vi1 j2p~w!

z2w GAj~w!

3expS 2
1

p E (
k>1

AkV
kD L eG. ~13!

Using the relation

] z̄

1

~z2w!n
5p

~21!~n21!

~n21!!
]z
n21d2~z2w!, ~14!

we can obtain the anomalous Ward identity for HOVA gravity as follows:

] z̄

dG

dAi
2 (

p51

j

Cj
p]z

pS dG

dAi1 j2p
Aj D1~21!p(

p51

i

Ci
p dG

dAi1 j2p
]z
pAj

5
1

p
~21! i11

i ! j !C

2~ i1 j11!!
]z
i1 j11Aj . ~15!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The form of HOVA is simple, so the anomalous Ward identity of HOVA gravity is m
simple than that ofW` gravity.10 Now multiplying the spin-i transformation parametersKi and
integrating, we obtain the universal anomalies

E dG

dAi
F ] z̄Ki1 (

p>1
(
j51

i1p21

~21!p~Cj
pAj]

pKi2 j1p2Ci2 j1p
p Ki2 j1p]

pAj !G
5
1

p E ~21! i
i ! j !C

2~ i1 j11!!
Ki]

i1 j11Aj . ~16!

It is easy to find that the universal anomalies arise from the central charge of HOVA.

III. CONDITION FOR ANOMALY-FREE HOVA

In order to calculate the anomaly-free condition, we construct the BRST current for HOV
terms of Eq.~7! as in Ref. 4.

j ~z!5Vkck2@~k1r !ck8ck1rb2k1r112kckck1r8 b2k1r21#

2@ 1
2~k1r !~k1r21!ck9ck1rb2k1r222

1
2k~k21!ckck1r9 b2k1r22#

2@ 1
6~k1r !~k1r21!~k1r22!ck-ck1rb2k1r232

1
6k~k21!~k22!ckck1r- b2k1r23#1••• ,

~17!

where a summation overk and k1r from 1 to ` is understood.ck(z) andbk(z) are the ghost
fields and satisfy the OPEs,

ck~z!bk~w!;bk~z!ck~w!;
1

z2w
. ~18!

Since the HOVA satisfies Jacobi identities, many terms when in evaluatingj (z) j (w) have to
vanish. The operator product expansion ofj (z) j (w) consists only of the following terms:

j ~z! j ~w!;
c1~z!c1~w!

~z2w!4
~ 1
2C1C1,1

gh!1
c1~z!c2~w!

~z2w!5
~2C1C1,2

gh!1
c2~z!c1~w!

~z2w!5
~C1C2,1

gh!

1
c2~z!c2~w!

~z2w!6
~22C1C2,2

gh!1
c1~z!c3~w!

~z2w!6
~3C1C1,3

gh!1••• , ~19!

whereC is the central charge of HOVA, andCk,k1r
gh is the ghost contributions. Before calculatin

the ghost contributionsCk,k1r
gh , we give the generalised Riemannz-function, which is defined by

(
j50

`

~ j1a! l5z~2 l ,a! ~20!

and the regularized Riemannz-function is given as follows:

z~2 l ,a!52
Bl11~a!

l11
, ~21!

whereBl11(a) is the Bernoulli polynomials.
In order to illustrate the general calculation, we give explicit details of the calculation o

leading anomaly terms for HOVA
J. Math. Phys., Vol. 38, No. 2, February 1997
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c1~z!c1~w!

~z2w!4
C1,1
gh5(

r50

`

@~r11!c18~z!cr11~z!br11~z!2c1~z!cr118 ~z!br11~z!#

3@~r11!c18~w!cr11~w!br11~w!2c1~w!cr118 ~w!br11~w!#

5(
r50

`

$@~r11!c18~z!cr11~z!br11~z!@~r11!c18~w!cr11~w!br11~w!

2c1~w!cr118 ~w!br11~w!#2c1~z!cr118 ~z!br11~z!~r11!c18~w!

3cr11~w!br11~w!#1c1~z!cr118 ~z!br11~z!c1~w!cr118 ~w!br11~w!%

52(
r50

`

@6~r11!216~r11!11#
c1~z!c1~w!

~z2w!4
. ~22!

The last term 1 in the bracket of the above equation comes from the term

c1~z!cr118 ~z!br11~z!c1~w!cr118 ~w!br11~w!

since

C1,1
gh52(

r50

`

@6~r11!216~r11!11#

52(
r50

`

$@6~r13/2!223/2#11%

526z~22,3/2!13/2z~0,3/2!2z~0,3/2!52z~0,3/2!51. ~23!

Using the equation 1/2C1C1,1
gh 50, we haveC522C1,1

gh 522

c1~z!c2~w!

~z2w!5
C1,2
gh5(

r50

`

$~r11!c18~z!cr11~z!br11~z!@1/2r ~r11!c29~w!cr11~w!br11~w!

2c2~w!cr119 ~w!br11~w!#2c1~z!cr118 ~z!br11~z!1/2r ~r11!

3c29~w!cr11~w!br11~w!11/2~r11!~r12!c19~z!cr12~z!br11~z!

3@~r11!c28~w!cr11~w!br12~w!22c2~w!cr118 ~w!br12~w!#

1c1~z!cr118 ~z!br11~z!c2~w!cr119 ~w!br11~w!%

52(
r50

`

@30~r11!2126~r11!12#
c1~z!c2~w!

~z2w!5
. ~24!

The last term 2 in the bracket of the above equation comes from the term

c1~z!cr118 ~z!br11~z!c2~w!cr119 ~w!br11~w!

since
J. Math. Phys., Vol. 38, No. 2, February 1997
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C1,2
gh52(

r50

` H S 301 25326

27 D ~r11!21F2
25326

27
~~r21/2!2

13~r21/2!19/4!126@~r21/2!13/2#12G J
52S 301 25326

27 D z~22,1!1
25326

27 Fz~22,21/2!23z~21,21/2!2
9

4
z~0,21/2!G

226Fz~21,21/2!2
3

2
z~0,21/2!G22z~0,21/2!

522z~0,21/2!522. ~25!

Using the equation2C1C1,2
gh 50, we haveC5C1,2

gh 522

c2~z!c1~w!

~z2w!5
C2,1
gh5(

r50

`

$@~r11!c28~z!cr11~z!br12~z!22c2~z!cr118 ~z!br12~z!# 12~r12!

3~r11!c19~w!cr12~w!br11~w!1@ 1
2~r11!rc29~z!cr11~z!br11~z!

2c2~z!cr119 ~z!br11~z!#~r11!c18~w!cr11~w!br11~w!

2 1
2~r11!rc29~z!cr11~z!br11~z!c1~w!cr118 ~w!br11~w!

1c2~z!cr119 ~z!br11~z!c1~w!cr118 ~w!br11~w!%

5(
r50

`

@30~r11!2126~r11!12#
c1~z!c2~w!

~z2w!5
. ~26!

The last term 2 in the bracket of the above equation comes from the term

c2~z!cr119 ~z!br11~z!c1~w!cr118 ~w!br11~w!

since

C2,1
gh5(

r50

` H S 301 25326

27 D ~r11!2

1F2
25326

27
~~r21/2!213~r21/2!19/4!126@~r21/2!13/2#12G J

52z~0,21/2!52. ~27!

Using the equationC1C2,1
gh 50, we haveC52C2,1

gh 522

c2~z!c2~w!

~z2w!6
C2,2
gh5(

r50

`

$@ 1
2r ~r11!c29~z!cr11~z!br11~z!~ 1

2r ~r11!c29~w!cr11~w!br11~w!

2c2~w!cr119 ~w!br11~w!!2c2~z!cr119 ~z!br11~z! 12r ~r11!

3c29~w!cr11~w!br11~w!1~~r11!c28~z!cr11~z!br11~z!

22c2~z!cr118 ~z!br12~z!! 16r ~r11!~r12!c2-~w!cr12~w!br11~w!1 1
6r ~r11!
J. Math. Phys., Vol. 38, No. 2, February 1997
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3~r12!c2-~z!cr12~z!br12~z!@~r11!c28~w!cr11~w!br12~w!

22c2~w!cr118 ~w!br12~w!#1c2~z!cr119 ~z!br11~z!c2~w!cr119 ~w!br11~w!%

5(
r50

`

@210~r11!42100~r11!3130~r11!2180~r11!14#
c2~z!c2~w!

~z2w!6
.

~28!

The term 4 in the bracket of the above equation comes from the term

c2~z!cr119 ~z!br11~z!c2~w!cr119 ~w!br11~w!

since

C2,2
gh5(

r50

`

$210~r11!42100~r11!3260~r11!2210~r11!1@~90!~r1 3
2!
22 90

4 !14#%

5210z~24,1!2100z~23,1!260z~22,1!210z~21,1!190z~22,32!2 90
4 z~0,32!

14z~0,32!54z~0,32!524. ~29!

Using the equation22C1C2,2
gh 50, we haveC522.

From the above calculation, we find that, for the polynomials(na(r11)n, we can always take
the appropriate combinations so that the regularized value of the combined polyno
((nh(r11)n1(nl (r13/2)l) or ((nh(r11)n1(nl (r21/2)l) takes zero. So we need only con
sider the terms that do not contain the parametersr in the progress of calculating the gho
contributions. It is worthy to note that the generalized Riemannz-function takesz~0,3/2! with
k1(k1r ) even orz~0,21/2! with k1(k1r ) odd. Now we give the general calculation abo
Ck,k1r
gh as follows:

ck~z!ck1r~w!

~z2w!2k1r12 Ck,k1r
gh 5(

l50

`

(
p51

k21

$@Cl11
p ck

~p!~z!cl11~z!bl1k112p~z!

2Ck
pck~z!cl11

p ~z!bl1k112p~z!#Cl1k112p
2k1r2p ck1r

~2k1r2p!

3~w!cl1k112p~w!bl11~w!1@Cl11
k ck

~k!~z!cl11~z!bl11~z!2ck~z!cl11
~k!

3~z!bl11~z!#Cl11
k1rck1r

~k1r !~w!cl11~w!bl11~w!2Cl11
k ck

~k!

3~z!cl11~z!bl11~z!ck1r~w!cl11
~k1r !~w!bl11~w!%

1(
l50

`

(
p5k11

2k1r11 HCl112k1p
p ck

~k!~z!cl112k1p~z!bl11~z!@Cl11
2k1r2pck1r

~2k1r2p!

3~w!cl11~w!bl112k1p~w!2Ck1r
2k1r2pck1r~w!cl11

~2k1r2p!

3~w!bl112k1p~w!#1(
l50

`

ck~z!cl11
~k! ~z!bl11~z!ck1r~w!cl11

~k1r !

3~w!bl11~w!J , ~30!

whereck
(p)(z) is (dp)/(dzp)ck(z)

According to the above discussion, we only consider the last term of above equation an
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ck,k1r
gh 5(

l50

`

~21!kk! ~k1r !!5~21!kk! ~k1r !! z~0,32!5~21!k11k! ~k1r !! ~31!

with k1(k1r ) even;

Ck,k1r
gh 5~21!kk! ~k1r !! z~0,21

2 !5~21!kk! ~k1r !! ~32!

with k1(k1r ) odd.
Using the equation (21)k1r111/2k!(k1r )!C1Ck,k1r

gh 50, we haveC522.
The anomaly-free condition of HOVA is the same asW` algebra.
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The irreducible, finite-dimensional representations of the graded algebras
osp(j ,2) (j51,2,3) are expressed in terms of differential operators. Some quan-
tum deformations of these algebras are shown to admit similar kinds of represen-
tations. These are formulated in terms of finite difference operators. The results are
discussed in the framework of the quasi-exactly solvable equations. ©1997
American Institute of Physics.@S0022-2488~97!00801-3#

I. INTRODUCTION

One attractive feature of quasi-exactly solvable~QES! equations1,2 is that they provide a nice
interplay between some spectral problems and some abstract algebraic structures. Follow
approach of Refs. 1, 3, and 4 it appears that the basic ingredients needed for the constructi~and
the classification4! of QES equations are finite-dimensional representations of some algebr
mulated in terms of differential operators of one or several variables, the so-called project
representations.

The most celebrated example is the algebra sl2 represented by the operators

J1~n,x!5x2
d

dx
2nx, J0~n,x!5x

d

dx
2
n

2
, J2~n,x!5

d

dx
. ~1!

If n is a positive integer, they preserve the space, sayP(n), of polynomials of degree at mostn in
the variablex. The linear differential operators possessing this property can be obtained a
elements of the enveloping algebra constructed overJ0 andJ6 .4

By performing an arbitrary change of variable and~or! a change of basis on these operato
one generates a large class of operators which possess a finite-dimensional invariant subs
a consequence, a finite number of their eigenvectors can be found by solving an algebraic
tion. In this respect, these operators are called quasi-exactly solvable~see Ref. 5 for a recen
review!.

In this paper we address the classification of the operators that preserve the vector sp
couples of polynomials with fixed degrees in one and in two variables. Sets of such ope
which generate all the others by means of polynomial combinations are exhibited. The~anti-!
commutation relations between these basic elements are computed; as a general rule, they
axioms of graded algebras. In the cases when the algebraic structures correspond to gra
algebras, we further consider quantum deformations of them and we construct represen
formulated in terms of finite difference operators. These representations are relevant for t
derstanding of the discrete counterparts of quasi-exactly solvable equations.
0022-2488/97/38(2)/989/11/$10.00
989J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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II. THE SCALAR QES OPERATORS

We briefly discuss this well-known case for completeness and for fixing some notations
algebra sl2 is generated by three generators, sayH,X6 obeying

@H,X6#56X6 ,@X1 ,X2#52H. ~2!

The Casimir operator isC25H21$X2 ,X1%/2. The projectivized representation of dimensi
n11 is constructed from the operators~1!:

H5J0~n,x!, X657J6~n,x!, C25
n~n12!

4
. ~3!

The SU~2! generators, sayJk(k51,2,3), are recovered by the combinations

J15
1

2
~J22J1!, J25

i

2
~J21J1!, J35J0 ~4!

~for shortness, we drop the dependence onn andx). The tensorial operators of the algebra can a
be formulated in terms of the operatorsx andd/dx ~see the Appendix!.

Several deformations of the algebra sl2 are available.
6 One of them is formulated by replacin

the commutators~2! by appropriateq-commutators:

q j̃0 j̃22 j̃2 j̃ 052 j̃2 , q2 j̃1 j̃22 j̃2 j̃152~q11! j̃ 0 , j̃ 0 j̃12q j̃1 j̃ 05 j̃1 , ~5!

whereq parametrizes the deformation. In Ref. 6 it is referred to as the second Witten’s defo
tion. Standard formulas allow one to transformj̃ into new operators whose~normal! commutators
close within the enveloping algebraUqsl2.

The counterpart of the operators~1! for the j̃ was obtained in Ref. 4:

j̃15q2n/2~x2Dq2@n#qx!, j̃25q2n/2Dq , j̃ 05
q2n

q11

@2n12#q
@n11#q

S xDq2
@n#q@n11#q

@2n12#q
D , ~6!

with the quantum symbol@ #q and the finite difference operatorDq defined by

@n#q[
12qn

12q
, Dqf[

f ~x!2 f ~qx!

~12q!x
. ~7!

Obviously, the three operatorsj̃ coincide with theJ’s of ~1! in the limit q→1.

III. THE 232 MATRIX QES OPERATORS

Let us considerP(m,n), the vector space of couples of polynomials of degreem(resp. n) in
the variablex for the first ~resp. second! component. Without losing generality, we assum
m<n and we noteD[n2m. The linear differential operators preservingP(m,n) are the elements
of the enveloping algebra generated by the following 232 matrix operators:7

Te~n,D,x!5diag„Je~m,x!,Je~n,x!…, e50,6, ~8!

J~n,D!5 1
2diag~D1n,n!, ~9!

Qa~x!5qa~x!s2 , a51, . . . ,D11, ~10!

Q̄a~n,D,x!5q̄a~n,D,x!s1 , a51, . . . ,D11, ~11!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with

qa~x!5xa21, ~12!

q̄a~n,D,x!5S )
j50

D2a S x d

dx
2~n112D!2 j D D S d

dxD a21

. ~13!

The operators above correspond respectively to the tensorial operatorspa of ~A6! andpD122a of
~A7!. For brevity, we will drop~when the notation is not ambiguous! their dependence onD and
x.

Many properties of the operators~8!–~11! are known.7 The operatorsTe form an sl2 algebra;
theQa and theQ̄D122a transform according to the representation of spins5D/2 under the adjoint
action of theTe . The anticommutators$Q̄a ,Qb% can be expressed as polynomials of degreeD of
the operators~8! and ~9!. In the caseD51 we have

$Q̄32a ,Qb%5~s3sas1!abTa1~ is2!ab J, a,b51,2, ~14!

wheresa(a51,2,3) are the Pauli matrices. In the caseD52 we obtain

$u i ,r j%5
1

2S $Ti ,Tj%2
2

3
d i j C2D2 i e i jk S J2

1

2DTk2d i j SC2

6
1
J~J21!

2 D , ~15!

where, for convenience, we introduced the following combinations:

u15
Q32Q1

2
, u25

Q31Q1

2i
, u352Q2 , ~16!

r15
Q̄12Q̄3

2
, r25

Q̄11Q̄3

2i
, r352Q̄2 . ~17!

The SU~2! generatorsTj ( j51,2,3) are defined from theTe(e50,6) as in ~4!; C2 in Eq. ~15!
denotes the Casimir operator associated with the sl2 operators~8!, i.e.,

C25
1
4diag„m~m12!,n~n12!… ~18!

~rememberm5n22 in this case!.
Finally, let us notice that the operators

Te , J, Ka[mQa1nQ̄D122a ~a51, . . . ,D11! ~19!

close under appropriate~anti-! commutator.

IV. THE CASE OSP(2,2)

A. The algebra

In the caseD51, the eight operators~8!–~11! form a representation of the graded Lie algeb
osp~2,2!.3 Let us present it for completeness: it consists of four bosonic generators, denote
H, X6 , T, and of four fermionic ones, denotedV6 andV̄6 ~we use the notations of Ref. 8 apa
from their operatorsJ6 which are noted hereX6). The ~anti-! commutation rules read

@H,X6#56X6 , @X6 ,T#50, @H,T#50, ~20!

@X1 ,X2#52H, ~21!
J. Math. Phys., Vol. 38, No. 2, February 1997
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@H6 1
2T,V6#50, @H7 1

2T,V6#56V6 , ~22!

@H6 1
2T,V̄6#56V̄6 , @H7 1

2T,V̄6#50, ~23!

$Vi ,Vj%5$V̄i ,V̄j%50 ~ i , j56 !, ~24!

$V6 ,V̄6%56 1
2X6 , ~25!

$V1 ,V̄2%52 1
2~H1 1

2T!, $V̄1 ,V2%52 1
2~H2 1

2T!. ~26!

The commutators between the operatorsX andV ~or X and V̄) can be deduced from~25! com-
bined with the Jacobi identities:

@X6 ,V6#50, @X6 ,V̄6#50, ~27!

@X6 ,V7#5V6 , @X6 ,V̄7#5V̄6 . ~28!

The algebra has two Casimir operators.9 The quadratic one reads

C225H21X2X12 1
4T

222~V2V̄11V̄2V1!. ~29!

B. The representations

The operators~8!–~11! provide a family of representations of osp~2,2! by means of the
following identifications:

H5T0 , X657T6 , T52J, ~30!

V25
1

A2
Q15

1

A2
s2 , V15

1

A2
Q25

1

A2
xs2 , ~31!

V̄25
21

A2
Q̄25

21

A2
d

dx
s1 , V̄15

21

A2
Q̄15

21

A2
S x d

dx
2nDs1 . ~32!

Given the integern the vector spaceP(n21,n) is preserved by~30!–~32!. Accordingly the
representation has dimension 2n11. The corresponding value of the Casimir~29! is zero.

The generic, finite-dimensional, and irreducible representation of osp~2,2! ~Ref. 9! can as well
be formulated in terms of differential operators. The space of the representation is the vecto
P(n,n11,n21,n) ~i.e., the set of four-tuples of polynomials with degreen, n21, n11, n in
one variable, sayx). The bosonic generators are of the form

H5diag„J0~n!,J0~n11!,J0~n21!,J0~n!…, ~33!

X657diag„J6~n!,J6~n11!,J6~n21!,J6~n!…, ~34!

T5diag~ t,t21,t21,t22!, ~35!

wheret is an arbitrary complex number.
Owing thatV1 ,V2 andV̄1 ,V̄2 transform as two doublets under the sl2 subalgebra, the form

of these operators can be guessed in terms of appropriate tensorial operators:
J. Math. Phys., Vol. 38, No. 2, February 1997
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V2,15
1

A2 S 0 0 0 0

a21q1,2 0 0 0

a31q̄2,1~n! 0 0 0

0 a42q̄2,1~n11! a43q1,2 0

D , ~36!

V̄2,15
21

A2 S 0 a12q̄2,1~n11! a13q1,2 0

0 0 0 a24q1,2

0 0 0 a34q̄2,1~n!

0 0 0 0

D . ~37!

The constantsai j have to be determined in such a way that the relations~24!–~26! are obeyed;
these imply the following equations:

a12a241a13a3450, a42a211a43a3150,

a31a121a34a4250, a21a131a24a4350,

a34a435a12a21, a24a425a13a31,

a12a211a13a3151, a12a215
t1n

2~n11!
.

~38!

The most general solution9 depends on three free parameters~e.g.,a21,a31, anda43) which ~if
they do not vanish! can be set to unity by a suitable similarity transformation. The represent
is then fully specified by the values oft ~a complex number! and ofn ~an integer!:

a215a315a4352a4251, a125a34512a13511a245
n1t

2~n11!
. ~388!

The value of~29! is here nontrivial:C225(n/2)(n/211)2(t/2)(t/221) @the second Casimir
operator, sayC̃22, is equal to (t21)C22/2#. The atypical representation~30!–~32! corresponds to
the casea135a2450 which requirest5n12, leading to a null value for the two Casimir oper
tors.

Let us stress that the enveloping algebra constructed over the four operators~36! and ~37!
generates the set of all QES operators preservingP(n,n11,n21,n) ~the general construction o
Ref. 10 is bypassed in this case!. The underlying hidden symmetry of all QES systems construc
in this way is isomorphic to osp~2,2!.

C. Deformation of osp(2,2)

The general scheme for deformations of superalgebras is presented in Ref. 11. Here w
use the deformation of osp~2,2! proposed by Deguchi.8 It can be reconciled with the pattern o
Ref. 11 after a suitable redefinition of the generators. The deformed algebra is constructed
a way that the relations~24! and ~25! are kept, the latter defining the operatorsX6 . The defor-
mation is then introduced through the anti-commutators~26! which become

$V1 ,V̄2%52 1
2@P1#q , $V̄1 ,V2%52 1

2@P2#q , ~39!

where

P6[H6 1
2T ~40!
J. Math. Phys., Vol. 38, No. 2, February 1997
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@Eq. ~39! above differs from Eq.~8! of Ref. 8 by a redefinition of the deformation parame
q→q2#.

The use of~25! and ~39! together with the Jacobi identities allows one to show that
relations~20!, ~22!, ~23!, and~27! are preserved while~21! and ~28! are deformed:

@X1 ,X2#5@P1#qq
P21@P2#qq

P112S 12
1

qD ~V̄1V2q
P11V1V̄2q

P2!, ~41!

@X6 ,V7#5V6q
P721/261/2, ~42!

@X6 ,V̄7#5V̄6q
P621/261/2. ~43!

In particular, the operatorsX6 ,H do not close~under commutator! within their enveloping algebra
for q Þ 1. As a consequence, the representation~6! cannot be used as a starting point for t
construction of representations ofUq osp(2,2).

D. The representations

In order to construct the representations of interest for us, we assume~along with the unde-
formed case! that the space of the representation is a direct sum of two subspaces respe
annihilated byV6 and V̄6 :

H5Hu%Hd , V6Hd50, V̄6Hu50, ~44!

and that the basic vectors are labelled according to their eigenvalues with respect to the co
ing operatorsH andT:

Tuh̃,u&5tuuh̃,u&, Tuh,d&5tduh,d&, ~45!

Huh̃,u&5h̃uh̃,u&, Huh,d&5huh,d&. ~46!

After some algebra, one can show that the representation is finite dimensional if

tu5n11, td5n, n integer, ~47!

2
m

2
<h̃<

m

2
, 2

n

2
<h<

n

2
, n[m11, ~48!

with h and h̃ varying by unit steps. It is worthwhile to identify the basic vectors with so
monomials in a suitable space of polynomials; let us pose

uh,d&[S 0

xh1n/2D , uh̃,u&5S xh̃1m/2

0
D ~49!

Then, we further assume that the generatorsV andV̄ have the following form, inspired from
Eqs.~31! and ~32!:

V252
1

A2
s2 , V15

1

A2
xs2 , ~50!

V̄252
1

A2
Dqs1 , V̄15

1

A2
xn11Dqx

2ns1 . ~51!
J. Math. Phys., Vol. 38, No. 2, February 1997
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From the definition~25! one easily computes the action of the operatorsX6 on the basic vectors
~49!:

X6uh,d&56F7
n

2
1hG

q

uh61,d&, ~52!

X6uh̃,u&56F7
m

2
1h̃G

q

uh61,u&. ~53!

This results in the following forms of the bosonic operators:

X252SDq 0

0 Dq
D , X15x2S xmDqx

2m 0

0 xnDqx
2nD , ~54!

T5S n11 0

0 nD , qH5S 11~q21!x11m/2Dqx
2m/2 0

0 11~q21!x11n/2Dqx
2n/2D . ~55!

All generators ofUqosp(2,2) are then expressed in terms of the operatorDq and of the variable
x. They preserveP(n21,n) and the representation has dimension 2n11.

The form of the operatorH is rather involved. In fact, we can insist from the beginning
having a Written type II deformed sl2 subalgebra, but then the form of the fermionic operator
untractable. The reason we choose Deguchi’s deformation is that it allows for the partic
transparent form~50! and ~51! for the fermionic operators.

V. THE CASE osp(1,2)

A. The algebra

In the caseD51 and ifmn Þ 0 in ~19!, the subalgebra generated by these operators coinc
with the graded Lie algebra osp~1,2!. This algebra plays a special role among graded Lie alge
since it constitutes the simplest example of them, i.e., like SU~2! for simple Lie algebras. It has
five generators: three bosonic ones,H,X6 , and two fermionic ones, sayv6 . The bosonic opera-
tors form an sl2 subalgebra. The products involving the fermionic generators read

@H,v6#56 1
2v6 , @X6 ,v7#5v6 , @X6 ,v6#50, ~56!

$v1 ,v2%52 1
2H, $v6 ,v6%56 1

2X6 . ~57!

The Casimir operator is given by

C125H21 1
2$X1 ,X2%1@v1 ,v2#. ~58!

The projectivized representations of osp~1,2! are specified by the following identification using th
operators~8!–~11!:

H5T0 , X656T6 , ~59!

v15 1
2~Q̄11Q2!, v252 1

2~Q11Q̄2!. ~60!

Notice that these representations are equivalent to the generic, finite-dimensional ones; th
to C125n(n11)/4.
J. Math. Phys., Vol. 38, No. 2, February 1997
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B. Deformation of osp(1,2)

We adopt the deformation of osp~1,2! which was elaborated in Ref. 12. It is generated by
three elementsH,v6 together with the rules

@H,v6#56 1
2v6 , ~61!

$v1 ,v2%52 1
2@H#q . ~62!

We assume again that the space of the representation is the direct sum of two subspa
use, for the fermionic generators, the ansatz

v15
1

2S 0 ã~d!x11aDx2a

c~d!x 0 D , v252
1

2S 0 c̃~d!xbDx2b

a~d! 0 D ~63!

where a and b are constants whilea,ã,c, and c̃ are some functions the dilatation operat
d[xD. Unlike the case osp~2,2! @see~50! and ~51!#, these quantities cannot be chosen as c
stants in order for~62! to be fulfilled. After some algebra, one finds that the relevant combinat
are

A~y![a~@y#q!ã~@y#q!, C~y![c~@y#q!c̃~@y21#q!, ~64!

and thatA(y) andC(y) are regular functions of their argument provideda1b5n. The form~63!
further indicates that the representation preservesP(n21,n) only in the casea5n andb50. The
relation ~62! finally leads to the following solution for the functionsA andC:

A~y!5

2F14G
q

F12G
q

S Fy2
n

2
1
1

4G
q

2Fa2
n

2
1
1

4G
q

@y2a#q
D , C~y!5

2F14G
q

F12G
q

S Fy2
n

2
1
1

4G
q

2Fb2
n

2
2
1

4G
q

@y2b#q
D .

~65!

These expressions are rather simple, however, the peculiar dependance of the fu
a, ã, c, and c̃ on @y#q ~rather than ony) in ~64! indicates that these quantities are rath
involved functions of the dilatation operatorxD.

VI. THE CASE osp(3,2)

Let us finally considerP„(m,k),(n,l )…, the vector space of couples of polynomials whose fi
~resp. second! component is of degreem (resp. n) in the variablex and of degreek(resp. l ) in
the variabley @notice thatP„(m,0),(n,0)…[P(m,n) previously defined#. For definiteness we
assume thatm<n and k> l ~other cases can be treated very similarly! and we will use the
notationsD5n2m andD85k2 l . The linear differential operators preservingP„(m,k),(n,l )… are
the elements of the enveloping algebra generated by the following operators:

Se5diag„Je~n,x!,Je~m,x!…, e50,6, ~66!

Se85diag„Je~k,y!,Je~ l ,y!…, e50,6, ~67!

J5 1
2diag~D1n,n!, ~68!

J85 1
2diag~k,D81k!, ~69!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Qa,a5qa~x!q̄a~y!s2, a51, . . . ,D11, a51, . . . ,D811, ~70!

Q̄a,a5q̄a~x!qa~y!s1, a51, . . . ,D11, a51, . . . ,D811 ~71!

~again we avoid writing the dependence of these operators on the dimensions!. The operators
Qa,a behave as a multiplet of spins5D/2 under the adjoint action of theSe and as a multiplet of
spin s85D8/2 with respect to the generationsSe8 . The same statement is true for theQ̄a,as. The
anticommutators between these operators can be expressed in terms of the ones discusse
III:

$Q̄a,a ,Qb,b%5$Q̄a ,Qb%s1$Q̄b ,Qa%s1 . ~72!

These relations provide normal ordering rules on the set of operators prese
P„(m,k),(n,l )…. Owing ~72! and the results of Sec. III, one concludes that the operators u
consideration do not represent a Lie~super! algebra.

Let us further consider the linear combinations

Ka,a5Qa,D8122a1Q̄D122a,a . ~73!

They form, together with the diagonal operators~66!–~69!, a subalgebra of the full structur
generated by~66!–~71!. It is straightforward to evaluate the anticommutators

$Ka,a ,Kb,b%5$Q̄D122a ,Qb%s1$Q̄D8122b ,Qa%s11$Q̄D122b ,Qa%s1$Q̄D8122a ,Qb%s1 ,
~74!

which, in general, are not linear combinations of the diagonal~bosonic! generators~66!–~69!.
However, in the two cases

m50, n52, k51, l50 and m51, n53, k51, l50, ~75!

the anticommutators~74! reduce to a linear expressions in the diagonal operators. To be sp
they take the form (i , j ,k51,2,3, a,b51,2)

$Ki ,a ,Kj ,b%52m„2d i j ~ is2sk!abTk~y!1 i e i jk~ is2!abTk~x!…, ~76!

suggesting that the operators~73! constitute finite-dimensional representations of some graded
algebra. Indeed, it appears that the two sets of values~75! correspond to representations of th
graded algebra osp~3,2!. It is known13 that osp~3,2! admits only two representations of finit
dimension~equal to 5 and 8!. All other representations are either infinite dimensional or plag
with a nonpositive definite metric of the space of the representation.

In order to obtain~76! we used~14! and ~15!, together with the following identities of the
operators~4!:

Jku~n50!P~0!50, $Jk ,Jt%u~n51!P~1!5 2
3C2dklP~1!. ~77!

They operate in such a way as to suppress the quadratic piece appearing on the right-hand
Eq. ~15!.

VII. CONCLUSIONS

Recently, the generators~1!, ~5!, and~30!–~32! were used by A. Turbiner to solve a series
generalizations of the Bochner problem.4,5,7 The original question is the following: classify th
linear differential operators, sayT, of k-order in one real variable such that the eigenvalue eq
tion Tf(x)5ef(x) has aninfinite sequence of orthogonal polynomial solutions.
J. Math. Phys., Vol. 38, No. 2, February 1997
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One can attenuate the hypothesis and pose the problem for afiniteset of polynomial solutions.
This was solved in Ref. 4 for scalar equations of one variable.

One can also address Bochner’s problem for an enlarged number of variables or~and! for
systems of equations. For such extensions, it is crucial to classify the linear operators that p
theN-dimensional vector space whose elements areN-tuples of polynomials of fixed degree. It i
such a classification that we presented here forN52, for one and for two real variables.

The operators constructed in the framework of deformations of the underlying algebra
useful to address finite difference version of the Bochner problem.14,15
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APPENDIX: TENSORIAL OPERATORS

The tensorial operators of sl2 can be expressed in terms of the operatorsx andd/dx acting on
an appropriate space of polynomials. Take the generatorsTe@e50,61, see Eq.~1!# and the
tensorial operators of spins, sayPa(a51,•••,2s11), in the form

Te5diag„Je~m,x!,Je~n,x!…, Pa5paS x, ddxDs2 , ~A1!

wherem andn are two positive integers. Then the equations definingPa read

@Te,Pa#5„a212s~11e!…Pa1e . ~A2!

One finds the following solutions forpa :

paS x, ddxD5 (
j50

a21

cjCa21
j xa212 j S ddxD

s2 j1~m2n!/2

, ~A3!

whereCa
j denotes the binomial coefficients while the parameterscjs obey the following recurrence

relation:

cj52cj21

~m2n12s1222 j !~m1n22s12 j !

4~2s2 j11!
, 0< j<2s. ~A4!

The recurrence may be interrupted at any step, i.e., if

m5n22s, m5n22s12, . . . , m5n12s, ~A5!

leading to 2s11 possible values for the differencem2n and, correspondingly, to 2s11 sets of
operatorsPa .

The operators corresponding tom5n22s andm5n12s are the relevant ones for the prob
lem treated in Sec. III. They can be rewritten as

pa5xa21, if m5n22s, ~A6!

pa5F )
j50

a22 S x d

dx
2n212 j D G S d

dxD 2s112a

, if m5n12s ~A7!

@p15(d/dx)2s is understood in the last formula#.
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Three-dimensional Lorentzian manifolds with constant
principal Ricci curvatures r15r2Þr3

Peter Buekena)
Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B,
B-3001 Heverlee (Leuven), Belgium

~Received 21 November 1995; accepted for publication 25 September 1996!

The aim of this paper is the study of~nonhomogeneous! three-dimensional Lorent-
zian manifolds whose Ricci curvature tensor is diagonalizable with two distinct
constant eigenvalues. Two mistakes in a recent paper by D. McManus@J. Math.
Phys.36, 362–369~1995!# are pointed out and corrected, and a complete~local!
classification of the nonhomogeneous manifolds of this type is given, thereby gen-
eralizing some results of O. Kowalski@Nagoya Math. J.132, 1–36~1993!# to the
framework of Lorentzian geometry. ©1997 American Institute of Physics.
@S0022-2488~97!00302-2#

I. INTRODUCTION

In a recent paper,1 the author made a study of three-dimensional Riemannian manifolds
constant principal Ricci curvaturesr15r2Þr3, which are examples of so-called curvature hom
geneous manifolds.~We refer to Ref. 1 for the definition of curvature homogeneity and for m
detailed information on the subject.! Correcting a mistake in a paper by D. McManus,2 we were
able to prove the~local! existence, for arbitrary constantsaÞb, of a family of ~nonhomogeneous!
Riemannian metrics whose principal Ricci curvatures are given by

r15r25a, r35b,

and determining which of these metrics were locally isometric, we obtained a simple proo
theorem by O. Kowalski.3

In the Lorentzian case, the first examples of nonhomogeneous curvature homogeneous
were constructed in Refs. 4 and 5, and in view of the results in the Riemannian case, the q
of making a systematic investigation of three-dimensional curvature homogeneous Lore
manifolds arises naturally. As in the Riemannian case, the Riemann curvature tensor of a L
zian three-dimensional manifold is completely determined by its Ricci tensor. Contrary t
Riemannian case however, the Ricci operator, i.e., the self-adjoint operator associated to th
tensor, cannot always be diagonalized, although it can always be written in one of the follo
standard forms with respect to a pseudo-orthonormal basis$E1 ,E2 ,E3%, whereE3 is a timelike
unit vector~see, e.g., Refs. 6 and 7!:

S a 0 0

0 b 0

0 0 c
D , S b a 2a

a b 0

a 0 b
D , S a 0 0

0 b c

0 2c b
D , S a 0 0

0 b 1

0 21 b62
D . ~1!

As a consequence, a three-dimensional Lorentzian manifold is curvature homogeneous if a
if its Ricci operator takes one of the forms given by~1!, wherea, b, andc are constant along the
manifoldM , and a systematic investigation of curvature homogeneity should be made in all
cases.

a!Current address: University of Aberdeen, Department of Mathematical Sciences, Edward Wright Building, Dunbar
Aberdeen AB9 2TY, UK. Electronic-mail address: peterb@maths.abdn.ac.uk
0022-2488/97/38(2)/1000/14/$10.00
1000 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



he first
stant

Ref.
neous
norm
in the
termine
sor
tain-

ry and

nd a
–VI,

ocally
sional

e of

r is

1001Peter Bueken: Lorentzian 3-metrics with degenerate Ricci tensors

¬¬¬¬¬¬¬¬¬¬
As in the Riemannian case, if the Ricci tensor is diagonalizable with three equal~and con-
stant! eigenvalues, the manifold is of constant curvature and hence locally homogeneous. T
nontrivial case is therefore that of a diagonalizable Ricci operator with two distinct con
eigenvalues, i.e., such that for allpPM and allX, YPTpM ,

r~X,Y!5bg~X,Y!1~a2b!g~j,X!g~j,Y!, ~2!

wherea and b are constant alongM and wherejPTpM , g~j,j!561, is a ~unit! eigenvector
corresponding to the simple eigenvaluea. This problem was first studied by D. McManus,8 using
a technique similar to that used in Ref. 2. Unfortunately, it turns out that the computations in
8 contain an error similar to the one made in Ref. 2, causing a number of nonhomoge
solutions not to be discovered. Moreover, the possibility of a nonzero shear operator whose
is zero is not considered. The aim of this paper is to point out and correct these errors. As
Riemannian case, we show that the techniques introduced by McManus can be used to de
the existence of a family of~local! nonhomogeneous Lorentzian metrics whose Ricci ten
satisfies~2!. We will then determine which of these metrics are locally isometric, thereby ob
ing a complete local classification of these metrics.

The rest of this paper is organized as follows. First, in Sec. II, we compute the necessa
sufficient conditions for a Lorentzian manifold to have a Ricci curvature tensor of the form~2!. In
Sec. III, we provide a criterion to determine if two such manifolds are locally isometric, a
similar criterion to determine if such a manifold is locally homogeneous. Finally, in Secs. IV
we make a detailed study of the differential equations given in Sec. II. We study the~local!
existence of three-dimensional Lorentzian manifolds with a Ricci curvature tensor of the form~2!,
thereby correcting the errors in Ref. 8, and we determine which of these manifolds are l
isometric, thereby generalizing the main results from Ref. 3 to the case of three-dimen
Lorentzian manifolds@with Ricci curvature tensor of the form~2!#.

It should be remarked that many of the formulas involved in this paper are~up to minor
modifications! the same as those in Ref. 1. To avoid duplication, we will therefore omit som
these expressions.

II. THE BASIC DIFFERENTIAL EQUATIONS

Let us suppose that (M ,g) is a three-dimensional Lorentzian manifold whose Ricci tenso
given by~2!, i.e., at least locally, one can construct a pseudo-orthonormal frame field$E1 ,E2 ,E3%
such that

g~E1 ,E1!5k561, g~E2 ,E2!51, g~E3 ,E3!52k, g~Ei ,Ej !50 if iÞ j , ~3!

and such that

r~E1 ,E1!5kb, r~E2 ,E2!5b, r~E3 ,E3!52ka, r~Ei ,Ej !50 if iÞ j . ~4!

As in Ref. 1, twice contracting the second Bianchi identity and taking into account thatt52b1a
is constant alongM , and thataÞb, we obtain that

g~“E3
E3 ,E1!50, g~“E3

E3 ,E2!50,

~5!
kg~“E1

E3 ,E1!1g~“E2
E3 ,E2!50,

i.e., the simple principal Ricci directionE3 is geodesicandexpansion-free.
8,9

It follows from ~5! that, at each pointpPM , the self-adjoint linear operators̃(p):
TpM→TpM associated to the shear tensor ofE3 is trace-free, and thats̃E350. Using a well-
J. Math. Phys., Vol. 38, No. 2, February 1997
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known theorem concerning the normal forms for self-adjoint operators~see, e.g., Ref. 6!, we can
then construct, at each pointpPM , a pseudo-orthonormal frame$E1(p),E2(p),E3(p)% @satisfy-
ing ~3! and ~4!# and such thats̃(p) takes one of the following forms:

I:S a 0 0

0 2a 0

0 0 0
D , II: S 0 2a 0

a 0 0

0 0 0
D , III: S h 21 0

1 2h 0

0 0 0
D , ~6!

whereh561.
Remark 1:A straightforward computation shows that the square of the norm

isi25 (
i , j51

3

e ie js~Ei ,Ej !
2, e i5g~Ei ,Ei !,

of the shear tensors is positive if s̃ is of Type I, negative ifs̃ is of Type II, and zero for Type
III. In Ref. 8, D. McManus claims that the norm ofs is zero if and only ifs50, thereby omitting
the case where the shear operator is of Type III. In Sec. VI, we will see that there exist~nonho-
mogeneous! Lorentzian manifolds satisfying~2! whose shear operator is of Type III.

Remark 2:It follows from Remark 1 and the fact thatisi2 is a smooth function onM that, if
s̃ is of Type I or II ~with aÞ0! at a pointpPM , it is of the same type in a neighborhood of th
point. If s̃ is of Type III or if a50 ~for Type I and II!, this is no longer true. It is easily seen
however, that the property holdsalmosteverywhere, i.e., there is a dense subsetU,M such that,
for all pointspPU, the operators̃ is of constant type in the neighborhood ofp. As we are only
interested in the local classification of the Lorentzian manifolds satisfying~2! we will, in what
follows, always assume that the operators̃ is of constant type. It is then easily seen that, at le
locally, we can construct a pseudo-orthonormal frame field$E1 ,E2 ,E3% satisfying~3! and~4! and
such that the shear operators̃ takes one of the forms given in~6!.

Remark 3:Finally we note that, ifk51, the operators̃ can always be diagonalized, i.e., it
always of Type I. As a consequence, if the shear operators̃ is of Type II or III, we automatically
find thatk521.

Case I: The shear operator is of Type I.
In this case, we can~locally! construct a pseudo-orthonormal frame field$E1 ,E2 ,E3% satis-

fying ~3! and ~4! and such that

ks~E1 ,E1!52s~E2 ,E2!5s, s~E1 ,E2!50, s~E3 ,Ei !50, iP$1,2,3%.

An argument similar to the one in Ref. 1 then yields the differential equations

2~ks22v2!5a, ~7!

E3~v!5E3~s!50, ~8!

E3~u1!2su11vu250, ~9!

E3~u2!2kvu11su250, ~10!

E1~s!1E2~v!12u1s50, ~11!

kE1~v!1E2~s!12u2s50, ~12!

kE1~u1!1E2~u2!1ku1
21u2

21b50, ~13!
J. Math. Phys., Vol. 38, No. 2, February 1997
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while the Lie brackets of the pseudo-orthonormal vectorsE1, E2, E3 are given by

@E1 , E2#5u2E12u1E212kvE3 , ~14!

@E1 , E3#5sE11vE2 , ~15!

@E2 , E3#52kvE12sE2 , ~16!

and we obtain the following.
Theorem 1: Let (M ,g) be a three-dimensional Lorentzian manifold whose Ricci curvat

tensor is given by (2) and such that the shear operators̃ associated to the simple eigenvector E3
is of Type I at the point p. Then there exist a pseudo-orthonormal frame field$E1 ,E2 ,E3% and
functionsv, s, u1, and u2 such that (7)–(16) hold. Conversely, if there exist a (local) pseud
orthonormal frame field$E1 ,E2 ,E3% (in the neighborhood of a point pPM ) and functionss, v,
u1, and u2 such that (7)–(16) hold, then the manifold(M ,g) is curvature homogeneous (in th
neighborhood of the point p! and its Ricci tensor is given by (2).

Remark 4:It is easily seen that, replacingE1 by 2E1 andE3 by 2E3 if necessary, we can
always choose the pseudo-orthonormal basis$E1 ,E2 ,E3% in such a way thats>0 andv>0.

Remark 5:It follows from ~7! that, if k521, we havea522~s21v2! <0. Hence, in this case
there are no curvature homogeneous manifolds such thata.0.

Case II: The shear operator is of Type II.
From Remark 3 we know that in this casek521. Moreover, we can now~locally! construct

a pseudo-orthonormal frame field$E1 ,E2 ,E3% satisfying~3! and ~4! and such that

s~E1 ,E1!5s~E2 ,E2!50, s~E1 ,E2!5s, s~E3 ,Ei !50, iP$1,2,3%.

As before, a straightforward computation now yields that

r~E1 ,E1!5u2
22u1

212k~s2v!2E1~u1!1E2~u2!,

r~E2 ,E2!52u2
21u1

212k~s1v!1E1~u1!2E2~u2!,

r~E3 ,E3!52~s22v2!,
~17!

r~E1 ,E2!52E3~s1v!52E3~s2v!,

r~E1 ,E3!52u2s1E2~s1v!5u2~s2v1k!1E2~k!2E3~u1!,

r~E2 ,E3!522u1s2E1~s2v!52u1~s1v2k!1E1~k!2E3~u2!.

Using the argument introduced in Ref. 1, we can again specify the~local! pseudo-orthonorma
frame field$E1 ,E2 ,E3% in such a way thatk50, and from~4! and~17! we obtain the differential
equations

2~s22v2!5a, ~18!

E3~v!5E3~s!50, ~19!

E3~u1!2u2~s2v!50, ~20!

E3~u2!1u1~s1v!50, ~21!

E2~s1v!12u2s50, ~22!
J. Math. Phys., Vol. 38, No. 2, February 1997
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E1~s2v!12u1s50, ~23!

E1~u1!2E2~u2!1u1
22u2

22b50, ~24!

while the Lie brackets of the pseudo-orthonormal vectorsE1 ,E2 ,E3 are now given by

@E1 , E2#5u2E12u1E222vE3 , ~25!

@E1 , E3#5~s1v!E2 , ~26!

@E2 , E3#52~s2v!E1 . ~27!

As a consequence, we obtain the following.
Theorem 2: Let (M ,g) be a three-dimensional Lorentzian manifold whose Ricci curvat

tensor is given by (2) and such that the shear operators̃ associated to the simple eigenvector E3
is of Type II at the point p. Then there exist a pseudo-orthonormal frame field$E1 ,E2 ,E3% and
functionsv, s, u1, and u2 such that (18)–(27) hold. Conversely, if there exist a (local) pseud
orthonormal frame field$E1 ,E2 ,E3% (in the neighborhood of a point pPM) and functionss, v,
u1, and u2 such that (18)–(27) hold, then the manifold(M ,g) is curvature homogeneous (in th
neighborhood of the point p) and its Ricci tensor is given by (2).

Remark 6:In this case, replacingE3 by 2E3 if necessary, the pseudo-orthonormal ba
$E1 ,E2 ,E3% can always be chosen in such a way thats>0, but it is impossible to simultaneousl
fix the sign of the functionv.

Case III: The shear operator is of Type III.
From Remark 3 we again know that in this casek521, and the assumption made in Rema

2 allows us to~locally! construct a pseudo-orthonormal frame field$E1 ,E2 ,E3% satisfying~3! and
~4! and such that

s~E1 ,E1!5s~E2 ,E2!52h, s~E1 ,E2!51, s~E3 ,Ei !50, iP$1,2,3%,

whereh561. In this case, a straightforward computation yields that

r~E1 ,E1!5u2
22u1

222k~v21!2E1~u1!1E2~u2!,

r~E2 ,E2!52u2
21u1

212k~v11!1E1~u1!2E2~u2!,

r~E3 ,E3!522v2,
~28!

r~E1 ,E2!52E3~v!22kh5E3~v!22kh,

r~E1 ,E3!52u212hu11E2~v!5u2~12v1k!1hu11E2~k!2E3~u1!,

r~E2 ,E3!522hu222u11E1~v!52u1~11v2k!2hu21E1~k!2E3~u2!.

Using ~28! together with the facts thatr~E3 ,E3!5a is constant and that2r~E1 ,E1!5r~E2 ,E2!,
we see thatv is constant and thatk50. Moreover, replacingEi by 2Ei if necessary, we can
choose the pseudo-orthonormal frame field$E1 ,E2 ,E3% in such a way thath51 andu1>0. It then
follows from ~28! and ~4! that u152u25u, and we obtain the equations

22v25a, ~29!

E3~u!2vu50, ~30!
J. Math. Phys., Vol. 38, No. 2, February 1997
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E1~u!1E2~u!2b50. ~31!

The Lie brackets of the pseudo-orthonormal vectorsE1, E2, E3 are now given by

@E1 , E2#52uE12uE222vE3 , ~32!

@E1 , E3#5E11~v11!E2 , ~33!

@E2 , E3#5~v21!E12E2 , ~34!

and we obtain the following theorem.
Theorem 3: Let (M ,g) be a three-dimensional Lorentzian manifold whose Ricci curvat

tensor is given by (2) and suppose that the shear operators̃ associated to the simple eigenvect
E3 is of Type III in the neighborhood of the point pPM . Then there exist a (local) pseudo
orthonormal frame field$E1 ,E2 ,E3%, a functionu, and a constantv such that (29)–(34) hold.
Conversely, if there exist a (local) pseudo-orthonormal frame field$E1 ,E2 ,E3% (in the neighbor-
hood of a point pPM ), a functionu, and a constantv such that (29)–(34) hold, then the manifold
(M ,g) is curvature homogeneous (in the neighborhood of the point p) and its Ricci tensor is
by (2).

III. LOCAL ISOMETRIES AND LOCAL HOMOGENEITY

Let (M ,g) be a three-dimensional Lorentzian manifold whose Ricci curvature tensor is g
by ~2!. It was shown in Ref. 9 that, if the simple eigenvectorE3 is a Killing vector field alongM ,
i.e., if s(X,Y)50 for all X,YPX(M ), thenM is automatically locally homogeneous. As we a
mainly interested in nonhomogeneous curvature homogeneous manifolds, we will therefo
strict our attention to the case where the shear tensorsÓ0.

Suppose that (M ,g) and (M 8,g8) are two three-dimensional Lorentzian manifolds who
Ricci tensor satisfies~2! ~and such thatsÞ0 if s̃ is of Type I or II!. Let $E1 ,E2 ,E3% ~resp.
$E18 ,E28 ,E38%! be the local pseudo-orthonormal frame field alongM ~resp.M 8! constructed as in
Sec. II. It is easily seen that, if (M ,g) and (M 8,g8) are locally isometric, the shear operatorss̃
ands̃8 associated toE3 andE38 are of the same type. The following theorem gives, for each t
of shear operator, necessary and sufficient conditions for the differentiable mappingF:M→M 8 to
be a local isometry.

Theorem 4: Let F:M→M 8 be a differentiable mapping from M to M8. Then the following
holds:

~1! If the shear operators̃ is of Type I withk51, then F is a local isometry if and only if

F!E15eE18 , F!E25eE28 , F!E35E38 , or
~35!

F!E15eE28 , F!E25eE18 , F!E352E38 , e561.

~2! If the shear operators̃ is of Type I withk521, then F is a local isometry if and only if

F!E15eE18 , F!E25eE28 , F!E35E38 , e561. ~36!

~3! If the shear operators̃ is of Type II, then F is a local isometry if and only if

F!E15eE18 , F!E25eE28 , F!E35E38 , or
~37!

F!E15eE18 , F!E252eE28 , F!E352E38 , e561.

~4! Finally, if the shear operators̃ is of Type III, then F is a local isometry if and only if
J. Math. Phys., Vol. 38, No. 2, February 1997
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F!E15E18 , F!E25E28 , F!E35E38 . ~38!

Proof: First, if F satisfies one of the conditions stated in the theorem, it maps a pse
orthonormal basis into a pseudo-orthonormal basis and hence it is an isometry.

Conversely, let us assume thatF is a local isometry. ThenF preserves, up to sign, the simp
eigenvectorE3 of the Ricci tensor, i.e.,F!E3 5 6E38 . Moreover,F also preserves the Levi–Civit
connection of (M ,g), and hence the shear tensors of E3 and ~up to sign and, possibly, up to
permutation! the associated vector fieldsE1 andE2. The special choices of the frame field d
scribed in Sec. II then yield thatF satisfies the conditions stated in the theorem.

Using this theorem, we can now prove the following.
Corollary 1: Let (M ,g) be a three-dimensional Lorentzian manifold whose Ricci curvat

tensor is given by (2). Then(M ,g) is locally homogeneous if and only if (with the notatio
introduced in Sec. II) one of the following holds:
~1! s is constant along M in the case wheres̃ is of Type I or II;
~2! u is constant along M in the case wheres̃ is of Type III.

Proof: First, let us assume that (M ,g) is locally homogeneous and thats̃ is of Type I. Letp
and p8 be two points onM , and let $E1 ,E2 ,E3% ~resp. $E18 ,E28 ,E38%! be the local pseudo
orthonormal frame fields aroundp ~resp.p8! constructed as in Sec. II. The local homogeneity
(M ,g) implies the existence of a local isometryF such thatF(p)5p8, and it follows from
Theorem 4 that

F!E15eE18 , F!E25eE28 , F!E35E38 , or

F!E15eE28 , F!E25eE18 , F!E352E38 ,

wheree561 ~the second case only arising ifk51!. As F preserves the Ricci curvature tensor a
its derivatives, we find that

“E1
r~E1 ,E3!~p!5“E

18
r~E18 ,E38!~p8! or “E1

r~E1 ,E3!~p!52“E
28
r~E28 ,E38!~p8! ~39!

~the second case again only arising fork51!. From ~4! and the expression for the Levi-Civit
connection it follows that

“E1
r~E1 ,E3!5k~a2b!s, “E2

r~E2 ,E3!52~a2b!s,

which, together with~39!, yields thats(p)5s(p8). As this property holds for any two points o
M , it follows thats is constant alongM .

Conversely, suppose thats is constant alongM . If s[0, then we know from Ref. 9 tha
(M ,g) is locally homogeneous. IfsÞ0, it follows from the differential equations~7!–~16! thatv
is constant alongM and that

u15u250.

As a consequence, the functionsg([Ei ,Ej ],Ek) are constant alongM for all i , j ,kP$1,2,3%, im-
plying the local homogeneity of (M ,g).

In the case where the shear operators̃ is of Type II, the theorem can be proved by a simil
argument involving the functions

“E1
r~E2 ,E3!5~a2b!~s1v!, “E2

r~E1 ,E3!5~a2b!~s2v!.

Finally, let us assume that (M ,g) is locally homogeneous and thats̃ is of Type III. Then it
follows from ~4! and the expression for the Levi–Civita connection that
J. Math. Phys., Vol. 38, No. 2, February 1997
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¹E1E1
2 r~E1 ,E3!52~a2b!u,

and the argument used before yields thatu is constant alongM . Conversely, ifu is constant along
M , it follows from ~29!–~34! that all the functionsg([Ei ,Ej ],Ek) are constant, implying the loca
homogeneity of the manifold (M ,g).

IV. THE COMPLETE ANALYSIS OF TYPE I

The aim of this section is to investigate the~local! existence of nonhomogeneous thre
dimensional Lorentzian manifolds whose Ricci curvature tensor is given by~2! and whose shea
operator is of Type I. In Ref. 8, D. McManus claims that, ifaÞ0, the only solutions of the
differential equations~7!–~16! are given by

u15u25b50,

yielding thatv ~and hences! is constant alongM and therefore implying that no nonhomog
neous solutions exist. We will show, however, that the system of differential equations~7!–~16!
can be reduced to a system of two~partial! differential equations of second order. We then stu
the existence of solutions to these differential equations, and construct an explicit examp
nonhomogeneous three-dimensional Lorentzian manifold whose Ricci curvature tensor is
form ~2! with aÞb50, thereby pointing out and correcting the mistake in Ref. 8. Finally, us
Theorem 4, we determine which of these Lorentzian manifolds are locally isometric, th
generalizing the results from Refs. 1 and 3 to the case of three-dimensional Lorentzian ma
with a Ricci curvature tensor of the form~2!.

As in the Riemannian case,1 we restrict to generic points onM , and we choose a coordinat
system (x,y8,z8) on a neighborhoodU in M such that, for all pointspPU,

]

]x
~p!5E3~p!.

Using the same technique as in Ref. 1, it can be shown that

]2u1
]x2

5
ka

2
u1 , ~40!

implying that the solution of the differential equations~7!–~16! depends on the sign ofka.
If ka.0, puttingl 5 Aka/2 and using the techniques from Ref. 1~with only minor modifi-

cations! we find that the system of partial differential equations~7!–~16! can be reduced to the
following system of two partial differential equations of second order ins andw5b1c2 :

w
]2

]y]z
XlnS sv

w D C2kv250, ~41!

2l2
w

s

]2s

]y]z
22l2w

2s22l2

s2~s22l2!

]s

]y

]s

]z
1bk~s22l2!50. ~42!

A straightforward application of the Cauchy–Kowalewski theorem yields that, at least i
analytic case, there exists a family of solutions for the equations~7!–~16! depending on four
functions of one variable~the initial conditions for the functionsw ands!, and one function of two
variables~asw5b1c2!.

Example 1:To construct an explicit nonhomogeneous example, we choose a~nonconstant!
functions(y). Then it follows immediately from~42! thatb50, while ~41! takes the form
J. Math. Phys., Vol. 38, No. 2, February 1997
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w
]2 ln w

]y]z
1~s22l2!50,

which admits the solution

w5 1
2~s22l2!~y1z!2.

The computations in the caseska,0 anda50 are again similar to those in the Riemanni
case~with only minor modifications!, and they will therefore be omitted here.

Summarizing the results of this section we have determined, for each choice of the con
a and b, the family of ~nonhomogeneous! three-dimensional Lorentzian metrics whose Ric
curvature tensor is given by~2!. If k51, this family depends on four functions of one variable a
one function of two variables~if aÞ0! or on five functions of one variable~if a50!. If k521,
Remark 5 shows that there only exists such a family~which, again, depends on four functions
one variable and one function of two variables!, in the case wherea,0.

If a.0, it is easily seen from Theorem 4 and the choice of the vectorsE1 , E2 , E3 that the
differentiable mappingF: M→M 8 given by

x85x8~x,y,z!, y85y8~x,y,z!, z85z8~x,y,z!,

is a local isometry if and only if

x856x1 f 1~y,z!, y85 f 2~y!, z85 f 3~z!, or

x856x1 f 1~y,z!, y85 f 2~z!, z85 f 3~y!

~the latter case only arising ifk51!. If a,0, a similar argument using the Cauchy–Kowalew
theorem shows that, at least in the analytic case, the family of isometries again depends
function of two variables and two functions of one variable. We conclude that, in the caseaÞ0,
there is a family of isometries depending on two functions of one variable and one function o
variables.

In the case wherea50, Theorem 4 implies that the differentiable mappingF: M→M 8 is a
local isometry if and only if

x85x1 f 1~z!, y85y1 f 2~z!, z85 f 3~z!

~or a similar expression in the other cases!. We conclude that, in this case, the family of isometr
depends on three functions of one variable, and we obtain the following.

Theorem 5: Let aÞb be constants. Ifk521 and a>0, there are no nonhomogeneou
curvature homogeneous manifolds whose Ricci tensor is of the form (2) and such that the
operator associated to the simple eigenvector is of Type I. In the other cases, there is a fa
(real analytic) metrics of this type which are not locally isometric, and this family is parametr
by two arbitrary functions of one variable.

V. THE COMPLETE ANALYSIS OF TYPE II

In this section we study three-dimensional Lorentzian manifolds whose Ricci curvature t
is of the form~2! and such that the shear operator associated to the simple Ricci eigenvectoE3 is
of Type II. In Ref. 8, D. McManus again claims that, ifaÞ0, the only solutions of the differentia
equations~18!–~27! are given by

u15u25b50,

yielding thatv is constant alongM and hence implying that no nonhomogeneous solutions e
Using the same argument as in Sec. IV, we prove the existence of~nonhomogeneous! solutions to
these differential equations~for any choice ofa andb!. As in the previous case, we will als
determine which of these manifolds are locally isometric.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Restricting, as before, to generic points onM and choosing a suitable coordinate system,~20!
and ~21! take the form

]u1
]x

5~s2v!u2 ,
]u2
]x

52~s1v!u1 , ~43!

while ~26! and ~27! yield that

]a

]x
52~s1v!d,

]b

]x
52~s1v!e,

]c

]x
52~s1v! f ,

~44!
]d

]x
5~s2v!a,

]e

]x
5~s2v!b,

] f

]x
5~s2v!c.

Differentiating ~43! with respect tox and using~18!, ~19!, and~43!, we see that

]2u1
]x2

52
a

2
u1 ,

and hence the solution of the differential equations~43! depends on the sign ofa. In what follows
we will again treat the casesa.0, a,0, anda50 separately.

Case IIa:a,0
Puttingl 5 A2a/2 ~and omitting the expressions already presented in Ref. 1!, ~43! yields

u252
s1v

l
Aelx1

s1v

l
Be2lx, ~45!

while ~44! implies that

d5
s2v

l
a1e

lx2
s2v

l
a2e

2lx,

e5
s2v

l
b1e

lx2
s2v

l
b2e

2lx, ~46!

f5
s2v

l
c1e

lx2
s2v

l
c2e

2lx.

Specifying a new coordinate system (x,y,z) in such a way that

b2~y,z!5c1~y,z!50, b1~y,z!c2~y,z!Þ0,

and using the techniques introduced above, we obtain two partial differential equations of s
order ins andw5b1c2 , and the Cauchy–Kowalewski theorem yields that, at least in the ana
case, there exists a family of solutions for the equations~18!–~27! depending on four functions o
one variable and one function of two variables.

Case IIb:a.0
Again omitting formulas already presented in Ref. 1, we now obtain from~43! that

u25
s1v

l
B coslx2

s1v

l
A sin lx, ~47!
J. Math. Phys., Vol. 38, No. 2, February 1997
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wherel 5 Aa/2, while ~44! implies that

d52
s2v

l
a2 coslx1

s2v

l
a1 sin lx,

e52
s2v

l
b2 coslx1

s2v

l
b1 sin lx, ~48!

f52
s2v

l
c2 coslx1

s2v

l
c1 sin lx,

and computations similar to those above again yield two partial differential equations of s
order ins andb1 ~depending on a free parameterc2! implying that, in the analytic case, ther
exists a family of solutions which depends on four functions of one variable~the initial conditions
for the functionss andb1! and one function of two variables~namely,c2!.

Case IIc:a50
In this case,~18! yields thats25v2, but as we have remarked above, we cannot chooses and

v to have the same sign, and hence we have to consider the two possibilitiess56v separately.
~1! s5v. It follows from ~27! that we can choose coordinates (x,y,z) such that

E15a
]

]x
1b

]

]y
1c

]

]z
, E25

]

]y
, E35

]

]x
.

From ~23! and the fact thatsÞ0 we see that

u150,

and ~19! and ~21! then imply that

]s

]x
5

]u2
]x

50.

Moreover, the equations~22! and ~24! take the form

]s

]y
1u2s50, ~49!

]u2
]y

1u2
21b50, ~50!

while ~25! and ~26! can be written as

]a

]x
50,

]b

]x
522s,

]c

]x
50,

~51!
]a

]y
52u2a12s,

]b

]y
52u2b,

]c

]y
52u2c.

If b.0, the complete solution of~50! is given by

u25Ab tan„2Aby1 f 1~z!….
J. Math. Phys., Vol. 38, No. 2, February 1997
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Substituting this expression in~49! we then obtain that

s5
f 2~z!

cos„2Aby1 f 1~z!…
,

and it follows from~51! that

a5
2 f 2~z!y1 f 3~z!

cos„2Aby1 f 1~z!…
, b5

22 f 2~z!x1 f 4~z!

cos„2Aby1 f 1~z!…
, c5

f 5~z!

cos„2Aby1 f 1~z!…
.

The caseb,0 can be integrated in a similar fashion, and this case will therefore be om
~2! s52v. The computations in this case are~up to minor changes! the same as those in th

previous case, and they are therefore omitted here.
Finally, using the argument given in Sec. IV, we obtain the following theorem.
Theorem 6: Let aÞb be constants. Then there exists a family of local (real analytic) n

homogeneous Lorentzian metrics whose Ricci curvature tensor satisfies (2) and whose
operator s̃ is of Type II, and which are not locally isometric, and this family depends on
arbitrary functions of one variable.

VI. THE COMPLETE ANALYSIS OF TYPE III

Choosing, as before, an appropriate coordinate system, it follows from~30! that

]u

]x
5vu. ~52!

Case IIIa:a522v2Þ0
In this case, we immediately find from~52! that

u5A~y,z!evx,

while ~33! and ~34! yield that

]a

]x
52a2~v11!d,

]b

]x
52b2~v11!e,

]c

]x
52c2~v11! f ,

~53!
]d

]x
52~v21!a1d,

]e

]x
52~v21!b1e,

] f

]x
52~v21!c1 f ,

and hence~we suppose here thatvÞ21, the casev521 being handled in a similar way!

d52a1~y,z!evx1
v21

v11
a2~y,z!e2vx,

e52b1~y,z!evx1
v21

v11
b2~y,z!e2vx,

f52c1~y,z!evx1
v21

v11
c2~y,z!e2vx

~where we have again omitted formulas already presented in Ref. 1!. Choosing a coordinate
system such thatb25c150, it follows from ~32! that
J. Math. Phys., Vol. 38, No. 2, February 1997
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a15
1

v S ]

]y
ln c2D1

A

v
, a252

1

v
c2S ]

]z
ln b1D , ~54!

and substituting these expressions in~31! and ~32! we obtain

2c2b1v
]A

]z
22Ac2v

]b1
]z

2bb1~v11!50,

2v~v11!1b1c2
]2

]y]z
~ ln b1c2!1c2S ]A

]z
2A

]

]z
ln b1D50.

Applying the Cauchy–Kowalewski theorem then proves the existence of a family of solu
depending on three functions of one variable and one function of two variables.

Example 2:Puttingc251 in the above equations, it is easily seen that

a152
b~v11!

2v2 ~y1z!, a252
2

v
~y1z!21, b152

~v11!~2v22b!

4v
~y1z!2

provide a solution of~29!–~34! and hence determine a nonhomogeneous metric whose R
tensor takes the form~2! with a522v2.

Case IIIb:a5v50
In this case,~52! implies that

u5A~y,z!,

and putting

E185
E11E2

&

, E285
2E11E2

&

, E385E3 , ~55!

we obtain the equations

&E18~u!5b,

@E18 , E28#52&uE18 ,

@E18 , E38#50,

@E28 , E38#522E18 ,

which can easily be integrated, and whose solution depends on four functions of one varia
If aÞ0, it follows again from Theorem 4 and the choice of the frame fieldE1 , E2 , E3 that

there is a family of isometries depending on two functions of one variable and one function o
variables, while in the case wherea50, the family of isometries depends on three functions of o
variable.

Summarizing the results of this section, we now obtain the following
Theorem 7: Let aÞb, a<0, be constants. Then there exists a family of local (real analy

nonhomogeneous Lorentzian metrics whose Ricci curvature tensor satisfies (2) and whos
operators̃ is of Type III, and which are not locally isometric, and this family is parametrized
one arbitrary function of one variable.
J. Math. Phys., Vol. 38, No. 2, February 1997
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In Table I, we summarize the classification results stated in Secs. IV–VI. In particular, T
I gives, for all possible values ofa andk, the number of arbitrary functions on which the germ
of the ~real analytic! Lorentzian metrics depend.
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TABLE I. The number of arbitrary functions determining the germs of real analytic Lorentzian metrics associateda
andk.

k a Type I Type II Type III

11 1 2 functions none none
0 2 functions none none
2 2 functions none none

21 1 none 2 functions none
0 none 2 functions 1 function
2 2 functions 2 functions 1 function
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Feynman identity: A special case. I
G. A. T. F. da Costaa)
Instituto de Fisica Gleb Wataghin-DRCC, Universidade Estadual de Campinas, Unicamp,
Caixa Postal 6165, 13083-970-Campinas, SP, Brasil

~Received 23 April 1996; accepted for publication 14 October 1996!

There is an identity due to Feynman which relates graphs and closed curves on a
lattice and it was used by Feynman in his combinatorial proof of Onsager’s closed
formula for the partition function of the two-dimensional Ising model. Long ago
Sherman considered a special case of this identity and pointed out similarities with
the Witt identity of Lie algebra theory. In this paper and following, we revisit this
special case and solve some problems related with it. In particular, the weights are
computed explicitly using paths and words and a direct connection with the Witt
formula is found. ©1997 American Institute of Physics.
@S0022-2488~97!03001-6#

I. INTRODUCTION

First, we introduce Feynman identity from which an ‘‘analog to the Witt identity’’ is deriv
Feynman identity1–7 consists of a relation between graphs and closed curves on a lattice. In
to introduce Feynman identity some preliminary definitions will be given.

Consider an arbitrary planar lattice. An admissible graph is a finite set of edges such t
even number of edges meet at every site. The edges of the lattice are numbered with
positive integersi and oriented. Both the numbering and the orientation are arbitrary but
given they must be kept fixed. Also, associated to each edgei there is a commuting indeterminat
di so that given an admissible graphG, the product

I ~G!5)
i
di ~1.1!

is defined wherei has range over the lines ofG. The empty graph is by convention an admissib
graph and in this caseI[1.1

A path p on the lattice is a sequence of line segments each starting at the site whe
previous line ended, the last line ending at the site from which the first line started. Thusp is
closed. The path is subjected to the constraint that it never goes backwards over the previo
It is clear that in view of these properties treelike lattices are not allowed.

A pathp can be conveniently represented by a word, that is, an ordered sequence of no
muting indeterminatesDi , wherei distinguishes the edges of the lattice. A generic word is the
the form

W ~p!5Dj 1

e1Dj 2

e2•••Djn

en ~1.2!

for somen and whereei511~21! if the path traverses the edgej i following the direction
~opposite direction! assigned to it. Because a path is closed it is defined to within its circular o
so that

Dj 2

e2•••Djn

enD j 1

e1[Dj 1

e1Dj 2

e2•••Djn

en. ~1.3!

a!Electronic mail: gdacosta@ifi.unicamp.br
0022-2488/97/38(2)/1014/21/$10.00
1014 J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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There are commuting indeterminatesdi associated to the edges so that to the wordW (p) corre-
sponds the commuting indeterminate

I ~p!5di1
m1di2

m2•••dik
mk, ~1.4!

wherei t ,mt , t51,...,k, for somek, are the distinct edges and number of times they are cov
by the pathp, respectively.

A nonperiodic path is one which is not the repetition of some subpath of it two or more ti
Thus a periodic path is one which can be given the word representation

~Dj 1

e1•••Dj l

el !a ~1.5!

for somel anda >2 and where the subword in between brackets is nonperiodic.
A path p has associated to it a sign given by

sign~p!5~21!s~p!, ~1.6!

where

s~p!511
g

2p
~1.7!

andg /2p is the number of 2p-angles turned by a tangent vector while traversingp.
Suppose the lattice is embedded in the plane so that paths can be drawn in a extend

that is, whenever the path traverses an edge more than once the repeated lines are drawn
separated so that the path actually describes a normal closed curve. By definition, a norma
curve on the plane is a curve with no singularities other than a finite number of crossing
where the curve intersects itself at a right angle. Given a wordW (p) there is more than one wa
of drawing it which are all equivalent.4,8

Let V denote the total number of crossings of the normal curve drawn forp. By a theorem of
Whitney8

g52p@m1~V12V2!#, ~1.8!

wherem561 andV1,V2 are the numbers of crossing points of positive and negative t
respectively, and

V11V25V. ~1.9!

~For the precise definitions ofm561 andV1,V2 see Refs. 8–9, but they are not needed he!.
Therefore,

~21!~g/2p!115~21!V. ~1.10!

For any pathp define

W~p!5sign~p!•I ~p!. ~1.11!

The pathp21 is traversed in the opposite direction of that ofp so thatW ~p21! is obtained from
W (p) reversing all signs in the exponents. Furthermore,g (p21)52g(p) but sign~p21!5sign(p)
andW(p)5W(p21).

Feynman identity1–7 states the following:
J. Math. Phys., Vol. 38, No. 2, February 1997
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)
p

@11W~p!#511(
G

I ~G!. ~1.12!

The sum on the rhs is taken over all admissible graphs on the lattice. The unity on the righ
side of ~1.12! stands for the empty graph. The product on the lhs is over all distinct nonper
paths. By distinct we mean the following: Given a nonperiodic path the circular permutatio
this path represent the same path and only one element of this class should appear in~1.12!.
Likewise with inversions which consist of the reversing of the orientation of the path. Thu
product on the lhs of~1.12! is really over the equivalence classes of nonperiodic paths.

According to Refs. 1 and 4, this identity first appeared as a conjecture in some lecture
by Feynman and it was an important step of his combinatorial proof of Onsager’s closed fo
for the partition function of the two-dimensional Ising model. Feynman’s lecture notes appea
book form only later.7 The first proof of the conjecture—now a theorem—appeared in the p
by Sherman.1 Burgoyne gave it a second proof which appeared in Ref. 4. See also Kaste
paper6 and Green and Hurst’s book.5

In Ref. 2, Sherman considered the special case of~1.12! when the lattice consists of a sing
site andr oriented lines as shown in Fig. 1.

It is not difficult to see that in this case Feynman identity~1.12! can be expressed as

)
m1 ,...,mr>0

~11d1
m1•••dr

mr !N1~m1 ,...,mr !~12d1
m1•••dr

mr !N2~m1 ,...,mr !5 )
1< j<r

~11dj !. ~1.13!

To write ~1.12! in this form, note that a pathp traverses lines 1,...,r a number of times given by
m1 ,...,mr ,mi>0, respectively. Of course, there are other distinct and nonperiodic paths wit
same sequencem1 ,...,mr . Collect all paths corresponding to the same sequencem1 ,...,mr and
call N6(m1 ,...,mr) the numbers of distinct nonperiodic paths with positive and negative s
respectively, and multiply over all sequences. We then get the lhs of~1.13!. It can be readily seen
that the admissible subgraphs of the lattice in Fig. 1 are given by the terms in the rhs of~1.13!
when the product is factored out.@In Ref. 2 this relation appears with the rhs squared. Indeed,
is the case if the pathsp21 are included in the lhs of~1.13! .#

Let z1 ,...,zr be commuting indeterminates. Witt identity2,10,11consists of the following rela-
tion:

)
m1 ,...,mr>0

~12z1
m1•••zr

mr !M ~m1 ,...,mr !512(
i51

r

zi , ~1.14!

where

M ~m1 ,...mr !5
1

N (
dum1 ,m2 ,...,mr

m~d!
~N/d!!

~m1 /d!!...~mr /d!!
~1.15!

FIG. 1. The lattice for the special case.
J. Math. Phys., Vol. 38, No. 2, February 1997
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with N5m11•••1mr . The summation in~1.15! runs over all common divisorsd of mi ,
i51,...,r , andm(d) is the Mobius function which is defined for positive integers by the ru
m~1!511, and ford 5 p1

e1•••pq
eq, p1 ,...,pq being distinct primes,m(d)50 if any ei.1, and

m(p1p2•••pq)5(21)q.
In the case thatz15z25•••5zr , ~1.14! reduces to the following:

)
N51

`

~12zN!Mr ~N!512rz, ~1.16!

where

Mr~N!5
1

N (
duN

m~d!r N/d. ~1.17!

One can associate an oriented lattice to the Witt identity above. The lattice is also th
shown in Fig. 1. According to Ref. 2,M (m1 ,...,mr) is the number of equivalence classes
closed, nonperiodic, counterclockwise paths of lengthN which traverse linei a number of times
given bymi .

Relation~1.13! has an interesting resemblance to the Witt identity.2,10,11Indeed, it generalizes
~1.12! in the sense that paths traveling in all directions are allowed. Sherman calls relation~1.13!
‘‘an analog to the Witt identity.’’

In Ref. 2, Sherman did not give a solution for identity~1.13! based on formulas for the
weightsN6 analog to~1.15! or ~1.17!, that is, in terms of Mobius function. We shall see that af
a slight rewriting of the lhs of~1.13! new weights—calledu6—are defined which can be solved
terms of Mobius function.

Our aim in this paper and its sequel is to compute the weights explicitly. In this pape
consider the caser52 and prove that the weights have interesting properties which are behin
existence of relation~1.13! in this case and find a direct connection with Witt formula. The c
when r.2 will be discussed in part II to this paper.

Whenr52 the lattice consists of only two bonds and one site. We label the lines by 1 a
and assign directions to them as shown in Fig. 2.

The nontriviality of this case stems from the fact that the product on the lhs of~1.13! has an
infinite number of factors whereas the rhs has a finite number of terms. To see this a
example suffices. The pathD1

1nD2
1m is nonperiodic for any nonzeron,m so infinite nonperiodic

paths are possible. The simplest nonperiodic paths are those which cover either line of the
only once, namely,p15D1

11 and p25D2
11 andW(p1)51d1 andW(p2)51d2 , respectively.

Thus the lhs of~1.13! is equal to

~11d1!~11d2! )
m1 ,m2.0

~11d1
m1d2

m2!N1~12d1
m1d2

m2!N2. ~1.18!

The only admissible graphs are those shown in Fig. 3.

FIG. 2. The lattice for the simplest nontrivial case.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Hence,

11(
G

I ~G!511d11d21d1d2[~11d1!~11d2!. ~1.19!

Comparing~1.18! and ~1.19! we conclude that if~1.13! should be true in this case then

)
m1 ,m2.0

~11d1
m1d2

m2!N1~12d1
m1d2

m2!N251. ~1.20!

First, we discuss the cased15d25d. In this case~1.20! can be equivalently written as

)
N52

`

~11dN!u1~N!~12dN!u2~N!51. ~1.21!

The meaning ofN, u1 , andu2 are as follows. Note that any pathpÞp1 ,p2 traverses the lines 1
and 2 a nonzero number of times, saym1 and m2, respectively. So a numberN>2 with
N5m11m2 can be naturally associated top. Of course, there are other paths with distinctm1 and
m2 but sameN. These are given by the other partitions ofN into two nonzero parts. Indeed, th
word for a generic pathp on the lattice of Fig. 2 has the general form

W k
s~N!5D1

a1D2
b1D1

a2D2
b2•••D1

akD2
bk, ~1.22!

wherem15ua1u1•••1uaku andm25ub1u1•••1ubku, k is the number of pairsD1
ajD2

bj in the word
and s is the number of negative exponents. From~1.22! we can see that words can further b
classified according to the partitions ofm1 andm2 into k parts. Since anyp is closed we are free
to choose which line it traverses first. According to~1.22! we have chosen line 1. The word
associated to a givenN-called words of lengthN- can, therefore, be classified and counted us
partitions. See Appendix A. The weightsu1(N) andu2(N) in ~1.21! are the numbers of distinc
nonperiodic words of lengthN with positive and negative sign, respectively. Theu’s depend
solely on the numberN.

We compute the weightsu1(N) andu2(N) explicitly in Sec. III and deduce some relation
satisfied by them. See Lemma 2 and Theorem 1 in Sec. III. These relations constitute the
nism of cancellations responsible for the existence of~1.21!. In the actual computation of theu’s
we make use of a nice result proved in Sec. II, Lemma 1, about the sign of a pathp. In Sec. III B,
the results of Sec. III A are generalized to the case whend1Þd2 . In this case~1.13! can be
equivalently written as

)
N52

`

)
m1 ,m2.0
m11m25N

~11d1
m1d2

m2!u1~m1 ,m2 ;N!~12d1
m1d2

m2!u2~m1 ,m2 ,N!51. ~1.23!

FIG. 3. Admissible graphs in the simplest case.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The second product runs overm1 ,m2.0 such thatm11m25N. The weightsu6(m1 ,m2 ;N) are
the numbers of distinct nonperiodic words with6 sign associated with a particular partitio
(m1 ,m2) of N. The weights are given in Sec. III B. They also satisfy some relations which ca
used to prove~1.23!. See Lemma 3 and Theorem 2 of Sec. III. In Appendix B, explicit proo
provided for some of the results in Sec. III. In Sec. IV, we summarize and discuss our resul
open problems.

II. RULE OF SIGNS

Let W k
s(N) be the word of lengthN with k pairs ands negative exponents given by~1.22!.

In this section we prove the following lemma:
Lemma 1:Let p be the closed path on the lattice in Fig. 2 given byW k

s(N). Then, the sign
of p is

~21!N1k1s11. ~2.1!

Proof: The proof is divided in two parts. In the first part we draw a normal closed cu
compatible withW k

s(N). From~1.10! we know that the sign of a closed pathp in general is given
by

~21!V, ~2.2!

whereV is the number of self intersections of a normal closed curve compatible withW k
s(p). We

count the number of self-intersectionsV of this particular curve as a function ofN, k ands and
find ~2.1!. In the second part we then prove that one should get the same result if another n
closed curve which is a deformation of the first and compatible withW k

s(N) is employed.
An expression forV as a function ofN, k, ands can be found drawing a normal closed cur

associated to the path described by the wordW k
s(N). We choose the curve given by the followin

rules. A path segmentDi
x, xÞ0, will be drawn always inwards winding the linei a number of

times given byuxu. It will do it counterclockwise~clockwise! if x.0 ~if x,0!. After that the path
moves outwards. The important observation here is that on its way out it crosses itselfuxu21
times. See Fig. 4. We remark that it is possible to do it the other way around, namely, to draDi

x

beginning from inside and going outwards but since the path is closed it will eventually croDi
x

the same number of timesuxu21.

FIG. 4. How to count crossings~I!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Let all the exponents in the word be positive for the time being, that is,ai , bi.0 ands50

W k
05D1

a1D2
b1D1

a2D2
b2...D1

akD2
bk. ~2.3!

Figure 5 shows the sequence of path segmentsD1
a1,D1

a2,...,D1
ak which wind line 1. Looking at the

figure we observe that besides crossing itselfai21 times on its way out the path segme
D1
aı(1 , i < k) crossesai21 times each the outgoing path segments connectingD1

a1 toD2
b1,D1

a2 to

D2
b2,..., D1

ai21 to D2
bi21 and the incoming path segments which connectD2

b1 to D1
a2, D2

b2 to

D1
a3,..., D2

bi21 to D1
ai. The total number of crossings produced in this way isA15(a121)

12(a221)14(a321)1•••12(k21)(ak21).
A similar analysis reveals that the complementary segments of the curve which wind

produce a number of crossings given byA25(b121)13(b221)15(b321)1•••
1(2k21)(bk21). See Fig. 6.

Last but not least there are additionalB5ak1ak211•••1a2 crossings formed when the pat
comes down to close itself at the initial point at, say,e after windingD2 the last time around.

The total number of crossings obtained in the way just described is, there
Vk
05A11A21B and it is equal to

Vk
05N2k2112(

a51

k21

a@aa111ba1122#. ~2.4!

Thus

~21!Vk
0
5~21!N1k11. ~2.5!

FIG. 5. How to count crossings~II !.
J. Math. Phys., Vol. 38, No. 2, February 1997
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We now consider the casesÞ0. Let’s suppose for the time being that the signs are locate
the first s exponents. Negative signs in the exponents mean that the path changes dir
occasionally. In the case of the word

W k
s5D1

2a1D2
2b1D1

2a2D2
2b2•••D1

2a2 jD2
2b2 jD1

a2 j11D2
b2 j11•••D1

akD2
bk, ~2.6!

where we takes52 j , these occur on two occasions. There is a change in direction to go
D2

2b2 j to D1
a2 j11 and, again, when the path connects2

bk to D1
2a1 and close. Geometrically, a pair o

any two adjacent letters with the same sign in the exponents can be seen as representing a
path segment. See Fig. 7. During the first changeD2

2b2 j→D1
a2 j11 the path shifts sides going from

the right side to the left and in doing so it has to cross all vertical segment
D1

2a1D2
2b1•••D1

2a2 j , a total of 2j21 lines and, hence, crossings. After traversingD2
1bk, the path

comes down, changes its direction a second time and then closes. It crosses itselfB times @but
these crossings were already accounted for by~2.4!# plus one because it must cross the verti
line connectingD1

2a1 to D2
2b1 to meet the pointe whereD1

2a1 starts. See Fig. 8~b!.

FIG. 6. How to count crossings~III !.

FIG. 7. How to count crossings~IV !.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The existence of this extra crossing not present in the previous case~where all the exponents
are positive! is due to the fact that the exponent inD1

2a1 is negative. See Fig. 8~b!. So, the total
number of crossings due to the signs in the exponents is exactly 4j21115s. The same compu-
tation can now be repeated for the case when the signs are located in the first 2j11 exponents.

Then,Vk
s5Vk

01s and, hence,

~21!V5~21!N1s1k11 ~2.7!

is the sign of the path associated to the word~2.6!.
One can actually prove that for any distribution of thes signs in the exponents the sign of th

path is still given by~2.7!. The number of crossingsV nevertheless changes but the change
always by an even number of crossings. To prove this one applies the same counting pro
used in the previous case to a word with the same numbersk, N ands but arbitrary number of
subwords where the exponents of a given subword have all the same sign, either posi
negative. Let’s represent such a word by the following sequence:

~2s1!~1s2!~2s3!...~1sj !, ~2.8!

where the~2si!~~1si!! with i odd ~even! stand for subwords withsi letters and all exponent
negative~positive!, s11s21•••1sj52k, s11s31s51•••5s, the number of negative exponent
Like in the previous case there is a change in direction to go from~2s1! to ~1s2! and the path then
intersectss121 vertical lines. There is another change in direction to go from1s2 to 2s3. The
path now intersectss11s221 vertical lines. Overall it intersects a number of vertical lines giv
by

C5~s121!1~s11s221!1~s11s21s321!1•••1~s11s21...1sj211sj21!1c, ~2.9!

wherec511 if j is even andc50 if j is odd. When the path windsD2 the last time around it
comes down to meet its starting point ate, the beginning of the path segment represented by
first letter in the word. On its way it crosses itselfB times@this number was already accounted f
in ~2.4!# plus one~if j is even! because it has to cross one more line segment in order to mee
starting point of the path segment represented by the first letter in the word which has a ne
exponent@see Fig. 8~b!#. If j is odd, that is, the word does not end with a letter with nega
exponent, the path does not change directions again andc50. TheB crossings will still occur.

Supposej is even and, hence,c51. Then,

C5 js11~ j21!s21~ j22!s31•••12sj211sj2 j11. ~2.10!

This relation can be rewritten as

FIG. 8. How to count crossings~V!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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C5s1 (
t50

~ j22!/2

~ j22t21!s2t111(
t51

1/2

~ j2~2t21!!s2t2 j11. ~2.11!

Hence,

~21!C[~21!s1~s11s21•••1sj !11. ~2.12!

The sums11s21•••1sj is equal to the total number of letters in the word and this numbe
always even. Therefore, we have

~21!C5~21!s11. ~2.13!

When j is odd,c50 and we get

~21!C5~21!s1 j5~21!s11. ~2.14!

Relation ~2.1! does not depend on the particular curve we chose. Let’s consider another
which is compatible withW k

s(N). In general, this second curve may have different numbe
self-intersections, sayV8, but since it represents the same pathp they must have the same sig
For this reason,V andV8 have not only the same parity, i.e., they are either both odd or e
numbers, but they differ from each other by an even number. Hence, we would eventually fi
same relation~2.1! had we fixed another way of drawing a curve compatible withW k

s(N).

III. THE WEIGHTS u6

In this section we compute the weightsu6 and some crucial relations which are satisfied
them. These results are given in Lemmas 2 and 3 and Theorems 1 and 2 below. In Sec. II
cased15d2 is investigated. In Sec. III B the results are extended to the case of distinctd1 andd2.

A. The case d15d2

In this subsection we compute the weightsu6(N), that is, the number of distinct nonperiod
words of lengthN with positive and negative sign, respectively. First we compute a clo
formula for the number of unrestricted words, that is, periodic and nonperiodic words, cir
permutations and inversions are counted.

As explained in Sec. I words of lengthN are associated with the partitions ofN into two parts
m1 ,m2 and partitions of these intok parts,k51,2,...,M , whereM5min$m1 ,m2%. The number of
unordered partitions ofmi ,i51,2, into k partsa11a21•••1ak and b11b21•••1bk ,a i ,b i.0,
respectively, 1<k<M , is given by12

pk~mi !5Smi21
k21 D . ~3.1!

Thus the number of words withk pairs andai5a i , bi5b i is pk(m1)•pk(m2). This number
counts only words with positive exponents, that is, paths traveling in the positive directions
for the lines. So, we need to ‘‘color’’ the exponents with ‘‘1’’ and ‘‘ 2’’ signs in order to count
all possibilities. To do that we observe that an exponent can be either positive or negative,
given a word withk pairs the exponents can be colored in 22k ways and the total number of word
is 22k•pk(m1)•pk(m2). Then, the total number of words associated toN without any restriction—
that is, periodic and nonperiodic words, circular permutations and inversions counted—is giv

W~N!5 (
m1 ,m2.0
m11m25N

(
k51

M ~m!

22k•pk~m1!•pk~m2!, ~3.2!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where the first summation is over allm1 ,m2.0 such thatm11m25N andM5min$m1 ,m2%. The
summations in~3.2! are easily performed and the result is

W~N!53N211~21!N. ~3.3!

A generic word of lengthN with k pairs ands negative exponents can be written in the for

~D1
a1D2

b1•••D1
alD2

bl !d ~3.4!

for somel andd whered @do not confuse thisd with d appearing in~1.21!# is some common
divisor ofN, k ands and the wordD1

a1D2
b1•••D1

alD2
bl in between brackets is nonperiodic where t

ai andbi can be negative.
Thus the set of all unrestricted words of lengthN can be classified into two subsets. One

constituted by the subset of all distinct nonperiodic words plus their circular permutations an
are of the form given by~3.4! with d51. The other subset is formed by all the periodic words p
their circular permutations if any and they are of the form given by~3.4! with d.1. Note that there
can be no periodic words associated toN whenN is a prime number.

Given a common divisord of k,N,s denote by

WS kd , Nd , sdD ~3.5!

the number of distinct nonperiodic words withk/d pairs, s/d negative exponents an
ua1u1ua2u1•••1ual u1ub1u1ub2u1•••1ubl u5N/d plus their circular permutations. Le
W(k,N,s) be the number of unrestricted words withk pairs ands negative exponents. Then,

W~k,N,s!5 (
du~k,N,s!

WS kd , Nd , sdD , ~3.6!

where the summation runs over all common divisorsd of N,k,s.
The number

4kS N21
2k21D ~3.7!

counts all the possible words of lengthN with k pairs. Write

4k5(
s

S 2ks D . ~3.8!

From ~3.7! and ~3.8! we then get that

W~k,N,s!5S 2ks D S N21
2k21D . ~3.9!

Using Mobius inversion formula14 we can invert relation~3.6! to get

W~k,N,s!5 (
du~k,N,s!

m~d!WS kd , Nd , sdD ~3.10!
J. Math. Phys., Vol. 38, No. 2, February 1997
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which equals the number of words withk pairs ands negative exponents in the first subse
Dividing ~3.10! by k to subtract circular permutations~we remind the reader that because of t
adopted convention that words start always withD1 and ends withD2 circular permutations occu
by pairs! and using~2.1! we get

u6~N!5(
s,k

W~k,N,s!

k
, ~3.11!

where the summations run over alls andk such thats1k1N5odd ~even! in the1~2! case. The
summations can actually be computed and the rhs of~3.11! rewritten in terms of a much simple
function ofN and its divisors. The computation is very simple and it is given in Appendix A.
results are as follows:

Lemma 2:The numberu1(N) is given by

u1~N!5
1

2N (
odd,duN

m~d!3N/d ~3.12!

for anyNÞ2 j , j>0. WhenN52 j ,

u1~2 j !5H 32
j
21

2 j11 if j>1

0 if j50.

~3.13!

The numberu2(N) is given by

u2~N!5H u1~N!2u1SN2 D , if N is even

u1~N!, if N is odd or prime.

~3.14!

Relation~3.12! has to be divided by 2 if paths inversions are excluded.
Proof: See Appendix B.
Relations~3.14! are very important. As we shall see below, they determine the cancella

which are responsible for the existence of identity~1.21!. Let’s see how they work through som
examples. Define

F~N!5~11dN!u1~N!~12dN!u2~N!. ~3.15!

Then, the lhs of~1.21! is equal to

~11d2!u1~2!~12dN!u2~2! )
N53

`

F~N!. ~3.16!

But, u1~2!5u2~2!. Then~3.16! is equal to

~12d4!u1~2! )
N53

`

F~N!. ~3.17!

The termsd2 were canceled! Consider now the casesN53 andN54. Sinceu1~3!5u2~3! and
u45u1~4!2u1~2! it follows that

F~3!5~12d6!u1~3! ~3.18!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and

~12d4!u1~2!F~4!5~12d8!u1~4!. ~3.19!

Therefore, the termsd3 andd4 were also cancelled out from the product. We are left with

~12d6!u1~3!~12d8!u1~4! )
N55

`

F~N!. ~3.20!

Using relations~3.14! one can see explicitly again and again the cancellations of all powersd.
A general proof is given below.

Theorem 1:

)
N52

`

~11dN!u1~N!~12dN!u2~N!51. ~3.21!

Proof:Relations~3.14! and induction prove~3.21!. Call P(d) the product on the lhs of~3.21!.
Using ~3.15!, we writeP in the form

P~d!5 )
pÞ1

F~p!)
n8

F~n8! )
N8Þ2

F~N8!, ~3.22!

wherep,n8eN8 run over the prime, odd but nonprime and the even numbers, respectively. U
relation ~3.14!, second case, it follows that

)
pÞ1

F~p!5 )
pÞ1

~12d2p!u1~p! ~3.23!

and

)
n8

F~n8!5)
n8

~12d2n8!u1~n8!. ~3.24!

Notice here the cancellation mechanism at work. The prime and odd powers ofd are all gone.
The product overN8Þ2 can be written as

)
odd lÞ1

F~2l !)
j>2

)
odd l

F~2 j l !, ~3.25!

where the products overl are over the odd numbers. But

)
odd lÞ1

F~2l !5 )
pÞ1

~11d2p!u1~2p!~12d2p!u2~2p!)
n8

~11d2n8!u1~2n8!~12d2n8!u2~2n8!.

~3.26!

Now, using~3.14!, first case

)
odd lÞ1

F~2l !5 )
pÞ1

~11d2
2p!u1~2p!~12d2p!2u1~p!)

n8
~11d2

2n8!u1~2n8!~12d2n8!2u2~n8!.

~3.27!

Putting together~3.23!, ~3.24!, and~3.27! we get that
J. Math. Phys., Vol. 38, No. 2, February 1997
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P~d!5 )
pÞ1

~11d2
2p!u1~2p!)

n8
~11d2

2n8!u1~2n8!)
j>2

)
l odd

F~2 j l !. ~3.28!

We have thus proved thatP(d)51 up to the powers 2l of d. Call Pj>2 the rhs of~3.28!. Induction
now proves that this is true for all powers ofd. Suppose that it is true up to powers 2~x21!, x>3,
that is,

P5Pj>x5)
p

~11d2
xp!u1~2x21p!)

n8
~11d2

xn8!u1~2x21n8!)
j>x

)
l
F~2 j l !. ~3.29!

Now, repeat calculations up to~3.27! for j5x and use~3.14! to cancel the products overp andn8
in ~3.29!. This proves thatP5Pj>x11.

Relation~3.12! resembles Witt formula~1.17!. They are not exactly the same though beca
in ~3.12! the summation is over the odd divisors ofN only. They coincide, however, whenN is an
odd number,N>3. In this case, then

2u1~N!5M3~N!. ~3.30!

WhenN52 jn, j>1, nÞ1,

2u1~N!5M3~N!1
3N/2

N
. ~3.31!

Thus there is a close connection of the weightu1 with Witt formula. One might try to use this
connection to prove Theorem 1. I did not do it because I wanted to fully display the cancella
which make~1.21! possible and what make them happen are relations~3.14!. Thus it is natural to
work with these relations directly. Things become more transparent this way.

We learn from Ref. 2 that the weightsMr(N) in Witt identity give the dimensions of certai
vector spaces associated with finite Lie algebras. Thus an interesting problem is to try to in
gate whether the special case of Feynman’s identity has a purely algebraic meaning related
algebra theory. This might lead to a deeper understanding about Feynman identity and giv
insights on the Ising model. We hope to address this problem in the future.

B. The case d1Þd2

In this subsection we turn our attention to the case where the indeterminatesd1 andd2 are
distinct. Our goal here is to computeu6(m1 ,m2 ;N) and relations of the kind of~3.14! which can
be used to prove~1.23!.

GivenN, denote byW(m1 ,m2) the number of unrestricted words associated to the partitio
N into the two partsm1 andm2. From ~3.2!, this number is given by

W~m1 ,m2!5 (
k51

M ~m!

W~k,m1 ,m2!, ~3.32!

where

W~k,m1 ,m2!54kSm121
k21 D Sm221

k21 D ~3.33!

is the number of unrestricted words withk pairs associated with the partitions ofm1 andm2 into
k parts. Expanding the powers of 4 as I did in~3.8!, the number of these words withs negative
exponents is given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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W~k,m1 ,m2 ,s!5S 2ks D Sm121
k21 D Sm221

k21 D . ~3.34!

Now, using similar arguments to those in the previous section it is found that

u6~m1 ,m2 ;N!5(
s,k

W~k,m1 ,m2 ,s!

k
, ~3.35!

where we have used~2.1!. The summations run over alls andk such thats1k1m11m25odd
~even! in the1~2! case.

Lemma 3:The numbersu6(m1 ,m2 ,N), wherem11m25N, miÞ0, are given by

u1~m1 ,m2 ,N!5 (
odd dum1 ,m2

m~d!

d (
l51

M /d
22l21

l S m1

d
21

l21
D S m2

d
21

l21
D , ~3.36!

where the summation is over the odd divisors ofm1, m2, and

u2~m1 ,m2 ,N!5u1~m1 ,m2 ,N!2u1Sm1

2
,
m2

2
,
N

2 D , ~3.37!

whenm1 andm2 are both even and soN. Whenm1 andm2 are both odd or just coprime or hav
distinct parity, then

u2~m1 ,m2 ,N!5u1~m1 ,m2 ,N!. ~3.38!

Relation~3.36! has yet to be divided by 2 if inversions are not counted.
Proof: Similar to the proof of Lemma 2 given in Appendix B.
It is easy to show thatu1(m1 ,m2 ,N) satisfies the relation

(
m1 ,m2.0
m11m25N

u1~m1 ,m2 ,N!5u1~N! ~3.39!

as expected if~3.36! is correct.
I haven’t yet found any simpler expression foru1(m1 ,m2 ,N) above like the one found in

Lemma 2 foru1(N) and a relation with the Witt formula~1.15!. A relation with a Jacobi poly-
nomial is, however, possible to establish but not very illuminating.

Now, using relations~3.37!–~3.38! one can prove the following theorem:
Theorem 2:

)
N52

`

)
m1 ,m2.0
m11m25N

~11d1
m1d2

m2!u1~m1 ,m2 ;N!~12d1
m1d2

m2!u2~m1 ,m2 ,N!51. ~3.40!

Proof: Similar to that of Theorem 1.

IV. DISCUSSION

There is an identity due to Feynman which relates graphs and closed curves on a latti
it was used by Feynman in his combinatorial proof of Onsager’s closed formula for the par
J. Math. Phys., Vol. 38, No. 2, February 1997
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function of the two dimensional Ising model.1–7 This identity was proved by Sherman in Refs.
and 3. In Ref. 2 he considered a special case of this identity and pointed out some similaritie
the Witt identity of finite Lie algebra theory.

In this paper we have revisited this special case in its simplest but nontrivial form, th
when the lattice hasr52 lines and one site. By rearranging the identity slightly, new weights w
defined and then computed explicitly in terms of Mobius function. An explicit connection with
Witt formula was obtained whend15d2 . When these are distinct we were still able to comp
the weights in terms of Mobius function but it does not seem to have a relation with the
formula.

Whend15d2 and r52 the formulas for the weights involved the Witt formula forM3(N).
This implies that the number of distinct and nonperiodic paths over a lattice with two line
some good reason we don’t understand yet is essentially given by the number of nonperiodi
covering a lattice with three lines in the positive direction assigned to the lines. It is not cle
moment why this is so. We should try to answer this question when we discuss the case of a
with one site again but arbitrary numberr of lines in part II to this paper.

We learn from Ref. 2 that the weightsMr(N) in Witt identity give the dimensions of certai
vector spaces associated with finite Lie algebras. Thus an interesting problem is to try to in
gate whether the special case of Feynman identity has a purely algebraic meaning related
algebra theory. This might lead to a deeper understanding about Feynman’s identity and gi
insights on the Ising model. We hope to address this problem in the future.

The weight in Witt identity count the number of distinct nonperiodic paths which traverse
lines of the lattice of Fig. 1 counterclockwise. Formulas~1.15! and ~1.17! for these are easily
computed because there is only one weight and one relation. There are two weights a
relation in Feynman identity’s special case and this is the reason why it is not so simp
compute them. The calculation requires some nice but lengthy combinatorial arguments.

Of course, a proof of this special case follows from Sherman’s or Burgoyne’s proo
Feynman identity. But their proof developed to work out the identity in the case of a m
complicated lattice does not allow one to find the weights. A nice feature particular of the s
case is that one does not have to expand the product over the nonperiodic paths explicitly i
to show the cancellations.
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APPENDIX A: THE WORDS OF LENGTH N51 UP TO 4

In this Appendix the complete sets of words of lengthN51 up to 4 are listed. Beside eac
word the sign of the corresponding path is given. The symbolscp,p stand for ‘‘circular permu-
tation’’ and ‘‘periodic’’, respectively, and they indicate whether the word is a circular permuta
of a previous word or it is a periodic word.
J. Math. Phys., Vol. 38, No. 2, February 1997
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N52,k51: D1
11D2

11~1 !

D1
11D2

21~2 !

D1
21D2

11~2 !

D1
21D2

21~1 !

,

N53,k51: D1
11D2

12~2 !

D1
11D2

22~1 !

D1
21D2

12~1 !

D1
21D2

22~2 !

D1
12D2

11~2 !

D1
22D2

21~1 !

D1
12D2

11~1 !

D1
22D2

21~2 !

,

N54,k51: D1
11D2

13~1 !

D1
11D2

23~2 !

D1
21D2

13~2 !

D1
21D2

23~1 !

D1
13D2

11~1 !

D1
13D2

21~2 !

D1
23D2

11~2 !

D1
23D2

21~1 !

D1
12D2

12~1 !

D1
12D2

22~2 !

D1
22D2

12~2 !

D1
22D2

22~1 !

,

k52: D1
11D2

11D1
11D2

11~2 !p

D1
21D2

11D1
11D2

11~1 !

D1
11D2

21D1
11D2

11~1 !

D1
11D2

11D1
21D2

11~1 !cp

D1
11D2

11D1
11D2

21~1 !cp

D1
21D2

21D1
21D2

21~2 !p

D1
21D2

21D1
11D2

11~2 !

D1
21D2

11D1
21D2

11~2 !p

D1
21D2

11D1
11D2

21~2 !

D1
11D2

21D1
21D2

11~2 !cp

D1
11D2

21D1
11D2

21~2 !p

D1
21D2

21D1
21D2

11~2 !cp

D1
21D2

21D1
11D2

21~1 !

D1
21D2

11D1
21D2

21~1 !

D1
21D2

11D1
21D2

21~1 !cp

D1
11D2

21D1
21D2

21~1 !cp

.

APPENDIX B: PROOF OF LEMMA 2

In this Appendix we compute the weightsu6(N) and prove Lemma 2. To start, writeN52 jn
wheren is an odd number andjP$0,1,2,...%. Set j>2 for the time being. Then, 2jn is an even
number and in the1 cases1k5odd so that

u1~2 jn!5S (
e,o

1(
o,e

D 1

k (
du~k,2j n,s!

m~d!WS kd , 2 jnd ,
s

dD , ~B1!

wheree,o(o,e) stand fork even,s odd ~k odd,s even!. In the2 case,s1k5even and then

u2~2 jn!5S (
o

1(
e

D 1

k (
du~k,2j n,s!

m~d!WS kd , 2 jnd ,
s

dD , ~B2!

whereo(e) stand fork,s both odd~even!. In order to compute~B1! and~B2! we change the order
of summations so that we shall first sum over allk ands which are divisible by a givend and then
sum over all possibled. First, we compute~B1!. Observe that becausek ands have distinct parity
the possible common divisors ofk,2jn ands are among the odd divisors ofn. In general, given
2 jn the possible values ofk are k51,2,...,2j21n and for givenk we haves50,1,2,3,...,2k.
Picking up only the even and odd values ofk ands, respectively, those which are divisible byd
whered runs over the divisors ofn are

k5d~2l !,l51,2,3,...,
2 j22n

d
~B3!

and

s5d~2i21!,i51,2,...,2l . ~B4!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Then, the first term in~B1! is equal to

(
dun

(
l51

~2 j22n!/d

(
i51

2l
1

d~2l !
m~d!WS 2l , 2 jnd ,2i21D . ~B5!

Using ~3.9!, ~B5! is equal to

(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l (
i51

2l S 4l
2i21D S 2 jnd 21

4l21
D

5(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l
24l21S 2 jnd 21

4l21
D , ~B6!

where we have performed the summation over thei . Here and elsewhere in this Appendix w
make use of the following simple results:

2n21(
i50

n S ni D5(
i51

n S 2n
2i21D5(

i50

n S 2n2i D522n21. ~B7!

To compute the second term we must sum overk odd ands even which are divisible by a
givend. They are

k5d~2l21!, l51,2,3,...,
2 j22n

d
~B8!

and

s5d~2i !, i50,1,2,...,2l21. ~B9!

We get

(
dun

(
l51

~2 j22n!/d

(
i50

2l
1

d~2l21!
m~d!WS 2l21,

2 jn

d
,2i D . ~B10!

Using ~3.9! and ~B7!, ~B10! is equal to

(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l21 (
i50

2l21 S 4l22
2i D S 2 jnd 21

4l23
D

5(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l21
24l23S 2 jnd 21

4l23
D . ~B11!

The contributions from~B6! and ~B11! add up to

u1~2 jn!5(
dun

m~d!

d (
a51

~2 j21n!/d
1

a
22a21S 2 jnd 21

2a21
D . ~B12!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The summation overa can be now performed by means of the following relation from Ref. 1

(
k50

@~m21!/2#
x2k

k11 S m
2k11D5

~11x!m111~12x!m1122

~m11!x2
. ~B13!

Then,

u1~2 jn!5(
dun

m~d!F32 j n/d1~21!2
j n/d22

2 j11n
G . ~B14!

Although we have assumed thatj>2, ~B14! nevertheless is correct for anyj>0.
Observe that in~B14!

~21!N/d225 H 21
23

if N is even
if N is odd. ~B15!

Mobius function has the property that

(
all dua

m~d!5 H01 if a>2
if a51, ~B16!

where the summation is over all divisors ofa. For a52 jn, j>0 and oddn.1,

(
odd du2 j n

m~d!5 (
all dun

m~d!, ~B17!

where the second summation is over all divisors ofn and property~3.16! now applies. Thus

u1~N!5
1

2N (
odd duN

m~d!3N/d ~B18!

which is correct for anyNÞ2 j , j>0. WhenN52 j ,

u1~2 j !5H 32 j21

2 j11 if j>1

0 if j50
. ~B19!

We now turn to~B.2!. Its terms involve summations overk ands both odd or even. In the firs
case wherek ands are both odd the only possible common divisors ofk,s and 2jn are the odd
divisors ofn. We first sum overk,s odd which are divisible by a givend.

The first term in~B2! is equal to

(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l21
24l23S 2 jnd 21

4l23
D . ~B20!

For the other term where bothk ands are even the set of possible divisors now includes e
ones. The relevant divisors are 1,2,$P%, and$2P%, whereP runs over the divisors ofn. Of course,
the complete set of divisors is much bigger including all powers of 2 up toj and the product of
these with theP but the Mobius function on these is zero by definition. For the same re
among the possibleP only those which are the product of primes whose powers are not gr
than 1 are also the only relevant ones.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The contribution due to the divisors ofn is

(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l
24l21S 2 jnd 21

4l21
D ~B21!

which added up to~B20! gives exactlyu1(2
jn).

We now compute the contributions due tod52 and 2P. The contribution due tod52 is

m~2! (
l51

2 j22n
1

2l
22l S 2 j21n21

2l21 D . ~B22!

Finally, the contribution due to the divisors$2P% is

(
Pun

m~2P!

P (
l51

~2 j22n!/p
1

2l
22lS 2 j21n

P
21

2l21
D . ~B23!

But m(2P)5m(2).m(P), so we can just write

m~2!(
dun

m~d!

d (
l51

~2 j22n!/d
1

2l
22lS 2 j21n

d
21

2l21
D ~B24!

for the contributions~B22! and ~B23!.
Performing the summation overl we get

m~2!(
dun

m~d!F3~2 j21n!/d1~21!~2 j21n!/d22

2 jn
G[2u1~2 j21n!. ~B25!

Adding to this the other contributions~B20! and ~B21! which as we have shown add up
u1(2

jn) the final result is

u2~2 jn!5u1~2 jn!2u1~2 j21n!. ~B26!

When j50, the possiblek ands have distinct parity and for this reason the relevant divisors
odd. The contribution~B24! does not occur and we get

u2~n!5u1~n!. ~B27!
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Noninvertible N51 superanalog of complex structure
Steven Duplija),b)
Department of Physics, University of Kaiserslautern, Postfach 3049,
D-67653 Kaiserslautern, Germany

~Received 6 May 1996; accepted for publication 23 October 1996!

We consider an alternative tangent space reduction inN51 superspace, which
leads to some oddN51 superanalog of complex structure~the even one is widely
used in two-dimensional superconformal theories and in the fermionic string theory
calculations via super Riemann surfaces!. NewN51 superconformal-like transfor-
mations are similar to the antiholomorphic ones of the complex function theory.
They are dual to the ordinary superconformal transformations subject to the Berez-
inian addition formula presented, noninvertible, highly degenerated and twist parity
of the tangent space in the standard basis, and they also lead to some ‘‘mixed
cocycle condition.’’ A new parametrization for the superconformal group is pre-
sented which allows us to extend it to a semigroup and to unify the description of
old and new transformations. ©1997 American Institute of Physics.
@S0022-2488~97!02902-2#

The idea of superconformal symmetry is exceptionally important in the theory of super
mann surfaces1 and in two-dimensional superconformal field theories.2 The main and fundamenta
ingredient of the idea is a special class of reduced mappings of two-dimensional (1u1) complex
superspace, namely, superconformal transformations.3 In the local approach to super Rieman
surfaces represented as collections of open superdomains, the superconformal transforma
used as gluing transition functions.3,4 From another side they appear as a result of the spe
reduction of the structure supergroup.5 Here, we consider an alternative tangent space reduc
which leads to new transformations~see also Refs. 6 and 7!.

We use the functional approach to superspace8 which admits existence of nontrivial topolog
in odd directions9 and can be suitable for physical applications.10 Also we exploit the coordinate
language which is more physically transparent and adequate in constructing objects havin
features.

Locally (1u1)-dimensional superspaceC1u1 is described byZ5(z,u), wherez is an even
coordinate andu is an odd one. The most intriguing peculiarity of the functional definition
superspace8 is the existence of soul parts in the even coordinatez5zbody1zsoul, zbody5e(z),

zsoul5
def
z2zbody, wheree is a body map8 vanishing all nilpotent generators. The body map acts

the coordinates as followse(z)5zbody, e(u)50. This allows one to consider nontrivial sou
topology in even directions on a par with odd ones.9 A superanalytic~SA! transformation
TSA:C

1u1→C1u1 is

ẑ5 f ~z!1u•x~z!, û5c~z!1u•g~z!, ~1!

where four component functionsf (z), g(z):C1u0→C1u0 andc(z), x(z):C1u0→C0u1 satisfy some
supersmooth conditions generalizingC`,8 and simultaneously they can be noninvertible6 ~here,
and in the following, we denote even functions and variables by Latin letters and odd on
Greek letters, point is a product in Grassmann algebra!. The set of invertible and noninvertible SA
transformations~1! form a semigroup of superanalytic transformationsT SA.

6 The invertible trans-

a!Alexander von Humboldt Fellow. On leave of absence from Theory Division, Nuclear Physics Laboratory, Kharkov
University, KHARKOV 310077, Ukraine. Electronic address: duplij@physik.uni-kl.de

b!WWW:http://gluon.physik.uni-kl.de/;duplij/
0022-2488/97/38(2)/1035/6/$10.00
1035J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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formations are in its subgroup, while the noninvertible ones are in an ideal~see Refs. 6 and 11 fo
details!. The invertibility of the superanalytic transformation~1! is determined first of all by
invertibility of the even functionsf (z) and g(z), because odd functions are noninvertible
definition. In casee(g(z)) Þ 0 for SA transformations~1! the superanalog of a Jacobian, t
Berezinian,12 can be determined

Ber~ Z̃/Z!5
f 8~z!

g~z!
1

x~z!c8~z!

g2~z!
1uS x~z!

g~z! D 8
, ~2!

where prime is a differentiation by argument~or by z). Therefore, we can classify the transfo
mations~1! in the following way:

~1! The Berezinian exists and invertible (e(g(z)) Þ 0,e( f (z)) Þ 0).
~2! The Berezinian exists and noninvertible (e(g(z)) Þ 0, e( f (z))50).
~3! The Berezinian does not exist (e(g(z))50, e( f (z))50).

The first type of SA transformations form a subgroup of the superanalytic semigroup,
the second two types are in an ideal of the semigroup.6

The tangent superspace inC1u1 is defined by the standard basis$],D%, whereD5]u1u],
]u5]/]u, ]5]/]z. The dual cotangent space is spanned by 1-forms$dZ,du%, where
dZ5dz1u du ~the signs as in Ref. 3!. In these notations the supersymmetry relations
D25], dZ25dz. The semigroup of SA transformations acts in the tangent and cotangent s

spaces by means of the tangent space matrixPA as (D
] )5PA( D̃

]̃
) and (dZ̃,dũ)5(dZ,du) PA ,

where

PA5S ] z̃2]ũ• ũ ]ũ

Dz̃2D ũ• ũ D ũ
D . ~3!

In case of invertible SA transformations the matrixPA defines structure of a supermanifold fo
which these transformations play the part of transition functions, and Ber (Z̃/Z)5Ber PA . There-
fore different reductions of the matrixPA give us various additional supermanifold structures.

5 It
was shown in Ref. 7 that there exist two nontrivial reductions of any supermatrixPA . Indeed, if
e(D ũ) Þ 0 we observe that

Ber PA5
] z̃2]ũ• ũ

D ũ
1

~Dz̃2D ũ• ũ !]ũ

~D ũ !2
. ~4!

Then using the Berezinian addition theorem7 we obtain the formula

Ber PA5Ber PS1Ber PT , ~5!

where

PS5
defS ] z̃2] ũ • ũ ] ũ

0 D ũ
D . ~6!

PT5
defS 0 ] ũ

D z̃2D ũ • ũ D ũ
D . ~7!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Denote sets of the matrices~6! and ~7! by PS andPT , respectively. Then their intersectio
PD5PSùPT is a set of the degenerated matricesPD of the form

PD5
defS 0 ] ũ

0 D ũ
D , ~8!

which depend on the odd coordinateu transformation only. The degenerated matrix of the sh
~8! can be obtained by projection fromPS andPT matrices using the following equations:

Q5
def

] z̃2]ũ• ũ50, ~9!

D5
def

Dẑ2D ũ • ũ 50, ~10!

correspondingly. It means that, if the transformation of the odd sector@second line in~1!# is given,
i.e., the functionsc(z) andg(z) are fixed, the conditions~9! and~10! determine behavior of the
even sector@functions f (z) andx(z)#. In this case, since the degenerated matrixPD depends on
the odd sector transformation only, we obtain

PD5PSuQ505PTuD50 . ~11!

An opposite situation occurs if we apply the conditions~9! and ~10! to the matricesPS and
PT in a reverse order. Then we derive

PSCf5
def

PSuD50 , ~12!

PTPt5
def

PTuQ50 . ~13!

The conditionD50 (10) gives us superconformal~SCf! transformationsTSCf
3 and the re-

duced matrixPSCf ~12! is a result of the standard reduction of structure supergroup~in the
invertible case5!. Another conditionD50 (9) leads to the degenerated transformationsTTPt twist-
ing parity of the standard tangent space~TPt!.6 The alternative reduction7 of the tangent space
supermatrixPA gives us the supermatrixPTPt(13). The dual role of SCf and TPt transformatio
is clearly seen from the Berezinian addition theorem~5! ~see Ref. 7! and the projections~12! and
~13!. Since SCf transformations give us a superanalog of complex structure,13,14we can treat TPt
transformations as another oddN51 superanalog of complex structure in a certain extent.

It is more natural to call TPt transformations anti-SCf transformations due to the follo
analogy with the nonsupersymmetric case. For an ordinary 232 matrix P5(c d

a b) we obviously
have the following identity detP5 det (0 d

a 0)1det(c 0
0 b)5 detPDiag1 detPAntidiag, which can be

called a ‘‘determinant addition formula.’’ In the complex function theory the first matrix descr
the tangent space matrix of holomorphic mappings and the second one—of antiholom
mappings. In supersymmetric case the supermatricesPS andPT play the role similar to one of the
nonsupersymmetric diagonal and antidiagonal matrices in ordinary theory as it is seen fro~5!.
Therefore, ifPSCf generalizes the tangent space matrix of holomorphic mappings, superma
PTPt could be considered as respective generalization for antiholomorphic mappings.

Using ~12! and ~13! with the obvious relation BerPD50 we can project the Berezinia
addition equality~5! to TSCf andTTPt as follows:
J. Math. Phys., Vol. 38, No. 2, February 1997
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Ber PA5HBer PSCf, D50,

Ber PTPt, Q50.
~14!

A general relation betweenQ andD is

Q2DD5~D ũ !2. ~15!

After corresponding projections we have

QuD505~D ũ !2 ~SCf!, ~16!

DuQ50[D05]uz̃2]uũ• ũ, ~TPt!. ~17!

It is remarkable to notice the similarity of~9! and ~17!. Using ~16! one obtains5

PSCf5S ~D ũ !2 ]ũ

0 D ũ
D . ~18!

If «(D ũ) Þ 0 then BerPSCf can be determined and it is

Ber PSCf5D ũ. ~19!

In case«(D ũ)50 the Berezinian cannot be defined, but we can accept~19! as a definition of
the Jacobian of noninvertible SCf transformations~see Refs. 6 and 15!.

From ~17! we derive

PTPt5S 0 ]ũ

]uz̃2]uũ• ũ D ũ
D ~20!

@cf. ~6!#. If «(D ũ) Þ 0 the Berezinian ofPTPt can be determined as

Ber PTPt5
D0•]ũ

~D ũ !2
. ~21!

From ~17! it follows thatDD052(D ũ)2 and, therefore,]D0522•D ũ•]ũ, which gives

Ber PTPt5
]D0•D0

2~D ũ !3
. ~22!

SinceD0 is odd and so nilpotent, BerPTPt is also nilpotent and pure soul. The Berezinian~22! can
be also presented as

Ber PTPt5DS Dz̃
D ũ

D ~23!

which should be remarkably compared with~19!.
The most intriguing peculiarity of TPt transformations is twisting the parity of tangent

cotangent spaces in the standard basis, viz.
J. Math. Phys., Vol. 38, No. 2, February 1997
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SCf:H D5~D ũ !• D̃̇,

dZ̃5~D ũ !2•dZ,
TPt:H ]5]ũ•D̃,

dZ̃5D0•du.
~24!

The reduction conditions~9! and ~10! fix 2 of 4 component functions form~1! in each case.
Usually,3 SCf transformationsTSCf are parametrized by (c

f ), while other functions are found from
~9! and ~10!. However, the latter can be done for invertible transformations only. To avoid
difficulty we introduce an alternative parametrization by the pair (c

g), which allows us to conside
SCf and TPt transformations in a unified way and include noninvertibility. Indeed, fixingg(z) and
c(z) we find for other component functions of~1! the equations

H f n8~z!5c8~z!c~z!1
11n

2
g2~z!,

xn8~z!5g8~z!c~z!1ng~z!c8~z!,

~25!

where

n5H 11, Scf,

21, Tpt,

can be treated as a projection of some ‘‘reduction spin’’ switching the type of transformatio
the reduced transformation of the even coordinate@see~1!# should contain this additional index
i.e., z→ z̃n @at this point some additional to~5! analogy with complex structure is transparen#.
Since f218 (z)5c8(z)c(z) is nilpotent, TPt transformations are always noninvertible and h
degenerated after the body mapping. The unified multiplication law is

S h
w
D
n

* S g
c
D
m

5S g•h+ f m1xm•c•h8+ f m1xm•w8+ f m

w+ f m1c•h+ f m
D , ~26!

where* is transformation composition and (+ ) is function composition. For ‘‘reduction spin’
projections we have only two definite products (11)* (11)5(11) and (11)* (21)5(21).
The first formula is a consequence ofPS•PS#PS @see~6!#, which is simple manifestation of the
fact that SCf transformationsTSCf form a substructure,5 i.e., a subsemigroupT SCf of SA semi-
groupT SA ~in the invertible case—a subgroup3!. FromPS•PS#PS it also follows the standard~for
component functions too! cocycle condition3

T̃SCf*TSCf5T5 SCf ~27!

@having identical arrows, i.e.~SCf! actions# on triple overlapsUùŨùU5 , whereU, Ũ, U5 are open
superdomains andT:U→Ũ, T̃:Ũ→U5 , T5 :U→U5 . In the invertible SCf case the cocycle conditio
leads to the definition of a super Riemann surface as a holomorphic (1u1)-dimensional supermani
fold equipped with an additional one-dimensional subbundle,3,5,13which grounds on the cocycle
relation

Du55D ũ•D̃u5 ~28!

and the formula~19!. Unfortunately, TPt transformationsTTPt form a subsemigroup only provid
ing additional conditions on component functions.6 However, they have also another importa
abstract meaning: Using the unrestricted relationPT•PS#PT we obtain a ‘‘mixed cocycle condi-
tion’’
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
T̃SCf* TTPt5T5 TPt ~29!

~having different arrows!. Then we derive the ‘‘mixed cocycle relation’’

]u55]ũ•D̃u5 , ~30!

which should be compared with the standard cocycle relation~28! on super Riemann surfaces.5

It is remarkable that under the degenerated~Deg! transformations defined by~11! the both
cocycle relations hold valid simultaneously. Also, Deg transformations form a subsemig
T Deg in T SA, because ofPD•PD#PD . Moreover,T Deg is an ideal inT SA, T SCf, andT TPt since
PD•PA#PD , PD•PS#PD , andPD•PT#PD . The degenerated transformations are character
by one odd functionc(z) only and by the absence of theu dependence of the transformatio
Z→Z̃ @see~17!#, so that

z̃Deg5 f ~z!, ũDeg5c~z!, ~31!

where f 8(z)5c8(z)c(z). The multiplication inT Deg coincides with the second row of~26!.
We conclude that thorough consideration of invertibility, while supergeneralizing stan

constructions of string theory, leads to some nontrivial consequences and further possibili
building some new objects analogous super Riemann surfaces, which could give addition
tributions to fermionic string amplitude. It would be also interesting to work out sequence
noninvertible functions, corresponding bundles and their generalizations.

The author would like to thank M. Grisaru, P. Howe, J. Kupsch, P. van Nieuwenhuizen
Rühl, E. Sezgin, and P. Townsend for useful discussions.
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We introduce a new family of symmetric functions, which areq analogs of prod-
ucts of Schur functions, defined in terms of ribbon tableaux. These functions can be
interpreted in terms of the Fock space representationF q of Uq(sl̂n), and are related
to Hall–Littlewood functions via the geometry of flag varieties. We present a series
of conjectures, and prove them in special cases. The essential step in proving that
these functions are actually symmetric consists in the calculation of a basis of
highest weight vectors ofF q using ribbon tableaux. ©1997 American Institute of
Physics.@S0022-2488~97!01702-7#

I. INTRODUCTION

This article is devoted to the study of a new family of symmetric functionsHl
(k)(X;q), defined

in terms of certain generalized Young tableaux, called ribbon tableaux, or rim-hook tablea1

These objects, although unfamiliar, arise naturally in several contexts, and their use is im
in many classical algorithms related to the symmetric groups~see, e.g., Robinson’s book2!. In
particular, they can be applied to the description of the power-sum plethysm ope
ck: f ($xi%)° f ($xi

k%) on symmetric functions,3,4 and this point of view suggests the definition of
naturalq-analogcq

k of ck. Thisq-analog turns out to make sense when the algebra of symm
functions is interpreted as the bosonic Fock space representation of the quantum affine
Uq(sl̂k). Indeed, one can prove, building on recent work by Kashiwara, Miwa, and Stern,5,6 that
the imagecq

k( f ) of any symmetric function by this operator, is a highest weight vector
Uq(sl̂k). In particular, the imagescq

k(hl) of products of complete homogeneous functions hav
simple combinatorial description, and can be used as a convenient basis of highest weight v

The space of symmetric functions is endowed with a natural scalar product~the same as in the
Fock space interpretation!, and one can consider the adjointwq

k of the q-plethysm operatorcq
k.

This operator divides degrees byk, and sends the Schur functionsskl indexed by partitions of the
form kl5(kl1 ,kl2 ,...,kl r) onto a new basis, which is essentially the one considered in
paper. More precisely,Hl

(k)(X;q22)5wq
k(skl). It should be said, however, that our original de

nition was purely combinatorial, and that the connection withUq(sl̂k) was understood only re
cently.

TheH functions are generalizations of Hall–Littlewood functions. We prove that fork suf-
ficiently large,Hl

(k) 5 Ql8 , where (Ql8) is the adjoint basis of (Pl) for the standard scalar produc
Moreover, we conjecture that the differencesHl

(k11)2Hl
(k) are non-negative on the Schur bas

i.e. that theH functions form a filtration of theQ8 functions. In particular, the coefficients ofH
functions on the Schur basis are conjectured to be polynomials with non-negative integer
cients.
0022-2488/97/38(2)/1041/28/$10.00
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¬¬¬¬¬¬¬¬¬¬
TheQ8 functions are known to be related to a variety of topics in representation theory7–11

algebraic geometry,12–19combinatorics,20–22and mathematical physics.23–26As a general rule,q-
analogs related to quantum groups admit interesting interpretations when the parameteq is
specialized to the cardinality of a finite field, or to a complex root of unity. TheQ8 functions are
no exception. In the first case, the coefficientsK̃lm(q) of Q̃m8 on the Schur basis are charact
values of the groupGL(n,Fq),

15 while in the second one, a factorization property reminescen
Steinberg’s tensor product theorem leads to combinatorial formulas for the Schur expans
certain plethysms, in particular forck(hm).

8,9

On the basis of extensive numerical computations, we conjecture that theH functions display
the same behavior with respect to specializations at roots of unity, giving this time pleth
ck(sl) of Schur functions by power sums. In fact, theH functions were originally defined asq-
analog of products of Schur functions, being the natural generalization of those introduced i
27. A combinatorial description of generalH functions on the Schur basis, similar to the one giv
in Ref. 27 in terms of Yamanouchi domino tableaux, would lead to a refined Littlewo
Richardson rule, compatible with cyclic symmetrization in the same way as the rule of Ref.
compatible with symmetrized and antisymmetrized squares. This means that if one splits a
powerVl

^k of an irreducible representationVl of U(n) into eigenspacesE( i ) of the cyclic shift
operatorv1^v2^ ••• ^vk°v2^v3^ ••• ^vk^v1 , eachE

( i ) is a representation ofU(n) whose
spectrum is given, according to the conjectures, by the coefficient ofqi in the reduction modulo
12qk of Hlk

(k)(q).
All the conjectures are proved fork52 ~domino tableaux! and for k sufficiently large~the

stable case!. The case of domino tableaux follows from the combinatorial constructions Ref
and 28, while the stable case relies on the interpretation of Kostka–Foulkes polynomials in
of characters of finite linear groups, and as Poincare´ polynomials of certain algebraic varieties,
particular, on the cell decompositions of these varieties found by Shimomura.18

This article is structured as follows. In Sec. II, we recall some properties of Hall–Littlew
functions, in particular their interpretation in terms of affine Hecke algebras and their conne
with finite linear groups. In Sec. III, we explain the connection between plethysm and H
Littlewood functions at roots of unity, and in Sec. IV, we show how to translate these resu
terms of ribbon tableaux. The application of ribbon tableaux to the construction of highest w
vectors in the Fock representation ofUq(sl̂n) is presented in Sec. V, and connected to a rec
construction of Kashiwara, Miwa, and Stern.6 In Sec. VI, we define theH functions, and summa
rize their known or conjectural properties. In Sec. VII we establish these conjectures fH
functions of level 2, corresponding to domino tableaux. In Sec. VIII, we recall Shimomura’s
decompositions of unipotent varieties, and show the equivalence of his description of the Po´
polynomials with a variant needed in the sequel. From this, we deduce that theH functions of
sufficiently large level are equal to Hall–Littlewood functions, which is also sufficient to prov
the conjectured properties in this case.

II. HALL–LITTLEWOOD FUNCTIONS

Our notations for symmetric functions will be essentially those of the book,4 to which the
reader is referred for more details.

The original definition of Hall–Littlewood functions can be reformulated in terms of an ac
of the affine Hecke algebraĤN(q) of typeAN21 on the ringC[x1

61 ,...,xN
61].29

The affine Hecke algebraĤN(q) is generated byTi , i51,...,N21 andyi
61, i51,...,N, with

relations
J. Math. Phys., Vol. 38, No. 2, February 1997
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H Ti25~q21!Ti1q,
TiTi11Ti5Ti11TiTi11 ,
TiTj5TjTi~ u j2 i u.1!,

H yiyj5yjyi ,
yjTi5Tiyj jÞ i ,i11,
yjTj5Tjyj112~q21!yj11 ,
yj11Tj5Tjyj1~q21!yj11 .

~1!

If s 5 s i1
s i2

•••s i r
is a reduced decomposition of a permutationsPSN , wheres i5( i ,i11),

one sets as usualTs 5 Ti1Ti2•••Ti r, the result being independent of the reduced decompositio
Let DN(q)5P1< i, j<N(qxi2xj ). Then, on the one hand, the Hall–Littlewood polynomi

Ql(x1 ,...,xN ;q) indexed by a partitionl of length l (l)<N is defined by30

Ql~x1 ,...,xN ;q!5
~12q! l ~l!

@m0#q!
(

sPSN

sS xl
DN~q!

DN~1! D , ~2!

wherem05N2 l (l) and theq integers are defined here by [n] q5(12qn)/(12q).
On the other hand,ĤN(q) acts onC[x1

61 ,...,xN
61] by yi( f )5xi f and Ti5(q21)p i1s i ,

wherep i is the isobaric divided difference operator,

p i~ f !5
xi f2xi11s i~ f !

xi2xi11
,

and it is shown in Ref. 29 that if one defines theq-symmetrizing operatorS(N)PĤN(q) by

S~N!5 (
sPSN

Ts , ~3!

then

Ql~x1 ,...,xN ;q
21!5q2~2

N
!

~12q21! l ~l!

@m0#q21!
S~N!~xl!. ~4!

The normalization factor 1/[m0] q! is here to ensure stability with respect to the adjunction
variables, and if we denote by X the infinite set X5$x1 ,x2 ,...,% then
Ql(X;q)5limN→`Ql(x1 ,...,xN ;q).

TheP functions are defined by

Pl~X;q!5
1

~12q! l ~l!@m1#q! •••@mn#q!
Ql~X;q!,

wheremi is the multiplicity of the parti in l.
We consider these functions as elements of the algebra Sym5Sym(X) of symmetric functions

with coefficients inC(q). In this paper, the scalar product^,& on Sym will always be the standar
one, for which the Schur functionssl form an orthonormal basis.

We denote by„Qm8 (X;q)… the adjoint basis of„Pl(X;q)… for this scalar product. It is easy t
see thatQm8 (X;q) is the image ofQm(X;q) by the ring homomorphismpk°(12qk)21pk @in
l-ring notation,Qm8 (X;q) 5 Q„X/(1 2 q);q…#. In the Schur basis,

Qm8 ~X;q!5(
l

Klm~q!sl~X!, ~5!

where theKlm(q) are the Kostka–Foulkes polynomials. The polynomialKlm(q) is the generating
function of a statisticc called chargeon the set Tab~l,m! of Young tableaux of shapel and
weightm ~Refs. 21 and 22; also see Refs. 14 and 4!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Klm~q!5 (
tPTab~l,m!

qc~ t!. ~6!

We shall also need theQ̃8 functions, defined by

Q̃m8 ~X;q!5(
l

K̃lm~q!sl~X!5qn~m!Qm8 ~X;q21!, ~7!

wheren(m)5( i>1( i21)m i . The polynomialK̃lm(q) is the generating function of the comple
mentary statisticc̃~t!5n(m)2c~t!, which is calledcocharge.

When the parameterq is interpreted as the cardinality of a finite fieldFq , it is known that
K̃lm(q) is equal to the valuex

l(u) of the unipotent characterxl of G5GL(n,Fq) on a unipotent
elementu with Jordan canonical form specified by the partitionm ~Ref. 7; also see Ref. 31!.

In this specialization, the coefficients,

G̃nm~q!5^hn ,Q̃m8 &, ~8!

of the Q̃8 functions on the basis of monomial symmetric functions, are also the values of c
characters ofG on unipotent classes. LetP n denote a parabolic subgroup of typen of G, for
example, the group of upper block triangular matrices with diagonal blocks of sizesn1 ,...,n r , and
consider the permutation representation ofG overC@G/P n#. The valuej

n(g) of the characterjn of
this representation on an elementgPG is equal to the number of fixed points ofg onG/P n . It can
be shown that, for a unipotentu of typem,

jn~u!5G̃nm~q!. ~9!

The factor setG/P n can be identified with the varietyF n of n-flags inV5Fq
n,

Vn1
,Vn11n2

,•••,Vn11•••1nr
5V,

where dimVi5 i . Thus, G̃nm(q) is equal to the number ofFq-rational points of the algebraic
varietyF n

u of fixed points ofu in F n .

III. SPECIALIZATIONS AT ROOTS OF UNITY

As recalled in the preceding section, the Hall–Littlewood functions with parameters sp
ized to the cardinalityq of a finite fieldFq , provide information about the complex characters
the linear groupGL(n,Fq) over this field. It turns out that when the parameter is specialized
complex root of unity, one obtains information about representations ofGL(n,C! @or U(n)#, that
is, a combinatorial decomposition of certain plethysms.8,9 We give now a brief review of these
results.

The first one is a factorization property of the functionsQl8(X,q) whenq is specialized to a
primitive root of unity. This is to be seen as a generalization of the fact that whenq is specialized
to 1 the functionQl8(X;q) reduces tohl(X) 5 P ihl i

(X).
Theorem III.1: 8 Let l 5 (1m12m2•••nmn) be a partition written multiplicatively. Se

mi5kqi1ri with 0<ri,k, andm 5 (1r12r2•••nrn). Then,z being a primitive kth root of unity,

Ql8~X;z!5Qm8 ~X;z!)
i>1

@Q~ i k!
8 ~X;z!#qi. ~10!

The functionsQ( i k)
8 (X;z) appearing on the right-hand side of~10! can be expressed a

plethysms.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Theorem III.2: 8 Let pk+hn denote the plethysm of the complete function hn by the power-sum
pk, which is defined by the generating series

(
n

pk+hn~X!zn5 )
xPX

~12zxk!21.

Then, ifz is as above a primitive kth root of unity, one has

Q
~nk!
8 ~X;z!5~21!~k21!npk+hn~X!.

For example, withk53 (z5e2ip/3), we have

Q4444333118 ~X;z!5Q4118 ~X;z!Q3338 ~X;z!Q4448 ~X;z!5Q4118 ~X;z!p4+h43.

Let V be a polynomial representation ofGL(n,C!, with character of the symmetric functionf .
Let g be the cyclic shift operator onV^k, that is,

g~v1^v2^ ••• ^vk!5v2^v3^ ••• ^vk^v1 .

Let z5exp(2ip/k), and denote byE(r ) the eigenspace ofg in V^k associated with the eigenvalu
z r . As g commutes with the action ofGL(n,C!, these eigenspaces are representations ofGL(n,C!,
and their characters are given by the plethysmsl k

(r )+ f of the characterf of V by certain symmetric
functionsl k

(r ) that we shall now describe.
For k,nPN, theRamanujanor Von Sterneck sum c(k,n) @also denoted asF(k,n)# is the sum

of the kth powers of theprimitive nth roots of unity. Its value is given byHölder’s formula: if
(k,n)5d andn5md, thenc(k,n)5m(m)f(n)/f(m), wherem is the Moebius function andf is
the Euler totient function~see, e.g., Ref. 32!.

The symmetric functionsl k
(r ) are given by the formula

l k
~r !5

1

k (
duk

c~r ,d!pd
k/d . ~11!

These functions are the Frobenius characteristics of the representations of the symmetric
induced by irreducible representations of a transitive cyclic subgroup.33 A combinatorial interpre-
tation of the multiplicity^sl ,l n

(k)& has been given by Kraskiewicz and Weyman.34 This result is
equivalent to the congruence,

Q
~1n!
8 ~X;q![ (

0<k<n21
qkl n

~k!~mod 12qn!.

Another proof can be found in Ref. 35. Now, ifV is a product of exterior powers of the funda
mental representationCn,

V5Ln1Cn^ Ln2Cn^ ••• ^ LnmCn,

the character ofE(r ) is l k
(r )+en , and similarly ifV is a product of symmetric powers with charact

hn , the character ofE(r ) is l k
(r )+hn .

Given two partitionsl andm, we denote byl~m the partition obtained by reordering th
concatenation ofl andn, e.g.~2,2,1!~~5,2,1,1!5~5,23,13!. We writemk5m~m~•••~m ~k fac-
tors!. If m5(m1 ,...,m r), we setkm5(km1 ,...,km r).

Taking into account Theorems III.1 and III.2 and following the method of Ref. 35, one ar
at the following combinatorial formula for the decomposition ofE(r ) into irreducibles:
J. Math. Phys., Vol. 38, No. 2, February 1997
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¬¬¬¬¬¬¬¬¬¬
Theorem III.3: 9 Let ei be the ith elementary symmetric function, and forl5(l1,...,lm),
el5el1

•••elr
. Then, the multiplicitŷ sm ,lk

(r)+el& of the Schur function sm in the plethysm lk
(r)+el is

equal to the number of Young tableaux of shapem8 (conjugate partition) and weightlk whose
charge is congruent to r modulo k.

This gives as well the plethysms with product of complete functions, since

^sm8 ,l k
~r !+el&5H ^sm ,l k

~r !+hl&, i f ulu is even,

^sm , l̃ k
~r !+hl&, i f ulu is odd,

where l̃k
(r)5v(lk

(r))5lk
(s) with s5k(k21)/22r.

For example,̂ s732,l 4
(2)+e21&55 is the number of tableaux with shape~3,3,2,1,1,1,1!, weight

~2,2,2,2,1,1,1,1!, and charge[2 ~mod 4!.
Another combinatorial formulation of Theorems III.1 and III.2 can be presented using

notion of ribbon tableau, which will also provide the clue for their generalization.

IV. RIBBON TABLEAUX

Recall that a partitionl5(l1 ,...,lk) is represented graphically by itsYoung diagram Yl ,
havingl i square cells on itsi th row. If m is another partition such thatYm,Yl , one defines the
skew Young diagram Yl/m5Yl2Ym . We call ribbon a connected skew Young diagram of wid
1, i.e., which does not contain any 232 square. Ak-ribbon is a ribbon made ofk square cells.

To a partitionl is associated ak-corel (k) and ak-quotientl (k).36 The k-core is the unique
partition obtained by successively removingk-ribbons froml. The different possible ways o
doing so can be distinguished from one another by labeling 1 the last ribbon removed,
penultimate, and so on. Thus Fig. 1 shows two different ways of reaching the 3-core,l~3!5~2,12!
of l5~8,72,4,15!. These pictures represent two 3-ribbon tableauxT1 , T2 of shapel/l~3! and weight
m5~19!.

To definek-ribbon tableaux of general weight and shape, we need some terminology
initial cell of a k-ribbonR is its rightmost and bottommost cell. Letu5b/a be a skew shape, an
seta15~b1!~a, so thata1/a is the horizontal strip made of the bottom cells of the columns ou.
We say thatu is ahorizontal k-ribbon stripof weightm, if it can be tiled bym k-ribbons the initial
cells of which lie ina1/a. ~One can check that if such a tiling exists, it is unique.!

Now, ak-ribbon tableau Tof shapel/n and weightm5(m1 ,...,m r) is defined as a chain o
partitions,

n5a0,a1,•••,a r5l,

such thata i /a i21 is a horizontalk-ribbon strip of weightm i . Graphically,T may be described by
numbering eachk-ribbon of a i /a i21 with the numberi . We denote by Tabk(l/n,m) the set of
k-ribbon tableaux of shapel/n and weightm, and we set

Kl/n,m
~k! 5uTabk~l/n,m!u.

FIG. 1. Ribbon tableaux.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Finally we recall the definition of thek-sign ek(l/n). Define the sign of a ribbonR as (21)h21,
whereh is the height ofR. Thek-sign ek(l/n) is the product of the signs of all the ribbons of
k-ribbon tableau of shapel/n ~this does not depend on the particular tableau chosen, but on
the shape!.

The origin of these combinatorial definitions is best understood by analyzing carefull
operation of multiplying a Schur functionsn by a plethysm of the formck(hm)5pk+hm . Equiva-
lently, thanks to the involutionv, one may rather consider a product of the typesn[pk+em]. To this
end, since

pk+em5~em1
+pk!•••~emn

+pk!5mkm1•••mkmn ,

one needs only to apply repeatedly the following multiplication rule of Muir~see Ref. 4!:

snma5(
b

sn1b ,

the sum over all distinct permutationsb of (a1 ,a2 ,...,an,0,...).Here the Schur functionssn1b

are not necessarily indexed by partitions and have therefore to be put in standard form
reduction yielding only a finite number of nonzero summands. For example,

s31m35s611s3131s310035s612s3221s314.

Other terms such ass34 or s3103reduce to 0. It is easy to deduce from this rule that the multiplic

^snmkm i ,sl&,

is nonzero iffl8/m8 is a horizontalk-ribbon strip of weightm i , in which case it is equal to
ek(l/n). Hence, applyingv we arrive at the expansion

sn@pk+hm#5(
l

ek~l/m!Kl/n,m
~k! sl , ~12!

from which we deduce by Theorems III.1 and III.2 that

Klm
~k!5~21!~k21!umuek~l!Klmk~z!,

and, more generally, defining as in Ref. 24 the skew Kostka–Foulkes polynomialKl/n,a(q) by

Kl/n,a~q!5^sl/n ,Qa8 ~q!&

~or as the generating function of the charge statistic on skew tableaux of shapel/m and weighta!,
we can write

Kl/n,m
~k! 5~21!~k21!umuek~l/n!Kl/n,mk~z!.

It turns out that enumeratingk-ribbon tableaux is equivalent to enumeratingk-tuples of
ordinary Young tableaux, as shown by the correspondence to be described now. This bijecti
first introduced by Stanton and White1 in the case of ribbon tableaux of right shapel ~without a
k-core! and standard weightm5(1n) ~also see Ref. 37!. In the sequel we shall refer to it as th
Stanton–White correspondence. We need some additional definitions.

Let R be ak-ribbon of ak-ribbon tableau.R contains a unique cell with coordinates (x,y)
such thaty2x[0 ~modk!. We decide to write in this cell the number attached toR, and we
J. Math. Phys., Vol. 38, No. 2, February 1997
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define thetype iP$1,...,k% of R as the position of this cell insideR, the position of the initial cell
being equal to 1. For example, the 3-ribbons ofT1 are divided up into three classes~see Fig. 1!:

•4,6,8, of type 1;

•1,2,7,9, of type 2;

•3,5, of type 3.

Define thediagonalsof a k-ribbon tableau as the sequences of integers read along the st
linesDi :y2x5ki. ThusT1 has the sequence of diagonals,

„~8!, ~4!, ~2, 3, 6!, ~1, 5, 9!, ~7!….

This definition applies in particular to 1-ribbon tableaux, i.e. ordinary Young tableaux.
obvious that a Young tableau is uniquely determined by its sequence of diagonals. Hence,
associate to a givenk-ribbon tableauT of shapel/n a k-tuple ~t1,...,tk! of Young tableaux defined
as follows; the diagonals oft i are obtained by erasing in the diagonals ofT the labels of all the
ribbons of typeÞ i . For instance, ifT5T1 the first ribbon tableau of Fig. 1, the sequence
diagonals oft2 is „~2!,1,9!,~7!…, and

The complete triple~t1,t2,t3! of Young tableaux associated withT1 is

whereas that corresponding toT2 is

One can show that ifn5l (k) , the k-core of l, the k-tuple of shapes (l1,...,lk) of ~t1,...,tk!
depends only on the shapel of T, and is equal to thek-quotient l (k) of l. Moreover, the
correspondenceT→~t1,...,tk! establishes a bijection between the set ofk-ribbon tableaux of shape
l/l (k) and weightm, and the set ofk-tuples of Young tableaux of shapes (l1,...,lk) and weights
(m1,...,mk) with m i5( jm i

j .
For example, keepingl5~8,72,4,15!, the triple

with weights„~0,0,2,1!,~1,1,1,1!,~0,1,1,0!… corresponds to the 3-ribbon tableau,

of weightm5~1,2,4,2!.
As before, the significance of this combinatorial construction becomes clearer once inter

in terms of symmetric functions. Recall the definition ofwk , the adjoint of the linear operato
ck:F°pk+F acting on the space of symmetric functions. In other words,wk is characterized by

^wk~F !,G&5^F,pk+G&, F,GPSym.

Littlewood has shown38 that if l is a partition whosek-corel (k) is empty, then
J. Math. Phys., Vol. 38, No. 2, February 1997
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wk~sl!5ek~l!sl1•••slk, ~13!

wherel (k)5(l1,...,lk) is thek-quotient. Therefore,

Klm
~k!5ek~l!^pk+hm ,sl&5ek~l!^wk~sl!,hm&5^sl1•••slk,hm&

is the multiplicity of the weightm in the product of Schur functionssl1•••slk, that is, is equal to
the number ofk-tuples of Young tableaux of shapes (l1,...,lk) and weights (m1,...,mk) with
m i5( jm i

j . Thus, the bijection described above gives a combinatorial proof of~13!.
More generally, ifl is replaced by a skew partitionl/n, ~13! becomes39

wk~sl/n!5ek~l/n!sl1/n1•••slk/nk,

if l (k)5n (k) , and 0 otherwise. This can also be deduced from the previous combinatorial c
spondence, but we shall not go into further detail.

Returning to Kostka polynomials, we may summarize this discussion by stating Theo
III.1 and III.2 in the following way.

Theorem IV.1: Let l and n be partitions and setn5mk~a with mi(a),k. Denoting byz a
primitive kth root of unity, one has

Kl,n~z!5~21!~k21!umu(
b

ek~l/b!Kl/b,m
~k! Kb,a~z!. ~14!

Example IV.2:We takel5~42,3!, n5~22,17! and k53 (z5e2ip/3). In this case,n5mk~a
with m5~12! anda5~22,1!. The summands of~14! are parametrized by the 3-ribbon tableaux
external shapel and weightm. Here we have three such tableaux:

so that

K443,221111111~z!52K41,221~z!2K32,221~z!52~z21z3!2~z1z2!52z213.

When uau<ul (k)u, ~14! becomes simpler. For ifuau,ul (k)u thenKl,n(z)50, and otherwise
the sum reduces to one single term,

Kl,n~z!5~21!~k21!umuek~l/l~k!!Kl/l~k! ,m
~k! Kl~k! ,a

~z!.

In particular, for n5(1n), one recovers the expression ofKl,(1n)(z) given by Morris and
Sultana.11

Finally, let us observe that the notion ofk-sign of a partition can be lifted to a statistic o
ribbon tableaux, which for technical reasons that will appear in Sec. VI, takes values in1

2N, and
will be calledspin.

Let R be ak ribbon, and denote byh(R) its height:

The spinof R, denoted bys(R), is defined as

s~R!5
h~R!21

2
, ~15!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and the spin of a ribbon tableauT is by definition the sum of the spins of its ribbons. For examp
the ribbon tableau,

has spin 6.
We define the spins(l/m) of a horizontalk-ribbon stripl/m of weightm as the spin of the

uniquek-ribbon tableau of shapel/m and weight (m). This number can be computed from th
inversion number of a certain permutation. Setn5 l (l8) and let n5m8 be considered as a
element ofNn. Let a be the vector ofNn such thata j5k if one of the ribbons of the horizonta
strip l/m has its initial cell in the j th column of l, and a j50 otherwise. Letr5(n21,n
22,...,1,0). The fact thatl/m is a horizontalk-ribbon strip is equivalent to the property that th
components of the vectorg5n1a1r are pairwise distinct. LetI (g) be the length of the minima
permutation sortingg in decreasing order. Then

s~l/m!5 1
2„~k21!m2I ~g!…. ~16!

Note that thek-sign of a partitionl is equal to (21)2s(T), for any ribbon tableauT of shape
l. For example, we can rewrite the particular casen5~0! of formula ~12! as

ck~hm!5pk+hm5 (
TPTabk~•,m!

~21!2s~T!sT , ~17!

where Tabk(•,m) is the set ofk-ribbon tableaux of weightm, andsT5sl if l is the shape ofT. We
shall see in the next section that this formula leads to a simple construction of a basis of h
weight vectors in the Fock space representation of the quantum affine algebraUqsl̂k).

V. THE FOCK REPRESENTATION OF Uq(sl̂n)

The affine Lie algebrasl̂n 5 An21
(1) has a natural action on the space Sym of symmetric fu

tions, called the bosonic Fock space representation. This representation is equivalent to the
wedge, or fermionic Fock space representation, and the isomorphism can be realized by m
vertex operators~see, e.g., Ref. 40!.

Let us recall briefly the fermionic version. LetV be the vector spaceC(Z) and (ui) iPZ be its
canonical basis. The fermionic Fock space``V is defined as the vector space spanned by
infinite exterior productsui1 ` ui2 ` ••• ` uin ` ••• satisfying i 1. i 2. i 3.•••. i n.••• and
i k2 i k1151 for k@0. The wedge product is as usual alternating, and linear in each of its fac
We denote byF the subspace of̀ `V spanned by the elements such thati k52k11 for k@0
~usually this subspace is denoted byF ~0!, but as we shall not need the other sectorsF (m), we drop
the superscript!.

The Lie algebragl` of Z3Z complex matricesA5(ai j ) with finitely many nonzero entries
acts on``V by

A•ui1`ui2`•••5~Aui1!`ui2`•••1ui1`~Aui2!`•••1••• ,

the sum having only a finite number of nonzero terms.
Let Ei j be the infinite matrix (Ei j ) rs5d ird js . The subalgebrasl` of gl` consisting of the

matrices with zero trace has for Chevalley generatorsei
`5Ei ,i11, f i

`5Ei11,i . The infinite sums,
J. Math. Phys., Vol. 38, No. 2, February 1997
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ei5 (
j[ i modn

ej
` , f i5 (

j[ i modn
f j

` ~0< i<n21!,

do not belong tosl` , but they have a well-defined action oǹ
`V, and it can be checked that the

generate a representation ofsl̂n8 with central chargec51. The remaining generatorD of sl̂n
5 sl̂n8 % CD can be implemented by

D:52(
iPZ

F inG„Eii2u~2 i !…,

whereu(x)51 for x>0 andu(x)50 otherwise~cf. Ref. 41!.
The basis vectors ofF can be labeled by partitions, by setting

ul&5ul1
`ul221`ul322`••• .

With this indexation, the action of the Chevalley generators ofsl̂n can be described as follows.41

To each node (i , j ) of a Young diagram, one can associate itsresidue
r i , j5 j2 i modnP$0,...,n21%. Then

er ul&5( um&, f r ul&5( un&, ~18!

wherem ~resp.,n! runs over all diagrams obtained froml by removing~resp., adding! a node of
n-residuer .

In this picture, one can observe thater and f r are exactly ther -restricting andr -inducing
operators introduced by Robinson in the context of the modular representation theory
symmetric group.2

The natural way of interpreting the basis vectorsul& as symmetric functions is to putul&5sl .
This is imposed by the boson–fermion correspondence, and it is also compatible with the m
representation interpretation.

In this realization, it can be shown that the imageU(sl̂n)u0& of the constantu0&5s051, which
is the basic representationM (L0), is equal to the subalgebra

T ~n!5C@pi u iÓ0 modn#,

generated by the power-sumspi such thatnu”i .
The bosonic operators,

bk : f°Dpkn
f5kn

]

]pkn
f and b2k : f°pknf ~k>1!,

commute with the action ofsl̂n . They generate a Heisenberg algebraH, and the irreducibleH-
moduleU~H!u0& is exactly the spaceS (n) of highest weight vectors of the Fock space, viewed
an sl̂n module. Thus, these highest weight vectors are exactly the plethysmscn( f ), fPSym.
Natural bases ofS (n) are thereforecn(pm)5pnm , cn(sm) or cn(hm). We know from Sec. IV that
this last one admits a simple combinatorial description in terms of ribbon tableaux:

cn~hm!5(
l

enS l

m DKlm
~n!sl5 (

TPTabn~•,m!
~21!2s~T!sT . ~19!

This formula is especially meaningful in the quantized version, that we shall now desc
J. Math. Phys., Vol. 38, No. 2, February 1997
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We first recall the definition ofUq(sl̂n) ~cf. Ref. 42 and references therein!. Let h be a
(n11)-dimensional vector space overQ with basis $h0 ,h1 ,...,hn21,D%. We denote by
$L0 ,L1 ,...,Ln21,d% the dual basis ofh* , that is,

^L i ,hj&5d i j , ^L i ,D&50, ^d,hi&50, ^d,D&51,

and we seta i52L i2L i212L i111d i0d for i50,1,...,n21. ~Here and in the sequel, the indice
of the fundamental weightsL i are understood modulon.! The n3n matrix [^a i ,hj&] is the
generalized Cartan matrix associated withsl̂n . The weight lattice isP5(% i50

n21ZL i!%Zd, its dual
is P~5(% i50

n21Zhi!%ZD, and the root lattice isQ5 % i50
n21Za i . One definesUq(sl̂n) as the asso-

ciative algebra with 1 overQ(q) generated by the symbolsei , f i , 0< i<n21, andqh, hPP~,
subject to the relations

qhqh85qh1h8, q051,

qhejq
2h5q^a j ,h&ej ,

qhf jq
2h5q2^a j ,h& f j ,

@ei , f j #5d i j
qhi2q2hi

q2q21 ,

(
k50

12^a i ,hj &

~21!kF12^a i ,hj&
k Gei12^a i ,hj &2kejei

k50 ~ iÞ j !,

(
k50

12^a i ,hj &

~21!kF12^a i ,hj&
k G f i12^a i ,hj &2kf j f i

k50 ~ iÞ j !.

Here theq integers,q factorials, andq-binomial coefficients are the symmetric ones:

@k#5
qk2q2k

q2q21 , @k#!5@k#@k21#•••@1#, Fmk G5 @m#!

@m2k#! @k#!
.

We now recall some definitions relative toUq(sl̂n) modules. LetM be aUq(sl̂n) module and
LPP a weight. The subspace,

ML5$vPM uqhv5q^L,h&v, hPP~%,

is called the weight space of weightL of M and its elements are called the weight vectors
weightL. The moduleM is said to be integrable if

~i! M5 % LPPML ,
~ii ! dimML,`, for LPP,
~iii ! for i50,1,...,n21, M decomposes into a direct sum of finite-dimensionalUi modules,

whereUi denotes the subalgebra ofUq(sl̂n) generated byei , f i , q
hi, q2hi.

A highest weight vectorvPM is a vector annihilated by all raising operatorsei . The module
M is said to be a highest weight module if there exists a highest weight vectorv such thatM
5 Uq(sl̂n)v. The weight ofv is called the highest weight ofM .

By the representation theory ofUq(sl̂n), there exists for each dominant integral weightL ~i.e.,
^L,hi&PZ1 for i50,1,...,n21! a unique integrable highest weight moduleMq(L) with highest
weightL.
J. Math. Phys., Vol. 38, No. 2, February 1997
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A q analog of the Fock representation ofsl̂n can be realized in theQ(q)-vector spaceF q

spanned by all partitions:

F q5 %

lPP

Q~q!ul&,

the action being defined in combinatorial terms.
Let us say that a point (a,b) of Z13Z1 is an indenti node of a Young diagraml if a box of

residuei5a2b modn can be added tol at position (a,b), in such a way that the new diagram
still corresponds to a partition. Similarly, a node ofl of residuei that can be removed will be
called a removablei node.

Let iP$0,1,...,n21% and letl, n be two partitions such thatn is obtained froml by filling an
indent i -nodeg. We setNi(l)5]$indent i -nodes ofl%–]$removablei nodes ofl%;

Ni
l(l,n)5]$indent i nodes ofl situated to theleft of g ~not countingg!%2]$removablei

nodes ofl situated to theleft of g%;
Ni
r(l,n)5]$indent i nodes ofl situated to theright of g ~not countingg!%2]$removablei

nodes ofl situated to theright of g%;
N0(l)5]$0 nodes ofl%.

The following result is due to Hayashi,43 and the formulation that we use has been given by Mi
and Miwa42 ~with a slight change, namely, conjugation of partitions andq→1/q!.

Theorem V.1: The algebra Uq(sl̂n) acts onF q by

qhiul&5qNi ~l!ul&, qDul&5q2N0~l!ul&,

f i ul&5Snq
Ni
r
~l,n!un&, sum over all partitionsn such thatn/l is an i node,

ei un&5Slq
2Ni

l
~l,n!ul&, sum over all partitionsl such thatn/l is an i node.

It is easy to see thatF q is an integrableUq(sl̂n) module. It is not irreducible. Actually, it
decomposes as

F q> %

k>0
Mq~L02kd! %p~k!,

wherep(k) is the number of partitions ofk. Obviously, the empty partitionu0& is a highest weight
vector of weightL0. The submoduleUq(sl̂n) u0& is isomorphic toMq(L0), also called thebasic
representationof Uq(sl̂n). Again, one can identifyF q with Sym @with coefficients inQ(q)# and
interpret ul& assl . Then, a naturalq analog of~19! gives a basis of highest weight vectors f
Uq(sl̂n) in F q .

Proposition V.2: Define a linear operatorcq
n on Sym by

cq
n~hm!5 (

TPTabn~•,m!
~2q!22s~T!sT .
J. Math. Phys., Vol. 38, No. 2, February 1997
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Then, its imagecq
n(Sym) is the spaceS q

(n) of highest weight vectors of Uq(sl̂n) in Sym.
Example V.3:The plethysmc2(h21) is given by the following domino tableaux:

and the corresponding highest weight vector ofUq(sl̂2) is

cq
2~h21!5s62q21s511~11q22!s422q21s4112~q211q23!s331q22s31111q22s2222q23s2211.

The proposition is a consequence of the following more precise statement.
Theorem V.4: Let Uk , Vk (k>1) be the linear operators defined by

Vksl5(
m

~2q!22s~m/l!sm ,

wherem runs over all partitions such thatm/l is a horizontal n-ribbon strip of weight (k) (see Se
IV) and

Uksl5(
n

~2q!22s~l/n!sn ,

wheren runs over all partitions such thatl/n is a horizontal n-ribbon strip of weight (k). Thus, Vk
is a q analog of f°cn(hk)f, and Uk is its adjoint. Then, Uk and Vk commute with the action o
Uq(sl̂n). In particular, eachcq

n(hm) 5 Vmr
•••Vm1

u0& is a highest weight vector.
This result can be obtained by a direct verification, using formula~12!. However, a more

illuminating approach comes from comparison with a recent construction of Stern5 and Kashiwara,
Miwa, and Stern.6 These authors construct theq-analog of the Fock representation by means o
q-deformation of the wedge product, defined in terms of an action of the affine Hecke al
ĤN(q

22) on a tensor productV(z)^N of evaluation modules.
Here,V(z) is C~Z! realized as

~ %

i51

n

Cv i ! ^C@z,z21#,

whereziv j is identified withuj2ni . The spaceV(z) is endowed with a left action ofUq(sl̂n)
defined by requiring thatuk is a weight vector of weightLk2Lk11 and

f iuk5dk[ i mod nuk11 , eiuk5dk[ i11 mod nuk21 .

Writing zr1vm1
^ ••• ^ zrNvmN

asvmz
r 5 vm1

^ ••• ^ vmN
• z1

r1•••zN
rN, the right action of

ĤN(q
22) on V(z)^N is described by the following formulas.44,5,6The generatoryi acts as multi-

plication byzi
21 and

~vm•z
r !Ti5H 2q21vms i

•s i~z
r !1~q2221!vm•] i~ziz

r !, if mi,mi11 ,

2vm•s i~z
r !1~q2221!vm•zi] i~z

r !, if mi5mi11 ,

2q21vms i
•s i~z

r !1~q2221!vm•zi] i~z
r !, if mi.mi11 ,

~20!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where ms5(ms(1),...,ms(N)) and ] i is the divided difference operato
f (z)°„f2s i( f )…/(zi2zi11). This action can be regarded as a generalization of the one give
Ref. 29, which would correspond to the degenerate casen51.

There is aUq(sl̂n) action onV(z)^N via the iterated coproduct,

DNf i5 f i ^1^ ••• ^11qhi ^ f i ^1^ ••• ^11•••1qhi ^ ••• ^qhi ^ f i ,

DNei5ei ^q2hi ^ ••• ^q2hi11^ei ^q2hi ^ ••• ^q2hi1•••11^ ••• ^1^ei .

The important point is that the right action ofĤN(q
22) commutes with the left action o

Uq(sl̂n). LetA
(N) 5 (sPSN

Ts . This is aq-analog of the total antisymmetrizer ofSN , since signs
have been incorporated in formulas~20! in such a way thatTi acts as aq-analog of2s i .
Kashiwara, Miwa, and Stern then define theq-exterior powers bỳ q

NV(z)5V(z)^N/kerA(N), and
denote byui1 ` q••• ` quiN the image ofui1 ^ ••• ^ uiN in the quotient. A basis of̀ q

NV(z) is
formed by the normally ordered productsui1 ` q••• ` quiN, where i 1. i 2.•••. i N , and any
q-wedge product can be expressed on this basis, by means of the following relations iter
applied to consecutive factors. Suppose thatl,m and thatl2mmodn5 i . Set t5q21. Then, if
i50 one has ul`qum52um`qul , otherwise, ul`qum52tum`qul1(t221)(um2 i`qul1 i

2tum2n`qum1n1t2um2n2 i`qul1n1 i1...),where the only terms to be taken into account in t
last expression are the normally ordered ones.

There is then a well-defined action ofUq(sl̂n) on the ‘‘thermodynamic limit,’’

`
q

`

V~z!5 lim
N→`

`
q

N

V~z!,

which provides another realization of theq-Fock representation. As above, we denote byF q the
subspace spanned by theq-wedges, such thati k52k11 for k@0. The action of Theorem V.1
can be recovered via the isomorphism

ul&→ul1
`qul221`qul322`q••• .

The center of the affine Hecke algebraĤN(q
22) acts oǹ q

NV(z). This center is generated b
the power sums

pk~Y!5(
i51

N

yi
k , k561,62,...,

and in the thermodynamic limit, the operators

Bk5(
i51

`

yi
2k

are shown in Ref. 6 to generate an action of a Heisenberg algebra onF q , with

@Bk ,Bl #5k
12q22nk

12q22k •dk,2 l . ~21!

If one interprets the infiniteq-wedges as Schur functions, by the same rule as in the clas
case, one sees thatB2k (k>1) is aq-analog of the multiplication operatorf°pnkf , and thatBk

corresponds to its ajointDpnk
.

J. Math. Phys., Vol. 38, No. 2, February 1997
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To connect this construction with the preceding one, take for generators of the center
affine Hecke algebra the elementary symmetric functions in theyi andyi

21 instead of the power
sums, and define operators onF q by

Ũk5ek~y1 ,y2 ,...!, Ṽk5ek~y1
21,y2

21,...!.

These operators commute withUq(sl̂n), and their action can be described in terms of ribb
tableaux.

Lemma V.5:

Ũkul&5(
n

~2q!2s~l8/n8!2k~n21!un&, ~22!

where the summation runs over all partitionsn such thatl8/n8 is a horizontal n-ribbon strip of
weight (k). Similarly,

Ṽkul&5(
m

~2q!2s~m8/l8!2k~n21!um&, ~23!

where the summation runs over all partitionsm such thatm8/l8 is a horizontal n-ribbon strip of
weight (k).

Proof: It is sufficient to work with`q
NV(z) for N sufficiently large. Then,

Ṽkui1`q•••`quiN5(
J
ui11 j 1

`q•••`quiN1 j N
,

whereJ5( j 1 ,...,j N) runs through the distinct permutations of the integer vector (0N2knk). The
only reorderings needed to express a term of this sum in standard form are due to the app
of factors of the formui`quj1n with j1n. i. j . In this case,ui`quj1n52tuj1n`qui , since
the other terms (t221)(uj1n2a`qui1a2tuj`qui1n1•••) vanish, the residuea5 j1n2 i modn
being actually equal toj1n2 i . The first case of the straightening rule is never encounte
becausej1n2 i[0 modn would imply i2 j5bn with b.0, so thatj1n³ i .

Thus,

ui11 j 1
`q•••`quiN1 j N

5~2t ! l ~s!uis~1!1 js~1!
`q•••`quis~N!1 js~N!

,

wheres is the shortest permutation, such that the result is normally ordered. In view of for
~16!, this gives the result forṼk . The argument forŨk is similar.

Corollary V.6: The operators Uk, Vk of Theorem V.4 act onF q as hk(y1 ,y2 ,...) and
hk(y1

2 1 ,y2
2 1 ,...),respectively. Inparticular,@Ui ,Uj # 5 @Vi ,Vj # 5 0.

VI. H FUNCTIONS

Let l be a partition without ak-core, and with thek-quotient (l0,...,lk21). For a ribbon
tableauT of weightm, letxT 5 x1

m1x2
m2•••xr

mr. Then, the correspondence betweenk-ribbon tableaux
andk-tuples of ordinary tableaux shows that the generating function,

G l
~k!5 (

TPTabk~l,• !
xT5)

i50

k21

(
tiPTab~l i ,• !

xti5)
i50

k21

sl i, ~24!
J. Math. Phys., Vol. 38, No. 2, February 1997
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is a product of Schur functions. Introducing in this equation an appropriate statistic on r
tableaux, one can therefore obtainq-analogs of products of Schur functions. The statistic s
leads toq-analogs with interesting properties.

For a partitionl without ak-core, let

sk* ~l!5max$s~T!uTPTabk~l,• !%. ~25!

The cospin s̃(T) of a k-ribbon tableauT of shapel is then

s̃~T!5sk* ~l!2s~T!. ~26!

Althoughs(T) can be a half-integer, it is easily seen thats̃(T) is always an integer. Also, there i
one important case wheres(T) is an integer. This is when the shapel of T is of the form
km5(km1 ,km2 ,...,km r). In this case, the partitions constituting thek-quotient ofl are formed by
parts of m, grouped according to the class modulok of their indices. More precisely
l i5$m r ur[2 i modk%

We can now define

G̃l
~k!~X;q!5 (

TPTabk~l,• !
qs̃~T!xT, ~27!

H̃m
~k!~X;q!5 (

TPTabk~km,• !
qs̃~T!xT5G̃km

~k!~X;q!, ~28!

Hm
~k!~X;q!5 (

TPTabk~km,• !
qs~T!xT5qsk* ~km!H̃m

~k!SX; 1qD . ~29!

Theorem VI.1 „symmetry…: G̃l
(k) , H̃m

(k) , and Hm
(k) are symmetric functions of X5$x1,x2,...%.

This property follows from Corollary V.6. Indeed, the commutation relation [Vi ,Vj ]50
proves that ifa is a rearrangement of a partitionm,

Var
•••Va1

u0&5Vmr
•••Vm1

u0&5cq
k~hm!,

which shows that for any partitionl, the sets Tabk(l,m) and Tabk(l,a) have the same spin
polynomials.

The parameterk will be called thelevelof the corresponding symmetric functions.
Remark VI.2:If one defines the linear operatorwq

k as the adjoint ofcq
k for the standard scala

product, theH functions can also be defined by the equation

Hl
~k!~X;q22!5wq

k~skl!. ~30!

There is strong experimental evidence for the following conjectures.
Conjecture VI.3 (positivity): The coefficients of G˜l

(k) , H̃l
(k) , and Hl

(k) on the basis of Schu
functions are polynomials in q with non-negative integer coefficients.

Conjecture VI.4 (monotonicity): Hm
(k11)2Hm

(k) is positive on the Schur basis, that is, th
coefficients are inN@q#.

Conjecture VI.5 (plethysm): Whenm5nk, for z a primitive kth root of unity,

Hnk
~k!

~z !5~21!~k21!unupk+sn ,

and, more generally, when duk andz is a primitive dth root of unity,
J. Math. Phys., Vol. 38, No. 2, February 1997
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Hnk
~k!

~z !5~21!~d21!unuk/dpd
k/d+sn .

Equivalently,

Hnk
~k!

~q!mod 12qk5 (
i50

k21

qkl k
~ i !+sn .

The following statements will be proved in the forthcoming sections.
Theorem VI.6: For k > l (m),Hm

(k) is equal to the Hall–Littlewood functionQm8 .
Theorem VI.7: The difference Qm8 2 Hm

(2) is non-negative on the Schur basis.
Taking into account the results of Refs. 8, 9, and 27, this is sufficient to establish the co

tures fork52 andk> l (m).
Example VI.8 (i):The 3-quotient ofl5~3,3,3,2,1! is „~1!,~1,1!,~1!… and

G̃33321~q!5m311~11q!m221~212q1q2!m2111~315q13q21q3!m1111

5s311qs221~q1q2!s2111q3s1111

is aq-analog of the product

s1s11s15s311s2212s2111s1111.

~ii ! TheH functions associated with the partitionl5~3,2,1,1! are

H3211
~2! 5s32111qs3221qs3311qs41111~q1q2!s4211q2s43

1q2s5111q3s52,

H3211
~3! 5s32111qs3221~q1q2!s3311qs41111~q12q2!s4211~q21q3!s43

1~q21q3!s51112q3s521q4s61,

H3211
~4! 5s32111qs3221~q1q2!s3311qs41111~q12q21q3!s4211~q21q31q4!s43

1~q21q31q4!s5111~2q31q41q5!s521~q41q51q6!s611q7s7

5Q32118 ,

and we see thats3211,H3211
(2) ,H3211

(3) ,H3211
(4) 5Q32118 .

~iii ! The plethysms ofs21 with the cyclic charactersl 3
( i ) are given by the reduction modul

12q3 of

H222111
~3! 5q9s631~q11!q7s6211q6s61111~q11!q7s541~q312q212q11!q5s531

1~q212q11!q5s5221~q312q212q11!q4s52111~q11!q4s51111

1~q212q11!q5s4411~q312q213q12!q4s4321~2q313q213q11!q3s4311

1~q313q213q12!q3s42211~q312q212q11!q2s421111q3s4111111~q311!q3s333

1~2q313q212q11!q2s33211~q212q11!q2s331111~q212q11!q2s3222

1~q312q212q11!qs322111~q11!qs3211111~q11!qs222211s222111.

Indeed,
J. Math. Phys., Vol. 38, No. 2, February 1997
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H222111
~3! mod 12q35~2s52111s222211s32111113s431112s322111s52213s43213s33211s33111

1s32221s5111113s422112s53112s421111s541s6211s441!q
2

1~2s52111s222211s32111113s431112s322111s52213s43213s33211s33111

1s32221s5111113s422112s53112s421111s541s6211s441!q12s33111

1s631s611112s53112s52212s521112s44112s43213s431113s4221

12s421111s41111112s33312s332112s32221s22211112s32211

5q2l 3
~2!+s211ql3

~1!+s211 l 3
~0!+s21.

VII. THE CASE OF DOMINOES

For k52, the conjectures can be established by means of the combinatorial constructi
Refs. 27 and 28. In this case, conjectures VI.1, VI.3, and VI.5 follow directly from the resul
Ref. 27, and the only point remaining to be proved is Theorem VI.7.

The important special feature of domino tableaux is that there exits a natural notio
Yamanouchi domino tableau. These tableaux correspond to highest weight vectors in tensor p
ucts of two irreducible~polynomial! representations ofGL(n,C!, in the same way as ordinar
Yamanouchi tableaux, are the natural labels for highest weight vectors of irreducible repre
tions.

The column readingof a domino tableauT is the word obtained by reading the success
columns ofT from top to bottom and left to right. Horizontal dominoes, which belong to t
successive columnsi and i11 are read only once, when reading columni . For example, the
column reading of the domino tableau

is col(T)5431212.
A Yamanouchi wordis a wordw5x1x2•••xn , such that each right factorv5xi•••xn of w

satisfiesuvu j>uvu j11 for eachj , whereuvu j denotes the number of occurrences of the letterj in v.
A Yamanouchi domino tableauis a domino tableau whose column reading is a Yamanou

word. We denote by Yam2~l,m! the set of Yamanouchi domino tableaux of shapel and weightm.
It follows from the results of Ref. 27, Sec. 7, that the Schur expansions of theH functions of

level 2 are given by

Hl
~2!5(

m
(

TPYam2~2l,m!
qs~T!sm . ~31!

On the other hand,

Ql85(
m

(
tPTab~m,l!

qc~ t!sm . ~32!

To prove Theorem VI.7, it is thus sufficient to exhibit an injection,

h: Yam2~2l,m!→Tab~m,l!,

satisfying
J. Math. Phys., Vol. 38, No. 2, February 1997
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c„h~T!…5s~T!.

To achieve this, we shall make use of a bijection described in Ref. 45, and extended in R
which sends a domino tableauTPTab2~a,m! over the alphabetX5$1,...,n%, to an ordinary tableau
t5f(T)PTab (a,m̄m) over the alphabetX̄øX5$n̄,...,1̄,1,•••,n%. The weightm̄m means
that t containsm i occurrences ofi and of ī . The tableauf(T) is invariant under Schu¨tzenberger’s
involution V, and the spin ofT can be recovered fromt by the following procedure.46

Let a52l, b5a8, bodd5~b1,b3,...! andbeven5~b2,b4,...!. Then, there exists a unique facto
ization t5t1t2 in the plactic monoid Pl(XøX̄), such thatt1 is a contretableau of shap
a15~beven!8 andt2 is a tableau of shapea25~bodd!8. The spin ofT5f21~t! is then equal to the
numberut1u1 of positive letters int1, which is also equal to the numberut2u2 of negative letters in
t2. Moreover,t25V~t1!.

Example VII.1:With the following tableauT of shape~4,4,2,2!, one finds

By jeu de taquin, we find that in the plactic monoid,

The number of positive letters oft1 and the number of negative letters oft2 are both equal to 1,
which is the spin ofT.

This correspondence still works in the general case~a need not be of the form 2l! and the
invariant tableau associated with a domino tableauT admits a similar factorizationt5t1t2, but, in
general,t2ÞV~t1! and the formula for the spin iss(T)51/2(ut1u11ut2u2).

The maph: Yam2~2l,m!→Tab~m,l! is given by the following algorithm: to computeh(T),
~1! construct the invariant tableaut5f(T); ~2! apply thejeu de taquinalgorithm tot to obtain the
plactic factorizationt5t1t2, and keep onlyt2; ~3! apply the evacuation algorithm to thenegative
letters of t2, keeping track of the successive stages. After all the negative letters have
evacuated, one is left with a Yamanouchi tableaut in positive letters;~4! complete the tableaut
to obtain the tableaut85h(T) using the following rule: suppose that at some stage of the ev
ation, the box oft2 that disappeared after the elimination ofī was in row j of t2. Then add a box
numberedj to row i of t.

Theorem VII.2: The above algorithm defines an injection,

h: Yam2~2l,m!→Tab~m,l!,

satisfying c+h5s.
The proof follows from the constructions of Ref. 46.
Corollary VII.3: Hl

(2) < Ql8
Example VII.4:Let T be the following Yamanouchi domino tableau, which is of shapel

5~6,4,4,2,2!, of weightm5~4,3,2!, and has spins(T)53,

Then
J. Math. Phys., Vol. 38, No. 2, February 1997
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and the successive stages of the evacuation process are

so that we find

a tableau of shapem5~4,3,2!, weightl5~3,2,2,1,1!, and chargec~t8!53.

VIII. THE STABLE CASE

As theQ8 functions are known to verify all the conjectured properties ofH functions, the
stable case of the conjectures will be a consequence of Theorem VI.6. This result will be p
by means of Shimomura’s cell decompositions of unipotent varieties.

A. Unipotent varieties

Let uPGL(n,C! be a unipotent element, and letF n
u@C# be the variety ofn-flags ofCn that are

fixed byu.
It has been shown by Shimomura~Ref. 18; also see Ref. 12! that the varietyF n

u@C# admits a
cell decomposition, involving only cells of even real dimensions. More precisely, this cell de
position is a partition in locally closed subvarieties, each being algebraically isomorphic
affine space. Thus, the odd-dimensional homology groups are zero, and if

Pnm~ t2!5(
i
t2i dim H2i~F n

u ,Z!

is the Poincare´ polynomial ofF n
u@C#, one hasuF n

u@Fq] u5Pnm(q). But, by Sec. II, this is also equa
to G̃nm(q), and as this is true for an infinite set of values ofq, one hasPnm(z)5G̃nm(z) as
polynomials. That is, the coefficient ofQ̃m8 on the monomial functionmn is the Poincare´ polyno-
mial of F n

u, for a unipotentu of typem.
Writing

Q̃m8 5(
l,n

K̃lm~q!Klnmn , ~33!

one sees that

G̃nm~q!5 (
~ t1 ,t2!PTab~l,m!3Tab~n,m!

qc̃ ~ t1!. ~34!

Knuth’s extension of the Robinson–Schensted correspondence47 is a bijection between the set

)
l

Tab~l,m!3Tab~l,n!
J. Math. Phys., Vol. 38, No. 2, February 1997
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of pairs of tableaux with the same shape, and the double coset spaceSm\Sn/Sn of the symmetric
groupSn modulo two parabolic subgroups. Double cosets can be encoded by two-line a
integer matrices with prescribed row and column sums, or bytabloids.

Let n andm be arbitrary compositions of the same integern. A m tabloid of shapen is a filling
of the diagram of boxes with row lengthsn1 ,n2 ,...,n r , the lowest row being numbered 1~French
convention for tableaux!, such that the numberi occursm i times, and such that each row
nondecreasing. For example,

is a ~5,1,3!-tabloid of shape~2,3,3,1!.
We denote byL(n,m) the set of tabloids of shapen and weightm. A tabloid will be identified

with the word obtained by reading it from left to right and top to bottom. Recall that two wordu,
v are plactically equivalent (u[v) if and only if they are mapped to the same tableau by Sch
sted’s algorithm.20 Then, writing

G̃nm~q!5^hn ,Q̃m8 ~q!&5(
l

^hn ,sl&^sl ,Q̃m8 ~q!&,

interpreting^hn ,sl& as the number of tabloids of shapen, which, as words, are plactically equiva
lent to a tableau of shapel, and using the fact that cocharge is compatible with the pla
congruence@i.e.,w[w8 implies c̃(w)5 c̃(w8) ~Ref. 20!#, we see that

G̃nm~q!5 (
TPL~n,m!

qc̃ ~T!. ~35!

Example VIII.1:To computeG̃42,321(q) one lists the elements ofL„~4,2!,~3,2,1!…, which are

Reading them as prescribed, we obtain the words

231112 221113 131122 121123 111223,

whose respective charges are 2,1,3,2,4. The cocharge polynomial is
G̃42,321(q)511q12q21q3.

In Shimomura’s decomposition of the fixed point varietyF m
u of a unipotent of typen, the cells

are indexed by tabloids of shapen and weightm. The dimensiond(T) of the cellcT indexed by
TPL(n,m) is computed by an algorithm described below, and gives another combinatorial
pretation of the polynomialG̃mn(q), exchanging the roˆles of shape and weight:

G̃mn~q!5 (
TPL~m,n!

qc̃ ~T!5 (
TPL~n,m!

qd~T!. ~36!

The dimensionsd(T) are given by the following algorithm.
~1! If TPL„n,(n)… thend(T)50.
~2! If m5~m1,m2! has exactly two parts, andTPL(n,m), thend(T) is computed as follows.

A box a of T is said to bespecialif it contains the rightmost 1 of its row. For a boxb of T, put
d(b)50 if b does not contain a 2, and ifb contains a 2, setd(b) equal to the number o
nonspecial 1’s lying in the column ofb, plus the number of special 1’s lying in the same colum
but in a lower position. Then
J. Math. Phys., Vol. 38, No. 2, February 1997
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d~T!5(
b

d~b!.

~3! Let m5(m1 ,...,mk) andm*5(m1 ,...,mk21). For TPL(n,m), let T1 be the tabloid ob-
tained by changing the entriesk into 2 and all the other ones into 1. LetT2 be the tabloid obtained
by erasing all the entriesk, and rearranging the rows in the appropriate order. Then,

d~T!5d~T1!1d~T2!. ~37!

Example VIII.2: With

one has

where the special entries are printed in boldtype. Thus,d(T)5t(T1)1d(T2)521d(T21)
1d(T22)54.

We shall need a variant of this construction, in which the shapen is allowed to be an arbitrary
composition, and where in step~3!, the rearranging of the rows is suppressed. Such a varian
already been used by Terada19 in the case of complete flags.

That is, we associate to a tabloidTPL(n,m) an integere(T), defined by~1! ForTPL„n,(n)…,
e(T)5d(T)50; ~2! for TPL„n,~m1,m2!…, e(T)5d(T); ~3! otherwisee(T)5e(T1)1e(T2), where
T1 is defined as above, but this timeT2 is obtained fromT by erasing the entriesk, without
reordering.

Lemma VIII.3: Letl5(l1 ,...,l r) be a partition, and letn5l•s5(ls(1),...,ls(r )), sPSr .
Then, the distribution of e on L(n,m) is the same as the distribution of d on L(l,m). That is,

Dlm~q!5 (
TPL~l,m!

qd~T!5Enm~q!5 (
TPL~n,m!

qe~T!.

In particular, Dlm(q)5Elm(q).
Proof: This could be proved by repeating word for word the geometric argument of Ref

Here we give a short combinatorial argument. As the two statistics coincide on tabloids w
shape is a partition and whose weight has at most two parts, the only thing to prove, thanks
recurrence formula, is thate has the same distribution onL„b,~m1,m2!… as onL„a,~m1,m2!… when
b is a permutation ofa. The symmetric group being generated by the elementary transpos
s i5( i ,i11), one may assume thatb5as i . We define the imageTs i of a tabloid
TPL„a,~m1,m2!… by distinguishing among the following configurations for rowsi and i11.

~1! x1 ••• xk 2 2r

1 ••• 1 1 2s
→
s i x1 ••• xk 2 2s

1 ••• 1 1 2r

~2! 1 ••• 1 1 2r

x1 ••• xk 2 2s
→
s i 1 ••• 1 1 2s

x1 ••• xk 2 2r

~3! In all other cases, the two rows are exchanged:

x1 ••• xr

y1 ••• ys
→
s i y1 ••• ys

x1 ••• xr
J. Math. Phys., Vol. 38, No. 2, February 1997
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From this definition, it is clear thate(Ts i)5e(T). Moreover, it is not difficult to check that this
defines ane-preserving action of the symmetric groupSm on the set ofm-tabloids withm rows,
such thatL(a,m)s5L(as,m) ~the only point needing a verification is the braid relati
s is i11s i5s i11s is i11!.

Thus, for a partitionl and a two-part weightm5~m1,m2!, d ande coincide onL(l,m), and for
sPSm , Els,m(q)5Dlm(q). Now, by induction, form5(m1 ,...,mk),

Dlm~q!5 (
TPL~l,m!

qd~T1!qd~T2!5 (
l̄5shape~T1!

qd~T1!D l̄ ,m* ~q!5 (
l̄5shape~T1!

ee~T1!E l̄ ,m* ~q!5Elm~q!.

h

Example VIII.4:Takel5~3,2,1!, m5~4,2!, andn5ls1s25~3,1,2!. Them-tabloids of shapel
are

The n-tabloids of shapel are

Thus, Dlm(q)5Enm(q)511q12q21q35G̃ml(q). The tabloids contributing a termq2 are
paired in the following way:

Remark VIII.5: The only property that we shall need in the sequel is the equa
Dlm(q)5Elm(q). However, it is possible to be more explicit by constructing a bijection excha
ing d and e. The above action ofSm can be extended to tabloids with arbitrary weight, s
preservinge. Suppose, for example, that we want to applys i to a tabloidT whose restriction to
rows i ,i11 is

One first determines the positions of the greatest entries, which are the 9’s inTs i . Starting with
an empty diagram of the permuted shape~10,7!, one constructsT1 as above by converting all th
entries 9 ofT into 2 and the remaining ones into 1. Then we applys i to T1 , and the positions of
the 2 inTis i give the positions of the 9 inTs i . Then, the entries 9 are removed fromT and the
procedure is iterated until one reaches a tabloid whose rowsi and i11 are of equal lengths. This
tabloid is then copied~without permutation! in the remaining part of the result. On the examp
J. Math. Phys., Vol. 38, No. 2, February 1997
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B. Labeling of cells by ribbon tableaux

A tabloid t of shapen5(n1 ,...,nk) can be identified with ak-tuple (w1 ,...,wk) of words,wi

being a row tableau of lengthn i . The Stanton–White correspondenceC associates to such
k-tuple of tableaux a uniquek-ribbon tableau with emptyk-coreT5C~t! ~cf. Sec. IV!. Thus, the
cells of a unipotent varietyF m

u ~whereu is of typen! are labeled byk-ribbon tableaux of a specia
kind. The following theorem, which implies the stable case of the conjectures, shows tha
labeling is natural from a geometrical point of view.

Theorem VIII.6: The Stanton–White correspondenceC sends a tabloidtPL(n,m) onto a
ribbon tableau T5C(t) whose cospin is equal to the dimension of the cell ct of F m

u labeled byt,
when one uses the modified indexation for which the dimension of ct is e~t!. That is,

s̃„C~ t!…5e~ t!.

Example VIII.7:Let tPL„~2,3,2,1!,~2,3,1,1,1!… be the following tabloid@the number under a
letter y is the number ofe-inversions of the form (y,x)#:

so thate~t!57. Its image under the SW correspondence is the four-ribbon tableau

whose cospin is equal to 7.
Proof:We shall first observe, following Ref. 19, that thee statistic can be given a nonrecu

sive definition, as a kind of inversion number. Lett5(w1 ,...,wk) be a tabloid, identified with a
k-tuple of row tableaux. Lety be ther th letter ofwi andx be thesth letter ofwj , and suppose tha
x,y. Then, the pair (y,x) is said to be ageneralized inversionif either ~a! i, j ands5r , or ~b!
i. j ands5r11. Thene~t! is equal to the number of inversions (y,x) in t.

Let us now show that the cospin of thek-ribbon tableauC~t! is also equal to the number o
generalized inversions oft. To do this, we shall make use of a combinatorial description differ
from that of Sec. IV.

As explained in Sec. V, partitionsl are the natural labels of the Fock space basis in
bosonic realization, while strictly decreasing sequences form an appropriate set of indices
fermionic realization. At the combinatorial level the boson–fermion correspondence becom

l5~l i ! i>1→b5~b i ! i>15~l i2 i11! i>1 .
J. Math. Phys., Vol. 38, No. 2, February 1997
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Here we regard bothl andb as infinite with the tail conditionsl i50 andb i52 i11 for i large
enough. Graphically, the sequenceb can be pictured as a set of beads on an infinite runner.
example,b5~5,4,21,23,24,25,...! is represented by

When the action ofsl̂k on the Fock space is considered, it is convenient to display theb numbers
on k different runners, thus getting ak abacus in the terminology of James.36 For instance, when
k53, the sameb set as above becomes

It is easily checked that moving a bead one step to the right~resp., to the left! on thei th runner
amounts to remove~resp., to add! a k-ribbon of typei to the Young diagram ofl. Hence,l has
an emptyk-core if and only if by moving all the beads to the right as far as possible, one get
k-abacus of the empty partition. Also, thek-quotient ofl is obtained by reading the partition
encoded in the successive runners of its abacus. In particular, if thek-quotient ofl is a sequence
of row shapes (nu21,...,nk), and itsk-core is empty, then the corresponding abacus has
following simple form:

where there aren i holes on thei th runner. The spin is also easily read on this representa
namely, moving the bead containing theb-numberb one step to the left, that is replacing thisb
number byb1k, will add ak ribbon with spinj /2, wherej is the number ofb i betweenb and
b1k.

Consider now a tabloidt5(w1 ,...,wk). The k-ribbon tableauC~t! is by definition~cf. Sec.
IV ! a chain of partitionsa0,a1,•••a r , wherea i /a i21 consists of the ribbons numberedi . If this
chain is mapped to an abacus, and the holes corresponding toa i /a i21 are numberedi , then one
gets

wherewj
1,...,wj

sj are the successive letters of the wordwj . Now taking into account the abov
description of the spin created by moving one bead to the left, we see that the variation of
coming from the addition of a lettery5wj

i is equal to the number of generalized inversions of
form (y,x). h

C. Atoms

The H functions indexed by columns can also be completely described in terms of H
Littlewood functions.

Proposition VIII.8: Let n5sk1r with 0<r,k, and setl5((s11)r ,sk2r). Then,

H
~1n!

~k!
5v~Q̃l8 !,

wherev is the involution sl°sl8 .
J. Math. Phys., Vol. 38, No. 2, February 1997
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The k-quotient of (kn) is (1s,...,1s,1s11,...,1s11), where the partition (1s) is repeatedk2r
times. Thus, ak-ribbon tableau is mapped by the Stanton–White correspondence to ak-tuple of
columns, which can be interpreted as a tabloid, and the result follows again from Shimom
decomposition.

The partitions arising in Proposition VIII.8 have the property that, if< denotes the natura
order on partitions,

a<l⇔ l ~a!< l ~m!.

There are canonical injections,

iab :Tab~•,a!→Tab~•,b!,

whena<b ~cf. Refs. 21 and 14!. TheatomA~m! is defined as the set of tableaux in Tab~•,m!,
which are not in the image of anyiam . Define the symmetric functions~cocharge atoms!

Ãm~X;q!5(
l

S (
tPA~m!ùTab~l,m!

qc̃ ~ t!D sl~X!. ~38!

Proposition VIII.8 can then be rephrased as

H
~1n!

~k!
5vS (

l ~m!<k
ÃmD . ~39!

It seems that the difference between the stableH functions and the immediately lower leve
can also be described in terms of atoms. Forl (l)5r , set

D̃l~q!5H̃l
~r !2H̃l

~r21! .

These functions seem to be sums of cocharge atoms over certain intervals in the lattice o
tions.

Conjecture VIII.9: For any partitionl, there exists a partition f(l), such that

D̃l5 (
m< f ~l!

Ãm .

Example VIII.10: In weight 6, the partitionf (l) is given by the following table:
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sentation theory,’’ Se´minaire Lotharingien de Combinatoire, IRMA, Strasbourg, 1992.

4I. G. Macdonald,Symmetric functions and Hall polynomials~Oxford University Press, Oxford, 1979!, 2nd ed., 1995.
5E. Stern, ‘‘Semi-infinite wedges and vertex operators,’’ Int. Math. Res. Not.4, 210–220~1995!.
6M. Kashiwara, T. Miwa, and E. Stern, ‘‘Decomposition ofq-deformed Fock spaces,’’ preprint, 1995.
7J. A. Green, ‘‘The characters of the finite general linear groups,’’ Trans. Am. Math. Soc.80, 402–447~1955!.
8A. Lascoux, B. Leclerc, and J.-Y. Thibon, ‘‘Fonctions de Hall–Littlewood et polynoˆmes de Kostka–Foulkes aux racine
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We present a new solution method for a class of first order analytic difference
equations. The method yields explicit ‘‘minimal’’ solutions that are essentially
unique. Special difference equations give rise to minimal solutions that may be
viewed as generalized gamma functions of hyperbolic, trigonometric and elliptic
type—Euler’s gamma function being of rational type. We study these generalized
gamma functions in considerable detail. The scattering and weight functions (u-
and w-functions! associated to various integrable quantum systems can be ex-
pressed in terms of our generalized gamma functions. We obtain detailed informa-
tion on theseu- andw-functions, exploiting the difference equations they satisfy.
© 1997 American Institute of Physics.@S0022-2488~97!01701-5#
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I. INTRODUCTION

This paper is concerned both with the general theory of first order analytic difference
tions ~from now on ADEs! and with certain special functions that arise as solutions to ADEs of a
quite restricted type. As announced and partly detailed in our survey1 and lectures,2 among these
special functions are the weight functions and scattering amplitudes associated with rela
quantum integrable systems of Calogero-Moser type—which, in turn, for special para
0022-2488/97/38(2)/1069/78/$10.00
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choices reduce to functions occurring in various well-known infinite-dimensional integrable
tems, such as the sine-Gordon theory, the XYZ chain and the eight-vertex model.

The first part of the paper~Sections II and III! does not involve integrable systems. T
describe the scope of the results obtained therein, we start from two quite elementary firs
ADEs, namely,

M ~w11!5cM~w!, wPC, cPC* , ~1.1!

M ~w11!5wM~w!, wPC. ~1.2!

Obviously, the first one is solved by the function exp(w ln c) and the second one by Euler
gamma functionG(w). These functions can be used as building blocks for solving ADEs of the
form

M ~w11!5Q~w!M ~w!, wPC, ~1.3!

whereQ(w) is a rational function ofw. Indeed, any function of the form

M ~w!5eaw
P j51

M G~w2bj !

Pk51
N G~w2ck!

, a,bj ,ckPC, ~1.4!

satisfies~1.3! with Q(w) rational, and varying the parametersa,M ,N,bj ,ck , yields all rational
functions.

Suppose now that one can find meromorphic solutions to the ADE ~1.3! for Q(w) equal to the
Weierstrasss-functions(w;v,v8) with v,2 iv8 P (0,̀ ), and its trigonometric (2 iv85`) and
hyperbolic (v5`) degenerations—the sine and sinh-functions.~The additional factor
cexp(aw2) in the degenerates-functions is easily taken into account—one need only includ
factor exp(P(w)) with P(w) a third order polynomial.! Then the respective solution
Mell(w),M trig(w) and Mhyp(w) can be used as building blocks to solve the ADE ~1.3! with
Q(w) any elliptic function with periods 2v,2v8 or its trigonometric and hyperbolic counterpar
resp. Indeed, any elliptic functionQ(w) can be written in the form~1.4!, with the exponential
replaced by a constant andG(w) by s(w), so a corresponding meromorphic solutionM (w) to
~1.3! is obtained by takingG→Mell in ~1.4!.

Among other things, this paper presents and studies special functions generalizing the
function, which can be used as building blocks to solve ADEs of the three types just described.
one case the pertinent function is not really new—up to a constant and an exponential it am
to Thomae’sq-gamma function.3,4 For the other two cases, however, the corresponding gen
ized gamma functions are new, and turn out to have some quite remarkable propertie
comprehensive study of these functions~to be found in Section III! constitutes one of the principa
results of this paper.

In order to sketch the setting from which our generalized gamma functions emerge, we
by pointing out that even when one restricts attention to functionsQ(w) and solutionsM (w) that
are meromorphic~as we do!, there is an enormous ambiguity in the solution. Indeed, assum
M (w) is a solution andm(w) anymeromorphic function with period 1, it is obvious that th
functionm(w)M (w) is a solution as well. The importance of singling out solutions withspecial
properties is therefore evident.

In previous literature, the class of ADEs to be studied—that is, the class of meromorp
functionsQ(w)—has been narrowed down by insisting thatQ(w) have a special asymptotics fo
Rew→`. In particular, No¨rlund in his comprehensive monograph5 uses this prescribed asymp
totics to construct the uniquely determined solution he refers to as the ‘‘Hauptlo¨sung’’ ~see also
Refs. 6–8!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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By contrast, the key requirement onQ(w) andM (w) we impose is a special asymptotics f
uIm wu→`, satisfied in particular for functionsQ(w) that are periodic in the imaginary direction
As will transpire below, this leads to essentially the same solutions only for rational and h
bolic Q(w), whereas No¨rlund’s methods do not apply to the trigonometric and elliptic cases

As a matter of fact, we have opted for a shift in the imaginary direction—in contrast to
shift by 1 in the ADE ~1.3!. This corresponds to the applications to integrable systems, and is
convenient in view of our different requirements concerning asymptotics. Moreover, we shal
the step size as a variable, and we do not single out the positive or negative imaginary dir
Thus our starting point is the ADE

F~z1 ia/2!5F~z!F~z2 ia/2!, ~1.5!

whereF(z) is meromorphic, and where the step sizea is an arbitrary positive number. Of cours
this ADE is related by a scaling and a shift over half the step size to the ADE ~1.3!, so all results
can be rephrased for~1.3!—at the expense, however, of cumbersome notation, which more
hides some symmetries that naturally emerge when the second convention is used.

We are now prepared to describe the organization and results of the paper in more
Section II contains our general results on first order ADEs. In Subsection II A we set the stage b
delineating the class of functionsF(z) allowed in ~1.5!. As a first requirement, we insist o
F(z) being free of zeros and poles in a stripuImzu,s, s.0. We denote such ADEs as regular
ADEs, and refer to solutions that are free of zeros and poles in the stripuImzu,s1a/2 as regular
solutions. The poles and zeros of a regular solutionF(z) outsideuImzu,s1a/2 are completely
determined by the poles and zeros ofF(z) outsideuImzu,s, as easily follows from~1.5!.

Regular ADEs can be rewritten in the additive form

f ~z1 ia/2!2 f ~z2 ia/2!5f~z!, uImzu,s, ~1.6!

wheref(z) denotes~a suitable branch of! lnF(z). Thus the search for regular solutions to~1.5! is
reduced to finding solutionsf (z) to ~1.6! that are analytic foruImzu,s1a/2. Using well-known
properties of the partial differential operator]/] z̄5]x1 i ]y and Runge’s approximation theorem
it can be proved that such solutions exist. We shall not detail this, however, since the exi
arguments yield no information on the solution thus obtained.~An existence proof can be as
sembled from Ref. 9, for example.!

By contrast, the extra requirements we impose onF(z) ~or equivalentlyf(z)) enable us to
constructexplicit solutions, with special properties that render them essentially unique. Rou
speaking, we require thatf(z) have at worst polynomial increase asuRezu→`, and construct
solutions f (z) with the same property, which are moreover regular~i.e., analytic for
uImzu,s1a/2). We refer to such solutions asminimalsolutions: both their singularities and the
asymptotics foruRezu→` are ‘‘best possible’’—being enforced by the singularities and asym
totics of f(z). Among other things, Theorem II.1 entails the uniqueness up to a consta
minimal solutions to the additive ADE ~1.6!—assuming they exist.

In Subsections II B and II C we study two classes of ADEs that do admit minimal
solutions—as is shown by exhibiting a minimal solution via explicit formulas involvingf(x),x
P R. The key results are Theorem II.2 and II.5, resp. Theorem II.2 presupposes thatf(x) is an
L1(R)-function, whose Fourier transformf̂(y) is in L1(R), too, and satisfiesf̂(y)5O(y) for
y→0; its corollary Theorem II.3 handles functions that have these properties after taking a c
number ofx-derivatives. In Theorem II.5 it is assumed thatf(x) has periodp/r ,r.0, and its
zeroth Fourier coefficient vanishes; then Theorem II.6 handles functionsf(x) for which f (k)

(x),k P N* , has these properties.
The arbitrary additive constant in a minimal solution to the ADE ~1.6! can and will be fixed

in the Fourier transform setting of Theorem II.2 by requiring that the solution go to 0 forx to `;
in the Fourier series setting of Theorem II.5 it is fixed by requiring that the minimal solu
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



lu-

i-

ent

ay
n III.
limit

as a
re the

mploy
lic
for

1
s
olution
ed
s
ional

com-

1072 S. N. M. Ruijsenaars: Difference equations and integrable systems

¬¬¬¬¬¬¬¬¬¬
~which is shown to bep/r -periodic! have vanishing zeroth Fourier coefficient. The unique so
tion f (a;z) thus obtained is given by~2.26! and ~2.106!, resp. From the identity~2.38! it then
follows that f (a;z) satisfies the addition formula~2.28! in both settings.

The solutionf (a;z) has another illuminating feature: In both cases it satisfies

lim
a↓0

ia f ~a;z!5c~z!, uImzu,s, ~1.7!

wherec(z) is a primitive off(z). Therefore,ia f (a;z) may be viewed as a ‘‘generalized prim
tive’’ of f(z). It should be noted that this feature is obviously compatible with the ADE ~1.6!, but
nota priori implied by it: In view of the huge multiplier ambiguity already discussed, the pertin
limit typically does not exist for more general solutions.

Theorems II.4 and II.7 are concerned with thea↓0 limit of minimal solutions to the ADE
~1.6! whenf is allowed to have a suitablea-dependence. At first sight, the assumptions m
appear very restrictive, but they can in fact be verified for the applications occurring in Sectio
The limit ~1.7! may be viewed as a quite special consequence of these zero step size
theorems.

In Appendix A we derive various results that involve Euler’s gamma function, not only
concrete illustration of the theory developed in Subsections II A and II B, but also to prepa
ground for Section III, which is devoted to a study of generalized gamma functions. Below~1.4!
we have already delineated the three cases that will be considered in Section III. Since we e
the ADE ~1.5! and not the ADE ~1.3!, however, the trigonometric case turns into the hyperbo
case and vice versa. Moreover, the Weierstrasss-function and its degenerations are traded
close relatives, to which the theory of Section II applies. The resulting minimal solutions~rendered
unique in obvious ways! will be dubbedG-functions.

More specifically, Subsection III A deals with the hyperbolicG-function—the unique mini-
mal solution to the ADE

G~z1 ia/2!52ch~pz/b!G~z2 ia/2!, b.0, ~1.8!

that satisfiesG(0)51 anduG(x)u51 for realx. Now it is evident that any solutionG(z) to ~1.8!
has the property that the quotientG(z1 ib/2)/G(z2 ib/2) is ania-antiperiodic function. It is not
at all obvious, though, that a solution exists for which this quotient equals 2ch(pz/a). The
hyperbolicG-function does have this striking property: It is given by

Ghyp~a,b;z!5expS i E
0

`dy

y S sin2yz

2shayshby
2

z

abyD D , uIm2zu,a1b, ~1.9!

and hence is manifestly symmetric undera↔b.
We present our results on the hyperbolicG-function in seven propositions. Proposition III.

deals with the three elementary ADEs to whichG is a minimal solution, and Prop. III.2 detail
various automorphy properties. As already noted above, the poles and zeros of a regular s
to ~1.5! readily follow from those ofF(z); similarly, residues at simple poles can be determin
in terms ofF(z). This is worked out forGhyp in Prop. III.3. An important dichotomy first emerge
here: Whena/b is an irrational number, all poles and zeros are simple, whereas for rat
a/b this is not the case.

SinceGhyp(z) is a minimal solution, its logarithm is polynomially bounded foruRezu→` and
uImzu<a/2. For the case at hand, the precise asymptotics can be explicitly determined by
parison to the casea5b. ~This case has special features that render it more accessible.! Proposi-
tion III.4 presents the details; the restriction onuImzu is readily lifted by exploiting the ADE ~1.8!.

From the representation~1.9! it is already clear that for fixedz in the stripuIm2zu,a1b the
G-function is real-analytic on (0,̀) in the parametersa andb. In Prop. III.5 we prove thatG
J. Math. Phys., Vol. 38, No. 2, February 1997
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actually extends to a function that is meromorphic ina,b andz, as long as the quotientb/a stays
away from the negative real axis. This readily follows from a representation for theG-function in
terms of an infinite product of gamma functions. To control the convergence of this product,
estimates on Laplace transforms assembled in Appendix B are crucial.

The latter estimates are also exploited in proving that a renormalized version of the hype
G-function converges to the gamma function when one takesa51 and ubu→0 in any sector
uArgbu<x,x P @0,p). This is detailed in Prop. III.6. Two more zero step size limits are obtai
in Prop. III.7. In the latter context the limit has branch cuts on the imaginary axis that arise
a confluence of zeros and poles.

Before turning to a sketch of Subsection III B, we would like to mention thatGhyp is not only
the key building block for the hyperbolic scattering and weight functions of Subsections IVA
VA, but also for our recent generalization of Gauss’ hypergeometric function2F1. In this context
Ghyp plays the role of the gamma function in the Barnes representation for2F1—except that the
generalization is far more symmetric. For2F1 the symmetry is broken, since a step size is taken
zero that leads to the two quite different limiting functions of Propositions III.6 and III.7~cf. Ref.
2, Subsection 6.3, and papers to appear!.

In Subsection III B we study the ellipticG-function, which is given by

Gell~r ,a,b;z!5expS i(
n51

`
sin2nrz

2nshnrashnrbD , uIm2zu,a1b, ~1.10!

along the same lines as its hyperbolic counterpart~1.9!. It is not obvious, but true thatGell is a
minimal solution to an ADE of the form

G~z1 ia/2!

G~z2 ia/2!
5exp~c01c1z1c2z

2!s~z1 ib/2;p/2r ,ib/2!, ~1.11!

wheres denotes the Weierstrasss-function. Thus it can be used as a building block to solve
ADE ~1.5! with F(z) an elliptic function—as already discussed above.

As it turns out, it is quite convenient to trade thes-function s(z;p/2r ,ia/2) for a closely
related functions(r ,a;z) ~2.89!. The latter function is odd andp/r -antiperiodic inz, and has
limits r21sinrz andpa21shpa21z for a↑` and r↓0, cf. ~2.90! and ~2.92!, resp. Similarly, the
function arising on the rhs of~1.11! will be denotedR(r ,b;z). In view of ~1.10! it is given
explicitly by

R~r ,b;z!5expS 2 (
n51

`
cos2nrz

nshnrb D , uIm2zu,b, ~1.12!

so it is even andp/r -periodic inz. Most of the propositions in Subsection III B may be viewed
generalizations of hyperbolic counterparts, since one has

lim
r↓0

exp~p2/6rb !R~r ,b;z!52ch~pz/b! ~1.13!

and

lim
r↓0

exp~p2z/6irab !Gell~r ,a,b;z!5Ghyp~a,b;z!, ~1.14!

cf. Prop. III.12.
Subsection III C concerns the trigonometric case. Our trigonometricG-function is given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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Gtrig~r ,a;z!5expS (
n51

`
e2inrz

2nshnraD , Im2z.2a, ~1.15!

and can be obtained as a limit of the ellipticG-function, viz.,

Gtrig~r ,a;z!5 lim
b↑`

Gell~r ,a,b;z2 ib/2!. ~1.16!

In this case the elementary ADE satisfied by theG-function reads

G~z1 ia/2!

G~z2 ia/2!
512e2irz. ~1.17!

Since the rhs has zeros on the real axis, this is not a regular ADE. However, any shift
z→z1 ip,p.0, yields a regular ADE, to which the~shifted! G-function is a minimal solution.

Propositions III.14–III.19 concern various properties of theG-function that are quite easily
obtained from the series representation~1.15! or the product representation

Gtrig~r ,a;z!5 )
m51

`
1

12exp~2irz2~2m21!ar !
. ~1.18!

Proposition III.20, however, involves more work. Here, we prove that a renormalized versi
Gtrig converges to the gamma function forr↓0.

Fixing a.0, it is clear from~1.18! thatGtrig(r ,a;z) extends to a meromorphic function o
r and z, as long asr stays in the right half plane. But one cannot solve the hyperbolic ADE,
obtained from ~1.17! upon taking r→ ip/b,b.0, by making use of the trigonometri
G-function. By contrast, oneis allowed to takeb→ ip/r ,r.0, in the hyperbolicG-function,
yielding the trigonometric function 2cosrz on the rhs of~1.8!. Accordingly, the quotient of the
renormalized versions ofGhyp(1,ip/r ;z) andGtrig(r ,1;z) ~both of which converge to the gamm
function asr↓0) is a quite nontriviali -periodic function, cf.~3.171!–~3.173!.

Just as in Subsections III A and III B, the last proposition of Subsection III C deals with
zero step size limits; once again, a confluence of zeros and poles gives rise to branch cu
subsection is concluded by detailing the relation of our trigonometricG-function to the
q-gamma function.

We continue by sketching the physical setting in which the scattering and weight func
u(z) andw(z) of Sections IV and V, resp., arise. These functions are associated to relativist
invariant integrable generalizations10,11of the nonrelativistic Calogero-MoserN-particle quantum
systems.12 The dynamics of these relativistic systems belongs to a commutative algebra gen
by N independent commuting analytic difference operators. The step size in these diffe
operators is inversely proportional to the speed of lightc, and forc→` the commuting difference
operators converge to commuting differential operators.

Now a factorized product ofu-functions is expected to encode the asymptotics of the dia
nalizing joint eigenfunction transform, whereas a factorized product ofw-functions can be used to
transform the difference operators and eigenfunctions to an especially convenient form. I
ticular, in the trigonometric case the transformed eigenfunctions amount to Macdon
q-Jacobi multivariableAN21 polynomials, and the product of weight functions yields the funct
with respect to which the polynomials are orthogonal~cf. Ref. 2, Subsection 6.2 and referenc
given there!. ~This is whyw(z) is referred to as a ‘‘weight function.’’!

The key point is now thatu(z) andw(z) solve first order ADEs to which the theory develope
in Sections II and III applies. In fact, in suitable parameter regimesu(z) can be characterized a
the unique minimal solution satisfyingu(0)51 and uu(x)u51 for real x, whereas a reduced
weight functionwr(z) ~closely related tow(z)) can be characterized in a similar way. It wou
J. Math. Phys., Vol. 38, No. 2, February 1997
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take us too far afield to explain here how these ADEs ~which are specified in Sections IV and V!
emerge from the difference operators and their eigenfunctions. Instead, we refer to Ref. 1,
and Ref. 2, Subsection 4.3, for a derivation of the ADEs satisfied byu(z) andw(z), resp.~See
also our forthcoming paper.13!

From the viewpoint of special function theory, theu- andw-functions are just simple com
binations of the G-functions from Section III: Both functions are of the form
G(•••)G(•••)/G(•••)G(•••). The pertinent combinations, however, turn out to have quite
markable properties, which reflect their origins in the context of analytic difference operator
eigenfunction transforms.

We study the functionsu(z) andw(z) along similar lines, once more handling the hyperbo
elliptic and trigonometric cases successively. In each case we first define the relevant func
terms ofG-functions, read off some automorphy properties, and introduce some associated
tions and/or parameter regimes. Then we study the functions in relation to the elementaryDEs
they obey. As it happens, there is an additional elementary ADE pertaining to a parameter~es-
sentially the coupling constant in the integrable system picture!, which makes it possible to
expressu(z) andw(z) in terms of products ofs-functions~i.e., sh(•),s(•) and sin(•), resp.! for
certain parameter values. In the hyperbolic and elliptic cases, these values are in factdensein the
parameter space.

After obtaining these elementary representations for special parameters, we return
general case and derive various representations of a different character. At the end of ea
section we obtain a number of limits, whose existence is suggested by the formal limiting be
of the difference Hamiltonians. Quite a few of these limits may be physically interprete
nonrelativistic limits. For the scattering functions we also derive limits that may be viewe
classical limits. The zero step size results of Sections II and III are the main tools in contr
most of the limits—in particular the classical limits.

To conclude this introduction, we would like to point out that our results entail a great m
nontrivial identities. As a rule, these identities are not spelled out: they follow from diffe
representations for the same function. To be sure, quite a few of these formulas can be ass
via elementary identities—one may even assert that this is precisely what we have done
paper. But this hindsight wisdom obscures what we view as the basic reason underlying m
the identities, namely, the uniqueness of minimal solutions to first order ADEs that admit such
solutions.

To render the previous paragraph more concrete, we add an example. The sine-Gord
cialization of theu-function from Subsection IV A has been known in terms of the integral~4.30!
for almost two decades~cf. Ref. 14 and references given there!. Specifically, using our conven
tions, thisS-matrix element reads

u~p,a,p/2;z!5expS i E
0

`dy

y

sh~a2p/2!y

ch~py/2!shay
sin2yzD , uIm2zu,d, ~1.19!

with d given by~4.32!. ~In point of fact, the integral occurred even earlier as a partition func
of the six-vertex model, cf. Ref. 15.! Nevertheless, the result~4.28!, expressing~1.19! as an
elementary function for the dense set~4.27! of a-values, is new. Fora,p the resulting identity
can be verified directly by noting that the rhs of~4.28! is a minimal solution to the ADE ~4.6! with
d52, a15p anda25a, which moreover has value 1 and modulus 1 forz50 andz real, resp.,
just as~1.19!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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II. GENERAL RESULTS ON ANALYTIC DIFFERENCE EQUATIONS

A. Preliminaries

As announced in the Introduction, we are concerned with ADEs of the form

F~z1 ia/2!

F~z2 ia/2!
5F~z!, a.0, ~2.1!

whereF(z) is a function that is meromorphic inC ~briefly: meromorphic!. We shall call a
function F(z) a solution to ~2.1! if and only if F(z) is meromorphic in a stripuImzu,s1a/2,s
P (0,̀ ), andF(z) satisfies~2.1! for uImzu,s.

The first thing to note is that any solution thus defined extends to a meromorphic fun
Indeed, one can extendF(z) upwards strip by strip via

F~z1 ika![)
j51

k

F~z1~ j21/2!ia !•F~z!, uImzu<a/2, ~2.2!

and downwards via

F~z2 ika![)
j51

k
1

F~z2~ j21/2!ia !
•F~z!, uImzu<a/2. ~2.3!

Clearly, the quotient of two solutions to~2.1! is an ia-periodic meromorphic function.
WheneverF(x1 iy),x,y P R, converges to 1 fory→`, uniformly forx varying over arbitrary

compact subsets ofR and sufficiently fast, the infinite product

F1~z![)
j51

`
1

F~z1~ j21/2!ia !
~2.4!

defines a solution to~2.1!. We shall refer toF1 as the upward iteration solution. It is readily se
that it is the only solution satisfyingF(x1 iy)→1 for y→`. Similarly, the downward iteration
solution

F2~z![)
j51

`

F~z2~ j21/2!ia ! ~2.5!

exists providedF(x1 iy)→1 for y→2` ~uniformly onx-compacts and sufficiently fast!, and is
the unique solution satisfyingF(x1 iy)→1 for y→2`.

Consider, for example, the ADEs with right-hand sides

F1~z!5chz, F2~z!512exp~ iz2s!, F3~z!512exp~ iz1s!, s.0. ~2.6!

In the first case no iteration solution exists, whereas in the second and third casesF1 exists, but
F2 does not.

Our main interest is in ADEs ~or, equivalently, meromorphic functionsF(z)) that admit
solutions with special properties in the stripuImzu<a/2. Specifically, we shall restrict attentio
from now on to meromorphic functionsF(z) that have no poles and zeros in a stripuImzu,s.
Such functions and the associated ADEs ~2.1! will be calledregular. A solution to a regular ADE
will be calledregular iff it has no poles and zeros inuImzu<a/2. In view of ~2.2! and~2.3! it then
actually has no poles and zeros inuImzu,s1a/2. Clearly, the quotient of two regular solutions
J. Math. Phys., Vol. 38, No. 2, February 1997
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an ia-periodic nowhere vanishing entire function. Note that the three ADEs defined by~2.6! are all
regular; in the second caseF1 is regular, whilst in the third caseF1 is not ~it has a pole in the se
ia/2@21,1#).

It should be noticed that a regular solution is ‘‘maximally analytic,’’ in the sense that it is
of poles and zeros in the stripuImzu<a/2; its poles and zeros outside the latter strip are th
determined by the ADE ~2.1!, and can be read off from~2.2! and ~2.3!, whenever the poles an
zeros ofF(z) are known. We shall be primarily concerned with a restricted type of ADE, which
admits regular solutions that are ‘‘minimal.’’ To define this notion, we observe that a reg
solution F(z) to ~2.1! admits a one-valued analytic logarithm inuImzu,s1a/2. We call F a
minimalsolution iff lnF(z) is polynomially bounded inuImzu<a/2. That is, there existc,d.0 and
kP N such that

u lnF~z!u,c1duzuk, ;zP$uImzu<a/2%. ~2.7!

Takingz5x P R in ~2.1!, we deduce

uF~x!ud,exp~2c12duxuk!, ;xPR, d561. ~2.8!

Thus,F(z) must satisfy~2.8! for minimal solutions to exist.
To show that ADEs admitting minimal solutions are by no means exceptional, letg(z) be any

meromorphic function that is analytic inuImzu,s1a/2 and polynomially bounded in
uImzu<a/2. Then the ADE with rhsF(z)[exp(g(z1ia/2)2g(z2 ia/2)) admits a minimal solu-
tion, viz., F(z)5exp(g(z)). It is also to be noted that the right-hand side functionsF(z) of ~2.1!
that admit minimal solutions form a group: IfF(z) is a minimal solution to~2.1!, then 1/F(z) is
a minimal solution to~2.1! with F→1/F, and ifF1 ,F2 are minimal solutions to ADEs ~2.1! with
rhs F1 ,F2, resp., then F(z)5F1(z)F2(z) is a minimal solution to ~2.1! with
F(z)5F1(z)F2(z).

A minimal solution is not only maximally analytic~since it is regular by definition!, but also
has the slowest increase tòand/or decrease to 0 for Rez→6` in the stripuImzu<a/2 that is
compatible with~2.1!. This will be clear from the following theorem, which shows, moreover, t
minimal solutions have ‘‘minimal ambiguity.’’

Theorem II.1: Assume that the meromorphic functionF(z) is regular and satisfies (2.8). Le
F1(z) and F2(z) be minimal solutions to the ADE (2.1). Then there exist CP C* and l P Z such
that

F1~z!/F2~z!5Cexp~2p lz/a!. ~2.9!

If F 1(z) and F2(z) are bounded away from0 and` onR, then one has l50 in (2.9). IfF(z) is
even, then for all minimal solutions F(z) the function F(z)F(2z) is constant. IfF(0)51 and the
functionF(z)F(2z) equals 1, then for any minimal solution F(z) there exists kP Z such that
exp(2pkz/a)F(z) is an even minimal solution.

Proof: SinceF1 andF2 are minimal, they area fortiori regular. Therefore,F1(z)/F2(z) is an
ia-periodic entire functionq(z) without zeros. Hence there existsl P Z such that the function
q0(z)[q(z)exp(22plz/a) has zero winding number around 0 asz goes fromz0 to z01 ia.

To prove thatq0(z) is constant, we note that it can be written exp@r(z)#, with r (z) an
ia-periodic entire function. SinceF1 andF2 are minimal,r (z) is polynomially bounded:

ur ~z!u<C11C2uzuk, uImzu<a/2. ~2.10!

It is not hard to see that this entails constancy ofr (z). ~Indeed, we can, for instance, argue
follows. Since r (z) is ia-periodic and entire, it can be written(nPZcnw

n[s(w), where
J. Math. Phys., Vol. 38, No. 2, February 1997
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w[exp(2pz/a), and where the series converges forw P C* . In view of the bound~2.10!, the
functionws(w) has limit 0 forw→0, so it is analytic atw50. Hence,cn50 for n,0. Similarly,
since~2.10! entailss(w)/w→0 for w→`, we deducecn50 for n.0.!

We have now proved the first assertion~2.9!. The second one is then clear from~2.9!. Now
assumeF(z) is even andF(z) is a minimal solution. Consider the functionG(z)[1/F(2z). It
satisfies

G~z1 ia/2!

G~z2 ia/2!
5
F~2z1 ia/2!

F~2z2 ia/2!
5F~2z!5F~z!, ~2.11!

so it is a solution, too. From minimality ofF one easily deduces minimality ofG, so~2.9! entails
there existsl P Z such thatF(z)/G(z)5Cexp(2plz/a). But the function on the lhs equal
F(z)F(2z) and hence is even. Therefore, we havel50 and the third assertion follows.

To prove the last assertion, consider the functionH(z)[F(2z). It satisfies

H~z1 ia/2!

H~z2 ia/2!
5
F~2z2 ia/2!

F~2z1 ia/2!
51/F~2z!5F~z!, ~2.12!

and so it is a second minimal solution. Thus we must haveF(2z)5Cexp(2plz/a)F(z). Putting
z50 yields C51 and putting z5 ia/2 yields (2) lF(0)51, so that l is even. But then
exp(2pkz/a)F(z) with k[ l /2 is an even minimal solution. h

Thus far, we have been dealing with meromorphic ADEs of the multiplicative form~2.1!. To
study these in more detail and, in particular, to construct minimal solutions, it turns out
convenient to also consider ADEs of the additive form

f ~z1 ia/2!2 f ~z2 ia/2!5f~z!, a.0. ~2.13!

Here,f(z) is assumed to be meromorphic in a stripuImzu,s, s P (0,̀ ), and we restrict attention
to functions f (z) that are meromorphic in the stripuImzu,s1a/2 and that satisfy~2.13! for
uImzu,s; the term ‘‘solution to ~2.13!’’ will be used only for such functions. The function
f(z) and the associated ADE ~2.13! will be termedregular iff f(z) is analytic inuImzu,s, and
a solutionf (z) to a regular ADE will be calledregular iff f (z) is analytic inuImzu,s1a/2.

Obviously, taking logarithms of a regular ADE of the multiplicative form~2.1! leads to a
regular ADE of the additive form~2.13!. Since the meromorphic functionF(z) may have zeros
and/or poles foruImzu>s, its logarithm may have branch points foruImzu>s. Such branch points
are irrelevant for studying the ADE ~2.1!, and therefore we restrict attention to the str
uImzu,s in the additive case.

The above-mentioned notions and results connected to~2.1! have obvious analogs for~2.13!.
In particular, a regular solutionf (z) to a regular ADE ~2.13! will be termedminimal iff it is
polynomially bounded inuImzu<a/2, and a necessary condition for the existence of minim
solutions is thatf(z) be polynomially bounded onR. Of course, in the additive case two minim
solutions can only differ by a constant, cf. the proof of Theorem II.1.

Let us now compare the above to the older literature on first order ADEs, cf. in particular
Refs. 5–8. Here, one usually considers additive ADEs of the form

u~w11!2u~w!5b~w!. ~2.14!

Of course, these are essentially equal to~2.13!, as follows by making the change of variabl
z5 ia(w11/2) in ~2.13!. But these different conventions reflect a different emphasis. Indeed
main interest is in the behavior off(z) and associated solutions in the stripuImzu<a/2; in
particular, we shall obtain representations for minimal solutions that hold true in this strip, c
next two subsections.
J. Math. Phys., Vol. 38, No. 2, February 1997
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By contrast, No¨rlund5 singles out the ‘‘principal solution’’~Hauptlösung! to ~2.14! by impos-
ing conditions onb(w) for Rew→`; accordingly, his principal solution can be characteriz
among all other solutions by its having the slowest possible increase for Rew→`. The principal
solution equals the obvious iteration solution to~2.14! wheneverb(w) goes to 0 sufficiently fast
for Rew→`, but it can be defined for larger classes of right-hand sides by modifying the itera
cf. loc. cit. Chapters 3 and 4. As we have already seen@cf. F3(z) in ~2.6!#, an iteration solution
need not be regular, and so,a fortiori, it need not be minimal. Moreover, minimality concerns t
asymptotics for Imw→6`, and not Rew→6`.

If one writes the hyperbolic and elliptic ADEs occurring below~for which we construct
minimal solutions! in the form ~2.14!, then Nörlund’s conditions are violated, and no princip
solution exists. On the other hand, No¨rlund’s conditions allow right-hand side functionsf(z) in
~2.13! that are not polynomially bounded onR; in that case,~2.13! does not admit minimal
solutions. For the regular trigonometric and rational ADEs occurring below, both No¨rlund’s and
our solution methods apply, and the principal solution is then a minimal solution. Our Fo
series representation for the trigonometric case is however very different from the represen
for the principal solution occurring in Ref. 5.

B. Fourier transform solutions

In this subsection we obtain minimal solutions to a large class of ADEs by exploiting Fourier
transformation onL2(R). ~This class contains the ADEs that occur in the hyperbolic context, c
the Introduction.! Our normalization reads

Ĉ~y![
1

2pE2`

`

dxC~x!eixy ~2.15!

so that

C~x!5E
2`

`

dyĈ~y!e2 ixy. ~2.16!

Of course, we may and will use the definition~2.15! for C P L1(R), too; in this case, recal
Ĉ(y)→0 for y→6` ~Riemann-Lebesgue lemma!. We also have occasion to use the distrib
tional Fourier transform

E
2`

`

dye22iyzP
1

shay
52

ip

a
thS pz

a D , uImzu,a/2, ~2.17!

where P denotes the principal value.~This formula can be verified by a straightforward conto
integration.!

Theorem II.2: Assumef(z) is a function with the following properties:

f~z! is analytic in a stripuImzu,s,sP~0,̀ !, ~2.18!

f~x!PL1~R!, ~2.19!

f̂~y!PL1~R!, ~2.20!

f̂~y!5O~y!,y→0. ~2.21!

Then the ADE

f ~z1 ia/2!2 f ~z2 ia/2!5f~z!, a.0, uImzu,s, ~2.22!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s

1080 S. N. M. Ruijsenaars: Difference equations and integrable systems

¬¬¬¬¬¬¬¬¬¬
has a unique solution f(a;z) such that

f ~a;z! is analytic in the stripuImzu,s1a/2, ~2.23!

f ~a;z! is bounded in the stripuImzu<a/2, ~2.24!

lim
x→6`

f ~a;x1 i t !50, tP@2a/2,a/2#. ~2.25!

Explicitly, this solution can be written as

f ~a;z!5E
2`

`

dy
f̂~2y!

shay
e22iyz, uImzu<a/2, ~2.26!

or as

f ~a;z!5
1

2iaE2`

`

duf~u!th
p

a
~z2u!, uImzu,a/2. ~2.27!

It satisfies the addition formula

f S ak ;zD5(
j51

k

f S a;z1
ia

2k
~k1122 j ! D . ~2.28!

If f(z) is even/odd, then f(a;z) is odd/even. Finally, letc(x) be the following primitive of
f(x),xPR:

c~x!5
1

2 S E
2`

x

duf~u!2E
x

`

duf~u! D . ~2.29!

Then one has

lim
a→0

ia f ~a;z!5c~z! ~2.30!

uniformly on compact subsets of the stripuImzu,s.
Proof: First we prove uniqueness. Thus, letd(z) be the difference of two solutions to~2.22!

with properties~2.23!–~2.25!. Then d(z) is an analytic function inuImzu,s1a/2, satisfying
d(z1 ia/2)5d(z2 ia/2) for uImzu,s. Therefore,d(z) extends to ania-periodic entire function.
By virtue of ~2.24!, d(z) is bounded in the period stripuImzu<a/2, sod(z) is constant in view of
Liouville’s theorem. On account of~2.25! this constant equals 0, so uniqueness follows.

Next, we use~2.19! and~2.21! to infer that the functionf̂(2y)/shay is bounded and satisfie

uf̂~2y!/shayu5o~e2auyu!, y→6`. ~2.31!

Thus, defining a functionf (z) by the rhs of~2.26!, it is clear thatf (z) is analytic inuImzu,a/2
and thatf (x1 i t ) converges to 0 forx→6` and utu,a/2. Moreover, using also~2.20!, we infer
that the functions

b6~x![E
2`

`

dy
f̂~2y!

shay
e6aye22iyx, xPR, ~2.32!

are continuous and vanish at6`, and that we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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lim
t↑1

f ~x6 i ta/2!5b6~x! ~2.33!

uniformly onR.
Now consider the auxiliary function

A~z![ f ~z2 ia/2!1f~z!. ~2.34!

Clearly,A(z) is analytic in the strip

S1[$zPCuImzP~0,g!%, g[min~s,a!, ~2.35!

andA(x1 i e) converges tob2(x)1f(x) ase↓0, uniformly for x in compact subsets ofR. But
from ~2.32! we have

b1~x!2b2~x!52E
2`

`

dyf̂~2y!e22iyx5f~x!, ~2.36!

so this boundary value is equal tob1(x). On the other hand, the functionf (z1 ia/2) is analytic in
the strip Imz P (2a,0) and converges uniformly onR to b1(x) as Imz↑0. Consequently, we may
invoke Painleve´’s lemma to deduce thatf (z1 ia/2) extends to an analytic function i
Imz P (2a,g), which coincides withA(z) whenz P S1 . That is, the ADE ~2.22! holds true for
zPS1 .

We may now exploit~2.22! for z P S1 to deduce thatf (z) extends to an analytic function in
uImzu,s1a/2. Since the functionsf (x6 ia/2) equalb6(x), they converge to 0 forx→6`.
Moreover, recalling the definition off (z), we obtain

u f ~z!u<E
2`

`

dy
uf̂~2y!u
ushayu

eauyu, uImzu<a/2, ~2.37!

and in view of~2.20! and~2.21! the rhs is finite. Therefore, the rhs of~2.26! defines a solution to
~2.22! with the properties~2.23!–~2.25!.

Next, we prove~2.27!. Replacing the integral in~2.26! by a principal value integral, and th
functionsf andf̂ in ~2.27! and~2.26! by a Schwartz space functionx and its Fourier transform
x̂, resp., the equality of the resulting integrals is clear from~2.17! and the Plancherel relations
SinceS(R) is dense inL1(R), we deduce~2.27! from ~2.26!.

The function at the rhs of~2.28! obviously solves~2.22! with a replaced bya/k. Since it also
has the properties~2.23!–~2.25! that uniquely determinef (a/k;z), we obtain~2.28!. Alternatively,
~2.28! follows directly from the representation~2.26! by using the elementary identity

(
j51

k

expS ayk ~k1122 j ! D5
sh~ay!

sh~ay/k!
. ~2.38!

The parity assertion can be read off from both of the representations~2.26! and ~2.27!.
It remains to prove the last assertion. To this end we first observe that the representation~2.27!

entails that~2.30! holds true pointwise forz5x P R. Next, we use the bound~2.37! and the
assumptions~2.20! and ~2.21! to infer that the functiona f(a;z) remains bounded by an
a-independent constant in the stripuImzu<a/2 asa→0. By iteration of the ADE ~2.22! we now
deduce thata f(a;z) remains bounded in compact subsets of the stripuImzu,s asa→0. There-
fore, the last assertion follows from Vitali’s theorem. h
J. Math. Phys., Vol. 38, No. 2, February 1997
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For our purposes the conditions~2.18!–~2.21! on f(z) are sufficiently weak. In genera
however, the conditions~2.20! and ~2.21! may be difficult to check. Requiring solely~2.18! and
~2.19!, the rhs of~2.27! defines a functionf (z) that is clearly analytic in the stripuImzu,a/2 and
that satisfies

lim
x→6`

f ~x6 i t !56
1

2iaE2`

`

duf~u!, tP~2a/2,a/2!. ~2.39!

We conjecture that this function is in fact a solution to~2.22! satisfying~2.23! and ~2.24!.
Returning to the assumptions of the theorem, let us note that~2.21! entails that the primitive

c(x) ~2.29! vanishes at6`. Thus, writingf(u)5c8(u) in the representation~2.27!, and inte-
grating by parts, we obtain the formula

f ~a;z!5
p

2ia2E2`

`

du
c~u!

ch2
p

a
~z2u!

, uImzu,a/2. ~2.40!

Comparing this representation to Eq.~14! in Chapter 4 of No¨rlund’s monograph,5 one sees that the
solution f (a;z) and Nörlund’s principal solution differ only by a constant wheneverf(z) satisfies
not only the assumptions of Theorem II.2, but also the various restrictions that No¨rlund needs for
his principal solution to exist and admit the representation~14! in loc. cit. ~As already mentioned
his assumptions onf(z) are quite different from ours, cf. the discussion after~2.14!.!

It is also of interest to observe that the assumptions~2.19!–~2.21! entail that f̂(y) is an
L2(R)-function in the domain of the unbounded self-adjoint multiplication operator 1/sh(ay/2).
From this point of view the functionf (a;x),x P R, given by ~2.26!, is the obvious
L2(R)-solution to~2.22! with z P R, reinterpreted as a Hilbert space equation.~Indeed, the func-
tion f̂ (a;y)—being equal to f̂(y)/2sh(ay/2)—is in the domain of multiplication by
exp(6ay/2).!

We proceed by generalizing the above key result Theorem II.2. We shall detail this gen
zation in the multiplicative context~2.1!; the additive version will be clear from this.

Theorem II.3: AssumeF(z) is a meromorphic function that has no poles and zeros in
strip uImzu,s for some sP (0,̀ ). Setting

f l~z![S ddzD
l

lnF~z!, lPN, ~2.41!

assume there exists kP N* such thatf(z)[fk(z) satisfies (2.18)–(2.21). Then the ADE

F~z1 ia/2!

F~z2 ia/2!
5F~z! ~2.42!

admits minimal solutions. Any minimal solution can be written as

F~z!5exp~e~z!1P~z!!, ~2.43!

where

e~z![E
2`

`

dy
f̂~2y!

shay
~22iy !2kS e22iyz2 (

j50

k21
~22iyz! j

j ! D , uImzu<a/2, ~2.44!

and
J. Math. Phys., Vol. 38, No. 2, February 1997
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P~z![(
j50

k

cjz
j / j !, c0 , . . . ,ckPC. ~2.45!

The coefficients c2 , . . . ,ck are uniquely determined, whereas c1 is uniquely determined
mod 2p/a.

Proof: Consider the ADEs

f l~z1 ia/2!2 f l~z2 ia/2!5f l~z!, l50, . . . ,k. ~2.46!

By virtue of Theorem II.2 the function

f k~z![E
2`

`

dy
f̂~2y!

shay
e22iyz, uImzu<a/2, ~2.47!

admits an analytic continuation touImzu,s1a/2 and satisfies~2.46! with l5k. Introducing

f k21~z![ckz1E
0

z

ds fk~s!, ckPC, ~2.48!

we infer that the rhs of the resulting equation

f k21~z1 ia/2!2 f k21~z2 ia/2!5 iack1E
z2 ia/2

z1 ia/2

ds fk~s! ~2.49!

equalsfk21(z) for a suitable choice ofck @since itsz-derivative equalsfk(z)]; specifically, we
may and will chooseck such that

iack1E
2 ia/2

ia/2

ds fk~s!5fk21~0!. ~2.50!

Proceeding recursively, we obtain functionsf k(z), f k21(z), . . . ,f 0(z) related by

f l21~z!5clz1E
0

z

ds fl~s!, l51, . . . ,k, ~2.51!

with cl given by

cl5
1

ia S f l21~0!2E
2 ia/2

ia/2

ds fl~s! D , l51, . . . ,k. ~2.52!

Then f l(z),l P $0, . . . ,k%, is analytic inuImzu,s1a/2 and is a minimal solution to~2.46!. More-
over, from~2.51! and~2.47! one easily sees thatf 0(z) equals the sum ofe(z) and a polynomial of
degree<k. The proof can now be completed by invoking Theorem II.1. h

In Appendix A we show~among other things! how the above results can be used to arrive
the psi and gamma functions, and derive various salient features along the way. Here, we a
applications exemplifying the above, yielding identities we have occasion to use later on.
consider the function

F~z!5cthz2
p

a
cth

pz

a
. ~2.53!

It satisfies the ADE
J. Math. Phys., Vol. 38, No. 2, February 1997
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F~z1 ia/2!2F~z2 ia/2!5cth~z1 ia/2!2cth~z2 ia/2![x~z!. ~2.54!

Inverting ~2.17! yields the distributional Fourier transforms

E
2`

`

dxctha~x6 ib!eixy5
ip

a
P
exp6~2py/2a1by!

sh~py/2a!
, a.0, bP~0,p/a!, ~2.55!

so we have

x̂~y!5
1

2pE2`

`

dxx~x!eixy5 i
shy~a2p!/2

shyp/2
, aP~0,2p!. ~2.56!

Thus,x(z) satisfies the assumptions~2.18!–~2.20!, but not~2.21!. But f(z)[x8(z) does satisfy
~2.18!–~2.21!, since

f̂~y!5y
shy~a2p!/2

shyp/2
. ~2.57!

Therefore, we obtain a solution

f ~z!54E
0

`

dy
ysh~a2p!y

shayshpy
cos2yz ~2.58!

to the ADE ~2.22!. Now sinceF8(z) satisfies~2.22!, too, and obviously has the properties~2.23!–
~2.25!, we must havef (z)5F8(z), by uniqueness. Integrating the resulting identity w.r.t.z, we
obtain

cthz2
p

a
cth

pz

a
52E

0

`

dy
sh~a2p!y

shayshpy
sin2yz. ~2.59!

Here we havea P (0,2p) in view of the restriction in~2.56!. But for z P R the integral converges
for anya.0, and so it readily follows that~2.59! holds for anya.0 ~taking uImzu small enough,
of course!. Integrating once more now yields

ln~shz!2 lnS apshpza D5E
0

`dy

y

sh~a2p!y

shayshpy
~12cos2yz!, a.0. ~2.60!

Second, consider the function

h~z![
z

a
cth

pz

a
. ~2.61!

It satisfies the ADE

h~z1 ia/2!2h~z2 ia/2!5 i th
pz

a
. ~2.62!

Therefore,h9(z) satisfies the ADE

f ~z1 ia/2!2 f ~z2 ia/2!5
ip

a

d

dzS 1/ch2pz

a D[f~z!. ~2.63!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Now one readily verifies

f̂~y!5
ay2

2psh~ay/2!
, a.0, ~2.64!

sof(z) satisfies the assumptions of Theorem II.2. The resulting solution

f ~z!5
4a

p E
0

`

dy
y2

sh2ay
cos2yz ~2.65!

must then be equal toh9(z), sinceh9(z) clearly has the properties~2.23!–~2.25!. Integrating twice
w.r.t. z we now obtain

pzcth
pz

a
5a1a2E

0

`

dy
~12cos2yz!

sh2ay
, a.0. ~2.66!

The identities~2.66! and~2.60! can be combined to evaluate integrals occurring below. F
they entail that fora P (0,p) one has

ap

a2p
lnS pshz

ash
pz

a
D 2pzcth

pz

a
1a5E

0

`

dyS apsh~a2p!y

~a2p!yshayshpy
2

a2

sh2ayD ~12cos2yz!.

~2.67!

Taking z→` and using the Riemann-Lebesgue lemma we obtain the integral

ap

a2p
ln

p

a
1a5E

0

`

dyS apsh~a2p!y

~a2p!yshayshpy
2

a2

sh2ayD . ~2.68!

Adding the elementary integral

E
0

`

dyS a2

sh2ay
2

1

y2D52a ~2.69!

yields

ln
p

a
5E

0

`dy

y S sh~a2p!y

shayshpy
2

~a2p!

apy D , ~2.70!

and combining this with~2.60! we get

lnS shpza D2 ln~shz!5E
0

`dy

y S sh~a2p!y

shayshpy
cos2yz2

~a2p!

apy D , a.0. ~2.71!

Just as in the above examples, ADEs with a-dependent right-hand side functions will b
encountered later on. The last theorem of this subsection concerns the limita→0 in this setting.
It is convenient to use the assumptions of Theorem II.2 as a starting point; corresponding
in the slightly more general context of Theorem II.3 can then be obtained byk-fold integration.

Specifically, we consider an ADE of the form

f ~z1 ia/2!2 f ~z2 ia/2!5fa~z!, a.0, ~2.72!
J. Math. Phys., Vol. 38, No. 2, February 1997
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wherefa(z) satisfies the assumptions~2.18!–~2.21! for anya P (0,a0#. ~Of course, the choice o
a0 is irrelevant for the limita→0.! We allow dependence of the maximal numbersm P (0,̀ # in
~2.18! on a; in particular, one may havesm→0 asa→0. However, we do assume that for an
a P (0,a0# the functionfa(z) is analytic in the open right half plane

R0[$zPCuRez.0%. ~2.73!

Moreover, we assume that for any compactK,R0 there existsCK.0 with

ufa~z!2ax~z!u<CKa
2, ;~a,z!P~0,a0#3K, ~2.74!

wherex(z) is analytic inR0.
Now let f a(z) be the unique solution to~2.72! given by Theorem II.2~with f(z)→fa(z), of

course!. Thus, f a(z) is analytic in the stripuImzu,a/21sm(a) and inR0. We are now in the
position to state the next result.

Theorem II.4: In addition to the above assumptions, let

u f a~z!u<Cd,M , ;~a,z!P~0,a0#3$zPCuRezP@d,M #,uImzu<a/2%, ~2.75!

for any d.0 and M.d, and let the pointwise limit

lim
a↓0

f a~z![ f ~z! ~2.76!

exist for any zP (0,̀ ). Then fa(z) converges uniformly on compact subsets ofR0 to a function
f (z) that is analytic inR0. Moreover, one has

f 8~z!52 ix~z!,zPR0 ~2.77!

with x(z) defined by (2.74).
Proof: Upward iteration of the ADE ~2.72! yields

f a~z1 iLa !5 f a~z!1(
j51

L

fa~z1~ j21/2!ia !, uImzu<a/2. ~2.78!

Choosing

L5N@a21#, RezP@d,M #, 0,d,M , ~2.79!

in this equation, the arguments offa occurring on the rhs stay in a closed rectang
K(N,d,M ),R0 as a↓0. Thus we may invoke the bounds~2.74! and ~2.75! to conclude that
f a(z) remains bounded for Rez P @d,M #,Imz P @0,N#, asa↓0. Similarly, iterating downwardsL
times and requiring~2.79!, we deduce thatf a(z) remains bounded for Rez P @d,M #,Imz
P@2N,0#.

Combining uniform boundedness off a(z) on compacts ofR0 with the pointwise convergenc
assumption~2.76!, it follows from Vitali’s theorem thatf a(z) converges uniformly on compacts o
R0 to a functionf (z) that is analytic inR0. Therefore, it remains to prove~2.77!.

To this end, we use~2.72! to write

fa~z!

ia
5 f a8~z!1

1

iaEz2 ia/2

z1 ia/2

dw~ f a8~w!2 f a8~z!!, zPR0 . ~2.80!

Clearly, the second term on the rhs can be majorized by
J. Math. Phys., Vol. 38, No. 2, February 1997
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supwP$z1 ibubP[2a/2,a/2]%u f a8~w!2 f a8~z!u. ~2.81!

Now f a8(z) converges tof 8(z) uniformly on compactsK,R0, and the lhs of~2.80! converges to
2 ix(z) uniformly onK @due to~2.74!#, so one easily deduces~2.77!. h

We conclude this subsection with some comments on the assumptions of the theore
obtained. In later applications, the assumptions onfa(z) are easily verified. Moreover, fixingz
P R0, the functionfa(z) is actually real-analytic ina for a P R. ~Note this property is stronge
than ~2.74!.! Possibly, these properties already entail the hypotheses~2.75! and ~2.76!, but we
believe this is not true in general.~Observe that the functionf a(z) is not likely to be analytic at
a50 forzP R0.!

The above convergence result should also be compared to the last assertion of Theore
Takingfa(z)[af(z), one sees that this assertion amounts to a simple special case of Th
II.4—except that the analyticity region is different, and that the constant left undetermin
f (z)52 ic(z) by ~2.77! is fixed in terms ofx(z)5f(z). In this connection we point out that th
choice of the regionR0 ~2.73! in which fa(z) is assumed to remain analytic asa→0 is deter-
mined more by convenience of exposition than by necessity. Indeed, as will be exemplifi
Prop. III.7 below, the maximal region with this property can be larger, and correspondingly
can obtain convergence in this larger region.

C. Fourier series solutions

We proceed by obtaining results that will enable us to solve ADEs occurring in the trigono-
metric and elliptic contexts. Correspondingly, we will be dealing with meromorphic functions
are periodic in the real direction. It is convenient to parametrize this period byp/r ,r P (0,̀ ). For
C(x) P L2(@2p/2r ,p/2r #,dx) we employ Fourier coefficients

Ĉn[
r

pE2p/2r

p/2r

dxC~x!e2inrx, nPZ, ~2.82!

so that

C~x!5 (
nPZ

Ĉne
22inrx ~2.83!

with the series converging in theL2-topology.
As we have seen in the previous subsection, the ADE ~2.22! naturally leads to hyperbolic

functions whenf satisfies~2.18!–~2.21!, cf. ~2.26! and~2.27!. In much the same way, periodicit
of f(z) leads to the emergence of elliptic functions. It is convenient to collect some features
functions that arise before stating the analog of Theorem II.2. First, we recall the product
sentations of the Weierstrasss-function ~cf., e.g., Ref. 16!: We have, takingr ,a.0,

sS z; p

2r
,
ia

2 D5exp~hz2r /p!
sinrz

r )
k51

`
~12pkexp~2irz !!~z→2z!

~12pk!2
~2.84!

with

p[exp~22ar ! ~2.85!

or, alternatively,

sS z; p

2r
,
ia

2 D5exp~h8z2/ ia !
shpz/a

p/a )
k51

`
~12 p̃kexp~2pz/a!!~z→2z!

~12 p̃k!2
~2.86!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with

p̃[exp~22p2/ar !. ~2.87!

Here,h andh8 are connected by Legendre’s relation

h85 ihar/p2 ir . ~2.88!

The function

s~r ,a;z![sS z; p

2r
,
ia

2 Dexp~2hz2r /p! ~2.89!

plays a key role in the sequel. In view of~2.84! s is odd andp/r -antiperiodic, and satisfies

lim
a→`

s~r ,a;z!5
sinrz

r
~uniformly on compacts!. ~2.90!

Moreover, using~2.86! and ~2.88! one sees thats solves the ADE

s~z1 ia/2!

s~z2 ia/2!
52exp~22irz ! ~2.91!

and obeys

lim
r→0

s~r ,a;z!5
shpz/a

p/a
~uniformly on compacts!. ~2.92!

Note thats(r ,a;z) is not a regular solution to the regular ADE ~2.91!: It has zeros for Imz50.
Next, using the power series for ln(12x),uxu,1, one easily verifies the identity

)
k51

`

~12pkexp~2irz !!~z→2z!5expS 2 (
n51

`
e2nra

nshnra
cos2nrzD , uImzu,a. ~2.93!

Combining this with~2.84! and ~2.89! one obtains

s~r ,a;z!5
sinrz

r
expS (

n51

`
e2nra

nshnra
~12cos2nrz!D , uImzu,a. ~2.94!

From this representation we deduce

s8~r ,a;z!

s~r ,a;z!
5rcotrz12r (

n51

`
e2nra

shnra
sin2nrz, uImzu,a. ~2.95!

Using the elementary Fourier series

cotr ~z1 ia/2!52 i22i(
n51

`

e2nrae2inrz, Imz.2a/2, ~2.96!

we finally obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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K~r ,a;z!5 ir1 ir (
nPZ*

e22inrz

shnra
, uImzu,a/2, ~2.97!

where we have introduced

K~r ,a;z![
d

dz
lns~r ,a;z1 ia/2!. ~2.98!

Note that~2.92! entails

lim
r→0

K~r ,a;z!5
p

a
th

pz

a
~2.99!

uniformly on compact subsets ofuImzu,a/2.
Theorem II.5: Assumef(z) is a function with the following properties:

f~z! is analytic in a stripuImzu,s,sP~0,̀ !, ~2.100!

f~z! has periodp/r , ~2.101!

f̂050. ~2.102!

Then the ADE (2.22) has a unique solution f(a;z) such that

f ~a;z! is analytic in the stripuImzu,s1a/2, ~2.103!

f ~a;z! has periodp/r , ~2.104!

f̂ 050. ~2.105!

Explicitly, this solution can be written as

f ~a;z!5
1

2 (
nPZ*

f̂ne
22inrz

shnra
, uImzu<a/2, ~2.106!

or as

f ~a;z!5
1

2ipE2p/2r

p/2r

duf~u!K~r ,a;z2u!, uImzu,a/2. ~2.107!

It obeys the addition formula (2.28). Iff(z) is even/odd, then f(a;z) is odd/even. Finally, the
limit relation (2.30) holds true uniformly on compact subsets of the stripuImzu,s, with c(x) the
primitive off(x) that satisfiesĉ050.

Proof: In order to prove uniqueness, we argue as in the proof of Theorem II.2 to conclud
the differenced(z) of two solutions satisfying~2.103!–~2.105! extends to ania-periodic entire
function. Sinced(z) has periodp/r , too, we deduce thatd(z) equals a constantd. Now we have
05d̂05pd/r by ~2.105!, and so uniqueness follows.

Next, we define a functionf (z) by the rhs of ~2.106!. Clearly, f (z) is analytic in
uImzu,a/2 and has properties~2.104! and ~2.105!. Moreover, the functions
J. Math. Phys., Vol. 38, No. 2, February 1997
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b6~x![
1

2 (
nPZ*

f̂ne
6nra

shnra
e22inrx, xPR, ~2.108!

are smooth andp/r -periodic, and~2.33! holds true uniformly onR. ~Note that the Fourier coef
ficients f̂n form a fast decreasing sequence, sincef(x) is real-analytic andp/r -periodic.! Since
we also have

b1~x!2b2~x!5 (
nPZ*

f̂ne
22inrx5f~x!, ~2.109!

the reasoning in the proof of Theorem II.2 can be repeated, showing thatf (z) solves~2.22! and
has property~2.103!.

The representation~2.107! follows from ~2.106! and the Fourier series~2.97! by using the
Plancherel relations and~2.102!. The addition formula~2.28! follows in the same way as in th
proof of Theorem II.2. The parity claim is obvious from either~2.106! or ~2.107!. Using ~2.106!
with z P R, it follows from routine arguments that

lim
a→0

ia f ~a;x!5 (
nPZ*

f̂ne
22inrx

22inr
[c~x!, xPR, ~2.110!

and thatc(x) is a primitive off(x) with ĉ050. The uniform convergence assertion then follo
in the same way as before from Vitali’s theorem. h

Recalling the limit ~2.99!, one sees that the representation~2.107! turns into ~2.27! for
r→0. More precisely, this holds true for functionsf(r ;u) with a suitable dependence onr .
Clearly, one needs some restrictions on this dependence to ensure uniform convergencez in
compacts of the stripuImzu,a/2 ~say!, but we shall not pursue this.~For an explicit example, see
Prop. III.12 in Subsection III B.!

We continue with an analog of Theorem II.3.
Theorem II.6: With (2.18)–(2.21) replaced by (2.100)–(2.102) and (2.44) replaced by

e~z![
1

2 (
nPZ*

f̂n

shnra
~22inr !2kS e22inrz2 (

j50

k21
~22inrz! j

j ! D , uImzu<a/2, ~2.111!

the assertions of Theorem II.3 hold true.
Proof:With Theorem II.2 replaced by Theorem II.5, and~2.47! by

f k~z![
1

2 (
nPZ*

f̂n

shnra
e22inrz, uImzu<a/2, ~2.112!

the reasoning in the proof of Theorem II.3 applies verbatim; note that boundedness off k(z) in the
strip uImzu<a/2 entails polynomial boundedness off l(z) in this strip. h

We conclude this subsection with a result pertaining to ADEs~2.72!, adapting the assumption
of the previous subsection to the periodic context. Thus, for anya P (0,a0# the right-hand side
fa(z) is assumed to satisfy~2.100!–~2.102! and to be analytic in the open period strip

Rr[$zPCuRezP~0,p/r !%. ~2.113!

Furthermore, the bound~2.74! is assumed to be valid for any compactK,Rr , with x(z) analytic
in Rr .

Denoting by f a(z) the unique solution to~2.72! given by Theorem II.5, we are prepared
state the analog of Theorem II.4.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Theorem II.7: Assume in addition to the above that (2.75) holds true for anyd P (0,p/r ) and
M P (d,p/r ), and that the pointwise limit (2.76) exists for any zP (0,p/r ). Then the assertions o
Theorem II.4 hold true, withR0 replaced byRr .

Proof: TakingM,p/r in ~2.79! and replacingR0 byRr , the proof of Theorem II.4 applies
verbatim. h

The comments after Theorem II.4 apply with obvious changes to Theorem II.7, so we
not spell them out again.

III. GENERALIZED GAMMA FUNCTIONS

A. The hyperbolic case

Consider the integral

E
0

`dy

y S sin2yz

2sha1ysha2y
2

z

a1a2y
D[g~a1 ,a2 ;z!, ~3.1!

where we takead P (0,̀ ),d51,2, until further notice. Obviously, this integral converges abs
lutely providedz belongs to the strip

S[$zPCuuImzu,~a11a2!/2%, ~3.2!

and it defines a functiong that is analytic inS. In this subsection we study the function

G~z![exp~ ig~z!! ~3.3!

in considerable detail.~Here and in the sequel, we suppress the dependence ona1 ,a2 whenever
this causes no confusion.! We shall collect our results in propositions that concern various feat
of G(z).

Proposition III.1 „defining ADEs…: The function G(z) is analytic and has no zeros in th
strip S. It extends to a meromorphic function that is a minimal solution to the three ADEs

G~z1 iad/2!

G~z2 iad/2!
52ch~pz/a2d!, d51,2, ~3.4!

and

G~z1 i ~a12a2!/2!

G~z2 i ~a12a2!/2!
5
sh~pz/a2!

sh~pz/a1!
. ~3.5!

It is the unique minimal solution satisfying

G~0!51, uG~x!u51, xPR. ~3.6!

Proof: The first assertion is clear from~3.1!–~3.3!. Takingd51 in ~3.4! and denoting the rhs
by F(z), the assumptions of Theorem II.3 are satisfied, witha5a1 , s5a2/2 andk53. Indeed,
we have

f~z![S ddzD
3

lnF~z!5
p

a2
S ddzD

2

th~pz/a2! ~3.7!

so that~cf. ~217!!
J. Math. Phys., Vol. 38, No. 2, February 1997
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f̂~y!5
2 iy2

2sh~a2y/2!
. ~3.8!

From this the properties~2.18!–~2.21! are evident.
As a consequence the ADE at hand admits minimal solutions; these can be written as~2.43!–

~2.44! with k53 and

e~z!52
1

4E2`

` dy

ysha1ysha2y
~e22iyz2~122iyz22y2z2!!

5 i E
0

` dy

sha1ysha2y
S sin2yz2y

2zD . ~3.9!

To determinec1 ,c2 ,c3 we follow the proof of Theorem II.3. Thus, we start from

f 3~z!524i E
0

`

dyy2cos~2yz!/sha1ysha2y, ~3.10!

cf. ~2.47!. Then we get

E
0

z

ds f3~s!522i E
0

`

dyysin~2yz!/sha1ysha2y ~3.11!

so that

E
2 ia1/2

ia1/2

ds f3~s!54E
0

`

dyy/sha2y5S p

a2
D 2. ~3.12!

From ~2.50! we then havec350, and so

f 2~z!522i E
0

`

dyysin~2yz!/sha1ysha2y. ~3.13!

Now f 2(z) is odd, so~2.52! yields c250. Hence,

f 1~z!5 i E
0

`

dy~cos~2yz!21!/sha1ysha2y, ~3.14!

cf. ~2.51!, so that

E
0

z

ds f1~s!5 i E
0

`

dyS sin2yz2y
2zD /sha1ysha2y5e~z!, ~3.15!

cf. ~3.9!. Now we have

6e~6 ia1/2!5
1

2E0
`

dyS a1

sha1ysha2y
2

1

ysha2y
D . ~3.16!

Also, recalling~A33! and ~A34!, we may write
J. Math. Phys., Vol. 38, No. 2, February 1997
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ln25E
0

`

dyS 1

a2y
2 2

1

ysha2y
D . ~3.17!

Using ~2.52! once more, we obtain

c15~ ia1!21~ ln22e~ ia1/2!1e~2 ia1/2!!5 i E
0

`

dyS 1

sha1ysha2y
2

1

a1a2y
2D . ~3.18!

Combining~2.51! with ~3.15! now yields

f 0~z!5c1z1e~z!5 ig~a1 ,a2 ;z!, ~3.19!

cf. ~3.1!. In view of ~3.3!, this entails thatG(z) solves~3.4! with d51. Since the functionG is
manifestly symmetric ina1 ,a2 , it solves~3.4! with d52, too.

To prove thatG also satisfies the ADE ~3.5!, we observe that we may write

G~z1 i ~a12a2!/2!

G~z2 i ~a12a2!/2!
5
G~z2 ia2/21 ia1/2!

G~z2 ia2/22 ia1/2!
•

G~z2 ia1/22 ia2/2!

G~z2 ia1/21 ia2/2!
. ~3.20!

From ~3.4! we now deduce that~3.5! holds true. Finally, the uniqueness assertion is clear fr
Theorem II.1. h

We point out that the identity~2.71! can also be obtained from the ADE ~3.5!. Similarly, the
proposition entails the identity

E
0

`dy

y S 1ay2
cos2yz

shay D5 lnS 2chpza D , a.0, uImzu,a/2. ~3.21!

Indeed, this identity amounts to the functionig @as given by~3.1!# satisfying the additive version
of the ADEs ~3.4!. The integral~3.21! can also be derived directly from~A33!, ~A34! and~2.17!.
In this way one can obtain a shorter proof of~3.4!. The above proof, however, shows how th
functionG(z) emerges from the general theory presented in Subsection II B, when one take
of the ADEs ~3.4! as a starting point.

Proposition III.2 „automorphy properties…: One has

G~2z!51/G~z!, ~3.22!

G~a2 ,a1 ;z!5G~a1 ,a2 ;z!, ~3.23!

G~la1 ,la2 ;lz!5G~a1 ,a2 ;z!, lP~0,̀ !. ~3.24!

For any M,N P N* one has the multiplication formula

GS a1

M
,
a2

N
;zD5)

j51

M

)
k51

N

GS a1 ,a2 ;z1
ia1

2M
~M1122 j !1

ia2

2N
~N1122k! D . ~3.25!

Proof: All of these properties readily follow from the integral representation~3.1!–~3.3! and
meromorphy ofG. Indeed, the first three are immediate from~3.1!. Taking firstN51 in ~3.25!,
and using~3.1! and the identity~2.38! to rewrite the rhs, one obtains the desired result
G(a1 /M ,a2 ;z); the general case then follows by using~3.23!. h

Note that when one takesM5N in the formula~3.25!, one can use~3.24! to write its lhs as
G(a1 ,a2 ;Nz).

Proposition III.3 „zeros, poles, residues…: The zeros and poles of G(z) are given by
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r

f

1094 S. N. M. Ruijsenaars: Difference equations and integrable systems

¬¬¬¬¬¬¬¬¬¬
zkl
1[ i ~a1~k11/2!1a2~ l11/2!!, k,lPN ~zeros!, ~3.26!

zkl
2[2zkl

1 , k,lPN ~poles!. ~3.27!

For a given(k0 ,l 0) P N2, the multiplicities of the pole zk0l0
2 and zero zk0l0

1 are equal to the numbe

of distinct pairs(k,l ) P N2 such that zkl
15zk0l0

1 ; in particular, for a1 /a2¹Q all poles and zeros

are simple. The pole at z00
2 is simple and has residue

r 005
i

2p
~a1a2!1/2. ~3.28!

More generally, if the quantity

tkl[ )
m51

k

sin~pma1 /a2!)
n51

l

sin~pna2 /a1! ~3.29!

is non-zero, then the pole at zkl
2 is simple and has residue

r kl5~2 !kl~21/2!k1 l r 00/tkl . ~3.30!

Conversely, if zkl
2 is a simple pole, then one has tkl Þ 0.

Proof: In view of ~3.23!, we may assumea1<a2 . Iterating the ADE ~3.4! with d51 we
obtain

G~z2 iMa1!5PM~z!G~z!, MPN* , ~3.31!

where

PM~z![S )
m51

M

2ch
p

a2
~z2 ia1~m21/2!!D 21

. ~3.32!

Now the poles ofPM(z) occur at~and only at!

zml[ ia1~m21/2!2 ia2~ l11/2!, m51, . . . ,M , lPZ. ~3.33!

Introducing the strip

S2[$zPCuImzPa2@21/2,1/2!%, ~3.34!

and fixingm P $1, . . . ,M %, there exists a uniquel>0 such thatzml P S2 . SinceG(z) is analytic
and non-zero inS2 , it now follows from ~3.31! that G hasM and onlyM poles ~counting
multiplicity! in the shifted stripS22 iMa1 ; these occur atzkl

2 ,k50, . . . ,M21, with l P N
uniquely determined byk andM .

Now for a given pair (k0 ,l 0) P N2 one can find someM0.k0 such thatzk0l0
2 P S22 iM 0a1

~since the shifted strips cover the lower half plane!. Also, for any pair (k,l ) P N2 such that
zkl

25zk0l0
2 , one must havek,M0 ~sincezkl

2 P S22 iM 0a1 entailsa1(k11/2)1a2l<a1M0).

Consequently, the multiplicity of the pole ofPM0
(z) at z5zk0l0

2 1 iM 0a1 equals the number o

pairs satisfyingzkl
25zk0l0

2 .

The upshot is that the poles ofG(a1 ,a2 ;z) in the lower half plane are given by~3.27! and
have the asserted multiplicity. SinceG is non-zero inS2 andPM has no zeros at all, it follows
from ~3.31! thatG is non-zero in the lower half plane. Recalling~3.22!, the first two assertions
easily follow.
J. Math. Phys., Vol. 38, No. 2, February 1997
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To prove the third one, we use~3.4! with d51 to get

G~z2 i ~a11a2!/2!5S 22ish
pz

a2
D 21

G~z1 i ~a12a2!/2!. ~3.35!

From this we read off

r 005
ia2

2p
G~ i ~a12a2!/2!. ~3.36!

Similarly, using~3.4! with d52 we obtain

r 005
ia1

2p
G~ i ~a22a1!/2!. ~3.37!

Combining these two expressions forr 00 with ~3.22!, we deduce

G~ i ~a12a2!/2!5~a1 /a2!1/2, ~3.38!

and so~3.28! follows. ~Note that~3.1! and ~3.3! entail thatG is positive forz P i (a11a2)
3(21/2,1/2). Note also that~3.38! can be derived from~3.5!.!

Finally, we exploit both ADEs ~3.4! to write

G~z1zkl
2!5~2 !kl1k1 lS )

m51

k

2ish
p

a2
~z2 ima1!)

n51

l

2ish
p

a1
~z2 ina2!D 21

G~z1z00
2 !.

~3.39!

Taking z→0 in this identity, the remaining assertions follow. h

In principle, the residue atzk0l0
2 can still be determined by using~3.30! even whenzk0l0

2 is not

a simple pole. Indeed, in that case one must havea1 /a2 P Q; choosing sequence
ad,n→ad ,d51,2, for n→` such thata1,n /a2,n¹Q, the residue equals the limit of the sum
the residues at the simple poles that coalesce atzk0l0

2 . There is presumably an explicit formula fo

the limit, but we have not pursued this.
It is evident from~3.3! and the above thatg(z) extends from an analytic function inS to a

multi-valued function with logarithmic branch points at~3.26! and ~3.27!. It is convenient to
specialize to the branch obtained by restrictingz to the cut planeC(a11a2), where

C~d![C\$6 i @d/2,`!%, d.0. ~3.40!

This branch will be again denotedg(z). Asymptotic properties for Rez→6` are most easily
obtained for the special casea15a2[a; the general case can then be handled by a compar
argument, cf. Prop. III.4 below.

We start from the identity

g~a,a;z!52
1

p
b~pz/a!, ~3.41!

where we have introduced

b~w![E
0

w

dttctht, wPC~2p!. ~3.42!
J. Math. Phys., Vol. 38, No. 2, February 1997
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~To see that this holds true, use~3.1! on the lhs and takez-derivatives; this yields a linea
combination of the identities~2.66 ! and ~2.69!.! Next, we write cht5sht1e2t to obtain

b~w!5w2/21c12b1~w!, Rew.0, ~3.43!

where

b1~w![E
w

`

dt
te2t

sht
, Rew.0, ~3.44!

c1[E
0

`

dt
te2t

sht
5
F18~0!

2i
5 (

m51

`
1

2m2 5
p2

12
, ~3.45!

cf. ~A8! and ~A10!. From this representation we read off the bounds

b~w!5
w2

2
1

p2

12
1O~exp~~e22!w!!, Rew→`, ~3.46!

b8~w!5w1O~exp~~e22!w!!, Rew→`. ~3.47!

Here, e is a fixed positive number and the bounds hold true uniformly for Imw varying over
compact subsets ofR.

Of course, these bounds entail bounds ong(a,a;z) via ~3.41!. More generally, they can be
exploited to derive bounds ong(a1 ,a2 ;z), as will now be detailed.

Proposition III.4 „asymptotics…: Fixing e.0 and setting

am[max~a1 ,a2! ~3.48!

one has

6g~a1 ,a2 ;z!52
pz2

2a1a2
2

p

24S a1

a2
1
a2

a1
D1O~exp~6~e22p/am!z!!, Rez→6`,

~3.49!

6g8~a1 ,a2 ;z!52
pz

a1a2
1O~exp~6~e22p/am!z!!, Rez→6`, ~3.50!

where the bounds are uniform forImz in R-compacts.
Proof: Since g is odd in z, it suffices to verify the Rez→` asymptotics. Now when

a15a2 , the formulas~3.49! and ~3.50! are immediate from~3.41!, and~3.46! and ~3.47!, resp.
Sinceg is symmetric ina1 ,a2 , it remains to consider the casea1,a2 .

To this end we rewrite~3.1! as

a1a2g~a1 ,a2 ;z!5a2g~a,a;z!1d~z!, ~3.51!

where we have introduced

a[S a1
2 1a2

2

2 D 1/2, ~3.52!

d~z![E
0

`

dyI~y!sin2yz, ~3.53!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with

I ~y![
1

2y S a1a2

sha1ysha2y
2

a2

sh2ayD . ~3.54!

Here, we takez in the stripS ~3.2!, so that the integral converges~notea11a2<2a). Now we
have

I ~y!5c~a1 ,a2!y1O~y3!, y→0, ~3.55!

soI (y) is analytic in the stripuImyu,p/a2 . Hence, fixingz P Sandr P (0,p/a2), we may shift
contours to obtain

2id~z!5e22rzE
2`

`

duI~u1 ir !e2iuz. ~3.56!

From this we deduce thatd(z) andd8(z) areO(e22rz) for Rez→`, uniformly for z in a closed
substrip ofS.

Combining these bounds with~3.51! and the Rez→` asymptotics ofg(a,a;z), we deduce
that ~3.49! and ~3.50! hold true uniformly forz in the strip uImzu<a1 . Finally, we exploit the
ADEs

g~z6 ia1!5g~z!7 i lnS 2chp

a2
~z6 ia1/2! D ~3.57!

to infer that the bounds hold uniformly foruImzu<2a1 ; by iteration, the proposition now follows
h

Thus far, we have takena1 anda2 positive. However, fixingzP R, it is already obvious from
~3.1! thatG(a1 ,a2 ;z) extends to a function that is analytic and non-zero fora1 ,a2 in the~open!
right half plane. Note this is consistent with the analytic continuation of~3.26! and ~3.27!: The
imaginary part of the rhs is non-zero fora1 ,a2 in the right half plane.

More generally, we shall now prove thatG can be continued to a function that is meromorph
in a1 ,a2 andz, provided the ratio variable

r[a2 /a1 ~3.58!

stays away from the negative real axis. To this end we consider the auxiliary function

A~r,l![)
j50

`

F~~ j11/2!r,l!, rPC2, lPC, ~3.59!

whereC2 denotes the cut plane~A15!. In view of ~B22! and ~B19! this is a well-defined mero-
morphic function inC23C. Moreover, from~A40! we readily deduce

A~r,l!5expS E
0

` dt

tsh~rt/2!
~2l2sh~lt !cth~ t/2!! D , r.0, uRelu,r. ~3.60!

Now from ~3.1! and ~3.3! we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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G~z1 ia1/2!G~z2 ia1/2!5expS E
0

` dt

tsh~rt/2! S sh~ i tz/a1!cth~ t/2!2
2iz

a1
D D

3expS i E
0

`dt

t S 2z

a1sh~a2t/2a1!
2

4z

a2t
D D

5A~r,2 iz/a1!expS 2
2iz

a1
ln2D , ~3.61!

where we used~A33! and ~A34!. Next, we introduce the new variable

l[2 iz/a1 ~3.62!

and combine~3.61! and the ADE ~3.4! to deduce

G~a1 ,a2 ;z1 ia1/2!25A~r,l!exp~2l ln2!•2cos~pl/r!. ~3.63!

We are now prepared for the following proposition.
Proposition III.5 „meromorphic continuation…: The function G(a1 ,a2 ;z) admits analytic

continuation to a function that is meromorphic in a1 ,a2 and z, providedr[a2 /a1 stays in
C2. Fixing a1 ,a2 with Imr Þ 0, one obtains a meromorphic function whose zeros and poles
simple and located at (3.26) and (3.27), resp.

Proof: The function

B~r,l![A~r,l!cos~pl/r! ~3.64!

is meromorphic inC23C, so in view of~3.63! we need only show that forr¹R all of its zeros
and poles are double and located at

l5k1~ l11/2!r, k,lPN ~zeros!, ~3.65!

l52k212~ l11/2!r, k,lPN ~poles!. ~3.66!

Recalling the definitions~2.59! and ~A39!, we obtain the representation

B~r,l!5cos~pl/r!)
j50

`
G~~ j11/2!r1l!

G~~ j11/2!r2l!

G~11~ j11/2!r1l!

G~11~ j11/2!r2l!
exp~24l ln~ j11/2!r!

~3.67!

from which these features can be read off. h

Of course, the proposition just proved entails that various formulas involvingG can be
analytically continued. We mention specifically~3.4!, ~3.5!, ~3.22!–~3.25! @note one can takel
P C* in ~3.24!#, ~3.28!–~3.30!, and the special values

G~ i ~ad2a2d!/2!5~ad /a2d!1/2, G~6 iad/2!5261/2, d51,2. ~3.68!

~These values easily follow from~3.1!–~3.5!.!
We proceed by detailing the relation to the gamma function. To this end we introduce

H~r;z![G~1,r;rz1 i /2!exp~ izln~2pr!2221ln~2p!!, rPC2, zPC. ~3.69!

This renormalized version ofG(a1 ,a2 ;z) is such that the two ADEs ~3.4! translate into the ADE
J. Math. Phys., Vol. 38, No. 2, February 1997
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H~r;z1 i /2!

H~r;z2 i /2!
5
ishprz

pr
~3.70!

and functional equation

H~r;z!H~r;2z!5
chpz

p
. ~3.71!

~Use~3.22! to check~3.71!.! We shall now show that ther→0 limit of H(r;z) exists and equals
1/G( iz11/2). Accordingly,~3.70! and ~3.71! turn into the ADE and functional equation satisfie
by the gamma function.

Proposition III.6 „relation to gamma function…: Takingr P (0,̀ ), one has

lim
r↓0

H~r;z!51/G~ iz11/2! ~3.72!

uniformly for z inC-compacts. More generally, fixe P (0,̀ ),f P (0,p), and an arbitrary compact
K,C. Then there existsd5d(e,f,K) P (0,̀ ) such that

uH~r;z!G~ iz11/2!21u,e, zPK, uArgru<p2f,uruP~0,d#. ~3.73!

Proof: We begin by proving~3.72!. Since the function 1/G( iz11/2) is entire, we need only
show

lim
r↓0

P~r;z!51 ~uniformly on compacts!, ~3.74!

P~r;z![H~r;z!G~ iz11/2!. ~3.75!

Now from Prop. III.3 we see that the poles ofG( iz11/2) are matched by zeros ofH(r;z), so that
P(r;z) has no poles and zeros in the strip

Sr[$zPCuuImzu,1/211/r%. ~3.76!

We continue by deriving an integral representation forP(r;z) that holds true inSr . To this end
we first takeuImzu,1/2. Then we may use~3.3! and ~3.1! to write

G~1,r;rz1 i /2!5expS E
0

`dy

y S e2iryze2y2e22iryzey

4shyshry
2
iz

y
1

1

2ryD D . ~3.77!

Also, from ~A37! we obtain

G~ iz11/2!

~2p!1/2
5expS E

0

`dy

y S ize22ry2
1

2ry
1
e22iryz~ey2e2y!

4shyshry D D . ~3.78!

Finally, combining~A37! ~with z51/2) and the integral~A29!, we write the remaining factor in
~3.69! as

exp~ izln~2pr!!5expS E
0

`dy

y S izy 2
ize2y

shy
2 ize22ryD D . ~3.79!

Putting the pieces together, we obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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P~r;z!5expS i2E0`dyy e2y

shyshry
~sin~2ryz!22zshry! D . ~3.80!

Clearly, this representation can be analytically continued to the stripSr , as announced above
Now we fix a compactK,C and noteK,Sr for r small enough. Rewriting the integral in~3.80!
as

1

cE0
`

dy
e2cy~sin~2yz!22zshy!

y2shy S cy

shcyD , c[1/r, ~3.81!

it becomes evident that it converges to 0 forc→` uniformly onK. Consequently, we have now
proved that~3.72! holds true uniformly on compacts.

To prove the stronger assertion~3.73!, we observe that forz P K andc.0 large enough, the
contour in~3.81! may be rotated toeixy,y P @0,̀ ), with uxu<(p2f)/2, cf. the proof of Theorem
B.1. The resulting integral can now be estimated in an obvious way forc P C with ucu large enough
and uArg(eixc)u<(p2f)/2, and then~3.73! easily follows. h

The functionP(r;z) ~3.75! is of some interest in itself: It is the unique minimal solution to t
ADE

F~z1 i /2!

F~z2 i /2!
5
shprz

prz
~3.82!

@cf. ~3.70!# that satisfiesF(0)51,uF(x)u51,x P R. Note that the representation~3.80! can be
understood from Theorem II.3.

We conclude this subsection by deriving two more zero step size limits, now involving
functionG(p,a;•) for a→0. ~The choicea15p is notationally convenient; the scaling relatio
~3.24! can be used for othera1-values.! In fact, we shall phrase the limits in terms of the bran
g(z)52 i lnG(z) defined in the cut planeC(p1a), cf. the paragraph containing~3.40!. Introduc-
ing the functions

da~l,m;z![g~p,a;z1 ila!2g~p,a;z1 ima!, zPC~p1a!, l,mPR, ~3.83!

Da~z![ag~p,a;z!, zPC~p1a!, ~3.84!

we are prepared for the following proposition.
Proposition III.7 „zero step size limits…: One has

lim
a↓0

da~l,m;z!52 i ~l2m!ln~2chz!, l,mPR, ~3.85!

lim
a↓0

Da~z!52E
0

z

dwln~2chw!, ~3.86!

uniformly on compact subsets of the cut planeC(p) (3.40). Here,ln is real-valued for z and w
real, resp., and the integration path in (3.86) belongs toC(p).

Proof: From the ADE ~3.4! with ad5a,a2d5p, we deduce that~3.85! need only be proved
for l,m P @21/2,1/2#. Taking from now ona P (0,p/4# ~say!, we fix l andm in this interval and
z in the stripuImzu,p/2. Then we may use~3.1! to write

da~l,m;z!52 i E
0

`dy

y S ~l2m!

py
2
sha~l2m!y

shay

cos~2yz1 ia~l1m!!

shpy D , ~3.87!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Da~z!5E
0

`dy

y2 S ay

shay

sin2yz

2shpy
2

z

p D . ~3.88!

From straightforward estimates one sees that these representations entail the limits

lim
a↓0

da~l,m;z!52 i ~l2m!E
0

`dy

y S 1

py
2
cos2yz

shpy D , ~3.89!

lim
a↓0

Da~z!5E
0

`dy

y2 S sin2yz2shpy
2

z

p D , ~3.90!

and boundedness for (a,z) P (0,p/4#3K, with K a compact subset ofuImzu,p/2.
Invoking now Vitali’s theorem and recalling the identity~3.21!, it follows that ~3.85! and

~3.86! hold true uniformly on compacts inuImzu,p/2. Next, we exploit Theorem II.4 to obtain
uniform convergence on compacts in the right half plane~2.73!. To this end we need only observ
that the ADEs with step sizea obeyed by]z

2da and]z
3Da satisfy all of the assumptions of Theore

II.4, cf. the proof of Prop. III.1. Similarly, we infer uniform convergence on compacts of the
half plane. Since any compact inC(p) can be written as a union of three compacts in the s
uImzu,p/2 and in the left and right half planes, the proposition now follows. h

We point out that~3.85! amounts to

lim
a↓0

G~p,a;z1 ila!

G~p,a;z1 ima!
5exp~~l2m!ln~2chz!!, l,mPR, ~3.91!

uniformly on compacts inC(p). Observe that the rhs is not meromorphic, unlessl2m P Z. The
emergence of branch cuts can be understood from the coalescence of zeros and poles taki
for a→0, cf. Prop. III.3.

B. The elliptic case

In this subsection we are concerned with a function that is a minimal solution to three ADEs
generalizing the hyperbolic ADEs ~3.4! and~3.5!. We study this function along the same lines
in Subsection III A. Our starting point is the infinite series

(
n51

`
sin2nrz

2nshnra1shnra2
[g~r ,a1 ,a2 ;z!, ~3.92!

where we take at firstr ,ad P (0,̀ ),d51,2. Clearly, this series converges absolutely and u
formly for z in an arbitrary compact of the stripS ~3.2!, so it defines a functiong that is analytic
in S. As before, it is convenient to suppress the dependence on the parameters whene
causes no confusion. With this convention, our goal is to study the functionG(z) ~3.3!.

To this end we introduce the ‘‘right-hand side function’’

R~r ,a;z![22ire2ar/2)
k51

`

~12e22kar!2•eirzs~r ,a;z1 ia/2!. ~3.93!

Using the definition~2.89! of s and the product representation~2.84! of thes-function, one easily
verifies thatR can be rewritten

R~r ,a;z!5)
k51

`

~12exp~2irz2~2k21!ar !!~z→2z!, ~3.94!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where the infinite product converges absolutely and uniformly on compacts. From this one r
obtains the representation

R~r ,a;z!5expS 2 (
n51

`
cos2nrz

nshnra D , uImzu,a/2. ~3.95!

~Use the power series for ln(12x) to verify this; cf. also~2.93!.!
In the sequel it is convenient to employ the abbreviations

qd[exp~2adr !, ~3.96!

cd[22irq d
1/2)

k51

`

~12qd
2k!2, ~3.97!

sd~z![s~r ,ad ;z!, ~3.98!

Rd~z![R~r ,ad ;z!5cde
irzsd~z1 iad/2!, ~3.99!

whered51,2. We are now prepared for the following proposition.
Proposition III.8 „defining ADEs…: With (3.4) replaced by

G~z1 iad/2!

G~z2 iad/2!
5R2d~z!, d51,2, ~3.100!

and (3.5) by

G~z1 i ~a12a2!/2!

G~z2 i ~a12a2!/2!
5)

k51

` S 12q2
2k

12q1
2kD 2• s2~z!

s1~z!
, ~3.101!

the assertions of Prop. III.1 hold true.
Proof: In view of ~3.99! and~3.95!, Theorem II.5 may be invoked to solve the additive for

of ~3.100!. Specifically, we may take

f~z![2 (
nPZ*

e2inrz

2nshnra2d
, ~3.102!

s5a2d/2 anda5ad . The solution given by~2.106! is then equal toig(r ,a1 ,a2 ;z) @cf. ~3.92!#,
and so~3.100! follows.

Next, we use~3.20! and the ADEs ~3.100! to conclude that~3.101! amounts to the identity

s2~z!

s1~z!
5)

k51

` S 12q1
2k

12q2
2kD 2• R2~z2 ia2/2!

R1~z2 ia1/2!
. ~3.103!

This identity can be deduced from~3.96!–~3.99!, so the proposition follows. h

Proposition III.9 „automorphy properties…: The function G is periodic with primitive period
p/r . It obeys the multiplication formula (3.25) and the period doubling formula

G~2r ,a1 ,a2 ;z!5G~r ,a1 ,a2 ;z!G~r ,a1 ,a2 ;z2p/2r !. ~3.104!

Moreover, it satisfies (3.22), (3.23), the scaling relation

G~l21r ,la1 ,la2 ;lz!5G~r ,a1 ,a2 ;z!, lP~0,̀ !, ~3.105!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and the duplication formula

G~r ,a1 ,a2 ;2z!5 )
l ,m51,2

G~r ,a1 ,a2 ;z2 i ~ la11ma2!/4!

3G~r ,a1 ,a2 ;z2 i ~ la11ma2!/42p/2r !. ~3.106!

Proof: These features follow from the series representation~3.92! in the same way as in the
hyperbolic case.~Combine~3.25!, ~3.104! and ~3.105! to check~3.106!.! h

Proposition III.10 „zeros, poles, residues…: The zeros and poles of G(z) are given by

zjkl
1 [ jp/r1zkl

1 , jPZ, k,lPN ~zeros!, ~3.107!

zjkl
2 [2zjkl

1 , jPZ, k,lPN ~poles!, ~3.108!

with zkl
1 defined by (3.26). The multiplicities of the poles zjk0l0

2 and zeros zjk0l0
1 , j P Z, are equal to

the number of distinct pairs(k,l ) P N2 such that zkl
15zk0l0

1 .The poles at zj00
2 , j P Z, are simple and

have residue

r 005 i S 2r)
n51

`

~12q2
2n!~12q1

2n!D 21

. ~3.109!

Whenever

ekl[ )
m51

k

is2~ ima1!)
n51

l

is1~ ina2! ~3.110!

is non-zero, the poles at zjkl
2 , j P Z, are simple and have residue

r kl5~2 !klS 12r D
k1 l

q2
~ l21 l !~k11/2!q1

~k21k!~ l11/2!)
n51

`

~12q2
2n!22k~12q1

2n!22l
•r 00/ekl .

~3.111!

Conversely, if zjkl
2 is a simple pole, then ekl Þ 0.

Proof:We proceed along the same lines as in the proof of Prop. III.3. Here,~3.31! holds true
with ~3.32! replaced by

PM~z![S )
m51

M

R2~z2 ia1~m21/2!!D 21

~3.112!

and then the poles ofPM(z) are located atjp/r1zml , with j P Z andzml given by ~3.33!. By
periodicity we may restrict attention to poles and zeros on the imaginary axis. In view of~3.22! the
first two assertions then follow just as in the hyperbolic case.

Turning to the third one, we now get

G~z2 i ~a11a2!/2!5~c2exp@ ir ~z2 ia2/2!#s2~z!!21G~z1 i ~a12a2!/2! ~3.113!

so that@cf. ~3.96! and ~3.97!#

r 005
i

2r)n51

`

~12q2
2n!22G~ i ~a12a2!/2!. ~3.114!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Using symmetry ina1 ,a2 , we deduce

G~ i ~a12a2!/2!5 )
n51

`
~12q2

2n!

~12q1
2n!

~3.115!

and so~3.109! follows. ~Note that~3.115! can also be derived from~3.101!.!
Finally, from the ADEs ~3.100! we calculate

G~z1zkl
2!5~2 !klS c2

k c1
l expS ra2

2
@~ l 21 l !~2k11!1k#1

ra1

2
@~k21k!~2l11!1 l # D

•exp~ irz@k1 l12kl# ! )
m51

k

s2~z2 ima1!)
n51

l

s1~z2 ina2!D 21

•G~z1z00
2 !.

~3.116!

Using ~3.96! and ~ 3.97!, the remaining assertions readily follow from this. h

At the elliptic level the choicea15a2 does not appear to yield extra information, as co
pared to the general case. But sinceG is p/r -periodic, there is no analog of Prop. III.4, and so w
do not need additional information on this special case.

Next, we turn to an analog of Prop. III.5.
Proposition III.11 „meromorphic continuation…: The function G admits the representatio

G~r ,a1 ,a2 ;z!5 )
m,n51

` 12q1
2m21q2

2n21e22irz

12q1
2m21q2

2n21e2irz
, qd[exp~2adr !. ~3.117!

It can be analytically continued to a function that is meromorphic in r,a1 ,a2 and z, provided
a1r and a2r stay in the right half plane. Fixing r,a1 ,a2 with Re(a1r ) andRe(a2r ) positive,
one obtains a meromorphic function whose zeros and poles are located at (3.107) and (3
resp.

Proof: It suffices to prove~3.117!, since the remaining assertions are clear from this form
To this end we observe that the numerator infinite product is the downward iteration solut
both of the ADEs

F~z1 iad/2!

F~z2 iad/2!
5R~2 !~a2d ;z!, d51,2, ~3.118!

with

R~2 !~a;z![)
k51

`

~12e2~2k21!are22irz!. ~3.119!

Similarly, the denominator infinite product is the upward iteration solution to

F~z1 iad/2!

F~z2 iad/2!
5R~1 !~a2d ;z!, d51,2, ~3.120!

with

R~1 !~a;z![R~2 !~a;2z!; ~3.121!

cf. ~2.1!–~2.5!. But we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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R~1 !~ad ;z!R~2 !~ad ;z!5Rd~z!, ~3.122!

cf. ~3.94!, so the rhsG̃ of ~3.117! solves the ADE ~3.100!. Since both solutionsG and G̃ are
p/r -periodic, have no zeros and poles in the stripuImzu<ad/2, and satisfyG(0)5G̃(0)51, we
deduceG5G̃. h

We continue by detailing the relation of the ellipticG-function to the hyperbolic
G-function. This relation is the first instance of a general type of limiting transition betw
meromorphic functions that will reappear several times. Therefore, it is convenient to introd
term referring to the type of limit involved.

To this end, assumef p(z) is a family of meromorphic functions parametrized byp P CN. We
shall say thatf p(z) converges mero-uniformly to a meromorphic functionf (z) asp→p0 when-
ever one has f p(z)→ f (z) uniformly on compacts not containing poles off (z), and
1/f p(z)→1/f (z) uniformly on compacts not containing zeros off (z). ~Equivalently, viewing
meromorphic functions as holomorphic functions fromC to the Riemann sphereP1, one has
f p→ f mero-uniformly asp→p0 iff the convergence isP1-uniform on arbitraryC-compacts.!

Defining the renormalized function

Gren~r ,a1 ,a2 ;z!5G~r ,a1 ,a2 ;z!expS p2z

6ira1a2
D ~3.123!

we are now prepared for the next proposition.
Proposition III.12 „relation to hyperbolic G-function…: Fixing a1 ,a2.0, one has

lim
r↓0

Gren~r ,a1 ,a2 ;z!5G~a1 ,a2 ;z!, ~3.124!

where the limit is mero-uniform.
Proof:Writing Gren5exp(igren), we obtain

gren~r ,a1 ,a2 ;z!5r(
n51

`
1

nr S sin2nrz

2shnra1shnra2
2

z

nra1a2
D , zPS; ~3.125!

cf. ~3.92!. Comparing to~3.1!, a routine dominated convergence argument now yields

lim
r↓0

gren~r ,a1 ,a2 ;z!5g~a1 ,a2 ;z!, zPS, ~3.126!

uniformly onS-compacts.
Next, we note thatGren satisfies the ADE

G~z1 ia1/2!

G~z2 ia1/2!
5R2,ren~z! ~3.127!

with

R2,ren~z![expS p2

6ra2
DR2~z!. ~3.128!

In view of ~3.126! this entails that foruImzu<a2/2 we have

lim
r↓0

R2,ren~z!5
G~a1 ,a2 ;z1 ia1/2!

G~a1 ,a2 ;z2 ia1/2!
52ch

pz

a2
, ~3.129!
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where we used~3.4!. Recalling~3.99! and the limit~2.92!, we deduce

lim
r↓0

expS p2

6ra2
D ~ ic2!5

2p

a2
. ~3.130!

Using then~2.92! once more, one sees that~3.129! holds uniformly onC-compacts. Therefore, on
may exploit the ADE ~3.127! and uniform convergence ofGren to G on S-compacts to obtain
uniform convergence onC-compacts that do not contain the poleszjk

2 , j ,k P N, of G. Moreover,
~3.126! entails uniform convergence of 1/Gren to 1/G onS-compacts, so one can also use~3.127!
and ~3.129! to infer 1/Gren→1/G uniformly on compacts not containing the zeroszjk

1 . h

As a corollary of the proof we obtain the limit

lim
r↓0

rexpS p2

6ra D )
n51

`

~12e22nar!25
p

a
, a.0; ~3.131!

cf. ~3.130! and ~3.97!. Equivalently, this can be written

lim
r↓0

S (
n51

`
1

n S e2nra

shnra
2

1

nraD 2 lnr D 5 ln
a

p
, a.0. ~3.132!

The last proposition of this subsection is the analog of Prop. III.7 in the previous one. To
it, we introduce the cut plane

C~r ,d![C\$6 i @d/2,`!1kp/r ukPZ%, r ,d.0, ~3.133!

and define a branchg(r ,A,a;z) of 2 i lnG in C(r ,A1a) via ~3.93! for uImzu,(A1a)/2. Then we
set

da~r ,A,l,m;z![g~r ,A,a;z1 ila!2g~r ,A,a;z1 ima!, zPC~r ,A1a!, l,mPR,
~3.134!

Da~r ,A;z![ag~r ,A,a;z!, zPC~r ,A1a! ~3.135!

~This should be compared to~3.83! and ~3.84!.!
Proposition III.13 „zero step size limits…: One has

lim
a↓0

da~r ,A,l,m;z!52 i ~l2m!lnR~r ,A;z!, l,mPR, ~3.136!

lim
a↓0

Da~r ,A;z!52E
0

z

dwlnR~r ,A;w!, ~3.137!

uniformly on compact subsets of the cut planeC(r ,A) (3.133). Here,ln is real-valued for z and
w real, resp., and the integration path in (3.137) belongs toC(r ,A).

Proof: This follows in the same way as Prop. III.7, with~3.93!, ~the logarithm of! ~3.95! and
Theorem II.7 playing the role of~3.1!, ~3.21! and Theorem II.4, resp.~Since the limits are
p/r -periodic in the stripuImzu,A/2, one need only handle compacts inRr ~2.113!.! h

In terms ofG, ~3.136! reads

lim
a↓0

G~r ,A,a;z1 ila!

G~r ,A,a;z1 ima!
5exp~~l2m!lnR~r ,A;z!!, l,mPR, ~3.138!
J. Math. Phys., Vol. 38, No. 2, February 1997
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uniformly on compacts inC(r ,A). Once more, the branch cuts arise from coalescence of zeros
poles, cf. Prop. III.10.

C. The trigonometric case

The trigonometric case is most easily understood by viewing it as a limiting case of the e
case. In view of~2.90!, this should involve sending one ofa1 ,a2 to `. We shall fix a1[a
P (0,̀ ) and let a2[A go to `. To get finite limits, we clearly should shiftz in an
A-dependent way. We takez→z2 iA/2, and thus wind up with

G~r ,a;z![ lim
A→`

G~r ,a,A;z2 iA/2!. ~3.139!

From the product representation~3.117! it is immediate that this limit exists mero-uniformly
yielding

G~r ,a;z!5 )
m51

`

~12q2m21e2irz!21, q[e2ar. ~3.140!

For Imz.2a/2 we can also evaluate the limit~3.139! by using ~3.92!; this yields the series
representation

G~r ,a;z!5expS (
n51

`
e2inrz

2nshnraD , Imz.2a/2. ~3.141!

We continue by studying the trigonometricG-function just defined.
Proposition III.14 „defining ADE…: The function G(r ,a;z) is the upward iteration solution

to the ADE

G~z1 ia/2!

G~z2 ia/2!
512e2irz. ~3.142!

Proof: This is clear from the product representation~3.140! @recall ~2.1!–~2.4!#. h

Notice that the ADE ~3.142! is not regular. However, a shiftz→z1 ia/2 ~say! gives rise to a
regular ADE. Indeed, the function

f~z!5 ln~12exp~2ir ~z1 ia/2!!!52 (
n51

`

n21qne2inrz ~3.143!

satisfies the assumptions of Theorem II.4, andG(r ,a;z1 ia/2) is a minimal solution to the asso
ciated multiplicative ADE. @Compare the logarithm of~3.141! with ~2.106! to see this.# Observe
also that~3.142! agrees with theA→` limit of the elliptic ADE

G~r ,a,A;z2 iA/21 ia/2!

G~r ,a,A;z2 iA/22 ia/2!
522ir )

n51

`

~12e22nAr!2•eirzs~r ,A;z!, ~3.144!

cf. ~3.100!, ~3.96!–~3.99!, ~3.139! and ~2.90!.
Proposition III.15 „automorphy properties…: The function G is periodic with primitive

periodp/r . It obeys the multiplication formula

GS r , aM ;zD5)
j51

M

GS r ,a;z1
ia

2M
~M1122 j ! D , ~3.145!
J. Math. Phys., Vol. 38, No. 2, February 1997
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the period doubling formula

G~2r ,a;z!5G~r ,a;z!G~r ,a;z2p/2r !, ~3.146!

the scaling relation

G~l21r ,la;lz!5G~r ,a;z!, lP~0,̀ !, ~3.147!

and the duplication formula

G~r ,a;2z!5 )
s51,2

G~r ,a;z2 isa/4!G~r ,a;z2 isa/42p/2r !. ~3.148!

Proof: These properties follow from the series representation~3.141! in the same way as in
the two previous cases. h

Proposition III.16 „zeros, poles, residues…: The function G(z) has no zeros and simple pole
given by

zjk[ jp/r2 ia~k11/2!, jPZ, kPN ~poles!. ~3.149!

The residues at the poles zj0 , j P Z, are given by

r 05 i S 2r)
n51

`

~12q2n!D 21

5
i

2r
G~ ia/2!, ~3.150!

and the residues at the remaining poles zjk , j P Z,k P N* , are given by

r k5r 0 / )
m51

k

~12q22m!. ~3.151!

Proof: The first assertion is immediate from~3.140!. The residues~3.150! follow either from
~3.109! by taking a limit, or directly from~3.140!. Using

G~z1z0k!5 )
m51

k

~12q22me2irz!21G~z1z00!, ~3.152!

the residues at the remaining poles can now be obtained, yielding~3.151!. h

Proposition III.17 „asymptotics…: The function G satisfies the bound

G~r ,a;z!511O~exp~22r Imz!!, Imz→`, ~3.153!

uniformly forRezP R.
Proof: This estimate readily follows from the series representation~3.141!. h

Proposition III.18 „meromorphic continuation…: The function G can be analytically con
tinued to a function that is meromorphic in r,a and z, provided ar stays in the right half plane
Fixing r,a with Re(ar).0, one obtains a meromorphic function without zeros and with sim
poles located at (3.149).

Proof: This can be read off from the product representation~3.140!. h

The propositions derived thus far have elliptic and/or hyperbolic analogs. In the previou
cases, however, theG-function satisfiesG(z)G(2z)51, a relation that does not hold in th
trigonometric case. Instead, we have the following result.

Proposition III.19 „functional equation…: The trigonometric G-function satisfies
J. Math. Phys., Vol. 38, No. 2, February 1997
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G~r ,a;z!G~r ,a;2z!5R~r ,a;z!21, ~3.154!

where the rhs is given by (3.93).
Proof: This is obvious from the series representations~3.141! and ~3.95!. h

We point out that this functional equation may be seen as a footprint left by the secondDE
satisfied by the ellipticG-function: Takinga→a1 , the rhs can be writtenR1(z)

21, so ~3.154!
can be deduced from~3.100! with d52 and the limit~3.139!.

Next, we introduce the function

T~r ;z![
G~r ,1;0!

G~r ,1;2z!
expS rz22 1 izln~2r !2

1

2
lnp D , Rer.0. ~3.155!

This renormalized version ofG(r ,a;z) satisfies the ADE

T~r ;z1 i /2!

T~r ;z2 i /2!
5
isinrz

r
~3.156!

and functional equation

T~r ;z!T~r ;2z!5p21exp~rz21 irz !
s~r ,1;z1 i /2!

s~r ,1;i /2!
. ~3.157!

Taking r↓0, the right-hand sides of~3.156! and ~3.157! obviously converge toiz andp21chpz
@recall ~2.92!#, resp., in accordance with the next proposition.

Proposition III.20 „relation to gamma function…: One has

lim
r↓0

T~r ;z!51/G~ iz11/2! ~3.158!

uniformly for z inC-compacts.
Proof:We begin by noting that it suffices to show that~3.158! holds uniformly on compacts

of the lower half plane~LHP!. ~Indeed, from~3.156! we have

T~r ;z1 ik !5
i

r
sinr ~z1 i ~k21/2!!•••

i

r
sinr ~z1 i /2!T~r ;z!, ~3.159!

so if ~3.158! holds uniformly on LHP-compacts, then the rhs of~3.159! converges in the sam
sense to

~ iz2k11/2!•••~ iz21/2!
1

G~ iz11/2!
5

1

G~ i ~z1 ik !11/2!
. ~3.160!

Hence,~3.158! follows for compacts of Imz<k). To this end we use the formula

e~z!5e~0!1ze8~0!1E
0

z

dwE
0

w

dse9~s! ~3.161!

to rewrite the logarithms ofT(r ;z) and 1/G( iz11/2). This yields

T~r ;z!5expS 2
1

2
lnp1 izK~r !1E

0

z

dwE
0

w

dsh~r ;s! D ~3.162!

with
J. Math. Phys., Vol. 38, No. 2, February 1997
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h~r ;z![2r(
n51

`
nre22inrz

shnr
1r , Imz,1/2, ~3.163!

K~r ![ ln~2r !1 (
n51

`
r

shnr
~3.164!

@cf. ~3.155! and ~3.141!# and

1

G~ iz11/2!
5expS 2

1

2
lnp2 izcS 12D 1E

0

z

dwE
0

w

dsh~s! D ~3.165!

with

h~z![2E
0

`

dy
ye22iyz

shy
, Imz,1/2, ~3.166!

cf. ~A37!, ~A12!, and~A33!, ~A34!.
Comparing~3.163! and ~3.166!, we deduce

lim
r↓0

h~r ;z!5h~z! ~3.167!

uniformly on LHP-compacts. Comparing then~3.162! with ~3.165!, we see that it remains to show

lim
r↓0

K~r !52c~ 1
2!. ~3.168!

To prove this, we use the ADEs ~3.156! and ~A24! to write

T~r ;2 i !

T~r ;0!

G~3/2!

G~1/2!
5

r

2sh~r /2!
. ~3.169!

Due to ~3.162! and ~3.165!, the lhs can be rewritten

expSK~r !1cS 12D 1E
0

2 i

dwE
0

w

ds@h~r ;s!2h~s!# D , ~3.170!

and since the integral converges to 0 forr↓0 we now obtain~3.168!. Therefore, the proof of the
proposition is complete. h

Comparing the ADEs ~3.156! and ~3.70!, we deduce that the quotient

Q~r ;z![T~r ;z!/H~ ir /p;z!, Rer.0, ~3.171!

of the trigonometric and hyperbolic functions isi -periodic. Moreover, comparing poles and zer
of T andH, we deduce thatQ is entire inz and has simple zeros at

z52kp/r1 i ~ l11/2!, kPN* , lPZ. ~3.172!

Furthermore, recalling Prop. III.6, we infer

lim
r↓0

Q~r ;z!51 ~uniformly on compacts!. ~3.173!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Our last proposition concerns two zero step size limits that may be tied in with~3.136! and
~3.137! via ~3.139!. We set

C2~r ,d![C\$2 i @d/2,`!1kp/r ukPZ%, r.0,d>0, ~3.174!

and define a branchg(r ,a;z) of 2 i lnG in C2(r ,a) by requiring

g~r ,a;z![2 i(
n51

`
e2inrz

2nshnra
, Imz.2a/2, ~3.175!

cf. ~3.141!. Now we put

da~r ,l,m;z![g~r ,a;z1 ila!2g~r ,a;z1 ima!, zPC2~r ,a!, l,mPR, ~3.176!

Da~r ;z![ag~r ,a;z!, zPC2~r ,a!. ~3.177!

~Compare this to~3.133!–~3.135!.!
Proposition III.21 „zero step size limits…: One has

lim
a↓0

da~r ,l,m;z!52 i ~l2m!ln~12e2irz!, l,mPR, ~3.178!

lim
a↓0

Da~r ;z!52E
i`

z

dwln~12e2irw !, ~3.179!

uniformly on compact subsets of the cut planeC2(r ,0) (3.174). Here,ln is real valued for
z,w P i (0,̀ ), and the integration path in (3.179) belongs toC2(r ,0).

Proof: From ~3.175! it readily follows that the proposition is valid when the cut pla
C2(r ,0) is replaced by its upper half plane subset. Applying Theorem II.7 to the func
f a(z)[da(z1 i ) and f a(z)[Da(z1 i ) ~which satisfy the hypotheses of that theorem fora0 small
enough!, one obtains validity for all of the cut plane. h

Translated toG, the limit ~3.178! becomes

lim
a↓0

G~r ,a;z1 ila!

G~r ,a;z1 ima!
5exp~~l2m!ln~12e2irz!!, l,mPR, ~3.180!

uniformly on compact subsets of the cut planeC2(r ,0). Just as in the previous two cases@cf.
~3.91! and~3.138!#, this formula is evident from the defining ADE whenl2m is an integer. For
l2m¹Z, the branch cuts in the lower half plane arise from the coalescence of poles and
that can be read off from~3.149!.

We conclude this subsection by detailing the relation of the trigonometricG-function
G(r ,a;z) to the q̃-gamma functionG q̃(z). Recall the latter is given by~cf., e.g., Ref. 4, p. 16!

G q̃~z!5~12q̃!12z)
n51

`
~12q̃ n!

~12q̃z1n21!
. ~3.181!

Comparing this to the product formula~3.140! for G, we see that when we take

q̃[q25e22ar ~3.182!

we may writeG as
J. Math. Phys., Vol. 38, No. 2, February 1997
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G~r ,a;az!5G q̃~2 iz11/2!~12q̃!2 iz21/2)
n51

`

~12q̃ n!21. ~3.183!

From this we readily obtain@recall ~3.155!#

T~r ;z!5
G q̃~1/2!

G q̃~ iz11/2!
expS 2

1

2
lnp1

rz2

2
2 izlnS 12e22r

2r D D . ~3.184!

Using these relations, some of the above results can be translated in terms ofG q̃ , recovering
results that have been obtained by several authors, cf. Ref. 4 and references given there.

IV. SCATTERING FUNCTIONS

A. The hyperbolic case

We present our results on the hyperbolic scattering functionu(a1 ,a2 ,b;z) in a form that
anticipates our account of the elliptic case. First of all, we defineu by

u~z![
G~z2 ib1 i ~a11a2!/2!G~z1 ib2 i ~a11a2!/2!

G~z2 i ~a12a2!/2!G~z1 i ~a12a2!/2!
, ~4.1!

whereG(z)5G(a1 ,a2 ;z) is the hyperbolicG-function from Subsection III A. In~4.1! and in
many later formulas, the dependence ona1 anda2 is suppressed. This should cause no confus
sinceu—just likeG—satisfies

u~a1 ,a2 ;z!5u~a2 ,a1 ;z!, ~4.2!

cf. ~3.23!. Similarly, the automorphy properties~3.22! and ~3.24! yield

u~2z!51/u~z!, ~4.3!

u~la1 ,la2 ,lb;lz!5u~a1 ,a2 ,b;z!, lP~0,̀ !. ~4.4!

By virtue of Prop. III.5 theu-function is meromorphic ina1 ,a2 ,b and z, provided the
quotient a1 /a2 stays away from the negative real axis. As a rule, however, we restrict
considerations to parameters in the set

H[$~a1 ,a2 ,b!ua1 ,a2.0,bPR%. ~4.5!

This choice corresponds to physical applications; in particular, it guaranteesuu(x)u51 for real
x.

Next, we observe that the ADEs ~3.4! entail thatu solves the ADEs

u~z1 iad/2!

u~z2 iad/2!
5
s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2!
, ~4.6!

where we have introduced

sd~z![
sh~pz/ad!

p/ad
, d51,2. ~4.7!

~This definition mimicks the elliptic definition~3.98!, cf. ~2.92!.! Fixing d P $1,2%, the ADE
~4.6! is regular unless the parameters (a1 ,a2 ,b) belong to the planes
J. Math. Phys., Vol. 38, No. 2, February 1997
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ad52na2d , nPN* , ~4.8!

or

b5ka2d1ad/2, kPZ. ~4.9!

These planes separate the regionH ~4.5! into infinitely many connected components, one
which reads

Rd[$~a1 ,a2 ,b!PHuadP~0,2a2d!,bP~ad/2,a2d1ad/2!. ~4.10!

Choosing parameters inRd , theu-function may now be characterized as the unique minim
solution to the ADE ~4.6! that satisfies

u~0!51, uu~x!u51, xPR. ~4.11!

Indeed, the pole/zero properties of theG-function ~cf. Prop. III.3! entail thatu ~4.1! is a regular
solution to~4.6! if and only if (a1 ,a2 ,b) P Rd . Moreover, for all (a1 ,a2 ,b) P H one has

u~z!5expS 6
ip

a1a2
~b2a1!~b2a2! D1O~exp~6~e22p/am!z!!, Rez→6`, ~4.12!

uniformly for Im z in R-compacts, cf. Prop. III.4. Therefore,u is indeed a minimal solution to
~4.6! for parameters inRd ~4.10!. From Theorem II.1 and~4.11! one now easily deduces th
above uniqueness assertion.

It should be remarked at this point that the ADE ~4.6! does admit minimal solutions wheneve
the parameters do not belong to the planes~4.8! and ~4.9!. Indeed, this readily follows from
Section II. More concretely, a minimal solution can be constructed by multiplyingu(z) by finitely
many factors of the formsd(z2p)/sd(z1p) that cancel the poles and zeros ofu(z) in the strip
uImzu,ad/2. ~Observe thatu(z) has no poles and zeros foruImzu5ad/2 unless~4.8! or ~4.9! holds
true.!

Since the rhs of ~4.6! is a2d-periodic in b, the quotient u(b1a2d ;z)/u(b;z) is
iad-periodic inz. Specifically, one obtains from~4.1! and ~3.4!

u~b1a2d ;z!

u~b;z!
52

sd~z1 ib !

sd~z2 ib !
. ~4.13!

Therefore, iteration yields~takingk1 ,k2 P Z)

u~b1k1a11k2a2 ;z!

u~b;z!
5 )

d51,2
)
j d51

ukdu
s2d~z1 i ~kd /ukdu! ~b2ad/2!1 iad~ j d2 1/2!!

~z→2z!
.

~4.14!

Next, we introduce the parameter subset

D[$~a1 ,a2 ,b!PHub5k1a11k2a2 ,k1 ,k2PZ% ~4.15!

ofH ~4.5!. Since the numbersk1a11k2a2 ,k1 ,k2 P Z, are dense inR whenevera1 /a2¹Q,
the subsetD is dense inH. Now from ~4.1! we read off

u~a1 ,a2 ,a1 ;z!5u~a1 ,a2 ,a2 ;z!51 ~4.16!

and also, using~3.4!,
J. Math. Phys., Vol. 38, No. 2, February 1997
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u~a1 ,a2,0;z!521. ~4.17!

Hence,~4.14! yields

u~a1 ,a2 ,k1a11k2a2 ;z!5ck1 ,k2 )
d51,2

)
j d51

ukdu
s2d~z1 iad~ j d2u~kd!!!

~ i→2 i !
~4.18!

with

u~ j ![H 0, j,0,

1, j.0,
~4.19!

and

ck,l[~2 !k1 l11, k,lPZ. ~4.20!

In words, theu-function is an elementary function for parameters in the dense subsetD ofH. ~Of
course, whenevera2 /a1 is a rational number, there exist infinitely many distinct pairs (k,l )
P Z2 for which the numberka11 la2 is the same; this yields different representations for
same function.!

We continue by noting the symmetry property

u~b;z!5u~a11a22b;z!, ~4.21!

which can be read off from~4.1!. Combining this with~4.14! ~taking k1 ,k251), we deduce

u~2b;z!

u~b;z!
5
s1~z1 ib !

s1~z2 ib !

s2~z1 ib !

s2~z2 ib !
. ~4.22!

Since this parameter transformation leavesD ~4.15! invariant, it does not give rise to additiona
elementary representations foru.

Next, we derive analogs of the multiplication formula~3.25!. First, we use~4.1! to get

uS a1

M
,a2 ,b;zD5)

j51

M
G~z2 ib1 i ~a1/2! 1 i ~a2/2! 1 i ~a1 /M ! ~12 j !!

G~z2 i ~a1/2! 1 i ~a2/2! 1 i ~a1 /M ! ~M2 j !!

3
G~z1 ib2 i ~a1/2! 2 i ~a2/2! 1 i ~a1 /M ! ~M2 j !!

G~z1 i ~a1/2! 2 i ~a2/2! 1 i ~a1 /M ! ~12 j !!
. ~4.23!

with G(z)5G(a1 ,a2 ;z). Rearranging and using~4.1! once more, we deduce

uS a1

M
,a2 ,b;zD5u~a1 ,a2 ,b;z! )

k51

M21

uS a1 ,a2 ,b;z1 ik
a1

M D
3
G~z1 ik ~a1 /M ! 2 ib1 i ~a2/2! 2 i ~a1/2!!

G~z1 ik ~a1 /M ! 2 ib1 i ~a2/2! 1 i ~a1/2!!

3
G~z1 ik ~a1 /M ! 2 i ~a2/2! 1 i ~a1/2!!

G~z1 ik ~a1 /M ! 2 i ~a2/2! 2 i ~a1/2!!
. ~4.24!

This can be simplified by using the ADE ~3.4!, which yields
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uS a1

M
,a2 ,b;zD5~2 !M21 )

k50

M21

uS a1 ,a2 ,b;z1 ik
a1

M D )
j51

M21
s2~z1 i ja1 /M !

s2~z2 ib1 i ja1 /M !
. ~4.25!

Equivalently, we may also rearrange~4.23! to get

uS a1

M
,a2 ,b;zD5~2 !M21 )

k50

M21

uS a1 ,a2 ,b;z2 ik
a1

M D )
j51

M21
s2~z1 ib2 i ja1 /M !

s2~z2 i ja1 /M !
. ~4.26!

Substitutinga2→a2 /N in the formulas~4.25! and ~4.26!, and using first~4.2! and then one of
these formulas again, one obtains four representations foru(a1 /M ,a2 /N,b;z) in terms of
u(a1 ,a2 ,b;z) and sh-quotients.

The choicesb5a1/2 or b5a2/2 yield the sine-Gordon soliton–solitonS-matrix. Taking
b5a1/2, it follows from ~4.18! that there exists a dense set ofa2-choices yielding an elementar
u. Specifically, choosinga25a1(112 j )/2l with j P N,l P N* , we haveb5a1/25 la22 ja1 .
Thus, setting

a j l[
p

2l
~112 j !, jPN, lPN* , ~4.27!

we deduce from~4.18!

u~p,a j l ,p/2;z!5 )
m51

j shpa j l
21~z1 imp!

~z→2z! )
k51

l21
sh~z1 ika j l !

~z→2z!
~sG!. ~4.28!

We proceed by obtaining and studying integral representations. In view of~3.1! and~3.3!, we
may rewriteu ~4.1! as

u~z!5exp~E~z!! ~4.29!

with

E~z![2i E
0

`dy

y

sh~a12b!ysh~a22b!y

sha1ysha2y
sin2yz. ~4.30!

Clearly, the integral converges absolutely provided

uImzu,d~a1 ,a2 ,b!/2, ~4.31!

where

d~a1 ,a2 ,b![a11a22ua12bu2ua22bu. ~4.32!

In particular, one has

d~a1 ,a2 ,b!.ad⇔~a1 ,a2 ,b!PRd , ~4.33!

cf. ~4.10!. This bound amounts to the regularity ofu(z) in Rd , viewed as a solution to~4.6!: u
has no poles and zeros in the stripuImzu<ad/2 when (a1 ,a2 ,b) P Rd .

More generally, setting

C[$~a1 ,a2 ,b!PHubP~0,a11a2!%, ~4.34!
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the representation~4.29! makes sense and holds true in a strip around the realz-axis if and only if
the parameters belong toC . Indeed, one easily verifies

d~a1 ,a2 ,b!.0⇔~a1 ,a2 ,b!PC . ~4.35!

Observe thatR1øR2 is a proper subset ofC .
Letting uImzu,ad/2 and choosing parameters inRd , we can derive a second integral repr

sentation from Theorems II.3 and II.2, as applied to the ADE ~4.6!. From~4.29! and~4.30! we read
off that the minimum integerk in Theorem II.3 equals 1. Setting

fd~z![ lnS s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2! D ~4.36!

with ln real for z real, we now deduce

E~z!5
1

2iad
E

2`

`

dxfd~x!th
p

ad
~z2x!, ~a1 ,a2 ,b!PRd , uImzu,ad/2. ~4.37!

~Indeed, both lhs and rhs vanish forz50, and equality of derivatives is easily derived via~2.27!
with a→ad andf(u)→fd8(u).! Notice that the integral on the rhs converges absolutely for
z and any (a1 ,a2 ,b) P H; even so,~4.37! is in general false for parameters not belonging
Rd . Note also that for parameters inR1ùR2 one gets two different representations witho
manifesta1↔a2 symmetry.

Using the identity~A42! we can rewrite~4.37! as

E~z!5
sh~2pz/ad!

iad
E
0

` fd~x!dx

ch~2pz/ad!1ch~2px/ad!
, ~a1 ,a2 ,b!PRd , uImzu,ad/2.

~4.38!

Combining this with ~A43!, ~A44! and the Plancherel relation for the cosine transform,
recovers the symmetric representation~4.30!.

We proceed by deriving yet another asymmetric representation for theu-function, in terms of
an infinite product of gamma functions.~Somewhat surprisingly, this representation is not an e
consequence of~3.63!, ~3.64! and ~3.67!.! First, we introduce

g l~r,g,s![G~s111 l /r!G~2s1g1 l /r!G~s1 l /r!G~2s112g1 l /r!/~s→2s!,
~4.39!

wherel P N,r P C2,g,s P C. Fixing l ,g,s and takingr.0 and small enough, we may invok
~A45! to deduce

g l~r,g,s!5expS 4E
0

`dy

y

sh~g21!ysh2syshgy

shy
e22ly /rD . ~4.40!

This representation is well defined and valid for

lRe~r21!.uRegu1uResu. ~4.41!

By virtue of ~B18! it can be rewritten

g l~r,g,s!5expS 4E
0

`

e22l t /r f 3~g21,2s,g,t !dtD . ~4.42!
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Next, we assert that the function

P~r,g,s![ lim
N→`

)
l51

N

g l~r,g,s! ~4.43!

is well defined and meromorphic inC23C2. To prove this, we fix a compactK,C23C2 and put
w[2l /r. Letting (r,g,s) vary overK, we can ensure~by taking l>L with L large enough! that
the bound~B21! applies for a suitablex P (0,p/2) andR ~depending onK). Thus we deduce tha
g l is analytic onK and satisfies

ug l~r,g,s!21u<CK / l
2, ;~r,g,s!PK, ; l>L. ~4.44!

Consequently, the function) l5L
N g l converges uniformly onK to an analytic function for

N→`, and the assertion easily follows.
We claim thatu can be written

u~a1 ,a2 ,b;z!5

GS iza2
11DGS 2

iz

a2
1

b

a2
D

~z→2z!
PS a2

a1
,
b

a2
,
iz

a2
D . ~4.45!

Since we already know thatu is meromorphic for (a2 /a1 ,b,z) P C23C2, we need only prove
this for z5x P R and parameters inC ~4.34!. To this end we show that the rhs is given b
exp(E(x)) ~with E(x) defined by~4.30!!: Using ~A45! and ~4.40! we have~with g[b/a2)

GS ixa2
11DGS 2

ix

a2
1gD

~x→2x! )
l51

N

g lS a2

a1
,g,

ix

a2
D

5expS 2i E
0

`dy

y

sh~12g!ysin~2xy/a2!

shy S e2gy22shgy(
l51

N

exp~22lya1 /a2!D D
5expS i E

0

`dy

y

sh~a22b!ysin~2xy!

sha2ysha1y
~e2by~ea1y2e2a1y!

1~e2by2eby!e2a1y~12e22a1Ny!!D . ~4.46!

A dominated convergence argument now shows that we may takeN→` under the integral sign
yielding the limit exp(E(x)), as claimed.

We conclude this subsection by deriving four distinct limits of theu-function, using param-
eters

a1[p,a2[bn,b[bng, b,n.0, gPR. ~4.47!

First, we assert that

lim
b↓0

u~p,bn,bng;bp!5

GS ipn 11DGS 2
ip

n
1gD

~p→2p!
~ II nr limit !, ~4.48!

where the limit is mero-uniform inp. To show this, we use~4.1!, ~3.22!, ~3.24! and~3.69! to write
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u~p,bn,bng;bp!5
H~r; p/n 2 ig1 i /2!H~r;2 p/n 2 i /2!

~p→2p!
, r[bn/p. ~4.49!

Then the assertion follows from~3.72!.
The formula~4.48! can be interpreted as the~nonrelativistic! II nr limit of the ~relativistic!

II rel S-matrix, cf. Ref. 1, Eq.~3.45!. It can also be derived from the product representation~4.45!.
Indeed, one has

lim
r↓0

P~r,g,s!51 ~4.50!

uniformly for g,s in a fixed compactB,C2. To verify this, note first thatg l(r,g,s) ~4.39! is
analytic inB for r.0 small enough, and given by~4.40!. From this representation it follows tha
g l(r,g,s) converges to 1 asr↓0, uniformly for (g,s) P B. Next, observe that forr<e ~with e
depending only onB) one may use~4.42! and the bound~B21! with w[2l /r to deduce

ug l~r,g,s!21u<CBr2/ l 2<CBe2/ l 2, ;~g,s!PB, ; lPN* . ~4.51!

Clearly, this bound suffices to dominate thel -dependence, so one infersP→1, uniformly onB.
The next limit amounts to taking the Irel limit of the dual IIrel S-matrix, cf. Ref. 1: We claim

lim
b↓0

u~p,bn,bng;nx!5exp~ ip~12g!!, xPR0 ~ Irel limit !, ~4.52!

where the limit is uniform on compacts ofR0 ~2.73!. Before proving this, let us note that th
restriction onx is essential: for Rex,0 one obtains the complex conjugate phase factor by vi
of ~4.3!. ~Forg¹Z, the poles and zeros ofu become dense on the imaginary axis asb↓0, cf. ~4.1!
and Prop. III.3.! Observe also that the phase amounts to a limit of the phase in~4.12!.

To prove~4.52!, we use the product representation~4.45! and several results from Appendi
B. First, we handle the prefactor

Qb~g,x![
G~ ix/b 11!G~2 ix/b 1g!

~x→2x!
. ~4.53!

It can be rewritten

Qb~g,x!5eip~12g!S G~w111!

G~w11g!
e~g21!lnw1D S G~w21g!

G~w211!
e~12g!lnw2D , w6[6

ix

b
. ~4.54!

Using ~B23! to rewrite the functions in brackets, and lettingx vary over a fixed compac
K,R0, we now exploit the bound~B20!. First, takingR511ugu and x5p/4 ~say!, one can
ensurew1 ,w2 P SR,x for all x P K by choosingb small enough. Then it follows from~B20! that

lim
b↓0

Qb~g,x!5exp~ ip~12g!! ~4.55!

uniformly for x P K. ~This may be viewed as the IInr→Inr S-matrix limit, cf. Ref. 1, Eq.~3.45!.!
It remains to prove

lim
r↓0

P~r,g,iy /r!51 ~4.56!

uniformly on compacts of$Rey.0%. To this end we first use~4.39! and ~B23! to write
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g l~r,g,iy /r!5exp~L2~~ iy1 l !/r,1,g!1L2~~2 iy1 l !/r,g,1!1L2~~ iy1 l !/r,0,12g!

1L2~~2 iy1 l !/r,12g,0!!. ~4.57!

Next, we lety vary over a compactK,R0, and use the bound~B20! in the same way as befor
to infer thatg l→1 for r↓0, uniformly onK.

As a consequence,~4.56! will follow provided we can supply a bound controlling the inte
change of limitsN→` andr↓0. Now the estimate~B20! is not sufficiently strong, since it only
leads to 1/l -decrease ofug l21u, and the sequence (1,1/2,1/3,. . . ) is not inl 1. But we can obtain
a suitable bound by combining the representation~4.42! with the estimates~B21! and ~B26!, as
follows.

We begin by observing that~4.42! and ~B15! entail

g l~r,g,iy /r!5exp~4L3~2l /r,g21,g,2iy /r!!. ~4.58!

Letting y vary overK and choosingr P (0,e# with e small enough, we may taker 35cK /r in the
bound~B21! onL3. Choosing nowx50,R5(cK11)/r andL.(cK11)/2, we deduce

UL3S 2lr ,g21,g,
2iy

r D2
iryg~g21!

l 2 U< r3

4l 2
C3 , rP~0,e#, l>L, yPK. ~4.59!

Next, we use the bound~B26! to majorize the rhs of~4.59! by Cr/ l 2. By dominated convergence
this suffices to conclude that the function) l5L

` g l converges to 1 asr↓0, uniformly onK. Since
we have already shown thatg l→1 uniformly on K for all l>1, we may now deduce~4.56!.
~Notice that~4.58! and~B21! are not adequate for showingg l→1 for smalll ; this is why we used
~4.57! and ~B19!.!

Alternatively, ~4.52! can be derived as a corollary of Prop. III.7. Indeed, from~4.1! we have

u~p,a,ag;z!5
G~p,a;z1 ip/21 ia~1/22g!!

G~p,a;z1 ip/22 ia/2!
•

G~p,a;z2 ip/21 ia~g21/2!!

G~p,a;z2 ip/21 ia/2!
. ~4.60!

Thus, we may use~3.91! with Rez.0 to deduce the limit~4.52!.
It is of interest to reconsider this limit in the setting of Theorem II.4. Choosing, e.gg

P (1/2,1), one can takef a(z) equal to]zlnu(p,a,ag;z); letting a→0, one getssm(a)→0 and
f a(z)→0 uniformly on compacts in the left and right half planes. Even so,f a(z) does not remain
bounded near the origin, sinceu(z) has distinct limits in the left and right half planes.

We continue by obtaining a third limit of theu-function, keeping the parameters~4.47!, but
now takingb fixed while lettingb↓0. Specifically, we claim

lim
b↓0

expS 2
2ip

n
lnS b

2sinbD Du~p,bn,b;bp!5

GS ipn 11D
~p→2p!

expS 2ipn ln~2n! D ,
bP~0,p! ~VInr limit !, ~4.61!

where the limit is mero-uniform. The function on the rhs may be viewed as the~nonrelativistic
Toda! VInr S-matrix, cf. Ref. 1, Eq.~3.45!. The limiting transition IIrel→VInr is readily controlled
at the level of the Poisson commuting classical Hamiltonians, cf. the paragraph containin
~3.87! in Ref. 2. Formally, it also holds true for the corresponding quantum Hamiltonians.
S-matrix limit ~4.61! agrees with the obvious conjecture that the limit holds true for the suit
normalized~reducedN52) eigenfunctions; the plane wave factor on the lhs reflects the diver
position shift~3.87! in Ref. 2.

To prove~4.61!, we begin by observing that
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lim
g↑`

expS 2ipn lngD GS 2
ip

n
1gD

~p→2p!
51 ~4.62!

uniformly on p-compacts.~This limit amounts to the IInr→VInr S-matrix limit, cf. Ref. 1, Eq.
~3.45!, and the paragraph containing Eq.~2.116! in Ref. 2.! Indeed, this follows from~B23! and
~B20! ~takingw5g) in a by now familiar way. As a result,~4.61! will follow once we show

lim
r↓0

P~r,b/pr,s!5expS 2slnS b

sinbD D , bP~0,p!, ~4.63!

uniformly on s-compacts.
To prove~4.63!, we write

g l~r,b/pr,s!5exp~L2~ l /r,s11,2s11!!exp~L2~ l /r,s,2s!!

3exp~L2~~ lp1b!/pr,2s,s!!

3exp~L2~~ lp2b!/pr,2s11,s11!!exp~22sln~12b2/ l 2p2!!. ~4.64!

Sinceb P (0,p), we havelp6b.0, and so we conclude using~B20!

lim
r↓0

g l~r,b/pr,s!5exp~22sln~12b2/ l 2p2!! ~4.65!

uniformly on s-compacts. Now from~A23!–~A25! @with a50, cf. ~A28!# one derives the well-
known identity

sinb

b
5)

l51

` S 12
b2

l 2p2D . ~4.66!

Using this on the rhs of~4.63! and comparing with~4.65!, we infer that we need only supply
bound that is sufficiently strong to render the interchange of limits legitimate.

The bound~B20! leads to anO( l21)-majorization, so it is not strong enough. Just as in
previous case, we will now derive onO( l22) estimate~for l sufficiently large! by combining
~B21! and ~B26!. To this purpose we observe that we may write

g l~r,b/pr,s!5exp~4L3~2l /r,211b/pr,2s,b/pr!!, ~4.67!

cf. ~4.42! and ~B15!. For s in a compactB,C andr P (0,e# with e small enough, we can tak
r 35cB /r in ~B21!. Choosing thenx50,R5(cB11)/r andL.(cB11)/2, we obtain

UL3S 2lr ,211
b

pr
,2s,

b

pr D2
sb~b2pr!

2l 2p2 U< r3

4l 2
C3 , rP~0,e#, l>L, sPB. ~4.68!

Using now~B26!, we obtain an upper boundC/ l 2 on the rhs. As before, this suffices to conclu
that ~4.63! holds true. The upshot is that the proof of~4.61! is now complete.

As a corollary of~4.61!, we can obtain the integral

G~11 iz!

G~12 iz!
5expS sh2pz2i E

0

` dt

ch2pz1chpt
lnS 4

t211D D , uImzu,
1

2
. ~4.69!
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Indeed, combining the integral

sh2pzE
0

` dt

ch2pz1chpt
52z, uImzu,

1

2
~4.70!

~which results from~A43!, e.g.!, with ~4.29!, ~4.38! and ~4.36!, we obtain

expS 22izlnS b

sinbD D u~p,b,b;bz!

5expS sh2pz2i E
0

` dt

ch2pz1chpt
lnS sh2bt/21sin2~b2b/2!

sh2bt/21sin2b/2
•

b2

sin2bD D , ~4.71!

whereb P (0,b/2),b P (0,p), uImzu,1/2. A straightforward dominated convergence argum
now shows that the rhs of~4.71! converges to the rhs of~4.69! for b↓0. From~4.61! we see that
the lhs converges to the lhs of~4.69!, so ~4.69! results.

Finally, we obtain a limit that may be viewed as the classical limit of the quantumrel
S-matrix. To this end we introduce

L\~p![ i\ lnu~p,\/l,b;p!, ~l,b,p!P~0,̀ !3~0,p!3R0 , ~4.72!

with lnu→0 for p→0, \.0 denoting Planck’s constant. We now claim that

lim
\→0

]pL\~p!5l lnS sh~p1 ib !sh~p2 ib !

sh2p D ~classical limit! ~4.73!

uniformly on compact subsets of the right half planeR0, with ln real valued forp.0. ~The rhs
amounts to the classical IIrel phase shift, cf. Ref. 1, Eq.~2.75! with b51.!

To prove this claim, we substituteag→b in ~4.60! and use~3.83! and ~3.84! to write

ia lnu~p,a,b;z!52Da~z1 ip/22 ib !2Da~z2 ip/21 ib !1Da~z1 ip/2!1Da~z2 ip/2!

2ada~1/2,0;z1 ip/22 ib !2ada~21/2,0;z2 ip/21 ib !

1ada~21/2,0;z1 ip/2!1ada~1/2,0;z2 ip/2!. ~4.74!

Taking a→0, the limit of ~4.74! exists uniformly on compacts inR0 by virtue of ~3.85! and
~3.86!. Takingz-derivatives, one readily obtains a limit that amounts to~4.73!.

B. The elliptic case

The elliptic scattering function is defined in terms of the ellipticG-function from Subsection
III B via ~4.1!. In view of Prop. III.11, this yields a function that is meromorphic inr ,a1 ,a2 ,b
and z, as long asa1r anda2r stay in the right half plane. We shall from now on restrict t
parameters to

E[$~r ,a1 ,a2 ,b!ur.0,~a1 ,a2 ,b!PH%, ~4.75!

cf. ~4.5!. By virtue of Prop. III.9 the ellipticu-function is periodic inz with primitive period
p/r ; moreover, it satisfies~4.2!, ~4.3!, and

u~2r ,a1 ,a2 ,b;z!5u~r ,a1 ,a2 ,b;z!u~r ,a1 ,a2 ,b;z2p/2r !, ~4.76!

u~l21r ,la1 ,la2 ,lb;lz!5u~r ,a1 ,a2 ,b;z!, lP~0,̀ !. ~4.77!
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Recalling~3.96!–~3.100!, and using also~2.91!, we see thatu solves the ADEs

u~z1 iad/2!

u~z2 iad/2!
5exp~2r ~ad2b!!

s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2!
. ~4.78!

It now follows just as in the hyperbolic case thatu is a regular solution to~4.78! if and only if
(a1 ,a2 ,b) P Rd . Sinceu is p/r -periodic inz, the latter restriction also ensures thatu is the
unique minimal solution satisfying~4.11!. Furthermore, with~4.6! replaced by~4.78!, the remark
below ~4.12! applies verbatim to the elliptic case.

Using ~3.100! and ~2.91! we now obtain the analog of~4.13!:

u~b1a2d ;z!

u~b;z!
52e2irz

sd~z1 ib !

sd~z2 ib !
. ~4.79!

To simplify the iterations of these ADEs, we use the formula

s~r ,a;z11 ina!

s~r ,a;z22 ina!
5e22irn ~z11z2!

s~r ,a;z1!

s~r ,a;z2!
, nPN, ~4.80!

which follows from ~2.91!. Then we obtain once more the relation~4.14!, but now with an extra
factor exp(2irz(k11k222k1k2)) on the rhs. Noting the elliptic analog

u~r ,a1 ,a2 ,a1 ;z!5u~r ,a1 ,a2 ,a2 ;z!51 ~4.81!

of ~4.16!, we deduce the elliptic analog

u~r ,a1 ,a2,0;z!52e22irz ~4.82!

of ~4.17! and, more generally, the explicit formula~4.18!, with ~4.20! replaced by

ck,l[~2 !k1 l11exp~2irz~k1 l22kl21!!, k,lPZ ~4.83!

It is clear that the symmetry property~4.21! continues to hold in the elliptic case. Moreove
it leads again to the relation~4.22! betweenu(2b;z) andu(b;z). Next, we note that~4.23! still
holds true, since the ellipticG-function satisfies the multiplication formula~3.25!. Hence,~4.24!
follows as before. Using the ADEs ~3.100! and~2.91! we then obtain as the analogs of~4.25! and
~4.26!

uS r , a1

M
,a2 ,b;zD5~2 !M21exp~ ir ~M21!~2Mz1 ia12 ib !!

• )
k50

M21

uS r ,a1 ,a2 ,b;z1 ik
a1

M D )
j51

M21
s2~z1 i ja1 /M !

s2~z2 ib1 i ja1 /M !
~4.84!

and

uS r , a1

M
,a2 ,b;zD5~2 !M21exp~ ir ~M21!~2Mz2 ia11 ib !!

• )
k50

M21

uS r ,a1 ,a2 ,b;z2 ik
a1

M D )
j51

M21
s2~z1 ib2 i ja1 /M !

s2~z2 i ja1 /M !
. ~4.85!
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Once more,a1↔a2 symmetry can now be used to obtain four distinct representations
u(r ,a1 /M ,a2 /N,b;z) in terms ofu(r ,a1 ,a2 ,b;z) ands-quotients.

The choicesb5a1/2 or b5a2/2 yield the XYZ soliton-solitonS-matrix. Thus it follows
from ~4.18! and ~4.83! that the counterpart of~4.28! reads

u~r ,p,a j l ,p/2;z!5exp~2irz~ l2 j12l j21!!

• )
m51

j
s~r ,a j l ;z1 imp!

~z→2z! )
k51

l21
s~r ,p;z1 ika j l !

~z→2z!
~XYZ !. ~4.86!

Next, we use~4.1!, ~3.92! and ~3.3! to obtain

u~z!5exp~E~z!!5expS 2i(
n51

`
sh~a12b!nrsh~a22b!nr

nsha1nrsha2nr
sin2nrzD . ~4.87!

The series converges absolutely if and only if~4.31! holds true. As before, regularity ofu(z) for
parameters inRd can be read off from~4.33!. Furthermore, the series representation~4.87! is
valid for realz iff the parameters belong to the convergence region~4.34!.

Choosing (a1 ,a2 ,b) P Rd and introducing

fd~z![ lnS s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2! D12r ~ad2b! ~4.88!

with ln real for z real, we can combine~4.78! and ~4.87! to deduce thatfd(z) satisfies the
assumptions~2.100!–~2.102! of Theorem II.5. Therefore,~2.107! yields

E~z!5
1

2ipE2p/2r

p/2r

dyfd~y!K~r ,ad ;z2y!, ~a1 ,a2 ,b!PRd , uImzu,
ad

2
. ~4.89!

This representation amounts to the elliptic counterpart of~4.37!. Once more, the restriction on th
parameters is essential~though boundary points ofRd belonging toH ~4.5! can be allowed, of
course!.

The product representation~3.117! for the ellipticG-function can be combined with~4.1! to
yield

u~r ,a1 ,a2 ,b;z!5 )
m,n51

`
~122q1

2m21q2
2n21e22irzch~b2~a11a2!/2!1q1

4m22q2
4n22e24irz!

~z→2z!

•

~122q1
2m21q2

2n21e2irzch~a12a2!/21q1
4m22q2

4n22e4irz!

~z→2z!
, qd[e2adr .

~4.90!

From this product representation one can read off meromorphy and pole/zero proper
u(z). Notice that it is manifestly symmetric ina1 ,a2 , in contradistinction to the product repre
sentation~4.45! for the hyperbolicu-function.

We proceed by deriving four limits of theu-function. First, we observe that

lim
r↓0

u~r ,a1 ,a2 ,b;z!5uhyp~a1 ,a2 ,b;z! ~ II rel limit !, ~4.91!
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where the limit is mero-uniform.~Here, uhyp denotes theu-function from Subsection IV A.!
Indeed, in the definition~4.1! of the ellipticu-function we may replace the ellipticG-functions by
Gren-functions, cf.~3.123!. Then~4.91! is a consequence of Prop. III.12.

Second, we assert that the limit

lim
A↑`

u~r ,a,A,b;z!5utrig~r ,a,b;z! ~ ÎII rel limit ! ~4.92!

exists mero-uniformly.~Here,utrig denotes theu-function studied in the next subsection.! To prove
this, we use~4.1! and ~3.22! to write

u~r ,a,A,b;z!5
G~r ,a,A;z1 ib2 ia/22 iA/2!G~r ,a,A;2z1 ia/22 iA/2!

G~r ,a,A;2z1 ib2 ia/22 iA/2!G~r ,a,A;z1 ia/22 iA/2!
. ~4.93!

Invoking now ~3.139!, we obtain the mero-uniform limit

lim
A↑`

u~r ,a,A,b;z!5
G~r ,a;z1 ib2 ia/2!G~r ,a;2z1 ia/2!

G~r ,a;2z1 ib2 ia/2!G~r ,a;z1 ia/2!
, ~4.94!

which amounts to~4.92!, cf. ~4.100! below.
Third, fixingg P R, we claim that

lim
a↓0

u~r ,A,a,ag;z!5exp~~12g!~ ip22irz !!, zPRr ~ ÎVnr limit !, ~4.95!

uniformly on compacts in the period stripRr ~2.113!. Indeed, from~4.93! and~3.138! we obtain

lim
a↓0

u~r ,A,a,ag;z!5exp~~12g!ln~R~r ,A;2z2 iA/2!/R~r ,A;z2 iA/2!! ~4.96!

uniformly on compacts ofRr . Now the limit ~4.95! easily results from~3.93!.
We continue by examining this result in the setting of Subsection II C. Takingg P @1,2# and

a P (0,A/4#, it entails that Theorem II.7 applies tof a(z)[ lnu(r,A,a,ag;z). In this casef a8(z) con-
verges to the constant 2ir (g21), uniformly on compactsK,Rr , but f a8(z) diverges near
z50 as a→0. Indeed, thep/r -periodic function f a(x),x P R, converges pointwise to a
p/r -periodic functionf (x) that has unequal limits forx↓0 andx↑p/r ~unlessg51, of course!.
Notice in this connection that it does not follow from the above thatf a(z) remains bounded in the
strip uImzu<a/2 asa→0; we do not know whether this holds true.

We conclude this subsection by deriving the generalization of the classical limit~4.73!. Thus
we define

L\~z![ i\ lnu~r ,A,\/l,b;z!, ~r ,l,b,z!P~0,̀ !23~0,A!3Rr , ~4.97!

with lnu→0 for z→0 and\.0 Planck’s constant. Then we have

lim
\→0

]zL\~z!5l lnS e22rb
s~r ,A;z1 ib !s~r ,A;z2 ib !

s~r ,A;z!2 D ~classical limit! ~4.98!

uniformly on an arbitrary compactK,Rr , with ln real forz P (0,p/r ).
To prove this assertion, we exploit the obvious generalization of~4.74! and Prop. III.13 to

infer
J. Math. Phys., Vol. 38, No. 2, February 1997
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lim
a↓0

ia]zlnu~r ,A,a,b;z!5 lnSR~r ,A;z1 iA/22 ib !R~r ,A;z2 iA/21 ib !

R~r ,A;z1 iA/2!R~r ,A;z2 iA/2! D ~4.99!

uniformly onK. Using ~3.93! and~2.91!, we see that this limit amounts to~4.98!. Notice that the
limit can be understood from Theorem II.7 and~4.78!, with alnu(z) playing the role off a(z).

C. The trigonometric case

The trigonometric scattering function is defined by

u~r ,a,b;z![
G~z1 ib2 ia/2!G~2z1 ia/2!

G~2z1 ib2 ia/2!G~z1 ia/2!
~4.100!

with G(z)[G(r ,a;z) denoting the trigonometricG-function ~3.140!. From the corresponding
product representation

u~r ,a,b;z!5 )
m51

`
~12q2m22e22rb22irz!~12q2me2irz!

~12q2m22e22rb12irz!~12q2me22irz!
, q[e2ar, ~4.101!

we read off thatu admits analytic continuation to a function that is meromorphic inr ,a,b and
z, providedar stays in the right half plane. However, in the sequel we restrict the paramete

T [$~r ,a,b!ur.0,a.0,bPR%. ~4.102!

As before, this restriction entailsuu(z)u51 for realz.
Obviously,u is periodic inz with primitive periodp/r ; it also satisfies~4.3! and the relations

u~2r ,a,b;z!5u~r ,a,b;z!u~r ,a,b;z2p/2r !, ~4.103!

u~l21r ,la,lb;lz!5u~r ,a,b;z!, lP~0,̀ !. ~4.104!

From ~2.90! and ~4.78! @or directly from ~4.100! and ~3.142!# we deduce thatu satisfies the
ADE

u~z1 ia/2!

u~z2 ia/2!
5exp~2r ~a2b!!

sinr ~z2 ib1 ia/2!sinr ~z1 ib2 ia/2!

sinr ~z1 ia/2!sinr ~z2 ia/2!
. ~4.105!

Clearly, this ADE is regular unlessb5a/2. Now from the product representation~4.101! we see
that u(r ,a,b;z) may be viewed as the unique minimal solution to~4.105! that obeys~4.11!,
provided the parameters belong to the regularity region

R[$~r ,a,b!PT ubP~a/2,`!%. ~4.106!

Next, we use~4.101! to conclude

u~b1a;z!

u~b;z!
52e2irz

sinr ~z1 ib !

sinr ~z2 ib !
. ~4.107!

~Alternatively, this follows from~4.79! by taking a limit.! By iteration this gives rise to~taking
kPZ)

u~b1ka;z!

u~b;z!
5e2irkz)

j51

uku
sinr ~z1 i ~k/uku! ~b2 a/2!1 ia~ j2 1/2!!

~z→2z!
. ~4.108!
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Now from the product representation~4.101! we read off

u~r ,a,a;z!51, ~4.109!

u~r ,a,0;z!52e22irz, ~4.110!

and so~4.108! entails

u~r ,a,ka;z!5~2 !k11e2ir ~k21!z)
j51

uku
sinr ~z1 ia~ j2u~k!!

~ i→2 i !
, kPZ, ~4.111!

with u(k) defined by~4.19!.
The trigonometric specializations of the relations~4.84! and ~4.85! read

uS r , aM ,b;zD5~2 !M21exp~ ir ~M21!~2Mz1 ia2 ib !!

• )
k50

M21

uS r ,a,b;z1 ik
a

M D )
j51

M21
sinr ~z1 i ja /M !

sinr ~z2 ib1 i ja /M !
~4.112!

and

uS r , aM ,b;zD5~2 !M21exp~ ir ~M21!~2Mz2 ia1 ib !!

• )
k50

M21

uS r ,a,b;z2 ik
a

M D )
j51

M21
sinr ~z1 ib2 i ja /M !

sinr ~z2 i ja /M !
. ~4.113!

Of course, these formulas can also be verified directly from~4.100! and the multiplication formula
~3.145!.

We proceed by obtaining series and integral representations for the~logarithm of the!
u-function. From~4.100! and ~3.141! we obtain~formally at first!

u~z!5exp~E~z!!5expS 2i(
n51

`
e2bnrsh~a2b!nr

nshanr
sin2nrzD . ~4.114!

~Alternatively, this can be deduced from~4.87! and ~4.92!.! The series converges absolute
provided

uImzu,d~a,b!/2, ~4.115!

with

d~a,b![a1b2ua2bu. ~4.116!

Thus one has

d~a,b!.a⇔b.a/2 ~4.117!

in agreement with the fact thatu is a minimal solution to the ADE ~4.105! for parameters inR
~4.106!. More generally, the series representation~4.114! makes sense and holds true in a st
around the realz-axis iff the parameterb is positive.

Next, we take (r ,a,b) P R and set
J. Math. Phys., Vol. 38, No. 2, February 1997
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f~z![ lnS sinr ~z2 ib1 ia/2!sinr ~z1 ib2 ia/2!

sinr ~z1 ia/2!sinr ~z2 ia/2! D12r ~a2b! ~4.118!

with ln real-valued forz P R. Obviously,f satisfies the assumptions~2.100! and ~2.101! of
Theorem II.5, and comparing~4.105! and ~4.114! it follows that f satisfies~2.102!, too. Thus,
~2.107! applies, yielding the integral representation

E~z!5
1

2ipE2p/2r

p/2r

dyf~y!K~r ,a;z2y!, ~r ,a,b!PR, uImzu,
a

2
. ~4.119!

By continuity, the representation still holds forb5a/2, but it is false in general forb,a/2.
To conclude this subsection, we obtain three limits of the trigonometric scattering func

First, we use~3.155! to write

u~r ,1,b;z!5
T~r ;z2 ib1 i /2!T~r ;2z2 i /2!

T~r ;2z2 ib1 i /2!T~r ;z2 i /2!
exp~2ir ~b21!z!. ~4.120!

Then it follows from Prop. III.20 that we have

lim
r↓0

u~r ,1,g;z!5
G~2 iz1g!G~ iz11!

~z→2z!
~ II nr limit ! ~4.121!

mero-uniformly inz. ~Compare this to~4.48!.!
Second, we observe that

lim
a↓0

u~r ,a,ag;z!5exp~~12g!~ ip22irz !!, zPRr ~ ÎII nr limit !, ~4.122!

uniformly on compact subsets of the period stripRr ~2.113!. Indeed, this readily follows from
~3.180!, cf. also~4.95! and ~4.96!. The remark below~4.96! applies to the case at hand as wel

Third, we introduce

L\~z![ i\ lnu~r ,\/l,b;z!, ~r ,l,b,z!P~0,̀ !33Rr , ~4.123!

with lnu→0 for z→0 and\.0 Planck’s constant. Then we claim that

lim
\→0

]zL\~z!5l lnS e22rb
sinr ~z1 ib !sinr ~z2 ib !

sin2rz D ~classical limit! ~4.124!

uniformly on compacts ofRr , with ln real-valued forz P (0,p/r ). To prove this claim, we use
~4.100! and ~3.176!, ~3.177! to write

ia lnu~r ,a,b;z!52Da~z1 ib !1Da~2z1 ib !2Da~2z!1Da~z!2ada~r ,21/2,0;z1 ib !

1ada~r ,21/2,0;2z1 ib !2ada~r ,1/2,0;2z!1ada~r ,1/2,0;z!, ~4.125!

where we takez P Rr . Invoking now Prop. III.21, the limit~4.124! readily follows.
Comparing the rhs of~4.124! to the classical phase shift obtained in Ref. 17, p. 336, we

agreement when we takel→b21,r→umu/2,b→ubgu, save for a constant shif
22lrb→2umgu. The latter shift can be understood from the fact that the distance betwee
classical actions of the IIIrel system is bounded below byumgu ~cf. Ref. 17, p. 256!; by contrast, the
minimal distance between successive indicesni ,ni11 of the multivariable polynomials occurring
at the quantum level equals 0.~See also Ref. 2, Subsection 6.2.!
J. Math. Phys., Vol. 38, No. 2, February 1997
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V. WEIGHT FUNCTIONS

A. The hyperbolic case

Our study of the hyperbolic weight functionw(a1 ,a2 ,b;z) runs largely parallel to our study
of theu-function in Subsection IV A. Thew-function is defined by

w~z![
G~z1 ib2 i ~a11a2!/2!G~z1 i ~a11a2!/2!

G~z2 ib1 i ~a11a2!/2!G~z2 i ~a11a2!/2!
, ~5.1!

so it satisfies

w~a1 ,a2 ;z!5w~a2 ,a1 ;z! ~5.2!

just asG(z) andu(z), cf. ~4.1! and ~4.2!. The analogs of~4.3! and ~4.4! are

w~2z!5w~z!, ~5.3!

w~la1 ,la2 ,lb;lz!5w~a1 ,a2 ,b;z!, lP~0,̀ !. ~5.4!

For several purposes it is convenient to introduce a reduced weight function

wr~z![
G~z1 ib2 i ~a11a2!/2!

G~z2 ib1 i ~a11a2!/2!
. ~5.5!

Using the ADEs ~3.4!, one infers thatw andwr are related by

w~z!54sh~pz/a1!sh~pz/a2!wr~z!. ~5.6!

Obviously,wr also satisfies~5.2!–~5.4!.
Just as theu-function, the functionsw andwr are meromorphic ina1 ,a2 ,b andz, as long as

a2 /a1 stays away from (2`,0#, cf. Prop. III.5. In particular, bothu andwr are well defined for
b,z P C. Using~4.1! and~3.4!, one readily verifies that the latter functions are related by

u~ iz; ib !5wr~b;z!

4sh
p

a1
~z1 ib !sh

p

a2
~z1 ib !

G~ ib2 i ~a12a2!/2!G~ ib1 i ~a12a2!/2!
. ~5.7!

This relation can be used to translate various features ofwr in terms ofu and vice versa.
From now on we take (a1 ,a2 ,b) P H ~4.5!. We proceed by studyingw andwr with regard

to the ADEs they satisfy, namely

w~z1 iad/2!

w~z2 iad/2!
5
s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
•

s2d~z1 iad/2!

s2d~z2 iad/2!
~5.8!

and

wr~z1 iad/2!

wr~z2 iad/2!
52

s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
, ~5.9!

resp.~To check this, recall the definition~4.7! and the ADEs ~3.4!.!
Consider firstwr . The planes~4.9! separate the regionH ~4.5! into infinitely many strip-like

components, one of which reads

S d[$~a1 ,a2 ,b!PHubP~ad/2,a2d1ad/2!%. ~5.10!
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The pole/zero properties ofG(z) given by Prop. III.3 entail thatwr is free of zeros and poles in th
strip uImzu<ad/2 if and only if (a1 ,a2 ,b) P S d . Now from Prop. III.4 we deduce that for a
(a1 ,a2 ,b) P H one has

wr~z!5expS 6
pz

a1a2
~2b2a12a2! D ~11O~exp~6~e22p/am!z!!!, Rez→6`,

~5.11!

uniformly for Imz in R-compacts. Thus, choosing parameters inS d , one may characterizewr as
a minimal solution to the ADE ~5.9! that is even and positive forz P R; these properties determin
the solution up to a positive constant, cf. Theorem II.1. Next, we note that the rhs of~5.9! is
a2d-periodic inb, and identically equal to21 for parameters satisfying~4.9!. ~As such, the ADE
is regular for all (a1 ,a2 ,b) P H, by contrast to~4.6!.! But wr is neithera2d-periodic inb, nor
an exponential when~4.9! holds true. We shall presently obtain the correspondingiad-periodic
multiplier, after consideringw in relation to the ADE ~5.8! it obeys.

We begin by noting that thew-function has asymptotics

w~z!5expS 6
2pbz

a1a2
D ~11O~exp~6~e22p/am!z!!!, Rez→6`. ~5.12!

Thus, it is a minimal solution to~5.8! whenever it has no poles and zeros foruImzu<ad/2. In view
of ~5.6!, for this to happen it is necessary thatwr(z) have a double pole atz50. Fora1 ,a2 fixed,
this necessary condition is satisfied only for a discrete set ofb, sow is generically not a regula
solution—in contrast towr , which is regular for parameters inS d .

It should be pointed out, though, that both of the ADEs ~5.8! do admit minimal solutions for
all (a1 ,a2 ,b) P H. ~Indeed, this readily follows from Theorem II.3.! In particular, let us intro-
duce the asymmetric weight function

wd~a1 ,a2 ,b;z![
G~z1 ib2 i ~a11a2!/2!G~z1 i ~ad2a2d!/2!

G~z2 ib1 i ~a11a2!/2!G~z2 i ~ad2a2d!/2!
. ~5.13!

This function is related towr andw via

wd~z!5wr~z!
sh~pz/a2d!

sh~pz/ad!
5w~z!/4sh2~pz/ad! ~5.14!

on account of~3.5!, ~5.8! and~5.6!. Sincew solves~5.8!, so doeswd . Choosing the parameters i
Rd ~4.10!, wd is a minimal solution, as is easily verified. Multiplying and/or dividingwd by
finitely many factors of the formsd(z2c), one can construct explicit minimal solutions fo
arbitrary parameters.

We continue by obtaining analogs of the formulas~4.13!–~4.20!. First, we use the ADEs ~3.4!
to obtain

W~b1a2d ;z!

W~b;z!
54sh

p

ad
~z1 ib !sh

p

ad
~z2 ib !, W5w,wr ,w1 ,w2 . ~5.15!

Takingk1 ,k2 P Z, these ADEs can be iterated to yield
J. Math. Phys., Vol. 38, No. 2, February 1997
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W~b1k1a11k2a2 ;z!

W~b;z!

5 )
d51,2

)
j d51

ukdu S 4S sh p

a2d
S z1 i

kd

ukdu S b2
ad

2 D
1 iadS j d2

1

2D D D ~ i→2 i ! D kd /ukdu

. ~5.16!

Next, we note that~5.5! and ~3.4! entail

w~a1 ,a2,0;z!51, ~5.17!

w~a1 ,a2 ,ad/2;z!52th~pz/ad!sh~pz/a2d!, ~5.18!

w~a1 ,a2 ,~a11a2!/2;z!54sh~pz/a1!sh~pz/a2!. ~5.19!

Therefore, the weight functions are elementary functions for parameters in the dense subs

Dw[$~a1 ,a2 ,b!PHub5 l1a11 l2a2 ,l1 ,l2PZ/2% ~5.20!

of H ~4.5!. Specifically, one readily obtains from~5.16!–~5.19! ~using the notation~4.19! and
takingk1 ,k2 P Z)

w~a1 ,a2 ,k1a11k2a2 ;z!5 )
d51,2

)
j d51

ukdu S 4S sh p

a2d
~z1 iad~ j d2u~kd!!! D ~ i→2 i ! D kd /ukdu

,

~5.21!

w~a1 ,a2 ,ad/21k1a11k2a2 ;z!

52thS pz

ad
D shS pz

a2d
D )
j d51

ukdu S 4S sh p

a2d
S z1 iadS j d2

1

2D D D ~ i→2 i ! D kd /ukdu

• )
j2d51

uk2du S 4S chp

ad
~z1 ia2d~ j2d2u~k2d!!! D ~ i→2 i ! D k2d /uk2du

, ~5.22!

w~a1 ,a2 ,~a11a2!/21k1a11k2a2 ;z!

54shS pz

a1
D shS pz

a2
D )

d51,2
)
j d51

ukdu S 4S ch p

a2d
S z1 iadS j d2

1

2D D D ~ i→2 i ! D kd /ukdu

.

~5.23!

We proceed by noting that none of the weight functions has the reflection symmetry~4.21! of
the scattering function. Instead, one gets from~5.5! the relation

wr~a11a22b;z!51/wr~b;z!. ~5.24!

Combining this with~5.16!, one obtains

wr~2b;z!wr~b;z!5 )
d51,2

S 4shpad
~z1 ib !sh

p

ad
~z2 ib ! D 21

. ~5.25!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Using the multiplication formula~3.25!, one can work out analogs of the relations~4.23!–
~4.26! for the weight functions. We shall not do so, however. We do point out thatwr satisfies an
additional relation involving shifts ofb—as opposed to shifts ofz:

wr S a1

M
,
a2

N
,b;zD5 )

j50

M21

)
k50

N21

wr S a1 ,a2 ,b1
a1

M
j1

a2

N
k;zD . ~5.26!

~Indeed, this formula readily follows from~5.5! and ~3.25!.!
By contrast to the scattering function, the weight functions are elementary functions on

the sine-Gordon lines. In particular, from~5.6! and ~5.18! we have

w~p,a,p/2;z!52thzsh~pa21z! ~sG! ~5.27!

for all a.0. ~Compare this to~4.28!.!
Next, we obtain an integral representation forwr : From ~3.1!, ~3.3! and ~5.5! we have

wr~z!5exp~ I ~z!!, ~5.28!

where

I ~z![E
0

`dy

y S sh~a11a222b!y

sha1ysha2y
cos2yz2

a11a222b

a1a2y
D . ~5.29!

This integral converges absolutely provided

uImzu,e~a1 ,a2 ,b!/2, ~5.30!

where

e~a1 ,a2 ,b![a11a22u2b2a12a2u. ~5.31!

Thus we have in particular

e~a1 ,a2 ,b!.ad⇔~a1 ,a2 ,b!PS d , ~5.32!

which says once more thatwr is regular for parameters inS d .
More generally, the integral representation~5.28! sense and holds true in a strip around t

real z-axis iff the parameters belong toC ~4.34!. Indeed, one clearly has

e~a1 ,a2 ,b!.0⇔~a1 ,a2 ,b!PC . ~5.33!

Combining the representation with~5.6!, ~5.14! and ~5.15!, we obtain the positivity property

W~a1 ,a2 ,b;x!.0, ;~a1 ,a2 ,b,x!PH3R* , W5w,wr ,w1 ,w2 . ~5.34!

From ~3.1! and ~3.3! we also obtain an integral representation for the asymmetric we
functionwd ~5.13!, viz.,

wd~z!5exp~ I d~z!! ~5.35!

with

I d~z![2E
0

`dy

y S sh~a2d2b!ych~ad2b!y

sha1ysha2y
cos2yz2

a2d2b

a1a2y
D . ~5.36!
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Obviously, this integral has the same convergence properties as the integral~4.30!, so the analysis
embodied in~4.31!–~4.35! applies once again.

We have not found illuminating analogs of the representations~4.38! and ~4.45!, so we
conclude this subsection by deriving two limits of the weight functionw. ~Corresponding limits
for wr ,w1 andw2 readily follow, so they will not be spelled out.! Once again, we switch to
parameters~4.47!.

First, we use~5.1!, ~3.22!, ~3.24! and ~3.69! to obtain

w~p,bn,bng;bp!5exp~2gln~2bn!!
H~r; p/n 1 i /2!H~r;2 p/n 1 i /2!

H~r; p/n 2 ig1 i /2!H~r;2 p/n 2 ig1 i /2!
, r[bn/p.

~5.37!

Therefore, Prop. III.6 entails

lim
b↓0

~2bn!22gw~p,bn,bng;bp!5
G~ ip/n 1g!G~2 ip/n 1g!

G~ ip/n!G~2 ip/n!
~ Irel limit !, ~5.38!

where the limit is mero-uniform.~The limiting weight function is associated to the analy
difference operators of the Irel regime, cf. Refs. 1 and 2.!

Second, we may write

w~p,a,ag;z!5
G~p,a;z2 ip/21 ia~g21/2!!

G~p,a;z2 ip/21 ia~21/2!!
•

G~p,a;z1 ip/21 ia~1/2!!

G~p,a;z1 ip/21 ia~1/22g!!
. ~5.39!

Therefore, we deduce from~3.91!

lim
b↓0

w~p,bn,bng;nx!5exp~2gln~2shnx!!, xPR0 ~ II nr limit ! ~5.40!

~with ln real-valued forx.0), uniformly on compacts ofR0. ~The limit is the weight function of
the IInr regime, cf. Refs. 1 and 2!

B. The elliptic case

The ellipticw-function is defined by replacing in~5.1! the hyperbolicG-functions by their
elliptic counterparts. Obviously, this yields a function that is periodic inz with primitive period
p/r , and which satisfies~5.2!, ~5.3!, and~4.76!, ~4.77! with u replaced byw.

Just as in the hyperbolic case, we introduce a reduced weight function by~5.5!. Then we
obtain via~3.100! and ~3.96!–~3.99!

w~z!54r 2)
k51

`

~12q1
2k!2~12q2

2k!2•s1~z!s2~z!wr~z!. ~5.41!

Evidently,wr shares the automorphy properties ofw mentioned above.
From Prop. III.11 we deduce thatw andwr are meromorphic inr ,a1 ,a2 ,b andz, provided

a1r anda2r stay in the right half plane. As the analog of~5.7! we then obtain

u~ iz; ib !5wr~b;z!
4r 2Pk51

` ~12q1
2k!2~12q2

2k!2•s1~z1 ib !s2~z1 ib !

G~ ib2 i ~a12a2!/2!G~ ib1 i ~a12a2!/2!
. ~5.42!

From now on we take the parameters inE ~4.75!. Turning to the ADEs satisfied byw and
wr , we obtain once more
J. Math. Phys., Vol. 38, No. 2, February 1997
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w~z1 iad/2!

w~z2 iad/2!
5
s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
•

s2d~z1 iad/2!

s2d~z2 iad/2!
, ~5.43!

whereas~5.9! is replaced by

wr~z1 iad/2!

wr~z2 iad/2!
52exp~2irz !

s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
. ~5.44!

Considering firstwr , we reach the same conclusion as in the hyperbolic case—Prop. I
and p/r -periodicity in z play the role of Prop. III.3 and the asymptotics~5.11!. Turning to
w(z), one readily sees that it generically has double zeros atz5kp/r ,k P Z, and hence is not
regular. The asymmetric functionwd defined by~5.13! is now related towr andw via

wd~z!5wr~z!)
k51

` S 12q2d
2k

12qd
2k D 2• s2d~z!

sd~z!
5

w~z!

4r 2Pk51
` ~12qd

2k!4•sd~z!2
. ~5.45!

Sincesd(z)
2 is not iad-periodic,wd does not satisfy the ADE ~5.43!, however. To obtain minima

periodic solutions to~5.43!, one should rather multiplyw(z) by an elliptic function with periods
p/r andiad . We shall neither embark on this nor on a study of the ADEs solved by the functions
w1 andw2 .

We continue by obtaining the counterparts of~5.15!–~5.19!. First, from ~5.1!, ~5.45! and
~3.100! we readily get

W~b1a2d ;z!

W~b;z!
54r 2e22rb)

k51

`

~12qd
2k!4•sd~z1 ib !sd~z2 ib !, W5w,wr ,w1 ,w2 .

~5.46!

To obtain the analog of~5.16!, we employ the relation

s~r ,a;z11 ina!s~r ,a;z22 ina!5e22irn ~z12z2!e2arn
2
s~r ,a;z1!s~r ,a;z2!, nPN,

~5.47!

which is easily derived from~2.91!. ~This formula plays the same role as~4.80! in simplifying the
iterated ADEs.! A straightforward calculation now yields~with k1 ,k2 P Z)

W~b1k1a11k2a2 ;z!

W~b;z!
5exp~2rb~2k1k22k12k2!! )

d51,2
exp~radkd~kd21!~2k2d

21!! )
j d51

ukdu S 4r 2)
k51

`

~12q2d
2k !4S s2dS z1 i

kd

ukdu S b2
ad

2 D
1 iadS j d2

1

2D D D ~ i→2 i !D kd /ukdu

. ~5.48!

Next, we use~5.1! and ~3.100! to obtain

w~r ,a1 ,a2,0;z!51, ~5.49!

w~r ,a1 ,a2 ,ad/2;z!54r 2)
k51

`

~12q1
2k!2~12q2

2k!2•
sd~z!

Rd~z!
s2d~z!, ~5.50!
J. Math. Phys., Vol. 38, No. 2, February 1997
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w~r ,a1 ,a2 ,~a11a2!/2;z!54r 2 )
d51,2

)
k51

`

~12qd
2k!2•sd~z!. ~5.51!

If we now combine these formulas with the quotient formula~5.48!, we obtain obvious analogs o
~5.21!–~5.23!—which we do not spell out.

We proceed by observing that~5.24! holds true for the ellipticwr , too. In tandem with~5.48!,
this entails

wr~2b;z!wr~b;z!5 )
d51,2

S 4r 2)
k51

`

~12qd
2k!4•sd~z1 ib !sd~z2 ib !D 21

. ~5.52!

Analogs of~4.23!–~4.26! for the elliptic weight functions are readily derived from the multip
cation formula~3.25!, so they will be skipped. The latter formula also entails that the ellip
wr-function obeys~5.26!.

As the elliptic counterpart of~5.27! we obtain from~5.50! and ~5.41!

w~r ,p,a,p/2;z!54r 2)
k51

`

~12e22kpr !2~12e22kar !2•
s~r ,p;z!

R~r ,p;z!
s~r ,a;z! ~XYZ !.

~5.53!

This holds true for alla.0, as opposed to the explicit formula~4.86!, which holds for the dense
set ~4.27!.

We now turn to deriving and studying a series representation forwr . Recalling ~3.3! and
~3.92!, the definition~5.5! entails

wr~z!5exp~S~z!!5expS (
n51

`
sh~a11a222b!nr

nsha1nrsha2nr
cos2nrzD . ~5.54!

The convergence properties of the infinite seriesS(z) occurring here are the same as those of
integral I (z) ~5.29!, so the analysis encoded in~5.30!–~5.33! applies verbatim. Using this repre
sentation,~5.46! and ~5.45!, we now deduce the positivity property

W~r ,a1 ,a2 ,b;x!.0, ;~r ,a1 ,a2 ,b,x!PE3~0,p/r !, W5w,wr ,w1 ,w2 . ~5.55!

It is of interest to compare the series representation~5.54! to Theorem II.5. Choosing param
eters inS d , one deduces that Theorem II.5 applies to the additive version of~5.44!, and that
wr corresponds to the unique minimal solution~2.106!. Via ~2.107! one can now obtain an integra
representation forwr—as an analog of the representation~4.89! for the ellipticu-function.

To conclude this subsection, we derive three limits of thew-function. First, we use Prop
III.12 to infer

lim
r↓0

expS p2b

3ra1a2
Dw~r ,a1 ,a2 ,b;z!5whyp~a1 ,a2 ,b;z! ~ II rel limit !, ~5.56!

where the limit is mero-uniform.~Here,whyp denotes thew-function from Subsection V A.! Note
that the renormalizing exponential is necessary, and that no such factor occurs in theu-function
counterpart~4.91!.

Next, we claim that the limit

lim
A↑`

w~r ,a,A,b;z!5wtrig~r ,a,b;z! ~ III rel limit ! ~5.57!
J. Math. Phys., Vol. 38, No. 2, February 1997
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exists mero-uniformly.~Here,wtrig denotes thew-function studied in the next subsection.! Indeed,
we may rewrite~5.1! as

w~r ,a,A,b;z!5
G~r ,a,A;z1 ib2 ia/22 iA/2!G~r ,a,A;2z1 ib2 ia/22 iA/2!

G~r ,a,A;z2 ia/22 iA/2!G~r ,a,A;2z2 ia/22 iA/2!
, ~5.58!

so ~3.139! yields the mero-uniform limit

lim
A↑`

w~r ,a,A,b;z!5
G~r ,a;z1 ib2 ia/2!G~r ,a;2z1 ib2 ia/2!

G~r ,a;z2 ia/2!G~r ,a;2z2 ia/2!
. ~5.59!

In view of ~5.61! below, this entails~5.57!.
Finally, fixingg P R, one has

lim
a↓0

w~r ,A,a,ag;z!5expS 2glnS 2r)
k51

`

~12e22kAr!2•s~r ,A;z!D D , zPRr ~ IVnr limit !

~5.60!

~with ln real forz P (0,p/r )), uniformly on compacts ofRr ~2.113!. To check this, one need onl
substituteb5ag in ~5.58!, invoke the limit~3.138!, and recall~3.96!–~3.99!.

C. The trigonometric case

The trigonometricw-function is defined by

w~r ,a,b;z![
G~z1 ib2 ia/2!G~2z1 ib2 ia/2!

G~z2 ia/2!G~2z2 ia/2!
~5.61!

with G given by ~3.140!. Thus, it can be written

w~r ,a,b;z!5 )
n50

` S 12q2ne2irz

12q2ne22rb12irzD ~z→2z!, q[e2ar. ~5.62!

We note thatw is p/r -periodic and even inz, and satisfies~4.103! and~4.104! with u replaced by
w.

Next, we introduce the reduced weight function

wr~z![G~z1 ib2 ia/2!G~2z1 ib2 ia/2!, ~5.63!

which has the same automorphy properties asw. Recalling the functional equation~3.154! and
ADE ~3.142! satisfied by the trigonometricG-function, one readily verifies thatwr andw are
related by

w~z!54r)
l51

`

~12q2l !2•s~r ,a;z!sin~rz!wr~z!. ~5.64!

Obviously,wr andw are meromorphic inr ,a,b andz, as long asar stays in the right half plane
As the counterpart of~5.42! one easily gets

u~ iz; ib !54r)
l51

`

~12q2l !2•s~r ,a;z1 ib !sinr ~z1 ib !
G~2 ib1 ia/2!

G~ ib1 ia/2!
wr~b;z!. ~5.65!
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Taking from now on parameters inT ~4.102!, we turn to the ADEs solved byw andwr , viz.,

w~z1 ia/2!

w~z2 ia/2!
5
sinr ~z1 ib2 ia/2!

sinr ~z2 ib1 ia/2!
•

sinr ~z1 ia/2!

sinr ~z2 ia/2!
~5.66!

and

wr~z1 ia/2!

wr~z2 ia/2!
52exp~2irz !

sinr ~z1 ib2 ia/2!

sinr ~z2 ib1 ia/2!
. ~5.67!

Clearly, both ADEs are regular for arbitrary parameters. Choosing parameters inR ~4.106!, one
readily verifies that the reduced weight function is a minimal solution to~5.67! that is even and
positive forz P R. As such, it is uniquely determined up to a positive constant, cf. Theorem
For b<a/2, however, it has poles in the stripuImzu<a/2, so it is not regular. The weight functio
w(z) has double zeros forz5kp/r ,k P Z, unlessb52na,n P N; in the latter case one easily se
thatw is a minimal solution to~5.66!.

To proceed, we note thatw andwr satisfy theb-ADE

W~b1a;z!

W~b;z!
54e22rbsinr ~z1 ib !sinr ~z2 ib !, W5w,wr . ~5.68!

Hence, iteration yields~with k P Z)

W~b1ka;z!

W~b;z!
5e22rbk2ark~k21!)

j51

uku S 4S sinr S z1 i
k

uku S b2
a

2D1 iaS j2 1

2D D D ~ i→2 i ! D k/uku

.

~5.69!

Now from ~5.61! we read off

w~r ,a,0;z!51, ~5.70!

so we deduce

w~r ,a,ka;z!5e2ark~k21!)
j51

uku

~4@sinr ~z1 ia~ j2u~k!!!#@ i→2 i # !k/uku, ~5.71!

wherek P Z and the notation~4.19! is used. Moreover, from~3.154! we have

wr~r ,a,a/2;z!5R~r ,a;z!21, ~5.72!

so recalling~5.64! we obtain~with k P Z)

w~r ,a,a/21ka;z!54r)
l51

`

~12q2l !2•
s~r ,a;z!

R~r ,a;z!
sinrz

•)
j51

uku S 4S sinr S z1 iaS j2 1

2D D D ~ i→2 i ! D k/uku

. ~5.73!

Using the multiplication formula~3.145!, one easily derives analogs of~4.112! and~4.113! for the
weight functions. In addition,~3.145! entails thatwr satisfies
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wr S r , aM ,b;zD5 )
k50

M21

wr S r ,a,b1
a

M
k;zD . ~5.74!

Next, we use~3.141! to obtain a series representation forwr , namely

wr~z!5expS (
n51

`
enr~a22b!

nshnra
cos2nrzD . ~5.75!

Providedb.0, this representation makes sense and holds true foruImzu,b. In particular, this
entails once more thatwr is a minimal solution to~5.67! when the parameters belong toR
~4.106!. ~More specifically,wr amounts to the unique minimal solution given by~2.106!.! Fur-
thermore, using~5.68! and ~5.64! one deduces

W~r ,a,b;x!.0, ;~r ,a,b,x!PT 3~0,p/r !, W5w,wr . ~5.76!

We finish this subsection by obtaining two limits of the trigonometric weight functionw.
Recalling~3.155!, we rewrite~5.61! with a51 as

w~r ,1,b;z!5
T~r ;2z1 i /2!T~r ;z1 i /2!

T~r ;2z2 ib1 i /2!T~r ;z2 ib1 i /2!
exp~rb~12b!12bln~2r !!. ~5.77!

From Prop. III.20 we now infer

lim
r↓0

~2r !22gw~r ,1,g;z!5
G~2 iz1g!G~ iz1g!

G~2 iz!G~ iz!
~ Irel limit !, ~5.78!

where the limit is mero-uniform.~Compare this to~5.38!.!
Next, we substituteb5ag, with g P R fixed, in ~5.61!. Recalling then the limit~3.180!, we

deduce

lim
a↓0

w~r ,a,ag;z!5exp~2gln~2sinrz!!, zPRr ~ III nr limit ! ~5.79!

~with ln real-valued forz P (0,p/r )), where the limit is uniform on compact subsets of the per
stripRr ~2.113!.
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APPENDIX A: THE GAMMA FUNCTION AND RELATED INTEGRALS

This appendix serves a twofold purpose. First of all, it is included to render this paper
self-contained. Indeed, most of the Laplace, sine and cosine transforms we derive below
found—without proof—in standard sources such as Refs. 18 and 19; moreover, all of the p
ties of the psi and gamma functions we need can be found—with detailed proofs—in va
sources, for instance Ref. 16. Our second purpose, however, is to demonstrate how these
ties can be very quickly derived via the minimal solution~2.26! to a suitable ADE ~2.22!; this
yields a paradigm for the study of generalized psi and gamma functions undertaken in Sect

Specifically, our starting point is the ADE
J. Math. Phys., Vol. 38, No. 2, February 1997
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F~z1 i /2!2F~z2 i /2!5
i

z2 i /2
[x~z!. ~A1!

A contour integration yields

x̂~y!5
1

2pE2`

`

dx
i

x2 i /2
eixy52e2y/2u~y!, ~A2!

so this ADE is of the type considered in the proof of Theorem II.3. Indeed,~A2! entails

f̂~y!5 iye2y/2u~y!, f~z![x8~z!52 i ~z2 i /2!22, ~A3!

and thereforef(z) has all of the properties~2.18!–~2.21!. From Theorem II.2 we now obtain
solution

f ~z!52i E
0

`

dy
ye2y

shy
e22iyz, Imz,1, ~A4!

to the ADE ~2.22!, which is the uniquely determined solution with properties~2.23!–~2.25!.
As a consequence, the function

F1~z!5F1~0!1c1z1E
0

`

dy
e2y

shy
~12e22iyz! ~A5!

is a solution to~A1! for a certainc1 P C. Now we have

F1~ i /2!2F1~2 i /2!5 ic11E
0

`

dy
e2y

shy
~2ey1e2y!5 ic122. ~A6!

Hence, notingx(0)522, we needc150 to solve ~A1!. Of course, we are free to choos
F1(0), and weshall set

F1~0!5E
0

`

dyS e22y

y
2
e2y

shy D[2g. ~A7!

~As will soon become clear,g is Euler’s constant.! The upshot is that we obtain a solution

F1~z![E
0

`

dyS e22y

y
2
e2y~112iz!

shy D , Imz,1, ~A8!

to the ADE ~A1!. Note that the functionF2(z)[F1(2z1 i ) yields a second solution to~A1!, so
thatF1(z)2F1(2z1 i ) is an i -periodic meromorphic function~determined explicitly below!.

Next, we observe that the ADE ~2.22!, with f(z) given by ~A3!, can also be solved by
downward iteration, yielding the solution

f̃ ~z!52 i(
k51

`

~z2 ik !22. ~A9!

Now this solution clearly has the properties~2.23!–~2.25!, so we must havef̃ (z)5 f (z). From this
we readily deduce
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F1~z!52g1 i(
k51

` S 1

z2 ik
1

1

ik D . ~A10!

~Indeed, the function on the rhs has derivativef̃ (z)5 f (z) and value2g for z50, just asF1(z),
~A7! and ~A8!.! As a consequence, we obtain the functional equation

F1~z1 i /2!2F1~2z1 i /2!52 (
n50

` S 1

iz1n11/2
1

1

iz2n21/2D5 ipthpz. ~A11!

Note that the rhs amounts to thei -periodic meromorphic function mentioned below~A8!.
We are now prepared to make contact with the psi and gamma functions. First, we intr

c~z![F1~2 iz1 i !5E
0

`

dyS e22y

y
2
ey~122z!

shy D , Rez.0. ~A12!

Then we obtain from~A1! and ~A11! the ADE

c~z11!2c~z!51/z ~A13!

and functional equation

c~z11/2!2c~2z11/2!5ptgpz. ~A14!

Moreover, we havec(1)52g andc(z) has simple poles atz50,21,22, . . . , cf. ~A10!.
Next, consider any primitiveC(z) of c(z), restricted to the cut plane

C2[$zPCuz¹~2`,0#%. ~A15!

Clearly,C(z) is analytic inC2 and satisfies

C~z11!2C~z!5 lnz1c1 , zPC2, ~A16!

C~z11/2!1C~2z11/2!52 ln~cospz!1c2 , 6z¹@1/2,̀ !, ~A17!

in view of ~A13! and ~A14!. Now from ~A12! we have

C~2!2C~1!5E
1

2

dwc~w!5E
0

`

dyS e22y

y
1

ey

2yshy
~e24y2e22y! D50, ~A18!

so thatc150 in ~A16!. Clearly,c2 in ~A17! depends on the arbitrary constant inC(z); we render
C unique by requiring 2C(1/2)5 lnp and then we getc25 lnp by takingz50 in ~A17!.

The upshot is that we obtain a primitiveC(z) of c(z) satisfying

C~z11!2C~z!5 ln z, ~A19!

C~z11/2!1C~2z11/2!5 ln~p/cospz!. ~A20!

Introducing the function

G~z![exp~C~z!! ~A21!
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~defined at first inC2), it readily follows thatG(z) extends to a meromorphic function withou
zeros and with simple poles atz50,21,22, . . . . Indeed, from~A10! and~A12! we deduce that
we have

C~z!5a2gz2 lnz2 (
n51

` S lnS 11
z

nD2
z

nD ~A22!

for somea P C ~with lnz real forz.0, of course!. Therefore, we obtain

1

G~z!
5e2a1gzz)

n51

` S 11
z

nDe2z/n ~A23!

and from this the assertion is clear. From~A19! and ~A20! we also obtain the ADE

G~11z!5zG~z! ~A24!

and functional equation

G~z11/2!G~2z11/2!5p/cospz. ~A25!

In order to determinea, we note that~A23! and ~A24! entail

e2a5 lim
z→0

1

zG~z!
5

1

G~1!
. ~A26!

Now from ~A24! and ~A25! we have

G~z11/2!G~2z13/2!5
p~2z11/2!

cospz
, ~A27!

which yieldsG(1)251 for z→1/2. Thus we conclude

G~1!51, a50, ~A28!

sinceG(z) is positive forz.0. ~To see this, note that~A12! entailsc(z) is real for z.0. As
C(1/2) is real, it follows thatC(z) is real forz.0, so positivity is clear from~A21!.!

Combining~A23! and ~A28!, we see thatG(z) is the customary gamma function in Weie
strass product form, as anticipated by our notation. Similarly,c(z) is the usual psi function~the
logarithmic derivative of the gamma function!, and ~A12! amounts to Gauss’ formula, cf., e.g
Ref. 16.

We now derive a number of definite integrals by exploiting the properties ofc(z) and
G(z) established above. The order in which this is done is determined by the order in which
integrals are needed in the main text, except when logical necessity requires otherwise.

First, we use the well-known integral

E
0

`dy

y
~e2qy2e2py!5E

0

`

dyE
q

p

dse2sy5E
q

pds

s
5 ln~p/q! ~A29!

and ~A12! to obtain

c~z11/2!2 lnz5E
0

`

dyS 1y2
1

shyDe22yz, Rez.0. ~A30!
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Integrating this from 0 toz and using 2C(1/2)5 lnp, we arrive at

CS z1
1

2D2
1

2
lnp2zlnz1z5

1

2E0
`dy

y S 1y2
1

shyD ~12e22yz!, Rez.0. ~A31!

Now the function on the lhs is analytic inC2 and the integral on the rhs converges absolutely
Rez>0. Thus,~A31! holds true for Rez50, too. Puttingz5 ix andz52 ix,x P R, in ~A31!, and
taking the sum of the resulting equations, we obtain using~A20!

ln~p/chpx!2 lnp1px5C2E
0

`dy

y S 1y2
1

shyD cos2yx, ~A32!

where we have set

C[E
0

`dy

y S 1y2
1

shyD . ~A33!

If we now takex→` in ~A32!, then the integral has limit 0~by virtue of the Riemann-Lebesgu
lemma!, so we must have

C5 ln 2. ~A34!

Combining this with~A31! and ~A21!, we obtain the integral representation

G~z11/2!5~2p!1/2expS zlnz2z2
1

2E0
`dy

y S 1y2
1

shyD e22yzD , ~A35!

which holds true for Rez>0.
Next, we putq52,p52w in ~A29! and integrate w.r.t.w from 0 to z to obtain the identity

zlnz2z5E
0

`dy

y S e22yz1
e22yz21

2y D . ~A36!

Inserting this in~A35!, we get the representation

G~z11/2!5~2p!1/2expS E
0

`dy

y S ze22y2
1

2y
1
e22yz

2shy D D , ~A37!

which is valid for Rez.21/2. A routine calculation using~A37! and ~A29! ~with q52,p52w)
now yields

G~w1l!

G~w1m!
e~m2l!lnw5expS E

0

`dt

t
e2wtS l2m1

e2lt2e2mt

12e2t D D , ~A38!

which holds true for Rew.max(0,2Rel,2Rem). Therefore, the function

F~w,l![
w1l

w2l S G~w1l!

G~w2l!
e22l lnwD 2 ~A39!

admits the representation
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F~w,l!5expS 2E
0

`dt

t
e2wt~2l2shltctht/2! D , ~A40!

provided Rew.uRelu. ~To check this, use~A38! and ~A29! with q5w2l andp5w1l.!
The functionF(w,l) will reappear in Appendix B; it is crucial for obtaining Prop. III.5 i

Subsection III A. We conclude by deriving some formulas that are used towards the e
Subsection IV A. First,~A12! entails the cosine transform

c~~p111 ix !/2!2c~~q111 ix !/2!1~x→2x!

52E
0

` dy

shy
~e2qy2e2py!cosxy, Rep,Req.21, xPR ~A41!

Now we take Rep P (21,1) and putq52p. Using~A14! and the elementary identity

tg~s1 i t!1tg~s2 i t!5
2sin2s

cos2s1ch2t
, s,tPC, ~A42!

we obtain

E
0

`

dy
shpy

shy
cosxy5

p

2

sinpp

cospp1chpx
, uRepu,1, xPR. ~A43!

Integrating this with respect top from s to t yields

2E
0

`dy

y

~chty2chsy!

shy
cosxy5 lnS chpx1cosps

chpx1cospt D , uResu,uRetu,1. ~A44!

Finally, we integrate~A41! w.r.t. x from 0 to 22is and putp5t1l,q5t2l. The resulting
formula entails the identity

G~s1~11l1t !/2!G~2s1~12l1t !/2!

~s→2s!
5expS 2E

0

`dy

y

shlysh2sy

shy
e2tyD ,

Ret2uRelu.21, sP iR. ~A45!

APPENDIX B: UNIFORM ESTIMATES

The main goal of this appendix consists in deriving bounds that are sufficiently stron
control the convergence and meromorphy properties of infinite products involving gamma
tions, which occur in the main text. Our tool for doing so is Theorem B.1, which deals
Laplace transformsL(w),w P C, of a certain type. More generally, this theorem can be use
obtain estimates on remainders in asymptotic expansions that hold uniformly in sectorial re
uArgwu<p2e,uwu>K5K(e) for any e.0. As such, it is inspired by, but simpler than, th
methods that can be found in Ref. 20, Sections 21–25, and Ref. 16, Section 13.6.

Assumeh(z) is a function that is analytic in the right half plane Rez.0 and atz50.
Moreover, assumeh(z) satisfies the bound

uh~ teif!u<C~x!ert , ;~ t,f!P@0,̀ !3@2x,x#, ~B1!

wherex P @0,p/2) and r P @0,̀ ), and whereC(x) is a positive non-decreasing function o
@0,p/2).

Theorem B.1: The function
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L~w![E
0

`

e2wth~ t !dt ~B2!

is well defined and analytic in$Rew.r %. Furthermore, L(w) can be continued to a function tha
is analytic in

Ur[$Rew>0,uwu.r %ø$Rew,0,uImwu.r %. ~B3!

Finally, fixingx P @0,p/2) and R.r one has

uL~w!u<C~x!~R2r !21, ;wPSR,x ~B4!

where

SR,x[ø ufu<x$Re~eifw!>R%. ~B5!

Proof: The first assertion is obvious. To prove the second one, consider the integral

eixE
0

`

exp~2wteix!h~ teix!dt, xP~2p/2,p/2!. ~B6!

Due to the bound~B1! this defines a functionLx(w) that is analytic in the region

Ur ,x[$Re~eixw!.r %. ~B7!

We claim thatLx(w) equalsL(w) in Ur ,0ùUr ,x . Taking this for granted, the second asserti
follows, since we have

Ur5ø uxu,p/2Ur ,x . ~B8!

To prove the claim we first takex P @0,p/2). Fixingw P Ur ,0ùUr ,x , we then have

inf
fP[0,x]

$Re~eifw!%5min~Rew,Re~eixw!!5r1e ~B9!

with e5e(w).0. Using~B1! we now obtain

uexp~2wteif!h~ teif!u<C~x!e2et, ;~f,t !P@0,x#3@0,̀ !. ~B10!

This bound entails that the integral ofe2wzh(z) over the contourz5Keif,f P @0,x#, vanishes for
K→`. Thus we may replace the contourteix,t P @0,̀ ), in thez-plane by the positive real axis
yieldingLx(w)5L(w). This proves our claim for non-negativex, and the same reasoning appli
to negativex.

It remains to prove~B4!. To this end we fixw P SR,x . In view of ~B5! we can findf
P @2x,x# such that Re(weif)>R. Then we get

uL~w!u5uLf~w!u<E
0

`

uexp~2wteif!h~ teif!udt<C~x!E
0

`

e2Rtertdt5C~x!~R2r !21,

~B11!

where we used~B1!. Thus~B4! holds true. h

To illustrate how this result can be applied, we consider the Laplace transform
J. Math. Phys., Vol. 38, No. 2, February 1997
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L~w![E
0

`

e2wtf ~ t !dt, ~B12!

f ~ t ![
1

t
2

1

sht
, ~B13!

occurring on the rhs of~A30!. Integrating by partsn times, we obtain

L~w!2(
l51

n

w2 l f ~ l21!~0!5w2nE
0

`

e2wtf ~n!~ t !dt. ~B14!

Now the functionh(t)[ f (n)(t) satisfies the assumptions of Theorem B.1 withr50, so ~B4!
yields a bound on the remainder integral that is uniform inSR,x ; fixing d.0, the sectorial region
uArgwu<p/21x2d,uwu>K, belongs toSR,x for K5K(d,R,x) large enough, cf. Fig. 1.

The Laplace transform in~A35! can be handled in the same way. This yields an asympt
expansion that is substantially equivalent to the Stirling series, valid uniformly in sectorial re
of the above type.

For applications in the main text, however, we shall exploit Theorem B.1 to obtain uni
estimates pertaining to the Laplace transforms

L j~w!5E
0

`

e2wtf j~ t !dt, j51,2,3, ~B15!

with

f 1[
1

t
~2l2shltctht/2!⇒ f 1~0!50, f 18~0!52l~2l211!/6, ~B16!

f 2[
1

t S l2m1
e2lt2e2mt

12e2t D⇒ f 2~0!5~l2m!~l1m21!/2, ~B17!

f 3[
shltshmtshkt

tsht
⇒ f 3~0!50, f 38~0!5lmk. ~B18!

Then the functionsh1[ f 19 ,h2[ f 28 and h3[ f 39 satisfy the hypotheses of Theorem B.1. Cor
spondingly, we deduce the bounds

UL1~w,l!1
l~2l211!

6w2 U< C1~x,l!

uw2u~R2r 1!
, r 1[ulu, ~B19!

UL2~w,l,m!2
~l2m!~l1m11!

2w U< C2~x,l,m!

uwu~R2r 2!
, r 2[max~ ulu,umu!, ~B20!

UL3~w,l,m,k!2
lmk

w2 U< C3~x,l,m,k!

uw2u~R2r 3!
, r 3[ulu1umu1uku, ~B21!

which hold true forR.r j and allw P SR,x . The functionsCj are positive and non-decreasing
x for fixed values of the parameters, and they are continuous in the parameters for fixedx.

Recalling~A40!, one easily obtains a corresponding bound on

F~w,l!5exp~2L1~w,l!!. ~B22!
J. Math. Phys., Vol. 38, No. 2, February 1997
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We will need this bound in Subsection III A. Similarly, from~A38! one has

G~w1l!

G~w1m!
e~m2l!lnw5exp~L2~w,l,m!!, ~B23!

and the bound on the lhs following from~B20! will be used several times in Subsection IV A. For
the applications of~B19! and ~B20! we do not need a bound on the parameter dependence o
C1 andC2; continuity in the parameters suffices. As concerns~B21!, however, it is important to

FIG. 1. The regionSR,x and the complement of the regionUr .
J. Math. Phys., Vol. 38, No. 2, February 1997
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have more information onC3. Indeed, in Subsection IV A we shall use~B21! on four occasions;
in two cases the parameters vary overC-compacts, but in the remaining applications one or t
parameters go to infinity.

In order to control this divergence, we first note that the function

h~ t,p![
shpt

t
~B24!

satisfies the bounds

u] t
jh~ teif,p!<dj~x!upu j11exp~ uput !, ;~ t,f,p!P@0,̀ !3@2x,x#3C, ~B25!

with dj positive non-decreasing functions on@0,p/2), and j50,1,2. ~Write h as
p f(pt), f (x)[shx/x, to verify this.! Factorizingf 3 accordingly, we deduce that the functionC3 in
the bound~B1! on f 39 satisfies

uC3~x,l,m,k!u<d~x!ulmu~ ulu21umu21uku21ulmu1ulku1umku! ~B26!

with d positive and non-decreasing on@0,p/2). This bound on the parameter dependence
sufficient for our purposes.
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Quaternionic representations of magnetic groups
G. Scolarici
Dipartimento di Fisica dell’ Universita’, Lecce, I-73100 Italy

L. Solombrinoa)
Dipartimento di Fisica dell’ Universita’ and INFN, Sezione di Lecce, Lecce, I-73100 Italy

~Received 10 July 1996; accepted for publication 2 August 1996!

We study magnetic groups, which contain a time-inversion operator besides spatial
symmetries, in the framework of quaternionic group representation theory. We
obtain a classification of these groups, depending on the reducibility of their spatial
part, and then we cross it with the generalized Frobenius–Schur classification that
has been obtained by ourselves elsewhere. Ten distinct cases arise, but only five of
them apply to factorizable groups~i.e., groups in which the time-inversion operator
appears alone and not multiplied by a spatial symmetry!. We supply examples for
these five cases and determine which of them apply to bosonic or fermionic sys-
tems, respectively. Finally, we discuss the degeneracy of energy levels in the pres-
ence of a time-reversal symmetry~Kramers degeneracy! in quaternionic quantum
mechanics, obtaining right values in all cases. ©1997 American Institute of Phys-
ics. @S0022-2488~97!01301-7#

I. INTRODUCTION

According to a classification introduced by Frobenius and Schur in 1906,1 there are three
kinds of irreducible~unitary! finite-dimensional complex group representations~C-irreps!, which
are usually calledpotentially real~or of class11!, complex~or of class 0! andpseudoreal~or of
class21!.2–5 On the other hand, the inclusion of time-reversal symmetry, which is describe
complex quantum mechanics by an antiunitary operator, brings out the necessity of introduc
more general concept ofcorepresentations~i.e., representations by unitary and antiunitary ope
tors! whenever the symmetry group contains a time-inversion operator. A suitable and well-k
classification of irreducible finite-dimensional corepresentations, due to Wigner6 and later gener-
alized by several authors,5,7 is again a threefold partition and has been widely used in orde
classify magnetic space groups and magnetic point groups.8 ~We recall that a more general cla
sification, the so called FS3W classification, has been obtained some years ago by one o
authors, together with other authors,9 by crossing the classifications quoted above.! These classi-
fications, together with the explicit form of the time-inversion operator, allow one to obtain e
the correct degeneracy of energy levels foreseen by the celebratedKramers’ theorem,which states
that all energy levels of a system containing an odd number of electrons must be at least
degenerate regardless of how low the symmetry is, provided that there are no magnetic fie
remove the time-reversal symmetry.10 Of course, Kramers degeneracy must appear in all attem
of modifying or generalizing ordinary quantum mechanics.

In the framework of Quaternionic Quantum Mechanics~QQM! the time-inversion operator is
still unitary, with the remarkable property that it anticommutes with the anti-self-adjoint ope
which represents the Hamiltonian of the physical system.11 It follows that one can study the
symmetry groups including time-reversal by the same methods adopted in order to study s
try groups containing spatial symmetries only.

We have already obtained12 all the irreducible~inequivalent! linear quaternionic representa
tions ~Q-irreps! of a finite or compact group that have been classified using a suitable gen

a!Electronic mail address: solombrino@le.infn.it
0022-2488/97/38(2)/1147/14/$10.00
1147J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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zation of the aforesaid Frobenius–Schur~FS! criterion. We aim to apply this classification in th
paper to the symmetry groups containing a time-inversion operator, taking into due accou
property of anticommutation between this operator and the Hamiltonian of the system.
doing so, we obtain a further classification of groups, which in some sense replaces the W
classification of corepresentations and can be crossed with the previous one in order to get
general classification of the symmetry groups.

More specifically, we recall in Sect. II some notations and results, that we also extend in
cases, so that they can be applied in the following. In particular we obtain, starting from
quaternionic generalization of the corollary of the Schur Lemma, the explicit form of the oper
commuting with a given representation of a symmetry group, depending on the class o
representation according to the FS classification.

In Sect. III we recall and generalize the definition of magnetic group~and color group!2,8,13

that arises in the context of complex group representation~CGR! theory to the framework of
quaternionic group representation~QGR! theory. We classify these groups according to the red
ibility of their spatial part, generalizing the Wigner classification of corepresentations; fur
more, we introduce a third, subtler classification in ten cases, obtained by crossing the pre
ones. Thus, we exhibit all the possible forms of theQ-irreps of magnetic groups and each case
suitably characterized.

In Sect. IV we consider the remarkable and physically interesting subclass of magnetic g
that contain the time-inversion operator alone, not multiplied by a spatial symmetry~factorizable
groups5,9!. We show that only five of the ten cases in the aforesaid classification can ac
occur; in particular, two cases apply to bosonic systems only, two cases apply to ferm
systems only, and one case applies to bosonic as well as to fermionic systems.

In Sect. V we supply some examples of all cases that actually occur whenever the grou
assumed to be factorizable and obtain the explicit form of the time-inversion operator, w
coincides with the one introduced in QQM by Adler.14

Finally, we discuss in Sect. VI the degeneracy of energy levels which occurs in the cont
quaternionic quantum mechanics whenever a time-reversal symmetry exists, and we obtai
cases the same degeneracies that occur in complex quantum mechanics because of the
theorem.

II. BASIC NOTATIONS AND TOOLS

A quaternion in usually expressed as

q5q01q1i1q2 j1q3k,

whereqiPR( i50,1,2,3),i 25 j 25k2521, i j52 j i5k.
The quaternion skew-fieldQ is an associative algebra of rank 4 overR, noncommutative and

endowed with an involutory anti-automorphism~conjugation! such that

q→qQ5q02q1i2q2 j2q3k.

In a ~right! n-dimensional vector spaceQn overQ, every linear operator is associated in
standard way15 to an3n matrix acting on the left.

In analogy with the case of complex group representations, one can then define the He
conjugateA†5ATQ of a matrixA ~AT denotes, as usual, the transpose ofA!, and introduce the
concepts of unitarity, Hermiticity and so on. The properties of Hermitian and unitary matric
Qn have been already investigated by other authors;16,17we only stress here that, ifG is a finite~or
a compact! group, reducibility implies complete reducibility even in the case of unit
Q-representationsD(G), and everyQ-representation is equivalent to a unitary one18 ~the proofs
follow trivially from those supplied in the complex case with minimal changes!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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We have shown elsewhere12 that all irreducible linear~inequivalent! Q-representations of a
finite groupG fall into three classes:potentially real or of type R, potentially complex or of typ
C, or (purely) quaternionic or of type Q (generalized Frobenius–Schur classification).Further-
more, they can be obtained from theC-irreps ~roughly speaking, anyC-irrep of class11 or 0,
according to the FS classification, is itself aQ-irrep of typeR or C, respectively, while, by the
Main Reduction Theorem,17 it reduces to two equivalentQ-irreps of typeQ when it is of class
21!. Moreover the irreducibility criterion reads

(
g

x̂~m!2~g!5
@G#

c~m! , ~1!

where

c~m!5H 12
4
when the representationD ~m! is of type H RC

Q
,

x̂~m! denotes the character, i.e., the real trace of the representation~which enjoys the cyclic prop-
erty and fully characterizes the representation, as we have shown elsewhere12!, and [G] is the
order of the group.

Let us recall that the following relation occurs between the characterxC
(m) of a complex

representation and the characterx̂ ~m! of the corresponding quaternionic representation:

x̂~m!5H xC
~m!

RexC
~m! when D ~m! of class

1
2 xC

~m!
H RC
Q
. ~2!

Then, we also obtain, by using the classical Frobenius–Schur criterion,

(
g

x̂~m!~g2!5d~m!@G#, ~3!

where

d~m!5H 11
0 if D ~m! is a Q-irrep of class

2 1
2

H RC
Q
.

We conclude thatthe couple of values of(gx̂
(m)2(g) and (gx̂

(m)(g2) uniquely identifies all
Q-irreps and their class.

Now, we recall that any operatorT in Qn which commutes with aQ-irrep has the structure
T5h11aIA , because of the quaternionic generalization of the corollary of Schur’s Lemma;

19 here
h,aPR, 1 denotes the identity operator andIA is an anti-self-adjoint operator which commut
with the given representation and is such thatIA

2521 ~note that a basis of eigenvectors ofIA exists
such thatIA acts as a unit imaginary quaternion on each vector of the basis itself!. Further
informations can, however, be obtained by using the above classification.

First, let us consider aQ-irrepD(G) of typeR, and let us writeD(G);R. In this case a basis
exists in whichD(G) is real.12 Let T be a ~quaternionic! matrix such thatTD(g)5D(g)T,
;gPG in this basis. Then, we putT5T11 jT2 , with T1, T2 complex matrices, and easily obta

~T1D2DT1!5 j ~DT22T2D !;
J. Math. Phys., Vol. 38, No. 2, February 1997
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the terms on each side of the above relation vanish identically, since the matrix elements
l.h.s. are complex, while the ones on the r.h.s. belong toQ\C. If D is as an irreducible complex
representations, the corollary of Schur’s Lemma in its usual form~the one which holds in the cas
of complex group representations! applies and bothT1 and T2 are complex multiples of the
identity. It follows thatT5q1, with qPQ.

Second, let us consider the caseD(G);C. In this case a basis exists in whichD(G) is
complex;12 in this basis, going on as above, we obtain, for any matrixT5T11 jT2 commuting
with D,

~T1D2DT1!5 j ~D*T22T2D !50.

By using again the CGR form of Schur’s Lemma and its corollary and recalling that theC-irrep
D is not equivalent to its complex conjugateD* in this case, we obtainT250 and finallyT5c1,
with cPC.

Third, let us consider the caseD(G);Q. In this case, in any basis the matrices belonging
D have a quaternionic form,12 but for anyT commuting withD, a basis exists in whichT5(a
1 ib)1, with a,bPR, because of the quaternionic generalization of the corollary of the S
Lemma.19 In such a basis, we putD5D11 jD 2 , with D1, D2 complex representations, and obta

D1~a1 ib !11 jD 2~a1 ib !15~a1 ib !D11~a1 ib ! jD 2 ,

hence

2kbD251kbD2 ,

and thenb50 ~being necessarilyD2Þ0!, so that~in any basis! T5a1, with aPR.
We note that in the last case, and in this case only, any operator commuting withD must be

a real multiple of the identity, hence it must be Hermitian. We also note that the anti-Herm
operators commuting withD are all the real multiples ofi1 ~in a suitable basis! wheneverD;2Q,
i.e.,D is a reducibleQ-representation which decomposes into a sum of two equivalentQ-irreps of
typeQ. Indeed,D can be set in complex form in this case by means of the basis transform

D→D85SDS215
1

&

S 1 2 i1

2 j1 k1 D SM 0

0 M D 1

&

S 1 j1

i1 2k1D
5
1

2 S M2 iM i ~M1 iM i ! j

2 j ~M1 iM i ! 2 j ~M2 iM i ! j
D ~4!

~we assume here, for the sake of simplicity, that the twoQ-irreps are equal, and denote the
generic element byM !. This representation is easily seen to be aC-irrep by using the irreducibil-
ity criterion; moreover, it is of class21 according to the Frobenius–Schur classification~then, the
above calculation constitutes in some sense, the inverse of the Main Reduction Theo17!,
thereforeD8 is equivalent to its complex conjugate and the complex matrix that induces
equivalence is antisymmetric. If we denote byA5A11 jA2 ~whereA1 ,A2 are complex matrices!
an anti-Hermitian operator commuting withD8, we easily obtain

~A1D82D8A1!5 j ~D8*A22A2D8!50.

Finally, by using the corollary of the Schur Lemma for complex representations, we haveA15l1,
with lPC; furthermore, by requiring thatA52A† and recalling thatA2 is antisymmetric, it
follows thatA5ai1, with aPR.
J. Math. Phys., Vol. 38, No. 2, February 1997
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III. MAGNETIC GROUPS AND THEIR CLASSIFICATION

Color groups are defined in the literature13 by

G85G1aG, a¹G, ~5!

wherea is an operator which switches color~or, even, a product of such operator with a spa
symmetry which does not belong toG! andG is a ~normal! subgroup ofG8 of index 2, whose
elements represent spatial symmetries. In the CGR theory, the same equation defines themagnetic
groups,2,8 where the elements of the cosetaG are antiunitary operators. We call magnetic group
the following any group defined by Eq.~5!, without entering into the physical interpretation of th
elements ofaG. We only characterize algebraically these elements by requiring thatall elements
in G commute with a given operator, say H, while all elements in aG anticommute with it.

We are now ready to study and possibly classify the representations of magnetic groups
spacesQn. Let X be a finite dimensional vector space and letD(G8) be an irreducible~unitary!
representation of a magnetic groupG8 in X. Whenever the restriction ofD(G8) toG is reducible,
let X1 be an irreducibleG-invariant subspace ofX and let$uei&% be a basis in it. Then,

^ei uD~g!uej&5Di j ~g!8D i j ~g! ;gPG; ~6!

moreover, ifu f i&8D(a)uei&, we get

D̄i j ~g!8^ f i uD~g!u f j&5^ei uD~a21!D~g!D~a!uej&5D i j ~a
21ga!. ~7!

Sincea21gaPG, the set of matricesD̄(G) coincides withD(G) which is supposed irreducible in
X1 ~then, they share the same global properties!; for D̄(G), too, is an irreducible representation
G in X25D(a)X1 . Furthermore, we note that

D~a!X25D~a2!X15X1 .

Now, let us observe that both the subspacesX1ùX2 and X1%X2 are G8-invariant; being by
hypothesisD(G8) irreducible, we easily obtainX1ùX25B andX1%X25X. Choosing as a basi
in X the set$uei&%ø$u f j&%, we get

D~G!5S D~G! 0

0 D̄~G!
D , D~a!5S 0 D~a2!

1 0 D , ~8!

and two cases arise, according to whetherD is equivalent toD̄:D>D̄ or not.
We have thus obtained a threefold classification of the irreducible representations of ma

groups:
I—the restriction D(G) of D to the subgroup G is irreducible;
II—D(G) is reducible and has the above form, withD>” D̄;
III—D(G) is reducible and has the above form, withD>D̄.
This classification makes no reference to the scalar field of the vector spaceX, so that it

generalizes the Wigner classification of corepresentations6 in CGR theory and can replace it in th
framework of QGR theory~it can be easily seen that the above proof essentially paraphrase
proof of a generalized classification of the corepresentations provided by one of us togethe
other authors in a previous paper7!.

Thus, the idea arises to cross this new classification with the generalized FS classifi
discussed in Sect. II, so as to obtain a more detailed description ofQ-irreps of magnetic groups

To this end, let us firstly assume that the above case I holds~i.e.,D(G) is irreducible!. When
D(G8);R, a basis exists in whichD(G8) is real, which implies that alsoD(G) must be real;
analogously, whenD(G8);C, a basis exists in whichD(G8) takes complex form, so that eithe
J. Math. Phys., Vol. 38, No. 2, February 1997
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D(G);R or D(G);C. Finally, wheneverD(G8);Q, we get from the irreducibility criterion
~see Eq.~1!! (gPG8x̂

2(g) 5 1/4@G8# 5 1/2@G#, hence, trivially,(gPGx̂2(g) < (gPG8x̂
2(g)

< 1/2@G# and the caseD(G);R never occurs.
Thus, case I splits into five subcases:
I-R D(G8);R,D(G);R;
I-C/R D(G8);C,D(G);R;
I-C/C D(G8);C,D(G);C;
I-Q/C D(G8);Q,D(G);C;
I-Q/Q D(G8);Q,D(G);Q.
With regards to the cases II and III, we preliminarily observe that the charactersx̂ of all

elements belonging to the cosetaG vanish identically, so that(gPG x̂2(g) 5 (gPG8 x̂2(g).
Moreover the representationsD(G) and D̄(G), as we have already noted above, are irred

ible representations ofG belonging to the same class R or C or Q. Denoting by x̂D(g) and
x̂ D̄(g), respectively, their characters, we easily obtain, in case II~D>” D̄!,

(
gPG8

x̂2~g!5 (
gPG

~ x̂D~g!1x̂ D̄~g!!252(
gPG

x̂D
2 ~g!,

since(x̂D(g)x̂ D̄(g) 5 0 because of the orthogonality relations.12 Thus, we easily obtain, by usin
the irreducibility criterion, thatD(G8) andD(G) areQ-irreps of the same class and case II sp
into three subcases:

II-R D(G8);R,D(G);R1R;
II-C D(G8);C,D(G);C1C;
II-Q D(G8);Q,D(G);Q1Q.

~We denote byR1R,C1C,Q1Q a decomposition ofD(G) in two inequivalent representation
of typeR,C,Q, respectively.!

An analogous calculation yields in case III~being nowD>D̄!

(
gPG8

x̂2~g!5 (
gPG

~ x̂D~g!1x̂ D̄~g!!254(
gPG

x̂D
2 ~g!.

WhenD(G8);R or C, then the l.h.s. of the above relation is equal to@G8# or 1/2@G8#, respec-
tively, so that, being [G8]52[G], we must haveD>C or D>Q, respectively. On the contrary, i
D(G8);Q, we see easily that above relation is never satisfied. Thus, case III splits in
subcases only:

III-R D(G8);R,D(G);2C;
III-C D(G8);C,D(G);2Q.

~We denote by 2C, 2Q here a decomposition ofD(G) in two equivalent representations of typ
C,Q, respectively.! We observe that the above crossed classification is not trivial, because so
the nine cases that one could in principle obtain split in subcases, whereas one of them
occur, so that it provides a valuable insight into the properties of magnetic groups and
Q-irreps.

IV. FACTORIZABLE GROUPS AND TIME-INVERSION OPERATOR

As we have anticipated in the Introduction, a remarkable role is played among the ma
groups by thefactorizablegroups~sometimes also calledmagnetic groups of type 18!, the physical
interest of which has been widely outlined elsewhere.5,9

We recall that a magnetic groupG85G1aG is said to be factorizable if the automorphis

g→g85a21ga ;gPG ~9!
J. Math. Phys., Vol. 38, No. 2, February 1997
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is an inner automorphism, i.e., an elementwPG exists such thatg85w21gw,;gPG. It is easy
to see thatG8 is factorizable if and only if an elementt5aw21PaG exists which commutes with
all elements inG ~hence witha, that is with all elements inG8!.

In many physical applications, when such an operatort exists, it is interpreted as atime-
inversion operator.Indeed Adler11 has shown that in the realm of QQM all spatial symmetr
commute with the HamiltonianH of the system, whereas the time-inversion operator antic
mutes withH and commutes with all spatial symmetries; thus, in this framework, every symm
group containing the time-inversion operator is a factorizable group.

We therefore intend in this Section to study magnetic groups of the form

G85G1tG, @ t,G#50, ~10!

and to determine the cases of the crossed classification obtained in the previous Section
actually occur for such groups.

First, we observe that, by making reference to the previous definition witht in place ofa,
whenD(G) is reducible we get

D̄~g!5D~ t21gt!5D~g! ;gPG,

which means thatD and D̄ must be equivalent for factorizable groups, and case II never occ
Furthermore, we note that,;g85tgPtG,

D~g82!5D~ t2!D~g2!, ~11!

whereD(t2) is a ~unitary! operator which commutes with the irreducible representationD(G8).
Let us consider now the cases I-Q/C and III-R; in both cases we must have, recalling the
of Sect. II,D(t2)5r1, with rPR, andr561 sinceD(t2) is unitary. Indeed, in the former cas
any operator commuting with aQ-irrep of typeQ has such a form, in the latterD(t2) must be a
quaternionic multiple of the identityin the basis in which D(G8), hence D(t2) itself, is real. It
follows that, if such cases should actually occur, we would obtain

(
g8PtG

x̂~g82!5r (
gPG

x̂~g2!, ~12!

hence

(
g8PG8

x̂~g82!5~11r ! (
gPG

x̂~g2!. ~13!

Now, recalling the Frobenius–Schur criterion the value of the l.h.s. in Eq.~13! would be different
from zero, while the r.h.s. would vanish for anyr . This contradiction shows that cases I-Q/C a
III-R cannot occur.

We conclude that five of the ten cases of the classification in Sect. III are exclude
factorizable groups; on the contrary, the remaining cases actually occur, as we will show by
of examples in the next Section.

Moreover, we can carry out in these cases a calculation analogous to the one above; n
do not obtain contradiction, but determine the possible values ofD(t2). Indeed, let us conside
cases I-R and I-Q/Q; then, the same arguments used above apply and Eq.~12! follows at once. By
the generalized Frobenius–Schur criterion~see Eq.~3!! we now get for the case I-R

(
g8PG8

x̂~g82!5@G8#5~11r ! (
gPG

x̂~g2!5~11r !@G#,
J. Math. Phys., Vol. 38, No. 2, February 1997
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and for case I-Q/Q

(
g8PG8

x̂~g82!52
1

2
@G8#5~11r ! (

gPG
x̂~g2!52~11r !

1

2
@G#,

i.e., r511 in both cases.
Let us now consider the remaining cases, and let us remark that in all of themD(G8);C;

then, because of the results in Sect. II, one obtains thatD(t2)5(r1 is)1 ~wherer ,sPR and, by
the unitarity,r 21s251! or, equivalently,D(t2)5eiu1 in the basis in whichD(G8) has a complex
form. On the other hand,D(G);R andD(G);2Q in the cases I-C/R and III-C, respectivel
which implies that the trace of any element ofD(G) is real ~let us recall12 indeed that aQ-irrep
of typeQ can only be obtained by reduction of aC-irrep of class21, according to the Frobenius
Schur classification of complex group representations, whose character is real!. Thus, taking the
real trace of Eq.~11!, we get again Eq.~12! and the generalized Frobenius–Schur criterion n
reads for case I-C/R

(
g8PG8

x̂~g82!505~11r ! (
gPG

x̂~g2!5~11r !@G#,

and for case III-C

(
g8PG8

x̂~g82!505~11r ! (
gPG

x̂~g2!52~11r !@G#.

It follows in both casesr521, s50.
We cannot apply an analogous reasoning in order to get information onD(t2) in the case

I-C/C, but the examples in the next Section show that both the alternativesD(t2)561 occur. If
one now recalls that the squared time-inversion operator in QQM14 is equal to the identity for
fermionic systems~it has opposite sign for bosonic systems!, we conclude that

i) whenever a fermionic system is considered, a magnetic factorizable group falls into o
the cases I-R, I-C/C, I-Q/Q of the classification in Sect. III;

ii) whenever a bosonic system is considered, a magnetic factorizable group falls into o
the cases I-C/R, I-C/C, III-C of the classification in Sect. III.

V. EXAMPLES

We intend to show in this Section that all the cases listed in Sect. IV for factorizable gr
actually occur. We notice explicitly that all examples below areon purposethe same proposed
elsewhere by Dyson,5 apart from minor changes~for the sake of simplicity, we limit ourselves t
consider suitable subgroups of the rotation groups in the examples C, D, E!. On the other hand
they coincide with the ones proposed by one of us, together with other authors, in ord
illustrate the FS3W classification of complex group corepresentations9 that have been selecte
adopting a simplicity criterion, i.e., by choosing the minimal dimensions of Hilbert spaces in
possible case~note thatn denotes this minimal dimension in the following!.

A. Case I-R (n51)

G contains the identitye only, G85$e,t%, t25e.

D~e!51; D~ t !521. ~14!
J. Math. Phys., Vol. 38, No. 2, February 1997
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This example is algebraically correct, but somewhat unsatisfactory, sinceD(t) cannot anti-
commute with any other operator. In order to avoid this unpleasant feature, we recall t
QQM20 one can choose quaternionic phases so that the Hamiltonian operatorH acts on ann-fold
degenerate set of its eigenstatesuhl& as follows:

Huhl&5uhl&hi, hPR. ~15!

Thus, by doubling the dimension of the space, we get

D̄~e!5S 1 0

0 1D ; D̄~ t !5S 0 2 j

j 0 D . ~16!

This representation is clearly reducible, and splits into two irreducible inequivalent repres
tions, both of type I-R, whenever the following basis change is performed:

1

&

S 1 2 j

2 j 1 D S 0 2 j

j 0 D 1

&

S 1 j

j 1D 5S 1 0

0 21D . ~17!

However,H is no longer diagonal in the new basis:

1

&

S 1 2 j

2 j 1 D hS i 0

0 i D 1

&

S 1 j

j 1D 5hS 0 k

k 0D . ~18!

B. Case I-C/R (n51)

G5$e,t2%, G85$e,t,t2,t3%, t45e.
The representationD(G8) is generated byD(t)5 j and turns out easily to be of type I-C/R

indeed(G8x̂(g
2)50 and(G8x̂

2(g)5251/2[G8].

C. Case I-C/C (n52)

G is generated by the subgroupC4 of the two-dimensional rotation group, and the tim
inversion operatort commutes with it:

D~G!5H S eifm 0

0 e2 ifm
D :fm5m

p

2
, m50,1,2,3J , D~ t !5S 0 j

j 0D . ~19!

We note thatD(t2)521. However, an elementt8 exists inG8, which commutes withG8 and is
such thatD(t82)511:

D~ t8!5S i 0

0 2 i D S 0 j

j 0D 5S 0 k

2k 0D . ~20!

Now, an analysis of the characters of this representation shows that

(
G8

x̂~g2!50, (
G8

x̂2~g!5@G8#,

and these values can only occur for a reducible representation which is a sum of two inequ
Q-irreps of type C:D(G8);C1C. Analogously, the same calculation forG shows thatD(G)
splits into two equivalentQ-irreps of type C:D(G);2C. Thus,D(G8) decomposes into a direc
sum of two~inequivalent! Q-irreps of type I-C/C.
J. Math. Phys., Vol. 38, No. 2, February 1997
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The explicit reduction is obtained by means of the following change of basis:

D→TDT21 where T5
1

&

S 1 k

1 2kD ,
which yields, for instance,

S eiw 0

0 e2 iwD→eiw1, S 0 j

j 0D→S 2 i 0

0 i D , S 0 k

2k 0D→S 1 0

0 21D . ~21!

Note thatT does not commute with the Hamiltonian~see Eq.~15!!:

H→THT215hS 0 i

i 0D . ~22!

D. Case I-Q/Q (n52)

G is generated by a subgroup of the three-dimensional rotation group, and the time-inv
operatort commutes with it:

D~G!5H 61,6S 0 i

i 0D ,6S i 0

0 2 i D ,6S 0 1

21 0D J , D~ t !5S 0 j

2 j 0D . ~23!

As usual, we perform the character analysis in order to classify this representation. We o
being now [G8]51652[G],

(
G

x̂~g2!52@G#, (
G

x̂2~g!5@G#,

and

(
G8

x̂~g2!52@G8#, (
G8

x̂2~g!5
1

2
@G8#

~indeed, the terms belonging to the cosettG have in the first sum the same sign of the correspo
ing terms inG, sinceD(t2)51, while they do not contribute to the second sum because al
matrices are off-diagonal!. We can therefore conclude by recalling the generalized Froben
Schur criterion ~see Eq.~3!! and the quaternionic irreducibility criterion~see Eq.~1!! that
D(G8);Q1Q and D(G);2Q, i.e., the representation above splits into two~inequivalent!
Q-irreps of type I2Q/Q.

The explicit reduction is obtained by means of the following change of basis:

D→D85UDU21 where U5
1

2 S 12 i j2k

11 i 2 j2kD and U215
1

2 S 11 i 12 i

2 j1k j1kD ,
which yields

D8~G!5$61,6 i1,6 j1,6k1%, D8~ t !5S 1 0

0 21D , ~24!

while the Hamiltonian~see Eq.~15!! transforms as follows:
J. Math. Phys., Vol. 38, No. 2, February 1997
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H85hS 0 1

21 0D . ~25!

E. Case III-C (n54)

Let G be the same group considered in the previous example:

D~G!55 61,6S 0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

D ,6S i 0 0 0

0 2 i 0 0

0 0 i 0

0 0 0 2 i

D ,6S 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

D 6 ,
~26!

D~ t !5S 0 0 0 j

0 0 2 j 0

0 2 j 0 0

j 0 0 0

D .
The character analysis yields in this case

(
G

x̂~g2!522@G#, (
G

x̂2~g!54@G#,

and

(
G8

x̂~g2!50, (
G8

x̂2~g!52@G8#

~indeed the terms intG and the ones inG contribute to the first sum with opposite signs, bei
now D(t2)521!. It follows easily thatD(G8);2C andD(G);4Q, i.e.,D(G8) splits into the
sum of two~equivalent! Q-irreps of type III-C.

The explicit reduction of our representation can be easily carried out in two steps. Firs
make a basis transformation by means of the matrix

Û5SU 0

0 U D ,
whereU is the same introduced in the example D, so that we obtain

D8~G!5$61,6 i1,6 j1,6k1%, D8~ t !5S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D . ~27!

Second, we perform another change of basis by means of the matrix

V5
1

& S 1 0 0 21

0 1 21 0

1 0 0 1

0 1 1 0

D .
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This leavesD8(G) unchanged, while

D8~ t !→D9~ t !5
1

& S 1 0 0 21

0 1 21 0

1 0 0 1

0 1 1 0

D S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D 1

& S 1 0 1 0

0 1 0 1

0 21 0 1

21 0 1 0

D
5S 0 21 0 0

1 0 0 0

0 0 0 1

0 0 21 0

D . ~28!

Note that the Hamiltonian~Eq. ~15!! assumes the following form in the final basis:

H95hS 0 0 0 1

0 0 21 0

0 1 0 0

21 0 0 0

D . ~29!

We conclude this Section stressing the fact that in all cases considered here the time-in
operator has just the form introduced by Adler14 in the framework of QQM.

VI. THE KRAMERS DEGENERACY

We would like to close this paper with some remarks about the degeneracy of energy
whenever a time-reversal symmetry occurs.

As we have recalled in the Introduction, the Kramers theorem10 applies in the context of
complex quantum mechanics, which states that all energy levels of a fermionic system mus
least doubly degenerate in the case that we are considering. Therefore, the question arises
or not any new degeneracy is brought in by the time-reversal symmetry; then, the following
I summarizes the effect of this symmetry on degeneracy.10

The entries on the left refer to the FS classification ofthe restriction of D to the subgroup G
~by abuse of language, we say that ‘‘D(G);11,0,21’’ even whenD(G) reduces to a sum of two
C-irrepsD, D̄ of type 11,0,21, respectively!; moreover, the letters in parentheses refer to
examples of the preceding Section, placing the corepresentations of each group in the app
cell of the Table.9

In order to obtain the results in Table I without resorting to tedious calculations on the s
eigenfunctions, one can exploit fully the properties of corepresentations of magnetic, or, i
ticular, factorizable groups~we recall that only these latter groups contain the time-invers
operator not multiplied with a spatial symmetry!. For instance, one can note that the corepres
tations of the groups in the Examples A and D are of Wigner type I~see Sect. III!, so thatD(G8)

TABLE I. Effect of time-reversal symmetry on degeneracy in CGR theory.

Frobenius–Schur
class Integral spin Half-integral spin

D(G);11 No extra degeneracy~A! Doubled degeneracy~B!
D(G);0 Doubled degeneracy~C! Doubled degeneracy~C!
D(G);21 Doubled degeneracy~E! No extra degeneracy~D!
J. Math. Phys., Vol. 38, No. 2, February 1997
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andD(G) have the same dimension, whereas the corepresentations in the other examples
Wigner type II or III, so that the dimension ofD(G8) is twice the dimension ofD(G).7,9 More-
over, one can observe thatD(G) in Examples A and B is manifestly real, and so on.

Now, let us consider the same problem in QQM and let us examine Examples A and
Sect. V, which now refer to fermionic and bosonic systems, respectively~unlike the CGR case, se
Table I!. These examples are characterized by the lowest possible spatial symmetry, and w
forced, in case A, to replaceD(G) @Eq. ~14!# by the two-dimensional representationD̄(G) @Eq.
~16!# in order to endow the operatort with a physical interpretation. We can thus conclude that
presence of a time-reversal symmetry implies a twofold degeneracy of energy levels of ferm
systems, just like it occurs in CGR theory, because of the Kramers theorem.

When there are higher spatial symmetries, a more careful analysis is needed, which m
all the previous results in QGR theory.

First, for any fixed spin, there is a one-to-one mapping between the crossed classifica
the representationD(G8) and the generalized FS classification ofD(G) ~see Sect. III!, which is
exhibited in the following Table II.

We can thus say, according to Table II, that whenever one considers a bosonic syste
extends a spatial symmetry groupG such thatD(G);R by means of the time-reversal invarianc
then a representation of type I-C/R of the magnetic group is generated, and so on.

Second, we recall that in the discussion of examples A, C, D and E a doubling of dimensions
was needed. It is noteworthy that this doubling arises as a direct and unavoidable consequ
the properties of representations. Indeed, let us consider the case I-R; because of the re
Sect. II, in a basis in which an irreducible Q-representationD(G8) ~henceD(G)! is real, any
operator commuting withD(G) is a quaternionic multiple of the identity, hence it must al
commute withD(G8), so that no representation of a magnetic group can contain only one r
sentation of type I-R. Let us consider the case I-C/C; then, an analogous proof can be carri
for in any basis in which an irreducibleD(G8) ~henceD(G)! is complex, all operators commutin
with D(G) ~i.e., all the complex multiples of the identity! must also commute withD(G8), so that
such aD(G8) cannot contain a time-inversion operator. Finally, let us consider the case III-
this caseD(G);2Q, and one obtains by a straightforward calculation that an anti-self-ad
operatorH commutes withD(G) if and only if it has the form

H5S 0 b1

2b1 0 D , bPR. ~30!

But such an operator coincides, up to a constant, withD(t) ~see Eq.~8! and note that in the cas
III-C one hasD~t2!521!. By doubling the dimension, the example shows that this feature di
pears, so that, in conclusion, allQ-irreps of magnetic groups of type III-C must occur twice in
physical examples.

The situation for Example D~case I-Q/Q! is very different. Indeed, as we have already sho
in Sect. II, no representation of type Q can commute with an anti-self-adjoint operator. This a
with a result by Adler21 that states that all matrix elements of an operator commuting wi
HamiltonianH of the form ~15! with hÞ0 must be complex, whether the representation

TABLE II. Relation between the forms ofD(G) andD(G8).

Generalized
FS class

D(G8) for
integral spin

D(G8) for
half-integral spin

D(G);R I-C/R I-R
D(G);C I-C/C I-C/C
D(G);Q III-C I-Q/Q
J. Math. Phys., Vol. 38, No. 2, February 1997
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reducible or not. On the other hand, the final remark in Sect. II and Eq.~4! show that the problem
disappears ifD(G);2Q. Thus, the doubling of dimension guarantees in this case thatH com-
mutes withD(G), and, as example D shows explicitly, no further doubling is needed in ord
guarantee the anticommutation betweenD(tG) andH.

We can thus conclude that, whenever a given symmetry group is extended with the
reversal invariance, a doubling of dimension~i.e., of degeneracy! arises in cases I-R, I-C/C an
III-C, while no extra degeneracy occurs in cases I-C/R and I-Q/Q. These results are summ
in the following Table III.

By comparing Table I with Table III~and also taking into account the relation betwe
Q-irreps andC-irreps discussed in Sect. II! one gets that QGR theory completely agrees, w
regard to the Kramers degeneracy, with the CGR theory, which in turn agrees with the sp
scopic data.

1G. Frobenius and I. Schur, Berl. Berichte8, 186 ~1906!.
2M. Hamermesh,Group Theory~Addison–Wesley, Reading, MA, 1962!.
3E. P. Wigner,Group Theory~Academic, New York, 1959!, Sec. 24.
4R. Ascoli, C. Garola, L. Solombrino, and G. C. Teppati, inPhysical Reality and Mathematical Description, edited by C.
P. Enz and J. Mehra~Reidel, Dordrecht, 1974!, p. 239.

5F. J. Dyson, J. Math. Phys.3, 1199~1962!.
6See Ref. 3, Sec. 26.
7C. Garola and L. Solombrino, J. Math. Phys.22, 1350~1981!.
8C. J. Bradley and B. L. Davies, Rev. Mod. Phys.40, 359 ~1968!.
9C. Garola and L. Solombrino, J. Math. Phys.26, 1889~1985!.
10M. Tinkham,Group Theory and Quantum Mechanics~McGraw–Hill, New York, 1964!.
11S. L. Adler,Quaternionic Quantum Mechanics and Quantum Fields~Oxford University, New York, 1995!.
12G. Scolarici and L. Solombrino, Int. J. Theor. Phys.34, 2491~1995!.
13M. A. Jaswon and M. A. Rose,Crystal Symmetry~Ellis Horwood, Chichester, 1983!.
14See Ref. 11, Secs. 4.6 and 4.7.
15M. L. Curtis,Matrix groups~Springer-Verlag, New York, 1979!.
16D. Finkelstein, J. M. Jauch, S. Sciminovich, and D. Speiser, J. Math. Phys.3, 207 ~1962!.
17D. Finkelstein, J. M. Jauch, and D. Speiser, J. Math. Phys.4, 136 ~1963!.
18G. Scolarici, ‘‘Rappresentazioni quaternioniche dei gruppi,’’ Thesis, University of Lecce, Italy, 1994.
19See Ref. 11, Sec. 4.3.
20See Ref. 11, Sec. 2.5.
21See Ref. 11, Sec. 3.5.

TABLE III. Effect of time-reversal symmetry on degeneracy in QGR theory.

Generalized FS class Integral spin Half-integral spin

D(G);R No extra degeneracy~B! Doubled degeneracy~A!
D(G);C Doubled degeneracy~C! Doubled degeneracy~C!
D(G);Q Doubled degeneracy~E! No extra degeneracy~D!
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Representations of Uh(su(N)) derived from quantum flag
manifolds

Pavel Šťovı́čeka),b) and Reidun Twarock
Arnold Sommerfeld Institute, TU Clausthal, Leibnizstrasse 10,
D-38678 Clausthal-Zellerfeld, Germany

~Received 12 March 1996; accepted for publication 1 August 1996!

A relationship between quantum flag and Grassmann manifolds is revealed. This
enables a formal diagonalization of quantum positive matrices. The require-
ment that this diagonalization defines a homomorphism leads to a left
Uh„su(N)…-module structure on the algebra generated by quantum antiholomor-
phic coordinate functions living on the flag manifold. The module is defined by
prescribing the action on the unit and then extending it to all polynomials using a
quantum version of the Leibniz rule. The Leibniz rule is shown to be induced by
the dressing transformation. For discrete values of parameters occurring in the
diagonalization one can extract finite-dimensional irreducible representations of
Uh„su(N)… as cyclic submodules. ©1997 American Institute of Physics.
@S0022-2488~97!01401-1#

I. INTRODUCTION

Flag manifolds were quantized already some time ago.1,2 Also some other types of homoge
neous spaces were treated including Grassmann manifolds.3–6 Moreover, the quantization can b
described in a unified way for all types of coadjoint orbits regarded as complex manifolds a
all simple compact groups from the four principal series.7 Quantum homogeneous spaces we
related to representations and co-representations when taking various points of view like
induced representations, utilizingq-difference operators, etc.8–11Other aspects are of interest, to
like applications to physical models and differential geometry.12–15 In fact, we just succeeded t
quote only a small part of the contributions related to this subject~cf. Ref. 16!.

In a recent paper,17 carrier spaces of representations ofUh„su(N)… were realized as subspace
in the algebra generated by quantum coordinate functions on the flag manifold. The particula
of SU~3! was treated in an analogous way in Ref. 18. Our goal is to derive a similar descr
but by taking a different approach and presenting some additional results, too. Also the ob
formulas are optically somewhat different though necessarily convertible one into each
While the method of Ref. 17 is based on a decomposition of the universalR-matrix19–21we start
directly from the quantized flag manifold.

Before explaining main features of our approach let us devote a couple of words t
classical case. Quantum flag manifolds can be viewed as quantized orbits of the classical d
transformation of SU(N) acting on its solvable dualAN.22,23The solvable groupAN comes from
the Iwasawa decomposition SL~N,C!5SU(N)•AN and is formed by unimodular upper-triangul
matrices having positive diagonals. To make the structure of dressing orbits more transpare
can use the bijection sendingLPAN to a unimodular positive matrixM5L*L. The dressing
action on positive matrices becomes just the unitary transformationM°U*MU and thus the
orbits are determined by sets of eigenvalues. We attempted to find a quantum analog
procedure.

To diagonalize quantum positive matrices we needed, first of all, to reveal a relatio

a!Humboldt Fellow.
b!On leave of absence from Department of Mathematics, Faculty of Nuclear Science, CTU, Prague, Czech Repu
0022-2488/97/38(2)/1161/22/$10.00
1161J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics
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between quantum flag and Grassmann manifolds. It is quite straightforward to see that the
tum Grassmannians are embedded into and jointly generate the quantum algebra related to
manifold. Also the constraints reducing the number of generators obtained this way are e
find. What is less obvious are cross commutation relations between different Grassmannia
decomposition of the quantum flag manifold into Grassmann manifolds induces a diagonali
of quantum positive matrices provided a set of parameters~eigenvalues! has been chosen. Th
requirement that this diagonalization defines a homomorphism fromAq(AN) onto the quantum
flag manifold leads to a leftUh„su(N)…-module structure on the subalgebra of the latter alge
generated by quantum ‘‘antiholomorphic’’ functions. The module is defined by prescribing
action on the unit and then extending it to all polynomials in noncommutative variables~quantum
antiholomorphic coordinate functions! using a recursive rule, an idea utilized already in Ref.
Moreover, we prove that this recursive rule follows from the quantum dressing transform
making the role of the dressing transformation quite explicit. Up to this point, we employe
Faddeev–Reshetikhin–Takhtajan~FRT! description of deformed enveloping algebras.25 However,
this result enables us to transcribe, quite straightforwardly, all expressions in terms of Che
generators, too. Let us note that in Ref. 17 only the FRT picture has been treated.
dimensional irreducible representations ofUh„su(N)… are then easily obtained as cyclic submo
ules with unit as the cyclic vector and, at the same time, the lowest weight vector.

We have just explained the basic ideas following the structure of the paper. Let us summ
that the notation is introduced and some preliminary facts are reviewed in Sec. II, the relatio
between quantum flag and Grassmann manifolds is described in Sec. III, the
Uh„su(N)…-module structure on the quantum flag manifold is derived in Sec. IV, the role o
quantum dressing transformation is revealed in Sec. V, and Sec. VI is devoted to the transc
of all formulas in terms of Chevalley generators as well as to finite-dimensional irredu
representations ofUh„su(N)….

II. PRELIMINARIES AND NOTATION

Let us recall some basic and well-known facts related to the quantum group SUq(N) and the
deformed enveloping algebraUh„su(N)…,

26–28introducing this way the notation. The deformatio
parameter isq5e2h, with hPR ~or one can consider, too,h as a formal variable but real like, i.e
h*5h, and to work with the ringC†[h] ‡!.

The*-Hopf algebra of quantum functions living on SU(N) is denoted byAq„SU(N)… andU
stands for the definingN3N vector corepresentation. The symbols« andD designate everywhere
the counit and the comultiplication, respectively, for any Hopf algebra under consideration a
use Sweedler notation~a summation is understood!

DY5Y~1! ^Y~2! .

Thus

R12U1U25U2U1R12, detq U51, U*5U21,
~2.1!

«~U !5I , DU5U ^̇U.

Here we define, as usual, (A^̇B) jk :5(sAjs^Bsk and (A* ) jk :5(Akj)* .
The R-matrix acting in CN^CN and obeying the Yang–Baxter~YB! equation

R12R13R235R23R13R12 is given by

Rjk,st :5d jsdkt1~q2qsgn~k2 j !!d j tdks . ~2.2!
J. Math. Phys., Vol. 38, No. 2, February 1997
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In what follows we identify linear operators inCN ~and its tensor products! with their matrices in
the standard basis$e1 ,e2 ,...,eN%. In tensor products the lexicographical ordering is assumed.
R-matrix verifies the relations

Rq215Rq
21, R12

t 5R21[PR12P, ~2.3!

and Hecke condition

~q2q21!P5R122R21
215R212R12

21. ~2.4!

HereP,Pjk,st :5d j tdks , is the flip operator.
The*-Hopf algebraUh„su(N)… is generated by Chevalley generatorsq6Hj ,Xj

1 ,Xj
2 , 1< j<N

21, and is determined by the relations

@qHj ,qHk#50, qHjXk
65Hq62

q71

1
JXk6qHj, for H j5k,

u j2ku51,
u j2ku>2,

@Xj
1 ,Xk

2#5d jk~q
Hj2q2Hj !/~q2q21!, ~2.5!

~Xj
6!2Xk

62~q1q21!Xj
6Xk

6Xj
61Xk

6~Xj
6!250, for u j2ku51,

@Xj
6 ,Xk

6#50, for u j2ku>2,

and

~q6Hj !*5q6Hj , ~Xj
6!*5Xj

7 . ~2.6!

Furthermore,

«~q6Hj !51, «~Xj
6!50,

~2.7!
D~q6Hj !5q6Hj ^q6Hj , D~Xj

6!5Xj
6

^q2Hj /21qHj /2^Xj
6 .

There exists another description ofUh„su(N)… due to Faddeev–Reshetikhin–Takhtajan25

which can be reinterpreted as the quantization of the generalized dual of SU(N), namely, the
solvable groupAN coming from the Iwasawa decomposition SL~N,C!5SU(N)•AN. The*-Hopf
algebraAq(AN) is generated by entries of the upper triangular matrixL5~ajk! and its adjointL*
and is determined by the relations

R12L1L25L2L1R12, L1*R12
21L25L2R12

21L1* ,

a j j*5a j j , )
j51

N

a j j51, «~L!5I , DAN~L!5L ^̇ L. ~2.8!

The *-algebrasUh„su(N)… andAq(AN) can be identified by an isomorphism which is give
explicitly in terms of generators (1< j<N21)

qHj5a j j
21a j11,j11 ,

~q2q21!Xj
152q21/2~a j ja j11,j11!

21/2a j , j11* , ~2.9!

~q2q21!Xj
252q21/2~a j ja j11,j11!

21/2a j , j11 .
J. Math. Phys., Vol. 38, No. 2, February 1997
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We note that the diagonal elementsaj j mutually commute anda j ja j11,j11 commutes withaj , j11.
HoweverUh„su(N)… andAq(AN) are opposite as coalgebras. Thus one has to be careful a
the comultiplication and this is why we emphasized its origin in~2.8!. To avoid any ambiguity,
throughout the textD is always assumed to come fromUh„su(N)… rather than fromAq(AN).

It turns out as more convenient to work with the*-algebraÃd,Aq(AN) generated by entries
of the matrixM :5L*L rather than directly withAq(AN). It is straightforward to see thatÃd is
determined by the relations

M2R12
21M1R21

215R12
21M1R21

21M2 , M*5M . ~2.10!

In fact, one is not losing that much as the algebraAq(AN) can be, in principle, again recovere
from Ãd when decomposingM into a product of lower and upper triangular matrices~cf. Propo-
sition 3.2 in Ref. 6!.

An important feature is the duality betweenUh„su(N)… andAq„SU(N)… expressed in terms
of a nondegenerate pairing. The both structures are combined according to the rules

^X, f g&5^X~1! , f &^X~2! ,g&, ^XY, f &5^X, f ~1!&^Y, f ~2!&, ~2.11!

with DX5X(1)^X(2), D f5 f (1)^ f (2), and

^X,1&5«~X!, ^1,f &5«~ f !. ~2.12!

The pairing can be described explicitly in terms of generators. LetEjk be the matrix units acting
as rank-one operators:Ejkv:5(ek ,v)ej ~the indices should not be confused with the leg notat
referring to tensor products!. Then we have

^q6Hj ,U&5q6~Ej j2Ej11,j11!, ^Xj
1 ,U&5Ej , j11 , ^Xj

2 ,U&5Ej11,j . ~2.13!

In the FRT picture we have

^L1 ,U2&5R21
21, ^L1* ,U2&5R12

21. ~2.14!

To describe a relationship between quantum flag and Grassmann manifolds we shall n
following family of orthogonal projectors. LetE(m) be the matrix corresponding to the orthogon
projector inCN onto span$e1 ,...,em% and setF (m):5I2E(m). Thus

E~m!5 (
j<m

Ej j , F ~m!5 (
j.m

Ej j ;

particularly, E~0!50, E(N)5I . Quite important is the following relation betweenE(m) and the
R-matrix,

E1
~m!R125E1

~m!R12E1
~m! , ~2.15a!

and consequently,

R12E2
~m!5E2

~m!R12E2
~m! , R12F1

~m!5F1
~m!R12F1

~m! , F2
~m!R125F2

~m!R12F2
~m! . ~2.15b!

Observe also that

E1
~m!F2

~m!R125E1
~m!F2

~m! , ~2.16!

and
J. Math. Phys., Vol. 38, No. 2, February 1997
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E1
~m!E2

~m!R125R12E1
~m!E2

~m! , F1
~m!F2

~m!R125R12F1
~m!F2

~m! . ~2.17!

III. QUANTUM FLAG AND GRASSMANN MANIFOLDS

There is a standard way of introducing local holomorphic coordinate functions on hom
neous spaces SU(N)/S„U(m1)3•••3U(mk)…, (mj5N, which is given by Gauss decompositio
This coordinate system is well defined on the so-called big cell~the unique cell of the top
dimension in the cell decomposition! which covers the whole manifold up to an algebraic sub
The coordinate functions appear as entries of a block upper-triangular matrixN with unit blocks
on the diagonal. The structure of the blocks depends on the type of the homogeneous spa
quantization procedure for the algebra of~anti!holomorphic functions living on the big cell ha
been performed successfully in many particular cases.1,2,6,9But there is a unified and compact wa
of writing down the commutation relations which is valid for any homogeneous space of the a
type, namely7

R12Q12
21
N 1Q12N 25Q21

21
N 2Q21N 1R12, ~3.1!

where the matrixQ is obtained fromR by annulating some entries in dependence on the conc
homogeneous space in question. Let us specialize~3.1! to flag and Grassmann manifolds.

In the case of the flag manifold,N is simply an upper-triangular matrix with units on th
diagonal and we redenote it asZ,

Z5~z jk!, 1< j ,k<N, with z j j51, z jk50 for j.k, ~3.2!

andQ5diag(R), diag(R)jk,st 5 qdjkdjsdkt . As diag(R) commutes withR it is possible to simplify
~3.1!,

R12Z1 diag~R!Z25Z2 diag~R!Z1R12. ~3.3!

One can rewrite~3.3! in terms of matrix entries,

qdksz jszkt2qd j tzklz js5~qsgn~k2 j !2qsgn~s2t !!qd jszksz j t . ~3.4!

The relations~3.3! @or ~3.4!# define an algebra of quantum holomorphic functions generated
zjk , 1< j,k<N, and denoted here byF hol while the adjoint relations define an algebra
quantum antiholomorphic functions generated byz jk* , 1< j,k<N, and denoted byF ahol.

In the case of the Grassmann manifold formed bym-dimensional subspaces inCN, 1<m<N
21, N has the block structure given by

N 5S I Z~m!

0 I D , with Z~m!5~zjk
~m!!, 1< j<m,m11<k<N. ~3.5!

Thus the dimension of the blockZ(m) ism3(N2m). Here and everywhere in what follows we d
not specify the dimensions of zero, and unit blocks for all cases are determined implicitly
unambiguous way. We set also

c~m!:5S 0 Z~m!

0 0 D , ~3.6!

so thatN 5I1c(m) and c(m)5E(m)c(m)F (m). Whenever convenient we shall define bothc~0! and
c(N) as zero matrices. The matrixQ is now related toR according to@cf. ~2.15!#

Q12:5E2
~m!R12E2

~m!1F2
~m!R12F2

~m!5R12E2
~m!1F2

~m!R12. ~3.7a!
J. Math. Phys., Vol. 38, No. 2, February 1997
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1166 P. Šťovı́ček and R. Twarock: Quantum flag manifolds

¬¬¬¬¬¬¬¬¬¬
It holds also true that

Q125E1
~m!R12E1

~m!1F1
~m!R12F1

~m!5E1
~m!R121R12F1

~m! ~3.7b!

andQq
21 5 Qq21. To simplify ~3.1! it suffices to multiply this relation byE1

(m)E2
(m) from the left,

to use~2.15!, ~2.17!, and~3.7!, and to observe thatE(m)N 5E(m)1c(m). The result is

R21~E1
~m!1c1

~m!!R12~E2
~m!1c2

~m!!5~E2
~m!1c2

~m!!R21~E1
~m!1c1

~m!!R12. ~3.8!

In fact, this relation is equivalent to6

R21
@m#Z1

~m!Z2
~m!5Z2

~m!Z1
~m!R12

@N2m# , ~3.9!

whereR[m] stands for them23m2 R-matrix related to the quantum group SUq(m) andR
[1] :5q.

One can rewrite~3.8! in terms of entrieszjk
(m),

zjk
~m!zst

~m!2zst
~m!zjk

~m!5~qsgn~ j2s!2qsgn~k2t !!zsk
~m!zjt

~m! . ~3.10!

For a givenm, 1<m<N21, the relations~3.8! @or ~3.9! or ~3.10!# define an algebra of quantum
holomorphic functions generated byzjk

(m), 1< j<m,k<N, and denoted byG hol
(m) while the adjoint

relations define an algebra of quantum antiholomorphic functions generated byzjk
(m)* , 1< j<m

,k<N, and denoted byG ahol
(m) .

The main goal of this section is to expressF hol in terms ofG hol
(m) , 1<m<N21 ~and analo-

gously for the antiholomorphic versions!. It is quite straightforward to embed the algebrasG hol
(m)

into F hol as well as to find the constraining relations~the algebrasG hol
(m) are not mutually inde-

pendent as subalgebras inF hol!. A more difficult problem is to determine the cross commutat
relations betweenG hol

(m) and G hol
(n) for mÞn. We introduce some additional notation used on

locally in this section and only for the sake of derivation of these relations. Set

X ~m!:5ZE~m!5E~m!ZE~m!, X̄ ~m!:5Z21E~m!5E~m!Z21E~m!, Y ~m!:5E~m!ZF ~m!.
~3.11!

Thus we haveE(m)Z5X (m)1Y (m) and

Z21E~m!Z5X̄ ~m!~X ~m!1Y ~m!!, E~m!5X̄ ~m!X ~m!5X ~m!X̄ ~m!. ~3.12!

Next we will rewrite the commutation relation~3.3! in terms ofX (m) andY (m).
Lemma 3.1: Assume that0<m<n<N. It holds true that

R21
21
X 1

~m! diag~R!X 2
~n!5X 2

~n! diag~R!X 1
~m!R21

21E1
~m! , ~3.13!

R21
21
X 1

~m! diag~R!Y2
~n!5Y2

~n!
X 1

~m! , ~3.14!

E1
~m!R12Y1

~m! diag~R!X 2
~n!5X 2

~n! diag~R!Y1
~m!R12F1

~m!E2
~n! , ~3.15!

E1
~m!R12Y1

~m! diag~R!Y2
~n!5Y2

~n!
Y1

~m!R121~q2q21!X 2
~n!F2

~m!
Y1

~m!F1
~n!P. ~3.16!

Proof: To derive~3.13!–~3.16! it suffices to multiply the equation~3.3! by E1
(m)E2

(n) from the left
in all cases and byE1

(m)E2
(n) ,E1

(m)F2
(n) ,F1

(m)E2
(n) ,F1

(m)F2
(n), respectively, from the right. One has t

employ~2.15!–~2.17! and, where convenient,~2.4! to commute the projectors with theR-matrix,
getting consequently, for example,

E1
~m!E2

~n!R125E1
~m!E1

~n!E2
~n!R125E1

~m!R12E1
~m!E2

~n!
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~in all cases! and similar relations like

R12E1
~m!F2

~n!5E1
~m!F2

~n!1~q2q21!PE1
~m!F2

~n!

@in the case of~3.14!#. Note also thatX (m)5X (n)E(m), etc. We omit further details. j

We shall need also the following lemma whose verification is quite easy.
Lemma 3.2: It holds true that

E1
~n!R12

61F1
~n21!5diag~R!61E1

~n!F1
~n21! , F2

~n21!R12
61E2

~n!5diag~R!61E2
~n!F2

~n21! , ~3.17!

and consequently,

m>n⇒R12
61E1

~m!F1
~m21!E2

~n!F2
~n21!5diag~R!61E1

~m!F1
~m21!E2

~n!F2
~n21! . ~3.18!

Evidently,

mÞn⇒diag~R!61E1
~m!F1

~m21!E2
~n!F2

~n21!5E1
~m!F1

~m21!E2
~n!F2

~n21! . ~3.19!

Proposition 3.3: The algebrasG hol
(m) , 1<m<N21, are embedded intoF hol via the equalities

(abusing notation, the lhs should be understood as the result of the embedding)

E~m!1c~m!5Z21E~m!Z. ~3.20!

Moreover, being embedded intoF hol , the subalgebrasG hol
(m) generate jointlyF hol for one can

express

Z5 (
m51

N

F ~m21!~E~m!1c~m!!5I1 (
m51

N21

F ~m21!c~m!. ~3.21!

Thus, on the other hand, F hol is isomorphic to the algebra generated by the entries of the blo
Z(m), 1<m<N21, and determined by the relations

1<m,n<N21⇒~E~m!1c~m!!~E~n!1c~n!!5E~m!1c~m!, ~3.22!

1<m<n<N21⇒R21~E1
~m!1c1

~m!!R12~E2
~n!1c2

~n!!5~E2
~n!1c2

~n!!R21~E1
~m!1c1

~m!!R12.
~3.23!

Remarks:~1! The equality~3.20! makes sense also form50 andm5N when it reduces to the
trivial identities050 and I5I , respectively. A similar remark applies also for other equalities

~2! Note that

Z21E~m!Z5E~m!Z21E~m!Z and Z21E~m!ZE~m!5Z21ZE~m!5E~m!,

and thus the rhs of~3.20! has the same structure of blocks as the lhs. Furthermore, the inv
relation ~3.21! follows immediately from the fact that diag~Z!5I and so

F ~m21!Z21E~m!5F ~m21!E~m!5E~m!2E~m21!,

which implies

F ~m21!~E~m!1c~m!!5~E~m!2E~m21!!Z.

~3! Equation~3.22! can be rewritten in a way coinciding formally with the classical constra
J. Math. Phys., Vol. 38, No. 2, February 1997
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m,n⇒~ I Z~m!!S 2Z~n!

I D50, ~3.24!

and, in fact, it reduces the number of generators. Observe also that it holds trivially true, ju
the structure of blocks@cf. ~3.6!#, that

m<n⇒~E~n!1c~n!!~E~m!1c~m!!5E~m!1c~m!. ~3.25!

~4! Equation~3.23! for m5n reproduces the defining relation~3.8! of G hol
(m) and form,n

gives the desired cross commutation relations between different quantum Grassmannians
Proof: We assume thatm<n and write, for simplicity of notation,X instead ofX (m), X 8

instead ofX (n), and similarly forY ,Y 8,E,E8, etc. Thus we have, for example,EE85E8E5E.
Let us first show that the matricesc(m) defined by the rhs of~3.20! verify ~3.22!. Since

X1Y5E~X 81Y 8! and„X̄ ~X1Y !…25X̄ ~X1Y !, we have

~E1c!~E81c8!5X̄ ~X1Y !X̄ 8~X 81Y 8!5X̄EX 8X̄ 8~X 81Y 8!X̄ 8~X 81Y 8!

5X̄ ~X1Y !5E1c.

Next we will show that the same matricesc(m) verify also~3.23!. One can derive successive

diag~R!Y1R12F1X̄ 28Y285X̄ 28E1R12Y1 diag~R!Y28 by ~3.15!

5X̄ 28Y28Y1R121~q2q21!E28F2Y1F18P by ~3.16!,

whence@diag(R)21F2E15F2E1#

X̄ 1Y1R12F1X̄ 28Y285X̄ 1 diag~R!21X̄ 28Y28Y1R121~q2q21!X̄ 1Y1F18E28F2P. ~3.26!

Furthermore,

X̄ 1 diag~R!21X̄ 28Y28X 15X̄ 1 diag~R!21X̄ 28R21
21
X 1 diag~R!Y28 by ~3.14!

5X̄ 1 diag~R!21E28 diag~R!X 1R21
21E1X̄ 28Y28 by ~3.13!

5E1E28R21
21E1X̄ 28Y285R21

21E1X̄ 28Y28 ,

whence

X̄ 1 diag~R!21X̄ 28Y285R21
21
X̄ 28Y28X̄ 1 . ~3.27!

The combination of~3.26! and ~3.27! yields ~c5X̄Y !

c1R12F1c285R21
21c28c1R121~q2q21!c1F18E28F2P.

This relation can be rewritten as

R21c1R12c285c28R21c1R121~q2q21!R21c1E2c18P1~q2q21!R21c1F18E28F2P.

To see this it suffices to notice~for c5EcF! that

F28R21E15E1F28 , F1R12F15F1R122~q2q21!F1E2P.

Next observe that~3.22! ~already proven! means
J. Math. Phys., Vol. 38, No. 2, February 1997
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cc85cF82Ec8.

Thus we arrive at~E5EE8!

R21c1R12c282c28R21c1R125~q2q21!~R21c1F18E28P2R21E1c18E2P!. ~3.28!

To pass from~3.28! to ~3.23! one can use that

R21E1R12E285E28R21E1R12E285E28R21E1R12

as well as

c28R21E1R122R21E1R12c2852~q2q21!R21E1c18E2P,

E28R21c1R122R21c1R12E285~q2q21!R21c1F18E28P.

The last two relations follow respectively from

R21E15E1R12
211~q2q21!E1E2P, E28R21E15R21E28E1 .

To complete the proof we have to consider, on the contrary, the algebra generated
entries of blocksZ(m), 1<m<N21, and determined by the relations~3.22! and ~3.23! and to
interpret the equality~3.21! as the defining relation forZ. Clearly,Z defined this way is uppe
triangular with units on the diagonal and

E~m!Z5 (
n51

m

F ~n21!~E~n!1c~n!!5Z~E~m!1c~m!!,

by ~3.22! and ~3.25! @F (n21)E(m)50 for n>m11#. Thus it remains to show that this matrixZ
verifies also~3.3!. Using ~3.17! one derives

R12Z1 diag~R!Z25 (
m51

N

(
n51

N

R12F1
~m21!~E1

~m!1c1
~m!!diag~R!F2

~n21!~E2
~n!1c2

~n!!

5 (
m51

N

(
n51

N

R12F1
~m21!F2

~n21!~E1
~m!1c1

~m!!R12~E2
~n!1c2

~n!!.

Split the last double sum into two pieces according to whetherm<n orm.n. Using~3.23! or its
equivalent

m>n⇒R12
21~E1

~m!1c1
~m!!R12~E2

~n!1c2
~n!!5~E2

~n!1c2
~n!!R21~E1

~m!1c1
~m!!R21

21,

one finds that this double sum equals
J. Math. Phys., Vol. 38, No. 2, February 1997
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((
m<n

R12F1
~m21!F2

~n21!R21
21~E2

~n!1c2
~n!!R21~E1

~m!1c1
~m!!R12

1((
m.n

R12F1
~m21!F2

~n21!R12~E2
~n!1c2

~n!!R21~E1
~m!1c1

~m!!R21
21

5(
m

F2
~m21!~E2

~m!1c2
~m!!diag~R!F1

~m21!~E1
~m!1c1

~m!!R12

1((
m,n

„R21
211~q2q21!P…F2

~n21!~E2
~n!1c2

~n!!diag~R!F1
~m21!~E1

~m!1c1
~m!!R12

1((
m.n

F2
~n21!~E2

~n!1c2
~n!!diag~R!F1

~m21!~E1
~m!1c1

~m!!„R122~q2q21!P…

5Z2 diag~R!Z1R12.

Here we have used repeatedly~3.17!–~3.19!; for example,

m,n⇒PF2
~n21!~E2

~n!1c2
~n!!diag~R!F1

~m21!~E1
~m!1c1

~m!!R12

5F1
~n21!F2

~m21!~E1
~n!1c1

~n!!R12~E2
~m!1c2

~m!!R21P

5F1
~n21!F2

~m21!~E2
~m!1c2

~m!!diag~R!~E1
~n!1c1

~n!!P,

and

m,n⇒R21
21F1

~m21!E1
~m!F2

~n21!E2
~n!5F1

~m21!E1
~m!F2

~n21!E2
~n! . j

IV. A CONSTRUCTION OF LEFT Uh(su(N))-MODULES

The goal of this section is to equip the algebraF ahol with the structure of a left
Uh„su(N)…-module depending on~N21! parameters. More precisely, here we will use the F
description and hence deal with the algebraÃd @more or less equivalent toAq(AN)# introduced
in Sec. II @cf. ~2.10!#. The module will be redefined in terms of Chevalley generators in Sec
Moreover, the number of parameters isN for the Ãd-module, but the expressions in Chevalle
generators will turn out to depend only on their ratios and so the number is reduced by one~as it
should be!.

Assume for a moment that we are able to quantize the big cell of the flag manifold wi
real analytic structure, which means to construct a* -algebraF generated jointly byzjk and zst*
~1< j,k<N, 1<s,t<N! and containing bothF hol andF ahol as its subalgebras. The strateg
would be then to find a~restriction! morphismc: Ãd→F giving F the structure of a left
Ãd-module and afterwards to factorize off the ‘‘holomorphic’’ generatorszjk and to identify the
factor-spaceF /^zjk& with F ahol . The morphismc is determined by its values on the generato
and thus it suffices to prescribe a matrixc(M )PMat~N,F ! obeying the corresponding relation
~2.10!. In what follows we shall abuse the notation by writing simplyM instead ofc(M ).
However, as observed already in Ref. 24, it is not necessary to know the structure of the a
F in full detail for successful derivation of the left module structure. A leftÃd-module onF ahol

will be defined by prescribing the action on the unit and then extending it to all polynomia
noncommutative variableszst* with the help of a recursive rule.

Ignoring the fact that we do not know the commutation relations between the holomorph
antiholomorphic generators, we will introduce projectorlike matrices, one for each Grass
J. Math. Phys., Vol. 38, No. 2, February 1997
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manifold (1<m<N21),

Q~m!:5S I

Z~m!* D ~ I1Z~m!Z~m!* !21~ I Z~m!!. ~4.1!

Note that

I2Q~m!5S 2Z~m!

I D ~ I1Z~m!*Z~m!!21~2Z~m!* I !. ~4.2!

We set also whenever convenientQ
~0!:50 andQ

(N):5I . It holds true that

Q~m!*5Q~m! and Q~m!Q~n!5Q~n!Q~m!5Q„min~m,n!…. ~4.3!

The second equality means that~I2Q
(m)!Q(n)50 for m<n and follows immediately from~4.1!,

~4.2!, and ~3.24!. A morphismc:Ãd→F is prescribed by postulating a diagonalization of t
quantum positive matrixM5L*L,

c~M !5j1Q
~1!1j2~Q

~2!2Q~1!!1•••1jN~ I2Q~n!!.

The construction of a leftÃd-module is based on the requirement that this prescription actu
defines a homomorphism.

Lemma 4.1: Assume that N real (or real like, i.e., fromR†[h] ‡,C†[h] ‡! and mutually differ-
ent parametersjm , 1<m<N, are given. The matrix

M5 (
m51

N

jm~Q~m!2Q~m21!! ~4.4!

verifies the relations [repeating (2.10)]

M2R12
21M1R21

215R12
21M1R21

21M2 , M*5M , ~4.5!

if and only if it holds

Q2
~m!R12

21M1R21
215R12

21M1R21
21

Q2
~m! , 1<m<N21. ~4.6!

Proof: ClearlyM*5M . Note that~4.3! means

~Q~m!2Q~m21!!~Q~n!2Q~n21!!5dmn~Q
~m!2Q~m21!!.

Multiply the first equality in~4.5! by ~Q(m)2Q
(m21)! from the left and by~Q(n)2Q

(n21)! from
the right to obtain

~jm2jn!~Q
~m!2Q~m21!!R12

21M1R21
21~Q~n!2Q~n21!!50.

The factor (jm2jn) can be canceled formÞn. The summation overn, withm being fixed, results
in

~Q~m!2Q~m21!!R12
21M1R21

215~Q~m!2Q~m21!!R12
21M1R21

21~Q~m!2Q~m21!!.

Here the rhs is self-adjoint (R12* 5 R21) and so the same is true for the lhs. This means that

~Q~n!2Q~n21!!R12
21M1R21

215R12
21M1R21

21~Q~n!2Q~n21!!. ~4.7!
J. Math. Phys., Vol. 38, No. 2, February 1997
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To get ~4.6! it suffices to sum the equalities~4.7! over n, 1<n<m. The opposite implication is
obvious since~4.6! means thatQ2

(m), 0<m<N, commute withR12
21M1R21

21 and so doesM2. j

The commutation relation betweenQ(m) andM implies a commutation relation betweenc(m)*

andM . This will provide us with the desired recursive rule@stated in~4.27! below#.
Lemma 4.2: The commutation relation (4.6) is equivalent to

~ I2F2
~m!R12c2

~m!*R12
21!M1R21

21~E2
~m!1c2

~m!* !5E2
~m!M1R21

21. ~4.8!

Furthermore, the matrix(I 2 F2
(m)R12c2

(m)*R12
21) is invertible and it holds true that

~ I2F2
~m!R12c2

~m!*R12
21!21E2

~m!5R12~E2
~m!1c2

~m!* !R212~q2q21!

3~E1
~m!1c1

~m!* !R12P~E1
~m!1c1

~m!* !. ~4.9!

Proof: In this proof we shall suppress the superscript (m). ~a! The relation~4.6! means that

~ I2Q2!R12
21M1R21

21
Q250.

From the structure ofQ @cf. ~4.1! and ~4.2!# one finds that this is equivalent to

~ I2E22c2* !R12
21M1R21

21~E21c2* !50

and hence

~F22c2* !R12
21M1R21

21c2*52~F22c2* !R12
21M1R21

21E2 . ~4.10!

Recall thatc*5Fc*E. Thus the both sides of~4.10! are invariant with respect to multiplication b
F2 from the left. Since@cf. ~2.15!#

F2R12
61F2R12

715F2 ,

the multiplication byF2R12 from the left results in an equivalent equality, namely,

~F22F2R12c2*R12
21!M1R21

21c2*52~F22F2R12c2*R12
21!M1R21

21E2 . ~4.11!

Now it suffices to observe thatF2R21
21c2* 5 R21

21c2* andF2R21
21E25R21

21E22E2R21
21 in order to

conclude that~4.11! coincides with~4.8!.
~b! In the lexicographically ordered basis,R12

61 is lower triangular~Rjk,st50 for j,s and
Rjk, j t5dktRk, j t!. It follows readily thatF2R12c2*R12

21 is lower triangular with vanishing diagona
and hence nilpotent and consequently (I 2 F2R12c2*R12

21) is invertible. It remains to show that

E25~ I2F2R12c2*R12
21!@R12~E21c2* !R212~q2q21!~E11c1* !R12P~E11c1* !#.

We have for the lhs@cf. ~2.15!, ~2.4!, and~2.17!#

E25E2R21
21~E21c2* !R215E2R12~E21c2* !R212~q2q21!E2~E11c1* !R12P~E11c1* !,

while the rhs can be expanded and treated using~3.23! and

F2R12c2*5F2R12~E21c2* !, ~E1c* !25~E1c* !.

This gives immediately the result. j

In addition to the recursive rule we also need to know the action on the unit, i.e., the ex
sionM•1. Thinking ofF ahol as the factor spaceF /^zjk&, we require naturally thatZ

(m)
•150,;m.
J. Math. Phys., Vol. 38, No. 2, February 1997
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This implies

Q~m!
•15S I

Z~m!* D ~ I1Z~m!Z~m!* !21~ I 0!•1.

Guided by the experience obtained when working with quantum Grassmannians6 we accept as an
ansatz that for some scalarhm ,

~ I1Z~m!Z~m!* !21
•15hmI ,

whence

Q~m!
•15hm~E~m!1c~m!* !. ~4.12!

To get rid of superfluous parameters we use the substitution

lN :5jN , lN2 j :5lN2 j111~jN2 j2jN2 j11!hN2 j for j51,...,N21. ~4.13!

Now we are ready to state the result providedF ahol is described in terms ofG ahol
(m) , 1<m<N

21, as given in Proposition 3.3. But first let us formulate some auxiliary relations needed fo
proof. At the same time, we introduce some shorthand notation, also only for the purpose
proof. Set

g:5q2q21, ~4.14!

X~m!:5E~m!1c~m!* , ~4.15!

X12
~m! :5~ I2F2

~m!R12c2
~m!*R12

21!21E2
~m! , ~4.16!

andX12
~0! :50 andX12

(N):5I . Thus, by Proposition 3.3 and~3.25!, we have

m<n⇒X~n!X~m!5X~m!X~n!5X~m!, ~4.17!

m<n⇒R21X1
~m!R12X2

~n!5X2
~n!R21X1

~m!R12, ~4.18!

and by Lemma 4.2

X12
~m!5R12X2

~m!R212gX1
~m!R12PX1

~m! . ~4.19!

Lemma 4.3: For1<m<n<N, it holds true that

X12
~n!X12

~m!5X12
~m! , ~4.20!

R32X12
~m!R23X13

~n!5X13
~n!R32X12

~m!R23, ~4.21!

~X21
~m!

X2
~n!1X21

~n!
X2

~m!!R12
215R12

21~X12
~m!

X1
~n!1X12

~n!
X1

~m!!. ~4.22!

Proof: Equation~4.20!: Observe that

X12
~m!5R12X2

~m!R21~ I2gX1
~m!R21

21P12! ~4.23!

and (m<n)
J. Math. Phys., Vol. 38, No. 2, February 1997
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~ I2gX1
~n!R21

21P12!R12X2
~m!R215R21

21
X2

~m!R21.

Consequently,

X12
~n!X12

~m!5R12X2
~n!R21•R21

21
X2

~m!R21~ I2gX1
~m!R21

21P12!5X12
~m! .

Equation~4.21!: Using repeatedly the YB equation,~4.18!, and~4.17!, one can derive that

X3
~n!R13

21R32~R12X2
~m!R21!R23R13X3

~n!5X3
~n!R12R32X2

~m!R23R21X3
~n!

5R13
21R32~R12X2

~m!R21!R23R13X3
~n! ,

and ~making use also ofR13
215R312gP13!

X3
~n!R13

21R32~X1
~m!R12P12X1

~m!!R23R13X3
~n!5X3

~n!R13
21

X1
~m!R13P12R21R31X1

~m!R13X3
~n!

5R13
21R32~X1

~m!R12P12X1
~m!!R23R13X3

~n! .

By virtue of ~4.19!, this means jointly that

X3
~n!R13

21R32X12
~m!R23R13X3

~n!5R13
21R32X12

~m!R23R13X3
~n! ,

and consequently, utilizing once more~4.23!,

~F3
~n!2F3

~n!R13X3
~n!R13

21!R32X12
~m!R23X13

~n!50. ~4.24!

Furthermore,

E3
~n!R32X12

~m!R23X13
~n!5E3

~n!R32X12
~m!E2

~n!E3
~n!R23X13

~n!5E3
~n!R32X12

~m!R23, ~4.25!

since E3
(n)X13

(n)5E3
(n). Summing ~4.24! and ~4.25! we get the sought equality in the form

(F3
(n)R13X3

(n)5F3
(n)R13c3

(n)* )

~ I2F3
~n!R13c3

~n!*R13
21!R32X12

~m!R23X13
~n!5E3

~n!R32X12
~m!R23.

Equation~4.22!: Using again~4.19!, ~4.17!, and~4.18! as well as~2.4! we find that

lhs5R21X1
~m!R12X2

~n!R12
212gX2

~m!R21PX2
~m!R12

211R21X1
~n!R12X2

~m!R12
212gX2

~n!R21PX2
~m!R12

21

5X2
~n!R21X1

~m!2gR12
21

X1
~m!R12X2

~m!P1X2
~m!R21X1

~n!R21
21R12

21

and

rhs5X2
~m!R21X1

~n!2gR12
21

X1
~m!R12PX1

~m!1X2
~n!R21X1

~m!2gR12
21

X1
~n!R12PX1

~m! .

Consequently,

lhs2rhs5X2
~m!R21X1

~n!R21
21~R12

212R21!1gR12
21

X1
~n!R12X2

~m!P50. j

Proposition 4.4: The relations

M•15~l12l2!~E
~1!1c~1!* !1•••1~lN212lN!~E~N21!1c~N21!* !1lNI , ~4.26!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



f. 24
ing

y
s
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M1R21
21
•~E2

~m!1c2
~m!* ! f5~ I2F2

~m!R12c2
~m!*R12

21!21E2
~m!M1R21

21
• f , ~4.27!

for all fPF ahol, 1<m<N21, define onF ahol unambiguously the structure of a leftÃd-module
(the central dot ‘‘•’’ stands for the action) depending on N scalar parametersl1,...,lN .

Proof: As already mentioned, the idea of defining a module this way was utilized in Re
~Proposition 5.4! and the proof is quite similar, too. Here we rely heavily on Proposition 3.3 giv
a description ofF ahol in terms ofG ahol

(m) . First we have to show that~4.26! and ~4.27! define
correctly a linear mappingF ahol→Mat~N,F ahol!: f°M• f . Let F̄ be the free algebra generated b
z̄jk
(m), 1< j<m,k<N, and the matrixcp(m) be obtained fromc(m)* when replacing the entrie

zjk
(m)* by z̄jk

(m). Furthermore, we use in an obvious sense the symbolsX̄
(m) and X̄12

(m) parallelly to
~4.15! and~4.16!, respectively. HenceF ahol is obtained fromF̄ by means of factorization by the
two-sided ideal generated by the relations~4.17! and~4.18!, with X

(m)s being replaced byX̄(m)s,

and the elementszjk
(m)* are the factor images ofz̄jk

(m). Doing the same replacement in~4.26! and
~4.27! one obtains a well-defined linear mapping

F̄ →Mat~N,F̄ !: f°M• f . ~4.28!

A straightforward calculation gives form<n and;fPF̄ ,

M1R21
21
•~X̄2

~n!
X̄2

~m!2X̄2
~m!! f5~X̄12

~n!X̄12
~m!2X̄12

~m!!M1R21
21
• f ,

M1R31
21R21

21
•~R32X̄2

~m!R23X̄3
~n!2X̄3

~n!R32X̄2
~m!R23! f

5~R32X̄12
~m!R23X̄13

~n!2X̄13
~n!R32X̄12

~m!R23!M1R31
21R21

21
• f .

This means that the linear mapping~4.28! factorizes fromF̄ to F ahol if and only if the factor
images of the matrices (X̄12

(n)X̄12
(m)2X̄12

(m)) and (R32X̄12
(m)R23X̄13

(n)2X̄13
(n)R32X̄12

(m)R23) vanish. How-
ever, these are exactly the relations~4.20! and ~4.21! proven in Lemma 4.3.

To show thatF ahol is really a leftÃd-module we have to verify the equality

M2R12
21M1R21

21
•15R12

21M1R21
21M2•1 ~4.29!

and the implication

~M2R12
21M1R21

21!R31
21R32

21
• f5~R12

21M1R21
21M2!R31

21R32
21
• f

⇒~M2R12
21M1R21

21!R31
21R32

21
•c3

~m!* f

5~R12
21M1R21

21M2!R31
21R32

21
•c3

~m!* f , ~4.30!

for ; fPF ahol, 1<m<N21, since then~4.29! and ~4.30! jointly imply

M2R12
21M1R21

21
• f5R12

21M1R21
21M2• f , ; fPF ahol.

Verification of (4.29):Using ~4.26! and ~4.27! one finds easily that~4.29! means~lN11:50!

(
m51

N

~lm2lm11!X21
~m! (

n51

N

~ln2ln11!X2
~n!R12

21R21
21

5R12
21 (

m51

N

~lm2lm11!X12
~m! (

n51

N

~ln2ln11!X1
~n!R21

21.

However, this equality follows immediately from the relation~4.22! proven in Lemma 4.3.
Verification of (4.30):Note first that the equality after the sign of implication in~4.30! can be
J. Math. Phys., Vol. 38, No. 2, February 1997
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replaced by

~M2R12
21M1R21

21!R31
21R32

21
•X3

~m! f5~R12
21M1R21

21M2!R31
21R32

21
•X3

~m! f .

Furthermore, reversing the proof of Lemma 4.2, part~a!, one finds that~4.27! is equivalent to

R12
21M1R21

21
•X2

~m! f5X2
~m!R12

21M1R21
21
•X2

~m! f , ; fPF ahol. ~4.31!

Using repeatedly the YB equation and~4.31! one derives that

~ I2X3
~m!!R23

21R13
21~M2R12

21M1R21
21!R31

21R32
21
•X3

~m! f

5~ I2X3
~m!!~R23

21M2R32
21!R12

21~R13
21M1R31

21!•X3
~m!R21

21f50, ~4.32!

for ~I2X3
(m)!X3

(m)50. It follows from ~4.32! that

~ I2F3
~m!R13R23X3

~m!R23
21R13

21!~M2R12
21M1R21

21!R31
21R32

2
•X3

~m! f

5E3
~m!~M2R12

21M1R21
21!R31

21R32
21
• f , ~4.33!

for E3
(m)R31

21R32
21

X3
(m)5E3

(m)R31
21R32

21. Quite similarly one obtains

~ I2F3
~m!R13R23X3

~m!R23
21R13

21!~R12
21M1R21

21M2!R31
21R32

21
•X3

~m! f

5E3
~m!~R12

21M1R21
21M2!R31

21R32
21
• f . ~4.34!

The right-hand sides of~4.33! and~4.34! are equal by assumption and so, to complete the pr
it suffices to show that the matrix~I2F3

(m)R13R23X3
(m)R23

21R13
21! is invertible. However, using a

similar argument as in the proof of Lemma 4.2, part~b!, one finds that the matrix

F3
~m!R13R23X3

~m!R23
21R13

215F3
~m!R13R23c3

~m!*R23
21R13

21

is nilpotent. j

V. THE LEIBNIZ RULE AND THE DRESSING TRANSFORMATION

The right dressing transformation

R:Aq~AN!→Aq~AN! ^Aq„SU~N!…

can be introduced formally using the canonical element inAq(AN)^Aq„SU(N)… ~Refs. 7 and
29! and it factorizes fromAq(AN) to bothF hol andF ahol. Dually it induces a left action of
Uh„su(N)… on Aq(AN) ~or F hol or F ahol! via the pairing ^•,•& betweenUh„su(N)… and
Aq„SU(N)…,

jY• f :5~ id^ ^Y,•&!R~ f !. ~5.1!

The Leibniz rule forj means that

jY• f g5~jY~1!
• f !~jY~2!

•g! with DY5Y~1! ^Y~2! . ~5.2!

The aim of this section is to show that the Leibniz rule forj ~acting onF ahol! induces the recursive
rule ~4.27!.

Here we introduce the dressing transformation

R:F hol→F hol^Aq„SU~N!… ~5.3!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r-
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directly by prescribing its values on the generatorszjk arranged in the matrixZ. As usual, the
identificationsF hol[F hol^1 andAq„SU(N)…[1^Aq„SU(N)… greatly simplify the notation. We
define, with the help of Gauss decomposition and formally in the same way as classically,

R~Z!:5~ZU !1 , whereZU5~ZU !2~ZU !1 , ~5.4!

and~ZU!1 is upper triangular with units on the diagonal while~ZU!2 is lower triangular@U still
designates the vector corepresentation ofAq„SU(N)…#. HereR extends to an algebra homomo
phism and it holds

~ id^ «!+R5 id, ~5.5!

~R^ id!+R5~ id^ D!+R, ~5.6!

as follows readily from~2.1! and the uniqueness of Gauss decomposition.
Let us rewrite the dressing transformation~5.4! in terms of coordinate functionszjk

(m) on
quantum Grassmannians. From~3.20! one finds that

E~m!ZUR~E~m!1c~m!!5E~m!ZUR~Z!21E~m!R~Z!

5E~m!~ZU !2~ I2F ~m!!~ZU !15E~m!ZU

for E(m)~ZU!2F
(m)50 owing to the fact that ~ZU!2 is lower triangular. Similarly,

F (m)R~Z!21E(m)50 and thus

~ZF ~m!1E~m!ZU !R~E~m!1c~m!!5E~m!ZU.

Consequently,

R~E~m!1c~m!!5~F ~m!1Z21E~m!ZU !21Z21E~m!ZU

5@F ~m!1~E~m!1c~m!!U#21~E~m!1c~m!!U. ~5.7!

This can be expressed also in terms of blocksZ(m). DecomposeU into blocks,

U5S A~m! B~m!

C~m! D ~m!D ,
whereA(m) has dimensionm3m, B(m) has dimensionm3(N2m), etc. The result is

R~Z~m!!5~A~m!1Z~m!C~m!!21~B~m!1Z~m!D ~m!!

and this is the correct formula.6 The dressing transformation onF ahol is obtained readily by taking
the adjoints. Particularly,

R~E~m!1c~m!* !5U* ~E~m!1c~m!* !@F ~m!1U* ~E~m!1c~m!* !#21. ~5.8!

Let us add a couple of remarks. Despite of the fact that the formulas~5.4! and ~5.7! contain
rational singularities~a consequence of the localization from the dressing orbit to the big cell!, the
actionj ~local in its nature! is free of any singularities. Furthermore, observe from~4.1! and

R~ I Z~m!!5~A~m!1Z~m!C~m!!21~ I Z~m!!U

thatR~Q(m)!5U*Q(m)U and thus the quantum diagonalization~4.4! is in accordance with the
ruleR~L*L!5U*L*LU, as it should be.6,29 Finally, recall that the comultiplicationD is always
J. Math. Phys., Vol. 38, No. 2, February 1997
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assumed to come fromUh„su(N)… rather than fromAq(AN). Now we can formulate a statemen
relating Leibniz rule to theÃd-moduleF ahol, which was defined in Proposition 4.4.

Proposition 5.1: For;YPÃd and;c,fPF ahol, it holds

Y•c f5~jY~1!
•c!~Y~2!• f ! with DY5Y~1! ^Y~2! . ~5.9!

Remark:This is in accordance with the classical case. The method of orbits, if express
local coordinates, yields a representation of Lie algebrasu(N) in terms of first-order differential
operators,

YPsu~N!°pY~ z̄!] z̄1qY~ z̄!,

with generally nonvanishing zeroth-order termqY( z̄) and with the first-order term identical to th
vector fieldjY 5 pY( z̄)] z̄ coming from the infinitesimal coadjoint action. Clearly,

Y•15qY~ z̄! and Y•c f5~jY•c! f1c~Y• f !.

Proof: As we are facing two actions@jXjY5jXY andX•(Y• f )5(XY)• f #, it is sufficient to
verify ~5.9! only for the generators ofÃd , i.e., forY running over the entries ofM . Note that~5.9!
holds trivially for Y51 ~D151^1! and the same is true forc51 owing to the equalities
«(Y(1))Y(2)5Y and

jY•15~ id^ ^Y,•&!1^15«~Y!.

In virtue of Leibniz rule~5.2! and the coassociativity ofD it suffices, too, to verify~5.9! for c
running over the generators ofF ahol.

Observe that

M25L2*L25tr1~P12L1*L2!,

where tr1 means the trace applied only in the first factor of the tensor product in question. Th
can formulate the problem in the following way. Evaluate

L1*L2R32
21
•~E3

~m!1c3
~m!* ! f

using the rule~5.9! and then apply to the obtained expression

~ I2F3
~m!R23c3

~n!*R23
21!tr1~P12• !.

The result should coincide with that one given by the recursive rule~4.27!, i.e., with
E3
(m)M2R32

21
• f . In the rest of the proof we drop the superscript (m).

As the comultiplicationDAN in ~2.8! is opposite toD we have

DL t5L t
^̇ L t, DL*5L* ^̇ L* .

Thus we start from@cf. ~5.8!#

~^L1*L2
t ,•&3L1*L2

t
• ! t2~R32

21U3* ~E31c3* !@F31U3* ~E31c3* !#213 f !

5$~R32
21! t2^L1*L2

t ,•&U3* ~E31c3* !@F31U3* ~E31c3* !#21L1*L2
t
• f % t2. ~5.10!

The pairing^L1*L2
t , • & acts on the elements of algebraAq„SU(N)… occurring in the matrices

U3* . In view of ~2.14!, we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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^L1*L2
t ,U3* &5^L1*L2

t ,U3&
215„~R32

21! t2…21R13.

Consequently, the expression~5.10! equals

$R13~E31c3* !@F31„~R32
21! t2…21R13~E31c3* !#21L1*L2

t
• f % t2.

When applying tr1~P12•! observe that~for anyX123!

tr1„P12~X123L1*L2
t ! t2…5tr1~P12X123

t2 M1!

and when multiplying by (I 2 F3R23c3*R23
21) from the left note that

~ I2F3R23c3*R23
21!R23~E31c3* !5R23~E31c3* !2F3R23~E31c3* !5E3R23~E31c3* !.

This way we arrive at the expression

tr1~P12$E3R13~E31c3* !@F31„~R32
21! t2…21R13~E31c3* !#21% t2M1• f !. ~5.11!

Finally we use@cf. ~2.15!#

E35E3~R32
21! t2E3„~R32

21! t2…21

and the obvious equality~multiply by @•••# from the right!

E3„~R32
21! t2…21R13~E31c3* !@F31„~R32

21! t2…21R13~E31c3* !#215E3

to conclude that~5.11! equals

tr1„P12$E3~R32
21! t2E3%

t2M1• f …5E3 tr1~P12R32
21M1• f !5E3M2R32

21
• f ,

as required. j

Remark:Let tl be an irreducible finite-dimensional representation ofUh„su(N)… acting in a
Hilbert spaceHl and corresponding to a lowest weightl with a lowest weight vectorel . Let
T lPEnd~Hl!^Aq„SU(N)… be the related corepresentation ofAq„SU(N)…. As shown in Ref. 7,
basically all information about the representation is encoded in the element

wl :5„~el ,•el! ^ id…T lPAq„SU~N!….

One can naturally realize the algebrasF hol andF ahol ~but not the full algebraF of real analytic
functions! as subalgebras in the localization ofAq„SU(N)… when the elementwl is allowed to be
invertible. The comultiplication inAq„SU(N)…, being restricted toF ahol, coincides with the
dressing transformation. This means also thatD~F ahol!,F ahol̂ Aq„SU(N)…. Dually we again get
a left action ofUh„su(N)… on F ahol and keep the symbolj for it. The formula

~Y, f !°wl
21jY•~wl f !

defines a leftUh„su(N)…-module structure onF ahol and the representationtl can be identified
with the cyclic submoduleMl with unit as the cyclic vector and, at the same time, the lowe
weight vector. With the same success we could use the prescription

~Y, f !°„jY•~ fwl!…wl
21. ~5.12!

It is not difficult to check thattl can be again identified with a cyclic submoduleMl8 with respect
to this new action and the unit is again the cyclic and the lowest-weight vector. From~5.12! it
J. Math. Phys., Vol. 38, No. 2, February 1997
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follows easily that

Y•c f5„jY•~c fwl!…wl
215~jY~1!

•c!~jY~2!
•~ fwl!…wl

215~jY~1!
•c!~Y~2!• f !,

with DY5Y(1)^Y(2).

VI. IRREDUCIBLE REPRESENTATIONS

The left actionj, dual to the dressing transformationR:F ahol→F ahol̂ Aq„SU(N)…, can be
expressed explicitly in terms of Chevalley generators. For graphical reasons, we shall
j(Y)• f instead ofjY• f . Relying on Proposition 5.1, one can pass from the FRT descriptio
Chevalley generators also in the definition of the left module structure onF ahol. First note that the
rules ~2.11! and ~2.7! imply

^q6Hj ,A21&5^q6Hj ,A&21, ^Xj
6 ,A21&52^qHj /2,A&21^Xj

6 ,A&^q2Hj /2,A&21, ~6.1!

whereA is any invertible square matrix with entries fromAq„SU(N)…. In particular@cf. ~2.13!#,

^q6Hj ,U* &5q7~Ej j2Ej11,j11!, ^Xj
1 ,U* &52q21Ej , j11 , ^Xj

2 ,U* &52qEj11,j . ~6.2!

To evaluatej one can use the definition~5.1!, the formula~5.8! for the dressing transformation
and the rules~2.11!, ~6.1!, and~6.2!:

j~q6Hj !•c~m!*5F ~m!q7~Ej j2Ej11,j11!~E~m!1c~m!* !@F ~m!1q7~Ej j2Ej11,j11!~E~m!1c~m!* !#21

5q7~Ej j2Ej11,j11!c~m!*q6~Ej j2Ej11,j11!, ~6.3a!

j~Xj
1!•c~m!*52q21F ~m!Ej , j11~E

~m!1c~m!* !@F ~m!1q~Ej j2Ej11,j11!/2~E~m!1c~m!* !#21

2F ~m!q2~Ej j2Ej11,j11!/2~E~m!1c~m!* !@F ~m!1q2~Ej j2Ej11,j11!/2~E~m!

1c~m!* !#21@F ~m!2q21Ej , j11~E
~m!1c~m!* !#@F ~m!1q~Ej j2Ej11,j11!/2~E~m!

1c~m!* !#21

52q21F ~m!Ej , j11c
~m!*1c~m!*Ej , j11E

~m!

1d jmq
21/2qEm11,m11/2c~m!*Em,m11c

~m!*q2Emm/2, ~6.3b!

j~Xj
2!•c~m!*52qF~m!Ej11,j~E

~m!1c~m!* !@F ~m!1q~Ej j2Ej11,j11!/2~E~m!1c~m!* !#21

2F ~m!q2~Ej j2Ej11,j11!/2~E~m!1c~m!* !@F ~m!1q2~Ej j2Ej11,j11!/2~E~m!

1c~m!* !#21@F ~m!2qEj11,j~E
~m!1c~m!* !#@F ~m!1q~Ej j2Ej11,j11!/2~E~m!

1c~m!* !#21

52d jmq
1/2Em11,m2qEj11,jc

~m!*1c~m!*Ej11,j . ~6.3c!

All manipulations needed here are quite straightforward. Note, for example, that

E~m!@F ~m!1q6~Ej j2Ej11,j11!/2~E~m!1c~m!* !#215E~m!q7~Ej j2Ej11,j11!/2.

The relations~6.3!, expressed directly in terms of entrieszst
(m)* , were already presented i

Ref. 6. Let us recall them (1<s<m,t<N):
J. Math. Phys., Vol. 38, No. 2, February 1997
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j~q6Hj !•zst
~m!*5q6~d js2d j11,s2d j t1d j11,t!zst

~m!* ;

j~Xj
1!•zst

~m!*5d j11,szjt
~m!* , for j,m,

5q2~11dsm2d t,m11!/2zmt
~m!*zs,m11

~m!* , for j5m,

52q21d j tzs, j11
~m!* , for j.m; ~6.4!

j~Xj
2!•zst

~m!*5d jszj11,t
~m!* , for j,m,

52q1/2dsmd t,m11 , for j5m,

52qd j11,tzs j
~m!* , for j.m.

It is quite straightforward to transcribe these relations in terms of generatorszst* for zst5zst
(s),

1<s,t<N @cf. ~3.20! or ~3.21!#. Note also that

zs21,t
~s! 5zs21,t2zs21,szst .

The result is given in~6.9! below.
It remains to determine the action on the unit. Recalling thatM5L*L andL5~ajk! is upper

triangular, one derives immediately from~4.26! that ~lN11:50!

ast•150 for s,t, ass
2
•15ls , as,s11* ass•15~ls2ls11!zs,s11

~s!* . ~6.5!

We introduce the substitution

l j11 /l j5:q22s j , j51,...,N21. ~6.6!

In virtue of ~2.9!, the expressions in Chevalley generators follow easily and are given in~6.7!
below.

Now we are ready to reformulate Proposition 4.4. Here we employ the quantum coord
functions on the flag manifold, i.e., the generatorszst rather thanzst

(m).
Proposition 6.1: A leftUh~su(N)!-module structure onF ahol depending on~N21! scalar

parameterss1,...,sN21 is defined unambiguously by the relations([x]:5(qx2q2x)/(q2q21))

q6Hj
•15q7s j , Xj

1
•152q2~11s j !/2@s j #z j , j11* , Xj

2
•150, 1< j<N21, ~6.7!

and

Y•~zst* f !5„j~Y~1!!•zst* …Y~2!• f , with DY5Y~1! ^Y~2! , ~6.8!

for 1<s,t<N, ; fPF ahol and;YPUh„su(N)…. Here j is the action dual to the right dressin
transformation and it is prescribed on the generators as follows(1<s,t<N):

j~q6Hj !•zst*5q6~d js2d j11,s2d j t1d j11,t!zst* ,

j~Xj
1!•zst*5d j ,s21~zs21,t* 2zst* zs21,s* !1d jsq

211ds11,t/2zst* zs,s11* 2q21d j tzs,t11* ,
~6.9!

j~Xj
2!•zst*52q1/2d jsds,t212q~12ds,t21!d j ,t21zs,t21*

52q12ds11,t/2d j ,t21zs,t21* ~with zss* :51!.

The unit is a lowest weight vector forXj
2
•150, ; j . According to~6.7!, the corresponding

lowest weight equals

l:52 (
j51

N21

s jv j , ~6.10!
J. Math. Phys., Vol. 38, No. 2, February 1997
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1182 P. Šťovı́ček and R. Twarock: Quantum flag manifolds

¬¬¬¬¬¬¬¬¬¬
wherevjs are the fundamental weights forsu(N) defined byv j (Hk)5d jk . LetMl designate the
cyclic submodule ofF ahol with the cyclic vector 1. It is known30,31 that Ml is determined
unambiguously, up to equivalence, by the lowest weightl and the relation between finite
dimensional irreducible modules and lowest weights is the same in the deformed as well as
nondeformed case. This observation implies

Proposition 6.2: The unit inF ahol is a lowest-weight vector corresponding to the lowe
weightl determined byl(Hj )52s j , ; j . The cyclic submoduleMl :5Uh~su(N)!•1 in F ahol is
a finite-dimensional irreducibleUh„su(N)…-module provided all parameterssj are non-negative
integers.
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12T. Brzeziński and S. Majid, ‘‘Quantum group gauge theory on quantum spaces,’’ Commun. Math. Phys.157, 591–638

~1993!.
13P. Schupp, P. Watts, and B. Zumino, ‘‘Cartan calculus for Hopf algebras and quantum groups,’’ preprint LBL-3
14S. L. Woronowicz, ‘‘Differential calculus on quantum matrix pseudogroups~quantum groups!,’’ Commun. Math. Phys.
122, 125–170~1989!.
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24P. Šťovı́c̆ek, ‘‘Antiholomorphic representations for orthogonal and symplectic quantum groups,’’ J. Alg.184, 71–101
~1996!.

25N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, ‘‘Quantization of Lie groups and Lie algebras,’’ Alg. an1,
178 ~1989! ~in Russian! @Leningrad Math. J.1, 193–225~1990!#.

26V. G. Drinfeld, ‘‘Quantum groups,’’ inProceedings ICM Berkley 1986~AMS, Providence, 1987!, p. 798.
27M. Jimbo, ‘‘A q-difference analogue ofU(g) and the Yang-Baxter equation,’’ Lett. Math. Phys.10, 63–69~1985!.
28M. Jimbo, ‘‘QuantumR-matrix for the generalized Toda system,’’ Commun. Math. Phys.102, 537–547~1986!.
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Compact exponential product formulas and operator
functional derivative

Masuo Suzuki
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
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A new scheme for deriving compact expressions of the logarithm of the exponential
product is proposed and it is applied to several exponential product formulas. A
generalization of the Dynkin–Specht–Wever~DSW! theorem on free Lie elements
is given, and it is used to study the relation between the traditional method~based
on the DSW theorem! and the present new scheme. The concept of the operator
functional derivative is also proposed, and it is applied to ordered exponentials,
such as time-evolution operators for time-dependent Hamiltonians. ©1997
American Institute of Physics.@S0022-2488~97!03401-4#

I. INTRODUCTION

Exponential product formulas have been used effectively in computational physics and
numerical sciences.1–6 Recently, higher-order exponential product formulas have been discov
in many different fields,7 using the Baker–Campbell–Hausdorff~BCH! formula.

In Sec. II, the traditional method for deriving the BCH formula by means of the Friedr
theorem and the Dynkin–Specht–Wever theorem8 is briefly reviewed for later convenience. I
Sec. III, a new scheme for deriving compact expressions of the logarithm of the expon
product is proposed, and it is shown to be useful in constructing higher-order decompo
formulas of exponential operators.4,9–15In Sec. IV, we discuss the relationship between the tra
tional and the new schemes, and we also present a generalized DSW theorem. A formula
the operator functional derivative is also given in Sec. V, with an application to an ord
exponential. In Sec. VI, the logarithm of an ordered exponential is expressed in terms of fre
elements. Some applications of the present new scheme are given in Sec. VII. Summa
discussion are given in Sec. VIII.

II. TRADITIONAL METHOD FOR TREATING EXPONENTIAL PRODUCT

A basic formula for studying the exponential product is the following BCH formula:

exAexB5ex~A1B!1x2C21x3C31••• . ~2.1!

Here, the correction terms$Cn% defined in~2.1! satisfy the following Hausdorff’s recursive equa
tion for n51,2,3,...,

~n11!Cn115
1

2
@A2B,Cn#1 (

p>1,2p<n
K2p( 8 @Ck1

,†•••@Ck2p
,A1B#•••‡#, ~2.2!

with C15A1B. HereK2p is defined in

x

12e2x2
x

2
511 (

p51

`

K2px
2p, ~2.3!

and the second summation(8 denotes the sum over all the combinations (k1 ,...,k2p) satisfying
the relationk11•••1k2p5n for kj>1.
0022-2488/97/38(2)/1183/14/$10.00
1183J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s in

to

1184 Masuo Suzuki: Compact exponential product formulas

¬¬¬¬¬¬¬¬¬¬
For example, we have8

C25
1
2 •

1
2 @A2B,C1#5 1

2 @A,B#,

C35
1
6 @A2B,C2#5 1

12 †A2B,@A,B#‡, ~2.4!

C45
1
8 @A2B,C3#1 1

4 K2~†C1 ,@C2 ,A1B#‡1†C2 ,@C1 ,A1B#‡!

52 1
48 ~@B,†A,@A,B#‡#1@A,†B,@A,B#‡# !5 1

24 @A,†B,@B,A#‡#,

as is well known. Here we have usedK25
1
12.

Alternatively, the following traditional method is often used to calculate higher-order term
x. First we put

exAexB5eF~x!. ~2.5!

Then, it is easily shown using the Friedrichs theorem thatF(x) is a linear combination only ofA,
B and their commutators~namely free Lie elements!.8

Now, F(x) is formally expressed in the form

F~x!5 log ~exAexB!, ~2.6!

and this can be formally expanded as8

F~x!5 (
n51

`
~21!n21

n
~exAexB21!n5 (

n51

`

xnLn~A,B!. ~2.7!

Here, Ln(A,B) denotes annth order polynomial ofA and B. For example,L1(A,B)5A1B,
L2(A,B)5

1
2(AB2BA)5 1

2[A,B],... . However, if we expand the logarithm of~2.6! up to higher
orders, there appear so many terms such asABAB2A3..., and consequently it is not so easy
rearrange them in the form of commutators. Fortunately, the following DSW theorem8 can be used
for this purpose.

Dynkin–Specht–Wever Theorem:A necessary and sufficient condition for anynth-order poly-
nomialPn(A,B) to be a sum of Lie elements of then level is

Pn~A,B!5
1

n
$Pn~A,B!%, ~2.8!

where the curly bracket$•••% denotes the following operation of taking commutators:

$A1A2•••An%5†A1 ,@A2 ,...@An21 ,An#•••‡5dA1dA2•••dAn21
An . ~2.9!

Here,dA is an inner derivation defined by

dAQ5AQ2QA5@A,Q#, ~2.10!

for any operatorQ. For example, we have

L2~A,B!5 1
2~AB2BA!5 1

2•
1
2$AB2BA%5 1

4~@A,B#2@B,A# !5 1
2@A,B#. ~2.11!

The curly bracket in the sense~2.9! is used only in~2.8!, ~2.11!, ~2.12!, and~4.2! in the present
paper.

Thus, we obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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F~x!5 (
n51

`
xn

n
$Ln~A,B!%. ~2.12!

This is the traditional scheme for deriving higher-order correction terms in the form of com
tators. It should be remarked here that the above formula~2.12! is not an explicit formula ofF(x),
but gives a procedure for deriving it.

III. NEW SCHEME FOR DERIVING COMPACT EXPRESSIONS OF THE LOGARITHM OF
EXPONENTIAL PRODUCT

Here we propose a direct method for deriving compact expressions ofF(x) defined in

eA1~x!eA2~x!•••eAr ~x!5eF~x!, ~3.1!

for any set of operators$Aj (x)% and for an arbitrary positive integerr . Here we assume tha
Aj ~0!50 for all j and consequently thatF~0!50. The purpose of the present section is to expr
F(x) explicitly only in terms of$Aj (x)% and their commutators, namely free Lie elements in
compact form.

First, we differentiate both sides of Eq.~3.1! with respect tox, and we obtain

deF~x!

dF~x!

dF~x!

dx
5(

j51

r

eA1~x!•••S ddx eAj ~x!D •••eAr ~x!. ~3.2!

Here, the symboldeF(x)/dF(x) denotes a hyperoperator given by16,17

deF~x!

dF~x!
5eF~x!D„2F~x!… ~3.3!

and

D~A!5
edA21

dA
. ~3.4!

Note that althoughdA
21 does not exist,D(A) is well defined because the numerator of~3.4! is

proportional todA . Thus, we have

eF~x!D„2F~x!…
dF~x!

dx
5(

j51

r

eA1~x!•••S deAj ~x!

dx D •••eAr ~x!. ~3.5!

This form due to quantum analysis16,17 is essential for findingdF(x)/dx explicitly. Multiplying
both sides of~3.5! by e2F(x) 5 e2Ar (x)•••e2A1(x), we obtain

D„2F~x!…
dF~x!

dx
5(

j51

r

e2Ar ~x!•••e2Aj ~x!
deAj ~x!

dx
eAj11~x!•••eAr ~x!

5(
j51

r

exp~2dAr ~x!!•••exp~2dAj11~x!!e
2Aj ~x!

deAj ~x!

dx
. ~3.6!

Therefore, we arrive at
J. Math. Phys., Vol. 38, No. 2, February 1997
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dF~x!

dx
5D21

„2F~x!…(
j51

r

exp~2dAr ~x!!•••exp~2dAj11~x!!D„2Aj~x!…
dAj~x!

dx

5D21
„F~x!…(

j51

r

exp~dA1~x!!•••exp~dAj21~x!!D„Aj~x!…
dAj~x!

dx
. ~3.7!

Here we have used the following identity:

D~2A!5e2dAD~A!5~12e2dA!/dA , ~3.8a!

and the specific relation

D21~2F!5D21~F!exp~dA1!•••exp~dAr !, ~3.8b!

which is valid for ~3.1!. Thus, we obtain the following basic formula.
Formula 1: The operatorF(x) defined in~3.1! satisfies the following operator differentia

equation:

dF

dx
5D21

„F~x!…(
j51

r

exp~dA1~x!!•••exp~dAj21~x!!D„Aj~x!…
dAj~x!

dx
. ~3.9!

This is nonlinear with respect to the unknown operatorF(x). Next we try to find some trick
to solve Eq.~3.9! explicitly in a compact form. First note that

D21
„F~x!…5

dF~x!

exp~dF~x!!21
~3.10!

and

exp~dF~x!!5exp~dA1~x!!•••exp~dAr ~x!!. ~3.11!

Then, one might obtain a linear equation ofF(x), but such a linear equation with the initia
conditionF~0!50 will give an incorrect result@namely,F(x)[0!#. The reason for this inconsis
tency comes from the inappropriate separation of the hyperoperatorD21

„F(x)… into the two parts
dF(x) and @exp~dF(x)!21#21. As mentioned just after Eq.~3.4!, these two factors cannot be sep
rated, becausedF(x)

21 does not exist and consequently because@exp~dF(x)!21#21 does not exist
either. The keypoint of our quantum analysis16,17 on this problem is to treatD„F(x)… as a whole,
namely as the ratio of the two hyperoperators.

Thus, we make use of the following trick for the above purpose:

dF~x!5 log edF~x!5 log@exp~dA1~x!!•••exp~dAr ~x!!#. ~3.12!

Using this transformation ofdF(x) into a function of a set of$dAj (x)%, we can find the following
compact solution ofF(x).

Formula 2:The logarithmF(x) 5 log(eA1(x)•••eAr(x)) is given by

F~x!5(
j51

r E
0

r log@exp~dA1~ t !!•••exp~dAr ~ t !!#

exp~dA1~ t !!•••exp~dAr ~ t !!21
exp~dA1~ t !!•••exp~dAj21~ t !!D„Aj~ t !…

dAj~ t !

dt
dt.

~3.13!
J. Math. Phys., Vol. 38, No. 2, February 1997
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This is a basic formula in our new scheme on exponential products, as will be used la
several examples. For practical applications, the following expansion formula will be more
venient.

Formula 3:The logarithmF(x) 5 log(eA1(x)•••eAr(x)) is expressed by

F~x!5(
j51

r

(
n51

`
1

n E
0

x

„12exp~dA1~ t !!•••exp~dAr ~ t !!…
n21

3exp~dA1~ t !!•••exp~dAj21~ t !!D„Aj~ t !…
dAj~ t !

dt
dt. ~3.14!

Each exponential hyperoperator exp(DAj(t)
) in ~3.14! will be expanded as a power series of t

inner derivationdAj (t) . Thus,F(x) is found to be a linear combination of the set$dAj (x)/dx% and
their commutators with the set$Aj (x)%, as it should be.

Some typical applications of the above general formula are given as follows.
Formula 4:The logarithmF(x) 5 log(exA1•••exAr) is given by

F~x!5(
j51

r E
0

x log@exp~ tdA1!•••exp~ tdAr !#

exp~ tdA1!•••exp~ tdAr !21
exp~ tdA1!•••exp~ tdAj21

!Aj dt. ~3.15!

Here we have used the propertyD(tAj )Aj5Aj . In particular, forr52, we have

log~exAexB!5E
0

x log~etdAetdB!

etdAetdB21
etdA dt~A1B!5 (

n51

`
1

n E
0

x

~12etdAetdB!n21~A1etdAB!dt.

~3.16!

This easily yields the BCH formula up to any order ofx. In fact, we find the following
formula.

Formula 5:The logarithm ofexAexB is given explicitly by

log~exAexB!5 (
k50

`
~21!k

k11 (
$mi %

(
$ni %

8F x11S~mi1ni !

11S~mi1ni !
~P i51

k
Lmi ,ni

!A

1(
j50

`
xj111S~mi1ni !

j ! @S~mi1ni !1 j11#
~P i51

k
Lmi ,ni

!dA
j BG

5x~A1B!1
x2

2
dAB1

x3

12
~dA

2B1dB
2A!1

x4

24
dAdB

2A1••• . ~3.17!

Here,

Lm,n[
1

m!n!
dA
mdB

n , ~3.18!

and SS$mi %,$ni %
8 denotes the summation all over the combinations ofmi50,1,2, . . . , and

ni50,1,2, . . . , except the casemi5ni50.
Similarly, we obtain the following formula on the symmetrized productexAexBexA.
Formula 6:The logarithm ofexAexBexA is given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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log~exAexBexA!5E
0

x log~etdAetdBetdA!

etdAetdBetdA21
~A1etdAB1etdAetdBA!dt

5 (
k50

`
~21!k

k11 E
0

x

~etdAetdBetdA21!k@~11etdAetdB!A1etdAB#dt

5 (
k50

`
~21!k

k11 (
$ l i %

(
$mi %

(
$ni %

8F xS~ l i1mi1ni !11

S~ l i1mi1ni !11
~P i51

k
L l i ,mi ,ni

!A

1 (
j 1 , j 2

xS~ l i1mi1ni !1 j 11 j 211

S~ l i1mi1ni !1 j 11 j 211
~P i51

k
L l i ,mi ,ni

!L j 1 , j 2
A

1(
j

xS~ l i1mi1ni !1 j11

S~ l i1mi1ni !1 j11
~P i51

k
L l i ,mi ,ni

!L jBG
5x~2A1B!1

x3

6
~dB

2A2dA
2B!1

x5

360
~7dA

4B2dB
4A14dAdB

3A

18dBdA
3B26dA

2dB
2A112dB

2dA
2B!1••• . ~3.19!

Here, ((($ l i %,$mi %,$ni %
8 denotes the summation all over the combinations ofl i50,1,2,...,

mi50,1,2,..., andni50,1,2,..., exceptl i5mi5ni50. The symbolsL j , L j ,k andL l ,m,n are hy-
peroperators defined by

L j5
1

j !
dA
j , L j ,k5

1

j !k!
dA
j dB

k , and L l ,m,n5
1

l !m!n!
dA
l dB

mdA
n . ~3.20!

IV. RELATIONSHIP BETWEEN THE TWO SCHEMES AND GENERALIZED DSW
THEOREM

The present new scheme formulated in the preceding section without using the Frie
theorem and the Dynkin–Specht–Wever theorem, suggests the following generalized DSW
rem.

Generalized DSW Theorem:A necessary and sufficient condition for the opera
(kf k($Aj%)Ak to be a sum of free Lie elements based on the set$Aj% is given by

(
k

f k~$Aj%!Ak5(
k
E
0

1

f k~$tdAj%!Ak dt, ~4.1!

for any analytic functions$ f k%.
Proof:When f k($Aj%) are all~n21!th-order polynomials of$Aj%, Eq. ~4.1! is easily shown to

be equivalent to the DSW theorem, because both sides of~4.1! arenth-order polynomials, and
consequently

(
k
E
0

1

f k~$tdAj%!Ak dt5(
k

f k~$dAj%!AkE
0

1

tn21 dt5
1

n (
k

f k~$dAj%!Ak5
1

n (
k

$ f k~$Aj%!Ak%,

~4.2!

using the notation$•••% in ~2.9!. Now, we consider a general case in whichf k($Aj%) are power
series of the polynomial of different orders of$Aj%. Then, each polynomial of any order satisfi
the DSW condition as shown above, and consequently we finally arrive at the above theor
J. Math. Phys., Vol. 38, No. 2, February 1997
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One of the merits of the above theorem is that it is valid for any operator function comp
of free Lie elements of different orders.

Using this theorem, we can argue that the traditional result~2.12! obtained using the
Friedrichs theorem and the DSW theorem should agree as a whole with the result~3.15! obtained
by the present new scheme forr52. In fact, using the Friedrichs theorem, the logarithmF(x)
5 log(exA1exA2•••exAr) is a sum of free Lie elements, and consequently we can apply the a
generalized DSW theorem after rearranging the logarithmF~1! in the form

F~1!5 log~eA1eA2•••eAr !

5 (
n51

`
~21!n21

n
~eA1eA2•••eAr21!n21

„eA1•••eAr21~eAr21!

1eA1•••eAr22~eAr2121!1•••1~eA121!…

[(
k51

r

f k~$Aj%!Ak , ~4.3!

where

f k~$Aj%!5 (
n51

`
~21!n21

n
~eA1•••eAr21!n21~eA1•••eAk21!

3S 11
1

2!
Ak1

1

3!
Ak
21•••1

1

m!
Ak
m211••• D . ~4.4!

Thus, applying the generalized DSW theorem to~4.3!, we obtain

F~1!5 (
k51

r E
0

1

f k~$tdAj%!Ak dt. ~4.5!

Clearly, this result should agree with that obtained by the traditional method.
On the other hand, by noting that

S 11
1

2!
dAk1

1

3!
dAk
2 1•••1

1

m!
dAk
m211••• DAk5Ak , ~4.6!

the result~3.15! obtained by the present new scheme is easily rewritten in the form~4.5!. This
shows how convenient our new direct scheme is.

V. OPERATOR FUNCTIONAL DERIVATIVE AND ORDERED EXPONENTIAL

In this section, we extend the concept of the ordinary functional derivative to operator
tionals such as an ordered exponential.18,19 The ordinary functional derivative of a functiona
F[K(t)] is defined by

dF@K~ t !#

dK~s!
5 lim

e→0

F@K~ t !1ed~ t2s!#2F@K~ t !#

e
, ~5.1!

as is well known.
Now, the operator functional derivativedF[A(t)]/dA(s) for an operator functionalF[A(t)]

is defined in
J. Math. Phys., Vol. 38, No. 2, February 1997
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dF@A~ t !#

dA~s!
•dA~s!5 lim

h→0

F@A~ t !1hd~ t2s!dA~s!#2F@A~ t !#

h
. ~5.2!

Here, the notationdF[A(t)]/dA(s) denotes a hyperoperator to map the variational operatordA(s)
to the variationdF[A(t)] induced bydA(s). This is an extension of the quantum derivative for
operator function in quantum analysis.16,17

A typical operator functional is given by the following ordered exponential:18,19

F@A~ t !#5exp1E
t0

t

A~s!ds511E
t0

t

A~s!ds1•••1E
t0

t

dt1•••E
t0

tn21
dtn A~ t1!•••A~ tn!1••• ,

~5.3!

which is a formal solution of the equation

d

dt
F@A~ t !#5A~ t !F@A~ t !#. ~5.4!

The operator functional derivative ofF[A(t)] is calculated as

dF@A~ t !#

dA~ t1!
•dA~ t1!5 lim

h→0
Fexp1E

t0

t

@A~s!1hd~s2t1!dA~ t1!#ds2exp1E
t0

t

A~s!dsG Y h

5exp1F E
t1

t

A~s!dsGdA~ t1!exp1F E
t0

t1
A~s!dsG , ~5.5!

using the following formula.20

Formula 7:When the operatorH contains a parameterj, namely whenH is expressed as
H5H~t;j!, we have

]

]j
exp1F E

t0

t

H~s;j!dsG
5E

t0

t

dsH exp1F E
s

t

H~s8;j!ds8G ]H~s;j!

]j
exp1F E

t0

s

H~s8;j!ds8G J . ~5.6!

Using the inner derivationdA(s) , the operator functional derivativedF[A(t)]/dA(s) is given
by

dF@A~ t !#

dA~ t1!
5Fexp1E

t0

t

A~s!dsGFexp22E
t0

t1
dA~s!dsG . ~5.7!

Here, exp2~2*dA(s)ds! denotes the inverse hyperoperator of exp1*dA(s) ds.
Similarly we have

dF21@A~ t !#

dA~ t1!
•dA~ t1!52exp2F2E

t0

t1
A~s!dsGdA~ t1!exp2F2E

t1

t

A~s!dsG , ~5.8!

namely
J. Math. Phys., Vol. 38, No. 2, February 1997
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dF21@A~ t !#

dA~ t1!
52exp2F2E

t0

t

A~s!dsGexp1F E
t1

t

dA~s! dsG . ~5.9!

Higher-order operator functional derivatives are also defined as follows.
Definition of higher-order operator functional derivative:The nth-order operator functiona

derivativedF[A(t)]/dA(tn)•••dA(t1) is defined in

F@A~ t !1xB~ t !#5 (
n50

`
xn

n!

dnF@A~ t !#

dA~ tn!•••dA~ t1!
: B~ t1!•••B~ tn!, ~5.10!

with the product notationF : B(t1)•••B(tn), which denotes the mappingF of the operator
productB(t1)•••B(tn) to thenth differentialdnF[A(t)] with respect toA(t1),..., andA(tn), as
introduced in the quantum analysis.16,17

A typical application of this definition is given for the following ordered exponential:

F@A~ t !#5exp1 E
t0

t

A~s!ds. ~5.11!

First note the following Taylor expansion formula:20

F@A~ t !1xB~ t !#5exp1 E
t0

t1
@A~ t !1xB~ t !#dt

5 (
n50

`

xnFexp1 E
t0

t1
A~ t !dtG E

t0

t1
ds1•••E

t0

sn21
dsn B̃~s1!•••B̃~sn!, ~5.12!

whereB̃(t) is defined by

B̃~ t !5Fexp22E
t0

t

A~s!dsGB~ t !Fexp12E
t0

t

A~s!dsG
[Fexp22E

t0

t

dA~s!dsG•B~ t ![E@A~s!,t#•B~ t !. ~5.13!

Then, thenth operator functional derivative is expressed by

dnF@A~ t !#

dA~ tn!•••dA~ t1!
5n! Fexp1 E

t0

t

A~s!dsGE1~ t1!•••En~ tn!, ~5.14!

for t1>t2>•••>tn , whereEj (t j ) is a hyperoperator defined by

Ej~ t j !:B~ t1!•••B~ tn!5B~ t1!•••„E@A~s!,t j #B~ t j !…•••B~ tn!. ~5.15!

Equivalently, if we introduce the inner derivations$dA(s)
( j ) % by

dA~s!
~ j ! :B~ t1!•••B~ tn!5B~ t1!•••„dA~s!B~ t j !…•••B~ tn!, ~5.16!

then we have the following formula.
Formula 8:Thenth-order functional derivative of an ordered exponential is given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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dnF@A~ t !#

dA~ tn!•••dA~ t1!
5n! exp1 E

t0

t

A~s!ds exp2F2E
t0

t1
dA~s1!

~1! ds1G ••• exp2F2E
t0

tn
dA~sn!

~n! dsnG .
~5.17!

Thus, operator functional derivatives are simpler than the previous operator derivativ
higher order.16,17

VI. LOGARITHM OF ORDERED EXPONENTIAL

In this section, we try to find a compact expression of the logarithm of an ordered expone
This is an extension of the result obtained in Sec. III to the continuous Baker–Camp
Hausdorff problem studied extensively by Bialynick-Birula, Mielnik, and Pleban´ski,21 using the
DSW theorem. This problem is closely related to the quantum theory of scattering, in the
that the phase shift of scattering can be calculated21 from the logarithm of the ordered exponenti
exp1*2`

` H(s)ds for the time-dependent HamiltonianH(t).
Here we apply the new scheme introduced in Sec. III to this problem. Now we put

exp1 E
t0

t

A~s!ds5eF~ t !. ~6.1!

Differentiating both sides of~6.1!, we obtain

A~ t !exp1 E
t0

t

A~s!ds5eF~ t !D„2F~ t !…
dF~ t !

dt
, ~6.2!

using the formula~3.3! with the definition ofD(A) in ~3.4!. Then, we have

dF~ t !

dt
5D21

„2F~ t !…e2dF~ t !A~ t !5D21
„F~ t !…A~ t !5

dF~ t !

exp~dF~ t !!21
A~ t !. ~6.3!

Using the trick

dF~ t !5 log exp~dF~ t !!5 logS exp1 E
t0

t

dA~s!dsD , ~6.4!

we finally arrive at the following formula.
Formula 9:The logarithmF(t) 5 log@exp1*t0

t A(s)ds# is given by

F~ t !5E
t0

t log~exp1* t0
t8dA~s! ds!

exp1* t0
t8dA~s! ds21

A~ t8!dt85 (
n50

`
1

n11 E
t0

t F12exp1 E
t0

t8
dA~s! dsGnA~ t8!dt8.

~6.5!

This compact formula will be useful in studying the phase shift of scattering and o
problems. It will be also interesting to study in the future the relation between the present f
lation ~6.5! and the canonical representation ofF(t) obtained by Bialynick-Birulaet al.21

VII. SOME APPLICATIONS

In this section, we give some applications of our new scheme to exponential product form
J. Math. Phys., Vol. 38, No. 2, February 1997
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A. Perturbational composition scheme

Following McLachlan,22 we discuss the following product;

eAeeB5eA1eR11e2R21•••, ~7.1!

with a small parametere. One of the merits of the present scheme is that we can derive
correction terms$Rj% analytically. Now we put

eAeeB5eA1R~e!. ~7.2!

Differentiating both sides of~7.2!, we obtain

eA1R~e!D„2@A1R~e!#…
dR~e!

de
5eAeeBB; ~7.3!

using the formula~3.3! with ~3.4!. In terms of the identity~3.8a!, we find

d

de
R~e!5D21

„A1R~e!…edA1R~e!B5
dA1R~e!

12exp~2dA1R~e!!
B. ~7.4!

This is integrated as

R~e!5E
0

e

D21
„A1R~l!…edA1R~l!B dl. ~7.5!

This expression is very convenient for calculating analytically the correction terms$Rj% in ~7.1!.
For example, the first termR1 can be immediately obtained as

R15D21~A!edAB5
dA

12e2dA
B5 (

n50

`
~21!n

n!
Bn dA

nB. ~7.6!

Here,$Bn% denote the Bernoulli numbers:

B051, B152
1

2
, B25

1

6
, B452

1

30
, B65

1

42
, B852

1

30
, B105

5

66
,

B1252
691

2730
, B145

7

6
, B1652

3617

510
,••• , ~7.7!

whereB2n2150 for n>2. Thus, using the relation

~7.8!

we obtain

R15B2 1
2 @A,B#1 1

6 †A,@A,B#‡1••• . ~7.9!

The first several terms ofR1 have been calculated algebraically by McLachlan.22

Similarly, the higher-order terms$Rj%~j52,3,...! can be obtained analytically. Using the rel
tion
J. Math. Phys., Vol. 38, No. 2, February 1997
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edA1R~e!5edA1dR~e!5edAeedB, ~7.10!

we obtain

R~e!5E
0

e log~edAetdB!

edAetdB21
dt B5E

0

eS log L02 (
n51

` E
0

` 1

L01t S 2Le

1

L01t D ndtD S 1

L021

1 (
n51

`
1

L021 S 2Le

1

L021D nD de B, ~7.11!

where

L05edA and Le5edA~eedB21!. ~7.12!

This gives againR1 in the form ~7.6! andR2 as

R252
1

2 S dA
edA21

edAdB2E
0

` 1

edA1t
edAdB

1

edA1t
dtD 1

edA21
B. ~7.13!

The above scheme is a renormalized expansion in the sense that the operatorA is included up to
an infinite order even forR1 andR2.

B. General higher-order decomposition scheme

We consider the following problem: how to decompose an exponential operatorex(A1B) into
a product of the form

ex~A1B!5eC1~x!eC2~x!•••eCr ~x!1O~xm11!, ~7.14!

for some positive integerm. Here, we have the trivial conditions thatC1(0)5•••5Cr(0)50 and
that

C18~0!1C28~0!1•••1Cr8~0!5A1B, ~7.15!

for some appropriate set of basis operators$Cj (x)%. In order to determine these operators, w
express the product on the right-hand side of~7.14! as the following simple exponential operato

eC1~x!eC2~x!•••eCr ~x!5ex~A1B!1R~x!. ~7.16!

The correction termR(x) can be obtained from Formula~2! or by solving the equation

dR~x!

dx
1~A1B!5D21

„x~A1B!1R~x!…(
j51

r

exp~dC1~x!!••• exp„dCj21
~x!…D„Cj~x!…

dCj~x!

dx
.

~7.17!

When the set$Cj (x)% are expressed by polynomials or power series ofx as

Cj~x!5Cj1x1Cj2x
21•••Cjnx

n1••• , ~7.18!

the correction termR(x) in ~7.14! can also be expanded in a power series as

R~x!5x2R21x3R31•••1xnRn1••• . ~7.19!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Then $Rn% can be directly obtained from Formula~2! or can be solved recursively from th
differential equation~7.17!. Our required condition for the higher-order decomposition~7.12! to
be of orderm is given by

R250, R350,..., and Rm50. ~7.20!

It is interesting to note that the recursive equations on$Rn% for 2<n<m can be greatly simplified
under the condition thatR25•••5Rn2150. First note that the termxnRn is obviously of higher
order than the derivatived(xnRn)/dx in ~7.17!. Thus we arrive at the following conclusion.

Formula 10 (General decomposition scheme):A necessary and sufficient condition for th
decomposition~7.14! to be of the order ofm is given by the requirement that the equation

(
j51

r

exp~dC1~x!!••• exp~dCj21~x!!D„Cj~x!…
dCj~x!

dx
5A1B, ~7.21!

up to the~m21!th order ofx.
The proof is given by noting that the condition~7.20! is equivalent to the following equation

D21
„x~A1B!…(

j51

r

exp~dC1~x!!••• exp~dCj21~x!!D„Cj~x!…
dCj~x!

dx
5A1B, ~7.22!

should hold up to the~m21!th order ofx. By multiplying D„x(A1B)… to ~7.22!, we obtain the
condition~7.21! for lower terms ofx up toxm21. The remarkable feature of Eq.~7.21! is that it is
expressed only in terms of the commutators ofA, B, and$Cj (x)%.

C. Standard higher-order decomposition scheme

Here we discuss the following standard product:

ex~A1B!5et1xAet2xB•••etMxA1O~xm11!. ~7.23!

Then, we haveCj (x)5t jxCj in ~7.21!, whereC2 j215A andC2 j5B. Thus, Eq.~7.21! is ex-
pressed in the following forms:

(
j51

M

et1xdAet2xdB•••et j21xd j21t jCj5A1B, ~7.24!

up to the~m21!th order ofx. Here,d j21 5 dCi21
. This new derivation is much more convenie

than the previous procedures.9–15,23

In the symmetric decomposition,9–12 we may put, in~7.16!,

eCj ~x!5e~1/2!pjxAepjxBe~1/2!pjxA5exp„pjx~A1B!1~pjx!3R31•••1~pjx!2n21R2n211•••…,
~7.25!

with decomposition parameters$pj%. Then we obtain from~7.21! nonlinear simultaneous equa
tions on the decomposition parameters$pj% such that the producteC1(x)eC2(x)•••eCr (x) with
pr112 j5pj becomes of orderm, as was already studied.

9–15,23

D. Hybrid exponential product formulas

By extending the previous basis-operator space (A,B) to a partial set of Lie algebras, includ
ing commutators such as†B,[A,B] ‡, we obtain a new type of hybrid exponential produ
formulas.24 In such a hybrid scheme, the$Cj (x)% in ~7.14! are given by some polynomials ofx.
J. Math. Phys., Vol. 38, No. 2, February 1997
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For example, for somek, we may haveCk(x)5tkx
3[B,[A,B]]. Thus, if we choose some appro

priate basis of Lie elements, then we can construct the corresponding higher-order hybrid s
applicable even to unbounded operators,25 using the above general decomposition scheme.

VIII. SUMMARY AND DISCUSSION

In the present paper we have formulated the new scheme~3.13! for studying exponential
product formulas, and we have given some applications to higher-order product formulas9–14,26

The concept of an operator functional derivative has been introduced, and the operator fun
Taylor expansion formula~5.10! has been presented for an ordered exponential. The logarith
an ordered exponential has been expressed in terms of a compact integral of an analytic f
of free Lie elements.

An important point is the domain of the operatorA for the present analysis. When the opera
A belongs to a Banach space~namely normed space!, the convergence of all the formulas formal
derived in the present paper can be proved16 using the uniform norm topology. Quantum sp
Hamiltonians can be treated in a Banach space. Many other systems such as electrons
scribed in terms of self-adjoint~or essentially self-adjoint! operators in a Hilbert space. Th
convergence for such operators in a Hilbert space can be studied using the strong
topology.25,27
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Separation of variables in (1 12)-dimensional Schro ¨dinger
equations

R. Z. Zhdanova)
Institute of Mathematics, 3 Tereshchenkivska Street, 252004 Kiev, Ukraine

~Received 5 July 1996; accepted for publication 18 October 1996!

Using our classification of separable Schro¨dinger equations with two space dimen-
sions published in J. Math. Phys.36, 5506~1995! we give an exhaustive descrip-
tion of the coordinate systems providing their separability. Furthermore, we apply
these results to separate variables in the heat, Hamilton–Jacobi, and Fokker–Planck
equations. ©1997 American Institute of Physics.@S0022-2488~97!03601-3#

I. INTRODUCTION

In Refs. 1 and 2 we have suggested an efficient approach to the separation of variable~SV!
in linear partial differential equations. Within the framework of this approach we have clas
the ~112!-dimensional Schro¨dinger equations,

iut1ux1x11ux2x25V~x1 ,x2!u, ~1!

admitting SV, i.e., we have described inequivalent~in some sense! potentialsV(x1 ,x2) such that
Eq. ~1! separates at least in one coordinate system. This classification is the principal result
3. In the present paper we will obtain a complete description of the coordinate systems pro
separability of Eqs.~1! with the above-mentioned potentials.

For the well-studied casesV(x1 ,x2)50 andV(x1 ,x2)5ax1
221bx2

22 we will reobtain the
results on SV, in the corresponding Schro¨dinger equations, which are due to Boyer, Kalnins, a
Miller4 and Boyer.5

The results on SV in the Schro¨dinger equation can be directly applied to separate variable
the heat equation,

ut1ux1x11ux2x25V~x1 ,x2!u. ~2!

Hence, using the well-known connection between SV in the heat and Hamilton–Jacobi
tions ~see, e.g. Ref. 6! we will obtain a classification of separable Hamilton–Jacobi equation
the form

ut1ux1
2 1ux2

2 5V~x1 ,x2!, ~3!

and coordinate systems providing separability of Eq.~3!.
The paper is organized as follows. The second section contains necessary notions, defi

and a brief description of the method. Furthermore, we give the results of classification of p
tials V(x1 ,x2) such that the Schro¨dinger equation~1! admits SV. In the next section the full list
of coordinate systems providing separability of the corresponding Schro¨dinger equations are
given. In Sec. IV we apply the results obtained to separate variables in the heat, Hamilton–J
and Fokker–Planck equations. The last section is devoted to discussing some generaliza
the suggested approach to the case of nonlinear partial differential equations.

a!Electronic mail: rzhdanov@apmat.freenet.kiev.ua
0022-2488/97/38(2)/1197/21/$10.00
1197J. Math. Phys. 38 (2), February 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r and
,

u-

vari-

t of the
tituted
more

tions
ocedure

he

e
es
ed

-
ect

1198 R. Z. Zhdanov: Separation of variables

¬¬¬¬¬¬¬¬¬¬
II. CLASSIFICATION OF SEPARABLE SCHRÖ DINGER EQUATIONS

The underlying idea of the method of separation of variables as introduced by Fourie
Euler is quite simple. To separate variables in Eq.~1! with V50 in, say, a polar coordinate system
one has to look for a particular solution of the form

u~ t,x1 ,x2!5w0~ t !w1~Ax121x2
2!w2S arctanx1x2D , ~4!

wherew0,w1,w2 are functions of one variable.
Inserting~4! into the initial equation underV50 and making some simple algebraic manip

lations, we arrive at three ordinary differential equations for unknown functionsw0,w1,w2 with
respect to the variablest, v15Ax121x2

2 , v25arctan(x1/x2), correspondingly.
This example indicates clearly two important elements of the method of separation of

ables in partial differential equations. The first one is a choice of a specialAnsatzfor a class of
particular solutions to be found. The second element is a requirement to have as an outpu
whole procedure several ordinary differential equations whose solutions after being subs
into the chosen Ansatz yield a class of exact solutions of the equation under study. One
important point is that thus obtained solutions depend on auxiliary parameters~separation con-
stants!.

The principal idea of the approach to separation of variables in partial differential equa
suggested in Refs. 1, 2 was to postulate these three features in order to develop a regular pr
for obtaining solutions with separated variables.

First, we choose the Ansatz for a solution to be found,

u~ t,x1 ,x2!5Q~ t,x1 ,x2!w0~ t !w1„v1~ t,x1 ,x2!…w2„v2~ t,x1 ,x2!…, ~5!

where functionsQ,v1,v2 are not fixeda priori but chosen in such a way that inserting t
expression~5! into Eq. ~1! yields three ordinary differential equations for functionsw0,w1,w2.

Needless to say that only with a special choice of functionsQ,v1,v2 can we meet the abov
requirement. If this is the case, the Schro¨dinger equation~1! is called separable in the coordinat
systemt,v1,v2 and the corresponding expression~5! is termed as the solution with separat
variables.

To get constraints on functionsQ,v1,v2 enabling SV in Eq.~1! we have to formalize a
reduction procedure. This is done as follows.3

Consider a system of three ordinary differential equations:

i
dw0

dt
5U0~ t,w0 ;l1 ,l2!,

d2wa

dva
2 5UaS va ,wa ,

dwa

dva
;l1 ,l2D , a51,2, ~6!

whereU0 ,U1 ,U2 are some smooth functions of the corresponding arguments,$l1,l2%,R are
arbitrary parameters~separation constants!, and what is more,

rankI ]Um

]la
I

m50

2

a51

2

52.

Now, inserting the expression~5! into ~1! we get an equation containing the functionsv1,v2
and their first- and second-order partial derivatives, and the functionsw0,w1,w2 and their deriva-
tives. Next, we replace the derivativesdw0/dt,d

2w1/dv1
2 ,d2w2/dv2

2 by the corresponding expres
sions from the right-hand sides of~6!. At the last step, we split the obtained equality with resp
to the variablesw0,w1,w2,dw1/dv1 ,dw2/dv2 , l1, l2 considered as independent.
J. Math. Phys., Vol. 38, No. 2, February 1997
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As established in Ref. 3, the system of ordinary differential equations~6! necessarily takes the
form

i
dw0

dt
5„l1R1~ t !1l2R2~ t !1R0~ t !…w0 ,

d2w1

dv1
2 5„l1B11~v1!1l2B12~v1!1B01~v1!…w1 , ~7!

d2w2

dv2
2 5„l1B21~v2!1l2B22~v2!1B02~v2!…w2 ,

and the functionsQ,v1,v2 have to satisfy the following overdetermined system of partial diff
ential equations:

1. v1x1
v2x1

1v1x2
v2x2

50,

2. B1a~v1!~v1x1
2 1v1x2

2 !1B2a~v2!~v2x1
2 1v2x2

2 !1Ra~ t !50,

~8!
3. 2~vax1

Qx1
1vax2

Qx2
!1Q~ ivat1vax1x1

1vax2x2
!50,

4. „B01~v1!~v1x1
2 1v1x2

2 !1B02~v2!~v2x1
2 1v2x2

2 !…Q1 iQt

1Qx1x1
1Qx2x2

1R0~ t !Q2V~x1 ,x2!Q50,

wherea51,2.
Thus, the problem of SV in Eq.~1! within the framework of our approach reduces to solvi

the overdetermined system of nonlinear partial differential equations~8!. According to Ref. 3 the
general solution of the first five equations from~8! splits into four inequivalent classes, which a
presented below.

I. v15A~ t !x11W1~ t !, v25B~ t !x21W2~ t !,

Q~ t,x1 ,x2!5expH 2
i

4 SA8

A
x1
21

B8

B
x2
2D 2

i

2 SW18

A
x11

W28

B
x2D J ;

II. x15W~ t !ev1 sin v21W1~ t !, x25W~ t !ev1 cosv21W2~ t !,

Q~ t,x1 ,x2!5exp$ iR~ t,x1 ,x2!%;
~9!

III. x15
1
2W~ t !~v1

22v2
2!1W1~ t !, x25W~ t !v1v21W2~ t !,

Q~ t,x1 ,x2!5exp$ iR~ t,x1 ,x2!%;

IV. x15W~ t !coshv1 cosv21W1~ t !, x25W~ t !sinhv1 sin v21W2~ t !,

Q~ t,x1 ,x2!5exp$ iR~ t,x1 ,x2!%.

HereA,B,W,W1 ,W2 are arbitrary smooth functions and the functionR(t,x1 ,x2) is given by
the formula
J. Math. Phys., Vol. 38, No. 2, February 1997
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R~ t,x1 ,x2!5
W8

4W
„~x12W1!

21~x22W2!
2
…1

1

2
~W18x11W28x2!. ~10!

Substituting the expressions for the functionsQ, v1, v2 into the last equation from the syste
~8! yields a functional equation forV(x1 ,x2) andA(t),B(t),W(t),W1(t),W2(t). We have suc-
ceeded in splitting it with respect tot, which gives a number of constraints on the functi
V(x1 ,x2) in the form of partial differential equations. Their general solutions give rise to
possible potentialsV(x1 ,x2) providing separability of the initial equation~1!. The corresponding
results can be summarized as follows.3 There are four classes of potentials:

1. V~x1 ,x2!5V1~x1!1V2~x2!;

2. V~x1 ,x2!5V1~x1
21x2

2!1V2S x1x2D ~x1
21x2

2!21;

3. V~x1 ,x2!5„V1~v1!1V2~v2!…~v1
21v2

2!21,

v1
22v2

252x1 , v1v25x2 ;

4. V~x1 ,x2!5„V1~v1!1V2~v2!…~sinh
2 v11sin2 v2!

21,

coshv1 cosv25x1 , sinhv1 sin v25x2 , ~11!

whereV1 ,V2 are arbitrary smooth functions, such that the corresponding Schro¨dinger equation
separates in the Cartesian~v15x1, v25x2!, polar (x1 5 ev1 sinv2, x2 5 ev1 cosv2), parabolic
~x151/2~v1

22v2
2!, x25v1v2!, and elliptic ~x15coshv1 cosv2, x25sinhv1 sinv2! coordinate

systems, respectively.
Specifying in a proper way functionsV1 ,V2 yields further possibilities for SV in Eq.~1!. The

list of the corresponding potentials is presented below in Table I. Note that the potentialsV(x1 ,x2)
given in Table I are not inequivalent in a usual sense. They are distinguished by the form
number of coordinate systems, providing separability of the corresponding Schro¨dinger equations.
This distinction is indicated by the last column of the table, where we give the numb
inequivalent coordinate systems such that Eq.~1! with the potential adduced in the first colum
admits SV in these.

III. COORDINATE SYSTEMS PROVIDING SEPARABILITY OF EQ. (1)

In this section we will obtain full lists of inequivalent coordinate systems providing sep
bility of Eq. ~1! with the potentials listed in Table I. To this end we have to perform the follow
steps.

~1! To insert the potentials listed in Table I into the last equation of the system~8! and to split
equalities obtained with respect tox1 ,x2 @this gives us systems of nonlinear ordinary different
equations for the functionsA(t),B(t),W(t),W1(t),W2(t)#.

~2! To solve the systems of ordinary differential equations obtained.
~3! To classify coordinate systems within the following equivalence relation~for more detail,

see Ref. 3!.
~a! Two solutions of Eq.~1! with separated variables,

u5Qw0~ t;l!w1~v1 ;l!w2~v2 ;l!

and
J. Math. Phys., Vol. 38, No. 2, February 1997
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ũ5Q̃w̃0~ t;l̃!w̃1~ṽ1 ;l̃!w̃2~ṽ2 ;l̃!,

are called equivalent if there exist functionsCa ,Va ,La , such that the relations

Q̃5QC1~v1!C2~v2!, ṽa5Va~va!, a51,2,
~12!

l̃a5La~l1 ,l2!, a51,2,

TABLE I. Separable potentials for the Schro¨dinger equation. Herek1 ,k2 ,k3 ,k4 are arbitrary parameters,Ṽ is
an arbitrary smooth function and CS is the abbreviation for coordinate system.

N
Potential
V(x1 ,x2)

Constraints
for parameters

Number of CS
allowing SV

1 k1x1
21k2x1

221Ṽ(x2) 2

2 k1x1
21k2x1

221k3x2
22 4

3 k1x1
21k2x1

22 6

4 k1x1
21k2x1

221k3x2
21k4x2

22 4

5 k1x1
21Ṽ(x2)

k1,0 3

k1.0 2

6 k1x1
2 k1,0 9

k1.0 6

7 k1x1
21k2x2

2

k1,0, k2,0 9
k1,0, k2.0 6
k1,0, k2,0 4
4k15k2,0 10
4k15k2.0 5

8 k1x1
21k2x2

21k3x2
22

k1,0, k2,0 6
k1,0, k2.0 6
k1,0, k2,0 4
4k15k2,0 7
4k15k2.0 5

9 k1x1
21k2x2

22
k1,0 6

k1.0 4

10 k1x1
221Ṽ(x2) 2

11 k1x1
221k2x2

22
k1Þk2 10

k15k2 8

12 Ṽ(x2) 3

13 k1x2
22 13

14 (x1
21x2

2)21Ṽ(x1/x2) 2

15 k1x1x2
22(x1

21x2
2)21/21k2x2

22

1k3(x1
21x2

2)21/2
k3Þ0 2

16 k1x1x2
22(x1

21x2
2)21/21k2x2

22 4

17 0 14
J. Math. Phys., Vol. 38, No. 2, February 1997
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hold.
~b! Two solutions of Eq.~1! are called equivalent if they can be transformed one into ano

with the help of a transformation from the Lie transformation group admitted by the correspo
Schrödinger equation.

We will consider in full detail SV in the Schro¨dinger equation with the potential

V~x1 ,x2!5
k1x1

x2
2~x1

21x2
2!1/2

1
k2
x2
2 , k1k2Þ0. ~13!

The general solution of the first five equations of system~8! splits into four inequivalent
classes given in~9!. Each of these should be considered separately.

Case I. Inserting the formulas I from~9! and ~13! into the last equation of~8! yields the
functional-differential equation

2
k2
x2
22

k1x1

x2
2Ax121x2

2
1R̃01A2B01~Ax11W1!1B2B02~Bx21W2!2

iA8

2A
2
x1
2~A8!2

2A2 2
iB8

2B
2
x2
2~B8!2

2B2

2
x1A8W18

A2 2
~W18!2

4A2 2
x2B8W28

B2 2
~W28!2

4B2 1
x1
2A9

4A
1
x2
2B9

4B
1
x1W19

2A
1
x2W29

2B
50.

Multiplying it by x2
2 and differentiating with respect to the variablesx1 ,x2 we get

3k1x2~212x1
4121x1

2x2
222x2

4!

~x1
21x2

2!9/2
50.

Given the conditionk1Þ0, the above equation is inconsistent. Hence we conclude that Eq~1!
with the potential~13! is not separable in the coordinate system given by the formulas I from~9!.

Case II.Let us denote the equation obtained by substituting the formulas II from~9! and~13!
into the last equation of the system~8! asU50. Expressingx1 ,x2 via t, v1, v2 according to the
relations

x15W~ t !ev1 sin v21W1~ t !, x25W~ t !ev1 cosv21W2~ t !, ~14!

we get an equation containing functions oft, v1, v2 only. Differentiating it with respect tot and
returning back to the variablest,x1 ,x2 give the following functional-differential equation:

R̃01
k1~W1W82WW18!

~x1
21x2

2!3/2
2S 2k2x23 2

k1x1
x2~x1

21x2
2!3/2

2
2k1x1

x2
3Ax121x2

2D
3~W2W82WW28!2

~x1
21x2

2!~3W8W91WW~3!!

4W

2
x1
2W

~3W1W8W923WW8W191W1WW~3!2W2W1
~3!!

2
x2
2W

~3W2W8W923WW8W291W2WW~3!2W2W2
~3!!50. ~15!

Differentiating ~15! with respect tox1 ,x2 , we get the equation

15k1x1x2~W1W82WW18!13k1~4x2
22x1

2!~W2W82WW28!50,
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whence we conclude that

W1~ t !5C1W~ t !, W2~ t !5C2W~ t !, ~16!

whereC1 ,C2 are arbitrary real constants.
With account of~16! Eq. ~15! is rewritten to become

R̃02
~x1

21x2
2!~3W8W91WW~3!!

4W
50. ~17!

Consequently, there exists a real constantC0 such that the equality

W9W35C0 ~18!

holds. Due to~16!, ~18! the equationU50 takes the form

B01~v1!1B02~v2!2
C0e

4v1

4
2
C0C2e

3v1 cosv2

2
2

k2e
2v1

~C21ev1 cosv2!
2

2
k1e

2v1~C11ev1 sin v2!

~C21ev1 cosv2!
2
„e2v11C1

21C2
212ev1~C2 cosv21C1 sin v2!…

1/2

2
C0C1e

3v1 sin v2

2
50.

For the equation obtained to be consistent, the sum of the terms beginning from the
should be decomposable into a sum two functionsV1~v1! andV2~v2!. This requirement impose
restrictions on the choice of parametersC0 ,C1 ,C2 . To obtain these we have to consider diffe
ential consequences of the equationU50 up to the 28th order. This has been done with the aid
the MATHEMATICA package, and the result is thatC1 ,C2 should be equal to zero andC0 is an
arbitrary real constant.

Thus, we have proved that Eq.~1!, having the potential~13!, admits SV in the coordinate
system~14! if and only ifW1(t)50,W2(t)50, andW(t) is a solution of the ordinary differentia
equation~18!. The general solution of~18! is given by one of the following formulas:

W0~ t !5 H „~c0t1c1!
21c2…

1/2,
~c32t !1/2,

wherec0, c1, c2, c3 are arbitrary real constants.
If c0Þ0, then using invariance of the Schro¨dinger equation with the potential~13! with respect

to the one-parameter dilation group,

t85tu2, x185x1u, x285x2u, ~19!

we can scale the parameterc0 to become 1 and get

x15~C12t !1/2ev1 sin v2 , x25~C12t !1/2ev1 cosv2 ;
~20!

x15„~ t1C1!
21C2…

1/2ev1 sin v2 , x25„~ t1C1!
21C2…

1/2ev1 cosv2 .

If c0 vanishes, thenW0(t)5C, C5const and the coordinate system~14! takes the form

x15Cev1 sin v2 , x25Cev1 cosv2 .
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Making use of the invariance of the Schro¨dinger equation with the potential~13! with respect
to the transformation group~19!, we can scaleC to become21/u. Next, using the fact that the
equation under study admits the one-parameter projective transformation group~see, e.g., Refs. 7
8!

t85
t

12ut
, xa85

xa
12ut

,

u8~ t8,x18 ,x28!5~12ut !expH iu~x1
21x2

2!

4~12ut ! J u~ t,x1 ,x2!, ~21!

we reduce the above coordinate system to the form

x15
ut21

u
ev1 sin v2 , x25

ut21

u
ev1 cosv2 ,

thus getting the second coordinate system from~20! with C1521/u, C250.
Case III.Splitting as above the last equation of the system~8! with respect tot, we conclude

that Eq. ~1! with potential ~13! admits SV in coordinate system III from~9! if functions
W(t),W1(t),W2(t) satisfy Eqs.~16! and ~18!. With account of this fact the last equation of th
system~8! takes the form

B01~v1!1B02~v2!2
C0~v1

21v2
2!3

16
2
C0C1~v1

42v2
4!

4

2
C0C2v1v2~v1

21v2
2!

2
2

k2~v1
21v2

2!

~v1v21C2!
2

2
k1~v1

21v2
2!~v1

22v2
212C1!

~v1v21C2!
2
„~v1

22v2
212C1!

214~v1v21C2!
2
…

1/250.

Splitting the above equation with respect tov1,v2 yields that it is consistent for vanishin
C0 ,C1 ,C2 only. Hence we get

W0~ t !5c1t1c2 , W1~ t !50, W2~ t !50,

with arbitrary realc1 ,c2 .
Thus we have arrived at the following coordinate system:

x15
1
2~c1t1c2!~v1

22v2
2!, x25~c1t1c2!v1v2 . ~22!

Due to the fact that the Schro¨dinger equation with the potential~13! is invariant with under the
dilation and projective transformation groups~19!, ~21!, the coordinate system~22! is equivalent
to the standard parabolic coordinate systemx15

1
2~v1

22v2
2!, x25v1v2.

Case IV.Splitting the last equation of the system~8! with respect tot we conclude that Eq.~1!
with potential~13! admits SV in coordinate system IV from~9! if functionsW(t),W1(t),W2(t)
satisfy Eqs.~16! and ~18!. With account of this fact the last equation of the system~8! takes the
form
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B01~v1!1B02~v2!2
C0C1 cosv2 coshv1~sin

2 v21sinh2 v1!

2

2
C0C2 sin v2 sinhv1~sin

2 v21sinh2 v1!

2
2
C0~sin

2 v21sinh2 v1!
2

4

2
k1~C11cosv2 coshv1!~sin

2 v21sinh2 v1!

~C21sin v2 sinhv1!
2
„~C11cosv2 coshv1!

21~C21sin v2 sinhv1!
2
…

1/2

2
k2~sin

2 v21sinh2 v1!

~C21sin v2 sinhv1!
2 50.

Splitting the above equation with respect tov1,v2 yields the following consistency conditions

C050, C1561, C250.

Consequently, we have proved that the Schro¨dinger equation with the potential~13! admits
SV in the coordinate system IV from~9! if and only if it has the form

x15~c1t1c2!~coshv1 cosv261!, x25~c1t1c2!sinhv1 sin v2 .

As Eq. ~1! with the potential~13! is invariant with respect to the groups~19! and ~21!, the
above coordinate system is equivalent to the following one:

x15coshv1 cosv261, x25sinhv1 sin v2 .

Summarizing, we conclude that the Schro¨dinger equation having the potential~13! admits SV
in four inequivalent coordinate systems.

The remaining cases 1–15 and 17 from Table I are handled in a similar way, the r
obtained being listed below.

1. V~x1 ,x2!5k1x1
21k2x1

221Ṽ~x2!

~a! k152a2/4,

x15 Hv1~C1 coshat1C2 sinhat!,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2, x25v2 ;

~b! k15a2/4,

x15 Hv1~C1 cosat1C2 sin at!,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2, x25v2 .

2. V~x1 ,x2!5k1x1
21k2x1

221k3x2
22

~a! k152a2/4

x15 Hv1~C1 coshat1C2 sinhat!,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25 Hv2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2;
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~b! k15a2/4

x15 Hv1~C1 cosat1C2 sin at!,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2,

x25 Hv2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2.

3. V~x1 ,x2!5k1x1
21k2x1

22

~a! k152a2/4,

x15 Hv1~C1 coshat1C2 sinhat!,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25H v2~ t1C4!1C5~ t1C4!
21,

v2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2;

~b! k15a2/4

x15 Hv1~C1 cosat1C2 sin at!,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2,

x25H v2~ t1C4!1C5~ t1C4!
21,

v2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2.

4. V~x1 ,x2!5k1x1
21k2x1

221k3x2
21k4x2

22

~a! k152a2/4, k252b2/4

x15 Hv1~C1 coshat1C2 sinhat!,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25 Hv2~C4 coshbt1C5 sinhbt!,
v2~C4 cosh 2bt1C5 sinh 2bt1C6!

1/2;

~b! k152a2/4, k25b2/4

x15 Hv1~C1 coshat1C2 sinhat!,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25 Hv2~C4 cosbt1C5 sin bt!,
v2~C4 cos 2bt1C5 sin 2bt1C6!

1/2;

~c! k15a2/4, k25b2/4

x15 Hv1~C1 cosat1C2 sin at!,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2,
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x25 Hv2~C4 cosbt1C5 sin bt!,
v2~C4 cos 2bt1C5 sin bt1C6!

1/2.

5. V~x1 ,x2!5k1x1
21Ṽ~x2!

~a! k152a2/4

x15H v1~C1 coshat1C2 sinhat!
1C3~C1 coshat1C2 sinhat!

21, C1
2ÞC2

2,
v1 exp$7at%1C1 exp$63at%, x25v2;
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2;

~b! k15a2/4

x15H v1~C1 cosat1C2 sin at!
1C3~C1 cosat1C2 sin at!

21, x25v2.
v1~C1 cos 2at1C2 sin 2at1C3!

1/2.

6. V~x1 ,x2!5k1x1
2

~a! k152a2/4

x15H v1~C1 coshat1C2 sinhat!
1C3~C1 coshat1C2 sinhat!

21, C1
2ÞC2

2,
v1 exp$7at%1C1 exp$63at%,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25H v2~ t1C4!1C5~ t1C4!
21,

v2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2;

~b! k15a2/4

x15H v1~C1 cosat1C2 sin at!
1C3~C1 cosat1C2 sin at!

21,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2,

x25H v2~ t1C4!1C5~ t1C4!
21,

v2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2.

7. V~x1 ,x2!5k1x1
21k2x2

2

~a! k152a2/4, k252b2/4

x15H v1~C1 coshat1C2 sinhat!
1C3~C1 coshat1C2 sinhat!

21, C1
2ÞC2

2,
v1 exp$7at%1C1 exp$63at%,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,
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x25H v2~C4 coshbt1C5 sinhbt!
1C6~C4 coshbt1C5 sinhbt!

21, C4
2ÞC5

2,
v2 exp$7bt%1C4 exp$63bt%,
v2~C4 cosh 2bt1C5 sinh 2bt1C6!

1/2;

~b! k152a2/4, k25b2/4

x15H v1~C1 coshat1C2 sinhat!
1C3~C1 coshat1C2 sinhat!

21, C1
2ÞC2

2,
v1 exp$7at%1C1 exp$63at%,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25H v2~C4 cosbt1C5 sin bt!
1C6~C4 cosbt1C5 sin bt!

21,
v2~C4 cos 2bt1C5 sin 2bt1C6!

1/2;

~c! k15a2/4, k25b2/4

x15H v1~C1 cosat1C2 sin at!
1C3~C1 cosat1C2 sin at!

21,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2,

x25H v2~C4 cosbt1C5 sin bt!
1C6~C4 cosbt1C5 sin bt!

21,
v2~C4 cos 2bt1C5 sin 2bt1C6!

1/2;

~d! k152a2, k252a2/4

x15H v1~C1 cosh 2at1C2 sinh 2at!
1C3~C1 cosh 2at1C2 sinh 2at!

21, C1
2ÞC2

2,
v1 exp$72at%1C1 exp$66at%,
v1~C1 cosh 4at1C2 sinh 4at1C3!

1/2,

x25H v2~C4 coshat1C5 sinhat!
1C6~C4 coshat1C5 sinhat!

21, C4
2ÞC5

2

v2 exp$7at%1C4 exp$63at%,
v2~C4 cosh 2at1C5 sinh 2at1C6!

1/2;

x15
1
2~v1

22v2
2!, x25v1v2 ;

~e! k15a2, k25a2/4

x15H v1~C1 cos 2at1C2 sin 2at!
1C3~C1 cos 2at1C2 sin 2at!

21,
v1~C1 cos 4at1C2 sin 4at1C3!

1/2,

x25H v2~C4 cosat1C5 sin at!
1C6~C4 cosat1C5 sin at!

21,
v2~C4 cos 2at1C5 sin 2at1C6!

1/2;
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x15
1
2~v1

22v2
2!, x25v1v2 .

8. V~x1 ,x2!5k1x1
21k2x2

21k3x2
22

~a! k152a2/4, k252b2/4

x15H v1~C1 coshat1C2 sinhat!
1C3~C1 coshat1C2 sinhat!

21, C1
2ÞC2

2,
v1 exp$7at%1C1 exp$63at%,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25 Hv2~C4 coshbt1C5 sinhbt!,
v2~C4 cosh 2bt1C5 sinh 2bt1C6!

1/2;

~b! k152a2/4, k25b2/4

x15H v1~C1 coshat1C2 sinhat!
1C3~C1 coshat1C2 sinhat!

21, C1
2ÞC2

2,
v1 exp$7at%1C1 exp$63at%,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25 Hv2~C4 cosbt1C5 sin bt!,
v2~C4 cos 2bt1C5 sin 2bt1C6!

1/2;

~c! k15a2/4, k25b2/4

x15H v1~C1 cosat1C2 sin at!
1C3~C1 cosat1C2 sin at!

21,
v1~C1 cos 2at1C2 sin 2at1C3!

1/2,

x25 Hv2~C4 cosbt1C5 sin bt!,
v2~C4 cos 2bt1C5 sin 2bt1C6!

1/2;

~d! k152a2, k252a2/4

x15H v1~C1 cosh 2at1C2 sinh 2at!
1C3~C1 cosh 2at1C2 sinh 2at!

21, C1
2ÞC2

2,
v1 exp$72at%1C1 exp$66at%,
v1~C1 cosh 4at1C2 sinh 4at1C3!

1/2,

x25 Hv2~C4 coshat1C5 sinhat!,
v2~C4 cosh 2at1C5 sinh 2at1C6!

1/2;

x15
1
2~v1

22v2
2!, x25v1v2 ;

~e! k15a2, k25a2/4

x15H v1~C1 cos 2at1C2 sin 2at!
1C3~C1 cos 2at1C2 sin 2at!

21,
v1~C1 cos 4at1C2 sin 4at1C3!

1/2,
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x25 Hv2~C4 cosat1C5 sin at!,
v2~C4 cos 2at1C5 sin 2at1C6!

1/2;

x15
1
2~v1

22v2
2!, x25v1v2 .

9. V~x1 ,x2!5k1x1
21k2x2

22

~a! k152a2/4

x15H v1~C1 coshat1C2 sinhat!1C3~C1 coshat1C2 sinhat!
21, C1

2ÞC2
2,

v1 exp$7at%1C1 exp$63at%,
v1~C1 cosh 2at1C2 sinh 2at1C3!

1/2,

x25 Hv2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2;

~b! k15a2/4

x15 Hv1~C1 cosat1C2 sin at!1C3~C1 cosat1C2 sin at!
21,

v1~C1 cos 2at1C2 sin 2at1C3!
1/2;

x25 Hv2~C42t !1/2,
v2„~ t1C4!

21C5…
1/2.

10. V~x1 ,x2!5k1x1
221Ṽ~x2!

x15 Hv1~C12t !1/2,
v1„~ t1C1!

21C2…
1/2, x25v2 .

11. V~x1 ,x2!5k1x1
221k2x2

22

x15 Hv1~C12t !1/2,
v1„~ t1C1!

21C2…
1/2, x25 Hv2~C32t !1/2,

v2„~ t1C3!
21C4…

1/2;

x15~C12t !1/2ev1 sin v2 , x25~C12t !1/2ev1 cosv2 ;

x15„~ t1C1!
21C2)

1/2ev1 sin v2 , x25„~ t1C1!
21C2)

1/2ev1 cosv2 ;

x15~C12t !1/2 coshv1 cosv2 , x25~C12t !1/2 sinhv1 sin v2 ;

x15„~ t1C1!
21C2…

1/2 coshv1 cosv2 ,

x25„~ t1C1!
21C2)

1/2 sinhv1 sin v2 ;

x15~C12t !1/2 sinhv1 sin v2 , x25~C12t !1/2 coshv1 cosv2 ;

x15„~ t1C1!
21C2…

2 sinhv1 sin v2 ,

x25„~ t1C1!
21C2…

1/2 coshv1 cosv2 .

12. V~x1 ,x2!5Ṽ~x2!
J. Math. Phys., Vol. 38, No. 2, February 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



1211R. Z. Zhdanov: Separation of variables

¬¬¬¬¬¬¬¬¬¬
x15H v1~ t1C1!1C2~ t1C1!
21,

v1~C12t !1/2,
v1„~ t1C1!

21C2…
1/2.

x25v2 ;

13. V~x1 ,x2!5k1x2
22

x15H v1~ t1C1!1C2~ t1C1!
21,

v1~C12t !1/2,
v1„~ t1C1!

21C2…
1/2,

x25 Hv2~C32t !1/2,
v2„~ t1C3!

21C4…
1/2,

x15~C12t !1/2ev1 sin v2 , x25~C12t !1/2ev1 cosv2 ;

x15„~ t1C1!
21C2…

1/2ev1 sin v2 , x25„~ t1C1!
21C2…

1/2ev1 cosv2 ;

x15
1
2~v1

22v2
2!1C1t

2, x25v1v2 ;

x15~C12t !1/2 coshv1 cosv2 , x25~C12t !1/2 sinhv1 sin v2 ;

x15„~ t1C1!
21C2…

1/2 coshv1 cosv2 ,

x25„~ t1C1!
21C2…

1/2 sinhv1 sin v2 ;

x15~C12t !1/2 sinhv1 sin v2 , x25~C12t !1/2 coshv1 cosv2 ;

x15„~ t1C1!
21C2)

1/2 sinhv1 sin v2 ,

x25„~ t1C1!
21C2…

1/2 coshv1 cosv2 .

14. V~x1 ,x2!5~x1
21x2

2!21ṼS x1x2D
x15~C12t !1/2ev1 sin v2 , x25~C12t !1/2ev1 cosv2 ;

x15„~ t1C1!
21C2…

1/2ev1 sin v2 , x25„~ t1C1!
21C2…

1/2ev1 cosv2 .

15. V~x1 ,x2!5k1x1x2
22~x1

21x2
2!21/21k2x2

221k3~x1
21x2

2!21/2

x15ev1 sin v2 , x25ev1 cosv2 ;

x15
1
2~v1

22v2
2!, x25v1v2 .

16. V~x1 ,x2!5k1x1x2
22~x1

21x2
2!21/21k2x2

22

x15~C12t !1/2ev1 sin v2 , x25~C12t !1/2ev1 cosv2 ;

x15„~ t1C1!
21C2…

1/2ev1 sin v2 , x25„~ t1C1!
21C2…

1/2ev1 cosv2 ;
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x15
1

2
~v1

22v2
2!, x25v1v2 ;

x15coshv1 cosv261, x25sinhv1 sin v2 .

17. V~x1 ,x2!50

x15H v1~ t1C1!1C2~ t1C1!
21,

v1~C12t !1/2,
v1„~ t1C1!

21C2…
1/2,

x25H v2~ t1C3!1C4~ t1C3!
21,

v2~C32t !1/2,
v2„~ t1C3!

21C4…
1/2;

x15~C12t !1/2ev1 sin v2 , x25~C12t !1/2ev1 cosv2 ;

x15„~ t1C1!
21C2…

1/2ev1 sin v2 , x25„~ t1C1!
21C2…

1/2ev1 cosv2 ;

x15
1
2~v1

22v2
2!1C1t

2, x25v1v2 ;

x15~C12t !1/2 coshv1 cosv2 , x25~C12t !1/2 sinhv1 sin v2 ;

x15„~ t1C1!
21C2…

1/2 coshv1 cosv2 ,

x25„~ t1C1!
21C2…

1/2 sinhv1 sin v2 .

In the above formulasC1 ,...,C6 are arbitrary real numbers anda,b are arbitrary positive rea
numbers.

The results on SV in the Schro¨dinger equations having the potentialsV(x1 ,x2)50 and
V(x1 ,x2)5k1x1

221k2x2
22 are the same as in Refs. 4 and 5 and are given here for the sa

completeness.
Note that coordinate systems providing separability of the Schro¨dinger equation with poten

tials 1–9 depend essentially on the coupling constantsa,b that are contained in the correspondin
potentialsV(x1 ,x2). Comparing these coordinate systems with those making it possible to
rate variables in the free Schro¨dinger equation~V50!, we see that they are essentially differe
The free Schro¨dinger equation does not separate in coordinate systems listed in the above fo
1–9 if abÞ0. This is not the case for the potentialV(x1 ,x2)5k1x1

221k2x2
22 studied by Boyer.5

The free Schro¨dinger equation separates in all coordinate systems providing separability of E~1!
having the potentialV(x1 ,x2)5k1x1

221k2x2
22.

IV. SEPARATION OF VARIABLES IN THE HEAT AND HAMILTON–JACOBI EQUATIONS

The results of the previous sections are straightforwardly applied to the problem of SV
heat equation~2! if we fix a separation Ansatz in the form~5!. The system of nonlinear partia
differential equations for the functionsQ,v1,v2 is obtained if we replace in~8! i (]/]t) by ]/]t. By
this reason the forms of potentialsV(x1 ,x2) and coordinate systemsv1,v2 are the same as thos
for the Schro¨dinger equation. The only difference is the form of the factorQ(t,x1 ,x2):
J. Math. Phys., Vol. 38, No. 2, February 1997
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I. Q~ t,x1 ,x2!5expH 2
1

4 SA8

A
x1
21

B8

B
x2
2D 2

1

2 SW18

A
x11

W28

B
x2D J ;

II. Q~ t,x1 ,x2!5exp$R~ t,x1 ,x2!%;

III. Q~ t,x1 ,x2!5exp$R~ t,x1 ,x2!%;

IV. Q~ t,x1 ,x2!5exp$R~ t,x1 ,x2!%,

whereR(t,x1 ,x2) is given by~10!.
Thus, Table I gives the full list of the potentialsV(x1 ,x2) such that the heat equation~2!

admits SV within the framework of our approach. The coordinate systems providing separ
of the heat equations are given by the corresponding formulas from Sec. III.

It is known that there exists a deep connection between SV in the heat and Hamilton–
equations~see, e.g., Ref. 6!. The Hamilton–Jacobi equation~3! separates in any coordinate sy
tem, providing separability of the heat equation~2!, and, what is more, the inverse assertion is n
true. To reveal the reason for this let us consider in some detail SV in Eq.~3!. First we fix the
usual form of the separation Ansatz for the Hamilton–Jacobi equation,

u~ t,x1 ,x2!5Q̃~ t,x1 ,x2!1w0~ t !1w1„v1~ t,x1 ,x2!…1w2„v2~ t,x1 ,x2!…, ~23!

and, furthermore, fix the form of the equations forw0,w1,w2,

dw0

dt
5l1R1~ t !1l2R2~ t !1R0~ t !,

dw1

dv1
5„l1B11~v1!1l2B12~v1!1B01~v1!…

1/2, ~24!

dw2

dv2
5„l1B21~v2!1l2B22~v2!1B02~v2!…

1/2.

Then, after inserting the Ansatz~23! into Eq. ~3!, eliminating the first derivatives of the
functions w0,w1,w2 with the use of the above equations and splitting by the varia
w0,w1,w2,l1,l2 we arrive at the following system of nonlinear partial differential equations for
functionsQ,v1,v2:

1. v1x1
v2x1

1v1x2
v2x2

50,

2. B1a~v1!~v1x1
2 1v1x2

2 !1B2a~v2!~v2x1
2 1v2x2

2 !1Ra~ t !50,

~25!
3. 2~vax1

Q̃x1
1vax2

Q̃x2
!1vat50,

4. B01~v1!~v1x1
2 1v1x2

2 !1B02~v2!~v2x1
2 1v2x2

2 !

1Q̃t1Q̃x1
2 1Q̃x2

2 1R0~ t !2V~x1 ,x2!50,

wherea51,2.
It is not difficult to become convinced of the fact that the functions

Q̃~ t,x1 ,x2!5 ln Q~ t,x1 ,x2!, v1~ t,x1 ,x2!, v2~ t,x1 ,x2!,
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satisfy the system~25! if and only if Q,v1,v2 is a solution of~8!, where one should replac
i (]/]t) by ]/]t. Indeed, the general solution$v1,v2% of the first three equations~which are the
same for both systems! can be reduced with the help of an equivalence transformation~12! to such
a form that it satisfies the Laplace equation,3

v1x1x1
1v1x2x2

50, v2x1x1
1v2x2x2

50.

Hence it follows that the general solution of the first five equations of the system~25! is given by
the formulas~9! andQ̃5R(t,x1 ,x2) with R(t,x1 ,x2) of the form~10!. Now if we make in the last
equation of the system~8! the changeQ5exp$Q̃%, and multiply the equality obtained b
exp$2Q̃%, and take into account the relation

Q̃x1x1
1Q̃x2x2

[Rx1x1
1Rx2x2

5
W8~ t !

W~ t !
,

then we get the last equation from the system~24!.
Summarizing, we conclude that Eq.~3! separates for any potential given in Table I an

furthermore, all coordinate systems listed in Sec. III provide separability of the correspo
Hamilton–Jacobi equation.

Let us note that some more details on separation of variables in the Hamilton–Jacobi eq
~3! with specific potentialsV(x1 ,x2) can be found in Refs. 9–13.

We finish this section with one more equation that can be solved with the help of the m
of separation of variables within the approach suggested above. Consider the~112!-dimensional
Fokker–Planck equation of the following special form:

ut1ux1x11ux2x21~a1u!x11~a2u!x250, ~26!

wherea1 ,a2 are some smooth functions ofx1 ,x2 . In addition, we require for Eq.~26! to be
reducible to the form~2!. It is a common knowledge that this is possible if and only if the relat
a1x2 5 a2x1 holds. Consequently, we can represent the coefficients of Eq.~26! in the form

ai522
] f

]xi
f21, i51,2, ~27!

with a sufficiently smooth functionf5 f (x1 ,x2).
Given the conditions~27!, the change of the dependent variable,

u~ t,x1 ,x2!5U~ t,x1 ,x2! f ~x1 ,x2!,

transforms the Fokker–Planck equation~26! to become

Ut1Ux1x1
1Ux2x2

2V~x1 ,x2!U50, ~28!

where we have denoted

V~x1 ,x2!5~ f x1x11 f x2x2! f
21. ~29!

Table I gives the full list of potentialsV such that Eq.~28! admits SV. Solving for each o
them the equation~29! we get classes of separable Fokker–Planck equations. Note that the
tion f x1x1 1 f x2x2 5 V(x1 ,x2) f can be solved by the method of separation of variables for e
potentialV(x1 ,x2) from Table I.

Furthermore, if
J. Math. Phys., Vol. 38, No. 2, February 1997
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U5Q~ t,x1 ,x2!w0~ t !w1~v1!w2~v2!,

is a solution of Eq.~28! with separated variables, then the formula

u5 f ~x1 ,x2!Q~ t,x1 ,x2!w0~ t !w1~v1!w2~v2!,

where f5 f (x1 ,x2) is a solution of Eq.~29!, yields a solution of the initial Fokker–Planck equ
tion ~26! with separated variables.

V. SOME GENERALIZATIONS

Generally speaking, construction of particular solutions of a special form is only the first
of the method of separation of variables. The next step is to use the solutions obtained as th
functions to expand an arbitrary smooth solution of the equation under study in a properly c
Hilbert space.14 Consequently, to be able to implement the method of separation of variable
full generality we have to restrict our considerations tolinear partial differential equations. But a
a tool for obtaining particular solutions the method is applicable tononlinearequations as well.
The well-known example is the Laplace equation with a logarithmic nonlinearity,

uxx1uyy1lu ln u50, l5const,

which is separable in the Cartesian coordinate system via usual separation Ansatzu5w1(x)w2(y)
~see, e.g., Ref. 6!. The second example that is due to Osborn and Stuart15 is more peculiar. They
have shown that the sine-Gordon equation,

utt2uxx5l sin u, l5const,

can be separated into two first-order ordinary differential equations if one makes use
following Ansatz:

u~ t,x!54 arctan„w0~ t !w1~x!….

The standard Ansatz~5! cannot be applied to separate variables in the sine-Gordon equa
The reason is that it does not take into account a specific structure of nonlinearity of the eq
in question.

Thus, to be able to separate variables in nonlinear partial differential equations we h
make a separation Ansatz more flexible and not to fixa priori a form of dependence on the ne
unknown functionsw0,w1,w2.

Being motivated by this idea we have suggested in Ref. 16 the following generalization
Ansätze ~5!, ~23!:

vm115 f ~w1~v1!,...,wm~vm!!, m,n11, ~30!

wherev1,...,vm11 are functions ofx1 ,...,xn11 , u such that

rankI ]v i

]xj
I
i51

m11

j51

n11

5m11,

wherexn11[u.
The form of the functionf is determined from the requirement that substitution of the Ans

~30! into a givenkth-order partial differential equation should yield a system of ordinary dif
ential equations for the functionsw i(v i), i51,...,m of the form
J. Math. Phys., Vol. 38, No. 2, February 1997
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dkiw i

dv i
ki

5FiS v i ;w i ,
dw i

dv i
,...,

dki21w i

dv i
ki21 ;l1 ,...,lND , ~31!

wherei51,...,m, ki<k.
The key point of this approach is a proper formalization of what areductionis. This is done

in the same way as in the linear case~see Sec. II!. After inserting the Ansatz~30! into the equation
under study we eliminate all the derivatives of the functionsw i(v i) of the order higher thanki21
using Eqs.~31! and their differential consequences. Next, we split the equality obtained
w i ,dw ı /dv ı ,...,d

ki21 w i /dv i
ki21, i51,...,m,l1 ,...,lN considered as new independent variabl

This gives us, on the one hand, the form of the Ansatz~30! and, on the other hand, an overdete
mined system of partial differential equations for functionsvı . A solution of the latter gives rise
to an Ansatz providing separability of the initial equation intom ordinary differential equations.

The reduction scheme outlined above is very general and contains as particular cas
following.

~i! Symmetry reduction, providedm51, f5w1~v1! andv1,v2 are invariants of a Lie transfor
mation group admitted by an equation under consideration~see, e.g., Refs. 17 and 18!.

~ii ! conditional symmetry~nonclassical! reduction, providedm51, f5w1~v1! and at least one
of the functionsv1,v2 is not an invariant of a Lie transformation group admitted by an equa
under consideration.19–24

~iii ! Antireduction, providedFi are independent of parametersl1,...,lN ~see also Refs. 28 an
29!.

~iv! Multiplicative separation of variables, providedm5n, N5n21, and

v i5v i~x!, vn115
u

Q~x!
, f5w13•••3wn ,

wherei51,...,n,
~v! Additive separation of variables, providedm5n, N5n21, and

v i5v i~x!, vn115u2Q~x!, f5w11•••1wn ,

wherei51,...,n.
Most important is that the generalized method of separation of variables as introduced

can be efficiently applied to construct exact solutions ofnonlinear equations. In particular, we
have succeeded in classifying nonlinear wave equationsutt2uxx5F(u), which can be separate
into two first-order ordinary differential equations with the aid of the Ans
u5 f „w0(t)1w1(x)….

30 There are strong evidences that a similar idea should work for nonli
Schrödinger-like equations as well. Study of this problem is in progress now and the corres
ing results will be published elsewhere.
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Plank’s recent discussion in this Journal of Hamiltonian structure of Lotka–
Volterra dynamics is shown to have roots going back many years. This is briefly
sketched together with an infrastructure of the Lie–Koenigs theorem and Gibbs
ensemble theory. ©1997 American Institute of Physics.
@S0022-2488~97!02802-8#

I. INTRODUCTION

In a recent paper is this Journal,1 Manfred Plank reports on Hamiltonian formulations
several forms of Lotka–Volterra dynamics, expressing that the idea of casting certain of
conservation laws into the role of Hamiltonian is new. But this idea is, in fact, quite old, ha
been brought forward and implemented by the present author thirty years ago,2 and extensively
applied statistical mechanically; the earlier work will here be briefly reinstated.

The emphasis in the present note is on the Lie–Koenigs theorem, which addresses the
tonization of virtually arbitrary ordinary differential systems. In this context the original Volte
system stands as a prime illustrative example. By contrast, Plank confines his discussion
of two-dimensional examples, including Volterra–Lotka’s, and generalizes this limited se
wards ton-dimensions. A key skew-symmetric matrix enters the Lie–Koenigs theorem and
~in specialized forms! in Plank’s examples. Whereas a fundamental differential identity in
matrix falls out simply and directly in the Lie–Koenigs discussion, it is set out by Plank in
Definition 2.1 purely formally as a so-called Jacobi identity, whose meaning and origin ar
scure. Finally, the far-reaching implications of Hamiltonized Volterra dynamics in Gibbs
semble theory, absent in Plank’s work, are sketched here.

II. VOLTERRA DYNAMICS

Following early independent formulations by Lotka and by Volterra for the case of
interacting biospecies, Volterra in his 1931 Paris lectures3 developed the dynamics for any numb
of species with populationsNi(t) in predator–prey pairs

dNi

dt
5e iNi1

1

b i
a igNiNg ~ i51,2, . . . ,m!, ~1!

where Greek indices are summed over; and wheree i is an autoincrease or -decrease parame
andb i is Volterra’s ‘‘equivalent number’’ parameter~much like mean effective biomass of th
individuals in thei th species!; and wherea i j is the interaction strength of speciesi with species
j . To enforce that wheni is predatory onj the binary interaction leads to increase ofi and
decrease ofj , Volterra tooka i j to be skew-symmetric, e.g.,a i j.0 anda j i52a i j,0 @this is
sufficient for predator/prey reciprocity, but is not necessary—for example,sign skew symmetry,
sgn(a i j )52sgn(a j i ) is less stringent and more realistic but harder to deal with#. A simple ex-
ample is a microecology studied by Gause,4 consisting of predatory paramecia feeding upon p
yeast supported by an unlimited sugar supply~absent any interaction the predators die out ex
nentially, while the prey grow exponentially on the sugar background; with interaction an o
latory regime ensues!.
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Stationary population levelsNi5qi , making allṄi50 occur for

e ib i1a igqg50

and it is presumed thata is nonsingular~hence only even total speciationm) and all qi.0.
Thereupon, going to new variablesv i[ log (Ni /qi), Eq. ~1! becomes

v̇ i5g iltl~evl21!5g il

]G

]vl
~2!

with

G5ta~eva2va!

and with

g i j[
a i j

b ib j
52g j i , t i[qib i .

III. HAMILTONIANS

At once it is visible that Eq.~2! is already a Hamiltonian dynamics in the two-species ca

v15Q, v25P,

H5gt1~e
Q2Q!1gt2~e

P2P!,

Q̇5
]H

]P
, Ṗ52

]H

]Q
,

whereg1252g215g.
Very simply, the rudimentary Volterra–Lotka model speaks to the elemental situation w

say, a starting configuration of abundant prey~e.g., yeast! and sparse predators~e.g., paramecia!
leads to the latter feeding strongly on the former, resulting in the prey population falling to
levels and the predators rising to high;—but then the numerous predators have not enough
nance from the thin prey, and so decline while the prey are free to increase, returning prese
the initial state of prey abundance and predator sparseness. This completes the notably n
Volterra–Lotka cycle, which inQ, P space is represented by the loopH5const, consisting of
small excursions ofQ andP in the positive quadrant~whereH is dominated byeQ andeP), but
large excursions in the negative quadrant~whereH is dominated by2Q and2P). This lopsided
loop quiets down to a little ellipse whenH is small, with eQ.11Q1 1

2Q
2, and eP.11P

1 1
2P

2, and the motion becomes simple harmonic.
In the general case, make a linear transformationwi5Tiava , to bring

ẇi5TiagalT̃gs

]H

]ws
5b is

]H

]ws
, H~w![G~v~w!!. ~3!

Using the well-known theorem5 on reduction of a skew-symmetric matrix to canonical form
orthogonal transformation, one can obtain by structuringT correctly the symplectic form

b5TgT̃5S 0 1

21 0D 1̇S 0 1

21 0D 1̇•••
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where1̇ denotes direct sum. That is, relabellingw1, w2 asQ1, P1 andw3 ,w4 asQ2 ,P2, etc.,

Ṗi52
]H

]Qi
, Q̇i5

]H

]Pi

producing finally the familiar Hamiltonian format.
As is clear from Eq.~2!, Liouville’s theorem holds inv-space

div V[
] v̇m

]vm
5gml

]2G

]vm]vl
50,

telling of incompressible fluid flow~or volume conservation! in that space as inQ,P space. This
is of capital importance in going to Gibbs ensembles~see below!.

IV. LIE–KOENIGS PERSPECTIVE

The covering theorem for results like those of Volterra’s model is the Lie–Koenigs theor6

stating that any dynamicsẋi5Xi(x) may be brought to Hamiltonian form.
A simple instrument for its demonstration is the variational principle

dE @Ua~x!ẋa2U0#dt50, ~4!

whose Euler–Lagrange equations

dUk

dt
5

]Ua

]xk
ẋa2

]U0

]xk
~k51,2, . . . ,m!

are, first, to be made to embrace the prescribed differential systemẋi5Xi . Taking
dUk /dt5(]Uk /]xa) ẋa we obtain

S ]Uk

]xa
2

]Ua

]xk
D ẋa52

]U0

]xk
~5!

or

Gkaẋa5
]U0

]xk
,

where

Gk j[
]Uj

]xk
2

]Uk

]xj

is a key skew-symmetric matrix, which is taken to be nonsingular,—this requires that its
m be even, but that is no problem since toẋi5Xi( i51,2, . . . ,m) there can always be appended
additional equationẋm115Xm11 to make any initially odd system into an even one. The fun
mental matrixG clearly satisfies

]Gk j

]xi
1

]G ik

]xj
1

]G j i

]xk
[0 ~6!
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as a moment’s calculation shows. For prescribedXi , the partial-differential system for theUi is

S ]Uk

]xa
2

]Ua

]xk
DXa52

]U0

]xk
.

If U0 is built asUaXa1W0, then

Xa

]Uk

]xa
52Ua

]Xa

]xk
2

]W0

]xk
.

This is recognizably a system of Cauchy–Kowalewski type, for which a local existence the
is classically settled. The remainder of the proof of Hamiltonization ofẋi5Xi consists in noting
that ~replacingm by 2n)

(
1

2n

Uadxa

is reducible, by solution of a succession of Pfaff’s problems7 to

(
1

n

Pg~x!dQg~x!

to within an exact differential. This brings Eq.~4! to

dE ~PgQ̇g2H !dt50,

H~Q,P![U0~x~Q,P!!,

so thatẋi5Xi is now rendered into final Hamiltonian form. It is to be noted that explicit Ham
tonian form can often be dropped in favor of the ‘‘effectively Hamiltonian’’ format of Eq.~5!
which may be restated8

ẋi5g ia

]U0

]xa
,

~g[G21!.

This format is invariant to arbitrary transformations of the coordinatexi , as the variational prin-
ciple Eq. ~4! clearly tells. Thus a considerable advance over the canonical transformatio
Hamiltonian theory. Poisson brackets may be represented as

~A,B!5
]A~x!

]xa
gab

]B~x!

]xb

while the identity, Eq.~6!, written in terms of theg matrix is

g ia

]g jk

]xa
1g ja

]gki

]xa
1gka

]g i j

]xa
[0.

The latter result hides the simplicity of the original Eq.~6!, and without the insight behind Eq.~6!
appears rather mysterious as an a priori characteristic of theg matrix.
J. Math. Phys., Vol. 38, No. 2, February 1997
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It is also easily shown thatudetGu1/2 is a Jacobi last-multiplier6 of the starting system
ẋi5Xi , hence that the weighted volume

udetGu1/2 dx1 dx2•••dxm[udetGu1/2 dx ~7!

is conserved~note that detG is a perfect square!. This constitutes Liouvilles’s theorem inx space.

V. GIBBS ENSEMBLES

The traditional setting of Hamiltonian dynamics for classical ensemble theory is easil
tended to cover the much broader ‘‘effectively Hamiltonian’’ scheme above. First we hav
extended Liouville theorem of Eq.~7!, and second we have the conservation law

dU0

dt
5 ẋb

]U0

]xb
5gba

]U0

]xa

]U0

]xb
50

owing to the skew-symmetry ofg. Consequently, the extended canonical distribution function
x space is

r dx;udetGu1/2 expS 2
U0

Q Ddx
for a system under ‘‘heat bath’’ conditions at temperatureQ.

A simple but telling example here is the Volterra system above, whereg andG are constant
matrices and the canonical distribution inv-space is simply

r dv; exp S 2G

Q Ddv,
G5( ta~ena2na!.

Now owing to the structure of conservedG as a sum-function, this is

r dv;P i exp2
t i
Q

~ev i2v i !dv i

so the separability ofG provides a private distribution in eachvk individually

rk dvk; exp2
tk
Q

~evk2vk!dvk ~8!

in a striking parallel with the Maxwell–Boltzmann distribution. Thus notwithstanding that
interspecies interaction strengths,a i j may be arbitrarily strong, the separability ofG ensures the
ensemble behavior as a sort of ideal~ecological! gas, with each component split off from the re
and the calculation of ensemble averages greatly facilitated. The transition to strictly Hamilt
form, Eq.~3!, quite clearly ruins this simplicity and is definitely to be avoided: a nice case o
superiority of the effective-Hamiltonian scheme over the strictly Hamiltonian one.

Reverting directly to population levelsnk[Nk /qk , the distribution law Eq.~8! is

rk dnk;nk
lk21e2lknk dnk ,

~lk[tk /Q!,
J. Math. Phys., Vol. 38, No. 2, February 1997
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namely, a gamma distribution, and the meaning ofQ is revealed~in two ways! by the simple
canonical averages

~nk21!25
Q

tk
5~nk21! log nk,

while nk51. For very low temperatures,Q!tk , the rk is strongly peaked atnk51, and the
populationNk just ripples gently aroundqk . At very high temperaturesQ@tk , the rk is domi-
nated by very low values ofnk . Here, the populationnk spends long intervals of time at very low
levels, occasionally and briefly rocketing to high levels~holding thus toNk5qk). This behavior of
‘‘surge-and-crash’’ of a population is well observed in the field. Thus the whole system di
roughly into species which are rippling lightly about their mean values, and a second
surging-and-crashing about them.

For the considerable variety of ensemble averages that may be explicitly calculated, the
is referred to the original works. Suffice it to say that the single statistical parameterlk appears to
be adequate to appreciable ranges of data. The case of odd-speciation~oddm) admits the impor-
tant possibility that one species dies out asymptotically, in a ‘‘passage to parity’’ that was r
nized by Volterra. The gradual grinding out of this one species, who typically will be a c
competitor of a neighboring, slightly advantaged species, can be elaborated in detail, an
models the so-called ‘‘competitive exclusion principle’’understood since Darwin to be a m
spring of evolution.

1M. Plank, J. Math. Phys.36, 3520~1995!.
2E. H. Kerner, Bull. Math. Biophys.26, 151 ~1964! @reprinted with related papers in E. H. Kerner,Gibbs Ensemble:
Biological Ensemble~Gordon and Brench, New York, 1972!#. See also E. H. Kerner, inAdvances in Chemical Physics,
edited by I. Prigogine and S. A. Rice~Wiley, New York, 1971!, Vol. 19. Also see Phys. Lett. A151, 401 ~1990!.

3V. Volterra,Lecons sur la Theorie Mathematique de la Lutte pour la Vie~Gauthier-Villars, Paris, 1931!.
4G. F. Gause,The Struggle for Existence~Williams & Wilkins, Baltimore, 1934!.
5J. Wedderburn,Lectures on Matrices~Am. Math. Soc., New York, 1934!.
6E. T. Whittaker,Analytical Dynamics~Cambridge University Press, Cambridge, 1937!. For applications of the Lie–
Koenigs theorem in relativistic many-particle theory, E. H. Kerner, J. Math. Phys.6, 1218~1965! and R. N. Hill, ibid.
9, 222 ~1968!.

7A. R. Forsyth,Theory of Differential Equations~Dover, New York, 1959!.
8This is also called a ‘‘coordinate free’’ Hamiltonian scheme, P. J. Olver,Applications of Lie Groups to Differential
Equations~Springer, Berlin, 1986!.
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Erratum: N 5 4 super KdV hierarchy in N 5 4 and N 5 2
superspaces [J. Math. Phys. 37, 1356–1381 (1996)]

F. Delduc
Laboratoire de Physique The´orique ENSLAPP, ENS Lyon 46 Alle´e d’Italie,
69364 Lyon, France

E. Ivanov and S. Krivonos
Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna,
141980 Moscow Region, Russia

~Received 30 September 1996; accepted for publication 1 October 1996!

@S0022-2488~97!01501-6#

Through the author’s fault, there were a few misprints in the original manuscript. They d
affect any results or conclusions of the paper.

The item~c! in Eq. ~3.18!, page 1369, should read

~c! a52 2
5a

11a11, b523a .

Equation~3.30!, page 1370, should read

H35E m~2!H 8D̄V DV12iFxF̄1
i

3
a~4V316VFF̄!1 ib~VF21VF̄2!J ~3.30!

~the coefficient 4 beforeV3 in the first parentheses was missed!.
0022-2488/97/38(2)/1224/1/$10.00
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Higher level WZW sectors from free fermions
Jens Böckenhauer
II. Institut für Theoretische Physik, Universita¨t Hamburg, Luruper Chaussee 149,
D-22761, Hamburg, Germany

Jürgen Fuchs
DESY, Notkestraße 85, D-22603, Hamburg, Germany

~Received 5 August 1996; accepted for publication 21 August 1996!

We introduce a gauge group of internal symmetries of an ambient algebra as a new
tool for investigating the superselection structure of WZW theories and the repre-
sentation theory of the corresponding affine Lie algebras. The relevant ambient
algebra arises from the description of these conformal field theories in terms of free
fermions. As an illustration we analyze in detail the so(N) WZW theories at level
two, which allows us in particular to construct explicit bases for the level-two
irreducible highest weight modules. In this case there is actually a homomorphism
from the representation ring of the gauge group to the subring of the WZW fusion
ring that corresponds to the Neveu–Schwarz sector, even though the level-two
observable algebra is smaller than the gauge invariant subalgebra of the field alge-
bra. © 1997 American Institute of Physics.@S0022-2488~97!02702-3#

I. INTRODUCTION

While a wealth of information about Wess–Zumino–Witten~WZW! theories has been ob
tained by analyzing these conformal field theories with the help of the unbounded operators
generate their Virasoro and affine Lie algebra structures, much less is known about the s
lection structure of WZW theories as described in terms of local algebras of bounded operat
comparison with higher-dimensional relativistic quantum field theories, some difficulties ari
these models as a consequence of the fact that the quantum symmetry which governs the
selection structure is not a gauge group in the sense of Doplicher, Haag, and Roberts~DHR!1. So
far, no generally accepted description of this quantum symmetry is available. Accordingly
analysis of WZW models in the framework of algebraic field theory has been confined to the
of level one of the relevant affine Lie algebras2,3 or to simple currents,4 i.e., sectors with unit
statistical dimension.~Similar remarks apply to the work on other conformal field theories, co
pare, e.g., Refs. 5–8; for an approach which addresses general conformal field theories, s
9.! Here we report on ideas which allow one to also deal with more complicated situations

The purpose of this article is twofold. First, we would like to find a convenient substitute
the DHR gauge group in low-dimensional field theories. We donot require that this substitute
plays the role of the full quantum symmetry of the theory, i.e., the gauge invariant fields nee
coincide with the observables of the theory under consideration, so that the gauge group d
directly describe the superselection structure. Rather, we only demand that it supplies a t
examining this structure, which when combined with other information allows one to charac
the sectors at least to a large extent. In the specific case of WZW theories, the required ad
information comes from the representation theory of affine Lie algebras. In this case we su
in identifying a symmetry group which satisfies the required property.

Our second goal is to get a new handle on certain aspects of the representation theory o
Lie algebras, in particular to obtain simple formulas for the characters of irreducible hi
weight modules. While there exists a closed expression, the well known Weyl–Kac formula10 for
all these characters, it is often difficult to evaluate because it involves a summation over the
group of the horizontal subalgebraḡ of the affine algebrag. Therefore one often prefers to hav
formulas which can be better controlled, say in terms of infinite sums or products that are e
0022-2488/97/38(3)/1227/30/$10.00
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handle with algebraic manipulation programs. For instance, in the case of the classical se
simple Lie algebrasḡ one would like to have a form of the characters which has a sim
functional dependence on the rank ofḡ.

Simple character formulas of this type are in particular known for the level-one modul
many algebras, owing to the fact that these modules can be realized in terms of free bosons~when
ḡ is simply laced! or free fermions@whenḡ is so(N) or su(N)#. Now all irreducible modules at an
arbitrary positive integral level can be obtained as submodules of tensor products of lev
modules. Therefore, in principle, the realization through free fields can also be exploited
higher level. In general, the problem with this approach is that it is extremely difficult to ide
the irreducible submodules in tensor products. In particular, the branching ‘‘coefficients
tensor products of affine Lie algebra modules are not numerical constants, but have a fun
dependence on~part of! the Cartan subalgebra ofg. More specifically, when the branching rule
are expressed in terms of the characters of the modules, these branching functions co
characters of the observable algebra of the coset conformal field theory,

Cos.~glevel 1!
%k~

/glevel k~

~see, e.g., Ref. 11!. These coset characters are sometimes known even when the branching
are not, e.g., when the coset theory can also be described as a conformal field theory in a d
manner.

Our approach to the problems outlined above is based on the following idea. We define
algebraF which is essentially the canonical anticommutation relation~CAR! algebra ofk~ species
of free fermions acting on a big Fock space which is thek~-fold tensor product of the Fock spac
of the level-one theory.~To avoid technical complications, for purposes of this article we res
our attention to the Neveu–Schwarz sector of the fermions, except for a few remarks o
Ramond sector in Sec. X D. Also note that instead of free fermions, one might likewise us
bosons to implement our ideas. However, technically these are more difficult to handle beca
order to deal with genuine conformal fields one must study vertex operators. In contras
fermions are already proper conformal fields themselves.! This algebra comes with a natura
symmetry group O(k~) @for real fermions, U(k~) for complex fermions# which, roughly speak-
ing, rotates the different fermion species into each other. It is this group O(k~) @respectively,
U(k~)# which we propose as a substitute for the gauge group in the DHR sense. According
introduce an ‘‘intermediate’’ observable algebraA, which we will refer to as thegauge invariant
fermion algebra, which is defined as the gauge invariant subalgebra of the field algebraF. The
observables of the level-k~ WZW theory are naturally gauge invariant, and hence they do
make transitions between the sectors ofA. Let us denote byAWZW the observable algebra o
boundedoperators which is associated to the WZW model; it can be constructed from the po
energy representations of the corresponding loop group acting on the big Fock space. The
AWZW contains the bounded functions of local current operators, and the irreducible represe
spaces of the positive energy representations are precisely the highest weight modules of th
symmetry algebra of the WZW theory. The latter is given by the semidirect sum of the untw
affine Lie algebra sô(N) at levelk~ and the Virasoro algebra that is associated with sô(N) by the
Sugawara construction~hence in particular it consists ofunboundedoperators!.

Just like in the DHR situation, the sectors of the gauge invariant fermion algebraA can be
described with the help of the representation theory of the gauge group. However, except fo
one, these are different from the sectors of the WZW theory, because the observablesAWZW of the
WZW theory do not exhaust the invariants of the gauge group, i.e., we have the proper incl

AWZW,A,F.

Nevertheless, a lot of information about the decomposition of tensor products of level-one
ules into modules of the level-k~ chiral algebra can be obtained by decomposing the big F
J. Math. Phys., Vol. 38, No. 3, March 1997
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space into the irreducible sectors ofA. This is possible because the Virasoro algebra of the c
conformal field theory (glevel 1)

%k~/glevel k~ is gauge invariant as well, so that we can comb
this decomposition with information on the representation theory of the coset Virasoro alge

In this article we will examine in detail a nontrivial theory which already displays the gen
features of the superselection structure, but can still be managed without having to delve in
many technicalities. Namely, we will treat the case of two species of real fermions, correspo
to the gauge group O~2!. The simplicity of this example can be regarded as reflecting the fact
the representations of O~2! are at most two dimensional. Furthermore, information about
theory is also available from other sources, namely,12 certain conformal embeddings of affine L
algebras, so that we can cross-check some of our results. The study of more complicated t
will be left to future work. The next-simplest case to be studied will be the theory of complex
fermions with gauge group U~2!; clearly, at levels larger than two—even with our new tool—t
technical complications will remain enormous.

We would like to stress that our methods allow for the first time for an explicit construc
of the bases of irreducible highest weight modules of an affine Lie algebrag at a level higher than
one@namely, for sô(N) at level two# in terms of free fields. We also mention that in our analy
we employ the knowledge of the characters of the relevant coset conformal field theor
corresponds to the embedding sô(N)2,sô(N)1 % sô(N)1 ; conversely, our method can be regard
as a rederivation of these results for the coset theory from known results about the ŝ(N)2
characters.

Our paper is organized as follows. In the next three sections we describe the algebraic
of free fermions: the CAR algebra~Sec. II!, the associated gauge group O(k~) ~Sec. III!, and
some specific features of the level-two gauge group O~2! ~Sec. IV!. Afterwards we provide some
basic information about the various Lie algebraic and conformal field theory structures that w
employed: the simple Lie algebra so(N) ~Sec. V!, the affine Lie algebra sô(N) and the spectrum
of the associated WZW theory at levels one and two~Sec. VI!, and theZ2-orbifold conformal field
theories with conformal central chargec51 ~Sec. VII!. Then we proceed to the analysis of th
decomposition of tensor products of level-one sô(N) modules. First the highest weight vectors
sô(N) at level two and of the coset Virasoro algebra~Sec. VIII! are identified. We are then in
position to compute the characters of the sectors ofA ~Sec. IX A! and of sô(N)2 ~Secs. IX B and
IX C!. In Sec. X we summarize our results on the tensor product decomposition, and w
remark on implications of the representation theory of the gauge group for the fusion rules
WZW theory.

II. THE CAR ALGEBRA

We consider a separable Hilbert spaceK endowed with an antiunitary involutionG ~complex
conjugation!, G25 id, which obeys

^G f ,Gg&5^g, f & ~2.1!

for all f ,gPK . The self-dual canonical anticommutation relation~CAR! algebraC ~K ,G! corre-
sponding to a single free fermion is defined to be theC* -norm closure of the algebra that
generated by the range of a linear mappingB: f°B( f ) of the Hilbert space which possesses t
following property:

$B~ f !* ,B~g!%5^ f ,g&1, B~ f !*5B~G f !, ~2.2!

which holds for allf ,gPK ~see, e.g., Ref. 13!.
By definition, a quasifree statev of C ~K ,G! fulfills

v~B~ f 1!•••B~ f 2n11!!50, ~2.3!
J. Math. Phys., Vol. 38, No. 3, March 1997
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v~B~ f 1!•••B~ f 2n!!5~21!n~n21!/2(
s

sign~s!)
j51

n

v„B~ f s~ j !!B~ f s~n1 j !!… ~2.4!

for all nPN, where the sum runs over all permutationssPS 2n with the properties

s~1!,s~2!,•••,s~n!, s~ j !,s~ j1n! for j51,2,...,n. ~2.5!

Quasifree states are completely characterized by their two point functions. Moreover, the fo

v„B~ f !*B~g!…5^ f ,Sg& ~2.6!

provides a one-to-one correspondence between the set of quasifree states ofC ~K ,G! and the
subset

Q~K ,G!:5$SPB~K !uS5S* , 0<S<1, S1GSG51% ~2.7!

of B~K ! ~the set of bounded operators onK !. It is therefore convenient to denote the quasifr
state characterized by Eq.~2.6! by vS . The projections inQ ~K ,G! are called basis projections o
polarizations. For a basis projectionP, the statevP is pure and is called a Fock state. Th
corresponding GNS representation~HP ,pP ,uVP&! is irreducible; it is called the Fock represe
tation. The spaceHP can be canonically identified with the antisymmetric Fock spaceF 2~PK !.

Let us now focus on the Hilbert space

K5L2~S1;CN![L2~S1! ^CN, ~2.8!

which corresponds to a fermion living on the circleS1 and carrying theN-dimensional vector
representation of the Lie algebra so(N). The involutionG is given by component-wise comple
conjugation. We introduce a~Fourier! orthonormal basis

$er
i urPZ1 1

2, i51,2,...,N% ~2.9!

of K by the definition

er
i :5er ^ui for rPZ1 1

2, i51,2,...,N, ~2.10!

whereerPL2(S1) are defined byer(z)5zr ~with z5eiw, 2p,w<p!, and whereui denote the
canonical unit vectors ofCN. The Neveu–Schwarz operatorPNSPQ ~K ,G! is then by definition
the basis projection

PNS:5(
i51

N

(
rPN011/2

ue2r
i &^e2r

i u. ~2.11!

The GNS representation associated with the Fock statevPNS
provides the Fock spaceHNS which

decomposes into the basic and the vector module of sô(N) at level one.~In this article we only
discuss the Neveu–Schwarz sector. The Ramond sector, in which a Fourier basis with
powers ofz appears will not be considered here. It could be analyzed by the same methods,
technical details are considerably more involved.!

We are interested in the theory that is obtained when one considers an arbitrary numbek~ of
Neveu–Schwarz fermions of the type described above. Thus in addition to the so(N) index i the
fermion modes will now be labeled by a ‘‘flavor’’ indexq which takes values in$1,2,...,k~%. To
describe this theory, we define

K̂ :5K^Ck
~
, Ĝ:5G ^ Gk~, P̂NS:5PNS^ 1k~, ~2.12!
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



h

a point
t

nn

n-
y

g, and

as
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whereGk~ denotes the canonical complex conjugation inCk
~
. Further, for anyfPK we define

the elements

Bq~ f !:5B~ f ^vq!, q51,2,...,k~, ~2.13!

of C ~K̂ ,Ĝ!, wherevq denote the canonical unit vectors ofCk
~
. By ~ĤNS,p̂NS,uV̂NS&! we denote

the GNS representation associated to the Fock statev P̂NS
of C ~K̂ ,Ĝ!; we will refer toĤNS as the

‘‘big Fock space.’’ We then define the Fourier modes

br
i ;q :5p̂NS„B

q~er
i !… ~2.14!

for i51,2,...,N, q51,2,...,k~ and rPZ11
2. The Fourier modesbr

i generate a CAR algebra wit
the relations

$br
i ;p ,bs

j ;q%5dp,qd i , jd r ,2s1. ~2.15!

The modesbr
i ;q with positive index r act as annihilation operators inĤNS, i.e., for all

q51,2,...,k~ and all i51,2,...,N we have

br
i ;quV̂NS&50 for rPN01

1
2. ~2.16!

III. THE GAUGE GROUP O(k~)

Field and observable algebras of the fermion theory are described as follows. Choose
zPS1 on the circle and denote byJ z the set of those open intervalsI,S1 whose closures do no
containz. For IPJ z letK (I ) be the subspace of functions having support inI . Correspondingly,
defineK̂ (I ) 5 K (I ) ^ Ck

~
. The local field algebrasF(I ) are then defined to be the von Neuma

algebras

F~ I !5p̂NS~C ~K̂ ~ I !,Ĝ!!9 ~3.1!

@the prime denotes the commutant inB~ĤNS!#, and the global field algebraF is theC* -algebra
that is defined as the norm closure of the union of the local algebras,

F5 ø
IPJ z

F~ I !. ~3.2!

Now the group O(k~) acts in a natural way on the multiplicity spaceCk
~
in Eq. ~2.12!, and this

extends canonically to an action onC ~K̂ ,Ĝ! by Bogoliubov automorphisms. Moreover, by co
struction, these automorphisms leave the Fock statev P̂NS

invariant. Hence we obtain a unitar
representationU of O(k~) in ĤNS. Also its action respects the local structure~3.1!, and thus
O(k~) can be regarded as a substitute for the gauge group in the sense of Doplicher, Haa
Roberts.1 This is a subgroup of the automorphism group ofF(I ), respectively,F such that the
observables are precisely the gauge invariant fields. Therefore the local observable algebrA(I )
and the global~or quasilocal! observable algebraA are defined as O(k~)-invariant part of the field
algebras,

A~ I !5F~ I !ùU„O~k~!…8 ~3.3!

and

A5 ø
IPJ z

A~ I !. ~3.4!
J. Math. Phys., Vol. 38, No. 3, March 1997
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In the level-one case, the intermediate algebraA coincides with the observable algebraAWZW of
the WZW theory, so that the representation theory ofA reproduces precisely the sectors of t
observable algebraAWZW ; furthermore, the DHR product of the sectors of the gauge~i.e.,
O~1![Z2! invariant fermion algebraA that is obtained by composing localized endomorphisms
A provides the WZW fusion rules.3 In contrast, at a higher level the algebraA no longer coincides
with the observable algebraAWZW of the WZW theory. Indeed we will see that already at the le
k~52 each irreducibleA sector is highly reducible under the action of the observable alg
AWZW . Nevertheless, owing toAWZW,A the representation theory ofA is crucial for our analysis
of the decomposition of the big Fock space into tensor products of highest weight modules
level-two chiral algebra and of the coset Virasoro algebra.

Let us point out that the gauge group considered here must not be confused with the qu
symmetry of the level-two WZW theory, which because of the presence of genuine braid
statistics definitely cannot be a compact group.~For some ideas about the quantum symmetry
rational conformal field theories, compare, e.g., Refs. 14–18.! Nevertheless, the fusion ring ho
momorphism that we will describe in Sec. X E seems to indicate that, at least at the levelk~52,
the gauge group O(k~) is somehow hidden in the full quantum symmetry.

For the construction of the highest weight vectors within theA sectors it is convenient to work
with the unbounded operators of sô(N) ~instead of the bounded elements ofAWZW! and of the
Virasoro algebra that is associated with sô(N) ~at fixed level! by the Sugawara formula. Th
generators of this Virasoro algebra, i.e., the Laurent modes of the energy–momentum tenso
WZW theory, will be denoted byLm . Also, we denote byLm

NS the Laurent components of th
canonical energy–momentum tensor of the fermion theory in the Neveu–Schwarz represen
i.e.,

Lm
NS5 (

q51

k~

Lm
~q! with Lm

~q!52
1

2 (
i51

N

(
rPZ11/2

S r2
m

2 D :bri ;qbm2r
i ;q :. ~3.5!

Thus in particular

L0
~q!5(

i51

N

(
rPN011/2

rb2r
i ;qbr

i ;q . ~3.6!

The Bogoliubov automorphisms act as rotations on the flavor indexq of the fermions. As a
consequence, they leave expressions of the form

(
q51

k~

Bq~ f !Bq~g! ~ f ,gPK ! ~3.7!

invariant. In particular, owing to the summation onq in the bilinear expression~3.5!, the Virasoro
generatorsLm

NS are O(k~) invariant. This implies that the coset Virasoro operators

Lm
c :5Lm

NS2Lm ~3.8!

are gauge invariant as well.

IV. THE GAUGE GROUP AT LEVEL TWO

Let us now specialize to the casek~52. Thus we consider the situation

K̂5K%K , Ĝ5G % G, P̂NS5PNS%PNS. ~4.1!

Then the transformations
J. Math. Phys., Vol. 38, No. 3, March 1997
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g t„B
1~ f !…:5cos~ t !B1~ f !2sin~ t !B2~ f !,

~4.2!
g t„B

2~ f !…:5sin~ t !B1~ f !1cos~ t !B2~ f !,

for tPR and

h„B1~ f !…:5B1~ f !, h~B2~ f !!:52B2~ f ! ~4.3!

define Bogoliubov automorphisms ofC ~K̂ ,Ĝ! generating the group O~2!. The invariance of the
Fock statev P̂NS

now reads

v P̂NS
+g t5v P̂NS

5v P̂NS
+h, ~4.4!

and there is a unitary~strongly continuous! representationU of O~2! by certain implementers
U(g t), U(h)PB~ĤNS! which satisfy

U~g t!uV̂NS&5uV̂NS&5U~h!uV̂NS&, ~4.5!

and the action ofg t andh extends toB~ĤNS!.
The inequivalent finite-dimensional irreducible representations of O~2! are the following.

Besides the identityF0 with F0~•!51 and another one-dimensional representationFJ with

FJ~g t!51, FJ~h!521, ~4.6!

there are only two-dimensional representationsF@m# with m51,2,...; their representation matrice
are

F@m#~g t!5S eimt 0

0 e2 imtD , F@m#~h!5S 0 1

1 0D . ~4.7!

The tensor product decompositions of these representations read

FJ3FJ5F0 , FJ3F@m#5F@m# ,

F@m#3F@n#5F@ um2nu# % F@m1n# for mÞn, ~4.8!

F@n#3F@n#5F0% FJ% F@2n# .

Employing the results of Ref. 1, it then follows that the Hilbert spaceĤNS decomposes into
irreducible sectors of the global observable algebraA as

ĤNS5H0%HJ% %
m51

`

~H@m# ^H @m#!. ~4.9!

HereH0,HJ andH@m# carry mutually inequivalent irreducible representations ofA; vectors in
H0,HJ transform according to the two inequivalent one-dimensional irreducible representa
F0 andFJ of the gauge group O~2!, respectively, and theH @m# . C2 carry the inequivalent two-
dimensional irreducible O~2!-representationsF@m# . Later we will also use the notation

H@m# ^H @m#5H@m#
1

%H@m#
2 , ~4.10!

where by definition,U(g t) acts onH@m#
6 by multiplication with e6 imt.
J. Math. Phys., Vol. 38, No. 3, March 1997
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V. THE SIMPLE LIE ALGEBRA so( N)

Normal-ordered bilinears in the free fermions modes that were introduced in Sec. II reali
affine Kac–Moody algebra sô(N) at levelk~. To describe this realization of sô(N), we first need
to collect some information about the simple Lie algebra so(N), which is canonically embedded i
sô(N). We denote byl the rank of the Lie algebra so(N), i.e., l 5N/2 andl 5(N21)/2 for even
and oddN, respectively.

We use the notationTi , j :5i(Ei , j2Ej ,i) for i , j51,2,...,N, whereEi , j are the matrix units,
which have entries (Ei , j )k,l5d i ,kd j ,l . The matricesTi , j satisfy

@Ti , j ,Tk,l #5 i~d j ,kT
i ,l1d i ,lT

j ,k2d j ,lT
i ,k2d i ,kT

j ,l !. ~5.1!

Next we introduce the combinations

Hj :5T2 j21,2j for j51,2,...,l ~5.2!

and

E6
j :56t6,7

j , j11 for j51,2,...,l 21, E6
l :5H 6t6,6

l 21,l for N52l

6t6
l for N52l 11,

~5.3!

where

te,h
i , j :5

1

2
~eT2i ,2j211hT2i21,2j !1

i

2
~T2i21,2j212ehT2i ,2j !,

~5.4!

te
j :52

1

A2
~eT2 j21,2l 112 iT2 j ,2l 11!

for i , j51,2,...,l ande, h561. The matrices~5.2! and ~5.3! obey the commutation relations

@Hj ,Hk#50, @E1
j ,E2

k #5d j ,kH
j , @Hj ,E6

k #56~a~k!! jE6
k ~5.5!

for j ,k51,2,...,l , with structure constants

~a~k!! j5d j ,k2d j ,k11 for k51,2,...,l 21,
~5.6!

~a~ l !! j5H d j ,l 211d j ,l for N52l

d j ,l for N52l 11.

It is also straightforward to check that the matricesE6
j ( j51,2,...,l ! obey the Serre relations o

so(N). It follows that Eqs.~5.2! and~5.3! constitute a Cartan–Weyl basis for the defining mat
realization of so(N). The Cartan subalgebra is spanned by theHj ; the vectorsa (k) are the simple
roots of so(N), and E1

k are the step operators corresponding to these simple roots. The
operators corresponding to positive roots are thent1,2

i , j and t1,1
i , j with 1< i, j<l , and the one

corresponding to the highest rootu is t1,1
1,2 .

According to the explicit expressions~5.6! we are working with an orthonormal basis for th
weight space of so(N). The relation with the Dynkin basis is as follows. ForN52l , the compo-
nentsm i , i51,2,...,l , of a weightl in the orthonormal basis are related to the componentsl i of
l in the Dynkin basis by
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
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m i5 (
j5 i

l 22

l j1
1

2
~l l 211l l ! for i51,2,...,l 21, m l 5

1

2
~l l 212l l !, ~5.7!

or conversely,l i5m i2m i11 for i51,2,...,l 22 and ll 215ml 211ml , ll 5ml 212ml . For
N52l 11, the analogous relations read

m i5 (
j5 i

l 21

l j1
1

2
l l ~5.8!

for all i51,2,...,l , respectively,l i5m i2m i11 for i51,2,...,l 21, ll 52ml . Thus in particular
for the fundamental weightsL ( j ) of so(N), defined by

~a~ j !,L~k!!5H 12 dk,l for j5l , N52l 11

d j ,k else,

~5.9!

the components in the orthonormal basis are

Finally we note that the invariant bilinear form on so(N) is

~Ti , j uTk,l !5 1
2 tr~T

i , jTk,l !5d i ,kd j ,l2d i ,ld j ,k . ~5.11!

In particular, we have (Hi uHj )5d i , j5(E1
i uE2

j ), (E6
i uE6

j )50.

VI. THE AFFINE LIE ALGEBRA sô (N)

Given the fermion modes~2.14!, one defines their normal-ordered bilinears

Jm
i , j :5 i(

q51

2

@Bm
i , j ;q2Bm

j ,i ;q#, ~6.1!

with

Bm
i , j ;q :5

1

2 (
rPZ11/2

:br
i ;qbm2r

j ;q : ~6.2!

for q51,2 andi , j51,2,...,N. One checks by direct computation that

@Jm
i , j ,br

k;q#5 i~d j ,kbr1m
i ;q 2d i ,kbr1m

j ;q !, ~6.3!

and

@Jm
i , j ,Jn

k,l #5 i~d j ,kJm1n
i ,l 1d i ,lJm1n

j ,k 2d j ,lJm1n
i ,k 2d i ,kJm1n

j ,l !12mdm,2n~d i ,kd j ,l2d i ,ld j ,k!.
~6.4!
J. Math. Phys., Vol. 38, No. 3, March 1997
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According to Eq.~6.4! @compare also Eq.~5.11!#, theJm
i , j with i, j provide a basis for the affine

Lie algebra sô(N) at fixed valuek~52 of the level. That the level of sô(N) has the value 2 is of
course a consequence of the summation over two species of fermions in Eq.~6.1!; for a single
fermion one obtains analogously the Lie algebra sô(N) at level 1. Also note that in the orthonor
mal basis the highest weights of integrable highest weight modules satisfym01m11m25k~.

A Chevalley basis of the affine Lie algebra sô(N) looks as follows. The Cartan subalgeb
generators are

H j :5J0
2 j21,2j ~6.5!

for j51,2,...,l , and the step operators for the simple roots~respectively, minus the simple roots!
areE6

j with j50,1,...,l , given by

E6
j 56J0~ t6,7

j , j11! for j51,2,...,l 21,
~6.6!

E6
0 56J61~ t7,7

1,2 !, E6
l 5H 6J0~ t6,6

l 21,l ! for N52l

6J0~ t6
l ! for N52l 11,

where

Jm~ te,h
i , j !:5

1

2
~eJm

2i ,2j211hJm
2i21,2j !1

i

2
~Jm

2i21,2j212ehJm
2i ,2j !,

~6.7!

Jm~ te
j !:52

1

A2
~eJm

2 j21,2l 112 iJm
2 j ,2l 11!

for i , j51,2,...,l ande, h561.
At any integral levelk~ the affine Lie algebra sô(N) has a finite number of irreducible highe

weight modulesHL
(k~); in the algebraic field theory description they correspond to the pos

energy representations of the loop group LSO(N) that are carried by the superselection secto
For level one and level two these are listed in Tables I–III. In these tables,L denotes the highes
weight with respect to the horizontal subalgebra so(N), D the conformal weight, andD the
statistical~or quantum! dimension. In the first column we provide a ‘‘name’’ for the associa
primary field of the relevant WZW theory; below we will use these names as labels fo
irreducible highest weight modules, i.e., writeHL

~2!5Ho
(2) for L50, etc., and for other quantitie

TABLE I. Irreducible highest weight modules of sô(N) at level one forN52l ~left-hand side! and for N52l 11
~right-hand side!.

Field L D D Field L D D

o 0 0 1 o 0 0 1
v L~1! 1

2

1 v L~1! 1
2

1

s L (l 21) N

16

1 s L (l ) N

16

&

c L (l ) N

16

1
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such as characters.~We find it convenient to use identical names for some of the fields at level
and at level two; when required to avoid ambiguities in the notation, we will always also sp
the level.!

In Tables I–III we have separated the modules by a horizontal line into two classes.
fermionic description, the modules in the first part are in the Neveu–Schwarz sector, while
in the second part are in the Ramond sector. As we only treat the Neveu–Schwarz sector
fermions here, we will not deal with the second class of representations; we have included t
Tables I–III only for completeness. Thus at level one we haveHNS5Ho

(1)
%Hv

(1), and hence at
level two we can write

ĤNS5~Ho
~1!

^Ho
~1!! % ~Ho

~1!
^Hv

~1!! % ~Hv
~1!

^Ho
~1!! % ~Hv

~1!
^Hv

~1!!. ~6.8!

The four summands in this decomposition can be characterized as the common eigenspac
respect to the fermion flipsU(gph) andU(h), namely those associated with the pairs~1,1!,

TABLE II. Irreducible highest weight modules of sô(N) at level two forN52l .

Field L D D

o 0 0 1

v 2L~1! 1 1

s 2L (l 21) N

8

1

c 2L (l ) N

8

1

j HL~ j! for j51,2,...,l 22

L~ l 21!1L~ l ! for j5l 21

j (N2 j )
2N

2

s L (l 21) N21
16

AN/2

t L (l ) N21
16

AN/2

s8 L (1)1L (l 21) N17
16

AN/2

t8 L (1)1L (l ) N17
16

AN/2

TABLE III. Irreducible highest weight modules of sô(N) at level two forN52l 11.

Field L D D

o 0 0 1
v 2L~1! 1 1
j HL~ j! for j51,2,...,l 21,

2L~ l ! for j5l

j (N2 j )
2N

2

s L (l ) N21
16

A(N21)/2

s8 L (1)1L (l ) N17
16

A(N21)/2
J. Math. Phys., Vol. 38, No. 3, March 1997
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~1,21!, ~21,1! and~21,21! of eigenvalues, respectively. By comparison with the action~4.6! and
~4.7! of O~2! on theA sectors, it follows that we can decompose the tensor products appear
Eq. ~6.8! as

Ho
~1!

^Ho
~1!5H0% %

n51

`

H@2n# , Hv
~1!

^Hv
~1!5HJ% %

n51

`

H@2n# ,

~6.9!

Ho
~1!

^Hv
~1!5 %

n50

`

H@2n11#5Hv
~1!

^Ho
~1! .

The ~Virasoro specialized! character of an irreducible highest weight module is the trace
qL0 over the module, whereL0 is the zero mode of the energy–momentum tensor@see Eq.~3.5!#
and whereq is either regarded as a formal variable, or asq5exp(2p it) with t in the upper
complex half plane.~To obtain simpler transformation behavior with respect to modular trans
mations of the variablet, one often defines the character with an additional factor ofq2c/24. For
our purposes, this modification is not needed.! The characters of the modules in the Neve
Schwarz sector at level one are

xo
~1!~q!5

„w~2q1/2!…N1„w~q1/2!…N

2„w~q!…N
, xv

~1!~q!5
„w~2q1/2!…N2„w~q1/2!…N

2„w~q!…N
, ~6.10!

where

w~q!:5 )
n51

`

~12qn! ~6.11!

is Euler’s product function.
In Sec. IX we will employ the representation theory of the gauge group O~2!, and in particular

the decomposition~6.9!, to also obtain simple formulas for the characters of the level-two mod
in the Neveu–Schwarz sector. As further input, we will need some information about the re
coset conformal field theories.

VII. c51 ORBIFOLDS

Via the coset construction,19 one associates to any embedding of untwisted affine Lie alge
that is induced by an embedding of their horizontal subalgebras another conformal field t
called the coset theory. Here the relevant embedding is that of sô(N)2 into sô(N)1 % sô(N)1 ; the
branching rules of this embedding are just the tensor product decompositions of sô(N)1 modules.

The Virasoro algebra of the coset theory is easily obtained as the difference of the Sug
constructions of the Virasoro algebras of the affine Lie algebras. In contrast, the determina
the field contents of the coset theory is in general a different task~see, e.g., Refs. 20 and 21!. But
in the case of interest to us, the coset theory has conformal central chargec51, and the classifi-
cation of~unitary! c51 conformal field theories is well known. In fact, one finds~compare, e.g.,
Ref. 12! that it is a so-called rationalc51 orbifold theory, which can be obtained from thec51
theory of a free boson compactified on a circle by restriction to the invariants with respect toZ2
symmetry. These conformal field theory models have been investigated in Ref. 22; for ou
poses we need only the following information.

The rationalc51 Z2 orbifolds are labeled by a non-negative integerM . The theory at a given
value ofM has

nM5M17 ~7.1!
J. Math. Phys., Vol. 38, No. 3, March 1997
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sectors; they are listed in Table IV. In Table IV we have again separated the fields which
spond to the Neveu–Schwarz sector from the fieldss, t, s8, t8 which correspond to the Ramon
sector; the latter are known as ‘‘twist fields’’ of the orbifold theory.

The characters of the fields in the Neveu–Schwarz sector are given by

x@ j #
c;M~q!5

1

w~q!
cM , j~q! ~7.2!

for j51,2,...,M , where it is understood that

xs
c;M~q!5xc

c;M~q!5 1
2x@M #

c;M , ~7.3!

and by

xo
c;M~q!5

1

2w~q!
@cM ,0~q!1c1,0~2q!#, xv

c;M~q!5
1

2w~q!
@cM ,0~q!2c1,0~2q!#. ~7.4!

Here the functionscM , j are the infinite sums

cM , j~q!:5 (
mPZ

q~ j12mM!2/4M. ~7.5!

One has10

c1,0~2q!5 (
mPZ

~21!mqm
2
5
„w~q!…2

w~q2!
. ~7.6!

It follows in particular that

xo
c;M~q!2xv

c;M~q!5
w~q!

w~q2!
, ~7.7!

and

xo
c;M~q!1xv

c;M~q!5
cM ,0~q!

w~q!
. ~7.8!

TABLE IV. Sectors of the rationalc51 Z2 orbifold that is labeled by the integerM .

Field D D

o 0 1
v 1 1
s, c M

4

1

jP$1,2,...,M21% j2

4M

2

s, t 1

16

AM

s8, t8 9

16

AM
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



jugacy
n and
y, a

as in
h are
jugacy
e.g.,

s
sector
g field

ssifi-
nsor

esides
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Note that the spectrum of WZW theories for even and oddN, displayed in Tables I–III, is
rather similar. However, to obtain the spectrum of the coset theory the structure of the con
classes of so(N) modules also play an important role, and these are rather different for eve
odd N. ~Also, for odd N in the Ramond sector an additional complication arises, namel
so-called fixed point resolution is required.12,21! As a consequence it depends on whetherN is even
or odd which c51 orbifold one obtains as the coset theory. Namely, forN52l one finds
M5N/25l , while M52N for N52l 11.

The decomposition of the products of level-one characters looks as follows. ForN52l we
have

@xo
~1!#25xo

c;l xo
~2!1xv

c;l xv
~2!1 (

2< j<l
j even

x@ j #
c;l x@ j #

~2! ,

@xv
~1!#25xo

c;l xv
~2!1xv

c;l xo
~2!1 (

2< j<l
j even

x@ j #
c;l x@ j #

~2! , ~7.9!

xo
~1!xv

~1!5 (
1< j<l
j odd

x@ j #
c;l x@ j #

~2! ,

where it is understood that

x@ l #
~2! ~q![xs

~2!~q!1xc
~2!~q!. ~7.10!

For N52l 11, the tensor product decomposition instead reads

@xo
~1!#25xo

c;2Nxo
~2!1xv

c;2Nxv
~2!1 (

2< j<l
j even

x@2 j #
c;2Nx@ j #

~2!1 (
1< j<l
j odd

x@2N22 j #
c;2N x@ j #

~2! ,

@xv
~1!#25xo

c;2Nxv
~2!1xv

c;2Nxo
~2!1 (

2< j<l
j even

x@2 j #
c;2Nx@ j #

~2!1 (
1< j<l
j odd

x@2N22 j #
c;2N x@ j #

~2! , ~7.11!

xo
~1!xv

~1!5x@2N#
c;2N@xo

~2!1xv
~2!#1 (

2< j<l
j even

x@2N22 j #
c;2N x@ j #

~2!1 (
1< j<l
j odd

x@2 j #
c;2Nx@ j #

~2! .

It is worth noting that these formulas can be proven without too much effort, where
general it is a difficult task to write down such tensor product decompositions. Tools whic
always available are the matching of conformal dimension modulo integers as well as con
class selection rules, which imply20 so-called field identifications. In the present case, we can,
use the fact that the sum of conformal weightsD j

(2)5 j (N2 j )/2N andDk
c;M5k2/4M is ~for generic

N! a half-integer only ifk 5 jA2M /N or k 5 (N 2 j )A2M /N. Also, there is a conjugacy clas
selection rule which implies that the tensor product of modules in the Neveu–Schwarz
yields only modules which are again in the Neveu–Schwarz sector, and the correspondin
identification tells us, e.g., that the branching functionbv,v;v

c;M (q) coincides with bs,s;s
c;M (q)

5xs
c;M(q).
As it turns out, we are even in the fortunate situation that together with the known cla

cation of unitaryc51 conformal field theories, this information already determines the te
product decompositions almost completely. In particular, the value ofM of the c51 orbifold is
determined uniquely, and one can prove that there are not any further field identifications b
J. Math. Phys., Vol. 38, No. 3, March 1997
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the ones implied by conjugacy class selection rules. The remaining ambiguities can be reso
checking various consistency relations which follow from the arguments that we will give in
IX. Another possibility to deduce Eqs.~7.9! and~7.11! is to employ the conformal embedding o
sô(N)2 into û(N) at level one,12 which corresponds to regarding the real fermions as real
imaginary parts of complex-valued fermions.

VIII. HIGHEST WEIGHT VECTORS OF sô(N)2

A. Definition of the vectors

A highest weight vectoruFL& of sô(N)2 with highest weightL is characterized by the follow
ing properties. First, it is annihilated by the step operators associated with the horizontal p
roots, i.e., for 1< i, j<l ande561 one has

J0~ t1,e
i , j !uFL&50, J0~ t1

k !uFL&50 for N52l 11; ~8.1!

second, it is also annihilated by the step operators with positive grade, i.e., form.0, i , j
51,2,...,l ande,h561 satisfies

Jm~ te,h
i , j !uFL&50, Jm~ te

k!uFL&50 for N52l 11; ~8.2!

and third,uFL& is an eigenvector of the Cartan subalgebra,

HkuFL&5LkuFL& ~8.3!

for k51,2,...,l .
We will exploit the decomposition ofĤNS into irreducibleA sectors to identify the highes

weight vectors of sô(N)2 . Indeed, in each sectorH0,HJ , andH@m#
6 we find distinguished state

which are highest weight vectors for both sô(N)2 and the coset Virasoro algebra. The construct
works as follows. The vectoruV&[uV̂NS& is a highest weight state ofg 5 sô(N)2 with highest
weight zero. To describe more highest weight vectors, it is helpful to introduce some nota
We define

xr
j ,6 :5

1

A2
~cr

j ,16 ic̄r
j ,1!, x̄r

j ,6 :5
1

A2
~cr

j ,26 ic̄r
j ,2!, ~8.4!

for j51,2,...,l , where

cr
j ,6 :5

1

A2
~br

2 j ;16 ibr
2 j21;1!, c̄r

j ,6 :5
1

A2
~br

2 j ;26 ibr
2 j21;2!, ~8.5!

and also, forN52l 11,

x̄r
l 11,6 :5

1

A2
~br

2l 11;16 ibr
2l 11;2!. ~8.6!

Further, we set

Xr
j ,6 :5xr

j ,6xr
j21,6•••xr

1,6 for j51,2,...,l ,
~8.7!

X̄r
j ,6 :5 x̄r

j11,6x̄r
j12,6••• x̄r

l ,6 for j50,1,...,l 21,

and X̄r
l :51.
J. Math. Phys., Vol. 38, No. 3, March 1997
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For anyn50,1,2,... we can nowdefine the following vectors: We set

uV@ j #
n,6&:5X2n21/2

j ,6 uVo
n,6& for j51,2,...,l , ~8.8!

as well as

uV̄@ j #
n,6&:5H X̄2n21/2

j ,6 X2n21/2
l ,6 uVo

n,6& for N52l , j51,2,...,l 21

X̄2n21/2
j ,6 x̄2n21/2

l 11,6 X2n21/2
l ,6 uVo

n,6& for N52l 11, j51,2,...,l .
~8.9!

Here we defined recursively

uVo
n11,6&:5H X̄2n21/2

0,6 X2n21/2
l ,6 uVo

n,6& for N52l

X̄2n21/2
0,6 x̄2n21/2

l 11,6 X2n21/2
l ,6 uVo

n,6& for N52l 11,
~8.10!

with

uVo
0,6&:5uV&. ~8.11!

Further, we set

uVv&[6uVv
0,6&:5x21/2

1,1 x21/2
1,2 uV&, uVv

n,6&:5x2n21/2
1,6 xn21/2

1,7 uVo
n,6&, n51,2,..., ~8.12!

and, forN52l ,

uVs
n,6&:5uV@ l #

n,6&, uVc
n,6&:5 x̄2n21/2

l ,6 x̄n11/2
l ,7 uVs

n,6&. ~8.13!

B. O(2) transformation properties

The vacuumuV& is O~2! invariant. We then deduce@compare Eqs.~A9!–~A13!# the following
transformations for the vectors~8.8!–~8.13!. For all n50,1,2,... wehave

U~g t!uV@ j #
n,6&5e6 i~nN1 j !tuV@ j #

n,6&, U~h!uV@ j #
n,6&5uV@ j #

n,7& ~8.14!

for j51,2,...,l , and

U~g t!uV̄@ j #
n,6&5e6 i~~n11!N2 j !tuV̄@ j #

n,6&, U~h!uV̄@ j #
n,6&5uV̄@ j #

n,7& ~8.15!

for j51,2,...,l . Also

U~g t!uVo
n,6&5e6 inNtuVo

n,6&, U~h!uVo
n,6&5uVo

n,7&,

U~g t!uVv
n,6&5e6 inNtuVv

n,6&, U~h!uVv
n,6&5uVv

n,7&,
~8.16!

U~g t!uVs
n,6&5e6 i~nN1 l !tuVs

n,6&, U~h!uVs
n,6&5uVs

n,7&,

U~g t!uVc
n,6&5e6 i~nN1 l !tuVc

n,6&, U~h!uVc
n,6&5uVc

n,7&.

We remark that the highest weight statesuVv
n,6& anduVo

n,6&, n51,2,..., and forevenN also
uVc

n,6& and uVs
n,6&, n50,1,2,..., areconnected by O~2!-invariant fermion bilinears, i.e., by ele

ments of the intermediate algebraA. Explicitly, we have

uVv
n,6&5av

nuVo
n,6&, av

n52~xn21/2
1,2 x2n21/2

1,1 1xn21/2
1,1 x2n21/2

1,2 ! ~8.17!
J. Math. Phys., Vol. 38, No. 3, March 1997
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for n51,2,..., and

uVc
n,6&5ac

nuVs
n,6&, ac

n52~ x̄n11/2
l ,2 x̄2n21/2

l ,1 1 x̄n11/2
l ,1 x̄2n21/2

l ,2 ! ~8.18!

for n50,1,2,...

C. The highest sô (N)2 weights

The states defined above are eigenvectors of all Cartan subalgebra generatorsHk ~k
51,2,...,l ! and of the central generatorK; the levelk~ is equal to 2, and the weights do no
depend on the labeln. More precisely, from the commutation relations~A1! and ~A2! it follows
rather directly that

HkuV@ j #
n,6&5~L@ j #!

kuV@ j #
n,6& for j51,2,...,l ,

~8.19!
HkuV̄@ j #

n,6&5~L@ j #!
kuV̄@ j #

n,6& for j51,2,...,l 21

and

HkuVo
n,6&5~Lo!

kuVo
n,6&, HkuVv

n,6&5~Lv!
kuVv

n,6&,
~8.20!

HkuVs
n,6&5~Ls!

kuVs
n,6&, HkuVc

n,6&5~Lc!
kuVc

n,6&.

The weightsL@ j # appearing here are those listed in Tables II and III, i.e., we have

L@ j #5H L~ j ! for j51,2,...,l 22 or j5l 21, N52l 11

L~ l 21!1L~ l ! for j5l 21, N52l

2L~ l ! for j5l , N52l 11,

~8.21!

with the fundamental weightsL ( i ) as defined in Eq.~5.10!, while Lo50, Lv52L (1), and, for
N52l , Ls52L (l ) , Lc52L (l 21).

D. The highest weight property

Having obtained Eq.~8.19!, for proving that the states~8.8!–~8.13! are highest weight vector
with respect to sô(N)2 it is now sufficient to show that they are annihilated byE1

j for
j50,1,...,l . This can easily be checked by inserting the results~A6!–~A8! for the commutators
between the step operatorsE1

j and the operatorsXr
k,6, X̄r

k,6 into the definitions of these state
The least trivial case occurs forE1

0 , where one employs the first of the identities~A8!; one then
has to commutex̄1/2

1,6 and x̄1/2
2,6 to the right and usex̄1/2

1,6uV&505 x̄1/2
2,6uV& whenn50, while for

n.0 one also must employ the second identity in Eq.~A8!.
Thus all the states~8.8!–~8.13! are highest weight states ofg 5 sô(N)2 . We claim further that

they are highest weight vectors with respect to the coset Virasoro algebra, too. This fo
directly from the fact thatLm

NS with m.0 annihilates these states, which is a consequence o

@Lm
NS,xr

j ,6#52S r1
m

2 D xr1m
j ,6 , @Lm

NS,x̄r
j ,6#52S r1

m

2 D x̄r1m
j ,6 . ~8.22!

Since the affine Lie algebra sô(N)2 and the coset Virasoro algebra commute, it follow
immediately that further highest weight vectors of sô(N)2 are obtained when acting with th
creation operators of the coset Virasoro algebra on the vectors~8.8!–~8.13!. For example, applying
the coset Virasoro operatorL21

c to the highest weight vectoruV@1#
1 & we get the highest weigh

vector ~computed for the caseN52l !
J. Math. Phys., Vol. 38, No. 3, March 1997
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L21
c uV@1#

1 &5
1

N
@x23/2

1,1 uV&1 (
k51

l

~ x̄21/2
k,1 x21/2

k,2 2 x̄21/2
k,2 x21/2

k,1 !uV@1#
1 &] ~8.23!

of sô(N)2 . However, it follows from the results in Sec. IX that, except for a few special cases
vectors~8.8!–~8.13! exhaust the set of simultaneous highest weight states of sô(N)2 and the coset
Virasoro algebra.

Also note that by construction the tensor product module, and hence each of its submo
is unitary. Thus in particular the highest weight modules that are obtained by acting with arb
polynomials in the lowering operatorsE2

i on the highest weight vectors are unitary, and hence
fully reducible.

E. Conformal weights

The action of the zero mode of the free fermion Virasoro algebra~3.5! on the fermion modes
xr
i ,6 reads

@L0
NS,xr

i ,6#52rxr
i ,6 , @L0

NS,x̄r
i ,6#52rx̄ r

i ,6 . ~8.24!

From these relations we deduce that

L0
NSuV@ j #

n,6&5Dn; j
NSuV@ j #

n,6&, ~8.25!

with conformal weights

Dn; j
NS5F121

3

2
1•••1S n2

1

2D GN1S n1
1

2D j5 n2N

2
1S n1

1

2D j ~8.26!

for j51,2,...,l . Similarly,

L0
NSuV̄@ j #

n,6&5D̄n; j
NSuV̄@ j #

n,6&, D̄n; j
NS5

~n11!2N

2
2S n1

1

2D j ~8.27!

for j51,2,...,l . Also, for the sectors labeled byo, v, s, andc we find

Dn;o
NS5

n2N

2
, Dn;v

NS5
n2N

2
11, Dn;s

NS5Dn;c
NS5Dn;l

NS . ~8.28!

Furthermore, the conformal weights of vectors~8.8!–~8.13! with respect to the Virasoro
algebra of the level-two WZW theory follow immediately from the so(N)-weightsL by the
Sugawara formula for the Virasoro generatorL0 . This yields the conformal weights that wer
already listed in the Tables II and III. Comparing these conformal dimensions with the
obtained above, we arrive at the result

Dn; j
c 5

1

2N
~nN1 j !2, j51,2,...,l ,

~8.29!

D̄n; j
c 5

1

2N
„~n11!N2 j …2, j51,2,...,l ,

and

Dn;o
c 5Dn;v

c 5
n2N

2
, Dn;s

c 5Dn;c
c 5Dn;l

c ~8.30!
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for the eigenvalues of the coset Virasoro generatorL0
c5L0

NS2L0 .

IX. CHARACTERS OF THE MODULES IN THE NEVEU–SCHWARZ SECTOR

Because of the inclusionAWZW,A, the irreducible sectors of the gauge invariant ferm
algebraA constitute modules of the observable algebraAWZW of the WZW theory, which however
are typically reducible. To determine the decomposition of the irreducible modules of the
mediate algebraA into irreducible modules ofAWZW we analyze their characters and combine
result with the knowledge about the characters of the coset theory.

A. Characters for the sectors of A

The characters of submodules of the spaceĤNS, i.e., the trace ofqL0 over the modules, can
be obtained as follows. LetP0 , PJ , andP@m#

6 denote the projections ontoH0,HJ , andH@m#
6 for

mPN, respectively. Then the representation matricesU(g t) andU(hg t) of O~2! decompose into
projectors as

U~g t!5P01PJ1 (
m51

`

@eimtP@m#
1 1e2 imtP@m#

2 # ~9.1!

and

U~hg t!5P02PJ1 (
m51

`

@eimtU~h!P@m#
1 1e2 imtU~h!P@m#

2 #. ~9.2!

It follows in particular that the projectors can be written as

P05
1

4p E
0

2p

dt@U~g t!1U~hg t!#, PJ5
1

4p E
0

2p

dt@U~g t!2U~hg t!#,

~9.3!

P@m#
6 5

1

2p E
0

2p

dte7 imtU~g t! for mPN.

For the irreducibleA sectors inĤNS, the results~8.14!–~8.18! together with the action ofL0
NS

@compare Eq.~8.24!# imply the following. First,

x0
NS~q![trĤNS

P0q
L0

~NS!
5

1

4p E
0

2p

dtF )
m50

`

~11eitqm11/2!N~11e2 itqm11/2!N

1 )
m50

`

~12q2m11!NG . ~9.4!

This can be rewritten as

x0
NS~q!5

1

4p E
0

2p

dtFj~q;2eitq1/2!

w~q! GN1
1

2 F w~q!

w~q2!G
N

, ~9.5!

wherew is Euler’s product function~6.11! and

j~q;z!:5 )
n51

`

„~12qn!~12qnz21!~12qn21z!…. ~9.6!

Using also the identityj(q;z) 5 (nPZ( 2 1)nqn(n21)/2zn ~Ref. 10, p. 240!, we finally arrive at
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¬¬¬¬¬¬¬¬¬¬
x0
NS~q!5

QN,0~q!

2~w~q!!N
1

~w~q!!N

2~w~q2!!N
, ~9.7!

where we introduced the functions

QN,m~q!:5 (
m1 ,m2 ,...,mNPZ

m11m21•••1mN5m

q~m1
2
1m2

2
1•••1mN

2
!/2[ (

mPZN
(mi5m

qm
2/2 ~9.8!

for mPZ.
Analogously, we find

xJ
NS~q![trĤNS

PJq
L0

~NS!
5

QN,0~q!

2~w~q!!N
2

~w~q!!N

2~w~q2!!N
~9.9!

and

x@m#
NS ~q![trĤNS

P@m#
6 qL0

~NS!
5

1

2p E
0

2p

dt e7 imtFj~q;2eitq1/2!

w~q! GN5
QN,m~q!

~w~q!!N
~9.10!

for mPN. @Note that the latter result does not depend on whetherP@m#
1 or P@m#

2 is used, since
QN,m(q)5QN,2m(q).#

Expressing the integerm either asm5nN1 j or asm5(n11)N2 j with 1< j<l , by shift-
ing the summation indices we obtain the relationQN,nN1 j (q) 5 qn j1n2N/2QN, j (q). Hence we have

x@nN1 j #
NS ~q!5qn j1n2N/2x@ j #

NS~q!; ~9.11!

in the same manner we obtainx@(n11)N2 j #
NS (q) 5 qn(N2 j )1n2N/2x@N2 j #

NS (q), or alternatively,

x@~n11!N2 j #
NS ~q!5q2~n11! j1~n11!2N/2x@ j #

NS~q!. ~9.12!

For j50 we have instead

x@nN#
NS ~q!5qn

2N/2@x0
NS~q!1xJ

NS~q!# ~9.13!

for all n.0.

B. sô (N)2 characters for even N

When we use the information about the highest weight vectors with respect to the affin
algebra sô(N) at level two that we obtained above, we can derive the characters of the irredu
highest weight modules of sô(N)2 by comparing the decomposition~6.9! with the decompositions
~7.9! and ~7.11!. We first consider the caseN52l .

By comparison of Eq.~6.9! with Eq. ~7.9! we find

x@ j #
c;l ~q!x@ j #

~2!~q!5x@ j #
NS~q!1x@N2 j #

NS ~q!1x@N1 j #
NS ~q!1x@2N2 j #

NS ~q!1•••

[ (
n50

`

@x@nN1 j #
NS ~q!1x@~n11!N2 j #

NS ~q!# ~9.14!

for even j . Using Eqs.~9.11! and ~9.12!, this becomes
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x@ j #
c;l ~q!x@ j #

~2!~q!5x@ j #
NS~q!(

nPZ
qn j1n2N/25q2 j 2/2Nc l , j~q!x@ j #

NS~q!5q2 j 2/2Nc l , j~q!
QN, j~q!

„w~q!…N
.

~9.15!

Analogously, with Eq.~7.9! we obtain the same result for oddj . By inserting the coset characte
x [ j ]
c ~7.2! we then get

x@ j #
~2!~q!5q2 j 2/2N

QN, j~q!

„w~q!…N21 . ~9.16!

For j5l one has to read this result with Eq.~7.10!, which means that our result only describes t
sum of the irreducible charactersxs

(2) and xc
(2). By comparison with Eq.~9.10!, we may also

rewrite the result in the form

x@nN1 j #
NS ~q!5

q~nN1 j !2/2N

w~q!
x@ j #

~2!~q!, x@~n11!N2 j #
NS ~q!5

q~~n11!N2 j !2/2N

w~q!
x@ j #

~2!~q! ~9.17!

for j51,2,...,l .
Again comparing Eq.~6.9! with Eq. ~7.9!, we also find

xo
c;l ~q!xo

~2!~q!1xv
c;l ~q!xv

~2!~q!5x0
NS~q!1 (

n51

`

x@nN#
NS ~q!

5@x0
NS~q!1xJ

NS~q!#@ 1
2 1 1

2 c l ,0~q!#2xJ
NS~q!

5 1
2 @x0

NS~q!2xJ
NS~q!#1 1

2 c l ,0~q!@x0
NS~q!1xJ

NS~q!#

5
~w~q!!N

2~w~q2!!N
1c l ,0~q!

QN,0~q!

2~w~q!!N
~9.18!

and

xo
c;l ~q!xv

~2!~q!1xv
c;l ~q!xo

~2!~q!5xJ
NS~q!1 (

n51

`

x@nN#
NS ~q!52

~w~q!!N

2„w~q2!…N
1c l ,0~q!

QN,0~q!

2„w~q!…N
.

~9.19!

Subtraction of Eq.~9.19! from Eq. ~9.18! yields

@xo
c;l ~q!2xv

c;l ~q!#•@xo
~2!~q!2xv

~2!~q!#5F w~q!

w~q2!G
N

[x0
NS~q!2xJ

NS~q!, ~9.20!

so that by inserting Eq.~7.7! we obtain

xo
~2!~q!2xv

~2!~q!5F w~q!

w~q2!G
N21

. ~9.21!

Analogously, by adding Eqs.~9.18! and ~9.19! we get

@xo
c;l ~q!1xv

c;l ~q!#•@xo
~2!~q!1xv

~2!~q!#5c l ,0~q!
QN,0~q!

„w~q!…N
, ~9.22!

and inserting Eq.~7.8! we obtain
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xo
~2!~q!1xv

~2!~q!5
QN,0~q!

~w~q!!N21 . ~9.23!

In summary, we have derived that

xo
~2!~q!5

1

2 H QN,0~q!

~w~q!!N21 1F w~q!

w~q2!G
N21J [

1

2~w~q!!N21 @QN,0~q!1~c1,0~2q!!N21#,

~9.24!

xv
~2!~q!5

1

2 H QN,0~q!

~w~q!!N212F w~q!

w~q2!G
N21J [

1

2~w~q!!N21 @QN,0~q!2~c1,0~2q!!N21#.

Further, comparison with Eqs.~9.7! and ~9.9! yields

x0
NS~q!1xJ

NS~q!5
1

w~q!
@xo

~2!~q!1xv
~2!~q!#, ~9.25!

while comparison with Eqs.~9.10! and ~9.11! shows that

x@nN#
NS ~q!5

qn
2N/2

w~q!
@xo

~2!~q!1xv
~2!~q!#. ~9.26!

C. sô (N)2 characters for odd N

Now we consider the caseN52l 11. From Eqs.~6.9! and ~7.11! we find

x@2 j #
c;2N~q!x@ j #

~2!~q!5x@ j #
NS~q!1x@2N2 j #

NS ~q!1x@2N1 j #
NS ~q!1x@4N2 j #

NS ~q!1x@4N1 j #
NS ~q!1•••

[ (
n50

`

@x@2nN1 j #
NS ~q!1x@2~n11!N2 j #

NS ~q!#

5x@ j #
NS~q!(

nPZ
q2n j12n2N5q2 j 2/2Nc2N,2j~q!x@ j #

NS~q! ~9.27!

for j even, and

x@2N22 j #
c;2N ~q!x@ j #

~2!~q!5 (
n50

`

@x@~2n11!N1 j #
NS ~q!1x@~2n11!N2 j #

NS ~q!#

5x@ j #
NS~q!(

nPZ
q2~2n11! j1~2n11!2N/2

5q2 j1N/2x@ j #
NS~q!(

nPZ
q2n~N2 j !12n2N5q2 j 2/2Nc2N,2N22 j~q!x@ j #

NS~q!

~9.28!

for j odd. By inserting the coset characters~7.2! we then arrive once again at formulas~9.16! and
~9.17! for j51,2,...,l .

In the same manner we find

xo
c;2N~q!xo

~2!~q!1xv
c;2N~q!xv

~2!~q!5x0
NS~q!1 (

n51

`

x@2nN#
NS ~q!
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¬¬¬¬¬¬¬¬¬¬
5@x0
NS~q!1xJ

NS~q!#F121
1

2 (
nPZ

q2n
2NG2xJ

NS~q!

5
~w~q!!N

2~w~q2!!N
1c2N,0~q!

QN,0~q!

2~w~q!!N
~9.29!

and

xo
c;2N~q!xv

~2!~q!1xv
c;2N~q!xo

~2!~q!5xJ
NS~q!1 (

n51

`

x@2nN#
NS ~q!

52
~w~q!!N

2~w~q2!!N
1c2N,0~q!

QN,0~q!

2~w~q!!N
. ~9.30!

Thus we again also obtain the relations~9.21! and ~9.23! for xo
(2) andxv

(2), and hence also Eqs
~9.24! and ~9.26!.

X. SUMMARY AND OUTLOOK

A. Decomposition of the tensor product

Let us now summarize some of our results on the tensor product decompositions. To th
we first note thatqD/w(q) is precisely the character of the Verma moduleM (c,D) of the Virasoro
algebra. For central chargec51 the Verma moduleM (c,D) is irreducible as long as 4DÞm2 for
mPZ; otherwise there exist null states. The characters of the irreducible modulesV(1,D) of the
c51 Virasoro algebra are then given by

xD
Vir~q!5H ~w~q!!21@qm

2/42q~m12!2/4# if D5 m2/4 with mPZ

~w~q!!21qD otherwise.
~10.1!

Thus for 4D5m2 with mPZ the Verma module character can be decomposed as follows:

qm
2/4

w~q!
5

1

w~q! (
k50

`

@q~m12k!2/42q~m12k12!2/4#5 (
k50

`

x~m12k!2/4
Vir

~q!. ~10.2!

Correspondingly, we write

W~1,D!:5H %
k50

`

VS 1,~m12k!2

4 D if D5
m2

4
with mPZ

V~1,D! otherwise.

~10.3!

Using also the formulas~8.29! and~8.30! for the coset conformal weights, we can summar
our results of Sec. IX by the following description of the big Fock spaceĤNS. Recalling the
decomposition

ĤNS5H0%HJ %
m51

`

~H@m# ^C2! ~10.4!

of ĤNS into A sectors, we can express the splitting ofĤNS into tensor products of the Virasor
modules ~10.3! and the irreducible highest weight modules of sô(N)2 ~that is,Ho

(2), Hv
(2),

H@ j #
(2) , and alsoHs

(2) andHc
(2) whenN52l ! as follows. Our results show that
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¬¬¬¬¬¬¬¬¬¬
H@nN#5@Ho
~2!

%Hv
~2!# ^W~1,Dn;o

c !, ~10.5!

for n51,2,..., aswell as

H@nN1 j #5H@ j #
~2!

^W~1,Dn; j
c !,

~10.6!
H@~n11!N2 j #5H@ j #

~2!
^W~1,D̄n; j

c !

for n50,1,... andj51,2,...,l 21. WhenN52l 11, Eq. ~10.6! also holds forj5l , while for
j5l andN52l we have

H@nN1l #5@Hs
~2!

%Hc
~2!# ^W~1,Dn;s

c ! ~10.7!

for n50,1,....Note that the modulesW(1,D) appearing in the decompositions~10.5!, ~10.6!, and
~10.7! are all irreducible as long asA2N¹N. Otherwise we can writeN52K2 with KPN, and
then the modulesW(1,Dn;o

c ) andW(1,Dn; j
c ), W(1,D̄n; j

c ) with j5mK, m51,2,... andj<l , split
up as in Eq.~10.3!.

Besides the coset Virasoro generators, the chiral symmetry algebra of the orbifold coset
contains further operators.22 The observation above implies in particular that when acting onA

sectors other thanH0 andHJ , for A2N¹N all these additional generators make transitio
between the sectors of the gauge invariant fermion algebraA; for N52K2 ~KPN! the additional
generators generically still make transitions, except that they can map sectors withj5mK to
themselves. It follows in particular that we can distinguish between elements of the coset Vi
algebra and elements of the full coset chiral algebra which are not contained in the coset V
algebra by acting with them on suitableA sectors.

B. The sectors H0 and HJ

It still remains to analyze the decomposition of theA-sectorsH0 andHJ explicitly. From Eq.
~9.25! we conclude that

H0%HJ5@Ho
~2!

%Hv
~2!# ^W~1,0!. ~10.8!

NowW(1,0) is always reducible, independent of the particular value of the integerN. We claim
that

H05Ho
~2!

^ %
k50

`

V~1,~2k!2! %Hv
~2!

^ %
k50

`

V~1,~2k11!2!,

~10.9!

HJ5Ho
~2!

^ %
k50

`

V~1,~2k11!2! % Hv
~2!

^ %
k50

`

V~1,~2k!2!.

This can be seen by decomposing the charactersx0
NS andxJ

NS as follows:

x0
NS~q!5

QN,0~q!

2~w~q!!N
1

~w~q!!N22

2~w~q2!!N21 (
kPZ

~21!kqk
2

[
QN,0~q!

2~w~q!!N
1

~w~q!!N22

2~w~q2!!N21 (
k50

`

@q~2k!222q~2k11!21q~2k12!2#

5xo
~2!~q!

1

w~q! (
k50

`

@q~2k!22q~2k11!2#1xv
~2!~q!

1

w~q! (
k50

`

@q~2k11!22q~2k12!2#
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¬¬¬¬¬¬¬¬¬¬
[xo
~2!~q!•(

k50

`

x~2k!2
Vir

~q!1xv
~2!~q!•(

k50

`

x~2k11!2
Vir

~q!. ~10.10!

@In the first line we used Eq.~7.6!.# Similarly,

xJ
NS5xo

~2!
•(
k50

`

x~2k11!2
Vir

1xv
~2!
•(
k50

`

x~2k!2
Vir . ~10.11!

It follows that besidesuVo
0,0&[uV& and uVv

J,0&[uVv&, there must exist further simultaneou
highest weight vectors of sô(N)2 and the coset Virasoro algebra, namely, fork50,1,2,..., highest
weight vectorsuVo

0,2k12&, uVv
0,2k11&PH0 and uVo

J,2k11&, uVv
J,2k12&PHJ , with sô(N)2-weights

Lo , Lv , Lo , Lv , respectively, and with coset conformal weights (2k12)2, (2k11)2, (2k11)2,
(2k12)2, respectively. Those vectors with unit coset conformal weight have a relatively si
form; we find

uVo
J,1&55 (

k51

l

~ x̄21/2
k,1 x21/2

k,2 2 x̄21/2
k,2 x21/2

k,1 !uV& for N52l

H (
k51

l

~ x̄21/2
k,1 x21/2

k,2 2 x̄21/2
k,2 x21/2

k,1 !1 x̄21/2
l 11,1x̄21/2

l 11,2J uV& for N52l 11,

~10.12!

as well as

uVv
0,1&5x21/2

1,1 x21/2
1,2 uVo

J,1&1~x23/2
1,1 x21/2

1,2 1x23/2
1,2 x21/2

1,1 !uV&. ~10.13!

In contrast, the highest weight vectors with larger coset conformal weight are more diffic
identify.

C. sô (N)2 characters

Our idea to employ the representation theory of the gauge group O~2! allowed us to deduce
simple formulas for the characters of the~Neveu–Schwarz sector! irreducible highest weight
modules of sô(N) at level two. They are given by the expression~9.16! for x@ j #

(2) and Eq.~9.24! for
xo
(2) andxv

(2). Note that, not surprisingly, these results have a simple functional dependence
integerN, even though the details of their derivation~involving e.g., the relation with the orbifold
coset theory! depend quite nontrivially on whetherN is even or odd.

Our results for these characters are not new. In Ref. 12, the conformal embeddi
sô(N)2 into û(N) at level one was employed to identify~sums of! sô(N)2 characters with char-
acters of sû(N)1 . Indeed, the restricted summation over the lattice vectormPZN in formula ~9.8!
for QN,m(q) precisely corresponds to the summation over the appropriately shifted root latt
su(N).

With the help of the conformal embedding only the linear combinationxo
(2)1xv

(2) of the
irreducible charactersxo

(2) andxv
(2) is obtained, which is just the level-one vacuum characte

sû(N). However, the orthogonal linear combinationxo
(2)2xv

(2) is known as well; it has been
obtained in Ref. 11, p. 233 by making use of the theory of modular forms.

D. Remarks on the Ramond sector

Clearly, it would be desirable to also incorporate the sectorss, s8, t, t8 (N52l !, respec-
tively, s, s8 (N52l 11! in our analysis. These modules appear in tensor products that
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involve the Ramond sector of the level-one theory. More precisely, they are realized in the
productHNS^HR . When one tries to incorporate this space in our analysis, several new
lems are encountered.

First of all, the level-two currents acting inHNS^HR are of the formJNS1JR, where each
summand acts nontrivially on the corresponding tensor factor. SinceJNS is constructed from
Neveu–Schwarz fermions, whileJR is constructed from Ramond fermions, the O~2! invariance is
less obvious than in the case ofHNS^HNS. However, the following argument which uses th
framework of bounded operators suggests that the O~2! invariance is only hidden, but still presen
Although this has not yet been proven, local normality of the local algebras of bounded ope
associated to the WZW model is generally expected to hold also for the sectorss, s8, t, t8
(N52l !, respectively,s, s8 (N52l 11!. As a consequence, the local algebras in each secto
isomorphic, so that the O~2! invariance is given implicitly from the O~2! invariance in the vacuum
sector.

Unfortunately the decomposition ofHNS^HR into sectors of the gauge invariant fermio
algebra cannot be provided in a manner as simple as in the case ofĤNS. The reason is that the
associated statevPNS

^ vSR
is neither pure nor gauge invariant, so that we are no longer

situation which allows us to apply the results of DHR.
Moreover, already at level one the explicit formulas for the highest weight vectors inHR are

much more complicated than those for the ones inHNS.
2 As a consequence, some additional too

seem to be needed if we want to treat the sectors which involve the Ramond sector as we

E. A homomorphism of fusion rings

In Sec. VIII we were able to identify the sô(N)2 highest weight modules within the sectors
the intermediate algebraA which are governed by the gauge group O~2!. Our results amount to the
following assignmentr of the O~2!-representationsF to the WZW sectorsf:

r~F0!5fo , r~FJ!5fv ,

r~F@~n11!N#!5fo1fv ,
~10.14!

r~F@nN1 j #!5r~F@~n11!N2 j #!5f@ j # for j51,2,...,l 21,

r~F@nN1l #!5r~F@~n11!N2l #!5H fs1fc for N52l

f@ l # for N52l 11,

for n50,1,2,... ~Note that in the case ofF0 andFJ , the action ofr does not directly correspon
to the decomposition of theA-sectors into sô(N)2 sectors.!

The multiplication rules of the representation ringRO~2! of O~2! are given by the relations
~4.8!. The level-two WZW sectors generate a fusion ring, too, which we denote byRWZW

~2! . The
ringRWZW

~2! has a fusion subringRNS
~2! which is generated by those primary fields which appea

the Neveu–Schwarz sectorĤNS. The fusion rules, i.e., the structure constants ofRWZW
~2! , can be

computed with the help of the Kac-Walton and Verlinde formulas~see, e.g., Ref. 23!. For the
subringRNS

~2! one finds the tensor product decompositions listed in Appendix A 3.
Inspection shows thatRNS

~2! is in fact isomorphic to the representation ring of the dihed
groupDN . Now for anyN the groupDN is a finite subgroup of O~2!. As a consequence, th
mappingr actually constitutes a fusion ringhomomorphismfrom the representation ringRO~2! of
O~2! to the fusion subringRNS

~2! of RWZW
~2! . ~It is also easily checked that for oddN the homo-

morphismr is surjective, while for evenN the image does not contain the linear combinat
fs2fc .! This observation explains to a certain extent why, in spite of the fact that the W
observable algebraAWZW is much smaller than the O~2!-invariant algebraA, the group O~2!
J. Math. Phys., Vol. 38, No. 3, March 1997
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nevertheless provides a substitute for the gauge group in the DHR sense. But even in view
relationship it is still surprising how closely the WZW superselection structure follows the re
sentation theory of O~2!.

One may speculate that the presence of the homomorphismr indicates that the gauge grou
O~2! is in fact part of the full~as yet unknown! quantum symmetry of the WZW theory that full
takes over the role of the DHR gauge group. This is possible because all sectors in the N
Schwarz part of the WZW theory have integral quantum dimension. Now in rational confo
field theory sectors with integral quantum dimension are actually extremely rare. It will be
esting to study the relationship between the representation ring of O(k~) or U(k~) and the WZW
fusion ring in more general cases where~most of! the WZW sectors possess nonintegral quant
dimension.
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APPENDIX A: SOME TECHNICAL DETAILS

1. Commutators of the fermion modes x r
k ,6 with the currents

By direct calculation, we obtain

@H j ,xr
k,6#5d j ,kxr

k,6 , @H j ,x̄r
k,6#52d j ,kx̄r

k,6 , ~A1!

for all j , k51,2,...,l , and similarly, forN52l 11,

@H j ,x̄r
l 11,6#50 ~A2!

for all j51,2,...,l .
To find also the commutators of the fermion modes with the raising operatorsE1

j , we first
compute

@Jm~ te,h
i , j !,cr

k,6#5 1
2e~h71!d j ,kcm1r

i ,e 2 1
2h~e71!d i ,kcm1r

j ,h . ~A3!

Analogous relations hold for [Jm(te,h
i , j ),c̄r

k,6]. WhenN52l 11 we have in addition the relation
[Jm(te,h

i , j ),br
2l ;q]50 and

@Jm~ t1
j !,cr

k,6#57d j ,kbm1r
2l 11;1, @Jm~ t2

j !,cr
k,6#50,

~A4!
@Jm~ t6

j !,br
2l 11;1#52cm1r

j ,6 ,

and similar relations for [Jm(t1
j ),c̄r

k,6], [ Jm(t2
j ),c̄r

k,6] and [Jm(t6
j ),br

2l ;2]. From these results we
learn that

@E1
0 ,xr

k,6#5dk,2x̄r11
1,6 2dk,1x̄r11

2,6 , @E1
0 ,x̄r

k,6#50,

@E1
j ,xr

k,6#52dk, j11xr
j ,6 , @E1

j ,x̄r
k,6#5dk, j x̄r

j11,6 for j51,2,...,l 21, ~A5!

@E1
l ,xr

k,6#50, @E1
l ,x̄r

k,6#5H dk,l xr
l 21,62dk,l 21xr

l ,6 for N52l

dk,l x̄r
l 11,62dk,l 11xr

l ,6 for N52l 11.

Taking into account that (xr
j ,6)25( x̄r

j ,6)250 and (xr
j ,6)*5 x̄2r

j ,7, these relations imply that
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@E1
j ,Xr

k,6#50 for j51,2,...,l
~A6!

@E1
j ,X̄r

k,6#50 for j51,2,...,l 21.

For j5l we have instead

@E1
l ,X̄r

k,6#•Xr
l ,650 for N52l ,

~A7!
@E1

l ,X̄r
k,6#• x̄r

l 11,650, @E1
l ,x̄r

l 11,6#•Xr
l ,650 for N52l 11.

Finally, for j50 we find

@E1
0 ,X̄r

k,6#50, @E1
0 ,Xr

k,6#•X̄r11
0,6 50. ~A8!

2. The action of the gauge group O(2)

For the Fourier modescr
j ,6 and c̄r

j ,6 the actions~4.2! of g t , tPR, and Eq.~4.3! of h read

g t~cr
j ,6!5cos~ t !cr

j ,62sin~ t !c̄r
j ,6 , g t~ c̄r

j ,6!5sin~ t !cr
j ,61cos~ t !c̄r

j ,6 ,
~A9!

h~cr
j ,6!5cr

j ,6 , h~ c̄r
j ,6!52 c̄r

j ,6 ,

so that the combinationsxr
j ,6 transform as

g t~xr
j ,6!5e6 itxr

j ,6 , h~xr
j ,6!5xr

j ,7 . ~A10!

Analogously,

g t~ x̄r
j ,6!5e6 itx̄r

j ,6 , h~ x̄r
j ,6!5 x̄r

j ,7 . ~A11!

Hence the combinationsXr
j ,6 transform as

g t~Xr
j ,6!5e6 i j tXr

j ,6 , h~Xr
j ,6!5Xr

j ,7 , ~A12!

and analogously,

g t~X̄r
j ,6!5e6 i~ l 2 j !tX̄r

j ,6 , h~X̄r
j ,6!5X̄r

j ,7 . ~A13!

3. The fusion rules of sô (N)2

In this appendix we present the relations of the fusion ringRNS
~2!,RWZW

~2! , i.e., the fusion rules
for those primary fields of the WZW theory based on sô(N)2 which correspond to the sô(N)2
highest weight modules that appear in the Neveu–Schwarz sector. ForN52l we have

fv.fv5fo , fv.fs5fc ,

fs.fs5fc.fc5H fo for l P2Z

fv for l P2Z11,

fs.fc5H fv for l P2Z

fo for l P2Z11,
~A14!

fv.f@ j #5f@ j # , fs.f@ j #5fc.f@ j #5f@ l 2 j # ,
J. Math. Phys., Vol. 38, No. 3, March 1997
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f@ i #.f@ j #5f@ u i2 j u#1f@ i1 j # .

Here it is to be understood that whenever on the right-hand side a labelj appears which is large
than l , it must be interpreted as the number

j 8:5N2 j , ~A15!

and when the label equals zero orl , one has to identifyf@ j # as the sum

f@0#[fo1fv , f@ l #[fs1fc . ~A16!

For N52l 11 the fusion rules read

fv.fv5fo , fv.f@ j #5f@ j # ,
~A17!

f@ i #.f@ j #5f@ u i2 j u#1f@ i1 j # .

This time it is understood that whenj is larger thanl , it stands for the numberj 8:5N2 j , and
again thatf@0# [ fo1 fv .

The Neveu–Schwarz sector fusion rules which are not listed explicitly all follow from
commutativity and the associativity of the fusion product and from the fact thatfo is the unit of
the fusion ring.
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The Dirac–Maxwell equations with cylindrical symmetry
H. S. Booth and C. J. Radford
University of New England, Department of Mathematics, Statistics and Computing,
Armidale, New South Wales 2351, Australia

~Received 1 August 1996; accepted for publication 5 September 1996!

A reduction of the Dirac–Maxwell equations in the case of static cylindrical sym-
metry is performed. The behavior of the resulting system of o.d.e.s. is examined
analytically and numerical solutions presented. There are two classes of solutions.
The first type of solution is a Dirac field surrounding a charged ‘‘wire.’’ The Dirac
field is highly localized, being concentrated in cylindrical shells about the wire. A
comparison with the usual linearized theory demonstrates that this localization is
entirely due to the nonlinearities in the equations which result from the inclusion of
the ‘‘self-field.’’ The second class of solutions have the electrostatic potential finite
along the axis of symmetry but unbounded at large distances from the axis.
© 1997 American Institute of Physics.@S0022-2488~97!01902-6#

I. INTRODUCTION

This paper is concerned with the system of partial differential equations known as the D
Maxwell equations; the Dirac field describing spin-half matter and the Maxwell field media
the electromagnetic interactions of the Dirac field. In an earlier paper,1 one of us~C.J.R.! used the
two-spinor formalism to rewrite the equations in a novel way. In fact, the electromagnetic p
tial can be eliminated from the equations altogether.~For further background into the two-spino
formulation of the Dirac equation, see Ref. 2!.

In Ref. 1 a reduction of the equations was performed in the static case~see Sec. II, below! and
a significantly simplified set of~nonlinear! p.d.e.s. presented. Finally, after imposing spheri
symmetry, the equations were solved~numerically, at least!. Unusual features to emerge from th
investigation were the existence of highly compact objects and a magnetic monopole.
present paper we will solve~numerically! the cylindrically symmetric, static Dirac–Maxwe
equations. In this case we find no monopolelike solutions. Perhaps this is not unexpected
there is slightly more regularity in a cylindrical system as opposed to a spherical system—r )
behavior as distinct from 1/r behavior. However, we do find highly localized solutions
cylindrical shells about a central charged ‘‘wire.’’ When we compare this to the Dirac field so
in an external potential of the same type, no such localization is apparent.

The cylindrical reduction is also distinguished from the spherical case by the existen
unbounded solutions—solutions in which the Maxwell potential is unbounded at large dist
from the symmetry axis. These solutions are also unbounded in the total charge~per unit length of
‘‘wire’’ !.

Very few explicit solutions to the full Dirac–Maxwell equations are known and all of th
are numerical solutions~or partly so!—see Refs. 1, 3, and 4. Work on the existence theory
progressed steadily, with some important recent work~see Refs. 5 and 6! providing local existence
for soliton like solutions.

The solutions in Ref. 1 and those presented here show that these equations are cap
representing highly localized structured, entities. Such behavior is not even hinted at whe
examines the usual linearized theory~see Sec. V B!, in which one ignores the Dirac current as
source for the Maxwell field.
0022-2488/97/38(3)/1257/12/$10.00
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II. THE STATIC DIRAC–MAXWELL EQUATIONS

The Dirac–Maxwell equations in standard notation are,

ga~]a2 ieAa!c1 imc50, where a50,...,3, ~1!

]aFab524pe jb , ~2!

where

Fab5Ab,a2Aa,b ~3!

with the current density given by

j a5c̄gac. ~4!

Following Ref. 1 we use theg5 diagonal or van der Waerden description~2-spinor notation, see
Ref. 2!. The Dirac 4-spinor~or bispinor! is

c5S uAv̄ ḂD and c̄5~vB,ūȦ!.

The Dirac equations are

~]AȦ2 ieAAȦ!uA1
im

&

v̄ Ȧ50,

~5!

~]AȦ1 ieAAȦ!vA1
im

&

ū Ȧ50.

In Ref. 1 it was shown that these equations can be solved for the electromagnetic po
provided the 2-spinors meet a nondegeneracy condition,uAvAÞ0. The result is,

AAȦ5
i

e~uCvC! S vA]BȦuB1uA]BȦvB1
im

&

~uAū Ȧ1vAv̄ Ȧ!D . ~6!

We are interested in the classical Dirac–Maxwell equations, so we will also require thatAAȦ is a
real vector field~see Ref. 1!. This leads to the following first order differential equations foruA
andvA ~‘‘reality conditions’’!:

]AȦ~uAūȦ!52
im

&

~uCvC2ū Ċv̄ Ċ!,

]AȦ~vAv̄ Ȧ!5
im

&

~uCvC2ū Ċv̄ Ċ!, ~7!

uA]AȦv̄ Ȧ2 v̄ Ȧ]AȦuA50.

The expression for the potential~6!, the reality conditions~7! and the Maxwell equations~2!,
now constitute the full set of nonlinear partial differential equations for the Dirac–Maxwell
tem. We still have, of course, theU~1! gauge freedom,
J. Math. Phys., Vol. 38, No. 3, March 1997
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uA→ei zuA , vA→e2 i zvA,

Aa→Aa1
1

e
]az, a direct consequence of~6!.

Following Ref. 1 we now impose thestatic condition: There exists a Lorentz frame in whic
there is no current ‘‘flow,’’ j a5d0

a j 0. Under this condition we have

vA5eix&s0AȦūȦ , ~8!

wherex is an arbitrary real function andsaAȦ are the three Pauli matrices with the 232 identity
matrix as the zeroths matrix ~van der Waerden symbols!.

The gauge can be fixed by the choice

u05Xei /2~x1h!, u15Yei /2~x2h!, ~9!

whereh, X andY are real functions.
The staticDirac–Maxwell equations can now be written down, we follow Ref. 1 and w

them in 3-vector notation. This is done by first introducing vectorsV andA,

V5~2XY cosh, 2XY sin h, X22Y2!

A5~A1,A2,A3!, whereAj5s
BḂ

j
ABḂ.

Our Maxwell–Dirac equations are now given as follows.
The electromagnetic potential is

A05
m

e
cosx1

~X22Y2!

2e~X21Y2!

]h

]t
1

~“x!–V

2e~X21Y2!
,

~10!

A5
1

2e~X21Y2! F]x

]t
V1~X22Y2!“h2“3VG .

The reality conditions are

]

]t
~X21Y2!50, ~11!

“–V522m~X21Y2!sin x, ~12!

]V

]t
1~“x!3V50. ~13!

Together with the Maxwell equations forA with current vectorj , as above.

III. CYLINDRICAL SYMMETRY

The Dirac field given by the 2-spinorsuA andv
A determines two gauge invariant null vecto

l a 5 saAȦuAūȦ andn
a 5 saAȦvAv̄ Ȧ . In fact,

~ l a!5
1

&

~X21Y2,V! and ~na!5
1

&

~X21Y2,2V!
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assuming that the field isstatic. Note that the current vectorj a5 l a1na. The first reality condition
tells us that the zeroth component ofl a andna are independent of time. We also assume thal a

andna are independent ofz in keeping with the assumption of cylindrical symmetry. Here,~r,f,z!
are the cylindrical polar coordinates corresponding to our original Cartesian coordinates.

Applying these conditions one finds thath5f, X5X(r) andY5Y(r). The second of the
reality conditions then implies thatx5x~r!. The third reality condition then gives

~X22Y2!
dx

dr
50.

If we takex5constantthen we findA05constant, the Maxwell equation then implies thatX5Y
50. However, the nondegeneracy condition,uAvAÞ0, excludes this possibility. So we assum
x8~r!Þ0 from now on and consequently,X5Y. Our equation for the electromagnetic potent
~10!, shows that the vector potentialA vanishes. There is no magnetic monopole, as distinct fr
the spherical case.

The equations now simplify to the following ordinary differential equations:

A05
m

e
cosx1

1

2e

dx

dr
,

d

dr
~rX2!522mrX2 sin x, ~14!

d

dr S r
dA0
dr D58p&eX2r.

Introducing dimensionless variables

A5
e

m
A0 , r̂52mp, Z5

8p&re2

m2 X2.

From here on we will refer tor̂ asr for the sake of simplicity. We also define a new depend
variable

F5r
dA

dr
,

so that we get a system of four first order equations

~a!
dx

dr
5A2cosx,

~b!
dF

dr
5Z,

~c!
dA

dr
5
F

r
, ~15!

~d!
dZ

dr
52Z sin x.
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The equations can also be written as a fourth order equation in the dependent variablex

d2

dr2 S rS d2xdr2
2sin x

dx

dr D D1
d

dr S rS d2xdr2
2sin x

dx

dr D D sin x50. ~16!

Much of the qualitative behavior of solutions to our system will be determined by the behav
the dependent variables in the vicinity of the two singular pointsr50 andr5`.

IV. BEHAVIOR NEAR 0 AND `

The variableZ is the charge density which we assume to be non-negative.~In fact, it is
straightforward to show thatZ>0⇒Z.0. See proof of Lemma 2.! F is the integral of the charge
Z per unit ring, that is,F(r)2F(0) is the total charge within a radiusr. It is reasonable, therefore
to restrict our attention to solutions whereF remains bounded asr approaches̀ . Much of the
behavior of the solution can be characterized by the values ofF at either end of the domain. Thi
behavior can best be summarized in the following two Lemmas.

Lemma 1: Suppose~x,F,A,Z! is a solution to Eq. (15) on I5~0,r1!, for somer1,0,r1,1.
Suppose also that Z>0 is continuous and bounded on I. Then,

~i! F is C1 on I and has a well defined, finite limit asr→0.Z has a well-defined limit asr→0.
~ii ! If F ~0!Þ0 then A is unbounded asr→0. In particular, A5V~r!ln~r!, whereV is C2 and

bounded on I, V→F~0! as r→0. Also, x is bounded asr→0.
Proof:
~i! Let 0,r1,r2,1.
From (c), dF/dr5Z, soF is C1 and uF(r2)2F(r1)u<M (r22r1), whereM5supIZ. Let-

ting r1,r2→0 shows thatF has a well-defined limit. Fixingr2, and lettingr1→0 shows that this
limit is finite. A similar argument using~d!; dZ/dr52Z sinx<M , shows thatZ has a well-
defined limit.

~ii ! Let A5V ln r. A is C2 on I since, from (c), dA/dr5F/r; thereforeV is C2. We also
have

F5r ln r
dV

dr
1V ~17!

and

d

dr S r~ ln r!2
dV

dr D5Z ln r. ~18!

From ~18! ~since lnr,0 on I !,

M ln r<
d

dr S r~ ln r!2
dV

dr D<0.

Integrating,

M ~r1~ ln r121!2r~ ln r21!!<c12r~ ln r!2
dV

dr
<0,

where

c15r1~ ln r1!
2
dV

dr
~r1!.
J. Math. Phys., Vol. 38, No. 3, March 1997
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That is,

M ~r1~ ln r121!2r~ ln r21!!

ln r
<r ln r

dV

dr
<

c1
ln r

.

Letting r→0, we see thatr ln r(dV/dr)→0. Hence, from~17! we see thatV→F~0! asr→0.
Now, sinceV is bounded onI put c2<V<c3 , for some constantsc2 andc3. From ~a!,

A21<
dx

dr
<A11.

Thus

c2 ln r21<
dx

dr
<c3 ln r11.

Integrating, we have

x~r!<x~r1!1c2~r1~ ln r121!2r~ ln r21!!2~r12r!,

x~r!>x~r1!1c3~r1~ ln r121!2r~ ln r21!!1~r12r!,

which boundsx~r! asr→0. h

Lemma 2: Suppose~x,F,A,Z! is a solution to Eq. (15) onrP~0,̀ !. Suppose also that Z>0
with F continuous and bounded on the interval. Then

~i! If F ~r1!>0 for somer1P@0,̀ !, thenx→`, A→`, and F→` as r→`.
~ii ! If F,0 on ~0,̀ ! then F→0 as r→`. In addition, if A and Z have well-defined limits a

r→` then Z→0 and A→A` as r→`, with 21<A`<1.
Proof:
~i! We first show that, given the nondegeneracy condition,uAvAÞ0 i.e., thatZ>0⇒Z.0 for

all rPI . SupposeZ~r1!50 for somer1PI . Now d/dr(Zer)>0, using~d!. Integrating fromr to
r1~rP~0,r1!!, shows thatZ~r!50 for all rP~0,r1!. A similar argument using (d/dr)(Ze2r)<0
shows thatZ~r!50 for all rP~r1,`!. Thus if Z~r1!50, thenZ[0 on I . But this possibility is
excluded by the nondegeneracy condition. Therefore,Z.0 on ~0,̀ !. This shows thatZ does not
have isolated zeroes.

F is ~strictly! monotonic increasing everywhere, since from~b! dF/dr5Z and Z.0. If
F~r1!>0 for somer2.r1, F~r2!.0. So, forrP~r2,`!

dA

dr
5
F

r
>
F~r2!

r
.

Integrating,

A~r!>A~r2!1F~r2!lnS r

r2
D

andA→` asr→`.
Also, from ~a!, dx/dr>A21, which implies, after integration, thatx→` asr→`. Now on

~r2,`!, F is bounded below byF~r2!. Let us assume thatF is bounded above, i.e.
0,F(r2)<F(r)<b, a constant. Consider

d

dr S Z~A2cosx!

A11 D5
ZF~11cosx!

r~A11!2
. ~19!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Now for r2 large enough,A.1 on ~r2,`! and so

Z~A2cosx!

A11
.c45

Z~r2!~A~r2!2cosx~r2!!

A~r2!11
.0.

Thus

Z~A2cosx!.c4~A11!. ~20!

Now consider

V~r!5Z~A2cosx!2
F2

2r
2E

r2

r F2~s!

2~s2!
ds.

dV/dr50, soV(r)5V(r2), constant on~r2,`!. But

V~r!>Z~A2cosx!2
F~r2!

2

2r
2
1

2
F~r2!

2E
r2

r ds

~s!2

and so, using~20!, sinceA→` asr→`, thenV~r!→` asr→`. Clearly r2 can be chosen at a
point whereV~r2! is finite. We have a contradiction.F cannot be bounded by a positive re
number. That is,F→` asr→`.

~ii ! We assume there exists a constanth s.t.F~r!,h,0 for all rP~0,̀ !. Then, sincedA/dr
5F/r,

A<A~r2!1h lnS r

r2
D

and soA→2` asr→`. Similarly x→2` asr→`.
Now

d

dr S Z~A2cosx!

A21 D5
ZF~211cosx!

r~A21!2
>0. ~21!

Therefore

Z~A2cosx!

A21
>c55

Z~r2!~A~r2!2cosx~r2!!

A~r2!21
>0,

for r2 large enough, sinceA→2` asr→`. Therefore,

Z~A2cosx!<c5~A21!.

HenceZ~A2cosx!→2` asr→`.
Now, using a similar argument to that in~i!, usingV~r!, we have a contradiction. Hence,F

cannot be bound above byh,0. ButdF/dr5Z.0, thusF→0 asr→` @otherwise, we have cas
~i!#. The proof ofZ→0 asr→` is handled in a similar manner. The bounds onA` are also easily
established using arguments of this type. For example, assumeA`,21 and use~19! and ~21!.
J. Math. Phys., Vol. 38, No. 3, March 1997
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V. NUMERICAL SOLUTIONS

A. Charged wire with two dense rings

As stated in Lemma 2~ii !, if F,0 on I , thenF→0 asr→`. To obtain a numerical solution
of this type, we expandx in 1

r and solve for the coefficients ofx, A, F, Z asr→`. There is only
one such solution, the coefficients in the expansions being uniquely determined

x5p23
1

r
1
1

6

1

r3
2

9 247

67 320

1

r5
1...,

A5211
15

2

1

r2
2
35

8

1

r4
1
77 425

26 928

1

r6
1...,

~22!

F5215
1

r2
1
35

2

1

r4
2
77 425

4 488

1

r6
1...,

Z530
1

r3
270

1

r5
1
77 425

748

1

r7
1... .

FIG. 1. Numerical solutions to the static D–M equations, with cylindrical symmetry.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Using these expressions, we evaluate our initial values~near infinity!. We used a multistep
differential equation solver@from the NAG Fortran Library ~Mark 16!,7 interfaced with
MATLAB #.8 The numerical solution is given in Fig. 1.

As stated in Lemma 1,x remains finite asr→`. We can calculate the value ofx~0! numeri-
cally: x~0!5212.17 noting thatx→p asr→`. From ~d! we have

dZ

dr
50 when x5np.

From Fig. 1 we see thatx is monotonic and bounded between24p andp. Z has four critical
points forrP~0,̀ !. These occur successively as maxima and minima.Z has two finite values ofr,
r1 andr2, say, for which the charge density is a local maximum.~See Fig. 1.! Numerically, after
converting to units, in whichr is measured inlC51/m, the reduced Compton wavelength
r1'0.12lC , andr2'0.46lC . In the full three-dimensional picture, this corresponds to two dens
charged rings around thez axis.

PlottingA against lnr, in the inner region~inside the dense rings! we obtain a linear plot, in
keeping with Lemma 1~ii !

A'F~0!ln r for r!r1 .

This is just the standard cylindrically symmetric solution to vacuum Maxwell equations—
potential due to a charged wire~along thez axis!. Note that,F(0)5146/lC corresponding to a
charge per Compton wavelength of 146e. Coupling the Maxwell and Dirac equations, then, h
the effect of surrounding the charged wire with two dense rings of charge.

B. Comparison with the linearized theory

In this section we consider, by way of comparison, the solution to the Dirac equation
external field generated by a charged wire. We now use the decoupled equations, i.e., the
equation with the vacuum Maxwell equation.

In the static cylindrically symmetric case, the solution to the vacuum Maxwell equatio
A5c0 ln r. Using the same notation as in the previous section, we choosec05F(0),0. We can
now solve the Dirac equation, using this~external! potential. Our equations are

FIG. 2. Numerical solution to the Dirac equation around a charged wire, treated as an external field.
J. Math. Phys., Vol. 38, No. 3, March 1997
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~a!
dx

dr
5210.79 lnr2cosx,

~23!

~b!
dZ

dr
52Z sin x.

For comparison purposes, we solve these linearized equations with the same initial condition
for our earlier solution. The numerical solution was obtained using the same methods as
previous section and are shown in Fig. 2.

For small values ofr the current density,Z, behaves in a similar manner~to the solution of the
nonlinearized D–M equations!, having the first peak atr1'0.11lC . As r→` the ~logarithmic!
potential is unbounded, in contrast to the nonlinearized case, in which21<A`<1 ~see Lemma 2!.
It is clear from Eq.~23~a!! thatx→2` asr→`. As such,~from 23~b!!, there will be an infinite
number of oscillations in the charge density variableZ, which, however, remains bounded. W
have lost thelocalization that was apparent in the full D–M equations.

FIG. 3. Charge distribution of the Dirac–Maxwell field with cylindrical symmetry evidencing ahighly localizedcharge
density around a central charged wire. Total charge~per unit length! is finite.

FIG. 4. Charge distribution of the Dirac equation surrounding a charged wire, treated as an external field. No loca
of the charge distribution is apparent. The total charge~per unit length! is unbounded.
J. Math. Phys., Vol. 38, No. 3, March 1997
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C. Unbounded solutions

As stated in Lemma 1~ii !, if F~0!Þ0 thenA is unbounded asr→0. We can also look for
solutions whereF~0!50. Lemma 2 then tells us thatx,A,F→` asr→`. SinceF~r! is the charge
within a radiusr, these solutions are of less interest, as the total charge,F~`! is necessarily
unbounded.

To find a numerical solution of this type, we expandx into a Taylor series inr and solve for
the coefficients.

As an example of this type of solution we setA~0!51 andx050. The first few terms of these
and the remaining variables are given below

x5
1

100
r1

1

100
r21

1

60 000
r31

1

45 000
r41...,

A5
101

100
1

1

50
r2

1

90 000
r32

1

240 000
r41...,

~24!

F5
1

50
r2

1

30 000
r32

1

60 000
r41...,

Z5
1

50
2

1

10 000
r22

1

15 000
r31

67

4 000 000 000
r41... .

FIG. 5. Numerical solutions to the D–M equations, withF~0!50.
J. Math. Phys., Vol. 38, No. 3, March 1997
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VI. CONCLUSIONS

An examination of the behavior of the solutions to the static Dirac–Maxwell equations
cylindrical symmetry shows that, in one class of solution, we have a highly localized ch
density around a central charged ‘‘wire.’’ The total charge~per unit length of the ‘‘wire’’! is finite.

When the equations are decoupled~by ignoring the effect of the ‘‘self-field’’ upon the Max
well field! all localization is lost. The total charge~per unit length! of the Dirac field is, in this
case, unbounded.

Although the cylindrical case is of limited interest physically, the resulting o.d.e.s. are
nable to a detailed descriptive analysis which corroborates the numerical results.

The same localization due to the inclusion of a nonlinear coupling, will be more interesti
the axially symmetric case, an analysis of which will be in a forthcoming publication.
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The noncommutative constraints on the standard model
à la Connes
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Noncommutative geometry applied to the standard model of electroweak and
strong interactions was shown to produce fuzzy relations among masses and gauge
couplings. We refine these relations and show then that they are exhaustive.
© 1997 American Institute of Physics.@S0022-2488~97!00502-1#

I. INTRODUCTION

Connes’ geometric version of the standard model1 needs no further introduction.2 Its most
striking feature is the explanation of spontaneous symmetry breaking from an uncertainty pri
in spacetime.

The basic idea of quantum mechanics is to implement Heisenberg’s uncertainty relat
phase space via noncommuting operators. This idea has been generalized by Alain Co
Riemannian manifolds3 and produces ‘‘spaces’’ where again points do not exist. These are
called quantum spaces. To our taste the word quantum is overused and we prefer John M
terminology, fuzzy spaces.4 His fuzzy sphere is a most instructive example. Now comes the
observation by Connes and Dubois-Violette, Madore and Kerner:5 certain pure Yang–Mills theo-
ries when put on certain fuzzy spacetimes acquire — free of charge — dynamical scalarsand a
symmetry breaking Higgs potential. This happens in Connes and Lott’s approach to the st
model, where starting from the fermionic mass matrix and ‘‘noncommutative gauge couplin
this automatic spontaneous symmetry breaking produces the bosonic mass matrices, spin
and the ordinary gauge couplings. Recall that the ordinary gauge couplingsgi ,i P $2,3%, param-
etrize the most general invariant scalar product on the Lie algebrag, e.g.,

~X,X8!:5
2

gi
2 tr ~X*X8!, X,X8Psu~ i !.

In noncommutative geometry, the Lie algebrag is contained in the involution algebraA,
g5$X P A,X*52X% and the invariant scalar product is constructed from the fermion repre
tation r, which now is a representation ofA on a Hilbert spaceH,

~a,a8!:5tr ~zr~a!* r~a8!!, a,a8PA.

Thenoncommutative gauge coupling zis a positive matrix onH that commutes withr(A) and
with the fermionic mass matrix.z unifies ordinary gauge couplings and boson masses. In
standard model,z contains six positive numbersx,y1 ,y2 ,y3 ,x̃,ỹ and the boson masses and gau
couplings as functions of these six numbers are

mW
2 5

xq1y1me
21y2mm

21y3mt
2

3x1y11y21y3
, ~1!

a!Also at the Universite´ de Provence. Electronic mail: carminati@cpt.univ-mrs.fr
b!Also at the Universite´ de Provence. Electronic mail: iochum@cpt.univ-mrs.fr
c!Also at the Universite´ de Provence. Electronic mail: schucker@cpt.univ-mrs.fr
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mH
2 5

xr213~y1me
41y2mm

41y3mt
4!

xq1y1me
21y2mm

21y3mt
2 2~xq1y1me

21y2mm
21y3mt

2!

3S 1

3x1y11y21y3
1

1

3x1
1

2
~y11y21y3!1

3

2
ỹD , ~2!

g1
2253x1

2

3
x̃1

1

2
~y11y21y3!1

3

2
ỹ, ~3!

g2
2253x1y11y21y3 , ~4!

g3
2254x̃. ~5!

Here, we have denoted the mass of a particlep by mp and put

q:5mt
21mb

21mc
21ms

21mu
21md

2 ,

r 2:53~mt
41mb

41mc
41ms

41mu
41md

4!12@~mumduVudu!21~mumsuVusu!2

1~mumbuVubu!21~mcmduVcdu!21~mcmsuVcsu!21~mcmbuVcbu!2

1~mtmduVtdu!21~mtmsuVtsu!21~mtmbuVtbu!2#,

and theV.. are the Cabbibo–Kobayashi–Maskawa mixings. These results were derived in R
for bimodules. In the presence of a real structure~see the last reference of Ref. 1!, the only
modification is the appearance ofỹ now in the Higgs mass~2!.

In the ordinary formulation, the standard model has 18 positive input parameters: the
gauge couplings,g1 ,g2 ,g3 , theW andH masses, three lepton and six quark masses, and
angles contained in the unitary Cabbibo–Kobayashi–Maskawa matrixV.

In its geometric formulation, there are 19 positive input parameters, the 9 fermionic m
and 4 mixing angles and 6 parameters from the noncommutative gauge coupling. In or
derive the constraint equations formW ,mH ,g1 ,g2 ,g3 , one has to distinguish several cases
terms of the 13independentparameters of the fermionic mass matrix. The equations~1!–~5! apply
to the case where the Cabbibo–Kobayashi–Maskawa matrix is non-degenerate, i.e., no
diagonal up to permutations of basis elements. In physical terms, this means that there
simultaneous mass and weak interaction eigenstates.

The following abbreviations will be useful:

e:5me
2 , m:5mm

2 , t:5mt
2 ,

t:5mt
2 , b:5mb

2 , c:5mc
2 , . . . ,

W:5mW
2 , H:5mH

2 .

Our task is to describe the open subset of the five dimensional space
(mW ,mH ,g1 ,g2 ,g3) that is the image under equations~1!–~5! of the six positive noncommutative
gauge parameters. Of course this image varies with the effective parameters.

Again, we have to distinguish cases in terms of the five effective parametersq,r ,e,m,t. Here,
we treat only one simple case given by the following hierarchies,
J. Math. Phys., Vol. 38, No. 3, March 1997
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e , m , t , W,

u1d , min$c,s% , ~11e!21max$c,s%,

c1s1min$c,s% , min$t,b% , ~11e!21max$t,b%,
6 ~6!

where e:512min$uVtbu2,uVcsu2,uVudu2% measures the deviation of the Cabbibo–Kobayas
Maskawa matrix from the identity. These hierarchies are simply used for getting the positiv
the following constant7

C:5
r 22q2

3W2 . 0. ~7!

Actually, we writeC under the form

3

2
CW25@ t21b21c21s21u21d2#1@ tb ~ uVtbu221!1cs ~ uVcsu221!1ud ~ uVudu221!#

1@us uVusu21ub uVubu21cd uVcdu21cb uVcbu21td uVtdu21ts uVtsu2#

2@~ t1b!~c1s1u1d!1~c1s!~u1d!#. ~8!

In ~8!, a lower bound of the second term of the right-hand side is2e(tb1cs1ud), 0 for the third
term and2@(t1b)min$t,b%1(c1s)min$c,s%# for the last one. According to the definition ofe,
3CW2/2.u21d22e ud.0.

II. FUZZY RELATIONS FOR THE MASSES AND COUPLING CONSTANTS

Since the previous hierarchies~6! are experimentally true~cf. the appendix!, this hypothesis is
not restrictive and we have the following

Theorem: Assume (6): the heaviest leptont is lighter than the W and there is a hierarch
between quark masses and mixings. Then, the image, in the five dimensional
(mW ,mH ,g1 ,g2 ,g3), of the six strictly positive noncommutative gauge parameters x, y1 , y2 ,
y3 , x̃, ỹ, is characterized by the following inequalities,

t,W,
q

3
, ~9!

Hmin~W!,H~W!,Hmax~W! , ~10!

0,sin2uw,
2

3 S 11
W2t

q23t
1S g2

3g3
D 2 D 21

. ~11!

The saturated bounds for the Higgs are given by

Hmax~W!:5
r 229e2

q23e
2

~r 223qe!e

q23e

1

W
2S 11

g2
22

g1
222

1

6
g3

22DW , ~12!

Hmin~W!:5
r 229t2

q23t
2

~r 223qt!t

q23t

1

W
2S 11

g2
22

g1
222

1

6
g3

22DW . ~13!
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In particular,

Hmax~W!2Hmin~W!5~t2e! S 11
r 22q2

~q23e!~q23t! D S qW23D . ~14!

Note that the3 in (9) is the number of generations and that the intermediate leptonm does not
appear in these formulae.

This is the first time that we see a mass relation affected by a small conceptual uncer
We call it afuzzy mass relation7 because we feel that the fuzziness of spacetime is the main c
for this fuzziness in parameter space.

Proof: Inequalities~9! follow immediately from equation~1!. To solve the constraint~3!, we
write

~y11y21y3! e , y1e1y2m1y3t , ~y11y21y3! t,

and from~1,4!

S q32WDg222 5 ~y11y21y3!
q

3
2~y1e1y2m1y3t!, ~15!

we obtain two optimal inequalities

q/32W

q/32e
g2

22 , y11y21y3 ,
q/32W

q/32t
g2

22 .

This solves the constraint~3! on g1:

1

2
g2

22S 11
W2t

q/32t D1
1

6
g3

221
3

2
ỹ , g1

22 ,
1

2
g2

22S 11
W2e

q/32eD1
1

6
g3

221
3

2
ỹ.

Sinceỹ is an arbitrary positive number, we finally get

0,
g2

22

g1
222

1

6
g3

22

,2 S 11
W2t

q

3
2t D 21

~16!

which is nothing else but~11! with sin2uw5g2
22(g1

221g2
22)21. The proof of~10! is more in-

volved. Since the equations~1!–~2! are homogeneous in thex,y1 ,y2 , y3 ,ỹ variables~note that
x̃ does not appear!, we will assume temporarily

3x51.

As in Ref. 7, we introduce two variables:

X:511(
j51

3

yj ,

Y:5a0
21(

j51

3

a j
2yj

with the following abbreviations
J. Math. Phys., Vol. 38, No. 3, March 1997
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a0 :5
q

3W
, a1 :5

e

W
, a2 :5

m

W
, a3 :5

t

W
.

The hierarchy~6! and ~9! imply

a1,a2,a3,1,a0 .

In terms ofX andY, the mass relations~1!–~2! read:

H

W
111g2

22S g1222
1

6
g3

22D 21

5
C

X
13

Y

X
, ~17!

X5a01(
j51

3

a j y j . ~18!

It is convenient to define

Xj :5
a02a j

12a j
,

Yj :5b jXj ,

b j :5a01a j2a0a j , jP$1,2,3%.

Recall the following result of Ref. 7 and its proof for completeness:
Lemma 1: D:5$y5(y1 , . . . ,y3)/yj.0,( j51

3 (12a j )yj5a021% is a convex open set in
R3. Moreover, on D, the variables X and Y are independent and satisfyXP#X1,X3@,
YP]Y1 ,Y3[.

Proof : D is convex and bounded: Indeed, forj P $1,2,3%, we have

~12a j !yj, (
j51

3

~12a j !yj5a021,

and 0,yj,(a021)(12a j )
21. Let

A1 :5~X121,0,0!, A2 :5~0,X221,0! andA3 :5~0,0,X321!.

Clearly, theAj are in the closure ofD andD is the interior of the convex envelope of the vecto
Aj : everyy5(y1 ,y2 ,y3) P D can be written as

y5(
j51

3

l jAj with l j :5
12a j

a021
yj.0 and (

j51

3

l j51

because of the constraint~18!. Therefore

X511(
j51

3

yj5(
j51

3

l j S 11
a021

12a j
D5(

j51

3

l j

a02a j

12a j
,

and as (a02a)/(12a) is an increasing function ofa,

a02a1

12a1
,X,

a02a3

12a3
.
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Similarly, we obtain the bounds onY,

Y5a0
21(

j51

3

a j
2yj5 (

n51

3

lnS a0
21~a021!

an
2

12an
D

by noting thata2/(12a) is increasing ina:

a0
21~a021!

a1
2

12a1
,Y,a0

21~a021!
a3
2

12a3
.

In particular,X2 P] X1 ,X3@andY2 P #Y1 ,Y3@ . The independence ofX andY follows from a non-
vanishing functional determinant. Solving the constraint,

y352
12a0

12a3
2

12a1

12a3
y12

12a2

12a3
y2 , ~19!

the variabley3 disappears:

X5
a02a3

12a3
1

a12a3

12a3
y11

a22a3

12a3
y2 ,

Y5S a0
22a3

2 12a0

12a3
D 1S a1

22a3
2 12a1

12a3
D y11S a2

22a3
2 12a2

12a3
D y2 ,

and compute the functional determinant

det S ]X/]y1 ]X/]y2

]Y/]y1 ]Y/]y2
D 5

~a12a2!~a22a3!~a32a1!

12a3
Þ0

ending the proof of the lemma.
The next lemma characterizes the domainD as function of the variablesX andY.
Lemma 2: Let T be the map fromR3 to R2 defined by T(y1 ,y2 ,y3):5(X,Y). Then, the image

T(D) is the interior of the triangle delimited by the points T(Aj )5(Xj ,Yj ), j P $1,2,3%.
Proof: Sincey3 is positive,~19! implies

0,y2,2
12a1

12a2
y11

a021

12a2
.

This upper bound being a line in the (y1 ,y2) plane, the projection ofD on this plane is contained
in the triangle defined by the points (X121,0), (0,X221) and~0,0!. These points are nothing bu
the projection ofA1 ,A2 ,A3 which are in the closure ofD. The projection on the plane preserv
convexity and the previous Lemma yields the result because

XT~Aj !
511Xj215Xj ,

YT~Aj !
5a0

21a j
2~Xj21!5~a02a j !~a01a j !1a j

2Xj5~12a j !Xj~a01a j !1a j
2Xj

5~a01a j2a0a j ! Xj5Yj .

Thanks to~17!, we need to control the function
J. Math. Phys., Vol. 38, No. 3, March 1997
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f ~X,Y!:5
C

X
13

Y

X
.

C being positive by~7!, f is decreasing inX and increasing inY. So the minimum and maximum
of f (X,Y) for (X,Y) P T(D) lie on the three segments@T(Ai), T(Aj )#, i Þ j , which are the
boundaries ofT(D). The points of these segments have coordinates of the form (X,ai j X1bi j )
where ai j ,bi j are real numbers. The derivative ofgi j (X):5 f (X,ai j X1bi j ) is
gi j8 (X)52(C13bi j )X

22 and the functionsgi j will be decreasing ifbi j is positive which is the
case as proved in the next Lemma, becausebi j5(a02a i)(a02a j ). This shows that

max$ f ~X,Y!u~X,Y!PD%5max$ f ~X,Y!u~X,Y!P@T~A1!,T~A3#%

5max$g13~X!uXP@X1 ,X3#%

5g13~X1!5 f ~X1 ,Y1!,

min$ f ~X,Y!u~X,Y!PD%5g13~X3!5g23~X3!5 f ~X3 ,Y3!.

Now, by ~17!,

Hmax5WS 3b11
C

X1
2S 11

g2
22

g1
222 1

6g3
22D D

5q13e2
qe

W
13C

W2e

q23e
W2S 11

g2
22

g1
222 1

6g3
22D W ~20!

yielding ~12!. This proves~12!–~14!. Note that

Hmin5WS 3b31
C

X3
2S 11

g2
22

g1
222 1

6g3
22D D

is strictly positive because by~16!,

g2
22

g1
222 1

6g3
22

,2 and b35a02a3~a021!.a02~a021!51.

Lemma 3: The equation of the line passing through the points T(Ai) and T(Aj ) in the (X,Y)
plane is Y5(a i1a j2a ia j ) X1(a02a i)(a02a j ).

Proof: This line isY5(Yj2Yi)(Xj2Xi)
21 X1(YiXj2YjXi)(Xj2Xi)

21 and

YiXj2YjXi

Xj2Xi
5~b i2b j !

XiXj

Xj2Xi
5~a j2a i !~a021!

~a02a j ! ~a02a i !

~a02a j !~12a j !2~a02a i !~12a i !

5~a02a i ! ~a02a j ! .

Moreover, the slope is (Yj2Yi)(Xj2Xi)
215(a i1a j2a ia j ) .

Problem: It would be interesting to get the Theorem without the hierarchy~6!.
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III. PHYSICAL CONSEQUENCES

The inequality~9! is

mW,Aq

3
5104 GeV.

The inequality~16! is

0.305
g2

22

g1
222 1

6g3
22

,2 S 11
W2t

q/32t D 21

51.25.

The inequalities~10!–~11! deserve a few graphic representations. Figure 1 shows the allo
domain for the Higgs mass as a function ofmW with mt as a parameter. The upper curve
mHmax

which is independent ofmt . All parameters not explicitly mentioned in a figure or i
caption are set to their experimental central values, e.g., in Figure 1,mt5180 GeV.

For the experimental valuesmW580 GeV andmt51.77 GeV, the allowed interval for the
Higgs mass collapses in Figure 1. Indeed, thisconceptualuncertainty, ‘‘fuzziness,’’ is

mHmax
5 298 GeV and mHmax

2mHmin
532 MeV.

The fuzziness is controlled by thet mass:

mHmax
2mHmin

mHmax
1mHmin

;
mt
22me

2

4mW
2 51024 at mW580 GeV

and disappears at the upper boundmW5104 GeV since

mHminS q3D5mHmaxS q3D5Ar 2

q
2
q

3 S 11g2
22S g1222

1

6
g3

22D 21D5288 GeV.

In any case, theexperimentaluncertainties on the masses, completely drown the fuzziness.

Note thatmHmin
(t)5mtA22g2

22(g1
222 1

6g3
22)21 5 2 GeV depends on thet mass but not

on the quarks, whilemHmax
(q/3)5mHmin

(q/3) depends on the quark masses and mixings but

FIG. 1. mHmax
~upper curve! andmHmin

~three lower curves! as function ofmW for mt51.77, 30 and 60 GeV.
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on the lepton masses. Moreover, the shape of the two curvesHmin~W! andHmax(W) strongly
depends on the electron and tau masses. Actually, by~12,13!, for i 5 min, max

Hi8~W!5ai
1

W2 2S 11
g2

22

g1
222 1

6g3
22D ,

amax5
~r 223qe!e

q23e
52• 1022 ~Gev!4,

amin5
~r 223qt!t

q23t
53• 105 ~Gev!4.

This explains why on Figure 1,Hmax8 (W),0 whileHmin8 (W)50 has a solution in ]t, q/3@ . Since,
today, the major experimental uncertainty is on the top mass,612 Gev, it is worth to represent th
fuzziness as function ofmt with mt as parameter.

Figures 2, 3, and 4 illustrate again the mentioned mass collapse. To incorporate ine
~11!, we include in these figures sin2uw andg3 . A second collapse in sin2uw is plotted in Figure 5.

Neglecting the fuzziness with respect to experimental accuracy, namely,

q'mt
2 ,r 2'3mt

4 ,e'm't'0,

the inequalities~9!–~11! reduce to

FIG. 2. Allowed parameter domain, unrealistic.

FIG. 3. Same unrealistic domain.
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me,mW &32 1/2 mt , ~21!

mH
2'3mt

22mW
2 S 11

g2
22

g1
222 1

6g3
22D , ~22!

sin2uw&
2

3 S 11SmW

mt
D 21S g2

3 g3
D 2D 21

. ~23!

Note thatmW.me does not use the hierarchy~6!. Inequality~21! is simply

139 GeV5A3 mW&mt5180 GeV.

Moreover, since the 3 is just the number N of generations,N&(mt /mW)
2'5 ~see the last refer-

ence of Ref. 2!. The central value of the Higgs mass~22! differs from its analog in the bimodule
version.6 The situation is now symmetric in the sense that the bounds on coupling con
depend on masses~as before! and the bounds on the Higgs mass depends on the coupling
stants.

The last inequality~23! has two physical consequences: if we know theW and fermion
masses, then, the weak angle is constrained by sin2uw,0.54 ~Figure 4!. Recall the experimenta
values, sin2uw50.23,g351.2. If we know theW and fermion masses and the electroweak c
plings, then, the strong coupling cannot be too weak:g3.0.17 at theZ mass~Figure 5!. At this

FIG. 4. The real collapse.

FIG. 5. An academic collapse.
J. Math. Phys., Vol. 38, No. 3, March 1997
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point, the following fact8 is intriguing: if we know the fermion representation under electrowe
interactions, then, the strong interactions must be vectorlike. If not, the noncommutative g
alization of Poincare´ duality breaks down.

IV. CONCLUSION

Noncommutative geometry gives fuzzy mass relations for the Higgs depending on the
cal parameters:W,g1 ,g2 ,g3. These relations for the Higgs raise the question of stability un
renormalization. We feel that this question can only be answered by taking seriously the r
tion that noncommutative geometry operates on spacetime. Spacetime becomes fuzzy,
phase space becomes fuzzy in quantum mechanics. Let us try to explain this feeling by an a
with electrodynamics. Unifying electricity and magnetism, Maxwell obtained an expressio
the speed of light in terms of the two static coupling constantse0 and m0. His relation was
confirmed by already existing data and no-one really dared to ask, what could be the mea
an equation between a quantity depending on the reference system and a constant. Later,
answered the question with the help of Minkowskian geometry. This geometry was alrea
herent in Maxwell’s equations, but not accepted by the community of physicists. Noncommu
geometry tells us that the Higgs field with its spontaneous symmetry breaking is only a ma
field and therefore the Higgs mass is fixed, fuzzily. This seems in contradiction with large r
malization flow.9 However the origin of this flow is a small distance divergence that ignores
new spacetime uncertainty. In this context, quantum field theory has to be redone.10

Meanwhile, we are looking forward to the LHC verdict concerning equation~22!,

mH5298621 GeV if mt5180612 GeV.

V. APPENDIX

The present experimental constraints11 on the 18 parameters of the standard model are lis
below. The gauge couplings are given at theZ mass and all masses are pole masses.

H g150.357560.0001,

g250.650760.0007,

g351.20760.026,

H me50.5109990660.00000015 MeV,

mm50.10565838960.000000034 GeV,

mt51.777160.0005 GeV,

H mu5563 MeV, md51065 MeV,

mc51.360.3 GeV, ms50.260.1 GeV,

mt5180612 GeV, mb54.360.2 GeV,

mW580.2260.26 GeV,

mH.58.4 GeV.

The Cabbibo–Kobayashi–Maskawa matrix is a unitary matrix

V:5S Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

D
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such that the absolute values of its matrix elements are:

S 0.975360.0006 0.22160.003 0.00460.002

0.22160.003 0.974560.0007 0.04060.008

0.01060.006 0.03960.009 0.999160.0004
D .

For physical purposes, the Cabbibo–Kobayashi–Maskawa matrix can be parameterized b
angles,u12, u23, u13 and oneCP-violating phased:

V5S c12c13 s12c13 s13e
2 id

2s12c232c12s23s13e
id c12c232s12s23s13e

id s23c13

s12s232c12c23s13e
id 2c12s232s12c23s13e

id c23c13
D ,

with ckl :5 cosukl , skl :5 sinukl .
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Non-Abelian Berry’s phase in a slowly rotating
electric field

Ho-Meoyng Choi and Chueng-Ryong Ji
Department of Physics, North Carolina State University,
Raleigh, North Carolina 27695-8202

Hyun Kyu Lee
Department of Physics, Hanyang University, Seoul 133-79, Korea

~Received 20 October 1996; accepted for publication 3 December 1996!

We observe that the non-Abelian Berry’s potential can appear in the atomic system
under the slowly rotating electric field~Stark effect!. We calculate Berry’s phase
using the perturbation theory in the weak external electric field. To elaborate the
nature of non-Abelian character, we demonstrate the change of states during the
adiabatic transportation for a particular set of paths. ©1997 American Institute of
Physics.@S0022-2488~97!01803-3#

I. INTRODUCTION

It has been pointed out that gauge fields can appear very naturally in the adiabatic desc
of a quantum system which responds to slowly varying external parameters. Berry1 showed in
detail that an Abelian gauge potential appears for a single nondegenerate level, which is
Berry’s phase or Berry’s potential. The notion of Berry’s phase was subsequently generali
the case of degenerate levels by Wilczek and Zee2 and it has led to the non-Abelian Berry’
potential. Experimentally, one can measure the Berry’s phase by using the interference
between two states, both of which were under the influence of the external field but only o
them was undergoing the variation of external field.1 Both Abelian and non-Abelian Berry’s
potentials yielded the important understanding of subtle effects not only in molecular physi
also in condensed matter and elementary particle physics.3

Berry’s potential is generally expected in a quantum mechanical system where the unde
dynamics can be described by two distinct sets of ‘‘slow’’ and ‘‘fast’’ variables. More import
it is not an external field but the gauge field that couples to the slow variables. Of cours
coupling occurs in a gauge covariant way. Hence we can have a unified description of co
systems in terms of Berry’s potential as far as the adiabaticity is a good approximation fo
system. Along this line of reasoning, there has been much progress in molecular physic4 and
recently in hadron physics.5 The universal feature of Berry’s potential for these systems is
Berry’s potential is proportional to the external field strength. A particularly interesting case
limit to the zero external field strength, where Berry’s potential vanishes. The implication is
the two coupled variables are completelydecoupledin that limit and the symmetry is restored fo
each variable separately. This phenomenon has been expected in the diatomic molecular6 as
the internuclear distanceR→` and has been verified recently in a theory of heavy solito
baryon.7

In this paper, we present a theoretical observation of a non-Abelian Berry’s potential ind
in excited hydrogenic atoms when they are placed in a uniform electric field whose direction
be adjusted adiabatically. In the weak field approximation, we use the perturbation expans
the orders of external field strength to calculate Berry’s potential. We also discuss the limiting
of zero external field strength.

II. GENERIC FORMS OF NON-ABELIAN BERRY’S POTENTIAL

Without the external electric field, the stationary state of an electron is an eigenstateun,l ,m&
of energyEn , orbital angular momentuml , and its third componentm. The electron spin is
0022-2488/97/38(3)/1281/8/$10.00
1281J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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irrelevant to our discussion. Under the presence of an external electric fieldEW , which is directed
along thez axis, the system is perturbed by the interaction HamiltonianHI given by

HI5eEz5eEr cosu, ~1!

which gives rise to the energy splittings among the degenerate states of energyEn . This is well
known as theStark effect. Equation~1! is invariant under rotation about thez axis. So long as the
energy splittings are not greater than the energy differencesEn2Em for nÞm, the principal
quantum numbern can be used to classify a group of states which would have been degen
without the external electric field. We will denote it asn0 rather thann, since the energy eigen
states are amixtureof differentn’s as explicitly shown below. An energy eigenstate in a group
n0 is now classified only by the projection of the angular momentum,m, on the direction of
electric field. Forn52, there are four states with twom50(l50,1),m51, andm521. To the
order ofEW 2 in perturbation, the energy eigenstates can be obtained as

uc1&5Z1F 1
&

~ u2,0,0&02u2,1,0&0)1
1

&

~au3,1,0&02bu3,0,0&02cu3,2,0&02du1,0,0&0)G ,
uc2&5Z2@ u2,1,1&01eu3,2,1&0]

~2!

uc3&5Z3@ u2,1,21&01 f u3,2,21&0]

uc4&5Z4F 1
&

~ u2,0,0&01u2,1,0&0)1
1

&

~a8u3,1,0&01b8u3,0,0&01c8u3,2,0&01d8u1,0,0&0)G ,
where the contributions from the statesn>4 have been assumed to be negligible in our weak fi
approximation. As pointed out by Gasiorowicz,8 if the field is weak, then the electrons may b
stable on a time scale of the age of the universe and therefore the observations agree perfec
what the first few terms of the perturbation series predict. This provides the justificatio
neglecting the statesn>4. The normalization constantsZi ~i51,2,3,4! in Eq. ~2! are given by

Z15
1

A11C1E
21C2E

31C3E
4
,

Z25Z35
1

A11C4E
2
, ~3!

Z45
1

A11C1E
22C2E

31C3E
4
,

where
J. Math. Phys., Vol. 38, No. 3, March 1997
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C15S 2133612

514
1
293611

514
1
2183611

516
1
220

312D a0
4

e2
,

C25S 2123615

515
2
2153616

518
2
214366

518
2
2103614

515
2
2113616

515

1
2193614

517
2
2133616

516
1
217362

57
2
224

312D a0
6

e3
, ~4!

C35S 273620

516
1
2153620

518
1
2133618

516
1
213

52
2
2133619

516
2
2123619

516
1
2153610

510
2
212369

59

1
293622

516
1
293617

516
1
2183617

518
1
618

514
1
226

312
2
220362

57 D a0
8

e4
,

C45
2163612

516
a0
4

e2
.

The coefficients in Eq.~2! are also given by

a5
^310uHI u200&

E2
02E3

0 2F ^310uHI u300&^300uHI u210&
~E2

02E3
0!2

1
^310uHI u320&^320uHI u210&

~E2
02E3

0!2

1
^310uHI u100&^100uHI u210&

~E2
02E3

0!~E2
02E1

0!
2

^310uHI u200&^200uHI u210&
~E2

02E3
0!2 G ,

b5
^300uHI u210&

E2
02E3

0 2F ^300uHI u310&^310uHI u200&
~E2

02E3
0!2

2
^200uHI u210&^300uHI u210&

~E2
02E3

0!2 G ,
~5!

c5
^320uHI u210&

E2
02E3

0 2F ^320uHI u310&^310uHI u200&
~E2

02E3
0!2

2
^200uHI u210&^320uHI u210&

~E2
02E3

0!2 G ,
d5

^100uHI u210&
E2
02E1

0 2F ^100uHI u310&^310uHI u200&
~E2

02E3
0!~E2

02E1
0!

2
^200uHI u210&^100uHI u210&

~E2
02E1

0!2 G ,
e5

^321uHI u211&
E2
02E3

0 , f5
^3221uHI u2121&

E2
02E3

0 ;

anda8, b8, c8, andd8 are given by the replacement of the sign from2 to 1 in front of the square
bracket ina, b, c, andd, respectively. The projectionm of angular momentum is zero foruc1& and
uc4&, 61 for uc2& anduc3&, respectively. The energy splittings due to the external field are give

DE153ea0E , DE25DE350, DE4523ea0E . ~6!

Even though we include the second-order effect, we find the structure of the energy levels
same because the symmetrically located sublevels show the same second-order displacem9 As
far as the electric field is sufficiently small such that the splittings in Eq.~6! are much smaller than
the energy differencesEm2E2 for mÞ2, these four states in Eq.~2! can be considered as ‘‘de
generate’’ states in which the non-Abelian Berry’s potentialA emerges as the electric fieldEW is
rotated slowly. The rotation of the electric field can be implemented in the change of the in
tion HamiltonianHI as
J. Math. Phys., Vol. 38, No. 3, March 1997
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H~E !5U~u~ t !,f~ t !!HIU
21~u~ t !,f~ t !!. ~7!

We choose

U5eiL3feiL1ue2 iL3f, ~8!

where theL1, L2, andL3 are the three components of orbital angular momentum. If we choos
direction of the electric field att50 as thez direction, the transformation byU corresponds to the
change of the electric field to~u,f! direction. Inferred from Eq.~2!, the instantaneous eigenstat
can be defined uniquely by

C i~u,f!5U~u,f!uc i&, ~9!

whereuci& ~i51,2,3,4! are simply~1,0,0,0!, etc., in the standard spinor notation and they can a
be taken to be the eigenstatesum& with L3um&5mum&. Then, we can evaluate the non-Abelia
Berry’s potentialA defined by

A i j5 i ^c i uU†¹Uuc j&. ~10!

The spherical components of Berry’s potential are given by

~Au! i j5^c i u@2cosfL11sin fL2#uc j&,
~11!

~Af! i j5^c i u@~12cosu!L31sin u sin fL11sin u cosfL2#uc j&.

We defineL0 as the 434 matrix representation of the angular momentumL,

L1
05

1

2 S 0 21 21 0

21 0 0 1

21 0 0 1

0 1 1 0

D , L2
05

1

2 S 0 2 i i 0

i 0 0 2 i

2 i 0 0 i

0 i 2 i 0

D , L3
05S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D .
~12!

These are reducible representations of orbital angular momentum in the space ofn052, where
uci&’s with HI50 are used as bases. Now, the non-Abelian Berry’s potentials can be written
generic forms,

Au5k~2cosfL1
01sin fL2

0!,
~13!

Af5~12cosu!L3
01k~sin u sin fL1

01sin u cosfL2
0!,

and the corresponding field strength tensor is evaluated,

Fuf5]uAf2]fAu2 i @Au ,Af#5~12k2!sin uL3
0, ~14!

wherek is defined as

k522^c1uL1uc2&. ~15!

We can see that Berry’s potential is truly non-Abelian as far askÞ1.
For a sufficiently weak electric field, one can evaluatek as

k512aE22bE32dE41•••, ~16!
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



g
’s
th the
merge

which

d

, we

the

h and

1285Choi, Ji, and Lee: Non-Abelian Berry’s phase

¬¬¬¬¬¬¬¬¬¬
where

a5 1
2~C123C4!,

b5
1

2
C22S 2173612

517
2
2133617

516 D a0
6

e3
,

d5 1
2~2C4

213C1C41C3!. ~17!

Since the coefficients,a, b, andd are all positive, the value ofk is between 0 and 1~0<k<1!,
in agreement with the perturbation expansion ofE . We can see that the limit for the vanishin
Berry’s potential is possible asEW→0, sincek→1 in Eq.~14!. The reason for the vanishing Berry
potential is that in this limit the rotation group can be given by a reducible representation wi
basis ofuci&. Physically it can be easily understood because the Berry’s potential does not e
without the external electric field which forces the system change.

III. PHASE FACTOR FOR ‘‘SPHERICAL TRIANGLE’’ PATH

Given the Berry’s potential, we can determine the adiabatic transportation of a state
corresponds to the rotating electric field. By changing the direction of electric field from~u0,f0! to
~u,f! for the i th state,Fi , the adiabatic transportation can be written as

uF i&5P expS i E A D uC i~u0 ,f0!&, ~18!

whereCi refers to the instantaneous eigenstate defined in Eq.~9! andP means the path-ordere
integration.

Although the path ordered integral for the non-Abelian gauge field is quite complicated
can evaluate it for a particular path.10 To demonstrate the change of state fromuc1& to uc4& along
the adiabatic path, we will concentrate on the ‘‘spherical triangle’’ path in which we start from
north pole and go south at a fixedf1 to latitudeu, go at fixedu to longitudef2, and then return
to the north pole along longitudef2. We will denote this particular spherical triangle path asn.
Before we calculate the path-ordered integral, we can choose a new gauge so thatA does not
depend onf along a fixedu path;

Ã5ŨAŨ†1 iŨ“Ũ† ~19!

with

Ũ5e2 iL3
0f, ~20!

then we find the new gauge field as follows:

Ã5~2cosuL3
01k sinuL2

0!df2kL1
0du, ~21!

which is defined only on the coordinate patch including the equator but excluding the nort
south poles.Ã gives the same field strength tensorFuf as that ofA. Since the trace for this
particular path can only depend on the specific values ofDf5f22f1, we takef150 andf25f.
Then, from Eq.~13!, we have for the south-bound legW and for the north-bound leg (W̄)21 along
the fixedf1 andf2, respectively.W andW̄21 are given by

W5exp2 ikL1
0u, ~W̄!215exp iku~L1

0 cosf2L2
0 sin f!. ~22!
J. Math. Phys., Vol. 38, No. 3, March 1997
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For the east-bound leg along fixedu, instead of usingA which depends onf, we can use the new
gauge fieldÃ to obtain

V5exp i E
1

2

A5Ũ2
† expS i E

1

2

ÃD Ũ15exp~ iL 3
0f!exp@2 if~cosuL3

02k sin uL2
0!#. ~23!

Hence, for this particular spherical triangle path,n, the path ordered integral in Eq.~18! can be
written as

UD5P expS i E A D5~W̄!21VW. ~24!

It leads us to evaluate the nontrivial phase cosgD51
4TrU

D. After a tedious but straightforward
calculation, we obtain

cosgD5
1

2 F12sin2
h

2
sin2~x2ku!1cosDfS cos2 h

2
2sin2

h

2
cos2~x2ku! D

1sin h cos~x2ku!sin Df G , ~25!

where

h5Df~cos2 u1k2 sin2 u!1/2,
~26!

cosx5
cosu

~cos2 u1k2 sin2 u!1/2
, sin x5

k sin u

~cos2 u1k2 sin2 u!1/2
.

The adiabatically transported states along this particular path can be calculated using Eqs.~18! and
~24! as

uF i
D&5UDuC i~u0 ,f0!&, ~27!

where

F1
D5S 12sin2

h

2
sin2~x2ku!

2r sin~x2ku!eif

r* sin~x2ku!e2 if

sin2
h

2
sin2~x2ku!

D , F2
D5S r sin~x2ku!

seif

sin2
h

2
sin2~x2ku!e2 if

2r sin~x2ku!

D ,
F3

D5S 2r* sin~x2ku!

sin2
h

2
sin2~x2ku!eif

s* e2 if

r* sin~x2ku!

D , F4
D5S sin2

h

2
sin2~x2ku!

r sin~x2ku!eif

2r* sin~x2ku!e2 if

12sin2
h

2
sin2~x2ku!

D .

Here, r521
2 sinh1i sin2~h/2!cos~x2ku! and s512sin2~h/2!@11cos2~x2ku!#2i sinh cos~x

2ku!. Incidentally, we can now read off the rotation of states.
J. Math. Phys., Vol. 38, No. 3, March 1997
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As the electric field moves along a fixed-u path fromf150 to f25f, the appropriate phas
factor is given byV in Eq. ~23!. For u5p/2, the east-bound legV reduces to

V~f!5exp iL 3
0f exp ikL2

0f5F122 sin2
f

2
~L3

0!21 i sin fL3
0G

3F122 sin2
kf

2
~L2

0!21 i sin kfL2
0G . ~28!

Now we can find the condition for transition fromuc2&5~0,1,0,0! to uc3&5~0,0,1,0! and also from
uc1&5~1,0,0,0! to uc4&5~0,0,0,1! by a unit probability askDf5p. The result fork51 predicts just
the usual change of states~specifically, a reversal of sign of angular momentum component
degenerate statesuc2& and uc3& along the field! betweenuc1&~uc2&! and uc4&~uc3&! under the parity
operation. The results for otherk, however, are nontrivial and reflect the presence of the n
Abelian gauge field. For arbitraryu, starting with the initial stateuc2&, we find that the amplitude
of being in the stateuc3& is sin

2~h/2!sin2 xe2 if. We note that the amplitude vanishes only for so
certain values ofDf~5f22f1!, namely, for

Df52kp/~cos2 u1k2 sin2 u!1/2 ~k5 integer!. ~29!

To observe how the non-Abelian structure comes into play in the actual experiment,
consider the sector ofm50,1 ~i.e., uc1& and uc2&! with the fixed-u path in whichf varies
cyclically.11 In this case,Au does not play any role but we can see the effect of parameterk on the
energy splitting between two levels,uc1& and uc2&. Ã in Eq. ~21! is equal to the fixed 232 matrix
@2cosu~12322s3!1k sinus2]/2 with eigenvalues @2cosu6Acos2 u 1k 2 sin2 u#/2 ~1232
5identity matrix!. Thus, after each rotation off through 2p, we obtain the phase shiftsg1,2

5 p@ 2 cosu 6 Acos2 u 1k 2 sin2 u# for the two eigenstates. As the electric field rotates, the
statesuc1& and uc2& mix each other and the two eigenstates are the linear combinations ofuc1& and
uc2&. The energy levels are split byDE 5 2pAcos2 u 1k 2 sin2 u /T, whereT is the time period over
which the rotation goes through one cycle. Since a continuously increasing phase shift is e
lent to a frequency shift, Berry’s phase can be observable as a frequency shift of~g12g2!/2pT. It
naively appears that the energy levels are split byDE52p/T even though there is no Berry’
phase ork51. This confusion has been resolved by Zee.10 By looking at Berry’s phase, it should
be noted that the energy splitting is determined as only modulo 2p/T.

IV. DISCUSSION AND CONCLUSION

The measurability of this effect can be questioned because of the broadening of the
n52 states induced by the rapid decay due tos,p mixing. However, as shown in Eq.~16!, our
result of Berry’s phase effect comes from the quadratic effect not from the linear effect. Ther
our method is not limited to the linear Stark effect but can be applied to the quadratic Stark
which has been studied in detail for various atoms.12 The quadratic Stark effect in alkali atom
does not suffer from the measurability question due to the mixing effect.

It has also an interesting implication as in diatomic molecule, where Berry’s potential
ishes as internuclear distanceR→`. To simplify the discussion, we assume that the effects du
the presence of the other atom may correspond to an external field. Then it is naturally ex
thatE;~1/R!2 asR→`, which leads to vanishing Berry’s potential in the asymptotic state of
free atoms. In this way we can understand at least qualitatively the limiting behavior ofk in Ref.
6 wherek→~1/R!4 asR→`.
J. Math. Phys., Vol. 38, No. 3, March 1997
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In this paper, we have presented an example of an atomic system under slowly ro
external electric field, in which non-Abelian Berry’s potential emerges. We have also de
strated that Berry’s potential appears in fact as a generic form by calculating the adiaba
transported states explicitly for the ‘‘spherical triangle.’’
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Dia- and paramagnetism for nonhomogeneous
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Diamagnetism of the magnetic Schro¨dinger operator and paramagnetism of the
Pauli operator are rigorously proven for nonhomogeneous magnetic fields in the
large field, in the large temperature and in the semiclassical asymptotic regimes.
New counterexamples are presented which show that neither dia- nor paramagnet-
ism is true in a robust sense~without asymptotics!. In particular, we demonstrate
that the recent diamagnetic comparison result by Loss and Thaller@M. Loss and B.
Thaller, Commun. Math. Phys.~submitted!# is essentially the best one can hope for.
© 1997 American Institute of Physics.@S0022-2488~97!03503-2#

I. INTRODUCTION

We consider a single electron subject to a nonhomogeneous magnetic fieldB(x) and an
external potentialV(x), x P Rd. The magnetic field is generated by a vector potentialA, which is
a 1-form~canonically identified with a vector field!, and the magnetic fieldB:5dA is a 2-form. Its
pointwise strengthis defined asiB(x)i :5TruB(x)u5( j51

@d/2#uBj (x)u, whereB(x) is the skew-
symmetric matrix with entries (12B(x)(ea ,eb))a,b51

d ~for any orthonormal basis$ea%a51
d ) with

eigenvalues6 1
2iB j (x) ~in odd dimensions there is an extra zero eigenvalue!. Here@ # denotes the

integer part. We will also need thelocal energy normof the magnetic field, defined a
iB(x)i25(TruB(x)u2)1/25(( j uBj (x)u2)1/2.

The Hamiltonian of this system is either the Pauli operator

HPauli~B,V!:5@s•~2 i“2A!#21V ~I.1!

or the Schro¨dinger operator

HSch~B,V!:5~2 i“2A!21V,

depending on whether the electron is considered with or without spin. In the first case the
lying Hilbert space is the space of spinorsL2(Rd,C2)5L2(Rd) % L2(Rd), while in the second case
it is the usualL2(Rd). We fix the representation of Pauli matrices, i.e.

s5~s1 ,s2 ,s3!5S S 0 1

1 0D ,S 0 2 i

i 0 D ,S 1 0

0 21D D .
We shall consider the Pauli operator only ind52,3, while the Schro¨dinger operator shall be

treated in any dimensiond>2 for most of our results.
In d52 the Pauli operator uses only the first two Pauli matrices and it decouples in the

space as follows

HPauli~B,V!5~HSch~B,V!2B! % ~HSch~B,V!1B!)5~HSch~B,V2B!! % ~HSch~B,V1B!!.
~I.2!

a!Electronic mail: erdos@cims.nyu.edu
0022-2488/97/38(3)/1289/29/$10.00
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In d53 the magnetic fieldB5dA can be identified with a vector fieldB and

HPauli~B,V!5~2 i“2A!22s•B1V. ~I.3!

Note that we slightly abused the notation, as these operators depend on the vector potential
just on the magnetic field, but all our statements will be gauge invariant, therefore they d
only on the field.

The goal of our work is to investigate the monotonicity of these operators in terms o
physical data; the magnetic field and the external potential. The potential is just a functi
Rd, so we can easily introduce a~partial! ordering; we say thatV1 is smaller thanV2 if
V1(x)<V2(x) for all x P Rd.

Magnetic fields can be ordered in three ways.B1 is smaller thanB2 in the sense of pointwise
strength or local energy norm ifiB1(x)i<iB2(x)i or iB1(x)i2<iB2(x)i2 ~for all x P Rd), re-
spectively. Finally we say thatB1 is smaller thanB2 as a 2-form ifuB1(x)u<uB2(x)u as nonne-
gative matrices for allx. Note that all these comparisons coincide ind52 and ind53 if the
magnetic fields have the same constant direction. The first two notions coincide ind53 for any
field.

Now we define various~partial! orderings of self-adjoint operators. Here are some possibil
to say that an operatorH2 majorizesH1 ~assuming that both are semibounded, defined
L2(Rd) and the kernels below exist!

~I! ~Operator sense!: H1<H2 ;
~II ! ~Heat kernel pointwise!: uexp(2tH2)(x,y)u<uexp(2tH1)(x,y)u for all x,y P Rd, t.0;
~III ! ~Heat kernel diagonal pointwise!: exp(2tH2)(x,x)< exp(2tH1)(x,x) for all x P Rd, t.0;
~IV ! ~Trace of the heat kernel!: Tr exp(2tH2)<Tr exp(2tH1) for all t.0;
~V! ~Infimum of the spectrum!: inf SpecH1< inf SpecH2 ;
~VI ! ~Heat kernelLp→Lq-norm!: iexp(2tH2)ip,q<iexp(2tH1)ip,q (1<p<q<`).

In the case of the Pauli operator we shall always consider the partial trace, TrC2, with respect
to the spin variables to reduce it to an operator onL2(Rd).

Obviously these definitions are related; some of them imply some others@for example,
~II !⇒~III !⇒~IV !⇒~V!#. From a physical point of view~I!, ~IV !, and ~V! are the most importan
ones, while Ref. 1, which was our main motivation, discusses~VI !.

If the magnetic field is zero, then the following statement is well known:
Proposition I.1: Assume that V1<V2 pointwise. Then H252D1V2 majorizes

H152D1V1 in any of the senses above in any dimension.
Perhaps the easiest proof uses the Feynman–Kac formula forH52D1V:

exp~2tH !~x,y!5pd~ t,x,y!E0,x
2t,y expF2

1

2 E
0

2t

V~Ws!dsG ,
wherepd(t,x,y)5(4pt)2d/2 exp(2(x2y)2/4t) is the heat kernel of thed-dimensional Laplacian
and E0,x

2t,y denotes the expectation with respect to the measure of the Brownian b
$W0<s<2t :W(0)5x,W(2t)5y%. To show~VI.!, one also uses the positivity preserving prope
of the heat kernel. h

A naive way to summarize this proposition is to say that the energy increases as the e
potential increases.

Our goal is to find analogous statements if the magnetic field increases. Due to the co
between the spin and the magnetic field, the Schro¨dinger and Pauli operators can and will beha
differently. Though the Feynman–Kac formula~under various conditions2,3! is still available,

exp@2tHSch~B,V!#~x,y!5pd~ t,x,y!E0,x
2t,y expF2 i E

0

2t

A~Ws!sdWs2
1

2E0
2t

V~Ws!dsG ~I.4!
J. Math. Phys., Vol. 38, No. 3, March 1997
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1291László Erdős: Dia- and paramagnetism

¬¬¬¬¬¬¬¬¬¬
~and similarly forHPauli
4–6!; the heat kernel is neither positive nor positivity preserving any m

which makes pathwise estimates impossible (s denotes the Stratanovich stochastic integral!.
Nevertheless, one can formulate naive conjectures:
Diamagnetic conjecture:The Schro¨dinger operator ‘‘increases’’ as the magnetic field i

creases pointwise.
Paramagnetic conjecture:The Pauli operator ‘‘decreases’’ as the magnetic field increa

pointwise.
Several arguments support these conjectures. The simplest one is based upon explicit fo

for the diagonal element of the corresponding heat kernel for constant magnetic field an
potential. This quantity is of physical interest as it expresses the local energy density at p
temperature. We have, ind52,

e2tHSch~B5const,V50!~x,x!5
B

4p sinhBt
~I.5!

and

TrC2e
2tHPauli~B5const,V50!~x,x!5

B coshBt

2p sinhBt
, ~I.6!

which are easily seen to be decreasing and increasing functions ofuBu, respectively.
There also have been various asymptotic calculations, in particular both conjectures hav

checked in the semiclassical and in the weak field limits~perhaps the best modern reference is R
7; for classical references, see Ref. 8!.

It turns out that the picture is much more complicated and none of these conjecture
correct in such a robust way as in the nonmagnetic case. In this paper we prove some
results, we present new counterexamples which show that certain natural conjectures are fa
we formulate open questions. The highlights of the paper are the following.

We prove both conjectures in the short time~large temperature! limit ~which will include the
semiclassical asymptotics as well! and we show that the local energy norm,iB(x)i2 determines
the ordering~Sections II C., III A.!.

We also verify these conjectures in the large field limit, but the paramagnetic conject
proven only in a weaker sense~ground state result!. In contrast to the short time, in the case of t
large field limit the field strengthiB(x)i determines the ordering~Sections II D., III B.!.

Finally we investigate whether these conjectures hold in a robust sense, i.e., withou
limiting procedure. The answer is essentially no, and we demonstrate it via various coun
amples. In particular, we show that the recent result by Loss and Thaller1 ~which is the only
nontrivial robust comparison result for nonhomogeneous fields! is essentially the best one cou
hope for; its several possible extensions are incorrect~Sections II E., II F., III C.!.

Physically, our results concern either a single charged particle or a noninteracting syste
Bose statistics~recall that the trace of the heat kernel is the positive temperature partition
tion!. As to noninteracting fermions, we remark that monotonicity~even for a constant field! is not
expected by the well-known de Haas–van Alphen effect. More interestingly, the flux phase
nomenon shows that, at a high density of fermions, the Schro¨dinger operator can be paramagnet
This has been proven rigorously on a finite lattice~in the Hubbard model! by Lieb9 ~see also the
earlier paper by Lieb and Loss10 for some special planar graphs!.

II. DIAMAGNETISM FOR THE SCHRÖDINGER OPERATOR

The standard diamagnetic inequality2,11,12 comparesHSch(B,V) with HSch(B50,V) in sense
~II ! i.e., one obtains, in any dimension, that
J. Math. Phys., Vol. 38, No. 3, March 1997
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1292 László Erdős: Dia- and paramagnetism

¬¬¬¬¬¬¬¬¬¬
ue2tHSch~B,V!~x,y!u<ue2tHSch~B50,V!~x,y!u. ~II.1!

The proof is obvious from the Feynman–Kac formula. From this, the corresponding relations~III !,
~IV !, ~V! immediately follow, and noting again that the heat kernel ofHSch(B50,V) is positive
and positivity preserving, we obtain~VI ! as well.

A natural generalization would be to consider two magnetic fields,B1 ,B2 , the corresponding
operatorsHi5HSch(Bi ,V), and ask whetherH2 majorizesH1 in some sense ifB2 majorizesB1 in
some sense.

A. Constant field

If both B1 andB2 areconstantandV50, then the heat kernels can be compared explicitly
they are given by the Mehler kernel~in d52 see Ref. 2, in higher dimensions the generalizat
is straightforward!. Any constant 2-formB can be written as

B5 (
j51

[d/2]

Bjdx2 j21`dx2 j ~II.2!

with some constantsBj5B2 j21,2j>0 in an appropriate coordinate system$x1 ,x2 , . . . ,xd%, with
orthonormal basis vectors$e1 ,e2 , . . . ,ed%, whereBa,b5B(ea ,eb). Note that in this basis
Ba,b50 unless$a,b%5$2 j21,2j % for some 1< j<@d/2# and B2 j21,2j52B2 j ,2j21 . Then the
Mehler kernel is

e2tHSch~B5const,V50!~x,y!5p1~ t,x2[d/2]11 ,y2[d/2]11! )
j51

[d/2]
Bj

4p sinhBjt

3expS 2
Bj@~x2 j212y2 j21!

21~x2 j2y2 j !
2#

4
coth~Bjt !

1 i
Bj

2
~x2 j y2 j212x2 j21y2 j ! D ~II.3!

in the standard gauge

A~x!5 (
j51

[d/2]
Bj

2
~x2 j21dx2 j2x2 jdx2 j21!. ~II.4!

The first factor~one-dimensional free heat kernel! is present only in odd dimension. Since th
functionsx→x/sinhx andx→2x cothx both are monotonically decreasing, so the compari
~II ! ~therefore~III !, ~IV ! and~V! as well! follows if the magnetic fields are ordered in the sense
2-forms.

Because of the lack of positivity, the comparison~VI ! is not trivial any more. In two dimen-
sions, due to a theorem of E. Lieb13 about Gaussian kernels, when computing the no
ie2tHSch(B,V50)ip,q , it is enough to maximize supuie2tHSch(B,V50)uip /iuiq over Gaussian func-
tionsu ~here we assume that 1,p<q,`). This idea enabled Loss and Thaller~Theorem 1.1 in
Ref. 1! to compute all these heat kernel norms explicitly. Moreover, they proved a more ge
statement~Theorem 1.2! from which comparison~VI ! follows under certain conditions on
p,q,B1 ~if p,q,2 or 2,p,q then B1t should be small enough, forp<2<q there is no
restriction onB1t). For the constant field case, one could try to verify~VI ! directly just by
showing that (]/]B1) ie2tH(B1)ip,q<0 whereie2tH(B1)ip,q is given in Theorem 1.1 of Ref. 1
This is a horrendous, though elementary computation, which we could carry out only for the
J. Math. Phys., Vol. 38, No. 3, March 1997
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p5q. The general case is still open, though various special cases and numerical example
no doubt on its validity. We remark that the theorem by Loss and Thaller settles this quest
the cases when it applies.

B. Nonhomogeneous field

Now we turn to the case of nonhomogeneous fieldsB1 andB2 , such thatB1 is ‘‘smaller’’
thanB2 in some of the senses discussed above. The main reason, apart from Eq.~I.5! mentioned
above, why one expects thatH15HSch(B1 ,V) is majorized byH25HSch(B2 ,V) in senses~II.!–
~VI ! is the stochatic phase factor*0

2tA(Ws)sdWs in the Feynman–Kac formula~I.4!. By Stokes
theorem~recall that the Stratanovich integral allows one to use standard calculus!, intuitively this
integral is equal to a constant~depending on the gauge! plus the random magnetic flux~area
integral of the magnetic field, counted with sign and multiplicity! within the stochastic domain
bounded by the straight segment joiningx,y and by the Brownian bridgeWs ~strictly speaking this
area integral is not defined directly, but rather by the line integral above!. This suggests that if the
magnetic field increases pointwise, then the oscillatory effect due to this phase factor s
increase, which in turn should decrease the value of the expectation.

A natural simplification is to introduce large or small scaling parameters in the magnetic
and/or in the time. The semiclassical and the weak field limits were studied in Ref. 7. One ca
study the strong field limit for the operator exp(2tHSch(LB,V50))5exp(2t(2i¹2LA)2), where
B is a fixed magnetic field andL is a large parameter~note that largeL along withsmall time of
orderL22 is equivalent to the semiclassical limit!.

First we investigate the short time case, whereiB(x)i2 determines the ordering. In particula
this includes the semiclassical limit with the result obtained earlier7 but our approach is more
general and mathematically rigorous~a rigorous proof of the main term in the semiclassical lim
is found in Ref. 14, but this is not enough to deduce comparison!. Then we study the strong field
limit. In Sec. II E. we present a counterexample showing that the naturally expected genera
of the diamagnetic conjecture is wrong. Finally we show that the expected robust off-dia
bound~see the remark after Theorem 1.3 in Ref. 1! is wrong as well.

C. Short time and semiclassics

We shall consider short time and~possibly! strong field simultaneously under the constra
that tL→0 (L>1 is the scaling parameter of the field!. In particular, this includes the semicla
sical limit with t5:bh2, L:5h21 whereb is the inverse temperature andh is the semiclassica
parameter~Planck constant!. Therefore all our results include the corresponding semiclass
statements by a simple change of parameters, (t,L)↔(b,h), but we keep usingt andL and we do
not formulate each statement twice.

In the case of the short time asymptotics (t→0), the oscillatory effect goes to zero as t
Brownian loop converges to a point. This is even valid if onlyLt→0 is assumed. Spectrally thi
corresponds to a Weyl type large energy asymptotics, which is proven even with including
zero external potential. The earliest theorem, which includes the effect of the magnetic fiel
nontrivial way, is perhaps due to Colin de Verdie`re15 ~see also Ref. 16!, and later Matsumoto go
more precise results.17–20 For example, Proposition 2.1 in Ref. 19 states, under some ge
conditions, that

Tr e2tHSch~B,V!5~4pt !2d/2~11o~1!!E e2tV~x! )
j51

[d/2]
tBj~x!

sinh tBj~x!
dx

as t→0, where, as before,6 1
2iB j (x) are the eigenvalues of the skew-symmetric matrixB(x)
J. Math. Phys., Vol. 38, No. 3, March 1997
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5 1
2B(x)(ea ,eb) ~and there is an extra zero eigenvalue in odd dimensions!. This statement does

not yet imply majorization in sense~III ! or ~IV ! for short times, unless the error term can
effectively controlled.

Since the work of Matsumoto aimed at eigenvalue asymptotics, neither pointwise heat
results nor precise control of the error terms were emphasized. Nevertheless, the proof
following statement is close to the spirit of Ref. 17, though it requires slightly finer estimate
keep the proof short, we are not looking for the most general conditions~especially we do not
investigate increasing magnetic fields which were Matsumoto’s main concern!, but due to the
localization given by the short time, the extensions are obvious.

Proposition II.1: Let V be semibounded, continuously differentiable, letiBi`1i¹Bi`,`,
and let L>1 be a scaling parameter, then for any xP Rd

e2tHSch~LB,V!~x,x!5~4pt !2d/2~11O~ t5/2L21t4L4!!e2tV~x! )
j51

[d/2]
tLBj~x!

sinh tLBj~x!

1~e2tHSch~B50,V!~x,x!2e2tV~x!e2tHSch~B50,V50!~x,x!! ~II.5!

as t→0 and tL→0. The error depends on the C1-norm of B, on V0 :5minyPRdV(y) and on
maxy:uy2xu<1u¹V(y)u.

Remark:If V P C2, then for the last term we have

~e2tHSch~B50,V!~x,x!2e2tV~x!e2tHSch~B50,V50!~x,x!!5~4pt !2d/2O~ t2! ~II.6!

with an error depending onV0 and maxy:uy2xu<1u¹2V(y)u. Therefore

e2tHSch~B,V!~x,x!5~4pt !2d/2~11O~ t21t5/2L21t4L4!!e2tV~x! )
j51

[d/2]
tLBj~x!

sinh tLBj~x!
,

but this result is not precise enough for the corollary below.
We have the following comparison in sense~III ! and ~IV !:
Corollary II.2: If the magnetic fields B1 and B2 with finite C1-norm satisfy

iB1(x)i2,iB2(x)i2 and V is semibounded, continuously differentiable, then for any x

e2tHSch~LB1 ,V!~x,x!2e2tHSch~LB2 ,V!~x,x!>C* ~4pt !2d/2e2tV~x!t2L2~ iB2~x!i2
22iB1~x!i2

2!.0,
~II.7!

for some constant C* and for small enough tL<«0 , t<«0 , where «0 ,C* depend on the
C1-norm of B1 ,B2 , on V05minyPRdV(y) and on maxy:uy2xu<1u¹V(y)u. If, in addition,
* exp(2tV(x))dx is finite for all t.0 and the C1-normof V is finite, then comparison in sense (IV
is valid as well for small enough t.

The proof of Eq.~II.7! is obvious fromX/sinhX512X2/61O(X4). In particular,C*→1/6 as
tL→0 and t→0. The trace inequality follows from the fact that, under the stronger cond
iVi`1i¹Vi`,`, «0 can be chosen uniformly for allx.

Remark:From Propositions I.1 and II.1 it is obvious that the diamagnetic comparison in s
~III. ! and ~IV.! is true more generally if we allow different potentialsV1<V2 in the operators
HSch(LBi ,Vi) to be compared (i51,2).

Proof of Proposition II.1:SinceB andV are continuously differentiable, the existence of t
diagonal element of the heat kernel follows from general continuity results for the heat kerne~for
the best available result see Ref. 21, but the present case is essentially covered in Ref.!. For
notational symplicity we can assume thatx50, and by adding a constant it is enough to consi
V(x)5V(0)50. We choose a coordinate system in which the constant magnetic fieldB(0) has
the form given in Eq.~II.2!. Let A0 be the standard gauge generatingB(0) @see Eq.~II.4!#, i.e.,
J. Math. Phys., Vol. 38, No. 3, March 1997
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A0~x!:5 (
j51

[d/2]
B2 j21,2j~0!

2
@x2 j21dx2 j2x2 jdx2 j21#. ~II.8!

Obviously

uA0~x!u<C0uxu ~II.9!

with someC0 depending on theC0-norm of B. By the well known Poincare´ formula we can
choose a gaugeA for the original magnetic fieldB as follows22

A~x!:5A0~x!1 (
1<a,b<d

S E
0

1

t~Bab~tx!2Bab~0!!dt D ~xadxb2xbdxa!. ~II.10!

This gauge satisfies

uA~x!2A0~x!u<C1uxu2, uA~x!u<C1uxu, u divA~x!u<C1uxu, ~II.11!

whereC1 is a constant depending on theC1-norm ofB. From now on we work in this gauge.
The proof of Eq.~II.5! immediately follows from these two lemmas below:
Lemma II.3: With the notations above

ue2tHSch~LB,V!~0,0!2e2tHSch~LB~0!,V!~0,0!u<C2~4pt !2d/2~ t5/2L21t4L4! ~II.12!

for t,1 with some C2 depending on V0 and on the C1-norm of B.
Lemma II.4: With the notations above

ue2tHSch~LB~0!,V!~0,0!2e2tHSch~LB~0!,V50!~0,0!2~e2tHSch~B50,V!~0,0!2e2tHSch~B50,V50!~0,0!!u

<C3~4pt !2d/2t3L2 ~II.13!

for t,1 and with some C3 depending on B, V05minV andmaxuxu<1u¹V(x)u.
We need the following simple technical lemma:
Lemma II.5: For any vector fieldF, satisfying uF(x)u<Cuxuk (with k51,2) and

udivF(x)u<Cuxu we have for n>1

E0,0
2t,0u E

0

2t

F~Ws!sdWsun<C8~ tn~k11!/21t3n/2! ~II.14!

with some C8 depending on C and n.
Proof of Lemma II.5:By Lemma 4.3 from Ref. 22,

E0,0
2t,0U E

0

2t

F~Ws!sdWsUn

<2n21FE0,0
2t,0S E

0

2t

F~Ws!dWsD 2nG1/212n21FE0,0
2t,0S 12E02t div F~Ws!dsD 2nG1/2

<cnt
n/2FE0,0

2t,0 1

2tE0
2t

uF~Ws!u8ndsG1/812n21FE0,0
2t,0S 12E02t div F~Ws!dsD 2nG1/2

with somen-dependent constantcn . Using the estimates forF and divF and the scaling of the
Brownian loop, i.e.,E0,0

2t,0*0
2tuWsunds;t11n/2, we easily get Eq.~II.14!. h
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof of Lemma II.3:By the Feynman–Kac formula, the fact that the diagonal element of
heat kernel is real and that ReeiX5cosX512X2/21O(X4) for any realX, we obtain

uexp@2tHSch~LB,V!#~0,0!2exp@2tHSch~LB~0!,V!#~0,0!u

5~4pt !2d/2UE0,0
2t,0 expF2

1

2 E
0

2t

V~Ws!dsGReS expF2 iL E
0

2t

A~Ws!sdWsG
2expF2 iL E

0

2t

A0~Ws!sdWsG D U
5
1

2
~4pt !2d/2UE0,0

2t,0 expF2
1

2 E
0

2t

V~Ws!dsG H FLE
0

2t

A0~Ws!sdWsG2
2FLE

0

2t

A~Ws!sdWsG21OS FLE
0

2t

A0~Ws!sdWsG41FLE
0

2t

A~Ws!sdWsG4D J U.
~II.15!

Now we can use Lemma II.5 to estimate various terms on the right-hand side of Eq.~2.15!. The
potential term is estimated by a universal constante2V0, sinceV is bounded from below by
V0 , andt,1 can be assumed. Then, by Lemma II.5,

E0,0
2t,0US FLE

0

2t

A0~Ws!sdWsG22FLE
0

2t

A~Ws!sdWsG2D U
<L2SE0,0

2t,0U E
0

2t

~A2A0!~Ws!sdWsU2•E0,0
2t,0U E

0

2t

~A1A0!~Ws!sdWsU2D 1/2<C4t
5/2L2

using Eqs.~II.9! and ~II.11!, and, furthermore,

E0,0
2t,0FLE

0

2t

A~Ws!sdWsG4<C5t
4L4 ~II.16!

with someC4 ,C5 depending on theC
1 norm ofB; and the same estimate is valid for the quar

term containingA0 . Therefore Eq.~II.15! yields Eq.~II.12! and Lemma II.3 is proven.h
Proof of Lemma II.4:

ue2tHSch~LB~0!,V!~0,0!2e2tHSch~LB~0!,V50!~0,0!2~e2tHSch~B50,V!~0,0!2e2tHSch~B50,V50!~0,0!!u

5~4pt !2d/2UReE0,0
2t,0S expF2 iL E

0

2t

A0~Ws!sdWsG21D S expF2
1

2 E0
2t

V~Ws!dsG21DU
5~4pt !2d/2UE0,0

2t,0S 12cosFLE A0G D S expS 2E VD 21D U, ~II.17!

where, for brevity, we used*A0 :5*0
2tA0(Ws)sdWs and*V:5 1

2*0
2tV(Ws)ds.

On the complement of the setE :5$sup0<s<2tuWsu<1% each term can be estimated trivial
and we obtain fort<1

UE0,0
2t,0x~Ec!~e2*V21!S 12cosFLE A0G D U<4e2V0E0,0

2t,0x~Ec!<ce2V0e2c/t<ce2V0t3

~II.18!
J. Math. Phys., Vol. 38, No. 3, March 1997
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for some universal constantc ~using *V>V0 and a standard large deviation estimate for
Brownian loop!.

On the setE we have

UE0,0
2t,0x~E !~e2*V21!S 12cosFLE A0G D U<L2E0,0

2t,0Fx~E !U E VUe2V0S E A0D 2G
<L2e2V0FE0,0

2t,0x~E !S E VD 2•E0,0
2t,0S E A0D 4G1/2

~II.19!

using thatV0<0 and thatu12cosXu<1
2X

2 and ue2X21u<2uXuexp(2min$X,0%) for any realX.
For the second factor we use Eq.~II.14! to getO(t4) @see Eq.~II.16!#. In the first factor we
estimateuV(Ws)u<uWsusupuxu<1u¹V(x)u on the setE ~recall thatV(0)50). The result is

UE0,0
2t,0x~E !~e2*V21!S 12cosFLE A0G D U<C6t

7/2L2,

whereC6 depends onV0 and on theC1-norm ofB and on supuxu<1u¹V(x)u, and Lemma II.4 is
proven, which also completes the proof of Proposition II.1. h

Proof of Eq. (II.6): ~See the remark after Proposition II.1! Here one has to estimat
E(exp(2*V)21). On the setEc the most trivial estimate~II.18! works. Then one can easily verif
that on the setE ,

Uexp~2*V!211E VU<C7S E VD 2<C8S E uWsudsD 2,
and therefore

E0,0
2t,0x~E !Ue2*V211E VU<C9t

3

with someC7 ,C8 ,C9 depending onV0 and maxuxu<1u“V(x)u.
Finally, for the term*V we useV(Ws)5“V(0)Ws1C10uWsu2 on the setE and the fact that

by theWs→2Ws symmetry

E0,0
2t,0x~E !E

0

2t

Wsds50, ~II.20!

to get

UE0,0
2t,0x~E !E VU<C11t

2.

HereC10,C11 depends on maxy:uy2xu<1u“2V(y)u. h

D. Large time and/or large field asymptotics

The large time and/or large field asymptotics of the heat kernel is typically harder sinc
oscillation ~the flux encircled by the Brownian bridge! is big. In d52 it is easy to see that

inf SpecHSch~B,V50!>Ess inf
xPR2

B~x!
J. Math. Phys., Vol. 38, No. 3, March 1997
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sinceHSch(B,V50)2B is a nonnegative operator~being one component of the Pauli operato!.
By variational principle, using a very localized Gaussian trial function~see later!, one can easily
get for aC1 field limL→`L

21 inf SpecHSch(LB,V50)5 infxPR2B(x), which shows that compari
son ~V! is true in the large field limit.

From now on we discuss any dimensiond>2 and the final result of this section will b
summarized in Theorem II.8.

Based upon the Gaussian type localization due to a strong magnetic field, one expects
ground state is again given by the infimum of the magnetic field, at least in the strong field
The first theorem in this direction is due to Malliavin,23 proving that ind53

lim inf
L→`

1

L
inf SpecHSch~LB,V50!>e21 inf

xPR3
iB~x!i .

Note that this result is off by a factor ofe21 from our expectation. With a similar techniqu
Malliavin also proved anL` result:24

lim sup
L→`

1

t
logie2tHSch~LB,V50!i`→`<2F~C!L inf

xPR3
iB~x!i

for curl-free magnetic fieldsB(x), 0, infiB(x)i<iB(x)i<CinfxiB(x)i , with some function
0,F(C),1.

Later the optimal constant was obtained22 in any dimension for anyLp→Lq norm
(1<p<q<`) in the large field limit for aC1 magnetic field with aC1 strength and with uniform
positive lower bound, i.e.,iBi>C.0:

1

t
logie2tHSch~LB,V50!ip→q<2CLL inf

xPRd
iB~x!i1O~ t21~11u log tu!! ~II.21!

with some constantCL512O(L2a log L) asL→`, for some explicit 0,a,1/4, t>L2a; and
the constants in the error terms depend only on the dimension, onp,q and on theC1 norm of the
field. In this section byC1 field we mean thatB(x)(ea ,eb) ~for all a,b) and iB(x)i must be
C1 functions.@The conditiont>L2a can be easily removed but then the error term is replaced
O(t21(11u log tu)log L). For, one can notice thattLa should be replaced by max$1,tLa% on the
right hand side of Eq.~9! of Ref. 22, and the proof goes through without any change.#

For the infimum of the spectrum~from which theL2→L2 heat kernel estimate follows!, the
following better estimate was proven in Theorem 3.1 of Ref. 25:

1

L
inf SpecHSch~LB,V50!> inf

x
iB~x!i2CL21/4 ~II.22!

with some constantC for large enoughL.
Note that Eq.~II.21! is only a one sided estimate, but we claim a similar lower bound:
Proposition II.6: For a C1 magnetic field B with uniform positive lower bound we have

1

t
logie2tHSch~LB,V50!ip→q>2DLL inf

xPRd
iB~x!i2O~ t21~11u log tu!! ~II.23!

with some DL511O(L21/4 log L) as L→`,
Proof: For p5q52 Eq. ~II.23! follows from
J. Math. Phys., Vol. 38, No. 3, March 1997
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inf SpecHSch~LB,V50!<L~11CL21/4! inf
xPRd

iB~x!i ~II.24!

with someC depending only onB. Combining it with Eq.~II.22! we get

lim
L→`

1

L
inf SpecHSch~LB,V50!5 inf

x
iB~x!i , ~II.25!

in particular, the comparison in sense~V! is true in the strong field limit.
The bound~II.24! was proven25 even with a better error term (CL21/3 instead ofCL21/4). In

its simpler form it was also essentially proven in Ref. 26 by constructing a suitable trial fun
~there the error term was slightly worse and the computation longer because the authors f
on low lying eigenvalues as well, not just on the lowest one, see Theorem 11.1!. Here, for
completeness, we just give the simple trial function~Ref. 25 used an approximation which is on
order better!.

Let x(0) be a point such thatiB(x(0))i5minxPRdiB(x)i , we can assume thatx(0)50. Let
L21/2,«L,1 and define

f L~x!5expS 2
1

2«L
2 (
j52r11

d

xj
2D )

j51

r

expS 2
LBj~0!

4
@x2 j21

2 1x2 j
2 # D ~II.26!

using a coordinate system in which the constant 2-form, which is equal toB(0) everywhere, has
the formB(0)5( j51

r B2 j21,2j (0)dx2 j21 ` dx2 j andBj (0):5B2 j21,2j.0 @herer is the rank of the
2-form B(0)].

We can choose a gaugeA for the original magnetic fieldB such that it satisfies
uA(x)2A0(x)u<C8uxu2, exactly as in Eq.~II.10!, whereC8 is a constant depending on theC1

norm ofB.
Then by computation~for any 0,dL,1)

~ f L ,HSch~LB,V50! f L!<~11dL!LiB~0!ii f Li2
21C9~«L

221dL
21L2«L

4!i f Li2
2

with some constantC9 depending only onB. Choose«L5dL
1/6L21/3, anddL5L21/4 we obtain Eq.

~II.24!.
This implies that Eq.~II.23! is true forp5q52 with DL511O(L21/4), moreover

ie2tH f Li2> exp~2tL~11CL21/4!iB~0!i !i f Li2 . ~II.27!

Hence

ie2tH f Liq5 sup
gPLq8

u~g,e2tH f L!u
igiq8

>
u~e2thLH f L ,e

2tH f L!u
ie2thLH f Liq8

>

iexpS 2t
11hL

2
H D f Li2

2

ie2thLHiq8→q8i f Liq8

with the choiceg5e2thLH f L and withq8 being the dual exponentq/(q21), From this Eq.~II.23!
easily follows by choosinghL5L21/4, using Eqs.~II.27!, ~II.21! and thatu logifLipu5c log L with
some nonzeroc depending only onB andp. h

Therefore one gets comparison~VI ! in the large field limit for allt.0:
Corollary II.7: For any 1<p<q<`,

lim
L→`

1

L
ie2tHSch~LB2 ,V50!ip→q< lim

L→`

1

L
ie2tHSch~LB1 ,V50!ip→q ~II.28!
J. Math. Phys., Vol. 38, No. 3, March 1997
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for any B1 ,B2 P C1 fields if 0,iB1(x)i<iB2(x)i (in fact only infxPRdiB1(x)i
< infxPRdiB2(x)i was needed!.

It is not stated explicitly in Ref. 22, but that proof obviously shows that an unscaled sm
semibounded potential can be included without effecting the final result in Eq.~II.21! and simi-
larly in ~II.28! since its effect vanishes in theL→` limit. The same is valid for the ground stat
results. For more details about potential and magnetic wells, see Refs. 25, 26 and refe
therein.

Finally, one can easily check from the proof of Eq.~II.21! that the comparison in sense~IV !
is also valid in the large field limit if one adds a confining potentialV. Assume thatV(x)→` such
that exp(2t(2D1V)) is of trace class for anyt.0, then

1

t
lim
L→`

1

L
log Tr e2tHSch~LB~x!,V!52 inf

Rd
iB~x!i ~II.29!

for any t. The proof is simple, let 0,«,1/2,

e2tHSch~LB~x!,V!5e2t«HSch~LB~x!,V!e2t~122«!HSch~LB~x!,V!e2t«HSch~LB~x!,V!

< exp~2t~122«!CLL inf
xPRd

iB~x!i !e22t«HSch~LB~x!,V!, ~II.30!

where we used Eq.~II.22!. Then, by the diamagnetic inequality~II.1!,

Tr e22t«HSch~LB~x!,V!< Tr e22t«~2D1V!, ~II.31!

and putting Eqs.~II.30! and~II.31! together, letting firstL→` then«→0 one obtains Eq.~II.29!.
To summarize our results, we have the following theorem:
Theorem II.8: Assume that B1 and B2 are two C1 magnetic fields such tha

0,iB1(x)i<iB2(x)i and let V be a smooth semibounded potential. Then the comparisons
(V) and (VI) are true for the operators Hi5H(LBi ,V) in the L→` limit (for (VI.) we need the
additional hypothesis thatexp(2t(2D1V)) is of trace class for all t.0). h

We remark that forp5q52 ~which is equivalent to the infimum of the spectrum! Ueki27 gave
a result similar to Eq.~II.25! even for manifolds, but without effective error terms~later this was
improved25!. This establishes comparison in sense~V! even for manifolds. The reason again is th
on the effective scale of the magnetic field~which is the size of the cyclotronic radius, and is
orderL21/2), the geometry is flat.

It is not clear how to get pointwise comparison@in sense~II ! or ~III !# from these results. A
convenient upper bound onuexp(2tHSch(LB,V))(x,y)u is of course theL1→L` norm given in Eq.
~II.21!, but apparently there is no lower bound for off-diagonal elements. Nevertheless we
jecture that the comparison in sense~III. ! is true ~i.e., for diagonal elements!:

Open Problem II.9:Prove that

lim
L→`

1

L
log e2tHSch~LB2 ,V!~x,x!< lim

L→`

1

L
log e2tHSch~LB1 ,V!~x,x!

for all x and t, for smooth, bounded magnetic fields with 0,iB1i<iB2i .
Note that while the previous three comparisons~IV,V,VI ! used only the fact tha

infxiB1(x)i< infxiB2(x)i , here we expect that the full strength of the conditi
iB1(x)i<iB2(x)i has to be used. This statement is presumably harder than the similar sem
sical limits, as here the effective time is not small. Therefore large loops effectively participa
the Feynman–Kac formula.
J. Math. Phys., Vol. 38, No. 3, March 1997
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E. Comparison without asymptotics

The most complicated case is when no limiting procedure is involved; we study this case
in d52 dimensions and we assume thatB(x)>0. As we pointed out in Sec. II A, comparison o
two homogeneousmagnetic fields, without external potential, is straightforward~except certain
Lp→Lq norms!. Therefore, the next natural step is either to relax the homogeneity assumpt
to include a potential. Loss and Thaller1 followed the first path, and they allowed an inhomog
neous magnetic field for the bigger fieldB2 , but kept the smaller fieldB1 constant
(0<B15B1(x)<B2(x)) and there was no external potential. In this case they managed to p
comparison in sense~VI ! ~see Theorem 1.2 of Ref. 1!. Their method is very elegant, but appa
ently there is no way to extend it to cover more general cases~neither to compare two inhomo
geneous fields nor to include a potential!. Here we present two counterexamples which show t
the theorem by Loss and Thaller is essentially the best one could hope for in general.~There was
one more, slightly annoying and probably only technical condition in Ref. 1, namely in the
whenp,q,2 or 2,p,q one has to assume thatB1t is small. Though it is certainly an inter
esting question to settle this issue, here we do not focus on it.!

Counterexample II.10: There exist a potential V and two constant magnetic fi
0,B1,B2 such that

inf SpecHSch~B2 ,V!, inf SpecHSch~B1 ,V!. ~II.32!

Counterexample II.11:There exists two inhomogeneous magnetic fields 0<B1(x)<B2(x)
such that

inf SpecHSch~B2 ,V50!, inf SpecHSch~B1 ,V50!. ~II.33!

Remark 1:Though in the second counterexample we are going to presentB1(x) is not positive
everywhere, from the strict inequality and continuity it follows thatB1 could be chosen strictly
positive. Also, essentially the same counterexample can show that the monotonicity is no
even in the following weaker sense: there exists a magnetic fieldB(x) such that
L° inf SpecHSch(LB,V50) is not monotone increasing. For brevity we just present the proo
the simplest case formulated above.

Remark 2:Obviously these counterexamples show that comparison in sense~V! cannot be
true. This, of course, excludes the comparison in senses~II !–~IV ! as well, at least for all times~the
short time case has been discussed in Sec. II C!. Also it shows that theL2→L2 norms of the heat
kernels cannot be compared in sense~VI !, which probably would have been expected to be
easiest case in a possible extension of the result in Ref. 1. The following interesting case r
open, which is the opposite setup of Ref. 1, and where we expect a positive answer:

Open Problem II.12: Assume that the bigger field B2 is constant and the smallerone
0<B1(x)<B2 is nonhomogeneous. Prove a diamagnetic comparison in some sense.

The idea behind both counterexamples is the same: we confine the electron~either by a strong
electric or magnetic barrier! in a narrow ring-shaped domain. It turns out that the ground s
energy of the electron depends on whether the total magnetic flux inside the ring is clo
(2p)-times an integer or not. In the second case there is a frustration; on one hand the phas
of the ground state wave function must change by (2p)-times an integer as we go around the ri
once~since it is a continuous function intoS1), on the other hand the magnetic field would fav
a phase factor shift close to the total enclosed flux. The continuity requirement could be rem
by forcing Dirichlet boundary conditions on a line somewhere across the ring, but this would
an increase of the energy, too.

In both counterexamples we shall consider a radially symmetric situation, so we fi
notations for both proofs simultaneously. The magnetic field isB(x)5B(uxu)5B(r ) using
x5(r ,u) radial coordinates. We choose the radial gaugeA(r ,u):5(2a(r )sinu,a(r)cosu), with
J. Math. Phys., Vol. 38, No. 3, March 1997
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a(r ):5(1/r )*0
r B(s)sds ~in the constant field casea(r )5Br/2). The potential~in Counterexample

II 10.! is also chosen to be radial,V(x)5V(r ). We decompose the Hilbert spaceL2(R2) into
angular momentum sectors

L2~R2!>H:5 %

n52`

`

L2~R,2prdr !,

~II.34!

fPL2~R2!°~ . . . ,f21 , f 0 , f 1 , . . . !PH,

where f (r ,u)5(ne
inu f n(r ). For simplicity, we continue to denote the elements ofH by f . In

general,* f will stand for the integral onR2 with the Lebesgue measure or onR1 with the
measure 2prdr , depending on whether the function has one or two variables. We shall inte
radial functions only and then these two notions coincide anyway.

The operatorHSch5 % nHn , under the isomophism~II.34!, acts onH as follows

~HSchf !n~r !:5~Hnf n!~r !:52D f n~r !1Un~r ! f n~r !1V~r ! f n~r ! ~II.35!

with Un(r ):5(n/r2a(r ))2. Here2D52] r
22(1/r )] r denotes the usual Laplacian on the h

line with the domain of the usual two-dimensional Laplacian restricted to the radial function@in
our problem it is convenient to think ofD f n as the radial part of the radially symmetric two
dimensional functionD f̃ n with f̃ n(x):5 f n(uxu)].

We need a well known statement from the general theory of Schro¨dinger operators whose
proof is postponed to the Appendix.

Lemma II.13: (i) Suppose that0<Vn(x)↗V(x) almost everywhere pointwise and all pote
tials are assumed to be in Lloc

1 (Rd\G), where G is a zero measure set. Let us assume that
bottom of the spectrum of2D1Vn and2D1V is an eigenvalue,ln andl, respectively. Then

ln→l as n→`. ~II.36!

(ii) If V5` on an open setV with regular (e.g., smooth) boundary then the statement is still tr
provided that2D1V is defined on L2(Rd\V) with Dirichlet boundary conditions.

Proof of Counterexample II.10:Let B>1 be a constant magnetic field. Le
an :5(2nB21)1/2 be the unique zero ofUn for n>0, then note thatUn(r )>

1
4B(r2an)

2 for
n>0, andUn(r )>

1
4B

2r 2 for n,0. Let R:5$12«<uxu<11«%,R2 be a ring («,1 to be
chosen later!, and let the potential beV(x)52K•x(x¹R) with some huge constantK ~one can
safely think of Dirichlet boundary conditions onR). Herex(•) is the characteristic function of a
set.

Fix m>2 integer and assume thatB is such thatam21,1<am ~i.e., 2(m21),B<2m).
Assume that«<(12m)21.

Let l«,K denote the lowest eigenvalue ofH052D1V, andl« denote the lowest eigenvalu
of the Dirichlet Laplacian onR; then

lim
K→`

l«,K5l« ~II.37!

for any fixed« by Lemma II.13.
Lower bound: For the lower bound we chooseB5B152m21. Then 12am21>(6m)21 and

am21>(6m)21, thereforeR is at least at a distance (12m)21 from the set$an%n50
` .

It is obvious thatHSch(B1 ,V) has a ground state, sayf5(ne
inu f n(r ). From the estimates on

Un and 2m21>3m/2 it easily follows that
J. Math. Phys., Vol. 38, No. 3, March 1997
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E ~Un1V!u f nu2>
1

384mERu f nu21KE
Rc

u f nu2>
1

384mE u f nu2

for anyn. Therefore

HSch~B1 ,V!>l«,K1
1

384m
, ~II.38!

since the same estimate is valid for eachHn on each sector.
Upper bound:For the upper bound, chooseB5B252m and letc be the lowest energy

eigenfunction of the Laplacian with Dirichlet boundary condition onR. Sinceam51, we have
Um(r )<3m2«2 for ur21u<«, i.e., onR. Let f5eimuc be a trial function, which gives

inf SpecHSch~B2 ,V!<l«13m2«2. ~II.39!

ChoosingK sufficiently large and« sufficiently small, Eqs.~II.37!, ~II.39! and~II.38! complete the
proof of Counterexample II 10. h

Proof of Counterexample II.11:Strong magnetic field can act as a confining potential.
shall create a magnetic field which is zero on a ring, huge outside and has a (2p)-flux inside, such
that the ground state is in then51 angular momentum sector. Then by slightly decreasing
magnetic field, we show that the energy increases.

Let B,K.1, «>0 be numbers to be chosen later, and consider the magnetic
B(x)52(12«)B•x(uxu<B21/2)12K•x(uxu>1), which is generated by a radial gaug
a(r )5aB,K,«(r )

a~r !:5H ~12«!Br for r,B21/2

~12«!r21 for B21/2<r,1

@12«1K~r 221!#r21 for 1<r .

~II.40!

Let ln(B,K,«) denote the lowest eigenvalue ofHn :52D1Un(r ), where Un(r )
5Un

B,k,«(r )5(n/r2aB,K,«(r ))
2 as before@usually we omit the dependence onB,K,« in Un(r )

anda(r )]. The following two lemmas will prove Counterexample II.11.
Lemma II.14: For large enough B and K and small enough«>0 we have

l1~B,K,«!,ln~B,K,«! ~II.41!

for all n Þ 1.
Lemma II.15: For large enough K and B>1 we have

lim inf
«→010

l1~B,K,«!2l1~B,K,«50!

«2
>
1

2
.

Proof of Lemma II.14:First we defineŨn(r ) which coincides withUn(r ) except for r
P (1,A11K21(n211«)) andn>1, when we letŨn(r )50. Let l̃n(B,K,«) be the corresponding
eigenvalue, which is smaller thanln(B,K,«) for anyn. Note thatuU1(r )2Ũ1(r )u<«2, therefore

l̃1~B,K,«!<l1~B,K,«!<l̃1~B,K,«!1«2. ~II.42!
J. Math. Phys., Vol. 38, No. 3, March 1997
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1304 László Erdős: Dia- and paramagnetism

¬¬¬¬¬¬¬¬¬¬
Elementary computation shows thatŨn(r ) is increasing asK→`, and the limit function is
Un(r ) for r<1 and infinity otherwise. By Lemma II.13 limK→`l̃n(B,K,«)5ln(B,«) uxu<1 , where
the latter is the lowest eigenvalue of2D1Un(r ) on uxu<1 with Dirichlet boundary condition.
Therefore

ln~B,«! uxu<15 lim
K→`

l̃n~B,K,«!< lim inf
K

ln~B,K,«! ~II.43!

for anyn.
Now we compareUn(r ) and U1(r ) for r<1 (nÞ1) For «,1/2 obviously Un(r )

.U1(r )1(12«)2 if B21/2<r<1, andUn(r ).U1(r )1B for r<B21/2 if n Þ 0,1. This shows that
ln(B,«) uxu<1>l1(B,«) uxu<111/4 ~if «,1/2, B>1/4), which, along with Eqs.~II.42!, ~II.43!
shows Eq.~II.41! for n Þ 0.

Finally, to settlen50, we defineŪ0(r ) to be equal toU0(r ) for r>B21/2 and zero otherwise
and letl̄0(B,«) be the corresponding eigenvalue~on $uxu<1% with Dirichlet boundary condition!.
As B→`, Ū0(r ) monotonically increases to (12«)2r22, so

lim inf
B→`

l0~B,«!> lim
B→`

l̄0~B,«!>l* ~II.44!

wherel* is the lowest eigenvalue of2D1(2r )22 on $uxu<1%. Consider the normalized eigen
function f * corresponding tol* , this is a radial function, and use it as a trial function f
l1(B,«) if «,1/4:

l1~B,«!<E
uxu<1

u“ f * ~x!u21U1~ uxu!u f * ~x!udx<l*1E
uxu<1

~U1~ uxu!2~2uxu!22!u f * ~x!u2dx

<l*22pE
B21/2

1 1

8r 2
u f * ~r !u2rdr12pE

0

B21/21

r 2
u f * ~r !u2rdr .

But * uxu22u f * (x)u2 is finite, therefore

lim sup
B→`

l1~B,«!<l*22pE
0

1 1

8r 2
u f * ~r !u2rdr<l*2

1

8
.

Combining this with Eq.~II.44!, we have

lim inf
B→`

l0~B,«!> lim sup
B→`

l1~B,«!1
1

8

which, along with Eqs.~II.42!, ~II.43! gives Eq.~II.41! for n50 if «,1/4 andB is large enough.
h

Proof of Lemma II.15:For any«.0 we have

lim inf
K→`

l1~B,K,«!2l1~B,K,«50!

«2
> lim inf

K→`

l̃1~B,K,«!2l̃1~B,K,«50!

«2

5
l1~B,«! uxu<12l1~B,«50! uxu<1

«2

using Eq. ~II.42!. Simple computation shows thatU1
B,K,«(r )>U1

B,K,«50(r )1«2 for r<1 if
B>1, which, by recalling the definition ofl1(B,«) uxu<1 , completes the proof. h
J. Math. Phys., Vol. 38, No. 3, March 1997
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F. Off-diagonal elements

Mehler formula ~II.3! for constant magnetic fieldB shows two essential features in tw
dimensions~similar statements are valid for higher dimensions, but for simplicity we res
ourselves tod52 in this section!. One is that the size of the diagonal element of the heat ke
decays ase2Bt for largeBt ~due to the sinhBt factor!. The other feature is the Gaussian ty
off-diagonal decay which is at least exp(2B(x2y)2/4) for largeBt @for smallBt one obtains the
usual decay of the free heat kernel, exp(2(x2y)2/4t)]. The results in Sec. II E show that the fir
feature is not robust~though it is true in the strong field limit, see Sec. II D!. In this section we
show that the second feature is not robust either, by answering a question of Loss and Thal~see
the remark after Theorem 1.3. in Ref. 1!:

Counterexample II.16: There exists a continuous magnetic field B(x)>B.0 in two dimen-
sions, and there exist tP R, x,y P R2 such that

ue2tHSch~B~x!,V50!~x,y!u.ue2tHSch~B,V50!~x,y!u.

Remark:Loss and Thaller proved that

uexp@2tHSch~B~x!,V50!#~x,y!u<
B

4p sinhBt
expF2

~x2y!2

4t G
which means that the off-diagonal decay is at least as fast as in the nonmagnetic cas
example shows that the expected stronger magnetic Gaussian decay is not always true.

Proof: Let B(x)5B13bx2
2 whereB,b.0 andx5(x1 ,x2) P R2. What we show is that

]

]b U
b50

ue2tHSch~B~x!,V50!~x,y!u2.0 ~II.45!

for somex,y,t.
Before the proof, which is a long computation, let us indicate the intuition. It is well kno

that the homogeneous magnetic field has a strong confining effect, which classically corre
to closed circular orbits; quantum mechanically it corresponds to the strongly~Gaussian! localized
eigenfunctions. It is less known that this situation is very unstable; typically a magnetic
which has some gradient induces delocalization in the transversal direction. Iwatsuka28,29 consid-
ered a magnetic field, which takes one valueB1 on the $x1<0% half plane, and another valu
B2ÞB1 on the other half plane. It is easy to see that any classical orbit intersecting the
x150 is an unbounded spiral, i.e., the classical electron escapes to infinity. Iwatsuka show
quantum analogue of this phenomenon, namely that the spectrum of the corresponding¨-
dinger operator is absolutely continuous.

The idea behind our counterexample is to detect delocalization in the direction transve
the gradient of the field, i.e., in our case we expect that turning onb.0, the off-diagonal decay in
the first coordinate direction becomes weaker.

The basic technical problem is that the Mehler formula is the result of the explicit com
tion related to the exact solvability of the harmonic oscillator. There is no other known mag
field whose heat kernel could be computed explicitly, or precisely enough for our purpose
magnetic fieldB(x) given in our counterexample is not exactly solvable either~since it leads to a
usual Schro¨dinger operator with a polynomial potential of sixth degree!, but the derivative of the
heat kernel, with respect tob at the pointb50, is expressible by Gaussian integrals.

Choose a special gaugeA(x)5(Bx21bx2
3 ,0). First we compute the derivative of the he

kernel by the Duhamel formula:
J. Math. Phys., Vol. 38, No. 3, March 1997
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]

]b U
b50

e2t[ ~2 i ]12Bx22bx2
3
!22]2

2]~x,y!

5
1

2pE dp1e
ip1~x12y1!E

0

t

dsE
2`

`

dz2e
2s[2]2

2
1~p12Bx2!2]~x2 ,z2!

3@2z2
3~p12Bz2!#e

2~ t2s![2]2
2
1~p12Bx2!2]~z2 ,y2!. ~II.46!

Now we use the Mehler formula for the one dimensional shifted harmonic oscillator:

e2s[2]2
2
1~p12Bx2!2]~u,v !5

AB
A2p sinh~2sB!

3expF2
~Bu2p1!

21~Bv2p1!
2

2B
coth~2Bs!1

~Bu2p1!~Bv2p1!

B sinh~2Bs! G .
~II.47!

After inserting this formula into Eq.~II.46! we can explicitly perform the dz2-integration. The
formula is very lengthy, so we immediately apply it tox25y250, the result is

]

]b U
b50

e2t[ ~2 i ]12Bx22bx2
3
!22]2

2]~~x1,0!,~y1 ,0!!

52

2 expS 2
~x12y1!

2

4K D
~2p!3/2B3 E

0

t

ds
1

Asinh~2Bs!sinh~2B~ t2s!!
E

2`

`

dqe2Kq2
1

A2E H 3

~2E!2

1
3

2E S q1
i ~x12y1!

2K D 2S 12
H

2BED S 12
H

BED2S q1
i ~x12y1!

2K D 4S 12
H

2BED 3 H

2BE J ,
~II.48!

where, for brevity, we introduced

E:5
sinh~2Bt!

2B sinh~2Bs!sinh~2B~ t2s!!
, H:5

1

sinh~2Bs!
1

1

sinh~2B~ t2s!!
, K:5

cosh~2Bt!21

B sinh~2Bt!
.

In order to compute the derivative of the square of the heat kernel one needs its value
given point as well which can also be given using Eq.~II.47!:

e2t[ ~2 i ]12Bx2!22]2
2]~~x1,0!,~y1 ,0!!5

B

4p sinh~Bt!
expF2

B~x12y1!
2

4
coth~Bt!G . ~II.49!

Combining Eqs.~II.48! and~II.49! and considering that the derivative of the absolute value is
we obtain, withz:5x12y1 ,
J. Math. Phys., Vol. 38, No. 3, March 1997
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]

]b U
b50

ue2tHSch~B~x!,V50!~~x1,0!,~y1,0!!u2

52

2 expS 2
Bz2

4
coth~Bt!2

z2

4K D
~2p!5/2B2 sinh~Bt! E

0

t

ds
1

Asinh~2Bs!sinh~2B~ t2s!!

3E
2`

`

dqe2Kq2
1

A2E H 3

~2E!2
1

3

2E Fq22S z

2K D 2G S 12
H

2BED S 12
H

BED
2Fq426q2S z

2K D 21S z

2K D 4G S 12
H

2BED 3 H

2BE J . ~II.50!

The dq-integration can be done explicitly and we arrive at

]

]b U
b50

ue2tHSch~B~x!,V50!~~x1,0!,~y1,0!!u2

52

2AY expS 2
Bz2

4
coth~Bt!2

Yz2

2 D
~2p!2B3/2 sinh~Bt!Asinh~2Bt!

E
0

t

ds$3U213UXY~2X21!~12z2Y!

2@z4Y226z2Y13#Y2X3~12X!%

with

X:512
sinh~2Bs!1sinh~2B~ t2s!!

sinh~2Bt!
; Y:5

1

2K
; U:5

1

2E
.

In order to show Eq.~II.45!, it is enough to prove that the integral is negative. Notice t
0<X<1 andU,X,Y are independent ofz. Viewing this integral as a polynomial inz, we notice
that the coefficient of the highest degree term,z4 is negative:2z4Y4*0

t dsX3(12X). Choosing
z large enough, we complete the proof. h

III. PARAMAGNETISM FOR THE PAULI OPERATOR

In d52 ~and also ind53 if the magnetic field has a constant direction!, the paramagnetism
due to the spin coupling obviously decreases the energy@see Eqs.~I.2!, ~I.3!#. The ground state
c is entirely in the more favorable spin subspace~where the spin points in the direction of th
field!, which means a net energy decrease by*iB(x)iuc(x)u2dx compared to the Schro¨dinger
case, while at a positive temperature, a bigger part of the state is in the lower energy spin
But of course in the case of dynamical electrons, diamagnetic effects are always present a
compete with the spin-coupling paramagnetism.

This competition can be seen in the formula for the constant field~I.6!. Here diamagnetism is
responsible for the factorB/sinh(Bt) @compare with Eq.~I.5!#, while cosh(Bt) is due to paramag-
netism.

In Sec. III A we prove paramagnetism in the short time~and semiclassical! regime in
d52,3. Then we restrict ourselves tod52 and prove paramagnetism in the strong field and la
time limit, and finally we show that paramagnetism does not necessarily hold in a robust
without asymptotics.
J. Math. Phys., Vol. 38, No. 3, March 1997
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A very interesting open problem is to investigate paramagnetism ind53 for a general mag-
netic field away from the short time regime. While forconstant directionfield many ideas can be
used from thed52 case, for general fields the energy likely depends on the geometric struct
the field lines and not just on the field strength~or local field energy!. The example of Loss and
Yau30 shows a remarkable conspiracy between the field strength and the field line geometry
yields an unexpected zero energy ground state. We are far from understanding this pheno
How generic or rigid these states are would obviously influence any paramagnetic monoto
Naively it seems that the zero eigenvalue of the Loss–Yau state disappears by essentiaany
perturbation of the magnetic field, but no rigorous argument is known. This would mean th
ground state density function also disappears immediately, excluding any large time heat
comparison.

A. Short time and semiclassics

For large temperature~short time in the heat kernel! the diamagnetic and paramagnetic effe
can be compared and we have the following general result ind52,3. Again, this statemen
includes the semiclassical result by usingt:5bh2, L:5h21.

Proposition III.1: Let V be semibounded, continuously differentiable, let BP C3 with
iBi`1i“Bi`,` and let L>1 be a scaling parameter. In d52,3, for any xP Rd,

TrC2e
2tHPauli~LB,V!~x,x!52~4pt !2d/2~11O~ t5/2L21t4L4!!e2tV~x!

tLB~x!coshtLB~x!

sinh tLB~x!

12~e2tHSch~B50,V!~x,x!2e2tV~x!e2tHSch~B50,V50!~x,x!! ~III.1!

as t→0 and tL→0. The error depends on the C1-norm of B, on maxy:uy2xu<1

@ u“2B(y)u1u“3B(y)u#, on V0 :5minyPRdV(y) and onmaxy:uy2xu<1u¹V(y)u. In d53 we use the
notation B(x):5iB(x)i25iB(x)i in (III.1) but B replaces B everywhere in the first and in th
previous sentence.

This implies the paramagnetic comparison in the senses~III. ! and ~IV.!
Corollary III.2: Let the magnetic fields B1 , B2 be three times continuously differentiable an

have finite C1-norm, and let the semibounded pontential V be continuously differentiable
d52,3, for any x satisfying B1(x),B2(x), we have

TrC2e
2tHPauli~LB2 ,V!~x,x!2TrC2e

2tHPauli~LB1 ,V!~x,x!>C* ~4pt !2d/2e2tV~x!t2L2~B2
2~x!

2B1
2~x!).0 ~III.2!

for small enough tL<«0 , t,«0 and some constant C* . The constants«0 ,C* depend on global
lower bound V, on the global C1-norm of B1 and B2 , and on
maxy:uy2xu<1@u“V(y)u1u“2B(y)u1u“3B(y)u#. If, in addition, * exp(2tV(x))dx is finite for all t, and
the C1-normof V and the C3-normsof B1 ,B2 are bounded, then comparison in sense (IV.) is va
for small enough t. In d53 we use the notation Bi(x)5iBi(x)i25iBi(x)i in Eq. (III.2) butBi

replaces Bi everywhere in the first and in the previous two sentences.
The proof of this Corollary is obvious fromX cothX511X2/31O(X4). In particular

C*→1/3 astL→0,t→0.
Proof of Proposition III.1:We can assume thatx50, V(0)50, t<1 andLt<1.
Two dimensions:From Eqs.~II.5! and ~I.2! we immediately get

TrC2e
2tHPauli~LB,V!~0,0!52~4pt !21~11O~ t5/2L21t4L4!!

tLB~0!coshtLB~0!

sinh tLB~0!
1L11L2

with
J. Math. Phys., Vol. 38, No. 3, March 1997
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L15(
6

@e2tHSch~B50,V6B!~0,0!2e7tLB~0!e2tHSch~B50,V!~0,0!#

and

L252 cosh~ tLB~0!!@e2tHSch~B50,V!~0,0!2e2tHSch~B50,V50!~0,0!#.

Using coshX511O(X2) and a simplified version of Eq.~II.6! @we expandV only up to first
order as in Eq.~II.19!#:

L252@e2tHSch~B50,V!~0,0!2e2tHSch~B50,V50!~0,0!#1~4pt !21O~ t7/2L2!

with the error depending onV0 and on maxuyu<1u¹V(y)u and theC0 norm ofB.
By the Feynman–Kac formula

L15~4pt !21(
6

exp@7tLB~0!#E0,0
2t,0 expF2

1

2 E
0

2t

V~Ws!dsG
3S expF7

L

2
*0
2t~B~Ws!2B~0!!dsG21D .

Similarly to the proof of Eq.~II.6! in Sec. II C, on the setEc the estimate is trivial. Next we write

L15~4pt !21F(
6

exp@7tLB~0!#E0,0
2t,0S expF7LE ~B2B~0!!G21D

1(
6

exp@7tLB~0!#E0,0
2t,0S expF2E VG21D S expF7LE ~B2B~0!!G21D G

using the shorthand notations introduced in Sec. II C and*(B2B(0))5 1
2*0

2t(B(Ws)2B(0))ds.
The second term in the square bracket is smaller thanC12t

3L by Schwarz, similar to Eq.~II.19!,
the constant depending onV0 , maxuyu<1u“V(y)u and theC1-norm ofB.

For the first term we use

E0,0
2t,0x~E !Ue7L*~B2B~0!!216LE ~B2B~0!!U<C13t

3L2

with someC13 depending on maxuyu<1u¹B(y)u.
Finally for the remaining linear term we use

B~Ws!5B~0!1“B~0!•Ws1
1

2
~Ws ,“

2B~0!•Ws!1C14uWsu3,

and the symmetry as in Eq.~II.20!, which gives

U(
6

e7tLB~0!E0,0
2t,0x~E !H 7LE ~B2B~0!!J U

<E0,0
2t,0x~E !H sinh~ tLB~0!!E

0

2t

L~Ws ,“
2B~0!•Ws!ds12C14e

tLB~0!LE
0

2t

uWsu3dsJ
<C15t

5/2L2
J. Math. Phys., Vol. 38, No. 3, March 1997
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with C14,C15 depending onB(0) and on maxuyu<1@u“2B(y)u1u“3B(y)u#.
Three dimensions:We can assume thatB(0) points in the positive direction of the thir

coordinate axis, and in this proof we use the notationB5(B1 ,B2 ,B3). The generalized Feynman
Kac formula ~involving a joint Wiener–Poisson process! gives a representation of the he
kernel4,6:

TrC2 exp@2tHPauli~LB,V!#~0,0!5 (
s56

cosh~2t !

~4pt !3/2
EW
0 En

se2 iL*A exp@2*V#

3expFL2 E
0

2t

B3~Ws!~21!nsdsG
3expS E

0

2t

logFL2 ~B1~Ws!2 i ~21!nsB2~Ws!!GdnsD ,
wherens is a Poisson jump process onZ with unit intensityEdns5ds. We used the notation
EW
0 :5E0,0

2t,0 for the expectation with respect to the Brownian bridge, andEn
s :5E0,s

2t,s for the
‘‘Poisson bridge,’’ wheres P $1,2% and the ‘‘bridge’’ meansn0[n2t[ (12s)/2 (mod2), or,
equivalently, (21)n05(21)n2t5s. Therefore

TrC2 exp@2tHPauli~LB,V!#~0,0!5 (
s56

~4pt !23/2EW
0 expF2 iL E AGexpF2E VG

3expFL2 s E
0

2t

B3~Ws!dsG2V12V21V3 ~III.3!

with

V1 :5 (
s56

~4pt !23/2EW
0 En

se2 iL*A expF2E V1sLE B3G
3H 12cosh~2t !expS E

0

2t

logFL2 ~B1~Ws!2 i ~21!nsB2~Ws!!GdnsD J
V2 :5 (

s56

cosh~2t !

~4pt !3/2
EW
0 En

sH 12expS sLE
0

2t

B3~Ws!~s~21!ns21!dsD J
and

V3 :5 (
s56

cosh~2t !

~4pt !3/2
EW
0 En

sS 12expF2 iL E A2E V1sLE B31E log L~B12 iB2!G D
3H 12expS sLE

0

2t

B3~Ws!~s~21!ns21!dsD J ,
where we used the shorthand*B3 for 1

2*0
2tB3(Ws)ds and * log L(B12iB2) for

* log@(L/2) (B1(Ws)2i(21)nsB2(Ws))#dns .
The main term in Eq.~III.3! is treated exactly as ind52 @note that the dimension was use

only in the power of the prefactor (4pt)2d/2 in the two dimensional proof#. This gives the two
main terms in Eq.~III.1!, noting thatB3(0)5iB(0)i .

In V1 the expectation with respect to the Poisson process can be estimated as follows~see Eq.
~72! in Ref. 6, which is true for random anticipatory functions as well!
J. Math. Phys., Vol. 38, No. 3, March 1997
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1311László Erdős: Dia- and paramagnetism

¬¬¬¬¬¬¬¬¬¬
UEn
sH 12cosh~2t !expS E

0

2t

logFL2 ~B1~Ws!2 i ~21!nsB2~Ws!!GdnsD J U
<U12En

s coshS E
0

2tFL2 ~B1~Ws!2 i ~21!nsB2~Ws!!GdsD U
<C16L

2S E
0

2t

~B1
2~Ws!1B2

2~Ws!!1/2dsD 2.
SinceB1(0)5B2(0)50, therefore

V1<C17~4pt !23/2L2EW
0 S E

0

2t

~B1
2~Ws!1B2

2~Ws!!1/2dsD 2<C18~4pt !23/2t3L2

whereC16,C17,C18 depend onV0 , and theC1-norm ofB.
V2 is zero on the setF :5$(21)ns[s:0<s<2t%. On the complement set, it is estimated

follows

V2< (
s56

cosh~2t !

~4pt !3/2
EW
0 En

sx~F c!F S 2sLE
0

2t

B3~Ws!~s~21!ns21!dsD
1S 11sLE

0

2t

B3~Ws!~s~21!ns21!ds2expH sLE
0

2t

B3~Ws!~s~21!ns21!dsJ D G .
~III.4!

The first term vanishes, after summation overs56, by the symmetrys→2s, ns→ns11 for
each realization ofWs . The other term in Eq.~III.4! gives O(t2L2) after taking the Wiener
expectation uniformly for each realization ofns . Finally one uses thatEn

sx(F c)<2t for small
enought. Therefore we obtain

V2<C19~4pt !23/2t3L2

with C19 depending on theC0-norm ofB.
Finally we use a weighted Schwarz forV3:

V3< (
s56

cosh~2t !

~4pt !3/2 F t1/2EW
0 En

sU12expS 2 iL E A2E V1sLE B31E log L~B12 iB2! D U2
1t21/2EW

0 En
sU12expS sLE

0

2t

B3~Ws!~s~21!ns21!dsD U2G . ~III.5!

The second term in the square bracket is zero onF and is of ordert21/2O(t2L2) on F c, after
taking the Wiener expectation uniformly for eachns ~useueX21u<uXueuXu). Since the probability
of F c is of ordert, we obtain a bound of ordert5/2L2.

The first term in Eq.~III.5! is estimated by 2(V41V5) with

V45t1/2(
s56

cosh~2t !

~4pt !3/2
EW
0 En

sU12expS 2 iL E A2E V1sLE B3DU2,
and
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e

etic
-
e are
This
e have

. It
f
Eq.

-
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V55t1/2(
s56

cosh~2t !

~4pt !3/2
EW
0 En

s expS 22E V12sLE B3DU12expF E log L~B12 iB2!GU2.
We can assume thatA is chosen such thatuA(x)u<C1uxu, udivA(x)u<C1uxu @see~II.11!#. By
simple estimatesV4<C20(4pt)23/2t5/2L2 whereC20 depends onV0 , maxuyu<1u¹Vu and on the
C1-norm ofB.

Finally for V5 we perform the squaring and apply again Eq.~72! Ref. 6:

V5<C21t
1/2(

s56
~4pt !23/2EW

0 En
sH cosh~2t !22 Re coshS E

0

2tFL2 ~B1~Ws!2 i ~21!nsB2~Ws!!GdsD
1coshS E

0

2tL2

4
~B1

2~Ws!1B2
2~Ws!!dsD J

<C22

t1/2

~4pt !3/2(s56
EW
0 En

sH t21S E
0

2tL

2
AB1

2~Ws!1B2
2~Ws!dsD 2

1S E
0

2tL2

4
~B1

2~Ws!1B2
2~Ws!!dsD 2J <C23~4pt !23/2t1/2~ t21t3L21t4L4!,

whereC21,C22,C23 depend onV0 and on theC
0-norm ofB. This completes the proof of the thre

dimensional case in Proposition III.1. h

B. Large field and time

For low temperature~large time! and strong field both the diamagnetic and the paramagn
effects are huge~the corresponding factors,B/sinh(Bt) and cosh(Bt), respectively, behave expo
nentially for largeuBut). These two exponential factors essentially cancel each other, and w
left with a linear factorB, representing the fact that eventually paramagnetism prevails.
heavy cancellation makes the problem especially difficult and for nonhomogeneous fields w
only a ground state result ind52.

For a magnetic fieldB(x)>0 let PB(x) be the ground state density of the Pauli operator
can be defined as( j u f j (x)u2 for any orthonormal family of functions in the kernel o
(2 i¹2A)22B, sinceHPauli(B,V50) has no ground state in the other spin subspace — see
~I.2!. If the operatorPB has a continuous kernelPB(x,y), thenPB(x)5PB(x,x). We recall the
following result5:

Proposition III.3: In d52 suppose that0<B P C1 and it does not grow faster than a qua
dratic function at infinity.

(i) If, in addition, B(x)>B0.0 then for any sequence Ln→` (as n→`)

lim
n→`

1

Ln
PLnB

~x!5
B~x!

2p

for almost all x.
(ii) If B (x) is compactly supported then

1

L
PLB~x!→

B~x!

2p

in Lp-sense(1<p,`).
J. Math. Phys., Vol. 38, No. 3, March 1997
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Corollary III.4: Assume that B1 ,B2 P C1(R2), do not grow faster than a quadratic function a
infinity, and0,B0<B1(x)<B2(x). Let Hi(L)5HPauli(LBi ,V50) for brevity. Then the compari-
son in the sense (III) is true in the large time and large field limit, i.e. for any sequence Ln→` (as
n→`)

lim
n→`

1

Ln
lim inf
t→`

e2tH1~Ln!~x,x!5 lim
n→`

1

Ln
lim sup
t→`

e2tH1~Ln!~x,x! ~5B1~x!!

< lim
n→`

1

Ln
lim inf
t→`

e2tH2~Ln!~x,x!

5 lim
n→`

1

Ln
lim sup
t→`

e2tH2~Ln!~x,x! (5B2~x!)

for almost all x.
Remark:Notice that we are not comparing the heat kernels on a logarithmic scale as in

II D.
Proof of the Corollary:By the continuity of the heat kernel~see Appendix B in Ref. 5!

lim inf
t→`

e2tHPauli~LB,V50!~x,x!>PLB~x!

for anyL and almost allx. By Eq. ~25! in Ref. 5 and the monotonicity of the diagonal eleme
of the heat kernel in time,

lim sup
t→`

e2tHPauli~LB,V50!~x,x!<e2tLHPauli~LB,V50!~x,x!<PLB~x!

1e2tLLB0e2
1
2~ tLHPauli!~LB,V50!~x,x!

for all x and for tL5 log L/(LS) whereS can be chosen large enough, depending on a com
neighbourhood ofx. Dividing by L and using Main Lemma 2.2. from Ref. 5, the statem
follows from Proposition III.3. h

C. Comparison without asymptotics

Finally, as in the case of diamagnetism, one can ask again whether paramagnetism is
a robust sense. Apparently this question was asked first by Hogreve, Schrader and Seiler7 in the
sense~IV ! for the special case whenB1(x)50,B2(x). It was positively answered by E. Lieb

31 in
the sense~V! if B2 is constant. Later this was extended by Avron and Seiler32 for certain poly-
nomial magnetic fieldsB2(x). Finally Avron and Simon gave a counterexample,33 again in the
sense~V!, where essentially the Aharonov–Bohm effect34 was used; a strong potential shielde
the electron away from the magnetic field, which excluded the paramagnetic effect of the co
between the field and the spin, but the diamagnetism was still effective due to the nonloca
the vectorpotential.

Here we are presenting a counterexample in the sense~III ! without potential. The point is tha
without potential the bottom of the spectrum of the Pauli operator is zero~under some genera
conditions5,29,35!, therefore a more refined comparison is needed. We shall compare ground
densities which implies comparison in the sense~III ! for large t. By adding a strongly concen
trated potential well one can obviously obtain comparison in the sense~IV ! as well.

The mechanism in our counterexample will be different from the Aharonov–Bohm effect
by Avron and Seiler.33 Similar to Sec. II E, we use the phenomenon that the magnetic opera
sensitive to the fractional part of the flux/(2p) in a nonmonotonic way.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Counterexample III.5: In d52 there exist two magnetic fields0<B1(x)<B2(x) and a number
R such that

PB1
~x!.PB2

~x!

for all uxu>R.
Corollary III.6: In d52 there exist two magnetic fields0<B1(x)<B2(x) such that the com-

parison in the sense (III.) is not true, i.e.,

TrC2e
2tHPauli~B1 ,V50!~x,x!.TrC2e

2tHPauli~B2 ,V50!~x,x!

for some t and x.
Proof of Counterexample III.5:For compactly supported magnetic fields, the ground st

can explicitly be given by following the proof of the Aharonov–Casher theorem.29,35 Let
B(x)5B•x$uxu<1% and letQ5B/2 be the total flux divided by 2p. The unnormalized orthogo
nal ground states are

gn~z!:5zn•H e2Q/2uzu2Q for uzu.1

e2Quzu2/2 for uzu<1
~III.6!

for n50,1,2, . . .bQc21, whereb c denotes the lower integer part~i.e., bxc5x21 for integerx,
otherwisebxc5@x#). Here we used the identificationC>R2, z5x11 ix25(x1 ,x2).

The ground state density function is radially symmetric and

PB~ uzu!5PB~r !5
1

p (
n50

bQc21
r 2~n2Q!

1

Q2n21
1

eQ

Qn11E
0

Q

tne2tdt

.

Let B5212«, Q511«, where 0,«<1/2, then

PB~r !5P212«~r !5
1

p

r22~11«!

«211~11«!21~e11«21!
.

Differentiation with respect to« shows that for large enoughr the ground state density decreas
as« increases. For more detailed asymptotic behaviour see Appendix B of Ref. 36. h

Proof of the Corollary III.6: Let PB be the ground state projection operator
HPauli(B,V50) (B is eitherB1 or B2). This is equal toPB % 0 according to the decompositio
~I.2!. By direct inspection, the ground state eigenfunctions, obtained in the proof of the Propo
III.5, are uniformly continuous, therefore the operator kernel TrC2PB(x,y)5PB(x,y) is uniformly
continuous.

Now we show that the heat kernele2tH(x,y) is continuous inx,y, uniformly for t>2. Let
f x(y)5exp(2HPauli(B,V50))(x,y), then

ue2tHPauli~B,V50!~x,y!2e2tHPauli~B,V50!~x,y8!u5u~ f x ,e2~ t22!HPauli~B,V50!~ f y2 f y8!!u

<i f xii f y2 f y8i ,

since the Pauli operator is non-negative. By the estimates in the Appendix B of Ref. 5~also in Ref.
21!, f y8(x)→ f y(x) asy8→y, uniformly in x andy ~note that in our case all the important da
B andA, are bounded!. Thereforef y8→ f y in L2 asy8→y, uniformly in y, since f y and f y8 are
both dominated by a uniformly rapidly decaying function~free heat kernel!. This proves the
continuity of the heat kernel uniformly in time. Note that in Ref. 5 the continuous differentiab
J. Math. Phys., Vol. 38, No. 3, March 1997
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of B was needed only to assure that there is a continuous gaugeA with continuous divergence
which, in our case, is true anyway. The continuity ofB was used only in the first term of Eq.~76!,
and it can be relaxed toB being in the Kato class.37

Fix a point ux0u.R, then PB1
(x0).PB2

(x0) by Proposition III.5. Let h̃d(x)

5(pd2)21x$ux2x0u<d%, be a function, andhd5(h̃d ,0) be a spinor, according the the decom
position ~I.2!. By the continuity of the kernels limd→0(hd ,PBhd)5TrC2PB(x0 ,x0)5PB(x0) and

lim
d→0

~hd ,e
2tHPauli~B,V50!hd!5TrC2e

2tHPauli~B,V50!~x0 ,x0!2e2tHSch~B,V5B!~x0 ,x0!

uniformly in t. Finally by the spectral theorem (hd ,e
2tHPauli(B,V50)hd)→(hd ,PBhd) ast→` and

by the diamagnetic inequalityue2tHSch(B,V5B)(x0 ,x0)u<(4pt)21. Therefore

lim sup
d→0

lim sup
t→`

u TrC2e2tHPauli~B,V50!~x0 ,x0!2PB~x0!u50,

which completes the proof of Corollary III.6. h

APPENDIX: PROOF OF LEMMA II.13

Proof: ~i! Obviouslyln<l and is increasing. First consider the caseV P Lloc
1 (Rd\G). By

Kato’s theorem38 Hn :52D1Vn→H:52D1V in strong resolvent sense~since they converge
on a common core!, therefore

lim
n→`

t21 log~ f ,e2tHnf !5t21 log~ f ,e2tH f !<2l

for all t, i f i51, and, by monotonicity ofHn↗H we know that the limit can be changed
infimum. On the other hand,

ln52 lim
t→`

t21 log~ f ,e2tHnf !52 inf
t
t21 log~ f ,e2tHnf !

for any non-negative, not identically zero functionf ~since such a function is not orthogonal to th
ground state!. Therefore

inf
n

~2ln!5 inf
n
inf
t
t21 log~ f ,e2tHnf !<2l,

and Eq.~II.36! follows.
~ii ! If V5` on V, then one can defineVn,K :5min$K,Vn%, VK :5min$K,V%, with the corre-

sponding principal eigenvaluesln,K and lK , which are monotonic increasing inK. For these
potentials limn→`(2ln,K)5 infn(2ln,K)52lK for any K using ~i!. Now let lV be the lowest
eigenvalue ofHV :52D1V with Dirichlet boundary condition onRd\V. By variational principle
lK>lV . On the other hand

lim
K→`

~ f ,e2t~2D1VK! f !5~ f ,e2tHV f ! ~A1!

for any f which is positive onRd\V and zero otherwise. This statement follows from t
Feynman–Kac representation of both sides, since
J. Math. Phys., Vol. 38, No. 3, March 1997
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~ f ,exp@2t~2D1VK!# f !2~ f ,exp~2tHV! f !5E dm~W!expF2
1

2 E0
2t

VK~Ws!dsG
3x~t~W!,2t ! f ~W0! f ~W2t! ,

wheret is the first hitting time of the boundary]V and dm(W) is the d-dimensional Wiener
measure. By the dominated convergence theorem*0

2tVK(Ws)ds→` as K→` for all path for
which, t(W),2t, since for these path$s:Ws P V% has positive measure, andVK(Ws)5K if Ws

P V ~similar proof, without potential, was given in Lemma 1.2 of Ref. 39!.
Since the left-hand side of Eq.~A1! is decreasing inK, we can replace the limit by infimum

We obtain

inf
K

~2lK!5 inf
t
inf
K
t21 log~ f ,e2t~2D1VK! f !5 inf

t
t21 log~ f ,e2tHV f !52lV

which completes the proof~see also Ref. 40 for a more general setup!. h
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On the statistical independence of algebras of observables
Martin Florig and Stephen J. Summers
Department of Mathematics, University of Florida, Gainesville, Florida 32611

~Received 29 May 1996; accepted for publication 16 October 1996!

We reexamine various notions of statistical independence presently in use in alge-
braic quantum theory, establishing alternative characterizations for such indepen-
dence, some of which are also valid without assuming that the observable algebras
mutually commute. In addition, in the context which holds in concrete applications
to quantum theory, the equivalence of three major notions of statistical indepen-
dence is proven. ©1997 American Institute of Physics.@S0022-2488~97!00703-2#

I. INTRODUCTION

The notions of ‘‘independence of two systems’’ are legion in quantum theory. This is
understandable, since the physical concept is central in many aspects of quantum theory,
various formalizations of independence capture different qualitative and quantitative aspe
possibly different ends.~See Refs. 1–3 for recent applications of these notions.! Those notions
which have appeared in the literature and have formulations in algebraic quantum theory
been extensively reviewed in Ref. 4, where their logical interrelationships have been disc
However, some issues of logical relation were left open in that review. One of the goals o
paper is to settle the few remaining conjectures in Ref. 4.

Representing the algebras of observables associated to the two subsystems byA andB,
respectively, one of the most commonly used expressions of independence is the requirem
the algebras mutually commute elementwise. Another is expressed heuristically in the con
that each system can be prepared independently of the other. It is known5–9 that this latter notion
of statistical independence is logically independent of the requirement that the algebrasA andB
commute. In Ref. 4 the various versions of statistical independence utilized in the literature
discussed almost exclusively in the context of commuting pairs of algebras. Another purp
this paper is to provide further information about statistical independence in the more g
circumstance that the observable algebras do not necessarily commute.

We shall provide alternative characterizations ofC* - andW* -independence~see below for
definitions!, which are also valid if the algebras do not necessarily commute. In addition, we
prove that in the category of commuting pairs of von Neumann algebras on separable H
spaces, where all three notions are applicable,C* -independence, strict locality, an
W* -independence are equivalent. This is precisely the setting most often met in applicati
quantum theory. Moreover, we shall furnish some new results about the notio
C* -independence in the product sense, show thatW* -independence is strictly weaker tha
W* -independence in the product sense, and close with some comments concerning the que
additional conditions sufficient to conclude the mutual commutativity of a pair ofC* -independent
algebras.

Throughout this paper a few assumptions will be made tacitly, since they obtain in
applications to theoretical physics known to us. All algebras are assumed to have identitie~rep-
resented by 1!, and subalgebras considered here will always contain the identity of the ori
algebra. The symbolB~H! will be used to denote the algebra of all bounded operators on
Hilbert spaceH. If A is a subset ofB~H!, thenA8 represents the von Neumann algebra of
elements ofB~H! which commute with every element ofA. If f is a state onC andA,C is
a subalgebra, then the restriction off toA will be represented byfuA. In addition, ifA andB
are twoC* -, resp.W* -, subalgebras, thenA~B will denote theC* -, resp.W* -, algebra they
generate.
0022-2488/97/38(3)/1318/11/$10.00
1318 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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II. STATISTICAL INDEPENDENCE

In quantum theory, observables~or effects! are represented by self-adjoint operators a
preparations by states on the*-algebra generated by the observables. Basic observables are
resented in algebraic quantum theory by positive, self-adjoint elements of aC* -algebra with norm
bounded by 1, of which projection operators~or decision effects! are only a special case. Mor
general observables are assembled from such basic observables, usually in the form of m
taking such operators as values, of which the projection-valued measures found in the s
theorem for normal operators are a special case~see, e.g., Refs. 10 and 11!. The probability of
measuring ‘‘yes’’ for the basic observableF after the preparation represented by the statef is
f(F), while the probability for measuring ‘‘no’’ under the same conditions isf~12F!.

In Ref. 12 Haag and Kastler introduced a notion they called statistical independence. IfA and
B represent the algebras generated by the observables associated with two quantum sub
the statistical independence ofA andB can be loosely construed as follows:any two partial
states on the two subsystems can be realized by thesamepreparation procedure~assuming that
arbitrary states on the algebra of observables for the entire quantum system can actu
prepared!; or equivalently, no choice of a state prepared on one subsystem can prevent the
ration of any state on the other subsystem. There are different mathematical formulations
notion. We begin with the most natural version in the category ofC* -algebras. At many points in
the sequel we shall utilize without further comment a basic fact aboutC* -algebras: IfaPC is any
spectral value of a self-adjoint elementA of aC* -algebraA, there exists a statef onA such that
f(A)5a; hence for any elementAPA there exists a statef onA such thatf(uAu)5iAi .

Definition: LetA andB be subalgebras of a C* -algebraC . The pair~A,B! is (orA and
B are) said to be C* -independent if for every statef1 onA and every statef2 onB there exists
a statef on C such thatfuA5f1 andfuB5f2.

The following characterization ofC* -independent pairs ofcommutingalgebras was proven b
Roos.13 The algebraic tensor product of twoC* -algebrasA andB is represented byA(B,
while the minimalC* -tensor product is denoted byA^B.

Theorem 1:13 Let A and B be commuting subalgebras of the C* -algebra C . Then the
following are equivalent.

~i! A andB are C* -independent.
~ii ! 0ÞAPA and0ÞBPB imply that ABÞ0.
~iii ! The maph : AB→A(B defined byh(AB)5A^B, APA, BPB is an isomorphism

continuous in the minimal C* -cross norm onA(B and can therefore be continuous
extended to a surjective homomorphismh̄:A~B→A^B.

~iv! For every statef1 onA and every statef2 onB there exists a statef on C such that
f(AB)5f1(A)f2(B)5f(A)f(B) for all APA and all BPB.

Condition ~ii ! in Theorem 1 is called the Schlieder property by algebraic quantum
theorists. We recall that Murray and von Neumann14 showed that ifA is a von Neumann facto
on a Hilbert spaceH, then the pair~A,A8! satisfies the Schlieder condition and is therefo
C* -independent. Statesf on C with the property thatf(AB)5f(A)f(B) for all APA and all
BPB are called product states. Roos’ theorem therefore establishes that forC* -independent pairs
~A,B!, arbitrary states onA andB can be simultaneously extended to aproduct state. This
suggests an alternative characterization ofC* -independent pairs of commuting algebras.

Proposition 2: IfA andB are commuting subalgebras of a C* -algebraC , then the following
are equivalent.

~i! ~A,B! is C* -independent.
~ii ! iABi5iAiiBi , for all APA and BPB.

Proof: ~i!⇒~ii !: By Roos,13 if ~A,B! is C* -independent, thenA andB are algebraically
J. Math. Phys., Vol. 38, No. 3, March 1997
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independent, so by Turumaru,15 the *-algebra generated byA andB is isomorphic toA(B.
Hence the norm onC induces aC* -norm a on A(B by a(( i51

n Ai ^Bi)5i( i51
n AiBi i . By

Corollary 11.3.10 in Ref. 16, everyC* -norm onA(B is a cross norm, i.e.,a(A^B)5iAiiBi
for all APA andBPB. Hence, assertion~ii ! follows.

~ii !⇒~i!: This condition trivially implies the Schlieder property and thus theC* -independence
of ~A,B!. h

However, the notion ofC* -independence as defined above is not restricted to commu
pairs ofC* -algebras, and it is of interest to master this notion also in the noncommuting
Note that ifA and B do not commute, we can appeal to none of the above-cited res
Nonetheless, one can still prove that conditions~i! and ~ii ! in Proposition 2 are equivalent. With
APA, s(A) will denote the spectrum ofA in A.

Proposition 3: IfA andB are (not necessarily commuting) subalgebras of a C* -algebraC ,
then the following are equivalent.

~i! ~A,B! is C* -independent.
~ii ! iABi5iAiiBi , for all APA and BPB.

Proof: ~i!⇒~ii !: Assume that~A,B! is C* -independent, and letAPA andBPB. The hy-
pothesis ofC* -independence implies the existence of a statef onA~B such thatf(uAu)5iAi
andf(uB* u)5iB* i . Then one observes that the Cauchy–Schwarz inequality implies

iAi25f~ uAu!2<f~1!f~ uAu2!<iuAu2i5iAi2.

In other words, one has the equalityf(uAu2)5iAi2. This entails that for anyCPA~B,

uf„~ uAu2iAi•1!C…u2<f„~ uAu2iAi•1!2…f~C*C!

5$f~ uAu2!22iAif~ uAu!1iAi2%f~C*C!50.

Hence one has f(uAuC)5iAif(C) for all CPA~B. Thus, it follows that
f(uAiB* u)5iAif(uB* u)5iAiiB* i . But this implies thatiuAiB* ui5iAiiBi . Repeatedly using
the fact thatiCi25iC*Ci , for anyCPC , one can therefore conclude that

iABi5iB*A*ABi1/25iB* uAu2Bi1/25iuAuBi5iuAuB~ uAuB!* i1/25iuAiB* u2uAui1/25iuAiB* ui

5iAiiB* i5iAiiBi .

~ii !⇒~i!: Assume thatiABi5iAiiBi , for all APA and BPB. Let A5A*PA and
B5B*PB be arbitrary. The first step is to show that for anylP@min s(A),maxs(A)# and any
mP@min s(B),maxs(B)#, there exists a statef on C such thatf(A)5l andf(B)5m. Assume
without loss of generality~by adding suitable multiples of the identity toA andB! that A>0,
0Ps(A), B>0, and 0Ps(B). By taking suitable convex combinations of states, it will also suffi
to takel5iAi andm5iBi .

There exists a statef on C with

f„~A1/2B1/2!*A1/2B1/2
…5iA1/2B1/2i25~ iA1/2iiB1/2i !25iAiiBi ,

where the second equality uses the hypothesis and the third standard properties ofC* -norms.
Squaring both sides of this equality, the Cauchy–Schwarz inequality then entails that one
J. Math. Phys., Vol. 38, No. 3, March 1997
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iAi2iBi25f„~A1/2B1/2!*A1/2B1/2
…

25f„~B1/2AB1/4!B1/4
…

2<f~B1/2AB1/2AB1/2!f~B1/2!

<iAi2iBi3/2f~B1/2!<iAi2iBi2. ~1!

But this entailsf(B1/2)5iB1/2i , and squaring the above inequalities also yieldsf(B)5iBi , since
f(1•B1/2)2<f(B). Moreover,

uf„~ iBi1/2•12B1/2!C…u2<f~~ iBi1/2•12B1/2!2!f~C*C!

5f~ iBi•122iBi1/2B1/21B!f~C*C!50,

for arbitrary CPC , which entails f(B1/2C)5iBi1/2f(C). Similarly, one also has
f(CB1/2)5iBi1/2f(C). One therefore observes from~1! that

iAiiBi5f~B1/2AB1/2!5iBif~A!<iAiiBi ,

so thatf(A)5iAi andf(B)5iBi .
As the next step, consider, for fixedB5B*PB andmP@min s(B), maxs(B)#, the set of

states@S ~A! represents the set of all states on the algebraA#

V [$cPS ~A!uc5fuA, for fPS ~C ! with f~B!5m%.

Due to the weak*-compactness ofS ~C !, every net of statesfn onC whose restrictions toA are
Cauchy in the weak*-topology and satisfyfn(B)5m has a convergent subnet, the limit of whic
when restricted toA is an element ofV . Hence,V is weak*-closed and convex. If there exist
an elementjPS ~A! which is not contained inV , then, by the Hahn–Banach Theorem, the
exists a self-adjoint elementAPA such thatj(A)Þc(A) for all cPV . But this contradicts the
first step of this proof, since, necessarily,j(A)P@min s(A),maxs(A)#. Hence, one must hav
V 5S ~A!.

Now, for a fixedwPS ~A!, define

V 8[$cPS ~B!uc5fuB, for fPS ~C ! with fuA5w%.

Once again,V 8 is weak*-closed and convex, and, as above, ifS ~B!ÞV 8, then there must exis
a self-adjointBPB and a statec0PS ~B! such thatc0(B)Þc(B) for all cPV 8. This, however,
is excluded by the second step of this proof. The stated conclusion now follows easily.h

If we have subalgebras of aW* -algebra, which are replete with projections, indeed
generated by their projections, then we can establish the following equivalences. We denote
of all projections of an algebraA by Proj~A!.

Proposition 4: LetA andB be (not necessarily commuting) subalgebras of a W* -algebraC .
The following are equivalent.

~i! ~A,B! is C* -independent.
~ii ! For any nontrivial projections PPA, QPB, andl,mP[0,1], there exists a statef on C

such thatf(P)5l andf(Q)5m.
~iii ! For any nonzero projection PPA and every statew onB, there exists a statef onC such

that f(P)51 andfuB5w.

Proof: The implication~i!⇒~iii ! is trivial. To see the validity of the implication~iii !⇒~ii !,
simply choose statesf0,f1 onC such thatf0(12P)515f1(P) andf0(Q)5m5f1(Q). Then
setf5~12l!f01lf1.

Hence, proof of the implication~ii !⇒~i! will suffice to verify Proposition 4. Note that choos
ing l5m51, the resulting equalitiesf(P)515f(Q) entail

iPQi>uf~PQ!u5uf~Q!2f~~12P!Q!u>12f~12P!1/2f~Q!1/251,
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



n
l

f. 4 for

t

as

r of
the

ually

ive

the

1322 M. Florig and S. J. Summers: Statistical independence of observable algebras

¬¬¬¬¬¬¬¬¬¬
and therefore one hasiPQi51 for any choice of nontrivial projectionsPPProj~A! and
QPProj~B!.

Let AÞ0ÞB with APA andBPB. By considering the spectral projections ofuAu and uB* u,
one can conclude that for any sufficiently smalle.0 there exist nonzero projectionsRPProj~A!
andSPProj~B! such that

R<~ iAi22e!21A*A and S<~ iBi22e!21BB* .

Then one has

15iRSi5iS*R*RSi1/25iSRSi1/2<~ iAi22e!21/2iSA*ASi1/25~ iAi22e!21/2iASi

5~ iAi22e!21/2iASA* i1/2<~ iAi22e!21/2~ iBi22e!21/2iABB*A* i1/2

5~ iAi22e!21/2~ iBi22e!21/2iABi .

But this entailsiABi5iAiiBi , and appeal to Proposition 3 completes the proof. h

Of course, this argument is also valid for thoseC* -algebrasC which are notW* -algebras but
which are generated by their projections—each self-adjoint element ofC has a spectral resolutio
in C ~and there do exist such algebras—see Refs. 17 and 18!. A natural formulation of statistica
independence in the category ofW* -algebras is discussed next.

Definition: LetA andB be subalgebras of a W* -algebraC . The pair~A,B! is (orA and
B are) said to be W* -independent if for every normal statef1 onA and every normal statef2

onB there exists a normal statef on C such thatfuA5f1 andfuB5f2.
There are some related and strictly stronger conditions in use in the literature—see Re

an overview. In particular, in the light of Roos’ product state characterization ofC* -independence
of commuting subalgebras, it would be natural to ask if the same is true ofW* -independence. This
is, however, not the case. In fact, if the normal extensionf in the above definition is a produc
state over the commuting pair~A,B!, then ~if f has central support 1 inA∨B! A∨B is

isomorphic to the~unique! W* -productA^̄B.19,20This property was calledW* -independence in
the product sense in Ref. 4. We shall see below thatW* -independence of commuting subalgebr
is strictly weaker thanW* -independence in the product sense.

And of course the notion ofC* -independence is also applicable to this setting of a pai
subalgebras of aW* -algebra. It was established in Corollary 3.5 of Ref. 4 that
W* -independence of commuting subalgebras of aW* -algebraC implies that they are also
C* -independent.~It shall be shown below that this is also true if the subalgebras do not mut
commute.! Here we wish to show that these properties are actually equivalent ifC can be realized
as a von Neumann algebra on a separable Hilbert space, in other words, ifC is s-finite. ~The term
countably decomposable is used synonymously in the literature.! We prepare the way with the
following technical remark, which we shall use more than once in the sequel.

Lemma 5: LetA be a von Neumann algebra on a Hilbert spaceH, and letVPH be an
arbitrary nonzero vector. Letv be the functional defined onA byv(A)5(V,AV) for all APA.
Then for any linear functionalf onA such that0<f<cv, for some positive real c, there exists
a positive element A8PA8 such thatf(A)5v(A8A)5(A81/2V,AA81/2V) for all APA. More-
over, for any positive element A8PA8, the linear functional defined by
f(A)[v(A8A)5(A81/2V,AA81/2V) for all APA is positive and satisfiesf<iA8iv.

Proof: Let f be a linear functional onA such that 0<f<cv, for some positive realc, and
let P8PA8 be the projection onto the closure ofAV. Moreover, let~Hv ,pv ,V! be the GNS
representation of~A,v!. According to Theorem 29.2 in Ref. 21, there exists a posit
TPpv~A!85~AP8!85~A8!P8 such that f(A)5v(TA) for all APA. This entails that
T5P8A18P8uP8H for some positiveA18PA8, so, in fact, one hasf(A)5v(P8A18P8A) for all
APA. The desired element is thereforeA85P8A18P8. The second assertion is demonstrated in
proof of Theorem 29.2 in Ref. 21. h
J. Math. Phys., Vol. 38, No. 3, March 1997
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The next step is an alternative characterization ofW* -independent subalgebras of
W* -algebra.

Lemma 6: LetA andB be (not necessarily commuting) subalgebras of a W* -algebraC
acting on a Hilbert spaceH. The following are equivalent.

~i! ~A,B! is W* -independent.
~ii ! For any nonzero vectorsF, CPH, there exist A8PA8 and B8PB8 such that

A8F5B8CÞ0.

Proof: ~i!⇒~ii !: Without loss of generality one may assumeiFi5iCi51, and letf andc be
the corresponding normal states onA and B, respectively, i.e.,f(A)5~f,Af! and c(B)
5(C,BC) for all APA andBPB. By assumption, there exists a normal statev onC such that
vuA5f and vuB5c. Choose a suitable nonzeroJPH such that the corresponding positiv
linear functionalj on C , defined byj(C)5(J,CJ) for all CPC , satisfies the inequalityj<v.
By Lemma 5 there exist positive elementsA18PA8 and B18PB8 such that
j(A)5f(A18A)5(A18

1/2F,AA18
1/2F) and j(B)5c(B18B)5(B18

1/2C,BB18
1/2C) for all APA and

BPB. Let P,QPA8 be the projections onto the closures ofAA18
1/2F andAJ, respectively.

Since the GNS representation induced by a state is unique up to unitary equivalence, ther
a partial isometryU5QUPPB~H! such thatUA18

1/2F5J, U*U5P, UU*5Q, and

AÃJ5UAÃA1
1/2F5UAPÃA1

1/2F5UAU*UÃA1
1/2F5~UAU* !ÃJ,

for all A,ÃPA. One concludesU*A5AU* , in other words, one hasUPA8. Similarly, one
obtains the existence of a partial isometryVPB8 such thatVB18

1/2C5J5UA18
1/2F. So

A8[UA18
1/2 andB8[VB18

1/2 are the desired elements.
~ii !⇒~i!: Let f andc be normal states onA andB, respectively. Consider the set

U[H $wa%U(
a

waPC * ,wa>0,S (
a

waUAD<f,S (
a

waUB D<cJ ,
which can be partially ordered by set inclusion. It will be shown that an arbitrary linearly ord
subset$G b5$wauaPF b%% of U has an upper bound inU. ~Note that for arbitrary indicesb1 and
b2 entering into this linearly ordered subset, one must have eitherF b1

,F b2
or F b2

,F b1
.! For

any nPN there exists only a finite number of stateswaPøbG b satisfying wa~1!.1/n, since
otherwise there would exist ab0 with (aPF b0

wa(1).15f(1). Hence, the set$wauaPøbF b% is

countable. Buti(a5n
m wai5(a5n

m wa(1) and(a<nwa~1!<1 then imply the norm convergence o
(awa , and also the normality of the limit, sinceC

*
is norm-closed. Therefore,$wauaPøbF b% is

an element ofU and an upper bound for$G b5$wauaPF b%% in U. One may now employ Zorn’s
Lemma to conclude the existence of a maximal element$xa% inU. Let x[(axa . By construction,
x is a normal positive linear functional onC whose restriction toA, resp.B, is bounded byf,
resp.c.

Assume thatxuA,f andxuB,c. The normality off2xuA.0, resp.c2xuB.0, entails the
existence of a nonzero vectorJ1PH, resp.J2PH, such that the corresponding positive line
functionalvA , resp.vB , defined onA, resp.B, by vA(A)5(J1 ,AJ1) for all APA, resp.
vB(B)5(J2 ,BJ2) for all BPB, satisfies the inequalityvA1xuA<f, resp.vB1xuB<c. By
assumption, there existA8PA8 andB8PB8 such that 0ÞA8J15B8J2 . Define a positive linear
functional v on C by v(C)5(A8J1 ,CA8J1)5(B8J2 ,CB8J2) for all CPC . Then
v(A)5(A8*A8J1 ,AJ1), for all APA. From Lemma 5 one sees that this entails the inequa
vuA<iA8*A8ivA . Similarly, one proves thatvuB<iB8*B8ivB . Let m be the larger of the
numbersiA8*A8i , iB8*B8i . Then$xa%ø$cv% is an element ofU for any 0,c<1/m. Since$xa%
is countable, the maximality of$xa% is contradicted for some choice ofc as indicated~notev is
nonzero!.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Thus one can conclude that eitherxuA5f or xuB5c. Assume without loss of generality tha
the former obtains. Thenc>xuB andc~1!515f~1! imply the equalities

ic2~xuB!i5c~1!2~xuB!~1!5f~1!2~xuA!~1!50.
h

We need one more technical lemma.
Lemma 7: LetA be a von Neumann algebra in standard form on the Hilbert spaceH (in

other words,A has a cyclic and separating vectorVPH!. Then for every nonzero vectorFPH
there exist elements APA and A8PA8 such that A8F5AVÞ0.

Proof: Consider the linear forml onA8 defined byl (A8)5(V,A8F) for A8PA8. SinceV
is cyclic with respect toA8, the linear functionall is nonzero. From the polar decomposition
normal functionals~see, e.g., Theorem III.4.2 of Ref. 22! one may conclude the existence of
partial isometryU8PA8 such that the functional onA8 given by (V,A8U8F)5(A8*V,U8F) is
positive onA8 and nontrivial. By Prop. 2.5.27~1! of Ref. 23 there exists a positive, self-adjoi
operatorQ affiliated withA such thatU8F5QV.

So consider the positive linear functional onA defined by this vector:
(U8F,AU8F)5(QV,AQV) for all APA. By Theorem 2.5.31 in Ref. 23, this normal positiv
linear functional is implemented onA by a ~unique! vector J in the natural positive cone
associated to~A,V!, i.e., (U8F,AU8F)5(QV,AQV)5(J,AJ) for all APA. As in the proof
of Lemma 6, since the corresponding GNS representation is unique up to unitary equiva
there exists a partial isometryV8PA8 such thatV8U8F5V8QV5J is contained in the natura
positive cone associated to~A,V! and such thatV8*V8QV5QV. Then since the modular con
jugation J associated with~A,V! leaves the natural positive cone pointwise invariant one
V8U8F5JV8U8F5JV8QV5(JV8J)(JQJ)V.

By Lemma 2.5.8 in Ref. 23 one can choose a suitable spectral projectionP8PA8 of the
self-adjointJQJ ~which is affiliated withA8! such thatP8(JQJ)PA8 andP8(JQJ)VÞ0. Hence
one sees thatP8V8U8F5P8(JV8J)(JQJ)V5(JV8J)(P8(JQJ))V5JV8(JP8J)QVÞ0, utiliz-
ing the facts thatJV8JPA and V8:AQV°AJ is bijective. Using this vector to induce
normal positive linear functional onA, the same argument again implies the existence of a pa
isometryW8PA8 such that 0ÞW8P8V8U8F is contained in the natural positive cone. Hence o
finds

0ÞW8P8V8U8F5JW8~P8V8U8F!5JW8~JV8J!P8~JQJ!V5V8~JW8J!~JP8J!QV,

sinceJW8JPA. Noting that (JW8J)(JP8J)QVPAQV, one therefore has

0ÞV8*W8P8V8U8F5V8*V8~JW8J!~JP8J!QV5~JW8J!~JP8J!V8*V8QV

5~JW8J!~JP8J!QV.

The claim then follows after noting thatA8[V8*W8P8V8U8PA8 and A[(JW8J) (JP8J)Q
5(JW8J)J(P8JQJ)JPA. h

We may now prove thatC* - andW* -independence are equivalent in a context which ari
quite commonly in quantum physics. In particular, the hypothesis of the next proposition ob
whenA andB are commuting von Neumann algebras acting on a separable Hilbert spacH.

Proposition 8: LetA andB be commuting subalgebras of as-finite W* -algebraC . The
following are equivalent.

~i! ~A,B! is C* -independent.
~ii ! ~A,B! is W* -independent.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: The implication ~ii !⇒~i! was proven in Corollary 3.5 in Ref. 4. So let~A,B! be
C* -independent.C can be realized as a von Neumann algebra in standard form on a Hilbert
H ~see, e.g., Prop. 2.5.6 in Ref. 23!. LetVPH be the corresponding cyclic and separating vec
In addition, letP8PA8 be the projection onto the closure ofAV. SinceV is separating forA,
the von Neumann algebraAP8 is isomorphic toA. Hence, one may consider normal states
AP8 without loss of generality. Similarly, one may consider normal states onBQ8, whereQ8PB8
is the projection onto the closure ofBV. Note thatAP8, resp.BQ8, hasV as a cyclic and
separating vector in the Hilbert spaceP8H, resp.Q8H. Since every normal positive linea
functional on a von Neumann algebra in standard form can be realized as the vector fun
induced by a vector in the natural positive cone of the algebra~see, e.g., Theorem 2.5.31 in Re
23!, it is no loss of generality to take the nonzero vectorF, resp.C, in Lemma 6 to lie inP8H,
resp.Q8H.

In the one case, Lemma 7 entails the existence ofAPA and A85P8A8P8PA8 with
0ÞAV5P8AP8V5P8A8P8F5A8F, with similar results in the other case. So consider
vectors 0ÞAV5A8f in the one case and 0ÞBV5B8C, for someBPB andB8PB8, in the
other. SinceAÞ0ÞB, the hypothesis and the equivalence ofC* -independence with the Schliede
property entail thatABÞ0. But then, sinceC 8V5H, there exists an elementC8PC 8 such that
ABC8VÞ0. Then BC8A8F5BC8AV5ABC8V5AC8BV5AC8B8CÞ0 and BC8A8PA8
with AC8B8PB8 complete the proof, by Lemma 6. h

A further notion of statistical independence suitable for the category ofW* -algebras is called
strict locality and was introduced in Ref. 24 on physical grounds~see also Ref. 25 for an earlie
version!.

Definition: Let ~A,B! be an ordered pair of subalgebras of the W* -algebraC . ~A,B! is
said to be strictly local if for any nonzero projection PPA and any statewPB

*
there exists a

statefP~A~B!
*
such thatf(P)51 andfuB5w.

InterpretingPPProj~A! as a decision effect, we see that if the pair~A,B! is strictly local, no
preparation on subsystemB can exclude the occurrence of any probability thatP is true in
subsystemA. Indeed, for 12PPProj~A! there also exists a statef̃P~A~B!

*
such that

f̃ uB5w and f̃(12P)51. Hence for anylP@0,1# the statefl[lf1~12l!f̃ satisfiesfluB5w
andfl(P)5l. See Refs. 4 and 24 for a further discussion of this property.

It is obvious that if~A,B! isW* -independent, then it is also strictly local. It was shown
Ref. 4 that the strict locality of a pair ofcommutingsubalgebras of aW* -algebra implies the
C* -independence of the pair. Here we show that, in fact, the converse is also true. Hence,
for commuting pairs ofW* -subalgebras, if~A,B! is strictly local, then~B,A! is also strictly
local.

Proposition 9: LetA andB be commuting subalgebras of a W* -algebraC . The pair~A,B!
is strictly local if and only if it is C* -independent.

Proof: The implication ⇒ was proven in Prop. 4.2 in Ref. 4. So let~A,B! be
C* -independent, and letPPA be a nonzero projection andwPB

*
be a state. Moreover, letC be

realized as a von Neumann algebra acting upon a Hilbert spaceH. Since by assumption one ha
PPB8, the canonical* -homomorphismt :B°BP5PBPuPH given by t(B)5PBP5BP is
well defined, and by the Schlieder property is a*-isomorphism onto a von Neumann algebra.t is
therefores-weakly bicontinuous, so thatw +t21 is a normal state ont(B). There must therefore
exist a density matrixr on H such that r5PrP implements the statew +t21. Hence,
f(C)[tr(rC) defines a normal state onC satisfyingf(P)51 and

f~B!5f~BP!5tr~rBP!5~w+t21!„t~B!…5w~B!,

for anyBPB. h

We note that strict locality impliesC* -independence even if the pair of subalgebras of
W* -algebraC does not necessarily commute.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Corollary 10: LetA andB be (not necessarily commuting) subalgebras of a W* -algebraC .
If ~A,B! is strictly local, then it is also C* -independent.

Proof: Observe that the argument~iii !⇒~ii !⇒~i! in the proof of Proposition 4 is also valid i
the states in~iii ! and ~ii ! are required to be normal. h

We have therefore proven the following theorem, establishing the equivalence of three
dard notions of statistical independence in a context where they can be compared and
commonly occurs in physical applications, and providing alternative characterizations of
properties. However, as shown in Ref. 4 there are other versions of statistical independence
are not equivalent to these.

Theorem 11: LetA andB be commuting subalgebras of as-finite W* -algebra C . The
following are equivalent.

~i! ~A,B! is C* -independent.
~ii ! ~A,B! is strictly local.
~iii ! ~A,B! is W* -independent.
~iv! For every statef1 onA and every statef2 onB there exists a statef on C such that

f(AB)5f1(A)f2(B) for all APA and all BPB.
~v! iABi5iAiiBi , for all APA and BPB.
~vi! 0ÞAPA and0ÞBPB imply that ABÞ0.
~vii ! The maph : AB→A(B defined byh(AB)5A^B, APA, BPB is an isomorphism

continuous in the minimal C* -cross norm onA(B and can therefore be continuous
extended to a surjective homomorphismh̄: A~B→A^B.

~viii ! For any nonzero vectorsF,CPH, there exist A8PA8 and B8PB8 such that
A8F5B8CÞ0.

~ix! For any nontrivial projections PPA, QPB, andl,mP@0, 1#, there exists a statef on C
such thatf(P)5l andf(Q)5m.

~x! For any nonzero projection PPA and every statew onB, there exists a statef onC such
that f(P)51 andfuB5w.

We note, in particular, that it follows that the algebras of observables associated to co
mentary wedges in irreducible vacuum representations in quantum field theory
W* -independent. Hence, such pairs of algebras areW* -independent, but notW* -independent in
the product sense. It was previously known that they wereC* -independent and strictly local, bu
this is the first proof that they are alsoW* -independent. Such tangent wedge algebras pro
examples of algebras of observables satisfyingW* -independence but still maximally violatin
Bell’s inequalities in every normal state~see Refs. 4, 26, and 27 for further explanation!.

These examples therefore demonstrate thatW* -independence is strictly weaker tha
W* -independence in the product sense. Without using the rather involved arguments conc
Bell’s inequalities, we point out also that ifA is a type III factor acting on a separable Hilbe
space, then~A,A8! is aC* -independent, henceW* -independent, pair ofW* -algebras which is
notW* -independent in the product sense. It is remarkable that for such pairs all normal p
states have normal extensions,noneof which is allowed to be a product state, and also all par
states have extensions to product states,noneof which can be normal.

It was pointed out in Ref. 4 that a property called thereC* -independence in the product sens
namely the property thatA~B is isomorphic to the minimalC* -productA^B, is strictly
stronger thanC* -independence. We present some further results concerning this notion. W
show that the existence of a faithful product state over the pair~A,B! implies that~A,B! is
C* -independent in the product sense.

Proposition 12: LetA andB be commuting subalgebras of a C* -algebraC . If for some
statef1 on A and some statef2 on B there exists a faithful statef on A~B such that
f(AB)5f1(A)f2(B) for all APA and BPB, then ~A,B! is C* -independent in the produc
sense.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: For any statesf1 on A and f2 on B there exists a statec on A^B such that
c(A^B)5f1(A)f2(B)5f(AB) for all APA andBPB. It was shown in Corollary 3.3 in Ref
4 that the existence of a faithful product state implies that the pair~A,B! is C* -independent.
Hence, using the maph̄:A~B→A^B from Theorem 1~or Theorem 11! above, one has
c+h̄(AB)5c(A^B)5f(AB). The faithfulness off entails thath̄ is an isomorphism. h

It is next shown that in the context most commonly met in quantum theory, the conver
Proposition 12 is also true.

Proposition 13: LetA and B be commuting C* -algebras acting on a separable Hilber
spaceH. If ~A,B! is C* -independent in the product sense, then there exists a faithful pro
statef onA~B.

Proof: Assume thatA~B is isomorphic toA^B. By Prop. II.3.19 in Ref. 22 there ar

faithful normal states onA9 andB9. The corresponding product state onA9^̄B9 is also faithful

~Corollary IV.5.12 in Ref. 22!. SinceA^B is isomorphic to a subalgebra ofA9^̄B9 and, by
assumption,A~B is itself isomorphic toA^B, the assertion follows. h

We comment that ifA is a hyperfinite type III factor, then the pair~A,A8! is
C* -independent in the product sense~sinceA is semidiscrete!, but it is notW* -independent in the
product sense. On the other hand,W* -independence in the product sense impl
C* -independence in the product sense.4

III. REMARKS ON STATISTICAL AND KINEMATICAL INDEPENDENCE

As mentioned earlier, the various notions of the statistical independence of the pair~A,B! are
logically independent of the requirement that the algebrasA andB commute elementwise, which
was called kinematical independence in Ref. 4. In Ref. 4 a conjecture due to Werner was me
tioned: if there exists a faithful product state across theC* -independent pair~A,B!, thenA and
B commute. The following example shows that this conjecture is false. Consider the proje
E andF onH5C6:

E5S 1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

D , F5S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

D .

The operatorsE and F clearly do not commute, so the algebras,A andB, they respectively
generate do not commute. Moreover, any state onA, resp.B, is uniquely determined by its valu
on E, resp.F. Noting that any such value must lie between 0 and 1, if we takea[f1(E) and
b[f2(F), then the following matrix,

r51
a(b1b2)

2
0 0 0 0 0

0
(12a)(b1b2)

2
0 0 0 0

0 0
a~223b1b2!

2
0 0 0

0 0 0
~12a!~223b1b2!

2
0 0

0 0 0 0 a~b2b2! 0

0 0 0 0 0 ~12a!~b2b2!

2 ,
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is a density matrix determining a state onC which is a common extension of the statesf1 andf2.
HenceA andB areC* -independent. Moreover, this state is a faithful product state as long af1
andf2 are chosen so thatf1(E),f2(F)¹$0,1%.

Some conditions sufficient forC* -independence of~A,B! to imply thatA andB commute
were proven in Refs. 6 and 8. These conditions are fairly unmanageable, and we would
emphasize that it would be of interest to find more useful sufficient conditions. We point
however, that in the light of Proposition 2, this is not obvious, since ifP andQ are projections on
a Hilbert spaceH of at least six dimensions such that the restriction ofP to a four-dimensional
subspaceK is diagonal with entries 1,1,0,0, say, and the restriction ofQ to the same subspace
diagonal with entries 1,0,1,0, then the algebras respectively generated by these projecti
C* -independent no matter what the projectionsP andQ are doing on the orthogonal compleme
of K in H.
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Geometries of relativistic strings and other p -branes
Bjo”rn Jensena)
Institute of Physics, University of Oslo, P.O. Box 1048, N-0316 Blindern, Oslo 3, Norway
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We discuss the geometric structure outside an infinitely long and straight relativis-
tic bosonic string in various space–time dimensions. This structure should, in par-
ticular, be a good model for the geometry outside a gauge cosmic string in four
dimensions. We study a new such geometry in some depth. A discussion of a
possible internal geometry of a gauge cosmic string is also given. We show that
space–time is flat outside a relativistic string only in four space–time dimensions.
This is connected to the lack of a proper Newtonian limit of Einstein’s theory inside
any source for the string geometry in four dimensions. On this background we
discuss some features of the geometries induced by otherp-branes in various di-
mensions. We also provide a study of the creation of a gauge cosmic string in the
full Einstein theory in four dimensions, with results that differ considerably from
similar earlier considerations. ©1997 American Institute of Physics.
@S0022-2488~97!02003-3#

I. INTRODUCTION

Relativistic string theory is interesting from many perspectives. Viewed as fundamenta
croscopic entities, relativistic strings may give a unified description of the basic physical in
tions of, and in, the physical world. These strings can also attain macroscopic size, and ma
be of importance for the development of various structures in the universe. In this paper w
be concerned with strings that only interact with the rest of the universe in the graviton s
gravitating strings. In their ‘‘macroscopic state,’’ the fundamental strings are closely relat
strings in the form of topological defects, cosmic strings. In the early universe a number of
transitions may have taken place. These transitions have probably produced two different k
cosmic strings, global and gauge cosmic strings. It is the gauge cosmic strings that corre
most closely to gravitating strings, and we will therefore concentrate on these strings whene
explicitly discuss cosmic strings.

A new metric describing the geometry outside an infinitely long and straight open relati
bosonic string in four dimensions was briefly presented in Ref. 1. The purpose of this work
present this geometry in greater detail, as well as to present new results on the nature
gravitational field generated by such a string. This paper is therefore organized as follows.
next section we give a very brief reminder of some of the theory for open bosonic strings,
is relevant for our studies, and its connection to cosmic string physics. In Sec. III we go
consider the gravitational field outside a static string in four space–time dimensions. In
section, we also present a possible internal geometry of a gauge cosmic string, we elaborat
mass measure of such a string, and we discuss the character of the Euler class of th
geometry. We show, in particular, that the Hamiltonian energy is not, in general, simply a li
ized Tolman energy, as has previously been argued in Ref. 2. In the following section we co
our findings about the geometry induced by a relativistic string, to the geometric structure
outside a point particle in Einstein theory in 211 dimensions, as well as to the geometries induc
by variousp-branes in higher dimensions. This discussion is, in particular, linked to the diffi
ties connected with the definition of a proper Newtonian limit of the gravitational field gene

a!Electronic address: BJensen@boson.uio.no
0022-2488/97/38(3)/1329/18/$10.00
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by a relativistic string. In Sec. V we show that the string geometry in some sense is repulsive
is followed by a study of the creation of a straight relativistic string in four-dimensional Eins
theory. Our results differ considerably from similar earlier studies. In the final section we
marize, and discuss some of our findings.

II. OPEN BOSONIC STRINGS

The action that describes an open relativistic bosonic string in curved space–time is giv

S52
m0

2 E d2sA2h]aX
m ]aXm , ~1!

[2
m0

2 E d2sA2hhabgmn ]aX
m ]bX

n, ~2!

where hab5hab(t,s) is the world sheet metric,Xm5Xm(t,s) the target space coordinate
gmn5gmn(X

m) the target space geometry, and the pair~t,s! represents the world sheet coord
nates. We will taket to represent the intrinsic time coordinate on the world sheet. The scalam0
represents the energy density in the string, as measured by a local observer, i.e., relative to
viel-bein that is ‘‘soldered’’ to the string. A fundamental assumption in open string theory is
no point on the string is different from any other point, except for the end points of the string.
implies, in particular, that the world sheet geometry can be made invariant under global ‘‘b
transformations. Hence, we can writehab5Lhab , wherehab is the two-dimensional Minkowsk
metric andL is an arbitrary function of the world sheet coordinates, and possibly the factom0.
We will be concerned with a straight, and~at first! time-independent string. This means,
particular, that it is natural to orient the global coordinate systemXm in such a way thatt coincides
with the target space–time coordinatet, ands with the spatial target space coordinate along
string z. In this picture it is further natural to demand thathab is the geometry induced on th
world sheet by the space–time metricgmn , or equivalently thatgtt andgzz is determined by the
properties ofhab . Whenhab is looked upon as an independent field, this relation betweenhab and
gmn does also follow from the equations of motion for the world sheet geom
hab5]aX

m ]bX
ngmn . To conform with the picture of an infinitely long, and straight string w

demand manifest Poincare´ invariance on the world sheet. This will further restrictL to a
coordinate-independent function, i.e.,L05L0~m0!. Since hab5L0hab , we have h52L0

2,
hab5L0

21hab, which means that the action can be written on the ‘‘standard’’ form

S52
m0

2 E d2s habgmn ]aX
m ]bX

n. ~3!

Note that this last step is only valid providedL0 is nonsingular. This is not always the case, as
will see below.

A gauge cosmic string is described by the combined Einstein, Higgs, and gauge field
tions. It is, in general, a formidable task to solve such a set of equations. However, with
accuracy the string can be modeled as an open bosonic string.3 We will take this point of view
here. This means, in particular, that the action is given byS. In flat space, or relative to a loca
viel-bein, it is easy to see thatS gives rise to an energy-momentum tensor, which is given b

Tŝ
r52m0d~rW !diag~1,0,1,0!, ~4!

where ˆ indicates an orthonormal frame. These simplifications do certainly hold to a high d
of approximation for most applications of cosmological interest, where the gravitational field
string is usually assumed to be weak~i.e.,m0!1. See Ref. 4 for references on solutions of the f
J. Math. Phys., Vol. 38, No. 3, March 1997
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Einstein–Higgs–gauge field equations.!. In the next section we will solve the full set of Einstein
vacuum field equations, with Eq.~4! representing the effective energy-momentum tensor o
string. The low-energy limit of this solution should then correspond to the geometry we e
will be induced by a realistic gauge cosmic string.

III. THE GEOMETRIES OF A STATIC STRING IN FOUR DIMENSIONS

The general form of the geometry of the vacuum outside cylinder symmetric sources
kind considered here can, by the use of the vacuum field equations, always be brought in the5

ds252e2a~r ! dt21r 2e22a~r ! df21e2b~r !22a~r !~dr21dz2!, ~5!

wherea(r ) andb(r ) are taken to be two independent real-valued functions of the radial co
nate. This class of geometries is known as the Weyl class of vacuum geometries.5 In earlier
derivations of the metric outside a gauge cosmic string, one has taken the Levi-Civita cl
solutions as the starting point.6,7 This class of geometries can be written as

ds252R2m dT21R22m
„R2m2

~dR21dZ2!1a2R2 df2
…, ~6!

where 0<f<2p, andm anda are two independent integration constants. When Lorentz inv
ance along thez direction ~i.e., along the string! is imposed on this metric, it follows thatm is
eitherm50, orm52. Notice that the string geometry is now controlled by a single parameter.
latter value leads to what is thought to be an unphysical geometry.6 The other geometry is flat, an
space-like slices at constantz positions differ from Minkowski space–time only in that a wedge
missing. Such a slice maps onto a cone when embedded into a three-dimensional Euclidea
However, this kind of derivation of the metric outside a gauge cosmic string presupposes a
on the ansatz for the metric field, which is somewhat more restrictive than the general Wey
of vacuum geometries.5 This is a potentially ‘‘dangerous’’ situation, since a choice of a m
specialized ansatz on the geometry may ‘‘hide’’ important information about the metric field
will show that this situation, in fact, occurs here by an explicit derivation of the string geom
starting from the most general metric ansatz, Eq.~5!.

When Lorentz invariance of the geometry equation~5! is assumed in thez direction, it follows
that the relationb52a is induced. Using this relation the field equations simplifies considera
and we are essentially left with

S 2a8

r
2~a8!2De22a50, ~7!

„2a91~a8!2…e22a50. ~8!

From these equations it follows that eithera(r );2 ln r , which leads to the pathological solutio
mentioned above, or elsea(r ) must equal a constant factora0. With the definitionD0 [ e2a0, the
resulting geometry can then be written in the form

ds25D0
22~2dt21dr21dz2!1r 2D0

2 df2. ~9!

The solution derived directly from the Levi-Civita form of the metric, can now be obtained f
the coordinate transformations

j5D0
21t, r5D0

21r , h5D0
21z, ~10!

when furthermorea2 in Eq. ~6! is identified withD0
4. WhenD0 is set equal to unity in Eq.~9! we

simply rederive the Minkowski metric. The entire geometry is again determined by only
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



l
d, an
et-
vari-
the
eter.

string
the

s
m
. The
ic

en a

an
t
ave a

er-

1332 Bjo”rn Jensen: Geometries of relativistic strings

¬¬¬¬¬¬¬¬¬¬
integration constant.@Note that this is true when the ansatz equation~5! is used. In the genera
nonvacuumsituation, when the most general ansatz for axial symmetric geometries is use
additional integration constant will appear.# In the current problem at hand, an additional geom
ric symmetry is imposed on the system in addition to cylinder symmetry, namely Lorentz in
ance along thez direction. This additional geometrical symmetry induces a relation between
two available integration constants, such that one effectively is left with only one free param
This parameter is, as we will see, uniquely determined by the properties of the source.

In order to interpret the constant factorD0, a source for the geometry equation~9! has to be
found. In Ref. 6 a solution that can be taken to represent the core region of a gauge cosmic
was derived in the$j,r,h,f%-coordinate system. The energy-momentum tensor was taken in
form of Eq.~4! ~we will return to this point later in this section!. It then follows that the geometry
in the exterior region can be written in the form

ds252dj21dr21dh21~124m0!
2r2 df2, ~11!

such thata5D0
25(124m0) @we note that Eq.~9! and Eq.~11! both represents ‘‘equally’’ valid

expressions for the geometry outside a static string, although Eq.~11! ‘‘hides’’ some essential
structure that is manifest in Eq.~9!#. A surprising property of the geometry in Eq.~9!, is seen when
m0 is assumed larger thanm05

1
4. In this parameter interval we haveD0

2,0, i.e.,D0 must be taken
to be a complex constant, and the simplest choice is to letD0 be purely imaginary. WhenD0

2

grows from positive values to negative values it is clear thatthe signature of the metric change.
The orientation of the manifold does also change. ThatD0 can take on complex values may see
to run counter to how this constant is defined above in terms of an exponential function
apparent problem lies in the assumption thata(r ) is a real-valued function. However, the metr
ansatz, Eq.~5!, can very well be expanded to include complex-valueda(r ) andb(r ) functions.
This enlarged class of geometries is probably part of the Lewis class of vacuum geometries.5 Note,
in particular, that the transformations Eq.~10!, are not defined whenm05

1
4.

It is interesting to notice that Eq.~9! can be written in the form

ds25D0
22~2dt21dr21dz21r 2D0

4 df2! ~12!

[gmn dx
m dxn[D0

22Gmn dx
m dxn. ~13!

This observation paves the way for a ‘‘complementary’’ picture of the interaction betwe
string, and its surroundings. We may write the string action in terms ofGmn ,

S52
m0

2D0
2 E d2s habGmn ]aX

m ]bX
n ~14!

[2
T

2 E d2s ]aX
m ]aXm , ~15!

whereT now can be interpreted as theeffective tensionof the string. In order to conform with a
more familiar terminology, we may callm0 the bare tension, while we may callT the dressed
tensionof the string. The string action, Eq.~1!, describes the interaction between a string and
external graviton bathgmn . Apparently, Eq.~1! and Eq.~15! therefore give rise to two differen
pictures of the string interaction with the external universe. We may say that we either h
string with bare tensionm0 interacting with a gravitational field in the form of Eq.~9!, or we may
say that the string carries a dressed tensionT, which encodes some of the string–graviton int
action, and interacts with a graviton bath represented by

ds252dt21dr21dz21D0
4r 2 df2 ~16!
J. Math. Phys., Vol. 38, No. 3, March 1997
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52dt21dr21dz21~114T!22r 2 df2, ~17!

where 0<T,`. This picture seems to resolve a curious property of the geometry equation~11! in
the usual interpretation of the string geometry. It is clear that asm→1

4 the angular part of the
geometry ‘‘collapses.’’ The problem is how this should be interpreted. In the standard theo
strings, no critical behavior of strings at zero temperature in the high tension regime is kn
However, the complementary picture seems to clarify and resolve this behavior, sinceT→1`
whenm0→1

4. Hence, the angular part ‘‘collapses’’ due to an infinite dressed tension in the s
It is satisfying to observe that the change in the signature of the geometry, which we noted
finds its ‘‘explanation’’ as due to a change in the sign ofT. Furthermore, in this picture it seem
that the geometry never can change signature in any situation since 0<T,`. The expression for
the string action equation~15! can also be derived by observing that the string action equation~1!
is invariant under the simultaneous target space conformal transformation, and rescaling
tension,

gmn→g̃mn5C0
2gmn , m0→T5

m0

C0
2 , ~18!

for some constant factorC0
2. ChoosingC05D0 in Eq. ~1! we derive Eq.~15!.

It is now of some interest to investigate a possible internal geometric structure of a c
string. To this end we choose the ansatz,

ds25e2C~2dt21dr21dz21A2e24C df2!, ~19!

for the interior geometry of a gauge cosmic string. This form on the geometry can alwa
obtained when we assume Poincare´ invariance in thez direction, combined with a suitable choic
of radial coordinate. BothC andA is assumed to be functions ofr only. The canonical vier-bein
is given by

v15eC dt, v25eC dr, v35eC dz, v45Ae2C df. ~20!

Relative to this basis the components of the Einstein tensor takes the form

G115e22CA21
„2A~C8!212C8A82A9…, ~21!

G225e22CA21
„2A~C8!212C8A8…, ~22!

G335e22CA21
„A~C8!222C8A81A9…, ~23!

G445e22C
„~C8!212C9…, ~24!

where we have defined8[]/]r . The energy-momentum tensor of the ‘‘matter’’ constituting t
string is taken on the ‘‘averaged’’ formTâb̂ 5 m diag(1,0,2 1,0) relative to the orthonormal fram
above, wherem is the constant energy density per unit length along the string. Imposing en
momentum conservationTâb̂;â 5 0 we learn thatC5const[C0. It is then easy to see from Ein
stein’s field equations that one possible solution forA is given by

A~r !5A0 sin kr, ~25!

wherek [ A8pmeC0 andA0
2e2C0 5 (8pm)21. In order to have an equal number of degrees

freedom in the interior and the exterior geometries, we will normalizeA0 to unity, i.e.,A0[1. We
may now transform to new coordinates (T,r,Z), given by
J. Math. Phys., Vol. 38, No. 3, March 1997
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T5e1C0t, r̃5e1C0r , Z5e1C0z, ~26!

such that the line element takes the form

ds252dT21dr̃ 21dZ21
1

8pm
sin2~A8pmr̃!df2. ~27!

A simple measure of the energy content per unit length along the stringmH is provided by~we will
return to this point later in this section!

mH5E
0

r̃0E
0

2p

dr̃ df mAgff ~28!

5 1
4 „12cos~A8pmr̃0!…. ~29!

We may use the Israel formalism for singular shells to match this interior solution to the ex
one that we deduced earlier in this paper. This can be achieved in a simple way when we d
the sametime coordinate, and the same coordinate along the string in both the interior, an
exterior geometries, i.e.,T5j andZ5h. From the condition that both the interior and the exter
geometries induce thesamegeometry on the matching surface, we find that

1

8pm
sin2~A8pmr̃0!5~124m0!

2r0
2. ~30!

From the natural condition that there is no energetic surface layer on the matching surfa
deduce the relation

~124m0!
25

1

118pmr0
2 . ~31!

It follows immediately from these relations thatm0 5 1/4„1 2 cos(A8pmr̃0)…. Hence we find that
mH5m0. It is also clear that we finde2C0 5 8pAm. Note that this matching breaks down whe
m051/4, since Eq.~31! no longer can be satisfied for finite values ofm and~or! r0. It is gratifying
to observe that the matching breaks down just when the transformation, Eq.~10!, is no longer
valid.

At this point we will digress to make some comments about some natural measures f
energy density in a string. Defining the mass of a gravitating configuration is difficult in ge
relativity. Due to the equivalence principle, it is not possible to unambiguously define a qu
that represents the density of gravitational energy, since it always can be transformed away
by choosing an appropriate frame. However, it is possible to define sensible quantities, whi
play the role as thetotal gravitating mass of a system, via a surface integral, provided tha
manifold displays appropriate geometric symmetries far from the source. There is consid
freedom in the choice of integrand when defining the total mass of a gravitating system. I
dimensions, considering isolated sources with a manifest asymptotic Minkowskian geo
structure, the ADM, or Hamiltonian, energy is of particular importance since this measure
sponds in a natural way to the mass measure in Newtonian gravitation theory in the wea
limit.8 This measure does also play a central role in the proofs of the stability of isolated so
in general relativity.9 It is also clear that the Hamiltonian energy coincides with the gravitatio
mass derived by Tolman,10 when spherically symmetric sources that generate asymp
Minkowskian structures is considered~this measure is often called the Killing energy in th
literature!. These mass measures depend in some sense on the existence of a well-define
tonian limit of the gravitating system, since the ADM and Tolman masses can be read off di
J. Math. Phys., Vol. 38, No. 3, March 1997
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from an 1/r expansion of the red shift field, whenr is an appropriate ‘‘radial’’ coordinate.8 A
position-independent red shift field does therefore seem to correspond to a source with zer
In the spherically symmetric situation this corresponds to empty Minkowski space–time.
ever, in the case of a relativistic string, this line of thinking seems to lead to a contradiction,
it apparently implies that a string, of the kind considered here, also carries a vanishing e
This we knowper seis ‘‘wrong’’ from our earlier considerations in Sec. II. Claiming the vanis
ing of the string mass is also highly problematic from the potentially observable fact that
though space–time is flat outside a string, and hence signaling a zero energy source, it do
rise to a residual gravitational ‘‘force’’ on test particles~e.g., bending of light rays!. The reason for
these problems lies in the obvious breakdown of the ‘‘usual’’ correspondence between
energy, and nonvanishing intrinsic space–time curvature. Hence, the gravitational field gen
by a string is very interesting from a theoretical point of view. It is therefore of principal inte
to compare different mass measures for this space–time.

To this end, let us make a 311 split of space–time, and choose a time-like vector fieldtW with
the particular decompositiontW5NeW01NW . N is the lapse function andNW the shift-vector field.
When we choosetW in such a way that the shift-vector field vanishes, it follows that a Hamilton
energy measure is given by11

E52
1

8p E
S`
N~2K22K0!, ~32!

whereS` is an appropriate space-like surface very far from the source.2K is the trace of the
extrinsic curvature ofS` in the actual space–time, while2K0 is the trace of the correspondin
extrinsic curvature tensor in the reference space–time. This energy coincides with the
measure in the case of asymptotically Minkowskian, and spherically symmetric solutions. L
reference space–time be flat Minkowski space–time. Since this geometry has a vanishing
it follows from the above that the Hamiltonian energy per unit length along the string,ET , is given
by

ET5 1
4„12~124mH!…5mH~5m0!, ~33!

in nice correspondence with the general theory in the second part of this paper. It is very
esting to compare this Hamiltonian energy with the Killing energy measure. Given a K
vector fieldjWA we can construct the conserved quantity

PA5E
S
jA

m;n
;nnm dD21S52E

S
Rm

njA
nnm dD21S, ~34!

wherenW is a unit vector orthogonal to the space-like surfaceS, in D space–time dimensions. B
the use of the field equations we find

PA52kE
S
S Tm

n2
1

~D22!
dm

nTD jA
nnm dD21S. ~35!

WhenjWA is a normalized time-like Killing vector, it follows that the Killing mass per unit leng
along the stringEK equals

EK5E ~2Ttt1Ti i !Aqd2x ~ iÞt !. ~36!

In the case of a gauge cosmic string we find thatEK50. We do therefore conclude that the Killin
measure seems intrinsically ‘‘sick’’ when applied to a structure like the relativistic string, i.e.,
J. Math. Phys., Vol. 38, No. 3, March 1997
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not able to account for the nature of the gravitational field outside, or even inside, the string
is an interesting observation, since the view has been raised in the literature that the Hami
energy measure simply represents a linearization of the Killing energy measure.2 This picture is
obviously too simplistic in the general situation.

Since space–time outside a string has trivial local intrinsic geometric properties, it is of
interest to see whether the global features of this geometry can be captured by turnin
topological characterization of it. In Refs. 4, 12, 13 a version of the Gauss–Bonnet theorem
utilized in order to argue that the Euler class is proportional to the angle deficit induced b
string. In the rest of this section we will discuss the Euler class in the context of the s
geometry, as it has been developed up to this point. We will show that the result concerni
Euler class found in Refs. 4, 12, 13 is somewhat problematic.

The Euler classx of a compactand two-dimensionalmanifold M with boundary]M is
defined by14,15

2px5
1

2 E
M
d2xAgR2E

]M
AgK. ~37!

In the works of Refs. 4, 12, 13 the last boundary term was left out of the discussion. We will
on the Euler class for the two-dimensional submanifold defined byT5const andZ5const. Let us
first assume thatm0,1/4, so that the matching of the internal to the external geometry is via
Place the boundary]M in the exterior geometry at a position defined by some constant ra
r5r b . We easily find that the Euler class of the full internal1 external geometry is

2px58pmH2„22p~124mH!…52p. ~38!

Hencex51. The topology of the manifold is thus equal to the topology of a disk in a t
dimensional Euclidian space. In the limit whenm051/4 we cannot match the two manifold
smoothly together, and we must consequently consider the interior and the exterior soluti
two possibly disconnected spaces. The Euler class of the internal geometry is, in general, g

2px58pmH2„22p cos~A8pmr̃0!… ~39!

58pmH12p28pmH52p, ~40!

where we have used the relation in Eq.~29!. Note thatx is independent of the value ofmH . In the
limit when m051/4, the exterior geometry has two boundaries with equal and opposite con
tions tox. Hencex50 for the exterior geometry in this limit.

It is not so straightforward to define the Euler class for the singular two-dimensional
which corresponds to the exterior geometry of the string whenm0,1/4, and with the core radius
r c set to zero. The problem is that the apex is singular. The integral formula for the Euler
may therefore be ill defined near this point. However, we maydefinethe exterior geometry in this
case to be homeomorphic to the manifold corresponding to an abstract cone. This space is
where regular with only one boundary]M . We consequently find thatx5124m0. We may define
a notion of relative topologyY52p22px of the exterior manifold. We findY58pmH , which
equals the deficit angle of this geometry. This notion of relative topology coincides numer
with the value of the ‘‘Euler class’’ found in Refs. 4, 12, 13. However, the definition of the E
class used in these works is, as we already have noted, somewhat different from the de
employed in this paper. Note that this correspondence betweenY, and the deficit angle can only b
obtained in the limit whenr c→0. In the case whenr cÞ0, we may identify the relevant abstra
manifold with the one obtained when a neighborhood ofr50 of the singular cone is replaced wit
a circular disk. In this case we find that 2px52p(124mH)18pmH52p. This result is, of
course, expected, since the abstract space in consideration is now smoothly deformable to
J. Math. Phys., Vol. 38, No. 3, March 1997
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disk. We will argue later in this paper, that the deficit angle outside a realistic string can
extend out to some finite radius. Hence, assume that beyond this radius space is Minkowski
place the boundary]M somewhere in this region. It then follows that the last integral in
definition of the Euler class does not contribute toY, and we are effectively left with the expres
sion used in Refs. 4, 12, 13. However, we do not necessarily get back their result for the
class, since now the first integral will get a contribution from the intrinsic curvature of the re
where the conic space ‘‘decays’’ to Minkowski space. Although we will discuss some o
properties of this region in Sec. V, we have not studied the detailed curvature properties of
we are consequently not able to complete our discussion of the Euler class of the string s
time.

IV. STRINGS AND OTHER P-BRANES IN VARIOUS DIMENSIONS

It is well known that the geometry outside a string in four dimensions is related to
geometry outside a static circular source in a 211-dimensional vacuum Einstein theory. In th
section we will point out some similarities, and some differences, between the string geomet
the relevant geometry in three dimensions. We will extend these considerations and discus
trary p-branes in arbitrary space–time dimensions larger than four, with a particular empha
five dimensions.

The geometry outside a static and circular symmetric source in three space–time dime
can be written as

ds252e2a~r !dt21e2b~r !dr21r 2 df2, ~41!

where 0<f<2p, as usual. The vacuum field equations are simple, and can be written as

t̂ t̂:
2

r
b8e22b50, ~42!

r̂ r̂ :
2

r
a8e22b50, ~43!

f̂f̂: 2„a91a8~a2b!8…e22b50. ~44!

Hence, botha andb must equal some constantsa0 andb0, respectively. We may now transform
the above line element to another form viaT5ea0t, R5eb0r , such that the geometry can b
written in the form

ds252dT21dR21e22b0R2 df2. ~45!

It follows that an angle deficitD is present, and given byD52p(12e2b0). We may nowdefine
the massm̄ of the source of this geometry in analogy with strings in 311 dimensions via
D[8pm̄, i.e.,e2b05124m̄ ~‘‘Newton’s’’ constant in 211 dimensions is set equal to unity!. The
result is very similar to the geometry of a cross section of the geometry outside a string in su
coordinates. The main difference , of course, is that the geometry equation~41! is defined via an
undeterminedconstant factora0, in sharp contrast to the string. Note that this constant is
naturally fixed by the asymptotic structure, partially due to the fact that space–time is flat o
the source. It seems that we, in particular, are free todefine a05b0, such that a point mass in 211
dimensions in a certain sense can be looked upon as a dimensionally reduced string. The
minacy of a0 is not changed when the source is a concentration of dust with constant de
r0. This kind of source is of course a very natural one to consider when a connection to stri
sought. From the second equation it follows again thata5a0, and the geometry outside the sour
may be written as
J. Math. Phys., Vol. 38, No. 3, March 1997
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ds252e2a0dt21
dr2

12r0r c
21r 2df2, ~46!

wherer c is the radius of the dust distribution. When we compare this geometry with the s
geometry, it follows that while the whole line element, eq.~12!, changes sign whenm.1

4, i.e.
changes signature, it seems that onlygrr can naturally do so in 211 dimensions, in the appropriat
limit. However, the connection between the string geometry in 311 dimensions, and the poin
particle geometry in 211 dimensions needs further elaboration.

It is natural to ask ‘‘why’’ the string geometry seems so closely related to the point-pa
solution of 211-dimensional Einstein gravity. This is a highly nontrivial question. However,
will now show that Einstein’s theory in 311 dimensions, in the linearized limit, behaves ve
much like linearized Einstein theory in 211 dimensions, when it is coupled to ‘‘stringy’’ matte
It is possible to extend this feature toN arbitrary space–time dimensions, and thus end up wi
certain ‘‘class’’ of gravitating objects in various dimensions, which we expect will display m
of the geometric features found in the case of the point-particle in 211 dimensions, and the strin
in 311 dimensions.

The linearized limit of Einstein’s theory is defined by writing the metric tensor asgmv;hm

1hmv, and keep only terms to first order inh in all expressions. InN space–time dimensions, an
in the de Donder~Lorentz! gauge, Einstein’s field equations then reduce to

1

2
hhmn5kNS Tmn1

T

~22N!
gmnD ; ~47!

kN is the appropriate coupling constant inN dimensions. We will setkN to unity in the following
expressions. Now, by choosingN54, h0052f, T52T005r, we get Poisson’s equatio
¹2f54pr in the static case. InN53 dimensions, and with thesameassumptions as above, we g
the surprising result that the geometry completely decouples from the source, i.e.

¹2f50. ~48!

Hence, Einstein’s theory in 211 dimensions does not have a proper Newtonian limit. Cons
now a region inside the core of a relativistic string in 311 dimensions. Here we haveN54,
T522r, which again leads to Eq.~48!, i.e., the Newtonian potential does not couple to the ene
distribution inside the string. The breakdown of this attempt to define a Newtonian lim
obviously a direct consequence of having a boost invariant source. We may generalize
considerations to arbitrary dimensions, and sources that are boost invariant ina directions, i.e.,
such thatT52ar. This leads to the equation

1

2
hh005r~x!SN222a

N22 D . ~49!

Hence, the Newtonian limit breaks down inN dimensions wheneverN222a50. It is, in some
sense, surprising to note that in five dimensions the object in question corresponds to a mem
This indicates that a string in 311 dimensions can be obtained by compactification of a~N23!-
brane, together with a compactification of the extraN24 dimensions. This is a generalization
the close connection between the gravitational field outside a string and that found outside
particle in 211 dimensions, to higher-dimensional objects. These observations are in line wi
nature of the action for ap-brane inN dimensions, which~using an obvious notation! is given by

S52
Tp
2 E dp11jA2g„gi j ] iX

m ] jX
n hmn2~p21!…. ~50!
J. Math. Phys., Vol. 38, No. 3, March 1997
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It is easily seen that compactification of onep-brane dimension together with one embeddi
dimension, and assuming that there is no vibrations present on the brane, results in the ac
a ~p21!-brane.16 However, this ‘‘formal’’ construction is valid for anongravitating p-brane
configuration. Our results seem to indicate that this close connection between nongrav
branes in diverse dimensions should also hold forgravitating p-branes in pureN-dimensional
Einstein gravity.

Recently much attention has been given to the connection between strings and black
The most intensively studied black holes are given within the framework of superstring theo
bosonic string theory when the string world sheet is also coupled to a dilaton, and~or! an axion
field.17 A straight string in these theories may generate a cylindrical black ‘‘hole’’ structure,
give rise to an event horizon. It may seem that it is the presence of the additional fields
essential for the generation of a black hole structure, since a string that only couples to gra
seems only to give rise to flat space, at least in four dimensions. However, our conside
show that this depends on the dimensionality of space–time. It is clear that a string in e
N54 dimensions does not curve space–time outside itself, but the same structure consid
N.4 dimensions can very well do so, since it then will give rise to a red-shift field on
linearized level. The nature of the gravitational field outside a string whenN.4, may be of two
types. It may either be time dependent, and possibly flat, i.e., nonstatic, or it is static and en
with an intrinsic curvature. It is interesting in this connection to note, that a planar membra
N54 dimensions may give rise to a flat geometry, but one that is time dependent. It can be
that other possibilities does not exist.18 ~In the course of preparing this article a paper, hep
9510202, appeared that also discussesp-branes in Einstein theory in various dimensions.19 Al-
though this discussion is very different from ours, it seems that our results concerning the g
properties of strings in higher dimensions are supported by the findings in that paper.!

It is not difficult to convince oneself that space–time outside a string in higher dimen
cannot be both static and flat. Let us for definiteness considerN55. The most general five
dimensional geometry of interest to us, is given by20

~5!ds252er dt212A dt du1L2 du21eb~dr21r 2 dV2
2!. ~51!

It is assumed that a Killing vectorjW exists, such thatL25jmjm. The four geometry that arises whe
this five geometry is projected down into four dimensions, using the Kaluza–Klein proje
prescription, is given by

~4!ds252es dt21eb~dr21r 2 dV2
2!, ~52!

where nowes5et1L22A2. The electric field is formally given by 2Frt522Ftr5] r(L
22A).

Remarkably, the most general geometric structure in the form of Eq.~51!, which is a solution of
the five-dimensional vacuum Kaluza–Klein theory, can be written in terms of a single functic,
which is given byc5(r2C)l/2C(r1C)2l/(2C), whereC andl are two integration constants.20 In
terms of this function, the metric functions can be written as

L25a1c
p11a2c

p2, es5c2L22, ~53!

A5~2a1a2!
1/2~c p12c p2!, er5a2c

p11a1c
p2, ~54!

eb/25~12r22C2!c21, ~55!

wherep1, p2, a1, anda2 are constant factors. Definingk[4~4C22l2!l22, we get the following
relations:

p1511A11k, p2512A11k, a11a251. ~56!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Applying Gauss’ law, it can be seen that the electric chargeQ is given byQ252a1a2l
2(11k).

The presence of a gravitating relativistic string source lying along theu direction implies thatA50
due to the ‘‘Lorentz’’ invariance in this direction. It then follows from the relations above,
a15a25

1
2→p15p2 , andk521. This means thatC25 3

16l
2. We then have that theuniquestatic,

and ‘‘boost’’ invariant geometry~in the fifth direction! is in the form

~5!ds25c~2dt21du2!1c22S 12
C2

r 2 D
2

~dr21r 2 dV2
2!, ~57!

where nowc5(12C/r )2/)(11C/r )22/). From standard Kaluza–Klein dimensional reduction
follows that the four geometry is given by

~4!ds252cdt21c22S 12
C2

r 2 D
2

~dr21r 2 dV2
2!, ~58!

and the nonvanishing dilatonf is found from the relatione22f/)5c. Since the five geometry is
diagonal, no electric field is present. Due to the particular form of the~t,u! section of this geom-
etry, this holds true irrespective of which global frame one chooses to study these solution

Some of the most convenient quantities that we can derive from the geometry, Eq.~58!, are
given by

~4!g[det~4! gi j5S 11C/r

12C/r D
10/)S 12

C2

r 2 D
6

, ~4!R50, ~59!

~4!Ri jkl ~4!Ri kl5
32C2c4r 6~45C42100)C3r1258C2r 22100)Cr3145r 4!

9~r2C!8~r1C!8
, ~60!

where ~4! quantities are computed relative to the four geometry. The Kretschmann inva
vanishes atr50 and r→`, and it diverges atr5uCu. By examining the components of th
Riemann tensor, it is clear that this behavior holds true for all the invariants that one can con
from the Riemann tensor. We interpret the singularity atr5uCu as a physical singular string
However, it is also clear from the above that~4!g diverges atr50. Hence, ther→0 region seems
to represent another asymptotically flat region with a divergent three space volume. Sin
solution solves the five-dimensionalvacuumEinstein theory, we find that the five-dimension
Ricci tensor, and scalars built from it, vanishes. It follows that the Weyl scalar equals
Kretschmann scalar in five dimensions, which is given by(5)Ri jkl (5)Ri jkl56/5(4)Ri jkl (4)Ri jkl .
Interestingly, the solution, Eq.~58!, is contained in the family of solutions found in Ref. 21, wi
~in their notation! b51, a5), and whenC is identified with their metric mass parameterm. It is
interesting to observe that the mass of our solution is proportional toC. Hence, contrary to the
situation in four-dimensional Einstein–Maxwell theory, objects with negative mass can gen
asymptotically flat spaces in five-dimensional Einstein theory. It can very well be argued
objects with negative mass are unstable, and will eventually disappear~see, e.g., Ref. 8!. We
therefore consider theC.0 solutions as the only physically permissible ones. Note that
‘‘Lorentz’’ invariance in the fifth direction implies a relation between the physical charges in
theory. Defining the gravitational massM , and the dilation charges in the usual way by a 1/r
expansion of Eq.~58!, we find thats is related to the massM via

s52p)l, M53pl⇒M52)s. ~61!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Clearly, a string in five dimensions curves space–time, and a constant angle deficit is, in p
lar, not present. However, it is clear that a position-dependent ‘‘solid angle deficit’’ effe
present due to thee2B factor in the line element. A similar effect is induced by a spheri
relativistic membrane, and a global monopole in 311-dimensions.4,22

V. A REPULSIVE SPACE–TIME REGION, AND THE GEOMETRY OUTSIDE A TIME-
DEPENDENT COSMIC STRING

In the literature aviable on cosmic string gravitation theory, the region where the conic
deficit ‘‘stops,’’ i.e., where space–time ‘‘decays’’ from a conic geometry, and to a,
Minkowskian space, is rarely treated. That this region of space–time will exhibit highly nontr
geometrical features, is not so difficult to see. To this end consider a simple model wit
geometry equation~12! glued to flat a Minkowski geometry atr5r b . Let the Minkowski space
also be covered with the coordinates (t,r ,z,f). Direct a photon from a position in the Minkowsk
region (r.r b) toward the conic singularity with a frequencynM , as measured in the Minkowsk
region. It then follows easily from the metric, that the frequency of the photon as measured
observer on the cone (r,r b)nC is nC5~124m!1/2nM , i.e., the frequency of the photon on the co
is smaller than the frequency of the photon on the ‘‘plane.’’ Hence, the photon is effecti
red-shifted when it enters the cone. This situation can be contrasted with a photon that
toward a massive star. In such an experiment the corresponding frequency of the photonincreases
as it approaches the star. We therefore conclude that a photon that enters the cone fr
‘‘planar’’ region, will experience an effective repulsive gravitational ‘‘force.’’ This conclusi
translates, of course, to the study of ordinary time-like test particles. These consideratio
easily be extended to the more realistic situation, when the string lives in a Friedman unive
Friedmann universe with curvaturek in spherical coordinates can be brought in the form

dsF
252dt21b2~ t !@~12kr2!21 dr21r 2~du21sin2 u df2!#. ~62!

It is a usual procedure to introduce a string in these cosmologies by cutting out a wedg
multiplying thegff coefficient indsF

2 by D0
4.4 The resulting geometry is naturally identified as

generalization ofds2, as defined in Eq.~11!. Assume again aneffectivesingular ‘‘shell’’ some
finite distance from the string, in analogy with the discussion above. Now sufficiently close to
sides of this ‘‘shell,’’ space–time curvature can be neglected such that we effectively arrive
same situation, and conclusions, concerning the repulsiveness of the ‘‘shell,’’ as before.

In order to extract some more information about the repulsive ‘‘shell,’’ we may study
behavior of a radially directed beam of photons, by using the Newman–Penrose formalis
this end we introduce the null tetradel a,na,ma,m̄a, which is normalized in such a way tha
l ana52mam̄a521. Some useful spin connection coefficients are given by

e52 1
2~n

al a;cl
c2m̄ama;cl

c!, ~63!

r52mal a;cm̄
c, ~64!

s52mal a;cm
c; ~65!

r and s are the expansion and the shear, respectively. The Newman–Penrose equatio
become

dr

dl
5r21usu21~e1 ē !r1

1

2
Rabl

al b[ṙ, ~66!

ds

dl
52rs1~3e2 ē !s1Cabcdl

ambl cm̄d[ṡ, ~67!
J. Math. Phys., Vol. 38, No. 3, March 1997
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wherel is an affine parameter, such that the vectorlW, defined by

l a5
dxa

dl
, ~68!

is tangent to the null congruence. Provided that the weak energy condition holds~i.e.,Tabl
al b>0!,

it follows by the use of Einstein’s equations thatRabl
al b>0. From the Newman–Penrose equ

tions we then have that

ṙ>0. ~69!

Hence, if ṙ,0 it follows that the weak energy condition is violated. We will consider the n
frame associated with purely radially moving photons. One such frame is given by

l a5A124mH~d0
a 1d1

a !, ~70!

na5 1
2A124mH~d0

a 2d1
a !, ~71!

ma5
1

A2~124mH!r
d2
a 1 iA124mH

2
d3
a ; ~72!

lW is tangent to the world lines of photons moving away from the string core, whilenW is tangent to
the world lines of photons moving in the opposite direction. It then follows thar
52mfl ;f

f m̄f. SincelW is pointing away from the string, we find that the change of the expan
r across this surface is given by~in the limit whene→0!

Dr[r~r B1e!2r~r B2e!, ~73!

5
1

2r B
2

A124mH

2r B
.0. ~74!

It follows that the energy that composes the repulsive region, does notnecessarilybreak the weak
energy condition. Whether the weak energy condition is violated or not, deserves a detailed
of a realistic model of the repulsive region. This will not be attempted here, but we will in the
of this section argue that the repulsive region in fact may contain a cylindrical gravitat
~shock! wave, which is moving away from the string core. We arrive at this conclusion
considering the creation of a cosmic string. This conclusion supports the one in Ref. 23, whe
creation of a string was also considered. However, our derivation of the time-dependent geo
is very different from the one in that work~which was framed within linearized theory!, as well as
the properties of the time-dependent geometry we present below.

On the assumption of ‘‘Lorentz’’ invariance along the string, we may write the ansatz fo
geometry outside a cosmic string, which is being created, as in Eq.~19!, but now allowing bothC
andA to be functions of the radial coordinate, as well as of the time coordinate. The vier-bein
is again on the form given in Eq.~20!. However, the Einstein tensor is now much more comp
cated than in the static case, and it can be written in the viel-bein basis as

G115e22CA21
„2A~C8!212C8A82A92A~Ċ!212ĊȦ…, ~75!

G125e22CA21~22AC8Ċ12A8Ċ12C8Ȧ2Ȧ8!, ~76!

G225e22CA21
„2A~C8!212C8A82A~Ċ!212ĊȦ2Ä…, ~77!
J. Math. Phys., Vol. 38, No. 3, March 1997
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G335e22CA21
„A~C8!222C8A81A92A~Ċ!212ĊȦ2Ä…, ~78!

G445e22C
„~C8!212C92~Ċ!222C̈…, ~79!

where8[]/]r and•[]/]t. This may look like an impossible system of equations to solve exa
However, due to the very nice properties of the equationG4450, we will be able to find a large
exact solution space forC.

Assuming thatC can be written in the formC5a(r )1b(t), it follows that the equation
G4450 is separable,

H ~a8!212a95k,

~ ḃ !212b̈5k,
~80!

for some constant factork. It is then straightforward to see that

ḃ52S 11C̃ek~ t2t0!

12C̃ek~ t2t0!D , ~81!

whereC̃ and t0 are two integration constants. This function satisfies Eq.~80! providedk51. A
straightforward integration now yields

b52 ln~12C1e
t2t0!2~ t2t0!1C2 , ~82!

whereC1 andC2 are integration constants. Similarly, we find that

a52 ln~12C3e
r2r0!2~r2r 0!1C4 , ~83!

whereC3 andC4 are integration constants. This solution space, which is parametrized by a
of six integration constants, allows for a number of very different kinds of behavior ofC. One
possible solution, which we find of particular interest, is

e2C;~12C1e
t!4e22te2a; t>0, r>0. ~84!

Note that for sufficiently large times we havee2C;e2te2a, i.e., ugttu is amonotonically increasing
function of time. This behavior is in some correspondence with the form of the geometry equ
~9!, sinceugttu.1 for a static string. However,e2C has noupper bound. This is a signal that our
model is probably to simple, and that a more realistic model should also take into accou
underlying field theoretical model in which the string actually lives. This will probably induc
nonvanishingTf̂f̂ component, and, of course, seriously modify the time evolution of the st
geometry in this regime.

The time-dependent geometry outside a gauge cosmic string, which is being created, h
been studied in Ref. 23. In that work the energy-momentum tensor of the string was taken to
the form

Tm
n5m0S Q~cst2r !

p~cst !
2 diag~21,0,0,0! ~85!

1m0

d~r !

pr
Q~ t !diag~1,0,1,0! D , ~86!

wherecs represents the ‘‘speed of sound.’’ Note thatTff is set to vanish in this model. The ansa
for the geometry used in Ref. 23 was in the form
J. Math. Phys., Vol. 38, No. 3, March 1997
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ds25e~L2C!~2dt21dr2!1e2C dz21r 2e22C df2, ~87!

whereL andC are two functions oft andr . The field equations were solved with this source
the linearizedlevel, and it was found that typically

eC;t21, eL;t21, ~88!

near the string core. Note that these functionsdecreasewith time. It is clear that we also could us
the above source in our considerations. We note that we are still left withG4450, which implies
the solution space forC above.

In Ref. 23 the functionsC andL were considered asindependentfunctions, while in our
considerations we demanded thatL53C. It was this last ‘‘constraint’’ that made it possible t
solve parts of the full time-dependent geometry outside the string. However, the time depen
of C andL found in Ref. 23 seems to run counter to the form of the static geometry of a g
string presented in this paper, since it seems that the results in Ref. 23 implies adecreasingugttu
with time. Hence, it is more consistent to follow our approach, and demand thatL53C in Eq.
~87!. This condition does also seem more plausible from purely geometrical considerations
all the geometric symmetries of the static string, i.e., cylinder symmetry and ‘‘boost’’ invari
along the symmetry axis, should be properties that are preserved in time. In particular, they
be present right from the beginning of the creation of the string, since ‘‘Lorentz’’ invariance a
the symmetry axis of a cylinder symmetric configuration, in some very specific sense,
geometric ‘‘definition’’ of a relativistic string. Furthermore, we showed earlier in this paper
the concept of a weak field treatment of the gravitational field outside a string, is problemat
to the ~in some sense! nonexistence of a proper Newtonian limit. This finding carries over t
weak field treatment of the time-dependent field outside a string. Seen in this light, it i
surprising that the ‘‘weak’’ field treatment in Ref. 23 results in a different behavior of the gr
tational field outside a time-dependent string than the one we have derived in this paper.

Even though the solution that we derived above for the geometry outside a time-depe
string, is pathological in the sense that the magnitude of the red-shift field grows with no
bound, it can nevertheless probably teach us something important about the properties
region where the conic angle deficit is ‘‘turned off.’’ The solution can be interpreted as follow
t50 the space is, e.g., Minkowski space, and the source for the string tension is turned o
disturbance is first located very nearr50, but at larger times it is clear that this disturbance h
propagated outward, and will be significant at anyr ~for sufficiently large times!. In a more
realistic model, the increase in the string tension should come to a halt. This should again
felt near the string core. This disturbance should again propagate outward, leaving behind
space with a position-independent angle deficit. The natural picture that then arises is that t
region is separated from a flat Minkowskian space, by a region moving outward, and carr
highly complicated gravitational field. This region can thus naturally be interpreted as a gr
tional wave. However, it is clear that the creation of a string, as well as the gravitational fiel
process gives rise to, need to be studied further. The picture drawn in this section is a
idealized one, and will of course at best only give an indication of what to expect in a rea
situation.

VI. DISCUSSION AND CONCLUSION

We have rederived the geometric structure outside a static relativistic string. The derivat
our results is straightforward, and rests on the application of the most general static cy
symmetric vacuum geometry. It has often been assumed that the Levi-Civita geometry is th
general geometry of this kind.6,7 This, however, is not quite correct.5 In order to get from the Weyl
class, and to the Levi-Civita class of geometries, a rescaling of the coordinates used m
general, be performed~as we have demonstrated here in one particular case!. This does not, in
J. Math. Phys., Vol. 38, No. 3, March 1997
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general, cause any problems when the constants that are used to rescale the coordinate
directly related to the source parameters. However, in our case we have no such free param
‘‘play’’ with in this way, since both the available integration constants are determined by the
density parameterm0. Hence, in order to obtain a correct interpretation of the string geometry
must use Eq.~9!, and not the rescaled version, Eq.~11!. In particular, that the signature of th
string geometry changes sign whenm0.1/4, cannot be derived when the Levi-Civita class is us
as the ansatz for the induced geometry outside a relativistic string.

Based on the properties of a time-independent string we argued that a string will give r
an effective repulsive gravitational ‘‘force’’ on test particles at some finite distance from the s
‘‘core.’’ This was ‘‘substantiated’’ in Sec. V, where we performed a straightforward study
string that is being created. We argued that string creation will imply the existence of a gr
tional ‘‘shock’’ wave. The possible existence of such a shock wave was also argued for in Re
This wave may give a viable explanation for the repulsive nature of the string geometry whic
found in Sec. V. It is instructive to understand the string creation in terms of a string w
time-dependent tension, by applying the concept of dressed tension, which we introduced
in this paper. It is, in particular, interesting to note that the thus obtained tension typically dis
an exponentialdependence on time. This particular exponential form is perhaps not, with s
hindsight, surprising. We know that the de Sitter solution in four dimensions results whe
energy-momentum tensor in the formTm̂n̂5r0(1,21,21,21) is assumed for someconstant
‘‘tension’’ parameterr0. This solution typically displays an exponential dependence on ti
Hence, the time-dependent string described in this paper can be looked upon as a one-dime
expanding ‘‘universe’’ with a time-dependent tension embedded into four dimensions.~After this
paper was submitted a paper appeared, gr-qc/9606002, in which the creation of aglobal cosmic
string was studied numerically.24 A de Sitter-like behavior, very much like the one found in th
work, was found in the induced geometry.! This result is very different from the results in Ref. 2
The reason can probably be traced to the fact that this study was within the framewo
linearized Einstein theory, while ours is within the full theory. We showed, in particular, in
IV, that the linearized limit is problematic when studying strings in four dimensions. In fact
linearized graviton decouples completely from the string source in four dimensions, i.e
graviton bath outside the string does not, in some sense, ‘‘detect’’ the string source. It the
seems dangerous to employ the linearized theory in the study of strings. This conclusion do
seem intuitively correct, since the string source cannot in any limit be reduced to a nonrelat
limit, since the pressure along the string axis always equals minus the energy density in the
Hence, the conic angle deficit induced by a string, is most accurately treated when it is per
as a genuine strong field effect, even though space–time is flat near the string core.
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On quantum field theory with nonzero minimal
uncertainties in positions and momenta
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Cambridge CB3 9EW, United Kingdom

~Received 13 February 1996; accepted for publication 1 November 1996!

We continue studies on quantum field theories on noncommutative geometric
spaces, focusing on classes of noncommutative geometries which imply ultraviolet
and infrared modifications in the form of nonzero minimal uncertainties in posi-
tions and momenta. The case of the ultraviolet modified uncertainty relation which
has appeared from string theory and quantum gravity is covered. The example of
Euclideanf4-theory is studied in detail and in this example we can now show
ultraviolet and infrared regularization of all graphs. ©1997 American Institute of
Physics.@S0022-2488~97!01403-5#

I. INTRODUCTION

There has been considerable progress in several branches of the mathematics of non
tative or ‘‘quantum’’ geometry which, in a broad sense, is the generalization of geometric
cepts and tools to situations in which the algebra of functions on a manifold becomes no
mutative. The physical motivations range, e.g., from integrable models and generalized sym
groups to studies on the algebraic structure of the Higgs sector in the standard model. S
references are, e.g., 1–9. Here, we continue the approach of Refs. 10–16 in which is stud
quantum mechanics on certain ‘‘noncommutative geometries’’ where

@xi ,xj #Þ0 and @pi ,pj #Þ0, ~1!

and in particular where

@xi ,p j #5 i\~d i 1a i jklxkxl1b i jklpkpl1...!. ~2!

A crucial feature of the generalized commutation relations, which we will discuss in Sec. II, is
for appropriate matricesa,b P Mn4(C) one finds ordinary quantum mechanical behaviour at m
dium scales, while as a new effect at very small and very large scales there appear n
minimal uncertaintiesDx0 ,Dp0 in positions and in momenta.

The main part of the paper is Sec. III, where we proceed with the study of a previo
suggested approach14 to the formulation of quantum field theories on such geometries. For
example off4-theory, we can now explicitly show that minimal uncertainties in positions
momenta do have the power to regularize all graphs in the ultraviolet and the infrared.

The underlying motivation is the idea that nonvanishing minimal uncertainties in posi
and momenta could be effects caused by gravity, or string theory. The possible gravita
origins for modifications in the ultraviolet and in the infrared are to be considered separate

On the one hand, in order to resolve small distances, test particles need high energie
latest at the Planck scale of about 10235 m the gravity effects of high energetic test particles m
significantly disturb the spacetime structure which one tries to resolve. It has therefore long
suggested that there exists a finite limit to the possible resolution of distances. Probab
simplest ansatz for its quantum theoretical expression is that of a nonvanishing minimal

a!Electronic-mail: a.kempf@damtp.cambridge.ac.uk
0022-2488/97/38(3)/1347/26/$10.00
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tainty in positions. This ansatz covers an ultraviolet behaviour which has been found in
theory, as well as in quantum gravity, arising from an effective uncertainty relation:

Dx>
\

Dp
1const•Dp. ~3!

References are, e.g., 17–23; a recent review is Ref. 24.
On the other hand, minimal uncertainties in momentum, as an infrared effect, may arise

large scale gravity. The argument is related to the fact that on a general curved spacetime
no notion of a plane wave, i.e., of exact localization in momentum space, see Refs. 14, 16

We remark that in the case of minimal uncertainties in positions only, examples are kno
noncommutative geometries of the type of Eqs.~1! and~2! which preserve the Poincare´ symmetry,
i.e., where the universal enveloping algebra of the Poincare´ Lie algebra is a*- sub algebra of the
Heisenberg algebra, see Refs. 25, 26. Generally, however, we take the view that simila
curved spaces which may preserve some of the flat space symmetries while breaking othe
noncommutative geometric spaces, as defined through commutation relations, may preserv
symmetries while breaking others.

Here, we therefore study the general case, i.e., not assuming a specific symmetry, and
ing the existence both of minimal uncertainties in positions and in momenta. An altern
approach with a similar motivation, but based on the canonical formulation of quantum
theory, is Ref. 27. Other approaches to nonrelativistic quantum mechanics with generalized
mutation relations, mostly motivated by quantum groups, and related studies, are, e.g., 28

II. QUANTUM MECHANICS WITH NONZERO MINIMAL UNCERTAINTIES

A. Uncertainty relations

We review and generalize the results of Refs. 10–13 on nonrelativistic quantum mec
with nonzero minimal uncertainties in positions and momenta.

Let A denote the associative Heisenberg algebra generated by elementsxi ,pj that obey
generalized commutation relations of the form of Eqs.~1! and ~2!. The modified commutation
relations are required to be consistent with the*-involutionxi* 5 xi , pj* 5 pj , implying thata and
b obeya i jkl* 5 a i j lk ,b i jkl* 5 b i j lk .

The study of the uncertainty relations that belong to the Heisenberg algebraA yields infor-
mation that holds independently of the choice of representation. Let us therefore assume thxi ,pj
to be represented as symmetric operators obeying the new commutation relations on som
domainD,H in a Hilbert spaceH. On this spaceD of physical states one derives uncertain
relations of the form

DADB>1/2u^@A,B#&u ~4!

so that, e.g.,@xi ,xj #Þ0, yieldsDxiDxj>0. Their noncommutativity implies that thexi ~as well as
the pı! can no longer be simultaneously diagonalised. Because of the modified commu
relations Eqs.~2! and the corresponding uncertainty relations there can appear the even
drastic effect that thexi ~as well as thepj ! may also not be diagonalisable separately. Instead t
then exist nonzero minimal uncertainties in positions and momenta. The mechanism can b
also in one dimension, to which case we will restrict ourselves until Sec. II E. We consider E~2!
with a,b.0 andab,1/\2:

@x,p#5 i\~11ax21bp2!. ~5!
J. Math. Phys., Vol. 38, No. 3, March 1997
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For fixed but sufficiently smalla and b one finds ordinary quantum mechanical behaviour
medium scales while, e.g., the term proportional tob contributes for largêp2&5^p&21(Dp)2, i.e.,
in the ultraviolet. Similarly the term proportional toa leads to an infrared effect. The uncertain
relation to Eq.~5! is:

DxDp>
\

2
~11a~Dx!21a^x&21b~Dp!21b^p&2!. ~6!

It implies nonzero minimal uncertainties inx- as well as inp- measurements. This can be seen
follows: As, e.g.,Dx gets smaller,Dp must increase so that the productDxDp of the LHS
remains larger than the RHS. In usual quantum mechanics this is always possible, i.e.,Dx can be
made arbitrarily small. However, in the generalized case, fora,b.0 there is a positive (Dp)2 term
on the RHS which eventually grows faster withDp than the LHS. ThusDx can no longer become
arbitrarily small. The minimal uncertainty inx depends on the expectation value in position a
momentum via

k:5a^x&21b^p&2 ~7!

and is explicitly:

Dx05A~11k!b\2

12ab\2 . ~8!

Analogously one obtains the smallest uncertainty in momentum

Dp05A~11k!a\2

12ab\2 ~9!

with the absolutely smallest uncertainties obtained fork50.
Note that if there was, e.g., anx- eigenstateuc&PD with x.uc&5luc& it would have no uncer-

tainty in position~we always assume statesuc& to be normalized!:

~Dx! uc&
2 5^cu~x2^cuxuc&!2uc&50 ~10!

which would be a contradiction. There are thus no physical statesuc&PD which are eigenstates o
x or p.

Thus for any physical domainD, i.e., for all * -representations of the commutation relation
there are no physical states in the ‘‘minimal uncertainty gap:’’

'” uc&PD:0<~Dx! uc&,Dx0 , ~11!

'” uc&PD:0<~Dp! uc&,Dp0 . ~12!

Crucially, unlike on ordinary geometry, there do not exist sequences$ucn&% of physical states
which would approximate point localizations in position or momentum space, i.e., for whic
uncertainty would decrease to zero:

'” ucn&PD: lim
n→`

~Dx! ucn&50 or lim
n→`

~Dp! ucn&50. ~13!

Heisenberg algebrasA with these generalized canonical commutation relations therefore
longer have spectral representations on wave functions^xuc& or ^puc&.
J. Math. Phys., Vol. 38, No. 3, March 1997
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B. Bargmann Fock representation

For practical calculations and for detailed studies of the functional analysis a Hilbert s
representation of the generalized Heisenberg algebra is needed. We generalize the Bargma
representation.

In ordinary quantum mechanics the Bargmann Fock representation is unitarily equival
the position and the momentum representation, being the spectral representation of the o
h̄] h̄ PA,where

h̄:5
1

2L
x2

i

2K
p and ] h̄ :5

1

2L
x1

i

2K
p. ~14!

Here,L andK are length and momentum scales, related byLK5\/2. Thush̄ and] h̄ obey] h̄h̄
2 h̄] h̄51, which is of the form of a Leibniz rule and justifies the notation. One readily finds
countable set of eigenvectorsh̄] h̄uh̄n&5nuh̄n& with n50,1,2,••• . With the definitions
uah̄n1bh̄m&:5uah̄n&1ubh̄m& andauh̄n&:5uah̄n& arbitrary statesuc& are written as polynomials
or power series

uc&5U(
r50

`

c r

h̄ r

Ar ! L 5uc~h̄!& ~15!

on whichx andp are represented in terms of multiplication and differentiation operators

x5L~ ĥ1] h̄ !, p5 iK ~ h̄2] h̄ !. ~16!

The well known formula for the scalar product of states is

^cuf&5
1

2p i E dn dh̄ c~h̄ !e2h̄ hf~h̄ !. ~17!

Here, thec(h̄) andf(h̄) on the RHS are to be read as polynomials or power series in ordi
complex variables rather than as elements ofA.

A key observation for the generalization of the Bargmann Fock representation is tha
scalar product can be expressed without relying on complex integration:10

^cuf&5c~h̄!e]h]h̄f~h̄ !uh505 h̄ . ~18!

The exponential is defined through its power series, i.e.,e]h]h̄ 5 ( r50
` (]h] h̄)/(r !), where the

derivatives] h̄ act from the left while the derivatives]h act from the right. The evaluation proce
dure is to carry out the differentiations and then to seth and h̄ equal to zero. The remaining
number is the value of the scalar product. This can be done purely algebraically by usin
Leibniz rule] h̄h̄ 2 h̄] h̄ 5 1 and its complex conjugateh]h2]hh51. For example,

] h̄h̄25] h̄h̄h̄5~ h̄] h̄11!h̄5h̄] h̄h̄1h̄5h̄~ h̄] h̄11!1h̄5h̄h̄] h̄1h̄1h̄52h̄

and

h2]h5h~]hh11!5•••52h.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Thus, e.g.,

^h̄2u213h̄2&5h2e]h]h̄~213h̄2!uh505 h̄5h2(
r50

`
]h] h̄

r !
~213h̄2!uh505 h̄

53h2
]h
2] h̄

2

2
h̄2uh505 h̄56.

Since the scalar product formula Eq.~17! relies on conventional commutative integration over t
complex plane, it cannot be used in the generalized case where, e.g., inn dimensions theh̄ i will
be noncommutative. It is, however, possible to use a generalization@Eq. ~24!# of Eq. ~18! ~which
can also be applied in the fermionic case instead of using Berezin integration10!. Also in one
dimension it allows to construct a Bargmann Fock Hilbert space representation for Eq.~5!.

To this end we rewrite Eq.~5! in the form

@x,p#5 i\1 i\~q221! S x2

4L2
1

p2

4K2D , ~19!

where the parameterq>1 measures the deviation from the ordinary commutation relations.
length and momentum scales are related byLK5\(q211)/4. We can now again representx and
p as the usual linear combinations@Eq. ~16!# of generatorsh̄ and ] h̄ . A complete generalized
Bargmann Fock calculus is defined as the complex associative algebraB with the commutation
relations

] h̄h̄2q2h̄] h̄51, h]h2q2]hh51, ~20!

h̄]h2q2]hh̄50, ] h̄h2q2h]h̄50, ~21!

hh̄2q2h̄h50, ]h] h̄2q2] h̄]h50. ~22!

A short calculation shows that the commutation relation Eq.~19! in fact uniquely translates into
the commutation relations Eqs.~20! through Eq.~16!, see Ref. 13. On the other hand, the co
mutation relations Eqs.~21! and ~22! are nonunique and could also be chosen commutative.
choice is the special case of the choice made for then dimensional case in Ref. 10 under th
requirements of a quantum group module algebra structure, invariance of the Poincare´ series and
simple form of the scalar product formula. These requirements are here not physically rel
but it is convenient to use the formulas already obtained for this case. Generally, other choi
the commutation relations between the barred and the unbarred generators are possible and
respectively, more or less simple to evaluate formulations of the scalar product. These rep
tation specific choices do not of course affect the physical content of the theory, such
uncertainty relations, transition amplitudes or expectation values.

The Heisenberg algebraA is now represented on the domainD of polynomials inh̄

D:5$uc&uc~h̄!5polynomial~ h̄ !% ~23!

with the action ofx and p given by Eq.~16!, where the differentiations are to be evaluat
algebraically using the generalized Leibniz rule given in Eqs.~20!. As is the case on ordinary
geometry, the operatorsh̄ and ] h̄ are mutually adjoint with respect to the unique and posit
definite scalar product, which now takes the form:

^cuf&5c~h̄!e1/q
]h]h̄f~h̄ !uh505 h̄ . ~24!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Theq-exponential is defined through

e1/q
]h]h̄5(

r50

` ~]h i
] h̄ i

!r

@r #1/q!
, ~25!

where the derivatives]h act from the right and where

@r #c :511c21c41•••1c2~r21!5
c2r21

c221

and

@r #c!:51•@2#c•@3#c• ••• •@r #c .

The evaluation procedure is again to algebraically carry out the differentiations, now using
~20!–~22! and then to seth andh̄ equal to zero. The remaining number is the value of the sc
product.

The functional analysis of the position and momentum operators is as follows: We deno
H the Hilbert space obtained by completion with respect to the norm induced by the s
product. A Hilbert basis is given by the orthonormal family

$~@r #q! !
21/2uh̄ r&ur50,1,2,...%. ~26!

The domainD,H, which is dense inH, is a physical domain, i.e., on it thex and p are
represented as symmetric operators obeying the commutation relation Eq.~19!. In factD is also
analytic sincex.D,D andp.D,D, i.e.,D is a * -A module. Thex andp are no longer essen
tially self-adjoint. Their adjointsx* andp* are closed but nonsymmetric. Thex** andp** are
closed and symmetric. Their deficiency subspaces are of finite~nonzero! and equal dimension so
that there are continuous families of self-adjoint extensions inH. Crucially, however, because o
the minimal uncertainties in positions and momenta, neitherx nor p have self-adjoint extension
neither inD nor in any other physical domain, i.e., not in any other* -representation of the
commutation relations. For the details and proofs see Ref. 13.

One arrives at the following picture:
While in classical mechanics the states can have exact positions and momenta, in qu

mechanics there is the uncertainty relation that does not allowx andp to have common eigen
vectors. Neverthelessx andp separately do have ‘‘eigenvectors,’’ though non-normalisable o
The spectrum is continuous, namely, the configuration or momentum space. The positio
momentum operators are essentially self-adjoint. Our generalization of the Heisenberg alge
further consequences for the observablesx andp: It is not only that thex andp have no common
eigenstates. The uncertainty relation now implies that they do not have any eigenvectors
representation of the Heisenberg algebra. Althoughx andp separately do have self-adjoint exte
sions, they do not have self-adjoint extensions on any physical domain i.e., not on
*-representation of bothx andp. This means the nonexistence of absolute precision in positio
momentum measurements. Instead there are absolutely minimal uncertainties in these m
ments which are, in terms of the new variables of Eq.~19!:

Dx05LA12q22, Dp05KA12q22. ~27!

Recall that due to Eq.~10! the non-self-adjointness and nondiagonalisability ofx andp is neces-
sary to allow for the physical description of minimal uncertainties. Note that, on the other
the fact thatx andp still have the slightly weaker property of being symmetric is sufficient
guarantee that all physical expectation values are real.
J. Math. Phys., Vol. 38, No. 3, March 1997
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C. Maximal localization states

Generally, all information on positions and momenta is encoded in the matrix elements
position and momentum operators, and matrix elements can of course be calculated in an
In the Bargmann Fock basis matrix elements, e.g., of the position operators are calculated

^cuxuf&5c~h̄!e1/q
]h]h̄L~ h̄1] h̄ !f~h̄ !u0 . ~28!

Ordinarily, information on position or momentum can conveniently be obtained by projection
position or momentum eigenstates^xuc& or ^puc&, i.e., by using a position or momentum repr
sentation.

That there are now no more physicalx- or p-eigenstates, can also be seen directly in
Bargmann Fock representation. We consider, e.g., the eigenvalue problem forx

x.ucl&5lucl&, i.e., L~ h̄1] h̄ !cl~h̄ !5lcl~h̄ ! ~29!

which yields a recursion formula for the coefficients of the expansion:

cl~h̄ !5(
r50

`

cl,r h̄
r . ~30!

In ordinary quantum mechanics the solution is a Diracd ‘‘function,’’ transformed into Bargmann
Fock space,@i.e., Eq.~102! with l instead ofx0#. In the generalized setting, it is interesting to s
the effect of the appearance of the minimal uncertainty ‘‘gap.’’

The ~no longer generally mutually orthogonal! solutions( r50
` cl,r h̄

r to Eq. ~29! have van-
ishing uncertainty in positions but they are not contained in the domain ofp ~this would of course
contradict the uncertainty relation! and they are therefore not physical states. However, ev
polynomial approximation to the power series is contained in the physical domainD, i.e.,
( r50
n cl,r h̄

rPD for arbitrary finiten. Thus each( r50
n cl,r h̄

r has anx- uncertainty which is in
fact larger thanDx0. For details and a graph of their scalar product see Ref. 13.

Let us now consider the physical statesufj,p
mlx&,ufj,p

mlp& which have the maximal localization in
x or p for given expectation valuesj,p in positions and momenta:

Dxuf
j,p
mlx&5Dx0 , ~31!

^fj,p
mlxuxufj,p

mlx&5j, ^fj,p
mlxupufj,p

mlx&5p ~32!

with Dx0 given by Eq.~8! and similarly forufj,p
mlp&. For example, the projection̂fj,p

mlxuc& is then the
probability amplitude for finding the particle maximally localized aroundj with momentum ex-
pectationp. For a,b→0 one recovers the position and the momentum eigenvectors.

In order to calculate, e.g., theufj,p
mlx& we use that these physical states realize the equality in

uncertainty relation. As is well known the uncertainty relation follows from the positivity of
norm:

US x2^x&1
^@x,p#&
2~Dp!2

~p2^p&! D uc&U>0 ~33!

which is

^cu~x2^x&!22S u^@x,p#&u
2~Dp!2 D 2~p2^p&!2uc&>0 ~34!

so that:
J. Math. Phys., Vol. 38, No. 3, March 1997
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DxDp>
u^@x,p#&u

2
. ~35!

Thus a stateuc& obeysDxDp5u^@x,p#&u/2, i.e., it is on the boundary of the physically allowe
region if:

S x2^x&1
^@x,p#&
2~Dp!2

~p2^p&! D uc&50. ~36!

In any given representation this equation has a family of squeezed state solutions parametr
^x&, ^p&, Dx, Dp, where the four parameters obey Eq.~6! with the equality sign. Choosing forDx
or Dp the minimal values given by Eqs.~8! and~9! yields the maximal localization statesufj,p

mlx&
and ufj,p

mlp&.
In Ref. 25, we calculated maximal localization states in the casea50. The absence of a

minimal uncertainty in momentum there allows a spectral representation ofp, with Eq.~36! taking
the form of an exactly solvable differential equation. In particular, the new concept of q
position representation has been introduced, where the Heisenberg algebra is represente
wave functionsc~j!:5^fj,0

mlxuc&. Related to the minimal uncertainty in positions there appea
minimal wavelength in quasi-position space.

In the general situation with minimal uncertainties in positions and in momenta we wo
Bargmann Fock space where Eq.~36! takes the form@using Eq.~7!#

S L~ h̄1] h̄ !2^x&1 i\
11a~Dx!21b~Dp!21k

2~Dp!2
~ iK ~ h̄2] h̄ !2^p&! Dc~h̄!50 ~37!

yielding a three terms recurrence relation for the coefficients of the expansion ofuc& in h̄. The
solutions, i.e., the maximal localization states, can be expressed in terms of so-calledq-continuous
Hermite functions. A detailed study of the maximal localization states and the correspo
quasi-position and quasi-momentum representation has been carried out in Ref. 45. A su
q-special functions is Ref. 46.

A further problem is to find a generalized Fourier transformation that allows to easily t
form information on positions into information on momenta. While this has been worked ou
the special casea50 in Ref. 25, here the recent work in Ref. 47 may be relevant. In this con
compare also with the generalized quantum mechanics~with discretex- andp-spectra! developed
in Refs. 40 and 41, where techniques developed in Ref. 42 lead to generalized Fourier tr
mations.

D. Integral kernels and Green functions

ElementsP5P~x,p!PA of the Heisenberg algebra do not only have representations in t
of Bargmann Fock operatorsP(h̄,] h̄), via Eq. ~16! but can also still be represented as integ
kernels. Once the operatorP(h̄,] h̄) is normal ordered, there is a simple rule for deriving
integral kernelGP , which is a function ofh̄8 andh. Integrating any Bargmann Fock functio
c(h̄) overGP(h̄8,h) leads then to a function ofh̄8, which isP.c(h̄8). Generalizing

P~ h̄8,] h̄8!.c~h̄8!5
1

2p i E dh̄ dhGP~ h̄8,h!e2 h̄hc~h̄ ! ~38!

one now has

P~ h̄8,] h̄8!.c~h̄8!5E dh̄ dhGP~ h̄8,h!e1/q
]h]h̄c~h̄ !. ~39!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Here, the integration is meant to be the algebraic scalar product which expresses the integr
terms of derivatives, i.e., one defines:

E dh̄ dhc~h̄!e1/q
]h]h̄f~h̄ !:5c~h̄!e1/q

]h]h̄f~h̄ !uh505 h̄ . ~40!

For this to work, the appropriate commutation relations between two copies~e.g., primed and
unprimed! of the function space had to be calculated, see Ref. 11.

For example, the position operatorx: 5 L(h̄ 1 ] h̄), has the integral kernel

Gx~ h̄8,h!5L~ h̄8e1/q
h̄8h1e1/q

h̄8hh!. ~41!

Another example is the harmonic oscillatorH: 5 vh̄]h̄ . SinceH is self-adjoint, the time evolu-
tion operatorU 5 e2 i (t f2t i )H is unitary. The eigenvalues ofH are:

Huh̄ r&5v@r #quh̄ r&. ~42!

The integral kernel ofU, i.e., the Greens function is then found to be:11

GU5(
r50

`
~h̄8h!r

@r #1/q!
e2 iv~ t f2t i !@r #q ~43!

reducing forq→1 to the well known result:

GU~ h̄8,h!5eh̄8he2 iv~ t f2t i !. ~44!

E. n -dimensional generalizations

Let us come back to the fulln-dimensional situation with commutation relations of the fo
of Eqs.~1! and~2!. Obviously, termsai j i i .0 andbi j i i .0 are sufficient to induce minimal unce
tainties in momenta and positions, thus excluding spectral representations of thexi or pj , and
therefore complicating the construction of Hilbert space representations of the Heisenberg a

There are, however,n-dimensional generalizations of ourq-Bargmann Fock space whic
straightforwardly supply Hilbert space representations for certain classes of generalized H
berg algebras. We will use two of them as examples of fixed ‘‘background’’ geometries.

The first example is the Heisenberg algebraA1, defined as the tensor product ofn commuting
copies of the one-dimensional algebraA ~all qi>1!:

@xi ,pj #5 i\d i j1 i\d i j ~qi
221!S 1

4Li
2 xi

21
1

4Ki
2 pi

2D , ~45!

@xi ,xj #50, @pi ,pj #50, ~46!

where

LiKi5\~qi
211!/4. ~47!

The Heisenberg algebraA1 has an obvious Hilbert space representation on the domainD1,H1
which is then-fold tensor product of the previously considered domainsD in the Hilbert space
H1, spanned by the orthogonal polynomialsh̄ 1

r1h̄ 2
r2
• ... • h̄ n

rn, with norm:

^h̄ 1
r1h̄ 2

r2
•...•h̄ n

rnuh̄ 1
r1h̄ 2

r2
•...•h̄ n

rn&5)
i51

n

@r i #qi!. ~48!
J. Math. Phys., Vol. 38, No. 3, March 1997
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As the second example, now with nontrivial commutation relations also among thexi and among
thepi we consider the Heisenberg algebraA2 defined through:

@xr ,pr #5ı\1 i\~q221!(
s<r

S q211

2 D s21S xs
2

4Ls
2 1

ps
2

4Ks
2D ~49!

and mixed commutation relations fors.r

@xs ,pr #52 i
Kr

Lr

q21

q11
$xs ,xr%, @xs ,xr #52 i

Lr
Kr

q21

q11
$xs ,pr% ~50!

and fors,r

@xs ,pr #5 i
Ls
Ks

q21

q11
$ps ,pr%, @ps ,pr #52 i

Ks

Ls

q21

q11
$xs ,pr% ~51!

with

LrKr :5
\

2 S q211

2 D r . ~52!

In order to representA2 we define the generalized Bargmann Fock calculus as the com
algebraB2 with commutation relations~the i , j summed over!:

h̄ah̄b2
1

q
Rba
ji h̄ j h̄ i50, ~53!

] h̄ah̄b2qRib
a jh̄ j] h̄ i5dab , ] h̄a] h̄b2

1

q
Rab
i j ] h̄ j] h̄ i50, ~54!

] h̄a]hb2
1

q
~R21!bi

ja]h j] h̄ i50, ] h̄ahb2qRab
i j h j] h̄ i50, ~55!

and their complex conjugates where~theeı
j are matrix units!:

R5q(
i
ei
i
^ei

i1(
iÞ j

ei
i
^ej

j1~q21/q!(
i. j

ej
i
^ei

j . ~56!

Note that īs an anti-algebra morphism, so that, e.g.,] h̄ ih̄ j 5 h j]h i, i.e., we defined the]h’s as
right derivatives. We can then representA2 through

xr5Lr~ h̄ r1] h̄ r ! and pr5 iK r~ h̄ r2] h̄ r ! ~57!

on the domain of polynomials

D2 :5$uc&uc~h̄!5polynomial~ h̄1 ,h̄2 ,...,h̄n!% ~58!

with the unique and positive definite scalar product

^cuf&5c~h̄!e
1/q

]h i
]h̄ if~h̄!uh505 h̄ ~59!
J. Math. Phys., Vol. 38, No. 3, March 1997
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which is a generalization of Eq.~18!. The Hilbert spaceH2, completed with respect to the induce
norm, has a Hilbert basis given by the orthogonal ordered polynomialsh̄ 1

r1h̄ 2
r2
• ... • h̄ n

rn with
norm:

^h̄ 1
r1h̄ 2

r2
•...•h̄ n

rnuh̄ 1
r1h̄ 2

r2
•...•h̄ n

rn&5)
i51

n

@r i #q!. ~60!

The Heisenberg algebraA2 and its Hilbert space representation has naturally appeared in
context of quantum groups10–13as a minimal generalization under certain consistency condit
such as the invariance of the*-structure, Poincare´ series, and the positivity of the norm.R in Eq.
~56! is the fundamental representation of the universalR-matrix that determines the quasitriang
lar structure of the quantum group SUq(n), which acts onA2 as linear quantum canonica
transformations, i.e.,A2 is a SUq(n)-* -comudule algebra.

Generally, a Hilbert space representation of fixed generalized commutation relations in
Hilbert space representations of a class of generalized commutation relations, simply by ap
algebra isomorphisms~MPGL~n,R!!:

xr→xr85Mrs
21xs , pr→pr85Msrps . ~61!

For example, the noncommutative geometriesA1,A2 defined through Eqs.~45!–~47! and Eqs.
~49!–~51! are of the form~summing over repeated indices!:

@xr ,ps#5 i\d rs1 i\a rstu$xt ,xu%1 i\b rstu$pt ,pt%, ~62!

@xr ,xs#5 im rstu$xt ,pu%, ~63!

@pr ,ps#5 in rs,tu$xt ,pu%, ~64!

with thea, b, m, n real matrices. Through Eqs.~61! one represents commutation relations of t
same form Eqs.~62!–~64! but specified through matricesa8, b8, m8, n8, where

aabcd8 5Mai
21M jbMkcMlda i jkl , ~65!

babcd8 5Mai
21MbjMck

21Mdl
21b i jkl , ~66!

mabcd8 5Mai
21Mbj

21MkcMdl
21m i jkl , ~67!

nabcd8 5MiaM jbMck
21Mldn i jkl . ~68!

Note that since unitary transformations generally preserve the commutation relations, the
formations Eqs.~61! are noncanonical and lead to commutation relations that describe diff
physical behaviour.

The two Heisenberg algebrasA1 andA2 will also serve as examples for fixed backgrou
noncommutative geometries in our quantum field theoretical studies.

III. QUANTUM FIELD THEORY WITH MINIMAL UNCERTAINTIES

In Sec. III A a general approach to the path integral formulation of quantum field theorie
noncommutative geometric spacetimes is applied. As an example, Euclideanf4- theory is formu-
lated in Sec. III B on the spacetimesA1 andA2, using the previously developed Bargmann Fo
space techniques. The structure constants of the pointwise multiplication of fields are calcul
Sec. III C. The Feynman rules are derived in Sec. III D and, using their asymptotic behaviou
shown in Sec. III E that, on the spacetimesA1 andA2, all graphs off

4-theory are regularized
J. Math. Phys., Vol. 38, No. 3, March 1997
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A. Path integral on noncommutative geometric spaces

In the Euclidean path integral formulation a field theory is defined through its partition f
tion

Z5NE
F
Dfe2~1/\!S@f#, ~69!

whereN is a normalization constant and

S:F→R, S:f→S@f# ~70!

is a nonlinear action functional from the spaceF of fields to the real numbers.
The spaceF of fields F,H in a Hilbert spaceH is a * -representation of the Heisenbe

algebraA generated by elementsxi andpj , ordinarily obeying

@xi ,pj #5 i\d i , j . ~71!

The closure ofF under addition insures the translation invariance of the path integral. Thepi act
on fields, e.g., in the kinetic action, while thexi act on fields, e.g., in gauge transformatio
c→exp~ia~x!!.c.

Of course, in quantum field theory the generatorsxi andpj of the Heisenberg algebraA no
longer have the simple quantum mechanical interpretation as observables of positions a
mentum, because of the existence of antiparticles. Nevertheless, positions and momenta
become mere parameters in quantum field theory. It is this Heisenberg algebraA which is setting
the quantum theoretical stage of position and momentum spaces, also in quantum field theo
also, e.g., Refs. 48 and 49.

Generally, the action functionalsS of local field theories can be expressed in terms of
action ofA on fieldsfPF, whereF is a * -representation, the scalar productsp~,! in F, and the
pointwise multiplication ‘‘* ’’ of fields:

* :F^F→F. ~72!

Let us consider the example of chargedf4-theory:

Z@J#:5NE Dfe*d4xf* ~] i] i2m2!f2~l/4! !~ff!* ff1f* J1J* f. ~73!

Here, velocities and actions are measured as multiples ofc and\. Reintroducing the fundamenta
constants, together with a unit lengthl , yields:

Z@J#5NE DfDf* e*d4x~2 l2/\2!f* ~pi ,pi1m2c2!.f2~l l4/4! !~ff!* ff1f* J1J* f. ~74!

The choice ofl does not affect the theory since it can be absorbed in a finite redefinition o
fields and the coupling constant. It will of course drop out of the Feynman rules.

The Heisenberg algebraA defined by Eq.~71! acts on the fields as

xi .f~x!5xif~x!, pj .f~x!52 i\]/]xjf~x!, ~75!

we define a scalar productsp~,! in F

sp~f1 ,f2!~x!5E d4x f1* ~x!f2~x! ~76!
J. Math. Phys., Vol. 38, No. 3, March 1997
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and the pointwise multiplication* : F^F→F:

~f1*f2!~x!5f1~x!f2~x!. ~77!

Since we require the spaceF of fieldsf that is to be summed over in the path integral to be
*-representation of the commutation relations Eq.~71!, a suitable specification ofF is
F:5S`,H:5L2. The domainF is an analytic~F is a * -A module! and dense domain in th
Hilbert spaceH of square integrable functions.

The pointwise multiplication* equipsF with the structure of a nonunital commutative alg
bra.F is closed under the multiplication, while the identityf(x)[1 is neither inF nor inH. The
commutativity of*

;f1 ,f2PF: f1*f25f2*f1 ~78!

is crucial for the description of bosons and can~and will! be preserved on the noncommutati
geometries.

The above definitions yield:

Z@J#5NE
F
Dfe2~ l2/\2!sp~f,~p21m2c2!•f!2~l l4/4!!sp~f* f,f* f!1sp~f,J!1sp~J,f!. ~79!

The units are now fully transparent since, through the introduction ofl , the abstract fieldsfPF do
not carry units. Their pointwise productf1*f2 does carry units. Eq.~79! provides a formulation of
the path integral which is independent of the choice of a Hilbert basis inF,H. From Eq.~79! one
obtains Eq.~74! by choosing the spectral representation of the position operatorsxi . Equivalently
one may choose other Hilbert bases inH, such as, e.g., the spectral representation of the mom
in which the Heisenberg algebraA acts on the fields asxi .f(p) 5 i\]/]pif(p) and
pj .f(p)5pjf(p) with the scalar productsp~,! in F reading

sp~f1 ,f2!5E d4p f1* ~p!f2~p! ~80!

and the pointwise multiplication* : F^F→F taking the form of the convolution product:

~f1*f2!~p!5~2p\!22E d4k f1~k!f2~p2k!. ~81!

The form of Eq.~79! is not only representation independent, it is crucial that it does also not
on fixed commutation relations in the Heisenberg algebraA.

Our approach to the formulation of quantum field theories on noncommutative geomet
therefore to stick to the abstract form of the action functional, as, e.g., in Eq.~79!, while gener-
alizing the Heisenberg algebraA. This means a generalization of the ‘‘stage’’ of spacetime a
energy-momentum on which the field theory is built, technically through changes in the act
the operators on fields, the scalar product and in the pointwise product of fields, which ar
reflected in the Feynman rules. Note that the scalar products could be written as traces
sp(a,b)5Snsp(n,b)sp(a,n)5tr (ub)(au), with $un)%n being a Hilbert basis inH.

B. f4-theory on the geometries A1 and A2

The framework can be applied for the formulation of quantum field theories on ge
noncommutative background geometries which may or may not have certain symmetries,
to the case of curved background geometries. Here, we will use the nontrivial examples o
Lorentz symmetric noncommutative background geometriesA1 andA2 ~e.g., forn54!, since
J. Math. Phys., Vol. 38, No. 3, March 1997
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they are known to imply minimal uncertainties and since we can conveniently make use o
previous results on the construction of explicit Hilbert space representations.

Note that the quantum mechanics for Lorentz symmetric examples of suitable noncom
tive background geometries was studied in Ref. 25 and the corresponding field theoretical
are in progress.26

Generally, for practical calculations a representation is needed on a domainF of fields in a
Hilbert spaceH and a Hilbert basis to work in. NeitherA1 norA2 have spectral representation
of the xi or pj , while the Bargmann Fock representations on the domainsF:5D1 or D2, as
developed in Sec. II, can again be used. Fields are given as polynomials or power
f(h̄1 ,...h̄n) rather than as functionsf(x) or f(p), with the action of the operatorsxi , pj given
by Eq. ~57!.

The abstract action functional of Eq.~79! is to be expressed, term by term, in the Bargma
Fock representation.

In the case ofA2 the scalar product of fields reads, from Eq.~59!:

sp~f1 ,f2!5f1~ h̄ !e
1/q

]h i
]h̄ if2~ h̄ !u0 . ~82!

Here, and in the following, we sum over repeated indices andu0 stands for ‘‘all differentiations
evaluated at zero.’’

The source terms are scalar products:

sp~f,J!5f~h̄!e
1/q

]h i
]h̄ iJ~ h̄ !u0 , ~83!

sp~J,f!5J~ h̄ !e
1/q

]h i
]h̄ if~h̄!u0 . ~84!

From Eq.~79! the free part of the action functional is the scalar product of the fieldf with the
field Q.f:

S0@f#5sp~f,Q.f!, ~85!

where

Q:5
l 2

\2 ~pipi1m2c2! ~86!

which acts on Bargmann Fock space as:

l 2

\2 ~pipi1m2c2!.f~h̄!5
l 2

\2 S 2(
i51

4

Ki
2~ h̄ i2] h̄ i

!21m2c2Df~h̄!. ~87!

Thus the free action reads:

S0@f#5
l 2

\2 sp~f,~pipi1m2c2!.f!5
l 2

\2 f~h̄!e
1/q

]h i
]h̄ iS 2(

i51

4

Ki
2~ h̄ i2] h̄ i

!21m2c2Df~h̄!u0 .

~88!

The interaction term is the scalar product of the fieldf*f with itself, it thus reads in Bargmann
Fock space:

Sint@f#5
l l 4

4!
sp~f*f,f*f!5

l l 4

4!
~f*f!~h̄ !e

1/q

]h i
]h̄ i~f*f!~h̄ !u0 . ~89!
J. Math. Phys., Vol. 38, No. 3, March 1997
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These are the expressions forA2. In the case of the geometryA1 the exponential is replaced b
the product of exponentials

e
1/q

( i51
4 ]h i

]h̄ i→)
i51

4

e
1/qi

]h t
]h̄ i ~90!

while the case of ordinary geometry is of course recovered forq or all qı→0.
Recall that theh̄ i have two multiplicative structures, related to the Heisenberg algebraA and

to the algebraF of fields. Solving Eqs.~57! for h̄ i , the h̄ i act as multiplication operators on th
fields and can be identified with elements of the Heisenberg algebra, thus, in the generalize
reflecting its noncommutativity. On the other hand, the fieldsf(h̄) are commutatively multiplied
pointwise, through ‘‘* ’’ for the description of local interaction.

The structure constantsCrW,sW, tW ~here and in the following index ‘‘vectors’’rW take valuesrWPN4!

CrW,sW, tW :5sp~ h̄1
r1
•...•h̄4

r4,h̄1
s1
•...•h̄4

s4* h̄1
t1
•...•h̄4

t4! ~91!

will be needed explicitly.

C. Pointwise multiplication

On ordinary geometry the pointwise multiplication* transforms into momentum space as t
well known convolution product:

~f*f!~x!5f~x!f~x!, ~92!

~f*f!~p!5~2p\!21/2E
2`

1`

dkfp~k!fp~p2k!. ~93!

In order to obtain the convolution product formula, two arbitrary functions on momentum s
are unitarily ~Fourier-! transformed into position space, multiplied pointwise, and the resul
function is unitarily~Fourier-! transformed back into momentum space, yielding Eq.~93!.

Analogously the unitary equivalence of the Bargmann Fock, with the position space r
sentation, determines the pointwise multiplication in Bargmann Fock space and theCrW,sW, tW

uniquely.
The matrix elements of the unitary transformation to the spectral representation ofx are

^xuh̄n&5An! ~2pL2!21/4~x/2L2L]x!
ne2~1/4!~x/L !2, ~94!

i.e., up to a factor, the Hermite functions. The use of Eq.~94! for the transformation of* from
position space into Bargmann Fock space is, however, rather inconvenient. Starting from
expressions, more practical formulas can be developed.

As has been known since Ref. 50~see also Ref. 51 and references therein!, fieldsf(x) given
in the position representation are transformed into the Bargmann Fock representation by

f~h̄!5~2pL2!21/4E
2`

1`

dxe2~1/2!h̄21 h̄ ~x/L !2~1/4!~x/L !2f~x! ~95!

with the inverse:

f~x!5~8p3L2!21/4E
2 i`

1 i`

dh̄e~1/2!h̄22 h̄ ~x/L !1~1/4!~x/L !2f~h̄!. ~96!
J. Math. Phys., Vol. 38, No. 3, March 1997
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To see this, note that the Bargmann Fock functionf(h̄):51 is mapped onto

f~x!5~2pL2!21/4e21/4~x/L !2 ~97!

and vice versa. The induction is then completed by showing that multiplying the Bargmann
function with h̄ amounts to the action of (x/L22L]x)/2 on the field in position space.

These formulas, connecting the position space with the Bargmann Fock space, are an
of the Fourier transformation formulas connecting the position space with the momentum
Similar formulas connect Bargmann Fock space directly to momentum space:

f~h̄!5S 2L2p\2D 1/4E
2`

1`

dp e~1/2!h̄212i h̄ ~Lp /\!2~Lp /\!2fp~p! ~98!

with the inverse:

fp~p!5S L2

2p3\2D 1/4E
2`

1`

dh̄ e2~1/2!h̄222i h̄ ~Lp /\!1~Lp /\!2f~h̄!. ~99!

For the proof, note thatsp(p,f(h̄) 5 1) 5 (2L2/p\2)1/4e2(Lp/\)2.
Let us remark that from Eqs.~95! and ~96! immediately follows that the transformation

f̃ ~y!:5E
2`

1`

dx e2~1/L2!~x2y!2f ~x! ~100!

which yields a ‘‘Gaussian-diluted’’ function has an inverse:

f ~x!5
1

pL2 E2`

1`

dy e~1/L2!~x2 iy !2 f̃ ~ iy !. ~101!

The x-eigenvector with eigenvaluex0, i.e., in position space the ‘‘d-function’’ at x0, has the
Bargmann Fock representationf (x0)

(h̄) @using Eq.~95!#

f~x0!~ h̄ !5~2pL2!21/4e2~ h̄2/2!1 h̄ ~x0 /L !2~1/4!~x0 /L !2. ~102!

The scalar product of an arbitraryf(h̄) with f (x0)
(h̄) yields another formula for the transforma

tion from Bargmann Fock to position space, using Eq.~17!

f~x!5
~2pL2!21/4

2p i E dh dh̄ e2 h̄h2~h2/2!1h~x/L !2~1/4!~x/L !2f~h̄!. ~103!

Similarly, the use of the algebraic form Eq.~18! of the scalar product yields

f~x!5~2pL2!21/4e2~h2/2!1h~x/L !2~1/4!~x/L !2e]h]h̄f~h̄ !uh505 h̄ ~104!

and thus:

f~x!5~2pL2!21/4e2~1/2!]~2/h!1~x/L !] h̄2~1/4!~x/L !2f~h̄!u h̄50 . ~105!

This new transformation formula no longer involves integrations and can be evaluated al
ically, using the Leibniz rule only.
J. Math. Phys., Vol. 38, No. 3, March 1997
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The pointwise multiplication on Bargmann Fock space is now calculated by unitarily tr
forming two arbitrary Bargmann Fock functions into position space, using the new formula
~105!, multiplying pointwise, and unitarily transforming the resulting function back into Ba
mann Fock space, using Eq.~95!, to obtain:

~f1*f2!~ h̄ !5~2pL2!23/4E
2`

1`

dxe2~1/2!~ h̄21]
h̄8
2

1]
h̄9
2

!1~x/L !~ h̄1]h̄81]h̄9!2~3/4!~x/L !2f1~ h̄8!f2~ h̄9!u0

5S 2

9pL2D
1/4

e~1/3!~ h̄1]h̄81]h̄9!22~1/2!~ h̄21]
h̄8
2

1]
h̄9
2

!f1~ h̄8!f2~ h̄9!u0 . ~106!

This is the convolution product formula for Bargmann Fock space. It allows to calculate theCrst :

Crst5sp~ h̄ r ,h̄ s* h̄ t!5h re]h]h̄S 2

9pL2D
1/4

e~1/3!~ h̄1]h̄81]h̄9!22~1/2!~ h̄21]
h̄8
2

1]
h̄9
2

!h̄8sh̄9tu0

5S 2

9pL2D
1/4

e~1/3!~] h̄1]h̄81]h̄9!22~1/2!~] h̄
21]

h̄8
2

1]
h̄9
2

!h̄ r h̄8sh̄9tu0 .

~107!

Using

]x
r eax1bx2ux505 (

s<r /2

r !

s! ~r22s!!
ar22sbs ~108!

we evaluate

e~21/6!~] h̄
21]

h̄8
2

1]h̄9!21~2/3!~] h̄] h̄81]h̄] h̄91]h̄8]h̄9!h̄ r h̄8sh̄9tu0

5e~21/6!~]
h̄8
2

1]
h̄9
2

!1~2/3!~] h̄8]h̄9!] h̄
re~21/6!h̄21~2/3!h̄~] h̄81]h̄9!h̄8sh̄9tu0

5e~21/6!~]
h̄8
2

1]
h̄9
2

!1~2/3!~] h̄8]h̄9!(
u

r !

u! ~r22u!! S 23 ~] h̄81] h̄9! D r22uS 21

6 D uh̄8sh̄9tu0

5e~21/6!~]
h̄8
2

1]
h̄9
2

!1~2/3!~] h̄8]h̄9!(
u

r ! S 23D
r22uS 21

6 D u
u! ~r22u!! (

v50

r22u S r22u
v D ] h̄8

r22u2v] h̄9
v h̄8sh̄9tu0

5e~21/6!~]
h̄8
2

1]
h̄9
2

!1~2/3!~] h̄8]h̄9!(
u,v

r ! S 23D
r22uS 21

6 D u
u! ~r22u2v !!v!

] h̄8
r22u2v] h̄9

v h̄8sh̄9tu0

5e~21/6!~]
h̄8
2

1]
h̄9
2

!1~2/3!~] h̄8]h̄9!(
u,v

r !s! t! S 23D
r22uS 21

6 D uh̄8s2r12u1vh̄9t2v

u! ~r22u2v !!v! ~s2r12u1v !! ~ t2v !!
U
0

which is, substitutingu by a:5r22u2v
J. Math. Phys., Vol. 38, No. 3, March 1997
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5e~21/6!~]
h̄8
2

1]
h̄9
2

!1~2/3!~] h̄8]h̄9!(
a,v

r !s! t! S 23D
a1vS 21

6 D ~r2v2a!/2

~~r2v2a!/2!!v!a! ~s2a!! ~ t2v !!
h̄8s2ah̄9t2vu0

5(
a,v

r !s! t! S 23D
a1vS 21

6 D ~r2v2a!/2

S r2v2a

2 D !v!a! ~s2a!! ~ t2v !!

] h̄8
s2ae~21/6!~ h̄821]

h̄9
2

!1~2/3!~ h̄8]h̄9!h̄9t2vu0

5 (
a,v,w

r !s! t! S 23D
a1vS 21

6 D ~r2v2a!/2

S r2v2a

2 D !v!a! ~s2a!! ~ t2v !!

~s2a!! S 23D
s2a22wS 21

6 D w
~s2a22w!!w!

3] h̄9
s2a22we~21/6!]

h̄9
2

h̄9t2vu0

and, replacingw by z:5s2a22w

5 (
a,v,z

r !s! t! S 23D
a1v1zS 21

6 D ~r2v1s22a2z!/2

a!v!z! S r2a2v
2 D ! S s2a2z

2 D ! ~ t2v2z!!

e~21/6!]
h̄9
2

h̄9t2v2zu0

5 (
a,v,z

r !s! t! S 23D
a1v1zS 21

6 D ~r2v1s22a2z5 !/2

a!v!z! S r2a2v
2 D ! S s2a2z

2 D ! ~ t2v2z!!
S 21

6 D ~ t2v2z!/2 ~ t2v2z!!

S t2v2z

2 D ! ~109!

to obtain eventually:

Crst5S 2

9pL2D
1/4

(
i1 ,i2 ,i3

r !s! t! ~24! i11 i21 i3~26!2~r1s1t !/2

i 1! i 2! i 3! S r2 i 22 i 3
2 D ! S s2 i 12 i 3

2 D ! S t2 i 12 i 2
2 D ! . ~110!

In the sum over thei 1 ,i 2 ,i 3 only those terms contribute for which the arguments of all factor
are positive integers, which is a finite number of terms.

Let us also consider an alternative pointwise multiplication* 8, which is infrared modified:

~f* 8f!~x!:5f~x!f~x!e~1/4!~x/L !2. ~111!

In Bargmann Fock space this now takes a simple form without the square of derivatives
exponential:

~f* 8f!~h̄ !5~2pL2!23/4E
2`

1`

dx e2~1/2!~ h̄21]
h̄8
2

1]
h̄9
2

!1~x/L !~ h̄1]h̄81]h̄9!2~1/2!~x/L !2f~h̄8!f~h̄9!u0

5~2pL2!21/4eh̄] h̄91~ h̄1]h̄9!] h̄8f~h̄8!f~h̄9!u05~2pL2!21/4f~h̄1] h̄8!f~h̄1h̄8!u0 .

~112!

Thus
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Crst8 5sp~ h̄ r ,h̄s* h̄ t!5h re]h]h̄~2pL2!21/4eh̄] h̄91~ h̄1]h̄9!] h̄8h̄8sh̄9tu0

5~2pL2!21/4e]h̄8]h̄91~] h̄81]h̄9!] h̄h̄ r h̄8sh̄9tu05~2pL2!21/4e]h̄8]h̄9~] h̄81] h̄9!
r h̄8sh̄9tu0

5~2pL2!21/4e]h̄8]h̄9(
a50

r S raD ] h̄8
a ] h̄9

r2ah̄8sh̄9tu0

5~2pL2!21/4e]h̄8]h̄9S raD s! t!

~s2a!! ~ t2r1a!!
h̄8~s2a!h̄9~ t2r1a!u0

5~2pL2!21/4
r !s! t!

S 2r1s1t

2 D ! S r2s1t

2 D ! S r1s2t

2 D ! , ~113!

whenever the arguments of all factorials are positive integers, and zero otherwise. Compa
theCrst which can be put into the form:

Crst5S 2

9pL2D
1/4

3(
mi

r !s! t! ~24!m11m21m3~26!2~r1s1t !/2

Sm11m22m3

2 D ! Sm12m21m3

2 D ! S 2m11m21m3

2 D ! S r2m1

2 D ! S s2m2

2 D ! S t2m3

2 D ! .
~114!

Recall that, in the position representation, the Bargmann Fock polynomialsh̄m have the asymp-
totic behaviour@Eq. ~94!# }exp~2(x/2L)2!. The pointwise multiplication* of the Hermite func-
tions thus yields a function of asymptotic behaviour}exp~22(x/2L)2!. The weighted multiplica-
tion * 8 cancels one of the Gaussian factors and thus keeps the asymptotic behaviour unc
under the multiplication. ThusF is closed also under* 8. While it has a modified~and divergent!
infrared behaviour it is also strictly local and is commutative.

D. Feynman rules

Generally, given a*-representationF of a possibly generalized Heisenberg algebraA, to-
gether with the structure constantsC of the pointwise multiplication in this representation, it
possible to evaluate the action functional for arbitrary fields, and to calculate the Feynman

On the example background geometryA2 the fields and sourcesf, JPF are expanded in the
Hilbert basis given by the ordered orthonormal polynomials

f~h̄!5 (
s1 ,s2 ,s3 ,s450

`

fs1s2s3s4

h̄1
s1h̄2

s2h̄3
s3h̄4

s4

A@s1#q! @s2#q! @s3#q! @s4#q!
~115!

J~ h̄ !5 (
s1 ,s2 ,s3 ,s450

`

Js1s2s3s4

h̄1
s1h̄2

s2h̄3
s3h̄4

s4

A@s1#q! @s2#q! @s3#q! @s4#q!
~116!

so that fieldsfPF are represented by their coefficient vectorf rW :5f r1 ,r2 ,r3 ,r4
with indices

r i50,1,2,...̀ , ~i51,...,4!.
In the caseA2 the algebra generated by theh̄ i is noncommutative and the nontrivial fact th

the ordered polynomials still form a Hilbert basis is a consequence of the invariance o
J. Math. Phys., Vol. 38, No. 3, March 1997
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Poincare´ series~i.e., of the dimensionalities of the subspaces of polynomials of equal gra!,
which was one of the key conditions in the derivation of the generalized Bargmann Fock cal
see Ref. 10.

The coefficient matrix of the quadratic operatorQ @from Eqs.~86!, ~87!# in the free action
functional is obtained as

MrWsW5
l 2

\2

h̄ 1
r1h̄ 2

r2h̄ 3
r3h̄ 4

r4

A@r 1#q! •...•@r 4#q!
e
1/q

]h i
]h̄ iSm2c22(

i51

4

Ki
2~ h̄ i2] h̄ i

!2D h̄1
s1h̄2

s2h̄3
s3h̄4

s4

A@s1#q! •...•@s4#q!
U
0

~117!

while the matrix elements of the interaction term read@from Eq. ~89!#

VtWuWvWwW 5
h̄1
t1h̄2

t2h̄3
t3h̄4

t4* h̄1
u1h̄2

u2h̄3
u3h̄4

u4

A@ t1#q! •...•@ t4#q! @u1#q! •...•@u4#q!
e
1/q

]h i
]h̄ i

h̄1
v1h̄2

v2h̄3
v3h̄4

v4* h̄1
w1h̄2

w2h̄3
w3h̄4

w4

A@v1#q! •...•@v4#q! @w1#q! •...•@w4#q!
U
0

~118!

and, using Eq.~91!

VtWuWvWwW 5 (
z1 ,...,z450

`
CtW,uW ,zWCzW,vW ,wW

P i51
4 @zi #q!A@ t i #q! @ui #q! @v i #q! @wi #q!

. ~119!

The formulas given apply to the caseA2. ForA1, together with Eq.~90!, theq’s carry indices
q1 ,...,q4 .

Note that the path integration can be written as the product of a countably infinite numb
integrations:

NE Df~x!Df* ~x!e2S@f~x!,f* ~x!#5NE DfDf̄e2S@f~ h̄ !,f~ h̄ !#

5NE )
r1 ,r2 ,r3 ,r450

`

df r1 ,r2 ,r3 ,r4
df r1 ,r2 ,r3 ,r4

* e2S@frW ,frW
* #.

~120!

This discretization of the infinite number of ordinary integrations which form the path integr
not related to the issue of, e.g., ultraviolet regularization. On ordinary geometry it is mer
result of our choice of representation, which is unitarily equivalent to the conventional repr
tations of the Heisenberg algebraA. Generally, we are simply making use of the fact that
Hilbert spaceH is separable, i.e., thatH has discrete bases.

The Feynman rules can be derived in the standard way, using the generating function
~79!, which now reads:

Z@J#5NE DfDf* e2frW
*MrWsWfsW2~l l4/4! !VtWuWvWwW f tW

* fuW
* fvWfwW 1frW

* JrW1JrW
* frW. ~121!

Recall that each index vector denotes four indices, corresponding to the four Euclidean d
sions, e.g.,rW5(r 1 ,r 2 ,r 3 ,r 4) where each index is summed over, e.g.,r 250,1,2,...̀ . Pulling the
interaction term in front of the integral yields:

Z@J#5Ne2~l l4/4! !VrWsW tWuW ~]/]JrW!~]/]JsW!~]/]JtW
* !~]/]JuW

* !E DfDf* e2frW
*MrWsWfsW1frW

* JrW1JrW
* frW. ~122!
J. Math. Phys., Vol. 38, No. 3, March 1997
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In the discrete representation the functional derivatives become ordinary partial derivative
arranging the remaining integrand

Z@J#5Ne2~l l4/4! !VrWsW tWuW ~]/]JrW!~]/]JsW!~]/]JtW
* !~]/]JuW

* !E DfDf* e2~frW
*2JsW

*MsWrW
21

!MrW tW~f tW2M tWuW
21

JuW !1JrW
*MrWsW

21
JsW

~123!

the path integral can be absorbed in the overall constant:

Z@J#5N8e2~l l4/4! !VrWsW tWuW ~]/]JrW!~]/]JsW!~]/]JtW
* !~]/]JuW

* !eJrW*MrWsW
21

JsW . ~124!

The calculation of graphs now involves loop summations rather than loop integrations, wi
Feynman rule for the free propagator

D0~aW ,bW !5M
aWbW
21

~125!

and the lowest order vertex:

G0~aW ,bW ,cW ,dW !52
l l 4

4!
VaWbWcWdW . ~126!

In graphs, each internal propagatorD0 is attached to two legs of a vertexG0 . While the propagator
carries a factor ofl22, each leg of the vertex carries a factorl . Thus, as it should be, the lengt
scalel drops out of the calculation.

The Feynman rules could, e.g., be applied to the calculation of the first order correction
propagator, i.e., to the tadpole graph which now reads:

D~aW ,bW !5M
aWbW
21

2
lL4

3! (
rW,sW, tW,uW

VrWsW tWuWMuWaW
21MtWrW

21M
bWsW
21

1..., ~127!

where, e.g.,SrW denotesS r1 ,r2 ,r3 ,r450
` . On ordinary geometry the tadpole contribution is diverge

since it reads in momentum space, up to the external legs and a constant,

E d4p
1

pipi1m2c2
5quadr. UV divergent. ~128!

On ordinary geometry, i.e., with the ordinary Heisenberg algebraA underlying, the Feynman
rules in the Bargmann Fock representation are of course equivalent to those in the then e
position and momentum representations, the change of Hilbert basis inF is unitary, its determi-
nant is trivial and no anomalies are introduced. Whilen-point functionsG (n)(x1W ,...,xnW ) and
G (n)(p1W ,...,pnW ) are related by unitary~Fourier-! transformations they can also be transform
unitarily to and from the Bargmann Fock representationG (n)(r 1W ,...,r nW ), using the transformations
given in Eqs.~95!, ~96!, ~98!, ~99!. On geometries with minimal uncertainties there is still t
possibility of unitarily transforming to quasi-position and quasi momentum representation
Ref. 25 and Sec. III B.

E. Regularization

The aim now is to investigate whether nonzero minimal uncertainties have the pow
regularize the divergencies inf4-theory, i.e., whether the loop summations of perturbation the
such as those in Eq.~127!, converge on geometries with minimal uncertainties.

For the study of the convergence properties of loop summations the behaviour of the
elements ofV andM21 for large summation indices needs to be established. Inf4-theory on the
J. Math. Phys., Vol. 38, No. 3, March 1997
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example geometriesA,A1 orA2 the Feynman rule for the vertexV is specified by applying the
explicit expression Eq.~110! for the pointwise multiplication to Eq.~119! and Eq.~126!.

Recall that in the expression Eq.~110! for theCrst only those terms contribute to the sum f
which the arguments of all factorials are integers.~Note also thatCrst vanishes ifr1s1t is odd.
In position and momentum space this is the integral over the product of three odd He
functions.! Thus for fixedr , s, t, the number of nonzero terms in the sum cannot exceedr •s•t
and theCrst can therefore be majorized by:

uCrstu,S 2

9pL2D
1/4

rst r!s! t!3 r1s1t. ~129!

Usingn! , A2pnnne2ne1/12n ~from expanding the gamma function! yields:

uCrstu,S 2

9pL2D
1/4

~2prst!3/2~3/e!r1s1te1/12r11/12s11/12tr rsst t. ~130!

Splitting off the nondominant factors

k~n!:5~2pn!3/2~3/e!ne1/12n ~131!

yields in four dimensions:

uCrW,sW, tWu,
2

9p )
i51

4

Li
21/2k~r i !k~si !k~ t i !r i

r isi
si t i

t i. ~132!

The denominator in Eq.~119! reflects changes arising with the modified geometry. The estim

@n#q!5 )
a51

n

@a#q5 )
a51

n

(
b50

a21

q2b5~11q2!~11q21q4!•...•~11...1q2~n21!!

.q2~1121...1n21!5qn
22n ~133!

yields for the geometryA2:

uVtWuWvWwW u,
4

81p2 (
z1 ,...,z4

)
i51

4

Li
21

k2~zi !zi
2zik~ t i !k~ui !k~v i !k~wi !t i

t iui
uiv i

v iwi
wi

qzi
2
2zi1~ t i

2
2t i1ui

2
2ui1v i

2
2v i1wi

2
2wi !/2

. ~134!

The same majorization holds in the caseA1 ~where there are fourqi rather than oneq!, then
definingq:5min(q1 ,...,q4).

The sums are convergent and can be absorbed in a finite dimensionless constantK4(q):

K~q!:5(
z50

`

k~z!z2zq2z21z ~135!

to yield for the elementary vertex, using Eq.~126!:

uG0~ tW,uW ,vW ,wW !u,
l l 4

4!

4

81p2 k
4~q!)

i51

4

Li
21

k~ t i !k~ui !k~v i !k~wi !t i
t iui

uiv i
v iwi

wi

q~ t i
2
2t i1ui

2
2ui1v i

2
2v i1wi

2
2wi !/2

. ~136!

Note thatG tWuWvWwW is now, i.e., forq.1, highly suppressed for large indices. It remains to investig
the high index behaviour of the Feynman ruleD0(aW ,b

W ) of the free propagator.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



iour of
r
n-

-

a
, see,
as

ma-

use,

inimal
e
also

tudy on

ith the

1369Achim Kempf: Quantum field theory with finite x,p-uncertainties

¬¬¬¬¬¬¬¬¬¬
We remark that, e.g., onA1, the modified inverse propagator~summed overi !

Q8:5
l 2

\2 S pipi1m2c21S Dp0i
Dx0i

D 2xixi D ~137!

is self-adjoint and reads in the Bargmann Fock representation:

Q8•f~h̄!5S (
i51

4 S ~qi
211!3l 2

8Li
2 h̄ i] h̄ i

1
~qi

211!2l 2

8Li
2 D 1

m2c2l 2

\2 D •f~h̄!. ~138!

Due to

(
i51

4

h̄ i] h̄ i
•~ h̄ 1

r1...h̄ 4
r4!5(

i51

4

@r i #qi~ h̄ 1
r1...h̄ 4

r4! ~139!

it is diagonal, yielding the propagator

D08~rW,sW !5S (
i51

4 S ~qi
411!3l 2

8Li
2 @r i #qi1

~qi
211!2l 2

8Li
2 D 1

m2c2l 2

\2 D 21

d rW,sW . ~140!

Its nonzero matrix elements rapidly decrease for large indices, due to the exponential behav
[n] q5(q2n21)/(q221). An analogous calculation is possible onA2. Recall that the propagato
D08(rW;sW) approximatesD0(rW,sW) for Dp0i→0, i.e., for vanishing minimal uncertainties in mome
tum and that it should not differ fromD0(rW,sW) in the ultraviolet.

Nevertheless, an explicit majorization of the matrix elements of the true propagatorD0(rW,sW) is
needed. Since the Bargmann Fock representation ofQ, i.e.,M , is nondiagonal, the explicit cal
culation ofD0(rW,sW) is rather involved, see Eqs.~87!, ~117! and~125!. We can, however, obtain a
majorization of its crucial high-index behaviour.

On F, which is analytic, the operatorQ is symmetric and positive definite, thus allowing
canonical, lower bound preserving self-adjoint extension. This so-called Friedrich extension
e.g., Ref. 52, has a self-adjoint and bounded inverseQ21, defined on the entire Hilbert space,
has every positive definite self-adjoint operator.

It is crucial that, sinceQ21 is boundedC(q):5iQ21i,`, also its matrix elementsD0(rW,sW)
are bounded. This follows immediately from the Cauchy Schwarz inequality and yields the
jorization:

uD0~rW,sW !u<C~q! ;rW,sWPN4. ~141!

In fact, the lower bound ofQ on F is now positive even in the absence of a mass term, beca
onA1 andA2

spS f,(
i
pıpı .f D>ifi2(

i
~Dpi0!

2 ;fPF, ~142!

i.e., technically through what in the language of quantum mechanics is the existence of m
uncertainties in momentumDpi0 @from Eq. ~27! and Ref. 13#, on these geometries. Since th
Friedrich extension preserves the lower bound we obtain self-adjoint and in particular
bounded, i.e., infrared regular propagators also in the massless case. A more general s
propagators and infrared regularization is Ref. 53.

The strong suppression of the matrix elements of the vertex for high indices, together w
boundedness ofD0(rW,sW) suffices to prove the finiteness of all graphs inf4-theory on the geom-
etriesA1 andA2:
J. Math. Phys., Vol. 38, No. 3, March 1997
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Connected graphsG(n)(rW1 ,...,rWn), consisting of loop summations overnp free propagatorsD0
andnv verticesG0 can be majorised by

uG~n!~rW1 ,...,rWn!u,Cnp~q!S l3A Al

A6p
K~q! (

m50

`

k~m!mmq~2m21m!/2D 4nv)
i51

4

Li
2nv ~143!

which is convergent due to the summability of the sequencesn : 5 mmq2m2
, as is readily checked

by the quotient criterion.
Let us recall that the constantsCrW,sW, tW were calculated on the ordinary geometryA and have

been kept invariant while switching on the generalized geometry~i.e., forq.1 or theqı.1!. The
noncommutative geometry entered into the Feynman rules through the changes in the actio
operators on the fields and their scalar product. The modified action of the momentum op
entered into the calculation of the propagator, yielding in particular an obvious infrared reg
izing effect. The modified scalar product Eq.~24! of Bargmann Fock polynomials entered into th
vertex, regularizing the local interaction.

However, to stick to theCrW,sW, tW of ordinary geometry, as we did, is only a minimal choice. F
generalized Heisenberg algebras which imply minimal uncertainties, such as ourA1 andA2,
there is no unitarily equivalent position space representation of the commutation relations,
would uniquely fix theCrW,sW, tW of the pointwise multiplication.

We showed the regularity of the field theory without introducing any nonlocality by h
But, in fact, on noncommutative geometric spaces implying minimal uncertainties, theCrW,sW, tW could
be modified by hand to some extend, introducing an apparent regularizing nonlocality, w
spoiling observational locality. This is because structure constants which would imply a
nonlocality of the interaction on ordinary geometry are now to be considered observationally
as long as the nonlocality introduced is not larger than the scale of the minimal uncer
inherent in the underlying geometry, i.e., as long as interaction cannot lead to an obse
nonlocality. This issue needs further careful investigation which will imply the use of max
localization states, see Refs. 25, 45. We remark that, as is not difficult to check, regularizat
A1 andA2 can be proven along the same lines also for the infrared modified pointwise m
plication * 8 which we mentioned in Sec. III C.

IV. SUMMARY AND OUTLOOK

In Sec. II we reviewed and generalized the results of Refs. 10–13 in which is studie
quantum mechanics on noncommutative geometric spaces that imply nonvanishing minim
certainties in positions and momenta. Technically, the position and momentum operato
symmetric but no longer essentially self-adjoint, a fact that is crucial in the presence of mi
uncertainties, although it is complicating the construction of* -representations of the Heisenbe
algebra. Physically, the approach leads to a modified behaviour at very small and at very
scales, which can be motivated to arise from gravity and is coinciding with results of string th

In Sec. III we continued the Euclidean field theoretical studies of Refs. 14 and 15. Fo
examples of noncommutative geometries that imply minimal uncertainties we worked ou
Feynman rules of chargedf4-theory and were now able to prove the finiteness of all graphs.
results show, at least in the example off4-theory, that if gravity or string theory effects induc
minimal uncertainties, with, e.g.,Dx0 of the order of the Planck length, this could indeed prov
a natural regularization of field theories.

Further studies in the context of ultraviolet regularization and microcausality will use
maximal localization states to study the locality properties of generalized pointwise multip
tions. The properties of maximal localization states25,45 acquire interesting new features in th
J. Math. Phys., Vol. 38, No. 3, March 1997
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generaln-dimensional situation where the minimal uncertainty gap in the space of theDxi and
Dpj can have a complicated structure. This is being analysed first for the simpler case w
minimal uncertainties in momenta.26

We remark that corrections to the commutation relations can imply that, e.g., thepi then
generate nonlinear transformations of the coordinates, which under certain conditions c
interpreted as the translation of normal coordinate frames on a curved space, see Refs. 14
Further studies on this ‘‘curvature-noncommutativity duality’’ are in progress.

For further studies and practical calculations on noncommutative geometries other th
two classesA1 andA2 which we have covered so far, it is necessary to construct Hilbert s
representations of the corresponding generalized Heisenberg algebras. It is not obvious
which conditions the unitary equivalence of* -representations of the Heisenberg commutat
relations~in the sense in which it holds on ordinary geometry! still holds for generalized Heisen
berg algebras. It may not hold for some noncommutative geometries in which case the inv
tion of the above mentioned dual, curved situation should be interesting. One may speculate
a possible relation to horizons or nontrivial topology.

The hope is of course that noncommutative geometric methods could provide new tech
for approaching long outstanding problems in quantum gravity, as they were outlined, e.g., i
54. On the other hand, as discussed in Refs. 13 and 25, quantum theory on geometrie
minimal uncertainties in positions could also provide a suitable framework for an effective
scription of nonpointlike particles, which could be strings and, changing scale, which could
be compound particles, such as nucleons in situations in which details of their internal struct
not contribute, or, e.g., various quasi-particles and collective excitations. Work also in this
tion is in progress.
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This paper is a continuation of an earlier paper@Commun. Math. Phys.152, 73–95
~1993!#. Its purpose is to extend the quantitative estimates given previously for
regular potentials to the case of potentials admitting some Coulomb-type singulari-
ties. More precisely, considering the two-cluster wave operators in diatomic-
scattering, we approximate them by so-called ‘‘adiabatic’’ wave operators as the
mass of the nuclei tends to infinity. ©1997 American Institute of Physics.
@S0022-2488~97!00503-3#

I. INTRODUCTION

Consider a diatomic molecule and a two-cluster decompositionC such that the two nuclei are
not in the same cluster. Then, following Ref. 1 one can define the so-called adiabatic~resp.
nonadiabatic! wave operatorsV6

AD ~resp.V6
NAD!, which decompose in two parts the usual wa

operatorsV6
C associated to this cluster decomposition, in the sense that one has ba

V6
C5V6

NADV6
AD . The adiabatic partV6

AD is constructed by considering the diffusion of the tw
nuclei only, taking into account the electrons via the effective potential they create.

Denoteh2 the inverse of the mass of the nuclei~assuming that the mass of the electrons is!,
and consider the Born–Oppenheimer approximation in whichh tends to zero. In Ref. 2 we hav
proved that, if all the potentials of interaction are smooth~and under suitable geometric cond
tions!, thenV6

AD gives a good approximation ofV6
C in the sense thatV6

AD2V6
C5O (h).

Here we propose to extend this result to more physical potentials, namely to potentia
mitting a Coulomb-type singularity at the origin. Then most of the techniques used in Ref.
not work anymore, and one must find more refined constructions.

In particular, the estimate on the spectral projections~see Proposition 2.1 below!, which is one
of the crucial points in our proof, requires the assumption that the interaction between th
nuclei behaves really likea/uxu with a.0. Actually, here all the technical problems come from t
h dependence of the arguments of the potentials, which cannot anymore be treated by
smoothness.

Another important feature is the resolvent estimate~see Sec. III!, which is based on the
Mourre method.3 In order to transform the problem into the study of a regular Hamiltonian,
have used the techniques introduced in Ref. 4 for the discrete spectrum. Here they per
construction of a conjugate operator based on the pseudodifferential calculus, and one
differences with Ref. 2 is that the final weight on the estimate has to be corrected by a for
O ~h2! term. After that, the proof of the main result can be completed by abstract arguments
Ref. 2.

Note that in this paper we have assumed all the interaction potentials to be short rang
0022-2488/97/38(3)/1373/24/$10.00
1373J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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is mainly to simplify the definition of the wave operators, but the results are probably still vali
long range interactions. A review of both Ref. 2 and the present paper can be found in Re

In Sec. I we recall the notations which were used in Ref. 2 and we state our main r
Section II is devoted to various estimates on the spectral projectors, and in particular to
behavior as bothh tends to 0 and the intercluster distance tends to infinity. In Sec. III the Mo
method is applied to give an estimate on the resolvent of the total Hamiltonian, and then i
IV this estimate is extended to the resolvent of the adiabatic operator. The proof of the main
is completed in Sec. V. The Appendix contains some technical results about semiclassical
tors with singular coefficients.

II. NOTATIONS AND MAIN RESULT

We consider a diatomic molecule withN electrons of mass 1 and nuclei of massmj ~j51,2!.
We denote byx1 and x2 the positions of the two nuclei, and by (x3 ,...,xN12) those of the
electrons. For a given two-cluster decompositionC5(C1 ,C2) of $1,...,N12% such that jPC

~j51,2!, and after the removal of the center of mass motion, the Hamiltonian of the system c
written as

P52h2Dx1Pe~x,h!, ~II.1!

which acts onL2~R3(N11)!, and where we have used the following notations~see Ref. 2!:

h5S 1

2M1
1

1

2M2
D 1/2, M j5mj1uCj8u, Cj85Cj \$ j %

Pe~x,h!5Pc~h!1I c~x,h!,

Pc~h!5 (
k51

2 H (
jPCk8

„2Dyj
1Vk, j~2yj !…1 (

i , jPCk8
iÞ j

Vi , j~yi2yj !J 2 (
k51

2
1

mk S (
jPCk8

]yj D 2

,

I c~x,h!5 (
iPC18

jPC28

Vi , j„yi2yj1x2 l ~y!…1 (
jPC18

V2,j„2x2yj1 l ~y!…

1 (
jPC28

V1,j„x2yj2 l ~y!…1V1,2„x2 l ~y!…,

l ~y!5
1

M1
(
kPC18

yk2
1

M2
(
kPC28

yk ,

yj5xj2xk for jPCk8 , k51,2,

x5R12R2 , Rj5
1

M j Smjxj1 (
kPCj8

xkD , j51,2. ~II.2!

In these formulas, theVi , js represent the interactions between the particles,Pc(h) is the cluster
Hamiltonian associated to the cluster decompositionC, I c(x,h) is the intercluster interaction, an
Pe(x,h) is the electronic Hamiltonian. Moreover,h goes to zero as the masses of the two nuc
tend to infinity, and one can see from the formulas that we have
J. Math. Phys., Vol. 38, No. 3, March 1997
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Pc~h!5Pc~0!1h2A~h!, ~II.3!

whereA(h) is uniformlyDy-bounded [y5(y1 ,...,yN)]. For any (i , j ), we assume that the poten
tial Vi , j is C

` on R3\$0% and satisfies for somer.1 and for anyaPN3

u]aVi , j~x!u5O ~ uxu2r2uau! as uxu→1`,

Vi , j is D-compact, ~II.4!

Sup
0,uxu<1

uxu uauu]aVi , j~x!u
11uVi , j~x!u

,1`.

Moreover, we assume that the potentialV1,2 ~which represents the interaction between the t
nuclei! satisfies

(
uau<2

]a
„uxuV1,2~x!…PL loc

` ~R3!,

~II.5!

V1,2~x!;
a0
uxu

as uxu→0, with a0.0,

where the precise meaning of the last assumption is thatuxuV1,2(x) tends toa0 asuxu tends to zero.
Actually, all our results remain valid~and even in an easier way! if V1,2 is bounded near zero
together with its derivatives of order at most 2. But~II.5! corresponds to the physical case, and
this reason we concentrate on it.

Now, we fix an energy levell0PR, and we assume

E0 :5Inf s„Pc~0!…Psdisc„P
c~0!…, E0,l0 ,

l1~x,h!:5Inf s„Pe~x,h!…Psdisc„Pe~x,h!…

for h small enough andx in a neighborhoodO l0

of $xPR3;l1~x,0!<l0%, ~II.6!

l1~x,0!2V1,2~x!Psdisc„Pe~x,0!2V1,2~x!… for xPR3.

Using ~II.3!, we see that~II.6! implies that for somed.0,

l02d.E0~h!:5Inf s„Pc~h!…Psdisc„P
c~h!…

for h.0 small enough. Moreover, by the same arguments as in Ref. 2, Lemma 2.1, there e
least one eigenvalue ofPe(x,h) which tends toE0(h) as uxu→`(0<h<h0), and at least one
eigenvalue ofPe(x,h) which tends tol1~x,0! ash→01 (x P O l0

). We assume that these eige
values are justl1(x,h), and that there is some uniformity in the convergence. More precisely
assume

l1~x,h!→E0~h! as uxu→`, uniformly for 0,h<h0
~II.7!

l1~x,h!→l1~x,0! as h→01 , locally uniformly with respect tox in O l0
.

J. Math. Phys., Vol. 38, No. 3, March 1997
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As it can be seen in the example of aH2
1-like molecule with unequal nuclear charges, th

assumption is or is not satisfied depending on the cluster decomposition chosen: this corre
to the physical intuition that the electron follows most likely the nucleus with greater ele
charge.

As a consequence of~II.6! and~II.7!, we see that there exists«0.0 such that for allh>0 small
enough

$xPR3;l1~x,h!<l01«0%,O l0
. ~II.78!

Then we make the following assumption of separation:

Inf
xPOl0

~s„Pe~x,h!…\$l1~x,h!%!.l012«0 ~II.8!

for all h>0 small enough.
For x in O l0

we denote byPc(h) andPe
0(x,h) the spectral projections ofPc(h) andPe(x,h)

associated toE0(h) andl1(x,h), respectively. Notice thatPe
0(x,0) is well defined for allxPR3.

In order to extendPe
0(x,h) ~h.0! in a nice way for allx in R3 ~so that we get a nice decompo

sition of the wave operators, involving a smooth effective adiabatic Hamiltonian!, we introduce
the following construction: forx in O l0

, denotewe(x,h) the eigenfunction ofPe(x,h) associated

to l1(x,h) and normalized inL2~Ry
3N!. Let x0PC0

`~R3!, x051 on the complementaryO l0

c of

O l0
, Suppx0,$x; l1(x,h).l0, 0<h<h0%. Then in a similar way as in Ref. 4, Lemma 1.1, o

can find a functiong5g(y,h) in C0
`~R3N! such that the function

w̃e~x,h!5x0~x!g1„12x0~x!…we~x,h!

satisfies for allxPR3

iw̃e~x,h!iL2~Ry
3N!>

1
2,

and for somed0.0,

^Pe~x,h!w̃e~x,h!,w̃e~x,h!&Y>~l01d0!iw̃e~x,h!iY
2 ~II.9!

for all xPSuppx0 and 0<h<h0 .
Here and from now on,̂.,.&Y and i.iY denote the scalar product and the norm inL2~Ry

3N!.
We then set

ce~x,h!5w̃e~x,h!/iw̃e~x,h!iY

and we denote byPe(x,h) (0<h<h0) the orthogonal projection ofL2~Ry
3N! onto the one-

dimensional subspace generated byce(x,h). It induces a projection inL
2~Rx,y

3(N11)! that we denote
by Pe(h). The projection induced byPc(h) in L2~Rx,y

3(N11)! is still denoted byPc(h).
As in Ref. 2, we introduce

PAD5Pe~h!PPe~h!, QAD5P̂e~h!PP̂e~h!, ~II.10!

whereP̂e(h)512Pe(h). Then, denoting

Pc~h!52h2Dx1Pc~h!, ~II.11!

the theorem 2.3 of Ref. 2 insures the existence of the six following wave operators:
J. Math. Phys., Vol. 38, No. 3, March 1997
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V6
c ~h!5s2 lim

t→6`
eitPe2 i tPcEpp~P

c!,

V6
AD~h!5s2 lim

t→6`
eitP

AD
e2 i tPcPc~h!, ~II.12!

V6
NAD~h!5s2 lim

t→6`
eitPe2 i tPADEac~P

AD!,

whereEpp(A) andEac(A) stand for the spectral projection of the operatorA associated to its pure
point spectrum and to its absolutely continuous spectrum, respectively. We also have

V6
c ~h!Pc~h!5V6

NAD~h!V6
AD~h!. ~II.13!

The purpose of this paper is to generalize the main result of Ref. 2 to this situation, that is to
that under the conditions~II.4!–~II.8!, together with a nontrapping condition onl1~x,0!, we have

„V6
NAD~h!21…x~PAD!5O ~h!,

uniformly ash tends to 0, wherex is any cut-off function which localizes near the nontrappi
value ofl1~x,0!. More precisely, denoting

p0~x,j!5j21l1~x,0!, Hp0
52j

]

]x
2„]xl1~x,0!…

]

]j
,

we assume that the flow ofHp0
is nontrapping at the energyl0, that is,

;~x,j!Pp0
21~l0!, uexp tHp0

~x,j!u→` as t→6`. ~II.14!

Then our result is the following:
Theorem 1.1:Under the conditions (II.4)–(II.8) and (II.14), for anyxPC0

`~R! with support
in a sufficiently small neighborhood ofl0, one has

i~V6
NAD~h!21…x~PAD!i5O ~h!,

i~V6
c ~h!2V6

AD~h!!x~Pc!i5O ~h!,

uniformly for h.0 small enough.

III. PRELIMINARIES

In the same spirit as in Ref. 2, we give some preliminary technical results about the de
infinity of the spectral projections. We denote^x&5(11x2)1/2.

Proposition 2.1: Under (II.4)–(II.8), there exists somed.0 such that

(
uau<2

^x&r1uauied^y&]x
a
„Pe~x,h!2Pc~h!…iL„L2~Ry

3N!;H22uau~Ry
3N!…5O ~1!

uniformly for xPR3 and0<h<h0 , h0 small enough.
Notice that the main difference with Ref. 2, Th.2.2, is the uniformity with respect toh. We

first prove, denoting bywc(h) the normalized eigenfunction ofP
c(h) associated to the eigenvalu

E0(h), the following proposition.
Proposition 2.2: Under (II.4)–(II.8) there existsd1.0 such that for h0.0 small enough

ied1^y&we~x,h!iH2~Ry
3N!1ied1^y&wc~h!iH2~Ry

3N!5O ~1!
J. Math. Phys., Vol. 38, No. 3, March 1997
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uniformly for0<h<h0 and xP O l0
.

Proof: First consider the case whereuxu is large enough. Then, using~II.7! and~II.8! we can
write

Pc~h!5
1

2ip R
uz2E0~h!u5«0

„z2Pc~h!…21 dz,

~III.1!

Pe~x,h!5
1

2ip R
uz2E0~h!u5«0

„z2Pe~x,h!…21 dz,

where«0.0 is independent ofh and fixed small enough. By standard arguments~see Ref. 6!, the
existence ofd1.0 such thatied1^y&wc(h)iH2(R

y
3N)5O (1) uniformly for 0<h<h0 is easy. Now

consider

c~x,h!5Pe~x,h!wc~h!. ~III.2!

We get by~III.1!

c~x,h!5Pc~h!wc~h!1
1

2ip R
uz2E0~h!u5«0

„z2Pe~x,h!…21I c~x,h!„z2Pc~h!…21wc~h! dz,

i.e.,

c~x,h!5wc~h!1
1

2ip R
uz2E0~h!u5«0

1

z2E0~h!
„z2Pe~x,h!…21I c~x,h!wc~h!dz.

Using the exponential decay ofwc(h), we get easily thati I c(x,h)wc(h)iY→0 uniformly in h as
uxu→`, and thereforeic(x,h)2wc(h)iY→0 uniformly asuxu→`. In particularic(x,h)iY tends
to 1, and thus, up to some scalar factor of modulus one, we get

we~x,h!5c~x,h!/ic~x,h!iY . ~III.3!

As a consequence, it is sufficient to study the exponential decay ofc(x,h), and therefore to prove
that for anyd P R small enough anduz2E0(h)u5«0, the operatored^y&

„z2Pe(x,h)…
21e2d^y& is

uniformly bounded fromL2~Ry
3N! to H2~Ry

3N!. We first have the following lemma.
Lemma 2.3: Under the assumptions (II.4)–(II.8), for any «1.0 one has

iDy~Pe~x,h!2z!21i1iV1,2„x2 l ~y!…„Pe~x,h!2z…21i5O ~1!

uniformly for0,h<h0 , x P O l0
, anddist ~z,s„Pe(x,h)…!>«1.

Proof: Obviously,i(Pe(x,h)2z)21i<«1
21. Using ~II.2!–~II.5!, we can write

Pe~x,h!52Dy1
a„x2 l ~y!…

ux2 l ~y!u
1W~x,y!1h2A~h!,

wherea(x)→a0.0 as uxu→0, andW(x,y) is the sum of all the terms of the formVi , j (2yj ),
Vi , j (yi2yj ), Vi , j (yı2y1x2 l (y)), andVi , j (6x7 l (y)2yj ). By theD-compactness of theVi , js,
it is easy to see~possibly by making a change of variable of the type:yj°yj6 l (y)7x) that for
any «.0, there exists some constantC«.0 such that for alluPH2~R3N!

iW~x,y!uiY<«iDuiY1C«iuiY ~III.4!
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uniformly for 0<h<h0 andx P O l0
. Since we also have

ih2A~h!uiY5O ~h2!iuiH2, ~III.5!

it remains to study the operator

Q~x,h!52Dy1
a„x2 l ~y!…

ux2 l ~y!u
.

By an h-dependent change of variable iny, we see thatQ(x,h) is unitarily equivalent to
2Dy1a(x1h2y1)/ux1h2y1u1B(h) with iB(h)ui5O (h2)iDyui . Then, by a translation iny1,
we get thatQ(x,h) is unitarily equivalent to2Dy1a(h2y1)/uh

2y1u1B(h). Now we use the
following result: for any constantb>0 and anyuPH2~R3N!,

I S 2Dy1
b

uy1u
DuI 2>iDyui21 I b

uy1u
uI 2. ~III.6!

This is probably a well-known fact, but for the sake of completeness we give the proof of~III.6!.
It is sufficient to prove it foruPC0

`. Then one has

I S 2Dy1
b

uy1u
DuI 25iDui21 I b

uy1u
uI 222 ReK Du,

b

uy1u
uL

5iDui21 I b

uy1u
uI 212K“u, b

uy1u
“uL

12 ReK“y1
u,“y1S b

uy1u
DuL ~III.7!

and

ReK“y1
u,“y1S b

uy1u
DuL 52ReK u,“y1S b

uy1u
D¹y1

uL 2ReK u,DS b

uy1u
DuL .

But sinceD(b/uy1u) 5 24pbd$y150% in D8~R3!, we get

2 ReK“y1
u,“y1S b

uy1u
DuL 54pbiuuy150i2

from which, once inserted into~III.7!, ~III.6! follows.
In particular, in our situation we get from~III.6!

I S 2D1
a~h2y1!

uh2y1u
DuI>

1

2
iDui1

a0
2h2 I 1

uy1u
uI2

1

h2 Ia~h2y1!2a0
uy1u

uI .
Cutting the last term in two parts where the integration takes place in$uh2y1u<d% and in
$uh2y1u>d%, respectively, withd.0 small enough, and using thata(x)→a0.0 as uxu→0, we
deduce that

I S 2D1
a~h2y1!

uh2y1u
DuI>

1

2
iDui1

a0
4h2 I 1

uy1u
uI2Ciui ,
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whereC.0 is some uniform constant. Coming back to the original coordinates system, this
~possibly by increasingC!

iQ~x,h!ui>
1

2
~12Ch2!iDui1

a0
4 I 1

ux2 l ~y!u
uI2Ciui . ~III.8!

Now, takingv in L2~R3N! and settingu5„Pe(x,h)2z…21 v, we have

Q~x,h!u5v2W~x,y!u2h2A~h!u,

and thus, by~III.4!, ~III.5!, and~III.8!,

1

2
~12Ch2!iDui1

a0
4 I 1

ux2 l ~y!u
uI<ivi1«iDui1~C1C«!iui1O ~h2!iuiH2.

Taking « andh0 sufficiently small, and using thatiui<«1
21ivi , we finally get

iDui1 I a0
ux2 l ~y!u

uI5O ~ ivi !

uniformly for 0,h<h0 andx P O l0
. In this estimate, the fact that one can replacea0 by a„x

2 l (y)… can be seen as before by cutting in$ux2 l (y)u<d % and$ux2 l (y)u>d%, respectively~d.0
small!, and this ends the proof of the lemma. h

Now we finish the proof of Proposition 2.2. TakevPC0
`~R3N!, uz2E0(h)u5«0, and

u5„Pe(x,h)2z…21e2d^y&v. Then, foruxu large enough we have

„Pe~x,h!2z…~ed^y&u!5v1@2D1h2A~h!,ed^y&#u5v1dRd,h~y,Dy!~e
d^y&u!, ~III.9!

whereRd,h(y,Dy) is a differential operator of order one with coefficients uniformly bounded.
rewrite ~III.9! as

„11dRd,h~Pe2z!21
…~Pe2z!~ed^y&u!5v,

and we notice that by Lemma 2.3,Rd,h(Pe2z)21 is uniformly bounded onL2. Then, ford small
enough,

ed^y&u5~Pe2z!21
„11dRd,h~Pe2z!21

…

21v,

and thus, by Lemma 2.3,

iV1,2„x2 l ~y!…ed^y&ui1iD~ed^y&u!i5O ~ ivi ! ~III.10!

uniformly for 0,h<h0 and uxu large enough. In particular the exponential decay inH2 of
we(x,h) for uxu large andhP(0,h0] follows from ~III.10! and ~III.1!–~III.3!. The result forh50
and uxu large follows along the same lines, and actually in an easier way sincewe(x,0) is also an
eigenfunction ofPe(x,0)2V1,2(x).

Now consider the case whereuxu remains bounded. Again by~II.7! we can write forh.0
small enough

Pe~x,h!5
1

2ip R
uz2l1~x,0!u5«0

„z2Pe~x,h!…21 dz,
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where«0.0 is some positive constant. Forh50, the exponential decay inH2~Ry
3N! of we(x,0)

~locally uniformly with respect toxPR3! follows again from the arguments of Ref. 6 applied
the operatorPe(x,0)2V1,2(x). As before, we then see thatPe(x,h)we(x,0)5we(x,0)1o(1) as
h→0, and again the exponential decay ofwe(x,h) follows from the one ofwe(x,0) by applying
Lemma 2.3. h

Proof of Proposition 2.1:For uxu bounded anda50, the result is a direct consequence
Proposition 2.2 and the fact that

Pc~h!u5^u,wc~h!&Ywc~h!,

Pe~x,h!u5^u,ce~x,h!&Yce~x,h!,

with ce(x,h)5a(x)g1b(x)we(x,h), gPC0
`~Ry

3N!, a and bPC`~R3!. Moreover, for uxu large
enough we havePe(x,h)5Pe

0(x,h) and we can apply~III.1!, which gives

Pe~x,h!2Pc~h!5
1

2ip R
uz2E0~h!u5«0

„z2Pc~h!…21I c~x,h!„z2Pe~x,h!…21 dz. ~III.11!

Since alsoPe2Pc5Pe(Pe2Pc)1(Pe2Pc)Pc, it is sufficient to estimate (Pe2Pc)wc and
(Pe2Pc)we . Using the explicit form of I c(x,h) and ~III.10!, it is easy to see tha
I c(x,h)e

d^y&
„z2Pe(x,h)…

21e2d^y& is uniformly bounded onL2~R3N! for d and h both small
enough anduxu large enough. Moreover,ed^y&

„z2Pc(h)…
21e2d^y& is uniformly bounded from

L2~R3N! to H2~R3N!, and thanks to~II.4! we have for any«.0

uxure2«^y&I c~x,h!„I c~x,h!1 i …215O ~1! ~III.12!

uniformly: this can be proved by considering each term ofI c(x,h) separately, under the form
Vj ,k(6x1Z) with uZu5O (uyu), and by studying the two regions$u6x1Zu> 1

2uxu% and
$u6x1Zu< 1

2uxu%. In the first oneVj ,k(6x1Z) decays likeuxu2r as uxu→1`, and in the second
onee2«^y& decays exponentially asuxu→1`.

Writing

„z2Pc~h!…21I c~x,h!„z2Pe~x,h!…215e2d^y&~ed^y&
„z2Pc~h!…21e2d^y&!

3~e~d2d1!^y&I c~x,h!„I c~x,h!1 i …21!~„I c~x,h!1 i …

3ed1^y&
„z2Pe~x,h!…21e2d1^y&!ed1^y&

with 0,d,d1, and using Proposition 2.2,~III.11!, and~III.12!, we then get

uxuried^y&
„Pe~x,h!2Pc~h!…we~x,h!iH2~Ry

3N!1uxuried^y&
„Pe~x,h!2Pc~h!…wc~h!iH2~Ry

3N!5O ~1!

uniformly for h.0 small enough anduxu large enough.
Therefore we have proved the result of Proposition 2.1 fora50.
Now take 1<uau<2. Then, forx¹Suppx0 andh.0, ]x

aPe(x,h) is a sum of

1

2ip R
uz2l1~x,h!u5«0

„z2Pe~x,h!…21
„]x

aI c~x,h!…„z2Pe~x,h!…21 dz

and terms of the form

1

2ip R
uz2l1~x,h!u5«0

„z2Pe~x,h!…21
„]x

bI c~x,h!…„z2Pe~x,h!…21
„]x

gI c~x,h!…„z2Pe~x,h!…21 dz
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with ubu5ugu51.
Moreover, differentiating with respect tox the identity Pe2Pc5Pe(Pe2Pc)1(Pe

2Pc)Pc, we see that it is sufficient to estimatei]x
aPe(x,h)wc(h)iH22uau(R

y
3N) and

i(]x
aPe(x,h))we(x,h)iH22uau(R

y
3N) .

Using the same decompositionI c(x,h)5a(x2 l (y))/ux2 l (y)u1W(x,y) as in the proof of
Lemma 2.3, we treat each term separately. For those involved inW(x,y), we use the same trick a
in Ref. 7 which consists here in noticing that we have

]xVi , j„yi2yj1x2 l ~y!…5b~h!@]yi, Vi , j„yi2yj1x2 l ~y!…# ~III.13!

with b(h)5O ~1! uniformly, and similarly for the other terms ofW(x,y). As before, Proposition
2.2 and the decay at infinity of theVi , js imply that foruz2l1(x,h)u5«0:

^x&r1uauied^y&
„z2Pe~x,h!…21

„]x
aW~x,y!…„z2Pe~x,h!…21wc~h!iH22uau5O ~1! ~III.14!

uniformly, and similarly whenwc(h) is replaced bywe(x,h).
Now we investigate the terms involvinga„x2 l (y)…/ux2 l (y)u. Takec.0 sufficiently small, so

that $uxu<2c%,Suppx0, and denotex1PC0
`~R3! satisfying Suppx1P$uxu<c%, x151 near 0. Us-

ing the decomposition 15x1„x2 l (y)…1@12x1„x2 l (y)…# to cut the terms in two parts, we see th
the ones involving@12x1„x2 l (y)…# do not cause any problem@since a„x2 l (y)…/ux2 l (y)u is
regular there#, while the first ones involve

I b5~z,x,h!5„z2Pe~x,h!…21x1„x2 l ~y!…S ]x
b a„x2 l ~y!…

ux2 l ~y!u D „z2Pe~x,h!…21

with ubu<2. Now, by the definition ofl (y), we have

]x
a„x2 l ~y!…

ux2 l ~y!u
5O ~h22!F]y1, a„x2 l ~y!…

ux2 l ~y!u G
and

x2 l ~y!PSuppx1⇒uxu<c1O ~h2!uyu.

As a consequence, using again Proposition 2.2 and the boundedness ofed^y&
„z2Pe(x,h)…

21e2d^y&

anded^y&
„z2Pc(h)…

21e2d^y&, we get ford.0 small enough anduz2l1(x,h)u5«0

~ uxu2c!r1uauied^y&I b~z,x,h!wc~h!iH22uau5O ~h22uau~ uxu2c!r1uaue2«~ uxu2c!/h2!

with some«.0, and similarly withwe(x,h) instead ofwc(h). Then the required estimate follow
since

h22uau~ uxu2c!r1uaue2«~ uxu2c!/h25h2rS uxu2c

h2 D r1uau

e2«~ uxu2c!/h25O ~1!

and ^x&5O (uxu2c) on R3\Suppx0.
Now it remains only to study what happens whenxPSuppx0. But therePe(x,h) is either the

orthogonal projection ontog ~in which case the result is obvious! or a smooth combination of the
orthogonal projections ontog and ontowe(x,h) ~whenx P O l0

ùSuppx0!. Then for each term the
previous arguments give the result when 0,h,h0 . Forh50, the result can be proved in the sam
way, except thatPe(x,h) can be replaced everywhere byPe(x,0)2V1,2(x) so that no term in-
volving V1,2(x) appears in the decomposition.
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IV. TOTAL RESOLVENT ESTIMATE

DenoteR(z,h)5(P2z)21. Then we have
Theorem 3.1:Under assumptions (II.4)–(II.8) and (II.14), one has for any s.1

2

i^x2 l ~y!&2sR~z,h!^x2 l ~y!&2siL„L2~R3~N11!,H2~R3~N11!!…5O ~h21!

uniformly for h.0 small enough and zPC\R close enough tol0.
Proof: Making the change of variables

x85x2 l ~y!, y85y,

the operatorP is transformed into

P152h2Dx81Pe~x8,0!1hB5P01hB, ~IV.1!

where

hB5hB~hDx8 ,Dy8!5
1

m1 S 1

M1
Dx82 (

kPC18
Dy

k8D 21 1

m2 S 1

M2
Dx82 (

kPC28
Dy

k8D 2

2S 1

M1
2 1

1

M2
2D Dx822Dx8S 1

M1
(
kPC18

Dy
k8
2

1

M2
(
kPC28

Dy
k8D ,

and thereforeB is of the form

B5 (
k51

N

ak~h!hDx8Dy
k8
1hB15B0~hDx8 ,Dy8!1hB1~hDx8 ,Dy8!, ~IV.2!

where theak(h)s are uniformly bounded real coefficients depending only onh, and B1 is a
second-order differential operator with bounded coefficients as well.

With the same notations as in Sec. I, we define the following operator:

A2:L2~R3!→L2~R3~N11!!,
~IV.3!

a~x8!°a~x8!we~x8,0!,

and its adjoint

A15~A2!* .

Then, for zPC and jP$0,1% we consider the following matricial operator~so-called Grushin
operator!:

P j~z!5S Pj2z A2

A1 0 D ,
which sendsH2~R3(N11)!%L2~R3! into L2~R3(N11)! %H2~R3!. Thanks to~II.9!, it is standard to
verify that for z close enough tol0, P 0(z) is invertible and its inverse can be written

E0~z!5P 0~z!215S E0~z! E0
1~z!

E0
2~z! E0

21~z!
D
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with @denoting P̂e
0(0)512Pe

0(0) and P08 the restriction of P̂e
0(0)P0 to $uPL2~R3(N11)!;

P̂e
0(0)u5u%#

E0~z!5~P082z!21P̂e
0~0!,

E0
1~z!5„12E0~z!P0…A

2,
~IV.4!

E0
2~z!5A1

„12P0E0~z!…,

E0
21~z!5z2A1P0„12E0~z!P0…A

2.

We also have

P 1~z!5P 0~z!1hB

with

B5SB 0

0 0D
and therefore

P 1~z!5P 0~z!„11hE0~z!B…5P 0~z!F11hS E0~z!B 0

E0
2~z!B 0D G . ~IV.5!

For anymPN, we put theh-dependent norm onHm~R3(N11)! defined by

iuiHm5 (
uau1ubu<m

i~hDx8!
aDy8

b uiL2, ~IV.6!

and we then see by~IV.4! that we have

E0~z!5O ~1! : L2~R3~N11!!→H2~R3~N11!!,

E0
2~z!5O ~1! : L2~R3~N11!!→L2~R3!,

where here and in the sequels theO ~1!s have to be understood as uniform with respect toh.0
small enough. By~IV.2! we also have

B5O ~1! : H2~R3~N11!!→H2~R3~N11!!

and thus

E0~z!B5O ~1! on H2~R3~N11!!,
~IV.7!

E0
2~z!B5O ~1! : H2~R3~N11!!→L2~R3!.

As a consequence,

E0~z!B5O ~1! on H2~R3~N11!! %L2~R3!. ~IV.8!

We deduce from~IV.5! and ~IV.8! that for h small enough andz close enough tol0, P 1(z) is
invertible with inverse
J. Math. Phys., Vol. 38, No. 3, March 1997
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E1~z!5P 1~z!215 (
k>0

~2h!k„E0~z!B…

kE0~z!. ~IV.9!

In particular, writing

E1~z!5S E1~z! E1
1~z!

E1
2~z! E1

21~z!
D

we find

E1~z!5 (
k>0

~2h!k„E0~z!B…kE0~z!,

E1
1~z!5 (

k>0
~2h!k„E0~z!B…kE0

1~z!,

~IV.10!

E1
2~z!5 (

k>0
~2h!kE0

2~z!„BE0~z!…k,

E1
21~z!5E0

21~z!1 (
k>1

~2h!kE0
2~z!„BE0~z!…k21BE0

1~z!.

Moreover, we have the relation

~P12z!215E1~z!2E1
1~z!„E1

21~z!…21E1
2~z! ~IV.11!

and our purpose is to estimate^x8&2s(P12z)21^x8&2s. We first prove the following.
Proposition 3.2: Assume (II.4)–(II.8). Then, for any sPR, the following operators,

^x8&sE1~z!^x8&2s : L2~R3~N11!!→H2~R3~N11!!,

^x8&sE1
1~z!^x8&2s : L2~R3!→L2~R3~N11!!,

^x8&sE1
2~z!^x8&2s : L2~R3~N11!!→L2~R3!

are uniformly bounded for h.0 small enough. (Here, the norm on H2 is defined by (IV.6).)
First of all, we have the following.

Lemma 3.3: For any sPR, ^x8&sE0(z)^x8&
2s5O ~1! : L2~R3(N11)!→H2~R3(N11)! uniformly.

Proof: The result is obviously true fors50. Now letuPL2~R3(N11)! be such thatP̂e
0(0)u5u,

and denotev5E0(z)^x8&
2su. Then we have

P̂e
0~0!~P02z!v5^x8&2su, P̂e

0~0!v5v,

and since [P̂e
0(0), ^x8&s]50, we deduce

P̂e
0~0!~P02z!^x8&sv5u2h2P̂e

0~0!@Dx8 , ^x8&s#v,

P̂e
0~0!^x8&sv5^x8&sv,

and thus
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^x8&sv5E0~z!„u2h2P̂e
0~0!@Dx8 , ^x8&s#v…. ~IV.12!

Still using the norms defined in~IV.6!, we have

ih2@Dx8 ,^x8&
s#viL25O ~hi^x8&s21viH1!

and therefore, by~IV.12! and the result fors50,

i^x8&sviH25O ~ iuiL2!1O ~hi^x8&s21viH1!,

which gives the result forh sufficiently small. h

Proof of Proposition 3.2:Obviously, the operator̂x8&sP0^x8&
2s is O ~1! from H2 to L2, and

the operatorsA1 andA2 commute witĥ x8&s. Then, we can deduce from~IV.4!, Lemma 3.3 and
the dual estimates, that the operators^x8&sE0

1(z)^x8&2s and ^x8&sE0
2(z)^x8&2s are uniformly

bounded onL2. Moreover, we see on~IV.2! that^x8&sB^x8&2s is O ~1! fromH2 to L2 and fromL2

to H22. As a consequence,^x8&sE0(z)B^x8&2s is O ~1! on L2 and onH2. Then Proposition 3.2
follows from ~IV.10!. h

We deduce from~IV.11! and Proposition 3.2 that we have the following corollary.
Corollary 3.4: Assume (II.4)–(11.8). Then, for any sPR,

i^x8&2s~P12z!21^x8&2si5O ~11i^x8&2s~E1
21~z!!21^x8&2si !

uniformly for h.0 small enough and zPC\R close enough tol0.
By the results of Ref. 4, we know thatl1~x8,0! is C

` on R3\$0%, and thatwe(x8,0) can be
regularized inx8 near anyx08 Þ 0 by the use of somex8-dependent change of variables iny8. We
also have

l1~x8,0!;V1,2~x8!;
a0

ux8u
as ux8u→0.

From now on we assume the nontrapping condition~II.14!, and we denote

b05A1B0A
2, Q152h2Dx81l1~x8,0!1hb0 , ~IV.13!

whereB0 is defined in~IV.2! andA6 in ~IV.3!. Note that by Ref. 4 and arguments analog to tho
used in the proof of Proposition 2.2,b05b0(x8,hDx8) is a first-order differential operator with
bounded coefficients which are smooth outside 0. Then we have the following.

Proposition 3.5: Under assumptions (II.4)–(II.8) and (II.14), for any s.1
2 one has

i^x8&2s~Q12z!21^x8&2siL„L2~R3!…5O ~h21!

uniformly for h.0 small enough and zPC\R close enough tol0.
Proof:We plan to apply Mourre estimates~see Ref. 3! by constructing a conjugate operator

the same spirit as in Ref. 8. First of all, sincel1~x8,0! is smooth near$x8; l1~x8,0!5l0%, the
nontrapping condition permits the construction as in Ref. 8 a global escape function at the ener
level l0, or more precisely a functionGPC`~R33R3! satisfying

G~x8,j8!2x8j8PC0
`~R6!,

~IV.14!

2j8
]G

]x8
2~“x8l1!~x8,0!

]G

]j8
>

1

C0
on S~l0!5$~x8,j8!;uj8u21l1~x8,0!5l0%,
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whereC0 is a positive constant. We denote byG the Weyl quantization ofG(x8,j8), that is the
operator defined foruPC0

` by the oscillatory integral:

G u~x8!5
1

~2ph!3
E ei ~x82y8!j8/hGS x81y8

2
,j8Du~y8! dy8 dj8.

Let alsoxPC0
`~R!, x51 nearl0, x supported in a sufficiently small neighborhood ofl0, so that

l1~x8,0! is smooth near$x8; l1~x8,0!PSuppx% and 2j8]x8G2~“x8l1!(x8,0)]j8G>1/2C0 near
$~x8,j8!; uj8u21l1~x8,0!PSuppx%. Then, by Theorem A1 of the Appendix, we have seen thatx~Q1!
and Q1x(Q1) are bothh-admissible operators, with principal symbolsx„uj8u21l1~x8,0!… and
„uj8u21l1~x8,0!…x„uj8u

21l1~x8,0!…, respectively. As a consequence, the operator

C5 ix~Q1!@Q1 , G #x~Q1!5 i „Q1x~Q1!…G x~Q1!2 ix~Q1!G „Q1x~Q1!…

is ah-admissible operator of order21, with principal symbol

c~x8,j8!5h~x„uj8u21l1~x8,0!…!2~2j8]x8G2~“x8l1!~x8,0!]j8G!.

In particular, we get by construction

c~x8,j8!>
h

2C0
~x„uj8u21l1~x8,0!…!2. ~IV.15!

Therefore, takingx̃PC0
`~R! such that Suppx̃,$x51%, we get in a standard way by the sha

Garding inequality

i x̃~Q1!@Q1 , G #x̃~Q1!5x̃~Q1!C x̃~Q1!>
h

4C0
x̃~Q1!

2 ~IV.16!

for h.0 small enough. Since we can also prescribe thatx̃51 nearl0, the result of Proposition 3.5
follows from ~IV.16! by applying Mourre estimates as in Ref. 8. h

Now we turn back to the proof of Theorem 3.1. By~IV.10! and ~IV.4! we have

E1
21~z!5z2Q11T ~IV.17!

with

T5T~z,h!5h2^Dx8we~x8,0!,we~x8,0!&Y1A1P0E0~z!P0A
21hA1P0E0~z!BE0

1~z!

1hE0
2~z!BE0~z!P0A

21 (
k>2

~2h!kE0
2~z!„BE0~z!…k21BE0

1~z!

5T1~z,h!1 (
k>2

~2h!kE0
2~z!„BE0~z!…k21BE0

1~z!. ~IV.18!

Using the fact that

A1P0E0~z!5h2A1@Dx8 , Pe
0~x8,0!#E0~z!,

~IV.19!
E0~z!P0A

25h2E0~z!@Pe
0~x8,0!,Dx8#A

2,

as well as Propositions 2.1 and 2.2 and Lemma 3.3, we see that for anys<~r12!/2, we have
J. Math. Phys., Vol. 38, No. 3, March 1997
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i^x8&sT1~z,h!^x8&siL~L2!5O ~h2! ~IV.20!

uniformly. Moreover, by~IV.4! we have for anyk>2

E0
2~z!„BE0~z!…k21BE0

1~z!5A1@B, Pe
0#E0~z!„BE0~z!…k22@B, Pe

0#A2

1A1P0E0~z!„BE0~z!…k21@B, Pe
0#A2

1A1@B, Pe
0#E0~z!„BE0~z!…k22BE0~z!P0A

2

1A1P0E0~z!„BE0~z!…k21BE0~z!A2. ~IV.21!

Therefore, using~IV.7!, ~IV.19!, and Proposition 2.1, we see that for anys<~r11!/2 there exists
some constantCs.0 such that for allk>2, h.0 small enough, andz close enough tol0,

i^x8&sE0
2~z!„BE0~z!…k21BE0

1~z!^x8&si<Cs
k11. ~IV.22!

From ~IV.18!, ~IV.20!, and~IV.22!, we deduce that for anys<~r11!/2:

i^x8&sT^x8&si5O ~h2!. ~IV.23!

Now, since

^x8&sE1
21~z!^x8&s5^x8&s~z2Q1!^x8&

s~11„^x8&2s~z2Q1!
21^x8&2s

…~^x8&sT^x8&s!!,

we get from~IV.23! and Proposition 3.5 that for12,s<~11r!/2 andzPC\R close enough tol0,

^x8&sE1
21~z!^x8&s5^x8&s~z2Q1!^x8&

s
„11O ~h!… ~IV.24!

on L2~R3!. As a consequence, applying again Proposition 3.5,

i^x8&2s
„E1

21~z!…21^x8&2si5O ~h21!.

This estimate together with Corollary 3.4 imply

i^x2 l ~y!&2sR~z,h!^x2 l ~y!&2siL„L2~R3~N11!!…5O ~h21!. ~IV.25!

Introducing a cutoff in energyf (P) with fPC0
`~R!, f51 nearl0, and using the fact that„1

2f (P)…R(z,h) and^x2 l (y)&2sf (P)^x2 l (y)&s are uniformly bounded fromL2 toH2, we see that
the estimate~IV.24! is actually true in the norm ofL„L2~R3(N11), H2~R3(N11)!…. h

Remark:Here we have used in an essential way the last part of the assumption~II.6!, which
permits us to work directly withPe

0(x8,0). However, one can probably remove it by workin
instead withPe(x8,0), and by introducing in the Grushin problem a cutoff in energy with resp
to P1.

V. ADIABATIC RESOLVENT ESTIMATE

In this section we deduce from Theorem 3.1 an estimate on the adiabatic resolvent:

RAD~z,h!5~PAD2z!21Pe~h!.

Theorem 4.1:Under assumptions (II.4)–(II.8) and (II.14), one has for any s.1
2

i^x2 l ~y!&2sRAD~z,h!^x2 l ~y!&2siL„L2~R3~N11!!…5O ~h21!

uniformly for h.0 small enough and zPC\R close enough tol0.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof:Without loss, we assume12,s<1. Denote

R̂~z,h!5~QAD2z!21P̂e~h!.

By ~II.6!–~II.8!, we know thatR̂(z,h) is uniformly bounded onL2 for z close enough tol0.
Moreover, ifv5R̂(z,h)u ~uPL2 arbitrary!, we find

„2h2Dx1Pe~x,h!1 i …v5P̂e~h!u1~z1 i !v1h2@Dx , Pe~h!#v1Pe~h!Pe~x,h!v ~V.1!

with Pe(h)Pe(x,h)v5^v,Pece&Yce , and a slight modification of the proof of Lemma 2.3 al
gives

ih2Dx„2h2Dx1Pe~x,h!1 i …21i1iDy„2h2Dx1Pe~x,h!1 i …21i5O ~1!.

Then, using~IV.25! and Propositions 2.1 and 2.2, we deduce easily that forh small enough@and
still using theh-dependent norms defined in~IV.6!#

iR̂~z,h!iL~L2,H2!5O ~1! ~V.2!

uniformly. As in Ref. 2~proof of Theorem 3.4! we can write

RAD~z,h!5R~z,h!2R̂~z,h!1R~z,h!P̂e~h!PRAD~z,h!1R~z,h!@Pe~h!, P#R̂~z,h!.
~V.3!

In particular,

R~z,h!P̂e~h!5R̂~z,h!2R~z,h!Pe~h!PR̂~z,h!. ~V.4!

Lemma 4.2: For any s.1
2

i^x2 l ~y!&2sR~z,h!@Pe~h!, P#iL~L2!5O ~1!.

Proof: By Proposition 2.1, [Pe(h), h
2Dx] can be written in the formh

2O „^x 2 l (y)&2r22
…

1 h( jO „^x 2 l (y)&2r21
…hDxj

. Therefore, it follows from Theorem 3.1 that

i^x2 l ~y!&2sR~z,h!@Pe~h!, 2h2Dx#iL~L2!5O ~1!. ~V.5!

Moreover, by the definition ofPe(h), we have

@Pe~h!, Pe~x,h!#5r~x!@g~y!, Pe~x,h!#

with rPC0
`~V!, V5$x; l1(x,h)>l01«1, ;0<h<h0% ~«1.0!, andgPC0

`~R3N!. ChoosefPC0
`~R!

such thatf51 nearl0 and Suppf,~2`,l01«1/2!. We write

^x2 l ~y!&2sR~z,h!@Pe~h!, Pe~x,h!#5^x2 l ~y!&2sR~z,h! f ~P!@Pe~h!, Pe~x,h!#

1^x2 l ~y!&2sR~z,h!~12 f ~P!!@Pe~h!, Pe~x,h!#,

~V.6!

and we notice that forz close enough tol0, the last term is uniformly bounded. To treat the fir
term of the rhs of~V.6!, we notice that it can be written

^x2 l ~y!&2sR~z,h!^x2 l ~y!&2s^x2 l ~y!&sf ~P!r~x!r1„x2 l ~y!…@g~y!,Pe~x,h!# ~V.7!
J. Math. Phys., Vol. 38, No. 3, March 1997
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for some suitabler1PC0
`~V! and forh small enough. Now, we apply Lemma A2 of the Append

with Q5^x2 l (y)&s( 12,s<1), H15P, B50, F 5$h1(x)h2„x2 l (y)…; h1,h2PC0
`~V! real%, and

E5l01«1. This is justified by our choice ofV and the fact thatP is a differential operator and
satisfiesP>l1(x,h). We then get

i^x2 l ~y!&sf ~P!r~x!r1„x2 l ~y!…iL~L2!5O ~h`!

and actually, by an easy commutator technique, the same estimate can be proved inL~L2; H2!.
Since [g(y), Pe(x,h)] is a first-order differential operator withC0

` coefficients, we get in par-
ticular

i^x2 l ~y!&sf ~P!r~x!r1„x2 l ~y!…@g~y!, Pe~x,h!#iL~L2!5O ~h`!. ~V.8!

We deduce from~V.6!–~V.8! and Theorem 3.1 that

i^x2 l ~y!&2sR~z,h!@Pe~h!, Pe~x,h!#iL~L2!5O ~1!. ~V.9!

The result follows from~V.5! and ~V.9! h

We deduce from~V.4! and Lemma 4.2 that we have

i^x2 l ~y!&2sR~z,h!P̂e~h!iL~L2,H2!5O ~1!. ~V.10!

Moreover, we get from~V.3!, Theorem 3.1, and Lemma 4.2

i^x2 l ~y!&2sRAD~z,h!^x2 l ~y!&2si5O ~h21!1i^x2 l ~y!&2sR~z,h!P̂e~h!@Pe~h!, P#RAD~z,h!

3^x2 l ~y!&2si . ~V.11!

By Proposition 2.1, [Pe(h), 2h2Dx] is a first orderh-differential operator with coefficients
decaying likeO (he2duyu^x2 l (y)&212r), d.0. Thus

i^x2 l ~y!&2sR~z,h!P̂e~h!@Pe~h!,2h2Dx#R
AD~z,h!^x2 l ~y!&2si

<Chi^x2 l ~y!&2sRAD~z,h!^x2 l ~y!&2si

and therefore, from~V.11!,

i^x2 l ~y!&2sRAD~z,h!^x2 l ~y!&2si5O ~h21!1i^x2 l ~y!&2sR~z,h!P̂e~h!

3@Pe~h!, Pe~x,h!#RAD~z,h!^x2 l ~y!&2si ~V.12!

for h small enough. Now letf be chosen as before:

@Pe~h!, Pe~x,h!#RAD~z,h!^x2 l ~y!&2s5O ~1!1@Pe~h!, Pe~x,h!# f ~PAD!RAD~z,h!

3^x2 l ~y!&2s.

As before, Lemma A2 applied withH5H15PAD,Q5^x&s, F 5$hPC0
`~V!h real%, andE5l01«1

gives with ~V.10!

i^x2 l ~y!&2sR~z,h!P̂e~h!@Pe~h!, Pe~x,h!# f ~PAD!^x&si5O ~h`!

and therefore, from~V.12!,

i^x2 l ~y!&2sRAD~z,h!^x2 l ~y!&2si5O ~h21!1O ~h`!i^x&2sRAD~z,h!^x2 l ~y!&2si .
~V.13!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Since also, by Proposition 2.2, one hasi^x&2sPe(x,h)^x2 l (y)&si5O ~1! uniformly, the result
follows easily from~V.13!. h

Remark:From the last argument of the proof, we see that in Theorem 4.1,^x2 l (y)&2s can be
equivalently replaced bŷx&2s.

VI. PROOF OF THE MAIN RESULT

It follows from the two previous sections that the operator of multiplication by^x2 l (y)&2s is
P- andPAD-smooth in the sense of Ref. 9. As a consequence, we have

E
R

i^x2 l ~y!&2seitHx~H ! f i2dt5O ~h21i f i2! ~VI.1!

for HP$P,PAD%, xPC0
`~R! with support close enough tol0, and uniformly with respect toh.0

small enough and tofPL2. Then, for suchx andx̃ with xx̃5x, we write the formula~see Ref. 2,
section 4!

~V1
NAD21!x~PAD!5 i E

0

1`

x̃~P!eitP~P2PAD2QAD!e2 i tPADPe~h!x~PAD!dt

1„x̃~P!2x̃~PAD!…Pe~h!x~PAD!. ~VI.2!

By ~V.3! and Lemma A2, we see by the functional calculus that the last term of~VI.2! is O (h).
Moreover

~P2PAD2QAD!Pe~h!52h2P̂e~h!DxPe~h!1P̂e~h!Pe~x,h!Pe~h!. ~VI.3!

The first term appearing in the rhs of~VI.3! can be treated in a similar way as in Ref. 2, and
the second one, we observe that by applying Lemma A2 as in Sec. 4, one has

i^x2 l ~y!&sx̃~P!P̂e~h!@Pe~x,h!, Pe~h!#x~PAD!^x2 l ~y!&si5O ~h`!. ~VI.4!

Then the proof can be completed as in Ref. 2 section 4 by estimating

^~V1
NAD21!x~PAD!u,v&L2 for u,vPL2, making use of~VI.1!–~VI.4!. h

APPENDIX: FUNCTIONAL CALCULUS FOR SEMICLASSICAL SCHRO¨ DINGER
OPERATORS WITH SINGULAR POTENTIALS

Let H(h)52h2D1V(x)1hB(x,hD), 0,h,h0, be a Schro¨dinger operator onRn with po-
tential V having local singularities and a symmetric first order perturbationB(x,hD). In this
Appendix, we prove that in some case,f (H(h)), fPC0

`~R!, is still an h-pseudo-differential
operator modulo a term of the orderO(h`). This result is used in Sec. III when we establish t
resolvent estimates after a reduction by a Grushin problem. For smooth perturbations of2h2D,
such results are well known~see Ref. 10!.

Assume the following conditions onV andB(x,hD).
~H1! V is real valued and'K compact ofRn such thatVPC`~Rn\K! and'rP@0, 1# such that

u]x
aV~x!u<Ca^x&2r2uau, ;aPNn,xPRn\K.

~H2! V is 2D-bounded with relative bound 0 inL2~Rn!.
~H3! There exists an open neighborhoodV of K andEMPR such thatV(x).EM , a.e. inV.
~H4! B(x,hD) is a first-order symmetric differential operator with coefficients continuous

Rn and smooth outsideK satisfying
J. Math. Phys., Vol. 38, No. 3, March 1997
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u]x
ab~x,j!u<Ca^j&^x&2uau, x¹K,jPRn.

These assumptions ensure, among others, thatH(h) defines a self-adjoint operator, still denote
by H(h), and for any measurable functionf , f „H(h)… is defined by the spectral theory. It is als
clear that the assumptions~H1!–~H4! are satisfied byQ1(h) which appears in~IV.13! with
K5$0%.

Theorem A1: Assume the conditions (H1)–(H4). Let fPC0
`~R! such that

Sup Suppf,EM .

Then, f „H(h)… is an h-admissible operator, i.e., there exist bounded smooth symbols aj (x,j),
j50,1,2,...,such that for any NPN, one can write

f „H~h!…5(
j50

N

hjaj~x,hD!1hN11RN~h!,

with the remainder RN(h) satisfying the estimate, ;sPR, usu<1,

i^x&sRN~h!^x&2si<Cs,N,1`, (e1)

uniformly in hP#0,h0#. In particular, a0 is given by

a0~x,j!5 f „j21V~x!….

One can see that by the assumptions~H1! and ~H3!, a0(x,j) is smooth onR2n.
The idea of the proof of Theorem A1 is to comparef „H(h)… with f „H̃(h)… where

H̃~h!52h2D1x~x!„V~x!1hB~x,hD!…1„12x~x!…EM .

Here x is chosen so thatxPC`~Rn!, 0<x(x)<1 and x(x)51, if dist(x,K)>3«/4; 0, if
dist(x,K)<«/2 with «.0 sufficiently small so that$x; dist(x,K)<2«%,V. ThenH̃(h) is a semi-
classical Schro¨dinger operator with smooth symbol and we can apply the known results in f
tional calculus to show thatf „H̃(h)… is anh-admissible operator and for anyNPN,

f „H̃~h!…5(
j50

N

hjaj~x,hD!1hN11RN8 ~h!,

whereRN8 (h) satisfies the estimate (e1) anda05 f (j21xV(x)1„12x(x)…EM! . Due to the choice
of f and the condition~H3!, the reader can check that

a0~x,j!5 f „j21V~x!….

So to prove Theorem A1, we need only to show that

^x&s~ f „H~h!…2 f „H̃~h!…!^x&2s5O~h`!.

This will be a consequence of the following abstract lemma.
Lemma A2: LetV be an open set ofRn. Let H1 and B be two h-dependent self-adjoin

operators on L2~Rn! such that H5H11hB is essentially self-adjoint on the coreS ~Rn! and that

iB~H1 i !21i5O ~1!.

Let EPR. LetF be a class of real bounded smooth functions onRn such that for anyrPF , one
has
J. Math. Phys., Vol. 38, No. 3, March 1997
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rH1r>Er2,

i@H,r#~H1 i !21i5O ~h!,

'r1PF s.t. r1r5r and @H, r#~12r1!50.

Then for any fPC0
`~R! such thatSup Suppf,E and for any self-adjoint operator Q such tha

[Q,(H1 i )21]5O ~1! and;rPF , ;uPL2~Rn!, iQrui5O (irui), one has

ir f ~H !Qi5O ~h`!, ;rPF .

Proof: Let us first prove the result forQ51. Sincef is compactly supported, we can suppos
by introducing a partition of unity on the support off , that f is supported in a sufficiently sma
neighborhood of somel0<E2d ~d.0 small enough!. Replacingf by f (•1c) andH byH2c for
some suitablec, we can also suppose that

Supp f,]2h,0@ , with 0,h,d,

and

rH1r>dr2.

Let uPC0
`~Rn!. One can compute

ir f ~H !ui25^r f ~H !u,r f ~H !u&<
1

d
^H1r f ~H !u,r f ~H !u&

<
1

d
$^Hr f ~H !u,r f ~H !u&2h^Br f ~H !u,r f ~H !u&%.

By the assumptions, we can estimate that

iBr f ~H !ui<C$iHr f ~H !ui1ir f ~H !ui%,

uniformly in h.0 anduPC0
` . This proves

ir f ~H !ui<
11Ch

d
iHr f ~H !ui1Chir f ~H !ui .

By an argument of density, we derive that for someC8.0 independent ofh:

ir f ~H !i<
11C8h

d
iHr f ~H !i<

11C8h

d
$i@H, r# f ~H !i1irHf ~H !i%. ~A1!

By the spectral theory for the self-adjoint operatorH, one has

irHf ~H !i5iHf ~H !ri<hi f ~H !ri5hir f ~H !i .

Sinceh,d, for h.0 sufficiently small, it follows from~A1! that

ir f ~H !i<Ci@H, r# f ~H !i . ~A2!

Taker1PF with r1r5r and @H,r#~12r1!50. Let f 1PC0
`~2h,0! with f 1f5 f . Then
J. Math. Phys., Vol. 38, No. 3, March 1997
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i@H,r# f ~H !i<i@H, r# f 1~H !r1f ~H !i1i@H, r# f 1~H !~12r1! f ~H !i .

By the assumptions onH and standard functional calculus on self-adjoint operators,

i@H, r# f 1~H !i<Ci@H, r#~H1 i !21i5O ~h!.

Note that [H, r] f 1(H)(12r1) f (H)52[H, r][ f 1(H), r1] f (H). Again by the method of func-
tional calculus of Ref. 11, one can show that

i@H, r#@ f 1~H !, r1# f ~H !i<Ci@H, r#~H1 i !21ii@H, r1# f ~H !i5O ~h!i@H, r1# f ~H !i .

These together givei [H, r] f (H)i<Ch(ir1f (H)i1i [H, r1] f (H)i). Finally, we obtain from
~A2! that

ir f ~H !i1i@H, r# f ~H !i5O ~h!~ ir1f ~H !i1i@H, r1# f ~H !i !. ~A3!

This shows in particular thatir f (H)i1i [H, r] f (H)i5O(h). The same arguments apply als
whenr is replaced byr1. This givesir1f (H)i1i [H, r1] f (H)i5O (h). Substituting this estimate
into ~A3!, we obtainir f (H)i1i [H, r] f (H)i5O(h2). Repeating these arguments, one can pr
by induction thatir f (H)i1i [H,r] f (H)i5O(hN) for anyN.0.

Now letQ satisfy the assumptions of the lemma. Letf 1 andr1 be chosen as before. We writ

r f ~H !Q5r f ~H !Qf1~H !1r f ~H !@ f 1~H !, Q#. ~A4!

The assumptions onQ and the result proved in the caseQ51 give that the last term isO ~h`!. Let
A5r f (H)Q. By the arguments used above, we get in a similar way that

iAf1~H !i5O ~ i@H, A# f 1~H !i !. ~A5!

We write [H, A] f 1(H)5[H, r] f (H)Qf1(H)1r f (H)[H, Q] f 1(H). The last term is again
O ~h`! by the same reason as above. From~A4! and ~A5!, it follows that

ir f ~H !Qi5O ~h`!1i@H, r# f ~H !Qi . ~A6!

To treat [H, r] f (H)Q, we write

@H, r# f ~H !Q5@H, r# f ~H !r1f 1~H !Q1@H,r#@r1 , f ~H !# f 1~H !Q.

i [H, r] f (H)r1f 1(H)Qi5O (h`)ir1f 1(H)Qi . To treat the second term, we again use the met
of functional calculus of Ref. 11 which allows us to expressf (H) in terms of the resolvent ofH.
This leads us to estimate the terms of the form

@H, r#~H2z!21@r1 , H#~H2z!21f 1~H !Q5@H, r#~H2z!21@r1 , H# f 1~H !~Q~H2z!21

1@~H2z!21, Q# !.

For ImzÞ0, we have [H, r](H2z)215O (h), [r1 , H] f 1(H)5O ~h`!, and [(H2z)21, Q]
5O ~1!, with some loss in the inverse ofuIm zu. But these powers do not matter by the method
Ref. 11. From this we deduce that

i@H, r#@r1 , f ~H !# f 1~H !Qi5O ~h`!1O ~h!i@h, r1# f 1~H !Qi .

Summing up, we get

i@H, r# f ~H !Qi5O ~h`!1O ~h!i@H, r1# f 1~H !Qi1O ~h`!ir1f 1~H !Qi .
J. Math. Phys., Vol. 38, No. 3, March 1997
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This together with~A6! implies

ir f ~H !Qi1i@H, r# f ~H !Qi5O ~h`!1O ~h!i@H, r1# f 1~H !Qi1O ~h`!ir1f 1~H !Qi .
~A7!

Remark that by the assumptions, we can show that;r8PF , gPC0
`~R!,

r8g(H)Q5r8Qg(H)1r8[g(H), Q] is uniformly bounded. From~A7!, we conclude that
ir f (H)Qi1i [H, r] f (H)Qi5O (h). By the inductive arguments used before, we derive the
sult. h

Applying Lemma A2 toH152h2D1V(x), B5B(x,hD), Q5^x&s with usu<1, E5EM , and
F 5C0

`~V;R!, we get for allrPC0
`~V!

ir~x! f „H~h!…^x&si5O ~h`!. ~A8!

In the same way, one has

ir~x! f „H̃~h!…^x&si5O ~h`!. ~A9!

Lemma A3: With the notations as above, one has for any sP@21, 1#,

i^x&s~12r!$ f „H~h!…2 f „H̃~h!…%^x&2si5O~h`!.

Proof:We only prove the lemma fors50. ForsÞ0, the result can be proved by commutat
method. Making use of the formula of functional calculus by means of almost holomo
extension off ~cf. Ref. 11!, it suffices to prove that for anyNPN, 'CN.0 andN0PN such that

i~12r!$„H~h!2z…212„H̃~h!2z…21%i<
CNh

N

uIm zuN0
, ~A10!

for Im zÞ0 andhP]0, h0]. We write

~12r!$„H~h!2z…212„H̃~h!2z…21%5~12r!„H̃~h!2z…21~12x!„V2EM1hB~x,hD!…

3„H~h!2z…21.

Since 12r and 12x are of disjoint support, one can show by successive commutators
~12r!„H̃(h)2z…21~12x! satisfies the estimate~A10!. This proves the Lemma. h

Proof of Theorem A1:It follows directly from ~A8!, ~A9!, and Lemma A3. h
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Topological field theories and integrable models
L. Martina,a) O. K. Pashaev,b),c) and G. Solianid)
Dipartimento di Fisica dell’Universita` and INFN-Sezione di Lecce, 73100 Lecce, Italy

~Received 1 May 1996; accepted for publication 3 September 1996!

We show that the classical non-Abelian pure Chern–Simons action is related to
nonrelativistic models in~211! dimensions, via reductions of the gauge connection
in Hermitian symmetric spaces. In such models the matter fields are coupled to
gauge Chern–Simons fields, associated with the isotropy subgroup of the consid-
ered symmetric space. Thus a relation between the Chern–Simons theory and the
Davey–Stewartson hierarchy is established in a natural way. The Ba¨cklund trans-
formations are interpreted in terms of Chern–Simons constraints. Moreover, certain
nonintegrable Heisenberg models can be embedded into the pure Chern–Simons
theory. The main classical and quantum properties of these systems are discussed.
© 1997 American Institute of Physics.@S0022-2488~97!01002-5#

I. INTRODUCTION

The main achievements of the theory of the completely integrable systems are based
existence of the corresponding Lax pair, or in other terms of their representation as a zero
ture condition for a non-Abelian connection. By choosing different parametrizations for su
connection one can provide several integrable models, as the Ablowitz–Kaup–Newell–
~AKNS! scheme does1 in dealing with the so-called Zakharov–Shabat problem.2 Moreover, by
non-Abelian gauge transformations one can relate a completely integrable system to a corre
ing integrables model, taking values in the same non-Abelian Lie algebra of the flat connect3

Such models are called gauge equivalent and some of them have a direct physical interpr
like for the continuous Heisenberg model.14 The previous results suggest considering an integra
model as a special reduction of the zero curvature condition for a non-Abelian connection, a
in pure gauge theories. Indeed, the zero curvature equations have played a role in the co
the Topological Field Theory~TFT!,5 particularly in the three-dimensional Chern–Simons~CS!
theory.6,7 Here the space of physical states is given by the finite-dimensional moduli space,
the set of the equivalence classes of the flat connections with respect to the gauge transform
Then, taking into account the previous discussion, we can look at the TFT as a general fram
in which the integrable models are embedded. The choice of a specific integrable model is e
lent to perform a particular gauge fixing condition for the TFT. Such a gauge fixing leaves
residual infinite-dimensional gauge symmetry associated with the integrability properties. A
same time we have obtained an exactly solvable mechanism for the spontaneous breakin
topological symmetry. This is an important aspect in TFT, in which the propagation of partic
not allowed in the unbroken phase. Then, the embedding of the completely integrable mo
TFT seems to give some insight on this subject. On the other hand, the introduction of c
integrable models, say the nonlinear Schro¨dinger equation~NLSE!, suggests the interpretation o
a part of the gauge degrees of freedom as matter fields. But the gauge equivalence pro
allows us to identify the matter fields with the tangent space variables of the correspo
nonlinears-model phase space.8 Actually, such a procedure can be generalized independe
from the integrability properties. In fact, by interpreting the spin variables as elements of a

a!Electronic mail: martina@le.infn.it
b!Permanent address: Joint Institute for Nuclear Research, 141980 Dubna, Russia.
c!Electronic mail: pashaev@main1.jinr.dubna.su
d!Electronic mail: soliani@le.infn.it
0022-2488/97/38(3)/1397/16/$10.00
1397J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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space, the geometrical characterization of this type of transformation is given in terms of
curvature conditions for the associated Maurer–Cartan connection. Now, the integrable no
system is seen as a dynamical restriction on this connection.8

Following these ideas, in Sec. II we analyze the CS theory in a symmetric spaceG /H and
explain in which sense we obtain certain matter fields coupled to a local gauge CS field. The
we show how one can introduce suitable classical gauge-fixing conditions, which have
invariant under gauge transformations onH. In Sec. III we study the classical structure of th
SU~2!/U~1! model. We also show how the constraints of the theory can be solved, and
relation with the nonlinear completely integrable models. In particular, we outline the role o
CS constraints as Ba¨cklund transformations for the Davey–Stewartson~DSE! hierarchy of com-
pletely integrable models in 211 dimensions9 ~see Sec. III A!. Moreover, in Sec. III B we study
the multicomponent equations associated with semisimple Lie algebras and the Heisenberg
in terms of CS field theory. Finally, we discuss some results concerning the quantization pro
of such models and their connection with the multianionic systems. Some remarks and
problems are presented in the Conclusions.

II. CHERN–SIMONS THEORY ON SYMMETRIC SPACES

We suppose that the theory is defined by the CS action, given by

S@J#5
k

4p E
M

TrS J∧dJ1
2

3
J∧J∧JD , ~II.1!

whereJ is a 1-form gauge connection with values in the Lie algebraĝ of a compact non-Abelian
simple Lie groupG on an oriented closed three-dimensional manifoldM. The coupling constan
k would be quantized in quantum theory.6 The corresponding classical equation of motion is
zero-curvature condition,

F[dJ1J∧J50. ~II.2!

This model has received great attention in the last few years, since it provides a g
covariant field theory.6 This is a TFT in the sense that it possesses observables that are m
independent. The vacuum expectation values are invariants under smooth reparametriza
M and are related to the Jones polynomials of the knots theory.7 From another point of view,
models of point particles coupled to a CS gauge field in 211 dimensions have gained attention,
connection with the study of the fractional quantum Hall effect and of the high-temper
superconductivity.10,11Within the classical field approach, we are led to equations of the ga
NLSE type. In the static self-dual situation, such systems become the Liouville equation a
integrable multicomponent generalizations12 or the static reductions of the Ishimori equation~IE!
and the DSE.13

The action~II.1! is manifestly invariant under general coordinate transformations. Moreo
it is invariant under infinitesimal gauge transformationsG.I1l ~l:M→ĝ!, acting onJ as
dJ5[J,l]1dl.

Now, let us choose inG a closed subgroupH, such that the Lie algebraĝ of G satisfies the
so-calledZ2-graduation condition,

ĝ5 l̂ ~0!
% l̂ ~1!, @ l̂ ~ i !, l̂ ~ j !#, l̂ ~ i1 j !mod~2!, ~II.3!

where l̂ ~0! is the Lie algebra ofH and l̂ ~1! is the ~vector space! complement ofl̂ ~0! in ĝ.14 The
groupG acts transitively on the coset spaceG /H, which can be identified with a differentia
manifold belonging to the class of the symmetric spaces. The subgroupH leaving invariant the
points of G /H is called the isotropy group. At any pointp0PG /H, the tangent space
Tp0(G /H) is isomorphic tol̂ ~1!. We can induce in a natural way a Riemannian metric onT~G /
J. Math. Phys., Vol. 38, No. 3, March 1997
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H!, by restricting the Killing form onĝ to l̂ ~1!, and a torsion-free connection can be canonica
defined. However, for our aims we are interested in those symmetric spaces that have a c
structure, the so-called Hermitian symmetric spaces.14 This requirement enables us to perfor
several calculations without choosing any specific representations forĝ. The main algebraic prop
erties to use are the following.

~1! There exists an elementA belonging to the Cartan subalgebra ofĝ, such that its centralize
in ĝ coincides withl̂ ~0!, thus@A, l̂ ~0!#50 holds as a particular case.

~2! One can writel̂ (1)5 l̂ (11)
% l̂ (12), wherel̂ (16) 5 spanaPF1$e6a% are expressed by usin

those elements of the Weyl–Cartan basis, which correspond to a subsetF1 of the positive root
system on whicha(A) is a constant; thus [A, l̂ (16)]56a(A) l̂ (16) holds.

~3! By using a proper scaling, adA can be considered as a linear involutive endomorphism
l̂ ~1! supplying the complex structure on it.

~4! The commutation relations [e6a ,e6b]50 hold for all pairs of basis elements inl̂ ~16!.
By using the graduation~II.3!, we can first assume that the currentJ has the form

J5J~0!1J~1!, ~II.4!

whereJ( i ) are 1-forms taking values inl̂ ( i ). Hence, by resorting to the properties~1!–~4!, the CS
action ~II.1! becomes

S@J~0!,J~1!#5
k

4p E
M

TrS J~0!∧dJ~0!1
2

3
J~0!∧J~0!∧J~0!1J~1!∧D̂J~1!D , ~II.5!

whereD̂5d1•∧J(0)1J(0)∧• is the covariant exterior derivative. The expression~II.5! suggests
us to interpretJ~0! as a CS-gauge field andJ~1! as a coupled matter field. In this sense we ha
reformulated aG -invariant pure non-Abelian CS theory~II.1! as an interacting matter gauge fie
theory with groupH. Since the pure gauge part of the action has the non-Abelian form, we
apply recursively this procedure, decomposing the blocks ofJ~0!, up to get multiplets of matter
fields coupled by Abelian CS gauge fields. All these theories and their properties are d
connected with the classification problem of all possible Hermitian symmetric spaces, wh
completely solved.14 Moreover, although at first glance the distinction between matter and g
fields could seem rather artificial, it is preserved under the action ofH. In fact, keeping in mind
the infinitesimal transformation and theZ2 graduation, withl5l~0!1l~1!, we obtain

dJ~0!5@J~0!,l~0!#1dl~0!, dJ~1!5@J~1!,l~0!#, ~II.6!

for l~1!50.
Now in order to get evolution systems we trivialize the general 3-manifoldM locally into

S3R, whereS is a Riemann surface andR is interpreted as the time. In doing so, the exter
derivatived and the currentJ are expressed in terms of time and space components,

d5d01d ~d05dx0 ]0!, ~II.7!

and

J5A01A5A0
~0!1A0

~1!1A~0!1A~1!, ~II.8!

respectively. In the last equation we have taken into account theZ2 graduation~II.4! for J,
A( i )5Aa

( i ) dxa is a real connection onS, andA0
( i )5A0

( i ) dx0 are 1-forms onR. Furthermore, at this
point we parametrizeS by means of the local complex coordinatesz5x11 ix2 , z̄5x12 ix2 . Now,
we can consider tensors, either of covariant or contravariant type, with some definite num
holomorphic and antiholomorphic indexes. For instance, the cotangent space ofS will be decom-
posed into the direct sum of two subspaces, one of them is spanned bydz, and the other bydz̄. An
J. Math. Phys., Vol. 38, No. 3, March 1997
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important observation is that barred and unbarred tensors do not transform into each othe
a holomorphic change of coordinates. Specifically, our connectionJ can be rewritten in the form

~II.9!

V5 1
2 ~A1

~0!2 iA2
~0!!dz, V̄5 1

2~A1
~0!1 iA2

~0!!dz̄, ~II.10!

M5 1
2 ~A1

~1!2 iA2
~1!!dz, M̄5 1

2~A1
~1!1 iA2

~1!!dz̄, ~II.11!

and we put

V05A0
~0! , M05A0

~1! , ~II.12!

for brevity. Correspondingly, we can split the exterior derivative in the form

d5]1 ]̄5dz ]z1dz̄ ] z̄ , ~II.13!

where]e]̄ are holomorphic and antiholomorphic operators globally defined onS.
Taking into account this construction onS3R, the covariant exterior derivative introduced

the action~II.5! is written now as the sum of three terms:D5D1D̄1D0, where

D5]1V∧•1•∧V, D̄5 ]̄1V̄∧•1•∧V̄,

D05d01V0∧•1•∧V0 . ~II.14!

Then, just by rearranging theH-invariant action~II.5! in the complex variables, we obtain th
expression

S5
k

4p E
S3R

Tr„V∧d0V̄1V̄∧d0V1M∧d0M̄1M̄∧d0M

12V0∧~]V̄1 ]̄V1V∧V̄1V̄∧V1M∧M̄1M̄∧M !12M0∧~DM̄1D̄M !…. ~II.15!

The corresponding equations of motion are

]V̄1 ]̄V1V∧V̄1V̄∧V52~M∧M̄1M̄∧M !, ~II.16!

DM̄1D̄M50, ~II.17!

d0V1]V01V∧V01V0∧V52~M0∧M1M∧M0!, ~II.18!

d0V̄1 ]̄V01V̄∧V01V0∧V̄52~M0∧M̄1M̄∧M0!, ~II.19!

D0M1DM050, ~II.20!

D0M̄1D̄M050. ~II.21!

From the expression~II.15!, the structure of the Lagrange density with contraints is manif
In particular,V0 andM0 are the Lagrange multipliers enforcing the Gauss–Chern–Simons~GCS!
law ~II.16! and a sort of generalized self-dual condition, which derives from the torsion
property of theG /H manifold ~II.17!. Furthermore, by using the infinitesimal transformatio
J. Math. Phys., Vol. 38, No. 3, March 1997
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~II.6! and the expression~II.9!, one easily sees that the action~II.15! and the corresponding
equations of motion~II.16!–~II.21! are explicitly gauge invariant under infinitesimal transform
tions defined onH, in the sense that they are not only a subclass of the gauge symm
admitted by the original model, but preserve the decomposition amongV-type gauge fields and
M -type matter fields. On the other hand, this picture induces us to figure out certain situatio
which the invariance underG transformations is broken, in such a way that only theH invariance
is preserved. In other words, we may choose a supplementary constraint among the fields
is invariant under theH transformations. Since such a constraint has to transform according
~II.6!, its general form is

G@M0 ,M ,M̄ ,DM0 ,D̄M0 ,...#50, ~II.22!

whereG denotes an arbitrary differentiable function depending on theM -type fields and on their
covariant derivatives. If Eq.~II.22! can be explicitly solved forM0, then we replace this into the
equations of motion~II.16!–~II.21!, obtaining nonlinear evolution equations for the matter fie
M and M̄ . The same substitution in the action~II.15! leads to a functional defined on the su
manifold ofG /H determined by Eq.~II.17!, which is regarded as a further constraint. Convers
in the case in whichM0 cannot be explicitly determined, we can include the constraint~II.22! into
the action~II.15! by means of a suitable Lagrange multiplier. After all we have obtained sp
nonlinear evolution classical models for the matter fields in interaction with the~generally non-
Abelian! CS field. Now, carrying out specific calculations one needs to break the gauge sym
for instance the Weyl gaugeA0[0. The idea we want to stress is that other suitable constrain
the form ~II.22! can be used, first because they may help in more effective calculation
particular, when Eq.~II.22! is related to certain integrable systems, for which exact solutions
be given analytically, at least at the classical level. Second, they can provide integrable de
tions of the topological symmetry of the original pure CS model. Furthermore, from Eqs.~II.16!–
~II.19! we obtain the identity

~dx0]01@V0 ,•# !∧~M∧M̄1M̄∧M !1~]1@V,•# !∧~M0∧M̄1M̄∧M0!

1~ ]̄1@V̄,•# !∧~M0∧M2M∧M0!50, ~II.23!

where we define the ‘‘commutator’’ operator over 1-forms [A,•]∧B5A∧B2B∧A, yielding a
2-form. Equation~II.23! provides a continuity equation, when a given model is defined by
specific dependence ofM0 on M and M̄ . The conserved density is given by the 2-for
r dz∧dz̄5M∧M̄1M̄∧M , which furnishes the set of non-Abelian conserved char
Q5*Sr dz∧dz̄.

Quite a special situation occurs when we consider the Grassmann manifoldG /H
5SU(n1m)/S„U(n)3U(m)… ~AIII in the Helgason’s notation14!. In particular, form51 we
obtain the complex projectiveCPn5SU(n11)/S„U(n)3U~1!… model. In general, the gauge con
nectionJ is anti-Hermitian (J†52J) and decomposes in the block form

J5S iV ~n! R

Q iV ~m!D , ~II.24!

whereV( l )5vm
( l ) dxm are l3 l matrix valued one-forms withl5n,m, Q5qm dxm andR5rm dxm

arem3n andn3m matrix valued one-forms, respectively. The anti-Hermiticity ofJ implies that
vm
( l )† 5 vm

( l ) ( l5m,n) andrm 5 2qm
† . Thus, in the complex formulation we introduce the forms

c2 dz5 1
2~q12 iq2!dz, c1dz̄5 1

2~q11 iq2!dz̄,

v ~n! dz5 1
2~v ~n!

12 iv ~n!
2!dz, v ~m!dz5 1

2~v ~m!
12 iv ~m!

2!dz, ~II.25!
J. Math. Phys., Vol. 38, No. 3, March 1997
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which give a block decomposition of the matter and the gauge fields,M andV, respectively. Then,
substitution into~II.15! yields the action in terms ofc6 and v ( i ). We shall not write this for
brevity. Here we remark only that in theCPn case the matter fieldsc6 are n-component row
vectors. Moreover, the cubic nonlinear self-interaction for the AbelianU~1! field vanishes iden-
tically in the action. This fact implies that the corresponding magnetic fieldB(1)5e i j ] iv j

(1) is
proportional to the charge densityr (1) 5 2 i (c1c1

† 2 c2c2
† ). Then, the particles with electric

chargeQel5*Sr dz∧dz̄ are also flux tubes with total magnetic fluxFm52Qel . However, for
n>2, accordingly to the equations of motion~II.16!, the ‘‘colored’’ magnetic fieldB(n)

5 @]zv̄
(n) 2 ] z̄v

(n) 1 i (v (n)v̄ (n) 2 v̄ (n)v (n))# 5 2 i (c1
† c1 2 c2

† c2) appears. We notice that th
electric and ‘‘colored’’ charges are not completely independent, since, in general, contrib
from the non-Abelian fields to the spatial components of the electric current are present@see Eq.
~II.23!#. Nevertheless, it is remarkable that the models of the non-Abelian CS field coupled
matter15 can be embedded into the scheme of ourCPn models, giving a specific example o
constraint~II.22!.

III. THE SU(2)/U(1) MODEL

The simplest case pertinent to such theories with an Abelian gauge field is the SU~2!/U~1!
model, whose action is straightforwardly derived from~II.15! and ~II.24!–~II.25!:

S52
k

p E
S3R

H 12 elmnvl ]mvn1 i
1

2
„c1* D0c12c1~D0c1!*2c2* D0c21c2~D0c2!* …

2 iq0* ~Dc12D̄c2!1 iq0~Dc12D̄c2!* J dx0 dx1 dx2, ~III.1!

whereD05]022iv0 , D5]z22iv, D̄ 5 ] z̄ 2 2iv* with v5 1
2(v12 iv2), and* represents the

complex conjugation. The Lagrangian is of first order, wherev0 and q0 are considered as
Lagrange multipliers, enforcing the constraints of the model, i.e., the GCS
G15]1v22]2v112~uc1u22uc2u2!, and the complex ‘‘torsion-free’’ constraintg5Dc12D̄c2 ,
which specializes Eq.~II.17! to the Abelian case. They generate thesu~2! algebra of the gauge
symmetry transformations. Furthermore, the GCS law constraintG1 generates theU~1! subgroup
of local gauge transformations. Following Ref. 16, one should solve the previous constraints
gives us formallyv and v* in terms of c6 and c6* . Substitution into~III.2! will lead to a
first-order Lagrangian of the formpq̇. In general, solutions of the constraints is given in
complicated form. But simple discussions can be performed for some special reductions. Fi
Poisson structure related to~III.2! is

$v1~x!,v j~y!%52
p

k
e i jd~x2y!, $c6~x!,c6* ~y!%56

p i

k
d~x2y!. ~III.2!

Then, restricting ourselves to the planar geometry takingS[R2 and noticing that we have a
Abelian gauge field, we expressv ı into the longitudinal and the transverse part,

v ı~x!5] ih~x!2e i j ~] j
21B!~x!, ~III.3!

where we have applied the operator] j
21f ~x!5~1/2p!] j

(x) * lnux2yuf (y!d2y to the magnetic field

B5e i j ] iv j ~notice that]1]1
211]2]2

2151!.17 These variables are canonical, satisfying the Pois
brackets
J. Math. Phys., Vol. 38, No. 3, March 1997
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H h~x!,
k

p
B~y!J 5d~x2y!. ~III.4!

Now, we define the new U~1!-invariant degrees of freedom,

F65Ak

p
c6 exp~22ih!, ~III.5!

which fulfill the canonical brackets

$F6~x!,F6* ~y!%56 id~x2y!. ~III.6!

The GCS constraint reads asG1[B2(2p/k)~uF2u22uF1u2! and the constraintg takes the form

g[expS 2p i

k
h D F S ]z2

1

2
] z̄

21~B! DF12S ] z̄2
1

2
]z

21~B! DF2G , ~III.7!

where we have introduced the operator] z̄
21
„f (z,z̄)… 5 i ]z /(1/p)lnuz 2 juf(j,j̄)dj∧dj̄. From this

expression we see that the classical dynamics is restricted on a submanifold of the phas
defined by the equations

B5~2p/k!~ uF2u22uF1u2! ~III.8!

„]z2
1
2] z̄

21~B!…F12„] z̄1 1
2]z

21~B!…F250. ~III.9!

First, let us describe some simple reductions of these equations. A special subcase
~III.9!, corresponding to the self-dual CS model, is obtained whenF2 vanishes~or, alternatively,
F1!. In fact, by settingF15r1/2eix, with x a harmonic map, it easy to see that the previo
equations reduce to the Liouville equation,

¹2 ln r52
8p

k
r, ~III.10!

whose general solution is well known and can be expressed in terms of an arbitrary holom
function18 z by the relationr5(k/4p)[ u]zzu2/(11uzu2)2].

A more general situation occurs when~see Ref. 8!

„]z2
1
2] z̄

21~B!…F15„] z̄1 1
2]z

21~B!…F250, ~III.11!

where both the fieldsF6 are different from zero. Let us notice that the system of these equa
with Eq. ~III.8! corresponds to the so-called Hitchin equation introduced as a reduction o
self-dual Yang–Mills equations in four dimensions.19

The relations~III.11! suggest that we introduce a holomorphic function U (] z̄U50!, defined
by

U~z,z̄!5F̄1~z,z̄!F2~z,z̄!. ~III.12!

This quantity is the analogy of the holomorphic component of the energy-momentum stress
in the Conformal Field Theories.20 Now, let us suppose thatU is a given entire function. Then, w
can solve, for instance,~III.12! with respect toF2 and write down the equations

¹2s52
16p

k
eh sinhs,
J. Math. Phys., Vol. 38, No. 3, March 1997
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¹2h5¹2x50, ~III.13!

where we have introduceds5ln~uF1u2/uUu!, h5Re lnU, andx5arg~F1!. Equations~III.13! are
conformally invariant and are strictly related to the integrable conformal invariant affine T
field theory~see Ref. 21!.

A. Relation with the integrable models

In solving the constraints in the action~III.2! we could adopt a different approach, which lea
us to an unexpected structure. In fact, just rewriting the constraintsG1 andg in complex variables,

D̄c25Dc1 , ~III.14!

]zv*2] z̄v52 i ~ uc1u22uc2u2!, ~III.15!

we can handle them by the help of the new matrix fields,

V 5S v* v D , Ĉ65S c6

2c6*
D . ~III.16!

Furthermore, by introducing

B~1!5
i

2
s3~Ĉ22Ĉ1!, ~III.17!

the GCS law in Eq.~III.15! combined with its complex conjugate yields

TrH s3F S ]z

] z̄
D V 1B~1!Ĉ22Ĉ1B

~1!G J 50. ~III.18!

Since the quantity in the square brackets is a diagonal matrix and no information is supplied
the identity component, we have the relation

S ]z

] z̄
D V 1B~1!Ĉ22Ĉ1B

~1!5 fs0 , ~III.19!

where f5 f (z,z̄,x0) is an arbitrary function ands0 is the identity matrix.
On the other hand, the torsionless condition can be written as

S ]z

] z̄
DB~1!1

i

2
~] z̄2]z!Ĉ21V Ĉ22Ĉ1V 50. ~III.20!

Equations~III.19! and ~III.20! can be summed up to give the expression

T1F i2 ~a z̄2]z!1V 1B~1!G2F i2 ~] z̄2]z!1V 1B~1!GT25 f , ~III.21!

where

T65S ]z

] z̄
D 2Ĉ6 . ~III.22!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Since the previous procedure is invertible~the summation is made over independent componen!,
Eq. ~III.21! is equivalent to the system~III.14!–~III.15! ~modulo f !.

Putting f[0, Eq.~III.21! coincides with the space part of the Ba¨cklund transformation for the
two-dimensional Zachkarov–Shabat problem,9 in which the principal spectral problem is given b
Eq. ~III.22!, and the first-order Ba¨cklund-gauge operator is

B5“1V 1B~1!, ~III.23!

with ¹ 5 ( i /2)(] z̄ 2 ]z). The operatorB transforms an eigenfunctionf2 of the linear problem
T2f250 into f15Bf2 , which is an eigenfunction ofT1f150.

It is well known9 that the triadB,T6 enables one to introduce a continuous extradepende
on a parameter, sayt, and two operators of the formT6

(t)5 i ]t1(k50
N T6,k“

N2k, such that~1!
[T6 ,T6

(t)]50 and ~2! T1
(t)B2BT2

(t)50. A second-order operator of such a type leads to
well-known DSE II.9 However, at this stage the construction of an integrable model from the
model ~III.2! is not complete at all. Indeed, looking at the evolution equations we have

D0c12D̄q050, D0c22Dq050. ~III.24!

This structure is quite different from the DSE, unless we break the general gauge invariance
CS theory, by fixingq0 in a special way. Apart from the simplest choiceq0[0 ~the Weyl gauge!
let us choose

q052i F S D̄1
i

2
w1Dc11SD1

i

2
w2Dc2G , ~III.25!

]zw1524i ~ uc1u22uc2u2!, w15w2* . ~III.26!

The constraint~III.26! admitsU~1! as residual gauge symmetry. At the same time the gen
covariance symmetry is broken and only special Lie-point symmetries are allowed. Notic
after a rescaling, (w1 ,w2) is a divergenceless solution of Eq.~III.15!.

Substitution of Eq.~III.26! into ~III.24! provides the nonlinear evolution equations,

D0c622i ~D21D̄2!c61c6] z̄w6 ,

1w1D̄c61w2Dc650, ~III.27!

which are evidently two coupled nonlinear Schro¨dinger equations. Moreover, we have to take in
account the equation involving the time derivatives ofv,v* ~the ‘‘electric strength’’ field!,

]0v2]zv05 i ~q0c1* 2q0*c2!,
~III.28!

]0v*2] z̄v052 i ~q0*c12q0c2* !.

The system~III.14!–~III.15!–~III.27!–~III.28! still has certain degrees of gauge on which we c
play. First we can eliminatev in favor of w. Indeed, putting

w25w2
L 1w2

T 52]zv2 i ]zx, ~III.29!

where the functionsx andv satisfy the Poisson equations,

]z ] z̄x524~ uc1u22uc2u2!, ~III.30!

]z ] z̄v50, ~III.31!
J. Math. Phys., Vol. 38, No. 3, March 1997
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we get the irrotational fieldA54v21
2w-

T. Thus, exploiting theU~1!-invariance of Eqs.~III.27! and
~III.28!, we can make the transformation

A5]zL~LPR!, c65C6e
~ i /2!L, v05

1
4~A01]0L!, ~III.32!

whereA0 is a new time component of the CSU~1!-scalar field. However, it is convenient t
introduce the quantities

A0
~6 !5A07~]z

2x1] z̄
2x!2

1

4
„~]zx!21~] z̄x!2…1

i

2
~]zv ]zx2] z̄v ] z̄x!22i S ] z̄

2

]z
2 Dv,

~III.33!

related by

A0
12A0

2522~] z̄
21]z

2!x22~] z̄
22]z

2!v. ~III.34!

In this formalism the condition~III.14! reads as

~] z̄1 1
4] z̄x!F25~]z2

1
4]zx!F1 . ~III.35!

Thus, the time evolution equations~III.27! for C6 become

i ]0F612~]z
21] z̄

2 !F61 1
2A0

~6 !C62 i ~] z̄v ] z̄1]zv]z!F650, ~III.36!

and the ‘‘electric’’ field equations~III.28! provide the consistency conditions forA0
(6),

]z] z̄A0
~6 !58~]z

21] z̄
2 !uF6u2. ~III.37!

To summarize, by the specific gauge choices~III.25! and~III.32! we have obtained a formally
decoupled pair of DSE-like equations for the fields~C6 , A0

~6!!. A generalizing term, involving
first-order derivatives ofC6 , has coefficients depending on the harmonic mapv. Actually, Eqs.
~III.30!, ~III.35! and ~III.34! close the system, introducing a nonlocal coupling. But Eqs.~III.30!
and ~III.35! are essentially the system~III.14!–~III.15! discussed at the beginning, providing th
space part of the Ba¨cklund transformations for the DSE. In other words, we have obtained a
of DSE II systems coupled by the Ba¨cklund transformations. This result can be used in looking
classes of solutions for the CS theory in the special gauge~III.25!, following the standard method
developed in the context of the completely integrable systems. In particular, forC1[0 we can
find C2 in terms of solutions of the Liouville equation, as discussed above. Furthermore
system given by Eqs.~III.36!–~III.37! ~for instance, let us consider the ‘‘2’’ case! admits as the
Lax pair the operatorT2 given in ~III.22! and

T2
~t!5 i ]028s3¹

228~ i Ĉ21R!“14S ] z̄

2]z
D Ĉ2

24is3@R,Ĉ2#22h2s01
1

4
~A0

~2 !22i ]z
2v!s3 , ~III.38!

which defines the auxiliary linear problem, where

R5
1

4 S ] z̄v

2]zv
D . ~III.39!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Furthermore, in analogy with the usual DSE, one can look for a gauge transformation betwe
above system and a spin model. In fact, introducing the spin fieldS [SPSU~2!/U~1!# one can
easily prove that the system~in real variables!

]0S1Re~w1!]1S2Im~w1!]2S1
i

2
@S,~]1

22]2
2!S#50,

]1 Re~w1!1]2 Im~w1!50,

]1 Re~w1!2]2 Im~w1!52
i

2
~S@]1S,]2S# !, ~III.40!

is equivalent to~III.30!–~III.31!–~III.36!–~III.37! @only one pair of fields, for instance~C2 , A0
~2!!,

is kept#. This can be seen by looking for a suitable nondegenerate matrixg, such that the Lax pair
of the spin model,

L5 i ]21S]1 ,

M5]012iS]1
21„i ]1S1S]2S2Im~w1!S1Re~w1!…]1 , ~III.41!

takes the form

T25g21Lg, T2
~t!5g21Mg, S5gs3g

21. ~III.42!

Then we can interpret this system as a two-dimensional continuous spin field in a m
frame, determined by the incompressible velocity field Re~w1!, Im~w1! in a non-Euclidean spac
metric ~1,2!. The vorticity is determined by the density of the topological charge. This typ
system has been widely discussed@8#–@22# and can be considered as a generalization of
Ishimori model. In this context it is interesting to observe that the diagonal element of the B¨ck-
lund operator~III.23! takes a physical meaning. Moreover, it is easy to see that the~111! reduc-
tion of the system~III.14!–~III.15! @also see Eqs.~III.30–III.35!# provides the NLSE and its
well-known Bäcklund transformation,23

]1C12]1C25
1

4
]1x~C11C2!,

i ~]0C12]0C2!54~ uC1u21uC2u2!~C22C1!2 1
4 ]1x~C11C2!,

]1x5Aa216uC12C2u2,

wherea is real positive parameter~without loss of generality and for simplicity we have putv and
some other integration constants equal to zero!.

B. Relation to generalized s models in tangent space representation

An analogous procedure of embedding into the non-Abelian CS theory can be used f
Heisenberg SU(n1m)/S„U(n)3U(m)… s model. However, in this context we cannot use t
integrability structures that naturally merged above, because of the nonintegrable characte
dynamics of these models in 211 dimensions. But we simply reformulate the equations of moti

i ]0S5
mn

m1n
@S,¹2S#, ~III.43!
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



n
e
se the

ase

ation

ver, it
n

of
me

1408 Martina, Pashaev, and Soliani: Topological field theories and integrable models

¬¬¬¬¬¬¬¬¬¬
with S25(1/mn)I n1m1[(m2n)/mn]S, where I n1m stands for the identity matrix in (n1m)
dimensions, in the tangent space representation. Indeed, the matrixS can be diagonalized by a
U(n1m) local transformationg, namely

S5gSg21, S5S 1

n
I n 0

0 2
1

m
Im
D . ~III.44!

We introduce the chiral current,

Jm5g21 ]mg5Jm
~0!1Jm

~1! ~m50,1,2!, ~III.45!

where theZ2 graduation has been used. In particular,Jm has the same block decompositio
presented in Eq.~II.24!. Furthermore, by virtue of~III.45!, the currentJm can be considered as th
zero-curvature connection for the Chern–Simons topological field theory. Then, we can u
dynamical equation~III.43! in the tangent space formulation

i @J0 ,S#5
mn

m1n
~@S,†Jm@Jm ,S#‡#1†S,@]mJm ,S#‡!, ~III.46!

as a constraint for the current components, which satisfy the zero-curvature equation@~II.16!–
~II.21!#. From the decomposition~III.45! and by using the notation of~II.24!, we get

q052i ~Dc11D̄c2!, ~III.47!

where we have introduced the ‘‘covariant’’ derivativesD5]z1 iv (m)•2• iv (n), D̄ 5 ] z̄ 1 iv (m)† •
2 • iv (n)†. Equation~III.47! is an explicit example of the constraint~II.22!. Substitution ofq0 in
the action~II.15! gives the formulation of the generalized Heisenberg model~III.43! as a specific
symmetry reduction from a pure non-Abelian CS model,

S5
k

4p E
S3R

Tr$v ~n! ]0v
~n!†2v ~n!† ]0v

~n!1v ~m! ]0v
~m!†2v ~m!†]0v

~m!22v0
~n!~]zv

~n!†2] z̄v
~n!

1 i @v ~n!,v ~n!†# !22v0
~m!~]zv

~m!†2] z̄v
~m!1 i @v (m,v ~m!†# !1c1

† D0c12c1 D0
†c1

†

2c2
† D0c21c2 D0

†c2
† 18i „~Dc1!†Dc12~D̄c2!†D̄c2…%dx dz dz̄, ~III.48!

with the supplementary condition

g[Dc12D̄c250, ~III.49!

which is Eq.~II.17! interpreted, in this context, as the torsion-free condition for the spin ph
space manifold.

In the action~III.48! we have used Tr as a global symbol for the trace in a given represent
for U(n) and U(m), respectively, andD05]01 iv0

(m)
•2• iv0

(n) in analogy withD and D̄. The
obtained model generalizes the results given in Ref. 8 to the non-Abelian case. Moreo
reduces in the static case to the nonlinears model and in 111 dimensions to the matrix NLSE o
symmetric spaces.

We remark that the tangent space representation is similar to theCP1 formulation of theO ~3!
nonlinears model.24 But here the ‘‘matter fields’’ are identified with the complex coordinates
the group, while in our approachc6 are given in terms of the first-order derivatives of the sa
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ve.

n case

m
classi-

lassical
espond-

we can

an-

a

mbers

1409Martina, Pashaev, and Soliani: Topological field theories and integrable models

¬¬¬¬¬¬¬¬¬¬
quantities. The action~III.48! has as Lagrange multipliersv0
(m) and v0

(n), which enforce two
Gauss-like laws. However, in the SU~2!/U~1! case we turn back to the Abelian case seen abo
By using the U~1!-invariant variables~B,F6!, the Gauss law is given by~III.8!, whose solution
leads to a field theory with the Hamiltonian

H54u~] z̄1 1
2 ]z

21~B!!F2u224u~]z2
1
2 ] z̄

21~B!!F1u2, ~III.50!

with the constraint~III.9!.
This theory can be easily quantized by means of the correspondenceF6→F̂6 and

F̄6→F̂6
† and replacing the canonical brackets by the equal-time commutators in the boso

~or the anticommutators in the fermionic case!,

@F̂6~x!,F̂6
† ~y!#57d~x2y!. ~III.51!

The presence of a different signature in Eq.~III.51! leads generally to an unbounded quantu
energy spectrum, whose treatment requires some special care. However, we know that the
cal value of the energy is zero because of the completely constrained character of the c
Hamiltonian. So we expect that all the physical quantum states have to be eigenstates corr
ing to the energy eigenvalue 0. Furthermore, the first class constraintsGi become the operatorsĜ i ,
which must annihilate the physical states. In particular, the operatorĜ1 associated with the GCS
law has to annihilate the physical states. This implies that such states are independent fromv0 and
are invariant under time-independent gauge transformations. Therefore, all the operatorsĜ i must
commute among themselves. Finally, we have to associate with the constraintg a corresponding
operatorĝ, which also annihilates the physical states.

For the specific case of the Heisenberg model, in the subspace of the physical states,
write down a quantum Hamiltonian involving only the operatorsF̂6 and their Hermitians:

Ĥ54E $F̂1
† ~]z2

1
2] z̄

21~B̂!!2F̂12F̂2
† ~] z̄2 1

2]z
21~B̂!!2F̂2%dz dz̄, ~III.52!

whereB̂ 5 (p/k)(F̂2
† F̂2 2 F̂1

† F̂1), and the normal ordering of the operators is used. The qu
tized free-torsion constraintĝ takes the form

ĝ5~]z2
1
2] z̄

21~B̂!!F12~] z̄2 1
2]z

21~B̂!!F2 . ~III.53!

Therefore, since@B̂~x!,ĥ~y!#52(p i /k)d~x2y! holds, one has the relation

exp„i ĥ~y!…B̂~x!exp„2 i ĥ~y!…5B̂~x!2
p

k
d2~x2y!. ~III.54!

This result is exploited to prove thatF̂6 are theU ~1!-gauge invariant operators, which create
charge-solenoid composite, having magnetic flux equal to7p/k.

Now, we define the quantum vacuum state by the relationF̂6u0&50. Thus, we can introduce
two different particles number operators:

N̂65E F̂6
† F̂6 d2x. ~III.55!

These operators commute between themselves and with the Hamiltonian operator~III.52!. Thus,
we can formally construct the common eigenstates of the energy and of the occupation nu
for both types of particles by
J. Math. Phys., Vol. 38, No. 3, March 1997
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uN1 ,N2&5E )
i51

N1

d2xi
1 )
u51

N2

d2xj
2C~x1

1 ,...,xN1

1 ,x1
2 ,...,xN2

2 !

3F̂1
† ~x1

1!•••F̂1
† ~xN1

1 !F̂2
† ~x1

2!•••F̂2
† ~xN2

2 !u0&. ~III.56!

The functionC is an arbitrary element of the Hilbert spaceL2@R
2(N11N2)# obeying the Schro¨-

dinger equation for (N11N2)-bodies.
Now, to be physical, the state~III.56! also needs to be annihilated byĝ. For states with a finite

number of particles, we can find exactly solvable equations forC only when one type of particle
is present. For instance, theuN1 ,0& state is described by the bosonic wave function,

C~x1
1 ,...,xN1

1 !5F ~ z̄ 1
1 ,...,z̄ N1

1 !)
i, j

uxi
12xj

1u22/k, ~III.57!

where F is an arbitrary holomorphic function of its arguments. By using a singular ga
transformation,25,26 the expression~III.57! takes the form of the Laughlin multivalued anion
wave function,27

C~x1
1 ,...,xN1

1 !5F̃ ~ z̄ 1
1 ,...,z̄ N1

1 !)
i, j

~zi
12zj

1!21/k. ~III.58!

This wave function acquires the anionic phase exp(ip/k) after the exchange of two particles.
Then, if we consider the model~III.52! as a quantum version of the magnetic bubble syst

we see that it behaves as a quantum anion system. Furthermore, the wave function~III.58! can be
employed to describe a condensate state of bosonic solitons and may be related to the q
disordered state of the original ferromagnet.28 Actually, the previous wave function is not norma
izable on the plane. Its normalization can be determined by introducing an external magnet
in our topological model. Normalizable eigenstates can also be obtained on a compact suS
without introducing an external field.29

IV. CONCLUSIONS

We have studied the classical non-Abelian CS model, where the gauge fields satisfy
geometrical requirements. In particular, if the gauge fields belong to aZ2-graded Lie algebra, we
are led in a natural way to a decomposition of the action, in which a set of matter fields int
via a ~generally non-Abelian! CS field. We have shown that in this geometrical setting cer
typical structures of the completely integrable systems arise. These can be effectively obtai
making certain choices of the gauge. Unfortunately, the examples we have studied are ba
noncovariant, nonlinear, and nonlocal gauges. Nonlinear but local gauges are involved in e
ding generalized nonrelativistics models with Hermitian symmetric phase spaces and in t
tangent space representation. In such a case the dynamics is no longer integrable in 211 dimen-
sions, although the symmetry structure is so rich that integrability is recovered in 111 dimensions.
We have shown how such a type of models can be quantized, and how anyonic wave functio
be connected with planar magnetic systems. Of course our approach needs further develo
First of all, the possibility of handling quantum TFT by using the Becchi–Rouet–Stora app
in a nonlinear completely integrable gauge is not completely exploited. Moreover, althoug
models discussed in this paper come from quite an abstract framework, it is interesting
whether some of them play any special role in the domains of planar physics, where no
interactions of the CS type become important. At present, we notice only that in our mode
coupling constants of the theory are fixed by the geometry of the original non-Abelian pur
model and by the constantk, which is an integer from the quantum theory. Thus, our models
special cases of many other CS-gauge field theories~see Refs. 15–30!, in which the above-
J. Math. Phys., Vol. 38, No. 3, March 1997
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mentioned coupling constants can take arbitrary real values, and, for this reason, can be con
as perturbations or deformations of ours. Other possible physical applications of these
concern the description of the multilayer Hall systems, treated as planar pseud
ferromagnets.31 Furthermore, since the CS TFT is exactly solvable in theSU~2! case for any
three-manifold, we speculate that our procedure should lead to a field theoretical descriptio
anyonic system on an arbitrary Riemann surfaceS. In these cases the operator]j

21 must be
modified, in order to include a residual topological interaction.32 However, when these systems a
obtained by the described procedure, their solvability is assured by the above-mentioned
property.

It is also physically interesting to consider the extension of our procedure to noncom
groups. In fact, for theISO~2,1! group the corresponding model is equivalent to the TFT stud
by Witten, in connection with the~211!-dimensional quantum gravity.33

Furthermore, our procedure can be used for classifying classical topological field mod
the point of view of their integrability property. This corresponds to classifying the suppleme
constraints, by requiring that the system of equations~II.16!–~II.21! and~II.22! allows a Lax pair,
in analogy with the procedure and the results contained in Ref. 34. It is remarkable that
scheme, either integrable and nonintegrable gauge-fixing conditions are found. The question
existence of a relationship between these two type of structures in the unifying framework
plied by the original non-Abelian CS model is still open. A hint for solving this problem may
found in the gauge transformations generated byl~1!, which mixes the components of the chir
current by the relations

dJ~0!5@J~1!,l~1!#,

dJ~1!5@J~0!,l~1!#1dl~1!. ~IV.1!

We notice that the transformations~IV.1! imply a nontrivial mixing among old matter and gaug
fields.

Finally, we point out that in a similar fashion one can build up more general models
considering nonsymmetric spaces. For instance, models involvingN Abelian CS fields can be
constructed in a reductive homogeneous spaceG /H, whereH5U(1)N.14 Another possible gen-
eralization can be obtained considering a higher-dimensionalSU(n) group. In this case we can
solve the GCS laws related to the maximal Abelian subgroup of localU~1! gauge symmetries
These theories should be solved in terms of the Toda models, at least for the self-dual red

ACKNOWLEDGMENTS

The authors are grateful to L. Bonora, V. Ja. Fainberg, J. Fro¨hlich, S. Randjbar-Daemi, I
Todorov, I. V. Tyutin, and G. Vitiello for very helpful discussions. This work was supporte
part by MURST of Italy and by INFN-Sezione di Lecce. One of the authors~O.K.P.! thanks the
Department of Physics of Lecce University for their warm hospitality. He also thanks TUBIT
of Turkey and M. Idemen for support and hospitality at the Marmara Research Center.

1M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett.30, 1262~1973!.
2V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.61, 118 ~1971!.
3S. J. Orfanidis, Phys. Rev. D21, 1513~1980!.
4V. E. Zakharov and L. A. Takhtajan, Teor. Math. Phys.38, 26 ~1979!.
5D. Birmingham, M. Blau, M. Rakowski, and G. Thompson, Phys. Rep.209, 129 ~1991!.
6S. Deser, R. Jackiw, and S. Templeton, Ann. Phys.180, 372 ~1982!.
7E. Witten, Commum. Math. Phys.121, 351 ~1989!.
8L. Martina, O. K. Pashaev, and G. Soliani, Phys. Rev. B48, 15 787~1993!.
9B. G. Konopelchenko,Introduction to Multidimensional Integrable Equations~Plenum, New York, 1992!, and refer-
ences therein.

10R. Prange and S. Girvin, inThe Quantum Hall Effect~Springer, Berlin, 1990!.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



1412 Martina, Pashaev, and Soliani: Topological field theories and integrable models

¬¬¬¬¬¬¬¬¬¬
11J. Leinaas and J. Myrheim, Nuovo Cimento B37, 1 ~1977!.
12R. Jackiw and S.-Y. Pi, Phys. Rev. D42, 3500~1990!.
13L. Martina, O. K. Pashaev, and G. Soliani, Mod. Phys. Lett. A8, 34 ~1993!.
14S. Helgason,Differential Geometry, Lie Groups and Symmetric Spaces~Academic, New York, 1978!.
15D. Bak, R. Jackiw, and S.-Y. Pi, Phys. Rev. D49, 6778~1994!.
16L. Faddeev and R. Jackiw, Phys. Rev. Lett.60, 1692~1988!.
17G. V. Dunne, R. Jackiw, and C. A. Trugenberger, Ann. Phys.194, 197 ~1989!.
18J. Liouville, J. Math. Pure Appl.18, 71 ~1853!.
19N. J. Hitchin, Proc. London. Math. Soc.55, 59 ~1987!.
20A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B241, 333 ~1984!.
21O. Babelon and L. Bonora, Phys. Lett. B244, 220 ~1990!.
22L. Martina, O. K. Pashaev, and G. Soliani, J. Phys. A27, 943 ~1994!.
23G. L. Lamb, J. Math. Phys.15, 2157~1974!.
24A. D’Adda, P. Di Vecchia, and M. Lu¨scher, Nucl. Phys. B146, 63 ~1978!.
25F. Wilczek, Phys. Rev. Lett.48, 1144~1982!.
26S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett.58, 1252~1987!.
27R. B. Laughlin, Phys. Rev. Lett.50, 1395~1983!.
28A. Zee,Physics in (211)-Dimensions, edited by Y. M. Cho~World Scientific, Singapore, 1992!.
29R. Iengo and K. Lechner, Phys. Rep.213, 179 ~1992!.
30R. Jackiw and S.-Y. Pi, Phys. Rev. Lett.66, 2682~1990!.
31M. Greiter, X. G. Wen, and F. Wilczek, Nucl. Phys. B374, 567 ~1992!.
32S. Randjbar-Daemi, A. Salam, and J. Strathdee, Phys. Lett. B240, 121 ~1993!.
33E. Witten, Nucl. Phys.311, 46 ~1988!; Nucl. Phys. B323, 113 ~1989!.
34C. Athorne and A. Fordy, J. Math. Phys.28, 2018~1987!.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t
rties

schopf
xplic-
d-

t

se

by
tum

the

g

¬¬¬¬¬¬¬¬¬¬
Inlaying vertex function and scattering amplitude
Seichi Naito
Department of Physics, Osaka City University, Sumiyoshiku, Osaka, Japan

~Received 9 June 1995; accepted for publication 30 October 1996!

Scattering processes among strings are analyzed by usingfundamental equationsof
three types, which divide the whole complexz-plane into various types ofN punc-
tured ring domains plus various unpunctured ring domains, where internal strings
freely propagate. In order to calculate scattering amplitudes~among physical par-
ticles! in Witten’s quantum string field theory, we derive and apply the ‘‘Gluing
theorem,’’ mathematical proof of which is given~in operator forms! by construct-
ing various~inlint! conformal mapping operators. ©1997 American Institute of
Physics.@S0022-2488~97!01303-0#

I. INTRODUCTION AND PRELIMINARIES

Suggested by differential geometry in the space of strings, Witten1 has invented a covarian
formulation of quantum string field theory, by imposing definite geometric overlapping prope
that three strings interact at their midpoints. Subsequently, Witten’smidpoint interactions have
been expressed by Gross and Jevicki~GJ!2 in operator forms by usingN-string vertex functions
for N51,3,4. These various results are subsumed and unified by LeClair, Peskin, and Preit
~LPP!.3 LPP have shown how the gauge invariance of the string action can be simply and e
itly proved with the help oftechnology, which was laid out by Belavin, Polyakov, and Zamolo
chikov ~BPZ!,4 and applied to string theory by Friedan, Martinec, and Schenker~FMS!.5

On the other hand, scattering amplitudes among four tachyonsbased on Witten’s midpoin
interactionswere first obtained by Giddings6 at the tree level and generalized to those amongN
tachyons at the tree level by Giddings, Martinec~GM!,7 Bluhm and Samuel.8 Subsequently,
Samuel9 has obtained those amongN tachyonsat theg-loops level. Essential ingredients in the
works2,6–9 are using the conformal mapping betweenr5t1is and the complexz-plane. As the
preliminary of this paper, we will start by briefly explaining two kinds of conformal mappings
GJ2 and GM,6,7 together with introducing various terminologies used in our treatment of quan
string field theory: First, we introduce ‘‘inlayed coordinate system s(phere)’’ with the inlayed
coordinatezs(rs), which gives the special conformal mapping from the multiple strips in
r-plane @strips being given by2`,t,` and2p<s<p ~r[t1is!# onto the wholez-plane.
~Hereafter, the coordinater will be called the ‘‘strip coordinate.’’! More concretely,zs(rs) in the
‘‘ s’’ satisfies the following GM’sfundamental equation~used by GMBS6–8!:

dzs
drs

5ns~zs!5Rs

P r51
Ns ~zs2Zrs!

~P i51
Ns22

~zs2Y1 is!•~zs2Y2 is!!1/2
, ~1.1!

whereY6 is’s ~called interacting pointsin this paper! are complex~conjugate! coordinates in the
upper~lower! z-plane andZrs’s (r51,2,...,Ns) ~calledpunctured pointsin this paper! are on the
real axis in thez-plane. The normalization constantRs is somereal number.

Starting from all interacting pointsY6 is ( i51,2,...,Ns22), we can find the curves, alon
which the condition

drs5
dzs

ns~zs!
5purely imaginary ~1.2!
0022-2488/97/38(3)/1413/41/$10.00
1413J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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is always satisfied. These curves divide the wholez-plane into manyring domains. In other words,
these curves give the boundaries of various ring domains. It is convenient to take the bran
between interacting pointsY1 is andY2 is along a specially chosen curve from among the poss
above-mentioned curves. A different choice of the branch cuts lead to different Rers(Zrs) values,
i.e.,1` or 2`. For

lim
z8→Zrs

z82Zrs
ns~z8!

571 ~r51,2,...,Ns!, ~1.3!

we have

72p i[ R
Zrs

dz8

ns~z8!
for Re rs~Zrs!56`,

where a closed integration path is a very small circle enclosing punctured pointsZrs in an anti-
clockwise direction~hereafter referred to as A.C.D.!. The ring domain including the puncture
point Zrs will be called ther th punctured ring domain(r51,2,...,Ns), so that the condition~1.3!
guarantees that the width~in s! of the r th punctured ring domain is equal to 2p. Avoiding all
existing branch cuts, we integrate Eq.~1.1! along the pathP ~from some real fixedz0 to an
arbitrary complexzs!,

rs~zs!5E
z0

zs dz8

ns~z8!
1r~z0!. ~1.4!

We can obtainrs(zs) such that

rs~zs* !5@rs~zs!#* ,

and

0<Im rs~zs!<p for 0<Im zs .

The functionns(z) in Eq. ~1.1! should be chosen to satisfy the midpoint interacting points c
ditions,

rs~Y6 is!5Tis6A21
p

2
~ i51,2,...,Ns22!, ~1.5!

among which one condition is not independent. Since we have Eq.~1.5!, the curve starting from
the interacting pointY6 is and satisfying Eq.~1.2! is hereafter called theTis-curve. There exist
Ns23 ring domains not including any punctured point, and they are to be calledunpunctured ring
domains. When theI th unpunctured ring domain (I51,2,...,NS23) is bounded byTu

I8s
- and

TuIs-curves, it is called an unpunctured~Yu
I8s
, YuIs

! ring domain, and

TI[ur~Yu
I8s

!2r~Yu
I8s

!u ~1.6!

will be referred to as thepropagating strip-time TI of the I th unpunctured ring domain. By tracin
the obtained configuration along strip-timet, we find the following classical picture: Att 52`,
strings are created at some punctured points and are then propagating to the boundaries
tured ring domains. Finally att5`, strings disappear at some punctured points, after propaga
through boundaries of punctured ring domains. In the meanwhile, a string interacts with two
strings at some strip-timeTis , and a string in theI th unpunctured ring domain freely propagate
J. Math. Phys., Vol. 38, No. 3, March 1997
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between strip-timeTu
I8s
andTuIs . We finally remark thatNs-conditions~1.3!, ~Ns23!-conditions

~1.5!, and~Ns23!-conditions~1.6! determine6–8 ~3Ns23!-real parameters in Eq.~1.1! except for
three parameters among punctured pointsZrs’s, reflecting the SL~2,R! ambiguity.

In the following, we define ther th inlayed coordinatezrs(wr) @which corresponds tohi(z)’s
in LPP3#. ~In this paper, we willnot use LPP’s notations, since we want to usez as the variable in
the complete complexz-plane.! Suppose that ther th puncturedring domain’s boundary is given
by a Tprs-curve (r51,2,...,Ns). Furthermore, an inlayed coordinatezs(rs) within the r th punc-
tured ring domain~i.e., 2p<ss<p! will be defined byzr . Then, therth disk coordinate wr is
defined by10 using Eq.~1.4! as follows: For Rers(Zrs)57`, we define

wr[S expF i p

2
6~rs~zr !2rs~Y1prs

!!G for Im zr.0

expF2 i
p

2
6~rs~zr !2rs~Y2prs

!!G0, for Im zr,0,

[uwr uexp~ is r !

so that 2p<s r<p. ~1.7!

Equation~1.6! shows that interacting pointsY6prs
are mapped intowr56 i and ther th punctured

ring domain is mapped into the diskuwr u,1. Within ther th punctured ring domain, we define th
rth inlayed coordinate zrs(wr) by

zrs~wr ![zr ~r51,2,...,Ns!.

We notice thatzrs(wr* ) in the lower half wr-plane satisfies

zrs~wr* !5@zrs~wr !#* . ~1.8!

~In the case where we are considering open strings, we only give various equations validin the
upper plane, since those in the lowerplaneare simply themirror imagesof the upper ones.! Then
we can say that ther th disk uwr u,1 is inlayed intothe r th punctured ring domain byzrs(wr) for
uwr u<1. Then, ther th inlayed coordinatezrs(wr) in the upperz-plane is determined as follows
From Eqs.~1.3! and ~1.5! we have

rs~zr !2rs~Y1prs
!56 log

zr2Zrs
Y1prs

2Zrs
2E

Y1prs

zr
dz8 Rrs~z8!, ~1.9!

with

1

ns~z8!
[

61

z82Zrs
2Rrs~z8!.

Equations~1.6!, ~1.7!, and~1.9! give ~for r51,2,...,Ns!

zrs~wr !2Zrs
Y1prs

2Zrs
52A21wr expS 6E

Y1prs

zrs~wr !
dz8 Rrs~z8!D . ~1.10!

With the help of Eq.~1.10!, zrs(wr) can be solved by using Lagrange’s theorem.11

In formulating open string field theory, Witten1 has imposed that open three strings interac
each string’smidpoint, and given the action as the integral of the Chern–Simon three-form
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
I5E A*QA1
2

3
• E A*A*A, ~1.11!

whereA is the Grassmanoddstring field operator, having ghost number equal to that of the g
C. The integration and* product in Eq.~1.11! is known to be given by

E A1*A2* •••*AN[m^V~1,2,...,N!u•uA1&1•uA2&2 ...uAN&N , ~1.12!

where themidpointvertex functionsm^V(1,2,...,N)u can be constructed~see Eq.~3.24! for s5m!
by using the followingr th inlayed coordinates:

zrm~wr !5exp~p i /N!
zr~wr !21

zr~wr !2exp~2p i /N!
~r51,2,...,N!, ~1.13!

with

zr~wr ![S exp2p i

N
~r21! D S 11 iwr

12 iwr
D 2/N. ~1.14!

Finally, we notice that the ‘‘inlayed coordinate systemm~idpoint!’’ ~where there existonly N
punctured ring domains andnot anyunpunctured ring domain! is given byGJ’s2 fundamental
equation in ‘‘m’’,

dzm
drm

5
~2 !N

sin~p/N!

P r51
N ~zm2zrm~0!!

~~zm2Y1m!~zm2Y2m!!~N22!/2 with Y6m[exp~62p i /N!, ~1.15!

which leads to ther th inlayed coordinatezrm(wr)’s ~1.14!.
In Sec. II, we defineexternaloperators, as well asinlint operators. For eachr th punctured ring

domain (r51,2,...,Ns), we introduce ther th inlaying operator Wr [zrs(wr)] ~in the ‘‘inlayed
coordinate systems’’ !. Then, we constructinlaying Ns-vertex functionsas theradially ordered
product of all Ns inlaying operatorsWr [zrs(wr)] ’s ( r51,2,...,Ns). Thus definedinlaying
Ns-vertex functionsare proved to satisfy the~inlaying! identities. In Sec. III, we prove tha
inlaying Ns-vertex functions conserve the total BRST chargeQ. In Sec. IV, we define gluing
vertex functions and prove gluing identities. In Sec. V, we prove LPP’s ‘‘Gluing theorem’’3 in
operator formalism, making full use ofinlint conformal mapping between two kinds of inlayin
operators, which are those obtained from two kinds of different inlayed coordinate system
Sec. VI, we use Samuel’s fundamental equation in calculating string Feynman amplitudes
g-loops; we construct an ‘‘inlint gluing operator’’ ^Vgz&, with the help of which we obtain the
explicit formulas forN-particles’ amplitudes~havingg loops! ‘‘in the inlayed coordinatesg.’’ In
Sec. VII, we derive scattering amplitudes~in g loops! amongarbitrarily excited N physical
particles, using generating functional for all physical vertex operators. In Sec. VIII, we summ
our results. In Appendix A, we derive inlint conformal mappings, which are needed in u
gluing identities. In Appendix B, we derive inlint conformal mapping from ‘‘s’’ to ‘‘ g.’’

II. INLAYING OPERATORS, INLAYING VERTEX FUNCTIONS, AND INLAYING IDENTITIES

In this section, we shall introduce various operators~in the inlayed coordinate systems!,
which play important roles in our method of carrying out string field theoretical calculations;
coordinate of ther th external string’s operatorsis taken to be ther th disk coordinate wr ~1.7!, so
that it exists within thedisk uwr u<1. On the other hand, the coordinate of theinlint string’s
operatorsis taken to be ther th inlayed coordinate zrs(wr), which has been determined as t
J. Math. Phys., Vol. 38, No. 3, March 1997
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function ofwr by solving Eq.~1.10!. For each rth puncturedring domain, we introduce
13 the r th

inlaying operator Wr [zrs(wr)], which is defined as a functional ofinlint as well as ther th external
string’s operators,

Wr@zrs~wr !#[Wr
X@zrs~wr !#Wr

bc~w!@zrs~wr !# for r51,2,...,Ns, ~2.1!

where

Wr
X@zrs~wr !#[expS 2

1

2 R
0

dwr

2p i R
0

dwr8

2p i
]wrXr~wr ;1 !]w

r8
Xr~wr8 ;1 !

3 log
zrs~wr !2zrs~wr8!

wr2wr8
D :expS 2 R

0

dwr

2p i
X~zrs~wr !!]wrXr~wr ;1 ! D :,

~2.2!

S ,with A–B[ (
m51

D21

AmBm2A0B0D , ~2.28!

Wr
bc@zrs~wr !#[expS 2 R dwr

2p i R
0

dwr8

2p i
Br~wr ;1 !Cr~wr8 ;1 !

3S ~dzrs~wr8!/dwr8!2~dzrs~wr !/dwr !
21

zrs~wr !2zrs~wr8!
2

1

wr2wr8
D D

3:expS R
0

dwr

2p i S S dzrs~wr !

dwr
D 21

C~zrs~wr !!Br~wr ;1 !

1S dzrs~wr !

dwr
D 2B~zrs~wr !!Cr~wr ;1 !

D D : ~2.3!

and

Wr
w@zrs~wr !#[expS 12 R

0

dwr

2p i R
0

dwr8

2p i
]wrw r~wr ;1 !]w

r8
w r~wr8 ;1 !• log

zrs~wr !2zrs~wr8!

wr2wr8
D

3:expS R
0

dwr

2p i S w~zrs~wr !!2
3

2
log zrs

~1!~wr ! D ]wrw r~wr ;1 ! D :. ~2.4!

As we notice from Eq.~2.1!, Wr [zrs(wr)] is the functionalof zrs(wr), wr being integrated along
a closed path enclosing 0 in ACD. Furthermore,Wr

X ~2.2!, Wr
bc ~2.3!, andWr

w ~2.4! are, respec-
tively, X-modes’,bc-modes’, andw-modes’ inlaying operator.

In the following, we shall explain various operators used in Eqs.~2.2!–~2.4!. There appear the
r th external operators Fr(wr) ~for r51,2,...,Ns! and inlint operators F(zrs(wr)), whereF5Xm,
B, C, andw. The argumentwr is the r th disk coordinatedefined by Eq.~1.7! andzrs(wr) is the
r th inlayed coordinatedefined by Eq.~1.10!. In order to expressboth inlint andexternal operators
altogether, we introduce operatorsFr(yr)’s (r50,1,...,Ns). The argument yr ~for r
5 1,2, . . . ,NS) is equal to disk coordinatewr andy0 is equal to inlayed coordinatez. Further-
more,F0(zrs(wr)) is equal to the inlint operatorsF(zrs(wr)), while we define operatorsFr(yr)’s
~for r50,1,...,Ns! by
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
Xr
m~yr !5S 2 ipr

m log yr1 (
n51

` ianr
m

An
~yr !

2nD 1S qrm2 (
n51

` ia2nr
m

An
~yr !

nD
[Xr

m~yr ;1 !1Xr
m~yr ;2 !, ~2.5!

Br~yr !5~yr !
22S (

n521

`

bnr~yr !
2n1 (

n52

`

b2nr~yr !
nD[Br~yr ;1 !1Br~yr ;2 !, ~2.6!

Cr~yr !5yrS (
n52

`

cnr~yr !
2n1 (

n521

`

c2nr~yr !
nD[Cr~yr ;1 !1Cr~yr ;2 ! ~2.7!

and

w r~yr !5S prw log yr2 (
n51

`
1

n
j nr
w ~yr !

2nD 1S qrw1 (
n51

`
1

n
j2nr
w ~yr !

nD
[w r~yr ;1 !1w r~yr ;2 ! ~or pr

w[ j 0r
w !. ~2.8!

Operators in Eqs.~2.5!–~2.8! satisfy ~anti! commutation relations~for r ,s50,1,...,NS!

@anr
m ,a2ms

n #5hmnd rsdnm , @pr
m ,qs

n#52 ihmnd rs ~with hmn5~2,1,1,1,...!

for m,n50;D21 and n,m51,2,...!,

$bnr ,c2ms%5$cnr ,b2ms%5dnmd rs for n,mPZ,

@pr
w ,qs

w#5d rs , @ j nr
w , j2ms

w #5ndnmd rs for r ,s50,1,...,Ns and n,m51,2,... ~2.9!

and all other~anti!commutation relations are zero. Hermitian conjugate relations are given b

qr
m†5qr

m , pr
m†5pr

m , anr
m†5a2nr

m ,

bnr
† 5b2ns , cms

† 5c2ms

and

qr
w†5qr

w , pr
w†52pr

w13, j nr
w†52 j2nr

w . ~2.10!

In many parts of this paper, various inlint operators will be written by abbreviating the s
0. For example,Xm[X0

m, pm[p0
m, a6n

m [a6n0
m , etc. Incidentally, the branch of logarithmic func

tion in Eqs.~2.5! and~2.8! is taken to be logf[ulog f u1i arg(f ) @for 2p<arg(f )<p#. Inlint and
external string’s standard ket statesuPr

F50& r andstandard bra statesr^qr
F50u are defined by

Fr~yr ;1 !upr
F50& r50 for F5X,B,C,w ~2.11!

and

r^qr
F50uFr~yr ;2 !50 for F5X,B,C,w ~2.12!

with

r^qr
F50ups

F50&s5d rs . ~2.13!
J. Math. Phys., Vol. 38, No. 3, March 1997
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@In Eqs.~2.11!–~2.13!, the superscriptm is denoted byX.# Furthermore, we introduce that3/

upX& r[exp~ ipX–qr
X!–upr

X50& r , with pX–qr
X[ (

m51

25

rmqr
m2p0qr

0,

upr
bc53& r[c21rc0rc1r upr

bc50& r , upw& r[exp~pwqr
w!upr

w50& r , ~2.14!

and

r^qr
X50u5E dDpr

X

~2p!D r^pr
Xu, r^qr

bc50u[ r^pr
bc50uc21rc0rc1r ,

~2.15!

r^qr
w50u5 (

pr
wPZ

r^pr
wu,

where

r^p
Xu[ r^pr

X50uexp~2 ipX–qr
X!, with r^pr

X50u[upr
X50& r

† ,

r^pr
bc53u[ r^pr

bc50uc21rc0rc1r , with r^pr
bc50u5upr

bc50& r
†, ~2.16!

r^p
wu[ r^pr

w50uexp~pwqr
w! with r^pr

w50u[upr
w50& r

† .

We notice that Eq.~2.11! gives

05pr
Xupr

X50&5pr
wupr

w50&, ~2.17!

which together with Eqs.~2.15! and ~2.9! leads to

^pXupr
X5pX–^pXu, ^pwupr

w5~2pw13!^pwu. ~2.18!

Furthermore, normalizations are fixed by

r^pr
Xups8

X&s5~2p!DdD~pr
X2ps8

X!d rs ,

r^pr
bc53ups

bc50&s5 r^pr
bc50ups

bc53&s5d rs , ~2.19!

r^pr
wups

w8&s5dp
r
w1p

s
w8,3d rs ,

so that we have

r^pr
bc50uc21rc0rc1r upr

bc50& r51

and

r^pr
w50u:exp~3qr

w!:upr
w50& r51. ~2.20!

Operators with1~2! in Eqs.~2.5!–~2.8! are called annihilation~creation! operators, andnormal
ordering operatorin :W: means that any creation operators withinW are always to be placed t
the left of any annihilation operator.

As we shall see, openNs-strings’ tree scattering process can be described by using
‘‘inlayed coordinate systems’’ defined by GM’s fundamental Eq.~1.1!, where there existNs23
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
unpunctured ring domains as well asNS unpunctured ring domains. It is useful to introduc
inlaying Ns-vertex functionss^IV(1,2,...,Ns)u as theradially ordered productof all Ns inlaying
operatorsWr [zrs(wr)] ’s ~for r51,2,...,Ns! multiplied with external strings’standardbra states;

sK IVF~1,2,...,Ns!U[R–S )
r51

Ns

r^qr
F50uWr

F@zrs~wr !# D for F5X,B,C,w. ~2.21!

In much the same way as in the time ordering operatorT, the radial ordering operatorR in
Eq. ~2.21! rearranges any operator having a bigger absolute argument to the left of any op
having a smaller absolute argument.~Incidentally, operatorsX andw are bosonic, whileB andC
are fermionic.! In the following, we shall prove that theinlaying NS-vertex functiondefined by

s^IV~1,2,...,Ns!u[s^IV
X~1,2,...,Ns!us^IVbc~w!~1,2,...,Ns!u ~2.22!

satisfies the following relations~to be referred to hereafter asinlaying identities! which are valid
for arbitrarily givenw8 within the diskuw8u<1 ~for r51,2,...,Ns!;

sK IV~1,2,...,Ns!UFr~w8!5sK IV~1,2,...,Ns!US dzrs~w8!

dw8
D d~F !

F~zrs~w8!!

for F5X,B,C with d~X!50, d~B!52, d~C!521 ~2.23!

and

sK IVw~1,2,...,Ns!Uw r~w!5sK IVw~1,2,...,Ns!US w~zrs~w!!2 3
2 log

d

dw
zrs~w! D , ~2.24!

so that

sK IVw~1,2,...,Ns!U:eq•wr ~w!:5sK IVw~1,2,...,Ns!US dzrs~w!

dw D ~q/2!~q23!

3:eq•w~zrs~w!!:. ~2.25!

Comments: Inlaying identities~2.23!–~2.25! ~whereinlint string’s operatorson the right-hand side
are radially orderedwith respect to all those in inlaying vertex functions! show thatinlaying
NS-vertex functions~2.22! have the effect ofinlaying ther th externalstrings’ operators at thedisk
coordinate w8 ~satisfying uw8u<1! into correspondinginlint string’s operators at ther th inlayed
coordinate zrs(w8) ~within the r th punctured ring domain of the complexz-plane!. Additional
conformal factors in inlaying identities reflect the fact that reparametrization ghostsB andC are
primary fields with conformal weights of 2 and21, respectively.~On the other hand, inlint
operators atz within someunpuncturedring domains play the roles of freely propagatinginternal
string’s operators.! From Eq. ~2.25!, reparametrization ghostsBr(yr)’s and Cr(yr)’s ~for
r50,1,...,Ns! given ~in bosonized forms5! by

Br~yr !5:e2wr ~yr !:3cr , Cr~yr !5:ewr ~yr !:3cr , ~2.26!

satisfy the same inlaying identities as Eq.~2.23!. The cocycle factorcr ’s in Eq. ~2.26! are given
by14

c051, cr5~2 !@p0
w

1p1
w

1p2
w

1•••1pr21
w

#. ~2.27!

Proof of inlaying identities (2.23)–(2.25):We calculate

s^IV~1,2,...Ns!uFr~w8;2 !, ~2.28!
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
by moving creation operators to the left until they directly operate onr^qr
bc50u andr^qr

X50u and
then vanish because of Eq.~2.12!. For this purpose, we deform closed integration paths in inlay
operatorsWs[zss(ws)] ’s, being certain not to encounter any singularity. Thus, integration v
ablesws’s can always be made to satisfy the inequalities

uwr u.uw8u.uwsu for any s~Þr !. ~2.29!

Then we have nonvanishing~anti! commutation relations~for r51,2,...,NS!

@]wrXr
m~wr ;1 !, Xr

n~w8;2 !#52hmn
1

wr2w8
~2.30!

and

$Fdr~wr ;1 !, Fr~w8;2 !%5
1

wr2w8
with Bdr[Cr and Cdr[Br) ~2.31!

which can be derived from Eq.~2.9!. ~For the time being, hereafter we exclusively consider
case whenF5Xm.! With the help of Eq.~2.30!, together with Eqs.~2.1!–~2.3!, we find that

FR–)
s51

Ns

Ws@zss~ws!#, Xr
m~w8;2 !G5R–)

s51

Ns

Ws@zss~ws!# R
0

uwr u.uw8u

dwr

2p i

1

wr2w8

3S R
0

uwr8u.uw8u

dwr8

2p i
]w

r8
Xr

m~wr8 ;1 !log
zrs~wr !2zrs~wr8!

wr2wr8

1Xm~zrs~wr !

D
~2.32!

We should notice thatinlint string’s operatorsin Xm(zrs(wr)) in Eq. ~2.32! originated from
the r th inlaying operator. Therefore, they werenormally orderedwith respect to all inlint opera-
tors inWr [zrs(wr)], while they wereradially orderedwith respect to all inlint string’s operator
in other Ws[zss(ws)] ’s ~for sÞr !. At this stage, we introduce the following normal orderin
operatorNW : The inlint string’s operatoron the right-hand side ofNW is normally orderedwith
respect toall inlint operators inW’s appearing on the left-hand side ofNW . After carrying outwr

integration in Eq.~2.32!, we find that

s^IV~1,2,...,Ns!uXr
m~w8;2 !5s^IV~1,2,...,Ns!

3S NW–X
m~zrs~w8!!1 R

0

uwr8u.uw8u

dwr8

2p i
]w

r8
Xr

m~wr8 ;1 !log
zrs~wr8!2zrs~w8!

wr82w8

1 (
s51

~sÞr !

Ns R
0

uws8u,uw8u

dws8

2p i
]w

s8
Xs

m~ws8 ;1 !log~zrs~w8!2zss~ws8!! D .

~2.33!

Finally, we notice that the integration path ofwr8 in Eq. ~2.33! can be deformed into the pat
satisfyinguwr8u ,u w8u without encountering any singularity. The resulting integration gives
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R
0

uwr8u,uw8u

dwr8

2p i
]w

r8
Xr

m~wr8 ;1 !log~w82wr8!5Xr
m~w8;1 !. ~2.34!

Other integration terms in Eq.~2.33! are found to be nothing but the one on the right-hand side
inlaying identities~2.23!, where right-most inlint string’s operators areradially orderedwith
respect toall inlint operators inall W’s. Similarly, we can prove Eq.~2.23! for F5B,C, using

R
0

uwr8u,uw8u

dwr8

2p i
Fr~wr8 ;1 !

1

w82wr8
5Fr~w8;1 !. ~2.35!

On the other hand, inlaying identities~2.24! can be proved in much the same way as we h
proved Eq.~2.23!. With the help of Eq.~2.24!, we can prove Eq.~2.25! ~by mathematical induc-
tion with respect toq. We assume Eq.~2.25! ~which is trivial for q50! is valid up toq. Then, we
have from Eqs.~2.24! and ~2.25! that

s^IV
w~1,2,...,Ns!uR–~w r~w8!3:eq–wr ~w!: !5S dzrs~w!

dw D ~q/2!~q23!

3s^IV
w~1,2,...,Ns!u

3R–~ :eqw~zrs~w!!:3~w~zrs~w8!!2 3
2 log zrs

~1!~w8!!!.

~2.36!

On the other hand, we have

R–~w r~w8!3:eq–wr ~w!: !5:~w r~w8!1q log~w82w!!–eqwr ~w!: ~2.37!

and similarly

R–~w~zrs~w8!!3:eqw~zrs~w!!: !5:~w~zrs~w8!!1q log~zrs~w8!2zrs~w!!!eqw~zrs~w!!:.
~2.38!

If we apply Eqs.~2.37! and ~2.38! to Eq. ~2.36!, we find in the limitw8→w

s^IV
w~1,2,...,Ns!3:w r~w!eqwr ~w!:5s^IV

w~1,2,...,Ns!u3:~w~zrs~w!!1~q2 3
2!log zrs

~1!~w!!

3S dzrs~w!

dw D ~q/2!~q23!

3eqw~zrs~w!!:, ~2.39!

which @together with Eq.~2.25! for q# leads to Eq.~2.25! for q1e. ~Q.E.D.!

III. INLAYING IDENTITIES FOR ENERGY-MOMENTUM AND BRST CHARGE

With the help of inlaying identities~2.23!–~2.25!, we shall prove that theinlaying NS-vertex
function defined by Eq.~2.22! with Eq. ~2.21! conserves total BRST charge; Energy-moment
operatorsTr(y)’s ~for r50,1,...,Ns! are defined by

Tr~yr ![Tr
X~yr !1Tr

bc~w!~yr !5 (
n52`

`

Lnr~yr !
2n22, ~3.1!

where
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Tr
X~yr ![ (

m50

D21

:2
1

2
]yrXr~yr !]yrXr~yr !:, ~3.2!

Tr
bc~yr ![:~22Br~yr !]yrCr~yr !2]yrBr~yr !Cr~yr !!: ~3.3!

and

Tr
w~yr ![:

1

2
Jr

w~yr !Jr
w~yr !:1

3
2]yrJr

w~yr !, ~3.4!

with the current operatorJr
w ~for r50,1,2,...,NS! being defined by

Jr
w~yr ![]yrw r~yr !5 (

n52`

`

j nr
w ~yr !

2n21. ~3.5!

Short range expansions of these operators are given by5

R–~Tr~yr8!Tr~yr !!5

1
2~D226!

~yr82yr !
4 1

2Tr~yr !

~yr82yr !
2 1

]yrT~yr !

yr82yr
1~RT at yr5yr8!, ~3.6!

where RTat yr 5 yr8 is the shorthand notation forterms regular at yr 5 yr8 . First, we shall prove
the following inlaying identities~for r51,2,...,NS!:

s^IV~1,2,...,Ns!uTr~wr !5s^IV~1,2,...,Ns!u

3S ~zrs
~1!~wr !!2T~zrs~wr !!1

D226

12 S zrs~3!~wr !

zrs
~1!~wr !

2
3

2 S zrs~2!~wr !

zrs
~1!~wr !

D 2D D ,
~3.7!

with

zrs
~n!~wr ![S d

dwr
D nzrs~wr !. ~3.8!

Equation~3.7! for D526 shows that therth external string’s energy-momentum operator Tr(wr)
at the disk coordinatewr is inlayed into the inlint string’s energy momentum operato
T0(zrs(wr))[T(zrs(wr)) at ther th inlayed coordinatezrs(wr), without any anomaly.

Proof: Applying inlaying identities~2.23! to

s^IV~1,2,...,Ns!uR–~]w
r8
Xr~wr8!]wrXr~wr !! ~3.9!

and

s^IV~1,2,...,Ns!uR–~2Br~wr8!]wrCr~wr !1]w
r8
Br~wr8!Cr~wr !!, ~3.10!

we obtain Eq.~3.7!, by taking the limityr8→yr of

R–S (
m50

D21

]y
r8
Xr~yr8!–]yrXr~yr !D 5 (

m50

D21

:]y
r8
Xr~yr8!–]yrXr~yr !:2

D

~yr82yr !
2 ~3.11!

and
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R–~2Br~yr8!]yrCr~yr !1]y
r8
Br~yr8!Cr~yr !!5:~2Br~yr8!]yrCr~yr !1]y

r8
Br~yr8!Cr~yr !!:

1
1

~yr82yr !
2 . ~3.12!

(Q.E.D.)

BRST chargeQr of the r th external string is defined by

Qr5 R dwr

2p i
:Cr~wr !S (

m50

25

2
1

2
]wrXr~wr !–]wrXr~wr !

2Br~wr !]wrCr~wr !
D :. ~3.13!

In much the same way as we have obtained Eq.~3.7! by applying inlaying identities~2.23!, we can
derive that

s^IV~1,2,...,Ns!uQr5s^IV~1,2,...,Ns!u

3S R dzrs~wr !

2p i
C~zrs~wr !!S (

m50

D21

2
1

2
~]zrs~wr !X~zrs~wr !!!2

2B~zrs~wr !!]zrs~wr !C~zrs~wr !!
D

1S D122 13

6 D R dwr

2p i

C~zrs~wr !!

zrs
~1!~wr !

S zrs~3!~wr !

zrs
~1!~wr !

2
3

2
•S zr~2!~wr !

zrs
~1!~wr !

D 2D D ,

~3.14!

which leads~in the caseD526! to

s^IV~1,2,...,Ns!uS (
r51

Ns

Qr D 5 (
i51

Ns22

s^IV~1,2,...,Ns!u

•:S R
Y6 i

dzs
2p i

C~zs!S (
m50

25

2
1

2
]zsX

m~zs!]zsX
m~zs!

2B~zs!]zsC~zs!
D D :50

for D526. ~3.15!

In the second step of Eq.~3.15!, closed paths have been deformed into arbitrarily small pa
enclosing interaction pointsY6 i , without encountering any singularity.

SupposeFr
$er %(wr) is any primary field operator~with the conformal weightd$er %

! for the r th
externalstring at ther th disk coordinatewr . Then we can prove

s^IV~1,2,...,Ns!uFr
$er %~wr !5s^IV~1,2,...,Ns!u~zrs

~1!~wr !!d$er %F $er %~zrs~wr !!. ~3.16!

In Eq. ~3.16!, the functional dependence of theinlint primary operatorF $er %(z) on Xm(z), B(z)
andC(z) is the same as the functional dependence of theexternalprimary operatorFr

$er %(w) on
Xr

m(w), Br(w) andCr(w). For example, Eq.~3.16! gives

s^IV~1,2,...,Ns!u:eip–Xr ~wr !:5s^IV~1,2,••• ,Ns!u~zrs
~1!~wr !!~p–p/2!3:eip–X~zrs~wr !!:. ~3.17!

Proof:We can derive the following inlaying identities:
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¬¬¬¬¬¬¬¬¬¬
s^IV~1,2,...,Ns!uFr
$er %~wr !5s^IV~1,2,...,Ns!u~zrs

~1!~wr !!d$er %F̃ $er %~wr !, ~3.18!

where theinlint operatorF̃ $er %(wr) is explicitly obtained in much the same way as we ha
obtained Eq.~3.7!, by applying inlaying identities~2.23! successively. In the caseD526, inlaying
identities~3.7! and ~2.23! give

s^IV~1,2,...,Ns!uR–~Tr~wr8!Fr
$er %~wr !!5~zrs

~1!~wr8!!2~zrs
~1!~wr !!d$er %s^IV~1,2,...,Ns!u

3R–~T~zrs~wr8!!F̃ $er %~wr !!, ~3.19!

and

s^IV~1,2,...,Ns!uS d$er %
Fr

$er %~wr !

~wr82wr !
2 1

]wrFr
$er %~wr !

wr82wr
D

5s^IV~1,2,...,Ns!uS d$er %
~zrs

~1!~wr !!d$er %F̃ $er %~wr !

~wr82wr !
2

1
]wr~~zrs

~1!~wr !!d$er %F̃ $er %~wr !!

wr82wr

D . ~3.20!

On the other hand, theexternalprimary operatorFr
$er %(wr) is defined to satisfy

R–~Tr~wr8!Fr
$er %~wr !!5

d$er %
Fr

$er %~wr !

~wr82wr !
2 1

]wrFr
$er %~wr !

wr82wr
1~RT at wr85wr !. ~3.21!

Therefore, we can conclude from Eqs.~3.19! to ~3.21! that

s^IV~1,2,...,Ns!uR–~T~zrs~wr8!!F̃ $er %~wr !!5s^IV~1,2,...,Ns!u

3S d$er %
F̃ $er %~wr !

~zrs~wr8!2zrs~wr !!2

1

]

]zrs~wr !
F̃ $er %~wr !

zrs~wr8!2zrs~wr !
1~RT at wr85wr !

D .

~3.22!

Thus, we find

F̃ $er %~wr !5F $er %~zrs~wr !!. ~3.23!

Substituting Eq.~3.23! into ~3.18!, we finally obtain Eq.~3.16!. ~Q. E. D.!
We obtainNs-vertex functions^V(1,2,...,Ns)u in the inlayed coordinate systems by evaluat-

ing inlint string’s vacuum expectation valueof inlaying vertex functions^IV(1,2,...,Ns)u;

s^V~1,2,...,Ns!u[^pbc~w!50u^pX50us^IV~1,2,...,Ns!uupbc~w!50&upX50&, ~3.24!

which is easily found to be equal to theNs-vertex functions proposed by LPP.3 Then, inlaying
identities~3.16! lead to
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s^V~1,2,...,Ns!u)
r51

Ns

~Fr
$er %~wr !upr

bc~w!50& r upr
X50& r)

5^pbc~w!50u^pX50uR–)
r51

Ns

~~zrs
~1!~wr !!d$er %F $er %~zrs~wr !!!upbc~w!50&upX50&.

~3.25!

We notice that the left-hand side of Eq.~3.25! containsonly various external strings’ operators,
while the right-hand side of Eq.~3.25! containsonly radial ordered product of inlint strings’
operators, which can be calculated by usingCFT (i.e., conformal field theoretical) techniques.5

Incidentally, Eq.~3.25! in the special casew5w85w85•••50 are those proposed by LPP,3 so
that LPP must have already noticed the usefulness of inlint operators.

IV. GLUING VERTEX FUNCTIONS AND GLUING IDENTITIES

Equations~2.3!–~2.5! together with Eqs.~2.17! and ~2.18! give the explicit formulas

Wg
X@wg#upX50&5expS (

n51

`

a2n–angD exp~ ipg–q!upX50&, ~4.1!

Wg
bc@wg#upbc50&5expS (

n521

`

c2nbng1 (
n52

`

b2ncngD upbc50&, ~4.2!

Wg
w@wg#upw50&5expS (

n51

`
1

n
j2n
w
• j ng

w D exp~pg
wqw!upw50&, ~4.3!

and

^ p̃ X50uWd
X̃F21

wd
G5^ p̃ X50uexp~ ipd–q̃m!expS 2 (

n51

`

~2 !n•ãn–andD , ~4.4!

^ p̃ bc50uWd
b̃ c̃F21

wd
G5^ p̃ bc50uexpS 2 (

n521

`

~2 !nc̃nbnd1 (
n52

`

~2 !nb̃ncndD , ~4.5!

^ p̃ w50uWd
w̃F21

wd
G5^ p̃ w50uexp~pd

wq̃ m
w !expS 2 (

n51

`
~2 !n

n
j̃ n
w j̃ nd

w D , ~4.6!

where we have usednew inlintoperators with;. With the help of Eqs.~4.1!–~4.6! together with
Eq. ~2.18!, we find the following explicit formulas of two-vertex functions:3,12

^VX~g,d!u5^VX~d,g!u[g^qg
X50ud^qd

X50u^pX50uWd
XF21

wd
GWg

X@wg#upX50&

5g^qg
X50ud^qd

X50u~2p!DdD~pg
X1pd

X!expS 2 (
n51

`

~2 !n–ang–andD , ~4.7!
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^Vbc~g,d!u5^Vbc~d,g!u[g^qg
bc50ud^qd

bc50u^pbc50uWd
bcF21

wd
GWg

bc@wg#upbc50&

5g^pg
bc53ud^pd

bc50uexpS (
n52

`

~2 !nbndcng2 (
n521

`

~2 !ncndbngD , ~4.8!

and

^Vw~g,d!u5^Vw~d,g!u[g^qg
w50ud^qd

w50u^pw50uWd
wF21

wd
GWg

w@wg#upw50&

5 (
pg

w ,pd
w

dp
g
w1pd

w,3 g^pg
wu d^pd

wuexpS 2 (
n51

`
~2 !n

n
j ng
w j nd

w D . ~4.9!

In Eq. ~4.8!, we have used

d^qd
bc50u^pbc50uWd

bcF21

wd
G5d^pd

bc50u^pbc53uexpS 2 (
n52

`

~2 !ncnbnd1 (
n521

`

~2 !nbncndD ,
~4.10!

resulting from Eqs.~2.15!, ~2.12!, and~2.10!.
On the other hand, thegluing vertex functionsare defined by3,12

uVX~g,d!&5uVX~d,g!&[E dDpg
X

~2p!D
E dDpd

X

~2p!D
~2p!DdD~pg

X1pd
X!

3expS 2 (
n51

`

~2 !n–a2ng–a2ndD upg
X&gupd

X&d , ~4.11!

uVbc~g,d!&52uVbc~d,g!&

[expS (
n52

`

~2 !nc2ndb2ng2 (
n521

`

~2 !nb2ndc2ngD upg
bc50&gupd

bc53&d ~4.12!

and

uVw~g,d!&5uVw~d,g!&5 (
pg

w ,pd
w

dp
g
w1pd

w,3 expS 2 (
n51

`
~2 !n

n
j2ng
w j2nd

w D upg
w&gupd

w&d , ~4.13!

so as to satisfy

^VX~b,g!uVX~g,d!&5E dDpX

~2p!D
:expS (

n51

`

a2nd–anbD upX&d b^pXu:, ~4.14!

^Vbc~b,g!uVbc~g,d!&5:expS (
n52

`

c2ndbnb1 (
n521

`

b2ndcnbD upd
bc53&d b^pb

bc50u: ~4.15!

and
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^Vw~b,g!uVw~g,d!&5 (
p

b8
w
pd

w
dp

b
w1pd

w ,3 :expS (
n51

`
1

n
j2nd
w j nb

w D upd
w&d b^pb

wu:. ~4.16!

The normal ordering operation : : in Eqs.~4.14!–~4.16! means that any string’s creation~annihi-
lation! operator with the suffixd~b! is placed to the left~right! of upX&db^pXu, upd

bc53&db^pb
bc50u

and upd
w&db^pb

wu. The gluing vertex functions~4.11!–~4.13! have the following properties;3,12

S ~w82!dFFg~w8!2FdS 21

w8 D D uV~g,d!&50, ~4.17!

where

uV~g,d!&[uVX~g,d!&uVbc~w!~g,d!&. ~4.18!

With the help of ket states~4.1!–~4.3!, bra states~4.4!–~4.6!, and gluing vertex functions
~4.11!–~4.13!, we can prove the followinggluing identities;

g^qg
X50ud^qd

X50uWg
X@wg#upX50&^ p̃ X50uWd

X̃F21

wd
G uVX~g,d!&5E dDpX

~2p!D
dDp̃ XdD~pX2 p̃ X!

3:expS (
n51

`

a2n–ãnD upX&^ p̃ Xu:, ~4.19!

g^qg
bc50ud^qd

bc50uWg
bc@wg#upbc50&^ p̃bc50uWd

b̃ c̃F21

wd
G uVbc~g,d!&

5:expS (
n521

`

c2nb̃n1 (
n52

`

b2nc̃nD upbc50&^ p̃bc53u:, ~4.20!

g^qg
w50ud^qd

w50uWg
w@wg#upw50&^ p̃w50uWd

w̃F21

wd
G uVw~g,d!&

5 (
pw,p̃w

dpw1 p̃w,3 :expS (
n51

`
1

n
j2n
w j̃ n

wD upw&^ p̃wu:. ~4.21!

In Eq. ~4.20!, we have used Eq.~4.10!. The absenceof inlaying operatorWg andWd on the
right-hand side of Eqs.~4.19!–~4.21! can be used asmnemonicsuggesting the fact that thegth
punctured ring domain and thedth punctured ring domain was glued byuV(g,d)& into one
unpunctured ring domain~having common inlint operators!.

V. GLUING THEOREM

In this section, we show how to calculate

l^V~1,2,...,Nl21,g!ur^V~d,1,2,...,Nr21!uxL0guV~g,d!&, ~5.1!

which is rewritten into

^pbc5pX50u^pb̃ c̃5pX̃50u~Nlr uV~g,d!&!upbc5pX50&upb̃ c̃5pX̃50&, ~5.2!

where
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Nlr[~ l^IV~1,2,...,Nl21,g!uxL0g!~ r^ Ĩ V~d,1,2,...,Nr21!u!, ~5.3!

with

l^IV~1,2,...,Nl21,g!uxL0g5R–S )
s51

Nl21

s^qs
bc5qs

X50uWs@zsl~ws!# D
g

^qg
bc5qg

X50uWg@zg l~xwg!#

~5.4!

and

r^ Ĩ V~d,1,2,...,Nr21!u5d^qd
bc5qd

X50uW̃d@zdr~wd!#–R–S )
s51

Nr21

s^qs
b̃ c̃5qs

X̃50uW̃s@zsr~ws!# D ,
~5.5!

inlint operators with̃ being those in Eqs.~4.4!–~4.6!. In Eqs.~5.2!, ~5.4!, and ~5.5! and here-
after, we use shorthand notations

^p~q!bc50u^p~q!X50u[^p~q!bc5p~q!X50u ~5.6!

and

upbc50&upX50&[upbc5pX50&. ~5.7!

Applying inlaying identities~3.16! to

Nlr ~w82!dFFg~w8!uV~g,d!&5NlrFdS 21

w8 D uV~g,d!&, ~5.8!

~F being any primary operator of conformal weightdF! we find that

F~zg l~xw8!!Nlr uV~g,d!&5S dzdr S 21

w8 D
dzg l~xw8!

D dF

F̃S zdr S 21

w8 D DNlr uV~g,d!&, ~5.9!

which shows that the operatorNlguV(g,d)& inducesgd-gluing, i.e., gluing thegth punctured ring
domain in ‘‘l ’’ and the dth punctured ring domain in ‘‘g’’ into a new one unpunctured ring
domain, having propagating strip-time equal to2log x. @Incidentally, domainDl is defined to be
the domainoutsideof zg l(xw8) for uw8u5R, while Dg is the domaininsideof zdg(21/w8) for
uw8u5R, provided that 1<R<1/x.#

In the following, we shall prove the following ‘‘Gluing theorem.’’

l^V~1,2,...,Nl21,g!ur^V~d,1,2,...,Nr21!uxL0guV~g,d!&5g^V~1,2,...,Ng!u

with Ng[Nl1Nr22 ~ for 0,x,1!. ~5.10!

Comments:TheNs-vertex functions^Vu in Eq. ~5.10! is constructed by using the inlayed coord
natezs(rs) in ‘‘ s’’ ~for s5 l(eft), r(ight), andg(lued)!, which satisfies GM’s fundamental equ
tions ~1.1!; Strip coordinaterg should be the one obtained bygd-gluing. AmongNg23 propagat-
ing strip-times in ‘‘g,’’ Nl (r )23 propagating strip-times are the same as those in ‘‘l ’’ ~‘‘ r ’’ !, while
the remaining one propagating strip-time is given by2log x.

Proof of (5.10):The essential idea in the following proof is using twoinlint conformal
mapping operatorsU1g l and Ũ2dr constructed by
J. Math. Phys., Vol. 38, No. 3, March 1997
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U1g l[expS R
uwu,1/x

dw

2p i
v1g l~w!T~w!D 5expS (

n52

`

vn11
g l LnD ~5.11!

and

Ũ2dr[expS 2 R
uwu.1

dw

2p i
w2v2drS 21

w D T̃~w!D 5expS (
n52

`

v2n21
dr L̃2n~2 !nD , ~5.12!

coefficientsvn11
g l ’s @v2n21

dr ’s# in Eq. ~5.11! @Eq. ~5.12!# being those in Eq.~A35! @~A36!#. Then,
Eqs. ~A18! and ~A23! show that inlint operatorsU1g l and Ũ2dr conformally map inlaying op-
eratorsWg andW̃d in

g^qg
bc5qg

X50ud^qd
bc5qd

X50uWg@zg l~xwg!#upbc5pX50&^pb̃ c̃5pX̃50uW̃d@zdr~wd!#uV~g,d!&
~5.13!

into those on the left-hand side of Eqs.~4.19! and ~4.20!, so that the left-hand side of Eq.~5.10!
is rewritten into the expression

^pbc5pX50uRS )
r51

Nl21

r^qr
bc5qr

X50uWr@zrl ~wr !# DU1g l•U2dr
21
•RS )

s51

Nr21

s^qs
bc5qs

X

50uWs@zsr~ws!# D upbc5pX50&, ~5.14!

where we have used

^pbc5pX50uU2dr5^pbc5pX50u, U1g l
21upbc5pX50&5upbc5pX50&. ~5.15!

As has been noticed by LPP3 ~see also Appendix A!, there exist~in the caseD526! inlint
conformal mapping operatorsU6gd such that

U1g lU2dr
215U2gd

21U1gd , ~5.16!

where

U2gd[expS 2 R
uwu.1

dw

2p i
w2v2gdS 21

w DT~w!D 5expS (
n52

`

v2n21
gd L2n~2 !nD ~5.17!

and

U1gd[expS R
uwu,1/x

dw

2p i
v1gd~w!T~w!D 5expS (

n521

`

vn11
gd LnD . ~5.18!

Functionsv2gd in Eq. ~5.17! andv1gd in Eq. ~5.18! were explicitly given by Eqs.~A45! and~A46!
for uwu.1 anduwu,1/x, respectively. We have from Eqs.~A21! and ~A22! that

U2gdF~zl !U2gd
215S dz2gdS 21

zl
D

dzl
D dF

FS z2gdS 21

zl
D D ~5.19!

with
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



1431Seichi Naito: Inlaying vertex function and scattering amplitude

¬¬¬¬¬¬¬¬¬¬
21

z2gdS 21

zl
D [S expS zl2v2gdS 21

zl
D ]zl D D 21

zl
for uzl u.1. ~5.20!

On the other hand, Eqs.~A12! and ~A13! give

U1gdF~zr !U1gd
215S dz1gd~zr !

dzr
D dFF~z1gd~zr !! ~5.21!

with

z1gd~zr ![~exp~v1gd~zr !]zr !!zr for uzr u,
1

x
. ~5.22!

On the other hand, we notice that

U2drU1g l
21F~zg l~xw!!•U1g lU2dr

215S dzg l~xw!

dw̄ D 2dF

U2drF~w!U2dr
21 @ from Eq. ~A18!#

5S dzdr S 21

w D
dzg l~xw!

D dF

FS zdr S 21

w D D @ from Eq. ~A23!#

~5.23!

which gives

U1g lU2dr
21FS zdr S 21

w D DU2drU1g l
215S dzdr S 21

w D
dzg l~xw!

D 2dF

F~zg l~xw!!. ~5.24!

Since we have Eq.~5.16!, there should exist Eqs.~5.19! and ~5.20! even for zg l(xw) and
zdr(21/w), in such ways as

U2gd F~zg l~xw!!U2gd
21[S dz2g~xw!

dzg l~xw! D dFF~z2g~xw!! ~5.25!

and

U1gd FS zdr S 21

w D DU1gd
21[S dz1gS 21

w D
dzdr S 21

w D D
dF

FS z1gS 21

w D D , ~5.26!

with the overlapping relation

z1gS 21

w D5z2g~xw! @ from Eqs. ~5.23! and ~5.24!#, ~5.27!
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which together with Eq.~1.7! fixes the commonrg5r l5r r in the overlapping region. This fac
shows thatv7gd(z) can be analytically continued throughoutDl (r ) . @This can explicitly be shown
in much the same way as Eq.~B13! is proved throughoutFDs .# Since we have Eqs.~5.19! and
~5.21!, we can introduce the inlayed coordinatez7g~r! by

z2g~r l ![z2gdS 21

zl~r l !
D for any zlPDl ~5.28!

and

z1g~r r ![z1gd~zr~r r !! for any zrPDr . ~5.29!

Then, we find from Eqs.~5.20! and ~5.22! that

dz7g~r!

dzl ~r !~r!
~5.30!

is regular throughout Dl (r ) . Thus, we obtain

dzg
drg

5ng~zg![S dz2g

dzl
n l~zl ! for zg5z2g and rg5r

dz1g

dzr
n r~zr ! for zg5z1g and rg5r r ,

~5.31!

which together with the analyticity of Eq.~5.30! shows thatng(z) should have the form~1.1!
satisfying theconstraintsmentioned in the ‘‘comments’’ right after Eq.~5.10!. In conclusion, with
the help of inlayed coordinatezg(rg) in ‘‘ g,’’ we find Eq. ~5.10! from Eqs. ~5.19! and
~5.21!. ~Q.E.D.!

In quantum string field theory, calculations of string Feynman amplitudes are carried o
using string Feynman propagators given12 by

b0g

L0g
uV~g,d!&5E

0

`

dT exp~2TL0g! R
x,uwgu,1

dwg

2p i
wgBg~wg!uV~g,d!&, ~5.32!

whereBg is thegth externaloperator andx[exp~2T!. With the help of Eq.~5.32! and LPP’s3

‘‘Gluing theorem’’ ~5.10!, we find anotherGluing theorem~conjectured by GMBS6–10! in the
form

l^V~1,2,...,Nl21,g!ur^V~d,1,2,...,Nr21!u
b0g

L0g
uV~g,d!&5E

0

`

dT^pbc5pX50uR–S S )
r51

Ng

r^qr
bc

5qr
X50uWr@zrg~wr !# D • R

~Ygg ,Ydg!

dzg
2p i

ng~zg!B~zg!D upbc5pX50&, ~5.33!

where theexternal operator on the left-hand side of Eq.~5.33! is first inlayed into the inlint
operator as

dwgwgBg~wg!→dwgwgS ]zg l~wg!

]wg
D 2B~zg l~wg!! ~5.34!

and thus obtained theinlint operator is furthermore conformally mapped by Eq.~5.20! into the
final inlint operator as
J. Math. Phys., Vol. 38, No. 3, March 1997
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dwgwgS ]zg
]wg

D 2B~zg!5dzgng~zg!B~zg!. ~5.35!

By applying Eq.~5.35! successively, the ‘‘Ng-scattering functional’’ at tree level is introduced b

g^S~1,2,...,Ng!u[S )
I51

Ng23 E
0

`

dTI D ^pbc5pX50uR–S S )
r51

Ng

r^qr
bc5qr

X50uWr@zrg~wr !# D
•S )

I51

Ng23 R
~YuI8g

,YuIg
!

dzI
2p i

ng~zI !B~zI !D D upbc5pX50&. ~5.36!

@The Feynman amplitude from an individual string Feynman graph,G, can be obtained from Eq
~5.36! multiplied with coupling constants, Regge slope parameters, and combinatorial fact
sociated with string Feynman graph. In more detailed explanations, see Eq.~5.10! in Ref. 9.# In the
integrand of Eq.~5.36!, all punctures and interacting points ofng(z) ~1.1! are those given, in
principle, in terms ofNg23 propagating strip-timesTI ’s (I51;Ng23). Then, Eq.~5.36! leads to

l^S~1,2,...,N,g!ur^S~d,1,2,...,M !uS b0g

L0g
uV~r ,d!& D5g^S~1,2,...,N1M !u. ~5.37!

Finally, we give several comments about obtained results: Although LPP3 have previously
proved Gluing theorem~5.10!, they have not explicitly shown how to find resmoothed resu
obtained by the gluing. On the other hand, with the help of GJ’s and GM’s fundamental equ
~1.15! and~1.1!, we have shown how~Witten’s! string field theoretical Feynman amplitudes le
to resmoothed~or glued! results, which were proposed by GMBS.6–8 @In the special case whe
both ‘‘l(eft)’’ and ‘‘ r(ight)’’ are ‘‘inlayed coordinate systemm’’ defined by GJ’s fundamenta
equation~1.15!, the resulting ‘‘g(lued)’’ ~5.1! in thevanishingpropagating strip-time case is als
found to be ‘‘m’’. #

VI. INLINT GLUING OPERATOR AND N-VERTEX FUNCTIONS HAVING g-LOOPS

In evaluating Feynman amplitudes ing-loops, there appears

s^V~d1 ,d2 ,...,dg,1,2,...,N,g1 ,g2 ,...,gg!u)
i51

g S b0g i

L0g i

uV~g i ,d i !& D . ~6.1!

Aplying Eqs.~5.32! and ~5.35! to Eq. ~6.1!, we are lead to calculating

^pw50u^pX50us^IV~d1 ,d2 ,...,dg,1,2,...,N,g1 ,g2 ,...,gg!u

3S )
i51

g

~xi !
L0g iuV~g i ,d i !& D upw50&upX50&

5 Tr
X,w

NRLS )
i51

g

uV~g i ,d i !& D[ Tr
X,w

Vgz , ~6.2!

where
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¬¬¬¬¬¬¬¬¬¬
NRL[R–S )
j51

g

d j
^qd j

w 50u^qd j
X 50uWd j

[zd j s
(wd j

)] D S )
r51

N

r^qr
w50u^qr

X50uWr@zrs~wr !# D
3S )

i51

g

g i
^qg i

w 50u^qg i
X 50uWg i

@zg i s
~xiwg i

!# D upw50&upX50&^pw50u^pX50u, ~6.3!

Vgz[NRLS )
i51

g

uV~g i ,d i !& D ~6.4!

and Tr
X,w

means taking thetrace over inlint operators’ states. Applying the inlaying identities~2.24!

to both sides of

NRLFd iS 21

w8 D S )
j51

g

uV~g j ,d j !& D 5NRL~w82!dFFg i
~w8!S )

j51

g

uV~g j ,d j !& D for i51,2,...,g

~6.5!

we find that

RS FS zd i sS 21

w8 D DVgzD5S dzg i s
~xiw8!

dzd i sS 21

w8 D D
dF

R~F~zg i s
~xiw8!!Vgz! for i51,2,...,g. ~6.6!

Equation ~6.6! shows that inlint operators atdifferent points ~in inlayed coordinates!
zd i s

(21/w8) andzg i s
(xiw8) are glued together; There appearg new unpunctured ring domains

propagating strip-times of which are given by2log xi . Thus, Eq.~6.1! shows that thegi th ring
domain~puncturedat Zg i s

! anddi th ring domain~puncturedat Zd i s
! are glued into oneunpunc-

tured (Yd i s
,Yg i s

). Although glued coordinates are well defined ins, their relations are not simple
Therefore, we prepare in the following the new ‘‘inlayed coordinate system g’’ ~having onlyN
punctures!, whereN12g23 unpunctured ring domains have the same propagating strip-tim
those ins, together with above-mentionedg unpunctured ring domains~with propagating strip-
times given by2log xi!. We should also impose Witten’s midpoint interactions. Furthermo
glued points ing should simply be related to each other by SL(2R) group elementsSi ( i
51,2,...,g). The inlayed coordinatezg(rg) in g satisfying the above conditions can be co
structed by using Samuel’s fundamental equation,9

dzg
drg

5ng~zg!, ~6.7!

where

~ng~z!!22[Rg
22QS Dz0

2(
ı51

g E
z0

Yı v

2p i
1E

z0

z w

2p iUt D P ı5g11
2N14g23E~z,Yıut!

P r51
N ~E~z,Zrgut!!2

~s~z!!3. ~6.8!

The functionng(z) ~6.8! in the fundamental equation~6.7! has been chosen by Samuel9 as the
function satisfying

drg5
dzg

ng~zg!
5

dSi~zg!

ng~Si~zg!!
, ~6.9!
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where

Si~z![
a iz1b i

g iz1d i
for i51,2,...,g. ~6.10!

Functionst, v, Dm
z0, E, s, andQ in Eq. ~6.8! are the same as those given by VPFHLS.15 ~In the

following, we list corresponding equations in VPFHLS;15 the period matrixt ~3.11!, the vector of
holomorphic differentialsv5~v1,v2,...,vg!, vm[vm(z)dz ~3.12! ~m51,2,...,g! being bases for the
holomorphic differentials of the Riemann surface, vector of Riemann constantsDz0

5 (D1
z0,D2

z0,...,Dg
z0) ~3.13!, the prime formE ~3.14!, the functionss ~3.15!, and the Riemann theta

functionQ ~3.18!. We notice thatvm/2p i in VPFHLS is written byvm ~3.6! in Samuel’s paper.9!
The pointz0PFDg is arbitrary.~The fundamental regionFDg will be explained shortly.!

There exist various parameters in Eq.~6.8!; ConstantRg is some real normalization constan
The r th puncture isZrg somewhere on the real axis inFDg , while the interacting pointsY6ıg

(ı51,2,...,N22), andYg6 i g
, Yd6 i g

( i51,2,...,g) are complex conjugates of each other amo
6 and they are all inFDg . Interacting pointsYı’s (ı51,2,...,2N14g24) in Eq. ~6.8! are differ-
ently numbered~mentioned above! 2N14g24 coordinates of interacting points inFDg . In ad-
dition to these parameters, there exist 3g real parameters characterizing hyperbolicSL(2R) ma-
tricesSi ( i51,2,...,g), which appear in defining the functionsQ, E, t, Dz0

, andv in Eq. ~6.8!.
Therefore, we have (3N17g23) real parameters in total. With the help of the conditions

4D i
z02252 (

ı51

2N14g24 E
z0

Yı
dz8

v i~z8!

2pA21
2(

r51

N

2E
z0

Zrg
dz8

v i~z8!

2pA21
~ i51,2,...,g!. ~6.11!

Samuel9 has argued thatN13g23 propagating strip-times determine various parameters in
~6.8! ~up to arbitrary three parameters amongSi ’s!, so that they can be used asmodular param-
eters.

Boundaries]FDg(s) of the fundamental region FDg(s) in the ‘‘inlayed coordinate system
g(s)’’ are composed of the 2g curves;

]FDg[C1øC2ø•••CgøD1øD2ø•••øDg , ~6.12!

where

Ci[$zg i g~s!~xiwi !u for uwi u5Ri% ~6.13!

and

Di[H zd i g~s!S 21

wi
D U for uwi u5Ri J ~6.14!

~provided that 1,Ri,1/xi and i51,2,...,g!, so that there existunpunctured(Yd i g
,Yg i g

) ring
domains (i51,2,...,g) in FDg which have propagating strip-times2log xi . Therefore, we can
obtain from Eqs.~6.9! and ~6.10! the simple relations among glued points ing,

zg i g
~xiw8!5

a izd i gS 21

w8 D1b i

g izd i gS 21

w8 D1d i

for i51,2,...,g. ~6.15!
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With regard to the given inlayed coordinatezs~r! in Eq. ~6.1! and the inlayed coordinatezg~r!
@related tozs~r! in the above-mentioned way#, it is crucial that there existsanalytic vs(zs(r)),
which satisfies

expS vs~zs~r!!
]

]zs~r! D zs~r!5zg~r!, ~6.16!

for any inlayed coordinatezs(r)eFDs and zg(r)eFDg . With the help ofvs(zs(r)), the inlint
conformal mapping operatorUs constructed by

Us5expS R dzS8

2p i
vs~zs8!T~zs8! D ~6.17!

is provedto induce the conformal mapping frominlint operatorF(zs(r)) in s to F(zg(r)) in g, so
that we have

UsWi@zs~ri!#Us
215Wi@zg~ri!#. ~6.18!

These results are proved in Appendix B. Substituting Eq.~6.18! into Eq.~6.3!, we obtain the new
formula

NRL[Us
21S )

ı51

N12g

ı^qı
w5qı

X50uWı@zgı# DUsupw5pX50&^pw5pX50u, ~6.19!

expressed in terms of inlayed coordinates ing. Furthermore, the inlaying identities~2.24! applied
to Eq. ~6.19! give

~2 !ge~F !NRLFr
$er %~wr8!5S dzrg~wr8!

dwr8
D dF~NRLF

$er %~zrg~wr8!!! for r51,2,...,N, ~6.20!

wheree(F)50 ~1! for bosonic~fermionic! primary operatorF ~with conformal weightdF!. The
left-hand side of Eq.~6.2! will be denoted byz^V

g(1,2,...,N)u, with Vgz ~6.4! being substituted
with Eq. ~6.19!. Then, inlaying identities~6.20! together with Eqs.~6.2! and ~6.4! give

z^V
g~1,2,...,N!uS )

r51

N

Fr
$er %~wr8!upr

w5pr
X50& r D

5S Tr
X,w

R–^Vgz&)
r51

N

~zrg
~1!~wr8!!d$er %F $er %~zrg~wr8!!D , ~6.21!

where we have used theinlint gluing operator^Vgz& defined by

^Vgz&[VgzS )
r51

N

upr
w5pr

X50& r D . ~6.22!

On the other hand, substituting Eq.~6.20! into Eq.~6.5!, we find Eq.~6.6!’ obtained from Eq.~6.6!
by s→g, so that Eqs.~6.12! and ~6.22! lead to

~R–F~z8!^Vgz&!5S dSi~z8!

dz8 D dF~R–F~Si~z8!!^Vgz&! for z8P]FDg . ~6.23!
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It is important that the left-hand side of Eq.~6.21! ~which is related to Feynman amplitude
string theory! can be calculated by the right-hand side of Eq.~6.21!, where there appearonly inlint
operators. This is because inlaying operatorsWr [zrg(wr)] ’s ~having external operators in th
punctured ring domains inFDg! aremissingin the inlint gluing operator̂Vgz&, since we have

)
r51

N

~ r^qr
w5qr

X50uWr@zrg~wr !#upr
w5pr

X50& r !51. ~6.24!

Furthermore, Eq.~6.23! for i51,2,...,g express that̂Vgz& has the effect of gluinginlint primary
operators atz8PDi @with Di Eq. ~6.14!# to those atSi(z8)PCi @with Ci Eq. ~6.13!#. In the
following, we shall prove that theinlint gluing operator̂Vgz& can be expressed as the function
of inlint operatorsonly on the boundary]FDg[C1øC2ø•••CgøD1øD2ø•••øDg .

Proof: Integrating contours in inlaying operatorsWg i
@zg i g

# ’s andWd j
@zd j g

# ’s ( i51,2,...,g)
can be deformed respectively to thosealong the boundary Ci andDj . Furthermore,̂Vgz& has no
inlint operators originating from inlaying operators in the punctured ring domains inFDg , because
of Eq. ~6.24!. Finally,Us5Ug

21 @Eq. ~~B.19!!# in ^Vgz& is given by usingvg(z), which isanalytic
in the wholeFDg , so that contour in Eq.~B.18! can be enlarged to]FDg . We shall refer to this
property as the analyticity of^Vgz&. ~Q.E.D.! As an example of an operator satisfying the bound
conditions ~6.23!, we can construct a new operator^Vgh& by applying our method to vertex
functionss^Vh(1,2,...,N)u which are obtained froms^V(1,2,...,N)u by

zrs~wr !→hrs~wr !5
a rswr1b rs

g rswr1d rs
. ~6.25!

We notice that̂Vgh& can be explicitly calculated by performingoperatorial contractions~induced
by gluing!, with the help of techniques by VPFHLS.15 Under the condition

S a i b i

g i d i
D 5S ag i s

x i bg i s

gg i s
x i dg i s

D S 0 21

1 0 D S ad i s
bd i s

gd i s
dd i s

D 21

,

for i51,2...,g ~6.258!

both ^Vgh& and^Vgz& satisfy the same boundary conditions~6.23!, so that we assume that depe
dence on inlint operators~on ]FDg! is the same for botĥVgh& and^Vgz&. Therefore, we propose
that

^Vgz&5^Vgz
X &^Vgz

w &, ~6.26!

where

^Vgz
X &5Z1

213S )
m51

g E d26km

~2p!26D :expS S 12 (
m,n51

g

km–Cmn
~0!
–kn1 (

m51

g

km–Cm
~1!X1C~2!XD D :

3upX50&•^pX50u ~6.27!

and
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^Vgz
w &5Z1

21/2 exp~3gqw!S )
m51

g

(
nm

wPZ
D •

3:expS S 12 (
m,n51

g

nm
wCmn

~0!nn
w1 (

m51

g

nm
wCm

~1!w1C~2!wD D :upw50&•^pw50u. ~6.28!

In Eq. ~6.28!, we have defined that

Cmn
~0![2p i tmn , ~6.29!

Cm
~1! f

2p i
[ R

]FDg

dz

2p i
Jf~z!E

z0

z

dz8
vm~z8!

2p i
1d f ,w3Dm

z0 ~6.30!

and

C~2! f[
1

2 R
]FDg

dz

2p i
Jf~z! R

]FDg

dz8

2p i
Jf~z8!log

E~z,z8!

z2z8

1d f ,w~23! R
]FDg

dz

2p i
Jw~z!log s~z!, ~6.31!

with

d f ,w5S 1 for f5w,
0 for f5X, ~6.32!

andJf(z)’s are inlint operators given byJX(z)[ i ]zX(z) andJ
w(z)[]zw(z). The determinantal

function Z1 in Eqs. ~6.27! and ~6.28! doesnot depend on inlint operators but it depends
modular parametersSm’s ~m51,2,...,g! in Eq. ~6.8!. Therefore, forgeneral zr within FDg , inlint
gluing operator~6.28! gives

Tr
w

R–S )
r51

M

:exp~l rw~zr !!:^Vgz
w & D 5Z1

21/2dS (
r51

M

l r13~g21!D
3QS (

r51

M

l rE
z0

zr v

2p i
13Dz0ut D

3 )
r ,s51
r ~, !s

M

E~zr ,zs!R
lrls)

r51

M

s~zr !
23lr, ~6.33!

where we have introducedradially ordered argumentsdefined by

~zr2zs!R[S ~zr2zs!
~zs2zr !

for uzr u.uzsu,
for uzr u,uzsu

. ~6.34!

Equation~6.33! should be compared with Eq.~6.21! ~multiplied with Z1
21/2! in Ref. 16, ~3.21!

~with a5b50 andDz0 1 1/2→Dz0! in Ref. 15 and Eq.~5.7! in Ref. 9. In much the same way, w
obtain ~for arbitraryzrPFDg! that
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Tr
X
R–S :expS (

r51

M

ipr–X~zr !D :^Vgz
X & D

5Z1
213~2p!26d26S (

r51

M

pr
XD S )

m51

g E d26km
X

~2p!26D
3expS (

m,n51

g

p ikm
X
–tmn–kn

XD k^modu:expS (
r51

M

ipr–X~zr !D :umod&k , ~6.35!

where we have introduced the function

k^moduexpS (
r51

M

ipr–X~zr !D :umod&k[expS (
r51

M

(
m51

g

km
X
–pr–E

z0

zr
vm1 (

r ,s51
r ~, !s

M

pr–ps– log
E~zr ,zs!

zr2zs D .
~6.36!

The modular dependence of the factorZ1
227/2 is quite important, since it gives the complica

~additional! measure factor@in Eq. ~7.3!# even if we use propagating strip-timesTI ’s as modular
parameters. Verlinde and Verlinde has calculatedZ1 ~up to a pure numerical constantC indepen-
dent of the geometry of the surface! and the result is given by16

Z1
3/25C•

QS (m51
g *z0

zm
v

2p i
2*z0

Z v

2p i
2Dz0

ut DP1<m,n<gE~zm ,zn!•Pm51
g s~zm!

detg3gvm~zn!~Pm51
g E~zm ,Z!!s~Z!

, ~6.37!

which isdependentonly on 3g23 modular parametersS5(S1 ,S2 ,...,Sg).
9

VII. SCATTERING AMPLITUDES AMONG PHYSICAL PARTICLES

We calculate scattering amplitudes among arbitrarily excitedN physicalparticles, ther th one
of which has an arbitrary quantum number$er% ~for r51,2,...,N!; BRST-invariantexternal states
are represented byphysical ket vectors

)
r51

N

Cr~0!Vr
X$er %~0!upr

w50& r upr
X50& r , ~7.1!

whereVr
X$er % ~0! is X-mode’sphysical vertex operator11 ~i.e., the primary operator with conforma

weight equal to 1! for the r th external particle, and how to construct them will be explained la
@i.e., see Eq.~7.6!#. Then,N-scattering amplitudesin g-loopsare obtained by taking the inne
product between the physical ket vectors~7.1! and the following ‘‘~N12g!-scattering functional’’
~5.36! gluedby g string Feynman propagators~5.32!;

s^S~d1 ,d2 ,...,dg,1,2,...,N,g1 ,g2 ,...,gg!uS )
i51

g E
0

1 dxi
xi

b0g i
~xi !

L0g iuV~g i ,d i !& D . ~7.2!

Thus, scattering amplitudesin g-loopsare obtained from

S )
I51

N13g23 E
0

`

dTI DZ121/2
•I N13g23

w ~$TI%!•Tr
X
R–S ^Vgz

X &S )
r51

N

:VX$er %~Zr !: D D , ~7.3!

where
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Z1
21/2I N13g23

w ~$TI%!5S )
I51

N13g23 R
~YuI8g

,YuIg
!

dzI
2p i

ng~zI !D Tr
w

R

•S ^Vgz
w &S )

r51

N

C~Zr !D S )
I51

N13g23

B~zI !D D . ~7.4!

In Eq. ~7.4!, we have from Eq.~6.48! that8

Tr
w

R–S ^Vgz
w &S )

r51

N

C~Zr !D •S )
I51

N13g23

B~zI !D D
5Z1

21/2QS (
r51

N E
z0

Zr v

2p i
2 (

I51

N13g23 E
z0

zI v

2p i
13Dz0

utD S )
r ,s51
~r,s!

N

E~Zr ,Zs!RD
3S )

I ,I 851
~ I,I 8!

N13g23

E~zI ,zI 8!RD S )
I51

N13g23

)
r51

N

E~Zr ,zI !RD 21

3S )
r51

N

s~Zr !D 23S )
I51

N13g23

s~zI !D 3

, ~7.5!

using simplified notations

Zr[Zrg~5zrg~0!!.

On the other hand, with the help of generating functionalsC’s @see Eq.~7.8!# given in our
previous paper,11 we have that

R–)
r51

N

:VX$er %~Zr !:5^EuR–)
r51

N

:C~Zr ;Pr
†!:u0&, ~7.6!

so that the last term on the right-hand side of Eq.~7.3! is reduced to

^EuTr
X
R–S ^Vgz

X &S )
r51

N

:C~Zr ;Pr
†!: D D u0&, ~7.7!

under the mass shell condition

(
m50

25
1

2
•pr–pr1 (

n51

`

(
m51

24

ner~n,m!51 ~r51,2,...,N!.

At this stage, we explainC’s in Eq. ~7.7!; The generating functionalC(Zr ;Pr
†) for the r th

external string’s physical vertex operators~for r51;N! is given by11
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C~Zr ;Pr
†![:expS 2 ipr

1X2~Zr !2 ipr
2X1~Zr !1 (

m51

24

i R dwr

2p i
Pr

m†~wr !X
m~zr~wr !!

1 (
m51

24
1

2 R dwr

2p i R dwr8

2p i
Pr

m†~wr !Pr
m†~wr8!log

zr8~wr !2zr~wr8!

wr2wr8

D :,
~7.8!

where

p–X52p1X22p2X11 (
m51

24

pmXm

with

p6[
1

&

~p06p25!, X6[
1

&

~X06X25!. ~7.9!

In Eq. ~7.8!, Xm(zr(wr)) is the inlint operator obtained from Eq.~2.5!, by replacing thec-number
inlayed coordinatez with the rth q-number coordinate zr(wr), which is defined by

zr~wr !2Zr5wr expSX1~zr~wr !!

ipr
1 2

X1~Zr !

ipr
1 D ~7.10!

and

Pr
m†~wr ![

1

wr
S prm1 (

n51

`

Ana2nr
m wr

2nD ~m51–24!. ~7.11!

Furthermore, the statêEu in Eq. ~7.6! is defined by11

^Eu5^0u)
r51

N

)
n51

`

)
m51

24
~2 iAnanrm !er $n,m%

~ner $n,m%er$n,m%! !1/2
. ~7.12!

Operators in Eqs.~7.11! and ~7.12! satisfy commutation relations

@anr
m ,a2ms

n #5dmnd rsdnm for r ,s51;N, m,n51,2,..., and m,n51–24)
~7.13!

and u0& in Eq. ~7.6! and ^0u in Eq. ~7.12! are such that̂0u0&51 and

anr
m u0&5^0ua2nr

m 50 ~r51;N, m51;24, and n51,2,...!. ~7.14!

We first notice that the formula~6.36! can be rewritten into the product of two factors~i.e.,
transverse part and6 part! by introducing symbolic notations

k^modu[k^mod;truk^mod;6u, umod&k5umod;tr&kumod;6&k . ~7.15!

Thus we introduce the following functions defined by
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k^mod;tru:expS (
r51

N

(
m51

24

ipr
mXm~zr !D :umod;tr&k

[expS (
m51

24

(
r51

N

(
i51

g

pr
mki

mE
z0

zr
v i1 (

m51

24

(
r ,s51
r ~, !s

N

pr
mps

m log
E~zr ,zs!

zr2zs D ~7.16!

and

k^mod;6u:expS 2(
s51

N

ips
1X2~zs8!2(

r51

N1

ipr
2X1~zr !D :umod;6&k

[expS 2(
s51

N2

ps
1Xeff

2 ~zs8 ;k
2!2(

r51

N1

pr
2Xeff

1 ~zr ;k
1!D , ~7.17!

where

Xeff
2 ~zs8 ;k

2![(
i51

g

ki
2E

z0

zs8v i ~7.18!

Xeff
1 ~zr ;k

1![(
i51

g

ki
1E

z0

zr
v i1(

s51

N2

ps
1 log

E~zr ,zs8!

zr2zs8
. ~7.19!

Next, we notice that therth q-number coordinate zr(wr) defined by Eq.~7.10! is given by11

zr~wr !5Zr1 (
n51

` wr
n

n!
expS 2n

X1~Zr !

ipr
1 D S ]

]ZD n21

expS n X1~Zr !

ipr
1 D

5Zr1wr1wr
2
•

]

]Zr

X1~Zr !

ipr
1 1••• . ~7.20!

Then, we have

R–)
r51

N

:expS (
m51

24

i R dwr

2p i
pr

m†~wr !X
m~zr~wr !!D :

5expS (
r ,s51
~r,s!

N

(
m51

24 R dwr

2p i R dws

2p i
Pr

m†~wr !Ps
m†~ws!log~zr~wr !2zs~ws!!RD :

3expS (
r51

N

(
m51

24

i R dwr

2p i
Pr

m†~wr !X
m~zr~wr !!D :, ~7.21!

where and in Eq.~7.3! we have used the radially ordered argument~6.34!. Furthermore, the
transverse part is given by Eq.~7.16! as follows;
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k^mod;tru:expS (
r51

N

(
m51

24

i R dwr

2p i
Pr

m†~wr !X
m~zr~wr !!D :umod;tr&k

[expS (
m51

24

(
r51

N

(
i51

g

ki
m R dwr

2pA21
Pr

m†~wr !E
z0

zr ~wr !
v i

1 (
m51

24

(
r ,s51
r ~, !s

N R dwr

2p i R dws

2p i
Pr

m†~wr !Ps
m†~ws!log

E~zr~wr !,zs~ws!!

zr~wr !2zs~ws! D . ~7.22!

Equation~7.22! still involvesX1 inlint operators through Eq.~7.20!. By using the formula due to
Lagrange, a functionF of zr(wr) can be expanded in powers ofwr as

11

F~zr~wr !!5F~Zr !1 (
n51

` wr
n

n S (
k50

n21 Rk
~n!~X1~Zr !!

~n212k!! S ]

]Zr
D n2k

F~Zr !D , ~7.23!

where

Rk
~n!~X1~Zr !![

1

k!
expS 2n

X1~Zr !

ipr
1 D S ]

]Zr
D k expS n X1~Zr !

ipr
1 D[

1

k! S ]Zr1n
X1~Zr !

ipr
1 D k•1.

~7.24!

Therefore, Eqs.~7.17!–~7.19! give the general formula in need;

k^mod;6u:)
r51

N S exp~2 ipr
1X2~Zr !2 ipr

2X1~Zr !!

3)
n,m

expS 2n
X1~Zr !

ipr
1 D S ]

]Zr
Dm expS n X1~Zr !

ipr
1 D D :umod;6&k

5)
r51

N S exp~2pr
1Xeff

2 ~Zr ;k
2!2pr

2XEff
1 ~Zr ;k

1!!

3)
n,m

expS n XEff
1 ~Zr ;k

1!

pr
1 D S ]

]Ẑr
D m expS 2n

XEff
1 ~ Ẑr ;k

1!

pr
1 D

Ẑr5Zr

D , ~7.25!

where

Xeff
2 ~Zr ;k

2![(
i51

g

ki
2E

z0

Zr
v i ~7.26!

and

XEff
1 ~ Ẑr ;k

1![Xeff
1 ~ Ẑr ;k

1!1 (
s51

~sÞr !

N

ps
1 log~ Ẑr2Zs!R

5(
i51

g

ki
1E

z0

Ẑrv i1pr
1 logS E~ Ẑr ,Zr !

Ẑr2Zr
D 1 (

s51
~sÞr !

N

ps
1 log E~ Ẑr ,Zs!R . ~7.27!

Thus Eq.~7.7! is calculated by
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~2p!26d26S (
r51

N

pr DZ1213S )
i51

g E d26ki
~2p!26D expS (

i , j51

g

pA21–k i–t i j –k j D
3^EuS k^moduS )

r51

N

:C~Zr ;Pr
†!: D umod&kD u0&, ~7.28!

where Eqs.~7.21!, ~7.22!, and~7.25! give

k^moduR–S )
r51

N

:C~Zr ;Pr
†!: D umod&k

5)
r51

N

exp~2pr
1Xeff

2 ~Zr ;k
2!2pr

2XEff
1 ~Zr ;k

1!!

3expS (
m51

24

(
r51

N

(
i51

g

ki
m R dwr

2p i
Pr

m†~wr !E
z0

z̃r ~wr ;k
1!

v i

1 (
m51

24

(
r ,s51
r ~, !s

N R dwr

2p i R dws

2p i
Pr

m†~wr !Ps
m†~ws!log E~ z̃r~wr ;k

1!,z̃s~ws ;k
1!!R

1 (
m51

24

(
r51

N
1

2 R dwr

2p i R dwr8

2p i
Pr

m†~wr !Pr
m†~wr8!log

z̃r~wr ;k
1!2 z̃r~wr8 ;k

1!

wr2wr8 D ,
~7.29!

where c-number functionsXeff
2 (Zr ;k

2) and XEff
1 (Zr ;k

1) are defined by Eqs.~7.26! and ~7.27!,
respectively. Furthermore, thec-number coordinate zr̃(wr ;k

1) in Eq. ~7.29! is determined by

z̃r~wr ;k
1!2Zr5wr expS 2

XEff
1 ~ z̃r~wr ;k

1!;k1!

pr
1 1

XEff
1 ~Zr ;k

1!

pr
1 D , ~7.30!

with

XEff
1 ~ z̃r~wr ;k

1!;k1!5(
i51

g

ki
1E

z0

z̃r ~wr ;k
1!

v i1pr
1 logSE~ z̃r~wr ;k

1!,Zr !

z̃r~wr ;k
1!2Zr

D
1 (

s51
~sÞr !

N

ps
1 log E~ z̃r~wr ;k

1!,Zs!R , ~7.31!

which can be solved by using Lagrange’s method.11 In the integrand in Eq.~7.28!, we have used
the inlayed coordinate systemg, which is determined by the Samuel’s fundamental equation~6.7!;
Various parameters inng(z) in Eq. ~6.8! are to be determinedin terms of modular parameters TIs
(I51;N13g23), as explained in Sec. VI. Finally, we remark that our resultsin the special case
when all external particles are tachyons coincide with Samuel’s result~5.10! already derived in
Ref. 9.
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VIII. CONCLUSIONS

Physical scattering amplitudes in quantum string field theory have been shown to be
lated systematically by using thefundamental equationsof three types~1.15!, ~1.1!, and ~6.7!
@with Eq. ~6.8!#, which describe ‘‘inlayed coordinate system m(idpoint), s(phere) and g(enus,’’
respectively. Fundamental equations describe motions ofopen strings interacting at their mid
points, and they divide the wholez-plane into punctured plus unpunctured ring domains. T
number of~un!punctured ring domains is the number of external~internally propagating! strings.
If we traces5p/2 curves in string Feynman diagram, we find Feynman diagram in quantum
theory. With the help of fundamental equations, we can construct various quantum string
theoretical functions by the following steps; First, we find that therth inlayed coordinate zrs(wr)
for the r th punctured ring domain is determined by the integral equation~1.10!, which can be
solved by using Lagrange’s theorem.11With the help ofzrs(wr), we can introduce therth inlaying
operator Wr [zrs(wr)] by Eq. ~2.1!, which is the functional ofinlint operators as well asexternal
string’s operators. For the inlayed coordinate system havingNS punctured ring domains, we
introduceinlaying NS-vertex functionsS^IV(1,2,...,NS)u by Eq. ~2.22!. Then we can proveinlay-
ing identities ~2.23!–~2.25!. We can say that inlayingNS-vertex functions have the effect o
inlaying ther th external string’s operators at the given disk coordinatew8 ~satisfyinguw8u,1! into
correspondinginlint ~or inlayed! string’s operators at ther th inlayed coordinatezrs(w8) ~within
the r th puncturedring domain of the complexz-plane!. Incidentally, inlint string operator in the
unpuncturedring domain represents a freely propagatinginternal string. With the help of inlaying
identities, inlaying vertex functions are shown to be BRST conserving; Eq.~3.15! is valid in
critical space-time dimensionD526. By taking~inlint operator’s! vacuum expectation value o
inlaying vertex functions, we obtain vertex functions~3.24!. In particular, vertex functions in the
‘‘inlayed coordinate systemm’’ are used in defining Witten’s string action~1.11!. ~Since there
does not exist anyunpunctured ring domain in ‘‘m,’’ the inlayed coordinate systemm can be used
in describingelementaryinteractions in quantum string field theory.! Thus originally in the action,
there only appears the inlayed coordinatem. However, there exist various string Feynman d
grams connected with string Feynman propagators~5.32!. Therefore, we need the inlayed coord
nate systems andg, which describe general string Feynman diagrams. These results have
obtained in Secs. IV–VII by giving explicit mathematical proof of theGluing theorem. In Sec. IV,
we prove ‘‘gluing identities’’~4.19!–~4.21!. In Sec. V, we proved LPP’s3 Gluing theorem~5.10!,
which showsgd-gluing; thegth punctured ring domain inl(eft) and thedth punctured ring domain
in r(ight) are glued by gluing vertex functionuV~g,d!& into oneunpunctured ring domain, leading
to g(lued). In proving Eq.~5.10!, we have used inlint conformal mapping induced byU1g l ~5.11!
and Ũ2dr ~5.12!. In the caseD526, we have Virasoro algebra without any anomaly, so that
have inlint conformal mapping operatorsU6gd satisfying~5.16!.3 Then, inlint conformal mappings
~5.19! and~5.21! give newinlayed coordinatesz2g ~5.28! andz1g ~5.29!, which lead to theglued
‘‘inlayed coordinate systemg’’ defined by Eq.~5.31!. By successively gluing the inlayed coord
nate systemm, there appear manyunpunctured ring domains. In Sec. VI, we have proved
g-loops that the conformally mapped result~6.18! is valid in the fundamental regionFDs , where
the operatorUs conformally maps the inlayed coordinatezs~r! in s into the inlayed coordinate
zg~r! in g. With the help ofUs , we can introduce the(analytic) inlint gluing operator^Vgz&
~6.22!, which turns out to be the functional ofinlint operatorsonly on]FDg but not of any other
external operator. Relations~6.23! show that^Vgz& glue inlint primary operators atz8 on the
boundary]FDg to those atSi(z8) on the other boundary]FDg . These relations inD526 are
conjecturedto completely determine the functional dependence of^Vgz& on inlint operators on
]FDg . We proposeexplicit formulas~6.26!–~6.28! of ^Vgz&, which lead to essentially the sam
results~6.33! and~6.35! @with Eq. ~6.36!# as those obtained by previous authors.9,15,16In Sec. VII,
Feynman amplitudes amongphysicalparticles areshownto be given by the formula~7.3!, where
Eq. ~7.7! is obtained by Eqs.~7.28!–~7.31!. In our formulas, we have used propagating strip-tim
J. Math. Phys., Vol. 38, No. 3, March 1997
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TI ’s as modular parameters~being integrated from 0 tò !. We point out thatZ1
227/2 ~the deter-

minantal functionZ1 being calculated by Verlinde and Verlinde16! in Eq. ~7.3! gives the compli-
catedmeasure factorin integration variablesTI ’s.

APPENDIX A: INLINT CONFORMAL MAPPINGS

Forgiveninlayed coordinatez(w) for some punctured ring domain, suppose we canfindv(w)
~analytic within uwu,1! which satisfies

exp~v~w!]w!w5z~w!. ~A1!

We can prove~by mathematical induction with respect tot! that

UtF~w!Ut
215S ]zt~w!

]w D dFF~zt~w!! ~dX50, dB52, dC521!, ~A2!

where

Ut[expS t R
uw8u51

dw8

2p i
v~w8!T~w8! D ~A3!

and

zt~w![exp~ tv~w!]w!w. ~A4!

Proof: First we assume Eq.~A2! is valid up tot. In the caset1e, we have

Ut1eF~w!Ut1e
21 5UtS F~w!1eF R

uw8u51

dw8

2p i
v~w8!T~w8!, F~w!G DUt

211O~e2!. ~A5!

Then, the operator product expansion

T~z8!F~z!5
dF

~z82z!2
F~z!1

1

z82z
]zF~z!1~Regular terms atz85z! ~A6!

gives

Ut1eF~w!Ut1e
212S ]zt~w!

]w D dFF~zt~w!!

5eUtS dF dv~w!

dw
F~w!1v~w!]wF~w! DUt

211O~e2! ~A7!

5edF
dv~w!

dw S ]zt~w!

]w D dFF~zt~w!!1ev~w!]wF S ]zt~w!

]w D dFF~zt~w!!G1O~e2! ~A8!

5e] tF S ]zt~w!

]w D dFF~zt~w!!G1O~e2!. ~A9!

In the last step of Eq.~A9!, we have used thatzt(w) ~A4! is the function of twoindependent
variablest andw, so that it satisfies

] tzt~w!5v~zt~w!!5v~w!]wzt~w!. ~A10!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Therefore, we have from Eq.~A9! that

Ut1eF~w!Ut1e
215S ]zt1e~w!

]w D dFF~zt1e~w!!1O~e2!. ~Q.E.D.! ~A11!

By settingt51 in Eqs.~A2!–~A4!, the conformal mapping operatorU1 satisfying

U1F~w!U1
215S dz~w!

dw D dFF~z~w!!, ~A12!

for a givenz(w) is found out to be

U1[expS R
uw8u51

dw8

2p i
v1~w8!T~w8! D , ~A13!

where the functionv1(w) is defined by

exp~v1~w!]w!w5z~w!. ~A14!

Then we find another representation ofU1 by

U1[expS R
uw8u51

dw8

2p i
v1~w8!U1T~w8!U1

21D ~A15!

5expS R
uw8u51

dz~w8!

2p i
v1~z~w8!!T~z~w8!! D , ~A16!

where we have used Eq.~A12! for F(w)5T(w) with dT52, together with

v1~z~w!!5v1~w!]wz~w!. ~A17!

ThenU1 ~A16! gives

U1
21F~z~w!!U15S dz~w!

dw D 2dF

F~w!. ~A18!

In much the same way, we can prove

V2F~w!V2
215S dS 21

z~w! D
dw

D dF

FS 21

z~w! D , ~A19!

where the operatorV2 is given by

V2[expS R
uw8u51

dw8

2p i
v2~w8!T~w8! D , ~A20!

with the functionv2(w) satisfying

exp~v2~w!]w!w5
21

z~w!
. ~A21!

Applying inversion operatorI defined by
J. Math. Phys., Vol. 38, No. 3, March 1997
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IF ~w!I[S dS 21

w D
dw

D dF

FS 21

w D ~A22!

on both sides of Eq.~A19! gives

U2FS 21

w DU2
215S dz~w!

dS 21

w D D dF

F~z~w!!, ~A23!

where

U2[IV2I5expS R
uw8u51

dw8

2p i

1

w84
v2~w8!TS 21

w8 D D ~A24!

5expS 2 R
uw8u51

dz~w8!

2p i
~z~w8!!2v2S 21

z~w8! DT~z~w8!! D . ~A25!

In deriving Eq.~A25!, we have used Eq.~A23! for F5T, together with

v2S 21

z~w! D5v2~w!]w
21

z~w!
. ~A26!

Solving Eq.~A10!, we can find three constantsv21, v0, andv1 satisfying

expS ~v2z
21v1z1v0!

]

]zD z5
az1b

gz1d
~A27!

for arbitrarily givena, b, g, andd ~with ad2bg51!. Therefore, we have from Eq.~A18! with Eq.
~A1! that theinlint operator given by

U5exp~v2L11v1L01v0L21! ~A28!

induces the followingSL(2R) mapping fromz~r! to ẑ~r!;

UF~z~r!!U215S dẑ~r!

dz~r! D
dF

F~ ẑ~r!! with ẑ~r![
az~r!1b

gz~r!1d
~A29!

so that we have

UWr@zrs~wr !#U
215WrFazrs~wr !1b

gzrs~wr !1d G[Wr@ ẑrs~wr !#. ~A30!

for any r. On the other hand, inlint states^pbc50u ^pX50u andupbc50&upX50& in Eq. ~3.25! are
SL~2R! invariant, so that Eq.~A30! shows that the vertex functions~3.24! are the same even i
replacezrs(wr) with ẑrs(wr). Thus, without loss of generality, we can assume that

zg l~xwg!5wg1O~wg
3! for uwgu,

1

x
~A31!

and
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
21

zdr S 21

wd
D 5S 21

wd
D10S S 21

wd
D 3D for uwdu.1). ~A32!

Then, it is easily understood that we can solve

exp~v1g l~wg!]wg
!wg5zg l~xwg!5wg1 (

n53

`

zn
g lwg

n for uwgu,
1

x
~A33!

and

expSwd
2v2dr S 21

wd
D ]wdD 21

wd
5

21

zdr S 21

wd
D 5

21

wd
1 (

n53

`

z2n
dr
•S 21

wd
D n for uwdu.1) ~A34!

in the forms given by

v1g l~wg!5 (
n53

`

vn
g lwg

n for uwgu,
1

x
~A35!

and

v2dr S 21

wd
D5 (

n53

`

v2n
dr S 21

wd
D n for uwdu.1), ~A36!

respectively. Therefore,U1g l ~5.11! ~U2dr ~5.12!! leads to Eq.~5.14!.
In the following, we shall show how to find conformal mapping~inlint! operatorsU6gd @in the

forms ~5.17! and ~5.18!# satisfying Eq.~5.16! for givenU1g l ~5.11! andU2dr ~5.12!.
Proof: First, we find from Eq.~3.6! thatLn’s satisfy commutation relations

@Ln ,Lm#5~n2m!Ln1m , ~A37!

without anomaly in the case D526. @This is the reason why we needD526 in proving the Gluing
theorem~5.10!.# Then, the group theoretical equation~5.16! @obeying algebraic rules~A37!# can
be solved by applying the replacement

Ln→2wn11]w ~A38!

to Eqs.~5.11!, ~5.12!, ~5.17!, and~5.18!. Then, Eq.~5.16! is rewritten into

~exp~2v1g l~w!]w!!S expS 2w2v2dr S 21

w D ]wD D5S expS 2w2v2gdS 21

w D ]wD D
3~exp~2v1gd~w!]w!! for 1,uwu,

1

x
~A39!

where we have used

v2gdS 21

w D[ (
n53

`

v2n
gd S 21

w D n for uwu.1) ~A40!

and
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
v1gd~w![ (
n50

`

vn
gdwn for uwu,

1

x
. ~A41!

Equation ~A39! can be solved as follows; For givenL(w)[2v1g l(w) and
R(w)[2w2

•v2dr(21/w), functionsL(w;t) andG(w;t) satisfying

~exp~ tL~w!]w!!~exp~ tR~w!]w!!w5~exp~ tL~w;t !]w!!~exp~ tG~w;t !]w!!w ~A42!

can be solved in the forms

L~w;t !5(
i50

`

L i~w!t i , G~w;t !5(
i50

`

G i~w!t i , ~A43!

with

L i~w![ (
n52

`

L2n21
i

•w2n11, G i~w![ (
n521

`

Gn11
i

•wn11 for uwu.1) for uwu,
1

x
.

~A44!

Substituting Eq.~A44! into Eq. ~A42! and comparing terms of the same powert i ~i51,2,...! on
both sides of Eq.~A42!, we obtainL i(w) andG i(w), successively. ThenL(w) andG(w) satis-
fying Eq. ~A39! can be given in the form

2w2v2gdS 21

w D5L~w;t51! for uwu.1) ~A45!

and

2v1gd~w!5G~w;t51! for uwu,
1

x
. ~A46!

(Q.E.D.).

APPENDIX B: INLINT CONFORMAL MAPPING FROM INLAYED COORDINATE SYSTEM
s TO g

In this Appendix, we consider the conformal mapping between the inlayed coordinatezs(rs)
@satisfying Eq.~1.1!# and inlayed coordinatezg(rg) @satisfying Eq.~6.7! with Eq. ~6.8!#, both of
which have thesameconfigurations in strip-coordinates~so that having thesamepropagating
strip-times!. First, we shall prove the following conformal mapping between ther th punctured
inlayed coordinateszrs(wr) andzrg(wr);

UsrF~zrs~wr !!Usr
215S dzrg~wr !

dzrs~wr !
D dFF~zrg~wr !! for uwr u,1, ~B1!

where conformal mapping operatorUsr is given by

Usr5expS R
uwr8u51

dzrs~wr8!

2p i
vsr~zrs~wr8!2zrs~0!!T~zrs~wr8!!D . ~B2!

In Eq. ~B2!, the functionvsr is the one satisfying
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
expS vsr~zrs~w!2zrs~0!!
]

]zrs~w! D ~zrs~w!2zrs~0!!5zrg~w!2zrs~0!, ~B3!

and the integration is taken along the boundary of ther th puncturedring domain in the inlayed
coordinate systems.

Proof: ~For the time being, we omit the suffixr for simplicity.! With the help of Eqs.~A28!
and~A29!, we can find the SL(2R) transformation~characterized bya, b, g, andd! such that the
SL(2R)-transformed inlayed coordinate satisfies

a~zg~w!2zs~0!!1b

g~zg~w!2zs~0!!1d
[zs

~1!~0!w1
1

2
zs

~2!~0!w210~w3!. ~B4!

Then Eq.~B4! determinesf n’s ~n53,4,...! in the expansion

a~zg~w!2zs~0!!1b

g~zg~w!2zs~0!!1d
[~zs~w!2zs~0!!1 (

n53

`

f sn~zs~w!2zs~0!!n. ~B5!

In much the same way as we have solved Eq.~A33!, we can find

ṽs~zs~w!2zs~0!!5 (
n53

`

ṽsn~zs~w!2zs~0!!n, ~B6!

such that

expS ṽs~zs~w!2zs~0!!
]

]zs~w! D ~zs~w!2zs~0!! ~B7!

is equal to the left-hand side of Eq.~B5!. Furthermore, we can find

v̂s~zg~w!2zs~0!![ v̂s2~zg~w!2zs~0!!21 v̂s1~zg~w!2zs~0!!1 v̂s0 , ~B8!

~v̂Sı for ı50,1,2 beingconstants! which gives

expS v̂s~zg~w!2zs~0!!
]

]zg~w! D ~zg~w!2zs~0!!5
a~zg~w!2zs~0!!1b

g~zg~w!2zs~0!!1d
for ad2bg51.

~B9!

Thus we find from Eqs.~B7! and ~B9! that

S expS 2 v̂s~zg~w!2zs~0!!
dzs~w!

dzg~w!

]

]zs~w! DexpS ṽs~zs~w!2zs~0!!
]

]zs~w! D D ~zs~w!2zs~0!!

[expS vs~zs~w!2zs~0!!
]

]zs~w! D ~zs~w!2zs~0!!5zg~w!2zs~0!. ~B10!

Reviving the suffixr in Eq. ~B10!, we obtain Eq.~B3!, which is equal to

expS vsr~zrs~w!2zrs~0!!•
]

]zrs~w! D •zrs~w!5zrg~w! for r51,2,... ~B11!

Therefore, Eqs.~A13! and ~A18! together with Eq.~B11! gives Eqs.~B1! and ~B2!. ~Q.E.D.!
On the other hand, we find from Eqs.~1.1! and ~6.7! that
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
dzg~r!

dzs~r!
5

ng~zg~r!!

ns~zs~r!!
. ~B12!

Since singularities inng(z) andns(z) exist at thesamer, theyexactly canceleach other on the
right-hand side of Eq.~B12! for any inlayed coordinatezs~r! and zg~r! within the fundamental
region. Therefore,zg~r! can be expressed by an analytic function ofzs~r!. Thus, Eq.~B11! can be
analytically continuedinto

expS vsr~zs~r!2zrs~0!!
]

]zs~r! D zs~r!5zg~r!, ~B13!

holding for any inlayed coordinatezs(r)PFDs and zg(r)PFDg . Then, we conclude that th
function vs(z) defined by

vs~z![vsr~z2zrs~0!! ~B14!

is the analytic function ofz in the whole fundamental regionFDs , which is commonto all r .
Furthermore, Eqs.~B1! and ~B2! are analytically continued, and we finally obtain the followin
conformal mapping formula which is valid in the whole fundamental regionFDs ;

UsF~zs~r!!Us
215S dzg~r!

dzs~r! D
dF

F~zg~r!!, ~B15!

where the operatorUs is given by

Us[expS R dzs8

2p i
vs~zs8!T~zs8! D , ~B16!

with a closed path enclosing anyzs(r)(PFDs) in ACD.
In much the same way, we can derive various formulas obtained from Eqs.~B1!–~B16! by

s↔g; We can also obtain the following conformal mapping formula fromg to s, which is valid
in the whole fundamental regionFDg ;

UgF~zg~r!!Ug
215S dzs~r!

dzg~r! D
dF

F~zs~r!!, ~B17!

where the operatorUg is given by

Ug[expS R dzg8

2p i
vg~zg8!T~zg8! D . ~B18!

In Eq. ~B18!, vg(z) is analytic within the whole fundamental regionFDg and a closed path
encloses anyzg(r)(PFDg) in ACD. Comparing Eqs.~B15! with ~B17!, we obtain inD526
~when we have Virasoro algebra without anomaly! that

Us5Ug
21. ~B19!
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A new, configuration-space picture of a formalism of group quantization, the GAQ
formalism, is presented in the context of a previous algebraic generalization. This
presentation serves to make a comprehensive discussion in which other extensions
of the formalism, principally to incorporate gauge symmetries, are developed as
well. Both images are combined in order to analyze, in a systematic manner and
with complete generality, the case of linear fields~Abelian current groups!. To
illustrate these developments we particularize them for several fields and, in par-
ticular, we carry out the quantization of the Abelian Chern–Simons models over an
arbitrary closed surface in detail. ©1997 American Institute of Physics.
@S0022-2488~97!00403-9#

I. INTRODUCTION

At present the main goal of theoretical physics is to unify quantum theory and genera
tivity. Symmetry is increasingly important in both theories and, because of that, it is expec
play a principal role in the future fundamental theory whatever it might be. Therefore
desirable to understand as much as possible about physics without using information oth
that provided by the symmetries of the systems. The formalisms of quantization on a group
as the group approach to quantization~GAQ! formalism, are intended to perform this task as
as the process of quantization is concerned.

The GAQ formalism was introduced several years ago1 as an improved version, in som
respects, of geometric quantization and the Kirillov coadjoint-orbit methods of quantization.2,3 It is
conceived basically as an algorithm for associating quantum systems with already given g
However, most classical systems are commonly specified by a set of different equations o
classical Lagrangian. Therefore, in order to quantize these system with the GAQ formali
would be important to be able to derive, from the equations of motion or the Lagrangian, a
naturally associated with the system and large enough so as to reproduce, in some w

a!http://www.ugr.es/̃mnavarro; e-mail: m.navarro@ugr.es
b!Electronic mail: valdaya@ugr.es
c!Electronic mail: calixto@ugr.es
0022-2488/97/38(3)/1454/23/$10.00
1454 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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classical theory. In so doing, solving the classical equations of motion has been required
now. Nevertheless, in Ref. 4 indications have been presented that there must be a way of
venting this difficulty so that the basic steps, at least, of the GAQ formalism—such as findin
the quantizing group—may be carried out without previously solving the equations of mo
This procedure constitutes theconfiguration-space pictureof the GAQ formalism and its furthe
development is the main purpose of the present paper. As our first step, we shall conside
fields only while non-Abelian fields will be analyzed in future studies.

An improvement of the GAQ formalism which is specially relevant to our purposes i
algebraic reformulation, which, instead of the infinitesimal calculus, uses the finite~algebraic!
properties of the group.5 This reformulation, therefore, enables us to incorporate discrete sym
tries and to deal with non-Lie groups, that is, groups with no differential structure. The
aspects of this reformulation were previously presented in Ref. 5. Here this picture of the fo
ism is presented in a unified manner so as to clarify several previous, heterogeneous d
ments. To make the discussion as self-contained as possible, the algebraic formulation
further developed, in particular the characterization of gauge symmetries~gauge subgroup! is
presented, and the way in which the GAQ formalism incorporates them at the quantum le
also shown.

When working in configuration space, with no explicit expression for the group in terms o
phase-space coordinates of the fields, to use the differential calculus over this group is clea
feasible. It is necessary, therefore, to use algebraic group transformations. This fact pr
additional support for using the algebraic picture of the GAQ formalism.

The quantization of linear fields, unlike nonlinear ones whose quantization is considered
a completely different and a much more difficult problem, is generally assumed to be well u
stood. There is in fact one good reason for such a different behavior between one case
other: the huge~Abelian! symmetry which underlies Abelian fields. However, in spite of this fa
the usual way of presenting the quantization of linear fields does not make it explicit wheth
not this underlying symmetry is involved. This fact does not help to identify the real difficultie
quantizing nonlinear fields. Also, if the difference lies in the great symmetry which unde
linear fields, we should examine whether or not it is possible to construct nonlinear fields, r
to non-Abelian current groups, which could be quantized with procedures similar to those a
in the linear case.

In addition to all this, and in spite of the~almost! general assumption, the quantization
linear fields is not always so trivial. There are many important cases, such as the one of fi
curved space~see, for instance, Ref. 6!, or when topological issues arise, in which the quantizat
presents difficulties and ambiguities with no simple solution.

The motivation to study linear fields is therefore twofold: on the one hand, they are impo
on their own, and, on the other hand, this analysis may provide the key to generalize to no
fields.

In the present paper linear fields are thoroughly studied, relying as much as possible o
underlying symmetry and trying to be as general as possible. The structure of this pape
follows: In Part 1, after a brief review of the geometric quantization and the GAQ formalism
a connected Lie group, the algebraic and configuration-space pictures of the GAQ formalis
considered. The results of this part are valid for arbitrary groups and fields. In Part 2, the
of linear fields is thoroughly analyzed by applying to it the~algebraic! GAQ formalism on con-
figuration space. As an illustration of how to apply the formalism, several aspects of the el
magnetic field are briefly considered in Sec. V~the interested reader may also consult Ref. 7 a
above all, Refs. 8 and 9 where the development in this section have been carried further! and the
Abelian Chern–Simons theory is quantized in Sec. VI. For the sake of clarity, in this part, e
in the last section, the analysis is restricted to linear~Abelian! fields, even though one of our mai
motives is to extend, in the future, as much as possible of our results to non-Abelian fields.
J. Math. Phys., Vol. 38, No. 3, March 1997
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last section, we discuss very briefly the difficulties in trying to extend our formalism to nonli
fields ~non-Abelian current groups!.

Since this paper is aimed to present the unifying theory behind some previous or paralle~and
to clear the way to future! developments of the GAQ formalism—those which only involve line
fields—the examples have been carried on only up to the point that they provide a link with
developments but do not significantly overlap with them. For more details on how the
formalism is actually applied, the reader may consult the bibliography here provided whe
verse applications can be found. In particular Ref. 4, where quite a few examples of quan
groups in configuration space are also given, complements the present analysis in several r

PART 1. THE GENERAL FORMALISM

II. THE GEOMETRIC QUANTIZATION AND THE GROUP APPROACH TO QUANTIZATION

Before considering the GAQ formalism, we shall briefly describe the basic features of
metric quantization~GQ!, which is a formalism from which the former derived.

A. Geometric quantization

The geometric quantization~see, for instance, Ref. 2! is a formalism which intends to plac
the familiar canonical quantization rules of quantum mechanics in a rigorous setting:

qi→q̂i ; ~ q̂iC!~q![qiC~q!,
~2.1!

pj→ p̂ j ; ~ p̂ jC!~q![2 i\
]

]qj
C~q!,

whereqi andpj fulfill the classical relationships

$pi ,q
j%5d i

j . ~2.2!

~From here on we shall make\51.!
The basic idea in this formalism is that the quantum theory should be an irreducible r

sentation of the Poisson algebraF (P) of observables of the classical phase spaceP, which should
act in a Hilbert spaceH, which is also constructed in a natural manner out of the classical sys
Thus, with any functionf :P→R, it should be associated a linear self-adjoint operatorf̂ , which
acts onH and such that

$ f ,ĝ%5@ f̂ , ĝ#, ; f ,gPF ~P!. ~2.3!

It is well known that this program cannot be fully executed because obstructions arise, main
to ordering problems, which prevent the wholeF (P) from being represented. These obstructio
are not a major problem if one is able~a! to represent a subset ofF (P) which is big enough to
generate the wholeF (P), and ~b! to obtain without ambiguities the basic observables of
theory such as the Hamiltonian~[ quantum temporal evolution!, the quantum angular momentum
operators, etc.

Given a classical phase space with Poisson bracket$,% ~[ simplectic formv!, with any
fPF (P) we associate a natural operatorXf :F (P)→F (P), defined through

Xf~g!5$ f ,g%, ;gPF ~P!. ~2.4!

Because of the Jacobi identity, these operators also fulfill Eq.~2.3!. These relationships give us
basic guide to the expected nature of the Hilbert space of the quantum theory,H;F (P), and the
quantum operators:f̂;Xf . The difficulty is that the correspondencef→Xf is not faithful because
J. Math. Phys., Vol. 38, No. 3, March 1997
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the constant functions are in its kernel. To overcome this problem a new term has to be ad
the operatorsX so as to associate the natural constant operators with the constant functions
is achieved by~nontrivially! enlargingP with a new parameterzPU~1! to give rise to a new
manifoldQP , which is called aquantum manifold, with a structure ofU~1! principal bundle over
P, so thatQP/U(1)5P. The dependence of the wave functions with respect to the new coord
zPU~1! is fixed by means of the condition

C~zp!5zC~p!, ;zPU~1!. ~2.5!

If Xz is the vector field which generates the action ofU~1! onQP , the constraint~2.5! reads

XzC5 iC. ~2.6!

This condition together with the natural requirement that the constant functions must be pr
represented implies that the new~pre-!quantum operator associated withfPF (PQ) has the~local!
expression

X̃f52 i @Xf2~ i Xfl2 i f !Xz#, ~2.7!

wherel is a symplectic potential tov.
Let now U be the connection one-form onQP→P, which is defined by the condition

i Xz
U 5 1, i Xz

dU 5 0 and (QP ,dU)/U(1);(P,v). Then, the operatorsX̃f will be defined by the
relationships

i X̃fU5 f , i X̃fdU52d f . ~2.8!

~These relationships imply in particular thatLX̃fU 5 0.!
With this procedure, we make sure that the correspondencef→X̃f is faithful. However, it will

in general be reducible: there are nontrivial operators,X̃a , aPI , which commute with the basic
ones of the representation,X̃qi,X̃pj

. The irreducibility has to be achieved by imposing further th
~some of! these operators act trivially on the physical Hilbert space:

XãC50, for someaPI , ;CPH. ~2.9!

This last condition roughly amounts to requiring that the wave functions depend only on theqis or
the pjs ~or a particular combination of these such as the creation/annihilation operators!.

B. The GAQ formalism over a connected Lie group

The GAQ formalism was originally conceived1 to improve GQ by freeing it from severa
limitations and technical obstructions. Among them we point out the impossibility of consid
quantum systems without classical limit, the lack of a proper~and naturally defined! Schrödinger
equation in many simple cases, and the ineffectiveness in dealing with anomalous system10

The main ingredient which enable GAQ to avoid these limitations is a Lie group structu
the manifoldG̃ replacing the quantum manifoldQP of GQ. G̃ is also a principal bundle with
structure groupU~1!, but now G̃/U~1! is not forced to wear a symplectic structure. This wa
nonsymplectic parameters associated with symmetries like time translations, rotations,
transformations, etc., are naturally allowed and give rise to relevant operators~Hamiltonian, an-
gular momentum, null charges, etc.!. Needless to say, the requirement of a group structure iG̃
represents some drawback, although it is lesser, in practice, than it might seem. In par
constrained quantization~see below and Ref. 11! as well as higher-order polarizations12,13 allow
GAQ to be applied to phase spaces that do not wear a group structure, thus greatly expand
range of applicability of the formalism.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Nonetheless, we should remark that the GAQ formalism is not meant to quantize a cla
system~a phase space! but, rather, the quantizing group is the primary quantity and in some c
~anomalous groups,13 for instance! it is unclear how to associate a phase space with the quan
theory obtained.

As a general rule, and roughly speaking,G̃ is a central extension of a groupG which
represents a phase space enlarged by the~usually semi-direct! action of additional~nonsymplectic!
symmetries. As mentioned in the Introduction, GAQ proceeds associating quantum system
already given groupsG̃, but also the possibility exists of looking for an appropriate groupG̃ out
of a given~classical! LagrangianL. In this case the solution manifold ofL ~as a phase space!
should be the starting point to construct the manifold ofG̃.

The basic structure in the GAQ formalism is, therefore, a Lie groupG̃ ~see the next section
where generalizations are discussed! which is called thequantizing group. In this group, there are
naturally defined left-invariant~right-invariant! vector fields,X̃i

L(X̃i
R), as well as left-invariant

~right-invariant! forms uL
i
(uR

i
). As in geometric quantization a major role is played by the le

invariant form,uL
z
, which is dual of the generator of the central subgroupU~1! after a basis of the

Lie algebra has been chosen.
Definition 2.1:The one-formU [ uL

z
dual to the vertical generatorX̃z is calledquantization

form .
The space of wave functions will now be constructed on the functions onG̃ which fulfill the

condition of beingU~1!-functions, which is now written

JC5 iC, ;CPF ~G̃!, ~2.10!

whereJ5X̃z
L5 i z]/]z5X̃z

R.
The quantum operators are theright-invariant vector fields.
Now there are two main points to be taken into account:
~a! Some of the parameters of the group are not symplectic; that is, there are left-inv

vector fieldsXi
L such that

i X
i
LU505 i X

i
L dU. ~2.11!

~b! The left-invariant and right-invariant vector fields commute. Therefore, the right-inva
vector fields do not provide an irreducible representation ofG̃ when acting on the space o
U~1!-functions.

Definition 2.2:Let G̃ be the Lie algebra ofG̃. Thecharacteristic subalgebraC of G̃ is the
subalgebra which is expanded by the vector fields which fulfill Eq.~2.11!.

Definition 2.3:We shall say that a left subspaceS is horizontal iff

i XLU50, ;XLPS . ~2.12!

Definition 2.4:A polarization subalgebraP is a maximal horizontal subalgebra ofG̃ such
thatC,P .

Points~a! and~b! are taken into account together by imposing the polarization condition
the wave functions:

Definition 2.5:A wave functionsC is said to bepolarized iff

X̃C50, ;X̃PP , ~2.13!

whereP is a polarization.
With this requirement, and in the absence of constraints~see below!, the quantization proce

dure is completed if we further specify aG̃-invariant integration measure. This measure has
practice, turned out to be derivable from the natural oneuL1`uL2`••• on G̃, though the genera
J. Math. Phys., Vol. 38, No. 3, March 1997
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case has not yet been addressed. The physical Hilbert spaceH is then expanded by the integrab
polarized wave functions. The physical operators are the right-invariant vector fields acting
space and they are unitarily represented.

1. Gauge subalgebra

Definition 2.6:We shall say that a right-invariant vector fieldX̃R is gaugeif

i X̃RU50. ~2.14!

The subalgebra expanded by all the gauge vector fields will be denotedN and will be termed
gauge subalgebra.

Since for allX̃R anduL, LX̃Ru
L 5 0, Eq.~2.14! implies i XR dU 5 0. This agrees with the usua

description of the gauge symmetries as the ones which are generated by vector fields in the
of the presymplectic two-form~see, for instance, Ref. 14 and references therein!. Also, in the
GAQ formalism, the conserved~Noether! charge associated withX̃R corresponds toi X̃RU. There-
fore, the definition above is consistent with the well-known fact that gauge symmetries hav
conserved charges~see, for instance, Ref. 15 for a direct proof!.

Proposition 2.1:Let N be the subspace expanded by the gauge vector fields. ThenN is an
ideal of G̃.

Proof: It follows immediately by making use of the equalityi [X, Y]5LXi Y2 i YLX .
For X̃R gauge,X̃RPKerUùKer dU5C . SinceC is expanded by the characteristic subalg

bra, X̃ R must be of the form

X̃R5(
jPc

f j X̃ j
L . ~2.15!

Therefore the polarized wave functions are automatically gauge invariant:

X̃R~C!50, ;X̃R gauge, ~2.16!

and no new~right! constraints need to be imposed.

III. THE (ALGEBRAIC) GAQ FORMALISM OVER A GROUP

In this section the GAQ formalism will be presented in a pure algebraic language. That
shall make use of finite quantities and algebraic operations only: composition of group elem
subgroups, etc. A~desired! consequence of this reformulation is that nowhere it is a differen
structure needed on the quantizing group, that is, nowG̃ need not be a Lie group. It can be
discrete or even finite group.

We shall consider only the case in which the quantizing groupG̃ is provided with acentral
subgroupT0 which, in this paper, will be calledcanonical subgroup. Natural extensions of the
formalism to more general cases have already been discussed in the literature~see, for instance
Ref. 16! but will not be considered here.

The canonical subgroup is the center of gravity around which the group quantization fo
ism is formulated.

The GAQ formalism requires us to singularize, apart from the canonical subgroup, two
subgroups ofG̃: the characteristic subgroup and the polarization subgroup. In addition, the g
subgroup is also naturally defined.

Definition 3.1:We shall say that a subgroupH,G̃ is horizontal if HùT0 5 $1G̃%, where
1G̃ is the neutral element ofG̃.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Definition 3.2:Giveng,g8PG̃, we define thecommutator of g,g8 as [g, g8]5gg8g21g821.
If S and S8 are two subsets ~not necessarily subgroups! of G̃, then [S, S8]
[$[g,g8]/gPS,g8PS8%.

Definition 3.3:Thecharacteristic subgroupC of G̃ is the maximal horizontal subgroup suc
that@C, G̃#ùT05 $1G̃%.

Definition 3.4:A polarization subgroup P is a maximal horizontal subgroup ofG̃ such that
C,P.

Definition 3.5:Thegauge subgroupN of G̃ is the maximal horizontal normal subgroup ofG̃.
Note:SinceN is horizontal and [G̃, N],N, thenN,C.
When G̃ is a Lie group the above definitions lead to the ones for the Lie algebras in

previous section. In particular, because of the following proposition, which is the reciproc
Proposition 2.1, Definition 3.5 corresponds to the one for a gauge subalgebra:

Proposition 3.1:Let H be a horizontal normal subgroup of a Lie quantizing groupG̃ and let
X̃i
R be the right-invariant vector fields which generateH. Then

i X̃
i
RU50. ~3.1!

Proof: Consider any functionC:G̃→C such thatC(gh)5C(g) for all gPG̃, hPH. Then,
becauseH is normal,C(hg)5C(g) also. This fact requires that, at anygPG̃, any right-invariant
vector fieldX̃i

R which generates the left action ofH can be expressed as a linear combination
the left-invariant vector fieldsX̃j

L which only involves the vector fields which generate the~right!
action ofH, and the other way round. Therefore, sinceH is horizontal, the charges which ar
associated with the invariant vector fields tangent toH and toU [ uL

z
are zero.

The proper quantization proceeds as follows:
We start with the spaceF (G̃) of complex functions onG̃ and pick up a representationDT0

of
T0, and a right-representationDP of a polarizationP, on F (G̃).

Definition 3.6:We shall say thatCPF (G̃) is aDT0
-function iff

C~zg!5DT0
~z!C~g!, ;gPG̃, ;zPT0 . ~3.2!

Definition 3.7:A function CPF (G̃) is calledpolarized ~DP-polarized! iff

C~gp!5DP~p!C~g!, ;gPG̃, ;pPP. ~3.3!

In absence of constraints, these conditions fully determine the Hilbert space of the the
is given by the set of all~square integrable! polarizedDT0

-functions inF (G̃). The dynamical
operators are all the elements inG̃, and they act as finiteleft translations on the Hilbert space:

~ ĝC!~g8!5C~g21g8!, ;g,g8PG̃. ~3.4!

Therefore the gauge subgroup, which corresponds to gauge constraints which hav
solved classically, is automatically and trivially represented.

A. Constraint quantization and good operators

As is well known ~see basis references in Ref. 17 and see also Ref. 18!, there is a close
relationship between constraints and gauge symmetries. Loosely speaking, the existen
gauge symmetry suffices to have a constrained system, and first-class constraints genera
symmetries. Constraints are not, however, always due to the presence of gauge symmetrie
system: the former are more general than the latter.

Here we shall consider only the case in which the constraints close into a subgroupT̃,G̃. The
constraint subgroupT̃ is required to be a fiber group ofG̃, i.e.,G̃→G̃/T̃ is a principal bundle and
J. Math. Phys., Vol. 38, No. 3, March 1997
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to containT0 as a fiber group, i.e.,T̃→T̃/T0 is also a principal bundle. In particular,T̃ should be
regarded as a quantizing group with the same canonical subgroupT0 asG̃.

When there are constraints the procedure described above has to be completed with ad
conditions on the wave functions. Now the physical Hilbert space is made up of all the pola
T0-functions which are constrained:

Definition 3.8.A wave functionC:G̃→C is termedconstrained iff

C~ t* g!5DT̃~ t !C~g!, ;tPT̃, gPG̃, ~3.5!

whereDT̃ is an irreducible representation ofT̃.
Representations ofT̃ which are compatible withDT0

are naturally found by applying the GAQ
formalism toT̃. We, therefore, need the same collection of subgroups ofT̃ in relation toT0 as just
described forG̃. When there is danger of confusion, these subgroups ofT̃ will be signaled by
placing a prefixT̃ before them. Thus, we shall have theT̃-characteristic subgroup, theT̃-polar-
ization subgroup, and so on.

Clearly not all the operators inG̃ will preserve the representationDT̃ of T̃; for the dynamical
operators that do we shall use the namegood operators.5 The group of all the good operators thu
constitutes the natural generalization of the concept of normalizer ofT̃. This is the manner in
which the concept of gauge subgroup~gauge symmetries! is incorporated into the quantum leve

In some cases~where T̃ is connected and is not a direct productT̃ÞT0^T! the T̃-function
condition ~3.5! may not be compatible with the representationDT0

for T0. Then we must soften
that requirement and consider, rather than the wholeT̃, a subgroupT0%PT , wherePT is a
polarization subgroup ofT̃. This subtlety does not arise, however, in the models we shall con
in the present paper, in which the wholeT̃ can be represented in a way compatible with t
T0-function condition.

When T̃ is a nontrivial central extension, it is sometimes said that the gauge symmetrie
‘‘anomalous.’’ Nonetheless, these ‘‘anomalies’’ do not necessarily imply obstruction to quan
tion, and do not particularly when the condition~3.5! can be imposed for the entireT̃.

PART 2. LINEAR FIELDS

IV. LINEAR FIELDS

Throughout this section, we shall consider a theory with fieldswa, a51,...,N, and action

S5E
M

mL~wa,]mwa!. ~4.1!

The space–time manifoldM, with volume elementm5dD11x, will always be homeomorphic to
S3R, whereR represents the timelike directions andS is any~D-dimensional! spacelike hyper-
surface. When picking up a particular Lagrangian, we shall make use, if necessary, of the
termination under a total divergence.

The set of all fields, irrespective of whether or not they satisfy the Euler–Lagrange equ
of motion, will be denoted byF . We shall term any solution of the~classical! equations of motion
as trajectory , or classical trajectory.T will be the set of all the trajectories of the system.

If a ~classical! theory of fields~S,F ! is linear, the spaceT of all the solutions of the equation
of motion is a vector space. That is, ifw andf are solutions, so islw1bf for any l,bPR.
ThereforeT can be regarded as an~Abelian! group of symmetries of the theory with compositio
law:

w95w81w. ~4.2!
J. Math. Phys., Vol. 38, No. 3, March 1997
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This group will be denoted asG~w! .
Theorem 4.1:If ~S,F ! is a classical theory of linear fields, with Euler–Lagrange equation

motion ([E2L]w)a50, then
~a! L~w1f!5L~w!1L~f!1([E2L]f)aw

a1]mJ
m(w,f), ;w,fPF .

~b! A Lagrangian is given by

L~w!5 1
2~@E2L#w!aw

a. ~4.3!

Therefore, there exists a Lagrangian which vanishes ‘‘on-shell,’’ i.e.,L~w!50 for any clas-
sical trajectoryw.

Proof: The point ~a! follows immediately if we look atL~w1f! as a variation of the La-
grangian, a variation similar to the one which gives the Euler–Lagrange equations of moti

If in the equality~a! we makew5f51
2k, we obtain

L~k!5 1
2~@E2L#k!ak

a1 1
2]mJ

m~k,k!. ~4.4!

The new Lagrangian

L̂~k!5L~k!2 1
2]mJ

m~k,k! ~4.5!

fulfills part ~b!.
Corollary 4.1.1:Since the currentJm~w,f! is bilinear, it can be chosen to be

~a! divergenceless on trajectories and
~b! antisymmetric.

Proof:
~a! This is a consequence of part~a! of Theorem 4.1 if a Lagrangian that vanishes on shel

chosen.
~b! It is sufficient to show thatJm~k,k! is identically null. If Jm~k,k! were not identically null,

then J̃m~k,k!, where J̃m(w,f)5Jm(w,f)2 1
2J

m(w,w)2 1
2J

m(f,f) is also an admissible curren
would. However, bothJm and J̃m have to be bilinear. Therefore,Jm~k,k!50 ;k and J̃m5Jm.

Definition 4.1:The currentJm for which ~a! and~b! hold will be called thecanonical current
of ~S,F !.

Note: There is, in fact, a shorter but equivalent way of obtaining the canonicalJm. If in
Theorem 4.1~a! we exchangew andf and then antisymmetrize, we get

]m~ 1
2J

m~w,f!2 1
2J

m~f,w!!5 1
2 ~@E2L#w!af

a2 1
2 ~@E2L#f!aw

a. ~4.6!

The current„12J
m~w,f!21

2J
m~f,w!… is the canonical current of~S,F !.

Corollary 4.1.2: If L̃5L1]mLM, thenJ m̃5Jm

Definition 4.2:For all w,fPT we define thecanonical product V~w,f! by means of

V~w,f!5E
S
dsm Jm~w,f!, ~4.7!

whereS is any Cauchy hypersurface inM. Therefore it is bilinear, antisymmetric, and indepe
dent on theS hypersurface.

The canonical product of two solutionsw andf is nothing other than the Noether charg
associated with the symmetry generated byw in the pointfPT , or ~minus! the other way round.
It measures the degree to which the classical trajectoriesw and f are coordinate-momentum
conjugate to each other.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Note:Notice that the potential current of the theory isj m5Jm~w,dw!. The symplectic form is
therefore given by19,14

v52E
S
dsmd j m. ~4.8!

Theorem 4.2:With V defined as above, the following composition law defines a central exten
of G~w! which will be denotedG̃~w! :

w9~x!5w8~x!1w~x!, ~4.9!

z95z8z exp iV~w8,w!, ~4.10!

where the fieldsw,w8,... are trajectories andz,z8,...PU~1!.

A. Space–time and internal symmetries

In addition to the symmetries inG~w! , which act additively, there are in general other sy
metries, such as space–time or internal ones, which act multiplicatively. In this section, we
study the conditions under which the groupG̃~w! can be enlarged with these other symmetries

First of all we note that since the composition of two symmetries is another symmetry
two groups of symmetriesU1 and U2 can be enlarged to obtain a new groupU3 such that
U1 ,U2,U3 . Therefore, without loss of generality, we can consider a single group of symme
U5$u,v,...%. The requirement of being symmetries is that, ifwPT , thenu~w!PT .

These symmetries@which should be thought of as being like SU~2!, the Poincare´, the confor-
mal or the Virasoro groups# usually act onF ~T ! through a previous representation in the spac
time.

For any fieldX which generates the action ofU on F , we have

LXLm5dLX , ~4.11!

with LX a space–timeD-form.
Equation~4.11! together with Corollary 4.1.2 implies that the following lemma holds:
Lemma 4.1:Let U0 be the component ofU which is connected to the identity. The

V„u(w),u(f)…5V~w,f!, ;w,fPT , ;uPU0 .
For symmetries which are not connected to the identity, such as parity or temporal inve

this lemma has to be relaxed, as we can haveanticanonical symmetries, that is, symmetriesu for
whichV„u(w),u(f)…52V~w,f!. In general, the action ofU onV defines a representatione of U
on Z25$1,2%. Then we shall have the following.

Theorem 4.3:With the fields as defined above, the following composition law is a grou

u95u8* u, u,u8,u9PU,

w9~x!5w8~x!1„u8~w!…~x!, w,w8,w9PT , ~4.12!

z95z8ze~u8! exp iV~w8,„u8~w!…!, z,z8,z9PU~1!.

This group will be denotedG̃(S,F ) . Note that when there are anticanonical symmetries inU, it is
no longer a central extension.

For the sake of brevity we shall consider only canonical symmetries; that is, symmetri
which e(u)51. Anticanonical transformations, which give rise to interesting subtleties, will be
subject of a separate study.20
J. Math. Phys., Vol. 38, No. 3, March 1997
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Depending on the context, expressions for the groupG̃(S,F ) which are different from Eq.
~4.12!, where the symmetry groupU acts from the left, and which are obtained from it by mea
of a change of variables, may appear to be more natural ones. For instance,

u95u8* u, u,u8,u9PU,

w9~x!5„u21~w8!…~x!1w~x!, w,w8,w9PT , ~4.13!

z95z8e~u!z exp iV~„u21~w8!,w…!, z,z8,z9PU~1!,

where the symmetry groupU acts on the left instead. In the rest of this paper, we shall make
of combinations of these two presentations in which some subgroups ofU act from the left and
others from the right.

1. Example: The nonrelativistic free particle and the Galilei group

As a first example of the construction above, let us consider the nonrelativistic free part
regarded as a~011!-dimensional field theory—and construct the quantizing group for it. In s
of its simplicity, we follow the same steps as for a standard field in contrast with the quan
mechanical treatment of the free particle.1 For more examples, see below and Ref. 4 where
harmonic oscillator, which provides a useful link between mechanics and field theory, is
considered.

A Lagrangian for the nonrelativistic free particle is

LFP8 ~x!5
m

2
ẋ2. ~4.14!

We have

LFP8 ~A1B!5
m

2 F Ȧ21Ḃ222B̈A12
d

dt
~ḂA!G . ~4.15!

Thus, the associated on-shell-vanishing Lagrangian, the equations of motion, and the ca
product are, respectively,

LFP52
m

2
ẍx, 2

m

2
ẍ50, VFP~A,B!5

m

2
@ȦB2AḂ#. ~4.16!

Now we can consider the spatial rotations and time translations as the group of space
symmetries. These act onF FP as follows:

~RA! i~ t !5Rj
iAj~ t !, Rj

iPO~3!,
~4.17!

Tb~A!~ t !5A~ t2b!, bPR.

Now the general solution to the equations of motion is

x~ t !5Q1Vt, Q,VPR3, ~4.18!

andQ andV can be taken as the coordinates inT FP. It is simple to see that

R~Q! i5Rt
jQ

j , R~V! i5Ri
jV

j ,

Tb~Q!5Q2Vb, TbV5V.
J. Math. Phys., Vol. 38, No. 3, March 1997
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The groupG̃FP is therefore given by

b95b81b, Q95Q81V8b1R8~Q!, V95V81R8~V!,
~4.19!

z95z8z exp
i

2
m@~Q81V8b!R8~V!2V8R8~Q!#,

which is the Galileo group~extended by the Bargmann cocycle1!.

B. Quantization

Now that we have found the quantizing groupG̃(S,F ) , we shall apply to it the GAQ formalism
presented in Part 1.

To identify the characteristic subgroup, we have to construct the commutator of two ge
elementsg 5 (u,w,z) P G̃(S,F ) andg85(u8,w8,1)PC.C will be the maximal subgroup such tha
[g, g8]5(1U,0,z) implies z51.

We have

g8g5S u8u,u21~w8!1w,z8z exp
i

2
V„u21~w8!,w…D ,

g215„u21,2u~w!,z21),
~4.20!

gg85S uu8,u821~w!1w8,zz8 exp
i

2
V„u821~w!,w8…D ,

g8g~gg8!215S u8u~uu8!21,uu8@u21~w8!1w#2uu8@u821~w!1w8#,exp
i

2
@V„u21~w8!,w…

2V„u821~w!,w8…2V„uu8@u21~w8!1w#,uu8@u821~w!1w8#…# D .
Therefore,g85(u8,w8,1) has to fulfill

V„w8,u~w!1u821~w!…50 ;g5~u,w,z!PG̃~S,F ! . ~4.21!

This implies

C5U%N. ~4.22!

with N5gauge subgroup5$~1U ,w8,1!/V~w8,w!50 ;g5(u,w,z)PG̃(u,w,z)%. ~U%N stands for
the subgroup generated byUøN and it also meansUùN 5 $1G̃%.!

We recall now that a polarization subgroup is a maximal horizontal subgroupP such that
C,P. Thus, anyP is generated by

P5CøPw , ~4.23!

where Pw is the maximal horizontal subgroup such thatV„v~w!,w8…50 ;g5(1U ,w,1), and
g85(1U ,w8,1)%PPw ,;vPU.

Definition 4.3: A Lagrangian subgroup is any subgroupL5$(1U ,w,1)% such that
V~w,w8!50, for any~1U ,w,1!, (1U ,w8,1)PL. If U(L),L, it will be called invariant Lagrangian
subgroup.

We, therefore, have the following.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proposition 4.1:Any polarization subgroupP is generated byUøNøL, whereL is a maxi-
mal invariant Lagrangian subgroup.

C. Holomorphic quantization

We now consider the case when there are two subgroupsL, L̄,G̃ which fulfill

~a! L̄ is a Lagrangian subgroup~not necessarily invariant!,
~b! L is an invariant Lagrangian subgroup, and
~c! G̃(S,F )5U%L% L̄%U(1).

Therefore, any trajectoryw has a unique decomposition

w5a1ā, where ~1U ,a,1!PL,~1U ,ā,1!PL̄. ~4.24!

Note: In general, to findL and L̄ with the properties above, it is necessary to go toF̄ , the
complexifiedF , and to consider instead the groupG̃(S,F̄ ).G̃(S,F ) over that complexified space
In this case, the third condition above takes the form

~c!G̃(S,F ),U% L% L̄%U(1)5 G̃(S,F̄ ) .
If we takew5ā1a, the polarizationP5U%L, and we pick up the trivial representation for

one of theDp-polarization conditions reads

C„u,ā1a,z exp iV~ ā,a!…5C~u,ā,z!. ~4.25!

This equality, together with theU~1!-function condition onC~u,w,z!, implies

C~u,w,z!5zF~u,ā!exp@2 iV~ ā,a!#. ~4.26!

The rest of the polarization conditions reads

C„u8u,u21~w!,z…5C~u,w,z!. ~4.27!

Therefore

F„u8u,u21~ ā!…5F~u8,ā!, ~4.28!

where we have made use of the fact thatL is an invariant Lagrangian subgroup. SinceL̄ may not
be invariant,u21(ā) is not in general inL̄. However, whatever the case is, Eq.~4.28! gives the
~finite! action of the space–time and internal symmetries in the wave functions. The infinite
action, and in particular the Schro¨dinger equation, can be obtained as the first-order terms in
power series in the parameters of the symmetries.

In the quantum theory of relativistic fields a splitting which fulfills the requirements ab
and where bothL̄ andL are invariant under the~proper! Poincare´ group, is the usual one into
negative- and positive-frequency parts. On the other hand, the nonrelativistic free particle pr
an interesting and simple example in which the trajectoriesx split asx5a1ā, wherea is invariant
underU whereasā is not. HereU is generated by the time translations and the spatial rotati
the trajectorya is defined byā(t)5x~t0! and the trajectoryā is defined byā(t)5x(t)2x~t0!, for all
tPR and a fixedt0PR. This splitting corresponds to the familiar parametrization of the ph
space with position and momenta. The fact that the subspace of positions, that is, the su
trajectories with null momentum, is invariant whereas the one of momenta, that is, the sub
trajectories with null initial position, is not invariant only apparently contradicts the usual tr
formation of the corresponding classical and quantum operators.
J. Math. Phys., Vol. 38, No. 3, March 1997
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V. THE MAXWELL THEORY IN MINKOWSKY SPACE

From here on in the present paper we shall illustrate over the Maxwell field and the Ab
Chern–Simon models some aspects of the GAQ formalism we have theorized about in the
ous sections. The quantization of the electromagnetic field has been carried further in s
papers. In particular, Refs. 9 and 8 can both be regarded as natural continuations of the
section. Reference 7, where the Klein–Gordon field as well as the Proca field are quantize
also be consulted.

The usual action for the Maxwell field is

Sem8 5E d4xH 2
1

4
FmnF

mnJ , ~5.1!

where

Fmn5]mAn2]nAm . ~5.2!

It is, however, more natural, and the best for our purposes, to considerFmn and Am as
independent fields, related only by~now equations of motion! Eq. ~5.2!. The action which mirrors
this point of view is

Sem5E d4xH 14 FmnF
mn2

1

2
Fmn~]mAn2]nAm!J . ~5.3!

As is well known, the Maxwell action is invariant under the conformal group, which is m
up of compositions of the following operations on the space–time:

~a! Space–time translations: (ux)a5xa1aa,
~b! Lorentz transformations: (ux)a5Lm

axm,
~c! Dilatations: (ux)a5elxa,
~d! Special conformal transformations: (ux)a5xa1cax2/(112cx1c2x2).

The quantizing group for the electromagnetic group is therefore4

u95u8* u Conformal ~sub!group,

Am9 ~x!5
]ua

]xm Aa8 ~ux!1Am~x![„S~u21!A8…m~x!1Am~x!, ~5.4!

Fmn9 ~x!5
]ua

]xm

]ub

]xn Fab8 ~ux!1Fmn~x!1[„S~u21!F8…mn~x!1Fmn~x!, ~5.5!

z95z8z exp iVem„S~u21!~A8!,A…, ~5.6!

whereS is the representation of the conformal group that acts on the electromagnetic vecto
This action is the natural one and means that the potential vector has null conformal weig

The canonical current is

J em
m ~g8,g!~x!5 1

2@F8mn~x!An~x!2An8~x!Fmn~x!#. ~5.7!

A. Noncovariant approach

Let us write down the action~5.3! in terms of the electric fieldE and the potentials
Am5~A0,A!. In doing so we solve the constraintB5“3A and place it back into the Lagrangian
This takes the form~save for total derivatives!
J. Math. Phys., Vol. 38, No. 3, March 1997
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LM5EiȦi2
1
2 $E

21~“3A!2%1A0] iE
i . ~5.8!

The Lagrangian is constrained withA0 as a Lagrange multiplier and constraint

] iE
i50. ~5.9!

The gauge symmetry of this constrained Lagrangian is the usual one:Am→Am1]mL.
If space–time symmetries are not considered, the quantization of this system with ou

malism is straightforward—it amounts to the quantization of three Klein–Gordon fields in a
reference frame—and reproduces the quantum theory of the electromagnetic field in the~nonex-
plicitly covariant! radiation gauge. The quantizing group is

~A095A081A0!, A95A81A, E95E81E,
~5.10!

z95zz8 exp
i

2 E d3x (
i51,2,3

$Ai8E
i2E8 iAi%,

and the subgroup of constraints isT̃5$~A,0,z!/A5“L for someL%.

B. Covariant gauge fixing, ghost term, and bosonic BRST symmetry

In this section, we construct the quantizing group for the covariant gauge-fixed Ma
Lagrangian and show how the~bosonic! BRST transformation arises as a one-parameter grou
internal symmetries~in Ref. 9 the present development was carried further; see Ref. 8 f
thorough an unified treatment of the electromagnetic and Proca fields!.

Let us therefore consider the Lagrangian

L52
1

4
FmnFmn2w]mA

m1
1

2l
w21]mc]mc, ~5.11!

wherew is a gauge-fixing Lagrange multiplier andc are ghost fields. It is straightforward to sho
that this Lagrangian is invariant under the following~bosonic BRST! symmetry with parameterL:

dAm5L]mc, dc52 1
2wL, dw50. ~5.12!

The finite transformations are given by

uL~A!m5Am1]mcL2 1
2]mwL2, ~5.13!

uL~c!5c2 1
2wL. ~5.14!

The general theory shows us that the quantizing group, which includes the BRST bo
symmetry but no space–time or internal symmetries, is~b[L!

Am9 5Am8 1Am2]mc8b2 1
2]mw8b2,

w95w81w, c95c81c1 1
2w8b, b95b81b,

~5.15!

z95z8z exp i E
S
dsmJ

m,

with
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Jm5 1
2„~An82]nc8b2 1

2]nw8b2!Fmn~x!2An~x!F8mn~x!…1 1
2„A

nw82~A8n2]nc8b2 1
2]

nw8b2!w…

1„~c81 1
2w8b!]mc2~]mc81 1

2]
mw8b!c…. ~5.16!

Now, if we Fourier transform the fields and make use of the equation of motion

w5l]mA
m, ~5.17!

we shall obtain the group law in Ref. 9.

VI. THE ABELIAN CHERN–SIMONS THEORY

LetM be a three-dimensional manifold which can be decomposed into the formM5S3R

with S an orientable two-dimensional surface.
The action for an Abelian Chern–Simon model is given by21

SACS5
k

4p E
M

~A`dA!, ~6.1!

whereA is a one-form which takes values on the Lie algebraG of some Abelian lie groupG.
@There is, in fact, a direct generalization of the Abelian Chern–Simons theories to higher~odd!
dimensions. In these generalization,S is a 2D manifold andA a D-form for arbitrary natural
numberD. Many of the results we present here can be extended to these theories, with
dimensional quantities replaced with higher-dimensional ones.# It is simple to show thatSACS is
invariant under gauge transformationA→A1dL for anyL:M→g.

It is straightforward to show that the equations of motion and the canonical produc
respectively,

dA[F50, ~6.2!

VACS~A8,A!5E
S
J5

k

4p E
S
A8`A. ~6.3!

Thus,T ACS[F c whereF c is the set of all flat connections overM.
The exterior derivative commutes with the pullback operator* . Therefore, if f is a diffeo-

morphism ofM , andA andA8 are solutions of the equation of motion~6.2!, thenA81 f *A is also
a solution.

All this, together with the general theory, implies that the following composition law defi
a group,G̃CS, the quantizing group for the Abelian Chern–Simons model:

f 95 f 8+ f , f , f 8, f 9PDiff 0~M!,

A95 f21*A81A, ~6.4!

z95zz8 expVCS~ f
21*A8,A!.

The general theory shows that the characteristic subgroup isCCS[NCS5$( f ,A,1)/A5dL for
someL%. The quantum conditions~3.3! imply then that the quantum wave functions should
functions of topological and gauge invariant quantities only. To best deal with these conditio
us remind the reader that all the gauge-invariant information of a connection can be extracte
the Wilson loops. These are quantities defined by
J. Math. Phys., Vol. 38, No. 3, March 1997
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W~A,g!5exp E
g
A[A~g! ~6.5!

for any loopg onM. Therefore~the gauge invariant part of! a connection can be seen as
application

A:LM→G/A~g8+g!5A~g8!A~g!, ~6.6!

whereLM is the group of loops onM. ~With a slight abuse of notation, we shall use the sa
letter for the connection one-forms as for the applications they define.! Equation~6.2! also implies
that the diffeomorphisms ofM which are connected with the identity act trivially on the app
cationsA. This is not the case with the nonconnected diffeomorphisms which give rise
nontrivial actuation of the modular group Diff~M!/Diff 0~M!. This and others aspects of diffeo
morphisms will not be further developed here but rather in a separate study.

For any Abelian groupG, there is a natural group structure in the set of allA:

~A8*A!~g!5A8~g!A~g!. ~6.7!

This, of course, is just another expression for the composition law forA in Eq. ~6.4!.
Now, the equation of motionF50 implies that anyA can be considered a function on th

homotopy classes$@g#%5p1~R3S!. Since any loop onR3S can be continuously projected ont
S, we havep1~R3S!5p1~S!.

Any application, and in particular any connection, is completely characterized by its g
Thus, since any connection is required to satisfy the condition~6.6!, it is completely characterized
by the images of the elements of a generating subgroup ofp1~S!. Therefore we have

G~A![G^G^ •••
2g

^G, ~6.8!

where 2g is the cardinal ofp1 ~S!.
As is well known, the fundamental groupp1~S![$@a#% of any closed surfaceS is generated by

a finite-dimensional subsetPS . The generator subsetPS can be decomposed into two noninte
secting subsetsP and P̄ such that to any@a#PP there is associated a unique [ā]P P̄ ~and the
other way round! so that there exists a representativea of @a#PP and a representativeā of
[ ā]P P̄ which intersects the one with the other exactly once. This property gives in fact a n
Poisson structure to the fundamental group of orientable surfaces~Although as far as we know this
analysis has not been considered in the literature, it would be useful to study, by also cons
improper loops, that is, loops that begin and end in the punctures, how much of our analys
be extend to surfacesS with punctures.!

For the sake of clarity we shall restrict ourselves to the groupsR andU~1!. In both cases,R
andU~1!, any connection is identified with a pair of vectora, ā:

a5~a1 ,a2 ,...,ag!, ā5~ ā1 ,ā2 ,...,āg!, ~6.9!

where

A~@a i # !5e2pai, if G5R,
~6.10!

A~@a i # !5ei2pai, if G5U~1!.

The numbersai and āi are ~local! parametrizations of the connection.
In the noncompact case,G5R, there are no constraints. The quantizing group is simply
J. Math. Phys., Vol. 38, No. 3, March 1997
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a95a81a, ā95ā81ā,
~6.11!

z95z8z exp iV„~a8,ā8!,~a,ā!…

with

V„~a8,ā8!,~a,ā!…5pk(
iPP

~a8•ā2a•ā8!. ~6.12!

It is merely a Heisenberg–Weyl-like group whose quantization is straightforward.

A. Quantization of the U(1) Chern–Simons model

The quantizing group for theU~1! Chern–Simons theory is also given by~6.11! with a
canonical product of the form

V„~a8,ā8!,~a,ā!…52pk(
iPP

~a8•ā2a•ā8!. ~6.13!

This case is more involved and more subtle due to the nontrivial topology of the groupU~1!.
This nontrivial topology requires, in the present case, that two numbersai (āi) that differ by an
integerni (n̄i) have to be considered as equivalent. The equivalence

ai;ai1ni , āi;āi1n̄i , ni , n̄iPZ, ~6.14!

should be seen as a symmetry of the theory under gauge transformations which are not co
to the identity. The commutator of two group elements is given by

@~a8,ā8,z8!,~a,ā,z!#5„0,0,exp$2 i2pk~a8•ā2a•ā8!%…. ~6.15!

From now on, and for the sake of simplicity, we shall deal with a single coordina
momentum pair (ai ,āi) or, what is the same, we shall restrict ourselves to one of the han
~g51! of the surface. The total Hilbert spaceH will clearly be

H5 ^ i51,...,gH i , ~6.16!

whereH i is the Hilbert space associated with thei th coordinate–momentum pair~[handle!.
The gauge invariance~6.14! is incorporated into the quantum theory by considering

constraint subgroupT̃ to be the following one:

T̃5$~n,n̄,z!, n,n̄PZ%. ~6.17!

We shall consider only the case in whichk is a rational number;k5p/d with p andd relative
prime integers,d.0.

1. Representing the constraint subgroup T ˜

The ~T̃2!characteristic subgroup is

C5$~dn,dn̄,1!,n,n̄PZ%, ~6.18!

and it is easy to show that any~T̃2!polarization subgroupP can be written in the form

P[Pp/q q̄5$~qn,q̄n̄,1!,n,n̄PZ%, ~6.19!

whereq and q̄ are any two natural numbers such thatqq̄5d.
J. Math. Phys., Vol. 38, No. 3, March 1997
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To impose the polarization conditions properly we need to know the general representa
the polarization subgroup. Since these~sub!groups are Abelian and finitely generated, its irredu
ible representations are given by

D„~qn,q̄n̄,1!…5e2 i2p r̄ nei2pr n̄ , rP@0, 1!, r̄P@0, 1!. ~6.20!

The polarization conditions are

Cp/q q̄~a1qn,ā,z exp$ ikpqnā%!5e2 i2p r̄ nCp/q q̄~a,ā,z!,rP@0,1!,
~6.21!

Cp/q q̄~a,ā1q̄n̄,z exp2$ ikpq̄n̄a%!5ei2pr n̄C (p/q q̄~a,ā,z!,rP@0,1!.

These conditions imply that there are onlyq3q̄5d independent wave functions; that is, th
Hilbert space has dimensiond. A natural basis is given by

Bp/q q̄5$u l , l̄ &% l50,...,q21, l̄ 50 . . . ,q̄21 , ~6.22!

where

u l , l̄ &~n,n̄,z!5zd l ,nd l̄ , n̄ , ;n50,...,q21, n̄50,...,q̄21. ~6.23!

The action of the group operatorsP(n, n̄ ,z) in this basis is generated by the following ones

P~n,0,1!u l , l̄ &5e2 ipkn l̄ u l2nl̄&, ;nPZ,

P~0,n̄ ,1!u l , l̄ &5eipk n̄l u l , l̄2n̄&, ;n̄PZ, ~6.24!

P~0,0,z!u l , l̄ &5zu l , l̄ &, zPU~1!,

where the following equivalence conditions have to be taken into account:

u l2qn, l̄ &5e2 ipk l̄ qne2 i2p r̄ nu l , l̄ &, ;nPZ,
~6.25!

u l , l̄2q̄n̄&5eipkl q̄ n̄ei2pr n̄ u l , l̄ &, ;n̄PZ.

2. Constraint quantization

Once we know the irreducible representations ofT̃ we can carry out the~constraint! quanti-
zation of theU~1! Chern–Simons model.

Let us choose as polarization the subgroup

P5$~a,ā,1!/a50%. ~6.26!

TheP-polarizedU~1!-functions are given by

C~a,ā,z!5z exp$ ikpaā%w~a!. ~6.27!

Now we are ready to impose the constraining conditions. As we already know the irredu
representations ofT̃, we can straightforwardly impose the constraining conditions on our w
functions. However, sinceH u00&, the vacuum subspace of the representations ofT̃, is, by construc-
tion, invariant under the~T̃-!polarization subgroupPp/qq̄ in Eq. ~6.19!, we shall first consider the
action of this subgroup on the polarized wave functions.

Moreover, since the operators
J. Math. Phys., Vol. 38, No. 3, March 1997
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P~n, n̄ ,1! ,n51,...,q, n̄51,...,q̄, ~6.28!

behave, in the representation ofT̃, as step operators, we can limit ourselves to the vacu
subspace of theT̃-representation and generate, afterwards, the whole Hilbert space by rep
application of these step operators.

Therefore, the constraining conditions, which are produced by the~T̃-!polarization subgroup
~6.19!, together with Eqs.~6.24! and~6.25!, provide us with the full Hilbert space ofT̃-constrained
wave functions.

Thus, let us consider the action, from the left, of the~T̃-!polarization subgroupPp/q q̄ on the
functions in the vacuum subspace of the representation ofT̃. This gives rise to the following two
conditions:

C~qn1a,ā,z exp$2 ikpqnā%!5e2 i2p r̄ nC~a,ā,z!, rP@0,1!,
~6.29!

C~a,q̄n̄1ā,z exp$ ikpq̄n̄a%!5ei2pr n̄C~a,ā,z!, rP@0,1!.

The first condition implies for polarized wave functions

w~a1qn!5e2 i2p r̄ nw~a!. ~6.30!

The other condition implies that the wave functionsw are supported only on the connectio
a that obey

p

q
a2rPZ. ~6.31!

Therefore the wave functionsw are of the form

w~a!5 (
sPZ

BsdS pq a2r2sD , ~6.32!

where the numbersBs are not arbitrary but are required to satisfy the quasiperiodicity condit

Bs1p5e2 i2p r̄ Bs . ~6.33!

Therefore, in the sum~6.32! there are onlyp independent complex numbers.
Thus, the Hilbert subspaceH u00& has dimensionp. Now if we repeatedly apply to this sub

space the operatorsP(n, n̄ ,1) , which generate the wholeT, we generate a Hilbert spaceH p/q q̄
r , r̄

with finite dimensionp3q3q̄5p3d. We have thus recovered the well-known fact that comp
phase spaces give rise to finite-dimensional Hilbert spaces.22

The good operators split naturally into two subgroups: first, the subgroupB̃u00&, which is made
with the operators that preserve the subspaceH u00&, and second, the subgroupT̃ which transforms
the subspaceH u00& into the subspacesH u l , l̄ & .

It is easy to show that the subgroupB̃u00& is the maximal subgroup ofG̃ which obeys

Ad~G̃!@PT̃ ,B̃u00&],P. ~6.34!

In the particular case at hand this condition reduces to

@PT̃ ,B̃u00&]5$1G̃% ~6.35!

and implies
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



cible

in the
-
s
d
lly

s with
the
t after-

Q for-
e and
s, the

1474 Navarro, Aldaya, and Calixto: GAQ: Gauge symmetries and linear fields

¬¬¬¬¬¬¬¬¬¬
B̃u00&5H S qp n,
q̄

p
n̄,z D Y n,n̄PZJ . ~6.36!

Therefore, the subgroupB̃ of good operators is given by

B̃[B̃u00&1T̃5H S qp n,
q̄

p
n̄,z D Y n,n̄PZJ % $~m,m̄,z!/m,m̄PZ%5H S np , n̄p ,z D Y n,n̄PZJ .

~6.37!

Therefore, imposing the condition that the Hilbert space must be in a single irredu
representation ofT̃ forces us to only represent a subgroupB̃ ~in the present case, discrete! of the
whole G̃. Applying to this Hilbert space operators which are not inB̃ will produce states in
different representations ofT̃.

The operators which are not inB̃ can be classified as

P~s8, s̄8,z! with s8,s̄8PS 0, 1pD . ~6.38!

Now, it is easy to show that

P~s8, s̄8,1!Hp/q q̄
r , r̄ 5Hp/q q̄

r1~p/q!s8, r̄ 1~p/q! s̄8 . ~6.39!

Therefore, the Hilbert spaceHp/q q̄ which represents the wholeG̃ splits into a~continuum!
sum

H5 % s, s̄Hp/q q̄
r1s, r̄ 1 s̄ , sPS 0, 1qD , s̄PS 0, 1q̄D . ~6.40!

Finally, there is a noteworthy point to be discussed. The approach to the quantum theory
present subsection has led us to an irreducible representationDp/q q̄

r , r̄ of a subgroup of good opera
tors B̃. Instead, we could have determined this subgroupB̃ first, and have quantized it afterward
~by applying the algebraic GAQ formalism!. It is interesting to point out that in this way we woul
have obtained representations ofB̃ which would be different from the ones we have actua
obtained. These representations can arise, for instance, by taking asT̃-polarization Pp/q q̄

5 $(qn,q̄n̄,1)/n,n̄P Z% and as polarization

Pp/q8,q8
u, ū

5H S q8
n

u
,q̄8

n̄

ū
,1D Y n,ñPZJ , ~6.41!

where uPN, ūPZ/uū5p, q8, q̄8PN/q8q̄85d and, in general,q8(q̄8) might be taken to be
different fromq(q̄) ~the representations we have found in the present subsection are the one
u5p, ū51 andq85q, q̄85q̄!. This way of proceeding would constitute a refined version of
approaches in which the constraints are imposed first and the quantization is carried ou
wards.

VII. FINAL COMMENTS AND PERSPECTIVES

We have further developed the algebraic and configuration-space pictures of the GA
malism of group quantization. We have combined both in order to make a comprehensiv
completely general analysis of the theory of linear fields. We have shown that, for linear field
J. Math. Phys., Vol. 38, No. 3, March 1997
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formalism is extremely powerful and this power is best employed when the pictures just
tioned are combined. It has also been shown that the formalism is especially well suited t
with topological issues~in this respect see also Ref. 11!.

We would like to remark here that the GAQ formalism can, in principle, be applied to
group. It gives as a result a quantum dynamical system. However, for an arbitrary group
unclear what physical interpretation, if any, the resulting dynamical system will have. On the
hand, classical systems with a clear physical interpretation are commonly described, no
group, but by a Lagrangian or a set of differential equations. How to go from Lagrangia~;
differential equations! to a quantizing group~and the other way round! is an important question in
the GAQ formalism but not much is known yet about its general answer. The present p
however, addresses this question for the case of linear fields. It turns out that for linear fie
set of solutions of the equations of motion, that is, the~covariant! phase space of the theory,19,14

when extended, is a suitable quantizing group.
A particularly attractive direction of development is, therefore, towards nonlinear fields. H

ever, there appear to be obstructions for the phase space of nonlinear fields to have a
structure. In particular, Ref. 4 presented indications that for non-Abelian current groups
group law of a pointwise type, any equation of motion which preserves the group structure
have to be first order in derivatives of the space–time coordinates. A rigorous theorem is
ever, still lacking and, after all, first-order equations may give plenty of room for interes
developments as recent studies, relevant to our approach, indicate.23 On the other hand, constrain
quantization might be used to circumvent the problem of not having a group structure in the
space of the theory. In addition to all this, it was also shown in Ref. 4 that for some current g
with group laws of a non-pointwise type, we can actually find higher-order differential equa
which preserve them.

Let us finally consider the case of nonlinear gauge fields. For linear gauge fields, ifA,A8:
LM→G are connection and we define a composition law* by means of the equality

~A8*A!~g!5A8~g!A~g!, ~7.1!

thenA8*A is also a connection. As we have shown the composition law* is also compatible with
the equations of motion, and thus defines the natural group law for the theory. However, wG
is non-Abelian,A95A8*A defined by Eq.~7.1! does not satisfy the condition

A9~g8+g!5A9~g8!A9~g!, ~7.2!

and thusA9 is not a connection. Therefore, a ‘‘naive’’ extension of the configuration-space
proach to non-Abelian gauge fields is problematic even before the equations of motion ar
sidered.

Summarizing we would say that, because of obstructions which arise, the analysis we
performed in this paper for linear fields cannot be straightforwardly extended to nonlinear
However, the real importance of the obstructions is still not clear and further investigations
order.
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Chaos and geometrical resonance in the damped
pendulum subjected to periodic pulses

Ricardo Chacón
Departamento de Electro´nica e Ingenierı´a Electromeca´nica, Escuela de Ingenierı´as
Industriales, Apartado 382, Universidad de Extremadura, 06071 Badajoz, Spain

~Received 16 October 1996; accepted for publication 19 December 1996!

The chaotic behavior of a damped pendulum driven by a periodic string of pulses is
studied by means of Melnikov’s analysis. The reduction of homoclinic chaos, in the
asymptotic case of infinite period driving, is explained in terms ofgeometrical
resonance. © 1997 American Institute of Physics.@S0022-2488~97!02903-4#

I. INTRODUCTION

Recently, it has been proposed1 that the so-called geometrical resonance~GR! should really be
regarded as the natural, fully nonlinear extension of the usual~period! resonance. It was shown t
provide the explanation of the nonfeedback control of chaos2,3 in terms of an almost adiabati
invariant ~the action variable! associated with each geometrical resonance solution. For a
dimensional, dissipative, and nonautonomous, nonlinear oscillator,

ẍ5 f ~x!2d~x,ẋ!1m~x,ẋ!F~ t !, ~1!

where f (x)[2]V/]x @V(x) being an arbitrary time-independent potential#, 2d(x,ẋ) the damp-
ing force, andm(x,ẋ)F(t) a general temporal modulation, GR means that the amplitude, pe
andshapeof F(t) must be such as to preserve a previously chosen response from the unde
conservative system. Thus, ifxGR(t) is a GR solution of Eq.~1!, it satisfies

2d~xGR,ẋGR!1m~xGR,ẋGR!FGR~ t !50, ~2!

which is equivalent to the~local! energy conservation requirement~1/2!ẋGR
2 (t)1V@xGR(t)#5const.

The denomination GR arises because shape driving is just as meaningful as period driving
completely nonlinear problem, as was shown in Ref. 4, where a new route for eliminating
in nonlinear oscillators by changing only the shape driving was demonstrated. One can
conjecture that the corresponding threshold~in parameter space! for the chaos↔order transition
under solely shape-driving changes could be explained in terms of GR. In other words
expects that regularization of the dynamics will be guaranteed when the system respons
ciently approximates to a GR solution by means of such changes. To test such a supp
analytically in a simple system, here I shall concentrate on a paradigm of chaos theory
simple pendulum5—subjected to weak damping and driven by a small-amplitude periodic strin
pulses. In Sec. II, this string will be modeled by the Jacobian elliptic function~JEF! dn:6

ẍ1sin x52d ẋ1A dn~vt;m!, ~3!

where d, A!1, dn(vt;m) is the JEF of parameterm, and time is regarded as dimensionle
Observe that making the frequencyv(m)[2K(m)/T ~whereK is the elliptic integral of the first
kind!, for fixed A andT, one can vary the shape of the pulses by changingm between 0 and 1.
Second, we shall apply a periodicd function instead of the dn function and compare the results
using Melnikov analysis~MA !. Section III is devoted to analyzing the variations~in parameter
space! of the chaotic thresholds obtained in Sec. II by means of GR. Finally, Sec. IV includ
summary of the results and conclusions.
0022-2488/97/38(3)/1477/7/$10.00
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II. MELNIKOV ANALYSIS

Melnikov analysis is for the present the principal analytical procedure to provide a crit
for the onset of chaos, although its predictions are both limited~only valid for motions based a
points sufficiently near the separatrix! and approximate~MA is a first-order perturbative tech
nique!. Since it is a well-known method, it will not be discussed in detail here, but the intere
reader is referred to the abundant literature.7–11

A. Pulses modeled by the dn function

The application of MA to Eq.~3! involves calculating the Melnikov function,

M6~ t0!5E
2`

`

$2d ẋs
2~ t !1Aẋs~ t !dn@v~ t1t0!;m#%dt, ~4!

where the positive~negative! sign refers to the top~bottom! homoclinic orbit~of the underlying
conservative system!:

xs~ t !56~4 arctanet2p!, ẋs~ t !562 secht. ~5!

Using the Fourier expansion of dn,6 and after some simple algebraic manipulation, Eq.~4! can be
recast into the form

M6~ t0!524dE
2`

`

sech2~ t !dt6
Ap

K E
2`

`

sech~ t !dt

6
2pA

K (
n51

`

sechS npK8

K D cosS npvt0
K D E

2`

`

sech~ t !cosS npvt

K Ddt, ~6!

with K8 the complementary complete integral of the first kind. The resulting integrals ca
evaluated from standard integral tables.12 The result is

M6~ t0!528d6Ap2 (
n52`

`

an~m!bn~T!cosS 2npt0
T D , ~7!

an~m![
1

K
sechS npK8

K D , ~8!

bn~T![sechS np2

T D , ~9!

where 2K(m)/T has been substituted forv. As is well known,9–11 the Melnikov functionM6(t0)
measures the distance between the perturbed stable and unstable manifolds in the Poincar´ section
at t0. If M

6(t0) has a simple zero, then a homoclinic bifurcation occurs, signifying the possib
of chaotic behavior. Thus, only necessary conditions for steady chaos are obtained from
From Eq.~7! it is straightforward to demonstrate that a homoclinic bifurcation is guarantee
orbits whose initial conditions are sufficiently near the unperturbed separatrix~5! if

Umin~m,T!,
d

A
,Umax~m,T!, ~10!

where the threshold functions are
J. Math. Phys., Vol. 38, No. 3, March 1997
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Umax~m,T!5
p2

8 (
n52`

`

an~m!bn~T!, ~11!

Umin~m,T!5
p2

8 (
n52`

`

~21!nan~m!bn~T!. ~12!

Observe that the existence of a lower threshold~i.e., we needd .0 for the onset of chaos! is a
consequence of the positive character of the dn function.13 Since the main interest in this work i
the effect of shape on the dynamics, we shall fixT5const and study the chaotic threshold as
function of only the forcing shape parameterm. Qualitatively, the functionsUmax(m), Umin(m)
retain the same form asT is varied. Taking into account that dn@2Kt/T;m50#51, dn@2Kt/
T;m→1#50 ~the pulse area tends to 0 ifm→1, for T5const!, one obtains

Umax~m50,T!5Umin~m50,T!5p/4, ~13!

Umax~m51,T!5Umin~m51,T!50, ~14!

i.e., as expected, in such limits chaotic behavior is not possible. Now, let us define a ‘‘
window’’ in parameter space (m,T):

D~m,T![Umax~m,T!2Umin~m,T!5
p2

2 (
n50

`

a2n11~m!b2n11~T!, ~15!

with a2n11(m), b2n11(T) given by Eqs.~8! and ~9!, respectively. Then, one straightforward
obtains@cf. Eqs.~8! and ~9!# that for eachmP#0,1@ the chaos windowD~m5const,T! reaches a
maximum in the limitT→`. Similarly, one finds that for eachTP@0,̀ # the functionD~m,T
5const! reaches a maximum at somem5mmax with

lim
m→0,1

D~m,T5const!50. ~16!

B. Pulses modeled by a periodic d function

Let us now consider the case in which the periodic string of pulses is modeled by a pe
d function:14

ẍ1sin x52d ẋ1Ad1~ t;T!, ~17!

where,Gibbs’ phenomenon15 notwithstanding, we can use the corresponding Fourier expansi10

d1~ t;T![ (
n52`

`

d~ t2nT!5112(
n51

`

cosS 2npt

T D . ~18!

After applying MA to Eqs.~17! and ~18! one readily obtains the corresponding@cf. Eq. ~10!#
threshold-chaos condition,

Umin8 ~T!,
d

A
,Umax8 ~T!, ~19!

with
J. Math. Phys., Vol. 38, No. 3, March 1997
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Umax8 ~T!5
p

4 (
n52`

`

bn~T!, ~20!

Umin8 ~T!5
p

4 (
n52`

`

~21!nbn~T!, ~21!

andbn(T) given by Eq.~9!. The associated chaos window is now

D8~T![Umax8 ~T!2Umin8 ~T!5p (
n50

`

b2n11~T!, ~22!

verifying the limits

lim
T→0

D8~T!50, ~23!

lim
T→`

D8~T!5`. ~24!

Moreover, it is straightforward to obtain the relationships

Umax8 ~T!5 lim
m→1

H 2Kp Umax~m,T!J , ~25!

Umin8 ~T!5 lim
m→1

H 2Kp Umin~m,T!J , ~26!

which leads one to define the function

D~ t;T,m![
2K

p
dnS 2KtT ;mD , ~27!

with the noteworthy properties

D~ t;T,m50!51,

D~ t;T,m51!5d1~ t;T!,

1

T E
0

T

D~ t;T,m!dt51. ~28!

III. GEOMETRICAL RESONANCE ANALYSIS

As mentioned above, GR is concerned with the survival of solutions of the underlying
grable system. It is well known9,16 that for the conservative pendulum there is a family of perio
orbits inside the separatrix~5! given by

xin
m~ t !52 arcsin@Am sn~ t;m!#, ~29!

ẋin
m~ t !52Am cn~ t;m!, ~30!

where sn, cn are JEFs13 with periods
J. Math. Phys., Vol. 38, No. 3, March 1997
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Tin~m![4K~m!. ~31!

Also, there exist two families of periodic orbits outside the separatrix~5!, given by

xout
m ~ t !562 arcsinFsnS t

Am
;mD G , ~32!

ẋout
m ~ t !56

2

Am
dnS t

Am
;mD , ~33!

where the positive~negative! sign refers to counterclockwise~clockwise! pendulum rotations. The
periods of these orbits are

Tout~m![2AmK~m!. ~34!

The two families of inner and outer periodic orbits converge, in the limitm→1, to the homoclinic
orbits forming the separatrix~5!.

From Eq.~33! it is clear that when the periodic pulses are given by the dn function, the w
system~3! presents the exact GR solutions@cf. Eq. ~2!#,

xGR~ t !562 arcsinFsnS t

Am
;mD G ,

ẋGR~ t !56
2

Am
dnS t

Am
;mD , ~35!

with period given by~34!, and corresponding, respectively, to the initial conditions@x(t50)50,
ẋ(t 5 0)5 62/Am#, if and only if

d

A
5

Am
2

. ~36!

Observe that such GR solutions can exist if

A>2d, ~37!

while for the limiting valued /A51/2 they converge to the separatrix solutions~5!. Also, it is
obvious from Eqs.~2! and ~30! that GR is not possible with inner orbits.

Since MA is only valid for motions based at points sufficiently near the separatrix o
unperturbed system, we shall consider the GR concerning the separatrix~5! ~i.e., the special orbit
with periodTsep5`!. Therefore, note that the forcing corresponding to a GR for the separatri~5!
~i.e., the forcing permitting the survival of this separatrix! is written as

FGR,sep~ t !562d secht, ~38!

which can be recovered~for somem! from A dn(2Kt/T;m), but not from 2Am cn(t;m) @cf. Eq.
~30!#. However, we can require the dn forcing to be~period! resonant with either the inner an
outer orbits of the unperturbed pendulum, then take the limitT→` to see how well the GR forcing
~38! is approximated, depending on the shape of the resulting functions. In this way, we wi
the exclusive characteristic of the GR~shape! by calculating the corresponding threshold functio
@cf. Eq. ~10!#. From Eqs.~31! and~34!, it is obvious thatTin,out~m→1!→`. Therefore, we obtain
J. Math. Phys., Vol. 38, No. 3, March 1997
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lim
m→1

dn~2Kt/Tin ;m!5sech~ t/2!, ~39!

lim
m→1

dn~2Kt/Tout;m!5secht. ~40!

It is straightforward to calculate17 the associated threshold functions@cf. Eq. ~10!# for the limiting
cases~39!, ~40!:

Umin
in ~m→1,T5Tin!50, ~41!

Umax
in ~m→1,T5Tin!5

p

2
~&21!, ~42!

Umin
out ~m→1,T5Tout!50, ~43!

Umax
out ~m→1,T5Tout!5 1

2 . ~44!

In terms of chaos windows@cf. Eq. ~15!#, one findsDin.Dout, i.e., the range ofd /A for the onset
of chaos is broader for the inner orbit~period! resonance than for the outer orbit case. As all th
results were obtained forT5`, they should be explicable in terms of how near or far the shape~of
the limiting forcings! is from the GR shape. Indeed, for the outer~inner! orbits case, the separatri
is ~not! a GR solution of the whole system forT→`, which explains the different values for th
upper threshold functions~42!, ~44!.

The theoretical results of this paper have been checked against numerical calculations
resulting functions. Their proof involves relatively straightforward analysis of the threshold f
tions as well as the convergence properties of the series involved: therefore I do not inclu

IV. CONCLUSIONS

We have investigated the onset of homoclinic chaos in a damped pendulum driven
periodic string of pulses modeled first by the JEF dn, and then by a periodicd function. Com-
parison of the corresponding chaotic thresholds, obtained through MA, led to a generalized
tion with which to simulate periodic pulses. A GR analysis explained, in the asymptotic ca
infinite period driving, a reduction~in parameter space! of homoclinic chaos when the driving
shape matches the GR forcing shape. It is thus clear that the GR notion provides a power
with which to investigate the dynamics arising from a nonlinearly driven system~i.e., a fully
nonlinear system!, where the usual~frequency! resonance analysis seems to be powerless.
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Dispersive nonlinear geometric optics
Phillipe Donnat
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We construct infinitely accurate approximate solutions to systems of hyperbolic
partial differential equations which model short wavelength dispersive nonlinear
phenomena. The principal themes are the following.~1! The natural framework for
the study of dispersion is wavelengthe solutions of systems of partial differential
operators ine]. The naturale-characteristic equation ande-eikonal equations are
not homogeneous. This corresponds exactly to the fact that the speeds of propaga-
tion, which are called group velocities, depend on the length of the wave number.
~2! The basic dynamic equations are expressed in terms of the operatore]t . As a
result growth or decay tends to occur at the catastrophic rateect/e. The analysis is
limited to conservative or nearly conservative models.~3! If a phasef~x!/e satisfies
the naturale-eikonal equation, the natural harmonic phases,nf(x)/e, generally do
not. One needs to impose a coherence hypothesis for the harmonics.~4! In typical
examples the set of harmonics which are eikonal is finite. The fact that high har-
monics are not eikonal suppresses the wave steepening which is characteristic of
quasilinear wave equations. It also explains why a variety of monochromatic mod-
els are appropriate in nonlinear settings where harmonics would normally be ex-
pected to appear.~5! We study wavelengthe solutions of nonlinear equations ine]
for times O~1!. For a given system, there is a critical exponentp so that for
amplitudesO(ep), one has simultaneously smooth existence fort5O(1), andnon-
linear behavior in the principal term of the approximate solutions. This is the
amplitude for which the time scale of nonlinear interaction isO(1). ~6! The ap-
proximate solutions have residual each of whose derivatives isO(en) for all n.0.
In addition, we prove that there are exact solutions of the partial differential equa-
tions, that is with zero residual, so that the difference between the exact solution
and the approximate solutions is infinitely small. This is a stability result for the
approximate solutions. ©1997 American Institute of Physics.
@S0022-2488~97!00602-6#

I. INTRODUCTION

This paper presents a method for constructing rigorously justified infinitely accurate app
mate solutions to systems of hyperbolic partial differential equations which model short w
length dispersive nonlinear phenomena. A tool of general utility is created. It is important to
that there are a variety of more or lessad hocmethods to arrive at the leading term of th
approximate solutions. We provide a framework which justifies many such arguments an
serve to arbitrate controversies where contradictory simplifications are proposed.

The classical use of the expression dispersion is to describe the fact that white light i
into a rainbow of colors on passing through a prism. The shorter wavelength light, bluish in
is bent more than the longer wavelengths which are redish in color. The reason is that th
wavelength light travels more slowly through glass than does the longer wavelengths. Th
pendence of speed on wavelength is called dispersion.

The cause of this phenomenon is that the light forces the electrons in atoms and molec
0022-2488/97/38(3)/1484/40/$10.00
1484 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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oscillate. The oscillating electrons emit light. The total field is a combination of the incident
emitted fields which in nonobvious fashion leads to an effective speed of propagation wh
different than the speed in a vacuum. The resonant frequency of the atomic oscillators in g
in the near ultraviolet so that blue tones are closer to resonance than red. This explain
dispersion is stronger for shorter wavelengths. The reason that glass is dispersive and air i
because there are many more atoms per unit volume in glass. The reader is referred to Re
a particularly good presentation of the physics. The key is that the frequency of the exciting
and the resonant frequencies of the atoms are both very large and of comparable magnitude
infrared and x-ray regions of the electromagnetic spectrum, dispersive effects are muc
important. The need for this tuning is well expressed in the introduction to dispersion in Re

‘‘...to study the important subject of rapidly varying electromagnetic fields whose fre-
quencies are not restricted to be small in comparison with the frequencies which chara
terize the establishment of the electric and magnetic polarisation of the substances co
cerned.’’

In units so that the speed of light in vacuum is equal to one, wavelengthe electromagnetic
waves have periodO~e/2p!. The atomic oscillators to be near resonance will also have perio
the same order. A harmonic oscillator with this frequency has an equation of the form

e2
d2p

dt2
1p50.

Note in particular the appearance of the differential operatored/dt. Pursued systematically as i
Ref. 3, this idea leads to models for linear and nonlinear dispersion, as in Sec. II, which ha
following form. An unknownRN- orCN- valued fieldu(t,y) defined forx:5(t,y)PR11d satisfies
a system of partial differential equations

L~u,e]x!u1F~u!50, ~1.1!

where

L~u,j!:5 (
m50

d

Am~u!jm1L0 :5L1~u,j!1L0 . ~1.2!

Order J hypothesis: The nonlinear functions F and Am are smooth on a neighborhood of0,
and the nonlinear terms are of order J>2 in the sense that

uau<J22⇒]u, ū
a Am~0!50 and ubu<J21⇒]u, ū

b F~0!50. ~1.3!

The system is symmetric hyperbolic in the sense that

Am~u!5Am~u!* and A0~0!.0. ~1.4!

The simplest such equation ise]tu56cu whose solutions are of the forme6ct/e f (y). Unlessc is
purely imaginary the solutions are either negligibly small or explosively large. In order tha
system be neither strongly dissipative nor strongly explosive, we assume that

L052L0* . ~1.5!

The linearized equation atu50 is

L~0,e]x!v50. ~1.6!
J. Math. Phys., Vol. 38, No. 3, March 1997
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This is a constant coefficient system of lineare] differential equations. The hypothesis~1.5! is
equivalent to conservation of the quantity^A0u,u& for this linearized system. The discussion
dispersion suggests that one seek solutions of wavelengthO(e) and with that in mind, note tha
there exist plane wave solutionsv5eibx/er exactly whenrPker L(0,ib). This kernel is nontrivial
exactly whenb is a solution of thee-characteristic equation

05detL~0,b!5detS (
m50

d

ibmAm~0!1L0D . ~1.7!

The solutionsb are by definition the points of thee-characteristic variety, denotedechar. The
presence of the termL0 in ~1.7! shows that this variety depends on the lower-order terms in
equation, and is defined by an equation which need not be homogeneous inb.

Definition: For any bPR11d, let p~b! denote orthogonal projection onto the kernel
L(0,ib).

In particularp~b! is nonzero exactly whenbPe char.
There are at least three distinct ways to arrive at theansatzfor the approximate solutions o

this article. The idea of modulated plane waves, sometimes called the slowly varying env
hypothesis, is the most classical. A second is Whitham’s averaged Lagrangian method4 which
requires a variational form. Both of these methods are intuitively appealing and predict the le
term in an approximate solution. Since the leading term is the most interesting, one might
that such methods should be sufficient. However, if the approximate solution is constructe
up to the principal term, then the residual in the equation is of the same order of magnitude
approximation itself. This explains in part why it is difficult to show that such approximations
in fact accurate. One of the key recent advances for nondispersive problems, by Choquet-
Majda, Rosales, Hunter, Keller, Joly, Metivier, and Rauch,5–13 is the development of a third
strategy which follows the lines of WKB expansions is a systematic way. In addition to flexib
this approach has the dual advantage of often suggesting improved approximations, an
applicability. This is partly why it is the only one of the approaches which has lead to rigo
results for nonlinear problems. A survey of recent progress including a more complete bibl
phy can be found in Ref. 14.

The natural starting point for all approaches are problems which are explicitly solv
Consider the linear constant coefficient oscillatory initial value problem

L~0,e]x!v
e50, ve~0,y!5g~y!eic~y!/e. ~1.8!

The solution is given exactly by

ve~ t,y!5
1

~2p!d
A0

21/2E
Rd
E
Rd
eiH ~e,h!tei ~x2y!•hA0

1/2g~y!eic~y!/e dydh, ~1.9!

where

H~e,h!:5A0
21/2S iL 0

e
2(

j50

d

h jAj DA0
21/2. ~1.10!

If the e-characteristic variety has the property that over the pointsdc(y) it consists of a finite
number of smooth nonintersecting sheets in the sense that forh in a neighborhood of

$dc~y!:yPsuppg%

the equation
J. Math. Phys., Vol. 38, No. 3, March 1997
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L~0,i t,ih!50

has exactlyK distinct roots

t1~h!,t2~h!,•••,tK~h!,

then there areK natural phases for the problem~1.8! namely, the solutions of the eikonal equatio

detL~0,idf!50, f~0,y!5c~y!, ~1.11!

which are the solutions of theK reduced equations

] tfk5tk~]yfk!, fk~0,y!5c~y!, 1<k<K. ~1.12!

The nonlinear equations~1.12! are uniquely solvable for small time. Applying the method
stationary phase for such times shows that ase→0 the solution given by~1.9! is equal to a sum of
K terms

ve5 (
k51

K

vk
e , vk

e5ak~e,x!eıfk~x!/e, ak~e,x!;(
j50

`

e jak, j~x!. ~1.13!

The leading profilesak,0 are polarized and have initial values according to

p~dfk!ak,05ak,0 , ak,0~0,y!5p„dfk~x!…g~y!. ~1.14!

They are determined by a set of ordinary differential equations, aka transport equations,
curves in space–time, aka, rays, moving at the natural group velocities2]htk„df(x)…. In Propo-
sition 3.3 we will see that these transport equations are equivalent to the system

p„df~x!…L1~0,]x!p„df~x!…ak,0~x!50. ~1.15!

In addition to the asymptotic evaluation of exact solutions we would also like to cite the pap
Lewis,15 who constructs asymptotic solutions of dispersive linear problems which need not
explicit solutions. His models for the dispersion of light do not have natural energy estim
which prevents him from proving that his approximate solutions are close to exact solution
give an example where approximate solutions are in fact far from exact solutions after Th
3.7.

There is a large literature on relaxation problems which is also related to our work.
problems are singular limits of nonlineare] equations for which decay likee2t/e is present in
some modes. The goal is to extract a correct description for a relaxed system in which these
are not present~see Ref. 16 and its bibliography!. An important part of the analysis are hypothes
which exclude explosive modes and guarantee stability as does our conservation hypothes~1.5!.

It is reasonable to seek approximate solutions similar to those in~13! but in contexts where
they are not derived by an asymptotic analysis of an explicit solution, in particular for nonl
problems. With this in mind suppose thatf(x) satisfies the eikonal equation. The first nonline
phenomenon to discuss is the creation of harmonics. Nonlinear functions applied to express
the form a(e,x)eif(x)/e will produce harmonics, that is expression with phasesnf for nPZ.
Negative values ofn come from nonlinear functions such as the complex conjugate. The v
n50 appears clearly for example for the nonlinear functionuuu2. An important difference between
the case of dispersive geometric optics and the nondispersive case~for example, Refs. 9–13! is
that if f satisfies the eikonal equation, then for mostn, nf does not satisfy the eikonal equatio
The simplest case is the Klein–Gordon equatione2hu1u50. If f satisfies the eikonal equatio
J. Math. Phys., Vol. 38, No. 3, March 1997
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2, then fornÞ61, nf satisfies the eikonal equation at no points. Forn521, nf
satisfies the eikonal equation at all points. This is an example for which the following hypot
is satisfied.

Coherence hypothesis: The phasef is a smooth real solution of the eikonal equation onV
and or each mPZ\0. If L „imdf(x)… is singular for one xPV, then it is singular for all xPV.
When L„imdf(x)… is singular, the matrixp„mdf(x)… is assumed to be a smooth function of.

Analogous coherence hypotheses were introduced by Majda and Rosales6 in the study of
multiphase nondispersive problems. The interaction of harmonics of dispersive systems is
sense analogous to the interaction of distinct phases for nondispersive systems.

The next hypothesis avoids some small divisor problems asunu→` and is satisfied in all the
physical examples we have studied.

Strong finiteness hypothesis: L1„idf(x)… is nonsingular for all xPV.
This hypothesis implies that

M:5$mPZ:detL~ imdf!50% ~1.16!

is finite. The principal term in our approximate solutions is a sum of terms of the form~1.13!, one
term for each of the eikonal phasesmf,

ue'epa0~x,f~x!/e!, a0~x,u!:5 (
mPM

am~x!eiu, p„mdf~x!…am~x!5am~x!. ~1.17!

Roughlyue is a finite family of nonlinearly interacting dispersive waves whose amplitude,e p is
discussed in the next paragraph.

The second nonlinear effect to take care of is that the strength of interaction and therefo
time scale for interaction depends on the amplitude of the wave. The amplitude of the so
~1.17! is e p. The exponentp is chosen so that the time scale for the nonlinear interactions isO~1!.
This vague phrase means that one cannot ignore the nonlinear effects if one wants an app
tion for times independent ofe, but for times tending to zero withe they can be ignored. We
present two independent computations ofp. The second is at the beginning of Sec. IV A. For t
first, suppose thatu ande]ue areO(ep). Then~1.1! takes the form

S L1~0,]x!1
1

e
L0Due5

1

e
O~epJ!,

where the right-hand side comes from the nonlinear terms satisfying~1.3!. Thanks to the conser
vation hypothesis, the propagators for the linear operator on the left are uniformly bounded
standard Sobolev spaces. Thus the effect of the nonlinear terms over times of order one
mated to be of orderepJ21. The critical exponentp is chosen so that this is equal toe p, the
amplitude of the solutions studied. Thus

p5
1

J21
. ~1.18!

In Sec. V interaction coefficientscm„x,$am(x)%… are defined depending on the phasef and the
derivatives ofL(u,.) andF(u) with respect tou at u50. Each functioncm is a homogeneous
polynomial in$am(x)% of degreeJ. The principal profilea0 in ~1.17! is uniquely determined from
its initial data by the coupled semilinear symmetric hyperbolic systems

p„mdf~x!…L1~0,]x!p„mdf~x!…am1cm„x,$am~x!%…50. ~1.19!
J. Math. Phys., Vol. 38, No. 3, March 1997
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The operators on the left are those in~15!. Proposition 3.3 shows that where the characteri
variety is simple they are transport operators at the group velocity. To guarantee uniquene
needs to suppose that the domainV on which one works satisfies the following condition.

Determinacy hypothesis:Vù~@0,T1#3Rd! is a domain of determinacy for each of the sy
metric hyperbolic operatorsp(mdf)L1(]x)p(mdf), mPM.

Proposition 3.2 shows that this is automatically satisfied ifVù~@0,T1#3Rd! is a domain of
determinacy forL1(0,]x)

The principal term can be corrected to give infinitely accurate approximations. These a
dispersive analogue of the constructions of Joly–Rauch and Gues in Refs. 9, 17, and 1
proofs of all these authors are descendents of the seminal article of Lax19 showing that the
geometric optics approximate in the linear case is easily justified by constructing an infi
accurate approximation solution and then using energy estimates.

The nonlinear dispersive analogue of Lax’s result is harder. For one, the solutions te
infinity in the norms in which the Cauchy problem is well set. This suggests that they may be
increasingly sensitive to perturbations in the data, and therefore the approximate solution
not be accurate. In fact they are accurate as we prove in Sec. VI.

The approximate solutions have the form

ue~x!5epa„e,x,f~x!/e…, with a~e,x,u!;ep (
jPpN

e jaj~x,u!. ~1.20!

The functionsa(e,x,u) and aj (x,u) are smooth in all their arguments and periodic inu. To
describe the main results introduce the projectorP acting on trigonometric polynomials
d(x,u)5(dn(x)e

inu by

Pd:5 (
nPN

p„ndf~x!…dn~x!einu. ~1.21!

The next theorem shows that infinitely accurate approximate solutions of the form~1.20! are
uniquely determined once initial data are given forPaj (0,y).

Theorem: Suppose that T1.0 and for j>0

gj~y,u!PC0
`~Rd3S1!, suppg,~Vù$t50%!3S1 and Pgj5gj .

Then there is a TP]0, T1] and a unique solution a0PC(0)
` ((Vù$0<t<T%)3S1) of ~1.19! such

that Pa0(0,y)5g0(y). With this T, there are unique functions ajPC(0)
` ((Vù$0<t<T%)3S1)

satisfying the initial conditionsPaj (0,y)5gj (y) and so that if ue satisfies~1.20!, then for alla
and M one has

]a
„L~ue,e]x!u

e1F~ue!…5O~eM !

uniformly onVù$0<t<T%.
This result is proved in Sec. IV in the semilinear case and in Sec. V for the quasilinear

That the approximate solution is infinitely close to exact solutions is given by the following r
which is weaker than that proved in Sec. VI.

Theorem: Suppose that ue and T are as in the previous theorem and thatve is the unique
local solution of the initial value problem

L~ve,]!ve1F~ve!50, ve~0,y!5ue~0,y!. ~1.22!

Then for small positivee, ve exists and is smooth on@0,T# 3Rd and for all a and M one has

]x
a~ue2ve!5O~eM ! ~1.23!
J. Math. Phys., Vol. 38, No. 3, March 1997
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uniformly on@0,T#3Rd.
In Sec. II we present three models from nonlinear optics, one linear, one semilinear, an

quasilinear which together with the Klein–Gordon equation serve as examples througho
exposition. In Sec. III, linear dispersion is discussed. Here many fundamental relations nee
the sequel are proved and the scheme for handling the recursive definition of the profileaj is
developed. While much of this material is known, we think that much is also new. In this se
we also show that for the simple nonconservative exampleL~e]!:5e2h21 there are asymptotic
solutions with infinitely small residual,L(e])u;0, so thatue and ve have disjoint support for
times t;1. In Sec. IV we construct approximate solutions with infinitely small residual in
semilinear case. The important coherence, finiteness, and determinacy hypotheses are intr
In Sec. V the additional work for quasilinear terms is presented. The proof of stability is giv
Sec. VI.

II. TWO MODELS FROM NONLINEAR OPTICS

The speed of propagation of light in dense materials like glass and water depends
frequency. As a consequence white light passing through a prism is decomposed into a sp
of colors, a discovery of Newton. These phenomena are calledlinear dispersion. Here the qualifier
linear means that the superposition principal holds.

The development of lasers allowed the exploration of high-intensity electromagnetic w
and led to the discovery that the speed and therefore the refractive index depends also
intensity of the field,n5n(v,I ). Taylor expansion atI50 yields

n~v,I !;n0~v!1n2~v!I1••• ,

where the notations are those standard in the physics literature. Truncating at then2 term yields

n~v!5n0~v!1n2~v!I , ~2.1!

which is called theKerr nonlinearity. The common signn2.0 means that speed of propagation
a decreasing function of intensity of the light.

A. The Lorentz model for linear dispersion

Materials which exhibit an appreciable nonlinear index are usually dispersive in the cla
sense; the speed depends on frequency. Thus the point of departure for modeling the no
index are models of linear dispersion. The standard model, due to Lorentz,20 is discussed in Ref.
3. In particular its relation to excellent textbook treatments~Refs. 1 and 21! is discussed. In units
normalized so that the speed of light is equal to 1, the equations read

Et5curl B2Pt , Bt52curl E, e2] t
2P1P5gE. ~2.2!

div~E1P!50, div B50, ~2.3!

The unknowns are the electric and magnetic fields,E, B, and the polarization per unit volume,P.
The last equation from~2.2! shows that the local polarization responds to the electric field a
field of harmonic oscillators. Equation~2.3! is satisfied for all times as soon as it is satisfied
t50. Thus, it is a constraint on the initial data.

The key observation is the appearance of the small parametere which has the order of
magnitude of the wavelength of light divided by the next smallest characteristic length i
problem. For example for the propagation of a bullet- or cigar-shaped laser pulse throu
ordinary sized glass lens, the smallest length scale is the spotsize typically of order 1 mm, an
e,1023.

To convert~2.2! to a first-order system, introduce
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ns

c. III.

of the
el
symp-
ts are

a
n
ly
range
t the
etimes

e
to one.

1491P. Donnat and J. Rauch: Dispersive nonlinear geometric optics

¬¬¬¬¬¬¬¬¬¬
Q:5e] tP, u:5~E,B,P,Q!. ~2.4!

The dynamics then reads

eEt5e curl B2ePt , eBt52e curl E, ePt5Q, e] tQ1P5gE. ~2.5!

There is a natural quadratic energy. Multiplying theE equation byE, theB equation byB, theP
equation byP, and theQ equation byg21Q, then integrating the sum of the resulting expressio
overRd yields the conservation law

05] tE
Rd

^A0u0 ,u0&dy, A0 :5diagS I ,I , 1g I ,
1

g
I D . ~2.6!

Multiplying equations~2.5! and ~2.6! by A0 expresses the fundamental system~2.2! in the form

L~e]!u50, L~j!:5 (
m50

d

jmAm1L0 , ~2.7!

where the 12312 matricesAm are real symmetric, and

L05S 0 0 0 1

0 0 0 0

0 0 0 21/g

21 0 1/g 0

D
is real antisymmetric. This is a dispersive symmetric hyperbolic system in the sense of Se
The key ingredient in the modeling of dispersion is the fact of studying wavelengthe oscillations
of a system ine].

Nonlinear optical models are characterized by the fact that the polarizationP responds to the
electric field in a nonlinear way. Two standard models are described below. For each
nonlinear models, the linearization atu50 is given by the Lorentz model. Thus the Lorentz mod
yields a good description of solutions of the nonlinear equations for very weak fields. The a
totic analysis of this paper describes high-frequency solutions for which the nonlinear effec
important.

B. The anharmonic oscillator model

The change here is to model the response of the polarization as ananharmonic oscillator

e2Ptt1“V~P!5gE ~2.8!

~see Refs. 22 and 23!. The medium is supposed to be centrosymmetric which means thatV is an
even function, i.e., satisfiesV(2P)5V(P). For low fields, the classical harmonic oscillator is
good approximation. Denote byEa;1011 m21 the electric field felt by an electron in a Hydroge
atom. For very high fields, i.e.,E.Ea , I.1016 W/cm2, ionization processes occur and typical
the materials through which the light is passing are damaged. There is an intermediate
I;1012 W/cm2 where the intensity is low enough to avoid breakdown but high enough so tha
perturbations of the harmonic oscillator have to be taken into account. This regime, som
called that of weak nonlinearity, is the field of nonlinear optics.

ReplacingE by E/Ea , B by cB/Ea , andP by P/e0Ea gives dimensionless fields. The regim
of weak nonlinearity discussed above corresponds to dimensionless fields small compared
It is thus reasonable to introduce the Taylor expansion of the smooth real-valued potential
J. Math. Phys., Vol. 38, No. 3, March 1997
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V~P!;
uPu2

2
2

auPu4

4
1••• , a.0. ~2.9!

The asymptotic analysis of Sec. IV shows that the coefficienta is essentially the same quantity a
the Kerr Law constantn2 and is of magnitudeO~1! in the nondimensional units above.

It may seem that for fields small compared to one, the nonlinear term will be neglig
However, the natural eikonal equation and polarization identities are such that the leading
linear terms in~2.8! exactly compensate, so that the nonlinear term is crucial.

Introducing the unknownu from ~2.4!, this model is a dispersive semilinear symmetric h
perbolic system. It is semilinear because the nonlinear“V(P) does not involve derivatives.

C. Instantaneous nonlinear response

This model supposes that the nonlinear response of the polarization is instantaneous an
by

PN5PN~E!, PN~2E!52PN~E!, ]E
bPN~0!50 for ubu<2.

In the dimensionless units above, the fields of interest are small compared to one and thePN can
be replaced by the leading term in its Taylor expansion

PN5auEu2E,

where the constanta;O~1! is essentially then2 in Kerr’s Law. The polarization is the sum of thi
instantaneous cubic term and the term of Lorentz. The system of equations defining the dy
is then

Et5curl B2~P1auEu2E! t , Bt52curl E, e2] t
2P1P5gE, ~2.10!

div~E1auEu2E1P!50, div B50. ~2.11!

For the unknownu as in Sec. II A, this is a dispersive symmetric hyperbolic system whic
quasilinear because of the term (auEu2E) t .

III. ASYMPTOTIC ANALYSIS OF LINEAR DISPERSIVE HYPERBOLIC SYSTEMS

This section presents background material on dispersive symmetric hyperbolic equatio
Symmetric hyperbolicity hypothesis: Suppose that

L~]!:5 (
m50

d

Aj

]

]xj
1L05A0]01A0]11•••1Ad]d1L0 . ~3.1!

The system of partial differential operators L~]! is supposed to be a constant coefficient cons
vative symmetric hyperbolic system of order one with timelike variable t:5x0, that is, the coeffi-
cients Am are N3N Hermitian symmetric matrices with A0 strictly positive and L0 is an anti-
Hermitian matrix.

Aside:One could consider systems withx, e-dependent coefficients satisfying

Aj~x,e!5Aj~x,e!* , A0.cI.0,

]e,x
a $Am ,L0%PL`~R11d!, L0~x,0!1L0* ~x,0!>0,
J. Math. Phys., Vol. 38, No. 3, March 1997
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for some constantc. The analysis for nonlinear phases extends without essential modificati
this case. The price to pay is heavier notation. Physically, the variable coefficients repre
medium whose properties vary smoothly from point to point.

The goal is to describe oscillatory solutions ofL(e])ue5(L1(e])1L0)u
e50 which have

wavelengthe!1. The presence of the operatorse] makes the system singular. Exactly the sa
sort of singularity is familiar from the semiclassical limit in quantum mechanics. It has
peculiarity of rendering the principal part and lower-order terms in the equation of the same
That is, the natural principal symbol involves the lower-order terms as well as the terms of
1. The natural eikonal equation is not homogeneous indf and equivalently, the natural principa
symbol is not homogeneous inj. This is nearly equivalent to the fact that dispersive phenome
where speeds depend on the modulus of the wave number, can be modeled.

A. Plane waves and dispersion relations

The point of departure is the fact that linear partial differential operators with constant
ficients act simply on exponential functions of the formeib.x/er wherebPR11d andrPCN. Such
expressions are calledplane waves. One has

L~e]!~eib.x/er !5eib.x/eL~ ib!r5eib.x/e„L1~ ib!1L0…r . ~3.2!

There is a fundamental dichotomy. IfL( ib) is invertible, then the equation

L~e]!ue5eib.x/eb ~3.3!

has a unique plane wave solution

ue5eib.x/eL~ ib!21b, ~3.4!

and the homogeneous equationL(e])u50 has no plane wave solutions.
On the other hand, ifL( ib) is not invertible, there are plane wave solutions of the homo

neous equation, and the inhomogeneous equation has plane wave solutions only for specia
of b, those which satisfyp~b!b50 wherep~b! is defined as follows.

Definitions: The covectorbPR11d is e-characteristic denotedbPechar(L) when

detL~ ib!50. ~3.5!

Equation (5) is called thedispersion relation. For bPR11d, p~b! denotes the spectral projectio
of L( ib) onto its kernel. Define a partial inverse Q~b! from CN to itself by

Q~b!p~b!50, Q~b!L~ ib!w5„I2p~b!…w for all wPCN. ~3.6!

Remarks:~1! For bPe char, the projectionp~b! is equal to

p~b!:5
1

2p i Ruzu5r
„z2L~ ib!…21 dz, ~3.7!

where r is so small that 0 is the only eigenvalue inside the contour. Symmetric hyperbo
implies thatL( ib) is an anti-Hermitian matrix, sop~b! is an orthogonal projector and the alg
braic and geometric multiplicity of the eigenvalue 0 are equal. Here the geometric multiplic
defined as dim kerL( ib), while the algebraic multiplicity is defined to be order of the rootz50
of the equation det„zI2L( ib)…50.

~2! bPR11d\e char⇒p~b!50.
~3! The matrixQ is given by the contour integral
J. Math. Phys., Vol. 38, No. 3, March 1997
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Q~b!5
i

2p R
uzu5r

1

z
„z2L~ ib!…21 dz. ~3.8!

Symmetric hyperbolicity implies thatQ~b! is anti-Hermitian.
~4! For bPechar,r belongs to the kernel ofL( ib) if and only if ue:5eib.x/er are plane wave

solutions of the equationL(e])ue50. The equation~3! has a plane wave solution if and only
p~b!b50, in which case the solutions are given by the vectorsr satisfying

r2Q~b!bPker L~ ib!.

Proposition 3.1: For eachhPRd there are at most N valuest such that ~t,h!Pechar. If
t1,t2,•••,tk are the values, then

CN5 (
m51

k

ker L~ i tm ,ih!

is an orthogonal decomposition with respect to the scalar product determined by A0.
Proof: SinceL( ib)5 i „L1(b)2 iL 0…, it follows thatb:5~t,h! belongs toechar if and only if

t satisfies

detS tA01(
j50

d

h jAj2 iL 0D 50.

SinceA0 is positive definite and(j50
d h jAj2 iL 0 is Hermitian symmetric, the result follows from

the spectral theorem. j

It follows that for rPCN the initial value problem

L~e]!ue50, ueu t505eih•y/er

has the exact solution

ue:5 (
m51

k

ei ~tm ,h!.x/erm , where r5(
0

k

rm

is the decomposition ofr into elements of kerL( i tm ,ih).
In the Proposition the scalar product with respect toA0 plays an important role. This is tied t

the fact that the time variablet plays a distinguished role in the decompositionb5~t,h!. For a
different time variable the orthogonality of the kernels would be with respect to a different s
product. The projectorsp~b! on the kernel are chosen orthogonal with respect to the scalar pro
in CN which is the scalar product for which the symbolL( ib) is anti-Hermitian.

Example:For the Klein–Gordon operatorL~e]!5e2h11, bPechar if and only if it satisfies
the dispersion relationb 0

25b 1
21•••1bd

211. This is a second-order analogue, studied by seek
plane wave solutionsue5eib.x/ec. The identity

~e2h11!ue5eib.x/e~2b0
21b1

21•••1bd11!

yields the dispersion relation.
Example:Compute plane wave solutions of the Lorentz model from Sec. II A by see

exact solutions of the formeb.x/e~e, b, p, q!. This yields the system of homogeneous line
equations

i te2 ih`b52q, tb1h`e50, i tp5q, i tq52p1ge. ~3.9!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Fix h and seek the valuest 5 t~h! belonging to the variety.
There are always solutions witht50. The corresponding vectors are those with

e ih, b ih, p5ge, q50. ~3.10!

This is a two-dimensional family. None of the nonzero elements of this family satisfy the
straint ~2.5!.

For tÞ0 one can eliminateb andq from the system to obtain the reduced system

t 2e1h`~h`e!52t 2p, ~2t 211!p5ge.

In the first equation, simplify the double cross product and multiply byt 221 to eliminatep to find

„~t 221!~t 22uh2u1uh&^hu!2gt 2
…e50. ~3.11!

The physically relevant solutions satisfy the constrainth.e50, which yields the dispersion relatio

05~t 221!~t 22uh2u!2gt 25t 42~11g1uhu2!t 21uhu2. ~3.12!

Note that this equation is not homogeneous int , h. The spectral projectionp~b! corresponding to
the roots of~3.11! is orthogonal projection on the kernel which is the set of vectors satisfyin

e'h, t b52h`e, p5
g

2t 211
e, q5 i t p. ~3.13!

Note that the phase velocityvf52t h/ uhu2 so that the triplevf , e, b is an oriented triple inR3.
Equation ~3.13! defines a kernel of dimension two parametrized by the vectorse'h by the
mapping

e'h°K~e!:5S e, 2h

t
`e,

g

2t 211
e,

i t g

2t 211
eD .

Note that fore'h,

iK~e!i5niei , n~t,h!:5S 11
h2

t 2 1
g2~11t 2!

~12t 2!2 D 1/2.
Set

S~u!5S~E,B,P,Q!:5E1
h

t
`B1

g

2t 211
P2

i t g

2t 211
Q.

We next show that

n2p~u!5K~ph'„S~u!…!5KSS~u!2
^S~u!,h&h

ihi2 D . ~3.14!

Since both sides are linear it suffices to prove~3.14! for u either belonging to or orthogonal t
kerp~(u). We use two identities satisfied for alle'h.

„u,K~e!…5„S~u!,e) and S„K~e!…5n2e.
J. Math. Phys., Vol. 38, No. 3, March 1997
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The first identity shows thatp(u)50 if and only if ph'„S(u)…50, so ~3.14! holds foruPkerp.
For 0Þu'kerp, choosee'h so thatu5K~e!. Then

K~pn'„S~u!…!5K~ph'~S„K~e!…!!5K~„ ph'~n2e!…!5K~n2e!5n2u

verifying ~3.14! in these cases and therefore completing the proof of~3.14!.
The dispersion relation yields a quadratic equation fort 2 which is explicitly solvable. The

resulting expression is rarely used. The simple explicit representation

uhu25t2S 12
g

t221D ~3.15!

for h as a function oft is often preferred.
The remaining solutions of the homogeneous linear system are those witheih which in

addition to those witht50 yield a family witht 2212g50. This inventory of 12 solutionst for
eachh shows that equation~3.5! is exactly

t 2~t 2212g!@~t 221!~t 22uh2u!2gt 2#250.

B. Approximate solutions with varying amplitude and linear phases

We construct solutions which on scaleso~1! look like plane waves, but whose amplitudes a
smoothly varying on scalesO~1!. The residuals are infinitely small. Seek asymptotic solutions
the equation

L~e]!ue5„L1~e]!1L0…u
e5b~x,e!eib.x/e, b~x,e!;(

j50

`

e jbj~x!, ~3.16!

with

ue5eib.x/ea~x,e!, a~x,e!;(
j50

`

e jaj~x!. ~3.17!

Pluggingue into the partial differential operator yields

L~e]!ue5eib.x/e„L1~e]!a1L~ ib!a…. ~3.18!

The strategy is to expand

L~ ib!a1L1~e]!a2b;(
j50

`

e j cj~x!, ~3.19!

and to choose the coefficientsaj so that all thecj vanish identically.
Setting the leading term in~3.19! equal to zero yields

05L~ ib!a02b0 . ~3.20!

There is a fundamental dichotomy. IfL( ib) is nonsingular, thena0 is determined fromb0 by the
linear algebraic equation~3.20!. An entire asymptotic expansion is determined by suchlocal
algebraic equations. This is in exact analogy to elliptic high-frequency asymptotics~see Refs. 24
and 25!.

The situation is more interesting whenL( ib) is singular. In that case, multiplying~3.20! by
p~b! yields the constraint
J. Math. Phys., Vol. 38, No. 3, March 1997
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p~b!b050. ~3.21!

Multiply ~3.20! by Q~b! to find

„I2p~b!…a05Q~b!b0 . ~3.22!

Equation~3.20! holds if and only if~3.21! and ~3.22! hold.
Settingc150 in ~3.19! yields

„L01L1~ ib!…a11L1~]!a05b1 .

Typical of two scale expansions, this equation involves coefficientsa0 and a1 of two different
powers ofe. Multiplying by p~b! eliminates thea1 term. This yields

p~b!b15p~b!L1~]!a05p~b!L1~]!p~b!a01p~b!L1~]!„I2p~b!…a0 .

Using ~3.22! gives

p~b!L1~]!p~b!a05p~b!b12p~b!L1~]!Q~b!b0 . ~3.23!

Equation~3.23! yields an initial value problem forp~b! a0 involving the first-order partial differ-
ential operatorp~b!L1~]!p~b!. That this problem is solvable is guaranteed by the following sim
but important Proposition.

Proposition 3.2: If L1(]x) is a symmetric hyperbolic operator and0ÞpPHom~CN! is an
orthogonal projector, thenpL1(]x)p is symmetric hyperbolic operator acting on functions w
values inRangep.

Proof: The coefficient of]j is equal to the restriction ofp Ajp to Rangep which is Hermitian
sinceAj andp are.

The coefficient of]05]t is the restriction ofp A0p to Rangep so is positive definite sinceA0
is. j

Thus, equation~3.23! is a linear symmetric hyperbolic system and so determinesp~b!a0 from
its initial data. Since„I2p~b!…a0 is already known, this completes the determination ofa0. If p~b!
has rank one, thenp~b!L1~]!p~b! is a directional derivative in the direction of a constant coe
cient vector field. Such transport operators also can arise whenp~b! has rank greater than one
Whenp~b!L1~]!p~b! is a directional derivative,p~b!a0 is determined by solving ordinary differ
ential equations along the integral curves of the vector field. The classic example which le
an operator which is not a directional derivative isconical refraction. In Proposition 3.3 we show
that this exceptional behavior occurs only for pointsb where two or more sheets of th
e-characteristic variety intersect.

Example:For the Klein–Gordon operatore2h11, suppose thatb satisfies the dispersion
relationb0

25b1
21•••1bd

211. Then

~e2h11!ue;eib.x/eXe2i S b0] t2(
j50

d

b j] j D a01O~e2!C.
This yields the transport equation

S b0] t2(
j50

d

b j] j D a050.

The amplitudea0 is rigidly transported with velocity given by
J. Math. Phys., Vol. 38, No. 3, March 1997
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vg :5group velocity:5
2~b1 ,...,bd!

b0
.

For comparison, the phase velocity is given by

vf :5phase velocity5
2b0~b1 ,...,bd!

~b1
21•••1bd

2!
.

The appearance of phase velocities which depend onubu is the signature ofdispersion.
The next proposition gives a sufficient condition for the symmetric hyperbolic ope

p~b!L1~b!p~b! to be a simple directional derivative.
Proposition 3.3: Suppose that thee-characteristic variety of L is a graph nea

b5~t,h!PR11d in the sense that forh near h there is a unique point„t~h!,h…P echarnear b.
Thent~h! is a smooth function ofh and if one defines the transport operator at the group veloc
by

V~bI ;]x!:5
]

]t
2(

j50

d
]t~hI !

]h j

]

]yj
:5

]

]t
1vg .]y ,

thenp~b!L1~]!p~b! is the simple directional derivative

p~bI !L1~]x!p~bI !5p~bI !A0p~bI !V~]x!.

Proof: Since

L~ ib!5A0
1/2S i tI1(

j51

d

ih jA0
21/2AjA0

21/21A0
21/2L0A0

21/2DA0
1/2,

the solutionst are the eigenvalues of the Hermitian matrix

H~h!:5A0
21/2S iL 02(

j50

d

h jAj DA0
21/2.

Chooser.0 so that forh nearh there is exactly one eigenvalue in the disk of centerb0 and radius
r . The smoothness oft~h! then follows from the contour integral representation

t~h!5

TraceS 1

2p R
uzu5r

z„zI2H~h!…21 dzD
TraceS 1

2p R
uzu5r

„zI2H~h!…21 dzD .

Differentiate the identityL„i t~h!,ih… p„t~h!,h…50 with respect tohj to find

L„i t~h!,h…
]

]h j
p„t~h!,h…1 i S ]t~h!

]h j
A01Aj Dp„t~h!,h…50.

Multiplying by p„t~h!,h… eliminates the first term to give

p„t~h!,h…S ]t~h!

]h j
A01Aj Dp„t~h!,h…50.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Using this for the summands on the right-hand side of the identity

p~b!L1~]x!p~b!5p~b!A0p~b!
]

]t
1(

j51

d

p~b!Ajp~b!
]

]xj

yields the desired relation

p~b!L1~]x!p~b!5p~b!A0p~b!S ]

]t
2(

j50

d
]t~h!

]h j

]

]xj
D . j

Example:For the Lorentz model considerhÞ0 andb5~t,h!Pechar witht 2¹$0,11g%. Thent 2

satisfies~3.13! which has a pair of distinct positive solutions for eachh since

discriminant5~ uhu2111g!224uhu25„uhu21~g21!…22~g21!21~11g!2.0.

Equation~3.15! shows that the graph ofuhu2 as a function oft 2 rises from 0 tò ast 2 increases
from 0 to 1. There are no solutions witht 2 between 1 and 11g. The graph then rises from 0 t
` approaching the lineuhu25t 2 from below ast 2→`. The slope is always positive in fact,

duhu2

dt 2 511
g

~t 221!2
.0.

The group velocity is computed as follows. The chain rule yields

dutu
duhu

5
dutu
dt 2

dt 2

duhu2
duhu2

duhu
5S dt 2

dutu D
21S duhu2

dt 2 D 21

2uhu5
1

2utu S 11
g

~t 221!2D
21

2uhu.

This yields

group velocity:5vg~t,h!52“ht~h!52
h

t S 11
g

~t 221!2D
21

.

The transport operator simplifies a little. Using~2.6! and ~3.14! one shows that

p~t,h!A0p~t,h!5m~t,h!p~t,h!,

where

m~t,h!:5S 11
h2

t 2 1
g~11t 2!

~12t 2!2 D Y S 11
h2

t 2 1
g2~11t 2!

~12t 2!2 D52Yvg•vfS11
h2

t 21
g2~11t 2!

~12t 2!2 D.
It follows that for linear phases the transport equation is simply

~] t1vg .]y!e50

where theb, p, q components ofa0 are computed frome using ~3.13!.

The next Proposition shows that whether or not the operatorpL1~]!p is a simple transport
operator, its sound speeds are always between the smallest and largest sound speedsL1~]!.
Recall that the sound speedsc~h! defined for unit vectorshPRd are the roots of detL1(2c,h)
~see Ref. 26!. Note that only the principal part ofL is involved in this definition, in contrast to th
definition of echar and the group velocities ofL~e]!.

Proposition 3.4: If L1~]! is a symmetric hyperbolic operator andpPHom~CN!\0 is an or-
thogonal projector, then the sound speeds of the symmetric hyperbolic operatorpL1~]!p defined
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



larger

to
igh
s of the

hat the
in

tion

of
wo

1500 P. Donnat and J. Rauch: Dispersive nonlinear geometric optics

¬¬¬¬¬¬¬¬¬¬
on Rangep-valued functions lie between the largest and smallest sound speeds of L1~]!. In
particular, when the hypotheses of Proposition 3.3 are satisfied, the group velocities are no
than the largest sound speed of L1.

Proof: The sound speeds ofL1~]! are the eigenvalues of the matrixH:52(h jAj with respect
to the positive matrixA0. They are the critical values of the Rayleigh quotient

^Hv,v&

^A0v,v&
.

The sound speeds of the systempL1~]!p are the critical values of the same function restricted
the subspace Rangep. Therefore they lie between the maximum and minimum of the Rayle
quotient defined on all vectors. These extrema are exactly the largest and smallest speed
original system, which proves the result. j

Even when the hypotheses of Proposition 3.3 are not satisfied, this proposition shows t
domains of influence for the reduced operatorspLp are always contained in the convex doma
of influence ofL1.

Returning to the construction of asymptotic solutions, the coefficientcj with j>2 is given by

cj~x!5„L01L1~ ib!…aj1L1~]!aj212bj . ~3.24!

Oncea0 ,...,aj21 are determined, the coefficientaj is determined from the equationsQ(b)cj50
andp~b!cj1150. The former implies that

„I2p~b!…aj5Q~b!„bj2L1~]!aj21…, ~3.25!

which determines„I2p~b!…aj from terms already known. The latter yields an evolution equa
for p~b!aj ,

p~b!L1~]!p~b!aj52p~b!L1~]!Q~b!„bj2L1~]!aj21…1p~b!bj , ~3.26!

which serves to determinep~b!aj uniquely from its initial values at$t50%. This completes the
determination of the amplitudesaj of the formal asymptotic solution from the initial values
p~b!aj ut50 provided that the constraint~3.21! is satisfied. These computations prove the first t
of the following three fundamental theorems.

Theorem 3.5:Suppose that T.0, that a(e,x) and b(e,x) belong to C`~#0, 1#3@0,T#3Rd!
and have space–time support in ane-independent compact subset of@0,T#3Rd and satisfy

a~e,x!;(
0

`

e jaj~x! and b~e,x!;(
0

`

e jbj~x!, ~3.27!

in the sense that aj and bj belong to C~0!
` ~@0,T#3Rd! and

;aPNd, ;mPN,'C, ;eP]0,1], ;xP@0, T#3Rd:U]xaS a~e,x!2(
j50

m

e jaj~x!DU<Cem11,

~3.28!

with a similar expression for b(e,x). For eP#0, 1# define

ue~x!:5eib.x/ea~e,x!. ~3.29!

Then

L~e]!ue2eib.x/eb~e,x!;0 in C~0!
` ~@0,T#3Rd! ~3.30!
J. Math. Phys., Vol. 38, No. 3, March 1997
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if (3.21)–(3.23) and the sequence of equations (3.25) and (3.26) are satisfied.
Theorem 3.6:Given

gj~y!PC0
`~Rd! and bjPC~0!

` ~@0, T#3Rd!

with supports in a fixed compact set and satisfying

p~b!gj5gj and p~b!b050,

there are uniquely determined functions aj (x)PC(0)
` ([0,T]3Rd! satisfying (3.22) and (3.23), the

sequence of equations (3.25) and (3.26), andthe initial conditions

p~b!aj~0,y!5gj~y!. ~3.31!

Borel’s theorem guarantees that foraj ,bj as in Theorem 3.6, there exista(e,x) andb(e,x) as in
Theorem 3.5, which constructs approximate solutions given by~3.29!.

Theorem 3.7: Suppose that ue is defined as in Theorem 3.5, and th
v(e,x)PC`(]0, 1]3[0,T]3Rd!, with suppv~e, . ! contained in ane-independent compact se
satisfies

L~e]!v~e,x!2eib.x/eb~e,x!;0 and v~e,0,y!2ue~0,y!;0 ~3.32!

in C(0)
` ([0,T]3Rd! and C0

`~Rd!, respectively. Then

v~e,x!2ue~x!;0 in C~0!
` ~@0,T#3Rd!. ~3.33!

An important case is when the right-hand sides of (3.32) and (3.33) vanish in which casev is the
exact solution of the problem to which ue is an approximate solution.

Proof: The differenceue2uexact
e satisfiesL„ue2v(e.x)…5O~e`!. To show that the difference

is small, one needs to estimate how fast solutions ofLu50 can grow.
There is subtlety here because of thee in front of the ]t . Solutions of the equation

(e] t21)u50 are multiples ofet/e so grow very rapidly. If this happened in our problem, the fa
that the residuals areO~e`! would be more than compensated by this exponential explosion.
to avoid this that we assumed the conservation hypothesisL0 1 L0* 5 0. This hypothesis shows tha
*^A0u,u&dx1•••dxd is independent ofx0 for solutions ofLu50.

With this hypothesis, the basic energy identity reads

(
m50

d

e]m^Amu,u&52 Rê L~e]!u,u&.

This implies immediately that for anyT and s there is a constantC so that for all
wPC(0)

` ~@0,T#3Rd!

iwiHs~@0, T#3Rd!<CS iw~0!i uHs~Rd!1
1

e
iL~e]!wiHs~@0, T#3Rd!D . ~3.34!

Following the work of Lax19 on the nondispersive case, apply this estimate to

w:5ue2v~e,x!.

The potentially explosive factor 1/e is absorbed by the infinitely small residuals and one obta

iwiHs~@0,T#3Rd!<C~s,m!em
J. Math. Phys., Vol. 38, No. 3, March 1997
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for all m. Sobolev’s Theorem completes the proof. j

Example:The conservation hypothesis is crucial for Theorem 3.7. Two examples for wh
is not satisfied are the Klein–Gordon operator with negative coefficient

L~e]x!5e2h21

for which the natural conserved energy has indefinite densitye2ut
21e2uy

22u2 and the first order
system analogue

L~e]x!5] t1S 1 0

0 21D ]y1S 0 1

1 0D .
For each of these thee-characteristic equation ist 25h221. For uhu.1 there are nice plane wave
and one can construct approximate solutions

ue5ei ~tt1hy!/e~a0~x!1ea1~x!1••• !, L~e]x!u
e;0

whose profiles are determined by transport equations along group lines whose velocity is gi

vg :52]ht5
2h

~h221!1/2

with uvgu.1. In particular the principal profile is given by the explicit relatio
a0(t,y)5a0(0,y2vgt).

If the initial data for thep~b!aj are supported inuyu,r , then the profiles are supported in th
tubeuy2vgtu,r and the solutionue can also be taken with support in this tube. The sound spe
of the operatorsL are61, so that for alleÞ0

suppve,$uyu<r1utu%.

For utu.2r /(uvgu21) the supports of the exact and approximate solutions are disjoint!
This apparent contradiction is resolved by noting that the analogue of Theorem 3.8 is no

The infinitely small residual cannot be removed. The familyL~e]! is not uniformly stable, so
though the residuals are infinitely small the error is not. The apparently infinitely accurat
proximate solutions are worthless!

C. Nonlinear phases

It is not difficult to extend the analysis to nonlinear phasesf(x) so that the oscillating facto
is equal toeif(x)/e. To do this requires the introduction of a few additional concepts.

The eikonal equation becomes

detL„idf~x!…50. ~3.35!

This asserts that for allx, df(x)Pe char. In the case of the Klein–Gordon equation, the eiko
equation is

f t
25ufyu211. ~3.36!

For the Lorentz model, the interesting oscillations have phases satisfying the eikonal equa

~f t
221!~f t

22ufyu2!1gf t
250. ~3.37!
J. Math. Phys., Vol. 38, No. 3, March 1997
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In both cases, given initial valuesf~0,y! with fy(0,yI )Þ0 and a valuef t(0,yI ) satisfying the
equation at~0,yI !, there is a unique smooth local solutionf. To verify this it suffices to show tha
the initial value problem is noncharacteristic. For the Klein–Gordon equation compute

]~f t
22ufyu221!

]f t
52f t562A11ufyu2Þ0.

For the Lorentz model, the noncharacteristic condition is equivalent to the nonvanishing
discriminant computed after Proposition 3.3.

There are several things to notice. First, as is usual in the theory of first order partial d
ential equations, the time derivative must be given at one point. Second, using the determi
~3.35!, the eikonal equation that one finds is

„~f t
221!~f t

22ufyu2!1gf t
2
…

2f t
2~f t

2212g!50. ~3.38!

For this equation, the surface$t50% is characteristic for anyf satisfying~3.33!, because the squar
of the equation appears as a factor.For many problems of mathematical physics, one has ch
acteristics of high multiplicity for which the characteristic equation is reducible, and to cons
solutions of the eikonal equation, one studies the factors and not the expression of th
determinant.
The eikonal equation being nonlinear, solutions are often only locally defined. Thus the co
tations of the previous section must be performed locally.

Eikonal phase hypothesis:V,R11d is open and the phasefPC`~V;R! satisfies the eikona
equation (3.35), has nonvanishing differential, andp„df(x)… is a smooth function onV.

It follows that

Q„df~x!…5~ I2p„df~x!…!~p„df~x!…1L„idf~x!…!21

is also smooth. The analysis for linear phasesb. x, bPechar, extends without substantial mod
fication to the case of nonlinear phases satisfying the above hypothesis. The main difference
the exact and approximate solutions are regarded as functions onV. In the next section, nonlinea
problems with nonlinear phases are considered, and the linear case can be extracted as
case of those computations. In the absence of sources, that is whenb50, the principal profile is
determined from the equations

p„df~x!…L1~]!p„df~x!…a050, p~df~x!!a0~x!5a0~x!. ~3.39!

If for all x, bI :5df(x) satisfies the constant multiplicity hypothesis of Proposition 3.2, then
result implies that the differential operator on the left is equal to

p„df~x!…A0p„df~x!…S ]

]t
2(

j50

d
]t~h!

]h j
U

h5]yf~x!

]

]yj D 1p„df~x!…~L~]x!p„df~x!…!.

~3.40!

The essential part is a variable coefficient vector field

V„df~x!;]x…5] t1vg~df!.]x

which at eachx has speed given by the group velocity associated todf(x).
Equation~3.39! reads

„] t1vg~df!.]y1r~x!…„p~df!A0p~df!a0…50, ~3.41!
J. Math. Phys., Vol. 38, No. 3, March 1997
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wherer(x)PHom„kerL( idf(x)… is defined by

p~df!~~L~]x!p~df~x!!2„V~df;]x!p~df!A0p~df!…!p~df!5r~x!p~df!A0p~df!.
~3.42!

If p has rank one, thenr is scalar valued.
As in the case of nondispersive geometric optics the transport equation~3.41! yields an energy

balance law in tubes of rays. The symmetric part of the operatorr, which yields growth or decay
in the transport, compensates the shrinking or expansion of ray tubes. The analysis is as
nondispersive case presented, for example, in Ref. 25.

IV. APPROXIMATE SOLUTIONS OF SEMILINEAR DISPERSIVE SYSTEMS

A. Equations for the profiles

The first two problems presented by nonlinearity are the creation and interaction of harm
and the fact that the amplitude of the principal term becomes important. With the no
f(x)PC`(V) from the last subsection, we seek approximate solutions

ue5epa0„x,f~x!/e…1h.o.t.,

where a0(x,u) is periodic in u. Fractional values ofp do occur. Taylor expansion ofF(ue)
introduces terms inemp for all mPN.

From the last section we know that the equation of evolution for the coefficient ofen comes
from the en11 term in the expansion ofLue1F(ue). This suggests that the set of exponen
appearing in our ansatz be closed under multiplication by non-negative integers and by add
1. As we will see, the natural indicesp are rational, so that closure under multiplication
integers alone is sufficient.

Seek asymptotic solutions of the form

ue5epa„e,x,f~x!/e…, where a~e,x,u!; (
jPpN

e jaj~x,u!. ~4.1!

and a(e,x,u) and aj (x,u) are smooth functions 2p periodic with respect tou. For simplicity
consider the differential equation without sources, that isb50. This leads to the problem

L~e]x!u
e1F~ue!:5L1~e]x!u

e1L0u
e1F~ue!;0. ~4.2!

Order J hypothesis: The nonlinear term F, is a smooth function of its arguments whose part
derivatives of order less than or equal to J21>1 vanish at the origin. Then the Taylor expansio
at the origin is

F~u!5F~u!1O~ uuuJ11!, ~4.3!

whereF is a homogeneous polynomial in u, uōf degree J>2.
In particular,u50 satisfies the equation 05L(e]x)u1F(u). The functionue defined by~4.1!

is a perturbation of this background state.
Examples:If F is a homogeneous polynomial, thenF5F. For example,F(u)5uuu2u with

J53. The anharmonic oscillator model is an example withJ53. When the hypothesis is satisfie
for J>3, then it is satisfied for all 2<J8,J.

The termL(e])ue is of ordere p while F(ue) is of ordere pJ. The equation of evolution for
a0 comes from thee p11 term inLue1F(ue). We want this equation to involveF. This leads to
the following choice of amplitude.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Definition. For nonlinearities satisfying (4.3), the standard normalization is to choose p so
that pJ5p11, that is

p:5
1

J21
.

With this choice,F(ue) is smaller than the other two terms on the left of~4.2!. For this reason the
nonlinearity does not affect the definition of the dispersion relation. The nonlinearity is impo
at the next order which determines the evolution of the principal profile.

Examples:For quadratic nonlinearities,p51, while for cubic nonlinearities,p5 1
2. For the

Klein–Gordon equation,

~e2h11!u1F~e“xu!50,

one has the same rules as for first order dispersive systems, that is for quadratic and cubicF, the
standard normalizations arep51 andp51

2, respectively. -
Compute

L~e]x!u
e5c„e.x,f~x!/e…,

where

c~e,x,u!:5L1~e]x!a1L0a1L1„df~x!…]ua1F~a!.

The strategy is to expand

c~e,x,u!;ep (
jPpN

e j cj~x,u!,

and to choose the coefficientsaj so that all thecj vanish identically.
Setting the coefficientc0 of e p equal to zero yields

05L„df~x!]u…a05„L1„df~x!…]u1L0)a0 . ~4.4!

As in the last section there is a hyperbolic-elliptic dichotomy in the analysis of this equa
Introduce the Fourier series

a0~x,u!5 (
mPZ

a0,m~x!eimu ~4.5!

to find

05L~ imdf!a0,m :5~L1„imdf~x!…1L0!a0,m . ~4.6!

If all the matricesL( imdf) are nonsingular, thea0,m all vanish. On the other hand, if there is a
mÞ0 suchL„imdf(x)… is singular for allx, the corresponding terms lead to propagating os
lations.

There are intermediate cases whereL„imdf(x)… may be singular at some but not allx. The
crucial coherence hypothesis is imposed to avoid these.

Coherence hypothesis: For each mPZ\O, if L „imdf(x)… is singular for one xPV, then it is
singular for all xPV. When L„imdf(x)… is singular, the matrixp„mdf(x)… is assumed to be a
smooth function of x.
J. Math. Phys., Vol. 38, No. 3, March 1997
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The simplest example is whenf(x) is a linear function ofx, in which caseL„imdf(x)… does
not depend onx. The coherence hypothesis says that for the harmonicsmf, the eikonal equation
is either satisfied for allx or for none.

For nondispersive geometric optics, that is problems withL~]! rather thanL~e]!, the eikonal
equation is homogeneous so thatmf is automatically a solution of the eikonal equation for allm.
Thus the analogue of the above hypothesis for single phasenondispersive geometric optics i
automatically satisfied. Coherence hypotheses play a crucial role in nondispersivemultiphase
nonlinear geometric.

The analysis is simplified if there are only a finite number ofm for whichmdf satisfies the
eikonal equation. This is guaranteed by the following hypothesis which is satisfied in a
physical models we have studied.

Strong finiteness hypothesis: L1„idf(x)… is nonsingular for all xPV.
Writing

L„imdf~x!…5mS L1„idf~x!…1
1

m
L0D

shows that there is anm0>0 so thatL„imdf(x)…21 exists for umu>m0 and that uniformly on
compact subsets ofV,

iL„imdf~x!…21i5OS 1mD .
LetM denote the finite set

M:5$mPZ:detL~ imdf!50%.

Example:If f satisfies the eikonal equation~3.19! for the Klein–Gordon equation, then formf,
compute

~mf! t
22u~mf!yu2115~m221!~f t

22ufyu2!512m2.

Thus formÞ61,mf does not satisfy the eikonal equation. In addition, withL2 denoting the part
homogeneous of degree 2,

L2~df!5f t
22ufyu2521

which vanishes nowhere so the strong finiteness hypothesis is satisfied.
Example:Suppose thatf satisfies the eikonal equation~3.37! for the Lorentz model. A

calculation like that in Sec. III shows that

detL1~t,h!5t 8~t 22uhu2!2.

It follows that for such eikonalf.

detL1~df!5
2gf t

8

f t
221

.

Thus if ft¹$0,1%, this is nonsingular. In addition,mf satisfies

„~mf t!
221…„~mf t!

22umfyu2…1g~mf t!
25~m221!„~mf t!

22umfyu2…5
~m221!g~mf t!

2

f t
221

.
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So ~3.38! shows that ifft¹$0,1,11g%, thenmf is eikonal only formP$0,1,21%. -
It is rare that nontrivial harmonics satisfy the eikonal equation. In the scientific litera

whenmf is eikonal the phasesf andmf are often said to bephase matched.
Aside:The possibility of an infinity of harmonics which satisfy the eikonal equation can

handled with a suitable small divisor hypothesis. What is needed is that there is a constantC and
an integerM such that

i~L1„imdf~x!…1L0!
21i<C~11umu!M,

for mdf(x)¹echar and also

iQ„mdf~x!…i<C~11umu!M.

We do not pursue this point of view but impose the finiteness hypothesis above. -
In order to treat the dichotomy of propagating versus nonpropagating oscillations, intro

the projection of the Fourier series on the set of harmonics which satisfy the eikonal equa
Definition: When d(x,u) is a 2p periodic function inu, Pd, the projection onechar harmon-

ics, is defined by

Pd:5 (
mPZ

p„mdf~x!… dm~x!eimu. ~4.7!

In addition, Q denotes the partial inverse of L(df]u) defined by

Qd:5 (
mPZ

Q„mdf~x!… dm~x!eimu. ~4.8!

Remarks:~1! In the definition ofP one could have taken the sum only overmPM since for
the otherm, p„mdf(x)…50.

~2! The finiteness assumption shows thatPd is a trigonometric polynomial. That is, it has a
most a finite number of nonvanishing Fourier coefficients each of which is a function ofx. Thus,
Pd is determined by a finite number, of functions ofx. It is useful to think of the image ofP as
consisting of vector valued functions ofx.

~3! The estimate forL( imdf)21 following the strong finiteness hypothesis shows thatQ is a
continuous map ofC`(V3S1) to itself.Q is an operator of order21 in ]u . -

With this definition, Eq.~4.6! is equivalent to

Pa05a0 . ~4.9!

We next find evolution equations which determinePa0 from its initial data. Settingc150 in the
expansion ofc(e,x,u) yields

L„df~x!]u…a11L1~]x!a01F~a0!50. ~4.10!

Multiplying by P, equivalently settingPc150 eliminates thea1 term to yield

PL1~]x!a01PF~a0!50.

Using ~4.9! yields

PL1~]x!Pa01PF~Pa0!50. ~4.11!
J. Math. Phys., Vol. 38, No. 3, March 1997
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The examples in the next subsection and the existence theorem in Sec. IV C show th
nonlinear evolution equation~4.11! determines the finite-dimensional vector-valued funct
a05Pa0 from its initial values, at least locally in time.

Next a linear recurrence to determineaj for j.0 is found. Forj.0, the coefficientcj of e p1 j

is given by

cj5L„df~x!]u…aj1L1~]x!aj211F8~a0!aj211Gj~al, j21!, ~4.12!

where by convention we setak50 whenk,0.
Once theal are known forl, j , ~I2P!aj is determined by settingQcj50 to find

~ I2P!aj52Q„L1~]x!aj211F8~a0!aj211Gj~al, j21!…. ~4.13!

Recall thatj5np andp may be smaller than one. An interesting special case is the range 0<j,1
where the source terms withl< j21 all vanish to give

Paj5aj for 0< j,1.

The equationPcj1150 is used to determine the propagating partPaj of aj . One has

PL1~]x!Paj1PF8~a0!aj52P„Gj~al, j !1L1~]x!~ I2P!aj… ~4.14!

where the right-hand side is known from~4.13! and the inductive hypothesis. Forj>1, this yields
a finite set of coupledlinear hyperbolic equations which determinePaj from their initial data.

Example:In the range 0,j,1, the equation is the linear equation

PL1~]x!Paj1PF8~a0!aj2150 for 0, j,1.

Thus if the initial values of these profiles vanish, the profiles vanish for all time. In this cas
first profile after the principal profilea0 is the profilea1. This yields an interesting class o
expansions of type~4.1! where the elements ofpN between 0 and 1 are absent. -

Theorem 4.1:Suppose thatV,R11d is an open set and the phasefPC`~V;R! satisfies the
coherence and strong finiteness hypotheses, and that

ue5epa~e,x,f~x!/e! with a~e,x,u!; (
jPpN

e jaj~x,u!

in C`(V3S1). Then

L~e]!ue1F~ue!;0 in C`~V!

if (4.7), (4.9), (4.11), and the infinite sequence of relations (4.13) and (4.14) are satisfied.

B. Examples

1. The nonlinear Klein –Gordon equation

The equation is

e2hu1u1F~e“xu!50, ~4.15!

where the Taylor expansion ofF5F(u)1h.o.t begins with nonzero terms homogeneous of deg
J. The ansatzfor the real scalar-valuedue is given by ~4.1! with p51/(J21). One constructs
solutions with residualO~e`!. The term of ordere p yields the eikonal equation~3.36!. As already
verified the strong finiteness and coherence hypotheses are automatic and the only eikon
monics are those withm561. Reality implies thata0,1(x)5ā0,21(x):5a(x) and then
J. Math. Phys., Vol. 38, No. 3, March 1997
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ue;epa0~x,f~x!/e!1h.o.t., with a0~x,u!5a~x!eiu1ā~x!e2 iu.

The projectionP selects the Fourier components61 that is

P( dm~x!eimu5d1~x!eiu1d21~x!e2 iu.

The analogue of Eq.~4.11! shows that the principal amplitude is determined from its initial data
the transport equation

2S f t] t2]yf,¹y1
hf

2 D ]ua01F„df~x!]ua0~x,u!…50. ~4.16!

The nonlinear term is equal to

F~df]ua0!5F~df!P„~ iaeiu2 i āe2 iu!J…. ~4.17!

Even J: If J is even, there are no terms ine6 iu so the projection is equal to zero. In this ca
the transport equation is linear. The nonlinear term does not affect the leading term in the a
totic expansion.

Odd J: If J52m11 is odd, then one generates aneiu term on choosingm11 factorsiaeiu

andm factors2i āe2u. Reasoning similarly for the coefficient ofe2 iu shows that

P„~ iaeiu2 i āe2 iu!J…5
J!

m! ~m11!!
~ iauauJ21eiu2 i āuauJ21e2 iu!. ~4.18!

Thus the transport equation fora0 is equivalent to the transport equation

2S f t] t2]yf.¹y1
hf

2 Da1
J!F„df~x!…

~m! !~m11!!
auauJ2150. ~4.19!

This is an explicitly solvable nonlinear ordinary differential equation along the integral curv
the vector field appearing on the left. As a special case considerF~“u!5ut

3 and linear phase
f5tt1y.h satisfying the eikonal equationt 25uhu211. The equation fora is the dissipative cubic
transport

~t] t2h.]y!a1
3t 3

2
auau250. ~4.20!

A second example is the phasef(t,y):5&t1uyu21 which satisfies the eikonal equation aw
from y50. The group velocities are equal to 1/&,1. If initial data for the amplitudesaj vanish on
uyu<1, then, for the dissipative nonlinearityut

3, the transport equations for theaj are solvable for
0<t,&. In this way one can construct infinitely accurate approximate solutions in@0,&@3Rd

which correspond to waves surrounding and approaching the origin, a point where the phas
defined.

2. Small amplitudes

If the system~4.2! has nonlinearity of orderJ>3 in the sense of~4.3! and 2<J8,J, then the
hypotheses are satisfied forJ8 and one can construct approximate solutions with the stan
normalization forJ8, that is, of the form~4.1! for p8:51/(J821).p. These solutions are smalle
in amplitude than the standard scaling forJ and the equation defining the principal profilea0 is
linear.
J. Math. Phys., Vol. 38, No. 3, March 1997
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3. The anharmonic oscillator model

Suppose thatt¹$0,61% satisfies thee-characteristic equation~3.13!. Equations~3.14! show
that the orthogonal projector onto the kernel ofL( i t,ih) satisfies forv'h,

p~t,h!~0,0,0,v!5
i t

12t 2S 11
h2

t 2 1
g2~11t 2!

~12t 2!2 D 21S v, 2h`v

t
,

gv

12t 2 ,
i tg

12t 2 vD .
~4.21!

If f satisfies the eikonal equation~3.37!, thenmf is eikonal only formP$0,61% and the coher-
ence and strong finiteness hypotheses are satisfied. The operatorP is then defined using thre
spectral projectors, those on kerL(6df) and kerL0. The first two kernels are described by~4.21!
with ~t,h!5df. kerL0 is the set of vectors satisfyingQ5P2gE50, so kerL05$(E,B,gE,0)%
and

p~0!~E,B,P,Q!5~0,B,0,0!1
1

11g2 ~E1gP,0,gE1g2P,0!. ~4.22!

The principal profile has the form

a0~x,u!5a1~x!eiu1a0~x!1a2~x!e2 iu, ~4.23!

where the polarization~4.8! holds exactly when

p„6df~x!…a6~x!5a6 and p~0!a0~x!5a0~x!. ~4.24!

Reality requires

a75ā6 and a05ā0 . ~4.25!

Introduce components

a6 :5~E6 ,B6 ,P6 ,Q6!, a0 :5~E0 ,B0 ,P05gE0 ,Q050!. ~4.26!

The evolution equation for the profile involves

F~u!5~0,0,0,auPu2P!. ~4.27!

The first important observation is thatp~0!F(u)50, so the equation of evolution fora0 is

p~0!L1~]!a0~x!50. ~4.28!

Note in particular thata050 is a solution. This special case is examined in more detail belo
Equation~4.22! shows that Eq.~4.28! holds if and only if the second component and the s

of the first plusg times the third component of

L1~]!A05~] tE02curl B0 ,] tB01curl E0 ,P0 ,Q0!

vanish. Using~4.22! and the relationP05gE0 from ~4.24! shows that when~4.24! holds,~4.28! is
equivalent to the modified Maxwell equations

] tB01curl E050, ~11g2!] tE02curl B050. ~4.29!

Turn next to the determination ofa6 . Oncea0 is determined, the amplitudea1 is determined from
the evolution equation
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t.

the

i-

gh not
ations
ience,
hould

1511P. Donnat and J. Rauch: Dispersive nonlinear geometric optics

¬¬¬¬¬¬¬¬¬¬
„] t1vg .]y1r~x!…~p1A0a1!1p1F~a1e
iu1a01ā1e

2 iu!50. ~4.30!

The nonlinear term from~4.27! is a times

uPu2P5P.P̄P5~P1e
iu1P01 P̄1e

2 iu!.~P1e
iu1P01 P̄1e

2 iu!~P1e
iu1P01 P̄1e

2 iu!,

where the dot product is that without complex conjugates. The operatorp1 picks out the terms in
eiu and multiplies them byp~t,h!, with ~t,h!5df. There are six terms with the right exponen
Three of them have two factorseiu and one factore2 iu, while the other three have twoP0’s and
oneeiu.

For simplicity we treat only the casea050. The terms ineiu are then

2P1 .P̄1P11P1 .P1P̄152uP1u2P11P1 .P1P̄1 .

The polarization from~4.20! and ~4.24! shows that

P15
g

12~] tf!2
E1 .

Thus,

p1F~a!5aS g

12~] tf!2D
3

p1~df!~0,0,0,2uE1u2E11E1 .E1Ē1!. ~4.31!

Equation ~4.21! can be used to compute the action of the projectionp(df). Equating theE
components on the two sides of~4.30! and using the formula before Proposition 3.4 yields
cubic transport equation

05
1

ia
„] t1vg .]y1r~x!…~m~df!E1!1c~df!~2uE1u2E11~E1 .E1!Ē1!, ~4.32!

where

c~df!:5S g

12~] tf!2D
3S ] tf

12~] tf!2D S 11
u]yfu2

~] tf!2
1

g2
„~11] tf!2…

„12~] tf!2…2 D 21

.

Note that the denominators ofm(df) andc(df) are identical, which yields a significant simpl
fication for linear phases. The other components ofa1 can be found fromE1 using the polariza-
tion ~4.20!. The cubic ordinary differential equation~4.32! is explicitly solvable~see Ref. 27, pp.
51–53!. Taking the imaginary part of the scalar product withĒ1 yields

„] t1vg .]y1Re r~x!…„m~df!uE1u2…50, ~4.33!

which is the natural conservation of energy.

C. Solvability of the profile equations

In all the examples of the previous sections, the equations determining the profiles, thou
exactly easy to find, were easy to solve once found. Even more, the nonlinear evolution equ
for the principal profiles were globally solvable when the phases were linear. With this exper
the next result guaranteeing local existence and uniqueness of the infinite family of profiles s
not be surprising.

A key ingredient is solving initial value problems forPL1(]x)P. The operatorPL1(]x)P
maps trigonometric polynomials
J. Math. Phys., Vol. 38, No. 3, March 1997
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(
mPM

am~x!eimu, p~mdf!am5am

to themselves. To such a polynomial associate the finite set of coefficient functionsam with
mPM. ThenPL1(]x)P acts as

diag$p~mdf!L1~]!p~mdf! : mPM%.

The next hypothesis is crucial for the solvability of initial value problems.
Determinacy hypothesis: T1.0 andVù~@0,T1#3Rd! is a domain of determinacy for each o

the symmetric hyperbolic operatorsp(mdf)L1(]x)p(mdf), mPM.
Example:It is often the case that each of the operatorsp(mdf)L1(]x)p(mdf) is a transport

operator in which case the hypothesis asserts that every backward group velocity ray from
in Vù~@0,T1#3Rd! reachest50 without leavingVù~@0,T1#3Rd!.

Theorem 4.2: Suppose that the phasefPC`~V! and T1.0 satisfy the coherence, stron
finiteness, and determinacy hypothesis. In addition, for0<jPpN suppose given

gj~y,u!PC0
`~Rd3S1!, suppg,~Vù$t50%!3S1 with Pgj5gj .

Then there is a TP]0,T1] and a unique solution a0PC`((Vù$0<t<T%)3S1) of (4.8) and
(4.11) such thatPa0(0,y)5g0(y).

Moreover for j.0, the infinite sequence of equations~4.13! and ~4.14! uniquely determine
functions ajPC`

„(Vù$0<t<T%)3S1… satisfying the initial conditionPaj (0,y)5gj .
Proof: The polarization~4.9! implies that

a05Pa05 (
mPM

am~x!eimu, p„mdf~x!…am5am . ~4.34!

The unknown is the finite set of functionsam(x),mPM, satisfyingp„mdf(x)…am5am . Thusa0
is a section of a finite-dimensional vector subbundle of%mPMCN. The fiber changes from poin
to point because of the projectionp„mdf(x)….

In Eq. ~4.11! expand

PFS (
mPM

am~x!eimf~x!D 5 (
mPM

cm~x,$am~x!%!eimf~x!,

where the value ofcm at x is a polynomial of orderJ in the values$am(x)%. Thecm are smooth
in x and satisfy

p~mdf~x!!cm~x,.!5cm~x,.!.

The equations fora0 takes the form of #M coupled equations

p~mdf!L1~]x!p~mdf!am1cm~x,$am~x!%!50. ~4.35!

Proposition 3.2 shows that~4.35! is a semilinear symmetric hyperbolic system for the functionsam
which take values in kerL„imdf(x)…. Thanks to the domain of determinacy hypothesis, lo
existence and uniqueness is a consequence of classical results for semilinear hyperbolic s

The recurrence for the succeeding profiles leads to algebraic equations for~I2P!aj and linear
hyperbolic systems, with the same principal part as in~4.35!, for Paj . The sources in those
systems are given in terms of already determined quantities. Again existence and uniquen
classical. -
J. Math. Phys., Vol. 38, No. 3, March 1997
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Remark:This existence theorem is simpler than those required for nondispersive sy
where the unknowns are functions ofx and one or more auxiliary variables. In the present case
dependence on the auxiliary variableu simplifies thanks to the strong finiteness assumption.

V. APPROXIMATE SOLUTIONS OF QUASILINEAR DISPERSIVE SYSTEMS

Suppose that

L~u,]!:5(
j50

d

Am~u!
]

]xm
~5.1!

is a quasilinear symmetric hyperbolic operator nearu50 in the sense that the coefficientsAm are
smooth Hermitian symmetric functions of their arguments on a neighborhood of 0. The v
valued unknown may be either real or complex valuedu. Correspondingly the coefficients need
be defined on neighborhoods inRN or CN.

Seek approximate solutionsue to the quasilinear dispersive hyperbolic problem

L~ue,e]!ue1L0u
e1F~ue!50.

The approximate solutions have the form

ue~x!5epa~e,x,f~x!/e! with a~e,x,u!

smooth and periodic inu.
Order J hypothesis: The nonlinear functions F and Am are smooth on a neighborhood of 0

and the nonlinear terms are of order J>2 in the sense that

uau<J22⇒]u, ū
a L„0,df~x!…50 and ubu<J21⇒]u, ū

b F~0!50. ~5.2!

The Taylor polynomial of order J of F at the origin is denotedF(u) as in (4.3), while for L we
write

Am~u!2Am~0!5Lm~u!1O~ uuuJ!, L~u,j!:5 (
m50

d

Lm~u!jm ,

where theLm are polynomials homogeneous of degree J21.
The reason for the discrepancy in the orders is because the coefficientsA appear in expres-

sionsA(u)e]u so the order of the nonlinearity is one higher than the order of the zero ofA.
The critical exponent isp51/(J21), in which case the nonlinear terms fromF and from

L(u,e])u are bothO(ep11). As in Sec. IV, theansatz~4.1! is in powerse j with jPpN.
Hypothesis: Suppose thatfPC`~V;R! satisfies the eikonal equation with respect to the line

dispersive operator L~0,e]!, and that the coherence, strong finiteness, and domain of depend
hypotheses are satisfied. The projectorP and partial inverseQ are defined as in Secs. III and IV
using the lineare-differential operator, L~0,e]!.

Example:The instantaneous nonlinear polarization from Sec. II C is an example withJ53.
Direct computation shows that

L~ue,e]!ue1L0u
e1F~ue!5c„e,x,xdf~x!/e…, c~e,x,u!;ep (

jPpN
e j cj~x,u!. ~5.3!

The strategy is to choose theaj so thatcj50 for all j . For j,0, defineaj :50. Setting the
coefficientcj50 for 0<j,1 yields
J. Math. Phys., Vol. 38, No. 3, March 1997
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05cj5L~0, df~x!]u!aj . ~5.4!

This is equivalent to

Paj5aj for 0< j,1. ~5.5!

The main change with respect to the semilinear case occurs in the coefficientc1. The new
O(ep11) quasilinear term is

(
m50

d

Lm~a0!
]f

]xm
]ua05L~a0 ,df!]ua0 . ~5.6!

With this notation, settingc1 equal to zero yields

05c15L~0,df]u!a11L1~0,]!a01L~a0 ,df!]ua01gF~a0!. ~5.7!

Multiplying by P eliminates thea1 term and yields the evolution equation forP a0

05PL1~0,]!Pa01L~a0 ,df!]ua01F~a0!. ~5.8!

Here there is an important remark. Equation~5.8! looks like it is a quasilinear differential equatio
in ~x,u! becauseL is homogeneous of degreeJ21 in a0. It would be quasilinear in the nondis
persive case.10–13However, with the finite setM one has

a0~x,u!5 (
mPM

am~x!eimu. ~5.9!

As in Sec. IV C, binomial-type expansion defines interaction coefficientscm„x,$am(x)%… by

P„L~a0 ,df!]ua01F~a0!…5 (
mPM

cm~x,$am~x!%!eimf/e, p~mdf!cm5cm . ~5.10!

Herecm is a polynomial of degreeJ in $am(x)% with coefficients depending smoothly onx. With
the above notation, Eq.~5.8! becomes

p„mdf~x!…L1~0,]x!p„mdf~x!…am1cm„x,$am~x!%…50. ~5.11!

This is identical in form to~4.35!. Only the interaction coefficientscm have changed.The seem-
ingly quasilinear term contributes semilinear terms like those from F.

Multiplying Eq. ~5.7! by Q yields an expression for~I2P!a1 in terms ofa0.
For j>2, setting the coefficientscj equal to zero yields equations of the form

L~0,df]u!aj1F8~a0!aj211L~a0 ,df!]uaj211Lu8~a0 ,df!~aj21!]ua05Gj~ak, j21!.
~5.12!

The expressionG involves derivatives of the functionsam even though that is not explicitly
indicated.

Multiplying ~5.12! by Q yields

~ I2P!aj5Gj~ak< j21!. ~5.13!

This done, multiplying the casej11 of ~5.12! by P yields alinear evolution equation
J. Math. Phys., Vol. 38, No. 3, March 1997
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PL1~0,]!Paj1P$F8~a0!aj211L~a0 ,df!]uaj211Lu8~a0 ,df!~aj21!]ua0%5PGj~ak, j21!,
~5.14!

which determinesPaj from its initial values. Note that acting on our trigonometric polynomia
the operator]u is bounded.

These computations are summarized by the quasilinear versions of Theorems 4.1 and
Theorem 5.1: If the eikonal, coherence, and strong finiteness hypotheses are satisfied ae

is given by (4.1) with p51/(J21), then

L~ue,e]!~ue!1F~ue!;O in C`~V! ~5.15!

if ~5.5! and ~5.8!, and the infinite sequence of equations (5.13) and (5.14) are satisfied.
Theorem 5.2:Suppose in addition that the domain of dependence hypothesis is satisfie

T1.0 and for j>0

gj~y,u!PC0
`~Rd3S1!, suppg,~Vù$t50%!3S1 and Pgj5gj .

Then there is a TP]0,T1] and a unique solution a0PC(0)
` ((Vù$0<t<T%)3S1) of ~5.5! and

~5.8! such that Pa0(0,y)5g0(y). With this T, there are unique functions
ajPC(0)

`
„~Vù$0<t<T%)3S1… satisfying the initial conditionsPaj (0,y)5gj (y) and the infinite

sequence of equations (5.13) and (5.14).
Example:The instantaneous nonlinear response model yields cubic transport equations

rays moving with the group velocity. The resulting nonlinear ordinary differential equations
explicitly solvable and yield the standard expressions forself-phase modulationin nonlinear
optics. The computations resemble those for the Lorentz model in Sec. IV B 3 and are om
They can be found in Ref. 27.

VI. STABILITY OF THE APPROXIMATE SOLUTIONS

In Secs. IV and V, infinitely accurate approximate solutions of nonlinear wave equations
constructed. They are accurate in the limit of wavelengthe tending to zero. The approximat
solutions have residuals each of whose derivatives converges to zero more rapidly than any
of e. In this sense they are in fact very accurate. Nevertheless it remains to show that the
solutions of the exact equations which are close to the approximate solutions. This is a s
result which asserts that removing the infinitely small residual does not perturb the solution
The approximate solutions of Secs. IV and V are thereby shown to be asymptotic to
solutions.

The results of this section are closely related to and were inspired by the important st
results of O. Gues.17,18 They differ in two essential ways. First the underlying equation is
operator ine] which makes the problem a little more sensitive. This potential instability is c
pensated by the conservation hypothesis at the beginning of Sec. III. If the background op
were not conservative~or more generally dissipative!, the errors could be amplified by factors
the formet/e which would overwhelm the residuals of ordere`.

In addition to the conservation hypothesis which is essential, we also assume more reg
of the approximate solutionsue than does Gues. Roughly where he assumesL2 bounds on the
derivativese] we assumeL` bounds. The reason for our choice is that in practice one usu
controls very well the approximate solutions so that one has such sup norm bounds, for ex
in the constructions of Secs. IV and V. Second, this allows a simplification of the proof as
remarked in Ref. 27. Theorems withL2 hypotheses like those of Gues are also valid in
dispersive setting.

Consider the quasilinear operator

L~u,e]!u1F~u!
J. Math. Phys., Vol. 38, No. 3, March 1997
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whose nonlinear terms are of orderJ nearu50 in the sense that the following strengthening
~5.2! is satisfied.

uau<J22⇒]u, ū
a Am~0!50 and ubu<J21⇒]u, ū

b F~0!50. ~6.1!

This is equivalent to supposing~5.2! is valid for all phases.
Suppose that the familyuePC~0!

` ~@0,T#3Rd! satisfies

L~ue,]!ue1F~ue!5r e ~6.2!

with residualsr e;0 in the sense that they are supported in a compact subset of@0,T#3Rd

independent ofe and for alla andn

lim
e→0

e2ni]x
ar eiL`~@0, T#3Rd!50. ~6.3!

The goal is to compareue to solutionsve of the initial value problem

L~ve,]!ve1F~ve!5he, ve~0,y!5ue~0,y!1ge~y!, ~6.4!

where

he;0 in C~0!
` ~@0, T#3Rd! and ge;0 in C~0!

` ~Rd!. ~6.5!

The case ofhe50 and ge50 is especially interesting but no easier than~6.5!. The standard
existence theorem for quasilinear hyperbolic equations with smooth coefficients and data i
the existence and unicity of a regular solutionve on @0,Te@3Rd for a possibly small positiveTe .
The goal is to prove that this time of existence is greater than or equal toT, and thatve2ue;0 on
@0,T#3Rd. Since theHs norms of the data explode as soon ass.p, the standard local existenc
theorems yield a domain of existence which shrinks toward$t50% whene→0.

In Secs. IV and V, approximate solutions were constructed with the formepa„e,x,f(x)/e…
where the profile or envelopea is smooth and periodic inu. Here p51/(J21) is the critical
exponent. These are special examples of~6.2! and ~6.3!. With the above notation the statemen
for the quasilinear and semilinear cases are identical.

Theorem 6.1:Suppose that p51/(J21), ue5epUe satisfies (6.2), (6.3) and for alla

sup
0,e,1

i~e]x!
aUeiL`~@0, T#3Rd!,` and sup

0,e,1
0<t<T

i~e]x!
aUe~ t !iL2~Rd!,`. ~6.6!

Then there is ane0P#0,1@ so that for e,e0 the solutionve to (6.4) exists and is smooth o
@0,T#3Rd and in addition

ve;ue in C~0!
` ~@0, T#3Rd!. ~6.7!

Note that the family of approximate solutions$ue% is not bounded inHs as soon ass.p. The fact
that the approximate solutions are large in these norms is the source of the difficulty.

Proof: The proof in the semilinear case, that is when the coefficients ofL do not depend on
u, contains the main ideas and is somewhat simpler. For that reason we present first the p
the semilinear case, and then present the quasilinear case.

Step 1. Taylor expansion absorbs the critical exponent:DefineVe, We, andwe by

ve5epVe, we5ve2ue, and We5Ve2Ue. ~6.8!
J. Math. Phys., Vol. 38, No. 3, March 1997
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The large letter ise p times the small. The equation forve is equivalent to the following initial
value problem forWe,

L~e]!epWe1F~epUe1epWe!2F~epUe!5he2r e, We~0,y!5e2pge. ~6.9!

The right-hand sides are;0.
Write

F~u1w!2F~u!5G~u,w!w, G~u,w!w:5E
0

1

Fu~u1sw!ds.

ThenG(u,w) is a smooth matrix valued function whose derivatives of order<J22 vanish at the
origin. Taylor’s theorem yields

G~z!5E
0

1 ~12s! j22

~ j22!! S ddsD
j21

G~sz!ds5E
0

1 ~12s! j22

~ j22!!
„~z•]z!

j21G…~sz!ds.

The factorsz on the right show that each element of the matrixG is the product of a polynomia
homogeneous of degreeJ21 with a smooth function ofu,w. Therefore

F~epUe1epWe!2F~epUe!5epJH~e,Ue,We!We, ~6.10!

whereH is a smooth matrix-valued function of its arguments.
Plug this into~6.9! and divide byep115epJ to find the singular system

S L1~]x!1
1

e
L0DWe1H~e,Ue,We!We5

he2r e

epJ
. ~6.11!

Step 2: He
s estimates for the singular linear operator.Though theL0 term in ~6.11! has a

coefficient which explodes, the matrixL0 is antisymmetric so this term does not lead to explos
of L2 norms. Also the division of the term on the right bye pJ is not dangerous sincehe2r e;0.
It remains to avoid the difficulties posed by the fact that the derivatives ofUe are large. This
prevents one from simply differentiating the equation~6.11!. The remedy is to apply derivativese]
and use~6.6!.

The first remark in the previous paragraph shows that there is aC.0 so that for all 0<t, 0,e
and allwPC~0!

` ~@0,t#3Rd!

iw~ t !iL2~Rd!<CXiw~0!iL2~Rd!1E
0

t I S L1~]!1
1

e
L0Dw~s!I

L2~Rd!

dsC. ~6.13!

For integers>0 define a family of norms each equivalent to the norm inHs~Rd! by

iwiH
e
s~Rd!

2
:5 (

uau<s
i~e]y!

awiL2~Rd!

2 . ~6.14!

Commuting with the operatorse]y shows that with the same constant as in~6.13! one has

iw~ t !iH
e
s~Rd!<CXiw~0!iH

e
s~Rd!1E

0

t I S L1~]!1
1

e
L0Dw~s!I

H
e
s~Rd!

dsC. ~6.15!

For s.d/2, a straightforward scaling yields the Sobolev estimate,
J. Math. Phys., Vol. 38, No. 3, March 1997
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iwiL`~Rd!<C~s!e2d/2iwiH
e
s~Rd! . ~6.16!

Step 3. Estimate for the nonlinear term:The remaining key ingredient in the proof is the followin
estimate for the nonlinear term.

Lemma 6.2: Suppose that UePC(0)
` ~@0,T#3Rd! satisfies (6.6). Then there is a consta

C5C(s,Ue) so that for allsP@0,T#, eP#0,1#, and WPHs~Rd! satisfying

iWiL`~Rd!<1, ~6.17!

one has

iH~e,Ue,W!WiH
e
s~Rd!<CiWiH

e
s~Rd! . ~6.18!

Proof of Lemma:With uau<s, Leibniz’s rule shows that (e]y)
a$H(e,Ue,W)W% is a finite sum

of terms of the form

Hd~e,Ue,W!)
j

~e]y!
b jUe)

k
~e]y!

gkW, ( b j1( gk5a, ~6.19!

where there is always at least onegk . Assumptions~6.6! and~6.17! guarantee that all the factor
except the derivatives ofw are bounded. To estimate the product of the derivatives ofW, use the
following result.

Gagliardo–Nirenberge-inequalities: If WPHr~Rd)ùL`~Rd! and0,uau,r , then

]y
aWPL2r /uau~Rd!.

Moreover, there is a constant C5C(uau,s,d) so that for alleP#0,`@,

i~e]y!
aWiL2r /uau~Rd!<CiWiL`~Rd!

12uau/r S (
ubu5r

i~e]y!
bWiL2~Rd!D uau/r

. ~6.20!

Proof of Gagliardo–Nirenberge-inequality:The inequality is classical fore51. Applying that
inequality toV(x):5W(ex) proves~6.20!. -

Let r :5(ugku<s. The Gagliardo–Nirenberg inequalities imply that

i~e]y!
gkWiL2r /ugku<CiWi

H
e
s~Rd!

ugku/r . ~6.21!

Hölder’s inequality shows that

I)
k

~e]y!
gkWI

L2~Rd!

<CiWiH
e
s~Rd! ,

and the proof of the Lemma is complete. -
Step 4. End of semilinear proof:We proceed to estimateWe for 0 < t < T* (e) < T where

T* ~e!:5sup$tP@0,T#:iWeiL`~@0, t#3Rd!<1%.

SinceWe~0,.!;0 in C0
`~Rd! one can choosee1.0 so that

e,e1⇒iWe~0!iL`~Rd!,1.

ThenT* (e) . 0 for e,e1.
For 0< t < T* the basic energy inequality implies that
J. Math. Phys., Vol. 38, No. 3, March 1997
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iWe~ t !iH
e
s<CS iWe~0!iH

e
s1E

0

t IH„e,Ue~ t !,We~ t !…We~ t !2
he~ t !2r e~ t !

ep I
H

e
s
dtD .

Using the Lemma and~6.5! yields for alln

iWe~ t !iH
e
s<C~s,n!S en1E

0

t

(iWe~ t !iH
e
s1en)dtD .

Gronwall’s inequality implies

iWe~ t !iH
e
s<C~s,n,T!en. ~6.22!

First takes5n.d/2 and choosee0<e1 so that~6.22! in concert with Sobolev’s inequality~6.16!
implies thatiWe(t)iL`(Rd) < 1

2. It then follows that fore<e0,T* (e) 5 T which proves thatve exists
for 0<t<T and that inequality~6.22! holds throughout this region.

This done, chooses.d/21uau Then Sobolev’s inequality implies

i]y
aWe~ t !iL`~Rd!<C~s!e2d/2i]y

aWe~ t !iH
e
s~Rd!

<C~s!e2uau2d/2iWeiH
e
s1uau~Rd!<C~s,n,T!en2d/22uau.

Since this is true for alln, this shows that all they derivatives ofWe areO~e`!.
To obtain the same result for the time derivatives ofWe it suffices to use the differentia

equation to express these derivatives in terms ofy derivatives. This shows that all derivatives
We areO~e`! in sup norm, and therefore the proof in the semilinear case is complete.

Step 5. Taylor’s theorem and the quasilinear terms:In the quasilinear case, the initial valu
problem forve is equivalent to the following initial value problem forWe:

L~epUe1epWe,e]!epWe1F~epUe1epWe!2F~epUe!1„L~epUe1epWe,e]!

2L~epUe,e]!…epUe5he2r e, ~6.23!

We~0,y!5e2pge;0. ~6.24!

The coefficients in the last difference on the left of~6.23! are of the form

Am~epUe1epWe!2Am~epUe!

whereAm vanishes to orderJ21 at the origin. The Taylor theorem argument ofstep 1shows this
difference is of the form

ep~J21!Hm~e,Ue,We!We.

Thus the last difference on the right has the form

(
m

ep~J21!Hm~e,Ue,We!Wee]mepUe:5epJH~e,Ue,e]Ue,We!We.

This yields the equation

S L1~ve,]!1
1

e
L0DWe1H~e,Ue,e]Ue,We!We;0. ~6.25!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Step 6. He
s estimates in the quasilinear case:This is the part of the quasilinear argument whi

really requires more work than the semilinear case. The problem is that the linear operato

L~e,x,]!:5L1„v
e~x!,]…1

1

e
L0

in ~6.25! has variable coefficients.Am~e,x):5Am„v
e(x)….

The first step is to remark that it is the Lipshitz norm of the coefficients which is impor
This is a consequence of the classical energy identity

] tE
Rd

^u~ t !,A0u~ t !&dy52 ReE
R

d

^u~ t !,Lu~ t !&dy1E
Rd
K u~ t !,S ( ]Am

]xm
Du~ t !L dy.

~6.26!

The coefficients ofL are of the formA(epVe). Hypothesis~6.1! shows that this coefficient is o
the form

A~0!1ep~J21!H~e,Ve!. ~6.27!

Recall thatp(J21)51, so the derivates of such an expression are sums of terms of the for

~]H !~e,Ve!e]Ve.

Therefore, the sup norm of the derivatives of the coefficients is bounded by the sup normVe

and thee] derivative ofVe, that is

I S (
m50

d
]Am

]xm
D I

L`~@0, T#3Rd!

<CS iVeiL`~@0, T#3Rd!1(
m

ie]mV
eiL`~@0, T#3Rd!D . ~6.28!

This suggests the introduction of the following definition.
Definition: On

VT :5@0, T#3Rd,

the family of norms, each equivalent to the Lipshitz norm, is defined by

iViLipe~VT! :5iViL`~VT!1 sup
0<m<d

ie]mViL`~VT! .

The preceding computations prove the following basicL2 estimate.
Proposition 6.3: For any K,T.0 so that L is symmetric hyperbolic onuuu<K, there is a

constant C5C(K,L) so that if T.0 and ve5epVePC(0)
` (VT) satisfies

iVeiLipe~VT!<K,

then for all0<t<T, 0,e,` and WPC(0)
` (V t),

iW~ t !iL2~Rd!<CXiW~0!iL2~Rd!1E
0

t I S L1~ve,]!1
1

e
L0DW~s!I

L2~Rd!

dsC. ~6.29!

This estimate is used forW:5(e])aWe in which case the right-hand side is estimated as follo
Define
J. Math. Phys., Vol. 38, No. 3, March 1997
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T* ~e!:5sup$tP@0, T#:iWeiLipe~V t!
<1%. ~6.30!

Lemma 6.4: With the shorthand Z:5e]y , if uau<sPN, there is a constant C5C(s,Ue) so that
if 0,t<T

*
(e), then

I S L1~ve,]!1
1

e
L0DZaWe~ t !I

H
e
s~Rd!

<CiWe~ t !iH
e
s~Rd!1O~e`!. ~6.31!

Proof of Lemma 6.4:Apply Za to ~6.25!. Expand theZaH term using Leibniz’s rule and then
use thee-Gagliardo–Nirenberg estimates as in the proof of Lemma 6.2 to show that

iZa$H~e,Ue,e]Ue,We!We%iL2~Rd!<CiWe~ t !iH
e
s~Rd! . ~6.32!

To prove Lemma 6.4 it suffices to prove the following commutator estimate:

I FL1~ve,]!1
1

e
L0 , Z

aGWeI
L2~Rd!

<CiWeiH
e
s~Rd! . ~6.33!

The commutators withL0 and with Am~0!]m vanish identically. Using~6.27! and p(J21)51
shows that what remains to be estimated is [Za, H(e,Ue1We)e]m]W

e. Leibniz’s rule shows that
this is equal to a sum of terms of the form

G~e,Ue,Ve!S)
j
Za jUeD S)

k
ZbkWeDZge]mW

e, g1( a j1( bk5a, ugu,s.

~6.34!

Note that there ares11 derivatives in total. TheG term and the product of the derivatives ofUe

each belongs toL` so it suffices to estimate theL2 norm of the remaining factors.
First consider the casemÞ0. If ubku<1 for all k, estimate theL2 norm ofZge]mW

e by theHe
s

norm ofWe and the rest of the factors inL`. Otherwise, include theZge]m term as one of theb
terms. It suffices to show that

( bk<s11, ubku<s ⇒ I S )
ubku>2

ZbkWeD I
L2~Rd!

<CiWeiH
e
s~Rd! .

Define

r :511 (
ubku>2

~ ubku21!<s.

Each factor is aZ derivative of orderubu21 of aZWePHe
r21. The Gagliardo–Nirenberg inequa

ity applied toW:5ZWe yields

iZbWe~ t !iL2~r21!/~ ubu21!<CiZWe~ t !iH
e
r21

~ ubu21!/~r21!
<CiWe~ t !iH

e
r

~ ubu21!/~r21! . ~6.35!

Hölder’s inequality yields

I S )
ubku>2

ZbkWeD I
L2~Rd!

<CiWe~ t !iH
e
r ~Rd!<CiWe~ t !iH

e
s~Rd! . ~6.36!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Finally, if m50 in ~6.34! use Eq.~6.25! to express thee]t derivative ofWe in terms of e]j
derivatives plus a termeH(e,Ue,e]Ue,We)We plus aO~e`!. Each of the terms produced can b
analyzed by the methods above so the proof of Lemma 6.4 is complete. -

End of quasilinear proof:Applying ~6.29! and ~6.34! together with Gronwall’s inequality
shows that for all positive integersn ands there is a constantC(n,s) so that for all 0<t<T

*
,

(
uau<s

i~e]x!
aWe~ t !iL2~Rd!<Cen. ~6.37!

Thanks to~6.24! and ~6.25! for the time derivative, one can choosee1.0 so that fore<e1

(
uau<1

iZaWe~0!iL`~Rd!,
1

2
.

ThenT
*
~e!.0 for e,e1.

Take s5n.11d/2 and choosee0<e1 so that~6.37! in concert with~6.25! and Sobolev’s
inequality ~6.16! implies that

iWe~ t !iLipe~VT
*

~e!!
< 1

2.

It then follows that fore<e0, T*
(e)5T which proves thatve exists for 0<t<T and that inequal-

ity ~6.37! holds throughout this region. As at the end of the semilinear case, this implie
conclusion~6.7! and the proof of Theorem 6.1 is complete. -
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24L. Hörmander,The Analysis of Linear Partial Differential Operators~Springer-Verlag, New York, 1991!.
25J. Rauch, Lectures on geometric optics, in IAS Park City Summer Math Institute, 1995~to appear!.
26R. Courant,Methods of Mathematical Physics, Vol. II~Interscience, New York, 1963!.
27P. Donnat, ‘‘Quelques contributions mathe´matiques en optique non line´aire,’’ Ph.D. dissertation, E´cole Polytechnique,
Paris, 1994.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



lf-
to

y by
-
ns
scaling

tral

ular

lued

s
n the
.

spins

¬¬¬¬¬¬¬¬¬¬
Bethe ansatz study for ground state of Fateev
Zamolodchikov model
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A Bethe ansatz study of a self-dualZN spin lattice model, originally proposed by V.
A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model
to the Chiral Potts model is established. Transcendental equations connecting the
zeros of Fateev–Zamolodchikov transfer matrix are derived. The free energies for
the ferromagnetic and the anti-ferromagnetic ground states are found for both even
and odd spins. ©1997 American Institute of Physics.@S0022-2488~97!01502-8#

I. GENERAL INTRODUCTION

A. Fateev Zamolodchikov model

V.A. Fateev and A.B. Zamolodchikov proposed in 19821 a two dimensional self-dualZN
lattice spin model with nearest neighbor interaction~FZM!. They obtained this model as the se
dual2 solution of the star-triangle relations.3 In Ref. 1 the authors showed that it is possible
choose the interactions between spins so that the model is self-dual2 and the Boltzmann weights
satisfy the star-triangle equations.3 In the same paper, they also found the specific free energ
means of the matrix inversion method.4–6 In a different paper7 Fateev and Zamolodchikov pro
posed a conformal field theory withZN symmetry having invariance of the correlation functio
under a duality transformation. It was conjectured that such a theory should describe the
limit of the FZM. This conjecture has already been verified by several authors.8,9 One interesting
special case ofN54 is solved exactly in the closed form for a finite sized lattice and cen
charge is extracted.10

The general case of aZN model can be defined as follows. On a two dimensional rectang
lattice ~see Fig. 1! the lattice sites are occupied by a spin variablez which takes its values in the
groupZN@zN51#. If one designates the sites on the lattice by a two dimensional integer-va
vector x, one can write down the partition function of the statisticalZN model with nearest
neighbor interaction as:

Z5(
$z%

)
x

)
s56

w~s!~z~x!,z~x1ed!!, ~1!

where the sum runs over all values of the variablez in every site of the lattice. The function
ws,(s561) are the weight functions corresponding to the interaction between spins o
neighboring sites of the lattice in horizontal (s51) and vertical (s521) directions, respectively
The vectorse15(1,0) ande215(0,1) are the basis vectors of the lattice.

In the absence of external fields, the most general interaction between two neighboring
after appropriate normalization is given by

w~s!~z1 ,z2!511 (
i51

N21

xi
~s!
•~z1z2

!! i , ~2!

a!Electronic mail:~1!: subho@tnp.saha.ernet.in;~2!: sray@max.physics.sunysb.edu
0022-2488/97/38(3)/1524/35/$10.00
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where superscript* denotes complex conjugation. Reality ofw(s)(z1 ,z2) imposes on the param
eters the following restriction:

xi
~s!5xN2 i

~s! . ~3!

The dual transformation of the statistical weights are given by

x̃ i
~s!5S 11 (

k51

N21

xk
~2s!vkiD •S 11 (

k51

N21

xk
~2s!D 21

, ~4!

wherev5exp(2pi/N). The region of self-duality is then given by

x̃ i
~s!5xi

~s! . ~5!

Let the parametersxi
(s) be represented by a family of functionsWi(a) of auxiliary parametera

PC

xi
~1!5Wi~a!, xi

~21!5Wi~p2a!. ~6!

The star-triangle relation4,11 on xi(a) can be represented as

(
k50

N21

Wn12k~a!Wn22k~p2a2a8!Wn32k~a8!

5c~a,a8!Wn22n3
~p2a!Wn12n3

~a1a8!Wn12n2
~p2a8!. ~7!

The particular solution of Eq.~7! that possesses the self-duality property, Eq.~5!, is given by

W051,Wn~a!5 )
k50

n21
sin@pk/N1a/2N#

sin@p~k11!/N2a/2N#
. ~8!

Denotingxn
(1)5W(nuu) andxn

(21)5W̄(nuu) we get

W~nuu!

W~0uu!
5)

j51

n
sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!
, ~9!

FIG. 1. Fateev–Zamolodchikov model on a square lattice.
J. Math. Phys., Vol. 38, No. 3, March 1997
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W̄~nuu!

W̄~0uu!
5)

j51

n
sin~p j /N2p/N1u!

sin~p j /N2u!
. ~10!

We adopt the normalizationW(0uu)5W̄(0uu)51. The ‘‘physical region’’ defined by non
negative real Boltzmann weights~BW!, is given byu P @0,p/2N#. ForN52,3 Eq.~9! and Eq.~10!
simply reduce to the self-dual critical Potts model. ForN54 it gives a particular case of critica
Ashkin–Teller model. Fateev and Zamolodchikov propose that forN55,7 the solution describe
the critical bifurcation points in the phase diagram of Alcaraz and Koberle.12

It is appropriate to introduce chiral Potts model, its transfer matrix and automorphisms a
stage; since we shall be using functional equations connecting transfer matrices that were
nally discovered in reference to chiral Potts.13

B. FZM as non-chiral self-dual limit of chiral Potts model

The self-dual chiral Potts model is given by Boltzmann weights

Wpq~n!

Wpq~0!
5)

j51

n
bq2v jap
bp2v jaq

, ~11!

W̄pq~n!

W̄pq~0!
5)

j51

n
vap2v jaq
bq2v jbp

, ~12!

wherev5exp(2pi/N) and the paired complex variables (a,b) P C 2 satisfy the constraint

ax
N1bx

N5k ~13!

k P @0,1#, andx5p or q. In the non-chiral limit, whenk50, we can parametrize (ax ,bx) in Eq.
~13! as:

ax5e2ix, bx5v1/2e2ix, ~14!

defining u5q2p Eq. ~11! and Eq.~12! reduce to Eq.~9! and Eq.~10!. However, we retain
suffixes (p,q) in the Boltzmann weightsWpq(nuu) andW̄pq(nuu) to signify that these Boltzmann
weights are obtained from the chiral Potts Boltzmann weights defined in terms ofp and q
variables.

C. Associated Hamiltonian for FZM

The transfer matrix for the FZM can be constructed from the Boltzmann weights as:

Tp,q
n,n8~u!5)

k51

M

W̄pq~nk2nk8uu!Wpq~nk2nk118 uu!, ~15!

whereM is the number of sites in each row and periodic boundary condition is implied. T
transfer matrices for different spectral variableu form a commuting set. This can be argued fro
the fact that these transfer matrices come as a limit of chiral Potts transfer matrix, whic
known to be commuting. A more direct argument would be that Fateev and Zamolodc
obtained FZM Boltzmann weights as solutions of star-triangle relation, and hence the tr
matrix constructed out of them ought to commute

@T~u!,T~u8!#50, ;u,u8PC . ~16!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Transfer matrix T~u! reduces to identity operator foru→0. An expansion of T~u! gives us the
associated spin chain Hamiltonian H

T~u!512Mu(
n51

N21
1

sin~np/N!
2uH1O~u2!, ~17!

H52 (
k51

M

(
n51

N21
1

sin~np/N!
~Xk

n1Zk
nZk11

2n !, ~18!

whereX andZ are defined as

Xkun1 . . .nk . . .nM&5un1 . . .nk11 . . .nM&modN

Zkun1 . . .nk . . .nM&5vnkun1 . . .nk . . .nM&.

Eq. ~17! and Eq.~18! imply that each Hamiltonian commutes with all the transfer matri
and their associated Hamiltonians. Thus it has an infinite set of conserved charges in invo
However, only a subset of them, whose number is equal to the degrees of freedom of the s
are independent.

For small positiveu the ground state ofH obviously corresponds to the largest eigenvalue
T(u). When the Boltzmann weights are strictly positive, Perron–Frobenius theorem14 guarantees
that there can be no level crossing for the largest eigenvalue ofT(u). Hence the correspondenc
of the ground state of HamiltonianH to the largest eigenvalue of the transfer matrixT extends
throughout the physical region. As a final remark we observe that the spin chain Hamilton
the self-dual chiral Potts model15

H~f!52 (
k51

M

(
n51

N21

an~Xk
n1Zk

nZk11
2n !, ~19!

an5exp@ i ~2n2N!f/N#/sin~np/N!,

reduces to Eq.~18! by setting the chirality parameterf50. On the other hand, under the action
the unitary operator

U5)
k51

M

Zk
21)

k51

M

Xk
2k ,

H(f) transforms as

UH~f!U2152H~f2p!

provided thatM50 modN, so H(f5p) is unitarily equivalent to2H. While the physical
properties ofH and 2H can be very different, the diagonalization ofT(u) would give the
complete spectrum of Eq.~19! at these two distinct points of the chirality parameter.

D. Automorphisms of the chiral Potts model

In order to obtain the zeros of the eigenvalues of the transfer matrixTq , we will use func-
tional equations connectingTq with its automorphically conjugate partners. Thus it is importan
understand the relevant automorphisms of the constraint Eq.~13!. It has been claimed in the
J. Math. Phys., Vol. 38, No. 3, March 1997
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previous section that the transfer matrices constructed out of chiral Potts Boltzmann weigh
~11! and Eq.~12!, commute as long as they satisfy Eq.~13!. For any (a,b) P C 2 satisfying the
above relations there exist other complex pairs connected to them which satisfy the same r
Two such automorphic relations of importance are,

R~a,b!5~b,va!, ~20!

U~a,b!5~va,b!. ~21!

It is rather straightforward to check;

aRx
N 1bRx

N 5k, aUx
N 1bUx

N 5k,

from the relation

ax
N1bx

N5k.

In section I B we demonstrated how one can go from chiral Potts Boltzmann weights to
Boltzmann weights through a limiting process. If one makes a similar attempt forWpRq, W̄pRq

andWpUq , W̄pUq one gets a somewhat different result

WpRq~nuu!

WpRq~0uu!
5)

k51

n
sin~pk/N2p/N2u!

sin~pk/N1u!
, ~22!

W̄pRq~nuu!

W̄pRq~0uu!
5)

k51

n
sin~pk/N2p/2N1u!

sin~pk/N2p/2N2u!
, ~23!

WpUq~nuu!

WpUq~0uu!
5e2

ıpn
N )

k51

n
sin~pk/N2p/2N2u!

sin~pk/N1p/2N1u!
, ~24!

W̄pUq~nuu!

W̄pUq~0uu!
5e

ıpn
N )

k51

n
sin~pk/N1u!

sin~pk/N2u!
. ~25!

Thus in the nonchiral limit,Tq→Tq(u) and TRq→Tq(u1p/2N). There is no simple relation
betweenTq andTUq though. However, I do feel that there must exist some nontrivial mapp
betweenTq andTUq whose understanding will unravel the connection between the zeros ofTq and
TUq

and will give the satisfactory derivation of completeness of states.

E. Choice of eigenvectors to utilize translation and spin rotation invariance

The choice of proper eigenvectors of transfer matrix can reduce the diagonalization pr
significantly. In this section we study the special features of the Boltzmann weights and tr
matrix that allow us to make a momentum and spin sector-wise study.

Lemma 1: Wp,q(nuu) and W̄p,q(nuu) as defined by Eq. (9) and Eq. (10) reduce to 1 wh
n5N.

Proof: The Boltzmann weights are given by

Wp,q~nuu!

Wp,q~0uu!
5)

j51

n
sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!
,

J. Math. Phys., Vol. 38, No. 3, March 1997
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W̄p,q~nuu!

W̄p,q~0uu!
5)

j51

n
sin~p j /N2p/N1u!

sin~p j /N2u!
.

For evenN we get

Wp,q~Nuu!

Wp,q~0uu!
5)

j51

N
sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!

5)
j51

N
2 sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!
• )
j5

N
2 11

N
sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!

5)
j51

N
2 sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!
•)
k51

N
2 sinSN2k11

N
p2

p

2N
2uD

sinSN2k11

N
p2

p

2N
1uD ,

where k5N2 j11

5)
j51

N
2 sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!
•)
k51

N
2 sinS kNp2

p

2N
1uD

sinS kNp2
p

2N
2uD 51 . ~26!

For oddN one proves this result by breaking the product at (N21)/(2) , (N11)/(2). A similar
proof can be shown forW̄p,q(Nuu) in both odd and even cases.

Lemma 2: Wp,Uq(nuu) and W̄p,Uq(nuu) as defined by Eq. (24) and Eq. (25) reduce to 1 wh
n5N.

Proof: The Boltzmann weights are given by:

Wp,Uq~nuu!

Wp,Uq~0uu!
5)

j51

n

e2
ip
N •

sinS jpN 1uD
sinS jpN 2uD , ~27!

Wp,Uq~Nuu!

Wp,Uq~0uu!
5)

j51

N

e2
ip
N •

sinS jpN 1uD
sinS jpN 2uD

5e2 ip
•)
j51

N sinS jpN 1uD
sinS p2S jpN 2uD D
J. Math. Phys., Vol. 38, No. 3, March 1997
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5~21!

P j51
N sinS jpN 1uD

P j 850
N21 sinS j 8pN 1uD ,

wherej 85N2 j

5~21!•
sin~p1u!

sin~u!
51. ~28!

A similar proof can be shown forW̄p,Uq(Nuu).
Theorem 1:Wp,q(nuu) andW̄p,q(nuu) as defined by Eq.~9! and Eq.~10! are periodic inn

with periodN, i.e.,Wp,q(n1Nuu)5Wp,q(nuu) andW̄p,q(n1Nuu)5W̄p,q(nuu).
Proof: The Boltzmann weights are given by

Wp,q~nuu!

Wp,q~0uu!
5)

j51

n
sin~p j /N2p/2N2u!

sin~p j /N2p/2N1u!
,

W̄p,q~nuu!

W̄p,q~0uu!
5)

j51

n
sin~p j /N2p/N1u!

sin~p j /N2u!
.

Using the property of the previous Lemma we get:

Wp,q~n1Nuu!

Wp,q~0uu!
5 )

j51

n1N sinS p j

N
2

p

2N
2uD

sinS p j

N
2

p

2N
1uD

5)
j51

N sinS p j

N
2

p

2N
2uD

sinS p j

N
2

p

2N
1uD )

j5N11

N1n sinS p j

N
2

p

2N
2uD

sinS p j

N
2

p

2N
1uD

5)
k51

n sinS p~N1k!

N
2

p

2N
2uD

sinS p~N1k!

N
2

p

2N
1uD

5)
k51

n sinS pk

N
2

p

2N
2uD

sinS pk

N
2

p

2N
1uD .

Similarly one can show that the same periodicity holds forW̄p,q(nuu).
Theorem 2:Wp,q(nuu) andW̄p,q(nuu) as defined by Eq.~9! and Eq.~10! are invariant under

spin conjugation, i.e.,Wp,q(N2nuu)5Wp,q(nuu).
Proof: Using Lemma 1. we get
J. Math. Phys., Vol. 38, No. 3, March 1997
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Wp,q~N2nuu!

Wp,q~0uu!
5 )

j51

N2n sinS jpN 2
p

2N
2uD

sinS jpN 2
p

2N
1uD

5

P j51
N

sinS jpN 2
p

2N
2uD

sinS jpN 2
p

2N
1uD

)
j5N2n11

N sinS jpN 2
p

2N
2uD

sinS jpN 2
p

2N
1uD

5 )
j5N2n11

N sinS jpN 2
p

2N
1uD

sinS jpN 2
p

2N
2uD

5 )
j 851

n sinS p2
j 8p

N
1

p

2N
1uD

sinS p2
j 8p

N
1

p

2N
2uD ,

wherej 85N2 j11

5)
j51

n sinS jpN 2
p

2N
2uD

sinS jpN 2
p

2N
1uD 5Wp,q~nuu!. ~29!

Similarly one can show that the same property holds forW̄p,q(nuu).
Theorem 3:Wp,Uq(nuu) andW̄p,Uq(nuu) as defined by Eq.~24! and Eq.~25! are periodic in

n with periodN, i.e.,Wp,Uq(n1Nuu)5Wp,Uq(nuu).
Proof: Using Lemma 2. The proof follows the same procedure as that of Theorem 1.1
Theorem 4: Wp,Uq(nuu) andWp,Uq(nuu) as defined by Eq.~24! and Eq. ~25! are non-

invariant under spin conjugation, i.e.,Wp,q(N2nuu) Þ Wp,q(nuu).
Definition 1:Define the shift operatorS by its action on a state function or spin configurati

n5un1 ,n2 , . . .nM&.

Sun1 ,n2 ,n3 , . . .nM&5unM ,n1 ,n2 , . . .nM21&. ~30!

MomentumP is defined in terms of the shift operator as

eiP5S21 .

Theorem 5: Tp,q
n,n8(u) reduces to the identity operator foru50 and to the shift operator fo

u5p/2N.
Proof:
J. Math. Phys., Vol. 38, No. 3, March 1997
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Tp,q
n,n8~u!8S )

k51

M

W̄p,q~nk2nk8uu!Wp,q~nk2nk118uu!D
asu→0 one gets from Eq.~9! and Eq.~10!

lim
u→0

Wp,q~nuu!51, lim
u→0

W̄p,q~nuu!5dn,0 ,

hence

Tp,q
n,n8~0!51n,n8

whenu→ p/2N

lim

u→
p
2N

Wp,q~nuu!5dn,0 , lim

u→
p
2N

W̄p,q~nuu!51,

hence

Tp,q
n,n8S p

2ND5)
k

dnk ,nk118 5Sn,n8.

Definition 2:Define the z-component of spin operatorZk and spin raising operatorXk corre-
sponding to a given lattice site (k) by their action on a state function or spin configurati
n5un1 ,n2 , . . .nM, nk50,1 . . .N21.

Xkun1 . . .nk . . .nM&5un1 . . .nk11 . . .nM&modN

Zkun1 . . .nk . . .nM&5vnkun1 . . .nk . . .nM&

Theorem 6:Tp,q(u) andTp,Uq(u) commute withZk and with the global spin raising operato
given by

X5)
k51

M

Xk .

Proof: One can explicitly check the productT•X

(
n8

Tp,q
n,n8~u!•Xn8,n95(

n8
Tp,q
n,n8~u!•S)

k
dnk ,nk9D

5Tp,q
n,n9~u!.

Similarly for X•T

(
n8

Xn,n8
•Tp,q

n8,n9~u!5Tp,q
n,n9~u!.

Hence the proof. Similar proof holds forTp,Uq .
Theorem 7: Tp,q(u) commutes with the global spin conjugation operator defined by

Cun1 . . .nM&5uN2n1 . . .N2nM&,
J. Math. Phys., Vol. 38, No. 3, March 1997
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however,Tp,Uq(u) does not commute.
Proof: SinceWp,q(N2n)5Wp,q(n) andW̄p,q(N2n)5W̄p,q(n) operatorC as defined above

commutes withTp,q . The noncommutativity ofTp,Uq(u) can be argued from the properties
Wp,Uq

andW̄p,Uq
.

The above theorems clearly show that the total spin raising operatorX and the translation
operatorS ~which is nothing but the transfer matrix at a particular value of rapidity! commute with
both families of the transfer matrixTq andTUq . Hence it is possible to make a spin and mome
tum sector wise study of the problem.

II. THE SPECTRUM OF THE TRANSFER MATRIX Tq(u )

A. Polar divisors of Tp,q and Tp,Uq

As described in the Introduction, our effort will be to determine the eigenvalues of the tra
matrix from functional equations found by Baxter, Bazhanov and Perk.13 One only needs to
assume analyticity property of the eigenvalues to determine them in terms of their zeros~or poles!.
In order to achieve this goal one needs to remove the poles of the transfer matrix and obt
so called normalized transfer matrices. In terms of these normalized transfer matrices the
tional relations are used.

Theorem 8: The polar divisor of

Tp,q
n,n85)

k51

M

W̄p,q~nk2nk8uu!Wp,q~nk2nk118 uu!

is given by

gq~u!•ḡq~u!5)
k51

N
2

sinS pk

N
2

p

2N
1uD sinS pk

N
2uD for N even, ~31!

gq~u!•ḡq~u!5 )
k51

N21
2

sinS pk

N
2

p

2N
1uD sinS pk

N
2uD for N odd. ~32!

Proof: The zeros of theWp,q are given by

uk5
pk

N
2

p

2N
5~2k21!

p

2N
.

The poles of theWp,q are given by

uk5p2
pk

N
1

p

2N
5$2N2~2k21!%

p

2N
.

Thus both the zeros and the poles are odd multiples ofp/2N, hence there will be cancelation
beyond a certain maximumk. Let k5n correspond to the maximum value ofk for which zeros
and poles do not cancel. Then

~2n21!
p

2N
,$2N2~2n21!%

p

2N

n,SN11

2 D . ~33!
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Thus forN even,n5 (N)/(2) and forN odd,n5 (N21)/(2).
The zeros of theW̄p,q are given by

uk5p2
pk

N
1

p

2N
.

The poles of theW̄p,q are given by

uk5
pk

N
.

Let k5n correspond to the maximum value ofk for which zeros and poles do not cancel. The

pn

N
,p2

pn

N
1

p

2N

n,N1 1
2. ~34!

Thus forN even,n5 N/2 and forN odd,n5 (N 2 1)/(2).Hence the polar divisor.
Theorem 9: The polar divisor of

Tp,Uq
n,n8 5)

k51

M

W̄p,Uq~nk2n8kuu!Wp,Uq~nk2nk118 uu!

is given by

gUq~u!•ḡUq~u!5)
k51

N/2

sinS pk

N
1

p

2N
1uD sinS pk

N
2uD for N even, ~35!

gUq~u!•ḡUq~u!5 )
k51

~N21!/2

sinS pk

N
1

p

2N
1uD sinS pk

N
2uD for N odd. ~36!

Proof: The zeros of theWp,Uq are given by

uk5
pk

N
2

p

2N
5~2k21!

p

2N
.

The poles of theWp,q are given by

uk5p2
pk

N
2

p

2N
5$2N2~2k11!%

p

2N
.

Thus both the zeros and the poles are odd multiples ofp/2N, hence there will be cancelation
beyond a certain maximumk. Let k5n correspond to the maximum value ofk for which zeros
and poles do not cancel. Then

~2n21!
p

2N
,$2N2~2n11!%

p

2N

n,
N

2
. ~37!
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Thus forN even,n5 (N)/(2)21 and forN odd, n5 (N21)/(2). Thezeros of theW̄p,Uq are
given by

uk5p2
pk

N
.

The poles of theW̄p,Uq are given by

uk5
pk

N
.

Let k5n correspond to the maximum value ofk for which zeros and poles do not cancel. The

pn

N
,p2

pn

N

n,
N

2
. ~38!

Thus forN even,n5 (N)/(2)21 and forN odd,n5 (N21)/(2). Hence the polar divisor.

B. Analytical properties of transfer matrix eigenvalues N odd case

In this section we extend our discussions to the oddN case. The distinct Boltzmann weigh
that appear in Eq. ~9! and Eq. ~10! are Wpq(0),Wpq(1), . . .Wpq((N21)/2), and
W̄pq(0),W̄pq(1), . . . . . .W̄pq((N21)/2). We remove the denominators defining a normaliz
transfer matrix

Tq
N~u!5@gq~u!ḡq~u!#MTq~u!,

where

gq~u!5 )
j51

~N21!/2

sinS p j

N
2

p

2N
1uD , ḡq~u!5 )

j51

~N21!/2

sinS p j

N
2uD .

Each entry ofTq
N(u) is a product of (N21)M sines and it has the general form

)
k51

~N21!M

~ck
~1!eiu1ck

~2!e2 iu!.

Call L(u) the eigenvalues ofTq(u). Owing to commutability ofTq(u), Eq. ~16!, the eigenvectors
of Tq(u) do not depend on the rapidityu

Tq~u!uv&5L~u!uv& ~39!

so each eigenvalue is a linear combination of matrix elements with coefficients which d
depend onu.3 Consequently, we must have

L~u!5F 1

gq~u!ḡq~u!
GMP~eiu!. ~40!
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P(eiu) being a Laurent polynomial ineiu. Furthermore,Tq(u1p)5Tq(u) and the prefactor in
Eq. ~40! is invariant underu→u1p so only even powers appear inP

P~eiu!5PA
B~e2iu!5cBe

2iuB1cB21e
2iu~B21! . . .c2Ae

2iu~2A!, ~41!

cB ,c2AÞ0 and A,B<~N21!M /2.

We cannot conclude thatA,B5(N21)M /2 because cancelations may occur in the eigenva
equation~39!. We show now, considering the limitu→6 i`, that in the sectorQ50 we have
A5B5(N21)M /2. Only the caseu→2 i`, which fixesB, will be presented in detail, the cas
u→ i`, which determines A, being analogous. After having observed th
@gq(u)ḡq(u)#

M;(eiu)(N21)M whenu→2 i`, we have to prove that, foru→2 i`, LuQ50(u) is
finite and non-zero. Now, we have

Wpq~nu2 i`!5vn~N2n!/2, W̄pq~nu2 i`!5vn~N1n!/2,

and

Tp,q
n,n8~2 i`!5)

k51

M

vnk~nk118 2nk8!.

Notice thatTp,q(2 i`)X5Tp,q(2 i`), hence eigenvaluesLQ(2 i`) are 0 ifQ Þ 0, but we cannot
conclude yet thatLQ50(2 i`) Þ 0. So we pass to the representation where theXk operators~and
X) are diagonal

Xkusk&5vskusk&, nk5
1

AN (
sk50

N21

vsknkusk&.

In this basis we have

Tp,q
s,s8~2 i`!5(

n,n8
^sun&^nuTun8&^n8us8&

5
1

NM(
n,n8

)
k51

M

vnkskvnk~nk118 2nk8!v2sk8nk8 ~42!

5(
n8

)
k51

M

dsk ,nk82n
k118 v2sk8nk8,

where the Kroneckerda,b is understood upto moduloN in its argument.

da,b5H 1 if a5b mod N

0 otherwise.

The sum can be performed after a change of summation variablesn185 j 1, n285 j 11 j 2, . . . ,
nM8 5 j 11 j 21 . . .1 j M which gives

Tp,q
s,s8~2 i`!5Nd(

k51
M s

k8,0
d(

k51
M sk,0)k52

M

vsk8~( j51
k21s j !. ~43!
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Since(k51
M sk is the ZN-charge of a stateus1 . . .sM&, Eq. ~43! implies thatTp,q

s,s8(2 i`) has

nonzero elements in theQ50 sector only. In such sectorTp,q
s,s8uQ50 has an inverse

~Tp,q
s,s8uQ50!

215
1

NM d(
k51
M sk,0

d(
k51
M s

k8,0)k52

M

v2sk~( j51
k21s j8!.

Therefore, all eigenvaluesLQ50(2 i`) are non-zero andB5(N21)M /2. Inspecting the limit
u→ i` we getA5(N21)M /2. Now we can factorize Eq.~40! as

LQ50~u!5F 1

gq~u!ḡq~u!
GM~e2iu!2Ar~e2iu2x1

2! . . . ~e2iu2xA1B
2 !,

wherer is a constant, all the zerosxk
2 are non-vanishing and so can be written asxk

25e2ivk. Finally

LQ50~u!5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L
sin~u2vk!
sin vk

, ~44!

L5A1B5~N21!M . ~45!

The normalization has been fixed byT(0)51id .
Now we turn to the sectorsQ Þ 0, and the symmetry under charge conjugation allows u

consider the sectorsQ51,2, . . . ,(N21)/2 only. While we have not been able to obtain a pro
like the one given above, one can show that, in the sectorQ

~a! A,B<
~N21!M

2
2Q, Q51,2 . . .

N21

2
,

~b! A,B>
~N21!M

2
2
N21

2
.

The proof of (b) relies on a recursion relation for the transfer matrix derived from the se
relations in Ref. 13 and follows argument similar to that for (a). Here, we show how to derive
(a). Using the geometric series representation we write the Boltzmann weight

W~n!5W~nu2 i`!)
j51

n F11 (
qj51

1`

~e22iu!qjv~1/22 j !qj~12v2 j21!G
5W~nu2 i`!F11 (

q51

1`

W~q!~n!e22iuqG ,
W̄~n!5W̄~nu2 i`!)

j51

n F11 (
qj51

1`

~e22iu!qjv jq j~12v122 j !G
5W̄~nu2 i`!F11 (

q51

1`

W̄~q!~n!e22iuqG .
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Inspection of the terms of orderq shows that the coefficientsW(q)(n), W̄(q)(n), which must be
polynomials inv jn, j50,1, . . .N21, contain the terms 1,vn,v2n,v2n,v22n . . . vqn,v2qn only.
Next one considers the expansion of an arbitrary transfer matrix element in powers ofe22iu. The
coefficient ofe22iuq is a sum of terms like

Tp,q
n,n8~2 i`! (

jaÞ jb
j n51

M

(
iaÞ ib
im51

M

W̄~q1!~nj 12nj 18 ! . . . W̄~qn!~njn2njn8 !,

W~q18!~ni12ni1118 ! . . .W~qm8 !~nim2nim118 !,

whereq11 . . .qn1q181 . . .qm8 5q. So the whole matrix element is a linear combination of term
each of which looks like

Tp,q
n,n8~2 i`!v6p1~nj 1

2nj 1
8 ! . . . 6pn~nj n

2nj n
8 !6p18~ni1

2ni1118 ! . . . 6pm8 ~nim
2nim118 !.

p1<q1 . . .pn<qn , p18<q18 . . .pm8 <qm8 . Substituting this into Eq.~39! shows that in theX rep-
resentation all matrix elements in the sectorQ5q go to zero at least likee22iuq and so must the
eigenvalues because Eq.~16! and Eq.~39! hold no matter what representation has been chosen
T(u). Hence B<(N21)M /22Q, Q51,2 . . . (N21)/2. Likewise, one proves
A<(N21)M /22Q by examining thee2iu expansion in the limitu→ i`.

From (a) and (b) and Eq. ~44! as well, we conclude that in the sectorsQ50 and
Q5(N21)/2

A5B5
~N21!M

2
2Q

and the factorization in terms of sines can be carried out in Eq.~40! without the appearance of
phase (e2iu)6(B2A). We assume this to be true also for the othersQ sectors, and arrive at th
general form

LQ~u!5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L
sin~u2vk!
sin vk

, ~46!

L5~N21!M22Q, Q50,1, . . .
N21

2
,

LN2Q~u!5LQ~u!.

From this, the eigenvalue ofH or the energy is easily found to be

E5 (
k51

L

cot vk22M (
j51

~N21!/2

cot~p j /N!. ~47!

The momentum (P) is given by,

eiP5LQS u5
p

2ND5F gq~0!ḡq~0!

gqS p

2ND ḡqS p

2ND G
M

)
k51

L sinS p

2N
2vkD

sin vk
. ~48!
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C. Analytical properties of transfer matrix eigenvalues N even case

In this section we restrict ourselves toN even case. The distinct Boltzmann weight that app
in Eq. ~9!, Eq. ~10! areWpq(0),Wpq(1), . . .Wpq(N/2), andW̄pq(0),W̄pq(1), . . .W̄pq(N/2). We
remove the denominators defining a normalized transfer matrix

Tq
N~u!5@gq~u!ḡq~u!#MTq~u!,

where

gq~u!5)
j51

N/2

sinS p j

N
2

p

2N
1uD , ḡq~u!5)

j51

N/2

sinS p j

N
2uD .

One must note that the superscript inTq
N denotes ‘‘normalize’’ and is not related to the sp

quantum numberN. Each entry ofTq
N(u) is a product ofNM sines and it has the general form

)
k51

NM

~ck
~1!eiu1ck

~2!e2 iu!.

The calculation of this section goes in the same spirit as that of oddN case. Hence we only
quote the results:

LQ50~u!5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L
sin~u2vk!
sin vk

, ~49!

L5A1B5NM.

The normalization has been fixed byTq(0)51id .
The momentum (P) is given by

eiP5LQS u5
p

2ND5F gq~0!ḡq~0!

gqS p

2ND ḡqS p

2ND G
M

)
k51

L sinS p

2N
2vkD

sin vk
. ~50!

Now we turn to the sectorsQ Þ 0, and the symmetry under charge conjugation allows u
consider the sectorsQ51,2, . . . ,(N21)/2 only. While we have not been able to obtain a pro
like the one given above, one can show that, in the sectorQ

~a! A,B<
NM

2
2Q, Q51,2 . . .

N

2
,

~b! A,B>
NM

2
2
N

2
.

Following similar argument as before, we arrive at

A5B5
NM

2
2Q.
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The reader must be warned that this conclusion lacks rigor just like in the case ofN odd. The
factorization in terms of sines can be carried out without the appearance of a
(e2iu)6(B2A). We assume this to be true also for the otherQ sectors, and arrive at the general for

LQ~u!5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L
sin~u2vk!
sin vk

, ~51!

L5NM22Q, Q50,1, . . .
N

2
,

LN2Q~u!5LQ~u!.

From this, the eigenvalue ofH is easily found to be

E5 (
k51

L

cot vk22M(
j51

N/2

cot~p j /N!. ~52!

The momentum (P) is given by,

eiP5LQS u5
p

2ND5F gq~0!ḡq~0!

gqS p

2ND ḡqS p

2ND G
M

)
k51

L sinS p

2N
2vkD

sin vk
. ~53!

III. EQUATIONS FOR THE ZEROS—BETHE ANSATZ EQUATIONS

A. Functional equations for the eigenvalues of transfer matrix

We shall use the set of functional equations for the eigenvalues of transfer matrices of
Potts derived by Baxter, Bazhanov and Perk.13,16This functional relation appears in Ref. 13 as E
~4.40! and has the following form:

T̃ q̄5 (
m50

N21

cm,qTUmq
21 TqTUm11q

21 X2m21, ~54!

whereT̃5TS, q̄5(aq̄ ,bq̄)5UR21(aq ,bq), and

cm,q5S S )
j50

m21
bp2v j11aq
ap2v jaq

D •S )
j5m11

N21
v~ap2v jaq!

bp2v j11aq
D •SN~bq2bp!~bp2aq!

apbp2vmaqbq
D D M,

whereS is the shift operator defined by def.~1! in section I E, andX is the global spin raising
operator defined by def.~1! in the same section.

B. A special automorphism for odd spin and Bethe ansatz type equations

In the case of FZM with an odd spin (N odd! a simple trick allows the functional relation t
be written in terms of only one type of transfer matrixTp,q(u). Recall the definitions of the
automorphismsU andR in Eq. ~20! and Eq.~21!. Transfer matrices corresponding to even pow
of Uq are related to those corresponding even powers ofRq as

TU2q5A~p,R2q!X21TR2q ,
J. Math. Phys., Vol. 38, No. 3, March 1997
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A~p,q!5F ~bp2vaq!~bp2v21bq!

~vap2bq!~ap2aq!
GM.

Assume that for some even power 2s the following relation holds

TU2sq5F )
j51

s21

A~p,U2 jR2~s2 j !q!GX2sTR2sq ,

then

TU2~s11!q5TU2s~U2q!

5F )
j51

s21

A~p,U2 jR2~s2 j !~U2q!!GX2sTR2s~U2q!

5F )
j51

s21

A~p,U2 jU2R2~s2 j !q!GX2sTU2R2sq

5F )
j51

s21

A~p,U2 jR2~s2 j !q!GX2sTR2sq

5F)
j51

s

A~p,U2 jR2~s2 j !q!GX2sTR2~s11!q .

From the above induction step it is evident that one can transform transfer matrix corres
ing to even powers ofUq into those corresponding to even powers ofRq. One can then write
them down in a uniform fashion as a single family of transfer matrices with a single spe
parameteru. For the case of odd spin systems, transfer matrix corresponding to the odd pow
U can be transformed into transfer matrix corresponding to even powers ofU by using the global
spin raising invariance ofTq . Thus for oddm we getUm5Um1N and can now use the transfo
mation formulae for even powers ofU.

Albertini17 used this property to obtain a functional equation forTp,q alone for the odd spin
case. This trick simplified the problem dramatically but the method fails to analyze the od
even spin cases on a uniform footing.

C. Bethe ansatz type equations for the N even case

Recall Eq.~54!,

T̃ q̄5 (
m50

N21

cm,qTUmq
21 TqTUm11q

21 X2m21, ~55!

whereT̃5TS, q̄5(aq̄ ,bq̄)5UR21(aq ,bq), and

cm,q5S S )
j50

m21
bp2v j11aq
ap2v jaq

D •S )
j5m11

N21
v~ap2v jaq!

bp2v j11aq
D •SN~bq2bp!~bp2aq!

apbp2vmaqbq
D D M,

T̃ q̄5 (
s50

N
2 21

~c2s,qTU2sq
21 TqTU2s11q

21 X22s21!
J. Math. Phys., Vol. 38, No. 3, March 1997
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1 (
s50

N
2 21

~c2s11,qTU2s11q
21 TqTU2s12q

21 X22s22!,

5 (
s50

N
2 21 S c2s,q

As,qAs,q8
•TR2sq

21 TqTR2s~Uq!
21 X21

1
c2s11,q

As,q8As11,q
•TR2s~Uq!

21 TqTR2s12q
21 X21D .

Define

p2s5
c2s,q

As,qAs,q8
, d2s115

c2s11,q

As,q8As11,q
.

The independent inverse factors ofTR2sq andTR2s(Uq) are considered, and both sides of t
above equation are multiplied by the appropriate common factor so as to get rid of inver
transfer matrix. The appropriate factor is:

X)
j51

N
2

TR2 j q )
j50

N
2 21

TR2 j ~Uq! . ~56!

After multiplying we get

X•T̃ q̄•)
j51

N
2

TR2 j qTR2~ j21!~Uq!

5 (
s50

N
2 21 S p2s)

j50
jÞs

N
2

TR2 j q• )
j50
jÞs

N
2 21

TR2 j ~Uq!1d2s11 )
j50

jÞ~s11!

N
2

TR2 j q• )
j50
jÞs

N
2 21

TR2 j ~Uq!D . ~57!

If one expressesTp,q andTp,Uq in terms of a complex parameteru, whereu5q2p ask→0,

Tq→Tq, TUq→TUq~u!,

TR2kq→TqS u1
kp

N D , TR2k~Uq!→T~Uq!S u1
kp

N D , ~58!

with this parameterization we get

X•T̃ q̄•)
j51

N
2

TqS u1
p j

N D • )
j50

N
2 21

TUqS u1
p j

N D
5 (

s50

N
2 21 S p2s•)

j50
jÞs

N
2

TqS u1
p j

N D • )
j50
jÞs

N
2 21

TUqS u1
p j

N D
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1d2s11• )
j50

jÞs11

N
2

TqS u1
p j

N D • )
j50
jÞs

N
2 21

TUqS u1
p j

N D D . ~59!

Let v be a zero ofTq , i.e.,Tq(v)50, then wheneveru5v2pk/N, Tq(u1pk/N)50. Thus
for u5v2pk/N k P $1,2, . . . , (N)/(2)21% all but two terms vanish

p2k)
j50
jÞk

N/2

TqS u1
p j

N D )
j50
jÞk

N/221

TUqS u1
p j

N D1d2k21)
j50
jÞk

N/2

TqS u1
p j

N D )
j50

jÞk21

N/221

TUqS u1
p j

N D50.

~60!

Cancelling the common factors we get

p2k~u!•TUqS u1
pk

N
2

p

ND1d2k21~u!•TUqS u1
pk

N D50,

whence

TUq~v !

TUqS v2
p

ND 52

p2kS v2
pk

N D
d2k21S v2

pk

N D . ~61!

Recalling the expression forTUq ,

)
j51

LUq sin~v i2 v̄ j !

sinS v i2 v̄ j2
p

ND 52S g
Uq

~v i !•ḡUq~v i !

g
UqS v i2 p

ND •ḡUqS v i2 p

ND D
M

•

p2kS v i2 pk

N D
d2k21S v i2 pk

N D . ~62!

The ratio ofg
Uq
and ḡ

Uq
can be obtained as

g
Uq

~v i !

g
UqS v i2 p

ND 5

cosS v i2 p

2ND
sinS v i1 p

2ND ,

ḡ
Uq

~v i !

ḡ
UqS v i2 p

ND 5~21!•

sinS v i1 p

ND
cos~v i !

. ~63!

Using these results for the ratios ofgUq and those of (p2k /d2k21) we finally get the Bethe
equations18

)
j51

LUq sin~v i2 v̄ j !

sinS v i2 v̄ j2
p

ND 5~21!M11F sin2S v i2 p

2ND
sin~2v i !

G 2M. ~64!
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Let v̄ be a zero ofT
Uq
, i.e., T

Uq
( v̄)50, then wheneveru5 v̄2pk/N, Tq(u1pk/N)50. For

u5 v̄2pk/N,k P { 1,2, . . . ,N/221} all but two terms vanish

p2k)
j50
jÞk

N/2

TqS u1
p j

N D )
j50
jÞk

N/221

TUqS u1
p j

N D1d2k11 )
j50

jÞk11

N/2

TqS u1
p j

N D )
j50
jÞk

N/221

TUqS u1
p j

N D50.

~65!

Cancelling the common factors we get

p2k~u!•TqS u1
pk

N
1

p

ND1d2k11~u!•TqS u1
pk

N D50,

Tq~ v̄ !

TqS v̄1
p

ND 52

p2kS v̄2
pk

N D
d2k11S v̄2

pk

N D . ~66!

The ratios ofg
q
and ḡ

q
can be obtained as

g
q
~ v̄ i !

g
qS v̄ i1 p

ND 5

sinS v̄ i1 p

2ND
cosS v̄ i1 p

2ND ,

ḡ
q
~ v̄ i !

ḡ
qS v̄ i1 p

ND 5~21!•
cos~ v̄ i !

sin~ v̄ i !
. ~67!

Using these results for the ratios ofg
q
and ḡ

q
and those ofp2k /d2k11 we finally get

)
j51

Lq sin~ v̄ i2v j !

sinS v̄ i2v j1
p

ND 5~21!M11. ~68!

D. Bethe ansatz type equations for the N odd case

Recall again the the functional relation in Eq.~54!,

T̃ q̄5 (
m50

N21

cm,qTUmq
21 TqTUm11q

21 X2m21, ~69!

whereT̃5TS, q̄5(aq̄ ,bq̄)5UR21(aq ,bq), and

cm,q5S S )
j50

m21
bp2v j11aq
ap2v jaq

D •S )
j5m11

N21
v~ap2v jaq!

bp2v j11aq
D •SN~bq2bp!~bp2aq!

apbp2vmaqbq
D D M,

T̃ q̄5 (
s50

~N21!/~2!

~c2s,qTU2sq
21 TqTU2s11q

21 X22s21!1 (
s50

~N23!/~2!

~c2s11,qTU2s11q
21 TqTU2s12q

21 X22s22!
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5 (
s50

~N21!/~2! S c2s,q
As,qAs,q8

•TR2sq
21 TqTR2s~Uq!

21 X21D
1S (

s50

~N23!/~2!
c2s11,q

As,q8As11,q
•TR2s~Uq!

21 TqTR2s12q
21 X21D .

Following a procedure similar to that inN-odd case, we find the Bethe equations

)
j51

LUq sin@v i2 v̄ j #

sinFv i2 v̄ j2
p

NG 5~21!M11F sinS v i2 p

2ND
sin~v i !

G 2M, ~70!

)
j51

Lq sin~ v̄ i2v j !

sinS v̄ i2v j1
p

ND 5~21!M11F cosS v̄ i1 p

2ND
cos~ v̄ i !

G 2M

. ~71!

IV. STUDY OF BAE FOR FZM WITH EVEN SPIN

A. Simplification of BAE in the case of even spin

In order to cast the BAE’s for even case in a simpler~and standard! form, we make a change
of variables

v j5 il j1
p

4N
, v̄ j5 i l̄j2

p

4N
. ~72!

The BAE’s in terms of these new variables are

)
k51

LUq sinh~l j2l̄k2 ig!

sinh~l j2l̄k1 ig!
5~21!M11Fsinh2~l j1 isg!

sinh2~l j2 isg!G
2M

, ~73!

)
k51

Lq sinh~ l̄j2lk2 ig!

sinh~ l̄j2lk1 ig!
5~21!M11, ~74!

whereg5 p/2N and s51/2. From the numerical study for even spin BAE’s, it was found t
l j s are related to one another. In fact

;l j ' l j1 ip/2 mod~p!. ~75!

This allows us to groupl j such thatl j P @2p/4,p/4#. Using transformation rules for the hype
bolic functions one can rewrite the expressions in terms of a new variablex j52l j . The left hand
side of BAE~1! becomes

)
k51

LUq/2 sinh~l j2l̄k2 ig!

sinh~l j2l̄k1 ig!
•

sinhS l j2l̄k2 ig2
ip

2 D
sinhS l j2l̄k1 ig2

ip

2 D5 )
k51

LUq/2 sinh~x j2x̄k22ig!

sinh~x j2x̄k12ig!
. ~76!

The right hand side of BAE~1! is rewritten in terms of variablesx j
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~21!M11S sinh~x j12isg!

sinh~x j22isg! D
2M

5~21!M11S sinh~x j1 ig!

sinh~x j2 ig! D
2M

since s5
1

2
. ~77!

A similar transformation is done for BAE~2!. Hence the BAE equations become

)
k51

LUq/2 sinh~x j2x̄k22ig!

sinh~x j2x̄k12ig!
5~21!M11S sinh~x j1 ig!

sinh~x j2 ig! D
2M

, ~78!

)
k51

Lq/2 sinh~ x̄ j2xk22ig!

sinh~ x̄ j2xk12ig!
5~21!M11. ~79!

A further finite size numerical study of the zeros of transfer matrix in terms of this
variablex j showed that the solutions fall into three classes~studies were done for chains of leng
M<2,3 and 4).

• 1-String with both parities:~1,v!, v561,
• even length strings with positive parities: (n,1),n52,4 . . . ,N,
• non-string solutions Im(l);6p/3.

In addition to determining and identifying the strings, energies and counting integers of BA
also calculated. This helps not only in identifying the ground state but also in classificatio
counting of the excited states. The classification scheme of this model will be rep
elsewhere.19,20

The eigenvaluesLQ(u) of the transfer matrix is given in terms of the new zerosx js as,

LQ~u!5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L
sin~u2vk!
sin vk

5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L sinS u2 ilk2
p

4ND
sinS ilk1

p

4ND

5Fgq~0!ḡq~0!

gq~u!ḡq~u!
GM)

k51

L
2 sinS 2u2 ixk2

p

2ND
sinS ixk1

p

2ND . ~80!

B. String hypothesis and free energy for ferromagnetic case for N even

From the numerical study one can identify that the ferromagnetic ground state correspo
a filled band ofN/2 strings of positive parity forTq and a filled band of 1-string of negative pari
for TUq . This vector always falls in theP50 sector as is expected. A further study up to six si
reveals that this remains true.

The left hand side of the first of Bethe ansatz equations, BAE~1!, is given by

)
k51

L
Uq
/2
sinh~x j2x̄k22ig!

sinh~x j2x̄k12ig!
5~21!M11Fsinh~x j1g i !

sinh~x j2g i !G
2M

. ~81!

For the ferromagnetic case we made the assumption that the ground state corresp
N/2 strings with positive parity forTq and 1-strings of negative parity forTUq
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xa,v
n,l 5xa

n12g~n1122l !i1
12v
2

2p0g i , where v511 and n5
N

2

5xa
n12g~n1122l !i , where n5

N

2
, ~82!

x̄a,v
n,l 5x̄a

n1
12v
2

2p0g i5x̄a
n2

ip

2
. ~83!

Definex and x̄ by x52gx and x̄52g x̄. If M (n) denotes the number ofn-strings, we get for the
left hand side~LHS! of the BAE~1!

)
l51

n sinh 2g~xa
n2 x̄b1~n1122l !i2 i2p0i !

sinh 2g~xa
n2 x̄b1~n1122l !i1 i2p0i !

5
sinh 2g~xa

n2 x̄b2ni2p0i !

sinh 2g~xa
n2 x̄b1ni2p0i !

5g~xa
n2 x̄b ,2n,v521!, ~84!

where

g~xa
n2 x̄b ,2n,21!8

sinh 2g~xa
n2 x̄b2ni2p0i !

sinh 2g~xa
n2 x̄b1ni2p0i !

. ~85!

For the ground staten5 N/2. and we have because of the quasi-periodicity of hyperbolic
function

LHS5~21!LUq/2.

Now we may start with the right hand side of the BAE~1!. If we take the product over the strin
elements ofxa

)
l51

n

~21!M11F sinh 2g~xa
n1~n1122l !i1 i

2!

sinh 2g~xa
n1~n1122l !i2 i

2!
G 2M. ~86!

Thus the first BAE becomes decoupled and is given in terms of the variables forTq alone

~21!~M11!nF)
l51

n sinh 2g~xa
n1~n1122l1 1

2!i !

sinh 2g~xa
n2~n1122l1 1

2!i !
G 2M5~21!M11. ~87!

The left hand side of the second BAE after multiplying for the elements of a string become

)
k51

Lq/2

)
l51

n sinh 2g~ x̄a2xb
n2~n1122l !i2 i2p0i !

sinh 2g~ x̄a2xb
n2~n1122l !i1 i2p0i !

5~21!~M11!1 nLq/2 ~88!

and hence it reduces to an identity.
Thus we have only one set of BAE which involves the zeros of the transfer matrixTq . From

the above equation taking natural logarithm of both sides we get
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2M(
l51

n

i • lnS sinh~xa12g~n1122l1 1
2!!

sinh~xa2ag~n1122l1 1
2!!

D 5pI a ,

(
l51

n

2• i ln~g~xa ,n112 1
2 22l ,1 !!5

pI a

M
, ~89!

where for easy cross referencing with standard literature of Takahashi and Suzuki21 g is intro-
duced

g~x,n,v !8
sinh 2g~x1ni1p0i !

sinh 2g~x2ni1p0i !
,

f~x,n,v !8 i • ln~g~x,n,v !!.

Defining the density of string centers for the zeros ofTq by

r~x!5 lim
M→`

1

M ~xk112xk!
,

we get from Eq.~89!

r~x!5
1

p
Q~N/2 ,1 !

~1!8 ~x!, ~90!

where

Q~N/2 ,1 !
~1! ~x!8(

l51

n

2f~x,n1 1
2 22l ,1 !

and prime onQ (N/2 ,1)
(1) (x) denotes differentiation with respect to the variablex. As is very often

the case it is easier to evaluate the sum overl in the Fourier space. The Fourier transform off is
given by

f̃8~k!8E
2`

1`

f8S x,n1
1

2
22l ,1 D

52p

sinhS kp

2
2kH 2g

p S n1
1

2
22l DpJ D

sinhS kp

2 D , ~91!

where$n% is the fractional part ofn. One can verify that forl lying between 0,N/2 we can write

H 2g

p S n1
1

2
22l DpJ 5

1

2
1

3

2N
2
2l

N
.

Thus f̃8 is given by
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f̃8~k!52p

sinhS 2pk

N
l2

pk

2ND
sinhS pk

2 D . ~92!

Hence using the summation formula for hyperbolic sine

Q̃~N/2 ,1 !
~1!8 ~k!5 (

l50

N/221

f̃8~k!

52p

sinhS pk

2
2

pk

2ND
sinhS pk

N D , ~93!

r̃1~k!54

sinhS pk

2
2

pk

2ND
sinhS pk

N D . ~94!

By inverse Fourier transform we get

r1~x!5
1

2pE2`

1`

dk e2 ikxr̃1~k!.

The free energy for the ferromagnetic ground state is defined as

f 0~u!8 lim
M→`

S 2
1

M
ln L0~u! D

5 )
a51

MN/2

)
l51

N/2
sin~2u2 ixa1x~ l !!

sin~ ixa2x~ l !!
, ~95!

wherex( l )52g((N)/(2)1122l )1 (12v)/(2)2p0g2g. The real parts ofxs are symmetrically
distributed aboutx50, hence

f 0~u!5 )
a51

MN/2

2

)
l51

N/2
sin~2u2 ixa1x~ l !!

sin~ ixa2x~ l !!
•

sin~2u1 ixa1x~ l !!

sin~2 ixa2x~ l !!

5 )
a51

MN/2

2

)
l51

N/2
cosh~2xa!2cos~4u12x~ l !!

cosh~2xa!2cos~2x~ l !!
.

The free energyf 0(u) is given by
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



1550 Subhankar Ray: Bethe ansatz study for the ground state of FZM

¬¬¬¬¬¬¬¬¬¬
f 0~u!8 lim
M→`

S 2
1

M
ln L0~u! D

52
1

2E2`

`

dx r~x!(
l51

N/2

lnS cosh~2x!2cos~4u12x~ l !!

cosh~2x!2cos~2x~ l !! D ~96!

rewrite

r~x!5
1

2pE2`

`

dk e2 ikxr̃~k!

5
1

2p

]

]xE2`

`

dk
i

k
e2 ikxr̃~k!.

Integrating by parts we get,

f 0~u!5
i

4pE2`

`

dk
r̃~k!

k E
2`

`

dx e2 ikx(
l51

N/2
]

]x
lnS cosh~2x!2cos~4u12x~ l !!

cosh~2x!2cos~2x~ l !! D
recall

]

]x
lnS cosh~2x!2cos~a!

cosh~2x!2cos~b! D5
2sinh~2x!~cos~a!2cos~b!!

~cosh~2x!2cos~a!!~cosh~2x!2cos~b!!

also change variablesk→2k andx→ x/2

f 0~u!5
1

8pE2`

`

dk
r̃~2k!

k E
2`

`

dx e2 ikx(
l51

N/2
2sinh~x!~cos~4u12x~ l !!2cos~2x~ l !!!

~cosh~x!2cos~4u12x~ l !!!~cosh~x!2cos~2x~ l !!!
.

One can check that the values of 2x( l ) lie between@2p,p#. Using the following substitution
for the integral:

E
2`

`

dx e2 ikx
sinh~x!

~cosh~2x!2cos~a!!~cosh~2x!2cos~b!!
522p i

coshk~p2a!2coshk~p2b!

~cos~a!2cos~b!!sinh~kp!
,

we get for free energy

f 0~u!5
1

2E2`

` dk

k

r̃~2k!

sinh~kp!(l51

N/2

~coshk~p24u22x~ l !!2coshk~p22x~ l !!!

5
1

2E2`

` dk

k

r̃~2k!

sinh~kp!(l51

N/2

2 sinh~2ku!sinh kS 2u1
p

N
~124l ! D

using the summation of hyperbolic sines

(
k50

n21

sinh~x1ky!5

sinhS x1
n21

2
yD sinhS ny2 D

sinhS y2D
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and changing summation index froml→p, p5 l21 we get

f 0~u!5E
2`

` 4dk

k

sinhS kp2
kp

N D sinh~2ku!sinhS 2ku2kp2
kp

N D
sinh2S 2kp

N D . ~97!

C. String hypothesis and free energy for anti-ferromagnetic case for N even

From the numerical study for finite lattices it was apparent that the anti-ferromagnetic gr
state~AFM! corresponds to a filled band of real roots for bothTq andTUq . In other words, the
AFM ground state is a filled sea of (1,1) strings for both families of transfer matrices.

The AFM ground state corresponds to real roots for both families of transfer matrices. H
we consider the natural logarithm of both sides of BAEs. From BAE~1! we get,

(
k51

Lq/2 sinh~x j2x̄k22ig!

sinh~x j2x̄k12ig!
52M• i lnS sinh~x j1 ig!

sinh~x j2 ig! D 12p I j , ~98!

with standard definition ofr1(x) andr2(x)

r1~xa!5
1

p
Q1

~1!8~xa!2
1

2Mp (
b51

M̄

Q1
~2!8~xa2x̄b!

5
1

p
Q1

~1!8~xa!2
1

2MpE2`

1`

dm Q1
~2!8~x2m̄ !r1~m̄ !. ~99!

From BAE~2! we get

(
k51

LU/2 sinh~ x̄ j2xk!

2

1

2pM (
b51

M

Q2
~2!~ x̄a2xb!5

Ī a

M
. ~100!

In the continuum limitM→` we get

r2~ x̄ !5
1

2pE2`

1`

dmQ2
~2!8~ x̄a2m!r1~m!. ~101!

The above pair of BAE is solved as before by the Fourier transform method

r̃1~k!5
1

p
Q̃1

~1!8~k!2
1

2p
Q̃1

~2!8~k!r̃2~k!, ~102!

r̃2~k!5
1

2p
Q̃2

~2!8~k!r̃1~k!. ~103!

From the above two equations

r̃1~k!5

sinhS pk

2 D •sinhS pk

2
2

pk

2ND
sinhS pk

N D •sinhS pk1
pk

N D . ~104!
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Following a similar procedure as shown in detail in the ferromagnetic case, the free energy
anti-ferromagnetic case is obtained as

f5
1

2E2`

1`dk

k

r̃1~2k!

sinh~pk! FcoshkS p24u2
p

ND2coshkS p2
p

ND G . ~105!

Substituting forr̃1(2k)

f5
1

2E2`

1`dk

k

sinhS pk2
pk

N D
sinhS 2pk

N D •sinhS 2pk1
2pk

N D •coshkS p24u2
p

ND

2E
2`

1`dk

k

sinhS pk2
pk

N D
sinhS 2pk

N D •sinhS 2pk1
2pk

N D •coshkS p2
p

ND . ~106!

V. STUDY OF BAE FOR FZM WITH ODD SPIN

A. Simplification of BAE in the case of odd spin

From a preliminary study of zeros of transfer matrixTq andTUq in terms of the variables
v j and v̄ j , one discovers the relation

v̄ j5v j2
N11

2
p. ~107!

This relation transforms the BAE~1! and BAE~2! of the last chapter into the same set of equatio

)
k51

L sinS v j2vk2~N21!
p

2ND
sinS v j2vk1~N21!

p

2ND 5~2 !M11F sinS v j2 p

2ND
sin v j

G 2M. ~108!

This is expected since we noticed in section III that for oddN all T
Uq
s can be transformed into

T
Rq
s and hence the problem is reduced to a single family of transfer matrices. It is interest

notice that with the change of variablesvk5 ilk1p/4N these equations can be cast in the f
lowing form

)
k51

L
sinh~l j2lk2 ig!

sinh~l j2lk1 ig!
5~2 !M11Fsinh~l j2 isg!

sinh~l j1 isg!G
2M

, ~109!

g5
~N21!p

2N
, s5

1

2~N21!
.

This equation is reminiscent of the BAE for integrable XXZ spin chain.22,23However for the XXZ
model the parameters labels the representation of theSU(2)q and takes the value
1/2,1,3/2. . . , while the anisotropy parameterg is a continuous variable.
J. Math. Phys., Vol. 38, No. 3, March 1997
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B. String hypothesis for the ferromagnetic case for N odd

In the framework of the string hypothesis,21 the solutions of Eq.~109! group into complexes
in the thermodynamic limit

la,k
~n,v !5la

~n,v !1
g

2
~n1122k!i1

~12v !p

4
i1da,k

~n,v !, where k51,2 . . .n. ~110!

la
(n,v) is the center of the string,n its length,v561 its parity andd, a deviation from the perfec

string behavior, which is supposed to vanish whenM→`. It is convenient to label strings by a
integer j , a shorthand notation for its length and parity(nj ,v j ). The standard method21 to obtain
equations for the centers of the strings is to multiply Eq.~109! over different roots in the sam
string and then take the logarithm of both sides, reducing it to

1

2p
Q j

~1!~la
j !2

1

2pM(
k

(
b51

M ~k!

Q jk
~2!~la

~ j !2lb
~k!!5

I a
~ j !

M
, ~111!

whereM (k) is the number ofk-strings. In writing Eq.~111!, the following definitions have been
used:

Q j
~1!~l!52(

l 51

nj

f~l,nj12s22l 11,v j !,

Q jk
~2!~l!5f~l,nj1nk ,v jvk!1f~l,unj2nku,v jvk!1 (

l 51

min~nj ,nk!21

2f~l,unj2nku12l ,v jvk! ,

and

f~l,n,v !5H 2varctanS cotS ng

2 D vtanh~l! D
0 if ng5qp, where qPZ

.

The I a
( j ) are integers or half-odd. Note thatQ j

(1) are the same ast j in Ref. 21.
A study of Eq.~111! requires an analysis of the lengths and parities that can appear. In c

problems of BAE, e.g., in case of XXZ chains,24 where the number of rootsL remains fixed even
for infinitely large lattice sizes (M→`), one can derive strong statements about the allow
lengths and parities. However, since in our problemL is not bounded forM→` these questions
are still open and are currently under investigation. Taking the insight from numerical stud
shall consider the ferromagnetic ground state as a filled band of (N21)-strings of alternating
parity v5(2)(N11)/2. The consistency of this assumption will be demonstrated by recovering
free energy originally obtained in Ref. 1 with the matrix inversion method.

Let Zj be a function defined as

Z~N21,v !~l!5
1

2p
Q~N21,v !

~1! ~l!2
1

2pM(
k

(
b51

M ~k!

Q~N21,v !k
~2! ~l2lb

~k!!. ~112!

Then Eq.~111! becomes

Z~N21,v !~la
~N21,v !!5

I a
~N21,v !

M
. ~113!
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In the thermodynamic limit, the centers ofj -strings fill the real axis~or a region of the real axis!
with densityr (N21,v)(l)

r~N21,v !~la
~N21,v !!5 lim

M→`

1

M ~la11
~N21,v !2la

~N21,v !!
.

If the I a
(N21,v) are arranged in a sequence without jumps

Z~N21,v !8~l!56r~N21,v !~l!, ~114!

where the sign of the right hand side is1(2) if increasingI a
(N21,v) correspond to increasing

~decreasing! la
(N21,v) Obviously, Eq.~114! only holds in the region of the real axis that is actua

filled with (N21,v)-roots.
Perron-Frobenius theorem guarantees that,; finite M , the ground state ofH belongs to the

sectorQ50, P50. Consider a state withM strings of lengthN21 and parity

v5~2 !~N11!/2 ~115!

henceM (N21) roots in all. It is easily derived from Eq.~112! and Eq.~113! that I a
(N21)/M can

vary betweenZN21(1`)521/21 (1)/(2MN) andZN21(2`)51/22 (1)/(2MN). TheI a
(N21)

are half-odd whenM is even and integers whenM is odd, and we haveM of them, so we
conclude that they form a closely packed sequence and (N21)-strings fill the real axis with a
densityrN21(l), solution of the integral equation

2rN21~l!5
1

2p
QN21

~1!8 ~l!2
1

2pE2`

1`

dm QN21,N21
~2!8 ~l2m!rN21~m!, ~116!

wherev is understood to be chosen as in Eq.~115!.

C. Free energy in the ferromagnetic case for N odd

The integral equation forrN21(l) can be solved by taking the Fourier transform. Our co
ventions are

f ~l!5
1

2pE2`

`

dk e2 ikl f̃ ~k!, ~117!

f̃ ~k!5E
2`

`

dl eikl f ~l!. ~118!

Fourier transforming Eq.~116! one gets,

2 r̃N21~k!5
1

2p
Q̃N21

~1!8 ~k!2
1

2p
Q̃N21,N21

~2!8 ~k!r̃N21~k!, ~119!

where

Q̃N21,N21
~2!8 ~k!8f̃8~k,2~N21!,1 !12•(

l51

N21

f̃8~k,2l ,1 ! ~120!

and
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f8~l,n,v !5
d

dl
f~l,n,v !5

2v sin~ng!

cosh 2l2vcos~ng!
,

f̃8~k,n,v !5E
2`

`

dleiklf8~l,n,v !52p
sinh~kp/2!2kxp)

sinh~kp/2!
,

wherex5$n(N21)/4N1(12v)/4% and$% denotes the fractional part. Whence

Q̃~N21,v !
~1! ~k!524p•

sinhS kp

4N
~N21! D coshS kp

4N
~N11! D

sinhS kp

2 D coshS kp

4ND ,

Q̃~N21,v !~k!52p•

sinhS kp

2ND
sinhS kp

2 D . ~121!

The solution of Eq.~116! is then straightforward if one uses the sum rules for hyperb
functions25

r̃N21~k!5
1

cosh~kp/4N!
, rN21~l!5

2N

p cosh~2Nl!
. ~122!

The FM ground state energy density is

e052 (
j5a,b

E dlr j
~0!~l!ej~l!12 (

k51

~N21!/2

cot~kp/N!. ~123!

The free energy per site of the 2D model is

f ~u!52 lim
M→`

1

M
ln L~u!.

If L(u) is the largest eigenvalue of the transfer matrix, under the assumption that the state d
by Eq. ~122! is indeed the ground state ofH, we find in the physical region 0<u<p/2N

f ~u!52 lnS g~0!ḡ~0!

g~u!ḡ~u!
D 2

1

2E2`

1`

dl r~N21,v !~l!

3 (
j51

N21

ln

cosh 2l2cosS 2u1
N21

2N
p~N22 j !1

p~12v !

2
2

p

2ND
cosh 2l2cosSN21

2N
p~N22 j !1

p~12v !

2
2

p

2ND , ~124!

where the sum comes from taking the product of roots in the same string andr (N21,v)(2l)
5r (N21,v)(l) has been used. One then writes
J. Math. Phys., Vol. 38, No. 3, March 1997
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r~N21,v !~l!5
1

2p

]

]lE2`

`

dk
i

k
e2 iklr̃~N21,v !~k!

and integrates Eq.~124! by parts. After the integral overl is evaluated by contour integration, on
arrives at

f ~u!52 lnS g~0!ḡ~0!

g~u!ḡ~u!
D 1 f 0~u!,

f 0~u!522E
2`

1`dk

k

sinh~ku!sinhS kS p

2N
2uD D sinhS kp

~N21!

2N D coshS kp
~N11!

2N D
coshS kp

2ND sinh~kp!sinhS kp

N D .

After a change of variablesk5Nx, f 0(u) can be rewritten as a sum of two terms

f 0~u!52
1

2E2`

1`dx

x

sinh~Nxu!sinh~Nx~p/2N2u!!sinh~xp~N21!/2!

cosh~xp/2!sinh~xp/2!sinh~xpN/2!

2
1

2E2`

1`dx

x

sinh~Nxu!sinh~Nx~p/2N2u!!sinh~xp~N21!/2!

cosh2~xp/2!cosh~Nxp/2!
. ~125!

The first term on the right hand side of Eq.~125! can be explicitly calculated and it exactly cance
the logarithm of the ratio of g’s. Hencef (u) is given by the second term on the right hand side
Eq. ~125!, which is the result of Fateev and Zamolodchikov.1

D. String hypothesis and free energy for anti-ferromagnetic case for N odd

For the anti-ferromagnetic case we proceed by assuming that the ground state is a fille
of 1s string with both parities. DefineZ(16)(l) as

Z16~l!5
1

2p
Q16

~1! ~l!2
1

2pM(
k

(
b51

M ~k!

Q16k
~2! ~l2lb

~k!!. ~126!

Then Eq.~111! becomes

Z16~la
~16 !!5

I a
~16 !

M
. ~127!

In the thermodynamic limit we have the densityr16(l) of the centers of 16-strings

r16~la
~16 !!5 lim

M→`

1

M ~la11
~16 !2la

~16 !!
.

If we assume the integersI a
(16) are close packed andZ16(l) is monotonic, we get

Z168 ~l!56r16~l!, ~128!

where the sign of the right hand side is1(2) if increasing I a
(16) corresponds to increasin

~decreasing! la
( j ) Obviously, Eq.~114! only holds in the region of the real axis that is actua

filled with 16-roots.
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Following the same procedure as in the case of FM, we arrive at the integral equation
The solutions are found by the Fourier transform method

ra
~0!~l!5

1

2pE2`

`

dle2 iql

sinhS qp

4 D
sinhS qp

2ND coshS qp~N21!

4N D , ~129!

rb
~0!~l!5

1

2pE2`

`

dle2 iql

sinhS qp~N22!

4N D
sinhS qp

2ND coshS qp~N21!

4N D . ~130!

The ground state energy density is

e052 (
j5a,b

E dlr j
~0!~l!ej~l!12 (

k51

~N21!/2

cot~kp/N!. ~131!

The free energyf 0(u) is given by

f 0~u!8 lim
M→`

S 2
1

M
ln L0~u! D

52
1

2E2`

`

dl (
i5a,b

r i~l! (
l51

N21

lnS cosh~2l!2cos~4u12x~ l !!

cosh~2l!2cos~2x~ l !! D . ~132!

VI. CONCLUSION

In the present work a unified approach to the study of Bethe equations in ferromagnet
anti-ferromagnetic cases for both even and odd spins has been demonstrated. The free
and ground state energies for the general spin N system is obtained.

We started with a set of functional equations discovered by Baxter, Bazhanov and P13

which relates families of automorphically connected transfer matrices. A family of coupled s
transcendental equations~Bethe ansatz equations! involving zeros of two classes of transfer m
trices was derived. In most commonly found cases of Bethe equations one usually encounte
of coupled equations in zeros of one type of transfer matrix. Hence in some sense we had a
coupled problem: zeros of two families coupled together. This is quite different, and conside
more difficult a situation than is encountered by Albertini,17 where a simplification occurs for th
case of odd spin, and results in simple computation of free energy for a Ferromagnetic g
state. A string hypothesis argument for the two families of transfer matrices in a simulta
fashion is made. The insight for this came from the usual string hypothesis arguments21,26 and
some extensive numerical study by simultaneous diagonalization of the transfer matricesTq and
TUq

.
The coupling betweenTq andTUq

also made the completeness argument somewhat invo
The comprehension of relations between the zeros of the two families of transfer matrice
essential in this effort.

In this paper the properties of the Boltzmann weights related to different automorphic fam
that are relevant to the functional equations of Baxter, Bazhanov and Perk is studied a
connection betweenTq andTUq is shown. The symmetry of the Boltzmann weights under s
J. Math. Phys., Vol. 38, No. 3, March 1997
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rotation ~theorems 1.1, 1.3, 1.7! allowed us to make a spin sector-wise study of the model.
symmetry of the transfer matrix under translation~theorem 1.5!, which permitted a momentum
sector-wise study, is also demonstrated.

Starting with the functional relations of Baxter, Bazhanov and Perk we derived the tran
dental equations~the Bethe ansatz equations! for the zeros of transfer matrices. These equatio
simplify differently in different situations. For example, in the case of even spins one arrive

)
k51

LUq sinh~l j2l̄k2 ig!

sinh~l j2l̄k1 ig!
5~21!M11Fsinh 2~l j1 isg!

sinh 2~l j2 isg!G
2M

,

)
k51

Lq sinh~ l̄j2lk2 ig!

sinh~ l̄j2lk1 ig!
5~21!M11,

wherel j and l̄k are the spectral variables for transfer matricesTq andTUq
.

The first of the Bethe equations is quite similar in its look to the generic case of B
equation, with an interesting difference; the numerator and denominator of the right hand si
switched. The second Bethe equation, however, is truly distinct; a coupled product in functi
the zeros of two different transfer matrices being equal to a constant (21)M11.

In theN→` limit, after introducing the concept of density of string centers, a doubly cou
set of integral equations is obtained. However, linearity of the equations made it possible to
for the ground state by Fourier transform method.
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We formulate the constrained KP hierarchy~denoted bycKP K11,M) as an affine
sl̂(M1K11) matrix integrable hierarchy generalizing the Drinfeld–Sokolov hier-
archy. Using an algebraic approach, including the graded structure of the general-
ized Drinfeld–Sokolov hierarchy, we are able to find several new universal results
valid for thecKP hierarchy. In particular, our method yields a closed expression for
the second bracket obtained through Dirac reduction of any untwisted affine Kac–
Moody current algebra. An explicit example is given for the casesl̂(M1K11),
for which a closed expression for the general recursion operator is also obtained.
We show how isospectral flows are characterized and grouped according to the
semisimplenon-regularelementE of sl(M1K11) and the content of the center
of the kernel ofE. © 1997 American Institute of Physics.
@S0022-2488~97!00202-8#

I. INTRODUCTION

The constrained KP~cKP! hierarchy occupies one of the central positions in the current s
of integrable hierarchies. This is mainly due to the fact that it represents a direct generaliza
the KdV models and includes an impressive list of partial differential soliton equations1–7. Also
important are the relationships of thecKP hierarchy to several physically relevant models~like
Toda models and discrete matrix models!.

Let us recapitulate the most general form of the Lax operator belonging to thecKP hierarchy:

L5DK111 (
l50

K21

ulD
l1(

i51

M

F iD
21C i , ~1.1!

and subjected to the following flow evolution equations:

]L

]tn
5@~Ln/~K11!!1 ,L#. ~1.2!

We will denote the hierarchy defined by~1.1! and~1.2! ascKPK11,M . There are several differen
parametrizations~obtained by acting with various Miura maps! of the coefficientsul ,F i ,C i in
~1.1!, defining various reformulations of thecKPK11,M hierarchy. It is, for instance, known tha
the Lax operator from~1.1! can be rewritten as a ratioL5LM1K11 /LM of two purely differential
operatorsLM1K11 andLM of ordersM1K11 andM , respectively.

Here we present a different parametrization governed by the Zakharov–Shabat equat
sociated with thesl̂(M1K11) algebra. So, instead of working with calculus of the pseu
differential operators, we work here with the generalized Drinfeld–Sokolov matrix hierarch8–13

associated in our case with the semisimplenonregularelementE of ŝl (M1K11). The outcome
of our construction is that to a givensl(N11) algebra one can associate various scalar
representations of thecKPK11,M hierarchies withM1K5N andM ,K>1. The special case o
0022-2488/97/38(3)/1559/18/$10.00
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K50,M5N has been treated in Ref. 14 and shown to correspond to the generalized
hierarchy,15 which in turn generalizes the AKNS hierarchy16–18 for which K50,M51.

The paper is organized as follows. In Section II the connection between the generic m
eigenvalue problem we are interested in and the pseudo-differential Lax operator of thecKP type
is established. Section III provides the algebraic foundation, within the generalized Drin
Sokolov hierarchy for our model, with subsection III A dealing with the example of
sl̂(M1K11) algebra. Section IV examines the Zakharov–Shabat equation for the problem
provides the construction of the recurrence operator. In Section V the second bracket
cKPK11,M hierarchy is obtained as a Dirac bracket, where the matrix hierarchy is considere
constrained system. We conclude with Section VI, suggesting few possible applications a
tensions of our results.

II. MATRIX EIGENVALUE PROBLEM AND cKP LAX OPERATORS

Consider the matrix eigenvalue problem

LC5~D1A1lE!C50 ~2.1!

for the (M1K11)3(M1K11) Lax matrix operatorL5D1A1lE given by

L51
D 0 ••• 0 q1 0 ••• ••• ••• 0

0 D 0 ••• q2 0 ••• ••• ••• 0

A � A 0 ••• ••• ••• A

0 D qM 0 ••• ••• ••• 0

r 1 r 2 ••• r M D2v1 l 0 ••• ••• 0

0 ••• 0 0 D2v2 l 0 ••• A

0 ••• 0 0 0 D2v3 l ••• A

A ••• 0 0 ••• 0 � � 0

A ••• 0 0 ••• 0 � � l

0 ••• 0 l 0 ••• 0 ••• D2vK11

2 ~2.2!

and acting in~2.1! on the (M1K11) columnC such thatCT5(c1 ,c2 , . . . ,cM1K11). D is a
differential operator which acts on the functionf according to@D, f #5 f 8. We impose the condi-
tion ( i51

K11v i50. Similar matrix operators have appeared in, e.g., Refs. 12 and 19.
We write explicitly the linear problem~2.2! as

]c i1qicM1150, i51, . . . ,M ,

(
i51

M

r ic i1~]2v1!cM111lcM1250,

~2.3!
~]2v r !cM1r1lcM1r1150, r52, . . . ,K,

lcM111~]2vK11!cM1K1150.

Equation~2.3! gives rise toK11 scalar Lax eigenvalue equations,

L jcM1 j5~2l!K11cM1 j ; j51, . . . ,K11, ~2.4!

where the scalar Lax operator is given by (r52, . . . ,K11)
J. Math. Phys., Vol. 38, No. 3, March 1997
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Lr5~D2v r21!~D2v r22!•••~D2v2!SD2v12(
i51

M

r iD
21qi D ~D2vK11!•••~D2v r !,

~2.5!

L15~D2vK11!~D2vK!•••~D2v2!SD2v12(
i51

M

r iD
21qi D .

For all K11 values ofj the corresponding Lax operatorL j can be cast in the form of the La
operator~1.1! in cKPK11,M hierarchy. All of the Lax operators~2.5! can be associated with th
one-matrix eigenvalue problem~2.2!. The question therefore arises whether the above reductio
the matrix eigenvalue problem determines uniquely the scalar Lax operator. We will now a
this problem of potential ambiguity by showing the equivalence between all the Lax ope
from ~2.5! in the sense of the Darboux–Ba¨cklund ~DB! symmetry.

The following similarity transformations connect the neighboring Lax operators from~2.5!:

~D2v r21!
21Lr~D2v r21!5Tr21

21 LrTr215Lr21, r53, . . . ,K12, ~2.6!

with the ‘‘periodic condition’’ LK125L1. In Eq. ~2.6! we have introduced the operato
Tj5F jDF j

21 with F j[exp(*vj) to emphasize the Darboux–Ba¨cklund character of the abov
similarity transformation. In addition we have the following eigenvalue equation holding for
Lax operatorL j :

L jF j50, j52, . . . ,K11. ~2.7!

Assume now thatL j satisfies the Lax flow equation~1.2!. Applying it to the equation~2.7! we find
that (] tn2(L j

n/(K11))1)F j is annihilated byL j and we therefore expect, without loosing gener

ity, to have the following identity (] tn2(L j
n/(K11))1)F j5a(t2 ,t3 , . . . )F j , where the propor-

tionality coefficienta depends only on timest i with i>2. Comparing both sides of this identit
we find thata50 and thereforeF j is an eigenfunction ofL j , meaning that

] tne
~*v j !5~L j

n/~K11!!1e
~*v j !. ~2.8!

Recall now that the DB transformationL→TLT21, whereT5FDF21 with an eigenfunction
F preserves the form of the Lax equation~1.2!, i.e., the DB transformed Lax operator satisfies t
same evolution equation as the original Lax operator~see, e.g., Refs. 20, 6, and 7!. Since
L j5Tj21L j21Tj21

21 and we have Eq.~2.8!, we conclude that all the Lax operators from~2.5! are
equivalent belonging to the same ‘‘multiplet’’ from the DB symmetry point of view.

III. CONSTRUCTION OF HIERARCHIES

In this section we provide the basic ingredients for the construction of the type of integ
hierarchies we are going to consider. The discussion is based on the method of reference

Let Ĝ be an affine Kac–Moody algebra, andG be the finite dimensional simple Lie algeb
associated to it. The integral gradations ofĜ are defined by vectorss5(s0 ,s1 , . . . ,sr),

21 where
si are non-negative relatively prime integers, andr[rankG . The corresponding grading operat
is given by

Qs[ (
a51

r

sa
2la•H

0

aa
2 1Nsd, ~3.1!

whereHa
0 , a51,2, . . . ,r , are the Cartan subalgebra generators ofG , la its fundamental weights

satisfying 2la•ab /ab
252dab , with aa being the simple roots ofG . d is the usual derivation of
J. Math. Phys., Vol. 38, No. 3, March 1997
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Ĝ , responsible for the homogeneous gradation ofĜ , corresponding toshom5(1,0,0,. . . ,0). In
addition, we have,Ns[( i50

r simi
c , c5(a51

r ma
caa , m0

c51, wherec is the highest positive roo
of G . So, we have

Ĝ5 % nPZĜ n~s!, @Qs,Ĝ n~s!#5nĜ n~s!, @Ĝ m~s!,Ĝ n~s!#,Ĝ m1n~s!. ~3.2!

Introduce the Lax matrix operator

L[]x1E1A, ~3.3!

whereE is a semisimple element ofĜ , lying in Ĝ 1, and A is a potential belonging to the
subalgebraĜ 0. The construction works equally well withE belonging to any subspaceĜ n ,
n.0, andA having grade components ranging from 0 ton21. However, such general setting wi
not be needed in what follows.

The fact thatE is semisimple means thatĜ can be decomposed into the kernel and image
the adjoint action ofE

Ĝ5 Ker ~adE)1Im~adE!. ~3.4!

As a consequence of Jacobi identity one has

@ Ker ~adE!, Ker ~adE!#, Ker ~adE!, @ Ker ~adE!, Im ~adE!#, Im ~adE!. ~3.5!

Using the fact thatE is semisimple, one can perform a gauge transformation to rotate the
operator into Ker~adE). Consider

L0[ULU21[]x1E1 (
j52`

0

K ~ j ![]x1E1K0 , ~3.6!

where U is an exponentiation of negative grade generators,U5exp(j51
` T(2j), with T(2 j )

P Ĝ 2 j (s). Decomposing ~3.6! into Qs eigensubspaces, we get equations of the fo
K ( j )52@E,T( j21)#1X( j ), whereX( j ) depends onT(m)s form. j21. Therefore, starting from the
highest grade component, one can chooseT( j21) to exactly cancel the component ofX( j ) in
Im ~adE). Consequently, one getsK ( j ) P Ker ~adE). Notice that the choice ofT( j21) is not
unique, since its component in Ker~adE) is not relevant in the cancellation of the Im~adE)
component ofX( j ). In addition,T( j21) is determined as a local polynomial of the components
the potentialA and itsx-derivatives.

The flow equations for the hierarchies are constructed in a quite simple way.9,10 Consider a
constant elementb(N), with gradeN (N.0), belonging to the center of Ker~adE). Then, from
the considerations above one gets thatb(N) commutes withL0, and so, from~3.6! one has

@L,U21b~N!U#50 ~3.7!

or

@L,~U21b~N!U !>0#52@L,~U21b~N!U !,0#, ~3.8!

where (•)>0 and (•),0 mean non-negative and negative grade components, respectively
observes that the l.h.s. of~3.8! has components with grades varying from 0 toN11, and the r.h.s.
has grades varying from2` to 0. Consequently, both sides of~3.8! have to lie on the subalgebr
Ĝ 0. It is therefore consistent to introduce, for each elementb(N) at the center of Ker~adE), with
gradeN (N.0) a flow equation as
J. Math. Phys., Vol. 38, No. 3, March 1997
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dL

dtb~N!
5

dA

dtb~N!
[@L,Bb~N!#, ~3.9!

where

Bb~N![~U21b~N!U !>0[(
j50

N

Bb~N!
~ j ! , Bb~N!

~ j ! PĜ j~s!. ~3.10!

Notice thatBb(N) is a polynomial of the components ofA and itsx-derivatives.
From ~3.6! and ~3.9! one gets

dL0
dtb~N!

5@L0 ,B̃b~N!#, with B̃b~N![UBb~N!U211
dU

dtb~N!
U21. ~3.11!

In fact, B̃b(N) lies in Ker~adE). In order to see that, we denoteB̃b(N)5B̃b(N)
K

1B̃b(N)
I , with B̃b(N)

I

PIm ~adE) andB̃b(N)
K P Ker ~adE). Then, splitting~3.11! in its Ker ~adE! and Im~adE) com-

ponents one gets

dK0

dtb~N!
2]xB̃b~N!

K
5@K0 ,B̃b~N!

K
# ~3.12!

and

]xB̃b~N!
I

1@E1K0 ,B̃b~N!
I

#50. ~3.13!

The highest grade component of~3.13! is @E,(B̃b(N)
I )N#50, with (B̃b(N)

I )N[B̃b(N)
I

ùĜ N(s). Since
there is no intersection between Ker~adE) and Im~adE), it follows that (B̃b(N)

I )N50. Following
this reasoning one concludes thatB̃b(N)

I
50, and soB̃b(N) given in ~3.11! lies in Ker~adE).

Notice that if Ker~adE) is Abelian~as is a case whenE is regular!, then~3.12! constitutes a
local conservation law.

The flows defined in~3.9! commute, as a consequence of the fact thatB̃b(N)PKer ~adE),
and that b(N) belongs to the center of Ker~adE). Indeed, those facts imply tha
@d/dtb(N)2B̃b(N),b

(M )#50. Conjugating with U, one gets (d/dtb(N)) (U
21b(M )U)

5@Bb(N),U
21b(M )U#. Taking the positive grade part and subtracting the same relation

b(M ) andb(N) interchanged, one gets

dBb~M !

dtb~N!
2
dBb~N!

dtb~M !
5@Bb~N!,U21b~M !U#>02@Bb~M !,U21b~N!U#>0 . ~3.14!

But @Bb(N),U
21b(M )U#>05@Bb(N),Bb(M )#1@Bb(N),(U

21b(M )U),0#>0. Sinceb
(N) andb(M ) com-

mute, it follows that@(U21b(M )U)>0 ,U
21b(N)U#52@(U21b(M )U),0 ,U

21b(N)U#. Taking the
positive grade part of it one gets@Bb(M ),U21b(N)U#>05@Bb(N),(U

21b(M )U),0#>0. Therefore one
concludes that

dBb~M !

dtb~N!
2
dBb~N!

dtb~M !
1@Bb~M !,Bb~N!#50 ~3.15!

and due to Eq.~3.9! that is a sufficient condition for the flows to commute:

F d

dtb~M !
,

d

dtb~N!
GL50. ~3.16!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Notice that the gauge transformations

L→eSLe2S, Bb~N!→eSBb~N!e2S,
dS

dtb~N!
50, SPK[Ĝ 0ù Ker ~adE! ~3.17!

are symmetries of the flows equations~3.9!, in the sense that they preserve the form of the L
operatorL. Associated to such symmetries we have conserved quantities. Indeed, the com
of zero grade on the r.h.s. of~3.8! is @E,(U21b(N)U)21#. But that implies that the l.h.s. of~3.8!,
and consequently both sides of~3.9!, have no components in Ker (adE). Then

dAK

dtb~N!
50, AK[Aù Ker ~adE!. ~3.18!

Therefore, if we chooseAK50 at tb(N)50, it will remain zero for all times. That is a
reduction procedure which we will use below to obtain the constrained KP hierarchies fro
above formalism. We shall decompose the potentialA P Ĝ 0 as

A[A01AK ~3.19!

with AK P K , andA0 lying in the complementM of K in Ĝ 0. A0 contains therefore the
dynamical variables of the integrable hierarchy.

Since we are working with loop algebras~vanishing central term! it is useful to work with
finite matrix representations. The commutation relations forĜ can be written as

@Ta
m ,Tb

n#5 f ab
c Tc

m1n , @d,Ta
m#5mTa

m , ~3.20!

whereTa
0[Ta , a51,2, . . . ,dimG , are the generators of the finite simple Lie algebraG , and

f ab
c are its structure constants. If one has a~finite! matrix representation ofG , then one can
construct a representation ofĜ by replacing

Ta
m→zmTa , ~3.21!

wherez is a complex parameter. However, in some calculations we will be interested in an
representation of such type, where the powers of the complex parameter count the grad
Qs defined in~3.1!. Accordingly we replace

Ta
m→l lTa , l5ga1mNs, ~3.22!

wherel is a complex parameter, and

F (
b51

r

sb
2lb•H

0

ab
2 ,TaG5gaTa . ~3.23!

Notice thatga take values between2Ns11 andNs21.
In the representation~3.21! one hasd[z (d/dz). Therefore if@Qs,X#5xsX, with Qs given by

~3.1! one has@Qs,zX#5(xs1Ns)zX. Now, if b
(N) is an element of the center of Ker~adE), so is

zb(N). We shall denoteb(N1Ns)[zb(N). Therefore,zU21b(N)U5U21b(N1Ns)U, and so

z~U21b~N!U !>01z~U21b~N!U !,05~U21b~N1Ns!U !>01~U21b~N1Ns!U !,0 , ~3.24!

where (•)>0 and (•),0 mean the non-negative and negatives-grade components, respectively. B
since multiplication byz increases thes-grade byNswe have that the positive part of~3.24! leads
to
J. Math. Phys., Vol. 38, No. 3, March 1997
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Bb~N1Ns!5zBb~N!1z(
j51

Ns

~U21b~N!U !2 j . ~3.25!

Notice the second term on the r.h.s. of~3.25! have components withs-grades varying from 0 to
Ns21. But, analyzing~3.1!, one concludes that any generator having positive grade w.r.t.d, has
necessarily s-grade greater or equal toNs. Therefore, we conclude that the quanti
z( j51

Ns (U21b(N)U)2 j is z independent in the representation~3.21!.

A. The case of sl̂ (M1K11)

We now apply the above formalism to the example of the affine Kac–Moody alg
Ĝ5sl̂(M1K11), (AM1K

(1) ) without a central term~i.e., a loop algebra!, furnished with the fol-
lowing gradations and corresponding grading operatorQs:

~3.26!

We will denote the simple roots ofsl̂(M1K11) by a j , j50,1, . . . ,M1K, with a0[2c, and
c being the highest positive root ofG5sl(M1K11), which is the subalgebra o
sl̂(M1K11) commuting withd. Sincesl̂(M1K11) is simply laced we normalize the roo
such thata j

252. The ordering of the roots is such that forj Þ k, a j•ak52d j ,k61 (modM1K11) ,
j ,k50,1, . . . ,M1K. The fundamental weightsl j satisfy l j•ak5d j ,k . We choose the semi
simple elementE to be

E5 (
j5M11

M1K

Ea j

~0!1E2~aM111•••1aM1K!
~1! . ~3.27!

One can check that each generator inE has grade one w.r.t.Qs. Hence

@Qs,E#5E. ~3.28!

The zero grade subalgebra is

Ĝ 0[$G 0
~0![sl~M11!; a j•H

~0!, j5M11,M12, . . . ,M1K%, ~3.29!

whereG 0
(0) is thesl(M11) subalgebra ofG5sl(M1K11), with simple rootsa1 , . . . ,aM .

For E defined in~3.27! we have

Ker ~adE!5$K̂0[sl̂~M ! % Û~1!,ĤK%, ~3.30!

wheresl̂(M ) is the affine Kac–Moody subalgebra ofĜ5sl̂(M1K11) with simple rootsa j ,
j51,2, . . . ,M21, anda052(a11a21 . . .1aM21). The Kac–Moody algebraÛ(1) is gener-
ated bylM•H

(k), k P Z. In additionĤK is the principal Heisenberg subalgebra ofsl̂(K11)
P sl̂(M1K11) containingE. We can denote its generators byEN , whereN contains the integers
1,2,3,. . . ,K ~moduloK11) or in other words, the integers without the multiples of (K11). In
this notation we have
J. Math. Phys., Vol. 38, No. 3, March 1997
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El1~K11!n5EaM111aM121 . . .1aM1 l

~n! 1EaM121aM131 . . .1aM1 l11

~n! 1 . . .

1EaM1K2 l111aM1K2 l121 . . .1aM1K211aM1K

~n! 1E2~aM111aM121 . . .1aM1K2 l11!
~n11!

1E2~aM121aM131 . . .1aM1K2 l !
~n11! 1 . . .1E2~aM1 l1aM131 . . .1aM1K!

~n11! ~3.31!

with l51,2,3, . . . ,K, and so

@Qs,El1~K11!n#5~ l1~K11!n!El1~K11!n . ~3.32!

Notice that E1[E. In addition, since we are working here with the case of loop alge
(c50),

@EN ,EN8#50. ~3.33!

In fact, in the representation~3.22! of the loop algebra one has

E5lẼ5lS (
j5M11

M1K

Ea j
1E2~aM111•••1aM1K!D , ~3.34!

and in the defining representation ofsl(M1K11), one has

Ẽ5S 0 0

0 ẽD ; ẽ5S 0 1

0 1

� �

0 1

1 0

D , ~3.35!

whereẼ and ẽ are (M1K11)3(M1K11) and (K11)3(K11) matrices, respectively. Ele
ments of this type are among the generators of the nonequivalent Heisenberg subalgebr
e.g., Appendix of Ref. 13 for the cases ofsl(3) andsl(4).

In addition, one has

El1~K11!n5l l1~K11!n~Ẽ! l . ~3.36!

Also for c50 we have

center Ker~adE!5$Û~1!,ĤK%, ~3.37!

where Û(1) is generated bylM•H
(k),k P Z. Notice that @Qs,lM•H

(k)#5k(K11)lM•H
(k).

Therefore the center of Ker~adE), while having generators of arbitrary grade, has one and o
one generator of a given grade. Then the choices we have for the elementsb(N), introduced in
~3.7!, are

b~N!5EN, N51,2, . . . ,K mod~K11!, ~3.38!

b~k~K11!!5lM•H
~k!, kPZ. ~3.39!

According to~3.9! each of the generators from the center of Ker~adE! appearing in~3.38!–~3.39!
will give rise to the corresponding flow with timestb(N),tb(k(K11)). In particular the elemen
E1[E will generate the flow corresponding to]/]t15]/]x.
J. Math. Phys., Vol. 38, No. 3, March 1997
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The gauge symmetries of the model are then given by the transformations~3.17!, whereS
belongs to the subalgebra

K[Ĝ 0ù Ker ~adE!5$sl~M !,lM•H
~0!%, ~3.40!

wheresl(M ) is the subalgebra ofG5sl(M1K11) with simple rootsa1 ,a2 , . . . ,aM21.
The generators of the complementM of K in Ĝ 0 are

M5$P6 i5E6~a i1a i111 . . .1aM !
~0! ,i51,2, . . . ,M , and aa•H

~0!,a5M11,M12, . . . ,M1K%.
~3.41!

We then parametrizeA0, defined in~3.19!, as follows:

A05(
i51

M

~qiPi1r iP2 i !1 (
a5M11

M1K

Ua~aa•H
~0!!, ~3.42!

whereqi , r i andUa are fields of the model.
As we have shown in~3.18!, AK is constant in time. Therefore, we will work with th

submodel defined by

AK50. ~3.43!

The flow equations~3.9!, in this case, become

dA0
dtb~N!

2]xBb~N!
0

5@E1A0 ,Bb~N!
0

#, ~3.44!

whereBb(N)
0 is the constrainedBb(N), i.e.,

Bb~N!
0

5Bb~N!uAK50 . ~3.45!

The effective potential of our submodel lies therefore, on the tangent plane of the coset
Ĝ 0 /K[(sl(M11) % U(1)K)/(sl(M ) % U(1)M). U(1)M is generated bylM•H

(0), and conse-
quently is a linear combination of the generators of the Cartan subalgebra ofsl(M11) and also
of all the generators ofU(1)K. Remember thatl i5Ki j

21a j , and the inverse of the Cartan matr
Ki j

21 of An has no vanishing elements. Those facts preventĜ 0 /K from being a symmetric space
Indeed, one can verify that

@Pj ,P2 j #5aM•H
~0!1 (

i5 j

M21

a i•H
~0!, PK1M, Pj ,P2 jPM, ~3.46!

sinceaM•H
(0) have components on bothK andM.

However, one has

@Pj ,P2k#PK for jÞk, @Pj ,Pk#5@P2 j ,P2k#50 for any j ,k. ~3.47!

1. The case K 50

In this case we haveĜ5sl̂(M11). The relevant gradation is the homogeneous o
s5(1,0,0,. . . ,0), and soQs[d. The semisimple elementE is now given by

E5lM•H
~1!, @d,E#5E. ~3.48!
J. Math. Phys., Vol. 38, No. 3, March 1997
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This example was discussed in detail in Ref. 14, and here we just give a brief description o
make contact with the model discussed above.

The grade zero subalgebra is

Ĝ 05$G[sl~M11!% ~3.49!

and

Ker ~adE)5$sl̂~M ! % Û~1!% ~3.50!

with Û(1) being generated bylM•H
(k), k P Z.

The center of Ker (adE) is just the homogeneous Heisenberg subalgebra
Ĝ5sl̂(M11), namely,

center Ker~adE!5$l i•H
~k!,i51,2, . . . ,M ,kPZ%. ~3.51!

Therefore, we can introduce a flow for each element@see~3.7!#

bi
~k![l i•H

~k!, k being a positive integer. ~3.52!

The gauge subalgebraK introduced in~3.17! is

K5$sl~M ! %U~1!%, ~3.53!

where sl(M ) is the subalgebra ofG5sl(M11) with simple rootsa1 ,a2 , . . . ,aM21, and
U(1) is generated bylM•H

(0). We write the potentialA P Ĝ 0 asA5AK1A0, withA
K P K and

A0 lying in the complementM of K in Ĝ 0. Then, we parametrizeA0 as

A05(
i51

M

~qiPi1r iP2 i !, ~3.54!

whereP6 i were introduced in~3.41!. Comparing with~3.42!, we notice an absence ofUa’s fields
in this special example. AlsoĜ 0 /K is now a symmetric space.

IV. ZAKHAROV–SHABAT EQUATION AND RECURSION OPERATOR

Recall that within the models considered here the semisimple elementE is given for
G5sl(M1K11) by ~3.34!. We first notice thatE commutes with its conjugated counterpa
E† and therefore, although not Hermitian, may be diagonalized.22 As a consequence, the Li
algebraG under consideration can be decomposed into graded subspaces, i.e.,

G5 % sG s ; @E,G s#5sG s , ~4.1!

wheres can be in general a complex number (s P C). This is a crucial property allowing to solv
the Zakharov–Shabat~ZS! equation in the manner shown below. Consider, namely, vs the
equation

]mA02]Bm1l@E,Bm#1@A0 ,Bm#50, ~4.2!

whereA0 defined in Section III lies, as described there, in subspace orthogonal to Ker~adE).
DecomposingBm5(sBm

(s) andA05(sA
(s) into components according to the gradation d

fined byE induces a natural decomposition of the Z-S equation~4.2! into the zero and nonzero
components:
J. Math. Phys., Vol. 38, No. 3, March 1997
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2]Bm
~0!1 (

x1y50
@A~x!,Bm

~y!#50, ~4.3!

]mA
~s!2]Bm

~s!1lsBm
~s!1 (

x1y5s
@A~x!,Bm

~y!#50, ~4.4!

where in the last equation the summation is overx,y P C and includesy50,x5s. Equations~4.3!
and ~4.4! contain components of~4.2! in Ker ~adE) and Im~adE)5 % sPc2$0%G s . We now as-
sume the following expansions:

Bm
~s!5 (

i50

m21

Bm
~s!~ i !l i , sÞ0, ~4.5!

for all nonzero gradation components ofBm , while for the zero component we find from~4.3! by
integration:

Bm
~0!5D21S (

x,yÞ0

x1y50

@A~x!,Bm
~y!# D 1lmLm , ~4.6!

where the last~integration constant! term on the right hand side of~4.6! is of higher order than
those in~4.5!. Its presence is allowed by the structure of~4.2! as long asLm P Ker ~adE).

Inserting~4.5! in ~4.4! we find by collecting the coefficients oflk21

lBm
~ l !~k21!52]Bm

~ l !~k!2 (
x,yÞ0

x1y50

@A~ l !,D21@A~x!,Bm
~y!~k!##2 (

x,yÞ l

x1y5 l

@A~ l !,Bm
~y!~k!#; ~4.7!

for k5m we obtain

lBm
~ l !~m21!52@A~ l !,Lm#. ~4.8!

From ~4.7! we find that the general solution can be rewritten as

Bm
~ l !~k21!5 (

yÞ0
F l ,yBm

~y!~k! ~4.9!

with

F l ,y5
1

l SDd l ,y2 (
xPGrad~M!

@adA~ l !D21adA~x!dx,2y1adA~x!d l2x,y# D . ~4.10!

Using ~4.9! repeatedly we are led to

Bm
~ l !~0!5 (

y1 , . . . ,ym21

F l ,y1
Fy1 ,y2

•••Fym22 ,ym21
Bm

~ym21!
~m21!, ~4.11!

and after taking into account~4.8!

Bm
~ l !~0!5 (

y1 , . . . ,ym21

F l ,y1
Fy1 ,y2

•••Fym22 ,ym21

1

ym21
adLm

A~ym21!. ~4.12!

Projecting~4.4! on thel-independent component we find
J. Math. Phys., Vol. 38, No. 3, March 1997
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]mA
~ l !5]Bm

~ l !~0!2 (
x1y5 l

@A~x!,Bm
~y!~0!#5 l(

y
F l ,yBm

~y!~0!. ~4.13!

Substituting the solution ofBm
( l )(0) in terms ofA(y) from ~4.12! we arrive at

1

l
]mA

~ l !5 (
y1 , . . . ,ym

F l ,y1
Fy1 ,y2

•••Fym21 ,ym
adLmSA~ym!

ym
D . ~4.14!

This expression leads to a recursion operator relating consecutive flows belonging the same
of flows generated by the specific elementLm5(Ẽl ,lM•H

(0)) from the center of Ker~adE) as
explained in discussion around Eqs.~3.38!–~3.39!. Therefore these consecutive times have indi
moduloK11 for the case ofsl(M1K11).

To get the closed expression for the recursion operator we compare Eq.~4.14! to the corre-
sponding expression for]m2K21A

( l ). These flows are related through:

1

l
]mA

~ l !5 (
y1 , . . . ,yK11

F l ,y1
•••FyK ,yK11

]m2K21SA~yK11!

yK11
D[Rl ,K11]m2K21A

~yK11!/yK11 .

~4.15!

This yields an expression for the recurrence operatorR as R5FK11 for the
sl(M1K11)-matrix hierarchy.

V. THE SECOND BRACKET STRUCTURE

The potentialA introduced in~3.3! is an element of the subalgebraĜ 0, and so we shall denote
it as

A5habw~Ta!Tb , w~Ta![Tr~TaA!, ~5.1!

wherehab is the inverse of the trace form ofĜ 0, hab[Tr(TaTb), a,b51,2, . . . ,dimĜ 0.
There is a natural Poisson bracket structure for the manifold spanned byw ’s components of

A, induced by theG 0-KM current algebra:

$w~T!~x!,w~T8!~y!%PB5w~@T,T8# !~x!d~x2y!1Tr~TT8!d8~x2y!, T,T8PĜ 0 . ~5.2!

The model we are interested in is a constrained system where the components oA in
Ker ~adE) are set to zero@see~3.18!#. The bracket structure of such submodel is then given by
Dirac bracket associated to~5.2!. We denote byK i , i51,2, . . . ,dimK , and Mr ,
r51,2, . . . ,dimĜ 02dimK , the generators of the subalgebraK , defined in~3.17!, and of its
complementM in Ĝ 0, respectively.

The Dirac matrix is given by

D i j ~x,y![$w~K i !~x!,w~K j !~y!%'h i jd8~x2y!, ~5.3!

whereh i j[Tr(K iK j ), and' means equality after the constraints are imposed. Therefore

D i j
21~x,y!'h i j ]x

21d~x2y!, i , j51,2, . . . ,dimK . ~5.4!

Consequently the Dirac bracket is

$w~Mr !~x!,w~Ms!~y!%DB5w~@Mr ,Ms# !~x!d~x2y!1Tr~MrMs!d8~x2y!

1h i jw~@K i ,Mr # !~x!w~@K j ,Ms# !~y!]x
21d~x2y!. ~5.5!
J. Math. Phys., Vol. 38, No. 3, March 1997
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The subspaceM constitutes a representation of the subalgebraK ,

@K i ,Mr #5Rrs~K i !Ms . ~5.6!

Therefore, the second term on the r.h.s. of the bracket~5.5! can be calculated using representati
theory. The relevant representation here is the tensor product of the representation,R^R, defined
by the linear functionalsw(Mr)(x). We then write

Xrs~x,y![h i jw~@K i ,Mr # !~x!w~@K j ,Ms# !~y!]x
21d~x2y!

5h i j Rrt~K i !Rsu~K j !w~Mt!~x!w~Mu!~y!]x
21d~x2y!

[CuMr&x^ uMs&y]x
21d~x2y!, ~5.7!

where

C[h i jK i ^K j ~5.8!

and where we have denoted states of the representationR^R as w(Mr)(x)w(Ms)(y)[
uMr&x^ uMs&y . So, the space variablesx andy define the left and right entries, respectively, of t
tensor product.

The operator~5.8! commutes with any generator

@C, 1^K i1K i ^1 #50, ~5.9!

and, according to Schur’s lemma, it is proportional to the identity in each irreducible comp
of R^R. That fact simplifies substantially the evaluation of~5.7!. Notice thatC is not the qua-
dratic Casimir operator inR^R. That operator is given byCR^R[h i j (1^K i1K i ^1)
3(1^K j1K j ^1), and therefore we have

C5
1

2
~CR^R21^C2C^1!, ~5.10!

whereC5h i jK iK j is the quadratic Casimir inR.
Decomposing the representationR^R in its irreducible components, one can evaluate~5.7!,

using ~5.10! and the fact that the value of the quadratic Casimir operator in an irreducible r

sentation isl(l12d), wherel is the highest weight, andd5 1
2(a.0 a5(a51

rankla , with a being
the positive roots, andla the fundamental weights ofK .

A. The case of sl̂ (M1K11)-matrix integrable hierarchy

We now consider the example of the affine Kac–Moody algebrasl(M1K11) discussed in
subsection III A. The subalgebraK and subspaceM are defined in~3.40! and ~3.41!, respec-
tively. We shall denote byK̃ i , i51,2, . . . ,M221, the generators of the subalgebrasl(M ) of
K .

One can easily verify thatPj andP2 j , j51,2, . . . ,M , transform under the representatio
M and M̄ of sl(M ), respectively. The highest weights and highest weight states of these r
sentations are (l1 ,P1) and (lM21 ,P2M), respectively. The remaining generators ofM ~3.41!,
namely aa•H

(0), a5M11,M52, . . . ,M1K, are scalars undersl(M ). The charges of the
U(1) factor of K ~3.40!, generated bylM•H

(0), are 1 for Pj , 21 for P2 j , and 0 for
aa•H

(0). Therefore, the representationR of K5sl(M ) % U(1), defined byM ~5.6!, is
R5(M ,1)1(M̄ ,21)1(0,0)K.

We denote the operator~5.8! as
J. Math. Phys., Vol. 38, No. 3, March 1997
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C5h̃ i jK̃ i ^K̃ j1
1

Tr~lM•H
~0!!2

lM•H
~0!

^ lM•H
~0!

[C̃1
M1K11

M ~K11!
lM•H

~0!
^ lM•H

~0!, ~5.11!

whereh̃ i j is the inverse ofh̃ i j5Tr(K̃ iK̃ j ). Notice that Tr(••), as introduced in~5.1!, is the trace
form of the subalgebraĜ 0.

Let us then analyze the various irreducible components of the representationR^R. The states
uPi& ^ uPj& decompose into the symmetric and antisymmetric parts, which are theM (M11)/2 and
M (M21)/2 irreducible representations ofsl(M ), respectively. The highest weights of the
representations are 2l1 and 2l12a1, respectively. Therefore, using~5.11!, and then~5.10! for
C̃, one gets

CuPi& ^ uPj&5SM1K11

M ~K11!
2l1~l112d! D uPi& ^ uPj&

1~l1~l11d!!~ uPi& ^ uPj&1uPj& ^ uPi&)

1
1

4
~~2l12a1!~2l12a112d!!~ uPi& ^ uPj&2uPj& ^ uPi&). ~5.12!

Denoting the simple roots ofsl(M ) as a j5ej2ej11, j51,2, . . . ,M21, ej•ek5d jk , one has

l j5(k51
jek2 ( j /M ) (k51

M ek , and therefored5(k51
M21 lk5

1
2(k51

M (M22k11)ek . Conse-
quently

CuPi& ^ uPj&5
1

K11
uPi& ^ uPj&1uPj& ^ uPi&. ~5.13!

By the same arguments, one gets

CuP2 i& ^ uP2 j&5
1

K11
uP2 i& ^ uP2 j&1uP2 j& ^ uP2 i&. ~5.14!

As for the statesuPi& ^ uP2 j&, we use the fact that the tensor product of theM and M̄
representations ofsl(M ) produces an adjoint and a singlet, i.e.,M^ M̄5Adj11. The singlet is
the stateuS&[( j51

MuPj& ^ uP2 j&. The states of the adjoint areuPi& ^ uP2 j& for i Þ j , and
uPj& ^ uP2 j&2uPj11& ^ uP2( j11)&. The highest weight of the adjoint is the highest positive r
c5a11a11 . . .1aM215e12eM . Therefore, using~5.11!, and then~5.10! for C̃, one gets for
iÞ j

CuPi& ^ uP2 j&52
M1K11

M ~K11!
uPi& ^ uP2 j&

1
1

2
~c~c12d!2l1~l112d!2lM21~lM2112d!!uPi& ^ uP2 j&

52
1

K11
uPi& ^ uP2 j&. ~5.15!

One can easily check that
J. Math. Phys., Vol. 38, No. 3, March 1997
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uPj& ^ uP2 j&5
1

M
uS&1uXj&, ~5.16!

where

uXj&52
1

M S (
k51

j21

kuvk&2 (
k5 j

M21

~M2k!uvk& D ~5.17!

and where we have denoteduvk&[(uPk& ^ uP2k&2uPk11& ^ uP2(k11)&).
Therefore

CuPj& ^ uP2 j&5
1

M S 2
M1K11

M ~K11!
2
1

2
~l1~l112d!1lM21~lM2112d!! D uS&

1S 2
M1K11

M ~K11!
1
1

2
~c~c12d!2l1~l112d!2lM21~lM2112d!! D uXj&

52
1

K11
uPj& ^ uP2 j&2uS&. ~5.18!

Consequently, from~5.15! and ~5.18!,

CuPi& ^ uP2 j&52
1

K11
uPi& ^ uP2 j&2d i j (

k51

M

uPk& ^ uP2k&. ~5.19!

In addition one has

CuP6 i& ^ uaa•H
~0!&5Cuaa•H

~0!& ^ uab•H
~0!&50 ~5.20!

with a,b5M11,M12, . . . ,M1K, i51,2, . . . ,M .
From ~3.42!, ~5.1! Tr(EaE2a)51, and Tr(aa•H

(0)ab•H
(0))5aa•ab , one gets that

qi5w~P2 i !, r i5w~Pi !, Ua5Kab
21w~ab•H

~0!!, ~5.21!

whereKab
21 is the inverse ofKab5aa•ab , a,b5M11,M12, . . . ,M1K.

Therefore from~5.5!, ~5.7!, ~5.13!, ~5.14!, ~5.19!, and ~5.20! one gets the Dirac bracket fo
sl(M1K11), which reproduces~after an appropriate Miura transformation! the second bracke
of cKP(K11,M ) hierarchy:

$r i~x!,qj~y!%5S ]x2UM11~x!2(
s51

M

r s~x!]x
21qs~x!D d i jd~x2y!

2
1

K11
r i~x!]x

21qj~x!d~x2y!, ~5.22!

$r i~x!,r j~y!%5
1

K11
r i~x!]x

21r j~x!d~x2y!1r j~x!]x
21r i~x!d~x2y!, ~5.23!

$qi~x!,qj~y!%5
1

K11
qi~x!]x

21qj~x!d~x2y!1qj~x!]x
21qi~x!d~x2y!, ~5.24!
J. Math. Phys., Vol. 38, No. 3, March 1997
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$qi~x!,Ub~y!%52
1

2
qi~x!dbM11d~x2y!;$r i~x!,Ub~y!%5

1

2
r i~x!dbM11d~x2y!,

~5.25!

$Ua~x!,Ub~y!%5
1

4
Kab]xd~x2y!. ~5.26!

Note that forK50 ~andUa50) we recover from the above bracket structure the second bra
of the NLS-sl(M11) model.14,15 This can also be checked directly by applying the same te
nique as above to the model described in subsection III A 1. Calculation shows that the eq
~5.11! in this case is replaced by

C5C̃1
M11

M
lM•H

~0!
^ lM•H

~0! ~5.27!

and Eqs.~5.13!,~5.14! and ~5.19! hold with K50.
For the purpose of illustration let us consider the example ofsl(3) with M5K51 corre-

sponding tocKP2,1 with the Lax operator as in~2.5!:

L15~D2v2!~D2v12rD21q!5D21u1FD21C, ~5.28!

where u52v22v82rq,F52r 82rv,C5q with v5v252v1. The second bracket fo
u,F,C obtained from~5.22!–~5.26! indeed reproduces the standardcKP2,1 second bracket~see
e.g., Ref. 2!. One checks easily that the following equations:

] t2q52q91v8q1rq21v2q,

] t2r5r 91v8r1r 2q1v2r , ~5.29!

] t2v5~rq !8,

following from the Dirac bracket~5.22!–~5.26! and the HamiltonianH15*FC reproduce the
correct flows foru,F,C:

]F

]t2
5

]2F

]x2
12u0F,

]C

]t2
52

]2C

]x2
22u0C,

]u0
]t2

5]x~FC!. ~5.30!

Equation ~5.30! agrees with the second flow equation of the so-called Yajima–Oik
hierarchy.1,2 Note that in this calculation of thet2 flow the consistency of the ZS problem require
use ofb(2)5l2(l1•H) in ~4.6! according to the discussion of Section III. Generally forsl(3) we
need to takeb(2k)5l2k(l1•H) andb

(2k11)5l2k11E.

VI. DISCUSSION AND OUTLOOK

In the formalism based on the pseudo-differential Lax operator, thecKP hierarchy is obtained
by constraining the complete KP hierarchy with the symmetry constraints expressed in te
the eigenfunctionsF i ,C i from ~1.1! and imposed on the isospectral flows.

In this paper we have obtained an alternative derivation of thecKP hierarchy as an integrabl
sl̂(M1K11)-matrix hierarchy generalizing the Drinfeld–Sokolov hierarchy. The main ingr
ents of this construction were the semisimple graded, nonregular elementE of sl(M1K11) and
the potentialA belonging to the grade zero subalgebraĜ 0. Both the Lax matrix operator as we
as the underlying recurrence operator were constructed in terms of these basic elemen
matrix hierarchy exhibited a gauge symmetry related to Ker~adE). Due to presence of this gaug
J. Math. Phys., Vol. 38, No. 3, March 1997
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symmetry the relevant phase space turned out to be the quotient spaceĜ 0 /(Ker ~adE)ùĜ 0). The
structure of the flows of the hierarchy was shown to be related to the center of Ker~adE).9 The
algebraic approach allowed us to write down in closed form a very simple expression fo
second Hamiltonian structure with respect to which the flows are Hamiltonian. This br
structure was explicitly calculated as a Dirac bracket emerging from reduction ofĜ 0 to the
effective phase space ofĜ 0 /(Ker ~adE)ùĜ 0). Alternative approaches to calculate this brack
structure in various parametrizations of the constrained KP hierarchy have been proposed
past and include e.g., applications of ther -matrix formulation developed in a discrete context23,24

and applications of the generalized Kupershmidt–Wilson theorem.3,25

One expects that several aspects of thecKP formalism will gain substantially by being treate
within the algebraic formalism proposed in this paper. Work is in fact in progress regardin
following issues. Possible extensions of thecKP scalar Lax examples by going beyond the alg
braic construction based on thesl(M ) algebra by employing different algebras. Calculation of t
tau-function, following the dressing transformation method26 and Darboux–Backlund methods7

will help to further establish the connection between the pseudo-differential and matrix
niques. One also expects that the use of the matrix hierarchy will be essential for desc
additional symmetries of thecKP models.

Note added:After this paper had been completed we received a copy of the paperExtensions
of the matrix Gelfand–Dickey hierarchy from generalized Drinfeld–Sokolov reduction, by L.
Fehér and I. Marshall~SWAT-95-61, hep-th/9503217!, which contains related results. We than
Dr. L. Fehér for sending us a hard copy of his paper.
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A solvable Hamiltonian system: Integrability
and action-angle variables
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We prove that the dynamical system characterized by the Hamiltonian
H5lN( j

Npj1m( j ,k
N (pjpk)

1/2$cos@n (qj2qk)#% proposed and studied by Calogero
@J. Math. Phys.36, 9 ~1994!# and Calogero and van Diejen@Phys. Lett. A205, 143
~1995!# is equivalent to a system ofnoninteractingharmonic oscillators both clas-
sically and quantum mechanically. We find the explicit form of the conserved
currents that are in involution. We also find the action-angle variables and solve the
initial value problem in a very simple form. ©1997 American Institute of Physics.
@S0022-2488~97!02203-2#

I. INTRODUCTION

Motivated by the discovery1 that the dynamical system characterized by the Hamiltonian

H5(
j ,k

N

~pjpk!exp$2hu~qj2qk!u%, ~1!

is completely integrable, Calogero2 proposed a new Hamiltonian system with the standard Pois
bracket and the Hamiltonian,

H5lNP1m (
j ,k50

N21

~pjpk!
1/2$cos@n~qj2qk!#%, ~2!

P5 (
j50

N21

pj . ~3!

The equations of motions of the dynamical variables are

d

dt
qj5lN1mpj

21/2(
k50

N21

pk
1/2 cos@n~qj2qk!#, ~4!

d

dt
pj52mnpj

1/2(
k50

N21

pk
1/2 sin@n~qj2qk!#. ~5!

Then by way of a lengthy analysis, he succeeded to show that this Hamiltonian system is so
in the sense that the above evolution equations can be solved in closed form. The final form
solution takes the following form:

qj~ t !5qj~0!1lNt1n21 arctanS sin„n@mNt1a2qj~0!#…2sin„n@a2qj~0!#…

cos„n@mNt1a2qj~0!#…2cos„n@a2qj~0!#…
1
N

A
@pj~0!#1/2D ,

~6!
0022-2488/97/38(3)/1577/6/$10.00
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pj~ t !5pj~0!12
A

N
@pj~0!#1/2~cos„n@mNt1a2qj~0!#…

2cos„n@a2qj~0!#…!12S AND 2@12cos~nmNt!#, ~7!

where the constantsA anda are determined by the initial data as follows:

C~0![A cosa5 (
k50

N21

pk~0!1/2 cos@nqk~0!#, ~8!

S~0![A sin a5 (
k50

N21

pk~0!1/2 sin@n„qk~0!…#. ~9!

This part of the analysis was done mainly by solving the equation of motion for the functionsC(t)
andS(t) plus lengthy and at times cumbersome use of trigonometry. By solving exactly the i
value problem in closed form, he concluded that2 ‘‘...In the casel50 considered here, the gener
motion is characterized by a completely periodical behavior...’’ and ‘‘...In view of the remark
simplicity of the motion characterizing the model, it is natural to conjecture that there also e
quantal version of this model and perhaps of some of its generalizations which is solvab
features a spectrum whose discrete part is equispaced.... .’’

This part of the analysis was done by heavy use of properties of some special ma
introduced for this purpose in Ref. 2. The quantum version of this model was then discus
Ref. 3.

The discovery of new integrable systems have always created excitement and great act
mathematical physics. These models have always proved to have a hidden algebraic struct
is responsible for their integrability.4,5 The study of this algebraic structure also helps us
generalize the original model in many different ways. Motivated by the desire to understan
model ~2! in this framework, we have studied this system from a purely algebraic point of v
We concentrate mainly on the classical version of the model,2 but our method and results are als
equally true for the quantum case.3

Our result is that when written in terms of suitable coordinates the Hamiltonian~2! takes a
very simple form, which is nothing but the Hamiltonian ofN noninteracting harmonic oscillators
All the results of Calogero2 and Calogero and van Diejen3 can then be derived without doing an
calculations. Furthermore, we will find the integrals of motion that are in involution, hence
prove the integrability of the system and find the explicit form of the action-angle variables

II. THE NEW DYNAMICAL VARIABLES

Define the variables

aj5S pjn D 1/2einqj , ~10!

aj*5S pjn D 1/2e2 inqj . ~11!

Since the parametern has the dimension of inverse length, the above variables will have
dimension of~Action!1/2 and will have the following Poisson brackets:
J. Math. Phys., Vol. 38, No. 3, March 1997
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$aj ,ak%5$aj* ,ak* %50, $aj ,ak* %5 id j ,k . ~12!

The Hamiltonian will then take the following form:

H5Nln (
j50

N21

aj* aj1mn (
j ,k50

N21

aj* ak . ~13!

It should be stressed that the quantum version of the variables~10!, ~11!, where instead of the
variablesaj*5(pj /n)

1/2e2 inqj , one has the operatoraj
†5e2 inqj(pj /n)

1/2 and the Hamiltonian~13!
has already appeared in Ref. 3.

We now write~13! into the compact matrix form:

H5NlnA†A1mnA†CA, ~14!

where

A5S a1

a2

•

•

aN21

D , C5S 1 1 • • • 1

1 1 • • • 1

1 1 • • • 1

• • • • • •

1 1 • • • 1

D , ~15!

where a dot stands for 1. Having all of its elements equal to 1, the matrixC has the following
orthonormal eigenvectors:

Cua5jaua , a50,1,2,...,N21, ~16!

where

j05N, j15j25j35••••jN2150, ~17!

and

~ua!s5
1

AN
vas, with v5e2p i /N, ~18!

i.e.,

u05S 1
1
1
•

•

1

D , u15S 1
v
v2

•

•

vN

D , u25S 1
v2

v4

•

•

v2N

D , etc. ~19!

Clearly the matrixR that diagonalizes the Hermitian matrixC is unitary, with

RCR†[D5diagonal~N,0,0,0•••0!, ~20!

where the explicit form ofR is given by
J. Math. Phys., Vol. 38, No. 3, March 1997
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Ra,b5~ua!b5
1

AN
vas.

Defining the new variablesB5RA, i.e.,

ba5
1

AN
vasas , ba*5

1

AN
v2asas* , ~21!

we find

H5NlnB†B1mnB† DB ~22!

or

H5Nln~b0* b01b1* b11b2* b21•••1bN21* bN21!1mNnb0* b0 . ~23!

It is essential that the new variables satisfy canonical commutation relations, which is a s
consequence of unitarity ofR,

$ba ,bb%5$ba* ,bb* %50, $ba ,bb* %5 ida,b . ~24!

Defining now the quantitiesI a [ ba* ba , which are global functions of the old coordinates, w
find

$I a ,I b%50, ;a,b. ~25!

The quantitiesI a are theN integrals of the motion, in involution with each other and the Ham
tonian is a function of these integrals, i.e.,

H5Nln~ I 01I 11I 21•••I N21!1mnNI0 . ~26!

Therefore the system~2! is integrable in the Liouville sense. The explicit form of the integralsI a

is found from~10!–~11! and ~21! to be

I a5
1

2Nn (
k,k850

N21

~pkpk8!
1/2 cosFn~qk82qk!1

2pa

N
~k82k!G . ~27!

These functions, having the dimension of action, are in fact the action variables. We ca
find the angle variablesQa . These are

Qa5
1

2i
ln
ba

ba*
. ~28!

It is straightforward to check from~24! that the action-angle variables have canonical Pois
brackets:

$I a ,I b%5$Qa ,Qb%50, $Qa ,I b%5da,b . ~29!

The total momentumP has a simple expression in terms of the action variables:

P5n~ I 01I 11I 21•••I N21!. ~30!
J. Math. Phys., Vol. 38, No. 3, March 1997
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It is now clear that the initial value problem can be solved in very simple and closed form
equations of motion are

d

dt
ba5 inNlba , aÞ0, ~31!

d

dt
b05 inN~l1m!b0 , ~32!

with solutions

ba~ t !5ba~0!eiNlt, aÞ0 ~33!

and

b0~ t !5b0~0!eiN~l1m!t. ~34!

Using the inverse transformation of~21! one obtains the time evolution of the variabl
(ai ,ai* ) and hence of the original coordinates and momenta. It is only for the difference bet
evolution of baÞ0 and b0 that the variables (ai ,ai* ) and henceqi and pi have a complicated-
looking evolution. Otherwise~in the casem50! one will find that the variables (ai ,ai* ) have
exactly the same simple time evolution as the variable (bi ,bi* ).

III. DISCUSSION

I would like to emphasize that from our analysis, it is clearly seen that the particular for
the matrixC does not play any significant role in the proof of integrability and solvability of
model and one can replace this matrix by any other Hermitian matrix. None of the main res
this paper@i.e., Eqs.~24!–~25! and Eqs.~28!–~29!# will change, except the explicit form of the
diagonalizing matrix. Instead of~26!, one will have

H5l1I 11l2I 21•••lNI N , ~35!

and instead of~33!, ~44! one will have

ba~ t !5ba~0!eilat, ~36!

where thela’s are the eigenvalues of the matrixC. One can then construct a larger class
integrable and solvable models similar to~2!, and can study from these set the ones that may h
more physical interest. A good choice of the matrixC that is perhaps better than~15! on physical
grounds, is the following:

C5S 0 1 • • s

1 0 1 • •

• 1 0 1 •

• • 1 0 1

s • • 1 0

D , ~37!

where a dot stands for 0. This matrix leads to the following Hamiltonian:

H5Nl(
j

N

pj1m (
j50

N21

~pjpj11!
1/2 cos@n~qj2qj11!#1ms~p1pN!1/2 cos@n~q12qN!#, ~38!
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



c-
than
one-
he
t
n-

itable
w how
rom

m by

in fact
ter all

to be
y.

A.
e to

l.

1582 V. Karimipour: A solvable Hamiltonian system

¬¬¬¬¬¬¬¬¬¬
which represents a system with local~nearest neighbor! interaction, rather the long-range intera
tions implied by~2!. Physically, systems with local interactions are much more interesting
those with long-range interactions. Also, it is meaningful to think of this system as a
dimensional system, whereas for the system~2! where all the particles interact with each other t
concept of dimensionality is somehow vague. The parameters in this Hamiltonian is used to trea
systems with various boundary conditions. Whens50 we are dealing with open boundary co
ditions and when it is nonzero we are dealing with periodic boundary conditions.

We have shown that the integrable system proposed by Calogero when written in su
coordinates is in fact a system of noninteracting harmonic oscillators. Our results also sho
~in the quantum case! the spectrum of this model can be calculated in quite a simple way. F
Eq. ~24! it is seen that the energy eigenvalues are given by

E5Nln~n01n11n21•••nN21!1Nmnn0 , ~39!

where theni ’s are positive integers@also see Eq.~13! and its following paragraph#. One can also
find easily the explicit form of the eigenvectors, which are constructed by acting on the vacuu
the raising operatorsba

† ’s.
At first sight, it may seem disappointing that the solvable systems of Refs. 2 and 3 are

noninteracting harmonic oscillators in a different guise. However, one should note that af
any integrablesystem when written in terms of the action angle variables will be anoninteracting
system. Therefore from a rigorous point of view the systems studied in Refs. 2, 3 deserve
named ‘‘new solvable systems,’’ although they are too easy to solve when treated properl
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Some rigorous results for the kinematic dynamo problem
with general boundary conditions

Manuel Núñez
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47005 Valladolid, Spain
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The main energy inequalities for the induction equation are studied for a variety of
boundary conditions. The results are applied to the evolution of the magnetic field
and the vector potential within a conducting fluid disregarding the influence of
these upon the velocity~the kinematic dynamo problem!. Emphasis is placed upon
the behavior of these fields at the singular limit of zero magnetic diffusivity.
© 1997 American Institute of Physics.@S0022-2488~97!03003-X#

I. INTRODUCTION

The magnetic field within a conducting fluid of velocityu and magnetic diffusivityh satisfies
the induction equation

]B

]t
5curl~u3B2hcurlB! ~1.1!

which is part of the magnetohydrodynamics~MHD! system of equations. This includes the fee
back of the magnetic field upon the fluid motion through the Lorentz force, as well as the
continuity and Maxwell equations~setting the displacement current equal to zero!. The MHD
system is considered an adequate description of the behavior of magnetized fluids with its p
of important applications, but it is mathematically very difficult to handle and often one m
study particular aspects of it in order to get information about specific problems. The indu
equation by itself ignores the effect of the field upon the velocity and as such is only suitab
the initial stages of the evolution of a field with a small initial value, for the rather unu
force-free fields or for proving impossibility results, such as the so-called antidynamo theo
The sole consideration of the induction equation constitutes the kinematic dynamo theory.
for some domain and velocity there exists a magnetic field growing exponentially even in the
of vanishing diffusivity, it is said that we have a fast dynamo: many contributions to the th
and applications of the fast dynamo are admirably collected in Ref. 1, which will be our sta
reference.

The induction equation is often scaled differently with the result thath is substituted by
R21, R being the so-called magnetic Reynolds number. Since the choice of units is indiffere
theoretical work we will write« instead ofh or R21 and study what happens for small«. This
case corresponds to a perfect conductor and under this ideal magnetohydrodynamic hypoth
fluid satisfies

]B

]t
5curl~u3B! ~1.2!

which may be explicitly solved: if we denote byx(a,t) the position at timet of the particle located
ata at t50, byJ(a,t) the Jacobian matrix of the mappinga→x(a,t) and byr the material density
we have
0022-2488/97/38(3)/1583/10/$10.00
1583J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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B~x~a,t !,t !5
r~x~a,t !,t !

r~a,0!
J~a,t !B~a,0!, ~1.3!

called the Cauchy solution of the induction equation. Since this quotient of densities is the
minant of the Jacobian matrix of the inverse displacement (1 for the incompressible case! we get

B~x~a,t !,t !5udetJ~a,t !u21J~a,t !B~a,0!. ~1.4!

This formula is a mere transcription of the fact that the field is frozen into the fluid: the field
are transported by the flow as material points. The intuitive aspect of this process has le
common procedure for the analysis of the induction equation: to substitute the continuous
tion of the field by a discrete map. The field evolves in two steps: first it is transported by the
as in the ideal limit described above, and second it is allowed to undergo a static diffusion
diffusivity «. The nearest thing to a rigorous justification of this method lies in a clas
operator-splitting theorem~e.g., Ref. 2!: let Nt be the time propagator~given by the Cauchy
solution! of the ideal induction equation,Mt the time propagator of the classical diffusion equati
]B/]t5«DB, Kt5Mt + Nt , andFt the propagator of the correct equation~1.1!. Then for any fixed
t, Ft5 limn→` Kt/n

n namely, the field evolves as an iteration of transport plus diffusion only in
limit of small steps. This sounds logical enough, but to take large time steps is risky: One
easily imagine a flow where the streamlines compress the field at every step of length 1/n, so that
the final field will be much more concentrated than the one given by straightforward diffusi
time 1. A second common procedure may also be criticized: to takeMt as the convolution by the
heat kernel (4p«t)23/2exp(2uxu2/4«t). This only applies to the diffusion equation in free spa
When the fluid is contained in a different domain, its boundaries must be taken into account
constructing the Green function for the heat equation, no matter how small« may be. In fact,
solutions of singular perturbation problems for elliptic and parabolic equations often adm
ymptotic expansions in powers of« to which additional terms~involving fractional powers of
«) must be added to account for the effect of the boundaries~see Ref. 3!.

The scheme of this paper is as follows: in Section II we study a variety of possible bou
conditions to see which of them satisfy the demand that no influx of magnetic energy ente
the domain. This will be a necessary premise for the energy inequalities. Also we study the
ways of constructing a vector potential and which of them are adequate for our analysis. S
III deals with the energy inequalities and their dependence on«; their implications for the regu-
larity of the field and the convergence of the fields to the ideal one without diffusivity are stu
in Section IV. Several of these results were more or less common knowledge among d
theorists, but the arguments used to support them were not mathematically rigorous in any
as will be pointed out later.

II. BOUNDARY CONDITIONS

The fluid will be contained in a smooth domainV,R3. We will impose that there is no influx
of magnetic energy from the outside, i.e.,

E
]V

]B2

]n
ds< 0, ~2.1!

wheren is the outer normal. Let us describe some important cases where this conditions h
~1! Dirichlet homogeneous conditions:Bu]V50.
~2! Neumann homogeneous conditions: (]B/]n)u]V50.
~3! Mixed conditions: (]B/]n)1MB u]V50, whereM is a positive matrix.
The case whereV5R3 andB satisfies an adequate decay condition at infinity may be c

sidered a subcase of~1!.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Those are classical boundary problems, but difficult to associate with a realistic ph
configuration. Let us add more possibilities:

~4! V is a box whereB is periodic in all the variables. ThenB is identical and]B/]n opposed
at opposite faces, so the whole integral vanishes.

~5! V is surrounded by an insulator extending to infinity, and at]V there are no surface
currents or free charges. Then bothB and]B/]n are continuous at the boundary. Also assume t
“BPL2(R3) ~which certainly happens ifB decays like a dipole!. Denoting byV8 the comple-
ment ofV, we have

E
]V

]B2

]n
ds52E

]V8

]B2

]n
ds52E E

V8
div~B–¹B!52E E

V8
u¹Bu22E E

V8
B–DB ~2.2!

and sinceB is irrotational and solenoidal atV8, DB50 and the result follows.
Let us remark that the no influx condition is a natural demand: obviously we cannot exp

be able to bound the field if it is fed from the outside.
Let us consider now the vector potential. Since divB50, in every domainV whose second de

Rham cohomology group vanishes there exists a vector potentialA satisfying curlA5B. This, for
instance, happens whenV is homeomorphic to a ball or a torus, but not in general for a ball mi
a point. If moreoverV is simply connected,A is unique but for the addition of a gradient“c.
There exist standard elections ofA: if we set divA5 0, A–nu]V50, thenA is unique and there
exists a constantM such that

iAiH1~V!<M iBiL2~V! , ~2.3!

whereH1(V) denotes the usual Sobolev space.~This is also true for exponentsq>2; see Ref. 4
for q52 and Ref. 5 for the general case!. WhenV5R3, A is unique by imposing divA5 0 and
the bound~2.3!.

If V is simply connected, any vector potential satisfies the equation obtained from ‘‘un
ing’’ ~1.1!:

]A

]t
5u3curlA1«DA1“f ~2.4!

for some time-dependent potentialf ~which also includes the term divA). A common trick is to
define a different vector potentialA*5A1“c, wherec satisfies the parabolic equation

]c

]t
5«Dc2f1x ~2.5!

plus any initial and boundary condition. ThenA* satisfies Eq.~2.4! with f substituted by the
desired potentialx. Common elections includex50 andx5u–A* ~see Ref. 1, p. 101!. However,
the boundary conditions are also modified by the addition of“c , and usually it is impossible to
coordinate both the potential and the behavior at the boundary at our convenience. For in
the conditionA–nu]V50 may be respected if we set (]c/]n)u]V50 but any further requiremen
upon the components of]V demands overabundant conditions forc. Sometimes it is better to
concentrate upon the gauge and sometimes upon the boundary conditions.

We will see that the term in“f will not affect the main inequalities, for instance,
divA5 0, A–nu]V50. We need to coordinate this independence off with one of the following
requirements:

No influx of A2:
J. Math. Phys., Vol. 38, No. 3, March 1997
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E
]V

]A2

]n
ds< 0 ~2.6!

or divA5 0, plus

E
]V

~A3B!–nds< 0. ~2.7!

Let us study some examples where this applies. To avoid topological problems, we assum
V is homeomorphic to a ball, so that]V is simply connected.

~6! WhenB satisfies a Dirichlet conditionBu]V50, A, may be found with the same proper
and divA5 0. In particular this may be applied to the caseV5R3.

~7! WhenV is a box and bothB andu3B are periodic of mean zero bothA andf may be
taken as periodic. Then the boundary integral~2.6! vanishes as before, as well as all the integr
involving f.

~8! Whenuu]V50, it is possible to takef vanishing at]V ~see Ref. 6!. Then any solenoida
A satisfying Eq.~2.6! or Eq. ~2.7! will also satisfy the energy inequalities. This will happen, f
instance, in case~5!. The continuity properties ofB across]V translatea fortiori to A.

~9! When Bu]V is normal to ]V, condition ~2.7! holds automatically. TakingA with
divA5 0 andA–nu]V50 will fulfill all the requirements.

~10! WhenB–nu]V50, A may be found solenoidal and with the property thatAu]V is parallel
to n. Then Eq.~2.7! holds, but a term involving the value off at ]V remains doubtful.

The reason why we look for scenarios where the energy bounds hold for the vector po
is that with their help we will be able to prove continuity results with weaker conditions upon
flow.

III. THE ENERGY INEQUALITIES

Theorem III.1: Let g.i“u1(“u) t2(divu)I i for all t . For any normed space E, denote b
Lg
2((0,T),E) the space of measurable functions taking values in E and such that

i f iL
g
2~~0,T!,E!

2
5E

0

T

i f ~ t !i2e22gtdt,` .

Assume thatf P Lg
2((0,̀ ),L2(V)3). Then any solution of

]B

]t
5curl~u3B!1«DB1f,

divB50,
~3.1!

B~x,0!5b~x!,

E
]V

]B2

]n
ds< 0

satisfies

iBiL
g
2~~0,T!,L2~V!3!

2
1«i“BiL

g
2~~0,T!,L2~V!9!

2
<M ~ i fiL

g
2~~0,T!,L2~V!3

2
1ibiH2~V!3

2
! ~3.2!

for a constant M independent of« and T.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: First notice that the equation above is precisely Eq.~1.1! plus a generic independen
term. The argument is standard: letw(t)5B(t)e2gt. Thenw satisfies the system above with th
term 2gw added to the right-hand side andf substituted byg5fe2gt. Now make the scalar
product of the equation byw and integrate inV. Since divw5 0, u–n5 0 at ]V and

curl~u3w!5w–¹u2u–¹w2wdivu

by repeated use of the divergence theorem

]

]tE E
V
w25«E

]V

]w2

]n
ds2 2«E E

V
u“wz22EE

V
w–~“u1~“u! t

2~divu!I2gI !w12E E
V
w–g.

Let aP(0,1) be such that 2a,g2i“u1(“u) t2(divu)I i . Then the first integral in the right
hand side is bounded by zero and the third by22a**Vw

2. Assuming for the momentb5 0 and
integrating in time in the interval (0,T),

1

2E E
V
w~T!21«E

0

TE E
V

u“wu21aE
0

TE E
V
w2

<E
0

TE E
V
w–g<S E

0

TE E
V
w2D 1/2S E

0

TE E
V
g2D 1/2 ~3.3!

from which we get

«E
0

TE E
V

u“wu21E
0

TE E
V
w2<

1

a E
0

TE E
V
g2 ~3.4!

which is a mere translation of Eq.~3.2!. As usual, for a genericb the functionB(x,t)2b(x) is a
solution of the same equation with independent term

curl~u3b!1«Db1f.

Since*0
`e22gtdt,` the term corresponding to this new addition is bounded byM (ibiH2(V)3).

The constantg was already known to Backus.7 Notice that we need it to be independent
time, which certainly happens if“u is bounded in time. From this theorem follows

Corollary III.2: The mapping

H2~V!33Lg
2~~0,T!,L2~V!3!→Lg

2~~0,T!,L2~V!3!

~b,f!→B

is continuous with norm independent of« and T. If considered as a mapping

H2~V!33Lg
2~~0,T!,L2~V!3!→Lg

2~~0,T!,H1~V!3!

its norm is bounded by M/A«, M independent of« and T.
Obviously the argument of theorem III is general for parabolic systems; only the boun

condition deserves a particular study for our case. Therefore the usual refinements should
possible. For the first of them, we must assume
J. Math. Phys., Vol. 38, No. 3, March 1997
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E
]V

]

]n S ]B

]t D
2

ds< 0. ~3.5!

This certainly holds for homogeneous Dirichlet, Neumann or periodic problems, since the b
ary conditions do not depend on time; also for the mixed problem, assuming the matrixM in ~3!
to be independent of time. For the case~5!, we must assume that the electric field isC 2 through
]V. If this happens and we denote byHg

1((0,T),E) the space of functionsf where

i f iH
g
1~~0,T!,E!

2
5i f iL

g
2~~0,T!,E!

2
1i f 8iL

g
2~~0,T!,E!

2
,`

we have the following
Theorem III.3: There exists a constant M independent of« and T such that

I ]B

]t I
L

g
2~~0,T!,L2~V!3!

2

1« I“ ]B

]t I
L

g
2~~0,T!,L2~V!9!

2

<
M

«
i fiL

g
2~~0,T!,L2~V!3!

2
1M I“ ]f

]t I
L

g
2~~0,T!,L2~V!3!

2

1M ibiH4~V!3
2 . ~3.6!

Proof: It is enough to differentiate the equation in~3.1! with respect tot. The independent
term becomes

curlS ]u

]t
3BD1

]f

]t

and the initial condition

curl~u3b!1«Db1f~0!.

We now apply theorem III to this equation and then bound the termicurl((]u/]t)3B)iL2(V)3 by
NiBiH1(V)3. Notice that implicitly we have assumed that]u/]t and“(]u/]t) remain bounded.
Finally we use again theorem III to study the termNiBiH1(V)3 in terms off and«.

We may express this statement as follows
Corollary III.4: The mapping

H4~V!33Hg
1~~0,T!,L2~V!3!→Hg

1~~0,T!,L2~V!3!

~b,f!→B

is continuous with norm bounded by M/A«. When considered as taking

H4~V!33Hg
1~~0,T!,L2~V!3!→Hg

1~~0,T!,H1~V!3!

its norm is bounded by M/«, with M independent of« and T.
The next theorem is also familiar in the theory of parabolic equations:
Theorem III.5: The mapping

H4~V!33Lg
2~~0,T!,L2~V!3!→Lg

2~~0,T!,H2~V!3!

~b,f!→B

is continuous and its norm is bounded by M/«, with M independent of T and«.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: This follows from the so-called second fundamental inequality8 or alternatively from
multiplying the equation by a genericHPLg

2((0,T),H0
1(V)3). By applying the same inequalitie

as in theorem III, we get a bound of the type

«u~“B,“H!L
g
2~~0,T!,L2~V!3!u<M ~ ibiH4~V!31iBiL

g
2~~0,T!,H1~V!3!

1i fiL
g
2~~0,T!,L2~V!3!!iHiL

g
2~~0,T!,L2~V!3!

with M independent of« andT, which means that the mapping

H→~“B,“H!L
g
2~~0,T!,L2~V!3!

is continuous with the norm ofLg
2((0,T),L2(V)3). This demands thatB P Lg

2((0,T),H2(V)3) and
its norm in this space is bounded by the term between parentheses times 1/«. Since the term
iBiL

g
2((0,T),H1(V)3) is bounded byiBiL

g
2((0,T),H2(V)3) , the result follows.

Finally weak solutions may be studied by considering the adjoint operator, which gives r
a new parabolic equation with reversed time to which the previous bounds may be applie
refer to Ref. 9 for the exposition of this technique. The results are as follows:

iBiL
g
2~~0,T!,L2~V!3!<

M

A«
~ ibiH1~V!31i fiL

g
2~~0,T!,H21~V!3!!, ~3.7!

iBiL
g
2~~0,T!,L2~V!3!<

M

«
~ ibiL2~V!31i fiL

g
2~~0,T!,H22~V!3!!, ~3.8!

iBiL
g
2~~0,T!,H1~V!3!<

M

«
~ ibiH1~V!31i fiL

g
2~~0,T!,H21~V!3!!, ~3.9!

with M independent of« andT.
Let us indicate how these results may be extended to the vector potentialA, provided we are

in one of the situations described in Section II. Equation~2.4! may be written as

]A

]t
1u–¹A5(

i
ui“Ai1«DA1“f, ~3.10!

to which we must add a generic initial conditiona and independent termg. We may state
somewhat loosely the conditions as:

Theorem III.6: If A satisfies (3.10) plus the conditions stated in Section II, the results pro
for B hold for A.

Proof: Assume first divA5 0, A–nu]V50, *]V(]A
2/]n)ds< 0. Let us study how the term

of Eq. ~3.10! behave when repeating the operations of theorem III. As before
J. Math. Phys., Vol. 38, No. 3, March 1997
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~u–¹A,A!52
1

2E E
V
A2divu,

S (
i
ui“Ai ,AD 5E

]V
S (

i
uiAi DA–nds2E E

V
u–AdivA1A–~“u!A,

E E
V

¹f–A5E
]V

fA–nds2E E
V

fdivA,

E E
V
A–DA5

1

2E]V

]A2

]n
ds2E E

V
u“Au2.

The boundary terms vanish becauseA–n5 0. They would also vanish at case~8! becauseu and
f vanish at]V. Hence the same arguments may be applied toA, with precisely the same constan
g.

Consider now the case when the bound~2.7! occurs. The term**VA–DA is also equal to

2E E
V
A–curlB5E E

V
div~A3B!2E E

V
curlA–B

5E
]V

~A3B!–nds2E E
V
B2.

Thus by the same argument we get a bound of the type

iAiL
g
2~~0,T!,L2~V!3!

2
1«icurlAiL

g
2~~0,T!,L2~V!9!

2
<M ~ igiL

g
2~~0,T!,L2~V!3

2
1iaiH2~V!3

2
!. ~3.11!

The key point is that the normiAiH1(V)3 is equivalent to iAiL2(V)31icurlAiL2(V)3

1idivAiL2(V)3 provided we stay in the space of functionsA with A–nu]V50. ~See Ref. 4, p. 244!.
Since divA5 0, the left-hand side term is equivalent to

iAiL
g
2~~0,T!,L2~V!3!

2
1«i“AiL

g
2~~0,T!,L2~V!9!

2
,

and the result follows.

IV. CONSEQUENCES

We will study some facts following from the energy inequalities. The first one is the boun
i“Bi given in Eq.~3.2!. In dynamo theory it is often stated that diffusion uniformizes the field
lengths of 1/A«, or that the field cannot have sharp variations in the scale 1/A«, whose mathemati-
cal translation is hopefully Eq.~3.2!. One of the first papers where this result appears explic
~but without a real proof! is Ref. 10. Sometimes the properties of the heat kernel are used to
this point~see e.g., Ref. 11! which, as said before, is not entirely convincing either. The limitatio
of Eq. ~3.2! are obvious: we deal with a mean in both time and space, and the contributi
advanced times is exponentially damped. The spatial mean is necessary because, as argue
the confluence of streamlines may produce sharply defined variations of the field~but only in a set
of small measure!. As for the mean in time, it is enough to consider a growing eigensolu
~which exist in some cases; otherwise there would not be a fast dynamo! to see that there canno
exist a bound oni“Bi uniform in time. Of course, the real part of such eigenvalue cannot ex
g.
J. Math. Phys., Vol. 38, No. 3, March 1997
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More interesting are the applications to the convergence of the fieldsB« associated to a
diffusivity « towards the diffusionless fieldB0. As stated before, this singular limit does n
follow in a straightforward way from any classical perturbation theorem. To show how far we
go in assuming convergence without unreasonable restrictions on the flow~which in the interest-
ing cases is always chaotic! we must obtain some exponential bounds for the ideal field:

Lemma IV.1: Letb be such that

udetJ~a,t !u21/2iJ~a,t !i<Mebt,

then

iB0~ t !iL2~V!3<MebtibiL2~V!3. ~4.1!

Hence for any election of the vector potentialA0(t) satisfying Eq. (2.3), we have

uuA0~ t !uuH1~V!3<MebtibiL2~V!3. ~4.2!

Proof: Equation ~4.1! is a simple consequence of Eq.~1.4! and the change of variable
theorem, and Eq.~4.2! follows from Eqs.~2.3! and ~4.1!.

Obviously better estimates forB0(t) could be found by derivating formula~1.4! and using
bounds onibiH1(V)3 and i“Ji , etc. We refrain from doing that because whereas for larget the
bounds oniJi depend on the Lyapunov exponents of the flow and therefore are phys
relevant and may be found for many flows, any bound oni“Ji is artificial and difficult to
estimate, for example, in chaotic flows, which are the only ones where fast dynamo actio
take place~Ref. 2!. Precisely in this situation Oseledets’ theorem guarantees that the Lyap
exponents~and thereforeiJi) are the same for almost every point of the fluid, while nothing of
kind occurs for the derivatives of the Jacobian matrix. Let it be clear, however, thatb is a bound
on the largest Lyapunov exponent for all points and not for almost all points: although
exponents are in the chaotic case constant except in a set of measure zero, this set is
relevant for magnetic field stretching and therefore for flux growth. Anyway we will avoid
results involving ana priori knowledge ofi“Ji . From now on we will also assume that th
boundary conditions are such that the energy inequalities hold.

Theorem IV.2: LetB« be the solution of Eq. (3.1) (withf50), B0 the solution of Eq. (1.2) for
the same initial conditionb. Take the constantg in theorem III such thatg.b. Then there exists
a constant M independent of« and T such that

iB«2B0iL
g
2~~0,T!,L2~V!3!<M ibiL2~V!3. ~4.3!

Proof: B«2B0 satisfies the equation

]~B«2B0!

]t
5curl~u3~B«2B0!!1«D~B«2B0!1«DB0,

B«2B0~0!5 0.

From inequality~3.8! with f5«DB0 we get

iB«2B0iL
g
2~~0,T!,L2~V!3!<~M /«!i«DB0iL

g
2~~0,T!,H22~V!3!

<M iB0iL
g
2~~0,T!,L2~V!3!<M iebtbiL

g
2~~0,T!,L2~V!3!

<M ibiL2~V!3
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~although we designate all constants by the same letter for brevity, obviously they are diffe!.
From this bound we could get the weak convergence of a subnet of (B«), but assuming that

the energy inequalities also hold for a vector potential we may do much better:
Theorem IV.3: Let A« be a vector potential ofB« , A0 of B0 satisfying ~2.3!. Then there

exists a constantM independent of« andT such that

iA«2A0iL
g
2~~0,T!,L2~V!3!<MA«ibiL2~V!3. ~4.4!

Proof: TakeA«(0)5A0(0)5a for ana satisfying Eq.~2.3! and curla5b. We have now the
equation

]~A«2A0!

]t
5u3curl~A«2A0!1«D~A«2A0!1«DA01“~f«2f0!,

A«2A05 0.

By inequality ~3.7! applied toA«2A0 under the hypotheses of theorem III.6, we get

iA«2A0iL
g
2~~0,T!,L2~V!3!<~M /A«!i«DA0iL

g
2~~0,T!,H21~V!3!<MA«ibiL2~V!3.

This gives a definite rate of convergence of the vector potentials to the ideal limit. This obvi
implies

iB«2B0iL
g
2~~0,T!,H21~V!3!<MA«ibiL2~V!3, ~4.5!

which asserts thatB« converges toB0 in the spaceLg
2((0,T),H21(V)3). Although this conver-

gence may seem somewhat weak, it is as far as one can go without unreasonable restric
i“Ji .
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Outer trapped surfaces and their apparent horizon
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We give a new definition of ‘‘closed outer trapped surface’’ with respect to a
hypersurface and show that the boundary of the trapped region~the apparent hori-
zon! is a marginally trapped surface, i.e., has vanishing outer null expansion. While
this is an important and well known result, there does not seem to exist a proof in
the literature. ©1997 American Institute of Physics.@S0022-2488~97!00902-X#

I. INTRODUCTION

A collapsing star is thought to form a black hole. While for asymptotically flat manifolds
can identify the black hole region with the complement of the causal past of future null infi
such a definition is impossible in the general case. Accordingly, it is common to associate
holes with trapped surfaces, which are defined quasi-locally. The simplest idea is to ident
black hole region with the set of all events which lie in some closed~future! trapped surface,
though this would also include trapped surfaces of a ‘‘cosmological’’ type. For such a defin
one would like to prove that this set is a future set, in order to capture the physical ide
observers inside a black hole cannot escape. Also, to connect with the classical notion of a s
black hole, one would like to know whether all causal geodesics with past endpoint in this s
future incomplete. While this does not hold in general,1 there is positive evidence in physicall
plausible situations~cf. the singularity theorems of Hawking and Penrose and Refs. 2 and 3!.

In any case, a central notion for studying the collapse of a star is the concept of a c
trapped surface. The textbook expositions run roughly as follows. LetS be a spacelike hypersur
face representing an instance of time. Then the union of black holes at this point in timeS would
contain the setÁout,S

strict of all points lying in some closed strictly outer trapped surface containe
S ~cf. Definition 3 below!. Note, however, that black holes are larger in general. This is bec
there may exist closed trapped surfaces intersectingS which are not completely contained in th
S ~cf. Ref. 4 for an especially illustrative case!. Nevertheless, sinceÁout,S

strict is contained in the
black hole, its structure is worth investigating. For technical reasons it is better to define the
general notion of a strictly outer trapped surface and to investigate the setÁout,S

strict of all points lying
in some strictly outer trapped surface. Accordingly, for the asymptotically flat case, this se
some of its properties have been discussed in textbooks~cf. Refs. 5 and 6!. A fundamental
property ofÁout,S

strict is that its boundary, known as an apparent horizon, forms a marginally tra
surface, provided it is differentiable. While this property is well known and presented in
aforementioned textbooks, there does not seem to be a proper proof in the literature. Instea
only appears to be a rough sketch of proof which can be found in Ref. 5 and, somewhat r
in Ref. 6. The main objective of this paper is to remedy this situation. We also give new d
tions of closed outer trapped surfaces which do not depend on any asymptotic structure.

II. PRELIMINARIES: GEODETIC GRAPHS

In this section, (S,g) is an arbitrary (m21)-dimensional pseudo-Riemannian manifold. La
we will specialize to the case thatS is a spacelike hypersurface of spacetime. In order to av
0022-2488/97/38(3)/1593/12/$10.00
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confusion, we will call a hypersurface ofS, i.e., a codim 2 surface of space time, a
(m22)-surface. ~In this paper, the term ‘‘surface’’ is not restricted to two-dimensional subm
folds.! In the following, the metricg will often be denoted bŷ•,•&.

Let s0,S be an (m22)-surface inS with normaln0 which satisfieŝ n0 ,n0&5e, wheree
P $21,1%. Then there exists a neighborhoodU of s0 and coordinates (t,x

1, . . . ,xm22) such that
s0 is given by$t50% and the metricg has the form

g5edt21~ht! i j ~x
1, . . . ,xm22!dxidxj ,

where ht is a one-parameter family of pseudo-Riemannian metrics. We will sometimes
(x1, . . . ,xm22)5xW . Given s0, there is a natural one-parameter family of pseudo-Rieman
submanifolds (s t ,ht)(t P R) which locally foliateS. Here s t is the submanifold given by
$t5t0(5const)% andht the induced metric. We will choose the normalnt52] t of s t .

A geodetic graphovers0 is a set

s5graph~ f !5$xPSut5 f ~xW !%,

where f :Rm22→R,xW° f (xW ) is a smooth function~cf. Fig. 1!. Denote the normal ofs by n and
choose its orientation such that̂ n,nt&5e. We will restrict to the case tha
u^grad(f ),grad(f )&u,1. This implieŝ n,n&5e, i.e.,s ands t all have the same signature. It is als
possible to viewf as a function onS by trivial extension, i.e., by settingf (t,xW )5 f (xW ). We will
occasionally use this interpretation.

Indicesa,b,c . . . run from 0 tom22 whereas indicesi , j ,k,l . . . run from 1 tom22. We
sum over repeated indices.

We can now calculate the tangent space ofs and its normal in terms off .
Lemma 1: Let s5graph (f ). Then the tangent space ofs is given by

T( f (xW ),xW )s5$v1^v,grad(f )2e] t&] tuv P T( f (xW ),xW )S%, and its normal by

n5
egrad~ f !2] t

Aue1^grad~ f !,grad~ f !&u
.

Proof: It is straightforward to calculate

FIG. 1. An (m22)-surfaces considered as geodetic graph overs0.
J. Math. Phys., Vol. 38, No. 3, March 1997
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T~ f ~xW !,xW !s5$df ~ ṽ !] t1 ṽuṽPTxWs0%5$df ~v2e^v,] t&] t!] t1v2e^v,] t&] tuvPT~ f ~xW !,xW !S%

5$v1~^grad~ f !,v&2e^v,] t&!] tuvPT~ f ~xW !,xW !S%.

The equation forn is now obvious. j

The second fundamental formk of the (m22)-surfaces is defined by¹UV
'5k(U,V)n. For

any x P s, we extendk to a tensor onTxS by stipulatingk(n,•)5k(•,n)50. For vectorsu,v
P Txs, we obtaink(u,v)52e^v,¹un&. Analogously, sincent52] t , the extrinsic curvature of
s t is given bykt(] i ,]k)5e^]k ,¹] i

] t&5 1
2e] t(ht) ik . For s5graph(f ) let nf be the vector field

alongs such thatnf(x)5nf (xW )(x) for eachx5( f (xW ),xW ). hf and kf are analogously defined. A
quantity with subscripts t is intrinsically calculated with respect to the submanifolds t . For
instance,Ds t

denotes the Laplacian with respect to the metric induced ons t . Analogously, a
quantity with subscripts f is intrinsically calculated with respect tos t where t5 f (x). For in-
stance, ifF is a function, thenDs f

F(x) denotes the LaplacianDs t
of F us t

at x5( f (xW )xW ), where

t5 f (xW ).
Lemma 2: Lets5graph(f ). Then the second fundamental form ofs is given by

k5
2¹¹ f1kf

Aue1^grad~ f !,grad~ f !&u
,

and its trace by

trs~k!5
1

An~ f !
S 2Ds f

f2
¹¹ f ~grad~ f !,grad~ f !!

n~ f !
2
kf~grad~ f !,grad~ f !!

n~ f !
1trs f

~kf ! D ,
where n( f )5ue1^grad(f ),grad(f )&u.

Proof: By Lemma 1, we have

k~u,v !52e^v,¹un&52
e

An~ f !
^v,e¹ugrad~ f !2¹u] t&5

1

An~ f !
~2¹¹ f ~u,v !1e^v,¹u] t&!.

For the trace formula, observe that the induced metric ons is given byh5g2en[
^ n[ and

its contravariant form byh]5g]1en^ n. We have

trs~k!5
1

An~ f !
~2hi j¹ i¹ j f1hi j ~kf ! i j !

and can calculate

hi j¹ i¹ j f5~gi j1eninj !¹ i¹ j f

5~gi j1enf
i
nf
j2enf

i
nf
j1eninj !¹ i¹ j f

5Ds f
f1e~¹¹ f ~n,n!2¹¹ f ~nf ,nf !!.

Because of our special coordinates we haveGat
i 5 1

2g
ik(] tgak1]agtk2]kgat)5

1
2g

ik] t(ht) jkda
j . In

particular,G tt
i 50 andG j t

i 5egik(kt) jk . This implies¹¹ f (nt ,nt)5¹¹ f (] t ,] t)50 and
J. Math. Phys., Vol. 38, No. 3, March 1997
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¹¹ f ~n,n!5¹¹ f S 1

An~ f !
~egrad~ f !2] t!,

1

An~ f !
~egrad~ f !2] t!D

5
1

n~ f !
~¹¹ f ~grad~ f !,grad~ f !!22e¹¹ f ~grad~ f !,] t!!

5
1

n~ f !
~¹¹ f ~grad~ f !,grad~ f !!12ekf~grad~ f !,grad~ f !!!.

Further, we calculate

hi j ~kf ! i j5~gi j1enf
i
nf
j2enf

i
nf
j1eninj !~kf ! i j5trs f

~kf !1e
1

n~ f !
~kf ! i jgrad~ f !

igrad~ f ! j ,

where we have usedkf(nf ,•)50. j

III. CLOSED OUTER TRAPPED (m22)-SURFACES

In this section letS be a spacelike hypersurface inm-dimensional spacetimeM andt,S be
an (m22)-dimensional spacelike submanifold ofM . Since the normal bundle oft in M is a
Lorentzian plane at each point, there exist two future directed null vector fieldsN1 ,N2 alongt
which are orthogonal tot and satisfŷ N2 ,N1&521. They are unique up to transformations
the formN6°a61N6 , wherea P C`(t,R1\$0%). Letx P t and$eA%A52, . . . ,m21 be an orthonor-
mal basis ofTxt. Then any vectorv P TxM can be decomposed asv5vAeA1v2N21v1N1 ,
wherevA5^v,eA& andv652^v,N7&. Recall that the shape tensorII of t is the normal projec-
tion of the covariant derivative~if V,W are vector fields ont thenII (V,W)5(¹VW)'). The mean
curvature vector field is invariantly defined byH5@1/(m22)#SA52

m21II (eA ,eA). Using this decom-
position ande521, we obtain

H5
1

m22(
A52

m21

~2^¹eA
eA ,N2&N12^¹eA

eA ,N1&N2!5
1

m22
~ trt~x2!N11trt~x1!N2!,

wherex65¹N6
[ are thenull second fundamental forms. Like N6 , these null second fundament

forms are uniquely defined up to transformations of the formx6°a61x6 , where a
P C`(t,R1\$0%). Thenull expansionsareu65gAB(x6)AB .

Recall that aclosed (future) trapped(m22)-surface ~respectivelyclosed (future) strictly
trapped (m22)-surface, closed (future) marginally trapped(m22)-surface! is a closed
(m22)-dimensional spacelike submanifold such thatH is past pointing and causal~respectively
timelike, null!.

SinceH5@1/(m22)#(u2N11u1N2), a closed (m22)-dimensional spacelike submanifo
is a closed trapped (m22)-surface~resp. closed strictly trapped (m22)-surface, closed margin
ally trapped (m22)-surface! if and only if u6<0 ~respectivelyu6,0, u6<0 andu1u250).

Since a closed trapped (m22)-surface is thought to seal off a star from the exterior, o
would like to give a general definition for the interior and the exterior of a closed trap
(m22)-surface. Since this is a global question, difficulties arise in the nonasymptotically flat
Hayward3 calls a closed trapped (m22)-surface ‘‘outer’’ if u150 and £N2

u1,0. This quasi-
local definition is motivated by examples, but does not necessarily agree with global definitio
‘‘outer trapped.’’ We will therefore propose a simple, global definition relative to a space
hypersurfaceS which can also be used in the nonasymptotically flat case. The basic idea
demand that the interior of the trapped surface be compact.

Notice first that a closed trapped (m22)-surface which seals off a star from the exter
dividesS into two connected components, one of them enclosing the star. This compon
J. Math. Phys., Vol. 38, No. 3, March 1997
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identified with the volume enclosed by the closed trapped (m22)-surface. A closed outer trappe
(m22)-surface should then be a volume bounding (m22)-surface inS such that the expansio
u1 with respect to the normall pointing out of vol(t) is negative. However, in general there is n
clear mathematical criterium which orientation oft should be considered outer or inner. F
instance, consider Minkowski space (R4,h). Let Sr

2 be a round sphere of radiusr in a spacelike
linear hypersurface ofR4. If we choose the intuitive inner normal as ‘‘outer normal,’’ the
vol(S2)5$x P Suh(x,x).1% andS2 would be a closed outer trapped (m22)-surface. In this
special case it is easy to see that we have just chosen the wrong normal.

Definition 3: Let S be a spacelike hypersurface ofM with future normalN, andt,S be a
closed (m22)-surface. Suppose one of the null expansions~say,u1) is nonpositive alongt and
denote the corresponding normal oft in S by l5N12N.

~1! The (m22)-surfacet is calledvolume boundingif t dividesS into two connected compo
nents.

~2! Thevolume bounded byt, vol(t), is the connected component into which the negative of
normal,2l, points.

~3! The surfacet is calledouter trapped~respectively,strictly outer trapped, marginally outer
trapped! if vol(t) is compact andu1<0 ~respectivelyu1,0, u150). We will refer to the
vector l as theouter normal, and to its negative,2l, as theinner normal.

Let
Áout,S :5$x P Su' closed future outer trapped (m22)-surfacet,S through x%,
Áout,S

strict :5$x P Su' closed future strictly outer trapped~m22! surfacet,S throughx%, and
Áout,S

marg :5$x P Su' closed future marginally outer trapped~m22! surfacet,S throughx%.
We call Áout,S ~respectively,Áout,S

strict ,Áout,S
marg), the outer trapped~respectively,strictly outer

trapped, marginally outer trapped! region with respect toS.
There may arise physical situations where a closed trapped (m22)-surface is not volume

bounding. For instance, imagine an oriented closed trapped (m22)-surface inS and a wormhole
which connects both sides oft without intersecting it.

Obviously Definition 3~iii ! excludes the case where there is a singularity inside the trap
region. However, in the early stages of gravitational collapse, we expect there to be som
singular hypersurfaces with trapped regions. Once an orientation is fixed for the apparent h
of such a hypersurface, the orientation can be continued for the apparent horizons of later
surfaces, even if they contain singularities. The reader should note that both normals,l and2l are
‘‘outer’’ and ‘‘inner’’ if S is compact andt a closed trapped (m22)-surface.

We will now show that the boundary of the strictly outer trapped region has nonpos
expansion, if it is sufficiently regular. The main part of proof is the following proposition whic
geometrically intuitive. Nevertheless, some care is needed for its proof.

Denote the second fundamental form ofS in M by S, II S(u,v)5S(u,v)N, hence
S(U,V)52^II S(U,V),N&52^¹UV,N&5^V,¹UN&. Since u652^SA52

m21¹eA
eA ,N6&

52 ^SA52
m21¹eA

eA ,N6l&52^SA52
m21¹eA

eA1¹ ll,N&1^¹ ll,N&7^SA52
m21¹eA

eA ,l&, we obtain

u65trS~S!2S~ l,l!7trt~k0!, ~1!

wherek0 is the second fundamental form oft with respect toS.
Proposition 4: Let c0.0, B be an(m22)-surface inS with normal l, and let U be a

neighborhood of x inS which is divided into two connected components by B. Then there e
a neighborhood V of x which is not intersected by any(m22)-surface t which lies in the
connected component into whichl points and which satisfiesut

1(y),uB
1(x)2c0 for all y

PtùU.
For the proof of Proposition 4, recall the following comparison principle~Ref. 7, Theorem

10.1!. Let V,Rn andQf(x)5Si,k51
n aik(x,Df (x))]i]k f (x)1b(x,Df (x)), aik5aki be a quasi-
J. Math. Phys., Vol. 38, No. 3, March 1997
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linear differential operator.Q is called elliptic with respect to a functionf if the matrix
(aik(x,Df (x))) i,kP$1, . . . ,n% is positive definite. Letf 1 , f 2 be inC0(V̄,R)ùC2(V,R). If

~i! Q is elliptic with respect tof 1 or f 2,
~ii ! the coefficientsaik and the functionb are continuously differentiable,
~iii ! ( f 1) u]V>( f 2) u]V ,
~iv! Q( f 1) uV<Q( f 2) uV ,

then (f 1) uV>( f 2) uV .
Proof of Proposition 4:We will first construct a neighborhoodV of x which depends only on

U, B, andc0. In a second step, we will show thatV is not intersected by any (m22)-surface
t which lies in the connected component into which2l points and which satisfies
ut

1(y),uB
1(x)2c0 for all y P tùU.

Let U be a neighborhood ofx. Shrinking U to a neighborhoodŨ we can ensure tha
uuB

1(y)2uB
1(x)u,c0/2 for all y P ŨùB. SinceuB

1(y)52trs0(k0)1trS(S)2S(] t ,] t) for all y

P ŨùB, there exists am.0 such that

U2
1

An~c!
trsc̃

~kc̃ !1trS~S!2
1

n~c!
S~grad~c!2] t ,grad~c!2] t!2uB

1~y!U,c0/8

for all y P ŨùB,c:ŨùB→Rwith supzPŨùB$uc(z)u1Ah0
i j ] ic] jc%,m and allc̃:ŨùB→Rwith

supzPŨùB$uc̃(z)u%,m. For any smooth functionf :ŨùB→R1 define

Qf~c!5
1

An~c!
S Ds f

c1
1

n~c!
~¹¹c~grad~c!,grad~c!!1kf~grad~c!,grad~c!!!2trs f

~kf ! D
1trS~S!2

1

n~c!
S~grad~c!2] t ,grad~c!2] t!,

wheren(c)5u11hf
i j ] ic] jcu. Qf is a quasi-linear, elliptic operator satisfying~ii !. Observe that

(Qf) uy depends onf (y) but not ond f uy . There is ad P (0,m) and a smooth, positive function

w:ŨùB→R1 such that

~i! 0,w(y),d for all y P BùŨ,
~ii ! w(y)50 for all y P ](ŨùB),
~iii ! Qf(aw) uy.uB

1(y)2c0/4 foralla P (0,1#, yPBf ,m5$yPBùŨu f (y),m%.

It is important to note thatd andw only depend onŨ andm, and can be chosen independently
f . We considerŨùB as a geodetic graph overŨùB and defineV to be$(t,y) P Ũuutu,w(y)%.
This is clearly a neighborhood ofx.

Suppose, there exists an (m22)-surfacet which lies in the connected component into whi
2l points and which has expansionut

1(y),uB
1(x)2c0 for all y P Uùt. It follows that

ut
1(y),uB

1(y8)2c0/2 for ally P Ũùt andy8 P ŨùB.
We will first give the proof for (m22)-surfacest for which tùU can be described as th

graph of a functionf :B→R1. Equation~1! and Lemma 2 imply that

Qf~ f !5
1

An~ f !
S Ds f

f1
1

n~ f !
~¹¹ f ~grad~ f !,grad~ f !!1kf~grad~ f !,grad~ f !!!2trs f

~kf !) D1trS~S!

2
1

n~ f !
S~grad~ f !2] t ,grad~ f !2] t!5ut

1~ f ~y!,y!<uB
12c0/2 ~2!
J. Math. Phys., Vol. 38, No. 3, March 1997
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for all y P BùŨ.
Assume first thatf (y)<d for all y P ŨùB. We may perturbw by an arbitrarily small amoun

such that$y P ŨùBu f (y),w(y)% is an open nonempty submanifoldV with smooth, compact
boundary]V,ŨùB. We havew(y)5 f (y) for all y P ]V and (Qf)z(w).(Qf)z( f ) for all z
P V. Since the perturbation ofw was arbitrarily small and by the comparison principle quo
above,w(z)< f (z) for all z P V which in turn implies graph (f )ùV5B.

Assume now that there exists at least one pointy0 with f (y0).d. There is a function
«:ŨùB→(d,m) such thatC5$y P ŨùBu f (y)5«(y)% is a smooth, nonempty submanifold. L
V be the set of pointsy P ŨùB such thatf (y)<«(y). ThenV is a smooth, open submanifold o
B with piecewise smooth boundary]V,Cø](ŨùB). We always can shrinkV to guarantee a
smooth boundary. InV we haveQf(w).Qf( f ) and at the boundaryw(y), f (y). By the com-
parison principle,w(z), f (z) for all z P V. Sincew<d by construction, we havew(y), f (y) for
all y P ŨùB and therefore graph (f )ùV5B.

Let us now turn to the general case thatt is not necessarily given as a graph of a function o
ŨùB. If t intersects graph (w), there exists ana P (0,1# such thatt and graph (aw) intersect in
points where both manifolds have the same tangent space. Choosingb:ŨùB→R1 sufficiently
small ~and with sufficiently small derivatives!, the function (a1b)w satisfies~i!–~iii ! and graph
((a1b)w) intersectst transversely such thatt can be described as a graph over

V:5$~0,yW !PŨùBu'y5~ ty ,yW !Pt with ~a1b~y!!w~y!>ty%.

Let t5graph(f ) in this set. Then we can apply our argument above to (a1b)w uV and f uV which
gives (a1b)w(y), f (y) for y P V\]V in contradiction to the definition ofa,b. j

Proposition 4 can be immediately applied to the boundary of the outer trapped regio
x P ]Áout,S

strict 5:B and assume thatx has an open neighborhoodU such thatUùB is a smooth
(m22)-surface. ThenuB

1(x)<0. In fact, we have the following slightly stronger corollary whic
can also be applied if]Áout,S

strict is not a differentiable submanifold.
Corollary 5: Let xP ]Áout,S

strict andB be a~not necessarily inextensible! (m22)-surface such
that

~i! xPB,
~ii ! BùÁout,S

strict 5B.

ThenuB
1(x)<0.

We will now show that the boundary of the outer trapped region with respect toS has also
non-negative expansion.

Let t2,t1 be two oriented (m22)-surfaces which intersect transversely and assume that
normalsn2 ,n1 at x P t2ùt1 can be rotated into each other without intersectingTxt

1øTxt
2.

The angle/(n2 ,n1) between the (m22)-surfaces is defined as depicted in Fig. 2. We ca
kink inward if the angle between the (m22)-surfaces is smaller thanp andoutwardif it is larger
thanp.

The following technical lemma is intuitively obvious. It merely states that one can smoot
inward kinks while retaining negative outer expansion using an outward deformation.

Lemma 6: Lett1 ,t2,S be smooth(m22)-surfaces which intersect transversely in a smoo
submanifoldl. Choose one connected componentt6 of each sett i\l ( i P $1,2%) such that the
normals n6 of these components enclose an angle/(n1 ,n2) P (0,p) at l.

Then for any neighborhood U ofl there exist a smooth(m22)-surfacet and a continuous
and piecewise smooth bijectionF:t1øt2øl→t such that
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



als
alogue

aker

1600 M. Kriele and S. A. Hayward: Outer trapped surfaces and their apparent horizon

¬¬¬¬¬¬¬¬¬¬
F~x!5x for all xP~t1øt2øl!\U,

~t1øt2øl!\U5t\U,

ut1øt2øl
1

~x!>ut
1~F~x!! for all xPt1øt2.

Moreover,t lies in the connected component of U\(t1øt2øl) into which the normals n6 point.
Proof: In this proof we will construct various (m22)-surfaces as graphst̃5graph(f̃ ) over

given (m22)-surfacess̃. The situation is analogous to the proof of Proposition 4 but our norm
have now the opposite orientation from the corresponding normals in Fig. 1. Hence the an
of Equation 2 in the proof of Proposition 4 reads

u t̃
15

1

An~ f̃ !
S 2Ds f̃

f̃2
1

n~ f̃ !
~¹¹ f̃ ~grad~ f !,grad~ f̃ !!2k f̃ ~grad~ f̃ !,grad~ f̃ !!!1trs f̃

~k f̃ !) D 1trS~S!

2
1

n~ f̃ !
S~grad~ f̃ !2] t ,grad~ f̃ !2] t!. ~3!

The strategy of proof is as follows. First we will deform both surfacest6 slightly to decrease the
expansion near the kink. This will allow us to prove the lemma by establishing the we
inequalityut1øt2øl

1 (x)>ut
1(F(x))1d for all x P (t1øt2)ùV, whereV is a neighborhood of

l andd is some positive constant. Then we will find aC1 (m22)-surfacet̃ which satisfies the
assertion and in a third step we will smooth it out.

For the first step, introduce coordinates (x2, . . . ,xm21) in t2 such thatl is given by
x250. Choose asx1-coordinate the parameters of the normalized geodesics orthogonal tot2 and
consider ford̂.0 the graph of the function

x15 f ~x2!5H ~x21 d̂ !e21/~ d̂1x2! for x2.2 d̂,

0 otherwise,

overt2. Forx2.2 d̂ we havef 8(x2)5(1/(x21 d̂)11) f (x2) and f 9x2)51/(x21 d̂)3f (x2). Equa-
tion ~3! implies ~with t25s̃) that

ut2

1 2ugraph~ f !
1 5~h0!

22S ]2]2f1
~h0!

22

n~ f !
]2]2f ~]2f !

2D1q~ f ,]2f !,

FIG. 2. Definition of the angle between two (m22)-surfaces.
J. Math. Phys., Vol. 38, No. 3, March 1997
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whereq depends smoothly on (x2, . . . ,xm21), f , ]2f and (h0)
22 is a positive, bounded function

which is bounded away from 0. Hence there exist positive constantsK,L such that nearl the
inequality

ut2

1 2ugraph~ f !
1 >K]2]2f2L~ u f u1u]2f u!

holds. Sincef 9(x2)/(u f (x2)u1u f 8(x2)u)→` (x2→ d̂), this difference must be positive. Choosin
d̂ sufficiently small we obtain our deformation oft2. The (m22)-surfacet1 is treated com-
pletely analogously. In the following we will replacet6 by these deformed (m22)-surfaces.
Hence choosing a sufficiently small neighborhood ofl, there exists ad.0 such that we can
replace the inequalityut1øt2øl

1 (x)>ut
1(x) in the conclusion of the lemma by the weaker i

equalityut1øt2øl
1 (x)>ut

1(x)1D.
For the second step, we may describe both (m22)-surfacest6 as graphs graph (f̃6) over an

(m22)-surfaces ~cf. Figure 3!. Let x2, . . . ,xm21 be coordinates ofs and assume without los
of generality thatl is given byx25 x̂2, wherex̂2 is some constant. Consider now the submanifo
of s defined byx25 x̂26a6 wherea6 P R1. For eachx P l we can find a curvegx which lies
completely in the coordinate plane (x3, . . . ,xm21)5const, has arbitrarily high curvature and join
the surfacest6 in aC1-manner. For instance, one could choose arcs of small coordinate ci
The union of the curvesgx gives a smooth (m22)-surface which interpolates th
(m22)-surfacest6 in a C1-manner, resulting in aC1(m22)-surfacet̃ which is piecewise
smooth. Letf̃ be the function which hast̃ as its graph. There exists aK P R such that for each
L.0 there is such anf̃ with

~i! ]af̃,K ;aP$2, . . . ,m21%
~ii ! ]a]bf̃,K ;aP$2, . . . ,m21%, bP$3, . . . ,m21%,
~iii ! ]2]2 f̃>L for x2 P ( x̂22a2 ,x̂21a1).

FIG. 3. Proof of Lemma 6.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Equation ~3! implies that by choosingL large enough we can make the outer expansion
t̃\(t2øt1) arbitrarily small. It follows that theC1(m22)-surfacet̃ satisfies the assertion of th
lemma~with F being the projection alongx1).

For the third step, consider the curvest̃ù$(x3, . . . ,xm21)5const% and the corresponding
functions Fx3, . . . ,xm21:x2→Fx3, . . . ,xm21(x2)5x1. They areC1 and piecewiseC`. The second
derivativeFx3

9 , . . . ,xm21 has two discontinuities atx25 x̂26a6 . For anyb.0, we can smooth

these discontinuities out such thatFx3
9 , . . . ,xm21 is only altered in @ x̂22a2 ,x̂22a21b#

ø@ x̂21a12b,x̂21a1# and is everywhere bigger than the second derivative of the analo
function obtained by intersectingt6 with (x3, . . . ,xm21)5const. Denote the (m22)-surface
generated by these smoothed out curves byt̂b and by f̂ b :s→R the function with
t̂b5graph(f̂ b). For each pointy and alla P $2, . . . ,m21%, b P $3, . . . ,m21% we have

lim
b→0

f̂ b~y!5 f̃ ~y!, lim
b→0

]af̂ b~y!5]af̃ ~y!, lim
b→0

]a]bf̂ b~y!5]a]bf̃ ~y!.

Since by Equation~3! the outer expansion oft̂b is of the form

ut̂b

1
5~h0!

22S ]2]2 f̂ b1
~h0!

22

n~ f̂ b!
]2]2 f̂ b~]2 f̂ b!2D 1q̂~ f̂ b ,]af̂ b ,]a]bf̂ b!,

b can be chosen so small such that for (x2, . . . ,xm21) P s,

ut̂b

1
~ f̂ b~x2, . . . ,xm21!,x2, . . . ,xm21!<ut6

1
~ f̂ b~x2, . . . ,xm21!,x2, . . . ,xm21!1d/3

holds, provided the right hand side is defined. Nearx25 x̂21a1 both t1 and t̂b can be made
arbitrarily close~in aC3 sense! by choosingb small enough. Hence for anyd.0 we can deform
t̂b a little to join them in a C3 manner while preserving
ut̂b

1 ( f̂ b(x
2, . . . ,xm21),x2, . . . ,xm21)<ut6

1 ( f̂ b(x
2, . . . ,xm21),x2, . . . ,xm21)12d/3. We now

can smooth out the resulting (m22)-surface which proves the assertion. Recall here that the
step of the proof has given us enough room such that the resulting (m22)-surfacet lies in the
connected component ofU\(t1øt2øl) into which the normalsn6 point. j

Proposition 7: Assume that B5]Áout,S is a compact, closed C0-submanifold ofS which
consists of smooth(m22)-surfaces which intersect transversely. Then B is smooth
uB

1(x)50 for all x P B.
Proof: Since the (m22)-surfaces intersect transversely, the intersection consists of sm

submanifolds. Further, at almost all of these points only two different (m22)-surfaces intersect
Let x be a point in such a submanifoldl andU be a neighborhood ofB such thatUùB consists
of exactly two smooth (m22)-surfaces,B1, B2. Denote byl6 the normals ofB6 along the
submanifoldl. Then either

~i! /(l2,l1)P (p,2p) or
~ii ! /(l2,l1)P(0,p).

In the first case we have an outward kink atx and there exist surfacesB of S such that
Bù interior(Áout,S)5B, x P B, andB has~arbitrarily large! positive expansionuB

1(x). This is
impossible by Corollary 5. Hence we can assume that all kinks are of type~ii ! and thatuB

1<0
whereverB is smooth. By Lemma 6, a kink of type~ii ! can be smoothed out deformingB1,B2

outward. This would result in a closed outer trapped (m22)-surface which is not contained i
Áout,S . Contradiction. Hence we can assume thatB is a smooth surface which has expansi
J. Math. Phys., Vol. 38, No. 3, March 1997
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<0 everywhere. IfuB
1(x),0 at some pointx P B, then we can deform the (m22)-surface

outward nearx preservinguB
1<0. Contradiction. j

In the following we will generalize Proposition 7 to]Áout,S
strict This is a little more complicated

since we must ensure that the deformation in the proof of Proposition 10 really has negative
expansion everywhere. The following merging lemma is fundamental to our discussion.

Lemma 8: Lett̃,t̂ be two closed outer strictly trapped surfaces. Then there exists a cl

outer strictly trapped surfacet with vol ( t̃)øvol( t̂),vol(t).
Proof: There is an e.0 such that botht̂ and t̃ can be deformed outward int

(m22)-surfaces which has distancee.0 from t̂ and t̃ and are still outer trapped. We will now
replace our original outer trapped (m22)-surfaces by these deformed outer trapp
(m22)-surfaces. By perturbingt̃ and t̂ slightly we can ensure that they intersect transversely
a smooth submanifoldl. ~This follows from Corollary II.4.12 of Golubitsky and Guillemin,8

whereY5M , X5 t̃, W5 t̂ and f : t̃→M is a mapC`-close to the identity.! The union of these
closed outer trapped (m22)-surfaces contains](vol( t̃)øvol( t̂)). It follows that at the intersec-
tion points, the outer normals enclose an angle,p. We can therefore apply Lemma 6 to obtain
closed (m22)-surfacet with vol( t̃)øvol( t̂),vol(t) and negative outer expansion. j

Corollary 9: There is a sequence of closed outer strictly trapped(m22)-surfaces$t i% iPN

with vol(ti), vol(t i11) andø iPNvol(t i)5Áout,S
strict

Proof: Let t0 be any closed outer strictly trapped (m22)-surface,$xi% iPN be a dense se
quence inÁout,S

strict , and t̂ i a closed outer strictly trapped (m22)-surface which containsxi . By
Lemma 8, for eachi P Nø$0% there is a closed outer strictly trapped (m22)-surfacet i11 which
contains vol(t i)øvol( t̂ i).

We can now prove that the boundary ofÁout,S
strict is locally marginally outer trapped and no

merely outer trapped.
Proposition 10: Let xP ]Áout,S

strict andB be an(m22)-surface inS such that

~i! xPB,
~ii ! B,Áout,S

strict .

ThenuB
1(x)>0.

Proof: Assume thatuB
1(x),0. Then we can deformB slightly such thatB\$x%,Áout,S

strict and
uB

1(y),0 for all y P BùU, whereU is some sufficiently small neighborhood ofx. Let r.0 be
so small that the geodesic ball inB of radiusr is contained inUùB and that the geodesic sphe
Sr(x) in B of radius r is smooth. By Corollary 9 there is a closed outer strictly trapp
(m22)-surfacet̂ such thatSr(x),vol( t̂). By a slight deformation oft̂ we can ensure thatt̂
intersectsB transversely in a closed submanifold. This follows sincex¹ t̂. By Proposition 4
applied toB5t and t̂5B, x must lie in vol(t̂). Contradiction. j

We can summarize the result of this section in the following corollary.
Corollary 11: Assume that B5]Áout,S

strict is a compact, closed C0-submanifold ofS which
consists of finitely many smooth(m22)-surfaces which intersect transversely. Then B is smo
anduB

1(x)50 for all x P B.
In particular, if two black holes merge, their boundary has a cusplike singularity at an in

of time but immediately smoothes out.
We conjecture that the boundary of each connected component ofÁout,S

strict is always smooth.
The crucial step in establishing such a result would be to haveC1 estimates at the boundary.

IV. REMARKS

We conclude by comparing different definitions of black holes. The usual textbook defin
in terms of an event horizon5 makes sense in asymptotically flat spacetimes only, due to
J. Math. Phys., Vol. 38, No. 3, March 1997
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dependence on null infinity. Although a useful idealization, this does not suffice to describe
holes in the actual universe, which is not thought to be asymptotically flat. Even if it were
could not locate the event horizon without knowing the entire future development of the univ
In practice, therefore, it is common to use trapped or marginally trapped surfaces to chara
black holes.

This led to the definition of apparent horizon, which very roughly is the boundary of
region containing trapped surfaces, referred to a chosen time-slicing. However, the o
definition5 was also restricted to asymptotically flat space-times. One reason for this was to
global orientation distinguishing outer and inner trapped surfaces. We have instead fix
orientation by demanding that the interior be compact. This means that our definition i
restricted to asymptotically flat space-times. On the other hand, it excludes time-slicings
contain singularities. In practice, this drawback is not serious: one may simply continu
orientation of an initial nonsingular time-slice into the future. This reflects the usual scena
black-hole formation from regular initial data.

Our main result has been to establish that the boundary of the trapped region is mar
trapped. This property is part of the general knowledge of the field, but there has been no
proof of which we are aware. In addition, we have shown that kinks in the boundary are exc
thus partially closing a gap noticed by Wald.6 This still allows a moment of nonsmoothness wh
the topology of the boundary changes.

The main disadvantage of the idea of apparent horizon is that it depends on the time-s
one counts only those trapped surfaces which lie in the chosen time-slice. Thus one may
estimate or completely miss a black hole by a nonoptimal choice of time-slice. One may eve
Cauchy surfaces in the Schwarzschild solution which are arbitrarily close to the singularit
whose past does not contain any partial Cauchy surface with an apparent horizon.4 To remedy this,
Hayward3 has proposed definitions using hypersurfaces which are foliated by marginally tra
surfaces. In future work we plan to investigate the relation between these construction
apparent horizon and the intuitive notion of a black hole.
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Multiplane gravitational lensing. III. Upper bound
on number of images

A. O. Petters
Princeton University, Department of Mathematics, Princeton, New Jersey 08544

~Received 26 March 1996; accepted for publication 29 October 1996!

The total number of lensed images of a light source undergoing gravitational lens-
ing varies as the source traverses a caustic network. It is rigorously shown that for
a pointlike light source not on any caustic, a three-dimensional distribution ofg
point masses ong lens planes creates at most 2~22(g21)21! lensed images of the
source~g>2!. This complements previous work@Paper I, J. Math. Phys.36, 4263
~1995!# that showed at least 2g lensed images occur. Application of the upper
bound to the global geometry of caustics is also presented. Our methods are based
on a complex formulation of point-mass gravitational lensing and techniques from
the theory of resultants. The latter yields a new approach to studying upper bounds
on number of lensed images due to point-mass gravitational lens systems. ©1997
American Institute of Physics.@S0022-2488~97!00803-7#

I. INTRODUCTION

A striking feature of gravitational lensing is the formation of multiple lensed images
background light source. For example, a gravitational lens consisting of a single point mass~e.g.,
star or black hole! produces exactlytwo lensed images of a pointlike light source not on
caustic.1,2 Two point masses on the same lens plane generatethree or five lensed images of
pointlike sources not on caustics.3 A natural problem is then to determine, for point-mass le
systems, the number of lensed images created of a pointlike light source not on a caustic. P
has been made on this problem. For example, the total number of images of a pointlike
source, not on a caustic, that is lensed byg point masses on a plane is bounded as follows:

g11<N~2D !<g211. ~1!

The lower and upper bounds, respectively, were rigorously proven by the author,4 using Morse
theory, and Witt,5 who employed an adroit substitution with complex quantities. A next step
generalize Eq.~1! to the three-dimensional case ofg point masses generically distributed overg
lens planes~one mass on each plane!. For this situation, the author showed in Paper I6 ~via Morse
theory! that the total numberN(3D) of images of a source~not on a caustic! satisfiesN(3D)>2g. It
remained unclear, however, how to extend Witt’s trick to obtain an upper bound forN(3D).

The aim of this article~Paper III! is to use a new approach, namely, the theory of resulta
to prove thatN(3D)<2(22(g21)21), whereg>2. This method also yields the upper boun
N(2D)<g211 for the single plane case, and helps to clarify the meaning of Witt’s substitution~see
Sec. IV!. In addition, we shall apply our upper bound onN(3D) to the global geometry of caustics
Specifically, the total curvature of the fold arcs of the caustics is shown to o
Kf
(3D)>2(2p/3)(22(g22)1326(g22)11) for g>2. The latter complements the upper bou

resultKf
(3D)<22p(2g21) for g>2, which was established in Paper II.7 An introduction to the

fold curvature appears in Sec. V of Paper II.
0022-2488/97/38(3)/1605/9/$10.00
1605J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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II. BOUNDS ON NUMBER OF LENSED IMAGES

We first recall some basic concepts about multiplane lensing by point masses~cf. Sec. II of
Paper I!. Considerg point massesm1 ,...,mg at respective positionsj1,...,jg on distinct lens
planes. Associated with this lens system is ag-plane lensing maph : P,R2→R2 defined by

hpt~x1!5x12(
l51

g

ml

xl~x1!2jl
uxl~x1!2jl u2

, ~2!

with

xl~x1!5x12(
r51

l21

b r ,lmr

xr~x1!2jr
uxr~x1!2jr u2

~2< l<g!.

The coefficientsbr ,l are constants depending on the angular diameter distances betwee
various lens planes. Also,P5R22B, whereB is the set of allbPR2 such thatuxl~x1!2jl u

21→` as
x1→b for some 1< l<g. Elements ofB are calledobstruction pointsonh. They correspond to the
points on the first lens plane~counting from observer! where a light ray either terminates, o
passes through and terminates before reaching the light source plane~see Sec. II of Paper II!. The
obstruction points ofhpt arex15j1 and all solutionsx1 of the equations:

xl~x1!5jl ~2< l<g!. ~3!

Henceforth, we shall assume (without loss of genericity) that all obstruction points are in ge
position, that is,ji is not a singular value of the mapxi~x1! for i52,...,g, and no two of the above
equations have a common solution.

A lensed image, relative tohpt , of a light source aty is an element of the fiberhpt
21 ~y!, that

is, a solutionx1 in P of the lens equation: y5hpt~x1!. Each critical value ofhpt is called acaustic
point of hpt . These are points from which a light source appears infinitely magnified. The fol
ing theorem yields bounds on the number of lensed images produced byhpt .

Theorem 1:Suppose thaty is not a caustic point of the g-plane point mass lensing maphpt .
Then the total number N of lensed images, relative tohpt , of a light source aty satisfies

2g<N<2~22~g21!21!, where g>2.

If g51, then N52; for g52, we have N54 or 6.
Remark:The lower and upper bounds, respectively, in Theorem 1 and Corollary 2~below!

were proven in Papers I and II~see the Introduction of the current paper!. We repeat these result
for completeness.

A double-plane binary lens~g52! achieves the upper bound ofsix images for light sources
located inside caustics. This result coincides with that found by Erdl and Schneider.8 It is unknown
to the author whether the upper bound of the theorem is achievable forg>3.

Corollary 2: If hpt is locally stable
9 (hence, caustics are locally either folds or cusps), then

total curvature of all fold arcs obeys

2~2p/3!„22~g22!1326~g22!11…<Kf<22p~2g21!, where g>2.

If g52, then Kf526p.
Proof:By Paper II,10Kf522puBu, whereuBu is the total number of obstruction points ofhpt .

We already know thatuBu>1 ~becausex15j1 is an obstruction point!. Now, since all obstruction
points are in general position, each equation in~3! has finitely many solutions.11 The basic idea
behind the latter is that the solutions ofxl~x1!5jl (2< l<g) are in one-to-one corresponden
with the critical points of a nongenerate time-delay map, all of whose critical points lie
J. Math. Phys., Vol. 38, No. 3, March 1997
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compact set. Because the number of solutions ofxl~x1!5jl (2< l<g) is the number of lensed
images ofjl created by the firstl21 masses, Theorem 1 yieldstwo solutions forl52, and at most
22[( l21)21]1122 solutions for thel th equation, where 3< l<g. Therefore,uBu511253 if g52,
and, in general,

uBu<1121(
l53

g

~22~ l21!2122!5„22~g22!1326~g22!11…/3, where g>2.

Q.E.D.

Corollary 2 implies that the caustics due to a double-plane binary lens generically s
Kf526p. The latter coincides with the findings of Paper II.12 Note that forg51 the caustic is a
point ~hence, unstable!; consequently,Kf is not defined.

III. PROOF OF THEOREM

Our strategy is to first convert the point-mass lens equation into complex form13 and translate
the problem into finding an upper bound on the total number of zeros of the resultant of c
complex polynomials~cf. Ref. 14!.

Express y, xl , and jl as complex variables:y5y11 iy25w, xl5x1
l 1 ix2

l 5zl , and
jl5j1

l 1 i j2
l . Then the lens equationy5h ~x1! becomes

w5z11(
l51

g
ml

j̄l2 z̄l
, ~4!

wherez̄l is given recursively as a function ofz1 by

z̄l5 z̄11(
r51

l21
mrl

jr2zr
~2< l<g!. ~5!

Here,mrl5b rlmr . Clearing fractions in~4! yields

05~z12w!)
l51

g

~ j̄l2 z̄l !1(
l51

g

ml)
r51
rÞ l

g

~ j̄r2 z̄r !. ~6!

We need some more notation.
Notation:
~1! Let ql5jl2z1 and setQ15q1 .
~2! If l51,...,g, andPl(z1 ,z̄1) is a polynomial of degreesl and t l in z1 and z̄1, respectively,

then set Deg[Pl(z1 ,z̄1)]5(sl ;t l) and write

(
l51

g

Deg@Pl~z1 ,z̄1!#5S (
l51

g

sl ;(
l51

g

t l D .
Let the inequality Deg[Pl(z1 ,z̄1)]<( ŝl ; t̂ l) mean that sl< ŝl and t l< t̂ l . Set
max$(sl ;t l)% l51

g 5~max$sl% l51
g ; max$t l% l51

g !.
Next, we shall express the differencesj̄l2 z̄t as rational functions inz1 andz̄1, and determine

upper bounds for thez1 and z̄1 degrees of their numerators. First, by Eq.~5! we havej̄22z̄2
5Q̄2/Q1 , whereQ̄25q̄2Q12m12 and Deg@Q̄2#<~1;1!. Second, we have the following.

Lemma 3:
~1! If 2< l<g, then
J. Math. Phys., Vol. 38, No. 3, March 1997
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j̄l2 z̄l5
Q̄l

P r51
l21Qr

,

where Ql is a polynomial in z1 and z̄1 defined recursively by

Q̄l5~ q̄lQ12m1l !)
r52

l21

Qr2(
r52

l22

mrl F )
s51

r21

uQsu2GF )
s5r11

l21

QsG2ml21,l )
r51

l22

uQr u2. ~7!

Note that Q̄25q̄2Q12m12 and the summation term appears only for4< l<g.
~2! If 2< l<g, thenDeg[Q̄l ]<(2l22;2l22).
Proof: By Eq. ~5!,

j̄32 z̄35q̄32
m13

Q1
2
m23Q̄1

Q2
5
q̄3Q1Q22m13Q22m23uQ1u2

Q1Q2
5

Q̄3

Q1Q2
.

Assume that for 1<k< l21 we have

j̄k122 z̄k125
Q̄k12

P r51
k11 Qr

.

For k5 l , Eq. ~5! implies

j̄l122 z̄l125q̄l122
m1,l12

Q1
2
m2,l12Q̄1

Q2
2
m3,l12Q̄1Q̄2

Q3
2•••2

ml11,l12Q̄1Q̄2•••Q̄l

Ql11

5
1

P r51
l11Qr

H q̄l12Q1Q2•••Ql112m1,l12Q2•••Ql11

2(
r52

l

mr ,l12uQ1u2•••uQr21u2Qr11•••Ql112ml11,l12uQ1u2•••uQl u2J 5
Q̄l12

P r51
l11 Qr

.

By complete induction onl , the above holds for all natural numbersl>1, which yields the first
part of the lemma.

Now, Deg@Q̄2#<~1;1!. Assume that Deg[Q̄k]<(2k22;2k22) for k52,...,l21. To prove the
casek5 l , consider Eq.~7! and observe that

DegF q̄lQ1)
r52

l21

Qr G<S 11(
r52

l21

2r22;11(
r52

l21

2r22D 5~2l22;2l22!,

DegFm1l)
r52

l21

Qr G<S (
r52

l21

2r22;(
r52

l21

2r22D 5~2l2221;2l2221!,

and

DegF (
r52

l22

mrl S (
s51

r21

uQsu2D S )
s5r11

l21

QsD G<maxHDegFmrl S )
s51

r21

uQsu2D S )
s5r11

l21

QsD G J
r52

l22

<maxHDegF )
s51

r21

uQsu2G1DegF )
s5r11

l21

QsG J
r52

l22
J. Math. Phys., Vol. 38, No. 3, March 1997
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<max$„2r211~2l2222r21!;

2r211~2l2222r21!…% r52
l22

5~2l22;2l22!.

In addition,

DegFml21,l )
r51

l22

uQr u2G<~2l22;2l22!.

Hence, Lemma 3~1! implies

Deg@Q̄l #<~2l22;2l22!.

Thus, the latter part of the lemma follows from complete induction.
We now convert Eq.~6! into polynomial form. By Lemma 3~1!, Eq. ~6! becomes

05~z12w!Q̄1)
l52

g F Q̄l

P r51
l21 Qr

G1m1)
l52

g F Q̄l

P r51
l21 Qr

G1(
l52

g

mlQ̄1)
r52
rÞ l

g F Q̄r

Ps51
r21 Qs

G[p~z1 ,z̄1!,

which is equivalent to the polynomial equation

P~z1 ,z̄1![p~z1 ,z̄1!)
l52

g

)
r51

l21

Qr5@~z12w!Q̄11m1#)
l52

g

Q̄l1(
l52

g

mlF )r51

l21

QrGF )r51
rÞ l

g

Q̄rG50.

~8!

The corresponding conjugate equation is

P̄~z1 ,z̄1!5@~ z̄12w̄!Q11m1#)
l52

g

Ql1(
l52

g

mlF )r51

l21

Q̄rGF )r51
rÞ l

g

QrG50. ~9!

If z1 is a lensed image of w, then(z1 ,z̄1) simultaneously satisfies the polynomial equatio
P(z1 ,z̄1)50 and P̄(z1 ,z̄1)50. Consequently, an upper bound on the number of common zer
P(z1 ,z̄1) andP̄(z1 ,z̄1) yields an upper bound onN. This part of the proof will require the theor
of resultants. First, we determine thez1 and z̄1 degrees of P and P̄. Note that if
Deg[P(z1 ,z̄1)]5(s;t), then Deg[P̄(z1 ,z̄1)]5(t;s). Applying Lemma 3~2! to Eq. ~8! yields

DegF ~~z12w!Q̄11m1!)
l52

g

Q̄l G<~11@2g2121#;11@2g2121# !5~2g21;2g21! ~10!

and

DegFmlQ̄1Q1S )
r52

l21

Qr D S )
r52
rÞ l

g

Q̄r D G<„11~2l2221!1~2g212122l22!;11~2l2221!

1~2g212122l22!…5~2g2121;2g2121!. ~11!

Hence,

Deg@P~z1 ,z̄1!#<~2g21;2g21! and Deg@ P̄~z1 ,z̄1!#<~2g21;2g21!. ~12!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Next, write

P~z1 ,z̄1!5a0~ z̄1!1a1~ z̄1!z11•••1as~ z̄1!z1
s

and

P̄~z1 ,z̄1!5b0~ z̄1!1b1~ z̄1!z11•••1bt~ z̄1!z1
t .

Let Ss1t be the (s1t)3(s1t) matrix constructed as follows: Thel th row ofSs1t , where 1< l<t,
consists ofl21 zeros, followed byas ,as21,...,a0 , and the remainder of the row filled with zero
for t11< l<s1t, the l th row hasl2t21 zeros followed bybt ,bt21,...,b0 , and the remaining
slots having zeros. Thez1-Sylvester resultant ofP and P̄ is defined by

Res~ z̄1!5det~Ss1t!.

Note that Res~z̄1! is a polynomial in z̄1. The Resultant Theorem
15,16 implies thatb satisfies

Res~b!50 if and only if either as(b)505bt(b), or, P(a,b)505 P̄(a,b) for somea. This
implies

N<det@Res~ z̄1!#.

We now determine an upper bound for the degree of Res~z̄1!. Since Res~z̄1! is the determinant
of Ss1t , we can view Res~z̄1! as a polynomial~with integer coefficients! in the variables
a0 ,a1 ,...,as ,b0 ,b1 ,...,bt :

Res~ z̄1!5( Si0 ...i sj 0 ...j ta0
i0•••as

i sb0
j 0•••bt

j t5Res~a0 ,...,as ,b0 ,...,bt!.

Using the fact17 that Res(a0 ,...,as ,b0 ,...,bt) is homogeneous of degreet in the coefficientsal
and degrees in bl , that is,

Res~da0 ,...,das ,lb0 ,...,lbt!5d tls Res~a0 ,...,as ,b0 ,...,bt!,

we see thati 01•••1 i s5t and j 01•••1 j t5s. Consequently,

deg@Res~ z̄1!#<t~max$deg@al # l50
s %!1s~max$deg@bl # l50

t %!. ~13!

Equation ~12! implies that t<2g21, max$deg[al ] l50
s %<2g21, s<2g21, and max{deg@bl # l50

t }
<2g21. Thus,

N<deg@Res~ z̄1!#<2~2g21!2522g21 ~g>1!. ~14!

Observe that since N>2g, we get N52 for g51.
We now show that the upper bound in Eq.~14! improves as follows:

N<deg@Res~z1!#<22g2122 ~g>2!.

Note that because N>2g and N is an even number,18 the above implies N54 or 6 for g52. By the
Resultant Theorem, not all zeros of Res~z̄1! correspond to simultaneous solutions ofP and P̄,
namely, the common zeros ofas( z̄1) andbt( z̄1). In fact, letg>2 and consider

P~z1 ,z̄1!5~z12w!)
l51

g

Q̄l1m1)
l52

g

Q̄l1(
l52

g

mlF )r51

l21

QrGF )r51
rÞ l

g

Q̄rG50,
J. Math. Phys., Vol. 38, No. 3, March 1997
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where the second term on the right hasz1 degree less than thez1 degree of the first term. Hence
Q̄1 is a factor of the leading coefficientas( z̄1). Similarly, the relationQ25q2Q̄12m12 implies

P̄~z1 ,z̄1!5~ z̄12w̄!)
l51

g

Ql1m1)
l52

g

Ql1(
l52

g

mlF )r51

l21

Q̄rGF )r51
rÞ l

g

QrG
5Q̄1@~ z̄12w̄!Q11m1#q2 )

l53

g

Ql2m12@~ z̄12w̄!Q11m1#)
l53

g

Ql

1m2Q1Q̄1)
l53

g

Ql1(
l53

g

mlQ1Q̄1F )r52

l21

Q̄rGF )r52
rÞ l

g

QrG50,

where the second term on the right hasz1 degree less than thez1 degree of the first term
Consequently,Q̄1 is also a factor ofbt( z̄1). By the Resultant Theorem, the zeroz̄15j1 of Q̄1 is a
zero of Res~z̄1!. This zero is a point mass position and, so, is not a lensed image. T
N<deg@Res~z̄1!#<22g2121 for g>2. However,N is an even number. Therefore, ifg>2, then
N<deg@Res~z̄1!#<22g212252(22(g21)21), which completes the proof of the upper bound
Theorem 1.

IV. SINGLE-PLANE CASE

The lens equations due tog point masses on a single plane is

w5z1(
l51

g
ml

j̄l2 z̄
, ~15!

wherez varies over the lens plane~i.e., R22$j1,...,jg%!. We shall show using resultants that th
total numberN of lensed images of a light source not on a caustic satisfiesN<g211. A com-
parison will also be made with Witt’s proof of the same result.

Equation~15! is equivalent to

05F)
l51

g

~ j̄l2 z̄!G ~z2w!1(
l51

g

ml)
r51
rÞ l

g

~ j̄r2 z̄![p~z,z̄!. ~16!

Conjugation yields

05~ z̄2w̄!)
l51

g

~jl2z!1(
l51

g

ml)
r51
rÞ l

g

~jr2z![ p̄~z,z̄!. ~17!

Sincep and p̄ are of the form

p~z,z̄!5c0~ z̄!1c1~ z̄!z

and

p̄~z,z̄!5d0~ z̄!1d1~z!z1•••1dg~ z̄!zg,

the Resultant Theorem and homogeneity of the resultant imply@cf. Eqs. ~13! and ~14!# that if
Res(2D)( z̄) is thez-resultant ofp and p̄, then
J. Math. Phys., Vol. 38, No. 3, March 1997
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N<deg@Res~2D !~ z̄!#<~g!~max$deg@c0#,deg@c1#%!1~1!~max$deg@dl # l50
g %!

<~g!~g!1~1!~1!5g211.

We now recall the substitution trick used in Witt’s paper19 to obtainN<g211. Conjugate the
lens equation and multiply byp l51

g (j l2z) to get

(
l51

g

ml)
r51
rÞ l

g

~jr2z!5~w̄2 z̄!)
l51

g

~jl2z!.

Then replacez above by

z5w2(
l51

g
ml

j̄l2 z̄

to arrive at an equation that depends onlyz̄:

(
l51

g

ml)
r51
rÞ l

g S jr2w1(
l51

g
ml

j̄l2z
D 5~w̄2 z̄!)

l51

g S jl2w1(
l51

g
ml

j̄l2 z̄
D . ~18!

Clearing fractions produces a polynomialpW in z̄ of degreeg211. We suspect that Witt’s poly-
nomial equationpW( z̄)50 is equivalent to our resultant equation Res(2D)( z̄)50. This is illustrated
below for the one-point mass lens.

Example: If g51, then

p~z,z̄!5~ j̄12 z̄!z2~ j̄12 z̄!w1m15c1~ z̄!z1c0

and

p̄~z,z̄!52~ z̄2w̄!z1~ z̄2w̄!j11m15d1~ z̄!z1d0~ z̄!.

The resultant equation forp and p̄ is

05Res~2D !~ z̄!5detF c1 c0

d1 d0
G5~ j̄12 z̄!$~ z̄2w̄!j11m1%2$2~ j̄12 z̄!w1m1%$2~ z̄2w̄!%

5~ z̄2w̄!~ j̄12 z̄!~j12w!1m1~j12w!. ~19!

On the other hand, by Witt’s method note that ifg51, then Eq.~18! becomes

m15~w̄2 z̄!S j12w1
m1

j̄12 z̄
D .

Multiply by j̄12z̄ and move terms over to get a polynomial inz̄ of degree 2:

05~w̄2 z̄!@~j12w!~ j̄12 z̄!1m1#2m1~ j̄12 z̄![pW~ z̄!.

The above is equivalent to our Eq.~19!. Hence, we broadly interpret Witt’s substitution as taki
a z-resultant, that is, eliminating thez variable.
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The ultrarelativistic Reissner–Nordstro ”m field
in the Colombeau algebra

R. Steinbauera)
Institute for Theoretical Physics, University of Vienna,
Boltzmanng. 5, A-1090 Wien/Vienna, Austria

~Received 9 May 1996; accepted for publication 12 November 1996!

The electromagnetic field of the ultrarelativistic Reissner–Nordstro”m solution
shows the physically highly unsatisfactory property of a vanishing field tensor but
a nonzero, i.e.,d-like, energy density. The aim of this work is to analyze this
situation from a mathematical point of view, using the framework of Colombeau’s
theory of nonlinear generalized functions. It is shown that the physically unsatis-
factory situation is mathematically perfectly defined and that one cannot avoid such
situations when dealing with distributional valued field tensors. ©1997 American
Institute of Physics.@S0022-2488~97!02403-1#

I. INTRODUCTION

Recently, there has been some interest in gravitational shock wave geometries produ
ultrarelativistic particles.1–3 In field and string theory one is interested especially in high ene
scattering processes in these geometries.4–6

In 1971 Aichelburg and Sexl7 derived the ultrarelativistic limit of the Schwarzschild metri
which turns out to be a pp-wave with a distributional, i.e.,d-like profile function. This result has
been reproduced by several authors using various methods,3,6 but all of them invoking distribu-
tional techniques. Lousto´ and Sa´nchez5 derived the ultrarelativistic limit of the Reissner
Nordstro”m solution. To gain a distributionally well defined limit of the metric they had to resc
the charge bye25pe

2(12v2)1/2 which also forces the limit of the electromagnetic field to van
~even in the space of distributions!. However the limit of the energy stress tensor of the elec
magnetic field is nonvanishing, thus leaving us with the physically highly unsatisfactory situ
of a vanishing field producing ad-like energy density.

The aim of this work is to discuss this situation from a more mathematical point of v
Computing the electromagnetic stress tensor from the field tensor is anonlinearoperation and thus
not defined within the framework of classical distribution theory. Thus, strictly speaking, if o
dealing with distributional-valued field tensors one has to go beyond distribution theory. I
1980s Colombeau8–10 developed a theory of generalized functions providing the possibility
product of distributions. He constructed differential algebrasG containing the space of smoot
functions as a subalgebra and the space of distributions as a subspace. Thus Colombeau
provides us with a natural framework for discussing situations like the above-mentioned one
a more abstract viewpoint.11,12Moreover most recently first applications of this very framework
problems of classical field theories13 and general relativity14 have appeared.

This work is organized in the following way. In Sec. II we briefly recall the basics
Colombeau’s nonlinear theory of generalized functions. To get some working knowledge, in
III we take a look at the ultrarelativistic limit of the Coulomb field in flat space, and finally in S
IV we discuss in some detail the electromagnetic field of the ultrarelativistic Reissner–Nord”m
solution and its energy stress tensor.

a!Electronic mail: stein@doppler.thp.univie.ac.at
0022-2488/97/38(3)/1614/9/$10.00
1614 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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II. BASICS OF COLOMBEAU THEORY

Let V be an open subset ofRn or a smooth manifold. We denote byD(V) the space of tes
functions onV, i.e., the space of smooth functions with compact support inV, and byD8(V) the
space of distributions onV. Finally the action of a distributionw on a test functionw we denote
by ^w,w&.

In D8 no meaningful product can be defined. Moreover, as Schwartz showed in 1954,
even exists no associative and commutative differential algebra containing the space ofcontinuous
functions as a subalgebra that allows a linear embedding of the space of distributions
Colombeau8–10 introduced differential algebrasG containing the space of distributions as a su
space, and the space ofsmoothfunctions as a faithful subalgebra, thus providing a natural fra
work for studying nonlinear operations on singular data, i.e., distributions.

In this paper we consider the ‘‘special variant’’ of Colombeau’s algebra, whose definitio
briefly recall. Set

EM~V!5$~ue!eP~C`~V!!~0,1!:;K,,V;aPN0
n'N.0: sup

xPK
u]aue~x!u5O~e2N!~e→0!%,

~1!

N ~V!5$~ue!eP~C`~V!!~0,1!:;K,,V;aPN0
n ,;M.0: sup

xPK
u]aue~x!u5O~eM !~e→0!%.

~2!

EM(V) is a differential algebra with pointwise operations andN (V) is an ideal in it. We define
thealgebra of generalized functions, or Colombeau algebra, by

G ~V!:5EM~V!/N ~V! ~3!

and denote its elements by

u5~ue!e1N ~V!.

Distributions with compact support onRn can now be embedded intoG (Rn) by convolution
with a mollifier re , defined as follows; letr P S (Rn) ~Schwartz’s space! with the properties
*r(x)dx51 and*xar(x)dx50;a P Nn,uau>1, then we setre(x):5(1/en)r(x/e). So we have
the mapi0(v)5(v* re)e1N (Rn).
This embedding can be ‘‘lifted’’ to an embeddingi: D8(V)→G (V) by means of sheaf theor
while smooth functions are embedded as constant sequences, i.e.,s( f )5( f )e .

Next we briefly recall the concept of association in the Colombeau algebra, of which we
extensive use in the physical calculations of Secs. III and IV. One particular property of Co
beau’s algebra is the so-called ‘‘coupled-calculus,’’ namely equality in the algebra of gener
functions and equality on distribution level. The latter is defined as follows: a generalized fun
u is calledassociated to0 (u'0) if for one ~and hence any! representative (ue)e we have

lim
e→0

E ue~x!w~x!dx5 0, ;wPD~V!. ~4!

Association defines an equivalence relation in the Colombeau algebra that clearly is c
than equality and is compatible with differentiation, i.e.,u'v⇒]au']av but is not compatible
with the algebra multiplication, i.e.,u'v⇒” wu'wv.

If a generalized functionu is associated toi(w), wherew is a distribution, then one says tha
w is thedistributional shadowor theassociated distributionof u. Not all Colombeau functions
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ter
th the

nents
e
e

rable
u-
sor

istri-
f the
f the
com-
rk of

e
eau
set

ly
e

1616 R. Steinbauer: The ultrarelativistic RN field in the Colombeau algebra

¬¬¬¬¬¬¬¬¬¬
have a shadow—for exampled2, i.e., i(d)2—but if a generalized function has a shadow the lat
is unique. Different generalized functions may have the same shadow, providing us wi
possibility to model singular situations in various ways.10

III. THE ULTRARELATIVISTIC LIMIT OF THE COULOMB FIELD

In Cartesian coordinates the Coulomb field is given by the Maxwell field tensor compo
F0a52(exa)/r 3 wherer 25x21y21z2 anda51,2,3, and the other components vanishing. W
apply a Lorentz boost with velocityv in thex direction and, in order to simplify computations, w
additionally transform to a frame associated with null coordinates; in particular

t° t̄5g~ t1vx!°u5 x̄2 t̄,
~5!

x° x̄5g~x1vt !°w5 x̄1 t̄,

whereg:5(12v2)21/2. Thus the boosted field tensor takes the form

Fik5
e~12v2!

@~ x̄2v t̄ !21~12v2!r2#3/2S 0 2~ x̄2v t̄ ! ~12v !y ~12v !z

22~ x̄2v t̄ ! 0 2~11v !y 2~11v !z

2~12v !y ~11v !y 0 0

2~12v !z ~11v !z 0 0

D ,
wherer25y21z2.

We could now view the components of the field tensor as sequences of locally integ
functions parametrized by the boost velocityv, and calculate their limits in the space of distrib
tions asv→1. However, it is well known that in this limit some components of the field ten
tend tod(u) and hence the energy momentum tensorTik5Fil Fk

l 21/4FmlF
lm of the ultrarelativ-

istic field cannot be calculated directly due to the lack of a multiplication in the space of d
butions. Alternatively one could think of first computing the energy momentum tensor o
boosted field and then taking the limit. However, in this approach some components o
momentum tensor diverge in the space of distributions, thus making it again impossible to
pute the energy momentum tensor of the ultrarelativistic Coulomb field within the framewo
classical distribution theory.

To overcome these difficulties we embed the components (Fik
v)v of the field tensor into the

Colombeau algebra. The physically most natural way to do so is to view a whole sequenc@for
example (F01

v)v# asoneColombeau function. Generalized functions in the sense of Colomb
are classes of sequences ofsmoothfunctions, but our sequences are not even defined on the
A5R4\$x5vt(0,v,1) ` r50%, where from now on we neglect the bars overx and t to
simplify the notation. So in order to get an ‘‘embedding’’ of (Fik

v)v into Colombeau’s algebra
without cutting the whole setA from the domain we employ the following construction that on
forces us to restrict the domain toV:5R4\$x5t ` r50%, which is physically reasonable since w
precisely cut out the world line of the ultrarelativistic particle. LetX v P C`(R)(0,v,1) be such
that

X v~j![1, uju>4~12v !2,

Xv~j![0, uju<~12v !2.

Using the abbreviationa:5(x1vt)21r2 we define
J. Math. Phys., Vol. 38, No. 3, March 1997
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F̃ ik
v5H Fik

v , a.4~12v !2

Fik
vX v~a!, 4~12v !2>a>~12v !2

0, ~12v !2.~a!2,

~6!

which lies inG (V) and equalsFik
v outside a cylinder of radius 2(12v) with axis x5vt in the

r50 plane, whereas it is smoothed down to zero inside a cylinder with half this radius.
however thatF̃ ik

v is smooth even onR
4. Now F̃ ik

v is the best possible approximation forF
ik
v in

G (V) in the following precise sense: Given any compactK,V, finally ~i.e., v is large enough!
F̃ ik

v equalsF
ik
v on an open neighborhood ofK.

Puttingv(e)512e we get the desired ‘‘embedding’’ of the field tensor into the Colombe
algebra

~Fik
v!v°~ F̃ v~e!

ik !e1N ~V!.

Now we are able both to compute the energy momentum tensor inG (V), and to make use o
the concept of association, which corresponds physically to taking of the ultrarelativistic
First we calculate the association relations for the field tensor.

Proposition 1:

F̃ ik'S 0 0 0 0

0 0 2y 2z

0 y 0 0

0 z 0 0

D 4e

r2
d~u!. ~7!

Proof:We have to compute the following limits

lim
e→0

E
V
F̃v~e!
ik ~ t,x,y,z!w~ t,x,y,z!dtdxdydz, ~8!

wherew is an arbitrary test function inD(V). We only carry out the calculations forF̃01 and
F̃21 as the other components are either related to these by symmetry or the limits can be ta
a closely analogous way. We choosev so large that on an open neighborhood of the suppor
w we haveF̃v

ik5Fik
v , and for simplicity we set@ #:5(x2vt)21(12v2)r2. Then we have

U E
supp~w!

F̃ v~e!
01 wU<2eiwi`E E E F E

2`

` U ~12v2!~x2vt !
@ #3/2 UdxGdtdydz

58peA12v2iwi`E E 1

r
rdrdt, ~9!

which vanishes in the limit, since the remaining integral has to be taken over a compact se
To prove F̃21

v(e)'(4ey/r) d(u) we first note that forf̃ v(e) , defined from f v5ey(11v)
3(x2vt)/(r2@ #1/2) in the same way asF̃ ik

v(e) is defined fromFik
v we have

lim
e→0

E
supp~w!

f v~e!w5 K 2eyr2
@u~x2t !2u~ t2x!#,w L , ~10!

where we have used Lebesgue’s dominated convergence. Differentiating this relation with r
to x we get the desired result. h

Next we compute the energy stress tensor inG (V) by componentwise multiplication to ge
J. Math. Phys., Vol. 38, No. 3, March 1997
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T̃ik v~e!5
e2~12v2!2

2~~x2vt !21~12v2!r2!3

3S 1
2 ~11v !2r2 1

2 ~x2vt !2 ~11v !~x2vt !y ~11v !~x2vt !z

1
2 ~x2vt !2 1

2 ~12v !2r2 2~12v !~x2vt !y 2~12v !~x2vt !z

~11v !~x2vt !y 2~12v !~x2vt !y ~x2vt !2 22~12v2!yz

1~12v2!~z22y2!

~11v !~x2vt !z 2~12v !~x2vt !z 22~12v2!yz ~x2vt !2

1~12v2!~y22z2!

D
for a.4(12v)2 and smoothed down to zero ‘‘inside’’ in the same way as in the case
F̃ ik

v(e) .
Proposition 2:

T̃ik'0 ;~ i ,k!Þ~0,0!,

T̃00 has no associated distribution. ~11!

Proof: The calculation for all the components is closely analogous to the one given above w
exception ofT00, so we shall only examine this one in detail. As a test functionw we take
1/r2 on the setx,t P @2N,N#,f P @0,2p# andr P @r 0 ,r 1# (0,r 0), wheref is the polar angle in
the (y,z)-plane, and let it smoothly approach zero ‘‘outside.’’ Thus we have for a large en
v

E
supp~w!

T̃00v~e!w>
e2~11v !2~12v2!2

4 E
2N

N E
2N

N E
0

2pE
r0

r1 r2

@ #3
1

r2
rdrdfdxdt

5
e2p~11v !2~x2vt !

16vr3A12v2
arctan

x2vt

A12v2r
U
r0 ,2N,2N

r1 ,N,N

1
e2p~11v !2

32vr2
ln~@ # !ur0 ,2N,2N

r1 ,N,N

2
e2p~11v !2

32vr2
lnS 11

~x2vt !2

~12v2!r2D U
r0 ,2N,2N

r1 ,N,N

. ~12!

In the limit the second term diverges whereas the other two terms vanish. h

We see that computing the energy momentum tensor we fall out of the class of Colom
functions with associated distributions. Taking the square of the two functions (Fv(e)

12 )e and
(Fv(e)

13 )e , both of them associated to thed distribution, we get the generalized functio
(T00v(e))e52(1/4)((Fv(e)

12 )21(Fv(e)
13 )2)e not allowing any associated distribution, showing th

(T00v(e))e is an objectonly defined in the Colombeau algebra. Due to the properties of Col
beau’s theory one could subject it to a wide class of nonlinear operations and even use
source term for nonlinear PDEs and then check if the resulting generalized function h
associated distribution.

Of course this result mirrors the fact that if we had computed the energy tensor ‘‘naiv
from the ultrarelativistic limit of the field tensor inD8 we would have obtained
T005(4e2/r) ‘‘ d2(u) ’’ , all other components vanishing. This suggests a ‘‘commutativity’’ of
limiting procedure and ‘‘multiplication,’’ i.e., the computation of the stress tensor from the
tensor. However, we again point out that no meaningful product can be defined within the f
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



have
he
next

te
tem
e

ll
s by
e
by

gs to

etical
d field

-

noting

lowing

1619R. Steinbauer: The ultrarelativistic RN field in the Colombeau algebra

¬¬¬¬¬¬¬¬¬¬
work of distribution theory but only in the Colombeau algebra. As a limiting procedure we
used the concept of association inG (V), which is not compatible with the product, and so t
above-mentioned ‘‘commutativity’’ does not hold in general, as we are going to see in the
section.

IV. THE ULTRARELATIVISTIC LIMIT OF THE REISSNER–NORDSTRO”M SOLUTION

The RN metric representing the gravitational field of a point particle with massm and charge
e in isotropic coordinates is given by

ds25S 12
2m

r ~ r̄ !
1

e2

r 2~ r̄ !
D dt22S 11

m

r̄
1
m22e2

4r̄ 2
D 2~dr̄ 21dV2!, ~13!

wherer5 r̄ @11 m/ r̄1(m22e2)/4r̄ 2)] is the radial coordinate in a Schwarzschild-like coordina
system. We apply a boost inx direction relative to an asymptotic, Cartesian coordinate sys
associated with the isotropic radiusr̄ . To obtain a distributionally well defined result in th
ultrarelativistic limit we have to rescale the mass and the charge5 in the following manner:

m5p/g, e25pe
2/g,

where in the limit we keep the momentap and pe fixed. The rescaling of the mass is we
motivated7 and saves the energy of the particle from diverging due to its finite rest mas
keeping the total energyp fixed and lettingm approach zero in the ultrarelativistic limit. Th
rescaling of the charge is not too well motivated. However, the limit of the metric is given5

ds25H 8plnr1
3

2
p
pe
2

r J d~u!du22dudw2dy22dz2, ~14!

whereu andw again denote null coordinates defined as in the last section. This metric belon
the class ofpp waves and is flat everywhere except on the null planeu50 which is normal to the
boost direction and contains the particle.

However, the rescaling of the charge dramatically acts on the limit of the electromagn
field and its stress energy tensor. In a frame associated with null coordinates the booste
tensor takes the form

Fik5
e~12v2!G~ r̄ !

~~x2vt !21~12v2!r2!3/2S 0 x2vt y z

2x1vt 0 2vy 2vz

2y vy 0 0

2z vz 0 0

D ,
where the factorG( r̄ )5 4r̄ 2(4r̄ 22m21e2)/(4r̄ 214r̄m1m22e2)2 arises from the transforma
tion to isotropic coordinates and we again have neglected the bars overx and t. Now we embed
(Fik v)v into the Colombeau algebra in the same manner as in the Coulomb case, again de
the G (V) function best approximatingFik by (F̃ ik v(e))e . By calculations very similar to those
carried out in Sec. II and taking into account the rescaling of mass and charge we get the fol
association relations.

Proposition 3:

F̃ ik' 0, ; i ,k. ~15!

Next we compute the stress energy tensor. Fora.4(12v)2 we have
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T̃ik5
pe
2G2~ r̄ !

~~x2vt !21~12v2!r2!3

31
~12v !3/2~11v !7/2~g112g00!~x ~12v !5/2~11v !7/2g00~x2vt !y ~12v !5/2~11v !7/2g00~x2vt !z

1~12v !5/2~11v !9/2~g001g

~12v2!5/2~g001g11!~x2v 2~12v !7/2~11v !5/2g00~x2vt !y 2~12v !7/2~11v !5/2g00~x2vt !z

1~12v2!7/2~g112g00!r

~12v !5/2~11v !7/2g00~x2 ~12v2!5/2g00@~x2vt !21~12v2!~z22y2!# 22~12v2!7/2g00yz

~12v !5/2~11v !7/2g00~x2 22~12v2!7/2g00yz ~12v2!5/2g00@~x2vt !21~12v2!~y22z2!#

2 ,
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2vt !2/4 ~12v2!5/2~g001g11!~x2vt !2/4
11!r2/4 1~12v2!7/2~g112g00!r2/4

t !2/4 ~12v !7/2~11v !3/2~g112g00!~x2vt !2/4
2/4 1~12v !9/2~11v !5/2~g001g11!r2/4

vt !y 2~12v !7/2~11v !5/2g00~x2vt !y

vt !z 2~12v !7/2~11v !5/2g00~x2vt !z
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where

g00~ r̄ !5S 11
m

r̄
1
m22e2

4r̄ 2
D 2S 11

e22m2

4r̄ 2
D 22

and

g11~ r̄ !5S 11
m

r̄
1
m22e2

4r̄ 2
D 22

andT̃ik smoothed down to zero ‘‘inside’’ again in the same way. By a rather lengthy calcula
expandingG( r̄ ), g00 andg11 and again taking into account the rescaling we get the followin

Proposition 4:

Tik'0, ;~ i ,k!Þ~0,0!,
~17!

T00'
3pe

2

16r3
d~u!.

V. CONCLUSION

The fact that the ‘‘square’’T00 of the generalized functions (Fik)e associated to 0 is no
associated to 0 but to thed distribution is not surprising from the viewpoint of Colombeau
theory. Association is not compatible with multiplication in the algebra of generalized funct
Thus we can say that the physically unsatisfactory situation of a vanishing field but nonzero
tensor is mathematically perfectly defined. We see the incompatibility of linear idealization
thed distribution and nonlinear computations. Colombeau’s theory clearly cannot solve this
cipal defect but provides us with a language and framework that makes it possible to discus
situations.

The question of the physical relevance of a zero field producing a nonvanishing e
density clearly has to remain open. But from the mathematical viewpoint such a situation c
be avoided if one is dealing with distributionally shaped fields.
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The eigenvalues of the Laplacian on a sphere
with boundary conditions specified on a segment
of a great circle

Ahmad T. Abawi,a) Roger F. Dashen, and Herbert Levine
Physics Department, University of California, San Diego, La Jolla, California 92093

~Received 22 May 1995; accepted for publication 21 November 1996!

We prove that the eigenvalues of the Laplacian on a sphere with a Dirichlet bound-
ary condition specified on a segment of a great circle lie between an integer and a
half-integer and for a Neumann boundary condition they lie between a half integer
and an integer. These eigenvalues correspond to the eigenvalues of the angular part
of the Laplacian with boundary conditions specified on a plane angular sector,
which are relevant in the calculation of scattering amplitude. These eigenvalues can
also be used to determine the behavior of the fields near the tip of a plane angular
sector as a function of the distance to the tip. The first few eigenvalues for both
Dirichlet and Neumann boundary conditions are calculated. The same eigenvalues
are also calculated using the Wentzel–Kramers–Brillouin~WKB! method. There is
excellent agreement between the exact and the WKB eigenvalues. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!00603-8#

I. INTRODUCTION

The problem of scattering of waves by an elliptic cone was first studied by Kraus and Le1

They introduced the sphero–conal coordinate system in which the wave equation, sat
boundary conditions on the surface of an elliptic cone, is separable. In this coordinate syst
wave equation separates into two angular Lame´ equations and the spherical Bessel equation.
solution of the wave equation for a plane angular sector~PAS! is a special case of the solution o
the wave equation for an elliptic cone, because, as is shown in Fig. 1, a PAS is a dege
elliptic cone. In the work by Kraus and Levine1 a formal expression for the Green’s function
terms of an eigenfunction expansion of the products of Lame´ and spherical Bessel functions
derived, but no numerical results are reported.

Since the work of Kraus and Levine other authors have studied this problem, mainly co
trating on the scattering from a PAS. Radlow2 studied the scattering of a plane wave from
quarter plane. He determined a two-variable integral representation of the field and then u
generalization of the Weiner–Hopf method, found a transformation that forces the field to ze
the quarter plane. Blume and Kirchner3 studied the singular behavior of the field near the cor
of a plane angular aperture and calculated the lowest eigenvalues for several different slot
Satterwhite4 investigated the scattering of electromagnetic waves from a perfectly condu
plane angular sector. He expressed the scattered electric field in terms of an integral equa
the products of the dyadic Green’s function and the surface current density. The dyadic G
function was found as sums of products of vector wave functions whose components c
expressed in terms of the solutions of scalar wave equations. Satterwhite calculated the fi
eigenvalues and eigenfunctions for the special case of a quarter plane, but did not repo
results for the solutions of the scattered electric and magnetic fields. De Smedt and Van B5

also studied the singular behavior of the electric and magnetic fields near the tip of a PAS
showed that the electric field is singular asr n21 and the magnetic field is singular asr t21, where
r is the distance to the tip of the sector. They calculated the lowest values forn and t using a

a!Present address: AETC Incorporated, 8910 University Center Lane, Suite 900, San Diego, CA 92122.
0022-2488/97/38(3)/1623/27/$10.00
1623J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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variational technique. These values ofn andt respectively correspond to the lowest Dirichlet a
Neumann eigenvalues discussed in this paper. Boersma6 used the Babinet’s principle to show th
the electric singularity exponent for a conducting PAS is identical to the magnetic singu
exponent for the complementary PAS.

In Sec. II, we use the results of Kraus and Levine1 to prove a theorem on the range of th
eigenvalues of a PAS; and another theorem to prove that for a Dirichlet boundary condition
eigenvalues lie between an integer and a half-integer and for a Neumann boundary conditio
lie between a half-integer and an integer. The first few eigenvalues for corner angles,b560°, 90°,
and 120°, are tabulated for both Dirichlet and Neumann boundary conditions. In Sec. II
Wentzel–Kramers–Brillouin~WKB! solution of this problem is outlined and the same eigenv
ues calculated by the WKB method are tabulated. The WKB eigenvalues which show rema
agreement with the exact eigenvalues, also exhibit the same properties as do the exact eige
namely those stated by the two theorems in this paper. The details of the WKB treatment, i
ing the calculation of the WKB eigenfunctions and normalization, is the topic of a subse
paper. A method for calculating the exact eigenfunctions is included in the Appendix.

II. THE EXACT SOLUTION OF THE WAVE EQUATION FOR A PLANE ANGULAR SECTOR

The sphero–conal variables (q,w,r ) are related to (x,y,z) by

x5r cosqA12k82 cos2 w,

y5r sin q sin w, ~1!

z5r coswA12k2 cos2 q,

wherek5cos~b/2! andk8 5 A12k2; the range of the variables are

0<q<p, 0<w<2p, r>0.

The construction of this coordinate system is described and its orthogonality proved in Ref.
geometry of the coordinate system may briefly be described as follows: The coordinater is the
distance to the origin, so the surfacer5r 1 is a sphere centered at the origin. The coordinateq5q1
is a semi-infinite elliptic cone whose cross section in a planex5constant is an ellipse centered o

FIG. 1. This figure shows an elliptic cone with apex at the origin, which in the spheroconal coordinate sys
represented byq5q0, whereq0 is the angle betweenOA and the positivex-axis. Forq05p the elliptic cone becomes
degenerate~the elliptic base collapses to its major axis,CD! resulting in the plane angular sector,COD, with corner angle
b. Note thatb50 corresponds to a needle andb5p corresponds to a half-plane.
J. Math. Phys., Vol. 38, No. 3, March 1997
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the x-axis, with its major axis in the planey50. The surfacew5w1 is a semi-infinite elliptic
half-cone whose cross section in a planez5constant is half an ellipse centered on thez-axis with
its major axis in the planey50. The coordinate system defined by Eq.~1! reduces to the spherica
coordinate system whenk51. ForkÞ1 the coordinate surfacesq50 andq5p are plane angular
sectors in the planey50.

The wave equation in the sphero–conal coordinate system can be separated into a
equation1

d

dr S r 2 d

dr
RD1@k2r 22n~n11!#R50,

where the separation constant has been written asn~n11!, and an angular equation

DVV~q,w!1n~n11!V~q,w!50, ~2!

where the angular part of the Laplacian,DV , is given by

DV5
1

k2 sin2 q1k82 sin2 w HA12k2 cos2 q
]

]q SA12k2 cos2 q
]

]q D
1A12k82 cos2 w

]

]w SA12k82 cos2 w
]

]w D J .
Mathematically, specifying boundary con ditions on a plane angular sector is equivalent to
fying boundary conditions on a segment of a great circle of a sphere on whichDV operates, see
Fig. 2. If no boundary condition on the surface of the sphere is specified, the eigenvalues ofDV are
integers and they correspond to the free space eigenvalues. If boundary conditions are spec
a great circle which extends from the north to the south pole, the eigenvalues ofDV are half-
integers and they correspond to the eigenvalues ofDV for a half-plane. If, on the other hand
boundary conditions are specified along an arbitrary segment of a great circle, the eigen
correspond to the eigenvalues ofDV for a plane angular sector with corner angleb. By setting

FIG. 2. The segmentab along a great circle.
J. Math. Phys., Vol. 38, No. 3, March 1997
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V~q,w!5Q~q!F~w!,

the angular part can be separated into

A12k2 cos2 q
d

dq FA12k2 cos2 q
d

dq
Q~q!G1@n~n11!k2 sin2 q1m#Q~q!50, ~3!

and

A12k82 cos2 w
d

dw FA12k82 cos2 w
d

dw
F~w!G1@n~n11!k82 sin2 w2m#F~w!50, ~4!

wherem is another separation constant. The radial equation is the spherical Bessel equati
Eqs.~3! and ~4! are the trigonometric Lame´ differential equations.

The solution of the Laplace equation satisfying Dirichlet or Neumann boundary conditio
the surface of a plane angular sector is of the form

C~q,w,r !5r pV~q,w!,

wherer is measured from the tip of the plane angular sector and the boundary surface,q5p, is
shown in Fig. 3. When substituted in the Laplace equation,

d

dr S r 2 d

dr DC~q,w,r !1DVC~q,w,r !50,

it gives

p~p11!2n~n11!50,

where in obtaining the above results Eq.~2! has been used. The solutions of the above equation
p5n, andp52n21. Near the tip of the plane angular sector~r small!, the physically possible
solution isp5n, ~n.0!, then

C~q,w,r !5r nV~q,w!,

FIG. 3. The plane angular sectorsq50, q5p; w50, w5p andw52p.
J. Math. Phys., Vol. 38, No. 3, March 1997
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which gives ther dependence of the potential near the tip of a plane angular sector. Thus,
given boundary condition, the values ofn, which depend on the corner angle, can be used
determine the behavior of the fields and surface charge densities near the tip of a plane
sector.

Eigenvalues of the exact solution. We take the boundary surface to be the sectorq5p. The
coordinate-imposed boundary condition onF~w! is that it must be periodic with period 2p F~w
12p!5F~w!, in order to ensure that it is single-valued. IfF~w! is even, i.e.,]F(w)/]wuw50

[ Fe8(0)5 0,we canwrite

Fe~w12p!5Fe~w!5Fe~2w!,

or

Fe8~w12p!52Fe8~2w!.

This implies

Fe8~p!50.

On the other hand, ifF~w! is odd,Fo(0)50 and

Fo~w12p!5Fo~w!52Fo~2w!,

which implies

Fo~p!50.

Thus for the even and odd periodic cases we must respectively have

Fe8~0!5Fe8~p!50,

and

Fo~0!5Fo~p!50.

The boundary conditions onQ~q! can be any of the following.
~1! The even Dirichlet boundary condition: In this caseQ~q! is even (Qe8(0) 5 0) and it

satisfies the Dirichlet boundary condition on the boundary surface (Qe(p)50). It has been shown
by Kraus and Levine1 that the factorsQ~q! andF~q! of the eigenfunctionV(q,w) can only be
both even or both odd. SinceQ~q! has been chosen to be even,F~w! must also be even resultin
in the following boundary conditions:

H Qe8~0!50, Qe~p!50,

Fe8~0!50, Fe8~p!50.
~5!

~2! The odd Neumann boundary condition: In this caseQ~q! is odd (Qo(0)50) and it
satisfies the Neumann boundary condition on the boundary surfaceQo8(p) 5 0. ThenF~w! must
also be odd resulting in the following boundary conditions:

H Qo~0!50, Qo8~p!50,

Fo~0!50, Fo~p!50.
~6!

~3! The odd Dirichlet and the even Neumann boundary conditions: By using the above
arguments, for the odd Dirichlet case we have
J. Math. Phys., Vol. 38, No. 3, March 1997
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H Qo~0!50, Qo~p!50,

Fo~0!50, Fo~p!50.

By writing

Qo~q!5Q~q!2Q~2q!,

and imposing the boundary conditionQo(p)50, we find

Q~2p!5Q~p!. ~7!

Similarly, for the even Neumann boundary condition we have

H Qe8~0!50, Qe8~p!50,

Fe8~0!50, Fe8~p!50
.

In this case

Qe~q!5Q~q!1Q~2q!,

or

Qe8~q!5Q8~q!2Q8~2q!.

At the boundary surface the left-hand side of the second equation in the above vanishes, re
in

Q8~p!5Q8~2p!. ~8!

For the odd Dirichlet and the even Neumann boundary conditions bothF~w! and Q~q! are
periodic with period 2p which results in integer eigenvalues. Furthermore, Eqs.~7! and ~8!
suggest thatQ~q! is continuous across the boundary surface, which is the case when no bou
surface is present. The odd Dirichlet and even Neumann boundary conditions therefore
same as the free space boundary conditions. The first few eigenvalues ofDV satisfying the odd
Dirichlet, the even Neumann, and the half-plane boundary conditions on a PAS are tabula
the Appendix. In this paper we are only interested in the even Dirichlet and odd Neu
solutions, because these solutions correspond to the case when a boundary surface is prese
this point on we drop the ‘‘e’’ and ‘‘ o’’ subscripts and refer to the even Dirichlet and od
Neumann cases as the Dirichlet and Neumann cases, respectively.

The eigenvaluesn andm for the Dirichlet and Neumann boundary conditions are obtained
simultaneously solving Eqs.~3! and ~4! and imposing the appropriate boundary conditions giv
by Eqs.~5! and ~6!.

Theorem 1: For a given value ofn, m can only take values satisfying

n~n11!k82>m>2n~n11!k2.

Proof: Equation~3! can be written as

d

dq FA12k2 cos2 q
d

dq
Q~q!G52

n~n11!k2 sin2 q1m

A12k2 cos2 q
Q~q!.

Multiplying both sides of the above equation byQ~q! and integrating from 0 top gives
J. Math. Phys., Vol. 38, No. 3, March 1997
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E
0

p

Q~q!
d

dq FA12k2 cos2 q
d

dq
Q~q!Gdq52E

0

p n~n11!k2 sin2 q1m

A12k2 cos2 q
Q2~q!dq.

The left-hand side can be integrated by parts to yield

Q~q!
d

dq
Q~q!A12k2 cos2 qu0

p2E
0

pS d

dq
Q~q! D 2A12k2 cos2 qdq

52E
0

p n~n11!k2 sin2 q1m

A12k2 cos2 q
Q2~q!dq.

The first term is zero for all boundary conditions, so we are left with

E
0

pS d

dq
Q~q! D 2A12k2 cos2 qdq5E

0

p n~n11!k2 sin2 q1m

A12k2 cos2 q
Q2~q!dq.

The left-hand side of the above equation is positive, so we must have

n~n11!k2E
0

p sin2 qQ2~q!

A12k2 cos2 q
dq1mE

0

p Q2~q!

A12k2 cos2 q
dq>0.

Let

I 15E
0

p sin2 qQ2~q!

A12k2 cos2 q
dq,

and

I 25E
0

p Q2~q!

A12k2 cos2 q
dq,

then

n~n11!k2I 11mI 2>0⇒m>2
I 1
I 2

n~n11!k2.

Since

1>
I 1
I 2

>0,

the smallest possible value thatm can take is whenI 1/I 251, i.e.,

m>2n~n11!k2.

From Eq.~4! we get

E
0

pS d

dw
F~w! D 2A12k82 cos2 wdw5E

0

p n~n11!k82 sin2 w2m

A12k82 cos2 w
F2~w!dw,
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which yields

n~n11!k82J12mJ2>0⇒m>
J1
J2

n~n11!k82,

whereJ1 andJ2 areI 1 andI 2 with k replaced byk8, q replaced byw, andQ~q! replaced byF~w!.
Here also

1>
J1
J2

>0,

we therefore get

m<n~n11!k82.

From the two relations form we can write

n~n11!k82>m>2n~n11!k2. ~9!

h

Theorem 2:For any non-negative integern, the eigenvalues ofDV with the Dirichlet bound-
ary condition specified on a PAS with corner angle 0,b,p ~segment of a great circle! satisfy:

n,n,n1 1
2,

and for the Neumann boundary condition they satisfy:

n1 1
2,n,n11.

Proof: The proof of this theorem is based on the fact that all positive integers are eigenv
of DV for the free space boundary condition and all positive half-integers are eigenvalues ofDV for
the half-plane boundary condition. The proof will be carried out in three parts. First, we us
variational principle on theQ equation@Eq. ~3!# to prove that the eigenvalue,n, corresponding to
Dirichlet boundary condition on a PAS is larger than some non-negative integerq. Then we use
the variational principle on theF equation@Eq. ~4!# to prove that this same eigenvalue is smal
thanq811/2, whereq8 is some other non-negative integer. Finally, we show thatq85q, com-
pleting the proof. Consider theQ andF equations,

d

dq
@A12k2 cos2 qQ8~q!#1

n~n11!k2 sin2 q1m

A12k2 cos2 q
Q~q!50, ~10!

d

dw
@A12k82 cos2w F8~w!#1

n~n11!k82 sin2 w2m

A12k82 cos2 w
F~w!50. ~11!

Equations~10! and ~11! are the Euler–Lagrange equations for the functionals

E
0

pFA12k2 cos2 qQ82~q!2
m

A12k2 cos2 q
Q2~q!Gdq,

and
J. Math. Phys., Vol. 38, No. 3, March 1997
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E
0

pFA12k82 cos2 wF82~w!1
m

A12k82 cos2 w
F2~w!Gdw.

The eigenvalues of these equations,n~n11![a, are then the stationary values of the functiona7

@a#5

E
0

pFA12k2 cos2 qQ82~q!2
m

A12k2 cos2 q
Q2~q!Gdq

E
0

p k2sin2 q

A12k2 cos2 q
Q2~q!dq

, ~12!

and

@a#5

E
0

pFA12k82 cos2 wF82~w!1
m

A12k82 cos2 w
F2~w!Gdw

E
0

p k82 sin2 w

A12k82 cos2 w
F2~w!dw

, ~13!

whereQ andF satisfy some type of boundary conditions. The free space boundary conditi
the sphero–conal coordinate system are given by

Q8~0!50, Q8~p!50, F8~0!50, F8~p!50. ~14!

Note that the above boundary conditions also correspond to the even Neumann boundary
tion for a PAS. The Dirichlet boundary condition for a PAS is

Q8~0!50, Q~p!50, F8~0!50, F8~p!50, ~15!

and the Dirichlet boundary condition for a half-plane in the sphero–conal coordinate system~In
this case the half-plane is made up of two plane angular sectors,q5p andw5p, see Fig. 3!

Q8~0!50, Q~p!50, F8~0!50, F~p!50. ~16!

Recall that the solution of Eqs.~3! and ~4! subject to boundary conditions~14! or ~16!, respec-
tively, correspond to integer or half-integer values of the eigenvalue,n. By comparing the above
boundary conditions, we note that the boundary condition for a PAS can be obtained from th
space boundary condition by changing the boundary condition on theQ equation fromQ8~p!50
to Q~p!50, and leaving the boundary condition for theF equation unchanged. Similarly, th
boundary condition for a half-plane can be obtained from the boundary condition for a PA
changing the boundary condition on theF equation fromF8~p!50 to F~p!50, and leaving the
boundary condition for theQ equation unchanged. We can relate the free space boundary c
tion to the PAS boundary condition by defining a functionf in the following way:

Q8~0!50, Q8~p!52 f
Q~p!

k8
, F8~0!50, F8~p!50. ~17!

In this case the free space boundary condition corresponds tof50, and the PAS boundary
condition corresponds tof5`. The eigenvalues, in this case, are the stationary values o
functional
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@a#5

E
0

pFA12k2 cos2 qQ82~q!2
m

A12k2 cos2 q
Q2~q!Gdq1 fQ2~p!

E
0

p k2 sin2 q

A12k2 cos2 q
Q2~q!dq

, ~18!

where the variationsdQ~0! anddQ~p! are unrestricted. Furthermore, we find

da

d f
5

Q2~p!

F E
0

p k2 sin2 q

A12k2 cos2 q
Q2~q!dq1

dm

daE0
p 1

A12k2 cos2 q
Q2~q!dqG .

In order to guarantee thatda/d f.0, it is sufficient thatdm/da be positive. From Eq.~13! we find
that

da

dm
5

E
0

p 1

A12k82 cos2 w
F2~w!dw

E
0

p k82 sin2~w!

A12k82 cos2 w
F2~w!dw

.0,

thusda/d f.0. This implies that asf increases from 0, which corresponds to free space boun
condition, to`, which corresponds to the boundary condition on a PAS, the corresponding e
value also increases. Here if the free space eigenvalue reached asf→0 has the valueq, we must
haven.q. This completes the first part of the proof.

Next we want to relate the PAS boundary condition to the half-plane boundary conditio
defining

Q8~0!50, Q~p!50, F8~0!50, F8~p!52g
F~p!

k
. ~19!

Now the PAS boundary condition corresponds tog50 and the half-plane boundary conditio
corresponds tog5`. The eigenvalues are then the stationary values of the functional

@a#5

E
0

pFA12k82 cos2 wF82~w!1
m

A12k82 cos2 w
F2~w!Gdw1gF2~p!

E
0

p k82 sin2 w

A12k82 cos2 w
F2~w!dw

, ~20!

where now the variationdF~0!50, butdF~p! is unrestricted. We find

da

dg
5

F2~p!

F E
0

p k82 sin2 w

A12k82 cos2 w
F2~w!dw2

dm

da E
0

p 1

A12k82 cos2 w
F2~w!dwG .

dm/da must be negative to guarantee thatda/dg.0. From Eq.~12! we find that
J. Math. Phys., Vol. 38, No. 3, March 1997
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da

dm
52

E
0

p 1

A12k2 cos2 q
Q2~q!dq

E
0

p k2 sin2~q!

A12k2 cos2 q
Q2~q!dq

,0,

thusda/dg.0. Asg increases from 0, which corresponds to the boundary condition on a PA
`, which corresponds to the boundary condition on a half-plane, the corresponding eigen
also increase. Here if the half-plane eigenvalue reached asg→` has the valueq811/2, we must
haven,q811/2. This completes the second part of the proof.

Finally, we must demonstrate thatq85q. Note that under the combined reversible flo
illustrated by Fig. 4:g going from ` to 0 and f going from ` to 0, we convert a Dirichlet
eigenfunction of the half-plane to one of the free-space problem, all the while reducing
eigenvalue fromq811/2 to q. Now the eigenfunction that starts atq850 must become that of

FIG. 4. This figure illustrates the eigenfunction flow discussed in the proof of Theorem 2.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of
In
s up to
w
r
at

s

of a
dary
iven by

ith

1634 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector

¬¬¬¬¬¬¬¬¬¬
q50, since there are no other eigenvalues of the free-space problem belown51/2. Next, the
eigenfunctions atq851 ~there are two such eigenvalues that are affected by the flow! must
become those ofq51 ~again there are two such! because there are no remaining eigenfunctions
the free space problem belown53/2 once theq50 mode has already been accounted for.
general then, the proof proceeds by induction. Assume we have accounted for all the mode
q821. The eigenfunctions atq8 ~there areq811 such eigenfuntions that are affected by the flo!
must flow to theq eigenfunctions~there areq11 such eigenfunctions!, since there are no othe
available modes withn,q811/2. Hence for allq8, q5q8. For the PAS problem, this proves th
q<n<q11/2, completing the proof. Therefore, we conclude that the eigenvalues ofDV with a
Dirichlet boundary condition specified on a PAS~segment of a great circle! lie between the free
space eigenvalues~integers! and the eigenvalues ofDV when the Dirichlet boundary condition i
specified on a half-plane~half-integers!, see Fig. 5:

n,n,n1 1
2.

h

The proof of this theorem for a Neumann boundary condition is very similar to that
Dirichlet boundary condition and it is briefly outlined in the following. The free space boun
condition in the sphero–conal coordinate system appropriate for the Neumann case are g

Q~0!50, Q~p!50, Q~0!50, F~p!50. ~21!

FIG. 5. This figure shows the location of the eigenvalues ofDV with boundary conditions on a plane angular sector w
corner angles, 60°, 90°, and 120°. For Dirichlet boundary condition the eigenvalues, in columns marked ‘‘D,’’ lie between
an integer and a half-integer, for Neumann boundary condition the eigenvalues, in columns marked ‘‘N,’’ lie between a
half-integer and an integer.
J. Math. Phys., Vol. 38, No. 3, March 1997
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This boundary condition also corresponds to the odd Dirichlet boundary condition for a PAS
Neumann boundary condition for a PAS is

Q~0!50, Q8~p!50, F~0!50, F~p!50. ~22!

and the Neumann boundary condition for a half-plane is

Q~0!50, Q8~p!50, F~0!50, F8~p!50. ~23!

If we define the following set of boundary conditions for theF equation:

Q~0!50, Q8~p!50, F~0!50, F8~p!52 f
F~p!

k
,

then f50 will correspond to the half-plane boundary condition andf5` will correspond to the
PAS boundary condition. The eigenvalues are the stationary value of Eq.~20!. We have already
proven thatda/d f is positive. Thus for a non-negative integerq if the half-plane eigenvalue
reached asf→0 has the valueq11/2, we must haven.q11/2. Next if we define the following
set of boundary conditions for theQ equation:

Q~0!50, Q8~p!52g
Q~p!

k8
F~0!50, F~p!50,

theng50 corresponds to the PAS boundary condition andg5` corresponds to the free spac
boundary condition. The eigenvalues are the stationary values of Eq.~18!. In this case if the free
space eigenvalue reached asg→` has the valueq811, whereq8 is some other non-negativ
integer, then we must haven,q811. Again we must demonstrate thatq5q8. Here also under the
combined reversible flow: withf going from infinity to zero andg going from infinity to zero, we
convert a Neumann eigenfunction for the free space problem to one of the half-plane proble
the while reducing the eigenvalue fromq811 to q11/2, see Fig. 4. The eigenfunction that sta
at q850 must become that ofq50, since there is no eigenvalue of the half-plane belown51.
Next, the eigenfunctions atq851 ~there are two such eigenvalues that are affected by the fl!
must become those ofq51 ~again there are two such!, because there are no remaining eigenfu
tions of the half-plane problem belown52 once theq50 eigenfunction has already been a
counted for. This process can be continued until all the modes up toq821 have been accounte
for. At q8, the q8 eigenfunctions must flow to theq eigenfunctions, since there are no oth
available eigenfunctions of the half-plane problem withn,q811. Thus for allq8, we must have
q85q. Therefore, we have proven that the eigenvalues ofDV with the Neumann boundary con
dition specified on a PAS~segment of a great circle! lie between the eigenvalues ofDV for a
half-plane~half-integers! and the free space eigenvalues~integers!, see Fig. 5:

n1 1
2,n,n11.

h

III. THE WKB EIGENVALUES

In order to study the solutions of Eqs.~3! and ~4! for largen, it is convenient to transform
these equations to their Jacobian form.8 This is accomplished in two steps. First, we setq5g
2p/2, and then use the transformation

dg

dt
5A12k2 sin 2 g,
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which transforms Eq.~3! to

d2Q

dt2
5~h2n~n11!k2 sn2~ t !!Q,

whereh5n(n11)k21m and sn is the Jacobian elliptic function. The above equation is of
general form

d2w

dx2
5q~x!w5$ f ~x!1g~x!%w. ~24!

For smallg/ f , this type of equation has approximate solutions of the form

w1,2~x!5 f21/4~x!expH 6E f 1/2~x!dxJ ,
in a given finite interval (a1 ,a2) provided thatf ~x! is a real, twice continuously differentiabl
function,g(x) a continuous real or complex function, and the error control function,F(x), defined
by

F~x!5E H 1

f 1/4
d2

dx2 S 1

f 1/4D2
g

f 1/2J dx,
in the absence of singularities, is bounded.9 The boundedness ofF guarantees that the approxima
solution is asymptotically correct for largef . If the differential equation has a regular singularit
ie, q(x) has a double pole, thenF(x) would be bounded only ifg(x) is chosen such that th
coefficient of its singular part is precisely21/4.9 The Jacobian elliptic function sn2(t) has a double
pole which is relatively close to the real axis. Therefore, we write

h2n~n11!k2 sn2~ t !5k2~n1 1
2!
2~12sn2~ t !!1m2

k2

4
~12sn2~ t !!,

and choose

f5k2~n1 1
2!
2~12sn2~ t !!1m

and

g52 1
4~12sn2~ t !!k2.

Note that the choice of the singular part ofg is rather arbitrary as long as it does not grow withn.
Transforming back, we find the solution9

Q~q!5
1

A4 ~n1 1
2!
2k2 sin2 q1m

cosH E
q0

qA~n1 1
2!
2k2 sin2 q1m

12k2 cos2 q
dq1dqJ , ~25!

and in a similar manner

F~w!5
1

A4 ~n1 1
2!
2k82 sin2 w2m

cosH E
w0

wA~n1 1
2!
2k82 sin2 w2m

12k82 cos2 w
dw1dwJ . ~26!
J. Math. Phys., Vol. 38, No. 3, March 1997
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For m.0, the turning point for theQ equation,q050, and the turning point for theF equation,

w05arcsinA m

k82~n1 1
2!
2
, ~27!

for m,0, w050 and

q05arcsinA 2m

k2~n1 1
2!
2
. ~28!

For smallg/ f , g can be neglected in Eq.~24! which when transformed back gives Eq.~3! with
n~n11! replaced by~n11/2!2. By using the transformation

v~q!5A4 12k2 cos2~q!Q~q!,

this latter equation can be converted to

d2

dq2 v~q!1p~q!v~q!50, ~29!

with

p~q!5
~n1 1

2!
2k2 sin2 q1m

~12k2 cos2 q!
. ~30!

By following the same procedure on theF equation we find

d2

dw2 u~w!1p~w!u~w!50, ~30!

where

u~w!5A4 12k82 cos2~w!F~w!, p~w!5
~n1 1

2!
2k82 sin2 w2m

~12k82 cos2 w!
.

By using the Liouville transformation,9

y~x!5S dxdq D 1/2v~q!,

Eq. ~29! can be transformed to

d2y

dx2
5H 2S dq

dx D
2

p~q!1S dq

dx D
1/2 d2

dx2 F S dq

dx D
21/2G J y .

The first term in the curly brackets can be set equal to any smooth function ofx,9 and for small
m/n the second term can be ignored. We thus set

S dq

dx D
2

p~q!5S x24 1aD , ~31!

giving
J. Math. Phys., Vol. 38, No. 3, March 1997
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d2y

dx2
1S x24 1aD y50,

which is the Weber equation. The parametera is determined from Eq.~31! by requiring that the
turning points of the Lame´ equation and the Weber equation occur at the same time thus ens
the regularity ofdq/dx at the turning points

E
0

q0Am1~n1 1
2!
2k2 sin2 q

12k2 cos2 q
dq5E

0

2iAaAa1
x2

4
dx. ~32!

In the above

q05sin21S iA m

~n11/2!2k2D .
Similarly, for theF equation we find

d2z

dx2
1S x242aD z50,

where now

z~x!5S dxdw D 1/2u~w! .

The phase factors,dq anddw , are determined by matching the WKB solutions, Eqs.~25! and~26!,
to the asymptotic solutions of the Weber equation.10 It is found that11

dw5
p

4
7
3p

8
1

f2~a!

2
7
1

2
D~a!2

a

2
lnuau1

a

2
,

ds5
p

4
7
3p

8
1

f2~2a!

2
6
1

2
D~a!1

a

2
lnuau2

a

2
,

where the upper signs are used for Dirichlet boundary condition, the lower signs are us
Neumann boundary condition and

D~a!5arctanF tanhS pa

2 D G ,
and

f2~a!5argG~ 1
21 ia !.

The parametera determined from Eq.~32! is given by

a5
2

p H ~n1 1
2!
2k822m

k8A~n1 1
2!
2k21m

H PS p

2
,

m

~n1 1
2!
2k82

,eD 2K~e!J J , ~33!

where
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e5
1

k8A m

~n1 1
2!
2k21m

, m.0,

andP is the elliptic integral of the third kind. Form,0 a can be determined from the abov
equation by replacingm by umu andk8 by k. A similar relationship as Eq.~32!, which also gives
Eq. ~33! for the parametera, also holds for theF equation which guarantees the regularity
dw/dx at the turning points. We find the set of eigenvalue equations11

Jw1f2~a!2D~a!2a lnuau1a5~m1 1
4!p, m50,1,...

~34!
Jq2f2~a!1a lnuau2a5~n1 1

2!p, n50,1,...

for the Dirichlet boundary condition and

Jw1f2~a!1D~a!2a lnuau1a5~m1 3
4!p, m50,1,...

~35!
Jq2f2~a!1a lnuau2a5~n1 1

2!p, n50,1,...

for the Neumann boundary condition, where

Jq5E
q0

p2q0A~n1 1
2!
2k2 sin2 q1m

12k2 cos2 q
dq,

and

Jw5E
w0

p2w0A~n1 1
2!
2k82 sin2 w2m

12k82 cos2 w
dw,

can be expressed in terms of elliptic mtegrals,12

Jq5
2m

k8A~n1 1
2!
2k21m

H PS p

2
,

~n1 1
2!
2k2

~n1 1
2!
2k21m

,r1D J ,
and

Jw5
2m

k8A~n1 1
2!
2k21m

H PS p

2
,
~n1 1

2!
2k822m

~n1 1
2!
2k82

,r1D 2K~r1!J ,
for m.0 and

Jq5
22m

kA~n1 1
2!
2k822m

H PS p

2
,
~n1 1

2!
2k21m

~n1 1
2!
2k2

,r2D 2K~r2!J ,
and

Jw5
22m

kA~n1 1
2!
2k822m

H PS p

2
,

~n1 1
2!
2k82

~n1 1
2!
2k822m

,r2D J ,

J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



,

.

1640 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector

¬¬¬¬¬¬¬¬¬¬
for m,0. In the above

r15
k

k8
A~n1 1

2!
2k822m

~n1 1
2!
2k21m

,

r25
k8

k A ~n1 1
2!
2k21m

~n1 1
2!
2k822m

,

andK is the elliptic integral of the first kind. Using relations between elliptic integrals,13 we find
from the above equations

Jq1Jw5~n1 1
2!p. ~36!

For the free space boundary condition, Eq.~21!, we find the set of eigenvalue equations

Jw1f2~a!2D~a!2a lnuau1a5~m1 1
4!p, m50,1,... ,

~37!
Jq2f2~a!1D~a!1a lnuau2a5~n1 1

4!p, n50,1,... .

Similarly, for both Dirichlet and Neumann boundary conditions, Eqs.~16! and ~23!, on a half-
plane we find the set of eigenvalue equations

Jw1f2~a!2a lnuau1a5~m1 1
2!p, m50,1,... ,

~38!
Jq2f2~a!1a lnuau2a5~n1 1

2!p, n50,1,... .

By adding the eigenvalue equations for the Dirichlet boundary condition, Eq.~34!, and using Eq.
~36!, we obtain

n5m1n1
1

4
1
D~a!

p
, ~39!

and by adding the eigenvalue equations for the Neumann boundary condition, Eq.~35!, we find

n5m1n1
3

4
2
D~a!

p
. ~40!

Similarly, for the free space boundary condition, Eq.~37!, we find

n5m1n,

and for the half-plane boundary condition, Eq.~38!, we find

n5m1n1 1
2.

From the last two equations it can be seen that the WKB eigenvalue equations, Eq.~37!, for free
space boundary condition, and Eq.~38! for half-plane boundary condition, give the eigenvaluesn,
exactly: that is, the eigenvalues for the free space boundary condition calculated from Eq.~37! are
exactly integers and the eigenvalues for half-plane boundary condition calculated from Eq~38!
are exactly half-integers. Furthermore, since

uD~a!u,
p

4
,
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from Eqs.~39! and ~40! we find for the Dirichlet boundary condition

m1n,n,m1n1 1
2,

and for the Neumann boundary condition

m1n1 1
2,n,m1n11,

in agreement with the results of theorem 2.

Limiting cases. Small a/n. For smalla/n, Jq andJw can be approximated by11

Jq52~n1 1
2!S p

2
2

b

2 D1a ln@8kk8~n1 1
2!#2a lnuau1a1O~a2!,

~41!

Jw52~n1 1
2!S b

2 D2a ln@8kk8~n1 1
2!#1a lnuau2a1O~a2!,

where

a5
2k8a

kAn~n11!
.

To this approximation the set of eigenvalue equations for the Dirichlet boundary condition
plane angular sector, Eq.~34!, becomes

2~n1 1
2!S b

2 D2a ln@8kk8~n1 1
2!#1f2~a!2D~a!5~m1 1

4!p, m50,1,... ,

2~n1 1
2!S p

2
2

b

2 D1a ln@8kk8~n1 1
2!#2f2~a!5~n1 1

2!p, n50,1,... .

By subtracting the above two equations we find

TABLE I. Exact and WKB eigenvalues, Dirichlet boundary condition,b560°.

Exact eigenvalues WKB eigenvalues

n m n m

0.240 100 0.036 081 0.250 000 0.000 000
1.061 291 20.738 682 1.056 152 20.739 774
1.347 988 0.404 089 1.352 332 0.353 598
2.007 534 22.798 184 2.005 562 22.795 198
2.151 363 20.448 877 2.152 149 20.480 823
2.421 224 1.148 104 2.420 612 1.101 099
3.000 689 26.411 688 3.000 415 26.410 392
3.034 598 22.299 160 3.031 866 22.237 473
3.247 569 0.046 190 3.250 000 0.000 000
3.464 345 2.349 962 3.461 728 2.308 129
4.000 057 211.542 236 4.000 029 211.540 810
4.004 708 25.536 257 4.003 667 25.541 524
4.088 336 21.575 254 4.087 239 21.604 552
4.335 547 0.816 227 4.336 819 0.766 347
4.485 458 4.058 339 4.482 941 4.018 364
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2~n1 1
2!S p

2
2b D12a ln@8kk8~n1 1

2!#22f2~a!1D~a!5~n2m1 1
4!p.

Substituting for~n11
2! from Eq. ~39!, gives

2Sm1n1
3

4
1
D~a!

p D S p

2
2b D12a lnF8kk8Sm1n1

3

4
1
D~a!

p D G22f2~a!1D~a!

5~n2m1 1
4!p. ~42!

In the same limit the set of eigenvalue equations for the Neumann boundary condition on a
angular sector, Eq.~35!, becomes

TABLE II. Exact and WKB eigenvalues, Dirichlet boundary condition,b590°.

Exact eigenvalues WKB eigenvalues

n m n m

0.296 584 0.089 456 0.299 781 0.080 958
1.131 248 20.452 788 1.129 190 20.438 011
1.426 512 0.917 647 1.427 775 0.899 504
2.039 575 21.702 414 2.039 422 21.684 193
2.287 571 0.216 125 2.287 856 0.213 095
2.480 880 2.667 648 2.487 856 2.648 919
3.009 062 23.937 847 3.009 528 23.919 378
3.146 403 20.825 595 3.146 022 20.818 730
3.408 679 1.533 190 3.408 992 1.523 359
3.495 891 5.437 690 3.495 505 5.417 830
4.001 846 27.207 836 4.002 111 27.187 871
4.053 806 22.576 195 4.053 724 22.565 033
4.284 205 0.332 446 4.284 291 0.330 690
4.470 929 3.789 494 4.470 831 3.777 082
4.499 185 9.222 705 4.499 019 9.201 634

TABLE III. Exact and WKB eigenvalues, Dirichlet boundary condition,b5120°.

Exact eigenvalues WKB eigenvalues

n m n m

0.356 355 0.158 119 0.358 126 0.174 722
1.226 096 20.134 016 1.219 684 20.090 849
1.476 873 1.536 303 1.480 990 1.538 258
2.123 472 20.708 205 2.121 581 20.659 142
2.417 310 1.067 192 2.419 379 1.087 689
2.497 681 4.406 617 2.498 460 4.406 798
3.057 603 21.678 866 3.059 474 21.634 478
3.327 410 0.488 369 3.326 217 0.525 600
3.486 757 3.648 295 3.488 577 3.657 995
3.499 779 8.787 899 3.499 890 8.787 049
4.023 832 23.134 253 4.026 620 23.093 377
4.227 428 20.248 489 4.225 340 20.202 646
4.456 604 2.761 217 4.458 635 2.781 612
4.498 416 7.777 962 4.498 879 7.784 635
4.499 983 14.671 188 4.499 992 14.669 535
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2~n1 1
2!S b

2 D2a ln@8kk8~n1 1
2!#1f2~a!1D~a!5~m1 3

4!p, m50,1,... ,

2~n1 1
2!S p

2
2

b

2 D1a ln@8kk8~n1 1
2!#2f2~a!5~n1 1

2!p, n50,1,... .

By subtracting these two equations and using Eq.~40!, we find

2Sm1n1
5

4
2
D~a!

p D S p

2
2b D12a lnF8kk8Sm1n1

5

4
2
D~a!

p D G22f2~a!2D~a!

5~n2m2 1
4!p. ~43!

TABLE IV. Exact and WKB eigenvalues, Dirichlet boundary condition,b560°.

Exact eigenvalues WKB eigenvalues

n m n m

0.919 039 20.544 092 0.925 416 20.562 905
1.756 877 0.031 801 1.750 000 0.000 000
1.992 189 22.755 471 1.994 275 22.762 736
2.612 874 0.907 904 2.611 660 0.862 343
2.960 147 22.039 005 2.963 345 22.059 364
2.999 308 26.405 726 2.999 584 26.406 754
3.542 794 2.211 193 3.545 553 2.160 504
3.880 762 21.101 735 3.881 148 21.131 761
3.995 194 25.498 138 3.996 269 25.510 924
3.999 942 211.541 571 3.999 971 211.540 469
4.515 746 3.988 468 4.518 469 3.936 896
4.752 602 0.035 213 4.750 000 0.000 000
4.980 945 24.388 250 4.982 818 24.410 636
4.999 484 210.408 995 4.999 669 210.415 666
4.999 995 218.175 462 4.999 998 218.173 528

TABLE V. Exact and WKB eigenvalues, Dirichlet boundary condition,b590°.

Exact eigenvalues WKB eigenvalues

n m n m

0.814 655 20.189 507 0.817 541 20.183 573
1.597 131 0.795 774 1.595 459 0.782 870
1.955 326 21.552 890 1.955 664 21.535 754
2.520 877 2.621 752 2.521 225 2.602 671
2.801 149 20.349 178 2.801 527 20.346 344
2.990 672 23.886 619 2.990 191 23.865 543
3.504 197 5.424 529 3.504 590 5.403 516
3.617 052 1.261 783 3.616 648 1.254 866
3.938 056 22.308 190 3.938 212 22.297 999
3.998 143 27.193 804 3.997 875 27.171 821
4.500 819 9.219 426 4.500 985 9.197 701
4.532 032 3.680 927 4.532 113 3.668 644
4.795 768 20.494 774 4.795 892 20.492 960
4.984 161 25.230 456 4.983 978 25.216 220
4.999 642 211.499 924 4.999 545 211.467 714
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We note that Eqs.~42! and~43! are independent ofn. This allows us to solve these equations f
a by performing a search in one dimension~as opposed to two dimensions when we need to fi
n as well! and then use Eqs.~39! and ~40! to determinen.

Large a.As a→`, D(a)→p/41O(e2pa) and asa→2`, D(a)→2p/41O(e2puau). By
substituting these limiting values ofD(a) in the eigenvalue equations, Eqs.~34!, ~35!, ~37!, and
~38!, we find that asa→` ~m positive!, Eqs.~34! and~35! reduce to Eq.~38!, and asa→2` ~m
negative!, Eqs. ~34! and ~35! reduce to Eq.~37!. We already pointed out that the values ofn
calculated from Eq.~38! are half-integers and those calculated from Eq.~37! are integers. This
shows that for large positive values ofa the eigenvalues,n, approach half-integers and for larg
negative values ofa they approach integers. This can be seen in Fig. 5 and Tables I–VI.

IV. NUMERICAL CALCULATION OF THE EIGENVALUES

The eigenvalues,~n,m!, must be calculated by simultaneously requiring that theF~w! solution
is periodic with period 2p and theQ~q! solution satisfies the boundary conditions. To do this,
used the following method: start with an initialn, then use the shooting method14 to find mq for
Eq. ~3! andmw from Eq.~4!. Vary n and find a new pair of~mq ,mw!. If the difference betweenmq

andmw increases, varyn in the opposite direction and find another pair of~mq ,mw!. Continue the
process until the difference betweenmq andmw is small to a desirable limit. By using this metho
we are able to findn and m accurate up to six decimal places. The WKB eigenvalues w
calculated by applying the Newton–Raphson iteration to the set of equations given by Eqs~34!
and~35!. Reference 14 has efficient routines for the calculation of elliptic integrals. These rou
have been used in the WKB calculation of eigenvalues. For large values ofn and small values of
a/n, as was pointed out earlier, one does not need to solve the above set of the eige
equations. Instead, for the Dirichlet boundary conditiona can be determined from Eq.~42! and
then Eq.~39! can be used to calculaten; for the Neumann boundary conditiona can be determmed
from Eq.~43! andn can be calculated from Eq.~40!. It should be pointed out that in the Newton
Raphson iteration using Eqs.~34! and ~35! the derivatives are respectively calculated from th
approximate form for smalla/n @Eqs.~42! and~43!#. It is much easier to calculate derivatives
the latter equations, yet the convergence rate is equally good. Tables I–VI list the eigenvalu
Dirichlet and Neumann boundary conditions on a plane angular sector with corner angles o
90°, and 120°.

TABLE VI. Exact and WKB eigenvalues, Dirichlet boundary condition,b5120°.

Exact eigenvalues WKB eigenvalues

n m n m

0.697 484 0.070 303 0.704 000 0.097 292
1.525 224 1.515 624 1.520 686 1.521 887
1.849 263 20.498 577 1.853 450 20.454 970
2.502 344 4.403 471 2.501 552 4.404 736
2.598 523 0.963 024 2.596 927 0.988 145
2.935 993 21.528 545 2.934 267 21.479 765
3.500 201 8.787 553 3.500 110 8.786 850
3.513 954 3.625 169 3.511 853 3.638 428
3.715 734 0.196 581 3.718 263 0.233 427
3.975 043 22.930 602 3.972 115 22.998 640
4.500 016 14.671 153 4.500 008 14.669 517
4.501 592 7.774 668 4.501 125 7.782 170
4.547 584 2.673 862 4.545 440 2.697 962
4.834 680 20.881 895 4.836 155 20.838 295
4.990 638 24.876 280 4.988 412 25.011 801
J. Math. Phys., Vol. 38, No. 3, March 1997
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APPENDIX A: SPECIAL EIGENVALUES

Although, as pointed out in the text, the eigenvalues ofDV subject to the even Neumann an
odd Dirichlet boundary conditions are of no mterest in this paper, for completeness we ta
these eigenvalues for a 90° PAS along with the eigenvalues ofDV for a half-plane in Table VII.
Note that the eigenvalues for the odd Dirichlet and even Neumann cases are all integers an
for the half-plane are half-integers. It should be pointed out that both odd Dirichlet and
Neumann boundary conditions on a half-plane result in the same set of eigenvalues.

APPENDIX B: THE EXACT EIGENFUNCTIONS

1. The even Dirichlet case

a. The Q equation

According to Refs. 8 and 4, the solution of Eq.~3! subject to the boundary conditions

Q~p!50 Dirichlet boundary condition

Q8~0!50 even solution

is given by the series

Qe~q!5 (
m50

`

Am cos~2m2 1
2!q.

Substituting the above series in Eq.~3! results in the recurrence relation

Am21am1Ambm1Am11gm50, ~B1!

where

am5
k2

4 F ~4m23!~4m25!

4
2n~n11!G ,

TABLE VII. Special eigenvalues ofDV for a 90° PAS and a half-plane.

Even Neumann Odd Dirichlet Half-plane

n m n m n m

0.000 000 0.000 000 1.000 000 0.000 000 0.500 000 0.000 000
1.000 000 20.500 000 2.000 000 21.500 000 1.500 00020.866 025
1.000 000 0.500 000 2.000 000 1.500 000 1.500 000 0.866 025
2.000 000 21.732 051 3.000 000 23.872 984 2.500 00022.645 751
2.000 000 0.000 000 3.000 000 0.000 000 2.500 000 0.000 000
2.000 000 1.732 051 3.000 000 3.872 984 2.500 000 2.645 751
3.000 000 23.949 490 4.000 000 27.190 416 3.500 00025.431 181
3.000 000 20.949 490 4.000 000 22.190 416 3.500 00021.415 017
3.000 000 0.949 490 4.000 000 2.190 416 3.500 000 1.415 017
3.000 000 3.949 490 4.000 000 7.190 416 3.500 000 5.431 181
4.000 000 27.211 103 5.000 000211.489 126 4.500 00029.221 070
4.000 000 22.645 752 5.000 000 25.196 152 4.500 00023.737 893
4.000 000 0.000 000 5.000 000 0.000 000 4.500 000 0.000 000
4.000 000 2.645 752 5.000 000 5.196 152 4.500 000 3.737 893
4.000 000 7.211 103 5.000 000 11.489 126 4.500 000 9.221 070
J. Math. Phys., Vol. 38, No. 3, March 1997
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bm5F ~4m21!2

4 S k2

2
21D1

n~n11!k2

2
1m G ,

gm5
k2

4 F ~4m11!~4m13!

4
2n~n11!G .

The above is a three term recurrence relation which by a rather straightforward manipulatio
be written in the form of a continued fraction

Am21

Am
52

bm

am
1

gm

am

bm11

am11
1

gm11

am11

bm12

am12
1•••

, ~B2!

or

Am11

Am
52

bm

gm
1

am

gm

bm21

gm21
1

am21

gm21

bm22

gm22
1•••

. ~B3!

The above continued fractions converge rather fast, so approximately 20 terms are eno
achieve an accuracy of up to eight decimal places. Following Ref. 4,A11 is assumed to be unity
and Eq.~B2! is used to calculateA0 . ThenA211 is assumed to be unity and Eq.~B3! is used to
calculateA0 again. TheA0 found by starting atA211 is set equal to theA0 calculated the first time
and Eq.~B3! is used to scaleA21 throughA210. Finally, all the coefficients are normalized t
make

Qe~0!51.

b. The F equation

The two independent solutions of Eq.~4! satisfying the even boundary conditions

F8~0!50, F8~p!50

are given by

Fe1~w!5 (
m50

`

B2m cos 2mw,

and

Fe2~w!5 (
m50

`

B2m11 cos~2m11!w.

The recurrence relations for the first solution are
J. Math. Phys., Vol. 38, No. 3, March 1997
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B0S n~n11!k82

2
2m D1B2

k82

4
~22n~n11!!50 ,

B0S 2n~n11!k82

2 D1B2S 4S k82

2
21D1

n~n11!k82

2
2m D1B4

k82

4
~122n~n11!!50,

and

B2m22a2m1B2mb2m1B2m12g2m50, m>2.

The recurrence relation for the second solution is

B2m21a2m111B2m11b2m111B2m13g2m1150, m>1,

where

a2m5
k82

4
@~2m22!~2m21!2n~n11!#,

b2m5F ~2m!2S k82

2
21D1

n~n11!k82

2
2mG , ~B4!

g2m5
k82

4
@~2m12!~2m11!2n~n11!#.

The continued fraction for the first solution is

B2m22

B2m
52

b2m

a2m
1

g2m

a2m

b2m12

a2m12
1

g2m12

a2m12

b2m14

a2m14
1•••

, m>2, ~B5!

and for the second solution is

B2m21

B2m11
52

b2m11

a2m11
1

g2m11

a2m11

b2m13

a2m13
1

g2m13

a2m13

b2m15

a2m15
1•••

. ~B6!

It was decided that it would be accurate enough to assumeB42 to be unity and use Eq.~B5! along
with the first two recurrence relations to findB40 throughB0. Similarly,B41 is assumed to be unity
and Eq.~B6! is used to determineB39 throughB1. The coefficients are then normalized to ma

Fe~0!51.
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2. The odd Neumann case

a. The Q equation

The solution of Eq.~3! subject to the boundary conditions

Q8~p!50 Neumann Boundary condition

Q~0!50 odd solution

is

Qo~q!5 (
m50

`

Am sin~2m2 1
2!q.

The recurrence relation and the expression for the continued fraction for this equation are th
as for the Dirichlet case@Eqs. ~B1!, ~B2!, ~B3!#. The coefficients are determined in the sam
manner, except that now they are normalized to make

Qo8~0!51.

b. The F equation

The two independent solutions of Eq.~4! satisfying the odd boundary conditions

F~0!50, F~p!50

are given by

Fo1~w!5 (
m50

`

B2m sin 2mw,

and

Fo2~w!5 (
m50

`

B2m11 sin~2m11!w .

The recurrence relation for the first solution is

B2m22a2m1B2mb2m1B2m12g2m50, B050

and for the second solution is

B1S S k82

2
21D1

3n~n11!k82

4
2m D1B3

k82

4
~62n~n11!!50,

B2m21a2m111B2m11b2m111B2m13g2m1150, m>1,

wherea2m, b2m andg2m are given by Eq.~B4! and the continued fractions are given by Eqs.~B5!,
and~B6!. The coefficients are determined in the same way as the coefficients for the Dirichle
and then they are normalized to make

Fo8~0!51 .
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Hypersymmetry: A Z3-graded generalization
of supersymmetry

Viktor Abramov,a) Richard Kerner,b) and Bertrand Le Royc)
Laboratoire de Gravitation et Cosmologie Relativistes, Universite´ Pierre et Marie Curie,
CNRS URA 769, Tour 22, 4-e`me étage, Boıˆte 142
4, Place Jussieu, 75005 Paris, France

~Received 25 March 1996; accepted for publication 12 November 1996!

We propose a generalization of non-commutative geometry and gauge theories
based on ternaryZ3-graded structures. In the new algebraic structures we define, all
products of two entities are left free, the only constraining relations being imposed
on ternary products. These relations reflect the action of theZ3-group, which may
be either trivial, i.e.,abc5bca5cab, generalizing the usual commutativity, or
non-trivial, i.e.,abc5 jbca, with j5e(2p i )/3. The usualZ2-graded structures such
as Grassmann, Lie, and Clifford algebras are generalized to theZ3-graded case.
Certain suggestions concerning the eventual use of these new structures in physics
of elementary particles and fields are exposed. ©1997 American Institute of
Physics.@S0022-2488~97!02103-8#

I. INTRODUCTION

In a recent series of articles1–3 we have advocatedZ3-grading as a natural generalization
well-knownZ2-graded structures, such as graded Lie algebras, superspaces andZ2-graded gener-
alizations of non-commutative geometry.4,5 Most of the cases in which theZ3-grading was studied
have been based on the grading of ordinary algebras of matrices or operators.

In this article we wish to stress the fact that the natural structure on which theZ3-grading takes
its full meaning is a ternary algebra, which means a linear vector space over complex numb
which a ternary composition law is defined. Although ternary laws can be modeled in ord
algebras with an associative binary law by defining corresponding ternary ideals and dividi
algebra by the equivalence relations induced by these ideals, one may also introduce
composition laws which cannot be derived from a binary law.6

Although we believe that these novel algebraic constructions might be pertinent for th
scription of quark fields and new models of elementary interactions in particle physics, we
stress here mathematical rather than physical aspects, keeping hope that further developm
physical applications of ternary structures will follow soon.

The last decade witnessed a spectacular development of non-commutative generaliza
differential geometry and Lie group theory; the respective new chapters of mathematical p
are known as Non-Commutative Geometry and Quantum Groups and Quantum Spaces.
cases, the crucial question concerned the behavior of a ‘‘product,’’ or in more general term
binary composition law under the permutation of two ‘‘factors.’’ We shall generalize this
proach for the case in which no conditions are imposed on binary products~which in some cases
may even not be defined!, but in contrast, a specific behavior of ternary composition law
required.

In what follows, we shall briefly recall the action of the permutation group of three elem
S3, in the complex plane, and apply its different representations to ternary composition laws.

a!Permanent address: Institute of Pure Mathematics, Tartu University, Vanemuise 46, Tartu, Estonia. Electron
viktor@ut.ee

b!Electronic mail: rk@ccr.jussieu.fr
c!Electronic mail: bleroy@gcr.jussieu.fr
0022-2488/97/38(3)/1650/20/$10.00
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we generalize the notions of Grassmann algebras, superspaces, supermatrices, Lie algeb
Clifford algebras replacing systematically binary symmetry conditions by their ternary cou
parts.

Although many questions concerning the use of such ternary algebras in field theory r
unanswered, and a lot of constructions have still to be invented, we believe that this topi
attract the attention of theoretical physicists, as a potentially useful tool for a resolution o
long-standing confinement problem.

II. THE ACTIONS OF Z3 AND S3 ON TERNARY PRODUCTS

The group of permutations of three objects contains six elements, three of which for
Abelian subgroupZ3.

The entire groupS3 can be generated by two elements, a cyclic permutation and one o
three involutions~odd permutations!.

The important fact about the groupS3 is that it is the last of the permutation groups having
faithful representation in the complex plane; the next permutation group,S4, containing 24 ele-
ments, has a representation in the complex plane that is not faithful, and starting fromS5, the
permutation groups do not have representations in the complex plane, besides the represe
assigning an involution to all odd elements and the identity to all even elements.7

We shall represent theZ3 group in the complex plane with the multiplications by the cub
roots of 1, i.e., 1,j and j 2, where j5e2ip/3(11 j1 j 250). The three odd permutations can b
generated by complex conjugation.

In our generalizations of binary non-commutative structures we shall systematically re
the representations of the groupZ2 acting on binary relations by the representations of the gr
Z3 acting on ternary relations. Whenever these relations can be represented as induced
ordinary binary composition rule in some associative algebra, we shall suppose that the
products are totally independent. Of course, one cannot distinguish a representation ofZ2 from that
of the groupS2, because these groups are identical; while generalizing, we have the c
between the cyclic groupZ3 or the full permutation groupS3 which has six elements. The resultin
algebraic structures are very different, too.

It is useful to recall that all binary relations can be interpreted in two alternative w
depending on whether we write them on one side of the equation, or with non-trivial left-
right-hand sides; the ternary generalizations will impose stronger or weaker conditions
interpreted in these alternative manners.

Here are the few examples of ternary generalizations of well-known binary structures th
shall study one by one in the next sections. We shall start with the classification of bi-~respec-
tively, trilinear! mappings from vector spaces into complex numbers. The bilinear forms ca
separated into different categories following theirZ2-representation properties: (X,Y)5(Y,X), a
trivial representation ofZ2, which is called a symmetric 2-form. The same condition can
written equivalently as (X,Y)1(21)(Y,X)50. In the case of ternary generalization~3-linear
forms satisfying given representation properties with respect to the groupZ3! similar conditions
are no more equivalent:

~X,Y,Z!5~Y,Z,X!5~Z,X,Y!, ~1!

which implies a trivial representation ofZ3, whereas the second interpretation will lead to t
following condition:

~X,Y,Z!1 j ~Y,Z,X!1 j 2~Z,X,Y!50. ~2!

Here the first condition implies the second one; from the second condition may follow eithe
first solution~i.e., all cyclic permutations being equal!, or alternatively
J. Math. Phys., Vol. 38, No. 3, March 1997
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~X,Y,Z!5 j 2~Y,Z,X!5 j ~Z,X,Y!, ~3!

which is stronger and obviously satisfies the above equation.
A similar scheme can be applied to the action of the wholeS3 group if we decide how to

represent the odd permutations. If only the action ofZ3 is represented, this means that the resul
(Z,Y,X) is independent from (X,Y,Z); if not, the complex conjugation in the complex plan
provides us with a representation ofS3 when combined with the rules forZ3:

~X,Y,Z!5~Z,Y,X!. ~4!

On the other hand, if we decide that (X,Y,Z)5(Z,Y,X), this will also define an action ofS3,
which in this case will not be faithful anymore.

The skew-symmetric bilinear forms are generalized by

~X,Y,Z!5 j ~Y,Z,X!5 j 2~Z,X,Y! or ~X,Y,Z!1~Y,Z,X!1~Z,X,Y!50 ~5!

in the case of aZ3-generalization, or, in the case of theS3-generalization,

~X,Y,Z!1~Y,Z,X!1~Z,X,Y!1~Z,Y,X!1~Y,X,Z!1~X,Z,Y!50. ~6!

III. Z3-GRADED ANALOGUE OF GRASSMANN ALGEBRA

Perhaps the simplest and the most straightforwardZ3-graded generalization of a well-know
binary algebraic structure is the Grassmann algebra.

Consider a finite-generated associative free algebra over complex numbers. Let us den
generators of this algebra byuA,uB, A,B51,2,...,N. We suppose that theN2 productsuAuB are
linearly independent entities, whereas the products of three generatorsuAuBuC are subjected to the
following condition:

uAuBuC5 juBuCuA. ~7!

Lemma 1:Any product of four or more generators must vanish.
Proof:

~uAuBuC!uD5 juB~uCuAuD!5 j 2~uBuAuD!uC5uA~uDuBuC!5 juAuBuCuD. ~8!

Now, as~12j !Þ0, one must haveuAuBuCuD50.
The dimension of aZ3-graded Grassmann algebra isN(N11)(N12)/311. The cube of any

generator is equal to zero; the odd permutation of factors in a product of three leads
independent quantity.

Our algebra admits a naturalZ3-grading: under multiplication, the grades add up modulo
the numbers are grade 0, the generatorsu A are of grade 1; the binary products are of grade 2,
the ternary products of grade 0 again. The dimensions of the subsets of grade 0, 1, and
respectively,N for grade 1,N2 for grade 2, and (N32N)/311 for grade 0.

The lack of symmetry between the grades 1 and 2~corresponding to the generatorj and its
squarej 2 in the cyclic groupZ3, which are interchangeable!, suggests that one should introdu
another set ofN generators of grade 2, whose squares would be of grade 1, and which should
the conjugate ternary relations as follows:

ū Āū B̄ū C̄5 j 2ū B̄ū C̄ū Ā. ~9!

With respect to the ordinary generatorsu A, the conjugate ones should behave like the product
two u’s, i.e.,
J. Math. Phys., Vol. 38, No. 3, March 1997
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uA~uBuC!5 j ~uBuC!uA→uAū B̄5 j ū B̄uA ~10!

and consequently,

ū B̄uA5 j 2uAū B̄. ~11!

There exists also an alternative choice for the commutation relation between the ordina
conjugate generators, that makes the conjugate generators distinct from the binary prod
ordinary generators:

uAū B̄52 j ū B̄uA, ū B̄uA52 j 2uAū B̄, ~12!

which are still compatible with the ternary relations introduced above.
This could be interpreted in the following way. We have assumed that the algebra’s field

field of complex numbers, but we can imagine that it is possible to multiply an element o
Z3-graded Grassmann algebra by an element of a binary Grassmann algebra. We assume
binary elements commute with the ternary ones, but anticommute as usual with each othe
Z3-graded Grassmann elements of a given grade still have no binary commutation relation.
our new algebra admits two gradings: theZ2-grading and theZ3-grading. The elements ofZ2-grade
0 andZ3-grades 1 and 2 obey rules~10! and~11! whereas the elements ofZ2-grade 1 andZ3-grades
1 and 2 obey the rules~12!. If we think that these objects can help in modeling of the quark fie
then a quark variable would be ofZ2-grade 1 andZ3-grade 1, and an antiquark variable ofZ2-grade
1 andZ3-grade 2. Then, the products of a quark and an antiquark would have both grades
making it a boson. In the same way, the products of three quark or three antiquark fields wo
of Z3-grade 0 and ofZ2-grade 1, that is, they would very much look like a fermionic field.8

Now, the ū ’s generate their own Grassmann subalgebra of the same dimension as th
generated byu’s; besides, we shall have all mixed products containing both types of gener

but which can be always ordered, e.g., withu A’s in front and ū B̄’s in the rear, by virtue of

commutation relations. The products ofu A’s alone or of ū Ā’s alone span two subalgebras
dimensionN(N11)(N12)/3 each; the mixed products span new sectors of theZ3-graded Grass-
mann algebra.

In usualZ2-graded Grassmann algebras the anti-commutation between the generators
algebra and the assumed associativity imply automatically the fact that all grade 0 ele
commute with all elements of the algebra, while any two elements of grade 1 anti-commute.
case of theZ3-graded generalization such an extension of ternary and binary relations doe
follow automatically, and must be explicitly imposed.

Lemma 2:If the relations~10!, ~11!, and ~12! are extended to all elements of the algeb
having a well-defined grade~i.e., the monomials inu’s and ū ’s!, then the resultingZ3-graded
algebra contains only the following combinations of generators:

A15$u,ū ū%; A25$ū,uu%; A05$1,uū,uuu,ū ū ū%. ~13!

Proof:

5 j 2uAū C̄uB5 j 4uAuBū C̄50 ~14!
J. Math. Phys., Vol. 38, No. 3, March 1997
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because on the one side,uBū C̄ andū C̄uA are of grade 0 and commute with all other elements a
on the other side, commutingūC with uAuB one gets twice the factorj 2, which leads to the overal
factor juAuBū C̄. This produces a contradiction which can be solved only by supposing
uAuBūC50. Similarly, uūū50.

The dimension of the algebra is now

D~N!5112N13N21
2~N32N!

3
5
314N19N212N3

3
. ~15!

The four summands 1, 2N, 3N2, and 2(N32N)/3 correspond to the subspaces respectiv
spanned by the combinations$C%, $u,ū%, $uu,uū,ū ū%, and$uuu,ū ū ū%.

Let us note that the set of grade 0~which obviously forms a sub-algebra of theZ3-graded
Grassmann algebra! contains the products which could symbolize the only observable comb
tions of quark fields in quantum chromodynamics based on the SU~3!-symmetry.

We can introduce theZ3-graded derivations of theZ3-graded Grassmann algebra by postul
ing the following set of rules:

]A~1!50, ]AuB5dA
B , ]Aū B̄50, ] Ā~1!50, ] B̄ū C̄5d

B̄

C̄
, ] B̄uA50. ~16!

When acting on various binary and ternary products, the derivation rules are:

]A~uBuC!5dA
BuC1 jdA

CuB, ]A~uBuCuD!5dA
BuCuD1 jdA

CuDuB1 j 2dA
DuBuC,

] Ā~ ū B̄ū C̄!5d
Ā

B̄
ū C̄1 j 2d

Ā

C̄
ū B̄, ] Ā~ ū B̄ū C̄ū D̄!5d

Ā

B̄
ū C̄ū D̄1 j 2d

Ā

C̄
ū D̄ū B̄1 jd

Ā

D̄
ū B̄ū C̄.

Note the ‘‘twisted’’ Leibniz rule for the ternary products.

Finally, for mixed binary products likeuAū B̄ the derivation rules are as follows:

]A~uBū C̄!5dA
Bū C̄, ] Ā~uBū C̄!5 jd

Ā

C̄
uB. ~17!

As a consequence of these rules we have the following important identities:

]A]B]C5 j ]B]C]A , ] Ā] B̄] C̄5 j 2] B̄] C̄] Ā , ~18!

implying

]A]B]C1]B]C]A1]C]A]B50, ] Ā] B̄] C̄1] B̄] C̄] Ā1] C̄] Ā] B̄50 ~19!

while

]A] C̄5 j ] C̄]A , ] C̄]A5 j 2]A] C̄ . ~20!

IV. Z3-GRADED ALGEBRA OF HYPERSYMMETRY GENERATORS

The Z3-graded generalization of the Grassmannian and theZ3-graded derivatives define
above can be used in order to produce aZ3-generalization of the supersymmetry generators ac
on the usualZ2-graded Grassmann algebra generated by anti-commuting fermionic variabua

and ū ḃ, with the ‘‘anti-Leibniz’’ rule of derivation

]a~ubug!5da
bug2da

gub ~21!
J. Math. Phys., Vol. 38, No. 3, March 1997
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and similarly for any two dotted indices or mixed indices, one verifies easily that all such de
tions do anti-commute. These rules enable us to construct the generators of the supersym
‘‘odd’’ translations:

Da5]a1s
aḃ

k
ū ḃ]k , D ḃ5]ḃ1s

aḃ

m
ua]m , ~22!

where both dotted and undotted indicesa,ḃ take the values 1 and 2, the space-time indicesk,l ,m
running from 0 to 3. The anti-commutators of these differential operators yield the ord
~‘‘even’’ ! space-time translations:

DaD ḃ1D ḃDa52s
aḃ

k
]k , DaDb1DbDa50, D ȧD ḃ1D ḃD ȧ50. ~23!

TheZ3-graded generalization would amount to finding a ‘‘cubic root’’ of a linear differen
operator, making use of Eq.~19!. We must have six kinds of generalized Grassmann variable

uA,u Â,u Ǎ on the one hand andū Ā,ūA
C

,ū Ā
ˇ
on the other hand—which formally generalizes t

Z2-graded case. All kinds ofu’s and ū ’s act like those that were introduced in Sec. III. The Pa
matrices should be replaced by the entities endowed with three indices~‘‘cubic matrices’’! with
which the generators of theZ3-graded translations of grade 1 and 2 may be constructed as foll

DA5]A1r
AB̂Č

m
u B̂u Č“m1v

AĀ

m
ū Ā
“m , DĀ5] Ā1 r̄

ĀBC C̄
ˇ

m
ūB
C

ū C̄
ˇ
“m1v̄

ĀA

m
uA“m , ~24!

DB̂5] B̂1r
AB̂Č

m
uAu Č“m1v

B̂BC
m

ūB
C

“m , DBC5]BC1 r̄
ĀBC C̄

ˇ

m
ū Āū C̄

ˇ
“m1v̄

BC B̂

m
u B̂“m , ~25!

DČ5] Č1r
AB̂Č

m
uAu B̂“m1v

ČC̄
ˇ

m
ū C̄
ˇ
“m , DC̄

ˇ 5] C̄ˇ 1 r̄
ĀB̄
ˆ
C̄
ˇ

m
ū ĀūB

C

“m1v̄
C̄
ˇ
Č

m
u Č“m . ~26!

The nature of indices does not need to be specified; the only important thing to be assu
this stage is that the differential operators“m do commute with theZ3-graded differentiations]A .
It is also interesting to consider the operators one gets when the“m are replaced with supersym
metric derivations~that anti-commute with theZ3-graded differentiations!. In the simpler case
described here, the following operators acting on theZ3-graded generalized Grassmannian:

DABC
III 5DADBDC1DBDCDA1DCDADB1DCDBDA1DBDADC1DADCDB ,

D̄
ĀB̄C̄

III
5DĀDB̄DC̄1DB̄DC̄DĀ1DC̄DĀDB̄1DC̄DB̄DĀ1DB̄DĀDC̄1DĀDC̄DB̄ , ~27!

D
AĀ

II
5DADĀ2 j 2DĀDA

represent homogeneous operators on theZ3-graded Grassmann algebra, i.e., they map polynom
in u’s of a given grade into polynomials of the same grade; the result can be represente
complex-valued matrix containing various combinations of the differentiations“m ; their eventual
symmetry properties will depend on the symmetry properties of the matricesrABC andvAB̄ .

Let us consider in more detail the case of dimension 3~the simplest possible realization of
Z3-graded Grassmannian and the derivations on it is the case with one generator and its con
this has been considered in a paper by Chung9!.

The dimension of theZ3-graded Grassmann algebra with three grade-1 generatorsu, û, andǔ

and three ‘‘conjugate’’ grade-2 generatorsū, uC and ǔ̄ is 51; any linear operator, including th
derivations]A and the multiplication by any combination of the generators, as well as the o
J. Math. Phys., Vol. 38, No. 3, March 1997
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torsDA andDĀ introduced above, can be represented by means of 51351 complex-valued ma-
trices. Unfortunately, the operatorsDII andDIII are neither diagonal nor diagonalizable. But if w
apply them to a scalar functionf , we get:

D
1 1̄

II
f5~v

1 1̄

m
1v̄

1̄1

m
!“mf , ~28!

D
11̂1̌

III
f523 j 2r

11̂1̌

m
“mf as well as D̄

1̄1
C

1̄
ˇ

III
f523 j r̄

1̄1
C

1̄
ˇ

m
“mf . ~29!

Thev matrices are the only ones that remain in theDII whereas ther cubic matrices emerge from
the ternary combinationsDIII . On the space of scalar functions, our operators act simultaneo
assquareandcubic roots of ordinary translations. Using extensions of these objects where th“m

are replaced with the supersymmetry generators, we have constructed a simpleZ3-graded non-
commutative geometry model featuring three Higgs fields. The Lagrangian contains the po
term of degree 6:

V53uF11F21F31F1F21F2F31F3F11F1F2F3u2 ~30!

and implies multiple spontaneous symmetry breaking. This model will be the subject of an
article.8

V. Z3-GRADED MATRICES

In order to have an integration theory on ‘‘hypermanifolds,’’ we will need the equivalent
matrices and determinants that should naturally appear in the formula of change of variables
align the basis of ourZ3-graded Grassmann algebra, with all the elements of grade 0 first, the
the elements of grade 1 and finally the elements of grade 2 in a one-column vector, any
transformation leaving these entries in the same order can be symbolized by a matrix
entries have a definiteZ3-grade placed as follows:

S 0 2 1

1 0 2

2 1 0
D S 01

2
D 5S 01

2
D . ~31!

The positions of the three grades in the resulting column do not change; we shall call any
displaying this block grading structure a grade 0 matrix. We can introduce two other kin
matrices that raise all the grades by 1 and 2~like theDA andDĀ operators, respectively!, and call
them respectively grade 1 and grade 2 matrices:

S 1 0 2

2 1 0

0 2 1
D S 01

2
D 5S 12

0
D , S 2 1 0

0 2 1

1 0 2
D S 01

2
D 5S 20

1
D ~32!

~the numbers 0, 1, 2 symbolizing the grades of the respective entries in the matrices!. These
Z3-graded matrices have been studied in detail in Ref. 10.

It is easy to check that the grades of these matrices add up~modulo 3! under the associative
matrix multiplication law.

One can define the analogues of the supertrace and superdeterminant of a matrix

M5S A B C

D E F

G H I
D ~33!
J. Math. Phys., Vol. 38, No. 3, March 1997
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as follows:

trZ3~M !5trA1 j 2~12gr~M !!trE1 j ~12gr~M !!trI ~34!

and, for grade 0 matrices:

detZ3~M !5det~A2CI21G2~B2CI21H !~E2FI21H !21~D2FI21G!!

3~det~E2FI21H !! j
2
~det I ! j . ~35!

There exist five other equivalent formulations of theZ3-determinant reflecting the sixfoldS3
symmetry, just as there are two alternative formulations of the superdeterminant that reflectS2
symmetry.11

TheZ3 trace and determinant satisfy all the usual properties one would expect, especia
most important one:

detZ3~exp~M !!5exp~ trZ3~M !!. ~36!

We expect this determinant to play the same role in integration theory on ‘‘hypermanifolds
the superdeterminant in integration on supermanifolds.

VI. THE Z3-GRADED EXTERIOR DIFFERENTIAL

Consider the algebraM3~C! of 333 complex matrices, with theZ3-grading introduced above
Let B,C denote two matrices whose grades are grad(A)5a and grad(B)5b, respectively. We
define theZ3-graded commutator [B,C] as follows:

@B,C#Z3:5BC2 j bcCB. ~37!

~Note that thisZ3-graded commutator does not satisfy the Jacobi identity.! Let h be a matrix of
grade 1; we can choose for the sake of simplicity

h5S 0 1 0

0 0 1

1 0 0
D . ~38!

With the help of the matrixh we can define a formal ‘‘differential’’ on theZ3-graded algebra
of 333 matrices as follows:

dB:5@h,B#Z35hB2 j bBh. ~39!

It is easy to show thatd(BC)5(dB)C1 j bB(dC) and thatd350. It is also possible to define
a differential with a similar property on a manifold.

Let Mn be a differentiable manifold of dimensionN, with local coordinatesx
k. The variables

xk commute and theirZ3-grade is 0. The linear operatord applied toxk produces a 1-form whose
Z3-grade is 1 by definition; when applied two times by iteration, it produces a new form of g
2, denoted byd2xk. We shall postulated350.

Let F(M ) denote the algebra of functionsC`(M ), over which theZ3-graded algebra gener
ated by the formsdxi and d2xk behaves as a left module. In other words, we shall be abl
multiply the formsdxi , d2xk, dxidxk, etc., by the functions only on the left; right multiplicatio
will just not be considered here. That is why we will write by definition

d~xixk!:5xidxk1xkdxı. ~40!
J. Math. Phys., Vol. 38, No. 3, March 1997
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We shall also assume the following Leibniz rule for the operatord with respect to the
multiplication of theZ3-graded forms: whend crosses a form of gradep, the factorj p appears as
follows:

d~vf!5~dv!f1 j pv~df!. ~41!

In contrast with theZ2-graded case, the forms are treated as one whole, even when mult
from the left by an arbitrary function; that means that we cannot identify, e.g., (v idx

i)(fkdx
k)

with (v ifk)dx
idxk, etc. This is equivalent to saying that the products of functions by the fo

are understood in the sense of tensor products, which is associative, but non-commutative
Nevertheless, such an identification can be done for the forms of maximal degree~i.e., 3!,

which contain the products of the typedxidxkdxm or dxid2xm, whose exterior differentials vanis
irrespective of the order of the multiplication.

With the so establishedZ3-graded Leibniz rule, the postulated350 suggests in an almos
unique way the ternary and binary commutation rules for the differentialsdxi andd2xk. To begin
with, consider the differentials of a function of the coordinatesxk, with the ‘‘first differential’’ d f
that coincides with the usual one:

d f5~] i f !dxi , d2f5~]k] i f !dxkdxi1~] i f !d2xi ,

d3f5~]m]k] i f !dxmdxkdxi1~]k] i f !d2xkdxi1 j ~]k] i f !dxid2xk1~]k] i f !dxkd2xi

~42!

@the last part of the differential, (] i f )d
3xi , vanishes by virtue of the postulated3xi50#.

Supposing that the partial derivatives commute, exchanging the summation indicesi andk in
the last expression and replacing 11j by 2j 2, we arrive at two independent conditions that le
to the vanishing ofd3f :

dxmdxkdxi1dxkdxidxm1dxidxmdxk50, d2xkdxi2 j 2dxid2xk50, ~43!

which imply the following choice of relations:

dxidxkdxm5 jdxkdxmdxi , dxid2xk5 jd2xkdxi ~44!

~which are unique up to the conjugationj↔ j 2!.
By extending these rules to all the expressions with a well-defined grade, and applyin

associativity of theZ3-exterior product, it is easy to verify that all the expressions of the t
dxidxkdxmdxn anddxidxkd2xm must vanish, and along with these, also the monomials of hig
order that would contain them as factors. Still, this is not sufficient in order to satisfy the
d350 on all the forms spanned by the generatorsdxk andd2xk. It can be proved without much
effort that the expressions containingd2xid2xk must vanish, too. For example, if we take th
particular 1-formxidxk and apply to it the operatord, we get

d~xidxk!5dxidxk1xid2xk, ~45!

d2~xidxk!5d2xidxk1~11 j !dxid2xk5d2xidxk2d2xkdxi , ~46!

which leads tod3(xidxk)5d2xid2xk2d2xkd2xi . There is another possibility, which is to say th
the d2xk should commute with one another.12 This makes the differential algebra infinite, b
prevents us from considering thed2xk as grade-2 entities. But if we want to keep both t
associativity of the ‘‘exterior product’’ and the ternary rule for the entities of grade 2,
d2xid2xkd2xm5 j 2d2xkd2xmd2xi , then the only solution is to imposed2xid2xk50 and to set forth
the additional rule declaring that any expression containing fourth or higher power of the op
d must vanish identically.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r

at

a part

the

the

s

it

1659Abramov, Kerner, and Le Roy: Hypersymmetry: A Z3-graded generalization of supersymmetry

¬¬¬¬¬¬¬¬¬¬
With the above set of rules we can check thatd350 on all the forms, whatever their grade o
degree. Let us show how such calculus works on the example of a 1-formv5vkdx

k:

d~vkdx
k!5~] ivk!dx

idxk1vkd
2xk, ~47!

d2~vkdx
k!5~]m] ivk!dx

mdxidxk1~] ivk!d
2xidxk1 jdxid2xk1] ivkdx

id2xk. ~48!

After exchanging the summation indicesi and k in two last terms and using the fact th
j1152 j 2 and the commutation relations betweendxk andd2xi , we can write

d2~vkdx
k!5~]m] ivk!dx

mdxidxk1~] ivk2]kv i !d
2xidxk, ~49!

where it is interesting to note how the usual anti-symmetric exterior differential appears as
of the whole expression.

It is also easy to check that Im(d)#Ker~d2! and Im~d2!#Ker(d).

VII. Z3-GRADED GAUGE THEORY

Let A be an associative algebra with unit element, and letH be a free left module over this
algebra. LetA be anA-valued 1-form defined on a differential manifoldM , and letF be a
function on the manifoldM with values in the moduleH.

We shall introduce the covariant differential as usual:

DF:5dF1AF; ~50!

If the module is a free one, any elementF can be represented by an appropriate element of
algebra acting on a fixed element ofH, so that one can always writeF5BF0; then the action of
the group of automorphisms ofH can be translated as the action of the same group on
algebraA.

LetU be a function defined onM with its values in the group of the automorphisms ofH. The
definition of a covariant differential is equivalent to the requirementDU21B5U21DB; as in the
usual case, this leads to the following well-known transformation for the connection 1-formA:

A→U21AU1U21dU. ~51!

Unlike in the usual theory, the second covariant differentialD2F is not an automorphism: a
a matter of fact, we have:

D2F5d~dF1AF!1A~dF1AF!5d2F1dAF1 jAdF1AdF1A2F, ~52!

the expression containingd2F and dF; whereasD3F is indeed an automorphism, because
contains onlyF multiplied on the left by an algebra-valued 3-form:

D3F5~d2A1d~A2!1AdA1A3!F5~D2A!F:5VF. ~53!

Obviously, becauseD(U21F)5U21(DF), one also hasD3(U21F)5U21(D3F)
5U21VF5U21VUU21F, which proves that the 3-formV transforms as usual,V°U21VU
when the connection 1-form transforms according to the law:A°U21AU1U21dU.

A direct calculus proves that the curvature 3-formV does vanish identically forA5U21dU
~see Ref. 13!.

Computing the expression of the curvature 3-form in local coordinates yields:

V5d2A1d~A2!1AdA1A35V ikmdx
idxkdxm1Fikd

2xidxk, ~54!

where
J. Math. Phys., Vol. 38, No. 3, March 1997
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V ikm :5] i]kAm1Ai]kAm2]kAmAi1AiAkAm , Fik :5] iAk2]kAi1AiAk2AkAi . ~55!

In Fik one can easily recognize the 2-form of curvature of the usual gauge theories.
Knowing that the expressionFik is covariant with respect to the gauge transformations,

that the 3-formV is covariant, we infer that the local expressionVi jk must be covariant, too. As
a matter of fact, it can be expressed as a combination of covariant derivatives of the 2-formFik :

V ikm5
1

3
@ jD iFmk1 j 2DkFmi#52

1

6
@DiFmk1DkFmi#1

i)

6
@DiFmk2DkFmi#. ~56!

The natural symmetry betweenj and j 2, which leads to the possibility of choosing one of the
two complex numbers as the generator of the groupZ3, and simultaneous interchanging the sect
of grade 1 and 2, suggests that we could extend the notion of complex conjugationj⇒( j )* :5 j 2,
with (( j )* )*5 j , to the algebra ofZ3-graded exterior forms and the operatord itself.

It is natural to introduce a ‘‘conjugate’’ differentiald of grade 2, the image of the differentia
d under the conjugation* , satisfying the relations:

dxidxkdxm5 j 2dxkdxmdxi , dxid2xk5 j 2d2xkdxi . ~57!

All the relations existing between the operatord and the exterior forms generated bydxi and
d2xk are faithfully reproduced under the conjugation* if we consider theZ3-graded algebra
generated by the entitiesdxi andd 2xk as a right module over the algebra of functionsF(M ), with
the operatord acting on the right on this module. The rulesd350 andd 350 suggest their natura
extension:

dd5d d50. ~58!

In order to form quadratic expressions that could define a scalar product, we should po
that the algebra generated by the elementsdxi , d2xk and its conjugate algebra generated by
elementsdxi ,dxk commute with each other.

Then, we can define scalar products for the forms of maximal degree 3:^vuf&:5*vf, and
integrating this result with respect to the usual volume element defined on the manifoldM , which
gives explicitly:

E v̄ ikmfprs^dx
idxkdxmudxpdxrdxs&, E c̄ ikxmn̂ dxid2xkud2xmdxn&. ~59!

What remains now is to determine the scalar products of the basis of forms; in order to
the hermiticity of the product, one can always choose an ‘‘orthonormal’’ basis in which we sh
have:

^dxidxkdxmudxpdxrdxs&5ds
id r

kdp
m , ^dx id2xkud2xmdxn&5mdn

idm
k . ~60!

Here the first scalar product is normalized to 1, andm is the ratio between the two types o
‘‘elementary volume.’’ We consider the two types of forms of degree 3,dxidxkdxm andd2xpdxr ,
as being mutually orthogonal. The above scalar product and generalized integral ofZ3-graded
forms enable us to introduce the Lagrangian densities involving quadratic expressions in boFik

and Vikl , which lead to the differential equations of fourth order, which can be lowered
imposing certain conditions on the gauge.
J. Math. Phys., Vol. 38, No. 3, March 1997
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VIII. A TERNARY GENERALIZATION OF LIE ALGEBRAS

Once the ‘‘ternary logic’’ is adopted, it can be quite easily applied to other well-kno
algebraic concepts, e.g., Lie algebras. There are other ternary generalizations of Lie algeb~see,
for example, Refs. 14–17!, from which this one is quite different, as far as we know.

The well-known Ado’s theorem states that any finite-dimensional Lie algebra can be re
with the elements of an associative algebra~the so-called enveloping algebra, whose dimensio
usually much bigger that the dimension of the Lie algebra we started with! so that the skew-
symmetric~and non-associative! multiplication law of the Lie algebra is replaced by the comm
tator [A,B]5AB2BA. The Jacobi identity, which is an independent postulate in the definitio
an abstract Lie algebra, then follows automatically due to the associativity in the envel
algebra.

The skew-symmetric composition law defined by a commutator in an associative algeb
be readily and naturally generalized as follows:

$X,Y,Z%5XYZ1 jYZX1 j 2ZXY1ZYX1 j 2YXZ1 jXZY. ~61!

The ternary ‘‘3-commutator’’ thus defined satisfies the following properties correspondi
the antisymmetry property in the usual case:

$X,Y,Z%5 j $Y,Z,X%5 j 2$Z,X,Y% ~62!

from which follow two identities:

$X,Y,Z%1$Y,Z,X%1$Z,X,Y%50, $X,Y,Z%1 j $Y,Z,X%1 j 2$Z,X,Y%50. ~63!

A very simple result seems very significant here:
Lemma 3:Any finite ternary algebraic structure defined above contains and induce

ordinary Lie algebra structure if the associative algebra includes the unit element~denoted by1
here! commuting with all other elements.

Proof:

$X,1,Y%5~X1Y!1 j ~1YX!1 j 2~YX1!5~XY!1 j ~YX!1 j 2~YX!5XY2YX5@X,Y# ~64!

becausej1 j 2521.
Here again, the Jacobi identity can be reconstructed if we iterate the same ternary brack

the unit element employed twice:

$$X,1,Y%,1,Z%1$$Y,1,Z%,1,X%1$$Z,1,X%,1,Y%5@@X,Y#,Z#1@@Y,Z#,X#1@@Z,X#,Y#50.
~65!

Nevertheless the straightforward ternary generalization of the Jacobi identity is not satisfied
replace the unity 1 by arbitrary elementsS andT of the associative algebra:

$$X,S,Y%,T,Z%1$$Y,S,Z%,T,X%1$$Z,S,X%,T,Y%Þ0. ~66!

The Jacobi identity generalizes in fact in two distinct identities:

$Z,$X,S,T%,Y%1$X,$S,Y,T%,Z%1$Y,$S,T,Z%,X%1$S,$X,Y,Z%,T%

5$Z,$X,T,S%,Y%1$X,$T,Y,S%,Z%1$Y,$T,S,Z%,X%1$T,$X,Y,Z%,S% ~67!

and
J. Math. Phys., Vol. 38, No. 3, March 1997
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$T,$X,Y,Z%,S%1$T,$Y,X,S%,Z%1$T,$Z,S,X%,Y%1$T,$S,Z,Y%,X%

5$S,$Z,X,Y%,T%1$Z,$S,Y,X%,T%1$Y,$X,Z,S%,T%1$X,$Y,S,Z%,T%. ~68!

We can explore the structure of the simplest ternary algebras defined by the abstract
bracket displaying the well-defined symmetry property$X,Y,Z%5 j $Y,Z,X%. We shall start with
an example showing how such a non-associative ternary composition rule can be introduce
without an associative algebra behind.

Let us consider the linear space of the trilinear forms over a givenN-dimensional vector spac
E over complex numbers. In a given basis, any such 3-form can be represented by its comp
UABC , A,B...51,...,N. Suppose also that a metric is defined onE; we can always diagonalize i
and choose the basis in which its components form the Kronecker tensordAB ; its inverse is then
d BC. Now, with the help of the metric we can raise the indices, and the following ter
composition rule for the 3-forms may be defined:

~U,V,W!ABC5d EFUFAGd GHVHBJd
JKWKCE . ~69!

In what follows, we shall just sum over the repeated indices without writing explicitly the me

~U,V,W!ABC5UEAGVGBHWHCE . ~70!

This is the closest analogue of matrix multiplication that we can imagine, although it is
associative, what can be readily verified by definition. Now, in order to come closer to te
analogue of a Lie algebra, we should form a ‘‘ternary commutator’’ as introduced above:

$U,V,W%ABC5~U,V,W!ABC1 j ~V,W,U !ABC1 j 2~W,U,V!ABC . ~71!

Obviously, the resulting 3-form displays the following internal symmetry:

$U,V,W%ABC5 j $U,V,W%BCA5 j 2$U,V,W%CAB . ~72!

If we want our ternaryZ3-graded algebra to be closed under this new composition law, we sh
restrain it to the ternary forms having the above symmetry property. Such 3-forms will sp
vector space over real numbers; its~real! dimension is (N32N)/3.

The most primitive ternary algebra of such 3-forms is obtained when the indicesA,B,... take
on two values only, 1 and 2. The only two independent elements of this algebra are the follo

r121
~1!51, r211

~1!5 j 2, r112
~1!5 j , r212

~2!51, r122
~2!5 j 2, r221

~2!5 j ~73!

all other components vanishing.
Then the following ternary algebra is generated by these two 3-forms:

$r~1!,r~2!,r~1!%52r~2!, $r~2!,r~1!,r~2!%52r~1!. ~74!

By definition, the ternary commutator of the same 3-form taken with itself three time
automatically vanishing.

Suppose now that we wish to represent this algebra by means of associative complex m
with the ternary composition law defined as

$A,B,C%5ABC1 jBCA1 j 2CAB1CBA1 j 2BAC1 jACB. ~75!

In the case of the ternary algebra of the 3-formsra defined above, witha51,2, complex
232-matrices are enough to define the only two elements. It is a simple exercise to prove tha
a realization is given by any two Pauli matrices~e.g.,s3, s2! divided by&.
J. Math. Phys., Vol. 38, No. 3, March 1997
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It is also possible to represent the eight-dimensional ternary algebra obtained when the
A,B,... take three values by means of 333 complex matrices. These may be viewed as
generators of the Lie algebra of the unitary group SU~3!, although in a somewhat unusual bas

IX. TERNARY GENERALIZATION OF CLIFFORD ALGEBRAS

Let us rewrite the usual definition of Clifford algebra

gmgn1gngm52gmn1 ~76!

with m,n51,2,...,N, in a slightly different way, which will immediately suggest theZ3-graded
generalization:

gmgn52gngm12gmn1. ~77!

Let us consider an algebra spanned byN generatorsQk whose ternary products should satis
the identity

Qk1Qk2Qk35%k1k2k3
~s!Qks~1!Qks~2!Qks~3!13hk1k2k31, ~78!

whereki51,...,N, s is the substitution~123!PZ3 and%k1k2k3
is the representation of the cycli

group Z3 by complex numbers which depends on the indicesk1 ,k2 ,k3 ~%k1k2k3
(s)5 j or

%k1k2k3
(s)5 j 2! and does not change under the cyclic permutation of the indices, i.e.,%k1k2k3

5 %k2k3k1
5 %k3k1k2

. If all binary productsQkQm are linearly independent we shall call the algeb
generated byQ1,Q2,...,QN ternary Clifford algebra. In the case where the above identity
ternary products can be derived from some binary identities, we shall call the correspo
algebraZ3-graded Clifford algebra.

Consequently, applying the above relation three times, one obtains the condition on the
h klm:

h klm1%klm~s!h lmk1%klm
2 ~s!hmkl50. ~79!

Since 11%klm1%klm
2 50 the above equation has two independent solutions, namely,

~a!:h klm5h lmk5h mkl, ~b!:h klm5%klm
2 ~s!h lmk5%klm~s!hmkl. ~80!

The first choice~a! implies the following relation for the generatorsQm:

QkQlQm1QlQmQk1QmQkQl53~12%klm
2 ~s!!h klm1, ~81!

whereas the choice of the solution~b! leads to the relation

QkQlQm1QlQmQk1QmQkQl50. ~82!

If ( k,l ,m,n) is a set of indices such thatQkQlQmQnÞ0, then the following condition of consis
tency of representations must be satisfied:

%klm%mkn% lkn%nlm51. ~83!

In this section we shall construct and explore some examples of the above algebra with the

h klm56
1

3
~12%klm

2 ~s!!21(
p51

N

dp
kdp

ldp
m . ~84!
J. Math. Phys., Vol. 38, No. 3, March 1997
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The above tensor satisfies equation~a! and it leads to the algebras whose generators are subje
to the following relations: (Q1)35(Q2)35...5(QN)3561 andQkQlQm5%klm(s)Q

lQmQk if
there are at least two different indices in the triple (k,l ,m).

In the simplest caseN51 the above described construction leads us to the algebras gene
by Q6 which satisfies the relationQ6

3 561. We shall denote the corresponding algebras byC 6
1 .

As a vector space each of the algebrasC 6
1 is spanned by the monomials 1,Q6 ,Q6

2 . The operators
Q1 5 ]u 2 1 u andQ25 j ]u1u2 ~where]u is the Grassmann derivation introduced in Sec. III a
]u 2 5 2 j 2]u

2! acting on the one-dimensionalZ3-graded Grassmann algebra with the generatou
give the matrix representation ofC 1

1 andC 2
1 .

In the caseN52 there are two representations%211, %122 and there is only one consistenc
condition to be satisfied

~%211%122!
251. ~85!

The above condition shows that the representations%211, %122 should be conjugate to each othe
i.e.,%2115%̄122. Let us choose%122~s!5j , %211~s!5j 2. This choice of representations leads to t
following ternary relations:

Q2Q1Q15 j 2Q1Q1Q25 jQ1Q2Q1, Q1Q2Q25 jQ2Q2Q15 j 2Q2Q1Q2. ~86!

Let us rewrite the above relations in the following form:

Qk~Q2Q12 jQ1Q2!50, ~Q2Q12 jQ1Q2!Qk50 with k51,2. ~87!

This form suggests that the ternary relations can be derived from the binary onesQ2Q15 jQ1Q2.
If one associates grade 1 to the generatorsQ1,Q2 then the above binary relation implies th
Q1,Q2 areZ3-commutative generators, i.e.,@Q2,Q1#Z3 5 0. Thus the algebra generated by t
Z3-commutative generatorsQ

1,Q2 of grade 1 such that (Q1)35(Q2)351 is aZ3-graded Clifford
algebra and it provides a realization of the general structure described at the beginning
section forN52. Let us denote this algebra byC Z3

2 . It can be shown thatC Z3
2 is aZ3-graded tensor

product of two copies ofC 1
1 with the multiplication defined as follows:

~A^B!~A8^B8!5 j gr~B!gr~A8!AA8^BB8. ~88!

Now we turn to the matrix representation of the algebraC Z3
2 . The matrix algebras generate

by a pair ofn3n matricesA andB satisfying relations likeAn5Bn561 andAB5mBA, for m
a primitiventh root of unity were studied by Sylvester18 in relation to the quaternion-like algebra
If n53 the pair of matricesA,B gives the matrix realization of theZ3-graded Clifford algebra
C Z3

2 . Sylvester called the elements of this nine-dimensional matrix algebra nonions. The ma

representing the algebraC Z3
2 are the following ones:

Q15S 0 0 1

1 0 0

0 1 0
D , Q25S 0 0 1

j 0 0

0 j 2 0
D , ~89!

where the corresponding operators acting on the Grassmann algebraT 1 have the form
Q15]u21u,Q2 5 ]u2 1 ju 1 ( j 2 2 j )u2]u . So, the concept of a ternary Clifford algebra throw
light upon nonions from a new point of view and leads to interesting conclusions.
J. Math. Phys., Vol. 38, No. 3, March 1997
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X. TERNARY ANALOGUE OF ORTHOGONAL GROUP

It is well known that Clifford algebras and their matrix representations provide an approp
framework for the spinor groups. Therefore the natural question is whether there is an analo
spinor groups covering the group of orthogonal matrices in the case of theZ3-graded Clifford
algebraC Z3

2 . It turns out that the answer to this question is positive and the corresponding

struction leads to the interesting ternary analogue of orthogonal matrices.
We shall use the ternary formsh and h̄ with coefficients transforming according to the law

h i jk5 jh jki5 j 2hki j , h̄ i jk5 j 2h̄ jki5 j h̄ki j ~90!

as the analogues of the skew-symmetric matrices. Let us denote byF the vector space of the
h-like forms and byF̄ the vector space of theh̄-like forms.

The formh has two independent componentsh2115v, h1225x. It is useful in what follows to
associate two vectors to the formh

hv5~h121,h112,h211!5v~ j , j 2,1!, hv85~h212,h221,h122!5x~ j , j 2,1! ~91!

and to consider the formal vectorQv5(Q1,Q2,Q3) ~whereQ35(Q1)2(Q2)2! whose components
are the grade 1 monomials of theC Z3

2 . Thenh(Qv)5vQ2Q1Q1 and h̄(Qv)5xQ1Q2Q2.

Let us now define the mapm: C3→(C Z3
2 ) 1̄ by the formula

m~z!5z1Q
11z2Q

21 jz3Q
3 with z5~z1 ,z2 ,z3!PC3 ~92!

and the linear mapR from the vector spacesF andF̄ to the subalgebra (C Z3
2 ) 0̄ by the formulae

R~h!5h~Qv!, R~ h̄ !5h̄~Qv!. ~93!

The following identities are easily verified:

@R~h!,m~z!#Z35~ j21!m~c~hv!z!, ~94!

@R~ h̄ !,m~z!#Z35~ j21!m~c~hv8!z!, ~95!

where the two mappingsc andw are defined by the formulae

c~x,y,z!5S 0 0 x

y 0 0

0 z 0
D , w~x,y,z!5S 0 y 0

0 0 z

x 0 0
D . ~96!

The subalgebra (C Z3
2 ) 0̄ of the elements of grade 0 is spanned by the monomials 1,T5Q2Q1Q1,

S5Q1Q2Q2 which satisfy the relations

T3k51, T3k115T, T3k125S, S3k51, S3k115S, S3k125T. ~97!

Let us consider the elements of the subalgebra (C Z3
2 ) 0̄ which have the form of Gaussia

expressions

eR~h!5eh~Qv!. ~98!

Let us denote byS the group generated by the above elements. This group is commutativ
any of its elements can be expressed as follows:
J. Math. Phys., Vol. 38, No. 3, March 1997
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g~v!5Q~v!1C~v!T1F~v!S, ~99!

where the coefficients are the functions

Q~v!5 1
3~e

v1ejv1ej
2v!, C~v!5 1

3~e
v1 jej

2v1 j 2ejv!, F~v!5 1
3~e

v1 jejv1 j 2ej
2v!.

~100!

If g~v! andg~v8! are two elements ofS then

g~v!g~v8!5g~v1v8!. ~101!

It turns out that just as in the case of the classical Clifford algebra the identities~94! and~95!
can be realized on the group level and we shall construct this realization only for the first one
the realization of the second one can be done similarly.

Let us consider the functional 333-matrices depending on complex variablev

A~v!5S a~v! b~v! l~v!

j 2l~v! a~v! jb~v!

j 2b~v! jl~v! a~v!
D , ~102!

where the entries are the functions

a~v!5 1
3~e

ve2 j 2v1ejve2v1ej
2ve2 jv!, ~103!

b~v!5 1
3~e

ve2 j 2v1 jejve2v1 j 2ej
2ve2 jv!, ~104!

l~v!5 1
3~ je

ve2 j 2v1ejve2v1 j 2ej
2ve2 jv!. ~105!

Straightforward computations show that

A~v!A~v8!5A~v1v8!, detA~v!51. ~106!

Consequently the above one-parameter matrices form the commutative group we shall de
S * . We letp : S→S * be the map

p~g~v!!5A~v!, ~107!

whereg~v! is an element ofS . One can see thatp is a homomorphism of groups.
It can be proved that

g21~v!m~z!g~v!5m~p~g~v!!z!, ~108!

and the above formula gives the realization of the formula 94 on the group level.
Let A be an arbitrary 333-matrix

A5S a b* l̃

ã1 b1 l1*

a2* b̃2 l2

D . ~109!

We define the cyclic transpositiontc of the 333-matrixA as follows: the entries marked wit
an asterisk undergo the counterclockwise cyclic permutation and the entries marked wit
undergo the clockwise cyclic permutation. Applying this definition to the matrixA one gets
J. Math. Phys., Vol. 38, No. 3, March 1997
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Atc5S a l1* ã1

b̃2 b1 a2*

b* l̃ l2

D . ~110!

Then it can be shown that the one-parameter matricesA~v! satisfy the condition

A~v!Atc~v!Atc
2
~v!5Id . ~111!

The above stated condition can be considered as the ternary generalization of the class
thogonality and the groupS * can be considered as the analogue of the group of orthog
matrices. Taking the matrixA in the exponential formA5eB5Id1B1(1/2!)B21... one can get
the infinitesimal form of the ternary orthogonality, that is

B1Btc1Btc
2
50. ~112!

Note that the matricesc~hv! associated with the formh satisfy the above condition.
The matrix representation of the algebraC Z3

2 allows us to establish the analogue of the spec

case of the Mathai–Quillen formula.19 Let A be a skew-symmetric 232-matrix

A5S 0 a

2a 0D . ~113!

Then the Mathai–Quillen formula in the case of the classical Clifford algebra with two gener
can be written as follows:

Str~e~1/2!g tAg!52i S sinh iaia DAdetA. ~114!

Replacing the supertrace by the notion of theZ3-graded trace~hypertrace! defined in Sec. V
and making use of the matrix representation ofC Z3

2 described in Sec. IX one obtains theZ3-graded

analogue of the Mathai–Quillen formula

trZ3~e
h~Pv!!53v21F~v!A3 det~c~hv!!. ~115!

For a more detailed exposition, see Ref. 20.

XI. Z3-ANALOGUE OF THE DIRAC EQUATION

The Z3-graded generalization of Grassmann algebra discussed in Sec. III leads to a n
generalization of the superfields as the fields composed of different contributions proportio
all possible monomials in theZ3-graded generatorsu A and ū B, i.e.,

F~u A,ū B,xm!5f0~x
m!1cA~xm!u A1 ū Bc̄B1xABu

Au B1.... ~116!

However, this approach is made in the context of the second quantization, with ope
valued fields. One could ask if the ternary character of such a theory could not be perceive
at a deeper level, i.e., in the algebraic properties of the complex valued wave functions
would be the solutions of some Schro¨dinger-like differential equations of a new type.

The usual~binary! Clifford algebra appears in a natural manner in Dirac’s equation which
in a sense, a ‘‘square root’’ of the Klein–Gordon equation. With the use of the ternary Cli
algebra defined above, theZ3-graded generalization of Dirac’s equation should read:
J. Math. Phys., Vol. 38, No. 3, March 1997
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]c

]t
5Q1

]c

]x
1Q2

]c

]y
1Q3

]c

]z
1Tmc, ~117!

wherec stays for a triplet of wave functions, which can be considered either as a column, o
grade 1 matrix with three non-vanishing entriesuvw,

Q15S 0 0 1

1 0 0

0 1 0
D , Q25S 0 0 1

j 0 0

0 j 2 0
D , Q35S 0 0 1

j 2 0 0

0 j 0
D ~118!

andT is the diagonal 333 matrix with the eigenvalues 1,j and j 2. It is interesting to note that this
is possible only with three spatial coordinates.

In order to diagonalize this equation, we must act three times with the same operator,
will lead to the equation of third order, satisfied by each of the three componentsu,v,w, e.g.,

]3u

]t3
5F ]3

]x3
1

]3

]y3
1

]3

]z3
23

]3

]x]y]zGu1m3u. ~119!

This equation can be solved by separation of variables; the time-dependent and the
dependent factors are linear combinations ofQ(vt), C(vt), F(vt) andQ~k–r !, C~k–r !, F~k–r !.
Their nine independent products can be represented in a basis of real functions as

S A11e
vt1k–r A12e

vt2@~k–r !/2# cosj A13e
vt2@~k–r !/2# sin j

A21e
2~vt/2!1k–r cost A22e

2vt/22@~k–r !/2# cost cosj A23e
2vt/22@~k–r !/2# cost sin j

A31e
2~vt/2!1k–r sin t A32e

2vt/22@~k–r !/2# sin t cosj A33e
2vt/22@~k–r !/2# sin t sin j

D ,
~120!

wheret5~)/2!vt andj5~)/2!k–r .
The parameters v, k, and m must satisfy the cubic dispersion relatio

v35kx
31ky

31kz
323kxkykz1m3. Although neither of the solutions belong to the space of te

pered distributions, it is possible to combine them into solutions of the ordinary Klein–Go
equation: The ternary skew-symmetric products contain only trigonometric functions, depe
on the combinations 2~t2j! and 2~t1j!. As a matter of fact, not only the determinant, but al
each of the minors of this matrix is a combination of the trigonometric functions only. The s
is true for the binary products of ‘‘conjugate’’ solutions, with opposite signs forvt andk–r in the
exponentials. It is possible to find new parameters, which are linear combinations ofv, k, andm,
that will satisfy quadratic relations that may be interpreted as a mass shell equation.

XII. CONCLUSION

It is clear from these examples that most of the mathematical structures that are com
used in supersymmetric theories can be generalized from theZ2-graded case to theZ3-graded case.
These generalizations, though, are very different in their spirit from other generalizations k
as fractional supersymmetry.

The most important difference is that ternary rather than binary relations define the alg
structures of functions and fields. Moreover, the ternary principle is extended in a natural w
all the algebraic structures used in the classical field theories, such as Grassmann, Lie, and
algebras.

The obvious inspiration for investigating this type of mathematical structure comes from
idea that the confinement of quarks should have its origin in the special algebraic structure
J. Math. Phys., Vol. 38, No. 3, March 1997
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corresponding fields, which might elude the usual rules of quantum field theory, as well a
observation in the form of a free field. We hope that further work in this direction will contrib
to shed some light on these problems.
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Marsden–Weinstein reduction on graded symplectic
manifolds

P. Baguisa) and T. Stavracoub)
Centre de Physique The´orique, CNRS, Luminy, Case 907-F-13288,
Marseille, Cedex 9, France
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We extend the Marsden–Weinstein reduction of Hamiltonian systems with sym-
metry to the category of graded manifolds. We define free, proper, and symplectic
actions in the graded setting; especially for the symplectic actions of graded Lie
groups, it is possible to speak about momentum mappings. We also examine the
reduction of the graded Hamiltonian derivations which determines the dynamics on
the reduced phase space for constrained supersystems with symmetry. We apply the
general formalism to specific examples, thus constructing graded~complex! projec-
tive spaces, and proving that the coadjoint orbits of graded Lie groups are reduced
graded symplectic manifolds. ©1997 American Institute of Physics.
@S0022-2488~97!00103-5#

I. INTRODUCTION

Graded manifolds are geometrical objects introduced by Kostant1 and Berezin and Leites2 as
the natural mathematical tool in order to study supersymmetric problems. In particular, th
malism of graded manifolds provides the possibility of dealing with classical dynamics of par
with spin. Indeed, it has been proved3 that the extension of ordinary phase spaces by anticomm
ing variables yields the classical phase spaces of particles with spin. Thus, Kostant’s work1 can be
also considered as a treatment on Hamiltonian supersystems and their geometrical prequan
Lagrangian supermechanics has been also developed with emphasis mainly on var
problems4–6 ~for another perspective see Refs. 7 and 8!.

The problem of reduction of phase space and dynamics for ordinary Hamiltonian system
been successfully treated in Refs. 9–11. The analogous problem in the graded case is mu
understood; a first study in the context of Poisson supermanifolds has appeared in Ref. 12
present article we focus our attention on the reduction problem for Hamiltonian systems on g
symplectic manifolds, establishing a supersymmetric analog of the Marsden–Weinstein proc
The central results are stated in Theorems 5.1 and 6.1; in addition, the specific applic
discussed in the last section give new insight in graded symplectic geometry.

Theorem 5.1 is formally very similar to the usual Marsden–Weinstein reduction theo
however, its formulation and proof involves subtleties and difficulties, which, unlike the ordi
reduction, cannot be dealt with by straightforward reasoning. To be more precise, par
emphasis has been given in clarifying the meaning of free and proper action in the graded s
To this end, in Sec. III we propose a candidate for the free action of a graded Lie group; we
that this notion, together with a proper action on the underlying differentiable manifolds, pro
a sufficient condition for the corresponding quotient ringed space to be a graded manifold.

The next task is to find an appropriate notion of equivariant momentum mapping. Note
that in our context, momentum mappings arise in a natural way from the definition of the
plectic action of a graded Lie group~see Sec. IV!. Our notion of equivariance, also presented
Sec. IV, turns out to be related to the morphism of Poisson supermanifolds~Proposition 4.4! in the

a!Electronic mail: baguis@cpt.univ-mrs.fr
b!Electronic mail: jenny@cpt.univ-mrs.fr
0022-2488/97/38(3)/1670/15/$10.00
1670 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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sense of Refs. 12 and 13. Furthermore, we prove~Lemma 5.2! that the graded submanifold define
by a regular value of an equivariant momentum map is preserved by the action of the g
isotropy subgroup of that value.

The final technical difficulties of the reduction theorem in the graded setting concer
calculation—without reference to graded coordinate systems—of pullbacks of graded differ
forms under morphisms of graded manifolds which are not isomorphisms~for example, inclusions
and projections!; we tackle this problem by developing the necessary tools in Proposition 2.1
Sec. V.

The importance of Theorem 5.1 lies in the fact that it accomplishes the construction
graded symplectic structure on the reduced phase space. This result solves the problem o
tion only as far as the relevant phase spaces are concerned; the dynamics on the reduced
dealt with in Theorem 6.1, which describes the reduction of graded Hamiltonian vector fi
When the reduction concerns an even vector field, the problem becomes geometrically
intuitive because in this case there exists a local flow,14 with parameter spaceR ~the real num-
bers!. As we explain after the proof of Theorem 6.1, this flow respects the constrained sub
fold and projects to the local flow of the reduced graded Hamiltonian vector field.

In Sec. VII we discuss three examples where the graded reduction procedure can be a
In the first example we examine the possibility of considering graded Hamiltonians as mom
mappings. Our analysis shows that, despite the aforementioned formal similarity betwe
ordinary and the graded Marsden–Weinstein reduction, in the graded case one encounte
interesting situations, stemming from graded Lie theoretic phenomena without analog in t
dinary case. Thus, an even Hamiltonian can be considered as momentum mapping of a sym
action of~R, C`! on the graded symplectic manifold; on the other hand, a Hamiltonian with e
and odd parts can be considered as momentum mapping for a symplectic action ofR1u1 equipped
with its standard, Abelian, graded Lie group structure. The dimensions of the reduced
spaces are in general different; this has no analog in ordinary symplectic geometry. The
example makes use of these results and explains how one can construct new graded sym
manifolds from given ones. In particular, by reducing the dynamics of the superoscillato
obtain graded symplectic manifold structures on complex projective spaces. In the third exa
we consider the results of Ref. 1 concerning graded coadjoint orbits in the framework of g
reduction. The result here is that these coadjoint orbits can be considered as reduced phas
for the dynamics on the cotangent bundle of the corresponding graded Lie group. The role
graded coadjoint orbit as phase space of a Hamiltonian supersystem is thus clearly revealed
setting.

It is important to emphasize that in our approach the graded symplectic manifold
equipped withevensymplectic structures, for which a graded Darboux theorem holds, as sho
Ref. 1. This essentially confirms that the even symplectic structures constitute the natural
alization of the usual ones, which arise as a subcase when the grading becomes trivia
though one could also consider odd graded symplectic manifolds, as we show in Sec. IV, th
structure forbids the existence of momentum mappings for symplectic actions. Thus, the st
reduction of supersystems with symmetry related to the Hamiltonian action of a graded Lie
is impossible in the odd case. Despite this fact, it would still be possible to speak about red
with odd structures if one could appropriately generalize the algebraic techniques develo
Refs. 15 and 16. In such a case, one has to overcome, for example, the drawback that the
of superfunctions of an odd graded symplectic manifold is not a Poisson superalgebra. P
some additional structure on the graded manifolds is needed in order to bypass such diffi
but such task lies beyond the scope of the present work.

The material of the article is divided as follows. In Sec. II we recall the fundamental as
of graded manifold theory, putting emphasis on the notion of graded submanifold, whi
necessary for the reduction problem. In Sec. III we deal with actions of graded Lie group
approach followed here is close in spirit to Ref. 17. We define free and proper action in the g
J. Math. Phys., Vol. 38, No. 3, March 1997
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setting and we study some general properties of the graded Lie group actions useful f
examples~Sec. VII!. Especially for example 3, the characterization of the coadjoint action
graded Lie group given in Proposition 3.7 is of fundamental importance. In Sec. IV we defin
symplectic action and the momentum mapping as a global solution of the differential system
by the defining properties of such an action. We introduce the notion of equivariance fo
momentum map and we exhibit its relation with the morphism of Poisson supermanifolds o
13. The main results of the article are stated and proved in Secs. V and VI. Finally, in Sec. V
discuss three examples where the graded reduction can be applied.

A. Notational conventions

For an algebraA, A* denotes the full dual ofA andA° the finite dual~in contrast to Kostant’s
conventions whereA8 denotes the full andA* the finite dual!. The unit ofA will be denoted by1
without any reference toA, when there is no risk of confusion. Throughout the article the te
‘‘graded commutative’’ means ‘‘Z2-graded commutative,’’ unless otherwise stated. IfE is a
Z2-graded vector space, thenE0 andE1 stand for its even and odd subspaces:E5E0%E1 . For an
elementvPEi , i51,2, uvu5 i denotes theZ2-degree ofv. Elements belonging only toE0 orE1 are
called homogeneous~even or odd, respectively!.

II. GRADED MANIFOLDS

In this section, we review some basic material concerning graded manifold theory from
1, 18, and 19. We also discuss a technique for computing pull-backs of graded differential
which are very useful for the subsequent analysis.

A ringed space~M ,A! is called a graded manifold of dimension (m,n) if M is a differentiable
manifold of dimensionm, A is a sheaf of graded commutative algebras, there exist a s
epimorphism%:A→C` and for each openU, an open covering$Vi% such thatA(Vi) is isomor-
phic as a graded commutative algebra toC`(Vi)^LRn, in a manner compatible with the restric
tion morphisms of the sheaves involved. Here,C` stands for the sheaf of differentiable function
on M , equipped with its trivial grading:„C`(U)…05C`(U) for each open subsetU,M . The
numbern is called odd dimension of~M ,A! and the open subsetVi , for eachi , anA-splitting
neighborhood.

We define a morphisms:~M ,A!→~N,B! between two graded manifolds as being a morphi
of graded commutative algebrass * : B(N)→A(M ). The set of graded manifolds togeth
with the above notion of morphism forms a category in which there exists product struct6

In accordance with Ref. 6, if ~P,C !5~M ,A!3~N,B!, then P5M3N and C (P)
5A(M ) ^̂pB(N), wherep means the completion ofA(M )^B(N) with respect to Grothend
ieck’s p-topology.20

If pPM , then we denote asdp :A(M )→R the morphism of graded algebras given
dpf5%( f )(p), ;fPA(M ). The elements of the formdp for pPM are the unique grouplike
elements of the graded coalgebraA(M )°, the finite dual ofA(M ). The set of primitive elements
ofA(M )° with respect todp is the tangent spaceTp~M ,A! of ~M ,A! at pPM . In particular, for
each derivationjPDerA(M ), we may define a tangent vectorj̃pPTp~M ,A! as j̃p5dp+j.

Each morphisms :~M ,A!→~N,B! of graded manifolds gives rise to a morphis
s
*
:A(M )°→B(N)° of the corresponding graded coalgebras:s

*
a( f )5a(s * f ), ;aPA(M )°,

fPB(N). The morphisms
*
respects the grouplike as well as the primitive elements of the gra

coalgebras. But in general, there is no way to ‘‘push-forward’’ a derivation by means of a
phism s. Thus, if jPDerA(M ) and hPDerB(N), we say thatj and h are s-related if
j+s *5s * +h. In particular, whens is an isomorphism, for eachj, the derivationh5~s * !21+j+s *
is s-related toj; we noteh5s

*
j andj5s *h. If s is a surjective submersion andj+s *5s * +h,

thenh is unique, and we say thatj is s-projectable andh5s
*
j is its projection. If, in addition,

s
*
j50, we say thatj is vertical. We denote asP ro~s

*
,A!(M ) andV er~s

*
,A!(M ) the sets of

projectable and vertical derivations, respectively.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Next, let ~M ,A! be a graded manifold. The setV~M ,A! of graded differential forms on
~M ,A! is the set of multilinear@with coefficients inA(M )# super-antisymmetric forms takin
values inA(M ). Their properties have been extensively studied in Ref. 1. Here, we limit
selves to discuss a technique useful for the computation of pull-backs of these forms. We
Kostant’s conventions denoting as~j1,...,jr ua! the value ofaPVr~M ,A! on j1,...,jrPDerA(M ).

Proposition 2.1: Lets : ~M ,A!→~N,B! be a morphism of graded manifolds, W,N and U
5s

*
21(W),M . Then, if aPVr~W,B! and jiPDerA(U), hiPDerB(W) are s-related for

i51,...,r , we have

~j1 ,...,j r us*a!5s* ~h1 ,...,h r ua!. ~2.1!

Proof:Using the fact thatV~W,B! is the exterior algebra ofV1~W,B!, it is sufficient to prove
this formula for a5d f , fPB(W). If jPDerA(U) and hPDerB(W) are s-related, then
~jus*a!5„jud(s* f )…5j(s * f )5s* (h f )5s* (hud f )5s* (hua). j

The notion of graded submanifold possesses an analog in the graded setting.1 We now recall,
a method for constructing graded submanifolds using a morphism of graded manifolds.18,19 Let
J:~Y,B!→~X,A! be a morphism andxPX a regular value ofJ, that is for eachzPJ

*
21(x),Y,

the tangent mapTzJ5J
*
:Tz~Y,B!→Tx~X,A! is surjective. If dim~Y,B!5(m,n) and dim~X,A!

5(p,q), then there exists a graded submanifold~Z,D! of ~Y,B! such thatZ5J
*
21(x), dim~Z,D!

5(m2p,n2q) and for each zPZ, Tz~Z,D!5kerTzJ. Further, the natural inclusion
i :~Z,D!�~Y,B! is such that keri *5B(Y)• J* kerdx . Then the following is immediate:

Lemma 2.2:~1! Let hPDerB(Y) be aker i * -preserving derivation. Then, for each eleme
fPA(X), the elementh(J* f ) belongs toker i * .

~2! If the derivationjPDerB(Y) has the propertyj̃zPTz~Z,D!, ;zPZ, then there exists a
derivationhPDer D(Z) which is i-related toj.

In order to put emphasis on the special structure of graded submanifolds of this type, w
often note~Z,D!5J21(x).

III. ACTIONS AND QUOTIENT STRUCTURES

A graded manifold~G,A! is called graded Lie group ifG is a Lie group and the grade
algebraA(G) has the structure of a graded Hopf algebra with antipode.1,17 We will denote by
DA , eA , andsA the coproduct, counit, and antipode ofA(G). The algebra multiplication on
A(G)° is given by the convolution product: (a(b)( f )5(a^b)DA( f ), ;a,bPA(G)°,
fPA(G). The tangent spaceTe~G,A! has a natural structure of Lie superalgebra which we n
by g.

The action of a Lie group on a differentiable manifold possesses an analog in the g
setting.1,17 Actions of graded Lie groups constitute a very important ingredient of the gra
reduction problem with symmetry.

Definition 3.1: We say that the graded Lie group~G,A! acts on the graded manifold~Y,B!
to the left if there exists a morphismF:~G,A!3~Y,B!→~Y,B! of graded manifolds such that th
corresponding morphism of graded commutative algebrasF* :B(Y)→A(G) ^̂pB(Y) defines a
structure of leftA(G)-comodule onB(Y). Similarly, one defines the right action.

In other words, ifF is a left action, then the morphismF* has the following properties:

~DA^ id!+F*5~ id^ F* !+F* , ~eA^ id!+F*5 id. ~3.1!

Furthermore, one may introduce, for eachaPA(G) + and bPB(Y) +, two linear maps
~F* !a :B(Y)→B(Y) and ~F* !b :B(Y)→A(G) as follows:

~F* !a5~a^ id!+F* and ~F* !b5~ id^b!+F* . ~3.2!
J. Math. Phys., Vol. 38, No. 3, March 1997
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The following theorem, which implicitly exists in Ref. 1, clarifies the role of these maps. We g
however, a short proof because the properties of these maps will be important in the sequ

Theorem 3.2:~1! If a and b are grouplike elements, then~F* !a is an isomorphism and~F* !b
is a morphism of graded commutative algebras. In particular, if a5dg and b5dy , then we denote
the corresponding morphisms of graded manifolds asFg :~Y,B!→~Y,B! andFy :~G,A!→~Y,B!,
soFg*5(F* )dg

andFy*5(F* )dy
.

~2! If a is a primitive element with respect tode , then~F* !aPDerB(Y). We call~F* !a the
induced (by the element a) derivation onB(Y).

Proof: ~1! Let aPA(G) + be a grouplike element,a5dg , gPG. Then it is clear that
~F* !a151. On the other hand, iff 1 , f 2PB(Y), F* f 15( ig1i ^ f 1i , F* f 25( jg2 j ^ f 2 j , then

~F* !a~ f 1f 2!5(
i , j

~21! u f1i uug2 j ua~g1i !a~g2 j ! f 1i f 2 j5~F* !af 1•~F* !af 2 .

Therefore,~F* !a is a morphism of graded commutative algebras@we proceed in the same way fo
~F* !b#. One can directly verify that the properties (F* )a1(a2

5(21)ua1uua2u(F* )a2+(F* )a1,
FeA
* 5 id hold for everya1 ,a2PA(G) +; this proves that the~F* !a is also an isomorphism.

~2! Consider an elementaPg. Let f 1 and f 2 be as previously; we take

~F* !a~ f 1f 2!5(
i , j

~21! u f1i uug2 j ua~g1i !eA~g2 j ! f 1i f 2 j

1(
i , j

~21! u f1i uug2 j u1uauug1i ueA~g1i !a~g2 j ! f 1i f 2 j

5@~F* !af 1# f 21~21! uauu f1u f 1@~F* !af 2#. j

As an immediate consequence of the previous theorem, one can prove that each gra
group ~G,A! is parallelizable as graded manifold, that is, the graded Lie algebraDerA(G)
admits a global basis consisting ofm even andn odd derivations, if dim~G,A!5(m,n). This
results immediately from Theorem 3.2 using Proposition 2.12.1 of Ref. 1 and the fact th
coproductDA defines a structure of left~and right! A(G)-comodule onA(G). We will denote
the corresponding left and right actions asL andR, respectively.

Let nowG be a Lie group,~Y,B! a graded manifold, andFg :B(Y)→B(Y), ;gPG, mor-
phisms of graded commutative algebras with the propertiesFg+Fh5Fhg andFe5id. Then, there
clearly exists a left actionF:(G,C`)3~Y,B!→~Y,B! such thatFg*5Fg . Furthermore, this action
is unique: suppose that there exists a second left actionC such thatCg*5Fg . Then for each
bPB(Y) + we takeF

*
(dg^b)5C

*
(dg^b)5Fg*

(b). If now vPg5g0%0, we findF* (v^b)
5(d/dt)u0(Fexptv)* (b)5C* (v^b). This means thatF

*
andC

*
coincide. We thus conclude tha

the morphismsFg determine uniquely a left action of the Lie group~G,C`! on the graded
manifold ~Y,B!.

For the subsequent analysis, a graded generalization of free actions will be necessary
Definition 3.3: We call the left actionF:~G,A!3~Y,B!→~Y,B! free, if for each yPY the

morphismFy :~G,A!→~Y,B! is such thatFy*
:A(G) +→B(Y) + is injective.

It is clear that if~G,A! acts freely on~Y,B!, then we obtain a free action ofG on Y, but if
only the restrictionF

* uG3Y is a free action then, in general, the actionF is not free.
Proposition 3.4: LetF:~G,A!3~Y,B!→~Y,B! be a left action, s the antipode morphism o

~G,A!, s*5sA , D the diagonal morphism on~G,A!3~Y,B! andp1 andp2 the projections onto
the corresponding factors. Then~1! the morphismF15~p13F!+D is an isomorphism of graded
manifolds and its inverse is given byF1

215@p13F+~s3id!#+D.
~2! The action is free if and only if the morphismF25~F3p2!+D is such thatF2 is injective.
*

J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: Consider elementsa5dgPA(G) +, b5dyPB(Y) + grouplike and uPTy~Y,B!,
wPTg~G,A! primitive. Then, a simple calculation gives

F1* ~a^b!5a^ Fg* ~b!, ~3.3!

F1* ~a^u1w^b!5a^ @Fg* ~u!1Fy* ~w!#1w^ Fg* ~b!, ~3.4!

F2* ~a^b!5Fy* ~a! ^b, ~3.5!

F2* ~a^u1w^b!5@Fg* ~u!1Fy* ~w!# ^b1Fg* ~b! ^u. ~3.6!

It is then clear from~3.3! and ~3.4! that F1*
is bijective on grouplike and primitive element

thanks to Theorem 2.16 of Ref. 1,F1 is an isomorphism of graded manifolds. Suppose now t
F is a free action; then the morphismFy*

:A(G) +→B(Y) + is injective, which implies immedi-
ately, thanks to~3.5! and ~3.6!, thatF2*

is injective on all grouplike and primitive elements. B
Proposition 2.17.1 of Ref. 1, this is a necessary and sufficient condition for the morphismF2*

to
be injective on the whole graded coalgebraA(G) +. The converse is immediate again by~3.5! and
~3.6!. j

As one knows from differential geometry, the orbit spaceY/G of an action of the Lie group
G on the manifoldY is a differentiable manifold if and only if the graph of the equivalen
relationgy;y is a closed submanifold ofY3Y ~see, for example, Ref. 10!. We generalize the
above condition on the action, in the graded context, as follows:

Definition 3.5: We call a left actionF:~G,A!3~Y,B!→~Y,B! regular, if the morphismF2
defines~G,A!3~Y,B! as a closed graded submanifold of~Y,B!3~Y,B!.

Using the previous notion of regular action as well as the results of Ref. 17 on graded qu
structures, one proves the following.

Theorem 3.6: The actionF:~G,A!3~Y,B!→~Y,B! is regular if and only if the quotient
~Y/G,B/A! is a graded manifold.

Proof: Thanks to Theorem 2.6 of Ref. 17, it suffices to show that the morphisms of gr
coalgebras~pi+F2!*

:A(G) +
^B(Y) +→B(Y) +, i51,2, restricted to primitive elements are surje

tive @pi being the projections~Y,B!3~Y,B!→~Y,B! onto the first and second factor, respe
tively#. Consider an arbitrary primitive elementV5a^u1w^b, for a5dgPA(G) +,
b5dyPB(Y) + grouplike anduPTy~Y,B!, wPTg~G,A! primitive. Using relation~3.6!, we easily
takep1*

F2*
(V)5Fg*

(u)1Fy*
(w) andp2*

F2*
(V)5u, which in view of Theorem 3.2, prove

that pi+F2 are submersions,i51,2. j

In particular, if the graded Lie group~G,A! acts freely on~Y,B! and the restriction of this
action to grouplike elements gives rise to a proper action ofG onY, then the quotient~Y/G,B/A!
is a graded manifold. In fact, it is sufficient to apply Proposition 2.17.4 of Ref. 1 w
H5im~F2*

!,B(Y) +
^B(Y) +. Then the result is immediate becauseF is free, so by Proposition

3.4,F2*
is injective. In such a case, we say that~G,A! acts freely and properly on~Y,B!.

Adjoint and coadjoint actions of a Lie group possess graded analogs.1 We denote the corre
sponding actions in the graded setting as Ad:~G,A!3~g0,Ag!→~g0,Ag! and Coad:(G,A)
3(g0* ,Ag* )→(g0* ,Ag* ). Recall here that ifV5V0%V1 is a graded vector space, then there ex
a graded manifold (V0 ,AV), the linear graded manifold associated toV, whose underlying mani-
fold is V0 and the sheafAV over V0 is given, for each openU#V0 , by AV(U).C`(U)
^ LV1* .

Especially for the coadjoint action, which is fundamental in the reduction problem, we
the following equivalent characterization.

Proposition 3.7: LetvPg,Ag* (g0* ), $ei% a basis ofg, and (L* )v5( iF
i(R* )ei,F

iPA(G).

Then, the coadjoint action of~G,A! on (g0* ,Ag* ) is the morphism of graded manifolds dete
mined by the linear mapv°( iF

i
^ei .
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: Using the fact that~G,A! is parallelizable, we always have the decomposit
(L* )v5( iF

i(R* )ei,F
iPA(G). Let alsogPG andaPg be arbitrary elements. Then, direct ca

culation shows that2[a,v]5( ia(F
i)ei and Adg21* v5( idg(F

i)ei . But these are exactly the
defining properties of the coadjoint action via a representationA(G) +→Endg* ~see Ref. 1!. j

If F is a left action of~G,A! on ~Y,B! andyPY, then the graded isotropy subgroup ofy is

determined by the setI y5$aPA(G) +uF* (a^ dy)5eA
+ (a)dy%,

1 eA
+ being the counit ofA(G) +.

In fact, if I yùG5Gy and I yùg5gy , then one can form the Lie–Hopf subalgebraR(Gy)'E~gy!
of A(G) +, thus giving rise to a graded Lie subgroup~Gy ,Ay! of ~G,A!.

IV. GRADED SYMPLECTIC MANIFOLDS—MOMENTUM MAPPING

Our aim in this section is to define and study momentum mappings in the graded symp
manifold setting. Let us first fix our notation and conventions concerning graded symp
manifolds from Ref. 1 recalling some background material.

Let vPV2~Y,B! be a graded differential two-form. We say thatv is nondegenerate if the
B(Y)-linear mapv[:DerB(Y)→V1~Y,B! given byv[~j!5i~j!v is an isomorphism. A graded
symplectic manifold is a graded manifold~Y,B! together with a closed, even, nondegener
two-form vPV2~Y,B!0. We often write ~Y,B,v! to give emphasis to the graded symplec
structure. Notice that the differentiable manifoldY will necessarily be an ordinary symplect
manifold.

Consider now a derivationjPDerB(Y) ~graded vector field!. We say thatj is locally
Hamiltonian ifLjv50, or, equivalentlydi~j!v50. We callj Hamiltonian if i~j!v is exact, that is,
if there existsfPB(Y) such thati~j!v5d f . In such a case,j is called Hamiltonian derivation
associated tof and we note it byjf . Conversely, for eachfPB(Y) the equationi(j f)v5d f
uniquely determinesjf becausev is nondegenerate. In fact,j f5(v[)21(d f ).

Generally, a morphismI :~Y1,B1,v1!→~Y2,B2,v2! of graded symplectic manifolds will be
called graded symplectic morphism, ifI *v25v1.

Next consider a graded Lie group~G,A! acting to the left on the graded symplectic manifo
~Y,B,v!, F:~G,A!3~Y,B!→~Y,B!. We say that the action is symplectic if~1! for each grouplike
elementa5dgPA(G) +, the isomorphismFg is a graded symplectic isomorphism and~2! for each
primitive elementvPg,A(G) +, L(F* )vv50. Similarly, we say thatHPB(Y) is invariant under

the action@or ~G,A!-invariant# if Fg*H5H and ~F* !vH50, ;gPG, ;vPg.
Let us now turn our attention to momentum mappings.
Definition 4.1: Let~Y,B,v! be a graded symplectic manifold andF:~G,A!3~Y,B!→~Y,B!

be a symplectic action of the graded Lie group~G,A!. We say that a morphism of grade
manifolds J:(Y,B)→(g0* ,Ag* ) is a momentum map for the action if the following equation
true:

jJ* v5~F* !v ~4.1!

for each primitive elementv with respect tode , vPg.
It is clear that the momentum map of the previous definition constitutes, roughly speak

global solution of the differential systemdi@~F* !v#v50, determined by the defining properties
the symplectic action. Further, Eq.~4.1! makes sense becauseg,Ag* (g0* ) andv is even. Indeed,
if v were odd, thenuj f u5u f u11, so Eq.~4.1! never holds unless the two members are ze
becauseu(F* )vu5uvu. Therefore, the dependence of the previous definition on the fact tha
graded symplectic forms are even is essential. Finally, it is immediate that the restr
J* uY:Y→g0* is an ordinary momentum mapping.

As we prove in the following proposition, the fundamental conservation law provided
momentum mappings in ordinary symplectic geometry is still valid in this context.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proposition 4.2: LetF be a symplectic action of~G,A! on ~Y,B,v! with momentum mapping
J. If HPB(Y) is invariant under the action, then J is an integral forjH , that is,
jH(J* v)5$H,J* v%50, ;vPg.

Proof: Let f ,gPB(Y) be two homogeneous elements andj f ,jgPDerB(Y) are the corre-
sponding Hamiltonian derivations. Then, we easily take (j f ,jguv)5(21)uj f uujgu

„jgu i(j f)v…
52„j f u i(jg)v…. Setting f5H and g5J* v and taking into account relation~4.1!, the equation
jH(J* v)50 is straightforward. j

The notion of equivariance of a momentum map possesses also a graded analog. I
follows we restrict our attention only to equivariant momentum maps.

Definition 4.3: A momentum mapping is called equivariant ifF* +J*5~id^J* !+Coad* .
In analogy with the usual symplectic geometry, the algebraB(Y) of the graded symplectic

manifold ~Y,B,v! is a graded Lie algebra, the Lie bracket being given by the Poisson brack
f ,gPB(Y), then we set$ f ,g%5j fg52(j f ,jguv). With respect to this graded Lie algebra stru
ture onB(Y) the following proposition is true.

Proposition 4.4: An equivariant momentum map J:(Y,B)→(g0* ,Ag* ) defines a graded Lie
algebra antimorphism J* :g→B(Y).

Proof: Let u andv be two elements ofg,Ag* (g0* ) and let us calculate the Poisson brack
$J* u,J* v%. We have $J* u,J* v%5jJ* u(J* v)5(F* )u(J* v)5~u^id!+F* (J* v)
5J* ~Coad* !u(v) 52J* ([u, v])5(21)uuuuvuJ* ([v, u]), where we have used Definition 4.3 a
well as the fact that~Coad* !u(v)52[u, v] for eachu,vPg. j

Clearly, the linear map2J* :g→B(Y) is a Lie algebra morphism defining thus a morphism
graded Poisson manifolds (Y,B)→(g0* ,Ag* ) ~see Refs. 12 and 13!; notice that the minus sign is
due to the fact that we use left actions.

V. A GRADED SYMPLECTIC REDUCTION THEOREM

Let M be a manifold andv a closed two-form onM . Then we know10 that the characteristic
distributionEv5$vPTMui(v)v50% of v is an involutive distribution onM , if v has constant
rank. By Frobenius theorem,Ev is integrable and defines a foliationF of M . The quotient space
M /F , if it is a manifold, has a natural symplectic structure and the procedure giving this quo
symplectic manifold is called reduction.

In the context of graded manifold theory, there exist analogs of Frobenius theorem o
special cases~see Refs. 14 and 21!. But as we will prove in the sequel, for the special case wh
the quotient is defined by the action of a graded Lie group, we may establish a reduction th
generalizing the usual Marsden–Weinstein reduction.9–11More precisely, the following is true.

Graded Marsden–Weinstein Reduction Theorem 5.1:Let ~Y,B,v! be a graded symplectic
manifold on which the graded Lie group~G,A! acts symplectically to the left, and le
J:(Y,B)→(g0* ,Ag* ) be an equivariant momentum map for this action. AssumemPg0* is a
regular value of J. Then, the graded isotropy subgroup~Gm ,Am! at m with respect to the coad
joint action on(g0* ,Ag* ) acts on J

21~m!5~Zm ,Dm!, where Zm5J
*
21(m),Y is a closed submani

fold of Y. Suppose furthermore that this action is free and proper, so that the quo
~Ym ,Bm!5~Zm/Gm ,Dm/Am! is a graded manifold. Then there exists a unique symplectic formvm

on ~Ym ,Bm! with the property

pm*vm5 im*v,

wherepm :~Zm ,Dm!→~Ym ,Bm! is the canonical projection, and im :~Zm ,Dm!→~Y,B! is the inclu-
sion.

We postpone the proof of the theorem to the next section; we establish first some prelim
results, which will significantly simplify the presentation of the proof.
J. Math. Phys., Vol. 38, No. 3, March 1997
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In the usual symplectic geometry, the equivariance of the momentum mapping ensure
the level setZm5J21(m) is stable under the action ofGm . In the graded setting, this property
not evident, but still remains valid as the following lemma confirms.

Lemma 5.2: If the momentum map J:(Y,B)→(g0* ,Ag* ) is equivariant, then the action o
~G,A! restricts to a left action of~Gm ,Am! on the level set J21~m!5~Zm ,Dm!.

Proof: Let F be the action of~G,A! on ~Y,B! and j m : ~Gm ,Am!→~G,A! the inclusion.
Then, we define a morphism of graded commutative algebrasF* : Dm~Zm!→Am~Gm!

^̂pDm(Zm) settingF̄* ( im* f )5( j m* ^ im* )F* f , for eachfPB(Y). Clearly,F* has the properties
of a left action, so it rests to show that it is well defined. It is sufficient to prove that iff 1 and f 2
have the same projection underim* , im* f 15 im* f 2, then (j m* ^ im* )F* f 15( j m* ^ im* )F* f 2. But we
have that kerim*5B(Y)•J* ker dm , that is there existhıPkerdm such thatf 15 f 21( ig

i
•J* hi

for giPB(Y). Using now the equivariance ofJ we find

~ j m* ^ im* !F* f 15~ j m* ^ im* !S F* f 21(
i

F* gi•~ id^J* !Coad* hıD . ~5.1!

Furthermore, it follows that ifxPkerdm , dm : Ag* (g0* )→R, then J* xPker im* ; hence the
relation I * „dm(x)…5 im* J* x furnishes a well-defined graded algebra morphismI * : R→Dm~Zm!.
This means that for eachzPDm~Zm!+ there exists a real numberrPR such thatJ* ( im* z)5rdm

PAg* (g0* )
+. Return now to Eq.~5.1!. Consider arbitrary elementsaPAm~Gm!+ andzPDm~Zm!+.

Then

~a^z!~ j m* ^ im* !~ id^J* !Coad* hi5Coad* ~a^ rdm!~hi !5r eA
+ ~a!dm~hi !50.

We conclude that (j m* ^ im* )F* ( f 1)5( j m* ^ im* )F* ( f 2); this finishes the proof. j

The previous lemma ensures that whenJ is equivariant, the isotropy subgroup~Gm ,Am!
indeed operates on~Zm ,Dm!, so the rest of Theorem 5.1 makes sense.

Lemma 5.3: Consider a surjective submersionp: ~M ,A!→~N,B! between two graded mani
folds. If U,N is aB-splitting neighborhood and(xi ,sj ) a graded coordinate system on U, then
the derivations

Xi5
]

]p* xi
and Sj5

]

]p* sj

are projectable andp
*
Xi5]/]xi and p

*
Sj5]/]sj are their projections. In particular,

DerB(N)5p
*
P ro~p

*
,A!(M ).

Proof: Let fPB(U). Then

j~p* f !5(
k

j~p* xk!p* S ] f

]xk
D 1(

l
j~p* sl !p* S ] f

]sl
D

by formula 4.4.3 of Ref. 1 for eachjPDer A„p
*
21(U)…. Setting j5Xı , we obtain

Xi(p* f )5p* ] f /]xi , proving thatXi is projectable andp
*
Xi5]/]xi . We proceed in the sam

way for Sj . j

Lemma 5.4: LetF: ~G,A!3~Y,B!→~Y,B! be a free left action such that the quotient~X,C !
5~Y/G,B/A! is a graded manifold. Ifp: ~Y,B!→~X,C ! is the natural projection, then the set o
vertical derivations V er ~p

*
,B!(Y) with respect to p

*
is generated by ~F* !g

5$jPDerB(Y)u'vPg:j5~F* !v%.
Proof: Let (m,n)5dim~Y,B!, (p,q)5dim~G,A!; then (m2p,n2q)5dim~X,C !. Consider

elementsvPg, yPY, and fPC (X). Then@(F* )v#˜(y)5F* (v^ dy)5Fy* (v) is a tangent vec-
tor belonging to Ty~Y,B!. This vector is characterized by the following propert
J. Math. Phys., Vol. 38, No. 3, March 1997
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p
*
„Fy*

(v)…( f )5(v^ dy)F* (p* f )50, becausev is primitive with respect tode . This means
that imTeFy,kerTyp. By a simple argument on dimensions and using the fact thatp

*
is a

surjection, we find dim kerTyp5p1q; thus imTeFy5kerTyp. The conclusion is that the tan
gent vectorsVPTy~Y,B! at the arbitrary pointyPY vanishing under the projectionp

*
are always

of the form V5@(F* )v#˜(y), vPg. Therefore, there is no vertical derivation other fro
( ig

i(F* )v i, g
iPB(Y), v iPg. j

Lemma 5.5: LetvPgm , the Lie superalgebra of~Gm ,Am!. Then, the derivations(F* !v (see
Lemma 5.2) and~F* !v are im-related.

Proof: Indeed, considerfPB(Y) andvPgm . Then

~v^ id !+F̄* ~ im* f !5~ j m* v^ im* !F* f5 im* ~F* !v~ f !,

by the definition ofF and becausej m*
: Am~Gm!+→A(G) + is simply the inclusion map. j

VI. PROOF OF THEOREM 5.1—REDUCTION OF DYNAMICS

The first assertion of the theorem has been proved in Lemma 5.2. For the second,
consider derivationsz1,z2PDerBm~Ym!. Then, according to Lemma 5.3, there exist derivatio
j1,j2PDer Dm~Zm! such thatz i5pm*

j i , i51,2. We define a two-formvmPV2~Ym ,Bm!0 as

pm* ~z1 ,z2uvm!5~j1 ,j2u im*v!. ~6.1!

In order to explain now why this equation gives a well-defined two-formvm , we shall first prove
the following property of the symplectic formv:

i@~F̄* !v#~ im*v!50, ;vPgm . ~6.2!

To this end, letjPDer Dm~Zm! be an arbitrary derivation. Then,'hPDerB(Y) such thatj+ im*
5 im* +h and „ju i@(F̄* )v#( im*v)…52 im* „h,(F* )vuv… by Lemma 5.5. But by Definition 4.1, we
obtain„ju i@(F̄* )v#( im*v)…5 im*h(J* v), which is zero by Lemma 2.2; thus Eq.~6.2! is true. Return
now to relation~6.1! and consider an elementj28PDer Dm(Zm) such thatpm* j285pm* j25z2.
Then, by Lemma 5.4 there existv iPgm such thatj285j21( i f

i(F̄* )v i for f
iPDm~Zm! and by Eq.

~6.2!, we find (j1 ,j28u im*v)5(j1 ,j2u im*v), which proves that~6.1! defines well the two-formvm

on the quotient~Ym ,Bm!.
Using Proposition 2.1, Eq.~6.1! amounts topm*vm5 im*v. Furthermore,pm* dvm5 im* dv50

and the injectivity of the morphismpm* implies thatdvm50. It remains to show thatvm is
nondegenerate. If~z1,z2uvm!50 for all z2PDerBm~Ym!, then (j1 ,j2u im*v)50 for all
j2PDer Dm~Zm!. But since„h,~F* !vuv…52h(J* v), we find that the left-hand side of this equ
tion belongs to kerim* if and only if h can be restricted to a graded vector field on~Zm ,Dm!. This
means thatj1 must be of the formj15( i f

i(F̄* )v i, which givespm*
j15z150. This completes the

proof of the theorem. j

It is evident that if we restrict the momentum mapJ as well as the actions of the graded L
groups to grouplike elements, then we obtain the ordinary Marsden–Weinstein reduction
dure.

In Theorem 5.1, we describe the reduction of the graded symplectic manifold alone. In
to speak about Hamiltonian dynamics on the graded reduced space, we also need the redu
the graded Hamiltonian derivations.

Theorem 6.1:Under the assumptions of Theorem 5.1, let HPB(Y) be a ~G,A!-invariant
element. Then, jH can be restricted to a graded vector field on~Zm ,Dm!5J21~m!. If ĵH is its
restriction, ĵH+ im*5 im* +jH , then ĵH is projectable and there exists an element HmPBm~Ym! such
that jHm

5pm* ĵH .
J. Math. Phys., Vol. 38, No. 3, March 1997
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Proof: Step 1:We first discuss the consequences of the invariance ofH. Applying Proposition
4.2, we find [(F* )v ,jH]5[ jJ* v,jH]5j$J* v,H%50. Furthermore, for an arbitrary derivatio
jPDerB(Y), we obtainFg* (Fg* j,jHuv)5(j,Fg* jHuv), because the action of~G,A! is sym-
plectic. The left-hand side of this equation is equal to2j(Fg*H)52j(H)5(j,jHuv). Conse-
quently, we must haveFg* jH5jH .

Step 2:The fact thatjH can be restricted to a graded vector field on~Zm ,Dm! follows by
Lemma 2.2. Indeed, by the invariance ofH and for each zPZm , vPg, we have
dz„jH(J* v)…5J

*
( j̃H)z(v)50, so J

*
( j̃H)z50. Then, there exists a derivationĵHPDer Dm~Zm!

such thatĵH+ im*5 im* +jH .
Step 3: In order to check if ĵH is projectable, we must calculate the eleme

F̄* „ĵH(pm* f )…, ;fPBm~Ym!. Using Lemma 5.5, it is easy to see thatF̄g* ĵH5 ĵH and
@(F* !v , ĵH#50, ;gPGm , vPgm . This means that F̄g* „ĵH(pm* f )…5 ĵH(pm* f ) and
(F̄* )v„ĵH(pm* f )…50, ;fPBm~Ym!. Thus,F̄* „ĵH(pm* f )…51^ ĵH(pm* f ); this implies that there
exists a derivationDPDerBm~Ym! such thatĵH+pm*5pm* +D.

Step 4:Observe first that the invariance ofH guarantees the existence of an elem
HmPBm~Ym! such that pm*Hm5 im*H. On the other hand,pm* @ i(jHm

)vm#5pm* dHm5 im* dH
5 im* @ i(jH)v#. Thus, ifh, j, andz are as in the proof of Theorem 5.1, we obtain

pm* „zu i~jHm
!vm…5„jupm* i~jHm

!vm…5„ju im* i~jH!v…5 im* „hu i~jH!v…5~21! uHuuhuim* ~jH ,huv!

5~21! uHuuju~ ĵH ,ju im*v!5~21! uDuuzupm* ~D,zuvm!5pm* „zu i~D !vm….

We conclude that the derivationD is Hamiltonian with Hamiltonian functionHmPBm~Ym!. j

One can say more about the reduction of dynamics in the case whereH is an even element
Indeed, in this case, using the results of Ref. 14, we have a flowst for jH with parameter space th
real numbersR ~similarly for ĵH and jHm

!. If ŝ t is the flow of ĵH , then ŝ t and st are

im* -related and, furthermore, we haveF̄* (ŝ tpm* f )51^ ŝ tpm* f , as easily follows from the proof o
Theorem 6.1. This means thatŝ t induces a flow~sm!t on the reduced space bypm* (sm) t f
5s tpm* f ; clearly, ~sm!t is the flow ofjHm

.

VII. EXAMPLES

A well-known fact from Hamiltonian mechanics is that each function defined on a sympl
manifold can be considered as momentum mapping of the action defined by the flow
corresponding Hamiltonian vector field.

In the first example discussed in this section, we prove that an analogous phenomenon
in the graded setting; however, the reduction now depends on the type of the graded Hami
chosen. The previous results are used in the second example in order to define a graded sy
structure on complex projective spaces by means of the Hamiltonian description of the supe
lator and of Theorem 5.1.

The last example deals with the reduction problem on the cotangent bundle of a grad
group. We prove that the reduced spaces are the coadjoint orbits of the graded Lie grou
clearly reveals the role of the graded coadjoint orbits as phase spaces of reduced supersy

A. Example 1: Hamiltonians as momentum mappings

Let ~Y,B,v! be a graded symplectic manifold andHPB(Y)0 an even element; henc
jHP„DerB(Y)…0. Suppose now thatj̃HPDer C`(Y) is a complete vector field. Then by Theo
rem 1 of Ref. 14, there exist for eachtPR, graded algebra isomorphismsst : B(Y)→B(Y) such
thats t+ss5s t1s , s05id and (d/dt)s t f52s t(jHf ), ;fPB(Y).

We thus have an actions : ~R,C`!3~Y,B!→~Y,B! of the additive group~R,C`! which is
furthermore symplectic becausei@~s* !v#v is exact as follows easily from (s* )v52vjH ,
J. Math. Phys., Vol. 38, No. 3, March 1997
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;vPR5Te~R,C
`!. Now if we define a linear mapR→B(Y) as r°2rH , then by Proposition

2.18 of Ref. 1, we obtain a morphism of graded manifoldsJ: ~Y,B!→~R* ,C`! such that
J* v52vH, ;vPR. The morphismJ is a momentum map for the symplectic actions because
jJ* v5j2vH5(s* )v . Furthermore, sincejHH50, we finds *H51^H, which is the condition of
equivariance forJ. If now ePR is a regular value forJ, then under the assumptions of Theore
5.1, one can apply Marsden–Weinstein reduction to obtain a new graded symplectic mani
dimension (m22,n), if dim~Y,B!5(m,n). When one interpretsH as the Hamiltonian of a super
system, this reduced manifold corresponds to the graded manifold of solutions with co
energy.

We can consider more general situations in the following way. LetHPB(Y) be an arbitrary
element,H5H01H1 , uH0u50, anduH1u51. ThenjH5(jH)01(jH)1 with (jH) i5jHi

, i50,1. If

$H0 ,H1%50 and$H1 ,H1%50, then we can apply the results of Ref. 22 in order to integrate
graded vector fieldjH . Indeed, under these assumptions, we obtain@jH0

, jH1
#5@jH1

, jH1
#50

and Theorem 3.6 of Ref. 22 can be applied. Thus there exists a morphism of graded ma
G:~R,A1!3~Y,B!→~Y,B! which satisfies the graded differential equationD+G*5G* +jH and de-
fines a left action of the type I graded Lie group~R,A1! on ~Y,B!. We recall that there exist thre
structures of graded Lie group onR1u1 and we note the first as~R,A1! ~see Ref. 22 for the details!.
In the previous equationD is the derivation~]t1]t!^id on A1~R!^̂pB(Y), where $t,t% is the
standard graded coordinate system ofR1u1. Using the techniques of the even case previou
analyzed, we find that ifv5k0]̃ tu01k1]̃ tu0PT0~R,A1!>R%R, then (G* )v5k0jH0

1k1jH1
which

proves thatG is a symplectic action of~R,A1! and that the linear mapR%R→B(Y) defined as
v°k0H01k1H1 gives the momentum mapping of this action. This momentum map is equiva
becauseG*H51^H @notice that~R,A1! is an Abelian graded Lie group# and the reduction
procedure furnishes a graded symplectic manifold of dimension (m22,n22).

B. Example 2: Graded projective spaces

The previous example provides a method for endowing quotient graded manifolds with
plectic structures using the graded Marsden–Weinstein reduction procedure.

Let us consider the following situation. Take~Y,B! putting Y5R2n and B(Y)
5C`~R2n!^LR2n, dim~Y,B!5(2n,2n). Let (qi ,pi ,u i ,f i), i51,...,n, be the~global! graded co-
ordinate system on~Y,B!, uqi u5upi u50, uu i u5uf i u51, in which the canonical sympletic structu
on ~Y,B! can be written asv5( i51

n dpidqi2 1
2( i51

n [(du i)21(df i)2]. Let alsoHPB(Y)0 be
the element

H5
1

2 (
i51

n

@~qi !21~pi !2#1(
i51

n

u if i .

The corresponding Hamiltonian derivation is found to be

jH5(
i51

n S qi ]

]pi
2pi

]

]qi D2(
i51

n S f i
]

]u i
2u i

]

]f i D .
Now, one has a morphismFt : B(Y)→B(Y) such that

Ft~q
i !5qi cos t1pi sin t, Ft~p

i !5pi cos t2qi sin t,

Ft~u i !5u i cos t1f i sin t, Ft~f i !5f i cos t2u i sin t.

An elementary calculation shows thatFt+Fs5Ft1s , F05id, and (d/dt)Ft f52Ft(jHf ),
; fPB(Y). Then the previous example can be applied to obtain a Hamiltonian action of~R,C`!
on ~Y,B! which, by periodicity, is a Hamiltonian action of~S1,C`!. If yPY5R2n and
J. Math. Phys., Vol. 38, No. 3, March 1997
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wPTy~Y,B!, then fromJ
*
(dy)5dyH andTyJ(w)52w(H), one can see that the valuem51

2PR
is a regular value for the momentum mapJ andJ

*
21( 12)5S2n21. The assumptions of Theorem 5

are satisfied because~S1,C`! is compact~see also Sec. III! and the reduction procedure can b
applied. The underlying symplectic manifold of the graded reduced space is the complex p
tive spaceCPn21 and consequently the reduction procedure endows the manifoldCPn21 with a
sheaf such that the corresponding ringed space is a graded symplectic manifold of~real! dimension
(2n22,2n).

Let us note here that the elementH previously encountered corresponds to the Hamiltonian
the harmonic superoscillator~see Ref. 23 for the Lagrangian description!.

C. Example 3: Reduction of dynamics on a graded Lie group

Let ~G,A! be a graded Lie group and (g0* ,Ag* ) the linear graded manifold corresponding
the dual of the Lie superalgebrag of ~G,A!. Then the cotangent bundle~T*G,T*A! is isomor-
phic to the product graded manifold, (Y,B)5(G,A)3(g0* ,Ag* ) ~see Ref. 13!. For the subse-
quent analysis, it will be useful to consider (g0* ,Ag* ) as an Abelian graded Lie group; thenL and
R will denote the left and right actions on~G,A! and (g0* ,Ag* ) defined by the coproducts of thes
graded Lie groups. On~Y,B! there exists a canonical graded symplectic structure given by

~D1 ,D2uv!5@2r~w!1~21! usuuvus~v !#1^ 111^ @v, w#, ~7.1!

whereD15(R* )v^111^~L* !r andD25(R* )w^111^~L* !s , v,wPg, r,sPg* . Clearly,v is an
even graded differential two-form. The nondegeneracy ofv is immediate, but the fact thatv is
closed requires a long calculation, omitted here, using Proposition 4.3.7 of Ref. 1.

There also exists a left actionF: ~G,A!3~Y,B!→~Y,B! given byF*5DA^id. This action
is symplectic for the graded symplectic structurev given by Eq.~7.1!. In order to prove this
assertion, we must show thatFg*v5v andL(F* )av50, ;gPG, aPg. We discuss here only the

proof ofFg*v5v which is technically much simpler. Using the notation of~7.1!, we easily verify
that Fg*

Di5Di , i51,2. By Proposition 2.1 we obtain (D1 ,D2uFg*v)5Fg* „@2r(w)1
(21)usuuvus(v)#1^ 111^ @v, w#…5(D1 ,D2uv).

Furthermore,F admits a momentum mapJ:(Y,B)→(g0* ,Ag* ) which is exactly the coadjoin
action of~G,A! on (g0* ,Ag* ). Indeed, we have (F* )a5(L* )a^ 15( iF

i(R* )ei ^ 1 ~see Proposi-
tion 3.7! and if the derivationD is given byD5(R* )w^111^~L* !s , we obtain

~Du i@~F* !a#v!5(
i

~21! usuuFi uFis~ei ! ^ 11~21! uauuwu(
i
Fi

^ @ei , w#.

On the other hand, using~Coad* !wei52[w, ei ] and

@~R* !w^ 1#+Coad*5@1^ ~Coad* !w#+Coad* ,

the equality „Du i@~F* !a#v…5~Dud Coad* a! follows easily from Proposition 3.7. Thu
(F* )a5jJ* a if J5Coad, and therefore the coadjoint action of~G,A! on (g0* ,Ag* ) is the mo-
mentum mapping ofF. Clearly,J is equivalent and each elementmPg0* is a regular value forJ,
becauseJ is a left action.

Consider now the graded submanifold~Zm ,Dm! of ~Y,B! defined byJ5Coad. Using the
isomorphismF1 of Proposition 3.4 applied for the case of the coadjoint action,F15Coad1, we
may establish the following isomorphism:

Dm~Zm!5A~G! ^̂pAg* ~g0* !/ker im*>A~G! ^̂ pAg* ~g0* !/A~G! ^ker dm>A~G!.
J. Math. Phys., Vol. 38, No. 3, March 1997
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We note only that Coad1* restricts to an isomorphism between1^Ag* (g0* ) and im Coad* . We thus
have an isomorphismf:~G,A!→~Zm ,Dm! given by f* ( im*F)5@(Coad1* )

21F#5(id^ dm)
+ (Coad1* )

21F, ;FPA(G)^ pAg* (g0* ). It is interesting to see how the actionF̄ of ~Gm ,Am! on
~Zm ,Dm! transforms under the isomorphismf. If fPA(G), f5f* „im* ( f ^ 1)… and
DAf5( igi ^ f i , then we find

~ id^ f* !F̄* ~f* !21f5~ id^ f* !F̄* im* ~ f ^ 1!5~ id^ f* !(
i
„j m* gi ^ im* ~ f i ^ 1!…5~ j m* ^ id!DAf ,

which proves that if we identify~Zm ,Dm! with ~G,A! via the isomorphismf, then the action of
~Gm ,Am! on ~Zm ,Dm! is simply the natural left action of the graded isotropy subgroup~Gm ,Am!
on ~G,A!. Therefore, the graded reduced space~Ym ,Bm! will be canonically isomorphic~as
graded manifold! to the coadjoint orbit ofmPg0* under the action of~G,A!.

It remains to show that the graded symplectic structure of the reduced space~Zm/Gm ,Dm/Am!
and of the coadjoint orbit~G/Gm ,A/Am! of m coincide under the isomorphismf. To this end, let
us consider elementsvPg andFPB(Y)5A(G) ^̂pAg* (g0* ). Note that ifF5( iF1i ^F2i , then
f* im*F5( iF1i•sACoadm* F2ı . Setting nowx5uF1i uuvu, we obtain

~R* !vf* im*F5(
i

~R* !vF1i•sA Coadm* F2i1~21!xF1i•~R* !vsA Coadm* F2i

5(
i

~R* !vF1i•sA Coadm* F2i2~21!xF1i•sA Coadm* ~Coad* !vF2i

5f* im* @~R* !v^ 121^ ~Coad* !v#F.

If we defineDv5(R* )v^121^~Coad* !v , then (R* )v andDv aref +im-related; this implies by
Proposition 2.1 that the graded two-formf* im*vPV2(G,A) is given by

„~R* !v ,~R* !wuf* im*v…5f* im* ~Dv ,Dwuv!.

Expanding now the derivation~Coad* !v on a basis as (Coad* )v5( iHv
i (L* )r i

we have
2[v, u]5( iHv

i r i(u), ;uPg. Using this property of the coefficientsHv
i , we finally take

„~R* !v ,~R* !wuf* im*v…52sA Coadm* @v, w#;

projecting thusf* im*v on the coadjoint orbit ofm, we obtain the standard graded symplec
structure of this orbit, studied in Ref. 1.

1B. Kostant, ‘‘Graded manifolds, graded Lie theory and prequantization,’’ inDifferential geometric methods in math
ematical physics, Lect. Notes Math.570, 177–306~1977! ~Springer-Verlag, Berlin, 1977!.

2F. A. Berezin and D. Leites, ‘‘Supermanifolds,’’ Sov. Math. Dokl.16, 1218–1222~1975!.
3F. A. Berezin and M. Marinov, ‘‘Particle spin dynamics as the Grassmann variant of classical mechanics,’’ Ann.
104, 336–362~1977!.

4J. Monterde ‘‘Higher order graded and Berezinian Lagrangian densities and their Euler-Lagrange equations,’’ An
Henri Poincare´ ~Phys. The´or.! 57, 3–26~1992!.

5J. Monterde and J. Mun˜oz Masque´, ‘‘Variational problems on graded manifolds,’’ Contemp. Math.132, 551–571
~1992!.
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17A. López Almorox, ‘‘Supergauge theories in graded manifolds,’’ inDifferential Geometrical Methods in Mathematica
Physics, Proceedings, Salamanca 1985, edited by P. L. Garcı´a and A. Pe´rez-Rendo´n, Springer LNM 1251~Springer,
New York, 1985!.

18D. Leites, ‘‘Introduction to the theory of supermanifolds,’’ Russ. Math. Surv.35, 1–64~1980!.
19F. A. Berezin, inIntroduction to superanalysis, edited by A. A. Kirillov ~Reidel, Dordrecht, 1987!.
20A. Grothendieck, ‘‘Produits tensoriels topologiques et espaces nucle´aires,’’ Mem. A.M.S.16, 1–196~1955!.
21J. L. Koszul, ‘‘Graded manifolds and graded Lie algebras,’’ inProceedings of ‘‘Geometry and Physics,’’Florence, 1982,
edited by M. Modugno~Pitagora Editrice, Bologna, 1983!, pp. 71–84.

22J. Monterde and O. A. Sa´nchez-Valenzuela, ‘‘Existence and uniqueness of solutions to superdifferential equation
Geom. Phys.10, 315–343~1993!.

23L. A. Ibort, G. Landi, J. Marı´n-Solano, and G. Marmo, ‘‘On the inverse problem of Lagrangian supermechanics,’’ I
Mod. Phys. A8, 3565–3576~1993!.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s of

-

l
From

e
ic

¬¬¬¬¬¬¬¬¬¬
Harmonic maps and periodic Toda systems
Adam Doliwaa)
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Harmonic maps from the point of view of periodic Toda systems are considered.
The correspondence between certain harmonic immersions of surfaces and solu-
tions to periodic Toda systems related to nonexceptional simple Lie algebras is
constructed. ©1997 American Institute of Physics.@S0022-2488~97!00601-4#

I. INTRODUCTION

The subject of this article is to present connection between harmonic maps1 into symmetric
spaces~in physical literature calleds-models! and Toda systems which are classical example
integrable partial differential equations.2

Let M andN be Riemannian manifolds with metricsg and h correspondingly. Harmonic
mapsf:M→N are stationary points of the energy~or Dirichlet! functional

E@f#5
1

2EM trg~f* h!dVg . ~1!

In local coordinates (xi) i51
dimM and (ya)a51

dimN

E@f#5
1

2EMgi j
]fa

]xi
]fb

]xj
habAugudx1`•••`dxdimM, ~2!

and the corresponding Euler–Lagrange equations read

1

Augu

]

]xi
S Augugi j

]fg

]xj
D 1NGab

g ~f!
]fa

]xi
]fb

]xj
gi j50. ~3!

Here ugu is determinant of the metric tensorgi j , and
NGab

g are Christoffel symbols of the Levi
Civita connection onN.

When dimM52, then the harmonic map equation~3! is invariant with respect to conforma
changes of the metricg. This enables one to speak of harmonic maps of Riemann surfaces.
now onR5(M2,J) denotes the Riemann surface with complex structureJ compatible with the
conformal class of the given metric onM2.

The basic target manifoldN studied in the paper is the complex projective spaceCPn with the
standard Fubini–Study metric. From a given harmonic mapf:R→CPn one can obtain a whole
sequence•••→f21→f05f→f1→••• of harmonic mapsfk→CPn, k P I,Z, called the har-
monic sequence.3 In terms of a local complex coordinatez P O,R such a sequence can b
described byCn11-valued functionsf k :O→Cn11 ~defined up to multiplication by a meromorph
function! with the following properties:4

] f k
]z

5 f k111S ]

]z
logi f ki2D f k , ~4!

a!Electronic mail address: doliwa@fuw.edu.pl
0022-2488/97/38(3)/1685/7/$10.00
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] f k

] z̄
52

i f ki2

i f k21i2 f k21 . ~5!

Any two consecutive elementsf k and f k11 are orthogonal~with respect to the standard Hermitia
inner product onCn11) and the compatibility conditions read

]2

]z] z̄
logi f ki25

i f k11i2

i f ki2
2

i f ki2

i f k21i2 . ~6!

In terms of the functionsu k5 logifki the above equation can be rewritten as~comma denotes
differentiation!

2u ,z z̄
k 5e2~u k112u k!2e2~u k2u k21! ~7!

which is a form of the~in principle infinite! Toda system.
When the harmonic sequence terminates at one end it must be finite and all its eleme

mutually orthogonal. In fact, such a sequence arises as Frenet frame of a holomorphic curv5 The
corresponding open Toda system can be solved in quadratures.6,7

In this paper we will be dealing with periodic~i.e., fn111k5fk or f k1n11 } f k) harmonic
sequences and the corresponding periodic Toda systems.8 Also in this case, everyn11 consecu-
tive elements of the sequence are mutually orthogonal. By suitable change of the local co
coordinate one can assure thatf n125 f 1. Moreover, one can choose the local lift of the seque
such that det(f 1 , f 2 , . . . ,f n11)51.

The vectorsEk5 f k /i f ki , k51, . . . ,n11 of the orthonormal frame arising from the norma
ized periodic harmonic sequence satisfy the set of linear equations

S E1

E2

A

A

En11

D
,z

5S u ,z
1

eu 22u 1
0 ••• 0

0 u ,z
2

eu 32u 2 A

A 0 � � 0

0 � u ,z
n

eu n112u n

eu 12u n11
0 ••• 0 u ,z

n11

D S E1

E2

A

A

En11

D ,

~8!S E1

E2

A

A

En11

D
, z̄

52S u , z̄
1 0 ••• 0 eu 12u n11

eu 22u 1
u ,z
2 0 0

0 eu 32u 2
� � A

A � u , z̄
n 0

0 ••• 0 eu n112u n
u , z̄
n11

D S E1

E2

A

A

En11

D .

The above equations form the linear problem for periodicsu(n11) Toda system

2u ,z z̄
1 5e2~u 22u 1!2e2~u 12u n11!,

2u ,z z̄
l 5e2~u l112u l !2e2~u l2u l21!, l52,...,n, ~9!

2u ,z z̄
n115e2~u 12u n11!2e2~u n112u n!.

In general, open and periodic Toda systems can be constructed for any complex simple Lie
g.9 Whenh,g is its Cartan subalgebra~for details see, e.g., Ref. 10! andD,h* the corresponding
J. Math. Phys., Vol. 38, No. 3, March 1997
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root system, then byp̃,D we denote the system of simple rootsp5$ak%k51
dimh supplemented by

a052v, wherev is the maximal root with respect top. By hk are denoted vectors ofh dual to
ak with respect to the Killing form ofg($hk%k51

dimh is a basis ofh).
The g-periodic Toda system for unknown function

u:C.O→hR5 (
k51

dim,h

Rhk ~10!

is the following system of equations:

2u ,z z̄5 (
k50

dim,h

hke
22ak~u!. ~11!

In the case ofAn>sl(n11) Lie algebra@its compact real form issu(n11)]hR can be described
in terms of the orthonormal basis$ek%k51

n11 of Rn11 and

p̃5$en112e1 ,e12e2 , . . . ,en2en11%>$h0 ,h1 , . . . ,hn%. ~12!

Orthogonal and symplectic geometries, which correspond to three other classical seque
simple complex Lie algebras@Bn>so(2n11),Cn>sp(n),Dn>so(2n)# can be described in term
of the projective geometry with some additional structures. In the case of orthogonal Lie alg
so(n) this is the complex quadricQn22,CPn21, and for symplectic Lie algebras this is th
so-called horizontal distributionH ~definitions will be given below!. The geometry of theiropen
Toda systems and parametrization of the corresponding holomorphic curves was presented
11. The aim of this paper is to show how the additional structures reflect on the properties
periodic harmonic sequence and lead to corresponding periodic Toda systems. The case
G2 Lie algebra was described in Ref. 12.

II. ISOTROPIC HARMONIC SEQUENCES

The geometry of periodicso(n) Toda systems can be explained with the help of the comp
quadric

Qn225H @z#PCPn21:~zuz!5 (
k51

n

zk
250J ~13!

and isotropic~i.e., contained in the quadric! linear spaces of maximal possible dimension13 @equal
to E(n/2)#. We will concentrate mainly on the general case of evenn52m, as the case of
n52m11 corresponding toBm Lie algebras is a reduction of it, moreover it was treated se
rately in Refs. 14 and 15.

We observe first that the conjugate vectors toEk satisfy

Ēk,z52u ,z
k Ēk2eu k2u k21

Ēk21 , Ēk, z̄5u , z̄
k Ēk1eu k112u k

Ēk11 . ~14!

The above formulas define conjugate harmonic sequence with local lift (21)k f̄ k /i f ki2 and cor-
responding functions2u k. Our goal is to show that certain harmonic sequences, which ca
called isotropic periodic harmonic sequences, allow us to reduce the number of indep
functions in Eq.~9!.

Let us consider periodic harmonic sequencefk :R→CP2m21 such that itsm22 consecutive
elements, sayf2 , . . . ,fm21, spanm22-dimensional isotropic subspace ofC2m. This means that
E2 , . . . ,Em21 and their conjugate Ē2 , . . . ,Ēm21 form an ortonormal basis of a
(2m24)-dimensional subspaceV of C2m. By V1 andVm are denoted spaces spanned by pa
J. Math. Phys., Vol. 38, No. 3, March 1997
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E1 ,Ē1 andEm ,Ēm correspondingly. One can show that dimV15dimVm52 ~here we consider full
harmonic maps, which means thatfk cannot be contained in any proper projective subspac
CP2m21) andC2m5V1 % V % Vm is an orthogonal decomposition. This implies that the two s
spacesV1 ,Vm are spanned by pairs of isotropic, conjugate, and orthonormal vectorsE18 ,Ē18 and
Em8 ,Ēm8 given up to phase factors.

We can decomposef m as

f m5eumEm5aEm8 1bĒm8 , ~15!

and fix the phase factor by condition

a5eu8mPR1 , ~16!

defining a new local functionu8m. As (f mu f m), z̄50 we can normalize the local lift of the har
monic sequence to

~ f mu f m!52, ~17!

which impliesb5a21, and this way

eu m
Em5eu8mEm8 1e2u8mĒm8 , e2u m

52cosh2u8m: ~18!

The new vectors are subjected to the following equations

Em,z8 5u ,z8
mEm8 2e2u 8m2u m21

Ēm21 , Em, z̄8 52u ,z̄8
mEm8 2eu8m2u m21

Em21 ,

~19!
Ēm,z8 5u ,z8

mĒm8 2eu8m2u m21
Ēm21 , Ēm, z̄8 5u ,z

mĒm8 2e2u8m2u m21
Em21 .

Similar procedure in the spaceV1 ~but instead of the local lift we have to play now with the loc
complex coordinate! allows us to define new isotropic vectorE18 and new functionu81. Finally, we
obtain the unitary frame made out of isotropic vectors and the reduction of the periodicA2m21

Toda system to

2u ,z z̄8 15e2~u 22u81!2e22~u 21u81!,

2u ,z z̄8 25e2~u 32u 2!2e2~u 22u81!1e22~u 21u81!,

2u ,z z̄
l 5e2~u l112u l !2e2~u l2u l21!, l53, . . . ,m22, ~20!

2u ,z z̄
m215e2~u8m2u m21!1e22~u8m1u m21!2e2~u m212u m22!,

2u ,z z̄8m52e2~u8m2u m21!1e22~u8m1u m21!.

This matches with the standard representation of the simple roots and Cartan subalge
Dm>so(2m) in terms of the orthonormal basis ofRm :

p5$2e12e2 ,e12e2 , . . . ,em212em ,em211em%>$h0 ,h1 ,h2 , . . . ,hm%. ~21!

The case ofBm21>so(2m21) Toda system corresponds to the reduction of the above
Geometrically, it means that the isotropic periodic harmonic sequence is contained inCP2m22 and
one of the two small subspaces, sayVm , has dimension one. Thenf m } f̄ m and we are forced to
choose instead of two isotropic vectorsEm8 andĒm8 one real vectorEm9 5Ēm9 . This implies a small
change in the normalization of the local lift of the harmonic sequence
J. Math. Phys., Vol. 38, No. 3, March 1997
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~ f mu f m!51 ~22!

and forcesu9m50. This way the new vector is subjected to equations

Em,z9 52e2u m21
Ēm21 , Em, z̄9 52e2u m21

Em21 . ~23!

Finally, we obtain reduction of the periodicA2m22 Toda system to

2u ,z z̄81 5e2~u 22u81!2e22~u 21u81!,

2u ,z z̄
2 5e2~u 32u 2!2e2~u 22u81!1e22~u 21u81!,

~24!
2u ,z z̄

l 5e2~u l112u l !2e2~u l2u l21!, l53, . . . ,m22,

2u ,z z̄
m215e22u m21

2e2~u m212u m22!.

This matches with the standard representation of the simple roots and Cartan subalge
Bm21>so(2m21) in terms of the orthonormal basis ofRm21 :

p5$2e12e2 ,e12e2 , . . . ,em222em21 ,em21%>$h0 ,h1 ,h2 , . . . ,hm21%. ~25!

III. SYMPLECTIC HARMONIC SEQUENCES

Symplectic geometry can be described in terms of the projective geometry with the help

Penrose fibrationCP2m21→
CP1

HPm21 ~here we consider the right quaternionic projective space! and
the corresponding distributionH. The Penrose fibration comes from the identification of
quaternionic spaceH with C2

H{q5a1 jb°~a,b!PC2. ~26!

A point of CP2m21 with homogeneous coordinates@(z1 ,z2)#C , (z1 ,z2 P Cm) is projected onto
p@(z1 ,z2)#C5@z11 jz2#H P HPm21. The fiber overp@(z1 ,z2)#C is the projective line inCP

2m21

through@(z1 ,z2)#C and @(2 z̄2 ,z̄1)#C @note that (z11 jz2) j52 z̄21 j z̄1] .
The complement to the fiber orthogonal with respect to the Fubini–Study metric inCP2m21

defines the horizontal distributionH. The vectorv P T[z]CP
2m21 is horizontal if

^~z1 ,z2! j u~v1 ,v2!&5^~2 z̄2 ,z̄1!u~v1 ,v2!&5~z1uv2!2~z2uv1!50. ~27!

Two vectorsv,w P C2m are calleds-orthogonal if^v j uw&50. A linear subspaceV,C2m is called
s-isotropic if every two its vectors ares-orthogonal. One can show that the maximal possi
dimension of an s-isotropic subspace ism.

Let us observe that from equations which satisfy vectorsEk one can deduce the correspondi
equations forEkj :

~Ekj ! ,z52u ,z
k Ekj2eu k2u k21

Ek21 j , ~Ekj ! , z̄5u , z̄
k Ekj1eu k112u k

Ek11 j . ~28!

TheCm>sp(m)-periodic Toda systems are connected to a special kind of the periodic harm
sequences, which can be called symplectic harmonic sequences. They are well suited
additional structure and are distinguished by the property that certain theirm consecutive ele-
ments, sayf1 , . . . ,fm , define thes-isotropic subspace~of the maximal possible dimension!.

The analogous property for the vectorsE1 , . . . ,Em implies that the next vectorEm11 of the
orthonormal frame must be proportional toEmj . The phase factor can be fixed~changing the local
section of the harmonic sequence! by normalization condition

^ f mj u f m11&51. ~29!
J. Math. Phys., Vol. 38, No. 3, March 1997
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Finally, after appropriate change of the local complex coordinate, we obtain symplectic pe
harmonic sequence with normalized basis

E1 , . . . ,Em ,Emj , . . . ,~21!kEm2kj , . . . ,~21!m21E1 j , ~30!

and corresponding functions

u 1, . . . ,u m,2u m, . . . ,2u 1. ~31!

The symplectic periodic harmonic sequence gives rise to the reduction of the periodicA2m21 Toda
system~9! to

2u ,z z̄
1 5e2~u 22u 1!2e4u 1

,

2u ,z z̄
l 5e2~u l112u l !2e2~2u l21!, l52, . . . ,m21, ~32!

2u ,z z̄
m 5e24u m

2e2~u m2u m21!.

This matches with the standard representation of the simple roots and Cartan subalge
Cm>sp(m) in terms of the orthonormal basis ofRm:

p̃5$22e1 ,e12e2 , . . . ,em212em,2em%>$h0 ,h1 ,h2 , . . . ,hm%. ~33!

IV. CONCLUDING REMARKS

In the paper the reductions of periodicAn Toda systems to periodicBm ,Cm , andDm Toda
systems were constructed. The constructions are based on making use of the additional st
which allow us to describe orthogonal and symplectic geometries within the projective geom
The same method was used in Ref. 11 to explain corresponding reductions of the open
systems.
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Heat kernel expansion for operators containing a root
of the Laplace operator

E. V. Gorbar
Bogolyubov Institute for Theoretical Physics, 252143 Kiev, Ukraine

~Received 26 April 1996; accepted for publication 5 August 1996!

We suggest a method for the calculation of the DeWitt–Seeley–Gilkey~DWSG!
coefficients for the operatorA2¹2 1 V(x) basing on a generalization of the
pseudodifferential operator technique. The lowest DWSG coefficients for this op-
erator are calculated by using the method proposed. We show that the problem of
the calculation of the DWSG coefficients for operators of the type„2¹21V(x)…1/q,
whereq is an arbitrary natural number, is solvable. Namely, we deduce an explicit
formula expressing the DWSG coefficients for operators with the root through the
DWSG coefficients for operators without the root. ©1997 American Institute of
Physics.@S0022-2488~97!01802-1#

I. INTRODUCTION

The algorithms for obtaining the asymptotic heat kernel expansion for second-order dif
tial operators on a Riemannian manifold are well known.1–3 The most popular is that of DeWitt,1,4

which uses a certain ansatz for heat kernel matrix elements. The method possesses the
covariance with respect to gauge and general-coordinate transformations. However, the
technique does not apply to higher-order operators, nonminimal operators, and, generally
ing, to operators whose leading term is not a power of the Laplace operator. Recently, us
Widom generalization5 of the pseudodifferential operator technique, a new algorithm
developed6 for computing the DeWitt–Seeley–Gilkey~DWSG! coefficients. The method is ex
plicitly gauge and geometrically covariant and admits to carry out calculations of the DW
coefficients by computer.7 As was shown in Refs. 8 and 9, the method permits a generalizatio
the case of Riemann–Cartan manifolds, i.e., manifolds with torsion, and to the case of nonm
differential operators. The nonminimal operator2gmn¹21a“m

“

n1Xmn considered in Refs. 8
and 9 is not very different from the minimal operator2gmn¹2. However, in physical and math
ematical applications we are encountered with integral~or pseudodifferential! operators of the
typesA2¹2 1 V(x) and„2¹21V(x)…1/q, whereq is any natural number, which are essentia
different from the minimal operator. For example, operators of the typeA2¹2 1 V(x) are used for
the description of particles with subrelativistic energies when energies are still not enough f
creation of new particles but relativistic corrections are significant.10–14As shown in Refs. 10 and
11 for such energies, by reduction of the Dirac or Klein–Gordon equations for particles with
1/2 and spin 0, respectively, we obtain a Schro¨dinger equation with the Hamilton operator of th
type A2¹2 1 V(x). The most typical examples of the use of equations of this type are
tunneling problem for particles with subrelativistic energies10 and studying of quarkonia, wher
quasirelativistic approximation works remarkably.12–14 In Sec. II, by using a generalization of th
method of Ref. 6, we consider the problem of the calculation of the DWSG coefficient
operators of this type. In Sec. III we show that the problem of calculation of DWSG coeffic
for operators of the type„2¹21V(x)…1/q is solvable. Namely, an explicit formula expressing t
DWSG coefficients for operators with the root through those for operators without the ro
deduced. Note that operators that we consider are pseudodifferential operators. Although
shown in Ref. 15, the heat kernel expansion is true for an arbitrary pseudodifferential operat
problem of calculation of the DWSG coefficients was considered only for differential opera
As far as we know, it is for the first time that the DWSG coefficients are explicitly calculated
truly pseudodifferential operators.
0022-2488/97/38(3)/1692/8/$10.00
1692 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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II. THE DWSG COEFFICIENTS FOR THE OPERATOR THE SQUARE ROOT OF THE
LAPLACE OPERATOR PLUS A POTENTIAL TERM

In this section we generalize the method of Ref. 6 for the problem of calculation of the DW
coefficients for the operator

A5A2¹21V~x!, ~1!

whereV(x) is an arbitrary matrix with respect to bundle space indices. Clearly, this ope
cannot be represented as a power of the Laplace operator. We take as our space a
n-dimensional Riemann manifoldM without a boundary. The operators will act on the space o
vector bundle over the baseM . The covariant derivative acting on objects with fiber~left under-
stood! and base indices is defined by the rule

“mfm1•••mk
5~]m1vm!fm1•••mk

2(
i51

k

Gm im
l fm1•••m i21lm i11•••mk

, ~2!

whereGmn
l andvm are the affine and bundle connections;vm521/2ivm

abSab1 iAm , andSab are
the representation operators of local rotation group SO(n) under whichfm1•••mk

is transformed,
vm
ab is the spin connection, andAm is the gauge potential. For the commutator of covari

derivatives, we have

@“m ,“n#fm1•••mk
52(

i51

k

Rm imn
l fm i •••m i21lm i11•••mk

1Wmnfm1•••mk
, ~3!

whereWmn5]mvn2]nvm1[vm ,vn] is the bundle curvature, and the Riemann curvature ten
Rrmn

l is expressed through the affine connectionGmn
l as follows:

Rrmn
l 5]mGrn

l 2]nGrm
l 1Gsm

l Grn
s 2Gsn

l Grm
s . ~4!

As is well known,2,15 for a positive elliptic differential operatorA of order 2r there exists an
asymptotic expansion of the diagonal matrix elements of the heat kernel exp(2tA) as t→01 in
the following form:

^xue2tAux&.(
m

Em~xuA!t ~m2n!/2r , ~5!

where the summation is carried out over all non-negative integersm andEm(xuA) are the DWSG
coefficients.

In order to obtain expansion~5! in the case of operator~1! following the method of Ref. 6, we
express the operator exp(2tA) (t.0) through its resolvent,

e2tA5E
C

i dl

2p
e2tl~A2l!21, ~6!

where the contourC goes counterclockwise around the spectrum of the operatorA. For the matrix
elements of the resolvent (A2l)21 we employ the representation in the form

^xu
1

A2l
ux8&5E dnk

~2p!nAg~x8!
eil ~x,x8,k!s~x,x8,k;l!, ~7!
J. Math. Phys., Vol. 38, No. 3, March 1997
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where l (x,x8,k) is a phase function ands(x,x8,k;l) is an amplitude.15–17 In the flat space the
phasel (x,x8,k)5km(x2x8)m is a linear function ofk andx for eachx8. In the case of a curved
manifold the real functionl must be biscalar with respect to general-coordinate transformat
and must be a linear homogeneous function ink. The generalization of the linearity condition i
x is the requirement for themth symmetrized covariant derivative to vanish at the pointx8 with
m>2, i.e.

$“m1
“m2

•••“mm
% l ux5x85@$“m1

“m2
•••“mm

% l #5km1
, for m51 and 0, formÞ1. ~8!

In Eq. ~8!, the curly brackets denote symmetrization in all indices and the square brackets
that the coincidence limit is taken. The local properties of the functionl are sufficient to obtain the
diagonal heat kernel expansion.

The resolvent of the operatorA satisfies the equation

„A~x,“m!2l…G~x,x8,k;l!5
1

Ag
d~x2x8!, ~9!

and, therefore, in order to fulfill~9! it is sufficient to require that the amplitudes(x,x8,k;l)
satisfy the equation

„A~x,“m1 i “ml !2l…s~x,x8,k;l!5I ~x,x8!. ~10!

The biscalar functionI (x,x8) is a matrix with respect to bundle space indices and is defined by
conditions similar to Eq.~8!:

@ I #51,
~11!

@$“m1
“m2

•••“mm
%I #50, m>1,

the unity in Eq.~11! is a matrix unity. To generate expansion~5!, we introduce an auxiliary
parametere into Eq. ~10! according to the rulel→ l /e, l→l/e, and expand the amplitude into
formal series in powers ofe,

s~x,x8,k;l!5 (
m50

`

e11msm~x,x8,k;l! ~12!

~the parametere then set equal to unity!. Then, Eq.~10! gives us the recursion equations
determine the coefficientssm , and, finally, this procedure leads to expansion~5!, where the
DWSG coefficientsEm(xuA) are expressed through the integrals of [sm] in the form6

Em~xuA!5E dnk

~2p!nAg
E
C

i dl

2p
e2l@sm#~x,x,k;l!. ~13!

Up to now we followed Ref. 6 very closely. For the Laplace operator the recursion relation
sm follow directly from Eq.~10!, but it is not the case for the operatorA 5 A2¹2 1 V(x), which
we consider. Explicitly, the equation fors takes the form

„A“ml “
ml2 i e ¹2l2e2¹222i e “ml “

m1V~x!2l…(
m50

`

emsm5I , ~14!

and we need a generalization of the method of Ref. 6 in order to obtain the recursion relatio
sm for the operatorA 5 A2¹2 1 V(x). In this case we cannot simply expand the square root of
J. Math. Phys., Vol. 38, No. 3, March 1997
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Laplace operator2¹2 in powers ofe as in the case of the Laplace operator, because“ml “
ml , and

the operator withe and e2 do not commute, and it is not clear how to order them in the Ta
formula. Therefore, to generate an expansion of the root in powers ofe we first write down the
expansion of the root in powers ofe in the most general form,

A“ml “
ml2 i e ¹2l2e2¹222i e “ml “

m5A“ml “
ml1e f 11e2f 21•••1emfm1••• ,

~15!

where f 1 , f 2 , and f m are to be found. In order to show how the method proposed works, firs
compute the lowestE0 andE2 DWSG coefficients. To do this, we have to find the expansion
the root up toe2, i.e., we have to find onlyf 1 and f 2 . This can be done as follows: First, we tak
the square of Eq.~15!,

“ml “
ml2 i e ¹2l2e2¹222i e “ml “

m5“ml “
ml1A“ml “

ml e f 11e f 1A“ml “
ml1e2f 1

2

1A“ml “
ml e2f 21e2f 2A“ml “

ml1••• . ~16!

Then, comparing terms with the equal powers ofe, we obtain the equations forf 1 and f 2 ,

2 i ¹2l22i “ml “
m5A“ml “

ml f 11 f 1A“ml “
ml , ~17!

2¹21V~x!5 f 1
21A“ml “

ml f 21 f 2A“ml “
ml . ~18!

From the left-hand side of Eq.~17!, it follows that the most general form off 1 is
f 152 iam“

m2 ib, wheream and b are ordinary vector and scalar functions, respectively,
operators. Substituting the general expression forf 1 in Eq. ~17!, we get the following equations fo
am andb:

22i “ml “
m522iamA“nl “

nl “m, ~19!

2 i ¹2l522ibA“ml “
ml2 iam“

mA“nl “
nl . ~20!

From these equations we obtain

am5
“ml

A“nl “
nl
,

~21!

b5
¹2l

2A“ml “
ml

2
“ml “

mA“nl “
nl

2“al “
al

.

Then Eq.~18! for f 2 takes the form

2¹252~am“
m1b!21A“ml “

ml f 21 f 2A“ml “
ml . ~22!

Similar to the case off 1 , we write downf 2 in the most general form,

f 25C1¹
21C2m“

m1C3mn “
m
“

n1C4 . ~23!

Substituting~23! in Eq. ~22!, we find

C152
1

2T1/2
,

J. Math. Phys., Vol. 38, No. 3, March 1997
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C2m5
“m

1/2

2T
2
aman “

nT1/2

2T
1
amb

T1/2
1
an “

nam

2T1/2
,

~24!

C3mn5
aman

2T1/2
,

C45
am “

mb

T1/2
1

b2

2T1/2
2

¹2T1/2

4T
2

1

2T1/2

3S ¹mT
1/2¹mT1/2

2T
2
anam “

nT1/2 “mT1/2

2T
1
amb “

mT1/2

T1/2
1
an “

nam “

mT1/2

2T1/2 D
2
aman “

m
“

nT1/2

2T
,

whereT5“ml “
ml .

Thus, we have found the expansion of the root up toe2 but it is obvious that it is possible in
a similar way to find the expansion of the root up to anymth power ofe because the equation fo
f m has a similar form to the equations forf 1 and f 2 , namely, the dependence on the unknownf m
has the formA“ml “

ml f m 1 f mA“ml “
ml , which coincides with that forf 1 and f 2 . Conse-

quently, writing downf m in the most general form and definingf 1 , f 2 ,...,f m21, we can find the
explicit expression forf m in the same way as it was done in the case off 1 and f 2 .

Having obtained the explicit expansion of the root

A“ml “
ml2 i e ¹2l2e2¹222i e “ml “

m5A“ml “
ml2 i e~am“

m1b!1e2f 21••• , ~25!

from Eq. ~14! we have the following equations fors0, s1:

~T1/22l!s05I ,

~T1/22l!s11„2 i ~am“
m1b!1V~x!…s050, ~26!

~T1/22l!s21„2 i ~am“
m1b!1V~x!…s11~C1¹

21C2m“
m1C3mn “

m
“

n1C4!s050.

From Eq.~26! we find

@s0#5
1

Ak22l
, ~27!

@s1#52
V~x!

~Ak22l!2
, ~28!

@s2#52
kmk

ll nl
mn

2k~Ak22l!3
2

kmkll n
n ml

2k2~Ak22l!3
2

kmk
ll nl

mn

4~k2!3/2~Ak22l!3

2
kmkll n

n ml

4~k2!3/2~Ak22l!3
1

km “

mV~x!

~Ak22l!3Ak2
1

V2~x!

~Ak22l!3
, ~29!

where we introduced the notation@“m“n•••“ll # 5 kalmn•••la and wrote down only terms that d
not vanish after the substitution of the explicit expression forlmn•••l and the convolution with
kmkn•••kl. Note the fifth term in the expression for@s2# vanishes after integration ink because of
J. Math. Phys., Vol. 38, No. 3, March 1997
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an odd power ofk. Note that contrary to the case of the minimal operator2¹21V(x) coefficient
E1 is not equal to zero for the operatorA2¹2 1 V(x). Let us recall that the DWSG coefficient
are given by~13! and we have to calculate the integrals inl andk. The integral inl is trivially
calculated by using the residue theory. To calculate the integral ink, we note that~see Ref. 6!

E dnk

~2p!nAg
km1

km2
•••km2s

f ~k2!

5g$m1m2•••m2s%

1

~4p!n/22sG~n/21s!
E
0

`

dk2~k2!~n22!/21sf ~k2!, ~30!

k25gmnkmkn ,

whereg$m1m2•••m2s%
is the symmetrized sum of metric tensor products.

Integrating inl andk, we obtain

E0~x!5
2G~n!

~4p!n/2G~n/2!
, ~31!

E1~x!52
2G~n!V~x!

~4p!n/2G~n/2!
, ~32!

E2~x!5
G~n21!

~4p!n/2G~n/2! SR622~n21!V2~x! D , ~33!

where we usedlmnla52Ralmn/32Ranml/3.
Note that contrary to the case of the minimal operator2¹21V(x), theE2 coefficient for the

operatorA2¹2 1 V(x) essentially depends on the dimension of space. We can also easily g
alize the method proposed to the case of the operator of the type (2¹2)1/q1V(x), whereq is any
natural number. Thus, we have shown how the method proposed can be modified and ado
calculation of the DWSG coefficients for the operatorA2¹2 1 V(x) and have calculated th
lowestE0 , E1 , andE2 coefficients.

III. THE DWSG COEFFICIENTS FOR OPERATORS OF THE TYPE A ROOT OF THE
MINIMAL OPERATOR

In this section we show that the problem of calculation of the DWSG coefficients for op
tors of the typeA5„2¹21V(x)…1/q, whereq is any natural number, is solvable. Clearly, th
operator under the sign of the root must have only non-negative eigenvalues in order f
extraction of the root to be meaningful. In the case of strictly positive operators under the s
the root, i.e., if the operator does not have any zero eigenmodes, we obtain an exact f
expressing the DWSG coefficients for operators with the root through the DWSG coefficien
operators without the root. If the operator has zero eigenmodes, then the method we use to
this exact formula does not work. Note that in this case we can calculate the DWSG coeffi
by using the method proposed in Sec. II. The generalization of the method of finding ampl
[sm] @see~15!–~24!# for the square root of the Laplace operator is direct to the case of an arb
natural root. For strictly positive operators both methods can be used and they yield the
results.

The main idea is the following one: In the case of strictly positive operators under the si
the root we can use, instead of~6!, the following representation:
J. Math. Phys., Vol. 38, No. 3, March 1997
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e2tA5E
C

i dl

2p
e2tl1/2~A2l!21. ~34!

Note that the operator2¹21V(x) must be strictly positive because only if zero eigenmodes
absent we can draw the contourC such that it encircles the whole spectrum of the opera
2¹21V(x) and does not intersect anywhere the cut from infinity to zero along the neg
half-axis, which is needed in order for the extraction of the root to be meaningful. It is obviou
if the operator has zero eigenmodes, then such a contour cannot be drawn.

Em coefficients in the method with the representatione2tl1/q are given by the relation

Em~xuA!5E dnk

~2p!nAg
E
C

i dl

2p
e2l1/q@sm#~x,x,k;l!, ~35!

wheresm(x,x,k;l) are the same as for the operator2¹21V(x).
Recall that the DWSG coefficients for the operator2¹21V(x) are given by the relation

Em~xuA!5E dnk

~2p!nAg
E
C

i dl

2p
e2l@sm#~x,x,k;l!. ~36!

Comparing it with~35!, we see that the only difference is the power ofl in the exponent, namely
it is equal to 1/q in the case of the operator with the root and 1 for the operator without the
We recall that a general term of [sm(x,x,k;l)] has the following form:

km1
•••km2s

Fm1•••m2s

~k22l!a
, ~37!

whereFm1•••m2s is expressed through the bundle curvatureWmn and the Riemannian curvatur
tensorRrmn

l . Thus, [sm(x,x,k;l)] is the sum of terms with various powers ofa ands. It is very
important for what follows that the differencea2s is fixed for the DWSG coefficient of a given
order. This fact follows from the homogeneity property of the recurrent relations forsm ~see Ref.
6!. a2s is equal to 11m/2 for the operator2¹21V(x). Integrating overl and angles in
n-dimensional space, we have for the DWSG coefficient in the case of the operator witho
root,

E dk kn2112sg$m1•••m2s%
Fm1•••m2s

da21

dk2~a21! e
2k2, ~38!

and for the operator with the root,

E dk kn2112sg$m1•••m2s%
Fm1•••m2s

da21

dk2~a21! e
2~k2!1/q, ~39!

where we have omitted common constant factors that coincide for two cases under consid
and have used formula~30!. Integrating overk, we obtainG[(n22)/21s2a12]5G[(n2m)/2]
for the operator without the root andqG„q[(n22)/21s2a12]…5qG„q(n2m)/2… for the opera-
tor with the root. It is very essential that theG functions do not depend ona and s due to the
homogeneity property, and depend only onm. Therefore, the results obtained are true for any te
in the expansion ofsm . Thus, the DWSG coefficients for the operator with the root are expre
through the DWSG coefficients for the operator without the root,
J. Math. Phys., Vol. 38, No. 3, March 1997
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Emr5
qG„q~n2m!/2…

G@~n2m!/2#
Em , ~40!

whereEmr are the DWSG coefficients for the operator with the root. Obviously, in a partic
caseq51, formula~40! give the correct answer, namely, the DWSG coefficients for the mini
operator2¹21V(x). Thus, the problem of finding the DWSG coefficients for operators of
type of a natural root of a strictly positive operator is solvable, i.e., the DWSG coefficient
operators with the root are explicitly expressed through the DWSG coefficients for ope
without the root. Note that the dependence on the value of rootq extracting from the Laplace
operator is rather trivial. The DWSG coefficients for operators with the root are simply the DW
coefficients multiplied by a factor, and only this factor depends onq.

Note that it would be of significant interest to calculate the DWSG coefficients by using
methods proposed for an operator that has zero eigenmodes. Finding the difference betwEm

obtained by two methods, we would be able to define the contribution of zero eigenmodes
DWSG coefficients.
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Matrix elements of multibody operators in Gel’fand and similar bases of irreducible
representations of U(n) are evaluated algebraically to arbitrary order. It is shown
that in all cases the matrix element expressions consist of products of terms, each a
matrix factor associated only with subgroup labels at step U(k).U~k21! in the
group chain U(n).•••.U(k).•••.U~1!. Further, the matrices at stepk occurring
in the product are diagonalizable according to the irreps ofSN , which signifies also
for N the number of one-body operators contained in the multibody operator at the
level. The results extend previous work that was directed at special cases of multi-
body operators. Attention has been focused recently on such operators in connec-
tion with spin-dependent and higher-order multipole spin-independent interactions
as arise in the unitary group approach. Explicit phase relations are incorporated
throughout the treatment. ©1997 American Institute of Physics.
@S0022-2488~97!02703-5#

I. INTRODUCTION

In the present paper we deal with the subject of algebraic evaluation of matrix eleme
quantum mechanical operators, particularly those of higher rank. Examples of such operato
in various applications, for example, spin-dependent interactions such as spin-orbit,T1~l¢i ,s¢i! and
T3~l¢i ,s¢j !, which can be expressed in Gel’fand bases1–5 as sums of products of two or three U(n)
generators,6–9 spin–spin,T4~s¢i ,s¢j ! expressed as sums of products of four generators,

9–13as well as
higher rank spin-independent multipole tensors.14–17Other examples include the Casimir invar
ants for U(n) or SU(n), which may involven generator products.

Matrix elements of operators are evaluated in terms of Gel’fand bases, that is irred
representations~irreps! of U(n), while operators themselves are constructed from linear com
nations of products of U(n) generators; the generator rank of the operator is the largest numb
generators appearing in any product term in the sum. In previous work,17 we employed Yutsis18,19

graphs to show that in cases up to rank-4~e.g., spin–spin interaction! and also for rank-K products
of identical generators the matrix element expressions decompose into products of matrix f
one for each step in the group chain U(n).•••.U(k).•••.U~1!, each dependent upon only th
irrep labels at step U(k).U~k21!.

It must be emphasized that the combination of efficient state labelling and the pattern ca
of the Gel’fand, Young, or other related tableau formalisms20–22alleviate much of the burden o
these types of calculations.

In this paper we continue the examination of multigenerator product operators and
evaluation in Gel’fand and similar bases, notably Paldus and Weyl–Young tableaux. In Sec
present basic theory and notations. In Sec. III we establish the fundamental results of the
namely, matrix elements of U(n) multigenerator product operators of arbitrary rank are reduci
in general, to the form of a product ofn matrix factors. Each factor is expressed using SU(n)
generalized Racah and higher-order 3N2 j coefficients,23–26which depend only on irrep labels a
0022-2488/97/38(3)/1700/10/$10.00
1700 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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each step in the group chain, thereby revealing explicitly the recoupling sequence, and the
ces are diagonalizable upon permutational symmetry adaptation toSN .

II. THEORY AND NOTATIONS

We denote bases of irreducible representations~irreps! of U(n) @or SU(n)# by Gel’fand
tableaux.1,4 Alternative, equivalent representations include Weyl–Young2,3 ~WYT! and Paldus
~ABC! tableaux,14,20,22each providing simple and effective means for visualizing or represen
individual basis states as well as for computing matrix elements.

A Gel’fand tableau can be expressed recursively as

u~m!n&5UF mn

~m!n21
G L ,

wheremn5[m1nm2n•••mnn], mi j>mi j21>mi11n>0 ~between conditions!. A Young frame3 pn
is constructed by drawingm1n boxes in a row, labelling columns in left to right order from 1 to t
maximum row lengthL5m1n. This is followed by adding additional rows, each of lengthmin for
the i th row, up to thenth row; any WYT with more thann rows vanishes identically. Thus, th
vectorpn hasL11 componentspn5[pLnpL21n•••p0n] with pin the number of rows of lengthi in
the frame, or the number of distinctk for which mkn5 i . The notationu~pn!& denotes a Paldus
tableau. It follows thatt5S i pi t andNt5S i ip i t , the number of boxes in the tableau after t
addition of all boxes containing labels 1 tot.

We define the level occupancyr i5Ni2Ni21. The labels in the WYT boxes increase from th
top to the bottom row and are nondecreasing from left to right in each row. Finally, we ass
with each tableau a phase (21)M ((p)n), where

M „~p!n…5~n11!Nn2 (
k51

n

krk , ~2.1!

which accords with the Baird–Biedenharn–Condon–Shortley convention.4,5 We shall use the
abbreviated notation (21)pn for phases with the understanding that~2.1! is used in actual calcu
lations.

From a coupling5,17,23viewpoint the group chain U(k).U~k21!^U~1! is reflected through

ur idi& ^ u~pi21!&5(
pi

u~p! i&^~p! i ur i~pi21!di&, ~2.2!

where we have used the U(n) Clebsch–Gordan coefficients~CGC! ^~p!i ur i~pi21!di&. The state
ur idi& denotes the one-dimensional symmetric state formed fromr i single-particle states labeledi
anddk5pk2pk21 is an associated weight vector. This state can be viewed either as a singl
tableau or asr i boxes in different rows and columns of an explicitly symmetrized nonstan
basis tableau, following Chenet al.24,25The CGC obey usual orthonormality conditions as well
phase relations under reordering of coupling. Using Yutsis18 graphs each state can be represen
as a coupling sequence~2.2!, as shown in Fig. 1. Labeling of nodes and placement of arrows
accord with standard recoupling rules discussed, for instance, by Brink and Satchler.19

In cases of SU~2! symmetry6,20,21 the approach is adapted to a product of spin and orb
spaces, U(2n).U(n)^SU~2!, with tableaux in each space conjugate to one another. The or
space described by two-column tableaux in U(n) is constructed in the fashion outlined above.

Recognizing that the angular momentum coupling approach to the definition of state
operator matrix elements is expressible using Yutsis graphs enables the application of stra
ward rules of simplification and decomposition to the graphs, equivalent to the use of alg
J. Math. Phys., Vol. 38, No. 3, March 1997
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results such as orthogonality relations among CGC and Racah coefficients, for instance
graphical representation of a given operator in the basis deduction of the algebraic expre
follows immediately.

Introducing second quantized operatorsaim ,aim
1 satisfying ~anti-!commutation relations for

bosons~fermions!, the U(n) infinitesimal generators are written as

Ei
j5(

m
aimajm

1 ; @Ei
j ,Ek

l #5Ei
ld k

j 2Ek
j d i

l , ~2.3!

where the sum is over state labels that are extraneous to the U(n) symmetry. It is also useful to
consider generator products,

Ejl
ik5Ej

i El
k2d j

kEl
i , ~2.4!

as well as more general productsEi1

j 1Ei2

j 2•••EiN

jN. In particular, a complete set of commutin

operators4 in U(n) is defined as

C~N!5(
$ i K%

)
k50

N21

Eik modN

i ~k11!modN; C~0![1. ~2.5!

Evaluation of reduced matrix elements of the generators and their products has been dis
by a number of authors.4–17 Results have been presented for all cases of single generator
products of two generators as well as special cases of three and four generator produ@for
SU(m)# and shown that these are all expressible in terms of fundamental Racah~and higher-order;
62j , 92j ! coefficients.17 These methods demonstrate that the matrix elements of an arb
product of generators can be written as a product of segment factors~matrices!, each of which is
computed based only on the irrep labels of linked U(i ):U~i21! subgroups.

Using the CGC one defines the U(n) Racah coefficient, or Wigner 62j symbol, following, for
instance, Sharp and Derome.23 We note that in expressions to be derived below, only cer
fundamental 62j symbols appear in the expressions for multigenerator product matrix elem
namely

H pk21 r k pk

r k8 pk218 1 J or H pk218 pk21 1

pk pk8 r k
J ,

whose values are determined by hook length formulas adapted to specific WYT. The firs2j
symbol corresponds to the subgraph shown in Fig. 2 and occurs at thehead, or highest step in the
group chain, at which a single generatorEj

k is effective; an analogous 62j symbol and subgraph
arise at the lower bound, ortail, of the generator. The second 62j symbol corresponds to th

FIG. 1. Prototypical segment of a basis state graph with a coupling sequence at thekth node corresponding to
^pk21r kdkupk&. Phase information is exhibited by the sign of the node and appearance and directionality of arrows
J. Math. Phys., Vol. 38, No. 3, March 1997
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subgraph shown in Fig. 3. Such terms arise in the region intermediate between the lower an
bounds of a single generator. A point to emphasize is that each of these factors depends
state and operator labels at levels U(k):U~k21! thereby reflecting the group chain.

Graphical representations of reduced matrix elements of multigenerator products are ob
by joining together bra and ket basis state graphs~Fig. 1!, together with a coupling graph line
representing each separate generator. In typical cases of interest resulting graphs are too
cated to work with efficiently or to obtain algebraic expressions suitable for computation. De
position of the matrix element graphs is accomplished by cutting across~a! two lines and using the
CGC orthonormalization conditions to reduce all factors occurring outside the range of the
to either value 1, if the couplings are identical, or 0 if they disagree; or~b! three lines using CGC
orthogonality relations. Zero angular momentum lines can be removed trivially. This proce
illustrated in Fig. 4, where, for purposes of clarity, we have excluded labels and some sign
arrows in order to emphasize the recoupling of internal generator lines and the manner of c

FIG. 2. An example of aheadsubgraph occurring in the reduced matrix element graph for a singleU(n) generatorEj
k

whose operative range terminates at stepk in the group chain. This graph corresponds to a fundamental 6-j symbol
indicated by the line labeled1.

FIG. 3. An example of anintermediatesubgraph occurring in the reduced matrix element graph for a single generator
graph corresponds to a second fundamental 6-j symbol indicated by the line labeled1.
J. Math. Phys., Vol. 38, No. 3, March 1997
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Each graphical term that arises in the expression of an operator represents a 3n2 j coefficient.
In rare cases such coefficients can be computed in a straightforward manner; typically, ho
it is necessary to decompose these subgraphs into others that are more easily evaluated.

For example, in recent works by Kentet al.9,10 and by Gouldet al.,11,12 results were obtained
for evaluating matrix elements of the spin-tensor operator,

Sq~1,j !5 (
m,n51

2 A3

2
~1!1/22mmS 1

2 1 1
2

mm q mn
DEin

jm , ~2.6a!

5~1!S2Sn12Sn811/2H Sn8 1
2 S

1
2 Sn 1

J 21

@3Ei
n11En11

j 2 1
2Ei

jEn11
n11#,

~2.6b!

where the generatorEin
jm references spin and orbital labels in the SU~2! and U(n) spaces, respec

tively, while generatorsEi
j refer only to the orbital space of U~n11!. The alternative and equiva

lent forms of the spin operator~2.6! derives immediately from an embedding property of t
groups introduced first by Drake and Schlesinger6 and exploited also in Ref. 10. In all case
matrix elements of operators such as~2.6!, or products of these such as occur with spin–orbit
spin–spin interaction cases, simplify to the form

G„~p8!,~p!…5)
t51

n

Wt~pt218 ,pt8 ,pt21,pt;~q8!Nt21
,~q!Nt…, ~2.7!

where theWt factors are scalars or (Nt21)!3(Nt)! diagonal matrices,Nt is the number of gen-
erators whose ranges overlap at levelt, and~q!N represent intermediate-coupling spin values t
arise at theheador tail of intersecting generator ranges. Using matrices requires that facto

FIG. 4. Decomposition of complex graphs representing reduced matrix elements of products of generators is carrie
first, coupling internal single generator lines, one at a time, to resultant, multiplicity-freeSN irreps at each subgroup leve
and second, cutting across three lines, as indicated by the dotted lines. Each graph is immediately reduced to a p
subgraph factors.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



tor
consid-

t and
s seg-

ubject
an ion
than-
n-
rator
f gen-
ele-

lo-

tional

he

s

led

e
n Figs.

rise at
bgraph
e

1705R. D. Kent and M. Schlesinger: Multibody operator matrix elements in U(n)

¬¬¬¬¬¬¬¬¬¬
strictly ordered by increasingt. The advantage of this decomposition is that all the matrix fac
components can be calculated simultaneously from the same sets of irrep indices, a vital
eration in machine computations.

Details of the treatment of higher rank spin-dependent operators are given by Ken
Schlesinger and Gould and Battle. An exhaustive compendium of formulas for the variou
ment factors that arise has been obtained by Lucht.13

III. MULTIGENERATOR MATRIX ELEMENTS

Multigenerator products and their matrix elements appear in cases where a given ion is s
to a field possessing symmetry lower than spherical, such as an impurity ion in a crystal or
in the radiation field of a dipole or multipole source. Higher-order tensor coupling of higher-
spin-1/2 nucleons, as in nuclear magnetic resonance~NMR! cases, also can give rise to multige
erator products.16 In the previous section we outlined the treatments of one- to four-gene
matrix element graphs and expressions, while in Ref. 17 we dealt with matrix elements o
erator products (Ei

j )N. Below we generalize to the case of arbitrary multigenerator matrix
ments,

QK~m,n!5)
k51

K

Emk

nk , 1<mk , nk<n, ~3.1!

arising in the context of Hamiltonians such as

H5 (
K50

N

hKC
~K !, ~3.2!

with C(K) defined in~2.5!. The form~3.2! is often applied, for instance, in collective models.27

The irreps and basis states of U(m)3SU(n) can be constructed in a manner entirely ana
gous to the tableau formalism of UGA for SU~2! states. As shown by Kent and Schlesinger16,17the
graphical formalism extends to higher-order groups.

In general, a multipole operator, expanded to arbitrary order, will contain terms propor
to the product ofK generatorsQK~m,n! defined in~3.1!. In previous work17 we reported results for
the special case wheremj5m andnj5n for all j . We shall now present the primary results of t
current work from which one can obtain a general solution to the matrix elements of~3.1! in anSN
adapted basis.

An arbitrary product of generators,Emk

nk , can be rewritten using commutation relations~2.3! to

order the operators by relative values of the indicesmk andnk . With this ordering one consider
graphs where, in a given orbital index range, the number of single-particle recoupling~transition!
lines isK, as shown in Fig. 4, withK varying at each step from 0 to 4. In the figure lines labe
1, corresponding to single generators acting on a single state~box in the WYT!, are coupled to
irreps ofSK and applying rules of graphical decomposition19 the graph is then cut across thre
lines as indicated by the dotted lines. This procedure results in graphs of the forms shown i
5 and 6.

Figures 5 and 6 represent two distinct possibilities for segment subgraph factors that a
the intersection of ranges where two or more generators overlap. Figure 5 shows a su
B(q)(pk,pk21,pk218 ;r k ,r k8) defined at a node where all generator lines terminate, coupling to thr k
particles at subgroup step U(k). Corresponding to theheadfactorB is a tail factorA, conjugate
to the diagram in Fig. 5, related by a phaseA(q)(a,b,c;r ,r 8)5(21)r1r 81qB(q)(a,c,b;r 8,r ). Fig-
ure 6 illustrates the case for subgraphT(q),(q8)(pkpk8pk21pk218 ;r k), where multiparticle transitions
J. Math. Phys., Vol. 38, No. 3, March 1997
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occur both to and from levelk, all such graph lines coupling to irreps~q! of SN or ~q8! of SN8.
Both types of graphs contain central boxes whose internal coupling structure must be
explicit.

Figure 7 illustrates the decomposition of the central box from Fig. 5 into two distinct subg
types. The top diagram represents the base case that is used to define

B~1!~pk,pk21,pk218 ,r k ,r k8!5~21!pk1pk218 1rJH pk21 r k pk

r k8 pk218 1 J . ~3.3!

As mentioned previously the 6-j symbol in~3.3! is of a standard type,17 which can be immediately
evaluated in terms of hook lengths in the WYT scheme.

Using the lower diagram in Fig. 7 subgraphB(q)(pk,pk21,pk218 ;r k ,r k8) can be expressed
recursively,

FIG. 5. Representation of a generalizedheadsubgraph for operatorT(N)(q) at stepk. Details of the multigenerator coupling
are hidden in the central box.

FIG. 6. Representation of a generalizedintermediatesubgraph corresponding to recoupling sequences at thekth node
effected by adaptingN1 andN2 generators to irreps~q8! and~q!. Details of the multigenerator coupling are hidden in t
central box.
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
B~q!N
~pk,pJ ,pk218 ,rJ ,r k8!5(

$p%
@pJ#~21!pk1pk218 1~q!N1rJ11H pJ rJ pk

rJ11 pJ11 1 J
3H pJ11 ~q!N21 pk218

~q!N pJ 1 J B~q!N21
~pk,pJ11,pk218 ,rJ11 ,r k8!,

~3.4!

where we have introduced intermediate irrepspJ andrJ with the identificationsp1 5 pk21,pN

5 pk218 and r15r , rN5r 8 for N generators terminating at stepk. The factor@pJ# is just the
dimension of the irrep~pJ! and the sum extends over all consistent irreps.

Figure 8 illustrates three possible decomposition procedures for the central box in F
depending on the internal structure. SubgraphT(q),(q8)(pkpk8pk21pk218 ;r k) is expressed as

T~q!,~q8!~pkpk8pk21pk218 ;r kr k8!5~21!pk81pk211r1qH pk218 pk21 q

pk pk8 r k
J , ~3.5a!

5B~q!~pk8pk21pk218 ;r!A~q8!~pk218 pkpk8 ;r! ~3.5b!

5(
$p %

@pJ#~21!r k1pk1q1pk218 H pJ8 pk21 q

pk pk8 r t
J

3H pJ8 q pk218

q9 pk q8
J B~q!~pkpk21pJ8 ;rJr k8!, ~3.5c!

FIG. 7. Central boxes forheadsubgraphs are recursively decomposed following theSN subgroup chain, removing the
effect of a single generator line at a time, stopping at~q!5~1!. The headsubgraph is then decomposed using standa
graphical reduction techniques.
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



previ-
g

the
e
y ma-

article
e
red by
gh the
ry
y the

uction

ough
ed for
erators,

ne

1708 R. D. Kent and M. Schlesinger: Multibody operator matrix elements in U(n)

¬¬¬¬¬¬¬¬¬¬
corresponding to the procedures A, B, and C, respectively, shown in the figure. Using the
ously definedheadand tail factorsB andA all T factors can be obtained either directly usin
~3.5a! or recursively using~3.5b! or ~3.5c!.

Expressions~3.3!–~3.5! have not appeared previously in the literature to the best of
authors’s knowledge. In all cases the phases have been simplified considerably by the choic~2.1!,
which gives integer values. Additional cases can now be derived from the ones studied b
nipulation of the graphs.

What is particularly important to note concerning expressions~3.3!–~3.5! is the coupling
technique used to factor the graph at each subgroup level. By adding or deleting a single-p
state at a time to the intermediate irreps~q! one ensures that the irrep is multiplicity free within th
SN group chain; this fact implies that the factors can be rewritten as diagonal matrices orde
each step in the group chain decomposition of the reduced matrix element graph. Althou
number of such factors is, in principle,N! it is usually the case that the actual number is ve
much smaller, a result that follows from the severe limitation on available couplings defined b
bra and ket state labels themselves.

We also note that the subgraph in Fig. 8 arises in connection with the evaluation of subd
coefficients, as noted in Ref. 17.

Our results essentially complete the evaluation of tensor operators of arbitrary rank. Alth
it is possible, in principle, to derive closed form expressions using the techniques discuss
specific generator products, especially those terms associated with particular interaction op
it is not practicable to do so in general.

FIG. 8. Central boxes for intermediate subgraphs are recursively decomposed following theSN subgroup chain, removing
the effect of a single generator line at a time, stopping whenr5r 8. The intermediatesubgraph is then decomposed to o
of types A, B, or C graphs using standard graphical reduction techniques.
J. Math. Phys., Vol. 38, No. 3, March 1997
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IV. CONCLUSION

In this work we have demonstrated the use of graphical methods of analysis to obtain
braic expressions of matrix elements of higher rank quantum mechanical operators used i
ments of systems described by SU~2! and higher-order symmetries. New results were presente
which we generalized previous treatments of many-particle operators. In particular, we hav
established that in all cases multigenerator reduced matrix elements can be written as a pro
matrix factors, one for each step in the group chain. Further the matrices are diagonal, each
defined by intermediate irrep labels~q! of SN .

The use of group theoretical techniques has achieved considerable success and promin
modern physics. This is so largely because of the manner in which symmetries, hence be
nature, are recognized and exploited in the construction of physical theories and their subs
applications. In particular, the study of the general linear groups, GL(n), and their various spe
cialized subgroups and associated Lie algebras, have led to many significant discoveries,
although achievable through purely algebraic means, are greatly facilitated by the power in
in group theoretical calculi.
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Representation of complex probabilities
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Let a ‘‘complex probability’’ be a normalizable complex distributionP(x) defined
on RD. A real and positive probability distributionp(z), defined on the complex
plane CD, is said to be a positive representation ofP(x) if ^Q(x)&P5^Q(z)&p ,
whereQ(x) is any polynomial in RD andQ(z) its analytical extension on CD. In
this paper it is shown that every complex probability admits a real representation
and a constructive method is given. Among other results, explicit positive repre-
sentations, in any number of dimensions, are given for any complex distribution of
the form Gaussian times polynomial, for any complex distributions with support at
one point and for any periodic Gaussian times polynomial. ©1997 American
Institute of Physics.@S0022-2488~97!01203-6#

I. INTRODUCTION

In quantum physics there are instances of averages where the role of probability distri
is played by a distribution taking complex values. Consider the functional integral formulatio
field theory.1 There, the time ordered expectation value of observables takes the
^TO @f#&5N*Df(x)eiS[f]O @f#, whereS@f# is the action functional andN a normalization
constant. This is a first instance of a ‘‘complex probability distribution,’’ namely, the Boltzm
weightP@f#5NeiS[f] . In the continuum, such functional integral is not sufficiently well-behav
and only its Euclidean version can be given a rigorous meaning.2 Within a lattice regularization,
the Minkowski version is mathematically well-defined, nevertheless the Wick rotation is
formed in this case too. This is because, in most cases, in the Euclidean theory the Bolt
weight becomes a real and positive probability distribution. This is important in practice
straightforward Monte Carlo is only defined for positive probabilities. There are cases, how
when even Euclidean field theory presents complex actions. Indeed, the statistical interpreta
the quantum theory requires the Boltzmann weight to be reflection positive, but not di
positive.3 Instances of complex Euclidean actions occur after integration of fermions, sinc
fermionic determinant is not positive definite; if there are nonvanishing chemical potentia
gauge theories in the presence of Wilson loops or topologicalu-terms or in general after insertin
projection operators in the path integral to select particular sectors of the theory.4–7 Also, two
dimensional fermions can be brought to a bosonic complex action form.8

As we have said, the computation of averages in the presence of a complex prob
distribution poses a practical problem, namely, the Monte Carlo method cannot be used dire
sample the probability since this method only makes sense for true, i.e., real and positive
abilities. The standard approach to complex probabilities in numerical simulations4,5 is to factorize
a real and positive part to be used as input for some Monte Carlo method and includ
remainder in the observable. That is, if the complex probability isP(x)5P0(x)F(x) with
P0(x) positive, the expectation values can be obtained as

a!Electronic mail: salcedo@goliat.ugr.es
0022-2488/97/38(3)/1710/13/$10.00
1710 J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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^O ~x!&P5
^O ~x!F~x!&P0

^F~x!&P0
. ~1!

Of course, the same formula can be used whenP(x) itself is positive. The problem with this
approach is that it violates the importance sample principle, since we are not sampling th
probability and that increases the dispersion of Monte Carlo data. For instance,^F(x)&P0 may be
small, thereby introducing large error bars.

An alternative approach is to look for a positive probabilityp(z) in the complex configuration
space which gives the same expectation values asP(x), i.e., ^O (x)&P5^O (z)&p , whereO (z) is
the analytical extension ofO (x). The usual way of constructing such a probability is by mean
the complex Langevin algorithm.9–11 In this approach the configuration is updated through
standard Langevin algorithm with the complex action. Since the drift term is complex, the
plex extension of the configuration space is sampled as well. Whenever the random wal
sesses an equilibrium configuration, it is sampling the complex configuration space with a re
positive probability distributionp(z). We have then traded a complex probabilityP(x) on RD by
a positive probabilityp(z) on CD. If p(z) happens to be equivalent toP(x) in the sense of
expectation values, we have succeeded in sampling the complex probability. Successful
mentations of the algorithm have been obtained in some practical cases, such as two dime
compact QED with static charges.12 In general, however, the complex Langevin algorithm po
two problems. First, it not always converges to an equilibrium distribution. Second and
subtle, for some actions it seems to converge to an equilibrium distribution which is not equi
to the original complex probability,6,13,14 ~see, however, Ref. 15!. Such phenomenon has bee
found in practically relevant cases such as QCD with a Wilson loop.6,13,16

In the present paper we consider the problem of constructing a positive representation d
independently of the Langevin algorithm. Several properties of representations of complex
abilities on RD by probabilities on CD are noted. A constructive method is given to obtain r
~although not necessarily positive! representations of very general complex probabilities. Posi
representations are explicitly constructed for some probabilities which are beyond the p
applicability of the complex Langevin algorithm. These include Gaussian times polynomial
tributions with support at one point, and periodic Gaussian times polynomial. In all cases
representations are not unique.

These results are of great interest from the point of view of applications. This is not be
the constructions found here are of direct usefulness to carry out numerical calculations; th
far more natural ways to compute expectations values with complex Gaussian times polyn
distributions. The interest lies in the following. The negative results found up to now with
complex Langevin algorithm in some systems would make one to have reasonable dou
whether a positive representation exists at all for those systems. Moreover, the momenta
positive probability on CD are bounded to satisfy some inequalities among them. It might ha
that those bounds were incompatible with the momenta of the given complex probability onD in
some cases. At present, the necessary and sufficient conditions for a positive represent
exist are not known. The results of this paper suggest, however, that such representation
quite generally since the set of Gaussian times polynomial is dense inL2(RD). Our results tend to
support the idea that there is no obstruction of principle for positive representations to exits
is the main insight of this work.

II. REPRESENTATION OF COMPLEX PROBABILITIES

The complex probabilitiesP(x) to be considered here will be tempered distributions on RD of
a restricted class, namely, those which are the inverse Fourier transform of an ordinary fu
P̃(k) ~locally integrable and at most of polynomial growth at infinity!, with P̃(k) nonvanishing at
the origin and analytical at that point. These conditions allow for a natural definition
J. Math. Phys., Vol. 38, No. 3, March 1997
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*xi1•••xinP(x)d
Dx through the Taylor expansion ofP̃(k) atk50. In particular*P(x)dDx will be

nonvanishing. The expectation value associated toP(x) is defined for any polynomialQ(x) as

^Q~x!&P5
*Q~x!P~x!dDx

*P~x!dDx
. ~2!

Likewise, we can consider complex probabilities on CD as the class of distributions defined abo
on R2D. For any such distribution,p(z), the expectation value takes the form

^q~z!&p5
*q~z!p~z!d2Dz

*p~z!d2Dz
. ~3!

where zj5xj1 iy j , d
2Dz5dDxdDy and q(z) is an arbitrary polynomial ofz and its complex

conjugatez* .
By definition, p(z) is a representation ofP(x) if ^Q(x)&P5^Q(z)&p , whereQ(x) is any

polynomial on RD and Q(z) its analytical extension on CD. Equivalently, one can deman
^xi1•••xin&P5^zi1•••zin&p for any set of indices, wherei r51, . . . ,D and n50,1,2, . . . . Two
complex probabilities on CD will be called equivalent if they have the same expectation values
every analytical polynomial. In general, two equivalent probabilities will not coincide on ex
tation values of nonanalytical polynomials^zi1•••zinzj 1

* •••zjm* &. A representation will be called

real if p(z) is real, positive ifp(z) is non-negative and unitary if*p(z)d2Dz5*P(x)dDx. Our
goal is then to find positive representations of complex probabilities.

We will proceed by noting different ways to obtain new representations from known one
first obvious way is by means of complex affine transformations. LetA be a nonsingular complex
D3D matrix, anda P CD, and assume thatP0(z) is an analytical function in a region including
RD andARD1a such thatP0(x) andP(x)5det(A)P0(Ax1a) are both complex probabilities
Then if p0(z) is a unitary representation ofP0(x) so isp(z)5udet(A)u2p0(Az1a) of P(x): for
any polynomialQ(x)

udet~A!u2E Q~z!p0~Az1a!d2Dz5E Q~A21~z2a!!p0~z!d2Dz

5E Q~A21~x2a!!P0~x!dDx

5det~A!E Q~x!P0~Ax1a!dDx. ~4!

Furthermore,p(z) is positive if p0(z) is positive. Another construction follows from linear com
bination. If pi(z) are unitary representations ofPi(x), so is p(z)5( i51

n bipi(z) of
P(x)5( i51

n biPi(x). Again, if pi(z) are positive andbi non-negative,p(z) is positive too.
Let us define the partial derivatives]k and ]k* on a function on CD as (]/]xk7 i ]/]yk)/2,

respectively, and letf(z) be in the class of distributions on CD defined above but dropping th
restriction*f(z)d2DzÞ0. Then ifp(z) is a probability,p(z)1]k*f(z) is also a probability and in
fact ~unitarily! equivalent top(z),

E Q~z!]k*f~z!d2Dz5E ]k* ~Q~z!f~z!!d2Dz

50, ~5!

whereQ(z) is any analytical polynomial. That is,]k*f(z) would represent the zero distribution o
RD. Such distributions will be called null distributions. They will prove useful in what follows
J. Math. Phys., Vol. 38, No. 3, March 1997
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obtain positive representations from real ones, namely, by adding null distributions of the
(k51
D ]k]k*fk(z), for suitably chosen realfk(z). Note that 4]k]k* is just a Laplacian.
Similarly, by proceeding as in Eq.~5!, it follows that if p(z) representsP(x), the following

relations hold:

E Q~z!]kp~z!d2Dz5E Q~x!]kP~x!dDx,

~6!

E Q~z!R~z!p~z!d2Dz5E Q~x!R~x!P~x!dDx,

whereQ(x) and R(x) are arbitrary polynomials. That is,]k on CD represents]k on RD and
multiplication by an analytical polynomialR(z) represents multiplication byR(x).

Another interesting construction is related to convolutions. The convolution exist for any
complex probabilities since it can be defined through the product of their Fourier transforms
are regular distributions. Ifp1(z) and p2(z) are unitary representations ofP1(x) and P2(x)
respectively, their convolutionp1* p2 is a unitary representation ofP1*P2 . Indeed,p1^p2 is a
unitary representation ofP1^P2 and

^zi1•••zin&p1* p25^~zi1
~1!1zi1

~2!!•••~zin
~1!1zin

~2!!&p1^p2

5^~xi1
~1!1xi1

~2!!•••~xin
~1!1xin

~2!!&P1^P2

5^xi1•••xin&P1* P2. ~7!

Furthermore, ifp1(z) andp2(z) are positive,p1* p2 is positive too. In particular, this allows fo
obtaining equivalent representations of known ones: Ifp(z) is a unitary representation ofP(x)
andC(z) is a unitary representation ofd(x), theD-dimensional Dirac delta function,p*C will be
unitarily equivalent top(z), sinceP* d5P. Any probabilityC(z) normalized to one defines
unitary representation ofd(x) if it is invariant under global phase rotations, i.e.,C(eiwz)5C(z)
for anyw P R. In this case

E zi1•••zinC~z!d2Dz5dn,0 , ~8!

since the angular average ofzi1•••zin vanishes forn.0. In fact this construction can be regard
as adding a Laplacian, namely,p*C2p, as it is easily seen after Fourier transform. This pro
dure can be used to obtain positive representations from real ones. On the other hand, it sho
if a complex probability admits a unitary positive representation it is not unique.

A unitary representation can always be obtained for anyP(x) by takingp(z)5P(x)d(y). If
P(x) is positive so will bep(z). This can be generalized as follows. LetP0(x) be positive and
P(x)5P0(x2 i t ), t P RD ~i.e., a complex translation under the conditions considered abov
affine transformations!. Thenp(z)5P0(x)d(y2t) is a unitary positive representation ofP(x). If
we allowP0 to depend ont, taking linear combinations we obtain thatp(z)5p(x,y) is a unitary
representation of

P~x!5E p~x2 iy ,y!dDy. ~9!

This relation has been noted before in the literature,14,17 considered as a projection from prob
abilities on CD to probabilities on RD. Note, however, that when this relation can be applied
gives just one of theP(x) represented byp(z). In fact, since the momenta ofP(x) are the Taylor
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



terized

s
e

t

gh

of

1714 L. L. Salcedo: Representation of complex probabilities

¬¬¬¬¬¬¬¬¬¬
expansion coefficients of its Fourier transform, there are many complex probabilities charac
by the same momenta. As we have seen, under this projection, the operation] i* is mapped to zero.
Similarly, ] i is mapped to]/]xi , and multiplication by an analytical polynomialQ(z) is mapped
to multiplication byQ(x).

As an immediate application of Eq.~9!, we find that formi j real, symmetric and positive
definite, the probability

P~x!5 f̃ ~x!exp~2 1
2mi j xixj ! ~10!

is represented by

p~z!5det~m! f ~my!exp~2 1
2mi j zizj* !, ~11!

wheref̃ is the Fourier transform off ~the repeated index convention will be used in what follow!.
For example, forD51, andG positive,P(x)5cos(x)exp(2x2/2G) is represented by the positiv
probability p(z)5exp(2x2/2G)(d(y2G)1d(y1G)). Since in this exampleP(x) is real but not
positive definite, this is an instance where a complex Langevin simulation would fail,13,16,14yet
there is a positive representation.

Next, let us show that every complex probability on RD admits a real representation. Le
P(x) be a complex probability normalized to one andP̃(k) its Fourier transform

P̃~k!5E eikxP~x!dDx, ~12!

wherekx5kixi . By definition we have

P̃~k!5 (
n50

`
i n

n!
ki1•••kin^xi1•••xin&P ~13!

in a neighborhood ofk50 sinceP̃(k) is analytic at the origin. Also,

^xi1•••xin&P5~2 i !n] i1•••] i nP̃~k!uk50 . ~14!

For a probabilityp(z) on CD, the Fourier transform is defined similarly,

p̃~s!5E eikx1 iry p~z!d2Dz

5E ei ~s* z1sz* !/2p~z!d2Dz, ~15!

wheres i5ki1 ir i . Assuming thatp(z) is normalized to one, its momenta are obtained throu

^zi1•••zinzj 1
* •••zjm* &p5~22i !n1m] i1

* •••] i n* ] j 1•••] j mp̃~s!us50 , ~16!

where] i refers tos i and] j* to s j* . Consider the following probability:

p̃~s!5C̃~s!P̃S s*

2 D S P̃S 2
s*

2 D D * . ~17!

Here,C(z) is one of the real unitary representations ofd(x) mentioned above. ThusC̃(s) is
analytical at the origin as a function ofki and r i and is invariant under global phase rotations
J. Math. Phys., Vol. 38, No. 3, March 1997
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s. P̃(s) stands for the analytical extension ofP̃(k) in a neighborhood of the origin. Beyond th
analyticity circle ~if it is finite! we can chooseC̃(s) equal to zero so thatp̃(s) exists. By
construction,p̃(s) is unity at the origin and analytical there. Also it is locally integrable and, w
a suitable choice ofC̃(s), grows at most polynomically at infinity, therefore it defines a pro
ability p(z) on CD. Furthermore,p(z) is real sinceC(z) is real and (p̃(s))*5 p̃(2s). It remains
to show that it is a representation ofP(x),

^zi1•••zin&p5~22i !n] i1
* •••] i n* p̃~s!us50

5~22i !n] i1
* •••] i n* P̃S s*

2 D U
s50

5~2 i !n] i1•••] i nP̃~k!uk50

5^xi1•••xin&P , ~18!

where it has been used that] i1
* •••] i n* C̃(s)us50 vanishes forn.0. That is, we have given a

constructive method, Eq.~17!, to obtain a real representation of any complex probability wit
the class of complex probabilities considered.

As an illustration, considerD51 and

P~x!5d~x!1ad8~x!, a5aR1 iaIPC. ~19!

In this caseP̃(s)512 ias is a polynomial, thus it is entire and well-behaved at infinity and
can takeC̃(s)51, i.e.,C(z)5d(x)d(y). With this choice

p̃~s!512
1

4
uau2usu22

i

2
~a*s1as* ! ~20!

and

p~z!5d~x!d~y!1aRd8~x!d~y!1aId~x!d8~y!1 1
4 uau2~d9~x!d~y!1d~x!d9~y!!. ~21!

One can easily check that this is a real distribution which representsP(x), however, it is not
positive. We can find a positive representation by first applying a convolution~i.e., a better choice
of C(z)) and then adding a suitable Laplacian. Furthermore, it can be done for an arb
distribution of support at zero in any number of dimensions. Rather than showing this in
here, it will be obtained as a byproduct in the next section. There we will obtain positive r
sentations of Gaussian functions times polynomials.

By formally undoing the Fourier transform ofp̃(s) in Eq. ~17!, the following explicit form of
p(z) is obtained:

p~z!5E C0S x2
x11x2
2

,y2
x12x2
2i DP~x1!P* ~x2!d

Dx1d
Dx2 , ~22!

whereC0(z1 ,z2) is the analytical extension ofC0(x,y)5C(x1 iy), with x andy real. In order for
this formula to make sense, we should requireC0(z1 ,z2) to be entire on C2D and further the
integrand should be sufficiently convergent so as to define a probability on CD. Such probability
is real by construction, sinceC(z) is real, however, it will not be positive in general even
C(z) is positive since such property is lost after analytical extension. The interest of this rel
as compared, for instance with that in Eq.~9!, is that it is constructive.

An example of application of this formula is provided by
J. Math. Phys., Vol. 38, No. 3, March 1997
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¬¬¬¬¬¬¬¬¬¬
P~x!5(
i51

N

aid~x2x~ i !!, C~z!5expS 2
zjzj*

2G D , ~23!

which gives

p~z!5 (
i , j51

N

aiaj* expS 2
1

2G S S x2
x~ i !1x~ j !

2 D 21S y2
x~ i !2x~ j !

2i D 2D D . ~24!

Another application is whenP(x) is a finite linear combination of Gaussian distributions cente
anywhere in the complex plane and with arbitrary complex widths, provided we ch
G.uG i u, i51, . . . ,N.

III. POSITIVE REPRESENTATIONS OF GAUSSIAN DISTRIBUTIONS

A Gaussian complex probability takes the general form

G~x!5NG exp~2 1
2mi j xixj2bixi !,

NG5~2p!2D/2~det~m!!1/2 exp~2 1
2 ~m21! i j bibj !, ~25!

wheremi j is a symmetric complex matrix with positive definite real part to ensure normalizab
As a consequencemi j is nonsingular and can be written asAkiAk j . This allows to setmi j5d i j and
bi50 by means of a complex affine transformation. That is, we will consider only

G~x!5~2p!2D/2 exp~2 1
2 xixi ! ~26!

and the general case can be obtained a posteriori asG(Ax1A21b). A positive representation o
G(x) is simplyG(x)d(y). A more general representationg(z) is obtained by convolution with
C(z)5(2ph)2D exp(2 (1/2h) zizi* ), whereh is positive. This gives

g~z!5Ng expS 2
1

2~h11!
xixi2

1

2h
yiyi D

5Ng exp~2ḡzizi*1 1
2 gzizi1

1
2 gzi* zi* !, ~27!

where the normalization constant isNg5(2pAh(h11))2D and we have introduced the positiv
numbers

g5
1

4h~h11!
, ḡ5

2h11

4h~h11!
. ~28!

The same representation is obtained by following the method of Eq.~22!. The value of the
parameterh, or equivalentlyḡ, will be fixed below.

The set of probabilities to be considered isP(x)5Q(x)G(x), whereQ(x) is a complex
polynomial of degreeN. P(x) can always be written as

P~x!5 (
n50

N
1

n!
ai1 . . . i n] i1 . . . ] i nG~x!, ~29!

whereai1 . . . i n is completely symmetric and the zeroth order coefficienta0 must not vanish~in
fact, is unity if P(x) is normalized!. A real representation ofP(x) is given by
J. Math. Phys., Vol. 38, No. 3, March 1997
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p0~z!5S ua0u21a0* (
n51

N
1

n!
ai1 . . . i n] i1 . . . ] i n1a0(

n51

N
1

n!
ai1 . . . i n
* ] i1

* . . . ] i n* D g~z!, ~30!

since the terms with]* do not contribute and]/]z is mapped to]/]x under projection.
It is convenient to introduce the polynomials

Qi1 . . . i n
~z!5g~z!21] i1•••] i ng~z!. ~31!

They can be computed recursively by means of the formula

Q0~z!51 , Qi1 . . . i n
~z!5~] i n1v i n

!Qi1••• i n21
~z!, ~32!

where we have introduced the variable

v i5gzi2ḡzi* . ~33!

The functionsQi1 . . . i n
(z) are polynomials of degreen in v i , with coefficients depending only on

g. With this notation,p0(z) can be rewritten as

p0~z!5S ua0u21a0* (
n51

N
1

n!
ai1 . . . i nQi1 . . . i n

~z!1a0(
n51

N
1

n!
ai1 . . . i n
* Qi1 . . . i n

* ~z!D g~z!. ~34!

In order to obtain a positive representation,p0(z) can be further cast in the form

p0~z!5S ua0u21 (
n51

N
1

n!
bnuQi1 . . . i n

~z!1bn
21a0ai1 . . . i n

* u2

2 (
n51

N S 1n! bnuQi1 . . . i n
~z!u21bn

21ua0u2uanu2D D g~z!, ~35!

where the indicesi 1 . . . i n are summed over,b1 , . . . ,bN are arbitrary positive numbers whic
value is to be specified below and we have defined the quantitiesuanu as

uanu25
1

n!
ai1 . . . i nai1 . . . i n

* , n51,2, . . . ,N. ~36!

In the Appendix it is shown that

fn~z!5S 1n! Qi1 . . . i n
~z!Qi1 . . . i n

* ~z!2ḡ nKn~D ! Dg~z! ~37!

is a null distribution, where

Kn~D !5
~D1n21!!

n! ~D21!!
. ~38!

By removingfn(z) from p0(z) we obtain an equivalent representationp(z), namely,
J. Math. Phys., Vol. 38, No. 3, March 1997
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p~z!5F (
n51

N
1

n!
bnuQi1 . . . i n

~z!1bn
21a0ai1 . . . i n

* u21ua0u2

2 (
n51

N

~bnḡ
nKn~D !1bn

21ua0u2uanu2!Gg~z!. ~39!

To ensure positivity ofp(z) we require

(
n51

N

~bnḡ
nKn~D !1bn

21ua0u2uanu2!<ua0u2. ~40!

This can be achieved by choosing the positive coefficientsbn so as to minimize the left-hand sid
~we exclude the trivial case where allan , n.0 vanish!,

bn5
ua0uuanu

Aḡ nKn~D !
. ~41!

In this way the inequality is satisfied for anyḡ smaller than the unique positive solution of

(
n51

N

AKn~D !uanuḡ n/25
1

2
ua0u. ~42!

For this choice ofḡ, p(z) takes the simple form

p~z!5 (
n51

N
1

n!
bnuQi1 . . . i n

~z!1bn
21a0ai1 . . . i n

* u2g~z!. ~43!

To summarize, any Gaussian times polynomial complex probability, Eq.~29!, admits a positive
representation, namely,p(z) in Eq. ~43!, with bn given by Eq.~41!, andḡ given by Eq.~42!.

Incidentally, let us note that from a computational point of view, it is convenient to minim
the width of p(z) in the complex plane~e.g., if P(x) is already positive, the best choice
P(x)d(y)), since this reduces the dispersion of points in the sample. In the family of probab
described by the expression ofp(z) in Eq. ~39!, this minimization corresponds to our choice
bn in Eq. ~41! and ḡ in Eq. ~42!. In general, however, this needs not be the best equiva
positive representation ofP(x). The construction presented above corresponds to addin
p0(z) a Laplacian of the form] i1•••] i n] i1

* •••] i n* g(z) ~as can be seen using the formulas of t

Appendix!. More generally, one could add terms of the for
bi1 . . . i n ; j 1 . . . j n] i1•••] i n] j 1

* •••] j n* g(z), with b self-adjoint, in order to optimizep(z), or even

more general terms so long as they have a] j* and are real.
Let us now come back to the problem of finding positive representations of complex d

butions with support at 0. Such distributions take the form

P~x!5 (
n50

N
1

n!
ai1 . . . i n] i1•••] i nd~x!. ~44!

This distribution can be considered as the zero width limit of the Gaussian times polyn
distribution
J. Math. Phys., Vol. 38, No. 3, March 1997
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P~x!5 lim
l→01

Pl~x!, Pl~x!5 (
n50

N
1

n!
ai1••• i n

] i1 . . . ] i n~l2DG~x/l!!. ~45!

NamingP(x;a) the probability in Eq.~29!, we find

Pl~x!5l2DP~x/l;al!, ai1 . . . i n
l 5l2nai1 . . . i n. ~46!

Therefore, the positive representation ofP(x;a), namely,p(z;a) in Eq. ~43!, provides a positive
representation ofPl(x),

pl~z!5l22Dp~z/l;al!. ~47!

In order to take the limit, we should consider how the different variables scale. We already
the scaling law ofz and of the coefficientsai1 . . . i n. From Eqs.~41! and~42! bn

l is found to scale
as l22nbn and ḡl as l2ḡ. From Eqs. ~28!, hl is given in leading order byl22h with
h51/(2ḡ) and gl is of order l4 and can be neglected. Therefore, in leading or
l22Dg(z/l;ḡl) becomes

g0~z;ḡ !5~2ph!2D exp~2ḡzizi* !, h5
1

2ḡ
~48!

and is independent ofl. This results is to be used in Eq.~43!. Finally, in leading order,
Qi1 . . . i n

(z/l;ḡl) becomeslnQi1 . . . i n
0 (z;ḡ) with

Qi1 . . . i n
0 ~z;ḡ !5g0~z;ḡ !21] i1•••] i ng

0~z;ḡ !

5~2ḡ !nzi1
* •••zin* . ~49!

To summarize, any complex distribution with support at a single point, Eq.~44!, admits a positive
representation, namely,

p~z!5 (
n51

N
1

n!
bnuQi1 . . . i n

0 ~z!1bn
21a0ai1 . . . i n

* u2g0~z! ~50!

with bn given by Eq.~41!, andḡ given by Eq.~42!.
As an illustration we can consider again the distribution of Eq.~19!. In this case we find

ḡ5(4uau2)21 andh5b152uau2, and thus

p~z!5uz22au2expS 2
uzu2

4uau2D . ~51!

As a final application of the results of this section, we can consider periodic probabi
Such probabilities correspond to variables effectively defined in a compact domain and
application in the context of compact gauge theories on the lattice. They sa
P(x)5P(x2na) with (na) i5niai , wheren P ZD is arbitrary anda P R1

D is characteristic of
P(x). Without loss of generality, we may chooseai52p. These probabilities do not belong to th
class previously considered. The normalization as well as the expectation values should b
on a lattice cell$x,0<xi,2p,i51, . . . ,D%. The test functions should be periodic and the conc
of representation should be modified accordingly:p(z) is periodic on the real axis,x is to be
J. Math. Phys., Vol. 38, No. 3, March 1997
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integrated on the periodic cell andy on RD. Also instead of equality of expectation values
polynomials we demand̂exp(injxj)&P5^exp(injzj)&p for any integersnj , j51, . . . ,D. Assume
now that the periodic distribution is a function of the form

P~x!5 (
nPZD

P0~x22pn!, ~52!

where the series is uniformly convergent. Letp0(z) be a function which is a positive represent
tion of P0(x) not only on polynomials but also on exponential test functions, and such that

p~z!5 (
nPZD

p0~z22pn! ~53!

is uniformly convergent. Then,p(z) is a positive representation ofP(x), as is readily shown.
In particular,P0(x) may be a Gaussian times polynomial andp0(z) its positive representation

found above, since these functions are sufficiently convergent at infinity. Therefore the con
tion given above provides a positive representation for this case too. Another example
periodic version of the one dimensional Gaussian times cosine considered above after Eq~11!:

P~x!5cos~x! (
nPZ

expS 2
~x22pn!2

2G D ,
p~z!5~d~y2G!1d~y1G!! (

nPZ
expS 2

~x22pn!2

2G D . ~54!

This example is interesting since it is similar to simplified probabilities considered in
literature13,16 to model the SU~2! gauge theory in the presence of a Wilson loop, for which
complex Langevin algorithm did not work.

IV. CONCLUDING REMARKS

We have studied the problem of representation of complex distributions by distribution
the analytically extended complex plane. The positive representation problem is of imm
interest in some areas of physics: field theory and statistical mechanics. On the other hand
seems a new and interesting field from the mathematical point of view. One could con
extending the particular class of complex distributions studied here, namely, Fourier transfo
regular distributions analytical at the origin, by allowing as well for adding non regular dist
tions with support outside the origin. Perhaps more interesting, and in the opposite directio
could extend the set of test functions in the definition of representation beyond polynomi
insure, for instance, that each probability on CD is at most the representation of one probability
RD. From the viewpoint of applications it would also be interesting to extend the conce
representations to distributions defined on group manifolds since they appear naturally in
gauge theories. Our discussion on periodic distributions corresponds in fact to the manifold
direct product ofD U~1! factors.
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APPENDIX

In this appendix we will show thatfn(z) defined in Eq.~37! is a null distribution. To this end
let us introduce the polynomials

Qi1 . . . i n ; j 1 . . . j m
~z!5g~z!21] i1•••] i n] j 1

* •••] j m
* g~z!. ~A1!

They generalizeQi1 . . . i n
(z) and satisfy the relation

Qi1 . . . i n ; j 1 . . . j m
~z!5Qj 1 . . . j m ; i1 . . . i n

* ~z!. ~A2!

To prove Eq.~37!, we will use the following Wick theorem:

Qi1 . . . i n
~z!Qj 1 . . . j m

* ~z!5 (
[ i1 . . . i n ; j 1 . . . j m]

Qi1 . . . i n ; j 1 . . . j m
~z!, ~A3!

where the sum is over all possible sets of contractions of the indicesi 1 . . . i n with the indices
j 1 . . . j m . The contraction of two indicesi , j gives a factorḡd i j and removes them from the lis
e.g.,

Qi1i2
~z!Qj* ~z!5Qi1i2 ; j

~z!1ḡd i1 jQi2
~z!1ḡd i2 jQi1

~z!. ~A4!

In general there aren!m!/k!(n2k)!(m2k)! terms with k contractions. Let us apply the Wic
theorem toQi1 . . . i n

(z)Qj 1 . . . j n
* (z)g(z). Whenever two indicesi , j are not contracted we will have

Qi . . . ;j . . . (z)g(z) which contains] j* and hence is a null distribution. Therefore only the ter
with all indices contracted contribute and the non-null part is

ḡn (
pPSn

d i1 j p1•••d i nj png~z!, ~A5!

where the sum runs over all permutations. After contracting the indices we obtain Eq.~37!.
Kn(D) is the number of ways of choosingn objects out ofD allowing repetitions.

The Wick theorem can be proven by induction. Defining the operator

D i5g21~z!] ig~z!

5] i1v i , ~A6!

(g(z) is a multiplicative operator here! we have

Qi1 . . . i n
~z!5D i1

•••D i n
Q0~z!,

~A7!
Qi1 . . . i n ; j 1 . . . j m

~z!5D i1
•••D i n

D j 1
* •••D j n

* Q0~z!,

whereQ0(z)51. Trivially, @] i ,D j* #52ḡd i j , thus

] iQj 1 . . . j m
* ~z!52 (

k51

m

ḡd i j kQj 1 . . . j k
ˆ . . . j m

* ~z!, ~A8!

where the hat means that the index has been removed from the list. On the other
D(AB)5(DA)B2A]B. The Wick theorem holds forn5m50. Assuming it has been proven u
to some (n,m),
J. Math. Phys., Vol. 38, No. 3, March 1997
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Qi1 . . . i n11
~z!Qj 1 . . . j m

* ~z!5~D i n11
Qi1 . . . i n

~z!!Qj 1 . . . j m
* ~z!

5D i n11
~Qi1 . . . i n

~z!Qj 1 . . . j m
* ~z!!2Qi1 . . . i n

~z!] i n11
Qj 1 . . . j m
* ~z!.

~A9!

Using that the theorem holds for (n,m) and Eq.~A8!,

Qi1 . . . i n11
~z!Qj 1 . . . j m

* ~z!5 (
[ i1 . . . i n ; j 1 . . . j m]

Qi1 . . . i n11 ; j 1 . . . j m
~z!

1 (
k51

m

(
[ i1 . . . i n ; j 1 . . . j k

ˆ . . . j m]

ḡd i n11 j k
Qi1 . . . i n ; j 1 . . . j k

ˆ . . . j m
~z!.

~A10!

The first term contains all the contractions not involving the indexi n11 , and the second one all th
contractions involving the indexi n11 , hence the theorem is proven for (n11,m). It is worth
noticing that the reverse expansion also holds, i.e.,

Qi1 . . . i n ; j 1 . . . j m
~z!5 (

[ i1 . . . i n ; j 1 . . . j m]
Qi1 . . . i n

~z!Qj 1 . . . j m
* ~z!, ~A11!

where the contraction ofi j now is2ḡd i j .
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Invariant imbedding and hyperbolic heat waves
David J. N. Wall
Department of Mathematics and Statistics, University of Canterbury,
Christchurch, 1, New Zealand

Peter Olsson
Division of Mechanics, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
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In this paper we build up a general wave splitting and imbedding theory for the
solution of both direct and inverse problems associated with thermal processes. It is
done by using a full representation of the thermal phenomenon by virtue of Catta-
neo’s law. This law by ensuring finite thermal propagation speeds, enables an
imbedding equation to be utilised to layer strip the medium; so allowing the solu-
tion to the inverse problem of determination of a spatially varying diffusivity.
Theoretical results and numerical algorithms are developed and numerical experi-
ments are used to illustrate the effectiveness of the latter. ©1997 American
Institute of Physics.@S0022-2488~97!02303-7#

I. INTRODUCTION

It is usually considered that the heat conduction in a thermally conducting solid is gov
by the Fourier law, but then the resultant equation governing the dynamics of the heat flo
parabolic equation, and consequently has the un-physical property that the information prop
at an infinite speed. Cattaneo1 resolved this un-physical attribute by replacing Fourier’s law by
more general one, since named after him, which we shall utilise in the sequel.

Wave splitting and invariant imbedding techniques have been very successful in their
cation to many inverse problems for hyperbolic equations. They have also been successfu
applied to elliptic problems,2 but they have not been effective for parabolic equations. It has b
shown by Vogel3 that layer stripping techniques are not suitable for parabolic equations.
paper is the outcome of our work towards the application of wave splitting and invariant im
ding techniques to phenomena, that are generally considered parabolic in nature. We conc
in the sequel, our ideas towards the evaluation of heat processes in solids through wave s
techniques when Cattaneo’s law is utilised. The literature in heat waves has grown consid
since Cattaneo, and an excellent review of the subject can be found in the two papers by
and Preziosi.4,5

At room temperatures the relaxation timet is of the order 10213 s and as the diffusivity in
metallic conductors is of the order 1025 m2/s this implies that the wave speed is of the order of
speed of sound 0.53104 m/s. Therefore technology to resolve the inverse problem over dim
sions of the order 1029 m ~Ref. 6! would therefore require femtosecond laser technology. T
technology is currently available. Hyperbolic heat waves are more readily observed in s
cooled materials, such as liquid helium II; this could mean that appropriate inverse problem
be solved, so yielding further insight into such problems. Recently there has been experi
verification of hyperbolic heat transfer in biological materials.7

Perhaps the most meaningful application of our techniques, are to the solution of par
inverse problems when the wave speed of an associated hyperbolic problem is consider
regularisation parameter. This approach will be considered in a later paper.

In Sec. II the prerequisite equations are developed. The wave splitting concept and som
properties for appropriate second order equations is examined in Sec. III and this is exten
first order system equations in Sec. IV. In Sec. V the wave splitting is used to transform
equations of Sec. III. The equations for the Green propagators are derived in Sec. VI and
0022-2488/97/38(3)/1723/27/$10.00
1723J. Math. Phys. 38 (3), March 1997 © 1997 American Institute of Physics
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followed, in Sec. VII, by the equations derived by imbedding through the reflection kernel.
discretisation of the equations derived in the earlier sections is discussed in Sec. VIII and
numerical examples of solutions for both the direct and the inverse problems are given in S

II. PRELIMINARIES

When heat waves are important the equation connecting the heat fluxq, directed in the
x-coordinate direction, to the temperatureT must at least have an extra thermal inertia term add
when compared to Fourier’s conduction law. The Cattaneo equation for one-dimensional he
in a heat conducting solid has such a term and can be written as

t
]q

]t
1q52k

]T

]x
, ~2.1!

wheret is a relaxation time andk is the thermal conductivity of the media. The relaxation tim
depends on the mechanism of heat transport, and represents the time lag needed to e
steady-state heat conduction in an element of volume when a temperature gradient is su
applied to that element. The other equation necessary to link temperature to the conductio
flux, any lateral loss heat flux,ql , and the internal rate of production of energy,r , is the conser-
vation of the internal energy equation,

]~cvrT!

]t
1

]q

]x
1xT5r .

Herecv is the specific heat at constant volume andr is the mass density of the media. The late
heat loss is assumed to be proportional to the temperature and is given by the termxT.8 These
linear equations can be written as the system

]xFTqG5F 0 2
t

k
] t2

1

k

2] tcvr2x 0
G FTqG1F0r G , ~2.2!

where in what follows, unless stated to the contrary, all coefficients in the partial differe
equation will be assumed to be independent of the dependent variables but functions of the
variablex. The coefficients will further be assumed to be time independent; such an assum
holds for many materials~see Ref. 9 for an approach necessary for time dependent parame!.
Throughout this paper it is assumed that the material parameterscv , r, k, andt are continuously
differentiable and thatx is continuous in the region of interest. All parameters are assumed
positive. The parameters which are essential to our discussion in this paper are the diff
k25k/(cvr),

10 the relaxation timet, and the thermal wave speedc, with c225k22t.
We note that this system cannot be written as a second order partial differential equatio

however possible to write it as such in two special cases, they are

~i! t [ const—for the case where the dependent variable is the temperature;
~ii ! x [ 0—for the case where the dependent variable is the heat flux.

These cases are now considered. Witht dependent uponx it is possible to reduce the system in
the following functional partial differential equation inT—this is shown in Appendix A,

k22t] t
2T1k22] tT2]x

2T1ā~x!]xT1]x~t21!J]xT1b~x!~11t] t!T5
1

k
~t] tr1r !, ~2.3!

where
J. Math. Phys., Vol. 38, No. 3, March 1997
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ā~x!5]x lnS t

kD , b~x!5
x

k
,

and the convolution integral operator

Jf5E
0

t

J~ t2s! f ~s!ds, and J~ t !5e2t/t. ~2.4!

It is now seen that this functional equation reduces to a partial differential equation
t [ const, so verifying item~i!. We shall assume this is the case in the sequel, as the more ge
case can be more easily analyzed through the system~2.2!, and this is done in Sec. IV.

The other case occurs whenq is considered as the dependent variable, and withx [ 0, the
system~2.2! can be reduced to

k22t] t
2q1k22] tq2]x

2q1ā~x!]xq5ā~x!r2]xr , ~2.5!

where now

ā~x!5]x ln~cvr!, b[0.

When xÞ0 the system~2.2! can be only reduced to a third order partial differential equati
which could also be handled by the techniques used in the sequel, however it is then prefer
use one of the other forms of equations we consider.

The equations~2.2!, ~2.3!, and~2.5! with r[0, can now all be written in the system form a

]xu5Cu1Bu, ~2.6!

where for the second order equationsu denotes the appropriate dependent variable and w
u5[u]xu]

T, and the matrices are

C5F 0 1

k22~t] t
21] t! 0G , B5F 0 0

b~x!~11t] t! ā~x!
G . ~2.7!

In the system~2.2! case the vector isu5[T q] T and the matrices

C5F 0 2
1

k
~11t] t!

2cvr] t 0
G , B5F 0 0

2x 0G . ~2.8!

We should note that similar systems of equations can be written for one-dimensional
transport processes where Cattaneo’s law corresponds to a generalized Fick’s law for mas
sion. All of the methods developed in this paper can be also applied to such processes, w
appropriate translation of the dependent variables and material parameters as shown in T

We shall examine the system in Sec. IV, but initial examination of the second order equ
is profitable for our exposition.

In the next section our attention will be on theC matrix, where we will diagonalize this
operator matrix; theB matrix contains only terms irrelevant to this. We note that theC matrix has
an extra diffusive derivative term—in the elementC21, the termk22]t , for ~2.7!, and in the
elementC12—the term2(t/k)] t , for ~2.8!, when compared to the standard wave splitting for o
dimensional wave equations. We include this term inC because any physically realistic med
involving heat conduction must involve diffusion.
J. Math. Phys., Vol. 38, No. 3, March 1997
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One feature of this investigation, is that for the inverse problem we assume that the me
ments are carried out in a diffusive medium—not an ideal non-diffusive medium. Inverse
lems similar to this have been examined by Refs. 11 and 12. However our objective to inclu
highly dissipative case—that is the diffusive one—is somewhat different to theirs, and as su
wave splitting operators we chose have a different form. Note that when wave propaga
present, the term dissipative and diffusive are the same.

The equations of this paper, besides also modelling heat and mass transport through
bolic waves, also model electromagnetic wave propagation problems in regions with dissip
modelling such phenomenon as

~i! wave propagation at a termination of very lossy transmission lines;
~ii ! radio wave propagation through very attenuating media;
~iii ! microwave resistance heating.

III. WAVE SPLITTING FOR SECOND ORDER EQUATIONS

It is now required to transform the equation~2.6! into a more convenient set of depende
variables, we do this by the technique of wave splitting~see Ref. 13 for a collection of articles o
this technique!. This transformation is motivated by formally diagonalizing the matrixC. The
diagonalization of the matrixC is less straightforward than the case when the pure wave equ
is involved; linear algebra may be invoked to motivate the transformation in that case. In or
use linear algebra it is necessary to first utilise the Laplace transform so that the various op
can be interpreted as pseudo-differential operators. Our notation for the transform variables
from the definition of the Laplace transform,

û~x,s!5E
0

`

e2stu~x,t !dt.

Our objective is to diagonalizeC, so it suffices to at first just transform~2.6! with the
assumptionB[0. On noting that all the initial conditions used in the sequel will be of the fo

u~x,0!5] tu~x,t!u t5050, ~3.1!

we obtain the transformed equation

]xû~x,s!5Ĉû5F 0 1

k22~ts21s! 0G û. ~3.2!

It is assumed thatu is exponentially bounded in thet-variable. The eigenvalues of this matrix a
found as6l̂ where

l̂~s!5k21As~ts11!, ~3.3!

TABLE I. The correspondence between variables for heat and mass transport.

Heat processes Mass transport

T-temperature c-mass concentration per unit volume
q-heat flux q-mass flux
cv-specific heat at constant volume 1
r-mass density 1
k25k/(cvr)-thermal diffusivity k2-mass diffusivity
k-thermal conductivity 1
x-lateral heat loss parameter x-lateral mass loss parameter
J. Math. Phys., Vol. 38, No. 3, March 1997
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where this is the Laplace transform representation of the pseudo-differential operator squa

l5L t
1/2, where L t[k22] t~t] t11!.

Use of the matrix of eigenvectors ofĈ,

P̂5F 1 1

2l̂ l̂
G ,

together with its inverse,

P̂215
1

2 F1 2l̂21

1 l̂21 G ,
will diagonalizeĈ as

ĈP̂5P̂L̂ or P̂21ĈP̂5L̂,

where

L̂5F2l̂ 0

0 l̂
G . ~3.4!

The matricesL, P, andP21 are all pseudo-differential operators and it is necessary for us to
their representation in the time domain in order to proceed. We examine them next.

First we examine the behavior of the pseudo-differential operator defined by the in
Laplace transformation ofl̂21(s) f̂ (s). On finding the inverse transformation ofl̂21(s) it is found
this is given by the convolution operatorkK where

~Kf !~ t !5E
0

t

K~x,t2t8! f ~ t8!dt8,

with

K~x,t !5
1

At
expS 2t

2t D I 0S t

2t D .
In the sequel we will useI n to denote the modified Bessel function of ordern. So formally the
operator,

l215kK5L t
21/2, where L t

21/2[k~t] t
21] t!

21/2. ~3.5!

Note thatt21/2 has been kept in the definition ofK so that the effect oft→0 can easily be
determined. Throughout we use the assumptionf ~0!50 @compare~3.1!#.

Integration ofK+L t f shows

K+L t f5k21S t1/2] t1
1

2At
~12L!D f ~ t !, ~3.6!

where
J. Math. Phys., Vol. 38, No. 3, March 1997
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~Lf !~ t !5E
0

t

L~x,t2t8! f ~ t8!dt8,

and

L~x,t !5expS 2t

2t D I 1~ t/2t!

t
. ~3.7!

Now use of Liebnitz’s rule inL t+Kf also yields the right-hand side of~3.6!, so proving the
commutation relationship

L t+Kf5K+L t f , ~3.8!

which appears in many wave splitting problems; in fact derivative operators up to orde
commute withK, that is

] tKf5K] t f , ] t
2Kf5K] t

2f , ~3.9!

provided alsof 8~0!50. Motivated by the commutation of pseudo-differential operators un
composition, we write for the square root operators,

L t
1/2~ f !5L t

21/2+L t~ f !5L t+L t
21/2~ f !. ~3.10!

Now L t
21/25kK, and also observe~3.5!, so from ~3.10! and ~3.8! we have the identification

L t
1/25kKL t which also suggests that this isk21K21; hence it follows from~3.6! that

K21f5S t1/2] t1
1

2At
~12L!D f ~ t !. ~3.11!

To prove that this isK21, it is straightforward to show the inverse relation

K+K21f5 f , K21+Kf5 f ,

is verified from the identity@see Ref. 14, p. 320, formula~13!#,

E
0

x I 1~x2y!

~x2y!
I 0~y!dy5I 1~x!.

Furthermore, usingL t
1/25kKL t and integration by parts it can be shown that

K21f5] tK+~t] t11! f , ~3.12!

or equivalently by using the commutation property~3.8!. Looking at ~3.8! one would expect
L t5L t

1/2+L t
1/2 or

K21+K215L t ,

and this can be proven from~3.6!.
The form of the operatorK21 is critical in obtaining a form reducing to the appropriate lim

ast→0; representation~3.12! is the appropriate form. It is interesting to note that the approac
Sec. IV automatically produces the correct form for the limiting procedure. TheK operator is
smoothing, compact on the Hilbert spaceL2, and as such the inverse operatorK21 is unbounded
and ill-posed onL2, even though existence of the operator has been proven by constructio
J. Math. Phys., Vol. 38, No. 3, March 1997
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Theorem 1: The operators are injective and into on the appropriate Solobev spaces,

K:Hs°Hs1 i11/2,

K21:Hs°Hs2 i21/2,

whent50, i50 and whent.0, i51/2.
Proof: To prove the operators are injective it is only necessary to look at the image of the

function because the operators are linear; it follows trivially from their explicit form they
injective. The mapping properties of the operators follows directly from their Laplace transf
and the symbol mapping theorem~see Ref. 15, p. 49et seq.!. h

It is necessary to look at the forms that the mapsP andP21 take as the parameters assum
various limits. Of major concern here, is the limiting forms of the operatorsl andl21 ast→0;
whent50, the model equations are parabolic. For the reader’s convenience in Appendix B w
appropriate asymptotic forms. Define

Hf5E
0

t

H~ t2s! f ~s!ds,

where

H~ t !5
1

Apt
,

andHf is related to the half derivative off , that isHf5] t
21/2f and with composition properties,16

] t
1/2f5] tHf5] t] t

21/2f .

It is then possible to show

lim
t→0

kK5kH,

and when representation~3.12! is used forK21,

lim
t→0

k21K215k21] tH.

Therefore in the limit of the hyperbolic equations becoming parabolic, the splitting oper
reduce to Vogel’s3 results. However as noted in the Introduction layer stripping techniques ar
suitable for the parabolic heat equation.

Now looking at the limit ask21→0, while keepingk21At→c21 fixed, then the equation~3.2!
becomes non-diffusive. Equivalent to this is to allowt→`, while again keepingc fixed. So that

lim
t→`

kK5c] t
21,

and if the representation~3.11! is taken forK21 it is found that

lim
t→`

k21K215c21] t .

These are the standard splittings for the wave equation.
We collect the matrices, in the time domain, central to the later development,
J. Math. Phys., Vol. 38, No. 3, March 1997
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P5F 1 1

2k21K21 k21K21G , P215
1

2 F1 2kK

1 kK G .
IV. WAVE SPLITTING FOR SYSTEM

On Laplace transforming the system~2.6!, whenC is appropriate for equation~2.2!, the Ĉ
matrix is then found to be

Ĉ5F 0 2
t

k
s2

1

k

2cvrs 0
G ,

and the eigenvalues of this matrix are identical to those for theĈ matrix of Sec. III, namely~3.3!,
except now the matrices of eigenvectors are

P̂5F 1 1

kl̂~ts11!21 2kl̂~ts11!21G , P̂215
1

2 F 1
1

k
~ts11!l̂21

1 2
1

k
~ts11!l̂21

G .
The operators in these matrices need to be identified in terms of those from the last s

some manipulations of the transform equations then shows

P5F 1 1

kk21K̃21 2kk21K̃21G , P215
1

2 F1 k21kK̃

1 2k21kK̃
G ,

whereK̃215K]t and K̃5K+~t]t11!. It is straightforward to show thatK̃ has the inverseK̃21.
In Sec. V the matrixP will be used to transform the problem through a linear transforma

like

u5Pv,

wherev is the new dependent variable. Examination of the dimensions of the component m
P then will show the following results. The mapkk21K̃21, at the planex5const, maps the
temperature field onto the heat flux, that is it provides a trace transformation—the Dirichl
Neumann map. Note also the correspondence between these equations and the ones for t
mission line equations~see for example Ref. 17!, with the elementskk21K̃21 having the dimen-
sions of admittanceq/T. These operators are not smoothing or differentiating, unlesst50, and as
such are easier operators to perform numerical calculations with. This is typical behavior f
system form of the equations.

Theorem 2: The operators are injective and into on the appropriate Sobolev spaces,

K̃:Hs°Hs2 i ,

K̃21:Hs°Hs2 i ,

whent50, i51/2, and whent.0, i50.
Proof: Injectivity follows from Theorem 1 and the mapping properties follow from the sy

bols of the operators as in Theorem 1. h
J. Math. Phys., Vol. 38, No. 3, March 1997
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It is important to note the diagonal matrixL̂ is the same as~3.4! so that the principal part o
the dynamics equation will be the same for system~2.2! and the second order equations~2.3! and
~2.5!.

V. SYSTEM DYNAMICS

Now on use of the diagonalizing transformations,

v65P21u, ~5.1!

the equation~2.6! converts to

]xv
65Av6, ~5.2!

with the new basisv65[v1v2] T, where$v1,v2% have the properties of right and left movin
waves; we shall discuss this point further.

~A2I ]x1I ] t! is the infinitesimal generator of the Banach space valued vector flow fi
with I being the unit matrix and

A5L1D. ~5.3!

The matrixL is the diagonal operator matrix,

L5F2k21K21 0

0 k21K21G , ~5.4!

and where the dynamics matrixD is

D52P21~]xP!1P21BP. ~5.5!

For notational convenience we express the dynamics matrix as

D5Fa b

g d G .
Then in terms of the material parameters the system dynamics are

P21~]xP!5F 1 21

21 1 G~d~x!1e~x!] tJ!, ~5.6!

with J is as in~2.4! and

P21BP5 f ~x!F21 21

1 1 G1g~x!F 1 21

21 1 G . ~5.7!

The coefficients in these equations for the various cases is shown in Table II.
In the limiting case of parabolic heat flow, thent→0, the system dynamics is the same as

~5.3! but with the following replacements. The operatork21K21 in ~5.4! is replaced byk21]tH,
and equations~5.6! and ~5.7! hold except the material coefficients are given in Table III.

If B[0 thenA5L, and the system is decoupled into right- and left-moving thermal wa
respectively, denoted byv1 andv2. We now discuss the interpretation of thev6. For concrete-
ness we just considerv1. Examination of the system dynamics, whenB[0 and the remaining
parameters are homogeneous, shows the right going wave must satisfy
J. Math. Phys., Vol. 38, No. 3, March 1997
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~]x1k21K21!v150. ~5.8!

In the special caset→`, with c fixed, this becomes

~]x1c21] t!v
150,

which is satisfied by solutions of the formv(c21x2t), the well known right going waves havin
Galilean translational invariance. When considering the more general operator found in~5.8!, we
cannot expect this to exhibit such symmetry because the wave will be attenuated as it move
right. However we still call right moving waves those that satisfy~5.8!. From the splitting~5.1! it
follows that

v15 1
2 ~T1k21kK̃q!, ~5.9!

for the equations derived from~2.2!. Elementary calculations using the equations~2.2! and~3.11!
shows~5.9! does indeed satisfy~5.8!. Similarly it can be shown that equation~5.8! is satisfied by
the equations for the second order equations~2.3! and ~2.5!. Similar interpretations can be mad
for left-going waves.

When the material properties are not homogeneous we cannot make this physical inte
tion for v6, however we shall still call such waves left- and right-moving waves for convenie
It should be apparent the mathematics still makes sense in thatv6 satisfy ~5.2!.

VI. THE DIRECT PROBLEM AND THE GREEN OPERATORS

The Green operators provide the mapping of the incident field at the boundary of a slab
propagation medium to an interior point. These operators were first introduced by Kruege
Ochs,18 and because they satisfy linear functional equations have been found to provide ef
algorithms for solution of the direct problem. They also provide a method of solution whic
different from the invariant imbedding method. This enables verification of the consistency o
numerical solutions, found by the imbedding method, to be obtained by comparing solu
obtained by the two methods. The thermal processes within the medium of the slab 0,x, l are
described by equations~2.6!. ~See Fig. 1.! It is assumed there exists a homogeneous med
outside this region and the waves are also described by the same equations, but with a c
wave speed,

FIG. 1. The slab geometry.
J. Math. Phys., Vol. 38, No. 3, March 1997
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c~x!5H c~0!, x,0,

c~ l !, x. l .

This condition ensures that the thermal wave is matched at the boundaries of the slab@0,l #. If c has
a jump discontinuity it is still possible to treat the problem~see for example Ref. 19!, by our
methods but we shall not consider such problems here. Note that it is not necessary to m
assumption thatk is continuous through the interfaces, but then it is required that

t1/2~x!5H k~0!/c~0!, x,0,

k~ l !/c~ l !, x. l .

However in any realistic thermal conduction process, the attenuation will often be sufficien
for all intents the slab can be considered as semi-infinite. This is because the wave amplitu
be so small by the time the wave reaches the far slab boundary, little will remain to be refl
With little loss of generality, in the sequel, we takex identically zero outside of@0,l # and assume
the initial conditionv6(x,0)50, xP[0,l ].

When considering the slabxP[0,l ] we can define Green operators such that fort.0,

v2~x,t1z~x!!5G2+v1~0,t !, ~6.1!

v1~x,t1z~x!!5a~x!v1~0,t !1G1+v1~0,t !, ~6.2!

wherea is the attenuation of a wave propagating from the interfacex50 to a point within the slab,
x, and z(x) is the propagation time taken by a wave front to get there. Causality requires
v6(x,t)50 for t<z(x). It is seen that the positive moving field at some pointx.0 consists of two
parts. The first part is due to the direct transmission of the incident fieldv1(0,t) with attenuation
and time delay, and the second part is due to scattering effects in the slab—this is provid
G1+y1~0,t!. The other Green operator provides the mapping between the incident right going
v1(0,t) and a left going wave atx.0.

The Green operators can be shown to be convolution operators of the form

~G6+ f !~ t !5E
0

t

G6~ t2s! f ~s!ds, ~6.3!

by the Duhamel integral principle. Insertion of~6.1!–~6.3! in ~5.2! shows that the Green kerne
satisfy the functional equations

]xG
15

1

2kAt
~aL1L*G12G1!1aG11bG2, ~6.4!

]xG
222c21] tG

25
1

2kAt
~G22L*G2!1dG21gG1, ~6.5!

whereL* f denotes the time convolution operator with the kernelL given by ~3.7!, namely

L* f ~x,t !5E
0

t

L~x,t2t8! f ~ t8!dt8.

The system~6.4! and ~6.5! has boundary and initial conditions,

G1~0,t !50, ~6.6!
J. Math. Phys., Vol. 38, No. 3, March 1997
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G1~x,0!5
a~x!

2 E
0

xS 1

4kt3/2
2gbcDds, ~6.7!

G2~ l ,t !50, G2~x,0!1 1
2 cga50. ~6.8!

Here the multiplicative attenuation factor of the thermal wave propagating fromx50 to x is

a~x!5expS 2E
0

x

~@2k~s!t1/2~s!#212a~s!!dsD ,
andz5z(x), the propagation time of a wavefront passing fromx50 to x is given by the integrated
slowness,

z~x!5E
0

x

c21~s!ds. ~6.9!

Thus solutions of the first order system of partial differential equations~6.4! and ~6.5! are
continuous along the characteristic curves associated with the system, but may be discon
across these curves. From~6.4! it is seen that the characteristic traces aret5const forG1, and as
G1(0,t) is certainly continuous for allt.0, it follows thatG1 is continuous in the region$0,x
, l , 0,t,`%. However examination of~6.8! shows that any discontinuity inc or g will be
propagated along the characteristic of~6.5!. The conditions imposed on these functions in Sec
ensureG2(x,0) is continuous except possibly atx5 l where it has a discontinuity of magnitude,20

@G2#~ l ,0!5 1
2 c~ l !g~ l !a~ l !,

in the direction of increasingt. This jump inG2 will propagate along the characteristic curves
G2 and so the jump across the characteristic trace passing through~l ,0! is

@G2#x5
1

2
c~ l !g~ l !a~ l !expF E

l

xS 1

2kAt
1d D dsG .

When the material parameters are homogeneous the systems~6.4!–~6.5! or ~2.2!, or equiva-
lently ~2.3! or ~2.5! can be solved exactly; see Ref. 21,~pp. 856–869! for the solution appropriate
to the second order equations. The solution for the fieldu within a semi-infinite slab, whereu
stands for either the temperatureT or flux q can be shown to be

u~x,t !5expS 2
x

2kAt
D u~0,t2c21x!1

x

2kAt

3E
c21x

t

expS 2
s

2t D I 1S 12t
As22c22x2D

As22c22x2
u~0,t2s!ds, ~6.10!

with boundary conditionu(0,t)[0, t,0. The first part of this solution on the right-hand side
~6.10! represents the hyperbolic wave that travels into the medium undistorted but with att
tion. From this part of the solution it can be seen that the distance into the medium, in whic
leading edge of the wave travelling twice this distance is attenuated bye21, the so-callede-fold
distance,12 is xe5kAt. The e-fold distance appears directly in our equations~6.4!–~6.5! with
obvious interpretation. The second part of the solution represented by the convolution inte
J. Math. Phys., Vol. 38, No. 3, March 1997
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directly representative of the dissipative or diffusive term due to the fact that the diffusivi
finite. Further discussion on the interpretation of this equation can be found in Sec. IX.

Comparison of~6.10! with equations~6.4!–~6.5! shows that, when the material parameters
homogeneous,G2[0 andG1 is given by the kernel of the convolutional term.G1 is entirely due
to the finite value of the diffusivityk for this case and can be considered as theparabolicpart of
the solution. The first term in~6.2! can then be considered as thehyperbolicpart.

VII. THE INVERSE PROBLEM AND THE REFLECTION OPERATOR

We now invoke invariant imbedding to obtain functional differential equations for reflec
integral operator. To this end consider the problem of scattering from the slab of thermal m
of thickness [x,l ]. By the Duhamel integral principle it is possible to define a reflection oper
R, where this operator is an integral operator mapping the thermal right propagating wavev1 into
the left propagating wavev2. The integral form of the reflection operators is given by

v2~x,t !5Rv15E
0

t

R~x,t2s!v1~x,s!ds. ~7.1!

We shall considerl fixed and let the slab width [x,l ] vary continuously between 0 andl ; as
such there is a homotopy map from the slab of zero thickness to one of thickness@0,l # appropriate
for the problem under consideration here. This idea will convert a mixed initial/boundary v
problem similar to that for the Green operators into a pure initial value problem. So thex in
R(x,t) provides the continuous homotopy.

Insertion of ~7.1! into ~5.2! will show that the reflection kernelR satisfies the following
integro-differential Riccati equation:

]xR22c21] tR5
1

kAt
@R* L2R#2@a2d#R2R*bR, ~7.2!

with the initial condition

g12c21R~x,0!50. ~7.3!

This equation will enable the solution of the inverse problem by layer stripping. It ca
course also be used to solve the direct problem, which is one of finding the reflection of a
from the slab.

VIII. DISCRETIZATION OF THE FUNCTIONAL EQUATIONS

It is usual to convert equations similar to the two previous sections to travel time coordin
prior to attempting numerical solution. However this is not necessary as is shown in Ref. 22
is because the method of characteristics can still be employed in a straightforward manner; a
for the direct problem, the characteristic traces can be conveniently integrated prior to attem
to solve the equations. On using the notation of Ref. 17 a parametric equation for the charac
trace of equation~6.5! can be written as

t5t2~s;x,t !,

where (s;t2(s;x,t))23 describes a curve inR2 passing through (x,t) ands being a parameter on
thex axis. For equation~6.5! the characteristic traces are translates of each other~as explained in
Appendix C of Ref. 17, this corresponds to an area preserving flow!; this can be seen in Fig. 2
wheret1 is depicted. This is because the wave speed does not depend upont. It suffices here then
to just consider the trace passing through~l ,0!. The characteristic trace corresponding to the c
J. Math. Phys., Vol. 38, No. 3, March 1997
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when the sign in the principal part of the differential operator of~6.5! is positive is written as
t1(s;x,t), and it has positive slope. The trace passing through~0,0! can then be written as

t5t1~s;0,0!5 z̃~s!,

wherez̃ is given by

z̃~x!52E
0

x

c21~s!ds. ~8.1!

Note the relationship to~6.9!.
Appropriate points on the characteristic traces may now be determined numerically.

define the natural numbersi , j ,NPN, then a mesh$xi% i50
N with uniform mesh intervalh5 l /N and

x050, xi5xi211h, 1< i<N is established. The non-uniform mesh pointst i5 z̃(xi) can then be
evaluated by numerical quadrature of~8.1!; we use the trapezoid rule. The timetN5T5 z̃(xN),
which is the return travel time taken by a wavefront to travel fromx50 to x5 l and back again,
is important for our subsequent development. Our algorithm is more easily implemented w
uniform t-mesh however, this can be done by finding the inverse function toz̃. We estimate this
function by inverse interpolation ofz̃(xi) using a clamped cubic spline interpolation24 and then
subsequent evaluation of the resultant fourth order approximation toxi5 z̃21(t i), where now
$t i% i50

N with p5T/N andt050, t i5t i211p, 1< i<N is a uniform mesh on thet-axis; whereas the
mesh$xi% i50

N is now non-uniform. The non-uniform step size on thex-mesh ishi215xi2xi21,
1< i<N. The existence of the inverse functionz̃21 is assured by the inverse function theorem a
our requirement thatc.0. Points on the characteristic trace are then represented as$xi ,t i% i50

N and
integration of the functional equations, for any problem in whichc(x) is known, by the method of
characteristics is straightforward.

FIG. 2. Reconstruction of a characteristic trace by the inverse algorithm. Several characteristic tracest1(s;x,t) are shown
together with the reconstructed values1 from the inverse algorithm discussed in Sec. IX whenN525 for slowness~9.1!
but with A520.75.
J. Math. Phys., Vol. 38, No. 3, March 1997
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A. Green function equations

For notational convenience we first rewrite~6.5! as

]xG
222c21] tG

25F ~2!~x,G1~x,t !,G2~x,t !!, ~8.2!

whereF ~2! is the linear function ofG6 as expressed by the right-hand side of~6.5!. For the direct
problem all the material parameters are known, and it is desired to evaluate the field with
outside the slab. Direct integration along a characteristic of equation~6.5!, from (xi11,t j21) to
(xi ,t j ), yields the result

G2~xi ,t j !2G2~xi11 ,t j21!52E
xi11

xi
F ~2!~s,G1~s,t2~s;xi11 ,t j21!!,

G2~s,t2~s;xi11 ,t j21!!!ds. ~8.3!

The characteristic traces for~6.4! are parallel to thex axis and so this equation can be integrat
from (xi21,t j ) to (xi ,t j ) to obtain

G1~xi ,t j !2G1~xi21 ,t j !5E
xi21

xi
F ~1!~s,G1~s,t j !,G

2~s,t j !!ds, ~8.4!

whereF ~1! is the linear function ofG6 as expressed by the right-hand side of~6.4!. Up to this
point, these are exact results without approximations. Denote by

Gi , j
6 5G6~xi ,t j !5G6~xi , jp !,

a i5a~xi !, b i5b~xi !, g i5g~xi !, d i5d~xi !,

k i5k~xi !, t i5t~xi !, ki5k~xi !,

ai5a~xi !5expS 2E
0

xi
~@2k~s!t1/2~s!#212a~s!!dsD ,

~L*G6! i , j5E
0

t j
L~xi ,t j2s!G6~xi ,s!ds,

Li , j5L~xi ,t j !,

so that the components of the column vectorF, for the differential system, become

Fi , j
~1!5F ~1!~xi ,G

1~xi ,t j !,G
2~xi ,t j !!5

1

2k iAt i
~aiLi , j1~L*G1! i , j2Gi , j

1 !1a iGi , j
1 1b iGi , j

2 ,

Fi , j
~2!5F ~2!~xi ,G

1~xi ,t j !,G
2~xi ,t j !!5

1

2k iAt i
~Gi , j

2 2~L*G2! i , j !1d iGi , j
2 1g iGi , j

1 ,

for i50,1,2,...,N and j50,1,2,...,N. We shall need both explicit and implicit type algorithm
which can readily be derived from the preceding two equations,~8.3! and ~8.4!, by simply using
the rectangular or trapezoidal quadrature rules, in approximating the integrals on the righ
side in these equations, respectively. The convolution terms in these equations are estimate
trapezoidal rule as
J. Math. Phys., Vol. 38, No. 3, March 1997
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~L*G! i , j5p(
n50

j

9Li , j2nGi ,n , ~8.5!

where the double prime on the summation sign signifies that the first and last term in the
mation is to be halved. The trapezoidal rule is also utilized in approximating the attenuatioai ,
with an algorithm similar to that presented later for the initial value ofG1 @Note thex mesh is
non-uniform and see equation~8.6!.#

The explicit Euler characteristic rules are

Gi , j
1 5Gi21,j

1 1hi21Fi21,j
~1! , i.0, j.0,

Gi , j
2 5Gi11,j21

2 2hiFi11,j21
~2! , i>0, j.0,

and the implicit trapezoidal characteristic rules are

Gi , j
1 5Gi21,j

1 1
hi21

2
~Fi21,j

~1! 1Fi , j
~1!!, i.0, j.0,

Gi , j
2 5Gi11,j21

2 2
hi
2

~Fi11,j21
~2! 1Fi , j

~2!!, i>0, j.0.

In wave splitting problems, investigators often utilize the linearity of the Green function equa
to solve explicitly the implicit equations. This complicates the computer algorithm. Our algori
use the conventional predictor–corrector approach by using first the explicit rule to estimatGi , j

6

and then to utilize the implicit system in conventional fixed point iteration. Convergence is as
for sufficiently small p, with only a few iterations. This approach, although simplifying t
computational algorithm has a disadvantage in the limit as the equations become more clo
parabolic, that is if the relaxation parameter is very small. Then the differential equations be
stiff, and fixed point iteration is not appropriate unlessp is very small. With parabolic equations
the computational requirements are generally that the equations are integrated to equilibr
fast as possible; this implies thatp should not be small. However, with hyperbolic equations,
wave propagation effects are important, and then smallk values must be employed to provid
sufficient resolution of the wave details. As our main concern is with wave effects in this pap
shall not consider this point further.

The computational cost of the convolutional terms~8.5! is high, whent is large, so care need
to be taken in the iterative loop not to recalculate the full convolution. The evaluation o
convolution terms can be performed in an efficient manner using the discrete Fourier tran
but we shall not consider this here. Examination of Fig. 3 shows the geometric structure
computational molecule for the implicit rule and this illustrates that careful consideration o
computation of the convolution terms can reduce the computational cost. The initial values f
Green functions atx50, from ~6.8! are

Gi ,0
2 52 1

2 cig iai , 0< i<N,

and by defining

gi5
ai
4
hi21~ f i1 f i21!, with f i5S 1

4k it i
3/22g ib ici D ,

the remaining initial values are
J. Math. Phys., Vol. 38, No. 3, March 1997
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Gi ,0
1 5Gi21,0

1 1gi , 1< i<N, ~8.6!

where again the trapezoidal rule has been used to discretize~6.7!. The boundary values of the
Green function atx50 are

G0,j
1 50,

G0,j
2 5R0,j ,

where the values of the discretized reflection kernelR0,j5R(0,jp), 0< j<N are the sought quan-
tities in the direct algorithm—as then the reflected wave may be calculated through~7.1!. The
algorithm starts from the lower left corner of the mesh depicted in Fig. 3, from the horizontal
t50, where the initial values are known and the vertical linex50 where the boundary values are
known, and proceeds to higherj -values, on each linej5const calculating the Green functions
from the left to the right. If the total field is required for a given incident field equations~6.1! and
~6.2! are used.

B. Reflection kernel direct problem

For notational convenience we first rewrite~7.2! as

]xR22c21] tR5F~x,R~x,t !!, ~8.7!

whereF is a non-linear function ofR, as expressed by the right-hand side of~7.2!. For the direct
problem, all the material parameters are known, and it is desired to evaluate the reflection k
at x50. Direct integration along a characteristic of equation~8.7!, from (xi11,t j21) to (xi ,t j ),
yields the result

FIG. 3. Definition of the mesh in the (x,t)-plane and the computational module of the algorithm based upon the Gr
functions equations.~a! The explicit algorithm.~b! The implicit algorithm.
J. Math. Phys., Vol. 38, No. 3, March 1997
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R~xi ,t j !2R~xi11 ,t j21!52E
xi11

xi
F~s,R~s,t2~s;xi11 ,t j21!!!ds. ~8.8!

The equation~8.8! is now discretized, by similar methods to the last section, to yield
explicit and implicit difference equations,

Ri , j5Ri11,j212hiFi11,j21 , i>0, j.0, ~8.9!

Ri , j5Ri11,j212
hi
2

~Fi11,j211Fi , j !, i>0, j.0, ~8.10!

respectively. The termFi , j in the last two equations is defined as

Fi , j5
1

k iAt i
~~R* L ! i , j2Ri , j !2@a i2d i #Ri , j2b i~R*R! i , j .

The R* L kernel convolution term is treated as~8.5!, but replacingG by R, and the quadratic
convolution term is discretized as

~R*R! i , j5p(
n50

j

9Ri , j2nRi ,n ,

by the trapezoidal rule. Figure 4 illustrates the geometry of the computational stencil.
The initial values ofRi , j are

Ri ,052
g ici
2

, 0< i<N. ~8.11!

The values of the discretized reflection kernelR0,j , 0< j<N are the sought quantities in the dire
algorithm. The algorithm starts from the lower left corner from the horizontal linet50, where the

FIG. 4. Definition of the mesh in the (x,t)-plane and the computational module of the algorithm based upon the refle
kernel equation.~a! The explicit algorithm.~b! The implicit algorithm.
J. Math. Phys., Vol. 38, No. 3, March 1997
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initial values are known and proceeds to higherj values, diagonally calculating the reflectio
kernel from the right to the left. As for the Green functions, the explicit and implicit algorithms
used in the predictor–corrector mode, with convergence assured for small enoughp.

C. Reflection kernel inverse problem

The inverse algorithm is based on the discretized imbedding equation, see~8.9! and~8.10!, as
is the direct problem, but because the equations will now be integrated in the direction of in
ing x the sign of the term which is multiplied byhi , in both these equations, must be inverted,
giving

Ri , j5Ri11,j211hiFi11,j21 , i.0, j>1, ~8.12!

Ri , j5Ri11,j211
hi
2

~Fi11,j211Fi , j !, i.0, j>1. ~8.13!

In our original model described by equation~2.2! there are five material functions. It is appare
that only one of these functions can be reconstructed from the one given measurement
reflection kernel. We will therefore restrict our considerations to only reconstructing the
slowness. Then depending upon the problem, eithert or k can be recovered with the assumptio
that the other is known; that is only one function can be recovered by our method. For sim
in the sequel we make the choicet5const, 0,x, l , and it is assumed to be known. In our inver
algorithm the discrete values of the reflection kernelR0,j are assumed to be known from
scattering experiment, and the goal in the inverse algorithm is to retrieve the slownessci

21. The
slowness is easily recovered once the values ofR on the horizontal linet50 have been calculated
as from~7.3!,

ci522Ri ,0 /g i . ~8.14!

The computations start from the initial valueR0,j , 0< j<N and proceed from the lower lef
corner in a diagonal direction down the characteristic traces to the linet50; computing the value
of ci from ~8.14! when t50—see Fig. 4. It remains for us to describe how the algorithm
implemented as the curved characteristics are not knowna priori becausec(x) is initially un-
known. This means that when the method of characteristics is employed, thexi are also initially
unknown. The actual determination of the slowness is carried out in the integration step
t15p to t050.

We describe the algorithm to determinexi , ci from (xi21,t1), t15p, and all other material
parameters and values ofRi21,p. Determination ofRi , j , 1< j<n whenci is known is similar to
the direct algorithm except the integration is carried out from left to right.

From the equation forz̃, equation~8.1!,

t i2t i2152E
xi21

xi
c21~s!ds, ~8.15!

the next value ofx on the characteristic trace,xi can be estimated by use of either the rectangu
or trapezoidal quadrature rule approximants. Equations~5.5!–~5.7!, together with the fact that for
the problem considered heree[0 ~see Table II!, implies

dc

dx
54R~x,0!1c

d ln~k!

dx
~8.16!
J. Math. Phys., Vol. 38, No. 3, March 1997
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for the system~2.2!. For both second order equations~2.3! and~2.5! the last term is zero, as it is
for the system case, ifkÞk(x). For simplicity we assume that this is true in what follows. Use
the trapezoidal quadrature formula on equation~8.16! then yields the discretized formula

ci5ci2112hi21~Ri ,01Ri21,0!. ~8.17!

This will mean to solve the inverse problem at the ultimate integration step of equation~8.13!
from t5p to t50, there are three non-linear equations required to be solved. These are~8.15!,
~8.16!, and~8.13!, so yielding the solutionxi , ci , andRi ,0, respectively. We solve this system b
fixed point iteration, and again it is possible to prove convergence of this method providedp
is sufficiently small. In order to obtain rapid convergence we use an initial estimate of the so
obtained from the an appropriate explicit form of discrete approximations to the aforement
equations. These can be straightforwardly shown to be given by~8.12!, ~8.17! together with the
explicit form of ~8.15!,

xi5xi211
~ t i2t i21!ci21

2
, or hi215

pci
2
.

The fixed point iteration is then carried out with the implicit form of these equations which
~8.13! and ~8.17! together with

xi5xi211
~ t i2t i21!

~ci21
21 1ci

21!
.

One final complication is that, as for the direct problem, equation~8.13! is also solved by iteration

IX. NUMERICAL EXAMPLES

Throughout this section the material parameters have been chosen such thatx[0 andt is
independent ofx. The field generated inside a semi-infinite homogeneous slab with an exp
tially decaying pulse25 that is incident upon the facex50 is first analyzed. In Figs. 5~a! and~b! we
show the total field at interior points that are twice and eight times thee-fold distance, that is 2xe
and 8xe , respectively. It can be observed that the wave field takes a finite time to reac
internal point. Note the non-causal solution to the parabolic problem~t50! has been superimpose

TABLE II. Identification of parametersd, e, f , andg for hyperbolic heat waves.

Coefficient
Second order equations

~2.3!aand ~2.5!b System~2.2!c

d(x)
2
1

2
]x~ln c!52

1

2
]xSlnS k

At D D 1

2
]xS lnS k

kAt
D D 5

1

2
]xS lnS kctDD

e(x)
2
1

4
t21]x~ln t!

1

4
t21]x~ln t!

f (x) kx

2k
K̃5

kx

2k
K+~t] t11!

kx

2k
K̃

g(x)

1

2
]xSlnStkDD for ~2.3!

1

2
]x~ln~cvr!! for ~2.5!

0

aNote in this case]x ln t50 for coefficientsd, e, andg.
bNote in this casex50.
cNote the commutation property ofJ with ]t has been used for coefficiente.
J. Math. Phys., Vol. 38, No. 3, March 1997
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on these figures. The convergence of the hyperbolic solution to this solution, after the
transient propagating pulse has past, can be easily observed. The time scale of the figures h
normalized by the time taken for the wavefront to travel a distance ofxe ; which ist. Observe that
the field on the leading edge of the hyperbolic part of the solution is attenuated bye21, for the case
when the field is evaluated at 2xe . Also superimposed on these figures are the component pa
the solution as discussed in Sec. VI. In the figures the plot of the hyperbolic part of the tota
gives an indication of the relative time duration of the incident wave.

Figure 6 shows the total field at the point 2xe , but with a different time scales introduced b
reducing the value of the relaxation time by first one and then two orders of magnitude

TABLE III. Identification of parametersd, e, f , andg for parabolic heat conduction.

Coefficient
Second order equations

~2.3!and ~2.5!a System~2.2!

d(x) 2
1

2
]x~ln k!

1

2
]xSkkD

e(x) 0 0

f (x)
kx

2k
H

kx

2k
H

g(x)
2
1

2
]x ln~k! for ~2.3!

1

2
]x ln~cvr! for ~2.5!

0

aNote in this casex50.

FIG. 5. The internal field, for the direct problem, at a point in a homogeneous semi-infinite region.~a! Fields at 2xe when
k50.1, t50.1. —, total field; -•-, parabolic part of total field;••• , hyperbolic part of total field; ---, solution of the
non-causal parabolic problem.~b! Fields at 8xe whenk50.1, t50.1. —, total field; -•-, parabolic part of total field;••• ,
hyperbolic part of total field; ---, solution of the non-causal parabolic problem.
J. Math. Phys., Vol. 38, No. 3, March 1997
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observed that the field approaches that of the parabolic model, after the wavefront has reac
point, quite rapidly whent !1. Reference 26 predicts that this convergence of the causal sol
to non-causal one occurs typically in time periods ofO ~t!. It is important to note, however, tha
the incident field, taken here, is successively more slowly varying ast decreases and that even f
small values of relaxation time if the incident pulse varies rapidly with respect tot the solution of
the hyperbolic equation will deviate significantly from that of the parabolic equation until
transient wave effects have decayed. This means that around the arrival time of the wa
solution will look like Fig. 5. The numerical results depicted in these figures were computed
the Green function algorithm, and the results could not be distinguished in these figures
computations on the analytical result~6.10!. The shape of Figs. 5–6 are independent ofk because
this parameter changes both the thee-fold depthxe and the wave speed.

Figures 7 and 8 show the field inside a finite slab with a spatially varying slowness,

c21~x!50.1~11A sin~2px/~10xe!!21/2, with A50.75. ~9.1!

This slowness profile is utilized in numerical experiments later in this paper and is illustrat
Figs. 9 and 10. We note that the time is normalized as previously, but now as the m
parameters are spatially varying we chose the initial value of the material parameters to de
effectivee-fold distance, that isxe 5 k(0)At(0). This accounts for the fact, as observed from t
figures, that the wavefront reaches the observation point in a time shorter than predicted
medium was homogeneous. From these figures note the smaller contribution from the hyp
part of the traveling wave as the penetration depth gets larger. In Fig. 8~a! the total field andu1

cannot be distinguished from each other to the scale of our figure whereasu2 merges into the
abscissa. Comparison should be made with these figures and Fig. 5.

FIG. 6. The internal field, for the direct problem, at a point in a homogeneous semi-infinite region.~a! Fields at 2xe when
k50.1, t50.01. —, total field;••• , hyperbolic part of total field; ---, solution of the non-causal parabolic problem.~b!
Fields at 2xe when k50.1, t50.001. —, total field;••• , hyperbolic part of total field; ---, solution of the non-caus
parabolic problem.
J. Math. Phys., Vol. 38, No. 3, March 1997
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FIG. 7. The internal field of the direct problem with spatially varying slowness in a slab of widthl510xe at a point 2xe
whent~0!50.1,xe 5 k(0)At(0), andk~0!50.1~110.75 sin~2px/(10xe)!!

21/2. ~a! —, total field; -•-, u1; ---, u2. ~b! —,
u1; ---, parabolic part ofu1; -•-, hyperbolic part ofu1.

FIG. 8. The internal field of the direct problem with spatially varying slowness in a slab of widthl510xe at a point 10xe
whent~0!50.1,xe 5 k(0)At(0), andk~0!50.1~110.75 sin~2px/(10xe)!!

21/2. ~a! —, total field; -•-, u1; ---, u2. ~b! —,
u1; ---, parabolic part ofu1; -•-, hyperbolic part ofu1.
J. Math. Phys., Vol. 38, No. 3, March 1997
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FIG. 9. The solution of the inverse problem; reconstruction of slowness~9.1! with A520.75. ~a! The reflection kernel
from which the slowness was reconstructed.~b! The exact slowness—and the reconstructed slowness1 whenN525.

FIG. 10. The solution of the inverse problem; reconstruction of slowness~9.1! with A50.75.~a! The reflection kernel from
which the slowness was reconstructed.~b! The exact slowness—and the reconstructed slowness1 whenN525.
J. Math. Phys., Vol. 38, No. 3, March 1997
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We generate the reflection kernel required as the initial data to test the inverse algorit
one of the numerical algorithms developed in this paper for the direct problem. To ensure t
inverse crime is not being committed, the reflection kernel is calculated at a greater num
points than required by the inverse imbedding algorithm, namely 4~N11! points, but via the Green
function technique, and then a clamped cubic spline is fitted to this data. Finally the spline is
to interpolate to the appropriate mesh ofN11 points as required for initial data by the imbeddin
method.

In Figs. 9 and 10 we illustrate the effectiveness of our algorithm by showing an exact
ness and the reconstructed slowness for one mesh size. It is seen that diffusivity in a t
model can be reconstructed provided that the finite time of propagation of a heat wave is
into effect. Note that the slowness can even be reconstructed as deep as tene-fold distances inside
the slab with small error, although the error increases with distance into the slab. In Fig.
actual characteristic traces and a reconstructed trace from our algorithm are displayed.

Numerical experiments indicate that our methods have a consistency error ofO ~p2! and
possess an even power asymptotic discretization expansion. Techniques similar to those
Ref. 27 must be utilized to prove this however.

X. SUMMARY

This paper builds up a general wave splitting and imbedding theory for solution of both d
and inverse problems associated with thermal processes. It is done by using a full represe
of the thermal phenomenon by virtue of Cattaneo’s law. This law by ensuring finite the
propagation speeds, enables an imbedding equation to layer strip the medium; so allow
solution of the inverse problem of determination of a spatially varying diffusivity. Although th
important in its own right for problems in which the hyperbolic nature of thermal waves mu
taken into account, it also has considerable impact on parabolic problems as well. Our m
can be applied to parabolic problems, but then the wave speed parameter can be thought
regularization parameter. This application is left to a later paper.
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APPENDIX A: DERIVATION OF EQUATION (2.3)

We provide a note on the derivation of the second order functional differential equation~2.3!.
Integration of Cattaneo’s equation~2.1! shows it can be written as

q52
k

t
J]xT,

and then the conservation equation in Sec.~II ! can be rewritten as

cvr] tT2]xS kt J]xTD1ql5r .
J. Math. Phys., Vol. 38, No. 3, March 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ct to

s own
tion to

lem,’’

.

f the

n in

1748 D. J. N. Wall and P. Olsson: Invariant imbedding and hyperbolic heat waves

¬¬¬¬¬¬¬¬¬¬
Now to get a second order equation it is necessary to differentiate this equation with respet,
so yielding, on also multiplying both sides byt/k,

k22t] t
2T1

t

k
] tql2

t

k
]xS kt ]xTD1

t

k
]xS t21

k

t
J]xTD5

t

k
] tr .

In this equation use has been made of the property of the exponential function being it
derivative. Some manipulation then enables the last term on the left-hand side of this equa
be rewritten as

t

k
]xS t21

k

t
J]xTD5F ~]xt

21!J]xT1k22] tT1
1

k
ql2

1

k
r G ,

and then~2.3! is found.

APPENDIX B: ASYMPTOTIC FORMS OF THE OPERATORS

We list here the asymptotic forms of the various kernels in the text. On noting

I n~ax!'S ax2 D n~11O ~x2!!, for x!1,

I n~ax!'
eax

A2pax
~11O ~x21!!, for x@1,

the following can be found:

lim
t→0

kK~ t !5 lim
t→0

k

At
e2t/~2t!I 0S t

~2t! D5kH~ t !~11O ~t!!,

lim
t→0

k21K21f ~ t !5 lim
t→0

k21] tK+~t] t11! f ~ t !5k21] tH+~11O ~t!! f ~ t !,

lim
t→`

kK~ t !5 lim
t→`

k

At
e2t/~2t!I 0S t

~2t! D5c~11O ~t22!!,

lim
t→`

k21K21f ~ t !5 lim
t→`

k21AtS ] t1
1

2t
~11L! D f ~ t !5c21] t f ~ t !,

lim
t→`

L~ t !/At50.
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INTRODUCTION
J. Bellissarda),b)
UniversitéPaul-Sabatier, Toulouse, France and Institut Universitaire de France

~Received 31 December 1996; accepted for publication 16 January 1997!

Condensed Matter Physics has been one of the most important sources of technol-
ogy during the past fifty years. But until the beginning of the eighties most theo-
retical advances did not need the help of sophisticated mathematical methods, and
various important discoveries such as Anderson’s localization, the quantum Hall
effect, Kondo’s effect, quasicrystals, highTc superconductors, and persistent cur-
rents in mesoscopic systems brought about many problems requiring the use of the
most advanced theoretical and mathematical procedures. This special issue aims at
focusing on a few of the problems posed in this field, summarizing the present
understanding, tracing the methods used, and the relations among them. ©1997
American Institute of Physics.@S0022-2488~97!01804-5#

I. ELECTRONIC TRANSPORT

One of the oldest problems in this matter goes back to the beginning of the century wi
microscopic description of electronic transport. The Drude Theory1 gave for the first time an
explicit formula for the conductivity of a metal in term of microscopic quantities, namely
Drude formula:

s5
ne2t

m* ,

wheren is the charge carrier density,e is the electron charge,t is the elastic collision time and
m! the effective electron mass. It turns out that, while this formula fits the experimental data
well,2 its original derivation was wrong because the electrons were considered as an assem
classical particles instead of a Fermi gas. Sommerfeld eventually provided the correct der
for free electrons.2 The crystalline structure of metals was taken into account later and led t
band theory, developed in the late twenties by Bloch and Brillouin. It provided a more precis
to compute the effective massm! that appear in the Drude formula.

The description of the collisions is still a difficult problem today. It was initiated with
work of Boltzmann on kinetic theory. The Boltzmann equation for classical electrons giv
satisfactory description of the electronic transport in doped semiconductors at room temper2

At lower temperature, one has to take into account quantum effects in dealing with the intera
with other particles such as phonons or magnons or even other electrons. It requires the hel
many body theory. The calculation of transport coefficients, such as the conductivity, us
so-called linear response theory and theGreenwood–Kubo formula.3 In the weak coupling regime
a perturbation theory using Feynmann graphs is sufficient and permits the computation
relaxation time as a function of temperature. At room temperature, the electron–phonon in
tion dominates and givest ; 1/T. At low temperatures, the electron–electron~phonon assisted!
interactions dominate and givet ; 1/T2 ~Fermi liquid theory!.4

Justifying the linear response theory requires understanding of the mechanism produc
dissipation. What usually happens is that eigenstates of independent electrons become res

a!Electronic mail: jeanbel@irsamc2.ups-tlse.fr
b!Also at: UMR 5626 CNRS and Laboratoire de Physique Quantique, 118 Route de Narbonne, 31062 Toulouse
France.
0022-2488/97/38(4)/1753/4/$10.00
1753J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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when coupling to the phonon continuum is taken into account. Rigorous proof of this fact i
an open problem. But the mechanism can be exhibited rigorously if the electrons are repla
a system with a finite number of levels coupled to a boson continuum at finite temperature
paper by V. Jaksic and C. A. Pillet, ‘‘Spectral theory of thermal relaxation’’ gives an account of
the various recent contributions in this direction.

Even if one accepts the derivations of the transport theory, calculation of the conductan
mean of Kubo’s formula becomes very tricky whenever approximations leading to the D
formula ~such as the relaxation time approximation2! are not allowed. This is the reason why,
the seventies, various authors5,6 proposed other formulas valid for mesoscopic systems. The ar
by E. Akkerman, ‘‘Twisted boundary conditions in condensed matter physics,’’ provides a review
of the latest development in this direction.

Quasicrystals were discovered in 1984.7 They are made from alloys of very good meta
mostly aluminum and transition metals. The x-ray diffraction spectrum provides very well de
spots, but they usually have a symmetry forbidden by translation invariance such as 5, 8
12-fold symmetries. Very good structural models, based upon quasiperiodic lattices are
available.8

Recent experiments performed since 1988, especially those of C. Berger,9 have shown that the
best quasicrystals, such as AlCuFe or AlPdMn in their icosahedral phase, become insulator
temperature. This surprising behavior is not yet fully understood but much theoretical progre
been made. The article, ‘‘Electronic transport properties of quasicrystals,’’ by S. Roche, D.
Mayou, and G. Trambly de Laissardie`re, provides a good view on the subject. One of the m
consequences is that anomalous quantum diffusion is one of the possible mechanisms whic
explain the conductivity properties at low temperatures. Such an anomalous diffusion cou
created by the interferences of the electronic wave-packet traveling through the quasicry
should give the one-electron Hamiltonian specific spectral properties such as singular cont
spectrum and anomalous spectral and diffusion exponents. Such a subject is being develo
mathematical physicists right now.10–12

This issue also contains several contributions concerning aperiodic systems. The articl
Kellondonk, ‘‘Topological equivalence of tilings,’’ gives a description of tiling using Non-
Commutative Topology. It is one important step in dealing with the ‘‘gap labeling theorem’’13 for
quasicrystals, still an open problem. The article by J. P. Allouche, ‘‘Note on the spectrum o
palindromic Schro¨dinger operators,’’ concerns Schro¨dinger’s operators with a potential given b
a special automatic sequence for which known criteria cannot be used to conclude wheth
spectrum has a pure point part or is singular continuous. The paper, ‘‘Excitations in one dimen-
sion: A geometrical view of the transfer matrix method,’’ by N. Destainville and J. F. Sadoc
provides a geometrical view for the computation of the transfer matrix in one dimensional a
odic systems. The work, ‘‘Taming of the wild group of magnetic translations,’’ by P. Varga,
concerns some symmetry properties of the Hamiltonian for a Bloch electron in a magnetic

II. RANDOM MATRIX THEORY, SUPERSYMMETRY AND MESOSCOPIC PHYSICS

In the beginning of the eighties, the experiments on mesoscopic systems showed that c
tance fluctuations were universal. Theoreticians14 predicted universal bounds on conductance fl
tuations based upon perturbation theory. Later it was proposed15 that these transport properties
mesoscopic systems could be described by using the Random Matrix Theory (RMT). Since then,
several contributions usingRMT provided an alternative theoretical approach on this problem
were very successful in giving a detailed description of this domain. This surprising develop
boosted the study of the Random Matrices. TheRMT was initially proposed by Wigner16 to
describe the spectral properties of nuclei. It was developed in the sixties through the semina
of Dyson and Mehta.16 The subject remained for a long time without much development until
J. Math. Phys., Vol. 38, No. 4, April 1997
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middle eighties. Most of the recent contributions onRMT are based upon using supersymmet
calculus as proposed in the seminal work of Efetov.17 This issue contains five important contr
butions onRMT.

The first one, ‘‘Spectral correlations in the cross-over between GUE and Poisson regula
Linear versus quadratic regime,’’ by T. Guhr and A. Müller-Groeling, concerns a topic typical o
RMT, namely the behavior of a mixture of a diagonal random matrix and that ofGUE as a
function of the coupling parameter in front of theGUE part. This model enters in many system
in particular, to explain the behavior of the conductance of mesoscopic devices as a function
magnetic field.

The next contribution is the one by A. D. Mirlin, ‘‘Spatial structure of anomalously localize
states in disordered conductors,’’ concerning the localization properties of typical wave functio
in random systems.

The third paper, ‘‘Statistics of resonance poles, phaseshifts and time delays in qua
chaotic scattering,’’ by Y. V. Fyodorov and H. J. Sommers, considers the distribution of positi
and width of resonances for theS-matrix of an obstacle the interior of which is described by
Random Matrix.

The fourth paper, ‘‘Time reversal symmetry breaking and the field theory of quantum cha,’’
by B. D. Simons, O. Agam, and A. V. Andreev, gives an account of a major breakthrough rec
performed by Altshuler and the authors toward a proof of ‘‘Bohigas’ conjecture’’18 according to
which the quantum analog of a classically chaotic system has a level spacing distribution giv
one of the Wigner ensembles. Such systems can actually be described by a nonlinears-model like
the one used in supersymmetries. This paper emphasizes the low energy spectrum of such
and the consequences of discrete symmetries such as that of time-reversal.

The last paper, ‘‘Towards a theory of the integer quantum Hall transition: Continuum limit
the Chalker-Coddington model,’’ by M. Zirnbauer, is an important contribution toward using th
supersymmetric technics to solve the problem of the transition between plateaus in the qu
Hall effect. Since the work of Pruisken,19,20 it is known that this transition is universally describe
by as-model which is unfortunately hard to treat.

III. ELECTRONIC CORRELATIONS

The last part of this issue is devoted to problems related to correlations in condensed
The article, ‘‘Density matrices for itinerant and localized electrons with and without elec
field,’’ by N. H. March, concerns the calculation of the density matrix of a many electrons sy
such as an atom. It provides a clear exposition of an analytical method useful in quantum
istry as well as in Condensed Matter theory.

The contribution of G. L. Sewell, ‘‘Off-diagonal long range order and superconductive ele
trodynamics,’’ clears up a very old question concerning superconductivity. Indeed, in most
croscopic models of superconductivity either there is gauge invariance but the pairing mech
does not show up or the gauge invariance is broken~as in theBCS theory!. Therefore, these
models are unable to reconcile superconductivity with electrodynamics. Starting fromab initio
axioms, together with the hypothesis of ‘‘off-diagonal long range order,’’ this work shows ho
treat the superconductive electrodynamics and its usual known consequences such as flu
tization, the Meissner and Josephson effects.

The contribution of V. Bach and J. Poelchau, ‘‘Accuracy of the Hartree–Fock approximation
for the Hubbard model,’’ gives a rigorous bound on the discrepancy between the exact gro
state energy per unit volume and its Hartree–Fock approximation in the Hubbard model in te
the coupling constant and the electronic density.

The paper, ‘‘Ground states and low temperature phases of itinerant electrons interacting
classical fields: A review of rigorous results,’’ by N. Macris and J. L. Lebowitz, is a comprehen
sive review of rigorous results on models involving itinerant electrons interacting via a clas
J. Math. Phys., Vol. 38, No. 4, April 1997
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field. Examples include the Falicov–Kimball, ‘‘the static Holstein, Kondo, and~the static approxi-
mations for the repulsive and attractive! Hubbard models.’’

Last, C. Baesens and R. S. MacKay, ‘‘Finite coherence length for equilibrium states
generalized adiabatic Holstein models,’’ gives an account of their results based upon a previo
study by Aubryet al.21 on the equilibrium states of the adiabatic Holstein model. This mo
represents the interaction of itinerant electrons with phonons treated as a classical field.
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Spectral theory of thermal relaxation
Vojkan Jakšić
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward
Avenue, Ottawa, Ontario, K1N 6N5 Canada

Claude-Alain Pillet
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211 Gene`ve 4,
Switzerland

~Received 12 November 1996; accepted for publication 3 December 1996!

We review some results obtained in a recent series of papers on thermal relaxation
in classical and quantum dissipative systems. We consider models where a small
systemI , with a finite number of degrees of freedom, interacts with a large envi-
ronmentR in thermal equilibrium at positive temperatureT. The zeroth law of
thermodynamics postulates that, independently of its initial configuration, the sys-
tem I approaches a unique stationary state ast→`. By definition, this limiting
state is the equilibrium state ofI at temperatureT. Statistical mechanics further
identifies this state with the Gibbs canonical ensemble associated withI . For
simple models we prove that the above picture is correct, provided the equilibrium
state of the environmentR is itself given by its canonical ensemble. In the quan-
tum case we also obtain an exact formula for the thermal relaxation time. ©1997
American Institute of Physics.@S0022-2488~97!00304-6#

I. INTRODUCTION

This paper is an informal outline of the results proven by the authors in a recent ser
papers.1–8 It is based on a lecture given by the second author on the occasion of the ‘‘Institut
Poincare´/Gauthier-Villars prizes 1996.’’

We have attempted to explain our results on simple models and to emphasize the p
content of the ideas involved. Interested readers should consult the original papers for a
ematically precise account of the theory. We note that this paper is not a review of the subj
particular, we will only discuss works which motivated, or are directly related to, our own.

II. MOTIVATION

We are interested in the long-time behavior of the dissipative dynamics which occurs w
system with finitely many degrees of freedom is brought into contact with an infinitely exte
environment in thermal equilibrium. This is a standard topic in non-equilibrium statistical
chanics. Two well-known examples are the motion of a Brownian particle in a fluid and
dynamics of an atom coupled to the electro-magnetic field.

We denote the finite system byI and the environment~conventionally called the reservoir! by
R. Under normal conditionsthe systemI slightly perturbs the reservoir, and the interacti
systemI1R will return to equilibrium.9 Furthermore, this equilibrium state is the Gibbs cano
cal ensemble of the combined system at the temperature of the reservoir. This fundamenta
a major ingredient of the phenomenological theory of thermal relaxation and underlies the
definition of temperature for the finite systemI .10

We briefly review the phenomenological theory on two famous examples. The first i
dynamical theory of Brownian motion based on the Langevin equation. The second is Eins
theory of spontaneous and induced radiative transitions. The common feature of these t
amples is an approximate description of the dynamics by a Markoff process.
0022-2488/97/38(4)/1757/24/$10.00
1757J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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Dynamical theory of Brownian motion. A heavy particleI of massm and positionqPR3 is
moving in a fluidR of lighter particles. The phenomenological equation which describes
dynamics of the Brownian particleI is the Langevin equation.11 In its simplest form, this equa
tion is

mq̈t52Wq̇t1j t , ~1!

whereW is a friction constant andj t5(j t
(1) ,j t

(2) ,j t
(3)! a Gaussian stochastic process with me

zero and covariance (j t
( j )js

(k))5md jkd(t2s). We will identify the coefficientm later. The Lange-
vin equation departs from Newton’s equation for a free particle by the addition of two forces
first is a frictional force due to the reaction of the reservoir to the motion of the Brownian par
The second is a random force due to the thermal motion of the particles of the fluid.

Equation~1! is of course exactly solvable, and one gets

lim
t→`

^~qt2q0!
2&

t
5
3m

W2, lim
t→`

m

2
^uq̇tu2&5

3m

4W
.

It follows from the first equation thatm52DW2, whereD is the diffusion constant of the Brown
ian particle. The mean value of the kinetic energy of a particle in thermal equilibrium at tem
tureT is 3kT/2, and the second equation yieldsthe Einstein relation

D5kT/W. ~2!

If the friction constantW is known ~for example from Stokes’ law!, then a measurement ofD
yields the value of the Boltzmann constantk and thus of the Avogadro number. The historic
importance of these arguments in the establishment of the atomistic nature of matter i
known.11

Matter–radiation equilibrium. We consider a simple model where a two-level atomI , with
energy levelsE1,E2 , interacts with a radiation fieldR. Let u(n) be the equilibrium spectra
energy density of this field at temperatureT. When immersed in the radiation field, the ato
continuously makes transitions between its energy levels by absorbing and emitting radiat
deep insight into the statistics of these transitions has led Einstein to a new derivation of Pl
law.12 We briefly paraphrase this well-known argument.

According to Bohr’s frequency rule, a transition from levelEi to level Ek occurs with the
emission (i.k)! or absorption (i,k) of a photon of frequencyhn5uEi2Eku. Let G ik be the
probability per unit time that the atom will make such a transition, and denote bypi(t) the
occupation probability of the levelEi . The corresponding phenomenological equation of moti

ṗ1~ t !5G21p2~ t !2G12p1~ t !,
~3!

ṗ2~ t !5G12p1~ t !2G21p2~ t !,

is the simplest example of Pauli’s master equation. Einstein made the following ansatz f
general form of the transition ratesG ik :

G125u~n!B12,
~4!

G215u~n!B211A21.

The coefficientA21 corresponds to spontaneous emission, and is independent of the sp
energy density of the radiation. TheBs correspond to induced emission and absorption.13 It
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



g

dy

ton

t is that
ith very
xima-

appro-

ld be
ologi-
gram

l

ogical

ntrin-
nyhow,
o show
could

rium.

les of
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follows from Eq.~3! that pi(t)→ p̄i as t→`, with a stationary probability distribution satisfyin
the detailed balance relationp̄1G125 p̄2G21. On the other hand, if the systemI1R is in thermal
equilibrium at temperatureT then

p̄i5
e2Ei /kT

e2E1 /kT1e2E2 /kT
.

Combining these facts with the Rayleigh–Jeans law~which was known to hold in the limitT→`!
one derives the relation

u~n!5
8p

c3
n2~E22E1!

e~E22E1!/kT21
.

The substitutionhn5E22E1 yields Planck’s law for spectral energy density of a black-bo
radiation in thermal equilibrium at temperatureT:

u~n!5
8pn2

c3
hn

ehn/kT21
.

Each photon contributes an energyhn to this density; therefore the corresponding spectral pho
density is

%~n!5
8pn2

c3
1

ehn/kT21
. ~5!

In general, the phenomenological equations only approximate the motion of the systemI for
suitable values of the physical parameters and on a suitable time scale. The surprising fac
these equations are in some sense universal: They arise in a variety of physical contexts, w
different microscopic structure. For example, the Langevin equation is usually a good appro
tion of the motion of a fluctuating mode in a macroscopic environment.14 Pauli’s master equation
is believed to describe the motion of general, weakly interacting quantum systems on the
priate time scale.15

From a modern point of view, a more satisfactory theory of thermal relaxation shou
based on microscopic considerations. In this framework we expect the traditional phenomen
cal theory to appear as a first approximation, in suitable limiting situations. The related pro
can be roughly summarized as follows.

~i! Introduce a realistic microscopic model of the systemI1R and construct a dynamica
system describing this model near thermal equilibrium.

~ii ! Show that this system enjoys strong ergodic properties~mixing, K-property, etc.!.
~iii ! Derive the exact transport equation of thermal relaxation and obtain the phenomenol

theory as a first approximation to this equation.

Realistic reservoirs arise as thermodynamic limits of interacting particle systems. Their i
sic complexity appears to compromise the above program at an early stage. To proceed a
one considers ideal reservoirs, i.e., noninteracting particle systems. Since it is usually easy t
that an ideal reservoir is a strongly ergodic system, there is at least a hope that the program
be carried out.

The reservoir we consider is an infinitely extended gas of free bosons in thermal equilib
The main physical example is the free electro-magnetic field. In this case, the systemI is a finite
assembly of confined charged particles and the coupling is introduced according to the ru
J. Math. Phys., Vol. 38, No. 4, April 1997
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nonrelativistic electrodynamics. Similar models arise in solid state physics~e.g., the spin-boson
system.16! The Ford–Kac–Mazur model of a particle coupled to a chain of harmonic oscillat17

is another well-known example.
In the sequel we outline how the above program is carried out for such models. We wi

the termsfriction anddissipationstrictly in this limited context. For brevity and clarity, we wi
consider very simple~but still physically acceptable! models.

III. FRICTION IN CLASSICAL PHYSICS

The systemI is a particle of massmmoving inR3 under the influence of a smooth confinin
potentialV(q).18 Its Hamiltonian function is

HI ~q,p![upu2/2m1V~q!,

and the corresponding equation of motion is

mq̇t5pt ,

ṗt52“V~qt!.

The systemR—an infinitely extended gas of free classical phonons—is described by the cla
field theory associated to the three-dimensional wave equation. Its Hamiltonian is

HR~w,p![
1

2 E „u“w~x!u21up~x!u2…d3x,

wherew andp are canonically conjugate field variables. In the sequel we will use the short

f[S w
p D .

The equation of motion of the systemR is

ḟ t5LRf t , ~6!

where

LR[S 0 1

D 0D .
Let GR be the phase space of finite energy configurations of the reservoir. It is a Hilbert spac
the inner product (f,f)[2HR~f!.19 In this space, the initial value problem~6! is solved by the
unitary group eLRt.

The phase space of finite energy configurations of the combined systemI1R is R63GR ,
and its Hamiltonian function is

H~q,p,w,p![HI ~q,p!1HR~w,p!1lq•E r~x!“w~x!d3x1
l2

6
uqu2. ~7!

Herel is a real coupling constant andr is a normalized ‘‘charge density.’’ For simplicity, w
assume thatr is spherically symmetric. The quadratic terml2uqu2/6 is an appropriate renorma
ization of the potential. For notational purposes let

f~ f ![~f, f !,
J. Math. Phys., Vol. 38, No. 4, April 1997
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for f, fPGR , anda[~a~1!,a~2!,a3!, with

â~ j !~k![S ~ i uku!21r̂~k!

0 D k~ j !

uku
.

Here, and subsequently in this paper, the ‘‘hat’’ denotes Fourier transform

f̂ ~k![
1

~2p!3/2
E f ~x!e2 ik•x d3x.

In this notation, the Hamiltonian~7! becomes

H~q,p,f!5HI ~q,p!1
1

2
ifi21lq•f~a!1

l2

6
uqu2 .

With Veff(q)[V(q)1l2uqu2/6, the evolution equation for finite energy configurations is

mq̇t5pt ,

ṗt52“Veff~qt!2lf t~a!, ~8!

ḟ t5LR~f t1lqt•a!.

The last equation is easily integrated, and insertion into the first two equations leads to

mq̇t5pt ,
~9!

ṗt52“Veff~qt!1l2E
0

t

D~ t2s!qsds1lj t ,

where the entries of the dissipation matrixD are given by

Di j ~ t ![~a~ i !,e2LRtLRa~ j !!5
d i j
3 E ur̂~k!u2ukusin~ ukut !d3k,

and

j t[2f0~e
2LRta!.

So far, we have only discussed finite energy initial configurations of the reservoir. In this situ
the relevant physical process is radiative damping: The systemI continuously dissipates its
energy into the reservoir. As this energy propagates towards infinity,I comes to rest at som
critical point q̄, where“V(q̄)50. This phenomenon is analyzed in detail in a recent work.20

If the reservoir is initially in thermal equilibrium at temperatureT.0, one has to allow for
infinite energy initial configurationsf0. These initial configurations are distributed according t
statistical law, andj t becomes a random noise. More precisely, the thermodynamic limit yi
that j t is a Gaussian random process with mean zero and covariance

^j t
~ i !js

~ j !&b[b21Ci j ~ t2s!5
d i j
3b E ur̂~k!u2 cos„uku~ t2s!…d3k.
J. Math. Phys., Vol. 38, No. 4, April 1997
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The random integro-differential equation~9! is obviously a generalization of the Langevin equ
tion discussed in Sec. II. We will call itthe non-Markovian Langevin equation~NML equation!,
and the resulting random processthe non-Markovian Ornstein-Uhlenbeck process~NMOU pro-
cess!.

The equation

D~ t !52Ċ~ t !, ~10!

which holds by inspection, relates the dissipation mechanism to the random fluctuations
reservoir in thermal equilibrium. It is an example of a more general principle known as
fluctuation-dissipation Theorem.’’ We remark that Eq.~10! and Einstein’s relation~2! are of a
completely different nature. The phenomenological Einstein relation is dynamical: It holds
the assumption that Brownian motion in a medium in thermal equilibrium also reaches th
equilibrium.15 In other words, ast→`, the state of the systemI converges towards the Gibb
canonical ensemble

dmI
b[

1

Zb e2bHI ~q,p!d3qd3p.

Relation ~10! is purely kinematical: It follows entirely from the structure of the model and
form of the initial state of the reservoir. From the microscopic point of view, the princ
assumption of the phenomenological theory becomes an ergodic problem for the NMOU pr
The main goal of our program is to study this ergodic problem.

The process generated by Eq.~9! is non-Markovian and for this reason difficult to study. T
usual way around this problem is based on the following limiting procedure. For fixedk.0,
choose sequences of coupling constantsln and coupling functionsrn in such a way that, for the
corresponding sequence of covariances, one hasln

2Cn(t)→kd(t) asn→`. Using relation~10!,
and integrating by parts the memory term in Eq.~9! we obtain, in the limit, the equation

mq̈t52“V~qt!2kq̇t22kd~ t !q01j t , ~11!

where j t is the Gaussian white noise process with covariance^j t
( i )js

( j )&b52kb21d i jd(t2s).
Except for a singular term which depends on the initial position of the paricle,21 Eq. ~11! is the
well-known Markovian Langevin equation. Its ergodic properties can be studied by sta
techniques.22

Our goal is to develop the ergodic theory of the NMOU process generated by Eq.~9!. If the
condition

i~2D1uxu2!sri,` ~12!

holds for somes, 3
2, then, for anyl and almost allj, the initial value problem associated with E

~9! has a global solution which defines a flow

Tj
t ~q0 ,p0![~qt ,pt!,

on the phase spaceR6. This ensures the existence of the NMOU process. We can now form
the relevant ergodic problem. We say that the NMOU processreturns to equilibrium23 if, for any
initial state m ~an absolutely continuous probability measure onR6! and for any observable
fPL`~R6!, one has

lim
t→`

E ^ f +Tj
t &b dm5E f dmI

b . ~13!
J. Math. Phys., Vol. 38, No. 4, April 1997
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We remark that return to equilibrium is equivalent to the mixing property of the NMOU proc
Our main result is that if~12! and

ur̂~k!u>
C

~11uku!n ~14!

hold for somes. 3
2, some positive constantsC andn and allkPR3, then, for all nonvanishingl,

the NMOU process returns to equilibrium.
The NML equation~9! is a contracted description of the dynamics of the systemI . It

incorporates the reservoir in a relatively simple way, through the frictional and fluctuating f
which are related by Eq.~10!. However, the NML equationper sedoes not completely reveal th
physical mechanism of thermal relaxation. Let us elucidate this point. The initial states we
sider are local perturbations of the joint thermal equilibrium state. The combined system retu
equilibrium if such perturbations disperse to infinity. To understand this process, one has t
into account the motion of the reservoir. The strong ergodic properties of the combined s
arise precisely through this motion. Thus, it is both conceptually and technically important to
the systemsI andR on equal footing. The principal idea of our approach is to study the erg
properties of the differentiable dynamical system~G ,Jt,mb!, which describes the combined sy
temI1R near thermal equilibrium. Here,G is the phase space,J t is the Hamiltonian flow, and
mb is the Gibbs canonical ensemble of the combined system in thermal equilibrium at in
termperatureb. If this dynamical system is mixing, then return to equilibrium~13! follows.

To describe the dynamical system~G ,Jt,mb!, let f be the Gaussian random field indexed
the Hilbert spaceGR , with covariance

^f~ f !f~g!&b5b21~ f ,g!,

for f ,gPGR . We denote by (GR,F R,mR
b ) the associated probability space. The phase spac

the reservoir isGR , andmR
b is its thermal equilibrium state. The construction of this space

discussed in detail in Ref. 7~see also Ref 24!. The phase space of the systemI1R is
G[R63GR , and its Gibbs canonical ensemble is the probability measure

dmb[eb„lq•f~a!1l2uqu2/6) dmI
bdmR

b .

The existence of the dynamics is guaranteed by the following result: If condition~12! holds for
somes. 3

2 then, for alll and formR
b almost allf0PGR , the initial value problem associated wit

Eq. ~8! has a global solution which defines a flowJ t(q0 ,p0 ,f0)[(qt ,pt ,f t) on the phase spac
G . The measuremb is invariant under this Hamiltonian flow. LetSb be the set of states which ar
local perturbations of the thermal equilibrium state. In technical terms,Sb is the set of all prob-
ability measures onG which are absolutely continuous with respect tomb. We say that combined
systemI1R returns to equilibrium if the dynamical system~G ,Jt,mb! satisfies

lim
t→`

E F+J t dm5E F dmb, ~15!

for all mPSb andFPL`~G ,dmb!. Clearly,~13! is a consequence of~15!. Our main result is that
if conditions ~12! and ~14! hold then, for all nonvanishingl, the systemI1R returns to equi-
librium.

The strategy of our approach~Koopmanism! is to reduce the ergodic properties of the syst
I1R to a spectral problem for a distinguished self-adjoint operator. This operator, which w
the Liouvillean, is constructed as follows. The Koopman space of the combined syste
L2~G ,dmb!, and the map
J. Math. Phys., Vol. 38, No. 4, April 1997
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Ut:F°F+J t,

is a strongly continuous unitary group on this space. The LiouvilleanL is the skew-adjoint
generator of this group.25 Note that constant functions are always invariant, therefore zer
always an eigenvalue ofL. Return to equilibrium~15! is equivalent to

w2 lim
t→`

Ut5u1&^1u. ~16!

By the well-known property of absolutely continuous spectrum, relation~16! holds if zero is a
simple eigenvalue ofL and if the rest of its spectrum is absolutely continuous. We have pro
this spectral result~and all its consequences! in Ref. 7.

The results discussed here hold in a more general setting. All that we require is thatI is a
Hamiltonian system whose configuaration space is a finite-dimensional smooth manifold. I
ticular, the systemI could be a confined macroscopic gas of interacting particles. The rese
could be any linear dynamical system for which there is an outgoing subspace in the se
Lax–Phillips theory~e.g., wave equation, Maxwell’s equations, etc.!. Naturally, we do need som
restrictions on the form of the coupling between the two systems. For details and add
information we refer the reader to Refs. 6–8.

IV. FRICTION IN QUANTUM PHYSICS
A. Quantizing dissipative systems

The theory of classical friction is based on the Hamiltonian~7!. After canonical quantization
we obtain the starting point of the theory of quantum friction: The Hamiltonian

S 2
1

2m
D1V~q! D1E e~k!a* ~k!a~k!d3k1lq

•E ik„r̂~k!a~k!2 r̂~k!a* ~k!…e~k!21/2 d3k

1
l2

6
uqu2, ~17!

acting onL2~R3!^F , whereF is the bosonic Fock space overL2~R3!. The Bose field satisfies th
canonical commutation relation [a(k), a* (k8)]5d(k2k8) and the photon dispersion relation
e(k)5uku. The functionr̂ is the Fourier transform of the normalized ‘‘charge density’’ figuring
Eq. ~7!. The Hamiltonian ~17! is a self-adjoint operator bounded from below provid
e1/2r̂PL2~R3!.

At the moment, we cannot prove all the results discussed below for the model defined
Hamiltonian~17!. To avoid technicalities and simplify the exposition we restrict ourselves to
case where the systemI is a spin1

2 ~or equivalently the two-level atom of Sec. II!. The resulting
systemI1R is known asthe spin-boson model. Let sx , sy , andsz be the Pauli matrices and

w~ f ![
1

A2
E „ f̂ ~k!a* ~k!1 f̂ ~k!a~k!… d3k

the Segal field operator of the reservoir. The spin-boson Hamiltonian is

H[HI1HR1lH int[sz1E e~k!a* ~k!a~k!d3k1lsx^ w~g!, ~18!

acting onC2
^F . Herel is a coupling constant andgPL2~R3! is a normalized coupling function

We will only discuss the ohmic case@ĝ(k);uku1/2 for small k# which is characteristic of mos
physical applications.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Observables ofI are self-adjoint elements of the algebraM2 of complex 232 matrices. A
natural choice of observables forR is theC* -algebraOR generated by

$eiw~ f !: fPD loc%,

whereD loc is the space of compactly supported functionsf (x)PL2~R3!. Consequently, observ
ables of the spin-boson system are self-adjoint elements of theC* -algebra

O[M2^OR .

We recall that a statev of the spin-boson system is a normalized, positive linear functional on
algebra.

The spin-boson system is considered as the simplest physically acceptable model of qu
friction, and gave rise to an enormous literature.16 Nevertheless, mathematically rigorous resu
are scarce~essentially limited to the weak coupling regime! and our understanding of the model
still incomplete.

Before we turn to the discussion of the spin-boson model, we would like to briefly com
on an alternative approach to the quantization of classical friction.

B. The quantum Langevin equation

In the same way the Langevin equation was deduced from the Hamilton equations~8!, the
Heisenberg equations associated to the Hamiltonian~17! can be used to derive the quantu
Langevin equation~QLE!26

mq̈~ t !52“V„q~ t !…2kq̇~ t !1jQ~ t !.

HerejQ(t) is a Gaussianoperator-valuedrandom force characterized by the commutation relat

1

i
@jQ

~ i !~ t !, jQ
~ j !~s!#5

2k

3
d i j E ukusin„uku~ t2s!… d3k,

and the symmetric correlation function

1

2
^jQ

~ i !~ t !jQ
~ j !~s!1jQ

~ j !~s!jQ
~ i !~ t !&b5

2k

3
d i j E ukucoth~buku/2!cos„uku~ t2s!… d3k.

The QLE has an intuitive appeal as the generator of a ‘‘quantum Ornstein-Uhlenbeck pro
Since the seminal work of Ford, Kac, and Mazur,17 a substantial body of work has been devot
to it. However, unlike its classical counterpart, the QLE is a very singular object and the ex
rigorous results are limited to small perturbations of exactly solvable harmonic models.27

In our approach the model for quantum friction is the quantization of the dynamical sy
~G ,Jt,mb! introduced in Sec. III. In this way we bypass the QLE and related difficulties. Since
QLE plays no role in our scheme, we will not discuss it any further.

C. Master equations

In this subsection we present an informal account of the theory of master equation28 a
systematic approach to the phenomenological description discussed in Sec. II.

We denote byvR
b the thermal equilibrium state of the reservoir at inverse temperatureb ~see

Secs. IV D and IV E for a precise definition!. We assume that the initial state of the system has
product structureh ^ vR

b , whereh is a state~a density matrix! of the systemI . We denote byP
the projection on such states,Pz [ TrR(z) ^ vR

b , and setQ[12P. We are interested in the
reduced dynamics obtained by tracing out the reservoir variables:
J. Math. Phys., Vol. 38, No. 4, April 1997
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hl~ t !5Tl
t h[TrR~e2 iHth ^ vR

b eiHt !.

This reduced dynamics is governed by the generalized master equation

dhl~ t !

dt
52 iL Ihl~ t !2l2E

0

t

TrR„L intQe
2 iQLQ~ t2s!QLinthl~s! ^ vR

b
… ds,

where

L[@H, •#, LI[@HI , •#, L int[@H int , •#.

Clearly, the evolutionTl
t is non-Markovian. However, in certain limiting cases, memory effe

disappear andTl
t becomes a semi-group. Among the various Markovian approximations discu

in the physics literature, the van Hove limitl→0, t→`, with t̄5l2t fixed, is best understood. In
the sequel we discuss some rigorous results of Davies.29 Let

h~ t ![E ei e~k!tuĝ~k!u2cth~buku/2! d3k.

The fundamental result of Davies states that

lim
l→0

eLi t̄ /l
2
Tl
t̄ /l2h5e2K t̄ h,

provided

E
0

`

~11t !duh~ t !u dt,`,

holds for somed.0. The generatorK can be explicitly computed. Let

G6
b [2p

e6b

sinh~b!
E
S2

uĝ~2k̂!u2 dk̂,

~19!

P6
b [6

1

2
PVE

R3S2

e6bs/2

usinh~bs/2!u
uĝ~ usuk̂!u2

22s
ds dk̂,

whereS2,R3 is the unit sphere,dk̂ is its surface measure, and PV denotes Cauchy’sprincipal
value. Further define

Gb[G2
b 1G1

b ,

Pb[P2
b 1P1

b .

Then, the action ofK takes the form

K S h11 h12

h21 h22
D 5S 2G1

b h1122G2
b h22 ~Gb1 iPb!h12

~Gb2 iPb!h21 22G1
b h1112G2

b h22
D .

Thus, in the interaction representation, the linear transport equation of thermal relaxation
well-known Bloch equation
J. Math. Phys., Vol. 38, No. 4, April 1997
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dh~ t̄ !

dt̄
52Kh~ t̄ !. ~20!

If the initial state of the spin system is diagonal~h125h2150!, then Bloch’s equation reduces t
Pauli’s equation~3!. We remark that, in second-order perturbation theory, 2G6

b l2 is the probability
per unit time for the transition6→7 with emission or absorption of a radiation quantum. No
also that the entries ofK differ from their usual textbook values by a factorl2, which has been
absorbed int̄. Of course, one immediately gets from Eq.~19! the values of the Einstein coeffi
cients in~4!.

The matrix e2K t̄ can also be computed. With

hb[
1

Zb e2bHI , ~21!

and using the fact that Tr~h!51, we obtain

e2K th5hb1
1

Gb S e22Gb t̄ ~G1
b h112G2

b h22! e2~Gb1 iPb! t̄ Gbh12

e2~Gb2 iPb! t̄ Gbh21 e22Gb t̄ ~G2
b h222G1

b h11!
D .

Sincehb is invariant under the free evolution eiLI t, the spin system approaches thermal equi
rium exponentially fast on the time-scalet̄,

lim
t̄→`

lim
l→0

Tl
t̄ /l2h5hb,

providedGb.0.
Davies’ results were the starting point of our work. The necessity to understand the larg

behavior ofTl
t beyond the van Hove limit has been realized quite early.30 In particular, the

following two questions were open for some years:

~i! Is there return to equilibrium at finite coupling?
~ii ! What are the higher-order corrections to the linear transport equations? More precis

it possible to derive an exact transport equation, with a convergent expansion in pow
l, which reproduces Bloch’s equation at the orderl2?

These two problems are still open atT50. Their solution atT.0 is our main contribution to the
subject.

D. Thermal relaxation at T50

The relevant physical process at zero-temperature is radiative decay. The spin radia
energy into the ‘‘frozen gas.’’ As this energy propagates towards infinity, the interacting sy
dissipates to its lowest energy state, the ground state.

The zero-temperature equilibrium state of the reservoir is the pure state

vR
` ~A![~VF ,AVF!,

associated with the Fock vacuumVF . If ĝ/ePL2~R3!, thene2(l), the lowest point in the spec
trum of H, is a simple eigenvalue.31 We denote the corresponding eigenvector—theground
state—by CG . The zero-temperature equilibrium statev` of the spin-boson system is the pu
state associated with this ground state. Accordingly, we say that this system returns to equi
at T50 if, for anyAPO and any density matrixz on C2

^F , we have
J. Math. Phys., Vol. 38, No. 4, April 1997
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lim
t→`

Tr„zt t~A!…5v`~A![~CG ,ACG!. ~22!

Here,

t t~A![eiHtAe2 iHt

is the time evolution of the system. It is an outstanding open problem to show that the spin-
system has this property.32 Recently, Hu¨bner and Spohn have developed the scattering theor
the spin-boson model. They showed that asymptotic completeness implies return to equilibr
zero-temperature.33 For a modified spin-boson model, with a cutoff on the number of bos
asymptotic completeness was proved by Ge´rard.34

A first step towards~22! should be a better understanding of the spectral properties o
spin-boson HamiltonianH. In particular, the analysis of its resonances should shed some lig
the mechanism of thermal relaxation. This turns out to be a hard technical problem. In the
we briefly review some of the existing results.

The spectrum of the uncoupled HamiltonianH0[HI1HR is

sac~H0!5@21,̀ !,

ssc~H0!5B,

spp~H0!5$21,1%.

The eigenfunctions corresponding to the eigenvalues61 arex6 ^ VF , wherex6 are the eigen-
functions ofsz . As the coupling term is switched on, one expects the eigenvalue21 to move
along the real axis to a new locatione2(l). Being embedded in the continuous spectrum,
other eigenvalue has a different fate. We expect11 to turn into a resonance in the followin
sense: There are«.0, h.0, and a dense set of vectorsE ~Ref. 35! such that, forulu,« andFPE ,
the functions

RF~z![„F,~H2z!21F…

have a meromorphic continuation from the upper half-plane onto the regionO[$z:uz21u,h%.
The functionsRF should be regular inO except for a simple pole ate1(l), which is independent
of the choice ofF. Furthermore, the functione1(l) should be analytic for smalll,

e1~l!511 (
n51

`

a~2n!l2n,

with Im(a(2))52G1
` . The higher-order terms in this expansion account for higher-order~multi-

phonon! transition processes.
If there is a resonancee1(l) such that Im„e1(l)…,0, then the spectrum ofH in the interval

#12h, 11h@ is purely absolutely continuous. One expects more, namely,

sac~H !5@e2~l!,`!,

ssc~H !5B, ~23!

spp~H !5$e2~l!%,

the eigenvaluee2(l) being simple. Let us discuss some dynamical consequences of~23!. The first
is that the spin-boson system has the mixing property at zero-temperature: ForA, BPO ,
J. Math. Phys., Vol. 38, No. 4, April 1997
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lim
t→`

v`
„At t~B!…5v`~A!v`~B!. ~24!

We remark that~22! implies ~24!, but the opposite is not true. The second~a consequence of the
RAGE theorem36! is that compact ‘‘observables’’~which arenot elements ofO ! return to equi-
librium in the following sense: For any density matrixz and any compact operatorK onC2

^F ,

lim
T→`

1

T E
0

T

Tr„zt t~K !… dt5~CG ,zCG!~CG ,KCG!. ~25!

The third observation is the following. If the system is initially in a pure stateF, the probability
to find it in a pure stateC at time t is u~C,e2 iHtF!u2. It follows from ~24! that

lim
t→`

u~C,e2 iHtF!u25u~C,CG!u2u~F,CG!u2. ~26!

To study the resonances ofH it is natural to use the field-theoretic analog of the Aguila
Combes dilation analyticity technique.37 For uPR, let „u(u) f …̂ (k)5e23u/2f̂ ~e2uk! be the dilation
unitary group onL2~R3!. LetU(u) be its second quantization andH(u)[U(u)HU(2u). Explic-
itly,

H~u!5HI1e2uHR1lsx^ w„~u~u!g….

If the function ĝ is analytic in a suitable complex cone centered at origin, then the family
operatorsH(u) is defined for complexu. The spectrum ofH0(u)5HI1e2uHR can be explicitly
determined—it consists of the two half-lines$611te2u:t>0%. The central difficulty is now trans-
parent: The complex deformation does not uncover the eigenvalues ofH0 . Since the perturbation
term is not relatively compact, it is very hard to analyze the spectrum around the unpert
eigenvalues61. This difficulty is just a reflection of the well-known infrared problem whic
plagued quantum electrodynamics since its conception.

If one considers massive bosons with a dispersion relation of the forme(k)5uku1m, where
m.0, then the infrared problem disappears. The spectrum ofH0(u) consists of two simple eigen-
values61 and a sequence of half-lines$611nm1te2u:n>1,t>0%. If m/2 is not an integer, the
complex deformation unveils the eigenvalues, and the resonances can be studied by s
techniques~see Refs. 1 and 37 for details!. The spectrum ofH(u) has the structure depicted in Fig
1. For nonvanishingl, singular spectrum can occur near the thresholds$611nm:n>1%. How-
ever, asl→0, its relative size shrinks down. In this limit we proved that relations~24!–~26! hold.1

FIG. 1. The spectrum ofH(u) for the massive spin-boson model. The essential spectrum is contained in the shaded
J. Math. Phys., Vol. 38, No. 4, April 1997
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The analyticity assumption onĝ(k), although necessary for the study of resonances, is v
restrictive, and one expects that~23! holds under weaker conditions. The natural way to appro
this problem is to develop a field-theoretic version of Mourre theory.36 If m.0, this has been done
in Ref. 38, and is still an open problem in the massless case.

Recently, Bach, Fro¨hlich, and Sigal39 announced a number of results concerning the ma
ematical theory of resonances in massless, nonrelativistic QED. Specialized to the spin
model, their results yield~23! under suitable assumptions onĝ.

We would like to emphasize that, in spite of the substantial recent progress on the sp
theory of the spin-boson system, the problem of return to equilibrium at zero-temperature
open. For additional information we refer the reader to the excellent review Ref. 33.

E. Thermal relaxation at T>0

At zero-temperature, classical friction is a deterministic phenomenon. There is no Koo
lemma and no spectral characterization of the global dynamics We have a similar situat
quantum mechanics. Although one can learn a great deal from the spectral analysis ofH, return to
equilibrium at zero-temperaturecannotbe reduced to a spectral problem.

At positive temperature the situation is different. We have outlined in Sec. III how to
struct the dynamical system~G ,Jt,mb! which describes, in the framework of classical mechan
the combined systemI1R near thermal equilibrium. Return to equilibrium is then equivalen
the mixing property of this dynamical system, and can be characterized in spectral term
would like to proceed in a similar fashion in quantum mechanics. To understand how, we
with a simple case The free reservoir.

In a finite volumeL one easily computes the thermal equilibrium state of the reservo
terms of the finite volume Hamiltonian. In the thermodynamic limitL↑R3, and in the absence o
condensate, this state converges towards a statevR

b of the infinite reservoir which is completel
specified by the generating function40

vR
b ~eiw~ f !!5expS 2

1

2 E „112%b~k!…u f̂ ~k!u2 d3kD . ~27!

Here%b , the equilibrium momentum distribution of the Bose gas, is given by Planck’s law~5!:

%b~k!5
1

%be~k!21
. ~28!

Having a positive density*%b(k) d
3k, the statevR

b does not fit into the original Hilbert space:
is not represented by a density matrix onF . To restore the familiar Hilbert space framework, o
constructs the cyclic representation~HR ,pR ,VR! of the algebraOR associated withvR

b . This
representation is characterized, up to unitary equivalence, by the formula

vR
b ~A!5„VR ,pR~A!VR…, ~29!

for anyAPOR , and the fact that the setpR~OR!VR is dense inHR ~i.e.,VR is cyclic!.
The construction can be done onHR5F ^F with the help of the two-component Bose fie

a1~k![a~k! ^ I , a2~k![I ^a~k!.

Define

pR„a~k!…5ab~k![A11%b~k!a1~k!1A%b~k!a2* ~k!, ~30!

and
J. Math. Phys., Vol. 38, No. 4, April 1997
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VR[VF^ VF .

Then, forfPD loc , one haspR(e
iw( f )) 5 eiwb( f ) with

wb~ f ![
1

A2
E „f ~k!ab* ~k!1 f ~k!ab~k!… d3k,

and one easily checks relations~27!–~29!. Cyclicity, however, requires some more work~see Ref.
41!.

In the cyclic representation, any automorphism for which the equilibrium state is invarian
be implemented by a unitary operator leaving the cyclic vector invariant. Thus such aut
phisms have a natural extension to the von Neumann algebraMR generated bypR~OR!.42 In
particular, for anyAPOR , one has

pR~eiHRtAe2 iHRt!5eiLRtpR~A!e2 iLRt, ~31!

whereLR is a self-adjoint operator onHR satisfying

LRVR50. ~32!

Let us identify the generatorLR . A naive guess is

pR~HR!5E e~k!ab* ~k!ab~k! d3k.

However, even after the usual normal ordering renormalization, this operator is ill defined.
seriously, it does not satisfy the invariance requirement~32!. A closer look at the time evolution

pR„e
iHR

t
a~k!e2 iHRt

…5A11%b~k!a1~k!e2 i e~k!t1A%b~k!a2* ~k!e2 i e~k!t

leads to the correct formula

LR5HR^ I2I ^HR5E e~k!„a1* ~k!a1~k!2a2* ~k!a2~k!… d3k.

To understand the structure of the cyclic representation it is convenient to think of the
copies of the Fock representation it contains as describing two kinds of pseudo-particles: P
in excess with respect to the equilibrium state~pseudo-phonons!, and phonons missing from thi
state ~pseudo-holes!. Phonons being indistinguishable,43 it is not possible to differentiate the
‘‘members’’ of the equilibrium state from the others. Hence pseudo-phonons/holes have no
cal existence. Nevertheless they are convenient for bookkeeping purposes. From definition~30! we
see that the creation of a ‘‘real’’ phonon is a coherent superpositions of two processes
creation of a pseudo-phonon and the destruction of a pseudo-hole. The relative weight
superposition is the germ of Einstein’s A-B law~4!. In this pictureLR is the difference between
the energy of the excess phonons and that of the missing ones. Therefore it describes the
of the gas relative to the~infinite! energy of its equilibrium state, a quantity which cannot
measured. Since the equilibrium state is invariant under space translations, a completely an
construction leads to the formula

PR5E k„a1* ~k!a1~k!2a2* ~k!a2~k!… d3k,
J. Math. Phys., Vol. 38, No. 4, April 1997
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for the momentum operator which generates the unitary representation of the translation g
HR .

The systemR has two important discrete symmetries: Parity and time reversal. The firs
is implemented inHR by the unitary mapP characterized by

Pal ~k!5al ~2k!P, l 51,2,

PVR5VR .

The time reversal operatorT satisfies the same equations, but is anti-unitary.P andT map the
algebraMR into itself. They leave the operatorLR invariant and flip the sign of the momentum
operatorPR , therefore one has

PeiLRt5eiLRtP, TeiLRt5e2 iLRtT,

TeiPR•x5eiPR•xT, PeiPR•x5e2 iPR•xP.

There is another natural symmetry inHR which, however, is nonphysical~it does not preserve the
algebraMR!: The exchange of pseudo-phonons and pseudo-holes,E: F^C°C^F. It clearly
flips the sign of bothLR and PR , thus the anti-unitary mapJR[EPT has the remarkable
property

JRe
iLRt5eiLRtJR, JRe

iPR•x5eiPR•xJR .

It turns out thatJR is the modular conjugation associated to (MR ,vR
b ! by Tomita–Takesaki’s

theory of modular algebras44 ~this theory applies since, as a thermal equilibrium state,vR
b is

faithful45!. One of the fundamental property ofJR is to map the algebra of observables into
commutant:JRMRJR 5 MR8 . A formal computation shows that

LR5pR~HR!2JRpR~HR!JR .

Therefore, as already remarked, the operatorLR is not observable: It differs frompR~HR! by an
operator which commutes with all observables.

Unlike in the zero-temperature Fock representation, the generator of the dynamics
bounded below. Apart from the zero eigenvalue reflecting the invariance of the equilibrium
its spectrum is absolutely continuous and fills the entire real axis. Let us show how this sp
information, combined with the fundamental properties~31! and~32!, leads to the mixing property
of the reservoir. A simple calculation shows that

vR
b ~AeiHRtBe2 iHRt!2vR

b ~A!vR
b ~B!5„pR~A* !VR , ~eiLRt2uVR&^VRu!pR~B!VR).

Thus, by the cyclicity ofVR , the mixing property is equivalent to

w2 lim
t→`

eiLRt5uVR&^VRu. ~33!

Invoking the same argument as in the classical case@see Eq.~16! and the remarks following it# we
conclude that the free reservoir at positive temperature is mixing. Now we show more: Due
above-mentioned faithfulness ofvR

b , the mixing property is equivalent to return to equilibrium.46

Let v0 be a state of the form

v0~A!5„BVR ,pR~A!BVR…, ~34!

for someBPM8. SinceB communtes withp~O !, we have
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



nds to

the

are
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v0~e
iHRtAe2 iHRt!5„BVR ,pR~eiHRtAe2 iHRt!BVR)

5„BVR ,BpR~eiHRtAe2 iHRt!VR…

5„B*BVR ,eiLRtpR~A!VR….

From iBVRi25v0(I )51, we see that

v0~e
iHRtAe2 iHRt!2vR

b ~A!5„B*BVR ,~eiLRt2uVR&^VRu!pR~A!VR….

SinceVR is cyclic forMR8 ,45 return to equilibrium for all states of the form~34! is equivalent to
mixing. Moreover, a simple approximation argument shows that this characterization exte
all the states which are represented by a density matrix inHR .

It is now clear how to obtain a spectral characterization of return to equilibrium for
spin-boson model~and for more general quantum systems, see Fig. 2!:

Equilibrium state: In infinite-dimensional quantum systems, thermal equilibrium states
characterized by the KMS condition.47 Roughly,vb is a KMS state at inverse temperatureb for
the dynamicst t if, for any observablesA,BPO , the correlation functionvb

„t t(A)B… is analytic
for 0,Im(t),b and, fortPR, satisfies the KMS boundary condition

vb
„t t1 ib~A!B…5vb

„At t~B!….

In the spin-boson system, such a state exists and is unique.48

Cyclic representation: The GNS construction47 leads to a cyclic representation~H,p,V! of
the algebra of observables such that

vb~A!5„V,p~A!V….

The dynamics is unitarily implemented in this representation by

FIG. 2. The logic of quantum Koopmanism.
J. Math. Phys., Vol. 38, No. 4, April 1997
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p„t t~A!…5eiLtp~A!e2 iLt, ~35!

with a self-adjoint generator satisfying

LV50. ~36!

Let Sb be the set of states which have a density matrix in the cyclic representation.49 We say that
the system returns to equilibrium at inverse temperatureb if, for any initial statev0PSb and any
observableA, one has

lim
t→`

v0„t
t~A!…5vb~A!.

The Liouvillean: Return to equilibrium, like other ergodic properties, is characterized by
spectrum ofL, in complete analogy with Koopman’s lemma of classical mechanics.3 It is there-
fore natural to call this operator theLiouvillean of the system.A priori, the abstract definitions
~35! and~36! does not provide an explicit formula forL. The next task is therefore to compute th
Liouvillean. For this purpose, the connection with Tomita–Takesaki’s theory is essential.50

Spectral analysis: Once the Liouvillean is known, it remains to explore its spectral proper
Here, as in the zero-temperature case, spectral deformation techniques enter the game.
markable fact is that complex resonances of the Liouvillean determine the exact transport eq
of thermal relaxation In particular, Davies’ generatorK arises as Fermi’s Golden Rule~second-
order perturbation theory! for these resonances.

Implementing the above program we have shown in Ref. 3 that, in the weak-coupling/
temperature regime, the spin-boson system returns to equilibrium. Moreover, this return is
nentially fast in time. In the remaining part of this section we sketch some of the ideas inv
in the proof of these results.

Since it is difficult to obtain the KMS statevb from the thermodynamic limit, we start with
the uncoupled system~l50!. We construct its KMS state, the induced cyclic representation,
the associated modular structure. Then we invoke perturbation theory to compute the
representation and modular structure of the coupled system. We have already discussed th
representation of the reservoir, thus we turn directly to the systemI . Its KMS state is the Gibbs
statehb of Eq. ~21!. The cyclic representation(HI ,pI ,VI ! is given by

HI[C2
^C2,

VI[~2 coshb!21/2~e2b/2x1 ^ x̄11eb/2x2 ^ x̄2!,

pI ~X![X^ I .

One easily checks that Tr(hbX)5„VI ,pI (X)VI …, and that the Liouvillean is

LI5sz^ I2I ^ sz .

Note that the exchange mapf^c°c^f flips the sign of the Liouvillean. Thus the antilinea
operatorJI :f ^ c°c̄ ^ f̄ satisfies

JIe
iLI t5eiLI tJI .

Here again, JI is the modular conjugation, and one easily checks thatLI5pI ~HI !
2JIpI ~HI !JI .

Clearly, the KMS state of the uncoupled spin-boson system ishb
^ vR

b , and the induced
cyclic representation ofO is ~H0,p0,V0!5~HI ^HR ,pI ^pR ,VI ^VR!. It turns out that the
cyclic representation~H,p,V! associated with the statevb is given byH5H0 andp5p0. The
J. Math. Phys., Vol. 38, No. 4, April 1997
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construction of the vectorV rests on deep results of Tomita–Takesaki’s theory of modular a
bras and Araki’s perturbation theory ofW* -dynamical systems.51 Here we just mention that this
vector is defined by a suitable perturbation expansion and thatV5V01O(l). Let
M[M2^M2^M R . Then the antilinear mapJ[JI ^JR is the modular conjugation of~M,vb!
and

L5LI1LR1lp~H int!2lJp~H int!J5p~H !2Jp~H !J

is the Liouvillean of the combined system. Note that, here again, the modular conjugation sa

JeiLt5eiLtJ.

We proceed to analyze the spectrum ofL. Without interaction, the situation is the following. Th
spectrum ofL0[LI1LR is

sac~L0!5R,

ssc~L0!5B,

spp~L0!5$22,0,2%,

where62 are simple eigenvalues while 0 is twofold degenerate. After the interaction ter
switched on, a simple eigenvalue remains at 0 while the others turn into complex reson
Thus, for small nonvanishingl, the LiouvilleanL has absolutely continuous spectrum except
the simple eigenvalue 0, and return to equilibrium as follows. The thermal relaxation tim
determined by the width of the complex resonances ofL.

We now sketch some of the ideas involved in the analysis of these resonances. R
speaking, the pseudo-phonons/holes emission and absorption processes conspire tog
smooth out the infrared singularity. To realize that we introduce the operator

b~s,k̂![H sa2~ usuk̂! for s,0,

sa1~ usuk̂! for s.0,

wheresPR and k̂PS2, the unit sphere inR3. A simple calculation shows that the commutatio
relation [b(s,k̂), b* (s8,k̂8)]5d(s2s8)d( k̂,k̂8) holds. The Liouvillean can now be rewritten a

L5LI1E sb* ~s,k̂!b~s,k̂! dsdk̂1l~sx^ I ! ^ E „a1~s,k̂!b* ~s,k̂!1a1~s,k̂!b~s,k̂!… dsdk̂

2l~ I ^ sx! ^ E „a2~s,k̂!b* ~s,k̂!1a2~s,k̂!b~s,k̂!… dsdk̂,

where the functionsa6 are given by

a6~s,k̂![
1

2
e6bs/4S s

sinh~bs/2! D
1/2

sign~s!usu1/2ĝ~sk̂!.

Translations of thes variable are implemented inH by the unitary group eiAu, where

A[E b* ~s,k̂!
1

i
]sb~s,k̂! dsdk̂.

One easily shows that
J. Math. Phys., Vol. 38, No. 4, April 1997
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L~u![e2 iAuLeiAu5LI1E ~s1u!b* ~s,k̂!b~s,k̂! dsdk̂1l~sx^ I !

^ E „a1~s1u,k̂!b* ~s,k̂!1a1~s1u,k̂!b~s,k̂!… dsdk̂2l~ I ^ sx!

^ E „a2~s1u,k̂!b* ~s,k̂!1a2~s1u,k̂!b~s,k̂!… dsdk̂.

A simple ~and critical! observation is that the function

S s

sinh~bs/2! D
1/2

~37!

is analytic in the stripuIm(s) u,2p/b. Thus, if sign(s)usu1/2ĝ(sk̂) has an analytic continuation ther
@e.g.,ĝ(k) 5u ku1/2e2uku2], thenL~u! is a well-defined family of operators for complexu, as long
as uIm~u!u,2p/b.

To describe the spectrum ofL0(u) [ eiAu(LI 1 LR)e
2 iAu, we introduce the operator

N tot[E „a1* ~k!a1~k!1a2* ~k!a2~k!… d3k. ~38!

This is the ordinary number operator inF ^F , which counts the total number of pseudo-phono
and pseudo-holes.52 A simple calculation shows that

N tot5E b* ~s,k̂!b~s,k̂! dsdk̂,

so thatL0~u!5LI1LR1uN tot . We immediately conclude that, for complexu, the spectrum of
L0~u! consists of discrete eigenvalues$62,0%, and a set of lines$t1 in Im~u!:tPR,n.0% filled
with absolutely continuous spectrum. Thus, the complex deformation unveils the eigenval
L0. One can now use perturbative arguments to show that these eigenvalues turn into th
nances after addition of the perturbation term~see Fig. 3!. These resonances are the eigenvalue
the matrix

Sl[Wl~u!Pl~u!L~u!Pl~u!Wl~u!21, ~39!

wherePl(u) is the spectral projection ofL~u! on the resonance eigenvalues,P0[I ^ uV&^Vu,
and

Wl~u![@P0Pl~u!P0#
21/2P0Pl~u!.

Of course, one can show thatSl is independent ofu. To complete the argument, it remains
relate the family of operatorsL~u!, defined for22p/b,Im~u!,0, to the physical LiouvilleanL.
It is here that we encounter theinfrared problem. Let us briefly comment on this since it is one
the central technical point in our analysis. It is well known that the infrared catastrophe o
when infinitely many ‘‘soft bosons’’~in our case pseudo-phonons/holes! are created. This is
dynamically possible since the total number operatorN tot cannot be bounded by the relativ
energyL, i.e, there are vectorsCPH such thatu~C,LC!u,` but ~C,N totC!5`. As long as the
imaginary part ofu does not vanish, it acts as a mass term53 which prevent the catastrophi
creation of soft bosons. However, the problem shows up in the limit Im~u!→0: The domain of the
operatorL~u! suddenly changes at Im~u!50. To solve this difficulty we prove that, for anyCPH
and for Im(z) large enough,
J. Math. Phys., Vol. 38, No. 4, April 1997
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lim
Im~u!→0

„L~u!2z…21C5~L„Re~u!…2z!21C.

It follows that the resonances ofL are the eigenvalues ofSl given by Eq.~39!. This matrix
is analytic, with a power expansion of the form

Sl5LI1 (
n51

`

S~2n!l2n. ~40!

Any term in this expansion can be computed. The matrixSl is directly related to the generatorK l

of the exact transport equation of thermal relaxation5

dh~ t !

dt
52K lh~ t !. ~41!

This generator also has a power expansion

K l5 iL I1 (
n51

`

K ~2n!l2n,

each term being related to corresponding term in the expansion~40!. In particular, one can show
thatK ~2! is identical to Davies’ generatorK .

We finish with three remarks. First, asb→`, L tends towards the zero-temperature Liouv
lean, namelyH^ I2I ^H. In the same limitV→CG^ CG , thus we recover the zero-temperatu
model. However, from the point of view of resonances, this limit is highly nontrivial. To un
stand why, remark that the function~37! has poles at the pointss52 ib212pn, for n51,2,... .

FIG. 3. The spectrum ofL~u! for 22p/b,Im~u!,0. The essential spectrum is contained in the shaded area.
J. Math. Phys., Vol. 38, No. 4, April 1997
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These singularities obstruct the analytic continuation of the resolvent~L2z!21, and hence the
access to the resonances~see Fig. 3!. Consequently, our method does not yield any information
the zero-temperature model. Second, although some analyticity assumption on the couplin
tion ĝ(k) is necessary to study the resonances ofL and to derive the exact transport equation~41!,
it is not needed for return to equilibrium. We are presently working on a version of Mou
theory for the Liouvillean which should yield return to equilibrium under much weaker assu
tions. Of course, in this case one cannot hope to obtain any information concerning the r
return to equilibrium. Finally, the results described here are valid in more general situatio
particular, we can treat realistic models in QED which are based on the dipole approximatio
additional information we refer the reader to Refs. 2–5.
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7V. Jakšić and C.-A. Pillet, ‘‘Ergodic Properties of Classical Dissipative Systems I’’~preprint 1996!.
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Twisted boundary conditions and transport in disordered
systems

E. Akkermansa)
Department of Physics, Technion, 32000 Haifa, Israel

~Received 23 December 1996; accepted for publication 14 January 1997!

Condensed matter systems are usually characterized by their response to external
fields. The Kubo linear response theory is the standard theoretical tool used to
analyze it. In order to obtain transport quantities with this method, we generally
need to know both the eigenvalues and the eigenfunctions. This article discusses
another methodological approach which in some cases allows one to obtain some
characteristics of the dc dissipative transport from the response to a gauge field in
a multiply connected geometry. This avoids the need of the eigenstates to charac-
terize the transport properties which are directly read off the behavior of the energy
spectrum. This method is applied to the problem of transport in metals and Ander-
son insulators. ©1997 American Institute of Physics.@S0022-2488~97!01304-2#

I. INTRODUCTION

Among the various ways to characterize the state of matter, the response to an external
field constitutes one of the major probes. It might be either the dc or the ac responses me
the dissipative or reactive parts, the optical spectrum, etc.

The basic formalism used in order to express these transport coefficients is the Kubo
response theory. It involves the knowledge of the expectation value of a current–current c
tion function. This means that already in the simplest cases~e.g., a gas of noninteracting electron
moving in a random potential! we need to know both the energy spectrum and the eigenfunct
The latter are difficult to evaluate, where in some cases, for instance, a semi-classical appr
tion can be used.

This methodological problem inherent to the Kubo linear response theory can be avoid
certain cases which shall be discussed further by considering the same system closed on it
submitted to twisted boundary conditions. Then, the usual sum rules involving off-diagonal m
elements~e.g., the Thomas–Reiche–Kuhn sum rule! have to be generalized and it is possible
express Kubo correlation functions in terms of the sensitivity of the energy levels to an ap
gauge field.

A. Equivalence between an Aharonov–Bohm flux and a twist of the boundary
conditions

To set up the problem, we consider the example of one electron of massM moving on a ring
of lengthL and radiusR. The Hamiltonian isH(0)5 (p2/2M )1V andV(x) is a potential which
might, for instance, describe the effect of disorder. To obtain the energy spectrum, we
impose boundary conditions. Single valuedness of the wave functionsc(x) requires
c(x1L)5c(x). Twisted boundary conditions~TBC! are defined through the generalizatio
c(x1L)5eifc(x), wheref is a real parameter. It is possible to get rid of the phase factor
suitable gauge transformation. This modifies the HamiltonianH(0) into:

H~f!5
1

2M S p1
\f

L D 21V~x!. ~1!

a!Electronic mail: eric@physics. technion.ac.il
0022-2488/97/38(4)/1781/13/$10.00
1781J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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H(f) describes the motion of an electron on a ring pierced by an Aharonov–Bohm~AB! mag-
netic fluxF defined by the vector potentialAu5F/L and the physical nature of the twist param
eterf is given in that case byf5 F/F0[ (e/h) F. The eigenenergiesEn of the twisted Hamil-
tonian in Eq.~1! do depend onf and their curvature atf50 is given by the~nonperturbative!
expression:

]2En

]f2 U
f50

5
\2

2ML2 S 11
2

M(
lÞn

u^ l upxun&u2

en2el
D , ~2!

where (un&,en) describe the eigenstates ofH(0).

B. The f-sum rule

The combination on the rhs of Eq.~2! does appear in another context, namely, the Thom
Reiche–Kuhn sum rule~or f-sum rule!.1 It might be useful to rederive it here. Consider t
HamiltonianH(0) on the real line~the 3d generalization is straightforward!, and the eigenbasis
(un&,en). Using the commutator@x,H0#5 ( i\/M ) px , we may write i\/M ^nupxu l &5(el2en)
3^nuxu l & so that:

(
lÞn

u^ l upxun&u2

en2el
5

M

2i\(
lÞn

@^ l upxun&^nuxu l &2^ l uxun&^nupxu l &#. ~3!

We can extend the sum on the rhs to all statesun& since^nupxun&50 in the absence of applie
magnetic field~time reversal invariance!. Then,

2

M(
lÞn

u^ l upxun&u2

en2el
5

1

i\
^ l u@px ,x#u l &521 ~4!

~for suitably normalized eigenstates!. Equation~4! is the formulation of the f-sum rule, and th
f ln[ (2/M )@ u^ l upxun&u2/(en2el)# are the oscillator strengths.1 The puzzling result is the follow-
ing. The proof of the f-sum rule relies only on the commutation relation@px ,x#52 i\ . We could
therefore expect that it will work as well for the TBC case so that the curva
]2En /]f2 uf5050 for any state. However, in the multiply connected geometry considered
TBC, the position operatorx is not single valued and therefore is not admissible so that the u
proof of the f-sum rule cannot be used. This point is crucial and will be at the heart o
subsequent discussion. Roughly speaking, it might be formulated in the following way usin
language of metals and insulators. A metallic system is characterized bydelocalized statessuch
that the f-sum rule is not fulfilled in the multiply connected geometry and therefore the
curvature is nonzero. On the other hand, an insulator is characterized by~exponentially! localized
statessuch that it is always possible to build~even for multiply connected geometries! an effective
position operator. The f-sum rule is then fulfilled and the curvature is zero~up to exponentially
small corrections with the system size!.2 Therefore, the behavior of the appropriate curvature is
hallmark characterizing localized or extended states. The remainder of this article is a decl
of this theme for the physical situation of the Anderson metal–insulator transition wher
curvature is related to the dc residual electrical conductance.3
J. Math. Phys., Vol. 38, No. 4, April 1997
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II. TRANSPORT IN DISORDERED METALS: THE THOULESS CURVATURE

A. The Kubo linear response theory

Consider a d-dimensional gas of volumeLd of noninteracting electrons moving in a rando
potentialV(r ) in the absence of magnetic field. The~one particle! Hamiltonian isH(0). Accord-
ing to Kubo, the expression of the residual~T50!, dc conductivity Res i i (v50,T50)[s is
given by the trace

s5
e2\

pM2Ld
Tr~IG0

1~Ef !piIG0
1~Ef !pi !, ~5!

where pi is the momentum along thei -direction andIG0
1(E) is the imaginary part of the

resolvent operatorG0
1(E)5 @1/E2H(0)1 ih# (h→01) associated withH(0). Therelation be-

tween the conductanceGd and the conductivity isGd5sLd22. Due to the impurity potential
V(r ), bothGd ands are random variables. A large part of the activity in the field of Mesosco
Quantum Physics during the last years has been devoted to the calculation of the various m
of s mainly in the weakly disordered~metallic! regime but also for Anderson insulators.4 The
average conductivitŷs& for weakly disordered metals is calculated to low orders in the sm
parameter 1/kf l , wherel is theelasticmean free path andkf the Fermi wave vector. The zerot
order ~including the so called diffusion modes! gives the Drude expression:^s&5 ne2t/M . To
that order the average conductance^Gd& can be formally expressed~in units ofe

2/h) as the ratio
of two characteristic energies as^Gd&5 (e2/h)(Ec /D), whereEc[ \D/L2 is referred to the
Thouless energy andD[ 1/Ldr(Ef) is the mean level spacing . The diffusion constantD is related
to ^s& by the Einstein relation̂s&5e2Dr(Ef) and r(Ef) is the density of states at the Ferm
energy. This formal way of writinĝGd& corresponds to the standard physical picture of blo
scaling5 and diffusion motion~random walk! of the electronic wavepackets. The next order
1/kf l leads to the weak localization corrections~cooperon diagrams! which are at the basis of th
scaling theory of localization.6

B. The Thouless curvature

The Kubo formula@Eq. ~5!# for the conductivity requires the knowledge of the eigenfunctio
of the HamiltonianH(0). To see it,rewrites under the form:

s5
pe2\

M2Ld(n,m u^nupi um&u2d~Ef2en!d~Ef2em!. ~6!

Since we shall be interested in the behavior of finite size systems, it is worth mentioning
which conditions Eq.~6! is derived. We consider a finite size system in a box with a disc
energy spectrum. The applied constant electric field is described by a harmonic vector pote
the limit v→0. A finite conductivity is the result of transitions induced by the (v-dependent!
electric field between levels separated by\v, so that keeping the system finite and taking the lim
v→0, the conductivity vanishes. In order to obtain a finite response, two methods are u
considered. One is to take the thermodynamic limit first~for finite v) so that the spectrum
becomes continuous. Then, the limitv→0 gives a finite conductivity. The other method, usua
considered for finite size mesoscopic systems consists of assuming the existence of a we
pling between the system and external reservoirs through leads and contacts. This coup
described phenomenologically by an energyg over which the energy levels are spread out su
that\v@g@D in order for the transitions between the levels to be induced by the electric
only and not by the coupling to the leads. Finally, we consider the limitsg→0 and thenv→0.
Both methods are equivalent and represent nothing more than a way to regularize the sum
~6!. Keeping this in mind, and taking the limits as prescribed above we obtain:
J. Math. Phys., Vol. 38, No. 4, April 1997
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s5
pe2\

M2 Ldr2~Ef !u^n~Ef !upi um~Ef !&u2, ~7!

where the matrix element is between off-diagonal states~diagonal ones are zero! with the same
energyEf . This requires a degenerate Fermi surface and the knowledge of the eigenfunct
the Fermi energy.

Consider now twisting the boundary conditions of the system along, say, the x dire
leaving the boundary conditions unchanged in the other directions. The curvature of the e
levels is given by Eq.~2!. Let us now see how this curvature might be related to the conduct
s. The main steps of the original derivation of Edwards and Thouless7 are the following. Define
the dimensionless quantitygT5 (1/D)(]2En /]f2) uf50 , where the energyEn is the closest to the
Fermi energy. Due to the disordered potential,gT is a random variable. We assume the mat
elements of the momentum to be uncorrelated with the energies. This, as we shall see, is
within the Random Matrix Theory~RMT! description of weakly disordered metals. Replacing
squared matrix element by its average over the disorder, we obtain:

gT5
\2

2ML2D F11
2

M
^upxu2& (

mÞn

1

en2em
G . ~8!

Then, we assume for the average conductivity the Drude expression and usingt5(M /\kf)
2D

gives ^upxu2&5MDkf l . From Eq.~8! we obtain

gT5
\2

2ML2D F112Dkf l (
mÞn

1

en2em
G .

The remaining random sum is zero on average. It is likely to be dominated by the sm
denominator, i.e., typically of the order of the inverse mean level spacingD. Assuming the energy
levels to be uncorrelated~which is incorrect for weakly disordered metals! , the sum in Eq.~8! has
a Cauchy distribution with a widthp/D, andgT5 (\2/2ML2D) @112pkf l #. For weakly disor-
dered metals,kf l@1, so that (\2/ML2D) pkf l5p (Ec /D). Therefore, the typical curvaturegT is
~in units ofe2/h) the Drude average conductance obtained from the Kubo formula.

This derivation is based on assumptions which are not well justified or even incorrect. I w
like to present a slightly different argumentation independent of some of the previous assum
First, I define the Thouless curvaturegT by the quantity

gT5
1

2

]2

]f2N~Ef ,f!uf50 , ~9!

whereN(Ef ,f) is the density of states integrated up to the Fermi energy. This has the adva
of defining the curvature as a trace. Using

N~Ef ,f!5E 1

p
de f ~e!I Tr G1~e,f! ,

where f (e) is the Fermi–Dirac distribution andG1(e,f) the resolvent operator, we obtain:

gT5
1

p

\2

2ML2E de f ~e!I TrF ~G1~e,0!!21
2

M
G1~e,0!pxG

1~e,0!pxG
1~e,0!G

52
1

p

\2

2ML2E de f ~e!
]

]e
I TrFG1~e,0!1

1

M
G1~e,0!pxG

1~e,0!pxG

J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ady

.
lar as

els

he
plore

n and
d

f the
ds to
alcu-

e

1785E. Akkermans: Twisted boundary conditions and transport

¬¬¬¬¬¬¬¬¬¬
which after an integration by parts gives

gT52(
n

d~en2Ef !
]2en
]f2 U

f50

. ~10!

I shall takegT given by Eq.~9! as an operational definition of the Thouless curvature. It is alre
clear from that definition thatgT cannot be reduced to the Kubo expression@Eq. ~5!# for the
conductivity; they are different quantities. For instance, unlike the conductivitys, the average of
the curvaturegT over disorder is zero. To see it, let us rewritegT using Eq.~2!. Then,

^gT&5
\2

2ML2
~2r~Ef !1^I &!,

where

^I &[
1

ME 1

p
de f 8~e!Im (

p1 ,p2
p1•p2K ]

]e
^p1uG0

1~e!up2&L 5
1

M

]

]Ef
S 13 pf2r~Ef ! D51r~Ef !

and thereforêgT&50. This result is nothing but a derivation of the compressibility sum rule8,9

Nevertheless,gT contains information about transport properties of the system and in particu
we shall see now, its second moment is proportional to the square of the average~Drude! con-
ductivity. To calculate^gT

2&, consider the quantitydN(E,f)[N(E,f)2N(E,0). Expanding
dN(E,f) up to the fourth order inf gives

gT
25

1

24

]4

]f4 dN2~Ef ,f!uf50 ~11!

so that we need to calculate^dN2(Ef ,f)& which describes the fluctuation of the number of lev
in a band of widthE around the Fermi level. It has been obtained forf50 ~Ref. 10! by assuming
that the energy spectrum of a weakly disordered system is well described by the RMT.11 The
validity of this assumption for energiesD!E!Ec has been thoroughly discussed in t
literature.4 It corresponds to the physical situation where diffusive electronic wavepackets ex
ergodically the whole~finite size! system, i.e., for timest@tD5 L2/D. In that limit, the spatial
dependence of the solutions of the diffusion equation does not contribute to the diffuso
cooperon diagrams so that only the zero mode (q50) remains. This regime sometimes calle
zero-dimensional could have been obtained directly by settingd50 in the solution of the diffusion
equation. The RMT assumption is different from those used in the original derivation o
Thouless formula.7 It takes into account the correlation between the energy levels which lea
the level repulsion characteristic of the Wigner–Dyson distribution. The extension of this c
lation tof Þ 0 gives:

^dN2~E,f!&5
1

2p2 F lnS 11S ED D 2D1 lnS 11
E2

~D14Ecf
2!2D G . ~12!

Together with Eq.~11! it gives ^gT
2&5 (6/p2) (Ec /D)

2. Using the Drude expression for th
average conductance^g& we obtain:

e2

h
^gT

2&1/25
A6
p

^g& ~13!

which establishes the Thouless relation.
J. Math. Phys., Vol. 38, No. 4, April 1997
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III. THE SCATTERING DESCRIPTION OF TRANSPORT

So far, we have seen how to describe the average Drude conductivity from the curvature
energy levels with respect to a twist of the boundary conditions. This description is limited t
Drude approximation and does not apply, for instance, to higher order corrections leading to
localization effects and eventually to the Anderson metal–insulator transition. The aim o
section is to derive another expression of the Kubo formula@Eq. ~5!#, in terms of the response t
an AB flux where the thermodynamic limit is taken from the very beginning so that there
need to consider a frequency dependent electric field.

Consider a large electronic system with a continuous energy spectrum submitted to a
dependent AB flux of the formF(t/T) whereT is some characteristic time scale. For instan
F(t/T)52Vt describes a constant voltageV andT5 h/eV is the Bloch period. This looks very
much like the Greenwood12 description of the dissipative conductance. But the latter applie
finite size systems where the adiabatic theorem can be used to study the motion of the
levels withF(t/T). Here, this option does not exist since we consider a continuous spectrum
interaction of electrons with the AB flux is conveniently described using the on-shell scatt
matrix S(E,F), for which there is a continuous version of the adiabatic theorem. In a scatt
description,13 there is a characteristic time, the Wigner time delaytW(E), which tells us about the
time required by a wave packet to sweep off the scattering potential. In the limitT@tW(E), an
incident wavepacket of energyE interacts essentially with a stationary~time-independent! flux
line. Hence, our adiabatic expansion will be in terms of the small parametertW(E)/T.

The basic setup of the scattering description for the case of an AB flux has been des
elsewhere.14 To be self-contained I shall present the main results. The scattering s
uCa

6(E)& are eigenstates of the total Hamiltonian at energyE; a ~assumed to be a discret
variable for the sake of simplicity! describes the scattering channels at that energy and6 defines
ingoing and outgoing states. The S matrix is then defined byS5*dE(auCa

1(E)&^Ca
2(E)u. The

following relation holds:

d ln Det S~E!522ip TrEdH, ~14!

whereS(E) is the S matrix restricted to the energy shell E and TrE is defined for any operato
A by

TrEA5(
a

^Ca
1~E!uAuCa

1~E!&. ~15!

The variationdH of the Hamiltonian is due to a variation of the scattering potential—here the
flux. Defining the total phase shifth(E) by ln DetS(E)52ih(E) we rewrite Eq. ~14! as
dh(E)52p TrEdH.

Bearing in mind these preliminary definitions, we write the Hamiltonian under the f
H(F(t))5H(F(0))1V(t) which defines the scattering potentialV(t) and with
F(0)5 limT→`F(t/T). We assume that initially the system is in an eigenstate (ufa&,Ea) of the
time independent HamiltonianH(F(0)) and wewrite the state of the systemuC(t)& at time t as

uC~ t !&5ufa&1udC~ t !& ~16!

which definesudC(t)&. The Schro¨dinger equation can now be rewritten

udC~ t !&5
1

Ea2H~ t !1 ih
@V~ t !ufa&2 i\

]

]t
udC~ t !&] ~17!

whereh→01. For a slowly varying perturbation, we can as a first approximation neglec
second term in the bracket. The validity of this approximation can be checked doing the cha
J. Math. Phys., Vol. 38, No. 4, April 1997
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variables5 t/T. Then, the second term appears to be proportional to 1/T and is negligible in the
adiabatic limit T→`. Equation ~17! can be solved iteratively and gives to lowest ord
udC(t)&ad5G1(Ea ,t)V(t)ufa& so thatuC(t)&ad5(11G1(Ea ,t)V(t))ufa& or equivalently:

uC~ t !&ad5
ih

Ea2H~ t !1 ih
ufa& ~18!

which according to the Lippman Schwinger equation shows thatuC(t)&ad is nothing but a scat-
tering stateuCa

1(Ea ,t)& at energyEa of the HamiltonianH(F(t)) where t is taken as a fixed
parameter. This defines the adiabatic states as the scattering states due to the potentialV(t) with
a fixed t.

To obtain the first order correction to the adiabatic approximation, we insert the express
udC(t)&ad into Eq. ~17!:

udC~ t !&15G1~Ea ,t !~V~ t !ufa&2 i\
]

]t
uCa

1~Ea ,t !&). ~19!

Since the scattering states are eigenstates of the HamiltonianH(F(t)) with energyEa , they obey
the corresponding Schro¨dinger equation so that

]

]t
uCa

1~Ea ,t !&5PG1~Ea ,t !ḢuCa
1~Ea ,t !&, ~20!

wherePG1(Ea ,t)5 1/@Ea2H(t)# and Ḣ is the time derivative ofH(F(t)). This gives:

uC~ t !&15~112i\G1~Ea ,t !PG
1~Ea ,t !Ḣ !uCa

1~Ea ,t !& ~21!

for the first correction to the adiabatic approximation. It is rather straightforward to check t
is proportional to 1/T . This describes the energy exchange between the system and the ex
source, here the potentialV(t). It has been considered to study various problems including
calculation of the friction force15 and of the mobility of heavy impurities in Fermi liquids.16

Equation~21! is the starting point of our calculation of the Kubo linear response coefficients
The expectation value of a given operatorA can be written

^A&51^C~ t !uAuC~ t !&15^Ca
1~Ea!uAuCa

1~Ea!&1sAḟ, ~22!

where the first term is the thermodynamic response associated withA ~magnetization, persisten
currents . . .!, while the second term deals with the energy exchange within the adiabatic ap
mation and defines a Kubo response coefficientsA . It is a complex number whose real pa
describes dissipation and the imaginary part is related to the reactive response.

From now on I shall focus on the electrical dissipative conductance. This approach ha
extended to the case where there is, in addition, a uniform magnetic field in order to obta
Hall conductance within this formalism.17 The dissipative conductance corresponds to the part
lar case where the operatorA is the total currentI flowing in the system and whereF(t/T)
is a time dependent AB magnetic flux. Therefore,^I &52^]H/]F & and F is F(0)
5 limT→`F(t/T). To lowest order in 1/T, we obtain from~21! and ~22!:

Ga52
e2

ph
IK Ca

1~Ea!U ]H

]f
~G1~Ea!!2

]H

]f UCa
1~Ea!L , ~23!
J. Math. Phys., Vol. 38, No. 4, April 1997
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wheref[ (e/h) F(0) and the scattering states are obtained in the limitT→`. To obtain the
dissipative conductanceGd , we have to sum over the filled states with the Fermi–Dirac distri
tion f (E). It gives Gd5*dE f(E)(ad(E2Ea)Ga . Using d(E2Ea)5 1/
p ^Ca

1(Ea)uIG1(E)uCa
1(Ea)&, we obtain:

Gd52
e2

phE dE f~E!TrES IG1~E!
]H

]f
I~G1~E!!2

]H

]f D . ~24!

Using the cyclicity of the trace, the identity (G1(E))252(]/]E)G1(E) and performing an
integration by parts, we obtain atT50, where] f (E)/]E52d(E2Ef)

Gd5
e2

ph
TrEfS IG1~Ef !

]H

]f
IG1~Ef !

]H

]f D ~25!

which is the standard Kubo expression for the conductance. SinceIG1(Ef) } d(Ef2H), we
obtain, as expected,Gd } r2(Ef). To connect Eq.~26! to Eq.~5! for the conductivity, we conside
the expression~1! for the Hamiltonian in the presence of an AB flux which corresponds to a g
direction, say x, and]H/]f uf505 (\/ML) px . Then,

Gd5
e2\

pM2L2
TrEf~IG

1~Ef !pxIG
1~Ef !px!, ~26!

which, usingGd5sLd22, gives back Eq.~5!.

A. Connection with the scattering phase shift

The total current is given to the lowest~adiabatic! approximation by

I ad5S dEdF D
ad

5E dEaf ~Ea!K Ca
1~Ea!U ]H

]FUCa
1~Ea!L . ~27!

Using Eq.~14!, it is rewritten atT50:

I ad~F~0!!5
e

phE0
Ef
dE

]

]f
h~E,f~0!!. ~28!

This is the expression of the~thermodynamic! persistent current flowing in the system due to t
AB flux line14 in terms of the total scattering phase shifth(E,f(0)).

The first order correction is obtained by inserting Eq.~21! into the expression of the curren

1
K C~ t !U ]H

]F UC~ t !L
1

52
1

p

]

]F
h~Ea ,F~0!!1

2\

p

dF

dt

]

]Ea
S ]

]F
h~Ea ,F~0!! D 2.

Therefore, the total current is given to that approximation by

I ~F!5I ad~F~0!!1
2\

p

dF

dt S ]

]F
h~EF ,F~0!! D 2. ~29!

From Eq.~22! we identify the dissipative conductanceGd

Gd5
1

p2

e2

h S ]

]f
h~Ef ,f~0!! D 2, ~30!
J. Math. Phys., Vol. 38, No. 4, April 1997
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which is equivalent to Eq.~26!, thus establishing the description of the dissipative transpor
terms of the scattering phase shift.

I did consider here the limit of noninteracting electrons, but a formally identical scatte
description applies as well to a Fermi liquid.18

IV. DISTRIBUTION FUNCTION OF THE CURVATURE; GENERALIZATION OF THE
THOULESS RELATION

Gd has been calculated in the limit of an infinite system and in order to compare with
previous results in Section II, we need an equivalent expression for finite size. For a large s
the relation between the variationdEn(f)[En(f)2En(0) of the energy levels and the tota
phase shift h(E,f) evaluated in a narrow energy window aroundEn is19

pdEn(f)5Dh(E,f), whereD21 is the density of states near the energyE. This is a conse-
quence of Eq.~14!. Then, for a large but finite system, the dissipative conductance can be re
ten:

Gd5
e2

h

1

D2 S ]En

]f D 2U
En5Ef

, ~31!

where . . . is an average overf and the energyEn is close to the Fermi level. Relation~31! is
important in two respects. First, it allows one to write the Kubo formula for a finite size syste
terms of the behavior of the energy levels as a function of an AB flux. Second, unlike the Tho
curvature@Eq. ~9!#, it is not restricted to the Drude term. In principle, it could be used as we
evaluate the whole distribution function of the conductance and higher orders in 1/kf l for the
average. The first interesting point in comparing these two expressions is that at the Drud
they should already be connected since both of them are different formulations ofs5 ne2t/M .
This means that for a given system there is a relation20 between the typical curvatureA^gT

2& of the
energy levels evaluated atf50 andgd5 (1/D2) ^(]En /]f)2&, whereGd[ (e2/h) gd . Such a
relation is not obvious between a local quantity~the curvature! measured atf50 and a global one
averaged over the whole energy curvesEn(f). The aim of this section is to discuss this conne
tion and its generality.

We consider first the distribution functionP(c) of the curvaturec[ ]2En /]f2 uf50 . We saw
that, assuming the energy levels to be uncorrelated,P(c) has a Cauchy distribution
P(c)5 (1/p)@g0 /(g0

21c2)#, where the width g0 , obtained from Eq. ~8!, is
g05 (2p\2/M2L2)(^upxu2&/D). However, the energy levels in a weakly disordered metal
correlated so that the curvature distribution is no longer Cauchy. The form ofP(c) was exten-
sively studied21 in the search of quantum signatures of chaos in the parametric motion of e
levels. For various systems~random matrices, quantum kicked tops, . . .!, the tail of the curvature
distribution was found to beP(c); 1/c21b for large c. The exact form of the distribution ha
been first approximated by Zakrzewski and Delande22 by fitting their numerical results for variou
models with chaotic spectra. It is given by the modified Cauchy form:

Pb~c!5
Nb

~gb
21c2!1/2~b12! , ~32!

whereNb is a normalization constant andb51 if the system is time reversal invariant,b52 if
this symmetry is broken andb54 if there is Kramers degeneracy. Von Oppen23 succeeded in
demonstrating that Eq.~32! is indeed exact for the Gaussian unitary ensemble of hermitian
trices (b52). Recent numerical results24 have extended the validity of the distributionPb(c) to
metallic spectra perturbed by an AB flux. In particular, in the limitf→0 here considered, wher
the spectrum is time reversal invariant (b51), the form~33! has been obtained analytically b
Fyodorov and Sommers.25
J. Math. Phys., Vol. 38, No. 4, April 1997
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The following simple argument shows, at least for the tail ofPb , how the modified Cauchy
distribution is derived from the Wigner–Dyson assumption. Within the RMT description of
energy spectrum, the distributionPb(s) of the distances ~in units of the mean level spacingD)
between neighboring levels is given byPb(s);sb for small s. In the presence of a perturbatio
f, the separations(f) of an isolated pair of neighboring levels might be writte
s(f)5As21f2;s1 f2/2s ~for s→0), so that the curvature c; 1/s. Using
Pb(s)ds5Pb(c)dc, we obtainPb(c); 1/(c21b) ~for large c!. The immediate consequence of th
expression ofPb(c) is the divergence of the second moment of the curvature for the case
AB flux aroundf50. Therefore, this moment cannot be used to evaluate a conductance ev
the Drude term. In the previous derivation leading to Eq.~13!, we did consider a smeared curv
ture @Eq. ~9!# insensitive to the exact form of the curvature distribution. But in order to com
~for a discrete energy spectrum! between the curvaturegT of the levels~atf50) andgd , we have
to take into account the exact expression ofPb(c). It is worth emphasizing that the divergence
^c2& is a nonperturbative result,^c2(f) } Ec

2 ln(D/Ecf
2)) for smallf (f!AD/Ec!1).26 There-

fore, it cannot be obtained from the unitary case~where ^c2& is finite! by taking the limit
f→0. Since the second moment of the curvature diverges due to the 1/c3, tail one can choose
^ucn(0)u& instead to define the conductance asgT5 ^ucn(0)u&/D.

27 Using the distribution
Pb(c), we obtaingT5g1 /D for b51 andgT5 (2/p)(g2 /D) for b52. The unexpected result i
that the coefficientgb entering the expression ofPb(c) and defining the natural scaling of th
curvature is

gb5pb
^ i 2~f!&

D
5

pb

D K S ]En

]f D 2L , ~33!

where^ . . . & and . . . are averages taken, respectively, over the disorder~or the energies! and the

flux f. For the case wheref is an AB flux, we obtain therefore a relation20 between the Thoules
average curvaturegT5 ^ucn(0)u&/D and the expression~31! averaged over the disorder

gT52pgd . ~34!

This relation has the universality of the RMT,28 i.e., it does not depend on the microscopic deta
of the physical problem. It is also more general than the relation~13! betweengT and the Drude
conductance, since Eq.~34! holds beyond the range of validity of RMT when weak localizati
corrections (} D/Ec) are taken into account.

25

Eq. ~34! applies to problems other than transport in disordered systems.29,30But for the latter,
it can be considered as a characterization of metallic systems with delocalized wave function
equality~34! between a curvature and the Kubo conductance is a result of the RMT. For ins
it does not hold either in ballistic or in localized systems. Section V will provide such an exa
in a one dimensional disordered system.

V. RELATION BETWEEN THE LANDAUER AND THOULESS CONDUCTANCES

There is another very popular description of the conductance introduced by Landaue31 It
connects transport to the scattering properties of disordered systems connected to re
through ideal leads. The system is characterized by an S-matrix, but unlike the derivat
Section III, here the S-matrix refers to the whole finite system as a scatterer and not to a
dependent AB flux. The Landauer conductancegL8 is given by

gL85
e2

h

T

12T
, ~35!
J. Math. Phys., Vol. 38, No. 4, April 1997
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whereT5( i ut i u2 is the sum of the transmission probabilitiesTi5ut i u2 of each available channe
i . gL8 diverges for a perfectly transmitting sample whereT51. There is a related formula derive
from microscopic linear response theory32 which givesgL5 (e2/h) T. It was subsequently gener
alized to the multichannel case by Fisher and Lee33 under the form
gL5 (e2/h) ( i ut i u25 (e2/h) Tr tt†, wheret is the transmission matrix. The discrepancy betwe
this relation and the Landauer formula can be understood in the following way.34 The conductance
gL8 is obtained from the system alone, i.e., for a voltage being the difference of chemical po
of the ideal leads. It corresponds to a four probe terminal measurement.35 In contrast, the conduc
tancegL5 (e2/h) T is finite for a finite perfect sample. It corresponds to a two terminal meas
ment where the voltage is the difference of the chemical potentials in the incoherent rese
i.e., when the voltage probes are separated by more than the phase coherence lengthLf , so that
the leads serve both as current and voltage probes. For a perfect scatterer (T51), it remains the
finite conductance of the leads, i.e., the contact resistance given by the total number of ch
~in units ofe2/h). In a 1d geometry, these two conductances are related. The two probe resi
R5 (h/e2)(1/T) is the total resistance of the circuit made of the contact resistanceh/e2 due to the
leads and (h/e2)@(12T)/T# of the system itself such that 1/T511 (12T)/T, i.e.,
gL8

211 (h/e2)5gL
21. In the general multichannel case, the four probe Landauer conduc

gL8 is more difficult to define since it depends on the geometry of the system, i.e., on the
microscopic details of the contacts between the leads and the system. Since the Thouless c
gT or the Kubo expressiongd are independent of these details, we shall be interested in
relation between these curvatures andgL .

The relationship betweengL8 and the Thouless curvature has been discussed by Anderso
Lee.36 In a strictly 1d geometry, these authors found that the Thouless conductance is not p
tional togL but instead to its square root. This result was subsequently criticized. I would lik
show that their result is indeed correct provided we replacegL8 by gL . Therefore the Thouless
curvaturegT is not the conductance in a 1d geometry as in the metallic case but one must c
insteadgd given by Eq.~31!, i.e., the average of the square of the persistent currents. The bre
of the proportionality betweengT andgd given by Eq.~34! is a consequence of the fact that we a
outside the range of validity of RMT for a localized 1d system. To obtain back the relation~34!
and thereforegT proportional togL , we must go to the limit of a large number of couple
channels as studied numerically.37

Let us turn back to the 1d geometry discussed by Anderson and Lee. In that case the S
is 232 and it is possible to define instead another~Hermitian! matrix M given in terms of the
reflection and transmission amplitudesr and t by:

M5S 1

t
2
r

t

2
r *

t*
1

t*

D
which couples the right channels

CR5S i RoRD
to the left channels

CL5S oLi L D

J. Math. Phys., Vol. 38, No. 4, April 1997
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such thatCR5MCL . The energy spectrum of the system with twisted boundary condition
obtained by solvingMC5lC, wherel5e6 if, i.e., by closing as usual the system on itself w
a fictitious AB flux. The density of statesn(E) is given by the relationn(E)5 (1/p)(du/dE),
whereu5I ln Det S(E,f) is the counting function. Then,gT andgd are obtained by means o
Eqs.~9! and ~30!, i.e.,

gT5
1

2p

]2u

]f2U
f50

~36!

and

gd5
1

p2S ]u

]f D 2, ~37!

where . . . is an average overf. The relation betweenu andf is obtained as follows. Notice firs
that TrM is representation independent. By definition of the twisted boundary conditions,e6 if

are eigenvalues ofM and therefore TrM52 cosf. On the other hand, using the explicit expre
sion of M we have TrM52 Re(1/t), wheret5utueiu is the transmission amplitude with a pha
u(E) which follows directly from the relation between the matricesS and M . Therefore,
Tr M52utu21 cosu and

cosf5ut~E!u21 cosu~E,f!. ~38!

The Kubo conductancegd is then obtained directly from Eq.~37!, gd5 (1/p2) gL . But from Eq.
~36!, we havegT5 (1/2p)AgL as found by Anderson and Lee.38 Again, this result is not surprising
for an insulator. The new result here is that it is possible to relate the Landauer conductan
the conductancegd expressed also in terms of TBC.

VI. CONCLUSION

I have shown in this article how to obtain information about the transport propertie
disordered and noninteracting systems without evaluating the full Kubo linear response
cients as given by Eq.~5!. We obtained various expressions for transport quantities in terms o
parametric motion of the energy levels with respect to a twist of boundary conditions fo
system in a nonsimply connected geometry. In the metallic regime of a weakly disordered s
we can describe the energy spectrum by means of the RMT. There, the Thouless curvaturegT , the
typical valuegd of the persistent currents and the Landauer conductancegL do coincide up to the
correction of weak localization. For an Anderson insulator,gL andgd are linearly related but are
proportional to the square root of the Thouless curvature. The range of applicability of
relations is wider than the Anderson problem of a disordered metal and were successfully a
not only to the study of Quantum Chaotic systems but also to Quantum Hall systems.39
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Electronic transport properties of quasicrystals
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We present a review of some results concerning electronic transport properties of
quasicrystals. After a short introduction to the basic concepts of quasiperiodicity,
we consider the experimental transport properties of electrical conductivity with
particular focus on the effect of temperature, magnetic field, and defects. Then, we
present some heuristic approaches that tend to give a coherent view of different,
and to some extent complementary, transport mechanisms in quasicrystals. Numeri-
cal results are also presented and in particular the evaluation of the linear response
Kubo–Greenwood formula of conductivity in quasiperiodic systems in the presence
of disorder. ©1997 American Institute of Physics.@S0022-2488~97!01604-6#
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I. INTRODUCTION

In 1984, Schechtman, Blech, Gratias, and Cahn1 presented a new metastable phase of
AlMn binary alloy. The diffraction pattern was formed by intense Bragg peaks organized ac
ing to the icosahedral symmetry strictly forbidden from conventional crystallography. The u
lying order was claimed to be described by the mathematical concept of quasiperiodicity.2,3

The confirmation of a new state of matter has been an intense subject of controver
particular, Pauling proposed an alternative description of five-fold diffraction patterns bas
icosahedral glasses formed by twins.4 However, the situation changed after the discovery of sta
phases~icosahedral AlCuFe, AlPdMn, AlCuCo...! by Tsaiet al.,5 and the existence of quasiper
odic crystals~quasicrystals! is now well accepted. Furthermore, these materials have revealed
of unexpected physical properties.6

The aim of this article is to review briefly the experimental results concerning electr
conductivity and then to present theoretical studies of electronic structure and electronic tra
in these systems.

II. QUASIPERIODIC ORDER

A. Construction of the Fibonacci chain

To generate the Fibonacci chain, it is possible to use an inflation process starting from
incommensurate segments of respective lengths A and B. One adopts the rule A→AB, and B→A,
which leads to the consecutive sequencesS05A, S15AB, S25ABA, S35ABAAB,
S45ABAABABA, S55ABAABABAABAAB, and so on. This inflation rule is related to the
sequence of Fibonacci numbers given by

Fn5Fn211Fn22 , F050, F151 with Fn11 /Fn→t5~11A5!/251.61803398... .

In the infinite limit, the ratio of numbers of A and B of the semi-infinite cha
S`5ABAABABAABAABABAABABA... is equal to the golden meant.

The cut and project method7 is a geometrical algorithm used to generate quasiperiodic st
tures in a D dimensional space starting from a periodic one inN dimensional space~with N
. D!. It can be related to the fact that every quasiperiodic function can be algebraically rela
a periodic one in higher space. If one definesf (x,y) a 2p-periodic function inx andy directions,
Fourier decomposition of this function leads tof (x,y)5(p,qapq exp~2ip(px1qy)). The quasi-
periodic functiong(x) 5 f (x,y 5 x/t)in 1D space can be seen as a restriction toy5x/t ~line with
irrational slope! of a periodic function in 2D space. We illustrate this cut and project method
the construction of the Fibonacci chain in Fig. 1 where two main steps are distinguishable

First, one defines a window of widthB along a lineD of slopep. Next, the vertices of the
square lattice in 2D that belong to the window, are projected perpendicularly onD . These pro-
jected points define a sequence of two distinct lengths A and B such that A/B5p. When p is
rational, the chain is periodic, whereas for irrational slope, it becomes quasiperiodic. Th
bonacci chain corresponds to a slopep51/t ~wheret is the golden mean!. The periodic approx-
imant chains of Fibonacci are related to the sequence of rational numberspn converging to the
slope that determines the quasicrystal. For example, for the Fibonacci chain, they are defi
~1/1,2/1,3/2,5/3,...pn5Fn21/Fn→t!. So, they do not share long range quasiperiodic order i
strict sense, but are close from the quasiperiodic chain as far as local order is concerned.

B. Quasiperiodic tilings

The possibility of quasiperiodic tilings of an Euclidian space was known since the wo
Penrose.8 In Fig. 2, we represent a part of a Penrose tiling which is constructed from two rh
of respective angles (2p/5,3p/5) and (p/5,4p/5)which are assembled according to local matc
J. Math. Phys., Vol. 38, No. 4, April 1997
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ing rules.9 The Penrose tiling is constrained to a long range five-fold orientational order, w
corresponds to a diffraction pattern shown in Fig. 3. An algebraic description of Penrose til
due to De Brujin.10

If we consider a tiling of aN-dimensional spaceE a quasiperiodic tiling of a D-dimensiona
spaceE i is described in a general method developed by Duneau and Katz.11 This method gener-

FIG. 1. Construction of the Fibonacci chain and an approximant one through cut and project algorithm.

FIG. 2. Penrose tiling of a 2D space.
J. Math. Phys., Vol. 38, No. 4, April 1997
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alizes the example of Fig. 1, whereE i will contain the Fibonacci chain. The complementary spa
is calledE' , of (N 2 D) dimensions, and such thatE i1E'5E . In real spaceE i , the geometrical
properties of quasiperiodic tilings can be summarized by the following points:7,12,13

~1! Aperiodicity: No discrete translation lets the tiling invariant.
~2! Local Isomorphism~Conway theorem!: Every finite partition of tiles of characteristic lengt

L admits at least one identical replica in a distance of order 2L. These frequent and regula
reappearances of identical local environments reveals a mesoscopic homogeneity whic
an intermediate situation between periodic translational order and disordered tilings.

~3! Self-similarity: A tiling is said self-similar if another one composed by smaller tiles@with a
ratio of length of (11 A5)/25 t for a Penrose tiling# exists which preserves all the vertices
the primary tiling. This property allows to define scale transformations from a tiling to
inflated or deflated one.

Physical quantities@for example, the charge densityr~r !# admit Fourier components with vectorK
that can be indexed with integers. For example, 3D-icosahedral quasicrystals require the u
basis of six integers such that everyK vector of the reciprocal space is defined by

K5n1a1*1n2a2*1n3a3*1n4a4*1n5a5*1n6a6* ,

where theai* are chosen according to the five-fold axis of an icosahedra, and everyK is decom-
posed in an orthonormal basis according to (h 1 th8,k 1 tk8,l 1 t l 8) with h, h8, k, k8, l , l 8
some integers andt the golden mean.

FIG. 3. Schematic diffraction pattern of a Penrose tiling.
J. Math. Phys., Vol. 38, No. 4, April 1997
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C. Atomic cluster models

Once the quasiperiodic order was proposed as a candidate to explain the long-range
symmetry inherent to quasicrystals, the major work for crystallographers has been to d
structural models of atomic distribution. For icosahedral phases, atomic models for alloys s
AlCuFe and AlPdMn14–17have been proposed, with an estimated accuracy of about 80%–90
the real structure.

In Figs. 4 and 5, we give an example of a structural model proposed by Janot14 for the
icosahedral phase of AlPdMn. In Fig. 4, the ‘‘elementary brick’’ known as the pseudo-Ma
icosahedron~P.M.I.! is used to construct the quasiperiodic tiling according to inflation rules~some
additional atoms have to be added to fill entirely the quasiperiodic lattice!.

III. EXPERIMENTAL TRANSPORT PROPERTIES OF QUASICRYSTALS

Here, we will focus on electronic transport properties as a function of temperature, ma
field and defects concentration, and present essentially dc conductivity results.

A. Different classes of quasicrystals

Quasicrystals have been divided into two main families referred to as icosahedral p
whose diffraction pattern have five-fold symmetry and which are quasiperiodic in the 3 direc

FIG. 4. Successive atomic layers of a pseudo-Mackay icosahedron~PMI!. 1: centered cube, 2: icosahedron, 3: icosidode
hedron, 4: PMI. The model of C. Janot distinguishes two PMI according to their atomic composition. A first f
~PMI-A! is defined with 6 manganese atoms plus 6 palladium on the icosahedron, with the other sites occu
aluminum, while a second family~PMI-T! has 20 palladium atoms among the 30 available sites on the icosidodecahe
with aluminum atoms for the other sites.
J. Math. Phys., Vol. 38, No. 4, April 1997
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of space, and decagonal phases which confine quasiperiodicity in a 2D plane, leaving one d
periodic. The second class allows for the possibility to compare properties between quasip
and periodic directions. For example, a strong conductivity anisotropy between quasipe
planes and periodic direction has been measured.18 Yet in the following section, we focus essen
tially on icosahedral phases that have the most striking properties.

B. Electronic conductivity of quasicrystals

Conductivity in icosahedral phases of high structural quality such as AlCuFe or AlP
alloys is very low, of the order of 100–300~V cm!21 at zero temperature. Moreover, we illustra
in Fig. 6, one of the most unexpected transport properties of quasicrystals. Indeed, after an
samples, with a consequent improvement of structural quality, the conductivity decreases.19,20This
tendency is surprising since these phases are generally composed of good metals for w
increase of conductivity is expected with improvement of order. Consequently, the corre
between transport properties and quasiperiodic order has been an intense subject of discus
controversy.

We also note that the curvess(T) are nearly parallel. This point suggests to writes(T)
5 s4 K 1 ds(T) with s4 K a measure of conductivity at 4 Kelvin andds(T) the variation as a
function of temperature which is nearly independent of the alloy~Fig. 6!. This is in general a
behavior of all the icosahedral quasicrystals of high structural quality and corresponds
‘‘inverse Mathiessen rule.’’20 Indeed, the Mathiessen ruler(T) 5 r0 1 dr(T) is characteristic of
metallic alloys wherer0 and dr(T) are, respectively, the resistivity due to static defects a
scattering by phonons.

Generally, the phase diagram of quasicrystals in composition and temperature is very co
and the existence zone of quasiperiodic order is reduced. Around these particular zones

FIG. 5. Example of a plane section of the 3D structure, where the circles correspond to the equatorial sections o
A t3 inflation is necessary to find a PMI of PMI.
J. Math. Phys., Vol. 38, No. 4, April 1997
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phase diagram, some other periodic phases can be grown with a similar local order. The
called approximants phases possess a common local order with quasicrystals and seem to
same kind of physical properties. This is the case for alloys such as~AlCuFe, AlMnSi, AlPdMn,...!
which are associated with families of crystalline approximant phases likea–AlMnSi, a–AlCuFe,
R–AlCuFe... whose smallest unit cell can have only;130 atoms. However, the alloy AlPdRe
an exception,21 since no approximant phases are known.

We show, in Fig. 7, recent results where the conductivity of a small cubic approxi
a–AlSiCuFe ~with a unit cell parameter ofa512.33 Å! is compared to that of an icosahedr
phase of AlCuFe.22 The difference of the absolute conductivity is very small and in addition,
behavior ofds(T).0 is the same. In contrast, a crystalline ‘‘nonapproximant’’ phase of sim
stoichiometry~tetragonalv–Al7Cu2Fe phase! with cell parametersa56.34 Å andc514.87 Å, has
a conductivity of the order of 104 ~V cm!21 between 0 and 300 K@with a metallic temperature
dependenceds(T),0#.

Another interesting experimental result concerning approximants has been revealed b
successive approximants of the cubic phases of AlGaMgZn.23 A transition is observed from a
metallic regime@for a cubic approximant 1/1~a514.2 Å! r4 K 5 58m V cm anddr(T).0# to a
‘‘quasiperiodic regime’’ for the approximant 2/1~with parametera523 Å! with a resistivity close
to that of the icosahedral phaser4 K5120m V cm anddr(T),0. This suggests that a minima
size of the unit cell is necessary to observe characteristic effects of quasiperiodic order.

The AlPdRe alloy is even more resistive with a behavior as a function of temperature diff
from the other quasicrystals.21 Typically at 4 K, the resistivity of the alloy
r( i –Al62.5Pd22Mn7.5);10 000m V cm whereasr( i –Al70.5Pd21Re8.5);1 500 000m V cm which
is of the same order of that of doped semiconductors~note that Mn and Re belong to the sam
column of the Mendeelev table and Mn is in the 3d row whereas Re is in the 5d row!.

So, the two icosahedral phases, defined by the same long-range order, with close

FIG. 6. Electronic conductivity for different quasicrystalline phases as a function of temperature and structural
~courtesy of Berger!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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composition, have nevertheless a conductivity variation of several order of magnitude. Th
sities of states at the Fermi level, for alloys like AlCuFe, AlPdMn,... are;1/3 of that of free
electrons, whereas for AlPdRe it is;1/10 of that of free electrons. Consequently, the reduction
conductivity betweeni –AlPdMn andi –AlPdRe is not only due to a reduction of density of stat
but depends also strongly on localization issues. In Fig. 8, we present the resistivity variat
AlPdRe as a function of temperature~from Refs. 24 and 25!.

The resistivity at 4 K of theAlPdRe alloy is similar to that of resistive materials like dop
semiconductors.26 So, it is legitimate to compare their respective behaviors as a functio
temperature in order to characterize the possible underlying conduction mechanisms imp
AlPdRe at low temperature. The temperature dependence ofs(T)51/r(T) follows neither an
exponential law of exp~2E/kBT! type which is characteristic of thermally activated processes,

FIG. 7. Comparison of thes(T) between icosahedral phases and an approximant alloy of unit cell parametera512.33 Å.

FIG. 8. Strong variation of the resistivity of AlPdRe as a function of temperature.
J. Math. Phys., Vol. 38, No. 4, April 1997
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a exp~2AT21/4! law characteristic of variable range hopping mechanisms at low temperatu27

On the contrary, the conductivity of AlPdRe follows on a large range of temperature 4–800
power laws(T);Tb with 1,b,1.522 which remains unexplained.

As a comparison, we show the conductivity of the Al2Ru alloy whose behavior is typical o
thermally activated processes of semiconductors~represented in Fig. 9 withd!. The behavior of
s(T) is described by exp~2D/kBT! ~with D50.17 eV is the gap width!.21 The i –AlPdRe alloy is
shown to follows(T);Ta.

Figure 10 shows the correlation betweens4 K and s300 K, which is an element used t
identify a metal-insulator transition.28,29The position of AlPdRe on that plot is coherent with th
special properties of this alloy at low temperature.

FIG. 9. s(T) for i –Al70Pd20Re10 and Al2Ru~d!.

FIG. 10. s4 K as a function ofs300 K for different icosahedral phases.
J. Math. Phys., Vol. 38, No. 4, April 1997
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C. Quantum interferences in quasicrystals

At a low temperature, quantum interference effects~QIE! have been clearly identified,20,30,31,32

for the class of quasicrystals located on the metallic side, and over a large range of temp
@0.3–100 K# and magnetic field@0–20# Tesla. These phenomena of localization were expecte
disordered systems of smaller resistivity. However, the dependenceds(T) at low temperature and
ds(H) in magnetic field were analyzed convincingly by means of the theories of quantum
ference effects~weak localization, electron-electron interaction...!, even for the approximant cubi
phase with small parametera512.33 Å de AlCuFeSi~Fig. 11!.22

Concerning thei –AlPdRe phase, the description ofs(T,H) by means of QIE is however, no
possible.22,24For these alloys, that seem to be on the insulating side of a metal-insulator tran
it would be in fact surprising to find weak localization effects.

D. Conclusion on experimental results

To conclude this experimental part, let us summarize the main points concerning elec
transport properties. Many quasicrystals and their approximant phases are typically compo
60% to 70% of aluminum which is a very good metal, but they appear to be very bad condu
In addition, they follow an inverse Mathiessen rule as a function of temperature. In Fig. 1
present the resistivity as a function of temperature for typical metallic alloys and quasicr
~from Ref. 33!.

These systems are close to a metal-insulator transition. On the metallic side, exper
reveal the importance of quantum interference effects and suggest that the local order on
Å34 determine the observed properties. On the insulating side, the power laws(T);Ta for the
conductivity of AlPdRe on a wide range of temperature is still unexplained.

To conclude, let us mention that other properties like diamagnetism and a small num
carriers~deduced from Hall effect! are consistent with the tendency to localization observed
these systems. Also, optical conductivity measurements show that there is no Drude pe
icosahedral quasicrystals, which is again in contradiction with usual characteristic of metal35

FIG. 11. MagnetoconductivityDs(H)/s0 for i –AlCuFe up to 20 T.
J. Math. Phys., Vol. 38, No. 4, April 1997
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IV. THEORY OF ELECTRONIC STRUCTURE OF QUASICRYSTALS

A. Localization and quasiperiodic order

1. Critical states and scaling of bands

In order to study the spectral properties of independent electrons in a quasiperiodic po
one often uses a tight-binding model where the verticesV T of a given tiling are chosen as atom
sitesun&. The Hamiltonian then writes:

H5 (
^n,m&PV T

un&tnm^mu1(
n

enun&^nu,

where quasiperiodicity is introduced either geometrically~respective positions of atomic sites!, or
through a modulation of energy sites or hopping term on a periodic lattice. One of the main r
concerning electronic localization in Fibonacci chains is the power law behavior of the env
of the wave functionucNu ; N2a, first studied by Kohmoto and Sutherland, and Ostlundet al.,36

and referred to ascritical states. Such a peculiar localization is shown in Fig. 13 where
off-diagonal model is used (en 5 0;n) with tB /tA 5 g the measure of quasiperiodicity, an
a 5 ln g/ln t3 exactly forE 5 0.37,38For 2D-Penrose lattices, the exponents are given typically
3/8,a,5/8, depending on the eigenstates and the physical parameters.3

The properties of the eigenstatecn have to be investigated through multifractal analysis39

This eigenstate is associated to a so-called 6 cycle, in relation to the transfer matrix prop
Indeed, for this particular energy, starting from the first 6 elementary matrixP n51,6 ~with n5Fn

a Fibonacci number!, the algebraic properties of Fibonacci numbers allow to define a renor
ization scheme given byP n165P n which constitute the 6 cycle. Ifc0 andc1 are taken as initial
conditions, it can be shown that the fractal structure ofcn shown in Fig. 13 is determined by

38,40,41

FIG. 12. General behaviors of conductivity for quasicrystals compared to metallic alloys~courtesy of Berger!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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cn5g2pc0 when n5F31F61F91...1F33~2p21!1F332p ,

cn52g2p11c1 when n511F21F61...F332p1F33~2p11!

with p an integer.
Concerning the spectral properties of quasiperiodic Hamiltonians in 1 dimension, Belli

et al. have proven rigorously the gap labeling theorem,42,43 which gives the value of integrate
density of states IDoS within each gap of the electronic structure. For a Fibonacci chai
heights of the plateaux of IDoS are given by thej t/(t 1 1) model wherej is an integer~see Fig.
14!. Sire44 has determined the width and the position of gaps of periodic approximants o
Fibonacci chain in a perturbative regime.

In higher dimension.1, several numerical studies on discrete models~see for example stud
ies on octagonal tiling45 or Penrose tiling46! have complemented the description of critical stat
It is important to note that localization aspects can be studied either directly in a pure qua

FIG. 13. Fractal property of eigenstates localization~throughucnu) in a pure Fibonacci chain.

FIG. 14. Integrated density of states IDoS(E) for the Fibonacci chain which appears to be an increasing continu
function of energy, not differentiable.
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



rop-
proxi-

ized
to see
gh
on,

a
e
n by
t is

present

1806 Roche et al.: Electronic transport properties of quasicrystals

¬¬¬¬¬¬¬¬¬¬
odic system, which becomes rapidly difficult in higher dimensions, or by investigating the p
erties of big approximants and focusing on the renormalization of properties from one ap
mant to another.47

In Fig. 15 ~from Ref. 48!, the localization of eigenstates is represented within a local
basis. The projection of the given state in the unit cell of a Penrose approximant allows
three hierarchies of pentagona shift by an angle ofp/5. These states can be investigated throu
multifractal analysis39 which lies in the evaluation of the moments of the probability distributi
associated to spectral measure. If$un&% is an orthonormal basis, one can write:

mq~ek!5
(m51
N u^nuCk&u2q

~(m51
N u^nuCk&u2!q

;N2~q21!Dq,

where the exponentsDq are known as the multifractal dimensions of the spectrum.
Qualitatively, a critical state can be described as follows: Suppose that a given statecL is

mainly localized in a region of characteristic lengthL. Then the Conway Theorem implies that
similar region must exist at a distance<2L. If L is sufficiently large, then both regions will b
good candidates for a tunneling effect from the envelope of a given state which is give
cLto c2L 5 zcL, where a damping factorz associated to the probability amplitude of the even

FIG. 15. Projection of an eigenstate in the unit cell of a Penrose approximant (N59349 sites!. One can distinguish three
hierarchical pentagonal entities formed by inhomogeneous distribution of amplitudes. The grey and black sites re
more than 90% of the total weight of the considered state.
J. Math. Phys., Vol. 38, No. 4, April 1997
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introduced. Then the casez50 corresponds to strictly localized states~Anderson localization!,
whereasuzu51 is the signature of extended states. For intermediate localization cases, like
related to fractal eigenstates, one writes:

cL;L2 lnuzu/ ln 2;L2a

in a perfect quasicrystaluzu Þ 1and will generally depend on the parameters of the consid
model.49

The nature of critical states can be also related to the scaling properties of electronic d
sion relation of approximants. Indeed, if we recall the argument of Sire,49 one can focus on the
scaling properties of bandwidth of a series of approximants of a quasicrystal. If we consid
initial cube of lengthL in D dimensions with no restrictive condition on the atomic order~peri-
odic, disordered, quasiperiodic,...!, then the spectrum of the infinite periodic system of unit celL
with LD atoms will be composed byLD bands. The typical bandwidth is then related to the over
between two statesf1 andf2 localized in adjacent blocks of lengthL, and can be qualitatively
linked with De;u^f1uH uf2&u.

For Bloch states with modulusuf~x!u;1/LD/2 and with t an average hopping amplitude from
one site to another, thenDe;t/L and the mean velocity writesv ; De/L21 ; t which is, as
expected, independent of the arbitrary lengthL chosen. The same argument for a disordered c
involves the localization lengthj and the bandwidth is thenDe ; tLD21 exp(2 L/j), which corre-
spond to a purely discrete spectrum whenL→`. For a system that will be dominated by algebra
localization, i.e.,uf(x)u ; 1/La(x) one finds a scaling behavior of bandwidths:49

De;
t

Lb

defined by an exponentb.1 related to the distribution ofa. The mean group velocity as
function of the sizeL is then

v;
De

L21;
t

Lb21

which goes to zero whenL→`. Theb exponents have been studied for 1D and 2D systems46 and
confirm this general argument.

2. Quantum diffusion in perfect quasiperiodic structures

Since the band velocity depends on the length scale, one expects nonballistic propagat
perfect quasiperiodic structure. The dynamic of an initially localized wave packet@such that
cn(t 5 0) 5 dn,n0] is governed by the time dependent Schro

¨dinger equation:

i\
dcn

dt
52t~cn112cn21!1encn .

Hiramoto and Abe50 have studied, in the diagonal model (tn 5 t;n), the diffusion properties of
such wave packets in Fibonacci chains and have shown that the mean square displacem
defined by an abnormal regime of propagation:

A^~Dx!2&5A(
n

~n2n0!
2ucn~ t !u2;tg,
J. Math. Phys., Vol. 38, No. 4, April 1997
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where the g coefficients vary between the typical values of localized states@g50 with
A^(Dx)2&which remains finite whent→`#, and ballistic regimesg51 for extended states. Thi
abnormal regime of propagation of wave packets is specific to the correlations of a quasipe
potential.

The quantum diffusion properties are characterized by the whole distribution of mom
associated to the spread of a given wave packet^xq&(t) 5 tqsq. Recently, Pie´chon, using a pertur-
bative renormalization group treatment,51 has investigated analytically the diffusion exponent
the wave packets in Fibonacci chains. In particular, he has shown that there exists a frac
sites from which a quantum state will spread with exponentssq 5 ln z̄/ln t23 whereas the comple
mentary remaining sites are associated withsq 5 ln z/ln t22 ~wherez̄,z are the perturbative pa
rameters related to the quasiperiodic potential!. The main result of his study is the fact th
diffusion exponents of wave packets are directly related to exponents of the spectral measu
also note that for systems in higher dimensions, Jona-Lasinioet al.52 have rigorously shown tha
a propagation of wave packets in hierarchical potential, through tunneling over arbitrary
scales is related to anomalous diffusion.

3. Landauer resistance in quasiperiodic systems

By means of the formalism of transfer matrix, Kohmotoet al.53 have conjectured an algebra
increase of Landauer resistance. They have shown analytically, for energies correspondinQ
cycles, thatrN < r0N

a. The authors extend heuristically their results to chaotic but bounded o
and rigorous mathematical approaches have demonstrated54 that for allE belonging to the spec
trums~H! ~singular continuous! but constituting a zero measure ensemble, the exact solutio
the Schro¨dinger equationHc5Ec, as well as the Landauer resistance were bounded by pol
mials.

The works of Tsunetsegu have generalized these power law dependences of Landaue
tance for two dimensional Penrose lattices.55 The Landauer conductance follows a general pow
law g(L) ; La whose typical exponents are given in Fig. 16. The system studied consists
finite part of a Penrose lattice which is connected to conducting leads of finite widthM .

B. Electronic structure of quasicrystalline materials

To investigate electronic properties of more realistic materials, one can useab initiomethods
and study the general characteristics of electronic structure of approximant phases of quasic

FIG. 16. Conductanceg(L) for E523.4 for different widthsM in the semiperiodic direction.
J. Math. Phys., Vol. 38, No. 4, April 1997
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From ab initio calculations, the main features can be summarized by the existence of a
pseudogap at the Fermi level56 ~see Fig. 17! and by an overall structure composed of a hi
concentration of bands with small dispersion~see Fig. 18! ~from Refs. 57 and 58!.

The presence of a deep pseudogap atEF is familiar to the alloys of Hume–Rothery type. Th
point has been experimentally confirmed by x-ray emission or absorption spectroscopy for

FIG. 17. Total densities of states~TDoS! of alloys with close composition:~A! approximant 1/1i –Al62.5Cu25Fe12.5 128
atoms/unit cell,~B! nonapproximantv–Al7Cu2Fe, 40 atoms/unit cell.
J. Math. Phys., Vol. 38, No. 4, April 1997
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FIG. 18. Dispersion curvesE(k) along the main directions of the reciprocal space.
J. Math. Phys., Vol. 38, No. 4, April 1997
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hedral phases.59 The specific heat measures also give a weak TDoS at the Fermi level, of
;1/3 of free electrons for icosahedral phases of AlCuFe, AlLiCu59 ~see Fig. 19!, and of;1/10 for
i –AlCuRu60 and i –AlPdRe.26 The pseudogap is also observed experimentally for approxim
phases.61

1. Hume–Rothery mechanism and pseudogap at the Fermi level

Let us recall briefly the physical mechanism at the origin of pseudogap in metallic allo
we consider nearly free-electrons, that is free-electrons diffused by a weak pseudopotentiaV, the
HamiltonianH of the system reads:H 5 H0 1 VwithH0 5 \2k2/2m the kinetic energy of free-
electrons. Within the local approximation of pseudopotentials,V is given by

V~r !5(
K

VK exp~ iK–r !,

whereK is a vector of reciprocal space. The Fourier coefficientVK will couple the plane waves
uk& anduk 2 K &. The kinetic energies of plane wavesuk& anduk 2 K & are close as soon ask is close
to the Bragg plane associated toK . The mixing betweenuk& anduk 2 K & is strong near this Bragg
plane. Furthermore, the strongeruVKu, the stronger this mixing.

Let us now consider the effect of one Bragg plane, associated toK , on a plane waveuk&. As
soon ask is sufficiently close to the Bragg plane, we neglect the contribution of the other B
planes by considering onlyVK which couple statesuk&and uk 2 K &~two bands model!, then the
Hamiltonian matrix is:

FIG. 19. Partial density of states measured by x-ray emission or absorption spectroscopy~from Ref. 59!. ~a! Pure Al, ~b!
v–Al7Cu2Fe, ~c! rhombohedral approximant Al62.5Cu26.5Fe11, ~d! icosahedral phase Al62Cu25.5Fe12.5.
J. Math. Phys., Vol. 38, No. 4, April 1997
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2m
k2 VK*

VK
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2m
~k2K !2

D . ~1!

The dispersion relations of such a system are represented schematically in Fig. 20. The effe
to the formation of bonding and antibonding states within the free-electron band, and this le
the apparition of two Van-hove singularities in the density of states which for increasing ene
form a peak followed by a pseudogap~see Fig. 21!. In the weak potential limit, it can be show
that the minimum of the pseudogap lies at energyE0(K /2) 1u VKu. The point is that the structure
is stabilized when the Fermi level lies in the pseudogap~Hume–Rothery rule62!.

Soon after their discovery, quasicrystals and their approximant phases have been
classified as Hume–Rothery alloys.63 In particular, Friedel and De´noyer64 have shown that the
icosahedral phase of AlLiCu was stabilized by a strong interaction between a Fermi surfa
electrons and a ‘‘pseudo Brillouin zone.’’65 The latter was constructed from the Bragg plan
corresponding to the brightest peaks of the diffraction pattern. In Fig. 22, we present two exa
of pseudo-Brillouin zone of the icosahedral. The stabilization ofi –AlCuFe involves the
pseudozone A, whereas fori –AlLiCu, the pseudozone B is involved.

FIG. 20. Effect of Bragg diffraction on electronic bands.~a! VK50, ~b! VKÞ0.
J. Math. Phys., Vol. 38, No. 4, April 1997
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2. Spiky structure of the density of states and localization

The spiky structure of the TDoS observed in Fig. 17 corresponds to a high and inhom
neous concentration of bands with small dispersion, whose first consequence as far as tran
concerned is a small velocity at Fermi energyv(EF) 5 (]E/]k)uE5EF

. It is interesting to note tha
even for simple models, where quasiperiodic order is introduced, for example through modu
of energy sites, the TDoS~see Fig. 23! also reveal a spiky structure~from Ref. 49!.

Recently, Fujiwaraet al.66 have investigated the electronic properties of localization for
structural models of decagonal approximant phases Al66Cu30Co14. Developing the eigenstate
within a basis ofspdorbitals,xR,l(r ) 5 ^r uR,l 5 0,1,2&, Ck(r ) 5 (R,l50,1,2aR,lxR,l(r ), they have
shown that the inverse participation ratio was described by a power law as a function
approximant size. For a given Fermi level, they have evaluated

PC51/m2@e~k!#5S (
R,l

uaR,l u2D 2Y (
R,l

uaR,l u4

and shown thatP^C& ; Nn, for an average over states with energy close toEF , and as a function
of the numberN of atoms per unit cell. This quantity, which gives the number of sites wh
contribute significantly to the stateuC& for a given energy~see Ref. 66!, is hence defined by a
scaling behavior of a state whose distribution of weight in a large unit cell is inhomogeneou~not
uniformly delocalized!. This power law on a realistic model of approximant suggests that lo
ization properties of approximants are similar to those of quasicrystals.

These aspects of band structure allow to evaluate the behavior of Boltzmann conducti
the relaxation time approximation~RTA!. The L.M.T.O. results obtained by Fujiwaraet al.56 have
confirmed that conductivity is very weak, and more concretely they getsDC ; 10–150~V cm!21

for thea–AlMn ~Si! phase~cubic lattice of Mackay icosahedra!, which are anomalously low for
metallic alloys. Their adjustable parameter is the scattering timet for which they take standard
values;10214,215 s. In addition, their study of the decagonal phased–AlCuCo agrees with the
observed experimental anisotropy18 between quasiperiodic and periodic directions@sDC

; 3000(V cm)21# for the quasiperiodic one, whereas for periodic@sDC ; 15 000~V cm!21#.57

Another analytical approach of a Bloch–Boltzmann type for Burkovet al.67 also confirms the
general tendency of weak conductivity in quasicrystals.

Recently, we have proposed a model to analyze the role of atomic clusters~see Sec. II C! in
electronic structures of quasicrystalline materials.68,69 The model is a cluster of transition met

FIG. 21. Representation of a pseudogap.
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ltiple

f
oncept

f the
st-
f an
spiky

ficient
terials.

ith

1814 Roche et al.: Electronic transport properties of quasicrystals

¬¬¬¬¬¬¬¬¬¬
atoms in a metallic matrix. We analyzed the modifications of density of states due to mu
scattering effects. The essential result is that the spiky peaks of the TDoS observed fromab initio
calculations, and that seem to have been observed experimentally,70 could be the signature o
states preferentially localized around structural cluster. We propose a generalization of the c
of virtual bound state to cluster virtual bound states.

In Fig. 24, we show different cluster virtual bound states according to the geometry o
structural entity~icosahedra, dodecahedra...!.68 We note that, according to our results, the exi
ence of the spiky structure is favored for the icosahedral cluster for which the lifetime o
electron will be longest. Also, Fig. 25 shows how a group of clusters induce again more
structures in the density of states at the scale of a more complex cluster.

V. THEORETICAL APPROACHES TO ELECTRONIC TRANSPORT IN QUASICRYSTALS

A semiclassical Bloch–Boltzmann description of transport in quasicrystals seems insuf
to take into account most of the aspects due to the special algebraic localization of these ma

FIG. 22. Examples of pseudo-Brillouin zones of the icosahedral phase. A: 42~30112! facets ~main pseudozone for
AlCuFe, AlPdMn; B: 60 facets~main pseudozone for AlCuLi!. The arrows are issued from the peaks which together w
all equivalent peaks~by the icosahedral symmetry! define the facets of the pseudozone.
J. Math. Phys., Vol. 38, No. 4, April 1997
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FIG. 23. TDoS of two cubic approximants withL513 andL5144 sites per unit cell~courtesy of Sire!.

FIG. 24. Cluster virtual bound states.~b! Tetrahedron,~c! cube,~d! icosahedron,~e! dodecahedron.~a! Friedel virtual
bound state.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Some specific transport mechanisms have been proposed to explain results like the
Mathiessen rule, or the temperature and defects influence on the conductivity, that need
beyond a Block–Boltzmann analysis.

In particular, the possibility of two different unconventional transport mechanisms speci
these materials has been proposed.20,57,71Transport could be dominated, for short relaxation tim
t ~defined by disorder! by hopping between ‘‘critical localized states,’’ whereas for long timet the
regime could be dominated by nonballistic propagation of wave packets between two sca
events. We present briefly these two mechanisms in the following.

A. Nonballistic propagation between two collisions events

A possible interpretation of conductivity in quasicrystals20,71 takes as a starting point th
numerical results on anomalous diffusion of wave packets in perfect quasiperiodic struct72

~see Sec. IV A 1!. Indeed for a sufficiently long collision timet ~due to disorder!, the propagation
of wave packet follows typically a law such thatL(t)Atb with b,1 which defines a subballistic
regime withA, a constant which does not depend explicitly on time. It is then possible to esti
the conductivity by means of the Einstein formulas 5 e2N(EF)D(t). The diffusivity is given as
a function oft by D(t) 5 L2(t)/3t andN(EF) is the density of states at Fermi energy. T
explicit dependence of conductivity witht thus reads:

s~t!;At2b21.

In consequence, provided thatb<0.5, conductivity will decrease witht, in other words with the
diminution of defects. In the limit, whereb;0, we will gets;1/t, which will be in agreement
with the inverse Mathiessen rule that characterize quasicrystals19 @i.e., a general form of the
conductivitys(T) 5 s4 K 1 ds(T)]. Such values of exponents have been obtained in some
gimes on octagonal tilings,72 but they correspond to strong quasiperiodic potential.

FIG. 25. Cluster virtual bound states on an icosahedron~b! and on an icosahedron of icosahedron~c!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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A similar argument is due to Sire,72 which states that for a given mean free-pathl pm 5 L, the
qualitative behavior of a quasicrystal and an approximant of unit cellL will be the same. So, as fo
an approximant, we can write the mean velocityvF 5 vF(L) ; L2a with L 5 vFt, the diffusivity
then reads:

D~L !;vF
2~L !t;L12a which is equivalent to the first argument.

Bellissard and Schulz-Baldes73 have shown recently, by a mathematical study of Kub
Greenwood formula in a model of quasicrystals, that for long relaxation time,t→`, the transport
law givess;t2b21 where theb exponent is linked to anomalous quantum diffusion regime.

B. Interband transition mechanisms and hopping transport

If one considers periodic Hamiltonians whose eigenstates are inhomogeneously distrib
a large unit cell, an interband transition mechanism could allow new kinds of propag
modes.20 Indeed, the eigenstates of the perfect structure must have the generic Bloch
Cnk(r ) 5 unk(r )e

ikr with n a band index,k a wave vector, andunk a periodic function defined in
the unit cell ~we suppose that the coefficientsuunk(r )uhave an unequal distribution of weigh
through the large unit cell, as we schematize in Fig. 26!. Then collision events can induce tran
sitions fromCnk(r )→Cn8q(r ), which will correspond to a charge displacement in real space~see
Fig. 27!. This phenomenon is not taken into account in a Bloch–Boltzmann description.

The comparison between the contributions of this hopping mechanism and of the cla
metallic conductivity~i.e., propagation of charge between two scattering events! could be made as
follows. Suppose thatDe is a typical bandwidth at a given scaleL andt a finite lifetime induced
by disorder. Then, within this framework of hopping mechanism, the dominant modes of tran
will be given by the comparison between the hopping frequencyDe/\ due to the quasiperiodic
potential and the frequency 1/t induced by disorder. Consequently, the latter mechanism
dominate provided that 1/t.De/\. This could be realized even for small disorder in quasicrys
line materials, given that band dispersion is very weak.

In this regime of interband transition, the hopping length will not depend anymore on coll
time so that diffusivity will writeD 5 L2(t)/3t ; 1/t. This explains qualitatively the invers
Mathiessen rule, as well as the variation of conductivity with improvement of structural o
s;1/t. This interband mechanism has been also proposed by Fujiwara57 as a natural consequenc
of band structure and from numerical results on 2D Penrose lattices47,57 where random phason
defects are introduced in the lattices. We refer also to our studies of Landauer resista

FIG. 26. Schematic illustration of a critical state.
J. Math. Phys., Vol. 38, No. 4, April 1997
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quasiperiodic chains74 and on quantum networks,75 for some exact results on the role of phaso
Janot14 has also proposed a multiscale hopping mechanism in relation to hierarchical aspe
structural models.

C. Quantum interference and correlated disorder

A first argument to justify the observation of quantum interference effects~weak localization,
electron-electron interaction...! in quasicrystals is to assume that the general scaling theor
localization is applicable as soon as electrons are in a diffusive regime. The phase coher
preserved only up to an inelastic length imposed by finite temperature or magnetic field.

From several experiments,34 an estimation of the elastic mean free path at zero tempera
l pm;20–30 Å for AlCuFe, AlPdMn... alloys has been proposed. Then the minimal Mott con
tivity is smin;2003~3/l pm!;20–30~V cm!21, with a ratio ofsexp/smin;~100–150!/~20–30!@1.
This suggests that quantum interference do not dominate the conduction regime for these s
But, if we now apply the same procedure for AlPdRe, assuming the same mean free
l pm;20–30 Å, we getsexp/s min;1/~20–30!!1. In conclusion, the regime is now dominated
quantum interference at the origin of a metal-insulator transition. It could be that the quasipe
potential is stronger in AlPdRe, leading to a smaller conductanceg,gc for a cube with size equa
to the mean free path~gc is the universal critical conductance!.

There is another way to conceive localization in quasicrystals, taking as a starting poi
notion of correlated disorder. Indeed, one can expect that disorder in a quasicrystal pre
strong correlations between diffusive centers whereas classical theories of localization as
completely random distribution of scatterers.

A first example in this context, is a calculation of quantum corrections, on the metallic si
an Anderson metal-insulator transition, for a disordered binary alloy with local and short
interaction between impurities.76 Béal-Monod and Forgac have evaluated the quantum correct
of the electronic conductivity, introducing conditional probability in the spatial distribution
diffusion centers, and have shown, for example, that repulsive first neighbors interactio
decrease conductivity with regards to the uncorrelated case.

In the context of mesoscopic physics77 and phase coherent effects, Hastingset al.78 have
analyzed the effects of real space symmetries of the diffusion potential. They have shown
itly how symmetry constraints imposed on disorder, influence diagrammatic treatments.

FIG. 27. Schematic representation of an interband transition.Dg is the displacement of the gravity center of the wa
packet.
J. Math. Phys., Vol. 38, No. 4, April 1997
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One of the authors has investigated the effect of some particular phason defects in Fib
chains and quantum network Landauer resistance.74,75 These studies show how correlations
disorder induced by this kind of defect can lead to specific behavior of conductivity.

D. Kubo–Greenwood conductivity in quasiperiodic systems with disorder

Fromab initio calculations of band structure, it has been shown that Bloch–Boltzmann
ductivity in pure approximants are weak, in good agreement with experiments. However, in
to study carefully the transport phenomena in quasicrystals, we need to go beyond the se
sical approximations. In particular, the heuristic arguments given above suggest that the B
Boltzmann picture of ballistic propagation between scattering events is not applicable.

Thus, a natural starting point for a study of transport is given by the Kubo–Greenwood
response theory of transport coefficient,79,80which makes no assumptions on the nature of sta
At zero temperature and frequency, one gets for a Fermi levelEF:

sDC~EF!5
2pe2\

V
Tr@V̂xd~EF2H!V̂xd~EF2H!#.

Recently, we have developed81,82 a numerical method based on the theory of orthogo
polynomials to directly evaluate this formula. We have investigated the relation between qu
diffusion of wave packets and conductivity at Fermi energy for a 3D quasiperiodic system
used a diagonal tight-binding model where quasiperiodicity was introduced through a modu

FIG. 28. Electronic conductivity as a function of Fermi energy for a quasiperiodic potential defined on a cubic lattic
nearest-neighbor hoppingt51. The potential is given by on-site energiese i jk 5 e i 1 e j 1 ek 1 Vdis , with e i 5 6Vqp 5 0.7
according to a Fibonacci sequence, andedis is randomly distributed between@ 2 Vdis/2,Vdis/2#Vdis 5 2: ~a! Vdis52A2: ~b!.
The insert shows the average over sitesj of Dj (t)5[ r (t)2r j ]

2/t for a wave packet initially localized inj . This shows the
onset of a diffusive regime for long time [Dj (t)5cste].
J. Math. Phys., Vol. 38, No. 4, April 1997
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of site energies. As propagation in pure quasiperiodic systems is not diffusive, we hav
introduced a disordered potential which established a diffuse regime at long time wave p
diffusion.

We clearly show that transport regime deviates from the prediction of a Bloch–Boltzm
approach which is applicable to metals in the limit of weak disorder. The Bloch–Boltzm
theory predicts that the conductivity varies likes 5 s0(V0 /Vdis)

2. Thus, when the strength of th
disorder potential is multiplied byA2, the conductivity must be divided by two. It is clear fro
Figs. 28 and 29 that this prediction is not verified. The conductivity is less sensitive to dis
than what Bloch–Boltzmann theory predicts. Another conclusion is also that for sufficiently s
quasiperiodic potential, the conductivity is nearly insensitive to disorder in the region
pseudogaps. This result is quite interesting because the Fermi level of quasicrystalline m
has been shown to be located within a pseudogap region. It suggests that at these ener
quasiperiodic potential acts like a strongly disordered potential and thus the conductivity is
independent to a small additional source of scattering.82

VI. CONCLUSION

Experiments show that quasicrystals present remarkable electronic transport propert
particular, they approach a metal-insulator transition when the quasiperiodic order is imp
Within the one electron scheme, the different theoretical approaches suggest an intermedia
of algebraic localization between purely extended states and exponentially localized states.
schemes have been proposed to explain original transport properties, among which, nonb
quantum diffusion for long relaxation timest or hopping mechanisms induced by interba
transitions at shortert. We note however that the role of electron–electron interactions has
been discussed up to now although they can play an important role close to a metal in
transition. More precisely, the quasiperiodic potential tends to localize electrons and unde
circumstances, the electron–electron interaction could thus lead to a Coulomb-gap~or pseudogap!

FIG. 29. Electronic conductivity as a function of Fermi energy for the model defined in Fig. 29, but for a quasipe
potentialVqp5 0.9, andVdis5 2: ~a!,Vdis5 2A2: ~b!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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even without disorder. Electron interactions could lead to changes in the band structure c
the Fermi level that cannot be described by the usual treatment of correlations used inab initio
calculations@i.e., the local density approximation~L.D.A.!#. These changes can be sensitive
defects, scattering by phonons or variation of the Fermi Dirac distribution with temperature
could deeply affect the transport properties of quasicrystals.83
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Topological equivalence of tilings
Johannes Kellendonka)
Fachbereich Mathematik, Technische Universita¨t Berlin, Strasse des 17. Juni 136, 10623
Berlin, Germany

~Received 26 September 1996; accepted for publication 15 January 1997!

We introduce a notion of equivalence on tilings which is formulated in terms of
their local structure. We compare it with the known concept of locally deriving one
tiling from another and show that two tilings of finite type are topologically equiva-
lent whenever their associated groupoids are isomorphic. ©1997 American Insti-
tute of Physics.@S0022-2488~97!01704-0#

I. INTRODUCTION

In physics, tilings are used to model solids, in particular non-periodic ones. Studyin
possible types of long range ordered structures~and their implication on physical quantities!
amounts therefore in part to the study of~a suitable class of! tilings. In fact, the investigation of
certain tilings as idealized models for quasicrystals began more than a decade ago so that
find by now a large number of articles many of which are collected in Refs. 1–3.

Some elements of a theory of long range ordered structures are based on tilings but
additional information, for instance when it comes to the calculation of diffraction patterns~Fou-
rier transforms!. Others depend only on the topological nature of the tiling, as, e.g.,
K-theoretical gap labelling. Results of these are consequently more qualitative in nature
present article clearly belongs to the second area. In particular, the specific shape or volum
tiles which make up the tiling will not be of importance for us. Furthermore, due to the locali
the interactions in the solid, it is only the local structure of the tiling that matters, i.e., the wa
tiling looks on finite patches. One motivation for writing this article is to illustrate that this lo
structure can be described by an almost-groupoid or an inverse semigroup. The groupoid
ated with the tiling arises together with its topology functorially from the almost-groupoid.
algebraic structure is defined on the most elementary level and therefore underlies the cons
of all topological invariants~including the group of possible gap labels! of the tiling.

However, the main aim of this article is to give an answer to the question under w
circumstances two tilings give rise to isomorphic groupoids. For that we introduce the noti
topological equivalence of tilings. This notion is closely related to mutually locally derivabilit
the tilings, a concept well known from physical considerations.

The article is organized as follows. We start with an informal description of the local stru
of a tiling as an example of an almost-groupoid. After that we put this into a general contex
describe a functor which assigns to every almost-groupoid anr -discrete groupoid. We apply thi
to tilings, obtaining the groupoid associated with it, then emphasizing the particularities o
case. By that we mean the existence of a metric structure which is well known for tilings and
respect to which the functor looks like it is taking a closed subspace of the metric completio
compare the groupoid, which we also call in distinction the discrete groupoid associated
tiling, to the continuous groupoid, which is often considered in the literature.

In the next section we investigate the known concept of local derivability of tilings wh
leads us to introduce the notion of topological equivalence. Theorem 6 constitutes the main
of this article. It shows that topological equivalence of tilings — a purely ‘‘local’’ notion — is

a!Electronic mail: kellen@math.tu-berlin.de
0022-2488/97/38(4)/1823/20/$10.00
1823J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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sufficient and necessary for them to have isomorphic groupoids. Whereas the metric struc
not used to define topological equivalence of tilings the proof of the theorem relies on
structure. Everything is restricted to tilings which are of finite type. The finite type~or compact-
ness! condition which they satisfy is the hypotheses for many compactness arguments.

In the final section we give a selected overview on topological invariants for tilings.
mention the invariants of the groupoid-C* -algebra, theK-groups, and groupoid cohomology. Bu
we will neither discuss the construction of groupoid-C* -algebras ~see Ref. 4! nor of its
K-groups~see Ref. 5! nor of groupoid cohomology~see Refs. 4, 6!. We will also not illustrate the
K-theoretical gap labelling but refer the reader to Refs. 7, 8, and 9.

II. THE LOCAL STRUCTURE OF A TILING

In this article the following notion of tiling will be used. A tile~in Rd) is a connected bounde
subset ofRd which is the closure of its interior. Moreover, tiles may be decorated, for instanc
arrows or colours, in case one wants to distinguish translation classes of tiles which have th
shape. Ad dimensional tiling is an infinite set of tiles which coverRd overlapping at most at thei
boundaries. A finite subset of a tiling is also called a pattern. Although often formulated
specific tiling, the relevant quantities like the groupoid associated to it and the almost-group
its local structure depend only on the congruence class of the tiling. A tile, tiling, and pattern
shall here be an equivalence class under translation of a tile, tiling, pattern, respectively, i.e
such objects belong to the same class if there is anx P Rd such that translation byx applied to the
tile or the elements of one set yield the other tile or the elements of the other set, respec
Note that a pattern class does not consist simply of tile classes.

The local structure of a tiling is a multiplicative structure determined by its pattern classe
the set of patterns of a given tiling one can easily introduce an associative binary ope
~multiplication!, the union. But such an operation is not well defined on pattern classes. In
to achieve this we need to keep track of the relative position between patterns. This can b
with the help of an additional choice of a tile in the pattern, such a composed object is ca
pointed pattern. Calling two pointed patterns composable if their choice of tile coincides~in the
tiling!, one may define an associative binary operation from the set of composable pairs in
set of pointed patterns as follows: the union of the patterns of the composable pair yields th
pattern and their common choice of tile the new choice. This multiplication being only par
defined, it appears at first sight to be a drawback, but its advantage lies in the possibi
extending it to a well defined partial multiplication on translation classes: Call two pointed pa
classes composable if they have representatives which are composable in the above sens
ply them in case as above and take their translation class.

But this is not all we want. We want to be able to build arbitrary large pattern classes fr
finite set of small ones using a multiplication. This obviously cannot be achieved by the a
Instead, if we look at pattern classes with a choice of an ordered pair of tiles in them, calling
doubly pointed pattern classes, we can make larger pattern classes from smaller ones as
Ignoring the first tile of the ordered pair of the first pattern class and the second tile of the or
pair of the second pattern class we obtain two~simply! pointed pattern classes which may b
multiplied as above provided they are composable. Of the resulting pointed pattern cla
forget the choice of tile and take instead the ordered pair which is given by the so far ignored
namely the first of the ordered pair of the first and the second of the ordered pair of the s
pattern class we started with. As we will elaborate below, this is a useful algebraic structure
we call almost-groupoid. Equivalently one could work, after adding a zero element, with in
semigroups.10 We still keep the name almost-groupoid, because it is almost a groupoid
applying a functor to it yields topological groupoids. This functor is most natural in tiling the
since it furnishes tilings from patterns.
J. Math. Phys., Vol. 38, No. 4, April 1997
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A. Almost-groupoids / inverse semigroups

Let G be a set. A partially defined associative multiplication is given by a subsetG£,G3G
of composable pairs~we write x£y for (x,y) P G£) with a map m:G£→G ~we write
xy5m(x,y)) which is associative in the sense that, first,x£y andxy£z is equivalent tox£yz and
y£z, and second, ifx£y and xy£z then (xy)z5x(yz). Hence we don’t have to care abo
brackets.

Relations or equations like the above in a set with partially defined associative multiplic
make sense only if the multiplications are defined, i.e., if the to be multiplied pairs are com
able. In order to avoid cumbersome notation we shall agree from now on that a relation inv
products is true if all multiplications involved are defined and it is then true.

Given such a setG with partially defined multiplication, suppose that for somea P G the
equationsaxa5a andxax5x were true for somex P G. Thenx is called an inverse ofa. If any
a P G has a unique inverse then this inverse is denoted bya21 and the mapa°a21 is the~unique!
inverse map. In that caseG is said to have unique inverses or a unique inverse map.

Definition 1: An almost-groupoid is a setG with partially defined associative multiplicatio
and unique inverse map.

A set with fully defined associative multiplication and unique inverse is an inverse semig
i.e., an inverse semigroup is an almost-groupoid for whichG£5G3G. In particular, adding a zero
element 0 to an almost groupoidG and extending the multiplication byxy50 if x£” y, and
0x5x050, yields an inverse semigroup with zero~which we write asG0). Conversely, ifG0 is an
inverse semigroup with zero thenG5G0\$0% with G£5$(x,y)uxy Þ 0% is an almost-groupoid. So
we may apply the known results of inverse semigroup theory. In fact, any statement belo
almost-groupoids may be reformulated as a statement on inverse semigroups with zero e
and vice versa. However, we find the formulation in terms of almost-groupoids more natur

The elements ofG0:5$xx21ux P G% are called units. They are the image of the frequen
occurring mapsr ,d:G→G0 given by r (x)5xx21 and d(x)5r (x21). Let us mention that the
uniqueness of the inverse implies, first, that units are the same as idempotents, i.e.,G0:5$x
P Gux25x%, and that they commute, and second, that the inverse map is an involution, in pa
lar (xy)215y21x21. A proof of that can be found in Ref. 10 formulated in the framework
inverse semigroups.

This has implications on which kind of elements are composable. For example, ifx£y then
(xy)215y21x21 so that we must also havey21£x21. Furthermore, under the same conditio
x£y we havexy5xyy21x21xy so that we must have composabilities likexy£y21 etc. Similarly,
d(x)5r (y) implies x5xyy21 so that we must havex£y. If x£y is even equivalent to
d(x)5r (y), thenG satisfies cancellation, i.e.,xy5xz implies y5z. This is simply because fo
xy5xz to be true we must havex£y andx£z. But theny5r (y)y5d(x)y5d(x)z5z.

Note that a groupoid — for an explicit definition cf. Ref. 4 — is thesame as an almost
groupoid which satisfies cancellation.

The well known order relation on inverse semigroups10 will be of great use here. One way o
formulating it here is:

Definition 2: The order of an almost-groupoid is defined by

x<y whenever r~x!5xy21. ~1!

We use here a direction of the order which is the reverse of that in Ref. 11 but coincide
the convention used in semigroup theory. Note thatx > y is equivalent tox21 > y21, and, if
moreovery£z, thenx£z andxz> yz. In other words the order is compatible with multiplicatio
Note also that a groupoid has trivial order.

Lemma 1: The set of all minimal elements of an almost-groupoid is a (possibly empty)
which is a groupoid.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Proof: Let G be an almost-groupoid andx£y for two of its elements. Suppose thatx is
minimal and consider the relationxy > z, i.e., z21z5z21xy. We want to show thatz5xy and
hence thatxy is minimal. Since order is compatible with multiplication we havex > zy21 hence
x5zy21 by minimality. Since for unitsu holdszu< zwe concludexx215zy21yz21 < zz21, and
xx21xy < zz21xy5z showing thatxy5z. Thusxy is minimal. In particular, all minimal element
form an almost-groupoid~which may be empty!. We want to show that it satisfies cancellatio
i.e., thatx£y impliesd(x)5r (y). If x£y thend(x)£r (y) and henced(x),r (y) > d(x)r (y). Mini-
mality of x implying that ofd(x) and r (x) shows thatd(x)5r (y). Q.E.D.

Let u P G0 andc P G. If c < u thenc215d(c)u and in particularc P G0. On the other hand
u < c does not foru P G0 have to imply thatc P G0. This latter property, which is useful in th
sequel, is called 0-E-unitary in the context of inverse semigroups.12,13

Definition 3:An almost-groupoid is 0-E-unitary if, foru P G0 andc P G, u < c impliesc
PG0.

Either of the statementsxy21 P G0 or yx21 P G0 implies thatx andy have a lower bound
~common smaller element!. For example, ifxy21 P G0 thenxd(y) is such a lower bound. For a
0-E-unitary almost-groupoid the converse holds as well, namely ifx andy have a lower bound
z then r (z) is smaller than both,xy21 and yx21. Moreover, in that casez5zd(z) < xd(y).
Therefore, ifG is 0-E-unitary andx andy have a lower bound then

max$zPGuz<x,y%5xd~y! ~2!

and r (x)y5r (y)x5yd(x)5xd(y).
Example 1.Let X be a topological space andb0(X) a ~not necessarily proper! subset of the

topology ofX which has the property that any open subset ofX is a union of sets ofb0(X) ~i.e.,
it is a base of the topology! and that it is closed under intersection. ThenUV5UùV defines a
multiplication on b0(X). Since the only solution of the equationsUùVùU5U and
VùUùV5V is given byU5V, andUùU5U, b0(X) is a commutative inverse semigrou
which consists of units~idempotents! only. The empty set is a zero element in it and conseque
b(X):5b0(X)\$B% a commutative almost-groupoid consisting of units only. Its order is
inclusion of sets. Note that there are in general no minimal elements inb(X).

Example 2.Let T be a tiling ofRd. We already have explained in words that the setM II of
doubly pointed pattern classes carries a partially defined multiplication. Let us reformulate t
more technical terms. We start by defining an order relation onM II , namelyc > c8 if c8 can be
obtained fromc by the addition of tiles but keeping the ordered pair of chosen tiles fixed.
M III be the set of all pattern classes together with an ordered triple of chosen tiles and den
h P M III by h î P M II the doubly pointed pattern class which is obtained by forgetting thei th
choice in the triple. Call two doubly pointed pattern classesc,c8 composable whenever there is a
h P M III such thatc > h 3̂ andc8 > h 1̂ . Then define the product of two composable elements

cc85max$h 2̂uhPM III ,c>h 3̂ ,c8>h 1̂%,

the maximum being taken with respect to the above order. This defines an associative mul
tion. It turns out to have a unique inverse mapc°c21 which is given by interchange of th
elements of the ordered pair of chosen tiles. ThusM II forms an almost-groupoid which is in
general not commutative. The order of the almost-groupoid coincides with the order used to
composability. In particular, the almost-groupoid of a tiling is 0-E-unitary. Note that there ar
minimal elements inM II .

A well known equivalence relation among tilings is that of two tilings are locally isomorp
It was introduced in Ref. 14 in a slightly weaker sense as it is used here. Two tilings are
locally isomorphic if every pattern class of either tiling can also be found in the other. This
simply be expressed by saying that the tilings lead to the same almost-groupoid.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Let M I be the set of pointed pattern classes which are pattern classes together wi
chosen tile. We may identifyM I with the subset ofM II consisting of those elements which a
invariant under the inverse map, i.e., for which the chosen tiles in the ordered pair coi
Another specific property which holds for almost-groupoids defined by tilings is that elem
which are equal to their inverse have to be units, i.e., under the above identificationM I5M II

0 .
We call a pattern~and its class! connected if the subset covered by it is connected. We s

be interested in tilings which satisfy the following finite type~or compactness! condition:
The set of connected doubly pointed pattern classes which consist of two tiles is finite
Since tiles are bounded sets which have positive Lebesgue measure this condition impli

for anyr , the maximal number of tiles a pattern fitting inside anr -ball can have is finite. From tha
one concludes that the above condition is equivalent to the requirement that the number of
classes fitting inside anr -ball is finite. In particularM II is countable.

B. From almost-groupoids to groupoids

We now aim at a functorial construction to obtain a topological groupoid from an alm
groupoid. For that we consider sequences (xn)nPN of elementsxn P G which are decreasing in tha
for all n: xn > xn11 . The set of all decreasing sequences, which is denoted byG>

N , carries a
pre-order

~xn!n<~yn!n whenever;n'm:xm<yn . ~3!

To turn this pre-order into an order one considers the equivalence relation onG>
N

~xn!n;~yn!n whenever ~xn!n<~yn!n and ~yn!n<~xn!n . ~4!

On the set of equivalence classes, the elements of which we denote by@(xn)n#,

@~xn!n#<@~yn!n# whenever ~xn!n<~yn!n ~5!

is an order relation.
Definition 4: For a given almost-groupoidG, G̃ is the setG>

N modulo relation ~4! and
R(G) the set of minimal elements ofG̃ with respect to the order~5!.

We identify the elements ofG with constant sequences inG̃. We use also the notationx̃ for
the elements ofG̃.

Lemma 2: IfG is a countable almost-groupoid then any xP G has a smaller minimal elemen
in G̃, in particularR(G) Þ B.

Proof: Given x P G there is a bijectiong:N→G such that g(1)5x. Now define
ĝ(1):5g(1) and ĝ(n):5ĝ(n21)d(g(n)) if ĝ(n21)£d(g(n)) and otherwise
ĝ(n):5ĝ(n21). Then (ĝ(n))n P G>

N . Now suppose that (yn)n < (ĝ(n))n . Then in
particularym andĝ(n) have for alln,m P N a common smaller element. But this implies that f
all n,mP N holdsĝ(n)£d(ym) and henceĝ(g

21(ym))5ĝ(g21(ym)21)d(ym) < ym . In particu-
lar, (yn)n > (ĝ(n))n . Thus (ĝ(n))n , which is certainly smaller than the constant sequencex, is a
minimal element. Q.E.D.

Examples show that countability ofG is not a necessary condition.
Lemma 3:G̃ is an almost-groupoid under the operations induced by point-wise operation

G>
N , and its order coincides with the order~5!.
Proof: G>

N is an almost-groupoid under point-wise operations, i.e., composability is give
(xn)n£(yn)n if ;n:xn£yn and then (xn)n(yn)n5(xnyn)n , (xn)n

215(xn
21)n . Since order is com-

patible with multiplication (xn8)n;(xn)n and (yn8)n;(yn)n and (xn)n£(yn)n imply, first
(xn8)n£(yn8)n , and second (xnyn)n;(xn8yn8)n . Furthermorex > y being equivalent tox21 > y21

implies that (xn)n;(yn)n is equivalent to (xn
21)n;(yn

21)n . From this follows the uniqueness o
J. Math. Phys., Vol. 38, No. 4, April 1997
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inversion. Hence alsoG̃ is an almost-groupoid. Its units are classes of sequences of decre
units ofG. It is straightforward to see that its order is given by~5!. Q.E.D.

1. Morphisms of almost-groupoids

It turns out that the natural morphisms to look at in the context of tilings are not homo
phisms but certain prehomomorphisms. An order ideal of an almost-groupoidG is a subsetN for
which c < c8 P N impliesc P N . Any subsetN generates an order ideal, namelyI (N )5$x
P Gu'y P N :x < y%. We call an element ofG>

N approximating if its class is minimal.
Definition 5: A prehomomorphismw:G→G8 between two almost-groupoids is a map whi

preserves composability, commutes with the inversion map, and satisfies for all x£y

w~xy!<w~x!w~y!. ~6!

A prehomomorphism is called approximating if it maps approximating sequences onto ap
mating ones. An approximating prehomomorphismw:D(w),G→G8 is called a partial approxi-
mating prehomomorphism or local morphism betweenG andG8 if its domain D(w), which is a
sub-almost-groupoid ofG, is an order ideal.

Lemma 4: Prehomomorphisms preserve the order.
Proof: x < y is equivalent tox5r (x)y and hence impliesw(x) < r (w(x))w(y) < w(y).

Q.E.D.
This lemma implies that prehomomorphisms are composable, and since the domain ofc + w,

which isD(c + w)5$x P D(w)uw(x) P D(c)%, is an order ideal ofG local morphisms are compos
able as well. A prehomomorphismw:G→G8 of almost-groupoids can be extended to a prehom
morphism w:G0→G08 of inverse semigroups by simply settingw(0)50. The condition that
w:G→G8 preserves composability implies then for the extension that it satisfiesw21(0)50.
Conversely, any prehomomorphismw:G0→G08 of inverse semigroups with zero which satisfi
w21(0)50 restricts to a prehomomorphism on the almost-groupoids. A homomorphism be
almost-groupoids is a prehomomorphism for which Eq.~6! is an equality.

By element wise application to sequences, a prehomomorphism maps decreasing se
onto decreasing sequences, and moreover preserves equivalence classes. Hence it exte
prehomomorphismw̃:G̃→G̃8 through

w̃@~xn!n#:5@~w~xn!!n#. ~7!

If w is a local morphism then we denote byR(w):R(D(w))→R(G) the restriction ofw̃ to the
minimal elementsR(D(w)).

2. Topology

A topological almost-groupoid is an almost-groupoid which carries a topology such tha
product and the inversion map are continuous,G£ carrying the relative topology. A~locally
compact! groupoid is calledr -discrete ifr21(x) is discrete for anyx, or equivalently, if its set of
unitsG0 is open.4 Prehomomorphisms of topological almost-groupoids are assumed to be co
ous.

If nothing else is saidG shall carry the discrete topology. The topology ofG̃ shall then be
defined as the one which is generated byb0(G̃):5$Ũxux P G0%,

Ũx5$ ỹPG̃u ỹ<x%, ~8!

Ũ05B, and R(G) shall carry the relative topology, i.e., the one generated
b0(R(G))5$Ux ,x P G%, Ux5ŨxùR(G). In the following we shall frequently use multiplica
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ets

mi-

d
et

D.

e

on
w con-

.D.
t-
s
nces.

1829Johannes Kellendonk: Topological equivalence of tilings

¬¬¬¬¬¬¬¬¬¬
tion of subsets of an almost-groupoid with added zero element. The product of two subsU,
V isUV5$xyuxP U,y P V,x£y%. Using thismultiplication onb0(G̃) andb0(R(G)), respectively
we get:

Lemma 5: The maps x°Ũx and x°Ux furnish isomorphisms between the inverse se
groupsG0 andb0(G̃) andb0(R(G)), respectively.

Proof: Let x,y P G. ŨxŨy,Ũxy follows directly from the compatibility between order an
multiplication andUxUy,Uxy is then a consequence of Lemma 1. As for the converse, lz̃
< xy. Then firstx21z̃< x21xy< y, and secondz̃5r (xy) z̃< r (x) z̃hencez̃5x(x21z̃). This shows
that z̃ P ŨxŨy . If moreover z̃ is minimal then the factorizationz̃5(r ( z̃x))(x21z̃) shows z̃
P UxUy as both,r ( z̃x) andx

21z̃ are minimal. Thus

ŨxŨy5Ũxy , UxUy5Uxy . ~9!

The considered maps are by definition surjective. But either ofŨx5Ũy or Ux5Uy implies that
x < y andy < x so that the maps are injective as well. Q.E.

If G is 0-E-unitaryb0(G̃) and b0(R(G)) are closed under intersection. In fact,ŨxùŨy

Þ B wheneverx andy have a lower bound inG and thereforeŨxùŨy5Ũr (x)y ~which might be
empty! and hence alsoUxùUy5Ur (x)y .

Theorem 1: R(G) is an r-discrete topological groupoid whose topology is T1 . If G is
0-E-unitary thenR(G) is even Hausdorff.

Proof:Ux
215Ux21 is open showing continuity of the inversion. By Eq.~9!,

m21~Ux!5 ø
~x1 ,x2!PG£:x>x1x2

~Ux1
3Ux2

!ùR~G!£

is open as well and hence multiplication continuous.
Moreover, sinced(@(xn)n#) < d(x1) we haveR(G)05øuPG0Uu which is open and hence th

groupoidr -discrete.
To show thatR(G) is T1 , i.e., that for allx̃,ỹ P R(G) with x̃ Þ ỹ there is an openU

containingx̃ but not ỹ, let (xn)n and (yn)n be a representative forx̃ and ỹ respectively, observe
that x̃ Þ ỹ implies both,x̃ < ỹ and x̃ > ỹ, and hence the existence of ann0 such that for all
n>n0 : xn > ỹ andyn > x̃. Therefore anyU5Uxn

, n>n0 , does the job.
Now suppose thatG is 0-E-unitary. We claim that for somem, x5xn0 andym do not have a

smaller common element. This then proves the Hausdorff property since for thatm is
UxùUym

5B andx̃ P Ux andỹ P Uym
. To prove the claim suppose its contrary, i.e.,x andym to

have a common smaller element for allm. Then ỹd(x) < ỹ which by minimality impliesỹ
< ỹd(x). In particular' l'm:ym < yld(x), and sinceylx

21 is a unityld(x) < x. This contradicts
the above. Q.E.D.

Theorem 2: Let w:D(w)→G8 be a local morphism of almost-groupoids andR(w) be the
restriction of w̃ to R(D(w)). ThenR(w):R(D(w))→R(G8) is a continuous homomorphism
between topological groupoids.

Proof: R(w) is a prehomomorphism by construction. But cancellation implies that
groupoids the order is trivial and hence prehomomorphisms are homomorphisms. To sho
tinuity ofR(w) let x8 P G8. ThenR(w)(@(xn)n#) P Ux8 is equivalent to'n:x8 > w(xn). Hence
R(w)21(Ux8),øyPG:w(y)<x8Uy . Since alsoR(w)(Uy),Uw(y) , andx < y impliesUx,Uy ,
the above inclusion is in fact an equality. This shows continuity. Q.E

In fact, it is easily checked thatR is a covariant functor from the category of almos
groupoids with local morphisms into the category ofr -discrete groupoids with partial continuou
homomorphisms. SinceR(G) has trivial order decreasing sequences are constant seque
Therefore we may identifyR + R withR.
J. Math. Phys., Vol. 38, No. 4, April 1997
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In general, an almost-groupoid is non-commutative. But in Example 1 we have seen tha
of the topology of topological spaces which are closed under intersection give rise to al
groupoids which consist only of units so they are in particular commutative. Theorem 1 an
~9! show that any almost-groupoid may be identified~after adding a zero element! with a base of
the topology of aT1 space but only in the case where the almost-groupoid consists only of
does its multiplication coincide with intersection. In that caseR(G)5R(G)0. Hence if x£y,
which means for groupoidsd(x)5r (y), theny5x. In other words the groupoid operations a
trivial, i.e., x is composable only with itself,x25x, andx215x. So a topological groupoid which
consists only of units is an ordinary topological space. This indicates why one may call the
to which this study of tilings belongs the non-commutative topology of tilings.

3. Inverse semigroups of groupoids

It is instructive to compare the inverse semigroupG0 from which we obtained the groupoi
with other inverse semigroups which are often considered in connection with groupoids
instance in Renault’s book4 such inverse semigroups~with zero! are considered which consist o
G-sets. AG-set is a subsets of the groupoidG which has the property that the restrictions ofr
and d to s are both injective. Multiplication is then given by set multiplication~and inversion
applies element-wise!. The order is inclusion of sets and the empty set is the zero element.
more restrictions on theG-sets are given this is called the inverse semigroup of the groupoid
denote it here byI S G (G). In the context ofr -discrete groupoids it is also interesting to look
thoseG-sets which are compact and open. They form a sub-inverse semigroup, called the
semigroup ofG and denoted here byAS G (G). Note that bothI S G (G) andAS G (G) are
closed under intersection. Since the assignment of an inverse semigroup to the groupoid is
to the functorR the natural question is whether they are somehow inverse~leaving aside the more
subtle question of how to assign to a groupoid homomorphism a morphism ofI S G (G) or
AS G (G)). The answer is in general negative but we can say the following.

The relation between the inverse semigroupG0 to start with and the inverse semigroups
R(G)-sets ofR(G) is rather obvious:Uc , c P G, is aR(G)-set so that by Eq.~9! we may
identify G0 as a sub-inverse semigroup ofI S G (R(G)). Furthermore, if theUc are compact then
AS G (R(G)) is given by~finite! unions of elements ofG0 under this identification. But they ar
not equal~and not all finite unions are allowed!.

A topological space is called first countable if any point has a countable local base. I
T1 then for any pointx there exists a descending sequence (Un)n of neighbourhoods such tha
ùnUn5$x%. Such a sequence may be constructed as follows: LetU(x) be a local base atx and
g:N→U(x) be a bijection. Defineĝ(1)5g(1) andĝ(n)5g(m) wherem is the smallest numbe
such thatg(m),g(n)ùĝ(n21). This is a descending sequence andx P ùnĝ(n). Let y Þ x and
V be an open set containingx but noty. Then there is aU P U(x) such thatU,V and hence
y¹ĝ(g21(U)). Hencey¹ùnĝ(n). Thus theĝ(n) form the desired sequence.

Theorem 3: If G is a first countable groupoid whose topology is T1 and generated by
AS G (G) thenR(AS G (G)\$B%)5G.

Proof: Let G5AS G (G)\$B%. The mapp from G̃ into the power set ofG defined by
p(@(Un)n#)5ùnUn is easily seen to be a well defined. Since the elements ofAS G (G) are
compactp(@(Un)n#) is not empty. Now suppose that@(Un)n# were minimal andxÞy both in
ùnUn . Then there is aV P AS G (G):y¹V,x P V. It follows that@(VùUn)n# is strictly smaller
than @(Un)n# which yields a contradiction. We conclude thatp mapsR(G) onto singletons.
Hencep defines a mapp8:R(G)→G.

SinceG is first countable andT1 any pointx lies in the image ofp8, namely according to the
above remark we can find a descending sequence of neighborhoods (ĝ(n))n with

$x%5ùnĝ(n). Now choose for anyn a Un8 P AS G (G) with x P Un8,ĝ(n), and set
Un5ù i<nUi8 . Then@(Un)n# is a pre-image ofx. To show thatp8 is injective suppose that, fo
J. Math. Phys., Vol. 38, No. 4, April 1997
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@(Un
i )n# P G̃, p(@(Un

1)n#)5p(@(Un
2)n#). Then@(Vn)n# defined byVn5Un

1ùUn
2 is in G̃ and satis-

fies @(Vn)n# < @(Un
i )n#. By minimality @(Vn)n#5@(Un

i )n# so thatp8 is injective. It is clear that
p821(U)5UU for U P G. Thusp8 is a homeomorphism. So it remains to show thatp8 preserves
composability andp8(@(Un)n#@(Vn)n#)5p8(@(Un)n#)p8(@(Vn)n#), in case@(Un)n#£@(Vn)n#. Let
@(Un)n#£@(Vn)n#. This is equivalent to@(d(U)n)n#5@(r (U)n)n#, and hence for$x%5ùnUn and
$y%5ùnVn it impliesx£y. Moreover, in that casexy P ùnUnVn5p(@(Un)n#@(Vn)n#), and since
p(@(Un)n#@(Vn)n#) is a singleton the claim follows. Q.E.D

A topological space which has a base consisting of closed~and open! sets is called zero
dimensional. Hence the groupoid of the last theorem is zero dimensional. A zero dimen
T1 space is totally disconnected, i.e., the only connected set containing a pointx is the singleton
~one point set! containingx.

4. The universal groupoid of an inverse semigroup

The question of how to assign a groupoidG(S) to an inverse semigroupS in such a way that
Smay be identified with a sub-inverse semigroup ofAS G (G(S)) has been thoroughly addresse
in Refs. 15,16. In particular, a construction is presented which yields the universal gro
Gu(S) of an inverse semigroupS. We have not made use of Paterson’s approach but follo
different lines and therefore include a brief comparison for completion. This is best done b
presentingR(G) in the manner it has been presented in Ref. 11 for tiling almost-groupoids

There is a right action ofG on the space of unitsV5R(G)0 by means of partial homeomor
phisms. Set

V£:5$~ ũ,c!PV3Gur ~c!>ũ%

with the relative topology,V3G carrying the product topology. Letg:V£→V:(ũ,c)°d(ũc).
Theng(•,c):Ur (c)→Ud(c) is a partial homeomorphism. Now consider the equivalence rela
on V£

~ ũ,c!;~ ũ,c8! whenever'n:unc5unc8. ~10!

It is straightforward to see that this definition is independent of the choice of the represen
(un)n of ũ and that the relation is transitive. We denote the equivalence class of (ũ,c) by
@ ũ,c#.

Lemma 6: Consider the quotientR8(G) of V£ by the above equivalence relation, with th
quotient topology, and consider the groupoid structure defined by@ ũ,c#@ ũ8,c8#5@ ũ,cc8# pro-
vided ũ85d(ũc). ThenR8(G) is a groupoid which is isomorphic toR(G). Its inverse map is
given by@ ũ,c#215@d(ũc),c21#.

Proof: Define f :V£→R(G) through f (ũ,c):5ũc. f is surjective, sincec̃5r (c)̃c1 for some
representative (cn)n of c̃. If f (ũ,c)5 f (ũ8,c8) then first,ũ5ũ8, and second'n:un < r (c),r (c8)
so that (ũ,c) and (ũ,c8) are equivalent in the above sense. On the other hand,f maps equivalent
elements onto the same element so that it induces a bijection betweenR8(G) andR(G). The
topology ofR8(G) is generated by sets of the form@Uu3$c%ùV£#. Such a set is equal to
@Ur (uc)3$uc%#5$@ ũ,uc#ur (uc)>ũ% in case u£c and otherwise empty. Sinc
f21(Uc)5Ur (c)3$c% for anyc P G, f induces a homeomorphism betweenR8(G) andR(G). It
is straightforward to check thatR8(G) is a groupoid with inverse map as stated and that
homeomorphism induced byf preserves the groupoid structure. Q.E.

To compare this with the universal groupoidGu defined byG0
15,16 we assume thatG is

countable. Paterson looks at the spaceX of all nonzero semicharacters ofG0
0 ~the units of

Gø$0%), i.e., at the space of nonzero~inverse semigroup! homomorphismsa:G0
0→$0,1%, the

latter being a group under multiplication. Semicharacters yield an inverse semigroup under
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



der

sly

und

l

on

of

ed by
ses.
n

class.

e

1832 Johannes Kellendonk: Topological equivalence of tilings

¬¬¬¬¬¬¬¬¬¬
wise multiplication, but sinceX does not contain the zero map, it is an almost-groupoid un
point-wise multiplication. We denote by 1 the semicharacter which is identically to 1.

Lemma 7: The mapG̃0→X\$1%:ũ°a ũ , with a ũ(v)51 if and only if v > ũ, is an isomor-
phism of almost-groupoids (both viewed as discrete almost-groupoids).

Let ũ£ũ8 for two elements ofG̃0. Then, forv P G0
0, ũũ8 < v is equivalent toũ < v and

ũ8 < v. Hencea ũ ũ85a ũa ũ8 . The above map is therefore a homomorphism which is obviou
injective. Leta P X, a Þ 1, andG0

a :5$u P G0
0ua(u)51% be the support ofa. G0

a is a sub-
inverse semigroup ofG0

0 which is lower directed, i.e., any two of its elements have a lower bo

in it. From the countability condition and Lemma 2 it follows thatG0
a
˜ has a unique minima

element, call itũa . Thena5a ũa
. Q.E.D.

If we now come to compare the original topologies ofG̃0 andX it will turn out that only the
inverse of the above isomorphism is continuous. IdentifyingX with G̃0ø$1%, where we consider
1 as an extra element ofG̃ which satisfies; c̃ P G̃:1c̃5 c̃5 c̃1 and 1151, Paterson’s topology can
be described as the one which is generated by sets of the form

Au;u1 , . . . ,uk
:5AuùAu1

c ù•••ùAuk
c ~11!

with u,ui P G0
0, ui < u, Au5Ũuø$1%, andAui

c here denoting the complement ofAui
in X. In

particular, the relative topology of this topology onG̃0 is finer then the one considered above~8!.
The universal groupoidGu(G0) is now obtained from a right action ofG on X. Define

X£:5$~ ũ,c!PG̃03Gur ~c!>ũ%ø$1%3G ~12!

with the relative topology,X3G carrying the product topology. Letg:X£→X: (x,c)°d(xc).
Again, g(•,c):Ar (c)→Ad(c) is a partial homeomorphism. Consider the equivalence relation
X£

~ ũ,c!;~ ũ,c8! whenever'n:unc5unc8, ~13!

for ũ P G̃0, whereas (1,c) is only equivalent to itself. Again, it is independent of the choice
representative and transitive. The universal groupoidGu(G0) is given by the quotient ofX

£ w.r.t.
the above equivalence relation, with the quotient topology, and groupoid structure defin
@x,c#@x8,c8#5@x,cc8# providedx85d(xc), square brackets again denoting equivalence clas
Its inverse map is given by@x,c#215@d(xc),c21#. We will have more to say about the relatio
betweenR(G) andGu(G0) in the case whereG is a tiling almost-groupoid.

C. Application to tilings

Let us see whatR yields applied to the almost-groupoidM II of a tiling T. For that we
consider a notion of radius of a doubly pointed pattern class. Let rad:M II→R1 be defined by the
Euclidean distance between the two tiles of the ordered pair and the boundary of a pattern
In particular rad(c)5min$rad(r (c)),rad(d(c))% andc < c8 implies rad(c)>rad(c8). Furthermore,
let Mr(c), r.0, be the doubly pointed pattern class which is obtained fromc by eliminating all
tiles which have distance greater than or equal tor from both pointed tiles andM0(c) be the
doubly pointed pattern class which is given by the pointed tiles only. The finite type~compactness!
condition then takes the following form:

The set$Mr(c)uc P M II% is finite for anyr .
Of particular interest are doubly pointed pattern classes, calledr -patches, which are thos

which satisfyc5Mr(c) and rad(c)>r . Consider the metric onG defined by

d~c,c8!5 inf~$e2r uMr~c!5Mr~c8!%ø$e21%!). ~14!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Theorem 4: LetM II be the almost-groupoid of a tiling which satisfies the finite type con

tion. Then there is a continuous bijection betweenM IĨ and the metric completion ofM II with
respect to the above metric. Furthermore, the sets U˜

c , c P M II are metric-compact.
Proof: Let (cn)n be a decreasing sequence of doubly pointed pattern classes. Sincec > c8

impliesMr(c) > Mr(c8) the finite type condition implies the existence of anN such that for all
n>N:Mr(cn)5Mr(cN). It follows that d(cn ,cm)<e2r for n,m>N, i.e., (cn)n is a Cauchy
sequence. Moreover, if (cn)n and (cn8)n are two decreasing sequences which are equivalent in
sense~4! a similar argument shows thatd(cn ,cn8)→0, i.e., that they are equivalent as Cauc
sequences. Now fix an increasing sequence (r k)k of positive numbers which diverges. If (cn)n is
a Cauchy sequence then;k'Nk;n>Nk :Mrk

(cNk)5Mrk
(cn). Defining j ((cn)n)k :5Mrk

(cNk)
thus yields a decreasing sequencej ((cn)n) for which d( j ((cn)n)k ,cNk)→0, i.e., which is equiva-

lent to (cn)n as Cauchy sequence. Moreover, if (cn)n and (cn8)n are Cauchy equivalent sequenc
then j ((cn)n)5 j ((cn8)n). If ( cn)n is decreasing, then not onlyj ((cn)n)>(cn)n , but since
;n'k:r k.rad(cn) also j ((cn)n) < (cn)n . So if j ((cn)n) and j ((cn8)n) are not equivalent in the
sense of Eq.~4! they cannot belong to the same Cauchy class. Therefore, the map which

c̃ to the Cauchy class of any of its representatives is a well defined bijection betweenM IĨ and the
metric completion ofM II .

To compare the topologies extendMr toM IĨ throughMr( c̃)5 limnMr(cn), @(cn)n#5 c̃. The
limit exists and is independent of the chosen representative by the same argument as abov
in fact shows that limnMr(cn)5Mr(cN) for someN. It is then straightforward to check that th
extension of the metric to the completion ofM II is given by formally the same expression f
d as in Eq.~14!. Again using the finite type condition one sees that the image of the~continuous!

function d( c̃,•):M IĨ→R1 is discrete apart from a limit point at 0. Thereforee-neighbourhoods
are closed and hence complete in the metric topology.e-neighbourhoods are sets of the form

Ur~ c̃!5$c̃8uMr~ c̃8!5Mr~ c̃!%

~the smallere the biggerr ), but sincer is finite Ur( c̃)5Ur(cn) for somen and representative
(cn)n . If 0,r 1,r 2 thenUr1

(c)5øc8uMr1
(c8)5Mr1

(c)Ur2
(c8) but by the finite type condition only

finitely many sets in the union of the right-hand-side are mutually disjoint. Thus for
0,e2,e1 it holds that thee1-neighbourhood has a finite cover bye2-neighbourhoods, i.e.
e-neighbourhoods are pre-compact and hence compact.

If c is anr -patch thenUr(c)5Ũc . For arbitraryc P M II one hasŨc5øc8<cUr(c8) where
r is some number bigger than the diameter ofc ~the diameter of the set covered by a representa
of the pattern class inRd). In particular, the metric topology is finer than the original topology
M IĨ . But moreover, only finitely many sets in the union of the r.h.s. are mutually disjoint so
the Ũc are metric-compact. Q.E.D

To proceed let us extend the radius function rad:M IĨ→R1ø$`% through
rad(x̃)5 limnrad(xn), which is again independent of the representative.

Lemma 8: LetM II be the almost-groupoid of a tiling which satisfies the finite type condit
c̃ is minimal if and only ifrad(c̃)5`. Stated differently, a sequence(cn)n P M II>

N is approximat-
ing if and only if the sequence(rad(cn))n diverges.

Proof: Suppose that rad(c̃)5R8,` and letR.R8. There is at least one but at most finite
manyR-patchesd1 , . . . ,dk for which di < MR( c̃). Now consider the sequence which is o
tained from a representative (cn)n of c̃ by replacing each cn by k elements
r (d1)cn , . . . ,r (dk)cn . SinceUc1

is metric-compact the sequence has a metric-convergent

sequence, say (cn8)n , which we may assume to be decreasing~if not apply the mapj defined in the
proof of Theorem 4!. But then (cn8)n < (cn)n and since rad((cn8)n)>R, (cn8)n cannot be equivalen
to (cn)n . Hencec̃ is not minimal.
J. Math. Phys., Vol. 38, No. 4, April 1997
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For the converse suppose that rad(cn) diverges and (cn8)n < (cn)n . Since for alln there is an
m such that rad(cm) is larger than the diameter ofcn8 this implies cn8 > cm and thus (cn8)n
> (cn)n . ~Note that we do not need the finite type condition for this direction of the proof.! Q.E.D.

Lemma 9: LetM II be the almost-groupoid of a tiling which satisfies the finite type condit
Then the two relative topologies onR(M II), the one originally considered and the other comi
from the metric topology, coincide andR(M II) is metric-closed inM̃ II .

Proof: The relative metric-topology onR(M II) is generated by setsUr( c̃)ùR(M II) where
rad(c̃)5`. HenceMr( c̃)5Mr(c8) for somer -patchc8 and thusUr( c̃)5Ũc8 . This shows that
Ur( c̃)ùR(M II) is open with respect to the original topology onR(M II), i.e., the latter is finer
than the relative metric-topology. By Theorem 4 the topologies coincide. Now suppose thax̃ is
not minimal, i.e., rad(x̃)5R8,`. Let R.R8 and ỹ be an element of thee2R-neighbourhood of
x̃. Then rad(ỹ)5R8 as well, and henceỹ is not minimal, i.e.,M̃ II\R(M II) is metric open.

Q.E.D.
Corollary 1: Under the requirements of Theorem 4 isUc compact. In particular,

R(M II)
0 is a compact zero dimensional metric space andbo(R(M II)) a sub-inverse semigroup

ofAS G (R(M II)).
The compactness ofUc follows from Theorem 4 and Lemma 9. Writin

R(M II)
05øuUu , the union being taken over allu P M I which consist only of one tile show

that the finite type condition implies compactness forR(M II)
0.

Roughly speaking, we have shown that the elements ofR(M II) can be seen as limits o
sequences of doubly pointed pattern classes whose radii eventually become infinite. This
formulated as follows: To a given approximating sequence (cn)n construct a covering ofRd by
first choosing a representativeĉ1 for c1 in Rd. Then there are unique representativesĉn for cn such
that ĉn is obtained fromĉ1 by the addition of tiles~but keeping the ordered pair fixed!. Since
rad(cn) divergesønĉn is a covering ofR

d ~eachĉn is a set of tiles! together with an ordered pai
of tiles. We call this a doubly pointed tiling. The elements ofR(M II) are the classes of doubl
pointed tilings which are obtained in this way. The set of unitsV5R(M II)

05R(M I) can than
be identified with classes of tilings together with one chosen tile. It is called the hull of the t

The relative Paterson topology onV, cf. Eq. ~11!, coincides with the topology onV consid-
ered above, since the setsUu , u P M II

0 , which generate the latter are closed. Moreover, sinc

Ur~c!5ŨMr ~c!\ø r -patchesc8Þc,c8<cŨMr ~c8!

the relative Paterson topology onG̃0 is finer than the metric topology and henceV is a Paterson-
closed subset ofX. It follows thatR(M II) is isomorphic to a reduction of the universal groupo
Gu(M IIø$0%) with respect to the subsetV. This fits well into the general theory of Ref. 16.

For later use we prove:
Lemma 10: LetM II be the almost-groupoid of a tiling which satisfies the finite type condit

Then any c̃P G̃ has a smaller minimal element.
Proof: Suppose thatc̃ is not minimal and therefore rad(c̃)5R,`. Fix an increasing diverg-

ing sequence of real numbers (r k)k which are greater thanR. As in the proof of Lemma 8 we
constructc̃k8 such thatc̃k8 < c̃ and rad(c̃k8)>r k . Hencec̃k8 P Ur( c̃) and since the latter is metric
compact the sequence (c̃k8)k has a metric-convergent subsequence converging to a classc̃8 which
is smaller thanc̃ and minimal. Q.E.D.

1. A continuous groupoid associated to the tiling
There is another topological groupoid which can be assigned to a tiling. To define i

considers the local isomorphism classLT of a tiling T . This is the space of all tilings which ar
locally isomorphic toT . LT may be obtained as the closure of the orbit ofT under the action of
the groupRd of translations with respect to a metric. In fact, viewed as a geometrical obje
J. Math. Phys., Vol. 38, No. 4, April 1997
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tiling may be translated,T 2x, x P Rd is the covering given by the setst2x:5$y2xuy P t% where
t runs through all tiles ofT . ThenLT is the closure of$T 2xux P Rd% under the metric

d~T,T8!5 infS H eu'x,x8PRd:r ~T2x,T82x8!>
1

e
,uxu,ux8u,eJ øH 1

A2 J D ,
where r (T,T8) is the largestr such thatT and T8 agree on ther -ball around 0.17 The other
groupoid which may now be assigned toT is the transformation groupC T :5LT 3Rd. Two of
its elements (T,x), (T8,x8) are composable wheneverT85T2x and then
(T,x)(T8,x8)5(T,x1x8). The topology is the product topology. For distinction we call it t
continuous groupoid assigned to the tiling and, where it is neccessary,R(M II(T )) the discrete
one.

To establish a relation betweenC T andR(M II(T )) let us fix for each tile-class a point in it
interior, which we call its puncture. The punctures of the tiles of a tiling may be identified w
countable subset ofRd. Let VT be the subset ofLT which consists of all tilings which have th
property that the puncture of one of their tiles identifies with 0P Rd. The reduction ofC T by
VT , which is the sub-groupoid$(T,x) P C T uT,T2x P V%, is the groupoid which has been ass
ciated to an aperiodic tiling in Ref. 9. It is isomorphic toR(M II(T )), an isomorphism is given
by the map which assigns to (T,x) the doubly pointed tiling class which is given by the class
T and the pair of tiles given by, first, the one which covers 0, and second, the one which c
x. Moreover, it has been proven by Anderson and Putnam17 that the above reduction ofC T is an
abstract transversal ofC T in the sense of Muhlyet al. so that by the work of the latter authors18

the groupoid-C* -algebras ofC T andR(M II(T )) are stably isomorphic.

III. TOPOLOGICAL EQUIVALENCE AND MUTUAL LOCAL DERIVABILITY

If we focus on the role tilings play in solid state physics when describing spatial struct
then several properties of the tiling are unimportant. First of all, only the congruence class
tiling matters, and second, due to the locality of the interactions locally isomorphic tilings
equally well suited to describe that structure. This can now all be taken into account by wo
with the almost-groupoid of the tiling. However, investigating further the way how tilings mo
e.g., the arrangement of atoms~or ions! in solids one may take the point of view that this shou
only be understood in a topological way. In particular details like the precise position and str
of the bondings are to be added, i.e., are not to be derived from the tiling. This led Baakeet al.
from the theoretical physics group in Tu¨bingen to introduce another equivalence relation betw
tilings which is based on mutual local derivability,19 see also Ref. 20 for an overview.

Let Br(x) denote the closedr -ball aroundx andBr5Br(0). FurthermoreT uBr(x) is the
pattern consisting of all tiles ofT which intersect withBr(x).

Definition 6:T 8 is locally derivable fromT if there is an r>0 such that for all x,y P Rd

~T 2x!uBr5~T 2y!uBr implies ~T 82x!u$0%5~T 82y!u$0%. ~15!

Restricting our interest to tilings which satisfy the finite type condition the knowledge o
correspondence between (T 2x)uBr and (T 82x)u$0% for finitely manyx is enough to construc
all tiles of T 8 from T . This obviously defines a mapl :LT→LT 8 , which is continuous, has
dense image, and is therefore surjective.l can be extended to a surjective homomorphism
groupoids, l :C T →C T 8 : (T,x)°(l (T),x). We may call the replacement ofT uBr(x) by
T 8u$x% a local derivation rule. In particular, the above definition is equivalent to saying tha
all r 8>0 there is anr>0 such that for allx,y P Rd

~T 2x!uBr5~T 2y!uBr implies ~T 82x!uBr 85~T 82y!uBr 8 . ~16!
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



c

lar,

ed

d

ing
e same
ea of
cessary

ly

local

if

d

-

1836 Johannes Kellendonk: Topological equivalence of tilings

¬¬¬¬¬¬¬¬¬¬
T andT 8 are called mutually locally derivable ifT 8 is locally derivable fromT and vice versa.
This is an equivalence relation which can be extended by saying thatT andT 8 belong to the
same MLD-class if there is aŤ 8 which is locally isomorphic toT 8 and mutually locally derivable
from T . That this extension is an equivalence relation~in fact on classes of locally isomorphi
tilings! follows from the observation that, ifT 8 is locally derivable fromT and Ť is locally
isomorphic toT then the local derivation rule can be used to locally derive a tilingŤ 8 from
Ť , and thisŤ 8 has to be locally isomorphic toT 8. Moreover, the local derivation ofT from
Ť 8 yields the inverse ofl :C T →C T 8 so that the latter becomes an isomorphism.

Corollary 2: If T and T 8 are in the same MLD-class then the groupoidsR(M II(T )) and
R(M II(T 8)) are reductions (in fact abstract transversals) of the same groupoid. In particu
they have stably isomorphic groupoid-C* -algebras.

This follows directly from the fact thatC T andC T 8 are isomorphic and the above mention
theorem of Ref. 17.

The above corollary indicates that the Tu¨bingen formulation of local derivability is a goo
starting point to answer the question under which circumstancesR(M II(T )) and
R(M II(T 8)) are isomorphic. In order to cast it in a form applicable to our framework, us
almost-groupoids and the discrete groupoid, we are naturally led to strengthen and at th
time to generalize the concept of local derivation. A strengthening comes along with the id
preservation of the average number of tiles per unit volume whereas a generalization is ne
as we want to work in a purely topological setting.

A. Constructing local morphisms from local derivation rules

Suppose thatN is a sub-almost-groupoid ofG which is the order ideal generated by a finite
generated almost-groupoid, i.e.,N 5I (^C &) whereC is a finite set and̂C & the almost-groupoid
generated by it. Suppose furthermore that we have a mapŵ:C→G8 which satisfies conditions
which arise if it were the restriction of a prehomomorphism fromN into an almost-groupoid
G8. A question which is of prime importance for sequel is whether we can construct a
morphismw:N →G8 from that map.

We call n elements c1 ,...,cn collatable if they may be composed, i.e.,
;1<k,n:c1 . . . ck£ck11 . Let C

215C be a finite subset of an almost-groupoid andŵ:C→G8
be a map into another almost-groupoid which satisfies for allc,ci P C :

@E1# ŵ(c21)5ŵ(c)21,
@E2# if c1 , . . . ,cn are collatable thenŵ(c1), . . . ,ŵ(cn) are collatable,
@E3# if c1 . . . cn is a unit thenŵ(c1) . . . ŵ(cn) is a unit.

Consider forcP ^C &

F~c!5$ŵ~c1! . . . ŵ~cn!uc1 . . . cn5c,ciPC %. ~17!

Sincec1 . . . cn5c18 . . . cn8
8 implies thatŵ(c1) . . . ŵ(cn)(ŵ(c18) . . . ŵ(cn8

8 ))21 is a unit any two
elements ofF(c) have a common smaller element, i.e.,F(c) is a lower directed set. Provide
F(c) is finite we define

w~c!:5min F~c!. ~18!

Thenw commutes with the inverse map, because ofF(c)215F(c21), and it preserves compos
ability and satisfies inequality~6!, sinceF(c1)F(c2),F(c1c2). Thusw:^C &→G8 is a prehomo-
morphism. IfHC (c):5$c8P^C &uc8>c% has a unique minimal element thenp:I (^C &)→^C &:
p(c)5minHC (c) is a prehomomorphism as well, and we may extendw throughw + p.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Definition 7: We call a pair(ŵ,C ), whereC5C 21,G is finite and ŵ:C→G8 satisfies
conditions E1–3, a local derivation rule, if it leads for all cP G to finite lower directed sets
F(c) and HC (c), andw:I (^C &)→G8,

w~c!:5min F~min HC ~c!! ~19!

is approximating.
Lemma 11: LetM II andM II8 be two tiling almost-groupoids. Suppose that there exist a fi

C5C 21,M II and a mapŵ:C→M II8 which satisfies E1–3. ThenF(c) andHC (c) are finite
lower directed sets.

Proof: HC (c) is finite since any doubly pointed pattern class has only finitely many tiles.
lower directed sinceM II is 0-E-unitary. As forF(c) we subdivide this set first into subse
c8Fc8c9(c)c9 whereFc8c9(c):5$ŵ(u1) . . . ŵ(un)un P N,c5cu81 . . .unc9%, ui P ^C &0 and
c85c18•••ck8 ,ci8 P C none of theci8•••cj8 , 1< i< j<k, being a unit, and the same conditions f
c9. Since there are only finitely many different units which satisfyu > c821cc921, units commute,
andw(u)w(u)5w(u), Fc8c9(c) is finite. Moreover, there are only finitely many different pos
bilities to choosec8,c9 so thatF(c) is finite. Q.E.D.

To connect the Tu¨bingen formulation of local derivability with the above and justify doub
use of the word local derivation rule we prove:

Theorem 5: Let T 8 be locally derivable fromT . Then there exists a local derivation rule i
the sense of Definition 7,ŵ:C,M II(T )→M II(T 8), such thatR(I (^C &))5R(M II(T )) and
the induced homomorphism maps the class ofT onto that ofT 8.

Proof: First introduce punctures for the tile classes ofT which are chosen such that none
the punctures of tiles ofT lies on the boundary of tiles ofT 8. For givenr 8 fix r according to Eq.
~16! and let for any tilet of T , l̂ (t)5T 8uBr 8(t

pct), wheretpct is the puncture oft. We now
define a local derivation rule on the setC r

c of all r -patchesc for whichM0(c) is connected. Let
m be a doubly pointed pattern inT of the classm̃ P C r

c . Denote thei th tile of its ordered pair by
t i(m). Then ŵ(m̃) shall be the class of the patternl̂ (t1(m))ø l̂ (t2(m)) with the ordered pair
(T 8uB0(t1(m)

pct),T 8uB0(t2(m)
pct)). Thatŵ(m̃) does not depend on the chosen representa

m for m̃ is precisely the definition of local derivability. Defined in that geometrical way, it is e
to see thatŵ satisfies the conditions E1–3. Ifr 8 is larger than twice the diameter of the largest t
in T then l̂ (t1(m))ø l̂ (t2(m)) is connected andw approximating. Then, with anr determined
by ~16!, (ŵ,C r

c) is a local derivation rule in the sense of Definition 7. By construction,R(w)
maps the class ofT onto that ofT 8. Q.E.D.

Although the local derivation ruleŵ yields a homomorphismR(w) which is very similar to
a restriction of the mapl :C T →C T 8 constructed from the local derivation rule in the Tu¨bingen
version it is neither injective nor surjective, in general. The geometrical picture
l :C T →C T 8 allows one to conclude thatR(w) is surjective whenever the punctures for the til
of T can be chosen in such a way that any tile ofT 8 contains at least one puncture.@First, doubly
pointed tiling classesc̃ P R(M II(T 8)) for which r ( c̃) is in the same class thenT 8 lie in the
image ofR(w), and then, by continuity, all ofR(M II(T 8)).]Similarly, a necessary~but not
sufficient! condition forR(w) to be injective is that any tile ofT 8 contains at most one puncture
Hence the failure ofR(w) to be an isomorphism may have its cause in that the average nu
of tiles per unit volume is not preserved.

The converse of the theorem is false. IfT 8 is obtained fromT by a change of length scale o
an overall rotation there would~apart from symmetric cases! not be a local derivation rule in the
Tübingen sense but a local derivation in the sense of Definition 7 is given by applying the c
of length scale and rotation to the doubly pointed pattern classes.
J. Math. Phys., Vol. 38, No. 4, April 1997
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B. Topological equivalence

An answer to the question under which circumstances two tilings lead to isomo
groupoids shall be given here in purely ‘‘local’’ terms, i.e., in terms of almost-groupoids and
derivation rules. For that let us start with a lemma. Let us use the notation that for subsets
orderedsetX<Y if ;yP Y'xP X:x< y.

Lemma 12: Letw be a local morphism from a countable0-E-unitary almost-groupoidG into
itself. ThenR(w)5 id if an only if D(w) < G andw(c) and c have for all cP D(w) a lower
bound.

Proof: Suppose first thatR(w)5 id which in particular meansR(D(w))5R(G), and hence
D(w) < G. Given c P G, by Lemma 2 there is a smaller minimal element which has, du
R(D(w))5R(G), a representative (cn)n with cn P D(w). But then there already exists som
cn P D(w) for whichcn < c. Furthermore,w(cn) andcn must have for anyn a lower bound since
they constitute equivalent sequences. Any such bound is also a lower bound forw(c) andc.

As for the converse, observe that under the assumption thatw(c) andc have a lower bound
for all c P D(w) we havew̃( c̃)d( c̃) < w̃( c̃),c̃ and hence for minimalc̃: w̃( c̃)5 c̃. Hence
R(w)5 iduR(D(w)) . But sinceD(w) is an order ideal,D(w) < G impliesR(D(w))5R(G).

Q.E.D.
Definition 8: Two countable0-E-unitary almost-groupoidsG andG8 are called topologically

equivalent if there are local derivation rulesŵ:C,G→G8, ĉ:C 8,G8→G such that for the
induced localmorphismsw andc holdsD(c + w) < G, D(w + c) < G8, andc(w(c)) and c have for
all c P D(c + w) a lower bound andw(c(c8)), and c8 for all c8 P D(w + c) a lower bound. Two
tilings of finite type are called topologically equivalent if their corresponding almost-group
are topologically equivalent.

According to the above lemma the definition of topological equivalence may equally we
formulated by saying that the local morphismsw and c satisfyR(c + w)5 id on R(G) and
R(w + c)5 id onR(G8). By the functorial properties ofR it implies thatR(G) andR(G8) are
isomorphic and shows at once that topological equivalence is indeed an equivalence re
According to Remark 1, being in the same MLD-class is not sufficient to guarantee that the
are topologically equivalent. It is sufficient only in case any tile ofT 8 contains exactly one of the
punctures ofT .

Theorem 6:Two almost-groupoids of finite type tilings are topologically equivalent whene
their associated groupoids are isomorphic.

Proof:We already mentioned above that topological equivalence implies the existence
isomorphism between the associated groupoids. For the converse letf :R(M II)→R(M II8 ) be an
isomorphism, R(M II)5R(M II(T )), R(M II8 )5R(M II(T 8)). Let Y,R(M II) and
Y8,R(M II8 ) be the set of elementsy such thatM0(y) is connected. Furthermore, le
X5Yø f21(Y8) andC (r )5$Mr(a)ua P X%. Sincef :R(M II)→R(M II8 ) is continuous and, by
Corollary 1,X compact,

;r 8.0'r.0;aPX: f ~UMr ~a!!,UMr 8~ f ~a!! . ~20!

Chooser.0 andr 8.0 satisfying Eq.~20!, and defineŵ:C (r )→M II8 by

ŵ~Mr~a!!:5Mr 8~ f ~a!!. ~21!

In particular Eq.~20! implies

f ~Uc!,Uŵ~c! ~22!
J. Math. Phys., Vol. 38, No. 4, April 1997
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for all c P C (r ). To show thatŵ is a local derivation rule we first check E1–3. E1 is clea
satisfied. Using set multiplication and the convention thatUcc85U05B if c£”c8 we obtain for
collatablec1 , . . . ,cn

f ~Uc1 . . . cn
!5 f ~Uc1

! . . . f ~Ucn
!,Uw~c1! . . .w~xn! ~23!

where we used Eq.~9! and that f is a homomorphism of groupoids. ThereforeUw(c1) . . .w(xn)

cannot be empty and hencew satisfies E2. To show E3 letc1 . . . cn be a unit. Then
f (Uc1 . . . cn

),R(M II8 )
0. Since, for tilings, eitherUcùR(M II)

05B or Uc,R(M II)
0,

Eq. ~23! implies E3 for ŵ. Therefore ŵ extends to a prehomomorphismw. Clearly
D(w)5I (^C (r )&) < M II . Moreover, Eq.~23! implies that Eq.~22! holds even for allc
P I (^C (r )&). Therefore, if (cn)n is an approximating sequence, thenf (@(cn)n#) P ùnUw(cn)

or,
stated differently,f (@(cn)n#) < w̃(@(cn)n#). Hence, ifw is approximating thenR(w)5 f .

So far we have only used thatf is a homomorphism. To show thatw is approximating we
need to use its invertibility. Having nothing specific said about the choice ofr ,r 8 we choose them
now in a way that there exist 0,r 2<r andr 18>r 8 such that apart from Eq.~20! it also holds that
f21(UMr18

(b)),UMr ( f
21(b)) and f

21(UMr 8(b)
),UMr2

( f21(b)) for all b P f (X). Since f (X) is

compact as well this is possible. We then defineC 8(r ):5$Mr(b)ub P f (X)%, and
ĉ1 :C 8(r 18)→G, ĉ2 :C 8(r 8)→G by

ĉ1~Mr
18
~b!!:5Mr~ f

21~b!!, ĉ2~Mr 8~b!!:5Mr2
~ f21~b!! ~24!

for all b P f (X). like w, c i , i51,2, extend to a prehomomorphisms andR(D(c i ))
5R(M II8 ). Moreover, ŵ + ĉ1(Mr

18
(b))5Mr 8(b) and ĉ2 + ŵ(Mr(a))5Mr2

(a) imply thatc2

+ w(c) > c for all c P D(c2 + w) andw + c1(c8) > c8 for all c8 P D(w + c1). In particular, since
D(c2 + w) contains the set of all r-patches c such that M0(c) is connected,c2 + w is approximating
and thus, by Lemma12,R(c2 + w)5 id onR(M II). Similarly it follows thatR(w + c1)5 id on
R(M II8 ). Therefore, if (cn)n is an approximating sequence thenc̃2(@(cn)n#)5@(c2 + w
+ c1(cn))n# > @c1(cn))n]. In particular, if next to c̃also c̃2( c̃) is minimal thenc̃2( c̃)5c̃1( c̃).
Now let c̃P R(M II). By Lemma10 there is a c̃8 P R(M II8 ) with c̃8 < w̃( c̃). Thenc̃2( c̃8) < c̃2

+ w̃( c̃)5 c̃, i.e., c̃2( c̃8) is minimal, and hence c˜5c̃1( c̃8), and consequentlyw̃( c̃)5 c̃8. It follows
that w̃ is approximating and henceR(w)5 f . But then the above implies thatc i , i51,2, are
approximating andR(c i)5 f21. Hence(ŵ,C (r )) and either(ĉ1 ,C 8(r 18)) or (ĉ2 ,C 8(r 8)) sat-
isfy the requirements of the definition of topological equivalence. Q.E.D.

In fact, we have proven a little more, namely that any isomorphism between grou
associated to finite type tilings is ‘‘locally defined,’’ i.e., it can be obtained by a local deriva
rule. One could also define a stronger form of topological equivalence between two tilingT ,
T 8 in that one requires in addition for the local morphism of Definition 8 thatR(w) maps the
class ofT onto that ofT 8. This is then equivalent to the existence of an isomorphism betw
R(M II(T )) andR(M II(T 8)) which maps the class ofT onto that ofT 8.

A simple example for which the construction of a prehomomorphism of the theorem ca
carried out, not yielding an approximating one, is the constant mapf :R(M II)→R(M II8 ) given
by f ( c̃)5ũ, ũ P R(M II8 )

0 fixed. The above construction yieldsw(c)5Mr 8(ũ) for all c P D(w)
which is not approximating.

IV. A SELECTED OVERVIEW ON TOPOLOGICAL INVARIANTS OF TILINGS

We have shown that the topological groupoidR(M II) is a complete invariant for a topologi
cal equivalence class of tilings which are of finite type. This answers the question under
J. Math. Phys., Vol. 38, No. 4, April 1997
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circumstances two tilings of finite type lead to the same groupoid. Furthermore, it means th
groupoid contains all physically interesting topological information about a tiling, the prime
ample of that being theK-theoretic gap labelling.

The question immediately following such a result is that after an invariant for~discrete!
groupoids associated to tilings which is computable and distinguishes between non-isom
groupoids ~the term invariant always referring to a quantity which depends on isomorp
classes!. In fact, the determination of whether two such groupoids are isomorphic or not ca
rather difficult, and what we have in mind here is something like Elliot’s classification
AF-algebras by means of their scaled orderedK0-group.

21 These groups may be in many cas
easily computed.22 So one might hope that theK-theory of the groupoid-C* -algebra is a good
starting point to classify all groupoids coming associated to tilings. And in fact, if one restric
attention only to the groupoid-C* -algebra of the groupoid, then, for one-dimensional tilings
which may be viewed as topological dynamical systems — one obtains aC* -algebra which is the
limit of circle algebras. Elliot’s classification extends to such algebras,23 the scaled ordered
K0-group of the groupoid-C* -algebra is a complete invariant as well. A full treatment of t
one-dimensional case including an interpretation in dynamical terms can be found in Refs.
In higher dimensions, it is not yet clear whetherK-theory yields complete invariants for th
groupoid-C* -algebras of tilings but the orderedK0-group is still an interesting object to conside
after all it has physical signification in the gap-labelling. However, it should be said that ther
non-isomorphic groupoids associated to tilings which give rise to isomorphicC* -algebras, so tha
the K-theory of the latter cannot be a complete invariant for such groupoids. It is known
groupoids are invariants for pairs ofC* -algebras, the groupoid-C* -algebra and a Cartan subalg
bra of it.4

A. K-theoretic invariants

The definition of the~reduced or full! groupoidC* -algebra of anr -discrete groupoid can be
found in Ref. 4 or, in the special context of tilings, in Refs. 9,11. In the latter case, it may be
as theC* -closure of a representation of the inverse semigroupM IIø$0% by means of partial
symmetries of a Hilbert space and coincides with the algebra of observables for particles m
in the tiling. To be more precise,a priori on distinguishes two such closures, obtaining
reduced or the full algebra. But since the~discrete! groupoid of a tiling is the abstract transvers
of a transformation group with amenable group, its reduced and full groupoid-C* -algebra
coincide.18,26 In fact, upon applying Proposition 3.7 of Ref. 4 toC T , which is amenable, and it
reductionR(M II(T )), one obtains that groupoids associated to tilings are amenable.

The K-theoretic invariants of the groupoid-C* -algebraAT of R(M II(T )) are topological
invariants of the tiling. The results which could be obtained so far are, apart from periodic ti
all related to tilings which are invariant under a primitive invertible substitution. For o
dimensional tilings theK-theory is computed in Refs. 27,28. For higher dimensional tilings
~integer! group of coinvariants~which is actually a cohomology group! together with a natura
order could be obtained in Ref. 11. For tilings which allow for a locally definedZd-action,
d<3, the group of coinvariants embeds as ordered unital group into theK0-group. This is enough
to solve theK-theoretical gap-labelling for these. Explicit calculations include Penrose tilin11

and octagonal tilings.29 Further results are obtained in terms of cohomology groups, see bel
But before coming to that let us recall Corollary 2 which has as a consequence

K1-groups and orderedK0-groups alone~without order unit! are invariants for MLD-classes o
tilings. That the order unit may distinguish elements of such a class may be seen from the c
which R(w) is injective but not surjective. In particular, any tile ofT 8 contains at most one
puncture of a tile ofT but some of them carry none. In this situation one can identifyAT with
a full corner ofAT 8 and the induced order isomorphism between the orderedK0-groups maps the
order unit of K0(AT ) onto an element which is strictly smaller than the order unit
K0(AT 8).

11
J. Math. Phys., Vol. 38, No. 4, April 1997
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B. Cohomological invariants

Another topological invariant of a groupoid is its cohomology. If one considers cohomo
groups of the discrete groupoid with integer coefficients then, at least for tilings which ca
local Zd-action, unorderedK-groups are isomorphic to cohomology groups.30 For example, the
non-vanishing cohomology group of highest degree, which is the group of coinvariants, is a
summand of theK0-group. This was taken advantage of already above.

On the other hand Anderson and Putnam showed that unorderedK-theory of two-dimensional
substitution tilings is isomorphic to the Czech-cohomology of a certain CW-complex.17 They
computed the latter for a number of tilings including Penrose tilings. In particular they obtain
well the K1-group. The route they took is different from the one in Ref. 11, but the ac
calculations, as far as they concern the common part of the results, reduce at the end in bo
to the computation of images and kernels of combinatorial matrices, which are almost the

Comparing the types of invariants it can be said that cohomology groups give a finer gr
thanK-groups buta priori no order. This is a severe drawback due to the vast possibilitie
orders on such groups. In particular, integer valued cohomology is not a complete invaria
tilings either.

Other cohomology groups of groupoids are also of interest for physics. The second coh
ogy group of a groupoid with coefficients in the circle group provides the twisting elements fo
construction of the twisted groupoid-C* -algebra.4 For the simpler case of the groupZ2 ~which is
of course a groupoid! the twisted group-C* -algebra is very important. It is the rotation algebr
This algebra is the algebra of observables for particles which move on the latticeZ2 ~a periodic
tiling! and which are subject to a constant perpendicular magnetic field.31–33The flux through the
unit cell ~a tile! may be interpreted as the cocycle which yields the twisting element. It w
therefore be rather interesting to compute the full second cohomology group with coefficie
the circle group for non periodic tilings.
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Schrö dinger operators with Rudin-Shapiro potentials are
not palindromic

J.-P. Allouchea)
CNRS, LRI, Baˆtiment 490, F-91405 Orsay Cedex, France

~Received 8 July 1996; accepted for publication 31 December 1996!

We prove a conjecture of A. Hof, O. Knill and B. Simon@Commun. Math. Phys.
174, 149–159~1995!# by showing that the Rudin-Shapiro sequence is notpalin-
dromic, i.e., does not contain arbitrarily long palindromes. We prove actually this
property for all paperfolding sequences and all Rudin-Shapiro sequences deduced
from paperfolding sequences. As a consequence and as guessed by the above au
thors, their method cannot be used for establishing that discrete Schro¨dinger opera-
tors with Rudin-Shapiro potentials have a purely singular continuous spectrum.
© 1997 American Institute of Physics.@S0022-2488~97!00204-1#

I. INTRODUCTION

In Ref. 1 the authors study the spectrum of discrete Schro¨dinger operators with potential
taking values in a finite set of real numbers. They proveinter alia the following:suppose that the
sequence of potentials generates a subshift X that is strictly ergodic (i.e., both minima
uniquely ergodic). Then, a sufficient condition ensuring the existence of a generic set in
which the operator has a purely singular continuous spectrum is that there exists a z in Xthat is
palindromic, i.e., that contains arbitrarily long palindromes.

This result covers many cases whereX is generated by the fixed point of a primitive subs
tution ~Fibonacci, Prouhet-Thue-Morse, period-doubling, binary and ternary non-Pisot! and also
the case of sequences defined by circle maps. As stated by the authors, their results cove
all, but not all, results in Ref. 2, and give also new results.

On the other hand the results in Ref. 2 do not cover the case of the Rudin-Shapiro su
tions: as the authors say in Ref. 2 ‘‘this sequence retains its mystery.’’ The authors of R
conjecture that the Rudin-Shapiro sequence does not contain arbitrarily long palindrome
hence that their method cannot be applied to this sequence.

The purpose of this note is to prove this conjecture:if u is a Rudin-Shapiro sequence in th
sense of Ref. 3, then it does not contain palindromes of length>15. If u is a paperfolding
sequence, then it does not contain palindromes of length>14.

II. DISCRETE SCHRÖDINGER OPERATORS

Given a sequence (xn)n of potentials taking finitely many real values, one can defin
~tight-binding! Schrödinger operatorL on l 2(Z) by

L~x!:~un!n→~~L~x!u!n!n , with ~L~x!u!n5un111un211xnun .

Roughly speaking, properties of the sequence (xn)n imply properties of the operatorL(x). An
interesting case is when the sequence (xn)n lies between order and disorder, in particular wh
(xn)n is generated by a~primitive! substitution~also called morphism or inflation rule!. A first
example, i.e., the Fibonacci sequence, has been treated in Refs. 4 and 5. Then the Thu

a!Electronic mail: allouche@lri.lri.fr
0022-2488/97/38(4)/1843/6/$10.00
1843J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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sequence has been studied first in Refs. 6–8, then, as quoted in Ref. 1, in Ref. 9. A nice an
complete survey on these Schro¨dinger operators, with many references, in particular for the s
stitutive case, is Ref. 10.

Let us summarize quickly the results of Ref. 1. The authors use essentially three steps
first show that a minimal set, with only aperiodic elements, containing a palindromic sequ
~therefore containing only palindromic sequences! contains uncontably many strongly palindrom
sequences: the sequencex is calledpalindromic if it contains arbitrarily long palindromes; it is
calledstrongly palindromicif, for any positive constantB, it contains infinitely many palindrome
w1 ,w2 , . . . , such that wi has length l i , is centered atmi , with limi mi51` and
lim i e

Bmi/ l i50. The authors then adapt a result of Jitomirskaya and Simon11 to prove thatL(x) has
no eigenvalue ifx is a strongly palindromic sequence. Their last step uses a result of Kotan12 to
show that, if a compact shift-invariant setX of sequences is strictly ergodic~i.e., minimal and
uniquely ergodic!, and if there is anx P X such thatL(x) has no eigenvalue, then, there exists
generic subsetY of X such that, for everyy P Y, the spectrum ofL(y) is purely singular continu-
ous.

The results apply to well-known substitutions like Fibonacci, Thue-Morse, as well as
period-doubling sequence and binary and ternary non-Pisot sequences. They also apply t
maps corresponding to any irrational angle and any half-open interval.

One might want to compare these results with those of Ref. 2. The period-doubling and
non-Pisot sequences are not obtained in Ref. 2. Note also that all examples of substit
sequences given in Ref. 2, but one, are covered by the methods of Ref. 1. Recall that the
of Bovier and Ghez in Ref. 2 uses thereduced trace mapandsemi-primitivesequences. We will
not describe their method here, but rather note that they need their sequences to containsquares,
i.e., identical consecutive blocks. In other words a purely combinatorial property of the seq
of potentials~to contain squares or to contain palindromes! implies results on the spectra.

The case of potentials given by the Rudin-Shapiro sequence is not covered by any o
two papers. It results from Ref. 1 that the corresponding spectrum has no absolutely cont
part, as the underlying substitution is primitive. But it is not known whether this spectru
purely continuous. In Ref. 1 the authors conjecture that the Rudin-Shapiro sequence is no
dromic, hence that their method does not apply. We will prove here this conjecture. More
cisely we prove that the Rudin-Shapiro sequence, but also the generalized Rudin-Shap
quences in the sense of Ref. 3, and the paperfolding sequences~see Ref. 13!, are not palindromic.

III. THE RUDIN-SHAPIRO SEQUENCE

Originally constructed by Shapiro14 and then by Rudin,15 the Rudin-Shapiro sequence can
defined byvn5(21)a(n), wherea(n) is the number of~possibly overlapping! blocks 11 in the
binary expansion ofn. This sequence has the unexpected property:14,15

sup
uP@0,1@

U (
n50

N21

vne
2ipnuU<CAN.

Note also that the spectral measure of the Rudin-Shapiro sequence is the Lebesgue m
although this sequence is deterministic. We recall that

~i! for any sequence (cn)n , one has:

AN5I (
n50

N21

cne
2ipnuI

2

<I (
n50

N21

cne
2ipnuI

`

5 sup
uP@0,1@

U (
n50

N21

cne
2ipnuU<N;

~ii ! if ( cn)n is a periodic~or even an almost-periodic! sequence, then
J. Math. Phys., Vol. 38, No. 4, April 1997
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sup
uP@0,1@

U (
n50

N21

cne
2ipnuU_̂N;

~iii ! for almost all~for the Lebesgue measure! sequences (cn)n , one has

sup
uP@0,1@

U (
n50

N21

cne
2ipnuU<AN logN.

Furthermore the spectral measure of almost all sequences is equal to the Lebesgue m
Another way of generating the Rudin-Shapiro sequence is the following. Consider the a

bet $A,B,C,D% and the substitutions defined on this alphabet by

s~A! 5 AB,

s~B! 5 AC,

s~C! 5 DB,

s~D ! 5 DC.

Define then the mapw:$A,B,C,D%→$21,11% by

w~A! 5 11,

w~B! 5 11,

w~C! 5 21,

w~D ! 5 21.

Then the Rudin-Shapiro sequence is the limit, ask goes to infinity, ofw(sk(A)). The sequence

lim
k→`

sk~A!5A B A C A B D B A B A C D C. . .

is sometimes called the Rudin-Shapiro sequence on four letters, whereas the sequence

lim
k→`

w~sk~A!!51111112111112111111111212121 . . .

is simply called the Rudin-Shapiro sequence. In what follows we ‘‘change the names’’ o
letters by considering sequences with values in$0,1%: we replace11’s by 0’s and21’s by
1’s. Hence the Rudin-Shapiro sequence is the sequence

0 0 0 1 0 0 1 0 0 0 0 1 1 1 . . . .

Of course this change of letters transforms palindromes into palindromes and conversely.

IV. PAPERFOLDING AND GENERALIZED RUDIN-SHAPIRO SEQUENCES

Paperfolding sequences are obtained by iterating an infinite number of times the opera
folding a piece of paper on itself. The interested reader can find in Ref. 13 and its bibliog
more details on paperfolding; he can also read Ref. 16. We give here a formal definition~note that
the indices of the paperfolding sequences will be taken in the setN*5N\$0% although all other
sequences in this paper have their indices inN). Furthermore, from now on, all the sequences
consider have their values in$0,1%.

Definition: A sequence(zn)n>1 with values in$0,1% is called a paperfolding sequence if
~i! ' i 0P $0,1%,;nP N, z2n11[ i 01n (mod 2).
J. Math. Phys., Vol. 38, No. 4, April 1997
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~ii ! The sequence(z2n)n is a paperfolding sequence.
In other words a paperfolding sequence is characterized by its ‘‘folding instructio

i m5z2m. Conversely, given a sequence (i m)m P $0,1%N, one can define a paperfolding sequen
(zn)n by

;m>0, ;k>0, z2m~2k11![ i m1k ~mod 2!.

To a paperfolding sequence (zm)m>1 one can associate a ‘‘generalized’’ Rudin-Shapiro
quence (vn)n>0 by

v050, ;n>0, vn5 (
k51

n

zk ~mod 2!.

One checks easily that, conversely,

;n>1, zn5vn1vn21 ~mod 2!,

thus the correspondence betweenz andv is bijective.
These sequences (vn)n>0 have been studied in Ref. 3 and they have the ‘‘Rudin-Sha

property’’

sup
uP@0,1@

U (
n50

N21

~21!vne2ipnuU<CvAN.

The spectral measure of a generalized Rudin-Shapiro sequence is also the Lebesgue m
Furthermore the usual~two-letter! Rudin-Shapiro sequence corresponds to the sequence (i m)m
defined by:

i 050; ;m>1, i m[m11 ~mod 2!.

The relations between the paperfolding sequences and the generalized Rudin-Shap
quences permit us to deduce properties of the factors~blocks! of the generalized Rudin-Shapir
sequences from properties of the factors of paperfolding sequences.17–19This remark will be used
in the next paragraph.

V. THE MAIN THEOREM

We prove in this section that, if a sequence is either a paperfolding sequence or a gene
Rudin-Shapiro sequence, then it does not contain arbitrarily long palindromes.

Theorem:
A paperfolding sequence does not contain palindromes of length>14.
A generalized Rudin-Shapiro sequence does not contain palindromes of length>15.

Proof: The proof will consist of three steps: we first show that it suffices to prove the resu
the paperfolding sequences. Second we study the palindromes of even length in a pape
sequence. The last step studies the palindromes of odd length in a paperfolding sequence

First step: Let (vn)n>0 be a generalized Rudin-Shapiro sequence and let (zn)n>1 be the
associated paperfolding sequence (zn5vn1vn21 modulo 2). Suppose that the sequencev con-
tains a palindrome of length.1. If this palindrome has even length, say 2d, with d>1, then there
exist an indexn>0 and lettersa1 , . . . ,ad in $0,1% such that

vnvn11 . . . vn1d21vn1d . . . vn12d215a1a2 . . .ad21adadad21 . . .a2a1 .

Hence, using the relation between the sequencesv andz, one has
J. Math. Phys., Vol. 38, No. 4, April 1997
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zn11 . . . zn1d21zn1dzn1d11 . . . zn12d215a21a1 . . .ad1ad210ad211ad . . .a11a2 ,

which gives a palindrome of length 2d21 for the sequencez.
If the palindrome inv has odd length, say 2d11 with d>1, then there exist an inde

n>0 and lettersa1 , . . . ,ad ,ad11 in $0,1% such that

vnvn11 . . . vn1dvn1d11vn1d12 . . . vn12d5a1a2 . . .ad21adad11adad21 . . .a2a1 .

Hence, using the relation between the sequencesv andz, one has

zn11 . . . zn1dzn1d11 . . . zn12d5a21a1 . . .ad111adad1ad11 . . .a11a2 ,

which gives a palindrome of length 2d for the sequencez.
This first step proves that it suffices to study the palindromes in the paperfolding sequ
Second step:Suppose that a paperfolding sequence, say (zn)n>1 , has a palindrome of even

length>8. Then this sequence contains necessarily a palindrome of length 8 that is a ‘‘su
indrome’’ of the previous one. Hence there exist an indexn>1 and lettersa,b,c,d in $0,1% such
that

znzn11 . . . zn175a b c d d c b a.

But we know from the definition of a paperfolding sequence that either

a c d b5aāaā,

if n is odd or

b d c a5bb̄bb̄,

if n is even, where we define 05̄1 and 1̄50.
In the first case one has

a b c d d c b a5aāāaaāāa

and in the second case

a b c d d c b a5b̄bbb̄b̄bbb̄.

So in both cases we have a square of length 234 in a paperfolding sequence, which contradi
Corollary 5.2 of Ref. 19.

Third step:Suppose now that the paperfolding sequence (zn)n>1 contains a palindrome of odd
length, say 2d11. Then there exist an indexn and lettersa1 , . . . ,ad ,ad11 in $0,1% such that

zn . . . zn1d21zn1dzn1d11 . . . zn12d5a1 . . .adad11ad . . .a1 .

As zn1d215zn1d115ad , the integern1d11 cannot be odd, hence it is even~from the definition
of a paperfolding sequence the subsequence for the odd indices is an alternating sequence!. So the
word

. . . zn1d23zn1d21zn1d11zn1d13 . . .5 . . .ad22adadad12 . . .

is a factor of a paperfolding sequence~definition of a paperfolding sequence!. This gives two cases
according to the parity ofd.

If d is odd, sayd52e11, then
J. Math. Phys., Vol. 38, No. 4, April 1997
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. . . zn1d23zn1d21zn1d11zn1d13 . . .5a1a3 . . .a2e11a2e11 . . .a3a1

is a factor of a paperfolding sequence. But this is a palindrome of length 2e12. From Step 2 we
know that 2e12<6, hence 2d1154e13<11.

If d is even, sayd52e, then

. . . zn1d23zn1d21zn1d11zn1d13 . . .5a2a4 . . .a2ea2e . . .a4a2

is a factor of a paperfolding sequence. But this is a palindrome of length 2e. From Step 2 we
know that 2e<6, hence 2d1154e11<13 and the theorem is proved.

Remark: What we proved actually is that the only possible lengths of palindromes f
paperfolding sequence are in the set:$1,2,3,4,5,6,7,9,11,13%. Hence the only possible lengths fo
a generalized Rudin-Shapiro sequence are in the set:$1,2,3,4,5,6,7,8,10,12,14%.
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Excitations in one dimension: A geometrical view
of the transfer matrix method

N. Destainvillea),b) and J. F. Sadocb)
Laboratoire de Physique des Solides, Baˆtiment 510, Universite´ de Paris Sud,
91405 Orsay, France
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The transfer matrix formalism is a useful tool for the study of excitations in one-
dimensional chains. The geometrical approach presented here maps the dynamic of
transfer matrix products onto a dynamic on the Poincare´ disc, a suitable model for
the hyperbolic plane. This mapping uses a fibration of the three dimensional mani-
fold on which the transfer matrices lie: the transfer matrix dynamic is mapped onto
a polygonal trajectory on the base of this fibration. The link between the behavior
of these trajectories and the spectrum of the system under study is discussed. We
particularly focus on approximants of quasiperiodic systems. We also give a geo-
metrical construction of the so-called trace-map for quasiperiodic systems.
© 1997 American Institute of Physics.@S0022-2488~97!01504-1#

I. INTRODUCTION

In the past, the problem of excitations of one-dimensional chains has been deeply in
gated, for example, from an electronic or vibrational point of view. Periodic and random c
have been particularly focused on. Recently, the discovery of quasicrystalline materials gen
new interest in this subject, since the paradigmatic model for one-dimensional quasipe
systems—the Fibonacci chain—raised new questions about the nature of its eigenspectrum1–6 A
method appears to be particularly adapted to the study of such one-dimensional systems:
transfer matrix formalism.7 Indeed, transfer matrices turn out to be a convenient tool for the s
of one-dimensional systems as soon as a linear link can be established between adjacent
groups of sites. In this paper, we shall focus on physical systems that can be modelled
order-two linear recursion:

t ic i211t ic i111a ic i50, ~1.1!

where the different parameters are real. Their significance is exemplified below in two diff
examples of phonons and electrons in one-dimensional~1D! structures when the Hamiltonian i
governed by nearest-neighbor interactions. In this paper, we propose an investigation
transfer matrix formalism based upon a geometrical approach. This paper follows a prelim
work by Sadoc and Mosseri.8

II. EXAMPLES

In the case of a tight-binding electron system,ci will denote the state amplitude at the sitei .
If Vi is the potential at the sitei ,t the hopping integral between two first neighbor sites,
Schrödinger equation associated with the energyE can be written

tc i211tc i111Vic i5Ec i . ~2.1!

a!Permanent address: Groupe de Physique des Solides, Universite´ Paris 7 et 6, 2 place Jussieu, Tour 23, 5e étage, 75005
Paris, France.

b!Electronic mail: destain@gps.jussieu.fr, sadoc@lps.u-psud.fr
0022-2488/97/38(4)/1849/15/$10.00
1849J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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Hence, we get the expected form for this equation ift i5t anda i5Vi2E. Note that here, we are
restricted to the so-calleddiagonaltight-binding problems where only the potential depends on
site, and not the hopping integral.

Let us consider now phonons on a linear chain. IfMi is the mass at sitei and t is the force
constant between two sites, and if we are looking for a displacement at sitei of the form
xi(t)5c ie

ivt then ~ci! is also a solution to Eq.~1.1! with a i5Mi .v
222t. The same remark a

above holds true about the diagonal character of this equation.
Equation~1.1! can also describe magnons on a spin chain. We shall not go into detail he

this point. The interested reader can refer to Ziman,9 Chapter 8.
In the following, for the sake of simplicity, we shall generally refer to the parameter~E, v2,

etc...! associated with a solution as the energy associated with this solution.

III. TRANSFER MATRIX FORMALISM

Equation ~1.1! can be written asc i1152(a i /t i)(c i2c i21). If we define the two-vector
C i as

C i5S c i11

c i
D , ~3.1!

we can rewrite this equation with a matrix:

C i5S 2
a i

t i
21

1 0
D C i215ViC i21 . ~3.2!

Vi5S 2
a i

t i
21

1 0
D

is called the transfer matrix. It is real and unimodular~its determinant is equal to 1!.
By definition ofVi , we also have

Cn5VnVn21 ...V1 .C0 . ~3.3!

Now, a solution~ci! is physically acceptable ifci does not diverge wheni tends to infinity. So
we are interested in the behavior ofAi5ViVi51...V1 in the limit i→`. And we shall consider this
problem from an abstract dynamical point of view, each left-product by a matrixVi :
Vi21...V1°Vi .Vi21...V1 being seen as a new step of the dynamics.

Note however that the use of transfer matrices is not restricted to discrete models and
extended to a wider class of problems. For example, consider the propagation of an electro
line in a continuous real potential.10,11This line is dissected into a succession of regions where
Schrödinger equation is solved separately. Then, on each regioni , this resolution links the value
of the wave functionfi and of its derivativef i8 on the left of the region with their respectiv
values on its right. The link is linear and, using the continuity offi andf i8 , it can be then be
written with a transfer matrixVi :

S f i

f i8
D5Vi S f i21

f i218 D . ~3.4!

This matrixVi is also unimodular~see for example Ref. 10!, and real, since the potential is rea
J. Math. Phys., Vol. 38, No. 4, April 1997
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IV. MAPPING ON H2

The goal of this section is to translate the dynamics of matrix products~3.3! into a dynamics
on the hyperbolic planeH2. This point of view has been developed by Sadoc and Mosse
Ref. 8.

In this section, the involved matrices are necessarily real and unimodular.

A. New basis

In the following, we want to work with matrices that have the canonical form

S a b̄

b ā
D . ~4.1!

This kind of matrix is called a Cayley matrix. For greater convenience, the above Cayley m
will be denoted by (a,b). Hence, we need a basis in which the real unimodular transfer mat
Vi have this Cayley form. Any basis in which any rotation matrix takes a diagonal form fulfills
requirement. For example, we choose the basis

e15
1

&

S 11D and e25
1

&

S i
2 i D . ~4.2!

For instance, in this basis, a matrix

SA 21

1 0 D
becomes the Cayley matrix~A/21i ,A/2!.

B. Dynamics on hyperboloids and on the Poincare ´ disc

The condition for a Cayley matrix to be unimodular isuau22ubu251. If the complex numbers
a andb are writtena5j11 i j2 andb5j31 i j4 , this means that~j1,j2,j3,j4! belongs to the three
dimensional~3D! hyperbolic hyper-surfaceS in R4 parametrized by

H j15cosu coshx
j25sin u coshx
j35cosv sinhx
j45sin v sinhx

where H u,vP@0,2p@
xPR1

. ~4.3!

Hence the matrix dynamics can be first mapped onto a dynamics onS . For a related work, see
Ref. 12.

If we compare now~4.3! to the parametrized equation of the sphereS3 in R4 ~toroidal
coordinates!

H x15cosu cosx
x25sin u cosx
x35cosv sin x
x45sin v sin x

where H u,vP@0,2p@
xP@0,p/2@

, ~4.4!

we realize the analogy existing between the two surfaces. And this analogy is now extended
fibration of these surfaces.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Indeed, if we write the points of unit radius onS3 as pairs of complex number
(u,v)5(x11 ix2 ,x31 ix4), such thatuuu21uvu251, the Hopf maph is then defined as the com
position of the mapf 1 from S3 to C ~including the point`! and of the inverse stereograph
projection f 2 from C to S2:

f 1 : S3→C

~u,v !°Q5uv21 u,vPC,
~4.5!

f 2 : C→S2

Q°M5~y1 ,y2 ,y3! yiPR .

A simple calculation leads to

H y152~x1x31x2x4!5sin~2x!cos~u2v!

y252~x2x32x1x4!5sin~2x!sin~u2v!

y35x1
21x2

22x3
22x4

25cos~2x!
. ~4.6!

The base of the fibration is then the 2-sphereS2. A fiber is the set of points ofS3 that are
projected byh on the same point ofS2. It must be emphasized that this base is not embedde
S3. Indeed, if it were embedded, each fiber would intersect it in two points, since a circle c
sphere in two points. This would be in contradiction with the fact that only one point on the
should characterize a given fiber.

More precisely, the 2-sphereS2 ~the base! is parameterized by two variablesu0 andx0, and in
the coordinates~4.4! the fiber corresponding to the base point~u0,x0! is a great circle parameter
ized by:u2v5u0 andx5x0/2. This is the Hopf fibration ofS3. A circle on the base, defined b
a constantx0, represents a torus inS

3. The sequence of ‘‘parallel’’ circles onS2 is the image under
h of a torus foliation ofS3, which appears naturally in theS3 toroidal coordinate system: a toru
is defined by a constantx parameter.

By analogy with this Hopf fibration ofS3, we can now define apseudo-Hopffibration of the
above hyperbolic hyper-surfaceS . The pseudo-Hopf map is the composition of a map fromS to
C, g1 :(a,b)°bā 21 and of the inverse stereographic projectiong2 from C to the hyperbolic
planeH2 represented by the upper sheetU of the 2D hyperboloid of equation2n1

22n2
21n3

251 in
R3. The equivalent of Equation~4.6! is

H n152~j1j32j2j4!5sinh~2x!cos~u1v!

n252~j2j31j1j4!5sinh~2x!sin~u1v!

n35j1
21j2

21j3
21j4

25cosh~2x!
. ~4.7!

The base of the fibration is thenH2. The fibers are also circles, parameterized by two real num
u0 andx0: u1v5u0 andx5x0/2. Their equations are

H j15cosu coshx0

j25sin u coshx0

j35cos~u02u!sinhx0

j45sin~u02u!sinhx0

. ~4.8!

The Euclidean radius of such a circle isAcosh(2x0). Note that in the metric associated to th
quadratic formj1

21j2
22j3

22j4
2, the radius of all these fibers is one.
J. Math. Phys., Vol. 38, No. 4, April 1997
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C. Mapping of the matrix trajectories

We wish now to describe what the trajectories of the matrix dynamics become when th
mapped onto the baseU. As a matter of fact, for representation convenience, the base points
be determined through the previous mapg1 only. That is, instead of following the dynamics onU,
we shall follow it on the image of the hyperbolic hypersurfaceS by g1. It is the Poincare´ disc.
The Poincare´ disc is a conformal representation ofH2. It is the disc inC of centerO and of radius
1. In this model, the geodesics are circles orthogonal to the boundary~the circle of centerO and
of radius 1!. This boundary is the set of points at infinity. Moreover, the hyperbolic metric is
given by

ds5
2udzu
12uzu2

. ~4.9!

An interesting class of objects are the horocycles. A horocycle is represented, in the Poinca´ disc,
by a circle tangent to the unit circle of points at infinity.

As already mentioned, the image on the Poincare´ disc of a matrix (a,b) is the complex
numberbā 21. First of all, if we consider only the sequence (An)nPN , it is mapped onto adiscrete
trajectory on the Poincare´ disc ~we recall thatAn is the product of then first transfer matrices
VnVn21...V1!. Unfortunately, this mapping implies a loss of information, since it goes from 3D
2D. Before going on, we must emphasize this point, and therefore analyze in detail the ac
a matrix product on the Poincare´ disc. If a matrixT is represented by a pointzT of the Poincare´
disc, then we want to know how to construct the pointzT8, which represents the matrixT85A.T
for any Cayley matrixA. We are going to see thatzT8, is the image ofzT under an adequate
isometric transformation of the hyperbolic plane.

It would be tedious to analytically make explicit this transformation of the hyperbolic pl
That is why we prefer a geometrical approach, which uses the pseudo-Hopf fibration of S
IV B.

More precisely, any Cayley matrix (a,b)5~eiu coshx,eif sinhx! can be decomposed in th
following matrix product:

~a,b!5~ei ~u2f!/2,0!~coshx,sinhx!~ei ~u1f!/2,0!. ~4.10!

In this product, the left and right matrices are standard rotation matrices, whereas the m
matrix is a hyperbolic rotation matrix. Now, as far as the dynamical process associated with
products is concerned, a product by a hyperbolic rotation matrix leads to a displacement
baseH2, and is then readable on this base. But, by a product by a standard rotation matrix,
remain globally invariant; that is a product by a standard rotation matrix does not involve
displacement onH2, and information is precisely lost in the sense that the products by stan
rotation matrices are therefore not directly readable onH2.

A way of keeping track of standard rotations is to drawcontinuoustrajectories, as was briefly
presented in Ref. 8. Indeed, let us first replace every left-product by a matrix~coshx, sinhx! by
the continuous set of left-products by the matrices~cosh~t.x!,sinh~t.x!! wheret is a real paramete
running through the interval@0,1#. Then we shall prove below that the set of points so obtaine
the Poincare´ disc is an arc of geodesic of hyperbolic length 2x. Besides, we shall also prove th
the product by a matrix

~coshx2 ,sinhx2!~e
il,0!~coshx1 ,sinhx1! ~4.11!

is then represented by two arcs of geodesics making an angle 2l ~see Fig. 1!. So this representa
tion keeps track of hyperbolic rotations, as arcs of geodesics, and of standard rotations, as
between these arcs.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Let us now prove both previous statements. First, let us prove that whentP@0,1#, M (t)
5~cosh(xt), sinh(xt)!(a,b)5~cosh(xt)a1sinh(xt)b,sinh(xt)a1cosh(xt)b! describes an arc o
geodesic of length 2x. The image ofM (t) on the Poincare´ disc is zM (t)5@b1a tanh(xt)#/
@ā1b̄ tanh(xt)#.

Now it can be checked that the Moebius transformationf :z°(b1az)/(ā1b̄z) is an isometry
of the Poincare´ disc. The same then holds forf21. Hence whent runs through @0,1#,
f21(zM (t))5tanh(xt) runs through the segment@0,tanhx#. It is an arc of geodesic of hyperboli
length 2x. Hence its image [zM (0),zM (1)] is also an arc of geodesic of length 2x.

Now we need to prove that if (a,b) is first multiplied by a standard rotation matrix~eil,0!,
then the set of matricesM 8(t)5~cosh(xt),sinh(xt)!(eil,0)(a,b) whent runs through@0,1# is also
an arc of geodesic of length 2x but making an angle 2l with the previous one. Indeed
zM8(t)5@b1ae2il tanh(xt)#/@ā1b̄e2il tanh(xt)#. So f21(zM (t))5e2il tanh(xt). Hence, whent
varies, we get the segment@0,e2il tanh~x!#. This is an arc of geodesic. It makes an angle 2l with
@0,tanh~x!#. Sincef21 is a conformal map, [zM8(0),zM8(1)] makes an angle 2l with [zM (0),zM (1)].

That is what we aimed to prove. h

D. Trajectories and states

First, let us remark that the action by left-product of a Cayley matrix (a,b) on another Cayley
matrix (u,v) is the same as the action of this former matrix on the vector (v

u). In other words, if
(s
t )5(a,b)(v

u) then we also have the relation (t,s)5(a,b)(u,v) @where (t,s) and (u,v) are 2 by
2 matrices associated with the above vectors (s

t ) and (v
u)#.

Hence, with the previous notations, if in the basis (e1 ,e2) the vectorCi has coordinates
(yi
xi), then we have the matrix relation

~xn ,yn!5VnVn21 ...V1~x0 ,y0!. ~4.12!

So the trajectory (x0 ,y0)→(x1 ,y1)→...→(xn ,yn) is the same as the trajectoryId→A1→...→An

up to a shift of the origin. As a conclusion, the continuous matrix trajectory can also be see
state trajectory. We have not yet developed an analysis of these trajectories in terms
associated nature of the eigenstates~extended, critical,...!.

FIG. 1. Continuous representation of~coshx2, sinhx2! ~eil,0! ~coshx1, sinhx1!: two arcs of geodesics of respectiv
lengths 2x1 and 2x2 making an angle 2l. In the following figures, for the sake of simplicity, the hyperbolic arcs
geodesics will not be represented by circle arcs anymore but by straight segments.
J. Math. Phys., Vol. 38, No. 4, April 1997
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E. Remark on the choice of the fibration

The above mappingg1 from the hypersurfaceS to the Poincare´ disc could have been chose
as (a,b)°ab21. In this case, we would have obtained a different fibration of the hypersurfacS .
In fact the fibers would have been the images of the previous fibers by the transform
~j1,j2,j3,j4!°~j3,2j4,j1,j2!.

In this fibration, the matrix product by (a,b) would have been represented by the usua
associated Moebius transformationM2:z°(az1b̄)/(bz1ā).13,14Then the decomposition~4.10!
of (a,b) would have been represented on the Poincare´ disc by a decomposition of this latte
Moebius transformation. But in this decomposition, the product by a standard rotation m
would not have let fibers be globally invariant, which turns out to be a very convenient sim
cation, and the product by a hyperbolic rotation matrix could not have been simply represen
arcs of geodesics.

Hence we insist on the fact that the above transformationM1 is different from the transfor-
mationM2 usually associated with a Cayley matrix in the hyperbolic plane.

13,14The focus of such
a choice is that the matrix dynamic receives a nice geometrical interpretation in terms of a
geodesics separated by angles. The counterpart of this choice is that the transformationM1 itself
depends on the matrix to which it is applied. Indeed, for instance, even though (a,b) and
(eil,0)(a,b) are represented on the Poincare´ disc by the same pointbā 21, the left-product by a
matrix (u,v) will not be represented by the same transformation because of the phase faceil

which implies a rotation of the whole problem.

V. MATRIX CLASSIFICATION

Our goal now is to characterize the spectrum of the models described by the transfer
formalism in geometrical terms. We first need to classify Cayley matrices in three categ
hyperbolic, parabolic and elliptic matrices.7 Note that for any Cayley matrix (a,b), its tracea1ā
is real. Generally speaking, we say that a matrixM is

~i! hyperbolicif ~1/2 TrM !2.detM ;
~ii ! parabolic if ~1/2 TrM !25detM ;
~iii ! andelliptic if ~1/2 TrM !2,detM .

This character~hyperbolic, parabolic or elliptic! will be called, in the following, the nature of th
matrixM . When detM51, the trace must be compared to 2 to determine the nature ofM .
Remark:we define the nature of a Moebius transformationM2:z°(az1b̄)/(bz1ā) as the
nature of the associated matrix (a,b). A priori, the nature ofM1 is different from the nature of
M2. This point is discussed in the following.

VI. APPLICATION TO PERIODIC SYSTEMS

We analyze now the case of a periodic~infinite! chainVV...V..., represented by a sequence
pointsM0 ,M1 ,...,Mn ,... in the Poincare´ disc. Even if the multiplication by thenth V matrix a
priori depends onn, since it is applied toVn21, which itself depends onn ~Section IV E!, we shall
prove thata posteriori, there exists a Moebius transformationf so that

M0°
f
M1°

f
M2°

f
... . ~6.1!

Thanks to the previous geometrical developments, this analysis can be done in elem
geometrical terms. Indeed, ifV 5 (ei (u2f)/2,0)~coshx,sinhx!(ei (u1f)/2,0), then

...VVV...5...~eiu,0!~coshx,sinhx!~eiu,0!~coshx,sinhx!... . ~6.2!
J. Math. Phys., Vol. 38, No. 4, April 1997
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The action of the periodic chain is then represented by a succession of arcs of geode
length 2x separated by angles of measure 2u. Consider now Fig. 2, where we definedp as the
segment bissector of the arc of geodesic [MpMp11] and dp as the angle bissector o
(MpMp11M̂ p12).

Let sp ~resp.sp! be the symmetry through the geodesicdp ~resp.dp!. Let f p5spsp . Then
f p(Mp)5Mp11 and we prove now thatf p does not depend onp, and is then the above sough
function f .

Indeed, dp115sp(dp). Hence sp115spspsp
215spspsp . dp115sp(dp). Hence

sp115sp11spsp115spspspspsp . Hencef p115sp11sp115spsp5 f p , using againsp
25sp

25Id.
Now the nature off depends on whetherdp anddp ~or equivalentlyd1 andd1! intersect or not.

Indeed, it can be proved thatd1ùd1ÞB if and only if sinu>tanhx and that the intersection poin
is then at a Euclidean distance sinu/tanhx 2 A(sinu/tanhx)221 from the centerO of the Poincare´
disc. Note that with this condition,uTr Vu52ucosu coshxu<2 and thenV is elliptic. Moreover,f is
the composition of two symmetries through secant geodesics and is then a rotation that is
elliptic Moebius transformation. Hencef and V have the same nature~more precisely,f is a
rotation of centerd1ùd1 and of angle 2f where 1/2 TrV5cosf!.

Similarly, d1ùd15B if and only if sinu,tanhx. Then uTr Vu52ucosu coshxu>2. V is hy-
perbolic. f is the composition of two symmetries through nonsecant geodesics and it c
proved thatf is therefore hyperbolic.

At last, in the limit case in whichd1 and d1 are parallel~they intersect at infinity!, sinu
5tanhx. uTr Vu52.V is parabolic, asf . Note that the trajectory tends to infinity on a circle tange
to the circle at infinity. This trajectory is therefore a horocycle.

The above considerations are important, since they enable us to give a geometrical cha
ization of the spectrum. Indeed, it is easily proved that a solution~ci! to a periodic system is
physically acceptable if the trace of its transfer matrix is less than 2, or in other words i
matrix is not hyperbolic. And this can be directly read on the behavior of the trajectory o
Poincare´ disc at inifinity: if this trajectory is bounded, the solution is acceptable~the energy under
consideration is in the spectrum!, if the trajectory diverges, the energy falls into a gap. The lim
case in which the trajectory is a horocycle corresponds to a band edge.

FIG. 2. Action of the periodic matrix chain ...VVV... .
J. Math. Phys., Vol. 38, No. 4, April 1997
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Remark:the case of a periodic chain with a nonperiodic arrangement of site types inside th
cell is equivalent to the previous one, if the transfer matrixV is replaced by the product of th
elementary transfer matrices throughout the unit cell. In particular, the link between the be
of the trajectories and the spectrum is the same. These considerations will be useful
following.

VII. APPLICATION TO QUASIPERIODIC SYSTEMS

We shall not define here quasiperiodic systems. The reader can refer for instance to Re
or 3. We shall nevertheless explain here how to build the Fibonacci chain, the one-dimen
paradigmatic model for quasiperiodic systems.

The Fibonacci chain is an infinite two-letter word, that is an infinite sequence ofA’s andB’s.
It is simply defined by a substitution algorithm:

HS05A and S15AB
Sn5Sn21%Sn22

, ~7.1!

where % is the concatenation symbol. For example,S25ABA, S35ABAAB,
S45ABAABABA,... . The Fibonacci chain is the limit chain whenn→`. Note that a periodic
chain of elementary cellSn is called an approximant of ordern.

The length ofSn , that is the number of letters inSn , is then given by the~n11!th Fibonacci
numberFn11 defined byF05F151 andFn115Fn1Fn21.

We consider now so-called one-dimensional quasiperiodic systems where the lettersAB are
replaced by sites of ‘‘type 1’’ or ‘‘type 2’’: this is what we call one-dimensional quasiperio
systems. In our viewpoint, they will be seen as systems with two types of transfer matrices,U and
V.

Even if we are then interested in the transfer matrices associated with such quasip
systems, the transfer matrices of approximants are also of interest. Thanks to the very simp
of the substitution algorithm, the transfer matrices of cellsSn have a simple expression, als
defined by induction: ifTn 5 AFn

then

Tn115Tn21Tn . ~7.2!

It can then be proved15,16 that the half-tracexn51/2 TrTn verifies the recursion formula:

xn1152xnxn212xn22 , ~7.3!

called the trace-map formula~see Refs. 7, 17, and 18 for a general presentation of the trace-m!.
Its interest clearly appears if we remember the above considerations about the trace of an
dular operator and its link to the spectrum: Equation~7.3! will be easily iterated to check whethe
the energy is in the spectrum of an approximant or not.

Besides, it is also a common result15,16,18that I5xn11
2 1xn

21xn21
2 22xn11xnxn21 is an invari-

ant of this map.

A. Geometrical interpretation of the trace-map

In this subsection, we wish to get a geometrical construction of the trace-map recursion~7.3!
in the hyperbolic plane.

First, it is worth emphasizing that this construction is not directly related to the geome
construction of the matrix products previously presented. Indeed, here, only the matriceAFn
5T n , Fn still being thenth Fibonacci number, will be analyzed. In other words, we want
translate in geometrical terms the relationxn1252xn11xn2xn21.
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



I, a

he
i-

on of
e
s
e
o

tion

atrix,
ation

1858 N. Destainville and J. F. Sadoc: Excitations in one dimension: A geometrical view

¬¬¬¬¬¬¬¬¬¬
The product by the matrixTn is represented by the rotation as described in Section V
rotation of centercn , and of angle 2fn in the hyperbolic plane. Sincexn5cosfn , our goal is to
build geometricallyfn12 oncefn21, fn andfn11 are known.

Let M0 be any point of the Poincare´ disc representing any Cayley matrix on which t
considered matrices will act. LetM1 be the image ofM0 by the rotation associated to the mult
plication byTn , andM2 the image ofM1 by the rotation associated to the multiplication byTn21.
ThenM2 is the image ofM0 by the rotation associated to the multiplication byTn11.

We now use the usual trick in Euclidean geometry to build the center of the compositi
two rotations: the rotation of centercn and of angle 2fn is the composition of two symmetries, on
through a geodesicd and the other through the geodesic (cncn21), such that these two geodesic
make an anglefn . The rotation of centercn21 and of angle 2fn21 is also such a composition. Th
symmetries are now through (cncn21) and another geodesicd8. Hence the composition of the tw
rotations~representingTn115Tn21Tn! is the composition of the symmetries throughd and d8.
Hencecn115dùd8 and (d,d8 )̂ 5 fn11. These results are exemplified in Fig. 3.

We now add a step to this construction, that is we construct the imageM3 of M0 by the
rotation associated toTn12. We nevertheless need to be careful here: in the rela
Tn125TnTn11, even if Tn is the same matrix as in the relationTn115Tn21Tn , the associated
transformation is not the same as in this latter relation, since it is not applied to the same m
as is explained in Section IV E. More precisely, in this latter relation, the center of the rot
associated withTn is the image by the rotation associated withTn11 ~of centercn11! of cn . We
denote this new center bycn8 . Moreover, the arc of geodesic representing the multiplication byTn

FIG. 3. Composition of transformations, associated to the matrix relationTn115Tn21Tn .
J. Math. Phys., Vol. 38, No. 4, April 1997
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in TnTn11 is the image by the same rotation of the arc of geodesic representing the multiplic
by Tn in Tn21Tn . This is schematicized in Fig. 4.

If we now look closer at the triangles (cn21,cn ,cn11) and (cn8 ,cn11 ,cn12), sincecn8 is the
image of cn by a rotation of centercn11, icn8cn11i5icncn11i5a. Hence, the triangle
(cn8 ,cn11 ,cn12) can be reversed and shifted to obtain a configuration as in Fig. 5. Note, in
figure, the equality of the angles (cn11cncn21̂) and (cn12cn8cn11̂).

FIG. 4. StepsTn115Tn21Tn and Tn125TnTn11. Note thatcnÞcn8 . The segments schematize the arcs of geode
representing the multiplications by the matricesTn21,...,Tn12.

FIG. 5. Iterative construction of the sequence~fn!: the pointscn andcn8 are merged. We go on denoting the points byci
even if we should change their names since the triangles have been reversed and shifted.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Hence we get a recursive construction of the anglesfn : fn12 is the angle between the lin
(cn21cn11) and the image of the line (cn21cn) by the symmetry through the line (cncn11), and
cn12 is the intersection of these two geodesics. This process can be easily iterated, sin
triangle (cncn11cn12) at the stepn11 is identical to the triangle (cn21cncn11) at the stepn.
Remark:the trace-map relation between the tracesxn5cosfn can be directly derived from Fig. 5
Indeed, by hyperbolic geometry arguments, using the trigonometric relations in a hype
triangle, one gets cosfn121cosfn2152 cosfn cosfn11.

We can wonder what happens when this construction process fails, that is when th
(cn21cn11) and the symmetric of the line (cn21cn) do not intersect. In fact, in this case, th
construction can be done one more time if the latter intersection is supposed to have occur
infinity’’, or in other words if cn125`. Since (cncn12) is the symmetric of (cncn21) through
(cncn11) and (cn11cn12)5(cn11cn21), there will be no ambiguity in the algorithmic constru
tion for cn13.

Then two cases may appear. If this procedure fails again forcn13, that is if the geodesics do
not cross, then this means that we are not in the spectrum. If the pointcn13 does exist in the
Poincare´ disc, the process can be continued.

Indeed, this follows from the property of the trace-map: if the energy is in the spectrum
if there existsi such thatuTr Ti u.2 then uTr Ti11u<2. Now, the nonconstructability ofci means
that there cannot existfi such that TrVi52 cosfi or in other words thatVi is elliptic. Hence if we
are in the spectrum, the above property implies thatcn12 and cn13 cannot be simultaneousl
nonconstructable.

B. Spectral properties displayed in the Poincare ´ disc

As was previously mentioned, an approximant is a periodic chain whose elementary ce
partSn of the quasiperiodic chain. As it was remarked in Section VI, it can therefore be treate
the above method for periodic systems: a gap is an interval where the trajectory diver
infinity. For example, Fig. 6 exhibits the trajectory representing the matrices of the unit cel
big approximant~N5377 matrices!, whenv2 varies between 0.79 and 0.83. For the central val
~v2P@0.802;0.82#!, the trajectory rapidly diverges with hyperbolic behavior: these values lie
gap. For the extremal values, the trajectory is bounded in the Poincare´ disc: these values are in th
spectrum~Remark:for the ‘‘central’’ valuev250.81, the divergence seems to be very fast: t
value is close to the center of the gap!.

Note the self-similar structures of these intricated trajectories. This is related to the fac
the unit cell has been built through the substitution definition of the quasiperiodic chain@see
Equation~7.1!#.

Now, there is a convenient manner in which to synthesize the results concerning a
periodic approximant on a single plot: letd be the Euclidean distance from the center of t
Poincare´ disc to the center of the transformation associated with the transfer matrix of the ele
tary cell; it consists of plottingd as a function of the energy. When the associated Moe
function is hyperbolic, it has no center, andd is chosen to be equal to one. This is shown in F
7 in the case of phonons. The first approximant plots are given. We remark that the band st
clearly appears on these plots: a band is a region where the distance is strictly lesser than

We also notice on the self-similar structure of these bands: the first band is said to beb1
type. At the first step, it is replaced by two bands, which we claim to be ab1 band and ab2 band.
Then at each step, when the sizen of the approximant is increased by one, ab1 band is replaced
by two close bands, ab1 and ab2 band, and ab2 band is replaced by a singleb1 band.
J. Math. Phys., Vol. 38, No. 4, April 1997
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FIG. 6. Trajectories in the case of phonons on a quasiperiodic chain of lengthN5377. The squared pulsationv2 varies
between 0.79 and 0.83. The ratio between the two types of masses is 1.2. Note that the chosen values forv2 are note
regularly distributed on the interval under study.
J. Math. Phys., Vol. 38, No. 4, April 1997
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VIII. CONCLUSION

We have established a link between abstract matrix dynamics in relation to transfer m
methods, and continuous trajectories on a model of the hyperbolic plane, the Poincare´ disc. The
different behaviors of these trajectories have been related to the spectrum of the models
study: if the trajectory rapidly diverges~with a hyperbolic behavior!, the energy is in a gap; if the
trajectory is bounded, the energy is in the spectrum; if the trajectory slowly diverges~with a
parabolic behavior! on a horocycle, the energy is at a band edge. Hence, this method provi
geometrical description of the spectrum of systems that can be described by a transfer
formalism. This is applied to simple periodic systems as well as to approximants of quasipe
ones. However, all the topics concerned by this analysis have not yet been tackled and d
deeper study.

FIG. 7. Distance from the center of the Poincare´ disc to the center of the transformation as a function ofv2, in the case of
phonons.
J. Math. Phys., Vol. 38, No. 4, April 1997
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First, we have not analyzed if a derived geometrical method could be applied to the e
states rather than to the transfer matrices themselves. Indeed, as was remarked in Section
to a shift of its starting point, a trajectory will represent a matrix dynamic as well as a state
instance, it should be worth investigating the link between the behaviors of these trajectori
the criticality of eigenstates.

Moreover, the phase of the center of the transformation associated with the transfer ma
the case of approximants deserves closer analysis: for example, we have not gone deeper
study of its behavior as a function ofv in the case of phonons. However, the phases assoc
with the gaps are likely to follow an interesting law, which could, for example, lead to
labeling.

Last, as Fig. 7 suggests, there could be a possible link between the band structures re
the distance from the center of the transformation to the center of the Poincare´ disc, and the
approximant density of states.
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Taming of the wild group of magnetic translations
Peter Vargaa)
Institute of Mathematics and Informatics, Lajos Kossuth University, H-4010 Debrecen,
Hungary

~Received 9 December 1996; accepted for publication 14 January 1997!

We use a theorem of Auslander and Kostant on the representation theory of solv-
able Lie-groups for the study of some groups necessary for the description of
certain quasi-periodic systems of solid-state physics. We show that the magnetic
translation group is tame~Type I! if the magnetic field is not constant but fluctu-
ating. © 1997 American Institute of Physics.@S0022-2488~97!00704-4#

I. INTRODUCTION

Lie-groups are divided into two classes~Types I and II! according to the behavior of thei
representations.1 The unitary representations of Type I~tame! groups have essentially uniqu
decompositions into irreducible representations, while in the case of Type II~wild! groups such
decomposition can be highly nonunique. Finite groups, semisimple and nilpotent Lie-grou
tame, while infinite discrete groups~except those which contain an Abelian subgroup of fin
index! are wild. The type of a solvable Lie-group is determined by the behaviour of its coad
orbits. According to a theorem of Auslander and Kostant,2 a solvable Lie-group is tame if and onl
if the set of its coadjoint orbits are separable and their standard symplectic two-forms are
This theorem provides a fairly convenient method to prove the wildness of some solvable g
The notation of Type I and II representations comes from the theory of von Neumann alg
This operator algebraic aspect might be especially relevant in physical applications, where
interested in the properties of the representations of the enveloping algebra. However, w
little to say about this topic in the present paper.

In Kirillov’s book3 two simple examples of wild solvable groups are given. These exam
are not just mathematical curiosities, but they emerge naturally in the description of some
periodic systems in solid-state physics. Kirillov’s first example has the following physical rea
tion: The functionsa cosx, a sinx, b cosax, b sinax, and the derivation]x form a five dimen-
sional Lie-algebra. Ifa is irrational, then its Lie-group is wild. These operators are the build
blocks of the Hamiltonian of an electron moving a quasi-periodic cosine potential.

The Lie-algebra of the second example can be represented by operators which are ne
for the description of the motion of an electron in two dimension under the influence of per
cosine potentials and uniform magnetic field. The corresponding group contains the ma
translation group.4,5

The physics of quasi-periodic systems has many characteristic features like the unusu
structure, various types of~de!localizations, etc.6 The wildness of the groups in these examp
foreshadows the appearance of such features, so the theorem of Auslander and Kostan
used to predict the qualitative nature of physical systems connected with solvable Lie-grou
particular, we show that if the Lie-algebra of the magnetic translation group is extende
generators generating fluctuations of the magnetic field, then the corresponding Lie-gro
comes tame, so in that case the unusual fractal band structure is not expected.

In the next section we re-present the examples of Ref. 3 and give physical realizations
wild solvable groups. We also determine how the characters of the systems change if
parameters like the magnitude of the potential and magnetic field are allowed to fluctuate
paper is basically an extra exercise for the last section of Ref. 3.

a!Electronic mail: varga@math.klte.hu
0022-2488/97/38(4)/1864/6/$10.00
1864 J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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II. SOLVABLE LIE-GROUPS IN SOLID-STATE PHYSICS

Let us first recall the notation of coadjoint orbits. LetG be a Lie-group,g its Lie-algebra, and
g* its dual. The coadjoint action ofG on g* is defined by

^Adg* j,AdgX&5^j,X&, jPg* , XPg, gPG. ~2.1!

By differentiating Eq.~2.1! we obtain

^adX* j,Y&52^j,@X,Y#&. ~2.2!

On the orbitsVj0
5$Adg* j0 ,g P G% adX* is represented by a vector fieldfVj0

(X). The symplectic

two-form BV on V is given by

BVj
~ fVj

~X!, fVj
~Y!!~j!5^j,@X,Y#&. ~2.3!

A theorem of Auslander and Kostant characterizes the simply connected solvable Type
groups:

Theorem 1: Let G be a simply connected solvable Lie-group. The G is Type I (tame) if
only if

~1! all coadjoint orbits of G are Gd sets (i.e., they are countable intersections of open sets) in
usual topology ong.

~2! The symplectic forms BVj
are exact for allj P g* .

We use this theorem for the study of some Lie-groups connected with the theory of q
periodic systems in solid-state physics.

The simplest example of wild groups is the five-dimensional Mautner group3 consisting of
certain 333 complex matrices:

g~ t,w,z!5S eit 0 z

0 eiat w

0 0 1
D , tPR, z,wPC, ~2.4!

wherea is a fixed irrational number. The non-zero commutators of the Lie-algebra of this g
are

@P,S1#5C1 , @P,Sa#5aCa ,

@P,C1#52S1 , @P,Ca#52aSa .
~2.5!

Operators satisfying the same algebra occur in the theory of one-dimensional quasi-p
systems. A representation of Eq.~2.5! is provided by the following operators acting o
L2(R,dt):

P5] t ,
S15a sin~ t1f1!, Sa5aa sin~at1fa!,

C15a cos~ t1f1!, Ca5aa cos~at1fa!.
~2.6!

A representation with differenta18 ,aa8 ,f18 ,fa8 parameters is isomorphic to Eq.~2.6! iff
a15a18 , aa5aa8 andf12f/a5f182f8/a12mp12np/a for somem,n P Z. One can build
the Hamiltonian of an electron moving in a quasi-periodic cosine potential out of these oper

H52 1
2 1a1 cos~ t1f1!1aa cos~at1fa!52 1

2P
21a1C11aaCa . ~2.7!
J. Math. Phys., Vol. 38, No. 4, April 1997
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In Ref. 3 two inequivalent decompositions of the regular representation of Eq.~2.4! into
irreducible ones are presented. Inequivalent decompositions of a representation of Eq.~2.5! oc-
curred in the physics literature, too. It was noted in Ref. 7–10 that although Eq.~2.7! has no
translational symmetry, it is not completely random either. By adding an extra dimension,
lations by 2p and 2p/a can be executed in separate dimensions. For that purpose, we co
the following representation of Eq.~2.5! on L2(R2,dxdy):

P5]x1]y ,
S15a1 sin x, Sa5aa sin ay,

C15a1 cosx, Ca5aa cosay.
~2.8!

SinceP is the generator of translations only along the linesl c :y5x1c, the representation~2.10!
is decomposable into irreducible representations acting on the Hilbert-spacesL2( l c). These rep-
resentations are isomorphic to Eq.~2.6! with parametersf150, fa5ca. A different decompo-
sition of L2(R2,dxdy) is based on the periodicity of Eq.~2.8! on the xy-plane. The operator
H521/2P21a1C11aaCa is indeed invariant against the translations (x,y)→(x12p,y) and
(x,y)→(x,y12p/a). The translational symmetry entails the existence of Bloch wave-funct

c~x12p,y!5eisc~x,y!, cS x,y1
2p

a D5eitc~x,y!. ~2.9!

The operators acting on such wave functions for fixeds and t provide exactly the infinitesima
form of the irreducible representation occurring in the second decomposition of the regula
resentation in Ref. 3. Indeed, if we introduce the periodic functions

c̃~x,y!5e2 i ~sx1tay!c~x,y!, ~2.10!

then the operators~2.8! act onc̃ as

P̃5]x1]y1 i ~s1at ! ~S1 ,C1 ,Sa ,Ca are unchanged!. ~2.11!

Since c̃ is periodic, we can regard it as a function defined on the to
S13S15@0,2p)3@0,2p/a). The action of the operators~2.11! on L2(S13S1) is irreducible. The
existence of representations with Bloch wave-functionals does nota priori imply the occurrence
of extended states in the physical representation Eq.~2.8!. Indeed, as it was stressed in Ref. 1
inequivalent representations of the same algebra might have very different spectral and lo
tional properties. Never the less, the existence of extended states in this system was estab
Refs. 12–14.

Next we study the effect of the fluctuation of the magnitude of the potential. For this pur
we add the generatorM5]a to the operators of Eq.~2.6!. M changes the amplitudes of th
potentialsS1 andC1 . To keep the algebra closed we need to add the operatorsS05 sin(t1f1) and
C05 cos(t1f1) to ~2.6!, too. The extra non-zero commutators~compared to Eq.~2.5!! of the
extended Lie-algebrag are

@P,S0#5C0 , @P,C0#52S0 , @M ,S1#5S0 , @M ,C1#5C0 . ~2.12!

The Lie-groupG of g has a representation by 434 matrices

g~ t,a,u,w,z!5S eit a 0 u

0 eit 0 z

0 0 eiat w

0 0 0 1

D , a,tPR, u,w,zPC. ~2.13!
J. Math. Phys., Vol. 38, No. 4, April 1997
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If g* is represented by matrices of the following form

j~t,p,l ,m,!5S i t 0 0 0

p 0 0 0

0 0 0 0

l m n 0

D , t,tPR, l ,m,nPC, ~2.14!

so the pairing betweeng andg* is

^j,h&5R~Tr~jh!!, jPg* , hPg, ~2.15!

then the coadjoint action is

Adg~ t,a,u,w,z!
* j~t,p,l ,m,n!5j~t1I~ lu1zm1anw!,p2R~ lz!,le2 i t ,me2 i t2R~ lz!,ne2 iat!.

~2.16!

The four-dimensional orbits are given by the parametric equations

l5 l 0e
it , n5n0e

iat. ~2.17!

Since the orbits are dense subsets of the sets

u l u5 l 0 , unu5n0 ~2.18!

the first criteria of the Auslander–Kostant theorem fails, so the group remains wild despi
fluctuation of the potential.

In the following we turn our attention to Kirillov’s second example of wild groups. This gro
is closely related to the magnetic translation group, whose Type II nature at irrational ma
flux was pointed out by Ref. 15. This is a seven-dimensional Lie-algebra whose nonzero co
tators are

@Px ,Py#52B,
@Px ,Sx#5Cx , @Py ,Sy#5Cy ,

@Px ,Cx#52Sx , @Py ,Cy#52Sy .
~2.19!

This algebra is represented by the operators

P̂x5 i ]x2by, Ĉx5 cosx, Ĉy5 cosy,

P̂y5 i ]y1bx, Ŝx5 sin x, Ŝy5 sin y,
B̂5b, ~2.20!

on L2(R3,dx dy dz). The Hamiltonian of an electron moving in constant magnetic field i
periodic crystal can be formed out of these operators:

Ĥ5 P̂x
21 P̂y

21Ĉx1Ĉy. ~2.21!

If we regard the generators as linear functions ong* , then the coadjoint orbits are

Cx
21Sx

25r 1
2 , Cy

21Sy
25r 2

2 , B5r 3 . ~2.22!

If the orbits are parametrized as

Cx5r 1 cosf, Sx5r 1 sin f, Cy5r 2 cosc, Sy5r 2 sin c, ~2.23!

then the symplectic two-formBV is

BV5df`dPx1dc`dPy12r 3df`dc. ~2.24!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Since

E
$Px5Py50, B5r3%

BV58p2r 3 , ~2.25!

BV is not exact, so the second criteria of the Auslander–Kostant theorem fails, consequen
group of magnetic translations is wild.

Now let us see what happens if the external magnetic field is dynamical, too. To descri
fluctuation ofb we extend the set of generators~2.22! by Ê5 i ]b . In order to keep the commu
tators closed, we need to adjoin the operatorsŶ52 i @Ê,Px̂# andX̂5 i @Ê,P̂y#, too. So the follow-
ing eleven-dimensional Lie-algebra is necessary to describe the coupled system of an elect
the fluctuating external magnetic field:

@Px ,Sx#5Cx , @Py ,Sy#5Cy , @Px ,X#5I ,

@Px ,Cx#52Sx , @Py ,Cy#52S, @Py ,Y#5I ,
~2.26!

@E,Px#52Y, @Px ,Py#52B,

@E,Py#5X, @E,B#5I .
~2.27!

If we use the generators of the Lie-algebra as linear functions ong* then the coadjoint action
corresponds to the following vector fields:

VPx
52Cx]Sx1Sx]Cx12B]Py1Y]E1I ]Y ,

VPy
52Cy]Sy1Sy]Cy22B]Px2X]E1I ]X ,

~2.28!

VSx
5Cx]Px, VSy

5Cy]Py,

VCx
52Sx]Px, VCy

52Sy]Py,

VB52I ]E , VE5I ]B2Y]Px1X]Py,

VX52I ]Px, VY52I ]Py,

~2.29!

VI50. ~2.30!

Note that] I does not occur in these expressions, soI5I 05const. on each orbit. The form o
VPx

andVPy
implies that

Cx
21Sx

25r x
2 , Cy

21Sy
25r y

2 , ~2.31!

while Eq. ~2.29! entails

L~$VX ,VY ,VE ,VB%!5L~$]Px,]Py,]E ,]B%!. ~2.32!

So the orbits are generated by the vectors]Px,]Py,]E ,]B and by

ṼPx
52Cx]Sx1Sx]Cx1I 0]Y , ṼPy

52Cy]Sy1Sy]Cy1I 0]x . ~2.33!

The integral manifolds of these vectors are

Cx5r x cosf, Sx5r x sin f, Y5I 0~f1f0!

Cy5r y cosc, Sy5r y sin c, X5I 0~c1c0!,
~2.34!
J. Math. Phys., Vol. 38, No. 4, April 1997
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while E,B,Px ,Py are arbitrary. So the maximal dimensional orbits are homeomorph toR6. Since
H2(R6)50, the symplectic two-formBV is necessarily exact. Consequently this extension of
magnetic translation group is tame!
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Spectral correlations in the crossover between GUE
and Poisson regularity: On the identification of scales

Thomas Guhr and Axel Müller-Groeling
Max-Planck-Institut fu¨r Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany

~Received 15 July 1996; accepted for publication 2 January 1997!

Motivated by questions of present interest in nuclear and condensed matter physics
we consider the superposition of a diagonal matrix with independent random en-
tries and a GUE. The relative strength of the two contributions is determined by a
parameterl suitably defined on the unfolded scale. Using results for the spectral
two-point correlator of this model obtained in the framework of the supersymmetry
method we focus attention on two different regimes. Forl!1 the correlations are
given by Dawson’s integral while forl@1 we derive a novel analytical formula for
the two-point function. In both cases the energy scales, in units of the mean level
spacing, at which deviations from pure GUE behavior become noticeable, can be
identified. We also derive an exact expansion of the local level density for a finite
level number. ©1997 American Institute of Physics.
@S0022-2488~97!01004-9#

I. INTRODUCTION

Transitions from regular to chaotic fluctuation properties have been observed, experime
and theoretically, in many different areas of physics. As examples, we mention topics in a
~see, e.g., Ref. 1! and nuclear~see, e.g., Refs. 2–4! physics, the relation between level statisti
and localization in condensed matter physics, and, of course, quantum chaology. Althou
physical mechanisms responsible for this crossover can differ considerably from system to s
its statistical signatures follow a common pattern. This fact calls for a description in term
Random Matrix Theory.5,6 Although this transition has already been addressed by nume
authors over the years, there are still many formerly unknown features being found in new
prompting new interest and research. In particular, there is a constant challenge for theo
check whether these new aspects are in agreement or in disagreement with the predic
Random Matrix Theory and, whether or not they can be understood analytically. Because
statistical foundations, Random Matrix Theory is a very ambitious concept since it aims,
often successfully, at a unifying description of statistical features of very different physical
tems.

Recently, such a challenge has been posed by new developments in quantum chaolo
condensed matter physics. In studying a random matrix model describing the transition
regular to chaotic behavior which was motivated by a model of rotational damping in nu
physics,7 Persson and Åberg8 and Mizutori and Åberg9 identified, numerically and phenomeno
logically, a critical length scaleLc ~there referred to asLmax) in the energy spectrum. Below thi
scale, the long range correlations are chaotic and above it they become regular. This leng
was related to the spreading width or ‘‘energy localization length’’ of the wave functions. The
findings in condensed matter physics require a more detailed excursion. In the last ten
random matrix theory has found wide applications in the modeling of transport and equilib
properties of mesoscopic systems. Prominent examples include electron transport in qu
dimensional disordered wires10 and persistent currents in mesoscopic rings.11 The general assump
tion in all these approaches was that electron–electron interactions can be neglected. In
the considerable discrepancy between the relatively small currents calculated for rings wit
interacting electrons12,11 and the large experimental values13 it has become generally accepted
0022-2488/97/38(4)/1870/18/$10.00
1870 J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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the last few years that interactions play a vital role in the persistent current problem.
recently, evidence has been put forward that interactions might also change our present
standing of transport and localization in mesoscopic systems considerably: Shepely
predicted14 that two interacting particles in a 1D disordered chain can be extended on a sc
L2 far exceeding the one-particle localization lengthL1 . Subsequent work

15,16 has quickly led to
a definite confirmation and a more detailed understanding of this phenomenon. As far
two-particle effect in one dimension is concerned, there is probably only one unresolved issu
the question of the parameter combination that governs the enhancement ofL2 as compared to
L1 . Measuring lengths in units of the lattice spacing, and the strengthU of the ~Hubbard-type!
interaction in units of the hopping integral, Shepelyansky foundL2 } U2L1

2. On the other hand, a
microscopic, numerical calculation17 revealed thatL2 }u UuL1

2. In a recent paper,18 an attempt was
made to resolve this discrepancy by studying both an effective Hamiltonian for the two-pa
problem and a microscopic model. The effective Hamiltonian, which was the basis for Sh
yansky’s original claim, is constructed in the following way: Diagonalize the noninteracting
of the two-electron problem and express the microscopic Hamiltonian in the basis of two-ele
product states. The resulting representation consists of a diagonal contribution containi
eigenvalues of the noninteracting problem, and an off-diagonal contribution originating from
interaction operator. With the crucial assumption that both the diagonal and the off-dia
matrix elements can be chosen to be random variables we arrive at a random matrix mode
precisely of the form to be studied in the present paper. The relative strength between diago
offdiagonal matrix elements is determined by the interaction strengthU and the one-particle
localization lengthL1 ~i.e., the strength of the disorder!. The quantity of interest in this matrix
model is the energy scaleEc

(2) at which the spectral correlations deviate from pure random ma
behavior. This ‘‘spreading width’’ or ‘‘two-particle Thouless energy’’ was shown by Imry,15 who
generalized the famous Thouless scaling picture to two-electron transport, to determine th
particle localization length via the relation

L2
L1

5g2~L1!5
Ec

~2!

D2
. ~1.1!

Here,g2 is the ‘‘two-particle conductance’’15 andD2 the two-particle level spacing. If one em
ploys Fermi’s Golden Rule to estimateEc

(2)/D2 } U2L1 ~see Ref. 15!, Eq.~1.1! immediately leads
to Shepelyansky’s original relationL2 } U2L1

2. The main result of Ref. 18 was to point out th
Fermi’s Golden Rule is inappropriate as long as the off-diagonal matrix elements are suffic
weak. Instead, it was found numerically that there exists a regime whereEc

(2)/D2 }u UuAL1. While
this observation does not directly explain the numerical scaling law17 L2 }u UuL1

2 it hints at a
possible origin of the linear dependence onU. In a recent paper19 Jacquod, Shepelyansky, an
Sushkov argue thatEc

(2)/D2 }u Uu around the middle of the spectrum~i.e., in the vicinity of the
band center! while Ec

(2)/D2 } U2 otherwise. This offers an alternative explanation for the differ
numerical findings. The quantityEc

(2)/D2 should of course be identified with the critical leng
scaleLc in Refs. 8,9.

It is the purpose of the present paper to derive analytical formulas that can serve to stu
critical length scales discussed in quantum chaology8,9 and condensed matter physics.18 To this
end, we make use of an integral representation of the exact two-point correlation function f
effective Hamiltonian recently derived by one of us.20,21 In taking such an analytical approach w
wish to present a unifying discussion which is applicable to the findings in both fields, in qua
chaology and condensed matter physics. Therefore, since we want to make this prese
self-contained and readable for a broader audience, we review and comment on earlier an
results in Sec. II before we focus on the two different regimes in Sec. III. In Sec. IV, we com
the local level density exactly for a finite level number. We summarize and discuss our res
Sec. V.
J. Math. Phys., Vol. 38, No. 4, April 1997
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II. MODEL AND OUTLINE OF METHOD

In Sec. II A, we compare those two random matrix models describing a crossover
Poisson regular to chaotic fluctuations which are currently being used in the framework set
Introduction. We discuss earlier results for the joint probability density and the correlations in
II B. In Sec. II C, we briefly review the analytical solution derived in Refs. 20,21.

A. Two models—Same physics

The Hamilton matrix of our physical problem is represented by anN3N matrix H with
random entries. To achieve meaningful statistical results, we have to average the ensemb
those random matrices which satisfy the physically relevant boundary conditions. Thus, the
ics of such a statistical model is uniquely determined by choosing the probability density fun
of the matricesH. Here, we are interested in a crossover or transition between different reg
implying that we have to go beyond the commonly used Gaussian Ensembles5 which describe
fully chaotic systems. We will mainly study systems under broken time-reversal invariance
first, some presently investigated systems, e.g., mesoscopic rings in a magnetic field,18 belong to
this class and, second, recent results20,21 make a detailed analytical discussion of this situat
possible. For our random matrix model this means that we have to work with Hermitian ma
whose distribution reaches the limit of the Gaussian Unitary Ensemble5 for some value of the
crossover or transition parameter. There are two models which are currently being used
context.

Weinmann and Pichard18 studied numerically the two-level correlations induced by the pr
ability density function,

P~A!~H,m!5 )
n51

N
1

Ap
exp~2Hnn

2 ! )
n,m

A11m

p
exp~2~11m!Re2Hnm!

3 )
n,m

A11m

p
exp~2~11m!Im2Hnm!, ~2.1!

where we used our freedom to fix the energy scale by choosing a value of 1/2 as the varia
the Gaussian distributions for the diagonal elements. The parameterm alters the variance of the
distribution for the off-diagonal matrix elements in such a way that this ensemble interpo
between a pure Gaussian Unitary Ensemble~GUE! for m50 and a Poisson Ensemble fo
m→`. In the latter case, all off-diagonal matrix elements are weighted byd-functions. The
parameters of this model are related to those of the physical problem of two interacting pa
as follows.18 The matrix dimensionN is given by L1

d(L1
d11)/2, the number of symmetrize

two-particle states in ad-dimensional system of sizeL1 . The variances
2 of the diagonal elements

is defined by the bandwidthB of the noninteracting problem,s2'B2/3. Normalizing this variance
to 1/2 as we have done above amounts to measuring all energies in units ofA2/3B. In these units
the variance of the off-diagonal elements is given by (11m)2156(U/B)2L1

23d .
We introduce a new parametern51/A11m and write the probability density function~2.1! in

a more convenient form,

P~A!~H,n!5P~1!~H,n!)
n51

N

p~d!~Hnn ,n!,

~2.2!

P~1!~H,n!5
2N~N21!/2

~pn2!N
2/2

expS 2
1

n2
tr H2D .
J. Math. Phys., Vol. 38, No. 4, April 1997
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The distributionP(1)(H,n) is a normalized Gaussian distribution with variancen2/2. The normal-
ized distributionsp(d)(Hnn ,n) affect only the diagonal elements. The definition~2.2! includes
~2.1!, but is slightly more general since we do not specify the functionp(d)(z,n) explicitly. The
Poisson case is now recovered in the limitn→0 whereas large values ofn yield the GUE. In the
sequel, we will refer to the class of models defined by Eq.~2.2! as model A. Thek-point corre-
lation functions depending onk energiesxp , p51, . . . ,k in this model are given by

Rk
~A!~x1 , . . . ,xk ,n!5

1

pkE d@H#P~A!~H,n!)
p51

k

Im tr
1

xp
22H

, ~2.3!

where the energies are given imaginary increments such thatxp
25xp2 i«. The volume element

d@H# is, as usual, the product of all independent variables.
The second model, which we will refer to as model B, is defined through the random H

tonian

H~a!5H ~0!1aH ~1!, ~2.4!

consisting of a regular and a chaotic part,H (0) and H (1), respectively, with an interpolating
transition parametera. The matricesH (1) belong to the GUE, i.e., the probability density functio
is given by P(1)(H,1) as defined in Eq.~2.2!. The probability density functionP(0)(H (0)) is
completely arbitrary. The calculation of the correlation functions in this model,

Rk
~B!~x1 , . . . ,xk ,a!5

1

pkE d@H ~0!#P~0!~H ~0!!E d@H ~1!#P~1!~H ~1!,1!)
p51

k

Im tr
1

xp
62H~a!

~2.5!

requires an average over both matrices. However, due to the rotational invariance of the v
elements, the unitary matrices diagonalizingH (0) can be absorbed implying that, without loss
generality,H (0) can be chosen to be diagonal. Since we want to have Poisson statistics
limiting case, we can write

P~0!~H ~0!!5 )
n51

N

p~0!~Hnn
~0!! )

n.m
d~ReHnm

~0!!d~ Im Hnm
~0!!, ~2.6!

where the functionp(0)(z) is smooth but otherwise arbitrary. We recover the Poisson and the
limits for zero and infinite transition parameters, respectively. Model B has been studied by
authors; for a review see Refs. 20–25.

Although it is intuitively obvious that Models A and B must be closely related, we feel
worthwhile to work out the precise relationship between them. Consider model B. The form~2.5!
of the correlation functions suggests the use of the matricesH5H(a) introduced in Eq.~2.4! as
new integration variables; we find

Rk
~B!~x1 , . . . ,xk ,a!5

1

pkE d@H ~0!#P~0!~H ~0!!E d@H#P~1!~H2H ~0!,a!)
p51

k

Im tr
1

xp
62H

.

~2.7!

Since the probability densityP(1) is Gaussian, the diagonal and off-diagonal elements are, a
as the integration overH (0) is concerned, fully decoupled. In other words, the integration o
the purely diagonal matrixH (0) amounts to nothing but a convolution of each of the functio
p(0)(Hnn

(0)) with a Gaussiang(Hnn2Hnn
(0) ,a) which gives a new probability density function,
J. Math. Phys., Vol. 38, No. 4, April 1997
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P~c!~H,a!5 )
n51

N E
2`

1`

p~0!~Hnn
~0!!g~Hnn2Hnn

~0! ,a!dHnn
~0! , ~2.8!

for the matrix elements on the diagonal. Due to the fact that the total probability density fun
is a product ofP(c)(H,a) and the remaining Gaussiansg(ReHnm ,a) andg(Im Hnm ,a) for the
off-diagonal matrix elements, it is obviously of the form~2.1! or, equivalently,~2.2!. Hence, we
have convinced ourselves that, after a proper re-definition of the transition parameters, m
and model B describe the same physical situation. We may therefore confine our discus
model B whose analytical properties are, advantageously, already studied in great detail
from now on, we drop the upper index (B). Note that these considerations can easily be ge
alized to the cases of real symmetric or quaternion self adjoint matrices.

Finally, we would like to emphasize that there are more models which describe a tran
from Poisson to GUE statistics. We mention two recent works, a new formal model by M
et al.26 and a study in the context of disordered systems by Altland and Fuchs.27 The fact that the
two limiting cases, the Poisson and the GUE statistics, are the same in all these models d
imply that the interpolation between these limits is necessarily the same. The concrete p
situation dictates which model to choose.

B. On the computation of the correlation functions

A quantity of central interest in every random matrix model is the joint probability den
function PE(X,a) of the eigenvalues. In the case of Hermitian matrices, this function ca
worked out explicitly for our model B. We diagonalize the matrixH by a unitary matrixU such
thatH5U†XU whereX5diag(x1 , . . . ,xN) is the diagonal matrix of the eigenvalues. To e
press the probability density as a function of the latter alone, we have to do the integral
H (0) and overU,

PE~X,a!d@X#5E d@H ~0!#P~0!~H ~0!!E
U~N!

P~1!~H2H ~0!,a!d@H#. ~2.9!

The off-diagonal elements ofH (0) are integrated out trivially leaving us with the diagonal p
which we denote byX(0). As is well known, the volume element ofH is given by
d@H#5DN

2 (X)d@X#dm(U) where DN(X)5)n,m(xn2xm) is the Vandermonde determinan
Since the functionP(1) is Gaussian, the integral over the unitary group with Haar mea
dm(U) is just the Harish–Chandra Itzykson Zuber integral28 which has been used already in Re
24,29 to compute joint probability density functions of the eigenvalues. We arrive at

PE~X,a!5
1

N! E d@X~0!#P~0!~X~0!!det@g~xn2xm
~0! ,a!#n,m51, . . . ,N

DN~X!

DN~X~0!!
, ~2.10!

whereg(z,a) is the normalized Gaussian with variancea2/2 which was introduced above. Not
that, due to the symmetries of the integrand, this can be written more conveniently as

PE~X,a!5
1

Apa2 NE d@X~0!#P~0!~X~0!!expS 2
1

a2 tr~X2X~0!!2D DN~X!

DN~X~0!!
. ~2.11!

The Gaussians yieldd-functions for vanishing variance which implies that the Poisson cas
recovered in the limita→0. For very large transition parametera→`, the GUE joint probability
density function has to re-emerge. This limit is nontrivial but can be checked using the me
developed in Ref. 24.

The k-level correlation function is given as theN2k dimensional integral,
J. Math. Phys., Vol. 38, No. 4, April 1997
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Rk~x1 , . . . ,xk ,a!5E
2`

1`

dxk11•••E
2`

1`

dxNPE~X,a!, ~2.12!

allowing one to use the formula~2.11! to compute them. This approach was taken by Lenz24 who
managed to express the most interesting two-level correlationsR2(x1 ,x2 ,a) as a four dimensiona
integral. His calculation is exact for everya and everyN. Unfortunately, the integrand involve
ratios ofN-dependent determinants which rendered the evaluation of the physically intere
limit of infinitely many levels impossible. Another approach was recently put forward by Pand25

who chooses Dyson’s Brownian motion model as a starting point. He arrives at a two dimen
integral representation for the two-level correlation function on the unfolded energy scale, i
the limit N→`. Although his derivation is only sketchy, we have no doubts that his resu
correct. Apparently, he avoids the explicit use of the Harish–Chandra Itzykson Zuber integ
conducting a highly nontrivial re-summation of certain representation functions ofU(N). Yet
another technique, the graded eigenvalue method, was used by one of the present authors
20,21. It is a variant of Efetov’s famous supersymmetry method30 which relies on the observatio
that averages over a random potential can be most efficiently done by mapping the origina
theory onto superspace. In Ref. 31 it was shown that averages over random matrix ensemb
to the same model in superspace. Thus, supersymmetry can be viewed as something
‘‘irreducible representation’’ of Random Matrix Theory. The graded eigenvalue method a
therefore for a much faster derivation of spectral correlation functions, even for finite level
ber, than any other method we are aware of. Moreover, its results go beyond those of Refs.
First, higher correlations can be studied, the graded eigenvalue method yields a 2k dimensional
integral representation for thek-level correlation functions. Second, these integrals have a
convenient and rather compact form even for finite level numberN. Third, the unfolding, i.e., the
limit N→` is trivial and, fourth, the two-level correlations on the unfolded scale become a do
integral for completely arbitrary initial probability density functionsP(0)(H (0)).

C. Supersymmetry method

In order to make our presentation self-contained for those readers who are familiar wi
main concepts of the supersymmetry method, we will briefly sketch the crucial steps that
taken in Refs. 20,21. Readers with little background in supersymmetry are referred to Refs.
or, especially regarding the graded eigenvalue method, to Ref. 32. By including the real p

the traces of the Green functions in Eq.~2.5!, we define the functionsR̂k(x1 , . . . ,xk ,a) which
always allow the reconstruction of the physically interesting functionsRk(x1 , . . . ,xk ,a) as

linear combinations of the functionsR̂k(x1 , . . . ,xk ,a). Advantageously, those can be written
the derivatives,

R̂k~x1 , . . . ,xk ,a!5
1

~2p!k
]k

Pp51
k ]Jp

Zk~x1J,a!U
J50

, ~2.13!

of a normalized generating functionZk(x1J,a). The energies and the source variables are
dered in the diagonal matricesx5diag(x1 ,x1 , . . . ,xk ,xk) and J5diag(2J1 ,1J1 , . . . ,
2Jk ,1Jk), respectively. The physically relevant correlationsRk(x1 , . . . ,xk ,a) are generated
by the functionIZk(x1J,a) where the symbolI stands for the proper linear combination. B
using the supersymmetry method, the average over the GUE can be performed directly a
generating function acquires the form

Zk~x1J,a!5E d@H ~0!#PN
~0!~H ~0!!E d@s#Qk~s,a!detg21~~x61J2s! ^1N212k^H ~0!!,

~2.14!
J. Math. Phys., Vol. 38, No. 4, April 1997
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wheres is a 2k32k Hermitian supermatrix and 1N and 12k are theN3N and the 2k32k unit
matrices. The function

Qk~s,a!52k~k21! expS 2
1

a2 trgs2D ~2.15!

can be viewed as a normalized probability density function for the supermatrices. It is use
shift the matrix x1J into this Gaussian function and then to diagonalize the superma
s5u21su by a superunitary matrixu where thek eigenvaluessp1 , p51, . . . ,k in the boson
boson and thek eigenvaluesisp2 , p51, . . . ,k in the fermion fermion sector are ordered in th
matrix s5diag(s11,is12, . . . ,sk1 ,isk2). The volume elements readsd@s#5Bk

2(s)d@s#dm(u)32

whered@s# is the product of the eigenvalue differentials anddm(u) is the invariant Haar measur
of the unitary supergroup. The square root of the Jacobian, here referred to as Berezinian, i
by the determinantBk(s)5det@1/(sp12 isq2)#p,q51, . . . ,k . In these coordinates, the generati
function for the entire transition can be written as

Zk~x1J,a!5E Qk~u
21su2x2J,a!Zk

~0!~s!Bk~s!d@s#dm~u!, ~2.16!

where the function

Zk
~0!~x1J!5E d@H ~0!#PN

~0!~H ~0!!detg21~~x61J! ^1N212k^H ~0!! ~2.17!

is the generating function of the correlations of the arbitrary ensemble defined thr
P(0)(H (0)). Obviously, the required average over the unitary supergroupu in Eq. ~2.16! is just the
supersymmetric version of the Harish–Chandra Itzykson Zuber integral. This observation
main ingredient of the graded eigenvalue method. Collecting everything, and performin
derivatives with respect to the source variables as in Ref. 32, we find

Rk~x1 , . . . ,xk ,a!5
~21!k

pk E Gk~s2x,a!IZk
~0!~s!Bk~s!d@s#, ~2.18!

for nonzeroa. The casea50 is trivial by construction. Here, the kernel is given by the Gauss

Gk~s2r ,a!5
1

Apa2 2k expS 2
1

a2 trg~s2r !2D . ~2.19!

In order to calculate the generic fluctuations, we have to unfold the correlation functions for
level numberN by removing the dependence on the level density. We define new ene
jp5xp /D, p51, . . . ,k where the mean level spacingD is of the order 1/AN. The transition
parametera is defined on the original energy scale and has therefore to be unfolded, too. The
universal transition parameterl5a/D was first introduced by Pandey.33 The k-level correlation
functions on the unfolded scaleXk(j1 , . . . ,jk ,l)5 limN→`D

kRk(x1 , . . . ,xk ,a) are then generic,
i.e., translation invariant over the spectrum. It is useful to unfold the integration variabless in Eq.
~2.18! by making the rescalings→s/D. We arrive at

Xk~j1 , . . . ,jk ,l!5
~21!k

pk E Gk~s2j,l!Izk
~0!~s!Bk~s!d@s#, ~2.20!

for nonzerol where the unfolded generating function of the arbitrary correlations is given
zk
(0)(s)5 limN→`Zk

(0)(Ds). Hence, we have expressed the unfoldedk-level correlation function
J. Math. Phys., Vol. 38, No. 4, April 1997
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for the transition from arbitrary to GUE fluctuations as a 2k-fold integral. Note that the limit of
infinitely many levels is trivial due to the application of supersymmetry. The Gaussian k
remains unchanged when going from the original to the unfolded energy scale. It was sho
Ref. 21 that the generating function obeys an exact diffusion equation which is, remarkab
same on both energy scales, the Gaussian kernel is the Green function of this diffusion.

Here, we are mainly interested in the two-level correlations. Due to translation invarianc5 on
the unfolded scale, they depend only on the differencer5j12j2 of the energies. Therefore,
turns out to be useful to make the changes15s111s21, t15s112s21, s25s121s22 and
t25s122s22 of the integration variables. SinceIz2

(0)(s) depends only on the difference
of the eigenvalues by construction, it cannot depend ons11 is2 . Thus, we write
Iz2

(0)(s)5Iz2
(0)(s12 is2 ,t1 ,t2) which, for reasons of consistency, should be even in each of

differencest1 andt2 . By using a standard integral theorem of complex analysis, the integrals
s1 ands2 can be performed straightforwardly and the two-level correlations can thus be cas
the form

X2~r ,l!5
8

p3l2E
2`

1`E
2`

1`

expS 2
1

2l2 ~ t1
21t2

2! D sinh rt 1l2 sin
rt 2
l2

t1t2
~ t1
21t2

2!2
Iz2

~0!~0,t1 ,t2!dt1dt2 ,

~2.21!

which is exact for every nonzero value of the transition parameterl.
We emphasize that all results derived so far are correct for arbitrary initial correla

Rk
(0)(x1 , . . . ,xk) or Xk

(0)(j1 , . . . ,jk). We now apply them to the case of the Poisson,
correlation-free initial spectrum, whose probability density function is given in Eq.~2.6!. A
straightforward calculation yields

Zk
~0!~s!5S 11

p

N(
p51

k

bp~s!R̂1
~0!~sp1!D N,

~2.22!

bp~s!5~ isp22sp1!)
qÞp

isq22sp1
sq1

6 2sp1
6 ,

whereR̂1
(0)(x) is the Stiltjes transform ofR1

(0)(x). We point out that this is exact for all values o

N. By choosingR̂1
(0)(x)5R̂1

(1)(x) to evaluate the limitN→`, we find

zk
~0!~s!5 )

p51

k

exp~7 ipbp~s!!. ~2.23!

The signs are determined by the choice of the sign of the imaginary increment in the
function. In the coordinates introduced above, the initial condition for the two-level correla
~2.21! takes the form

Iz2
~0!~0,t1 ,t2!5

1

2
ReS expS 2 ip

t1
21t2

2

2t1
2 D 21D , ~2.24!

which still involves an imaginary increment. In Refs. 20,21, Eqs.~2.21! and ~2.24! were used to
construct a two dimensional integral representation forX2(r ,l) in terms of Bessel functions
However, for the discussion to be performed in the next section, the form~2.24! is the more
convenient one.
J. Math. Phys., Vol. 38, No. 4, April 1997
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III. TWO DIFFERENT REGIMES

Both the numerical findings18 described in the Introduction and the structure of the integ
representation~2.21! suggest the distinction between the two casesl!1 andl@1. In these limits
the exact but very cumbersome expression~2.21! can be substantially simplified. After introducin
the proper observable in Sec. III A, we deal with the smalll and largel regimes in Secs. III B
and III C, respectively.

A. Spectral long range correlations

The spectral long range correlations are particularly well suited for the study of fluctu
properties in systems which undergo transitions. The level number varianceS2(L) and the spec-
tral rigidity D3(L) describe,

34 as functions of the interval lengthL on the unfolded scale, the
fluctuations of the integrated, unfolded level density around its smooth value which is juL.
Poisson regularity results, for both observables, in a linear behavior whereas chaotic corre
yield a logarithmic dependence onL. It is intuitively clear and was shown in the numeric
simulations3,8,9,18that the admixture of chaotic features becomes first visible on shorter sca
the spectrum. In other words, the largerL, the stronger have the chaotic features to be in orde
bring the long range correlations close to the logarithmic behavior. Thus there is a critical in
length, near whichS2(L) or D3(L) ‘‘bend away’’ from the chaotic behavior to show a line
characteristic typical for the lack of correlations in the Poisson case. This critical lengthLmax or
Lc , respectively, was introduced and studied in Refs. 8,9,18 and is also the quantity of inte
our discussion. In Ref. 8, the critical lengthLmaxwas interpreted as the typical spreading width
the wave functions on the unfolded energy scale. In the context of condensed matter physic18 the
critical length Lc was identified as the Thouless energy in units of the mean level spa
Obviously, these two viewpoints describe closely related physical situations which are form
in a unifying language in the random matrix model.

We now wish to acquire information about the dependence of the critical length on
transition parameterl from the analytical discussion of the previous section. As is well know34

the level number variance is related to the two-level correlations by the formula

S2~L,l!5L22E
0

L

~L2r !Y2~r ,l!dr,

~3.1!
X2~r ,l!512Y2~r ,l!,

whereY2(r ,l) is referred to as the two-level cluster function. The ‘‘bending away’’ from
logarithmic behavior is accompanied by a change of the curvature ofS2(L,l). Therefore, we may
identify the point at which the curvature changes with the critical length. Thus, we simply ha
investigate the second order derivative,

d2

dL2
S2~L,l!522Y2~L,l!, ~3.2!

which is, by construction, just the two-level cluster function. Therefore we can alternat
determine the zeros ofY2(L,l) or directly investigate the functionS2(L,l) in order to identify
the scaleLc .

B. Small l

The smalll regime can be studied by perturbation theory. This approach has already
taken in Refs. 22,23 with the result
J. Math. Phys., Vol. 38, No. 4, April 1997
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X2~r ,l!.
r

l
expS 2

r 2

2l2D E
0

r /l

expS h2

2 Ddh5
r

lE0
`

expS 2
h2

2 D sin rhl dh, ~3.3!

which is a universal function ofr /l. It was checked in Ref. 21 that the analytical expressi
~2.21! and~2.24! indeed yield the approximation~3.3! for smalll. SinceY2(r ,l) is the deviation
from the Poisson behavior which is just unity, we only have to find the zero of this function i
variabler /l. We find r /l'1.3 implying that the critical length behaves as

Lc'1.3l, ~3.4!

for small values ofl. Thus, the critical length is indeed linear inl for small values of the
transition parameter in agreement with the numerical investigations in Ref. 18.

C. Large l

To study the largel regime we evaluate the asymptotic expansion ofX2(r ,l) to first order in
the inverse transition parameter by a saddle point approximation. To bring Eqs.~2.21! and~2.24!
into a form which is manifestly suitable for such a procedure we substitute accordin
t15l2t18 and t25l2t28 . Omitting the primes we obtain

X2~r ,l!5
8

p3l2E
2`

1`E
2`

1`

dt1dt2 expS 2
l2

2
~ t1
21t2

2! D sinh rt 1 sin rt 2 t1t2
~ t1
21t2

2!2

3Iz2
~0!~0,l2t1 ,l

2t2!, ~3.5!

with the initial condition given by Eq.~2.24!. A direct saddle point approximation still meets wi
the problem that there are solutions of the saddle point equations for whicht1

21t2
250. To avoid

the ensuing singularity in~3.5! we introduce an additional parameterb and a function

X̃2~r ,l,b!5
8

p3l2E
2`

1`E
2`

1`

dt1dt2 expS 2
l2

2
b~ t1

21t2
2! D sinh rt 1 sin rt 2

3t1t2Iz2
~0!~0,l2t1 ,l

2t2!, ~3.6!

in terms of which we have

X2~r ,l!5
l4

4
lim

h→`
E
1

h
db8E

b8

h
dbX̃2~r ,l,b!. ~3.7!

In the integrand of Eq.~3.6!, the product sinhrt1 sin rt2 can be replaced by the expressio
2 i exp(2rt1) exp(2irt2) because the additional contributions vanish upon integration~they make
the integrand odd in eithert1 or t2 or both!. We obtain

X̃2~r ,l,b!5
2

p3l2E
2`

1`E
2`

1`

dt1dt2 expS 2
l2

2
b~ t1

21t2
2!2rt 12 irt 2D

3t1t2S expS 2 ipl2
t1
21t2

2

2t1
2 D 211c.c.D . ~3.8!

The contributions originating from the exponential and the constant in the square brackets, r
tively, have to be treated separately. We begin with the more complicated term, namely,
J. Math. Phys., Vol. 38, No. 4, April 1997
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X̃2
~a!~r ,l,b!5

2

p3l2E
2`

1`E
2`

1`

dt1dt2 exp~2L~ t1 ,t2!!t1t2 ,

~3.9!

L~ t1 ,t2!5
l2

2
b~ t1

21t2
2!1 ipl2

t1
21t2

2

2t1
2 1rt 11 irt 2 .

To determine the saddle points we can neglect the imaginary increment fort1 in the second term
of L(t1 ,t2). The saddle point equations] t1L50 and] t2L50 read as

l2bt11 ip
l2

2 S 12
t2
2

t1
2D 1r50, l2bt21 ipl2

t2
t1

1 ir50. ~3.10!

With the abbreviations

g5 ipl2 and t5l2bt21 ir , ~3.11!

these equations can be cast into the form

t152
gt2
t
, t31~g222rg!t22ir g250. ~3.12!

The roots of the cubic equation are given by

t ~1!52 ig, t ~2!5 i
g

2 S 11A12
8r

g D , t ~3!5 i
g

2 S 12A12
8r

g D , ~3.13!

in terms of which the solutionst1,2
( i ) ( i51,2,3) for the original variables are easily recovered.

Our saddle point approximation proceeds according to the following scheme:

X̃2
~a!~r ,l,b!'

2

p3l2i(j t1
~ j !t2

~ j ! exp~2L~ t1
~ j ! ,t2

~ j !!!
2p

AdetA~ j !
, ~3.14!

where

A~ j !5F ]2L

]t1
2 ~ t1

~ j ! ,t2
~ j !!

]2L

]t1]t2
~ t1

~ j ! ,t2
~ j !!

]2L

]t2]t1
~ t1

~ j ! ,t2
~ j !!

]2L

]t2
2 ~ t1

~ j ! ,t2
~ j !!

G ~3.15!

is the matrix defining the form of the Gaussian fluctuations around the saddle point. The ap
mation~3.14! is valid for l@1 and allr . Expressing the exponent, the pre-exponential terms,
detA in ~3.14! in terms of the saddle point values~3.13! we get for j51,2,3,

L~ t1
~ j ! ,t2

~ j !!52
r

2l2b~ t ~ j !!2
~g2 i t ~ j !!2~r1 i t ~ j !!,

t1
~ j !t2

~ j !52
gt ~ j !

l4b2 S 12 i
r

t ~ j !D
2

, ~3.16!

detA~ j !5~l2b!2S 12
t ~ j !

t ~ j !2 ir S 11
~ t ~ j !!2

g2 D D .
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At this point we notice thatt (3) is not a valid saddle point. This can be most easily seen in
extreme GUE limit (l→`, ugu→`), wheret (3)→2ir . Obviously, detA(3),0 in this case, i.e. the
matrix A(3) is not positive definite. Therefore,t (3) does not correspond to a maximum of th
integrand and will be discarded henceforth.

Before we proceed we have to investigate the second contribution in~3.8!,

X̃2
~b!~r ,l,b!52

2

p3l2E
2`

1`E
2`

1`

dt1dt2exp~2L̃~ t1 ,t2!!t1t2 ,

~3.17!

L̃~ t1 ,t2!5
l2

2
b~ t1

21t2
2!1rt 11 irt 2 .

Here, the saddle point equations are trivial and have the single solution

t̃152
r

l2b
and t̃252

ir

l2b
. ~3.18!

Therefore, we get in analogy to~3.16!,

L̃~ t̃1 , t̃2!50, t̃1t̃25
ir 2

~l2b!2
, detA5~l2b!2. ~3.19!

Finally, collecting our results from~3.13!, ~3.16! and ~3.19! and introducing a new paramete
through

r

g
52 i

r

pl2 52 ik, ~3.20!

we arrive after some algebra at

X̃~r ,l,b!5X̃~a!~r ,l,b!1X̃~b!~r ,l,b!5
4

l4b3 S 12
~2ik111r!~31r!

8Ar

3expS ipr4b

~2ik111r!~31r!2

~11r!2 D 1c.c.D , ~3.21!

with

r5A118ik. ~3.22!

The integration over the auxiliary parameterb @see~3.7!# is straightforward and leads to the fin
result of this section,

X2~r ,l!511S 2

~pr !2
~11r!4

~2ik111r!~31r!3Ar
S expS ipr ~2ik111r!~31r!2

4~11r!2 D
2 ipr

~2ik111r!~31r!2

4~11r!2
21D 1c.c.D . ~3.23!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Although the decisive parameter governing the deviation from the GUE limit isk5r /pl2, closer
inspection reveals that the critical lengthLc is still proportional tol. We thank Fyodorov for this
insight.35 In a first order expansion ink!1, one finds

X2~r ,l!'11
1

2~pr !2
~e22prk cos 2pr12prk21!. ~3.24!

For k→0 this reduces to the GUE limit,

X2~r ,l→`!512S sin pr

pr D 2. ~3.25!

For finite but smallk, Eq. ~3.24! shows that the oscillations inX2(r ,l) are exponentially damped
on the scalekr } r 2/l2 so thatLc must behave likel. Numerical evaluations

36 of formula~3.23!,
which did not rely on the assumptionk!1, confirmed this view. At this point, an important cave
is in order. In Random Matrix Theory, the unfolding procedure usually involves the cru
assumption that the transition parametera scales like the mean level spacing as the level num
N increases. This is formally necessary to keep the ratiol5a/D, i.e., the transition parameter o
the unfolded energy scale, fixed when the limitN→` is taken. Physically, this is a well justifie
assumption which means that the chaotic admixture, although affecting the fluctuation pro
considerably, does not change the mean level spacing. The results of Refs. 20,21 which
starting point of our present considerations were derived under this assumption. It is not
pletely straightforward to relate our parameterl to the transition parameters of the recent stud
in Refs. 18,19. Further research along these lines is underway.36

It is interesting to note35 that under the assumptionr!l!l2 Eq. ~3.24! can be further
simplified to give

X2~r ,l@r !512S sin pr

pr D 21 1

p2l2 sin
2pr . ~3.26!

Remarkably, this expression coincides exactly with a result derived by Kravtsov and Mirlin37 for
the spectral two-point function of a quasi-one dimensional disordered wire close to the uni
Wigner–Dyson limit, providedl is identified~via Thouless’ argument! with the conductance. The
third term in Eq.~3.26! represents the first nonperturbative correction to Wigner–Dyson statis
It is intriguing to further explore this analogy.

Finally, we would like to mention that we have tested the quantitative applicability of
~3.23! by means of extensive numerical simulations.36 We found that the number varianc
S2(L) derived from formula~3.23! describes the data up to the largest spectral ranges of a
L'140 we investigated, as long asl@1. We have therefore confidence in the usefulness
correctness of Eq.~3.23!.

IV. LOCAL LEVEL DENSITY

The local density describes the influence of an admixture on them-th level, say, of a given
spectrum. Consider the HamiltonianH(a)5H (0)1aH (1) defined in Eq.~2.4! with a diagonal
regular partH (0). If we avoid averaging overH (0), we can study how the density around th
m-th level ofH (0) is affected asa ~and hence the chaotic features! increase. This quantity wa
studied numerically in Refs. 18 and analytically in Refs. 38,39. However, this analytical deriv
relies on the saddle point approximation and is therefore only valid for rather large valuesa,
i.e., when the level density is sufficiently smooth. It is our main purpose in this section to
that a direct and exact evaluation, valid for all values ofa, of the local level density is easily
possible by the methods outlined in Sec. II, even for finite level numbers. With this result w
J. Math. Phys., Vol. 38, No. 4, April 1997
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study the local level density in the regime of small valuesa which is not accessible to the sadd
point approximation. Apart from this, the calculation which follows is also of general interes
matrix models. In this context, we mention related work on Wigner random band matric40

which also focuses on the local density of states.
We express the local level density including its real part as the derivative,

R̂1m~x,a!5
1

2p

]Z1~x,J,a!

]Jm
U
J50

, ~4.1!

of the generating function

Z1~x,J,a!5E d@s#Q1~s,a!detg21~~x22s! ^1N212^H ~0!1t ^J!, ~4.2!

depending on a source fieldJ5diag(J1 , . . . ,JN) which resolves the individual level
n51, . . . ,N. We introduced the matrixt5diag(21,11). As usual, we diagonalize the He
mitian supermatrix,s5u21su, wheres5diag(s1 ,is2). For the unitary supermatrix, we use th
explicit parameterization

u5F11bb* /2 b

b* 11b*b/2G , ~4.3!

in terms of the complex anticommuting angleb which allows us to cast the superdeterminant
Eq. ~4.2! to first order inJ into the form

)
n51

N x2 is22Hnn
~0!

x2s12Hnn
~0! (

n51

N

JnS 112bb*

x2s12Hnn
~0! 1

112b*b

x2 is22Hnn
~0!D . ~4.4!

The derivative with respect toJm can now be performed easily. To integrate over the eigenva
and angles, we have to take the boundary contributions, often called Efetov Wegner term
account. As shown in Ref. 41, this can be done by applying Rothstein’s theory42 which yields the
volume element

d@s#5
ds1ds2

~s12 is2!
2dbdb* S 12b*b~s12 is2!S ]

]s1
2 i

]

]s2
D D , ~4.5!

in which the term containing the derivatives takes care of the boundary contributions. Colle
everything, we arrive after a straightforward calculation at the expression

R̂1m~x,a!5
1

p

1

x22Hmm
~0! 1

]

]Hmm
~0! Ŵ~x,a!, ~4.6!

for nonzeroa. The first part, the Efetov Wegner term, is simply the unperturbed Green fun
of them-th level. The second part can be written as the derivative of the function

Ŵ~x,a!5
1

2p2E
2`

1`E
2`

1` ds1ds2
~s12 is2!

2 expS 2
1

a2 ~s1
21s2

2! D )
n51

N x2 is22Hnn
~0!

x22s12Hnn
~0! . ~4.7!

Using the identity
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)
n51

N
x2nn
x2mn

511 (
n51

N
nn2mn

mn2x )
lÞn

n l2mn

m l2mn
, ~4.8!

for mn5s11Hnn
(0) andnn5 is21Hnn

(0) , we obtain

Ŵ~x,a!5
1

2p2(
n51

N E
2`

1`E
2`

1` ds1ds2
s12 is2

expS 2
1

a2 ~s1
21s2

2! D bn~s,H
~0!!

x22s12Hnn
~0! ,

~4.9!

bn~s,H
~0!!5)

lÞn
S 11

is22s1
Hll

~0!2Hnn
~0!D .

This can be worked out further by introducing the permutation invariant symmetric func
cl(h),l50, . . . ,N21 of a set of variableshl ,l51, . . . ,N21 which are defined through

)
l51

N21

~11hlz!5 (
l50

N21

cl~h!zl . ~4.10!

In particular we have

c0~h!51, c1~h!5 (
l51

N21

hl , c2~h!5 (
l, l 8

hlhl 8 , . . . ,cN21~h!5 )
l51

N21

hl . ~4.11!

Sincebn(s,H
(0)) has the structure of the generating function on the left hand side of Eq.~4.10! if

we choosehl
(n)51/(Hll

(0)2Hnn
(0)) for lÞn, we can express the first of Eqs.~4.9! in the form

Ŵ~x,a!5
1

2p2 (
n51

N

(
l50

N21

~21! lcl~h
~n!!E

2`

1`E
2`

1`

ds1ds2 expS 2
1

a2 ~s1
21s2

2! D ~s12 is2!
l21

x22s12Hnn
~0! .

~4.12!

The integral overs2 yields precisely the Hermitian polynomials

Hl21~z!5
2l21

Ap
E

2`

1`

exp~2z2!~z2 i z! l21dz, ~4.13!

where, in particular, we haveH21(z)52Ap exp(z2)(11erf(z)). The remainings1 integral can be
viewed as the Stiltjes transform,

K̂ l21~z,a!5
1

p E
2`

1` exp~2s1
2/a2!Hl21~s1 /a!

z22s1
ds1 . ~4.14!

Hence, both integrals can be done and we arrive at

Ŵ~x,a!5
1

Ap
(
n51

N

(
l50

N21
~21! la l

2l
cl~h

~n!!K̂ l21~x2Hnn
~0! ,a!. ~4.15!

We are mainly interested in the local level density, i.e. in the imaginary

R1m(x,a)5Im R̂1m(x,a), which is according to Eq.~4.6! given by
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R1m~x,a!5d~x2Hmm
~0! !1

]

]Hmm
~0! W~x,a!, ~4.16!

whereW(x,a)5Im Ŵ(x,a). Since the imaginary part of the Stiltjes transform is here just
integration over ad function, we find

W~x,a!5
1

Ap
(
n51

N

(
l50

N21
~21! la l

2l
cl~h

~n!!expS 2
~x2Hnn

~0!!2

a2 DHl21S ~x2Hnn
~0!!

a D , ~4.17!

for an arbitrary matrixH (0). There is a subtle point here to be remarked. According to Eq.~4.12!,

the functionŴ(x,a) is even ina. This, however, is not immediately obvious from Eq.~4.17!.
When we introduced the Hermitian polynomials~4.13!, we useds2 /a as the new integration
variable which eventually led to the terma l in Eq. ~4.17!. To be mathematically cleaner, w
should have useds2 /uau which would have produced the termuau l . Hence, we always assum
a.0.

The form ~4.17! of the functionW(x,a) can be viewed as an expansion in the increas
complexity of the contributions due to the matrixH (0) which is reflected in the terma lcl(h

(n)). To
illustrate this, we consider the case of very smalla in which only the l50 term contributes
significantly. Hence we find with Eq.~4.11!,

W~x,a!.
1

Ap
(
n51

N

expS 2
~x2Hnn

~0!!2

a2 DH21S ~x2Hnn
~0!!

a D 52 (
n51

N S 11erfS ~x2Hnn
~0!!

a D D ,
~4.18!

which immediately implies

R1m~x,a!.
1

Apa2
expS 2

~x2Hmm
~0! !2

a2 D . ~4.19!

Thus, for a very small admixture ofH (1), the states ofH (0) are smeared out with a Gaussia
shape. This can only be true as long as these Gaussians do not overlap. As the admi
increased witha, the Gaussian~4.19! of them-th level slowly starts feeling the influence of th
other levels ofH (0) and higher and higher orders inl have to be taken into account. The com
plexity of this interaction is described through the more and more entangled structure
symmetric functionscl(h

(n)) as l increases. We mention in passing that, as is easily shown
odd contributions inl can be neglected, provided, them-th level lies in the middle of a very long
spectrum. The shape of the local level density changes due to this coupling to the other le
H (0). In Refs. 38,18, it was shown numerically that this shape is Lorentzian, even for a rela
small admixture. This is no contradiction to the Gaussian shape~4.19! which only applies in the
case of very smalla. Pictorially speaking, the coupling to the other levels ofH (0) lifts the tails of
this Gaussian which then becomes a Lorentzian. In Ref. 39 this Lorentzian shape was anal
derived in the case of a strong admixture.

A further insight into the expansions~4.15! and ~4.17! is provided by the following consid-
eration. Take a harmonic oscillator with mean level spacingD (0) as initial conditionH (0), i.e., a
picket fence spectrum with equidistant levels. The symmetric functioncl(h

(n)) scales now as
1/(D (0)) l implying that the expansion parameter is now given bya/D (0). This is a measure of the
chaos producing interaction on the scale of the mean level spacing of the unperturbed sp
Qualitatively, this does also apply to arbitrary initial conditionsH (0).
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



amil-
. The
logy,
ns for
ng the
dis-
e

int
ur-
ect

ility to

atrix
egular

ated to

the
dissi-

ng
er, that
this

es of

pe is

semble
w of

nsion.

1886 T. Guhr and A. Müller-Groeling: Crossover regime and scales

¬¬¬¬¬¬¬¬¬¬
V. SUMMARY AND DISCUSSION

In this paper we have investigated spectral properties of a particular class of random H
tonians, namely, the superposition of a diagonal matrix with Poisson statistics and a GUE
motivation for this investigation came, apart from the obvious relevance for quantum chao
from the fact that this class of matrices can serve as an ensemble of effective Hamiltonia
problems of current interest in both nuclear and condensed matter physics. After showi
equivalence of two alternative definitions of this random matrix ensemble, we analytically
cussed two regimes, small values of the parameterl, corresponding to small values of th
electron–electron interactionU in the problem of coherent pair propagation,14 and the regime of
large values ofl. In the limit l@1 we derived a novel explicit expression for the two-po
correlation function. In the crossover regimel'1 this expression and the already known pert
bative result for smalll differ from each other and do no longer give a quantitatively corr
picture. Comparison with the exact~albeit difficult to handle! expression~2.21! however reveals
that the qualitative features of the crossover are still well described. This opens the possib
study analytically and in detail statistical measures like the number varianceS2. Such a discus-
sion, furnished with extensive numerical simulations, will be presented elsewhere.36

In Ref. 8, the transition from regular to chaotic fluctuations was studied using a random m
model in which the total level density undergoes a transition from a sharp Gaussian, in the r
case, to the Wigner semicircle. With the help of Fermi’s Golden Rule, the critical lengthLmaxwas
estimated as a function of the model parameters. The result in Ref. 8 cannot be directly rel
our discussion of the critical scaleLc . The chaoticity parameterD in Ref. 8 is defined on the
original ~and not the unfolded! energy scale, calling for a proper rescaling of the numerical and
analytical results. In Ref. 9 an additional time dependence was introduced to study energy
pation. Depending on the value of the chaoticity parameterD a time scalet1* is identified. It
distinguishes between a regime of anomalous diffusion proportional tot2 for t,t1* and normal
diffusion for t.t1* of the energy in the eigenbasis att50. The precise relation of these interesti
findings to the results presented here has yet to be investigated. It is quite plausible, howev
the different~chaotic and regular! regimes in the spectral statistics manifest themselves in
difference in the energy diffusion.

Finally we have shown how to calculate, for finiteN, arbitrary values ofa, and without
approximation, the local density of states of the matrix ensemble. For extremely small valu
a the shape of the local density of states turned out to be Gaussian. For largera-values, when the
levels on the diagonal of the matrix are no longer strictly isolated, a Lorentzian sha
expected.18,38,39

We believe to have demonstrated in this paper that many statistical properties of the en
of random matrices studied here are well under control. This is particularly important in vie
recent developments,18,8,9where the ensemble considered in our work plays a central role.
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Spatial structure of anomalously localized states
in disordered conductors

Alexander D. Mirlina)
Institut für Theorie der Kondensierten Materie, Universita¨t Karlsruhe, 76128 Karlsruhe,
Germany and Petersburg Nuclear Physics Institute, 188350 Gatchina,
St. Petersburg, Russia

~Received 22 July 1996; accepted for publication 14 January 1997!

The spatial structure of wave functions of anomalously localized states~ALS! in
disordered conductors is studied in the framework of thes–model approach. These
states are responsible for slowly decaying tails of various distribution functions. In
the quasi-one-dimensional case, properties of ALS governing the asymptotic form
of the distribution of eigenfunction amplitudes are investigated with the use of the
transfer matrix method, which yields an exact solution to the problem. Comparison
of the results with those obtained in the saddle-point approximation to the problem
shows that the saddle-point configuration correctly describes the smoothed intensity
of an ALS. On this basis, the properties of ALS in higher spatial dimensions are
considered. We also study the ALS responsible for the asymptotic behavior of
distribution functions of other quantities, such as relaxation time, local and global
density of state. It is found that the structure of an ALS may be different, depending
on the specific quantity, for which it constitutes an optimal fluctuation. Relations
between various procedures of selection of ALS, and between asymptotics of cor-
responding distribution functions, are discussed. ©1997 American Institute of
Physics.@S0022-2488~97!01404-7#

I. INTRODUCTION

Mesoscopic fluctuations of various physical quantities in disordered systems have been
sively investigated during the last decade.1 These fluctuations originating from the quantum c
herence of wave functions are typically much stronger than what usual statistical conside
would predict. In particular, it was found by Altshuler, Kravtsov and Lerner2 that distribution
functions of conductance, density of states~DOS!, local density of states~LDOS!, and relaxation
times have slowly decaying logarithmically normal~LN! asymptotics at large values of the arg
ments. These results were obtained within the renormalization group~RG! treatment of the field–
theoreticals–model describing the low–momenta physics of the problem. The validity of this
approach is restricted to two dimensional~2D! and 21e–dimensional systems, withe!1.

On the other hand, the conductance, LDOS and relaxation times fluctuations in strict
disordered chains, where all states are strongly localized, were studied with the use of Ber
and Abrikosov–Ryzhkin techniques.3–5 The corresponding distributions were found to be of t
LN form, too. It was conjectured on the basis of this similarity2,4,6 that even in a metallic sampl
there is a finite probability to find ‘‘almost localized’’ eigenstates. The precise meaning of
words however remained obscure.

More recently, interest in statistical properties of eigenfunctions in disordered and ch
systems has started to grow. On the experimental side, it was motivated by the possib
fabrication of small systems~quantum dots! with well resolved electron energy levels.7 Conduc-
tance fluctuations of such a dot are related to statistical properties of wave function amplit8

Besides, the microwave cavity technique9 allows one to observe experimentally spatial fluctu

a!Electronic mail: mirlin@tkm.physik.uni-karlsruhe.de
0022-2488/97/38(4)/1888/30/$10.00
1888 J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



metry

m
tly by
ies

h

d 23
ior of
by the

ect of
the

lously
evi-
the
sent the

th
sity

gion,
nge
in
of
-

e the

lts
e of
I we
endence

ution

1889Alexander D. Mirlin: Spatial structure of anomalously localized states

¬¬¬¬¬¬¬¬¬¬
tions of electromagnetic wave amplitude in chaotic or disordered cavities.10

On the theoretical side, the recent progress is due to the observation11 that the statistics of
eigenfunction intensities can be very efficiently studied by making use of the supersym
technique. This allows one to reformulate the problem in terms of the supermatrixs–model.12 It
was found that the zero–dimensional approximation to thiss–model reproduces the Rando
Matrix Theory~RMT! results. In the case of quasi–1D geometry, the model was solved exac
means of the transfer–matrix method,17 which allowed us to calculate various statistical propert
of eigenfunctions.11,17–20It was found that the distribution functionP (u) of eigenfunction inten-
sities u5uc2(r)u deviates slightly from its RMT form for not too largeu, but decreases muc
slower than RMT predicts, in its far ‘‘tail.’’ Ind.1 dimensions, the results forP (u) were
obtained by means of the perturbative method20 and saddle–point approximation,21 and are quali-
tatively similar to the quasi–1D behavior.

It should be noted that the saddle–point method for the supermatrixs–model used in Ref. 21
and suggested previously by Muzykantskii and Khmelnitskii22 turned out to be a powerful tool to
study the asymptotic ‘‘tails’’ of various distributions. In particular, it was used in Refs. 22 an
to study the long–time relaxation phenomena, and in Ref. 24 to find the asymptotic behav
the distribution of LDOS. The obtained decrease rates are much slower than those given
perturbation theory. In 2D, the far asymptotics are of LN type,23,24 in agreement with the RG
results of Ref. 2. The asymptotic behavior of the distributions was again attributed to the eff
almost localized states.20–22Moreover, it was conjectured in Refs. 21 and 22 that the form of
saddle-point solution of thes–model directly describes the electron density of such a state.

The purpose of this paper is to study in more detail the spatial structure of the anoma
localized states~ALS!. The paper is organized as follows. In Sec. II we review briefly the pr
ously obtained results for the distribution of eigenfunction intensity. In Sec. III, which is
central one for the paper, we study the case of a quasi–1D geometry of the sample. We pre
exact calculation of the properties of ALS responsible for the asymptotics ofP (u). In Subsec.
III A 1 the average intensitŷ uc2(r)u& of such a state is found for a sample with the leng
L@j, where j is the localization length. The state with an anomalously high local inten
uc2(0)u5u is characterized by an effective localization lengthje f;(j/uS)1/2 ~hereS is the wire
cross section!, where most of its normalization is concentrated. Outside this central re
^uc2(r )u& decreases as 1/r 2. Finally, in the vicinity of the observation point there is a sharp cha
of ^uc2u& from uc2(0)u5u to ^uc2u&5(u/jS)1/2/2. In Subsec. III A 2 we repeat this calculation
the case of the metallic sample withL!j. We find that ALS has exactly the same form
^uc2(r )u&, if u@j/SL2. The latter condition means thatje f!L, i.e., the state is effectively local
ized even from the point of view of a short sample with the lengthL.

In Subsec. III B we study the fluctuations of intensityuc2(r )u of an ALS. We find that these
fluctuations are of the RMT form. The narrow region around the observation point wher
quasi-jump of̂ uc2u& occurs, is an exception; here the fluctuations are suppressed.

Comparing our results with the corresponding saddle-point solution,21 we conclude that the
latter describes exactly the form of the average density^uc2(r )u&, up to a normalization factor and
without the quasi-jump around the observation pointr50. This allows us to generalize the resu
to the spatial dimensiond.1 ~Sec. IV!. In Sec. V we discuss and compare the spatial structur
ALS corresponding with the asymptotic behavior of various distribution functions. In Sec. V
discuss briefly some special features of the ALS located close to the sample edge, and dep
of the results on the symmetry of the ensemble. Our results are summarized in Sec. VII.

II. DISTRIBUTION OF EIGENFUNCTION AMPLITUDES: OVERVIEW OF RESULTS

In this section, we have collected some results for the eigenfunction intensity distrib
function obtained with use of the supermatrixs–model formalism. Thes–model action reads
J. Math. Phys., Vol. 38, No. 4, April 1997
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S@Q#52
b

2E ddr StrFpn0D

4
~¹Q!22pn0hLQG . ~2.1!

HereQ(r) is a 434 or 838 supermatrix field for the cases of unitary symmetry~broken time
reversal invariance! and orthogonal symmetry~unbroken time reversal invariance! respectively.
We will label the formulas for the first case by the index U, and for the second case by the
O. The matrixL is defined asL5 diag$1,1,21,21% ~U! or L5 diag$1,1,1,1,21,21,21,21%
~O! and the coefficientb is equal tob52 ~U! or b51 ~O!. Furthermore, Str stands for th
supertrace~trace over bosonic components minus trace over fermionic ones!, D is the diffusion
constant,h is the level broadening~or, else, (22i )3 frequency! andn0 is the mean DOS. We do
not elaborate on the details of the supersymmetric formalism here, which can be found, e
Refs. 19, 25 and 26. Let us define now the functionY(Q0) as

Y~Q0!5E
Q~r0!5Q0

DQ~r !exp$2S@Q#%. ~2.2!

Here r0 is the spatial point in which the statistics of eigenfunction amplitudes is studied. Fo
invariance reasons, the functionY(Q0) turns out to be dependent, in the unitary symmetry case
the two scalar variables 1<l1,` and21<l2<1 only, which are eigenvalues of the ‘‘retarde
retarded’’ block of the matrixQ0. Moreover, in the limith→0 ~at a fixed value of the system
volume! only the dependence onl1 persists:

Y~Q0![Y~l1 ,l2!→Ya~2pn0hl1!. ~2.3!

The distributionP (u) of the eigenfunctions intensitiesu5uc(r0)u2 is then given by11,15

P ~u!5
1

V

d2

du2
Ya~u!5

1

V

d2

du2
YS l15

u

2pn0h
D U

h→0

~U!, ~2.4!

whereV is the sample volume. In the case of orthogonal symmetry,Y(Q0)[Y(l1 ,l2 ,l), where
1<l1 ,l2,` and 21<l<1. In the limit h→0, the relevant region of values isl1@l2 ,l,
where

Y~Q0!→Ya~pn0hl1!. ~2.5!

The distribution of eigenfunction intensities is, in this case, expressed through the functionYa as
follows:11

P ~u!5
1

pVu1/2Eu/2
`

dz~2z2u!21/2
d2

dz2
Ya~z!5

2A2
pVu1/2

d2

du2E0
` dz

z1/2
Ya~z1u/2! ~O!. ~2.6!

In the diffusive sample, typical configurations of theQ–field are nearly constant in space, so th
one can approximate the functional integral~2.2! by an integral over a single supermatrixQ. This
procedure, which makes the problem effectively zero-dimensional and is known as zero
approximation, gives

Ya~z!'e2Vz ~O,U!, ~2.7!

and consequently,

P ~u!'Ve2uV ~U!, ~2.8!
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P ~u!'A V

2pu
e2uV/2 ~O!, ~2.9!

which are just the RMT results for the Gaussian Unitary Ensemble~GUE! and Gaussian Orthogo
nal Ensemble~GOE!, respectively.27

For the case of quasi–1D geometry one can solve the problem exactly, by evaluatin
integral in~2.2! with making use of the transfer-matrix method.11 As a result, one gets an expre
sion for P (u) depending on a scaling parameterx5L/j, where L is the sample length
j52pn0SD is the localization length, andS is the transverse cross section.11,19,20We present first
the results for a short~metallic! sample,x!1. In this case, it is convenient to normalize th
intensity in a different way by introducingy5uV[Vuc2(r0)u, so that the average value ofy is
equal to unity. We find then:

P ~U !~y!5e2yF11
ax

6
~224y1y2!1 . . . G ; y&x21/2, ~2.10!

P ~O!~y!5
e2y/2

A2py
F11

ax

6 S 3223y1
y2

2 D1 . . . G ; y&x21/2, ~2.11!

P ~y!;expH b

2 F2y1
a

6
y2x1 . . . G J ; x21/2&y&x21, ~2.12!

P ~y!;exp@22bAy/x#; y*x21. ~2.13!

Here the coefficienta is equal toa52@123L2L1 /L2#, where L is the sample length and
L2 , L1 are the distances from the observation pointr0 to the sample edges. If one is interested
the distribution functionP (y) averaged over the position of the pointr0 within the sample, one
has to replacea in Eqs.~2.10!, ~2.11! by its average value equal to unity, and in Eq.~2.12! by its
maximum value equal to 2. Such averaged distribution functions were considered in our pr
publications~Refs. 11, 19, and 20!. It is straightforward, however, to generalize the derivation a
to get the formulas~2.10!–~2.12! for the position-dependent distribution functions. Note th
g51/x is for small x just the dimensionless conductance of the sample:g52pn0DS/L
5G/(e2/h). We see, that for not too large amplitudesy, Eqs.~2.10!, ~2.11! are valid which are
just the RMT results with relatively small corrections. In the intermediate region~2.12!, the
correctionin the exponentis small compared to the leading term but much larger than unity
thatP (y)@PRMT(y) though lnP (y). lnPRMT(y). Finally, in the large amplitude region,~2.13!,
the distribution functionP (y) differs completely from the RMT prediction. We will present E
~2.13! in a more precise form in Sec. III. Note that it is not valid when the observation poi
located close to the sample boundary, as will be explained in Sec. VI A. The asymptotic be
~2.13! is the same as in the case of the insulating sample,L@j, when the distributionP (u) takes
the form

P ~U !~u!.
8j2S

L
@K1

2~2AuSj!1K0
2~2AuSj!#, ~2.14!

P ~O!~u!.
2j2S

L

K1~2AuSj!

AuSj
. ~2.15!
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This allowed us to conjecture in Ref. 20 that the asymptotic behavior~2.13! is controlled by the
probability of having a quasi-localized eigenstate with an effective spatial extent much les
j. We will prove this rigorously in the present paper.

In d.1 dimensions the problem cannot be solved exactly anymore, and some appro
methods of evaluation of the integral~2.2! are necessary. For moderately large amplitud
y&k21/2, a perturbative treatment of nonzero modes of thes–model in the weak localization
region is possible.20 Herek is the usual parameter of the perturbation theory2 defined as

k5(
q

1

2pn0Dq
2V

; ~2.16!

the summation goes over the eigenmodes of the Laplace operator in the sample. The re
P (y) is:

P ~U !~y!5e2y@11k~224y1y2!1 . . . #, ~2.17!

P ~O!~y!5
e2y/2

A2py
F11kS 3223y1

y2

2 D1 . . . G . ~2.18!

In particular, in quasi–1D systemsk51/6g, and Eqs.~2.10!, ~2.11! are reproduced. Ford>2 the
corresponding sum over momentaq diverges at largeuqu and is to be cut off atuqu; l21, where
l is the mean free path. This givesk5(1/4p2n0D) ln(L/l) for d52 andk;(kFl )

2 for d53,
wherekF is the Fermi momentum.

In the region of large amplitudesy*k21/2, Eqs.~2.17! and ~2.18! lose their validity. In this
region, the distributionP (y) can be found21 by using the saddle-point approximation. F
d52,3 the result is

P ~y!;expH b

2
~2y1ky21 . . . !J , k21/2&y&k21, ~2.19!

P ~y!;expH 2
b

8k
lnd~ky!J , y*k21. ~2.20!

In Secs. III and IV we will study in detail the structure of the states, which are responsib
the far asymptotics~2.13! and ~2.20!. For definiteness, we will consider the unitary symme
case; generalization to the orthogonal ensemble is completely straightforward, and we w
quote the~minor! changes in the results in Sec. VI B.

III. ANOMALOUSLY LOCALIZED STATES IN QUASI–1D SAMPLES

A. Average form of the eigenfunction corresponding to an anomalously high local
amplitude

In this section, we study the average intensity^uc2(r)u&u of a wave function with the condition
that uc2(0)u5u. For convenience, we have put the observation point in the coordinate origin
sample edges are atr52L2 and r5L1 ; the sample length isL5L21L1 . Formally,
^uc2(r)u&u is defined as

^uc2~r!u&u5
Q~u,r!

P ~u!
, ~3.1!

where
J. Math. Phys., Vol. 38, No. 4, April 1997
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P ~u!5
1

n0V
K (

a
d~ uca~0!u22u!d~E2Ea!L , ~3.2!

Q~u,r!5
1

n0V
K (

a
uca~r!u2d~ uca~0!u22u!d~E2Ea!L , ~3.3!

whereca are eigenfunctions of the Hamiltonian, andEa are the corresponding eigenvalues. T
here defined functionP (u) is just the distribution function of local intensity discussed in t
preceding section. As has been mentioned above, it was calculated in the quasi–1D c
making use of thes–model representation, Eqs.~2.4!, ~2.6!, and the transfer-matrix method.11,19

The result reads

P ~u!5
1

V

]2

]u2
$W~1!~uSj,t1!W~1!~uSj,t2!%, ~3.4!

wheret15L1 /j, t25L2 /j, and the functionW(1)(z,t) satisfies the equation

]W~1!~z,t!

]t
5S z2 ]2

]z2
2zDW~1!~z,t! ~3.5!

and the boundary condition

W~1!~z,0!51. ~3.6!

The solution to Eqs.~3.5! and~3.6! can be found in terms of the Lebedev–Kontorovich expans

W~1!~z,t!52z1/2HK1~2z
1/2!1

2

pE0
`

dn
n

11n2
sinh

pn

2
Kin~2z1/2!e2@~11n2!/4#tJ . ~3.7!

Now we turn to the evaluation of the functionQ (u,r ) defined in Eq.~3.3!. Detailed exposition of
the method used can be found in Ref. 19, and we will mainly follow the notations of this p
We start by expressing the moments^uc(r)u2uc(0)u2q& in terms of the Green’s functions

^uc~r!u2uc~0!u2q&[
1

n0V
K (

a
uca~r!u2uca~0!u2qd~E2Ea!L

5 lim
h→0

i q21

2pn0V
~2h!q^GR

q~0,0!GA~r,r!&, ~3.8!

where

GR,A~r1 ,r2!5^r1u~E2Ĥ6 ih!21ur2&. ~3.9!

Here Ĥ is the Hamiltonian which consists of the free partĤ0 and the disorder potentialU(r):

Ĥ5Ĥ01U~r!; Ĥ05
1

2m
p̂2; ~3.10!

the latter being defined by the correlator

^U~r!U~r8!&5
1

2pn0ts
d~r2r8!. ~3.11!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Next, we write the product of the Green’s functions in terms of the integral over a superv
field F5(S1 ,S2 ,x1 ,x2):

GR
q~0,0!GA~r,r!5

i 12q

q! E DFDF†~S1~0!S1* ~0!!qS2~r!S2* ~r!

3expH i E dr8F†~r8!L1/2~E1 ihL2Ĥ !L1/2F~r8!J . ~3.12!

The following steps are:19

~i! averaging over the disorder;
~ii ! introducing a 434 supermatrix variableRmn(r) having the symmetry of the tensor produ

Fm(r)Fn
†(r);

~iii ! integrating out theF fields ;
~iv! using the saddle-point approximation which leads to the following equation forR:

R~r!5
1

2pn0ts
g~r,r!; ~3.13!

g~r1 ,r2!5^r1u~E2Ĥ02R!21ur2&. ~3.14!

The relevant set of the solutions~the saddle-point manifold! has the form:

R5s•I2
i

2ts
Q, ~3.15!

whereI is the unity matrix,s is a certain constant, andQ belongs to the coset space U~1,1u2! and
satisfies the conditionQ251. Finally, we find

^uc~r!u2uc~0!u2q&52
1

2V
lim
h→0

~2pn0h!qE DQFQ11,bb
q ~0!Q22,bb~r!

1q
1

~pn0!
2Q11,bb

q21 ~0!g12,bb~0,r!g21,bb~r,0!Ge2S$Q%, ~3.16!

whereS@Q# is thes–model action defined in Eq.~2.2!.
Taking into account thatQ(r) varies slowly on a scale of the mean free pathl , we have for

ur12r2u! l

g~r1 ,r2!. Rê GR~r12r2!&1 iQ~r1! Im^GR~r12r2!&, ~3.17!

where

^GR~r12r2!&5 K r1USE2Ĥ02r1
i

2ts
D 21Ur2L ~3.18!

is the average one-particle Green’s function. In the opposite limiting caseur12r2u@ l , the Green’s
functiong(r1 ,r2) vanishes exponentially. Thus, we get

^uc~r!u2uc~0!u2q&.2
1

2V
lim ~2pn0h!qE DQQ11,bb

q ~0!Q22,bb~r!e
2S$Q%, r@ l ~3.19!
J. Math. Phys., Vol. 38, No. 4, April 1997
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^uc~r!u2uc~0!u2q&.2
1

2V
lim ~2pn0h!qE DQ@Q11,bb

q ~0!Q22,bb~0!

1qkd~r !Q11,bb
q21 ~0!Q12,bb~0!Q21,bb~0!#e2S$Q%, r! l , ~3.20!

where

kd~r !5
u Im^GR~r !&u2

~pn0!
2 ~3.21!

depends on short-scale dimensionalityd of the sample.28 In particular, for a strip (d52) or a wire
(d53) we have

k2~r !5J0
2~kFr !, ~3.22!

k3~r !5
sin2~kFr !

~kFr !2
, ~3.23!

respectively.
Now we evaluate theQ–integrals in Eqs.~3.19! and ~3.20! using the transfer-matrix

method.19 We first consider ther@ l case. We will assume that the transverse size of the wir
much less than the effective localization length of the ALS, which we will find to
je f;Aj/uS. This means that we are indeed in the quasi–1D regime, when considering the
structure. We assume for definiteness that the point r is located to the positive direction fro
coordinate origin:2L2,0,r,L1 . We then get

^uc~r!u2uc~0!u2q&5
1

V~Sj!q
qE

0

`

dzzq22W~1!~z,t2!W~2!~z,t1 ,t2!, ~3.24!

wheret25L2 /j, t15r /j, t25(L12r )/j; the functionW(1)(z,t) is defined by Eqs.~3.5!–~3.7!,
and the functionW(2)(z,t1 ,t2) satisfies the same equation

]W~2!~z,t1 ,t2!

]t1
5S z2 ]2

]z2
2zDW~2!~z,t1 ,t2! ~3.25!

and the boundary condition

W~2!~z,0,t2!5zW~1!~z,t2!. ~3.26!

The solution to Eqs.~3.25! and ~3.26! is19

W~2!~z,t1 ,t2!52AzE
0

`

dnb~n,t2!Kin~2Az!e2@~11n2!/4#t1;

b~n,t2!5
n sinh~pn!

2p2 E
0

`

dtKin~ t !W~1!~ t2/4,t2!. ~3.27!

Substituting here the formula~3.7! for W(1)(z,t2) and evaluating the integral overz, we reduce
Eq. ~3.27! for b(n,t2) to the form
J. Math. Phys., Vol. 38, No. 4, April 1997
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b~n,t2!5
n sinh~pn!

16p2 UGS 11 in

2 D U4~11n2!1
n sinh~pn!

2p3

3E dn1n1
11n1

2 sinh
pn1
2 UGS 11 i

n1n1
2 D U2UGS 11 i

n2n1
2 D U2e2@~11n1

2
!/4#t2. ~3.28!

Equations ~3.24!, ~3.7!, ~3.27!, and ~3.28! constitute the final result for the momen
^uc(r)u2uc(0)u2q& at r@ l . Now we can restore the functionQ (u,r):

Q~u,r![^d~ uc~0!u22u!uc~r!u2&52
1

VjS

]

]u FW~2!~ujS,t1 ,t2!W
~1!~ujS,t2!

u G , r@ l .

~3.29!

In the opposite case,r! l , we find from Eq.~3.20!

Q~u,r!5
1

V H kd~r !S u d2

du2
1

d

duD2
d

du JYa~u!, ~3.30!

where the functionYa(u) was defined in Eq.~2.3!. This formula is valid for any sample, which i
locally d–dimensional. In the case of the quasi–1D geometry we get

Q~u,r!5
1

V H kd~r !S u d2

du2
1

d

duD2
d

du J @W~1!~ujS,t2!W~1!~ujS,t1!#, r! l . ~3.31!

Substituting these results along with the formula~3.4! for P (u) in Eq. ~3.1!, we can find the
average densitŷuc2(r)u&u . It is possible to check that it satisfies the normalization requirem
*^uc2(r)u&u51, as it should be. In the following two subsections, we will study the form
^uc2(r)u&u for an ALS in the insulating (L@j) and the metallic (L!j) limits.

1. Insulating sample (L@j)

In this subsection, we analyze the above general results for^uc2(r)u&u in the limit of an
infinite sample length. More precisely, we will assume that the distancesL2 ,L1 from the point
r50 to the both edges of the sample are much larger thanj, so that we can consider the lim
t2 ,t1→`. We then have

W~1!~z,`!52AzK1~2Az! ~3.32!

and the distribution functionP (u) takes the form~2.14!. Furthermore, Eqs.~3.27! and ~3.28!
reduce to

W~2!~z,t1 ,`!52AzE
0

`

dn
n~11n2!

8
tanh

pn

2
Kin~2Az!e2@~11n2!/4#t1. ~3.33!

Typical values for the intensityu of a localized state areu&1/Sj. We are interested however i
anomalously highu@1/Sj. It is seen from Eqs.~3.4!, ~3.7!, ~3.29!, and ~3.33!, that this corre-
sponds to large valuest52AuSj@1 of the argument of the modified Bessel functionsK1(t) and
Kin(t). The corresponding asymptotic formulae read:29

K1~ t !.Ap

2t
e2t, t@1, ~3.34!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Kin~ t !.Ap

2t
expH 2t2t f S n

t D J , 1!t, n,t ~3.35!

f ~w!5A12w21w arcsinw215
w2

2
1O~w4!.

The asymptotics of the distribution functionP (u) has the form

VP ~u!.4pS3/2j3/2u21/2e24AuSj. ~3.36!

As to the functionQ (u,r ), we consider separately three regions of the distancer :
~a! r@j, i.e., t15r /j@1.

The integral in~3.33! is then determined by the regionn;t1
21/2, yielding

W~2!~z5t2/4,t1 ,`!.
p2

8A2
t1/2t1

23/2e2t2t1/4, ~3.37!

where we have denotedt52Az. Consequently,

VQ~u,r !5
p5/2

4u
t1

23/2e24AuSj2t1/4. ~3.38!

~b! l!r!j.
We have

W~2!~z5t2/4,t1 ,`!.
1

8
Apt

2
e2t2t1/4E

0

`

dnn~11n2! tanh
pn

2
expH 2n2S 12t 1

t1
4 D J

5Ap

2
t5/2

1

~t1t12!2
e2t, ~3.39!

so that

VQ~u,r !52pjSe24AuSj
1

~11t1AuSj!2
, ~3.40!

~c! r! l .
In this region an additional term proportional to the Friedel functionkd(r ) appears in the expres
sion forQ (u,r ); see Eq.~3.31!. We get

VQ~u,r !52pjSe24AuSj@112AuSjkd~r !#. ~3.41!

Sincekd(r );1/(kFr )
d21 for r@kF

21 , the second term in square brackets is much larger than
first one atr!r 0;kF

21(uSj)1/[2(d21)] and is negligible atr@r 0.
Substituting now Eqs.~3.36!, ~3.38!, ~3.40!, and~3.41! into Eq. ~3.1!, we find the following

spatial structure of the ALS withuc2(0)u5u:

^uc2~r !u&u5
p3/2

16
u21/2S23/2r23/2e2r /4j, r@j, ~3.42!
J. Math. Phys., Vol. 38, No. 4, April 1997
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^uc2~r !u&u5
1

2 S ujSD
1/2 1

S 11rAuS

j D 2 , l,r!j, ~3.43!

^uc2~r !u&u5
1

2 S ujSD
1/2

@112AuSjkd~r !#, r, l . ~3.44!

We see from Eqs.~3.42!, ~3.43!, and~3.44! that the eigenfunction normalization is dominated
the regionr;je f , whereje f;Aj/uS!j plays the role of an effective localization length. In th
region je f!r!j the wave intensity falls down as 1/r 2, and crosses over to the convention
localization behavior atr@j. Therefore, the appearance of an anomalously high ampli
uc2(0)u5u@1/Sj is not just a local fluctuation, but rather a kind of a cooperative phenome
corresponding to the existence of a whole regionr&je f with an unusually large amplitude
uc2(r )u5 1

2Au/jS;1/Sje f .
Let us emphasize once more that what we have calculated is the average value^uc2(r )u& of

the eigenfunction intensity with the conditionuc2(0)u5u. It is natural to ask now what its fluc
tuations are. This question is addressed in Sec. III B. We will also explain there what the r
is for the ‘‘quasi-jump’’ of ^uc2u& from uc2(0)u5u to ^uc2(r )u&5 1

2Au/jS at r; l .

2. Metallic state (L!j)

We will assume that the observation pointr50 is located somewhere in the bulk of th
sample, so that botht25L2 /j and t15L1 /j are of the same order of magnitude
L/j5t21t1 :

t2 ,t1;L/j51/g!1.

The distribution of eigenfunction intensities is given by Eqs.~3.4! and ~3.7!, and its behavior in
various ranges of the variabley5uV is indicated in Eqs.~2.10!–~2.13!. We will study the struc-
ture of the ALS responsible for the far asymptotics~2.13! in the regionuV@g. As is seen from
Eqs.~3.4! and~3.7!, this corresponds to a large value of the argumentt52z1/252(uSj)1/2@g of
the modified Bessel function in Eq.~3.7!. Under this condition, the integral in Eq.~3.7! can be
evaluated via the stationary point method with use of the asymptotic expression~3.35! for the
modified Bessel function:

W~1!~z5t2/4,t!5
t

p
A t

2p
e2tE

0

`

dn expH pn

2
2

n2

4
t2t f S n

t D J
5
1

p
A2tt expH 2t1

p2

4t
2t f̃ S p

tt D J , t@1/t@1;

f̃ ~w!5
w2

2
1 . . . , w!1. ~3.45!

The distribution functionP (u) has therefore the form
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¬¬¬¬¬¬¬¬¬¬
P ~u!5
16

p2ASj

u

AL1L2

L
expH 24AujS1

p2j

4L1
1

p2j

4L2
22AujSF f̃ S p

2L1
A j

uSD
1 f̃ S p

2L2
A j

uSD G J
5
16

p2ASj

u

AL1L2

L
expH 24AujS1

p2j

4L1
S 12

Aj/uS

L1
1 . . . D

1
p2j

4L2
S 12

Aj/uS

L2
1 . . . D J . ~3.46!

This is just the formula~2.13!, but written now with full accuracy with respect to the sublead
factors.

To calculateQ (u,r ), Eq. ~3.29!, we have first to evaluate the functionW(2)(z,t1 ,t2), Eq.
~3.27!. The contribution to it from the first term in Eq.~3.28! was calculated in the precedin
subsection, where the insulating regime was considered. We will find that in the metallic re
the second term in Eq.~3.28! gives a much larger contribution, so that the first one can
neglected. Substituting the second term of Eq.~3.27! into ~3.28!, we find after simple algebraic
transformations:

W~2!~z5t2/4,t1 ,t2!5
t

4pE dnKin~ t !e2@~11n2!/4# t1n sinh~pn!

3E dn1n1
11n1

2 sinh
pn1
2

n1
22n2

cosh~pn1!2cosh~pn!
e2@~11n1

2
!/4# t2. ~3.47!

Analysis of the double integral in Eq.~3.47! shows that one should distinguish between the t
possible situations:

~i! t11
2
t
!t2

2;1/g2.

This corresponds to a very large amplitudeu; t2/jS@V21g3. The leading contribution to the
integral in ~3.47! comes from the regionn@n1 . To check this, let us assume thatn@n1 and
collect the exponential factors in Eq.~3.47!:

W~2!~z5t2/4,t1 ,t2!;E dn expH 2n2
t1
4

2
n2

2t J E dn1 expH pn1
2

2
n1
2t2
4 J ,

so that the characteristic values of the variables aren;(t112/t)21/2 andn1;1/t2, confirming the
consistency of our assumption in the considered range of parameters. Collecting all the pre
we get

W~2!~z5t2/4,t1 ,t2!5
1

2p
Att1

2

1

~1/t1t1/2!2
ep2/4t12t; t15t11t2 . ~3.48!

Note that we have omitted the corrections of the typet f̃ (p/tt1) in the exponent, since they ar
small in the considered caset@g2. Substituting Eq.~3.48! in Eq. ~3.29!, we find

Q~u,r !5
8

p2t2
AL1L2

L

1

~1/t1r /2j!2
expH p2

4

j

L1
1

p2

4

j

L2
22tJ ; t52AuSj, ~3.49!

and finally
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¬¬¬¬¬¬¬¬¬¬
^uc2~r !u&u5
1

2 S ujSD
1/2 1

~11rAuS/j!2
. ~3.50!

~ii ! t2
2!t11

2
t
.

In this case the integrals in~3.47! are dominated by the domainn1;n@1. Introducing the new
variablen25n2n1, we reduce Eq.~3.47! to the form

W~2!~z5t2/4,t1 ,t2!5
1

8
A t

2pE dn dn2

nn2

sinh~pn2/2!

3expH 2t2t f S n

t D 1
pn

2
2

n2

4
t12

n2
2

4
t21

nn2

2
t2J .

Evaluating the integrals, we find

W~2!~z5t2/4,t1 ,t2!5
1

4p
A2t

t1
3 FzS 2, 12 t112/t

2t1
D1zS 2,t112/t

2t1
D G3expH p2

4t1
2t f̃ S p

tt1
D J ,
~3.51!

wherez(p,z) is the generalized Riemann’s zeta-function

z~p,z!5 (
k50

`

~z1k!2p. ~3.52!

Substituting this into Eq.~3.29!, we get

Q~u!5
8j

p2t2L
At1

t1
3 FzS 2, 12 t112/t

2t1
D1zS 2,t112/t

2t1
D G

3expH p2

4t1
1

p2

4t2
22t2t f̃ S p

tt1
D2t f̃ S p

tt2
D J , t52AuSj. ~3.53!

Therefore, the average local intensity of the ALS is given by

^uc2~r !u&u5
1

8SL1
2A j

uSFzS 2,r1Aj/Su

2L1
D 1zS 2, 12 r1Aj/Su

2L1
D G . ~3.54!

In particular, in its ‘‘core,’’ r!L1 , the ALS intensity has again the form~3.50!.
Comparing Eqs.~3.50! and ~3.54! with the result~3.43!, we conclude that in its centra

‘‘bump’’ the ALS in the metallic sample has exactly the same spatial structure as in a
~insulating! one. The conditionVu@g, under which the asymptotic behavior~2.13! and~3.46! is
valid, acquires now a very transparent meaning. This is just the condition that the effe
localization length of an ALS,je f5Aj/uS is much less than the sample sizeL. Indeed,
je f /L5Aj/uSL25Ag/uV. In the ‘‘tail,’’ r;L@je f , the form of the ALS intensity is slightly
modified by the boundary of the sample, see Eq.~3.54!.

All the above calculations in this subsection were valid for the domainr. l . As to the region
r, l , we can easily satisfy ourselves using Eqs.~3.31! and ~3.45! that the result~3.44! holds.
Therefore, the ‘‘quasi-jump’’ of̂ uc2(r )u&u at r! l has the same form, as in the insulating regim
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



y the

ielding

1901Alexander D. Mirlin: Spatial structure of anomalously localized states

¬¬¬¬¬¬¬¬¬¬
B. Fluctuations of the eigenfunction of an anomalously localized state

In the Sec. III A we have calculated the average intensity^uc2(r )u&u of a quantum state which
has an anomalously high amplitudeuc2(0)u5u in a certain pointr50. However, this average
value does not give full information about the ALS. In the present subsection, we will stud
fluctuations of the intensityuc2(r )u of an ALS fixed by the conditionuc2(0)u5u. Similarly to
Subsec. III A@see Eq.~3.47!#, we express the moments^uc(r)u2puc(0)u2q& in terms of the Green’s
functions:

^uc~r!u2puc~0!u2q&[
1

n0V
K (

a
uca~r!u2puca~0!u2qd~E2Ea!L

5 lim
h→0

i q2p

2pn0V

~q21!! ~p21!!

~q1p22!!
~2h!q1p21^GR

q~0,0!GA
p~r,r!&. ~3.55!

The analogue of Eq.~3.12! reads

GR
q~0,0!GA

p~r,r!5
i p2q

p!q! E DFDF†~S1~0!S1* ~0!!q~S2~r!S2* ~r!!p

3expH i E dr8F†~r8!L1/2~E1 ihL2Ĥ !L1/2F~r8!J . ~3.56!

Proceeding further as in Sec. III A, we get forr@ l

^uc~r!u2puc~0!u2q&5
~21!p

2V
lim
h→0

~2pn0h!q1p21
~q21!! ~p21!!

~q1p22!!

3E DQQ11,bb
q ~0!Q22,bb

p ~r!e2S$Q%. ~3.57!

For the quasi–1D geometry the integral can be again evaluated via the method of Ref. 19, y

^uc~r !u2puc~0!u2q&5
1

V~jS!q1p21

q!p!

~q1p22!! E0
`

dzzq22W~1!~z,t2!Wp
~2!~z,t1 ,t2!,

~3.58!

whereWp
(2) satisfies the same equation~3.25! as the functionW(2)[W1

(2) , and the boundary
condition generalizing Eq.~3.26!:

Wp
~2!~z,0,t2!5zpW~1!~z,t2!. ~3.59!

Similarly, defining Eq.~3.3!,

Qp~u,r!5
1

n0V
K (

a
uca~r!u2pd~ uca~0!u22u!d~E2Ea!L , ~3.60!

we get
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
Qp~u,r !5
p

V~Sj!p
E
1

`dv
v S 12

1

v D
p21 ]2

]u2
@Wp

~2!~vujS,t1 ,t2!W
~1!~vujS,t2!#, p.1.

~3.61!

For the second moment,p52, this formula can be simplified

Q2~u,r !52
W2

~2!~ujS,t1 ,t2!W
~1!~ujS,t2!

V~uSj!2
. ~3.62!

The solution to Eqs.~3.25! and ~3.59! has the form

Wp
~2!~z,t1 ,t2!52AzE

0

`

dnbp~n,t2!Kin~2Az!e2@11n2!/4]t1; ~3.63!

bp~n,t2!5
2n sinh~pn!

p2 E
0

`dt

t2 S t24 D pKin~ t !W~1!~ t2/4,t2!. ~3.64!

As we have seen above, an ALS in a metallic sample has essentially the same spatial s
as in an insulating one. The physical reason for this is very simple: an ALS with the effe
localization lengthje f may exist in a sample with the lengthL@je f without essential modifica-
tions. This reason is equally valid for the fluctuations. Therefore, we can limit ourselve
studying the fluctuations in a technically simpler case of an infinitely long sample. In this cas
functionW(1) is given by Eq.~3.32!, and Eq.~3.64! reduces to

bp~n,t25`!5
n sinh~pn!

4p2~2p21!! UGS p1
11 in

2 D U2UGS p2
11 in

2 D U2
5

n tanh~pn/2!

24p21~2p21!!
@n21~2p21!2#@n21~2p23!2#2•••@n211#2. ~3.65!

The integral in Eq.~3.63! is determined byn@1. Therefore, for not too high momentsp the
inequalityp!n is satisfied; the corresponding restriction onp will be found explicitly below. We
then have

bp~n,`!.
1

~2p21!! S n

2D
4p21

; ~3.66!

and consequently from Eq.~3.63!,

Wp
~2!~z5t2/4,t1 ,`!.e2tApt

2

1

~t112/t !2p
. ~3.67!

Substituting this into Eq.~3.61!, we get

Qp~u,r !.
4pp

V
~Sj!3/22pu21/2E

1

`

dvv1/2S 12
1

v D
p21

e24AvujS
1

S t11A 1

vujSD
2p . ~3.68!

For not too largep!AujS the integral is determined by the regionv21!1, because of the facto
exp$24AvujS%. It can be then estimated as
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
Qp~u,r !.
4pp

V
~Sj!3/22pu21/2

1

S t11A 1

ujSD
2pE

1

`

dv~v21!p21e24AvujS

5
4p

V
p! ~Sj!3/2u21/2e24AujSF Au/jS

2~11t1AuSj!2
G p. ~3.69!

Finally, thepth moment of the ALS intensity is given by

^uc2p~r !u&u5
Qp~u,r !

P ~u!
5p! F Au/jS

2~11rAuS/j!2
G p. ~3.70!

In the course of the derivation we assumed thatp!n for typical values ofn in the integral
~3.63!. These values are

n2;
p

t11 1/AuSj
,

so that the condition reads

p!
1

r /j 1 1/AuSj
[pmax. ~3.71!

An ALS is defined by the conditionuSj@1, so that forr!j we havepmax@1.
Comparing Eq.~3.70! with Eq. ~3.43!, we find that in this region

^uc2p~r !u&u.p! @^uc2~r !u&u#p, l,r!j, p!pmax. ~3.72!

This means that the fluctuations of the eigenfunction intensity with respect to its average va
of the type

uc2~r !u5
Au/jS

2~11rAuS/j!2
uF2~r !u, l,r!j, ~3.73!

whereuF2(r )u is distributed according to the GUE law

P ~ uF2u!.e2uF2u. ~3.74!

The approximate result~3.74! holds for not too largeuF2u!pmax.
Now we consider the fluctuations in the vicinity of the observation point,r! l . Proceeding as

in Sec. III A, we find from Eqs.~3.55! and ~3.56!

^uc~r !u2puc~0!u2q&5
1

V~Sj!p1q21(
j

p!

j ! ~p2 j !!

q!

j ! ~q2 j !!
kd
j ~r !

q!p!

~q1p22!!

3E dzzq1p22W~1!~z,t1!W~1!~z,t2! ~3.75!

This allows one to restore the joint distribution function ofuc(0)u2 and uc(r )u2 ~see the Appen-
dix!, which looks however rather cumbersome. For this reason, let us return to the express
the moments and considerp52. We find then
J. Math. Phys., Vol. 38, No. 4, April 1997
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^uc~r !u4uc~0!u2q&5
2

V~Sj!q11 F112qkd~r !1
q~q21!

2
kd
2~r !G E dzzqW~1!~z,t1!W~1!~z,t2!.

~3.76!

Restoring the functionQ2(u,r ) defined in Eq.~3.60!, we get

Q2~u,r !5
2

V F122kd~r !
d

du
u1

kd
2~r !

2

d2

du2
u2G$W~1!~uSj,t1!W~1!~uSj,t2!% . ~3.77!

Substituting here~3.32!, we find

^uc4~r !u&u.kd
2~r !u212uA u

Sj
kd~r !~12kd~r !!1

u

2Sj
~12kd~r !!2. ~3.78!

Therefore, the variance ofuc2u is equal to

varu~ uc2u![^uc4~r !u&u2^uc2~r !u&u
2.H kd~r !~12kd~r !!uA u

Sj
, r!r 0

u

4Sj
, r@r 0 ,

~3.79!

with the scaler 0 as defined after Eq.~3.41!. We find that forr!r 0 the fluctuations are suppresse

varu~ uc2~r !u!
^uc2~r !u&u

2 .
12kd~r !

kd~r !

1

AuSj
!1. ~3.80!

On the other hand, forr@r 0 we have the GUE result

varu~ uc2~r !u!.^uc2~r !u&u
2. ~3.81!

More generally, it is possible to check that forr@r 0 the terms containingkd(r ) become negligible
in higher moments ofuc(r )2u as well, and the GUE-like fluctuations~3.72!–~3.74! take place.

Let us summarize the results of this subsection. We have found that the ALS inte
uc2(r )u exhibits in the regionr 0!r!j the GUE type fluctuations~3.72!–~3.74! with respect to its
average valuêuc2(r )u&u . These fluctuations are completely analogous to those for an ord
delocalized state in a metallic sample, see Eq.~2.8!. The difference is that in the present case
average intensitŷ uc2(r )u&u is not uniform in the coordinate space. In the regionr!r 0 the
fluctuations are suppressed: varu(uc2(r )u)!^uc2(r )u&u

2 . This is similar to what has been found i
Ref. 30 for the spatial structure of an ‘‘ordinary’’ delocalized state with a moderately large
intensityu5uc2(0)u @when the zero-dimensional formula~2.8! holds and an ALS is not formed#.
This means that the intensity of a typical ALS is in this region close to the average
^uc2(r )u&u , which exhibits the sharp decrease fromuc2(0)u5u to ^uc2(r )u&u5

1
2Au/jS at r@r 0. It

is not difficult to understand that this quasi-jump has the same source as the GUE-like fluctu
at r@r 0. One can ask, of course, why this short-scale fluctuation happens exactly in the ce
the smooth ALS ‘‘bump’’ with a probability close to unity. The answer is as follows. We
studying the states with an anomalously large local intensityu, which is an exponentially rare
event. There are two sources which may favor the formation of such a high intensity:~i! formation
of an ALS with a spatially nonuniform smooth envelope, and~ii ! short-scale GUE-like fluctua
tions. Both these mechanisms have exponentially small probabilities to produce an enhan
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



he

of the
ptotic
d
etric
li-
int
r the
ecture.

, the

ly

t study

i-
e

1905Alexander D. Mirlin: Spatial structure of anomalously localized states

¬¬¬¬¬¬¬¬¬¬
of the intensity by a large factor. The found configuration of^uc2(r )u&u @short-scale quasi-jump
~3.44! on top of the smooth configuration~3.43!# represents just the optimal combination of t
two mechanisms.

IV. GENERALIZATION TO HIGHER SPATIAL DIMENSIONS

The calculation in the preceding section relies essentially on the quasi-1D structure
sample, so it is not applicable for a sample of higher dimensionality. In this case, the asym
behavior of the distribution functionP (u) was studied by Fal’ko and Efetov.21 These authors use
Eqs. ~2.4! and ~2.6! and applied the saddle-point method suggested for the supersymm
s–model by Muzykantskii and Khmelnitskii.22 The advantage of this method is that it is app
cable for any spatial dimensiond. It was conjectured in Ref. 21 and 22 that the saddle po
solution mimics the spatial form of the ALS. Having at our disposal the exact solution fo
quasi-1D case, we can check the accuracy of the saddle-point method and of this conj
Comparing the form ofP (u) found in the quasi-1D case by the saddle-point method21 with the
result of the exact solution~3.46!, we find a very good agreement between them. Furthermore
saddle-point configuration in the quasi-1D case has the form21,24

l1~r !

l1~0!
[eu~r !2u~0!5

1

~11rAu/2pn0D !2
; 0,r!L1 . ~4.1!

Here l15eu/2 is the eigenvalue of theQ-matrix which has been introduced after Eq.~2.2!.
Comparing Eq.~4.1! with Eqs. ~3.43! and ~3.50!, we see that the saddle-point solution nice
reproduces the average intensity of the ALS,^uc2(r )u&u for r. l , up to an overall normalization
factor. Being encouraged by this agreement, we will now use the results of the saddle-poin
to describe the structure of the ALS ind52,3.

A. 2D geometry

For a 2D disk-shaped sample of a radiusL with the high amplitude pointr50 in the center of
the disk, the saddle-point solution was found to have the form21

eu~r !2u~0!5S rl * D
22mH 12

l
*
2 u

8~12m!2pn0D
S rl * D

222mJ 22

'S rl * D
22m

, r> l * , ~4.2!

where the exponent 0,m,1 depends onu and satisfies the equation

S Ll * D
2m

5
22m

8m~12m!2
L2u

pn0D
. ~4.3!

We are interested in the asymptotic regionuL2@pn0D ln
21(L/l), where the distribution of the

eigenfunction intensity is given by Eq.~2.20!, and an ALS is formed. Then the exponentm can be
approximated as

m.
ln~~L2u/2pn0D !ln~L/ l * !!

2ln~L/ l * !
. ~4.4!

The lower cut-off scalel * appears in Eq.~4.2! because of the restriction of the diffusion approx
mation on the momentaq of thes-model field:q, l21. Correspondingly, it is determined by th
condition22–24

d

dr
u~r !ur5 l

*
; l21,
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which yieldsl *;m l , so thatl * differs from l by the logarithmic factors~4.4! only.
Normalizing properly the expression~4.2!, we find that the average ALS density forr. l * is

equal to

^uc2~r !u&u5
u

4p2n0Dm S rl * D
22mH 12

l
*
2 u

8~12m!2pn0D
S rl * D

222mJ 22

, r> l * . ~4.5!

The saddle-point calculation of Ref. 21 assumes thatu(r ) is constant forr, l * , so that Eq.~4.5!
gives^uc2(r )u&u. u/4p2n0Dm in this region. However, for very smallr, l the average intensity
^uc2(r )u&u changes sharply, as we have seen in the quasi–1D case. Indeed, in this dom
functionQ (u,r ) is given by Eq.~3.30!, whereYa(u) has the following behavior:21

Ya~u!;expH 2p2n0D
ln2~~Vu/2p2n0D ! ln~L/ l * !!

ln~L/ l * ! J . ~4.6!

Using now Eq.~3.30! for Q (u,r ) and Eq.~2.4! for P (u) , we get

^uc2~r !u&u[
Q~u,r !

P ~u!
5@12k2~r !1A~u!k2~r !#^uc2~r5 l * !u&u , r, l * . ~4.7!

Here the height of the quasi-jump is given by

A~u!.2u
d

du
lnYa~u!.

2p2n0D

ln~L/ l * !
lnS Vu

2p2n0D
ln
L

l *
D.4p2n0Dm. ~4.8!

Combining Eqs.~4.5!, ~4.7!, and~4.8!, we get

^uc2~r !u&u5
u

A~u!
@12k2~r !1k2~r !A~u!#, r, l * . ~4.9!

In particular, atr50 we find ^uc2(r )u&u5u, that shows the perfect consistency of the who
procedure.

B. 3D geometry

Now, we consider the 3D case. The saddle-point configuration has the form21,24

u~r !2u~0!5CS l *r 21D , r> l * , ~4.10!

where the coefficientC is defined by the condition

CeC;
uV

n0Dl *
, ~4.11!

andl *5Cl is the cut-off length scale which has the same origin as in 2D. We are interested
asymptotic regionuV@n0Dl , where Eq.~4.11! yields

eC;
uV

g~ l !ln2@uV/g~ l !#
, ~4.12!

l *; l ln@uV/g~ l !#, ~4.13!
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whereg( l );(kFl )
2 is the conductance on the scale of order of the mean free pathl . The optimal

configuration~4.10! has the form

eu~r !2u~0!5H uV

g~ l !ln2@uV/g~ l !# J
l
*
/r21

, r> l * . ~4.14!

This configuration determines the asymptotic behavior of the functionsYa(u), P (u) at
Vu@g( l ):

P ~u!;Ya~u!;expH 2 constg~ l !ln3
Vu

g~ l ! J . ~4.15!

Note that in order to fix the numerical coefficient in Eq.~4.15!, one has to go beyond th
long-wavelengths-model approximation. Such a ‘‘ballistic’’ generalization of thes-model was
recently suggested in Ref. 31. The height of the quasi-jumpA(u) is found from Eq.~4.8! to be

A~u!;g~ l !ln2
Vu

g~ l !
. ~4.16!

Thus, the density of ALS is

^uc2~r !u&u5
ueu~r !2u~0!

A~u!
;
1

V F uV

g~ l !ln2 @uV/g~ l !#G
l
*
/r

, r> l * . ~4.17!

The quasi-jump at smallr is given again by Eq.~4.9!, with k2(r ) replaced byk3(r ).
The value of^uc2(r )u&u given by Eq.~4.17! exceeds considerably the average density o

delocalized state,̂uc2u&51/V at r& l ** , where

l ** ; l * ln
uV

g~ l !
; l ln2

uV

g~ l !
.

For larger distances,r* l ** , we havê uc2(r )u&u.1/V. Therefore, in contrast to quasi-1D and 2
systems, where an ALS formation is a redistribution of the eigenfunction intensity in the w
sample, in 3D it constitutes just a ‘‘bump’’ with the extent of order ofl ** , on top of the usual
background densitŷuc2u&51/V.

C. Fluctuations

Let us now discuss briefly the fluctuations of the ALS intensity. At smallr! l , we find in full
analogy with Eqs.~3.78!–~3.81!:

^uc4~r !u&u.u2Fkd2~r !1
4

A~u!
~12kd~r !!kd~r !1

2

A2~u!
~12kd~r !!2G , ~4.18!

and consequently,

varu~ uc2~r !u!
^uc2~r !u&u

2 .H 2 12kd~r !

kd~r !A~u!
, r!r 0

1, r@r 0

. ~4.19!

Here r 0 is the characteristic spatial scale of the quasi-jump, determined by the con
kd(r )A(u);1. In 2D, using Eqs.~3.22! and ~4.8!, we find
J. Math. Phys., Vol. 38, No. 4, April 1997
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r 0; l
ln~~Vu/2p2n0D ! ln~L/ l !!

ln~L/ l !
. ~4.20!

In 3D the analogous calculation would giver 0; l ln@Vu/g(l)#.l. This means that in factr 0; l ,
because of the exponential decrease ofkd(r );e2r / l at r. l , which was not taken into account i
Eqs.~3.22! and ~3.23!. We see from Eq.~4.19! that atr!r 0 the fluctuations are relatively weak
varu(uc2(r )u)!^uc2(r )u&u

2 . In the opposite limit,r@r 0, the fluctuations are expected to ha
essentially the GUE statistics, similarly to what we have found for the quasi-1D sample geom
see Eqs.~3.72!–~3.74!.

V. ASYMPTOTIC BEHAVIOR OF DISTRIBUTIONS OF VARIOUS QUANTITIES, AND
THEIR INTERRELATIONSHIP

In the preceding sections, we have considered the spatial structure of ALS responsible
asymptotic behavior of the distribution of eigenfunction intensity,P (u). One can consider, how
ever, other quantities, large values of which indicate in some sense a stronger localization
eigenfunction, so that the asymptotic behavior of corresponding distribution function is als
lated to a kind of ALS. An illustrative example of such a quantity is the inverse participation
~IPR! I 25*ddr uc4(r)u. Let us consider the case of an infinite quasi-one-dimensional sample
which the distribution functionP (I 2) was calculated exactly in Refs. 19 and 32. It has
following asymptotic behavior:

P ~ I 2!;expH 2
p2

2
jSI2J , ~5.1!

where we omitted preexponential factors. Let us suppose that the asymptotic form ofP (I 2) is
determined by the same anomalously localized sates, which control the asymptotic beha
P (u). The intensity of such an ALS was found in Sec. III to be

uc2~r!u5uc2~r !usmoothuF2~r!u, r!j , ~5.2!

where

uc2~r !usmooth5
1

2S

je f
~r1je f!

2 , je f5Aj/uS, ~5.3!

and uF2(r)u exhibits the GUE-like fluctuations~3.74!. The distributionP (u) behaves asymptoti
cally asP (u);exp$24AuSj%; here the factor exp$22AuSj% is the GUE probability of the quasi
jump in the vicinity ofr50 with uF2(0)u52AuSj. The remaining exp$22AuSj% factor is there-
fore the weight of the envelope configurationuc2(r )usmooth. The corresponding IPR is equal t
I 25(1/3)Au/Sj. Thus, assuming that this ALS determines the asymptotics of the IPR distrib
P (I 2), we would get

P ~ I 2!;exp$26jSI2%. ~5.4!

This result has the same exponential form, as the correct asymptotics~5.1!, but with a larger
numerical coefficient in the exponent. The explanation for this discrepancy is the followin
ALS, which is optimal for maximizing the local amplitudeu5uc2(0)u, does not optimize the IPR
A detailed study, which will be published elsewhere,33 shows that the ALS, which determine th
asymptotics of the IPR distribution, have the following spatial shape:

uc2~r !usmooth5
1

pS

je f
r 21je f

2 , je f5
1

pI 2S
, ~5.5!
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that is different from Eq.~5.3!. Thus, the spatial form of an ALS depends on the specific phys
quantity~local amplitude, IPR, . . .!, for which it represents an optimal fluctuation. In the rema
ing part of this section, we consider from this point of view the distributions of LDOS and o
relaxation times in open metallic samples, which have been studied via the supersymme
proach in Refs. 22 and 33 and Ref. 24, respectively.

A. Quasi-1D geometry

1. Distribution of relaxation times

The long-time dispersion of the average conductance has the LN form22

G~ t !;expH 2g ln2
tD

ln~ tD! J ; t@D21, ~5.6!

whereD51/n0LS is the mean level spacing andg52pn0DS/L is the dimensionless conductanc
We represent Eq.~5.6! as a superposition of the simple relaxation processes with mesoscop
distributed relaxation times:2

G~ t !;E dtfe
2t/tfP ~ tf!. ~5.7!

The distribution functionP (tf) then behaves as follows:

P ~ tf!;exp$2gln2~gDtf!%; tf@
1

gD
. ~5.8!

This can be easily checked by substituting Eq.~5.8! into Eq. ~5.7! and calculating the integral via
the stationary point method; the stationary point equation being

2gtf ln~gDtf!5t. ~5.9!

Note thattD
21[gD is the inverse characteristic time of diffusion through the sample~Thouless

energy!, or in other words, the typical width of a level of an open system. The formula~5.8!
concerns therefore the states with anomalously small widths in the energy space. The corre
ing saddle-point configuration is found from the requirement of providing a minimum to the a

S 52
pn0D

4 E ddr Str~¹Q!25
pn0D

2 E ddr ~¹u!2, ~5.10!

with the additional restriction

E ddr ~coshu21!5
t

pn0
, ~5.11!

and the boundary condition on the boundary with leadsuu leads50. For a quasi-1D sample of th
lengthL, the solution can be approximated as22

u~r !.u0S 12
2ur u
L D , 2

L

2
,r,

L

2
, ~5.12!

whereu0 satisfies the equation
J. Math. Phys., Vol. 38, No. 4, April 1997
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eu05
2

p
tDu0 , ~5.13!

so that

u0. lnS 2p tD ln~ tD! D. lnS 4p gDtf ln2~gDtf! D . ~5.14!

Relying on our previous experience, we believe that the smoothed intensity of the corresp
state is uc2(r )usmooth } eu(r ), as was stated in Ref. 22. Normalizing it by the conditi
* uc2( r)u51, we get

uc2~r !usmooth5
u0
SL

e22u0ur u/L. ~5.15!

Thus, the ALS, which gives a minimum to the level widthtf
21 , has an exponential shape~5.15!

and ~5.14!.

2. Distribution of local density of states

Now, let us consider the distributionP (r) of LDOS. Typically, in an open metallic sampl
the LDOSr(E,r) is given by a superposition of;1/tDD5g adjacent levels, since their widths a
of order of 1/tD . However, we can expect that forr much greater than its average valuen0, the
asymptotic form ofP (r) is determined by a probability to have a single narrow resonance, w
gives this value of LDOSr(E,r). The most favorable situation happens when the resonan
located around the pointr in the real space and around the energyE in energy space. The LDOS
provided by such a resonance is expected to be:

rALS5uc2~r!u
2tf
p

, ~5.16!

wheretf
21 is the resonance width. Thus, the optimal fluctuation should provide now a maxi

to the product of the local amplitudeu5uc2(r)u and the inverse level widthtf . Since the distri-
bution P (tf), @Eq. ~5.8!#, decays much slower thanP (u), @Eq. ~3.36!#, one should expect the
asymptotic behavior ofP (r) to be mainly determined byP (tf). Indeed, it was found in Ref. 24
thatP (r) has a LN form, similar to that ofP (tf):

P ~r!;expH 2
j

4 S 1

L1
1

1

L2
D ln2~r/n0!J , ~5.17!

where, as before,L1 and L2 are the distances from the observation pointr50 to the sample
edges. The corresponding saddle-point configuration reads:

eu~r !.H ~r/n0!
12r /L1, r.0

~r/n0!
12ur u/L2, r,0

. ~5.18!

If we put the observation point in the middle of the sample,L15L25L/2, the configuration
~5.18! acquires the same form as the optimal configuration~5.12! for the relaxation timetf . The
corresponding values oftf andr are related as follows:

4

p
gDtfln

2~gDtf!5r/n0 , ~5.19!
J. Math. Phys., Vol. 38, No. 4, April 1997
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or, expressingtf throughr,

tf5
pr

4gDn0ln
2~r/n0!

. ~5.20!

Now, we calculate the value of the local amplitudeuc2(0)u for an ALS corresponding to the
configuration~5.18!. First, its smoothed intensity is given by

uc2~r !usmooth5N 21eu~r !5
ln~r/n0!

V S r

n0
D 22ur u/L

. ~5.21!

Second, the quasi-jump induced by the GUE-type fluctuations gives an additional factor,
can be found in the same way as prescribed by Eq.~3.30!:

A~r!52r
]

]r
lnP ~r!52gln~r/n0!. ~5.22!

Combining Eqs.~5.20!, ~5.21!, and~5.22!, we can compute the LDOS~5.16! determined by this
resonance state:

rALS~E,0!5uc2~0!usmooth•A~r!•
2tf
p

5
ln~r/n0!

V
•2gln~r/n0!•

rV

2gln2~r/n0!
5r. ~5.23!

We have explicitly checked therefore that the LDOSr is indeed determined by a single ALS
smoothed intensity which is given by Eq.~5.21!. There are three sources of the enhancemen
LDOS: ~i! amplitude of the smooth envelope of the wave function,~ii ! the short-scale GUE
‘‘bump,’’ and ~iii ! the inverse resonance width. They are represented by the three factors
~5.23!, respectively. Note that the calculatedrALS reproduces the value ofr with an amazing
accuracy~including logarithmic factors and even the numerical coefficient!.

3. Distribution of global density of states

Finally, we discuss the contribution of ALS to the asymptotic behavior of the distribu
functionP (n) of the global density of states~DOS!

n~E!5
1

V K (
a

d~E2Ea!L 5
1

VE ddrr~E,r !. ~5.24!

A resonance state with an energyE and widthtf
21 gives a following contribution ton(E):

nALS~E!5
2

p

tf
V

5
2

p
tfDn0 . ~5.25!

Thus, if we assume that the asymptotic behavior ofP (n) is determined by isolated~in energy
space! anomalously localized states, it will have the form:

P ~n!;P S tf5
pn

2Dn0
D;exp$2gln2~gn/n0!%. ~5.26!

We will see below that an analogous procedure in 2D leads to a result forP (n) which is in full
agreement with the renormalization group calculation of Altshuler, Kravtsov and Lerner.2
J. Math. Phys., Vol. 38, No. 4, April 1997
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B. 2D geometry

1. Distribution of relaxation times

Distribution of relaxation timestf has the form23

P ~ tf!;H ~ tf /tD!24pg, tD!tf!tDS Ll D
2

expH 2
pg

2

ln2~ tf /t!

ln~L/ l ! J , tf@tDS Ll D
2

,

~5.27!

with g52pn0D being the dimensionless conductance of a 2D square. An ALS correspond
the first regime,tD!tf!tD(L/ l )

2, has the following spatial structure:

uc2~r !usmooth5N 21eu~r !5
1

16pDtf

1

@~r /L !21L2/~16Dtf!#2
, ~5.28!

so that it has an effective localization lengthje f;L(tD /tf)
1/2, with the intensity decreasing a

1/r 4 outside the region of the extentje f . As to the ultra-long-time region,tf@tD(L/ l )
2, the

saddle-point solution reads:

eu~r !5
~r /L !g t22

@~r /L !g t1 @~g t12!/~g t22!# ~ l
*
~ t !/L !g t#2

; l
*
~ t !<r<L, ~5.29!

where

l
*
~ t !5g tl ; g t.

ln~ tf /tD!

ln~R/ l !
. ~5.30!

Now, l
*
(t) plays a role of an effective localization length, and the intensity shows the follow

behavior:

uc2~r !u;
1

l
*
~ t !2 S r

l
*
~ t !D 2g t22

, l
*
~ t !<r<L. ~5.31!

2. Distribution of local density of states

Distribution of LDOS,P (r), has the following asymptotics:24

P ~r!;expH 2
p2n0D ln

2r

ln~L/ l
*
~r!! J . ~5.32!

The corresponding saddle-point solution reads

eu~r !.
r

n0
S l *~r!

r D gr

, ~5.33!

wherel
*
(r)5grl , and

gr5
ln~r/n0!

ln~L/ l
*
~r!!

.

Normalizing it, we get the following ALS intensity atr> l (r) :

*

J. Math. Phys., Vol. 38, No. 4, April 1997
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uc2~r !u smooth.5 ~22gr!
1

V

r

n0
S l *~r!

r D gr

; gr,2

~gr22!
1

p l
*
~r!2 S l *~r!

r D gr

; gr.2

. ~5.34!

The value of the GUE-type quasi-jump is

A~r!52r
]

]r
lnP ~r!52grp2n0D. ~5.35!

To estimate the escape time from this resonance state, we note that its power-law
uc2(r )u } (r / l

*
(r))2gr, is similar to that of the ALS optimizing the relaxation time,uc2(r )u

} (r / l
*
(t))2g t22. This allows us to identifygr5g t12, so that

tf /tD;H r

n0
S lL D 2, gr.2

1, gr,2,

~5.36!

up to logarithmic prefactors depending ongr and g t . Substituting Eqs.~5.34! and ~5.35!, and
~5.36! in Eq. ~5.16!, we getrALS;r. Thus, we have checked that the ALS determined by
saddle-point solution~5.33! indeed provides the value of LDOS which is equal~within the accu-
racy of our consideration! to r. This confirms an assumption that an anomalously large valu
r is typically governed by a single ALS with the spatial structure described by the correspo
saddle point configuration. As in the quasi-1D case, the enhancement ofr is determined by the
product of three factors:uc2(r )usmooth, A(r), and tf /tD , represented by Eqs.~5.34!, ~5.35!, and
~5.36!, respectively.

3. Distribution of global density of states

Now, we consider the contribution of ALS to the asymptotics of the distribution of glo
DOS, which can be estimated according to Eq.~5.26! as follows:

P ~n!;P S tf5
pn

2Dn0
D;H ~gn/n0!

24pg,
n

n0
!
1

g S Ll D
2

expH 2
pg

2

ln2~n/n0Dt!

ln~L/ l ! J , n

n0
@
1

g S Ll D
2. ~5.37!

The far LN asymptotic tail in Eq.~5.37! is in full agreement with the RG calculation by Altshule
Kravtsov, and Lerner.2 We find also an intermediate power-law behavior, which could not
obtained from the study of cumulants in Ref. 2. We note, however, that this power-law fo
fully consistent with the change of the behavior of cumulants^^nn&& at n;pg discovered in
Ref. 2.

Finally, taking into account the close similarity between the cumulants of DOS an
conductance,2 it is natural to suppose that the distribution function of conductance in a 2D me
system has essentially the same behavior~5.37!, with an intermediate power-law regime. Th
hypothesis, which would be fully consistent with a power-law asymptotic behavior of conduc
distribution function on the mobility edge suggested by Shapiro,34 needs however further verifi
cation.
J. Math. Phys., Vol. 38, No. 4, April 1997
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C. 3D geometry

As has been already mentioned in Sec. IV, in three dimensions the ALSs are in fa
localized. Their intensity just shows a relatively ‘‘narrow’’ bump on top of the usual average v
uc2u51/V. Comparing the results of Sec. IV and of Refs. 23 and 24, we find that the spatial
of these ‘‘bumps’’ is the same for the states, which are optimal for all the distributionsP (u),
P (r), andG(t). Namely, it has the form

uc2~r !usmooth;
1

V
expHCi

l

r
ln2Zi J , i5u,r,t, ~5.38!

where

Zu5
uV

~kFl !
2 ,

Zr5r/n0 ,

Zt5
t

t~kFl !
2 ,

andCi are numerical constants of order of unity. The corresponding distributions have one a
same, log-cube-exponential, form:

P ~ i !;exp$2 const~kFl !
2ln3Zi%. ~5.39!

Note that formation of a large value of LDOSr(E,r ) cannot be explained in 3D as a contributio
of a single ALS. Indeed, in a metallic sample LDOS is typically provided by a number of le
of order ofg;kF

2 lL . In order that a single level might give such~or even larger! a value of LDOS,
it should has a local amplitude~or, alternatively, an inverse width in energy space! enhanced by a
factor ofg. However, in contrast to the quasi-1D and 2D situations,g does not enter the asymp
totics~5.39!, which do not depend on the system sizeL. Therefore, a high value of LDOS is in 3D
typically due to contribution of a large number (} L/ l ) of adjacent levels.

VI. ADDITIONAL COMMENTS

A. States localized near the boundary

We assumed throughout the paper that the center of an ALS is located far enough fro
sample edge. For a quasi-1D sample, this means thatje f!L1 ,L2 . In the 2D case this implies tha
the distance from the observation point to the boundary is of the same order of magnitude
directions, so that ln(L/l) is defined without ambiguity. Here, we will consider briefly the role
ALS situated close to the boundary, when these conditions are violated.

We start from the quasi-1D geometry. Let us calculate the distribution functionP (u) in a
point located very close to one of the sample edges. Formally, this means thatL2!je f . Then the
functionW(1)(uSj,t2) in Eq. ~3.4! can be approximated by unity, and we get

P ~u!5
2

p
j3/4S1/4L21/2u23/4expH 22AujS1

p2j

4L1
S 12

Aj/uS

L1
1 . . . D J . ~6.1!

We see therefore that close to the boundary the distributionP (u) has the asymptotic deca
P (u);exp$22AuSj%, which is slower than in the bulk of the sample,P (u);exp$24AuSj%.
This means that if we consider the distributionP (u) averaged over the position of the observati
point, its asymptotic tail will be always dominated by contribution of the points located clos
J. Math. Phys., Vol. 38, No. 4, April 1997
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the boundary,P (u);exp$22AuSj%. This could be already anticipated from Eq.~3.46!, where the
factor exp$p2/4@(j/L1)1 (j/L2)#% strongly increase with the approach of one of the sam
edges. The same tendency, but in a weaker form, is observed in Eqs.~2.10!–~2.12!. Calculating
the average intensitŷuc2(r )u&u of the corresponding ALS, we find that atr. l Eqs. ~3.50! and
~3.54! retain their validity, with an additional overall factor of 2. At smallr , Eq. ~3.44! is slightly
modified:

^uc2~r !u&u5S ujSD
1/2

@11AuSjkd~r !#. ~6.2!

In 2D, we can consider a sample of the semicircular shape, with the observation point lo
in the center of the diameter serving as a boundary. The saddle-point solution then has exa
same form~4.2!, and the ALS intensity is still given by Eq.~4.5!, with an additional factor of 2.
The asymptotic form of the distribution functionP (u) gets an extra factor 1/2 in the exponen

P ~u!;expH 2
p2n0D

2

ln2~~Vu/2p2n0! ln~L/ l * !!

ln~L/ l * ! J . ~6.3!

We expect this result to be applicable to any 2D sample of a characteristic sizeL, with a smooth
boundary and the observation point taken in the vicinity of the boundary.

We see therefore that, very generally, the probability of formation of an ALS with the ce
in a given point is strongly enhanced~via an extra factor 1/2 in the exponent!, if this point lies
close to the sample edge. This leads to the additional factor 1/2 in the exponent in the asym
form of the distributionsP (u) near the boundary.

B. Orthogonal symmetry class

All the considerations in this paper can be straightforwardly generalized to the system
unbroken time reversal invariance~orthogonal symmetry class!. The main results are as follows

~i! all formulas for the average spatial density^uc2(r )u& in the metallic samples retain the
validity. In particular, in the quasi-1D case, Eqs.~3.43!, ~3.44!, ~3.50!, and ~3.54! hold with the
same definition ofj52pn0SD. In the far localized tail, Eq.~3.42!, j is replaced byj/2, which is
just the conventional dependence of the localization length on the symmetry of ensemble;

~ii ! in the expressions for the asymptotics of all distribution functions, an extra facto
appears in the exponent;

~iii ! GUE–type fluctuations are replaced by the GOE-type ones, where appropriate.

VII. SUMMARY

In this paper, we have studied the spatial structure of the anomalously localized sa
weakly disordered samples. Such states appear to govern the asymptotic behavior of the d
tion functionP (u) of local amplitudes of eigenfunctions. In the quasi-1D geometry, an ALS
an effective localization lengthje f much shorter than the conventional onej. We were able to
calculate exactly the average intensity of such a state. The found spatial distribution of the
intensity,^uc2(r )u& } 1/(r1je f)

2, turned out to be in agreement with the form of the solution
the saddle-point equation of Ref. 21. Thus, the saddle-point configuration indeed describ
average intensity of an ALS, as was conjectured in Refs. 21 and Ref. 22. This allowed
describe the spatial structure of ALS in 2D and 3D, as well. We have also studied the fluctu
of the ALS intensity and found them to be essentially of the same GUE type, as for a ty
delocalized eigenstate.

Not only the asymptotic behavior ofP (u), but also that of distributions of other quantities c
be governed by a kind of ALS. Here are several important examples of such quantities: in
participation ratioI 2, relaxation timetf , local density of statesr(E,r ), and global density of
J. Math. Phys., Vol. 38, No. 4, April 1997
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statesn(E). We have found that the spatial structure of ALS relevant to the asymptotic beh
of different distributions may be different. This is because an ALS constitutes an optimal flu
tion for one of the above quantities, and the form of this fluctuation depends on the sp
characteristic, which is to be optimized. Finally, we have discussed interrelations between a
totics of various distributions mentioned above. In the quasi-1D and 2D cases, this allowed
present a comprehensive picture, which explains all the asymptotics as governed by expon
rare events of formation of ALS.
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APPENDIX: JOINT DISTRIBUTION FUNCTION OF EIGENFUNCTION INTENSITIES IN
TWO DIFFERENT SPATIAL POINTS

In this appendix, we write down the results for the joint distribution function of intensitie
an eigenfunction in two spatial points,

P ~u,v;r !5^d~ uc~0!2u2u!d~ uc~r !2u2v !&, ~A1!

for a quasi-1D system. Forl,r!j, the functionP (u,v) can be restored from its moments, E
~3.61!. The result is obtained in the following form:

P ~u,v;r !5
1

p2V

]2

]u]v
1

Auv
E
0

`

dnnsinh~pn!e2t1~11n2!/4E
0

1

dz
1

A12z
W~1!S vj

12z
,t2D

3KinS 2A vj

12zD ]

]z H 1

Az
W~1!S uj

z
,t2DKinS 2Auj

z D J . ~A2!

In the opposite case,r, l , the expression~3.75! for the moments has to be used, yielding

P ~u,v;r !5
j

L

]

]u

]

]vE0
2pdf

2p

]

]z
$W~1!~z,t1!W~1!~z,t2!%uz5z~u,v,r ,f! ,

~A3!

z~u,v,r ,f!5jSS u

11Akd~r !eif
1

v

11Akd~r !e2 ifD .
Unfortunately, even in the simplest case of an infinitely long sample, when the functionW(1) is
given by Eq.~3.32!, formulas~A2! and~A3! are too involved. This is why we have chosen in S
III to analyze the expressions for the moments, rather than the distribution function itself.
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9H.-J. Stöckmann and J. Stein, Phys. Rev. Lett.64, 2215~1990!; S. Sridhar,ibid. 67, 785 ~1991!.
10A. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett.75, 822 ~1995!.
11A. D. Mirlin and Y. V. Fyodorov, J. Phys. A26, L551 ~1993!.
12A similar idea was used to study the statistics of LDOS and tunneling conductances, see Refs. 13–16.
13K. B. Efetov and V. N. Prigodin, Phys. Rev. Lett.70, 1315~1993!.
14V. N. Prigodin, K. B. Efetov, and S. Iida, Phys. Rev. Lett.71, 1230~1993!.
15A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. Lett.72, 526 ~1994!; A. D. Mirlin and Y. V. Fyodorov, J. Phys.~France!
I 4, 665 ~1994!.

16A. D. Mirlin and Y. V. Fyodorov, Europhys. Lett.25, 669 ~1994!.
17Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. Lett.67, 2405~1991!.
18Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. Lett.69, 1093~1992!.
19Y. V. Fyodorov and A. D. Mirlin, Int. J. Mod. Phys. B8, 3795~1994!.
20Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B51, 13403~1995!.
21V. I. Fal’ko and K. B. Efetov, Europhys. Lett.32, 627 ~1995!; Phys. Rev. B52, 17413~1995!.
22B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B51, 5480~1995!.
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Statistics of resonance poles, phase shifts and time
delays in quantum chaotic scattering: Random matrix
approach for systems with broken time-reversal
invariance

Yan V. Fyodorova) and Hans-Jürgen Sommers
Fachbereich Physik, Universita¨t-GH Essen, D-45117 Essen, Germany

~Received 24 July 1996; accepted for publication 11 December 1996!

Assuming the validity of random matrices for describing the statistics of aclosed
chaotic quantum system, we study analytically some statistical properties of the
S-matrix characterizing scattering in itsopencounterpart. In the first part of the
paper we attempt to expose systematically ideas underlying the so-called stochastic
~Heidelberg! approach to chaotic quantum scattering. Then we concentrate on sys-
tems with broken time-reversal invariance coupled to continua viaMopen chan-
nels;a51,2,...,M . A physical realization of this case corresponds to the chaotic
scattering in ballistic microstructures pierced by a strong enough magnetic flux. By
using the supersymmetry method we derive an explicit expression for the density of
S-matrix poles~resonances! in the complex energy plane. When all scattering chan-
nels are considered to be equivalent our expression describes a crossover from the
x2 distribution of resonance widths~regime of isolated resonances! to a broad
power-like distribution typical for the regime of overlapping resonances. The first
moment is found to reproduce exactly the Moldauer–Simonius relation between the
mean resonance width and the transmission coefficient. Under the same assump-
tions we derive an explicit expression for the parametric correlation function of
densities of eigenphasesua of theS-matrix ~taken modulo 2p). We use it to find
the distribution of derivativesta5]ua /]E of these eigenphases with respect to the
energy ~‘‘partial delay times’’! as well as with respect to an arbitrary external
parameter. We also find the parametric correlations of the Wigner–Smith time
delaytw(E)5(1/M ) (a ]ua /]E at two different energiesE2V/2 andE1V/2 as
well as at two different values of the external parameter. The relation between our
results and those following from the semiclassical approach as well as the relevance
to experiments are briefly discussed. ©1997 American Institute of Physics.
@S0022-2488~97!00904-3#

I. INTRODUCTION

Chaotic scattering has been a subject of a rather intensive research activity during t
decade, both theoretically~see reviews1–5! and experimentally.6–12 This phenomenon is encoun
tered in a variety of physical systems ranging from atomic nuclei,3,13,14 atoms15–17 and mol-
ecules2,18,19to mesoscopic ballistic devices4,20 and microwave cavities.8–12The most fundamenta
object characterizing the process of quantum scattering is the unitaryS-matrix relating the ampli-
tudes of waves incoming onto the system and the amplitudes of scattered~outgoing! waves.
Because of the chaotic nature of the underlying scattering dynamics theS-matrix characteristics
behave in an irregular way when parameters of either incoming waves~e.g., energy! or of the
scattering region~e.g., the form or strength of the scattering potential, the strength of the mag

a!On leave from Petersburg Nuclear Physics Institute, Gatchina 188350, St.Petersburg District, Russia.
0022-2488/97/38(4)/1918/64/$10.00
1918 J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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field through the ballistic microstructure, etc.! are slightly changed. Because of this fact it see
to be most adequate to describe such a behavior in terms of some statistical measures: distr
and correlation functions.

At present, there are two complementary theoretical tools employed to calculate sta
characteristics of open quantum systems exhibiting the phenomenon of chaotic scattering
are the semiclassical1,2,4,21,22and the stochastic approaches,23,24 the relation between both method
being in some detail discussed in Ref. 25. The semiclassical approach operates with the g
microscopic Hamiltonians and allows for treating particular systems with full account of
specific features. The starting point for such an approach is a representation ofS-matrix elements
in terms of a sum over the classical periodic orbits, the method going back to work
Gutzwiller26 and Balian and Bloch.27 The statistical characteristics are sampled usually over s
range of energies or changing the system parameters.

It is however known, that the majority of~both closed and open! quantum chaotic systems o
quite different microscopic nature shows a great degree of universality in their properties o
appropriate energy scale. More precisely, the statistical characteristics ofclosedsystems turn out
to be independent of the microscopic details when sampled on the energy intervalsdE large in
comparison with a mean separation between two adjacent levelsD, but smaller than the energ
scaleEc5\/te , with te standing for the relaxation time necessary for the classically cha
system to cover uniformly the constant energy shell.28 Because of this universality one achiev
the correct description of the properties of such systems29 by exploiting the similarity with en-
sembles of large Gaussian random matricesĤ of the sizeN3N characterized by the following
probability distribution:

P b~Ĥ !}exp2
bN

4
TrĤ2, ~1!

where the matrices are considered to be real symmetric (b51, Gaussian orthogonal ensembl
GOE!, Hermitian (b52, Gaussian unitary ensemble: GUE! or consisting of real quaternion
(b54, Gaussian symplectic ensemble: GSE!. Ensembles withb51 (b52) serve to describe
spectra of closed quantum chaotic systems systems with preserved~broken, e.g., by applied mag
netic field or by Aharonov–Bohm magnetic flux! time-reversal invariance, correspondingly. A
last, the ensemble corresponding tob54 describes systems with preserved time-reversal inv
ance displaying strong spin-orbit scattering which should be taken into account.

Properties of all these ensembles were studied long ago.30,31 The mean level density
nsc(E)5^n(E)& in the limit N→` is given by the so-called Wigner semicircle law:

nsc~E!5 K 1N Trd~E2Ĥ !L 5
1

2p
A42E2, ~2!

where the angular brackets stand for the ensemble averaging. The radius of the semicircle
~in chosen normalization! to Esc52, so that the average spacing between eigenvalues is 4/N while
the local spacing around the pointE is D(E)5(Nnsc)

21.
The mean level density is the simplest quantity characterizing the spectrum of any sys

is not very informative from a physical point of view since it is insensitive to the fine structur
the spectrum. It is also the same for all universality classes. Actually, no real physical sys
known where the mean level density follows the semicircle law, Eq.~2!.

In contrast, the two-point spectral correlation function:

R2~v!5D2~E!^n~E2V!n~E1V!&21 ~3!
J. Math. Phys., Vol. 38, No. 4, April 1997
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wherev52pV/D(E) is known to be universal, i.e., independent of the microscopic details
has the same form both for generic chaotic systems and for the Gaussian ensembles of
symmetry. The same universality extends to other spectral properties, such as the neares
bors spacing distribution, etc.29

Despite the apparent success in the exploitation of random matrix results for desc
spectra of quantum chaotic systems of different nature29,31 it was a long standing problem t
justify the validity of such an approach microscopically. Some insight was achieved withi
semiclassical approach long ago by Berry.32 Very recently Muzykantsky and Khmelnitsky33 and
especially Andreevet al.34 managed to find a way to prove this conjecture by a nontrivial co
bination of field-theoretical and semiclassical ideas. In parallel, traditional semiclassical me
were also significantly improved.35 These results put applications of random matrices for
description of universal features of closed chaotic systems on a firm ground.

Provided the properties of a HamiltonianH in for a closed chaotic system are specified, o
can consider its open counterpart and work out theS-matrix by standard methods in the theory
quantum scattering.36–41 As the result, the scattering matrix is expressed in terms of both
HamiltonianH in and matrix elements describing the coupling of the internal motion to ‘‘o
channels,’’ i.e., the states of the system asymptotically far from the chaotic region. Corres
ingly, one can try to extract the statistics ofS-matrix inherited from the mentioned univers
‘‘random matrix’’properties ofH in .

42

In principle, it is far from being obvious that the coupling to continua does not wash ou
universal features. The key observation~made long ago in the context of nuclear physics, see, e
Ref. 43! is that typically there are two well-separated time stages associated with the sca
process: an immediate ‘‘prompt’’ response~so-calleddirect processes! and a delayed, or equili-
brated response associated with the formation of long-living states, orresonances. In the energy
domain direct processes are described by smoothS-matrix characteristics averaged over a lar
energy interval. Such characteristics must be, of course, highly non-universal and are dete
mainly by system-specific boundary conditions on the boundary of the scattering region. A
same time, resonance response happening on a much shorter energy scale manifests it
form of a random signal on top of the smooth averaged characteristics. Formation of the
living resonances is intimately related to the internal dynamics inside the scattering region
natural to expect that the universal features of the chaotic quantum dynamics will be reflec
the universal statistical characteristics of theS-matrix on the ‘‘resonance’’ energy scale, as long
the characteristic times~e.g. measured by inverse widths of the resonances! will be much longer
than the time scale of the direct response.

To find some adequate description of these universal features one can substitute the
tonianH in by the Gaussian random matrix, Eq.~1!. This way was pioneered by Verbaarsch
Weidenmu¨ller and Zirnbauer42 who calculated the correlation function ofS-matrix elements at
two different energies for arbitrary numberM of open channels satisfyingM!N, with N being
the total number of resonances. It was indeed found that theN3M matrix elements describing th
coupling of the internal region to open channels enter the final result in the form of onlyM simple
combinations, the so-called ‘‘transmission coefficients.’’ In full agreement with the ‘‘two dist
time scale’’ picture, these coefficients just measure the portion of the flux in a given ch
which is not reflected back immediately, but penetrates the interaction region and participa
the formation of the long-living resonances.23,25 The approach developed in Ref. 42~following
Ref. 24 we will call it the ‘‘Heidelberg approach’’! turned out to be very fruitful and serves as
case study for all further development in the field.

One can also try to make use of the expected universality directly on the level ofS-matrix
without any reference to the system Hamiltonian. Such a method was developed in great d
a series of papers by Mello and co-workers.44,20,24 The probability density for the whole
S-matrix can be obtained if one makes the assumption of minimal information content of s
distribution respecting the requirements ofS-matrix unitarity, analyticity and constraints impose
J. Math. Phys., Vol. 38, No. 4, April 1997
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by the absence or presence of the time-reversal invariance. Provided all the system-spec
evant information is encoded in the value of the averageS-matrix ^Ŝ& the joint probability
P(Ŝ)dm(Ŝ) is given by

P^S&~Ŝ!dm~Ŝ!}
@ det~ Î2^S&^S†&!#~bM122b!/2

u det~ Î2S^S†&!u~bM122b!
dmb~Ŝ! ~4!

with the following measuredmb(Ŝ):

dmb~Ŝ!} )
a,b

ueiua2eiubub )
a51

M

duadU, ~5!

whereua ; a51,...,M are eigenphases of theS-matrix, the volume elementdU is generated by
the corresponding eigenvectors,b51,2,4 as before andM is the dimension of theS-matrix equal
to the number of open channels. The distributionP(Ŝ) is called the Poisson’s kernel.

For the particular casêS&50 the distribution Eq.~4! just coincides with the measur
dmb(Ŝ). Such distributions were considered long ago by Dyson and known as the Dyson ci
ensembles.30 They were found to describe very satisfactorily theS-matrix statistics for some
realistic models of the chaotic scattering.45 The general Poisson’s kernel, Eq.~4! was verified as
well20,24 and proved to be a very useful tool to predict fluctuations of transmissions thr
ballistic microstructures. It is natural to expect that the same distribution can be actually d
from the Heidelberg approach. However, it turned out that the problem is quite involved te
cally. In his insightful paper46 Brouwer succeeded to derive the Poisson’s kernel distribu
assuming that the HamiltonianH in is taken from a quite specific Lorentzian ensemble of rand
matrices. Since the spectral properties of the latter ensemble and those of Gaussian matri
~1!, are identical as long as the matrix sizeN→`, one expects that the equivalence of the t
approaches can be shown for this generic case as well.

If one wishes to study the dependence of theS-matrix on external parameters without expli
itly considering the system Hamiltonian, one should make some additional statistical assum
beyond the minimum information approach. One possible way is to simulate such a depen
by a kind of ‘‘Brownian motion’’ in the correspondingS-matrix space.47 It turns out, however,
that the Brownian motion picture is in disagreement with the results obtained starting from
Heidelberg formalism. Therefore, the Heidelberg approach seems to be the only consiste
chastic method when we are interested in the parametric variations of theS-matrix characteristics.
An example of such a kind of calculation can be found in Ref. 48. Another important adva
of the Heidelberg approach as compared with that by Mello and collaborators is that it op
with an energy-dependent S-matrix S(E). As such, it allows one to study not only spectr
correlations of different physical quantities but, in principle, also contains information about
features of theS-matrix asresonancesin the complex energy planeE5E1 iY.

The notion of resonances, representing long-lived intermediate states of open system to
bound states of its closed counterpart are converted due to coupling to continua, is one of th
fundamental concepts in the domain of quantum scattering.49 On a formal level resonances sho
up as poles of the scattering matrix occurring at complex energiesEk5Ek2( i /2)Gk , whereEk

andGk are called position and widths of the resonance, correspondingly.
The general problem of determining the domain of concentration and the distribution of

of the S-matrix in the complex plane is of fundamental interest in the general theor
scattering.50 Powerful numerical methods are available~e.g., the method of complex scaling51!
allowing one to extract resonance parameters for models in atomic and molecular ph
Whereas the issue of energy level statistics in closed chaotic systems was addressed in a
mous amount of papers~see Refs. 29 and 28 and references therein!, statistical characteristics o
J. Math. Phys., Vol. 38, No. 4, April 1997
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resonances are much less studied and attracted significant attention only recently.2,16,17,52–66In the
case of weak coupling to continua individual resonances do not overlap:^G&!D. Under these
conditions one can use a simple first order perturbation theory to calculate resonance wi
terms of eigenfunctions of the closed system~see the example in Sec. III of the present pape!.
Quite generally, one finds in such a procedure that the widths for the chaotic system withM open
channels are distributed according to the so-calledx2 distribution:

r~ys!5
~n/2!~n/2!

G~n/2!
ys

n/221expS 2
n

2
ysD , ~6!

whereys stands for the resonance widths normalized to its mean value:ys5G/^G&, the parameter
n5M (n52M ) for systems with preserved~broken! time reversal invariance, andG(z) in Eq. ~6!
stands for the Euler gamma-function. The casen51 is known as the Porter–Thoma
distribution.67 It was shown to be in agreement with experimental data in neutron-nu
resonances,67 the fluorescence excitation spectrum of the NO2 molecule,

68 resonance dissociatio
of the HO2 molecule,

62 the diamagnetic Rydberg spectrum in lithium atom16 and in microwave
cavities.12 Indirectly that distribution manifests itself in fluctuations of tunneling conducta
through ballistic quantum dots.69,70

When the coupling to continua increases resonances start to overlap and the simple pe
tive result Eq.~6! loses its validity. Finally, when the coupling to continua exceeds some cri
value, the so-called ‘‘trapping phenomenon’’ occurs:M very unstable states~broad resonances!
are formed, whereas the restN2M resonances go back to the real axis, i.e. become more
more narrow with increasing coupling, see Refs. 53, 59, and 60 and the end of Sec. III for a
detailed discussion. Such a ‘‘reorganization’’ of the spectrum is the most pronounced whe
number of channelsM is of the same order as the~large! number of resonancesN. This range of
parametersM}N@1 always corresponds to the condition^G&@D which is just the opposite
limiting case as compared with the domain of validity of thex2 distribution. Under this condition
one can calculate the density of resonance poles analytically.55,58 However, frequently one en
counters the case of few open channels and moderately overlapping reson
G;D.16,52,18,62,20In this situation, which is in some sense generic, one can neither rely upo
distribution Eq.~6!, nor use the results of Refs. 55 and 58. The general distribution of reson
widths describing a crossover from isolated to overlapping resonances was found recently
present authors for the particular case of an open chaotic system with broken time-reversal
ance coupled to continua viaM!N equivalent channels.71 One of the main goals of the prese
paper is to give a detailed derivation and subsequent analysis of that distribution, also for th
of non-equivalent channels.

Apart from theS-matrix elements andS-matrix poles, the set of scattering phase shiftsua
~defined via theS-matrix eigenvalues expiua ; a51,2, . . . ,M ) are intensively used to characteriz
the chaotic scattering, see Refs. 1, 45, and 72. Quite recently, their statistical characteristic
studied numerically in some detail for chaotic73,74 as well as for disordered75,76 systems. The
derivatives of phase shifts over the energyta5]ua /]E ~we propose to call them ‘‘partial dela
times’’! are particularly interesting and related to the mean time spent by a quantum particle
interaction domain.

The issue of the time scales associated with different stages of the quantum scattering
~e.g., tunneling, reflection and transmission! is quite a controversial subject which has been un
intensive discussion for a long time, see Refs. 77–80 and references therein. In particular
guities arise because there is no self-adjoint time operator in Hilbert space, analogous
position operator; instead, the wave function depends on time as a parameter.

Relegating all the essential details and derivations to Sec. II, we just mention here
c(x,t) denotes a wave packet at timet for a quantum particle moving in a potentialU(x) ~as such
satisfying the Schro¨dinger equationi\ (]c/]t)5@2 (\2/2m) D1U(x)#c) then the real number
J. Math. Phys., Vol. 38, No. 4, April 1997
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t r@c#5E
2`

`

dtE
uxu<r

uc~x,t !u2d3x

may be interpreted as the total time spent by this state during its evolution inside the ball
radiusr centered at the origin~we assumec(x,t50) normalized to unity!. If c f(x,t) denotes a
freely evolving wave packet~i.e., solution of the same Schro¨dinger equation withU(x)50 and
condition:c f(t52`);c(t52`)), the differencet(r )5t r@c#2t r@c f # corresponds to the time
delay inside the same ball due to scattering by the potentialU(x). Theglobal time delay is defined
astd5t(r→`) and under quite general conditions~see, e.g., Ref. 79! can be shown to be equa
to the time-independentexpectation value

td5E dx1E dx2c* ~x1,t !Td~x1,x2!c~x2,t !, ~7!

where Td(x1,x2) are matrix elements of a Hermitiantime delay operator Tˆ d in the position
representation. This operator turns out to be commuting with the Hamiltonian and intim
related to the so-called Wigner–Smith time delay matrix81 defined in terms of theS-matrix as

t̂w~E!5 i\
]Ŝ†

]E
Ŝ. ~8!

In particular, following Refs. 79 and 82 we show in Sec. II that the eigenvalues of the ope
T̂d just coincide with the eigenvalues oft̂w(E). The quantum mechanical expectation value of
time delay averaged over different channels turns out to be equal to82–85

t~E!5
i\

M
Tr

]Ŝ†

]E
Ŝ52

i\

M

]

]E
ln DetŜ~E!5\

1

M(
a51

M

]ua /]E, ~9!

where the bar denotes the averaging over the energy spectrum of the packet. This sho
relation between the phase shift derivatives and mean time delay mentioned above.

A quite detailed analysis of the time-delay problem was given in the context of nu
physics by Lyuboshits83,84 and other authors.85 In particular, for a wave packet of arbitrary form
Lyuboshits84 suggested a concept of the probability distribution of its time delay. His definitio
based on the interpretation of the quantityP(t)5*xPVuc(x,t)u2d3x as the quantum mechanica
probability to be found within the volumeV at instantt. Then the time derivative]P/]t can be
used to define the distribution of times spent inside the volumeV. A general and illuminating
discussion of the time evolution properties of wave packets in a generic chaotic systems
found in Ref. 82.

On the other hand, the existence of the Hermitian time-delay operatorT̂d in Hilbert space
suggests an alternative definition of the time delay statistics by the natural requiremen
tp5^C(t)uT̂d

puC(t)& for any wave packetC(t). Then the problem is reduced basically to t
study of the statistical properties of the Wigner–Smith time delay matrixt̂w(E).

The chaotic scattering makes the Wigner–Smith time delay matrix~in particular, the quantity
(1/M ) Tr t̂w which is called just Wigner time delay! to be a strongly fluctuating function of th
energyE as well as of any external parameterX. From this point of view we can speak abo
distributions and correlation functions of these quantities. Similarly, the distribution of pa
delay times can be used to characterize variations of time scales associated with the
scattering process. Various statistical aspects of time evolution of the chaotic quantum s
were studied earlier in some detail in Refs. 82, 86, and 87.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Being an important characteristic of the scattering process, the statistics of phase shi
their derivatives deserve to be investigated in more detail. Additional interest in the pro
attaches the fact of relevance of Wigner time delay in condensed matter physics. Indee
series of papers by Bu¨ttiker and collaborators the Wigner time delay was related to the freque
dependent response of mesoscopic capacitors.88–90A more detailed discussion of this issue can
found in the last section of the present paper.

More general parametric derivatives of the scattering phase shifts can also be related t
observable quantities. As a particular example we mention the relation between the per
currents and the derivative of the total phase shift over the magnetic flux derived by Akker
et al.91 These authors considered ‘‘open mesoscopic networks’’: two-dimensional systems o
ducting loops coupled to infinitely long ideal leads~waveguides!. The loops can encircle a flux
tube with fluxf. The expectation value of the persistent current around the flux tube in the
uC& is I (C,f)52^CudH/dfuC&. For the case of a closed system~i.e., when loops are discon
nected from the leads! each discrete levelEn(f) carries the current2dEn /df. When the system
is open, it turns out that the differential contribution of the scattering states at energyE to the
persistent current can be expressed in terms of phase shift derivatives as91

dI~E,f!5
1

2p i

]

]f
@ ln DetŜ~E,f!#dE5

1

2p

]

]f F(
a

u~E,f!GdE. ~10!

In the present paper we give quite a detailed analysis of the statistical properties of sca
phase shifts and their derivatives for generic chaotic scattering in a system with broken
reversal invariance. The extension of our results to other symmetry classes as well as
crossover regimes will be published elsewhere.92 We find it to be most informative to concentra
our attention on the so-calledK-matrix related to the scattering matrix as

Ŝ5
Î2 iK̂

Î1 iK̂
. ~11!

This equation shows that eigenphasesua(E,X), a51, . . . ,M considered modulo 2p are deter-
mined in a unique way by the eigenvaluesza(E,X) of theK-matrix , where we have indicate
explicitly both the energy dependence and dependence on an external parameterX. First of all, we
calculate explicitly the correlation function of densities of the eigenvalues of theK-matrix at two
different energiesE6V and parameter valuesX6dX. WhenV5dX50 this correlation function
turns out to be the same as the pair correlation function following from the Poisson’s kernel
fact confirms the expected equivalence of the minimum information approach and Hamilt
approach for the case of fixed energy, and as such extends the earlier studies on that su46

From that moment we concentrate on the statistics of delay times and parametric derivat
phase shifts. First, we derive and analyze the general expression for the distribution of ‘‘p
delay times’’ ta5]ua /]E ~here and henceforth we frequently put\51) as well as derivatives
]ua /]X. This distribution, being an interesting characteristic of the chaotic scattering by i
also allows us to detect the qualitative features of the Wigner time delay distribution. In parti
for the one-channel system the partial delay time is exactly the same as the Wigner time
After that, we derive the parametric correlation function of the Wigner time delay and show
interesting correspondences with the results of the semiclassical approach. A short accoun
results was published earlier.71,93

The organization of the paper is as follows. Section II is meant to be a kind of introducti
the random matrix method of the description of an open chaotic quantum system. It is
mainly on the original papers by other authors.79,82,94,95Considering a particular generic examp
we discuss the main ingredients of the model and present a quite detailed discussion
time-delay operator and other quantities characterizing time evolution in such systems.
J. Math. Phys., Vol. 38, No. 4, April 1997
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In Sec. III we derive and analyze the density of theS-matrix poles in the complex plane
Section IV is devoted to the statistics of eigenvalues of theK-matrix, phase shifts and thei
derivatives and analyses different statistical aspects of the Wigner time delay. It contains
kind of semiclassical analysis of the parametric correlations of Wigner time delays. Concl
remarks and a discussion of the potential experimental relevance of the obtained results
found in the final Sec. V.

II. SCATTERING PROBLEM FOR RANDOM-MATRIX HAMILTONIANS

A. General description of the model

A model which is most appropriate for incorporating random matrix ideas for describing
phenomenon of quantum chaotic scattering was discussed in great details in the works b
baarschot, Weidenmu¨ller, and Zirnbauer42 and Lewenkopf and Weidenmu¨ller.25 A general con-
struction actually goes back to works by Feshbach43 and is based on the theory of quantu
scattering as formulated in the book by Mahaux and Weidenmu¨ller36 on the theory of nuclear
reactions, or in the book by Levine37 about quantum scattering in molecules. Let us also men
a very general and profound analysis of open quantum and classical wave systems perfor
the book by Livšič.38 In order to make the present paper self-contained we give below a list o
main ingredients of the model. Since the general construction is a rather abstract one, we
instructive to illustrate it by presenting the explicit derivation of the expression for the scatt
matrix and its subsequent analysis for a generic system of much interest: scattering of a qu
particle moving in a perfect lead of widthd in contact with a chaotic region, simulated by
random matrix Hamiltonian. Such a derivation follows that of Refs. 94 and 95~see also Ref. 38
and the works by Pavlov and collaborators40!.

When dealing with a generic scattering problem it is natural to assume that the sca
event is always confined inside a compact part of the available space which is called the ‘
action region.’’ Outside this region interaction is absent and fragments exhibit a free m
characterized~apart from the total energyE) by a set of quantum numbers describing the inter
quantum state of each fragment. As such, these quantum numbers specify the states in
particles can be found long before and long after the scattering takes place—the so-called
nels of reaction.’’ For example, in nuclear and molecular physics different channels are mark
relative angular momentum and spins of colliding particles. In the particular example cons
in much detail below the motion of a particle along an infinite lead of widthd is quantized along
the transverse direction, the different transverse modes being different channels. Assumi
exactlyM channels at given energyE are ‘‘open’’ ~i.e., allow for an unbounded motion of th
particles!, we associate with the channel region acontinuous set of functions
ua,E&;a51, . . . ,M normalized aŝa,E1ub,E2&5dabd(E12E2). An analogous, butdiscreteset of
orthogonal statesun&;n51,2, . . . ,N is associated with the compact interaction region.

In the absence of interaction between the states in channels and the internal states the
tonian of the system has obviously the form

H05(
l ,m

u l &~H in! l ,m^mu1(
a
E dEua,E&E^a,Eu, ~12!

where the integration goes over the energy region where the given channela is open. The model
is simplified by neglecting any direct coupling between different channels; hence the corres
ing term in Eq.~12! is diagonal ina. The first term describes the HamiltonianĤ in of the ‘‘closed’’
chaotic system possessingN@1 bound states, which are eigenstates ofĤ in . In the spirit of the
random matrix universality conjecture, we simulate this part of the Hamiltonian by takingĤ in to
J. Math. Phys., Vol. 38, No. 4, April 1997
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be a Gaussian randomN3N matrix. The numberN is considered to be large:N@1. To describe
the interaction between channels and bound states~converting bound states into resonances! one
adds to the Hamiltonian Eq.~12! the ‘‘interaction term’’

V̂5(
l ,a

~ u l &E dEWla^a,Eu1 herm. conj.!. ~13!

In any practical implementation of such a procedure one should make sure that the total H
tonianH5H01V̂ is self-adjoint. This point is not at all trivial~see the example below!. The
general way of self-adjoint matching of Hamiltonians with internal structure and those desc
motion in external scattering channels was suggested by Pavlov and developed by Pavl
collaborators.40 A particularly convenient formulation of Pavlov’s method suggested
Makarov41 was applied to the problem of chaotic scattering in Refs. 94 and 95.

After the self-adjoint matching is done one can employ standard methods in scattering
~see Refs. 36 and 37! in order to write down the Lipmann–Schwinger equation for the in- a
outgoing scattered waves and find an explicit expression for the scattering matrix.

B. From random matrix Hamiltonian to scattering matrix

Instead of demonstrating such a formal derivation within a quite abstract ‘‘projection for
ism’’ ~see, e.g., Refs. 25 and 82! we find it to be more illuminating to show how to derive th
S-matrix in an alternative way.94,95 To do this let us confine ourselves to a particular gene
example of a scattering system depicted schematically in Fig. 1: a two dimensional cav
irregular shape with impenetrable walls coupled to an infinite waveguide~lead! of width d. Let us
mention, that it is one of the favorite models for the study of generic features of chaotic scatt
both theoretically~see, e.g., the ‘‘frying pan’’ model in Ref. 45! and experimentally.9,10 The
propagation of a quantum particle inside the lead is described by the Schro¨dinger equation,

2
\2

2m S ]2

]x2
1

]2

]y2DC~x,y!5
\2k2

2m
C~x,y!, C~x,y56d/2!50, ~14!

whose general solution can be represented as aM -component vector:C5(C1(x,y), . . . ,
CM(x,y))

T with componentsCa(x,y)5ca(x)fa(y) , where

FIG. 1. A generic model for chaotic scattering : an irregular shaped cavity attached to the perfect lead. The Ham

associated with the cavity region is simulated by a random matrixĤ in .
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



y

y
e

ndary
ack:

ce

e-
local

s

1927Y. Fyodorov and H.-J. Sommers: Resonances and time delays in chaotic scattering

¬¬¬¬¬¬¬¬¬¬
ca~x!5
1

~2p\2ka /m!1/2
@Aae

2 ikax1Bae
ikax#, fa~y!5~2/d!1/2sinF S ap

d D ~y1d/2!G ~15!

for x>0;uyu<d/2;a51,2, . . . ,M , with the numberM of open channels at the energ
E5 \2k2/2m being equal to the largest integer less or equal tokd/p and the wave vectorka being
equal toka5@k22(ap/d)2#1/2, so that2 (]2/]x2) ca5ka

2ca . The running waves are properl
normalized to energyd-functions; unitarity of theS-matrix to be introduced later is related to th
conservation of the probability flux.

The situation of the waveguide disconnected from the cavity we describe by the bou
conditions:]ca /]xux5050. This means that the particle in each channel is just reflected b
Aa5Ba . The correspondingS-matrix relating the vectors of incomingA5(A1 , . . . ,AM)

T and
outgoingB5(B1 , . . . ,BM)

T amplitudes:B5ŜA is just the unityM3M matrix: Ŝ5 Î . The role of
the vectorua,E& of general construction@see Eqs.~12!, ~13!# is played by the vectorC corre-
sponding to the particular choice of amplitudes of incoming waves:Aa51;AbÞa50. The Hamil-
tonian of the particle motion inside the cavity is simulated by theN3N random Hermitian matrix
Ĥ in . Correspondingly, the ‘‘internal’’ wave function is represented by theN-component vector
u5(u1 , . . . ,uN)

T. The wave functions of the scattering system as a whole~‘‘cavity attached to the
lead’’! are therefore vectors

F5S u
C

D
from the Hilbert spaceL2(R1,CM) % CN supplied with the scalar product,

~F1 ,F2!5u1
†u21~C1 ,C2!,

where

~C1 ,C2!5E
2d/2

d/2

dyE
0

`

dxC1
†C2 .

Let us define the Hamiltonian operatorH of the system as a whole acting in that Hilbert spa
as

HS u
C

D 5S Ĥ inu1E
2d/2

d/2

dyE
0

`

dxW ~x,y!C~x,y!

V ~x,y!u1ĤchC
D , ~16!

whereĤch is the operator diagonal in the channel space,

Ĥch5 diagS 2\2

2m
~]x

21]y
2!, . . . ,

2\2

2m
~]x

21]y
2! D

andW (x,y) andV (x,y) areN3M andM3N rectangular matrices describing a coupling b
tween two parts of the Hilbert space. Let us assume for simplicity that the coupling is
along the waveguide:94,95 W (x,y)5d(x)W (y), so that *2d/2

d/2 dy*0
`dxW (x,y)C(x,y)

5*2d/2
d/2 dyW (y)Cux505ŵc(x50), wherewia5*2d/2

d/2 dyW ia(y)fa(y) i51, . . . ,N,a51,. . . ,M
andc(x)5(c1(x), . . . ,cM(x))

T. On the other hand, we have to putV (x,y)[0 in order to be
consistent with the locality of the coupling and to stay in the space spanned by the vectorC.

The operatorH defined in such a way is not, in general, a self-adjoint one. Indeed,
J. Math. Phys., Vol. 38, No. 4, April 1997
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~HF1,F2!5u1
†Ĥ in

†u21~ĤchC1 ,C2!1c1
†~x50!ŵ†u2 ~17!

and

~F1,HF2!5u1
†Ĥ inu21~C1 ,ĤchC2!1u1

†ŵc2~x50!.

From the definition of the operatorĤch and that of the scalar product (C1 ,C2) one can easily
find after using partial integration and the factĤ in

†5Ĥ in that

~HF1 ,F2!2~F1 ,HF2!5
\2

2m H S ]

]x
c1
†Dc22c1

†S ]

]x
c2D J U

x50

1c1
†~x50!ŵ†u22u1

†ŵc2~x50!. ~18!

In order to have a self-adjoint Hamiltonian operatorH one has to impose some appropria
boundary conditions at the pointx50 ensuring that the expression above is vanishing.96 The most
obvious~however, not the most general! choice is

ŵ†u5
\2

2m S ]

]x
cD U

x50

. ~19!

On the other hand, the solution of the Schro¨dinger equation for the whole system
HF5EF;E5 \2k2/2m ~we call these solutions the ‘‘scattering states’’ and denote themFE

henceforth! leads immediately to the relation

u5~E2Ĥ in!
21ŵc~x50! ~20!

which together with Eq.~19! yields the following equation for the vectorc(x):

ŵ†~E2Ĥ in!
21ŵc~x50!5

\2

2m S ]

]x
cD U

x50

,c~x!5S m

2p\2D 1/2S 1

Ak1
@A1e

2 ik1x1B1e
ik1x#

. . .

1

AkM
@AMe

2 ikMx1BMe
ikMx#

D .

~21!

This equation allows us to easily find the unitary scattering matrix:

Ŝ5@ Î2 iK̂ #3@ Î1 iK̂ #21, K̂5pŴ†
1

E2Ĥ in

Ŵ, ~22!

whereŴ5A2m/p\2ŵ diag(k1
21/2, . . . ,kM

21/2), Î is the unity matrix of the corresponding dimen
sion.

Equation~22! can also be rewritten in another form, frequently used in applications. To

end we write:@ Î2 iK̂ #3@ Î1 iK̂ #215@( Î1 iK̂ )22iK̂ #3@ Î1 iK̂ #215 Î22i ( Î1 iK̂ )21K̂ and use
the identity
J. Math. Phys., Vol. 38, No. 4, April 1997
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F Î1 ipŴ†
1

E2Ĥ in

ŴG21

Ŵ†
1

E2Ĥ in

Ŵ5 (
k50

`

~2 ip!kF Ŵ†
1

E2Ĥ in

ŴG k11

5Ŵ†F Î1 ip
1

E2Ĥ in

ŴŴ†G21
1

E2Ĥ in

Ŵ

5Ŵ†
1

E2Ĥ in1 ipŴŴ†
Ŵ, ~23!

which means that the scattering matrix can be written in the form

Ŝ5 Î22ipŴ†
1

E2Hef
Ŵ, ~24!

where thenon-Hermitianeffective HamiltonianHef is given byHef5Ĥ in2 i Ĝ and Ĝ5pŴŴ†.
The expression for the scattering matrix of the form Eq.~24! appears generally when on

describes an open quantum system decaying into several open channels, see, e.g., Refs. 3
In particular, it can be derived from the general Hamiltonian Eqs.~12! and~13! under the assump

tion that the elements of the matrixŴ are energy-independent. This was just a starting point in

approach by Weidenmu¨ller and collaborators.42,25 In the derivation above the matrixŴ does
depend on the energyE via the parameterska5@k22(ap/d)2#1/2. We, however, will be most
interested in thefluctuationproperties of the energy-dependentS-matrix. The typical energy scale
of such fluctuations is given by the mean level spacingD—a typical separation between th

adjacent eigenvalues of the matrixĤ in . Far from the thresholds, as long asD is negligible in
comparison with the difference between the adjacent threshold ene
(\2/2m) (kM

2 2kM21
2 )5 @(2M21)/2m# (\p/d)2 we can safely neglect the energy dependence

the matrixŴ. In view ofD } 1/N the latter requirement is always satisfied in the limitN@1 which
is the only case studied in the present paper.

C. Time evolution of the wave packets: Staying probability and time delay operator for
open quantum chaotic systems

Before describing the time evolution of wave packets let us note that any particular scat
state FE5(u(E),C(E))T is uniquely specified by the set of incoming amplitud
A5(A1(E), . . . ,AM(E))

T. Being the eigenfunctions of the Hermitian HamiltonianH the scat-
tering states must be orthogonal. Below we verify by a direct calculation the validity of
orthogonality condition,

~FE1
,FE2

!5u†~E1!u~E2!1~CE1
,CE2

!5d~E12E2!A1
†A2 . ~25!

Such a calculation allows one to derive some helpful relations that are used later on.
By using the identities

1

2pE0
`

dxe2 iux5
1

2
d~u!1

1

2p iu
,

m

\2

1

Aka~E1!ka~E2!
d~ka~E1!2ka~E2!!5d~E12E2!

and exploiting the definition of theS-matrix: B(E)5Ŝ(E)A(E) and its unitarity one easily finds

~CE1
,CE2

!5d~E12E2!~A1
†A2!1

1

2p i ~E12E2!
A1
†~Ŝ†~E1!Ŝ~E2!2 Î !A2 . ~26!
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Here we assumed that both energiesE1 ,E2 are far from thresholds and close to one another,
that effectively we can putka(E1)5ka(E2) in the expression above everywhere~this is consistent

with neglecting the energy dependence ofŴ as discussed earlier!, except in the denominator
where(E12E2)} (ka

2(E1)2ka
2(E2)).

Let us now use the relation Eq.~20! rewritten in the following form:

uE5
1

2

1

E2Ĥ in

Ŵ~ Î1Ŝ~E!!A. ~27!

Hence

uE1
† uE25

1

4
A1
†~ Î1Ŝ†~E1!!Ŵ†

1

E12Ĥ in

1

E22Ĥ in

Ŵ~ Î1Ŝ~E2!!A2 . ~28!

Now we use the following identity:

Ŵ†
1

E12Ĥ in

1

E22Ĥ in

Ŵ5
1

E22E1
Ŵ†F 1

E12Ĥ in

2
1

E22Ĥ in
GŴ5~K̂~E1!2K̂~E2!!, ~29!

where we exploited the definition of theK̂ matrix, see Eq.~22! neglecting the energy dependen

of the matrixŴ. The relation of Eq.~22! between theS-matrix andK-matrix can also be written

asK̂(E)52 i ( Î2Ŝ(E))( Î1Ŝ(E))215K̂†(E). Substituting this relation into Eq.~29! we use it to
reduce Eq.~28! to the following final form:

uE1
† uE252

1

2p i ~E12E2!
A1
†~Ŝ†~E1!Ŝ~E2!2 Î !A2 . ~30!

We see that when combined Eqs.~26! and ~30! produce exactly the orthogonality condition E
~25!. In particular, this orthogonality condition allows us to use the scattering statesFE

(a) corre-
sponding to the choice of incoming amplitudesAa51,AbÞa50 as a convenient basis in the fu
Hilbert space. DenotingFE

(a)[uFE
(a)& one can write down the total HamitonianH as

H5E dE(
a51

M

uFE
~a!&E^FE

~a!u. ~31!

Now we are prepared to answer the following question: Given a wave pa
uF(t)&5(u(t),C(t))T which evolves according the Schro¨dinger equation i\(]/]t)uF„t…&
5HuF(t)&, how does one express in terms of the scattering matrix the probability for the c
sponding particle to be found inside the ‘‘chaotic’’ domainx,0 at instantt?

According to the rules of quantum mechanics this probability is just given
P(t)5u†(t)u(t). Let us expand the wave packet over the scattering statesuFE&5(a51

M AauFE
(a)&

as

uF~ t !&5E dE f~E!uFE&exp2
i t

\
E, E dEu f ~E!u251, ~32!

where the coefficientsf (E) determine the initial form of the wave packet and we assu
A†A51 so that̂ F(t)uF(t)&51. This immediately gives us the desired expression,
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a

ined
r

l

ven

tral

t

the

obabil-
ilbert
wers of
found

f

1931Y. Fyodorov and H.-J. Sommers: Resonances and time delays in chaotic scattering

¬¬¬¬¬¬¬¬¬¬
P~ t !5E dE1dE2f * ~E1! f ~E2!uE1
† uE2exp2

i t

\
~E12E2!

5E dE1dE2
2p i

f * ~E1! f ~E2!

~E22E1!
expF2

i t

\
~E12E2!G(

ab
Aa*Ab@~Ŝ

†~E1!Ŝ~E2!!ab2dab#,

~33!

where we made use of Eq.~30!. The mean time spent in the interaction region~i.e., the mean time
delay td) can be found integrating this expression over the time. This operation producesd-
functional factord(E12E2) in the integrand which finally gives

td5E
2`

`

P~ t !dt5(
a,b

Aa*Abt̂ab~E!, ~34!

where

t̂~E!5 i\
]Ŝ†~E!

]E
Ŝ~E!52 i\Ŝ†~E!

]Ŝ

]E
~35!

is the Wigner–Smith time delay matrix97 and the bar stands for the energy averaging determ
by the wave packet spectrum:(•••)5*dE(•••)u f (E)u2. If the particle comes only via a particula
channela the scattering statesuFE& coincide with the basis statesuFE

(a)& and the corresponding
time td

(a) ~which is natural to call the ‘‘delay time for the channela’’ ! is given by the spectra

average of the diagonal elementt̂aa(E). Then the delay time averaged over all channels is gi

by the spectral average of the Wigner–Smith time delay:(1/M ) Trt̂(E).
The time derivative2dP/dt is a current out of the chaotic region. Assuming that the spec

function f (E) varies withE on a much larger scale than the mean level spacingD ~the latter scale
is typical for variations ofS-matrix elements! we can putf (E1)' f (E2) in the expression Eq.~33!
This results in the following expression:

d

dt
P~ t !5d~ t !2p~ t !, p~ t !5

1

2pE deei et/\(
ab

Aa*Ab^~Ŝ
†~E1e!Ŝ~E!!ab&. ~36!

This expression can be interpreted as follows.84,82 In our approximation the part of the Hilber
space corresponding to the chaotic region is not populated att,0. At t50 the wave packet
reaches the chaotic region and populates its states instantly. This fact is described by thed(t) term
in Eq. ~36!. Then the functionp(t) has a meaning of the distribution of duration of stay inside
chaotic region. This was just the reason to callp(t) the distribution of time delays.84 On the other
hand, according to conventional rules of quantum mechanics in order to speak about the pr
ity distribution of some observable one should be able to find a Hermitian operator in H
space generating all the moments of that observable as expectation values of the integer po
this operator. Some important insights into the issue of constructing such an operator can be
in Ref. 79. To this end let us consider the followingtime delay operatorconstructed in terms o
Wigner–Smith time-delay matrix Eq.~35! as

T̂W5E dE(
ab

uFE
~a!&~ t̂ !ab~E!^FE

~b!udE. ~37!
J. Math. Phys., Vol. 38, No. 4, April 1997
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The Hermiticity of this operator follows from that of the Wigner–Smith matrix. It commutes w
the Hamiltonian, Eq.~31!, but is not at the same time diagonal due to the degeneracy ofH. It is
evident that for any wave packetuF(t)& the mean time delay given in Eq.~34! is just thetime
independentexpectation value

^t&[td5^F~ t !uT̂WuF~ t !&. ~38!

Then it is natural to define the higher moments of the time delay as

^tp&5^F~ t !u(TŴ)puF~ t !5(
a,b

Aa*Ab~ t̂p!ab. ~39!

This should be contrasted with the moments of the distribution functionp(t),

E dttpp~ t !5~ i /\!p(
a,b

Aa*AbS ]pŜ†~E!

]Ep Ŝ~E!D
ab

. ~40!

We see that only the first moment of this distribution coincides with that given by Eq.~39!, all
others being different. This particular example shows a certain ambiguity in the definition of
time statistics. In the present paper we concentrate on statistics of Wigner–Smith time dela
related quantities: energy derivatives ofS-matrix eigenphases.

D. S-matrix characteristics: poles, eigenphases and delay times

Expression~24! forms the basis for extracting the statistics of scattering poles~resonances!,
which are merely the complex eigenvalues of the non-Hermitian effective Hamilto

Hef5Ĥ in2 ipŴŴ†. At the same time, expression~22! turns out to be a more convenient startin
point for studying statistics of scattering phase shifts and delay times. Indeed, it is eviden
scattering phase shiftsua ;a51,2, . . . ,M @defined via theS-matrix eigenvalues expiua# are de-

termined by the eigenvaluesza(E,X) of the matrixK̂ in view of the relation:ua522 arctanza .
Here we indicated explicitly the dependence of the eigenvaluesza on the energyE and an external
parameterX originating from the corresponding dependence of the Hamiltonian on the param

Ĥ in5Ĥ in(X). It is therefore convenient to characterize the statistics of phase shifts via the sp
density,

rE,X~z!5
1

M(
a51

M

d~z2za~E,X!!. ~41!

Actually, the relationua522 arctanza determines the phase shifts modulo 2p only. It is easy to
understand that every time the energyE coincides with one of the eigenvalue

En(X),n51,2, . . . ,N of the Hermitian HamiltonianĤ in(X) one ~and only one! of the scattering
phase shifts crosses the value 2p3 integer. Indeed, assuming that the eigenvaluesEn are generi-

cally not degenerate one can write the matrix elements of the matrixK̂ in the vicinity ofE5En as

K̂(E→En)5@p/(E2En)# Wna* Wnb , whereWnb are matrix elements of the coupling matrixŴ in

the basis of eigenstatesun& of the Hamiltonian matrixĤ in and (W
†)an5Wna* . We see immediately

that K̂(E→En) has only one eigenvalue divergent atE→En which is given by
z(E)5 @p/(E2En)# (auWnau2, the corresponding eigenvector beingv5(Wn1* ,Wn2* , . . . ,WnM* )T.
The phase shift corresponding to the infinite value ofz(E) must be an integer of 2p. At the same

time all other eigenvalues ofK̂(E→En) are exactly zero in that approximation with correspond
eigenvectors belonging to theM21 dimensional space orthogonal tov. This fact just means tha
J. Math. Phys., Vol. 38, No. 4, April 1997
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M21 corresponding eigenvalues of theexactmatrix K̂(E) stay finite in the vicinity ofEn .
Introducing the exact density of states for theclosed chaotic system: nX(E)
5 (1/N) (nd(E2En(X)) and fixing the phase shift value atE52` to be zero, we conclude tha

(
a51

M

ua52pNE
2`

E

dunX~u!22(
a

arctanza. ~42!

Here arctanzameans the principal branch:uarctanzau,p/2. As function of energyE this expression
is continuous and monotonically increasing withE. The first term is proportional to the leve
staircase and we can forget it modulo 2p.

We will use the relation~42! later on in order to determine the correlations of the Wign

delay timestw(E)5(]/]E) (1/M ) (aua[2( i /M )(]/]E)ln DetŜ(E), which, of course, are posi
tive. For the latter quantity we also can find an independent representation by noticing tha

ln DetŜ~E!5 ln
Det~ Î2 iK̂ !

Det~ Î1 iK̂ !
5 ln

Det~ Î2 ip @1/~E2Ĥ in!#ŴŴ†!

Det~ Î1 ip @1/~E2Ĥ in!#ŴŴ†!
, ~43!

where we have made use of the identity

Det~ Î2ÛV̂!5 Det~ Î2V̂Û ! ~44!

valid for arbitrary ~also rectangular! matricesÛ,V̂. From Eq. ~43! we immediately obtain the
simple relation

tw~E!52~2/M ! Im Tr~E2Ĥ in1 ipŴŴ†!215
2

M(
n51

N
Gn/2

~E2En!
21Gn

2/4
~45!

which, in particular, shows an intimate relation between the statistics of Wigner time dela
that ofS-matrix poles.

To studyS-matrix characteristics within the framework of the stochastic approach, one sh
specify the properties of the amplitudesWia , which couple the internal chaotic motion toM open
channels. For the sake of simplicity one can restrict the consideration to the case whenS-
matrix is diagonal after averaging:^Sab&5dab^Saa&. Such a choice is related with the mention
absence of direct coupling between the channels42,25 and can be ensured if one considersfixed
amplitudesWia satisfying the so-called orthogonality relations42

(
i
Wia*Wib5

1

p
gadab . ~46!

An alternative way to ensure the diagonality of the averageS-matrix is to consider the amplitude
Wia to be independent Gaussian random variables53,55,87,58

^Wia&50, ^Wia*Wjb&5
ga

N
dabd i j . ~47!

One can show, following Refs. 87 and 58 that both choices lead to the same results as long
numberM of open channels is negligible in comparison with the number of bound statesN. Since
this case is only considered in the present paper, we restrict ourselves to the condition Eq~46!.
Provided the orthogonality condition~46! is fulfilled, one can show that the diagonal elements
theS-matrix are given by the following expression:
J. Math. Phys., Vol. 38, No. 4, April 1997
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^Saa&5
12gag~E!

11gag~E!
, ~48!

whereg(E)5 iE/21(12E2/4)1/2. We do not give here the derivation of Eq.~48! referring the
interested reader to Ref. 42 for more details. However, we mention that for the one-chann
M51 relation Eq.~48! follows directly from the distribution of the phase shiftu to be found in
Sec. IV.

The strength of coupling to continua is convenient to characterize via the transmission
ficientsTa512u^Saa&u2 that are given for the present case by the following expression:

Ta
215

1

2 F11
1

2 Reg~E!
~ga1ga

21!G . ~49!

The quantityTa measures the part of the flux in channela that spends a substantial part of the tim
in the interaction region.42,25 This interpretation follows from the fact that the energy averag
S-matrix ~equal to the ensemble average^S& by ergodicity requirement! describes a short time
scattering~‘‘direct response,’’ see the introduction!. Let us also note that frequently we find it t
be more convenient to use the parameters

ga5
2

Ta
21 ~50!

rather than the ‘‘transmission coefficients’’Ta .
Naively, one could suspect that the larger the parameterga , the larger the part of the flux

effectively penetrating the chaotic region. However, we see that this is not the case: both
ga→0 andga→` equally correspond to the weak effective coupling regimeTa!1 whereas the
strongest coupling~at fixed energyE) corresponds to the valuega51. The maximal possible
coupling corresponding to the upper boundTa51 is achieved in the present model for an ener
interval in the vicinity of the centerE50.

This feature is a purely quantum effect and is not surprising any longer, if one remembe
simplest textbook example of a quantum particle scattered on a one-dimensional ‘‘potential
V(x)50 for x,0 andV(x)5V for x.0. The transmission coefficient for such a problem is giv
by: T512uSu254kK/(K1k)2, where k5(2mE)1/2/\;K5@2m(E2V)#1/2/\ and E.0 stands
for the energy of incoming particles. Similar to the case above the transmission is very sma
for the system ‘‘almost closed’’ classically:E2V!E wheng0[(K/k)1/2!1 as well as for sys-
tems ‘‘very open classically’’V,0,uVu@E wheng0@1, the ‘‘perfect’’ transmissionT51 being
possible for the only caseV50 wheng051. This simple example is of course just to remind
of the effect known in radiophysics as ‘‘impedance mismatch’’: the wave is always reflected
at the point of contact of two different waveguides, unless special boundary conditions a
sured.

III. SCATTERING POLES IN COMPLEX PLANE: DISTRIBUTION OF RESONANCE
WIDTHS

A. Resonances as eigenvalues of a non-Hermitian Hamiltonian

We are interested in determining the average two-dimensional density

r~E,Y!5K 1N(
j51

N

d~2!~E2E j !L [K 1N(
j51

N

d~E2Ej !d~Y2Yj !L ~51!

of complex eigenvaluesE j5Ej1 iY j , j51,2, . . . ,N of a non-Hermitian effective Hamiltonian

Hef5Ĥ in2 i Ĝ, see Eq.~24!. According to the general discussion presented in the Introduction
J. Math. Phys., Vol. 38, No. 4, April 1997
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use aN3N random matrixĤ in from the Gaussian unitary ensemble to model the Hamiltonia

a closed chaotic system with broken time-reversal symmetry. The entriesG i j of the matrixĜ are
expressed in terms of the channel amplitudesWia ,a51,2, . . . ,M asG i j5p(aWiaWja* . Before
presenting a general theory it is instructive to consider the important limiting case of an extr
weak coupling when we expect that the resonances are so narrow that their widths are
smaller in comparison with the mean separation between the unperturbed levels. Unde
conditions a simple first order perturbation theory is adequate. Using the notationun& for the

eigenvector of Ĥ in corresponding to the real eigenvalueEn of the closed system

Ĥ inun&5Enun&, one can estimate the shift of the eigenvalues into the complex plane as

2Yn5^nuĜun&5 (
k,l51

N

^a l uĜuak&^nua l&^akun&, ~52!

whereuak&;k51,2, . . . ,N is an arbitrary chosen basis of orthonormal vectors. The matrixĜ can
be easily diagonalized and shown to have exactlyM non-zero eigenvaluesga5p( iWia*Wia .

Choosinguak& to be the eigenbasis of the matrixĜ we therefore have:Yn52(a51
Mga^nuaa&

3^aaun&. Now we use the well-known fact that different components^nuaa&5ua1 iva of eigen-
vectors of the GUE matrices in anarbitrary basis can be treated as independent complex varia
their real and imaginary parts being independently distributed according to the Gaussian la
the variancesua

25va
25 1/2N. This fact allows one to calculate the distribution ofYn easily.

Considering for simplicity the case of all equivalent channels:ga5g for any channel, we get

P ~Y!5d~Y2Yn!5E
2`

`

eikY
dk

2p
F E dudv

N

p
exp2~N2 igk!~u21v2!GM

5E
2`

` dk

2p
eikY

1

~12 ikg/N!M
5

NM

gMG~M !
uYuM21 exp2FNuYu

g
G ~53!

for Y,0 and zero otherwise.
We arrive at the well-known result: the widths of resonances for a slightly open ch

system is given by the so-calledx2 distribution.31 Actually, the same form is applicable also fo
M -channel open systems with preserved time-reversal symmetry, provided one ch
M→M /2. The latter distribution forM51 is known as the Porter–Thomas distibution.

When the coupling to continua increases some resonances start to overlap and the
perturbation theory loses its validity.

A general method for calculating the eigenvalue density for non-Hermitian random ma
was proposed by Sommerset al.98 These authors suggested recovering the densityr(E,Y) from
the ‘‘potential function’’

2F~E,Y!5
1

N
^ ln Det~E2Hef!

†~E2Hef!& ~54!

5K 1N (
j
lnuE2E j u2L [K 1N (

j
ln@~E2Ej !

21~Y2Yj !
2#L . ~55!

To show that this is indeed possible it is convenient to regularize the logarithm in Eq.~55! first and
consider55
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
2F~E,Y!e5K 1N (
j

ln@~E2Ej !
21~Y2Yj !

21e2#L . ~56!

Then one notices that the function

r~E,Y!e52
1

4p
~]E

21]Y
2 !F~E,Y!e5

1

Np
(
j

e2

@~E2Ej !
21~Y2Yj !

21e2#2
~57!

produces the required two-dimensional density, Eq.~51!, when e→0. Indeed, for an arbitrary
continuous functionf (E,Y) one has

lim
e→0

1

p E
2`

` E
2`

`

dEdY f~E,Y!
e2

@~E2Ej !
21~Y2Yj !

21e2#2

5 lim
e→0

1

pE2`

` E
2`

`

dudv f ~eu1Ej ,ev1Yj !
1

@u21v211#2
5 f ~Ej ,Yj !, ~58!

in agreement with thed- functional property.
In fact, Eqs.~56! and~57! show thatr(E,Y) can be considered as a two-dimensional den

of fictitious pointlike ‘‘electric charges’’ 1/N, the functionF(E,Y) playing the role of the elec-
trostatic potential for such a system and Eq.~57! being the corresponding Poisson equation.55,98

Actually, it turns out to be more convenient to use a slightly different regularization, as
actually been done in Refs. 55 and 98

F~E,Y;k!52
1

N
^ ln Det@~E2Hef!

†~E2Hef!1k2Î N#& ~59!

performing the limiting procedurek→0 at the very end. For the so-callednormalmatrices~whose
Hermitian conjugateH † commutes withH ) the regularized potential Eq.~59! coincides with
that defined in Eq.~56!. It is a less trivial fact that one recovers the two-dimensional densit
complex eigenvalues from the potentialF(E,Y;k) also in a general case of non-normal matric
H. We show in Appendix A that it is indeed the case: the density obtained from Eq.~59! by
Poisson’s equation is positive and goes to a sum ofd-functions with weight 1/N near the eigen-
values ofHef .

The main technical problem is to perform the averaging of the logarithmic pote
F(E,Y;k) over the random matrices from the corresponding Gaussian ensemble, Eq.~1!. To
perform such an averaging the authors of Refs. 55 and 98 employed the famous, but som
problematic ‘‘replica trick.’’ This procedure amounts to averaging the corresponding determ
raised to an arbitrary positive integer powern, the average logarithm being recovered as a re
of the limiting proceduren→0. In general, however, the analytical continuationn→0 is not
unique. In particular, it is known that the replica trick fails to reproduce correctly the correla
function of densities ofreal eigenvalues of large Hermitian matrices at two pointsE6V of the
spectrum.99 Rather, it succeeds in giving the correct behavior of that correlation function a
scaleV large in comparison with the typical separation between neighboring eigenvalues, k
as the mean level spacingD. As is shown below, formally the calculation of the mean eigenva
density in thecomplex planeis very similar to the calculation of a correlation function of eige
value densities on thereal axis, with the role ofV played by the variableiY measuring the
distance from the real axis. We immediately conclude that the replica trick must fail when w
interested in eigenvalues situated sufficiently close to the real axis:Y;D.

To this end it is necessary to mention that the non-Hermiticity of the matrices consider
Refs. 55 and 98 was, in a sense, quitestrong: the probability for an eigenvalue to be situated at t
J. Math. Phys., Vol. 38, No. 4, April 1997
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distanceY;D } 1/N vanished in the limitN→`. Under those conditions it is not surprising th
the replica trick succeeded in producing the correct result, the fact verified both by indepe
methods: by a variant of the supersymmetry method58 and by direct numerical computations.55,98

The situation described above is drastically different from that we expect to happen
model under the present consideration. Indeed, it is known that when the numberM of open
channels is small in comparison with the numberN of relevant resonances, the majorityN2M of
resonances are rather ‘‘narrow’’ and the corresponding poles are situated close to th
axis.53,55,59,86Under such a situation one has to discard the replica trick and seek a more re
procedure. Fortunately, the authors of Ref. 99 showed how to calculate the two-point corre
function for real eigenvalues correctly by exploiting the method pioneered by Efetov100 in the
theory of disordered solids. A pedagogical introduction to the method can be found in Ref. 1
the present paper we adjust this procedure for finding the density of scattering poles
complex plane for the few-channel case71 ~for the many-channel caseM } N this density has
already been calculated by Lehmannet al.58!.

Instead of working directly with the regularized potentialF(E,Y,k), see Eq.~59!, in terms of
which the two-dimensional densityr(E,Y) is expressed as

r~E,Y!52 lim
k→0

1

4p
~]E

21]Y
2 !F~E,Y,k! ~60!

we prefer to consider the related function,

F~E,2 iV;k!52
1

N
^ ln Det@~E1V2Ĥ in1 i Ĝ !~E2V2Ĥ in2 i Ĝ !1k2Î N#&. ~61!

It is evident that the potentialF(E,Y,k) can be obtained from the functionF(E,2 iV;k) by
analytical continuation2 iV→Y. As long ask is finite, there is a region extending from positiv
to negativeY where the functionF is analytic inY52 iV. Actually, this continuation is more
convenient to perform directly on the level of densities, i.e., first to calculate the auxil
function102

r~E,2 iV!k52
1

4p
~]E

22]V
2 !F~E,2 iV,k! ~62!

and to restore the true two-dimensional densityr(E,Y) letting 2 iV→Y first and thenk→0:

r~E,Y!5 lim
k→0

r~E,2 iV5Y!k . ~63!

To this end let us consider the generating function,

Z~E,V;Eb ,Vb ;k!5
Det@~E1V2Ĥ in1 i Ĝ !~E2V2Ĥ in2 i Ĝ !1k2Î N#

Det@~Eb1Vb2Ĥ in1 i Ĝ !~Eb2Vb2Ĥ in2 i Ĝ !1k2Î N#
~64!

in terms of which the functionr(E,2 iV)k is expressed as follows:

r~E,2 iV!k5
1

4p F S ]

]E
lim

~Eb ,Vb!→~E,V!

]

]ED 2S ]

]V
lim

~Eb ,Vb!→~E,V!

]

]V D G ^Z~E,V;Eb ,Vb ;k!&.

~65!

The determinant in the denominator of expression Eq.~64! can be represented in a form of
conventional Gaussian integral over the components of a complex 2N-component vector
J. Math. Phys., Vol. 38, No. 4, April 1997
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S5SS1S2D ; Sp51,25~S1
~p! , . . . ,SN

~p!!T, @dS#5)
j51

N
d ReSjd ImSj

p
:

Det21@~Eb2Vb2Ĥ in2 i Ĝ !~Eb1Vb2Ĥ in1 i Ĝ !1k2Î #

5E @dS1#@dS2#expH 2S†F2 i ~Eb1Vb2Ĥ in1 i Ĝ ! 2k Î

k Î i ~Eb2Vb2Ĥ in2 i Ĝ !
GSJ

[E @dS1#@dS2#expH k~S1
†S22S2

†S1!1 iEb~S1
†S12S2

†S2!1 i ~S1
† ,S2

†!S 2Ĥ in 0

0 Ĥ in
D S S1S2D J

3expH iVb~S1
†S11S2

†S2!2~S1
† ,S2

†!S Ĝ 0

0 Ĝ
D S S

S2
D J . ~66!

At this point it is worth mentioning that all eigenvalues ofHef5Ĥ in2 i Ĝ ~scattering poles! must
be situated in the lower half of the complex plane ImE<0. Formally it is ensured by eigenvalue

of the matrixĜ being real non-negative. We see that it is due to this fact that the Gaussian in
above is convergent103 ~for V real other terms in the exponent are purely imaginary and do
spoil the convergency; at the end we may continue analytically!.

The following comment is appropriate here. In principle, one can deal directly with
potentialF(E,Y,k), Eq. ~59! and succeed in finding the convergent Gaussian representatio
the generating function everywhere in the complex planeE1 iY ~see Refs. 71 and 104!. However,
the evaluation of the averaged generating function and subsequent restoration of the eige
density turns out to be quite a daunting job. This is the reason why we decided to deal
particular case with a less general, but more tractable representation Eq.~66! allowing us to
evaluate the generating function for two real parametersE,V and then to continue analyticall
V→ iY as explained above.

Returning to our problem we represent the determinant in the numerator of the gene
function Eq.~64! in the form of a Gaussian integral over a 2N- dimensional vector

x5S x1

x2
D

whose elementsx j
(p) , j51,2, . . . ,N;p51,2 areanticommuting~Grassmannian! variables~see re-

views 100 and 101 for more details!,

Det@~E2V2Ĥ in2 i Ĝ !~E1V2Ĥ in1 i Ĝ !1k2Î #

5~21!N DetF2 i ~E1V2Ĥ in1 i Ĝ ! k Î

k Î 2 i ~E2V2Ĥ in2 i Ĝ !
G

5~21!NE @dx1#@dx2#exp$2k~x1
†x21x2

†x1!

1 ix2
†~E2V2Ĥ in2 i Ĝ !x21 ix1

†~E1V2Ĥ in1 i Ĝ !x1%, ~67!

where@dx#5)k51
N dxk* dxk . In contrast to the discussion above, the integration over Grassm

variables is always well defined and one does not encounter the convergency problem.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Obviously, our generating function is the product of two Gaussian integrals defined in
~66! and ~67!. It is convenient to introduce the notion of a supervector,

C5S C1

C2
D where Cp5S Sp

xp
D , p51,2. ~68!

Then one can write the generating function in the following ‘‘supersymmetric’’ form:

Z~E,V;Eb ,Vb ;k!5~21!NE @dC#exp2~S d@C#1S Ef@C# !, ~69!

where

S Ef@C#52 iVC†L̂L̂C2 iEC†L̂C1 iC†~Ĥ in^ L̂ !C ~70!

and

S d@C#5kC†ŜC1 i ~V2Vb!C†K̂bC1 i ~E2Eb!C†L̂K̂bC1C†~ Ĝ ^ L̂L̂ !C. ~71!

Before presenting the explicit expressions for the supermatricesL̂,L̂,K̂b andŜ we would like
to make a notational convention on arranging elements of supermatrices. All these~and subse-
quently appearing! supermatrices are assumed to act in the space of supervectorsC whose ele-
ment arrangement is defined in Eq.~68!. Correspondingly, we subdivide each 434 supermatrix

Q̂ into four blocks

Q̂5S Q̂11 Q̂12

Q̂21 Q̂22
D

in such a way thatC†Q̂C5(m,n51
2 Cm

† Q̂mnCn . Each of theseQ̂mn blocks is in turn a 232
supermatrix

Q̂mn5SQbb
~mn! Qbf

~mn!

Qfb
~mn! Qf f

~mn!D
such thatCm

† Q̂mnCn5Sm
†Qbb

(mn)Sn1Sm
†Qbf

(mn)xn1xm
†Qfb

(mn)Sn1xm
†Qf f

(mn)xn . The indicesb, f re-
mind us of ‘‘bosonic’’/‘‘fermionic’’ nature of the commuting/Grassmannian components of
pervectors, respectively.

It is necessary to note that in the present paper we use the same convention for He
conjugation of 232 supermatrices as in Ref. 101:

SQbb Qbf

Qfb Qf f
D †5S Qbb* Qfb*

2Qbf* Qf f*
D .

This is different from the convention used in Refs. 100 and 105 and results in some subs
differences in parametrizations.

With these conventions the 434 supermatrices appearing in Eqs.~70,71! are given by the
following expressions:

L̂5 diag~1,1,21,1!, L̂5 diag~1,1,21,21!, K̂b5 diag~1,0,1,0!, ~72!

and
J. Math. Phys., Vol. 38, No. 4, April 1997
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Ŝ5S 0 I 2

k̂ 0 D ,

whereI 25diag(1,1), k̂5diag(21,1).

B. Ensemble-averaged generating function

A quick inspection of Eqs.~69, 70, and 72! makes it clear that the superintegral in hand
very similar to that emerging in the problem of calculation of the pair correlation functio
eigenvalues of Hermitian random matrices at pointsE6V, see, e.g., Ref. 101. In fact, the tw
expressionscoincide if one neglects the exponentS d . The neglected exponentS d does not
contain random variables and cannot prevent us from successfully using the main steps of E
standard procedure when evaluating the average value of the generating function. Below w
a short description of the main steps of the method; all further details can be found in Ref. 10
references therein.

Ensemble averaging.One can easily perform the averaging over the Gaussian-distrib

matrix elements ofĤ in by exploiting the identity

K exp6 i(
i j

~Ĥ in! i j Û i j L 5exp2
1

2N(
i j

Û j i Û i j . ~73!

In order to write down the result of the ensemble averaging in a convenient form it is u

to introduce the supermatrixÂ with elements

Apq
~mn!5~ L̂1/2!pp

~mm!(
i51

N

~C i !m
p ~C i

†!n
q~ L̂1/2!qq

~nn! , ~74!

where indicesp andq are equal tob or f and we assumed the convention:C i
b[Si ;C i

f[x i . Now
the ensemble-averaged value of the corresponding exponent in Eq.~69! can be written as

^exp@2 iC†~Ĥ in^ L̂ !C#&5exp2
1

2N
Str Â2, ~75!

where the symbol Str stands for the graded trace StrQ̂5 TrQ̂bb2 TrQ̂f f . It is also useful to

notice that StrÂQ̂5C†L̂1/2Q̂L̂1/2C for an arbitary supermatrixQ̂. In particular, StrÂL̂

5C†L̂L̂C.
Hubbard-Stratonovich transformation.As a result of ensemble averaging the superinteg

representing the generating function ceased to be a Gaussian one. The further progress is b
the following identity:

expF2
1

2N
StrÂ21 iV StrÂL̂ G5E @dR̂#expH 2

N

2
StrR̂21 i StrR̂Â1NV StrR̂L̂J ~76!

known as the Hubbard–Stratonovich~HS! identity.
Now we can substitute this relation back into the averaged generating function, to chan

order of integrations over the supervectorC and the supermatricesR̂, and to calculate the corre
sponding~Gaussian! integral overC exactly using the identity,

E @dC#exp~2C†F̂C!5 S det21F̂, ~77!
J. Math. Phys., Vol. 38, No. 4, April 1997
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where the notation Sdet stands for the graded determinant: SdetQ̂5exp Str lnQ. It turns out,

however, that in order to haveboth *@dC#••• and*@dR̂#••• convergent, one has to parametri

the set of supermatricesR̂ in the following non-trivial fashion suggested in Refs. 100 and 99~see
the detailed discussion in Ref. 101!;

R̂5T̂21P̂T̂, P̂5S P̂12 id Î 2 0

0 P̂21 id Î 2
D , P̂m5S pm hm*

hm iqm
D , ~78!

wherepm ,qm ,m51,2 are real commuting variables,h,h* are Grassmannians and the superm

tricesT̂ belong to the graded coset space U~1,1/2!/U~1/1!3 U~1/1!, andd is positive infinitesimal.
Saddle-point calculation.Performing the program specified above one gets the follow

representation for the average generating function:

^Z~E,V;Eb ,Vb ;k!&5E @dR̂#expH 2
N

2
StrR̂21NV StrR̂L̂2 Str ln ĜJ , ~79!

where

Ĝ5Ĝ1^ Î N2 i Ĝ ^ L̂, Ĝ152 ikŜL2~Eb2E!K̂b1~V2Vb!K̂bL̂2EÎ42R̂ ~80!

and ŜL5L̂21/2ŜL̂21/2. Now one can write:

Str ln Ĝ5N Str ln Ĝ11 Str ln @ Î N2 i Ĝ ^ ~LĜ1
21!#.

The second term in this expression can be rewritten as

Str ln @ Î N2 i Ĝ ^ ~LĜ1
21!#5 (

a51

M

Str ln $ Î 42 iga~LĜ1
21!% ~81!

which easily can be verified by expanding the logarithm into the series, exploiting the orth
nality condition, Eq.~46!, in each term of that expansion and resumming the whole series bac106

Up to the present point we did not make use of any approximation and our calculation
essentially exact. However, we are particularly interested in the limiting case of many reson
N@1 coupled with few open channelsM!N. In this limit we expect that the resonance widths a
of the same order as the mean separation between adjacent resonancesD } 1/N. Therefore, we can
restrict our attention to the caseY;1/N, and, correspondingly, considerV;1/N. The second fact
that should be taken into account is that we are actually interested in the
k,Eb2E,Vb2V→0 when calculating the generating function. These facts taken together m

clear that it is sufficient to expand the logarithm Str lnĜ1 in the exponent of Eq.~79! with respect
to k,Eb2E,Vb2V and retain~apart from the leading terms! only terms linear in these variables
At the same time we can just neglect all these variables in the t

(a51
M Str ln $Î42iga(LĜ1

21% because of the conditionM!N. As a result, we have

^Z~E,V;Eb ,Vb ;k!&5E @dR̂#exp@2NL@R̂#1dL#, ~82!

where

L@R̂#5 1
2 StrR̂

21 Str ln~2EÎ2R!, ~83!
J. Math. Phys., Vol. 38, No. 4, April 1997
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dL5NV StrR̂L̂1N Str@ ikŜL1~Eb2E!K̂b1~Vb2V!K̂bL̂#~2EÎ2R̂!21. ~84!

The form of the integrand in Eq.~82! suggests that it can be effectively calculated by the sad
point method exploiting the large parameterN@1.The saddle point equation is determined

stationarity of the ‘‘action’’L @R̂# and has the formR̂5(2EÎ2R)21. At the same time the
discussion above makes it clear that the terms enteringdL are of the order of unity when
N→` and should be disregarded when seeking the saddle-point solution.

Actually, it turns out that there is a whole continuous manifold of the saddle point solu

R̂s equally contributing to the integral Eq.~82! in the limit N→`:R̂s52E/21 ipnscT̂
21L̂T̂,

wherensc5nsc(E) stands for the semicircular density, Eq.~2!. Introducing a new set of matrice

Q̂52 i T̂21L̂T̂ satisfying the conditions:Q̂252 Î 4 ; StrQ̂50 we finally write down the average
generating function as

^Z~E,V;Eb ,Vb ;k!&5E @dQ̂# )
a51

M

Sdet21F I1 i
1

2
gaEL̂1 ipnscgaQ̂L̂ G

3exp$2NpnscV StrQ̂~L̂2K̂bL̂ !2NpnscVb StrQ̂K̂bL̂

2 iprNk StrQ̂ŜL1N~Eb2E!@E1pnscStrQ̂K̂b#%. ~85!

To obtain the required functionr(E,2 iV)k we should substitute this expression into the relat
Eq. ~62!. Upon doing this one immediately notices that the first term (]/]E)lim(Eb ,Vb)→(E,V)

3(]/]E) ^Z& produces a contribution which is of the order ofN, whereas the term
(]/]V)lim(Eb ,Vb)→(E,V)(]/]V) ^Z& produces a much larger contribution of the order ofN2. Re-
taining only leading terms as long asN→` we arrive at the following expression:

r~E,2 iv!e

nsc~E!
52

1

2E @dQ̂# Str~Q̂L̂ ! Str@Q̂~L̂2Kb̂L̂ !#

3 )
a51

M

Sdet21F I1 i
1

2
gaEL̂1 ipnscgaQ̂L̂ GexpF2

v

2
StrQ̂L̂2

i e

2
StrQ̂ŜLG ,

~86!

where we introduced the ‘‘scaled’’ variablesv52pnsc(E)NV and e52pnsc(E)Nk and the
correspondingly rescaledr(E,2 iV)k→r(E,2 iv)e2pNnsc(E).

C. Distribution of resonance widths: General expression

To perform the explicit evaluation of the superintegral on the right-hand side of Eq.~86! one
has to employ the parametrization of the manifold of theQ-matrices suggested by Efetov.100 To
make the presentation self-contained we present such a parametrization in Appendix B.
same Appendix we also evalute some supertraces, superdeterminants and combination
matrix elements entering Eq.~86! as well as other superintegrals we use later on. Upon subs
tion of these expressions into Eq.~86! one can perform the Grassmannian integration trivially a
obtains
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]

]v

r~E,2 iv!e

nsc~E!
52

i

2E1
`

dl1E
21

1

dl2E
0

2pE
0

2pdf1df2

~2p!2

3exp@ iv~l12l2!1 i e~ um1usin f11 i um2ucosf2!#

3 )
a51

M S ga1l2

ga1l1
DFe,E~l1,2,f1,2!, ~87!

where

Fe,E~l1,2,f1,2!5 i e~l12l2!~ um1usin f12 i um2ucosf2!2 il2H e

2
~ um1usin f11 i um2ucosf2!

1 i e2F12 ~ um1usin f12 i um2ucosf2!
2

1
1

2
~ um1u22um2u222i um1m2usin~f12f2!!G J ~88!

with ga52/Ta21;l1
2511um1u2,l2

2512um2u2.
Having in mind that actually we have to perform the analytic continuation2 iv→y in the

right-hand side of Eq.~87! we introduce two functionsF1,2(e,2 iv) according to the following
definitions:

F1~e,2 iv!5
1

2p
E
1

`

dl1E
0

2p

df1exp@ ivl11 i eum1usinf1# )
a51

M

~ga1l1!
21

5E
0

`

)
a51

M

~dSaexp2Saga!E
1

`

dl1J0~eAl1
221!expF2l1S 2 iv1(

a
SaD G

5E
0

`

)
a51

M

~dSaexp2Saga!F1S e,2 iv1(
a

SaD ; F1~e,y!5
exp2Ae21y2

Ae21y2

~89!

and, similarly

F2~e,2 iv!5
1

4pE21

1

dl2E
0

2p

df2exp@2 ivl22eum2ucosf2# )
a51

M

~ga1l2!

5 (
k50

M

Dk
~M !$g%

1

2E21

1

dl2l2
kI 0~eum2u!exp2 ivl2

5 (
k50

M

Dk
~M !$g%

]k

]~2 iv!k
F2~e,2 iv!; F2~e,y!5

sinhAe21y2

Ae21y2
, ~90!

where

D0
~M !$g%5 )

a51

M

ga , D1
~M !$g%5 (

a51

M

)
bÞa

gb , D2
~M !$g%5 (

a,b51

M

)
cÞa,b

gc , etc. ~91!
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andJ0(z) and I 0(z)5J0( iz) stand for the Bessel functions.
One can easily satisfy oneself that the right-hand side of Eq.~87! can be expressed in terms o

the functionsF1(e,2 iv) andF2(e,2 iv) and their derivatives. This gives us the possibility
perform the required analytic continuation easily and to restore the two-dimensional d
r(E,y);y52pnsc(E)NY, see, Eq.~63! in the form

]

]y
S r~E,y!

nsc~E!
D 52 lim

e→0
H ]

]y
S F2e

]F1

]e
2F1e

]

]e
F2D 2

e

2

]

]e
FF1

]F2

]y
G2

e2

2
F ]2F1

]e2

]F2

]y

1F1

]2

]e2

]F2

]y
24

]F1

]e

]

]e

]F2

]y
1

]2F1

]y2

]F2

]y
2F1

]2

]y2

]F2

]y
12F1

]F2

]y
G J .

~92!

The limiting transitione→0 is performed with the help of the identities:

2 lim
e→0

e
]

]e
F1~e,y!5 lim

e→0
e2

]2

]e2
F1~e,y!52d~y! ~93!

which, in turn, are consequences of the following representations for thed-function valid for an
arbitrary integerk:

d~y!5Ck lim
e→0

e2k

~e21y2!~2k11!/2
, C151/2, C254/3, etc. ~94!

It is useful also to note that if we substituteF2(e,y) for F1(e,y) in Eq. ~93!, this will produce
zero instead of thed-functions on the right-hand side. The same is true also for terms
lime→0e

2]2/]y2F1(e,y). Using these observations we easily pick up all nonvanishing contr
tions to Eq.~92!. Summing them up we get

]

]y

r~E,y!

nsc~E!
5

]

]y
lim
e→0

FF2e
]F1

]e G , ~95!

which immediately allows us to restore the densityr(E,y) in the form:

r~E,y!

nsc~E!
5F2~e50,y!E

0

`S )
a51

M

dSaD dS y1(
a

SaD exp2(
a

gaSa . ~96!

It is clear, however, that for any positivey the d-functional constraint in Eq.~96! is never
satisfied and the right-hand side is identically zero. This result is of course just a conseque
the fact of absence of scattering poles in the upper half plane of complex energies.

We therefore considery,0 from now on, make the substitutiony→2y to the previous
equation and considery.0 after that. TheM -fold integral can be further simplified upon usin
the integral representation:d(u)5(1/2p) *2`

` dk exp iku Finally we arrive at the following ex-
pression:

r~E,y!

nsc~E!
5F 1@$g%,y#F 2@$g%,y#, ~97!

where
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F 1@$g%,y#52
1

2pE2`

`

dke2 iky)
a51

M
1

ga2 ik
5~21!M(

a51

M

e2yga)
bÞa

1

ga2gb
~98!

and

F 2@$g%,y#5
1

2E21

1

dle2yl )
a51

M

~ga1l!5 (
k50

M

~21!kDk
~M !$g%

dk

dyk
sinh y

y
~99!

and the functionsDk
(M )$g% are defined in Eq.~91!.

It is clear that the functionrE(y)5 r(E,y)/nsc(E) has the meaning of a distribution o
~scaled! resonance widths for those resonancesE j5Ej1 iY j whose positionsEj fall into a narrow
window dE around the pointE of the spectrum:

rE~y!5
1

NE
(
j51

NE

d~y22pnsc~E!NYj !.

Such a window should contain a lot of individual resonances:NE; dE/D@1 in order to make the
statistics representative. On the other hand, it should be small in comparison with the total
of the spectrum~in our model given by the widths of the semicircle! to ensure that the local mea
level spacingD(E) is constant across this window.

Equations~97!–~99! provide us with the explicit formula for the local-in spectrum density
scattering poles for a generic open chaotic system with broken time-reversal invariance an
stitutes the main result of the present section.

D. Properties of the resonance width distribution

1. Weak coupling versus strong coupling: From x2 distribution to power-law behavior

When all scattering channels are equivalent, i.e., have equal transmission coefficientsTa5T
~hence, equalga5g) the distribution Eq.~97! can be represented in a quite simple and eleg
form. Indeed, for this case we have

F 1~g,y!52
1

2pE2`

`

dke2 iky
1

~g2 ik !M
52

1

G~M !
yM21e2gy, ~100!

whereG(M )5(M21)! stands for the Euler gamma-function. We also can write the func
F 2(g,y) in this case as

F 2~g,y!5 (
k50

M

~21!kSMk D gM2k
dk

dyk S sinh yy D , ~101!

where (k
M) stands for the binomial coefficient. One immediately sees that the expression fo

densityrE(y)can be written as

rE~y!5
~21!M

G~M !
yM21

dM

dyM S e2yg
sinh y

y D . ~102!

Remembering that the ‘‘weak coupling’’ limit corresponds to large values of the param
ga@1, one immediately notices that the distribution of resonance widths is exponentially c
y*ymax5maxa$ga

21%. Thus, in the weak coupling limitymax!1 and we can put sinhy/y'1 every-
where. This procedure immediately results in the well-knownx2 distribution for the case of
equivalent channels, see Eq.~102!. The conditiony!1 just means that the resonances are
J. Math. Phys., Vol. 38, No. 4, April 1997
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narrow to overlap with each other. It is therefore natural that thex2 distribution simply follows
from a first order perturbation theory, see the discussion in the beginning of the present se

As long as the coupling to continuum becomes stronger, the parametersga decrease towards
unity. When one or more transmission coefficientsTa attain their maximal valueTa51 a drastic
modification of the resonance width distribution occurs. Indeed, it is easy to see that whenTa ~and
hence the correspondingga) tends to unity, the functionF 1@$g%,y# behaves proportionally to
exp(2y) at large enoughy. This decay exactly cancels the growing exponent exp(y) originating
asymptotically fromF 2@$g%,y#. As a result, the distribution functionrE(y) must show apure
power lawdecay in its tail, see Fig. 2.

To determine this power explicitly one should make more accurate estimates of the a
totic behavior of bothF 1 andF 2. Substituting sinhy'

1
2e

y in the definition ofF 2 one can write:

F 2@$g%,y→`#5
1

2
ey(

p50

M
~21!p

yp11 Up , Up5 (
k50

M

~21!k
k!

~k2 l !!
Dk

~M ! . ~103!

Using the definitions of the coefficientsDk
(M ) , see Eq.~91! one finds that

U05 )
a51

M

~ga21!, U152 (
a51

M

)
bÞa

~gb21!, . . . Up5~21!pp! (
a1 , . . . ,al51

M

)
cÞa1 . . . al

~gc21!.

We see that the leading power ofy in the asymptotic behavior of the functionF 2@$g%,y# is
essentially determined by the number of parametersga which aresimultaneouslyequal to unity.
Let us suppose, for definiteness, that exactlyl quantitiesg1 ,g2 ,...,gl are equal to unity, wherea
all other M2 l parametersgl,a<M are larger ~and, for simplicity, are all different!. Then
U05U15•••5Ul2150 and the leading behavior of the functionF 2@$g%,y# is given by

F 2@$g%,y→`#5~21! l l !
ey

2yl11 )
a5 l11

M

~ga21!. ~104!

Under the same conditions one can determine the leading asymptotic behavior of the fu
F 1@$g%,y# by calculating the integral in Eq.~98!. The contribution of thel2fold pole at
k52 i gives

FIG. 2. The distribution of scaled resonance widthsr(y) for M51 ~solid! M52 ~dash-dotted! andM53 ~dotted line!
equivalent open channles. The effective coupling is maximal:g51. As the result, the distributions demonstra
M /(2y2) asymptotic behavior at largey.
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F 1@$g%,y→`#5
~21! l

~ l21!!
yl21e2y )

a5 l11

M
1

~ga21!
. ~105!

This finally results in the desirable asymptotic decay law for the distribution of resonance w

rE~y→`!5
l

2y2
. ~106!

The physical origin of such a tail in the width distribution is discussed below. It is interestin
note that such a behavior means that the positive moments of the width distrib
*0

`dyykrE(y) are apparently divergent as long ask>1.
It is also instructive to consider briefly the particular case of very many equivalent chan

M@1;ga5g for any channel. We find that it is most convenient to rewrite the expression
~102! in an equivalent form,

rE~y!5
1

2G~M !y2Ey~g21!

y~g11!

dt exp2~ t2M ln t ! ~107!

and to evaluate the integral by the saddle-point method. The exponent is maximal in the v
of ts5M . When this point is inside the integration region, i.e.,y(g21),ts,y(g11) we have a
nonvanishing contribution to the integral. In the opposite situation the density of reson
vanishes exponentially whenM@1. Picking up the nonvanishing contribution we obtain

rE~y!uM@15H M

2y2
,

M

g11
,y,

M

g21

0, y,
M

g11
or y.

M

g21

. ~108!

Two conclusions can be drawn from this expression.

~1! In the limit of large number of channelsM@1 the distribution of resonance widths shows
gap: there are no resonances with widths smaller thanym5 M /(g11).

~2! A region of power-law behaviorrE(y) } M /y2 exists not only for the critical coupling
g51, but also in the vicinity of the critical point:g21!g. However, only forg51 the
power-law domain extends to infinity.

The formation of a gap~a strip in the complex energy plane free of resonances! was first noticed
in the numerical experiments by Moldauer107 long ago and discussed in much detail by Soko
and Zelevinsky53 later on. Gaspard and collaborators~see the references in Ref. 2! observed such
a gap in their studies of chaotic scattering in the so-called three-disk systems. Semiclassica
number of open channels was very large and comparable with the number of resonances
limit M ,N→` but m5M /N finite the expression for the resonance width distribution was
tained and analyzed in the papers.55,58 Our expression Eq.~108! obtained under the condition
1 ! M ! N perfectly matches them! 1 limiting case of their expression.

2. Mean resonance width: the Moldauer –Simonius relation

Having at our disposal the explicit formula Eq.~97! we can, in particular, easily calculate th
mean resonance width,
J. Math. Phys., Vol. 38, No. 4, April 1997
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^y&5E
0

`

dyyF 1F 252
1

4p E
21

1

dl )
a

~ga1l!E
2`

`

dk )
a

1

ga2 ik E
0

`

dyye2y~l1 ik !

5
1

4p E
21

1

dl )
a

~ga1l!
]

]l E
2`

`

dk
1

l1 ik )
a

1

ga2 ik

52
1

2 E
21

1

dl )
a

~ga1l!
]

]l )
a

1

ga1l
5
1

2 (
a51

M

ln
ga11

ga21
. ~109!

Remembering the relation betweenga and the transmission coefficientsTa , see Eq.~50!, and
using the definition of the scaled level widthy5pG/D we can represent the last result in the for
of a relation between the mean resonance widths^G& and the transmission coefficientsTa ,

^G&52
D

2p (
a51

M

ln~12Ta!, ~110!

which can also be rewritten as

U)
a51

M

^Sa&U5exp2
p^G&

D
~111!

in view of the definitionTa512u^Sa&u2.
The latter formula has been well-known for a long time in nuclear physics as the Molda

Simonius relation.108 It was derived for systems with unbroken time-reversal symmetry by a
aging theS-matrix over the energy spectrum and using the unitarity condition. The fact tha
recovered this relation by ensemble averaging is in good agreement with the well-known e
icity of the Gaussian ensembles.109 The logarithmic divergency of̂G& at the critical coupling
Ta51 is a direct consequence of the 1/y2 decrease of the probability distribution, see Eq.~106!.

3. Strong chaos as the origin of the power-law tail of the resonance width distribution
The results presented above suggest that the power law decrease 1/y2 should be typical for

chaotic systems strongly coupled to continua and is one of the clear manifestations of the
overlap between individual resonances. It is therefore natural to try to understand the ori
such a tail qualitatively in terms of the underlying chaotic dynamics.

To this end it is interesting to mention that a little different power law distribution of re
nance widths, that of the formr(y)}y23/2, was observed in numerical studies of a quant
chaotic system with~quasi! one-dimensional ‘‘diffusive’’ dynamics in the case of strong coupli
to continua.110 The authors suggested a transparent qualitative explanation of this effect bas
the fact that the resonance width is proportional to the inverse lifetime for a wave packet in
into the system. The latter is determined by the time of the classical diffusion:tdif5D/L2, where
L is the distance from a given point to the closest~strongly absorbing! boundary andD is a
classical diffusion constant. For a semi-infinite sample this reasoning immediately gives a
law width distributionr(G)} dL/dG }G23/2.

Let us remind that the present model is based on the use of the Gaussian random m
Physically, it corresponds to the case of strongly chaotic classical dynamics for the c
system.29,34For such systems there is a typical time scaledt determined by an inverse Lyapuno
exponentl21 after which the system effectively loses a memory about its initial conditions
can be found in any part of the available phase space on the energy shell with equal prob
Such systems are known as the ergodic ones. Let us show that it is just that type of cl
dynamics which is responsible for the power law tail 1/y2 of the width distribution.

To understand this fact let us consider as a particular, but generic example, a particle m
with a velocityv inside an irregular-shaped two-dimensional cavity of areaA and circumference
J. Math. Phys., Vol. 38, No. 4, April 1997
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C}A1/2. The chaoticity is considered to be so strong that complete ‘‘loss of memory’’ occurs
few collisions with walls so thatdt can be estimated asdt}C/v}A1/2/v. Let us make a smal
opening of the widthd ! C in the walls so that the particle can escape from the cavity when
it hits the opening. Subdividing the observation time in intervals of the order ofdt we conclude
that the probability to escape during one interval is justp05d/C}dA21/2!1 in view of the
ergodicity and escape events during the subsequent intervals can be treated as inde
~memory loss!. Then the probability to stay inside the cavity for a large timete and then to leave
within the interval@ te ,te1dt# can be estimated asP(te)dt5 (p0dt/dt) exp2p0te/dt.

Considering our system semiclassically, we associate the wavelengthld5 \/mv with our
particle and can estimate the number of quantum mechanical states available inside the
cavity asN } A/ld

2. Since the energyE5mv2/2, the corresponding mean level spacing being
the order ofD5E/N is proportional tomv2ld

2/A. Interpreting the inverse escape time\te
21 as the

resonance widthG and measuring it in units ofD: y5G/D, one can find the distribution ofy to be
given by: P(y)5 (M sc/y

2) exp2Msc/y' M sc/y
2 for y@M sc, where Msc5\p0 /(Ddt)

} (\d/A1/2) (A/mv2ld
2) (v/A1/2)5d/ld , which coincides with the quasiclassical estimate for

number of open channels for the present problem.
We conclude that the semiclassical arguments faithfully reproduce the same powerlaw

the resonance width distribution as that obtained from our random matrix model. Therefor
expect such a tail to be a universal characteristic of the chaotic quantum scattering pr
independent of the specific details of the underlying classical dynamics being sufficiently c
to ensure an exponential escape from the compact scattering region.

The following comment is appropriate here. Dealing with realistic models of open ch
systems containing no random parameters one always performs statistics over an inte
energiesdE on a real axis containing many resonances:dE@D, but being small enough for a
systematic variation of the smoothed level densityn(E) to be neglected:dE! n̄/(dn̄/dE) ~cf.
definition of the quantityrE(y)). One may expect thatuniversal features of such statistics ar
adequately reproduced within the framework of the stochastic approach, but only on the le
‘‘local-in-spectrum’’ characteristics calculated atfixedvalue ofE. Indeed, any spectral averagin
in the stochastic model performed on a scale comparable with the radius of the semicirc
avoidingly mixes up data corresponding to very different values of the transmission coeffic
the procedure washing out any relevant physical information. In particular, it seems quite
ingless to consider quantities like the ‘‘globally’’ averaged resonance w
Ggl5 (1/N) (k51

N Gk , where the summation goes overall N resonances. In our model this quanti
can be trivially found from the sum rule:NGgl522 Tr ImHef52(aga and cannot be related t
any particular transmission coefficient. This fact, however, should not be misinterpreted as i
sibility to have universal statistics ofS-matrix poles within the stochastic approach as discusse
Ref. 25. Rather, the quantityGgl can be found via the direct integration of the universallocal
expression̂G&, Eq. ~110! over the energyE, upon substituting there the energy-dependent va
Ta(E),D(E) from Eq. ~49!. Indeed, the following integral can be easily evaluated:111

lim
N→`

(
k

Gk5NE
22

2

^G~E!&n~E!dE52
1

2p
(
a
E

22

2

dE lnS 122gaA12E2/41ga
2

112gaA12E2/41ga
2
D

5 (
a51

M

@ga1ga
212uga2ga

21u#, ~112!

resulting in the expected expression 2(aga as long as allga<1.
We see that the result of the integration is always finite for anyga , thus concealing a specifi

role of the critical couplingga51 when resonances withdivergent local mean width occur
sufficiently close to the center of the spectrum.
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Of course, taken literally this divergency has sense only in the limit of infinite numbe
resonancesN→`. For any finiteN all resonance widths are finite and in any case cannot exc
the upper bound 2(aga . Basically, it is related to the fact that the distributions Eqs.~97,102!
cease to be valid for the domain of very broad resonances having widthsG;1 ~correspondingly,
y;N). Alternatively, one may say that for large, but finiteN the Moldauer–Simonius relation i
to be modified in a narrow domaindE } 1/N in the vicinity of the energyE50, see Ref. 86.

Expression Eq.~112! can be also used to describe an interesting phenomenon happening
some coupling constantsga ~e.g., for the channelsa51,2, . . . ,M1<M ) exceed the critical value
g51 . Under this condition the result of integration in Eq.~112! is less than the exact sum ru
value 2(a

Mga by the quantitydG52(a
M1(ga2ga

21).0. This deficit reflects the existence o
M1 ‘‘broad resonances’’ of the widthsGa52(ga2ga

21)@D } 1/N;a51, . . . ,M1. Such reso-
nances cannot be described by the distribution Eqs.~97,102! which cover only the resonance
satisfying y5pG/D,` in the limit N→`. When coupling constantsga increase further the
group of broad resonances moves away from the real axis, accumulating in the limitga@1 the
lion’s share of the total widthsGgl . The remainingN2M1 resonances become progressively mo
and more narrow and their widths are well described by the distribution Eq.~97!.

The effect of reorganization of the resonances into two essentially different groups d
strong coupling to continua~the ‘‘trapping phenomenon’’! was studied in some detail in Refs
53,55,59, and 60.

IV. STATISTICS OF SCATTERING PHASE SHIFTS AND TIME DELAYS

In the present section we are going to study in much detail the statistics of individual
tering phase shiftsua and their derivatives, both over the energyE and over an arbitrary externa
parameterX. As we already mentioned in Sec. II@see Eq.~41!#, it is convenient to characterize th
phase shift properties via the spectral density:rE,X(z)5(1/M ) (a51

M d(z2za(E,X)) of eigenval-

ues of the matrixK̂X(E)5pŴ†(E2Ĥ in(X))
21Ŵ. Our object of primary interest is the correlatio

function

KE,V,X~z1 ,z2!5^rE2V/2,2X/2~z1!rE1V/2,X/2~z2!&2^rE2V/2,2X/2~z1!&^rE1V/2,X/2~z2!&
~113!

knowledge of which, in particular, allows one to study statistics of ‘‘partial delay tim
ta5 ]ua /]E and also the corresponding parametric derivatives.

Before addressing the issue of the spectral density correlations, it is instructive to cons
some detail the calculation of the average spectral density^rE,0(z)& for the few channel case. Thi
quantity is less informative than the correlation function Eq.~113!, but that simple calculation
serves as a reference point for more interesting cases. Let us mention, that in the limitM}N@1
the phase shift density was found earlier by Lehmann and Sommers.112

Averaged spectral density of K-matrix
The averaged density can be easily found provided the following functions are known

f E,X
6 ~z!5K Tr

1

z6 i e2K̂X~E!
L ~114!

in view of the obvious relation:rE,X(z)5 (1/pM )lime→0 Imf E,X
2 (z). We restrict our attention in

the present context tof E,X50
2 (z), omitting all the indices6,E,X for the sake of brevity.

The functionf (z) can be formally written as

f ~z!5 lim
J→0

]

]J
^ ln Z~J!&, Z~J!5

Det~~z1J! Î M2K̂ !

Det~zÎM2K̂ !
. ~115!
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Here and below we implyz[z2 i e for the sake of brevity, implyingf (z) to be analytic in the
lower z half-plane.

Due to the normalisation conditionZ(J50)51 one can writef (z)5 limJ→0(]/]J) ^Z(J)&. In
order to perform the ensemble average of the generating functionZ(J) in a standard way one

should first get rid of the following unpleasant feature: the random matrixĤ in enters the expres

sion for the generating function only via the matrixK̂. To this end, we can use the identity E
~44! and write down the determinant in the denominator of the generating function as

zM Det~ Î M2z21pŴ†~E2Ĥ in!
21Ŵ!5zM Det~ Î N2z21p~E2Ĥ in!

21ŴŴ†!

5zM Det21~E2Ĥ in! Det~E2Ĥ in2pz21ŴŴ†!.

~116!

After performing a similar manipulation with the numerator of the generating function we
write

f ~z!5 lim
J→0

]

]J F S z1J

z DMF ~J!G , F ~J!5 K Det@E2Heff~z1J!#

Det@E2Heff~z!# L , ~117!

where we introduced the notationHeff(z)5Ĥ in1 (p/z)WW†.
Now we can use a standard procedure and represent the determinants in the denom

numerator of the preceeding equation by Gaussian integrals overN commuting/anticommuting
variables. After introducing 2N-component supervector

C5SS,
x
D ,

we have:

Det@E2Heff~z1J!#

Det@E2Heff~z!#
5E @dC#exp$2 iC†@~E2Ĥ in!2Ĝ ^ Û#C%, ~118!

where the supermatrixÛ5 diag(z21,(z1J)21) and Ĝ5pŴŴ†, as before.
Now one trivially performs the averaging over the ensemble, see Eq.~73! and decouples the

emerging ‘‘quartic term’’ in the exponent with help of the Hubbard–Stratonovich transforma
In the present simple case such a decoupling is possible when one uses the set of 232 matrices

P̂ defined like in Eq.~78! as the integration manifold. Changing the order of integrations,
forming the integration overC explicitly, and copying steps used to derive Eq.~81!, one obtains:

K Det@E2Heff~z1J!#

Det@E2Heff~z!# L 5E dP̂e2NL~ P̂!)
a51

M

Sdet21@ Î 22gaÛ~E2 P̂!21#, ~119!

where

L~ P̂!5 1
2 StrP̂

21 Str ln~E2 P̂!.

Now it is convenient to use that: (z1J)M/zM5 SdetMÛ. When combined with the precedin
expression it gives:
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f ~z!5 lim
J→0

]

]JE dP̂e2NL~ P̂!)
a51

M

Sdet21@Û212ga~E2 P̂!21#. ~120!

The integral overP̂ is calculated in the limitN@M by the saddle-point method, with uniqu

diagonal saddle-pointP̂s5(E/21 ipnsc) Î 2 accessible by allowed contour deformation f
uEu<2. This immediately yields

f ~z!5 lim
J→0

]

]J)a51

M S ~z1J!2ga~E/21 ipnsc!

z2ga~E/21 ipnsc!
D5 (

a51

M
1

z2ga~E/21 ipnsc!
~121!

analytic in the lower half-plane, from where we find that the mean density of eigenvalues fo

matrix K̂ is given by a sum of Lorentzians~with z real!:

rE~z!5
1

M(
a51

M
nscga

~pnscga!
21~z2 gaE/2!2

. ~122!

For the particular case of one open channelM51 the Lorentzian form of the average spect
density was first found by Mello.24 Actually, in that particular case one can check the expres
Eq. ~48! for the averagedS-matrix using Eq.~122!. Indeed, forM51 theS-matrix is reduced to
the only numberS5exp(22i arctanz)[122iz/(11iz). Therefore

^S&5122i E
2`

`

dzrE~z!
z

11 iz
. ~123!

The integrand has the only polez25Eg/22 ipnscg in the lower half plane Imz,0, and the
corresponding residue immediately gives

^S&5122i ~22p i !
nscg

z22Eg/22 ipnscg

z2

11 iz2
5
12 ~g/2! ~ iE1A42E2!

11 ~g/2! ~ iE1A42E2!
~124!

in complete agreement with Eq.~48!.

V. PAIR CORRELATION FUNCTION OF K-MATRIX SPECTRAL DENSITIES

Let us now turn our attention to the calculation of the pair correlation func
KE,V,X(z1 ,z2), Eq. ~113!. To this end let us introduce the function

f ~z1 ,z2!5K Tr
1

z12 i e2K̂2X/2~E2V/2!
Tr

1

z21 i e2K̂X/2~E1V/2!
L ~125!

related to the correlation function in Eq.~113! as

KE,V,X~z1 ,z2!5
1

2p2M2
Ref c~z1 ,z2!, f c~z1 ,z2!5 f ~z1 ,z2!2 f2~z1! f

1~z2!. ~126!

Performing with each of the two traces of resolvents in Eq.~125! the same manipulations a
presented in Eqs.~115!–~117! one obviously obtains the following representation:
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f ~z1 ,z2!5
]2

]J1]J2
F S ZJ

~1!ZJ
~2!

ZJ50
~1! ZJ50

~2! D M

F ~J1 ,J2!GU
J15J250

,

~127!

F ~J1 ,J2!5K Det@E2V/22Heff~2X/2;ZJ
~1!!# Det@E1V/22Heff~X/2;ZJ

~2!!#

Det@E2V/22Heff~2X/2;ZJ50
~1! !# Det@E1V/22Heff~X/2;ZJ50

~2! !#
L ,

where we introduced the notations:ZJ
(p)5zp1 i (21)pe1Jp ;p51,2 and

Heff~X;ZJ
~p!!5Ĥ in1

X

N1/2 Ĥ in
~1!1

p

ZJ
~p! WW†.

This expression is quite close in its form to the generating function Eq.~64! appearing in the
calculation of resonance widths distributions and we can use a similar representation for it in
of the Gaussian~super! integrals@cf. Eq. ~69!#:

F ~J1 ,J2!5~21!NE @dC#expH 2 iEC†L̂C2 i
V

2
C†L̂L̂C1 iC†Ĝ ^ ~ L̂Û !CJ

3 K expH iC†~Ĥ in^ L̂ !C2 i
X

2N1/2C†~Ĥ in
~1!

^ L̂ !CJ L , ~128!

where Û215 diag(ZJ50
(1) ,ZJ

(1) ,ZJ50
(2) ,ZJ

(2))5(z1/2) (Î 41L̂)1(z2/2) (Î 42L̂)1 diag(0,J1,0,J2)

and notations for the supermatricesL̂,L̂ and the supervectorC are the same as in Eqs.~68,72!.
The subsequent procedure of dealing with the ensemble average in Eq.~128! is exactly the

same as that presented in details in Sec. III. The only difference is that the average is per

only over the GUE matrixĤ in , whereas the matrixĤ in
(1) is considered to be arbitrary, butfixed

from the same ensemble, see Ref. 28. As a result, one has@cf. Eq. ~79!#:

F ~J1 ,J2!5E @dR#expH 2
N

2
@ StrR̂22V StrR̂L̂#2 Str ln ĜF J , ~129!

where

ĜF 5Ĝ1
F 2Ĝ ^ Û, Ĝ1

F 5F ~EÎ42R̂! ^ Î N1
X

2N1/2~Ĥ in
~1!

^ L!G ~130!

so that

Str ln ĜF 5 Str ln Ĝ1
F 1 Str ln $ Î N2~G ^ Û !@Ĝ1

F #21%. ~131!

In turn, one can expandĜ1
F in a series with respect toX:

Str ln Ĝ1
F 5N Str ln~EÎ42R̂!2(

l51

`
~2X/2N1/2! l

l
Tr@H in

~1!# l Str@L̂~EÎ42R̂!21# l . ~132!

Now we use the fact that for any typical GUE matrix holds: Tr@H in
(1)#2p5O(N); Tr@H in

(1)#2p11

5O(1); where p>0 is an integer. It is therefore evident, that in the limitN→` the only
nonvanishing term in the expansion above is that withl52. We also can put effectively

Ĝ1
F 5(EÎ42R̂)^ I N in the second term in Eq.~131! and represent it in a form of a sum ove

channels, see Eq.~81!.
Collecting all the relevant terms, we obtain
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F ~J1 ,J2!5E @dR#expH 2NF12 StrR̂21 Str ln~EÎ42R̂!G J
3expH NV

2
StrR̂L̂1

X2

8
Str@L̂~EÎ42R̂!21#2J )

a51

M

Sdet21@ Î 42gaÛ~EÎ42R̂!21#.

~133!

This integral can be evaluated in the usual manner by saddle-point method in the limitN@1. The

saddle-point manifold is parametrized again by the matricesR̂5 (E/2)Î 42pnscQ̂[@EÎ42R̂#21.
Remembering also that

SdetÛ5S ZJ
~1!ZJ

~2!

ZJ50
~1! ZJ50

~2! D ,

we obtain the following representation for the correlation functionf (z1 ,z2) in terms of the integral
over the graded coset space:

f ~z1 ,z2!5 lim
J1→0,J2→0

]2

]J1]J2
E @dQ̂# )

a51

M

Sdet21F Û212gaSE2 Î 42pnscQ̂D G
3expH 2

v

2
StrQ̂L̂1

x2

8
StrQ̂L̂Q̂L̂J , ~134!

where we introduced scaled variables:v5pnscNV;x5pnscX.

Remembering the definition of the supermatrixÛ21 and performing the expansion of th
superdeterminants up to the second order with respect toJ1 ,J2 one finds:

lim
J1→0,J2→0

]2

]J1]J2
)
a51

M

Sdet21F Û212gaS E2 Î 42pnscQ̂D G
5S )

a51

M

Sdet21B̂aD F (
a51

M

Str~B̂a
21Ĉ1B̂a

21Ĉ1!1 (
a,b51

M

Str~B̂a
21Ĉ1! Str~B̂b

21Ĉ2!G , ~135!

where

B̂a5
z1
2

~ Î 41L̂ !1
z2
2

~ Î 42L̂ !2gaSE2 Î 42pnscQ̂D , Ĉ15 diag~0,1,0,0!, Ĉ25 diag~0,0,0,1!.

~136!

In order to evaluate the integral over the coset space explicitly we substitute the corresp
expressions@see Appendix B, Eqs.~B12!–~B15!# in Eq. ~135! and perform the Grassmannia
integrations remembering that in the chosen parametrization, see Appendix B, a nonvan
contribution comes~apart from the terms proportional to the combinationa*ab*b) also from
terms in the integrand containing no Grasmannians at all~the so-called Parisi–Sourlas–Efetov
Wegner~PSEW!theorem, see Refs. 105 and 101!. We therefore find
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¬¬¬¬¬¬¬¬¬¬
f ~z1 ,z2!5 (
a51

M 1

z2~a!1 i g̃a
(
b51

M 1

z1~b!2 i g̃b

1E
1

`E
21

1 dl1dl2

~l12l2!
2
expF2 iv~l12l2!2

x2

2
~l1

22l2
2!G )

a51

M
D f~a!

Db~a!

3F (
a51

M H z2~a!1 i g̃al1

Db~a!
2
z2~a!1 i g̃al2

D f~a!
J (
b51

M H z1~b!2 i g̃bl1

Db~b!
2
z1~b!2 i g̃bl2

D f~b!
J

1 (
a51

M S g̃ a
2um1u2

D b
2~a!

1
g̃ a

2um2u2

D f
2~a!

D G , ~137!

where the notationsD f ,b(a),g̃a ,z1,2(a) are explained in Appendix B.
It is easy to see that the expression in the first line of Eq.~137! is just the so-called ‘‘discon-

nected’’ partf2(z1) f
1(z2) of the corresponding correlation function, which is given by

(
a51

M
1

z2~a!1 i g̃a
(
b51

M
1

z1~b!2 i g̃b
5K Tr

1

z12 i e2K̂2X/2~E2V/2!
L

3K Tr
1

z21 i e2K̂X/2~E1V/2!
L .

The ‘‘connected’’ part of the correlation functionf c(z1 ,z2)5 f (z1 ,z2)2 f2(z1) f
1(z2) can be

written in the most elegant form by noticing that

z2~a!1 i g̃al1

Db~a!
2
z2~a!1 i g̃al2

D f~a!
52

]

]z1
ln
D f~a!

Db~a!
,

~138!

z1~a!2 i g̃al1

Db~a!
2
z1~a!2 i g̃al2

D f~a!
52

]

]z2
ln
D f~a!

Db~a!
,

and

g̃ a
2um1u2

D b
2~a!

1
g̃ a

2um2u2

D f
2~a!

5
]2

]z1]z2
ln
D f~a!

Db~a!
. ~139!

Taking these relations into account one finally obtains the following compact expressio

f c~z1 ,z2!5E
1

`E
21

1 dl1dl2

~l12l2!
2 expF2 iv~l12l2!2

x2

2
~l1

22l2
2!G

3
]2

]z1]z2
)
a51

M F z1~a!z2~a!1 i g̃al2~z1~a!2z2~a!!1g̃a
2

z1~a!z2~a!1 i g̃al1~z1~a!2z2~a!!1g̃a
2G , ~140!

with g̃a5pnscga andzp(a)5zp2gaE/2. This expression constitutes one of the central result
the present paper. In the rest of the present section we are going to use this relation intensi
extracting statistical properties of scattering phase shifts and their derivatives.
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



at two

-

’’

1956 Y. Fyodorov and H.-J. Sommers: Resonances and time delays in chaotic scattering

¬¬¬¬¬¬¬¬¬¬
A. Correlations of phase shift densities at fixed values of energy E and external
parameter X

The general expression Eq.~140! can be further simplified in the particular casev5x50.
Physically this means that we are interested in studying correlation of phase shift densities
pointsu1 andu2, but at fixed values of the energyE and the external parameterX. Let us further
assume that all channels are equivalentga5g;a51,2, . . . ,M for the sake of simplicity. Introduc-
ing notations:A5 z̃1z̃21g̃a

2 ;B5g̃a(z12z2) wherez̃1,25z1,22Eg/2 we can write:

f c
v5x50~z1 ,z2!5E

1

`

dl1

]2

]z1]z2

1

~A1 iBl1!
ME

21

1 dl2

~l12l2!
2 ~A1 iBl2!

M. ~141!

The integration overl2 can be easily performed yielding:

f c
v5x50~z1 ,z2!5

]2

]z1]z2
(
l51

M SMl D ~2 iB ! l

~ l21!
E
1

` dl1

@A1 iBl1#
l $~l111! l212~l121! l21%

5
]2

]z1]z2
(
l51

M SMl D ~21! l

~ l21! (q50

l21 S l21

q D ~21!q

q F SA2 iB

A1 iB D q21G , ~142!

where in the second line we expanded the brackets (l161)l and performed the remaining inte
gration overl1 explicitly in each term.

After differentiation overz1 ,z2 with help of the relations

A
]B

]z1,2
2B

]A

]z1,2
5g̃~ g̃ 21 z̃ 2

2!, A21B25~ g̃ 21 z̃ 1
2!~ g̃ 21 z̃ 2

2!

the sums overl ,q can be performed explicitly as well. As a result, we obtain:

f c
v5x50~z1 ,z2!52

g̃ 2

B2 S FA2 iB

A1 iB GM21D . ~143!

In this point it is convenient to pass from the variablesz̃1 ,z̃2 to new ‘‘angular’’ variables
ũ1 ,ũ2 defined as

z̃15g̃ tan ũ1 , z̃25g̃ tan ũ2 . ~144!

We obviously have

B5g̃2
sin~ ũ12 ũ2!

cos ũ1cos ũ2

,
A2 iB

A1 iB
5exp22i ~ ũ12 ũ2!.

Remembering the relation Eq.~126! between the spectral correlation functionKE,V,X(z1 ,z2) and
f (z1 ,z2)we notice that the pair spectral correlation function of the densities of the ‘‘anglesũ
defined as

K ~ ũ1 ,ũ2!5^rE~ ũ1!rE~ ũ2!&2^rE~ ũ1!&^rE~ ũ2!&,
~145!

rE~ ũ !5
1

M(
a51

M

dS ũ2arctan
1

pnsc
Fza~E!

g
2E/2G D

can be written in a very simple form:
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K ~ ũ1 ,ũ2!u ũ1Þũ2
52S sinM ~ ũ12 ũ2!

pMsin~ ũ12 ũ2!
D 2. ~146!

One immediately recognizes in Eq.~146! the pair correlation function of the Dyson circula
unitary ensemble~see Ref. 30 where this object is called ‘‘two-level cluster function’’!. It corre-
sponds to the following joint probability density ofM variables ũa5arctan (1/pnsc)
3 @za(E)/g2E/2#, a51,2, . . . ,M :

PM~ ũ1 , . . . ,ũM !5const3 )
a,b

ue2i ũa2e2i ũbu2} )
a,b

sin2~ ũa2 ũb! ~147!

with 2p/2<ũa,p/2. Assuming this probability density being proven, the joint probabi
density of phase shiftsua related to ‘‘angles’’ ũa as tanua/252g(tan ũa1Ẽ/2), where
Ẽ5E/(pnsc) is given by

PM~u1 , . . . ,uM !5PM~ ũ1 , . . . ,ũM !)
a51

M

u
dũa

dua
u, u

dũa

dua
u5

1

2g̃

cos2ũa

cos2ua/2
. ~148!

On the other hand one can write

sin2~ ũa2 ũb!5cos2 ũacos
2 ũb~ tan ũa2tan ũb!5

cos2 ũa

g̃ cos2 ua/2

cos2 ũb

g̃ cos2 ub/2
sin2~ua/22ub/2!

so that using the identity:)a,buaub5()aua)
m21 one obtains

PM~u1 , . . . ,uM !}
1

g̃M2)
a,b

sin2~ua/22ub/2!S )
c

cos2 ũc

cos2 uc/2
D M. ~149!

Using the relation betweenuc andũc and definitions of the quantitiesẼ,g̃ one finds after a simple
algebra that

cos2ũc

cos2uc/2
5

2

S11
Ẽ2

4
1

1

g̃2
D 1eiucF Ẽ

2i g̃
1
1

2
S 11

Ẽ2

4
2

1

g̃2
DG1e2 iucF2

Ẽ

2i g̃
1
1

2
S11

Ẽ2

4
2

1

g̃2
D G

5
~g2~42E2!/@11g21gA42E2# !

~12^S&* eiu!~12^S&e2 iu!
,

where we made use of Eq.~124!. Thus, we arrive finally at the following expression:

PM~u1 , . . . ,uM !} )
a,b

ueiua2eiubu2)
c51

M

u12^S&* eiucu22M ~150!

which is nothing other but the Poisson’s kernel distribution, Eq.~4!. Here the phase shiftsua may
be restricted to an interval 0<ua,2p. Inverting the argumentation, we prove, that our correlat
function, Eq.~146! follows from the Poisson’s kernel, Eq.~150!; this we have shown in the cas
of equivalent channels.
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B. Distribution of partial delay times and parametric derivatives of phase shifts

The knowledge of the spectral correlation function Eq.~113! allows one to determine the
distributionP t(t)of partial delay times

ta~E!5
]ua~E!

]E
52

2

11za~E!2
]za~E!

]E
, a51, . . . ,M . ~151!

The distributionP t(t) can be easily found if one knows the joint probability densityP E(z,v)
defined as

P E~z,v !5
1

M K (
a51

M

d~z2za!dS v2
]za~E!

]E D L ~152!

because of the relation

P t~t!5
1

M K (
a51

M

d~t2ta!L 5E
2`

` E
2`

`

dzdvP E~z,v !dS t1
2v

11z2D , ~153!

where angular brackets stand for the ensemble average as before.113

To determine the joint probability densityP E(z,v) we use its relation to the spectral corr
lation functionKE,V,X(z1 ,z2) defined in Eq.~113!,

P E~z,v !5M lim
V→10

VKE,V,X50~z15z2vV/2,z25z1vV/2!. ~154!

Relations of this kind were first used in Ref. 114 and later on in Refs. 115–117. To understa
origin we write for small positiveV,

VKE,V,X50~z15z2vV/2,z25z1vV/2!

5V
1

M2 K (
a,b51

M

d@z2vV/22za~E2V/2!#d@z1vV/22zb~E1V/2!#L
5V

1

M2 K (
a,b51

M

d@z2vV/21za~E2V/2!#d@vV1za~E2V/2!2zb~E1V/2!#L . ~155!

Expandingza(E2V/2)2zb(E1V/2) at smallV as

za~E!2zb~E!2
V

2 S ]za~E!

]E
1

]zb~E!

]E D1 . . .

we immediately see that in the limitV→10 a nonvanishing contribution to Eq.~155! comes from
the terms with equal channel indicesa5b and the resulting expression is equivalent to Eq.~153!.

To perform the limitV→10 in the most economic manner we pass from the variab
z1 ,z2 to z5(z11z2)/2;vs5(z22z1)/2v, with vs ,v being the scaled variablesvs5vD/2p;
v5pV/D. Correspondingly, the correlation functionf c(z1 ,z2) acquires the form:
J. Math. Phys., Vol. 38, No. 4, April 1997
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f ~z,vs!5E
1

`

dl1E
21

1

dl2exp2 iv~l12l2!
1

~l12l2!
2

3F ]2

]z2
2

1

v2

]2

]vs
2G )

a51

M Fz22gaEz1ga
222ipnscgavl2vs2vs

2v2

z22gaEz1ga
222ipnscgavl1vs2vs

2v2G . ~156!

According to the general discussion presented above we should take the real part of this
sion and look for the term proportional to 1/v at v→10. It is easy to understand that such
singularity comes from that part of the integration region over the ‘‘non-compact’’ variablel1,
wherel1 } v21. After a natural rescalingl15t/v one can easily extract the corresponding s
gular term, which turns out to come from the term with the second derivative 1/v2 ]2/]vs

2 in the
expression above. Performing the calculation explicitly, we find the expression for the joint
ability density of variablesz andvs ,

P E~z,vs!52
1

2Mp2E2`

` dt

t2
e2 i t

]2

]vs
2)
a51

M 1

12 i tvsr a
21

52
1

2Mp2

1

vs
3E2`

`

dteitvs
21

)
a51

M 1

12 i tr a
21

,

~157!

where r a5@z22gaEz1ga
2#/2pnscga and we made use of the identity: Re*0

`dt f( i t )

5 1
2*2`

` dt f( i t ).
Performing the integration in the expression above@cf. Eq. ~98!# one obtains

P E~z,vs!5
~21!M21

pMvs
3 )

a51

M Fz22gaEz1ga
2

2pnscga
Gu~2vs!

3 (
b51

M

exp2Fz22gbEz1gb
2

2pnscgbvs
G)
cÞb

Fz22gbEz1gb
2

2pnscgb
2
z22gcEz1gc

2

2pnscgc
G21

, ~158!

whereu(x)51 if x>0 andu(x)50 otherwise. We took into account thatz22gaEz1ga
2>0 as

long asuEu<2, which is just the case we are interested in~we remind that the semicircle densit
nsc(E) is non-vanishing foruEu,2).

Substituting the expression Eq.~158! into Eq.~153! one trivially performs the integration ove
v because of thed-function and obtains for the distribution function of scaled partial delay tim
ts5 tD/2p the following expression:

P t~ts!5
~21!M21

2pMts
3 E

2`

` 2dz

~11z2!
)
a51

M F z22gaEz1ga
2

pnscga~11z2!
G

3 (
b51

M

exp2F z22gbEz1gb
2

pnscgbts~11z2!
G)
cÞb

F z22gbEz1gb
2

2pnscgb~11z2!
2

z22gcEz1gc
2

2pnscgc~11z2!
G21

5
~21!M21

2pMts
3 E

2p

p

dfF )
a51

M

Ra~f!G (
b51

M

exp2
Rb~f!

ts
)
cÞb

@Rb~f!2Rc~f!#21. ~159!

Here

Ra~f!5
~11ga

2!2gaEsinf1~ga
221!cosf

2pnscga
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¬¬¬¬¬¬¬¬¬¬
and we changed the integration variable:z5tan(f/2).
The expression Eq.~159! provides the distribution of partial delay times for a general cas

non-equivalent channels and thus constitutes one of the most important results of the p
subsection.

Further simplifications are possible if we restrict our attention to the particular case of eq
lent channelsga5g;a51,2, . . . ,M :

P t~ts!5
1

2pM ! ts
M21E

2p

p

dfF ~11g2!2gE sin f1~g221!cosf

2pnscg
GM

3exp2
1

2pnscgts
@~11g2!2gE sin f1~g221!cosf#. ~160!

The last expression can be put in a more elegant form upon using the identity:

E
2p

p

f ~p cosf1q sin f!df52E
0

p

f ~Ap21q2 cosf!df

and introducing the quantityg5(g1g21)/2pnsc @related to the transmission coefficient
g52T2121, see, Eq.~50!#, so that 1/2prgA(g221)21(gE)25Ag221. This finally gives:

P t~ts!5
1

pM ! ts
M12E0

p

df@g1Ag221cosf#MexpH 2
1

ts
@g1Ag221cosf#J

5
~21!M

M ! ts
M12

]M

]~ts
21!M

@e2gts
21
I 0~ts

21Ag221!#, ~161!

whereI 0(z) stands for the modified Bessel function. This expression provides us with the ex
form of the distribution of~scaled! partial delay times for the case of equivalent channels. Be
we briefly analyze its most important features.

First of all, we notice that the distribution above assumes the simplest form for the ‘‘criti
coupling T51 ~i.e., g51) corresponding to the strongest overlap of individual resonance
lowed for the few-channel scattering, see the preceding sections. Under this condition on
the following distribution of scaled partial delay times:

P t~ts!5
1

M !
ts

2M22e21/ts. ~162!

The power law tailts
2M22 at ts@g which is evident from the expression above forg51 is

actually a typical feature of the time delay distribution for any values of the param
ga ;a51, . . . ,M ~see the discussion of Wigner–Smith time delay in the next subsection!. For the
equivalent channels we obviously have

P t~ts@g!5
1

M !
ts

2M22PM~g!, ~163!

wherePM(g) stands for the Legendre polynomial.
111 For the case of non-equivalent channels t

asymptotic behavior ts
2M22 can be inferred from Eq. ~159! upon noticing that:

Ak5(b51
M Rb

k)cÞb(Rc2Rb)
21[0 for k50,1, . . . ,M22 andAk Þ 0 for k>M21, so that the

integrand is proportional to 1/ts
M21 . Combined with the factorts

23 in front of the integral it gives
the desired behavior.
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In Fig. 3 we plotted the distribution Eq.~161! for the opposite case of weakly open syste
~the regime of isolated resonances:T!1, i.e.,g@1). Under this condition wheng@ts the modi-
fied Bessel function can be replaced by its asymptotic expression valid for large argum
Taking into account also thatg2Ag221' 1/2g atg@1, we find that the distribution function Eq
~161! simplifies to the following form:

P t~ts!5
~21!M

M !
ts

2M22
]M

]~ts
21!M F e2~2gts!

21
1

A2pgts
21

G . ~164!

This expression is correctly normalized and plays the same role for the distribution of partial
times as that played by thex2 distribution in the issue of the resonance width distribution. It
necessary to mention that Eq.~164! is valid as long as 1,ts!g. At larger values ofts the behavior
changes to that given by Eq.~163!. It is interesting to note that in the parametrically large reg
(2g)21!1,ts!g one can neglect the exponential term in Eq.~164! and reduce this distribution to
the following form:

P t~ts!5
~2M21!!!

2MM !

1

A2pg
ts

23/2. ~165!

This ts
23/2 behavior taking place irrespective of the number of open channels is therefore the

typical feature of the partial delay times distribution for the regime of isolated resonances
origin of such a behavior can be understood analysing the general expression for the W
Smith delay times, Eq.~45! ~see a more detailed discussion after Eq.~195!#.

At ts;(2g)21 the distribution shows a maximum at a valueP (ts);g and then is cut off
exponentially at smallerts :

P t~ts!~2g!21!5
2g

p1/2M !

1

~2gts!
~M13/2! exp2F 1

2gts
G . ~166!

All these features are evident from Fig. 3.
Having at our disposal the exact distribution Eq.~161! it is instructive to calculate the mea

value and the variance of the partial delay times. One finds,

FIG. 3. The distribution of scaled partial delay timesP (ts) for M51 ~solid! M52 ~dash-dotted! andM53 ~dotted line!
equivalent open channels. The effective couplingg510 corresponds to weakly open systems.
J. Math. Phys., Vol. 38, No. 4, April 1997
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^t&5
2p

MD
,

^t2&2^t&2

^t&2
5
2M ~T2121!11

M21
. ~167!

The first of these relations is quite well known.80,82,83,85,87It shows that the mean delay tim
^t& is determined by the mean level spacingD of the closed system and the numberM of open
channels. On the other hand the magnitude of delay time fluctuations measured by the r
variance of the partial delay times distribution, see Eq.~167!, is determined both byM andT.
Generically, the fluctuations are weaker the larger the number of open channelsM and the
stronger the coupling to continua: 12T!T. Let us also mention as an interesting feature
divergency of the time-delay variance atM51, which is a consequence of the power law t
ts

2M22 typical for the distributionP t(ts).
Here it is appropriate to mention that recently two other groups of authors89,118addressed the

question of delay time distribution by different approaches. Goparet al.89 verified numerically an
old conjecture by Wigner119 concerning invariance of poles and residues of theK-matrix under a
certain set of transformations, provided there is only one perfectly open channel:M51;T51 case
in our notations. When combined with thex2 distribution of residues, this conjecture was show
to produce the time delay distribution for all three symmetry classes~orthogonal, unitary and
symplectic!, the result for unitary class just coinciding with Eq.~162! for M51. In Ref. 118 Seba
et al. arrived at Eq.~162! for arbitraryM after a set of shrewd, but uncontrolled manipulatio
with eigenvalues and eigenfunctions ofK-matrix. Actually, these authors suggested the followi
general expression for the scaled partial delay time distribution claimed to be valid for arb
value of the coupling constantg andE50:

P szz~t!5
e2g/t

gM21M ! tM12 1F1@M ,M11,~g2g21!/t!], ~168!

where1F1@M ,M11,z# is the confluent hypergeometric function.
This expression is quite different from ours given in Eq.~161!, the two formulas coinciding in

the limit g51 only. However, one can check that the expression Eq.~168! fails to fulfill the
following important condition: the mean delay time must be independent of the degree of cou
to continua, measured byg. Instead, it should be determined by the mean level spacingD. This
requirement is satisfied by our distribution Eq.~161!, see Eq.~167! and has been known for a lon
time.80,82,83,85,87It follows from the basic formula~45!:

^t&5
2N

M E dGE dvr~E2v;G!
G/2

v21G2/4
, ~169!

wherer(E;G)[ (1/N) ^(n51
N d(E2En)d(G2Gn)& is the density of theS-matrix poles. For few-

channel caseM!N the typical scale of the widthG is the mean level spacingD51/(Nr(E)), see
Sec. III, so that the Lorentzian factor in the integrand of Eq.~169! can be replaced by 2pd(v)
when evaluating the integral. This gives^t&52pNr(E)/M in full agreement with Eq.~167!. At
the same time, for the particular caseM51 one can find that the first moment corresponding
the distribution Eq.~168! is given by: (D/2p) ^t&szz52 ln g/(g2g21) in contradiction with the
general discussion above. This failure rules out the distribution Eq.~168! as the correct one an
shows that the assumptions made in Ref. 118 are justified only as long asT51.

The distributionP w(w) of parametric derivatives of phase shiftswa5 ]ua /]X can be found
in a very similar way. Proceeding in the same manner as in Eqs.~152!–~155! one obtains:

Pw~w!5
1

M K (
a51

M

d~w2wa!L 5E
2`

` E
2`

`

dzduP X~z,u!dSw1
2u

11z2D , ~170!
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where

P X~z,u!5
1

M K (
a51

M

d~z2za!dS u2
]za~E,X!

]X D L
5M lim

X→0
XKE,V50,X~z15z2uX/2,z25z1uX/2!. ~171!

Performing the limiting procedureX→0 in the same way asV→0 in Eqs.~153!–~156! we arrive
at the expression:

P X~z,us!52
1

2Mp2E
2`

` dt

t2
e2t2/2

]2

]us
2)
a51

M
1

12 i tusr a
21

5E
2`

` dj

~2p!1/2
exp2j2/2F2

1

2Mp2E
2`

` dt

t2
e2 i t j

]2

]us
2)
a51

M
1

12 i tusr a
21G ~172!

which can be written as

P X~z,us!5E
2`

` dj

~2p!1/2uju
e2j2/2P E~z,us /j!, ~173!

whereus5u/(pnsc) andP E(z,vs) is the joint probability density ofz and its derivative over the
energy studied earlier in this subsection. This fact means that a similar relation Eq.~173! holds for
the distribution functionPw(ws) of scaled parametric derivativesws5 (1/2pnsc) (]ua /]X) and
that of the scaled partial delay timesP t(ts):

Pw~ws!5E
0

` dj

~2p!1/2j
e2j2/2P t~ uwsu/j!. ~174!

The same relation was obtained in Ref. 118 on a basis of some plausible assumption
cerning parametric derivatives of phase shifts.

C. Parametric correlations of Wigner–Smith time delays

The expression for the correlation function Eq.~140! can be used to calculate the paramet
correlations of Wigner–Smith time delaystw(E,X) defined as

tw~E,X!52
i

M

]

]E
ln detS~E,X![

1

M

]

]E(
a

ua~E,X!. ~175!

To show this, we should remember the relation Eq.~42! between the total phase shiftu5(aua ,
the exact density of states for theclosedchaotic systemnX(E) and the eigenvaluesza of the
K-matrix. We see that

tw~E,X!5
2pN

M
nX~E!1tz~E,X!, tz~E,X!522

]

]E

1

M(
a51

M

arctanza~E,X!. ~176!

Introducing the correlation function,

CW~V,X!5^tw~E2V/2,2X/2!tw~E1V/2,X/2!&

we see that it consists of three essentially different contributions:
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CW~V,X!5Ctt~V,X!1
2pN

M
~Cnt~2V,2X!1Cnt~V,X!!1~2pN/M !2Cnn~V,X!,

~177!

where

Ctt~V,X!5^tz~E2V/2,2X/2!tz~E1V/2,X/2!&, ~178!

Cnt~V,X!5^n~E2V/2;2X/2!tz~E1V/2,X/2!&, ~179!

Cnn~V,X!5^n~E2V/2,2X/2!n~E1V/2,X/2!&. ~180!

In what follows we are interested, as usual, in finding the ‘‘connected’’ part of all these correl
functions.This will be implicitly assumed below. The correlation functionCtt(V,X) can be easily
related to that given by Eq.~140! because of the relation:

tz~E,X!522
]

]EE2`

`

dz arctan~z!rE,X~z!,

whererE,X(z) is the density ofK-matrix eigenvalues defined in the beginning of this section.
a result we have

Ctt~V,X!5F ]2

]E2 2
4p2

D2

]2

]v2G 1

2p2M2 ReE
2`

`

dz1 arctanz1E
2`

`

dz2 arctanz2f c~z1 ,z2!,

~181!

where we used the relation Eq.~126! between the correlation functionK x,v(z1 ,z2) and that given
by the Eq.~140! and we used the scaled variablev5pV/D. After such a rescaling it is obviou
that the term containing the second derivative]2/]E2 can be neglected in comparison with th
second one because of the large factorD22. Substituting now the expression Eq.~140! into Eq.
~181! one can easily perform the integration overz1 ,z2 by exploiting the presence of the secon
derivative]2/]z1]z2 in the function f c(z1 ,z2) ~this allows us to convert factors arctanz1,2 into
(11z1,2

2 )21 by partial integrations! and noticing that all poles of the expression

)
a51

M F z1~a!z2~a!1 i g̃al2~z1~a!2z2~a!!1g̃ a
2

z1~a!z2~a!1 i g̃al1~z1~a!2z2~a!!1g̃ a
2G

lie in theupperhalf plane Imz1.0 with respect to the variablez1 and in thelower half plane Im
z1,0 with respect to the variablez2. As a result, the integration can be performed trivially
closing the integration contour overz1(z2) in the lower~upper! half plane, correspondingly, an
amounts to replacingz152 i ;z25 i in the integrand. This gives,

Ctt~v,X!52S p

MD D 2 ReE
21

1

dl2E
1

`

dl1expH iv~l12l2!2
x2

2
~l1

22l2
2!J I ~l1 ,l2!, ~182!

where

I ~l1 ,l2!512H )
a51

M S 11g̃al22 igaE/2

11g̃al12 igaE/2
D 1 )

a51

M S 11g̃al21 igaE/2

11g̃al11 igaE/2
D J

1 )
a51

M S 112g̃al21ga
2

112g̃al11ga
2D . ~183!
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



as

in the

ation

ss-
as
ar

tions:
p-
-

1965Y. Fyodorov and H.-J. Sommers: Resonances and time delays in chaotic scattering

¬¬¬¬¬¬¬¬¬¬
The first three terms are boundary contributions due to the partialz1 ,z2 integrations.
Let us now show how to calculate the correlation functionCnt(V,X) which is expressed to

the leading order inN@1 as follows:

Cnt~V,X!5
]

]VE
2`

`

dzarctanz^n2X/2~E2V/2!rE1V/2,X/2~z!&. ~184!

To this end we represent the densitynX(E) in terms of the corresponding resolvent

nX(E)5 1/pN ImTr(E2 i012Ĥ in)
21 so that

K nt~V,X;z![^n2X/2~E2V/2!rE1V/2,X/2~z!&

5
1

2p2MN
ReK Tr

1

E2V/22Ĥ~2X/2!2 i01
Tr

1

z2K̂~V,X/2!1 i01L .

~185!

The calculation of the connected part of the averaged product of two traces of resolvents
preceding equation~we denote this quantity henceforth asf c

n(z) omiting an explicit mentioning of
the parametersV,X) goes along exactly the same lines as the calculation of the correl
function f c(z1 ,z2), see Eq.~125!. Namely, one writes this function as

f c
n~z!5

]2

]J1]J2
F S ZJ

~2!

ZJ50
~2! D M

F n~J1 ,J2!G uJ15J250 ,

F n~J1 ,J2!5K Det@E2 i012V/22Ĥ~2X/2!1J1# Det@E1V/22Hn~X/2;ZJ
~2!!#

Det@E2 i012V/22Ĥ~2X/2!# Det@E1V/22Hn~X/2;ZJ50
~2! !#

L ,
~186!

where we introduced the notations:ZJ
(2)5z1 i011J2 and Hn(X;ZJ

(2))5Ĥ in1 (X/N1/2)Ĥ in
(1)

1 (p/ZJ
(2))WW†. The generating functionF n(J1 ,J2) is expressed in a standard way as a Gau

ian superintegral. Finally, the functionf c
n(z) is reduced@after exactly the same manipulations

before, see Eqs.~128!–~134!# to the following representation in terms of the nonline
s-model:

f c
n~z!5

p

DE @dQ̂#@E/2Î 42pnQ̂# f f
~11!S )

a51

M

Sdet21B̂n~a!D (
a51

M

~Bn
21~a!! f f

~22!

3expH 2
v

2
StrQ̂L̂1

x2

8
StrQ̂L̂Q̂L̂J , ~187!

where the supermatrixB̂n(a) is given by

B̂n~a!5
11L̂

2
1
12L̂

2
~z~a! Î 41g̃aQ̂!

and we used the conventions of Appendix B for matrix elements as well as the nota
z(a)5z2gaE/2;g̃a5pnscga . The explicit expressions for all matrix elements are given in A
pendix B. Substituting them into the superintegral Eq.~187! we find again, that the term contain
ing no Grassmannians at all gives the contribution
J. Math. Phys., Vol. 38, No. 4, April 1997
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N~E/21 ipnsc! (
a51

M
1

z~a!1 i g̃a

which is exactly the ‘‘disconnected part’’ of the corresponding correlation function. The
nected part is given by

f c
n~z!52 i

p2

D2E
21

1

dl2E
1

`

dl1

1

l12l2
expH iv~l12l2!2

x2

2
~l1

22l2
2!J ]

]z)a51

M
z~a!1 i g̃l2

z~a!1 i g̃l1
.

~188!

Substituting this expression into Eq.~184! one can again trivially perform the integration over t
variablez. As a result one obtains:

Cnt~v,X!52
1

2pMN S p

D D 2 ReE
21

1

dl2E
1

`

dl1expH iv~l12l2!2
x2

2
~l1

22l2
2!J

3F12 )
a51

M S 11g̃al21 igaE/2

11g̃al11 igaE/2
D G . ~189!

Finally, the parametric correlation functionCnn(V,X) of the densities of states for a close
chaotic system with broken time-reversal symmetry was found some time ago by Simon
Altshuler:28

Cnn~V,X!5
1

2p2 S p

D D 2 ReE
21

1

dl2E
1

`

dl1expH iv~l12l2!2
x2

2
~l1

22l2
2!J . ~190!

Summing up all the contributions we find the desired expression for the parametric corre
function of scaledWigner–Smith time delayst̃s5 (D/2p) tw :

CW~v,x![^dt̃W~E2V/2,2X/2!dt̃W~E1V/2,X/2!&

5
1

2M2E
21

1

dlE
1

`

dl1cos@v~l12l!#expH 2
x2

2
~l1

22l2!J )
a51

M F 11lga
21

11l1ga
21G ,

~191!

where we used the parameterga52Ta
2121 introduced earlier.

It is interesting to mention that there exists an alternative way to derive the pair corre
function of Wigner–Smith time delays given in Eq.~191!. The starting point in that case is Eq
~45!. Then the calculation of the correlation of fluctuations of Wigner–Smith time d
dtW(E,X)5tw2^tw& amounts to evaluating the average product of the resolvents of the
Hermitian effective HamiltoniansH6 ipWW1. This can be done by exactly the same method
we use elsewhere in the present paper. For the case of chaotic systems with preserved TRS
external parameterX such a calculation was done earlier in Ref. 87.

Let us analyse the correlation functionCW(x,v) in more detail. For this purpose we find
convenient to rewrite Eq.~191! in a slightly different form:

CW~v,x!5 1
2 ~RM

~1,c!~v,x!RM
~2,c!~v,x!2RM

~1,s!~v,x!RM
~2,s!~v,x!!, ~192!

where
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¬¬¬¬¬¬¬¬¬¬
RM
~1,c!~v,x!5E

0

`

dt1 cos~vt1!expF2x2t12
x2t1

2

2 G )
a51

M
1

11Tat1/2
, ~193!

RM
~2,c!~v,x!5E

0

2

dt2cos~vt2!expF2x2t21
x2t2

2

2 G )
a51

M

~12Tat1/2! ~194!

and the functionsRM
(p,s)(v,x);p51,2 are obtained from the expressions forRM

(p,c)(v,x);p51,2 by
replacing cosvtp by sinvtp .

First of all, the correlation function Eq.~192! taken atv5x50 gives the variance of the
Wigner–Smith time delay distribution. In principle, the corresponding integration can be
formed for an arbitrary set of transmission coefficientsTa . The resulting expressions turn out
be quite cumbersome. They simplify in the case of all equivalent channelsTa5T;a51, . . . ,M
when we find:

^tw
2 &2^tw&2

^tw&2
5

2

T2~M221!
@12~12T!M11#. ~195!

This expression shows the same qualitative features~divergencies atM51 or T→0) as those
following from Eq. ~167!.

For chaotic systems with only one open channel the Wigner–Smith time delayt̃W just coin-
cides with the partial delay timets and the corresponding distribution is given by that in Eq.~161!.
Unfortunately, our methods give us no possibility to find explicitly the distributionPW( t̃W) of
Wigner–Smith time delay for an arbitrary number of open channelsM.1. It is natural to put
forward a conjecture, that the divergence of the variance of Wigner–Smith time delay as lo
M→1 indicates that a~unknown! distribution PW(tw) possess the same power law ta
PW( t̃W) } t̃w

2M22 at large t̃W as that typical for the distribution of partial phase shift time
Another argument supporting this conjecture comes from the general formula Eq.~45!. Taking the
valueE at random it is evident that anomalously large time delaytw(E);Gn

21 corresponds to the
event whenE happens to be sufficiently close~at the distancedE&Gn) to a positionEn of an
anomalously narrow resonanceGn!D. The probability of such an event can be estimated asPG

} (G/D)r(G/D!1) } (G/D)M, where we used the small width asymptoticr(y!1) } yM21 of the
resonance widths distribution Eq.~102!. Then the asymptotic tail of the probability distribution o
the time delay can be estimated asP (tw) } *dGd(tw2G21)PG } tw

2M22 in agreement with our
conjecture. Here it is appropriate to mention that the same asymptotic behavior is typical f
staying probability functionp(t), see Eq.~36!. The long-time asymptotic forp(t) was found for
the systems with preserved time-reversal symmetry in the papers.25,82,86It is trivial to adjust the
corresponding argumentation to the present case and to recover thet2(M12) behavior.

The expression Eq.~45! allows one also to show that for weakly opened systems the di
bution of the scaled delay times should demonstrate the universal behaviorP (t) } t23/2 in the
parametrically large domaing21!t!g, cf. Eq. ~165!. Indeed, forg@1 the resonances do no
overlap:Gn!D, and their widthsGn follow the x2 distribution. It is therefore clear, that for an
particular value of the energyE the sum in Eq.~45! is dominated by a single resonance who
position En is the closest toE, that is t̃w' (2/M ) (yn /@yn

21un
2#), where yn5pG/D and

un5 (2p/D) (E2En). We can estimate the value of the contribution coming from all negle
terms assuming that all resonances have the same widths^G& and are spaced equally with th
mean spacingD. This immediately gives the correction to be of the order ofdt̃w
}^G&/MD;g21, where we used the formula Eq.~110! in the limit T!1. We conclude that the
distribution of the scaled time delay is correctly reproduced by the distribution of the‘‘clo
resonance term’’ as long as we are interested in the regiont̃w@g21. Assuming that the variable
un is uniformly distributed in the interval@2p,p# we find:
J. Math. Phys., Vol. 38, No. 4, April 1997
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P ~ t̃w!5E
0

`

dyP x2~y!E
2p

p

dudS t̃w2
2

M

y

y21u2D5M21/2t̃ w
23/2E

0

ym~ t̃w!
dy

y1/2

~22Mty!1/2
P x2~y!,

~196!

whereym( t̃w)5 min@2/M t̃w ;p
2M t̃w/2#. Taking into account that thex2 distributionP x2(y) is

cut exponentially aty.1/g we can safely neglect the termMty!1 and set the upper limi
ym5` as long ast̃w!g. This immmediately results in the anticipatedt̃ w

23/2 behavior. On the
other hand, we can putP x2(y) } gMyM21 andym52/(M t̃w) in the domain of extremely large tim
delayst̃w@g, which results in thegM t̃ w

2(M12) tail in full agreement with the general discussio
presented above.

The behavior of the delay time distribution in the domain of extremely small time de
t̃w,g21 is determined by contribution of many resonant terms in the expression Eq.~45!. How-
ever, one can argue that the distribution should be exponentially cut:P ( t̃w
}exp2@const(tg)21#, as is indeed seen from the expression Eq.~166!. This behavior is a typical
one for a sum of random variables of the form(nyn /un

22 , with ^yn&;g21 ~the so-called stable
Levy distribution, see similar arguments in Ref. 66!.

The correlation function Eq.~192! acquires quite a simple form for the case of many wea
open channels: Ta!1,a51,2,..,M but G5(aTa@1. Then we can put effectively
)a(12t2Ta/2)'exp2Gt2/2;)a(11t1Ta/2)

21'exp2Gt1/2 and also neglect the terms6x2t1,2
2 /2

in the exponents of the integrands in Eqs.~193! and ~194!. The corresponding integrals can b
calculated exactly giving:

CW~v,x!5
1

2

~GX
22v2!@12e22GXcos 2v#1GXve22GXsin 2v

~v21GX
2 !2

, ~197!

whereGX5G/21x2. Let us note that forx50 this expression is actually valid for arbitraryG. For
arbitrary value ofx the condition of validity isGX@1. Neglecting the exponentially small term
we arrive at the simple expression:

CW~v,x!5
~GX

22v2!

2~v21GX
2 !2

. ~198!

As will be shown in the next subsection, this expression is nothing other than the semicla
formula for parametric time delay correlations in systems with broken time-reversal invari
For the case of preserved time-reversal symmetry and no external parameters Eq.~198! was
derived in Ref. 87, for the general case see Ref. 92.

D. Semiclassical theory for parametric correlations of time delays

A general semiclassical expression for the Wigner–Smith time delay in terms of a pe
orbit expansion has been given by Balian and Bloch.27 It is formally identical to Gutzwiller’s trace
formula. The corresponding expression for the pair correlation function of time delay~without
taking into account a parametric dependence! for chaotic scattering was derived by Eckhardt.22 In
parallel, Berry and Keating120 developed a method allowing one to take parametric correlat
into account for the case of aclosedchaotic system pierced by a magnetic flux serving to br
down the time-reversal symmmetry. Below we show briefly how to combine both approach
arrive at the semiclassic expression for the parametric correlation function of time delay i
case; see also the related discussion in Refs. 10, 121, and 122. The semiclassical period
expansion for the ‘‘fluctuating part’’ of a time delay of a quantum particle with an ene
E1V/2;V!E moving in a system pierced by a magnetic flux line with fluxf ~measured in units
of flux quantaf052pc/e) is
J. Math. Phys., Vol. 38, No. 4, April 1997
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dtw~E1V/2,f!5(
j
Aj exp

i

\ FSj~E!1
V

2
Tj Gexp 2p iw jf, ~199!

where the summation goes over all periodic orbits with periodTj5]Sj /]E, with Sj (E) being the
corresponding action,Aj5 eim jTj /2pA det(M j21) being the amplitude andm j ,M j being the
Maslov phase and stability matrix corresponding to the given periodic orbit. The winding nu
wj counts the number of times the orbit winds around the flux line.

Thus, for the parametric correlation function one finds:

CW~V,X![^dt̃W~E2V/2,f2X/2!dt̃W~E1V/2,f1X/2!&

5K (
j ,k

uAjAkuexpH i

\
@Sj~E!2Sk~E!#1

iV

2\
~Tj1Tk!

12p i ~wj2wk!f1p iX~wj1wk!J L , ~200!

where the averaging goes over the energy spectrum. According to standard argumentati22,120

one can restrict oneself to the so-called ‘‘diagonal approximation’’ taking into account
contributions with coinciding indicesj5k:

CW
diag~V,X!5K (

j
uAj u2expF i V

\
Tj12p iXwj G L . ~201!

The next important step uses the fact that winding numbers for orbits in any narrow windo
periods are essentially irregular and Gaussian distributed,123,120 see also the discussion in Ref
121 and 122

P ~wj !5
1

2ps~Tj !
exp2wj

2/2s~Tj !
2,

where the variances(Tj ) increases linearly with period:s(T)5bT. The constantb is system
dependent; for a particle with massm moving in a billiard of the areaA it is proportional to
(2E/mA)1/2.122,121Taking the discrete nature of the winding numbers into account one can

exp 2p iXwj5
(k52`

` e2~2p!2s~Tj !~X2k!2

(k52`
` e2~2p!2s~Tj !k

2
'e24p2bX2Tj , ~202!

where we usedX!1 ~i.e., change of the magnetic flux is much smaller thanf0) and neglected
exponentially small termsO(exp24p2s(T)). Substituting this average in the correlation functi
of time delay it is convenient to consider its Fourier transformC(t,X)
5*dVe2 iVt/\CW

diag(V,X). We have:

CW~ t,X!5(
j

uAj u2d~ t2Tj !e
24p2bX2Tj5e2 x̃2t(

j
uAj u2d~ t2Tj !, ~203!

where we denotedx̃52pb1/2X.
For closedchaotic systems the sum in the preceding equation is known to be proportion

the timet ~this is the famous Hannay–Ozorio de Almeida sum rule124!. For open chaotic system
Eckhardt22 gave some arguments in favor of replacing this sum byte2Gclt, with Gcl being the
J. Math. Phys., Vol. 38, No. 4, April 1997
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classical escape rate from the chaotic region. Using this fact we see that~under the assumption
we made! the semiclassical expression for the Fourier transform of the correlation function of
delays is given by

CW~ t,X!5te2~Gcl1 x̃2!t. ~204!

After Fourier-transforming this expression back we see that the result turns out to be ident
that given in Eq.~198! upon identificationGcl→G/2;x̃→x.

Another interesting point to be mentioned is that the form of the time delay correla
function given in Eq.~197! @which contains Eq.~198! as a limiting case# was obtained by Shushin
and Wardlaw125 in the model of chaotic scattering on a leaky surface of constant negative c
ture. At the first glance such a correspondence is quite a surprising fact since the model con
in Ref. 125 corresponds formally toone-channelscattering, but the result Eq.~197! was derived
under the assumption ofmany weakchanels. In order to understand that fact one should remem
that the model considered in Ref. 125 possesses quite a peculiar property: all its resonanc
turned out to haveexactly the samewidths. It is at variance with the known form of the resonan
widths distribution for one-channel scattering in a generic chaotic system, see Eq.~102!, where
resonance widths fluctuate strongly. At the same time, if we consider the limiting case of
weak channels:M@1,g@1 andM /g5Gef fixed, the distribution of resonance widths tends to
delta-functional oner(G)5d(G2Gef). This fact can be easily infered from the Eq.~108!. We see
that effectively it is just the limiting case of many weak channels that corresponds to
fluctuating resonance widths. Under these conditions the correlations of the time delays a
termined by the statistics of the positions of resonances. For the model of scattering on a
surface of negative curvature the positions of resonances are given by the zeroes of R
zeta-function on the so-called critical line in the complex plane. According to the celeb
Montgomery conjecture~verified numerically126 and supported by sound analytical results127!
statistical properties of these zeroes are identical to those of eigenvalues of large random
matrices. All these facts taken into account it is no more a surprise that the correlations o
delays for both models coincide in the considered region of parameters.

VI. SUMMARY AND CONCLUSIONS

In the present paper we analyzed in much detail the universal features of statistics o
nances, phase shifts and delay times for a generic open chaotic quantum system with
time-reversal invariance. This was achieved by replacing the Hamiltonian of the chaotic reg
a large random matrix taken from the Gaussian unitary ensemble. Employing the well-deve
method of mapping the problem to the so-called supersymmetric nonlinears-model we succeeded
in deriving explicit analytical expressions for various distributions and correlations functions
Eqs.~97!–~99!, ~102!, ~140!, ~159!, ~161!, ~174!, and~191!, characterizing the above mentione
quantities for arbitrary finite number of open channels and arbitrary strength of coupling to
tinua.

The best candidates for checking the validity of the expressions obtained are realistic m
of mesoscopic ballistic devices subject to applied magnetic field. Closed128as well as open69,122,129

systems of this kind were intensively investigated recently and the statistics ofS-matrix elements
and related quantities was available among other characteristics. Very recently, the issue o
times inside the chaotic region attracted some research interest as well.130 All these facts allow us
to expect that our results can be verified independently in the numerical experiments. It is
esting to mention that recently another type of chaotic system with broken time-reversal i
ance became available experimentally.11 The authors used microwave resonators of billiard sh
with a ‘‘handle’’ which allows only unidirectional propagation of radiation in it thus breaking
symmetry between the wave and its time reversal counterpart.
J. Math. Phys., Vol. 38, No. 4, April 1997
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It is important to mention that our results are also of potential experimental relevance. In
the issue of time-delay fluctuations turns out to be intimately related to the statistical proper
mesoscopic capacitors.88,89 Considering the case of a mesoscopic cavity coupled b
M -channel lead to one electronic reservoir and capacitively to another reservoir Goparet al.89

suggested the following expression for the low frequency ac admittance of such a structur

GI~v!52 ivCea, a5
tw

h1tw
, ~205!

whereCe stands for a geometric capacitance relating the chargeQ on the plate to the voltage
U across the capacitor,tw stands for the dimensionless Wigner time delay, a
h5 Ce /Me2/D, with D being the mean level spacing for the cavity.

For macroscopic cavitiesh→0 and the dimensionless capacitancea is equal to unity result-
ing in the classical expression for the capacitive response:GI(v)52 ivCe . In contrast, for small
enough cavitiesh has to be taken into account and the fluctuating delay timetw results in a
fluctuating admittance.

As it was discussed above, for one open channelM51 the distribution of Wigner time delay
is identical to the distribution of partial delay timesP t(t) and is given by Eq.~161!. This fact
immediately allows one to write down the distribution of the dimensionless capacitancea as

P a~a!5
h

~12a!2
P tFt5

ha

12a G . ~206!

For the perfect coupling caseT51 the corresponding distribution was analyzed in Ref. 89. In
opposite limiting case of weak couplingT!1 the universalt23/2 time delay distribution, see Eq
~165! results in the following expression:

P a~a!}S h

TD 21/2

a23/2~12a!21/2 ~207!

as long asa@T/h and 12a@hT. As it follows from our previous discussion after Eq.~195!, this
form of the distribution should be valid for arbitrary number of weakly open channels.

Actually, our knowledge of the general expression for Wigner time delay variance, se
~195!, provides us with the possibility to determine the variance of the low-frequency admit
GI(v) in the limit of many open channels.

Indeed, in the limitM@1,T;1 our expression just says that the variance of time delay i
the order 1/M2!1 as compared with the squared mean value^tw&2. Thus, we can represent th
fluctuating time delay in a formtw5^t&1dtw , where typical scale of the fluctuating part is of th
order ofdtw;^tw&/M . Substituting this expression to Eq.~205! and expanding with respect to th
fluctuating partdtw one obtains to the first nontrivial order

GI~v!5^GI~v!&S 11dtw
h

^tw&~h1^tw&!
1 . . . D

and immediately extracts the variance of the admittance

^~GI~v!!2&2^GI~v!&2

^GI~v!&2
5

2

T2M2

tRC
2

^tw&2
,

wheretRC
215^tw&211h21 is the so-calledRC-time and we substituted the expression Eq.~195!

for the time delay variance taking into account thatM@1. Such an expression for the particul
caseT51 was very recently derived by Brouwer and Bu¨ttiker by a different method.90
J. Math. Phys., Vol. 38, No. 4, April 1997
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The majority of the numerical data concerning various statistical properties of the scat
matrix for open chaotic systems corresponds to the case of preserved time-reversal invarian
e.g., Refs. 45,72,131,132. This case is not only simpler from a numerical point of view~ opposite
to the situation with the analytical calculations!, but also the most relevant experimentally. As
consequence, numerical studies on resonance width statistics16,17,52,95,62,64as well as on properties
of scattering phase shifts and their derivatives75,74,76were restricted to the systems of that sym
metry class. It is necessary to note that some analytical results for poles and time dela
time-reversal invariant scattering are already available in the literature for some time. In part
for only one open channel the joint probability distribution of allNcomplex resonance poles
known53 ~however, not the density of these poles in complex plane! as well as the distribution o
Wigner time delay for perfect coupling to continuum.89 Essential progress was achieved by Le
mannet al.87 who calculated the correlation function of time delays for two different values
energy and any number of open channels. Actually, the calculation similar to that done
present paper can be successfully carried out for the whole crossover region between the o
nal and unitary symmetry classes. The results will be published elsewhere.92 Here we would like
only to mention that the argumentation presented after Eq.~195! shows thatt̃w

23/2 behavior is a
very general feature simply following from the picture of well-isolated resonances typica
weakly open systems. As such, it should hold not only for systems with broken time rev
invariance, but also for general case. The direct calculation confirms this fact92. It also seems to be
quite insensitive to the particular details of definitions of time delays and holds for distributio
such slightly different quantities as Wigner-Smith time delay, partial delay times or even ‘‘d
times.’’ In Fig. 4 we plotted a typical fluctuating pattern of energy-dependent ‘‘dwell times’
obtained in the paper130 in the course of numerical simulations of quantum chaotic scattering
two dimensional cavity in tunneling contact with two waveguides. Sampling the distributio
dwell times over the chosen range of energies92 we find a good agreement with the predict
t23/2 behaviour, see Fig. 4.

Let us also mention that recent numerical results95 show that the resonance widths distributio
derived in the present paper can be applied for the systems with preserved time reversal inv
quite satisfactorily after replacing the number of channelsM by M /2. This fact is not so surpris
ing, taking into account that such feature as the power law tail 1/y2 of that distribution is actually

FIG. 4. The distribution of the dwell timest in chaotic scattering in weakly open Sinai-like billiard. Inset shows
fluctuating pattern of dwell time versus energy~data were kindly provided to us by the authors of Ref. 130!. Solid line
shows the theoretical predictionP (t) } t23/2.
J. Math. Phys., Vol. 38, No. 4, April 1997
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a generic property following from the chaotic classical dynamics only, see the discussi
Sec. III.

For a majority of models in atomic and molecular physics parameters of all the resonanc
be determined even without expensive calculations ofS-matrix elements. The most effectiv
method is the so-called complex scaling~or complex rotation! method51 successfully used for the
systems exhibiting chaotic behavior.16,17,52It is interesting to mention that a crossover from is
lated to overlapping resonance regime was detected recently for the dissociation re
HO2→H1O2 in one open channel case.62 One can hope that applying the complex rotati
method to this sytem one could extract the widths of resonances with sufficient accuracy
observe a transition from thex2 distribution towards that with the 1/y2 tail. We would like to point
out that the wholeS-matrix as a function of energy of incoming waves was measured in
experiments,9,10 and even used to calculate the average time delay.10 In principle, the positions of

resonances in the complex plane can be extracted if one knowsŜ(E) with sufficient accuracy. For

example, one can use that fact that for any number of open channels the determinant detŜ(E) as
a function of energy has its singularities~which are just resonance polesEn2 iGn/2) only in the
lower half plane ImE,0. As a result it can be written as

detŜ~E !5eid)
n

E2En2 iGn/2

E2En1 iGn/2
, ~208!

whered is the phase of potential scattering irrelevant for our discussion. Provided the valu

detŜ(E) for realE are known, one can restore the determinant ofS-matrix in the upper half-plane
ImE.0 by the relation

detŜ~E1 i I !5
I

pE2`

` dv

~v2E!21I 2
detŜ~E!. ~209!

It is easy to see that the two relations~208! and~209! allow one to determine all the resonan
parametersEn ,Gn from zeroes of theS-matrix determinant in the upper half-plane ImE.0. Of

course, the practical implementation of this procedure requires highly accurate data forŜ(E)
which is not the case in the mentioned experiments due to noise and damping in resonato
However, one can hope that the progress in the experimental setup could make such a m
ment feasible in future.

Finally, as an interesting perspective for future research we would like to mention the iss
S-matrix statistics for systems exhibiting the Anderson localization phenomenon. This iss
tracts research attention for some period133 and an increasing amount of numerical results
already available75,110,76,134requiring a systematic analytical insight into the problem.
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APPENDIX A: REGULARIZATION OF THE EIGENVALUE DENSITY FOR NONNORMAL
RANDOM MATRICES

Let us consider a random, but fixed non-HermitianN3N random matrixH, for which we
only assume that generically its complex eigenvalues are non-degenerate. Taking the
derivative of the potential Eq.~59! ~apart from the factor 1/N) with respect to the energyE and its
complex conjugateE* , we obtain Poisson’s equation:135

2
]2

]E]E*
F5 Tr

1

~H2E !†~H2E !1k2k2
1

~H2E !~H2E !†1k2 5prk~E,Y! ~A1!

with a densityrk which is always positive, because the operators appearing are both positiv
will show below thatrk goes to a sum of two-dimensionald-functions in the complex energ
plane

lim
k→0

rk~E,Y!5(
j51

N

d2~E2E j !, ~A2!

whereE j are the eigenvalues ofH. The weight for eachd-function is one. Here the integral ove
r(E,Y)dEdY is normalized toN: *rk(E,Y)dEdY5N, which can be kept finite. This is true fo
anyk.0 and can simply be shown by Stokes theorem.

Now let us consider the Hermitian eigenvalue problem

@~H2E !†~H2E !1k2#c i5l ic i . ~A3!

The eigenvaluesl i we again assume to be generically non-degenerate, and thec i form a complete
orthonormalised set. It follows that

@~H2E !~H2E !†1k2#~H2E !c i5l i~H2E !c i ~A4!

so thatf i5(H2E)c i /Al i2k2 is a normalised eigenvector of a second Hermitian eigenva
problem for the operator@(H2E)(H2E)†1k2#. Such an eigenvector corresponds to the sa
eigenvaluel i , providedl i Þ k2, andE is not an eigenvalue ofH. If (H2E)c050, we never-
theless can find a normalised eigenvectorf0, orthogonal to allf i ; iÞ0, with (H2E)
3(H2E)†f050, i.e.,f0 is an eigenvector ofH† with the eigenvalueE* .

Now we may expandrk in terms of these eigenfunctions:

rk~E,Y!5
k2

N(
ik

1

l i
u~c i ,fk!u2

1

lk
~A5!

from which one sees explicitly thatrk is positive. Here (c i ,fk) stands for the complex scala
product in Hilbert space.

If E is not an eigenvalue ofH ~andE* is not one ofH†), thenrk goes to zero proportionally
to k2 for k→0. Therefore the weight to the normalization ofrk comes only from the neighbor
hoods of the eigenvaluesE j ofH. If E0 is exactly an eigenvalue ofH, then we know the lowes
eigenvaluel0 of (H2E0)

†(H2E0)1k2 ~ which is obviouslyl05k2) and all other eigenvalue
are higher by amounts independent ofk. That means:
J. Math. Phys., Vol. 38, No. 4, April 1997
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rk~E,Y!'
1

pk2 u~c0 ,f0!u2 ~A6!

for E5E0 andk→0, which diverges as it must for ad-function at an eigenvalueE0.
In order to see howrk varies with energy near an eigenvalueE0, we may setE5E01dE and

calculatel0 by perturbation theory. Only the second order perturbation contributes and the
prisingly simple result is

l0'k21udEu2u~f0 ,c0!u2. ~A7!

This means that in the neighborhood of an eigenvalueE0 the functionrk has the form:

rk~E,Y!'
k2

p

u~f0 ,c0!u2

~k21udEu2u~f0 ,c0!u2!2
. ~A8!

We will not consider rare cases, in which the vectorc0 is occasionally orthogonal tof0. Then we
see thatrk(E,Y) has in the limitk→0 the form of a two-dimensionald-function with weight one.
Its width goes to zero likek/u(f0 ,c0)u. This is valid in the neighborhood of one isolated eige
value, which is however arbitrary. This proves that Eq.~A2! is indeed correct.

APPENDIX B: THE PARAMETRIZATION OF THE MATRICES Q̂

The supermatricesQ̂ belonging to the graded coset spaceU(1,1/2)/U(1,1)3U(1,1) can be

parametrized asQ̂5Û21M̂Û where

Û5S u 0

0 v D , M̂5S 2 iM 1 M12

M21 iM 1
D , û†5û21, v̂†5 k̂v̂21k̂

û5S 12
a*a

2
2a*

a 11
a*a

2

D , v̂5S 11
b*b

2
2 ib*

ib 12
b*b

2

D , M15S l1 0

0 l2
D ,

M125S um1ueif1 0

0 i um2ue2 if2
D , M215S um1ue2 if1 0

0 i um2ueif2
D ,

~B1!

wherea,a* ,b,b* areGrassmannvariables,l1 P (1,̀ );l2 P (21,1);f1 ,f2 P (0,2p) andl1,2are
related toum1,2u via l1

22um1u251;l2
21um2u251.

It is convenient to have also the explicit expressions for the matrix elements of

Q̂5SQ11 Q12

Q21 Q22
D .

We have

Q1152 iu21S l1 0

0 l2
D u[S 2 i @l12a*a~l12l2!# ia* ~l12l2!

ia~l12l2! 2 i @l22a*a~l12l2!#
D , ~B2!

Q225 iv21S l1 0

0 l2
D v[S i @l11b*b~l12l2!# b* ~l12l2!

b~l12l2! i @l21b*b~l12l2!#
D , ~B3!
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Q125u21S m1 0

0 im2*
D v

5S m1~12a*a/2!~11b*b/2!2a*bm2* 2 ib* ~12a*a/2!m11 ia* ~12b*b/2!m2*

2a~11b*b/2!m12b~11a*a/2!m2* iab*m11 i ~11a*a/2!~12b*b/2!m2*
D ,

~B4!

Q215v21S m1* 0

0 im2
D u

5S m1* ~12a*a/2!~11b*b/2!1ab*m2 2b* ~11a*a/2!m22a* ~11b*b/2!m1*

1 ia~12b*b/2!m22 ib~12a*a/2!m1* 2 ia*bm1*1 i ~11a*a/2!~12b*b/2!m2
D ,

~B5!

where we introduced the notations:m15um1ueif1;m25um2ueif2. The expressions above are fr

quently referred to as the ‘‘Efetov parametrization’’ for the matricesQ̂.

We denote the corresponding measure asdQ̂. Straightforward, but lengthy calculation give

dQ̂5
dl1dl2

~l12l2!
2

df1df2

~2p!2
da* db* dadb. ~B6!

In the rest of this Appendix we present the explicit expressions for supertraces, supe
minants, and matrix elements, entering different expressions in the main text, see Eqs.~86!, ~135!,
and ~187!.

1. For resonance widths calculation

We have:

StrQ̂L̂5~Qbb
~11!2Qbb

~22!!2~Qf f
~11!2Qf f

~22!!522i ~l12l2!,

StrQ̂~L̂2K̂bL̂ !5Qf f
~22!2Qf f

~11!52il22 i ~l12l2!~a*a2b*b!,

StrQ̂ŜL5 i ~Qbb
~12!2Qbb

~21!!2~Qf f
~12!1Qf f

~21!!

5 i ~m12m1*2m22m2* !2 i
a*a2b*b

2
~m12m1*1m21m2* !2 ia*b~m2*2m1* !

2 iab* ~m11m2!2
i

4
a*ab*b~m12m1*2m22m2* !.

The superdeterminant Sdet21@ I1 i 12gaEL̂1 ipnscgaQ̂L̂] can be easily evaluated because t

supermatrixÛ, Eq. ~B1!, commutes withL̂ and therefore can be omitted under the sign of
superdeterminant:

Sdet21@ I1 i 1
2 gaEL̂1 ipnscgaQ̂L̂#5 Sdet21@ I1 i 1

2 gaEL̂1 ipnscgaM̂ L̂#. ~B7!
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The supermatrixÂ5@ I1 i 12gaEL̂1 ipnscgaQ̂L̂] is however block-diagonal in the fermion-boso

arrangement:Âb f5Âf b50, see Eq.~B1!, and therefore Sdet21Â5 DetÂf f / DetÂbb . Trivial cal-
culation gives:

Sdet21F I1 i
1

2
gaEL̂1 ipnscgaQ̂L̂ G5

112pnsc~E!gal21ga
2

112pnsc~E!gal11ga
2 ,

which is reduced to the form used in the text of the paper, seeTa , Eq. ~49! and the parameter
ga52/Ta21.

2. For scattering phase shifts statistics

First of all, usingÛL̂5L̂Û one has

Str~Q̂L̂Q̂L̂ !52 Str~M11
2 2M12M21!524~l1

22l2
2!.

The main object entering the calculation of eigenphases correlation function is the super

(B̂a)
21, where

B̂a5
1

2
z1~ Î 41L̂ !1

1

2
z2~ Î 42L̂ !2gaSE2 I 42pnscQ̂D[Û21b̂~a!Û,

~B8!

b̂~a!5 diag~z1~a! Î 2 ,z2~a! Î 2!1g̃aM̂ ,

where we used the notations:zp(a)5zp2ga (E/2); p51,2 and g̃a5pnscga , the supermatrix

M̂ being defined in Eq.~B2!. One can invertb̂a easily noticing that in theboson-fermionarrange-

ment this matrix is block-diagonal:b̂(a)5 diag(b̂bb(a),b̂f f(a)), where

b̂bb~a!5S z1~a!2 i g̃al1 m1g̃a

m1* g̃a z2~a!1 i g̃al1
D , b̂f f~a!5S z1~a!2 i g̃al2 m2* g̃a

m2g̃a z2~a!1 i g̃al2
D

so thatb̂21(a)5 diag(@ b̂21(a)#bb ,@ b̂
21(a)# f f), where

@ b̂~a!#bb
215

1

Db~a! S z2~a!1 i g̃al1 2m1g̃a

2m1* g̃a z1~a!2 i g̃al1
D , ~B9!

@ b̂~a!# f f
215

1

D f~a! S z2~a!1 i g̃al2 2 im2* g̃a

2 im2g̃a z1~a!2 i g̃al2
D ~B10!

and we introduced notations:

Db~a![ detb̂bb~a!5z1~a!z2~a!1 i g̃a~z1~a!2z2~a!!l11g̃ a
2

D f~a![ detb̂f f~a!5z1~a!z2~a!1 i g̃a~z1~a!2z2~a!!l21g̃ a
2
, ~B11!

so that Sdet(B̂a
21)5 Sdet(b̂21(a))5 D f(a)/Db(a).

Rearranging the supermatrixb̂21(a) in advanced-retardedorder we can easily find the su

permatrixB̂a
215Û21b̂21(a)Û. Actually, we need only its elements in thefermion-fermionblock

@see Eq.~135!#:
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Str~B̂a
21Ĉ1!52~Ba

21! f f
11, Str~B̂a

21Ĉ2!52~Ba
21! f f

22

and Str(B̂a
21Ĉ1B̂a

21Ĉ2)52(Ba
21) f f

21(Ba
21) f f

12. We find, correspondingly:

~Ba
21! f f

115
z2~a!1 i g̃al2

D f~a!
2a*aFz2~a!1 i g̃al1

Db~a!
2
z2~a!1 i g̃al2

D f~a! G , ~B12!

~Ba
21! f f

225
z1~a!2 i g̃al2

D f~a!
1b*bFz1~a!2 i g̃al1

Db~a!
2
z1~a!2 i g̃al2

D f~a! G , ~B13!

~Ba
21! f f

1252
i g̃am1

Db~a!
ab*2

i g̃am2*

D f~a!
~11a*a/2!~12b*b/2!, ~B14!

~Ba
21! f f

215
i g̃am1*

Db~a!
a*b2

i g̃am2

D f~a!
~11a*a/2!~12b*b/2!. ~B15!

3. For time-delay correlations

The main new object here is the supermatrix@see Eq.~187!#:

B̂n~a!5
11L̂

2
1
12L̂

2
@z~a! Î 41g̃aQ̂#5ÛS Î 2 0

g̃aM̂21 z~a! Î 21 i g̃aM̂1
D Û21, ~B16!

where we again used that matricesÛ and L̂ commute. The matrixB̂n(a) is simple to invert.
Performing the calculation we find:

~B̂n~a!21! f f
225

1

z~a!1 i g̃al2
2b*bS 1

z~a!1 i g̃al1
2

1

z~a!1 i g̃al2
D ~B17!

and the corresponding superdeterminant is given by

Sdet21B̂n~a!5
z~a!1 i g̃al2

z~a!1 i g̃al1
. ~B18!
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Time-reversal symmetry breaking and the field theory
of quantum chaos

B. D. Simons
Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom

O. Agam
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540

A. V. Andreev
Institute for Theoretical Physics, University of California,
Santa Barbara, California 93106

~Received 17 December 1996; accepted for publication 2 January 1997!

Recent studies have shown that the quantum statistical properties of systems which
are chaotic in their classical limit can be expressed in terms of an effective field
theory. Within this description, spectral properties are determined by low energy
relaxation modes of the classical evolution operator. It is in the interaction of these
modes that quantum interference effects are encoded. In this paper we review this
general approach and discuss how the theory is modified to account for time-
reversal symmetry breaking. To keep our discussion general, we will also briefly
describe how the theory is modified by the presence of an additional discrete
symmetry such as inversion. Throughout, parallels are drawn between quantum
chaotic systems and the properties of weakly disordered conductors. ©1997
American Institute of Physics.@S0022-2488~97!01104-3#

I. INTRODUCTION

The quantum description of systems which are chaotic in their classical limit is the subj
quantum chaos.1 Generalising field theoretic approaches previously employed in the study p
erties of weakly disordered conductors, recent investigations have demonstrated that the q
statistical properties of chaotic systems can be expressed in terms of an effective field the2,3

Spectral properties are represented in terms of a functional supermatrix non-linears-model in-
volving an action which depends on low-lying density relaxation modes of the classical evo
operator. These degrees of freedom correspond to the properly regularized ‘‘irreversible’’
modes of the classical Perron–Frobenius operator. Quantum corrections to quasi-classica
tion is described by the interactions of these low-lying modes.4

This supersymmetry approach5–7 contrasts the more conventional semi-classical approxi
tion based on the Feynman path integral, the Gutzwiller Trace Formula,8,9 in which properties are
expressed in terms of classical trajectories. Both approaches rely on a description in wh
degrees of freedom controlling the low energy, or long time density relaxation modes are t
within the framework of a ‘‘diagonal approximation.’’10 More precisely, in both cases, quantu
interference from the overlap of Feynman trajectories not related by anexact symmetry are
neglected. The refinement of the field theoretic approach is the inclusion of contributions
allow for ‘‘quantum tunnelling’’ between classical trajectories. These junctions, known in
literature of disordered conductors as ‘‘Hikami boxes,’’ connect ‘‘diagonal segments’’~for a
review, see Ref. 11!. ~For completeness, we remark that an extension of the approach based
Trace formula has very recently been proposed that appears to go beyond the convention
onal approximation.12!

In addition to the ‘‘self-interference’’ of a Feynman trajectory, the existence of symmet
such as time-reversal, generate additional low energy relaxation modes. For systems wh
invariant under time-reversal the constructive interference of Feynman trajectories with their
0022-2488/97/38(4)/1982/25/$10.00
1982 J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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reversed counterpart leads to an enhanced return probability, the effects of which are man
a variety of mesoscopic phenomena collectively known as ‘‘weak localisation’’~for a review, see,
for example, Refs. 13–15!. The role of these effects in systems without quantum impuritie
subtle4 and remains the subject of continuing investigation.

The goal of this paper is to explore how the low-lying density relaxation modes are mod
by the breaking of time-reversal symmetry by a weak magnetic field. However, to kee
discussion general we will later examine the role of a single discrete symmetry associated w
external potential. Generalisations to additional symmetry structure is then straightforwar
will begin by reviewing previous results concerning the statistical properties of quantum sy
which are invariant under time-reversal.

To determine general statistical properties of weakly disordered conductors it is possi
exploit ensemble averages over realisations of a random impurity potential. As such, calcu
of response and correlation functions are amenable to standard diagrammatic perturbation
However, to study response functions non-perturbative in their frequency dependenceV, it proves
convenient to express correlation functions in the form of an effective field theory. This app
is valid deep within the metallic regime and where the particle dynamics is diffusive. With
semi-classical approximation, valid in the limit where the wavelength is much smaller tha
mean free part, 1/kFl !1, statistical properties can be presented in the form of a non-li
s-model,16,5,6

S@Q#5
pn

8 E dq STr@D~¹Q!212iV1LQ#, ~1!

whereD5vFl /d denotes the classical diffusion constant, andn the density of states~DoS!. The
supermatrix fieldQ, which has the form of a density matrix, obeys the non-linear constr
Q251, and the constant matrixL accounts for the symmetry breaking between advanced
retarded degrees of freedom.

A perturbative expansion of the action shows the low-lying modes of density relaxation
diffusive with a propagatorDk21 iV. These modes separate into two classes: Those descr
the interference of overlapping Feynman paths are known asdiffusons, while those arising from
the interference of time-reversed paths are known asCooperons. Quantum interference correction
are encoded in the interactions of the diffusion modes induced by the curvature of the non
manifold.6

Remarkably, properties of clean, quantum chaotic systems are described by a very
structure. This was emphasised by recent studies of the quantum statistical properties of
systems based solely onenergy averaging.3 It was first proposed2 and later shown that genera
spectral properties can again be expressed in terms of a functional non-linears-model but with an
effective action which inhabits the constant energy shellxi ,

S@Q #5
ip

2 E dxi

hd
STrFQ S s1

2
L1 i\T21L̂TD G , ~2!

whereL̂ denotes the classical evolution operator,s the dimensionless frequency, and the sup
matrixQ (xi)5T21(xi)LT(xi) again obeys the non-linear constraint. This ‘‘ballistic’’ action ide
tifies the low-lying degrees of freedom as modes of the regularized classical evolution ope

In this paper, we will review the derivation of the effective action~2! and investigate the
general properties of a chaotic Hamiltonian in the presence of a weak magnetic field,

Ĥ5
1

2m S p̂2
e

c
AD 21V~ q̂!, ~3!
J. Math. Phys., Vol. 38, No. 4, April 1997
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where p̂52 i\¹, andB5]q3A. As usual, we confine attention to closed systems where
classical motion inhabits a finite region of the 2d-dimensional phase space. We will further a
that all classical trajectories are unstable and, in particular, exclude~KAM ! systems where the
phase space contains islands of regular motion.

Following the previous formulation of the ballistics-model described in Ref. 3, we wil
concentrate on statistical properties defined on an energy band of widthW centered at an energ
E0 . To discuss meaningful averages it is necessary to assume that the average DoS, spec
the Weyl formula

^n~E0!&5
1

hdE dxd @E02H~x!#, x5~q,p!, ~4!

is approximately constant within this interval. Taking as an example a particle in a ran
impurity potential, the accuracy of this approximation is of orderW/E0 , and can be made arbi
trarily small by going to the semi-classical limitE0→`. On the other hand, the bandwidth
assumed to be sufficiently large that the number of levels,N5n(E0)W@1 can be employed as a
expansion parameter — final expressions will be expressed in the zeroth order approxima
1/N. Expressing energy in units of the mean level spacing,D51/̂ n(E0)& ~here and henceforth!,
and denoting such energies bye5E/D, we will consider Gaussian averages~Fig. 1! of the form

^•••&e0
5E de

~2pN2!1/2
expF2

~e2e0!
2

2N2 G~••• !. ~5!

The remainder of the paper is arranged as follows: In section II we present an outline
derivation of the effective action~2! introduced in Ref. 3 modified to account for the presence
a weak magnetic field. The symmetry breaking effect of the magnetic field is explored in se
III. Explicit reference is made to the quantum limit in which correlations coincide with rand
matrix ensembles, as well as the perturbative limit. In the presence of quantum scattering
rities the effective diffusive action~1! is restored. In section IV we describe how the diffusi
action can be obtained from the ballistic action. In particular, the topological Pruisken te17

which is connected to the bare Hall conductance, is recovered.2 Discrete symmetries genera
additional low-lying relaxation modes. In section V we describe how the field theoretical app
presented here can be modified to account for these new degrees of freedom. Finally, in sec
we conclude.

II. DERIVATION OF THE EFFECTIVE ACTION

Since the derivation of the effective action is somewhat technical, it is convenient to brea
discussion into separate sections. In the first section we will focus on how general sta
properties can be expressed as a generating function in the form of a field integral. In this
energy averaging is straightforward. In the following section a semi-classical approximatio
tifies a saddle-point calculation from which an effective field theory is subsequently obtaine

FIG. 1. The Gaussian energy average spans a width ofN levels.
J. Math. Phys., Vol. 38, No. 4, April 1997
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A. Field integrals

The representation of Green functions as field integrals over superfields has been discu
length in the literature. In this section we will briefly review this technique to introduce our re
and as a means to fix the notion employed in this paper.

A generaln-point correlator of physical operators, such as the local or global DoS, ca
obtained from a generating function which depends on appropriate external sources. In par
the retarded Green function,

ĜR~e![
1

e12Ĥ
, ~6!

wheree1[e1 i0, can be expressed as a field integral,

^quĜR~e!uq8&5 i E d@c~q!#x†~q!x~q8!expF i E dqc†~q!ĜR~e!21c~q!G , ~7!

wherec(q) denotes the two-component supervector field

c~q!g5S x~q!

S~q!
D
g

, ~8!

with x(q) representing the fermionic~F! or anticommuting component of the field andS(q)
denoting the bosonic~B! or commuting component. The introduction of a supervector field wh
involves an equal number of fermionic and bosonic components ensures the cancellation
physical loops and thereby obviates the need for explicit normalisation. This approach ci
vents the need to introduce replicated fields.

Instead of finding expressions for each specific average, it is often convenient to introd
generating function for general combinations of Green functions. In the retarded sector, w
define

ZR~ Ĵ!5E d@c~q!#expF i E dq~c†~q!ĜR~e!21c~q!1c†~q!Ĵ~q!1 Ĵ†~q!c~q!!G , ~9!

whereĴ(q) andĴ(q) denote two component supervector sources. The retarded Green functio
then be obtained from the generating function as the functional derivative,

^quĜR~e!uq8&52
i
2

d

d Ĵ†~q8!

d

d Ĵ~q!
ZRu Ĵ50 . ~10!

By increasing the number of supervector fields, a generaln-point correlator, involving com-
binations of retarded or advanced Green functions, can be expressed in the same manne
ever, in this case, it is useful to employ vector sources which account for symmetry bre
between retarded and advanced Green functions. Moreover, as we will see, it also prove
convenient to increase the number of components to account separately for each internal s
try.

Focusing on two-point correlators, average properties can be expressed in terms of th
erating function

Z~ Ĵ!5^e2SJ[C]&C , SJ@C#5
i

2E dq~C†~q!LĴ~q!1 Ĵ†~q!LC~q!!, ~11!

where
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
^•••&C[zE d@C~q!#e2S[ e,C]~••• !, ~12a!

S@e,C#5
i

2E dqC†~q!LĜ21~e!C~q!, ~12b!

Ĝ21~e!5e2Ĥ2
s1L

2
, ~12c!

and the Hamiltonian is redefined to account for the matrix structure in the time-reversal sp

Ĥ5
1

2m S p̂2
e

c
At3D 21V~ q̂!. ~13!

HereĜ(e) denotes the matrix Green function with energy differences1[s1 i0 between retarded
~R! and advanced~A! blocks, and the constantz is included to enforce the correct normalisation18

To arrive at a manageable expression after energy averaging, the number of components
supervector field is increased to account for conjugate elements separately.

Cgd
p [S Cgd

A

Cgd
R D

p

[S c g
p

c g
p* D

d

[S xd
p

Sd
pD

g

. ~14!

Matrices

Lgd
p 5S 1 0

0 21D
p

^ 1g^ 1d , kgd5S 1 0

0 21D
g

^ 1d , ~15!

break the symmetry between the A/R and graded components, respectively, and a conve
chosen which introduces the supermatrix

Lgd
p 5S 1dp 0

0 Ld
pD

g

. ~16!

Associated with the symmetry operation of time-reversal there is a symmetry breaking
matrix t3 , where

t15S 0 1

1 0D , t25S 0 2 i

i 0 D , t35S 1 0

0 21D , ~17!

which acts in the corresponding subspace.
The inclusion of complex conjugated fields implies the symmetry relation

C* ~q!5CC~q!, ~18!

where

C51p^ S i t2 0

0 t1
D
g

, ~19!
J. Math. Phys., Vol. 38, No. 4, April 1997
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denotes the ‘‘charge conjugation’’ matrix, and the Paulita matrices act in the conjugate spac
With this definition, the advanced/retarded Green function can be represented as

^quĜA/R~e!uq8&52
i
4

d

d Ĵ†~q8!
L~16L!

d

d Ĵl~q!
Zu Ĵ50 . ~20!

Having obtained a convenient representation of correlators of the two-particle Green fu
as a field integral, we proceed by calculating the Gaussian energy averaging. In doing so w
generate an effective interaction of the fields which can be treated within a suitable mea
approximation.

B. Energy averaging

If the energy differences is chosen to be much smaller than the width of the energy b
N, correlators become independent ofN and of the particular shape of the band~whether it is
Gaussian or Lorentzian, etc.!. For obvious technical reasons, we therefore employ a Gaus
energy average. Doing so we obtain the following expression:

^e2S[ e,C]&e0
5e2S[ e0 ,C]2Sint[C] , Sint5

N2

8 S E dqC†~q!LC~q! D 2. ~21!

We note that, in contrast to impurity averaging, energy averaging induces anon-local interaction
of the fields,C. As emphasized in Ref. 3, this represents an important departure from the
consideration of random Hamiltonians.

The next step involves the decoupling of the interaction induced in the averaging by me
a Hubbard–Stratonovich transformation. This is achieved by the introduction

838-component supermatrix fieldsQ̂(q1 ,q2) which arenon-local in space. To define the correc
decoupling it is crucial to identify those contributions toSint which vary slowly in comparison to
the wavelength. In the semi-classical analysis that follows we will show that low-lying degre

freedom are described by matricesQ̂(q1 ,q2) which vary slowly with respect to the center-of-ma
coordinate (q11q2)/2. In addition, modes related to this can be obtained by exploiting the e
time-reversal and inversion symmetries of the quantum Hamiltonian in a zero magnetic fie

Ĥ0[Ĥ~A50!. ~22!

Anticipating this, it is convenient to switch to a momentum space representation of the inter
and explicitly separate such contributions. In the present case there are two contributions
from the full representation of the symmetry group:

Sint5
N2

8 E dPE
upu,p0

dpC†~P!LC~2P!C†~P1p!~L1CLC!C~2P2p!. ~23!

The symmetry ofC under conjugation implies that both of these terms provide an equiva
contribution. The characteristic momentum cut-off is defined such thatp0,W/v, wherev is the
velocity of the particle. In this limit there is no overlap of the intervals of integration and
separation does not lead to over counting. This is our first approximation.

Following Ref. 6 the interaction~21! can be decoupled in the form

e2Sint[C]5E DQ expH 2
1

4
STrq@Q̂

222NQ̂C ^ C†L#J , ~24!
J. Math. Phys., Vol. 38, No. 4, April 1997
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where the usual definition of the trace operation for supermatrices, STrqM5TrqMFF2TrqMBB , is
extended to include the trace over the coordinates. Equation~18! implies that the dyadic produc
A(q,q8)5C(q)^ C†(q8)L obeys certain symmetry properties which are reflected in the foll
ing symmetry properties ofQ,

Q̂5CTLQ̂TLC, ~25!

where the transposition should be understood in the sense of an operator.
Substituting Eq.~24! for Eq. ~21! and integrating overC we obtain the following expression

for the averaged generating functional

^Z~ Ĵ!&e0
5E DQe2S[Q]2SJ[Q] , ~26a!

S@Q#5
1

4
STrq@Q̂

222 ln~Ĝ 21~Q̂!!#, ~26b!

SJ@Q#52
i

2
STrq@Ĝ ~Q̂!Ĵ^ Ĵ†L#, ~26c!

where we have introduced the supermatrix Green function

Ĝ 21~Q̂!5G21~e0!2 iNQ̂. ~27!

At this stage, the contributions to the functional integral from fieldsQ involve all components
which vary slowly in comparison to the wavelength. The next step is to identify the low-l
degrees of freedom and thereby generate an effective action. To do so, we can make us

large parameterN to employ a saddle-point approximation and find the matrixQ̂0 which mini-
mizes the action in Eq.~26!. The effective field theory is described by the expansion of the ac

in fluctuations ofQ̂ around the saddle-point. These fluctuations are strongly anisotropic and c
classified into massive and massless modes. The integral over the former can be evaluate
the saddle-point approximation to leading order in 1/N. The integral over the remaining massle
modes, which arise from the underlying symmetry of the action~26!, must be evaluated exactly
This leads to a resulting field theory which has the form of a non-linears-model.

C. Saddle-point approximation and the s-model

To obtain a saddle-point expansion we will treat the frequency source and the magneti
dependence of the Hamiltonian as a perturbation and separate the supermatrix Green funct
two parts:

Ĝ 21~Q̂!5Ĝ 0
21~Q̂!2

s1L

2
2Ĥ1 ,

~28!
Ĝ 0

21~Q̂!5e02Ĥ02 iNQ̂,

where

Ĥ15Ĥ2Ĥ0 , ~29!

represents the contribution to the Hamiltonian arising from the magnetic field.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Varying the action in Eq.~26! with respect toQ̂, and neglecting the perturbationĤ1 and

sources, we find minima atQ̂0 which satisfy the equation

Q̂0Ĝ 0
21~Q̂0!52 iN, ~30!

whereQ̂0 must be treated as an operator. The saddle-point solution which is diagonal in s
space is given by

Q̂052 i
e02Ĥ0

N
1F12S e02Ĥ0

N
D 2G1/2L. ~31!

G (Q̂0) denotes the average supermatrix Green function whereNQ̂0 plays the role of the self-
energy. The normalised average DoS, weighted by the Gaussian energy window, is reflecte

saddle-point solution,RQ̂0 . In this approximation, the average is represented by a semi-circ
width N centered one0 .

The saddle-point solution in Eq.~31! is not unique but is in fact one member of a degener
manifold of solutions. Their existence follows from the underlying symmetry of the action of

~26!. The interaction termSint@C# is invariant under the group of transformationsC→ÛC such
that

Û†LÛ5L, ~32!

whereÛ is an operator in Hilbert space. Terms which break the symmetry of the total acti

Eq. ~26! include the operatorĤ1 , the sources, and the commutator@Ĥ,Û#. The invariance of the

symmetry properties in Eq.~18! under the transformationC→ÛC induces an additional con

straints on the matrix elements ofÛ,

Û†5CÛTCT. ~33!

From Eq. ~24! it follows that these transformations induce the following constraint on

Hubbard–Stratonovich fieldQ̂: Q̂→Û21Q̂Û.
The saddle-point solution in Eq.~31! is not invariant under this group of transformation

Therefore the low energy modes of the action are of the formQ̂5Û21Q̂0Û. However, not all of
these transformations should be taken into account. The group of transformations in Eq~32!

contains a subgroup of matrices which commute with the Hamiltonian. The matrixQ̂ remains
diagonal in Hilbert space in the basis of eigenstates of the Hamiltonian. In Ref. 3 it is show

the massive mode integration gives rise to a suppression of the fluctuations ofQ̂ by the large
parameterN. Since the arguments presented there are somewhat involved and apply equal

we will not discuss them in detail. Suffice to say that the only matrixÛ commuting withĤ which
‘‘survives’’ the N→` limit is the one proportional to the unit matrix in Hilbert space. Admitti

matricesQ̂ of such a form into Eq.~26! we obtain

^Z~ Ĵ!&e0
5E DQe2Seff[ Q̂]2SJ[ Q̂] , ~34a!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Seff@Q̂#52
1

2
STrq lnF Ĝ 0

21~Q̂!2
s1L

2
2Ĥ1G

52
1

2
STrq lnF Ĝ 0

21~Q̂0!2
s1

2
ÛLÛ212Ĥ12Û@Ĥ,Û21#G . ~34b!

The last three terms under the logarithm in Eq.~34b! are small as compared to the first, and
expansion can be made in them. Each order in this expansion brings an additional po
1/N, and suggests the inclusion of just the leading order term:

Seff@Q̂#5
i

2N
STrqF Q̂S s1L

2
2Û21@Ĥ,Û# D2Q̂0Ĥ1G . ~35!

This approximation is justified only ifs!N and the commutator@Ĥ,Û# is not anomalously large
The validity of this approximation must be considered individually for each system. In partic
as we will see in section IV, quantum impurities lead to scattering which can only be treat
expanding the logarithm in Eq.~34b! to second order.

D. Semi-classical approximation

In the limit e0→`, the configurations of theQ-matrix that contribute substantially to th
functional integral in Eq.~35! can be described within the semi-classical approximation. I
therefore convenient to re-express all operators in the Wigner representation. Given an o

Ô as a set of matrix elementsÔ (q1 ,q2)5^q1uÔ uq2& between two position states atq1 andq2 , the
Wigner representation is a function of the phase space variablesx5(q,p) defined by

W~Ô ![O ~q,p!5E dDqe2 iDq•p/\O S q1
Dq

2
,q2

Dq

2 D , ~36a!

5E dDpeiq•Dp/\O S p1
Dp

2
,p2

Dp

2 D , ~36b!

where

O ~q1 ,q2!5^q1uÔuq2&, O ~p1 ,p2!5^p1uÔup2&. ~37!

By expanding the quantum mechanical commutator in powers of\, it is straightforward to
show that

W~@Ô 1 ,Ô 2# !5 i\$O 1~x!,O 2~x!%11@O 1~x!,O 2~x!#1O~\2!, ~38!

where

$O 1~x!,O 2~x!%15
1

2
~@]qiO 1 ,]piO 2#12@]piO 1 ,]qiO 2#1!, ~39!

denotes the generalised classical Poisson bracket. If the supermatricesO 1(x) andO 2(x) commute
in superspace, this definition corresponds to the usual definition.

Furthermore, by applying the inverse Wigner transform, the trace of operator products c
expressed exactly through the Wigner transform of the operators,
J. Math. Phys., Vol. 38, No. 4, April 1997
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Trq~Ô1Ô2!5E dqdDqO 1S q1
Dq

2
,q2

Dq

2 DO 2S q2
Dq

2
,q1

Dq

2 D
5E dqdDq

dp1
hd

dp2
hd

eiDq•~p12p2!/\O 1~q,p1!O 2~q,p2!

5E dq
dp

hd
O 1~q,p!O 2~q,p!. ~40!

Therefore, in the semiclassical approximation, where operators are smooth, slowly varying
tions on the quantum scale,19 Eq. ~32! becomes

U†~x!LU~x!5L, ~41!

and implies that the matricesU(x) belong to the pseudounitary supergroupU(2,2/4). Expressed
in the Wigner representation, the constraint specified in Eq.~33! takes the form

U* ~q,p!5CU~q,2p!CT. ~42!

From this we can draw the important conclusion that matricesU(x) at differentx are not inde-
pendent. This is in accord with the findings of Ref. 20.

The massless modes in the Wigner representation are generated by those matricesU(x) which
do not commute withL. Such matrices, denoted byT(x), belong to the coset spac
H5G/K5U(2,2/4)/@U(2/2)3U(2/2)# and, as implied by Eq.~42!, satisfy the symmetry rela
tions

T* ~q,p!5CT~q,2p!CT. ~43!

Those matricesÛ which commute with the Hamiltonian are strongly suppressed by mas
modes. In the semi-classical limit, we therefore admit only those matricesT(x) which are inde-
pendent of the energy. The massless modes are then given by

Q~x!5T21~xi!Q0~x'!T~xi!, ~44!

wherexi denotes a phase space coordinate on the energy shellx'[e05H(x).

SubstitutingT̂ for Û in Eq. ~35!, and applying the semiclassical approximation, we obtai

Seff@Q#5
i

2NE dx

hd
STrFQ~x!S s1

2
L1 i\T21L̂TD2H1~x!Q0~x'!G , ~45!

where

L̂T~xi!5$T~xi!,H~xi!%12
i

\
@T~xi!,H~xi!#. ~46!

In the absence of the symmetry breaking perturbation,H1 , matricesT andH commute in super-

space andL̂ reduces to the classical Liouville operator, the Poisson bracket.
The last term in Eq.~45! vanishes under the supertrace. Moreover, since the only depend

on the coordinatex' normal to the energy shell enters throughQ0(x'), given by Eq.~31!, the
integral over this variable can be performed and yields a factorpNL. By integrating over the
coordinate transverse to the energy shell@and introducing a notation to describe the superma
fieldsQ (xi) on the constant energy shell#,
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
Q~xi![
1

pNE dHT21~xi!Q0~x'!T~xi!5T21~xi!LT~xi!, ~47!

we obtain the final expression

Seff@Q #5
ip

2 E dxi

hd
STrFQ S s1

2
L1 i\T21L̂TD G , ~48!

where here and henceforth, when the arguments are omitted,Q andT should be understood a
functions ofxi . ~Note that, since we adopt the convention in which the DoS is equal to unity
phase space coordinates are normalized as*dxi /h

d51.) The matrixQ (xi) introduced in Eq.~47!
satisfies the nonlinear and symmetry constraints,

Q~xi!
251, Q~q,p!5CTLQ T~q,2p!LC. ~49!

Gauge invariance of the action under the transformationT→RT, whereR commutes with
L was demonstrated for Hamiltonians invariant under time-reversal symmetry in Ref. 3
presence of the time-reversal symmetry breaking term does not violate this gauge invarian

E. Discussion

Before continuing to discuss different limits of the theory, let us briefly discuss the doma
applicability of the non-linears-model in Eq.~48!. A more lengthy discussion can be found
Ref. 3. The construction of the effective generating functional in Eq.~26! relied on purely formal
manipulations which, in effect, involved no approximation. To proceed further a saddle-
approximation was applied in which fluctuations of massive modes were neglected. A de
justification for this was given elsewhere.3 The parameter which controlled this approximation w
the inverse bandwidth 1/N.

The second approximation involved the replacement of quantum mechanical commutat
the semi-classical Poisson bracket. Such an approximation is justified at high energies wh
shortest length scale is set by the wavelength of the particle. Finally, in treating fluctuations
massless modes around the saddle-point, only the leading order terms in the expansio

retained. Formally, if the commutator@Ĥ,T̂# is not anomalously large, this approximation is al
justified by largeN. Since characteristic configurations ofT are assumed semi-classical th

assumption can be violated only ifĤ contains non-semi-classical contributions~for example from
quantum impurities!.

The symmetry breaking terms in the action place additional constraints on the ran
validity. The expansion around the saddle-point relies on characteristic frequencies@or energy
scales arising from the Poisson bracket in the action~48!# being much smaller than the bandwid
N.

In the absence of the time-reversal symmetry breaking termH1 , the action admits low lying
modes oftwo kinds. Those degrees of freedom,T(xi), which commute witht3 represent the
familiar ‘‘diffuson’’ modes while those which do not represent the ‘‘Cooperon’’ modes describ
the interference of Feynman trajectories with their time-reversed counterpart. The effect
symmetry breaking term in the action is to induce a gap in the spectrum of the Cooperonic d
of freedom.

In Ref. 3 we discussed the low-lying modes of the effective action for a Hamiltonian
displayed an exact invariance under time-reversal. The low-lying degrees of freedom corre
ing to the diffuson and Cooperon modes were associated with the modes of the irreve
dynamics of the classical evolution~Perron–Frobenius! operator. In the presence of a magne
field, the effective action involves the operator
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
L̂5$,H%11
ie

\mc
p•A~q!@ ,t3#. ~50!

The form of the action is most readily understood by separating those degrees of freedom
commute witht3 ~diffusons! from those which do not~Cooperons!. Defining the covariant de-
rivative and velocity,

]̃q5]q2 i
e

\c
A@t3 ,#, ~51a!

v5
1

m S p2
e

c
t3AD , ~51b!

and employing the Coulomb gauge (¹•A50), the classical propagators take the form

L̂D5v•]q2S ]qV~q!1
e

c
t3v3B~q! D •]p , ~52a!

L̂C5
p

m
• ]̃q2S ]qV~q!1S e

mcD
2

]qA
2D •]p . ~52b!

These results show that, in the presence of a magnetic field, the diffusons remain ma
However, for very large magnetic fields, the diffusons experience a Lorentz force and are de
by the magnetic field. In contrast, the Cooperonic degrees of freedom acquire a mass eve
presence of a weak magnetic field due to the phase difference induced by the magnet
However, frustration of the dynamics in the particle–particle channel eliminates the depende
the Cooperonic degrees of freedom on the Lorentz force. Instead only a diamagnetic contr
from the magnetic field survives. In the following we will discuss the influence of a weak m
netic field on the spectrum of the classical Perron–Frobenius operator.

III. THE COOPERON GAP

In a weak magnetic field@LB5(hc/eB)1/2@l # the contribution from the Lorentz force can b
neglected against the phase breaking contribution to the Cooperonic propagator. In this lim
effect of the magnetic field on the kinetic component of the evolution operator is to replac
derivative by the covariant derivative,]̃q . The Cooperon gap in the spectrum thus induced by
magnetic field can be calculated perturbatively starting with the bare propagator at the
magnetic field, i.e., that experienced by the diffusons.

If we define by$gm
D% the set of regularized eigenvalues of the Perron–Frobenius operato

the diffuson degrees of freedom,

L̂D5$,H0%1 , ~53!

then, in ergodic systems, the lowest eigenvalue isg0
D50. This eigenvalue, which is associate

with the invariant density distribution on the constant energy shell, is non-degenerate and
fests the conservation of phase space density. Any initial density distribution eventually rela

the state associated withg0
D . If the relaxation is exponential in time, the spectrum ofL̂D shows

a gap associated with the slowest decay rate. This gapg1
D8[R(g1

D).0 sets the ergodic time
scale,tc51/g1

D8 over which the classical dynamics relaxes to equilibrium. In the case of d
dered metallic grains, it coincides with the typical transport or Thouless time, while in bal
systems or billiards it is of order of the flight time across the system.
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
In the presence of a magnetic field the lowest eigenvalue of the Cooperonic propagator
from zero. For weak fields it can be evaluated by perturbation theory. If we denote byufm

D& and

gm
D the eigenfunctions and eigenvalues of the diffuson degrees of freedom,L̂Dufm

D&5g m
Dufm

D&,
the ground state eigenfunction of the perturbed Cooperonic propagator can be expressed

uf0
C&5uf0

D&1 (
mÞ0

Cmufm
D&. ~54!

Substituting it into the eigenvalue equation,

L̂Cuf0
C&5g0

Cuf0
C&, ~55!

and expanding to second order, we obtain

g0
C5S 2e

\mcD
2

(
mÞ0

^f̃0
Dup•Aufm

D&^f̃m
Dup•Auf0

D&

gm
D . ~56!

Note that a first order contribution is ruled out by symmetry with respect to inversion o
momentum (*dxip50). The remaining second order contribution is positive definite and de
mines the Cooperon gap.

It is useful to see how this gap emerges in a simple example. Consider a uniform hype
system with a complete binary alphabet characterising its orbits. Let 0 and 1 denote th
fundamental orbits characterized by periodsT05T15T, phases f052f15f, and
L05L151/2. The Cooperon gap which appears in the zero mode is given by the leading z
the Cooperonic zeta function 1/Zc(z) ~defined in Appendix B!,

1

Zc~z!
5)

k50

` S 12
eTz

2k
cosf D k11

. ~57!

The leading zero is associated with thek50 term and is given byg0
C52 ln(cosf)/T. Thus for

f,1 we havegC(0) } g1f
2 whereg15 ln 2/T is the first non-vanishing Perron–Frobenius

genvalue atf50.
This result is in accord with the estimate that can be inferred from the work of Berry

Robnik21 on the distribution of winding numbers in billiards. From their result, which showed
the second moments2 } g1t wheret is the period of a classical orbit, one can deduce that
Cooperon gap in ballistic systems has the formgC(0) } g1f

2.

A. Random matrix theory

As a first application of this result, we can examine the crossover between orthogon
unitary ensembles in the quantum regime,s!g1

D8. In this case, the action is dominated by t
zero-mode contribution. In zero magnetic field we obtain the usual zero-dimensional non-
s-model for the orthogonal ensemble. If, on the other hand the magnetic field is strong a
Cooperon gap is large,s!g0

C8[Rg0
C , the functional integral is dominated by the zero-mo

contribution from the diffusons alone. In this limit we recover the zero-dimensional non-li
s-model for the unitary ensemble. However, for small magnetic fields, whereg0

C8;s!g1
D8, we

are in the crossover regime. In this case, the contribution from the Cooperonic degrees of fr
can be treated within second perturbation theory.

In this limit, second order perturbation theory leads to the zero-dimensionals-model describ-
ing the crossover between ensembles,
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
^Z~J!&e0
5E dQ0 expF2 i

ps1

4
STr~LQ0!1

p

32
g0
C STr@t3 ,Q0#

2G , ~58!

whereQ05T0
21LT0 . This expression coincides with that obtained in Ref. 22 and reproduce

universal level correlations predicted by Pandey and Mehta.23

The zero-dimensional integral can be calculated explicitly, and generates the followin
pression for the two-point correlator of DoS fluctuations,

R2~s!52S sin~ps!

ps D 21E
1

`

dl1

sin~psl1!

l1
expF2

pg0
Cl1

2

2 G E
0

1

dll sin~psl!expFpg0
Cl2

2 G .
~59!

For s@1 the dominant contribution to the integral comes from the vicinity of the po
l,l1'1. Approximatingl25(11x)2'112x andl25(12y)2'122y in the exponentials in
the integrand and integrating overx andy we obtain

R2,PM~s!'
1

2 F 1

~2 ips!2
1R

1

p2~2 is1g0
C!2

1
cos~2ps!

~ps!2 S 11S s

g0
CD 2D 21G , ~60!

which coincides exactly with Eq.~63! where in Eq.~65! one leaves only the two relevant eige
values:g0

D50 andg0
C8. For large values ofg0

C8@1 the expression~60! applies even for smal
frequencies.

As discussed in Ref. 3 the random matrix description is indeed expected to hold eve
certain chaotic systems where the spectrum of the Perron–Frobenius operator is gapless24 such as
the stadium and Sinai billiards where classical correlation functions decay algebraically in t25

B. The two-point correlation function: Beyond universality

In this section we will make use of thes-model to examine how corrections to random mat
theory appear at larger energy scales. Again, focusing on the two-point DoS correlator, th
erating function leads to the expression

R2~s!5
1

64
RE DQ S E dxi

hd
STr@LkQ~xi!# D 2exp@2Seff~s!#, ~61!

where the effective action is defined in Eq.~48!. Although straightforward, the perturbative e
pansion is somewhat technical, and here we present only the results of the detailed calc
described in Appendix A.

In the limit of high frequenciess@1, the two-point correlator takes the asymptotic form

R2~s!5RP~s!1RNP~s!, ~62!

where both the nonperturbative termRNP(s) as well as the perturbative oneRP(s) are expressed
through the classical spectral determinantD(s) as

RNP~s!5
cos~2ps!

2p4 D2~s!, RP~s!52
1

p2

]2

]s2
ln@D~s!#. ~63!

Taking the magnetic field to be weak~and therefore neglecting the action of the Lorentz force!, the
determinantD(s), regularized according to the procedure outlined in Ref. 3, is expressed in
of determinants of the Perron–Frobenius operators for Cooperons and diffusons as
J. Math. Phys., Vol. 38, No. 4, April 1997
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¬¬¬¬¬¬¬¬¬¬
D~s!5R
Det8~\L̂D!2Det8~\L̂C~A!!Det8~\L̂C~2A!!

Det@~ is2\L̂D!~2 is2\L̂D!#Detu~ is2\L̂C~A!!~2 is2\L̂C~A!!u
, ~64!

where the prime indicates that the zero eigenvalue should be excluded from the determ
D(s) can be expressed in terms of the eigenvalues of the Perron–Frobenius operator, the
resonances,26,27 as

D~s!5)
m

AD~gm
D!2

~gm
D21s2!2)n

AC~gn
C!2

ugn
C21s2u2

, ~65!

where the coefficientsAD/C(gm
D/C)5gm

D/C2 for gm
D/C Þ 0 andA(g0

D/C50)51. Note that, if the
product in Eq. ~65! is formally divergent,D(s) should be understood as the regulariz
determinant.28,29

The unitary ensemble corresponds to the limit in which all Cooperonic eigenvalues are
than the frequency of interestgm

C@s. In this case the Cooperon spectral determinant can
approximated by unity. In the opposite limit of zero magnetic field, the zeta functions o
Cooperon and diffuson coincide and we obtain results corresponding to the orthogonal ens

These results agree with those conjectured in Ref. 30 and compare with the pertur
expressions previously found for weakly disordered metals31–33 when the eigenvalues of th
Liouville operator are identified by the eigenvalues of the diffusion operator.

IV. RESTORATION OF THE DIFFUSIVE ACTION: PRUISKEN’S ACTION

In the presence of quantum scattering impurities the semi-classical approximation b
down. In this case the quantum part of the Hamiltonian must be treated separately. In gene
possible to obtain a perturbative expansion of the effective action in the quantum part
Hamiltonian. The result is the appearance of a new term in the effective action which tak
form of a collision integral. This is discussed in detail in Ref. 3. If theQ matrices vary on a scale
that is long as compared to the scattering lengthl 5vt, the particle dynamics becomes diffusiv
In this limit the ballistic action should collapse to the diffusive supersymmetric non-lin
s-model of Efetov.6

Starting with the ballistic action, in the presence of strong disorder, the effective diffu
action can be obtained by performing a moment expansion in the dependence on the fluct
on momenta. Such a moment expansion can be justified in the weak and strong magnetic

A. Strong magnetic field

For strong magnetic fields, the Cooperon degrees of freedom are frozen out. In this ca
may focus on the effective action for the diffusons. For a~dimensionless! d-correlated white noise
Gaussian random potential with a second moment defined by the mean free timet,

^dV~q!&V50, ^dV~q!dV~q8!&V5
\

2pntD2 dd~q2q8!, ~66!

where^•••&V denotes the ensemble average over the random potential,n51/DV represents the
average local DoS, andV is the volume of the system, the effective action is given by2,3

Seff@Q #5
ip

2 E dqdn

VSd
STrFQ S s1

2
L1 i\T21L̂DTD G1

p\

8tDE dqdndn8

VSd
2 STr@Q~q,n!Q~q,n8!#.

~67!

Here we have expressed the energy shell integration as a function of the real space coo
q, and the normalised velocity vectorn5v/uvu,
J. Math. Phys., Vol. 38, No. 4, April 1997
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dxi

hd
5
dqdn

SdV
. ~68!

We remark that, in the absence of Cooperon degrees of freedom, the action for the diffuson
~the time-reversed counterparts! decouples and the energy shells can be treated independen

In analogy with the Boltzmann equation, forDt!1 the ballistic action can be renormalised
a diffusive form. To obtain the diffusive action we follow an approach similar to that applie
Muzykantskii and Khmelnitskii.2 Anticipating a rapid relaxation of the momentum depend
degrees of freedom ofQ on the energy shell, and a slow variation of the spatial modes,
introduce a parametrization which involves the moment expansion ofT,

TD~x!5~11 in•K ~q!!T0~q!, ~69!

where, without any loss of generality, we choose@L,K#150.
Expanding the action to second order inK and performing integrals overn we obtain

Seff@Q#5
pn

2 E dq STrF iD s1

2
LQ2

i\uvu
3

K•T0~]qQ!T0
212

vc

3
LK3K2

\

3t
K2G , ~70!

whereQ (q)5T0
21(q)LT0(q), andvc5eB/mc denotes the cyclotron frequency. Performing t

Gaussian integration overK , and treating the term arising from the Lorentz force perturbativ
we obtain the effective action

Seff5
p

8E dq STr@2inDs1LQ1sxx~]qQ !21sxyemnQ~]qm
Q !~]qn

Q !#, ~71!

which coincides with that of the conventional diffusives-model6,17 where

sxx5e2nD, sxy5sxxvct, ~72!

represent the classical longitudinal and transverse conductivities andD5vFl /3 denotes the clas
sical diffusion constant.

B. Weak magnetic field

In the weak field limit the contribution from the Cooperon degrees of freedom surv
Neglecting the contribution involving the Lorentz force, the effective action can then be co
niently cast in the form

S@Q#5
ip

2 E dqdn

VSd
STrFQ S s1

2
L1 i\T21LL̂TD G1

p\

8tDE dqdndn8

VSd
2 STr@Q~q,n!Q~q,n8!#,

~73!

where, nown5p/upu, and

L̂5
1

m
p• ]̃q . ~74!

Again, anticipating a rapid relaxation of the momentum dependent degrees of freedomQ
on the energy shell, and a slow variation of the spatial modes, we again introduce the para
zation of the form shown in Eq.~69!.

Expanding the action to second order inK and performing integrals overn we obtain
J. Math. Phys., Vol. 38, No. 4, April 1997
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Seff@Q #5
pn

2 E dq STrF2inDs1LQ2
i\upu
3m

K•T0~ ]̃qQ !T0
212

\

3t
K2G , ~75!

whereQ (q)5T0
21(q)LT0(q). Performing the Gaussian integration overK , we obtain the effec-

tive action

Seff@Q #5
p

8E dqSTr@2inDs1LQ1sxx~ ]̃qQ !2#, ~76!

which coincides with that of the conventional diffusives-model.6

This completes our discussion of time-reversal symmetry breaking in chaotic structures.
following section, we will restore invariance under time-reversal and investigate the correspo
role of a discrete inversion symmetry.

V. DISCRETE SYMMETRY BREAKING

In clean chaotic systems it is common to find discrete symmetries of the quantum syst
such cases, eigenstates of the quantum Hamiltonian are simultaneously eigenstates of the
symmetry group and can be classified according to the irreducible representations of the
Level statistics within a single irreducible representation belong to one of the Dyson sym
classes. However, suppose we are interested in statistics of levels taken from states belon
different representations. In such cases, it is necessary to explicitly account for the add
discrete symmetries in identifying the low-lying density relaxation modes of the system. In
section we will briefly sketch how the formalism presented above can be modified to accou
this possibility.

To make our discussion explicit we will focus on a chaotic quantum Hamiltonian with a s
discrete symmetry,

Ĥ05
p̂2

2m
1Vs~ q̂!, ~77!

whereVs(q̂)5Vs(2q̂). To study the role of symmetry breaking we will add to this term
perturbation which breaks both the discrete symmetry and the symmetry under time-rever

Ĥ15Va~ q̂!2
e

2mc
@ p̂•Â1Â•p̂#, ~78!

whereVa(q̂)52Va(2q̂) @for convenience we exclude the diamagnetic contribution which ca

included withinVs(q̂)].
In the absence of a magnetic field the Hilbert space separates into two invariant sub

according to the parity of the wavefunction. Within subspace, level statistics display correla
characteristic of orthogonal random matrix ensembles. A first question to address conce
correlations that persist between states of different parity.

The symmetry of the Hamiltonian under inversion is destroyed by a uniform magnetic fie
naive expectation would therefore be to suppose that level statistics of the total spectrum
display correlations characteristic of unitary random matrix ensembles. However, the combi
of time-reversal and inversion remains a robust symmetry of the Hamiltonian. Such a sym
leads to level correlations characteristic of orthogonal random matrix ensembles.34 ~See, for ex-
ample, studies of the diamagnetic hydrogen atom.35! Therefore the second question that we a
dress here is how to account within the framework of the non-linears-model for this phenomenon
and how to treat the crossover between these regimes.
J. Math. Phys., Vol. 38, No. 4, April 1997
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The presence of inversion symmetry of the potential leads to additional low energy m
Beginning with the formalism introduced in section II, to identify the full complement of lo
lying relaxation modes, it is convenient to double the number of supermatrix fields to in
elements which are related to each other by inversion,

Cgdr
p ~q!5S Cgd

p ~q!

Cgd
p ~2q!

D
r

. ~79!

This generates the additional symmetry

ÎC~q![C~2q!5S1C~q!, ~80!

where, using the notation of Pauli matrices~17!,

Sa51p^ 1g^ 1d^ @ta# r . ~81!

With this definition, Green functions can be represented as a field integral~12! with an effective
action,

S@e,C#5
i

4E dqC†~q!LĜ21~e!C~q!, ~82!

where, taking the vector potential to be antisymmetric under inversion, instead of Eq.~29!, the
perturbation is given by

Ĥ185Va~ q̂!S32
e

2mc
@ p̂•Â~ q̂!1Â~ q̂!•p̂#S3t3 . ~83!

Averaging the generating function over energy, the interaction can be separated intfour
independent contributions,

Sint5
N2

32E dPE
upu,p0

dpC†~P!LC~2P!, ~84!

3C†~P1p!~L1CLC1 Î L Î1CÎLÎC!C~2P2p!. ~85!

The latter can be decoupled with the introduction of 16316 supermatrix fields which, in addition
to the symmetry properties under charge conjugation, have the property

Q̂~q,q8!5S1
TLQ̂~2q,2q8!LS1 . ~86!

Proceeding as in section II, and treatingĤ18 as a perturbative, it is straightforward to obtain t
effective non-linears-model within the same level of approximation. As a result we obtain
effective action shown in Eq.~48!, where

L̂5$,H%12
i

\
@ ,H#, ~87a!

5$,H%2

i

\ F ,SVa~q!2
e

mc
p•A~q!t3DS3G , ~87b!

and theQ matrices obey the symmetry constraint
J. Math. Phys., Vol. 38, No. 4, April 1997
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Q~q,p!5S1Q~2q,2p!S1
T . ~88!

In the absence of symmetry breaking sourcesH18 , the action admits low-lying modes offour
kinds. Those degrees of freedom,T(xi), which commute witht3 represent diffuson modes
However, in the present case there are two distinct kinds: The subset which further commu
S3 represent modes associated with the ‘‘self-interference’’ of Feynman paths while those
do not represent the interference of trajectories related to each other by inversion,q→2q. Simi-
larly, those modes which do not commute witht3 represent the Cooperon modes describing
interference of Feynman trajectories with their time-reversed counterpart. Modes which an
mute witht3 andS3 involve the interference of trajectories with their time-reversed and inve
counterpart.

In general, any discrete symmetry doubles the number of low-lying modes that contrib
the action. Here we have considered the simplest non-trivial case of a single inversion sym
A generalisation to many symmetries is straightforward.

The effect of the symmetry breaking term in the action is to induce a gap in the spectru
the corresponding low-lying excitations. In the absence of inversion symmetry, Cooperon
grees of freedom acquire a mass in the presence of a uniform magnetic field. Similarly, m
associated with the inversion symmetry acquire a mass in the presence of the antisym
potential,Va . However, taken together, the violation of time-reversaland inversion symmetry by
a uniform magnetic field does not lift the degeneracy of all non-trivial modes. In particular, m
that commute with the productt3S3 remain massless. As well as the ‘‘diagonal’’ diffuson mod
this includes the mode involving the interference of a Feynman path with its time-reverse
inverted counterpart. This mode plays a role analogous to the Cooperon in T-invariant Ha
nians and generates level statistics characteristic of orthogonal ensembles. Hamiltonians wh
invariant only under the combination of time-reversal and inversion symmetry belong to
sembles which are known asantiunitary.

To determine statistical properties of these generalised matrix ensembles it is neces
construct an explicit parametrization of the supermatrix degrees of freedom, a task whic
beyond the scope of this general review.

VI. DISCUSSION

In this review we have demonstrated that the quantum statistical properties of systems
are chaotic in their classical limit are described by a functional supersymmetric non-
s-model with an effective action given by Eq.~48!. This result compares to the convention
diffusive non-linears-model previously studied for weakly disordered conductors.6 The effective
action ~48! involves low-lying density relaxation modes described by the generator of clas
evolution, the Perron–Frobenius operator. Both the perturbative and non-perturbative limits
effective field theory were discussed. In particular, the coincidence of long-time, low en
correlations with random matrix ensembles was confirmed as well as the short-time non-un
correlations.

The results presented in this paper generalise previous work and includes a discus
time-reversal symmetry breaking induced by the action of a weak magnetic field. These
show how the Cooperon degrees of freedom acquire a mass in the presence of a weak m
field and the Cooperon gap was estimated. The perturbative structure of the effective actio
determined and the two-point correlator of DoS fluctuations was obtained.

In the presence of quantum scattering impurities, the effective ballistic action is renorm
to the conventional diffusive action. The limit of both strong and weak magnetic field was
sidered and the former was shown to generate the topological term which couples tosxy previ-
ously obtained by Prusikenet al.17

Future studies will build on the work by Aleiner and Larkin4 to examine the role of weak
localisation corrections in general chaotic systems.
J. Math. Phys., Vol. 38, No. 4, April 1997
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APPENDIX A: PERTURBATION THEORY

In this appendix we will employ the non-linears-model to study the two-point correlator o
DoS fluctuations in the presence of a weak magnetic field. In particular, we will examin
perturbative corrections to random matrix theory which appear at larger energy scales. To
the high frequency asymptotics ofR2(s) the functional integral in Eq.~61! can be evaluated
within the saddle-point approximation. However, to obtain the contribution which is n
perturbative in 1/s it is necessary to introduce an additional termu2(LQ)2 into the action~48!
which serves as a regulator controlling the stationary phase approximation.32,33 Ultimately, the
regularization parameteru can be set to zero.

We therefore express the two-point correlator as

R2~s!5 lim
u→0

1

64
RE DQ S E dxi

hd
STr@LkQ~xi!# D 2exp@2Seff~s!#, ~A1!

where

Seff~s!5
p

2E dxi

hd
STrF i s1

2
LQ2u2~LQ !22\QT21L̂TG . ~A2!

The derivation of the results already presented in Eqs.~63! and~64! closely parallels that of Ref
32. For a more detailed account of the method see Ref. 33. At high frequency the integrand
~A2! becomes highly oscillatory, and we can use the stationary phase method to evalua
integral. We will show that there are two stationary points:Q5L and Q52Lk. The term
u2(LQ )2 in the action is introduced in order to stabilize the second one. We can expan
integrand in small fluctuations of theQ -matrix aroundL and2Lk to obtain the leading high-
frequency asymptotics ofR2(s).

We first consider the expansion aroundQ5L. This corresponds to the ordinary perturbati
expansion previously employed in the study of disordered conductors.6,31 We begin with the
parametrization

T511 iP, P5S 0 B

B̄ 0 D , ~A3!

where, from Eq.~43!, it follows thatP satisfies the condition

P~q,p!*52CP~q,2p!CT. ~A4!

Next we substitute Eq.~A3! into Eq. ~A1! and expand the integrals in the pre-exponen
factor and the free energy~A2! to second order inP. Due to the presence of the infinitesim
imaginary part ins1, the stationary pointQ5L is stable and the regularization parameteru can
be set to zero. To second order inB and B̄ we have

STr~LkQ !5822STr~kBB̄1kB̄B!1O~B4!, ~A5a!
J. Math. Phys., Vol. 38, No. 4, April 1997
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STr~LkQ !2528STr~kB̄kB1B̄B!1O~B4!, ~A5b!

STr~LQ !524STr~B̄B!1O~B4!. ~A5c!

Using these relations we obtain the following expression for the perturbative part ofR2(s):

RP~s!5RE DBDB̄S E dxi

hd F12
1

2
STr~kBB̄1kB̄B!G D 2exp@2Seff~s!#, ~A6!

where

Seff~s!52 ipE dxi

hd
STr@sB̄B1 i\B̄L̂B#. ~A7!

In order to perform the integration overB and B̄ it is convenient to represent these matric
as

B5B01B3t31
1

A2
~B1t21B2t1!, ~A8a!

B̄5B̄01B̄3t31
1

A2
~B̄1t21B̄2t1!, ~A8b!

wheret15t11 i t2 andt25t12 i t2 . The supermatrix componentsB0 andB3t3 commute with
t3 and are therefore insensitive to the vector potential. In disordered systems such deg
freedom correspond to the diffuson modes. The remaining degrees of freedomB1t2 andB2t1

are sensitive to the vector potential and are analogous to Cooperons.
As follows from Eq.~41!, the matricesB and B̄ in Eq. ~A3! obey the symmetry relation

B̄5kB† which implies

B̄05kB0
† , B̄35kB3

† , B̄15kB2
† , B̄25kB1

† . ~A9!

In this notation, Eq.~A7! becomes

Seff,P~s!52 ipE dxi

hd
STrF (

j50,3
B̄j~s1 i L̂D!Bj1 (

j51,2
B̄j~s1 i L̂C~ jA!!B j̄ G . ~A10!

Each matrixBi can be parametrized as

Bi5S ai is i

h i* ibi
D . ~A11!

The parametrization forB̄i can be obtained from Eq.~A8b!. To evaluate the integral~A6! over the
variables~A11! one can use Wick’s theorem. It is necessary to take into account Eq.~A4! which
reduces the number of independent integration variables by a factor of two. As a result we
the second part in Eq.~63!.

The stationary pointQ5L of the functional integral~A1! is not unique. To find the othe
stationary points consider Eq.~A1!. It is possible to parameterize fluctuations around a gen
stationary pointQ0 as Q5Q0(11 iP0)(12 iP0)

21, whereP0 anticommutes withQ0 and no
longer obeys Eqs.~A3! and~A4!. Expanding the effective action in Eq.~A2! in powers ofP0 we
would obtain the stationarity condition]Seff(s)/]P050.
J. Math. Phys., Vol. 38, No. 4, April 1997
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This route however is inconvenient since the parametrization ofP0 will depend explicitly on
Q0 . Instead it is convenient to perform aglobal coordinate transformation on
H5U(2,2/4)/@U(2/2)3U(2/2)#, Q→U0

21
QU0 , whereU0 P H, which mapsQ0 toL.

Since all points on a symmetric space are equivalent by definition, this coordinate tra
mation preserves the invariant measure and leaves the functional integral in Eq.~A1! invariant.
The integrand, however, will change because it contains matricesL and 2kL that break the
symmetry in the coset space. Such a coordinate transformation is equivalent to changing o
source matricesL→QL5U0LU0

21 and 2kL→2QkL52U0kLU0
21 in Eqs. ~A1!, ~A2! and

keeping the old parametrization of Eq.~A3!. The stationary points will correspond to thoseU0 for
which the linear inP terms in the expansion of the effective action vanish.

Note that because the transformation matrixU0 is independent of momentap, from Eq.~42!
it follows that U0*5CU0C

T. ThereforeU0 belongs to the coset space of the usual orthogo
ensemble,7 UOSP(2,2/4)/@UOSP(2/2)3UOSP(2/2)#. For this case there is only one other st
tionary point32,33corresponding toQL5U0LU0

2152kL and2QkL52U0kLU0
215L. For this

point Eq.~A1! can be rewritten as

R2~s!52 lim
u→0

1

64
RE DQ S E dxi

hd
STr@LQ~xi!# D 2exp@2S̃eff~s!#, ~A12a!

S̃eff~s,u!52
p

2E dxi

hd
STrF i s1

2
kLQ1u2~kLQ !21\QT21L̂TG . ~A12b!

We now expand Eq.~A12a! in powers ofP using Eq.~A3!. This expansion is equivalent t
expanding theQ -matrix around2kL in Eq. ~A1!. Expanding the free energy~A12b! to second
order inP we use Eq.~A5a!. Note that with the parametrization of Eq.~A11!

STr~kB̄B1kBB̄!524 (
i5$1,3,1,2%

~ uai u22ubi u2!, ~A13a!

STr~kB̄ikBi1B̄iBi !524 (
i5$1,3,1,2%

~ uai u21ubi u2!. ~A13b!

Therefore the Grassmann variables in the parametrization~A11! do not couple tos andu2. As
follows from Eq.~A13a!, the ordinary variablesai andbi couple tos with opposite sign. Due to
the presence of the infinitesimal imaginary part ins the integral overai

0 ~the zero mode variable!
would diverge atu50. Equation~A13b! shows that the term STr(kLQ )2 makes the integration
over ai

0 convergent. We therefore have to keepu finite during the evaluation of the functiona
integral and take the limitu→0 only in the final expressions. The quadratic approximation to
free energy~A12b! becomes

S̃eff,P~s,u!522p is12pE dxi

hd F (
i50,3

$ai* ~2 is12u21L̂D!ai1bi* ~ is12u21L̂D!bi

1s i* L̂Ds i1h i* L̂Dh i%1 (
j51,2

$aj* ~2 is12u21L̂C~ jA!!aj1bj* ~ is12u2

1L̂C~ jA!!bj1s j* L̂C~ jA!s j1h j* L̂C~ jA!h j%G . ~A14!

The zero mode Grassmann variablesh i
0 ands i

0 do not appear in the quadratic expansion of t
effective action~A14!. For the integral~A12a! not to vanish they have to come from the pr
J. Math. Phys., Vol. 38, No. 4, April 1997
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exponential factor. While evaluating the integral we have to take into account the symmetry~A4!
which reduces the number of independent integration variables by a factor of two. Therefore
are eight independent Grassmann variables in the zero mode. Thus, in order to obtain a n
result we should expand the pre-exponential factor to eighth order inP. Then in the eighth order
expansion of the prefactor we should keep only the zero mode terms. This renders the inte
over the zero mode variables non-vanishing, whereas the integration over the ordinary zero
variables yields a factor (s21u4)22. The integral over the non-zero modes yields the superde
minant of the operator~A14!. After we perform the integration we take theu→0 limit to obtain
Eq. ~64!.

APPENDIX B: THE COOPERONIC ZETA FUNCTION

In this appendix we derive an exact periodic orbit formula for the Cooperonic zeta func

1

ZC~z!
5Det~z2L̂C!, ~B1!

where the operatorL̂C is defined in Eq.~52!. Following the derivation of Cvitanovic and

Eckhardt,36 we introduce the trace of the Cooperonic time evolution operator,e2L̂Ct,

Tr e2L̂Ct5 (
m50

`

e2gm
Ct. ~B2!

Then, up to the regularization, one can show that the Cooperonic zeta function is given by

1

ZC~z!
5expF2E dzE dtezt Tr e2L̂CtG . ~B3!

To evaluate the trace in this expression we employ the matrix representation of the C
onic time evolution operator in the basis of the phase space statesux&,

^xue2L̂Ctux8&5d@x2f~x8,t !#expH E
0

t

dt8
2ie

\c
v~ t8!•A@q~ t8!#J , ~B4!

wheref(x8,t) is the solution of the classical equations of motion after timet of a particle starting
its motion at pointx8 in phase space. The argument of the exponent is the time integral of the
(2ie/\c)v•A along this trajectory. The formula above can be simply obtained by dividing
time t into small time intervalsDt, inserting the resolution of identity*dxi uxi&^xi u between the
various products,

)
j
e2L̂CDt j expF2

2ie

\c
v•ADt j G , ~B5!

and using the fact that the second term is diagonal in this representation.
It is evident from Eq.~B4! that the trace of the Cooperonic time evolution operator selects

classical periodic orbits of the system. To calculate the contribution form a particular prim
periodic orbitp we introduce local phase space coordinate systemh near the orbit, withh i along
the orbit andh' perpendicular to the orbit in phase space. Then

~Tr e2L̂Ct!p5ei2pfE dh idh'd i@h2f~h,t !#d'@h2f~h,t !#, ~B6!
J. Math. Phys., Vol. 38, No. 4, April 1997
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wheref is the phase associated with the magnetic flux passing through the periodic orbit,

f5
2e

hc Rpdq•A. ~B7!

The integration along the orbit picks up a contribution whenever the trajectory returns
starting point. It therefore yields a sum ofd-functions associated with the return times,

E dh id i@h2f~h,t !#5Tp(
r51

`

d~ t2rTp!, ~B8!

whereTp is the period of the primitive orbit andr denotes the repetitions. The calculation of t
integral overh' requires the linearization of the dynamics in the Poincare´ plain perpendicular to
the periodic orbit. Denoting byMp this linearized map,h'(t1Tp)5Mp h'(t) we obtain

E dh'd'@h2f~h,t !#ur2th repitition5
1

udet~Mp
r 2I !u

, ~B9!

where here we consider the contribution for ther -th repeated orbit. Collecting our results w
finally obtain

Tre2L̂Ct5(
p
Tp(

r51

`
ei2pfprd~ t2rTp!

udet~Mp
r 2I !u

, ~B10!

wherefp is the flux ~B7! associated with thep-th primitive orbit. Substituting this result in Eq
~B3! we obtain the Cooperonic zeta function,

1

ZC~z!
5expF2(

p
(
r51

`
1

r

ezTpr1 i2pfpr

udet~Mp
r 2I !uG . ~B11!

For two-dimensional systems this expression reduces to

1

Zc~z!
5)

p
)
k50

` S 12
ezTp1 ifp

uLpuLp
k D k11

, ~B12!

whereLp is the eigenvalue of the monodromy matrixMp with absolute value larger than one.
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Toward a theory of the integer quantum Hall transition:
Continuum limit of the Chalker–Coddington model

Martin R. Zirnbauer
Institut für Theoretische Physik, Universita¨t zu Köln, Germany

~Received 5 November 1996; accepted for publication 14 January 1997!

An N-channel generalization of the network model of Chalker and Coddington is
considered. The model forN51 is known to describe the critical behavior at the
plateau transition in systems exhibiting the integer quantum Hall effect. Using a
recently discovered equality of integrals, the network model is transformed into a
lattice field theory defined over Efetov’ss model space with unitary symmetry.
The transformation is exact for allN, no saddle-point approximation is made, and
no massive modes have to be eliminated. The naive continuum limit of the lattice
theory is shown to be a supersymmetric version of Pruisken’s nonlinears model
with couplingssxx5N/4 andsxy5N/2 at the symmetric point. It follows that the
model forN52, which describes a spin degenerate Landau level and the random
flux problem, is noncritical. On the basis of symmetry considerations and inspec-
tion of the Hamiltonian limit, a modified network model is formulated, which still
lies in the quantum Hall universality class. The prospects for deformation to a
Yang–Baxter integrable vertex model are briefly discussed. ©1997 American
Institute of Physics.@S0022-2488~97!01204-8#

I. INTRODUCTION

The single-electron states of a two-dimensional disordered electron gas in a strong ma
field are localized except at the energies of the Landau band centers. As the Fermi ene
proaches such a band center, a critical phenomenon takes place: the localization length d
and the Hall conductance jumps from one plateau to the next. This phase transition, which b
to the general class of Anderson metal–insulator transitions, has been seen in several expe
and a substantial amount of data on its critical behavior is available from a number of num
simulations~in the absence of electron–electron interactions!, see Ref. 1 and references there
Unfortunately, in spite of considerable efforts expended over the last decade, our analytic
derstanding of the plateau-to-plateau transition is still rather poor. It is expected that the c
behavior is described by some nonunitary conformal field theory, but this theory has not ye
identified.

There exist two opposite limits from which the transition in the noninteracting system ca
approached theoretically. The first limit is that of a slowly varying random potential wi
correlation lengthl c much larger than the magnetic lengthl B . In this limit, the electron’s motion
can be described in semiclassical terms.2 More precisely, the motion separates into a rapid cyc
tron motion superimposed on a slow guiding center drift along spatially localized equipot
lines. As the Fermi energy approaches the center of a Landau band, a percolating path d
and a localization–delocalization transition takes place. Close to the transition, the quantu
chanical possibility for an electron to tunnel from an equipotential to a neighboring one
relevant perturbation. The essential features of this quantum percolation transition were ca
a random network model by Chalker and Coddington.3 In their model an electron acquires rando
U(1) phases while moving along the directed bonds of a square network, and is scattered
right or left every time it passes through a node of the network. The model will be review
more detail below. Suffice it to say here that the model has been studied by numerical sim
but has, in its original, spatially isotropic formulation, defied analytical treatment up to n
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although a certain amount of analytical insight has come from consideration of its anisotropi4 and
weak disorder5 versions.

The opposite limit isl c! l B . Historically, this was thefirst limit to be studied analytically, the
reason being that it is this limit that was amenable to the field theoretic machinery developed
beginning of the 1980’s by Wegner,6 Efetov7 and others. Starting from a Gaussian white-no
potential (l c50) Pruisken8 used the replica trick to set up a generating functional for the diso
averaged retarded and advanced Green’s functions of the single-electron Hamiltonian. A
Hubbard–Stratonovitch transformation to matrix-valued fields, he made a saddle-point ap
mation, valid in the limit of a high Landau level. This was followed by a gradient expan
leading to a U(n11n2)/U(n1)3U(n2) nonlinears model with a vanishing number of replica
n15n250, and a parity-violating topological term due to the strong magnetic field. The cou
constants of the model,sxx andsxy , were identified9 with the physical conductivities of the 2d
disordered electron gas. The topological couplingu52psxy , by its very nature, has no effect o
the equations of motion of the classical field theory, butdoeschange both the Hamiltonian and th
symplectic structure and, consequently, the commutator of the quantum theory. It was ar10

that the nonlinears model, while generically being massive~i.e., having a finite correlation
length! in two dimensions, becomes critical atu5p. The vanishing of the mass gap correspon
to the appearance of delocalized states at the center of a Landau band. Thus, Pruisken’
provided the right kind of scenario in which to develop a scaling theory of the plateau-to-pl
transition. A supersymmetric version of the model first appeared in Ref.11.

Undeniably, Pruisken’s nonlinears model has served as a great inspiration to theory. On
its early successes was thesxx 2 sxy flow that was conjectured from it12,10 and later verified by
numerical and real experiments; see Ref. 1 and references therein. In spite of this, Pru
model or, rather, its promoters have been criticized; see Ref. 13 for a summary. For one thi
model has never yielded any quantitative results for the critical behavior at the transition
much less has it been solved.~The same statement applies to the general class of nonlines
models with a topological term. None of these has ever been solved, at least not directly! For
another, even the derivation of the model is vulnerable to criticism: the validity of the saddle-
approximation that is made to eliminate the so-called massive modes, requiressxx@1. Although
this inequality is satisfied for the bare~or SCBA! value ofsxx in the limit of a high Landau level,
the renormalized theory atsxy51/2 is expected to have asxx of order unity or less. The cure
proposed by Pruisken was toassumethe renormalizability of his model, and appeal to the RG fl
to take the coupling constantsxx from large to small values. However, such an assumption ne
to be justified and, in fact, is not acceptable by current field theoretic knowledge, for Pruis
model apparently lacks the conformal structure that is required of a fixed point theory w
continuous symmetry in two dimensions.~In other words, the model, while definitely being critic
at sxy51/2, does not possess the conservation laws expected of an infrared stable fixed p!

Two advances will be made in the present paper. The first is to establish a very clos
nection between Pruisken’s nonlinears model and the network model of Chalker and Codding
at criticality. We will show that the latter can be viewed as a lattice discretization of the forme
conversely, taking the continuum limit of the network model yields thes model. A more detailed
outline is the following. We start out by reviewing the supersymmetric version of Pruisk
model and the Chalker–Coddington network model in Secs. II and III. Then, in Sec. IV
network model is reformulated as a lattice-regularized field theory defined over Efetov’s s
symmetric nonlinears model space with unitary symmetry. This reformulation is exact. In c
trast with the conventional method due to Wegner, Efetov and others, no saddle-point ap
mation is needed to eliminate the massive modes. Moreover, Sec. V shows that not only
supersymmetric reformulation of the network model defined over the same field space, but
has the same global symmetries as Pruisken’s model. At the critical point of the network m
where the correlation~or localization! length diverges, the long wave length physics of the sup
symmetric lattice theory is expected to be described by a continuum field theory. The symm
J. Math. Phys., Vol. 38, No. 4, April 1997
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dictate that this continuum theory be Pruisken’s model at the critical couplingsxy51/2. As is
shown in Sec. VII A, the other coupling constant,sxx , equals 1/4. The numerical value ofsxy is
checked in Sec. VII B, by evaluating the lattice action on a smooth field configuration
nonzero topological charge. Section VII C extends these results to anN-channel network mode
with random U(N) matrices on links.

What we learn from all this is that, although historically Pruisken’s model was first obta
from the Gaussian white noise limitl c! l B , in a low Landau level it is actually more closel
related to the opposite limitl c@ l B , since it is the latter that provides the microscopic basis for
network model.

The mathematical basis underlying the exact transformation from theN-channel network
model to the supersymmetric lattice field theory is quite natural and simple, and is briefly ske
as follows. ~Readers who are not interested in mathematical structures may want to ski
paragraph.! For a pair of positive integersn,N consider the tensor productCn^CN, on which the
group GL(nN) acts by linear transformations. Span the corresponding Lie algebra gl(nN) by
bilinears$c̄A

i cB
j %A,B51, . . . ,n

i , j51, . . . ,N in fermionic creatorsc̄ and annihilatorsc, which act in a Fock space
with vacuumu0&. There exist two natural subalgebras: gl(n), generated by( i c̄A

i cB
i , and gl(N),

generated by(Ac̄A
i cA

j . Now put n5n21n1 and fill the ‘‘negative energy states’’ to form
uvac&5) i51

N )A51
n2 c̄A

i u0&. The particle–hole coherent states14 that are generated by the action
GL(n) on uvac&, are holomorphic sections of a line bundle associated to the homogeneous
G/H:5GL(n)/GL(n1)3GL(n2) by the Slater-determinant representation of GL(n2) on
uvac&. They are parameterized by a complexn13n2 matrixZ with adjointZ†. By combining the
closure relation for particle–hole coherent states with a few elementary properties of F
coherent~or Grassmann-coherent! states, one can prove the following equality of integrals:

E
U~N!

dU)
a51

n1

Det~12e1 iw1aU !)
b51

n2

Det~12e2 iw2bU†!

5E dm~Z,Z†!Det2N~11Z†Z!DetN~11Z†e1 iw1Ze2 iw2!,

wherew65diag(w61,...,w6n6
) are diagonal matrices with real entries,dU is the Haar measure

of a U(N) subgroup of GL(N) anddm(Z,Z†) expresses the U(n)-invariant measure of a compac
symmetric space U(n)/U(n1)3U(n2) contained in the complex homogeneous spaceG/H. This
integral identity forms the mathematical basis of our formalism. Its supersymmetric exten15

permits us to carry out the disorder average over the random U(N) matrices placed on the links o
the network, at the expense of introducing an integration over fieldsZ taking values in a symmet
ric superspace.

Another issue addressed in this paper is the question whether the supersymmetric form
of the network model offers the possibility for an exact analytical solution. In Sec. VI I reveal
the model resembles what is called avertex modelin statistical physics, in the sense that t
Boltzmann weight is a product of factors, one for each node, or vertex. The weight associate
a single vertex is called theR-matrix. The symmetries of theR-matrix are investigated in Sec
VIII. It is eventually found that it can be interpreted as a mapR:V^V→V^V, whereV is an
irreducible lowest-weight module for the Lie superalgebra gl(n,n), andn5n11n25111 for
the case of one retarded and one advanced Green’s function. This looks interesting as o
hope thatR can be deformed to anR-matrix that solves the quantum Yang–Baxter equat
underlying the integrability of two-dimensional vertex models. One would then have the pos
ity of an analytical and exact computation of critical properties. Unfortunately, the specific c
of local directions for the single-particle motion on the network, shown in Fig. 2 below, turns
to be incompatiblewith the standard schemes16 for constructing solutions of the quantum Yang
Baxter equation. The reason is that theR-matrix of a Yang–Baxter solvable model always tran
J. Math. Phys., Vol. 38, No. 4, April 1997
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fers from one side of the vertex to the other, whereas the Chalker–Coddington vertex ma
horizontal degrees of freedom into the vertical ones, or vice versa. Thus the Chalker–Codd
model in its original form does not fit into the canonical framework of the theory of integr
systems, and I am not aware of any method to make analytical progress with it.

However, this is not yet the end of the story. Additional insight can be gained by consid
the anisotropic limit4 of the Chalker–Coddington model. This limit and its relation to Pruiske
model are reviewed in Sec. IX. Based on it, in Sec. X a modified version of the isotropic one
channel network model is proposed, which differs from the original one in two respects. Firs
direction of the single-particle motion does not alternate constantly between being horizont
vertical. Instead, an electron may either pass straight through a node~with nochange of direction!,
or else be scattered either to the right or to left. Analysing such a model by the mapping
Pruisken’s nonlinears model, we find that it is likelynot to be in the quantum Hall universalit
class, but in a massive~Haldane type! phase. Therefore, a second modification is proposed, w
is to add a second channel of propagation onhalf the links, say the horizontal ones; see Fig. 5~b!
below. By the mapping onto Pruisken’s model, the doubly modified network model is expec
be critical in a range of values of the parameter characterizing the scattering at the nodes.
over, by the changed transfer dynamics, the standard schemes for constructing solutions
quantum Yang–Baxter equation are no longer ruled out. I hope to elaborate on this them
future publication.

II. SUPERSYMMETRIC FORMULATION OF PRUISKEN’S MODEL (DEFINITIONS)

The original formulation8 of Pruisken’s nonlinears model relied on the use of the replic
trick. When applied to phenomena that are nonperturbative in the disorder strength, the
trick is not mathematically sound but has been demonstrated to lead to incorrect results, at
some instances.17 ~The analytic continuation to a vanishing number of replicas is not uniqu
general.! Fortunately, we can avoid the replica trick by using an alternative, supersymm
formalism,7 which is on firm mathematical ground. The purpose of this section is to briefly re
the supersymmetric formulation11 of Pruisken’s model in a language that is well suited for wh
will follow below. For simplicity, only the model pertaining to one retarded and one advan
Green’s function is treated. A more detailed discussion of the model can be found in Ref.

To define Pruisken’s nonlinears model we first specify its field space, as follows. Conside
pair Z,Z̃ of 232 complex supermatrices,

Z5S ZBB ZBF

ZFB ZFF
D , Z̃5S Z̃BB Z̃BF

Z̃FB Z̃FF
D ,

where the subscripts B and F stand for Bosonic and Fermionic, and let

g5S A B

C DD PGL~2u2!

act on these by

Z°g•Z5~AZ1B!~CZ1D !21, Z̃°g•Z̃5~C1DZ̃!~A1BZ̃!21.

Following Ref. 13 one identifies the pairZ,Z̃ as a set of coordinates for the complex coset sp
G/H:5Gl(2u2)/GL(1u1)3GL(1u1), where the denominator is the subgroup generated by
block-diagonal matrices
J. Math. Phys., Vol. 38, No. 4, April 1997
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h5SA 0

0 D D .
With this identification, the actionZ°g•Z and Z̃°g•Z̃ coincides13 with the natural action of
G onG/H by left translation. The supermatricesZ andZ̃ then are viewed as left-translates of th
origin in G/H, by writing Z[g•05BD21 and Z̃[g• 0̃5CA21.

The coset spaceG/H, being a homogeneous space, admits only one~up to multiplication by
a constant! rank-two supersymmetric tensor that is invariant under the action ofG5GL(2u2). In
the coordinatesZ,Z̃ it is given by

ĝ5STr~12ZZ̃!21dZ~12Z̃Z!21dZ̃,

where STr denotes the supertrace. TheG-invariant superintegration measure that derives fromĝ is
denotedD(Z,Z̃) and has the local coordinate expression18

D~Z,Z̃!5dZBB`dZ̃BB`dZFF̀ dZ̃FF
]4

]ZBF]Z̃BF]ZFB]Z̃FB
.

~Note that superintegration measures, also called integral superforms or Berezin forms, gen
suffer from a coordinate ambiguity, or anomaly; see Ref. 19. A general procedure by wh
defineD(Z,Z̃) globally is described in Sec. II A of Ref. 20.! The integration domain for the
bosonic variables is fixed by the conditions

Z̃FF52Z̄FF, Z̃BB51Z̄BB and uZBBu2,1,

where the bar denotes complex conjugation. These conditions select a submanifoldMB3MF of
G/H,

MB5U~1,1!/U~1!3U~1!.H2, MF5U~2!/U~1!3U~1!.S2,

on which the metricĝ is Riemann. The variablesZFF andZBB can be shown
13 to have a meaning

as complex stereographic coordinates on the two-sphere S2 and two-hyperboloid H2, respectively.
The triple (G/H,MB3MF ,ĝ) is a Riemannian symmetric superspace,20 and is called Efetov’s
s model space with unitary symmetry. In most of the existing literature, this space is param
ized by a 434 supermatrixQ, introduced below.

After these preparations, Pruisken’s nonlinears model~or, rather, the supersymmetric versio
thereof! is defined by the functional integral,

^d&5E D~Z,Z̃!dexp2Scont@Z,Z̃#,

whereScont@Z,Z̃#5*Ld2r is obtained by integrating the following Lagrangian:

L5sxx
~0!~Lxx1Lyy!1sxy

~0!~Lxy2Lyx!,
~1!

Lmn5STr~12ZZ̃!21]mZ~12Z̃Z!21]nZ̃,

and the functional integration measure is

D~Z,Z̃!5 )
r5~x,y!

D~Z~r !,Z̃~r !!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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By construction, this field theory is invariant under global Gl(2u2) transformations
Z(r )°g•Z(r ) and Z̃(r )°g•Z̃(r ) ~each of the termsLmn is!. The partition functionZ5^1&
equals unity by supersymmetry. To obtain physical observables, one adds sources an
functional derivatives, as usual.

For some purposes it is useful to switch to a coordinate-independent language by intro
a 434 supermatrix fieldQ by

Q5S 1 Z

Z̃ 1D S 1 0

0 21D S 1 Z

Z̃ 1D
21

,

in terms of which the Lagrangian takes the familiar form8

Lxx1Lyy5STr~]xQ]xQ1]yQ]yQ!/85:L0 ,

Lxy2Lyx5STr~]xQ]yQ2]yQ]xQ!Q/85:L top.

The global action of GL(2u2) onQ isQ(r )°gQ(r )g21. On a configuration manifoldC without
boundary the integral ofL top is quantized:

10,18 *CL topd
2r52p in, and the integern is called the

‘‘winding number’’ or ‘‘topological charge.’’L0 andL top are invariant under rotations in thexy
plane, and these are the only invariants that can be formed fromLmn . Note thatL0 is real-valued,
whereasL top is purely imaginary. The coupling constantssxx

(0) andsxy
(0) have been interpreted9 as

the longitudinal and Hall conductivities of the 2d electron gas.
Let me mention in passing that the terms in the Lagrangian can be written as

L05S ]2

]x]x8
1

]2

]y]y8D ln SDet~12Z~x,y!Z̃~x8,y8!!21ux5x8,y5y8 ,
~2!

L top5S ]2

]x]y8
2

]2

]y]x8D ln SDet~12Z~x,y!Z̃~x8,y8!!21ux5x8,y5y8 ,

where SDet denotes the superdeterminant. The function ln SDet(12ZZ̃) is called the Ka¨hler
potential of the Ka¨hler supermanifoldG/H parameterized by the complex coordinatesZ and Z̃.

III. THE CHALKER–CODDINGTON MODEL

The Chalker–Coddington model was formulated3 for the purpose of describing the platea
to-plateau transition in systems exhibiting the integer quantum Hall effect. Its microscopic
dation as a model for the motion of a single 2d electron subject to a smooth random potent
a strong magnetic field, is explained in the original paper.

The model is defined on a finite or infinite square lattice forming a network of nodes
directed links; see Fig. 1. A ‘‘wave function’’ of the model is a collection of complex amplitu
$c( l )%, one for each linkl of the network. The dynamics is governed not by a Hamiltonian bu
a unitary operatorU, called the one-step time evolution operator.U acts on wave functions, an
is given by a sequence of two distinct operations. The first one is stochastic and, in a micro
picture, accounts for the random phase acquired by the electron’s guiding center while d
along equipotentials between saddle points of the random potential. In formal language, th
chastic phases are encapsulated in a unitary operatorU0 that is diagonal in the basis provided b
the links:U0( l 8,l )5d( l 8,l )exp iw(l), wherew( l ) are uncorrelated random variables with a u
form distribution on the interval@0,2p#.

The second process built into the one-step time evolution operator is deterministic~i.e.,
nonrandom! and accounts for the quantum mechanical possibility for an electron to tunnel a
a saddle point. This is modeled via the nodes of the network. One imagines that the guiding
J. Math. Phys., Vol. 38, No. 4, April 1997
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drift motion of the electron follows the direction indicated by the arrows in Fig. 1. An elec
incident on a node can be scattered either to the left or to the right, corresponding to th
possibilities of continuing on its way along the same equipotential, or tunneling to a neighb
one. It cannot be backscattered, and it cannot pass straight through a node. The probabil
scattering to the right or left are denotedp and 12p. The probabilityamplitudesfor scattering at
the nodes then have magnitudeAp andA12p, respectively. They are taken to be real, but th
cannot all be chosen positive as this would violate unitarity. Various choices are possibl
definiteness we take the amplitudes to be negative for right-up to left-up and for right-do
left-down turns~see Fig. 1! and positive otherwise.~Which choice is made actually turns out to b
immaterial. All we need is that some choice consistent with unitarity exists.! All this fixes a
unitary operatorU1 with matrix elementsU1( l 8,l ) that vanish unless the scattering proce
l→ l 8 is allowed by the ~one-step! dynamics, in which caseU1( l 8,l )56Ap or
U1( l 8,l )56A12p, as specified. The full one-step time evolution operator is the pro
U5U1U0 .

For the purpose of doing numerical simulations, one usually takes the network to be a
strip ~quasi-1d geometry! with periodic boundary conditions for the short direction to minimi
finite size effects. By computing the exponential growth of the transfer matrix for the strip
averaging over many realizations of the disorder embodied byU0 , one extracts a Lyapunov
exponent or inverse localization length. Forp51/2 the localization length is found to grow
linearly with the width of the strip, indicating a critical point.

The existence of critical behavior atp51/2 can be anticipated by the following argumen3

Consider the Chalker–Coddington model with the open boundary conditions of Fig. 1
p50 ~left turns only! all electron states encircle elementary squares of the network in the c
terclockwise direction, and thus are strongly localized. The same statement applies forp51 ~right
turns only!, except that now the orientation of the motion around squares is clockwise, and anedge
stateat the boundary of the strip appears, as is seen by inspection of Fig. 1. The appearanc
edge state implies that somewhere in the intervalpP@0,1# a delocalized state must form. Fo
symmetry reasons, this is expected to happen at the left–right symmetric pointp51/2.

The method to be introduced in Sec. IV is quite capable of dealing with a quasi-1d geo
and its boundary conditions. However, for maximal simplicity we will consider below a some
different setup, where periodic boundary conditions are imposed in both directions, i.e., th

FIG. 1. The network model of Chalker and Coddington in a quasi 1d geometry. A single electron propagates balli
along the links and is scattered at the nodes of the network.
J. Math. Phys., Vol. 38, No. 4, April 1997
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work is placed on a torus S13S1. We envisage making a conductance measurement between
interior contactsM andN as shown in Fig. 2. These contacts are ‘‘point’’ contacts in the se
that they each attach only to asingle link, l M and l N . For most purposes it is helpful to imagin
that each link with a contact is replaced by two links, an ‘‘in-link’’ feeding the network from
reservoir, and an ‘‘out-link’’ draining the network through an outgoing channel leading back t
reservoir. Outgoing-wave boundary conditions are imposed on out-links, i.e. probability flux
is scattered into such a link by the action ofU1 , must exit and never returns to the network. T
conductance pertaining to two interior contactsM andN can be computed from the Landaue
Büttiker formula,gMN5uSMNu2, whereSMN is the S-matrix element relating an incoming state
the in-link of l N to an outgoing wave amplitude on the out-link ofl M . This S-matrix element is
determined by the solution of Schro¨dinger’s equationUc5eiac with incoming-wave boundary
conditions atN. The eigenphaseeia may be gauged away by a global shift of the random U(
factors on links,U0( l )°eiaU0( l ). It is convenient to implement the loss of probability flu
through out-links by the modificationU0( l )5exp iw(l)→U0(l

out)[0 for every link l with a con-
tact. Then, solving the equationc5Uc by iteration, we easily see that the d.c. conductance eq

gMN5uSMNu25u^ l M
outuTu l N

in&u2,

whereT is the operator

T5U11U1U0U11U1U0U1U0U11•••5~12U1U0!
21U1 . ~3!

Note that owing toU0( l M
out)5U0( l N

out)50, the eigenvalues ofU1U0 lie inside the unit circle
~rather than on the unit circle! in C, so the inverse (12U1U0)

21 is well-defined. Without chang-
ing the matrix elementuSMNu2, we setU0( l M

in )5U0( l N
in)50.

IV. REFORMULATION BY SUPERSYMMETRY

In this section we will show how to map the problem of calculating the disorder aver
conductance ^gMN& on an equivalent lattice field theory. FromgMN5u^ l M

outuTu l N
in&u2,

T5(12U1U0)
21U1 , andT

†5(12U1
†U0

†)21U1
† , the mean conductance^gMN& equals the disor-

der average of the expression

FIG. 2. Chalker–Coddington network with two interior contactsM and N. The corresponding linksl M and l N are
connected to one incoming and one outgoing channel each.
J. Math. Phys., Vol. 38, No. 4, April 1997
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(
lml n

^ l N
inu~12U1

†U0
†!21u l m&U1

†~ l m ,l M
out!^ l M

outu~12U1U0!
21u l n&U1~ l n ,l N

in!.

This disorder average can be processed by a variant of Efetov’s supersymmetry method intr
in Ref. 15, as follows. The method starts by expressing the product of matrix elements
Gaussian superintegral:

^ l N
inu~12U1

†U0
†!21u l m&^ l M

outu~12U1U0!
21u l n&

5E )
l
D~c~ l !,c̄~ l !!c2B~ l N

in!c̄2B~ l m!c1B~ l M
out!c̄1B~ l n!

3exp~2c̄1s~ l 8!@d~ l 8,l !2U1~ l 8,l !U0~ l !#c1s~ l !

2c̄2t~ l 8!@d~ l 8,l !2Ū1~ l ,l 8!Ū0~ l !#c2t~ l !!,

wherec6s are the components of a complex superfieldl°c( l ). The indexs5B or F distin-
guishes between Bosonic and Fermionic components, and6 relates to retarded (T) and advanced
(T†) Green’s functions. The bar denotes complex conjugation.D(c,c̄) denotes the ‘‘flat’’ super-
integration measure, i.e., is given by the product of the differentials of the bosonic compo
times the product of partial derivatives with respect to the fermionic ones. The summation
vention is used here and throughout the paper.

For the following step, it is notationally convenient to absorbU1 temporarily by setting
ĉ1s( l )5c̄1s( l 8)U1( l 8,l ) and ĉ2t( l )5c̄2t( l 8)Ū1( l ,l 8). We will now trade the average ove
random phases*) ldU0( l )5*) ldw( l )/2p for an integral over Efetov’ss model space with
unitary symmetry, reviewed in Sec. II. This is done by a kind of Hubbard–Stratonovitch t
formation,

E )
l

8 dU0~ l !exp~ ĉ1s~ l !U0~ l !c1s~ l !1ĉ2t~ l !Ū0~ l !c2t~ l !!

5E )
l

8 Dm~Z~ l !,Z̃~ l !!exp~ ĉ1s~ l !Zst~ l !c2t~ l !1ĉ2t~ l !Z̃ts~ l !c1s~ l !!, ~4!

which is a special case of a more general result proved in Ref. 15. The 232 supermatrix valued
fields l°Z( l ) andl°Z̃( l ) are lattice discretizations of the continuous fields of Pruisken’s mo
The superintegration measure,

Dm~Z,Z̃!:5const3D~Z,Z̃!SDet~12Z̃Z!,

is normalized by the condition*Dm(Z,Z̃)51. Because of the boundary condition at the conta
U0( l M)5U0( l N)50 ~in- and out-links!, the product over links on both sides of~4! excludesl M
and l N . An alternative scheme of implementing the boundary condition is to let the produc
overall links, including the boundary ones, and set

Z~ l M !5Z̃~ l M !5Z~ l N!5Z̃~ l N!50. ~5!

We adopt this scheme. By using~4! to deal with the disorder average of the product of mat
elements, we obtain
J. Math. Phys., Vol. 38, No. 4, April 1997
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^^ l N
inu~12U1

†U0
†!21u l m&^ l M

outu~12U1U0!
21u l n&&

5E )
l
Dm~Z~ l !,Z̃~ l !!E )

l
D~c~ l !,c̄~ l !!

3c2B~ l N
in!c̄2B~ l m!c1B~ l M

out!c̄1B~ l n!

3exp~2c̄1s~ l !c1s~ l !1c̄1s~ l 8!U1~ l 8,l !Zst~ l !c2t~ l !

2c̄2t~ l !c2t~ l !1c̄2t~ l 8!Ū1~ l ,l 8!Z̃ts~ l !c1s~ l !!.

The final step is to carry out the Gaussian integral overc and c̄, which gives

^gMN&5E )
l
Dm~Z~ l !,Z̃~ l !!SDetH~12ZUZ̃!21@ZU~12Z̃ZU!21#BB~ l M

out,l M
out!

3@ Z̃U†~12ZZ̃U†!21#BB~ l N
in ,l N

in!,

by an elementary calculation. HereZU denotes the supermatrix fieldZ evolved forward in time by
one action of the deterministic scattering operatorU1, i.e., ZU5U1ZU1

† or, in more explicit
notation,

~U1ZU1
†!st~ l ,l 8!5U1~ l ,l 9!Zst~ l 9!Ū1~ l 8,l 9!.

Similarly, Z̃U† is the supermatrix fieldZ̃ evolved backward in time by one step:Z̃U†5U1
†Z̃U1 .

The subscriptH on SDet indicates that the superdeterminant runs over both superspace a
Hilbert space of wave functions supported on links.

In summary, we have shown that the average conductance pertaining to two interior co
M andN can be computed as a two-point function^gMN&5^O (M )Õ (N)& of operators

O ~M !5@ZU~12Z̃ZU!21#~ l M
out,l M

out!,

Õ ~N!5@ Z̃U†~12ZZ̃U†!21#~ l N
in ,l N

in!,

in a lattice field theory,

^d&5E )
l
D~Z~ l !,Z̃~ l !!dexp2Slatt@Z,Z̃#,

with lattice action

Slatt@Z,Z̃#5 ln SDetH~12ZUZ̃!2 ln SDetH~12ZZ̃!. ~6!

The second term inSlatt originates from the measureDm(Z,Z̃)5D(Z,Z̃)SDet(12ZZ̃). Note that
the functional integral for the two-point function̂O (M )Õ (N)& is regularized by the boundar
condition ~5!.

What we have done is anexact rewritingof the original problem. It might superficially look
as though we have made the problem more complicated by transforming from U(1) phas
grals to an integral over supermatrix fieldsZ andZ̃, but this is not so. The point is that while th
U(1) phasesU0( l ) fluctuate independently, the dominant contributions to the integral over t
supermatrix field come fromslowly varyingfield configurations. The latter property is best seen
combining terms to rewrite the lattice action as follows:
J. Math. Phys., Vol. 38, No. 4, April 1997
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Slatt@Z,Z̃#5 ln SDetH~12~12Z̃Z!21Z̃~ZU2Z!!.

The right-hand side vanishes for constant fields (ZU5Z) and is small for slowly varying ones
This will allow us to take a continuum limit and describe the low energy or long wave le
physics of the Chalker–Coddington network model by a continuum field theory. In view o~2!
and~6!, it should not come as a surprise that this field theory will turn out to be Efetov’s nonli
s model with unitary symmetry, augmented by Pruisken’s topological term.

The formula we have derived for̂gMN& illustrates how the transport coefficients of th
network model can be expressed as correlations functions of a supersymmetric lattice field
In the remainder of the paper we will not discuss the specific correlator^gMN& any further, but will
concentrate on the general structure of the theory.

V. GLOBAL SYMMETRY UNDER GL(2 z2)

To get ready for taking the continuum limit, we will now elucidate the symmetries of
lattice field theory. We are going to show that it is invariant under global transformations,

Z~ l !°g•Z~ l !5~AZ~ l !1B!~CZ~ l !1D !21,

Z̃~ l !°g•Z̃~ l !5~C1DZ̃~ l !!~A1BZ̃~ l !!21,

for

g5S A B

C DD PGL~2u2!.

The integration measureD(Z( l ),Z̃( l )) has this invarianceby definition. To see that the lattice
action ~6! is invariant, we first transform the factor SDet(12Z( l )Z̃( l )) for a single link l , tem-
porarily dropping the argumentl for notational simplicity:

SDet~12~g•Z!~g•Z̃!!5SDet~12~AZ1B!~CZ1D !21~C1DZ̃!~A1BZ̃!21!

5SDet~12~Z1A21B!~11D21CZ!21~ Z̃1D21C!~11A21BZ̃!21!.

This expression is further processed by settingA21B5:X andD21C5:X̃ and using the identity

12~Z1X!~11X̃Z!21~ Z̃1X̃!~11XZ̃!215~12XX̃!~11ZX̃!21~12ZZ̃!~11XZ̃!21,

which follows from elementary algebra. We then get

SDet~12~g•Z!~g•Z̃!!5SDet~~12XX̃!~11ZX̃!21~12ZZ̃!~11XZ̃!21!.

The ‘‘dynamical’’ factor SDetH(12ZUZ̃)
21 is transformed in an identical fashion. Becau

the transformation is global andU1 acts as the identity in superspace, we have

~g•Z!U5U1~g•Z!U1
215g•~U1ZU1

21!5g•ZU ,

i.e., the actions ofg andU1 commute. We thus obtain

SDetH~12~g•Z!U~g•Z!!215SDetH~12~g•ZU!~g•Z̃!!21

5SDetH~~12XX̃!~11ZUX̃!21~12ZUZ̃!~11XZ̃!21!.

By combining factors and using the multiplicativity of the superdeterminant, we arrive at
J. Math. Phys., Vol. 38, No. 4, April 1997
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Slatt@g•Z,g•Z̃#5Slatt@Z,Z̃#2 lnSDetH~11ZX̃!211 ln SDetH~11ZUX̃!21.

The last two terms on the right-hand side cancel each other by

SDetH~11ZUX̃!5SDetH~11U1ZU1
21X̃!5SDetH~11ZX̃!,

sinceX̃ is constant on links and therefore commutes withU1 ~i.e.,U1
21X̃U15X̃). This establishes

the global invarianceSlatt@g•Z,g•Z̃#5Slatt@Z,Z̃#.
The global GL(2u2) symmetry ofSlatt is broken by the boundary condition~5!, of course.

Such a symmetry breaking is needed for the mathematical consistency of the formulation
the integral over theq50, or zero momentum, mode of the noncompact bosonic sector w
otherwise be divergent.

In Sec. IV we saw that the supersymmetric reformulation of the Chalker–Coddington m
is defined over the same field space as Pruisken’s model. What we have just learned is th
models not only share the field space, but also have thesame internal symmetries. This is already
a strong indication of their equivalence at the critical pointp51/2, resp.sxy

(0)51/2.

VI. REFORMULATION AS A VERTEX MODEL

Further analysis is facilitated by the observation that the ‘‘Boltzmann weight’’ of the la
field theory,

W@Z,Z̃#5SDetH~12Z̃ZU!21SDetH~12Z̃Z!,

factors to a large extent. This factorization is seen as follows. Consider the expre
Z̃( l 9)U1( l 9,l 8)Z( l 8)U1

21( l 8,l ) and takel to be the linkl5D, say, emanating in the downwar
direction from the node shown in Fig. 3~a!. The matrix elementU1

21( l 8,D) is nonzero only if
l 8 is one of the two links,l 85L or l 85R in the figure, that flow into the same node. In either ca
the matrix elementU1( l 9,l 8) leads to the final statel 9 being one of only two links, namely
l 95 l5D ~the one we started from!, or else l 95U, the link emanating from the node in th
upward direction. Similarly, if the initial state isl5U, the final state isl 95U or l 95D. These
statements remain true~mutatis mutandi! if the node of Fig. 3~a! is replaced by any other node o
the network.~Half of the nodes of the network are obviously equivalent to the one considered
other half of them has links emanating in the horizontal direction and nodes flowing into it i
vertical direction; see Fig. 3~b!. These nodes become equivalent to the one of Fig. 3~a! after a
rotation by ninety degrees.!

FIG. 3. The two types of elementary vertex of the Chalker–Coddington model. Type~b! is obtained from type~a! by a
rotation throughp/2.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Thus, Z̃U1ZU1
21 viewed as an operator in the space of states supported on links, con

only pairs of links, namely the two links that emanate from one and the same node. This m
that the Boltzmann weightW is a product of factors, one for each node:

W@Z,Z̃#5 )
nodesn

R~ Z̃~Un!,Z̃~Dn!,Z~Ln!,Z~Rn!!, ~7!

where the assignment of link labelsU,D,L,R is defined by Fig. 3. From the definition ofU1 in
Sec. III, the weight for a single node works out to be

R~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!

5SDet~@12Z̃~U !Z~U !#@12Z̃~D !Z~D !#@12Z̃~L !Z~L !#@12Z̃~R!Z~R!# !1/2

3SDet21S 12pZ̃~U !Z~R!2~12p!Z̃~U !Z~L ! Ap~12p!Z̃~U !@Z~L !2Z~R!#

Ap~12p!Z̃~D !@Z~L !2Z~R!# 12pZ̃~D !Z~L !2~12p!Z̃~D !Z~R!
D .
~8!

A model of the kind~7! is called avertex modelin statistical mechanics, andR is called the
R-matrix. The global symmetries of this R-matrix will be investigated in Sec. VIII. In Sec. X
will show how to pass from the integration over the fieldsZ,Z̃ to a summation over superspi
degrees of freedom.

VII. CONTINUUM LIMIT

For values of the parameterp close to 1/2, where the Chalker–Coddington model underg
a quantum percolation transition, the correlation~or localization! length is very large, and we
expect the lattice functional integral to be dominated by fields that vary slowly. Our goal in
section is to extract from~6! the continuum field theory governing these slowly varying mode

Recall the following facts:~i! Pruisken’s model and the supersymmetric~SUSY! reformula-
tion of the Chalker–Coddington model are defined over the very same complex field s
G/H5GL(2u2)/GL(1u1)3GL(1u1). ~ii ! Both the action functional of Pruisken’s model,Scont,
and the lattice action of the SUSY reformulated Chalker–Coddington model,Slatt , are invariant
under global GL(2u2) transformations.~iii ! The metric tensor of the field spaceG/H,

ĝ5STr~12ZZ̃!21dZ~12Z̃Z!21dZ̃52STr~dQ!2/8,

is invariant under GL(2u2) @i.e., underQ°gQg21 with gPGL(2u2)#, and this is theonly
second-rank supersymmetric tensor on the homogeneous spaceG/H that has this invariance
When combined with a standard field theoretic power counting argument, these facts lead
conclusion that the continuum limit of the lattice actionSlatt must be a linear combination of th
four termsLmn (m,n5x,y) in ~1!, which are induced fromĝ.

A further constraint comes from the spatial symmetries. At large scales~i.e., in the infrared
limit !, where details of the network structure are washed out, the Chalker–Coddington
acquires an invariance under rotations in space. From the four termsLmn one can form only two
linear combinations that are rotationally invariant. These are precisely the ones that figure
expression~1! for Pruisken’s Lagrangian~Pruiskenet al.10 arrived at them by essentially the sam
argument!, namelyLxx1Lyy andLxy2Lyx . We thus conclude that the continuum limit of th
SUSY reformulated Chalker–Coddington model at criticality (p51/2) is Pruisken’s model at the
critical topological couplingu5p52psxy

(0) , and some as yet unknown couplingsxx
(0) :
J. Math. Phys., Vol. 38, No. 4, April 1997
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Slatt@smooth fields#5Scontus
xx
~0!5?,s

xy
~0!51/2.

The only thing that remains to be done, then, is to work out the numerical value of the cou
constantsxx

(0) . Although it is not too difficult to do this calculation for a whole range of values
the parameterp, we restrict ourselves to the critical pointp51/2, for simplicity. In the following
subsection we will show that

sxx
~0!51/4 ~ for p51/2!.

The small value ofsxx
(0)51/4 means that the theory is atstrong coupling. ~The weak-coupling

limit, where Pruisken’s derivation is valid, issxx
(0)@1.)The superscript (0) alerts us to the fact th

this is a ‘‘bare’’ value, obtained by a naive continuum limit, i.e. without taking into acco
possible renormalizations coming from modes with short wave lengths.

In the following we pay no attention to the boundary conditions and assume the network
infinitely extended.

A. The coupling constant sxx
(0)

To show thatsxx
(0)51/4 for the Chalker–Coddington model atp51/2, we first expandSlatt to

quadratic order inZ andZ̃ and then take the long wave length limit. The quadratic part ofSlatt is
conveniently obtained by expanding the expression~10! for the R-matrix:

22 lnR~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!5STr~ Z̃~U !@Z~U !2Z~L !#1@ Z̃~R!2Z̃~U !#Z~R!1Z̃~D !

3@Z~D !2Z~R!#1@ Z̃~L !2Z̃~D !#Z~L !!1O ~Z2Z̃2!.

Now recall the meaning of the labelsU,D,L,R defined by Fig. 3~a!, and let (nx ,ny)PZ2 be the
Cartesian coordinates of the node in that figure. Then, ifa is the lattice constant of the network

Z~L !5Z~anx2a/2,any!, Z~D !5Z~anx ,any2a/2!,

Z~R!5Z~anx1a/2,any!, Z~U !5Z~anx ,any1a/2!.

Similar expressions hold for the other type of node, shown in Fig. 3~b! ~rotate byp/2). We sum
lnR over all nodes of the lattice and go to momentum space with wave vectork5(kx ,ky). The
quadratic partS2 of Slatt is then obtained as

S25
1

2(k tkSTrZ̃~k!Z~2k!,

where

tk542ei ~kx1ky!a/22e2 i ~kx1ky!a/22ei ~kx2ky!a/22e2 i ~kx2ky!a/2.

On taking the continuum limita→0, and replacing the sum over momenta by an integral, we

S25
1

4E d2k

~2p!2
k2 STr Z̃~k!Z~2k!.

Matching this expression to the quadratic part ofScont, Eq. ~1!, givessxx
(0)51/4, as was claimed

above.
J. Math. Phys., Vol. 38, No. 4, April 1997
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B. The coupling constant sxy
(0)

The critical points of the Chalker–Coddington model and Pruisken’s model are atp51/2 and
sxy
(0)51/2 ~mod 1!, respectively. Therefore, as was argued earlier, there cannot be any doub

the continuum limit of the lattice action~6! at p51/2 is Pruisken’s action with topologica
coupling sxy

(0)51/2. Nevertheless, it is both reassuring and instructive to check this by d
calculation, which is what we do next.

In Sec. VII A the value ofsxx
(0) was found by looking at the quadratic part of the action. T

topological couplingsxy
(0) , by its very nature, evades any such attempt at perturbative calcula

To extract it from~6! a different, nonperturbative scheme must be used. A direct approach w
be to perform a gradient expansion around a topologically nontrivial background. For reaso
will be explained at the end of Sec. VIII, this is not easy to do. Here we will follow a differ
procedure, which is to evaluateSlatt on the lattice discretizationZ(m) of some smooth field con
figuration with topological chargemÞ 0.

Given the relation ImScont@Z
(m),Z̃(m)#52pmsxy

(0) and the requirementScont5Slatt for smooth
fields, the topological coupling is determined by

Im Slatt@Z
~m!,Z̃~m!#52pmsxy

~0! .

To calculatesxy
(0) from this equation, it is easiest to consider fields that have topological ch

m51 and are of the special form

Z~1!5S 0 0

0 f D , Z̃~1!5S 0 0

0 2 f̄
D .

Here the componentsZBB , ZBF , andZFB , which are topologically trivial, have been set to ze
and onlyZFF has been retained. With this choice, the formula forsxy

(0) reduces to

sxy
~0!5

1

2p
Im Slatt@Z

~1!,Z̃~1!#

52
1

2p
Im ln DetH~11 f̄ U1fU1

21!

52
1

2p (
nodes n

Im ln RFF~ f̄ ~Un!, f̄ ~Dn!, f ~Ln!, f ~Rn!!,

whereRFF is the R-matrix in the FF sector:

RFF~ f̄ ~Un!, f̄ ~Dn!, f ~Ln!, f ~Rn!!5DetS 11 f̄ ~U !@ f ~L !1 f ~R!#/2 f̄ ~U !@ f ~L !2 f ~R!#/2

f̄ ~D !@ f ~L !2 f ~R!#/2 11 f̄ ~D !@ f ~L !1 f ~R!#/2
D

511
1

2
@ f̄ ~U !1 f̄ ~D !#@ f ~L !1 f ~R!#1 f̄ ~U ! f̄ ~D ! f ~L ! f ~R!.

Now consider in the 2d plane with coordinatesx andy the smooth field configuration

f ~x,y!5S x2y

A2
1 i

x1y

A1
2z0D 21

~A6PR!,

which interpolates betweenf5` ~corresponding to the south pole on the two-sphereMF5S2) at
J. Math. Phys., Vol. 38, No. 4, April 1997
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x1 iy5
12 i

2
A2 Re z01

11 i

2
A1 Im z0 , ~9!

and f50 ~the north pole on S2) at infinity, and has topological chargem51, as can easily be
checked.~Note that f is not a one-instanton configuration, unlessA25A1 .) The parameters
A6 set the size inx6y of the region where the topological densityL top for f is appreciably
different from zero.

For this choice off , we now work out the R-matrix at the node in Fig. 3~a! with coordinates
(nx ,ny). Settinga65a/(2A6), andz5(nx2ny)a/A21 i (nx1ny)a/A12z0 , we have

f̄ ~U !5~ z̄2a22 ia1!21, f̄ ~D !5~ z̄1a21 ia1!21,

f ~L !5~z2a22 ia1!21, f ~R!5~z1a21 ia1!21.

The resulting value for the R-matrix is

RFF511
2uzu211

@z22~a21 ia1!2#@ z̄22~a21 ia1!2#
.

In order for the field configuration to be smooth on the lattice, the parametersa6 must be small.
This allows us to Taylor expand with respect to one of these, saya1 . Taking also the imaginary
part of the logarithm, we obtain

Im ln RFF54a1a2r~11r!21 Re~z22a2
2 !211O ~a1

2 !,

where 11r5RFFua150 .
In the next step we sum the contributions from all nodes (nx1k,ny1k) with kPZ. The

smallness ofa1!1 allows us to convert the expression for( Im lnRFF into an integral. De-
composingz into real and imaginary parts byz5j1 ih,

j52a2~nx2ny!2Re z0 , h52a1~nx1ny!2Im z0 ,

we arrive at

(
k

Im ln RFFu~nx1k,ny1k! ——→
a1→0

a2E
R
dh

r

11r
Re~~j1 ih!22a2

2 !21.

This integral is easily evaluated by closing the contour and applying the method of residue
finds

a2E
R
dh

r

11r
Re~~j1 ih!22a2

2 !215H 2p, if uju,a2 ;

0, otherwise.

What is the geometric interpretation of this result? Let us agree that the word ‘‘vertex’’
means a node taken together with its four links, severed at half the distance to neighboring
The set of vertices with node coordinates (nx1k,ny1k) (kPZ) sweep out a diagonal strip of th
2d network. The above result means that(k Im lnRFF vanishes if the center~9! of the topologi-
cal excitation lies outside the diagonal strip swept out by the vertices (nx1k,ny1k) ~with variable
k P Z), and equals2p when it lies inside.

The above calculation applies to the type of node shown in Fig. 3~a!, which may be charac-
terized by the conditionnx1nyP2Z, say. Doing the calculation for the other type of no
J. Math. Phys., Vol. 38, No. 4, April 1997
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@nx1ny P 2Z11, or Fig. 3~b!# gives the same result except for a change of sign2p→p. Now
observe that the diagonal strips swept out by the vertices (n1k,2n1k) and (n1k,2n111k)
(k,n P Z) cover the plane completely without overlapping. Therefore,

exp i Im Slatt@Z
~1!,Z̃~1!#5exp (

all nodes
2 i Im ln RFF5e6 ip521,

independent of the location of the topological singularity. Bysxy
(0)5(2p)21 Im Slatt@Z

(1),Z̃(1)#,
this provessxy

(0)51/2 ~mod 1!.

C. Generalization to N channels

Lee and Chalker21 introduced a generalization of the network model that hastwo channels per
link. The one-step time evolution operator of that model,U (2), is again a product of factors
U (2)5U1

(2)U0
(2) . The second factor is diagonal on links and associates with each linkl a 232

matrix U0( l ) drawn at random from the unitary group in two-dimensional channel space, U(2).
The first factor describes the deterministic scattering at the nodes. Depending on the choic
for this factor, the two-channel model applies to a spin degenerate Landau level or electro
random magnetic field~the so-called random flux problem!.

In this subsection we consider anN-channel generalization of the one- and two-chan
network models, where random U(N) matrices are placed on the links. The one-step time ev
tion operator is writtenU (N)5U1

(N)U0
(N) . The two factors describe the deterministicN-channel

scattering at the nodes, and the random U(N) directed propagation along links, respectively.
The case ofN channels per link can be treated by a slight extension of our field theo

formalism. Such an extension is possible since the basic formula~4! was shown in Ref. 15 to
generalize from U(1) to U(N), as follows:

E
U~N!

dU exp~ c̄1s
i Ui jc 1s

j 1c̄2t
j Ū i jc2t

i !5E
Efetov

DmN~Z,Z̃!exp~ c̄1s
i Zstc2t

i 1c̄2t
j Z̃tsc1s

j !,

whereU[U0( l ), and the link labell was suppressed for clarity. The right-hand side differs fr
that of ~4! only by the channel indexi51,...,N attached toc,c̄, and the different form of the
weight function in the superintegration measure:

DmN~Z,Z̃!:5D~Z,Z̃!SDet~12ZZ̃!N.

Using the above generalization of~4!, we can reformulate theN-channel model as a supersym
metric lattice field theory with action

Slatt
~N!@Z,Z̃#5 ln SDetH^CN~12U1

~N!ZU1
~N!†Z̃!2N ln SDetH~12ZZ̃!.

The derivation exactly parallels that of Sec. IV. The first superdeterminant runs over the
product of superspace with link space (H) and channel space (CN).

If we choose the deterministic scatteringU1
(N) to be of the special formU1

(N)5U1
(N51)

^1N ,
i.e. U1

(N) acts as the identity in channel space,Slatt
(N) is simply a multiple of the action of the

one-channel model:

Slatt
~N!@Z,Z̃#5N3Slatt

~N51!@Z,Z̃#.

Therefore, from Secs. VII A and VII B the coupling constants of the corresponding contin
field theory are
J. Math. Phys., Vol. 38, No. 4, April 1997
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sxx
~0!5N/4, sxy

~0!5N/2.

The choiceU1
(N)5U1

(N51)
^1N for N52 is appropriate21 for the spin degenerate Landau level

the center of the band, and for the random flux problem at the symmetric point. Be
Pruisken’s model atsxy

(0)52/2 ~mod 1!50 is known to be a massive theory, our result forsxy
(0)

confirms the proposition of Ref. 21 that neither of these systems is critical. Rather, they ar
~Haldane type! massive phase,4 corresponding to localization of all states.

VIII. SYMMETRIES OF THE R-MATRIX

The basic building block of the SUSY reformulated Chalker–Coddington model is
R-matrix. For the caseN51, which is to be analysed here in more detail, this building block w
given in ~8!. To gain a deeper understanding of the model and possible variations thereof, w
now going to investigate the symmetries of that R-matrix. Most of the effort will be expende
rewriting the expression~8! in a different form, so as to make those symmetries more evide

We start by undoing thec,c̄ integration to write the R-matrix as

R5)
I ,O

SDet~12Z̃~O!Z~O!!1/2 SDet~12Z̃~ I !Z~ I !!1/2E D~c,c̄ !exp~2c̄1s~O!c1s~O!

1c̄1s~O!U1~O,I !Zst~ I !c2t~ I !2c̄2t~ I !c2t~ I !1c̄2t~ I !U1
21~ I ,O!Z̃ts~O!c1s~O!!.

Here we have introduced the labelsI P $ i1,i2%:5$L,R% andO P $o1,o2%:5$U,D%. The notation
is motivated by observing that, according to the direction of motion indicated by the arrows in
3, the linksL andR are incomingstates for the scattering at the nodes, while the linksU and
D areoutgoingstates.

To proceed, we need to recall briefly various mathematical structures that were develo
detail in the appendices of Refs. 15 and 22. First of all, we introduce Fock operatorsc and c̄,
which are quantum counterparts of the classical variablesc and c̄. Let b6

† ,b6 and f6
† , f6 be

canonical boson and fermion creation and annihilation operators, and set

c1F5 f1 , c1B5b1 , c2F5 f2
† , c2B5b2

† ,

c̄1F5 f1
† , c̄1B5b1

† , c̄2F5 f2 , c̄2B52b2 .

The operatorsc and c̄ are canonical pairs, with graded~or super! commutation relations

@cX ,c̄Y#:5cXc̄Y2~21! uXuuYuc̄YcX5dXY ,

where uXu50 if X56B and uXu51 if X56F. They act in a Bose–Fermi Fock space w
vacuum

c1Bu0&5c1Fu0&5 c̄2Bu0&5 c̄2Fu0&50. ~10!

The graded commutation relations are invariant under canonical transforma
c̄X°Tgc̄XTg

215 c̄YgYX andcX°TgcXTg
215(g21)XYcY , where

g5S A B

C DD PGL~2u2!°Tg :5exp~ c̄X~ ln g!XYcY!

defines a representation of GL(2u2) on Fock space.
Consider now the subspace,V, selected by the conditionc̄XcX50 ~summation convention!!

or, equivalently, by
J. Math. Phys., Vol. 38, No. 4, April 1997
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b1
† b11 f1

† f15b2
† b21 f2

† f2 .

The resulting constraint on the Bose–Fermi occupation numbers isnb11nf15nb21nf2 . By
using this equation to eliminatenb2 , say, we can characterize the states ofV by a triplet of
integers (nb1 ,nf1 ,nf2), where nf1 and nf2 take values from the set$0,1%, and nb1

50,1,2,... ,̀ .
Let PV be the operator that projects Fock space onto the subspaceV. As was shown in Ref.

15, this projector has a resolution,

PV5E D~Z,Z̃!uZ&^Zu,

by generalized coherent states,

uZ&5exp~ c̄1sZstc2t!u0&SDet~12ZZ̃!1/2,

^Zu5SDet~12ZZ̃!1/2^0uexp~2 c̄2tZ̃tsc1s!.

By simple manipulations exploiting the standard properties of coherent states, one can
the following equality:

)
I

SDet~12Z̃~ I !Z~ I !!1/23exp~ c̄1s~O!U1~O,I !Zst~ I !c2t~ I !!

5^0uexp~ c̄1s~om!U1~om,in!c1s~n!2 c̄2t~n!c2t~ in!!uZ~ i1! ^Z~ i2!&

5^0uexp~ c̄1s~om!c1s~m!2 c̄2t~n!c2t~ in!!

3exp~ c̄1s~m!~ ln Û1!~m,n!c1s~n!!uZ~ i1! ^Z~ i2!&.

Here m,n P $1,2%, and Û1 is defined by identifying initial and final channels, i.e.,Û1(m,n)
5 U1(om,in). Similarly,

)
O

SDet~12Z̃~O!Z~O!!1/23exp~ c̄2t~ I !U1
21~ I ,O!Z̃ts~O!c1s~O!!

5^Z~o1! ^Z~o2!uexp~ c̄2t~ in!U1
21~ in,om!c2t~m!1 c̄1s~m!c1s~om!!u0&

5^Z~o1! ^Z~o2!uexp~ c̄2t~n!~ lnÛ1!~n,m!c2t~m!!

3exp~ c̄1s~m!c1s~om!1c̄2t~ in!c2t~n!!u0&.

The variablesc,c̄ have now served their purpose and we integrate them out, by using the cl
relation for Bose–Fermi coherent states:

id5E D~c,c̄ !exp~2c̄1s~m!c1s~m!2c̄2t~n!c2t~n!!exp~ c̄1s~m!c1s~m!

1c̄2t~n!c2t~n!!u0&^0uexp~ c̄1s~m!c1s~m!2 c̄2t~n!c2t~n!!.

All this results in the following formula for the R-matrix:

R~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!5^Z~U ! ^Z~D !uR̂uZ~L ! ^Z~R!&,

where the operatorR̂ is expressed by
J. Math. Phys., Vol. 38, No. 4, April 1997
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R̂5exp~ c̄X~m!~ lnÛ1!~m,n!cX~n!!. ~11!

The advantage of this reformulation is that the invariance ofR̂ under GL(2u2) transformations,

c̄X~m!°Tgc̄X~m!Tg
215 c̄Y~m!gYX ,

cX~m!°TgcX~m!Tg
215~g21!XYcY~m!,

is obvious whereas previously, in Sec. VI, we had to work quite hard to establish the g
GL(2u2) invariance.

Although R̂ commutes withTg , its matrix elements arenot invariant:

R~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!ÞR~g•Z̃~U !,g•Z̃~D !,g•Z~L !,g•Z~R!!.

It is worth spending a little effort to explain how that comes about. As will be seen, the reas
that, since the Fock space vacuum is not a scalar with respect toH5GL(1u1)3GL(1u1), the
coherent states do not transform as functions onG/H, but rather as sections of an associated l
bundle, see Ref. 13 and references therein. In other words,

TguZ&Þug•Z&.

The correct transformation law is derived as follows. We write the coherent state
uZ&5Ts(Z,Z̃)u0&, where

s~Z,Z̃!5S ~12ZZ̃!21/2 Z~12Z̃Z!21/2

Z̃~12ZZ̃!21/2 ~12Z̃Z!21/2 D 5S 1 Z

0 1D S ~12ZZ̃!11/2 0

0 ~12Z̃Z!21/2D S 1 0

Z̃ 1D .
We then define anH-valued functionh(g;Z,Z̃) by

gs~Z,Z̃!5s~g•Z,g•Z̃!h~g;Z,Z̃!.

The explicit form of h(g;Z,Z̃) can be found in Appendix B of Ref. 13. From~10! and the
definition Tg5exp(c̄X(ln g)XYcY), one easily sees that the vacuum carries a one-dimensional
resentationm of H:

Thu0&5u0&m~h! ~ for hPH !, m~diag~A,D !!5SDetD21.

Therefore, the coherent states transform as

TguZ&5TgTs~Z,Z̃!u0&5Ts~g•Z,g• Z̃!Th~g;Z,Z̃!u0&5ug•Z&m~h~g;Z,Z̃!!.

As a result, the R-matrix obeys the following transformation law:

R~g•Z̃~o1!,g•Z̃~o2!,g•Z~ i1!,g•Z~ i2!!

5R~ Z̃~o1!,Z̃~o2!,Z~ i1!,Z~ i2!! )
l51,2

m~h~g;Z~ol!,Z̃~ol!!!

3 )
n51,2

m~h~g;Z~ in!,Z̃~ in!!!21.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Because each link is incoming with respect to one node, and outgoing with respect to anoth
multipliers m(h(g;Z,Z̃)) cancel when all R-matrices are multiplied together, so that the gl
GL(2u2) invariance is recovered.

The transformation law for the R-matrix explains why a direct gradient expansion to ex
sxy
(0) from Slatt is difficult. Such an expansion locally produces terms such as

STr~12Z̃Z!21Z̃]xZ~12Z̃Z!21Z̃]yZ,

for example, which aresingularat ZFF5` ~the south pole onMF5S2). When all of these terms
are correctly summed over the entire network, they cancel, as is guaranteed by the
GL(2u2) invariance, which permits us to rotate the south pole into any other point on the
sphere S2. However, the cancellation really does take place onlyafter summation of terms. By the
multiplier-corrected transformation law of the R-matrix, singular terms remain locally, making
extraction of the topological coupling difficult. This, then, is the reason why a gradient expa
was not attempted in Sec. VII B.

IX. ANISOTROPIC LIMIT

We have presented an analytical method for dealing with the Chalker–Coddington mo
its original isotropic formulation, by mapping it on a lattice equivalent of Pruisken’s nonlin
s model. In this section we will review another way of arriving at Pruisken’s model, a rep
version of which was first published by D. H. Lee. Following Ref. 4 we now take for our sta
point theanisotropic limit of the Chalker–Coddington model, and replace the unitary oper
U5U1U0 by the HamiltonianH for an array of chiral modesn51,2,..., with velocityv and an
alternating direction of propagation:

H5 R dx(
n,n8

Cn
†~x!@dnn8~21!niv]x1Vnn8~x!#Cn8~x!.

The functionsVnn8(x)5V̄n8n(x) are uncorrelated Gaussian random variables with zero mean
variance,

^Vnn8~x!V̄nn8~x8!&52~u0dnn81u1dn,n8111u1dn,n821!d~x2x8!.

The symbolr means that we are using periodic boundary conditions inx.
To prepare the treatment of the general case, we shall first consider the case of a singl

moden. The supersymmetric generating functional for the retarded and advanced Green’s
tions ofH is set up in the usual way, see Sec. IV. Ensemble averaging over the random po
V(x)5Vnn(x) leads to the functional integral

Z5E D~c,c̄ !exp R dx~ c̄~Lv]x2«!c2u0~ c̄Lc!2!,

where« is a positive infinitesimal. As before,cX(x) is a super ‘‘spinor’’ field with four compo-
nentsX51B ~retarded Boson!, X51F ~retarded Fermion!, X52B ~advanced Boson!, and
X52F ~advanced Fermion!. The notation meansc̄Lc5c̄1sc1s2c̄2tc2t . If the energy in the
retarded and advanced sectors is different,v5E12E2Þ0, we need to add a termivc̄c to the
Lagrangian. To probe this field theory more generally, we may couple it to an external
Abelian gauge fieldA(x)PLie(GL(2u2)) and consider

ZDirac
u @A#:5E D~c,c̄ !exp R dx~ c̄Lv~]x1A!c2u~ c̄Lc!2!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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We have temporarily setu5u0 for notational simplicity. The special coupling to frequency
retrieved by puttingA5( iv2«)L/v, independent ofx. Note that the generating functiona
ZDirac

u @A# is invariant under local gauge transformations,

ZDirac
u @A#5ZDirac

u @hA#, hA5hAh211h]xh
21,

whereh(x)PGL(2u2) acts on the spinor field byc°hc and c̄L°c̄Lh21.
It turns out that one can write down another 011-dimensional field theory that has the ve

same local gauge invariance. The field of this theory is the supermatrixQ5gLg21, which was
defined in Sec. II and transforms asQ°hQh21. The generating functional is

ZWZ@A#:5E DQexp R dx STr
L

2
g21~]x1A!g.

Clearly, this satisfiesZWZ@A#5ZWZ@
hA#. The linear derivative term in the action is of th

Wess–Zumino type, i.e., it cannot be expressed in a globally nonsingular way in terms ofQ, and
is often called a Berry phase. The theory is well-defined because the ambiguity under
translationsg°ghR @hRLhR

215L or, equivalently,hR(x)PGL(1u1)3GL(1u1)# gives rise to a
factor

exp R dx STr
L

2
hR

21]xhR5exp R dx]x STr
L

2
ln hR5exp 2p im51,

which is unobservable in the functional integral.~For more details see Sec. 3.4 of Ref. 13.!
The local gauge invariance shared byZDirac

u @A# andZWZ@A# suggests the existence of som
relation between these theories. In fact, the following statement is true:

lim
u→`

ZDirac
u @A#5ZWZ@A#. ~12!

This identity can be viewed as a 011-dimensional analog of non-Abelian bosonization in 111
dimensions and, sinceA couples tovcc̄L andgLg21/25Q/2 in the respective cases, amounts
the ‘‘bosonization rule,’’

vcc̄L ——→
u→`

Q/2.

We now briefly sketch the proof of the non-Abelian bosonization formula~12!. By the local
gauge invariance of both theories, it is sufficient to prove the equality for anx-independent gauge
field A. Moreover,A may be taken to be a diagonal matrix. In this special case, it is easy to a
a method that was described at length in Ref. 22 and works as follows. As a first step
identifiesZDirac

u @A# as the coherent state path integral of a supersymmetric Hubbard Hamilt
for bosons and fermions. Then, one takes advantage of the limitu→`, which enforces a Hubbard
constraint reducing the~low energy! degrees of freedom to that of a single superspin. And fina
one sets up the coherent state path integral for the superspin Hamiltonian. The latter path
turns out to beZWZ@A#, which completes the proof.

This proof, although straightforward, has the disadvantage of being somewhat indire
more direct procedure is to decouple the interaction term (c̄Lc)2 by introducing a Hubbard–
Stratonovitch fieldQ coupling tocc̄L and then to integrate outc andc̄. The effective action for
Q is

S@Q#5 R dx STrS 2
u

4v2
Q21 lnS ]x1A1

uQ

v2 D D .
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The next step is to simplify theQ field functional integral by means of the saddle-point appro
mation, as a result of whichQ gets restricted to the nonlinear spaceQ5gLg21. This step, while
only approximate in general, here becomesexactin the limit u→`. @What makes this possible i
the stationarity of the average density of states ofv i ]x1V(x).] By expanding
ln(Lg21(]x1A)g1u/v2) to linear order ing21(]x1A)g, one obtains the action of the Wess
Zumino functionalZWZ@A#. Higher orders are suppressed by powers ofv2/(Lxu), with Lx the
system size.

Let us finally return to the case of many counterpropagating chiral modes that are coup
hopping matrix elements between neighboring modes, with varianceu1 . The Gaussian random
hopping gives rise to an additional term in the Lagrangian,

L°L12u1(
n

~ c̄nLcn11!~ c̄n11Lcn!5L12u1(
n

STr~cnc̄nL!~cn11c̄n11L!.

By the bosonization rulevcc̄L→Q/2 for u0→`, the additional term turns into
(u1/2v

2)(nSTr(QnQn11). The condition of validity of this step isu0@u1 . As a result we obtain
theQ field action,

S@Q#5 R dx(
n

STrS ~21!n
L

2
gn

21]xgn1
u1
2v2

QnQn11D .
By a standard calculation23,22 this is the action of the coherent state path integral for a quan
superspin Hamiltonian,

Hspin5
2u1
v2 (

n
(
XY

~21! uYu11Sn
XYSn11

YX , ~13!

whereSXY5 c̄XcY , and the graded commutation relations of the Fock operatorsc,c̄ were given in
Sec. VIII. To reproduce the alternating sign of the Wess–Zumino term, we must alterna
definition of the Fock vacuum. On even sites (nP2Z) the relations~10! apply, whereas on odd
sites (nP2Z11) we have

c̄1Bu0&5 c̄1Fu0&5c2Bu0&5c2Fu0&50, ~14!

instead. The alternating vacuum plays the same role as the Ne´el state for ordinary spin system
and means that the superspin chain is ‘‘antiferromagnetic’’ in character.

The HamiltonianHspinwith translational invariant couplingJ52u1 /v
2.0 was shown in Ref.

13 to represent the low energy limit of the quantum Hamiltonian of Pruisken’s nonlinears model
at criticality. Thus, we finally conclude that the anisotropic Chalker–Coddington model
homogeneous~on average! inter-channel hopping is in the same universality class as Pruisk
model atsxy

(0)51/2. ~Clearly, this line of reasoning is much less direct than that presented fo
isotropic model in Secs. IV–VII.!

To conclude this section let me mention that the non-Abelian bosonization formula~12!
extends toN channels:

E DQ exp R dx NSTr
L

2
g21~]x1A!g

5 lim
u→`

E D~c,c̄ !exp R dx~ c̄nL~]x1A!cn2u~ c̄nLcn8!~ c̄n8Lcn!!.
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The strategy of the proof is the same as forN51. Using this formula we can easily reproduce t
N-channel resultsxy

(0)5N/2 of Sec. VII C. TheN-channel bosonization formula offers also a qui
way of analysing the zero-dimensional limit of the 2d chiral metal.22

X. MODIFIED NETWORK MODEL

The primary goal of all field theoretic analysis of the plateau-to-plateau transition in in
quantum Hall systems must be toidentify the fixed point theorythat describes this transition an
uncover theconformal structureit is expected to have. Recent attempts24 in this direction started
from the observation that Pruisken’s model or, rather, the closely related Dirac theory with ra
mass, random scalar potential and random gauge field, has a global GL(2u2) symmetry for the
case of one retarded and one advanced Green’s function.@A finite imaginary part of the energy
argument of the Green’s functions reduces this symmetry to GL(1u1)3GL(1u1). However, in
Secs. III and IV it is shown how such a symmetry breaking can be avoided by calculat
conductance between interior contacts of the network model.# This symmetry was then assumed
be promoted in the infrared to a Kac–Moody symmetry, which severely restricts the numb
possible candidates for the fixed point theory. Unfortunately, these attempts have not bee
cessful so far. What is needed as additional input to such considerations, which are purel
braic, is a firm understanding of the Hilbert space structure, or the representations involve
one of the aims of the present work to contribute to such an understanding.

Following up on unpublished work by Read, it was argued in Ref. 13 that the qua
Hamiltonian of the critical theory should be a superspin Hamiltonian of the type~13! acting on a
space of states built from alternating GL(2u2) modules,

. . . ^V^V* ^V^V* ^ . . . ,

whereV andV* are generated by the actiong°Tg5exp(c̄X(ln g)XYcY) of GL(2u2) on the vacua
~10! and~14!, respectively.~As follows from Sec. 4.4 of Ref. 13, the elements ofV andV* have
an interpretation as holomorphic and antiholomorphic sections of a line bundle associa
G→G/H by the one-dimensional representationm of H. This permits the construction of
nondegenerate pairing betweenV andV* , so that these spaces can be viewed as being du
each other, as suggested by our notation.! It is then natural to ask whether one might be able
construct anintegrablesuperspin Hamiltonian, offering the possibility of an analytical and ex
computation of critical properties. This question will now be addressed in the light of the re
of Secs. VIII and IX.

Recall the ‘‘functional’’ vertex model presentation~7!, ~8! of the Chalker–Coddington mode

Z5E D~Z,Z̃! )
nodesn

R~ Z̃~un!,Z̃~dn!,Z~ l n!,Z~r n!!,

R~ Z̃~1!,Z̃~2!,Z~3!,Z~4!!5^Z~1! ^Z~2!uR̂uZ~3! ^Z~4!&,

R̂5exp~ c̄X~m!~ ln Û1!~m,n!cX~n!!. ~15!

~Note the change in the notation for links from capital to small letters.! It is instructive to pass
from the integrationover fieldsZ,Z̃ to asummationover discrete degrees of freedom, as follow
Every link l emanates from one node, and ends at one node. Therefore, eachZ( l ) occurs once in
the ‘‘bra’’ and once in the ‘‘ket’’ of some R-matrix. Recall from Sec. VIII thatPV denotes the
projector from Bose–Fermi Fock space onto the GL(2u2) moduleV, where the elements ofV,
referred to as superspin states, are labeled by three quantum numbersnf6P$0,1% and
nb150,1,2...,̀ . On using the closure relation,
J. Math. Phys., Vol. 38, No. 4, April 1997
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E )
links l

D~Z~ l !,Z̃~ l !! ^ l uZ~ l !&^Z~ l !u5 ^ lPV~ l !,

the lattice functional integral overZ,Z̃ turns into a partition sum over superspin configuratio
$a( l )% @with a( l )PV( l )# of a vertex model defined over the tensor product space^ lV( l ):

Z5 (
$a~ l !%

~21!NF )
nodesn

Ra~un!a~dn!,a~ l n!a~r n! , Rab,gd5^a ^ buR̂ug ^ d&,

where (21)NF is a sign factor due to supersymmetry~the partition sum is a supertrace!, and
R̂:V( l )^V(r )→V(u)^V(d) is still given by~15!. Forp50 ~left turns only!, R̂ can be seen to be
the identity map, while forp51 ~right turns only! we haveR̂5P , where

P ua ^ b&5~21! uauubuub ^ a&

is the graded permutation operator.
Let me mention in passing that the presentation as a superspin partition sum can a

obtained from the network modeldirectly,25 without passing through the intermediate stage o
Z field formulation.

How is the model built from the vertexRab,gd related to the superspin Hamiltonian~13!?
GivenRab,gd we can set up the row-to-row transfer matrix,T, illustrated in Fig. 4~a!, by summing
over the superspin degrees of freedom that are situated on the horizontal links.~The meaning of
the arrows in the present context will become clear below.! The corresponding Hamiltonian
defined as the logarithm of the transfer matrix, is nonlocal in general. A local Hamiltonian re
on making the following modification of the isotropic network model. On nodes with coordin
(nx ,ny)PZ2 such thatnx1nyP2Z, the R-matrix is taken as it stands; but on the other half of
nodes (nx1nyP2Z11), we replace the left-right asymmetry parameterp by its complement
12p. ~At the level of the random network model, this is precisely what one does to arrive a
anisotropic limit of Sec. IX.! The row-to-row transfer matrix of the resultinganisotropicvertex
model has the property, forp50, of translating the system by one lattice unit@Fig. 4~b!#. By
differentiating the logarithm of this transfer matrix atp50, one gets a superspin Hamiltonian th
couples only nearest neighbors and is precisely the HamiltonianHspin of ~13!.

Hspin is not expected to be exactly solvable. However, one may ask whether it could be
so by slightly changing some parameters while keeping the general structure and symmet
same. To get some hint, we turn to the well-developed theory of integrable systems.26 There, the
integrability of a 1d quantum HamiltonianH is traced back to the existence of a transfer ma
T(u) that depends on a ‘‘spectral’’ parameteru in such a way thatT(u)T(v)5T(v)T(u) for all

FIG. 4. ~a! Illustration of the row-to-row transfer matrix of the supersymmetric vertex model associated with the
channel Chalker–Coddington model.~b! The transfer matrix of the anisotropic model atp50 translates the system by on
lattice unit.
J. Math. Phys., Vol. 38, No. 4, April 1997
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u,v, and H is the logarithmic derivative ofT(u) at some special pointu5u0 . A sufficient
condition for T(u) to form a commuting family is known to be the quantum Yang–Bax
equation for the R-matrix.

To my knowledge, most~if not all! of the integrable models discussed in the literature h
one characteristic feature in common: their commuting family of transfer matrices posse
‘‘classical’’ limit, where T becomes the identity. In contrast, for the row-to-row transfer ma
associated to the Chalker–Coddington model@Fig. 4~a!#, no such limit exists. The reason is simp
this. The R-matrixR̂:V^V→V^V in ~8! relates incoming channels on horizontal~or vertical!
links to outgoing channels on vertical~or horizontal! links. On the other hand, the transfer matr
T propagates the degrees of freedom from one row to the next. Therefore, to constru
row-to-row transfer matrix from the R-matrix, we must reinterpret some initial states as
states, and vice versa. This is done by noting that the space of linear mapsV→V is isomorphic to
the tensor productV^V* . In this way, one sees that in Fig. 4~a! vertical links with an arrow
pointing up carry the spaceV, whereas vertical links with an arrow pointing down carry the d
spaceV* . ~This, then, is the meaning of the arrows in that figure.! Hence, the row-to-row transfe
matrix of the SUSY reformulated Chalker–Coddington model is a map

T:••• ^V^V* ^V^ •••→••• ^V* ^V^V* ^ •••,

which connectsinequivalentspaces. Therefore,T cannot ever be the identity. This means that
Chalker–Coddington model lies outside the category of vertex models for which the
developed Yang–Baxter machinery applies. Thus it seems that there exists no known sys
way of deforming the Chalker–Coddington model to integrability and obtain an analytical
tion.

The above discussion, though being a falsification, also suggests a remedy. Given th
standard formalism of the theory of integrable systems requires the row-to-row transfer ma
be a map,

T:••• ^V^V* ^V^ •••→••• ^V^V* ^V^ •••, ~16!

FIG. 5. ~a! One-channel Chalker–Coddington model, modified so as to make the direction of motion invariant along
horizontal and vertical line.~b! The model of~a! modified further, by doubling the number of channels on the horizon
links.
J. Math. Phys., Vol. 38, No. 4, April 1997
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we can turn things around and modify the network model accordingly. Consider the ne
shown in Fig. 5~a!. As before, the electron follows the direction of motion dictated by the arro
It picks up a random U(1) phase while propagating along the links, and is scattered deter
tically at the nodes, just as for the original one-channel Chalker–Coddington model. The c
difference from Fig. 2 is that now the direction of motiondoes not alternate but is invariantalong
vertical and horizontal lines. An electron incident on a node either passes straight through i
probability p, say, or else is scattered to the right or left, as the case may be, with proba
12p. ~Note that such a modification of the scattering dynamics has no justification fro
microscopic picture of guiding center drift along equipotentials. However, since our aim is on
describe thecritical behavior, we should have a certain amount of freedom in the choic
model.!

By construction, the row-to-row transfer matrix of the supersymmetric vertex model as
ated with the network model of Fig. 5~a! is a map of the desired type~16!. One may now hope to
be able to deform and extend this transfer matrix to a one-parameter family of commuting tr
matrices. In somewhat more detail, this hope is based on the following facts. Consider th
superalgebraG of polynomial mapsuPC→gl(2,2) ~with u being the spectral parameter!. If
EAB are the canonical generators of gl(2,2), the classicalr -matrix r (u,v)
5 (u2v)21(ABEAB(21)uBuEBA gives rise to a co~super!commutatorG→G ^G in the usual
way,16 thereby turningG into a Lie bisuperalgebra. Quantization ofG leads to aYangian supe-
ralgebraY :5Y(gl(2,2)), which is aZ2-graded Hopf algebra deformation of the universal env
oping algebra of gl(2,2). LetD:Y→Y^Y be the comultiplication ofY , andDop5P +D its
opposite. According to general principles,27 there exists a formal object called the univers
R-matrixRPY^Y , which is determined by the intertwining relationDop(a)5RD(a)R21 and
has the expansion

ln R~u!5u21(
AB

~21! uBuEAB^EBA1O ~u23!.

An irreducible matrix representationr of Y yields an R-matrixRr(u)5(r ^ r)(R(u)) that is a
rational function ofu and solves the quantum Yang–Baxter equation.

When applying this formalism to our problem, we should beware of potential problems d
the infinite-dimensionalityof the spacesV andV* . Nevertheless, it does not seem unreasonabl
expect the existence of R-matrices

R~u!5~rV^ rV!~R~u!!:V^V→V^V,

R̃~u!5~rV^ rV* !~R~u!!:V^V*→V^V* .

I have been able to verify that this expectation is fulfilled in the case ofR(u), by explicit
construction. The existence ofR̃(u) remains an open question at the present time.~Help from
experts on quantum groups would be very much appreciated.! The latter case is more complicate
to treat because the decomposition of the tensor productV^V* into gl(2,2)-irreducible subspace
involves a continuous series of representations of gl(2,2)~see Sec. 5.2 of Ref. 13!, while in
V^V only a discrete series appears.

Suppose now that bothR(u) andR̃(u) exist, at least in some domain of the spectral param
u. Then, since the quantum Yang–Baxter equation is automatically fulfilled, we can bu
one-parameter family of commuting transfer matrices. The next question is: given the mo
tions we have made, is the physics of such a model still that of the plateau transition? S
obtaining an exact solution remains a far goal. It is therefore helpful that the mapping
Pruisken’s nonlinears model provides us with a quick way to get oriented in the enlar
landscape of modified network models. Consider the model of Fig. 5~a! with parameterp51/2.
Taking the continuum limit and computing the topological coupling in the same way as in
J. Math. Phys., Vol. 38, No. 4, April 1997
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VII B, one findssxy
(0)50 ~mod 1!. This means that the model doesnot lie in the quantum Hall

universality class, but is in a massive phase with a finite~albeit large! localization length and
exponentially decaying correlations.

This result could have been anticipated from the following heuristic argument. Imagine
rating the network into two independent subsystemsA andB, one consisting of the vertical line
and the other of the horizontal ones. Then couple the modes within each subsystem by
tunneling amplitudes. What you get in this way are two copies of Lee’s anisotropic limit o
Chalker–Coddington model. By the reasoning reviewed in Sec. IX, each of these is critical
the s model topological coupling constants beingsxy,A

(0) 5sxy,B
(0) 51/2. Now join the two sub-

systems to form the network model of Fig. 5~a!. From the meaning ofL top as a topologicaldensity,
it is reasonable to expect thatsxy

(0)5sxy,A
(0) 1sxy,B

(0) 5231/250 ~mod 1! for the coupled system, if
the fusion is done in such a way thatsxx

(0) for the coupled system is spatially homogeneous. T
the network model of Fig. 5~a! will be noncritical atp51/2. ~Its correlation functions at large
scales should be similar to those of the two-channel Chalker–Coddington model at the sym
point.! Since noncriticality is a generic property, this will remain so in a neighborhood of the p
p51/2.

In view of this heuristic argument, we expect that criticality can be restored by superimp
on the noncritical network of Fig. 5~a! yetanothercopy of the anisotropic network model, thereb
producing the network of Fig. 5~b!. There, the horizontal lines carry two, rather than one, chan
per link. The propagation on vertical links is governed by random U(1) phases, as before, b
horizontal links now carry random U(2) matrices~just like the two-channel Chalker-Coddingto
model!. One of the horizontal channels passes straight through the nodes, the other one is
to the rules specified for the model of Fig. 5~a!. The topological coupling of thes model is then
found to have the critical valuesxy

(0)5331/2~mod 1!51/2. Thus the last, doubly modified networ
model is critical and, on symmetry grounds, lies in the quantum Hall universality class. From
was said above, it is also a suitable starting point for attempting to deform to an integrable m

XI. SUMMARY

Several messages result from the present paper. First of all, a close relation betwe
standard models of the integer quantum Hall transition, namely the Chalker–Coddington mo
its symmetric pointp51/2, and the supersymmetric formulation of Pruisken’s nonlinears model
at u52psxy

(0)5p ~mod 2p!, was established. Let us put this result in the proper context. To
sure, it has been clear for a number of years now that some sort of relation between these
ought to exist. We know that both are critical and belong to the same universality class, s
cannot but describe the same physics at long wave lengths. However, prior to our wor
understanding of the precise connection between Chalker–Coddington and Pruisken was
indirect, relying on a double use of the anisotropic~or Hamiltonian! limit. The connection went as
follows. At one end, by taking the Chalker–Coddington model and going to its anisotropic
D. H. Lee arrived at a network model consisting of an array of chiral modes with an altern
direction of motion. At the other end, the anisotropic limit of Pruisken’s model was investig
by an elaboration of the work of Shankar and Read28 on the O(3) nonlinears model. It was
argued in Ref. 13 that the Hamiltonian limit of Pruisken’s model atu5p and strong coupling
~small sxx

(0)) is an antiferromagnetic superspin chain. Now, the array of chiral modes an
superspin chain are easy to relate by conventional techniques. At the level of the replica tri
this was done in Ref. 4, the correct supersymmetric extension follows from Ref. 22. In
detail, the functional integral representation of the array of chiral modes maps on a nonlins
model with an alternating sum of Wess–Zumino terms.~As we have seen, this mapping is bas
on a 011- dimensional analog of non-Abelian bosonization in 111 dimensions.! The latter, in
turn, coincides with the coherent-state path integral of the antiferromagnetic superspin cha
J. Math. Phys., Vol. 38, No. 4, April 1997
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One disadvantage of the above way of relating the models is that one does not have
control over the numerical value of the coupling constantsxx

(0) . In the present work, this uncer
tainty was resolved by dealing directly with theisotropicmodels, using a novel scheme devised
Ref. 15. What we have shown is this. Starting from the Chalker–Coddington model atp51/2 and
doing no more than an exact transformation followed by a continuum limit, we arrive at Pruisken’s
model with u5p and sxx

(0)51/4. Or, in different words, the former model is equivalent to
specific lattice discretization of the latter.

Previously, Pruisken’s model was thought to be associated primarily with the white noise
l c! l B , which is where Pruisken’s derivation begins. Recall, though, that in the course of de
his model, Pruisken made a saddle-point approximation to eliminate the ‘‘massive’’ modes.
use of this approximation scheme is justified only in the limit of largesxx

(0) ~high Landau level!. In
contrast, the present work makesno such approximation. The only assumption we needed was
dominance of slowly varying fields in the functional integral, allowing us to pass from the la
to the continuum. Thus, contrary to what might have been expected, Pruisken’s model at
sxx
(0) is actually associated more closely with thehigh-field limit, l c@ l B , as it is this limit that

provides the microscopic justification of the network model. Note, however, that the rat
microscopic length scalesl c / l B is expected to be an irrelevant parameter at a critical point with
infinite correlation length. Thus, our result is not in conflict with Pruisken’s derivation of ths
model as a critical theory.

In my opinion, neither the Chalker–Coddington model nor Pruisken’s model hold m
promise for an exact analytical solution in the near future. If so, the mapping of one model o
other is not yet a big step forward. The good news is that there are several useful spinoffs
K. Lee and Chalker suggested modeling the random flux problem~i.e., the motion of a single
electron in a random magnetic field! by a network with two channels per link and local U(2
gauge invariance. Our mapping onto a nonlinears model easily extends to include this case. T
coupling constants of the continuum field theory were found to besxx

(0)5231/451/2 and
sxy
(0)5231/2 ~mod 1!50 at the symmetric point of the random flux problem. This is a mass

theory with exponential decay of all correlation functions are large scales. Thus, contrary to c
made in the literature, there is no room for truly extended states in the random flux proble
least not by slight deformation away from the two-channel network model. This conclusion
already been reached in Refs. 21 and 4.

Another spinoff helps us along in our quest to understand the integer quantum Hall tran
We observed that the SUSY reformulated Chalker–Coddington network model has the str
of what is known as a vertex model in statistical physics. Motivated by information from
theory of integrable systems, we then modified the network model in several ways. Firs
abandoned the alternating direction of the electron’s motion along the horizontal and ve
straight lines of the network. Instead, we took the direction of motion to be constant along
such line. The mapping onto Pruisken’s model indicates that this modification changes the
ics: the value of the topological coupling now issxy

(0)50, which corresponds to a noncritical stat
We argued that criticality can be restored by doubling the number of channels on all horiz
links ~or on all vertical links!. Alternatively, we can spatially separate the two channels on h
zontal links and return to a model with only one channel per link, at the expense of doublin
size of the unit cell in the vertical direction.

The resulting modified network model is critical, but no longer has a justification fro
microscopic picture of guiding center drift along equipotentials. Its virtue is that the correspo
supersymmetric model is of a type for which systematic ways of constructing solutions o
quantum Yang–Baxter equation are in principle available. Whether our model can actua
deformed into one that is a Yang–Baxter integrable, is a question whose answer lies far b
the scope of the present paper.
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Density matrices for itinerant and localized electrons
with and without external fields

N. H. Marcha)
Oxford University, Oxford, England

~Received 1 July 1996; accepted for publication 4 December 1996!

Forms of canonical~Bloch! and Dirac density matrices for free electrons with and
without external applied fields are first considered. The basic tool employed is the
Bloch equation with a one-electron Hamiltonian. Such an approach is used to
obtain a perturbation theory to all orders for the idempotent Dirac density matrix
when a common potential energyV(r ) is switched on to originally free electrons.
The relation to density functional theory is then considered and the exchange–
correlation contributionVxc(r ) to V(r ) is expressed in terms of first- and second-
order density matrices following Holas and March. These latter density matrices are
now for the fully interacting system and, in particular, the first-order density matrix
is no longer idempotent, though it must still satisfy generalized Pauli Principle
conditions. Reference is also made to a localized Wigner electron in a strong
magnetic field. ©1997 American Institute of Physics.@S0022-2488~97!00604-X#

I. INTRODUCTION

Since the pioneering work of Dirac,1 who introduced exchange into the Thomas–Fer
atom,2,3 it has been clear that there is an intimate relationship between density matrix and el
density theory. This led March and Murray4,5 to develop a perturbation theory of the Dirac dens
matrix, based on free electrons, which were then allowed to move in a potential energyV~r ! of
‘‘Hartree’’ form, rather than of nonlocal or energy-dependent Hartree–Fock form. It became
from this perturbative study of March and Murray that, in calculating the Dirac density matrix
diagonal element of which was the ground-state electron densityr~r !, a valuable intermediate too
was the canonical density matrix, to be defined precisely below. The diagonal element of this
matrix is the so-called Slater sumP~r ,b!, defined in terms of the eigenvalues generated by
potential energyV~r !, sayei , and the corresponding eigenfunctionsci~r !, when normalized, by

P~r ,b!5(
all i

c i~r !c i* ~r !exp~2be i !: b5~kBT!21. ~1.1!

Just as in ground-state density functional theory, it would be very advantageous to work wi
‘‘diagonal’’ tool, the Slater sum, rather than the full off-diagonal density matrix@See Eq.~2.2!#.
Some emphasis will be placed therefore on this matter in the present article.

The outline is then as follows. In Sec. II we set out the one-electron Hamiltonian which
be utilized in the first and largest part of the present survey. The off-diagonal generalization
Slater sum~1.1! will then be effected, and related to Fermi–Dirac statistics appropriate for e
trons, the focus of the present study.

Then in Sec. III the canonical density matrix is set out for free electrons in a uniform mag
field of arbitrary strength. Such a treatment already contains much valuable information rela
electronic structure, and in particular the important de Haas–van Alphen effect for free ele
with a spherical Fermi surface~for nonspherical Fermi surfaces, see Onsager6!. Section IV con-
siders then free electrons in a uniform electric field, without restriction on its intensity. Thes

a!Address for correspondence: 6 Northcroft Road, Egham, Surrey, TW 20 ODU, England.
0022-2488/97/38(4)/2037/16/$10.00
2037J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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perturbations on free electrons having been handled exactly, Sec. V puts the magnetic fiel
to zero and gives a perturbative solution for an arbitrary~in principle! potential energyV~r !
‘‘switched on’’ to originally free electrons. This allows a perturbative series to all orders t
found for the ground-state Dirac density matrix.

Having dealt at some length with itinerant electrons, Sec. VI treats a model of a single W
electron oscillator in the low density limit of the so-called jellium model, when electrons eve
ally are localized by their Coulomb repulsions and occupy the sites of a body-centred-
lattice.7–9 The important point here is to display the canonical density matrix for a single Wi
electron oscillator in a strong magnetic field, since Wigner solidification has by now bee
served in semiconductor heterojunctions placed in intense magnetic fields.10,11Section VII modi-
fies the harmonically confined electron model to include an electric rather than an applied
netic field, a model for confined plasma with variable electron density. Section VIII discusse
differential equation for the diagonal element of the canonical density matrix. Then, in the
brief section before the summary, recent work in which the exchange-correlation potentialVxc(r ),
which lies at the heart of current practice in ground-state density functional theory, is expr
exactly12 in terms of first- and second-order density matrices13 is summarized, along with som
subsequent, and closely related, work.

II. ONE-ELECTRON HAMILTONIAN AND CANONICAL DENSITY MATRIX

We emphasize from the outset that, through most of the present article, we shall be d
with the one-electron Hamiltonian

H r5
~p2eA/c!2

2m
1V~r !. ~2.1!

Herep is the momentum operator,A is the vector potential representing the magnetic fieldB, m
the electron mass. The scalar potential energyV~r ! can, when desired, include a contributioneFz
due to a constant electric field of magnitudeF in the z direction.

Below we shall frequently use as a tool to treat strong magnetic and electric field
canonical density matrixC~r ,r0,b!. This is defined in terms of the eigenfunctionsci~r ! and the
corresponding eigenvaluesei of the HamiltonianH r defined in Eq.~2.1! as

C~r ,r0 ,b!5(
all i

c i~r !c i* ~r0!exp~2be i !:b51/kBT. ~2.2!

This evidently weights the wave function product with the Boltzmann energy factor and
natural off-diagonal generalization of the Slater sum~1.1!. However, as shown in general b
March and Murray,4 the case of intermediate degeneracy is completely covered also, since on
calculate the density of electrons from the quantity

D~r ,r0 ,b,z!5(
i

exp~z2e i !

11exp~b~z2e i !!
c i~r !c i* ~r0! ~2.3!

which evidently incorporates the Fermi–Dirac function.D is to be obtained fromC via the
functionQ, where

C~r ,r0 ,b!5E
0

`

Q~r ,r0 ,E!exp~2bE!dE, ~2.4!

D being then given by~March and Murray4!:
J. Math. Phys., Vol. 38, No. 4, April 1997
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D~r ,r0 ,b,z!5E
0

`

Q~r ,r0 ,E!
1

11exp$b~E2z!%
dE. ~2.5!

The Dirac density matrix corresponding to temperatureT50, i.e., the case of complete dege
eracy, with its diagonal elementr05r the important ground-state electron densityr~r ! is given by
the inverse Laplace transform ofC/b. This result is correct in the presence of bound sta
provided only that a constant greater than the lowest bound-state energy,e0 say, is added to the
potential energy.

Let us turn immediately to illustrate the use of the canonical density matrix for treating
electrons in a uniform magnetic field. As follows from the definitions~2.1! and~2.2!, the canonical
density matrix satisfies the so-called Bloch equation, as is readily verified, namely,

H rC~r ,r0 ,b!52
]C

]b
~r ,r0 ,b!. ~2.6!

This is to be solved subject to the boundary condition that asb tends to zero, due to the ortho
normality and completeness of the eigenfunctionsci , C tends to the delta function, that is

C~r ,r0,0!5d~r2r0!. ~2.7!

This equation~2.6!, with boundary condition~2.7!, can be solved analytically for a number
admittedly simple models.

III. CANONICAL DENSITY MATRIX FOR FREE ELECTRONS IN UNIFORM MAGNETIC
FIELD OF ARBITRARY STRENGTH

In a pioneering paper, Sondheimer and Wilson14 obtained the canonical density matrixC for
free electrons in a uniform magnetic field of strengthB, taken along, say, thez axis. Their result,
denoted below asCOB(r ,r0 ,b), is

COB~r ,r0 ,b!5
1

~2pb!3/2
bB

~sinhbB!
exp$2 iB~xy02yx0!%

3expH 2
B

2
coth~bB!3@~x2x0!

21~y2y0!
2#2

~z2z0!
2

2b J . ~3.1!

The corresponding HamiltonianHOB has been chosen in a gauge such that

HOB5 1
2~2 i“1Bxr !2. ~3.2!

While this result~3.1! depends on the gauge chosen for the vector potential in Eq.~3.2!, its
diagonal element,C~r,r ,b!, the Slater sum of Eq.~1.1!, denoted now byPOB~r ,b!, does not.
Indeed, for free electrons, this becomes independent of positionr and is given, in suitable units, b

POB~b!5
1

~2pb!3/2
mBb

sinh~mBb!
, ~3.3!

wherem5eh/4pmc is the Bohr magneton. As the magnetic fieldB tends to zero, Eq.~3.3!
reduces simply to 1/~2pb!3/2 which is the well known result for the partition function per un
volume of free electrons.

Pfalzner and March15 have performed numerically the Laplace transform inversion referre
above to obtain the densityr(E) from the Slater sum~3.3!. Below, we shall rather restric
ourselves to the extreme high field limit of Eq.~3.3!, where analytical progress is again possib
J. Math. Phys., Vol. 38, No. 4, April 1997
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Using units in which the Bohr magneton is put equal to unity, the extreme high field limit amo
to the replacement of the sinh function in Eq.~3.3! by a single exponential term, to yield

POB~b!5
B exp~2bB!

p3/2~2b!1/2
. ~3.4!

Using again the Laplace transform relation between density and Slater sum, one readily o

r~E!
5~21/2/p2!~E2B!1/2B, E>B,
5 0, E,B. ~3.5!

This result forms the basis of the semiclassical Thomas–Fermi theory for atoms in intense
netic fields.15

Let us next consider the counterpart of the above example when the magnetic field is re
by a uniform electric field.

IV. DENSITY MATRIX FOR FREE ELECTRONS IN A UNIFORM ELECTRIC FIELD

Returning to the basic one-electron Hamiltonian~2.1!, the model solved in this present se
tion, following Jannussis16 and also Harris and Cina,17 corresponds to zero magnetic field, i.e
A50, and to taking the scalar potential energyV~r ! as2eFz, due to the electric field of strengt
F along thez axis.

A. Equation of motion

To gain insight into the shape of the solution for the canonical density matrix, let us con
a one-dimensional problem of electrons in a potentialV(x). Writing the Bloch equation~2.6! for
the HamiltoniansHx andHx0

and subtracting them to remove theb derivative, one obtains the
so-called equation of motion of the density matrix as

F d2dx2
2

d2

dx0
2GC~x,x0 ,b!52@V~x!2V~x0!#C~x,x0 ,b!. ~4.1!

Following early work of March and Young,18 one can usefully introduce sum~j! and differ-
ence~h! variables as

j5
x1x0
2

, h5
x2x0
2

. ~4.2!

Then Eq.~4.1! takes the compact form

d2

dj dh
C~j,h,b!54hV8~j!C~j,h,b!, ~4.3!

whereV~j1h!2V~j2h! which enters Eq.~4.1! has evidently been approximated by 2h V8~j!.
This is equivalent to the neglect of third and higher derivatives of the one-body potential:V-,V1v,
etc. Below, for important examples of special interest in this survey, these higher derivative
in fact, identically zero. Then, of course, Eq.~4.3! becomes entirely equivalent to the ‘‘equation
motion’’ ~4.1!.

Equation~4.3! is now amenable to solution by the method of separation of variables.19 Thus
one writes

C5J~j!K~h!. ~4.4!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Substitution in Eq.~4.3! then yields the pair of equations

dJ

dj
5s~b!V8~j!J ~4.5!

and

dK

dh
52

4hK

s~b!
. ~4.6!

Here,s~b! is playing the role of the usual ‘‘separation constant’’ in this method of solving pa
differential equations. The solution of Eq.~4.6! is the Gaussian form

K~h,b!5A~b!expS 22h2

s~b! D , ~4.7!

whereA~b! ands~b! are as yet undetermined functions ofb. From the one-dimensional analog o
the free electron result discussed above, for this limiting case corresponding toV(x)5constant,
one hasA~b!5~2pb!21/2 ands~b!5b.

While for the translationally invariant case,V8~j!50 in Eq. ~4.5!, it follows thatJ5constant
is the appropriate solution in this limit, forV8~j! nonzero one can also integrate Eq.~4.5! to read

J~j,b!5J0~b!exp~2s~b!V~j!. ~4.8!

Thus it is seen that theJ andK parts of Eq.~4.4! are linked by the important separation functio
s~b!. Equations~4.7! and ~4.8! are immediately applicable to one-dimensional motion in a c
stant electric field.

B. Application to free electrons in electric field

If we return to the Sondheimer–Wilson result~3.1! and switch off the magnetic fieldB, the
resulting density matrixCOO~r ,r0,b! must evidently be translationally invariant, and is, in fac

COO~r ,r0 ,b!5
1

~2pb!3/2
expH 2ur2r0u2

2b J . ~4.9!

Intuitively, Eqs. ~4.4! and ~4.8! together then suggest that, in an electric field, the free-elec
density matrix~4.9! must be modified by a factor involvingV(z), the potential energy due to th
field:

V~z!52eFz. ~4.10!

The Thomas–Fermi semiclassical treatment of the effect ofV(z) would yield

CTF~r ,r0 ,b!5COO expF2VS z1z0
2 D G . ~4.11!

This, as it stands, is only an approximate form of solution of the Bloch equation~2.6! valid for
small b and/or weak field strengthF. Following Jannussis16 and also Harris and Cina17 the full
solution, denoted byCOF , is given, usingV(z) in Eq. ~4.10!, by

COF~r ,r0 ,b!5COO expFbF2 ~z1z0!1
b3F2

24 G . ~4.12!
J. Math. Phys., Vol. 38, No. 4, April 1997
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This result~4.12!, given explicitly for instance by Harris and Cina,17 can readily be verified, by
insertion in the Bloch equation~2.6!, to be an exact solution. It also satisfies the delta funct
boundary condition~2.7! by virtue of the fact that the free electron solutionCOO obviously has the
delta function limit while the exponential multiplying factor in Eq.~4.12! tends to unity asb tends
to zero. The explicit results~3.1! and ~4.12!, applying toB and electric~F! fields switched on
respectively to the free electron assembly, and valid for fields of arbitrary strength, sho
power of the Bloch equation approach for treating such problems.

V. IDEMPOTENT DIRAC DENSITY MATRIX: POTENTIAL V(r) SWITCHED ON TO PLANE
WAVES

In this section, we shall record an infinite order perturbation theory of the idempotent
density matrixr~r ,r0! obtained by switching on a potential energyV~r ! to an unperturbed assem
bly described by plane waves. By iteration on the Lippmann–Schwinger integral form of S¨-
dinger’s equation, with free electrons described by plane waves exp~ik–r ! as the unperturbed
system, March and Murray5 generated such a perturbation theory.

This theory has turned out to have special interest in density functional theory, where
known from the work of Slater,20 which was formally completed by Kohn and Sham,21 that
one-body potential theory based on a suitably chosen form of the potential energyV~r !, including
exchange and correlation interactions, can yield the exact ground-state electron densityr~r ! of a
genuine many-electron system. We shall term that idempotent Dirac density matrix deter
from such a one-body potentialV~r ! as the ‘‘reference idempotent Dirac density matrix.’’ I
eventually, it proves possible to sum the infinite order perturbation series for the diagonalr~r ! as
a functional ofV~r !, then that would bypass the current procedure of solving the so-called Sl
Kohn–Sham one-electron Schro¨dinger equations for one-electron wave functions. Of course
the work of Holas and March12 makes precise, one cannot get the exchange–correlation co
bution to the one-body potentialV~r ! without knowing the ‘‘real,’’ i.e., not just the referenc
~Dirac!, first-order density matrix—in the study of Holas and March the pair correlation func
between electrons is also required. This is simply the diagonal element of the second-orde
interacting density matrix~see Sec. IX!.

A. Summary of infinite-order perturbation theory of reference idempotent Dirac matrix
generating exact ground-state density r(r)

As discussed above, the plane wave form of the Dirac density matrix is given by the in
Laplace transform ofC/b, with C the Bloch or canonical density matrix given in Eq.~4.9!. The
explicit form of the Dirac density matrix follows as

r0~r ,r0!5
kf

3

2p2

j 1~kf ur2r0u!
kf ur2r0u

: j i~x!5
sin x2x cosx

x2
, ~5.1!

with kf the usual Fermi wave number of the originally unperturbed electron assembly. The
result of March and Murray5 may be summarized as

r~r ,r0!5(
j50

`

r j~r ,r0!. ~5.2!

The general termrj in Eq. ~5.2! has the form

r j~r ,r0!5
kf

2

2p2 E j

)
l51

j F2dr l
V~r l !

2p G j 1S kf(
l51

j11

sl D Y )
l51

j11

sl , ~5.3!

wheresl5ur l2r l21u and r j115r . As an explicit example, the first-order termr1~r ,r0! is
J. Math. Phys., Vol. 38, No. 4, April 1997
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r1~r ,r0!5
2kf

2

2p2 E dr1
V~r1!

2p

j 1~kf ur2r1u1kf ur12r0u!
ur2r1uur12r0u

. ~5.4!

B. Sum to infinite order for spatially slowly varying V(r)

To illustrate the use of Eq.~5.2!, the summation of its diagonal elementr~r ,r ![r~r ! can be
carried out to all orders inV~r ! when this quantity varies slowly, or more precisely by but a sm
fraction of itself over a de Broglie wavelength for an electron at the Fermi level. One can th
Eq. ~5.4! for r1, replaceV~r1! by V~r !. The integration overr1 can then be completed, with th
explicit result

r1~r ,r !52kfV~r !/2p2. ~5.5!

In similar fashion, the higher-order contributions in Eq.~5.2! can be evaluated to yield the serie

r~r !5
kf

3

6p3 S 12
3V

kf
2 1

3V2

2kf
4 1••• D ~5.6!

which sums to the Thomas–Fermi~TF! approximation for the electron density

rTF~r !5
1

6p2 ~kf
222V~r !!3/2. ~5.7!

Writing, more generally,r~r ! in terms of the chemical potentialm of the electron cloud, constan
of course throughout the entire inhomogeneous assembly, one finds

r~r !5
23/2

6p2 ~m2V~r !!3/2. ~5.8!

Aside from a factor of 2 due to the fact that the above results have been based on singly oc
levels, plus use of atomic units, the result~5.8! is the customary density-potential relation of th
TF statistical theory.2,3

C. Kinetic energy density from perturbation series

Corless and March22 considered the low-order form of the kinetic energy density,t~r ! say,
from the above perturbation theory of the idempotent Dirac density matrix. Their argumen
generalized to arbitrary order inV~r ! @or equivalently the displaced charge induced byV~r ! in a
density functional description# by Stoddart and March.23 The most elegant form of their result fo
t~r !, which will be defined from the idempotent Dirac density matrix by

t~r !52
\2

2m
¹ r
2r~r ,r0!ur05r , ~5.9!

is in terms ofV~r ! andrj . From Eqs.~5.2! and ~5.9!, it is a matter of some lengthy algebra
show that the kinetic energy density changeDt~r !, measured relative to that of the unperturb
plane wave assembly, is

Dt~r !52(
j51

`
j

j11
V~r !r j~r !. ~5.10!
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Above, one had in the approximation of slowly varying potentialV~r ! that rj ~r !5constant (V) j ,
and it is straightforward to complete the above summation~5.10! in terms of the one-body poten
tial V~r ! to find

t~r !5const@m2V~r !#5/2 ~m5kf
2/2!. ~5.11!

Utilizing the TF density-potential relation~5.8! to obtaint~r ! in terms of densityr~r !, one recovers
the usual statistical theory result

tTF~r !5ck$r~r !%5/3: ck5
3h2

10m S 3

8p D 2/3. ~5.12!

Of course, the exact perturbative form~5.10! for t~r ! is in terms ofV~r !, and is not yet therefore
in density functional form. However, Stoddart and March23 were able to demonstrate that th
perturbativer~r !2V~r ! relation could be inverted term by term to giveV~r ! as a functional of the
displaced charger~r !2r0 due to switching onV~r ! to the originally uniform densityr05kf

3/3p2.
It remains, of course, of considerable interest for density functional theory to explore fu

ways of summing the exact perturbative results~5.2! and ~5.10!.

D. Summation of perturbation series for free electrons in a constant electric field

The analog of Eq.~5.2! for the Bloch density matrixC~r ,r0,b! can be written formally as

C~r ,r0 ,b!5(
j50

`

Cj~r ,r0 ,b!, ~5.13!

whereCj is O(Vj ) and is given explicitly by March and Murray.5 In fact, this series can be
summed exactly when an electric field is switched on toC0~r ,r0,b!, the result~4.12! discussed
above being thereby regained.

E. Special case of central fields

As recognized in the original work of March and Murray,4 further progress is possible if th
potentialV~r ! switched on to plane waves is spherically symmetrical, i.e.,V~r ! reduces toV(r ).
Then, as usual, the wave functions separate in spherical polar coordinates and this is paral
the decomposition of the canonical~and also Dirac! density matrices into sums over angul
momentum (l ) components. Thus one can write forC~r ,r0,b! the result in terms of Legendr
polynomialsPl~cosg!:

C~r ,r0 ,b!5(
l

~2l11!Cl~r ,r0 ,b!Pl~cosg! ~5.14!

with g the angle betweenr andr0. March and Murray then obtained differential equations for
individual angular momentum components and solved these again by perturbation theory on
waves. However, more importantly, these workers showed that it was possible to reduce
differential equations to forms for the diagonal termsPl~r ,r ,b! and these will be a further foca
point below~see Sec. VIII!.

VI. BLOCH DENSITY MATRIX FOR WIGNER ELECTRON OSCILLATOR IN STRONG
MAGNETIC FIELD

We turn from the above discussion of itinerant electrons to a briefer treatment of a mo
localized electrons. In zero applied fields, the ideas go back to Wigner.7,8 He considered the low
density limit of the jellium model in its ground state. He stressed that the Hartree–Fock de
nant of plane waves; the correct ground state in the high density limit was unstable with resp
J. Math. Phys., Vol. 38, No. 4, April 1997
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a lattice of localized electrons in the low density limit. He treated the lattice, in zeroth o
assuming independent oscillator vibrations. Subsequently, a more correct phonon treatm
been provided.9 However, the localized oscillator treatment can be readily generalized to inc
a magnetic field of arbitrary strength and this has been done by March and Tosi.24 Their treatment
will be outlined below. It is to be stressed that there is here, following the proposal of Du
et al.,25 close contact with experiment in that magnetically induced Wigner solids can no
produced in the laboratory.10,11

A. Canonical density matrix of charged oscillator in magnetic field

The Hamiltonian used for the single Wigner electron oscillator is the same as Eq.~2.1!,
providedV~r ! is taken to be

V5 1
2k~x21y2!, ~6.1!

where the magnetic fieldB is along thez axis. The choice of gauge was

A5~2 1
2By,

1
2Bx,0!. ~6.2!

The Bloch equation~2.6! then takes the explicit form

]C

]b
5F \2

2m S ]2

]x2
1

]2

]y2D1 i\vS x ]

]y
2y

]

]xD2S 12 k1
e2B2

8mc2D ~x21y2!GC, ~6.3!

wherev5eB/2mc is the Larmor frequency. Equation~6.3! has to be solved subject to the usu
delta function boundary condition~2.7! at b50.

In the limiting casek→0, one reproduces, of course, the result~3.1! for free electrons treated
above. The work of March and Tosi~and subsequently other workers; see, for example, Ref
and other references there! generalizes the result~3.1! to include the linear restoring force on th
Wigner localized electron. To do this, March and Tosi first express the general structure
canonical density matrix as

C~r ,r0 ,b!5 f ~b!exp$2 i ~x0y2y0x!f~b!2@~x2x0!
21~y2y0!

2#g~b!2@~x1x0!
21~y

1y0!
2#h~b!%. ~6.4!

Given this shape of the density matrix, March and Tosi determine the four functionsf , f, g and
h by substituting the form~6.4! in the Bloch equation~2.6! and requiring that the resulting
equation is satisfied for all values ofr0 and r . The five equations which thereby emerge are

]~g1h!/]b52~2\2/m!~g1h!21 1
2 mv2b2, ~6.5!

]~g1h!/]b52~2\2/m!~g2h!21~\2/2m!f2, ~6.6!

]~g2h!/]b52~2\2/m!~g22h2!1 1
2 \vf, ~6.7!

]f/]b52~2\2/m!~g1h!f12\v~g2h!, ~6.8!

and

] ln f /]b52~2\2/m!~g1h!. ~6.9!

Here the quantityb has been defined by

b5~11k/mv2!1/2. ~6.10!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Following March and Tosi,24 Eqs.~6.5! and ~6.9! can first be integrated to yield

g1h5~mvb/2\!coth~ba1a! ~6.11!

and

f5B/sinh~ba1a!, ~6.12!

where here,a andB are ‘‘constants’’ of integration, i.e., are independent ofb but depend on
magnetic field and force constant.

The work of Darwin27 is then invoked. He was concerned with the calculation of the diam
netism of a free electron by the device of allowing the force constantk to vanish. In his study,
Darwin calculated directly the partition functionQ5( i exp~2bei!, his result being

Q5
expa

$exp@~b11!a#21%$12exp@2~b21!a#%
. ~6.13!

From the definition of the Bloch matrixC, and using the normalization of theci ’s, we can
immediately write

E C~r ,r ,b!dr5Q ~6.14!

and using the diagonal form ofC from Eq. ~6.4! in Eq. ~6.14! one finds

f ~b!/h~b!5~4/p!Q. ~6.15!

Using this equation in conjunction with~6.11! and ~6.12!, one obtains

h~b!5pBS coth~ba!
2cosha

sinh~ba! D ~6.16!

and

g~b!5Smvb

2\
2

p

2
B D coth~ba!1

p

2
B

cosha

sinh~ba!
. ~6.17!

The functiona has to be equated to zero to satisfy the delta function boundary condition o
Bloch density matrix.

The next step in the argument involves using the three Eqs.~6.6!–~6.8! to determine the phas
f~b! and the functionB(k,B). On then finds

f~b!52pB sinha/sinh~ba! ~6.18!

and

B5
mvb

2p\
. ~6.19!

The case of a free electron in a magnetic field is recovered asb tends to unity. Switching off the
magnetic fieldB, the known diagonal formC(r ,r ,b) for the harmonic oscillator itself is readily
regained~compare, for example, Stephen and Zalewski28!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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March and Tosi29 have used the same model to discuss the thermally averaged orbita
magnetism of a localized Wigner electron oscillator, but the reader is referred to their paper
details.

B. Considerations on current density

The motion of electrons in a magnetic field when an inhomogeneity of electron density
remains of interest at the time of writing. Following the work of Amovilli and March30 one can
associate a current densityJ~r ,b! with a given canonical density matrix as defined in Eq.~2.2!.
Then, using the usual current operator as defined in terms of wave functions, they find

J~r ,b!5
2 i

2
~“02“ !C~r0 ,r ,b!ur05r2BxrP~r ,b! ~6.20!

with P~r ,b! the Slater sum~1.1!. Using the result~6.4! in Eq. ~6.20!, one obtains

J5Jxi1Jyj ~6.21!

with i and j the usual Cartesian unit vectors inx andy directions, respectively. One then readi
finds from the above considerations31

Jx52y@f~b!2f~b,k50!#P~r ,b! ~6.22!

with an analogous expression forJy . In Eq. ~6.22!, the phasef~b! is given explicitly in Eqs.
~6.18! and ~6.19!.

VII. HARMONICALLY CONFINED ELECTRONS IN INTENSE STATIC ELECTRIC FIELD

Having considered a Wigner charged oscillator in a magnetic field, we shall consider s
what more briefly here the analogous problem of harmonically confined electrons in an e
field of arbitrary intensity. This model has been studied by Amovilliet al.32 in the context of
plasmas of variable electron density and degeneracy in intense electric fields.

Below the electric field is taken to be applied along thez axis. We take first the case where th
confining harmonic force is only along the field direction. The canonical density matrix will
be denoted byC~r ,r0,b,F,v! whereF is the electric field strength while the harmonic restori
force corresponds to an oscillator angular frequencyv. The resulting solution to be presented c
then be readily generalized to include harmonic restoring forces also in thex andy directions.

A. Confining force only in field direction

In this simple case, the form of the free electron density matrix~4.9! motivates one to write,
since the motion in thex andy directions is unmodified:

C~r ,r0 ,b,F,v!5
1

2pb
expS 2

~x2x0!
2

2b
2

~y2y0!
2

2b DCz~z,z0 ,b,F,v!. ~7.1!

From the Bloch equation~2.6!, the differential equation forCz in Eq. ~7.1! is easily found. The
point to be emphasized then is that the potential terms in the Hamiltonian can be regrou
yield

1

2
mv2z22eFz5

1

2
mv2Fz2

eF

mv2G22 e2F2

2mv2 . ~7.2!
J. Math. Phys., Vol. 38, No. 4, April 1997
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It is clear from Eq.~7.2! that one has then to treat simply a harmonic oscillator with a chang
origin proportional to the electric field strengthF. Using the study of, for example, Stephen a
Zalewski,28 following the earlier work of Sondheimer and Wilson,14 one can findCz on the rhs of
Eq. ~7.1! as32

Cz~z,z0 ,b,F,v!5F v

2p sinh~bv!G
1/2

expS 2
v

4
tanhS bv

2 D S z1z02
2F

v2 D 2
2

v

4
cothS bv

2 D ~z2z0!
2DexpS bF2

2v2D . ~7.3!

One can, of course, regain the limiting free electron result in a field of strengthF given in Eq.
~4.12! by lettingv tend to zero above.

B. Additional harmonic confinement in x and y directions

As discussed in detail by Amovilliet al.,32 one can next introduce the new confining potent
energy 1

2mv1
2(x21y2) for generalizing the above simple case A. Indicating explicitly that

new Bloch density matrix now depends parametrically onv1, one can verify after some calcula
tion that its form is

C~r ,r0 ,b,F,v,v1!5F v1

2p sinh~bv1!
GexpS 2

v1

4
tanhS bv1

2 D ~x1x0!
2

2
v1

4
cothS bv1

2 D ~x2x0!
2DexpS 2

v1

4
tanhS bv1

2 D ~y1y0!
2

2
v1

4
cothS bv1

2 D ~y2y0!
2DCz~z,z0 ,b,F,v!. ~7.4!

Amovilli et al.32 have presented numerical applications of the above models to treat plasm
varying density in intense fields but the reader is referred to the original paper for these pl

VIII. DIFFERENTIAL EQUATIONS FOR SLATER SUM: DIAGONAL ELEMENT OF
CANONICAL DENSITY MATRIX

In their original work, March and Murray4 considered differential equations for the diagon
element of the canonical density matrix, which is equivalent to the Slater sumP defined by Eq.
~1.1!.

This area has been recently reopened, and shows already potential for extensive develo
However, to date, generality is lacking, and we shall therefore mention briefly results which
been established for some of the model problems considered in the present article. The
these is for initially free electrons moving in a static electric field of arbitrary strength~see Sec.
IV B !. We shall consider this example inD dimensions, though the main physical interest to d
is naturally whenD53. Returning to the canonical density matrix for this case, we can putr05r
in Eq. ~4.12! to find

P~z,b!5P00~b!expFbFz1
b3F2

24 G . ~8.1!

This satisfies the differential equation

1

8
P-2SV1

]

]b DP81
1

2
V8P50. ~8.2!
J. Math. Phys., Vol. 38, No. 4, April 1997
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This result was given by Lehmann and March,33 and has been established by a different derivat
in the work of Amovilli and March.34 In dimensionalityD, the coefficient of the termV8P
becomes~D22!/2, which of course is simply 1/2 as in Eq.~8.2! appropriate to three dimension

A. Isotropic three-dimensional harmonic oscillator

Amovilli and March34 write also the differential equation for the Slater sum for the isotro
three-dimensional harmonic oscillator discussed above as

1

8
P-1

1

4R
P92S 1

4R2 1V1
]

]b DP81
1

2
V8P50 ~8.3!

with R now the radial distance.

B. Bare Coulomb field

Relevant to the case of excitons in suitable crystalline solids,35 let us take as the third exampl
the case of the bare Coulomb potentialV52Z/r . Then Pfalzneret al.36 and also Cooper37 have
shown, by utilizing the spatial generalization of Kato’s theorem,38 that

1

8
P-1

1

2R
P91S 1

4R22V2
]

]b DP81
1

2
V8P50. ~8.4!

To date, no completely general result has proved possible, for reasons analyzed by Am
and March.34 Briefly, one can make progress presently when there is a simple relation betwe
kinetic energy density tensor~see also below! and the kinetic energy density itself. This alwa
exists in one dimension, and therefore in this case a differential equation for the Slater sum4

for a quite general potential energyV(x). However, in higher dimensions, such a relation betwe
tensor and density~trace! is not known, and indeed may not, perhaps, exist generally. It would
course, be a huge simplification if one could work directly with the diagonal element o
canonical density matrix, which is indeed simply the Slater sum~1.1!, rather than with the off-
diagonal matrix~2.2!. It is then true though that one has lost the powerful off-diagonal d
function boundary condition~2.7!.

IX. EXCHANGE-CORRELATION POTENTIAL Vxc (r) OF DENSITY FUNCTIONAL THEORY
IN TERMS OF INTERACTING LOW-ORDER DENSITY MATRICES

In this penultimate section, we shall summarize recent progress~Holas and March12! in which
the exchange–correlation potentialVxc~r ! is expressed in terms of fully interacting first- an
second-order density matrices as well as the reference idempotent Dirac density matrix dis
above. The key element of the argument is the so-called differential form of the virial theo
first exposed in one dimension for electrons moving independently in a common potentialV(x) by
March and Young.18 These workers wrote the equation of motion analog of~4.1! for the Dirac
~idempotent! density matrixr(x,x0) and then introduced sum and difference coordinates~see also
the analog in Sec. IV A for the canonical density matrix!. Introducing the kinetic energy densit
t(x), defined from the density matrix by

t~x!5
\2

4m S ]2

]x ]x0
1

]2

]x0 ]xD r~x,x0!ux05x ~9.1!

these workers obtained the result

]t~x!

]x
52

1

2
r

]V

]x
1

r-~x!

8
. ~9.2!
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In relation to current density functional theory, one rearranges this as a force equation~Holas and
March12! to read

F52
]V

]x
5

2

r~x!

]t

]x
1

1

4r~x!

]

]x S ]2r

]x2D . ~9.3!

As written, this Eq.~9.3! allows the ‘‘external’’ force2]V/]x to be decomposed into two part
~a! kinetic, involving t(x) and ~b! a Laplacian contribution,

F5Fkin1FLaplacian. ~9.4!

Holas and March12 have first generalized this result to three dimensions and to fully inco
rate electron–electron interactions. Evidently, Eq.~9.4! in three dimensions becomes a vect
equation for the external forceF. This can then be separated into three parts~a! Fkin5FK , ~b!
FLaplacian5FL and~c! an electron–electron contributionFee~r !. Only one of these terms is explic
itly in density functional form, i.e.,FL , which is given in terms of the ground-state densityr~r ! as

FL52
1

4p~r !
“$¹2r%. ~9.5!

The kinetic part requires the generalization to many-body theory of the kinetic energy de
tensor already referred to. Specifically, Holas and March12 then show that the kinetic contributio
to the external force,FK , takes the form

FK5z~r !/r~r !, ~9.6!

where the vector fieldz~r ! is defined in terms of the fully interacting first-order density matrix
set out below. This first-order density matrixg~r0,r ! is no longer idempotent, but now satisfies t
~weaker! inequality

g2,g. ~9.7!

Defining the kinetic energy density tensor by12

tab~r !5
1

4 S ]2

]r a8 r b9
1

]2

]r b8]r a9
Dg~r1r 8;r1r 9!ur85r950 ~9.8!

thenz~r ! is given by

z~r !52(
b

]

]r b
tab~r !. ~9.9!

Finally, the electron–electron contribution in~c! above involves the pair functionn2~r ,r 8!, which
is the diagonal element of the second-order density matrix, through the result

Fee~r !52E dr 8@“u~r ,r 8!#n2~r ,r 8!/r~r !, ~9.10!

whereu~r ,r 8! is the Coulomb interactione2/ur2r 8u.
Holas and March show that, if in this force equation, the fully interacting density matrice

replaced by the noninteracting or reference density matrices then the exchange-only pote
Harbola and Sahni39 is recovered. The subsequent study of Levy and March40 has exposed a
‘‘kinetic’’ correction to the line integral form of the Harbola–Sahni exchange-only poten
J. Math. Phys., Vol. 38, No. 4, April 1997
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which restores the path-independence of the exchange-only potential. Though this cor
removes then one difficulty underlying the Harbola–Sahni approximation,39 Levy and March40

give reasons why such a kinetic correction can generally be expected to be a small addition
Harbola–Sahni term in the exchange-only potential. While the Holas–March result12 for Vxc~r !
has bypassed the functional derivative required to getVxc from an exchange–correlation func
tionalExc for the energy, the price paid is to involve both first- and second-order density mat
Subsequently, Savin,41 and independently Levy and Gorling,42 have expressedEcorr solely in terms
of first-order density matrices. However again there is a price to be paid; one needs the firs
density matrix as a function of the strength of the electron–electron interactionle2/r i j between
electronsi and j , for the coupling parameterl lying between 0 and 1~see also Levyet al.43!.
Clearly, the fundamental foundation of current density functional practice has to be sou
density matrix theory.

X. SUMMARY AND FUTURE DIRECTIONS

We have made use, in the present survey, of the fact that the Bloch equation~2.6! for the
canonical density matrix is exactly solvable in a variety of simple models. These include
electrons in electric and magnetic fields, as well as perturbatively for electrons moving
common potential energyV~r ! which is switched on to initially free itinerant electrons. As well
for this case, electrons localized by their Coulombic repulsions on the sites of a body-cen
cubic Wigner solid are treated as independent Einstein oscillators. Again, the canonical d
matrix for one such charged oscillator in an external magnetic field of arbitrary strength is tr
This model is relevant to magnetically induced Wigner solidification~MIWS! which has been
observed in semiconductor heterojunctions10,11 in such strong magnetic fields. The analog of su
harmonically confined electrons in strong electric fields can also be solved, and is a useful
for plasmas of varying electron density. All the above, in spite of Wigner Coulombic localiza
can be treated using a one-electron Hamiltonian of the form~2.1!. In the penultimate Sec. IX, we
have considered fully interacting electrons from the standpoint of current practice in de
functional theory. In such approaches, the central quantity is the exchange–correlation po
Vxc~r !. Following Holas and March,12 this can be shown to be expressable, without approxi
tion, in terms of first- and second-order density matrices of the fully interacting system plu
reference idempotent Dirac density matrix. If one replaces these interacting density matrices
Holas–March result12 by the noninteracting or reference density matrices generated by the
body potential of density functional theory, then one regains the Harbola–Sahni line in
approximation to the exchange-only potential. Extensive work is evidently now required on
order density matrices, the work of Valdemoroet al.44 and of Nakatsujiet al.45 pointing some new
directions~see also Klein and March46,47!.
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Off-diagonal long range order and superconductive
electrodynamics
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We present a general, model-independent, quantum statistical derivation of super-
conductive electrodynamics from the assumptions of off-diagonal long range order
~ODLRO!, local gauge covariance, and thermodynamic stability. On this basis, we
obtain the Meissner and Josephson effects, the quantization of trapped magnetic
flux, and the metastability of supercurrents. A key to these results is that the mac-
roscopic wave function, specified by the ODLRO condition, enjoys the rigidity
property that London@Superfluids, Vol. 1 ~Wiley, London, 1950!#, envisaged for
the microstate of a superconductor. ©1997 American Institute of Physics.
@S0022-2488~97!00404-0#

I. INTRODUCTION

The object of this article is to provide a model-independent derivation of the electromag
properties of superconductors from their order structure, the essential imput being the assum
of off-diagonal long range order, gauge covariance, and thermodynamic stability. Thus, o
proach to the subject is centered on very general principles, and is therefore at the oppos
from that provided by the computational techniques of many-body theory.

In order to explain the need for such an approach, let us first recall that, in the case of m
superconductivity, the electron pairing hypothesis1,2 has been amply substantiated, at an empir
level, by the measured values of the magnetic flux quantization3 and of the Josephson tunnellin
frequency.4 Furthermore, the widely accepted microscopic theory of superconductivity, devis
Bardeen, Cooper, and Schrieffer~BCS!5 on the basis of this hypothesis, provides an accu
picture of the thermodynamics6–8 of superconductors, especially of their second-order phase
sitions. On the other hand, the electrodynamics of this theory is seriously flawed in that, fi
violates the principle of local gauge covariance,9,10 and consequently does not even admit
precise definition of the local current density; and, secondly, there is no indication that its a
for current-carrying states have the metastability properties11,12 of supercurrents. In fact, the vio
lation of the gauge principle by the BCS theory arises from itstruncation of a fully gauge-
invariant model~Fröhlich’s electron-phonon system13! that retains only the interactions that giv
rise to the electron pairing. Attempts14,15 to remedy the situation by taking some account of
residual interactions have led to derivations of the Meissner effect that are onlyapproximately
gauge covariant. Since exact gauge covariance is required for a consistent electrodynamics
no solution of the problem. As regards ceramic, i.e., highTc , superconductors, the microscop
theory is less developed, and has certainly not led to an electrodynamics, even though
interesting ideas concerning its underlying quantum mechanisms have been proposed,
Refs. 16–21.

Thus, there is a need for a quantum-based gauge covariant electrodynamics of the su
ducting phase. Since, at an empirical level, this electrodynamics has such sharply definedquali-
tative characteristics, common to the vast variety of superconducting materials, a correspo
quantum theory should surely isolate their origins in general, qualitative terms. We remark

a!Electronic mail: G.L.Sewell@qmw.ac.uk
0022-2488/97/38(4)/2053/19/$10.00
2053J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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that the traditional techniques of many-body theory22,23 are unsuited to this purpose, since the
are designed for essentially approximative calculations rather than precise classifications.

In view of these considerations, we have adopted a different approach24–26to superconductive
electrodynamics, based on the hypothesis ofoff-diagonal long range order~ODLRO!, which
encapsulates the qualitative features of the electron pairing in a gauge covariant way. Th
pothesis was proposed by Yang27 as a characterization of the structure of the superconduc
phase, following a similar proposal by Penrose28,29 in connection with the theory of superflui
helium. Formally, the ODLRO condition may be expressed in terms of the relevant quan
matter fieldc by the formulas

lim
uyu→`

@^c~x!c!~x1y!&2F~x!F!~x1y!#50 for bosons, ~1.1a!

and

lim
uyu→`

@^c↑~x1!c↓~x2!c↓
!~x21y!c↑

!~x11y!&2F~x1 ,x2!F
!~x11y,x21y!#50 for fermions,

~1.1b!

where, in both cases,F is a complex-valued function, often termed themacroscopic wave func
tion, such thatF(x1y), orF(x11y,x21y), does not tend to zero asuyu→`. In the bosonic case
ODLRO is simply a generalization of Bose–Einstein condensation28,29 to interacting systems.

We note here that the ODLRO condition is fulfilled not only by the BCS ansatz, but also
of those for ceramic superconductivity,17,19as well as that of Feynman30 for superfluid helium~cf.
Ref. 29!. It is also satisfied in the low-temperature phases of a number of tractable, gauge
riant models, namely the ideal Bose gas,31 the hard sphere Bose fluid on a lattice,32 and, at least at
zero temperature, the Hubbard model withattractive interaction between electrons on the sam
site.33

Our project, then, is to derive the principal electrodynamic properties of superconductors
precisely specified assumptions of ODLRO, gauge covariance, and thermodynamic stabi
fact, progress towards this objective has already been achieved in Refs. 24–26 and 34, whi
provided derivations of the Meissner effect,24 the quantization of trapped magnetic flux,25,34 and
the Josephson effect,25 as well as a sketched approach to the theory of persistent currents.26

The present article will be devoted to a review and further development of this work.
essential aim will be to provide a coherent account of the way in which the electrodynam
superconductors, including the metastabilty of the supercurrents, stems from their order str
We shall keep the mathematics quite simple, formulating the theory within the standard s
quantization framework of condensed matter physics. We remark here that one may put the
theory onto a completely rigorous basis by recasting it, as in Ref. 25, within the framewo
operator algebraic statistical mechanics.

We shall organize the presentation of the theory as follows. We start, in Sec. II, with a ge
formulation of our gauge-covariant model of matter in interaction with a classical magnetic
This formulation covers the cases of both continuous and lattice systems. A key result here
the dynamics of the model, in the presence of a uniform magnetic inductionB, is covariant with
respect to theregauged space translations35,24

c~x!→c~x1a!expS 2 ie~B3a!•x

2\c D , ~1.2!

where a is an arbitrary displacement and the sinusoidal factor arises from the correspo
regauging of the magnetic vector potential.

In Sec. III, we employ this result to derive the Meissner effect, as in Ref. 24. The ess
point is that the formula~1.2! for regauged space translations, together with the assumptio
J. Math. Phys., Vol. 38, No. 4, April 1997
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ODLRO, leads to the conclusion thateitherF or B must vanish. The requirement of thermod
namic stability of the ordered phase then implies that the latter condition prevails, for suffic
weak applied fields. Thus, we have a Meissner effect, since normally diamagnetic system
accommodate nonzero uniform induction. The key to this result is that the macroscopic
function exhibits a rigidity, in the face of the applied field, of the kind envisaged by London36,37

at a more microscopic level. It is worth remarking here that the principle of local gauge co
ance, which was an obstacle to the previous theories, is an essential ingredient of our ar
leading to the Meissner effect!

In Sec. IV, we extend that argument, along the lines of Ref. 34, to derive the quantizat
trapped magnetic flux in multiply-connected systems.

In Sec. V, we formulate the theory of persistent currents in a multiply-connected body,
as a ring. Here, the supercurrents are none other than the currents that implement the M
effect by screening the trapped magnetic flux from the interior of the body,37 and the essentia
problem is that of the stabilization of both the trapped flux and its screening current. In fac
is a problem ofmetastability, since the current-carrying state has higher free energy than th
true thermal equilibrium at the same temperature. Thus, adopting our earlier characterizati12 of
metastable states by thermodynamic stability against strictly local, rather than global, disturb
we formulate the condition for the persistence of currents in terms of a variational principle t
subject to the constraint of the flux quantization. In this way, we characterize the phenome
superconductivity itself, i.e., the persistence of currents, by a relatively simple thermodyn
assumption, together with that of ODLRO. Furthermore, we show that this phenomenon i
mately related to a superselection rule that forbids locally induced transitions between state
different flux quantum numbers.

In Sec. VI, we formulate the Josephson effect and derive its tunneling frequency form
properties of the macroscopic wave function.

We conclude, in Sec. VII, with a brief discussion of open problems of the theory.

II. THE GENERAL MODEL

Our model,S, is an infinitely extended system, consisting of electrons and possibly an
species of particles, e.g., phonons or ions, in a space,X, which may be either a Euclidea
continuum or a lattice. Points inX will usually be denoted byx, sometimes byy, a, or b. We shall
denote the electronic component ofS by Sel , and the other component, if any, byS8. We shall
assume that the dynamics of the model is covariant wrt gauge transformations of both fir
second kind, space translations and time reversals. These assumptions represent general
of quantum mechanics and electromagnetism, and are fulfilled by particular models, such a
of Fröhlich13 and Hubbard,38 on which theories of metallic and high-Tc superconductivity, respec
tively, are based.

For simplicity, we shall generally employ a notation appropriate to the case whereX is a
continuum. This may easily be translated into the corresponding one for lattice case by st
procedures employed in gauge theories.39

We shall describe the electronic subsystemSel in terms of a quantized field,

c5S c1

c21
D[S c↑

c↓
D , ~2.1!

which satisfies the canonical anticommutation relations

@cs~x!, cs8
!

~x8!#15dss8d~x2x8!; @cs~x!, cs8~x8!#150. ~2.2!

We shall sometimes use the symbolc# to denote eitherc or c!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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The observables40 of Sel are formed from the polynomials inc andc! that are invariant unde
gauge transformations of the first kind,c→ceia, with a constant. Thus, they are generat
algebraically by operators of the form

cs1
! ~x1!•••csn

! ~xn!csn11
~xn11!•••cs2n

~x2n!.

We shall be concerned with the properties of the system in the presence of a classica
tromagnetic field (E,B), represented by a scalar potentialf and a vector potential,A: thus,
E52“f2c21]A/]t andB5curlA. We assume that the dynamics of the model is covariant
gauge transformations of the second kind, as given by the formula

A→A1“x, f→f2c21
]x

]t
, c→c expS iex

\c D , ~2.3!

wherex is an arbitrary function of position and time. We assume that the observables repres
the position-dependent densities of electronic charge, current, and magnetic polarization
presence of this field are given by the standard formulas

r52ec!c; j ~x!5
ie

2
„c!¹c2~¹c!!c…1

e

c
Ac!c; and M5

e\

mc
c!sc, ~2.4!

where2e is the electronic charge ands is the spin vector, whose components (s1 ,s2 ,s3) are the
Pauli matrices. We note here thatr, j , andM are invariant wrt all gauge transformations.

We assume that the formal Hamiltonian of the model is of the form

H5E S \“c!1
ie

c
Ac!D •S \¹c2

ie

c
ADdx2E ~B•M1rf!dx1Vel1H int1H8, ~2.5!

whereVel is the potential energy of the interelectronic interactions,H8 is the Hamiltonian forS8,
andH int is the energy of interaction betweenSel andS8. We assume that these three contributio
to H are all independent of the choice of the potentialsf and A, and thus thatH is gauge
invariant. Further, we stipulate that the magnetic interactions between the electrons, whic
from the sourcesj (x) andM (x) according to Maxwell’s equations, are not incorporated i
eitherVel or H int , but are represented by the dependence ofB on these sources~cf. Comment at
the end of this section!. In the theory that follows, we shall confine our considerations to situat
whereB is static,E50, and, except in Sec. VI, we shall take it thatf50 andx is time indepen-
dent.

We shall assume that the dynamics is covariant wrt space translations and time reversa
transformations of the fieldsc andA, corresponding to space translationsa(PX), are given by

A~x!→~x1a!, c~x!→c~x1a!. ~2.6!

The operation of time reversal serves to transformcs , cs
!, andA to c2s

! , c2s , and2A, respec-
tively, and to invert the order of the terms in the operator products. Thus, its effective action o
electronic observables and vector potential is given by

cs1
# ~x1!•••csn

# ~xn!→c2sn
#! ~xn!•••c2sn

#! ~x1!; A→2A. ~2.7!

Specializing now to the case where the magnetic inductionB is uniform and so may be
represented by the vector potentialA(x)5 1

2B3x, and choosingx(x)52 1
2(B3x)•a, we have the

relationA(x)1“x(x)5x(x2a). Hence, by~2.3! and ~2.6!, the dynamics ofS is covariant wrt
the transformation35,24
J. Math. Phys., Vol. 38, No. 4, April 1997
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c~x!→ca~x![c~x1a!expS 2 ie~B3x!•a!

2\c D , A~x!→A~x!, ~2.8!

together with the transformation of theS8-observables corresponding to space translations. S
~2.6! consists of a space translation, compensated by a gauge transformation in such a wa
leaveA unchanged, we term it aregauged space translation.

We denote byQt the time translate, in Heisenberg representation, of an arbitrary observ
Q, of S. A dynamical characterization of thermal equilibrium states of the system at inv
temperatureb is given by the Kubo–Martin–Schwinger~KMS! condition,41,42 i.e.,

^QtQ8&A5^Q8Qt1 i\b&A , ~2.9!

for arbitrary observablesQ andQ8, where the angular brackets denote expectation value and
suffix A indicates its dependence onA. Most importantly, this condition is valid even for infinit
systems,43 where the traditional Gibbs canonical formulation is not directly applicable. In the
whereB is uniform, the covariance of the dynamics wrt regauged space translations ensur
the model supports equilibrium states that are invariant under these translations.

Turning now to the thermodynamics of the model, we definef (B,T) to be its global free
energy density at temperatureT, under the action of the uniform induction,B. This function can
be formulated by standard statistical mechanical methods44 in terms of the microscopic descriptio
of S, with B taken to be a given control variable.

On the other hand, this induction isnot given,a priori, in the physical situation whereS is
subjected to a magnetic field,Hex , due to a fixed source of current densityJex . For, in this
situation, the induction,B, and the equilibrium state ofS codetermine one another.

To formulate the thermodynamics ofS under these conditions, we have to incorporate
energy of the field,B, and of its interaction with the source,Jex , into the picture. Thus, we hav
to consider the system under consideration to comprise the composite,S̃, of S and the fieldB. The
contribution to the internal energy ofS̃ due to the induction,B, and its coupling to the source i
then

E S 12 B22c21A•JexDdx,
and, in view of the Maxwell equation curlHex5c21Jex , this reduces to

E S 12 B22Hex•BDdx. ~2.10!

Thus, in the case whereB andHex are uniform, the free energy density ofS̃ is

f~B,T,Hex!5 f ~B,T!1 1
2B

22B•Hex . ~2.11!

The equilibrium value ofB, corresponding to givenHex andT, is then obtained by minimizingf,
and the resultant Gibbs free energy density is

f̃ ~Hex ,T!5minBf~B,T,Hex!. ~2.12!

Comment:This formulation of the thermodynamics ofS̃ is, of course, semiclassical, since th
field B is treated as classical. In this picture, the field energy~2.10! stems from the magnetic
interactions of the currents and spins inS both with one another and with the external source. F
a discussion of the problem of a fully quantum formulation, see Ref. 25, Sec. 4.
J. Math. Phys., Vol. 38, No. 4, April 1997
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III. ODLRO AND THE MEISSNER EFFECT

In order to formulate ODLRO, we introduce thepair field

C~x1 ,x2!5c↑~x1!c↓~x2!. ~3.1!

We then say that a state ofS possesses the property of ODLRO if there is aclassicaltwo-point
field F(x1 ,x2) such that27

lim
uyu→`

@^C~x1 ,x2!C
!~x181y,x281y!&A2F~x1 ,x2!F

!~x181y,x281y!#50, ~3.2!

and, further,F(x11y,x21y), does not tend to zero asuyu→`. In this case,F is termed the
macroscopic wave functionof the state.

Note: Although C is not an observable, in the sense specified in Sec. II, the quanti
angular brackets in the ODLRO condition~3.2! is.

In order to relate ODLRO to superconductive electrodynamics, we note that the ess
distinction between normal diamagnetism and the Meissner effect is thatthe former can support a
uniform, static, nonzero magnetic induction and the latter cannot. Thus, we base our derivation o
the Meissner effect on considerations of the response of a state possessing ODLRO to the
of a uniform magnetic field.

The following two Propositions, which we shall prove at the end of this section, provid
with the key to the relationship between ODLRO and the electromagnetic properties of our m

Proposition 3.1: ~1! The ODLRO condition~3.2! defines the macroscopic wave functionF,
up to a phase factor, i.e., ifF1 andF2 are two such functions which satisfy this condition for t
same state, thenF15eiaF2 , wherea is some real constant.

(2) In the case where A50 and where the state is invariant with respect to time reversals,
functionF is real valued, up to a constant phase factor.

Proposition 3.2: If the system is in a translationally invariant state possessing the prope
ODLRO, then

(1) in the case where X is a continuum, the magnetic induction B vanishes, and
(2) in the case where X is a lattice, B is restricted to the discrete set of values$B(n)%, given by

the condition that B~n!
•~a3b) is an integral multiple ofpe/hc, for any a, b in X. Thus, the

vectorsB~n! are the sites of an associated lattice,B, defined by this condition.
Comments:~1! Proposition 3.2 demonstrates that, in the continuum case, translational

variant ~including equilibrium! states with ODLRO do not admit uniform magnetic fields, i.
they exhibit the Meissner effect.

~2! In the case whereX is a lattice, this conclusion must be modified by the possibility t
ODLRO might be compatible with a nonzero quantized inductionB(n).

~3! The question of whether ODLRO, with or without the quantized magnetic inductionB(n),
prevails is a thermodynamic one.

~4! The removal of ODLRO by even infinitessimal changes inB from the value 0 or, in the
lattice case,B(n) suggests the advent of a phase transition.

~5! In the case of lattice systems, the nonzeroB(n)’s are of the order of\c/el2, wherel is the
spacing of the latticeX. Thus, for typical values ofl , e.g., 1028 cm, they are of the order of 109

G, which is not only many orders of magnitude larger than any known critical fields for su
conductors, but also much larger than the internal fields in ferromagnets.

We base our treatment of the thermodynamics and phase structure of the system, w
evidently needed in view of Comment~3!, on the following assumptions.

~III.1! ~a! The equilibrium state ofS corresponding to any given~A,T! is unique and therefore
translationally invariant.

(b) Similarly, the equilibrium state ofS̃ corresponding to given~Hex ,T! is unique and trans-
lationally invariant.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Note: This assumption precludes the applicability of our treatment to the mixed phase o
II superconductors, since this breaks the space translational symmetry of the system.

The next assumption, prompted by the above Comment~5!, excludes ODLRO states with
nonzero quantized inductionB(n) from the theory, and thus puts the results of Proposition 3.2
continuous and lattice systems onto the same footing.

~III.2! Even in the case of lattice systems, the equilibrium states ofS̃ that possess the propert
of ODLRO carry no magnetic induction.

The next assumption follows the line suggested by the above Comment~4!.
~III.3! (a) For B50, the systemS undergoes a phase transition at a temperature Tc , such that,

for T,Tc only, it exhibits the property of ODLRO.
(b) For BÞ0, on the other hand, the thermodynamic potential f~B,T! of the model is a smooth

function of both its arguments, which tends to a definite limit as B→0.
In view of ~III.2! and ~III.3!, we define the free energy densities ofS for the ODLRO and

normal phases at temperatures belowTc to be

f O~T!5 f ~0,T! ~3.3!

and

fN ~B,T!5 f ~B,T! for BÞ0, ~3.4!

respectively. Correspondingly, in view of Eqs.~2.11!, ~2.12!, and ~3.5!, we define the Gibbs
potential f̃N for the normal phase ofS̃ by the formula

f̃N ~Hex ,T!5minB„fN ~B,T!1 1
2B

22Hex•B…. ~3.5!

We note that, by~III.3b!, the potentialfN may be extended toB50 by continuity, according to
the formula

fN ~0,T!5 lim
B→0

fN ~B,T!. ~3.6!

Our next assumption serves to relate the phase structure of the partial systemS to that ofS̃.
~III.4! For T,Tc and Hex50, the equilibrium state ofS̃ possesses ODLRO.
This is equivalent to the demand that

f O~T!, fN ~B,T!1 1
2B

2 for T,Tc , BÞ0,

and implies, by Eqs.~3.4!–~3.6!, that

fO~T!< f̃N ~0,T! for T,Tc . ~3.7!

Our final assumption concerning the systemS̃ is the following, whose basis we shall discu
below.

~III.5! (a) The strict inequality prevails in the condition (3.7), i.e.,

fO~T!, f̃N ~0,T! for T,Tc . ~3.8!

(b) The potential f˜N ~Hex,T! is continuous in both its arguments.
Here,~III.5a! is based on the idea that the radical difference in structure between the OD

and normal phases atT,Tc , Hex50 should correspond to a difference between their Gi
potentials, as in phase transitions of the first kind.45,46 ~III.5b!, on the other hand, represents t
assumption that there are no subphase transitions within the normal phase forT,Tc .

It follows immediately from assumptions~III.5! that, forT,Tc and uHexu sufficiently small,
J. Math. Phys., Vol. 38, No. 4, April 1997
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f O~0,T!, f̃N ~Hex ,T!,

and hence, by Eq.~3.5!,

fO~0,T!, fN ~B,T!1 1
2B

22Hex•B ;T,Tc , BÞ0. ~3.9!

This signifies that the equilibrium state enjoys the property of ODLRO and is induction-fre
other words, we have the Meissner effect. We summarize this result as follows.

Proposition 3.3: Under the above assumptions, and for T,Tc and uHexu less than some
critical value,Hc(T), the equilibrium state of the systemS̃ has the property of ODLRO and
carries no magnetic induction. Thus, it exhibits the Meissner effect.

Comments: ~1! This result stems from the stability ODLRO against applied magnetic fie
and corresponds to a rigidity of the macroscopic wave function similar to that envisage
London36 for the microstate of the system.

~2! In general, whenB andHex might not be uniform, the quantum statistics ofS still yields
a constitutive equation for the position-dependent current density,J(x), of the form

J~x![^ j ~x!&A5F~A,x!, ~3.10!

where the functionalF satisfies the gauge invariance condition

F~A,x!5F~A1“x;x!. ~3.11!

~3! According to the London theory,37 the essential difference between a Meissner effect
a normal diamagnetism may be simply expressed in terms of the linearized form,F lin , of F as
follows. For the Meissner effect,F lin is proportional to the transversely gauged vector potentialAtr
in the large scale limit; while for normal magnetism it is proportional to¹2Atr ~52curlB! in this
limit.

~4! The relation between the critical field,Hc(T), and the thermodynamic potentials of th
model takes a particularly simple form in the case where the magnetic susceptibility is neg
in the normal phase, e.g., in type I metallic superconductors. For, in this case,fN (B,T) may be
equated withfN (0,T)[ fN (T). Hence, the condition~3.9! for the Meissner effect reduces to th
form

f O~T!, fN ~T!2 1
2Hex

2 ,

and, consequently, the critical field,Hc is given by the standard formula37

Hc~T!5„fN ~T!2 f O~T!…1/2. ~3.12!

We shall conclude this section with the proofs of Propositions 3.1 and 3.2.
Proof of Proposition 3.1:~1! Assuming thatF1 andF2 both satisfy the ODLRO condition

~3.2!, it follows from that equation that

lim
uyu→`

@F1~x1 ,x2!F1
!~x181y,x281y!2F2~x1 ,x2!F2

!~x181y,x281y!#50. ~3.13!

Since this is valid for allx1 , x2 , x18 , x28 P X, we may replacex1 andx2 here by arbitrary points
x19 andx29 , thereby obtaining

lim
uyu→`

@F1~x19 ,x29!F1
!~x181y,x281y!2F2~x19 ,x29!F2

!~x181y,x281y!#50. ~3.14!
J. Math. Phys., Vol. 38, No. 4, April 1997
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On multiplying ~3.13! by F2(x19 ,x29) and~3.14! by F2(x1 ,x2), and then taking the difference, w
see that

lim
uyu→`

F1
!~x181y,x281y!@F1~x1 ,x2!F2!~x19 ,x29!2F1~x19 ,x29!F2~x1 ,x2!]50.

Since, by the definition of ODLRO,F does not tend to zero at infinity, it follows that the quant
in the square brackets of this last equation vanishes. Therefore, asF1 andF2 are nonzero, by the
same stipulation,

F2~x1 ,x2!5cF1~x1 ,x2!;x1 ,x2PX,

wherec is a complex-valued constant. Consequently, asF1 andF2 both satisfy~3.2!, it follows
immediately thatc is just a constant phase factor exp(ia), as required.

~2! Assuming now that the state is invariant under time reversals and thatA50, it follows
from Eqs.~2.2! and ~2.7! that, if F satisfies the ODLRO condition~3.2!, then so too doesF!.
Hence, by part~1! of this Proposition,F!5exp(ia)F, wherea is a real-valued constant. In othe
words, the functionF exp(ia/2), is real valued, and this is the required result.

Proof of Proposition 3.2: Let Ca[g(a)C be the transform ofC under the regauged spac
translation~2.8!. Then, by Eq.~3.1!,

Ca~x1 ,x2![„g~a!C…~x1 ,x2!5C~x11a,x21a!expS 2 ie„B3~x11x2!…•a

2\c D . ~3.15!

It follows immediately from this formula that the transformations$g(a)uaPX% do not all inter-
commute and that, in fact,

g~2a2b!@g~a!g~b!2g~b!g~a!#52i sinS e~B3a!•b

\c D . ~3.16!

We now note that, by the regauged translational invariance of the equilibrium state,

^Ca~x1 ,x2!Ca
!~x18 ,x28!&A[^C~x1 ,x2!C

!~x18 ,x28!&A . ~3.17!

Further, it follows from~3.15!, ~3.17!, and the ODLRO condition~3.2! that

lim
y→`

@^C~x1 ,x2!C
!~x181y,x281y!&A2Fa~x1 ,x2!Fa

!~x181y,x281y!#50, ~3.18!

where

Fa[g~a!F, ~3.19!

with g defined as in~3.15!. Since Eqs.~3.2! and ~3.17! imply thatFa , as well asF, serves as a
macroscopic wave function for the equilibrium state, it follows from Proposition 3.1~1! that
Fa[g(a)F5c(a)F, wherec(a) is a complex number of unit modulus. As this is valid for a
spatial displacementsa, it follows that

g~a!g~b!F5g~b!g~a!F5c~a!c~b!F;a,bPX,

and therefore, by~3.16!,

sinS eB•~a3b!

\c DF50;a,bPX.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Consequently, sinceFÞ0, by the assumption of ODLRO,

sinS eB•~a3b!

\c D50;a,bPX,

which is equivalent to the required result.

IV. FLUX QUANTIZATION

We now consider now the situation where a cylindrical regionG(,X) is removed from the
body ofS, so that the system occupies the complementary regionX85X2G. We assume that, fo
T,Tc , the system exhibits ODLRO and the Meissner effect, and that the constitutive equ
~3.10! remains unchanged, except possibly for inessential modifications due to the new bou
conditions. Thus, a sufficiently weak magnetic field in the tunnelG will be screened from the body
of the system by currents in a ‘‘surface layer,’’ and magnetic flux will be trapped inG and that
layer.

We shall derive the quantization rule for this trapped flux,F , by an adaptation of the argu
ment of Ref. 34, from general properties of the macroscopic wave functionF that stem from
gauge covariance, symmetry, and topology. This argument will be centered exclusively o
properties of the model in the asymptotic region, far from the tunnel, where the magnetic i
tion can be taken to be zero and where we shall assume that translational covariance p
Thus, although we shall not keep repeating the point, the properties we invoke here will
asymptotic ones, which become exact only in a limit where the regions in question are infi
far from the tunnel.

Suppose now thatC is a closed loop inX8, in the deep interior of the body, that encircles t
tunnelG. Then it follows immediately from the above specifications and Stokes’s theorem t

E
C
A•ds5F . ~4.1!

Thus, as in the Aharonov–Bohm effect,47 the magnetic vector potential survives, with nontrivi
circulation, even in the field-free region.

On the other hand, ifC8 is a loop in the asymptotic field-free region that does not encircle
tunnel, then, by Stokes’s theorem,

E
C8
A•ds50. ~4.2!

We now use this formula to obtain an asymptotic covariance wrt certain regauged space t
tions, similar to those given by Eq.~2.8!. To this end, we chooseC8 to be the parallelogram whos
vertices arex2a, x, x1h, andx2a1h. Thus, denoting by*y

zA•dl the integral ofA along the
straight line leading fromy to z, we see from Eq.~4.2! that

S E
x2a

x

1E
x

x1h

1E
x1h

x1a1h

1E
x1a1h

x2a DA•dl50.

Hence, defining

ua~x!5E
x2a

x

A•dl, ~4.3!

we obtain the formula
J. Math. Phys., Vol. 38, No. 4, April 1997
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ua~x1h!2ua~x!5S E
x

x1h

2E
x2a

x2a1hDA•dl,
from which it follows, on applying the gradient operator wrth, at h50, that

“ua~x!5A~x2a!2A~x!. ~4.4!

We now invoke the covariance of the model wrt the gauge transformation~2.3!, and observe that
in view of Eq. ~4.4!, this reduces to the following form whenx is chosen to beua :

A~x!→A~x2a!; c~x!→c~x!expS ieua~x!

\c D . ~4.5!

Thus, the dynamics is covariant wrt this transformation in the asymptotic field-free region.
We also assume that it is covariant there wrt space translations

A~x!→A~x1a!; c~x!→c~x1a!. ~4.6!

On combining this with the gauge transformation~4.5!, we obtain theregauged space translation
@cf. Eq. ~2.8!#

A~x!→A~x!; c~x!→c~x1a!expS ieua~x1a!

\c D . ~4.7!

Thus, the dynamics is~asymptotically! covariant wrt these regauged translations. Correspo
ingly, assuming uniqueness of the equilibrium state for given (A,T), as in Sec. III@cf. assumption
~III.1!#, the expectation value ofC(x1 ,x2)C

!(x18 ,x28) becomes~asymptotically! invariant under
this transformation. Hence, defining

Fa~x1 ,x2!5F~x11a,x21a!expS i „ua~x11a!1ua~x21a!…

\c D , ~4.8!

it follows from Eqs.~3.1!, ~4.7!, and~4.8! that the ODLRO condition~3.2! remains valid whenF
is replaced isFa . Consequently, by Proposition 3.1~1!, Fa5exp„ih(a)…F, for somea-dependent
phase angle,h(a), i.e., by Eqs.~4.3! and ~4.8!,

F~x11a,x21a!5eih~a!F~x1,x2!expX2 ie

\c S E
x1

x11a

1E
x2

x21aDA•dlC. ~4.9!

Now let a0(50), a1 , a2 ,...,an be a sequence of displacements whose sum is zero, and letC(x)
be the closed contour formed from the lines joiningx1a01 1ar21 to x1a01 1ar , for r51 to
n. For each pair of pointsx1 andx2 , we choose thears so that the contoursC(x1) andC(x2) lie
in the asymptotic field-free region and encircle the tunnel,G. Thus, by Eq.~4.1!,

E
C~xj !

A•dl5F , for j51,2.

It follows now from these specifications and that the application of Eq.~4.9! to the succession o
spatial displacements bya1 ,...,an leads to the formula

F~x1 ,x2!5F~x1 ,x2!expXi S 2eF\c
1h D C,
J. Math. Phys., Vol. 38, No. 4, April 1997
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whereh5h(a1)1•••1h(an). Hence

expXi S 2eF\c
1h D C51. ~4.10!

Furthermore,34 on replacingx1 andx2 by pointsy1 andy2 , which are chosen so that the contou
C(y1) andC(y2) do not encircleG, we are led by the same argument to the formula

exp~ ih!51.

Consequently, by Eq.~4.10!, exp~2ir F /\c!51. This immediately implies the following resul
which accords with the experiment of Deaver and Fairbank.3

Proposition 4.1: Under the above assumptions, the trapped flux, F , is quantized in integral
multiples of nhc/2e.

V. SUPERCURRENTS AND SUPERSELECTION RULES

The phenomenon of superconductivity itself is that of the persistence of currents induce
ring, in the absence of any applied electric field. According to the London macroscopic the37

this phenomenon is intimately connected to the Meissner effect. Specifically, the supercurre
the source of a magnetic field, which they themselves screen from the interior of the body.
the currents and magnetic field stabilize one another. Further, it is clear that the superc
carrying states must bemetastable, rather than absolutely stable, since both the currents and
magnetic field carry positive energy.

Our objective now is to provide a quantum mechanical basis for the above phenomeno
picture. We base our considerations on the quantum mechanics of a system occupying a m
connected region, e.g., with the topology of a torus. For simplicity, we employ the model o
Sec. IV and, as in Secs. II and III, we shall denote byS̃ the system comprising the matter,S, and
the magnetic induction,B.

So again we consider the state of the system in which magnetic induction is trapped
tunnel,G, and a ‘‘surface region’’ of the matter. The supercurrents are then the surface cu
that implement the Meissner effect by screening the induction out of the deep interior of the
Our objective now is to investigate the stability properties of the trapped magnetic flux an
associated supercurrents, corresponding to the flux quantum numbern(Þ0), as given by the
formula

E
S
B•dS5nhc/2e, ~5.1!

whereS is a surface orthogonal to the generators of the tunnelG.
We start by noting that since, by Eq.~2.4!, the densities of charge, current, and polarizat

are fully gauge invariant, their expectation values in the equilibrium state ofS corresponding to
(A,T) are functionals of the inductionB, as defined throughout the spaceX, and not merely ofA.
Thus, we have constitutive equations of the form

P~x![^r~x!&A5P ~B;x!, ~5.2!

J~x![^ j ~x!&A5J ~B;x!, ~5.3!

and

M̄ ~x![^M ~x!&A5M~B;x!. ~5.4!
J. Math. Phys., Vol. 38, No. 4, April 1997
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These equations apply, of course, only to pointsx in the matter. We extend the definitions of th
functionalsP , J , andM to the whole spaceX by the specification that they vanish in the tunn
G. Thus, the magnetic fieldH(x)5B(x)2M(B;x) and inductionB satisfy the Maxwell equations

curl H~x!5c21J ~B;x!; and divB50,

i.e.,

curl B~x!5curlM~B;x!1J ~B;x!; and divB~x!50, ;xPX. ~5.5!

We now make the following assumptions concerning the solution of these equations forB.
~V.1! There is a unique solution, Bn , of Eqs. (5.5) for B, subject to the constraint (5.1) and t

standard conditions on the boundary ofG and infinitely far from this cylinder, where B vanishe
by Meissner effect.

~V.2! For B5Bn, there is a unique equilibrium state ofS, as given by the KMS equilibrium
conditions~2.9!, corresponding to the vector potential An chosen to represent this induction.

It follows now from our specifications that bothJ andB are nonzero in a surface region of th
matter whenB5Bn , for nÞ0, andS is in the corresponding equilibrium state. Thus, the ques
of the persistence of the supercurrent and trapped magnetic field now reduces to that
stability of the state ofS̃ defined by these conditions. Moreover, any such stability must, at m
be a metastability, since the advent of the current and trapped flux ensure that the free en
this state exceeds that of true thermal equilibrium. To be precise, a characterization of the h
grade of metastability corresponds to thermodynamic stability against strictly loca
perturbations,12 as represented by the condition that such perturbations cannot lead to a decr
the free energy of the system. By contrast, true equilbrium corresponds to a global thermody
stability.

Thus, we reduce the problem of the persistence of supercurrents to that of the thermod
stability of the above-described state ofS̃ against local perturbations. To formulate this proble
we define the local perturbations of the induction,Bn , to comprise the set,B, of divergence-free
vector fields,b, such that

~b.1! b(x)50 unlessx lies inside some bounded region,Db , and
~b.2! the fieldb does not change the value of the flux, as given by the lhs of Eq.~5.1!.
In fact, the second condition is redundant if the dimensionality ofX exceeds 2, since then th

divergence-free property ofb implies that*Sb•dS, the flux due tob, is independent of the
particular choice ofS; and therefore, by choosing this surface to lie in the region wherb
vanishes, we see that this integral is zero. On the other hand, ifX is two-dimensional andDb is
just a bounded region of that space, then~b! is equivalent to the condition that

~b.2!8 E
Db

b•dS50.

Further, as we shall prove in the Appendix, the conditions~b.1! and~b.2! imply thatb may be
represented by a vector potentiala that vanishes outside some bounded region.

We formulate the incrementfn(b) in the free energy ofS, corresponding to the perturbatio
of Bn by b, by the following procedure. We first note that it follows from our above specificat
and Eqs.~2.4! and~2.5! that the interaction Hamiltonian of the system due to this perturbatio
the localized observable

K5E
X8

S 2c21 j •a1
1

2
c22ra22M•bDdx, ~5.6!
J. Math. Phys., Vol. 38, No. 4, April 1997
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where j , r, andM are as defined forA5An . The corresponding interaction Hamiltonian for th
perturbative fieldlb, with l real, is therefore

K~l!5E
X8

S 2lc21 j •a1
1

2
l2c22ra22lM •bDdx. ~5.7!

We now invoke the fact that, by classical thermodynamics, the increment in free energy
system, due to an infinitesimal changeDH in its Hamiltonian, is given by the equilibrium expec
tation value ofDH. In the present situation, this implies that the change in free energy ofS due
to an infinitesimal increment incrementdl in the parameterl of Eq. ~5.7! is

^K8~l!&An1la dl, ~5.8!

where

K8~l!5E ~2c21 j •a1lc22ra22M•b!dx. ~5.9!

Thus, by~5.8!, the incremental free energy, due to the perturbationb of the magnetic induction
Bn , is

fn~b!5E
0

1

^K8~l!&An1la dl. ~5.10!

The corresponding increment in the free energy ofS̃ is therefore

f̃n~b!5fn~b!1E
X
S b•Bn1

1

2
b2Ddx, ~5.11!

the integral being the contribution due to the magnetic field energy.
We now recall that,12 for fixed A, the KMS condition~2.9! ensures that the free energy ofS

cannot be reduced by any localized modification of its equilibrium state. Hence, by Eq.~5.11!, the
condition for metastability of the state ofS̃, in which B5Bn andS satisfies the correspondin
KMS condition, is thatf̃n is minimized atb50. In fact, it is a simple matter to infer from ou
constructions thatf̃n is stationary atb50. For, by Eqs.~5.2!–~5.4! and ~5.9!–~5.11!, together
with the stipulation thatJ andM vanish in the tunnel,

]

]l
fn~lb! ul5052E

X
„c21J ~Bn ;x!•a~x!1M~Bn ;x!•b~x!…dx.

Consequently, by Eq.~5.11!,

]

]l
f̃n~lb! ul505E

X
„Bn~x!•b~x!2M~Bn ,x!•b~x!2c21J ~Bn ,x!•a~x!…dx.

Sinceb5curl a and*X a•curlJ[*XJ•curl a, it follows from Eq. ~5.5! that the rhs of this last
equation vanishes. Hence, we have the following result.

Proposition 5.1: Under the above assumptions, the incremental free energy functionf̃n is
stationary at b50, i.e.,

]

]l
f̃n~lb! ul5050 ;bPB.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Comment:The problem of the metastability of the current-carrying stater̃n now reduces to
the question of whether the stationary pointb50 corresponds to a minimum off̃n . In fact,

12 this
state will be metastable if and only if the following assumption is valid.

~V.3! The stationary point off̃n , at b50, corresponds to either
(a) an absolute minimum, in which case the lifetime of the above-described current-ca

state is infinite; or
(b) a local minimum, surrounded by maxima in such a way that the activation energy req

for escape is sufficiently large by comparison with kBoltzmannT to ensure that the state has a
enormously long lifetime.

Thus, the basic problem concerning the metastability of supercurrents, i.e., ofsuperconduc-
tivity, is that of determining which of these alternatives prevails. We remark here that a s
problem was addressed in Ref. 12, Sec. 5, where we proved that, in the absence of a m
field, persistent translationally invariant states satisfying the KMS conditions could not ca
current. In the present different context, the corresponding result would be thatf̃n could not
support an absolute minimum atb50, which would mean that only the second alternative of~V.3!
could be viable.

We may gain another perspective of this picture by relating the metastability of the supe
ductive phase to asuperselection rule, forbidding transitions between states with different fl
quantum numbers. To this end, we note that, in the asymptotic field-free region,An is the gradient
of a scalar potential,xn . Further, by Eq.~4.1! and Proposition 4.1, this potential is many value
its change over a contour passing once round the tunnel being

@xn#5nhc/2e. ~5.12!

Furthermore, since a reversal of the magnetic field in the tunnel corresponds to a reversa
quantum numbern, we see that

x2n52xn . ~5.13!

We now observe that, by the quantization rule~5.12!, exp(2iexn/\c) is a single-valued function
of position, even though, forn odd, exp(iexn/\c) is not. Thus, by gauge covariance of the seco
kind, the dynamics of the model is covariant wrt the transformation

A→A12“xn ; c→c exp~2iexn /\c!. ~5.14!

Hence, by Eqs.~3.1! and ~3.2!, the macroscopic wave function,FA , corresponding to the vecto
potentialA, satisfies the condition

FA12“xn
~x1 ,x2!5FA~x1 ,x2!expS 2ie\c

„xn~x1!1xn~x2!…D .
Consequently, choosingA52“xn[2An , and denotingFAn

by Fn , it follows from Eq. ~5.13!
that

F2n~x1 ,x2!5Fn~x1 ,x2!expS 2ie\c
„xn~x1!1xn~x2!…D . ~5.15!

On the other hand, the assumption of covariance wrt time reversals implies, by Eqs.~2.2!, ~2.7!,
~3.1!, and~3.2!, that

Fn
!5F2n . ~5.16!

On combining these last two equations, we obtain the following result.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Proposition 5.2: Assuming covariance wrt gauge transformations and time reversals
phase of the macroscopic wave functionFn in the asymptotic field-free region is given by

arg„Fn~x1 ,x2!…5
2e

\c
„xn~x1!1xn~x2!…. ~5.17!

Comment: In view of Eq. ~5.12!, this result implies that the equilibrium states correspond
to the different flux quantum numbersn are globally, i.e., macroscopically, different from one
another, and thus that there is asuperselection rule48,49 that forbids transitions between them v
the agency of localized operations. Consequently, the allowable states of the model fa
superselection sectors, indicated by the quantum numbern, and the metastability property of~V.3!
pertains to each of these sectors.

VI. THE JOSEPHSON EFFECT

Suppose now that two superconductors, whose potential difference isDV, are separated by a
insulating film. The Josephson effect4 is that, in this situation, a current of frequency 2eDV/h
flows across the insulating barrier. Our aim here is to derive this frequency from simple ge
properties of the macroscopic wave functions of the superconductors.

Our model,S, now consists of the two superconductors,S1 andS2, and an insulating film,I ,
which occupy disjoint spatial regionsX1 , X2 , andW, respectively, whose union,X, is either a
Euclidean space or a lattice, as in previous sections. We assume thatW is sandwiched betweenX1
and X2 , and that its boundaries with these regions are parallel planes. We note here th
generalization of the model to the form whereX1 , X2 , andW have different crystallographic
structures presents no serious problems.

We describe the electronic part of thewhole systemS, as before, in terms of the wave operat
c and the pair fieldC. Again, we assume that the system exhibits ODLRO at temperatures b
a certain critical point, and we denote the macroscopic wave function byF. We defineF1 andF2
to be the restrictions ofF the regionsX1 andX2 , respectively, i.e.,

F j~x,x8!5F~x,x8! for x,x8PXj , j51,2.

We now introduce an assumption to the effect that

~a! at large distances from their boundaries withI , the properties of the subsystemsS1 andS2
reduce asymptotically to the form they would have when isolated; and

~b! in this latter situation, each of them satisfies the conditions of Proposition 3.1.

Thus, in view of the second part of that Proposition, the assumption is the following.
~VI.1! The asymptotic forms ofF1 andF2 are given by

F j~x,x8!5F j
~0!~x,x8!exp~ ih j ! for j51,2, ~6.1!

whereF1
(0), F2

(0), h1, and h2 are real, and the latter two quantities are independent of
positions x and x8.

Comments:~1! The anglesh1 andh2 are not necessarily equal here, since the translatio
invariance condition of Proposition 3.1~2! is no longer applicable. We define

h5h12h2 . ~6.2!

~2! Since equilibrium cannot be maintained when the superconductors are held at dif
potentials, the anglesh, h1, andh2 might be time dependent.

In order to consider the possible significance of any time dependence of these phases,
note that, in the case of asinglesuperconductor, as represented by the model of Secs. II an
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e

ve

e led to

alue

phase

,
cs. II
, in the
ent

gle-

diate

poten-

sted
the
ld-

ercon-
ynamic

2069Geoffrey L. Sewell: OLDRO and superconductive electrodynamics

¬¬¬¬¬¬¬¬¬¬
it follows from Eq. ~2.3! that the system is covariant wrt the gauge transformationf→f1V,
c→f exp(2 ieVt/\), A→A, with V constant. Hence, puttingf50, we see that the raising of th
electric potential byV serves to change the time translates,c t andC t of c andC by the factors
exp(2 ieVt/\) and exp(22ieVt/\), respectively. On combining this observation with the abo
assumption that, in the compound system,S, the local properties of the deep interiors ofS1 andS2
reduce asymptotically to the form they have when these subsystems are uncoupled, we ar
assume the following.

~VI.2! For xj ,xj8 P Xj ( j51,2), the asymptotic form of the time-dependent expectation v
of C(x1 ,x18)C

!(x2 ,x28) carries a time dependence, given by the factorexp(2ieDVt/\), where

DV5V12V2 . ~6.3!

The following Proposition is now a simple consequence of assumptions~VI.1! and ~VI.2!,
Proposition 3.2, and Eqs.~3.2! and ~6.2!.

Proposition 6.1: Under the assumptions of (VI.1) and (VI.2), the time dependence of
differenceh is given by

h5h01
2eDV

\
t, ~6.4!

whereh0 is a constant.
This result tells us that, in the case of the present compound system, the phases ofF in the

deep interiors of the regionsX1 andX2 differ by the time-dependent angleh, whereas, by contrast
Proposition 3.1~2! implies that, in the equilibrium states of the homogeneous system of Se
and III, the phase angle of the macroscopic wave function is a constant. This suggests that
present nonequilibrium situation,h represents the thermodynamic driving force of the curr
across the insulating film, as proposed originally by Josephson.4 Thus, we make the following
further assumption.

~VI.3! The phase differenceh generates a current across the insulating film, whose (sin
valued) density is of the form

J5F~h!. ~6.5!

Further, since Eq. (6.1) implies the invariance ofFj under the transformationh j→h j12p, the
function F satisfies the periodicity condition

F~h![F~h12p!. ~6.6!

The following Proposition, which corresponds to the Josephson effect, is now an imme
consequence of Eqs.~6.4!–~6.6!.

Proposition 6.2: Under the above assumptions, the frequency of the current due to the
tial differenceDV is 2eDV/h.

Comment:The derivation of this result from ODLRO and gauge covariance may be contra
with both the original one of Josephson,4 based on the Ginzburg–Landau model, and also with
subsequent one obtained by Rieckers50 based on a fully microscopic treatment of a mean-fie
theoretic model, which, however, violated gauge covariance of the second kind.

VII. CONCLUDING REMARKS

The theory presented here provides a general derivation of the electrodynamics of sup
ductors from assumptions of off-diagonal long range order, gauge covariance, and thermod
stability. In our view, the outstanding general problems are the following:

~1! The substantiation of our assumptions for concrete models.
J. Math. Phys., Vol. 38, No. 4, April 1997
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~2! The extension of our treatment to type II superconductors.
~3! The precise characterization of the metastability of supercurrents, within the terms of S

This amounts to the determination of which, if either, of the two alternatives propose
assumption~V.3! prevails.

~4! The reformulation of the whole theory on a fully quantum basis, i.e., with the electromag
field as well as the matter treated quantum mechanically. An indication of how this mig
achieved has been given in Ref. 25, Sec. 4.
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APPENDIX: CONSEQUENCE OF ASSUMPTIONS (b1) AND (b2)

Our aim here is to show that, under the conditions~b.1! and~b.2! of Sec. V, the perturbative
inductionb may be represented by a vector potential,a, that vanishes in the regionDb

(c), exterior
to the bounded domainDb .

Suppose, then, thata8, is a vector potential that representsb, i.e., that satisfies the equatio
b5curl a8, and thatx0 is some chosen reference point inDb

(c). Then, forxPDb
(c), we construct a

curve,C, leading fromx0 to x in Db
(c), and define

x~x!5E
C
a8 •dl. ~A1!

To show that this function is independent of the choice ofC, we note that, ifC8 is another curve
joining x0 to x in Db

(c), then

S E
C

2E
C8

D a•dl5E
s
b•dS, ~A2!

whereS is a closed surface bounded byC andC8. In the case where the dimensionality ofX is
greater than 2, we may chooseS so that it does not intersectDb , thereby ensuring that the rhs o
~A2! vanishes. In the two-dimensional case, on the other hand, there is the possibility th
closed curve formed byC and 2C8 loops roundDb , in which case the rhs of~A2! is
*Db

b • dS, which vanishes, by~b.2!8. Hence, in all cases, the functionx, defined by Eq.~A2!, does
not depend on the choice of the curveC. It is therefore a simple consequence of that formula th
outside the regionDb ,

A5“x.

Hence, on extendingx by continuity to a differentiable function on the whole ofX and defining

a5a82“x,

we see that curla5b and thata vanishes outside the bounded regionDb . Thus, the potentiala
meets all our requirements.

1M. R. Schafroth, Phys. Rev.100, 463 ~1955!.
2L. N. Cooper, Phys. Rev.104, 1189~1956!.
3B. Deaver and W. M. Fairbank, Phys. Rev. Lett.7, 43 ~1961!.
4B. Josephson, Rev. Mod. Phys.36, 216 ~1964!.
5J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.108, 1175~1957!.
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



is model

i.

ectron

2071Geoffrey L. Sewell: OLDRO and superconductive electrodynamics

¬¬¬¬¬¬¬¬¬¬
6See Refs. 7 and 8 for treatments of the thermodynamics of the BCS model. Note that again, in these works, th
is globally, butnot locally, gauge invariant.

7N. N. Bogoubov, Physica26, S1 ~1960!; N. N. Bogolubov, Jr., Physica32, 993 ~1966!.
8W. Thirring and A. Wehrl, Commun. Math. Phys.4, 303 ~1967!; W. Thirring, Commun. Math. Phys.7, 181 ~1968!.
9M. R. Schafroth, Phys. Rev.111, 72 ~1958!.
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Accuracy of the Hartree–Fock approximation
for the Hubbard model
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A lower bound 0>„Egs(n)2Ehf(n)…/uLu>2const@n2/3U4/3~uln Uu11)
1Un1/2uLu21/2d~uln~uLu21/2!u1!# to the difference of the ground state and the
Hartree–Fock energy of the Hubbard model is derived. HereuLu is the lattice size,
U is the coupling parameter, andn is the electron density per site. This estimate
holds for all dimensionsd>2 and all densities. Thus the Hartree–Fock approxi-
mation becomes exact~even beyond terms of orderU! for smallU and largeuLu.
© 1997 American Institute of Physics.@S0022-2488~97!00504-5#

I. INTRODUCTION

The Hubbard model describes electrons on a finite hypercubic latticeL5[2L11,L] dùZd.
We assume periodic boundary conditions, i.e.,L5~Z/2LZ!d. The one-particle Hilbert space con
sists of the spinor-valued functions onL: H5$f :L3$↑,↓%→C%5CuLu

^C2. The Hamiltonian is
usually given in second quantized form

H:5 (
~x,y!PL2

sP$↑,↓%

txycx,s
† cy,s1U (

xPL
nx,↑nx,↓ , U.0. ~1!

It is defined on the Fermion Fock spaceF ~H! overH. We denote the vacuum byV. Vectors of
the formPn51

N cxn ,sn
† V generateF ~H!, wherecx,s

† are the usual Fermion creation operators. T

canonical orthonormal basis~ONB! $dx,sudx,s(y,t)5dxydst , xPL, s5↑,↓%,H may be identi-
fied with the vectorscx,s

† V P F (H). We assume the hopping matrixt to be translational invari-
ant:txy5t(x2y). The operatornx,s 5 cx,s

† cx,s registers an electron with spins at the sitex, so the
second term in~1! describes the Coulomb repulsion of two electrons located at the same site
believed that the Hubbard model describes important features of condensed matter s
namely the competition between the kinetic energy and the Coulomb interaction, in the sim
way. One is interested in the basic properties~spectral data, magnetic ordering, charge transp!
of its ground and Gibbs states. Of special interest for the theory of high-temperature sup
ductors, in which magnetism and superconductivity are intimately related, is the magnetic
ture of these states if the particle number isN5uLu ~half-filling! and away from half-filling
(NÞuLu). In spite of the simplicity of the Hubbard model, only little is known about the magn
structure of its ground state for dimension greater than one andN/uLuÞ1. For this reason, variou
approximations depending on the coupling constant and the densityn5N/uLu have become cus
tomary in the physics literature. Their mathematical justification is far from obvious.

In the present paper we show that the Hartree–Fock~HF! approximation (Ehf) of the ground
state energy (Egs) becomes exact in the weak coupling limit for all particle numbers and
dimensionsd>2.

Theorem: Let t be a translational invariant hopping matrix with finite support, such t
t̂:[2p, p] d→C is a Morse function, and letL be a lattice such thatsupp t,L. Let n:5N/uLu be
the density. If the dimension of the latticeL is d52, then

a!Electronic mail: bach@math.tu-berlin.de
b!Electronic mail: poelchau@math.tu-berlin.de
0022-2488/97/38(4)/2072/12/$10.00
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0 >
Egs~n!2Ehf~n!

uLu
> 2const„n2/3U4/3~ u ln Uu11!1n1/2UuLu21/4

„u ln~ uLu21/2!u11…) ~2!

holds true, and if d>3,

0 >
Egs~n!2Ehf~n!

uLu
> 2const~n2/3U4/31n1/2UuLu21/2d!. ~3!

Note that with our condition of finite support of the hopping matrix the Fourier transformt̂ is
defined independently of the latticeL ~provided it is large enough and contains suppt! and may
thus be viewed as a function on the continuous Brilliouin zone [2p, p] d. We point out that the
dependence of the errors in~2! and ~3! on the lattice sizeuLu is explicit. Thus a limitU→0 is
meaningful even for a sequence of finite lattices, if we requireuLu@U22d/3. Writing the Hubbard
Hamiltonian asH5:T1UW, whereT denotes the kinetic term andUW denotes the interaction
term, it is easily seen that

Ehf~n!5^Fh fuTFh f&1^Fh fuUWFh f&5O~ uLu!1O~UuLu!, ~4!

whereFh f is the HF ground state~see Sec. II!. In the HF approximation the exchange correlatio
are taken into account. The theorem states that for smallU and largeuLu the higher correlations
contribute the small error constn2/3U4/3uln U u at most. To prove the theorem above we use
correlation inequality from Ref. 1, which is a generalization of the one in Ref. 2 that was d
oped for a proof of an analogous statement for atoms and molecules. This type of corre
inequality allows for an estimate of electron pair correlations in terms of single particle quan
An important condition for the applicability of the correlation inequalities is the representabili
the interaction term as a sum~or integral! of projections@see~8!#, which implies the positivity of
the potential and its Fourier transform. Although the correlation estimate itself does not depe
the spatial dimensiond, the lower bound we obtain from its application does. In fact, in the c
of the Hubbard model the density of states~DOS! of the free (U50) model enters~see Sec. III!.
The logarithmic terms in~2! arise from the Van Hove singularities of the DOS. We remark t
our estimates are uniform in the densityn in contrast to the one-dimensional case where o
would have to exclude densities corresponding to critical values of the dispersion relatio~see
Ref. 3, Theorem 3!.

II. HARTREE–FOCK ENERGY AND CORRELATION INEQUALITIES

To formulate and understand the problem of the Hartree–Fock approximation of the g
state energy we introduce some notation, some of which is standard and some is not. For
densityn5N/uLu ~we shall assumen5N/uLu without further notice! theground state energyis
defined by

Egs~n! :5 inf$^CuHC& uCPF ~H!, iCi51, nC5nC%, ~5!

where n5N/uLu is the density operator, and N5 (xPL,scx,s
† cx,s is the number operator. A nor

malized vectorCgsPF ~H! with the properties nCgs5nCgs and^CgsuHCgs&5Egs(n) is called
a ground stateof H. TheHartree–Fock ~HF! energy is defined by

Ehf~n! :5 inf$^FuHF&uFPS DnuLu%, ~6!

where

S DnuLu 5 H F U' f 1 ,...,f nuLuPH, ^ f i u f j&5d i j , F5)
j51

nuLu

c†~ f j !VJ
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is the set of nuLu-particle Slater determinants. A vectorFh fPS DnuLu with the property
Ehf(n)5^Fh fuHFh f& is called aHartree–Fock ground stateof H.

The two main goals in an approximate theory such as HF theory are clearly the follow
~i! Justify the application of the approximate theory.
~ii ! Calculate the HF energy and the properties of the HF ground states. Here we ha

following situation:
~a! At half-filling ( n51) it has been shown4 thatFh f is an antiferromagnetic~AF! insulator

with AF–Nèel order. This result holds for general bipartite lattices. In the translatio
invariant case, which we are considering here, the HF energy is accessible to e
computation, resulting from a BCS equation.

~b! If nÞ1, little is known about the magnetic structure of the HF ground states but
believed that the antiferromagnetic long range order of the HF ground states forn51 is
unstable against the injection of electrons or holes~see Ref. 5!. One of the main tech-
niques of Ref. 4 for a rigorous treatment of this question has been generalized to th
nÞ1 ~see Ref. 6!.

In this paper we are concerned with the first item, and we consider the energy differen

DE~n!:5Egs~n!2Ehf~n!. ~7!

Clearly DE(n)<0. If we want to obtain a lower bound forDE(n) we are confronted with the
problem of minimizing the energy ‘functional’^(•)uH(•)& on two different sets~the normalized
nuLu-particle vectors and thenuLu-particle Slater determinants!. Rewriting the two variational
problems in terms of reduced density matrices clarifies their structural difference, and w
easily derive an explicit expression forDE(n), which we estimate with the help of the correlatio
inequalities. To expressDE(n) explicitly we writeH in standard form:

H5 (
xy,st

hxs,ytcx,s
† cy,t1

1

2 ( Vxs,yt; x̃ s̃ , ỹ t̃ cy,t
† cx,s

† cx̃ ,s̃cỹ , t̃ 5 dG~h!1dG~V!,

wheredG(•) denotes the second quantization of the operatorsh:H→H andV:H^H→H^H.
The kinetic termh is determined by the hopping matrix:h 5 t ^ 1C2. The repulsion termV has the
required decomposition property mentioned above:

V5U (
xPL

Xx^Xx , where Xx5(
s

udxs&^dxsu. ~8!

Note thatXx are orthogonal projections obeying

(
xPL

Xx51. ~9!

To a normalizedCPF we associate an operatorgC onH and an operatorGC onH^H. They
are given by

gC :5(
k;m

^Cuc†~wk!c~wm!C&uwm&^wku,

GC :5 (
k,l ;m,n

^Cuc†~w l !c
†~wk!c~wm!c~wn!C&uwm^ wn&^wk^ w l u,

where$wk%kP$1,..., 2uLu% is some ONB inH. gC is called theone-particle density matrix ~1-pdm!
of C andGC is called thetwo-particle density matrix ~2-pdm! of C. Let us denote by Tr1 and Tr2
J. Math. Phys., Vol. 38, No. 4, April 1997
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the traces overH andH^H, respectively. We recall some general properties of the 1-
2-pdm’s. Both are positive operators: 0< gC 5 gC

† < 1, 0< GC 5 GC
† < Tr2@GC#, and it holds

Tr1@gC#5^CuNC&. If FPSDnuLu is a given Slater determinant, thengF5gF
2 is an orthogonal

projection of rank Tr1@gF#5nuLu. The 2-pdm corresponding toF is given by
GF5~12Ex!~gF^gF!, where Ex:f ^g°g^ f is theexchange operatoronH^H. The proof of
these statements is straightforward.

Let ggs andGgs be the 1- and 2-pdm’s corresponding to a ground stateCgs of H for U.0.
We may rewrite the ground state energy in~5! as

Egs~n!5Tr1@hggs#1
1

2
Tr2@VGgs#.

Additionally the HF energy may be expressed as

Ehf~n! 5 inf$Tr1@hgF#1 1
2 Tr2@VGF# uFPS DnuLu%

5 inf$Tr1@hgF#1 1
2 Tr2@V~12Ex!~gF ^ gF!#5:Eh f~gF! uFPS DnuLu%.

Here Eh f is called the HF energy functional. Now we have worked out the setup to esti
DE(n) explicitly. Let g0 be the 1-pdm corresponding to the ground stateF0 of the free (U50)
model; obviouslyF0 is a Slater determinant. Intuitivelyggs ‘‘converges’’ tog0 if U tends to zero
~ggs is the 1-pdm corresponding to the ground state for finite couplingU.0!. This we are going
to quantify in a weak sense. The first step is the following.

Lemma 1:

DE~n!>
U

2 (
xPL

Tr2@~Xx^Xx!$Ggs2~12Ex!~g0^ g0!%#. ~10!

Proof: We will use two simple facts to estimateDE(n).

Ehf~n! < Tr1@hg0#1 1
2 Tr2@V~12Ex!~g0^ g0!#, ~11!

and

Tr1@hggs#2Tr1@hg0#>0. ~12!

Indeed,~11! follows from insertingF0PS DnuLu into ~6! as a trial state, and~12! is reexpressing
the fact thatF0 is a ground state forU50. Inequalities~11! and ~12! imply that

0>DE~n!>Egs~n!2Tr1@hg0#2 1
2 Tr2@V~12Ex!~g0^ g0!#

5Tr1@hggs#2Tr@hg0#1 1
2Tr2@VGgs#2 1

2 Tr2@V~12Ex!~g0^ g0!#

> 1
2 Tr2@VGgs#2 1

2 Tr2@V~12Ex!~g0^ g0!#

5
U

2 (
xPL

Tr2@~Xx^Xx!$Ggs2~12Ex!~g0^ g0!%#.

In the last step have used~8!. j

We want to remark that we do not need Lieb’s variational principle7,2 to achieve~10!, nor
elsewhere in the present application. To estimate the right-hand side of~10! we use a result by
Graf and Solovej~see Ref. 1, Theorem 3 and Corollary 5!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Lemma 2:1 Let X and P be bounded operators on a Hilbert spaceH satisfying X5X25X† and
0<P<1, and letj>0. Then

1

2
Tr2@~X^X!GC#2j Tr1@XgC#1

j2

2
1
1

2
Tr1@PXPX#

>2const~j11Tr1@XgC#1Tr1@XP# !min$1,ATr1@X~12P!gC~12P!#% ~13!

for any normalizedCPF ~H!.
For our purpose we setj5Tr1[Xg0] and P5g0 , which makes it possible to estimat

Tr2@(Xx^Xx)$Ggs2~12Ex!~g0^g0!%#.
Lemma 3:

DE~n!

uLu
>2constUn1/2S Tr1@~12ggs!g0#

uLu D 1/2. ~14!

Lemma 3 is an important step in our estimate. It is already visible that we have achieved a
bound which is better than linear inU, because one expects the ‘‘overlap’’ Tr1[(12ggs)g0] to
vanish in some order inU asU→0.

Proof of Lemma 3: We rewrite~10! as

1

U
DE~n!>

1

2 S (
xPL

Tr2@~Xt ^Xx!Ggs#2~Tr1@Xxg0# !21Tr1@Xxg0Xxg0# D
5 (

xPL
~Ax1Bx!, ~15!

where

Ax :5
1
2„Tr2@~Xx^Xx!Ggs#22 Tr1@Xxg0#Tr1@Xxggs#1~Tr1@Xxg0# !21Tr1@Xxg0Xxg0#…,

Bx :5Tr1@Xxg0#Tr1@Xx~ggs2g0!#.

Now we apply Lemma 2 withj5Tr1[Xxg0] andP5g0 . This yields

Ax>2const Tr1@Xx~ggs12g0!#ATr1@Xx~12g0!ggs~12g0!#.

Using Schwarz’s inequality we can eliminate the projectionsXx :

(
xPL

Ax>2constS (
xPL

„Tr1@Xx~ggs12g0!#…
2D 1/2S (

xPL
Tr1@Xx~12g0!ggs~12g0!# D 1/2

>2constA6S Tr1F (
xPL

Xx~ggs12g0!G D 1/2S Tr1F (
xPL

Xx~12g0!ggs~12g0!G D 1/2 ~16!

52const~nuLu!1/2ATr1@~12g0!ggs#52const~nuLu!1/2ATr1@~12ggs!g0#. ~17!

In ~16! we have used that Tr1[Xx]52, which implies Tr1[Xx(ggs12g0)]<3 Tr1[Xx]<6, and in
~17! we have used Eq.~9!, ~12g0!<1, and Tr1@g0#5nuLu5Tr1[ggs]. Similarly, we estimate
(xPLBx .

2 (
xPL

Bx<S (
xPL

~Tr1@Xxg0# !2D 1/2S (
xPL

„Tr1@Xx~g02ggs!#…
2D 1/2.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Now we use(xPL~Tr1[Xxg0])
2<(xPL Tr1[Xx]Tr1[Xxg0]52nuLu and

„Tr1@Xx~g02ggs!#…
2 5 „Tr1@Xx

1/2~g02ggs!Xx
1/2#…2 < Tr1@Xx#Tr1@Xx~g02ggs!

2#.

Thus

(
xPL

Bx <2~nuLu!1/2S (
xPL

Tr1@Xx~g02ggs!
2# D 1/2

52~nuLu!1/2ATr1@~g02ggs!
2# < 2~nuLu!1/2ATr1@g01ggs#22 Tr1@g0ggs#

52~2nuLu!1/2ATr1@~12ggs!g0#. ~18!

Putting together~17! and ~18! we arrive at the claim. j

III. BOOTSTRAPPING

We have succeeded in estimating a two-body problem in terms of a one-body pro
namely, we have boundedDE(n) by

0>
DE~n!

uLu
>2constUn1/2S Tr1@~12ggs!g0#

uLu D 1/25:2constUn1/2A, ~19!

but still the 1-pdmggs of the ground state is appearing inA. We will control A by a bootstrap
argument. At this point we make use of the translational invariance of the hopping m
txy5tx2y,05:t(x2y). ForU50 we can diagonalize the Hamiltonian by Fourier transformati

H5 (
kPBZ

e~k!ck,s
† ck,s ,

wereBZ5[2p;p)dù(p/L)Zd is the Brillouin zone. Hereck,s
† 5u Lu21/2(xPL exp(ik • x)cx,s

† , and
wk,s : 5 ck,s

† V is the new ONB ofH. The single particle spectrum~dispersion relation! is given by

e~k!:5 t̂~k!5 (
rPL

t~r !e2 ik•r . ~20!

Now, we fix the particle numberN5nuLu. Let ef be the smallest number, such that

2M :5 (
e~k!,ef

2 , N and 2M 8:5 (
e~k!<ef

2 > N.

We can write a ground state of the free Hubbard model as

C05 )
j51

N22M

cj
† )
e~k!,ef ,s

ck,s
† V, ~21!

wherecj
†:5ckj ,s j

† , with e(kj )5ef for somekj ands j .

Thedensity of states~DOS! is given by

rd~ef ! :5
dNd~E!

dE U
E5ef

5E
2p

p

•••E
2p

p

ddk d„e~k!2ef…, ~22!

where
J. Math. Phys., Vol. 38, No. 4, April 1997
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Nd~E!5E
2p

p

•••E
2p

p

ddk x@e~k!<E#. ~23!

The DOS appears in the following bootstrap estimate:
Lemma 4: There exist three constants c1,2,3 such that for any«.0

A2<
c1Un

1/2A

«
1c2E

2«2c3 /L

c3 /L

rd~ef1l!dl, ~24!

where A is defined in Eq. (19) (recall that 2L is the width of the lattice).
Proof: We prove~24! in full detail only for particle numberN52M , i.e., (e(k)<ef

2 5 N.
Thereafter we specify the modifications needed to prove~24! in the case of particle numbe
N.2M , as well. Let

g,:5 (
e~k!<ef2«

s

uwk,s&^wk,su and g. :5 (
ef2«,e~k!<ef

s

uwk,s&^wk,su.

We can writeg0 in the Fourier transformed basis as

g05 (
e~k!<ef

s

uwk,s&^wk,su5g,1g.,

so we have that

uLuA25Tr1@~12ggs!g0#

5Tr1@~12ggs!g,#1Tr1@~12ggs!
1/2g.~12ggs!

1/2#

<Tr1@~12ggs!g,#1Tr1@g.#. ~25!

It holds that

~26!

~recall thath is the operatort ^ 1C2!. Therefore
J. Math. Phys., Vol. 38, No. 4, April 1997
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Tr1@~12ggs!g,#<
1

«
Tr1@~12ggs!~ef2h!g0#

5
1

«
$Tr1@~h2ef !~ggs2g0!#2Tr1@ggs~h2ef !~12g0!#%

<
1

«
Tr1@~h2ef !~ggs2g0!# ~27!

5
1

«
Tr1@h~ggs2g0!#. ~28!

To see why~27! holds it suffices to notice that~h2ef!~12g0!>0. In ~28! we have used tha
Tr1[ggs2g0]5nuLu2nuLu50. Therefore, we get

~29!

The last term in~29! we have already estimated with the help of the correlation inequalities. In
proof of Lemma 3 we had achieved that

1

2
Tr2[V(12Ex!~g0^g0!#2

1

2
Tr2@VGgs# < constU~nuLu!1/2„Tr1@~12ggs!g0#…

1/2.

Together with the fact thatDE(n)<0 we arrive at

Tr1@~12ggs!g,# <
constU~nuLu!1/2„Tr1@~12ggs!g0#…

1/2

«
. ~30!

So we have proved one part of our claim. Note that until now every statement we made
independently of the dimension of the latticeL. The dimension enters when we have to deal w
the term Tr1@g.#. To estimate it, we compare it with its thermodynamic limit (L→`). For each
kP[2p, p] d, we may choose a uniquek0(k)PBZ, such thatu(k2k0) j u<p/L. Let

ẽ~k!:5e„k0~k!… and Q5@2p/2L, p/2L#d.

Then it holds

ue~k!2ẽ~k!u < A~p/L !2d sup
Q1k0~k!

u“e~k!u < A~p/L !2d sup
kPBZ

u“e~k!u 5:
c

L
,
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and

Tr1@g.# 5
uLu

~2p!d
E

@2p, p#d
x@ef2«<ẽ~k!<ef #d

dk

<
uLu

~2p!d
E

@2p, p#d
x@ef2«2c/L<e~k!<ef1c/L#ddk

5
uLu

~2p!d
E

2«2c/L

c/L

rd~l1ef !dl. ~31!

Inserting~31! and ~30! into ~25!, we arrive at~24! for N52M .
Now we come to the case of particle number 2M , N , 2M 8 5 (e(k)<ef

2. For given particle
numberN we denote the quantum mechanical ground state 1-pdm byggs(N), and we set

g0~N!5 (
e~k!,ef ,

s

uwk,s&^wk,su1 (
j51

N22M

uw j&^w j u.

To see why~24! holds notice that

Tr1@„12ggs~N!…g0~N!#<Tr1@„12ggs~N!…g0~2M 8!#.

We may almost copy the proof for even particle number by replacing~25! by

uLuA2<Tr1@„12ggs~N!…g0~2M 8!#.

Instead of~27! we arrive at

So we get~28! for N.2M , which enables us to continue the proof exactly as we did in the
N.2M . j

IV. PROOF OF THE THEOREM

To prove the theorem we need an upper bound on the DOS so that we can make use
bootstrap estimate~Lemma 4!. We assume that the dispersion relation is a Morse function~i.e., a
smooth function with finitely many nondegenerate critical points!. This is a classical condition
tracing back to Van Hove,8 and it implies the following facts:

~i! If d>3, the DOS is finite.
~ii ! If d52 it holds

r2~E!<constu lnu~Ecrit2E!/Duu. ~32!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Here Ecrit is the value of e(k) at the critical point with index 1~the number of negative
eigenvalues of the Hessian is 1!, andD is a number strictly larger than max$ue(k)2e(k8) u%
~the bandwidth!. Without loss of generality we may consider the generic case: existenc
exactly one critical energy for the two-dimensional dispersion relation. The existence of
~but finitely many! critical values does not alter our main result, except for possibly increa
the constants. Every smooth function on the torus has at least one critical point with ind
As an example for the two-dimensional case consider nearest-neighbor hopping for whi

dispersion relation is e(k)522~cosk11cosk2!. It has the four saddle points~2p,0!, ~0,2p!,
~p,0!, and ~0,p!, lying on the Fermi surface to the energy zero~corresponding to the densit
n51!.

Proof of the Theorem: We deal with the simpler cased>3 first. Let us collect the results o
the last two sections. We have that

DE~n!

uLu
> 2constUn1/2A ~33!

~Lemma 3!, whereA is given by

A 5 S Tr1@~12ggs!g0#

uLu D 1/2.
Furthermore~Lemma 4! there exist three constantsc1,2,3 such that for any«.0

A2 <
c1Un

1/2A

«
1c2E

2«2c3 /L

c3 /L

rd~ef1l!dl

<
c1Un

1/2A

«
1c4~«1uLu21/d! ~34!

~the constantc4 is given byc45c2 sup$rd%max$1,4c3%!. We obtain

A <
c1Un

1/2

2«
1AS c1Un1/22« D 21c4«1c4uLu21/d ~35!

from solving the quadratic equation corresponding to~34!. We optimize in « by choosing
«5constn1/3U2/3. Inserting this into~35! yields

A < const~n1/6U1/31uLu21/2d!,

and inserting this into~33! we get

DE~n!

uLu
> 2const~n2/3U4/31n1/2UuLu21/2d!, ~36!

which is our claim ford>3.
If the dimension is equal to two we have to consider the Van Hove singularity of the DO

the critical energy. Letd :5~Ecrit2E)/D andx:5«1c3/L. We start again with the statement o
Lemma 4,
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s

2082 V. Bach and J. Poelchau: Accuracy of the HF approximation for the Hubbard model

¬¬¬¬¬¬¬¬¬¬
~37!

where we have inserted~32! and increased the length of the interval of integration by«. We
estimateF(d,x) using Schwarz’s inequality:

F~d,x!5E
2x

1x

u lnud1luudl < A2xS E
d2x

d1x

~ lnulu!2dl D 1/2. ~38!

Without loss of generality we may assume thatd>0. If x>d/2,

E
d2x

d1x

~ lnulu!2dl < 2E
0

2x

~ ln l!2dl < constx~ u ln xu11!. ~39!

If x<d/2, it is not possible to estimate the integral uniformly ind, but

E
d2x

d1x

~ lnulu!2dl < 2x maxH XlnS d

2D C2,XlnS 3d

2 D C2J
< 2xS ~ u ln xu11!lnS 3d

2
1eD D 2, ~40!

where lne51. Asd is bounded by 1, ln(3d/21e) is bounded. Inserting~39! and~40! into ~38! we
arrive at

F~d,x! < constx~ u ln xu11!. ~41!

It is easy to see~by splitting up into the casesa11a2<1, 1,a11a2<2, and 2,a11a2! that for all
positivea1,2

~a11a2!u ln~a11a2!u < 2„a1u ln~a1!u1a2u ln~a2!u1a11a1….

This yields

F~d,x! < const~«u ln «u11!1uLu21/2
„u ln~ uLu21/2!u11…) ~42!

~recall thatx5«1c3/L!. So we have estimatedF in terms of« and the lattice size. Inserting thi
into ~37! we get

A2 <
c1Un

1/2

«
A1c2$«~ u ln «u11!1uLu21/2

„ln~ uLu21/2!u11…%, ~43!

which implies that
J. Math. Phys., Vol. 38, No. 4, April 1997
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A<
c1Un

1/2

2«
1AS c1Un1/22« D 21c2$«~ u ln «u11!1uLu21/2

„u ln~ uLu21/2!u11…% . ~44!

Setting«5constn1/3U2/3 as in the first part of our proof we arrive at

A<const~n1/6U1/31n1/6U1/3$„u ln~n1/3U2/3!u11…1/21uLu21/4
„u ln~ uLu21/2!u11…1/2%!

<const~n1/6U1/3~ u ln Uu11!1uLu21/4
„u ln~ uLu21/2!u11…!.

So we finally arrive at the claim ford52 @inserting the last inequality into~33!#:

DE~n!/uLu>2const~n2/3U4/3~ u ln Uu11!1n1/2UuLu21/4
„u ln~ uLu21/2!u11!…). j
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Ground states and low-temperature phases of itinerant
electrons interacting with classical fields:
A review of rigorous results
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We review, from a unified point of view, a general class of models of itinerant
electrons interacting with classical fields. Applications to thestatic Holstein,
Kondo, and Hubbard models are discussed. The ground state structure of the clas-
sical field is investigated when the electron band is half-filled. Some of the results
are also valid when there is a Hubbard interaction between spin up and spin down
electrons. It is found that the ground states are either homogeneous or period two
Néel configurations, depending on the geometry of the lattice and on the magnetic
fluxes present in the system. In the specific models, Ne´el configurations correspond
to Peierls, magnetic or superconducting instabilities of the homogeneous state. The
effect of small thermal and quantum fluctuations of the classical fields are reviewed
in the context of the Holstein model. Many of the results described here originate
from the work of Elliott Lieb and collaborators. ©1997 American Institute of
Physics.@S0022-2488~97!00104-7#

I. INTRODUCTION

In many systems one can often distinguish degrees of freedom which have to be t
quantum mechanically from others for which a classical description is reasonable; conside
the distinction between the treatment of electrons and nuclei in the Born–Oppenheimer the
molecules. For this reason many models used in condensed matter physics contain itineran
tum particles, usually electrons belonging to a conduction band, interacting with a classica
We shall call these models ‘‘semi-quantum.’’

A much-studied model of this sort is the Falicov–Kimball model, first introduced to exp
metal-insulator transitions in rare earth materials where electrons in a conduction band in
with electrons belonging to a band of localized orbitals.1 The model then consists of itineran
quantum particles interacting with ‘‘Ising spins’’ representing the presence or absence of a
ized particle. Many exact results exist for this model; we refer to Ref. 2 for a recent review

In this paper we analyze from a unified point of view a variety of models, namely, the s
Holstein, Kondo, and~the static approximations for the repulsive and attractive! Hubbard models.3

We also review what is known rigorously when thermal and quantum fluctuations of the ’’
sical’’ field are taken into account.

Let us describe briefly the physical context of these models:
The Holstein model was originally introduced to describe metal insulator transitions~Peierls

instabilities! in molecular crystals.4 A breathing mode of some large molecule is singled out a
modeled by Einstein oscillators coupled linearly to the electron density. The static Holstein m
obtained when the quantum fluctuations of the oscillators are neglected, has been the ob
many studies related to the occurrence of charge density waves, polarons, and bipolarons in
one-dimensional materials.5 Usually the electron band is assumed noninteracting but it is als
interest to add a Hubbard on-site interaction, between spin up and spin down electrons, in o
0022-2488/97/38(4)/2084/20/$10.00
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investigate the effect of electron correlations on the formation of polarons, bipolarons, and
spatial ordering.

The Kondo model concerns magnetic systems: itinerant electrons interact with magne
purities~quantum spins! localized at the sites of a lattice. If the localized moment of an impu
is large, it is reasonable to approximate it by a classical three-component unit vector attac
the sites of the lattice. The model obtained in this way is called the static Kondo model.~In the
literature the Kondo model refers to the situation with only one magnetic impurity. Here we
in mind the so called lattice Kondo model, and a more appropriate terminology would be ‘‘
lattice Kondo model.’’! One can also add a Hubbard interaction term between spin up and
down electrons.

The two other models covered by our study are closely related to the Hartree–Fock~HF! and
Bardeen–Cooper–Schriefer~BCS! mean field theories of the Hubbard model. In the repuls
case one gets a model of itinerant electrons whose spin is coupled to a classical three-com
vector field sitting at each lattice site. The amplitude of this vector field is variable~unlike the
Kondo case where it is a unit vector!. For the attractive case one finds a system of itiner
electrons interacting with a two-component vector field, whose amplitude can vary. There
associated ‘‘elastic energy’’ term appearing in the Hamiltonian of both models. These m
have been studied in great detail recently from a somewhat different point of view.6

In Sec. II we define a general class of models which contains all cases described ab
consists of itinerant spin up and down electrons that interact by an on-site Hubbard term a
also coupled to a classical matrix-valued field. The kinetic energy matrix of the electrons c
complex, which corresponds to the presence of an external magnetic flux. For a given con
tion of the classical field one can~in principle! integrate out the quantum degrees of freedom,
that the system is reduced to a classical system with a complicated temperature and d
dependent effective energy functional for the classical field. This functional can be interpre
the free energy of the electrons in an external potential associated with a given configuration
classical field.

The main subject of Sec. III is to find the classical configurations that minimize this f
tional. We review here the solution of this problem when the electron chemical potent
adjusted so that there is an average of one electron per site, i.e., when the electron b
half-filled. The case of the static Kondo model is the simplest one. On any bipartite lattice an
magnetic flux the ground state configuration is of Ne´el type: this is similar to what happens in th
Falicov–Kimball model.7,8 For the other models, where the amplitude as well as the directio
the vector field can vary, the situation is more complex. Indeed, depending on the geometry
underlying lattice and the presence of an external magnetic flux, we find that the minim
configuration is either of Ne´el type, or that it is homogeneous with the classical field vanishing
all sites of the lattice. In models of itinerant fermions it appears that the geometry of the lattic
the orbital coupling to a magnetic flux are important because they determine the structure
Fermi surface of the free electron Hamiltonian, which in turn can affect the ground state stru
This will be illustrated by comparing the cases of the square and hexagonal lattices.

When the Hubbard interaction between the electrons is absent, the energy functiona
given classical configuration can be expressed in terms of a one-particle Hamiltonian, and o
then use an inequality first derived by Kennedy and Lieb in the context of the Falicov–Kim
model.9 This method breaks down when spin up and down electrons interact because, eve
given configuration of the classical field, we do not have a one-particle Hamiltonian. Neverth
in his treatment of the flux phase problem, Lieb showed that one can use a reflection po
technique to get some information about the global minima of the energy functional. While
technique has been extensively used in the context of quantum and classical spin syste
bosonic systems, it was only recently extended by Lieb to models of interacting fermions.9 Lieb’s
ideas were extended further by Macris and Nachtergaele.10

A little studied problem is the stability of the ground states when thermal or quantum
J. Math. Phys., Vol. 38, No. 4, April 1997
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tuations of the classical fields are taken into account. Rigorous results, discussed in Sec. IV
been obtained so far only for the Holstein model. For the static model, at small temperatur
large coupling, there exist at least two phases corresponding to the period two ground stat
square lattice in the half-filled band.7,11 To deal with quantum fluctuations it is convenient
integrate out the phonon degrees of freedom. Then one is left with a system of fermions in
ing through a two-body potential, which is short ranged due to the quantum fluctuations.
spinless case, and at small electron–phonon coupling, such a system belongs to the univ
class of the Luttinger liquid and has been analyzed in one dimension in Ref. 12 by renormali
group methods. This analysis shows that, at least in the spinless case with small coupli
ground state will not be ordered, for all densities.

II. THE MODELS

In this section we introduce a general model which is then specialized to the cases of in
The setting is a finite latticeL,Rd containinguLu sites. The kinetic energy of the electrons
described by a hopping matrixT with elementstxy , x, yPL, connecting sites ofL. Boundary
conditions are either free or periodic, and are specified later. The lattice is said to be bipa
there are two disjoint sets of sitesA andB such thatL5AøB and txy50 if x,yPA or x,yPB.
Examples of bipartite lattices that will be considered later are the cubical and hexagonal one
hopping matrix can be complextxy5utxyu exp(iuxy), and the phaseuxy has the interpretation o
the line integraluxy5*x

yA.dl, whereA is a vector potential associated to an external magn
field. The sum of phases along an oriented closed circuit of the lattice is equal to the magne
FC threading the circuit,

(
^xy&PC

uxy5FC , mod 2p, ~2.1!

where the circuitC is a sequence of distinct bonds^xixi11& such thattxixi11
Þ 0, i51,...,k, and

xk115x1 . We shall be using units in whiche5c5\51.
The purely electronic contribution to the Hamiltonian is

Helec5 (
x,yPL,s5↑,↓

txycxs
† cys1U (

xPL
S cx↑† cx↑2 1

2D S cx↓† cx↓2 1

2D , ~2.2!

where we have included an on-site interaction of Hubbard type;U can be positive or negative
WhenU50 we setHelec5Hkin .

To each sitexPL we associate a 232 Hermitian matrix fieldF(x) with elements

Fab~x!5sab•f~x!5S f3~x! f1~x!2 if2~x!

f1~x!1 if2~x! 2f3~x!
D , ~2.3!

wherea,bP$↑,↓%, sab5~sab
1 ,sab

2 ,sab
3 ! is the vector of Pauli matrices andf5~f1,f2,f3!. In the

applications the matrix-valued fieldF(x) will play the role of the phonon field in the Holstei
model, the impurity spin in the Kondo model, and the mean field in the Hubbard model. We
for later use the identity~„s•f(x)…2!ab5uf(x) u2dab . The field has an isotropic elastic energ
@later on it will be convenient to view the elastic energy as a function ofuf(x) u2 instead ofuf(x) u#

Helas5 (
xPL

P„uf~x!u2…, ~2.4!

whereP(y) is a positive convex polynomial of the form
J. Math. Phys., Vol. 38, No. 4, April 1997
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P~y!5(
j51

N

aj ,y
j , y>0. ~2.5!

The interaction between the classical field and the electrons is on-site

H int5g(
xPL

(
a,b5↑,↓

cxa
† Fab~x!cxb , ~2.6!

and the coupling constantg can be positive or negative. For a given configurat
F5$F(x),xPL% of the classical field the total Hamiltonian of the system is

H~F!5Helec1Helas1H int . ~2.7!

The partition function is obtained by performing the trace over the electron Fock s
F 2„l

2(L)^C2
…, and by integrating over the classical field configurationsF,

ZL~b,m,h!5E )
xPL

dn„F~x!… Tr expF2bSH~F!2mN2 (
xPL

h–f~x! D G . ~2.8a!

The average value of a local observableA is given by

^A&L~b,m,h!5
1

ZL~b,m,h!
E )

xPL
dn„F~x!… Tr A expF2bSH~F!2mN2 (

xPL
h–f~x! D G .

~2.8b!

In ~2.8!, N 5 (x,scxs
† cxs and m and ]h are chemical potentials~or external fields!. The free

measuredn„F(x)… depends on the physical situation of interest~see later!.
Since the trace in~2.8! is always positive, it is natural to set

Tr expF2bSH~F!2mN2 (
xPL

h–f~x! D G5exp@2bF~F;b,m,h!#, ~2.9!

whereF can be interpreted as the effective interaction energy of the classical field, induced
itinerant electrons, or as the free energy of the electrons subjected to the external potentiaF(x).
The ground state energy of a configurationF is defined as the zero temperature limit ofF,

E~F;m,h!5 lim
b→`

F~F;b,m,h!. ~2.10!

The global minima of the functionalsE andF are studied in Sec. III. The appropriate space
configurationsF over which one should minimize is determined by the choice of the free mea
in ~2.8!.

The half-filled bandm50, h50: For a bipartite lattice, an electron-hole transformation for
and down spins,

cxs
† →excxs ,cxs→excxs

† , ex51, xPA, ex521, xPB,

transforms the Hamiltonian asH(F)→H(2F), where the bar denotes complex conjugatio
Hence

F~F;b,0,0!5F~2F;b,0,0!, E~F;0,0!5E~2F;0,0!. ~2.11!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Since under the transformation,N→2uLu2N, we find that if the free measure is invariant und
F(x)→2F(x), then

^N&L~b,0,0!5
1

ZL~b,0,0! E )
xPL

dn„F~x!… Tr N exp@2bH~F!#52uLu2^N&L~b,0,0!,

~2.12!

so that the average number of particles^N&L(b,0,0) is equal to the number of sitesuLu for all b.
For this reason the casem50, h50 will be referred to as ‘‘the half-filled band.’’ The result
described in Secs. III and IV A are restricted to this case.

Let us now consider the special cases of~2.7! and ~2.8! which are of interest to us. We sta
with the Kondo model for which the discussion is the simplest.

A. Static Kondo model

The static Kondo model~model A! with interacting electrons (UÞ0) is defined by

HKondo5Helec12g(
xPL

S~x!•f~x!, ~2.13!

whereS(x) 5 1
2(a,b5↑,↓cxa

† sabcxb andf(x) is a unit vector inR3 representing an impurity spin
localized atx. The real Kondo Hamiltonian hasf(x) in ~2.13! replaced by a quantum spi
operatorSimp(x), with Simp

2 5\2s(s11). Presumably the static Kondo model is a reasonable
proximation in the semiclassical limit\→0, \s fixed.

This model is a special case of~2.8! with

dn„F~x!…5df1~x!df2~x!df3~x!d„uf~x!u221…. ~2.14!

The elastic term contributes only a constant so we can drop it.
The minimization of the corresponding functionalsE andF has now to be carried out over th

space

$F~x!,xPLuuf~x!u51%. ~2.15!

B. Static Holstein model

The static Holstein model~model B! with interacting electrons (UÞ0) is defined by

HHolstein5Helec1g(
xPL

~cx↑
† cx↑1cx↓

† cx↓21!f3~x!1 (
xPL

P„f3~x!2… ~2.16a!

and

ZL,Holstein5E )
xPL

df3~x!Tr exp@2bHHolstein#. ~2.16b!

Here f3(x) represents the position of the classical oscillator attached at sitex. In the usual
Holstein model one takesP(y)5 1

2y and the oscillator is quantized so that we have to add a t

2
1

2m2 (
xPL

]2

]f3~x!2

to the Hamiltonian~see Sec. IV!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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ForL bipartite, the coupling term in~2.16a! transforms under the electron-hole transformat
cx↓
† →excx↓ , cx↓→excx↓

† , on down spins only, as

~cx↑
† cx↑1cx↓

† cx↓21!f3~x!→~cx↑
† cx↑2cx↓

† cx↓!f3~x!

and ~2.2! becomes

Helec→ (
x,yPL

txycx↑
† cy↑1 (

x,yPL
txycx↓

† cy↓2U (
xPL

S cx↑† cx↑2 1

2D S cx↓† cx↓2 1

2D .
Therefore fortxy 5 txy the partition function~2.16b! is equal to~2.8a! providedm50, h50, U is
replaced by2U, and

dn„F~x!…5df1~x!df2~x!df3~x!d„f1~x!21f2~x!2…. ~2.17!

Thus the static Holstein model is equivalent to the model defined by~2.8!–~2.17! as long as the
lattice is bipartite and the hopping matrix elements are real.

The minimization of the corresponding functionalsE andF has to be carried out over th
space

$F~x!,xPLuf1~x!5f2~x!50%. ~2.18!

Remark: An extended Falicov–Kimball model with interacting spin up and down electron
obtained if in Sec. II B we take

dn„F~x!…5df1~x!df2~x!df3~x!d„f1~x!21f2~x!2… 1
2 @d„f3~x!21…1d„f3~x!11…#

for the free measure. The usual Falicov–Kimball model has spinless fermions andU50.
The next two models lead to a variational problem forE andF that has recently been studie

in detail.6 We discuss them for completeness and also because the point of view presented
somewhat different.

C. Static approximation for the repulsive Hubbard model

The repulsive Hubbard Hamiltonian~model C! is given by ~2.2! with U.0. Using a path
integral formalism, the partition function can be represented as that of free fermions inter
with a vector valuedtime-dependentauxiliary Hubbard–Stratanovich field which is coupled to t
electron spin~see the Appendix and Ref. 13 for further details!. The static approximation is
obtained by retaining onlytime-independentconfigurations of this field. This procedure gives
model defined by~2.8! with h50 and,

H~F!5Hkin1Helas1H int , g5AU

3
, ~2.19a!

P„uf~x!u2…5 1
2uf~x!u2, ~2.19b!

dn„F~x!…5df1~x!df2~x!df3~x!. ~2.19c!

The minimization of the corresponding functionalsE andF has to be carried out over th
configuration space

$F~x!,xPLuf~x!PR3%. ~2.20!
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This variational problem is equivalent to the HF mean field theory for the Hubbard model
self-consistent equation of the mean field theory is obtained by setting the variation ofF with
respect to the classical field equal to zero. This gives~see the Appendix!

f~x!52AU

3
^S~x!&L~b,0,0!. ~2.21!

To go beyond Hartree–Fock theory one needs to investigate both the thermal and qu
fluctuations around the solutions of~2.21!. The model defined by~2.8! and~2.19! corresponds to
taking into account only the thermal fluctuations.

D. Static approximation for the attractive Hubbard model

The attractive Hubbard Hamiltonian~model D! is ~2.2! with U,0. In this case one represen
the partition function with the help of a complex-valuedtime-dependentHubbard–Stratanovich
auxiliary field which is coupled to the electron pseudospin~see the Appendix!. The static approxi-
mation is obtained by retaining onlytime-independentconfigurations of this field. This leads t
~we consider onlym50!

Z̃L5E )
xPL

df1~x!df2~x!Tr exp@2bH̃# ~2.22a!

with

H̃5Hkin1AU

2 (
xPL

~cx↑
† cx↓

†
„f1~x!1 if2~x!…1cx↓cx↑„f1~x!2 if2~x!…!

1
1

2 (
xPL

„f1~x!21f2~x!2…. ~2.22b!

For a bipartite lattice, making an electron-hole transformation on down spins only and p
f1(x)→exf1(x) andf2(x)→exf2(x), the coupling term in~2.22b! becomes

cx↑
† cx↓

†
„f1~x!1 if2~x!…1cx↓cx↑„f1~x!2 if2~x!…→cx↑

† cx↓„f1~x!1 if2~x!…

1cx↓
† cx↑„f1~x!2 if2~x!…

and

Hkin→ (
x,yPL

txycx↑
† cy↑1 (

x,yPL
txycx↓

† cy↓ .

We see that fortxy 5 txy the partition function~2.22a! is equal to~2.8!, whenm50, h50, with

H~F!5Hkin1Helas1H int , g5AU

2
~2.23a!

P„uf~x!u2…5 1
2uf~x!u2, ~2.23b!

dn„F~x!…5df1~x!df2~x!df3~x!d„f3~x!…. ~2.23c!

The minimization of the corresponding functionalsE andF has to be carried out in the spac
J. Math. Phys., Vol. 38, No. 4, April 1997
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$F~x!,xPLuf3~x!50%. ~2.24!

This variational problem is equivalent to the BCS mean field theory for the Hubbard model
self-consistent equation of the mean field theory is obtained by setting the derivative ofF equal to
zero. This yields~see the Appendix!

f1~x!2 if2~x!52AU

2
^cx↑

† cx↓&L~b,0,0!, ~2.25a!

f1~x!1 if2~x!52AU

2
^cx↓

† cx↑&L~b,0,0!. ~2.25b!

As in the repulsive case, the model~2.8!–~2.23! corresponds to taking into account on
thermal fluctuations around the solutions of~2.25!.

III. MINIMIZATION OF THE ENERGY FUNCTIONALS E AND F

We discuss now general theorems for the structure of the global minima of the functi
~2.9! and ~2.10!, for the half-filled band,m50 and h50. Results away from half-filling are
available for the ground states of the Falicov–Kimball2 and also for the structure of the loca
extrema ofE andF for the Holstein model.14,15We setF(F;b,0,0)5F(F;b), E(F;0,0)5E(F),
and ^—&L~b,0,0!5^—&L~b!.

A configurationF is called aNéel configurationif it has the form

Fab~x!5exwsab•n̂, ~3.1!

wheren̂5(n1 ,n2 ,n3) is any fixed unit vector, andw is a real number independent ofx. The main
result described in this section is that under appropriate conditions, in the half-filled ban
energy functionals attain their global minimum for configurations of the form~3.1!. For the static
Kondo model we necessarily havew51. For the other models it is evident that, when the coupl
between electrons and classical fieldg50, the homogeneous configuration corresponding tow50
is a ground state. WhengÞ0 this state may remain stable, or become unstable so thatw acquires
a nonzero value depending onb, g, andU. In the context of the Holstein model,wÞ0 is the
so-called Peierls instability, while for the static approximations to the attractive and repu
Hubbard models,wÞ0 means respectively that there is a superconducting or magnetic insta

A. Interacting electrons, UÞ0

For the Hamiltonian~2.7! with UÞ0 it turns out that one can adapt the reflection positiv
techniques, previously used for quantum spin or bosonic systems,16,17as was first shown by Lieb
for the Hubbard model.9

Some restrictions on the geometry of the lattice are needed, and instead of formulati
most general result we consider here three representative examples. These are:(a) one-
dimensional rings with an even number of sites, (b) the bipartite square (or cubic) lattice
periodic boundary conditions, and (c) the bipartite hexagonal lattice with periodic boun
conditions. Note that for all these cases the number of sites contained in any closed loop is
For such latticesL embedded inRd, consider a (d21)-dimensional hyperplaneP not containing
any vertex ofL, separatingL in two sets of vertices calledL ~‘‘left’’ ! andR ~‘‘right’’ !, so that
L5LøR. WhenL andR are related to each other by a geometric reflection acrossP, we say that
P is a reflection plane forL. For example, for the bipartite square lattice with periodic bound
conditions, all planes perpendicular to the two coordinate axis and not containing any vert
reflection planes.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Given $txy%, txy5utxyu exp(iuxy), the flux configuration is called acanonical flux configura-
tion if (a) for one-dimensional rings,

(
^xy&PL

uxy5pS uLu
2

21D , mod 2p, ~3.2!

(b) for the bipartite square lattice on a torus,

(
^xy&PF

uxy5p, mod 2p, ~3.3a!

for all elementary square plaquettesF, and

(
^xy&PL i

uxy5pS uL i u
2

21D , mod 2p, i51,2, ~3.3b!

L i , i51,2, the two nontrivial loops of the torus along the coordinate axis; and(c) for the bipartite
hexagonal lattice on a torus,

(
^xy&PF

uxy50, mod 2p, ~3.4a!

for all elementary hexagonsF, and

(
^xy&eL i

uxy5pS uL i u
2

21D , mod 2p, i51,2, ~3.4b!

L i , i51,2, the two nontrivial loops of the torus along the coordinate axis.
For example a flux which is uniformly equal to zero~realized by taking alluxy50! is non

canonical for a cubical lattice, while it is canonical for the hexagonal one. We note that in a
above cases it is possible to choose a gauge~i.e., a choice of phases$uxy%! such that alltxy are
real. The following theorem ensures that under appropriate conditions the global minimumE
andF is attained among Ne´el configurations.

Theorem 1: Let L be one of the lattices~a!, ~b!, and~c!. Suppose that the flux configuratio
is canonical and that the moduli$utxyu% are invariant under geometric reflections through
reflection planesP of L. Then there exists at least one minimizer ofE(F) andF(F;b) which is
a Néel configuration~3.1!.

Remarks:~i! To apply the theorem to the four specific models described in Sec. II, one h
specify the space over which the minimization is carried out. For the static Kondo mode
space is~2.15! so that the minimizer hasw51 in ~3.1!. For the static Holstein and attractiv
Hubbard models the spaces are respectively~2.18! and~2.24! so that the minimizers have respe
tively n̂5(0,0,1) andn̂5(n1 ,n2,0). For the repulsive Hubbard model there is no constraint.

~ii ! We do not know of any general statement about the unicity of the minimum. All we k
is that there is at least one minimum of the form~3.1!, and if there is another one, we cann
exclude that it is outside the class of Ne´el configurations.

~iii ! Except for the case of the Kondo model A where the ground state is completely d
mined by Theorem 1, the value ofw will, in general, depend onb, g, U and$utxyu%. WhenU50,
w can be found explicitly in principle, because the Hamiltonian reduces to that of free electro
a period two potential~see Sec. III B!.

~iv! A straightforward application of reflection positivity also implies that given a reflec
planeP, then if r (x) is the reflection of a sitex throughP,
J. Math. Phys., Vol. 38, No. 4, April 1997
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^f~x!•f„r ~x!…&L~b!<0 ~3.5!

at any finite temperature. This inequality means that there is a tendency towards antiferrom
behavior but does not imply that there is long range order. Indeed it is valid for the
dimensional ring, where one does not expect long range order for any finite temperature.

A similar result for the case of the extended Falicov–Kimball model mentioned, after
II B was pointed out in Ref. 10. The proof given below is based on the methods of Ref. 9 an

Sketch of the Proof. Given a reflection planeP we introduce new creation and annihilatio
operators defined forall xPL5LøR,

dxs
† 5cxs

† eipNL, dxs5eipNLcxs , ~3.6!

whereNL 5 (xPL,s5↑,↓cxs
† cxs . The new operators commute ifxPL, yPR or if xPR, yPL, and

satisfy the canonical anticommutation relations ifxPL, yPL or if xPR, yPR. In terms of the
new operators the Hamiltonian~2.7! takes the same form with thecs replaced by theds. It can be
decomposed as

H~F!5HL~FL!1HR~FR!1H1 ~3.7!

with

HL/R~FL/R!5 (
x,yPL/R

txydxs
† dys1U (

xPL/R
S dx↑† dx↑2 1

2D S dx↓† dx↓2 1

2D
1g (

xPL/R
(

a,b5↑;↓
dxa
† Fab~x!dxb1 (

xPL/R
P~ uf~x!u2!, ~3.8!

H15 (
xPL,yPR

txydxs
† dys1 (

xPR,yPL
txydxs

† dys , ~3.9!

andFL/R5$F(x),xPL/R%. Because the flux configuration is canonical, it is always possibl
choose a gauge such that$txy% is real and moreovertuv52utuvu for the bonds^uv& that are
intersected by the reflection planeP. Then, performing an electron-hole transformation for t
sitesxPR only,

HL~FL!→HL~FL!, ~3.10a!

HR~FR!→HR~2FR!, ~3.10b!

H1→H̃152 (
xPL,yPR

utxyudxs
† dys

† 2 (
xPR,yPL

utxyudxsdys . ~3.10c!

The transformed HamiltonianH̃(F) obtained from~3.7! is given by the sum of the three terms o
the rhs of~3.10!:

H̃~F!5HL~FL!1HR~2FR!1H̃1 . ~3.11!

Form5h50, the trace in~2.9! is invariant under all the transformations performed above, so
H(F) and H̃(F) have the same ground state and effective energiesE(F) and F(F;b). The
Hamiltonian ~3.11! is reflection positive so that a direct application of the Dyson–Lieb–Sim
inequality16 or its ground state version18 implies that at least one of the two Hamiltonians,
J. Math. Phys., Vol. 38, No. 4, April 1997
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HL~FL!1HR~FL
r !1H̃1 , ~3.12a!

HL~2FR
r !1HR~2FR!1H̃1 , ~3.12b!

has a lower energy, whereFL/R
r is the configuration obtained by reflectingFL/R acrossP. There-

fore given a configurationF and a reflection planeP separatingFL andFR , E(F) andF(F;b)
are lowered whenF is replaced by one of the two new configurations formed byFL and2FL

r or
by2FR

r andFR . Iterating this inequality with respect to all reflection planes yields a lower bo
which is attained for a configuration of Ne´el type ~3.1!.

B. Noninteracting electrons, U50

ForU50, the HamiltonianHkin1H int in ~2.7! is the second quantized form of a one-partic
Hamiltonian

hxy,ab5txydab1gFab~x!dxy , ~3.13!

x, yPL, a, bP$↑,↓% which acts on wave functions inl 2(uLu)^C2. The trace over the electro
Fock space in~2.9! can be performed and form5h50 this leads to

F~F;b!52
1

b
tr ln cosh

b

2
Ah21 (

xPL
P~ uf~x!u2!, ~3.14!

and by taking the limitb→`

E~F!52
1

2
tr Ah21 (

xPL
P~ uf~x!u2!. ~3.15!

In ~3.14! and ~3.15! the trace is on the spacel 2(uLu)^C2.
The minimization of functionals of the type~3.14! and~3.15! was first achieved, in the case o

the Falicov–Kimball model, by Kennedy and Lieb7 for zero magnetic flux~on general bipartite
graphs! and by Lieb and Loss8 when the flux is present. The method presented below for
configurations which arecanonicalrelies on an application of Theorem 1, and is different than
Ref. 8. However, it breaks down if the flux isnoncanonical, so that in this respect the methods
Ref. 7 and 8 are more general.

Case of canonical flux configuration: Application of Theorem 1. In this paragraph we conside
the problem of determining the value ofw in ~3.1! for the models B–D. When the lattice and th
set of$txy% satisfy the hypothesis in Theorem 1, we know that a minimum of~3.14! and~3.15! is
attained in the class of Ne´el configurations~3.1!. For such configurations we have

h25T^121g2w21L ^12 , ~3.16!

where1n is the n3n identity matrix. Substituting~3.16! in ~3.14! and ~3.15! we see that the
problem is reduced to the minimization of functions of one variablew2,

f ~w2,b!52
2

b
tr ln cosh

b

2
AT21g2w21L1uLuP~w2!, ~3.17!

e~w2!52tr AT21g2w21L1uLuP~w2!. ~3.18!

In ~3.17! and ~3.18! the trace over the spin degree of freedom has been performed an
remaining one is over the spacel 2(L).
J. Math. Phys., Vol. 38, No. 4, April 1997
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Since f is a convex function ofw2, it has a unique minimizer, sayw0
2 It follows that

F0(x)5exw0s•n̂ is a minimizer forF(F;b) ~however, we cannot conclude thatF0 is unique!.
To computew0 we note that sinceP(w2) grows at least asw2 and the square root behaves asw
for w2→`, the only possibilities for the minimum of~3.17! are:

~i! w0
2 is a solution of the equationf 8(w0

2 ,b)50, i.e.,

P8~w0
2!5

g2

2uLu
trF ~T21g2w0

21L!21/2 tanh
b

2
AT21g2w0

21LG ~3.19!

if it exists.
~ii ! If ~3.19! has no solution, then the minimum off is attained at the boundary of the doma

of w2, i.e., forw050.
For the minimum of~3.18! the situation is analogous, with~3.19! replaced bye8(w0

2)50, i.e.,

P8~w0
2!5

g2

2
tr@~T21g2w0

21L!21/2#. ~3.20!

Let us now discuss the properties of Eqs.~3.19! and ~3.20!. We begin with the case of finite
temperatures. IfP has a harmonic term,a1.0, then forbg2,2a1 the minimizer isw050. Indeed
sinceP is convex,P8 grows, soP8(w2)>a1 . Moreover, using tanhx<x we have that

g2

2uLu
trF ~T21g2w21L!21/2 tanh

b

2
AT21g2w21LG< 1

4
bg2. ~3.21!

Hence~3.19! cannot be satisfied forbg2<2a1 . On the other hand, ifP has no harmonic term
a150, thenP8(w2) is monotone increasing from 0 tò. At the same time the right-hand side o
~3.19! is a positive monotone decreasing function ofw2 and~3.19! has therefore a unique solution
w0Þ0, for any temperature.

We discuss the case of zero temperature, in the infinite volume limituLu→`, where the
spectrume(k)2 of T2 plays a fundamental role. In the infinite volume limit~3.20! reduces to

P8~w0
2!5

g2

2 E
@2p, p#d

ddk
1

Ae~k!21g2w0
2
. ~3.22!

If P has no harmonic term,a150, P8(w2) is monotone increasing from 0 tò while the right-
hand side of~3.22! is positive and monotone decreasing. Therefore~3.22! has always a unique
solutionw0Þ0. On the other hand, ifP has a harmonic terma1.0, thenP8(w2)>a1 , so forg
small enough~3.22! will not have a solution unless the integral diverges wheng→0. Whether the
integral diverges depends on the geometry of the lattice and the flux configuration:

~a! One-dimensional ring: e(k)25 ~cosk!2 so that the integral diverges and~3.22! has a solution
w0Þ0. Here the flux plays no role.

~b! Cubical lattice with canonical flux: e(k)25( i51
d ~coski!

2, which vanishes for the points
~ki5p/2, i51,...,d! and therefore the integral in~3.22! is convergent even forg→0. There-
fore there existgc.0 such that, forg<gc , ~3.22! has no solution andw050, and forg>gc ,
~3.22! has a unique solutionw0Þ0.

~c! Hexagonal lattice in d52 with canonical flux: e(k)2 vanishes only at isolated points and th
situation is analogous to (b).

For m5h50 at zero temperature the energy levelse(k),0 are filled and those for which
e(k).0 are empty. The equation determining the Fermi surface ise(k)50. In cases~b! and ~c!
J. Math. Phys., Vol. 38, No. 4, April 1997
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whered>2 the Fermi surface consists of isolated points, and as a consequencew050 for g small
enough. In the context of the Holstein model this means that there is no Peierls instabil
g,gc .

When the flux is noncanonical and equal to zero the Fermi surface of the half-filled syste
a cubical lattice, is square shaped~see next paragraph! and this leads to a nonzero minimizer fo
all g.

Case of noncanonical flux configuration:When the flux configuration is not canonical, on
cannot rely on Theorem 1 and other methods have to be used. The main example of such
is the cubical lattice withtxy5t ~zero flux!. We rely on an inequality@~3.23! below# that was first
derived in the context of the Falicov–Kimball model.7

We just require the latticeL to be bipartite and for the moment no other specific hypothe
is made on$txy%. Then multiplication byex is a unitary transformation such thatT→2T. Thus
E(F)5E(2F) and concavity of the square root implies

E~F!5
1

2
E~F!1

1

2
E~2F!>2tr AT21g2F21 (

xPL
P~ uf~x!u2!, ~3.23!

whereF2 is theL3L matrix with elementsf(x)u2dxy . By expandingh2 one checks that the
equality is realized for Ne´el configurations~3.1!. Now we proceed to analyze the consequence
this inequality.

Kondo model A:There uf(x)u251 so that the minimum is attained for configurations~3.1!
with w51. This result is valid for any flux configuration and is similar to what happens for
Falicov–Kimball model.8

Models B, C, and D:In order to show that a Ne´el configuration is a minimizer ofE, we have
to check that the minimum of the rhs of~3.23! is itself a Néel configuration. The rhs of~3.23! is
a convex functional of$uf(x)2u% so that it has a unique minimizer$uf0(x) u

2%. It is given by the
solution of the following set ofuLu equations

P8~ uf0~x!u2!5
g2

2
^xu~T21g2F0

2!21/2ux&, xPL, ~3.24!

if such a solution exists~here we use the Dirac notation!. If there is no such solution, then
minimum of ~3.23! is attained on the boundary of the set$uf0(x)u

2>0, xPL%, in other words
f0(x)50 for at least one sitexPL.

Lemma:Suppose that$txy% is such that the minimizer of the rhs of~3.23! is translation
invariant, uf0(x)u

25w0
2, andw0Þ0. ThenE(F) has a unique minimizerF0(x)5exw0s•n̂.

Proof: From the hypothesis in the Lemma and~3.15!

E~F!>2tr AT21g2w0
21L1uLuP~w0

2!5E~F0!, ~3.25!

and thereforeF0 is a minimizer ofE. Suppose thatE has a second minimizerF1ÞF0.
Then

E~F0!5E~F1!>2tr AT21g2F1
21L1 (

xPL
P~ uf1~x!2u! ~3.26!

so thatuf1(x) u
2 is also a minimizer for the rhs of~3.23!. However, this is not possible since th

latter has a unique minimum by convexity.
As a concrete example let us consider the case of a square lattice withutxyu5t, and a flux

configuration equal to zero for all square plaquettes. Then it can be seen that the set of eq
~3.22! has a uniform solutionuf0(x)u

25w0
2, w0Þ0 for all gÞ0. Indeed the spectrum ofT2 is
J. Math. Phys., Vol. 38, No. 4, April 1997
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e(k)25(( i51
d coski)

2, thus forg→0 the integral~3.22! has a logarithmic singularity due to th
square shaped Fermi surfacee(k)50. We remark that the solution exists for all polynomialsP.

For an arbitrary flux configuration the spectrum ofT is a very complicated set and we expe
that the structure of the minimizers as a function of the flux is also more complicated, at lea
models B and C.

For the finite temperature functionalF(F,b), the analog of inequality~3.23! is

F~F;b!>2
2

b
tr ln cosh

b

2
AT21g2F21 (

xPL
P~ uf~x!u2!. ~3.27!

Some consequences of~3.27! are the following:
Kondo model A:Equation~3.27! implies as before that the unique minimum ofF is ~3.1! with

w51. This holds for an arbitrary bipartite lattice and any$txy%.
Models B, C, and D:The case of the Holstein model was analyzed in Ref. 11 on an infi

square lattice withtxy5t. The results which also holds for models C and D are the following
~i! If P has no harmonic term,a150, then for anyb andgÞ0, F attains its minimum for the

Néel configurations,F0(x)5exw0s•n̂ wherew0
2Þ0 is the solution of the equation

P8~w0
2!5

g2

2 E
@2p, p#d

ddkE~k!21 tanhFb2 E~k!G , ~3.28!

with E(k)5[4t2(( i51
d cos,i)

21g2w0
2] 1/2.

~ii ! If P has a harmonic term,a1.0, then givengÞ0 there existbc,` such that~3.28! has
a solutionw0Þ0 only for b.bc. For b.bc the Néel configurations are the only minimizers
while for b<bc , F0(x)50 is the only minimizer.

We conclude this section with the following theorem.
Theorem 2: Let L and$txy% be arbitrary. Suppose thatP is a polynomial of orderN, N>1,

all of whose coefficients are strictly positive,aj.0, j51,...,N. Then for models B, C, and D
there exists a positive numberc such that forbg2,c, F(F;b) is a strictly convex functional.
Since it is even it attains its unique minimum atF(x)50, all xPL.

The proof for the Holstein model can be found in Ref. 11 and also works for models C a
A consequence of this theorem is the absence of long range order forbg2,c ~see Sec. IV A!.

IV. THERMAL AND QUANTUM FLUCTUATIONS

In this section we address the question of stability of the ground states found in Sec. II
thermal or quantum fluctuations of the classical field are taken into account. Rigorous result
been obtained so far only for the Holstein model withU50, and we will restrict ourselves to thi
case. We first consider thermal fluctuations alone, in two and three dimensions, and then q
fluctuations at zero temperature for the one-dimensional system.

A. Thermal fluctuations in d52,3

From ~2.8! and ~2.18! we have for the partition function

ZL~b,0,0!5E )
xPL

df3~x!expF2
1

2 (
xPL

f3~x!212 tr ln cosh
b

2
A~T1gF3!

2G . ~4.1!

In ~4.1! F3 is theuLu3uLu matrix with elementsf3(x)dxy , and the trace is overl
2(uLu). The factor

2 in front of the trace comes from the spin degree of freedom and has no influence on the
~the spin becomes crucial when quantum fluctuations are taken into account, see Sec. IV B!. From
now on, we assume that the boundary conditions are periodic. As in Theorem 2 one can pro
J. Math. Phys., Vol. 38, No. 4, April 1997
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12a

2 (
xPL

f3~x!212 tr ln cosh
b

2
A~T1gF3!

2 ~4.2!

is a convex functional of$f3(x)% for bg2!1 if a,1. It then follows from the Brascamp–Lie
inequalities that

„^f3~x!f3~y!&L~b!…x,yPL<a21/21L ~4.3!

as quadratic forms. This implies that the Hilbert–Schmidt norm of the matrix on the left-hand
is bounded bya21 for all uLu,

1

uLu (
x,yPL

u^f3~x!f3~y!&L~b!u2,a21, ~4.4!

and clearly this is not compatible with the existence of long range order.
Remark:The same result can be proven also for the models C and D.
In situations where there are two antiferromagnetic ground states, it can be shown tha

exist two corresponding low-temperature phases for a large enough couplingg. More precisely if
L is a square lattice withutxyu5t and a uniform flux equal top or to 0 in all plaquettes, there exis
a fixed numberd . 0 such that forg andb/g sufficiently large we have

6w02d<^exf3~x!&6~b!<6w01d, ~4.5!

wherew0 is the amplitude of the ground state, and^2&6 ~b! are expectations in the Gibbs stat
corresponding to the ordering on the different sublattices. They are obtained as infinite v
limits with appropriate boundary conditions.

The proof of ~4.5! is based on a Peierls argument for continuous spins.11 The argument is
quite involved because the ‘‘classical Hamiltonian’’ in~4.1! is not explicit, and relies on method
developed by Kennedy and Lieb7 for the case of the Falicov–Kimball model wheref3(x) takes
values61, combined with an idea of Ref. 19 to take into account the ‘‘small’’ and ‘‘large’’ fie
configurations.

For the other three models discussed in this paper, the ground state breaks a con
symmetry and therefore Peierls type arguments do not work. It is expected that there is long
order for dimensions greater or equal to three but a rigorous proof is lacking.

B. Quantum fluctuations in one dimension

The effect of quantum fluctuations has been analyzed12 so far only for the one-dimensiona
spinless Holstein model with a dispersion term

H52
t

2 (
xPL

~cx
†cx111cx11

† cx!1g(
xPL

S cx†cx2 1

2Df3~x!

1m (
xPL

cx
†cx1 (

xPL
S 2

1

2m2

]2

]f3~x!2
1
1

2
f3~x!21b„f3~x!2f3~x11!…2D . ~4.6!

It is shown in Ref. 12 that in the limit of zero temperature, for any fixed density of elect
0,r,1, andg small enough~depending onm, m21Þ0!,

^cx
†cy&'2

sin pF~x2y!

pux2yu112h~g! , ux2yu→`, ~4.7!
J. Math. Phys., Vol. 38, No. 4, April 1997
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with pF5pr and the anomalous exponenth(g) analytic as a function ofg. The exponent is
nonvanishing as soon asgÞ0 and the lowest nonvanishing order isO(g6) for b50 andO(g4) for
bÞ0. Thus forgÞ0 the electrons form a Luttinger liquid, and their momentum distribution
no jump discontinuity atp5pF . Of course forg50 the Fermi liquid behavior is recovered.

This behavior holds in particular form50 wherer51
2 andpF5p/2, and is completely differ-

ent than in the casem2150 ~note that in the half-filled case one does not have to adjust
chemical potential as a function ofg to maintainr51

2!. Indeed whenm
2150, a Peierls instability

occurs and the ground state for the static phonons isf3(x)5exw0 , w0Þ0 for all gÞ0. Therefore
the electrons see a period two potential and their spectrum is split into two bands, the low
being filled, and the upper one empty so that~at zero temperature!

^cx
†cy&'e2A~g!ux2yu, ux2yu→`, ~4.8!

whereA(g) is the energy gap separating the two bands atpF5p/2.
Thus as soon asm21Þ0, for small enough coupling, the Peierls instability occuring atr51

2 in
the static case, disappears. We emphasize that these results are limited to small coupling
at large enough coupling the Peierls instability is probably stable against the qua
fluctuations.20

Since the phonon field is harmonic and its coupling to the electrons is linear, one can
integrate it out, and then one is left with a one-dimensional interacting fermionic system. In
of Grassmanian anticommuting variablesc̄(x,t), c(x,t), (x,t)PL3[0,b], the partition function
becomes

ZL~b,m!5E Pb~dc!expF2m (
xPL

E
0

b

c̄~x,t !c~x,t !2
g2

8 (
x,yPL

E
0

b

dsE
0

b

dt

3v~x2y,t2s!S c̄~x,t !c~x,t !2
1

2D S c̄~y,s!c~y,s!2
1

2D G , ~4.9!

wherePb(dc) is the Grassmanian integral with propagator

1

buLu (
eik0b521

(
eikL51,uku,p

e2 ik0~ t2s!2 ik~x2y!

2 ik01cospF2cosk
~4.10!

andv(x2y, t2s) is the effective potential between fermions that is induced by the phonon

v~x2y,t2s!5
1

buLu (
eik0b51

eik0~ t2s!2 ik~x2y!

m2k21112b2~12cosk!
. ~4.11!

Form21Þ0 fixed,b50 andb,L→`, v(x2y,t2s)'dxy(2m)
21 exp(2m21ut2su). We see that

the effective interaction generated by the quantum fluctuations of the phonons is a two-bod
range potential in the time direction and has zero range in the spatial direction. WhenbÞ0 the
situation is similar except that there is a more complicated short range interaction in the s
direction. The behavior~4.7! is obtained by rigorous renormalization group methods develope
Ref. 21 for the one-dimensional spinless Fermi gas with short range interactions.

On the other hand, forb, L fixed andm21→0, we getv(x2y,t2s)'b21, so that the
effective interaction induced by static phonons is an infinite range potential of mean field ty
this situation the Luttinger liquid behavior breaks down and a Peierls instability occurs.
J. Math. Phys., Vol. 38, No. 4, April 1997
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V. CONCLUSION: SOME OPEN PROBLEMS

~i! In the static models one would like to analyze the low-temperature behavior when th
a continuous rotational symmetry~models A, C, and D!. In situations where the ground states a
of Néel type and break the symmetry, we expect that for dimensions greater or equal to thre
is long range order. For example in the case of the static Kondo model withU50, an expansion
of ~2.10! in powers ofg21 for largeg gives, to first non-vanishing order, the classical Heisenb
Hamiltonian with a coupling constant proportional tog22. Therefore it is reasonable to expe
long range order at largeb andbg22. However, in the case of the usual Heisenberg model
only known way to prove the existence of LRO is through the use of reflection positivity t
niques, but here~unlike the case of zero temperature in Sec. III A! it is not clear how to proceed
because the interaction is on-site. Analogous problems arise for the static approximations
Hubbard model, where one also has to deal with the fact that the amplitude of the vector fi
variable. We hope that the analysis of the Holstein model is a first step toward the solution
problem.

~ii ! We would like to understand the effect of spin, when quantum fluctuations are swi
on. One can again perform the integration over the phonons and this leads to a two body po
which is attractive between spin up and down electrons. From the rigorous point of view
analysis of this case is still open even in one dimension. It is expected that in the half-filled
the ground state is ordered and has period two for all values ofg,20 in contrast to the spinless cas
where this is not so for smallg. An important problem is also the effect of quantum fluctuatio
in two or three dimensions; in this connection the techniques developed in Refs. 22 and 23
be useful for the strong coupling case. Let us mention that Freericks and Lieb have proven t
the Holstein model on a connected finite lattice, when the Hamiltonian is real, for any
number of electrons, the ground state is unique and has zero total spin24 ~see also Ref. 25 for a
similar statement obtained previously by Lieb for the attractive Hubbard model!.

~iii ! A popular semi-quantum model, not covered by the present review, used to descri
polyacetylene chain, is the Su–Schrieffer–Heeger model~SSH!. There thep-electrons are itiner-
ant and hop on the chain, whereas thes-electrons contribute to the effective elastic energy of
chain, which is modeled by a classical displacement field. The hopping amplitude o
p-electrons is a function of the displacements and this leads to an interaction between the c
and the quantum degrees of freedom. In order to investigate the effect of electron correlatio
may also add a Hubbard interaction. For an extensive review of this model the reader can
Ref. 26. It is proved in Ref. 27 and 18 that, in one dimension at half-filling, the ground
configuration of the displacements is either homogeneous or it has period two as predicted
theory of the Peierls–Frohlich instability. Similar models and results have been discussed
dimensions.28–30In the SSH model it is expected, but there is no proof, that the Peierls insta
persists when the quantum fluctuations of the positions of the atoms are taken into accoun31
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APPENDIX: THE STATIC APPROXIMATION

We give some details on the derivation of the static approximations to the Hubbard m
and show their relationship to the HF and BCS theories. For simplicity we considerm50, h50.

Let us start with the repulsive model (U.0) with Hamiltonian~2.2!. Using the identity

~cx↑
† cx↑2

1
2!~cx↓

† cx↓2
1
2!52 2

3S~x!21 1
4, ~A1!
J. Math. Phys., Vol. 38, No. 4, April 1997
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whereS(x) 5 1
2(a,b5↑,↓cxa

† sabcxb is the electron spin operator, the Hamiltonian becomes~up to a
constant term!

Helec5 (
x,yPL

txycxs
† cys2

2U

3 (
xPL

S~x!2. ~A2!

In terms of Grassman anticommuting variables for each spin componentc̄s(x,t), cs(x,t)
(x,t)PL3[0, b], the partition function is given by13

ZHubbard5E Pb~dc!expFU6 E
0

b

dt(
xPL

S (
a,b5↑,↓

c̄a~x,t !sabcb~x,t ! D 2G , ~A3!

wherePb(dc) is the Grassmanian integral with the appropriate propagator@analogous to~4.10!#.
The next step is an application of the Gaussian identity

E )
i51

3
df i~x,t !

A2p
expF2

1

2
uf~x,t !u21AU

3
f~x,t !• (

a,b5↑,↓
c̄a~x,t !sabcb~x,t !G

5expFU6 S (
a,b5↑,↓

c̄a~x,t !sab5↑,↓cb~x,t ! D 2G , ~A4!

wheref(x,t) is a time-dependentauxiliary field coupled to the electron spin. We get the form
expression

ZHubbard5E Df exp@Seff~f!#, ~A5!

whereSeff~f! is the effective action of the time-dependent field, and

exp@Seff~f!#5expF2
1

2 E
0

b

dt(
xPL

uf~x,t !u2G3E Pb~dc!

3expFAU

3 E
0

b

dt(
xPL

f~x,t !•(
a,b

c̄a~x,t !sabcb~x,t !G . ~A6!

It is at this point that we make the static approximation. We replace the auxiliary field by astatic
onef(x). Then~A6! becomes equal to

expF2
b

2 (
xPL

uf~x!u2G E Pb~dc!expFAU

3 (
xPL

(
a,b5↑,↓

c̄a~x,t !Fab~x!cb~x,t !G
5Tr expF2bSHcin1H int1

1

2 (
xPL

uf~x!u2D G5exp@2bF~F;b!#, ~A7!

whereH int is given by~2.6! with g 5 AU/3. We have thus obtained model~2.19!
To recover the HF mean field theory from the path integral formalism one evaluates the

integralDf in ~A5! by means of the saddle point approximation. The saddle point is the sol
of

d

df i~x,t !
Seff~f!50, i51,2,3. ~A8!
J. Math. Phys., Vol. 38, No. 4, April 1997
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If one looks for static solutions of~A8!, the equation reduces to

d

df i~x!
F~F;b!50, i51,2,3, ~A9!

which yields ~2.21!. Therefore the Hartree–Fock approximation is equivalent to the variati
problem of finding the global minimum ofF.

In the case of the attractive model~2.2! with U,0, we use the identity

~cx↑
† cx↑2

1
2!~cx↓

† cx↓2
1
2!5S18~x!21S28~x!22 1

4, ~A10!

whereS18(x) andS28(x) are the components of the electron pseudospin operator

S18~x!5
1

2
~cx↑

† cx↓
† 1cx↓cx↑!, S28~x!5

i

2
~cx↑

† cx↓
† 2cx↓cx↑!. ~A11!

The Hamiltonian becomes up to a constant term

Helec5 (
x,yPL

txycxs
† cys2uUu (

xPL
„S18~x!21S28~x!2…. ~A12!

We then proceed in a way similar to the repulsive case, by applying another Gaussian ide

exp
uUu
4

@@c̄↑~x,t !c̄↓~x,t !1c↓~x,t !c↑~x,t !#
22@c̄↑~x,t !c̄↓~x,t !2c↓~x,t !c↑~x,t !#

2#

5E P i51
2 df i~x,t !

A2p
expF2

1

2
~f1~x,t !

22f2~x,t !
2!1AuUu

2
c̄↑~x,t !c̄↓~x,t !@f1~x,t !

1 if2~x,t !#1AuUu
2

c↓~x,t !c↑~x,t !@f1~x,t !2 if2~x,t !#G , ~A13!

wheref1(x,t), f2(x,t) is a time-dependentauxiliary field coupled to the electron pseudospin.
before the static approximation consists in replacing it by astatic classical fieldf1(x), f2(x)
which then gives~2.22!.
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Finite coherence length for equilibrium states
of generalized adiabatic Holstein models

C. Baesensa) and R. S. MacKayb)
The Nonlinear Centre, DAMTP, University of Cambridge, CB3 9EW, United Kingdom

~Received 26 September 1996; accepted for publication 31 December
1996!

We prove that the equilibrium states of the adiabatic Holstein model, and a wide
range of generalizations, have finite coherence length as long as they have elec-
tronic gap and phonon gap. ©1997 American Institute of Physics.
@S0022-2488~97!00804-9#

I. INTRODUCTION

The Holstein model1 is a model for materials in which electrons and phonons interact, suc
those in which charge density waves form. The adiabatic case is when the phonons are
classically. The equilibrium states are the local minima of the energy.

In a fundamental paper,2 Aubry et al.proved the existence of many equilibrium states for
adiabatic Holstein model when the electron–phonon coupling dominates the electron ho
between sites. They did this by continuation from the ‘‘anti-integrable limit,’’ when the elect
can not hop at all. Continuation can be performed as long as the equilibrium state has phon
and electronic gap. ‘‘Phonon gap’’ means that 0 is not in the spectrum for small vibrations o
phonon variables. ‘‘Electronic gap’’ means that a positive minimum energy is required to rea
electronically excited state. A cleaner proof of this continuation result was presented fo
one-dimensional~1D! nearest neighbor case in Ref. 3 and for the general case in Ref. 4. I
extended in Ref. 5 to the case where the electrons come from a heat bath at positive temp

Furthermore, Aubryet al.2 also showed that sufficiently near the anti-integrable limit,
subexponential networks with nearest neighbor coupling, these equilibrium states have
coherence length,’’ meaning that if a small localized external field is applied then the equilib
state deforms by an amount which decays exponentially from the site of the perturbatio
alternative proof was presented in Ref. 3 for the 1D nearest neighbor case.

In this paper, we give a much more general and elegant proof of finite coherence length
equilibrium states with electronic gap and phonon gap~not necessarily close to the anti-integrab
limit and not restricted to subexponential networks nor nearest-neighbor coupling!, and on refining
it we obtain good estimates. Furthermore, we treat also the case of electrons from a heat

We begin in Section II by defining the models. The second step is to prove some g
mathematical results about exponential localization for a class of invertible operators inl 2 ,
presented in Section III. This section can be read alone and we expect it to have many
applications. It is a specialization tol 2 of a result proved in Ref. 6.

The third step, in Section IV, is to apply the exponential localization results to the Hol
model, firstly to control the resolvent operator for the electrons and then to control the respo
localized forcing. The fourth step, in section V, is to refine the proof to obtain good estimate
illustration, we evaluate the estimates for two concrete examples in section VI.

We conclude by rederiving some good estimates for the phonon gap in section VII
extending the main results to the case where the electrons come from a heat bath in sectio

a!On leave from the Centre de Dynamique des Syste`mes Complexes, Laboratoire de Physique, Universite´ de Bourgogne,
21004 Dijon, France. Telephone:144:1223-339732; Fax:144:1223-337918;
Electronic-mail: C.Baesens@damtp.cam.ac.uk

b!Telephone/Fax:144:1223-339733; Electronic-mail: R.S.MacKay@damtp.cam.ac.uk
0022-2488/97/38(4)/2104/11/$10.00
2104 J. Math. Phys. 38 (4), April 1997 © 1997 American Institute of Physics
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II. GENERALIZED ADIABATIC HOLSTEIN MODEL

The models to be studied have the following form. First, we suppose a countable setSwith a
metric d. The elementss of S represent sites in a lattice, or more generally a network,
d(r ,s) is a measure of distance between sitesr ands, which can be chosen by the user, adap
to anisotropy of the network, for example.

Second, at each sites P S is a real numberus representing a classical phonon variable. The
of bounded configurations of phonon variablesu5(us) is denoted by l ` , with norm
iui`5supsPSuusu. A potential energy functionV(u) is assumed for the phonon variables. If th
network is infinite, then this might exist only as a formal object, but its derivative atu, DVu ,
regarded as acting onl 15$v P RS:ivi1 :5(suvsu,`%, is assumed to exist and be continuous
differentiable (C1). Furthermore, the second derivativeD2V, regarded as an operator o

l 25$v P RS:ivi2 : 5 A(suvsu2,`%, is assumed to be exponentially local in a sense to be defi
in Section III. The simplest example isV(u)5(s

1
2us

2 . Note that we think ofD2V andD2W as
operators onl 2 , whereas formally they are maps froml ` to the dual ofl 1 , which is isomorphic
to l ` . Nonetheless, they induce operators onl 2 ~and quadratic forms onl 2).

Finally, electrons of spins P $↑,↓% can be created or annihilated on sites by fermionic
operatorsass

† ,ass , respectively. They propagate throughS with the Hamiltonian operator

He5c(
s
nsus2tDe , ~1!

wherens5(s,sass
† ass andDe5( r ,s,sD rsars

† ass , for some Hermitian matrixD with no diagonal
elements~without loss of generality! and iDi2,`, which is also assumed to be exponentia
local. As we will be interested in the case of non-zero electron–phonon coupling we will afte
introduction scale it toc51. Also without loss of generality,t>0.

SinceHe commutes with the number operatorsNs5(sass
† ass , these can be specified i

advance. The equilibrium states are defined to be the local minima of the total e
V(u)1^He&, where the expectation ofHe is taken with respect to the electronic degrees
freedom, subject to given numbersN↑ ,N↓ . What this means if either ofN↑ ,N↓ is infinite will be
explained shortly.

SinceHe provides no interactions between the electrons, the minimum valueF(u) of ^He&
givenN↑ ,N↓ andu, can be computed from the spectrum of the single-electron Hamiltonian

H5cu2tD, ~2!

by using Pauli’s exclusion principle~cf. Refs. 2–4!. The operatorH acts on wavefunctionsc
P C Sby

~Hc!s5cuscs2t(
r

Dsrc r . ~3!

We define the function

W~u!5V~u!1F~u! ~4!

on l ` , and the equilibrium states are the local minima of this. In the case of an infinite sy
what we mean is that the equilibrium states are theu for which DWu50, regarded as acting o
l 1 ~assumingDFu exists!, and for whichD2W, regarded as a quadratic form onl 2 ~assuming
D2F exists!, is positive definite.

An equilibrium state hasphonon gapif D2W exists and is positive definite~this is included in
our definition of equilibrium state in the infinite case!. It has electronic gapif there is a gap
J. Math. Phys., Vol. 38, No. 4, April 1997
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between the highest occupied level ofH and the lowest unoccupied level. Electronic gap impl
the existence ofDFu andD

2F ~cf. Ref. 4!. The interpretation ofF when either ofN↑ ,N↓ is
infinite is that a gap in the spectrum is assumed for each spin and everything below it is as
occupied, everything above it unoccupied.

Our aim in this paper is to study the response of an equilibrium state to a small loca
external force on the phonon variables. We represent the force field by a distributionh of real
numbershs on sitess, and modify the energy to

Wh~u!5V~u!1F~u!2(
s
hsus . ~5!

If u has phonon gap then it has a locally unique continuation for smallh. As explained in Ref. 2,
the responsedu to infinitesimal forcedh is given bydu5D2W21dh, and this can be integrate
with respect to the amplitudef of a force fieldf h to obtain an analogous result for small forc
fields:

u~F !2u~0!5E
0

F

D2Wu~ f !
21 h d f. ~6!

So we will study the matrixD2W and its inverse.
On the way, we will find it useful to study the same question of response to an exponen

localized force for the operatorE2H on complex wavefunctions, withE P C \ specH.

III. EXPONENTIALLY LOCAL MAPS IN l 2

Let (S,d) be a countable metric space, and for eachs P S let Xs andYs be Banach space
~possibly Hilbert, but not necessarily!. Let X and Y be the subsets of̂ sPSXs and ^ sPSYs ,
respectively, with a finitel 2-norm,

ixi5A(
sPS

uxsu2, ~7!

and similarly forY.
Definition:A statex P X ~or Y) is said to beexponentially localizedabout siteo P S if there

existsz.1 such that the modificationx̃ defined byx̃s5xsz
d(s,o) has finite norm forz,z.

Note the following consequence.
Proposition 1: If x is exponentially localized abouto then the amount ofl 2-norm beyond

distancer from o decays exponentially withr :

P~r !:5 (
s:d~s,o!>r

uxsu2< inf
aP~0,log z!

i x̃~ea!i22ixi2

~e2ar21!
. ~8!

Proof: Sincex is exponentially localized,

(
s

uxsu2e2ad~s,o!5i x̃~ea!i2, ~9!

for a, log z. Now using*0
d2ae2aqdq5e2ad21, we obtain

E
0

`

P~q!2ae2aqdq5i x̃~ea!i22ixi2. ~10!
J. Math. Phys., Vol. 38, No. 4, April 1997
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ButP is non-increasing, so fora P (0,logz), andr P (0,̀ ),

E
0

`

P~q!2ae2aqdq>P~r !E
0

r

2ae2aqdq5P~r !~e2ar21!. ~11!

Hence the result. h

Definition: A bounded linear mapL:X→Y is said to beexponentially localif there exists
z.1 such thatL̃(z) defined by

L̃~z!rs5Lrsz
d~r ,s! ~12!

is a bounded map fromX→Y for z,z.
Theorem 2: If L:X→Y is exponentially local and invertible, andy P Y is exponentially

localized abouto P S, thenx5L21 y is also exponentially localized abouto, with bounds depend-
ing only on iL21i21, i ỹ(z)i and i L̃(z)2Li .

Proof: LetN P N and define the modified metric,

d~r ,s!5min~d~r ,s!,N!. ~13!

Let z be the smaller of thez appearing in the definitions of exponential locality fory andL. For
zP @1,z), defineuP X by

us5xsz
d~s,o!. ~14!

Then (Lu) r5(sLrsxsz
d(s,o). But Lx5y, so subtractzd(r ,o)((sLrsxs2yr) to obtain

~Lu!r5(
s
Lrs~12zd~r ,o!2d~s,o!!us1yrz

d~r ,o!. ~15!

Now d(r ,o)2d(s,o)<d(r ,s) andd(r ,o)<d(r ,o), so

iLui<i L̂~z!iiui1i ỹ~z!i , ~16!

where for any exponentially local mapL, L̂(z) is defined by

L̂~z!rs5Lrs~z
d~r ,s!21!, ~17!

which is bounded forz,z. Then

iui<iL21i~ i L̂~z!iiui1i ỹ~z!i !. ~18!

Now L̂(1)50 andL̂(z) is continuous inz, so i L̂(z)i,iL21i21 for z near 1. Letzm be the first
z.1 for which equality occurs, orz if it does not occur. It follows that forz,zm ,

iui<
i ỹ~z!i

iL21i212i L̂~z!i
. ~19!

This being true for arbitrarily largeN, we obtain

i x̃~z!i<
i ỹ~z!i

iL21i212i L̂~z!i
, ~20!
J. Math. Phys., Vol. 38, No. 4, April 1997
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for all z,zm . So x is exponentially local, with bounds which depend only oniL21i21, i ỹ(z)i
and i L̂(z)i . h

Remark: The case z5z is also allowed if both i ỹ(z)i and i L̃(z)i,`, and
i L̂(z)i,iL21i21.

IV. FINITE COHERENCE LENGTH FOR EQUILIBRIA WITH GAPS

We suppose from now on thatu is an equilibrium of the Holstein model with both electron
and phonon gaps. We prove that it has finite coherence length.

The electronic energy of a configurationu for a Holstein model can be written as

F~u!5 tr HP, ~21!

whereP is the sum of the projectionsPs onto the subspaces occupied by up- and down-electr
respectively.3,4 In turn, P can be conveniently written as

P5
1

2p i EG
G~E!dE, ~22!

whereG is a contour in the complex plane passing once round the up-occupied spectrum
once round the down-occupied spectrum, and

G5~E2H !21 ~23!

is theresolvent operator, defined forE P C \ specH ~e.g., Ref. 7!. Then usingG85GH8G where
8 denotes differentiation with respect to any smooth parameter ofH, we obtain~as in Refs. 3 and
4!

Jrs :5D2F rs5
1

2p i EG
GrsGsrdE. ~24!

NowH is exponentially local by the assumption onD, so forE P C \ specH, we can apply our
Theorem toE2H to deduce thatGc is exponentially localized wheneverc is. In particular,
chooses P S and takec5ds , the wavefunction withcs51 and all other components zero. The
using

iGi215d:5d~E, specH !, ~25!

the distance ofE to the spectrum ofH, we deduce that

(
r

uGrsu2z2d~r ,s!<
1

~d2tg~z!!2
, ~26!

for all z.1 such thattg(z),d, where

g~z!5iD̂~z!i , ~27!

and D̂ is defined as in~17!. The functiong is defined and continuous on some interval arou
z51, andg(1)50. Thustg(z),d for some interval ofz.1.

This allows us to prove thatJ is exponentially local, as follows. It is required to prove th
J̃(z), defined byJ̃(z) rs5Jrsz

d(r ,s), is a bounded operator onl 2 for somez.1. Now
J. Math. Phys., Vol. 38, No. 4, April 1997
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J̃rs5
1

2p i EG
GrsGsrz

d~r ,s!dE ~28!

and

Grs~E!5Gsr~Ē!. ~29!

An easy way to boundi J̃i is to bound it in l ` and then use symmetry ofJ̃ to deduce that
i J̃i2<i J̃i` ,

i J̃i`5sup
r
(
s

uJ̃rsu<
1

2pEG

udEu

~d~E!2tg~Az!!2
, ~30!

using the Cauchy–Schwarz inequality~note thatuGrsu is not necessarily equal touGsru, so it is
necessary to go through Cauchy–Schwarz!. We chooseG to consist of two vertical lines through
the centers of the gaps between the parts of the spectrum ofH occupied and unoccupied b
electrons of spins P $↑,↓%, whose widths we denote by«s , closed by large semicircles in the le
half plane. Then

i J̃i`<
1

2p
(
s

E
2`

` dy

~A«s
2/41y22tg~Az!!2

5(
s

«s
2/4

~«s
2/42t2g~Az!2!3/2

, `, ~31!

for all z.1 for which tg(Az),mins«s/2. The inequality is satisfied for some interval ofz.1.
HenceJ is exponentially local.

SinceK:5D2V is exponentially local by assumption, we deduce that

M :5D2W5K1J ~32!

is exponentially local. If the equilibrium has phonon gap, then we can apply our Theore
M , and we deduce that the responsedu of the equilibrium to exponentially localized forcin
dh is exponentially localized, with the following estimates:

idũ~z!i<
idh̃~z!i

iM21i212iK̂~z!i2i Ĵ~z!i
, ~33!

for all z.1 for which iK̂(z)i1i Ĵ(z)i,iM21i21, whereK̂,Ĵ are defined as in~17!. The func-
tions iK̂(z)i and i Ĵ(z)i are defined and continuous for some interval aroundz51, and
K̂(1)5 Ĵ(1)50, so the inequality is satisfied for some interval ofz.1.

This completes the proof of finite coherence length for equilibria with electronic and ph
gap.

Remark:Note that we can also prove finite coherence length in thel ` sense, using Ref. 6 a
follows. We already proved above thatJ is exponentially local in thel ` sense (i J̃(z)i`,` for
somez.1). The operatorD2V was only assumed to bel 2-exponentially local, but this implies
the same in l ` because Proposition 1 makes the rows ofK̃ summable. HenceM is
l `-exponentially local. IfM has phonon gap~invertible in l 2) then it is also invertible inl `

because thel 2 exponential localization results onM
21 make its rows summable. Then the res

of Ref. 6 givesl `-exponentially localized response tol `-exponentially localized forcing, with
estimates given by the same formula as~33! but with all the norms replaced byl ` norms.
J. Math. Phys., Vol. 38, No. 4, April 1997
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V. GOOD ESTIMATES

The previous section provides a proof of finite coherence length, but the estimates obta
the above proof are not very good. They can be greatly improved, at least for smallt. This is
because the diagonal elements ofJ turn out to be of ordert2 rather than order 1, as pointed out
Ref. 2. So now we will redo the proof with better estimates.

The main issue is to obtain a bound oni Ĵ(z)i . This is perhaps easiest to obtain by integrat
of the norm of the derivativeJ̃8(z) from z51:

J̃8~z!rs5
1

2p i EG
GrsGsrd~r ,s!zd~r ,s!21dE. ~34!

Note that this has no diagonal elements. To boundi J̃8(z)i we will use

i J̃8~z!i2<i J̃8~z!i`<
1

2pEG
sup
r
(
s

uGrsGsrd~r ,s!zd~r ,s!21idEu

<
1

2pAz
E

G
Asup

r
(
s

uGrsu2d~r ,s!2zd~r ,s!21(
sÞr

uGsru2zd~r ,s!udEu, ~35!

by the Cauchy–Schwarz inequality.
To bound(sÞr uGsru2zd(r ,s), we follow a procedure analogous to the proof of Lemma 4 of R

4. For o P S and E P C \ specH, let xr5G(E) ro , j r5xr for r Þ o, jo50, and let
j̃(z) r5j rz

d(r ,o). Then

(
s

~E2H !rsz
d~r ,o!2d~s,o!j̃s5d ro2~E2H !roz

d~r ,o!xo , ~36!

whered ro is the Kronecker symbol~1 if r5o, otherwise 0!. The componentr5o of the right
hand side can be written as(sÞo(E2H)osjs , because ((E2H)x) r5d ro . Also the off-diagonal
part ofE2H is tD. Hence the norm-squared of the right hand side of~36! is

t2U(
sÞo

DosjsU21t2(
rÞo

uD roz
d~r ,o!u2uxou2<t2SDiji21t2SD̃~z!uxou2, ~37!

where for any bounded operatorB,

SB :5sup
r
(
s

uBrsu2<iBi2
2 . ~38!

Now SD<SD̃(z) for z>1, andiji21uxou25ixi2<1/d2, thus ~37! is at mostt2SD̃(z) /d
2. But the

operator (E2H)o(z), defined by

~E2H !rs
o 5~E2H !rsz

d~r ,o!2d~s,o!, ~39!

is invertible providedd.tg(z) ~as in the proof of Theorem 3 of Ref. 6 or as is implicit in th
proof of our Theorem in Section III!, with

i~~E2H !o!21i<
1

d2tg~z!
. ~40!

Combining these two facts with~36!, we obtain
J. Math. Phys., Vol. 38, No. 4, April 1997
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i j̃~z!i<
tASD̃~z!

d~d2tg~z!!
. ~41!

It follows that

(
rÞo

uGrou2z2d~r ,o!<
t2SD̃~z!

d2~d2tg~z!!2
, ~42!

which is the desired estimate.
To bound(suGrsu2d(r ,s)2zd(r ,s)21, leto P S, E P C \ specH, and letxr5G(E) ro again. Then

~E2H !ox̃5do , ~43!

wherex̃r5xrz
d(r ,o). Both (E2H)o andx̃ are differentiable with respect toz for z,z, so denoting

the derivative by8, we obtain

~~E2H !o!8x̃1~E2H !ox̃ 850. ~44!

Hence

x̃ 852~~E2H !o!21t~Do!8x̃. ~45!

Now x̃r5Groz
d(r ,o), whose norm we already estimated in~26!, and (Do)8 is bounded forz,z, by

the hypothesis thatD is exponentially local. In particular, for 1<z,z, i(Do)8(z)i<iD̃8(z)i ,
becauseud(r ,o)2d(s,o)u<d(r ,s). Also, ((E2H)o)21 is bounded by~40!. Hence

A(
r

uGrou2d~r ,o!2z2~d~r ,o!21!5i x̃ 8~z!i<
tiD̃8~z!i

~d2tg~z!!2
. ~46!

Putting ~42! and ~46! into ~35!, we obtain

i J̃8~z!i<
1

2pAz(s E
2`

`

i x̃ 8~Az!ii j̃~Az!idy

<
1

2pAz(s E
2`

` t2iD̃8~Az!iASD̃~Az!

d~d2tg~Az!!3
dy. ~47!

Using d5A«s
2/41y2, the integral can be evaluated, leading to

i J̃8~z!i5
8t2

pAz
iD̃8~Az!iASD̃~Az!(

s

L~cs!

«s
3 , ~48!

where

cs5
2tg~Az!

«s
,1, ~49!

and

L~c!5
c21 1

2

~12c2!5/2
cos21~2c!1

3c

2~12c2!2
, ~50!
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where cos21(2c) is chosen in@p/2 ,p).
Now, integrating fromz51 to z0.1, we obtain

i Ĵ~z0!i<E
1

z0
dz

8t2

pAz
iD̃8~Az!iASD̃~Az! (

s

L~cs!

«s
3

. ~51!

Note that this is of ordert2.
Finally, this can be inserted into~33! to obtain an excellent exponential decay estimate.

VI. EXAMPLES

As an illustration of the power of our results, we bound the coherence length for the eq
rium states of the adiabatic Holstein model on a triangular lattice, with phonon pote
V(u)5(s

1
2us

2 and nearest neighbor electron hopping:D rs51 if r ,s are nearest neighbors, othe
wise 0. Then K̂(z)50 and the required functions ofD are g(z)56(z21), SD̃(z)56z2,
iD̃8(z)i56.

From ~33! and Proposition 1, the response to a point force decays at least
P(r )<Ce22ar for all a, log z, wherez is the firstz such that

i Ĵ~z!i5iM21i21. ~52!

So the issue is to solve this equation forz.
The quantityi Ĵ(z)i is bounded by~51!, which in this case evaluates to

i Ĵ~z0!i<E
1

z0
dz
48A6

p
t2(

s

1

«s
3 LS 12t«s

~Az21! D , ~53!

and hence it suffices to find the first value ofz0 for which this equals the phonon ga
g:5iM21i21. This gives an implicit functionz(g,«↑ ,«↓), whose graph can be drawn, etc. Th
the coherence length is at most 1/logz.

As a second example, we take exponentially decaying hopping on a triangular la
D rs5ld(r ,s) for r Þ s. Then

iD̃8~z!i5
6l~11lz!

~12lz!3
, ASD̃~z!5

A6lz

12~lz!2
, g~z!5

6l~z21!~12l2z!

~12lz!2~12l!2
. ~54!

So

i Ĵ~z0!i<E
1

z0
dz

48A6t2l2~11lAz!

p~12lAz!3~12l2z!
(
s

1

«s
3 LS 2tg~Az!

«s
D . ~55!

VII. ESTIMATES OF THE PHONON GAP

The previous section gives estimates on the coherence length in terms of properties ofD and
D2V and the sizes of the phonon gapg5iM21i21 and of the electronic gaps«s . The first two are
assumed to be given but the latter two often have to be estimated. Here we obtain a good e
for the phonon gap for all equilibria close enough to the anti-integrable limit. At the end o
section we recall a reference for the analogous point for the electronic gaps.

As usual,iM21i can be bounded by (iD2V21i212iJi)21, so it is a question of obtaining a
good estimate foriJi . An l ` estimate was obtained in Ref. 4, which implies the same forl 2

becauseJ is symmetric. But a betterl 2 estimate was obtained by expansion into eigenfuncti
in an early version of Ref. 2~though it does not appear in the published version!. Here we rederive
J. Math. Phys., Vol. 38, No. 4, April 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



that
ctrum.

ain

the

, this

2113C. Baesens and R. MacKay: Finite coherence length

¬¬¬¬¬¬¬¬¬¬
it ~actually as anl ` estimate! using spectral projection, which avoids the technical questions
would arise about the eigenfunction expansion approach in case of degeneracy of the spe

SinceJ is symmetric,iJi2<iJi` . Now

iJi`5sup
r
(
s

uJrsu5sup
r
(
s

1

2p U E
G
GrsGsrdEU. ~56!

Now a special case of Lemma~3.7! of Ref. 5 is that

E
G
G2dE50, ~57!

for any closed curveG not passing through spectrum ofH. So in particular,

E
G
Grr
2 dE52E

G
(
sÞr

GrsGsrdE. ~58!

Thus the diagonal terms in~56! can be replaced by sums of off-diagonal ones, leading to

iJi`<sup
r

1

pEG
U(
sÞr

GrsGsrUudEu. ~59!

Now from Lemma 4 of Ref. 4, or the casez51 of ~42!,

(
sÞr

uGrsu2<
t2SD

d4
. ~60!

Thus, using~29! and Cauchy–Schwarz, we have

U(
sÞr

GrsGsrU< t2SD

d4
. ~61!

Hence we obtain

iJi`<
1

pEG

t2SD

d4
udEu5(

s

4t2SD

«s
3 . ~62!

For example, for the triangular lattice example of section VI, we obt
iJi`<(s (24t

2/«s
3); sinceK5I ~the identity!, this gives phonon gapg>12(s (24t

2/«s
3), as

long as the latter is positive.
Note that the estimates in Ref. 4 can be considerably improved by using~62!: the right hand

side of Eq.~6.18! of Ref. 4 can be reduced to the same value as in~6.10! there.
Note also thatl 2 estimates onJ can be found directly, instead of passing vial ` estimates,

but it is slightly more complicated and we obtained the same answer.
The electronic gap can also be estimated for equilibria arising by continuation from

anti-integrable limit, as in Ref. 4.

VIII. EFFECT OF TEMPERATURE

Finally, we consider the effect of connection of the electrons to a heat bath. As in Ref. 5
is modelled by replacing the electronic energyF(u) by the free energy,
J. Math. Phys., Vol. 38, No. 4, April 1997
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Fe~u!52(
s

T tr log~11e2b~H2m!!, ~63!

whereT is the temperature of the heat bath,b51/T, andm is the chemical potential of the hea
bath. The up and down electrons could in principle have their ownT andm, but we shall take
them equal for simplicity.

The only essential difference between the cases ofT50 andT.0 is that the integrals ove
G are replaced by sums over a column of poles of the Fermi–Dirac distributions(E):

1

2p i EG
s~E!X~E!dE5T (

nPZ

X~m1~2n11!ipT!, ~64!

for any functionX(E) @cf. Eq. ~3.12! of Ref. 5#. Thus the estimates forJ̃(z) are slightly different,
but J is again exponentially local and hence finite coherence length follows for all equilib
states with phonon and electronic gap.

Good estimates fori Ĵ(z)i can be obtained by replacing the integral in~48! by a sum and then
integrating the result fromz51, but we do not give the details here. The phonon gap can
estimated as in Ref. 5@we have not yet found an analogue of the good estimate~62! for the warm
case#.
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Coherent states in quaternionic quantum mechanics
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We develop Perelomov’s coherent states formalism to include the case of a qua-
ternionic Hilbert space. We find that, because of the closure requirement, an at-
tempted quaternionic generalization of the special nilpotent or Weyl group reduces
to the normal complex case. For the case of the compact group SU~2!, however,
coherent states can be formulated using the quaternionic half-integer spin matrices
of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of co-
herent states. ©1997 American Institute of Physics.@S0022-2488~97!01005-0#

I. INTRODUCTION

The coherent states formalism is an important part of the apparatus of complex qu
mechanics, and in this framework has been given a general and elegant form through the w
Perelomov.1 However, in a recent systematic study of quantum mechanics in quaternionic H
space,2 the issue of whether there is a quaternionic analog of coherent states was left open;
this gap is the object of the present paper. In Sec. II we show that the general Perelomo
struction readily extends to quaternionic Hilbert space, even when the subtleties arising
projective group representations3 are taken into account. In Sec. III we demonstrate that when
quaternionic generalization is applied to the special nilpotent or Weyl group, the requirem
group closure reduces the structure of the coherent states so obtained to a quaternionic em
of the standard complex construction. Hence, as suspected by Klauder,4 there is no nontrivial
quaternionic generalization of the standard complex coherent states based on the Weyl gro
an application of our formalism to a case in which the quaternionic coherent states are not
embeddings of the corresponding complex ones, we discuss in Sec. IV the case of the quate
coherent states constructed by the Perelomov method based on the intrinsically quaternion
integer spin representations of the rotation group.

II. GENERAL PROPERTIES OF PERELOMOV COHERENT STATES IN QUATERNIONIC
HILBERT SPACE

Let uc0& be a fixed state in a quaternionic Hilbert spaceVH . For some Lie groupG and its
irreducible unitary representation,$T(g):gPG%, consider the set of states$ucg&%, where

ucg&5T~g!uc0&.

Consider transforming from a stateucg1
& to anotherucg2

&. In terms ofucg1
&,

uc0&5T21~g1!ucg1
&5T~g1

21!ucg1
&,

hence,

a!Electronic mail address: adler@ias.edu
b!Electronic mail address: amillard@phoenix.princeton.edu
0022-2488/97/38(5)/2117/10/$10.00
2117J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ive

me

c

t

2118 S. L. Adler and A. C. Millard: Coherent states in quaternionic quantum mechanics

¬¬¬¬¬¬¬¬¬¬
ucg2
&5T~g2!T~g1

21!ucg1
&5T~g2g1

21!ucg1
&vp~g2 ,g1

21!,

where the factor ofvp(g2 ,g1
21) is a quaternionic phase, inserted so that project

representations3 may also be considered in this approach. Then, if

T~g2g1
21!ucg1

&5ucg1
&vg1

~g2 ,g1
21!,

wherevg1
(g2 ,g1

21) is another quaternionic phase, then

ucg2
&5ucg1

&vg1
~g2 ,g1

21!vp~g2 ,g1
21!,

or, in other words,ucg2
& and ucg1

& differ only by a phase factor and hence determine the sa
physical state.

Let H be the set of elements$h% in G such that

T~h!uc0&5uc0&v~h!.

ThenH is a subgroup ofG, being the stationary group for the ray containinguc0&. Forming the
set of left cosetsM5G/H, for each cosetxPM , one representativeg(x) can be selected to form
the set of states$ucg(x)&%5$ux&%. The following definition may then be made:

Definition 1: The system of coherent states of type(T,uc0&) is the set of states$ucg&%, where
ucg&5T(g)uc0& and g runs over G. The coherent stateucg& is determined up to a quaternioni
phase by the coset x5x(g), which is an element of G/H, corresponding to the element g; that is

ucg&5ux.v~g!,

whereuc0& is henceforth abbreviated asu0&.
Considerh1 , h2PH. A general element ofG is g5g(x)h, whereg(x) is a particular elemen

corresponding to a coset inG/H andg(0)51. From before,

ucg&5T~g!u0&5ux&v~g!,

so for g15g(x)h1 andg25g(x)h2 ,

T~g1!u0&5ux&v~x,h1! ~1!

and

T~g2!u0&5ux&v~x,h2!; ~2!

similarly, if

g125g~x!h1h25g1h2 ,

then

T~g12!u0&5ux&v~x,h1h2!. ~3!

Now consider the case whereux& 5u 0&; Eqs.~1!–~3! then become

T~g1!u0&5u0&v~h1!, T~g2!u0&5u0&v~h2!,

T~g12!u0&5u0&v~h1h2!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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However, sinceg(0)51 implies thatg15h1 andg25h2 , theng125g1h25g1g2 ; allowing for
projective representations,

T~g12!u0&5T~g1g2!u0&5T~g1!T~g2!u0&vp
21~g1 ,g2!5T~g1!T~g2!u0&vp

21~h1 ,h2!

5T~g1!u0&v~h2!vp
21~h1 ,h2!5u0&v~h1!v~h2!vp

21~h1 ,h2!,

giving

v~h1h2!5v~h1!v~h2!vp
21~h1 ,h2!. ~4!

If T is a true representation, as opposed to a projective representation, then the projective
are unity and

v~h1h2!5v~h1!v~h2!,

in correspondence with the complex phase relationship

exp@ ia~h1h2!#5exp@ ia~h1!#exp@ ia~h2!#

given by Perelomov.
Consider now elementsg P G andh P H and the action of the corresponding operators onu0&.

Now

T~h!u0&5u0&v~h!

and

T~g!u0&5ux~g!&v~g!,

and similarly

T~gh!u0&5ux~gh!&v~gh!;

then,

T~gh!u0&5T~g!T~h!u0&vp
21~g,h!5ux~g!&v~g!v~h!vp

21~g,h!,

and sincex(gh)5x(g), this means that

v~gh!5v~g!v~h!vp
21~g,h!, ~5!

which is the same phase relationship as in Eq.~4! but with one of the elements ofG now not in
H.

Finally consider the action of an arbitrary operator,T(g8), on an arbitrary coherent state
ux&. This may be written

T~g8!ux&5T~g8!ux~g!&5T~g8!T~g!u0&v21~g!5T~g8g!u0&vp~g8,g!v21~g!

5ux~g8g!&v~g8g!vp~g8,g!v21~g!5ux~g8g!&u~g8,g!, ~6!

where we have defined the new phase

u~g8,g!5v~g8g!vp~g8,g!v21~g!.

Replacingg by gh, whereh is an element ofH, and using Eq.~5! gives
J. Math. Phys., Vol. 38, No. 5, May 1997
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u~g8,gh!5v~g8gh!vp~g8,gh!v21~gh!

5v~g8g!v~h!vp
21~g8g,h!vp~g8,gh!vp~g,h!v21~h!v21~g!;

from the associativity condition for projective representations,

vp~g8,gh!vp~g,h!5vp~g8g,h!v21~h!vp~g8,g!v~h!,

we see that the middle five factors of the last expression foru(g8,gh) are simply equal to
vp(g8,g), giving

u~g8,gh!5v~g8g!vp~g8,g!v21~g!.

Hence, changingg to gh, whereh is any element ofH, gives the sameu, so it may be written
u(g8,x), since it only depends on the cosetx(g) and not ong itself.

Writing two coherent states as

ux1&5ux~g1!&5T~g1!u0&v21~g1!5T~g1!u0&v̄~g1!,

ux2&5ux~g2!&5T~g2!u0&v21~g2!5T~g2!u0&v̄~g2!,

their inner product is

^x1ux2&5^x~g1!ux~g2!&

5v~g1!^0uT~g1
21!T~g2!u0&v̄~g2!5v~g1!^0uT~g1

21g2!u0&vp~g1
21,g2!v̄~g2!

5v~g1!v̄p~g2
21,g1!^0uT~g1

21g2!u0&v̄~g2!;

replacingg1 by g1h, whereh is an element ofH, in the last line gives

^x1ux2&5v~g1h!v̄p~g2
21,g1h!^0uT~h21g1

21g2!u0&v̄~g2!

5v~g1!v~h!vp
21~g1 ,h!vp

21~g2
21,g1h!vp~g2

21g1 ,h!^0uT~h21!T~g1
21g2!u0&v̄~g2!

5v~g1!@v~h!vp
21~g1 ,h!vp

21~g2
21,g1h!vp~g2

21g1 ,h!v21~h!#^0uT~g1
21g2!u0&v̄~g2!

5v~g1!vp
21~g2

21,g1!^0uT~g1
21g2!u0&v̄~g2!

5v~g1!v̄p~g2
21,g1!^0uT~g1

21g2!u0&v̄~g2!,

where, in a very similar way to before, the second to sixth factors in the third line have
contracted via the projective representation associativity condition to givevp

21(g2
21,g1) in the

fourth line. Thus, as implied by our notation, the inner product does not depend specifica
g1 but just on the cosetx15x(g1), and this can similarly be shown forg2 . If all coherent states
are operated on by the sameT(g), then the inner product of two of the new states, using Eq.~6!,
is

^x~gg1!ux~gg2!&5u~g,x1!^x1uT21~g!T~g!ux2&ū~g,x2!5u~g,x1!^x1ux2&ū~g,x2!.

Let us now assume that the invariant measuredg on the group induces an invariant measu
dx on the set of cosetsM5G/H. Given sufficient convergence, consider the operator

B5E ux&^xudx;
J. Math. Phys., Vol. 38, No. 5, May 1997
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from the definition ofB and the invariance of the measure, Eq.~6! implies that

T~g!BT21~g!5E T~g!uy&^yuT~g21! dy5E ux~gy!&u~g,y!ū~g,y!^x~gy!u dy

5E ux&^xu dx5B,

so B commutes with all of the operatorsT(g). By the quaternionic generalization of Schur
Lemma,5 this means thatB is of the formB011B1I , whereB0 andB1 are real, 1 is the usua
identity operator, andI is a unit anti-self-adjoint operator,I †52I ; however, sinceB is clearly
self-adjoint,B1 must vanish, soB is a multiple of the identity as in the compex case. Given
coherent stateuy& that is normalized,̂yuy&51,

B05^yuBuy&5E ^yux&^xuy& dx5E u^yux&u2 dx5E u^0ux&u2 dx;

hence,

1

B0
E ux&^xu dx51.

With this form of the identity, an arbitrary state may be expanded over the coherent st

uc&5
1

B0
E ux&^xuc& dx5

1

B0
E ux&c~x! dx, ~7!

where

c~x![^xuc&.

Then,

^cuc&5
1

B0
2 E E c̄~x!^xuy&c~y! dx dy;

however,

c~x!5^xuc&5^xu
1

B0
E uy&^yuc& dy5

1

B0
E ^xuy&c~y! dy, ~8!

so,

^cuc&5
1

B0
E uc~x!u2 dx.

Defining

K~x,y!5
1

B0
^xuy&,

Eq. ~8! implies that this is a reproducing kernel,
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K~x,z!5E K~x,y!K~y,z! dy,

and the function

f̂ ~x!5E K~x,y! f ~y! dy

satisfies Eq.~8!, in the place ofc(x), for an arbitrary functionf (x). If uc& is itself a coherent state
uy&, then, from Eq. 7,

uy&5
1

B0
E ux&^xuy& dx,

so the coherent states are not linearly independent, meaning that the system of coherent
overcomplete.

III. THE CASE OF THE SPECIAL NILPOTENT OR WEYL GROUP

Having extended Perolomov’s formulation of coherent states to a quaternionic Hilbert s
we continue to follow his paper and consider the case of the nilpotent group. In the complex
this group leads to the familiar coherent states widely used in quantum optics. The special
tent or Weyl group is generated by a set of annihilation operators,$ai%, wherei runs from 1 to
N, their conjugate creation operators,$ai

†%, and the identity operator, 1. The commutation re
tions between these operators are

@ai ,aj #5@ai
† ,aj

†#5@ai ,1#5@ai
†,1#50

and

@ai ,aj
†#5d i j1.

Let theEA , whereA runs from 1 to 3, be three quaternion imaginary operators6 with an algebra
isomorphic to the algebra ofi , j , andk and all of which commute with theai and theai

† . Then,
an anti-self-adjoint7 element of the Lie algebra of the group may be written

t1(
i

b iai2(
i

b̄ iai
† ,

wheret is a quaternion imaginary operator,

t5(
A

tAEA ,

and theb i are quaternion operators,

b i5b i011(
A

b iAEA .

For convenience, the generator is written using a shorter notation,

t1ba2b̄a†.
J. Math. Phys., Vol. 38, No. 5, May 1997
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The group is then obtained from the algebra by means of the exponential mapping, so tha
general elementg P G,T(g) may be written

T~g!5~ t,b!5exp~ t1ba2b̄a†!.

In the case of a complex Hilbert space, as considered by Perelomov, group closure f
quickly. However, in the quaternionic case,t and theb i may be noncommutative, and requirin
group closure will impose significant restrictions. Consider, then, the product of two group
ments,

~s,a!~ t,b!5exp~s1aa2āa†!exp~ t1ba2b̄a†!;

using the Baker–Campbell–Hausdorff formula to second order,

expX expY5exp~X1Y1 1
2@X,Y#1••• !,

the product may be written

exp$s1t1~a1b!a2~ ā1b̄ !a†1 1
2@s1aa2āa†,t1ba2b̄a†#%,

and so, to obtain a group, this requires that

1
2@s1aa2āa†,t1ba2b̄a†#5u1ga2ḡa†. ~9!

In particular, the coefficients ofaiaj andai
†aj

† must vanish, which requires that

@a i ,b j #50

for eachi and j ; hence, alla i andb i must belong to the sameC (1, I ) subalgebra rather tha
being free to range over any quaternion. With this constraint, the coefficients ofaiaj

† andai
†aj also

vanish, and Eq.~9! implies that

u5 1
2@s,t#, g i5

1
2@s,b i #1 1

2@a i ,t#.

However, theg i must have the same structure as thea i and b i and thus belong to the sam
C (1, I ) subalgebra, which requires thats andt are simply proportional toI—consequently,u and
the g i vanish. Therefore, for group closure, the representation can only beC (1, I ) embedded in
the quaternionic Hilbert space rather than fully quaternionic. For the case of the nilpotent g
then, there is no quaternionic generalization of standard complex coherent states.

IV. THE CASE OF INTRINSICALLY QUATERNIONIC IRREDUCIBLE REPRESENTATIONS
OF SU(2)

We consider now the anti-self-adjoint generators of SU~2!, Sx , Sy andSz , such that8

@Sl ,Sm#5(
n

e lmnSn .

It can readily be observed that a quaternionic realization of this algebra is

Sx5
1
2i , Sy5

1
2 j , Sz5

1
2k,

which is a one-dimensional quaternionic irreducible representation of SU~2!. Consider eigenstate
of Sz ; these can be chosen to be
J. Math. Phys., Vol. 38, No. 5, May 1997
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u 12&51, u2 1
2&5 j

such that

Szu6
1
2&56 1

2u6
1
2&k.

Then choosing either of these states asu0&, the stationary subgroup is

H5$expaSz%.

Following Perelomov,1 a coherent state based on such au0& may be characterized by a vectorn or
by a polar angleu and an azimuthal anglef. For the purposes of an example, chooseu0& to be
u12& and then

un&5expfSz exp uSyu0&5exp 1
2fk exp

1
2u j ;

then

^n8un&5exp2 1
2u8 j exp 1

2~f2f8!k exp 1
2u j

and hence

u^0un&u251

so that

B05E u^0un&u2dn54p.

Correspondingly,

1

4p E un&^nu dn51,

as expected.
Since, with the above definitions for theSn ,

S252Sx
22Sy

22Sz
25 3

4,

this can be seen to be a one-dimensional spin1
2 representation of SU~2!. This is a special case o

a general result due to Finkelsteinet al.9 which states that besides the real, integer s
~Frobenius–Schur class11! and the half-integer spin~Frobenius–Schur class21! representa-
tions, there are quaternionic representations for half-integer spin of precisely half the dimens
the Frobenius–Schur class21 representations for the same spin. For instance, one choice fo
spin 3

2 representation is

Sx5
1

2
i S 2 A3 j

A3 j 0 D , Sy5
1

2
j S 2 2A3 j

A3 j 0 D , Sz5
1

2
kS 1 0

0 3D .
Then,

S252Sx
22Sy

22Sz
25

15

4 S 1 0

0 1D ,
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so the spin is indeed32. Consider, as before, eigenstates ofSz ; these may be chosen to be

U32L 5S 01D , U12L 5S 10D , U2 1

2L 5S j0D , U2 3

2L 5S 0j D .

Again, when one of these is chosen asu0&, the stationary subgroup is

H5$expaSz%.

As an example, chooseu0& to be u32& so that

un&5expfSz exp uSyu0&

5exp
1

2
fS k 0

0 3kD exp12 uS 2 j A3

2A3 0 D S 01D
5exp

1

2
fS k 0

0 3kD exp12 uS 2 j A3

2A3 0 D 3

4 F2S 1
j

A3
D j

A3
1S j

A3
1
D G

5exp
1

2
fS k 0

0 3kD 3

4 F2S 1
j

A3
D j

A3
exp

3

2
u j1S j

A3
1
D exp2

1

2
u j G

5
3

4 F 2S exp 1
2fk

exp
3

2
fk

j

A3
D j

A3
exp

3

2
u j1S exp12 fk

j

A3

exp 3
2 fk

D exp2
1

2
u j G

5
3

4 S exp12 fkF2exp
3

2
u j1exp2

1

2
u j G j

A3

exp 3
2 fk@ 1

3 exp
3
2 u j1exp2 1

2 u j#
D ,

where the calculation has been carried out efficiently by decomposing (1
0) into Sy eigenstates.

From this, we find

^n8un&5 9
16 @ 1

3 ~2exp2 3
2 u8 j1exp 1

2 u8 j !exp 1
2 ~f82f!k~2exp 3

2 u j1exp2 1
2 u j !

1~ 1
3 exp2

3
2 u8 j1exp 1

2 u8 j !exp 3
2 ~f2f8!k~ 1

3 exp
3
2 u j1exp2 1

2 u j !# ,
J. Math. Phys., Vol. 38, No. 5, May 1997
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and hence

u^0un&u25 5
81

3
8 cos 2u,

so that

B05E u^0un&u2 dn52p.

Correspondingly,

1

2p E un&^nu dV5
3

8p E S sin2 u x~u,f!

x̄~u,f! 1
31cos2 u

D dV

with

x~u,f!5
1

)

~ j sin2 ue22fk1sin 2ue2fk!,

which on doing thef integration becomes

3

4 E
0

pS sin2 u 0

0 1
3 1cos2 u

D sin u du5S 1 0

0 1D ,
as expected. These examples can be readily extended to the general half-integral spin quat
irreducible representations of SU~2!.
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The spectrum of the quartic oscillator
Karlheinz Bay and Wolfgang Lay
Universität Stuttgart, Institut fu¨r Theoretische und Angewandte Physik,
Pfaffenwaldring 57, 70550 Stuttgart, Germany

~Received 1 July 1996; accepted for publication 18 October 1996!

The spectrum of the quartic oscillator defined by the HamiltonianH52d2/dz2

1az1z21l2z4 is calculated. The eigenvaluesE(a,l) result from a fourth-order
linear difference equation by means of recurrence relations. For the symmetric
oscillator (a50) various eigenvalues have been compared with values obtained
from other approaches. In addition, results for the asymmetric oscillator are pre-
sented. ©1997 American Institute of Physics.@S0022-2488~97!02205-6#

I. INTRODUCTION

In this paper we present a numerical investigation of the energy eigenvalues of the q
oscillator, based on the singularity-analytic approach to the two-point connection proble1–3

resulting in a fourth-order linear difference equation. The basic idea of this technique is th
singularities of the differential equation determine the ansatz which is used to solve the pr
by means of a convergent power series in terms of a Jaffe´ expansion.

Without loss of generality we may restrict ourselves to the Hamiltonian

d2

dz2
C~z!1~E2az2z22l2z4!C~z!50, ~1!

and split the central two-point connection problem into two parts: we separately look for qua
integrable solutionsC1(z) on the positive real axis and for solutionsC2(z) on the negative rea
axis. Following the singularity-analytic approach and introducing an additional singularity in o
to minimize the order of the resulting difference equation we get the ansatz

C1~z!5expS 2
z

2l
2

lz3

3 D ~z11!2a/~2l!21w1~z!, ~2!

C2~z!5expS 1
z

2l
1

lz3

3 D ~2z11!1a/~2l!21w2~z!, ~3!

where the functionsw6(z) are represented by infinite power series. From symmetry cons
ations it follows immediately thatC1(z,a)[C2(2z,2a). Thus it is sufficient to use the ansa
~2! for treating the problem on the positive as well as on the negative real axis.

By means of the transformation

x5
z

z11
~4!

we map the positive real axis on the compact interval@0, 1#. Takingw1(x) as a simple power
series

w1~x!5 (
n50

`

an
1xn, ~5!
0022-2488/97/38(5)/2127/5/$10.00
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and inserting Eqs.~2!, ~4!, and~5! into ~1! we get the linear fourth-order difference equation

S 11
a2

n
1

b2

n2 Dan12
1 1S 241

a1

n
1

b1

n2 Dan11
1 1S 61

a0

n
1

b0

n2 Dan11S 241
a21

n
1

b21

n2 Dan21
1

1S 11
a22

n
1

b22

n2 Dan22
1 50, n>2. ~6!

Herea0
1 anda1

1 are arbitrary and

a2
152

b1a1
11b0a0

1

2
,

~7!

a3
152

~241a11b1!a2
11~61a01b0!a1

11~241a211b21!a0
1

6
.

The ansatz~2! defines a solution on the positive real axis having the appropriate asymp
behavior forz→` if and only if the coefficientsan

1 of the series~5! do not increase as th
maximum Birkhoff solution.1 The basic idea is that in the case ofE not being an eigenvalue, th
asymptotic behavior of the coefficients dramatically changes asn tends to infinity.

By numerical investigation we can never find the exponentially asymptotic behavior o
an that is expected forE being an eigenvalue because of numerical instabilities.4 However, we
may profit from this fact for the numerical calculation of the eigenvalues. This is simply don
varying the eigenvalue parameterE and looking for a change of the sign of anaN

1 whereN is
sufficiently large. The corresponding values ofE give a numerical approximation of the eige
value spectrum. During this process, the other parametersa andl are kept fixed.

FIG. 1. Coefficientsa50
1 (E) of the symmetric quartic oscillator;l 5 1.0.

TABLE I. Increase of the accuracy of the calculated eigenvalueE0 with increasingN; l51.0.

N E0 N E0

10 1.39 60 1.392 351 641 53
20 1.392 70 1.392 351 641 529
30 1.392 351 80 1.392 351 641 530
40 1.392 351 6 90 1.392 351 641 530 29
50 1.392 351 64 1000 1.392 351 641 530 29
J. Math. Phys., Vol. 38, No. 5, May 1997
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II. EIGENVALUES OF THE SYMMETRIC QUARTIC OSCILLATOR

In this section we demonstrate how the energy levels of the anharmonic oscillatorHC
5EC, with the HamiltonianH being of the form

H52
d2

dz2
1z21l2z4, ~8!

can be obtained with a given accuracy. This may be done by finding the zeros of the coeffi
aN

1 computed from the difference equations~6! and~7! by means of a forward recursion proces
We have split the problem into two partsC1(z), andC2(z). Thus, we have four arbitrary

coefficientsa0
6 anda1

6 in ~6!. In order to connect the problem atz50 the solutions~2! and ~3!
with ~4! and ~5! have to fulfill the coupling conditions

C1uz505C2uz50 ,
dC1

dz U
z50

5
dC2

dz U
z50

. ~9!

Because of the symmetry properties these conditions may be satisfied by setting

for even energy levels a0
151, a1

1511
1

2l
, and

~10!

for odd energy levels a0
150, a1

151.

TABLE II. Comparison of the eigenvaluesEk(l) with the valuesEk
B obtained by Biswaset al. (lB[l2) and Hioeet al.†

l Ek N Ek Ek
B

0.01 E0 1846 1.000 074 986 880 34
E1 2192 3.000 374 896 936 01
E6 2488 13.006 369 039
E7 2600 15.00 846 5898

0.10 E0 174 1.007 373 672 081 38
E1 196 3.036 525 304 513 33
E6 283 13.586715 801 589 5
E7 295 15.771 515 085 0425

1.00 E0 92 1.392 351 641 530 29 1.392 351 641 530 29
E1 105 4.648 812 704 212 07 4.648 812 70
E6 117 28.835 338 459 504 24 28.835 338 4
E7 146 34.640 848 321 111 32 34.640 848 3

2.00 E0 89 1.903136 945 458 99 1.903 136 945 459 00
E1 88 8.585 735 642 868 93 8.585 735 6
E6 117 43.581 912 783 593 0 43.581 912
E7 122 52.572 250 312 113 6 52.572 250

10.00 E0 72 4.999 4175 451 375 8 4.999 417 545 137 58
E1 72 17.830 192 715 952 5 17.830 192
E6 90 123.640 697 626 678 123.640 69
E7 98 149.545 657 443 288 149.545 65

†200.00 E0 74 36.274 458 133 736 8 36.274 458 2
E1 73 129.973 351 403 293 129.973 351 4
E6 88 907.329 749 584 389 907.329 75
E7 95 1097.832 281 319 18 1097.832 28
J. Math. Phys., Vol. 38, No. 5, May 1997
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Under these conditions we compute the sequence of coefficientsan
1(E,l) determined by the

recurrence relation~6! up to an indexn5N; the zeros ofaN
1(E,l) determine the even energ

levels of the symmetric quartic quantum oscillator~Fig. 1!.
One may note that the present procedure cannot be applied in the limiting casel→0. In this

case, thes-rank of the singularity at infinity of the differential equation defined by~8! and thus the
order of the corresponding difference equation change.5 In spite of this, the eigenvalues smooth
approach those of the harmonic oscillator.~In the opposite limitl→` one may apply the rescal
ing z85l1/3z andE85l22/3E to obtain the purely quartic oscillator. In this limit our procedu
can be applied without any changes.!

For calculating the eigenvalues of the Hamiltonian~8! we have used Newton’s iteratio
procedure for finding the zeros ofaN as a function ofE. In Table I the numberN of steps is listed
which is necessary and sufficient to obtain a given accuracy in computing the eigenvalueE0 . As
one can see the accuracy does not change when taking more than the necessary nu
recurrence steps; moreover, there is no propagation of round-off errors.

In Table II we present the energy levels of the symmetric oscillator for several valuesl,
comparing them with published values obtained by the approach of Biswaset al.6,7

III. EIGENVALUES OF THE ASYMMETRIC QUARTIC OSCILLATOR

By adding a linear term to the Hamiltonian~8! we get the asymmetric quartic oscillator; th
strength of asymmetry is given by the parametera:

FIG. 2. EigenvaluesEk(l 5 1.0,a) of the quartic oscillator as a function of the asymmetry parametera.

TABLE III. Energy levelsEk(l,a) of the asymmetric quartic oscillator.

l a E0 E1 E2 E3

1.0 1.0 1.299 220 4.618 392 8.632 071 13.138 611
5.0 20.664 248 3.705 035 8.041 745 12.684 474
10.0 25.396 918 0.422 051 5.821 588 11.062 819
15.0 211.613 724 24.704 363 1.781 554 7.937 195
20.0 218.872 089 211.106 671 23.718 251 3.326 270

0.7 1.0 1.112 343 3.984 304 7.327 727 11.034 427
5.0 21.467 995 2.487 924 6.319 778 10.262 910
10.0 27.525 568 22.266 951 2.697 144 7.463 879
15.0 215.415 793 29.209 979 23.272 580 2.424 149
20.0 217.654 827 210.938 457 24.446 424 1.839 917
J. Math. Phys., Vol. 38, No. 5, May 1997
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H5az1z21lz4. ~11!

Following the approach discussed above the solutions of the underlying differential equation
to obey the coupling conditions given in~9!:

a0
15a0

2 , a1
12S 11a

2l
11Da015a1

21S 11a

2l
21Da02 , ~12!

meaning that the wave functions match smoothly atz 5 0.
Once again by a forward recurrence process we calculate the eigenvalues of the asym

oscillator. We have seen the high accuracy of this procedure in Sec. II. Taking into accou
coupling conditions~12! and introducing an additional auxiliary parameterSwe start the forward
recurrence process by setting

a0
151, a0

251, a1
15S1S 11a

2l
11Da01 , a1

25S1S 12
11a

2l Da02 . ~13!

We separately look for the zeros of the coefficientsaN
1(l,a,S) andaN

2(l,a,S) according to Fig.
1. Varying the parameterSwhich actually is a variation of the derivative ofC6uz50 we eventually
find the eigenvalues ifaN

1(l,a,S) as well asaN
2(l,a,S) are zero within a given accuracy. A

already mentioned above, for symmetry reasons we may calculate the coefficientsaN
1 andaN

2 by
only one recursion formalism. We present the results in Fig. 2 and in Table III. It is importa
mention that this numerical procedure still works if we carry out the limiting processa→0.

IV. CONCLUSION

We have outlined a method to calculate the eigenvalues of the symmetric as well as
metric quantum quartic oscillator on the basis of the central two-point connection problem
triconfluent case of Heun’s differential equation. This procedure is not based on asymptotic
ods but on a singularity-analytic approach to the differential equation. By means of a power
in terms of a Jaffe´ expansion it leads to a fourth-order linear difference equation of Poinc´–
Perron type solvable by means of a recurrence process. We calculated the coefficientsan of the
series in dependence on the parameters. Profiting from numerical instabilities, approximate
of the eigenvalues were obtained by computing the zeros of a coefficientaN for N sufficiently
large. The numerical algorithm consists of two simple loops, one for computing the coeffic
using the recurrence relation and one for finding the zeros of the coefficientaN as a function
of E.
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3G. Jaffé, Z. Phys.87, 535 ~1933!.
4J. Wimp,Computations with Recurrence Relations~Pitman, Boston, 1984!.
5S. Yu. Slavyanov, W. Lay, and A. Seeger, ‘‘Classification,’’ inHeun’s Differential Equations, edited by A. Ronveaux
~Oxford U. P., Oxford, 1995!.

6S. N. Biswas, K. Datta, R. P. Saxena, P. K. Srivastava, and V. S. Varma, J. Math. Phys.14, 1190~1973!.
7F. T. Hioe and E. W. Montroll, J. Math. Phys.16, 1945~1975!.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



able
at deal
f the
cing
ned
e

scil-
ard

¬¬¬¬¬¬¬¬¬¬
The q -isotropic oscillator
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We have obtained in configuration space the state functions of theq-isotropic
oscillator by laddering the state functions of theq-linear oscillator. Starting from
the q-Hermite functions of the linear oscillator one obtains theq-associated La-
guerre functions of the isotropic oscillator. The energy spectrum is obtained from
the curvature of the wave function at a point where the potential energy vanishes.
© 1997 American Institute of Physics.@S0022-2488~97!00205-3#

I. INTRODUCTION

As a matter of principle it is important to know whether there exist other physically vi
formalisms that lie close to standard quantum mechanics. There are now many papers th
with this question and differ among themselves in the way in which the deformation o
standard theory is carried out.1 We are here concerned with the consequences of simply repla
the Heisenberg commutators byq-commutators. In earlier work we have examined the so-defi
q-deformation of the linear oscillator and the hydrogenic atom.2 Here we shall discuss th
q-isotropic oscillator.

In standard quantum mechanics the isotropic oscillator is trivially related to the linear o
lator. Since this is no longer true in theq-theory, we shall first cast the description of the stand
isotropic oscillator into a form which is convenient for the transition to theq-theory.

II. THE ISOTROPIC OSCILLATOR PROBLEM IN STANDARD QUANTUM MECHANICS

A single particle in a spherically symmetric potential is described by the equation

F 1

2m S 1r pr2r1
L2

r 2 D1V~r !G u&5Eu&, ~2.1!

where

~r ,pr !5 i\. ~2.2!

L2 is the square of the angular momentum andV(r ) is the central potential.
Equation~2.1! separates into an angular equation

L2u lm&5 l ~ l11!\2u lm& ~2.3!

and a radial equation which we shall write in dimensionless form

1

2 S 2
d2

dr2
1
l ~ l11!

r 2
1r 2D rnl5ernl , ~2.4!

where we have introduced the isotropic oscillator potential.

a!Electronic mail: finkelstein@physics.ucla.edu
0022-2488/97/38(5)/2132/16/$10.00
2132 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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In the angular equation~2.3! L2 is the quadratic Casimir of the three-dimensional rotat
group and thêuwu lm& are the spherical harmonics. The complete wave function is

^ruwunlm&5Rnl~r !Ylm~u,w! ~2.5!

while rnl(r ) appearing in~2.4! is related toRnl(r ) by

rnl~r !5rRnl~r !. ~2.6!

In ~2.4! e is the dimensionless energy.
The solutions of~2.4! for l50 are the Hermite functions,Hn(r )e

2r2/2, the solutions of the
linear oscillator problem. The corresponding eigenvalues of the energy are

eno5n1 1
2, n50,1,2,... . ~2.7a!

Since the Hamiltonian is spherically symmetric, it commutes withL2 and the energy does no
depend onl . Hence for alll

enl5n1 1
2. ~2.7b!

The lowest state of the linear oscillator is

roo~r !5e2r2/2 ~2.8!

with energy

eoo5
1
2. ~2.9!

According to~2.6! and~2.8!, R00(r ) does not properly vanish atr50. Thereforeroo(r ) is not an
allowed solution for the isotropic oscillator. All higher states

rno5Hn~r !e2r2/2 ~2.10!

for which n is even are similarly forbidden. Spherically symmetric states with oddn vanish at
r50 and are allowed.

The lowest allowed value ofn is n51 for which ~2.7! implies

e105
3
2. ~2.11!

Therefore we may also rewrite~2.7b! as

e~N,l !5N1 3
2, N50,2,..., ~2.12!

where

N5n21. ~2.13!

III. THE COMPLETE SET OF STATES

We have so far obtained only the spherically symmetric states. To obtain the remaining
for which lÞ0, let us rewrite the general radial equation~2.4! in either of two ways as follows:

ĀlAlrnl5~n1 l !rnl , ~3.1!

Al11Āl11rnl5~n1 l12!r ln , ~3.2a!
J. Math. Phys., Vol. 38, No. 5, May 1997
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or

AlĀlrn21,l215~n1 l !rn21,l21 . ~3.2b!

Here we have made the substitution~2.7! for enl and introduced the ladder operators

Al5a1
1

&

l

x
5

1

&

S ddx1x1
l

xD , ~3.3!

Āl5ā1
1

&

l

x
5

1

&

S 2
d

dx
1x1

l

xD . ~3.4!

By multiplying ~3.1! on the left byAl and comparing with~3.2b! we find

Alrnl5rn2 l ,l21 , l51,2,... ~3.5!

up to a normalization. Similarly by multiplying~3.2b! on the left byĀl and comparing with~3.1!
we find

Ālrn21,l215rnl , l51,2,... ~3.6!

again up to a normalization.
To normalize, set

Alrnl5mrn21,l21 , ~3.7!

Ālrn21,l215lrnl , ~3.8!

then

~Alrnl ,Alrnl!5umu2~rn21,l21 ,rn21,l21!5umu2,

~rnl ,ĀlAlrnl!5umu2. ~3.9!

By ~3.1! and the preceding equation

m5~n1 l !1/2 ~3.10!

as we may takem to be real. Similarly

l5~n1 l !1/2. ~3.11!

Then

Alrnl5~n1 l !1/2rn21,l21 , ~3.12!

Ālrn21,l215~n1 l !1/2rnl , l51,2,... ~3.13!

and

Aorno5n1/2rn21,0, Āorno5~n11!1/2rn11,0.
J. Math. Phys., Vol. 38, No. 5, May 1997
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As already remarked the solutions of~2.4! for l50 are the usual Hermite function
Hn(x)e

2x2/2 and the corresponding energies aren1 1
2, n51,2,... .

We may now obtain all solutions of the differential equation~2.4! for all l by use of~3.13! as
illustrated in Fig. 1. There are no states lying on the linesLn if n is even and of course no state
lying aboveLo . ~The missing states do not satisfy the boundary conditions atr50.!

Since the energy is always given by~2.7b!, the degeneracy of thenth level is

g5 (
0

n21

8 ~2l11!, ~3.14!

whereS8 is over either even or oddl . Then

g5n~n11!/2, ~3.15!

wheren labels the order of the Hermite function. By~2.13!

g5~N11!~N12!/2. ~3.16!

To compare with the degeneracy as computed in rectangular coordinates note that the en
terms of thex, y, andz oscillators is

E5nx1ny1nz1
3
25N1 3

2. ~3.17!

The number of integral solutions of the equation

(
1

3

nl5N ~3.18!

is then the degeneracy of theNth level and agrees with~3.16!.

IV. THE COMPLETE SET OF STATES

Let us consider the sequence of statesr(n,l ) lying on the lineLn . This sequence begins wit
the Hermite function corresponding tol50. Denote the normalized state by

FIG. 1. Allowed states.
J. Math. Phys., Vol. 38, No. 5, May 1997
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wn5r~n,0! ~4.1!

then thel th state onLn is thes-ordered product

r~n,l !5)
1

l S ā1
1

&

s

xD w~n!, ~4.2!

which may be expressed in terms of Hermite functions by use of

āwn5~n11!1/2wn11 . ~4.3!

However, ther(n,l ) may be expressed directly in terms of associated Laguerre function
see this, observe the following the identity, whenn is odd;

Hn~x!5~2 !~n21!/22nF12 ~n21!G !xL~1/2!~n21!
1/2 ~x2!e2x2/2 ~4.4!

and therefore

rno~x!5
~2 !~n21!/22~n11!/2@ 12~n21!#!

~n!p1/2!1/2
xL~1/2!~n21!

1/2 ~x2!e2x2/2. ~4.5!

One may now show by induction that

rnl~x!5cnlx
l11L ~n2~ l11!!/2

l11/2 ~x2!e2x2/2, ~4.6!

where

cnl5F ~2 !n2~ l11!2n1~ l11!

p1/2~n1 l !! S n2 l21

2 D ! S n1 l21

2 D ! G1/2. ~4.7!

To begin the proof of~4.6!, let us rewrite~3.13!:

Āl11rnl5~n1 l12!1/2rn11,l11 . ~4.8!

If ~4.6! holds for the stater(n,l ),

@2~n1 l12!#1/2rn11,l115S 2
d

dx
1x1

l11

x D rnl
~4.9!

5S 2
d

dx
1x1

l11

x D cnlxl11Lm
a ~x2!e2x2/2,

~4.10!

where

a5 l1 1
2, ~4.11!

m5~n2 l21!/2. ~4.12!

Then
J. Math. Phys., Vol. 38, No. 5, May 1997
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@2~n1 l12!#1/2rn11,l1152cnlx
l12H Lma ~x2!2

d

dx2
Lm

a ~x2!J e2x2/2. ~4.13!

But

dLm
a ~x!

dx
52Lm21

a11~x!. ~4.14!

Therefore

@2~n1 l12!#1/2rn11,l1152cnlx
l12~Lm

a ~x2!1Lm21
a11~x2!!e2x2/2 ~4.15!

since

Lm
a21~x!5Lm

a ~x!2Lm21
a ~x!. ~4.16!

Equation~4.15! may be simplified:

@2~n1 l12!#1/2rn11,l1152cnlx
l12Lm

a11~x2!e2x2/2. ~4.17!

Finally note that

c~n,l !

c~n11,l11!
5

~n1 l12!1/2

&

. ~4.18!

Therefore

rn11,l115c~n11,l11!xl11L @~n11!2~ l11!21#/2
l111~1/2! ~x2!e2x2/2, ~4.19!

which reproduces~4.6! at the level (n11, l11) as required. Sincer(n,0) also satisfies~4.6!, this
equation is correct for alln and l .

The general solutionrnl(x) may also be represented as a sum of Hermite functions:

rnl~x!5(
k
cnl
k wko~x!, ~4.20!

where

cnl
k 5E

2`

`

rnl~x!wko~x!dx ~4.21!

5 c̃nlc̃koE
2`

`

xl11Lm
a ~x2!Hk~x!e~2x2/2!dx. ~4.22!

Here c̃ko and thec̃nl are the normalization constants for the functionswko(x) andrnl(x) and

a5 l1 1
2 m5~n2 l21!/2. ~4.23!

Since the integrand of~4.22! is odd if k1 l11 is odd, the coefficientscnl
k will vanish if k1 l is

even. Then all terms in the expansion~4.20! will vanish unlessk1 l is odd. To evaluate~4.22!
introduce
J. Math. Phys., Vol. 38, No. 5, May 1997
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Lm
a ~x2!5(

s50

m

Cs
a~2x2!s, ~4.24!

where

Cs
a5Sm1a

m2s D 1

s!
. ~4.25!

Then by~4.22!

cnl
k 5 c̃nlc̃ko(

s50

m

~2 !sCs
aE

2`

`

x2s1 l11e2x2Hk~x!dx. ~4.26!

The integral appearing in~4.26! may be evaluated with the aid of the following identity

E
2`

`

e2y2ynHn~xy!dy5p1/2n!Pn~x!, ~4.27!

wherePn(x) is a Legendre polynomial.
Set

xy5z ~4.28!

and differentiate~4.27! with respect tox. We have

d

dx
Hn~z!5y

d

dz
Hn~z! ~4.29!

52ynHn21~z!, ~4.30!

dp

dxp
Hn~z!5~2y!pS npD p!Hn2p~z!. ~4.31!

Therefore

E
2`

`

e2y2yn1p2pS npD p!Hn2p~z!dy5p1/2n! S dpdxp
Pn~x! D . ~4.32!

Setx51:

E
2`

`

e2y2yn1pHn2p~y!dy5
p1/2

2p
~n2p!! S dpdxp

Pn~x! D
x51

. ~4.33!

Set

x51, n2p5k, ~4.34!

then

E
2`

`

e2y2y2p1kHk~y!dy5
p1/2

2n2k k! S dn2k

dxn2k Pn~x! D
x51

. ~4.35!
J. Math. Phys., Vol. 38, No. 5, May 1997
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By ~4.26!, one finally has the coefficients in the expansion~4.20!:

cnl
k 5 c̃nlc̃ko (

s50

~n2 l21!/2

~2 !sCs
a p1/2

2n2k k! F dn2k

dxn2k Pn~x!G
x51

, ~4.36!

where

2p1k52s1 l11, ~4.37!

p5s1 1
2~ l112k!5n2k. ~4.38!

Sincep ands are integers,~4.37! requires thatl andk be of opposite parity in agreement with th
earlier remark thatcnl

k vanishes unlessk1 l is odd.

V. q -QUANTIZATION

In standard quantum theory the isotropic oscillator is simply the product of three iden
~x, y, andz! oscillators. Although this equivalence no longer holds forq-quantization, the solu-
tion of the deformed three-dimensional problem may still be reduced to a solution of the defo
linear oscillator.

Starting from the standard second order equations~2.3! and ~2.4!, which are invariant under
SO~3!, we have replaced~2.4! by two equivalent first order equations~3.1! and ~3.2!. We now
replace the SO~3! equation~2.3! by the SUq(2) equation~5.1! below and we deform~3.1! and
~3.2! by adopting a new radial commutator which is also an invariant of SUq(2). Theresulting
formulation implies a deformation of the original rotation group but the newq-wave functions are
still simply and closely related to the wave functions of standard quantum mechanics. The
structure of both the angular and radial equations is now determined by SUq(2).

Theq-problem may accordingly be defined in terms of an angular equation and two first-
equations. For the angular equation we take, instead of~2.3!, the correspondingq-equation:

Lq
2u lm&5^ l &^ l11&\2u lm&, ~5.1a!

whereLq
2 is the Casimir operator of SUq(2) and^ l &^ l11& are its eigenvalues. The eigensolutio

^uwu lm& are q-spherical harmonics. The angular bracket means either the basic number
Dirac bracket. For example

^ l &5
ql21

q21
. ~5.1b!

For the radial equations we take the pair of the first order equations

Al
qrnl

q 5^n1 l &1/2rn21,l21
q , ~5.2!

Āl
qrn21,l21

q 5^n1 l &1/2rnl
q , ~5.3!

instead of~3.12! and ~3.13!, where we try, instead of~3.3! and ~3.4!:

Al
q5k11~q!aq1k12~q!

^ l &
x

~5.4!

Āl
q5k21~q!āq1k22~q!

^ l &
x
. ~5.5!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Hereaq and āq are the absorption and emission operators satisfying

~aq,āq!q51. ~5.6!

These Fock space operators may be connected by a canonical SUq(2) transformation to the
configuration space operatorsx andp satisfying

~x,p!q5 i\. ~5.7!

Here the SUq(2) transformation is

aq5aD1bx, āq52q21b̄D1āx, ~5.8!

whereD is the difference operator related top by

p5
\

i
D ~5.9!

and

S a b

2q21b̄ ā D
belongs to the SUq(2) algebra. In the limitq→1 one must recover~3.3! and ~3.4! and therefore
one requires

lim
q→1

Al
q5Al

Āl
q5Āl .

~5.10!

The ansatze forAl
q andĀl

q are thus determined by the substitutionsa→aq, ā→āq, andl→^ l & up
to the numerical coefficients which remain to be determined. Let us begin by settingk21(q)51.

With the aid of the lifting operator, the general radial staternl(r ) may then be expressed i
terms of the one-dimensional staterno(r ) by thes-ordered product

rnl~r ,q!5)
s51

l S āq1 k22

&

^s&
r D rno~r ,q!, ~5.11!

whereāq andrno(r ,q) are to be taken from the one-dimensionalq-problem.
Let us next note thatk22(q) is fixed by the boundary condition atr50, for

r21~r ,q!5S āq1 k22

&

1

r D r10~r ,q!5S āq1 k22

&

1

r D ~a21rco~r ,q!!

5S 2q21b̄D1ār1
k22

&

1

r D ~a21rco~r ,q!!. ~5.12!

Here we have used

r10~r ,q!5a21rco~r ,q!, ~5.13!

whereco is the ground state of the deformed oscillator. Then
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r21~r !5a22r 2co1S 2q21b̄1
k22

&

D a21co . ~5.14!

Since we require thatr21(r ) vanishes atr 5 0, k22/& is fixed by the vanishing of the second term
or

k22

&

5q21b̄. ~5.15!

Then

Āl
q52q21b̄D1q21b̄

^ l &
r

1ār ~5.16!

and ~5.11! becomes

rnl~r ,q!5)
s51

s5 l

@2q21b̄¹s1ār #rno~r ,q!, ~5.17!

where

¹ l5D2
^ l &
r
. ~5.18!

The known solutions of the one-dimensional problem are

rno~r ,q!5Pn~r !co~r !, ~5.19!

where

@^n&! #1/2Pn~r !5 (
k50

@n/2#

q~k/2!~3k11!q2nk^2k21&q!! K n2kL
q

gka2~n2k!r n2k. ~5.20!

By ~5.17! one finds

rnl~r !5 (
k50

~n2 l21!/2

qf ~k!c~n,l ,k!gka2~n2k!r n22kco~x!, ~5.21!

where

f ~n,k!5k@ 1
2~3k11!2n#, ~5.22!

c~n,l ,k!5
@^n1 l &!! ^n2 l21&!! #1/2

^n1 l22k&!! ^n2 l2122k&!! ^2k&!!
. ~5.23!

The general form~5.21!–~5.23! may be established by induction. Ifl50, ~5.23! reproduces~5.20!
and in the limitq51, ~5.21! becomes
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rnl;~2 !@n2~ l11!#/2F2~ @n2~ l11!#/2! !
~ ~n1 l !/2! ! G1/2r l11L @n2~ l11!#/2

l11/2 ~r 2!e2r2/2, ~5.24a!

where

L @n2~ l11!#/2
l11/2 ~r 2!5~2 !@n2~ l11!#/2 (

k50

~n2 l !/2
~~n1 l !/2!! r n2~ l11!22k

k! ~@n2~ l11!22k#/2!! ~~n2 l22k!/2!!
,

~5.24b!

which agrees with the standardq51 wave functions up to a constant factor independent ofn,
l , andk. Hence the solutionsrnl(r ) areq-associated Laguerre functions.

To establish~5.21! by induction we must prove

A^n1 l &rnl5Ālrn21,l21 . ~5.25!

Consider

Ālrn21,l215( c~n21,l21,k!qf ~n21,k!Āl@gka2n1k11xn2122kco#, ~5.26!

whereg52q21b̄, and

Āl5g¹ l1āx. ~5.27a!

Here

¹ l5D2
^ l &
x
. ~5.27b!

One finds

Āl@gkasxpco#5$@āgkas2gk11as21bqp#xp111~^p&2^ l &!gk11asxp21%co , ~5.28!

where

p5n22k21, s5k112n. ~5.29!

By ~5.26! and ~5.28!

Ālrn21,l215 (
k50

~n2 l21!/2

c~n21,l21,k!qf ~n21,k!@ āgkas2gk11as21bqp#xn22kco

1 (
k51

@~n2 l21!/2#11

c~n21,l21,k21!qf ~n21,k21!gkak2n~^p12&2^ l &!xn22kco .

~5.30!

To combine the two sums in~5.30! note

āgkas2gk11as21bqp5q2kgka2n1k ~5.31!

and

^p12&2^ l &5ql^p122 l &. ~5.32!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of the
g and
d by
of the
ented

if the
illator

s.

2143Chan, Finkelstein, and Oganesyan: The q-isotropic oscillator

¬¬¬¬¬¬¬¬¬¬
Then if ~5.25! holds, we should have

rnl5 (
k50

~n2 l21!/2

c~n21,l21,k!qf ~n21,k!q2kgkak2nxn22kco1 (
k50

~n2 l21!/2

c~n21,l21,k21!

3qf ~n21,k21!gkak2nql^n2 l22k21&xn22kco . ~5.33!

We may change the limits in the second sum becausec(n,l ,k) vanishes for negativek. We may
now compare coefficients of equal powers in corresponding terms of the algebra. Then, if~5.33!
holds, we must have

c~n,l ,k!5c~n21,l21,k!1c~n21,l21,k21!qn1 l22k^n2 l22k11&, ~5.34!

where we have used

qf ~n21,k!/qf ~n,k!5qk, ~5.35!

qf ~n21,k21!/qf ~n,k!5qn22k. ~5.36!

One may finally show that the recursion relation~5.34! is satisfied by~5.23!. It follows that the
general state functionrnl of the q-isotropic oscillator is given by theq-associated Laguerre
function as presented in~5.21!.

An alternative approach is provided by~4.20!, the expansion ofrnl in Hermite functions. One
may then obtain the deformedrnl by substituting theq-Hermite function in~4.20!. This procedure
is not, however, equivalent to the ladder approach leading to~5.21!.

We have now found both the operators and the states satisfying~5.3!. One may finally fix the
numerical function determining the lowering operators that satisfy~5.2!. It is in fact found that

k11~q!5ql , ~5.37!

k12~q!5a. ~5.38!

Since both~5.2! and ~5.3! are now satisfied, it follows also that

Āl
qAl

qrnl
q 5^n1 l &rnl

q . ~5.39!

VI. ENERGIES

The solutions to the three-dimensional deformed problem are obtained by application
raising operator to the known solutions of the one-dimensional deformed problem. The raisin
lowering operators are in turn obtained by factorization of the standard Hamiltonian followe
a q-deformation. The deformed state functions are of course no longer eigenfunctions
Hamiltonians from which they were obtained. Therefore this procedure needs to be supplem
by a recipe for computing the energy.

In the standard theory the energy may be computed without the use of the Hamiltonian
state function is completely known. For example, in the standard theory of the isotropic osc
we have from Eq.~2.4!

E~n,l !5 lim
r→0

H F12 S 2
d2

dr2
1
l ~ l11!

r 2 D rnl~r !Grnl~r !21J ~6.1!

or, in general, the energy is fixed by the wave function where the potential energy vanishe
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We shall now modify~6.1! by the same rules that were used to obtain theq-ladder operators,
namely,

d

dr
→D, l→^ l &. ~6.2!

Then

Eq~n,l !5 lim
r→0

H F12 S 2D21
^ l &^ l11&

r 2 D rnl
q G~rnl

q !21J . ~6.3!

Let us now explicitly computeEq(n,l ) for the staterq(n,l ). Let

rnl
q ~x!5Pl

n~x!co~x!, ~6.4!

where

Pl
n~x!5 (

k50

~n2 l21!/2

pk
nxn22k, ~6.5!

or

Pl
n~x!5 ( 8

s5 l11

s5n

p~n2s!/2
n xs, ~6.6!

where

s5n22k

and the sum(8 is over terms of the same parity. We need only keep terms of the lowest d

Pl
n~x!5Axl111Bxl131••• ~6.7!

and

co~x!512Kx21••• , ~6.8!

where

K5a21b/^2&. ~6.9!

Then by~6.4!

rnl
q ~x!5Axl111~B2AK!xl131••• . ~6.10!

Therefore

H F S 2D21
^ l &^ l11&

x2 D rnl
q ~x!G~rnl

q ~x!!21J
x50

5@^ l &^ l11&2^ l12&^ l13&#~BA212AKA21!,

~6.11!

where
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A5p~n2 l21!/2
n , ~6.12!

B5p~n2 l23!/2
n . ~6.13!

By ~5.23!

BA215ql12 ^n2 l21&

^2l13&^2&
g21a21, ~6.14!

AKA215
q2 l21

^2&
a21b. ~6.15!

Then by~6.3! and ~6.12!

Eq~n,l !5
1

2
@^ l &^ l11&2^ l12&^ l13&#H ql12

^2&

^n2 l21&

^2l13&
g21a212

q2 l21

^2&
a21bJ .

~6.16!

In the limit q→1,

E~n,l !5~n2 l21!1~ l1 3
2! ~6.17!

5N1 3
2, ~6.18!

where

N5n21 ~6.19!

as required.
The a21b term contributesl1 3

2 and theg21a21 term contributesn2 l21 to the total
energy in theq51 limit. It is interesting that the zero point energy lies in a distinct part of
algebra, namelya21b, which also measures the ‘‘width’’ of the ground state.

If qÞ1, Eq(n,l ) requires additional discussion since it lies in the SUq(2) algebra:

Eq~n,l !5F~n,l !g21a211G~n,l !a21b. ~6.20!

One may extract a number fromEq(n,l ) by making the following Woronowicz projection:4

2@2#h@Eq~nl !•ag#52@2#$Fh~g21a21
•ag!1Gh~a21bag!% ~6.21!

52@2#$F1q21Gh~bg!% ~6.22!

and

h~b,g!52q21h~bb̄!52
1

@2#
~6.23!

since

h@asbnb̄m#5
dsodnmqm

@m11#q
, ~6.24!

where
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@m#5
qm2q2m

q2q21 .

Then

2@2#h@Eq~nl !•ag#52@2#F2q21G. ~6.25!

We may interpret this number as the energy in the state (n,l ) when qÞ1 since it agrees with
~6.17! in the limit q51. Therefore this energy is

Eq~n,l !5
@2#

2
@^ l12&^ l11&2^ l &^ l11&#

ql12

^2&

^n2 l21&

^2l12&

1
1

2

q2 l22

^2&
@^ l12&^ l13&2^ l &^ l11&#. ~6.26!

Clearly thel degeneracy of the standard isotropic oscillator is lifted.
Finally, an alternative way of computing the energy is to define a new energy ope

namely

Āl
qAl

q2^ l &1 3
2,

which is the direct analogue ofāa, the one-dimensional energy operator excluding the zero-p
energy. According to~5.39! the eigenvalues of this operator are^n1 l &2^ l &1 3

2, which of course
are different from~6.26!. These different results illustrate the freedom in defining aq-energy
operator.

VII. REMARKS

The hydrogenic atom and the isotropic oscillator, representing the simplest three-dimen
problems~as well as underlying the independent particle models for atomic and nuclear stru!
provide realistic challenges to any possible deformation of standard quantum mechanic
earlier work on the linear oscillator and the Coulomb problem, as well as the present study
isotropic oscillator, exposes some of the problems that arise when one makes a minimal ch
the standard commutation rules. There is, in particular, an arbitrariness in choosin
q-replacement of SO~3!. One may choose, for example, SOq(3).

5 The procedure here is differen
but still may be described as a deformation of the rotation group.

When it happens that the wave functions lie in the quantum algebra, one has the prob
passing to numerically valued probabilities and matrix elements. Two answers to this qu
have been proposed:

~a! perform a Woronowicz integration over the algebra;2

~b! evaluate the state function on an associated Hilbert space.4

In the present paper both options are open.
It is possible in principle to determine the energy spectrum by adopting the standard qu

mechanical Hamiltonian and simply replacing the standard commutators byq-commutators. This
was done in Ref. 2. On the other hand it may be possible to bypass the Hamiltonian as is d
S-matrix theory. Alternative procedures were used in Ref. 3 where the energy appears
eigenvalue of an integral equation over the quantum group space and in Ref. 5 where the
is computed as the curvature of a wave function at a point where the potential energy vanis
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



gree by
ed by
t com-

/

2147Chan, Finkelstein, and Oganesyan: The q-isotropic oscillator

¬¬¬¬¬¬¬¬¬¬
the quoted papers the energies obtained by these two methods differ but may be made to a
a simple change in theq-Green’s function. In the present paper the energy has been obtain
the curvature method as well as by the use of a natural energy operator. We have not ye
pleted the analysis in momentum space.
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The gl Aq(n )-covariant oscillators and q -deformed quantum
mechanics in n dimensions

W.-S. Chung
Department of Physics and Research Institute of Natural Science,
College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Korea
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In this paper the coherent state forglAq(n)-covariant oscillators is constructed and
is shown to satisfy the completeness relation. And theq-analog of quantum me-
chanics in n dimensions is obtained by usingglAq(n) oscillators.
© 1997 American Institute of Physics.@S0022-2488~97!01903-8#

I. INTRODUCTION

Quantum groups orq-deformed Lie algebra implies some specific deformations of class
Lie algebras. From a mathematical point of view, it is a noncommutative associative Hopf alg
The structure and representation theory of quantum groups have been developed extens
Jimbo1 and Drinfeld.2

The q deformation of Heisenberg algebra was made by Arik and Coon,3 Macfarlane,4 and
Biedenharn.5 Recently there has been some interest in more general deformations involvi
arbitrary real function of weight generators and includingq-deformed algebras as a spec
case.6–10

In the meantime some theoretical physicists studied theq deformation of quantum mechanic
in one dimension.11–16The purpose of this paper is to use theglAq(n)-covariant oscillator algebra
to construct theq-analog of the quantum mechanics with harmonic potential inn dimensions.

II. COHERENT STATES OF gl Aq(n )-COVARIANT OSCILLATOR ALGEBRA

glAq(n)-covariant oscillator algebra is defined as17,18

ai
†aj

†5Aqaj†ai† ~ i, j !, aiaj5
1

Aq
ajai ~ i, j !,

aiaj
†5Aqaj†ai ~ iÞ j !,

aiai
†511qai

†ai1~q21! (
k5 i11

n

ak
†ak ~ i51,2,...,n21!,

anan
†511qan

†an ,

@Ni ,aj #52d i j aj , @Ni ,aj
†#5d i j aj

† ~ i , j51,2,...,n!, ~1!

where we restrict our concern to the case thatq is real and 0,q,1. HereNi plays a role of
number operator andai(ai

†) plays a role of annihilation~creation! operator. From the above
algebra one can obtain the relation between the number operators and mode operators as

ai
†ai5q(k5 i11

n Nk@Ni #, ~2!
0022-2488/97/38(5)/2148/6/$10.00
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where [x] is called aq number and is defined as

@x#5
qx21

q21
.

Let us introduce the Fock space basisun1 ,n2 ,...,nn& for the number operatorsN1 ,N2 ,...,Nn

satisfying

Ni un1 ,n2 ,...,nn&5ni un1 ,n2 ,...,nn& ~n1 ,n2 ,...,nn50,1,2,...!. ~3!

Then we have the following representation:

ai un1 ,n2 ,...,nn&5Aq(k5 i11
n nk@ni #un1 ,...,ni21,...,nn&,

ai
†un1 ,n2 ,...,nn&5Aq(k5 i11

n nk@ni11#un1 ,...,ni11,...,nn&. ~4!

From the above representation we know that there exists the ground stateu0,0,...,0& satisfying
ai u0,0&50 for all i51,2,...,n. Thus the stateun1 ,n2 ,...,nn& is obtained by applying the creatio
operators to the ground stateu0,0,...,0&,

un1 ,n2 ,...,nn&5
~an

†!nn•••~a1
†!n1

A@n1#! •••@nn#!
u0,0,...,0&. ~5!

If we introduce the scale operators as follows

Qi5qNi ~ i51,2,...,n!, ~6!

we have from the algebra~1!,

@ai ,ai
†#5QiQi11•••Qn . ~7!

Acting the operatorsQi ’s on the basisun1 ,n2 ,...,nn& produces

Qi un1 ,n2 ,...,nn&5qniun1 ,n2 ,...,nn&. ~8!

The coherent states forglAq(n) algebra is usually defined as

ai uz1 ,...,zi ,...,zn&5zi uz1 ,...,zi ,...,zn&. ~9!

From theglAq(n)-covariant oscillator algebra we obtain the following commutation relation
tweenzi ’s andzi* ’s, wherezi* is a complex conjugate ofzi :

zizj5qzjzi ~ i, j !, zi* zj*5
1

q
zj* zi ~ i, j !,

~10!

zi* zj5qzjzi* ~ iÞ j !, zi* zi5zizi* .

Using these relations, the coherent state becomes
J. Math. Phys., Vol. 38, No. 5, May 1997
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uz1 ,...,zn&5c~z1 ,...,zn! (
n1 ,...,nn50

` zn
nn•••z1

n1

A@n1#! •••@nn#!
un1 ,...,nn&. ~11!

Using Eq.~5!, we can rewrite Eq.~11! as

uz1 ,...,zn&5c~z1 ,...,zn!expq~znan
†!•••expq~z1a1

†!u0,...,0&, ~12!

where

expq~x!5 (
n50

`
xn

@n#!

is aq-deformed exponential function. Theq-deformed exponential function satisfies the relati

expq~qx!5@12~12q!x#expq~x!. ~13!

In order to obtain the normalized coherent states, we should impose the con
^z1 ,...,znuz1 ,...,zn&51. Then the normalized coherent states are given by

uz1 ,...,zn&5
1

Aexpq~ uz1u2!•••expq~ uznu2!
expq~znan

†!•••expq~z1a1
†!u0,...,0&, ~14!

whereuzi u25 zizi* 5 zi* zi .

III. q -DEFORMED WEYL–HEISENBERG GROUP

The purpose of this section is to explain what is theq analog of theq-deformed Weyl–
Heisenberg group. From the algebra~1! we obtain

ai f ~ai
†!5 f ~qai

†!ai1~Df !~ai
†!Qi11•••Qn ,

anf ~an
†!5 f ~qan

†!an1~Df !~an
†!, ~15!

whereD is called theq derivative and is defined as

DF~x!5
F~x!2F~qx!

x~12q!
.

Putting f (x)5expq(tx), we have

ai expq~ tai
†!5expq~qtai

†!ai1t expq~ tai
†!Qi11•••Qn . ~16!

Using the formula~13! we have

ai
n expq~ tai

†!5expq~ tai
†!~ai1tQiQi11•••Qn!

n, ~17!

and thus

expq~siai !expq~ t iai
†!5expq~ t iai

†!expq~siai1si t iQiQi11•••Qn!. ~18!

Taking account of [ai ,Qi ] q5aiQi2qQiai50, we have

expq~siai !expq~ t iai
†!5expq~ t iai

†!expq~si t iQiQi11•••Qn!expq~siai !. ~19!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



2151W.-S. Chung: glAq(n)-covariant oscillators and q-deformed mechanics

¬¬¬¬¬¬¬¬¬¬
If we multiply the above equations fromi51 to n, we obtain theq-deformed Weyl–Heisenberg
relation,

)
i51

n

expq~siai !expq~ t iai
†!5)

i51

n

expq~ t iai
†!expq~si t iQiQi11•••Qn!expq~siai !. ~20!

IV. q -DEFORMED QUANTUM MECHANICS IN n DIMENSIONS

It is interesting to study theq-deformed harmonic oscillator system inn dimensions. In order
to formulate it we define the position and momentum operators,

Xi5
1

&

~ai1ai
†!, Pi52

i

&

~ai2ai
†!. ~21!

Then the Hamiltonian of aq-deformed harmonic oscillator inn dimensions is given by

H5(
i51

n

Hi , ~22!

where

Hi5
1
2~Pi

21Xi
2!5 1

2~aiai
†1ai

†ai !. ~23!

Now, theq-canonical commutation relation can be expressed by

XiPi2PiXi5 i S q11

2 D i2n21

1 i ~q21!(
k5 i

n S q11

2 D i2k21

Hk . ~24!

ExpressingHi ’s in terms ofQi ’s operators, we get

Hi5
q11

2~q21!
QiQi11•••Qn2

1

q21
Qi11Qi12•••Qn ~ i51,2,...,n21!,

Hn5
q11

2~q21!
Qn2

1

q21
. ~25!

Thus, the Hamiltonian is given by

H5
Q21

q21
1
1

2 (
i51

n

QiQi11•••Qn , ~26!

where

Q5Q1Q2•••Qn .

Thus, we have

Hun1 ,...,nn&5E~n1 ,...,nn!un1 ,...,nn&, ~27!

where the energy spectrum is given by
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E~n1 ,...,n2!5@n11•••1nn#1
1

2 (
i51

n

qn11•••1nn. ~28!

Following the Dirac rule, the time evolution of an operatorA is defined as

Ȧ5
1

i\
@A,H#. ~29!

Using this formula, the time evolution of the creation and annihilation operator is given by

ȧj
†52

1

i\
q21Rjaj

† , ȧ j5
1

i\
Rjaj , ~30!

where

Rj5Q1
q21

2 (
i51

j

QiQi11•••Qn . ~31!

The commutation relations betweenRj andaj (aj
†) are given by

ajRj5qRjaj , Rjaj
†5qaj

†Rj . ~32!

Thus, the time evolutions of the position and momentum operator become

Ẋj5
11q21

2\
RjPj1

12q21

2i\
RXj ,

Ṗj52
11q21

2\
RXj1

12q21

2i\
RjPj . ~33!

Since the operatorRj goes to 1 whenq goes to 1, in theq→1 limit, Eq. ~33! becomes

Ẋj5
1

\
Pj , Ṗj52

1

\
Xj , ~34!

which correspond to the result of the ordinary~undeformed! quantum mechanics.

V. CONCLUDING REMARK

In this paper we usedglAq(n)-covariant oscillator algebra to obtain its coherent state. Mo
over, we construct theq-deformed quantum mechanical Hamiltonian inn dimensions by using
glAq(n)-covariant oscillators. In conclusion, it was known that we can obtain theq analog of an
n-dimensional Schro¨dinger equation with a harmonic potential by using theglAq(n)-covariant
oscillator system.
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Hypergeometric states and their nonclassical properties
Hong-Chen Fua) and Ryu Sasaki
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‘‘Hypergeometric states,’’ which are a one-parameter generalization of binomial
states of the single-mode quantized radiation field, are introduced and their non-
classical properties are investigated. Their limits to the binomial states and to the
coherent and number states are studied. The ladder operator formulation of the
hypergeometric states is found and the algebra involved turns out to be a one-
parameter deformation ofsu(2) algebra. These states exhibit highly nonclassical
properties, like sub-Poissonian character, antibunching, and squeezing effects. The
quasiprobability distributions in phase space, namely theQ and the Wigner func-
tions are studied in detail. These remarkable properties seem to suggest that the
hypergeometric states deserve further attention from theoretical and applicational
sides of quantum optics. ©1997 American Institute of Physics.
@S0022-2488~97!04005-X#

I. INTRODUCTION

The number and the coherent states of the quantized radiation field play important ro
quantum optics and are extensively studied.1 The binomial states~BS, also called intermediate
number-coherent states! introduced by Stoler, Saleh, and Teich in 1985,2 interpolate between the
most nonclassicalnumber states and themost classicalcoherent states, and reduce to them in t
different limits. Some of their properties,2–4methods of generation,2,3,5as well as their interaction
with atoms,6 have been investigated in the literature. The BS is defined as a linear superposi
number states~un&, n50,1,...! in an (M11)-dimensional subspace,

uh,M &5 (
n50

M

bn
M~h!un&, ~1.1!

whereh is a real parameter satisfying 0,h,1 ~probability!, and

bn
M~h!5F SMn Dhn~12h!M2nG1/2. ~1.2!

The name ‘‘binomial state’’ comes from the fact that their photon distributionu^nuh,M &u2

5u bn
M(h)u2 is simply the binomial distribution with probabilityh. In the two limitsh→1 and

h→0 it reduces to number states,

u1,M &5uM &, u0,M &5u0&. ~1.3!

In a different limit ofM→`, h→0 with hM5a2 fixed ~a real constant!, uh,M & reduces to the
coherent states~not the most general ones, only those with real amplitudea!, which corresponds
to the Poisson distribution in probability theory.7 It is well known that the binomial distribution
tends to the Poisson distribution in the above limit.7 The notion of BS was also generalized to t
intermediate squeezed states8 and the number-phase states,9 as well as theirq-deformation.10 In

a!On leave of absence from Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, P
Republic of China. Electronic mail: hcfu@yukawa.kyoto-u.ac.jp
0022-2488/97/38(5)/2154/13/$10.00
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particular, in a previous paper11 we derived the ladder-operator form of the BS and on this b
we generalized the BS to the generalized BS~GBS! which tended to the number and squeez
states in certain limits.

In the present paper we shall propose a one-parameter generalization of the binomial
thehypergeometric states~HGS!, whose photon distribution is the hypergeometric distribution
probability theory.7 It is well known that the hypergeometric distribution tends to the binom
distribution in certain limit. This leads to the reduction of HGS to the BS in the same limit. S
mathematical properties, such as the equivalent ladder operator definition, related algebrai
tures, will be formulated. It is interesting that the algebraic structure is a well-investigatedgener-
ally deformed oscillator algebra,12 which reduces to the universal enveloping algebra of
algebrasu(2), thealgebraic structure characterizing the binomial states. The nonclassical
erties of the HGS, the photon statistical properties, sub-Poissonian distribution, antibun
effect and the squeezing effect will be investigated in detail. Two well known quasiproba
distributions, theQ-function and Wigner function will be evaluated to study the nonclass
properties. It will be shown that the HGS exhibit highly nonclassical behavior.

II. HGS AND BASIC PROPERTIES

A. Definition

The HGS is defined as a linear combination of number states in an (M11)-dimensional
subspace

uL,M ,h&5 (
n50

M

Hn
M~h,L !un&, ~2.1!

where theprobability h is a real parameter satisfying 0,h,1. L is a real number satisfying

L>max$Mh21,M ~12h!21%, ~2.2!

and

Hn
M~h,L !5F S Lh

n D S L~12h!

M2n D G1/2S LM D 21/2

, ~2.3!

S a
n D5

a~a21!•••~a2n11!

n!
, S a

0 D[1. ~2.4!

Note that in Eq.~2.4! the real numbera is not necessarily an integer.
The name of HGS comes from the fact that the photon distributionu^nuL,M ,h&u2,

u^nuL,M ,h&u25@Hn
M~h,L !#2, ~2.5!

is the hypergeometric distribution in probability theory.7 ~For a background, see the Appendix!
We remark that in the case ofM51, the HGSuL,1,h& is L independent and is equal to th
binomial stateuL,1,h&[u1,h&.

It is well known that the hypergeometric distribution tends to the binomial distribution in
limit L→`. So, correspondingly, the HGS tends to the BS in this limit

uL,M ,h& ——→
L→`

uM ,h&. ~2.6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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This fact can be verified directly. Furthermore, the BS go to the number states and coherent
the latter corresponds to the Poisson distribution, in certain limits. So the HGS reduce
number and coherent states in these limits,

uL,M ,h& ——→
L→`

uM ,h&→H uM &, when h→1,
u0&, when h→0,
ua&, when M→`,h→0 with finite hM[a.

~2.7!

It is easy to show that the HGS are normalized by using the following identity:

(
n50

M S a
n D S b

M2nD5S a1b
M D , ~2.8!

which can be obtained by comparing the power series expansion of (11t)a(11t)b5(1
1t)a1b.

B. Ladder operator form

In a previous paper11 we have shown that the BS admit the ladder operator formulat
namely, they are characterized by the following eigenvalue equation:

@AhN1A12hJM
1 #uM ,h&5AhM uM ,h&, ~2.9!

whereJM
1[AM2Na is the raising operator of the Lie algebrasu(2) via its Holstein–Primakoff

realization.13 Hereaftera† and a are the creation and annihilation operators of the photon
N5a†a is the number operator. So we naturally expect that the HGS satisfy a generalized
value equation and the algebra involved is a deformation ofsu(2). To this end, we suppose tha
the HGS satisfy an eigenvalue equation

@ f ~N!1g~N!a#uL,M ,h&5luL,M ,h&, ~2.10!

in which l is the eigenvalue to be determined. Inserting Eq.~2.1! into Eq. ~2.10! and comparing
the coefficients, we obtain

f ~M !5l, ~2.11!

~l2 f ~n!!F S Lh
n D S L~12h!

M2n D G1/25F S Lh
n11D S L~12h!

M2n21D ~n11!G1/2g~n! ~0<n<M21!.

~2.12!

From Eqs.~2.11! and ~2.12!, we have

f ~M !2 f ~n!5A Lh2n

L~12h!2M1n11
AM2ng~n!. ~2.13!

Observe that in the right-hand side of the above equationM andn appear in the formM 2 n.
Requiring that Eq.~2.10! reduces to Eq.~2.9! in the limit L→`, we obtain

f ~N!5AhN, g~N!5AhFL~12h!2M1N11

Lh2N G1/2AM2N. ~2.14!

Substituting Eq.~2.14! into Eq. ~2.10! we arrive at the ladder operator form of HGS,
J. Math. Phys., Vol. 38, No. 5, May 1997
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HAhN1AhFL~12h!2M1N11

Lh2N G1/2JM1J uL,M ,h&5AhM uL,M ,h&. ~2.15!

It is easy to see that Eq.~2.15! reduces to Eq.~2.9! in the limit of L→` for finite M andN.
Here we would like to remark that the operator in the left-hand side of Eq.~2.15! is an

(M11)3(M11) matrix and it generally hasM11 eigenvalues and eigenstates. The HGS
only one eigenstate of the eigenvalueAhM .

Let us examine the algebraic structure involved in Eq.~2.15!. DefineA(L,M ) as an associa
tive algebra with generators

N,AM
25S h

12h D 1/2FL~12h!2M1N11

Lh2N G1/2JM1 , AM
15~AM

2 !†. ~2.16!

Then it is easy to verify that these operators satisfy the following commutation relations:

@N,AM
6 #56AM

6 , AM
1AM

25F~N!, AM
2AM

15F~N11!, ~2.17!

where the functionF(N),

F~N!5
h@L~12h!2M1N#N~M2N11!

~12h!~Lh2N12!
, ~2.18!

is non-negative for 0<N<M . This algebraA(L,M ) is nothing but thegenerally deformed
oscillator algebrawith the structure functionF(N).12 In terms of the generators ofA(L,M ), Eq.
~2.15! can be rewritten as

~AhN1A12hAM
2 !uL,M ,h&5AhM uL,M ,h&. ~2.19!

It is interesting that this algebraA(L,M ) is anL-deformation ofsu(2) in the sense that i
contracts to the universal enveloping algebra of the Lie algebrasu(2) in the limit L→` with
M andN finite

AM
6 ——→

L→`

JM
7 . ~2.20!

This means that the ladder operator form reduces to that of the BS.

III. NONCLASSICAL PROPERTIES

In this section we turn to the nonclassical properties of the HGS.

A. Mean photon number and fluctuation

The mean photon number in the HGS is obtained as

^N&5^L,M ,huNuL,M ,h&5Mh. ~3.1!

It is interesting that it is independent ofL and therefore it is exactly same as that of the B
However, the mean value ofN2 depends onL

^N2&5Mh
L1LhM2Lh2M

L21
. ~3.2!

Then the fluctuation of the photon number is
J. Math. Phys., Vol. 38, No. 5, May 1997
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^DN2&[^N2&2^N&25h~12h!M
L2M

L21
5^DN2&BS

L2M

L21
, ~3.3!

where the^DN2&BS[h(12h)M is the corresponding fluctuation of the BS. We find that t
fluctuation is always weaker than that of the BS since the factorW(L,M )5(L2M )/(L21) is
always smaller than 1 except forM51 and the limitL→`. Let us go into some detail of the
factorW(L,M ), which is referred to as the weakening factor. We shall see that this facto
between one half and 1

1
2,W~L,M !,1. ~3.4!

In fact, as a function ofL for fixed M ,W(L,M ) is an increasing function and the smalle
W(L,M ) corresponds to the smallestL, which is 2M for h50.5. In this case the weakenin
factor is rewritten asW(M )5M /(2M21) which is always larger than 1/2.

So, in comparison with the BS, the fluctuation is reduced in the HGS. For largeM with
h50.5, the fluctuation is only about half as much as the binomial states. This is an imp
feature of the HGS.

B. Sub-Poissonian distribution

Let us introduce Mandel’sQ parameter14 defined by

Q5
^DN2&2^N&

^N&
, ~3.5!

which measures the deviation from the Poisson distribution~the coherent state,Q50!. If
Q,0(.0), the field is called sub~super!-Poissonian, respectively. For the HGS, it is easy to fi
that

Q5~12h!W~L,M !21, ~3.6!

which is generally negative since 12h,1 andW(L,M ),1, namely, the field on the HGS i
sub-Poissonian. Exceptions are the coherent state limit~L→`, M→`, h→0 with hM5a2 fi-
nite! and the vacuum state limit (L→`, h→0). The extreme case isQ521 since
(12h)W(L,M ) is always positive. In the caseh→1 andL5(12h)21M→`, namely, on the
number states, the extreme case occurs.

C. Antibunching effect

We say the field is antibunched if the second-order correlation functiong(2)(0) satisfies15

g~2!~0!5
^a†a†aa&

^a†a&2
5

^N22N&

^N&2
,1. ~3.7!

For the HGS

g~2!~0!5
M21

M

Lh21

Lh2h
~3.8!

which always satisfies the condition~3.7!. So the HGS is antibunched. In fact, the occurrence
an antibunching effect and sub-Poissonian are concomitant for single mode and time indep
fields.

In the binomial state limitL→`, g(2)(0) reduces to the second-order correlation funct
g(2)(0)BS of the BS,
J. Math. Phys., Vol. 38, No. 5, May 1997
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g~2!~0! ——→
L→`

g~2!~0!BS5
M21

M
. ~3.9!

Since the factor (Lh21)/(Lh2h),1, the HGS are more strongly antibunched than the BS

D. Squeezing effect 1,4

Define the quadrature operatorsx ~coordinate! andp ~momentum! by

x5
1

&

~a†1a!, p5
i

&

~a†2a!. ~3.10!

Then their variances

^Dx2&5^x2&2^x&2, ^Dp2&5^p2&2^p&2, ~3.11!

obey the Heisenberg’s uncertainty relation

^Dx2&^Dp2&> 1
4 . ~3.12!

If one of the^Dx2& and ^Dp2& is smaller than 1/2, the squeezing occurs. For convenience
define the squeezing indices

Sx5
^Dx2&21/2

1/2
, Sp5

^Dp2&21/2

1/2
. ~3.13!

If Sx,0 (Sp,0), there is squeezing in the quadraturex(p). Now let us evaluate these indices
It is easy to derive that

anuL,M ,h&5S LM D 21/2

ALh~Lh21!•••~Lh2n11! (
k50

M2n F S Lh2n
k D S L~12h!

M2n2kD G1/2uk&

~3.14!

for n < M andanuL,M ,h&50 for n.M . In particular, forn51,2, we write

auL,M ,h&5 (
k50

M21

H̄kuk&, a2uL,M ,h&5 (
k50

M22

H̃kuk&, ~3.15!

where

H̄k5ALhS LM D 21/2F S Lh21
n D S L~12h!

M212kD G1/2 ~0<k<M21!,

H̃k5ALh~Lh21!S LM D 21/2F S Lh22
n D S L~12h!

M222kD G1/2 ~0<k<M22!. ~3.16!

In terms ofH̄n and H̃n , we can obtain the squeezing indices as

Sx52 (
n50

M22

HnH̃n12Mh24F (
n50

M21

HnH̄nG2, ~3.17!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Sp52Mh2 (
n50

M22

HnH̃n , ~3.18!

in whichHn[Hn
M(h,L) in Eq. ~2.3!. We have also suppressed theh andL dependence inH̄n and

H̃n .
Figures 1 and 2 are plots showing how theSx depends on the parameterL andh. In each case,

different values ofM ~5 and 50! are chosen. From these plots we find that

~1! Dependence onL ~Fig. 1!: Whenh or 12h is small,uSxu is always larger than that of the BS
The smallerL, the largeruSxu. However, the difference from the BS is also small. This
understandable since in this case,L must be much larger thanM due to the condition~2.2!,
and therefore the HGS are close to the BS. Whenh is around 0.5, theL can be closest to
M ~two times!, and the HGS are far different from the BS. In particular, whenL is small
~close to 2M !, Sx changes drastically in comparison with those of the BS. In general
squeezing is great for largeM @50, see Fig. 1~b!# and it decreases for smallM @5, see Fig.
1~a!#.

~2! Dependence onh ~Fig. 2!: We have chosenh50.25; 0.75 forM55 andh50.05; 0.95 for
M550. Similar to the BS, the squeezing increases ash increases to a maximal point, and the
it decreases rapidly. This similarity is easy to understand. In order to have a wide rangeh,
L is much larger thanM . In this case, the HGS are closer to the BS. We find that the H
exhibits stronger squeezing than the BS.

FIG. 1. Squeezing indexSx of HGS as a function ofL, for ~a! M55 and~b! M550. Theh values are indicated in the
figures.
J. Math. Phys., Vol. 38, No. 5, May 1997
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~3! Dependence onM : From Fig. 1 we find that whenh is around 0.5, and for smallL, the
squeezing is weaker for smallM ~5! than largeM ~50!. From Fig. 2 we conclude that larg
M has wider and stronger squeezing range ofh than the smallM . The HGS has wider
squeezing range ofh than the BS. This can be seen from Fig. 1 withh50.72 ~a! and
h50.923~b!.

IV. Q AND WIGNER FUNCTIONS

The quasiprobability distributions16 in the coherent state basis turn out to be useful meas
for studying the nonclassical features of the radiation field. In this section we shall study theQ and
Wigner functions.

A. Q-function

We start with theQ(b) function

Q~b!5
1

p
u^buL,M ,h&u2, ~4.1!

where ub& is the coherent states of the field. Substituting the HGS into Eq.~4.1! we obtain the
Q-function as follows:

Q~b!5
exp~2ubu2!

p U(
n50

M

Hn
M~h,L !

bn

An!U
2

. ~4.2!

FIG. 2. Squeezing indexSx of HGS as a function ofh and for differentM values~a! M55 and~b! M550. TheL values
are shown in the figures.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Hereb is a complexc-numberb5x1 iy , with (x,y[p) corresponding to the two quadratu
operatorsx andp in Eq. ~3.10!.

Now we would like to investigate numerically the changes of theQ-function for different
L, M , and h. Figure 3 is plots of theQ-function of HGS for differentL, for fixed M55,
h50.5. WhenL→`, the HGS is in fact a binomial state and itsQ-function is shown in Fig. 3~d!
~see also Ref. 4!. Then we choose finiteL values 40@Fig. 3~c!#, 20 @Fig. 3~b!#, and 10@Fig. 3~a!#
~note that 10 is the smallest allowed value ofL for M55, h50.5!. We can see clear deformatio
of theQ-function. At first sight this deformation pattern appears similar to that ofQ function with
respect toh given in Fig. 4 of Ref. 4. However, they are essentially different: Increase inh brings

FIG. 3. Q(b)-functions of HGS.b5x1 iy . ~a! h50.5, L510, ~b! h50.5, L520, ~c! h50.5, L540, ~d! h50.5,
L→` ~binomial state!. Those four figures show how theQ-function depends onL. Case~e! corresponds toh50.9 and
L550. In all the casesM55.
J. Math. Phys., Vol. 38, No. 5, May 1997
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the gain of the energy or the mean photon number as given Eq.~3.1!, while the changes ofL does
not correspond to any change of the mean energy due to Eq.~3.1!. Figure 3~e! is the
Q-function of HGS forh50.9, L550, andM55. ThisQ-function is almost the same as that
BS ~see Fig. 4~c! in Ref. 4!, as expected.

From theQ-functions we can also study the squeezing properties by examining the defo
tion of their contours. As before we pay our attention to the caseh50.5 and explain the drastic
changes of squeezing for smallL. Figure 4 is the plots of contours of theQ-function forM55,
h50.5, andL510, 28, and̀ ~binomial states!. We find that, when we decreaseL, the contour is
first squeezed@Fig. 4~b!# in the x direction until a maximum squeezing is reached. Then
contour deforms to the shape of an ear, which occupies a wider range in thex direction and the
squeezing is reduced@Fig. 4~a!#. From this approach we can also explain the drastic increas
squeezing forM550 andh50.5. In fact, whenL becomes smaller, the shape of the contou
compressed, which corresponds to the strong squeezing. And this change continues u
smallest value ofL allowed forh50.5, i.e.,L5100. However, in contrast to the caseM55, the
caseM550 does not give rise to the shape of an ear@Fig. 4~d!#.

B. Wigner function

The Wigner function in the series form is defined as17

W~b!5
2

p (
k50

`

~21!k^b,kurub,k&, ~4.3!

where ub,k&5D(b)uk&[exp(ba†2b*a)uk&, r is the density matrix~projector on the HGS! and
takes the form

FIG. 4. Contours ofQ(b)-functions of HGS forM55, h50.5 and~a! L510, ~b! L528, and~c! L5` ~binomial state!;
~d! M550, h50.5 andL5100.b5x1 iy .
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ves-

st

2164 H.-C. Fu and R. Sasaki: Hypergeometric states

¬¬¬¬¬¬¬¬¬¬
r5uL,M ,h&^L,M ,hu ~4.4!

for the case in hand. It is easy to compute that

W~b!5
2

p (
k50

`

~21!kU(
n50

M

Hn
M~h,L !xnk~b!U2. ~4.5!

Herexnk(b)5^nuD(b)uk& are given by18

xnk~b!5HAk!

n!
exp~2ubu2/2!bn2kLk

n2k~ ubu2! if n>k,

An!

k!
exp~2ubu2/2!~b* !k2nLn

k2n~ ubu2! if n<k,

~4.6!

whereLn
a(ubu2) are the generalized Laguerre polynomials.

Since the caseM51 is simply the binomial state and its Wigner functions have been in
tigated in detail in Ref. 4, we here consider the simplest nontrivial case:M52. Figure 5 is some
plots of the Wigner function of HGS forM52 and differenth: ~a! h50.2 ~b! h50.5, ~c!
h50.9, and~d! the number stateu2& ~h→1 andL→`!. In each case we choose the smalle

FIG. 5. b5x1 iy . Wigner functionW(b) of HGS for M52 and differenth and L. ~a! h50.2, ~b! h50.5, ~c!
h50.9, and~d! h51 ~the number stateu2&!. The smallest possible value ofL is chosen for eachh to show the maximal
contrast with BS.
J. Math. Phys., Vol. 38, No. 5, May 1997
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possible value ofL for givenh andM to see the maximal contrast with the BS. We note that
caseh→0 is just the vacuum state and its Wigner function is simply the Gaussian centered
origin. As h increases from 0, this Gaussian distribution continuously deforms to the W
function of u2&, as shown in Fig. 5. Fromh50.2, the negative parts of the Wigner functions a
very clearly visible and this signifies the nonclassical properties.

Figure 6 is two plots of the Wigner function of the BS forM52 and (b8) h50.5 and (c8)
h50.9. Comparing them with those of HGS, namely, Figs. 5~b! and 5~c!, we find that in the case
h50.5 the Wigner distributions of HGS and BS are markedly different. The distribution of H
has two negative peaks while the BS has only one. However, in the case ofh50.9, two distri-
butions are almost the same. This is understandable since forh50.9, L must be very big and the
HGS are very close to the BS.

V. CONCLUSION

We have shown various properties of thehypergeometric states. The relationship with the BS
is clarified together with the coherent state and the number state limits. The ladder op
formulation gives an algebraic characterization of the HGS based on the generally def
oscillator algebra. The salient statistical properties of the HGS such as the sub-Poissonia
acter, the antibunching effect and the squeezing effects are investigated for a wide range

FIG. 6. Wigner function of BS forM52 and~b8! h50.5 and~c8! h50.9.
J. Math. Phys., Vol. 38, No. 5, May 1997
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parameters. The nonclassical features of the HGS for certain parameter ranges are demons
terms of the quasiprobability distributions, theQ-function, and the Wigner function. On accou
of these remarkable properties we are tempted to think that the HGS play an important r
quantum optics. Surely they deserve further investigation including the method of generati
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APPENDIX: HYPERGEOMETRIC DISTRIBUTION

Consider a pot containingL1 red andL2 black balls. A group ofM balls is chosen randomly
Then the probabilityqn that the chosen group contains exactlyn red balls is given by the hyper
geometric distribution

qn5S L1n D S L2
M2nD S LM D 21

, L5L11L2 .

It is easy to seeqn5uHn
M(h,L)u2 ~2.5! for h5L1 /L. The name is explained by the fact that t

generating function of the above distribution can be expressed in terms of the hypergeo
functions.19 Obviously the above distribution tends to the binomial distribution with probabilith
in the largeL limit.
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Pseudoclassical model for Weyl particle in 10 dimensions
D. M. Gitman and A. E. Gonçalves
Insituto de Fı´sica, Universidade de Sa˜o Paulo, P.O. Box 66318,
05389-970 Sa˜o Paulo, SP, Brazil

~Received 10 May 1996; accepted for publication 9 September 1996!

A pseudoclassical model to describe Weyl particle in 10 dimensions is proposed. In
the course of quantization both the massless Dirac equation and the Weyl condition
are reproduced automatically. The construction can be relevant to Ramond–
Neveu–Schwarz strings where the Weyl reduction in the Ramond sector has to be
made by hand. ©1997 American Institute of Physics.@S0022-2488~97!02502-4#

Classical and pseudoclassical models of relativistic particles and their quantization ha
tracted attention for many years. One of the main reasons to study them is related to the
theory because pointlike particles can be treated as prototypes of strings or some modes i
theory. Recently,1 a pseudoclassical model to describe the Weyl particle in 4 dimensions
proposed. The limitm→0 of the standard action of a spinning particle2 in 4 dimensions was
modified essentially to get the minimal theory~Weyl theory! of a massless spinning particle. Thu
both the Dirac equation and Weyl condition are reproduced in the course of quantization. It
out to be possible to adopt the model to 10 dimensions. That is important in connection
superstring theory problems in such dimensions,3 where, for example, the minimal quantum theo
of the Ramond–Neveu–Schwarz string does not appear automatically, and the corresp
GSO reduction~in particular, Weyl reduction of the Ramond sector! has to be made by hand.4

The action of the Weyl particle in 10 dimensions we are proposing has the form

S5E
0

1F2
z2

2e
2icmċmGdt, zm5 ẋm2icmx2

1

8!
emnr2•••r9bncr2

•••cr9
1

a

28
bm, ~1!

where xm,e are even, andcm, and x are odd variables dependent on a parametet
P @0,1#,m50, 9,hmn5diag(1,21, . . . ,21) is Minkowski tensor in 10 dimensions, the variabl
bm form an even 10 vector, anda is an even constant. There are three types of gauge tran
mations under which action~1! is invariant: reparametrizations

dxm5 ẋmj, de5
d

dt
~ej!, dbm5

d

dt
~bmj!, dcm5ċmj, dx5

d

dt
~xj!, ~2!

with an even parameterj(t); and two kinds of supertransformations: first

dxm5icme, de5ixe, dbm50 , dcm5
1

2e
zme, dx5 ė, ~3!

with an odd parametere(t); and second

dxm5S 18! emnr2•••r9bncr2
•••cr9

2
a

28
bmDk, dcm5

i

8!e
emnr2•••r9bnzr2

cr3
•••cr9

k,

dbm5
d

dt
~bmk!2S 6a D 288! emnr2•••r9bnċr2

cr2
•••cr9

k, dx50 , de50 , ~4!

with an even parameterk(t).
0022-2488/97/38(5)/2167/4/$10.00
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Introducing the canonical momenta

pm5
]L

] ẋm
52

1

e
zm , Pe5

]L

]ė
50 , Px5

] rL

]ẋ
50 ,

Pm5
] rL

]ċm
52icm , Pbm

5
]L

]ḃm
50 ,

we discover the primary constraintsF (1)50 (F1
(1)5Pe ,F2

(1)5Px ,F3m
(1)5Pm1icm ,F4m

(1)5Pbm
).

Then the total HamiltonianH (1) constructed according to the standard procedure,5,6 has the form
H (1)5H1lAFA

(1) , where

H52
e

2
p21ipmcmx2S 18! enmr2•••r9

pmcr2•••cr91
a

28
pnDbn. ~5!

Using Eq.~5!, one gets secondary constraintsF (2)50,

F1
~2!5p2, F2

~2!5pmcm, F3m
~2!5

1

8!
emnr2•••r9

pncr2•••cr91
a

28
pm . ~6!

One can go over from the initial set of constraints (F (1),F (2)) to the equivalent one
(F (1),F̃(2)), where F̃(2)5F (2)uc→c̃5c1(i/2)F

3
(1) . The new set of constraints can be explicit

divided in a set of first-class constraints, which is (F1,2
(1) ,F4

(1) ,F̃(2)) and in a set of second-clas
constraintsF3

(1) .
Consider the Dirac quantization, where the second-class constraintsF3

(1) defines Dirac brack-
ets and therefore the commutation relations, whereas the first-class constraints, being ap
the state vectors, define physical states.5 For essential operators and nonzeroth commutators
get

@ x̂m,p̂n#25i$xm,pn%D~F
3
~1!!5idn

m , @ĉm,ĉn#15i$cm,cn%D~F
3
~1!!52 1

2h
mn. ~7!

It is possible to construct a realization of the commutation relation~7! in a Hilbert spaceR whose
elementsC are 32-component columns. Taking into account trivial first-class constraintsF1,2,4

(1) ,
we can selectC dependent only onx. Then

x̂m5xmI , p̂m52i]mI , ĉm5
i

2
gm, ~8!

whereI is 32332 unit matrix andgm are theg matrices in 10 dimensions,@gm,gn#152hmn. In
the realization~8! the operatorsF̂(2), which corresponds to the first-class constraints~6!, have the
following form:

F̂1
~2!52]m]m, F̂2

~2!5 1
2]mgm, F̂3m

~2!5
i

28
@gmg11]ngn1]m~g112a!#.

One can see that conditionsF̂(2)C(x)50, are reduced to the following set of independent eq
tions:

]mgmC~x!50 , ]m~g112a!C~x!50 .
J. Math. Phys., Vol. 38, No. 5, May 1997
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The first one is the Dirac equation for massless particles in 10 dimensions and the second
a571 is equivalent to Weyl or anti-Weyl conditions (16g11)C(x)50 if we consider only
normalized functionsC(x). Thus we get automatically, projections with positive or negat
chirality in the course of quantization.

Selectingg in the Majorana representation, we haveg11 real.3 Therefore, given a real spino
C, the two pieces of definite chirality are also real. That means that the Weyl and Maj
conditions are compatible in the dimensions under consideration and the Majorana conditi
be imposed on the state vectors of the quantum mechanics constructed.

Action ~1! can be directly generalized for any even dimensionsD52n. In this case
m50,1, . . . ,D21 and

zm5 ẋm2icmx2
~2i !~D22!/2

~D22!!
emnr2•••rD21bncr2

•••crD21
1

a

2~D22!/2b
m.

The symmetries~2! and ~3! remain, whereas~4! has to be generalized,

dxm5F ~2i !~D22!/2

~D22!!
emnr2•••rD21bncr2

•••crD21
2

a

2~D22!/2b
mGk,

dcm5
i

e

~2i !~D22!/2

~D22!!
emnr2•••rD21bnzr2

cr3
•••crD21

k,

dbm5
d

dt
~bmk!2SD24

a D 2D22

~D22!!
emnr2•••rD21bnċr2

cr2
•••crD21

k,

dx50 , de50 .

The HamiltonianH has the form

H52
e

2
p21ipmcmx2F ~2i !~D22!/2

~D22!!
enmr2•••rD21

pmcr2•••crD211
a

2~D22!/2pnGbn,

and the constrainsF3m
(2) have to be generalized,

F3m
~2!5

~2i !~D22!/2

~D22!!
enmr2•••rD21

pmcr2•••crD211
a

2~D22!/2pn .

The commutation relations~7! remain unchanged and can be realized in a Hilbert spaceR whose
elementsC are 2D/2-component columns. The realization~8! remains, whereI is 2D/2 3 2D/2 unit
matrix andgm are theg-matrices inD dimensions,@gm,gn#152hmn. The operatorF̂3m

(2) has to be
generalized,

F̂3m
~2!5

1

2~D22!/2 @gmgD11]ngn1]m~gD112a!#.

Then the conditionsF̂(2)C(x)50 result in the following set of independent equations:

]mgmC~x!50 , ]m~gD112a!C~x!50 .

The first one is the Dirac equation for massless particles inD dimensions and the second one
a571 is equivalent to Weyl or anti-Weyl conditions (16gD11)C(x)50, if we consider only
normalized functionsC(x).
J. Math. Phys., Vol. 38, No. 5, May 1997
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The canonical quantization can be made similar to a 4-dimensional case1 and leads to same
quantum mechanics.
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Renormalized path integral in quantum mechanics
R. J. Henderson and S. G. Rajeev
Department of Physics and Astronomy, University of Rochester,
Rochester, New York 14627

~Received 28 October 1996; accepted for publication 10 February 1997!

We obtain direct, finite, formulations of a renormalized quantum mechanical sys-
tem with no reference to ultraviolet cutoffs and running coupling constants, in both
the Hamiltonian and path integral pictures. The path integral description requires a
modification to the Wiener measure on continuous paths that describes an unusual
diffusion process wherein colliding particles occasionally stick together for a ran-
dom interval of time before going their separate ways. ©1997 American Institute
of Physics.@S0022-2488~97!04205-9#

I. INTRODUCTION

The presence of ultraviolet divergences in the quantum field theories of the standard m
and the need for an awkward renormalization procedure to make these theories well-d
might be viewed as evidence that quantum field theory is not the proper framework for a f
mental theory of elementary particles. Some exotic and finite theory might be more concep
accurate and less mathematically cumbersome. On the other hand, a more conservative
view is that renormalizable interactions can be given a finite description, which avoids reno
ization, without the necessity of discarding the framework of quantum field theory.

It would be aesthetically pleasing and probably computationally useful to construct a the
renormalizable interactions which is finite at the outset and does not require the seemingly
cial limiting procedures of renormalization to be well-defined. Such a formulation is pres
beyond our grasp, but here we construct a finite formulation of a renormalizable quantum
chanical system that suggests that quantum field theory can possibly accommodate renorm
interactions through a choice of the Hamiltonian domain rather than the addition of an inter
term in the Lagrangian. In the case we examine, we thus find evidence that we can elimin
need for renormalization altogether by taking the conservative point of view which require
exotic replacement for quantum field theory. An analogousfinite description of renormalizable
interactions in quantum field theory seems, therefore, a worthwhile goal.

II. A RENORMALIZABLE QUANTUM MECHANICAL SYSTEM

It has been recognized for some time~see Refs. 1–6! that renormalizable ultraviolet diver
gences are not restricted to quantum field theories, but can occur as well even in nonrela
quantum mechanics. A scale invariant Hamiltonian that admits a negative energy bound
necessarily obtains a continuum of negative energy states extending down to arbitrarily ne
energies such that there is no ground state. The system, without renormalization, is thus un
and ill-defined.

The example we treat is representative of this situation. The attractive Diracd-function po-
tential in two dimensions with nonrelativistic kinetic energy has been treated~see Refs. 1, 2, and
4! by the conventional renormalization recipe: regularize with an ultraviolet cutoff, allow
coupling constant to run~depend on the cutoff!, and remove the cutoff keeping some physic
observable such as the ground-state energy fixed. In this way divergences are removed,
dimensionless coupling constant characterizing the system is traded for a dimensional par
such as the ground state energy. This prescription may be administered either perturbatively~order
0022-2488/97/38(5)/2171/10/$10.00
2171J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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by order in the coupling constant! or nonperturbatively, but in either case the philosophy is
same: solve a regularized, nonphysical, system first, then take limits of the solutions to
physical results.

Whether or not a direct renormalized formulation of the system to be solved can be giv
avoid such limiting procedures and nonphysical intermediate results is then a natural qu
Here we give such a formulation of thedelta-function potential in two dimensions, first in th
Hamiltonian and then in the path integral pictures. The result is a better understanding of th
of the domain of the Hamiltonian in the former, and the description of an interesting alternat
the Wiener measure in the latter.

Our starting pointcould bethe Hamiltonian

Hg52D2gd2~ x̄!, ~1!

whereD is the two-dimensional Laplacian, andg is a positive dimensionless number. In mome
tum space the Schro¨dinger equation is then

p2C~ p̄!2
g

~2p!2
E d2pC~ p̄!5lC~ p̄!. ~2!

Due to scale invariance, this equation admits bound states for any energy,l, less than zero.
They have the simple form which follows from a rearrangement of Eq.~2!,

C~ p̄!5

g

~2p!2
*d2pC~ p̄!

p21ulu
. ~3!

However, integrating this equation over momentum space reveals a problem:*d2pC( p̄) is not
finite. There is a logarithmic divergence in the integral at high momenta. One way to cur
illness is to regularize by introducing a large momentum cutoffL and allowing the coupling
constantg to depend onL in a way which keeps the bound state energy constant asL is removed
~taken to infinity!. Integrating the Schro¨dinger equation up to the cutoffL gives

15
g~L!

2p E
0

L pdp

p21ul0u
, ~4!

which has the problem that the integral diverges logarithmically ifL→`. The proper dependenc
of g on L to keepl0 fixed is

g~L!5
2p

lnS L2

ul0u
11D . ~5!

The choice ofl0(,0) is arbitrary, but must be made, and picks out just one of the unco
able number of possible bound states to survive the renormalization procedure. With this c
the cutoff can be removed, and the parameterg disappears from the problem, replaced by the n
parameterl0 , the energy of the single bound state of the system. All physical observables~e.g.,
scattering amplitudes! may be calculated by solving this system with the cutoff in place, and
taking the limitL→` with g replaced by the expression in Eq.~5!.

Nonperturbative and successful as this method is, we might ask for a direct description
Hamiltonian picture wherein the cutoffL need not appear at all. If such a finite formulation o
renormalizable system is possible, it should be easiest to find it here in our simple case. This
J. Math. Phys., Vol. 38, No. 5, May 1997
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description may improve our understanding of the role of renormalization and possibly serv
guide to finding a similar point of view in the more complicated case of quantum field theo

The system we have described is asymptotically free. This means that the coupling co
g, goes to zero asL is taken to infinity. Nonetheless, if we take this limit in the momentum sp
Hamiltonian, with the dependence ofg on L given above, the Hamiltonian is not justp2. An
interaction term survives, and the Schro¨dinger equation becomes

p2C~ p̄!2 lim
p→`

p2C~ p̄!5lC~ p̄!. ~6!

The renormalized Hamiltonian in Eq.~6! appears to depend on no parameters. However,
the Hamiltonian to be self-adjoint, its domain must be specified carefully. The domain he
determined by the bound state energy~the parameter of the theory! and consists of wave function
satisfying7

E d2pS C~ p̄!2
hC

p21m2D50, ~7!

wherel052m2 andhC[ lim
p→`

p2C( p̄).

In real space, this equation picks out wave functions that diverge logarithmically at the o
but are still square-integrable. This Hamiltonian operator is the momentum space equivalen
self-adjoint extension of the two-dimensional Laplacian, which is described in Ref. 8. The p
eter m2 can be any positive real number, each value corresponding to a different self-a
operator. It is related to the parametera of Ref. 8 by

ln~2/m2!52g14pa, ~8!

whereg is Euler’s constant. The bound state wave function is

Cl0
~ p̄!5

1

p21m2 ~9!

and the zero angular momentum scattering states with energyl are

Cl~ p̄!5
1

k
lnS m2

k2 D d~p2k!1
2

k22p2
. ~10!

The nonzero angular momentum scattering states simply the free ones: plane waves in rea
delta functions in momentum space.

Thus we conclude that this asymptotically free interaction in quantum mechanics corres
in momentum space to the unusual Hamiltonian in Eqs.~6! and~7! and in configuration space t
the free Hamiltonian with a boundary condition requiring angular momentum zero wave func
to diverge at the origin.

That an asymptotically free renormalizable interaction can be specified directly in terms
domain of the Hamiltonian in configuration space has been discovered previously, in the c
of the large-N limit of the 111-dimensional massless non-Abelian Thirring~or Gross–Neveu!
model.9 Additionally, the N-body version of thed-function potential admits a similar finite
formulation.7,10

III. THE FEYNMAN–KAC FORMULA AND PATH INTEGRAL PICTURE

Generally, quantum mechanical probability amplitudes and expectation values may be
lated in Euclidean time using the Feynman–Kac formula,
J. Math. Phys., Vol. 38, No. 5, May 1997
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^x̄1ue2tHux̄2&5E dm0@ x̄# x̄1 , x̄2 ,t expF2E
0

t

V~ x̄~s!!dsG , ~11!

wheredm0@ x̄# x̄1 , x̄2 ,t5d2( x̄(0)2 x̄1)d2( x̄(t)2 x̄2)dm0@ x̄# with dm0@ x̄# being the Wiener measur
@with the end pointsx̄(0) and x̄(t) left unspecified# of classical diffusion theory. In Euclidea
time, then, the stochastic nature of quantum mechanics is indistinguishable from the cla
randomness of diffusion. A quantum mechanical free particle in Euclidean time has corre
functions, e.g., that are the same as those of a classical particle executing Brownian motio
diffusion constantD5\2/2m. A quantum particle in an external potential in Euclidean time, in
ground state say, also behaves as a diffusing classical particle, but one with the Wiener m

modified by the multiplicative factore2*/0
t V( x̄(s))ds.

The free heat kernel is, in two dimensions, the familiar probability density for a partic
arrive atx̄2 at time t having started at time 0 at pointx̄1 ,

Pt
~0!~ x̄2ux̄1!5ht

~0!~ x̄2 ,x̄1!5^x̄2ue2tH0ux̄1&5E dm0@ x̄# x̄1 , x̄2 ,t5
1

4pt
expF2~ x̄12 x̄2!

2

4t G . ~12!

Equivalently, for the Wiener process, the probability density function ofx̄(t2)2 x̄(t1) is

Px̄ ~ t2!2 x̄ ~ t1!~ x̄!5
1

4p~ t22t1!
expF 2x2

4~ t22t1!
G . ~13!

The ‘‘reproducibility property’’ of heat kernels,

E d2yht1
~0!~ x̄,ȳ!ht2

~0!~ ȳ,z̄!5ht11t2
~0! ~ x̄,z̄! ~14!

ensures that the conditional probability in Eq.~12! is consistent.

IV. THE PROKHOROV THEOREM

Implicit in the discussion above is the assumption that there exists a probability measu~the
Wiener measure! on the space of continuous curves inR2 which yields the probabilities in Eqs
~12! and ~13!. A complete assignment of probabilities on this space of paths, however, req
that all possible events~to be defined shortly! be given probabilities consistent with the logic
probability and set theory. It is by no means obvious that the probabilities in Eq.~12! can be
generalized to such a true probability measure. It is the purpose of this section to descr
Prokhorov theorem, which provides a simple test to which the probabilities in Eq.~12! can be
subjected in order to establish the existence of such a measure. The Wiener process will
to pass this test, and in Sec. V the test is used to verify that our renormalized quantum mec
system has a path integral description in terms of a new measure which we believe to be d
from the Wiener one in a way that systems with nonsingular potentials cannot be.

The setting that we require is aprobability space, which is a triple, (V,B,P), whereV is a
set ~the sample space!, B is aBorel algebra~an algebra of subsets ofV closed under countable
unions and complementations! whose members are the possibleevents, andP:B→R is a prob-
ability measure, meaning that it must have the propertiesP(V)51 and countable additivity, i.e.

P~ø
n
An!5(

n
P~An! ~15!

if AnùAm50, ;nÞm.
J. Math. Phys., Vol. 38, No. 5, May 1997
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If instead ofB we identifyA as an algebra closed only under finite unions, andp:A→R is
additive only for finite unions, then we say thatp is anelementary probability measure.

The probabilities given in Eq.~12! specify an elementary probability measure to the se
events of the form

E5$x̄ux̄PV,~ x̄~ t1!,...,x̄~ tn!!PB2n%, ~16!

whereB2n is a Borel subset ofR2n andn is finite.A here is then the set of all such events. Th
probabilities are

P~E!5E d2x1•••E d2xnB2nP x̄ ~ t1!••• x̄ ~ tn!~ x̄1 ,...,x̄n!, ~17!

where

Px̄ ~ t1!••• x̄ ~ tn!5ht1
~0!~ 0̄,x̄1!ht22t1

~0! ~ x̄1 ,x̄2!•••htn2tn21

~0! ~ x̄n21 ,x̄n! ~18!

for t1,t2,•••,tn . Clearly an eventE has many equivalent descriptions. One can always
more times to the list in Eq.~16! without placing restrictions onx̄ at these new times withou
changing the event in any way. The reproducibility property of the heat kernel ensures tha
of these equivalent descriptions will be assigned the same probability.

Thus withA5$E%, we have defined an elementary probability measure onV. By the Kol-
mogorov theorem~see, e.g., Ref. 11! if p is an elementary probability measure onA,V then
there exists a unique extension to a full probability measureP on B~A!, the Borel algebra
generated byA, if and only if for any sequence of setsAnPA havingAn11,An and where
ùnAn50, the measure has the property limn→`p(An)50.

Fortunately, for our purposes, there is an equivalent, but simpler, test whenV is the space of
continuous paths. Prokhorov’s theorem, Refs. 11 and 12, says that in this case the unique
sion to a full probability measure exists if and only if the elementary probability measure as
event probabilites such that, for somet0.0, there exist constantsa.0, b.1, andc.0 such that

E~ ux̄~ t2!2 x̄~ t1!ua!<cut22t1ub, ;ut22t1u<t0 . ~19!

The Wiener process, by Eq.~13!, is scale-invariant, and therefore satisfies this bound by tak
a54 and b52.

We give an outline of the proof of Prokhorov’s theorem in the Appendix. In Sec. V we
the heat kernel of our renormalized quantum mechanical system, and use this to define an e
tary probability measure analagous to the Wiener one. Then we show that this elementary m
also can be extended to a full probability measure, thus constructing the path integral appr
for our system.

V. THE RENORMALIZED PATH INTEGRAL

As shown in Sec. II, the renormalized delta function Hamiltonian is a self-adjoint extensi
the two-dimensional Laplacian. Eigenfunctions in configuration space satisfy the free Schro¨dinger
equation, but with a singular boundary condition at the origin. The heat kernel, then, satisfi
heat equation, with this same boundary condition atxi→0, i51,2,

2D x̄ i
ht~ x̄1 ,x̄2!52

]ht~ x̄1 ,x̄2!

]t
~20!

with
J. Math. Phys., Vol. 38, No. 5, May 1997
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h0~ x̄1 ,x̄2!5d2~ x̄12 x̄2!, ht~ x̄1 ,x̄2!;C ln bxi , xi→0, i51,2 ~21!

where ln(m2/b2)52(ln 22g). We can get the explicit solution by first constructing the resolv
with the proper boundary conditions,

Gl~ x̄1 ,x̄2!^x̄1u
1

2D2k2
ux̄2&5

1

2p
K0~kux̄12 x̄2u!1

1

2p

K0~kx1!K0~kx2!

ln~k/m!
, ~22!

wherel5k2. This expression is a special case of Krein’s formula for resolvents of self-ad
extensions, Ref. 8. The first term is the free resolvent,Gl

(0) . The second term is required t
achieve the boundary conditions for smallx1 andx2 . The resolvent is the Laplace transform of th
heat kernel, so we find that the heat kernel consists of the free one plus a term whic
convolution of free heat kernels and another function,n,

ht~ x̄1 ,x̄2!5ht
~0!~ x̄1 ,x̄2!14pm2E

0

t

dsE
0

s

ds8ht2s
~0! ~ x̄1 ,0̄!n~m2~s2s8!,21!hs8

~0!
~ 0̄,x̄2! ~23!

with n being the function

n~ t,a![E
a

`

ds
ts

G~s11!
. ~24!

We would like to use this heat kernel to define, as in Eq.~18!, an elementary probability
measure on the sets in Eq.~16!, and then extend this using the Prokhorov theorem to a
probability measure, thus yielding a path integral description of our renormalized Hamilto
The first problem we encounter is that, as when the free Hamiltonian,H0 , is modified by the
addition of a potential, no longer is*d2x2ht( x̄2 ,x̄1)51, so we cannot interpretht( x̄2 ,x̄1) as a
probability density~i.e., asPt( x̄2ux̄1)!. A normalization is necessary. As in the caseVÞ0 we can
utilize the positive, normalizable, ground stateCl0

( x̄) to define

Pt~ x̄2ux̄1!5e2m2t
Cl0

~ x̄2!

Cl0
~ x̄1!

ht~ x̄2 ,x̄1!, ~25!

which is a normalized probability density, still has the reproducibility property, and for s
times is;ht( x̄2 ,x̄1). In our case,

Cl0
~ x̄!5

m

Ap
K0~mx!. ~26!

The elementary probability measure we want is then given by Eqs.~17! and ~18!, with ht
(0)

replaced byPt . The diffusion generated by this probability gives correlation functions and
pectation values which are the quantum mechanical ground state correlation functions and
tation values in Euclidean time. The usefulness of this connection between quantum mec
and diffusion has been explored extensively by Nelson. See Ref. 13 and also the book b
gasawa, Ref. 14.

Now Pt , unlike ht
(0) , is not scale-invariant, since the ground state energy2m2 sets a scale.

It takes, therefore, some work to show that this elementary probability measure satisfi
Prokhorov bound, and therefore has a unique extension to a probability measure on the s
continuous two-dimensional paths. The expectation value that we must bound can be writte
sum of two terms,
J. Math. Phys., Vol. 38, No. 5, May 1997
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E~ ux̄~ t2!2 x̄~ t1!ua!5E~0!~ ux̄~ t2!2 x̄~ t1!ua!1E~1!~ ux̄~ t2!2 x̄~ t1!ua!, ~27!

where the first term corresponds to the free part ofPt , and the second term comes from th
interaction part ofPt . We can bound these two positive terms separately,

E~0!~ ux̄~ t2!2 x̄~ t1!ua!5
m2

p
e2m2tE d2x1d

2x2ux̄22 x̄1uaK0~mx1!K0~mx2!ht
~0!~ x̄1 ,x̄2!. ~28!

Useful here is a power expansion ofK0(mx2),

K0~mx2!5K0~mx1!1R~x1 ,x2!, ~29!

where forux22x1u,d, d being small,

uR~x1 ,x2!u5u2mK1~mx1!~x22x1!1•••u,A~d!K1~mx1!ux22x1u, ~30!

A(d) being positive and constant with respect tox1 andx2 . Inserting this bound onK0(mx2) ~note
thatK0 andK1 are positive for positive arguments! yields the bound

E~0!~ ux̄~ t2!2 x̄~ t1!ua!,C1e
2m2t~m2t !a/21C2e

2m2t~m2t !~a11!/2, ~31!

whereC1 andC2 are dimensionless constants. The other term in the expectation value we n

E~1!~ ux̄~ t2!2 x̄~ t1!ua!5
m2

p
e2m2tE d2x1d

2x2ux̄22 x̄1uaK0~mx1!K0~mx2!ht
~1!~ x̄1 ,x̄2!, ~32!

defininght
(1) to beht2ht

(0) , the interaction term in the heat kernel. In this expression we may

K0~mx1!K0~mx2!,C~e!~x1x2!
2e, ~33!

wheree is any positive real number. Inserting this into the expression forE(1) and taking the
Laplace transform with respect tot[t22t1 makes, using the resolvent formula, the integral on
right-hand side of Eq.~32!,

C~e!

2p ln
k

m

E d2x1d
2x2~x1x2!

2eux̄22 x̄1uaK0~kx1!K0~kx2!. ~34!

Conveniently, we can scalex̄1 andx̄2 to bring all thek dependence outside the integral, giving

C~e,a!

k41a2e lnS km D , ~35!

which has the inverse Laplace transform

2C~e,a!

m21a2e nS m2t,
a122e

2 D . ~36!

The functionn has an asymptotic expansion,15
J. Math. Phys., Vol. 38, No. 5, May 1997
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n~m2t,p!5
~m2t !p

lnS 1

m2t D
SCp1OS U lnS 1

m2t D U
21D D . ~37!

Using this provides a bound onE(1) for small t,

E~1!~ ux̄~ t2!2 x̄~ t1!ua!,C~e,a,t0!
~m2t !~21a2e!/2

lnS 1

m2t D
, ;t<t0 . ~38!

This result and the above bound onE(0) combine to prove that, as for the Wiener measure,
Prokhorov bound is satisfied with the valuesa54 andb52. This means that there is a uniqu
probability measure, and hence path integral, to describe our renormalized quantum mec
system. The Wiener measure in path integrals is then replaced bydml0

@ x̄# where

ht~ x̄1 ,x̄2!5E dml0
@ x̄# x̄1 , x̄2 ,t ~39!

and the addition of a potential modifies this to

ht~ x̄1 ,x̄2!5E dml0
@ x̄# x̄1 , x̄2 ,t expF2E

0

t

V~ x̄~s!!dsG . ~40!

Like the Wiener measure,dml0
@ x̄# is thus a measure on the space of continuous path

R2. An ordinary, nonsingular, interaction modifies the Wiener measure by the multiplicative f
exp@2*0

t V(x̄(s))ds#, a functional which for small times approaches unity, with corrections
O(t). Under the influence of such interactions, particles, for small enough times, behave a
ones. In contrast, the measuredml0

@ x̄#, corresponding to the renormalized delta function inter
tion, also approaches the Wiener measure ast→0, but the corrections die much more slowl
being logarithmic rather than power law. This interaction, though subtle in the way it breaks
invariance, modifies particle motion for very small times in a more profound way than doe
ordinary potential. We conjecture, but have not proved, that the mathematical consequence

is that, unlike the Wiener measure multiplied by the functionale2*0
t V( x̄ (s))ds, the measure

dml0
@ x̄# not absolutely continuous, see, e.g., Ref. 16, with respect to the free Wiener measure

arbitrarily small times.
It is also interesting to note the meaning~in the diffusion picture! of the second term in Eq

~23!. This term, which is positive, corresponds to the probability that, rather than underg
ordinary Brownian motion, the particle in going fromx̄1 to x̄2 , first diffuses into the neighborhoo
of the origin where it spends some random amount of time~the distribution of this random dela
being proportional to the functionn! before diffusing out again to its destinationx̄2 . In fact,
keeping this picture in mind provides an alternative way to arrive at the heat kernel,ht . Adding
the probability of such an excursion to the origin amounts to adding a termf (l)Gl

(0)( x̄,0̄)
3Gl

(0)(0̄,ȳ) to the free resolvent.f (l) is then the Laplace transform of the random time de
distribution. The resulting ansatz for the resolvent,

Gl~ x̄,ȳ!5Gl
~0!~ x̄,ȳ!1 f ~l!Gl

~0!~ x̄,0̄!Gl
~0!~ 0̄,ȳ! ~41!

should then be required to have the reproducibility property, required for it to be the resolv
someoperator,
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
E d2yGl~ x̄,ȳ!Gl~ ȳ,z̄!5
2d

dl
Gl~ x̄,z̄!. ~42!

Making this requirement, and usingGl
(0)( x̄,ȳ)5(1/2p)K0(kux̄2 ȳu), yields a first-order nonlinea

differential equation forf ,

f 8~l!5
2 f 2~l!

4pl
, ~43!

which can be integrated to givef (l)52p/ ln(Al/m), wherem appears as an integration consta
This result matches the expression given for the resolvent in Eq.~22!.

Consideration then of nonrelativistic quantum particles acting through the renormalized
function potential is equivalent to the treatment of classical particles undergoing a mo
Brownian diffusion with enhanced probability for the particles to stick together for some
before going their separate ways. The possibility of such a ‘‘sticky diffusion’’ in two dimens
may be of interest even in classical diffusion theory or in condensed matter physics.
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APPENDIX: PROOF OF THE PROKHOROV THEOREM

Here we provide a roadmap to the proof of the Prokhorov theorem as given in Ref. 12
idea is to show that the ‘‘Prokhorov bound,’’ Eq.~19!, implies the conditions of the Kolmogoro
theorem. That is, if the elementary probability measure implies Eq.~19!, and we consider a set o
events$An% of the form ~16! such thatAn11,An andp(An).e.0 thenùnAnÞB.

Now, by adding times at which the particle position is unrestricted, we can always put s
sequence of events into a standard form,

An5$x̄u~ x̄~ t1
~n!!,...,x̄~ tn2n11

~n!
!!PBn%. ~A1!

Sincep is a probability measure when restricted to sets dependent on a fixed set of time
can assume that eachBn is a compact set. Also, by choosingn large enough we can maket i

(n)

2t i21
(n) ,22n,t0 . The Prokhorov bound and Chebyshev’s inequality then give, for anyd.0,

p~ x̄i x̄~ t i
~n!!2 x̄~ t i21

~n! !ua>ut i
~n!2t i21

~n! uda!<cut i
~n!2t i21

~n! ub2da. ~A2!

Let l[b2da51. Using this,p(Al).e, and DeMorgan’s law we can show thatp(El).e/2
where$El% are the events

El5AlùS ù
n5m0

l

ù
i52

n2n11

$x̄i x̄~ t i
~n!!2 x̄~ t i21

~n! !u,ut i
~n!2t i21

~n! ud%D , ~A3!

wherem0 is taken large enough that 2c(n5m0

` n22nl,e/2. So these sets are nonempty. The ev

El includes all paths which belong toAl and in addition have the property that in each tim
division betweenm0 and l , i.e., form0,n, l , the distance traveled is bounded above byDtd.

Now it is clear thatEl11,El,Al so that showingù l5m0

` ElÞB is sufficient to prove

ù l5m0

` AlÞB. To show the former, first pick from each setEl a path,x̄l(t), which is linear in each

time segment,@ t i21
( l ) ,t i

( l )#. Geometry and the definition ofEl imply that for t i
( l )<t<s<t j

( l )
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
ux̄l~ t !2 x̄l~s!u<Kut i
~ l !2t j

~ l !ud ~A4!

for a constantK.0. Now the paths x̄l1p belong to Al for all p.0, and therefore
( x̄l1p(t1

( l )),...,x̄l1p(t l2l11
( l ) ))PBl . Bl is compact. Therefore this sequence, indexed byp, has a

limit point in Bl . This is true for alll . Thus we can by the diagonalization method extrac
subsequence,$ ȳn% such thatȳn(t i

( l )) converges asn→` for all i andl . Now, if h andt are given,
we can choosen0 large enough such thatt i

(n0)<t<t i11
(n0) and ut i

(n0)2t i11
(n0)u,22n0,h/2. Then

choosing l and m large enough, we can show by triangle inequalities thatu ȳl(t)2 ȳm(t)u
,Ah/2 for some positive constantA. This is true for anytP@ t i

(n0) ,t i11
(n0)#. Thus the limiting

function, sayȳ(t), exists;tPR, and Eq.~47! ensures thatȳ(t) is continuous.ȳ(t) has the
property (ȳ(t i

( l )),...,ȳ(t l2l11
( l ) ))PBl , ; l , so thatȳPù l>m0

ElÞB, completing the proof.
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Incorporation of anomalous magnetic moments
in the two-body relativistic wave equations
of constraint theory

H. Jalloulia) and H. Sazdjianb)
Division de Physique The´orique,c! Institut de Physique Nucle´aire, UniversitéParis XI,
F-91406 Orsay Cedex, France

~Received 11 June 1996; accepted for publication 10 January 1997!

Using a Dirac-matrix substitution rule, applied to the electric charge, the anom-
alous magnetic moments of fermions are incorporated in local form in the two-body
relativistic wave equations of constraint theory. The structure of the result-
ing potential is entirely determined, up to magnetic type form factors, from that
of the initial potential describing the mutual interaction in the absence of anoma-
lous magnetic moments. The wave equations are reduced to a single eigenvalue
equation in the sectors of pseudoscalar and scalar states (j50). The requirement
of a smooth introduction of the anomalous magnetic moments imposes restric-
tions on the behavior of the form factors near the origin, inx-space. These condi-
tions are satisfied at the one-loop level of perturbation theory. The nonrelativ-
istic limit of the eigenvalue equation is also studied. ©1997 American Institute of
Physics.@S0022-2488~97!00305-8#

I. INTRODUCTION

The two-body relativistic wave equations of constraint theory have the main feature o
scribing the internal dynamics of the system by means of a manifestly covariant three-dimen
formalism;1–9 relative energy and relative time variables are eliminated there through cons
equations. These wave equations, which can be constructed from general principles, have
property of allowing a three-dimensional reduction of the Bethe–Salpeter equation by mean
Lippmann–Schwinger-quasipotential type equation10–18 that relates the two-body potential to th
scattering amplitude.19,20 In this way, the potential becomes calculable, in perturbation the
from Feynman diagrams.

In a recent work,21 we applied this calculational method to the evaluation, in certain appr
mations, of the potentials in the cases of scalar and vector interactions, mediated by m
photons. It turns out that at each formal order of perturbation theory, which is now reorganiz
the presence of additional three-dimensional diagrams due to the constraints, the leading i
terms are free of spurious singularities and can be represented in three-dimensionalx-space as
local functions ofr , proportional to (g2/r )n, wherer is the c.m. relative distance,g the coupling
constant, andn the formal order of perturbation theory. The series of leading terms ca
summed and result in local functions~in r ! for the expressions of the potentials. The latter
compatible with the potentials proposed by Todorov in the quasipotential approach on the b
minimal substitution rules16 and later investigated in the fermionic case by Crater and V
Alstine.7

The purpose of the present article is to take into account, in the case of vector interactio
effects of the anomalous magnetic moments of fermions. In usual calculations in QED, beca
the smallness of the coupling constant, the latter are evaluated at leading order of pertu

a!Electronic mail: jallouli@ipno.in2p3.fr
b!Electronic mail: sazdjian@ipno.in2p3.fr
c!Unité de Recherche des Universite´s Paris 11 et Paris 6 associe´e au CNRS.
0022-2488/97/38(5)/2181/16/$10.00
2181J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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¬¬¬¬¬¬¬¬¬¬
theory in the nonrelativistic limit@O(a5) effect, wherea is the fine structure constant#. However,
in strong coupling problems, like in the strong coupling regime of QED or in the short-dist
~vector! interactions of QCD, nonperturbative contributions of the anomalous magnetic mom
may become sizable and the incorporation of higher order effects becomes necessary.

In order to include the main effects of the anomalous magnetic moments into the pote
we evaluate their contributions through the vertex corrections. In the lowest order grap
anomalous magnetic moment appears by means of a substitution rule that replaces each
~coupling constant! by a Dirac-matrix function. We then introduce this typical vertex correction
the vertices in each order of the perturbation series of the vector potential determined previo21

Although the substitution rule utilized above is rather simple, it generates in the higher order
technical complications for the summation of the perturbation series of the potential. The r
for this is the new Dirac-matrix structure that results from the higher order terms. Up to now
the potentials that were considered in the constraint theory wave equations had dependence
Dirac matrices only through pairs ofg1 andg2 matrices, the indices 1 and 2 referring to the tw
fermions, respectively~like g1•g2 ,g15g25, etc.!—a feature that considerably simplifies man
algebraic operations as well as the reduction process to the final eigenvalue equation. The p
of the vertex corrections, even though globally symmetric in the exchanges 1↔2, breaks this
symmetry in the individual terms and introduces new types of structure not present in pre
calculations. It is the presence of these terms that makes calculations rather complicated. W
potential can still be represented in a somehow compact form, the final eigenvalue equat
general quantum numbers becomes less easy to handle. It takes a relatively simple form
the sectors ofj50 states~pseudoscalar and scalar!, to which we have limited our final analysis
The ground states of these sectors are precisely those which may be concerned with spon
breakdowns of symmetries~chiral and dilatational!.

The plan of the paper is as follows. In Sec. II, we consider lowest order perturbation t
and determine the substitution rule to be used for the vertex correction. In Sec. III, the v
corrections are incorporated into the vector potential. The new form of the latter is determin
Sec. IV, by resumming the corresponding perturbation series. In Sec. V, the wave equatio
reduced, for thej50 states, to a final eigenvalue equation. In Sec. VI, we analyze the effec
the anomalous magnetic moments in several limiting cases. The requirement from the acc
nying form factors of not aggravating the singularities of the initial potential, leads to restric
on their behavior near the origin inx-space. These conditions are satisfied at the one-loop lev
perturbation theory. The nonrelativistic as well as the one-particle limits are also checked
cluding remarks follow in Sec. VII.

II. STRUCTURE OF THE TWO-BODY POTENTIAL WITH ANOMALOUS MAGNETIC
MOMENTS

In order to determine the structure of the potential in the presence of anomalous ma
moments, we start from the expression of the coupling of a pointlike particle~fermion 1! with
chargee1 and anomalous magnetic momentk1 to an external electromagnetic potentialAm and to
its field strength tensorFmn :

~g1mA
m1 1

2 k1smnF
mn!. ~2.1!

@smn5(1/2i)@gm ,gn##. In the case of a mutual interaction with another particle 2, expression~2.1!
represents the lowest order perturbation theory result, where potentialAm is itself expressed in
terms of the photon propagator and its coupling to particle 2~which we suppose for the momen
without anomalous magnetic moment!:

Am5Dmng2
n , ~2.2!

whereDmn is the photon propagator including the coupling constants at its two ends.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the three-dimensional formalism of constraint theory, the Bethe–Salpeter kernel is
jected on the constraint hypersurface and the wave function expanded around it.19,20 In the c.m.
frame, this amounts to projecting the kernel on the hypersurface where the temporal compo
the momentum transfer is zero. In a covariant formalism, one first decomposes four-vectors
transverse and longitudinal components with respect to the total momentumP:

P5p11p2 , p5 1
2~p12p2!, X5 1

2~x11x2!, x5x12x2 ,

xm
T5xm2 P̂•xP̂m , xL5 P̂•x, PL5AP2, P̂m5Pm /PL ,

xT25x22~ P̂•x!2, r5A2xT2,

gm
T5gm2 P̂•g P̂m , gL5 P̂•g, M5m11m2 .

~2.3!

Thus, in constraint theory, the propagator in Eq.~2.2! depends onx, in x-space, throughxT only;
in the Feynman gauge, to which we stick throughout this work, it has the expression~in lowest
order!:21

Dmn5gmnD~xT2,PL!, D~xT2,PL!5
e1e2
4p

1

2PLr
. ~2.4!

Using Eqs.~2.2! and ~2.4! the field strength tensor takes the form:

Fmn5]mAn2]nAm52Ḋ~xm
Tg2n2xn

Tg2m!5
1

r 2
D~xm

Tg2n2xn
Tg2m!, ~2.5!

where the dot operation represents derivation with respect toxT2:

ḟ[
]

]xT2
f . ~2.6!

Expression~2.1! then becomes:

g1mA
m1

1

2
k1s1mnF

mn5DFg1•g22 i
k1

2r 2
~g1

T
•xTg1•g22g1•g2g1

T
•xT!G

5
1

2
DS 12 i

k1

r
g1
T
•

xT

r Dg1•g2

1g10g20F12 DS 12 i
k1

r
g1
T
•

xT

r Dg1•g2G†g10g20. ~2.7!

@The dagger represents Hermitian conjugation.# We deduce that to this order the anomalo
magnetic moment appears through the following matrix substitution of the chargee1 :

e1→e185e1S 12 i
k1

r
g1
T
•

xT

r D . ~2.8!

The above calculations can be repeated at the particle 2~antifermion! vertex, where the charge
substitution becomes:

e2→e285e2S 12 i
k2

r
g2
T
•

xT

r D . ~2.9!
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
@e2 is the fermion 2 charge; the passage to the antifermion is obtained in momentum spac
the replacementp1→2 p2 , which yields for themomentum transferq5 p1 2 p18→2 p2 1 p28 5 q
and hence inx-spacex→x; the Dirac matricesg2 act on the wave function from the right.#

The mutual interaction potential then becomes to lowest order:

V5
1

2
DS 12 i

k1

r
g1
T
•

xT

r D S 12 i
k2

r
g2
T
•

xT

r Dg1•g2

1g10g20F12 DS 12 i
k1

r
g1
T
•

xT

r D S 12 i
k2

r
g2
T
•

xT

r Dg1•g2G†g10g20. ~2.10!

It is natural to generalize the substitution rules~2.8!–~2.9! to higher orders, with the differenc
that the lowest order anomalous magnetic termk/r should now be replaced by a form facto
b(r ):

ea→ea85eaS 12 iba~r !ga
T
•

xT

r D ~a51,2!. ~2.11!

The form factorb(r ) is related to the magnetic form factor that appears in the mass-
decomposition of the vertex function of a charged fermion:

Gm~q!5gmF1~q
2!2

i

2m
smnq

nF2~q
2!. ~2.12!

b(r ) is expressed in terms ofF2 according to the formula

b~r !5
4p

2m
r

]

]r E d3qT

~2p!3
e2 iqT•xT

1

qT21 i e
F2~q

T2!. ~2.13!

Therefore,b(r ) is calculable in perturbation theory.
To one loop,F2 has the expression:22

F2~q
T2!5

a

2p

u

sinh u
, qT2524m2 sinh2

u

2
,

a5
e2

4p
, e15e25e.

~2.14!

The larger behavior ofb(r ) is then

b~r ! →
r→`

a

2p

1

2mr
, ~2.15!

from which one recognizes the value of the anomalous magnetic moment in lowest
k5(\/2m)(a/2p). From Eqs.~2.13!–~2.14! one also obtains the behavior, at the one-loop lev
of b(r ) for small r :

b~r !→
r→0

cr~ ln~mr!!b, b.0, ~2.16!

wherec is a constant.
Expression~2.10! is then generalized to the following form:
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
V5
1

2 SA2 iB1g1
T
•

xT

r
2 iB2g2

T
•

xT

r
2Cg1

T
•

xT

r
g2
T
•

xT

r Dg1•g2

1
1

2
g1•g2SA1 iB1g1

T
•

xT

r
1 iB2g2

T
•

xT

r
2Cg1

T
•

xT

r
g2
T
•

xT

r D , ~2.17!

where the potentialsA, B1 , B2, andC are completely determined, by means of the substitut
rules~2.11!, from the expression ofV in the absence of anomalous magnetic moments. The l
expression has the form:

V05A0g1•g2 . ~2.18!

~A0 is denoted byV2 in Ref. 21.!
For the Todorov potential,16,7,21A0 is

A05
1

4
lnS 11

2a

PLr
D . ~2.19!

However, other effective expressions could be used forA0 as well.
Actually, the potentials that appear in the constraint theory wave equations are functio

V @Eq. ~2.17!# through exponentiations; therefore, we shall need to calculate such expon
functions. This is the main content of Sec. III.

III. WAVE EQUATIONS

The wave equations of constraint theory for a fermion-antifermion system can be writt
the form:8,23

~g1•p12m1!C̃5~2g2•p21m2!ṼC̃,

~2g2•p22m2!C̃5~g1•p11m1!ṼC̃,
~3.1!

where C̃ is a spinor function of rank two, represented as a 434 matrix function; the Dirac
matrices (g2) of the antifermion act onC̃ from the right; the total and relative variables we
defined in Eqs.~2.3!; Ṽ is a Poincare´ invariant mutual interaction potential.

Equations~3.1! imply the constraint

@~p1
22p2

2!2~m1
22m2

2!#C̃50, ~3.2!

or equivalently

C~p![2PLpL2~m1
22m2

2!'0, ~3.3!

which allows the elimination from the wave equations of the relative longitudinal momentu
terms of the masses and the c.m. total energy. The wave functionC̃, for eigenfunctions of the tota
momentumP, then has the structure:

C̃~X,x!5e2 iP•Xe2 i ~m1
2
2m2

2
!xL /~2PL!c̃~xT!. ~3.4!

The positivity conditions of the norm ofC̃ imply that Ṽ should satisfy the inequality
1
4 Tr Ṽ

†Ṽ,1.8,23A convenient parametrization satisfying this inequality for potentials commu
with g1Lg2L was proposed by Crater and Van Alstine;24 it is: Ṽ5tanhV. It turns out that the
perturbation series of the leading infrared terms in QED in the Feynman gauge provides a
J. Math. Phys., Vol. 38, No. 5, May 1997
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tial V that is compatible with this parametrization21 @cf. Eqs.~2.18!–~2.19!, whereV is denoted by
V0#. For more general potentials which do not commute withg1Lg2L , the generalization of the
above parametrization is:23

g1Lg2LṼ5tanh~g1Lg2LV!. ~3.5!

Equations~3.1! are then transformed with the change of wave function:

C̃5cosh~g1Lg2LV!C; ~3.6!

they become

~g1•p12m1!cosh~g1Lg2LV!C5~2g2•p21m2!g1Lg2L sinh~g1Lg2LV!C,

~2g2•p22m2!cosh~g1Lg2LV!C5~g1•p11m1!g1Lg2L sinh~g1Lg2LV!C.
~3.7!

One can also equivalently work in the ‘‘Breit representation’’. Defining

VB5g1Lg2LV, ~3.8!

CB5e2VBC, ~3.9!

one shows that Eqs.~3.1! or ~3.7! reduce to the Breit type equation:23

@PLe
2VB2~H11H2!#CB50, ~3.10!

provided constraint~3.2!–~3.3! is used; here,H1 andH2 are the covariant free Hamiltonians:

H15m1g1L2g1Lg1
T
•p1

T ,

H252m2g2L2g2Lg2
T
•p2

T .
~3.11!

The normalization conditions of the wave functionsC̃, C, andCB were presented in Ref. 23
To solve the wave equations one decomposes the sixteen-component (434) wave functionc

along four-component (232) wave functions:

c5c11gLc21g5c31gLg5c4 , ~3.12!

and similarly for the Breit type wave functioncB :

cB5cB11gLcB21g5cB31gLg5cB4 . ~3.13!

These components are obtained with the projectors23

P 15
1
4~11g1Lg2L!~11g15g25!, P 25

1
4~11g1Lg2L!~12g15g25!,

P 35
1
4~12g1Lg2L!~11g15g25!, P 45

1
4~12g1Lg2L!~12g15g25!.

~3.14!

The spin operators, which act in the four-component wave function subspaces, are defi
means of the Pauli–Lubanski operators:
J. Math. Phys., Vol. 38, No. 5, May 1997
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W1Sa52
\

4
eabmnP

bs1
mn , W2Sa52

1

4
eabmnP

bs2
mn ~e0123511!,

g1LW1Sa5
\PL

2
g1a
T g15, g2LW2Sa5

\PL

2
g2a
T g25,

W1S
2 5W2S

2 52 3
4 \2P2, WS5W1S1W2S ,

w[S 2

\PL
D 2W1S•W2S→

c.m.
2

4

\2 s1–s2 ,

w12[S 2

\PL
D 2 W1S•x

TW2S•x
T

xT2
→
c.m.

2
4

\2

~s1–x!~s2–x!

x2
,

w12
2 51, w12~w2w12!5w2w12.

~3.15!

It is clear, from Eqs.~3.7! and ~3.10!, that one has to calculate the exponential ofg1Lg2LV,
with V having the general structure~2.17!. We have

VB5g1Lg2LV5
1

2 SA1 iB1g1
T
•

xT

r
1 iB2g2

T
•

xT

r
2Cg1•

xT

r
g2•

xT

r Dg1Lg2Lg1•g2

1
1

2
g1Lg2Lg1•g2SA1 iB1g1

T
•

xT

r
1 iB2g2

T
•

xT

r
2Cg1

T
•

xT

r
g2
T
•

xT

r D .
~3.16!

The difficulty of the calculation stems from the fact that the matricesg1
T
•xT andg2

T
•xT do not

commute withg1•g2 .
To proceed further, we introduce in the subspace ofxT a longitudinal direction, parallel to

xT, and a transverse plane, orthogonal to it. We define:

x̂m
T5

xm
T

A2xT2
5
xm
T

r
; x̂T2521,

gam
T 5gam

l 1gam
t 52ga• x̂

Tx̂m
T1gam

t , ga
t
• x̂T50, ~3.17!

gal5ga
T
• x̂T, gal

2 521 ~a51,2!.

The capital indicesL andT @Eqs.~2.3!# concern the longitudinal and transverse components w
respect to the total momentumP, while the small indicesl and t concern those of the three
dimensional relative distancexT. We list here some useful relations satisfied by these matric

g1•g25g1Lg2L1g1
T
•g2

T5g1Lg2L2g1lg2l1g1
t
•g2

t ,

g1lg2l52g1Lg2Lg15g25w12, g1
T
•g2

T52g1Lg2Lg15g25w,

g1
t
•g2

t 52g1lg2l~w2w12!, @gal ,gaL#150,

@gal ,~w2w12!#150, @gal ,gaL~w2w12!#50 ~a51,2!.

~3.18!

~@ ,#1 is the anticommutator.!
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At the first stage of the calculation, one can eliminatega5 andga
t (a51,2) in terms ofgal ,

gaL , w, andw12. For the subspace of the matricesgal , one introduces the following projectors

P115 1
4~11 ig1l !~11 ig2l !, P125 1

4~11 ig1l !~12 ig2l !,

P215 1
4~12 ig1l !~11 ig2l !, P225 1

4~12 ig1l !~12 ig2l !,
~3.19!

which allows the decomposition of thegal’s along the latter. PotentialVB @Eq. ~3.16!# takes now
the form:

VB5g1Lg2LV52~Ag1lg2l2C!g1Lg2L1~A2Cg1lg2l !~11g1Lg2Lg1
t
•g2

t !

1 i ~B1g1l1B2g2l !~11g1Lg2Lg1
t
•g2

t !. ~3.20!

Notice that the second term in the right-hand side above commutes with the two other
therefore its exponential can be factorized and calculated independently. The first and third
can be written in terms of the projectors~3.19!:

2Ag1lg2lg1Lg2L1Cg1Lg2L1 i ~B1g1l1B2g2l !~11g1Lg2Lg1
t
•g2

t !

5P11@~A1C!g1Lg2L1~B11B2!~11g1Lg2L~w2w12!!#

1P12@~2A1C!g1Lg2L1~B12B2!~12g1Lg2L~w2w12!!#

1P21@~2A1C!g1Lg2L2~B12B2!~12g1Lg2L~w2w12!!#

1P22@~A1C!g1Lg2L2~B11B2!~11g1Lg2L~w2w12!!#. ~3.21!

The exponential of this expression can be calculated by a series expansion. The pro
P11 , etc., commute withg1Lg2L(w2w12), but satisfy particular commutation rules wit
g1Lg2L . One factorizes the projectorsP11 , etc., on the left of the series. Each multiplicativ
factor of P11 , etc., can be resummed into exponential functions. At the end, one reexpr
g1l andg2l in terms ofg1L , g2L , g15, g25 and the spin operators~3.15! and one introduces bac
the projectorsP i ( i 5 1,...,4), Eq.~3.14!. One thus obtains:

e2VB5e2g1Lg2LV

5 1
2 ~11w12!e

a1g1~ f111g11!P 11
1
2 ~12w12!e

a2g1~ f222g22!P 1

1 1
2 ~12w12!e

a1g2~ f111g11!P 21
1
2 ~11w12!e

a2g2~ f222g22!P 2

1 1
2 ~12w12!e

a1g1~ f122g12!P 31
1
2 ~11w12!e

a2g1~ f211g21!P 3

1 1
2 ~11w12!e

a1g2~ f122g12!P 41
1
2 ~12w12!e

a2g2~ f211g21!P 4

1
i

2
~g1l1g2l !@e

a1g1h11P 11ea1g2h11P 21ea1g1h12P 31ea1g2h12P 4#

1
i

2
~g1l2g2l !@e

a2g1h22P 11ea2g2h22P 21ea2g1h21P 31ea2g2h21P 4#. ~3.22!

The definitions of the potential functions are the following:
J. Math. Phys., Vol. 38, No. 5, May 1997
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f rs5coshAa r
21b r

2gs
2, grs5

a r

Aa r
21b r

2gs
2
sinhAa r

21b r
2gs

2,

hrs5
b rgs

Aa r
21b r

2gs
2
sinhAa r

21b r
2gs

2, r ,s56,

f rs
2 2grs

2 2hrs
2 51, ~3.23!

a652~A6C!, b652~B16B2!,

g6516~w2w12!. ~3.24!

The exponential functione22VB is obtained from Eq.~3.22! by the replacementsa→2a and
b→2b; eVB is obtained by the replacementsa→a/2 andb→b/2. Also notice the commutation
relations:

galg65g7gal , gal f665 f67gal ,

galg665g67gal , galh665h67gal , a51,2.
~3.25!

Equation~3.22! and the similar ones with different arguments allow us to project the w
equations~3.7! or ~3.10! with the aid of the projectorsP i ( i 5 1,...,4), ~3.14!, appearing on the
utmost right of the expressions, on the four-component wave functions~3.12! or ~3.13!. One thus
obtains coupled equations for the four componentsc i or cBi ( i 5 1,...,4) and eliminating three o
them one reaches a final eigenvalue equation involving only one of the components.

IV. DETERMINATION OF THE POTENTIALS

Before proceeding to the reduction of the wave equations, we shall determine the expre
of the various potentials appearing in Eqs.~3.16! and ~3.22!–~3.24! in terms of the elementary
Coulomb potential.

PotentialV has the structure~2.17! and is obtained from Eq.~2.18! with the substitutions
~2.11!. We shall, for the moment, not use the particular expression~2.19! of the initial potential
A0 , but rather present the calculations for the general case. We assume thatA0 is expressible as a
power series of the elementary Coulomb potentiala/(2PLr ):

A05A0~v !5 (
n51

`

anv
n, ~4.1!

v5
a

2PLr
. ~4.2!

The substitutions~2.11! yield for the fine structure constanta the modification:

a→a85a~12 ib1g1l !~12 ib2g2l !, ~4.3!

which can be expressed in terms of the projectors~3.19!:

a85a@~12b1!~12b2!P111~12b1!~11b2!P12

1~11b1!~12b2!P211~11b1!~11b2!P22#. ~4.4!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Sincev @Eq. ~4.2!# is proportional toa, its modification is similar to that given by Eq.~4.4!. The
initial potentialA0 thus undergoes the change:

A0→Ā05 (
n51

`

anv
n@P11~12b1!

n~12b2!
n1P12~12b1!

n~11b2!
n

1P21~11b1!
n~12b2!

n1P22~11b1!
n~11b2!

n#

5P11A0~v~12b1!~12b2!!1P12A0~v~12b1!~11b2!!

1P21A0~v~11b1!~12b2!!1P22A0~v~11b1!~11b2!!

[P11V221P12V211P21V121P22V11 . ~4.5!

Reexpressing the projectorsP11 , etc., in terms of the matricesgal (a 5 1,2), one obtains:

Ā05
1
4@V221V211V121V11#1 1

4@V221V212V122V11# ig1l

1 1
4@V222V211V122V11# ig2l1

1
4@V222V212V121V22# i 2g1lg2l . ~4.6!

This expression should be identified with the combination (A1 iB1g1l1 iB2g2l2Cg1lg2l) ap-
pearing in Eq.~3.16! on the left or the right ofg1Lg2Lg1•g2 @the substitution~4.4! being done
symmetrically with respect to this operator#. We then obtain the identifications:

A5 1
4@V221V211V121V11#,

B15
1
4@V221V212V122V11#,

B25
1
4@V222V211V122V11#,

C5 1
4@V222V212V121V11#,

~4.7!

and from Eqs.~3.24!:

a15V221V11 , a25V211V12 ,

b15V222V11 , b25V212V12 .
~4.8!

For the particular case of Todorov’s potential~2.19!, the expressions of the potentia
V11 , etc., are

V225 1
4 ln~114v~12b1!~12b2!!,

V215 1
4 ln~114v~12b1!~11b2!!,

V125 1
4 ln~114v~11b1!~12b2!!,

V115 1
4 ln~114v~11b1!~11b2!!.

~4.9!

V. REDUCTION TO A FINAL EIGENVALUE EQUATION

In the absence of anomalous magnetic moments, the wave equations~3.7! or ~3.10! can be
reduced to a single Pauli–Schro¨dinger type equation for the componentc3 or cB3 .

23 A similar
reduction can also be undertaken here; however, due to the complexity of the new terms
effective potential@Eq. ~3.22!#, the reduction process is not as straightforward as before.
J. Math. Phys., Vol. 38, No. 5, May 1997
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reason is that the componentsc i or cBi ( i51,...,4) @Eqs.~3.12!–~3.13!# do no longer have, in the
general case, simple characterizations with the quantum numbersl ~orbital angular momentum!
ands ~total spin!. For instance, in the absence of anomalous magnetic moments, the comp
c3 can be classified according to the quantum numbersl5 j61, s51 ~j being the total angular
momentum! andl5 j . In the present case, this simple property is lost and such a classification
concern combinations ofc3 andc2 .

It turns out that the most convenient representation where the reduction process c
achieved is the ‘‘anti-Breit’’ representation defined with the wave function transformationx
5eVBc5e2VBcB @cf. Eq. ~3.9!#. In this case the reduced wave function is a tractable combina
of x3 andx2 . We shall not, however, present here the reduced wave equation in the genera
of quantum numbers, the corresponding expression being still lengthy, but rather shall c
ourselves with the simplest case of thej50 quantum number, corresponding to the two sector
pseudoscalar and scalar states. These are also the most sensitive sectors involved in ze
bound state problems in strong coupling regimes.

Actually, for these sectors, the Breit representation~3.9! is the simplest one and it is sufficien
to project Eq.~3.10! along the componentscBi ( i51,...,4) @Eq. ~3.13!#. In these sectors, the
operatorsw12, (W1S1W2S)• x̂

T and (W1S1W2S)•p
T have the following quantum numbers

w1251, (W1S1W2S)• x̂
T50, (W1S1W2S)•p

T50. Equation~3.10!, together with Eq.~3.22!, then
yields the following four coupled equations:

PLe
a1g1~ f111g11!cB12~m12m2!cB21S 2

\PL
D ~W1S2W2S!•p

TcB3

2
i

2
PLS 2

\PL
D ~W1S2W2S!• x̂

Tea1g2h12cB450,

PLe
a2g2~ f222g22!cB22~m12m2!cB11

i

2
PLS 2

\PL
D ~W1S2W2S!• x̂

Tea2g1h21cB350,

PLe
a2g1~ f211g21!cB32McB41S 2

\PL
D ~W1S2W2S!•p

TcB1

2
i

2
PLS 2

\PL
D ~W1S2W2S!• x̂

Tea2g2h22cB250,

PLe
a1g2~ f122g12!cB42McB31

i

2
PLS 2

\PL
D ~W1S2W2S!• x̂

Tea1g1h11cB150.

~5.1!

These equations allow the elimination of the three componentscB1 , cB2, andcB4 in terms of
cB3 , which is a surviving component in the nonrelativistic limit. Defining

e2h12,21512
~m12m2!

2

P2 e2~a2g11a1g2!
~ f122g12!

~ f212g21!
, ~5.2!

e22u5e2a1g2~ f122g12!e22h12,21, ~5.3!

and making the wave function transformation

cB35euf3 , ~5.4!
J. Math. Phys., Vol. 38, No. 5, May 1997
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one obtains the following eigenvalue equation forf3 , written, for simplicity, in the c.m. frame:

H P2

4

ea2g11a1g2

~ f122g12!~ f212g21!
2
M2

4

1

~ f122g12!2
2p22

~m1
22m2

2!2

4M2

1

~ f212g21!2

1
~m1

22m2
2!2

4P2

~11h12
2 !e2~a2g11a1g2!

~ f122g12!~ f212g21!

24\2x2Fu81
M

4\r

h12

~ f122g12!
2

~m12m2!

4\r

h21

~ f212g21!G
2

1~6\224S2!Fu81
M

4\r

h12

~ f122g12!
2

~m12m2!

4\r

h21

~ f212g21!G
14\2x2Fu91

M

4\ S h12

r ~ f122g12! D 8
2

~m12m2!

4\ S h21

r ~ f212g21! D 8G J f350. ~5.5!

Here, the prime designates derivation with respect tor 2(5x2):14

f 8[
] f

]r 2
; ~5.6!

S is the total spin operator,S5s11s2 , S
252\2s, s50,1; the other operators and functions a

defined in Eqs.~3.23!–~3.24!, ~5.2!–~5.3!. The eigenvalues of the matricesg6 in the sectors with
j 5 0 are the following:

j50, l50, s50 : g153, g2521;

j50, l51, s51 : g1521, g253.
~5.7!

The sector withl50, s50 corresponds to the pseudoscalar states, while the sector withl51,
s51 corresponds to the scalar states.

VI. PROPERTIES OF THE EIGENVALUE EQUATION

We study in this section two aspects of the eigenvalue equation~5.5! concerning, first, its
short-distance singularities, and, second, its nonrelativistic limit.

A. Short-distance singularities

The question that arises here is whether the presence of the anomalous magnetic mom
any influence on the short-distance singularities of the effective potentials present in the
value equation. It was already clear from the expressions of the substitutions~2.11! that the form
factorsba(r ) (a51,2) should be bounded in modulus by 1 in order not to destabilize at fi
distances the bound state system. The one-loop expression ofb(r ) @Eqs. ~2.13!–~2.16!# does
satisfy this requirement~up to values ofa of the order of one!. A detailed analysis of the
eigenvalue equation is, however, necessary to reach a more complete understanding of the
the form factors near the origin. We shall limit our study to the case of Todorov’s potential~2.19!.

For a matter of comparison, we rewrite Eq.~5.5! in the case when the anomalous magne
moments are absent. Here, we haveB15B25C50, A5A0 , a15a252A0 , b15b250.
Denotingh[h12,21 @Eq. ~5.2!# in this case, Eq.~5.5! becomes:23
J. Math. Phys., Vol. 38, No. 5, May 1997
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H P2

4
e8A02

M2

4
e4A02

~m1
22m2

2!2

4M2 e4A01
~m1

22m2
2!2

4P2 2p224\2x2h8216\2h814\2x2h9

24S2@~2A081h8!~114x2A08!2~A0812x2A09!#J f350. ~6.1!

It is sufficient to study the short-distance singularity problem in the equal-mass
(m15m2 ,h51) and in the ground state sector (l50,s50). The dominant singularity comes from
the term (P2/4)e8A0, which, according to the expression~2.19! of A0 , yields the attractive poten
tial a2/r 2. This term is at the origin of the fall-to-the-center phenomenon with a critical valu
a equal to1

2.
25

The above analysis can be repeated with Eq.~5.5!. In the equal-mass case, one h
b15b25b @Eqs. ~2.11!# and the expressions of the various potentials@Eqs. ~3.23!–~3.24!, ~4.2!,
~4.7!–~4.9!# become

a15 1
4 ln@~114v~12b!2!~114v~11b!2!#,

a25 1
2 ln~114v~12b2!!,

b15
1

4
lnF114v~12b!2

114v~11b!2G , b250,

f122g125coshAa1
2 1b1

2 g2
2 2

a1

Aa1
2 1b1

2 g2
2
sinhAa1

2 1b1
2 g2

2 ,

f212g215e2a2. ~6.2!

Their behaviors near the origin are

a1.a2.
1

2
lnS 1

PLr
D ,

b1.
1

4
lnS 12b

11bD
2

, 0<b~0!,1,

f122g12.e2a1S 12
b1
2 g2

2

2a1
2 D 1

b1
2 g2

2

4a1
2 ea1.~PLr !1/21b1

2 g2
2 S lnS 1

PLr
D D 22

~PLr !21/2,

f212g21.~PLr !1/2. ~6.3!

The behavior of (f122g12) near the origin crucially depends on that ofb(r ). If b(0)Þ0,
thenb1(0)Þ0 and hence (f122g12) essentially behaves asr

21/2. The first term in Eq.~5.5!
has therefore a behavior of the typer21, contrary to the behavior of the typer22 obtained in the
absence of anomalous magnetic moments. Therefore, a nonvanishing of the form factorsb(r ) at
the origin drastically changes the singularity of the effective potential at the origin. Also in
case, fors50, the functionu @Eq. ~5.3!# behaves as2a1 and the combination24\2x2u82

16\2u8 1 4\2x2u9 of Eq. ~5.5! has a behavior close to\2/(4r 2), which was absent in the initia
case. This singularity is independent of the value of the coupling constanta and is located at the
critical point. This would mean that the system, even for small values ofa, would face strong
attractive singularities, which are not observed experimentally.
J. Math. Phys., Vol. 38, No. 5, May 1997
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The above study suggests that the form factorsb(r ) should vanish at the origin, in order no
to drastically modify the situation found in the absence of anomalous magnetic momen
smooth contribution of the anomalous magnetic moments would require that the second t
the right-hand side of the equation of (f122g12), Eq.~6.3!, be nondominant in front of the first
This implies thatb1 , and henceb, vanish at least as rapidly asr 1/2 at the origin.~Also, in this
case, the functionu vanishes at the origin.!

For a matter of comparison, we recall that, at the one-loop level of perturbation th
b(r ) behaves near the origin asr (ln(mr))b, b.0, and therefore satisfies the above requireme
Furthermore, since the magnitude ofb(r ) is fixed bya/(2p), this suggests that up to values ofa
of the order of one one could safely use the one-loop expression~2.13!–~2.14! of b(r ).

B. Nonrelativistic limit

In the nonrelativistic limit, one can easily have an idea of the signs of the energy shifts d
the anomalous magnetic moments. We assume thata is sufficiently small to also justify a
perturbative-nonrelativistic treatment of the Coulomb potentialv @Eq. ~4.2!# appearing in expres
sions concerning the anomalous magnetic moments.

We treat the form factorsba(r ) to first order. Among the effective potentials~3.23!–~3.24!
and ~4.8!–~4.9!, only b6 and theh’s are first order quantities inba . In this approximation, the
latter are given by the perturbation theory result@Eq. ~2.15!#:

ba~r !.
a

2p

1

2mar
~a51,2!. ~6.4!

One finds for the effective potentials:

h12.b1g2 , h21.b2g1 ,

b1.22v~b11b2!, b2.22v~b12b2!.
~6.5!

Let the first-order perturbation due to the anomalous magnetic moments appearing in Eq~5.5!
be represented by2 dV. We have

2dV5~6\224S2!F M4\r
h122

~m12m2!

4\r
h21G14\2x2F M4\r

h122
~m12m2!

4\r
h21G8

5“

2Ex2

dr2F M4\r
h122

~m12m2!

4\r
h21G24S2F M4\r

2
~m12m2!

4\r
h21G , ~6.6!

where“2 is the Laplacian operator. Using the expressions of theh’s andb’s @Eqs.~6.4!–~6.5!# we
also have:

M

4\r
h122

~m12m2!

4\r
h215

1

4\r
@2M2v~b11b2!g21~m12m2!2v~b12b2!g1#

52
1

16p\

1

m1m2M

a2

r 3
~M2g21~m12m2!

2g1!. ~6.7!

Then the corresponding perturbation in the nonrelativistic Hamiltonian, designated bydVNR , is
related todV with the relation:23

dV5
2m1m2

M
dVNR . ~6.8!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Introducing the total spin quantum numbers( 5 0,1), we obtain

dVNR5
a2

4\

1

m1
2m2

2 d3~x!@M2g21~m12m2!
2g1#2

a2

4p\

1

m1
2m2

2

s

r 3
@M2g21~m12m2!

2g1#.

~6.9!

The first term contributes to the sector withs50, l50, for whichg153, g2521 @Eqs.~5.7!#,
while the second one to the sector withs51, l51, for whichg1521, g253. The energy shift
then becomes:

dE5
a5

2p

m1m2

M3 ~m1
21m2

224m1m2!
d l0ds0
nl
3 2

a5

6p

m1m2

M3 ~m1
21m2

214m1m2!
d l1ds1
nl
3 ,

~6.10!

with nl5 l1n811, n850,1,... .
While the sign of the energy shift is negative for the sector withs51, l51, it depends on the

ratiom1 /m2 for the sector withs50, l50. For the particular case of equal masses,m15m2 , the
energy shift for the latter sector is negative and equal to the energy shift of the secto
s51,l 5 1.

In the infinite mass limit,m2→`, the problem reduces to that of a spin-1
2 particle with

anomalous magnetic moment placed in an external static Coulomb field. In this case, the
with s50, l50 tends to the new sector withj5 1

2, l50, and the sector withs51, l51 to the
sector withj5 1

2, l51. Equations~6.9! and ~6.10! becomes

dVNR5
a2

2m1
2 d3~x!2

a2

2m1
2 d l1

1

r 3
,

dE5m1

a5

2p

d l0d j1/2

nl
3 2m1

a5

6p

d l1d j1/2

nl
3 .

~6.11!

They agree, as they should, with the corresponding formulas obtained directly from the
equation.26 ~Comparisons of theoretical predictions involving anomalous magnetic moments
experimental data can be found in Ref. 27.!

VII. SUMMARY AND CONCLUDING REMARKS

Using a matrix substitution rule, applied to the electric charge and deduced from the l
order contribution of the vertex correction in QED, we introduced in local form the anoma
magnetic moments at each vertex of the higher order terms of the constraint theory fer
antifermion interaction potential. Since the latter already has a local form in three-dimen
x-space, determined from summation of infrared leading terms of multiphoton exchange diag
the new potential that arises also has a similar locality property and is calculated by a resum
of the corresponding series after the incorporation of the anomalous magnetic moments i
vertices.

Focusing our attention on the sectors of pseudoscalar and scalar states (j50), the correspond-
ing wave equations were reduced to a single eigenvalue equation. The requirement that th
distance singularities of the effective potential should not be drastically enhanced by the pr
of the anomalous magnetic moments imposed on the accompanying form factors the cond
a sufficiently rapid vanishing at the origin~faster thanr 1/2!. This condition is satisfied by the form
J. Math. Phys., Vol. 38, No. 5, May 1997
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factors at the one-loop level of perturbation theory. It is then expected that the incorporation
anomalous magnetic moments, even in the strong coupling regime (a;1), should not introduce
qualitative or destabilizing changes in the properties of the fermion–antifermion bound
system.
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Canonically relativistic quantum mechanics:
Representations of the unitary semidirect
Heisenberg group, U(1,3) ^sH(1,3)

Stephen G. Lowa)

Tandem Computers, 14231 Tandem Boulevard, Austin, Texas 78728

Born proposed a unification of special relativity and quantum mechanics that
placed position, time, energy and momentum on equal footing through a reciprocity
principle and extended the usual position-time and energy-momentum line ele-
ments to this space by combining them through a new fundamental constant. Re-
quiring also invariance of the symplectic metric yields U~1,3! as the invariance
group, the inhomogeneous counterpart of which is the canonically relativistic group
CR~1,3!5U~1,3!^ sH(1,3), where H~1,3! is the Heisenberg group in four dimen-
sions. This is the counterpart in this theory of the Poincare´ group and reduces in the
appropriate limits to the expected special relativity and classical Hamiltonian me-
chanics transformation equations. This group has the Poincare´ group as a subgroup
and is intrinsically quantum with the position, time, energy, and momentum opera-
tors satisfying the Heisenberg algebra. The representations of the algebra are stud-
ied and Casimir invariants are computed. Like the Poincare´ group, it has a Little
Group for amassiverest frame and a null frame. The former is U~3! which clearly
contains SU~3! and the latter is Os~2! which contains SU~2!^U~1!. © 1997
American Institute of Physics.@S0022-2488~97!00605-1#

I. INTRODUCTION

Representations of the Poincare´ group1 define fundamental equations of physics associa
with spin 0, 1/2, 1, and 3/2: the Klein–Gordon equation, Dirac’s equation, Maxwell’s equat
and the Rariter–Schwinger equation. The representations of the Poincare´ group do not, however
give insight into the following key issues:

~1! The Heisenberg commutation relations do not appear in the Poincare´ algebra and so mus
be added onto the theory. These relations are invariant under the canonical or transform
theory of Dirac2 that is the quantum generalization of the canonical or symplectic transforma
of the classical Hamiltonian theory.

~2! The Poincare´ group does not encompass the SU~3! symmetries of the strong interaction
nor the SU~2!^U~1! of the weak interactions. These symmetries must also beadded onto the
theory. This has lead to a plethora of higher dimensional theories that attempt to integrate
symmetries with the underlying position-time space transformations defined by the Po´
group. These theories must explain why the higher dimensions are not directly observable

~3! While the fundamental physical concepts of mass and spin~or helicity! may be ascribed to
the interpretation of the two Casimir invariants of the Poincare´ group in the rest~or zero mass!
frame, the theory gives no insight into the discrete spectra of the particle rest mass invaria

~4! Many of the theories based on the Poincare´ representations are plagued with infinities th
must be removed through renormalization theories. The physical foundation of this renorm
tion has its roots in an invariantcut-off in the distance and time dimension.3 In many cases, an
equivalent way of describing this is to say that the acceleration or rate of change of momen
the particles is bounded.4–6

a!Electronic mail: slow@austx.tandem.com
0022-2488/97/38(5)/2197/13/$10.00
2197J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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To address the first of these issues the theory must have as invariants both the qu
canonical commutation relations:

@Pi ,Qj #5 i\Id i j , @E,T#52 i\I , ~1!

and the invariant mass and line elements of the Lorentz group of special relativity

t25T22d i j QiQj /c
2, m25E2/c22d i j PiPj . ~2!

$T,E,Qi ,Pi% are the time, energy, position, and momentum degrees of freedom
i , j , . . .51,2,3. Born,4 Caianiello5 and Low6,7 have argued that for such a theory, the line e
ments in ~2! must be combined into a single line element through the introduction of a
fundamental physical constant. In Born’s theory, the constant has the dimension and interpr
of a minimum length,a, in Caianiello’s theory of maximum accelerationAmax, and in Low’s, a
universal upper bound on rate of change of momentumb:

s25t21m2/b25T22d i j QiQj /c
22d i j PiPj /b

21E2/~bc!2. ~3!

Born’s minimum distancea may be then defined asa 5 A\c/b and Caianiello’s maximal accel
erationAmax as

Amax5
\c

m0a
2 5

b

m0
. ~4!

In this equation,m0 is some fundamental mass. In fact, as there are only three dimensio
independent universal constants, the measures of time, distance, momentum, and energy
given in terms of the constants appearing in Eqs.~1! and ~3!:

l t5A\/bc, lq5A\c/b, lp5A\b/c, le5A\cb. ~5!

All other physical constants may then be expressed as dimensionless multiples of expre
constructed from these measures. For example, the gravitational constantG and the electric charge
e are given by

G5aGc
4/b, e25ae /\c. ~6!

ae is the dimensionless fine structure and ifaG51, the measures given in~5! are the usual Planck
measures.

With the definition of the line element in Eq.~3!, the concept of an absolute rate of change
momentum, or force, loses its meaning as did absolute velocity in the special relativistic
Rather, forces are only defined between bodies and their associated frames of reference.
more, the simple Euclidean summation of forces is replaced with a relativistic formula anal
to the special relativistic velocity addition equation that ensures that the rates of change o
mentum are bounded by the universal constantb. This is studied in Ref. 6 and summarized in Se
II.

The definition ofb given by~3! enables a fundamental geometric or group theoretic inter
tation of these fundamental dimensional invariants analogous to the generalization from th
clidean group of Newton’s mechanics to the Lorentz group of Einstein’s mechanics. Equati~1!
is invariant under the symplectic group Sp~8! and Eq.~3! is invariant under the orthogonal grou
O~2,6!. The intersection of these groups, which leaves both invariants invariant is the 16 gen
U ~1,3! group. This may be more clearly seen in

Xa5$T/l t ,Qi /lq%, Ya5$E/le , Pi /lp%, ~7!
J. Math. Phys., Vol. 38, No. 5, May 1997
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wherea,b,... 5 0,1,2,3,4. In terms of this basis, the orthogonal metric of O~2,6! and the symplec-
tic metric of Sp~8! may then be written as

s25l t
2hab~XaXb1YaYb!,

~8!

s5hab~YaXb2XaYb!,

wherehab 5 diag$ 2 1,1,1,1%. Defining the usual complex basis

Aa
15~Xa1 iYa!/&, Aa

25~Xa2 iYa!/&. ~9!

The Hermitian U~1,3! metric is

z25habAa
1Ab

2 . ~10!

Expanding shows thatz25(s2/l l
21s)/2. It is important to note that we could have equally w

defined

X̃a5$T/l t ,2Pi /lp%,Ỹa5$E/le ,Qi /lq%,

Ãa
65~X̃a6 iỸa!/A2, z25habÃa

1Ãb
2 . ~11!

This tilde transform $T,E,Qi ,Pi%→$T,E,2Pi ,Qi% is precisely Born’s reciprocity
transformation.4

Equation~10! is the defining invariant of the group U~1,3!. The author shows in Ref. 6 tha
this equation contracts to the expected Lorentz and Euclidean equations in the limitsb→` and
b,c→`. Again, this is summarized in Sec. II.

Before turning to this, it should be clear that U~1,3! is the homogeneous transformation gro
in the theory we are developing in the same way that the Lorentz group SO~1,3! is the homoge-
neous group of the Poincare´ group SO(1,3)̂ sT(4) of special relativity. The natural inhomoge
neous group for the current theory is then the Canonical Relativistic group:

CR~1,3!5U~1,3!^ sH~1,3!. ~12!

H~1,3! is the nine generator Heisenberg group with the corresponding Lie Algebra defined b~1!.
The name Canonical Relativistic group emphasizes that it has, as invariants, both the c

cal or symplectic structure of quantum mechanics given in~1! and the relativistic line elements~2!
combined in~3!. Its algebra has 25 generators compared to the 10 of the Poincare´ algebra.

The generators of the Inhomogeneous group H~1,3! do not all commute and so cannot b
simultaneously diagonalized like the commuting generators of T~4! in the Poincare´ group. Con-
sequently, the space H~1,3!'CR~1,3!/U~1,3! is intrinsically quantum. Four generators in the set
eight,$T,E,Qi ,Pi%, may be simultaneously diagonalized.~I commutes with all generators and s
may always be diagonalized.! In fact, if the degrees of the quantum phase space are arrang
the square as illustrated in Fig. 1, then only the degrees of freedom on one side of the figu
time may be simultaneously diagonalized.

The physical constants show the dimensional relationships. The homogeneous U~1,3! group
transforms all degrees of freedom into each other and so the concepts of independent positi
space and energy-momentum spaces disappear. These fundamental physical degrees of
may be transformed into each other under the general U~1,3! transformations. However, thes
effects are apparent only when rates of change of position and momentum approachc and b,
respectively. Thus if these constants are very large, the general effects are fully visible on
very high velocity, very strongly interacting particles.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the following section, the results obtained in Ref. 6 that show the behavior of this gro
the limits of c andb becoming infinite are briefly summarized. In the nonrelativistic limit whe
both the rate of change of position and momentum are small relative to their respective con
c andb, the spacebreaksinto the independent time, position, energy, and momentum degre
freedom in the same sense that the Lorentz relativistic position-time space of Einstein’s mec
breaksinto the Euclidean position and time space of Newton’s mechanics.

The remaining sections introduce the representation theory of the canonical relativistic
CR~1,3!5U~1,3!^ sH(1,3). Returning to the points raised in the Introduction regarding limitati
in the Poincare´ group, note that the canonical relativistic group has the following properties

~1! The Heisenberg commutation relations are intrinsically part of the algebra.
~2! SU(3)^U(1) is theLittle Group ~rest frame! for the invariantz2.0 and (SU(2)̂ U(1))

^s H(2) for the casez250. This corresponds to the Poincare´ Little Groups SO~3! and
SO(2)̂ s T(2) for the casesm2.0 andm250, respectively.

~3! As will be shown in Sec. III, all spectra are discrete.
~4! This was Born’s basic premise for the reciprocity principle. The comments made abov

an upper bound in the rate of change of momentum is equivalent to the cut-off give ho
this direction. Definitive determination requires the development of a full theory tow
which the ideas presented here are a small step.

II. CR (1,3) ALGEBRA AND TRANSFORMATION EQUATIONS

The CR~1,3! algebra is given by

@Zab , Zcd#5hbcZad2hadZcb , @Aa
1 , Ab#5habI ,

@Zab , Ac
1#52hacAb

1 , @Zab,Ac
2#5hbcAa

2, ~13!

where a,b,... 5 0,1,2,3. TheZab generators span the U~1,3! subalgebra and the generato
$Aa

6 , I % span the Heisenberg subalgebra H~1,3!. Note that

Aa
15Aa

† , Zab5Zba
† . ~14!

The U ~1,3! transformation equations are then given by the exponential of the adjoint repres
tion. A general element of the U~1,3! algebra is

Z5cabZab . ~15!

The exponential of the adjoint action is given by

Ad8
65Vd

c~cab!Ac
65e@Z,#Ad

65Ad
61@Z, Ad

6#1
1

2!
@Z, @Z, Ad

6##1... . ~16!

FIG. 1. Illustration of the quantum phase space.
J. Math. Phys., Vol. 38, No. 5, May 1997
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The infinitesimal equations, valid for sufficiently smallcab are given by the first two terms in th
expansion. Define

Zab5
1
2~Mab1 iL ab!, cab5wab2 ifab, ~17!

where

Mab5Mba , Lab52Lba , wab5wba, fab52fba ~18!

and are real. The general element of the U~1,3! algebra is then

Z5cabZab5fabLab1wabMab . ~19!

Recalling the definition~9!, Aa
65Xa6 iYa , the commutation relations for the algebra of CR~1,3!

in terms of the 25 real generators$Lab ,Mab ,Xa ,Ya ,I % are given by

@Lab , Lcd#5hadLbc1hbcLad2hacLbd2hbdLac ,

@Lab , Mcd#52hadMbc1hbcMad2hacMbd1hbdMac ,

@Mab , Mcd#52hadLbc2hbcLad2hacLbd2hbdLac ,
~20!

@Ya , Xb#5 ihabI ,

@Lab , Yc#5 i ~hacYb2hbcYa!, @Lab , Xc#5 i ~hacXb2hbcXa!,

@Mab , Yc#5 i ~hacXb1hbcXa!, @Mab , Xc#52 i ~hacYb1hbcYa!.

It is clear that theLab are the generators of the SO~1,3! algebra and that$Lab ,Ya% are the
generators of the usual Poincare´ algebra. It is also interesting to note that in the tilde basis gi
in Eq. ~11!, there is an identical set of relations results with corresponding tilde gener
$L̃ab ,M̃ab ,X̃a ,Ỹa ,I %. However in this case, the Lorentz transformations of the$L̃ab% are in the
time-momentum and energy-position degrees of the quantum phase space illustrated in
instead of the usual time-position and energy-momentum degrees of freedom.

To understand this more clearly and to enable the limiting behavior of the algebra to be
clearly understood, it is convenient to expand the definition further. Define

b i5cf0i, g i5bw0i , a i5e jk
i f jk, q5bcw00, u i j5w i j /bc ~21!

and

Ki52L0i , Ni5M0i , Ji52e i
jkL jk , R05M00. ~22!

Using the definitions~7!, the transformation equations are then

T85T1b iQi /c21g iPi /b21qE/c2b2,

E85E2g iQi1b iPi2qT,
~23!

Qi85Qi1e i j
k a j Pk1b iT2g iE/b22u i j Pj /b

2,

Pi85Pi1e i j
k a j Pk1b iE/c22g iT1u i j Qj /c

2.
J. Math. Phys., Vol. 38, No. 5, May 1997
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From these equations, it is clear that theJi are the usual rotation generators andKi the usual
Lorentz boost generators for position-time or momentum-energy hyperbolic rotations. The
generatorsNi are corresponding Lorentz boost generators for momentum-time or position-e
hyperbolic rotations.

The limit of b,c→` may be straightforwardly determined from~23!:

T85T, E85E2g iQi1b iPi2qT,
~24!

Qi85Qi1e i j
k a jQk1b iT, Pi85Pi1e i j

k a j Pk2g iT.

and it follows that through the simple Wigner–Ino¨nü ~commuting! contractions that:

lim
b,c→`

$Ji ,Ki ,Ni ,R,Mi j %5$Ji ,Gi ,Fi ,R0,0% ~25!

satisfy the commutation relations

@Ji , Jj #5e i j
k Jk , @Ji , Gj #5e i j

k Gk , @Ji , F j #5e i j
k Fk ,

@Fi , Gj #5d i j R0 , @Ji , Qj #5 i e i j
k Qk , @Ji , Pj #5 i e i j

k Pk ,
~26!

@Gi , Qj #5 id i j T, @Fi , Pj #52 id i j T, @Gi , E#5 iPi , @Fi , E#52 iPi ,

@R0 , E#52 iT, @Pi , Qj #5 ihd i j I , @E, T#52 ihI .

As expected, in the Newtonian limit the generatorsGi andFi give simple Euclidean addition fo
velocityb2 ! c2 and forceg2 ! b2.

The partial contractionb→` results in the usual Lorentz transformations on position-time
energy-momentum spaces and with theMab commuting with themselves and behaving as a sy
metric ~2,0! tensor under Lorentz transformations. The limitc→` results in identical results with
the tilde generators: Lorentz transformations on the momentum-time and energy position
with theMab commuting with themselves and behaving as a symmetric~2,0! tensor under the tilde
Lorentz transformations.

Returning now to the noncontracted algebra, the finite transformations may be com
using Eq.~16!. The full transformations may be decomposed into U~3! rotations and the velocity
and force boosts. Taking the boost only case,

A8a
65V~b i ,g i !a

bAb
65e@b iKi1g iNi ,#Aa

6 . ~27!

The corresponding transformation equations are

T5coshrT1
sinh r

r
~b iQi /c

21g iPi /b
2!,

E85coshrE1
sinh r

r
~2g iQi1b iPi !,

~28!

Qi85Qi1S coshr21

r2 D ~b ib j /c21g ig j /b2!Qj1
sinh~r!

r
~b iT2g iE/b2!,

Pi85Pi1S coshr21

r2 D ~b ib j /c21g ig j /b2!Pj1
sinh~r!

r
~b iE/c21g iT!,
J. Math. Phys., Vol. 38, No. 5, May 1997
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where

r5Ab ib i /c21g ig i /b2. ~29!

Note again that, in the limitb→`, these equations reduce to the expected special relat
equations. Furthermore, the limitc→`, applicable to the case where relative velocities are sm
but relative forces are not, results in a similar set of Lorentz transformations. The addition
tion for the relative rates of change of position and momentum that may be derived straig
wardly from ~28! shows thatc andb are the respective upper bounds of their magnitudes.

III. REPRESENTATIONS OF CR (1,3)

The unitary representations of the Canonical Relativistic group may be developed
Wigner’sLittle Groupapproach1,8,9 that is generally also used for the study of the Poincare´ group.
CR~1,3! is rank 5 and consequently there are five Casimir invariants that may be used to lab
representation. Define

Wab5Aa
2Ab

12IZab ~30!

and a straightforward computation yields

@Aa
6 ,Wbc#50, @Zab,Wcd#5hbcWad2hadWcb, ~31!

from which it follows that the Casimir invariants are

C0~CR~1,3!!5I ,

C1~CR~1,3!!5habWab ,

C2~CR~1,3!!5hadhbcWabWcd , ~32!

C3~CR~1,3!!5ha fhbchdeWabWcdWef ,

C4~CR~1,3!!5hahhbchdeh f gWabWcdWefWgh .

Expanding out theC1 Casimir invariant yields

C1~CR~1,3!!52T22
E2

~cb!2
1
Q2

c2
1
P2

b2
2d i j @Pi , Qi #1@E, T#1Z°, ~33!

whereZ° 5 dabZab is the U~1! generator in the decomposition

U~1,3!5U~1! ^SU~1,3!. ~34!

The Little Group is the subgroup of the full group that leaves invariant a standard vector
space divides, as in the Poincare´ case into null, time-like, and so space-like cases. In this case
time-like case is for the physical regions of the quantum phase space where the boundsb2,c2

and g2,b2. Note as the generatorsKi and Ni do not commute these generators may not
simultaneously diagonalized and hence onlyb or g is precisely observable at a given time. In th
null case, eitherb25c2 or g25b2 holds. Feynman’s picture of the electron comes to mind wh
the electron zigzagging with an instantaneous velocity ofc even though its average relativ
velocity is less and in fact, could be zero.10 The corresponding momentum picture under t
J. Math. Phys., Vol. 38, No. 5, May 1997
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theory would have the rate of change of momentum exhibiting the same zigzag with an ins
neous value ofb if it is to be described by the null picture. The nonphysical regions are when
bounds are exceeded and are not considered further here.

For the time-like case, the standard vectora0
6 may be defined asa0

6 5 (1,0,0,0) and for the
null case, asa0

6 5 (1,0,0,1).

A. Time-like case

In the time-like case, consider the subgroup CR~1,3!.U~3!^Os~1! where U~3! is the Little
Group with generators$Zi j % and Os~1! is the standard vector group spanned by the genera
$E,T,I ,Z°% that define an Oscillator Group algebra.11 ~In the Poincare´ case, the standard vecto
group is the trivial T~1!. The Little Group may be decomposed into U~3!5U~1!^SU~3!.

Define the standard SU~3! generators by

U15Z31, V15Z12, T15Z23, T°5~2Z111Z22!/2,
~35!

U25Z13, V25Z21, T25Z32, Y5~Z221Z3322Z11!/3.

Also, define the Os~1! generatorR and the U~1! generatorZ° by

R5habZab , Z°5d i j Zi j . ~36!

The general matrix elements for the generators of Um1,m2~SU~3!! have been computed by Lurie´ and
MacFarlane.12 The general expressions result in considerable algebraic complexity when co
ing the full CR ~1,3! representations. However, if the subset of representations withm250 is
considered, a dramatic simplification results. As the intent of this paper is to clearly demon
the concepts behind the canonical relativistic group, we choose to restrict the discussion
simplified case and present the fully general representations in a subsequent paper.

The action of the unitary representationsUm10 ~SU~3!! of the SU~3! group on a basis may b
written as

T1um, j &A~~ j1k1!/21m11!~~ j1k1!/22m!um11,j &,

T2um, j &5A~~ j1k1!/21m!~~ j1k1!/22m11!m21,j &,

U1um, j &5A~n12 j !~~ j1k1!/22m11!um2 1
2, j11&,

U2um, j &5A~n12 j11!~~ j1k1!/22m!um1 1
2, j21&, ~37!

V1um, j &5A~n12 j11!~~ j1k1!/21m!um2 1
2, j21&,

V2um, j &5A~n12 j !~~ j1k1!/21m11!um1 1
2, j11&,

Yum, j &5~ j2 1
3~2n12k1!!um, j &, T°um, j &5mum, j &.

It may be verified that this satisfies the SU~3! algebra most straightforwardly with a symbol
computation package such as Mathematica.13

$ j ,n1 ,k1% are integer andm is half integer. A direct computation shows that this has
expected Casimir invariants withm15n11k1 :

C2~SU~3!!52m1~m113!/3,

C3~SU~3!!5m1~m113!~2m126!/9. ~38!
J. Math. Phys., Vol. 38, No. 5, May 1997
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The U~1! representation is trivially

Z°un&5~n1k2!un&. ~39!

In this representation,$n,k2% are integers.
Unitary representations of both the Oscillator group are given by:11

A1uk&5Ak0~k11!uk11&,
~40!

A2uk&5Ak0kuk21&, Ruk&5~k1n211!uk&

with $k,n2% integer andk0 real and positive. Its Casimir Invariants are

I uk&5k0uk11&,

~A1A22IR!uk&52k0n2uk&. ~41!

The basis for CR~1,3! may be constructed as the direct product

um, j ,n,k&5um, j & ^ un& ^ uk&. ~42!

The full representation may be computed by the action of the remaining boost generators
basis vectors. In order for the algebra to close, the parameters$n1 ,n2% appearing in Eqs.~37! and
~40! must satisfy:

n15n . ~43!

Then, defining the remaining SU~1,3! generators:

Bi
65Ni6 iK i ~44!

their action on the basis is given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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B1
1um, j ,n,k&5A~n2 j11!~k11!um, j ,n11,k11&,

B1
2um, j ,n,k&5A~n2 j !kum, j ,n21,k21&,

B2
1um, j ,n,k&5A~~ j1k1!/21m11!~k11!um1 1

2, j11,n11,k11&,
~45!

B2
2um, j ,n,k&5A~~ j1k1!/21m!kum2 1

2, j21,n21,k21&,

B3
1um, j ,n,k&5A~~ j1k1!/22m11!~k11!um2 1

2, j11,n11,k11&,

B3
2um, j ,n,k&5A~~ j1k1!/22m!kum1 1

2, j21,n21,k21&.

It follows from the commutation relations that the remaining inhomogeneous generators i
representation are

A1
1um, j ,n,k&5Ak0~n2 j !um, j ,n21,k&,

A1
2um, j ,n,k&5Ak0~n2 j11!um, j ,n11,k&,

A2
1um, j ,n,k&5Ak0~~ j1k1!/21m!um2 1

2, j21,n21,k&,
~46!

A2
2um, j ,n,k&5Ak0~~ j1k1!/21m11!um1 1

2, j11,n11,k&,

A3
1um, j ,n,k&5Ak0~~ j1k1!/22m!um1 1

2, j21,n21,k&,

A3
2um, j ,n,k&5Ak0~~ j1k1!/22m11!um2 1

2, j11,n11,k&.

A direct computation then gives the Casimir invariants defined in~32!:

C0~CR~1,3!!5k0 ,

C1CR~1,3!5k0~k12k21n2!,

C2~CR~1,3!!5k0
2 S ~k12k2!

2

3
1n2

2D , ~47!

C3~CR~1,3!!5k0
3 S ~k12k2!

3

9
1n2

3D.
As Eqs.~47! have only three independent parameters, this is not the most general representa
the rank 5 group requiring five parameters. It demonstrates that the problem is tractable and
be directly applicable in a restricted physical case.

B. Null case

In the null case, consider the subgroup CR~1,3!.Os~2!^CE~1!, where Os~2!5U~2!^sH(2) is
the Little Group and CE~1!5U~1!^sT~2! is the complex Euclidean standard vect
J. Math. Phys., Vol. 38, No. 5, May 1997
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group. The generators of the Little Group are

Ci
15Zi02Zi3 , Ci5Z0i2Z3i I °5Z002Z301Z332Z03, ~48!

where in this sectioni , j ,... 5 1,2. It is clear by construction that the standard vectora°
5 (1,0,0,1) is left invariant by the action of this group. The commutation relations are the O~2!
algebra:

@Zi j ,Zkl#5d jkZli2d i l Zjk , @Ci
1 ,Cj

2#5d i j I °.
~49!

@Zi j ,Ck
1#5d jkCi

1, @Zi j ,Ck
2#52d ikCj

2.

On the other hand, the standard vector group has the generators

A°65~A3
66A0

6!/2,
~50!

R52Z001Z111Z221Z33

which satisfy the E~2! commutation relations:

@A°6,R#56A°6, @A°1,A°2#50. ~51!

It can be verified directly that the generators of the Little Group and the Standard Vector
commute as required. The remaining nonzero commutation relations are

@Zi j , Ak
1#52d ikAj

1 , @Zi j ,Ak
2#5d jkAi

2,

@Ai
1,Aj

2#5d i j I , @Ci
6 , Aj

6#562d i j A°
6, @Ai

6 , R#56Ai
6. ~52!

This is a total of 17 generators:$Zi j ,Ck
6 ,Ak

6 ,A°6,R,I °,I %. The remaining eight generators in th
full CR~1,3! algebra that do not leave the null vectora° invariant are identically zero. Note tha
the generators$Zi j , Ak

6% also define an Os~2! algebra. The Os~2! representations may be com
puted following the arguments of the previous section. Defining:

J15Z12, J25Z21, J35Z112Z22, Z05Z111Z22 ~53!

it follows that the action on the basis vectors are
J. Math. Phys., Vol. 38, No. 5, May 1997
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J1um, j &5A~~ j1k1!/21m11!~~ j1k1!/22m!um11,j &,

J2um, j &5A~~ j1k1!/21m!~~ j1k1!/22m11!um21,j &,

J3um, j &52mum, j &, Z0um, j &5~ j1k1/22k2!um, j &,

C1
1um, j &5Ak0~~ j1k1!/21m11!um1 1

2, j11&,
~54!

C2
1um, j &5Ak0~~ j1k1!/22m11!um2 1

2, j11&,

C1
2um, j &5Ak0~~ j1k1!/21m!um2 1

2, j21&,

C2
2um, j &5Ak0~~ j1k1!/22m!um1 1

2, j21&,

I °um, j &5k0um, j &.

The standard vector group generator actions are

A°1uk&5k3uk21&,
~55!

A°2uk&5k4uk11&, Ruk&5~k1n1!uk&.

Again, the basis of the full group and algebra is the direct product of the basis of the Little G
and the Standard Vector Group:um, j ,k& 5u m, j & ^ u k&. The generators in Eqs.~54! and~55! act on
this basis in the usual direct product manner. The remaining generator actions are

A1
1um, j &5Ak5~~ j1k1!/21m!um2 1

2, j21,k21&,

A2
1m, j &5Ak5~~ j1k1!/22m!um1 1

2, j21,k21&,

A1
2um, j &5Ak5~~ j1k1!/21m11!um1 1

2, j11,k11&, ~56!

A2
2um, j &5Ak5~~ j1k1!/22m11!um2 1

2, j11,k11&,

I °um, j &5k5um, j ,k&.

In order for the algebra to close, the constants must satisfy the relationsk55k0 , k45k3

52k0/2, andn15 j2k1k2 . The three independent null Casimir invariants are:

C0~CR~1,3!!5k0,

C1~CR~1,3!!5k0~k12k2!, ~57!

C2~CR~1,3!!5
k0
2

4
~~k12k2!

219k2
2!.

IV. DISCUSSION

From the analysis, it is apparent that the Canonical Relativistic group has many of the
ematical properties required to address the four issues highlighted in the Introduction. The
tum commutation relations are intrinsically defined in the algebra, both SU~3! and SU~2!^U~1!
appear as subgroups of the Little Groups for the generalized time-like and null cases. Ab
forces loose their meaning and are defined only between reference frames associated with
states. These forces are bounded by the universal constantb that provides the third constant t
J. Math. Phys., Vol. 38, No. 5, May 1997
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define the dimensional measures. In the limit of small rates of change of position and mom
relative to their bounding constants, the theory reduces to the expected Newtonian limit. Fu
more, the bound in relative forces is qualitatively equivalent to a distance or time cut-off
results in the promise of a finite theory. The spectra of the Casimir invariants are discrete.

The most remarkable physical consequence of the Canonical Relativistic group is
position-time space is no longer invariant orabsolute. Rather, the full eight degrees of freedom
the quantum phase space with the physical degrees of freedom of time, energy, momentu
position must be considered. This is a remarkable space in that the degrees of freedom ca
be simultaneously diagonalized, but rather may only be done so in pairs as illustrated with
These effects become particularly important as the rates of change of position and mom
~relative velocity and force! approach the boundsc andb. Such a condition may be present in th
early universe and one can envision a theory where therotation or condensationof the large
energy and momentum degrees of freedom into the position and time degrees of freedom
universe cools and consequently expands in the position and time directions through this
formation.

While the mathematics is intriguing, the question is how to make a connection with phy
theory. The next step would appear to be to study the reduction of the representations of t
algebra with respect to the usual Poincare´ algebra that is a subalgebra~and in particular the
Casimir invariants! and then to derive field equations that are the Canonical Relativistic g
generalization of the Dirac, Maxwell, Klein–Gordon equations that may be derived from
Poincare´ group. These are nontrivial tasks and must be the subject of a subsequent articl
hoped that the ideas presented here will stimulate research into this mathematically rema
class of theories that have the promise to address key outstanding physical questions.
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Analytic regularization of the Yukawa model
at finite temperature
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We analyze the one-loop fermionic contribution for the scalar effective potential in
the temperature-dependent Yukawa model. In order to regularize the model a mix
between dimensional and analytic regularization procedures is used. We find a
general expression for the fermionic contribution in arbitrary space–time dimen-
sion. It is found that inD53 this contribution is finite. ©1997 American Institute
of Physics.@S0022-2488~97!01305-4#

I. INTRODUCTION

Recently there has been much interest in the phase structure of theories involving scala
presenting spontaneous symmetry breaking. Many applications have been done in the We
Salam model and in grand-unified theories. The temperature generally is the parameter
variation induces the transition from the broken to the unbroken phase, at least for the most
systems that develop first- or second-order phase transitions.

To describe a second-order phase transition the variation of the mass with the tempera
the most important fact. On the other hand the dependence of the coupling constant w
temperature may induce a first-order phase transition in the scalar sector, as suggested by
the authors in a recent work.1

We start from the Yukawa model and we analyze the contribution coming from the ferm
loops for the temperature-dependent scalar effective potential. The ultraviolet divergenc
dealt with using the method of analytic regularization.2 We recall that the basic idea of thi
technique is to replace the denominator of the propagator (p22m21 i e) by (p22m21 i e)11a,
wherea is the regulating parameter initially taken to be large enough. Consequently, in an
connected set of points in the complex planea the Feynman amplitudes are analytic. Then it
possible to analytically continue the Feynman expressions to the whole complex plane.
Laurent expansions of these expressions we can identify the counterterms as the polar term
analytic extensions at some points of the complex plane.

To deal with finite temperature field theory using the imaginary time formalism we will h
to use dimensional regularization in the momenta and deal with the Matsubara sums using a
method. The most popular method to deal with the Matsubara sum is an analytic extension
from the discrete complex energies down to the real axis, with the replacement of the energ
by contour integrals.3 If we are interested in systems at high temperature, the decoupling theo4

allows us to use the dimension reduction method~DR!. This approach has been used by ma
authors.5 The basic idea is that in the imaginary time formalism the free propagator has a

a!Electronic mail: nfuxsvai@lca1.drp.cbpf.br
0022-2488/97/38(5)/2210/9/$10.00
2210 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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(vn
21p21m2)21. The Matsubara frequency acts like a mass so in the high-temperature re

the nonstatic (nÞ0) modes decouple, and we have a three-dimensional theory. In other word
only modes whose contribution do not fall off exponentially at distances much greater thanb are
the (n50) modes of the bosons. Integration over the fermionic modes and the nonzero mo
the bosons results in a three-dimensional theory. Of course this effective model will descri
original model only for distancesR@b. As was stressed by Landsman,6 the standard summatio
method3 based on analytic continuation does not work in the dimensional reduction appr
Instead, we first have to compute momentum integrals using dimensional regularization,
deal with the Matsubara sums, an inhomogeneous zeta function analytic regularization ha
performed.

Recently such a technique has been used to study different models at finite temperatur
and Svaiter7 and Malbouisson and Svaiter1,8 studied thelw4 and the Efimov–Fradkin~truncated
or not! model at finite temperature. The possibility of vanishing the temperature-dependen
pling constants in these models has been investigated. In Ref. 7, assuming a nonsimply co
spatial section, the thermal and topological contributions to the renormalized mass and co
constant in the (lw4)D54 model was obtained at the one-loop approximation. In Ref. 1,
authors extend the discussion of the massive self-interactinglw4 model to an arbitrary
D-dimensional space–time with trivial topology of the spacelike sections. The main result i
the possibility of a first-order phase transition derived by the temperature-dependent co
constant, in the region where the model is super-renormalizable, arises. The discussion in t
of a scalar model with nonpolynomial interaction Lagrange density~the Efimov–Fradkin model!
has been done in Ref. 8. ForD.2 it was proved that at least two coupling constants of
truncated model may vanish and become negative from the effect of temperature changes, w
the nontruncated model all the coupling constants remain positive for any temperature
method used in the above quoted papers could provide an almost natural way to inve
stability regimes in finite temperature QFT models.

It has been often suggested that the thermal contributions to the renormalized couplin
stants of quantum models may bring up nontrivial effects. For instance, Gross,et al.9 argue that in
finite temperature~QCD!4 the effective coupling constantg(L) decreases as the temperature
density is raised. In fact, they show in a perturbative context that at the first nontrivial
~QCD!4 should be asymptotically free at high temperature or pressure. In this approximatio
expected that at high temperatures thermal excitations produce a plasma of quarks and
which screen all~color! electric flux. Such a transition from a low-temperature confined phas
a high-temperature color screening phase has been also investigated by Polyakov10 and Susskind11

and others in lattice gauge theories. Such results have important astrophysical application
study of neutron stars or primeval universe models.

The main goal of this paper is to investigate the one-loop femionic contribution to the s
effective potential at finite temperature assuming that bosons and fermions interact via a Y
coupling. The outline of the paper is the following: in Sec. II we briefly review the formalism
the effective potential. In Sec. III the fermionic contribution to the effective potential is obtai
In Sec. IV the singularity structure of the one-loop fermionic contribution to the scalar effe
potential is studied. Conclusions are given in Sec. V. In this paper we use\5kB5c51.

II. THE EFFECTIVE ACTION AND THE EFFECTIVE POTENTIAL AT ZERO
TEMPERATURE

In this section we will briefly review the basic features of the effective potential assoc
with a real massive self-interacting scalar field at zero temperature. Although the formalism
section may be found in standard textbooks, we recall here its main results for completene
us consider a real massive scalar fieldw(x) with the usuallw4(x) self-interaction, defined in a
static space–time. Since the manifold is static, there is a global timelike Killing vector
J. Math. Phys., Vol. 38, No. 5, May 1997
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orthogonal to the spacelike sections. Due to this fact, energy and thermal equilibrium h
precise meaning. For the sake of simplicity, let us suppose that the manifold is flat. In the
integral approach, the basic object is the generating functional,

Z@J#5^0,outu0,in&5E D @w#expH i FS@w#1E d4xJ~x!w~x!G J , ~1!

whereD @w# is an appropriate integration measure andS @w# is the classical action associate
with the scalar field. The quantityZ@J# gives the transition amplitude from the initial vacuu
u0,in& to the final vacuumu0,out& in the presence of some sourceJ(x), which is zero outside some
interval @2T, T# and inside this interval is switched adiabatically on and off. Since we
interested in the connected part of the time-ordered products of the fields, we take the con
generating functionalW@J#, as usual. This quantity is defined in terms of the vacuum persis
amplitude by

eiW@J#5Z@J#, ~2!

and the connectedn-point functionsGc
(n)(x1 ,x2 ,...,xn) are

Gc
~n!~x1 ,x2 ,...,xn!5

dnW@J#

dJ~x1!•••dJ~xn!
U
J50

. ~3!

ExpandingW@J# in a functional Taylor series, thenth-order coefficient of this series will be
the sum of all connected Feynman diagrams withn external legs, i.e., the connected Green
functions defined by Eq.~3!. Then

W@J#5 (
n50

`
1

n! E d4x1•d
4xnGc

~n!~x1 ,x2 ,...,xn!J~x1!J~x2!•••J~xn!. ~4!

The classical fieldw0(x) is given by the normalized vacuum expectation value of the fie

w0~x!5
dW

dJ~x!
5

^0,outuw~x!u0,in&J
^0,outu0,in&J

, ~5!

and the effective actionG@w0# is obtained by performing a functional Legendre transformatio

G@w0#5W@J#2E d4xJ~x!w0~x!. ~6!

Using the functional chain rule and the definition ofw0 given by Eq.~5! we have

dG@w0#

dw0
52J~x!. ~7!

Just asW@J# generates the connected Green’s functions by means of a functional T
expansion, the effective action can be represented as a functional power series around th
w050, where the coefficients are just the propern-point functionsG (n)(x1 ,x2 ,...,xn), i.e.,

G@w0#5 (
n50

`
1

n! E d4x1d
4x2•••d

4xnG
~n!~x1 ,x2 , . . . ,xn!w0~x1!w0~x2!•••w0~xn!. ~8!
J. Math. Phys., Vol. 38, No. 5, May 1997
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The coefficients of the above functional expansion are expressed in terms of the con
one-particle irreducible diagrams~1PI!. Actually, G (n)(x1 ,x2 ,...,xn) is the sum of all 1PI Feyn-
man diagrams withn external legs. Writing the effective action in powers of momentum~around
the point where all external momenta vanish! we have

G@w0#5E d4xS 2V~w0!1
1

2
~]mw!2Z@w0#1••• D . ~9!

The termV(w0) is called the effective potential.12 To expressV(w0) in terms of the 1PI
Green’s functions, we writeG (n)(x1 ,x2 ,...,xn) in momentum space,

G~n!~x1 ,x2 ,...,xn!5
1

~2p!n E d4k1d
4k2 ...d

4kn~2p!4d~k11k21•••1kn!

3ei ~k1x11•••1knxn!G̃ ~n!~x1 ,x2 ,...,xn!. ~10!

Assuming that the model is translationally invariant, i.e.,w0 is constant over the manifold, w
have

G@w0#5E d4x(
n51

`
1

n!
~ G̃~n!~0,0,...!~w0!

n1••• !. ~11!

If we compare Eq.~9! with Eq. ~11! we obtain

V~w0!52(
n

1

n!
G̃~n!~0,0,...!~w0!

n, ~12!

thendnV/dw0
n is the sum of the all 1PI diagrams carrying zero external momenta. Assuming

the fields are in equilibrium with a thermal reservoir at temperatureb21, in the Euclidean time
formalism, the effective potentialV(b,w0) can be identified with the free energy density and c
be calculated by imposing periodic~antiperiodic! boundary conditions on the bosonic~fermionic!
fields.

III. THE ONE-LOOP EFFECTIVE POTENTIAL OF THE YUKAWA MODEL AT ZERO AND
FINITE TEMPERATURE

Let us consider a system consisting of bosons and fermions fields interacting via a Yu
coupling in thermal equilibrium with a reservoir at temperatureb21. They are defined on a
four-dimensional flat space–time with trivial topology of the spacelike sections. In the zero
perature case the generating functional for the scalar and fermionic fields correlation funct
given by

Z@h,h̄,J#5E DcDc̄Dw expH i FS@c̄,c,w#1E d4xc̄h1h̄c1Jw G J , ~13!

wherec( x̄), c(x), h( x̄), andh(x) are elements of the Grassmann algebra andw(x) andJ(x) are
commuting variables.

The perturbatively renormalizable action has the form

S@c̄,c,w#5E d4xS 12 ~]mwb!
22

1

2
m0
2wb

21V~wb!1c̄b~ i ]”2M02g0wb!cbD , ~14!
J. Math. Phys., Vol. 38, No. 5, May 1997
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whereV(wb)5(l/4!)wb
4, m0 andM0 are, respectively the boson and the fermion bare masses

l0 andg0 are the bare coupling constants. Of coursewb andcb are bare bosonic and fermioni
field.

The most general divergent terms are of the type13

2Gdiv5E d4xS 12 dZw~]mw!22
1

2
dm2w21dZci c̄S i ]”c2dM c̄c2gdZgc̄cw

1
1

4
dlw41

1

3
dsw31dcw D D . ~15!

Although the action is renormalizable, the model is not multiplicatively renormalizable
circumvent this difficulty and to allow the theory to become multiplicatively renormalizable
shall introduce at the tree level action all terms which we expect to be generated by the
malization procedure, i.e.,

S~ c̄,c,w!5E d4xS 12 ]mw]mw2 (
n51

4

lnw
n1c̄~ i ]”2M2gw!c D 1counter terms, ~16!

wherel25 1
2m

2, l35 s/3! andl45 l/4!.
As usual, perturbation theory is generated by

Z~ h̄,h,J!5expH 2 i E d4xXi 3g d3

dhdh̄dJ
1VS d

dJD CJ Z0~ h̄,h,J!, ~17!

where

Z0~ h̄,h,J!5exp2 i E d4xd4yS h̄~x!DF~x2y!h~y!1
1

2
J~x!D~x2y!J~y! D ~18!

with DF(x2y) andD(x2y) being respectively the fermionic and bosonic propagator functio

DF~x2y!5~ i ]” x1M !D~x2y!, ~19!

and

D~x2y!5
1

~2p!4
E d4p

e2 ip~x2y!

p22m21 i e
. ~20!

From the above formulas, following a procedure entirely analogous to that described
preceding section for the pure scalar case it is easy to get the fermionic contribution
effective potentialV(w0):

V~w0!E d4x5 i lnE
0

0

d̄cdc expH i E d4xc̄~ i ]”2M2gw!cJ . ~21!

After a Wick rotation to Euclidean space and using the rules for Grassmann integrals w
the contribution from the single fermionic loops to the scalar effective potential:

V~w0!E d4x52 ln det~ i ]”E2M2gw0!. ~22!

Using a well-known result
J. Math. Phys., Vol. 38, No. 5, May 1997
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log det~M1gw0!5tr log~M1gw0!, ~23!

we have

ln det~ i ]”E2M2gw0!5tr log~ i ]”E!2(
s51

`
~2 i !s

s
~M1gw0!

strS 1]”ED
s

. ~24!

Using a Fourier representation for 1/]”E and taking into account that the contributions fro
odd values ofs in the above sum vanish, it is possible to recast the fermionic contribution to
effective potential in the form,14

V~w0!54(
s51

` E d4p

~2p!4
~21!s

2s

~M1gw0!
2s

~pE
2 !s

. ~25!

In the finite temperature case using the Matsubara formalism we have to perform the re
mentsv→vn 5 (2p/b)(n1 1

2) and (1/2p)*dqE
0 5 (1/b)Sn . Then the contribution from thesingl

fermionic loops to the effective potential is given by

V~w0 ,b!5
2

b (
s51

`

(
n52`

1` E ddp

~2p!d
~21!s

s

~M1gw0!
2s

~vn
21q2!s

. ~26!

Let us define the quantities

a5S 1

bm D 2, ~27!

f5
w0

2pm
, ~28!

and

g5
M

2pm
, ~29!

wherem is a parameter with mass dimension introduced to deal with dimensionless qua
performing analytic extensions. First we use dimensional regularization going to a ge
D-dimensional space–time. Then Eq.~26! becomes

V~f,b!5mD(
s51

`

a~D/2!2sf ~D,s!~g1gf!2s (
n52`

`
1

„~n1 1
2!
2
…

s2~d/2!
, ~30!

where f (D,s) is given by

f ~D,s!5
2pd/2

G~s!
GS s2

d

2D ~21!s

~2p!2s
. ~31!

Before going on some comments are in order. It is well known15 that dimensional regulariza
tion techniques for massless fields cannot lead to definite results due to the presence of i
divergences.15 Since we are regularizing only ad5D21-dimensional integral, this procedure
equivalent to inserting a mass into thed-dimensional integral. In other words, the Matsuba
frequencies play the role of ‘‘masses’’ in the integral provided that we exclude the limitb→`,
J. Math. Phys., Vol. 38, No. 5, May 1997
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which means that wemust restrict ourselves to nonzero temperatures. Another point is that in
order to evaluate the one-loop finite temperature diagrams the usual approach is to expr
integrand as a contour integral.3 In this paper we use another technique, still applying the princ
of the analytic extension.

In the next section we will analyze the singularity structure of the inhomogeneous Rie
zeta function and other factors appearing in Eq.~30! in order to identify the divergent terms in th
fermionic contribution to the effective potential. We start by analytically regularizing the mo

IV. THE SINGULARITY STRUCTURE OF THE FERMIONIC CONTRIBUTION TO THE
EFFECTIVE POTENTIAL

As we remarked before, the fermionic contribution to the effective potential is ill defined
to the singularities of the gamma function that appears inf (D,s) and the singularities in the
Matsubara sum. The Matsubara sum may be expressed in terms of the generalized inhomo
Riemann zeta function, which can be analytically extended to a meromorphic function i
whole complexs plane. The polar terms must be removed in the renormalization procedur
order to identify these poles let us first recall the definition of the inhomogeneous Rieman
function or Hurwitz zeta function,16

z~z,q!5 (
n50

`
1

~n1q!z
, ~32!

which is analytic for Re(z) . 1.
After some manipulations it is possible to express the Matsubara sum in Eq.~30! in terms of

z(z,q) and writeV(f,b) in the form

V~f,b!52mD(
s51

`

a~D/2!2sf ~D,s!~g1gf!2szS 2s2d,
1

2D . ~33!

To analytically extend the inhomogeneous Riemann zeta function, we go along the follo
steps: first, using the Euler representation for the Gamma function, we write it as

z~z,q!5
1

G~z!
E
0

`

dt tz21
e2t/2

12e2t . ~34!

Next, we split the integral from zero to infinity in two integrals, from zero to one and from
to infinity. The second one is an analytic function ofz, the divergences being associated to
zero limit of the first integral. Then using a Bernoulli representation for the integrand it is pos
to get the following expression to the analytic extension ofz(z, 12),

zS z, 12D5g1~z!1
1

G~z! (
n50

` Bn~
1
2!

n!

1

z1n21
, ~35!

whereg1(z) is given by

g1~z!5
1

G~z!
E
1

`

dt tz21
et/2

et21
, ~36!

and theBn(x) are the Bernoulli coefficients.16 We remark that in the literature there is anoth
formula for the analytic extension of the inhomogeneous Riemann zeta function; the He
formula17 given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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z~z,q!5
1

2qz
1
q12z

z21
12E

0

`

~q21y2!2z/2 sinS z arctanyqD 1

e2py21
dy. ~37!

Of course the analytic extension must be uniquely defined and these are only different
sentations of the same analytic extension. Substituting the analytic extension given by Eq.~35! in
the fermionic contribution to the effective potentialV(f,b) we get

V~f,b!5mD(
s51

`

a~D/2!2sh~D,s!~g1gf!2s
1

G~2D/21s11!

3S E
1

`

dt t2s2D
et/2

et21
1 (

n50

` Bn~
1
2!

n!

1

2s2D1nD , ~38!

where the regular functionh(D,s) is given by

h~D,s!52
~21!s

s

~2p1/2!D24s

G~s!
. ~39!

Let us analyze the two casesD53 andD54 separately. For the caseD53 we have

V~f,b!5m3(
s51

`

a~3/2!2sh~3,s!~g1gf!2s
2

G~2 3
21s11!

3S E
1

`

dt t2s23
et/2

et21
1 (

n50

` Bn~
1
2!

n!

1

2s231nD . ~40!

The fermionic contribution to the effective potential is finite. There are no ultraviolet di
gences inD53. One would not normally expect this since the tadpole graph is ultraviolet d
gent (s51). This situation is very similar to the calculation of the renormalized vacuum energ
scalar fields confined in boxes~Casimir energy!.18 Dolan and Nash used the zeta function analy
regularization method to obtain the Casimir energy of conformally coupled scalar field confin
odd- and even-dimensional spheres.19 They obtained that for odd-dimensional spheres~even
space–time dimension! there is a pole in the point of interest, being necessary for the introduc
of a counterterm, while for even-dimensional spheres~odd dimensional space–time! the result
obtained is naturally finite. No renormalization is needed. For a careful study of this subje
Ref. 20.

For the caseD54 we have

V~f,b!5m4(
s51

`

a22sh~4,s!~g1gf!2s
1

G~s21!

3S E
1

`

dt t2s24
et/2

et21
1
B0~

1
2!

2s24
1
B2~

1
2!

4s24
1 (

n53

` Bn~
1
2!

n!

1

2s241nD . ~41!

Note that the factorG21(s21) just cancels the pole from the termn52 in the sum over
n. The pole coming from the termn50 in the sum must be canceled by the introduction o
suitable counterterm. All other termss>3 are finite.
J. Math. Phys., Vol. 38, No. 5, May 1997
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V. CONCLUSION

The aim of this paper is to discuss an alternative method to deal with the Matsubara su
finite temperature field theory with bosons and fermions in interaction. We use this meth
calculate the one-loop fermionic contribution to the scalar effective potential assumin
Yukawa coupling between fermions and bosons. Note that we are using a BPHZ schem
subtraction at zero momentum of the Feynman integrals. Matsumotoet al.21 claim that the Mat-
subara method seems to produce temperature-dependent divergences which disappear on
summation over the Matsubara sums. We showed that the counterterms are temperature i
dent.

A curious observation is in order. We note that Eq.~38! does not contain singularities forany
odd space–time dimensionD, due to the fact that the sum is over integer values ofs, and the
Bernouilli coefficientsBn(

1
2) 5 0 for n odd. For even values ofD the fermionic contribution to the

effective potential@see Eq.~38!# has only a divergence due to the terms5D/2, n50.
It would be interesting to generalize the method if we consider that there is a nonzero fe

density.22 This can be done introducing a chemical potentials. At finite temperature the chemica
potential will change the Matsubara frequencies byvn→vn1 is.23 In this case we have to
analytically extend the inhomogeneous Epstein zeta functionz(z,q) for complexq. This subject
is under investigation.
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Quantization of symplectic tori in a real polarization
Mihaela Manoliu
Department of Mathematics, University of Texas, Austin, Texas 78712

~Received 8 October 1996; accepted for publication 2 January 1997!

We apply the geometric quantization method with real polarizations to the quanti-
zation of a symplectic torus. By quantizing with half-densities we canonically
associate to the symplectic torus a projective Hilbert space and prove that the
projective factor is expressible in terms of the Maslov–Kashiwara index. As in the
quantization of a linear symplectic space, we have two ways of resolving the
projective ambiguity:~i! by introducing a metaplectic structure and using half-
forms in the definition of the Hilbert space;~ii ! by choosing a four-fold cover of the
Lagrangian Grassmannian of the linear symplectic space covering the torus. We
show that the Hilbert space constructed through either of these approaches realizes
a unitary representation of the integer metaplectic group. ©1997 American Insti-
tute of Physics.@S0022-2488~97!04405-8#

I. INTRODUCTION

In this paper we apply the geometric quantization procedure to the quantization of a sym
tic torus (V /Z,kv), whereZ is a self-dual lattice in the symplectic vector space~V ,v! andk a
positive even integer.

The basic ingredients for the geometric quantization of a symplectic manifold are a pre
tum line bundleL and a polarizationP . We use invariant real polarizations of (V /Z,kv) which
correspond to ‘‘rational’’ Lagrangian planes in~V ,v!. Such a polarizationP foliates the torus by
Lagrangian submanifolds and each leaf ofP has a canonically defined flat linear connection. T
connection induces an operator of partial covariant differentiation along vectors inP acting on
sections of the bundle of half-densities ofP . The Hilbert space of quantization is constructed fro
the space ofP -parallel sections of the line bundle obtained by tensoring the prequantum
bundleL with the half-density bundle ofP . Since the leaves of the foliationP are compact one
can only speak of distributional sections covariantly constant along these leaves. Their s
defines the Bohr–Sommerfeld set inV /Z. The Hilbert spaceHP constructed with the rea
polarizationP is a finite-dimensional inner product space.

An essential problem in geometric quantization is that of comparing the Hilbert spac
different polarizations. This requires the construction of the Blattner–Kostant–Sternberg~BKS!
pairing. In our case the pairing leads, for any two polarizations, to a unitary isomorphism be
the corresponding Hilbert spaces. Moreover, we prove that the unitary operators relatin
Hilbert spaces of different polarizations satisfy a transitive composition law up to a proje
factor. The projective ambiguity is expressible in terms of the Maslov–Kashiwara index of a
of Lagrangian subspaces in~V ,v!. Thus quantization with half-densities canonically associate
(V /Z,kv) a projective Hilbert space.

One can refine the above construction by introducing a metaplectic structure on (V /Z,kv)
and using half-forms instead of half-densities in the definition of the Hilbert space. This req
an appropriate redefinition of the BKS pairing. As a result the projective ambiguity is resolve
we are able to canonically associate a Hilbert space to a symplectic torus (V ,kv) with a choice
of metaplectic frame bundle.

An alternative way of resolving the projective factor is by choosing a four-fold covering s
Lag4(V ) of the Lagrangian Grassmannian Lag~V ! of ~V ,v!. The lift of the Maslov–Kashiwara
index to Lag4(V ) can be expressed as the coboundary of the Maslov index associated to a
0022-2488/97/38(5)/2219/36/$10.00
2219J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



orus

ed to

to

f
n
lov–
f using
e
nitary
uanti-
in the
etric

to
n

lectic
t-

, as
f flat
es its
c tori
case,

some
uantum
ion of
nsities

r non-
Hilbert
on the
tors
factor.
e

ce
n
ther

2220 Mihaela Manoliu: Quantization of symplectic tori

¬¬¬¬¬¬¬¬¬¬
elements in Lag4(V ). In this approach a Hilbert space is associated to a symplectic t
(V /Z,kv) plus a choice of a four-fold cover of Lag~V !.

The group Sp~Z! of symplectic transformations of~V ,v! that preserve the latticeZ and its
double cover Mp~Z!, the integer metaplectic group, act on (V /Z,kv) and the actions lift to the
prequantum line bundleL. For a trivial metaplectic structure on (V /Z,kv) the Mp~Z! action
lifts also to the metaplectic frame bundle. We prove that the Hilbert space associat
(V /Z,kv) and a trivial metaplectic frame bundle realizes a unitary representation of Mp~Z!. For
a choice of a nontrivial metaplectic structure only a subgroup of Mp~Z! is represented on the
respective Hilbert space. The group Mp~Z! acts naturally on a four-fold cover of Lag~V !. This
leads us to construct a unitary representation of Mp~Z! also on the Hilbert space associated
(V /Z,kv) plus a choice of such four-fold cover Lag4(V ).

The quantization of the torus (V /Z,kv) is a sort of ‘‘discrete,’’ finite-dimensional version o
the quantization of the symplectic linear space (V ,kv). In this respect it is not surprising that i
the quantization with half-densities the projective ambiguity is given in terms of the Mas
Kashiwara triple index, similarly to the vector space case analyzed in Refs. 1–3. The idea o
a covering of the Lagrangian Grassmannian ofV and the Maslov index to resolve this projectiv
ambiguity is borrowed from Refs. 1 and 2, where this procedure was shown to lead to a u
representation of the real metaplectic group on the infinite-dimensional Hilbert space of q
zation of a symplectic vector space. The use of a metaplectic structure and half-forms
construction of the quantum Hilbert space is part of the general theory of geom
quantization.1,3–5

This paper arose from our work6 on theU(1) Chern–Simons gauge theory. There we had
address the problem of quantizing the moduli spaceMS of flat U(1) connections on a Rieman
surface S using real polarizations. We recall thatMS is diffeomorphic to the torus
H1(S;R)/H1(S;Z) and carries a natural symplectic structure, the push-down of the symp
structure determined on the cohomology spaceH1(S;R) by the intersection pairing. The geome
ric quantization of the quotient of a symplectic vector space by a lattice using Ka¨hler polarizations
is discussed in Ref. 7. It is also discussed in Refs. 8 and 9 in relation to theU(1) Chern–Simons
theory and the quantization of the moduli spaceMS . We have benefited from these references
well as from Refs. 10 and 11, which describe the quantization of the moduli space o
SU(2) connections on a Riemann surface using a real polarization of this space. Besid
interest in the context of the Abelian Chern–Simons theory, the quantization of symplecti
with real polarizations provides a nice example in which, like in the symplectic vector space
the geometric quantization program~prequantization, quantization, metaplectic correction! can be
fully carried through.

The organization of this paper is as follows. In Sec. II we give a succinct description of
aspects of geometric quantization relevant to the subsequent sections. We refer to the preq
line bundle, real polarizations with compact leaves, definition of the Hilbert space, and act
symmetries. In Sec. III we apply the standard scheme of geometric quantization with half-de
to a symplectic torus (V /Z,kv). We construct the prequantum line bundleL and, for each
choice of invariant real polarizationP of the torus, the corresponding Hilbert spaceHP . In Sec.
IV we describe the BKS pairing between the Hilbert spaces of any two real transverse o
transverse polarizations. Moreover, we prove that the induced operator between the two
spaces is unitary. In Sec. V we describe the representation of the finite Heisenberg group
Hilbert spaceHP defined in Sec. III. In Sec. VI we prove by direct computation that the opera
between the Hilbert spaces of different polarizations compose transitively up to a projective
We show that the projective ambiguity~an eighth root of unity! can be expressed in terms of th
Maslov–Kashiwara index of a triple of Lagrangian planes in the symplectic linear space~V ,v!. In
Sec. VII we describe the metaplectic correction, which enables us to construct a Hilbert spaH̃.
In Sec. VIII we construct a Hilbert spaceH by using a four-fold cover of the Lagrangia
Grassmannian of~V ,v!. In Sec. IX we show that the Hilbert space constructed through ei
J. Math. Phys., Vol. 38, No. 5, May 1997
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approaches, of Sec. VII or of Sec. VIII, realizes a unitary representation of the integer metap
group.

II. GEOMETRIC QUANTIZATION IN A REAL POLARIZATION

We begin by briefly reviewing some aspects of the general scheme of geometric quantiz
using real polarizations with compact leaves.

The basic object is a symplectic manifold (M ,v), that is, a smooth real manifoldM of
dimension 2g together with a closed nondegenerate 2-formv on M . The symplectic manifold
(M ,v) is said to beprequantizableif the cohomology class@v#PH2(M ;R) defined by the
symplectic formv is an integral class. If this condition is satisfied then one can construc
prequantum line bundlefor (M ,v), that is a complex line bundleL overM with a Hermitian
metric ~•,•! on its fibers and a unitary connection“, such that the curvature of“ is 22p iv. The
set of isomorphism classes of such line bundles with connections is a principal homogen
space for the cohomology groupH1(M ;T). Hence, unlessH1(M ;T)50, the choice of a prequan-
tum line bundle~L,“! is not unique.

The quantization procedure requires the choice of a polarization, real or complex
(M ,v). We restrict ourselves to real polarizations. Areal polarizationof the symplectic manifold
(M ,v) is a subbundleP of the tangent bundleTM, which satisfies the following conditions:~i!
for each xPM , P x is a Lagrangian subspace ofTxM , that is, vuP x

[0 and dimP x5
1
2

dim TxM ; ~ii ! P defines an integrable distribution. Let us denote byXP (M ) the set of all vector
fields on M tangent to P . Then the condition~ii ! is satisfied if and only if for any
X,YPXP (M ) their commutator@X,Y#PXP (M ). The integral manifolds of the real polarization
P are the leaves of a foliation ofM by Lagrangian submanifolds. On each leafL of this foliation
there is a canonically defined flat torsion-free linear connection.3,12,13 It is determined by the
operator“P of covariant differentiation,3

“

P :XP~M !3XP~M !→XP~M !

~X,Y!°“X
PY, ~II.1!

defined by setting

~“X
PY!4v5X4d~Y4v!,

where4 denotes the interior product. LetC P
` (M ) denote the space of smooth functions onM

constant on the leaves ofP . The Hamiltonian vector fields of functions inC P
` (M ) belong to

XP (M ) and are covariantly constant with respect to the connection“

P .
Remark II.2:Assume that the symplectic manifold (M ,v) has a real polarizationP such that

the space of leavesM /P has a manifold structure with the canonical projection ma
PP :M→M /P defining a smooth locally trivial fibration with compact connected fibers. Th
each leafL of P is diffeomorphic to ag-dimensional torusTg.12–15The polarizationP is locally
spanned by Hamiltonian vector fields. IfU,M /P is a local coordinate neighborhood with coor
dinate functionsq1 ,...,qg , then the Hamiltonian vector fieldsXq1

,...,Xqg
of the functionsq1

+ PP ,...,qg + PP commute and spanP uP
P
21(U) . Let us recall the definition of a particular set o

local coordinates onM /P called theaction coordinates.14,15 For every point inM /P we can
choose a neighborhoodU,M /P such that the sympletic formv is exact onPP

21(U) and such
that the fibrationPP is trivial on U. Then, for each leafL in PP

21(U), we can pick a basis
g1(L),...,gg(L) for the homology groupH1(L;Z) such that theg i(L)’s vary continuously with
L in PP

21(U). Let u be a symplectic potential forv onPP
21(U), that is,v5du onPP

21(U). The
functions j 1 ,...,j g defined by
J. Math. Phys., Vol. 38, No. 5, May 1997
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j i~y!5E
g i ~L!

u, where y5PP~L!,

form a local coordinate system onU. The Hamiltonian vector fieldsXj 1
,...,Xjg

corresponding to
the action coordinatesj 1 ,...,j g spanP uP

P
21(U) . The vector fieldXj i

is tangent to the curve

g i(L) and its flow is periodic with period 1. The distributionP has a canonically defined densi
k, invariant under the Hamiltonian vector fields inP , and which assigns to each integral manifo
L of P the volume 1. It can be defined by setting, for each leafL in PP

21(U),

k~Xj 1
uL ,...,Xjg

uL!51. ~II.3!

Quantization associates to a symplectic manifold (M ,v) with real polarizationP and
prequantum line bundle~L,“! a Hilbert spaceHP . The construction ofHP makes use of
half-densities relative to the polarizationP . Let us first recall the definition of a density of ord
p. Let V be a realn-dimensional vector space and letp.0. A density of order pon V is a map

n:3
n
V→R such that for anyaPGL(V) we haven(v1•a,...,vn•a)5udetaupn(v1,...,vn). We let

DetV stand for the highest exterior power ofV, that is DetV5∧
n
V. If V* is the vector space dua

to V, we let uDet V* up denote the one-dimensional space ofp densities onV. The above defini-
tions and notations generalize naturally to vector bundles.

Given a polarizationP , consider the line bundlesuDet P u1/2 and uDet P * u1/2. The canonical
flat linear connection~II.1! defined on each leaf ofP induces operators“P of partial covariant
differentiation along vectors tangent toP acting on sections ofuDet P u1/2, respectively
uDet P * u1/2. They are defined as follows.16 Let X1 ,...,Xg be a set of Hamiltonian vector field
spanningP uP

P
21(U) , for some open subsetU,M /P . Let X1* ,...,Xg* be the basis ofP * uP

P
21(U)

dual to X1 ,...,Xg . For a sectionn of uDet P u1/2, the covariant derivative“W
P n is defined on

PP
21(U) by

~¹W
P n!~X1* ,...,Xg* !5W„n~X1* ,...,Xg* !…, ~II.4!

for any vector fieldWPP uP
P
21(U) . Similarly, the covariant derivative“W

Pm of a sectionm of

uDet P * u1/2 is given onPP
21(U) by

~“W
Pm!~X1 ,...,Xg!5W„m~X1 ,...,Xg!…, ~II.5!

for any vector fieldWPP uP
P
21(U) .

Now consider the line bundleLP5L^ uDet P u1/2. The connection“ in L and the operator
“

P of covariant differentiation of sections ofuDet P u1/2 in theP direction determine an operato
“

P of covariant differentiation along vectors inP acting on sections ofLP . It is defined by
setting

“X
P~s^n!5“Xs^n1s^“X

Pn, ~II.6!

for any XPXP (M ) and sections^ nPG(M ;LP ). If L is a leaf ofP then, sincevuL[0, the
covariant derivative operator defined in~II.6! induces a flat connection onLP uL .

When the polarizationP has nonsimply connected leaves, one takes as the quantizati
(M ,v,P ,L,“) the cohomological vector spaceH •(M ;P ,LP ) of the complex3,17

0→VP
0 ~LP !→

“

P

VP
1 ~LP !→

“

P

•••→
“

P

VP
g ~LP !→0.
J. Math. Phys., Vol. 38, No. 5, May 1997
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The spaceVP
k (LP ) is the space of smooth sections of the line bundle∧

k
P * ^LP on M . The

partial connection“P onLP extends naturally to an operator,

“

P :VP
k ~LP !→VP

k11~LP !,

by

~“Pa!~X1 ,...,Xk11!5 (
i51

k11

~21! i11
“Xi
P @a~X1 ,...,X̂i ,...,Xk11!#

1(
i, j

~21! i1 ja~@Xi ,Xj #,X1 ,...,X̂i ,...,X̂j ,...,Xk11!,

whereX1 ,...,Xk11 are local vector fields tangent toP . One can check that (“
P )2a50, for anya

in VP
• (LP ). If the polarizationP has compact leaves then Ref. 17 proves that the only nontr

cohomology space isHg(M ;P ,LP ), whereg5 1
2dim M. Assuming the distributionP is orient-

able, the spaceHg(M ;P ,LP ) can be endowed with a natural Hilbert space structure.
3,17 In order

to describe it, let us introduce the line bundleL^ uDet P * u1/2 overM obtained by tensoring the
prequantum line bundleL with the bundle of12-densities onP . The connection“ in L and the
operator“P of covariant differentiation alongP of sections inuDet P * u1/2 define the covariant
differentiation of sections ofL^ uDet P * u1/2 in the direction of vectors tangent toP :

“W
P ~s^ m!5“Ws^ m1s^“W

Pm, ~II.7!

for anys^ mPG(M ;L^ uDet P * u1/2) and vectorW in P . The union of the leavesL for which the
holonomy group of the flat connection“P in (L^ uDet P * u1/2)uL is trivial define theBohr–
Sommerfeld setBS P . For eachL,BS P we letSL denote the one-dimensional space of cov
riantly constant sections of the line bundle (L^ uDet P * u1/2)uL . Now, recall from~II.2!, there is
a canonical densityk onP that gives to each leafL of P total volume 1. Given an orientation o
P , the densityk extends uniquely to ag-form k̂ onP . Let d denote the12-density onP obtained
as the square root ofk and letd21 denote the dual ofd, that is,d21 is a section ofuDet P u1/2. For
everyL,BS P we can choose a covariantly constant sectionsL of LuL . ThensL ^ d21 is a
covariantly constant section ofLP uL . Let @a# be a cohomology class inHg(M ;P ,LP ) and
aPVP

g (LP ) a representative of@a#. Then we can expressauL5 fLk̂ ^sL ^ d21 for some function
fLPC `(L). The cohomology class@a# is uniquely determined by the value of the integra
cL5*L fLk̂, whenL runs over the set of leaves contained in the Bohr–Sommerfeld set~Ref. 3,
Sec. 10.6!. Thus, for eachL,BS P , we can associate to@a# the elementcLsL ^ d in SL . This
establishes a natural isomorphism,

Hg~M ;P ,LP !> %

L,BS P

SL.

Thus, we can define the Hilbert space of quantizationHP as the vector space,

HP5 %

L,BS P

SL , ~II.8!

with the inner product determined by

^s^ m,s8^ m8&5H 0, if s^amPSL, s8^ m8PSL8, and LÞL8,

E
L

~s,s8!m*m8, if s^ m, s8^ m8PSL .
~II.9!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Here m*m8 is the density onL defined by setting, for anyxPL and basis (W1 ,...,Wg) of
P x5TxL,

~m*m8!~W1 ,...,Wg!5m~W1 ,...,Wg!m8~W1 ,...,Wg!,

and (s,s8) is the function onL obtained by taking the Hermitian inner product in the fiber ofL.
If the symplectic manifoldM is compact, then the Hilbert spaceHP is finite dimensional. The
same definition~II.8! of the Hilbert space of quantization in a real polarization with comp
leaves is used in Ref. 10, and it is this reference that inspired us to take this approach to
zation.

In order to have a meaningful quantization one would like to find a way of identifying
Hilbert spaces of different polarizations, at least projectively. LetP 1 andP 2 be two polarizations
of (M ,v). Then, for a fixed prequantum line bundle~L,“!, letHP 1

andHP 2
be the correspond

ing Hilbert spaces. Under certain conditions onP 1 andP 2 there exists a sesquilinear pairing,

^^•,•&&:HP 2
3HP 1

→C,

called theBlattner–Kostant–Sternberg~BKS! pairing. The polarizationsP 1 andP 2 are said to be
unitarily related if there is an unitary isomorphism,

FP 2P 1
:HP 1

→HP 2
, ~II.10!

with

^c2 ,FP 2P 1
c1&5^^c2 ,c1&&, for any c1PHP 1

, c2PHP 2
.

One also requires that ifP 15P 2 thenFP 2P 1
5I . The operatorFP 2P 1

is called theintertwining

isomorphismforHP 1
andHP 2

. For arbitraryc1 , c18PHP 1
we have the sequence of equalitie

^FP 2P 1
c18 ,FP 2P 1

c1&5^^FP 2P 1
c18 ,c1&&

5^^c1 ,FP 2P 1
c18&&

5^c1 ,FP 1P 2
+FP 2P 1

c18&5^FP 1P 2
+FP 2P 1

c18 ,c1&.

Thus, unitarity ofFP 2P 1
is equivalent to the conditionFP 1P 2

+FP 2P 1
5I . Two polarizationsP 1

andP 2 are calledtransverseif P 1ùP 250. The formal construction of the BKS pairing for
transverse pair of real polarizations can be found in Refs. 1, 3, 4, 16. The pairing constructi
also be generalized to nontransverse real polarizationsP 1 andP 2 for which the spaceM /P 12 of
integral manifolds of the distributionP 125P 1ùP 2 is a quotient manifold ofM .3,16 The unitarity
of the intertwining operatorFP 2P 1

has been proved only for some particular examples. On
these is the quantization of the flat space (R2g,v) in a constant polarization.1–3 The symplectic
form is v5S i51

g dpiLdqi in the standard coordinatesp1,...,pg,q1,...,qg of R2g. The intertwin-
ing operatorFP 2P 1

for a pairP 1 , P 2 of transverse constant real polarizations ofR2g is a gener-
alization of the Fourier transform. It turns into the ordinary Fourier transform whenP 1 andP 2 are
the polarizations defined bypi5const andqi5const, respectively. For three real polarizatio
P 1 ,P 2 ,P 3 the corresponding intertwining operators satisfyFP 1P 3

+FP 3P 2
+FP 2P 1

5 c(P 1 , P 2 , P 3)I , wherec(P 1 , P 2 , P 3) is a complex number of modulus one.
1,2

Now let us consider a symplectic diffeomorphismf :M→M of (M ,v). Assume thatf can be
lifted to an automorphismf̃ of the prequantum line bundle~L,“!. Let P be a polarization of
J. Math. Phys., Vol. 38, No. 5, May 1997
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(M ,v) and assume thatf sendsP into a polarizationf *P . Then f lifts to a map of line bundles
f̃ :L^ uDet P * u1/2→L^ uDet (f *P )* u1/2, which gives rise to a unitary map of Hilbert spac
f̃ :HP→H f

*
P . If the polarizationsP and f *P are unitarily related, we have an intertwinin

isomorphismFP , f
*
P :H f

*
P→HP . Then we are able to associate tof an unitary operator

UP ( f )5FP , f
*
P + f̃ on the Hilbert spaceHP . This scheme can be used sometimes to produ

unitary ~projective! representation of a groupG acting on (M ,v) by symplectic diffeomorphisms

III. QUANTIZATION OF TORI WITH HALF-DENSITIES

In this section we apply the geometric quantization scheme with half-densities, outlined
previous section, to a symplectic torus foliated by real invariant polarizations.

Let V be a 2g-dimensional real vector space with affine symplectic formv andZ a self-dual
lattice in ~V ,v!. We recall that Z is a self-dual lattice if Z5Z* , where
Z*5$XPV uv(X,W)PZ, for all WPZ}. Under the quotient mapp:V →V /Z the symplectic
form v pushes down to a symplectic form on the torusT 5V /Z that we continue to denote b
the same letter. Notice thatvg/g! givesT total volume 1. The symplectic formv on V is exact.
We let u0 denote the symplectic potential invariant under the group Sp~V ! of linear transforma-
tions ofV that preservev. Thus,v5du0 andu0 is defined by

~X84u0!5 1
2v~X,X8!, for any X,X8PV .

The problem we are considering is that of quantizing the symplectic torus (T ,kv), where the
normalizing factork is assumed to be a positive integer. Later we will restrict tok even. Let us
consider the trivial Hermitian line bundleL̂5V 3C overV . For each positivekPZ we define the
connection“̂ on L̂ by setting

“̂ ŝ0522p iku0ŝ0 ,

whereŝ0PG(V ;L̂) is the unit section ofL̂, i.e. ŝ0(X)5(X,1) for allXPV . The curvature of the
connection“̂ on L̂ is 22p ikv. The integer latticeZ acts onV by translations and we conside
lifting this action to the line bundleL̂ such that it preserves the connection and Hermit
structure. Thus we define theZ action onL̂ by18

W•~X,l!5„X1W,e~W!ep ikv~W,X!l…, ~III.1!

for all WPZ and (X,l)PL̂, where the mape:Z→T satisfies

e~W11W2!5e~W1!e~W2!e
p ikv~W1 ,W2!,

for anyW1 ,W2PZ. Let us consider now the standard left action of the group of symple
transformations Sp~V ! on the spaceV . This action can be trivially lifted toL̂, preserving the
Hermitian metric and the connection“̂, by setting

b•~X,l!5~bX,l!, ~III.2!

for all bPSp(V ) and (X,l)PL̂. The subgroup Sp~Z! of Sp~V ! contains those elements th
leave invariant the integer latticeZ. The semidirect product Sp(Z)›Z acts onV and we
consider lifting this action toL̂ such that it satisfies~III.1! and ~III.2!. A straightforward
computation8 shows that for such a lift of the Sp(Z)›Z action toL̂ to exist one must take
kP2Z and the multipliere(W)51, for allWPZ. With these assumptions the Sp(Z)›Z action
on L̂ is defined by
J. Math. Phys., Vol. 38, No. 5, May 1997
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W•~X,l!5~X1W,ep ikv~W,X!l!,

b•~X,l!5~bX,l!, ~III.3!

for anyWPZ, bPSp(Z) and (X,l)PL̂. From now on we assumek to be a positive even
integer and the lift of theZ action toL̂ to be given by~III.3!.

We define the prequantum line bundleL over the symplectic torus (T ,kv) to be the quotient
L5L̂/Z of L̂ under theZ action. The Hermitian metric and connection“̂ in L̂ induce
naturally a Hermitian metric and a connection“ in L. Moreover, the Sp~Z!-action onL̂→V
determines a Sp~Z! action onL→T , preserving the Hermitian structure and the connection.
have the identification

G~T ;L!>G~V ;L̂!Z,

between the spaceG~T ;L! of sections ofL→T and the spaceG(V ;L̂)Z of Z-invariant sec-
tions of L̂→V .

In order to carry out the quantization of the symplectic torus (T ,kv) one needs to choose
polarization. We will consider only invariant real polarizations ofT . Before proceeding further le
us recall some definitions. A subspaceL,V is called an isotropic subspace of the
2g-dimensional symplectic vector space~V ,v! if v(X,X8)50, for all X,X8PL. A Lagrangian
subspaceL of V is just a maximal isotropic subspace, that is dimL5g. We have the following
lemma Ref. 2, Sec. 2.1

Lemma III.4: LetZ be a self-dual lattice in~V ,v! and L,V an isotropic subspace o
dimension l( l<g), such thatZùL generates L as a vector space. Then there exists a sympl
basis(W1 ,...,Wg ;W1

' ,...,Wg
') of ~V ,v! such that

Z5ZW1% ••• %ZWg%ZW1
'

% ••• %ZWg
' ,

L5RW1% ••• %RWl ,

v~Wi ,Wj
'!5d i j ,v~Wi ,Wj !5v~Wi

' ,Wj
'!50.

For the proof we refer to the above-mentioned reference. Now let us consider a consta
polarizationP of the 2g-dimensional linear space~V ,v!, defined by a foliation ofV by rational
Lagrangian planes. The termrational refers to the fact that, under the identification of the tang
spaceTxV with V at any pointxPV ,P x corresponds to a Lagrangian subspaceLP,V with the
property thatZùLP generatesLP as a vector space. The polarizationP of ~V ,v! maps under the
quotientV →T to an invariant polarization of~T ,v! that we continue to denote by the sam
letter.P is the tangent bundle along the leaves of a foliation ofT by Lagrangian submanifolds
diffeomorphic to g tori. From Lemma III.4 it follows that we can find a symplectic bas
(W1 ,...,Wg ;W1

' ,...,Wg
') of ~V ,v! such that

Z5ZW1% ••• %ZWg%ZW1
'

% ••• %ZWg
' ,

LP5spanR$W1 ,...,Wg%. ~III.5!

We are going to use the same notationWi ,Wi
' for the corresponding invariant vector fields onT .

We can choose a symplectic potentialuP for the formv on V adapted to the polarizationP ,
that is, such thatW4uP50 for anyWPP . We defineuP by the equations
J. Math. Phys., Vol. 38, No. 5, May 1997
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Wi4uP50, i51,...,g,

~Wi
'
4uP !X5v~X,Wi

'!, i51,...,g. ~III.6!

SinceduP5du05v, there is a real functionKPPC `(V ) such that

uP5u01dKP .

The above relation determinesKP up to a constant. We fix this arbitrariness by requiring th
KP (0)50. Then it is easy to check thatKP satisfies the following relations:

KP~X1W!2KP~X!5 1
2v~W,X!

KP~X1W'!2KP~X!52 1
2v~W',X!, ~III.7!

for anyXPV , WPP andW'PspanR$W1
' ,...,Wg

'%. Let us denote byŝP the section ofL̂→V
defined by

ŝP~X!5e22p ikKP ~X!ŝ0~X!, for all XPV . ~III.8!

Then we have

“̂ ŝP522p ikuP ŝP . ~III.9!

Having chosen a polarizationP of T we construct the Hilbert spaceHP of quantization as
outlined in Sec. II. In order to do that let us first determine the Bohr–Sommerfeld set onT . The
Bohr–Sommerfeld set is the union of all the leavesL of the polarizationP for which the line
bundle (L^ uDet P * u1/2)uL is trivial as a line bundle with a flat connection. From the definition
the invariant vector fieldsW1 ,...,Wg spanningP , it is obvious that the canonical densityk onP
defined by~II.3! satisfiesk(W1 ,...,Wg)51. Then also the12-densityd onP defined as the squar
root of k satisfies

d~W1 ,...,Wg!51. ~III.10!

For any leafL of P , the 1
2-density duL is a covariantly constant section of the line bund

(uDet P * 1/2)uL with respect to the canonical flat connection“P defined in~II.5!. Therefore the
Bohr–Sommerfeld set is determined only by the prequantum connection“ in L and it is thus
given by the union of the leavesL of P for which the holonomy of“ restricted toLuL is trivial.
A straightforward computation shows that the Bohr–Sommerfeld orbits are determined b
condition

e2p ikv~W,X!51, for any WPPùZ. ~III.11!

With respect to the basis vectorsW1 ,...,Wg spanningPùZ the above condition read as

kv~Wi ,X!PZ, i51,...,g,

and shows that there arekg distinct Bohr–Sommerfeld orbits on the torusT . We label these
Bohr–Sommerfeld orbits byLq , with qP(Z/kZ)g. The Bohr–Sommerfeld set is then given b
the unionBS P5øqP(Z/kZ)gLq . An orbit Lq is described by the equations

Lq5~q1 ,...,gg! : kv~Wi ,X!5qi ~mod k!, i51,...,g.
J. Math. Phys., Vol. 38, No. 5, May 1997
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For eachqP(Z/kZ)g, the orbitLq on T is covered by the family$L̂q,l% l5( l1 ,...,l g)PZg of Lagrang-
ian planes inV , where

L̂q,l5$XPV ukv~Wi ,X!5qi1kl i , i51,...,g%. ~III.12!

We letsq denote the unitary covariantly constant section ofLuLq
represented by theZ-invariant

distributional sectionŝq of the line bundleL→V ;

ŝq5 (
l5~ l1 ,...,l g!PZg

ŝq,l . ~III.13!

ŝq,l is the section supported on the Lagrangian planeL̂q,l , obtained by restricting toL̂q,l the
sectionŝP from ~III.8!, that is,

ŝq,l~X!5e22p ikKP ~X!ŝ0~X!, for XPL̂q,l . ~III.14!

For eachLq,BS P let dq denoteduLq
. We can takesq5sq^ dq as a basis vector for the

one-dimensional spaceSLq
of covariantly constant sections of (L^ uDet P * u1/2)uLq

. Then, ac-
cording to~II.8!, the Hilbert spaceHP is thekg-dimensional vector space,

HP5 %
qP~Z/kZ!g

SLq
5 %

qP~Z/kZ!g
Csq ,

with the inner product defined as in~II.9!. Sincedq* dq5kuLq
, and sincekuLq

givesLq total
volume 1, the inner product inHP gives

^sq ,sq8&5dqq8 .

We call $sq5sq^ dq%qP(Z/kZ)g a standard unitary basisofHP . We emphasize that the choice
such a basis is uniquely determined by the choice of a symplectic basis (Wi ;Wi

') satisfying
~III.5!.

IV. THE BLATTNER–KOSTANT–STERNBERG PAIRING

In this section we consider two arbitrary real polarizationsP 1 andP 2 of T and construct the
Blattner–Kostant–Sternberg~BKS! pairing ^^•,•&&: HP 2

3HP 1→C between the Hilbert space
HP 1

and HP 2
associated to the two polarizations. Then we prove that the ope

FP 2P 1
:HP 1

→HP 2
induced from the BKS pairing is unitary. The main reference that we use

the construction of the BKS pairing is Ref. 16.
Recall that HP 1

5 % L1,BS P 1
SL1

and HP 2
5 % L2,BS P2

SL2
, where SL i

is the one-

dimensional vector space of covariantly constant sections of the line bu
L^ uDet P i* u1/2)uL i

over the Bohr–Sommerfeld orbitL i,BS P i
, i51,2. The BKS pairing is

defined by setting

^^s2^ m2 ,s1^ m1&&5E
L2ùL1

~s2 ,s1!m2*m1 ,

for any L1,BS P 1
, L2,BS P 2

and s1^ m1PSl1
, s2^ m2PSl2

. The densitym2*m1 on
L1ùL2 is defined as follows.16 First note thatT(L1ùL2)5TL1ùTL2 . Then, for any point
xPL1ùL2 , we choose a basis forTx(T ) of the form (V2 ,W;V1 ,T), where
J. Math. Phys., Vol. 38, No. 5, May 1997
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W5~Wh11 ,...,Wg! is a basis ofTxL1ùTxL2 ,

U15~V1,W!5~V11,...,V1h ,Wh11 ,...,Wg! is a basis ofTxL1 ,
~IV.1!

U25~V2,W!5~V21,...,V2h ,Wh11 ,...,Wg! is a basis ofTxL2 ,

h5g2dim~L1*ùL2!,

and such that the following relations hold:

kv~Wi ,Tj !5d i j , i , j5h11,...,g

kv~V2i ,V1 j !5d i j , i , j51,...,h ~IV.2!

kv~V1i ,Tj !5kv~V2i ,Tj !50.

The densitym2*m1 on L1ùL2 is defined by setting

~m2*m1!~W!5m2~U2!m1~U1!. ~IV.3!

The BKS pairing induces a linear operatorFP 2P 1
:HP 1

→HP 2
as defined in~II.10!. Then,

with respect to standard unitary bases$s1q1
5s1q1^ dq1% of HP 1

and $s2q2
5s2q2^ d2q2% of

HP 2
, we can representFP 2P 1

by the matrix

FP 2P 1
~s1q1

!5 (
q2P~Z/kZ!g

M ~2,1!q2q1s2q2
, ~IV.4!

where

M ~2,1!q2q15E
L2q2

ùL1q1

~s2q2,s1q1!d2q2* d1q1. ~IV.5!

Having in view the definition~III.13!–~III.14! of the unitary sectionss2q2 of LuL2q2
ands1q1 of

LuL1q1
, the function (s2q2, s1q1) is given, at each pointx,L2q2

ùL1q1
, by the expression

~s2q2,s1q1!~x!5e2p ikKP 2
~X!22p ikKP 1

~X!, ~IV.6!

wherex5p(X) under the quotient mapp:V →T . Using~III.7! and~III.11! we can show that, for
any two Bohr–Sommerfeld orbitsL1q1

,BS P 1
and L2q2

,BS P 2
, the function

e2p ik(KP 2
2KP 1

)(X) on p21(L1q1
ùL2q2

) is invariant underZ translations. Thus the left-hand sid
of ~IV.6! is well defined.

In order to prove the unitarity of the intertwining operatorFP 2P 1
, which comes down to

proving the unitarity of the matrixM ~2,1!, we have to discuss separately the case of transverse
that of nontransverse polarizations.

Transverse polarizations.Let P 1 andP 2 be two transverse real polarizations of~T ,v! and, as
in the previous section, letLP 1 , LP 2

,V denote the corresponding rational Lagrangian subspa

Then, following ~III.4!, we can find symplectic bases (W11,...,W1g ;W11
' ,...,W1g

' ) and
(W21,...,W2g ;W21

' ,...,W2g
' ) of ~V ,v!, which are at the same time bases for the integer lat
J. Math. Phys., Vol. 38, No. 5, May 1997
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Z,V and such thatLP 1
5spanR$W11,...,W1g% andLP 25spanR$W21,...,W2g%. In order to sim-

plify the future notation let us define with respect to the above bases the following (g3g)
matrices withZ coefficients:

v~2,1! i j5v~W2i ,W1 j !, v~1,2! i j5v~W1i ,W2 j !,

v~2,1'! i j5v~W2i ,W1 j
' !, v~1',2! i j5v~W1i

' ,W2 j !,
~IV.7!

v~2',1! i j5v~W2i
' ,W1 j !, v~1,2'! i j5v~W1i ,W2 j

' !,

v~2',1'! i j5v~W2i
' ,W1 j

' !, v~1',2'! i j5v~W1i
' ,W2 j

' !.

We note that

tv~2,1!52v~1,2!, tv~2,1'!52v~1',2!,

tv~2',1!52v~1,2'!, tv~2',1'!52v~1',2'!.

Since the polarizationsP 1 and P 2 are assumed transverse, i.e.LP 1
ùP 250, the vectors

(W11,...,W1g ,W21,...,W2g) form a basis forV and the matrixv~2,1! is nonsingular. Later, we
will need the following.

Lemma IV.8: The matrixv(2',1)v(2,1)21 is symmetric.
Proof: If we express the vectorsW1i with respect to the symplectic basis (W2i ;W2i

' ) then,
since W11,...,W1g span the Lagrangian subspaceLP 1

, we find that 05v(W1i ,W1k)
5 v(2,1)j iv(2

',1
jk 2 v(2',1)j iv(2,1)jk and the lemma follows. h

Before proceeding further let us state the following lemma whose proof is straightforward.
Lemma IV.9: Given a positive integer n and a nonsingular(n3n)-matrix A with integer

coefficients consider the setZn/AZn. Then the cardinality of the setZn/AZn is equal toudet(A)u.
The equivalence class ofl5( l 1 ,...,l g)PZn in Zn/AZn will be denoted by@l#.

The Bohr–Sommerfeld orbitsL1q1
andL2q2

, q1 ,q2P(Z/kZ)g, determined on the 2g torusT
by the two polarizationsP 1 andP 2 , are described by the equations

Lq15~q11 ,...,q1g! : kv~W1i ,X!5q1i ~mod k!, i51,...,g,
~IV.10!

Lq25~q21 ,...,q2g! : kv~W2i ,X!5q2i ~mod k!, i51,...,g.

L1q1
andL2q2

are transverse submanifolds ofT . HenceL1q1
ùL2q2

is a finite set and we have th
following.

Proposition IV.11: For eachq1 ,q2P(Z/kZ)g, the number of intersection points of the Boh–
Sommerfeld orbitsL1q1

andL2q2
is equal toudetv(2,1)u.

Proof: Let Zg/v(2,1)Zg be the set defined as in~IV.9! with respect to the nonsingular intege
(g3g) matrix v~2,1!. We can use the setZg/v(2,1)Zg to index the intersection points in
L1q1

ùL2q2
. For a given@ l#5@( l 1 ,...,l g)#PZg/v(2,1)Zg, the pointX1q2q1

PL1q1
ùL2q2

is deter-
mined as the solution~moduloZ! of the system of linear equations:

v~W1i ,X!5
q1i
k
, i51,...,g,

v~W2i ,X!5
q2i
k

1 l i , i51,...,g.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Then, with respect to the basis (W11,...,W1g ,W21,...,W2g) of V , the solutionX1q2q1
of the above

system reads as

X1q2q1
5v~2,1! i j

21S q2 jk 1 l j DW1i2
tv~2,1! i j

21 q1 j
k

W2i . ~IV.12!

Obviously, anotherl85( l 18 ,...,l g8)PZg such that@ l#5@ l8# gives~moduloZ! the same solution as
l5( l 1 ,...,l g). The expression~IV.12!, together with the fact that the cardinality ofZg/v(2,1)Zg is
udetv(2,1)u, proves the proposition. h

According to~III.10!, the 1
2-densitiesd1PuDet P 1* u1/2 andd2PuDet P 2* u1/2 satisfy the rela-

tions d1(W1)51 and d2(W2)51, with respect to the basesW15(W11,...,W1g) of P 1 and
W25(W21,...,W2g) of P 2 . Now define the framesU25W2 for P 2 andU15W1–@kv(2,1)#21 for
P 1 . For anyxPL1q1

ùL2q2
, we have (U2;U1) as basis forTx(T ) satisfying the conditions

~IV.1!–~IV.2!. Then, according to the definition~IV.3!, we find that the densityd2q2* d1q1 is the
number

d2q2* d1q15d2~U2!d1~U1!5ukg detv~2,1!21/2. ~IV.13!

It follows then, from~IV.6!, ~IV.11!, and ~IV.13!, that the matrix~IV.5! representingFP 2P 1
for

transverse polarizations is given by the expression

M ~2,1!q2q15ukg detv~2,1!u21/2 (
@ l#PZg/v~2,1!Zg

e2p ik~KP 2
2KP 1

!~X1q2q1
!.

We proceed to explicitly computeM ~2,1!. ExpressingX1q2q1
, in turn, with respect to the sym

plectic bases (W1i ;W1i
' ) and (W2i ;W2i

' ) and making then use of~III.7!, we find that

KP 1
~X1q2q1

!5
1

2

tq1
k

v~2,1!21S q2k 11D2
1

2

tq1
k

v~2,1!21v~2,1'!
q1
k
,

KP 2
~X1q2q1

!52
1

2

tq1
k

v~2,1!21S q2k 11D2
1

2
tS q2k 1 lDv~2',1!v~2,1!21S q2k 1 lD .

This leads to the expression

M ~2,1!q2q15ukg detv~2,1!u21/2 (
@ l#PZg/v~2,1!Zg

e~p i /k!A~2,1!uq2q1, ~IV.14!

with

A~2,1! lq2q15
tq1v~2,1!21v~2,1'!q122tq1v~2,1!21~q21kl!

2 t~q21kl!v~2',1!v~2,1!21~q21kl!.

In order to prove the unitarity of the matrixM ~2,1! we have to show that

(
q2P~Z/kZ!g

M ~2,1!q2q18M ~2,1!q2q15dq
18q1
. ~IV.15!

It is not difficult to see from the expression~IV.14! that we can write
J. Math. Phys., Vol. 38, No. 5, May 1997
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(
q2P~Z/kZ!g

M ~2,1!q2q18M ~2,1!q2q1

5
ukg detv~2,1!u21

udetv~2,1!ug (
q2

0<q2i<kudetv~2,1!u21

(
@ l#,@ l8#

@e2~p i /k!A~2,1! l8q2q18#@e~p i /k!A~2,1! lq2q1#. ~IV.16!

We isolate the terms in~IV.16! containing theq2 variable and, making use of~IV.8!, we find that
their sum reads as

(
q2

0<q2i<kudetv~2,1!u21

e~2p i /k!@ t~q182q1!1kt~ l82 l!v~2',1!#v~2,1!21q25kgudetv~2,1!ugdq
18q1

d l8 l .

Inserting the above in~IV.16!, we obtain~IV.15!.
Nontransverse polarizations.Let P 1 andP 2 be two nontransverse real polarizations of th

torus ~T ,v!. The isotropic subspaceL125LP 1
ùLP 2

,V is generated byZùL12 as a vector

space. Then, using Lemma III.4, it follows that we can choose symplectic bases (W1i ;W1i
' ) and

(W2i ;W2i
' ) of ~V ,v! with

W1i5W2i , W1i
' 5W2i

' , for i5h11,...,g,
~IV.17!

h5g2dim L12,

and such that

LP 1
5 % i51

g RW1i , LP 2
5 % i51

g RW2i ,

L125 % i5h11
g RW1i5 % i5h11

g RW2i , ~IV.18!

Z5 % i51
g ZW1i % % i51

g ZW1i
' 5 % i51

g ZW2i % % i51
g ZW2i

' .

With respect to the above chosen bases, the (g3g) matrices withZ coefficients introduced in
~IV.7! now have the particular form

v~2,1!5S v̌~2,1! 0

0 0D , v~2',1'!5S v̌~2',1'! 0

0 0D ,
~IV.19!

v~2',1!5S v̌~2',1! 0

0 2I D , v~2,1'!5S v̌~2,1'! 0

0 I D ,
where we introduced the notationv̌(2,1)i j5v(2,1)i j , for i , j51,...,h and similarly for the other
matrices.

The Bohr–Sommerfeld orbitsL1q1
and L2q2

, q1 ,q2P(Z/kZ)g, corresponding to the two
polarizationsP 1 andP 2 of ~T ,v!, are described by the equations~IV.10!. The intersection set
L1q1

ùL2q2
is nonempty only if q1i5q2i , for i5h 1 1,...,g. If this is the case, then

L1q1
ùL2q2

is a submanifold ofT . Moreover, each connected component ofL1q1
ùL2q2

is
diffeomorphic to a torus of dimensiong 2 h, and we have the following.

Proposition IV.20: For eachq1 ,q2P(Z/kZ)g such that q1i5q2i , for i5h 1 1,...,g, the num-
ber of connected components ofL1q1

ùL2q2
is equal toudetv̌(2,1)u.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Proof: Consider the setZh/v̌(2,1)Zh of ~IV.9! with respect to the nonsingular intege
(h3h) matrix v̌(2,1). We use the setZh/v̌(2,1)Zh to index the components of the submanifo
L1q1

ùL2q2
of T . Given an l5( l 1 ,...,l h)PZh representing an element@ l#PZh/v̌(2,1)Zh, the

space of solutions~moduloZ! of the system of linear equations,

v~W1i ,X!5
q1i
k
, i51,...,h,

v~W1i ,X!5v~W2i ,X!5
q1i
k

5
q2i
k
, i5h11,...,g, ~IV.21!

v~W2i ,X!5
q2i
k

1 l i , i51,...,h,

gives all the points belonging to one component ofL1q1
ùL2q2

. It is obvious that an

l85( l 18 ,...,l h8)PZh such that @ l#5@ l8# gives the same space of solutions~modulo Z! as
l5( l 1 ,...,l h). Since, according to Lemma IV.9,Zh/v̌(2,1)Zh has udetv̌(2,1)u elements, this
proves the proposition. h

We let (L1q1
ùL2q2

) @ l# denote the component ofL1q1
ùL2q2

corresponding to the elemen

@ l#PZh/v̌(2,1)Zh. According to the expression~IV.5! and the previous observations, we have

M ~2,1!q2q15 )
i5h11

q

dq2i q1iEL2q2
ùL1q1

~s2q2,s1q1!d2q2* dq1. ~IV.22!

The function (s2q2,s1q1) is constant on each connected component ofL2q2
ùL1q1

and has the
expression

~s2q2,s1q1!u~L2q2
ùL1q1

!@ l#5e2p i ~KP 2
2KP 1

!~X1q2q1
!, ~IV.23!

whereX1q2q1
is a solution of the system~IV.21!. The left-hand side of~IV.23! is well defined

since, as previously remarked,e2p i (KP 2
2KP 1

)(X1q2q1
) is invariant under aZ translation ofX1q2q1

.
Now let us consider for anyxPT the basis (V2,W;V1,T) of Tx(T ), where

V2i5W2i , V1i5W1l@kv̌~2,1!# l i
21, i51,...,h,

~IV.24!

Wj5W1 j5W2 j , Tj5
1

k
W1 j

' , j5h11,...,g.

This basis satisfies the conditions~IV.1!–~IV.2!. From the definition~IV.3!, it follows that, for any
pair of Bohr–Sommerfeld orbitsL1q1

and L2q2
with L1q1

ùL2q2
ÞB, the densityd2q2* d1q1

satisfies

~d2q2* d1q1!~W!5d2~V2,W!d1~V1,W!5ukh det v̌~2,1!u21/2.

Then, sinceW5(Wh11 ,...,Wg) is a basis forZùL12, we have

E
~L2q2

ùL1q1
!@ l#

d2q2* d1q15ukh det v̌~2,1!u21/2.

Therefore the matrixM ~2,1! can be written as
J. Math. Phys., Vol. 38, No. 5, May 1997
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M ~2,1!q2q15ukh det v̌~2,1!u21/2 )
i5h11

g

dq2i q1i (
@ l#PZh/v̌~2/1!Zh

e2p ik~KP 2
2KP 1

!~X1q2q1
!.

Expressing the solutionX1q2q1
of the system~IV.21! in terms of the bases (W1i ;W1i

' ) and

(W2i ;W2i
' ) of V and using the properties~III.7!, we arrive at

M ~2,1!q2q15ukh det v̌~2,1!u21/2 )
i5h11

g

dq2i q1i (
@ l#PZh/v̌~2,1!Zh

e~p i /k!Ǎ1q̌2q̌1, ~IV.25!

with

Ǎ~2,1!1q̌2q̌15
tq̌1v̌~2,1!21v̌~2,1'!q̌122tq̌1v̌~2,1!21~ q̌21kl!

2 t~ q̌21kl!v̌~2',1!v̌~2,1!21~ q̌21kl!.

Here we used the notationq̌15(q11,...,q1h), q̌25(q21,...,q2h). From this point on the proof of
the fact that(q2M (2,1)q

18q2
M (2,1)q2q15dq

18q1
goes as in the previous case of transverse polar

tions. Thus we can state the following theorem.
Theorem IV.26: For any two invariant real polarizationsP 1 andP 2 of the symplectic torus

(T ,kv), the linear operator FP 2P 1
:HP 1

→HP 2
is unitary.

V. REPRESENTATION OF THE HEISENBERG GROUP

Let us consider again the 2g-dimensional symplectic vector space~V ,v! with self-dual inte-
ger latticeZ in V . Let Zk be the finite Abelian group (1/k)Z/Z. We define the Heisenber
groupHk as a central extension ofZk by the circle groupT:

1→T→Hk→Zk→0.

As a setHk5T3Zk and the composition law inHk is given by

~l,v !•~l8,v8!5„ll8c~v,v8!,v1v8…, for any ~l,v !,~l8,v8!PT3Zk .

The 2-cocyclec:Zk3Zk→T is defined by

c~v,v8!5e2p ikv~V,V8!,

where,V,V8 are the preimages ofv,v8 under the quotient map (1/k)Z→(1/k)Z/Z. As before,
we work under the assumption thatkP2Z1 , so thatc is well defined by the above expression

We will show that the vector spaceHP obtained by quantizing the 2g-torus (T ,kv) in a real
polarizationP realizes a unitary representation of the Heisenberg groupHk . Let us choose as in
~III.5! an integer symplectic basis (Wi ;Wi

') for the space~V ,v!, with P5spanR$W1 ,...,Wg%,
and let us introduce as in Sec. III the corresponding standard unitary basis$sq^ dq%qP(Z/kZ)g for
HP . The sectionssq of the prequantum line bundleL over the Bohr–Sommerfeld orbitsLq are
represented by theZ-invariant distributional sectionsŝqPG(V ;L̂) defined by~III.13!–~III.14!.
The Abelian translation groupV acts on the spaceG~V ;L̂! of sections of the line bundle
L̂→V by

~V•s!~X!5V•s~X2V!, for any VPV , sPG~V ;L̂!. ~V.1!
J. Math. Phys., Vol. 38, No. 5, May 1997
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We compute the action of the subgroup (1/k)Z,V on the sectionsŝq according to the definition
~V.1!. Using the relations~III.7!, we find that with respect to the basis„(1/k)Wi ;(1/k)Wi

'
… of

(1/k)Z, the action of (1/k)Z on $ŝq% reads as

1

k
Wi• ŝq5e2p i ~qi /k!ŝq ,

1

k
Wi

'
• ŝq5 ŝq~ i11!

,

whereq( i11) stands forq( i11)5(q1 ,...,qi21 ,qi 1 1,qi11 ,...,qg). Since the sections$ŝq% areZ
invariant, we get a well-defined action of the groupZk5(1/k)Z/Z.

The sectiond of uDet P * u1/2 was obtained as the square root of the invariant densityk onP .
Hence the translation groupV leavesd invariant. For anyXPL̂q,l , we find from ~III.12! that
X1(1/k)WiPL̂q,l andX1(1/k)Wi

'PL̂q( i11) ,l
. Thus we can write

1

k
Wi•dq5dq ,

1

k
Wi

'
•dq5dq~ i11!

.

Therefore, we define the action of the Heisenberg groupHk on the basis$sq^ dq% of the Hilbert
spaceHP by

~l,wi !•~sq^ dq!5le2p i ~qi /k!sq^ dq ,
~V.2!

~l,wi
'!•~sq^ dq!5lsq~ i11!

^ dq~ i11!
,

wherelPT andwi ,wi
' are the images inZk of the basis vectorsWi ,Wi

' . For anylPT the
element (l,0)PHk is represented onHP by the operatorlI . Hence, by the Stone–von Neuman
theorem~see Ref. 19! the above representation ofHk is, up to the isomorphism, the uniqu
irreducible unitary representation ofHk onHP .

Theorem V.3: For any two invariant real polarizationsP 1 ,P 2 of (T ,kv), the unitary
operator FP 2P 1

:HP 1
→HP 2

intertwines the representations of the Heisenberg group Hk on the

vector spacesHP 1
andHP 2

.
The proof follows from a straightforward application of the definition~V.2! and of the results

~IV.14!–~IV.25! for the intertwining operatorFP 2P 1
, and we omit it. In view of the Stone–vo

Neumann theorem, the fact that the unitary operators between the Hilbert spaces of di
polarizations intertwine the representations of the Heisenberg groupHk on these spaces, lead
naturally to the conclusion that these operators compose transitively up to a phase factor.
next section we will prove this fact through a direct computation that will give us at the same
the explicit expression of the projective factor involved.

VI. THE PROJECTIVE HILBERT SPACE

We begin by recalling the definition of the Maslov–Kashiwara index~or signature index! and
some of its properties.2 Let L1 ,L2 ,L3 be three Lagrangian subspaces of the 2g-dimensional
symplectic vector space~V ,v!. The Maslov–Kashiwara indext(L1 ,L2 ,L3) is defined as the
signature of the quadratic formG on the 3g-dimensional vector spaceL1%L2%L3 , given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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G~X1%X2%X3!5v~X1 ,X2!1v~X2 ,X3!1v~X3 ,X1!.

Let us assume thatL1 andL3 are transverse, i.e.,L1ùL350. ThenV 5L1 % L3 and we let
p31:V →L3 denote the projection ontoL3 alongL1 . The Lagrangian subspacesL1 andL3 deter-
mine a symmetric bilinear form onL2 given by

H~X2 ,X28!5v~X2 ,p31X28!, for any X2 ,X28PL2 . ~VI.1!

We have the following lemma~Ref. 2, Sec. 1.5!.
Lemma VI.2: If L1 and L3 are transverse, thent(L1 ,L2 ,L3) is equal to the signature of the

quadratic form H(X2 ,X2) on L2 :

t~L1 ,L2 ,L3!5sgnH.

The properties of the Maslov–Kashiwara indext, relevant to what follows, are summarized
the following proposition.2,20

Proposition VI.3. The functiont: Lag(V )3Lag(V )3Lag(V )→Z has the following proper-
ties.

(1) t(aL1 ,aL2 ,aL3)5t(L1 ,L2 ,L3), for any aPSp(V ).
(2) t(L1 ,L2 ,L3) is unchanged (changes sign) under an even (odd) permutation of the

(L1 ,L2 ,L3).
(3) t(L1 ,L2 ,L3)2t(L1 ,L2 ,L4)1t(L1 ,L3 ,L4)2t(L2 ,L3 ,L4)50, for any L1 ,L2 ,L3 ,L4

PLag(V ).
Now let us consider three invariant real polarizationsP 1 ,P 2 ,P 3 of the symplectic 2g-torus

~T ,v!. As before, we letLP 1
,LP 2

,LP 3
denote the corresponding Lagrangian subspaces of~V ,v!.

Quantization associates to each polarizationP i the Hilbert spaceHP i
. These Hilbert spaces ar

related by the unitary intertwining operatorsFP 1P 3
, FP 3P 2

, FP 2P 1
introduced in Sec. IV. We will

prove the following.
Theorem VI.4: For any three invariant real polarizationsP 1 ,P 2 ,P 3 of the symplectic torus

(T ,kv), we have

FP 1P 3
+FP 3P 2

+FP 2P 1
5e2~p i /4!t~LP 1

,LP 2
,LP 3

!I .

For the proof of the above theorem we will need the following proposition.
Proposition VI.5 (reciprocity formula for Gauss sums): Let Q be a nonsingu

(g3g)-matrix with integer coefficients, aP2Z a positive even integer andw5(w1 ,...,wg)PQg

such that awPZg. Then we have

(
qP~Z/aZ!g

e~p i /a!tqQq12p i tw–q5U ag

detQU
1/2

e~p i /4!sgnQ (
mPZg/QZg

e2p iat~m1w!Q21~m1w!.

The proof of the above relation is a straightforward generalization of the argument used in R
Chap. 4 to prove the one-dimensional Gauss sum formula. We prove now Theorem VI.4.

Proof: Case 1:Let us consider first the case of three mutually transverse polariza
P 1 ,P 2 ,P 3 of (T ,kv). As in ~III.5!, we choose integer symplectic bases (W1i ;W1i

' ),
(W2i ;W2i

' ), (W3i ;W3i
' ) of the symplectic vector space~V ,v!, with LP 1

5spanR$W1i% i51,...,g ,
LP 2

5spanR$W2i% i51,...,g , LP 3
5spanR$W3i% i51,...,g . With respect to the above bases we introdu

as in ~IV.7! the matricesv~2,1!, v(2',1), v~3,2!, v~3,1!, etc. SinceLP 1
,LP 2

,LP 3
are mutually

transverse, the matricesv~2,1!, v~3,2!, and v~3,1! are nonsingular. The operatorsFP 1P 3
,

FP 3P 2
, andFP 2P 1

are represented by the unitary matricesM ~1,3!, M ~3,2!, andM ~2,1!, as ex-
pressed by~IV.14!. Then we have to compute the sum
J. Math. Phys., Vol. 38, No. 5, May 1997
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(
q3 ,q3P~Z/kZ!g

M ~1,3!q
18q3
M ~3,2!q3q2M ~2,1!q2q15 (

q2 ,q3P~Z/kZ!g
M ~3,1!q3q18M ~3,2!q3q2M ~2,1!q2q1

5uk3g detv~2,1!detv~3,2!detv~3,1!u21/2

3 (
q2 ,q3P~Z/kZ!g

F (
@ l31#PZg/v~3,1!Zg

e2~p i /k!A~3,1! l31q3q18G
3F (

@ l32#PZg/v~3,2!Zg
e~p i /k!A~3,2! l32q3q2G

3F (
@ l21#PZg/v~2,1!Zg

e~p i /k!A~2,1! l21q2q1G . ~VI.6!

Isolating the terms with theq2 variable, we get for the corresponding sum the expression

S q2
5 (

q2P~Z/kZ!g
e~p i /a!tq2Qq212p i tw–q2,

with

w52 tv~2,1!21
q1
k

2v~3,2!21S q3k 1 l32D2v~2',1!v~2,1!21l21,

a5kudetv~2,1!detv~3,2!uP2Z,

andQ the (g3g) matrix with Z coefficients,

Q5udetv~2,1!detv~3,2!u@v~2',3!v~2,3!212v~2',1!v~2,1!21#.

From Lemma~IV.8! it follows thatQ is a symmetric matrix. A simple computation shows th
Q can be expressed as

Q5udetv~2,1!detv~3,2!uv~3,2!uv~3,2!21v~3,1!v~2,1!21. ~VI.7!

Thus, detQÞ0. It is not difficult to see that we can extend the summation range of theq2 variable
in ~VI.6!, so that we can write

S q2
5

1

~a/k!g (
q2P~Z/aZ!g

e~p i /a!tq2Qq212p i tw–q2.

By applying the Gauss sum reciprocity formula~VI.5! this becomes

S q2
5

1

~a/k!g
U ag

detQU
1/2

e~p i /4!sgnQ (
lPZg/QZg

e2p iat~ l1w!Q21~ l1w!

5
1

udetv~2,1!detv~3,2!ug Uk
g detv~2,1!detv~3,2!

detv~3,1! U1/2e~p i /4!sgnQ

3 (
lPZg/QZg

e2p ikt~ l1w!v~2,1!v~3,1!21v~3,2!~ l1w!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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We introduce this back into~VI.6! and proceed to compute the sum over theq3 variable. Retaining
only the terms that containq3 , we find that this sum can be expressed as

S q3
5 (

q3P~Z/kZ!g
e2p i tq3

tv~3,1!21@~q18/k2q1 /k!1 tv~3',1!~ l312 l322v~3,2'!l211v~3,2!1…#.

Letting b5kudetv(3,1)u, an inspection of~VI.6! shows that we can write this sum as

S q3
5

1

~b/k!g (
q3P~Z/bZ!g

e2p i tq3
tv~3,1!21@~q18/k2q1 /k!1 tv~3',1!~ l312 l322v~3,2'!l211v~3,2!l!#

5kgdq
18q1

d l31 ,l321v~3,2'!l212v~3,2!l .

Finally, plugging the above result back into~VI.6! and performing the remaining sums overl21,
l32, l31, and l, we obtain

(
q2 ,q3P~Z/kZ!g

M ~1,3!q
18q3
M ~3,2!q3q2M ~2,1!q2q15e~p i /4!sgnQdq

18q1
.

Case 2:We consider now the case of three polarizationsP 1 ,P 2 ,P 3 such thatP 3 is transverse
to P 1 andP 2 , but P 1 andP 2 are not transverse to each other. We choose for (V ,v) integer
symplectic bases (W1i ;W1i

' ) and (W2i ;W2i
' ), such that LP 1

5spanR$W1i% i51,...,g ,

LP 2
5spanR$W2i% i51,...,g , and satisfying the conditions~IV.17!–~IV.18!, and (W3i ;W3i

' ), with
LP 3

5spanR$W3i% i51,...,g . The matricesv~3,1! andv~3,2! defined with respect to these bases a
nonsingular, whilev~2,1! has the form shown in~IV.19! and only the reduced matrixv̌(2,1) is
nonsingular. Using the expressions~IV.14! and ~IV.25!, we proceed to compute the sum

(
q2 ,q3P~Z/kZ!g

M ~1,3!q
18q3
M ~3,2!q3q2M ~2,1!q2q1

5uk2gkhudet v̌~2,1!detv~3,2!detv~3,1!u21/2 )
i5h11

g

dq2i q1i

3 (
q2 ,q3P~Z/kZ!g

F (
@ l31#PZg/v~3,1!Zg

e2~p i /k!A~3,1! l31q3q18GF (
@ l32#PZg/v~3,2!Zg

e~p i /k!A~3,2! l32q3q2G
3F (

@121#PZh/v̌~2,1!Zh
e~p i /k!Ǎ~2,1! l21q̌2q̌1G . ~VI.8!

Let us deal first with the sum overq2 and make use of the fact thatq2i5q1i for i5h 1 1,...,g. As
before, we use the notationq̌25(q21,...,q2h). We find that the sum over the terms that conta
q̌2 reads as

S q̌2
5 (

q̌ 2P~Z/kZ!h
e~p i /k!t q̌ 2Bv̌~2,1!21q̌ 212p i tw–q̌ 2,

where we introduced the notations
J. Math. Phys., Vol. 38, No. 5, May 1997
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Bi j5„v~3,2!21v~3,1!…i j , i , j51,...,h

wi5 (
j5h11

g

„v~2',3!v~2,3!21
…i j

q1 j
k

2(
j51

h

v̌~2,1! j i
21 q1 j

k

2(
j51

g

v~3,2! i j
21S q3k 1 l32D

j

2(
j51

h

„v̌~2',1!v̌~2,1!21
…i j ~ l21! j .

Now let us define

a5kudet v̌~2,1!detv~3,2!uP2Z,

Q̌5udet v̌~2,1!detv~3,2!uBv̌~2,1!21.

The (h3h) matrix Q̌ is symmetric and has integer coefficients. We also have

v~3,2!21v~3,1!5SB 0

0 I D
and thus (B21) i j5„v(3,1)21v(3,2)…i j , i , j51,...,h. Then, since~VI.8! is unchanged if we ap-
propriately extend the summation range of theq̌2 variable, we can write

S q̌2
5

1

~a/k!h (
q̌ 2P~Z/aZ!h

e~p i /a!tq̌2Q̌q̌212p i tw–q̌2

5
1

udet v̌~2,1!detv~3,2!uh Uk
h det v̌~2,1!detv~3,2!

detv~3,1! U1/2e~p i /4!sgnQ̌

3 (
lPZh/Q̌Zh

e2p ikt~ l1w!w̌~2,1!B21~11w!.

For the last equality in the above expression we used the Gauss sum formula~VI.5!. Now,
introducing the notationl218 5( l21,0,...,0) andl85( l,0,...,0) for theextensions ofl21 and l to
g-dimensional vectors, we find that the resulting sum over the terms containingq3 is

S q3
5 (

q3P~Z/kZ!g
e2p i tq3

tv~3,1!21@~q18/k2q1 /k!1 tv~3',1!~ l312 l322v~3,2'!l218 1v~3,2!l8!#

5kgdq
18q1

d l31 ,l321v~3,2'!l218 2v~3,2!l8 .

Finally, inserting the above result back into~VI.8!, we obtain

(
q2 ,q3P~Z/kZ!g

M ~1,3!q
18q3
M ~3,2!q3q2M ~2,1!q2q15e~p i /4!sgnQ̌dq

18q1
.

Now, let us examine more closely the symmetric matricesQ andQ̌ and their relation to the
symmetric bilinear formH from ~VI.1! introduced in relation to the Maslov–Kashiwara inde
SinceLP 1

ùLP 3
50, we can take (W3i ,W1i) as a basis forV . With respect to this basisW2i has

the decomposition

W2i5~v~2,1!v~3,1!21! i jW3 j1~v~2,3!v~1,3!21! i jW1 j .
J. Math. Phys., Vol. 38, No. 5, May 1997
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Using this we find for the symmetric bilinear formH on LP 2
the expression

Hi j5H~W2i ,W2 j !5v~W2i ,p31W2 j !52@v~2,1!v~3,1!21v~3,2!# i j , i , j51,...,g.

If LP 1
andLP 2

are transverse, then comparing the above formula to~VI.7! we find that

H52udetv~2,1!detv~3,2!uQ21.

Thus sgnH5 2 sgnQ in this case. IfLP 1
andLP 2

are not transverse, then we have

H52v~2,1!v~3,1!21v~3,2!52S v̌~2,1! 0

0 0D SB
21 0

0 I D 52S v̌~2,1!B21 0

0 0D
52udet v̌~2,1!detv~3,2!uS Q̌21 0

0 0
D ,

and sgnH5 2 sgnQ̌. Therefore, having in view Lemma VI.2, we obtain in either case that

(
q2 ,q3P~Z/kZ!g

M ~1,3!q
18q3
M ~3,2!q3q2M ~2,1!q2q15e2~p i /4!t~LP 1

,LP 2
,LP 3

!dq
18q1
. ~VI.9!

Given three arbitrary polarizationsP 1 ,P 2 ,P 3 of T we can always find a polarizationP 4 trans-
versal to all of them. Together with the cocycle property~3! of Proposition VI.3 oft this implies
that ~VI.9! holds in general. h

Thus, geometric quantization assigns canonically to the symplectic torus (T ,kv) a projective
Hilbert spacePH. A similar property to the one expressed by Theorem VI.4 for the quantiza
of symplectic tori holds for the quantization of symplectic vector spaces using constan
polarizations. In the vector space case too, the unitary operators relating the Hilbert spa
different polarizations satisfy a transitive composition law up to a projective factor given in t
of the Maslov–Kashiwara index, exactly as in~VI.4!. For the treatment of the quantization of
symplectic vector space we refer the reader to Refs. 1–3.

VII. THE METAPLECTIC CORRECTION

The quantization of the 2g-dimensional torusT described in Sec. III associated to the da
(T ,kv,P ), with P an invariant real polarization, a Hilbert spaceHP . In constructingHP we
made use of the bundle of half-densities onP and we proved in Sec. IV and Sec. VI that th
Hilbert spaces of different polarizations are projectively identified. In this section we show th
using half-forms instead of half-densities we can associate to (T ,kv) a true Hilbert spaceH̃, not
merely a projective onePH.

A. Metaplectic and metalinear structures

A consistent choice of the bundle of half-forms onP , for each polarizationP , requires the
choice of a metaplectic frame bundle on (T ,kv).

Let SP~T ! denote the symplectic frame bundle of (T ,kv). Let Mp(2g,R) denote the meta-
plectic group, that is, the double cover of the symplectic group Sp(2g,R), and let
r:Mp(2g,R)→Sp(2g,R) be the covering homomorphism.A metaplectic frame bundleon
(T ,kv) is a principal Mp(2g,R) bundle MP~T ! over T together with a 2:1 covering ma
p:MP(T )→SP(T ), such that the following diagram commutes:
J. Math. Phys., Vol. 38, No. 5, May 1997
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MP~T !3Mp~2g,R! → MP~T !

p3r↓ ↓ p
SP~T !3Sp~2g,R! → SP~T !

.

The horizontal arrows denote the right group actions. The set of isomorphism classes of
plectic frame bundles onT is a principal homogeneous space for the cohomology gr
H1(T ;Z2) ~Ref. 1, Chap. V!.

Let us consider now the complex linear group GL(g,C) and its double cover, the comple
metalinear group ML(g,C). Let r:ML( g,C)→GL(g,C) be the covering projection an
x:ML( g,C)→C the character of ML(g,C) defined as the holomorphic square root of the comp
character det+ r, such thatx(ẽ)51, whereẽ is the identity element of ML(g,C). The real linear
group GL(g,R) is a subgroup of GL(g,C) and its preimage ML(g,R)5r21 GL(g,R)
,ML( g,C) is the real metalinear group. The group GL(g,R) is naturally embedded in
Sp(2g,R) and the metalinear group ML(g,R) can be identified with a subgroup of the metaplec
group Mp(2g,R).1,4 The elementẽ in Mp(2g,R), ẽÞẽ, and that covers the identitye in
Sp(2g,R), belongs to Mp(2g,R)ùML( g,R) andx( ẽ)5ep i5 2 1.

There is a standard construction1,4 which, given a metaplectic frame bundle MP~T !, defines
the bundle of metalinear Lagrangian frames and, for each polarizationP , the bundle of half-forms
on P . Let N denote the subgroup of Sp(2g,R) given by

N5H S I S

0 I DSPGL~g,R!,tS5SJ .
The group N is simply connected and its preimager21N under the projection
r:Mp(2g,R)→Sp(2g,R) has two components, each diffeomorphic toN. We identify the identity
component withN and regardN as a subgroup of Mp(2g,R).

The bundle SP(T )/N on T obtained by taking the quotient of the symplectic frame bun
under the right action of the subgroupN,Sp(2g,R) is naturally identified1,4 with the bundle
F l (T ) of Lagrangian frames of (T ,kv). We recall that a Lagrangian frameV of Tx(T ) is an
ordered g-tuple V5(V1 ,...,Vg) of linearly independent vectorsViPTx(T ), such that
kv(Vi ,Vj )50. The group GL(g,R) acts freely onF l x(T ) on the right.

Consider now the bundleF l̃ (T )5MP(T )/N on T . It is a double cover ofF l (T ) called the
bundle ofmetalinear Lagrangian frameson T . The group ML(g,R) acts freely on its fibers and

ML( g,R) orbits in F l̃ (T ) project to GL(g,R) orbits in F l (T ) under the covering projection

p:F l̃ (T )→F l (T ).
Now, for any real polarizationP of (T ,kv), let GL~P ! denote the bundle of linear frames o

P . It is the principal GL(g,R) bundle onT whose fiber overx is the set of all ordered base
W5(W1 ,...,Wg) of P x,Tx(T ). A metalinear frame bundlefor P is a principal ML(g,R)
bundle ML~P ! on T together with a 2:1 covering mapp:ML(P )→GL(P ), such that the follow-
ing diagram commutes:

ML ~P !3ML ~g,R! → ML ~P !

p3r↓ ↓ p
GL~P !3GL~g,R! → GL~P !

.

Since GL(P ),F l (T ), we define the bundle of metalinear frames ofP as the preimage

ML(P )5p21 GL(P ) under the covering mapp:F l̃ (T )→F l (T ). Thus the choice of a meta
plectic structure on (T ,kv) uniquely determines, for each real polarizationP , a metalinear
structure onP .
J. Math. Phys., Vol. 38, No. 5, May 1997
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Given a metalinear frame bundle for each polarizationP , we can now define the bundl
(Det P * )1/2 of half-formsonP . It is the complex line bundle onT associated to ML(P ) through
the left action of ML(g,R) on C defined, for anyãPML( g,R), by multiplication withx(ã)21.
That is,

~Det P * !1/25ML ~P !3MI ~g,R!C, ~VII.1!

where a point@WĨ ,l# in the line bundle (DetP * )1/2 is defined as the equivalence cla

@WĨ ,l#5$„W̃•ã,x(ã)l…uãPML( g,R)%. The space of sectionsm of (Det P * )1/2 is isomorphic to
the space of ML(g,R)-equivariant functionsm]:ML(P )→C, that is, functions satisfying
m](W̃•ã)5x(ã)m](W̃).

We now describe the construction of a metaplectic frame bundle on (T ,kv). Let us consider
again the symplectic linear manifold (V ,kv). We choose a symplectic fram
(U1 ,...,Ug ;V1 ,...,Vg) with respect to which we identify the symplectic frame bundle SP~V ! of
(V ,kv) with the product bundleV 3Sp(2g,R). There is only one metaplectic structure onV
and it corresponds to the trivial metaplectic frame bundle MP(V )5V 3Mp(2g,R), with cover-
ing mapp:MP(V )→SP(V ) defined byp(X,c̃)5„X,r( c̃)…, for anyXPV and c̃PMp(2g,R).
The bundle of symplectic frames SP~T ! on (T ,kv) is also trivializable, and we identify it with
the trivial bundleT 3Sp(2g,R) through the trivialization defined by the global invariant sym
plectic frame (U1 ,...,Ug ;V1 ,...,Vg). To define the metaplectic frame bundle MP~T ! overT we
lift the action of the integer latticeZ on V to the bundle MP~V ! and let MP(T )5MP(V )/Z.
TheZ action on MP~V ! is determined by a homomorphisme:Z→Z/2Z and is defined by

W•~X,c̃!5~X1W,ẽ e~W!c̃!, ~VII.2!

for anyWPZ and (X,c̃)PV 3Mp(2g,R). We let

MPe~T !5MP~V !/Z→T ~VII.3!

stand for the metaplectic frame bundle determined by the homomorphisme.
For the symplectic linear space (V ,kv) too we have the following bundles: the bundle

Lagrangian framesF l̃ (V )5SP(V )/N; the bundle of metalinear Lagrangian fram

F l̃ (V )5MP(V )/N; for any constant real polarizationP of V , the bundle GLˆ(P ),F l (V ) of

frames of P , the bundle ML̂(P ),F l̃ (V ) of metalinear frames ofP , and the bundle

(Det̂ P * )1/25ML̂(P )3ML( g,R)C of half-forms onP . TheZ action~VII.2! on MP~V ! commutes
with the right Mp(2g,R) action and, therefore, also with the action of the subgro

N,Mp(2g,R). Hence there is an inducedZ action onF l̃ (V )5MP(V )/N and on any sub-

bundle ML̂(P ),F l̃ (V ). Thus we have

F l̃ ~T !5MP~T !/N5„MP~V !/Z…/N5F l̃ ~V !/Z,

ML ~P !5ML̂ ~P )/Z,F l̃ ~T !,

where ML(P ) is the metalinear frame bundle onT for the invariant real polarizationP of T
induced from the constant polarizationP of V . TheZ action on ML̂(P ) induces aZ action on
the associated bundle of half-forms (Det̂ P * )1/2 and (DetP * )1/25(Det̂ P * )1/2/Z. The space
of sections of the line bundle (DetP * )1/2 overT can be identified with the space ofZ-invariant

sections of the line bundle (Detˆ P * )1/2 over V . A sectionm̂ of (Det̂ P * )1/2 corresponds to a
ML( g,R)-equivariant mapm̂]:ML̂(P )→C and it isZ-invariant if the functionm̂] satisfies

m̂]~X1W,c̃N!5e2p i e~W!m̂]~X,c̃N!, for any WPZ.
J. Math. Phys., Vol. 38, No. 5, May 1997
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B. Quantization with half-forms

Now let us return to the quantization of (T ,kv). We construct the Hilbert spaceH̃P from
sections of the line bundleL^ (Det P * )1/2 covariantly constant along the polarizationP . The
operator of covariant differentiation alongP of sections of the bundle of half-forms
(Det P * )1/2 is defined similarly to~II.5!. Let m be a section of (DetP * )1/2. Then, for any
VPP , “V

Pm is the section with associated function (“V
Pm)]:ML(P )→C determined by

~“V
Pm!]~ X̃!5V„m]~ X̃!….

In the above expressionX̃ is a local metalinear frame field covering the local fram
X5(X1 ,...,Xg), whereX1 ,...,Xg are Hamiltonian vector fields spanningP on some contractible
open subset ofT . The covariant differentiation alongVPP of a section s^ m of
L^ (Det P * )1/2 is then defined by

“V
P~s^ m!5“Vs^m1s^“V

Pm.

The space of sections of the line bundleL^ (Det P * )1/2 overT is identified with the space of
Z-invariant sections of the line bundleL̂^ (Det̂ P * )1/2 overV .

Let us choose as in~III.5! constant vector fieldsW1 ,...,Wg on V such that
P5spanR$W1 ,...,Wg% andWiPPùZ. Then the Bohr–Sommerfeld setBS P on T , that is, the
union of all the leavesL of the polarizationP for which the line bundle„L^ (Det P * )1/2…uL has
a nowhere zero covariantly constant section, is determined by the condition

e2p ikv~W,X!2p i e~W!51, for any WPPùZ. ~VII.4!

Thekg distinct Bohr–Sommerfeld orbits onT , labeled by the indexqP(Z/kZ)g, are described by
the equations

Lq5~q1 ,...,qg! : kv~Wi ,X!5qi1
1
2e~Wi ! ~mod k!, i51,...,g.

The Hilbert spaceH̃P is defined as

H̃P5 %

L,BS P

S̃L ,

where S̃L is the one-dimensional space of parallel sections of the line bun
„L^ (Det P * )1/2…uL . The inner product inH̃P is defined by

^s,s8&5H 0, if sPS̃L ,s8PS̃L8 , and LÞL8,

E
L

V~s,s8!, if s,s8PS̃L .

The densityV(s,s8) on the Bohr–Sommerfeld orbitL is defined as follows. For each poin
xPL, there is a neighborhoodU of x such that both line bundlesL and (DetP * )1/2 are
trivializable. Then the sectionss ands8 restricted toUùL can be expressed ass5s^ m and
s85s8^ m8, for some covariantly constant sectionss,s8 of L andm,m8 of (Det P * )1/2 over
UùL. LetW5(W1 ,...,Wg) be a frame forP x . Then we set

V~s,s8!~WI !5~s,s8!~x!m]~W̃)m8]~W̃),

whereW̃PML(P )x is a metalinear frame that projects onto the linear frameWPGL(P )x .
J. Math. Phys., Vol. 38, No. 5, May 1997
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Let us also reformulate the BKS pairing in light of the new definitions based on the choi
a metaplectic frame bundle and the use of half-forms instead of half-densities. LetP 1 andP 2 be
two real polarizations ofT . The corresponding Hilbert spaces areH̃P 1

5 % L1,BS P 1
S̃L1

and

H̃P 2
5 % L2,BS P 2

S̃ L2
. The BKS pairinĝ ^•,•&&:H̃P 2

3H̃P 1
→C is defined by setting

^^s2 ,s1&&5e2~p i /4!hE
L2ùL1

V~s2 ,s1!, for any s2PS̃L2
, s1PS̃L1

, ~VII.5!

whereh5g 2 dim(P 1ùP 2) andV(s2 ,s1) is the density onL2ùL1 defined as follows. For any
point xPL2ùL1 , choose a basisB5(V2,W;V1,T) of Tx(T ) as in ~IV.1!–~IV.2!. Then
U15(V1,W) is a frame forP 1x andU25(V2,W) is a frame forP 2x . In a neighborhood ofx the
sectionss1 ands2 can be factorized such thats15s1^ m1 ands25s2^ m2 , with s1 ,s2 sections
of L andm1 ,m2 sections of (DetP 1* )

1/2 and (DetP 2* )
1/2, respectively. Then the value of th

densityV(s2 ,s1) on the basisW of Tx(L2ùL1) is defined to be

V~s2 ,s1!~WI !5~s2 ,1!~x!m2
]~U 2̃!m1

]~U 1̃!. ~VII.6!

In the above expressionU 1̃ is a metalinear frame ofP 1x that projects ontoU1 andU 2̃ a metalinear

frame ofP 2x that projects ontoU2. The framesU 1̃,U 2̃ are chosen in a manner ‘‘consistent’’ wit

the metaplectic structure on (T ,kv). A description of what this ‘‘consistent’’ choice is can b
found in ~Ref. 1, Chap. V, Ref. 4, and Ref. 16, Sec. 5.4!. The important point is that, given

metaplectic frame bundle MP~T !, one can arbitrarily chooseU 2̃ projecting ontoU2. These
choices then uniquely pick a metalinear frame forP 1 projecting ontoU1. Moreover the right-hand

side of the expression~VII.6! does not depend on the choice ofU 2̃ coveringU2.

C. The Hilbert space

We are going to quantize (T ,kv) with the trivial metaplectic structure. The bundle of me
plectic frames onT defined by~VII.3! is the product bundle MP(T )5T 3Mp(2g,R). Since the
metaplectic frame bundle is trivial, so are the metalinear frame bundle and the bundle o
forms of any polarization ofT . The Bohr–Sommerfeld condition~VII.4! reads now as in Sec. III
However, as we shall prove below, the use of half-forms in the construction of the qua
Hilbert space leads to intertwining operators between Hilbert spaces of different polarization
obey a transitive composition law.

For each polarizationP we fix a symplectic frame (Wi ;Wi
') of ~T ,v! as in ~III.5!, with

P5spanR$W1 ,...,Wg%, and a metalinear frame fieldW̃PML(P ) projecting onto the linear frame
field W5(W1 ...,Wg) of P . This uniquely determines astandard unitary basis
$sq5sq^ dq%qP(Z/kZ)g of the Hilbert spaceH̃P , where:

~i! sq is the unitary section ofL on the Bohr–Sommerfeld leaveLq , as described by the equa
tions ~III.13!–~III.14!.

~ii ! dq is the restriction toLq of the sectiond of (Det P * )1/2 defined by settingd](W̃)51.

For any two polarizationsP 1 andP 2 , the BKS pairing~VII.5! induces the linear operato
F̃P 2P 1

:H̃P 1
→H̃P 2

defined by^s2 ,F̃P 2P 1
s1&5^^s2 ,s1&&, for any s1PH̃P 1

and s2PH̃P 2
.

With respect to the unitary bases$s1q1
5s1q1^ d1q1% of H̃P 1

and$s2q2
5s2q2^ d2q2% of H̃P 2

, the

operatorF̃P 2P 1
is represented by the matrix
J. Math. Phys., Vol. 38, No. 5, May 1997
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M̃ ~2,1!q2q15e2~p i /4!hE
L2q2

ùL1q1

V~s2q2
,s1q1

!,

whereh5g 2 dim(P 1ùP 2). Let us compute the explicit form of the matrixM̃ (2,1). Choose
linear framesW1PGL(P 1) andW2PGL(P 2) as in ~IV.17!–~IV.18! and metalinear frame field

W1̃PML(P 1) projecting ontoW1 andW2̃PML(P 2) projecting ontoW2. The half-formsd1 and

d2 are defined byd1
](W1̃)51 andd2

](W2̃)51. Let us introduce, as in~IV.24!, the symplectic
frameB5(V2,W;V1,T) for (T ,kv) satisfying the conditions~IV.1!–~IV.2!. Let a21 be the ele-
ment of GL(g,R) defined by

a215H S kv̌~2,1! 0

0 I D , if P 1ùP 2Þ0,

kv~2,1!, if P 1ùP 250.

ThenU25(V2,W)5W2 is a frame forP 2 andU15(V1,W)5W1–a21
21 is a frame forP 1 . Let us

takeU 2̃5W2̃PML(P 2). Then, as mentioned previously, this uniquely picks a metalinear fr

U 1̃PML(P 1) projecting onto U1. There is a unique elementã21PML( g,R) so that

W1̃5U 1̃–ã21, and its projection to GL(g,R) is r(ã21)5a21. For any pair of intersecting Bohr–

Sommerfeld orbitsL1q1
andL2q2

, the pair of framesU 2̃ andU 1̃ is used to define the densit
V(s2q2

,s1q1
) according to~VII.6!. Thus we obtain

V~s2q2
,s1q1

!~WI !5~s2q2,s1q1!d2q2
] ~U 2̃!d1q1

] ~U 1̃!5~s2q2,s1q1!d2q2
] ~W2̃!d1q1

] ~W1̃–ã 21
21!

5x~ ã21!
21~s2q2,s1q1!.

Together with the results of Sec. IV, the above expression implies that the matrixM̃ (2,1) differs
from the expression of the matrixM ~2,1! of that section by a phase factor:

M̃ ~2,1!5e2~p i /4!h
x~ ã21!

21

udeta21u21/2 M ~2,1!. ~VII.7!

Therefore the conclusion at the end of Sec. IV is still valid, that is, the following.
Theorem VII.8: For any two invariant real polarizationsP 1 andP 2 of the symplectic torus

(T ,kv), the linear operatorF̃ P 2P 1
: H̃P 1

→H̃P 2
is unitary.

However, Theorem VI.4 is restated as follows:
Theorem VII.9: For any three invariant real polarizationsP 1 , P 2 , P 3 of the symplectic

torus (T ,kv) we have

F̃P 1 ,P 3
+F̃P 3P 2

+F̃P 2P 1
5I .

Proof: The proof is the same as for Theorem VI.4, the only modification being the approp
factor correction indicated in~VII.7!. Using ~VI.9!, we find that, with the assumption thatP 3 is
transverse toP 1 andP 2 , we have
J. Math. Phys., Vol. 38, No. 5, May 1997
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(
q2 ,q3P~Z/kZ!g

M̃ ~1,3!q
18q3
M̃ ~3,2!q3q2M̃ ~2,1!q2q1

5
e2~p i /4!hx~ ã 32

21ã31ã 21
21!

udeta32u21/2udeta31u1/2udeta21u21/2 e
2~p i /4!t~LP 1

,LP 2
,LP 3

!dq
18q1
. ~VII.10!

Using the results of Sec. VI, we find the following. IfP 1ùP 250, then

a32
21a31a21

215k21v~3,2!21v~3,1!v~2,1!2152k21H21,

where H is the symmetric matrix whose signature equals the Maslov–Kashiwara i
t(LP 1

,LP 2
,LP 3

). If P 1ùP 2 Þ 0, then

a32
21a31a21

215v~3,2!21v~3,1!S k21v̌~2,1!21 0

0 I D 5S k21Bv̌~2,1!21 0

0 I D
and

H52S v̌~2,1!B21 0

0 0D .
Thus, in either case, we obtain

e2~p i /4!hx~ ã 32
21ã31ã 21

21!

udeta32u21/2udeta31u1/2udeta21u21/25e2~p i /4!he~p i /2!h15e~p i /4!sgnH,

whereh1 is the number of positive eigenvalues of the symmetric matrixH. For the last equality
we used the relation sgnH52h1 2 h. Thus the phase factors on the right-hand side of equa
~VII.10! cancel out. h

Hence quantization canonically associates to the data (T ,kv) plus a trivial metaplectic frame
bundle a Hilbert spaceH̃. This is similar to the quantization of a symplectic vector space1,3

where the metaplectic correction resolves the projective ambiguity from the quantization
half-densities and enables the construction of a Hilbert space. One can carry out the constr
of the present section~Hilbert space, BKS pairing! equally well for a choice of a nontrivia
metaplectic structure on (T ,kv). The computations necessary for proving the Theorems V
and VII.9 are more involved, but the conclusions are the same.

VIII. THE MASLOV INDEX AND THE HILBERT SPACE

In this section we present an alternative way to the metaplectic correction of resolvin
projective ambiguity that results from the quantization with half-densities described in Sec.
exploits the relationship between the Maslov–Kashiwara index of a triple of Lagrangian plan
a symplectic vector space and the Maslov index of a pair of elements in a four-fold cover
Lagrangian Grassmannian of that space. The idea is not new; the same facts are used
construction of the Shale–Weil representation of the metaplectic group on the Hilbert spa
quantization of a symplectic space.1,2

We begin by summarizing some results regarding the covering groups of the symp
group, the covering spaces of the Lagrangian Grassmannian of a symplectic vector space
Maslov index. For more details and proofs we refer the reader to Refs. 1, 20, and 22.

Consider again the symplectic 2g-dimensional vector space~V ,v!. Let Lag~V ! denote the
Lagrangian Grassmannian of~V ,v!, that is, the space of all Lagrangian subspaces ofV . The
symplectic group Sp~V ! acts transitively on Lag~V !. We have the following~Ref. 22, Chap. I!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Theorem VIII.1: (1) For every q51,2,... ,̀ , the symplectic group has a unique q-fold
covering groupSpq(V ); Sp̀ (V ) is the universal covering group. (2) For every q51,2,... ,̀ , the
Lagrangian Grassmannian Lag~V ! has a unique q-fold covering spaceLagq(V ); Lag̀ (V ) is the
universal covering space. (3) The groupSpq(V ) acts transitively onLag2q(V ).

For our purpose the important fact is that the double cover Mp(V )5Sp2(V ) of Sp~V !, the
metaplectic group, acts on the four-fold cover Lag4(V ) of Lag~V !.

Let us consider the universal covering space Lag`(V ) of Lag~V !, and for any
L`PLag̀ (V ) let L denote its natural projection onto Lag~V !. A pair (L` ,L 8̀ ) of elements in
Lag̀ (V )3Lag̀ (V ) is called transverseif LùL850. We will make use of the following
results.20

Theorem VIII.2: There exists a unique function,

m:Lag̀ ~V !3Lag̀ ~V !→Z,

called the Maslov index, with the following two properties.
~1! m(L` ,L 8̀ )2m(L` ,L 9̀ )1m(L 8̀ ,L 9̀ )5t(L,L8,L9).
~2! m(L` ,L 8̀ )2t(L,L8,L9) is locally constant on the subset$(L` ,L 8̀ ,L9)PLag̀ (V )

3Lag̀ (V )3Lag(V )uLùL95L8ùL950%.
t(L,L8,L9) in ~1! of Theorem VIII.2 is the Maslov–Kashiwara index of a tripleL,L8,L9 of

Lagrangian planes in~V ,v!, introduced in Sec. VI.
Proposition VIII.3: The Maslov indexm has the following properties.
~1! m(L` ,L 8̀ )1m(L 8̀ ,L`)50.
~2! m(L` ,L 8̀ )[g2dim(LùL8) ~mod 2!.
~3! m(a`L` ,a`L 8̀ )5m(L` ,L 8̀ ), for every à PSp̀ (V ).
For every positive integerq, there is a well-definedZ/2qZ-valued Maslov index,20

m2q :Lagq~V !3Lagq~V !→Z/2qZ,
~VIII.4 !

m2q~Lq ,Lq8!5m~L` ,L 8̀ ! ~mod 2q!,

where (L` ,L 8̀ ) is any element of Lag̀(V )3Lag̀ (V ) projecting onto (Lq ,Lq8).
Proposition VIII.5: The Maslov indexm2q has the following properties.
~1! m2q(Lq ,Lq8)2 m2q(Lq ,Lq9)1 m2q(Lq8 ,Lq9)5t(L,L8,L9) (mod 2q).
~2! m2q(Lq ,Lq8)1m2q(Lq8 ,Lq)50.
~3! m4q :Lag2q(V )3Lag2q(V )→Z/4qZ is invariant under the action ofSpq(V ) on

Lag2q(V ), that is, m4q(aqL2q ,aqL2q8 )5m4q(L2q ,L2q8 ), for every aqPSpq(V ). We introduce the

notation Lag̃(V )5Lag4(V ), m̃5m8 , and letL̃ denote a point in Lag˜(V ) that projects ontoL in
Lag~V !.

In Sec. VI we proved that for any three real polarizationsP 1 ,P 2 ,P 3 of the symplectic torus
(T ,kv) we have

FP 1P 3
+FP 3P 2

+FP 2P 1
5e2~2p i /8!t~LP 1

,LP 2
,LP 3

!I , ~VIII.6 !

whereLP 1
,LP 2

,LP 3
are the corresponding rational Lagrangian subspaces of (V ,kv). According

to ~1! of Proposition VIII.5, the lift of the Maslov–Kashiwara indext to Lag̃~V ) has the decom-
position

t~LP 1
,LP 2

,LP 3
!5m̃~ L̃P 1

,L̃P 2
!1m̃~ L̃P 2

,L̃P 3
!1m̃~ L̃P 3

,L̃P 2
! ~mod 8!. ~VIII.7 !
J. Math. Phys., Vol. 38, No. 5, May 1997
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This leads us to define, for any polarizationP and for any pointL̃PPLag̃(V ) projecting onto
LPPLag(V ), the Hilbert spaceH L̃P

5HP . Then we letFL̃P 2
L̃P 1

:H L̃P 1
→H L̃P 2

denote the

unitary operator given by

FL̃P 2
L̃P 1

5e~p i /4!m̃~ L̃P 1
, L̃P 2

!FP 2P 1
. ~VIII.8 !

In view of ~VIII.6 !, ~VIII.7 !, and~VIII.8 ! we obtain the transitive composition law:

FL̃P 1
L̃P 3

+FL̃P 3
L̃P 2

+FL̃P 2
L̃P 1

5I . ~VIII.9 !

Thus the Hilbert spacesH L̃P
, for all L̃PPLag̃(V ) and all polarizationsP of T , are canonically

identified. Geometric quantization associates to the symplectic torus (T ,kv) together with a
choice of four-fold cover Lag˜(V ) of the Lagrangian Grassmannian Lag~V ! a Hilbert spaceH.

IX. THE REPRESENTATION OF THE INTEGER METAPLECTIC GROUP

In this section we show that the integer symplectic group has a unitary projective repr
tation on the projective Hilbert space of Sec. III and that the integer metaplectic group
unitary representation on the Hilbert spaces constructed in Sec. VII and Sec. VIII.

A. Projective representation of the integer symplectic group

We recall from Sec. III that the elements of the integer symplectic group Sp~Z! act by
symplectic diffeomorphisms on the torus (T ,kv) and that this action lifts to the prequantum lin
bundleL, preserving the connection and the Hermitian metric.

Let P be a polarization ofT corresponding to a rational Lagrangian planeLP in the vector
spaceV . An elementb in Sp~Z! mapsP to a polarizationbP corresponding to the rationa
Lagrangian planebLP of V . Hence the action ofb on T lifts to a map of line bundles
b:L^ uDet P * u1/2→L^ uDet(bP )* u1/2. This gives rise to a map of sections. Ifs^ m is a section
of L^ uDet P * u1/2, then (b•s)^ (b•m) is the section ofL^ uDet(bP )* u1/2 defined at any
xPT by

~b•s!~x!5b•s„b21~x!…,

~b•m!b~x!~bW1 ,...,bWg!5mx~W1 ,...,Wg!,

whereW1 ,...,Wg are vectors spanningP x . Thus, to eachbPSp(Z), there corresponds a unitar
operatorb:HP→HbP . Its composition with the intertwining isomorphismFP ,bP :HbP→HP

gives a unitary operator,

UP ~b!5FP ,bP +b:HP→HP . ~IX.1!

For any two polarizationsP 1 ,P 2 we have the commutative diagram

HP 1 ——→
FP 2P 1 HP 2

b↓ ↓ b

HbP 1 ——→
FbP 2 ,bP 1 HbP 2

.

Using this and Theorem VI.4, we find that
J. Math. Phys., Vol. 38, No. 5, May 1997
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UP~b!UP~b8!5FP ,bP +b+FP ,b8P +b85FP ,bP +FbP ,bb8P +bb85e~p i /4!t~LP ,bLP ,bb8LP !FP ,bb8P +bb8

5e~p i /4!t~LP ,bLP ,bb8LP !UP~bb8!,

for anyb,b8PSp(Z). That is, the mapb→UP (b) from Sp~Z! into the set of unitary operators
on HP defines a projective representation of the group Sp~Z! with associated cocycle
cP (b,b8)5e(p i /4)t(LP ,bLP ,bb8LP ). Hence we have the following.

Theorem IX.2: The group Sp~Z! has a unitary projective representation on the projectiv
Hilbert spacePH associated through quantization to(T ,kv).

Below we give the explicit form of this representation. Let us fix a polarizationP and a
symplectic frame (Wi ;Wi

') of ~T ,v! as in ~III.5!, with P5spanR$W1 ,...,Wg%. With respect to
the basis (Wi ;Wi

') we identify the group Sp~Z! with the symplectic group Sp(2g,Z) with Z
coefficients. The generators of Sp~Z! are the elements with the matrix form

a5SA 0

0 tA21D , b5S I B

0 I D , g5S 0 I

2I 0D , ~IX.3!

with APGL(g,Z) and BPM (g,Z), tB5B. As mentioned in Sec. III, the choice of bas
(Wi ;Wi

') uniquely determines a standard unitary basis$sq5sq^ dq%qP(Z/kZ)g of HP , and we
have the following proposition.

Proposition IX.4: The projective representation of Sp~Z! onHP is described by the follow-
ing unitary operators representing the generators:

UP ~a!sq5s tA21q,

UP ~b!sq5e~p i /k!tqBqsq ,

UP ~g!sq5k2g/2 (
q1P~Z/kZ!g

e~2p i /k!tqq1sq1
.

The projective representation of Sp~Z! on PH constructed above coincides with the projectiv
representation of this group defined in Refs. 8 and 23 on the vector space of theta functi
level k obtained through the quantization of a symplectic torus in a holomorphic~Kähler! polar-
ization.

B. The Maslov index and the representation of the integer metaplectic group

Let r:Mp(V )→Sp(V ) be the 2:1 covering homomorphism from the metaplectic group to
symplectic group of~V ,v!. The integer metaplectic group Mp~Z! is defined as the preimage
r21 Sp(Z).

The group Mp~Z! acts on the four-fold cover Lag˜(V ) of Lag~V ! and preserves the subset o
elements in Lag˜(V ) that project to Lag~V ! onto rational Lagrangian subspaces. Having in vie
the definitions and notations of Sec. VIII, we associate to each elementb̃PMp(Z) covering the
element bPSp(Z) the unitary map of Hilbert spacesb̃:H L̃P

→H b̃ L̃P
defined by setting

b̃5b:HP→HbP . The composition ofb̃ with FL̃P , b̃ L̃P
:H b̃ L̃P

→H L̃P
is a unitary operator on

H L̃P
5HP :

UP~ b̃!5FL̃P , b̃ L̃P
+b̃:H L̃P

→H L̃P
.

Moreover, for any two polarizationsP 1 ,P 2 and for anyL̃P 1
,L̃P 2

PLag̃(V ) coveringLP 1
and

LP 2
, we haveF b̃L̃P 2

, b̃ L̃P 1
+b̃5b̃+FL̃P 2 , L̃P1

. Together with ~VIII.9 !, this implies thatUP (b̃)
J. Math. Phys., Vol. 38, No. 5, May 1997
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3 UP (b̃8)5UP (b̃b̃8), for any b̃,b̃8PMp(Z). The mapb̃°UP (b̃) defines a unitary represen
tation of the group Mp~Z! on the Hilbert spaceH L̃P

. One can easily check thatFL̃P 2
, L̃P 1

+ UP 1
(b̃) + FL̃P 1

,L̃P 2
5UP 2

(b̃). Thus we can state the following.

Theorem IX.5: The group Mp~Z! has a unitary representation on the Hilbert spaceH
associated through quantization to„T ,kv,Lag̃(V )….

This representation of Mp~Z! is the analog to the present setting of the Shale–Weil re
sentation of the real metaplectic group on the infinite-dimensional Hilbert space asso
through quantization to a symplectic linear space.1,2

In order to give an explicit expression of the unitary operators representing the eleme
Mp~Z! on the Hilbert space, we seek a description of Mp~Z! in terms of generators. To that en
we make use of the following results from Ref. 20, Sec. III. The notations are those of Sec
Fix a Lagrangian planeLPLag(V ). Then we have the following.
~i! The q-fold covering space Lagq(V ) of the space Lag~V ! can be identified with the se
@Lag(V )3Z2q#L5$(L8,l)ul[g2dim(LùL8) (mod 2)%. If L̂15(L1 ,l1), L̂5(L2 ,l2)
P @Lag(V )3Z2q#L , then the Maslov indexm2q(L̂1 ,L̂2) is given by

m2q~ L̂1 ,L̂2!5l12l21t~L,L1 ,L2! ~mod 2q!. ~IX.6!

~ii ! Theq-fold covering group Spq(V ) of the symplectic group Sp~V ! can be identified with the
group @Sp(V )3Z4q#L5$(b,z)uz[m(b`L` ,L`) (mod 4)%, where b`PSp̀ (V ) and L`

P Lag̀ (V ) are arbitrary elements projecting ontob andL, respectively. The composition law i
the group@Sp(V )3Z4q#L is given by

~b,z!~b8,z8!5„bb8,z1z81t~L,bL,bb8L ! ~mod 4q!…. ~IX.7!

~iii ! The group Spq(V )>@Sp(V )3Z4q#L acts transitively on the space Lag2q(V )>@Lag(V )
3Z4q#L by

~b,z!~L8,l!5~bL8,z1l1t~L,bL,bL8! ~mod 4q!…. ~IX.8!

Therefore, for the integer metaplectic group Mp(Z),Mp(V )5Sp2(V ) that interests us, we
get the identification

Mp~Z!>@Sp~Z!3Z8#L5$~b,z!uz[m~b`L` ,L`! ~mod 4!%.

This will enable us to give a description of the generators of Mp~Z!. Let us first make the
following remarks.

Remark IX.9:Let (b,zb) be an element of@Sp(Z)3Z8#L such thatbL5L. According to~2!
of Proposition VIII.3 we havem(b`L` ,L`)[g2dim(bLùL) (mod 2)[0(mod 2). LetL1 de-
note the LagrangianL with a choice of orientation. Then, since Sp~V ! acts on the space
Lag2(V ) of oriented Lagrangian planes, we can easily deduce, using~IX.8!, that ~i! If
bL15L1 thenzb [ 0 (mod 4);~ii ! if bL1ÞL1 thenzb[2 (mod 4).

Remark IX.10:Let us consider the elements (g,zg) and (b1 ,zb1
) of @Sp(Z)3Z8#L . The

elementsg and b1 belong to the set~IX.3! of generators of Sp~Z! and are described by th
matrices

g5S 0 I

2I 0D and b15S I I

0 I D ,
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with respect to a symplectic basis (Wi ;Wi
') of ~V ,v! with L5spanR$W1 ,...,Wg%. Applying the

multiplication rule ~IX.7!, we find that„(g,zg)(b1 ,zb1
)…35(e,3zg13zb1

1g). By the previous
remark we must havezb1

[0 (mod 4) and 3zg13zb1
1g[0 (mod 4). This leads to the conclu

sion thatzg [ g (mod 4).
In view of the above remarks, we can take as generators for the group MpZ)

>@Sp(Z)3Z8#L the elements

ẽ5~e,4!,

b̃5~b,0!, where b5S I B

0 I D , BPM ~g,Z!, tB5B,

ã5~a,za!, where a5SA 0

0 tA21D , APGL~g,Z!, and za5 H0,2, if det A.0,
if det A,0,

~IX.11!

g̃5~g,zg!, where g5S 0 I

2I 0D , and zg5 i , if g[ i ~mod 8!, i50,1,2,...,7,

ẽ5~e,0!, the identity element,

where the matrix representations of the corresponding elements of Sp~Z! are with respect to the
symplectic basis (Wi ;Wi

').
In particular, forg51, we have the group Sp(Z)5SL(2,Z) with standard generators th

matrices

S5S 0 1

21 0D
and

T5S 1 1

0 1D ,
subject to the relations (ST)35I , S45I . The integer metaplectic group Mp(Z)5Mp(2,Z) has
generators the elementsS̃5(S,5), T̃5(T,0), ẽ5(e,4), satisfying the relations (S̃T̃)35ẽ and
(S̃)45 ẽ.

Let us now takeL to be a rational Lagrangian planeLP that determines a polarizationP on
the torus (T 5V /Z,kv). We choose an elementL̃P in Lag̃(V )>@Lag(V )3Z8#LP projecting
ontoLP and look for the representation of the group Mp~Z! on the Hilbert spaceH L̃P

. To each

element b̃5(b,zb) in Mp(Z)>@Sp(Z)3Z8#LP there corresponds a unitary operator
H L̃P

5HP :

UP~ b̃!5FL̃P , b̃ L̃P
+b̃5e2~p i /4!m̃~ L̃P , b̃ L̃P !FP ,bP +b5e~p i /4!zbUP~b!.

Using the results~IX.4! for the representationUP of Sp~Z! onHP , we obtain the following.
Proposition IX.12: The representation of Mp~Z! onHP is described by the following unitary

operators representing the generators:
J. Math. Phys., Vol. 38, No. 5, May 1997
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UP ~ ẽ !sq5ep isq ,

UP ~ ã !sq5e~p i /4!zas tA21q
,

UP ~ b̃ !sq5e~p i /k!tqBqsq ,

UP ~ g̃ !sq5k2~g/2!e~p i /4!zg (
q1P~Z/kZ!g

e~2p i /k!tqq1sq1
.

In particular, forg51, we obtain the representation of Mp~2,Z!, described by

UP ~ ẽ !qq85ep idqq8 ,

UP ~ T̃!qq85e~p i /k!q2dqq8 ,

UP ~S̃!qq85k21/2e~5p i /4!e~2p i /k!qq8.

C. The metaplectic correction and the representation of the integer metaplectic group.

We recall that in Sec. VII A we fixed an invariant symplectic frame (U1 ,...,Ug ;V1 ,...,Vg) of
(T ,kv) that determined the trivialization SP(T )5T 3Sp(2g,R) and that in Sec. VII C we chose
the metaplectic frame bundle to be the product bundle MP(T )5T 3Mp(2g,R). We consider the
same framework for what follows. With respect to the symplectic basis (Ui ;Vi) of (V ,kv), we
identify the group Sp~V ! with the real symplectic group Sp(2g,R), the subgroup
Sp(Z),Sp(V ) with the integer symplectic group Sp(2g,Z), the group Mp~V ! with the real
metaplectic group Mp(2g,R), and the subgroup Mp(Z),Mp(V ) with the integer metaplectic
group Mp(2g,Z).

An elementbPSp(Z) induces a bundle automorphismb:SP(T )→SP(T ), which, under the
above-mentioned identifications, is described by the left action

~x,c!PT 3Sp~2g,R!→
b

„b~x!,bc…PT 3Sp~2g,R!.

Any b̃PMp(Z) acts on (T ,kv) as a symplectic diffeomorphism through its projecti
b5r(b̃)PSp(Z). This action lifts to an automorphismb̃: MP(T )→MP(T ) of the metaplectic
frame bundle described by

~x,c̃!PT 3Mp~2g,R!→
b̃

„b~x!,b̃c̃…PT 3Mp~2g,R!.

Remark IX.13:Let MPe(T ) denote a nontrivial metaplectic frame bundle determined by a ho
morphism e:Z→Z/2Z ~see Sec. VII!. Then, only the elementsb̃ in Mp~Z! with projection
b5r(b̃) to Sp~Z! satisfying e(bW)5e(W), for all W PZ, define bundle automorphism
b̃:MPe(T )→MPe(T ).

For any polarizationP of (T ,kv), an elementbPSp(Z) induces a bundle morphism
b:GL(P )→GL(bP ) between the bundles of linear frames ofP and ofbP . The bundle automor-
phism b̃:MP(T )→MP(T ) determined byb̃PMp(Z) induces a morphism of metalinear fram
bundlesb̃:ML(P )→ML( bP ). Hence, there is an induced morphism between the correspon
half-forms bundles,b̃:(Det P * )1/2→„Det(bP )* …1/2. In conclusion, anyb̃ in Mp~Z! gives rise to
J. Math. Phys., Vol. 38, No. 5, May 1997
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a map of line bundlesb̃:L^ (Det P * )1/2→L^ „Det(bP )* …1/2. The induced map on the space
sections sends a sections^ m of L^ (Det P * )1/2 to the section (b̃•s)^ (b̃•m) of
L^ „Det(bP )* …1/2 defined at anyxPT by

~ b̃•s!~x!5~b•s!~x!5bs„b21~x!…,
~IX.14!

~ b̃•m!]5m]
•b̃21,

wherem]:ML(P )→C is the ML(g,R)-equivariant function associated tom. Therefore we have a
unitary map of Hilbert spacesb̃:HP→H̃bP . Its composition with the operato
F̃P ,bP :H̃bP→H̃P arising from the BKS pairing gives a unitary operator

ŨP ~ b̃!5F̃P ,bP +b̃:H̃P→H̃P . ~IX.15!

Theorem VII.9 together with the fact thatF̃bP 2 ,bP 1
+b̃5b̃+F̃P 2P 1

, for any two polarizationsP 1

andP 2 , imply that ŨP (b̃)ŨP (b̃8)5ŨP (b̃b̃8), for any b̃,b̃8PMp(Z). Thus, the assignmen
b̃°ŨP (b̃) defines a unitary representation of Mp~Z! on H̃P and we can state the following.

Theorem IX.16: The group Mp~Z! has a unitary representation on the Hilbert spaceH̃
associated through quantization to„T ,kv,MP(T )….

One can determine the explicit form of this representation by specializing the defin
~IX.14!, ~IX.15! and the general formulas~IV.14! and~VII.7! to the set of generators of Mp~Z!.
The results show that the representations of Mp~Z! referred to in Theorems IX.5 and IX.16 ar
equivalent.
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Noncommutative geometry beyond the standard model
Igor Prisa) and Thomas Schückerb)
Centre de Physique Theorique, CNRS—Luminy, Case 907, 13288 Marseille Cedex, France

~Received 10 June 1996; accepted for publication 23 October 1996!

A natural extension of the standard model within noncommutative geometry is
presented. The geometry determines its Higgs sector. This determination is fuzzy,
but precise enough to be incompatible with experiment. ©1997 American Insti-
tute of Physics.@S0022-2488~97!02505-X#

I. INTRODUCTION

The standard model of electro-weak and strong interactions is a mediocre element of th
set of Yang–Mills–Higgs theories. Analyzing neighboring theories in this set has essentiall
motivations, Lagrange’s principle of variation to see whether there is a better theory in the vi
and an assessment of experimental deviations from the standard model.

Noncommutative geometry allows us, in some cases, to understand the Higgs field
magnetic field of a Yang–Mills gauge field. There are essentially three approaches to this
The approach due to Dubois-Violette, Kerner, and Madore1 is the most restrictive one. It applie
to Yang–Mills theories with unbroken parity. The approach due to Coquereaux, Esposito-F`se,
and Vaillant,2 on the other hand, is so general that we do not have a model building kit. In
following, we shall stick to Connes’ approach,3 which to our taste4 has the most appealing geo
metrical motivation. This approach is restricted to a tiny set of Yang–Mills theories with D
fermions. That the standard model belongs to this set is a miracle to us. In order to apprec
we look for extensions of the standard model within Connes’ frame. These are not easy t
Left–right symmetric models and grand unified theories do not fit into Connes’ frame.5 No
realistic supersymmetric model has been found so far.6

The mild extension of the standard model that we would like to discuss here is motivate7 by
the quantum group SU(2)j with j a cubic root of 1. Noncommutative geometry is the geometry
spaces where points are excluded by an uncertainty relation. The phase space in quantum
ics is the first example of a noncommutative geometry. Today, the word ‘‘quantum’’ is so o
used that we prefer Madore’s terminology. He calls these spacesfuzzy, and his fuzzy sphere is a
most instructive example.8 According to Connes, the quantum group is to a fuzzy space wha
Lie group is to a manifold. So far the quantum group of the standard model is unknown, b
hope is that this quantum group will explain thefuzzymass relation for the Higgs mass,9

mH
2 53mt

22mW
2 S 11

g2
22

g1
222 1

6g3
22D 1OSmr

4

mt
2D , ~1!

which appears if we want to fit the standard model into Connes’ frame. SU(2)j coacts on the
associative algebraM2(C)%M1(C)%M3(C), which extends mildly the algebra of the standa
model,H%C%M3(C).

II. INPUT

The input of Connes’ model building kit is a spectral triple~A,H,D! and a noncommutative
coupling. HereA is an associative involution algebra with unit. Its group of unitaries,

a!Also at the Universite´ de Provence. Electronic mail: pris@cpt.univ-mrs.fr
b!Also at the Universite´ de Provence. Electronic mail: schucker@cpt.univ-mrs.fr
0022-2488/97/38(5)/2255/11/$10.00
2255J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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G:5$gPGug* g5gg*51%, ~2!

or a subgroup thereof will be the group of gauge transformations. HereH is a Hilbert space tha
carries a faithful representationr of A. The Hilbert space is supposed to decompose into f
pieces,

H5HL%HR%HL
c

%HR
c , ~3!

containing the left- and right-handed fermions and antifermions,

r5S rL 0 0 0

0 rR 0 0

0 0 r̄L
c 0

0 0 0 r̄R
c

D . ~4!

HereD is the Dirac operator, an odd, self-adjoint operator onH. D contains the fermionic mas
matrixM,

D5S 0 M 0 0

M* 0 0 0

0 0 0 M̄

0 0 M̄* 0

D , ~5!

with respect to the above decomposition ofH. The noncommutative couplingz parametrizes
invariant scalar products and therefore generalizes the Yang–Mills gauge couplings.z is an even,
positive operator onH,

z5S zL 0 0 0

0 zR 0 0

0 0 zL
c 0

0 0 0 zR
c

D , ~6!

that commutes withr andD .
For the standard model, the spectral triple and the coupling are

A5H%C%M3~C!{~a,b,c!, ~7!

H denoting the quaternions,

HL5~C2^CN^C3! % ~C2^CN^C!, ~8!

HR5„~C%C! ^CN^C3…% ~C^CN^C!. ~9!

In each summand, the first factor denotes weak isospin doublets or singlets, the second
N generations,N 5 3, and the third denotes color triplets or singlets.

Let us choose the following basis ofH 5 C90:

S udD
L

, S csD
L

, S tbD
L

, S ne
e D

L

, S nm

m D
L

, S nt

t D
L

;

J. Math. Phys., Vol. 38, No. 5, May 1997
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uR , cR , tR ,

dR , sR , bR ,
eR , mR , tR ;

~10!

S udD
L

c

, S csD
L

c

, S tbD
L

c

, S ne
e D

L

c

, S nm

m D
L

c

, S nt

t D
L

c

;

uR
c , cR

c , tR
c ,

dR
c , sR

c , bR
c ,

eR
c , mR

c , tR
c ,

rL~a!5S a^1N^13 0

0 a^1N
D , rR~b!5S B^1N^13 0

0 b̄1N
D , B:5S b 0

0 b̄
D ,

~11!

rL
c~b,c!5S 12^1N^c 0

0 b̄12^1N
D , rR

c ~b,c!5S 12^1N^c 0

0 b̄1N
D ,

M5S SMu^13 0

0 Md^13
D 0

0 S 0
Me

D D , ~12!

with

Mu :5S mu 0 0

0 mc 0

0 0 mt

D , Md :5CKMS md 0 0

0 ms 0

0 0 mb

D , Me :5S me 0 0

0 mm 0

0 0 mr

D .
~13!

All indicated fermion masses are supposed positive and different. The Cabibbo–Kobay
Maskawa matrix

CKM :5S Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

D ~14!

is supposed to be nondegenerate in the sense that there is no simultaneous mass and we
action eigenstate. The couplingz involves six positive numbersx, y1 , y2 , y3 , x̃, ỹ,

zL5S x/312^1N^13 0

0 12^ yD , zR5S x/312^1N^13 0

0 yD ,
~15!

zL
c :5S x̃/312^1N^13 0

0 ỹ/312^13
D , zR

c5S x̃/312^1N^13 0

0 ỹ/313
D ,

with

y:5S y1 0 0

0 y2 0

0 0 y3
D . ~16!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Note that on the level of algebra representation, we have an asymmetry between partic
antiparticles: the former are subject to weak, the latter to strong interactions. This asymm
lifted later at the level of the Lie algebra representationr̃.

The proposed extension of the standard model is mild. We extend the quaternions to ar
complex 232 matrices,aPM2(C),

A5M2~C! %M1~C! %M3~C!. ~17!

All other input items are unchanged. Nevertheless, compared to the standard model, the c
tions will turn out to be quite different and longer.

III. TURNING THE CRANK

We shall organize our calculations according to the theorem of Ref. 10 with invariant s
product Re tr@r( • )* r( • )z#. Our first task is to compute the one-forms.rc being vectorlike does
not produce one-forms and momentarily we may restrict ourselves toHL%HR . A general one-
form is a sum of terms

p„~a0 ,b0!d~a1 ,b1!…

52 i S 0 rL~a0!„MrR~b1!2rL~a1!M…

rR~b0!„M* rL~a1!2rR~b1!M* … 0 D ~18!

and the vector space of one-forms is

VD
1
A5H i S 0 rL~h!M

M* rL~ h̃* ! 0 D , h,h̃PM2~C!J . ~19!

Our basic variable, the ‘‘Higgs,’’ is an anti-Hermitian one-form

H5 i S 0 rL~h!M

M* rL~h* ! 0 D , h5S h11 h12

h21 h22
D PM2~C!. ~20!

It is parametrized bytwo isospin doublets

h15S h11h21
D , h25S h12h22

D . ~21!

Our next task is to compute the two-forms. The junk in degree 2 is

J25H i S j ^ D 0

0 0D , jPM2~C!J ~22!

with

D:5
1

2 S ~MuMu*2MdMd* ! ^13 0

0 2MeMe*
D . ~23!

With respect to the scalar product the two-forms are written as

VD
2
A5p~V2A!/J25H S c̃^ S8 0

0 M* rL~c!M
D , c̄,cPM2~C!J ~24!
J. Math. Phys., Vol. 38, No. 5, May 1997
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with

S85S2h
tr~SDzl !

tr~D2zl !
D, ~25!

zl5S ~x/3!1N^13 0

0 yD , S:5
1

2 S ~MuMu*1MdMd* ! ^13 0

0 MeMe*
D , ~26!

h51 for the casec̃,cPM2~C!, ~27!

h50 for the casec̃,cPH ~ the standard model!. ~28!

For the differentiald:VD
1
A→VD

2
A we have

i S 0 rL~h!M

M* rL~ h̃* ! 0 D °S ~h1h̃* ! ^ S8 0

0 M* rL~h1h̃* !M
D . ~29!

Now we can compute the curvature

C:5dH1H25S ~h1h*2hh* ! ^ S8 0

0 M* rL~h1h*2h* h!M
D , ~30!

where

F:5H2 i S 0 M

M* 0 D 5: i S 0 rL~w!M

M* rL~w* ! 0 D ,
w5h21, w5~w1 ,w2!, w,hPM2~C!, ~31!

is the homogeneous scalar variable.
In order to compute the Higgs potential10 we must return toC90,

V:5Re tr@~C2aC!* ~C2aC!z#. ~32!

We need to know the linear map

a:VD
2
A→r~A!1J2, ~33!

which is determined by the two equations

Re tr@R* ~C2aC!z#50 for all RPr~A!, ~34!

Re tr@K*aCz#50 for all KPJ2. ~35!

The solution of~34! and ~35! is given by

aC5S rL~a! 0 0 0

0 rR~b! 0 0

0 0 r̄L
c~b,0! 0

0 0 0 r̄R
c ~b,0!

D 1 i S k^ D 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D , ~36!
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with

a5c
tr~S8zl !

tr zl2h@ tr~Dzl !#
2/tr~D2zl !

, ik52c
tr~S8zl !

tr zl2h@ tr~Dzl !#
2/tr~D2zl !

tr~Dzl !

tr~D2zl !
h,

b5
c11 tr~Mu*Mu!x1c22 tr~Md*Md!x1c22 tr~Me*Mey!

2Nx1tr y13ỹ
, c:5h1h*2hh*512ww* .

The Higgs potential is

V5tr~c2!S tr~S82zl !2
@ tr~S8zl !#

2

tr zl2h@ tr~Dzl !#
2/tr~D2zl !

D1@ uc11u2 tr~Mu*Mu!
2

12uc12u2 tr~MdMd*Mu*Mu!1uc22u2 tr„~Md*Md!
2
…#x1uc22u2 tr„~Me*Me!

2y…

2
@c11 tr~Mu*Mu!x1c22 tr~Md*Md!x1c22 tr~Me*Mey!#2

2Nx1tr y13ỹ
, ~37!

where

c11512w1*w1 , c22512w2*w2 , c1252w1*w2 , c2152w2*w1 . ~38!

Let us reparametrize the scalars:

h:5SH1 ihZ 2h8*

h H82 ihZ8
D , H,H8,hZ, hZ8PR, h,h8PC. ~39!

From ~37! and ~39! we get

V54B1H
214B2H8214B3HH81B4„uhu21uh8u22~h* h81h8* h!…1terms of order 3 and 4,

~40!

where

B15A11A2 , B25A11A3 , B35A5 , B452A11A4 ; ~41!

A15tr~S82zl !2
@ tr~S8zl !#

2

tr zl2h@ tr~Dzl !#
2tr~D2zl !

, ~42!

A25x tr~Mu*Mu!
22

L1
2Nx1tr y13ỹ

, ~43!

A35x tr~Md*Md!
21tr„~Me*Me!

2y…2
L2

2Nx1tr y13ỹ
, ~44!

A452x tr~Mu*MuMdMd* !, ~45!

A55
2L3

2Nx1tr y13ỹ
; ~46!

L15@x tr~Mu*Mu!#
2, ~47!
J. Math. Phys., Vol. 38, No. 5, May 1997
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L25@x tr~Md*Md!#
21@x tr~Me*Mey!#212x tr~Md*Md!tr~Me*Mey!, ~48!

L352„x2 tr~Mu*Mu!tr~Md*Md!1x tr~Mu*Mu!tr~Me*Mey!…. ~49!

To get the physical variables, we must diagonalize simultaneously the mass matrix~40! and
the kinetic term in the Klein–Gordon action. The latter has the form

tr~dF* * dFz!5 1
2c1$~]H !21~]hZ!21u]hu2%1 1

2c2$~]H8!21~]hZ8 !21u]h8u2%, ~50!

where

c154x tr~Mu*Mu!, c254„x tr~Md*Md!1tr~Me*Mey!…. ~51!

We obtain

V5 1
2mH0

2 H0
21 1

2mH
08

2
H08

21 1
2mH6

2 uH6u21terms of order 3 and 4, ~52!

where

H05cosu0Ac1H2sin u0Ac2H8,

H085sin u0Ac1H1cosu0Ac2H8,
~53!

H65cosu1Ac1h2sin u1Ac2h8,

hW5sin u1Ac1h1cosu1Ac2h8,

with

tan 2u05
2c

b2a
, tan 2u15

2c8

c282c18
, ~54!

a5
4B1

c1
, b5

4B2

c2
, c52

2B3

Ac1c2
, ~55!

c185
B4

c1
, c285

B4

c2
, c85Ac18c28, ~56!

whereu0 andu1 are the Cabibbo-like angles.
The masses of the Higgs particles are given by

mH0

2 5a1b1A4c21~b2a!2, mH
08

2
5a1b2A4c21~b2a!2, mH6

2
52~c181c28!,

mhZ
50, mh

Z8
50, mhW

50. ~57!

The masses of the gauge bosons~see Table I! are found in the covariant Klein–Gordo
Lagrangian,

tr~DF* *DFz! with DF5dF1@r~A!F2Fr~A!# ~58!
J. Math. Phys., Vol. 38, No. 5, May 1997
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the covariant derivative ofF. The normalization of the gauge bosons is fixed by their kinetic te
in the Yang–Mills Lagrangian tr„r(F)* r(F)z…, with r(F):5dr(A)1r(A)2PV2

„M ,r(g)…. g is
the Lie algebra of the group of unitaries,

g5u~2! %u~1! %u~3!5su~3! %su~2! %u~1!3. ~59!

This normalization introduces the gauge couplingsgi . The Lie algebrag being a sum of five
ideals one might expect five gauge couplings. However, the basic object in noncommu
geometry is the associative algebraA which is only a sum of three ideals,

g3
225 4

3Nx̃, ~60!

g2
225Nx1tr y, ~61!

g1
225Nx1 2

9Nx̃1 1
2 tr y1 3

2 tr ỹ. ~62!

For g1 we have chosen the gauge coupling of the standard hypercharge.

IV. OUTPUT

While the noncommutative version of the standard model has one isospin doublet of s
the present extension has two. There are now four neutral scalars, two are massless, the G
bosonshZ andhZ8 , and two are massive, the ‘‘physical’’ Higgs bosonsH0 andH08 . There are two
charged scalars, the massless Goldstone bosonhW and the massive Higgs bosonH6. The neutral
and charged Higgses mix with Cabibbo-like anglesu0 andu1 . In the neutral sector, the mass
and the angle are fuzzy already in the approximationmb!mt , mt5mc5•••50. Note that in this
approximationA150:

mH0

2 5F2mt
21

8

~51z!2
mb
2G S 12

1

61zD , ~63!

mH
08

2
5F2mb

22
8

~51z!2
mb
2G S 12

1

61zD , ~64!

tan 2u05
4

51z

mtmb

mt
22mb

2 , ~65!

where we have putz:5tr y/x13ỹ/x.0 and therefore

TABLE I. Properties of neutral gauge bosons.

g g8 X Z8 Z

g g2 sinuw e8 gX g2 g2 cosuw
m 0 0 mX mW mW /cosuw

uL
2
3

1
22r

1
2

1
2

1
22

1
6 tan

2 uw
dL

1
3 2

1
22r 2

1
2

1
2 2

1
22

1
6 tan

2 uw
nL 0 0

1
22

1
2 tan

2 uw
1
2

1
22

1
2 tan

2 uw
eL 21 21 2

1
22

1
2 tan

2 uw
1
2

1
22

1
2 tan

2 uw

uR
2
3

1
22r 2

1
2 tan

2 uw 0 2
2
3 tan

2 uw
dR 2

1
3 2

1
22r

1
2 tan

2 uw 0
1
3 tan

2 uw
eR 21 21 tan2 uw 0 tan2 uw
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61z52~g1
222 1

6g3
22!/x. ~66!

Let us recall the experimental values of pole masses and gauge couplings at energies
Z:mb54.360.2 GeV, mt5180612 GeV, g150.357560.0001, g250.650760.0007, andg3
51.20760.026. Consequentlyx ranges from 0 tog2

22/3 andz ranges from 13.5 tò and

1.38mt,mH0
,1.41mt , ~67!

1.38mb,mH
08
,1.41mb , ~68!

0,sin u0,0.002. ~69!

Phenomenologically, the light HiggsH08 is a disaster in any case. The mass of the charged H
H6 and their Cabibbo-like angleu1 are sharp in the above approximation,

mH65mt1
1

2
mb

mb

mt
, ~70!

tan 2u152
mtmb

mt
22mb

2 , ~71!

sin u150.02. ~72!

Taking into account thet mass, however, will also render these equations fuzzy.
Concerning the gauge bosons, only the chargeless sector is modified with respect

standard model. To start, we have four neutral bosons: two massless ones,g, the genuine photon
andg8, and two massive ones,X andZ8. In the standard model, theZ8 is absent and an algebra
condition~‘‘unimodularity’’ ! addedad hocreduces the group of gauge transformationsG by one
U~1! factor and eliminates a linear combination ofg8 andX, leaving only the photon and th
genuineZ. In the standard model, the unimodularity is equivalent to the condition of vanis
gauge anomaly,11

tr@xer̃~X!3#50, for all XPg, ~73!

whereg:5$XPAuX*1X50% is the Lie algebra of the group of unitariesG and

r̃~X!:5r~X!1Jr~X!J21 ~74!

is the Lie algebra representation that restores invariance under charge conjugation. Herex is the
chirality operator,e is the projector on the particles, andJ is the charge conjugation. With respe
to the decompositionH5HL%HR%HL

c
%HR

c , they read

x5S 21 0 0 0

0 11 0 0

0 0 21 0

0 0 0 11

D , e5S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D , J5S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D C, ~75!

whereC is the charge conjugation of Dirac spinors. Table I recollects the physical properti
the neutral gauge bosons, mass, gauge coupling, and fermion charges. We have used the f
abbreviations:

mX :5~g2 /gX!mW'mZ , ~76!
J. Math. Phys., Vol. 38, No. 5, May 1997
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2264 I. Pris and T. Schücker: Noncommutative geometry beyond the standard model

¬¬¬¬¬¬¬¬¬¬
gX
2:5g2

2
g2
2@12g1

2/~6g3
2!#

g1
21g2

2@12g1
2/~6g3

2!#
'g2

2 cos2 uw , ~77!

e82:5e2g1
2/~6g3

2! cos2 uw@12g1
2 cos2 uw /~6g3

2!#21'0.011e2, ~78!

r :5~g1
221g2

22!/g3
22. ~79!

These approximations are good at the percent level,g1
2/(6g3

2)50.015.
We note that the gauge coupling of theZ8 is sharp whereas in the standard model all gau

couplings are fuzzy. This sharpness comes from the fact thatM2(C) is simple while U~2!, its
group of unitaries, is not. Phenomenologically, theZ8 with its low massand high couplings to
fermions is a disaster. On top, theZ8 has a gauge anomaly. We are tempted to eliminate it wi
second unimodularity condition. Then, however, its Goldstone boson remains, another dis

Recent experimental evidence for deviations from the standard model in the hadronic
has motivated an additional neutral gauge bosonZ8 with a mass around 1 TeV.12 Clearly this
Z8 cannot be accommodated in the model discussed here. There remains only one other p
ity, adding aZ8 to Connes’ version of the standard model,H % C % M3(C), namely to increase his
algebra toH%C%M3(C)%C. Then again, it seems impossible to have aZ8 mass above the top
mass.

Our conclusion is that within the frame of noncommutative geometry, it is not easy to fi
around the standard model.
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The spectrum of Liouville operators and multiparticle
Hamiltonians associated to one-particle Hamiltonians
with singular continuous spectrum

A. B. Pushnitski
Department of Mathematical Physics, Physical Faculty, St. Petersburg State University,
198904, St. Petersburg, Russia

~Received 30 October 1996; accepted for publication 3 December 1996!

We study the structure of spectrum of the Liouville operatorH25H^ I2I ^H and
the two-particle HamiltonianH15H^ I1I ^H in some model situations when the
corresponding one-particle HamiltonianH has singular continuous spectrum. A
HamiltonianH with singular continuous spectrum of Hausdorff dimension one is
constructed such that the absolutely continuous spectrum of the operatorsH2 and
H1 is empty. On the other hand, we prove the existence of a HamiltonianH with
singular continuous spectrum of Hausdorff dimension zero such that the operators
H2 andH1 have nonempty absolutely continuous spectrum. Thus the Hausdorff
dimension of the support cannot serve as characteristic of the singular measure of a
one-body Hamiltonian that determines the spectral type of the corresponding Liou-
villians or two-body Hamiltonians. ©1997 American Institute of Physics.
@S0022-2488~97!02503-6#

I. INTRODUCTION

In this paper we discuss the relation between the spectrum of a one-particle HamiltonH
and the two-particle HamiltonianH15H^ I1I ^H and the Liouville operatorH25H^ I2I ^H.
For the Hamiltonians with empty singular continuous spectrum, the question has been so
Ref. 1. The results of Ref. 1 for the casessc(H)5B can be summarized as follows:

sp~H6!5$x6yux,yPsp~H !%,

sac~H6!,$x6yu, either xPsac~H ! or yPsac~H !, with x,yPs~H !%

ssc~H6!5B.

Unfortunately, as has been mentioned in Ref. 2, the paper in Ref. 1 contains an erro
makes its assertions concerning the casessc(H)ÞB wrong. Indeed, as it has been proven in R
3, there exists a HamiltonianH with purely singular continuous spectrum such that the opera
H6 have nonempty absolutely continuous spectrum.

In this paper we study the spectrum ofH6 in some model situations whenH has purely
singular continuous spectrum. Recently there has been developed a very fruitful approach
investigation of operators with singular continuous spectrum using the concept of Hau
dimension~see Refs. 4 and 5!. One of the goals of this paper is to show that in our case
question is of a more delicate nature and the Hausdorff dimension of the singular conti
spectrum of a one-particle Hamiltonian is not, in general, an appropriate tool to contro
spectrum of the corresponding multiparticle HamiltoniansH6 ~see Theorems 2.1 and 4.1!.

In Sec. II we present an example of a HamiltonianH with ‘‘very singular’’ spectrum
~singular continuous spectrum of dimension zero! such that the operatorsH6 have nonempty
absolutely continuous spectrum~see Theorem 2.1!. In Sec. III we consider the HamiltonianH with
the Cantor spectrum and show that the operatorsH6 have purely singular continuous spectru
0022-2488/97/38(5)/2266/8/$10.00
2266 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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~Theorems 3.1 and 3.2!. In Sec. IV we construct a HamiltonianH that has ‘‘very smooth’’
singular continuous spectrum~singular continuous spectrum of dimension one!, but the operators
H6 have empty absolutely continuous spectrum~Theorem 4.1!.

Throughout the paper we denote byEH the spectral measure of a self-adjoint operatorH; by
F—an arbitrary Borel subset ofR; by uFu the Lebesgue measure ofF and byxF(x) the charac-
teristic function ofF. Any measure defined on an interval ofR is supposed to be automatical
extended by zero to the whole ofR. By dimX we mean the Hausdorff dimension of the Borel s
X,R.

II. ABSOLUTELY CONTINUOUS SPECTRUM OF H6

Recently Bos and Pavlov~see Ref. 3! have constructed an example of a HamiltonianH with
singular continuous spectrum such that the operatorsH1 and H2 have nonempty absolutel
continuous spectrum. The result we present below shows that singular continuous spectrumH6

may occur, even for HamiltoniansH with ‘‘very singular’’ spectral measures. The followin
theorem is a simple combination of the ideas of Refs. 3 and 6.

Theorem 2.1:There exist Hamiltonians H~6! with purely singular continuous spectrum suc
that dim suppEH(6)50 and the operators H6 :5H (6)

^ I6I ^H (6) have nonempty absolutel
continuous spectrum.

We shall need the following simple lemma.
Lemma 2.2: Let H be defined by

~Hf !~x!5x f~x!, fPH5L2„~a,b!,dm…, ~2.1!

with some measurem. Define the measuresm1 andm2 on (2a,2b) and(a2b,b2a), respectively,
by

m6~F !5E E xF~x6y!dm~x!dm~y!, ~2.2!

and the operators H6 onH^H by

H65H^ I6I ^H. ~2.3!

Then the measurem6 has empty absolutely continuous component if and only if the operator6

has empty absolutely continuous spectrum;m6 is absolutely continuous on some interval if an
only if the spectrum of H6 is absolutely continuous on this interval.

The proof is elementary and based on the spectral theorem.
Proof of Theorem 2.1:We shall take

~H ~6 ! f !~x!5x f~x!, fPH5L2„~21,1!,dm~6 !
…, ~2.4!

with appropriate singular continuous measuresm~6! that we define later. By Lemma 2.2 we nee
to choose the measuresm~6! so that dim suppm~6!50 and the measuresm6 , defined by

m6~F !5E E xF~x6y!dm~6 !~x!dm~6 !~y!, ~2.5!

are absolutely continuous on some subintervals of~22,2!. To construct the measuresm~6! we use
the following result of Ref. 6.

Proposition 2.3 (see Ref. 6): For any interval(a,b),R there exist singular continuous mea
suresm1, m2 on (a,b) such thatdim suppm1,250 andm1*m2 is the Lebesgue measure.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Let us take such measuresm1,2 for the interval (a,b)5~0, 1
2! and denote bym̃1 the ‘‘reflec-

tion’’ of the measurem1 defined bym̃1(F)5m1($
1
22xuxPF%). For any measuren let us denote by

Tan the ‘‘shifted’’ measure (Tan)(F)5n($x2auxPF%). Now we define the measuresm~6! by the
relations

m~1 !5T21m11T1/2m2 , m~2 !5T21m̃11T1/2m2 .

Calculatingm1 , we see thatm1 is absolutely continuous on~21
2,

1
2!. Indeed,

m15m~1 !*m~1 !5T21/2~m1*m2!1T21/2~m2*m1!1T22~m1*m1!1T1~m2*m2!,

where T22(m1*m1)1T1(m2*m2) is supported on ~22,21!ø~1,2!, while T21/2(m1*m2)
5T21/2(m2*m1) is absolutely continuous and supported on~21

2,
1
2!. A similar calculation shows

thatm2 is absolutely continuous on~22,21!ø~1,2!. h

III. ONE-PARTICLE HAMILTONIANS WITH CANTOR-TYPE SPECTRUM

The result of the previous section may lead one to the suggestion thatH6 always have an
absolutely continuous component. In this section we present examples demonstrating tha
not the case.

Theorem 3.1:Let H be defined by (2.1) with the Cantor measurem. Then the operators H6
defined by (2.3) have a purely singular continuous spectrum anddim suppEH6

< 3 ln 2/2 ln 3
50.946.

Proof:
(1) Preliminaries
By Lemma 2.2, we need to show that the corresponding measuresm6 are singular continuous

with dim suppm6<3 ln 2/2 ln 3. Since the Cantor measure is symmetric with respect to the
flection’’ x°12x, the measuresm1 andm2 coincide up to a shift. So, we shall prove the abo
assertion only form1 . For convenience let us change variables and consider the measuren on
@0,1# defined byn(F)5m1($x/2uxPF%). Below we shall define a setB,@0,1# such that dimB
,3 ln 2/2 ln 3 andn (B)51. Obviously, this will imply the desired assertion aboutm1 .

(2) Definition of the set B
For nPN and multi-indexj5( j 1 ,...,j n)P$0,1,2%n, let us define the intervals

D j
~n!5S (

k51

n

32kj k ,(
k51

n

32kj k132nD .
One easily verifies that

n~D j
~n!!5)

k51

n S p~ j k!

4 D5222n)
k51

n

p~ j k!,

wherep(0)5p(2)51, p~1!52. Fork50,1,...,n let us define the sets

Sn~k!5 ø

n~D j
~n!

!522n2k

D j
~n! .

Next, for realtP[0,n] we take
J. Math. Phys., Vol. 38, No. 5, May 1997
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Pn~ t !5 ø
0<k<t

Sn~k!5 ø

n~D j
~n!

!>22n2t

D j
~n! , Qn~ t !5 ø

t,k<n
Sn~k!5 ø

n~D j
~n!

!,22n2t

D j
~n! ,

so thatPn(t)ùQn(t)5B, Pn(t)øQn(t)5@0,1#.
Let aP~12,

2
3!. Then we define the sets

Bn~a!5 ù
k5n

`

Pk~ak!, An~a!5 ø
k5n

`

Qk~ak!,

such thatAn(a)ùBn(a)5B and An(a)øBn(a)5@0,1#. Note that for anya and any n,
Bn(a),Bn11(a) andAn(a).An11(a). On the other hand, for fixedn anda,b, Bn(a),Bn(b)
andAn(a).An(b).

Next, we define the sets

B~a!5 ø
n51

`

Bn~a!, A~a!5 ù
n51

`

An~a!,

with the propertiesA(a)ùB(a)5B, A(a)øB(a)5@0,1#, and for 12,a,b,2
3: B(a),B(b) and

A(a).A(b).
Finally, we take

B5 ù
1/2,a,2/3

B~a!, A5 ø
1/2,a,2/3

A~a!,

with AùB5B, AøB5@0,1#.
Remark 1: In fact, any of the setsB~a! for 1

2,a,2
3 will already have the propertiesn„B~a!…

51, uB~a!u50, but the setB is minimal among them and thus has minimal Hausdorff dimens
Remark 2: The intuitive idea lying behind our definition ofB is the following. One can

consider a sequence of absolute continuous measuresmn , approximating the Cantor measurem,
built in a natural way. Then we obtain the corresponding sequence of absolute continuou
suresnn , approximatingn in the weak sense. Letf n(x) be the densities ofnn . Then the sets
$xu f n(x).1% are, roughly speaking, approximatingB.

(3) Formulas foruSn(k)u and n „Sn(k)…
Let us calculate the Lebesgue andm measures ofSn(k). We have

uSn~k!u5uD j
~n!ucard$ j un~D j

~n!!522n2k%532n cardH jU)
k51

n

p~ j k!52n2kJ 532n2kS nkD .
~3.1!

Similarly,

n„Sn~k!…522n2k card$ j un~D j
~n!!522n2k%522nS nkD . ~3.2!

(4) Proof ofn(B)51
In fact, we shall prove that for anyaP~12,

2
3! we haven „A~a!…50, from which the relation

n(B)51 immediately follows. By definition, A(a)5ùn51
` An(a), and n „A~a!…

5limn→` n „An~a!…. So, it is sufficient to prove that for anyaP~12,
2
3! limn→` n„An~a!…50. Using

the definition ofAn~a! and formula~3.2!, we have

n„An~a!…5nS ø
k5n

`

Qk~ak! D<(
k5n

`

n„Qk~ak!…;
J. Math. Phys., Vol. 38, No. 5, May 1997
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n„Qk~ak!…5nS ø (
ak, l<k

Sk~ j ! D 5 (
ak, l<k

n„Sk~ l !…5 (
ak, l<k

22kS kl D .
To estimate the last sum, we note that the summands form a monotone decreasing sequen~here
we use the conditiona.1

2!. So,

n„Qk~ak!…<22kS @ak#
k D ~12a!k. ~3.3!

Using the asymptotic expansion forn!, one easily obtains the estimate for (k
@ak#)(12a)k:

S @ak#
k D ~12a!k5O„k exp~u~a!k!…, ~3.4!

where

u~a!52a ln a2~12a!ln~12a!. ~3.5!

Note that foraP~0,1! we haveu~a!.0, maxu~a!5u~12!5ln 2. Substituting~3.4! into ~3.3!, we
obtain

n„Qk~ak!…<Ck2e„u~a!2 ln 2…k.

Sincea.1
2, we haveu~a!2ln 2,0. Takee.0, e,ln 22u~a!. Then

n„Qk~ak!…<Ce2ek,

and forn „An~a!… we obtain

n„An~a!…<C(
k5n

`

e2ek<C1e
2en→0, as n→`.

(5) Estimate ofdimB
Let us define a continuous functiond~a!5„u~a!1a ln 2…/ln 3 for aP~0,1! @u~a! is defined by

~3.5!#, d~ 12!53 ln 2/2 ln 3. It is sufficient to prove that for anyaP~12,
2
3!: dimB(a)<d(a). More

precisely, we shall prove that for anyd.d(a) and anye.0 there exists such a covering$Oi
(e)% of

B~a! by intervalsOi
(e) that( i uOi

(e)ud<e ~see Ref. 7!.
By definition,B(a)5øn51

` Bn(a). For eachn, kPN we shall construct a covering$Oi(n,k)%
of Bn~a! such that

(
i

uOi~n,k!ud<Ce2g~n1k!,

whereg is a positive constant depending ond anda. Then for large enoughk the desired covering
of B~a! will be given byøn51

` $Oi(n,k)%, since

(
n,i

uOi~n,k!ud<C(
n

e2g~n1k!<C1e
2gk<e,

for large enoughk.
Now, for $Oi(n,k)% let us take the set of all intervalsDj

(n1k), constitutingPn1k„a(n1k)… @see
the definition ofPn(k) andSn(k)#. Using ~3.1! and ~3.4! as above, we obtain
J. Math. Phys., Vol. 38, No. 5, May 1997
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(
i

uOi~n,k!ud532d~n1k! (
0< l<a~n1k!

2l S n1k
l D<C32d~n1k!~n1k!22n1keu~a!~n1k!,

and for d.d(a) the last expression can be estimated byC1e
2g(n1k) with 0,g,d ln 32u~a!

2a ln 2. h

Below we present a direct generalization of Theorem 3.1 for the case of Cantor-type
sures. Let us fixpP$2,3,4,...% and define the Cantor-type setC(p) and the Cantor-type measur
m(p) on ~0,1! in a following way. FornPN and multi-indexj5( j 1 ,...,j n)P$1,...,p%n, take

D j
~n!5S 2(

k51

n

~ j k21!~2p21!2k, 2(
k51

n

~ j k21!~2p21!2k1~2p21!2nD
and

Cn
~p!5 ù

k51

n

ø
j

D j
~k! ,

and define the sequence of absolutely continuous measures,

mn
~p!~F !5

uFùCn
~p!u

uCn
~p!u

.

One can check that themn
(p) converge weak* to a singular continuous measurem(p) ~m~2! is exactly

the classical Cantor measure!. It is easy to calculate that suppm (p)5C(p)[ùnCn
(p) and

dimC(p)5log p/log~2p21!.
Theorem 3.2:Let H be defined by (2.1) withm5m(p). Then the operators H6 defined by (2.3)

have purely singular continuous spectrum and for some d(p),1:

dim suppEH6
<d~p!.

The proof of Theorem 3.2 requires rather cumbersome calculations, but it is based on the
ideas as the proof of Theorem 3.1 and so we omit it. Since dimC(p)→1 asp→`, Theorem 3.2
implies the following result.

Theorem 3.3: For any d,1 there exists a Hamiltonian H with singular continuous spectr
such thatdim suppEH>d and the spectrum of the operators H6 defined by (2.3) is purely
singular continuous.

The next section is devoted to the proof of a more precise result.

IV. OPERATORS H6 WITH PURELY SINGULAR CONTINUOUS SPECTRUM

Here we prove the result that shows that the absolutely continuous spectrum ofH6 can be
empty even forH ’s with a ‘‘very smooth’’ singular continuous spectrum.

Theorem 4.1:There exists a Hamiltonian H such that the spectrum of H is purely sing
continuous,dim suppEH51 and the operators H6 , defined by (2.3), have empty absolutely co
tinuous spectrum.

Proof:
(1) Preliminaries.We shall defineH by ~2.1! with an appropriate measurem on (a,b)5~0,1!

so that dim suppm51. By Lemma 2.1, it is sufficient to prove that the measuresm6 , defined by
~2.2!, are purely singular continuous. We shall constructm so that it will be symmetric with
respect to the ‘‘reflection’’x°12x: m(F)5m($12xuxPF%), and so it is sufficient to conside
only m1 , since in this casem1 andm2 coincide up to a shift.
J. Math. Phys., Vol. 38, No. 5, May 1997
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(2) The construction of the sequence of measuresmn . For any nPN and multi-index
j5( j 1 ,...,j n), j kP$1,...,k%, we are going to define an intervalD j

(n) as follows. Let us fix some
qP~0,1!, and denotean5qn21

„~2n21!!! …21[qn21
„Pk51

n (2k21)…21; an will be the length of the
intervalD j

(n) . Now we define recursively:D1
~1![@0,1#,

D j
~n!5F inf D~ j 1••• j n21!

~n21! 1
an
q S 2~ j n21!1

1

2D2
an
2
, inf D~ j 1••• j n21!

~n21! 1
an
q S 2~ j n21!1

1

2D1
an
2 G .

In other words, we subdivide eachD ( j 1 ,...j n21)
(n21) into ~2n21! equal subintervals, take all of them

that have odd numbers, and then contract them with the coefficientq. Next, we takeCn

5 ø jD j
(n) and define the sequence of absolutely continuous measures,

mn~F !5
uFùCnu

uCnu
.

Note that~we shall need it later on! for all n and j ,

D j
~n!,D~ j 1 ,...,j n21! , ~4.1!

Cn11,Cn , ~4.2!

and for allm>n,

mm~D j
~n!!5

1

n!
. ~4.3!

(3) Convergence ofmn . We shall need an elementary proposition:
Lemma 4.2: Let fPC1(a,b), supxP(a,b)u f 8(x)u<M . Let A, B be Borel subsets of(a,b). Then

the following estimate holds true:

UuAu21E
A
f ~x!dx2uBu21E

B
f ~x!dxU<2M ub2au.

Proof:

UuAu21E
A
f ~x!dx2uBu21E

B
f ~x!dxU<UuAu21E

A
f ~x!dx2 f ~a!U1UuBu21E

B
f ~x!dx2 f ~a!U

<uAu21E
A
u f ~x!2 f ~a!udx1uBu21E

B
u f ~x!2 f ~a!udx

<2M ub2au.
h

Now let us show that themn converge weak* to some measurem. It is sufficient to prove that
for any fPC1(0,1) such that supxP[0,1]u f 8(x)u<M the values of the integrals*f (x)dmn converge
asn→`. Indeed,
J. Math. Phys., Vol. 38, No. 5, May 1997
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U E f ~x!dmn2E f ~x!dmn1mU
<~n! !21(

j
UuD j

~n!u21E
D j

~n!
f ~x!dx2uD j

~n!ùCn1mu21E
D j

~n!
ùCn1m

f ~x!dxU
<~n! !21(

j
2M uD j

~n!u

52Man→0, n→`,

and so*f (x)dmn is Cauchy.
Note that~4.1! and ~4.3! imply that for alln, j ,

m~D j
~n!!5

1

n!
. ~4.4!

(4) m is continuous. Let us take arbitrary pointcP~0,1! and prove thatm($c%)50. For any
nPN eitherc¹Cn @thenm($c%)50 and we are done# or c P D j

(n) for some multi-indexj , and then
m($c%) < m(D j

(n)) 5 (n!)21 5 o(1) asn→`, and so againm($c%)50.
(5) suppm5C[ùnCn . By ~4.2!, for all m>n mm(Cn)51 and som(Cn)51 andm(C)51,

and thus the inclusion suppm,C is obvious. Let us prove that suppm5C. Suppose there exists
closed set C̃, C̃,C, C̃ÞC, such that m(C\C̃)50. Let C̃85[0,1]\C̃. Write
C\C̃5(ùnCn)ùC̃85ùn(CnùC̃8). Since C̃ÞC and C̃8 is open, we get that there exists a
interval (a,b),@0,1# such that (a,b)ùCnÞB for any n andm(a,b)50. But for large enoughn
we haveD j

(n),(a,b) for some j , and so by~4.4!, m(a,b)>(n!)21, which gives the desired
contradiction.

(6) dimC51. Let us takeen5an(12q)/2 and calculate the measure of theen neighborhood
of C:

uUen
~C!u5n!an /q.

Sinceen
12dim C ;u Uen

(C)u, a simple calculation shows that dimC51.
(7) m1 is singular continuous. We need to prove thatusuppm1u50. For anynPN denote by

mn
(1) the measure given by~2.2! with m5mn . We have suppm1,suppmn , and thus

usuppm1u<usuppmnu5~2n21!!! an5qn21→0, n→0.
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Information gains expected from separate and joint
measurements of N identical spin-1/2 systems:
Noninformative Bayesian analyses

Paul B. Slater
Community and Organization Research Institute, University of California, Santa Barbara,
California 93106-2150
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An investigator is assumed to haveN replicas of a spin-1/2 system, but lacks any
specific knowledge pertinent to constructing a 232 density matrix for it. We
compute—within a noninformative Bayesian framework—the expected informa-
tion gains for various measurement schemes, first, separate and, then, joint in na-
ture. In particular, we obtain a result which fully accords with a certain plausibility
argument of Peres, while the parallel result in a recent analysis of Massar and
Popescu does not. ©1997 American Institute of Physics.
@S0022-2488~97!04605-7#

In this paper, we will present several examples giving the expected information gain
separate measurements of two and three spin-1/2 particles and, then, consider joint measu
of the particles. However, our analysis will not deal with the possibility of a sequence of
surements alternating between the particles.

Applications of Bayesian reasoning1–4 to the problem of estimating the state of a quantu
system have, typically, been concerned with the choice of one of a finite number~usually, two5–8

and, in one case, three6! of feasible states. In so doing, these studies, in effect, rely upon the
of informative priors to rule out the other states in the continuum~convex set! of states of equal
dimension.

‘‘If prior knowledge is not available, one can still employ the Bayesian approach, usi
noninformative prior.’’5 We have, in fact, pursued such a~noninformative! course, using at
first9,10 a ~classical! Jeffreys prior and, then,11,12 a quantum counterpart to it. Clarke has recen
written—in a nonquantum context—that ‘‘we choose the Jeffreys prior as noninformative, be
it can be justified by four distinct arguments. The first is invariance. The second, is that us
results in estimation which corresponds to frequentist coverage probabilities. The third, is th
formal sense in which it is noninformative can be interpreted in terms of the rate of inform
accumulation. The fourth argument is that the Jeffreys prior performs well in a practical sens13

The ~classical! Jeffreys prior is the normalized volume element of the Fisher informa
metric.1–3 Its quantum analog has been taken11,12 to be the normalized volume element of th
quantum Fisher information metric or, equivalently~since only a proportionality factor is
involved14!, the ~natural! Bures metric.15,16 For the five-dimensional convex set of 232 quater-
nionic density matrices12,17

r5
1

2 S 11z x2 iy2 ju2kv

x1 iy1 ju1kv 12z D , ~1!

where i 25 j 25k2521, i j52 j i5k, jk52k j5 i , and ki52 ik5 j , the quantum Jeffreys
prior has been shown to be12

2/@p3~12u22v22x22y22z2!1/2#, u21v21x21y21z2<1. ~2!
0022-2488/97/38(5)/2274/7/$10.00
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By settingu5v50 and renormalizing~2! over the unit ball in three-space~Bloch sphere18!, one
recovers the quantum Jeffreys prior

P~x,y,z!51/@p2~12x22y22z2!1/2#, x21y21z2<1 ~3!

for the ~standard/complex! 232 density matrices.@Thus, Eq.~3! is a conditional@u5v50#
distribution of Eq.~2!.# For real quantum mechanics (u5v5y50), the quantum Jeffreys prior is
similarly,

1/@2p~12x22z2!1/2#, x21z2<1. ~4!

If one performs a~two-level! measurement upon the system~1! in, say, thex-direction, the
probability of obtaining an ‘‘up’’ is—by quantum mechanical principles, using the stand
representation—(11x)/2, and of a ‘‘down,’’ (12x)/2. Therefore, if one takes—focusing upo
the complex case—various numbers~nX ,nY ,nZ ; nX1nY1nZ5N! of two-level ~mutually
unbiased19! measurements in orthogonal directions (X,Y,Z), the general form of the likelihood
function is

S 11x

2 D nX1S 12x

2 D nX2S 11y

2 D nY1S 12y

2 D nY2S 11z

2 D nZ1S 12z

2 D nZ2

, ~5!

wherenX1 is the number of measurements in theX-direction yielding ‘‘up’’ andnX2 , the number
giving ‘‘down’’ ( nX5nX11nX2).

In Refs. 11 and 12, we presented the normalized product~the posterior probability distribu-
tion!,

Q~x,y,z!57168~11x!2~12x!~11y!3~12y!2~11z!2~12z!4/@1903p2~12x22y22z2!1/2#,
~6!

of the ~complex! quantum Jeffreys prior Eq.~3! and the likelihood Eq.~5!—assuming fourteen
measurements (nX53, nY55, nZ56) with the outcomes (nX152, nY153, nZ152). Now, to
illustrate the computational approach that has been employed in this study, we calcula
information gain~I! for this hypothetical set of results. It is the information~Kullback–Leibler!
divergence of Q with respect to P—equaling the ~triple! integral of Q(x,y,z)
3 ln@Q(x,y,z)/P(x,y,z)# over the Bloch sphere. Its computation was carried out in the partic
form

I5 ln@7168/1903#1E
21

1 E
2~12x2!1/2

~12x!1/2 E
2~12x22y2!1/2

~12x22y2!1/2

Q~x,y,z!ln@~11x!2~12x!#dzdydx

1E
21

1 E
2~12y2!1/2

~12y2!1/2 E
2~12x22y2!1/2

~12x22y2!1/2

Q~x,y,z!ln@~11y!3~12y!2#dzdxdy

1E
21

1 E
2~12z2!1/2

~12z2!1/2 E
2~12y22z2!1/2

~12y22z2!1/2

Q~x,y,z!ln@~11z!2~12z!4#dxdydz. ~7!

The three pairs of inner integrations were performed exactly and the three outmost ones, n
cally. The result—following the form of Eq.~7!—was I50.743 49751.326 220.193 276
20.310 85820.078 568 8.@The unit of information used here—and throughout—is that for b
e ~natural! logarithms, that is, the ‘‘nat,’’ with one nat equaling 1.4427 bits.#

We now assume that an additional~the fifteenth! copy of the spin-12 system under investigation
is supplied and ask in which of the three directions one should measure it in order to maximi
expected information gain—knowing the results of the previous 14 measurements. There a
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



sterior

-

-

f

of spin

s

r

t is,

2276 Paul B. Slater: Information gains expected

¬¬¬¬¬¬¬¬¬¬
six possible outcomes—two for each direction. Each result gives rise to an updated po
probability distribution. Its information divergence with respect toQ(x,y,z) was computed@cf.
Eq. ~7!#. For theX-direction, the two resulting statistics were 0.064 927~‘‘up’’ ! and 0.151 943
~‘‘down’’ !. These were averaged using as weights (11^x&)/2 and (12^x&)/2, where ^x&
5103 187/456 720'0.225 931 is the expected value ofx under Eq.~6!. The corresponding ex
pected information gain was, then, 0.098 604 9. Proceeding similarly,^I & in theY-direction was
0.071 27 and, in theZ-direction, 0.061 528 7.@This ordering corresponds~inversely! to that of the
number of previous measurements (nX53,nY55,nZ56) in this scenario.#

We now computê I & with respect to the quantum Jeffreys prior Eq.~3!—for which ^x&
5^y&5^z&50—for a series of elementary scenarios.

N51

The three univariate marginal probability distributions of Eq.~3! are of the form11,12 ~to use
theX-direction as representative!

2~12x2!1/2/p. ~8!

If a single two-level measurement is performed in theX-direction, the marginal posterior prob
ability distribution is@cf. Eqs.~6! and ~7!#,

2~16x!~12x2!1/2/p, ~9!

depending upon whether an ‘‘up’’~1! or ‘‘down’’ ~2! is obtained. The information divergence o
either form of Eq.~9! with respect to Eq.~8! is 5/62 ln 2'0.140 186 nats~0.202 246 bits!. So,
this can be seen to be the expected information gain for a measurement of the component
in any direction.

N52

If two measurements are taken in theX-direction, the posterior probability distribution i
either of the type

8~16x!2~12x2!1/2/5p ~10!

if both measurements yield the same outcome or

8~12x!~11x!~12x2!1/2/3p ~11!

if one ‘‘up’’ and one ‘‘down’’ is obtained.@Equation~11! is also of the form of the univariate
marginal of the quaternionic quantum Jeffreys prior Eq.~2!.# The information divergence of eithe
form of Eq. ~10! with respect to Eq.~8! is 59/302 ln 5'0.357 229 and of Eq.~11!, 7/624 ln 2
1 ln@16/3#'0.068 054 4. The expected information gain with respect to Eq.~3! for a pair of
measurements in theX-direction is, then, the simple average of these two statistics, tha
0.212 642 nats.

The bivariate marginals of Eq.~3! are uniform distributions~1/p! over unit disks (x21y2

<1,...). If oneperforms one measurement in theX-direction and one in theY, the posterior
probability distribution is, then, simply of the form

~16x!~16y!/p ~12!
J. Math. Phys., Vol. 38, No. 5, May 1997
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~having four possible realizations!. The information gain of any of the forms of Eq.~12! with
respect to the uniform distribution is 5/322 ln 2'0.280 372 nats—being twice that for a sing
measurement. So, this is the expected information gain with respect to Eq.~3! for a pair of
measurements in orthogonal directions.

The two scenarios ofN52 so far discussed can be considered as specific cases of a situ
in which the two directions intersect at an angleu, 2p/2,u<p/2. Let us—without loss of
generality—consider one direction to be along theX-axis, and the other, to be in theXZ-plane.
Then, the probability of an ‘‘up’’ in the latter direction is (11x cosu2zsinu)/2 and of a
‘‘down,’’ (1 2x cosu1zsinu)/2. There are then four possible posterior probability distributio
The one corresponding to a pair of ‘‘ups’’ is

4~11x!~11x cosu2z sin u!/p~41cosu!. ~13!

The information divergences of the four posteriors with respect to 1/p were computed, using, first
exact integration overz and, then, numerical integration overx. The result is displayed in Fig. 1
From it, we can see the form that^I & takes as it increases from its minimum~0.212 642, parallel
directions! to its maximum~0.280 372, orthogonal directions!.

N53

If one measurement is performed in theX-direction, one in theY, and one in theZ, the
posterior probability distribution is one of the eight possible forms

~16x!~16y!~16z!/@p2~12x22y22z2!1/2#. ~14!

The information gain of Eq.~14!—in any of its realizations—with respect to Eq.~3! is 5/2
23 ln 2'0.420 558, which is then also the value of^I & ~triple that forN51! for this choice of
directions.

If two of the measurements are taken in, say, theX-direction, the possible posterior probab
ity distributions are of the forms,

4~16x!2~16y!/5p ~15!

and

4~11x!~12x!~16y!/3p. ~16!

^I & is, then, 0.356 1615 1
2(0.487 415)1

1
2(0.224 907). If the three measurements are all made

single direction, the expected information gain with respect to Eq.~3! is less, that is,

FIG. 1. Expected information gain for a pair of spin-
1
2 measurements in two nonorthogonal directions as a function

angular separation~u!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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317/1402~19 ln 2!/42~ ln 7!/41~3 ln 32/3!/4'0.260 702' 1
4~0.568 086!1 3

4~0.158 241!,
~17!

where 0.568 086 corresponds to a situation in which three ‘‘ups’’ or three ‘‘downs’’ are reco
and 0.158 241, to a case in which two outcomes of one kind and one of the other are give

Let us now consider a case in which the three directions are coplanar—one, being alo
X-axis, and the other two~lying in theXZ-plane! making angles ofu1 andu2 with it. There are,
then, eight possible posterior probability distributions. The one corresponding to three ‘‘up

4~11x!~11x cosu12z sin u1!~11x cosu22z sin u2!/p@41cosu11cosu21cos~u12u2!#.
~18!

The eight information divergences were computed—again, using both exact and num
integrations—and averaged. The result is presented in Fig. 2. The minimum of^I & ~0.260 702,
previously computed! is at u15u250, while the maximum~0.359 722! occurs at the two points
(p/3,2p/3) and (2p/3,p/3). At the two points (6p/3,6p/3), ^I &50.334 908.

Let us now indicate several points of comparison between the analysis here and t
Wootters and Fields,19 which pertained to quantum systems of arbitrary finite dimensions,
simply two. Both studies have been concerned with measurements on finite ensembles of id
systems, but in Ref. 19 the numbers of such systems were taken to be necessarily large—
to use the Gaussian approximation to the multinomial distribution. In both studies, average
mation gains were obtained by integrations over the convex sets of density matrices. Howe
nontrivial integrations were, in fact, performed in Ref. 19, since the only term of importance~the
volume of a parallelepiped! was independent of the particular state of the ensemble. Wootters
Fields, nevertheless, discussed a measure for their integrations. It was based on the matrix
of the density matrices after their transformation to traceless form. No explicit volume elem
for the induced metric were given. Wootters and Fields did not have recourse to the use of
Theorem—though they assumed a uniforma priori distribution over the simplex of multinomia
distributions.@It might be noted that the~classical! Jeffreys prior for this family of distributions is
not uniform, but Dirichlet.1–3# Their ‘‘final distribution’’ over the~traceless! density matrices was
the product of Gaussians.@It is, of course, possible to approximate a posterior probab
distribution—such as Eq.~7!—using a multivariate Gaussian, by equating means, variances
covariances. Such a distribution—as also the ‘‘final’’ one in Ref. 19—would have to assign
nonzero probability to~nonfeasible! points outside the Bloch sphere of two-level systems.#

Following Schwinger,20 Wootters and Fields noted that mutually unbiased measurement
‘‘maximally noncommutative...in other words, a measurement over one basis leaves one
pletely uncertain as to the outcome of a measurement over a basis unbiased with respec

FIG. 2. Expected information gain for a triad of measurements in coplanar directions as a function of the a
separations (u1 ,u2) of two of them with respect to the third.
J. Math. Phys., Vol. 38, No. 5, May 1997
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first. For example, a measurement of spin in theX-direction for a spin-12 particle leaves one
completely uncertain as to the component of spin in theY-direction.’’ The counterpart of this
assertion for the analyses here is that the expected information gain (^I &) for two or three mea-
surements in mutually orthogonal directions is simply the sum of the gains (5/62 ln 2
'0.140 186 nats) for the individual measurements.$For the case of quaternionic quantu
mechanics17 @cf. Eq. ~2!#, I or ^I & for a single measurement is 47/602 ln 2'0.090 186 2, while,
for real quantum mechanics, it is ln 221/2'0.193 147.%

Peres and Wootters21 have raised the question22: ‘‘Is an ensemble of identically prepare
particles, viewed as an entity, more than the sum of its components? That is, could m
learned about the ensemble by performing a measurement on all the constituent particles t
than by performing separate measurements on each particle? Peres and Wootters conject
this is the case.’’ Massar and Popescu22 ‘‘prove their conjecture, although not in its letter but in i
spirit.’’ By replacing the trigonometric score22 by the information gain~I!, we can examine the
validity of the conjecture ‘‘in its letter.’’

For the caseN52, Massar and Popescu22 proposed as ‘‘one possible optimal experiment...
standard measurement of a nondegenerate operator that has the following four eigenstate

1

2
uS&1

)

2
u↑ n̂i↑ n̂i&, i51,...,4, ~19!

whereuS& is the singlet state,↑ n̂i represents a spin polarized along then̂i direction and the four
directionsn̂i are oriented towards the corners of a tetrahedron.’’ We have found that the exp
information gain of this scheme with respect to Eq.~3! is (17218))/241 ln@11)/2#
'0.313 478—which is, in fact, greater than 0.280 372, for two separate measurements in or
nal directions. However, another joint measurement exists which dominates Eq.~19!—having
^I &559/302 ln 5'0.357 229. This is the nonorthogonal positive-operator-valued mea
~POVM! of Peres23—suggested in Ref. 22 for generalN—which has an infinite number of pos
sible outcomes. ‘‘It is plausible that the best measurement method involves a nonortho
POVM.’’ 23 The nonorthogonal POVM for N53 gives ^I &5449/1402 ln 22 ln 7
'0.568 086—being greater than 5/223 ln 2'0.420 558 (for three separatemeasurements in mu
tually orthogonal directions!. In contrast, using a~nongeneric/degenerate! prior distribution uni-
form over the pure states and null on the mixed states, Massar and Popescu22 obtain identical
scores using Eq.~19! or the POVM. They argue that analogous results are obtainable forN.2, as
well. However, this appears to conflict with the plausibility argument of Peres given above

For generalN, the POVM of Peres22,23 gives, in our framework,

^I &522 ln 21~ ln p!/22 ln G~3/21N!1 ln G~31N!1Nc~0!~3/21N!2Nc~0!~31N!,
~20!

wherec (0) is the digamma function. Asymptotically, using Stirling’s approximation, Eq.~20!
approaches

~3 ln N!/223/222 ln 21~ ln p!/2'~3 ln N!/222.313 93. ~21!

It is of considerable interest to note that Eq.~20! is the information gained—with respect to E
~3!—if one were to measure the spinN times along some given direction and obtain either
‘‘ups’’ or all ‘‘downs.’’

The expected information gains given immediately above must be dominated by the
sponding Kholevo-type bounds24—using Eq.~3! as a mixing distribution over theN-fold tensor
products of the 232 density matrices~represented by points in the Bloch sphere! with themselves.
These bounds are (N51)7/62 ln 2'0.473 519, (N52)(112245 ln 5)/48'0.824 485, (N
53)7/22 ln 22(7 ln 7)/8'1.104 18. Using a recently developed eigenvalue formula of K
J. Math. Phys., Vol. 38, No. 5, May 1997
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tenthaler, we have obtained forN5500, the bound 7.599 82, and forN51000, 8.623 07. ForN
5 500, the approximation~21! gives 7.007 98 andN51000, 8.0477. The difference between t
bound and approximation converges asN→` to (3 ln 2)/221/2'0.539 721.

We have been investigating25 a possible information-theoretic rationale of an asympto
nature for the quantum Jeffreys’ prior Eq.~3!, analogous to certain classical results26 ~cf. Ref. 27!.
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15M. Hübner, Phys. Lett. A163, 239 ~1992!.
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Asymptotic completeness for Rayleigh scattering
Herbert Spohna)
Theoretische Physik, Ludwig-Maximilians-Universita¨t, Theresienstr. 37,
D-80333 München, Germany

~Received 4 April 1996; accepted for publication 29 October 1996!

We consider an electron bound by someanharmonic external potential and coupled
to the quantized radiation field in the dipole approximation. We prove asymptotic
completeness for the photon scattering. This means that anarbitrary initial state
has a long time asymptotic, which consists of electron plus radiation field in their
coupled ground state and finitely many outgoing photons. ©1997 American In-
stitute of Physics.@S0022-2488~97!02305-0#

I. INTRODUCTION AND MAIN RESULTS

Rayleigh scattering refers to scattering of photons from a bound electron. In its sim
version one imagines an electron confined by a prescribed external potential and coupled
radiation field. In the remote past electron and field are in their coupled ground state and th
a few far away incoming photons. As travelling inwards these excite the atom, scatter off, a
the far future there will be some outgoing photons leaving the relaxed atom behind. As first
by van Kampen,1 in the dipole approximation the joint Hamiltonian becomes quadratic prov
the binding potential isharmonic, which he used then to investigate light scattering and emiss
Van Kampen’s observation has been made many times since and more details have been
out. A closely related string of results deals with a scalar Bose field in the same approxima2

A firm mathematical basis for these models has been provided by Arai.3,4 In particular, he proves
the long time asymptotics of solutions and unitarity of the scattering matrix. The purpose o
contribution is to point out that asymptotic completeness can be established also for a w
anharmonic potential. The main technical tool is an estimate for the time-dependent pertur
series by Maassen5 developed in the context of quantum Langevin equations.

We consider a~spinless! electron, charge2e, massm, positionq, momentump, bound by a
potential of the form

Ṽ~q!5 1
2mv0

2q21V~q!. ~1.1!

V will be considered as a perturbation. We writeV as the Fourier transform of a complex measu
m on R3,

V~q!5E m~dl!eil•q, ~1.2!

with m(2dl)5m(dl)* and finite ‘‘moments’’

aj5E um~dl!uulu j,`, ~1.3!

aj.0, j50,1,2. InparticularV is continuous and bounded,uV(q)u<a0. The smallness ofV is
regulated by an implicit condition ona0 ,a2. The electron Hilbert space isL2(R3,d3q)5He and
the Hamiltonian

a!Electronic mail: spohn@stat.physik.uni-muenchen.de
0022-2488/97/38(5)/2281/16/$10.00
2281J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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He5
1

2m
p21Ṽ~q!. ~1.4!

The electromagnetic field is quantized in the Coulomb gauge,¹•A50. The dynamical vari-
ables are then the two transverse components of the vector potential. The one particle s
C2^L2(R3,d3x) and F b is the corresponding bosonic Fock space. OnF b we introduce, in
momentum representation, the two component Bose fielda(k, j ), a†(k, j ), j51,2, with commu-
tation relations@a(k, j ),a†(k8, j 8)#5d j j 8d(k2k8). Let e1(k), e2(k), k/uku form a left-handed
dreibein. The transverse part of the vector potential is given by

A~x!5(
j51

2 E d3kej~k!
1

Av~k!

1

A2
~2p!23/2@e2 ikxa†~k, j !1eikxa~k, j !# ~1.5!

and its canonically conjugate momentum by

2E~x!5(
j51

2 E d3kej~k!Av~k!
i

A2
~2p!23/2@e2 ikxa†~k, j !2eikxa~k, j !#, ~1.6!

which is the transverse electric field up to the sign.v(k)5uku is the dispersion relation of the
photon field.~We setc515\.! The Hamiltonian of the photon field reads

Hb5
1

2
:E d3x~ uE~x!u21u¹3A~x!u2!:5(

j51

2 E d3kv~k!a†~k, j !a~k, j !. ~1.7!

Let r be the charge distribution of the electron. We assume
(C) r is a real, rotation invariant, and smooth function of compact support,*d3xr(x)51.
We setA(r)5*d3xr(x)A(x). The electron is minimally coupled to the radiation field. In t
dipole approximation the Hamiltonian of the coupled system becomes

H5
1

2m
~p^11e1^A~r!!21Ṽ~q! ^111^Hb5H01V~q! ^1. ~1.8!

H acts onHe^F b5F , which has the scalar product denoted by^•,•&. H is self-adjoint on
D(He1Hb), the domain ofHe1Hb.

3

H0 is quadratic. In particular, the spectrum ofH0 can be determined completely3. If r̂Þ0
(ˆ denotes Fourier transform!, then the spectrum ofH0 is @E0 ,`). H0 has a unique ground stat
V0PF , H0V05E0V0, and otherwise purely absolutely continuous spectrum.

As next item we state the smallness condition for the anharmonic partV of the potential. Let
h be such that its Laplace transform,ĥ(z)5*0

`dte2zth(t), Rez.0, is given by

ĥ~z!5Sm~v0
21z2!1

2

3
e2E d3kur̂~k!u2

z2

z21v~k!2D
21

. ~1.9!

Clearlyh is determined byH0 alone. The set of admissible perturbationsV are now such that

~P1! 2a2E
0

`

dt e2a0tuh~ t !u,1, a0.0, ~1.10!

~P2! $mv0
2d i j1] i] jV% i , j51,2,3>c2.0 as a matrix. ~1.11!

For this set to be nonempty we need exponential decay of the form
J. Math. Phys., Vol. 38, No. 5, May 1997
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uh~ t !u<che
2gutu ~1.12!

with some decay rateg.0.
We note that 1/ĥ is analytic in $zuRez.0% and can be extended analytically to the fu

complex plane by

ĥ~z!215m~v0
21z2!1z2

2

3
e2E d3xd3x8r~x!r~x8!

1

4pux2x8u
e2zux2x8u, ~1.13!

sincer has compact support. All zeros of 1/ĥ are located in$zuRez<0%. Let z5b11 ib2. As
b2→`, 1/ĥ increases as (b2)

2. Therefore 1/ĥ has only a finite number of zeros in every str
$zu2b,Rez<0%, b.0. Let 2g0 be the real part of the rightmost zero. Ifg0.0, the Laplace
inversion formula for ĥ(z) together with the quadratic decay implies~1.12!. If r̂Þ0, then
g0.0, cf. Appendix B. For a general charge distributionr satisfying (C), we may have
r̂(k0)50 for isolated values ofuk0u. 1/ĥ has then a purely imaginary zero for certain isolat
values of the coupling constant~charge! e. In this sense~1.12! is violated only on a codimension
one manifold in the space of charge distributions.6

The condition (P2) ensures the existence of a ground state forH. The uniqueness comes from
a Perron–Frobenius theorem fore2tH. In fact, in our context it is also a byproduct of the scatteri
theory.

Proposition 1.1:Let the charge distributionr satisfy (C) and the potentialV the condition
(P2). ThenH has a unique ground stateVPF ,

HV5EV. ~1.14!

Remark:(P2) means thatṼ is strictly convex. This is a technical assumption which allows us
use the Brascamp-Lieb inequality.7 We refer to Sec. IV for a discussion.

Proposition 1.2:Let the charge distributionr satisfy (C) and the potentialV the conditions
(P1), (P2). ThenH2E andH02E0 are unitarily equivalent. In particularH has the spectrum
@E,`), which is purely absolutely continuous except for the eigenvalue atE.

Remark: a0.0 implies that 1/ĥ has no purely imaginary zero. Under our assumptions,
ensures the stated spectral properties ofH0.

3

For Rayleigh scattering the state in the remote past has a few photons far away from th
which is in its ground state. For example, such a state with one photon is given bya†(w t)V as
t→2` with a†(w)5( j51

2 *d3kŵ(k, j )a†(k, j ), ŵ t(k, j )5e2 iv(k)tŵ(k, j ). For this definition to
make sense,V has to be in the domain of (Nb)

1/2, Nb5( j51
2 *d3ka†(k, j )a(k, j ) the number of

bosons. With the method to be explained in Sec. IV, we can prove, in fact, that
^V,edNbV&,` for sufficiently smalld .0. Technically it will be more convenient to genera
incoming states through Weyl operators.

Let Dm be the real Hilbert space of vector fieldsu:R3→R3 such that¹•u50 and
*d3kv(k)muû(k)u2,`, mPZ. Let w denote the pair (w1 ;w2). Then for wPD21%D1 the
smeared fields are defined by

A~w1!5E d3xw1~x!•A~x!, 2E~w2!52E d3xw2~x!•E~x! ~1.15!

and the unitary Weyl operators by

W~w!5exp@ i ~A~w1!2E~w2!!#. ~1.16!

We embedF b into F by the map
J. Math. Phys., Vol. 38, No. 5, May 1997
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J:W~w!u0&°1^W~w!V, ~1.17!

by linearity extended to the linear span lsp$W(w)u0&uwPD21%D1%. Hereu0& denotes the vacuum
in F b . J is densely defined onF b , but unbounded.

8

Let Dc be the set of smooth vector fieldsu:R3→R3 of compact support and letQ be the
transverse projection, (Qu)̂ (k)5Q(k)û(k), Qi j (k)5d i j2kikj /k

2, i , j51,2,3. We define then
the linear subspaceF c5 lsp$W(w)u0&uwPQDc%QDc%,F b . ClearlyF c5F b .

Our central result is the existence and unitarity of wave operators.
Theorem 1.3: Let the charge distributionr satisfy (C) and the potentialV the conditions

(P1), (P2). Then the strong limit

W7c5 lim
t→6`

ei ~H2E!tJe2 iHbtc ~1.18!

exists for allcPF c . uuW6cuu5uucuu and by continuityW6 extends toF b . W
6:F b→F is

unitary. In particular, the scattering operator

S5~W2!*W1 ~1.19!

is unitary onF b .
Remarks:

~i! For the harmonic binding potential (V50) the S-matrix factorizes.3 In particular, the
number of outgoing photons equals the number of incoming photons. IfVÞ0, no such
conservation law exists.

~ii ! In standard scattering theory one would take strong limits to conclude the validity o
limit ~1.18! for all of F b . SinceJ is unbounded, such a procedure fails here and
restriction to the dense subspaceF c seems to be intrinsic to the problem.

~iii ! The photon dispersionv(k)5uku, implying constant speed, is crucial for the proof, since
ensures exponential decay ofh. Massive photons,v(k)5(M21k2)1/2, would yield only a
power law decay ofh which is too weak for controlling the Dyson series.

In the recent years there has been a revived and considerable effort to analyze the n
tivistic quantum mechanics of atoms coupled to their radiation field. One approach is to e
and to generalize the method of complex dilations so successful for atomic resonances.9 Complex
dilations have been applied to the case of an atom coupled to a massive Bose field10,11 and to an
atom in theN-level approximation coupled to the radiation field at nonzero temperature.12,13 In
Ref. 14 a method is outlined which can handle the full Pauli-Fierz Hamiltonian with rea
atomic potentials. By construction complex dilation works only for small coupling, but, w
applicable, provides fairly accurate decay estimates. A complimentary attack is to cut-o
number of photons, say less thanN, and to exploit then the similarity to standardN-body Schro¨-
dinger operators.8 Along this line Mourre type estimates and asymptotic completeness are pr
in15 for anN-level atom coupled to the radiation field in the dipole approximation. This techn
yields the long time asymptotics for all scattering states with no restriction on the cou
strength. Under some further conditions even a complete spectral characterization, of th
stated in Proposition 1.2, is available.16

I expect that in the long run such techniques will be perfectioned to the point where
scattering problems can be dealt with. In this paper I only remark that at least for a certain
of binding potentials and in the dipole approximation asymptotic completeness can be p
fairly directly. No cut-off is introduced except for an ultraviolet cut-off through a smeared ch
distribution.

To outline the remainder of the paper: In Sec. II we introduce the Weyl operators and
time evolution throughH0 as given by the classical equations of motion. In Sec. III we explain
J. Math. Phys., Vol. 38, No. 5, May 1997
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estimate of Maassen applied toH0 and deduce from it in Sec. V the unitary equivalence a
asymptotic completeness. The existence of a ground state forH is proved in Sec. IV.

II. HARMONIC POTENTIAL

We first have to set upH0 as a quasifree system. The perturbationV will be added in the
following section.

It is convenient to think ofHe^F b as a Fock space over the one-particle spaceH15C3

% (C2^L2(R3,d3x)),He^F b5F (H1)5F . The scalar product ofH1 is denoted by (•,•). The
position field is then (q,A(x)) and the conjugate momentum field (p,2E(x)) with
¹•A(x)5052¹•E(x). The Bose fields area(k, j ), a†(k, j ) as before, augmented b
a5(mv0/2)

1/2q1 i (1/2mv0)
1/2p, a†5(mv0/2)

1/2q2 i (1/2mv0)
1/2p.

H0 is quadratic in the Bose fields. We set

F5~q,A;p,2E!5~F1 ;F2! ~2.1!

and denote the smeared field by

F~ f !5a1•q1E d3xw1~x!•A~x!1a2•p2E d3xw2~x!•E~x! ~2.2!

with f5( f 1 ; f 2)5(a1 ,w1 ;a2 ,w2). Let Em5R3
%Dm . For fPE21%E1, F( f ) is essentially self-

adjoint inF and, as standard, we define the unitary Weyl operators

W~ f !5eiF~ f !. ~2.3!

They satisfy

W~ f !W~g!5exp@2 1
2 i ~ f ,sg!#W~ f1g! ~2.4!

with the sympletic matrixs, s115s2250, s1252s2151.
The Weyl operators evolve in time according to the classical equations of motion whic

Fourier space, read

d

dt
q~ t !5

1

m S p~ t !1eE d3k8r̂~k8!Q~k8!Â~k8,t ! D ,
d

dt
p~ t !52mv0

2q~ t !,
]

]t
Â~k,t !52Ê~k,t !, ~2.5!

]

]t
~2Ê~k,t !!52v~k!2Â~k,t !2er̂~k!Q~k!

1

m S p~ t !1eE d3k8r̂~k8!Q~k8!Â~k8,t ! D .
The flow generated by~2.5! is denoted byTt and its transpose with respect to the flat sca
product (•,•) by Tt

1 . Clearly,Tt preserves transversality,k•Â(k,t)505k•Ê(k,t), and realness
Â(k,t)*5Â(2k,t), Ê(k,t)*5Ê(2k,t).

The flow Tt will be discussed in more detail in Appendix A. Here we only record thatTt
1

leavesE21%E1 invariant and has scattering in the following sense. LetTt
0 be the flow generated

by
J. Math. Phys., Vol. 38, No. 5, May 1997
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d

dt
q~ t !5

1

m
p~ t !,

d

dt
p~ t !52mv0

2q~ t !,
~2.6!

]

]t
Â~k,t !52Ê~k,t !,

]

]t
~2Ê~k,t !!52v~k!2Â~k,t !,

and letP0 be the projection onto the subspace spanned by (a1 ,0;a2 ,0). Then

lim
t→6`

T2t
1 Tt

01~12P0! f5T7`
1 f ~2.7!

exists as a strong limit inE21%E1 and RanT7`
1 5E21%E1.

We conclude with the standard
Proposition 2.1:Let fPE21%E1. ThenTt

1 fPE21%E1 and

eiH0tW~ f !e2 iH0t5W~Tt
1 f !. ~2.8!

III. MAASSEN’S ESTIMATE

We define the time automorphisms

a tA5eiHtAe2 iHt , a t
0A5eiH0tAe2 iH0t ~3.1!

for all APB(F ). The Dyson perturbation series reads

a2t
0 a tW~ f !5W~ f !1 (

n51

` E
0<t1< . . .<tn<t

dtn . . .dt1a2tn
0 i @V,•#a tn2tn21

0 . . . i @V,•#a t1
0W~ f !

5W~ f !1 (
n51

`

~ i !nE )
j51

n

m~dl j !E
0<t1< . . .<tn<t

dtn . . .dt1

3@W~T2tn
1 ln!,@ . . . @W~T2t1

1 l1!,W~ f !# . . . ##, ~3.2!

wherefPE21%E1. Without risk of confusion we setl j5(l j ,0;0,0). Using repeatedly~2.4! and
since (T2t

1 f ,sT2s
1 g)5( f ,sTt2s

1 g)5( f ,Ts2tsg), only two types of convolution factors appear
~3.2!. One is (f ,Ttsl) and the other

2~l,Ttsl̃!5~l•l̃!h~ t ! ~3.3!

by isotropy. The Laplace transform ofh can be determined explicitly and is given in~1.9!, cf. also
Appendix B. Maassen5 estimates the series~3.2! in such a way that the proliferating number
terms is balanced by the exponential decay ofh. The net result is stated in

Theorem 3.1: Let the condition (P1) for V hold. Let fPQEc%QEc with Ec5R3
%Dc .

Then

lim
t→`

a2t
0 a tW~ f !5gW~ f ! ~3.4!

exists in the uniform operator norm onB(F ).
Remark:Maassen considers a differentH0 and has consequently another classical flowTt .

However, his estimate for~3.2! is valid in general.
Proof: According to Ref. 5 the limit~3.4! holds provided (P1) and
J. Math. Phys., Vol. 38, No. 5, May 1997
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E
0

`

dte2a0tu~ f ,Ttsl!u<cf ulu ~3.5!

are satisfied. In Appendix B we show that~3.5! holds for fPQEc%QEc .
Let A be the* -algebra finitely generated by$W( f )u fPQEc%QEc%. Theng is defined on

A,g(1)51,g(A* )5g(A)* , and uug(A)uu<uuAuu. Thusg is a *-automorphism onA. Since the
limit ~3.4! holds in the uniform operator topology,g extends to Ā, the uniform closure of
A,B(F ). Ā is time invariant. i.e.a t Ā,Ā, sinceg+a t5a t

0+g. The closure ofQEc%QEc in
E21%E1 equalsQE21%QE1. Therefore the von Neumann algebraA95B(F ) and for every
cPF ,cÞ0,$Ac%5F 17.

The reverse order in~3.4! is a standard Cook estimate.
Proposition 3.2:Let fPE21%E1 such that

E um~dl!u E
0

`

dtu~ f ,T2tsl!u,`. ~3.6!

Then the limit

lim
t→`

a2ta t
0W~ f !5g0W~ f ! ~3.7!

exists in the uniform operator norm onB(F ). g0 is a *-automorphism onĀ.

IV. EXISTENCE OF A GROUND STATE

From Theorem 3.1 we conclude that forAPĀ

lim
t→`

^V0 ,e
itHAe2 i tHV0&5 lim

t→`
^V0 ,a2t

0 a tAV0&5^V0 ,gAV0&. ~4.1!

The statev:A°^V0 ,gAV0& on Ā is stationary undera t by intertwining. However, we miss an
argument which ensures thatv is a normal state onF . If so, we could still defineU,U0 as in Sec.
V with V one of the eigenvectors of the density matrix representingv. Then, by unitary equiva-
lence withH0, H has the ground state as only eigenvector, thus necessarily coinciding withV. In
view of this situation we give a ‘‘static’’ proof for the existence of a ground state. If the re
accepts such a property, he may proceed directly to Sec. V.

The ground state for a particle coupled either to a scalar Bose or to the radiation field ha
studied in the remarkable thesis of Fro¨hlich.18,19He considers zero external potential and a tra
lation invariant coupling. In Ref. 14 his functional analytic techniques are applied to the cas
binding potential in the dipole approximation. This theorem does not quite cover the Hamilt
H. In our proof we will employ the method of functional integrals, which in the present con
was used before in order to handle the right-left symmetry breaking associated with ground
having an infinite number of bosons.20,21 Our result is far from optimal—just not to spend to
much effort on a side issue. But the ground state problem does deserve more serious atte
conjecture that whenever the bare electron (e50) has a ground state, necessarily unique, so d
the coupled system at any coupling strength.

We first perform a canonical transformation induced by the unitaryT5exp@ipNb/2#
3exp@ieq•A(r)#. This yields the transformed Hamiltonian
J. Math. Phys., Vol. 38, No. 5, May 1997
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THT*5
1

2m
p21Ṽ~q!1(

j51

2

e2E d3kur̂~k!u2~ej•q!21(
j51

2 E d3kv~k!a†~k, j !a~k, j !

2e(
j51

2 E d3kr̂~k!Av̂~k!/2~ej•q!~a†~k, j !1a~k, j !!5H̃. ~4.2!

We will prove Proposition 1.1 forH̃ and drop the tilde for the rest of this section.
In the position representation for the electron and in theQ representation for the Bose field th

operatore2tH has a strictly positive integral kernel.22 To prove the existence and uniqueness of
ground state we use the following Perron–Frobenius type

Lemma 4.1: Let(M ,m) be as-finite measure space. Let e2tA,t>0 be a semigroup of positive
and positivity improving operators with normuue2tAuu5e2tE0. If there exists ac0PL2(M ,m),
c0.0, such that

lim
t→`

inf~c0 ,e
2tAc0!

2/~c0 ,e
22tAc0!.0, ~4.3!

then c t5e2tAc0 /uue2tAc0uu converges weakly toc` as t→`. c`.0 and c` is the unique
ground state of A, Ac`5E0c` .

Proof: By assumptionE0 is the infimum of the spectrum ofA. Let Em be the infimum of the
support of the spectral measure (c0 ,P(dl)c0), whereA5*lP(dl). By the lower bound~4.3!
(c0 ,P(dl)c0) has a point mass atEm . Let c` be a weak limit point of$c t%. Thenc`Þ0,
c`>0, e2tAc`5e2tEmc` , hencec`.0. Thereforec`

21exp@2t(A2Em)#c` is a stochastic Mar-
kov kernel, which impliesEm5E0.

By the spectral theorem we conclude that limt→`c t5c` . The uniqueness is proved in Theo
rem XIII.44 of Ref. 23. h

Proof of Proposition 1.1:Let x0 be the ground state forHeo5 (1/2m) p21 1
2mv0

2q2 and let

c05x0^ u0&. The projection onto the Fock vacuum is denoted byPu0& . Rather than to check~4.3!
directly, we will establish that

lim
t→`

infb~ t !.0, b~ t !5^c0 ,e
2tH~e2Heo^Pu0&!e2tHc0&/^c0 ,e

2~2t11!Hc0&. ~4.4!

To prove that this criterion implies~4.3!, we note that

lim
t→`

^c0 ,e
2~ t11!Hc0&/^c0 ,e

2tHc0&5exp@2E0#.0 ~4.5!

by the spectral theorem and the proof of Lemma 4.1. Thus

lim
t→`

inf^c t,e
2Heo^Pu0&c t&.0. ~4.6!

Since the kernel ofe2Heo in position space is a nondegenerate Gaussian,~4.6! still holds with
e2Heo replaced byx0^x0 ,•&. Equivalently, we may conclude from the spectral representatio
exp@2Heo# thatc`Þ0.

We writeb(t) as a functional integral. The basic reference measure is the normalized st
ary Ornstein–Uhlenbeck process corresponding toHeo . Its expectation is denoted byE[0,t] (•)
indicating initial and final time.s°q(s) is a random path of this process. We have, w
v1
25(2/3)e2*d3kur̂(k)u2,
J. Math. Phys., Vol. 38, No. 5, May 1997
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b~ t !5Z21E[0,2t11]S expF2S E
0

t

ds1E
t11

2t11

dsD SV~q~s!!1
1

2
v1
2q~s!2D 1

1

2 S E
0

t

dsE
0

t

ds8

1E
t11

2t11

dsE
t11

2t11

ds8D S e2 23E d3kur̂~k!u2v~k!e2v~k!us2s8uq~s!•q~s8! D G D ~4.7!

with the normalization

Z5E[0,2t11]S expF2E
0

2t11

dsSV~q~s!!1
1

2
v1
2q~s!2D

1
1

2E0
2t11

dsE
0

2t11

ds8e2
2

3E d3kur̂~k!u2v~k!e2v~k!us2s8uq~s!•q~s8!G D . ~4.8!

Let S denote the action functional in~4.8!. Then by Jensen’s inequality

b~ t !>expF2Z21E[0,2t11]S e2SE
t

t11

dsSV~q~s!!1
1

2
v1
2q~s!2D

2
1

2 S E
0

t11

dsE
t

2t11

ds81E
t

2t11

dsE
0

t11

ds82E
t

t11

dsE
t

t11

ds8D
3S e2 23E d3kur̂~k!u2v~k!e2v~k!us2s8uq~s!•q~s8! D D G . ~4.9!

Thus the lower bound~4.6! holds provided that for somea

sup
sP@0,2t11#

Z21E[0,2t11]~e
2Sq~s!2!<a ~4.10!

uniformly in t.
Now

S5S01E
0

2t11

dsV~q~s!!, ~4.11!

S05
1

2E0
2t11

dsE
0

2t11

ds8e2
1

3E d3kur̂~k!u2v~k!e2v~k!us2s8u~q~s!2q~s8!!2

1E
0

2t11

dse2
2

3E d3kur̂~k!u2~e2v~k!s1e2v~k!~2t112s!!q~s!2, ~4.12!

which is positive definite. By assumption,12mv0
2q21V(q)>c01

1
2c2q

2 with c2.0. Thus if we

substitute for E[0,2t11] the stationary Ornstein–Uhlenbeck process with Hamilton
(1/2m) p21 1

2c2q
2, denoted byẼ[0,2t11](•), then by the Brascamp–Lieb inequality

Z21E[0,2t11]~e
2Sq~s!2!<Z0

21Ẽ[0,2t11]~e
2S0q~s!2!, ~4.13!

which is a Gaussian measure for which a bound uniform int is checked by an explicit computa
tion. h
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In Ref. 14 the linear functionq in the interaction term ofH̃ is replaced by some bounde
function, g(q). Going through the same steps in the proof we end up with the expectatio
g(q(s))2 in ~4.10!, which is then bounded by assumption. For boundedg our argument easily
extends to a much larger class of binding potentials.

V. SCATTERING AND ASYMPTOTIC COMPLETENESS

It remains to transfer the limits~3.4!, ~3.7! to unitary equivalence and asymptotic comple
ness. We start with the first item.

Lemma 5.1:For everycPF , APĀ ~the uniform norm closure! we have

lim
t→`

^c,a t
0Ac&5^c,c&^V0 ,AV0&. ~5.1!

Proof:We consider

^W~g!V0 ,~a t
0W~ f !!W~g!V0&5^V0 ,W~ f !V0&exp@ i ~g,sTt

1 f !#. ~5.2!

Since the dynamical matrixB, cf. Appendix A, has purely absolutely continuous spectrum, by
Riemann-Lebesgue Lemma, the exponent converges to 0 ast→`. lsp$W(g)V0ugPE21%E1% is
dense inF . Thus the limitt→` in ~5.2! extends toF andĀ. h

Lemma 5.2:For A,BP Ā we have

lim
t→`

~^V,~a t
0B!a tAV&2^V0 ,~a t

0B!a tAV0&!50. ~5.3!

Proof:We add to~5.3! a term which vanishes ast→` by Lemma 5.1, sinceBgAP Ā,

^V,a t
0~Ba2t

0 a tA!V&2^V0 ,Ba2t
0 a tAV0&2^V,a t

0~BgA!V&1^V0 ,BgAV0&. ~5.4!

The limit t→` vanishes then by Theorem 3.1. h

Lemma 5.3: We have for all AP Ā,

lim
t→`

^V0 ,a tAV0&5^V,AV&. ~5.5!

Proof: SetB51 in Lemma 5.2. h

We define for allAP Ā

U0 :AV0°g0AV,U:AV°gAV0 . ~5.6!

U0 ,U are densely defined inF .
Lemma 5.4: U0 ,U are isometries,uuU0cuu5uucuu, resp.uuUcuu5uucuu, for all cPF .
Proof: Let us considerU0. ForAP Ā let c5AV0. Then

^c,U0*U0c&5^V0 ,A*U0*U0AV0&5^V,~g0A* !~g0A!V&5^V,g0~A*A!V&

5 lim
t→`

^V,a2ta t
0~A*A!V&5 lim

t→`
^V,a t

0~A*A!V&5^V0 ,A*AV0&5^c,c&,

~5.7!

where we used thatg is a* -automorphism in third and Lemma 5.1 in the fifth identity. The pro
for U follows the same steps. In the fifth identity we use then Lemma 5.3. h

By continuityU0 ,U extend to isometries onF .
Lemma 5.5:We haveU*5U0. ThusU0 ,U are unitary.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Proof: For A,BPĀ let c15BV0 ,c25AV. Then

^c1 ,Uc2&5^BV0 ,UAV&5^BV0 ,gAV0&5 lim
t→`

^V0 ,B*a2t
0 a tAV0&5 lim

t→`
^V0 ,~a t

0B* !a tAV0&

5 lim
t→`

^V,~a t
0B* !a tAV&5^g0~B!V,AV&5^U0BV0 ,AV&5^U0c1 ,c2&

5^U*c1 ,c2&, ~5.8!

where we used Lemma 5.2 in the fifth and thatg0 is a* -automorphism in the seventh identity.h

Proof of Proposition 1.2:From ~3.4! we infer the intertwining property

g+a t5a t
0+g, ~5.9!

which implies forAPĀ

g+a tAV05UeiHtAe2 iHtV5Uei ~H2E!tAV5a t
0+gAV05ei ~H02E0!tgAV05ei ~H02E0!tUAV.

~5.10!

Since$AVuAP Ā%5F and by Lemma 5.5, we haveUei (H2E)tU*5ei (H02E0)t for all tPR. h

Proof of Theorem 1.3:For w5(0,w1 ;0,w2) we haveW(w)51^exp@i(A(w1)2E(w2))#, com-
pare with~1.15!. Thus the Weyl algebra onF b is generated byW(w) with w of the particular
form (0,w1 ;0,w2), which we adopt from now on as a convention.

We prove existence and completeness ofW1. The proof forW2 is analogous. We have

e2 i ~H2E!tJeiHbtW~w!u0&5e2 i ~H2E!tW~Tt
01w!V

5a2ta t
0W~T2t

1 Tt
01w!V

5W~T2`
1 w!V

1 i E
0

t

dsa2s@V,as
0W~T2`

1 w!#V1W~T2t
1 Tt

01w!V2W~T2`
1 w!V

2 i E
0

t

dse2 i ~H2E!s@V,W~Ts
1T2`

1 w!2W~Ts
1T2t

1 Tt
01w!#V. ~5.11!

The second line converges tog0W(T2`
1 w)V, providedT2`

1 w satisfies

E um~dl!u E
0

`

dtu~l,sTt
1T2`

1 w!u,`. ~5.12!

This will be proved in Appendix B. The third line converges strongly to zero, since by~2.7!
T2t

1 Tt
01w→T`

1w as t→` strongly inE21%E1. In the fourth line we use~1.2! and ~2.4!. This
yields the bound

E um~dl!u E
0

t

dsu~l,sTs
1T2`

1 w!u uu~W~l1Ts
1T2`

1 w!2W~l1Ts
1T2t

1 Tt
01w!!Vuu

1E um~dl!u E
0

t

dsu~l,sTs
1~T2`

1 2T2t
1 Tt

01!w!u. ~5.13!

By ~5.12! in the first term we can use dominated convergence with
J. Math. Phys., Vol. 38, No. 5, May 1997
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lim
t→`

uu~W~l1T2`
1 Ts

01w!2W~l1T2t
1 Tt

01Ts
01w!!Vuu50 ~5.14!

by intertwining and sinceTs
01wPE21%E1 for fixed s. In Appendix B we prove that the secon

term in ~5.13! converges to zero ast→`.
Altogether we have shown that the existence of the limit

lim
t→`

e2 i ~H2E!tJeiHbtW~w!u0&5g0W~T2`
1 w!V5U0W~T2`

1 w!V05W1W~w!u0& ~5.15!

for wPQDc%QDc .
LetA0 be the algebra finitely generated by$W(w),wPQDc%QDc%. The limit ~5.15! holds

for all APA0. Let c i5Ai u0&PF b ,AiPA0 ,i51,2. Then

^c2 ,~W
1!*W1c1&5 lim

t→`
^V,1^ ~e2 iHbtA2*A1e

iHbt!V&5^0uA2*A1u0&5^c2 ,c1&. ~5.16!

ThereforeW1 is an isometry. SinceT2`
1 is complete,$W(T2`

1 w)V0 ,wPQEc%QEc%5F . By
Lemma 5.5U0 is unitary, which by~5.15! implies RanW15F . h
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APPENDIX A: CLASSICAL FLOW

It is convenient to first perform the canonical transformation

p85v0Amq, q852
1

v0Am
p. ~A1!

The corresponding flow is denoted bySt , to distinguish it fromTt . Properties ofSt translate
one-to-one toTt . Omitting the8 in ~A1! we have

d2

dt2 S q~ t !

Â~k,t !
D

5S 2v0
2q~ t !1v0m

21/2E d3k8er̂~k8!Q~k8!Â~k8,t !

2v~k!2Â~k,t !2m21er̂~k!Q~k!E d3k8er̂~k8!Q~k8!Â~k8,t !1v0m
21/2er̂~k!Q~k!q~ t !

D
52BS q~ t !

Â~k,t !
D . ~A2!

B is a linear operator onH15C3% (C2^L2(R3)). The flowSt
0 is generated by

d2

dt2 S q~ t !

Â~k,t !
D 5S 2v0

2q~ t !

2v~k!2Â~k,t !
D 52B0S q~ t !

Â~k,t !
D . ~A3!
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Let B15B2B0. B1 is a finite rank operator. We haveB>0, B0>0 and by the Kato-Rellich
theoremB is self-adjoint with domainD(B0). Let Em

c denote the Hilbert spaces with weigh
(B0)

m/2. The real part ofEm
c agrees withEm . The weight (B)m/2 induces an equivalent norm,24

Chapter XI.10. We haveE0
c5H1.

The solution to~A2! is

St5S cosABt
1

AB
sinABt

2ABsinABt cosABt
D . ~A4!

Therefore

StSB21/2 0

0 B1/2DSt15SB21/2 0

0 B1/2D ~A5!

which proves thatE21
c

%E1
c is invariant underSt

1 .
To prove~2.7! we note that

S2t
1 St

01~12P0!5S B1/4 0

0 B21/4D S cosABt sinABt
2sinABt cosABtD S B

21/4B0
1/4 0

0 B1/4B0
21/4D

3S cosAB0t 2sinAB0t

sinAB0t cosAB0t
D S ~12P0!B0

21/4 0

0 ~12P0!B
1/4D . ~A6!

By the Kato–Birman theory,24 Chapter XI.3, the limit

lim
t→6`

eiABte2 iAB0t~12P0!5W7~B,B0! ~A7!

exists strongly inH1. By ~1.12! B has purely absolutely continuous spectrum, cf. also Appen
B. Therefore RanW7(B,B0)5H1. SinceB

1/4B0
21/421 andB21/4B0

1/421 are trace class, the limi

lim
t→6`

S B21/4 0

0 B1/4DS2t
1 St

01~12P0!S B0
1/4 0

0 B0
21/4D ~A8!

exists strongly inE0
c

%E0
c and agrees withW7(B,B0) if one identifies real and imaginary pa

properly. Therefore

lim
t→6`

S2t
1 St

01~12P0!5S7`
1 ~A9!

exists strongly onE21%E1 and RanS7`
1 5E21%E1.

APPENDIX B: DECAY ESTIMATES

Let g5(0,0;l,0) be the initial condition for Tt and (q̂(z),Â(z); p̂(z),
2Ê(z))5*0

`dte2ztTtg, Rez.0. From~2.5! we obtain
J. Math. Phys., Vol. 38, No. 5, May 1997
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q̂~z!5ĥ~z!l,Â~k,z!52zĥ~z!~z21k2!21er̂~k!Q~k!l,
~B1!

p̂~z!52ĥ~z!Smz1z
2

3
e2E d3kur̂~k!u2~z21k2!21Dl,

2Ê~k,z!52z2ĥ~z!~z21k2!21er̂~k!Q~k!l.

Let f5(a1 ,w1 ;a2 ,w2) with (w1 ;w2)PDc%Dc . Then

E
0

`

dt e2zt~ f ,Ttg!5ĥ~z!F ~a1•l!2Smz1z
2

3
e2E d3kur̂~k!u2~z21k2!21~a2•l!

2zE d3ker̂~k!~z21k2!21S ŵ1•Q~k!l2z2E d3ker̂~k!~z21k2!21

3~ ŵ2•Q~k!l!G5
l f~z!

~1/ĥ~z!!
. ~B2!

1/ĥ extends to an analytic function on all ofC, cf. Eq. ~1.13!. By the spectral theorem for th
dynamical matrixB of Appendix A there exists ag0>0 such that 1/ĥ has no zeros in$zuRe
z.2g0%. On the imaginary axis

ĥ~01 iy !215m~v0
22y2!2y2 2

3e
2r ~y! ~B3!

with

r ~y!5EPdy8n~y8!
1

y82y
2 ipn~y!, n~y!5E d3kd~y2uku!ur̂~k!u2. ~B4!

Thus if r̂.0, theng0.0. If (C) holds andr̂ vanishes at some isolateduk0u, then in order to have
a purely imaginary zero of 1/ĥ we still have to adjust the real part ofĥ(01 iy)21 to vanish. This
means that there is a codimension one submanifold in the space of charge distributions
g0.0. If g0.0, B has purely absolutely continuous spectrum.

To discuss the numerator we note that, for Rez.0,

zE d3kr̂~k!~z21k2!21~ ŵ•Q~k!l!5 (
i , j51

3 E d3xE d3x8r~x!Gi j ~x2x8;z!w i~x8!l j , ~B5!

where the kernelG is given by

Gi j ~x!5~4puxu!21~d i j2 x̂i x̂ j !ze
2zuxu1~4puxu2!21~d i j23x̂i x̂ j !~e

2zuxu2~zuxu!21~12e2zuxu!!

~B6!

with x̂ j5xj /uxu. Since (w1 ;w2) andr have compact support by assumption, the expression~B5!

and therefore the functionz° l f(z) extends to an analytic function onC. Thus the zero of 1/ĥ with
the largest real part determines the exponential decay of (f ,Ttg). This establishes~3.5! given the
condition (P1) is satisfied.

We still have to establish~5.12! and that the limit ast→` of the second term in~5.13!
vanishes. By definition
J. Math. Phys., Vol. 38, No. 5, May 1997
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E um~dl!u E
0

`

dtu~l,sTt
1T2`

1 w!u<E um~dl!u E
0

`

dtu~l,sTt
1w!u

1E um~dl!u E
0

`

dtE
0

`

dsu~l,sTt2s
1 B1

1Ts
01w!u. ~B7!

The first term after the inequality is bounded by the results in Appendix A. The integrand o
second term can be written as

~l,sTt2s
1 B1

1Ts
01w!5~l,sTt2s

1 f s! ~B8!

with f̂ s5(2e/m)(0,r̂(k)Q(k)a(s);a(s),0) and

a~s!5E d3ker̂~k!Q~k!~ ŵ1~k!v~k!21sin v~k!s1ŵ2~k!cosv~k!s!. ~B9!

By ~B2!

u~l,sTt2s
1 f s!u<ce2gut2suuluua~s!u. ~B10!

Sincew1 ,w2PQDc we have

E
0

`

dtua~ t !u,` ~B11!

and therefore the second term in~B7! is bounded.
Finally the second term of~5.13! equals

E um~dl!u E
0

t

dsE
t

`

dtu~l,sTs2t
1 B1

1Tt
01w!u ~B12!

which vanishes ast→` by dominated convergence and~B9!, ~B11!.
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12V. Jakŝić and C.-A. Pillet, ‘‘On a model of quantum friction II. Fermi’s golden rule and dynamics at positive temp
ture,’’ Commun. Math. Phys.176, 619–644~1996!.
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Wave equations and kinematical integrals for complexified
Maxwell–Klein–Gordon fields

J. G. Cardosoa)
Department of Mathematics, Centre for Technological Sciences-UDESC,
89223-100 Joinville SC, Brazil

~Received 30 September 1996; accepted for publication 31 December 1996!

The dynamics of Maxwell–Klein–Gordon fields in the framework of complex
Minkowski space is considered. It is particularly shown that the procedures in-
volved in the actual derivation of the wave equations which control the propagation
of photons lead naturally to new structures describing the corresponding sources.
The relevant kinematical integrals are readily built up by utilizing a suitable defin-
ing two-spinor expression for the energy-momentum tensor of the complete theory.
© 1997 American Institute of Physics.@S0022-2488~97!00105-9#

I. INTRODUCTION

It may well be said that the relationship between the irreducibility of the local spinor re
sentations of the Lorentz group and the symmetry properties of the independent component
spinning fields which occur in the formulation of the elementary physical theories is what co
tutes one of the most important general features of the two-spinor approach to interacting s
in both flat and curved spacetimes.1–8A remarkable consequence of this fact is that any degree
freedom having spin61,63/2,62,... turn out to be locally specified by totally symmetric prim
and unprimed spinor fields. In the particular context of meson electrodynamics, the Maxwell
normally show up as two conjugate massless uncharged spinors each bearing two indice
same type while the Klein–Gordon fields appear as the elements of a pair of opposite-
scalars carrying the same rest mass. Whereas the massless fields accordingly describe
bearing spin61, the massive fields are effectively regarded as spinless quantities. As far
formulation of the usual flat-spacetime version of the theory is concerned, the above f
likewise enables one to set up the field equations that control the propagation of the pe
left-handed and right-handed modes without introducing explicitly any causal commutation
tions for the fields. What seems to arise from completing this procedure is the possibil
carrying out the splitting of the fields into parts bearing positive and negative energies by s
requiring9 holomorphicity on the appropriate tubes of complex Minkowski spaceCM . This situ-
ation gives rise to a splitting prescription that takes over the role of the traditional procedure
involves breaking the fields into their Fourier components. In spite of the fact that the con
for the fields to have positive energy can be accomplished by imposing suitable subsidiar
tions on them, the main requirement here is that they possess holomorphic extensions i
forward tubeCM1 of CM . All such fields thus propagate in future directions of the real sliceRM
of CM . In the case of negative-energy fields, the corresponding requirement is similar t
previous one, but now the role played byCM1 is taken over by the backward tube ofCM .

In the present article, we initially consider the complexified formulation of the Maxwe
Klein–Gordon theory. The prescriptions for building up and working out the overall variati
principle were essentially given earlier10 in connection with the presentation of theCM version of
some of the fundamental field theories. For this reason, at this stage we will not enter in
details of the derivation of the respective equations of motion~Sec. II!. It will be shown that the
right-hand sides of the wave equations which govern the propagation of photons involve

a!Electronic mail: dmat2jgc@dcc.fej.udesc.br
0022-2488/97/38(5)/2297/11/$10.00
2297J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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metrized derivative structures suitably carrying the pieces borne by the current density
theory ~Sec. III!. Instead of translating the conventional definition of the full energy-momen
tensor into spinorial terms, we make use of an adequate defining expression which parti
yields the familiar Penrose structures.7 In fact, the standard symmetry property of the tensor
well as its ‘‘reality’’ are taken up by the latter definition at the outset~Sec. IV!. It will become
obvious that such procedures can be utilized to construct a set of explicit contour integrals
associated energy-momentum four-vector and angular-momentum bivector~Sec. V!. We shall
make some remarks on the theory in Sec. VI.

We believe that the elaboration of the work to be presented here could eventually en
some of the striking features of the inner structure of the system, in addition to making u
papers referred to before. In relation to this situation, it would be desirable to carry ou
derivation of the Penrose kinematical formulas by starting with manifestly spinorial expres
Indeed, it is upon these facts that the original motivation for completing our procedures
Throughout the work, we will employ the natural system of units whereinc5\51. All the
spin-tensor conventions and rules as given by Penrose7 will also be adopted from the beginning
For convenience, an arbitrary pointxaPCM will be split up according to the schemexa5ja

2 iha, with ja andha belonging both toRM . We will sometimes regardCM1 as the topological
productRM3V1, with the second factor being the~convex! interior of the closure of the future
cone of some real origin. The individual Maxwell and Klein–Gordon fields will be, respectiv
represented byfAB(x),cA8B8(x) andu(x),Q(x), whereasFAA8(x) will stand for the electromag-
netic potential. We stress, in particular, that the electromagnetic fields must be looked up
independent products between suitableSL(2,C)^SL(2,C) fibers overxa. Their symmetry makes
it immaterial to stagger the indices borne by them, where we will not order their upper and
indices upon performing some of the calculations of Sec. IV. The~holomorphic! partial derivative
operator onCM is written as¹AA8 . We will denote the alternating tensors onCM by eabcd and
eabcd. For any two quantities of interestYAA8(x), andJAA8(x), with A andA8 being clumped
spinor indices, we will use the field-theoretic notation

YAA8~x!¹JCC8JBB8~x!5@¹CC8YAA8~x!#JBB8~x!2YAA8~x!¹CC8JBB8~x!.

II. FORMULATION OF THE THEORY

Let V be a bounded open subset ofCM whose closure is compact. The complete Lagrang
density which describes the dynamics of the fields inV is formally written as

LMKG5LM1LKG1L INT , ~2.1!

where

LM5
1

8p
@fAB~x!fAB~x!1cA8B8~x!cA8B8~x!#, ~2.2!

and

LKG5@¹AA8Q~x!#¹AA8u~x!2m2Q~x!u~x!, ~2.3!

are the free Maxwell and Klein–Gordon contributions, withm denoting the~common! rest mass
of the scalar fields. The pieceL INT stands for the interacting contribution which is given by t
outer-product structure

L INT5FAA8~x!JAA8~x!1Q~x!s~x!1S~x!u~x!, ~2.4!
J. Math. Phys., Vol. 38, No. 5, May 1997
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wheres(x) andS(x) represent the~independent! sources ofu(x) andQ(x), respectively, and the
four-vectorJAA8(x) is the mesonic current density whose defining expression is written ou
plicitly as

JAA8~x!5 ie@Q~x!¹JAA8u~x!#, ~2.5!

with e being the charge carried byu(x). For the relevant least-action principle, we have t
expression~see Ref. 10!

DE
V
LMKGd

4j∧d4h50, ~2.6!

the ~eight-real-dimensional! compact volume ofV being thus given by

Vol~V!5E
V
d4j∧d4h, ~2.7!

where d4l5~1/4!!/eabcddla∧dlb∧dlc∧dld, with l standing for eitherj or h. It should be
emphasized that, in the first instance, all the quantities entering intoLMKG must have singularity
sets which possess void intersections withV. The corresponding equations of motion appear, th
as the gauge-invariant statements

¹A8
B fAB~x!1¹A

B8cA8B8~x!54p ie@Q~x!¹JAA8u~x!#, ~2.8!

along with

~h1m2!u~x!5s~x!, ~2.9a!

and

~h1m2!Q~x!5S~x!, ~2.9b!

whereh 5 ¹AA8¹
AA8.

Equations~2.8! constitute one of the halves of Maxwell’s equations which, when comb
together with the electromagnetic Bianchi identities10

¹A8
B fAB~x!5¹A

B8cA8B8~x!, ~2.10!

yield the field equations

¹A8
B fAB~x!52p ie@Q~x!¹JAA8u~x!#5¹A

B8cA8B8~x!. ~2.11!

The entire theory onV arises out of the combination of the statements~2.9! and ~2.11! with the
electromagnetic bivector relationships

fAB~x!5¹A8(AFB)
A8~x!, ~2.12a!

cA8B8~x!5¹A(A8FB8)
A

~x!. ~2.12b!

Allowing for the positive-energy case, we can carry out an analytic continuation intoCM1,
thereby extending adequately the domain of definition of the pertinent fields. The correspo
requirements thus amount to the following relations onCM1
J. Math. Phys., Vol. 38, No. 5, May 1997
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¹̃CC8fAB~x!50,¹̃CC8cA8B8~x!50, ~2.13a!

and

¹̃AA8u~x!50, ~2.13b!

where¹̃CC8 is the antiholomorphic partial derivative operator onCM .
We end this section by pointing out thatJAA8(x) turns out to be divergenceless whenev

u(x) andQ(x) are taken as free fields. In effect, we have the trivial computation

¹AA8@ ieQ~x!¹JAA8u~x!#5 ie$@hQ~x!#u~x!2Q~x!hu~x!#%5 ie@S~x!u~x!2Q~x!s~x!#,
~2.14!

where, in the absence of sources,¹AA8JAA8(x)50. Notice that this charge-conservation law can
once be recovered from either of the relations

ie¹ [A
A8@Q~x!¹JB]A8u~x!#50, ~2.15a!

ie¹ [A8
A

@Q~x!¹JB8]Au~x!#50. ~2.15b!

III. ELECTROMAGNETIC WAVE EQUATIONS

One of the basic procedures for deriving the wave equations for the Maxwell fields cons
calling for Eqs.~2.15! and making use of the derivative-operator splitting

¹A8C¹A8
B

5¹A8(B¹A8
C)

1 1
2e

BCh5 1
2e

BCh, ~3.1!

along with the one which is obtained from~3.1! by interchanging the roles played by unprime
and primed indices. Obviously, the second relation borne by the structure~3.1! involves imple-
menting the~local! commutativity of the¹’s. Hence, operating appropriately with¹A8C and
¹AC8 on both sides of Eqs.~2.11!, after some elementary manipulations we arrive at the statem

hfAB~x!54p ie¹A8(A@Q~x!¹JB)
A8u~x!#, ~3.2!

and

hA8B8~x!54p ie¹A(A8@Q~x!¹JB8)
Au~x!#. ~3.3!

Now, employing the relations

¹A8(A@Q~x!¹JB)
A8u~x!#52@¹ (A

A8Q~x!#¹B)A8u~x!, ~3.4a!

¹A(A8@Q~x!¹JB8)
Au~x!#52@¹ (A8

A Q~x!#¹B8)Au~x!, ~3.4b!

enables us to write down the wave equations

hfAB~x!58p ie@¹ (A
A8Q~x!#¹B)A8u~x!, ~3.5!

and

hcA8B8~x!58p ie@¹ (A8
A Q~x!#¹B8)Au~x!. ~3.6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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The wave equation for the potential can be readily derived by combining Eqs.~2.11! with the
relationships~2.12! and invoking an operator splitting similar to~3.1!. We thus have

hFAA8~x!5¹AA8L~x!14p ieQ~x!¹JAA8u~x!, ~3.7!

withL(x)5 ¹BB8F
BB8(x).

It is useful to look into the real structure of the positive-energy version of Eqs.~3.5! and~3.6!.
This point will be made clear later in Sec. V. In the case of Eq.~3.5!, say, we thus use the splittin
prescriptions

¹̃AA85
1
2~¹

j

AA82 i¹
h

AA8!, ~3.8!

and

fAB~x!5RefAB~j,h!2 i Im fAB~j,h!, ~3.9!

to obtain the harmonicity conditions onRM3V1

~hj1hh!RefAB~j,h!50, ~3.10a!

~hj1hh!Im fAB~j,h!50, ~3.10b!

where hl5¹
l

AA8 ¹
l
AA8. Introducing the~symmetric! auxiliary spinor

sAB~x!5@¹ (A
A8Q~x!#¹B)A8u~x!, ~3.11!

and also employing the relation

h5
1

4
~hj2hh!1

i

2
¹
j

AA8¹
h
AA8, ~3.12!

leads to the electromagnetic equations on the real product space

~hj2hh!RefAB~j,h!516pe Im sAB~j,h!, ~3.13a!

~hj2hh!Im fAB~j,h!5216pe ResAB~j,h!. ~3.13b!

The real statements forcA8B8(x) can be built up from the ones just derived by making triv
replacements.

IV. THE ENERGY-MOMENTUM TENSOR

In accordance with the usual prescription, the construction of our defining expression f
energy-momentum tensorTab

(MKG )(x) of the theory involves only the source-free pieces of E
~2.1!. Consequently, the derivation of the structure for one part will be explicitly carried out
the other were absent. The Maxwell part appears to be both traceless and divergenceless. W
tracelessness is intimately related to the symmetry of the electromagnetic fields, its diver
lessness is expressed as an identity that comes out of combining the ‘‘freeness’’ borne
starting expression with the masslessness of the photons. In respect to the Klein–Gordon p
will show that it bears both tracefulness and divergencelessness, regardless of whether th
less limiting situation is effectively allowed for. Roughly speaking, the divergencelessness
J. Math. Phys., Vol. 38, No. 5, May 1997
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latter part is associated with the vanishing of an expression which adequately carries ‘‘piec
the ~homogeneous! Klein–Gordon equations. In virtue of the universal additivity property, we
put into effect the splitting relation

Tab
~MKG !~x!5Tab

~M !~x!1Tab
~KG !~x!, ~4.1!

with Tab
(M )(x) andTab

(KG )(x) amounting to the Maxwell and Klein–Gordon parts ofTab
(MKG )(x).

The procedure for building upTab
(M )(x) consists of two stages. We first utilize the fiel

potential blocks occurring in Eqs.~2.12! for rewritingLM as

LM5
1

8p
$@¹A8(AFB)

A8~x!#¹B8
A FBB8~x!1@¹A(A8FB8)

A
~x!#¹B

A8FB8B~x!%. ~4.2!

Then, we form outer products between those derivatives ofLM which are defined with respect t
such blocks and suitable combinations involving the Maxwell fields together with the« spinors.
We thus have the structure

TAA8BB8
~M !

~x!5«A8C8fAC~x!
]LM

]¹BB8FCC8~x!
1

]LM

]¹BB8FCC8~x!
«ACcA8C8~x!2«AB«A8B8LM .

~4.3!

In case a commutability assumption is effectively taken into account, Eq.~4.3! may be re-
expressed as

TAA8BB8
~M !

~x!52¹ [AA8FCC8]~x!
]LM

]¹BB8FCC8~x!
2«AB«A8B8LM , ~4.4!

with the square brackets denoting here skew-symmetrization over the index pairs. It follow
working out the derivative piece carried explicitly by Eq.~4.3!, we get the simple relation

]LM

]¹BB8FCC8~x!
5

1

4p
@«B8

C8fB
C~x!1«B

CcB8
C8~x!#, ~4.5!

which, when substituted back into Eq.~4.3!, leads us to the expression

TAA8BB8
~M !

~x!5
1

4p
@«A8B8fAC~x!fB

C~x!1«ABcB8
C8~x!cA8C8~x!22fAB~x!cA8B8~x!#

2
1

8p
«AB«A8B8@fCD~x!fCD~x!1cC8D8~x!cC8D8~x!#. ~4.6!

Inserting into Eq.~4.6! the trivial statement

«AB«A8B8@fCD~x!fCD~x!1cC8D8~x!cC8D8~x!#

52@«A8B8fC[A~x!fB]
C ~x!1«ABcC8[A8~x!cB8]

C8 ~x!#, ~4.7!

and taking into consideration the local commutativity relations

fC(A~x!fB)
C ~x!50, cC8(A8~x!cB8)

C8 ~x!50, ~4.8!

we obtain the symmetric structure
J. Math. Phys., Vol. 38, No. 5, May 1997
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TAA8BB8
~M !

~x!52
1

2p
fAB~x!cA8B8~x!, ~4.9!

which actually coincides with the complexified form of Penrose’s expression for the electro
netic part up to a conventional overall sign. It becomes obvious that

TAA8
~M !AA8~x!50, ¹AA8TAA8BB8

~M !
~x!50. ~4.10!

To derive the explicit expression forTab
(KG )(x), we have to follow up a procedure which

similar to that carried through above. The pertinent prescription thus amounts to constr
symmetrized products carrying the¹ pieces that occur in Eq.~2.3! along with the derivatives of
LKG which are defined with respect to these pieces, likewise ordering the factors involve
propriately and adding the products together. We have, in effect,

TAA8BB8
~KG !

~x!5
]LKG

]¹AA8u~x!
¹BB8u~x!1¹BB8Q~x!

]LKG

]¹AA8Q~x!
2«AB«A8B8LKG . ~4.11!

If we use the elementary identity

«AB«A8B8@¹CC8Q~x!#¹CC8u~x!54@¹ [A[A8Q~x!#¹B8]B]u~x!, ~4.12!

a short calculation leads us, then, to the structure

TAA8BB8
~KG !

~x!5@¹AB8Q~x!#¹BA8u~x!1@¹BA8Q~x!#¹AB8u~x!1m2«AB«A8B8Q~x!u~x!,
~4.13!

which is clearly symmetric in the index pairsAA8 andBB8. Evidently, this latter structure turn
out to be identical to the one provided in Ref. 7 in case the Klein–Gordon fields are taken
massless uncharged fields onRM . We notice that Eq.~4.13! can be rewritten if we employ the
‘‘field equation’’

~h12m2!@Q~x!u~x!#52@¹AA8Q~x!#¹AA8u~x!, ~4.14!

and invoke once again the commutativity of the¹’s. Implementing Eq.~4.12! thus yields the
alternative expressions

TAA8BB8
~KG !

~x!5@¹AB8Q~x!#¹BA8u~x!1@¹BA8Q~x!#¹AB8u~x!1@¹AB8¹BA8Q~x!#u~x!

1Q~x!¹AB8¹BA8u~x!2$@¹AA8¹BB8Q~x!#u~x!1Q~x!¹AA8¹BB8u~x!%,

~4.15!

and

TAA8BB8
~KG !

~x!52@¹ (A(A8Q~x!#¹B8)B)u~x!2 1
4«AB«A8B8~h22m2!@Q~x!u~x!#. ~4.16!

We should observe that the whole second-derivative term carried by Eq.~4.15! is skew-symmetric
in the indicesA8,B8 and, consequently, also inA,B provided that the¹’s commute. It is evident
that we can carry out the computation of the trace ofTAA8BB8

(KG ) (x) by using any one of the
expressions~4.13!, ~4.15! and ~4.16!. In the case of~4.13! or ~4.15!, we take up Eq.~4.14! to
obtain the invariant

TAA8
~KG !AA8~x!5~2m22h !@Q~x!u~x!#. ~4.17!
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the case of Eq.~4.16!, the trace of the totally symmetric piece vanishes identically, such tha
computation yields the relation~4.17! at once. For the divergence of~4.13!, we have the identi-
cally vanishing expression

¹AA8TAA8BB8
~KG !

~x!5@hQ~x!#¹BB8u~x!1@¹BB8Q~x!#hu~x!1m2¹BB8@Q~x!u~x!#.
~4.18!

In calculating the divergence of the tensor~4.15!, it is useful to spell out the following structur
expressing the divergence of the second-derivative pieces

2¹AA8$@¹A[B8¹A8]BQ~x!#u~x!1Q~x!¹A[B8¹A8]Bu~x!%

52 1
2$@¹BB8hQ~x!#u~x!1Q~x!¹BB8hu~x!1@hQ~x!#¹BB8u~x!

1@¹BB8Q~x!#hu~x!%, ~4.19!

which really equalsm2¹BB8@Q(x)u(x)# since the Leibniz property is applicable to the¹ opera-
tors. Of course, the divergence of the block involving the~symmetric! sum of products of deriva-
tives in Eq.~4.15! is given by

¹AA8$@¹AB8Q~x!#¹BA8u~x!1@¹BA8Q~x!#¹AB8u~x!%52m2¹BB8@Q~x!u~x!#, ~4.20!

where the result expressed by Eq.~4.18! is recovered. With regard to the corresponding calcu
tion involving Eq.~4.16!, we first compute the divergence of the totally symmetric piece. In eff

¹AA8$2@¹ (A(A8Q~x!#¹B8)B)u~x!%5 1
2¹BB8$@¹AA8Q~x!#¹AA8u~x!%2m2¹BB8@Q~x!u~x!#.

~4.21!

Now, recalling Eq.~4.14! we see that the divergence of the kernel of the relevant« term equals

¹BB8$~h22m2!@Q~x!u~x!#%52¹BB8$@¹AA8Q~x!#¹AA8u~x!%24m2¹BB8@Q~x!u~x!#.
~4.22!

It follows that combining Eqs.~4.21! and ~4.22! recovers once again the divergencelessnes
TAA8BB8
(KG ) (x).

V. KINEMATICAL INTEGRALS

We are now in a position to introduce the contour integrals for the kinematical quantiti
the theory. The basic structure with which we start here is formally the same as the conve
~covariant! one, but our integrands will presumably involve the energy-momentum tensor e
ited in the foregoing section.

The expression for the complete energy-momentum four vector is written as

pAA8
~MKG !

@G#5E
G
TAA8BB8

~MKG !
~x!d3xBB8, ~5.1!

with G standing for a suitable three-real-dimensional compact contour contained inCM , and
d3xBB8 being the spinor version of the ordinary three-form

d3xb5
1

3!
ebcmndxc`dxm`dxn . ~5.2!

Therefore, the property~4.1! allows us to write the formal splitting relation
J. Math. Phys., Vol. 38, No. 5, May 1997
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pAA8
~MKG !

@G#5pAA8
~M !

@G#1pAA8
~KG !

@G#, ~5.3!

where

pAA8
~M !

@G#5E
G
TAA8BB8

~M !
~x!d3xBB8, ~5.4a!

and

pAA8
~KG !

@G#5E
G
TAA8BB8

~KG !
~x!d3xBB8. ~5.4b!

More explicitly, we particularly have

pAA8
~M !

@G#5
~21!

2p E
G
fAB~x!cA8B8~x!d3xBB8. ~5.5!

To build up the covariant angular-momentum integrals, one has to recall the definition10

LAA8BB8
~MKG !

@g#52E
g
x[AA8TBB]CC8

~MKG !
~x!d3xCC8, ~5.6!

which includes using the same notation as in Eq.~4.4! and prescribing a contour as before. W
thus have the overall bivector expression

LAA8BB8
~MKG !

@g#5E
g
@eA8B8mABCC8

~MKG !
~x!1eABm̃A8B8CC8

~MKG !
~x!#d3xCC8, ~5.7!

where the~independent! m densities are accordingly symmetric in the indicesA,B andA8,B8,
being formally given as

mABCC8
~MKG !

~x!5xA8(ATB)CC8
~MKG !A8~x!, ~5.8a!

m̃A8B8CC8
~MKG !

~x!5xA(A8TB8)CC8
~MKG !A

~x!. ~5.8b!

For the individual Maxwell and Klein–Gordon contributions, we thus have the explicit kern

mABCC8
~M !

~x!5
1

2p
x(A
A8fB)C~x!cA8C8~x!, ~5.9a!

m̃A8B8CC8
~M !

~x!5
1

2p
x(A8
A f uACu~x!cB8)C8~x!, ~5.9b!

and

mABCC8
~KG !

~x!5 1
4xC8(AeB)C~h22m2!@Q~x!u~x!#2$3x(A

B8@¹B(B8Q~x!#¹C8)C)u~x!

2xC
B8@¹ (B8(AQ~x!#¹B)C8)u~x!%, ~5.10a!
J. Math. Phys., Vol. 38, No. 5, May 1997
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m̃A8B8CC8
~KG !

~x!5 1
4xC(A8eB8)C8~h22m2!@Q~x!u~x!#2$3x(A8

B
@¹B8(BQ~x!#¹C)C8)u~x!

2xC8
B

@¹ (A8(BQ~x!#¹C)B8)u~x!%. ~5.10b!

We point up that the symmetry of the angular-momentum densities can be expressed
e-tracelessness relations

mA
~MKG !A

CC8~x!505m̃ A8
~MKG !A8

CC8~x!, ~5.11!

which are equivalent to the universal bivector property

LAA8
~MKG !AA8@g#50. ~5.12!

VI. CONCLUDING REMARKS AND OUTLOOK

It is worth remarking explicitly that if the canonical quantization of the classical theory inRM
were to be effectively carried out, the local causal commutators for the relevant field ope
would take their most elementary form. This feature, which seems to constitute another
quence of the consistent use of the two-component spinor approach, would entail simp
considerably the actual evaluation of the terms borne by the corresponding pertubational
sions.

We should emphasize that the basic construction involved in the formulation of the dyna
principle ~2.6! can also be implemented in cases whereCM gets replaced by another finite
dimensional complex vector space. We believe, in addition, that the treatment of this sit
could particularly produce a background to the construction of explicit variational principle
~nonprojective! twistor space. In the case of spinning massless free fields, one would therefo
led to manifestly twistorial equations of motion.

The procedures giving rise to the real statements of Sec. III enable one to build up f
integral solutions for the electromagnetic fields, which carry Green’s functions satisfying
scribed boundary conditions. In connection with this fact, it seems natural to utilize the m
given by Cardoso,11 whereby solutions to complexified wave equations may be easily constru
uponRM3V1. We think that investigations along these lines can eventually afford a phy
interpretation of the propagation of the fields inCM . It is only the viability of the implementation
of the above-referred techniques that ensures the usefulness of Eqs.~3.13!.

A somewhat important characteristic of the inner structure of the system is that the sym
of the Maxwell fields automatically implies the necessity for the source-freeness require
involved in the derivation of Eqs.~3.5! and ~3.6!. In the event that the freeness of the Klein
Gordon fields had not been taken for granted, the overall symmetry of the wave equatio
photons would, in effect, have been destroyed. A glance at Eqs.~2.14! tells us that this require-
ment can be thought of as being expressed as Eqs.~2.15!.

Worthy of special attention is the fact that the Bianchi identities~2.10! must ultimately be
considered as immediate consequences of Eqs.~2.12!. For the case of Eq.~2.12a!, for instance,
this statement can be directly established by carrying out the gauge-invariant computation

¹AB8fA
B~x!5eBC¹AB8¹A8(AFC)

A8~x!5 1
2@¹AB8fA

B~x!1¹A8BcA8
B8~x!#,

with a similar result obviously holding also for Eq.~2.12b!. It should be observed that, on the bas
of the commutativity relation

¹A[A8¹B8]B5¹ [A[A8¹B8]B] ,

we can rewrite Eqs.~2.9! as follows:
J. Math. Phys., Vol. 38, No. 5, May 1997
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¹A[A8¹B8]BF~x!5 1
4eABeA8B8@S~x!2m2F~x!#,

with F(x) ~resp.S(x)! thus denoting eitheru(x) or Q(x) ~resp.s(x) or S(x)!. Additionally, it
should be pointed out that the kinematical structures shown in Secs. IV and V are invariant
the action of the charge-helicity conjugation operator. When the theory is set uponRM , the
relation ~4.1! brings out clearly the reality ofTab

(MKG )(x).
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Uniform high frequency approximation to scattering
from infinite strip

J. Goldberg, Thomas Berger, and Roger Dashena)
Department of Physics, University of California, San Diego, La Jolla, California 92093

~Received 3 May 1996; accepted for publication 10 January 1997!

A new technique for approximating the high frequency scattering amplitude from
flat obstacles is used to solve the problem of acoustic plane wave scattering from an
infinite soft strip. This method yields the leading order terms in a uniform high
frequency asymptotic expansion for the scattering amplitude which reduce to the
results found with the geometrical theory of diffraction in the regions in which that
theory is valid. The asymptotic expressions derived here are compared with exact
numerical solutions and are found to be accurate for all angles of incidence and
reflection. © 1997 American Institute of Physics.@S0022-2488~97!04105-4#

I. INTRODUCTION

The problem of high frequency scattering from a flat obstacle has long been studied and
exists a number of theories to approximate the scattered field. In this paper, we discuss
approach to the problem and demonstrate its utility by applying it to one of the simplest non
problems of this type, namely, two-dimensional acoustic plane wave scattering from a soft in
strip ~i.e., the field vanishes on the strip!.

The formalism upon which this approach is based was introduced in two earlier publica
The first was the 1990 paper by Dashen and Wurmser1 which presented a new mathematic
treatment of the general problem of scattering from an arbitrary obstacle. Their primary resu
an integral identity which was similar in form to the traditional Green function result in the s
that it expressed the scattering amplitude in terms of an integral over the obstacle’s s
However, the Dashen–Wurmser integral has some special properties, not exhibited by the
tional formulation, that make it well suited to a variety of different scattering applications. On
these applications, first noted in 1994 by Abawiet al.,2 is scattering from a flat obstacle. Speci
cally, they show that in these problems, the Dashen–Wurmser surface integral can be red
a line integral about the obstacle’s edge. When the mathematical problem is inherentl
dimensional, such as scattering from an infinite strip, this line integral reduces to a simple s
edge contributions. Since, in this formulation, it is the edge behavior of the field which govern
form of the scattered field, the natural quantity that arises is related to the local behavior
edge. To be more precise, in the Dirichlet problem that will be considered here, the n
gradient of the full field diverges at these points, and it is the coefficient of this divergence w
appears in the final equations. This quantity, termed the divergence coefficient, becomes t
focus when trying to calculate the scattered field.

In this paper, we derive simple expressions for the divergence coefficients for the sp
problem mentioned above which are valid asymptotically in the high frequency limit. Altho
the mathematical details of this procedure are quite involved, the basic method used to obt
asymptotic approximation is straightforward. First, we make use of the fact that the strip pro
is separable in elliptic coordinates and express the divergence coefficient in series form inv
the eigenfunctions of this coordinate system, namely the periodic and modified Mathieu func
Next, we approximate the terms in this series by their WKB representation and finally, usin
Poisson sum formula, we convert the WKB-based series to a more rapidly converging se

a!Died May 24, 1995.
0022-2488/97/38(5)/2308/24/$10.00
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integrals which can be evaluated asymptotically. The result of this procedure is the first few
in an asymptotic series for the divergence coefficient. Since it is possible to carry out these
using uniform WKB expressions, results can be derived that are accurate for all angles o
dence and reflection.

This approach is similar in many respects to that used by Hansen3 to obtain an asymptotic
result for the diffracted field of a line source in the presence of an infinite strip. As in
derivation, Hansen uses a nonstandard series expansion for the field and a uniform WKB a
mation of the Mathieu functions to obtain his solution. However, his series representation is
distinct from the one derived here. Hansen’s formulation is based on a method originally pro
by Sommerfeld4 in which the field is expanded in terms of radial~as opposed to angular! eigen-
functions which leads to an associated eigenvalue spectrum which is complex. It was sho
Ref. 5 that this alternate representation corresponds to a Watson transform of the standar
expression. In contrast, no such direct mathematical link has been found between the seri
here and the more standard representation. Also, as opposed to the uniform results derive
Hansen’s solution has a region of validity which is limited to the geometrical optics shadow o
strip.

The method presented here also has certain advantages over other more tradition
frequency approaches@such as the geometrical theory of diffraction~GTD!6,7# which arise prima-
rily from the unique mathematical formulation of the problem as stated in Refs. 1 and 2
example, the formulas given there are all exact and thus, as opposed to the GTD results,
no question as to whether or not the derived expressions are asymptotic to the exact field so
In addition, the range of validity of the GTD solution, while being larger than that of the Ha
result, is not entirely uniform. Specifically, the standard GTD results for this problem are
valid for larger grazing angles although a uniform version of that theory has been develope~see,
for example, Refs. 8 and 9!.

There are also some potential benefits of this formalism that, although not yet fully exp
are worthy of mention. One of these, which is suggested in Ref. 1, involves the developm
efficient numerical algorithms. The potential for such development comes from the fact th
integral expressions of this formalism are of one lower dimension than the comparable
function integrals that are often used to compute numerical cross sections. Such a reduc
dimension can result in significant computational savings. A second potential benefit conce
canonical problems of the field. These are problems involving simple geometries which c
used to construct solutions to more complicated problems. Unlike GTD, this technique do
rely upon such solutions and it can potentially be used to solve the canonical problems whic
thus far resisted rigorous solution. An example of such a problem that has received sign
attention throughout the years is the plane angular sector. However, despite the similarities
sector problem has with the one discussed in this paper, this question of wider applic
remains an open area of research.

This paper is organized as follows. In Sec. II we give a formal statement of the problem
cite the relevant results from earlier publications. Section III contains the derivation of the pr
results and in Sec. IV, we compare these results to exact numerical solutions. Concluding r
are given in Sec. V.

II. PROBLEM STATEMENT

Physically, the problem being considered is that of a plane wave incident on an infinite p
strip. We limit consideration to the two-dimensional scalar problem so that the direction of p
gation of the incident plane wavekW will lie in the plane perpendicular to the lengthwise directi
of the strip. Limiting oneself to the scalar problem does not represent a major restriction s
two-dimensional electromagnetic scattering problem can always be reduced to an ass
acoustic problem. A cross section of the imagined physical system is shown in Fig. 1. The p
J. Math. Phys., Vol. 38, No. 5, May 1997
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of the problem dictate that certain boundary conditions will be applied on the surface of the
and we are interested in obtaining the form of the resulting scattered field as a function
direction of observation.

Mathematically, the problem can be stated as follows. We seek the two-dimensional sol
to the Helmholtz equation

@¹21k2#ckW~rW !50,

where the wave numberk is taken to be constant. Dirichlet boundary conditions are to be app
on an infinite strip~of width a) so that the two-dimensional solutionckW(rW) vanishes on a line
segment of lengtha representing the strip’s cross section. In addition, we require that the sol
satisfy the radiation condition so that, far from the strip, it asymptotically approaches the fo

ckW~rW !;eik
W
•rW1 f ~D !~qW ,kW !S eikrAr D ,

whereqW 5k(rW/r ) corresponds to the direction in which the field is observed and the supers
(D) refers to the fact that the boundary conditions imposed here are of the Dirichlet type. W
specifically interested in finding approximations for the functionf (D)(qW ,kW ) commonly referred to
as the scattering amplitude.

In Ref. 1, Dashen and Wurmser derived an integral identity involvingf (D)(qW ,kW ) for the
general three-dimensional plane wave scattering problem. In two dimensions, their result
written as

~kW2qW ! f ~D !~qW ,kW !5 i
eip/4

A8pk
R
C
n̂~ n̂–¹W ckW !~ n̂–¹W c2qW !dl, ~1!

where the integration pathC is the two-dimensional cross section of the scattering obstacle
n̂ is the unit normal toC pointing away from the obstacle.

Abawi et al. show in Ref. 2 that when the obstacle is flat, considerable simplification of
formalism is possible. This is achieved by examining the component of Eq.~1! in the direction
tangent to the obstacle’s surface. When the scattering occurs off an infinite strip,C is a line
segment which, for definiteness, will be specified to lie along thex-axis between the points
(2a/2,0) and (a/2,0). In this case, the simplification is achieved by examining
x-component of Eq.~1!. Clearly, this component largely vanishes sincex̂–n̂50 along the line
segment. As discussed in Ref. 2, the only nonzero contributions to this component of th
integral come from the edges where, as written, the integral is indeterminate sincen̂–¹W ckW diverges

FIG. 1. Cross sectional sketch of physical system.
J. Math. Phys., Vol. 38, No. 5, May 1997
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~when Dirichlet boundary conditions are applied! andn̂ is not defined at these points. Abawiet al.
determine these edge contributions by modifying the original contour~as shown in Fig. 2! so that
it traces a small circle about each edge. Along the modified contour, all the quantities are fin
well defined and the value of the edge contribution can be found by carefully taking the lim
the radius of the circle goes to zero. For the infinite strip this procedure yields the following u
formula,

f ~D !~qW ,kW !5 iAp

2k

eip/4

~kW2qW !–x̂
~CkW

~D !
~rW1!C

2qW
~D !

~rW1!2CkW
~D !

~rW2!C
2qW
~D !

~rW2!!, ~2!

where the quantityCkW
(D)(rW6) is the coefficient of divergence of the normal gradient defined by

relation

lim
rW→rW6

n̂–¹W ckW5CkW
~D !

~rW6!
1

AurW2rW6u
1O~ urW2rW6u0!

and the vectorsrW1 ,rW2 correspond to the edges atx5a/2 and x52a/2 respectively. To be
precise, the direction ofn̂ ~i.e., either up or down! is arbitrary~although it must point in the sam
direction at both edges! and the limit must be taken such thatrW approaches the edge along the li
segment. From Eq.~2!, it is clear that the quantityCkW

(D) , which is termed the divergence coeffi
cient, contains all the information necessary to reconstruct the scattered field and as such b
the new focus when trying to calculate the scattering amplitude.

III. HIGH FREQUENCY APPROXIMATION

In this section, we derive an asymptotic expression for the divergence coefficient w
together with Eq.~2!, provides a high frequency approximation for the scattering amplitude.
derivation will be broken into three parts. We first discuss the series representation of the
gence coefficient in terms of Mathieu functions and, using WKB results derived in Append
obtain a convenient WKB-based approximation to this series. This subsection also inclu
discussion of the important role played by the eigenvalue spectrum and its relation to the c
gence properties of the series. Next we discuss how the Poisson sum formula can be
convert the WKB-based approximation to a rapidly converging series of integrals. By app
mating some of the functions that appear in this series, we are able to evaluate expli
significant number of the leading order terms of the sum and show that they correspond exa
the effects of the singly, doubly, and triply diffracted rays of GTD. In the last subsection

FIG. 2. Modified contour used when applying Eq.~1! to flat obstacles.
J. Math. Phys., Vol. 38, No. 5, May 1997
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reconsider the leading order term of the Poisson sum, and evaluate it asymptotically w
making the simplifications of the previous section. This results in a uniform approximation t
divergent coefficient which is valid for all possible angles.

A. Series representation

The formalism discussed in Sec. II is general in the sense that it can be applied to arb
shaped flat obstacles. We now exploit the fact that the infinite strip problem is separable in e
coordinates and express the divergence coefficient in series form involving the eigenfuncti
this coordinate system, the periodic and modified Mathieu functions. The application of sepa
of variables to this problem is very straightforward and is discussed in numerous places~see, for
example, Ref. 10!. Here, we only cite the results.

The elliptic coordinate system is described by the variablesu andm which are defined by the
transformation equations

x5
a

2
coshm cosu, y5

a

2
sinhm sin u, ~3!

wherea can be considered a parameter of the coordinate system that, in this application,
sponds to the width of the strip. In these variables, the coordinate surfacem50 is the line segmen
which represents the cross section of the strip.

The eigenfunctions required to express the divergence coefficient are the even pe
Mathieu functions, denoted bycen(u), which satisfy the equation

d2cen
du2

1~ ān1h2 sin2u!cen50, ~4!

whereh[ak/2. A discrete real eigenvalue spectrum forān can be determined by the condition th
the eigenfunctions be periodic inu with period 2p ~or p) and even aboutu50. In addition, the
eigenfunctions are normalized such that

E
0

2p

ducen~u!cem~u!5pdnm . ~5!

In this application, we also need the modified Mathieu functions which satisfy the equa

]2An

]m2 2~ ān2h2 sinh2m!An~m!50. ~6!

In fact, we require two solutions of this equation that satisfy different boundary conditions
first, which will be denoted asAn,,(m), vanishes along the strip surfacem50. These solutions are
unique up to an overall normalization constant which does not affect the form of the final ex
sion. The second solution, denoted byAn,.(m), is defined to have a particularly simple asympto
form given by

lim
m→`

An,.~m!5
1

Ah coshm
eih coshm5

1

Akr
eikr ,

where we have used the relation lim
m→`

h coshm5kr to put this expression in terms of the mo

familiar cylindrical variables.
In terms of these functions, the divergence coefficient at the left edge is given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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CkW
~D !

~rW2!52A 8

ap
e2 ip/4(

n50

`
]An,,~0!

]m

cen~p!cen~u0!

W@An,, ,An,.#
~7!

where u0 corresponds to the direction ofkW andW@An,, ,An,.# is the Wronskian of the two
functions. The divergence coefficient at the right edge can be expressed in terms of the
quantity using the relationship

CkW
~D !

~rW1 ;u0!5CkW
~D !

~rW2 ;p2u0!. ~8!

1. Convergence properties of series

Equation~7! is an exact expression for the divergence coefficient in the Dirichlet strip p
lem from which we want to extract a high frequency asymptotic approximation. The first st
this procedure is to apply WKB theory to approximate the quantities that appear in each
However, before doing this, there is an important point regarding the convergence proper
the series which warrants some discussion.

Each term in Eq.~7! has an associated eigenvalueān which can be shown to increase wit
n and lie in the range2h2,ān,`. The dominant terms in the series turn out to be those wh
associated eigenvalue is small in the sense thatuānu!h2. Terms in whichuānu is large relative to
h provide only negligible contribution to the sum. This property plays a critical role in
derivation that follows. The reason for this is that the WKB approximation of the Mathieu f
tions, which are quite complicated in general, simplify considerably in the limit thatuānu!h2. If
it were not appropriate to expand these expressions in terms of the small quantityān /h

2, the
WKB-based approximation forCkW

(D) would be too complicated and the subsequent steps of
derivation would be impossible. In other words, the terms in Eq.~7! that matter most are precisel
those which are most amenable to a simple WKB approximation.

There is a concise heuristic argument that can be made to explain why the divergence
ficient series has this important property. The argument draws on some of the parallels th
problem has with quantum mechanics and, although it is not rigorous in a mathematical se
does allow for a physical interpretation of some of the expressions that arise. Essential
argument proceeds by ascribing a physical meaning to the eigenvalueān and showing that any
quantity concerned with edge behavior corresponds to the physical case in whichān is small.

In quantum mechanics, eigenvalues are not viewed merely as separation constants
Schrödinger equation whose values are determined to be consistent with certain boundary
tions. The more physical interpretation of an eigenvalue spectrum is as a set of values ass
with a differential operator which is in turn associated with a physically observable quantity
two views are, of course, completely equivalent and the natural question which arises i
problem is whether a convenient physical interpretation can be given to the operator ass
with the eigenvalueān .

It turns out that this operator does in fact have a surprisingly simple physical interpre
which corresponds to a symmetric product of angular momenta about the two edges of th
Mathematically, this means that the separated Mathieu equations can be combined and
compactly as

1
2@LrLl1LlLr #ckW5ānckW , ~9!

where the differential operatorsLl andLr correspond to angular momenta about the left and ri
edges respectively and are defined, analogous to their classical counterparts, to be

Lr[F S rW2
a

2
î D3pW G–k̂, Ll[F S rW1

a

2
î D3pW G–k̂
J. Math. Phys., Vol. 38, No. 5, May 1997
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where

pW [2 i¹W .

In this view of the problem, a series representation, such as Eq.~7!, is to be viewed as an
expansion in terms of the eigenfunctions of the operator that appears in Eq.~9!. Each eigenfunc-
tion is interpreted as the contributions of a family of wave-particles whose product of an
momenta about the two edges of the strip are all given by the discrete valueān . In the high
frequency limit, it is appropriate to consider an eigenfunction as the set of geometrical rays w
trace the paths of classical particles whose product of angular momenta about the two ed
ān . Clearly, those eigenfunctions which will contribute most to a quantity concerned with e
behavior will correspond to those rays which intersect or nearly intersect an edge, and th
expect the divergence coefficient series to be peaked for those terms in whichān is small.

The sign ofān also carries relevant physical information. Whenān is positive, the angular
momenta about both edges are of the same sign and the corresponding particles would pas
to the right or the left of both edges. On the other hand, ifān,0, the angular momenta about th
two edges must be of opposite sign and the associated eigenfunctions will correspond
contributions of particles which intersect the strip. Asān approaches its lower limit of2h2, the
point of intersection of these associated rays approaches the center of the strip.

This model can also be used to correctly predict the convergence properties of the sta
series representation for the scattering amplitude~see Ref. 10 for a derivation of this series!. Since
this quantity represents the asymptotic behavior of the total scattered wave, it will be compris
the effects of not only the rays which are diffracted at the edges but also those which un
specular reflection. This implies that the contributing terms in that sum would not only inc
those whose eigenvalue is small in magnitude, but also those which have a large negative v
ān . It is for this reason that the method used here, which relies on expansions in term
ān /h

2, could not be applied directly to the series representation of the scattering amplitude
Finally, we make the comment that the property exhibited by the eigenvalueān does not seem

to be specific to elliptic coordinates and the strip problem. It can be shown that in two other
of separable flat surfaces, the half plane and the plane angular sector, one of the eigenval
be made to correspond to a similar quantity. For example, in the half plane problem, wh
separable in cylindrical coordinates, one typically obtains an eigenvalue corresponding toLz , i.e.,
the angular momentum about the edge of the coordinate surface/half planeu5const. This suggests
that the technique used here might be applicable to these problems as well.

2. WKB-based approximation of series

The preceding comments justify using the WKB expressions, derived in Appendix A
expanded to lowest order in the small quantityān /h

2, to approximate each term in the series. B
substituting results~A4!, ~A6!, ~A9!, ~A10!, ~A14! and ~A17! into Eq. ~7! we find this approxi-
mation to be

CkW ,,
~D !

~rW2!'
1

Aap cos
u0

2

e2 ip/4

A4 h
(
n50

` !G1S ān2hD
G3S ān2hD

expF i SDS ān
2h

D 1
np

2
D G

A4 ~11e2p ān /h!2~11ep ān /h!

3y~E!S xn,,S u0 ;
ān

2h
D ; ān
2h

D dān
dn

, ~10!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where the, subscript indicates that this approximation is based on the WKB expres
cen,,(u) which is uniformly valid through the turning point nearu050. This expression is no
valid nearu05p where a separate set of turning points of the Mathieu equation exist.

B. Poisson sum formula and nonuniform approximation

There are two distinct sets of problems that arise in trying to extract an asymptotic expre
from Eq.~10!: those which come from applying the Poisson sum formula and those concernin
asymptotic evaluation of the resultant integrals. The integrals are primarily complicated b
presence of the parabolic cylinder function,y(E)(x;a), and in an effort to concentrate on the fir
set of issues, we will make one further simplifying approximation to Eq.~10!. Specifically, we can
obtain a simpler series, valid for finite angles~i.e., sinu0@1/h), using an asymptotic representatio
of the parabolic cylinder functions~see Ref. 11!. Once again, we will omit the details and simp
cite the results of this procedure:

CkW
~D !

~rW2!'
1

2h
A k

2p

ei ~h cosu02p/4!

Asin u0
(
n50

` 5 expF i SDS ān
2h

D 2
ān

2h
lnS tanu0

2
D D G

Acosh
pān

2h

dān

dn

1einp

expF i SDS ān
2h

D 22h cosu01
ān

2h
lnS tanu0

2
D D G

Acosh
pān

2h

dān

dn 6 . ~11!

This expression, which is not valid asu0→0, is referred to as the nonuniform approximation. It
interesting to note that this expression is precisely what one would obtain by representi
Mathieu functions by their standard oscillatory WKB representation. Of course, this shoul
come as much of a surprise in light of the relation between the uniform WKB theory~used in
Appendix A! and the more standard piecewise approximation. It is also reassuring to note th
series manifestly exhibits the convergence properties discussed above. Due t
Acosh(pān/2h) term in the denominator, terms whose eigenvalueān is of order uh2u will be
exponentially small (;e2uhup/4) and will thus not contribute significantly to the result.

We now apply the Poisson sum formula to this expression. In its general form, this for
can be written as

(
n50

`

f ~n!5
1

2
f ~0!1A2pF12Fc~0!1 (

m51

`

Fc~2pm!G , ~12!

whereFc(l) is the cosine transform of the functionf (n) given by

Fc~l![A2

pE0
`

cos~lt! f ~t!dt.

When the functionf (n) is of the formg(ān(n))(dān /dn), as it is in this case, Eq.~12! becomes

(
n50

`

g~ ān~n!!
dān
dn

5
1

2
g~ ā0~0!!

dān
dn Un501E

ā0~0!

`

g~ ān!dān12(
m51

` E
ā0~0!

`

g~ ān!cos~2pmn!dān ,
J. Math. Phys., Vol. 38, No. 5, May 1997
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where we made a change of variables toān in the cosine transform integrals. And finally, whe
h is large, it can be shown that neglecting the first term on the right-hand side and extendi
limits of integration from2` to ` in the above equation introduces only an exponentially sm
error proportional toe2hp/4. Thus, in the high frequency limit, we can approximate our series

(
n50

`

g~ ān~n!!
dān
dn

' (
m52`

`

I m ~13!

where

I m[E
2`

`

ei2pmng~ ān!dān .

We return now to an important issue that was glossed over earlier. In obtaining Eq.~10!, we
used the substitution (21)n5einp. This was an arbitrary choice which directly affects the fun
tional form of g(ān) and hence the integralI m . However, a close examination of the abo
formula shows that, while the continuum representation of (21)n is arbitrary, its only effect is to
uniformly shift the terms in the series. In particular, the final result is not affected by the choi
substitution. Essentially, this choice is a convention which determines the value ofm for which the
series is peaked and, in this derivation we have chosen a convention which leads to the do
term given bym50. The integrands with largerm will oscillate and, as a result, we expect th
terms in Eq.~13! to decrease with increasingumu. This prediction will be borne out by explici
evaluation of the first few terms.

Towards that end, it will be convenient to break the series given by Eq.~11! into two parts.
We apply Eq.~13! to the series and write

CkW
~D !

~rW2!' (
m52`

`

I m,11I m,2

where

I m,15
1

2h
A k

2p

ei ~h cosu02p/4!

Asin u0
E

2`

`

dān

expF i S 2pnm1DS ān
2h

D 2
ān

2h
lnS tanu0

2
D D G

Acosh
pān

2h

and

I m,25
1

2h
A k

2p

ei ~2h cosu02p/4!

Asin u0
E

2`

`

dān

expF i S pn~2m11!1DS ān
2h

D 1
ān

2h
lnS tanu0

2
D D G

Acosh
pān

2h

.

It should now be apparent that the leading order term is to be given byI 0,1 since this integrand
is the least oscillatory. Based on this reasoning, we expect that the next order contributions
be given byI 0,2 and I21,2 ~whose integrands have an extra oscillatory factore6 inp) followed by
I21,1 andI 1,1, etc. Thus, we anticipate that for largeh, an asymptotic series forCkW

(D) will be given
by
J. Math. Phys., Vol. 38, No. 5, May 1997
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CkW
~D !

~rW2!;I 0,11I 0,21I21,21I21,11I 1,11••• .

These expectations turn out to be only partially realized. Evaluating explicitly the five
grals that appear above~in some cases asymptotically!, we find

I 0,15Ak

p
ei ~h cosu02p/4!A12cosu0,

I 0,2;
1

h3/2
Ak
8p

ei ~2h2h cosu01p/2!
A11cosu0
12cosu0

S 11
1

h2
3~11cosu0!

32~12cosu0!
1OS 1h4D D ,

I21,254A2khe28h cot u0/2
e2 i ~2h1h cosu0!

A12cosu0
,

I21,1;4A2hke28hA2 tanu0/2

ei ~h cos5tu024h1p/4!cosS 8hA2tan
u0

2
1

p

8
D

A4 sin u0~11cosu0!
, ~14!

I 1,1;
1

h3
Ak

p

ei ~4h1h cosu023p/4!

128p

A12cosu0
11cosu0

S 11OS 1h2D D ,

24A2hke28hA2 cot u0/2
ei ~h cosu014h23p/4!sinS 8hA2 cot

u0

2
1

p

8
D

A4 sin u0~12cosu0!
.

Note that some of these integrals give only an exponentially small contribution to the final r
and since the error incurred in writing Eq.~13! is of that order, these integrals should be neglect
Also note that while the dominant contribution was, as expected, given by the non-oscil
integral I 0,1, the next order contribution was given byI 0,2 while the similar integralI21,2 gave a
negligible contribution. In fact, the third-order contribution was given by the integralI 1,1 whose
integrand oscillated ase2inp. Clearly, the oscillatory nature of the integrands only plays a pa
role in the rapid convergence of the Poisson sum.

At any rate, we now have a nonuniform WKB-based approximation to the divergence
ficient given by

CkW
~D !

~rW2!;Ak

pH ei ~h cosu02p/4!A12cosu01
1

h3/2
1

8Ap
ei ~2h2h cosu01p/2!

A11cosu0
12cosu0

1
1

h3
ei ~4h1h cosu023p/4!

128p

A12cosu0
11cosu0

1OS 1

h7/2D J . ~15!

It is reassuring to note that in the limit thath→`, we recover the exact value of the divergen
coefficient for the half plane problem, as one would expect on physical grounds.

It should also not come as much of a surprise that these results correspond exactly to
given by GTD since that formulation is, in its standard form, also a nonuniform theory. How
illustrating the equivalence of the two sets of results is somewhat involved since GTD furn
expressions for the scattering amplitude, not the divergence coefficient. To make the conn
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



l
in the
st
y
thod

by

at
e
the

. The
n, is in

e the

2318 Goldberg, Berger, and Dashen: High frequency scattering from infinite strip

¬¬¬¬¬¬¬¬¬¬
we must use relations~2! and ~8! to ‘‘extract’’ an expression forCkW
(D) from the more genera

scattering amplitude. This somewhat tedious procedure was performed on results cited
summary text~Ref. 12! and we found that expression~15! exactly matches the GTD results, fir
obtained in 1957 and 1961 by Karp and Keller,6,13 that include effects of singly, doubly, and tripl
diffracted rays. It is interesting to note that, along with the Karp and Keller results, our me
fails to produce an additionalh25/2 term which was obtained in the 1968 treatment of Lu¨neburg
and Westpfahl.14 However, it is possible that within this formalism such a term would be found
including the next order correction to the WKB expressions.

C. Uniform approximation

We now return our attention to Eq.~10! and extract an asymptotic approximation from th
series that is uniformly valid in the variableu0 . Due to the mathematical complexities of th
integrals that arise, we will limit this discussion to finding just the leading order term in
Poisson sum which, as discussed above, corresponds to them50 term of Eq.~13! resulting from
the substitution (21)n5einp. After some minor simplification, we find this term to be

CkW ,,
~D !

~rW2!'
2h3/4ei ~h23p/8!

Aap cos
u0

2

E
2`

`

djAG1~j!

G3~j!

exp @ i ~ 3
2D~j!1j lnA8h2 1

2 f2~j!!#

A4 ~11e22pj!2~11e2pj!

3y~E!~xn,,~u0 ;j!;j!, ~16!

where

xn,,~u0 ;j!5A2hS2 sin
u0
2

2
j

2h

lnS cosu02 D
sin

u0
2

D . ~17!

The leading order term in an asymptotic series for this integral is derived in Appendix B
result can be expressed in two equivalent forms. The first, and more compact expressio
terms of a Whittaker function

CkW
~D !

~rW2!;2A h

ap
ei ~h cosu02p/4!sin

u0
2

1

eihcos
u0
2

pAa
D22SA2 i8h sin

u0
2 D . ~18!

This is a convenient form to compare to the results of the previous section. If we us
asymptotic result

D22~z!;
e2z2/4

z2
1OS 1z4D ,

to expand Eq.~18! for finite angles, we recover the first two terms of the series given by Eq.~15!,
as one would expect.

An equivalent expression for Eq.~18! can be given in terms of an error function~whose
relation toD22(z) can be found in Ref. 11!,
J. Math. Phys., Vol. 38, No. 5, May 1997
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CkW
~D !

~rW2!;2A h

ap
ei ~h cosu02p/4!sin

u0
2

1
ei ~2h2h cosu0!

pAa
cos

u0
2

2A h

pa
ei ~h cosu02p/4!sin u0 erfcS 2A2 ih sin

u0
2 D , ~19!

where erfc(z), the complimentary error function, is defined by

erfc~z!5
2

Ap
E
z

`

e2t2dt.

In a sense, Eq.~19! is a more natural way to express the result since Fresnel integrals arise so
in edge diffraction problems.

The results cited above turn out to have a surprisingly large region of accuracy in light o
fact that this derivation was based on the uniform WKB approximation for the Mathieu fun
cen,,

(WKB)(u0) which, by construction, was only valid away from the second turning point n
u05p. The WKB function actually diverges atu05p and, as a result, any approximation bas
on this function is expected to lose accuracy in this region. We originally anticipated tha
derivation discussed here would have to be supplemented with a second one based upon th
function cen,.

(WKB)(u0) whose region of validity would include the rangep/2→p.
However, this turns out not to be required. As will be seen clearly in the numerical resu

the next section, the approximation given by Eq.~18! or ~19! does not break down nearu05p. In
fact, we find that it ismoreaccurate pastp/2 than it is in the range 0→p/2.

The surprising and anomalous behavior of this approximation cannot be adequately exp
within this framework. The only analytical justification that we can provide for extending
region of validity of the above results is to repeat this derivation using the WKB func
cen,.

(WKB)(u0) and show that it leads to an answer that matches Eq.~18! or ~19! in the region
p/2→p. Such a derivation is possible but the details, which are similar to those given above
not be given here. We will only assert that it is possible to show that Eq.~18! or ~19! is truly
uniform in the sense that it is valid for all possible values ofu0 .

IV. NUMERICAL RESULTS

In this section, we present some numerical results which provide a means of comp
between the derived approximations and the exact solution. Although the numerical metho
to compute these results is not particularly noteworthy, we provide a brief description belo
completeness.

The series representation, Eq.~7!, was used as our starting point. The eigenvalues for e
term were found using the shooting method with the WKB approximation providing a satisfa
first estimate. Once the eigenvalue was computed to the desired accuracy, the Mathieu f
was then calculated by direct differentiation of the Mathieu equation. The more traditional
nique of computing the Fourier coefficients was not suitable to this application due to an
bility in the recurrence relations that occurs in the high frequency regime~see Ref. 15 for more
details!. The required special values of the modified Mathieu functions were computed us
convergent series representation of these quantities in terms of products of Bessel functio~see
Ref. 10!. The overall method probably does not represent the most efficient or accurate tec
to compute the divergence coefficient but it proved adequate for these purposes.

We begin by comparing the nonuniform approximation~15! to the exact numerical solution
with some typical results shown in Fig. 3. Note that the graph actually contains the scat
amplitude which was computed from the divergence coefficient using Eq.~2!. It is interesting to
note that beyond the leading order term, the asymptotic series seem to be of limited practica
J. Math. Phys., Vol. 38, No. 5, May 1997
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since in the region in which these expressions are valid~i.e., away from the grazing angles 0 an
p), convergence occurs very rapidly and the higher order corrections do not significantly im
the approximation even for values ofh as low as 1. This observation is illustrated in Fig. 4 whi
shows that the lowest order expression provides an excellent approximation for the sca
amplitude for nongrazing angles. In fact, there is only a limited range in which the higher
correction terms actually improve the approximation and due to the divergence of these term
the anomalous convergence of the lowest order approximation at the grazing angles, the
order approximation is significantly worse for angles near 0 andp.

Figures 4 and 5 provide a similar comparison with the uniform approximation for the d
gence coefficient and the scattering amplitude respectively. Each graph includes the exact n

FIG. 3. Comparison of exact and nonuniform approximation of the scattering amplitude forh55,u0545°.

FIG. 4. Comparison of exact and uniform approximation of the divergence coefficient for the caseh55. The magnitude
of the exact results are plotted against the left axis while the difference between the magnitude of the exact and
mate values~based on Eqs.~18! or ~19!! are plotted against the right axis.
J. Math. Phys., Vol. 38, No. 5, May 1997
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cal results plotted against the left axis, and the error of the approximation~i.e., the difference in
the absolute magnitude! plotted against the right axis. Note in particular the anomalous con
gence ofCkW

(D) that was mentioned in the previous section. Not only does the error remain
small throughout the entire range 0→p, it is seen to be considerably smaller for angles pastp/2.

V. DISCUSSION

We have presented a new formalism for treating the problem of scattering from a flat ob
and applied it to the simplest nontrivial problem of this class, the infinite strip. This formula
was shown to be well suited to the problem of finding the high frequency asymptotic behav
the scattered field.

There are two key components to this method. The first is the introduction of the diverg
coefficient. This quantity describes the local behavior of the field at the obstacle’s edges
shown to contain all the information necessary to reconstruct the far field behavior of the s
ing solution. The second step is to obtain, using WKB theory, a high frequency approximat
the divergence coefficient and thus the scattering amplitude. From the WKB-based approxi
it is possible to extract the leading order terms of an asymptotic series for these quantities

In this paper, we derive two such asymptotic expressions for the divergence coefficien
first expression, Eq.~15!, was based on the oscillatory WKB solution of the Mathieu equation
had a limited range of validity with failure occurring for small grazing angles. This derivation
included primarily to illustrate how the terms in the Poisson sum lead to the higher order ter
the asymptotic series. In addition, this nonuniform result provides a connection to GTD in th
results obtained were shown to correspond exactly to the contributions from the singly, d
and triply diffracted rays.

The second derivation was based on a uniform WKB approximation of the Mathieu func
and it yielded the leading order term of a uniform approximation for the divergence coeffi
~Eqs.~18! or ~19!! that was accurate forall angles. However, due to the mathematical difficult
that arise in this problem, we were limited to finding just the leading asymptotic result.

FIG. 5. Comparison of exact and uniform approximation of the scattering amplitude for the caseh55,u0545°. The
magnitude of the exact results are plotted against the left axis while the difference between the magnitude of the e
approximate values are plotted against the right axis.
J. Math. Phys., Vol. 38, No. 5, May 1997
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surprising accuracy of this expression is not well understood since it was based upon an a
mation which had a more limited range of validity. This suggests that the result could be ob
in a more general manner that does not rely on a WKB approximation.

This research represents only the first step in establishing this as a viable formalis
treating flat obstacle scattering problems. The specific problem considered here has be
studied and all these results could probably be found using existing techniques. It is likel
even the uniform expression could be found using the extension of GTD known as the un
diffraction theory. The real test of this formalism lies in whether or not it could be applied to m
complicated problems that are not treated well by existing methods. The classic example o
a problem is the plane angular sector mentioned in the Introduction. This problem is importa
only since it remains largely unsolved, but also because it represents a canonical problem~in the
sense indicated by Keller6,7! and as such could be used as a basis for constructing approx
solutions of more general problems. The plane angular sector has many similarities to th
problem; it is separable, the associated eigenfunctions are amenable to a WKB approxi
~which closely resembles that used here for the Mathieu functions!, and the resultant series for th
divergence coefficient has similar convergence properties to the series obtained here for th
However, the mathematical details of this problem are more involved and this question of
cability remains an open area of research.
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APPENDIX A: WKB APPROXIMATION

In this Appendix, we derive the necessary WKB expressions for the quantities that app
the series representation for the divergence coefficient, given by Eq.~7!. There are three quantitie
that are needed; the eigenvaluesān , the associated even periodic Mathieu functions, and cer
special values of the modified Mathieu functions. Although it is possible to derive general ex
sions for these quantities that are valid for a wide range of parameters, we will concentr
what is needed for this application. Specifically, we will be concerned with the case whe
eigenvalueān is small in the sense thatuānu!h2.

In this derivation, we employ a uniform WKB formalism, as described by Olver,16 which
results in approximate eigenfunctions that remain valid even near the classical turning poin
is the same basic method as that used by Hansen in obtaining his asymptotic results.3 The most
significant difference is the order to which the approximation was taken; Hansen retained on
leading order term while our formulas include the next to leading order term which represe
nontrivial extension to the previous results. This level of accuracy was required in order to o
a uniform approximation for the divergence coefficient. In addition, the WKB formulas der
here are for the standard Mathieu eigenvalue spectrum whereas the corresponding Hansen
las were for the complex spectrum that arises from the radial eigenvalue problem.

1. Even Mathieu functions

The essence of the uniform WKB approximation is contained in a careful application o
Liouville–Green transformation. The form of the transformation used in this application is
erned by the fact that, for the caseuānu!h2, the Mathieu equation~4! has multiple sets of closely
spaced turning points given by

u05sin21F6
A2ān
h G1mp ~ form5 . . . ,21,0,1, . . . !.
J. Math. Phys., Vol. 38, No. 5, May 1997
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With pairs of closely spaced turning points, one uses a transformation that results in a s
equation that retains this characteristic. The desired transformation is given by the new in
dent variablexn(u) that satisfies the differential equation

S xn24 1a D S dxndu D 25h2 sin2u1ān ~A1!

and the new dependent variabley(xn) defined by

cen~u!5
y~xn!

Axn8~u!
. ~A2!

In terms of these variables, the Mathieu equation~4! becomes

d2y

dxn
2 1S xn24 1a1D~xn! D y~xn!50, ~A3!

where

D~x~u!![
1

~x8!3/2
d2

du2 S 1

Ax8D .
The approximation is to neglectD(xn) which, by proper choice of the transformation para

etera, can be shown to be of order 1/h and thus represents a negligible contribution in the h
frequency limit. Omitting this term, Eq.~A3! can be identified as the well studied Weber equat
which represents the simplest differential equation with two turning points. Equation~A2! now
relates the desired Mathieu functions to the known solutions of the Weber equation, refer
sometimes as the parabolic cylinder functions.

Solving for the periodic Mathieu functions is a two-point boundary value problem. The W
approach to this type of problem is to first construct two approximations that satisfy the bou
conditions at each end, and then determine the approximate eigenvalue spectrum by m
these two functions at the midpoint. Towards that end, we define two WKB functions, deno
cen,,

(WKB)(u) andcen,.
(WKB)(u), that satisfy the boundary condition of vanishing slope atu50 and

p respectively. A convenient choice for the form of these functions is

cen,,
~WKB!~u!5

Cn,,

Axn,,8 ~u!
y~E!~xn,,~u!;a!,

~A4!

cen,.
~WKB!~u!5

Cn,.

Axn,.8 ~u!
y~E!~xn,.~u!;a!,

where theCn’s are normalization constants and the functiony(E)(x;a) is the even parabolic
cylinder function. These WKB functions will satisfy the appropriate boundary conditions as
as the transformation functions satisfy the conditions

xn,,~0!50, xn,.~p!50.

Determining the transformation functions and the associated parametera introduces some
very subtle issues that will only be glossed over here~see Ref. 16 for more details!. Essentially
these quantities are specified by Eq.~A1! and the condition that the error termD(xn) be mini-
J. Math. Phys., Vol. 38, No. 5, May 1997
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mized. This condition turns out to be equivalent to ensuring thatxn andu be analytic functions of
each other at the turning points which, for the case whenān.0, occur on the imaginary axis. Fo
arbitrary ān , this condition amounts to

xn~u0!52A2a.

This can be solved fora and expanded for smallān to give

a5
ān
2h S 11OS ānh2D D . ~A5!

Using this prescription fora, Eq. ~A1! can now be solved by a straightforward iterative proce
To first order in the small parameterān /h

2, we find

xn,,~u!5A2hS2 sinu22
ān
4h2

lnS cosu2D
sin

u

2

1OS ānh2D
2D . ~A6!

It can also be shown that nearu5p, the appropriate transformation function is related to
above by

xn,.~u!5xn,,~p2u!.

The essence of the difference between these results of those obtained in Ref. 3 is the inclu
theO(ān /h

2) term in Eq.~A6!.
We can now determine the WKB eigenvalue condition by requiring that the two functio

Eq. ~A4! join smoothly at the midpointu5p/2. Matching the derivatives at this point is facilitate
by using the asymptotic form of the parabolic cylinder functions~see Ref. 11!. After some lengthy
manipulations, we find that this matching condition leads to the following equation that mu
satisfied by the WKB eigenvalues:

2h1
ān
2h

ln 8h2
p

4
1DS ān2hD2f2S ān2hD5np, ~A7!

where

D~a![tan21F tanhS pa

2 D G , f2~a![argGS 121 ia D . ~A8!

This result has been expanded to lowest order inān /h
2. This procedure also yields the result

Cn,,5~21!nCn,. . ~A9!

2. Normalization

Equations~A4!, ~A6!, and ~A7! fully specify the WKB approximation forcen(u) up to the
overall normalization constantCn which needs to be determined such that our WKB solut
satisfies the normalization condition~5!. A WKB approximation to this quantity can be obtaine
using a standard identity from Sturm–Liouville theory which was derived and used for the si
purposes in Ref. 5,
J. Math. Phys., Vol. 38, No. 5, May 1997
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E
0

p/2

cen
2~u!du5cen8S p

2 D d

dān
cenS p

2 D2cenS p

2 D d

dān
cen8S p

2 D .
The left-hand side, by virtue of the normalization condition~5! and the periodicity of the Mathieu
functions, is equal top/4. If we then substitute the WKB expression for the Mathieu function i
the right-hand side, this equation can be solved for the normalization constant. Once again,
asymptotic expressions for the parabolic cylinder functions in Eq.~A4! so that the derivatives ca
be performed explicitly. After some manipulation and simplification we find

@Cn,,#25
1

2A2~11e2p ān /h!

G1S ān2hD
G3S ān2hD

dān

dn
~A10!

where

G1~a![uG~ 1
41

1
2ia!u, G3~a![uG~ 3

41
1
2ia!u.

3. Modified Mathieu functions

And finally, we use uniform WKB theory to estimate the quantities involving the modi
Mathieu functions that appear in the series representation of the divergence coefficient:

]An,,~0!

]m
,

1

W@An,, ,An,.#
,

whereAn,,(m) andAn,.(m) satisfy the modified Mathieu equation~6! with boundary conditions
specified by

An,,~0!50, lim
m→`

An,.~m!5
1

Ah coshm
eih coshm. ~A11!

Deriving WKB approximations for these quantities proceeds along similar lines to those
above for the periodic Mathieu functions. We apply a version of the Liouville–Green transfo
tion given by

S x̃ n
2

4
2ã D S dx̃ndm D 25h2 sinh2 m2ān , ~A12!

which leads to a uniform WKB approximation given by

An
~WKB!5

1

Ax̃ n8
y~ x̃n~m!;2ã !.

As before, the parameterã is chosen to ensure analyticity ofx̃n at the turning points. A similar
analysis to that done in the previous case leads to the result thatã5a, which should not come as
much of a surprise due to the intimate relationship that exists between the periodic and m
Mathieu equations.

The uniform WKB solution that vanishes at the origin can be expressed in terms of a
parabolic cylinder function
J. Math. Phys., Vol. 38, No. 5, May 1997
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An,,
~WKB!5

1

Ax̃ n8
y~O!~ x̃~m!;2a!. ~A13!

The parabolic cylinder functiony(O)( x̃;2a) is normalized to have a slope of unity atx̃50 and we
have suppressed an overall normalization constant which does not affect the value of the
gence coefficient. From this form forAn,,

(WKB) , it is easy to compute the slope atm50. A simple
differentiation leads to the result

]An,,
~WKB!~0!

]m
5A4 ān

a
5A4 2h1OS ānh2D , ~A14!

where we have used Eq.~A5! to expand this for smallān .
Expression~A13! can also be used to compute the Wronskian. Recall that the Wronski

any two radial Mathieu functions is independent ofm, so to compute this quantity we only requir
expressions forAn,,(m) andAn,.(m) that are both valid over some limited range ofm. Since we
have imposed an asymptotic form for the functionAn,.(m), the simplest approach is to compu
the Wronskian in the limit asm→`. To do this, we need the asymptotic form of Eq.~A13! which
can be obtained using the asymptotic form of the odd parabolic cylinder function~see Ref. 11!.
The resulting expression is

lim
m→`

An,,
~WKB!~m!5

1

Ah sinhm
A4 11e2pa

2
AG1~a!

G3~a!
sinS x̃ 2

4
2a ln x̃1

p

8
1
1

2
D~a!1

1

2
f2~a! D .

~A15!

In the limit asm→` and ān!h2, we find from Eq.~A12! that x̃ andm asymptotically satisfy

x̃ 2

4
2a ln x̃'h coshm2h2

1

4

ān
h
ln 8h. ~A16!

From Eqs~A11!, ~A15!, and ~A16!, we find that the WKB approximation to the Wronskian
given by

W@An,,
~WKB! ,An,.

~WKB!#52A4 11ep ān /h

2 AG1S ān2hD
G3S ān2hD

expF2 i SDS ān2hD2
np

2 D G , ~A17!

where we have used the eigenvalue condition~A7! to simplify the result.

APPENDIX B: EVALUATION OF UNIFORM INTEGRAL

In this Appendix, we obtain the leading order asymptotic behavior of the integral given in
~16!. We begin by rewriting the integral in a more tractable form. Using the definitions~A8! and
the identities

e~ i /2!~D~a!2f2~a!!AG1~a!

G3~a!
5

A4 coshpa

A4 2Ap
e2 ia ln A2GS 142 i

a

2 D
and
J. Math. Phys., Vol. 38, No. 5, May 1997
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1

A4 ~11e22pa!2~11e2pa!
5

epa/4

~2 coshpa!3/4
,

the integral becomes

CkW ,,
~D !

~rW2!'CE
2`

`

dj ej~p/41 i lnA4h!

S coshpj

2
1 i sinh

pj

2 D
coshpj

GS 142 i
j

2D y~E!~xn,,~u0 ;j!;j!,

where

C[
h3/4

pAa cos
u0

2

ei ~h23p/8!. ~B1!

Further simplification can be achieved using an integral representation of the parabolic
der functions. Towards this end, we relate the normalized solutions used here~i.e., y(E)(x;j)) to
the more common Whittaker notation. Using identities from Ref. 11, we find the relation to

GS 142 i
j

2D y~E!~x;j!5
Apei j ln A2

23/4 cosS p

4
1 i

jp

2 D ~D2 i j2 1/2~Aix !1D2 i j2 1/2~2Aix !!.

The Whittaker functions have various integral representations and for this application, the
convenient seems to be

Dp~z!5
1

A2p
e2 ipp/2ez

2/4E
2`

`

dt tpe2t2/21 i tz ~Re p.21; for t,0,tp5eipp~2t !p!,

which leads to the relation

GS 142 i
a

2 D y~E!~x;a!52~3/41 ia/2!eix
2/4E

0

`

dt
cos~Aixt !e2t2/2t2 ia

At
.

Substitution of this representation into Eq.~B1! yields

CkW ,,
~D !

~rW2!'C̃E
0

`

dt
e2ht2/2

At
I j ~B2!

where

I j5E
2`

`

dj expF i xn,,2 ~u0!

4 Gej~p/41 i ln A8/t !cos~Aihtxn,,~u0 ,j!!

S coshpj

2
1 i sinh

pj

2 D
coshpj

,

C̃[
23/4hei ~h23p/8!

pAa cos
u0

2

.

J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



-

t, for

to be

n of
using
diver-

ntour

t
result

2328 Goldberg, Berger, and Dashen: High frequency scattering from infinite strip

¬¬¬¬¬¬¬¬¬¬
And finally, we substitute in Eq.~17! for xn,,(u0 ;j) and, to be consistent with earlier ap
proximations, we neglect all terms of orderj/h. Specifically, the factoreix

2/4 is approximated by

expF i xn,,2 ~u0!

4 G'ei2h sin2u0/2e2 i j ln~cosu0/2!

and I j becomes

I j5ei2h sin2u0/2E
2`

`

dj expF jS p

4
1 i ln

A8

t cos
u0
2
D G

3cosF S 2Ai2h sin
u0
2

2jA i

2

ln cos
u0
2

sin
u0
2

D tG S coshpj

2
1 i sinh

pj

2 D
coshpj

.

The benefit of these manipulations is that, unlike the original integral,I j is in a form that can
be evaluated exactly. The only difficulty that arises in this evaluation results from the fact tha
large values oft, I j formally diverges. This divergence occurs for values oft larger than a critical
value given by

tc5

p sin
u0
2

ln cos22
u0
2

.0

and since thet integral extends along the entire positive real axis, the problem needs
regulated.

The method used here to circumvent this problem is to initially limit the integration regio
I j to a finite segment of the real axis. As will be seen, this related integral can be evaluated
the residue theorem and, as long as the limits of integration remain finite, the result is non
gent. The limit of an infinite integration region is only recoveredafter the t integral is performed.

The details of this procedure are as follows. We start by considering the complex co
integral

I G~u!5E
G
dzeuz

S coshpz2 1 i sinh
pz

2 D
coshpz

~B3!

whose the path of integrationG is shown in Fig. 6. Note thatG encircles a single pole a
z5 i3/2 and a straightforward application of the residue theorem to this integral yields the

FIG. 6. Contour for integral of Eq.~B3!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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I G~u!52A2ei3/2u. ~B4!

We now consider the various contributions of the contour integral. The two segments ofG which
run parallel to the real axis combine to give

~11e2iu!E
2R

R

dx eux
S coshpx2 1 i sinh

px

2 D
coshpx

, ~B5!

which is closely related to the desired regulated form ofI j . The two remaining edge segments~at
z56R) cannot be simplified in general. However, whenR is large, as will be the case in thi
application, it is possible to approximate the hyperbolic functions in the integrand~i.e.,
sech(p(R1 ix))' 1

2e
2pRe2 ipx) and perform the integration explicitly. In this case, we find th

the two edge integrals combine to give approximately

2~11e2iu!F S 11 i

u2
p

2
D eR~u2p/2!2S 12 i

u2
p

2
D e2R~u1p/2!G .

Eventually, when we take the limit thatR→`, this approximation will become exact. Combinin
this result with Eqs.~B4! and ~B5!, we find

E
2R

R

dx eux
S coshpx2 1 i sinh

px

2 D
coshpx

5
2A2ei3/2u

11e2iu
1A2e2Rp/2F eip/4eRuu2

p

2

2
e2 ip/4e2Ru

u1
p

2
G . ~B6!

In this form, the ‘‘divergent’’ piece of the integral has been explicitly extracted and is conta
in the second term.

The next step is to expand the cosine function in the integrand ofI j , use the above formula
to evaluate the resulting integrals, and substitute these expressions into Eq.~B2!. This procedure
leaves four integrals overt, two of which result from the residue term and are independen
R, and two from the ‘‘divergent’’ term. These second two integrals are quite messy and wi
be written down here, however, it can be shown that these integrals vanish in the lim
R→`. In other words, the second term of Eq.~B6!, despite the fact that it formally diverges, do
not affect the final result~i.e., the value of thet integral!. Thus, in this application, it is appropriat
to use the inexact result

E
2`

`

dx eux
S coshpx2 1 i sinh

px

2 D
coshpx

5
2A2ei3/2u

11e2iu

when evaluatingI j . Applying this formula and substituting the result into Eq.~B2!, we find that
the leading order Poisson sum term has an integral representation given by

CkW ,,
~D !

~rW2!'I 11I 2 ~B7!

where
J. Math. Phys., Vol. 38, No. 5, May 1997
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I 15C̃E
2`

`

dt t expF2hS t22 2A2 i8 sin
u0
2
t D G

expF 2A i

8

ln cos3
u0
2

sin
u0
2

tG
11 i

t2 cos2
u0
2

8
expF 2A i

8

ln cos4
u0
2

sin
u0
2

tG ,

~B8!

I 252C̃E
0

`

dt t expF2hS t22 1A2 i8 sin
u0
2
t D G

expFA i

8

ln cos3
u0
2

sin
u0
2

tG
11 i

t2 cos2
u0
2

8
expFA i

8

ln cos4
u0
2

sin
u0
2

tG ,

~B9!

C̃5
hei ~h12h sin2~u0/2!!

2pAa
cos

u0
2
.

The two integrals that appear above must be treated differently. The first integral has a
point in the complext-plane att05A2 i8sin(u0/2). Expanding the ‘‘slowly varying’’ parts of the
integrand~i.e., those independent ofh) about this point and performing the gaussian integral,
find that I 1 is asymptotically given by

I 1;2A h

ap
ei ~h cosu02p/4!sin

u0
2
. ~B10!

The second integral does not have a saddle point through which the integration contour
deformed. For largeh, it is dominated by small values oft and we can obtain an asymptot
approximation by expanding the integrand aboutt50. The result of this procedure is

I 2;
hei ~h12h sin2~u0/2!

pAa
cos

u0
2 E0

`

dt t expF2hS t22 2 iAi8 sin
u0
2
t D G . ~B11!

This integral can be expressed compactly in terms of a Whittaker function using the g
integral representation

Dp~z!5
e2~z2/4!

G~2p!
E
0

`

dt t2p21e2t2/22tz ~Re p,0!. ~B12!

We find that Eq.~B11! is equivalent to
J. Math. Phys., Vol. 38, No. 5, May 1997
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I 2;

eih cos
u0
2

pAa
D22SA2 i8h sin

u0
2 D . ~B13!

Substituting this and result~B10! into Eq. ~B7! we obtain our final result which is given b
Eq. ~18! in the main text.
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A unified setting for generalized Poisson and Nambu–Poisson brackets is dis-
cussed. It is proved that a Nambu–Poisson bracket of even order is a generalized
Poisson bracket. Characterizations of Poisson morphisms and generalized infini-
tesimal automorphisms are obtained as coisotropic and Lagrangian submanifolds of
product and tangent manifolds, respectively. ©1997 American Institute of Phys-
ics. @S0022-2488~97!04305-3#

I. INTRODUCTION

In 1973 Nambu1 proposed a generalization of Hamiltonian mechanics to the case of a t
dimensional phase space instead of the usual phase space of two canonical variables (q,p). He
considered three dynamical variables (x1 ,x2 ,x3) and two Hamiltonian functionsh1 andh2 with
the following motion equations:

ḟ5$h1 ,h2 , f %,

where the bracket$ f 1 , f 2 , f 3% of three arbitrary functionsf 1 , f 2 , f 3 is given by

$ f 1 , f 2 , f 3%5
]~ f 1, f 2 , f 3!

]~x1 ,x2 ,x3!
.

Nambu mechanics was widely discussed by many authors, but was essentially forgotten for
20 years. A recent paper by Takhtajan2 gave a new interest to this subject. In Takhtajan’s pap
a geometrical setting for Nambu brackets is introduced. He also established the so-called
mental identity, which is a generalization of the Jacobi identity. Let us recall that the J
identity permits one to obtain new constants of motion from the old ones. So, a Nambu bra
a natural generalization of Poisson brackets.

On the other hand, Azcarragaet al.3 have considered an alternative way to generalize Pois
brackets. Since a bracket ofn functions can be obtained from a skew-symmetric contravar

a!Electronic mail: mtbibtor@lg.ehu.es
b!Electronic mail: mdeleon@pinarl.csic.es
c!Electronic mail: jcmarrer@ull.es
d!Electronic mail: dmartin@sr.uned.es
0022-2488/97/38(5)/2332/13/$10.00
2332 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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tensor of ordern, they have deduced a different fundamental identity from an integrability c
dition on the tensor. It should be noted that this way implies that only brackets of even ord
allowable.

Our purpose is to give a unified treatment for both kinds of brackets, in order to p
evidence their similarities as well as their differences. So, we consider general brackets o
tions defined for skew-symmetric contravariant tensors. More precisely, ifL is a skew-symmetric
contravariant tensor of ordern on a manifoldM ~an almost Poisson tensor, in our terminology!, it
defines ann-bracket$,...,% on the algebra ofC` functions onM by the formula

L~d f1 ,...,d fn!5$ f 1 ,...,f n%.

Next, we investigate the integrability conditions onL in two directions. Forn52, we are in
the presence of ordinary almost Poisson tensors, for which the integrability condition c
alternatively expressed in terms of the vanishing of the Schouten–Nijenhuis bracket@L,L# or in
terms of the Jacobi identity. The first direction gives the so-called generalized Poisson t
discussed by Azcarragaet al.,3 and the second way gives the Nambu–Poisson tensors discu
by Takhtajan.2

In this paper, we also discuss the dynamics ofn-brackets. In fact, we extend the results
Tulczyjew,4 who characterized a locally Hamiltonian vector field on a symplectic mani
(M ,V) as a Lagrangian submanifold of the symplectic manifold (TM,Vc), whereTM is the
tangent bundle ofM andVc is the complete or tangent lift ofV to TM. Recently, this result was
extended by Grabowski and Urba´nski5 for Poisson manifolds~see also Ref. 6!, and by us7 for
Jacobi manifolds. The equivalent notion of a locally Hamiltonian vector field is the so-c
infinitesimal automorphism of the generalized almost Poisson tensor, that is, a vector fieldX such
thatLxL50. With a suitable notion of Lagrangian submanifold, we prove that a vector fieldX on
a generalized almost Poisson manifold (M ,L) is an infinitesimal automorphism if and only if it
imageX(M ) is a Lagrangian submanifold of the induced structure (TM,Lc) ~Theorem VI.2!. It
should be noted that no integrability condition is invoked in order to obtain our result. In fa
(M ,L) is a generalized Poisson manifold, so is (TM,Lc). However, if (M ,L) is Nambu–
Poisson, (TM,Lc) is not Nambu–Poisson except in the trivial case~Theorem VI.1!. A Darboux
theorem is also obtained, and the global structure of a Nambu–Poisson manifold is elucida
the order ofL is greater or equal to 3, the distribution spanned by the Hamiltonian vector fiel
completely integrable and, then, it defines a foliation whose leaves are eithern-dimensional
manifolds endowed with a Nambu–Poisson bracket coming from a volumen form, or points.
these results, it follows that ifL is Nambu–Poisson, then@L,L#50, which shows that every
Nambu–Poisson manifold of even order is also a generalized Poisson manifold. The conv
not true, as Example II.5 shows. Forn52 ~Poisson manifolds! we have, of course, the well
known symplectic foliation. This means that the basic Nambu–Poisson structures are giv
symplectic or volume forms. Both are examples of multisymplectic structures~see Ref. 8!, and it
seems very interesting to look for structures which would give a more general kind of foliatio
multisymplectic leaves.

In what concerns Poisson morphisms, we introduce the notion of Poisson morphism
general setting, and prove that a morphismf:(M1 ,L1)→(M2 ,L2) between two generalized
almost Poisson manifolds (M1 ,L1) and (M2 ,L2) is Poisson if and only its graph is a coisotrop
submanifold of the generalized almost Poisson manifold (M13M2 ,L12L2) ~Theorem V.2!. This
theorem extends the well-known ones for symplectic and Poisson manifolds.9,5,6,10,11As above, no
integrability conditions are required.
J. Math. Phys., Vol. 38, No. 5, May 1997
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II. GENERALIZED ALMOST POISSON BRACKETS

Let M be a differentiable manifold of dimensionm. Our purpose is to define brackets
functions onM which generalize the well-known Poisson bracket. Denote byX (M ) the Lie
algebra of the vector fields onM and byC`(M ,R) the algebra ofC` real-valued functions on
M .

Definition II.1: An almost Poisson bracket of order n on M is an n-linear mapping
$,...,%:C`(M ,R) 3 ••• 3 C`(M ,R)→C`(M ,R) satisfying the following properties:
(1) ~Skew-symmetry!

$ f 1 ,...,f n%5~21!e~s!$ f s~1! ,...,f s~n!%,

for all f 1 ,...,f nPC`(M ,R) and sPSymm(n), where Symm(n) is a symmetric group of n ele
ments ande~s! is the parity of permutations.
(2) (Leibniz rule)

$ f 1g1 ,...,f n%5 f 1$g1 ,...,f n%1g1$ f 1 ,...,f n%,

for all f 1 ,...,f n , g1PC`(M ,R).
An alternative way to define ann-bracket of functions is to consider the skew-symmetric tensoL
of type (n,0) given by

Lx~d f1~x!,...,d fn~x!!5$ f 1 ,...,f n%~x!,

for all f 1 ,...,f nPC`(M ,R) and xPM . Conversely, given a skew-symmetric contravaria
n-tensor, the above formula defines ann-bracket of functions satisfying~1! and~2!. Notice that~1!
is equivalent to the skew-symmetric character ofL, and ~2! is a consequence of its tensori
character, that is,L is linear on functions. In fact, the Leibniz rule says that for anyxPM ,
$ f 1 ,...,f n%(x) only depends on the 1-jets of the functionsf 1 ,...,f n atx. Thus, we callL analmost
Poisson n-tensor, and (M ,L) a generalized almost Poisson manifold.

It should be noted thatL induces a linear mapping

#:Vn21~M !→X ~M !

by defining

^#~a1∧•••∧an21!,b&5L~a1 ,...,an21 ,b!,

for all a1 ,...,an21 , bPV1(M ), whereV r(M ) is the space ofr -forms on the manifoldM .
Therefore, givenn21 functionsf 1 ,...,f n21 , we define a vector field

Xf1 ,...,f n21
5#~d f1∧•••∧d fn21!,

which is called theHamiltonian vector fieldassociated with the Hamiltonian function
f 1 ,...,f n21 . The fact thatXf1 ,...,f n21

is a vector field is a consequence of the Leibniz rule.
interesting problem is to look for the integrability conditions of almost Poisson structures
can proceed in two different directions. First of all, notice that forn 5 2 the integrability condition
is given by the vanishing of the Schouten–Nijenhuis bracket ofL with itself.12,10 In fact,
@L,L#50 is equivalent to the so-called Jacobi identity,

$$ f 1 , f 2%, f 3%1$$ f 2 , f 3%, f 1%1$$ f 3 , f 1%, f 2%50. ~1!
J. Math. Phys., Vol. 38, No. 5, May 1997
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In such a case,L is a Poisson tensor and$ , % is an ordinary Poisson bracket.
Next, we will extend this integrability condition. The skew-symmetry of the Schouten-Nijen
bracket@ , # implies that

@L,L#5~21!n
2
@L,L#

for any n-tensorL. Thus, if n is odd, we do not obtain any integrability property, since@L,L#
identically vanishes. So, the vanishing of the Schouten–Nijenhuis bracket provides an integr
condition only in casen is even.

Definition II.2: LetL be an almost Poisson tensor of order2k on a manifold M. L is said to
be a generalized Poisson tensor if@L,L#50.

Proposition II.3: LetL be an almost Poisson tensor of order n52k. ThenL is generalized
Poisson if and only if the following generalized Jacobi identity~called the fundamental identity!
holds

Alt ~Xf1 ,...,f2k21
~$g1 ,...,g2k%!!50, ~2!

for all functions f1 ,...,f 2k21 , g1 ,...,g2k onM .
Proof: The result follows by a direct computation~Ref. 13!.
Remark II.4:Notice that the fundamental identity for generalized Poisson manifolds can

be expressed as follows:

Alt ~Xf1 ,...,f2k21
~Xg1 ,...,g2k21

~g2k!!!50, ~3!

for all functions f 1 ,...,f 2k21 , g1 ,...,g2k .
Example II.5:Consider onR5 the 4-vector defined by

L5 f
]

]x1
∧

]

]x2
∧

]

]x3
∧

]

]x4
1g

]

]x2
∧

]

]x3
∧

]

]x4
∧

]

]x5
,

where (x1,x2,x3,x4,x5) denote the standard coordinates inR5 and f andg are arbitrary functions
on R5. SinceL is of order 4, we deduce that@L,L#50, which implies thatL defines a Poisson
tensor of order 4. Next, we will compute the Hamiltonian vector fields associated with the
dinate functions. If we denoteXi jk5Xxixjxk, a direct computation shows that

X1235 f
]

]x4
, X12452 f

]

]x3,

X12550, X1345f
]

]x2
,

X13550, X14550,

X23452 f
]

]x1
1g

]

]x5
, X23552g

]

]x4
,

X2455g
]

]x3
, X34552g

]

]x2
.

Thus, the generalized distributionD generated by these Hamiltonian vector fields is not involuti
Take, for instance,f5x4 andg51. In this case,@X123,X234# does not belong toD.

The other direction is to look for a generalization of the Jacobi identity of a Poisson br
~1!. Notice that~1! can be equivalently written as follows:
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



-

u.

h

t

r-

oisson
r
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Xf1
~$ f 2 , f 3%!5$Xf1

f 2 , f 3%1$ f 2 ,Xf1
f 3%,

that is, the Hamiltonian vector fieldXf1
is a derivation of the algebra (C`(M ,R),$ , %), for every

function f 1 .
We then introduce the following definition:
Definition II.6: A generalized almost Poisson tensorL of order n on a manifold M is called

Nambu–Poisson if the Hamiltonian vector field Xf1 ,...,f n21
is a derivation of the algebra

(C`(M ,R) 3 ••• 3 C`(M ,R),$,...,%), for all f 1 ,...,f n21 , that is, the following fundamental iden
tity holds:

Xf1 ,...,f n21
$g1 ,...,gn%5(

i51

n

$g1 ,...,Xf1 ,...,f n21
gi ,...,gn%, ~4!

for all functions f1 ,...,f n21 , g1 ,...,gn on M.
Example II.7:Let M be an orientedn-dimensional manifold and choose a volume formv.

Givenn functions f 1 ,...,f n , onM , we define its bracket by the formula

d f1∧•••∧d fn5$ f 1 ,...,f n%v.

It is not hard to prove that it is a Nambu–Poisson bracket~see Ref. 14!. If we takeM5Rn, and
v is the standard volume formv5dx1∧•••∧dxn, we recover the example discussed by Namb1

Denote byLv the Nambu–Poisson tensor of ordern associated with a volume formv on an
orientedn-dimensional manifoldM . Then, it is clear thatLvÞ0 at every point ofM . In fact, we
have

Proposition II.8: Let(M ,L) be an n-dimensional Nambu–Poisson manifold of order n suc
that LÞ0 at every point. Then, there exists a volume formv on M withL5Lv .

Proof: SinceLÞ0 at every point, we deduce thatM is orientable. Thus, ifv̄ is a volume
form onM we obtain that there existsfPC`(M ,R), fÞ0 at every point, such thatL5 fLv̄ .
Now, we consider the volume form onM given byv5(1/f )v̄. A direct computation proves tha
L5Lv .

Remark II.9:From the above definitions it follows that forn52 Nambu–Poisson and gene
alized Poisson structures are the same geometrical object. However, forn>3, both kinds of
structures are in principle different. Of course, a trivial tensor, namelyL50 always defines a
Nambu–Poisson as well as a generalized Poisson structure. Also, there exist Nambu–P
structures which are trivially generalized Poisson. For instance, ifL is a Nambu–Poisson tenso
with constant components, it trivially satisfies@L,L#50. Also, if a Nambu–Poisson tensorL has
ordern, and dimM,2n21, we have@L,L#50. In Corollary III.8 we will give the relationship
between generalized Poisson and Nambu–Poisson manifolds.

The following result will be very useful in the sequel.
Proposition II.10: Let(M ,L) be a Nambu–Poisson manifold of order n. Then the bracket of

two Hamiltonian vector fields is also a Hamiltonian vector field.
Proof: In fact, we have

Xf1 ,...,f n21
~Xg1 ,...,gn21

gn!5Xg1 ,...,gn21
~Xf1 ,...,f n21

gn!1 (
i51

n21

$g1 ,...,Xf1 ,...,f n21
gi ,...,gn%

5Xg1 ,...,gn21
~Xf1 ,...,f n21

gn!1 (
i51

n21

Xg1 ,...,Xf 1 ,...,f n21
gi ,...,gn21

~gn!,

which implies that
J. Math. Phys., Vol. 38, No. 5, May 1997
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@Xf1 ,...,f n21
,Xg1 ,...,gn21

#5 (
i51

n21

Xg1 ,...,Xf 1 ,...,f n21
gi ,...,gn21

.

Given an almost Poisson tensorL of ordern onM and fixing a functionfPC`(M ,R), we define
a generalized almost Poisson tensorL f of ordern21 by setting

L f5 i d fL.

Proposition II.11: IfL is Nambu–Poisson, thenL f is also Nambu–Poisson.
Proof: It follows from the fundamental identity~4!.
Remark II.12:From Proposition II.11 we deduce that givenr functions f 1 ,...,f r , a Nambu–

Poisson tensorL of order n defines a Nambu–Poisson tensorL f1 ,...,f r
5 i d f1∧•••∧d fr

L of order
n2r . Thus, we obtain a family of subordinate Nambu–Poisson structures. Forr5n22, we obtain
a family of Poisson structures,L f1 ,...,f n22

. Many of these subordinate Nambu–Poisson structu
are compatible. For instance, ifn53, L f andLg are compatible for all functionsf and g on
M , since L f1Lg5L f1g . One can says that a Nambu–Poisson manifold is strongly
Hamiltonian.

III. MORPHISMS AND INFINITESIMAL AUTOMORPHISMS

Let (M1 ,L1) and (M2 ,L2) be two generalized almost Poisson manifolds of ordern, and
f:M1→M2 a differentiable mapping.

Definition III.1: f is said to be a Poisson morphism if

$ f 1+f,...,f n+f%15$ f 1 ,...,f n%2+f,

for all functions f1 ,...,f nPC`(M2 ,R), where $,...,% i denotes the bracket associated wi
L i ,i51,2.

The next result is an immediate consequence of the above definition.
Proposition III.2: The following statements are equivalent:
(1) f is a Poisson morphism.
(2) L1 andL2 are f-related, i.e.,

~L1!~x!~f*a1 ,...,f*an!5~L2!~f~x!!~a1 ,...,an!,

for all a1 ,...,anPTf(x)* M2 , and xP M1 .
(3) The Hamiltonian vector fields Xf1 ,...,f n21

and Xf1+f,...,f n21+f are f-related.
(4) The corresponding mappings#1 and#2 satisfy the formula

~#2!f~x!5~f* !x+~#1!x+~f* !f~x! ,

for every xPM1 .
Definition III.3: Let (M ,L) be a generalized almost Poisson manifold of order n. A vector

field X is called an infinitesimal automorphism ofL if LXL50, whereL denotes the Lie
derivative.

Remark III.4:It should be noted thatX is an infinitesimal automorphism ofL if and only if its
flow consists of Poisson morphisms.

Proposition III.5. A vector field X on M is an infinitesimal automorphism ofL if and only if
X is a derivation of the algebra(C`(M ,R)3•••3C`(M ,R),$,...,%).

Proof: In fact, we have
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



llow-

r

f

t

the

on

s
re-

com-
of
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X~$ f 1 ,...,f n%!5LX~$ f 1 ,...,f n%!

5LX~L~d f1 ,...,d fn!!

5~LXL!~d f1 ,...,d fn!1(
i51

n

L~d f1 ,...,LX~d fi !,...,d fn!

5~LXL!~d f1 ,...,d fn!1(
i51

n

$ f 1 ,...,Xfi ,...,f n%,

whereLX denotes the Lie derivative with respect toX.
From Proposition III.5 and the definition of Nambu–Poisson manifold, we deduce the fo

ing.
Corollary III.6: Let (M ,L) be a Nambu–Poisson manifold. Then, every Hamiltonian vecto

field Xf1 ,...,f n21
is an infinitesimal automorphism ofL.

Let (M ,L) be a generalized almost Poisson manifold of ordern and consider the space o
infinitesimal automorphismsXL(M ), that is,

XL~M !5$XPX~M !uLXL50%.

Since@LX ,LY#5L@X,Y# , for two vector fieldsX andY onM , we deduce thatXL(M ) defined an
involutive distribution which is also invariant.

We can also consider the space of Hamiltonian vector fields. In fact, ifDx denotes the
subspace ofTxM spanned by the Hamiltonian vector fieldsXf1 ,...,f n21

evaluated at a poin
xPM , we obtain a generalized distributionD on M , which will be called thecharacteristic
distribution.Forn 5 2, it is always involutive, and, in fact, it defines the symplectic foliation of
Poisson manifold.15,10,11The things are very different forn>3.

Theorem III.7: Let (M ,L) be a generalized almost Poisson m-dimensional manifold of order
n with n> 3.

(1) If L is a generalized Poisson tensor, then D is not in general involutive.
(2) If L is Nambu–Poisson, D is completely integrable, and, therefore, it defines a foliation

M such that the restriction ofL to each leaf defines an induced Nambu–Poisson structure. There
are two kinds of leaves. If at a point xPM , we haveL(x) Þ 0, then the leaf passing through x ha
dimension n, and the induced Nambu–Poisson structure on it comes from a volume form. Mo
over, there exist local coordinates(x1,...,xn,xn11,...,xm) around x on M such that
L5(]/]x1)∧•••∧(]/]xn). If Lx50, the leaf passing through x reduces to the point x, and the
induced Nambu–Poisson structure is trivial.

Proof:
~1! See Example II.5.
~2! ThatD is involutive is a consequence of Proposition II.10. On the other hand, letF:R

3M→M be the flow of the Hamiltonian vector fieldXf1 ,...,f n21
. Then, using Corollary III.6, we

deduce that

~F t!* ~Xg1 ,...,gn21
!5Xh1 ,...,hn21

,

for tPR and g1 ,...,gn21PC`(M ,R), where hiPC`(M ,R) is given by hi5gi+F2t , for
iP$1,...,n21%. From the above results, we conclude that the characteristic distribution is
pletely integrable~see Ref. 10, Theorem 2.6!, and it defines a generalized foliation in the sense
Sussmann.16

Now, consider a leafL of this foliation. If we taken functions f 1 ,...,f n defined onL, a
bracket$ f 1 ,...,f n% uL can be defined as follows. We extend eachf j , 1< j<n to a function f̃ j on
M and put
J. Math. Phys., Vol. 38, No. 5, May 1997
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$ f 1 ,...,f n% uL~y!5~$ f̃ 1 ,...,f̃ n%!~y!,

for everyyPL. Since the bracket is a derivation on each argument, we deduce that the re
independent of the chosen extensions. Of course,$,...,% uL satisfies the fundamental identity.

Next, suppose thatx is a point ofM such thatL(x)Þ0. Using the results obtained b
Gautheron,14 we deduce that then-vectorL(x) is decomposable. Thus, the dimension of the sp
D(x) is n. Therefore, ifL is the leaf ofD passing throughx we obtain that the dimension ofL is
n. Denote byLL the induced Nambu–Poisson tensor of ordern on L. If yPL, then, since
L(y)Þ0 @notice that dimD(y)5n#, we have that (LL)(y)Þ0. Consequently, from Propositio
II.8, we conclude that there exists a volume formv on L such thatLL5Lv .

Moreover, there exist local coordinates (x1,...,xn,xn11,...,xm) aroundx such that

L5
]

]x1
∧•••∧

]

]xn
.

In fact, if L(x)Þ0, there exist functionsf 1 ,...,f n such thatXf1 ,...,f n21
(x)( f n)5$ f 1 ,...,f n%(x)

Þ0. Thus, there is an open neighborhoodV aroundx and a functiong on V with

$ f 1 ,...,f n21 ,g%51

at every point ofV. Consider the following set of vector fields:

$Xf1 ,...,f n21
,Xg, f2 ,...,f n21

,Xf1 ,g, f3 ,...,f n21
,...,Xf1 ,...,f n22 ,g

%.

From Proposition II.10, it follows that

@Xf1 ,...,f n21
,Xf1 ,...,f i21 ,g, f i11 ,...,f n21

#50,

@Xf1 ,...,f i21 ,g, f i11 ,...,f n21
,Xf1 ,...,f j21 ,g, f j11 ,...,f n21

#50,

where i , jP$1,...,n21%. SinceXf1 ,...,f i21,g, f i11 ,...,f n21
(g)50, and taking into account that th

above set of vector fields onV are linearly independent, from the Frobenius theorem we obta
set of independent functions$ f 1 ,...,f n21 ,g,y

n11,...,ym% on an open neighborhoodV̄ of x, with
V̄,V such that

Xf1 ,...,f n21
5

]

]g
, Xg, f2 ,...,f n21

52
]

] f 1
,...,Xf1 ,...,f n22 ,g

5~21!n
]

] f n21
.

Thus, if we rename the coordinates asx15 f 1 ,...,x
n215 f n21 , xn5g, xn115yn11,...,xm

5ym, we obtain that

L5
]

]x1
∧•••∧

]

]xn
1L0 ,

whereL0 does not depend on the coordinatesx1,...,xn21,xn. We omit the proof of the latter
assertion, since it follows by applying the fundamental identity. Taking into account thatL is
decomposable onV̄, we deduce thatD has constant dimensionn on V̄. Thus, it immediately
follows thatL050.

If L(x)50, then all the Hamiltonian vector fieldsXf1 ,...,f n21
vanish atx. Therefore, the leaf

L throughx reduces to the pointx, namelyL 5 $x%.
Corollary III.8: Every Nambu–Poisson manifold of even order is generalized Poisson, but

converse does not hold.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



urfaces

g

2340 Ibáñez et al.: Nambu–Poisson brackets

¬¬¬¬¬¬¬¬¬¬
Proof: Let L be a Nambu–Poisson tensor of ordern52k. If L(x)Þ0, we deduce that there
exist local coordinates (x1,...,x2k) such that

L5
]

]x1
∧•••∧

]

]x2k
,

which implies that@L,L#50 at every point of the coordinate neighborhood. SinceL(x)50
implies @L,L#(x)50 ~see Ref. 10!, we deduce that@L,L# identically vanishes.

Remark III.9:It should be noted that, since a Nambu–Poisson structure of ordern has many
subordinate Nambu–Poisson structures, we can apply Theorem III.7. IfL f1 ,...,f n22

is a subordi-
nate Poisson structure, we deduce that the leaves of its characteristic foliation are oriented s
and/or points.

IV. LAGRANGIAN SUBMANIFOLDS

Let (M ,L) be a generalized almost Poisson manifold of ordern. Given a submanifoldN of
M , we define thej th annihilator of the tangent spaceTxN of N at a pointxPN, 1< j<n21, as
follows:

Annj~TxN!5$aPLn21~Tx*M !u i v1∧•••∧v j
a50,;v1 ,...,v jPTxN%.

We have

Ann1~TxN!#Ann2~TxN!#•••#Annn21~TxN!.

We introduce the following definitions.
Definition IV.1: (1) We say that N is j-coisotropic if

#~Annj~TxN!!#TxN.

(2) We say that N is j-Lagrangian if

#~Annj~TxN!!5TxNù#~Ln21~Tx*M !!.

If L is Nambu–Poisson, andL f is a subordinate Nambu–Poisson tensor of ordern21 for a fixed
function f onM , we deduce the following.

Proposition IV.2: If N is j-coisotropic in (M ,L), and f weakly vanishes on N, then N is
j -coisotropic in(M , L f).

Proof: If f'0 onN, that is,f belongs to the ideal of functions which defineN as a submani-
fold of M , thenv( f )50, for all vPTN. The result follows taking into account the followin
facts:

~i! If we denote by #f the linear mapping #f :V
n22(M )→X (M ) induced byL f , we get

# f(a)5#(d f∧a).
~ii ! If aPAnnj (TN) ~with respect toL f ,! thend f∧aPAnnj (TN) ~with respect toL!.

V. GRAPHS OF POISSON MORPHISMS

Let (M1 ,L1) and (M2 ,L2) be two generalized almost Poisson manifolds of ordern, and
f:M1→M2 a differentiable mapping. Consider the product manifoldM5M13M2 endowed with
the following generalized almost Poisson tensor:L5L12L2 . We have

Proposition V.1:~1! If (M1 ,L1) and (M2 ,L2) are generalized Poisson, then(M ,L) is also
generalized Poisson.
(2) Assume that n>3. If (M1 ,L1) and (M2 ,L2) are Nambu–Poisson, then(M ,L) is not
Nambu–Poisson, except in the trivial case whenL150 or L250.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Proof: ~1! In fact, we have

@L,L#5@L12L2 ,L12L2#50,

since@L1 ,L1#50, @L2 ,L2#50 and@L1 ,L2#50. ~2! If L would be Nambu–Poisson, and the
exists a point (x0 ,y0)PM such thatL1(x0)Þ0 andL2(y0)Þ0, then the characteristic distribu
tion of (M ,L) at the point (x0 ,y0) would have dimension 2n. But this is not possible, sinceL is
of ordern.

Theorem V.2: Let (M1 ,L1) and (M2 ,L2) be two generalized almost Poisson manifolds
order n, andf:M1→M2 a differentiable mapping. Then, f is a Poisson morphism if and only
the graph off is a (n 2 1)-coisotropic submanifold of(M5M13M2 ,L5L12L2).

Proof: Let us recall that

Graphf5$~x,f~x!!uxPM1%,M13M2 .

Thus, we have

T~x,f~x!!Graphf5$~vx ,f* ~vx!!uvxPTxM1%,

for xPM1 . Therefore, a direct computation shows that

Annn21~T~x,f~x!!Graphf!5$~2f* l2 ,l2!ul2PLn21~Tf~x!
* M2!%.

Consequently, we deduce that

#~x,f~x!!~Ann
n21~T~x,f~x!!Graphf!!,T~x,f~x!!Graphf

if and only if

~#2!f~x!~l2!5~~f* !~x!+~#1!x+~f* !~f~x!!!~l2!, ;l2PLn21~Tf~x!
* M2!,

or, in other words,f is a Poisson morphism~see Proposition III.2!.
Remark V.3:Notice that Theorem V.2 is the generalization of the well-known result

Poisson manifolds.6,10,9

VI. TANGENT LIFTS OF BRACKETS

Let (M ,L) be a generalized almost Poisson manifold, and denote byTM its tangent bundle.
The canonical projection is denoted bytM :TM→M . If ( xi), i 5 1,...,m are local coordinates in
M , we will use the notation (xi ,ẋi) for the induced coordinates inTM.

Let Lc be the complete lift ofL to TM ~see Ref. 17!. We recall thatLc is a skew-symmetric
(n,0)-tensor field onTM characterized by the following formulas:

Lc~a1
c ,a2

c ,...,an
c!5~L~a1 ,a2 ,...,an!!c,

Lc~a1
v ,a2

c ,...,an
c!5~L~a1 ,a2 ,...,an!!v,

Lc~a1
v ,a2

v ,...,an
c!50,

A

Lc~a1
v ,a2

v ,...,an
v!50,
J. Math. Phys., Vol. 38, No. 5, May 1997
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for all 1-formsa1 ,...,an onM , wherea i
v anda i

c are, respectively, the vertical and complete li
of the 1-forma i to TM, and f v, f c are, respectively, the vertical and complete lifts of a funct
f onM to TM.

Therefore, for the corresponding bracket$,...,%T on TM, we have

$ f 1
c , f 2

c ,...,f n
c%T5$ f 1 , f 2 ,...,f n%

c,

$ f 1
v , f 2

c ,...,f n
c%T5$ f 1 , f 2 ,...,f n%

v,

$ f 1
v , f 2

v ,...,f n
c%T50,

A

$ f 1
v , f 2

v ,...,f n
v%T50.

If L i1 ,...,i n are the local components ofL, the local components ofLc are given by the following
formulas:

~Lc! ī 1 ī 2 ,..., ī n5 ẋl
]L i1i2 ,...,i n

]xl
,

~Lc! i1 ī 2 ,..., ī n5L i1i2 ,...,i n,

~Lc! i1i2 ,..., ī n50,

A

~Lc! i1i2 ,...,i n50,

where ī means that we are evaluatingLc on dẋi .
Theorem VI.1: Let (M ,L) be a generalized almost Poisson manifold of order n a

(TM,Lc) its tangent lift. Then,
(1) (M ,L) is a generalized Poisson manifold if and only if(TM,Lc) is so also.
(2) If (M ,L) is a Nambu–Poisson manifold and n>3, (TM,Lc) is not Nambu–Poisson, except in
the trivial caseL50.

Proof: ~1! The result follows taking into account the formula

@Lc,Lc#5@L,L#c,

~see Ref. 5! and the fact that for a contravariantn-tensorG onM , G vanishes if and only ifGc does
so ~see Ref. 17!.
~2! Let L be a Nambu–Poisson tensor of ordern>3. Assume thatLc is Nambu–Poisson. If
L(x)Þ0, thenLc(y)Þ0, for any tangent vectory at x. Since the characteristic distribution
generated by the vertical and complete lifts of the Hamiltonian vector fields defined byL on
M , we deduce that it is the tangent lift of the characteristic distribution onM . Thus, it has
dimension 2n at the pointsyPTxM whereL(x)Þ0. Consequently,Lc is not Nambu-Poisson
except ifL identically vanishes.

Theorem VI.2: Let (M ,L) be a generalized almost Poisson m-dimensional manifold and
X a vector field on M. Then the image X(M ) of X is a 1-Lagrangian submanifold of(TM,Lc) if
and only if X is an infinitesimal automorphism ofL, i.e.,LXL50.

Proof: Assume that the local expression ofX is X5Xi]/]xi in some local coordinate system
(xi) onM . Therefore, the submanifoldX(M ) is locally defined as follows:
J. Math. Phys., Vol. 38, No. 5, May 1997
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xi5xi , ẋi5Xi ,

in the induced coordinates (xi ,ẋi) in TM.
Define the local frame$Bi ,Ci ; i 5 1,...,m% of TM alongX(M ) by

Bi5X* S ]

]xi D5
]

]xi
1

]Xj

]xi
]

] ẋ j
, Ci5

]

] ẋi
.

@It should be noted that the local vector fields$Bi ; i51,...,m% are tangent to the submanifol
X(M )#. Its dual local coframe$Bi* ,Ci* % alongX(M ) is

Bi*5dxi , Ci*5dẋi2
]Xi

]xj
dxj .

Next, we will computeLc alongX(M ),

Lc~Ci1
* ,...,Cin21

* ,Cin
* !5

]L i1 ...i n

]xl
Xl2(

s51

n
]Xis

]xj
L i1 ,...,j ,...,i n,

Lc~Ci1
* ,...,Cin21

* ,Bin
* !5L i1 ,...,i n,

Lc~Ci1
* ,...,Bin21

* ,Bin
* !50,

A

Lc~Bi1
* ,...,Bin21

* ,Bin
* !50.

From the above formulas, we get

#T~Ci1
* ∧•••∧Cin21

* !5L i1 ,...,i nBin
1S ]L i1 ,...,i n

]xl
Xl2(

s51

n
]Xis

]xj
L i1 ,...,j ,...,i nDCin

,

where #T denotes the induced mapping fromLc.
Since for everyyPX(M ), Ann1(Ty(X(M ))) is locally generated by the exterior powers of t
1-forms $Ci* ; i51,...,m%, we deduce thatX(M ) is 1-Lagrangian if and only if

]L i1 ,...,i n

]xl
Xl2(

s51

n
]Xis

]xj
L i1 ,...,j ,...,i n50. ~5!

On the other hand, if we write

L5
1

k!
L i1 ,...,i n

]

]xi1
∧•••∧

]

]xin
,

we deduce thatLXL has components

~LXL! i1 ,...,i n5(
s51

n

L i1 ,...,j ,...,i n
]Xis

]xj
2Xj

]L i1 ,...,i n

]xj
. ~6!

From ~5! and ~6! the result follows.
J. Math. Phys., Vol. 38, No. 5, May 1997
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2344 Ibáñez et al.: Nambu–Poisson brackets

¬¬¬¬¬¬¬¬¬¬
ACKNOWLEDGMENTS

This work has been partially supported through grants DGICYT~Spain! ~Projects Nos. PB94-
0106 and PB94-0633-C02-02!, Consejerı´a de Educacio´n del Gobierno de Canarias, and UNE
~Spain!.

1Y. Nambu, ‘‘Generalized Hamiltonian dynamics,’’ Phys. Rev. D7, 2405–2412~1973!.
2L. Takhtajan, ‘‘On foundations of the generalized Nambu mechanics,’’ Commun. Math. Phys.160, 295–315~1994!.
3J. A. de Azca´rraga, A. M. Perelomov, and J. C. Pe´rez Bueno, ‘‘New generalized Poisson structures,’’ J. Phys. A29,
L151–157~1996!.

4W. M. Tulczyjew, ‘‘Les sous-varie´tés Lagrangiennes et la dynamique Hamiltonienne,’’ C. R. Acad. Sci. Paris, Se´r. A
283, 15–18~1976!.

5J. Grabowski and P. Urbanski, ‘‘Tangent lifts of Poisson and related structures,’’ J. Phys. A28, 6743–6777~1995!.
6G. Sánchez de Alva´rez, ‘‘Poisson brackets and dynamics,’’ inDynamical Systems, Santiago de Chile, 1990, edited by R.
Bamon, R. Labarca, J. Lewowicz, and J. Palis, Pitman Research Notes Mathematical Series Vol. 285~Longmann,
Harlow, 1993!.
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For a variety of classical mechanical systems embeddable into flat space with
Cartesian coordinates$xi% and for which the Hamilton–Jacobi equation can be
solved via separation of variables in a particular curvalinear system$uj%, we an-
swer the following question. When is the separable potential functionv expressible
as a polynomial~or as a rational function! in the defining coordinates$xi%? Many
examples are given. ©1997 American Institute of Physics.
@S0022-2488~97!01905-1#

I. INTRODUCTION

In recent years there has been renewed interest in the notion of integrability as it applies
solution of mechanical systems. Many examples of such systems are known. The crucial r
ment for the notion of integrability to be valid is the existence of a suitable number of cons
of the motion. This guarantees in principle that the corresponding mathematical problem c
solved. One of the classical ways of solving some integrable mechanical systems is usi
method of separation of variables. Commonly quoted integrable systems are the so-calle
mann system of a particle moving on a sphere under the influence of the anisotropic har
potential and also the problem of geodesic flow on an ellipsoid.1–4 The problem we consider her
is, generally, how to classify systematically those classical mechanical systems that are of th

H5 (
i , j51

n

gi j pipj1V~x1,...,xn!. ~1.1!

via separation of variables techniques. Here the metricgi j corresponds to some Riemannian spa
that is embedded into flat space and thexi are Cartesian coordinates in that space. Specifically,
will determine the possible separable potentialsV which are polynomials or rational functions o
the Cartesian coordinates. In particular we consider the case of spaces of constant curvatu
Euclidean space, the positive definite hyperboloid and the sphere. Also considered here a
plex versions of these spaces. For the real spaces we have mentioned, all the separable co
systems are known.5,6 The requirement that the potential provide a separation of variables is
known ~e.g., Ref. 7!. Indeed if the coordinatesyi provide a separation of variables via som
transformationyi5yi(x1,...,xn), i51,...,n, the only nonzero elements of the contravariant ten

ḡi j5 (
p,q51

n

gpq
]yi

]xp
]yj

]xq

are8–15
0022-2488/97/38(5)/2345/21/$10.00
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gi j5d i j @Si1/S#, i , j51,...,n1 ,

gra5@Sr1/S# f r~y
r !, r5n11,...,n11n212, a5n11n212,...,n11n21n312,

gab5F (
k51

n11n2

hk
ab~yk!~Sk1/S!G , a,b5n11n212,...,n11n21n312.

Heren11n21n35n, and there exists a Sta¨ckel matrix S̄5„S̄i j (y
i)…n3n such thatS5detS̄ and

Si j is thei j cofactor ofS̄. The requirement that the potentials separate in these coordinates is7

V~y1,...,yn!5 (
k51

n11n2

v~yk!
Sk1

S
. ~1.2!

When this is the caseV is said to be aStäckel multiplierin the coordinate systemyi . Coordinates
of the type yi , i51,...,n1 , are calledStäckel coordinates. Coordinates of typeyr ,r5n1
11,...,n11n212, are called first-order coordinates. Coordinates of typeya,a5n11n2
12,...,n11n21n312, are calledignorable variables. We will restrict ourselves here to coord
nate systems such thatḡi j is a diagonal metric. This is both necessary and sufficient for the
of separation of variables for real spaces of constant curvature.6

In the case of real Euclidean space let us consider the generic elliptical coordinate$ui%
defined by

xi
25c2P j51

n ~uj2ei !/PkÞ i~ek2ei !, i , j ,k51,...,n, ~1.3!

and eiÞek for iÞk. For elliptical coordinates the new variables are subject to the restric
e1,u1,e2,u2,•••,en,un . The general form for the Sta¨ckel multiplier associated with thes
coordinates can be readily calculated. This may be deduced from the infinitesimal distance

ds25
c2

4 (
k51

n
PmÞ i~um2ui !

P l51
n ~uk2el !

duk
2.

Indeed the form of such a Sta¨ckel multiplier must be

V~u1 ,...,un!5 (
i51

n
v i~ui !

PmÞ i~um2ui !
. ~1.4!

In this sense this problem has been solved. However, we seek a solution to a more re
problem here. Indeed we answer the following two questions.

~1! When is the Sta¨ckel multiplier V(u1 ,...,un) expressible as a polynomial in the definin
coordinatesxi?

~2! When is the multiplier in the form of a rational function of the Cartesian coordinatesxi?

These are two important classes of potentials and a number of physically interesting cas
known. Indeed Eisenhart has shown that in an orthogonal separable systemyi a potential is in the
form of a Stäckel multiplier if and only if

gii gj j
]2V

]ui]uj
2gii

]gj j

]ui

]V

]uj
2gj j

]gii

]uj

]V

]ui
50, ~1.5!

for iÞ j .9 However, Benenti16 has proved that~expressed in Cartesian coordinates! these condi-
tions for elliptical coordinates are equivalent to
J. Math. Phys., Vol. 38, No. 5, May 1997
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~ei2ej !
]2V

]xi]xj
1S xi ]

]xj
2xj

]

]xi
D S 2V1 (

k51

n

xk
]V

]xk
D 50 ~1.6!

for iÞ j . Thus for elliptical coordinates, the solutions to questions~1! and ~2! are just the poly-
nomial or rational solutions to~1.6!. We will give a different and more general solution to the
questions.

We first look at the problem of polynomial potentials. The crucial observation is the fol
ing. Let V(x1 ,...,xn) be a polynomial solution of~1.6!. When expressed as a function of theui
coordinates via~1.3!, V should be symmetric. Therefore when expressed in the form~1.4! each of
the functionsv i(ui)5v(ui). We can deducev(ui) if V is of polynomial form. Indeed if we put
ui5ai for iÞ1 such thatakÞel for all k and l , then we see thatv(u) should have the form
v(u)5R(u)Au2e11S(u) whereR andS are rational functions ofu. Doing a similar calculation
with e1 replaced bye2 we must then have

R~u!Au2e11S~u!5R8~u!Au2e21S8~u!.

This can only hold ifR(u)5R8(u)50 andS(u)5S8(u). Before proceeding further we note th
following.

Lemma. Let Si@u1 ,...,un# be the symmetric polynomial defined by

Si@u1 ,...,un#5
1

i ! (
j 1 ,...,j iÞ

uj 1,...,uj i, i51,...,n, ~1.7!

and S0@u1 ,...,un#50. Similarly let Ei@e1 ,...,en#5Si@e1 ,...,en#. Then the symmetric function
Si@u1 ,...,un# are expressible in terms of the Cartesian coordinates via

Sl@u1 ,...,un#5El@e1 ,...,en#1 (
k51

n xk
2

c2
El21@e1 ,...,ek21 ,ek11 ,...,en#, l51,...,n. ~1.8!

This follows readily from the identity

(
k51

n xk
2

~u2ek!
2c252c2

Pk51
n ~u2uk!

P j51
n ~u2ej !

. ~1.9!

Multiplying this expression byP j51
n (u2ej ) we easily deduce the identity~1.8!. The functions

SMp@u1 ,...,un#5( i51
n ui

p/P jÞ i(ui2uj ) for p an integer can be expressed in terms of Cartes
coordinates via the recurrence relation

SMq5(
j51

n

~21! j11Sj@u1 ,...,un#SMq2 j , ~1.10!

for q>n, whereSMn2151 andSMp50 for 0<p,n21.
Consequently, ifv(u) is a polynomial inu, the corresponding potential is a polynomial in th

Cartesian coordinates. We can conclude that all contributions for whichv(u)5up give a basis for
all Stäckel multipliers which are polynomial in the Cartesian coordinatesxk . The second type of
contribution viz. 1/(u2a)q, can be readily expressed in terms of Cartesian coordinates. Indee
need only consider the special casea50, as the general case can be obtained by translating a
ui variables. We observe thatSM2p@u1 ,...,un#5(P i51

n v i)SMp1n22@v1 ,...,vn# where v i
51/ui . Then using the resultSq@v1 ,...,vn#5Sn2q@u1 ,...,un#/(P i51

n ui) we can always evaluate
J. Math. Phys., Vol. 38, No. 5, May 1997
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SM2p@u1 ,...,un#. The analysis is now complete. The basic building blocks for potentials w
are rational functions of the Cartesian coordinates are the Sta¨ckel multipliersSMp@u1 ,...,un#
wherep50,61,62,... .

For real Euclidean spaces there is one other generic coordinate system, paraboloidal
nates. These coordinates are given by

x15S c2D S 2(
j51

n

uj1 (
k51

n21

ekD ,
~1.11!

xi
25c2

P j51
n ~uj2ei21!

PkÞ i21~ek2ei21!
, i ,k52,...,n, j51,...,n,

where e1,u1,e2,u2,e3,•••,un21,en,un . The corresponding infinitesmal distance is

ds25
c2

4 (
k51

n
PmÞ i~um2ui !

P l51
n21~uk2el !

duk
2, ~1.12!

and the symmetrical functionsSi@u1 ,...,un# are given by the expressions

c2S1@u1 ,...,un#5E1@e2 ,...,en#22x1 ,

c2Sl@u1 ,...,un#5El@e2 ,...,en#22x1El2@e2 ,...,en#2 (
k52

n

xk
2El22@e2 ,ek21 ,ek11 ,...,en#,

l52,...,n21, ~1.13!

c2Sn@u1 ,...,un#522x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,ek21 ,ek11 ..,en#.

This follows from the identity

22cx12c2u1 (
k52

n xk
2

~u2ek!
5c2

Pk51
n ~u2uk!

P j52
n ~u2ej !

. ~1.14!

To establish which potentials are Sta¨ckel multipliers for paraboloidal coordinates and whi
are rational functions of the Cartesian coordinates we must consider two cases.

~1! n.2. In this case we can use essentially the previous argument for elliptical coordina
En . Then, as expected, linear combinations ofv i(u)5v(u)5(u2a)p, p50,61,62,..., form
a basis for all Sta¨ckel multipliers that are rational functions of Cartesian coordinates.

~2! n52. In this case we cannot use the previous argument, as there is only oneek occurring, viz.
e2 , which we can take to be 0. We can only deduce thatv(u)5R(u)u1/21S(u) whereR and
S are rational functions. IfR(u)50, then our result follows as forn.2. If R(u)Þ0, then we
change to the new variablew5u1/2 and discard the functionS(u). The corresponding Sta¨ckel
multiplier has the form

v~w1 ,w2!5
T~w1!2T~w2!

w1
22w2

2 , ~1.15!

whereT(w) is a rational function ofw of the formR(w2)w. If we perform a partial fraction
decomposition ofR(u) with respect tou, then the functionT(w) typically has terms of the type/1
J. Math. Phys., Vol. 38, No. 5, May 1997
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which are monomialswp and terms of type/2 which are of the formw/(w22a2)p. In the case of
monomials, ifp is even, then the corresponding contribution to the Sta¨ckel multiplier is a poly-
nomial in the Cartesian coordinatesxk . If p is odd, then the corresponding contribution can
written as an algebraic function of the symmetric functionsSi@w1 , w2#. Furthermore, these sym
metric functions cannot be expressed as rational functions ofxk . Indeed they are determined b
algebraic relations. For example, in the case of

S1/2@u1 , u2#5S1@w1 , w2#5w11w25u1
1/21u2

1/2,

the relation betweenS1/2 and the symmetric polynomialsSi5Si@u1 u2# is given by

@S1/2
2 2S1#

254S2
2.

In a similar way we could argue that contributing terms tov(w1 , w2) of the form 1/(w
2a)p cannot contribute rational functions ofxk to the expression for a separable potential. We
thus left with the possibility thatv(u) must be a rational function ofu. Consequentlyv(u) admits
a partial fraction decomposition with typical terms of the formup or 1/(u2a)q for p and q
positive integers.

In the following sections we will answer questions~1! and ~2! for a variety of classical
mechanical systems embeddable into flat space with Cartesian coordinates$xi% and for which the
Hamilton–Jacobi equation can be solved via separation of variables in a particular curva
system$uj%. Many examples are given in the Appendix.

In summary, the conclusions of Sec. I are as follows. It is known that separable coordina
n-dimensional Euclidean space are constructed from generic separable coordinate syste
elliptical coordinates and paraboloidal coordinates.6 For these coordinate systems we have as
what potentials rational in the Cartesian coordinates can be found such that solution v
separation of variables ansatz is still valid. We have shown that potentials fulfilling this req
ment can be constructed from the symmetric quantitiesSl@u1 ,...,un# and that these quantities ca
always be expressed as a rational function of the Cartesian coordinatesxk via ~1.8!. These ideas
are extended in subsequent sections to the case of the sphere and the hyperboloid inn dimensions.
The result of these investigations gives all potentials which are rational in terms of Car
coordinates and have the separability property. In addition we develop these ideas even fu
include spaces in which the rational Sta¨ckel form of elliptic coordinates is generalized and sho
that similar results hold in this case also. This we do via what amounts to flat space embed

II. ELLIPTIC COORDINATES ON THE n SPHERE

The application of these ideas to the case of elliptic coordinates on then sphere proceeds with
some modifications. Elliptic coordinates onSn are given by

xi
25

P j51
n ~uj2ei !

PkÞ i~ek2ei !
, i ,k51,...,n11, j51,...,n, ~2.1!

subject toe1,u1,e2,u2,•••,en,un,en11 and( i51
n11xi

251. A typical form of Sta¨ckel mul-
tiplier is

V~u1 ,...,un!5(
i51

n
v i~ui !

PmÞ i~um2ui !
. ~2.2!

Again we ask the question which separable potentials can be expressed as rational function
projective coordinatesxk . The expression~1.9! is now replaced by
J. Math. Phys., Vol. 38, No. 5, May 1997
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(
k51

n11 xk
2

u2ek
5

Pk51
n ~u2uk!

P j51
n11~u2ej !

, ~2.3!

from which we deduce that

Sl@u1 ,...,un#5 (
k51

n11

xk
2El@e1 ,...,ek21 ,ek11 ,...,en#. ~2.4!

The argument used for the case of Euclidean elliptic coordinates goes through much as
Indeed the Sta¨ckel multipliersSMp@u1 ,...,un#, with p50,61,62,..., form a basis for all such
potentials. Among these potentials are several well-known examples of separable coordina
tems on then sphere. IndeedV5S1@u1 ,...,un#5( i51

n ui corresponds to the Neumann potent
( i51
n11ei(12xi

2).1,3,7 The Stäckel multiplier 1/xk
2 corresponds to the choice of functionv(u)51

2 (k51
n11P lÞk(u2 el)/(u2 ek). The often quotedRosochatius potentialV5(k51

n11ck /xk
2,17can then

be constructed from the corresponding Sta¨ckel multipliers. For the Garnier system with potenti

V~x1 ,...,xn!5S (
k51

n

xk
2D 22S (

k51

n

E1@e1 ,...,ek21 ,ek11 ,...,en#xk
2D ,

the corresponding function is

vk~u!5un1122E1@e1 ,...,en#u
n1~E2@e1 ,...,en#2E1@e1 ,...,en#

2!un2112E1@e1 ,...,en#
2.

III. COMPLEX Sn , COMPLEX En , AND LIMITING REAL CASES

Having solved the problem of rational potentials for generic coordinates on then sphere and
in Euclideann space we can now answer the same question for degenerate versions o
coordinates. We make use of well-established limiting procedures.7,18 In particular we consider
those cases relevant to the real manifolds~1! Euclideann spaceEn , ~2! then sphereSn, and~3!
then-dimensional hyperboloidHn . This can be best done by first considering complex Euclid
n space and the complexn sphere, and then passing to the real cases. For the complexn sphere
let us consider what modifications are necessary for the solution of our problems. The proc
taking two rootsei equal best illustrates the general procedure. Indeed if we put

x2→Aa2~x181ex28!, x1→Aa1x18 ,
~3.1!

xj→xj8 , j53,...,n,

wherea152a251/e ande25e11e, then the generic elliptic coordinates on then sphere become

x18
25P i51

n ~ui2e1!/Pk53
n11~ek2e1!,

2x18x285S ]

]e1
D @P i51

n ~ui2e1!/Pk53
n11~ek2e1!#,

~3.2!

xj8
25P i51

n ~ui2ej !/PkÞ j
n11~ek2ej !, j53,...,n11,

2x18x281 (
i53

n11

xi8
251.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Indeed
f
he

,

miting

2351Kalnins, Benenti, and Miller, Jr.: Stäckel spaces and rational potentials
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For this example, the argument used previously in the generic case is readily adapted.
if we take a Sta¨ckel multiplier in the form~1.4!, the functionv(u) must be a rational function o
u. Accordingly the basis for the rational Sta¨ckel multipliers in this coordinate system is exactly t
same when written in terms of the coordinatesui . To express these Sta¨ckel multipliers in terms of
the coordinatesxi8 we need only take the appropriate limits in the expressions~1.9!. The functions
Si@u1 ,...,un# can be obtained from the new form of~1.9!, viz.

2x1x2
u2e1

1
x1
2

~u2e1!
2 1 (

k53

n11 xk
2

u2ek
5

Pk51
n ~u2uk!

~u2e1!
2P j53

n11~u2ej !
. ~3.3!

For the explicit form of the functionsSl@u1 ,...,un# we obtain

Sl@u1 ,...,un#52x1x2El@e1 ,e3 ,...,en11#1x1
2El21@e3 ,...,en11#

1 (
k53

n11

xk
2El@e1 ,e1 ,...,ek21 ,ek11 ,...,en11#. ~3.4!

Here we have dropped the primes in thexk . We note in particular from~3.3! that 2x1x2
1(k53

n11xk
251. For this particular case the Neumann potential becomes

V52e11e31•••1en112S x1212e1x1x21 (
k53

n11

xk
2D . ~3.5!

The most general possibility of this kind occurs when theeis are equal in groups. Specifically
if we write instead ofxi and ek the new variablesxj

J and ej
J , where j51,...,NJ , and J

51,...,P, respectively, the infinitesimal distance is

ds25 (
k51

n
PmÞ i~um2ui !

P j51
NJ ~uk2ej

J!
duk

2. ~3.6!

These coordinates can be obtained from the most general elliptic ones by well-defined li
processes.13 Under the transformation

ej
J→eJ1

Je j21
1 , j51,...,NJ , J51,...,P,

~3.7!

xj
J→AajJS x1J1(

i52

NJ
Je j112 i

i21 xi
JD ,

where

Je j112 i
i21 5P l52

i ~Je j21
1 2Je l

1!, (
J51

P

NJ5n11,

and

aj
J51/PkÞ j~

Je j21
1 2Jek21

1 !, k51,...,NJ ,

the fundamental formula~1.9! assumes the form

(
K51

P

(
l52

NK11 Sl
K

~u2eK!NK122 l 5
P i51

n ~u2ui !

PK51
P ~u2eK!NK

, ~3.8!
J. Math. Phys., Vol. 38, No. 5, May 1997
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whereSj11
J 5( i51

j xi
Jxj112 i

J . The expressions forSi@u1 ,...,un# can be determined from this re
sult. Indeed~3.8! can be rewritten

P i51
n ~u2ui !5 (

K51

P

(
l52

NK11

Sl
K~u2ek!

l22PLÞK~u2eL!NL. ~3.9!

We then deduce that

Sm@u1 ,...,un#5 (
K51

P

(
l52

NK11

Sl
K~21!AK1 l122nSAK1 l221m2n@e1~N1!,...,eK~ l22!,...,eP~NP!#,

~3.10!

whereAK5(LÞKNL . The coordinates determined in this way are said to be generic coordina
type $N1 ,...,NP%. Here,

ds25 (
k51

n
PmÞ i~um2ui !

P l51
P ~uk2el !

Nl
duk

2. ~3.11!

By cross multiplying in the expression~3.8! we see immediately that

(
J51

P

(
i51

NJ

xi
JxNJ112 i

J 51 ~3.12!

and the coordinatesxj
J are given by

Sj11
J 5

1

~ j21!! S ]

]eJ
D j21 P i51

n ~ui2eJ!

PLÞJ~eL2eJ!
, ~3.13!

whereSj11
J 5( i51

j xi
Jxj112 i

J .
The case of generic coordinates inEn can be treated similarly. The only restriction now is th

(J51
p NJ5n11 and

(
i51

n

xi
2→(

J51

p

(
i51

NJ

xi
JxNJ112 i

J

under the transformation given above.
The rules for constructing all other coordinate systems on the complexn sphere that corre-

spond to orthogonal coordinates are just as in Ref. 18 to which we refer. In the Appendix w
some of the potentials for the simplest cases. For the case of hyperbolicn space there are add
tional coordinate systems which can be regarded as generic. These correspond to the sig
$21...1% and $31...1%, as well as the generic case$1...1% in which e15e2* . The first few potentials
which correspond to these cases are given in the Appendix.

For the case of complex Euclidean space similar general coordinate systems correspo
metric of type~3.6! with ( j51

P Nj<n. The various possible forms of this metric are determined
coordinates via limiting processes similar to those for then sphere. Making the same change
designation as before viz.xj

J andej
J , j51,...,NJ , J51,...,P, and( j51

P Nj5n, we can calculate
the properties of the various coordinates inn dimensions by suitable limiting procedures from t
generic case in which allei , i51,...,n, are distinct. The only difference in this case is that t
conditionej

J→eJ1
Je j21

1 could include the possibility that, say,e15`. There are two possible
signatures that describe coordinate systems of this type:@N1 ,...,NJ#, and @N1

` ,...,NJ#. All the

calculations involving@N1 ,...,NJ# look exactly as with the corresponding coordinates on thn
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



f

-

to
etric is

hod of
e
s from
tes by

ta

2353Kalnins, Benenti, and Miller, Jr.: Stäckel spaces and rational potentials
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sphere, i.e., the limiting processes are given by~3.7!, the fundamental formula by~3.8!, and the
symmetric functions by~3.10!. The only restriction is that( j51

P Nj5n. For the second type o
generic coordinates, which correspond to@N1

` ,...,NJ#, the coordinates are given by

Sj11
1 5„1/~ j21!! …~]/]e! j21@„P l51

n ~eul21!…/~eeJ2 !NJ#ue50 , j51,...,N1
~3.14!

Sj11
J 5@1/~ j21!! #~]/]eJ!

~ j21!@P i51
n ~ui2eJ!/PLÞJ~eL2eJ!#, j51,...,NJ ,

whereSj11
J is defined as above with the extra condition thatx1

151. The fundamental form defin
ing these coordinates is

„1/~N121!! …~]/]e!N121@„P l51
n ~eul21!…/„~eu21!~eeJ21!NJ…#ue501 (

J52

P

(
j51

NJ

Sj11
J Y

(u2eJ)
NJ112 j5Pk51

n ~u2uk!/PJ52
P ~u2eJ!. ~3.15!

The symmetric functionsSl@u1 ,...,un# can be read off from this formula.

IV. FLAT SPACE EMBEDDINGS

It is possible to extend these ideas to rational Sta¨ckel metrics not necessarily corresponding
spaces of constant curvature. As an example consider the Riemannian space whose m
defined by

ds25~u12u2!F du1
2

P j51
5 ~u12ej !

2
du2

2

P j51
5 ~u22ej !

G . ~4.1!

This space is such that the corresponding Hamilton–Jacobi separation of variables met
solution works. It is indeed a special form of the Sta¨ckel separable form we have given in th
introduction. As an analogue of what we have been doing so far, we obtain these coordinate
an embedding in a higher-dimensional flat space. Indeed we can obtain suitable coordina
considering

xi
25

~u12ei !~u22ei !

P jÞ i~ei2ej !
, i51,...,5, ~4.2!

subject to the restrictions

(
i21

5

xi
250, (

i21

5

eixi
250, (

i21

5

ei
2xi

251. ~4.3!

We now ask the question: what form does a potential have to take in order that it be a S¨ckel
multiplier which is expressible as a rational function of thexi variables? If the Sta¨ckel multiplier
has the form~1.4!, and if it is a polynomial in thexis, then withu25e1 , say,v(u) can be written
in terms of the functions

R23455AP i52
5 ~u2ei !, Ri jk5A~u2ej !~u2ek!~u2ei !, i , j ,kÞ,

Rjk5A~u2ej !~u2ek!, j ,kÞ, Ri5Au2ei

as follows:
J. Math. Phys., Vol. 38, No. 5, May 1997
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v~u!5B2345~u!R23451 (
i , j ,kÞ

Bi jk~u!Ri jk1 (
i , jÞ

Bi j ~u!Ri j1(
i
Bi~u!Ri1B~u!, ~4.4!

where i , j , k can have the values 2, 3, 4, 5 and all theB functions are rational functions o
u. If we do this for all possible choices ofu25e3 ,e4 ,e5 , then this can only be consistent
v(u) is a polynomial function ofu. From the relations

u11u25E1@e1 ,e2 ,e3 ,e4 ,e5#S (
i51

5

ei
2xi

2D 2S (
i51

5

ei
3xi

2D ,
~4.5!

u1u25S (
i51

5

ei
4xi

2D 1E1@e1 ,e2 ,e3 ,e4 ,e5#S (
i51

5

ei
3xi

2D 2E2@e1 ,e2 ,e3 ,e4 ,e5#S (
i51

5

ei
2xi

2D
we can deduce the form of the corresponding potentials in terms of the coordinatesxi . A similar
argument can also be used to show that if the potential is a rational function of thexi , then the
corresponding functionv(u) must also be rational.

These results extend easily to the case of general coordinate systems of this type. Indee
consider a Riemannian space with infinitesimal distance

ds25 (
k51

n

@PmÞ i~um2ui !#/@P l51
p ~uk2el !#duk

2, ~4.6!

wherep.n11. A suitable choice of Cartesian coordinates is

xi
25~1/4!P j51

n ~uj2ei !/PkÞ i~ek2ei !, i ,k51,...,p. ~4.7!

The subspace spanned by these coordinates is given by the simultaneous equations

(
i51

p

ei
qxi

25dq,p2n21 , q51,...,p2n21. ~4.8!

The symmetric functionsSr@u1 ,..., un# are given by the formulas

Sr@u1 ,...,un#5~21!p2n(
s50

r

~21!sEr2s@e1 ,...,ep#(
k51

p

ek
p2n211sxi

2. ~4.9!

The surfaces thus defined are the intersection ofp2n21 quadrics. The result expounded for th
particular example given above holds in general for these spaces: If the functionv(u) in the
corresponding Sta¨ckel multiplier is a polynomial/rational inu, the Sta¨ckel multiplier is
polynomial/rational in the coordinatesxi .

As a corollary let us consider a Riemannian space with infinitesimal distance

ds25 (
k51

n

@PmÞk~um2uk!#@P j51
q ~uk2Ej !#/@P l51

p ~uk2el !# duk
2. ~4.10!

This system can be obtained from one of the previous type with infinitesimal distance

ds25 (
k51

n1q

@PmÞk~um2uk!#/@P l51
p ~uk2el !# duk

2, ~4.11!
J. Math. Phys., Vol. 38, No. 5, May 1997
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subject to the restrictionsun115E1 ,...,un1q5Eq . These can be interpreted as the extra c
straints

(
i51

n1p

xi
2/~Ej2ei !50, j51,...,q. ~4.12!

Just as before it is possible to make some of theei equal. The expressions for the infinitesim
distance, coordinates, and the generating function are essentially the same as given previo
systems of type@N1 ,...,NP#. The constraints now have the form

(
J51

P

(
k51

NJ

SNJ211kF S ]

]eJ
D NJ2k

eJ
qG5dq,p2n21 ~4.13!

for q51,...,p2n21.
The results of this section can be summarized as follows. For Sta¨ckel metrics of type

ds25 (
k51

n

@PmÞ i~um2ui !#/@P l51
P ~uk2el !

Nl# duk
2, ~4.14!

an embedding into flat space can be distinguished in two ways.
~1! If ( l51

P Nl5N>n, then the coordinates are given by

Sj11
J 5@1/~ j21!! #S ]

]eJ
D ~ j21!

@P i51
n ~ui2eJ!/PLÞJ~eL2eJ!#,

where j51,...,NJ , J51,...,P. The fundamental form defining these coordinates is

(
J51

P

(
j51

NJ

Sj11
J /~u2eJ!

NJ112 j5Pk51
n ~u2uk!/PJ52

P ~u2eJ!.

The coordinatesxi , i51,...,N, are subject to the constraints

(
J51

P

(
k51

NJ

SNJ211kF S ]

]eJ
D NJ2k

eJ
qG5dq,p2n21 .

~2! If ( l52
P Nl5N>n, then the coordinates are given by

Sj11
1 5„1/~ j21!! …S ]

]e D j21

@„P l51
n ~eul21!…/~eeJ21!NJ#ue50 , j51,...,N1 ,

Sj11
J 5@1/~ j21!! #S ]

]eJ
D ~ j21!

@P i51
n ~ui2eJ!/PLÞJ~eL2eJ!#, j51,...,NJ ,

whereN15n2N andx1
151. The fundamental form defining these coordinates is

„1~N121!! …S ]

]e D N121

@„P l51
n ~eul21!…/„~eu21!~eeJ21!NJ…#ue50

1 (
J52

P

(
j51

NJ

Sj11
J /~u2eJ!

NJ112 j5Pk51
n ~u2uk!/PJ52

P ~u2eJ!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In either case the fundamental formula determines the symmetric functionsSl@u1 ,...,un#.
Hence the possible Sta¨ckel multipliers that give rise to rational potentials in terms of the Cartes
coordinates can be determined.

Metrics of the form

ds25 (
k51

m

@PmÞk~um2uk!#@P j51
q ~uk2Ej !

M j #/@P l51
p ~uk2el !

Nl# duk
2

can be obtained from ~4.11! via the requirement thatu15E1 ,...,uM1
5E1 ,uM111

5E2 ,...,uM11M2
5E2 ,...,uM11...1Mq

5Eq . Making suitable redefinitions of the remaining var
ables we recover the metric given.

In all three cases we can adapt earlier proofs to establish that separable potentials wh
rational in the corresponding Cartesian coordinates are generated by the functionsv(u)5(u
2a)p, p50,61,62,... . What has been achieved here is a generalization of the resu
Wojciechowski,19,20who obtained families of separable potentials which corresponded to po
mial potentials on the sphere. Indeed these results provide a comprehensive generalizatio
we have necessary and sufficient conditions that separable potentials can be obtained wh
rational functions of ‘‘Cartesian coordinates.’’ These also include the rational family of poten
obtained by Wojciechowski.

V. FURTHER GENERALIZATIONS

It is possible to generalize further the results presented thus far. Indeed if we consider S¨ckel
metrics of the form

ds25~u12u2!F du1
2

~u12e1!~u12e2!~u12e3!
2

du2
2

~u22a1!~u22a2!~u22a3!
G , ~5.1!

the corresponding Hamilton–Jacobi and Schro¨dinger equations afford a separation of variab
and the general form of the potential compatible with separation is

V~u1 ,u2!5
v1~u1!2v2~u2!

u12u2
. ~5.2!

The question we now ask is how much the analogy between what we have already don
through for metrics like this one? We show that an analogue of the embedding into a suitab
space can be achieved. For the example given above, a suitable choice of Euclidean coord

z1l1,2k1
2 5A1l1,2k1

u1l1,2k1
2 5A1l12k1

~u12el1!~u22ak1!5A1l12k1
v1l1
2 w2k1

2 ,

z1l1
2 5A1l1

~u12el1!5A1l1
v1l1
2 , ~5.3!

z2k1
2 5A2k1

~u22ak1!5A2k1
w1k1
2 ,

wherel 1 ,k151,2,3, and a suitable choice of constants is
J. Math. Phys., Vol. 38, No. 5, May 1997
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A1l12k2
5
4

3 F el22el3
~el12el2!~el12el3!

1
ak22ak3

~ak12ak2!~ak12ak3!
G ,

A1l1
5
4el12

4
3~a11a21a3!

~el12el2!~el12el3!
, A2k2

5
4ak12

4
3~e11e21e3!

~ak12ak2!~ak12ak3!
,

wherel 1 ,l 2 ,l 3 andk1 ,k2 ,k3 are even permutations of 1,2,3.
There are relations between the various Cartesian coordinates thus produced. Indeed

v1l1
2 2v1l2

2 5el22el1, w1k1
2 2w1k2

2 5ak22ak1, ~5.4!

~ak42ak3!~u1l12k1
2 2u1l12k2

2 !1~ak12ak2!~u1l22k3
2 2u1l22k4

2 !1~ak12ak2!~ak42ak3!~el12el2!50,

for k1Þk2 ,k3Þk4 , andl 1Þ l 2 . Clearly, there are similar relations with thee anda interchanged.
For the example metric we are looking at, there are only six independent conditions o

quadratic type. There is also a degree of ambiguity in the choice of the constantsA1l12k1
, A1l1

, and
A2k1

. This is the result of the existence of the null forms

dv1
25du11,21

2 2du11,23
2 2du13,21

2 1du13,23
2 1~a12a3!~du11

2 2du31
2 !1~e12e3!~du21

2 2du23
2 !50,

dv2
25du11,22

2 2du11,23
2 2du13,22

2 1du13,23
2 1~a22a3!~du11

2 2du13
2 !1~e12e3!~du22

2 2du23
2 !50,

~5.5!

dv3
25du12,21

2 2du12,23
2 2du13,21

2 1du13,23
2 1~a12a3!~du12

2 2du13
2 !1~e22e3!~du21

2 2du23
2 !50,

dv4
25du12,22

2 2du12,23
2 2du13,22

2 1du13,23
2 1~a22a3!~du11

2 2du13
2 !1~e22e3!~du22

2 2du23
2 !50.

Can this example be generalized? The answer is yes. Consider

v i l
25~ui2Ail !, i51,...,N; l51,...,mi , ~5.6!

where we also takemi.N for all i . We define the symbols

Ui1l i1
,i2l i2

,...,i kl i k
5v i1l i1

2 v i2l i2
2 •••v i kl i k

2 , ~5.7!

wherei mÞ i n for mÞn andk51,...,N. We wish to find Cartesian coordinates such that

zi1l i1,i2l i2,...,i kl i k
2 5Ai1l i1

,i2l i2
,...,i kl i k

Ui1l i1
,i2l i2

,...,i kl i k
~5.8!

and

ds25 (
i j ,l i j

dzi1l i1,i2l i2,...,i kl i k
2 5(

i51

N
P jÞ i~ui2uj !

P l i51
ni ~ui2Ail 1

!
dui

2. ~5.9!

This is a metric in Sta¨ckel form which separates both Hamilton–Jacobi and Schro¨dinger equa-
tions. It is convenient to writeSjl j51/PmjÞ l j

(Ajl j
2Ajmj

) and alsoAj5( l j
Ajl j

. For these quan-
tities the following identities hold:
J. Math. Phys., Vol. 38, No. 5, May 1997
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(
l j

Sjl jAjl j
k 50, 0<k<nj . ~5.10!

In order to consider Cartesian coordinates of the form~5.8! so as to produce the metric, w
need to determine the the constantsAi1l i1

,i2l i2
,...,i kl i k

. These will be determined in such a way th

for fixed k the corresponding Cartesian coordinateszi1l i1,i2l i2,...,i kl i k
are orthogonal. Ifk5n, then

orthogonality is assured if we have

Ai1l i1
,i2l i2

,...,i Nl i N
5 (

k51

N

~N,kL!Sklk. ~5.11!

To see this we consider, for instance, the term indu1du2 . The corresponding contribution i
(1/4)„(k51

N (N,kL)Sklk…Pm53
N (um2Amlm

). Clearly, from the identities~5.10!, this type of term
summed on thel j gives zero. In general, the correct formula is

Ai1l i1
,i2l i2

,...,i kl i k
5(

s51

k

(
q50 p,s

N2k

L i k11 ,...,i N

s1 ,...,sq As1
•••Asq

~Ai j l i j
!n2k2qSisl i s

, ~5.12!

where p,sL i k11 ,...,i N

s1 ,...,sq is symmetric in the indicess1 ,...,sq and i k11 ,...,i N . Summation on the

indicess1 ,...,sq ,s1Þs2Þ•••Þsq and$s1 ,...,sq%,$ i k11 ,...,i N% is implied. It remains to find the
coefficients p,sL i k11 ,...,i N

s1 ,...,sq . Let us consider the coefficient ofdu1
2. We wish to construct the

coefficient to be P jÞ1(u12uj )/P l151
n1 (u12A1l1

). In particular we consider the term

(21)N21u2•••uN /P l1
(u12A1l1

). Typical contributing factors to the numerator a

((k51N,k
N LSklk)„Pm52

N (um2Amlm
)…. The coefficient of (21)N21u2•••uN /@P l1

(u12A1l1
)# is

( l1 ,l2 ,...,l NN,k
LS1l1 /(u12A1l1

)5n2•••nN /@P l1
(u12A1l1

)# from which it follows that N,1L
5(21)N21/(n2•••nN). Proceeding to the calculation of the coefficient ofu3•••uN /P l1

(u1
2A1l1

) we find the contribution of terms of the form~5.12! for k5N is2A2n3 ,...,nN(N,1L). The
other contributing term comes from

A1l13l3 ,...,NlN
U1l13l3 ,...,NlN

5 (
kÞ2

@~N21,kL!~Aklk!1~N21,kL2
2!A2#Sklk ~5.13!

and isN21,1L2
2. Therefore we haveN21,1L2

25N,1L. Proceeding in this way we can establish th

p,i1
L i p11 ,...,i N

i p11 ,...,i N5N,i1
L.

Repeating these arguments for the other coefficients we obtain the general formula

N2p,i p
L i p11 ,...,i N

5~21!N2p/Pk51
p21nik,

~5.14!

N2p2q,i p
L i p11 ,...,i N ,r1 ,...,r q

r1 ,...,r q 5N2p,i p
L i p11 ,...,i N

.

This completes the embedding of the coordinatesv i l i into a flat space of dimension

Pk51
N (nk11). The various relations among the coordinates are consequences of the re

v i l i
2 2v j l j

2 5Ajl j
2Ail i

. The choice of coordinates given above is unique modulo quadratic fo

which are null and diagonal. The set of all such forms is generated by coefficients given b
J. Math. Phys., Vol. 38, No. 5, May 1997
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Ai1l i1
,...,i kl i k

5~21!ck, Aisl i s
5P jÞs~ai j2bi j !e l i s

, ~5.15!

wherel i s5ais or bis ande i s51 if l i s5ais ande i s521 if l i s5bis. Further,ck5( j51
k e l i j

.

Separable potentials that are polynomials are constructed in the same way as previous
the symmetric functionsSl@u1 ,...,un#. In particular if we define

Tik5 (
l1 ,...,l ni k

e l1 ,...,l ni kAi kl1
•••Aikl nik

21
v i kl ni k
2 ~5.16!

and

Pik
5P l i k

.mik
~Aikl i k

2Aikmik
!,

then

P j51
k ui j5P j51

k
Ti j
Pi j

. ~5.17!

In the above formulae l1••• l q is the totally skew-symmetric tensor. From these formulas, exp
sions can be constructed for the symmetric functions in terms of quadratic functions of thexis. If
we look for potentials which are rational functions of thexis, then the restriction to symmetri
functions is no longer necessary. In fact all that is necessary is that the corresponding S¨ckel
multiplier be a rational function of the variablesui .

It is also possible to consider metrics for which some of the constantsAil i
are equal. As an

example, consider the coordinates defined by

v11,2l2
2 5

~u12e1!~u22al2!

~e12e3!
,

2v11,2l2
v12,2l2

5
2~u12e1!~u22al2!

~al32al2!~al32al2!
1

]

]e1

~u12e1!~u22al2!

~e12e3!
,

v13,2l2
2 5F 21

~e32e2!
2 1

21

~al32al2!~al32al2!
G ~u12e3!~u22al2!,

v11
2 5@4„e12~1/3!~a11a21a3!…~u12e1!/~e12e3!#, ~5.18!

2v11v125
]

]e1

4„e12
1
3~a11a21a3!…~u12e1!

~e12e3!
,

v13
2 5

4„e32
1
3~a11a21a3!…~u12e3!

~e12e3!
2 ,

v2l2
2 5

4„al22
1
3~2e11e3!…~u22al2!

~al32al2!~al32al2!
.

The corresponding infinitesimal distance is
J. Math. Phys., Vol. 38, No. 5, May 1997
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ds25 (
l251

3

~2dv11,2l2
dv12,2l2

1dv13,2l2
2 1dv2l2

2 !12dv11dv121dv13
2

5~u12u2!F du1
2

~u12e1!
2~u12e3!

2
du2

2

~u22a1!~u22a2!~u22a3!
G . ~5.19!

It is also possible to lift the restrictionmi.N. We illustrate this with the following example
If we choose coordinatesv i such that

v1
25~u22a3!

2, v1v252~u22a3!u1 ,

v3
25u22a3 , v3v45~u22a3!„2114~u22a3!…,

v5
25u12e2 , v5v65

~u12e2!~25u214e21a3!

e22e3
,

~5.20!

v7
25u12e3 , v7v85

~u12e3!~25u214e31a3!

e32e2
,

v9
252~u12e2!~u22a3!/~e32e2!, v10

2 52~u12e3!~u22a3!/~e22e3!, v11
2 5u2

2,

the corresponding infinitesimal distance is

ds25dv1dv21dv3dv41dv5dv61dv7dv81dv9
21dv10

2 1dv11
2

52~u12u2!F du1
2

~u12e1!~u12e3!
2

du2
2

u22a3
G .
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APPENDIX

Here we adopt the shortened notationSi5Si@u1 ,...,un# and work out a few specific example
of the properties that have been developed above. For the expressions for the Sta¨ckel multipliers
we have

SMn2151, SMn5S1 , SMn115S1
22S2 ,

~A1!

SMn125S1
322S1S21S3 , SMn135S1

423S1
2S212S1S31S2

22S4 .
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1. Elliptical coordinates in Euclidean n space

In this case the functionsSi are given by~1.8!. Consequently,

SMn5E1@e1 ,...,en#1 (
k51

n

xk
2,

SMn115S E1@e1 ,...,en#1 (
k51

n

xk
2D 22S E2@e1 ,...,en#1 (

k51

n

xk
2E1@e1 ,...,ek21 ,ek11 ,...,en# D ,

~A2!

SMn125S E1@e1 ,...,en#1 (
k51

n

xk
2D 322S E1@e1 ,...,en#1 (

k51

n

xk
2D

3S E2@e1 ,...,en#1 (
k51

n

xk
2E1@e1 ,...,ek21 ,ek11 ,...,en# D

1S E3@e1 ,...,en#1 (
k51

n

xk
2E2@e1 ,...,ek21 ,ek11 ,...,en# D .

2. Paraboloidal coordinates in En

In this case the functionsSi are given by~1.13!. Consequently,

SMn522x11E1@e2 ,...,en#,

SMn115~22x11E1@e2 ,...,en# !22S E2@e2 ,...,en#22x1E1@e2 ,...,en#2 (
k52

n

xk
2D , ~A3!

SMn125~22x11E1@e2 ,...,en# !322~22x11E1@e2 ,...,en# !S E2@e2 ,...,en#22x1E1@e2 ,...,en#

2 (
k52

n

xk
2D 1S E3@e2 ,...,en#22x1E2@e2 ,...,en#2 (

k52

n

E1@e2 ,...,ek21 ,ek11 ,...,en#xk
2D .

For then sphere the corresponding Sta¨ckel multipliers are given by

SMn5 (
k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2 ,

SMn115S (
k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D 22 (

k51

n11

E2@e1 ,...,ek21 ,ek11 ,...,en11#xk
2 ,

~A4!

SMn125S (
k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D 322S (

k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D

3S (
k51

n11

E2@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D 1S (

k51

n11

E3@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D .
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The basic building blocks for rational potentials in the generic elliptic coordinate system
obtained from the Sta¨ckel multipliers of the form~2.2! with v(u)5u2p wherep is a positive
integer. We list the first few such potentials. In terms of the functionsSi we have

SM215
1

Sn
, SM225

Sn21

Sn
2 , SM235

~Sn21
2 2SnSn22!

Sn
3 ,

~A5!

SM245
~Sn21

3 22SnSn21Sn221Sn23Sn
2!

Sn
4 .

For generic elliptical coordinates in Euclideann space these potentials have the form

SM215S En@e1 ,...,en#1 (
k51

n

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D 21

,

SM225
En21@e1 ,...,en#1(k51

n xk
2En22@e1 ,..,ek21 ,ek11 ,..,en#

~En@e1 ,...,en#1(k51
n xk

2En21@e1 ,...,ek21 ,ek11 ,..,en# !2
, ~A6!

SM235XS En21@e1 ,...,en#1 (
k51

n

xk
2En22@e1 ,...,ek21 ,ek11 ,...,en# D 2

2S En@e1 ,...,en#1 (
k51

n

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D

3S En22@e1 ,...,en#1 (
k51

n

xk
2En23@e1 ,...,ek21 ,ek11 ,...,en# D CY

S En@e1 ,...,en#1 (
k51

n

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D 3.

For paraboloidal coordinates in Euclideann space these potentials have the form
J. Math. Phys., Vol. 38, No. 5, May 1997
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SM2152S 2x1En21@e2 ,...,en#1 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D 21

,

SM225S En21@e1 ,...,en#22x1En22@e1 ,...,en#2 (
k52

n

xk
2En23@e2 ,...,ek21 ,ek11 ,...,en# D Y

S 22x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D 2, ~A7!

SM235XS En21@e1 ,...,en#22x1En22@e1 ,...,en#2 (
k52

n

xk
2En23@e2 ,...,ek21 ,ek11 ,...,en# D 2

2S 22x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D S En22@e1 ,...,en#

22x1En23@e1 ,...,en#2 (
k52

n

xk
2En24@e2 ,...,ek21 ,ek11 ,...,en# D CY

S 22x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D 3.

For the corresponding coordinates on then sphere

SM215S (
k51

n11

xk
2En@e1 ,...,ek21 ,ek11 ,...,en# D 21

,

SM225
(k51
n11xk

2En21@e1 ,...,ek21 ,ek11 ,...,en#

~(k51
n11xk

2En@e1 ,...,ek21 ,ek11 ,...,en# !2
, ~A8!

SM235XS (
k51

n11

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D 22 (

k51

n11

xk
2En@e1 ,...,ek21 ,ek11 ,...,en# D

3S (
k51

n11

xk
2En22@e1 ,...,ek21 ,ek11 ,...,en# D Y S (

k51

n11

xk
2En@e1 ,...,ek21 ,ek11 ,...,en# D 3.

As noted previously there are additional types of generic coordinate systems associate
the n-dimensional hyperboloid. We here list the expressions for the symmetric func
Si@e1 ,...,en# in terms of the corresponding coordinatesxk .

Case 1:

Si@u1 ,...,un#52Ei21@e3 ,...,en11#x1
21Ei@e1 ,e3 ,...,en11#2x1x2

1 (
k53

n11

Ei@e1~2!,e3 ,...,ek21 ,ek11 ,...,en11#

for coordinates of type$21...1%.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Case 2:

Si@u1 ,...,un#5Ei22@e4 ,...,en11#x1
22Ei21@e1 ,e3 ,...,en11#2x1x21Ei@e1~2!,e4 ,...,en11#

3~x2
212x1x3!1 (

k54

n11

Ei@e1~3!,e4 ,...,ek21 ,ek11 ,...,en11#

for coordinates of type$31...1%. These expressions could of course be substituted into the ex
sions for the Sta¨ckel multipliers given above. The relation of the coordinatesxk to the standard
coordinates on the hyperboloid can be deduced from the expressions 2x1x21(k53

n11xk
251 for the

case$21...1% and x2
212x1x31(k54

n11xk
251 for the $31...1%. Indeed, in case 1 choose coordinat

such thatx15(y12y2)/&, x25(y11y2)/&, xk5 iyk , k53,...,n11, and in case 2 choose co
ordinates such thatx15(y12y3)/&, x25 iy2 , x35(y11y3)/&, xk5 iyk , k53,...,n11. With
these coordinates we havey1

22(k52
n11yk

251. For n53 we give the expressions for the series
Stäckel multipliers.

(1) Coordinates of type$111%:

SM25~e21e3!x1
21~e21e1!x2

21~e21e1!x3
2,

SM35„~e21e3!x1
21~e21e1!x2

21~e21e1!x3
2
…

22~e2e3x1
21e2e1x2

21e2e1x3
2!,

SM215~e2e3x1
21e2e1x2

21e2e1x3
2!21,

SM225~e21e3!x1
21~e21e1!x2

21
~e21e1!x3

2

~e2e3x1
21e2e1x2

21e2e1x3
2!2

,

SM235„~e21e3!x1
21~e21e1!x2

21~e21e1!x3
2
…

22~e2e3x1
21e2e1x2

21e2e1x3
2!/

~e2e3x1
21e2e1x2

21e2e1x3
2!3.

(2) Coordinates of type$21%:

SM252x1
212~e11e3!x1x212e1x3

2,

SM35„2x1
212~e11e3!x1x212e1x3

2
…

22~2e1e3x1x22e3x1
21e1

2x3
2!,

SM215~2e1e3x1x22e3x1
21e1

2x3
2!21,

SM225
2x1

212~e11e3!x1x212e1x3
2

~2e1e3x1x22e3x1
21e1

2x3
2!2

,

SM235
„2x1

212~e11e3!x1x212e1x3
2
…

22~2e1e3x1x22e3x1
21e1

2x3
2!

~2e1e3x1x22e3x1
21e1

2x3
2!3

.

(3) Coordinates of type$3%:
J. Math. Phys., Vol. 38, No. 5, May 1997
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SM2522x1x212e1~x2
212x1x3!,

SM35„22x1x212e1~x2
212x1x3!…

22„e1
2~x2

212x1x3!1x1
222e1x1x2…,

SM215„e1
2~x2

212x1x3!1x1
222e1x1x2…

21,

SM225
22x1x212e1~x2

212x1x3!

„e1
2~x2

212x1x3!1x1
222e1x1x2…

2 ,

SM235„22x1x212e1~x2
212x1x3!…

22
e1
2~x2

212x1x3!1x1
222e1x1x2)

„e1
2~x2

212x1x3!1x1
222e1x1x2…

3 .

1C. Neumann, ‘‘De problemate quodan mechanico, quod ad priman integralium ultraellipticorum classen revoca
Reine Angew. Math56, 46–63~1859!.

2E. Jacobi,Vorlesungen u¨ber Dynamik~Supplement band, Berlin, 1884!.
3J. Moser, ‘‘Various aspects of integrable Hamiltonian systems,’’ inDynamical Systems~Birkhauser, Boston MA, 1980!.
4A. M. Perelomov,Integrable systems of classical mechanics and Lie algebras. Vol. 1~Birkhauser, Boston, MA, 1990!.
5E. G. Kalnins and W. Miller, Jr., ‘‘Separation of variables onn-dimensional Riemannian manifolds I. Then-sphere and
Euclideann-space,’’ J. Math. Phys.27, 1721–1736~1986!.

6E. G. Kalnins, ‘‘Separation of Variables for Riemannian Spaces of Constant Curvature,’’ inPitman Monographs and
Surveys in Pure and Applied Mathematics, No. 28~Longman Scientific and Technical, Essex, England, 1986!.

7C. P. Boyer, E. G. Kalnins, and W. Miller, Jr., ‘‘Sta¨ckel-equivalent integrable Hamiltonian systems,’’ SIAM J. Mat
Anal 17, 778–797~1986!.
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The source identification problem in electromagnetic
theory

N. Magnolia) and G. A. Viano
Dipartimento di Fisica—Universita` di Genova, Istituto Nazionale di Fisica Nucleare—sez.
di Genova, Via Dodecaneso, 33-16146 Genova, Italy

~Received 15 April 1996; accepted for publication 22 October 1996!

The problem of the identification of the electromagnetic source which produces an
assigned radiation pattern is ill-posed: the solution is, in general, not unique and it
does not depend continuously on the data. In this paper we treat in detail these two
aspects of the problem. First of all we reconsider the radiation problem in the very
general setting of the Sobolev spaces in order to make more acceptable, from a
physical viewpoint, the conditions which have to be imposed on the electromag-
netic sources. Then by the use of the Euclidean character of the Hilbert spaces we
decompose the sources into a radiating and a non radiating component. We deter-
mine the subspace of the radiating sources and we find the basis spanning this
subspace. Particular attention is then devoted to the case of the linear antenna. In
this case the solution of the problem is unique but it does not depend continuously
on the data. We may, however, implement the problem taking into account a bound
on the ohmic losses. This is sufficient to restore the continuity. Finally a method of
variational regularization~in the sense of Tikhonov! is discussed in detail.
© 1997 American Institute of Physics.@S0022-2488~97!01003-7#

I. INTRODUCTION

The source identification problem in electromagnetic theory can be formulated as follows
the ‘‘sources’’ which produce a prescribed ‘‘radiation pattern.’’ In general in this problem
uniqueness and continuity are missing. More precisely, we can exhibit nonradiating so
~which are responsible for the nonuniqueness in the identification problem!, and moreover, widely
different sources can produce almost the same radiation pattern; i.e., the solutions do not
continuously on the data.

The nonuniqueness in the source identification problem was discovered a long time a
several authors~see Ref. 1 and references therein! and in particular it has been deeply investigat
by Devaney and Wolf2,3 Bleinstein and Cohen,4 and Hoenders.5 The lack of continuity has been
put in evidence by Deschamps and Cabayan6 in the specific case of the antenna synthesis~see also
Ref. 7 and the papers quoted therein!.

Let us start with the uniqueness problem, considering first the scalar case. We shall pr
Sec. II that given a source densityr, which is supposed to belong to the Hilbert spaceL2(D)
~whereD̄ is a compact subdomain ofR3 containing the support ofr!, it can be uniquely decom
posed into a nonvisible component and a visible one. This unique decomposition can be ac
by the use of the Euclidean character of the Hilbert spaceL2: i.e., working with the concepts o
orthogonal projection and orthogonal complement. If we are able to find through this deco
sition a subspace of visible sources, and if we can determine a basis spanning this subspa
the uniqueness in the identification problem can be restored by a restriction to this subspace
we consider the more general vector problem the source is represented by a charge-curren
bution ~r,j !, wherej is a current density, and we will try to repeat the procedure worked out in
scalar case. Let us note, however, that the radiation problem, from which the radiation patte

a!Electronic mail: Magnoli@GENOVA.INFN.IT
0022-2488/97/38(5)/2366/23/$10.00
2366 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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be derived, is solved by the use of the inhomogeneous Helmholtz equation whose sourc
involves the derivatives of the charge-current distribution~r,j !. This is the reason why in Ref. 2r
and j are required to be continuous and continuously differentiable functions. As we have
before, we want to use the Euclidean properties of the Hilbert space, but the simple assu
that the function in question belongs toL2 does not imply the right conditions of continuity an
differentiability. We are thus forced to reformulate the radiation problem in the very ge
setting of the Sobolev spaces. This analysis will be performed in Sec. II where both the sca
the vector problems will be considered. The last subsection of Sec. II will be devoted t
antenna synthesis problem, which is a particular case of a source identification problem w
is assumed that the source has a specific geometry: in our case we limit ourselves to con
linear aperture.

Even if we are able to restore the uniqueness by a suitable restriction to a subsp
radiating sources, this does not at all imply a continuous dependence of the solution on th
uniqueness does not imply continuity. This last property depends on the topology of the so
and the data spaces. In several cases the continuity can be restored through a suitable mod
of the topology of the spaces in question. However, in other cases, the physics of the pr
poses rigid requirements on the topology of the functional spaces. Therefore we are obli
work with the methods of regularization in use in the so-called ill-posed problems. The reg
ization is usually achieved by restricting the space of solutions by appropriatea priori bounds.
This regularization procedure is now widely used in the inverse problems, where thea priori
bound can be posed if one assumes a certain degree of prior knowledge on the solutions~see Ref.
8!. At this point let us stress a remarkable difference between inverse and synthesis~or source
identification! problems. Whereas in the synthesis problem thea priori bounds on the solution ar
intrinsic to the problem itself, this is not the case for the inverse problems. In order to be
clear we consider two typical examples: the antenna synthesis on one side and the signal r
on the other. In the case of the antenna synthesis a bound on the ohmic losses, associated
current intensity, is necessary and it is therefore a natural constraint intrinsic to the proble
the other hand, in the signal recovery problem, and more generally in the inverse problem
must impose an assumption ‘‘ad hoc’’ on the class of admitted signals in order to write thea
priori bounds: regularization requires some prior knowledge of the solutions. As we shall s
Sec. III, the regularization method, in the case of the antenna synthesis, can be formulate
variational problem, by the use of natural constraints. Then in Sec. III several results w
derived for the case of the linear aperture working out the problem with the so-called linear p
spheroidal wave functions~PSW!. In conclusion the uniqueness problem is discussed in Sec
while Sec. III is devoted to the problem of continuity which is treated in detail in the case o
linear antenna which is regarded here as a typical example.

II. SOLUTION OF THE RADIATION PROBLEM: THE RADIATION PATTERN

A. Scalar case

To illustrate the essential features of the procedure we treat first the case of a scala
generated by a localized source distribution. Then let us start with the following inhomoge
Helmholtz equation:

D2u~x!1k2u~x!524pr~x!, ~1!

wherek is the wave number~k5v/c, v being the frequency andc the light velocity! andr is the
source density. The solution of Eq.~1! ~in the entire space! in the class of generalized function
that vanish at infinity is not unique. It is, indeed, easy to find nonzero solutions of the hom
neous Helmholtz equation which vanish at infinity. It is therefore necessary to add the Somm
radiation conditions, requiring that
J. Math. Phys., Vol. 38, No. 5, May 1997
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u~x!5O~ uxu21!, uxu→`, ~2!

]u~x!

]uxu
2 iku~x!5o~ uxu21!, uxu→` ~3!

~uxu5((k51
3 xk

2)1/2, x5(x1 ,x2 ,x3) being a three-dimensional real vector!.
The radiation problem consists precisely in finding a solution of Eq.~1! which also satisfies

the conditions~2! and ~3!. We have the following Proposition.
Proposition 1:For any finite generalized functionr ~i.e., suppr is bounded!:
~i! a solution of Eq.~1! exists in the spaceS8 of generalized functions of slow growth;
~ii ! any such solution is represented by the following convolution product:

u52E* r, ~4!

whereE~x! is the Green’s function associated with the Helmholtz equation given by

E~x!52
eikuxu

uxu
, ~5!

~iii ! the solution is unique in the class of generalized functions that satisfy the radia
conditions~2! and ~3!.

Proof: See Ref. 9, p. 393.
Hereafter we assume forr a much milder condition: we suppose thatr belongs toL2(D),

whereD̄ is a compact subdomain ofR3, containing the support ofr. We can prove the following
Proposition 2:If rPL2(D), D̄ being a compact subdomain ofR3, then
~i! the solution of the radiation problem exists, is unique, and can be written in the follow

form:

u~x!5E
D

eikux2yu

ux2yu
r~y!dy, ~6!

~ii ! uPC0(D)ùC`~R3\D̄!;
~iii ! the asymptotic behavior ofu~x! for large values ofuxu is given by

u~x!52E~x!g~s!1OS 1

uxu2D S s5 x

uxu D , ~7!

where

g~s!5E
D
e2 ik~s,y!r~y!dy, ~8!

and ~.,.! denotes the scalar product.
Proof: For what concerns the proofs of statements~i! and ~ii ! we proceed as follows. We

notice, first of all, thatr belongs toL2(D)ùL1(D); then, in view of the fact thatk is real, we have

Ueikux2yu

ux2yu U5 1

ux2yu
. ~9!
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Therefore, proceeding exactly as in the case of Newtonian potentials, we can prove th
integral at the right-hand side of Eq.~6! exists almost everywhere and constitutes a loca
integrable function inR3 ~see Ref. 9, p. 26!. Analogously we can prove that this integral, outsi
the regionD̄, is an infinitely differentiable function~all its derivatives being obtained by differ
entiating under the integral sign! and satisfies the homogeneous Helmholtz equation and
radiation condition~see Ref. 9, p. 26!. Now we give a rapid sketch of the proof thatuPC0(D). To
this purpose let us rewrite the rhs integral of formula~6! as follows:

E
UR

eikux2yu

ux2yu
r~y!dy5E

UR

@eikux2yu21#

ux2yu
r~y!dy1E

UR

1

ux2yu
r~y!dy, ~10!

whereUR is a ball of radiusR containing the domainD̄. The integral*UR
(@eikux2yu 2 1#/

ux 2 yu)r(y)dy is a continuous function. Concerning the second term at the right-hand si
formula ~10!, we write

E
UR

1

ux2yu
r~y!dy5E

Uh

1

ux2yu
r~y!dy1E

UR\Uh

1

ux2yu
r~y!dy, ~11!

whereUh is the ball of radiush and centerx. Now we apply the Schwarz inequality to the fir
integral of Eq.~11! and we obtain

E
ux2yu<h

1

ux2yu
r~y!dy<S E

ux2yu<h
ur~y!u2dyD 1/2S E

ux2yu<h

1

ux2yu2
dyD 1/2<eiriL2~D ! ,

~12!

where the last inequality holds true ifh is sufficiently small. Furthermore, the second integral
the right-hand side of Eq.~11! is a continuous function inx. Therefore the lhs of that equatio
belongs toC0(D). Nevertheless, we cannot claim thatu satisfies the Helmholtz equation insid
the domainD. Concerning this point we have the results of theorem 3.2 of Ref. 10 w
guarantee that the integral at the rhs of Eq.~6! belongs to the Sobolev spaceH loc

2 and satisfies the
inhomogeneous Helmholtz equation providedrPL1(D)ùL2(D), which is precisely the condition
that we have assumed. For what concerns the statement~iii ! we have the following inequalities
~see Ref. 10!

Uu~x!2
eikuxu

uxu E
D
e2 ik~s,y!r~y!dyU< 1

uxu ED
ur~y!u
ux2yu

u@ uxueikux2yu2 ik„uxu2~s,y!…2ux2yu#udy

<
1

uxu ED
ur~y!u
ux2yu ~3uyu12kuyu2!dy. ~13!

For the last inequality see formula 3.60 of Ref. 10. Next, recalling that we denote byR the radius
of the ballUR , containing the domainD̄, we have foruxu.R

1

uxu ED
ur~y!u
ux2yu ~3uyu12kuyu2!dy<

1

uxu ED
ur~y!u
uxu2R

~3uyu12kuyu2!dy

<
1

uxu~ uxu2R!
~3R12kR2!E

D
ur~y!udy

<
const

uxu~ uxu2R!
5OS 1

uxu2D . ~14!

h
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Hereafter we callg~s! the radiation pattern. It is the restriction to the surface of a spher
radiusk5v/c of the Fourier transform of the source density. Therefore the source identificati
the scalar case can be formulated as follows.

Problem:Given the radiation patterng~s!, determine the source densityr~y!.
In general in this problem both uniqueness and continuity are missing. The nonuniqu

derives from the fact that the radiation pattern identically zero does not necessarily impl
r~y!50. Now let us denote byL the following operator that transforms a functionrPL2(D) into
a function on the unit sphereS2,R3;

g~s!5~Lr!~s!5E
D
e2 ik~s,y!r~y!dy. ~15!

L is an operator acting as followsL:L2(D)→L2(S2). We can now construct the adjointL* of L;
i.e., L* :L2(S2)→L2(D). It is given by

~L* g!~x!5E
S2
eik~x,s8!g~s8!ds8, ~16!

whereds8 is the Lebesque measure on the sphere. It is easy to verify that

~Lr,g!L2~S2!5~r,L* g!L2~D ! . ~17!

Now if we denote byR(L) andN(L) the range and the null space, respectively, of the operatoL,
we then have

R~L !5N~L* !', R~L* !5N~L !', ~18!

whereR(L) is the closure ofR(L) ~see also Ref. 11!. These relations imply that the spac
L2(D)[X can be decomposed as follows:

X5N~L ! %R~L* !. ~19!

Therefore given a source densityrPL2(D), this function can be uniquely decomposed into
component belonging toN(L) ~the invisible component! and a component orthogonal to it~the
visible one!. Using the second of the relations~18!, the component which contributes to th
radiation pattern can be characterized by investigating the range of the operatorL* ~see Ref. 11!.
Now let us recall that the spherical harmonicsYl

m~s! form an orthonormal basis forL2(S2); then
by applying the operatorL* to Yl

m(s), we obtain

~L*Yl
m!~x!5E

S2
eik~x,s8!Yl

m~s8!ds8. ~20!

Next, expanding the plane wave in spherical harmonics, we get

eik~x,s8!54p(
l50

`

(
m52 l

l

i l j l~kuxu!Yl
m~s!Yl

m~s8!* , ~21!

where the functionsj l~kuxu! are the spherical Bessel functions. Substituting the expansion~21! into
the integral~20! and integrating on the sphereS2, we obtain

~L*Yl
m!~x!54p i l j l~kuxu!Yl

m~s!. ~22!

Next we denote byul
m the following functions:
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ul
m~x!5

4p

cl
i l j l~kuxu!Yl

m~s!, ~23!

where the termscl denote the normalization constants given by

cl54pS E
0

R

r 2 j l
2~kr !dr D 1/2 ~r5uxu!. ~24!

Then we have

Lul
m5clYl

m , ~25a!

L*Yl
m5clul

m . ~25b!

Therefore the subspace of visible sources is the closed subspace spanned by the functionsul
m ~see

also Ref. 11!. In conclusion, the uniqueness in the source identification problem can be res
through a restriction to this subspace; nevertheless the continuity is still lacking, as we c
with the following heuristic considerations. Let us expand the source densityr and the radiation
patterng~s! as follows:

r5(
l50

`

(
m52 l

l

r lmul
m , ~26!

g5(
l50

`

(
m52 l

l

glmYl
m . ~27!

Next we apply the operatorL to r, obtaining

Lr5(
l50

`

(
m52 l

l

r lmLul
m5(

l50

`

(
m52 l

l

r lmclYl
m . ~28!

Then equatingLr to g we have

r lm5
glm
cl

. ~29!

However, the termscl tend to zero asl→`, and then a small perturbation of the coefficientsglm
of the radiation pattern is sufficient to produce great numerical instabilities in the coefficientsrlm .
This lack of continuity can also be seen as follows: recall that the Fourier transform of a fun
of compact support is an analytic function, thenR(L),L2(S2). Therefore any small perturbatio
of the radiation pattern is sufficient to pushg~s! outside the range ofL, and accordingly any
uncertainty in the radiation pattern is sufficient to produce numerical instabilities in the s
identification. The question will be treated in detail in the next section in the specific case
linear antenna.

B. Vector case

Let us consider a real, monochromatic electromagnetic field~see Ref. 3!,

E~x,t !5Re~E~x!e2 ivt
…, ~30!

H~x,t !5Re„H~x!e2 ivt
…, ~31!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s can

om

Let us
rom

wing

es

at each

of
r of

2372 N. Magnoli and G. A. Viano: Identification problem in electromagnetic theory

¬¬¬¬¬¬¬¬¬¬
generated by the following distribution of charge and current,

r~x,t !5Re„r~x!e2 ivt
…, ~32!

j ~x,t !5Re„j ~x!e2 ivt
…, ~33!

in the infinite free space. From the Maxwell equations the following Helmholtz-type equation
be formally derived; using the Gaussian system of units, they can be written

~D21k2!E524p@ i ~k/c!j2“r#, ~34!

~D21k2!H524p~1/c!~“3j !. ~35!

@Hereafter we use the nabla symbol for the grad operator~i.e., “r! and the curl operator~i.e.,
“3j !, whereas we prefer to remain with the symbolD2, instead of¹

2, for the Laplace operator.#
In order to guarantee the uniqueness of the solution we must add to the equations~34! and~35! the
Sommerfeld radiation conditions. This amounts to choosing for the fieldsH andE those particular
solutions of Eqs.~34! and~35! that behave at infinity as outgoing spherical waves. It is clear fr
Eqs. ~34! and ~35! that each Cartesian component of the electromagnetic field vectorsE andH
satisfies the inhomogeneous Helmholtz equations of the form~1!. Consequently we shall try to
apply the results established for the scalar case to each of the Cartesian components.
assume, therefore, thatr andj are finite generalized functions. Then we can formally express f
the continuity equation“–j2ivr50, the densityr in terms ofj , r5~1/iv!“–j . Substituting this
expression in Eq.~34! we obtain

~D21k2!E524p i
v

c2 S j1 c2

v2 “~“–j ! D524p jT , ~36!

which can be split into three scalar equations, each one analogous to Eq.~1!.
The extension of Proposition 1 to the present case is legitimate in view of the follo

properties:

~i! Any generalized functionf is infinitely differentiable and the result of differentiation do
not depend on the order of differentiation; moreover suppDa f,suppf , Da denoting the
differentiation of ordera.

~ii ! If g belongs toS8 and f is a finite generalized function, theng* f belongs toS8.
~iii ! The spherical wave may be identified with a distribution inS8.

Then we may writeE~x! as a convolution product of the following type:

E52E* jT . ~37!

Now in order to obtain results analogous to those stated in Proposition 2, we suppose th
component ofj belongs to the Sobolev spaceH2(D), whereD̄ is a compact subdomain ofR3

containing the support ofj . From this assumption it follows that each component ofj , as well as
their derivatives up to the second order, belong toL2(D). Then proceeding exactly as in the pro
of Proposition 2@statement~iii !# we obtain the following expression for the asymptotic behavio
the electric fieldE for large values ofuxu:

E~x!5
ik

c

eikuxu

uxu
g~s!1OS 1

uxu2D S k5
v

c D , ~38!

where the radiation patterng~s! is given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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g~s!5E
D
e2 ik~s,y!S j1 c2

v2 “~“–j ! Ddy S s5 x

uxu D . ~39!

Therefore the source identification problem in the vector case can now be formulated as fo
Problem:Given the radiation patterng~s!, determine the source distributionj ~y!.
We are now, once again, involved with the fact that both uniqueness and continuit

missing in this problem of source identification.
In order to identify the nonradiating sources, we split the current density into two terms

longitudinal or irrotational componentjL and the transversal or solenoidal componentjT ~see Ref.
2!; i.e.,

j5 jL1 jT, “3jL50, “–jT50. ~40!

Accordingly the radiation patterng~s! can be split into two terms~longitudinal and transversal! as
follows:

g~s!5gL~s!1gT~s!. ~41!

Then we can prove the following Proposition:
Proposition 3:The longitudinal current densityjL is nonradiating; i.e.,

gL~s!50. ~42!

Proof:We can formally derivejL from j , obtaining~see Ref. 12!

jL~y!52
1

4p
“E

D

“8–j

uy2y8u
dy8, ~43!

where the apex in the nabla symbol denotes the differentiation with respect to the compon
y8. SincejPH2(D), then the distributional derivatives ofj exist and are square integrable overD.
Furthermore, since the support of the current density is compact and contained inD̄, then“8–j is
a locally integrable function, and the rhs integral in Eq.~43!, which is a convolution produc
analogous to the Newtonian potential, is a generalized function of slow growth~i.e., belonging to
S8!. In view of the fact that iffPS8, then each derivativeDa f still belongs toS8, we can conclude
that jL belongs toS8. Next, by using the properties of the Fourier transform operator applie
generalized functions inS8, we obtain the following results:

~i!From the general expression of the radiation pattern@formula ~39!# we have

gL~s!5E
R3

S jL1
c2

v2 @“~“–jL!# De2 i ~v/c!~s,y! dy5 ĵL~s!2s„s• ĵL~s!…, ~44!

where

ĵL~s!5E
R3
jL~y!e2 ik~s,y! dy. ~45!

~ii ! From the equality characterizing the longitudinal current-density~“3jL50!, we have

s3ĵL~s!50. ~46!
From Eq.~46! we derive

s3~s3ĵL~s!…5s„s–ĵL~s!!2 ĵL~s!50, ~47!

and finally the equality~42! follows from formulas~44! and ~47!. h
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In view of the equality“–jT50, the radiation pattern associated to the transversal compo
is given by

gT~s!5E
R3
jT~y!e2 ik~s,y! dy, ~48!

and nonzero sourcesjT can nevertheless produce agT equal to zero. We are again in a situatio
similar to that illustrated in Sec. II A; therefore in analogy with the scalar case we want no
determine the basis for the visible sources. To this purpose, recalling formula~39!, taking into
account the result of Proposition 3, and introducing the operatorL:L2(D)→L2(S2), we write

gT~s!1gL~s!5gT~s!5g~s!5LF j1 c2

v2 “~“–j !G5E
D
e2 ik~s,y!F j1 c2

v2 “~“–j !Gdy. ~49!

Recall that since each component ofj belongs toH2(D), then there exist distributiona
derivatives ofj up to the second order, and they still belong toL2(D). Therefore in order to
determine the basis for visible sources, we must investigate the range of the adjoint ofL: i.e., the
operatorL* . Now a basis for a vector-valued function onS2 is given by the vector spherica
harmonics: i.e.,Y l ,m

M , Y l ,m
E , Y l ,m

L , where the indicesM , E, andL denote the magnetic, electric an
longitudinal components, respectively. Let us now observe that formula~49! can be rewritten as
follows:

g~s!5 ĵ2s~s–ĵ !, ~50!

where

ĵ ~s!5E
D
e2 ik~s,y!j ~y!dy, ~51!

and therefore we get

s–g~s!50, ~52!

which represents again the transversality condition~which has already been obtained as a con
quence of Proposition 3! and which will be used below. We can then prove the following Pro
sition.

Proposition 4:The basis for the visible current densities is given by

1

cl
~1! j l~kuxu!Y l ,m

M ;
1

cl
~2!

1

uxu F d

duxu
„uxu j l~kuxu!…Y l ,m

E 1Al ~ l11! j l~kuxu!Y l ,m
L G , ~53!

where j l denote the spherical Bessel functions, andcl
(1) ,cl

(2) are normalization constants.
Proof: In view of the transversality condition@formula ~52!#, the functionsg~s!PL2(S2) of

interest to us can be expanded in terms ofY l ,m
E andY l ,m

M ; therefore we must evaluateL*Y l ,m
E and

L*Y l ,m
M . Let us start with the following integral:

~L*Y l ,m
M !~x!5E

S2
ei ~v/c!~s8,x!Y l ,m

M ~s8!ds8. ~54!

Now the spherical components of the spherical vectors can be expressed, by the use of 3j sym-
bols, in terms of spherical functions.13 Therefore for the integral~54! we can proceed exactly as i
the scalar case: after developing the plane wave in terms of spherical harmonics, we finally
J. Math. Phys., Vol. 38, No. 5, May 1997
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~L*Y l ,m
M !~x!54p i l j l~kuxu!Y l ,m

M ~s!. ~55!

Next we evaluate

~L*Y l ,m
E !~x!5E

S2
ei ~v/c!~s8,x!Y l ,m

E ~s8!ds8. ~56!

It is convenient to use the following relationship,13

Y l ,m
E ~s8!52s83Y l ,m

M ~s8!, ~57!

and therefore we obtain

L*Y l ,m
E ~x!52E

S2
ei ~v/c!~s8,x!

„s83Y l ,m
M ~s8!…ds8. ~58!

Formula~58! can be rewritten as follows:

~L*Y l ,m
E !~x!5 i /kF“3E

S2
ei ~v/c!~s8,x!Y l ,m

M ~s8!ds8G5~4p i l11/k!“3@ j l~kuxu!Y l ,m
M ~s!#. ~59!

Finally, an explicit calculation gives

“3@ j l~kuxu!Y l ,m
M ~s8!#52

1

uxu S d

duxu
„uxu j l~kuxu!…Y l ,m

E ~s!1Al ~ l11! j l~kuxu!Y l ,m
L ~s! D . ~60!

h

C. Antenna synthesis

The antenna synthesis problem can be viewed as a source identification in which th
metrical size and form of the source are prescribed and specified. The simplest geometric
of the antenna is a linear aperture; in such a case the current density can be formally writ
the use of thed distribution, as follows:

j ~y!5d~y1!d~y2!I ~y3!e3 , ~61!

wherey5(y1 ,y2 ,y3),ei form a Cartesian basis inR3 andI (y3) denotes the current intensity. Her
we suppose thatI (y3) has a compact support contained in the interval@21, 1# and furthermore we
assume thatI belongs to the Sobolev spaceH0

2~21,1!. In view of the extended form of Propositio
1, proved in the vector case, we can write the solution of Eq.~36! @where nowj has the form~61!#
as a convolution product@see formula~37!#:

E52E* jT . ~62!

We can then prove the following Proposition.
Proposition 5: If the current density has the form~61!, then the radiation pattern reads

follows:

g~s!5E
21

1

e2 iky3~s,e3!I ~y3!dy3 S s5 x

uxu D . ~63!

Proof: First of all let us split the expression~62! into two termsE~1! andE~2! whose sum
equals2i (c2/v)E:
J. Math. Phys., Vol. 38, No. 5, May 1997
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E~1!52E* j , ~64!

E~2!52
c2

v2 E* @“~“–j !#. ~65!

For what concerns the asymptotic behavior ofE~1!, we must evaluate the integral~64! for large
values ofuxu, and therefore forxÞy. Then we can first perform the integration with respect to
variablesy1 andy2 by the use ofd distribution, taking into account that the Green’s function
continuous forxÞy. We remain with the following integral:

E~1!~x!5E
21

1 eikux2y3e3u

ux2y3e3u
I ~y3!e3 dy3 . ~66!

Next, applying to this integral the argument used in Proposition 2@statement~iii !# in order to get
the asymptotic behavior, we obtain

E~1!~x!.
eikuxu

uxu E
21

1

e2 iky3~s,e3!I ~y3!e3 dy3 . ~67!

We consider now the integral~65! and we formally write

“~“–j !5d8~y1!d~y2!I 8~y3!e11d~y1!d8~y2!I 8~y3!e21d~y1!d~y2!I 9~y3!e3 ~68!

~where the apex denotes the derivatives!. Substituting the expression~68! into the integral~65! and
integrating by parts, we get forxÞy

E~2!~x!5
c2

v2 E
2`

`

dy1E
2`

`

dy2E
21

1

dy3@]1]3E~x2y!e11]2]3E~x2y!e2

1]3
2
E~x2y!e3#I ~y3!d~y1!d~y2!, ~69!

where we denote by]i ~i51,2,3! the partial derivatives of the Green’s functionE~x2y! @see
formula ~5!# with respect to the componentsyi of y. In performing these derivatives, we consid
two types of terms:

~i! the derivatives acting on 1/ux2yu which give rise to terms that tend to zero as 1/uxu2 and will
be neglected hereafter.

~ii ! The derivatives acting on the exponential; from these latter we get

E~2!~x!.E
21

1 eikux2y3e3u

ux2y3e3u
S x1~y32x3!

ux2y3e3u2
e11

x2~y32x3!

ux2y3e3u2
e22

~y32x3!
2

ux2y3e3u2
e3D I ~y3!dy3 ,

uxu¹@21, 1#. ~70!

In conclusion we obtain for large values ofuxu

E~2!~x!.2
eikuxu

uxu S x1x3uxu2
e11

x3x2
uxu2

e21
x3
2

uxu2
e3D E

21

1

e2 iky3~s,e3!I ~y3!dy3 . ~71!

Observing that

~x1e11x2e21x3e3!

uxu2
x35s~s,e3!, ~72!
J. Math. Phys., Vol. 38, No. 5, May 1997
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we have for large values ofuxu

~E~1!1E~2!!~x!.
eikuxu

uxu
„e32s~s,e3!…g~s!, ~73!

where

g~s!5E
21

1

e2 iky3~s,e3!I ~y3!dy3 . ~74!

h

Remark:Strictly speaking the radiation pattern is given by the product„e32s~s,e3!…g~s!, since
the first factor of this product is also angular dependent. However, in view of the fact tha
antenna synthesis problem is essentially the inversion of Eq.~74!, we will call ‘‘radiation pattern’’
~with a small abuse of language! the termg~s! alone.

We are then led to the antenna synthesis problem.
Problem:Given the radiation patterng, determine the current intensityI .
This problem has a unique solution. In factg @in formula ~74!# can be regarded as the Fouri

transform of a function of compact support. Then it is analytic. Therefore ifg is zero in the
interval @2k, k#, it is then identically zero and accordinglyI is zero almost everywhere. In fact i
the theory of Fourier transform, if a functionfPL1~2`,`! is such that its Fourier transform i
identically zero, thenf equals zero almost everywhere. Let us note that this argument can al
applied when the three-dimensional localized source has spherical symmetry; indeed, in
case, the radiation pattern is an entire exponential function of a single variable~see also Ref. 14!.

However, the antenna synthesis problem is ill posed and the solution does not depen
tinuously on the data. The continuity can be restored by the use of a regularization metho
way which shall be illustrated in the next section. In that section a relevant role will be playe
the so-called ‘‘prolate-spheroidal functions’’~PSW!, which can be conveniently derived here
eigenfunctions of an integral operator, that can be obtained as follows. Let us rewrite formul~74!
introducing the operatorL:L2[21, 1]→L2(S2); i.e.,

g~s!5LI5E
21

1

e2 iky cosuI ~y!dy, ~75!

where cosu5~s,e3!, and we writey instead ofy3. Next we look for the adjointL* of the operator
L, acting as follows,L* :L2(S2)→L2[21, 1]. We get

~L* g!~x!52pE
0

p

eikx cosug~cosu!sin u du54pE
21

1 sin k~x2y!

k~x2y!
I ~y!dy. ~76!

It is, indeed, easy to check that

~LI ,g!L2~S2!5~ I ,L* g!L2@21, 1# . ~77!

Finally we obtain

~AI !~x!5k/~4p2!~L* LI !5E
21

1 sin k~x2y!

p~x2y!
I ~y!dy. ~78!

We are thus led to the integral operatorA, whose kernelK(x,y) is given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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K~x,y!5
sin k~x2y!

p~x2y!
. ~79!

We have the following Proposition.
Proposition 6:The operatorA:L2[21, 1]→L2[21, 1]
~i! is compact and self-adjoint;
~ii ! admits a countably infinite set of eigenfunctions$cn(y)%0

` ~called ‘‘Prolate spheroida
functions,’’ see Refs. 15 and 16! and accordingly a countably infinite set of eigenvalues$ln%0

` such
that

Acn5lncn ~n50,1,2,...!, ~80!

~iii ! its eigenvaluesln tend to zero asn→`.
Proof: The kernelK(x,y) satisfies the following properties:

~a! K~x,y!5K~y,x! ~81!

~b! E
21

1 S E
21

1 Usin k~x2y!

p~x2y!
U2dxD dy,`. ~82!

Therefore the integral operatorA is self-adjoint and compact. Then the statements~ii ! and ~iii !
follow from the Hilbert–Schmidt theorem. h

III. THE REGULARIZATION OF THE ANTENNA SYNTHESIS PROBLEM

A. Formulation of the problem

We consider the antenna synthesis, illustrated in the last section, as a typical example
ill-posed problem in the source identification. In the present section we discuss in detail a
tional regularization of the antenna synthesis problem. With this in mind we rewrite the
formula obtained in the last subsection, namely formula~75!, as follows:

~F f !~w!5
1

A2p
E

21

1

e2 iwyf ~y!dy5ĝ~w!, ~83!

whereF denotes the Fourier integral operator. Formula~83! coincides with formula~75!, if we
putw5k cosu, andf (y) 5 A2pI (y). From the Paley–Wiener theorem it follows thatĝ(w) is an
entire transcendental function of exponential type. Moreover, by the use of the Schwarz ineq
we can easily prove that the restriction ofĝ(w) to the real axis belongs toL`~R!, if fPL2@21, 1#.
Indeed we can write

u~F f !~w!u<
1

A2p
S E

21

1

u f ~y!u2dyD 1/2S E
21

1

e2vydyD 1/2, ~84!

denoting byv the imaginary part ofw ~i.e.,w5u1 iv!. Therefore the restriction of~F f !(w) to
the real axis is bounded as follows:

u~F f !~u!u<
1

Ap
S E

21

11

u f ~y!u2dyD 1/2,`. ~85!

Moreover, in view of the Riemann–Lebesgue theorem,~F f !(u) tends to zero asu→`. We can
then say that the operatorF is acting as followsF :L2[21, 1]→L2(2`,1`)ùL`~R!. This
J. Math. Phys., Vol. 38, No. 5, May 1997
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remark is relevant because two different types of data sets can be assigned. Indeed the funĝ
may be supposed to be known~within a certain degree of approximation!:

~a! on the interval@21, 1# ~more generally on a compact subdomain ofR!;
~b! on the real lineR.

The data set~a! corresponds exactly to the region containing the support of the radiation pa
if we put k51, and accordinglywP@21, 1#. In the present section we focus our attention on
data set~a!, because this is the region where the radiation pattern is indeed observable; in th
the problem is ill posed in the topology ofL2@21, 1#. At the end of this section the data set~b! will
be briefly considered and we will show that the lack of continuity depends on the topology o
functional space considered: the continuity is preserved in theL2-topology, while it is missing in
the topology of the uniform norm.

Now let us denote byR the restriction operator defined as follows:Rĝ5ĝu[21, 1]. Accord-
ingly we shall introduce the operatorT as follows:

T f5R~F f !5
1

A2p
E

21

1

e2 iuyf ~y!dy ~ uuu<1!. ~86!

Next we denote byT* the adjoint ofT; we have

~T* ĝ! u@21, 1#5
1

A2p
E

21

1

eiuxĝ~u!du ~ uxu<1!. ~87!

Finally we obtain

T*T f5E
21

1 sin~x2y!

p~x2y!
f ~y!dy5~T* ĝ! u@21, 1# , ~88!

and this operator coincides, up to normalization constants, with the operatorA considered in
Proposition 6, where we have putk51.

As we have explained in the Introduction, we take now into account two constraints: o
the data~related to the sensitivity of the apparatus! and a second one on the solution, namely
bound on the ohmic losses. Therefore the antenna synthesis can be formulated as a va
problem; i.e., to find the minimum of a functional which can be derived from the follow
bounds:

iT f2ĝ~e!iY<e, ~89a!

iBfiZ<E, ~89b!

whereY[L2[21, 1] is the data space, whileZ is the constraint space. The functionĝ~e!, the space
Z, and the constraint operatorB will be specified in the next subsection.

B. Variational regularization

Combining quadratically the bounds~89a! and ~89b! the following functional is derived:

F~ f !5iT f2ĝ~e!iY
21~e/E!2iBfiZ

2. ~90!

The bounds above@and accordingly the functional~90!# require some comments. Let us start
illustrate the bound~89a!. We denote byĝu@21, 1#

~e! the function which is actually assigned, and
does represent an approximation~within a perturbative noise of ordere! of the radiation pattern.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Let us note that iff is supposed to be a real-valued function~and we make this assumption in vie
of the fact thatf represents a current intensity!, then (T* ĝ) u@21, 1# is real@see formula~88!#. Now
we assume a model of noise such that~T* ĝ~e!!u@21, 1# still remains a real-valued function, like th
unperturbed term (T* ĝ) u@21, 1#. ThenY is the data space, which is here simplyL2@21, 1#. Since the
data function belongs toY[L2[21, 1], the symbol of restriction to the interval@21, 1# ~in the
notation of the data function! is superfluous and it will be omitted hereafter. Let us note thae
acquires a precise meaning through the following inequality:i ĝ 2 ĝ(e)iL2@21, 1# < e. Finally we can
take as solution spaceX the spaceL2@21, 1#, and then the operatorT acts as follows:
T:L2[21,1]→L2[21,1].

For what concerns the constraint operatorB, we introduce the following differential operato

~B*Bf !~y!52@~12y2! f 8~y!#81k2y2f ~y! ~ uyu<1!. ~91!

Then we have the following proposition:
Proposition 7:The differential operatorB*B
~i! admits a countably infinite set of eigenfunctions$cn(y)%0

` and accordingly a countabl
infinity of eigenvalues$xn%0

` such that

B*Bcn~y!5xncn~y!. ~92!

~ii ! The functions$cn(y)%0
` , called ‘‘prolate spheroidal functions,’’ coincide with the eige

functions of the integral operatorA ~see Proposition 6!.
~iii ! The eigenvaluesxn can be ordered as follows: 0,x0,x1... . Their asymptotic behavior

whenn→`, is given by

xn5n~n11!11/2k21OS 1n2D . ~93!

~iv! The functionscn(k,y) can be uniquely extended to entire analytic functions normali
as follows:

E
2`

`

ucn~k,y!u2dy51 ~n50,1,2,...!. ~94!

They form a basis in the space of band-limited functions square-integrable onR.
~v! The functionsun(y) 5 (1/Aln)cn(k,y) ~ln are the eigenvalues of the integral operatorA,

see Proposition 6! form a basis inL2@21, 1#. From this latter property and the proper
~iv! it follows that the prolate spheroidal functions are bi-orthogonal.

Proof: See Refs. 15 and 16.
Remark:Hereafter we keepk51 in formulas~91!–~94!.
Suppose, now, thatf belongs to the domain of the operatorB*B; then the constraint spaceZ

is the space of functionsf , belonging to the domain of the operatorB*B and whose norm defined
as follows:

iu f ui2[iBfiZ
25~B*Bf , f !L25 (

n50

`

xnu f nu2 ~ f n5~ f ,un!L2@21,1#! ~95!

is finite.
Now let us denote byK the set of functions satisfying the bounds~89a! and ~89b!; it is

bounded. Moreover the setK is not allowed to be empty, and this property depends on the va
of the numberse andE: a couple$e,E% is said to be permissible if there exists at least one func
f which satisfies the bounds~89a! and~89b!. The requirement that the couple$e,E% be permissible
J. Math. Phys., Vol. 38, No. 5, May 1997
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implies a compatibility between the sensitivity of the apparatus and the admitted ohmic l
Finally, in order to find a more symmetric geometry than that of the setK , we introduce two sets
K 0 andK 1 sandwichingK . The setK 0 of functions f satisfying the conditionF( f )<e2 is
contained inK , while the setK 1 of the functions such thatF( f )<2e2 containsK . The setsK 0
andK 1 are infinite-dimensional ‘‘ellipsoids’’ whose geometrical properties are related to
eigenvectors of the following operator~see also Ref. 17!:

C5T*T1S e

ED 2B*B ~e.0,E.0! ~96!

defined on the domain of the operatorB*B. We can now prove the following Proposition.
Proposition 8:The operatorC has the following properties:

~i! it is a definite positive self-adjoint operator;
~ii ! it has a continuous inverse.

Proof: Let us note that in view of Propositions 6 and 7 the operatorC has a complete
orthonormal set of eigenfunctions and accordingly a countable infinity of eigenvalues given

Cun5S ln1S e

ED 2xnDun[gnun ~e,E.0!~n50,1,2,...!, ~97!

whereun 5 cn /Aln ~cn being the prolate spheroidal functions! andln andxn are the eigenvalues
introduced in Proposition 6 and 7, respectively. Let us observe thatgn are all positive. Therefore

iCfiL2@21, 1#>Agi f iL2@21, 1# , ~98!

g being the smallest eigenvalue of the operatorC, which certainly does exist for anye.0 fixed
~note that the eigenvaluesln andxn can be ordered as followsl0.l1.••• , x0,x1,•••!. We can
then say thatC is a positive definite self-adjoint operator. Now in view of the fact that all
eigenvalues are positive, we can guarantee the existence of the inverse operatorC21. Furthermore
the following inequality holds true:

iC21f iL2<
1

Ag
i f iL2. ~99!

ThenC21 is bounded and therefore continuous. h

In the previous proof the fact that the sequence$gn%0
` admits a minimum for anye.0 plays an

essential role. This derives from the fact that while the sequence$ln%0
` is decreasing, the sequenc

$xn%0
` is increasing for increasing values ofn. We are thus naturally led to look for a conditio

sufficient to guarantee that the constraint~89b! is able to restore a continuous dependence of
solutions on the data. We will show in the Proposition below that an essential role is played
concept of compactness; more precisely the continuity is restored if the functionsf satisfying the
constraint~89b! form a compact subset of the solution spaceX[L2[21, 1]. Then let us denote by
T0 the restriction of the operatorT to the set of functionsf belonging to the constraint spaceZ and
satisfying the bound~89b!. We can then prove the following Proposition.

Proposition 9:The operatorT0
21 is continuous.

Proof:We recall the following Lemma of general topology~see Ref. 8!: let H
*
be a compact

subset of the Hilbert spaceH, and let us suppose that the linear, continuous operatorT
*
:H→K,

restricted toH
*
, has an inverse. Then the inverse operator is continuous.

Now in view of this Lemma it is sufficient to prove that the ball(n50
` xnu f nu

2<E2 @see
formula~95!# is relatively compact inL2@21, 1#. But this can be easily proved as follows. Suppo
J. Math. Phys., Vol. 38, No. 5, May 1997
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for the sake of simplicity, and without loss of generality, thatE51. Then in view of the
asymptotic behavior of the eigenvaluesxn @formula ~93!#, we can say that givene.0, there exists
a positive integerN such that 1/xN,e. Now we have

(
n.N

u f nu2< (
n.N

xnu f nu2Y xN,e, ~100!

and the statement follows. h

In view of the properties of the operatorC, we can introduce the function

f *5C21T* ĝ~e!, ~101!

which is the solution of the Euler equation associated with the functional~90!. Let us note that
T* ĝ~e! ~which for our convenience we denote byĥ~e!! belongs toL2@21, 1# and it can be expande
in terms of the basis$un%0

` , obtainingĥ(e)(x)5(n50
` ĥn

(e)un(x), whereĥn
(e) 5 (ĥ(e),un)L2@21, 1# .

Therefore we get

f * ~x!5 (
n50

` ĥn
~e!

ln1~e/E!2xn
un~x! ~ uxu<1!. ~102!

Now we want to illustrate geometrically that the continuity has been restored. To this pu
let us note that the setsK 0 andK 1, which are infinite-dimensional ellipsoids, have the sa
center f

*
and same principal axes, the latter being given by the eigenvectors ofC. Now we

introduce the following quantity:

d~e,E,ĝ~e!!5supfPK i f2 f * iL2@21, 1# . ~103!

Let us now denote byd0~e,E,ĝ
~e!! and byd1~e,E,ĝ

~e!! the maximum length of the semiaxes ofK 0
andK 1, respectively. Then we have

d0~e,E,ĝ~e!!<d~e,E,ĝ~e!!<d1~e,E,ĝ~e!!. ~104!

We can then prove the following Proposition.
Proposition 10:

~i! There exists an upper bound ofd~e,E,ĝ~e!!, independent of the data functionĝ~e!, which will
be denoted byd~e,E!.

~ii ! d~e,E! tends to zero, ase→0 ~E fixed!.

Proof: The inequalitiesF( f )<e2 andF( f )<2e2 can be written as follows:

F~ f !5~C@ f2 f * #,@ f2 f * # !L2@21, 1#1i ĝ~e!iL2@21, 1#
2

2~ ĝ~e!,T f* !L2@21, 1#<e i
2, ~105!

where ei
2 ~i50,1! equalse2 for i50, and 2e2 for i51. Therefored0 and d1 can be put in the

following form:

d i~e,E,ĝ~e!!5
1

Ag
$e i

22@ i ĝ~e!i22~ ĝ~e!,T f* !#%1/2, ~106!

whereg is the smallest eigenvalue of the operatorC, which does exist for anye.0. Now let us
note that

F~ f * !5i ĝ~e!i22~ ĝ~e!,T f* !>0. ~107!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Then from formula~106! we get

d~e,E,ĝ~e!!<A 2

g~e/E!
e5d~e,E!, ~108!

and the statement~i! is proved.
Concerning the statement~ii ! we proceed as follows. Let us write explicitlyd~e,E!; i.e.,

d~e,E!5&e supnF S ln1S e

ED 2xnD 21/2G . ~109!

At the right-hand side of formula~109! the denominator has a minimum for a value of the ind
n, denoted hereafter byN~e!, which tends to infinity whene→0. Then from the inequality

d~e,E!<&ExN~e!
21/2 ~110!

and recalling the behavior of the eigenvaluesxn , we can conclude that lime→0 d~e,E!50 ~E fixed!.
h

From Proposition 10 and the inequality~104! it follows that ase→0 ~E fixed!, the ellipsesK 0
andK 1 collapse into a point and accordingly the estimated solutionf

*
tends to the exact solution

f in the normL2; i.e.,

lim
e→0

i f2 f * iL2@21, 1#50 ~E.0 fixed!. ~111!

Now we can prove a result concerning the compatibility of the solutionf
*
with respect to the

bounds~89a! and ~89b!.
Proposition 11 (Compatibility check):For any functionf which satisfies the bounds~89a! and

~89b!, the following inequalities hold true:

iT~ f2 f * !iY<&e, ~112!

iB~ f2 f * !iZ<&E. ~113!

Proof: In view of the inequalities~105! and ~107!, we can write

~C@ f2 f * #,@ f2 f * # !5iT~ f2 f * !iY
21~e/E!2iB~ f2 f * !iZ

2<2e2. ~114!

From inequality~114! the inequalities~112! and ~113! follow. h

One can find convenient, for computational reasons, to truncate the expansion~102! in a
suitable way. To this purpose let us consider the following approximation:

f
*
~1!~x!5 (

n50

a ĥn
~e!

ln
un~x! ~ uxu<1!, ~115!

wherea is the largest integer such that

ln>~e/E!2xn . ~116!

We can prove the following Proposition.
Proposition 12:For any functionf which satisfies the bounds~89a! and~89b!, the following

inequalities can be proved:

iT~ f
*
~1!2 f !iY<&e, ~117!
J. Math. Phys., Vol. 38, No. 5, May 1997
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iB~ f
*
~1!2 f !iZ<A2E. ~118!

Proof: In view of the inequalities~116! and ~89a! and ~89b! we have

(
n5a11

`

lnu f nu2<~e/E!2 (
n5a11

`

xnu f nu2<e2. ~119!

Now let us note that

(
n50

a uĥn
~e!u2

ln
< (

n50

` uĥn
~e!u2

ln
5 (

n50

`
1

ln
~ ĝ~e!,TT* ĝ~e!!Y5 (

n50

`

~ ĝ~e!,ĝ~e!!Y . ~120!

Therefore, in view of the inequalities~89a! and ~119!, we have

iT~ f2 f
*
~1!!iY

25S (
n50

a

lnu f n2ĥn
~e!/lnu2D 1 (

n5a11

`

lnu f nu2

<iT f2ĝ~e!iY
21S (

n5a11

`

lnu f nu2D<2e2, ~121!

and the inequality~117! follows.
Analogously in view of the inequalities~89a! and ~116!, we have

S (
n50

a

xnU f n2 ĥn
~e!

l
U2D<~E/e!2S (

n50

a

lnU f n2 ĥn
~e!

ln
U2D<~E/e!2iT f2ĝ~e!iY

2<E2. ~122!

Next in view of the inequalities~89b! and ~122! we can write

iB~ f2 f
*
~1!!iZ

25S (
n50

a

xnU f n2 ĥn
~e!

ln
U2D 1S (

n5a11

`

xnu f nu2D<2E2 ~123!

and the inequality~118! follows. h

Corollary: For any functionf , which satisfies the bounds~89a! and~89b!, the following limit
holds true:

lim
e→0

i f2 f
*
~1!i50. ~124!

Proof: From the inequalities~117! and ~118! we get

iT~ f2 f
*
~1!!iY

21S e

ED 2iB~ f2 f
*
~1!!iZ

2<4e2, ~125!

and therefore we obtain

(
n50

`

u f n2~ f
*
~1!!nu2<2e supnH Fln1S e

ED 2xnG21/2J . ~126!

Then, following arguments closely analogous to those used in the proof of Proposition 1
equality ~124! follows. h
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C. Weak continuity

Up to now we have used the bound~89b!, working with the constraint operatorB, defined by
Eq. ~91!. As a consequence we were dealing with a constraint ((n50

` xnu f nu
2) which involves

derivatives of the current intensity. From the physical point of view a constraint of the follow
type (n50

` u f nu
2<E2, which can be simply interpreted in terms of ohmic losses, is much m

appealing. Of course we must pay a price: the restored continuity is weaker. We speak of ‘‘
continuity’’ in a sense which shall be explained below. We can now poseB5I ~identity operator!
and then the constraint~89b! will read

iBfiZ
25i f iX

25 (
n50

`

u f nu2<E2. ~127!

Then the functionalF( f ) will have a minimum for

f
*
~2!~x!5 (

n50

` ĥn
~e!

ln1~e/E!2
un~x! ~ uxu<1!. ~128!

Accordingly, we can consider the following approximation:

f
*
~3!~x!5 (

n50

b
ĥ~e!

ln
un~x! ~ uxu<1!, ~129!

whereb is the largest integer such that

ln>~e/E!2. ~130!

In order to explore the ‘‘weak continuity’’ property, we introduce the following family of sem
norms~see also Refs. 18 and 19!.

^ f &5$u~ f ,v !Xu,iviX<1,fPX%, ~131!

whereX is the solution space. Next we introduce the following quantity:

dv~e,E!5sup$u~ f ,v !Xu; fPX:iT fiY
21~e/E!2iBfiZ

2<2e2% ~132!

~hereB5I is the identity operator andX5L2[21,1,]!. dv(e,E) plays here the same role playe
in the previous subsection~see Proposition 10! by d~e,E!. Now we can prove the following
Proposition.

Proposition 13:The following relationships hold true:

~ i ! dv~e,E!5&eS (
n50

` uvnu2

ln1~e/E!2D 1/2, ~133!

~ i i ! lim
e→0

dv~e,E!50 ~E.0,fixed!. ~134!

Proof: ~i! Let us rewrite the inequality

iT fiY
21~e/E!2iBfiZ

2<2e2 ~135!

as follows@see formula~96!#:
J. Math. Phys., Vol. 38, No. 5, May 1997
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~Cf , f !L2<2e2. ~136!

Then we apply the Schwarz inequality to the scalar product:@ f ,g#5(Cf ,g)L2( f ,g
P L2@21, 1#). We have, in view of the fact thatC*5C,

~ f ,v !5@ f , C21v#<@ f , f #1/2@C21v, C21v#1/25~Cf , f !1/2~C21v,v !1/2<&e~C21v,v !1/2

5&eS (
n50

` uvnu2

ln1~e/E!2D , ~137!

and the statement~i! is proved.
~ii ! Concerning the statement~ii ! we proceed as follows. In view of the inequality

(
n50

N
e2

ln1~e/E!2
uvnu2<E2(

n50

N

uvnu2, ~138!

and recalling that(n50
` uvnu

2<1, we can say that the series(n50
` $e2/[ln1(e/E)2] %uvnu

2

converges uniformly. Since lime→0$e
2/[ln1(e/E)2] %uvnu

250, for any n, the statement~ii !
follows. h

Corollary: For any functionf , which satisfies the bounds~89a! and~127!, the following limit
holds true:

lim
e→0

u~@ f2 f
*
~2!#,v !Xu50 ~ iviX<1!. ~139!

Proof: In view of the fact thatf
*
~2! minimizes the functionalF( f ) @see formula~90!, where

now B5I #, we can write the following inequality:

iT~ f2 f
*
~2!!iY

21S e

ED 2i~ f2 f
*
~2!!iX

2<2e2, ~140!

which holds for any functionf satisfying the bounds~89a! and ~127!. Therefore, proceeding
exactly as in the proof of Proposition 10, but working withdv(e,E) instead ofd~e, E!, we can
prove the equality~139!: i.e., we have ‘‘weak convergence,’’ and accordingly we speak of ‘‘we
continuity’’ in the restored solution. h

Finally we can prove the following Proposition.
Proposition 14:The following inequalities hold true:

iT~ f2 f
*
~2!!iY<&e, ~141!

i~ f2 f
*
~2!!iX<&E, ~142!

iT~ f2 f
*
~3!!iY<&e, ~143!

i~ f2 f
*
~3!!iX<&E, ~144!

where f is any function which satisfies the conditions~89a! and ~127! with B5I ,
X5Y5L2[21, 1].

Proof: The proof proceeds exactly as in Proposition 11 and 12, respectively. h

Corollary: For any functionf , which satisfies the bounds~89a! and~127!, the following limit
holds true:
J. Math. Phys., Vol. 38, No. 5, May 1997
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lim
e→0

u~@ f2 f
*
~3!#,v !Xu50 ~ iviX<1!. ~145!

Proof: From the inequalities~143! and ~144!, we get

iT~ f2 f
*
~3!!iY

21S e

ED 2i~ f2 f
*
~3!!iX

2<4e2. ~146!

Then, following arguments strictly analogous to those used in Proposition 13, we can prov
the limit ~145! holds. h

D. Continuity and topology

Up to now we have considered the data set~a!. Let us now consider the data set~b!: i.e., the
data functionĝ is supposed to be assigned, within a certain degree of approximation, on a
real line R. Then we consider the Fourier operator~83! acting as follows
F :L2[21, 1]→L2(2`,`), and we can say that, in view of the Plancherel theorem, it m
bounded sets into bounded sets and its inverse is continuous. Therefore the continuity is pr
in L2-topology. Now let us recall thatF f belongs also toL`~R!, if fPL2@21, 1#. Then one could
pretend to work out the problem using the uniform norm for the data; in this topology, how
the continuity is missing, as can be easily shown by the following example. Let us consid
following function:

f ~y!5 HAn, if uyu<1/n,
0, if uyu.1/n.

~147!

Its Fourier transform is given by

ĝ~u!5A 2

pn

sin ~u/n!

u/n
. ~148!

Therefore, we have

i ĝiL`~R!5C/An→0 ~as n→`!, ~149!

while

i f iL2@21,1#5&. ~150!

We have treated in detail the case of linear aperture which, in view of its simplicity, ca
developed completely in explicit form and puts in clear evidence all the aspects of the meth
regularization. In general the antenna synthesis refers to geometrical structures which are
more complex, like a system of discrete arrays. In these cases of practical interest the app
solutions can only be derived numerically; nevertheless, and we could say ‘‘a fortiori,’’ one is still
involved in these questions of uniqueness and continuity~implying numerical stability! which we
have discussed above~see also Ref. 20!.
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New formulation of the classical path integral
with reparametrization invariance

W. D. Thackera)
Parks College, Saint Louis University, Cahokia, Illinois 62206

~Received 23 July 1996; accepted for publication 3 January 1997!

A classical path integral~CPI! provides a functional integral representation of the
kernel which propagates phase space density distributions. In this paper a new
formulation of the CPI is developed in which time and energy are promoted to
dynamical variables. The reparametrization invariance, inherent in this formalism,
is handled by means of the Batalin–Fradkin–Vilkovisky method. The path integral
action possesses a set ofISp(2) symmetries connected with reparametrization in-
variance and an additional set ofISp(2) symmetries connected with the symplectic
geometry of the extended phase space. Supersymmetry is also present in the CPI
action. This formulation of the CPI allows us to study the dependence on energy of
the dynamical evolution of Hamiltonian systems. It naturally incorporates the con-
straints onto the energy surface. ©1997 American Institute of Physics.
@S0022-2488~97!01605-8#

I. INTRODUCTION

In previous work1 a path integral formulation of classical mechanics was developed as a
tool for studying chaos in Hamiltonian systems. While it is often impractical to track individ
trajectories through phase space for chaotic systems, due to sensitive dependence on init
ditions, we can obtain a great deal of information about such systems by studying the evolu
density distributions.2 The classical path integral~CPI! provides an expression for the kern
which propagates phase space density distributions along the classical paths. The path
representation of this kernel is constructed directly from the classical equations of motion.
be written in terms of the exponential of an action containing, in addition to the phase
variablesfa, a51•••2n, the commuting variablesLa and the Grassmann~anticommuting! vari-
ablesCa andC̄a . The Grassmann variables carry information about first order deviations bet
neighboring trajectories; correlations among them are related to the Lyapunov exponents3 The
variablesCa can be interpreted as one-formsdfa on phase space. With an appropriate choice
boundary conditions this formalism describes the propagation of phase spacep-forms, as well as
scalar distributions.4

The CPI action exhibits a set of symmetries1 connected with the symplectic geometry of pha
space.5 An additional supersymmetry present in Hamiltonian systems6 is connected with ergodic
versus orderly behavior.7 In Ref. 6 it was shown that unbroken supersymmetry implies ergodic
When a system has unbroken supersymmetry, it is ergodic, and when the system behave
orderly manner, the supersymmetry is broken. We were not able to show, however, that erg
implies unbroken supersymmetry. Since the Hamiltonian constitutes a constant of motion,
servative system can only be ergodic when confined to the energy surface. The CPI of
describes the Hamiltonian flow5 on the entire phase space. What is missing is a natural way t
the energy.

It is well known that the behavior of a Hamiltonian system depends on its energy.
Henon–Heiles model8 is a classic example of this. At low energies this system exhibits reg
behavior, following smooth orbits which are sections of tori for nearly all initial conditions. As

a!Electronic mail: thacker@newton.slu.edu
0022-2488/97/38(5)/2389/28/$10.00
2389J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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energy is increased, the motion becomes increasingly irregular, until most of the energy sur
covered by chaotic orbits.

We would like to have a formulation of the CPI which brings out the role of the energy.
thing to try is to perform a canonical transformation to a new set of phase space variable
includes the energy, which equals the Hamiltonian, and time as the conjugate variable
problem with this approach is that in Hamiltonian mechanics time is just a parameter. W
needed is a formalism in which time and energy appear as dynamical variables.

This is accomplished in the formulation of classical mechanics proposed by Jacobi,9 and
recently revived within the context of gravitation theory10 and in the context of theories with
internal-reparametrization invariances.11 In this formalism a new parameter is introduced and ti
is treated as an additional position variable. The momentum conjugate to time is minus th
energy. The Jacobi action is invariant under reparametrization. This symmetry is associate
a constraint which confines the motion to energy surfaces.

A modern approach to the quantization of reparametrization invariant systems use
method of Batalin, Fradkin and Vilkovisky12 ~BFV!.13 An auxilliary field and its conjugate mo
mentum are introduced for each constraint, as well as a pair of ghosts. These fields go i
construction of the BFV action which appears in the quantum path integral.

In this article we construct the classical path integral from the equations of motion arisin
of the BFV action for Jacobi’s reparametrization invariant formalism. We find that it is nece
to include the BFV ghosts even at the classical level, in order to obtain a unitary cla
propagator. This new formulation of the CPI naturally incorporates the constraints onto the e
surface. When time, energy and all of the ghosts and auxilliary fields, introduced in the
method, are integrated out of the new CPI, the original one1 is obtained. A different choice o
boundary conditions leads to the propagator forp-forms on the enlarged phase space wh
includes time and energy. A further restriction on the boundary conditions leads to the prop
for p-forms confined to the energy surface.

The article is organized as follows. In Sec. II the path integral approach to classical mec
of Ref. 1 is reviewed. In Sec. III we describe the Jacobi formulation9–11of classical mechanics an
its path integral quantization,13 emphasizing the role of the various constraints and gauge fixing
Sec. IV we construct the classical path integral for the Jacobi formulation of classical mech
and show the need to use the BFV methodeven at the classical level. In Sec. V we derive the
various symmetries present in this formalism, stemming both from the constraints and fro
geometry of phase space. In Sec. VI we construct the supersymmetry charges for the repa
zation invariant CPI and find the physical states that are invariant under this supersymme
Sec. VII we derive propagators from the reparametrization invariant CPI for various choic
boundary conditions. Section VIII contains some concluding remarks.

II. REVIEW OF THE PATH INTEGRAL APPROACH TO CLASSICAL MECHANICS

A few years after the introduction of quantum mechanics, Koopman and von Neum14

proposed anoperatorialapproach to classical mechanics in order to compare it better with q
tum mechanics. Let us start from the Hamiltonian equations of motion:

ḟa~ t !5vab]bH~f~ t !![ha~f~ t !!, ~2.1!

wherefa[(q1,••• ,qn,p1 ,••• ,pn), a51,••• ,2n, is a coordinate on a 2n-dimensional phase
spaceM2n , H is the Hamiltonian,vab52vba is the symplectic matrix andha(f) is the Hamil-
tonian vector field. Any density function%(f,t) on phase space evolves in time according to
Liouville equation

]

]t
%~f,t !52$%,H%[2L̂%~f,t !, ~2.2!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



to

have a
lution
al

al
otion

ately

ntum

2391W. D. Thacker: Path integral with reparametrization invariance

¬¬¬¬¬¬¬¬¬¬
where the Liouville operatorL̂52ha]a is the central ingredient of the operatorial approach
classical mechanics.14 The formal solution of Eq.~2.2! is

%~f,t !5e2L̂t%~f,0!. ~2.3!

This summarizes the operatorial version of classical Hamiltonian mechanics.
As in quantum mechanics, the operatorial approach to classical mechanics should

corresponding path integral formulation. The idea is to represent the kernel of the time evo
operator in~2.3! as a path integral. In classical mechanics this kernel is just a delta-function

K@f,tuf0,0#5^fue2L̂tuf0&5E
f0

f

D8fd̃ @f2fcl# ~2.4!

which forces the system to lie on classical solutionsfcl of ~2.1!.15 Since the classical solution
fcl(t,f0) is unique for a given initial conditionf(0)5f0 , we can represent the delta-function
projecting onto the classical solutions as a delta-functional projecting onto the equations of m
times a Jacobian

d̃@f2fcl#5 d̃@ḟ2h~f!#detS ] tdb
a2

]ha

]fbD . ~2.5!

We can now Fourier transform the delta-functional on the right hand side of~2.5!, using an
auxiliary fieldLa , and exponentiate the determinant via the Grassmann~anticommuting! variables
Ca, andC̄a . Thus we arrive at

K@f,tuf0,0#5E
f0

f

D8fDLDCDC̄d2n~C0!exp i E
0

t

dtL̃ ~2.6!

with the CPI Lagrangian

L̃5La@ḟa2vab]bH~f!#1 iC̄aF] tdba2 ]ha

]fbGCb. ~2.7!

Note thatL̃ contains only first derivatives with respect to time, and therefore we can immedi
read off the associated Hamiltonian

H̃5Lav
ab]bH1 iC̄a

]ha

]fb C
b. ~2.8!

From the path integral~2.6! we can compute the equal-time~graded! commutators offa, La ,
Ca and C̄a , using standard techniques,16 to find17

^@fa,Lb#&5 idb
a ,^@C̄b ,C

a#&5db
a . ~2.9!

All other ~graded! commutators vanish. In particular,fa andfb commute for all values of the
indices a and b. In terms of theq’s and p’s ~which were combined intofa! this means
@qi ,pj #50 for all i and j . This shows that we are doing classical mechanics and not qua
mechanics. The operator algebra~2.9! can be realized by differential operators

La52 i
]

]fa , C̄a5
]

]Ca ~2.10!
J. Math. Phys., Vol. 38, No. 5, May 1997
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and multiplicative operatorsfa andCa acting on functions%̃(f,C,t). Inserting the above opera
tors intoH̃ we obtain

H̃52 iha]a1 i
]

]Ca

]ha

]fb C
b. ~2.11!

Equation~2.11! shows that the Grassmann part ofH̃ gives zero when it acts on distribution
%~f! that do not contain anticommuting variables, while the bosonic part is~2i ! times the
Liouville operator:H̃u(C50)52i L̂ . This confirms that the classical path integral reproduces
operatorial approach to classical mechanics of Koopman and von Neumann.14 However, as we
have seen, the determinant in~2.5! leads naturally to the introduction of the new anticommuti
variablesC andC̄, not present in the formalism of Koopman and von Neumann. The interp
tion of these variables was discussed at great length in Ref. 1. The Grassmann variablesCa can be
brought into correspondence with phase space one-forms, i.e.,Ca⇔dfa, while their canonical
conjugate variablesC̄a can be interpreted as vectors dual to the one-forms. The product of G
mann variables corresponds to the wedge product. The whole Cartan calculus on phas
~exterior derivative, inner products, etc.! has been translated in Ref. 1 into a calculus based
these Grassmann variables. In particular, the CPI HamiltonianH̃ is nothing else than the Lie
derivativel (dH)# of the Hamiltonian flow acting onp-forms18

H̃52 i l ~dH!#.

This Lie-derivative generates the time-evolution not only of scalar distributions in phase
%~f!, but also of general distributions

%̃~f,C!5(
0

2n
1

p!
%a1•••ap

~p! Ca1•••Cap, ~2.12!

where each term in the sum can be interpreted as ap-form on phase space. These distributio
~2.12! obey the evolution equation

] t%̃~f,C!52 iH̃%̃~f,C!52 l ~dH!#%̃~f,C!. ~2.13!

The propagator for a general distribution is given in path integral form by

K~f,C,tuf0 ,C0 ,t0!5E
f0 ,C0

f,C

D8fDLD8CDC exp@ iS̃#. ~2.14!

Let us now consider the symmetries ofS̃5*L̃ dt. In Ref. 1 it was found thatS̃ is invariant
under the transformations generated by the followingISp(2) charges:

Q5 iCaLa , Q̄5 iC̄av
abLb , Qf5CaC̄a ,

~2.15!

K5 1
2vabC

aCb, K̄5 1
2v

abC̄aC̄b .

These generators can be interpreted in terms of the symplectic geometry of phase sp
particular,Q, which we call a Becchi–Rouet–Stora–Tyupin~BRST! charge,19 acts as theexterior
derivativeon phase space, whileK is the symplectic 2-form, and a similar interpretation can
given for all of the generators.~See Ref. 1 for details.!

The generators~2.15! are not the only charges commuting withH̃. Let us consider,20 for
example, the quantities
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QH5ebHQe2bH5Q2b@Q,H#,
~2.16!

Q̄H5e2bHQ̄ebH5Q̄1b@Q̄,H#,

whereb is an arbitrary complex parameter. It is easy to verify6 that

@QH ,QH#5@Q̄H ,Q̄H#50 ~2.17!

and

@QH ,Q̄H#52ibH̃[2b l ~dH!#. ~2.18!

Equation~2.18! shows that the anticommutator ofQH andQ̄H is proportional to the CPI Hamil-
tonian and therefore these operators are genuinesupersymmetrygenerators.

Thus far we have only shown that the actionS̃ is invariant under the supersymmetry, but w
have not addressed the question ‘‘Can this symmetry be spontaneously broken?’’ 21 This comes
down to the question: ‘‘How does the ground state transform? Is it invariant under the symm
of the action?’’ For simplicity, let us confine our attention to observablesA which do not depend
on the forms:A 5 A(f). Then, in order to produce a non-zero expectation value,

^A& t5E d2nfd2nC A~f!%̃~f,C,t ! ~2.19!

the density%̃ must contain all 2n one-forms:%̃(f,C,t)5%(f,t)C1•••C2n. When the forms are
integrated out,~2.19! yields the standard expression for the expectation value~without forms!:

^A& t5E d2nf A~f!%~f,t !. ~2.20!

Since the above%̃ contains the maximum number of forms, it is trivially annihilated

QH :QH%̃(f,C)5Ca@]a2b(]H/]fa)] %̃(f,C)50. On the other hand, the invariance und
transformations generated byQ̄H requires

Q̄H%̃~f,C!5
]

]Ca vabS ]b1b
]H

]fbD %̃~f,C!50. ~2.21!

This equation can be satisfied6 only if

%̃~f,C,t !5ke2bH~f!C1•••C2n, ~2.22!

wherek is a constant
The state invariant under the supersymmetry is the Gibbs state withb interpreted as the

inverse temperature. This state is ergodic since it depends only on the HamiltonianH(f) and is
therefore constant on energy surfaces. If the supersymmetry is unbroken then~2.22! is the only

ground state of the CPI Hamiltonian, satisfyingH%̃50. Therefore unbroken supersymmet
implies ergodicity. It is important to note that the converse of this statement is not true. In
since the energy is not fixed in~2.14!, any normalizable functionF(H(f)), as well ase2bH, can
be taken as an acceptable ground state for an ergodic system. These functionsF(H) are constants

and thus proportional to each other on the energy surface, but not outside. Since in gen%̃
J. Math. Phys., Vol. 38, No. 5, May 1997
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5F(H(f))C1•••C2n does not satisfy~2.21!, we conclude that ergodicity is possible even if t
supersymmetry~2.18! is spontaneously broken, i.e., unbroken supersymmetry is notnecessaryfor
ergodicity, but only sufficient.

Ergodicity is a feature of the motion on an energy surfaceM2n21(E). The anticommutator of
the supercharges~2.16!, on the other hand, generates the Lie derivative of the Hamiltonian flow
the entire phase spaceM2n . To resolve this issue, we need to build something analogous to
propagator given by Eq.~2.14! but with the energy fixed, or to have a formalism in which t
energy is singled out as a new canonical variable. This is done by the Maupertuis–Jacobi
lation of classical mechanics which we review in the next section.

Before concluding this section we should also mention, for the reader who may be inter
that some other applications of the path integral formulation of classical mechanics have ap
in Ref. 22.

III. REVIEW OF THE MAUPERTUIS–JACOBI FORMULATION OF CLASSICAL AND
QUANTUM MECHANICS

According to Hamilton’s principle, the trajectories of a classical system extremize the a

A@x~ t !#[E
t1

t2H 12 gi j ẋ
i ẋ j2U~x!J dt, ~3.1!

where thexi are then configuration space variables,gi j is a metric on configuration space, an
ẋ meansdx/dt. The extremization is carried out over all pathsx@ t# which run between two fixed
pointsx1 andx2 in the same time interval t22t1 . In this formulation time is treated as a param
eter.

Maupertuis and more explicitly Jacobi9 introduced a variational principle in which time ap
pears as a dynamical variable. The action to minimize, in order to obtain the Newtonian equ
of motion, is given by

S @x~t!,t~t!#5E
t1

t2
dtF 1

2ṫ2~t!
gi j ~x~t!!ẋi~t!ẋ j~t!2U~x~t!!G ṫ~t!, ~3.2!

where the affine parametert has been introduced to label points along the trajectories and
overdot indicates differentiation with respect to this parameter. Now the extremization is
over paths betweenx1 andx2 which have thesame energy.

The action~3.2! is invariant under reparametrizations int, i.e.,

S @ x̃~t!, t̃~t!#5S@x~t!,t~t!#, ~3.3!

where

x̃ i~t!5xi~ f ~t!!, t̃~t!5t~ f ~t!! ~3.4!

with f (t) an arbitrary function satisfying the conditions:f (t1,2)5t1,2.
Let us now choose a flat metricgi j5d i j and derive from~3.2! the equations of motion

Variation of xk yields

1

ṫ

d

dt

1

ṫ

d

dt
xk~t!52]kU~x~t!! ~3.5!

and variation oft yields
J. Math. Phys., Vol. 38, No. 5, May 1997
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1

2ṫ2~t!
ẋi~t!ẋi~t!1U~x~t!!5const[h. ~3.6!

If we insert thet-equation of motion into the actionS of Eq. ~3.2!, we would get an actionS h

given by

S h@x#5E
t1

t2
dt @2~h2U~x~t!!!ẋi ẋi #

1/22h@ t~t2!2t~t1!#. ~3.7!

This is the more familiar action9 to which the reader might have associated the names of M
pertuis and Jacobi. In fact, the variation of~3.7! with respect toxi(t) yields precisely the geode
sics of the Maupertuis metric:

dsM
2 52$h2U~x!%dxi dxi ~3.8!

and the action~3.7! can be written as

S h@x#5E dsM[E AdsM2 , ~3.9!

where in Eqs.~3.8! and ~3.9! the surface termh@ t(t2)2t(t1)] has been dropped since it i
irrelevant for the variational principle. The geodesics ofdsM

2 give the classical pathsxi(t) as a
function of t. Their dependence ont is found by integrating Eq.~3.6!: ṫ5Aẋ2/2(h2U).

Let us now turn to the canonical formalism associated with the action~3.2!. The momenta
conjugate toxi and t are

pi[
]L

] ẋi
5

1

ṫ~t!
ẋi , 2E[

]L

] ṫ
52

1

2
ṫ22ẋ22U, ~3.10!

where L is the Lagrangian for the action~3.2!: S [*t1

t2 dt L. In ~3.10! we have defined the

momentum conjugate tot as2E, because we can then interpretE as the energy of the system
Introducing the functionH(x,p)[ 1

2p
ipi1U(x), and inserting the first equation of~3.10! into

the second one, we get the constraint23

H[H~x,p!2E50. ~3.11!

This is now to be interpreted not as the definition of energy, as is usually done in the Hamilt
formalism, but as a constraint between the independent phase space variables (x,p,E,t). This is
the constraint naturally associated to the local symmetry~3.4!. The Maupertuis–Jacobi formula
tion of classical mechanics singles out the role of the energy, promoting it, together with tim
an independent canonical variable. Let us not forget that the goal of this article is to deve
formalism with which we can study the dependence on energy of the behavior of Hamilt
systems. We would like to slice phase space into energy surfaces in order to see what hap
the behavior of a system as the energy is changed. Since this was not possible by a
canonical transformation to new variables including the energy, the only manner was to e
phase space from the 2n variables (x,p) to 2n12 variables, by includingE,t. The price to pay,
in order to include these variables, is the necessity of imposing the constraint~3.11!. This is
equivalent to introducing a local symmetry into the action~3.1! and going over to the action~3.2!.

Let us now proceed to rewrite the action~3.2! using phase space variables. We note that
naive Hamiltonian is zero:
J. Math. Phys., Vol. 38, No. 5, May 1997
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Hnaive5pi ẋ
i2Eṫ2L5

1

ṫ
ẋi ẋ

i2
1

2
ṫ21ẋ22U2L50. ~3.12!

Adding the constraint~3.11! with a Lagrange multiplierl, we obtain the canonical action

S can@x,p,E,t,l#5E
t1

t2
dt @pi~t!ẋi~t!2E~t! ṫ~t!2l~t!H~x,p,E!#. ~3.13!

Denoting,24 as in Ref. 1, the phase space variables (xi ,pi), i51•••n, by the fieldsfa, a
51•••2n we can write~3.13! as

S can@f,E,t,l#5E
t1

t2
dt F12 fa~t!vabḟ

b~t!2E~t! ṫ~t!2l$H~f!2E%G . ~3.14!

We can put this into compact form by introducing the notation:fA[(xi ,pi ,t,2E). The index
A runs between 1 and 2n12. Introducing the enlarged symplectic matrix

v̂AB5S vab 0

0 21

0

1 0

D ~3.15!

we can rewrite~3.14! as

S can@fA,l#5E
t1

t2
dt F12 fAv̂ABḟ

B2l~t!H~fA!G ~3.16!

up to a surface term. The enlarged Poisson brackets are defined as

$F~fA!,G~fB!%5~]AF !v̂AB~]BG!. ~3.17!

The equations of motion are

d

dt
fa~t!5l~t!vab]bH~f!,

d

dt
E~t!50,

~3.18!

d

dt
t~t!5l~t!, H~f!5E,

which can be compactly written as

ḟA~t!5lv̂AB]BH. ~3.19!

The third equation in~3.18! yields the relation between the parametert and the physical timet:

t~t2!5E
t1

t2
dt8l~t8!1t~t1!.

The actionS can is invariant under the transformations

dfA~t!5e~t!$fA,H%, dl~t!5 ė~t !, e~t1,2!50 ~3.20!
J. Math. Phys., Vol. 38, No. 5, May 1997
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which, in components, become

dfa5e~t!vab]bH, dt5e~t!, dE50,
~3.21!

dl5 ė~t !, e~t1,2!50.

These are the transformations associated on shell to the reparametrizationt→t85f (t). These
transformations are connected to the identity but, as in string theory, there are other trans
tions, disconnected from the identity, called the modular transformations. The analysis of m
transformations has been performed for the relativistic particle in Ref. 25, and for the nonre
istic particle in Ref. 24.

Let us now introduce the Batalin–Fradkin–Vilkovisky12 ~BFV! procedure in order to quantiz
the system. First of all, from the actionS can , we find that the momentum conjugate tol~t! is
zero:p[]L/]l̇50. This is a new constraint which must be added to~3.11!,H50. Thus the full
set of constraints is

G1[p50, G2[H50. ~3.22!

The BFV procedure associates a ghost and an antighost with each constraint. Let us ca
ghosts and antighosts

ha[~2 iP,c!, P a[~ i c̄,P̄!. ~3.23!

The Poisson brackets are

$xi ,pj%5d j
i , $t,2E%51, $l,p%51, $ha,P b%52db

a ~3.24!

which, upon quantization, become the following~graded! commutators:

@xi ,pj #5 id j
i , @ t,2E#5 i , @l,p#5 i , @ha,P b#52 idb

a . ~3.25!

Out of the constraints and the ghosts, we build the BRST charge

V5haGa5h1G11h2G252 iPp1cH ~3.26!

which goes into the construction of the BFV action

S BFV5E
t1

t2
dt @pi ẋ

i2Eṫ1pl̇1ḣaP a1$c,V%#. ~3.27!

Herec is the gauge fixing function which we choose11 to bec5l P̄ in order to implement the
gauge fixingl̇50. With this choice, the action then becomes

S BFV5E
t1

t2
dt @pi ẋ

i2Eṫ2lṗ2PcG 1 ċP̄2 i P̄P2l~H2E!#[E
t1

t2
dt LBFV . ~3.28!

This is the action which goes into the quantum path integral for the transition amplitude

^~x2t2!,t2u~x1t1!,t1&5E D8xDpD8tDEDlD8pD P̄DPD8c̄D8c eiS BFV. ~3.29!

The boundary conditions for this path integral must be BRST-invariant. Following Refs. 11
13, we choose
J. Math. Phys., Vol. 38, No. 5, May 1997
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p5 c̄5c50 at t5t1,2, x~t1,2!5x1,2, t~t1,2!5t1,2. ~3.30!

To evaluate~3.29!, we separate out the ghost partZghost and the partZl,p,E,t

^x2 ,t2 ,t2ux1 ,t1 ,t1&5ZghostE D8xDpZl,p,E,t e
i*

t1

t2dt@pi ẋ
i2l0H#, ~3.31!

where11

Zghost[E D P̄DPD8c̄D8c ei*t1

t2dt@2PcG 1 ċP̄2 i P̄P#52~t22t1! ~3.32!

and

Zl,pE,t[E D8tDEDlD8p ei*t1

t2dt@E~2 ṫ1l!2lṗ#5E
2`

`

dl0

1

t22t1
dS t22t1

t22t1
2l0D .

~3.33!

Therefore, we obtain

^~x2t2!,t2u~x1t1!,t1&52E
2`

`

dl0dS t22t1
t22t1

2l0D E D8x~t!Dp~t!ei*t1

t2dt@pi ~dx
i /dt!2l0H#

52E D8x~t!Dp~t!ei*t1

t2dt$pi ~dx
i /dt!2@~ t22t1!/~t22t1!#H~x,p!%. ~3.34!

Now, if the parametert is replaced by the physical time

t~t!5
t22t1
t22t1

~t2t1!1t1 ~3.35!

~3.34! reduces to the Feynman propagator

^x2t2ux2t1&52E D8xi~ t !Dpi~ t !e
i*
t1

t2dt@pi ~dx
i /dt!2H#. ~3.36!

Notice that a factor of (t22t1), coming fromZghost, has been canceled by a factor of (t2
2t1)

21, coming fromZl,pE,t . If the ghost sector had not been included in the action, the the
would not have been unitary.

Since time and energy appear as conjugate variables in the action~3.28!, it is not possible to
fix both the time interval and the energy in the quantum path integral. In order to obtain the
integral for the transition amplitude at fixed energy we add a surface term to the action~3.28! to
obtain

S Jac5E
t1

t2
dt@pi ẋ

i1tĖ2lṗ2PcG 1 ċP̄2 i P̄P2l~H2E!#. ~3.37!

Then, with the boundary conditions

p5 c̄5c50 at t5t1,2, x~t1,2!5x1,2, E~t1!5E0 ~3.38!

we find10
J. Math. Phys., Vol. 38, No. 5, May 1997
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^~x2E0!,t2u~x1E0!,t1&5E D8xDpD tDEDlD8pD P̄DPD8c̄D8cd~E~t1!2E0!e
iS Jac

5^x2ud@E02H#ux1&. ~3.39!

IV. BFV FORMALISM IN THE PATH INTEGRAL REPRESENTATION OF CLASSICAL
MECHANICS

The usual folklore aboutquantizinggauge theories is that one needs the gauge fixing in o
to be able to invert the quadratic part of the Lagrangian and thus to obtain thequantumpropagator.
In some gauges the Faddeev–Popov ghosts must be introduced in order to restore the uni
the theory. The gauge fixing and Faddeev–Popov ghosts are also needed in order to facto
the path integral the infinite volume of the gauge group. Recently it has been understood26 that all
of these structures~ghosts, BRST charges, etc.! have a geometric meaning also at theclassical
level, and they appear naturally in a geometrical approach to gauge theory, independent
quantization of the system.

For the reader who may still be puzzled by the need of the BFV procedure at the cla
level, we offer a pragmatic view. Starting from the equations of motion~3.18!, we show that, in
order to get one solution for a given set of intial conditions, we need a gauge fixing. The gho
needed in order to obtain a unitary classical propagator. In retrospect this is a natural thing
because we have to start from the action which provides theunitary quantum theory, in order to
get the correctunitary classical theory.

Let us start with the issue of gauge fixing. In constructing the CPI, according to the
~2.4!–~2.6!, we go from the solutions of the equations of motion~2.1! to the equations of motion
themselves. This requires a one-to-one correspondence between equations of motion and s
~once the initial conditions are given!, even if we are unable to solve the equations of mot
explicitly. If there were more than one solution for a given initial condition, then~2.5! would not
be valid. This can be seen from the formula for the Dirac delta-function of a multi-compo
functionF(x)

d~F~x!!5(
xi

d~x2xi !

I ]F

]x I
xi

, ~4.1!

where thexi are the solutions ofF(x)50.
Let us now consider the equations of motion~3.18!:27

d

dt
fa~t!5l~t!vab]bH~f~t!!, ~4.2a!

d

dt
E~t!50, ~4.2b!

d

dt
t~t!5l~t i !, ~4.2c!

H~f!5E. ~4.2d!

One might think that these 2n13 equations for the 2n13 variables (fa,l,E,t) can be solved as
follows:
J. Math. Phys., Vol. 38, No. 5, May 1997
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• Solve Eq.~4.2a! by giving the initial conditionsfa(0) and a functionl~t! to be determined
afterwards:

fa~t!5F a~f~0!,l~t!,t!. ~4.3!

• Insert Eq.~4.3! into Eq. ~4.2d!

H~F ~f~0!,l~t!,t!!5E~t!

to obtain a relation betweenl~t! andE(t)

E~t!5G ~l~t!,f~0!,t!. ~4.4!

• Insert now Eq.~4.4! into Eq. ~4.2b! to obtain

dG ~l~t!,••• !

dt
50 ~4.5!

and now, given some intial conditionl~0!, one could determinel~t! from Eq. ~4.5!.

l~t!5P ~l~0!,t,••• !.

• The above solution can then be inserted in~4.2c! to get t as a function oft:

dt

dt
5P ~l~0!,t,••• !.

Thus it appears that one obtains, out of the 2n13 equations in~4.2!, a unique solution for
(fa,l,E,t) once initial conditions are chosen for all of the variables. Actually this is not corr
In fact, the Equation~4.2b!, which we used to determinel~t!, is an identity following from
Equations~4.2a! and ~4.2d!. Therefore, the functionl~t! is not determined by~4.2!. This means
that for a given set of initial conditions (fa(0),E(0),t(0)) there is a whole family of solutions
depending on the freely chosenl~t!. This ambiguity arises from the gauge freedom~3.21!. Even
when the initial conditions are fixed the symmetry transformations~3.21! slide each point in phase
space along its classical orbit.

Since there is no unique solution for~4.2! it is not possible to go over from the classic
solutions to the equations of motion as in steps~2.4! and~2.5! in the construction of the CPI. Fo
this reason it is necessary to introduce a gauge fixing which determines the functional fo

l~t!. We have chosenl̇ 5 0. In Sec. VII we show that it is also necessary to include the B
ghosts in order to obtain the correct~unitary! classical propagator.

So our strategy is to write down all the classical equations of motion arising fromS BFV and
then to exponentiate them into the classical path integral as in~2.4!–~2.7!. The actionS BFV leads
to the classical equations of motion

d

dt
fa~t!5l~t!vab]bH~f!, ~4.6a!

d

dt
E~t!50, ~4.6b!

d

dt
t~t!5l~t!, ~4.6c!
J. Math. Phys., Vol. 38, No. 5, May 1997
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ṗ1H~f!2E50, ~4.6d!

l̇50, ~4.6e!

PG 50, ~4.6f!

Ṗ50, ~4.6g!

cG 2 i P̄50, ~4.6h!

ċ1 iP50. ~4.6i!

The above equations can be written in Hamiltonian form

ḟm5v̂mn
]Ĥ

]fn [hm, ~4.7!

wherefm includes all of the canonical variables (fa,t,E,l,p,c,P̄,c̄,P) in ~4.6!. The effective
Hamiltonian is

Ĥ5l~H~f!2E!1 i P̄P ~4.8!

and

v̂mn51
vab

• • • • • • • •

• 0 v tE
• • • • • •

• vEt 0 • • • • •

• • • 0 vlp
• • • •

• • • vpl 0 • • • •

• • • • • 0 vcP̄
• •

• • • • • v P̄c 0 • •

• • • • • • 0 vPc̄

• • • • • • v c̄ P 0

2 ~4.9!

with

v tE52152vEt, vlp5152vpl,
~4.10!

vcP̄5215v P̄c, v c̄ P5215vP c̄,

In following the steps from~2.4!–~2.7!, we need to take into account the fact that the BF
ghosts are Grassmann-odd. Consequently, Eq.~2.5! must be modified. For a set of Grassmann-o
variablesja satisfying the equations of motionj̇a 2 ha 5 0, we have

d̃@j2jcl#5 d̃@ j̇2h#S detFdb
a] t2

]

]jb haG D 21

.

The reciprocal of the determinant can be exponentiated by means of bosonic variablesCa and
C̄a , according to the standard rule for Gaussian integration
J. Math. Phys., Vol. 38, No. 5, May 1997
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S detFdb
a] t2

]

]jb haG D 21

5E DCDC̄ expF2E dt CaFdb
a]t2

]

jb haGCbG . ~4.11!

We exponentiate the delta-functional by introducing the Grassmann-odd auxilliary fieldsLa :

d̃@ j̇2h#5E DL expF i E dtLa@ja2ha#G . ~4.12!

The factor ofi in ~4.12! is correct since the number of Grassmann-odd variables~BFV-ghosts!
ja is even (2m). In fact, at each lattice point in the discretization of~4.12! there is a Grassman
integral of the form

E d2mL exp@ iLaha#5E dL2m•••dL1~21!m~L1h
1!•••~L2mh2m!5h1•••h2m5d2m~h!.

Therefore, from all of the equations of motion in~4.7!, both bosonic and fermionic, we ca
construct a classical path integral with the CPI action28

S̃ J5E L̃Jdt,

with

L̃J5Lm@fm2hm#1 iC̄mFdn
m d

dt
2

]hm

]fnGCn, ~4.13!

where the auxiliary fieldsLm and the ghostsCn,C̄m are generalizations of the fieldsLa , C
a,

C̄a . The Grassmann character of all the fields in~4.13! is given as follows. The Grassmann-eve
fields (fa,t,E,l,p) have Grassmann-even auxiliary fields (La ,L t ,LE ,Ll ,Lp) and Grassmann
odd forms and vectors

~C̄a ,C
a,C̄t ,C

t,C̄E ,C
E,C̄l ,C

l,C̄p ,C
p!.

The Grassmann-odd fields (c,P̄,c̄,P̄) have Grassmann-odd auxiliary fields (Lc ,LP ,L c̄ ,L P̄) and
Grassmann-even forms and vectors

~C̄c ,C
c,C̄P ,C

P,C̄ c̄ ,C
c̄ ,C̄P̄ ,C

P̄!.

The Lagrangian in~4.13! can be written, in components, as

L̃J5La~ḟa2lha!1 iC̄aĊ
a2 ilC̄a

]ha

]fb C
b1LEĖ1 iC̄EĊ

E1L t~ ṫ2l!1 iC̄ tĊ
t1Lpṗ1 iC̄pĊ

p

1Lll̇1 iC̄lĊ
l2 i ~C̄ah

a1C̄t!C
l1Lp~H2E!1 iC̄pS ]H

]fa C
a2CED1LPṖ1 iC̄PĊ

P

1L P̄PG 1 iC̄ P̄Ċ
P̄1Lc~ ċ1 iP !1 iC̄c~Ċ

c1 iCP!1L c̄~cG 2 i P̄ !1 iC̄ c̄~Ċ
c̄2 iC P̄!. ~4.14!

From the kinetic terms in theL̃J of ~4.14!, one immediately derives16 the graded commutators

@fa,Lb#25 idb
a⇒La52 i

]

]fa , @ t,L t#25 i⇒L t52 i
]

]t
,
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



tial

of
s

RST

2403W. D. Thacker: Path integral with reparametrization invariance

¬¬¬¬¬¬¬¬¬¬
@E,LE#25 i⇒LE52 i
]

]E
, @l,Ll#25 i⇒Ll52 i

]

]l
,

@p,Lp#25 i⇒Lp52 i
]

]p
, @c,Lc#15 i⇒Lc5 i

]

]c
,

@ c̄,L c̄ #15 i⇒L c̄5 i
]

] c̄
, @P,LP#15 i⇒LP5 i

]

]P
,

@ P̄,LP#15 i⇒L P̄5 i
]

] P̄
, @Ca,C̄b#15db

a⇒C̄b5
]

]Cb
,

@Ct,C̄t#151⇒C̄t5
]

]Ct , @CE,C̄E#151⇒C̄E5
]

]CE , ~4.15!

@Cl,C̄l#151⇒C̄l5
]

]Cl , @Cp,C̄p#151⇒C̄p5
]

]Cp ,

@Cc,C̄c#251⇒C̄c52
]

]Cc , @CP,C̄P#251⇒C̄P52
]

]CP ,

@Cc̄ ,C̄ c̄ #251⇒C̄ c̄52
]

]Cc̄ , @CP̄,C̄P̄#251⇒C̄P̄52
]

]CP̄
,

where the suffix ‘‘2’’ or ‘‘ 1’’ distinguishes commutators from anticommutators. The differen
representation of the various fields indicated on the right hand side of~4.15! is meant as derivation
to the right.

V. SYMMETRIES OF LJ

In this section we investigate the symmetries of the CPI LagrangianL̃J . First, let us consider
the symmetry generators analogous to those in~2.15!, which are connected with the geometry
the extended phase space$fa,t,E,l,p,c,P,c̄,P̄%. Theexterior derivativeon this phase space i
generated by the BRST charge

Q̂5Cm
]

]fm
5Ca

]

]fa
1Ct

]

]t
1CE

]

]E
1Cl

]

]l
1Cp

]

]p
1Cc

]

]c
1CP

]

]P
1Cc̄

]

] c̄
1CP̄

]

] P̄

5 i ~CaLa1CtL t1CELE1ClLl1CpLp2CcLc2CPLP2Cc̄L c̄2CP̄L P̄!.
~5.1!

BRST transformations leave the CPI Lagrangian invariant

dQ̂L̃J5@ ēQ̂,L̃J#250, ~5.2!

where ē is an anticommuting parameter. In addition to the BRST charge there is the anti-B
charge
J. Math. Phys., Vol. 38, No. 5, May 1997
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QC 5
]

]Cm
v̂mn

]

]fn
5

]

]Ca
vab

]

]fb
2

]

]Ct

]

]E
1

]

]CE

]

]t
1

]

]Cl

]

]p
2

]

]Cp

]

]l

2
]

]Cc

]

] P̄
2

]

]CP̄

]

]c
2

]

]Cc̄

]

]P
2

]

]CP

]

] c̄

5 i ~C̄av
abLb2C̄tLE1C̄EL t1C̄lLp2C̄pLl

2C̄cL P̄2C̄P̄Lc2C̄ c̄LP2C̄PL c̄ ! ~5.3!

which acts as the symplectic dual to the exterior derivative, lowering the form number by

While the BRST variation ofL̃J is zero, the anti-BRST variation is the surface term

dQC L̃J52e
d

dt
QC ~5.4!

with the anticommuting parametere.
The chargesK and K̄ in ~2.15! are also connected with the symplectic geometry of ph

space. We can construct analogs of these charges on the extended phase space from th
v̂mn, given by ~4.9!, and its inversev̂mn, i.e., v̂mav̂an5dm

n . The symplectic two-form on the
extended phase space is given by

K̂[ 1
2v̂mnC

mCn5 1
2vabC

aCb1CtCE1CpCl2CcCP̄2CPCc̄ ~5.5!

and its symplectic dual is

KC [ 1
2v̂

mnC̄mC̄n5 1
2v

abC̄aC̄b1C̄EC̄t1C̄lC̄p2C̄cC̄P̄2C̄PC̄ c̄ . ~5.6!

The transformations generated byK̂ andKC generate surface terms in the CPI action

d K̂L̃J5 i e
d

dt
K̂, dKC L̃J52 i ē

d

dt
KC . ~5.7!

The commutator of the symplectic form with its dual gives rise to the charge

Qf5Ca
]

]Ca 1Ct
]

]Ct 1CE
]

]CE 1Cl
]

]Cl 1Cp
]

]Cp

1Cc
]

]Cc 1CP
]

]CP 1Cc̄
]

]Cc̄ 1CP̄
]

]CP̄ . ~5.8!

This charge countsform number, giving a weight of11 to each one-form from the set

$Ca,Ct,CE,Cl,Cp,Cc,CP,Cc̄ ,CP̄%

and a weight of21 to each vector

$C̄a ,C̄t ,C̄E ,C̄l ,C̄p ,C̄c ,C̄P ,C̄ c̄ ,C̄P̄%.

Every term in the CPI Lagrangian has form number zero, and therefore

dQf
L̃J50. ~5.9!
J. Math. Phys., Vol. 38, No. 5, May 1997
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The set of charges

$Q̂,QC ,Qf ,K̂,KC % ~5.10!

generate the algebraISp(2) with graded commutators

@Q̂,Q̂#5@QC ,QC #5@Q̂,QC #50, @Qf ,Q̂#5Q̂, @Qf ,QC #52QC ,

@Q̂,K̂#5@QC ,KC #50, @KC ,Q̂#5QC , @K̂,QC #5Q̂,
~5.11!

@Qf ,K̂#52K̂, @Qf ,KC #522KC , @K̂,KC #5Qf .

The effective actionSBFV given by Eq.~3.28! has a BRST symmetry arising from the origin
reparametrization invariance present in~3.2!. This symmetry should be inherited by the CPI acti
S J5*dt LJ . We shall call it the BFV-BRST invariance. In order to construct the BFV-BR
charges, we find it convenient to employ the superfield formalism introduced in Ref. 1.

Let us enlarge the 1-dimensional base spacet to a superspace, including the two anticom
muting variablesu andū. The superspace then consists of$t,u,ū%. Following Ref. 1, we define the
superfield

Fm[fm1uCm1 ūv̂mnC̄n1 i ūuv̂mnLn , ~5.12!

wherefm again stands for the set of fields (fa,t,E,l,p,c,cG ,P,P̄). The components ofFm are

Fa5fa1uCa1 ūvabC̄b1 i ūuv
abLb ,

t̂[t1uCt2 ūC̄E2 i ūuLE , Ê[E1uCE1 ūC̄t1 i ūuL t ,

l̂[l1uCl1 ūC̄p1 i ūuLp , p̂[p1uCp2 ūC̄l2 i ūuLl , ~5.13!

ĉ[c1uCc2 ūC̄P̄1 i ūuL P̄ , P̂[P1uCP2 ūC̄ c̄1 i ūuL c̄ ,

cC[ c̄1uCc̄2 ūC̄P1 i ūuLP , PC [ P̄1uCP̄2 ūC̄c1 i ūuLc .

When we replace the fields by superfields in the LagrangianLBFV and integrate using the Gras
mann measurei du dū, we obtain

i E du dūLBFV~F!5L̃J2
d

dt F12 ~Laf
a1 iCaC

a!1LEE1 iC̄EC
E1Lpp

1 iC̄pC
p1LPP1 iCPC

P1L P̄P̄1 iC̄ P̄C
P̄G . ~5.14!

which differs from the CPI Lagrangian~4.14! by a surface term.
Applying the same construction toV of ~3.26!, we obtain

V̂5 i E du dū@2 i P̂p̂1 ĉ~H~F!2Ê!#

52 iPLl1C̄lC
P2C̄ c̄C

p1 iL c̄p1c~H̃1L t!

1 i ~C̄ah
a1C̄t!C

c2 iC̄ P̄SCa
]H

]fa2CED2L P̄~H2E!. ~5.15!
J. Math. Phys., Vol. 38, No. 5, May 1997
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The CPI Lagrangian is invariant under the transformations generated by this charge

dV̂L̃J50. ~5.16!

The action~3.27! also possesses an anti-BRST symmetry generated by the charge

V̄5 i P̄p1 c̄~H2E!. ~5.17!

The corresponding symmetry ofL̃J is generated by

VR [ i E dudū@ iPC p̂1cC ~H~Fa!2Ê!#

5 i P̄Ll2C̄lC
P̄1C̄cC

p2 ipLc1 c̄~H̃1L t!

1 i ~C̄ah
a1C̄t!C

c̄2C̄PSCa
]H

]fa2CED2LP~H2E! ~5.18!

and we have

dV̂L̃J50. ~5.19!

The BFV-BRST and anti-BRST charges are nilpotent and anticommute with each other

@V̂,V̂#5@VR ,VR #5@V̂,VR #50. ~5.20!

In addition to the above two charges it is easy to prove that the following charge is conse

Qg5c
]

]c
1P

]

]P
2 c̄

]

] c̄
2 P̄

]

] P̄
1Cc

]

]Cc
1CP

]

]CP
2Cc̄

]

]Cc̄
2CP̄

]

]CP̄
, ~5.21!

dQg
L̃J50. ~5.22!

This charge gives the BFV-ghost number, attributing a weight of11 to the BFV-ghostsc, P and
their forms, and a weight of21 to the anti-ghostsc̄, P̄ and their forms. The auxilliary fieldsL and
vectorsC̄ have the opposite ghost number. The ghost number charge is analogous to th
number chargeQf . The BFV ghost number and the form number of the various fields are s
marized in Table I. The ghost number and form number charges commute with each othe

@Qg ,Qf #50. ~5.23!

A variable is Grassman even if its form number plus ghost number is even and odd if its
number plus ghost number is odd.

Thus far we have found the chargesV̂, VR andQg , connected with reparameterization inva
ance and analogous to the chargesQ, Q̄ andQf , respectively. It would be interesting to fin

anologues ofK̂ and K̂̄, for which the commutator closes onQg . These charges are given by

K̄[2 P̄
]

]P
2CP̄

]

]CP 1 c̄
]

]c
1Cc̄

]

]Cc ,
~5.24!

K[2P
]

] P̄
2CP

]

]CP̄
1c

]

] c̄
1Cc

]

]Cc̄
.
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They both generate new symmetries of the CPI action

dKL̃J50, dK̄L̃J50.

The commutator of these two charges is given by

@K ,K̄ #5Qg ~5.25!

and their commutators with the BFV-BRST and anti-BRST charges are

@K̄ ,V̂#5VR , @K ,VR #5V̂, @K ,V̂#5@K̄ ,VR #50. ~5.26!

The chargesK andK̄ have ghost number12 and22, respectively,

@Qg ,K #52K , @Qg ,K̄ #522K̄ , ~5.27!

while the chargesV̂ andVR have ghost number11 and21

@Qg ,V̂#5V̂, @Qg ,VR #52VR . ~5.28!

From the above graded commutators we conclude that the charges

$V̂,VR ,Qg ,K ,K̄ % ~5.29!

generate a secondISp(2) algebra, in addition to that generated by the charges~5.10!, which are a
generalization of those found in Ref. 1. The charges of theISp(2) algebra~5.29! commute with
the charges of the otherISp(2) algebra~5.10!.

VI. SUPERSYMMETRY IN L̃J

In addition to the pair ofISp(2) symmetry algebras described in the previous section,
action~4.13! possesses a supersymmetry analogous to~2.16!. We can construct the supersymm
try charges

TABLE I. Form and ghost numbers of the fields inL̃J.

Fields Form number Ghost number

fa,t,E,l,p 0 0
Ca,Ct,CE,Cl,Cp 1 0
C̄a ,C̄t ,C̄E ,C̄l ,C̄p 21 0
c,P 0 1
Lc ,LP 0 21
Cc,CP 1 1
C̄c ,C̄P 21 21

c̄,P̄ 0 21
L c̄ ,L P̄ 0 1

Cc̄ ,CP̄ 1 21

C̄ c̄ ,C̄P̄ 21 11
J. Math. Phys., Vol. 38, No. 5, May 1997
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V̂Ĥ5Q̂2b@Q̂,Ĥ#5CaS ]a2bl
]H

]faD1Ct] t1CE~]E1bl!1Cp]p

1Cl~]l2b~H2E!!1Cc]c1Cc̄] c̄1CP~]P1 ib P̄!1CP̄~]P2 ibP!,

~6.1!
and

QC Ĥ5QC 1b@QC ,Ĥ#5C̄av
abS ]

]fb 1bl
]H

]fbD1C̄t~2]E1bl!1C̄E] t1C̄l]p

1C̄p~2]l2b~H2E!!1C̄P̄]c1C̄P̄] c̄1C̄c~] P̄1 ibP!1C̄ c̄~]P2 ib P̄!,

~6.2!

whereb is an arbitrary parameter andĤ is the effective Hamiltonian~4.8!. We call Q̂Ĥ andQC Ĥ
supersymmetry charges, since they satisfy

@Q̂Ĥ ,QC Ĥ#52ibH̃J , ~6.3!

whereH̃J is the CPI Hamiltonian, associated toL̃J of ~4.14!, and is given explicitly by

H̃J5lFLah
a1 iC̄a

]ha

]fb C
b1L tG2Lp~H2E!1 i ~C̄ah

a1C̄t!C
l

2 iC̄pS ]H

]fa C
a2CED2 iLcP1C̄cC

P1 iL c̄ P̄2C̄ c̄C
P̄. ~6.4!

The variations ofL̃J generated by the two supersymmetry charges are given by the surface

dQ̂Ĥ
L̃J52 i ēb

d

dt
~@Q̂,Ĥ# !, dQC ĤL̃J52 i e

d

dt
QC . ~6.5!

Let us now consider which physical states%̃ are invariant under the supersymmetry genera

by ~6.1! and~6.2!. If we confine our attention to scalar observables, as in Sec. II, then%̃ must have
maximal form number

%̃5%C1...C2nCtCEClCpd~Cc!d~CP!d~Cc̄ !d~CP̄!. ~6.6!

Physical states must have ghost number zero13 and be annihalated by the BFV-BRST and an
BRST chargesV̂ andVR . The most general state~6.6! with ghost number zero has the form

%5% ~0!1% ~c c̄ !cc̄1% ~cP̄!cP̄1% ~P c̄ !Pc̄1% ~PP̄!PP̄1% ~cP c̄P̄!cPc̄P̄. ~6.7!

The conditions

V̂%̃50, VR %̃50 ~6.8!

imply the following relations among the components in~6.7!:

% ~P c̄ !52% ~cP̄! ,

~ha]a1] t!% ~0!5~H2E!% ~cP̄!2 ip% ~c c̄ ! ,
J. Math. Phys., Vol. 38, No. 5, May 1997
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]% ~0!

]l
52p% ~cP̄!1 i ~H2E!% ~PP̄! ,

~6.9!
]% ~c c̄ !

]l
52 i ~ha]a1] t!% ~cP̄!2 i ~H2E!% ~cP c̄P̄! ,

]% ~cP̄!

]l
5 i ~ha]a1] t!% ~PP̄!1p% ~cP c̄P̄! .

If a physical state is supersymmetric it is also annihilated byQ̂Ĥ andQC Ĥ . States of the form~6.6!

are automatically annihilated byQ̂Ĥ . The conditionQC Ĥ%̃ 5 0 implies that

S ]b1bl
]H

]fbD%50, ~2]E1bl!%50,

] t%5]p%50, ~]l1b~H2E!!%50, ~6.10!

]c%5] c̄%50, ~] P̄1 ibP!%50, ~]P2 ib P̄!%50.

Substituting~6.7! into ~6.10!, we find immediately that

% ~c c̄ !5% ~cP̄!5% ~P c̄ !5% ~cP c̄P̄!50, % ~PP̄!5 ib% ~0! .

The equations

S ]b1bl
]H

]fbD% ~0!50, ~2]E1bl!%~0!50,

] t% ~0!5]p% ~0!50, ~]l1b~H2E!!% ~0!50,

then have the solution

% ~0!5k exp@2bl~H2E!#,

where k is a constant. Therefore, we have found that a supersymmetric invariant state
maximal form number is given by~6.6! with

%5k exp@2bl~H2E!#~11 ibPP̄!5k exp@2b~l~H2E!1 i P̄P!#5k exp@2bĤ#. ~6.11!

This is just the Gibbs state with the effective HamiltonianĤ ~4.8!. It is easy to check that% in
~6.11! satisfies the physical state conditions~6.9!.

The supersymmetry we have found in this section does not have a simple relationshi
ergodicity. The CPI HamiltonianH̃J of ~6.4! generates the Lie derivative of the Hamiltonian flo
in the extended phase space introduced by the BFV procedure. In order to establish a
correspondence between supersymmetry and ergodicity, we would need to construct a
supercharges for which the anticommutator~6.3! produces the Lie derivative of the Hamiltonia
flow on a surface of fixed energy. Although we have not succeeded in doing this, we shall fi
the next section that with a suitable choice of boundary conditions the CPI with LagrangiaL̃J

does yield the propagator on energy surfaces.

VII. PROPAGATORS FOR THE REPARAMETRIZATION INVARIANT CPI

In this section we derive some propagators from the classical path integrals with the

S̃ J given by~4.13! and~4.14!. First, we show that, with a suitable choice of boundary conditio
J. Math. Phys., Vol. 38, No. 5, May 1997
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integrating out all of the fields associated to the BFV ghosts

c,P,Lc ,LP ,c̄,P̄,L c̄ ,L P̄ ,C
c̄ ,C̄ c̄ ,C

P̄,C̄P̄ ,C
c,C̄c ,C

P,C̄P

produces a factor inverse to the one obtained by integrating out the fields associated to the
fixing and constraint parts of the action

L t ,t,Ll ,l,LE ,E,Lp ,p,C
t,C̄t ,C

l,C̄l ,C
E,C̄E ,C

p,C̄p .

When all forms except for theCa’s are saturated at the initial point; through the insertion
delta-functions, the result is the propagator~2.14! for p-forms on the original phase space. Th
means that the CPI arising from the BFV formalism is unitary in the same sense as the qu
theory described in Sec. III. Again, this would not have been the case if we had excluded th
ghosts, because a factor coming from the ghost integration was needed to cancel a factor
from the gauge fixing and constraints.

Next, we use a different choice of boundary conditions for the forms to derive the propa
for p-forms on the enlarged phase space including (fa,t,E). Finally, we use this result to obtai
the propagator forp-forms on the energy surface.

As in ~3.31!, we can factor the path integral with actionS̃ J as follows:

E Dm exp i E dtL̃J5ZghostE DfDLDCDC̄Zg f c

3exp i E dtFLa~ḟa2lha!1 iC̄aS Ċa2l
]ha

]fb C
bD G , ~7.1!

whereDm is the CPI measure including all fields inL̃J , the boundary conditions have not be
specified, and

Zghost[E D c̄D P̄DL c̄DL P̄DcDPDLcDLPDC
c̄DC̄ c̄DC

P̄DC̄P̄DC
cDC̄cDC

PDC̄P

3exp E
t1

t2
dt@ iLPṖ1 iLc~ ċ1 iP !2C̄PĊ

P2C̄c~Ċ
c1 iCP!1 iL P̄PG 1 iL c̄~cG 2 i P̄ !

2C̄P̄Ċ
P̄2C̄ c̄~Ċ

c̄2 iC P̄!# ~7.2!

while29

Zg f c[E D tDlDL tDLlDEDpDLEDLpDC
tDC̄tDC

lDC̄lDC
EDC̄EDC

pDC̄p

3exp E
t1

t2
@ iL t~ ṫ2l!1 iLll̇1 iLEĖ1 iLp~ṗ1H2E!2C̄lĊ

l2C̄tĊ
t1~C̄t1N̄!Cl

2C̄EĊ
E2C̄pĊ

p2C̄p~N2CE!# ~7.3!

with N[Ca(]H/]fa) and N̄[C̄av
ab(]H/]fb). If we are only interested in the propagation

the original phase space variablesfa and their formsCa, then all of the other forms should be s
equal to zero at the initial pointt1 . Integrating these other forms out of the CPI will then yield
Jacobian which equals one.1

Let us first evaluateZghostwith the boundary conditions11
J. Math. Phys., Vol. 38, No. 5, May 1997
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c~t1!5c~t2!505 c̄~t1!5 c̄~t2!,

Cc~t1!5Cc̄~t1!505CP~t1!5CP̄~t1!

as in ~3.30!. Then we find

E D8cDPDLcDLP exp E
t1

t2
~ iLPṖ1 iLc~ ċ1 iP !!dt5 i ~t22t1!, ~7.4!

and

E D8c̄D P̄DL c̄DL P̄ exp E
t1

t2
~ iL c̄~cG 2 i P̄ !1 iL P̄PG !dt52 i ~t22t1! ~7.5!

while the form integration, over the bosonic variables, yields

E DCcDC̄cDC
PDC̄PDC

c̄DC̄ c̄DC
PDC̄P̄d~Cc~t1!!d~CP~t1!!d~Cc̄~t1!!d~CP̄~t1!!

3exp E
t1

t2
dt@2C̄PĊ

P2C̄c~Ċ
c1 iCP!2C̄PĊ

P̄2C̄ c̄~Ċ
c̄2 iC P̄!#51. ~7.6!

Combining the above results we obtain

Zghost5~t22t1!
2. ~7.7!

Let us now proceed to evaluateZg f c . The functional integral over forms

Ct,C̄t ,C
l,C̄l ,C

E,C̄E ,C
p,C̄p

with the boundary conditions

Cp~t1!5CE~t1!505Ct~t1!5Cl~t1!

again equals one. The remaining part ofZg f c can be factored into an integral overL t ,t,L
l,l

times an integral overLE ,E,Lp ,p. In accordance with~3.30!, we use the boundary condition

t~t1,2!5t1,2, p~t1,2!50

while the other variables are integrated at the endpoints. Then we obtain

E D8tDlDL tDLl exp E
t1

t2
@ iL t~ ṫ2l!1 iLll̇#dt5E dl0~t22t1!

21dF t22t1
t22t1

2l0G
~7.8!

and

E DED8pDLEDLp exp E
t1

t2
dt@ iLEĖ1 iLp~ṗ1H2E!#5~t22t1!

21E dE0d~^H&2E0!,

~7.9!

where ^H&5(t22t1)
21 *t1

t2H(f(t))dt which equalsH(f1) on a classical trajectory throug

f1 . Zg f c is the product of~7.8! and ~7.9!. It contains the factor (t22t1)
22 which gets exactly
J. Math. Phys., Vol. 38, No. 5, May 1997
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cancelled byZghost. This confirms the need to also exponentiate the BFV ghost equation
motion in constructing the CPI. Inserting~7.7!, ~7.8!, and ~7.9! into ~7.1!, we find that for the
boundary conditions

t~t1!5t1 , t~t2!5t2 , fa~t1!5f1
a , fa~t2!5f2

a ,

p~t1!5p~t2!50, c~t1!5c~t2!50,

c̄~t1!5 c̄~t2!50, Ca~t1!5C1
a , Ca~t2!5C2

a ,

all other forms50 at t1 ~7.10!

we get

E D8m exp i E dtL̃J

5E dl0dS t22t1
t22t1

2l0DdE0d~^H&2E0!D8fDLD8CDC̄

3exp E
t1

t2F iLa~ḟa2hal0!2C̄aĊ
a1l0C̄a

]ha

]fb C
bGdt

5E D8fDLD8CDC̄ exp E
t1

t2F iLaS dfa

dt
2

t22t1
t22t1

haD
2C̄a

dCa

dt
1

t22t1
t22t1

C̄a

]ha

]fb C
bGdt

5E D8fDLD8CDC̄ exp E
t1

t2F iLaS dfa

dt
2haD2C̄a

dCa

dt
1C̄a

]ha

]fb C
bGdt

5K~f2 ,C2 ,t2uf1 ,C1 ,t1!, ~7.11!

where we have made the identification~3.35!. Since, for the boundary conditions~7.10!, the CPI

with actionS̃ J reduces to the propagator~2.14! for p-forms on the original phase space, the theo
is unitary.

In going over to the reparametrization invariant formalism and utilizing the BFV proced
we have introduced the bosonic variablest,E,l,p and ghostsc,P,c̄,P̄. We have found that if we
saturate the forms for these variables at the initial point, by inserting delta-functions and int
ing them out, we get back the CPI on the original phase space. However, the purpose
reparametrization invariant formalism was to bring in the energy, and with it time, as a dyna
variable. Now, we would like to impose different boundary conditions on the CPI, in orde
obtain the propagator forp-forms on the enlarged phase space including (fa,t,E). This is a
prelude to obtaining the propagator forp-forms restricted to the energy surface.

Recall that in the quantum path integral, discussed in Sec. III, it was not possible to fix
time and energy at the endpoints, as a result of the uncertainty principle. In the CPI actionS̃ J , on
the other hand, time and energy are no longer canonically conjugate variables, but ratheL t is
conjugate tot andLE is conjugate toE. Therefore, in the CPI we are allowed to fix both time a
energy at the endpoints

t~t1!5t1 , t~t2!5t2 , E~t1!5E1 , E~t2!5E2 .
J. Math. Phys., Vol. 38, No. 5, May 1997
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Then ~7.9! gets replaced by

E
p150,E1

p250,E2
D8ED8pDLEDLp exp E

t1

t2
dt@ iLEĖ1 iLp~ṗ1H2E!#

5~t22t1!
21d~E22E1!d~^H&2E1!. ~7.12!

Since we want to propagate the forms for these variables, we impose the analogous bo
conditions

Ct~t1!5C1
t , Ct~t2!5C2

t , CE~t1!5C1
E , CE~t2!5C2

E .

The boundary conditions

p~t1!5p~t2!50, c~t1!5c~t2!50, c̄~t1!5 c̄~t2!50

impose the constraints~7.8!, which fixes the relationship between physical time and the param
and ~7.12!, which confines the motion to energy surfaces. To impose similar constraints o
forms, we choose the analogous boundary conditions

Cp~t1!5Cp~t2!50, Cc~t1!5Cc~t2!50, Cc̄~t1!5Cc̄~t2!50.

Now the form integrations will no longer yield one. Instead, we find for the ghost forms

E DCcDC̄cDC
PDC̄PDC

c̄DC̄ c̄DC
P̄DC̄P̄d~Cc~t2!!d~Cc̄~t2!!d~Cc~t1!!d~Cc̄~t1!!

3exp E
t1

t2
dt@2C̄PĊ

P2C̄c~Ċ
c1 iCP!2C̄P̄Ċ

P̄2C̄ c̄~Ċ
c̄2 iC P̄!#5~t22t1!

22. ~7.13!

To evaluate the remaining form integrals, we use the general formula for Grassmann fun
integrals

E DCDC̄dN~C~t2!2C2!d
N~C~t1!2C1!exp E

t1

t2
dt@2C̄mĊ

m1C̄mMn
mCn#

5dN~2C21Ccl~t2 ;t1 ,C1!!, ~7.14!

where

Ccl
m ~t2 ;t1 ,C1!5FT exp E

t1

t2
dsM~s!G

n

m

C1
n ~7.15!

is the solution of the equation of motion for the components ofC, with initial conditionC(t1)
5C1 .

The equations of motion for the forms can be read off from~4.14!. Their solutions are

Ccl
a ~t!5Sb

a~l0~t2t1!,f1!C1
b1~t2t1!h

a~fcl~l0~t2t1!,f1!!C1
l ,

Ct~t!5C1
t 1~t2t1!C1

l , CE~t!5C1
E ,

Cl~t!5C1
l , Cp~t!5C1

p1~t2t1!SC1
E2C1

a ]H

]faD , ~7.16!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where

Sb
a~l0~t2t1!,f1!5FT exp E

t1

t

dt8l0

]h

]f
~fcl~l0~t82t1!,f1!!G

b

a

andfcl(l0(t2t1),f1) is the solution ofḟ5l0h(f) with initial conditionf(t1)5f1 . Combin-
ing ~7.16!, ~7.14!, ~7.13!, ~7.12!, and~7.8!, we obtain

K~f2 ,C2 ,t2 ,C2
t ,E2 ,C2

Euf1 ,C1 ,t1 ,C1
t ,E1 ,C1

E!

5E D8m exp i E
t1

t2
dtL̃J

5~t22t1!
22d~E22E1!E

f1

f2
D8fE dl0dC1

ldS t22t1
t22t1

2l0D d~^H&2E1!

3d2n~2C21S~l0~t22t1!,f1!C11~t22t1!h~fcl~l0~t22t1!,f1!!C1
l!

3~2C2
t 1C1

t 1~t22t1!C1
l!~2C2

E1C1
E!~t22t1!SC1

E2C1
a ]H

]fa ~f1! D
3exp i E

t1

t2
dtLa~ḟa2l0h

a!

5sd~E22E1!d~H~f1!2E1!d
2n~f22fcl~ t22t1 ,f1!!

3Fd2n~2S21C21C1!1ha~f1!
]

]C1
a d2n~2S21C21C1!~2C2

t 1C1
t !G

3~2C2
E1C1

E!SC1
E2C1

a ]H

]fa ~f1! D , ~7.17!

wheres561 is an overall factor coming from the ordering of Grassmann variables,S21 is the
inverse ofS((t22t1),f1) and we have made use of the fact3 that det@S#51.

Equation~7.17! gives an expression for the propagator ofp-forms on the enlarged phase spa
which includes time and energy. We would like to find the propagator for forms confined
phase space surface at fixed energy. In order to do this we need to impose additional rest
at the boundary of the path integral. To propagate scalar distributions on the energy s
H(f)5E0 , we simply insertd(E12E0) into the initial state and then integrate out the energy
both endpoints. Since the formCE can be thought of as a first-order variation inE, the corre-
sponding restriction on forms entails the insertion ofd(C1

E)5C1
E into the initial state and the

integration overCE at both endpoints. We have also fixed the time at each endpoint. The c
sponding boundary condition for forms is

Ct~t1!50, Ct~t2!50.

Imposing these additional boundary conditions, we obtain the result

K@f2 ,C2uf1 ,C1#uE05E dE2dE1dC2
EdC1

EdC2
t dC1

t C2
t

3K~f2 ,C2 ,t2 ,C2
t ,E2 ,C2

Euf1 ,C1 ,t1 ,C1
t ,E1 ,C1

E!C1
t C1

Ed~E12E0!

5sd~H~f1!2E0!d
2n~f22fcl~ t22t1 ,f1!!
J. Math. Phys., Vol. 38, No. 5, May 1997
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d2n~2S21C21C1!C1
a ]H

]fa ~f1!. ~7.18!

This propagator only makes sense forp-forms with p>1. It contains the two constraining delta
functionsd(H(f1)2E0) andC1

a(]H/]fa)(f1)5N15d(N1). The first constraint simply ensure

that the support of any state%̃(f,C) propagated by~7.18! lies on the energy surfac
M2n21(E0). The delta-functiond(N1) ensures that allp-forms in the expansion~2.12! of

%̃(f,C) are confined to the energy surface. The one-formN1 points out of the energy surface i
the sense that the interior product ofN1 with any vector in the tangent spaceTfM2n21(E0), to
the energy surface, is zero. We can imagine performing a transformation on the cotangen
Tf*M2n of the form

$Ca;a51•••2n%→$N,C82•••C82n%.

Then anyp-form %̃ confined to the energy surface may not containN as a factor. In terms of the
wedge product, this means that

N%̃Þ0. ~7.19!

We see from ~7.18! that only p-forms which satisfy ~7.19! can be propagated b
K@f2 ,C2uf1 ,C1#uE0.

VIII. CONCLUSIONS

In this paper we have developed the classical path integral for a reparametrization inv
formulation of classical mechanics in which time and energy appear as dynamical vari
Following the BFV procedure, we built an effective Lagrangian containing, in addition to t
energy and the original phase space variables, ghosts and auxilliary fields. The Euler–La
equations for this effective Lagrangian are then the classical equations of motion. We cons
the CPI by introducing a set of fieldsL,C,C̄, which appear in the exponential representation o
delta-functional that projects onto the equations of motion and a Jacobian. We also obtain
CPI action by replacing each field in the BFV effective Lagrangian by a superfield and
integrating over superspace.

The same procedure can be applied to any theory with reparametrization invariance, o
gauge invariance. Gozzi30 constructed the classical path integral for the relativistic particle, s
ing from the BFV Lagrangian in Ref. 25. Carta31 developed the classical path integral for Yang
Mills theory.

Now that we have a classical path integral formalism in which the energy is singled ou
next thing to do is to use it to study the behavior of Hamiltonian systems as a function of en
It would be interesting to calculate Lyapunov exponents and partition functions3 using the classi-
cal path integral~7.18! which sits on the energy surface. Another important problem is to fin
necessary and sufficient condition for ergodicity based on the supersymmetry inherent
reparametrization invariant formulation of the CPI. We hope to come back to these issues
future.
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A method for solving Riemann–Hilbert boundary value
problems in nonreciprocal wave propagation
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A new method for solving periodic boundary value problems in nonreciprocal wave
propagation is described. A characteristic functionx0 and its complementary func-
tion x̃0 are introduced after the particular problem has been reduced to a Riemann–
Hilbert boundary value problem based on complex variable theory. The Taylor
coefficientsnn and ñn of x0 and x̃0 , respectively, compose a system of linear
equations to deduce a characteristic equation. A numerical example is presented for
magnetostatic surface waves propagating in a ferrite film on which metallic stripes
are deposited periodically. ©1997 American Institute of Physics.
@S0022-2488~97!02805-3#

I. INTRODUCTION

Periodic boundary value problems appearing in wave propagation and scattering hav
studied using various methods.1–3Particularly, waves in periodic metal stripe structures have b
investigated by techniques borrowed from analyses of the Riemann–Hilbert problems.4 Agranov-
ich and his co-workers applied the techniques to a structure with one aperture in a perio5 A
two-aperture problem was examined by Gestrin and his co-workers.6 Recently Ziolkowski have
reported on an (n21)-aperture problem.7 Most of the reports, however, have been restricted
those for reciprocal systems. The present paper has developed the techniques to apply to t
nonreciprocal systems such as a magnetized ferrite and a magnetized plasma.

There are a variety of types of wave propagation which are formulated in the dual s
problem

(
n

ane
inf50, fPDA , ~1!

(
n

Gnane
inf50, fPDB ~2!

after we have imposed boundary conditions on them. In the above equations,f is a coordinate
with a period 2p, DA andDB are two different domains which are indicated byf as u,ufu
<p and ufu,u, respectively, the coefficientsan’s are unknown andGn’s are known, and the
symbol(n denotes to sum up all over integersn. Furthermore, we shall have

lim
n→2`

Gn

unu
5g2, lim

n→1`

Gn

unu
5g1, ~3!
0022-2488/97/38(5)/2417/18/$10.00
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whereg2 and g1 are positive constants. If medium is reciprocal, the relationshipg25g1 is
valid, while the equality relation does not hold any more for nonreciprocal medium, about w
we are going to study.

II. THE RIEMANN–HILBERT PROBLEM

We adopt the following sequencesxn anden in place ofan andGn , respectively,

xn5 Hnan ,a0 ,
nÞ0
n50, ~4!

Gn5H unu~g21g2en!5ng2~212en!, n<21
2g2e0 , n50
unu~g12g2en!5ng2~h2en!, n>1,

~5!

whereh5g1/g2.0. From Eq.~3!, it is evident thaten→0, asunu→`. Using xn and en , we
rewrite Eqs.~1! and ~2! as follows:

(
nÞ0

xne
inf50, fPDA , ~6!

2 (
n<21

xne
inf1h (

n>1
xne

inf5(
n

enxne
inf[F~eif!, fPDB , ~7!

(
nÞ0

~2 !n

n
xn1x050. ~8!

Equation~6! is a result of differentiation of Eq.~1!. In order to complement the terms dropped o
by the differentiation, Eq.~8! is induced from Eq.~1! by substitutingf5p.

We introduce a complex variablez5eif. Then the domainsDA andDB are mapped to arcs
LA andLB on the unit circle, respectively, as shown in Fig. 1, where both end points of th
LB are denoted bya5eiu and ā5e2 iu. Let us introduce a complex functionx(z):

x~z!5H x1~z!5 (
n>1

xnz
n, uzu,1

x2~z!52 (
n<21

xnz
n, uzu.1

, ~9!

where superscripts1 and2 imply the inside and the outside of the unit circle, respectively. Wh
uzuÞ1, x(z) is analytic due to the definition. On the other hand, Eqs.~6! and ~7! give

x1~z!5x2~z!, zPLA , ~10!

hx1~z!52x2~z!1F~z!, zPLB . ~11!

Thereforex(z) is continuous on theLA and has a branch cut on theLB . Now we are confronted
with a problem to find outx(z) that means the nonhomogeneous Riemann–Hilbert problem8

Before determining the functionx(z), we introduce another functionx0(z) which has the
same branch cut on theLB , whereas the following equation holds.

hx0
1~z!52x0

2~z!, zPLB . ~12!
J. Math. Phys., Vol. 38, No. 5, May 1997
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This makes the homogeneous Riemann–Hilbert problem. One of the solutions has been
out as

x0~z!5
1

A~z2a!~z2ā !
S z2a

az21D
iA

5
1

A~z2a!~z2ā !
F z2a

a~z2ā !G
iA

, ~13!

where

A5
ln h

2p
.

This may be verified by calculating (z2a) iA2(1/2) and (z2ā)2 iA2(1/2) around the branch point
a and ā, respectively. Figure 2 shows the relief maps of the functionx0(z).

Dividing both sides of Eqs.~10! and~11! by x0
1(z)5x0

2(z) andhx0
1(z)52x0

2(z), respec-
tively, we get

FIG. 1. The complex plane to show the mapping ofDA andDB to the arcsLA andLB on the unit circle.
J. Math. Phys., Vol. 38, No. 5, May 1997
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FIG. 2. Relief maps of the functionx0(z) with h52 and~a! u5p/2, ~b! u53p/4.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



wise

2421Uehara, Yashiro, and Ohkawa: Riemann–Hilbert boundary value problems

¬¬¬¬¬¬¬¬¬¬
x1~z!

x0
1~z!

2
x2~z!

x0
2~z!

5 H0, zPLA
r~z!, zPLB

, ~14!

where

r~z!52
F~z!

x0
2~z!

52
(nenxnz

n

x0
2~z!

.

The solutionx(z)/x0(z) of Eq. ~14! is given as follows:9

x~z!

x0~z!
5

1

2p i ELB
r~z!

z2z
dz1P~z!, ~15!

whereP(z) is an arbitrary polynomial and the integration path is taken in the counterclock
direction alongLB . Whenuzu→`, we havex(z)5O(z21) andx0(z)5O(z21). Thus, the poly-
nomialP(z) should be a constant. Denote it byc and the functionx(z) is found as

x~z!5x0~z!F 1

2p i ELB
r~z!

z2z
dz1cG . ~16!

III. DERIVATION OF CHARACTERISTIC EQUATION

As both x(z) and r~z! contain xn’s, we should reform Eq.~16! into a system of linear
equations forxn’s.

Let us calculatex1(z)2x2(z). First, we representx1(z) andx2(z) on theLB as

x6~z!5x0
6~z!F 1

2p i ELB6
r~z!

z2z
dz1cG , zPLB ,

where the contourLB
1(LB

2) is indented outward~inward! at zPLB , as shown in Fig. 3. Referring
to Eq. ~12! we get

FIG. 3. The distorted contoursLB
1 andLB

2 .
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
x1~z!2x2~z!5
x0

1~z!

2p i F E
LB

2

(nenxnz
n

~z2z!x0
1~z!

dz2E
LB

1

(nenxnz
n

~z2z!x0
2~z!

dzG
1@x0

1~z!2x0
2~z!#c, zPLB .

Sincex0
1(z)5x0

2(z) on theLA , we may extend the integral pathsLB
2 andLB

1 over the entire
circles uzu512 and uzu511 , respectively, where 12(11) is the value approached to 1 from
below~above!.

x1~z!2x2~z!5
x0

1~z!

2p i F R
uzu512

(nenxnz
n

~z2z!x0
1~z!

dz2 R
uzu511

(nenxnz
n

~z2z!x0
2~z!

dzG1@x0
1~z!

2x0
2~z!#c[x0

1~z!(
n

Vn~z!enxn1@x0
1~z!2x0

2~z!#c, zPLB , ~17!

where

Vn~z!5
1

2p i F R
uzu512

zn

~z2z!x0
1~z!

dz2 R
uzu511

zn

~z2z!x0
2~z!

dzG , uzu51. ~18!

Sincex0
1(z)2x0

2(z)5(11h)x0
1(z) on theLB , Eq. ~17! is rewritten as

x1~z!2x2~z!5@x0
1~z!2x0

2~z!#F 1

11h (
n

Vn~z!enxn1cG , uzu51,

which is valid not only on theLB but also on theLA becausex1(z)5x2(z) and x0
1(z)

5x0
2(z) on theLA . Expanding the left-hand side in the power series ofz by use of Eq.~9!,

multiplying both sides byz2m21/(2p i ), and integrating over the unit circleuzu51 gives rise to

(
n

Vm
n enxn1Rmc5 H xm , mÞ0

0, m50, ~19!

where

Vm
n 5

1

11h

1

2p i ELB@x0
1~z!2x0

2~z!#Vn~z!z2m21dz, ~20!

Rm5
1

2p i ELB@x0
1~z!2x0

2~z!#z2m21dz. ~21!

Substituting Eq.~19! into Eq. ~8! yields

(
n

Wnenxn1x01Qc50, ~22!

where

Wn5 (
mÞ0

~2 !m

m
Vm
n , ~23!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Q5 (
mÞ0

~2 !m

m
Rm . ~24!

Combining Eqs.~19! and ~22! leads to a homogeneous system of equations which produce
final result:

1
� A A A A A A

••• 12V22
22e22 2V22

21e21 2V22
0 e0 2R22 2V22

1 e1 2V22
2 e2 •••

••• 2V21
22e22 12V21

21e21 2V21
0 e0 2R21 2V21

1 e1 2V21
2 e2 •••

••• W22e22 W21e21 11W0e0 Q W1e1 W2e2 •••

••• 2V0
22e22 2V0

21e21 2V0
0e0 2R0 2V0

1e1 2V0
2e2 •••

••• 2V1
22e22 2V1

21e21 2V1
0e0 2R1 12V1

1e1 2V1
2e2 •••

••• 2V2
22e22 2V2

21e21 2V2
0e0 2R2 2V2

1e1 12V2
2e2 •••

A A A A A A �

2 S
A
x22

x21

x0
c
x1
x2
A

D
50. ~25!

The characteristic equation is obtained by putting the determinant of the above coefficient
into zero.

IV. CHARACTERISTIC FUNCTION x0(z)

In this section, we will examine the characteristic functionx0(z) defined by Eq.~13!. We
begin with determining the branch ofx0(z). Let x be a real number and take the followin
branches:

A~x2a!~x2ā !5Aux2au25 H 1ux2au, 2`,x,1
2ux2au, 1,x,1`, ~26!

F x2a

a~x2ā !G
iA

5F ei arg~a2x!

eiue2 i arg~a2x!G iA5 H e2A@2 Arg~a2x!2u#, 2`,x,1
e2A@2 Arg~a2x!2u22p#, 1,x,1`,

~27!

where Arg(a2x) lies in between 0 andp. It is evident thatx0(x) shows a discontinuity atx
51, i.e.,x0(11)52e2pAx0(12)52hx0(12). Whenx50 or 6`, we have

x0~0!5e2Au, lim
x→6`

xx0~x!52eAu. ~28!

Let us introduce the complementary functionx̃0(z) that is defined by replacingh by (1/h) or
A by 2A in the expression forx0(z):

x̃0~z!5
1

A~z2a!~z2ā !
S z2a

az21D
2 iA

. ~29!

If we denote the coefficients in the power expansions forx0(z) and x̃0(z) by nn and ñn ,
respectively, they are written
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
x0~z!5H x0
1~z!5 (

n>0
nnz

n, uzu,1

x0
2~z!52 (

n<21
nnz

n, uzu.1,
x̃0~z!5H x̃0

1~z!5 (
n>0

ñnz
n, uzu,1

x̃0
2~z!52 (

n<21
ñnz

n, uzu.1.
~30!

Note that, for the reciprocal case ofA50, we havenn5 ñn5Pn(cosu),5 wherePn is Legendre’s
polynomial. Sincex0

1(z)2x0
2(z)5(nnnz

n for uzu51, multiplying both sides byz2m21/(2p i ),
and integrating over the unit circleuzu51, we get the following integral representation:

nm5
1

2p i ELB@x0
1~z!2x0

2~z!#z2m21dz. ~31!

On referring to Eq.~28!,

n05e2Au, n215eAu.

Then, replacingA by 2A yields

ñ05eAu, ñ215e2Au.

Paying attention to the branch ofA• and assuminguzu,1 or uz21u.1,

(
n>0

ñnz
n5

1

A~z2a!~z2ā !
S z2a

az21D
2 iA

5
2z21

A~z212a!~z212a!
S z212a

az2121D
iA

5z21 (
n<21

nnz
2n.

Equating the coefficients of powers ofz on both sides yieldsñn5n2n21 for n>0. Similarly, we
producenn5 ñ2n21 for n>0. Thus, we see that the following relations hold for all integers
n:

ñn5n2n21 , nn5 ñ2n21 . ~32!

We use the above relations to rewrite the functionsx0
2(z) and x̃ 0

2(z) in Eq. ~30! as follows:

x0
2~z!52 (

n>0
ñnz

2n21, x̃ 0
2~z!52 (

n>0
nnz

2n21, uzu.1. ~33!

It is useful for practical calculations that we have recurrence formulas fornn and ñn . If we
defineu andv asu5cosu andv5sinu, respectively, then we have the relationship:

122uz1z25~z2a!~z2ā !.

When uzu,1,

d

dz FA122uz1z2 S z2a

az21D
2 iA

(
n>0

nnz
nG

5
1

A122uz1z2
S z2a

az21D
2 iA

(
n>0

nn$nz
n212@~2n11!u22Av#zn1~n11!zn11%.

~34!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Since the value in the bracket on the left-hand side is unity, the summation on the right-han
should vanish. In this summation, equating the coefficient ofzn(n>0) to zero yields the following
recurrence formula:

~n11!nn112@~2n11!u22Av#nn1nnn2150. ~35!

On replacingA by 2A, the recurrence formula forñn comes out:

~n11!ñn112@~2n11!u12Av#ñn1nñn2150. ~36!

Although the two formulas given above have been derived forn>0, they are valid for all integers
of n, because Eq.~32! changes one formula forn>0 into another forn<21. Note that, for the
reciprocal case ofA50, both Eqs.~35! and ~36! are coincident with the recurrence formula f
Legendre’s polynomialPn(u). Figure 4 showsnn as a function ofu graphically.

Let us expand 1/x0
1(z) and 1/x0

2(z) into the power series

1

x0
1~z!

5~122uz1z2!x̃0
1~z!5~122uz1z2! (

n>0
ñnz

n[ (
n>0

m̃nz
n, uzu,1,

~37!

1

x0
2~z!

5~122uz1z2!x̃0
2~z!52~122uz1z2! (

n>0
nnz

2n21[2 (
n>0

mnz
2n11, uzu.1,

wheremn and m̃n are defined by

FIG. 4. Variations of the functionnn with the different values of the parameterh.
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
m05n0 , m15n122un0 , mn5nn22unn211nn22 , n>2,
~38!

m̃05 ñ0 , m̃15 ñ122uñ0 , m̃n5 ñn22uñn211 ñn22 , n>2.

Equation~37! gives the following integral representations:

mn52
1

2p i R
uzu511

zn22

x0
2~z!

dz, m̃n5
1

2p i R
uzu512

z2n21

x0
1~z!

dz. ~39!

See to it thatmn5m̃n50 for negative integersn.

V. EVALUATION OF Rm , Vm
n , Q, AND Wn

According to Eqs.~21! and ~31!, we find immediately that

Rm5nm . ~40!

We use Eq.~39! and the formula 1/(12r )5Sk>0r
k(ur u,1) to rearrangeVn(z) in Eq. ~18! as

follows:

Vn~z!5
1

2p i F R
uzu512

(
k>0

2zn1kz212k

x0
1~z!

dz2 R
uzu511

(
k>0

zn212kzk

x0
2~z!

dzG
5 (

k>0
~2m̃2n212kz

212k1mn112kz
k!, uzu51. ~41!

Using Eq.~31! we reform Eq.~20! to have

Vm
n 5

1

11h

1

2p i ELB@x0
1~z!2x0

2~z!#(
k>0

~2m̃2n212kz
2m222k1mn112kz

2m211k!dz

5
1

11h (
k>0

~2m̃2n212knm111k1mn112knm2k!. ~42!

Pick up nonzero terms to make

Vm
n 55

2
1

11h (
k50

2n21

m̃2n212knm111k , n<22

1

11h
~nmn02nm11n21!, n521

1

11h (
k50

n11

mn112kñ2m211k , n>0

. ~43!

In order to simplify the terms(k50
N m̃N2knp1k and(k50

N mN2kñp1k in the above, we replace
the lower bound ofn in the summations in Eq.~34! by p, and use 1/x0

1(z) andx̃0
1(z) on the left-

and right-hand sides, respectively. Thus, we obtain

d

dz F 1

x0
1~z! (

n>p
nnz

nG5x̃0
1~z! (

n>p
nn$nz

n212@~2n11!u22Av#zn1~n11!zn11%, uzu,1,

which is reformed to
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
d

dz (
m>0

(
k>0

m̃mnp1kz
m1p1k5 (

m>0
ñmz

m~pnpz
p212pnp21z

p!,

if 1/x0
1(z) and x̃0

1(z) are expanded into the power series and Eq.~35! is used. Integrating both
sides and dividing byzp, we equate the coefficients ofzN(N>1,NÞ2p) on both sides to yield

(
k50

N

m̃N2knp1k5
p

N1p
~ ñNnp2 ñN21np21!5

p

N1p
~n2N21np2n2Nnp21!, N>1, NÞ2p.

In the same way, we find

(
k50

N

mN2kñp1k5
p

N1p
~nNñp2nN21ñp21!5

p

N1p
~nNn2p212nN21n2p!, N>1, NÞ2p.

Note that the deduction mentioned above is still true even ifp is a real number. Equation~43!
becomes

Vm
n 5

1

11h

m11

m2n
~nmnn112nm11nn!, mÞn ~44!

for all m andn exceptm5n. In particular form521 we find that for alln

V21
n 50. ~45!

Let us considerQ defined by Eq.~24!. Invoking Eq.~40!, Q can be reformed as

Q5 (
mÞ0

~2 !m

m
nm5 (

m<21
E

2`

21

nmt
m21dt2 (

m>1
E

21

0

nmt
m21dt

52E
2`

21 x0
2~ t !

t
dt2E

21

0 x0
1~ t !2n0

t
dt

5e2AuH 2E
2`

21 e2A@u2Arg~a2t !#

tA122ut1t2
dt2E

21

0 e2A@u2Arg~a2t !#2A122ut1t2

tA122ut1t2
dtJ .

Puttingu2Arg(a2t)5j, we havedt/(tA122ut1u2)5dj/(sin j). Thus we obtain the follow-
ing integral representation forQ:

Q5e2AuF E
0

u/2 e2Aj1sin u/sin~j2u!

sin j
dj1E

u/2

u e2Aj

sin j
djG . ~46!

For the reciprocal case ofA50, Eq. ~46! gives simplyQ52 ln@(11u)/2#.5

Finally, let us take upWn . As Eq. ~42! leads to

Vm
n 5

1

11h
~m̃2n1mn11!nm1Vm21

n21 ,

Eq. ~23! becomes

Wn5
1

11h
~m̃2n1mn11!Q1 (

mÞ0

~2 !m

m
Vm21
n21 . ~47!
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Assume thatVp
n and np are given by the integral representations~20! and ~31!, respectively, in

which integerm was replaced by a real numberp. If p is not integer, then

(
mÞ0

~2 !m

p1m
Vp1m21
n21 5(

m

~2 !m

p1m
Vp1m21
n21 2

1

p
Vp21
n21,

which, on referring to Eqs.~20!, ~44!, and~45!, comes to

(
m

~2 !m

p1m
Vp1m21
n21 5

1

11h

1

2p i ELB@x0
1~z!2x0

2~z!#Vn21~z!(
m

~2 !m

p1m
z2~p1m!dz

5
p

sin pp
V21
n2150,

2
1

p
Vp21
n215

1

11h

np21nn2npnn21

n2p
,

where we used(m(2)mz2(p1m)/(p1m)5p/sinpp for uzu51. WhennÞ0, settingp→0, Eq.
~47! is written as

Wn5
1

11h F ~m̃2n1mn11!Q1
n21nn2n0nn21

n G , nÞ0. ~48!

On the other hand,W0 is obtained by substituting Eq.~43! into Eq. ~23!.

W05 (
mÞ0

~2 !m

m

1

11h
~m1ñ2m211m0ñ2m!5

1

11h
~m1Q2m0Q̃!, ~49!

where

Q̃5 (
mÞ0

~2 !m

m
ñm . ~50!

VI. AN EXAMPLE

In this section, we will describe an example of application of our technique to magneto
surface waves~MSSWs!. The MSSWs exist only in a nonreciprocal medium such as magne
yttrium iron garnet~YIG! film, which has an Hermitian permeability tensormJ . The MSSW
technology has potential applications in several signal processing devices, such as enh
delay lines, filters, resonators, and oscillators at microwave frequencies.10 The rigorous analysis o
MSSWs in a periodical structure are important for the design of MSSW filters, however, t
authors’ knowledge, reports on it have apparently not been published to date.

Since MSSWs have a negligible quantity of electric energy, the quasistatic approximat
valid, and thus the magnetic fieldH may be described by a magnetic potentialc such thatH
5“c.11 Then, the magnetic flux densityB is expressed asB5mJH. We have checked that ther
is no difference between the results obtained by the quasistatic approximation and those
full-wave analysis. Hence we use the quasistatic approximation to simplify the formulation

Figure 5 shows the configuration to be examined. The metallic strips are defined direc
the top of YIG film with gadolinium gallium garnet~GGG! substrate. The width of the metalli
strip, the period of the grating, and the thickness of the YIG film ared, l , andh, respectively. The
YIG is uniformly magnetized in the direction of thez axis, so that MSSWs propagate along t
y axis. Then the Hermitian permeability tensormJ is expressed as follows:12
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



netic

Ws.

2429Uehara, Yashiro, and Ohkawa: Riemann–Hilbert boundary value problems

¬¬¬¬¬¬¬¬¬¬
mJ5S m 2 ik 0

ik m 0

0 0 1
D , m512

vMvH

v22vH
2 , k5

vMv

v22vH
2 , vH5gH0 , vM5g4pM0 ,

wherev, g, H0 , 4pM0 are the angular frequency, the gyromagnetic ratio, the biasing mag
field, and the saturation magnetization, respectively.

The magnetic potentialc satisfies Laplace’s equation:11

]2c

]x2
1

]2c

]y2
50. ~51!

According to Floquet’s theorem,12 c can be represented by a periodic functionC which has a
period l with respect to they axis.

c~x,y,t !5C~x,y!ei ~vt2ky!. ~52!

Introducing a new variablef5(2p/ l )y and applying the continuity ofBx andHy at the inter-
faces, we have the following expression forC:

C~x,f!55
2(

n

an
sn

e2bnxeinf, x.0

(
n

an
sn

m cosh@bn~x1h!#1~kn11!sinh@bn~x1h!#

m cosh~bnh!1~m22kn
22kn!sinh~bnh!

einf, 2h,x,0

(
n

an
sn

mebn~x1h!

m cosh~bnh!1~m22kn
22kn!sinh~bnh!

einf, x,2h

,

~53!

where

FIG. 5. Geometry of the periodic structure built on the nonreciprocal medium of YIG for the propagation of MSS
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
bn5Uk2
2np

l U, sn5sgnS k2
2np

l D , kn5ksn ,

andan’s are unknown numbers to be determined. Considering the boundary conditions thBx

vanishes on the strips and thatHy is continuous across the gaps, we get the following d
equations:

(
n

ane
inf50, u,ufu<p, ~54!

(
n

Gnane
inf50, ufu,u, ~55!

Gn5
2m1~m22kn

211!tanh~bnh!

m1~m22kn
22kn!tanh~bnh!

bn , u5
p~ l2d!

l
.

Let us examine the asymptotic behavior ofGn :

lim
n→2`

Gn

unu
5

m2k11

m2k

2p

l
5g2, lim

n→1`

Gn

unu
5

m1k11

m1k

2p

l
5g1,

g1

g2 5
~m1k11!~m2k!

~m2k11!~m1k!
5h.

Since Eqs.~54! and~55! are the same as Eqs.~1! and~2!, we can solve them by the technique th
has been mentioned in the previous sections.

FIG. 6. Dispersion curves for the MSSW propagation withl5200mm andd550, 100, and 150mm.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



G
7

al
st
fre-

tric as

ent

s. In
ding
the
cipro-

aviors
, let
9

2431Uehara, Yashiro, and Ohkawa: Riemann–Hilbert boundary value problems

¬¬¬¬¬¬¬¬¬¬
To give numerical examples, let us assume that the gyromagnetic ratiog51.76
3107 rad s21/Oe, the biasing magnetic fieldH05251 Oe, the saturation magnetization of YI
4pM051760 G, and the thickness of YIGh510mm. Then the MSSWs range from 1.99 to 3.1
GHz.11

The curves of wave numberk versus frequencyf are plotted in Figs. 6 and 7 for sever
different values ofd and l . Since thef -k diagram exhibits a complete periodicity, only the fir
Brillouin zone is shown. We can recognize immediately where the allowed and forbidden
quency bands are located. The curves are asymmetric with respect to thef axis due to the effect
of the nonreciprocality. In the reciprocal system, however, the curves should be symme
shown, for example, in Figs. 5 and 6 of Ref. 2.

Figure 8 shows the field distribution in terms of the intensity of the magnetic fielduHu with
l5200mm andd5100mm when f andk are on the points a1, a2, b, c, d1, and d2 in Fig. 6. The
f values at the points an , b, c, and dn are 2.200 GHz~the middle of the 1st band!, 2.468 GHz~the
top of the 1st band!, 2.588 GHz~the bottom of the 2nd band!, and 2.810 GHz~the middle of the
3rd band!, respectively. The group velocitiesdv/dk are positive in (a1) and (d1), negative in
(a2) and (d2), and near zero in~b! and ~c!, respectively. Thus, the subscripts 1 and 2 repres
forward and backward propagation, respectively. In both (a1) and (a2) the magnetic energy
spreads over the YIG film, so the effect of the nonreciprocality is little in the lower frequencie
~b! and ~c! it is confined within a part of the YIG film, and thus the MSSWs become stan
waves. In (d1) and (d2) it concentrates in the close vicinity of the top and bottom surfaces of
YIG film depending on the propagation direction. This phenomenon is caused by the nonre
cal property of the medium.13

One of the major advantages of the Riemann–Hilbert method is to give asymptotic beh
near the edges explicitly.14 In order to verify the edge conditions near the edges of the strips
us examine surface current densityJz on the strips both numerically and analytically. Figure
shows the numerical results of the intensity and the phase ofJz with l5200mm and d
5100mm when f and k are on the points a1, a2, b, c, d1, and d2 in Fig. 6. To work out the
analytical results ofJz near the edges, we calculate the functionx(z) near the branch pointa.

FIG. 7. Dispersion curves for the MSSW propagation withl5100mm andd525, 50, and 75mm.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Regarding Eq.~16! the limit of the bracket asz→a takes a finite value, so we may deno
x(z)'Cx0(z) whenz'a. Puttingz5eif anda5eiu yields

x~eif!'Cx0~e
if!5

C

A~eif2eiu!~eif2e2 iu!
S eif2eiu

eiueif21D
i ~ ln h/2p!

'C8~f2u!2~1/2!1 i ~ ln h/2p!, f'u.

The surface current densityJz is expressed as

FIG. 8. Field distribution in terms of intensity of magnetic field withl5200mm andd5100mm.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Jz5Hy~x501!2Hy~x502!5 i(
n

Gnane
inf, ~56!

if the factorei (vt2ky) is omitted. Using Eqs.~3! and ~4!, we have the following limit values:

lim
n→2`

Gnan52g2xn , lim
n→1`

Gnan51g1xn .

Since the valueJz in the vicinity of the edges is dominated by the higher harmonics, we get

FIG. 9. Intensity and phase of surface current density on the strip withl5200mm andd5100mm.
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
Jz' i S 2g2 (
n<21

xne
inf1g1 (

n>1
xne

infD
5 i @g2x2~eif!1g1x1~eif!#

'C9~f2u!2~1/2!1 i ~ ln h/2p!, ~57!

uJzu'
uC9u

Af2u
, argJz'

ln@h~f2u!#

2p
1argC9, f'u and f.u.

Now, we obtain the asymptotic behaviors ofJz near the edges analytically as shown in Eq.~57!,
which agrees with the numerical result of Fig. 9. The effect of the nonreciprocal property
rise to the logarithmic behavior of argJz near the edges.15

VII. CONCLUSION

In the present paper, a periodic boundary value problem of one aperture in a perio
nonreciprocal wave propagation has been investigated. The functionnn(u) is introduced in order
to solve the nonreciprocal problems. The results presented include the theory for a rec
system as a special case which has been offered by Agranovich.5 Furthermore, this method can b
extended to solve ann-aperture problem by reforming the functionx0(z) and evaluating its Taylor
coefficientsnn . It can be said that this method is effectively useful for various mixed boun
value problems including a nonreciprocal medium such as a magnetized ferrite and a mag
plasma. A numerical example, which has dealt with magnetostatic surface waves propagati
YIG film, has been given to demonstrate a practical value of using this method. By usin
method, asymptotic behaviors near edges are obtained explicitly. The example, including
sion relations, field distributions, and behaviors of surface current density, reveals some ph
ena caused by nonreciprocal property of the medium. Now we are studying scattering proble
applying this method to periodic structures in a nonreciprocal medium, and we will publi
elsewhere.
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Multiple-time constants of the motion for manifestly
Poincaré -invariant Newtonian-like equations of motion
for point particles
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Schoolhouse Lane and Henry Avenue, Philadelphia, Pennsylvania 19144
and Temple University, Department of Physics, Philadelphia, Pennsylvania, 19122

~Received 6 May 1996; accepted for publication 23 December 1996!

While it is known that manifest Poincare´ invariance ofequations of motionfor an
isolated system ofN interacting point particles is not a guarantee of conserved
quantities, here it is shown that if such equations of motion have a Newtonian-like
form ~e.g., the formalism of Havas and Pleban´ski!, then ten multiple-time constants
of the motion can be constructed by direct integration of the equations of motion.
That these directly integrated quantities may be regarded as the ten standard rela-
tivistic multiple-time conserved quantities is verified by showing that a known
subset, the Lagrangian-based multiple-time conserved quantities that are usually
derived from symmetries of manifestly Poincare´-invariant variational principles,
here can be obtained by substitution of the Lagrangian forces~which are read from
the Newtonian-like Lagrangian equations of motion! into the directly integrated
multiple-time forms. This method of obtaining relativistic multiple-time conserved
quantities shows that, contrary to some previous statements in the literature, a
manifestly Poincare´-invariant ‘‘Newton’s third law of motion’’ is not necessary to
guarantee the existence of a conserved four-momentum. Furthermore, an analogous
calculation in Newtonian mechanics~using a Galilei-invariant integration param-
eter instead of a Poincare´-invariant one! yieldsNewtonianmultiple-time constants
of the motion. The standard one-time forms of Newtonian conserved quantities do
follow from these Newtonian multiple-time constants of the motion when allN
times are chosen to be equal and the two-body forces follow from a sum of particle-
symmetric two-body potential energies depending only on the mutual interparticle
separations. A main result of this direct integration method of obtaining classical
relativistic conserved quantities~which involve integrals over the whole motion! is
that such quantities are far more analogous to the Newtonian multiple-time con-
stants of the motion~which are just integrals of the equations of motion, indepen-
dent of any symmetries of these equations! than to the standard Newtonian conser-
vation laws ~which apply only under restricted conditions!. © 1997 American
Institute of Physics.@S0022-2488~97!00905-5#

I. INTRODUCTION

There are three common manifestly Poincare´-invariant ~MPI! approaches1 to the classical
relativistic dynamics of an isolated system ofN interacting point particles. These approaches
analogous to those of classical nonrelativistic mechanics, viz., Newtonian, Lagrangian, and
tonian. While the three nonrelativistic formalisms are equivalent, the same cannot be said
relativistic formalisms.

The MPI Hamiltonian approach has lead to ‘‘no-interaction’’ theorems,2 or to a device such as
not having particle coordinates as canonical coordinates,3 or to dealing with constraints.4 In this
approach, the conservation laws are built in from the start.

a!Permanent address; Electronic mail address: woodcockh@hardy.texsci.edu
0022-2488/97/38(5)/2435/18/$10.00
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The MPI Lagrangian approach follows from a MPI Fokker-type variational principle.5 In this
approach,6 there are standard methods7 for constructing MPI multiple-time conserved quantiti
by using infinitesimal symmetry transformations of the Fokker variational principle and Noet
theorem.8

There are at least three MPI Newtonian-like approaches.1 ‘‘Newtonian-like’’ here means that
the total four-force on particlei , which is due to the otherN21 particles, is proportional to the
four-acceleration of particlei . The earliest of these approaches is that of Havas and Pleban´ski.9 A
second is the equations of motion of Van Dam and Wigner.10 A third occurs within Predictive
Relativistic Mechanics.11 While revisiting the formalism of Havas and Pleban´ski, the issue arose
as to whether such MPI equations of motion have the ten standard conserved quantities
authors12,13 have emphasized that invariance of an equation of motion, even under a group
not guarantee conservation laws. However, it is shown in Sec. III that if MPI equations of m
have a Newtonian-like form, then ten multiple-time constants of the motion can be construc
direct integration14 of the equations of motion. If these directly integrated constants of the mo
are differentiated with respect to any one of theN times ~one proper time for each of theN
interacting particles!, they vanish by virtue of the equations of motion. Thus, the numerical v
of the multiple-time constant of the motion is independent of where on theN world-lines theN
proper times are chosen for its evaluation.

In the Newtonian mechanics of an isolated system ofN interacting point particles, som
authors13,15distinguish between the 6N constants of the motion~or ‘‘integrals’’ of the equations of
motion, independent of any symmetries of these equations; such integrals can be traced
6N initial conditions!, and the ten standard13 Newtonianconservation laws, which are the only
independent integrals involving algebraic combinations of the time, the coordinates, and t
locities of the particles, assuming that the potential energies are themselves algebraic func
the positions. However, in relativistic mechanics, the derivation done in Sec. III shows that
are commonly called ‘‘classical relativistic conservation laws’’~which involve integrals over the
whole motion! are more analogous to the Newtonian multiple-time constants of the motion
rived in Newtonian mechanics in Appendix A than to the standard Newtonian conservation
However, since the Newtonianlimits of the ten MPILagrangian forms6,8 of these relativistic
‘‘conservation laws’’ become in that limit16,17 the ten standard Newtonian conservation laws, i
not clear in the relativistic case whether maintaining a distinction between constants of the m
and conservation laws is meaningful, particularly since the adjective ‘‘algebraic’’ no longe
plies.

Lagrangian MPI equations of motion6–8 ~which involve an integration over the whole world
line of particle j for any point on the worldline of particlei with which it has a two-body
interaction! are a subset of the Newtonian-like MPI equations of motion.9 Thus, toverify that the
directly integrated multiple-time conserved quantitiesPm andLmn found in Sec. III give known
results, in Sec. IV the ten standard Lagrangian multiple-time conserved quantities6,8 are calculated
by substitution of the Lagrangian four-force~read from the Newtonian-like Lagrangian equatio
of motion! into the directly integrated multiple-time forms.~To obtain the standard form of th
LagrangianLmn also requires explicit use of the Poincare´ invariance of the Lagrangian kerne
L i j .!

This direct-integration method for calculating MPI multiple-time constants of the motion f
MPI Newtonian-like equations of motion requires a MPI integration parameter.18 Similarly, New-
tonianmultiple-time constants of the motion are derived in Appendix A from the Galilei-invar
Newtonian equations of motion by an analogous method, i.e., direct integration on a G
invariant parameter. Naturally, such Newtonian quantities are highly artificial. A redeeming
of Newtonian mechanics is that the equations can be written in terms ofonetime. Of course, when
these multiple Newtonian times are chosen all to be equal and the two-body forces are de
from a sum of particle-symmetric two-body potential energies dependent only on the m
interparticle separations, these Newtonian multiple-time constants of the motion become th
J. Math. Phys., Vol. 38, No. 5, May 1997
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dard single-time Newtonian conservation laws, as shown in Appendix A.
Furthermore, this direct-integration method of obtaining MPI multiple-time conserved q

tities shows that there is no need for a MPI ‘‘Newton’s third law’’ to guarantee the existence
MPI multiple-time four-momentum, contradicting some previous statements in the literatu19

Indeed, as shown in Appendix A, even inNewtonianmechanics it is not needed for theexistence
of a multiple-time constant of the motion corresponding to translational momentum. Howev
the standard one-time Newtonian form is desired, then equal times and two-body forces foll
from a sum of particle-symmetric potential energies are sufficient to guarantee it.

Since the MPI Newtonian-like formalism9 of Havas and Pleban´ski is the most general of the
three MPI formalisms, it will be used in this paper, and their formalism is reviewed briefly in
II. In Sec. III, the ten multiple-time relativistic constants of the motion are derived by dire
integrating the Newtonian-like equations of motion. These quantities are verified in Sec.
substitution of the forces read from the Lagrangian equations of motion into the ten di
integrated conserved quantities; this results in the standard Lagrangian multiple-time con
quantities. The results are discussed in Sec. V. Four of the Newtonian analogues are calcu
Appendix A; the other six are similarly calculated and only their results are quoted.

II. THE MPI NEWTONIAN-LIKE FORMALISM OF HAVAS AND PLEBAN´ SKI

For N classical relativistic interacting point particles, the worldline of thei th particle with
four-coordinateszi

m(t i)5@ t i(t i),r i(t i)# is here parametrized by the proper timet i , where

dt i5~hmn dzi
m dzi

n!1/2, ~1!

and where

hmn50 if mÞn, h0051, h115h225h3352c22 ~2a!

is the metric of the four-space with

hmrhrn5dm
n , ~2b!

dm
n being the Kroneker delta. These allow definition of the four-velocityv i

m(t i) and four-
accelerationai

m(t i) as

v i
m~t i ![

dzi
m~t i !

dt i
, ai

m~t i ![
dv i

m~t i !

dt i
. ~3!

These two quantities are related by

v i
maim50, ~4!

which follows from the choice of~1! as the invariant parameter.
In the absence of external forces, the force on particlei is due to the otherN21 particles. The

MPI Newtonian-like equations of motion are

dpi
m~t i !

dt i
5(

jÞ i
Fi j

m~si j
a ,v i

a ,v j
a ,ai

a ,aj
a!ugi j50[Fi

m , ~5!

where

pi
m~t i ![miv i

m~t i !, ~6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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mi is the inertial mass, andgi j is any function whatever of the four independent two-bo
Poincare´-invariants,6 viz.,

si j
2[si j

asi j a[~zi
a2zj

a!~zia2zja!, v i j[v i
av ja,

~7!

k i[v i
asji a, k j[v j

asi j a.

The purpose of the restrictiongi j50 is to invariantly connect one or more points on the worldli
of particle j to a point on the worldline of particlei so that the invariant parameter ofi can be the
ultimate independent variable in the equation of motion. One possible restriction is an integ
over the whole worldline10,6 of particle j on the invariant parameter of particlej . The original
intention9 of the authors of this formalism was to construct a mechanics with Newtonian caus
so no derivatives of the positions higher than the second appear in the forces. The most
form of the ~four-vector! two-body force satisfying these requirements and

v iaFi j
augi j5050, ~8!

which follows from Eqs.~4!–~6!, can be verified to be

Fi j
mugi j505$~si j

m1k iv i
m! f i j 11~v j

m2v i
mv i j ! f i j 21ai

m f i j 31@aj
m2v i

m~v i
aaja!# f i j 4%ugi j50,

~9!

where thefs are arbitrary functions of the invariants~7!. Equation~9! shows that in this formalism

Fi j
mÞ2F ji

m , ~10!

i.e., there is no MPI Newton’s third law, in general. Of course, special cases of~9! do have this
property.20 Havas and Pleban´ski noted:21 ‘‘It is conceivable that different choices of thef ’s and
g are equivalent in the sense of leading to the same manifold of solutions.’’ It also should be
that while the restrictionsgi j50 here are written on the whole forceFi j

m , the force could be
generalized22 to having a differentgi ja50 for each term in the force,a51,...,4. Indeed, each
f i ja could be a sum of terms, each with a differentgi ja ,b50, b running over the number of term
in eachf . Such generality is not needed here.

III. THE TEN MPI MULTIPLE-TIME CONSERVED QUANTITIES

A. Four-momentum

This calculation is motivated by the forms found in the Lagrangian cases.6,8 Integration23 of
(21/2) of Eq. ~5! on the proper time of thei th worldline from2` to an arbitrary proper time
t i and addition of that result to (1/2) Eq.~5! integrated from thesamearbitrary proper timet i to
` yield

~1/2!@pi
m~`!1pi

m~2`!#5pi
m~t i !1~1/2!S E

t i

`

2E
2`

t i DFi
m dt i8 . ~11!

Addition of all N such equations gives

~1/2!(
i

@pi
m~`!1pi

m~2`!#5(
i
pi

m~t i !1~1/2!(
i

S E
t i

`

2E
2`

t i DFi
m dt i8 . ~12!

The left-hand side of Eq.~12! is the average of the sum of all thepi
m evaluated at̀ and at

2`; it is clearly independent of theN proper timest i on which the right-hand side appears
depend. This suggests defining
J. Math. Phys., Vol. 38, No. 5, May 1997
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~1/2!(
i

@pi
m~`!1pi

m~2`!#[Pm, ~13!

or, using Eq.~12!,

Pm[(
i
pi

m~t i !1~1/2!(
i

S E
t i

`

2E
2`

t i D dt i8(
jÞ i

Fi j
mugi j50. ~14!

The integral terms of Eq.~14! constitute the ‘‘interaction four-momentum.’’ It should be not
that no MPI ‘‘third law’’ has been required to establishPm in Eq. ~14!; in fact, as shown in Sec
II, a general forceFi j

mugi j50 @Eq. ~9!# specifically does not have this property. This four-moment
Pm satisfies

S ]

]t i
DPm50, ~15!

for eachi by virtue of the Newtonian-like MPI equations of motion~5!.
It should be noted that the four-momentumPm of Eq. ~14! is ‘‘conserved’’ in the sense of Eq

~15! precisely because theapparentone-particle expression Eq.~11! is ‘‘conserved’’ for each
particle in the sense of Eq.~15!. However, this does not imply that Eq.~11! is trivial; Fi

m from Eq.
~5! already involves a sum overj of Fi j

mugi j50, which is the force on particlei due to particlej .
ThePm of Eq. ~14! shows the contributions of all the particles.

B. Angular momentum and center of mass

It is convenient to begin calculation of the angular momentum and center-of-mass cons
quantities from the differential form of Eq.~5!:

d@pi
m~t i !#5Fi

m dt i . ~16!

Forming from this the antisymmetric expression~in m andn!

zi
@mdpi

n]5zi
[mFi

n] dt i , ~17!

where

zi
[m dpi

n][zi
m dpi

n2zi
n dpi

m , ~18!

Eq. ~17! can be integrated from an arbitrary instantt i on thei th world line to` yielding

E
t i

`

zi
[m dpi

n]5E
t i

`

zi
@mFi

n] dt i8 . ~19!

When the left-hand side of Eq.~19! is integrated by parts, it gives

zi
[mpi

n] u
t i

`

2E
t i

`

v i
[mpi

n] dt i85E
t i

`

zi
[mFi

n] dt i8 . ~20!

The use of Eq.~6! for pi
n makes the second term vanish. Substitution of the upper and lower l

on the left-hand side yields

zi
[mpi

n] u`2zi
[mpi

n] ut i5E
t i

`

zi
[mFi

n] dt i8 . ~21!
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When the same sequence of steps~16! to ~21! is repeated, but with the integration going fro
2` to t i and an overall minus sign included, there results

zi
[mpi

n] u2`2zi
[mpi

n] ut i52E
2`

t i
zi
[mFi

n] dt i8 . ~22!

Adding (1/2) of Eq.~21! and (1/2) of Eq.~22! yields

~1/2!~zi
[mpi

n] u`1zi
[mpi

n] u2`!5zi
[mpi

n] ut i1~1/2!S E
t i

`

2E
2`

t i D zi [mFi
n] dt i8 . ~23!

Summing~23! over allN particles yields

~1/2!(
i

~zi
[mpi

n] u`1zi
[mpi

n] u2`!5(
i
zi
[mpi

n] ut i1~1/2!(
i

S E
t i

`

2E
2`

t i D zi [mFi
n]~t i8! dt i8 .

~24!

Just as in Eq.~12!, the left-hand side of Eq.~24! is independent of theN proper times that
appear on the right-hand side; this suggests defining the antisymmetric second rank tensorLmn as

~1/2!( ~zi
[mpi

n] u`1zi
[mpi

n] u2`![Lmn, ~25!

or, by ~24!,

Lmn[(
i
zi
[mpi

n] ut i1~1/2!(
i

S E
t i

`

2E
2`

t i D zi [mFi
n]~t i8! dt i8 . ~26!

This quantity satisfies a conservation equation

S ]

]t i
DLmn50 ~27!

for eachi by virtue of Eqs.~5!.

IV. VERIFICATION

A. Lagrangian four-momentum

To verify that Eqs.~14! and~26! include that subset of cases of the conservation laws der
from a Fokker variational principle and Noether’s theorem,6–8 the forcesFi

m ~which are read from
the Newtonian-like Lagrangian equations of motion! here will be substituted into Eqs.~14! and
~26!.

The interaction term in the Fokker action principle can be written6

I[2((
i, j

E
2`

`

L i j dt i dt j , ~28!

where

L i j[L i j ~si j
m ,v i

m ,v j
m!. ~29!

The kernelL i j need not be symmetric ini and j . ‘‘Turning the variational crank’’6–8 yields the
Lagrangian equations of motion,
J. Math. Phys., Vol. 38, No. 5, May 1997
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dpi
m~t i !

dt i
5“ i

mVi2
dAi

m

dt i
, ~30!

where

“ i
m[

]

]zim
~31!

and

Vi[Vi~zi
m ,v i

m![(
j. i

E
2`

`

L i j dt j1(
j, i

E
2`

`

L j i dt j , ~32!

and where, in analogy to electrodynamics, the ‘‘vector potential’’Ai
m of Eq. ~30! is

Ai
m~zi

m ,v i
m![

]Vi

]v im
1v i

mSVi2v i
a

]Vi

]v ia
D . ~33!

Comparing the form of Eq.~30! to that of Eq.~5!, the Lagrangian ‘‘force’’Fi
m will be interpreted

as the right-hand side of~30!. Using this interpretation in the four-momentumPm of Eq. ~14!
yields

Pm5(
i
pi

m~t i !1~1/2!(
i

F E
t i

`

2E
2`

t i Gdt i8S“ i
mVi2

dAi
m

dt i8
D . ~34!

Integrating the last term of~34! gives

Pm5(
i
pi

m~t i !1~1/2!(
i

F E
t i

`

2E
2`

t i Gdt i8 “ i
mVi2~1/2!(

i
@Ai

m~`!22Ai
m~t i !1Ai

m~2`!#,

~35!

where, to simplify the notation,

Ai
m~t i ![Ai

m@zi
m~t i !, v i

m~t i !#. ~36!

Using Eq.~32! for the scalar potentialVi in ~35! yields

Pm5(
i

@pi
m~t i !1Ai

m~t i !#2~1/2!(
i

@Ai
m~`!1Ai

m~2`!#

1~1/2!(
i

F E
t i

`

2E
2`

t i Gdt i8 “ i
mS (

j. i
E

2`

`

L i j dt j1(
j, i

E
2`

`

L j i dt j D . ~37!

The integral terms can be expanded to give
J. Math. Phys., Vol. 38, No. 5, May 1997
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Pm[(
i

@pi
m~t i !1Ai

m~t i !#2~1/2!(
i

@Ai
m~`!1Ai

m~2`!#

1~1/2!((
i, j

F E
t i

`

2E
2`

t i G S E
2`

t j
1E

t j

` D dt i8 dt j8 ¹ i
mL i j

1~1/2!((
j, i

F E
t i

`

2E
2`

t i G S E
2`

t j
1E

t j

` D dt i8 dt j8 ¹ i
mL j i . ~38!

Using the definition ofsi j
m from Eq.~7! and the dependence ofL i j on si j

m from ~29!, the operator
“ i

m defined in~31!, when operating onL i j , obeys

“ i
m[

]

]zim
[

]

]si j m
[“ i j

m[2“ j i
m[2“ j

m[2
]

]zjm
. ~39!

Renaming allis to js and vice versa in the second double sum of~38!, utilizing ~39! to replace
“ j i

m by 2“ i j
m , and deletion of canceling double integrals all result in Eq.~38! changing to

Pm5(
i

@pi
m~t i !1Ai

m~t i !#1((
i, j

F E
t i

`E
2`

t j
2E

2`

t i E
t j

` Gdt i8 dt j8 “ i j
mL i j

2~1/2!(
i

@Ai
m~`!1Ai

m~2`!#, ~40!

which, but for the irrelevant constant last term, is the form~Ref. 6! found in H using the method
of Dettman and Schild.7 Of course, this constant term could be deleted from a conserved qua
However, recalling the original definition ofPm in Eq. ~13!, it makes sense to transpose the la
term of ~40! to the left-hand side and replacePm by ~13!, thereby giving

~1/2!(
i

@pi
m~`!1Ai

m~`!#1~1/2!(
i

@pi
m~2`!1Ai

m~2`!#

5(
i

@pi
m~t i !1Ai

m~t i !#1((
i, j

F E
t i

`E
2`

t j
2E

2`

t i E
t j

` Gdt i8 dt j8 “ i j
mL i j . ~41!

Here, it is obvious that plus and minus infinity are two proper times at which the interaction
~the integrals! make a zero contribution.

B. Lagrangian angular momentum and center of mass

Substituting the Lagrangian form~30! of the force intoLmn from ~26! gives

Lmn5(
i
zi
[m~t i !pi

n]~t i !1~1/2!(
i

F E
t i

`

2E
2`

t i Gdt i8zi
[mH“ i

n]Vi2
dAn]

dt i8
J . ~42!

Integration by parts of the term involvingAi
n gives

Lmn5(
i
zi
[m~t i !pi

n]~t i !1~1/2!(
i

F E
t i

`

2E
2`

t i Gdt i8$zi
[m
“ i

n]Vi1v i
[mAi

n]%

2~1/2!(
i

$zi
[mAi

n] u`22zi
[mAi

n] ut i1zi
[mAi

n] u2`%. ~43!
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Use of the definition ofAi
n from Eq.~33! in the term in~43! involving v i

[mAi
n] makes vanish tha

part of v i
[mAi

n] which involvesv i
[mv i

n] . Thus, Eq.~43! becomes

Lmn5(
i
zi
[m~t i !@pi

n]~t i !1Ai
n]~t i !#2~1/2!(

i
@zi

[mAi
n] u

`

1zi
[mAi

n] u
2`

#

1~1/2!(
i

F E
t i

`

2E
2`

t i Gdt i8H zi [m“ i
n]Vi1v i

[m
]Vi

]v in]
J . ~44!

The sum of operators in curly braces in~44! here is designated

Di
@mn#[zi

[m
“ i

n]1v i
[m

]

]v in]
. ~45!

Then using the notation of~45! andVi @from Eq. ~32!# in ~44! yields

Lmn5(
i
zi
[m~t i !@pi

n]~t i !1Ai
n]~t i !#2~1/2!(

i
@zi

[mAi
n] u

`

1zi
[mAi

n] u
2`

#

1~1/2!(
i

S E
t i

`

2E
2`

t i D dt i8 Di
@mn#S (

j. i
E

2`

`

L i j dt j1(
j, i

E
2`

`

L j i dt j D , ~46!

which can be expanded to read

Lmn5(
i
zi
[m~t i !@pi

n]~t i !1Ai
n]~t i !#2~1/2!(

i
@zi

[mAi
n] u

`

1zi
[mAi

n] u
2`

#

1~1/2!((
i, j

F E
t i

`S E
2`

t j
1E

t j

` D 2E
2`

t i S E
2`

t j
1E

t j

` D Gdt i8 dt j8 Di
@mn#L i j

1~1/2!((
i, j

F S E
2`

t i
1E

t i

` D E
t j

`

2S E
2`

t i
1E

t i

` D E
2`

t j Gdt i8 dt j8 Dj
@mn#L i j . ~47!

The last term already is shown with allis andjs renamed by interchanging them. Expanding a
combining integrals in~47! gives

Lmn5(
i
zi
[m~t i !@pi

n]~t i !1Ai
n#~t i !]2~1/2!(

i
@zi

[nAi
n] u`1zi

[mAi
n] u2`#

1~1/2!((
i, j

S E
t i

`E
2`

t j
2E

2`

t i E
t j

` D dt i8 dt j8~Di
@mn#2Dj

@mn#!L i j

1~1/2!((
i, j

S E
t i

`E
t j

`

2E
2`

t i E
2`

t j D dt i8 dt j8~Di
@mn#1Dj

@mn#!L i j . ~48!

The integrand of the last term of~48! vanishes by the Poincare´ invariance ofL i j . This follows
by taking the variation ofL i j as

dL i j5“ i j
mL i jdsi j m1

]L i j

]v im
dv im1

]L i j

]v jm
dv jm. ~49!

Using the operator identity~39! in Eq. ~49! gives
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¬¬¬¬¬¬¬¬¬¬
dL i j5“ i
mL i jdzim1“ j

mL i jdzjm1
]L i j

]v im
dv im1

]L i j

]v jm
dv jm. ~50!

Then, substitution into Eq.~50! of the infinitesimal Poincare´ transformations

dzim5«mnzi
n, dv im5«mnv i

n, «mn52«nm , ~51!

where the«mn are arbitrary constant parameters, changes~50! to

dL i j5“ i
mL i j«mnzi

n1“ j
mL i j«mnzj

n1
]L i j

]v im
«mnv i

n1
]L i j

]v jm
«mnv j

n. ~52!

Factoring out an«mn and using the Poincare´ invariance ofL i j in ~52! gives

dL i j5«mnF S zin¹ i
mL i j1v i

n
]L i j

]v im
D1S zjn¹ j

mL i j1v j
n

]L i j

]v jm
D G50. ~53!

Then, use in~53! of the operatorDi
mn defined in~45! yields

dL i j5«mn@Di
nm1Dj

nm#L i j50. ~54!

Since«mn is antisymmetric inm andn, the remainder of~54! must be symmetric inm andn and,
thus, its antisymmetric part must vanish7

~Di
@nm#1Dj

@nm#!L i j50, ~55!

which shows that the integrand of the last term of Eq.~48! is zero.
Finally, again using the operatorDi

mn from ~45!, the integrand of the remaining integral ter
of Eq. ~48! can be written

~Di
@mn#2Dj

@mn#!L i j5S zi [m“ i
n]1v i

[m
]

]v in]
DL i j2S zj [m¹ j

n]1v j
[m

]

]v jn]
DL i j

5~zi
[m1zj

[m!¹ i
n]L i j1S v i [m ]

]v in]
2v j

[m
]

]v jn]
DL i j , ~56!

which when used in~48! along with ~55! yields

Lmn5(
i
zi
[m~t i !@pi

n]~t i !1Ai
n]~t i !#2~1/2!(

i
@zi

[mAi
n] u`1zi

[mAi
n] u2`#

1~1/2!((
i, j

S E
t i

`E
2`

t j
2E

2`

t i E
t j

` D dt i8 dt j8

3H ~zi
[m1zj

[m!¹ i
n]L i j1S v i [m ]

]v in]
2v j

[m
]

]v jn]
DL i j J , ~57!

which, but for the irrelevant constant terms ‘‘evaluated’’ at plus and minus infinity, is the fo6

derived in H by the method of Dettman and Schild7 for Lmn. Just as in the four-momentum cas
this constant could be deleted from a conserved quantity. However, recalling the expressio~25!
for Lmn suggests transposing this constant term in~57!, replacingLmn by ~25!, thereby giving
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~1/2!(
i

@zi
[m~pi

n]1Ai
n] !#u`1~1/2!(

i
@zi

[m~pi
n]1Ai

n] !#u2`

5(
i
zi
[m~t i !@pi

n]~t i !1Ai
n#~t i !]1~1/2!((

i, j
S E

t i

`E
2`

t j
2E

2`

t i E
t j

` D dt i8 dt j8

3$~zi
[m1zj

[m!“ i
n]L i j %. ~58!

Here, again, plus and minus infinity are two proper times at which the interaction24 terms ~the
integrals! make a zero contribution.

V. DISCUSSION

By directly integrating MPI Newtonian-like equations of motion, ten MPI multiple-time c
stants of the motion have been constructed in Eqs.~14! and ~26!. That these correspond to th
‘‘standard’’ multiple-time conserved quantities has been verified in Sec. IV by showing that
MPI Lagrangian forces~which are a subset of the Havas–Pleban´ski forces and are read from th
Lagrangian Newtonian-like equations of motion! are substituted into Eqs.~14! and ~26!, there
result the ten standard Lagrangian multiple-time conserved quantities,6–8 which previously have
been derived by Noether’s theorem applied to a MPI Fokker variational principle.~The usual form
of Lmn also required using the Poincare´ invariance ofL i j .! Furthermore, these Lagrangian-bas
multiple-time conserved quantities previously have been shown to have the standard on
Newtonian limits.6,16,17

This method of calculating multiple-time constants of the motion is not inherently ‘‘rela
istic,’’ since an analogous method applied in Appendix A to Newtonian equations of motion
Newtonian multiple-time constants of the motion which, when all of theN times are chosen to b
equal and the two-body forces are obtained from sums of particle-symmetric two-body po
energies depending only on the mutual interparticle separations, give the ten usual on
Newtonian conserved quantities.

A MPI third law was not necessary for the existence of the four-momentum constant o
motion, as shown in Sec. III. What is necessary for this calculation is an invariant paramete18 on
which to integrate the Galilei- or Poincare´-invariant Newtonian-like equations of motion.

In the Lagrangian case of Eq.~40! the ‘‘vector potential’’-constant terms at plus and min
infinity, which legitimately could have been discarded in a conserved quantity, when transpo
the other side showed that the actual quantity being conserved ispi

m(t i)1Ai
m(t i), with the

integral term needed at finite values oft i . An alternative way to infer this is to transpose the te
(2)dAi

m/dt i to the momentum side in the Lagrangian equation of motion~30!. However, since
the resulting ‘‘force’’ “ i

mVi fails to satisfy the orthogonality-to-the-velocity condition~8!, the
calculation was not approached that way. However, Eq.~41! could be interpreted as a redefinitio
of the four-momentumPm to include the ‘‘potential momentum.’’ A similar situation occurred
Eq. ~57! in the Lagrangian relativistic case and Eq.~A17! in the Newtonian case. This latte
equation looks, at first glance, like a conservation of kinetic energy, which, of course, doe
exist in the Newtonian physics of interacting particles. However, that occurs because the po
energies have yet to be integrated from the rate-of-doing-work integral I. In Eq.~A29!, the
potential energies at plus and minus infinity have been transposed to the left-hand side s
that, actually, it is kinetic plus potential energy that is best thought of as being conserved,
than deleting the potential energy terms at plus and minus infinity as ‘‘irrelevant constants

While the need for infinite limits of the integrals in the relativistic multiple-time conser
quantities is relatively noncontroversial, some might object to them in the Newtonian c
However, each constant of the motion in Appendix A was reformulated to an initial-condi
independent form, viz.,~A14!, ~A31!, ~A34!, and ~A37!. These same forms result if, instead,t
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
50 is chosen as the initial-condition point. Thus, the infinite limits in the Newtonian case
used solely to have an exact analogy to the relativistic case. They have no real conseque

On the other hand, in the relativistic case, plus and minus infinity are two proper times w
the interaction terms~the integrals! make either a constant contribution or, in the Lagrang
cases, specifically, a zero constant contribution.
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APPENDIX A: THE NEWTONIAN ANALOGS

For a system ofN point particles subject to no external forces, the standard form of New
ian mechanics involves interparticle forces derivable from a sum of two-body potential ene
The equation of motion follows from a variational principle that is invariant up to a ‘‘divergen
under the ten infinitesimal transformations of the Galilei group. Thus, one expects that
analogous toPm in Eq. ~14! and Lmn in Eq. ~26! should exist in Newtonian mechanics als
Although there exist manifestly covariant forms18 of Newtonian mechanics~both flat- and curved-
space–time forms!, these are not common knowledge. Thus, here, the ‘‘three-plus-one’’ form
the constants of the motion will be written as analogues of the MPI forms.

1. A translational-momentum-like multiple-time constant of the motion

Analogous to Eqs.~5!, the Newtonian equations of motion are

dpi~ t !

dt
5(

jÞ i
Fi j @r i j ~ t !#[(

jÞ i
Fi j ~ t ![Fi~ t !, ~A1!

where

pi~ t ![mivi~ t !, ~A2!

mi is the inertial mass of thei th particle, and

Fi j @r i j ~ t !#52“ iV52(
jÞ i

@r i j /r i j #
dVi j @r i j ~ t !#

dri j
, ~A3!

where

V[((
j,k

Vjk~r jk!. ~A4!

The two-body potential energyVjk(r jk) is symmetric inj and k. Integration of (21/2) of Eq.
~A1! on the Galilei-invariant parametert from 2` to an arbitrary timet i and addition of that
result to~1/2! of Eq. ~A1! integrated from the same arbitrary timet i to ` yield

~1/2!@pi~`!1pi~2`!#5pi~ t i !1~1/2!F E
t i

`

2E
2`

t i GFi~ t8!dt8. ~A5!

Addition of all N such equations gives
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~1/2!(
i

@pi~`!1pi~2`!#5(
i
pi~ t i !1~1/2!(

i
F E

t i

`

2E
2`

t i GFi~ t8!dt8. ~A6!

Since the left-hand side of Eq.~A6! is independent of theN timest i on which the right-hand side
appears to depend, this suggests defining

P[~1/2!(
i

@pi~`!1pi~2`!#, ~A7!

or, using~A6!,

P[(
i
pi~ t i !1~1/2!(

i
F E

t i

`

2E
2`

t i GFi~ t8!dt8. ~A8!

The quantityP in Eq. ~A8! has the property for allk that

]

]tk
P50, ~A9!

by virtue of Eq. ~A1!. Thus, the value ofP in Eq. ~A8! is independent of which timest i are
chosen, including, of course, the case that allt i[t. Equation~A8! is the Newtonian analogue o
the 1,2,3-components ofPm in Eq. ~14!.

However, in Newtonian mechanics, all points are equally ‘‘good’’ for using as initial co
tions. This is an important distinction between Newtonian and Special Relativistic dynamics25 In
the latter, the system must be isolated at all times for the various conservation laws to hold;
Newtonian case, it must be isolated only between the~arbitrary! particular initial and final times
chosen. Thus, there ought to be a form ofP in ~A8! in which its independence is evident as
which point ~or points! is ~or are! chosen for the initial conditions. This form follows first from
using the( jÞ iFi j (t8) from ~A1! to replaceFi(t8) in Eq. ~A8!, giving

P5(
i
pi~ t i !1~1/2!((

iÞ j
F E

t i

`

2E
2`

t i GFi j ~ t8!dt8. ~A10!

The double sum in~A10! can be rewritten as

P5(
i
pi~ t i !1~1/2!((

i, j
H F E

t i

`

2E
2`

t i GFi j ~ t8!dt81F E
t j

`

2E
2`

t j GFj i ~ t8!dt8J . ~A11!

Expanding the integrals in~A11! yields

P5(
i
pi~ t i !1S 12D((

i, j
H F E

t i

t j
1E

t j

`

2E
2`

t i GFi j ~ t8!dt81F E
t j

`

2S E
2`

t i
1E

t i

t j D GFj i ~ t8!dt8J ;
~A12!

by combining like integrals, Eq.~A12! becomes

P5(
i
pi~ t i !1~1/2!((

i, j
H E

t i

t j
dt8@Fi j ~ t8!2Fj i ~ t8!#1F E

t j

`

2E
2`

t i G @Fi j ~ t8!1Fj i ~ t8!#dt8J .
~A13!
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To this point, no explicit use has been made of Newton’s third law of motion, although
implicit in Eqs. ~A3! and ~A4!. Thus, the existence of~A8! or ~A13! is quite independent o
Newton’s third law, which is to be expected for a constant of the motion. Invoking the third26 law
in Eq. ~A13! turns the latter into

P5(
i
pi~ t i !1((

i, j
E
t i

t j
dt8Fi j ~ t8!, ~A14!

where the point~or points! chosen for the initial conditions no longer are evident in the form oP.
Equation~A14! still obeys the conservation statement~A9!. If all the Newtonian timest i are set
equal to the same valuet, Eq. ~A14! obviously becomes the standard one-time Newtonian c
servation of translational momentum

P5(
i
pi~ t !. ~A15!

2. A conservation of energy-like multiple-time constant of the motion

Taking (21/2) the scalar product of Eq.~A1! with vi(t)dt and integrating from2` to t i and
adding that result to 1/2 a similar scalar product and integration fromt i to ` yields

~1/2!$~1/2!mi@vi~`!#21~1/2!mi@vi~2`!#2%

5~1/2!mi@vi~ t i !#
21~1/2!F E

t i

`

2E
2`

t i GFi~ t8!•vi~ t8!dt8. ~A16!

Summing over allN particles gives

~1/2!(
i

$~1/2!mi@vi~`!#21~1/2!mi@vi~2`!#2%5(
i

~1/2!mi@vi~ t i !#
21I ,

~A17!

I[S 12D(i S E
t i

`

2E
2`

t i DFi~ t8!•vi~ t8!dt8.

Since the forcesFi(t) in Eq. ~A1! are assumed to be derived from a potential energy func
V in ~A4!, which is a sum of two-body potential energiesVi j (r i j ) depending only on the instan
taneous interparticle separationsr i j (t), Eq. ~A17! can be integrated to be a conservation of t
sum of kinetic and potential energy. Using Eqs.~A3! and ~A4! in the integrand of Eq.~A17!,
changes that integrand to

2H“ i(
jÞ i

Vi j @r i j ~ t8!#J •vi~ t8!, ~A18!

where“ i has annihilated all terms not involving thei th particle. As a notational convenience, th
operatordi /dt can be defined as

di
dt

[vi~ t !•“ i . ~A19!

Use of Eq.~A18! in the integral termI of Eq. ~A17! gives
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I5~1/2!(
i

S E
t i

`

2E
2`

t i D S 2“ i(
jÞ i

Vi j D •vi~ t8!dt8, ~A20!

while use of~A19! in ~A20! gives

I52~1/2!((
iÞ j

S E
t i

`

2E
2`

t i D S diVi j ~r i j !

dt8 Ddt8. ~A21!

Rewriting the double sum of~A21! changes it to

I52~1/2!((
i, j

H S E
t i

`

2E
2`

t i D FdiVi j ~r i j !

dt8 Gdt81S E
t j

`

2E
2`

t j D FdjVi j ~r i j !

dt8 Gdt8J , ~A22!

where use was made of the symmetry ini and j of Vi j (r i j ). The integrals of~A22! can be
expanded, thereby yielding

I52~1/2!((
i, j

H F S E
t i

t j
1E

t j

` D 2E
2`

t i G FdiVi j ~r i j !

dt8 Gdt81F E
t j

`

2S E
2`

t i
1E

t i

` D GFdjVi j ~r i j !

dt8 Gdt8J ;
~A23!

by combining like integrals, Eq.~A23! becomes

I52~1/2!((
i, j

H S E
t j

`

2E
2`

t i D F S didt8D1S djdt8D GVi j ~r i j !dt81E
t i

t j
dt8F S didt8D2S djdt8D GVi j ~r i j !J .

~A24!

The first integral of~A24! now can be integrated using

S ddtDVi j @r i j ~ t !#[F S didtD1S djdtD GVi j ~r i j !, ~A25!

wheredi was defined in~A19!; using ~A25! changes~A24! to

I52~1/2!((
i, j

H @Vi j @r i j ~`!#1Vi j @r i j ~2`!#2Vi j @r i j ~ t j !#2Vi j @r i j ~ t i !##

1E
t i

t j
dt8F S didt8D2S djdt8D GVi j ~r i j !J . ~A26!

Replacingdi /dt from ~A19! allows ~A26! to be written

I52~1/2!@V~`!#1V~2`!]1~1/2!((
i, j

$Vi j @r i j ~ t i !#1Vi j @r i j ~ t j !#%

2~1/2!((
i, j

E
t i

t j
dt8“ iVi j ~r i j !–~vi1vj !, ~A27!

where

V~ t ![((
j,k

Vjk@r jk~ t !#, “ iVi j @r i j ~ t !#52“ jVi j @r i j ~ t !# ~A28!
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were used. The second of Eqs.~A28! is Newton’s third law. Replacing the integral in~A17! by
~A27! changes the former to

~1/2!@K~`!#1V~`!]1~1/2!@K~2`!#1V~2`!]

5(
i
Ki~ t i !1~1/2!((

i, j
$Vi j @r i j ~ t i !#1Vi j @r i j ~ t j !#%

2~1/2!((
i, j

E
t i

t j
dt8@vi~ t8!1vj~ t8!#–“ iVi j @r i j ~ t8!#, ~A29!

where, on the left-hand side, use has been made of

K~ t ![(
i
Ki~ t ![(

i
~1/2!mi@vi~ t !#

2. ~A30!

Similar to ~A6!, the left-hand side of~A29! is independent of theN arbitrary timest i on which the
right-hand side appears to depend. Defining each side of~A29! to beE gives finally

E5(
i
Ki~ t i !1~1/2!((

i, j
$Vi j @r i j ~ t i !#1Vi j @r i j ~ t j !#%

2~1/2!((
i, j

E
t i

t j
dt8@vi~ t8!1vj~ t8!#–“ iVi j @r i j ~ t8!#, ~A31!

which satisfies

S ]

]tk
D E50, ~A32!

for eachk by virtue of Eq.~A1!. And choosing in Eq.~A31! all t i to be the samet gives the usual
one-time Newtonian conservation of energy

E5(
i
Ki~ t !1((

i, j
Vi j @r i j ~ t !#. ~A33!

3. The other six constants of the motion

The angular-momentum-like and center-of-mass-like multiple-time constants of the m
are calculated similarly. Only the final results and their usual Newtonian forms are listed here
angular-momentum-like constant of the motion turns out to be

L5(
i
r i~ t i !3pi~ t i !1~1/2!((

i, j
H E

t i

t j
dt8@r i~ t8!1r j~ t8!#3Fi j ~ t8!J . ~A34!

This L satisfies a conservation equation

S ]

]tk
D L50, ~A35!

for all k by virtue of Eq.~A1!. Setting allt i equal tot annihilates the integral from~A34!; this
yields the usual one-time Newtonian conservation of angular momentum
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L5(
i
r i~ t !3pi~ t !. ~A36!

The center-of-mass-like constant of the motion turns out to be

G5(
i

@ t ipi~ t i !2mir i~ t i !#1((
i, j

E
t i

t j
t8Fi j ~ t8!dt8, ~A37!

which satisfies the conservation equation

S ]

]tk
D G50, ~A38!

for eachk by virtue of Eq.~A1!. As usual, choosing allt i to be equal tot in ~A37! gives the usual
one-time Newtonian center-of-mass conserved quantity

G5(
i

@ tpi~ t !2mir i~ t !#, ~A39!

or, using~A15!,

G5tP2(
i
mir i~ t !, ~A40!

sinceP still obeys~A9!.
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Lévy flight applied to random media problems
V. Uchaikin and G. Gusarov
Ulyanovsk State University, 42, Leo Tolstoy Str., 432700 Ulyanovsk, Russia

~Received 29 January 1996; accepted for publication 8 October 1996!

A random-medium model being the correlated distribution of points positioned in
E-dimensional Euclidean space is considered. The construction of the medium
starts from noncorrelated~Poisson! uniform distribution of parent particles; each of
them initiates the finite Marcov chain of its descendants. The complete collection of
correlation functions of all orders within the scope of the model has been obtained.
The use of three-dimensional stable laws~Lévy laws! as transition probability
density allows one to express the correlation functions of all orders in terms of two
point ones only. Some numerical results are presented and discussed in connection
with fractal structure simulation. ©1997 American Institute of Physics.
@S0022-2488~97!01103-1#

I. INTRODUCTION

In the last decade or so the interest in the random walking theory increased very much b
of its application to such a new modern scaling concept as random fractals,1–3 successfully de-
scribing a large number of different phenomena: from spatial distributions of galaxies i
Universe and turbulence phenomenon to the distribution of intervals in the beating of the
malian heart and the distribution of rare minerals on Earth crust.4–13

Special attention is given to anomalous diffusion processes generating long-range c
tions. For this purpose they usually use inverse power laws as distributions of individua
length l ,

p~ l !5Al2a21, 0,a<2, l. l 0 ,

leading to Lévy statistics in the limit of large number of steps. In the case ofE-dimensional
Euclidean space the corresponding spherically symmetric transition probability density h
form

p~x→x8!5AEur u2a2E, r[x2x8, ur u. l 0 , ~1!

but neither review articles nor original works cited there contain a full description of obta
random media by means of usual classical mechanics such as multiparticle correlation
tions.14,15

The purpose of the present work is to complete the gap. We not only derive general re
for the process but obtain explicit expressions for multiparticle correlation functions for one
of transition probability densities having asymptotic behavior like~1! and also present som
numerical results.

II. THE MEAN DENSITY OF COLLISIONS FOR A SINGLE TRAJECTORY

At first we will consider a single random trajectory inE-dimensional Euclidean spaceRE,
starting from a deterministic pointxPRE and having a random numbern of steps. The random
realization of the trajectory can be represented as a random set of points$j1,...,jn%, whereji ,
i51,...,n21, are points of scattering of some particle andjn is a point of stop~absorption! of the
0022-2488/97/38(5)/2453/12/$10.00
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particle. We suppose thatj i5j i211r i , i51,...,n, andr i are mutually independent random vecto
in RE obeying the same probability densityp(r )5p(xi→xi11) which satisfy the normalization
condition

E
RE

p~r ! dEr5E
RE

p~xi→xi11! d
Exi1151.

For the brevity, the symbolsE andRE will be further omitted:

E
RE

p~r ! dEr[E p~r ! dr.

The probabilities

wN[P$n5N%, N51,2,...,

are independent of the collision point position. In particular case

wN85dN8N ~2!

the trajectory has a deterministic number of stepsN. If N5`, we have strictly infinite trajectory;
in the case

En5 (
N51

`

NwN5`,

we will speak about infinite in the mean trajectory.
Denoting the generating functional~GF! of the random distribution$j1,...,jn% by G„x→u~•!…,

G„x→u~• !…5Exu~j1!•••u~jn!

5 (
n51

`

wnE dx1•••E dxnp~x→x1!•••p~xn21→xn!u~x1!•••u~xn!,

we can write the following expression,

G„x→u~• !…5w1E dx8p~x→x8!u~x8!1W2E dx8p~x→x8!u~x8!G8„x8,u~• !…, ~3!

whereG8„x→u~•!… is the GF with the probabilities renormalized by

wN8 5wN21 /W2 , W25 (
N52

`

wN512w1 .

In the case~2! we have obtained from~3!

G~N!
„x→u~• !…5H E dx8p~x→x8!u~x8!, N51,

E dx8p~x→x8!u~x8!G~N21!
„x8,u~• !…, N52,...,

~4!

and for the strictly infinite trajectory
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



the

t

e
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G~`!
„x→u~• !…5E dx8p~x→x8!u~x8!G~`!

„x8,u~• !…. ~5!

There exists one important case, the geometrical distribution of step numbers

wN5qN21~12q!, 0,q,1,
~6!

wN8 5qN21~12q!Y (
N52

`

qN21~12q!5wN ,

causing the relation~3! to be an integral equation for GF:

G@q#
„x→u~• !…5~12q!E dx8p~x→x8!u~x8!1qE dx8p~x→x8!u~x8!G@q#

„x8,u~• !…. ~7!

This means that the distributionwN does not change during a particle history, in other words
trajectory belongs to the class of Markovian random chains.

The case of an arbitrary distributionwN can be obtained from~4! as follows:

G„x→u~• !…5 (
N51

`

wNG
~N!
„x→u~• !….

The first functional derivative of the GF with respect tou gives us the mean density of poin
number in the space:

dG„x→u~• !…

du~x1!
U
u~x!51

5g~x→x1![g~r !, r5x12x.

Differentiating the relations~4!, ~5!, and ~7! we obtain the following expression for the thre
above cases:

g~N!~r !5p~r !1E dr8p~r 8!g~N21!~r2r 8!, g~1!~r !5p~r !, ~8!

g~`!~r !5p~r !1E dr8p~r 8!g~`!~r2r 8!, ~9!

g@q#~r !5p~r !1qE dr8p~r 8!g@q#~r2r 8!. ~10!

All the densities can be expressed in terms of manifold convolutionspk(r ) of the transition
probability densityp(r )[p1(r ),

pk11~r !5p~r !* pk~r ![E p~r 8!pk~r2r 8!dr8,

g~N!~r !5 (
k51

N

pk~r !, g~`!~r !5 (
k51

`

pk~r !, g@q#~r !5 (
k51

`

qk21pk~r !.

It is obvious that the following normalization conditions take place:
J. Math. Phys., Vol. 38, No. 5, May 1997
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E g~N!~r !dr5N, E g~`!~r ! dr5`, E g@q#~r ! dr5
1

12q
.

In the case of an arbitrary distributionwn , we have

g~r !5 (
N51

`

wNg
~N!~r !5 (

k51

`

Wkpk~r !,

Wk5 (
N5k

`

wN ,

and

E g~r ! dr5 (
N51

`

NwN5En.

III. THE MULTI-POINT DENSITIES FOR A SINGLE TRAJECTORY

To obtain multi-point densities of the collision numbergk(x→1,...,k) we must calculate
higher-order functional derivatives of the GF,

Gk„x→1,...,k;u~• !…[
dkG„x→u~• !…

du~x1!•••du~xk!
,

and then putu(x)51:

gk~x→1,...,k!5Gk~x→1,...,k;1!.

For the sake of convenience we shall use the notation

hk~1,...,k!8 f k~1,...,k!

for expressions like

hk~1,...,k!5
1

k! ( 8
i1 ,...,i k51

k

f k~ i 1 ,...,i k!, ~11!

where the prime about the sign of sum means that the summation goes over all of the pa
nonidentical natural numbersi 1 ,...,i k ( i j51,...,k) so the sense of the operation~11! is symme-
trization of the function ofk variables. Evidently, this operation does not change a functionck

being symmetric about permutation of their arguments:

ck~1,...,k!8ck~1,...,k!.

With the aid of the notation we can write the following formula for higher-order functio
derivatives of a product of two functionals with respect tou(x):

dk~A„u~• !…B„u~• !…!

du~1!...du~k!
8 (

n50

k S knDAn„1,...,n;u~• !…Bk2n„n11,...,k;u~• !….

Having been used the above formulas for functional differentiation of the GFs~4!, ~5!, and ~7!
leads one to the following relations for a single trajectory:
J. Math. Phys., Vol. 38, No. 5, May 1997
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gk
~N!~x→1,...,k!8E dx8p~x→x8!gk

~N21!~x8→1,...,k!1kp~x→1!gk21
~N21!~1→2,...,k!,

~12!

gk
~`!~x→1,...,k!5E dx8p~x→x8!gk

~`!~x8→1,...,k!1kp~x→1!gk21
~`! ~1→2,...,k!, ~13!

and

gk
@q#~x→1,...,k!8E dx8p~x→x8!gk

@q#~x8→1,...,k!1qkp~x→1!gk21
@q# ~1→2,...,k!. ~14!

It is easy to satisfy oneself by direct substitution that the system of equation~12! has the
following solution:

gk
~N!~x→1,...,k!8k! (

i1 ,...,i k51

Sk<N

pi1~x→1!•••pik~k21→k!, k<N,

~15!
gk

~N!~x→1,...,k!50, k.N, Sk5 i 11...1 i k .

The solution of Eqs.~13! can be obtained by multiplying the both sides of Eq.~9! by the factor
kgk21

[q] (1→2,...,k) and comparing it with Eq.~13!:

gk
~`!~x→1,...,k!8kg~`!~x→1!gk21

~`! ~1→2,...,k!5k!g~`!~x→1!g~`!~1→2!•••g~`!~k21→k!.
~16!

Analogously we get a solution of the third equation:

gk
@q#~x→1,...,k!8k!qk21g@q#~x→1!g@q#~1→2!•••g@q#~k21→k!. ~17!

To consider the general case of arbitrary probabilitieswN we must average the density~15! over
all possible values ofN:

gk~x→1,...,k!5 (
N5k

`

wNgn
~N!~x→1,...,k!. ~18!

Substituting~15! into ~18! one can rewrite the last expression in the form

gk~x→1,...,k!5k! (
i1 ,...,i k

`

WSk
pi1~x→1!•••pik~k21→k!. ~19!

If we take ~6! so that

Wk5 (
N5k

`

wN5qk21,

the expression~19! changes into~17!.

IV. POISSON ENSEMBLE OF INDEPENDENT TRAJECTORIES

Now we shall consider an infinite set of independent random trajectories starting from d
ent random points of birth distributed by Poisson uniform law:
J. Math. Phys., Vol. 38, No. 5, May 1997
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~1! the random numbers of pointsm(A) andm(B) belonging to the arbitrary disjoint domainsA
andB,RE respectively are mutually independent;

~2! the random variablem(A) obeys Poisson distribution with the mean valuem(A) for an
arbitraryA;

~3! the mean valuem(A) is directly proportional to the volumeVA , m(A)5n0VA , independently
of its shape.

Under such conditions, the collision number GF takes a form

F„u~• !…5expHn0E @G„x→u~• !…21#dxJ ,
where an auxiliary functionu(x) must be chosen in the way the integral converges. Denoting
multi-point densities byf k(1,...,k) and using the relation

f k~1,...,k!5Fk~1,...,k;1![
dkF„u~• !…

du~1!•••du~k!
U
u51

,

one can find a link betweenf k and functions

wk~1,...,k!5n0E gk~x→1,...,k! dx:

f 1~1!5n0E g~x!dx[n,

f 2~1,2!5n21w2~1,2!,

f 3~1,2,3!8n313nw2~1,2!1w3~1,2,3!,

f 4~1,2,3,4!8n416n2w2~1,2!13w2~1,2!w2~3,4!14nw3~1,2,3!1w4~1,2,3,4!, ~20!

and so on. As one can see the functions~20! are irreduciblek-particle correlation functions.15

Another set of functions is commonly used for description of galaxy distribution in
Universe:5,16 j5w2/n

2, z5w3/n
3, h5w4/n

4. We slightly modify the notations:

jk~1,...,k!5n2kwk~1,...,k!5n2kn0E gk~x→1,...,k! dx. ~21!

Substituting~15!–~17! into ~21! we can see that the functions exist in the case

E g~x!dx5En,`

only:

jk
~N!~1,...,k!8

k!

nk21 (
i1 ,...,i k2151

Sk21<N

~12Sk21 /N!pi1~1→2!•••pik21
~k21→k!, ~22!

wheren5n0N and
J. Math. Phys., Vol. 38, No. 5, May 1997
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jk
@q#~1,...,k!8

k!

2k21 j2
@q#~1,2!•••j2

@q#~k21,k!,

j2
@q#~1,2!5

2q

n
g1

@q#~1→2!, n5
n0
12q

, ~23!

where theg1
[q]~1→2! is usually called a structure function.

The last case~23! displays a very important property: all of the higher-order functions can
expressed in the form of a product of the two-point functions only irrespective to a space d
sionE and a concrete form of probability densityp(x→x8):

j3
@q#~1,2,3!5Q3$j12j231j21j131j13j32%[Q3$j12j231cycl.~3 terms!%, ~24!

j4
@q#~1,2,3,4!5Q4$j12j23j341cycl.~12 terms!%, ~25!

and so on, wherej i j5j2
[q] ( i , j ), Q35

1
2, Q45

1
4, andQk5( 12)

(k22).

V. STABLE LAWS AND NUMERICAL CALCULATIONS OF A STRUCTURE FUNCTION

The model presented in the previous sections reduces the problem of calculating corr
functions of any order to the choice of a suitable distributionp(r ) and then to the evaluation o
multiple convolutions of this distribution. For this aim, the method of Fourier transformation~the
characteristic function method! can be used. One could also use the known methods for findin
asymptotic expressions ofpk(r ), k→`, but this is not the case because the multiple convoluti
of all orders in~22! are presented. There exist, however, a class of distributions in which
convolutions of all orders can be easily expressed in explicit form. These are so-called
laws.17,18 Confining the discussion to the subclass of spherically symmetric stable laws, we
write corresponding characteristic functions as

p̃~a!~ t !5e2cutua, tPRE, ~26!

so that a density of theE-dimensional stable law has a form

p~a!~x!5~2p!2EE
RE
eit •xp̃~ t !dt, ~27!

wheret•x is a scalar product ofE-dimensional vectorst andx. As one can see immediately from
~26! and ~27!,

pk
~a!~x!5ck

2Ep~a!~ck
21x!, ck5ck1/a, ~28!

wherea is a characteristic exponent~index! of the stable law andc is a space scaling paramet
further considered as equal to 1.

With p(a)(r ) to denote three-dimensional symmetric stable density only, we can write
following relation between it and one-dimensional symmetric stable densityr~a!(x):

p~a!~r !5
1

2pur u Udr~a!~x!

dx U
x5ur u

. ~29!

The problem is that the stable densities cannot be expressed in terms of elementary fu
except Gauss~a52! and Cauchy~a51! laws. In the general case, one must use the relations~26!
J. Math. Phys., Vol. 38, No. 5, May 1997
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and~27! for numerical calculation. The direct calculation of the integral~27! is difficult because of
the highly oscillatory integrand. To avoid the problem, one can transform the path of integ
in a complex plane, so that one-dimensional density takes a form18

r~x!5
auxu1/~a21!

u12au E
0

p/2

Ua~w!exp$2uxua/~a21!Ua~w!%dw,

Ua~w!5S sin 2wcosw D a/~12a! cos@~a21!w#

cosw
, aÞ1, xÞ0, ~30!

and r~0! can be obtained as a limit value ofr(x) when x→0. The stable densities have als
convergent infinite series representations which are given for one-dimensional symmetrica
sities by the formulas

r~a!~x!5
1

px (
k51

`
~21!k21

k!
G~11ka!x2ka sin~pka/2! for 0,a,1, ~31!

and

r~a!~x!5
1

px (
k51

`
~21!k21

k!
G~11k/a!xk sin~pka/2! for 1,a<2. ~32!

Asymptotic series are available forx in the neighborhood of 0,1`, or2` and exhaustive range
of values ofa. In particular, the firstn terms of the series~31! are an asymptotic approximatio
for x→1` and 1,a,2. Likewise the firstn terms of the second series~32! are an asymptotic
approximation forx→0 and 0,a,1. Other useful representations of stable law densities ca
found in Ref. 19.

The tables have been built only for one-dimensional densities19,20and three-dimensional one
could be obtained from those by numerical differentiation using the formula~29! but to reach
more precise results we have directly used the formulas~30!–~32! after applying the formula~29!.
Using the obtained numerical results forp(a)(r ) we have evaluated the structure function

g@q#~r !5 (
k51

`

qk21k23/ap~a!~rk21/a!. ~33!

The list ofp(a)(r ) has been used and intermediate values ofp(a)(r ) are evaluated by interpolatin
between knots placed with a step shown in Table I, and the value ofg[q] (r ) in zero point is
calculated by the formula

TABLE I. The interpolation step and interval within which it is used for approximation ofp(a)(r ).

Step Interval

0.001 0–0.1
0.01 0.1–10
0.1 10–100
1.0 100–500
10 500–53103

100 53103–105
J. Math. Phys., Vol. 38, No. 5, May 1997
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g@q#~0!5 (
k51

`

qk21k23/ap~a!~0!5
1

2p2a
GS 3a DF~q,3/a,1!5

1

2p2a E
0

` t2113/a dt

et2q
.

It is of convenience, as it appears, to use in practice also a series representation forp(a)(r )
resulted from~31!. In that case one needs to retain a small number of terms to obtain a
precision in comparison with exact values ofp(a)(r ) obtained by numerical integration. Fo
example, retaining the five terms in the series gives a relative error,0.1 fora50.5 starting from
r50.1 and further.

Figure 1 presents the rescaled function

f ~s!5
1

a3
g@1#S saD , a35g~0!,

for several stable law characteristic exponentsa50.5, 1.0, 1.5. Note that if the probabilityq of
surviving the walking particle on each step of the trajectory is accepted to be equal to 1,
total length of the trajectory is strictly infinite. Figures 2–4 show the functiong[q] (r ) for the same
values ofa andq50.9, 0.99, 0.999, 0.9999, 1.

VI. CONCLUDING REMARKS

In conclusion we will discuss the results obtained in previous sections.
The asymptotical investigation ofg[q] (r ) have been carried out in Ref. 21. It was based on

representation

FIG. 1. The functionf (s)5(1/a3)g[1] (s/a), a35g[1] (0), in three-dimensional Euclidean space for different values
stable law indexa50.5, 1.0, 1.5~curves 1, 2, and 3, respectively!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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2462 V. Uchaikin and G. Gusarov: Lévy flight applied to random media problems

¬¬¬¬¬¬¬¬¬¬
FIG. 2. The functiong[q] (r ) for a50.5 and 12q50 ~solid curve 1!, 1021 ~2!, 1022 ~3!. The dashed lines correspond to th
main terms of asymptotic expansions of the functiong[q] (r ) for the above values ofq. The logarithmic base is 10.

FIG. 3. The functiong[q] (r ) for a51.0 and 12q50 ~solid curve 1!, 1021 ~2!, 1022, 1023, 1024 ~solid curves 3, 4, 5,
respectively!. The dashed lines correspond to the main terms of asymptotic expansions of the functiong[q] (r ) for the above
values ofq.
J. Math. Phys., Vol. 38, No. 5, May 1997
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g@q#~r !5
1

2p2r E0
` e2ka

12qe2ka sin~kr !k dk,

which follows from integral equation~10! solved by Fourier transformation method. Forq51
~infinite trajectory! the result of the same kind as Mandelbrot’s one1 has been obtained:

gas
@1#~r !5B@1#r231a, B@1#5

1

2p2 G~22a!sinS pa

2 D , ~34!

which leads to the fractal concept so far as the mean number of points in the sphere arou
point of birth is given by the expression

N~R!54pE
0

R

g~r !r 2 dr;~4pB@1#/a!Ra, R→`. ~35!

However, forq,1, there is obtained a quite different asymptotic behavior:

gas
@q#~r !5B@q#r232a, B@q#5

1

2p2

G~21a!

~12q!2
sinS pa

2 D . ~36!

One can show that the last result is equitable in any case while^n&,` and for deterministicN in
particular.

Thus a question arises if there exists a possibility to simulate a fractal structure like~35! in
practice so far as we can use finite trajectories only. The answer to the question is given in
2–4. One can see that a certain region exists on which the structure functiong[q] (r ) ~whenq is

FIG. 4. The same as in Fig. 3 fora51.5.
J. Math. Phys., Vol. 38, No. 5, May 1997
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close to 1! numerically coincides withg[1] (r ). So, there is a remarkable fact that the larger
mean number of steps on the trajectory the longer the region where the asymptotic form
gas
[1] (r ) for infinite trajectory can be approximately used. Putting it in other words, if the survi
probabilityq is close to 1, the formula~34! plays a role of an intermediate asymptotic expressi
the applicability interval of which is the larger the closer theq is to 1. So the finite trajectory can
be considered as having, in some region, the properties of an infinite one. This fact can be u
numerical simulating of the galaxy distribution in the Universe which shows the behavior
~34!.
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The surface tension driven Marangoni convection is an interesting pattern forma-
tion system. The ‘‘primitive’’ governing equations are too complicated to be inves-
tigated analytically. In this paper, the authors consider a simplified model for this
system. This simplified model is in the form of coupled Kuramoto-Sivashinsky and
Ginzburg-Landau type partial differential equations. The authors prove the exis-
tence and uniqueness of global solutions of this simplified mathematical model
under the condition that the Marangoni numberMa.Mac1k/25, whereMac is
the critical Marangoni number at which the trivial stationary state becomes linearly
unstable, andk is a positive constant related to other system parameters. The
authors use the contraction mapping principle in the proof. This work sets the
foundation for further study of this model. ©1997 American Institute of Physics.
@S0022-2488~97!03805-X#

I. INTRODUCTION

Like the thermally driven Benard convection, the surface tension driven Marangoni co
tion is an interesting pattern formation nonlinear system. A typical setup for the Maran
convection, with mass transfer from liquid phase to gas phase, is a liquid layer resting on a
surface, with a free deformable upper interface contacting an infinite layer of gas. Howeve
governing equations for the Marangoni convection, i.e. Navier–Stokes equations and mas~sur-
factant! transfer equation, are not amenable to analysis at the present time, except using nu
simulation. Very little work has been done on nonlinear Marangoni convection.

A simplified model, proposed to capture important nonlinear features yet more amena
analysis, has been derived recently by Golovinet al.1

At5A1Axx2uAu2A1Ah, ~1.1!

ht52hxx2hxxxx1auAuxx
2 , ~1.2!

a!Partially supported by the Brachman Hoffman Fellowship.
b!Supported by the National Natural Science Foundation of China and the Science Foundation of Postdoctoral of
0022-2488/97/38(5)/2465/10/$10.00
2465J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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whereA(x,t) is the complex amplitude for the Marangoni convective mode, andh(x,t) is the
interface deformation~real function!. The positive constanta5k/@(Ma2Mac)

1/5#, with Ma
denoting the Marangoni number, represents the gradient~derivative! of surface tension with re-
spect to surfactant concentration.Mac is the critical Marangoni number at which the trivia
stationary state becomes linearly unstable, andk.0 is a constant related to other system para
eters. This simplified model presumably models the interaction~for Ma.Mac! of the two most
important unstable modes in the Marangoni convection: the short-scale convective
(A(x,t)), driven by surface tension gradient alone, and the long-scale surface deformation
(h(x,t)), driven by gravity and capillary forces.

Equation~1.1! without the interaction termAh is the well-known Ginzburg–Landau equatio
~cf. Hocking et al.,2 Doering et al.,3 and references therein!, while Eq. ~1.2! without the term
uAuxx

2 is the ‘‘linearized’’ version of the so-called Kuramoto–Sivanshinsky equation~cf. Nico-
laenko et al.,4 and references therein!. Both the Ginzburg–Landau equation and Kuramot
Sivanshinsky equation are interesting prototypical nonlinear partial differential equations
have been extensively investigated as model examples of infinite dimensional dynamical sy

Kazhdanet al.5 has done numerical simulation, using a ‘‘de-aliased’’ pseudo-spectral me
of this coupled system of Kuramoto–Sivanshinsky and Ginzburg–Landau-type equations~hereaf-
ter,KS2GL system!, under periodic boundary conditions

A~x,t !, h~x,t ! are l2periodic, ~1.3!

and initial conditions

A~x,0!5A0~x!, h~x,0!5h0~x!. ~1.4!

In this paper, we consider a more analytic aspect of the model, namely, we discu
existence and uniqueness of global solutions of this coupled system. This establishes a fou
for further study of this simplified model. In Sec. II, we prove the local existence and unique
by the contraction mapping principle. In Sec. III, we derive necessary energy estimates to
plete the existence proof of global solutions.

II. LOCAL EXISTENCE AND UNIQUENESS

We denoteLper
2 5Lper

2 @0,l # and Hper
k 5Hper

k @0,l #, k51,2,3,... the usual Sobolev spaces o
l -periodic functions with normsi•i2 andi•iHk, respectively, and with the usualL2-inner product.

In this section, we use the contraction mapping principle to prove the local existenc
uniqueness of~1.1!, ~1.2! with periodic boundary conditions. In the rest of this pap
C, c, c8, c9, ĉ, c̃ denote various positive constants, perhaps depending onT ~of the finite time
interval @0,T#!.

Let

(T5$~A,h!uAPC~@0,T#;Hper
2 !ùL2~0,T;Hper

3 !,AtPC~0,T;Lper
2 !ùL2~0,T;Hper

1 !;

hPC~@0,T#;Hper
2 øL2~0,T;Hper

4 !,htPL2~0,T;Lper
2 !%.

For (Ã;h̃)PST , we consider the following auxiliary problem forA andh respectively,

At2Axx5Ã2uÃu2Ã1Ãh̃8 f , ~2.1!

A~x,0!5A0~x!PHper
2 , ~2.2!

and
J. Math. Phys., Vol. 38, No. 5, May 1997
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ht1hxxxx52h̃xx1auÃuxx
2 8g, ~2.3!

h~x,t !5h0~x!PHper
2 . ~2.4!

Then, we denote byF the mapping from (Ã,h̃) to (A,h). By the well-known results for linear
parabolic equations~Lions and Magenes6!, we have

Lemma 1:For any (Ã,h̃)P(T , ~2.1!–~2.4! admit uniquely a pair of solution (A,h)PST .
Moreover, the following energy estimates hold for 0<t<T:

iAi2<etS iA0i21E
0

2
i f i2dt D , ~2.5!

iAxi2<iA0xi21E
0

t

i f i2dt, ~2.6!

iAxxi2<etS iA0xxi21E
0

t

i f xi2dt D , ~2.7!

ihi2<etih0i2<etS ih0i21E
0

t

igi2dt D , ~2.8!

ihxi2<etS ih0xi21E
0

t

igi2dt D , ~2.9!

ihxxi2<ih0xxi21E igi2dt. ~2.10!

The straight application of energy method and the Gronwall inequality yields inequa
~2.5!–~2.10!. We omit the details here. Let

(T~C1 ,C2!5$~A,h!P(TuiAiH2<iA0xxi21C1 ,iAti<iA0xxi21C1 ;ihiH2<ih0xxi21C2% ,

we have
Lemma 2:There exist constantsC1 , C2 and a positive constantt* , depending only on

iA0iH2, ihiH2, such that the mappingF maps( t* (C1 ,C2) into itself. Moreover, the mapping
F is a contraction mapping from( t* (C1 ,C2) into itself.

Proof: For (Ã,h̃)P( t* (C1 ,C2), the estimates of~2.5!–~2.10! hold, and

iAiH2
2 <etS iA0i21iA0xxi21E

0

t

~ i f i21i f xi2!dt D 1iA0xi21E
0

t

i f i2dt, ~2.11!

ihiH2
2 <etS ih0i21ih0xi212E

0

t

igi2dt D 1ih0xxi21E
0

t

igi2dt. ~2.12!

Using the Sobolev imbedding theorem~see, e.g., Renardy and Rogers7!

Hper
k
�Lper

`
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and the fact thatHk is a Banach algebra fork. 1
2, i.e., uvPHk and iuviHk<iuiHkiviHk

wheneveru,vPHk, we can verify thatF defined above satisfies

i f i2<iÃi21iÃiH1
4 iÃi21iÃiH1

2 ihi2<C3 ,

i f xi2<iÃxi21iÃiH2
4 iÃiH1

2
1iÃiH2

2 ihiH2
2 <C4 ,

igi2<ihxxi21iAiH2
2 <C5 .

Now, we chooset1 such that fort<t1

et~ iA0i21iA0xxi21~C31C4!t !1C3t<C1 ,

et~ ih0i21ih0xi212C5t !1tC5<C2 ,

so,

~A,h!P( t1
~C1 ,C2!.

Let (A1 ,h1), (A2 ,h2) be two solutions corresponding to (Ã1 ,h̃1) and (Ã2 ,h̃2), respectively. Let

Ã5Ã12Ã2 , h̃5h̃12h̃2 , A5A12A2 , h5h12h2 .

ThenA andh satisfy

At2Axx5Ã2uÃ1u2Ã1Ã1AD Ã21uÃ2u2Ã1Ãh̃11Ã2h, ~2.13!

ht1hxxxx52h̃xx1aÃ1AD xx1a~ÃÃ2!xx . ~2.14!

Applying the energy method as before, we obtain

iAiH2
2 <C6E

0

t

~ iÃiH2
2

1ihiH2
2

!dt, ihiH2
2 <C7E

0

t

~ i h̃i21iAiH2
2

!dt.

It turns out that

sup
0<t<t

~ iAiH2
2

1ihiH2
2

!<C8t sup
0<t<t

~ iÃiH2
2

1i h̃iH2
2

!.

We chooset2 small enough so that fort<t2

C8t,
1
2 .

If we chooset*5min(t1,t2), then Lemma 2 is proved. By the contraction mapping princi
~Renardy and Rogers,7 p. 336#!, we obtain the following theorem.

Local Existence Theorem:For initial dataA(x,0)PHper
2 and h(x,0)PHper

2 , there exists a
unique ~local! solution of the coupled initial-boundary value problem~1.1!-~1.2!-~1.3!-~1.4! for
0,t,t* , wheret*.0 depends only on initial data. Moreover,

A~ t !PC~@0,t* #;Hper
2 !ùC~@0,t* !;Lper

2 !, ~2.15!

h~ t !PC~@0,t* #;Hper
2 !ùL2~@0,t* #;Hper

4 !. ~2.16!
J. Math. Phys., Vol. 38, No. 5, May 1997
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III. GLOBAL EXISTENCE RESULT

In this section, we show that, under the condition 0,a,2, the above local solution can b
extended to any timet.0 and hence we obtain global existence and uniqueness. To achiev
we need to show thatiAiH2 and ihiH2 are bounded~a priori! on any finite time interval@0,T#
under the condition that 0,a,2.

Recall that

At5A1Axx2uAu2A1Ah, ~3.1!

ht52hxx2hxxxx1auAuxx
2 . ~3.2!

First we differentiateuAu2 and integrate from 0 tol to obtain:

d

dt
iAi2

25E
0

l

~AtĀ1ĀtA!dx

52ReE
0

l

Ā~A1Axx2uAu2A1Ah!dx

52iAi2
222iAxi2

222iAi4
412E

0

l

uAu2hdx. ~3.3!

Similarly, doing the same thing touhu2 we have

d

dt
ihi2

25E
0

l

2hhtdx52E
0

l

~2hhxx2hhxxxx1auAuxx
2 h!dx52ihxi2

222ihxxi2
212aE

0

l

uAu2hxxdx.

~3.4!

Adding ~3.3! and ~3.4! and writinga522e with e.0 we get

d

dt
~ iAi2

21ihi2
2!52iAi2

222iAxi2
222iAi4

412E
0

l

uAu2hdx12ihxi2
222ihxxi2

2

1~422e!E
0

l

uAu2hxxdx

<2iAi2
222iAxi2

222iAi4
41eiAi4

41
1

e
ihi2

212ihxi2
2

22ihxxi2
21~22e!~ iAi4

41ihxxi2
2!

52iAi2
222iAxi2

21
1

e
ihi2

212ihxi2
22eihxxi2

2. ~3.5!

By the Young’s inequality, we have

2ihxi2
2522E

0

l

hhxxdx<eihxxi2
21

1

e
ihi2

2. ~3.6!

Thus, the estimate~3.5! becomes
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d

dt
~ iAi2

21ihi2
2!<2iAi2

222iAxi2
21

1

e
ihi2

21eihxxi2
21

1

e
ihi2

22eihxxi2
2

52iAi2
222iAxi2

212
1

e
ihi2

2<c0~ iAi2
21ihi2

2!. ~3.7!

We integrate~3.7! from 0 to t and apply the Gronwall inequality to get

iAi2
21ihi2

2<~ iA0i2
21ih0i2

2!exp~c0t !. ~3.8!

Therefore, theL2 norm of the solution is bounded on any finite interval@0,T#. Next we
differentiateiAxi2

2 with respect to thet variable:

d

dt
iAxi2

252ReE
0

l

ĀxAxtdx

522ReE
0

l

ĀxxAtdx

522ReE
0

l

Āxx~A1Axx2uAu2A1Ah!dx

522ReE
0

l

~ĀxxA1uAxxu22uAu2AĀxx1AhĀxx!dx

52E
0

l

uAxu2dx22iAxxi2
212ReE

0

l

uAu2AĀxxdx12ReE
0

l

AhĀxxdx

<2iAxi2
222iAxxi2

212E
0

l

uAu3uAxxudx12E
0

l

uAhuuAxxudx

<2iAxi2
222iAxxi2

212iAi6
61

1

2
iAxxi2

212E
0

l

uAhu2dx1
1

2
iAxxi2

2

52iAxi2
22iAxxi2

212iAi6
61iAi4

41ihi4
4. ~3.9!

By the Gagliardo-Nirenberg inequalities~cf. Nirenberg8 or Henry 10! and the fact~proved
above! that iAi2

21ihi2
2 is bounded on any finite interval@0,T#, we can estimate the last thre

terms in~3.9! above on any finite interval@0,T#:

iAi6
6<l1iAxi2

2iAi2
4<c1iAxi2

2, ~3.10!

iAi4
41ihi4

4<l2~ iAxi2iAi2
31ihxi2ihi2

3!<c2~ iAxi21ihxi2!, ~3.11!

wherel1 andl2 are positive constants in the Gagliardo–Nirenberg inequalities, and the c
cient c1 ,c2 depends on the Gagliardo–Nirenberg constant andT. Inserting~3.10! and ~3.11! in
~3.9! we obtain

d

dt
iAxi2

2<2iAxi2
22iAxxi2

21c1iAxi2
21c2~ iAxi21ihxi2!<c31c4iAxi2

21c5ihxi2
22iAxxi2

2.

~3.12!

Now we differentiateihxi2
2 with respect to thet variable and integrate by parts to obtain
J. Math. Phys., Vol. 38, No. 5, May 1997
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d

dt
ihxi2

252E
0

l

hxthxdx522E
0

l

hxxhtdx

522E
0

l

hxx~2hxx2hxxxx1auAuxx
2 !dx

52ihxxi2
222ihxxxi2

212aE
0

l

hxxxuAux
2dx

<2ihxxi2
222ihxxxi2

21ihxxxi2
21a2E

0

l

uAAxu2dx

52ihxxi2
22ihxxxi2

21a2iAxi`
2 iAi2. ~3.13!

Putting the following Gagliardo–Nirenberg estimates oniAxi` and ihxxi2
2

iAxi`
2<l3iAxxi2

siAi2
r , ~3.14!

ihxxi2
2<l4ihxxxi2

s8ihi2
r 8 , ~3.15!

where 0,s, s8,2, 0,r , r 8,2, s1r52, s81r 852 and wherel3 andl4 are positive constants
in the Gagliardo–Nirenberg inequalities, into~3.13! and noting thatiAi2 is bounded on any finite
interval @0,T#, we have the following estimate.

d

dt
ihxi2

2<2ihxxi2
22ihxxxi2

21a2iAxi`
2 iAi2

2

<2l4ihxxxi2
s8ihi2

r 82ihxxxi2
21a2l3iAxxi2

siAi2
21r

<ihxxxi2
21c62ihxxxi2

21c5iAxxi2
s1c7< ĉ1iAxxi2

2. ~3.16!

The coefficientsc5 , c6 , c7 in the above inequality depend on Gagliardo–Nirenberg constant
T. The estimates in the last few lines above are based on the fact thatc5iAxxi2

s<iAxxi2
21 c̃ and

2l4ihxxxi2
s8ihi2

r 8<ihxxxi2
21c6 ~from the Cauchy–Schwarz inequality!.

Adding ~3.12! and ~3.16! we have the following:

d

dt
~ iAxi2

21ihxi2
2!<c31c4iAxi2

21c5ihxi2
22iAxxi2

21 ĉ1iAxxi2
2<c81c9~ iAxi2

21ihxi2
2!.

~3.17!

Now we integrate~3.17! from 0 to t and apply the Gronwall inequality10 to obtain

iAxi2
21ihxi2

2<S I ]

]x
A0I

2

2

1 I ]

]x
h0I

2

2

1
c8
c9

TD exp~c9t !. ~3.18!

By combining~3.8! and ~3.18! we conclude thatiAiH1 and ihiH1 are both bounded on an
finite interval @0,T#.

To complete the proof thatiAiH2 and ihiH2 are both bounded on any finite interval@0,T#,
which will imply the existence of global solutions, what remains to be shown is thatiAxxi2

2 and
ihxxi2

2 are bounded on@0,T#.
To this end, we differentiateiAxxi2

2 with respect tot
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d

dt
iAxxi2

252ReE
0

l

ĀxxAxxtdx

52ReE
0

l

ĀxxxxAtdx

52iAxxi2
222iAxxxi2

222E
0

l

uAu2AAxxxx
2 dx12E

0

l

AhĀxxxxdx

<2iAxxi2
222iAxxxi2

213iAiL`
6 E

0

L

uAxuuAxxxudx

12~ iAiL`1ihiL`!E
0

l

~ uAxu1uhxu!uAxxxudx

<iAxxi21c10~ iAiH1,ihiH1!.

By the Gronwall inequality, we conclude thatiAxxi2
2 is bounded on@0,T#.

We now only need to prove thatihxxi2
2 is bounded on@0,T#. So we differentiateihxxi2

2 with
respect tot

d

dt
ihxxi25E

0

l

2hxxxxhtdx52E
0

l

hxxxx~2hxx2hxxxx1auAuxx
2 !dx

<2ihxxxi2
222ihxxxxi2

21~ ihxxxxi2
21c11i]xxuAu2i2

2!

<2ihxxxi2
22ihxxxxi2

21c11E
0

l

~ uAAxxu12uAxu2!2dx

<~ ihxxxxi2
214ihxxi2

2!2ihxxxxi2
21c11~ iAi`

2 iAxxi2
212iAxi4

4!

<4ihxxi2
21c0~ iAi`

2 iAxxi2
212iAxi`

2 iAxi2
2!, ~3.19!

where we have used the fact that 2ihxxxi2
2<ihxxxxi2

214ihxxi2
2 due to integration by parts an

Cauchy–Schwarz inequality.
Moreover, from~3.9! we have

iAxi2
21E

0

t

iAxxidt<E
0

t

~2iAxi2
212iAi6

61iAi4
41ihi4

4!dt. ~3.20!

SinceA,h are bounded inH1 norm on any finite interval@0,T#, 2iAxi2
2, iAi6

6, iAi4
4 and

ihi4
4 are all bounded. Thus~3.20! implies that there existsc12.0, depending onT, such that for

all 0<t<T

E
0

t

iAxxi2
2dt,c12. ~3.21!

We apply the Gagliardo–Nirenberg estimates~3.14! in ~3.19! to get

d

dt
ihxxi2<4ihxxi2

21c11~ iAi`
2 iAxxi2

212iAxi`
2 iAxi2

2!

<4ihxxi2
21c11~ iAi`

2 iAxxi2
21l3iAxxi2

siAi2
r iAxi2

2!. ~3.22!
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Note that on@0,T#, iAxxi2
s<iAxxi2

21c13. Further,iAi`
2 , iAi2

r and iAxi2
2 are all bounded on

@0,T#. Thus~3.22! becomes

d

dt
ihxxi2

2<4ihxxi2
21c8iAxxi2

21c9. ~3.23!

Integrating~3.23! in t and applying the time-averaged estimate~3.21! we finally get

ihxxi2
2<ih0iH2

2
1E

0

t

4ihxxi2
2dt1c8E

0

t

iAxxi2
2dt1c9t

<ih0iH2
2

1E
0

t

4ihxxi2
2dt1c8c121c9T

<c1414E
0

t

4ihxxi2
2dt. ~3.24!

By the Gronwall inequality, we conclude thatihxxi2
2 is bounded on@0,T#.

By now we have proved that bothiAiH2 andihiH2 are bounded~a priori! on any finite time
interval @0,T#. SinceT is arbitrary, bothH2 norms ofA andh are bounded~a priori! for any t
.0 and hence cannot blow up at any finite time. Combining with the local existence result
last section, we obtain the global existence and uniqueness result.

We summarize the above result in the following theorem:
Global Existence Theorem:Assume that the ‘‘Marangoni coefficient’’ 0,a,2 and

A(x,0),h(x,0)PHper
2 @0,l #, then the unique solution to the KS-GL system~1.1!–~1.2! with periodic

boundary conditions~1.3! and initial condition~1.4! exists for any timet.0.
We recall that constanta5k/@(Ma2Mac)

1/5#, whereMa is the Marangoni number mea
suring the gradient~derivative! of surface tension with respect to surfactant concentration,Mac is
the critical Marangoni number at which the trivial stationary state becomes linearly unstable
k.0 is a constant related to other system parameters. So the global existence condition,a
,2 means thatMa.Mac1k/25.

IV. REMARKS

We comment that we did not succeed in applying the usual semigroup method for the co
system of Kuramoto–Sivanshinsky and Ginzburg–Landau type equations. In fact we can r
Eqs.~1.1! and ~1.2! in the following form:

du

dt
1Lu5N~u!, ~4.1!

where

u5SAh D , ~4.2!

L5S 2]xx 0

0 ]xxxx
D , ~4.3!

N~u!5SA2uAu2A1Ah
2hxx1auAuxx

2 D . ~4.4!
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We consider this problem in the Sobolev space

X5Lper
2

^Lper
2 . ~4.5!

The domain of definition of the linear differential operatorL is

D~L!5Hper
2

^Hper
4 . ~4.6!

It is well-known that both linear operators2]xx and]xxxx are sectorial operators inLper
2 , i.e.,

]xx and2]xxxx each generates an analytic semigroup of linear bounded operators; see Henr
10 for

the definition of a sectorial operator. It is easy to see that the ‘‘diagonal’’ linear operatorL above
is also sectorial inX5Lper

2
^Lper

2 . Hence we can define the fractional powersLg and Xg

5D(Lg) for gP@0,1). However, we cannot find agP@0,1) such that the nonlinear operat
defined above

N:Xg→X5Lper
2

^Lper
2 ~4.7!

is locally Lipschitzian, andN maps bounded sets inXg into bounded sets inLper
2

^Lper
2 . Therefore,

we cannot use Theorem 3.3.3 in Ref. 10 to conclude the local existence. However, local ex
can still be achieved via the generalized semigroup theory by working in the spaceHper

1
^Lper

2 .
Moreover, global well-posedness can be proved by the Faedo–Galerkin method.11
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Localized estimates and Cauchy problem for the
logarithmic complex Ginzburg–Landau equation
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~Received 28 October 1996; accepted for publication 23 January 1997!

We prove that the localization of theL2 and similar estimates for the complex
Ginzburg–Landau equation~1!, known to hold in the power caseg(r);rs, also
holds in the logarithmic caseg(r);(Log r)n for larger with n . 2: As a conse-
quence, the theory of the Cauchy problem in local spaces given in a previous paper
also extends to the logarithmic case. ©1997 American Institute of Physics.
@S0022-2488~97!01705-2#

This is the third of three papers where we study the Cauchy problem for the com
Ginzburg–Landau~CGL! equation

] tu5gu1~a1 ia!Du2~b1 ib!ug~ uuu2!, ~1!

whereu is a complex function defined in space timeRn11,a,b,a,b,g are real parameters with
a . 0,b . 0, andg > 0, andg is non-negative. Equations of the type~1! play an important role in
the description of spatial pattern formation and of the onset of instabilities in nonequilibrium
dynamical systems.1 The Cauchy problem, namely the initial value problem with prescribed in
data, has been studied for Eq.~1! by several authors2–10 ~Ref. 9 contains a review of Refs. 3 an
5!. Natural spaces for the initial data are the~global! spacesLr [ Lr(Rn) or the Sobolev space
Hm [ Hm(Rn) defined by

Hm5$u:iu;Hmi[i~12D!m/2ui2,`%,

wherei •i r denotes the norm inLr , 1< r < `. However, in physical applications of Eq.~1!, one is
generally interested in describing spatially extended systems and for that purpose one is
consider initial data and solutions that do not tend to zero at infinity inRn. It is then natural to treat
the problem in local spacesXloc[Xloc(R

n), whereX stands forLr or Hm ~or any other function
space that would turn out to be convenient!, which can be defined by

Xloc5$u:uPX~B! for any ball B,Rn%.

One of the standard methods that can be used to treat the Cauchy problem for Eq.~1! consists in
exploiting generalized energy identities and estimates satisfied by the solutions of~1! in order to
prove the existence of global solutions in time by compactness arguments.5,9,11Now it has been
shown recently that for Eq.~1!, the previous estimates can be localized.4 This fact allows for an
extension of the compactness methods for Eq.~1! from the framework of global spaces to that
the corresponding local spaces. That extension was performed in our previous paper7 where we
considered a variety of local spaces associated with the global spacesLr(r>2) andH1. The

a!Laboratoire associe´ au Centre National de la Recherche Scientifique—URA D0063.
0022-2488/97/38(5)/2475/8/$10.00
2475J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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compactness methods provide no information in general on the uniqueness problem. Neve
we proved in Ref. 7 that in certain cases, the localized estimates allow one to prove a non
gation estimate which implies uniqueness in some local spaces.

The derivation of the localized estimates depends on the behavior of the nonlinearityg(r) for
larger and has been performed in Ref. 7, following Ref. 4, in the power case whereg(r)>rs for
somes.0. The localization is all the easier to prove as the nonlinearity is stronger and the r
for that can be understood from the basic energylike identity and inequality@see, respectively,~14!
and~15! below# satisfied by a typical local charge, namely by theL2 norm squared ofwu where
u is a generic solution andw a suitably smoothed out localization function in some box. For
Schrödinger equation, the time derivative of such a local charge would be the flux of the cu
through the boundary of the box and would be hopelessly out of control. For the CGL equ
however, thanks to the dissipative kinetic term, that flux is basically controlled, up to a rema
which again is of the local charge form, now with localization functionu“wu. That remainder is
therefore controlled by the original local charge under the conditionu“wu<Cuwu, but that fact still
yields no more than exponential localization. In fact for strict localizationw has to vanish outside
of a bounded region and then necessarily“w goes to zero more slowly thanw at the points where
w reaches zero, so that the argument cannot proceed any further if there is no nonlinearity
able, for instance, forg(r)5const. In the case of the CGL equation with dissipative pow
nonlinearityg(r)5rs, the rescue comes from the contribution of the nonlinearity to the s
basic inequality, because in that contributionu is associated withw1/(11s), which also vanishes
more slowly thanw at the points wherew reaches zero. As a consequence, the previous rema
can be controlled by the contribution of the nonlinearity, actually through the use of the H¨lder
inequality, providedw vanishes of sufficiently large order at the points where it reaches zero
instance, ifw is radial and vanishes foruxu>R, a sufficient condition turns out to be thatw(x)
;C(R2uxu)m for uxu<R with m.1/211/s, a condition which is all the weaker ass is larger,
namely as the nonlinearity is stronger. This is the situation treated in Ref. 7.

Since localization is all the easier to prove as the nonlinearity is stronger, it is a na
question to determine the minimal increase ofg(r) for large r which suffices to ensure tha
property. The purpose of the present note is to show that the conditiong(r)>(Log r)n with n
.2 for larger is sufficient to derive the localized estimates and thereby most of the subse
results on the Cauchy problem. In the framework of the previous discussion, logarithmic inc
of g(r) should be associated with exponential vanishing ofw, more precisely in the previously
considered radial example, withw(x);C exp@2C(R2uxu)22/(m22)# for uxu<R, for somem with
2,m,n. Naturally enough, at a technical level, the proof will make essential use of a logarit
extension of the Ho¨lder inequality. We consider primarily the theory with initial datau(0)5u0
PL loc

2 . We first prove the localized estimates in that theory and we derive from them the exis
and uniqueness results for the Cauchy problem inL loc

2 . We then comment briefly on the othe
theories considered in Ref. 7 and we finally discuss the optimality of the lower bound ong(r).

For any intervalI , for any Banach spaceX, we denote byC (I ,X) the space of strongly
continuous functions fromI to X. For anyq, 1<q<`, we denote byLq(I ,X) @resp.L loc

q (I ,X)#
the space of measurable functions fromI to X such thatiu(•);XiPLq(I ) @resp. iu(•);Xi
PL loc

q (I )#. We use the notationR1 for the closed positive semi-axis@0,̀ !.
In order to derive the localizedL2 estimates and theL loc

2 existence result, we make th
following assumption ong:
~H1! gPC (R1,R1) andg satisfies

~Log r!1
n <g~r!<C„11~Log r!1

n
… ~2!

for somen.2, someC>1, and allr>0, where~Log r!15~Log r!~0[Max ~Log r,0!.
We emphasize the fact that the assumption~H1! bears on the behavior ofg(r) at infinity and
J. Math. Phys., Vol. 38, No. 5, May 1997
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does not preventg from being smooth~for instance real analytic! for all r>0. A typical example
would be

g~r!5„11Log~11r!…n.

The crucial step in the proof of the localizedL2 estimates in Refs. 4 and 7 is an application
the Hölder inequality. In the present case, we need a logarithmic extension of that inequal
the form of the following lemma.

Lemma 1: Let0,m,n and

w̄5exp@n„111/~n2m!…#. ~3!

For v>1 and w>w̄, define the functions

h1~v !5~Log v !m, ~4!

h2~w!5w~Log w!2n, ~5!

H~v,w!5 Hh1~v !h2~w! for wm<vn,
Cmn w„Log~w/v !…m2n for wm>vn, ~6!

where

Cmn5mmn2n~n2m!n2m. ~7!

Then for any probability space(S,m) and any measurable functionsc1 andc2 from S to@1,̀ !
and to @w̄,`), respectively, the following inequality holds:

E dm~s!h1„c1~s!…h2„c2~s!…<HS E dm~s!c1~s!,E dm~s!c2~s! D . ~8!

This lemma is a special case of a more general family of inequalities for which we ref
Ref. 12. The proof follows from the fact thath1(v)h2(w)<H(v,w) and thatH is a concave
function of (v,w) in @1,̀ )3@w̄,`).

We now derive the localizedL2 estimates. For that purpose we need a functionw
PC 1(Rn,R1) with compact support, to be thought of as the smoothed out characteristic fun
of a box. We assume furthermore that 0<w<1 and thatw satisfies the estimate

u“wu2<C1uwu2h1~e/uwu2!, ~9!

whereh1 is defined by~4! with m.2. The only restriction onw imposed by~9! is the fact that it
should vanish of sufficiently large order at the points where it reaches zero. For instance,w
a radial nonincreasing function with support$uxu<R% and with r5R2uxu, one can takew(x)
5exp(2r2k) so thatdw/dr5kwuLog wu111/k and

u“wu2<k2uwu2uLog wu212/k,

which satisfies~9! with k52/(m22).
For any sufficiently smooth solutionu of ~1! andw as above, we define the function

y~ t !5iwu~ t !i2
2. ~10!

We can now state the basic localL2 estimate.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Proposition 1: Let g satisfy(H1) and letw be as above, with2,m,n. Let u be a solution
of Eq. (1) with

uPC ~R1,L loc
2 !ùL loc

2 ~R1,H loc
1 ! ~11!

and define y(t) by (10). Then there exist y1 , y2 with 0,y1,y2 and a function y5 (t) defined in
~0,̀ ! and decreasing from1` to y1 , depending only on Eq. (1) and onw in a translation
invariant way, and if y(0).y1 , there exists a function y˜(t) defined in@0,̀ !, decreasing from
y(0) to y1 , depending on the same data and in addition on y(0), such that the following
properties hold:

~1! If y(0)<y1 , then y(t)<y1 for all t>0.
If y(0).y1 , then y(t)< ỹ(t)<y5 (t) for all t.0.

~2! y5 and therefore also y˜ decreases exponentially to y1 when t→`.
~3! ỹ and y5 satisfy the estimates

ỹ~ t !<Max$y2 ,exp@Log y~0!~11Ct„Log y~0!…n21!21/~n21!#% ~12!

and

y5 ~ t !<Max$y2 ,exp@~Ct!
21/~n21!#% ~13!

for all t.0.
Proof: Taking the scalar product 2 Re^wu, w Eq. ~1!& and commuting one“ with w2 in the

kinetic term, we obtain the identity

] tiwui2
252giwui2

222aiw“ui2
224 Re~a1 ia!^u“w,w“u&22bE w2uuu2g~ uuu2!, ~14!

and by the Schwarz inequality

] tiwui2
2<2giwui2

212a21~a21a2!iu“wi2
222bE w2uuu2g~ uuu2!. ~15!

We now estimate the second term on the rhs of~15!. For that purpose, for somew0>w̄, to be
specified later, we definer05h2(w0) with h2 defined by~5! and we define a functionr→w(r)
for r>0 by

w~r!5w0 for r<r0 ,
~16!

h2~w~r!!5r for r>r0 ,

so thatr∨r05h2„w(r)… for all r>0. Using~9! we estimate

iu“wi2
25E u“wu2r<E u“wu2~r∨r0!<C1E uwu2h1~e/uwu2!h2„w~r!…, ~17!

wherer5uuu2. We now apply Lemma 1 withS5Suppw, dm5M21 w2dx with M5*w2. We
obtain

iu“wi2
2<C1MHS eM21uSu,M21E w2w~r! D ,

whereuSu is the Lebesgue measure ofS,
J. Math. Phys., Vol. 38, No. 5, May 1997
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•••<C1CmnMz~Log„~euSu!21Mz…!m2n, ~18!

where

z5M21E w2w~r!, ~19!

and where we have used the second form ofH, which is appropriate under the condition

w0>~eM21uSu!n/m, ~20!

which we impose from now on. We take in additionw0 sufficiently large so thatr0.e, a
sufficient condition for which is

w0>exp~n2!. ~21!

Under that assumption and the assumption~H1!, we can then estimate

C0w~r!<rg~r! for r>r0 ~22!

with C05(122n21 Log n)n.
It follows from ~22! that

z<w01M21C0
21E w2rg~r!. ~23!

Substituting~18! and ~23! into ~15!, we obtain

] ty<2gy12a21~a21a2!C1Cmn Mz~Log„~euSu!21Mz…!m2n22bMC0~z2w0!, ~24!

wherez>w0 by the definition ofw(r).
On the other hand,y is estimated in terms ofz by

y5E w2r<E w2~r~r0!5E w2h2„w~r!…<Mh2SM21E w2w~r! D5Mh2~z! ~25!

becauseh2 is concave forw>w0 .
We are now in the following situation. We have two functionsy and z of t, satisfyingz

>w0 and

] ty<2gy1F~z!, ~26!

y<h~z!, ~27!

whereF is defined by~24! and h5Mh2 . The functionF is C 2, strictly concave, withF(w0)
.0 andF(z);2Czwith C.0 for largez while h is C 1 ~actuallyC `! and strictly increasing. If
F8(w0)<0, thenF is decreasing in@w0 ,`) and we definez05w0 . If F8(w0).0, thenF is
increasing fromw0 to somez0.w0 , and decreasing forz>z0 . We definey05h(z0). We now
estimatey by using~26! and ~27!.

For anyt for which y(t)<y0 , ~26! and ~27! imply that

] ty<2gy01F~z0! ~28!

andy(t) increases at most linearly int.
J. Math. Phys., Vol. 38, No. 5, May 1997
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For anyt for which y(t)>y0 , we havez>h21(y)>z0 and therefore sinceF is decreasing for
z>z0 ,

] ty<2gy1F~h21~y!!. ~29!

Collecting ~28! and ~29! we obtain

] ty<u~y02y!„2gy01F~z0!…1u~y2y0!~2gy1F„h21~y!…!, ~30!

whereu is the Heaviside step function@with u(0)51/2#.
The rhs of~30! is strictly positive fory<y0 , is a strictly concave function ofh21(y) for y

.y0 , and behaves as2C h21(y) for y→`. Therefore it vanishes exactly once for somey1

.y0 and is positive~resp. negative! for y,y1 ~resp.y.y1!. Let ỹ(t) be the solution of the
differential equation (30)5 obtained by replacing< by 5 in ~30! with initial condition ỹ(0)
5y(0). The function ỹ varies monotonically fromy(0) to y1 and tends toy1 exponentially in
t when t→`. In particularỹ(t)<y1 for all t if y(0)<y1 . Furthermore, since the rhs of~30! is a
Lipschitz function ofy, one hasy(t)< ỹ(t) for all t>0. This completes the proof of all th
statements in parts~1! and ~2! not involving y5 , yet undefined.

We next study the behavior ofỹ(t) for small t and largey(0). For somey2.y1 which we
choose to depend only on the equation and onw, the rhs of~30! is less than2C2 y(Log y)

n for
y>y2 so thatỹ satisfies

] tỹ<2C2ỹ~Log ỹ!n ~31!

for y(0).y2 , as long asỹ>y2 . By integration,ỹ satisfies~12! with C5(n21)C2 . Taking the
supremum of the rhs of~12! overy(0) for y(0)>y2 , we obtain the rhs of~13!, which we take as
the definition ofy5 (t) as long as it is strictly greater thany2 , namely in some interval 0<t,t2 .
For t>t2 , we definey5 (t) as the solution of (30)5 with y5 (t2)5y2 . It is then straightforward to
check that all the remaining statements of the Proposition hold. Q.

With the estimates of Proposition 1 available, one can prove the existence of solutions~1!
in local L2 spaces. The main result is an extension to the present situation of Proposition
Ref. 7 and can be stated as follows.

Proposition 2: Let g satisfy (H1) and let u0PL loc
2 . Then Eq. (1) has a solution

uPC ~R1,L loc
2 !ùL loc

2 ~R1,H loc
1 ! ~32!

with u(0)5u0 , and u is estimated in that space in terms of u0 . Furthermore u satisfies the loca
L2 estimates of Proposition 1. In particular u satisfies an estimate of the type

iu;L`~ [ t,`!,L loc.un.
2 )i<R~ t ! ~33!

for all t.0, for some nonincreasing function R independent of u.
The proof proceeds by a variant of standard compactness methods, as in the case of

sition 2.2 of Ref. 7. The functionR appearing in~33! is the functiony5 of Proposition 1 with a
suitable choice ofw.

In Ref. 7, we also proved a uniqueness result forL loc
2 solutions of Eq.~1!. That result also

extends to the present case. For simplicity we give a slightly less general result than possib
later comment on extensions thereof. We need to characterize the increase at largeuxu of the initial
data. For that purpose, we choosew0PC 1(Rn,R1) with 0<w0<1, w0(x)51 for uxu<1, and
w0(x)50 for uxu>2, and foruPL loc

2 we define

yR~u!5 Sup
uvu<R

i~tvw0!ui2
2, ~34!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



an

i-
of

nal

all the

nt is

2481J. Ginibre and G. Velo: Logarithmic complex Ginzburg–Landau equation

¬¬¬¬¬¬¬¬¬¬
where tv is the translation byvPRn. We can now state the uniqueness result, which is
extension to the present situation of Proposition 3.1 of Ref. 7.

Proposition 3: Let g satisfy (H1). Assume in addition that the function u→ug(uuu2) is in
C 1(C,C) and that

lim
r→`

rug8~r!u/g~r!50. ~35!

Let u0PL loc
2 satisfy

yR~u0!<A exp~BR2! ~36!

for some constants A and B. Then Eq. (1) with initial data u(0)5u0 has a unique solution in
L loc

` (R1,L loc
2 )ùL loc

2 (R1,H loc
1 ).

Proof: We consider two solutionsu1 and u2 of Eq. ~1! with the same initial datau1(0)
5u2(0)5u0 and we estimate the quantity

Q1~ t !5iw1~u12u2!~ t !i2
2, ~37!

wherew1 is a localizing function withw1(x)51 for uxu<R0 . We compute] tQ1 in a way similar
to ~14! and estimate it as in~15!. The assumption~35! makes it possible to eliminate the contr
bution of the term containingg. By the same computation as in the proof of Proposition 3.1
Ref. 7, for allR.R0 , we obtain

Q1~ t !<CRn21
~R2R0!

2

t2
expF2

~R2R0!
2

Ct
1CtG E

0

t

dt8„yR~u1~ t8!!1yR„u2~ t8!…… ~38!

for some constantC depending only on the equation and onw1 . Using ~12!, we estimate the
integral in ~38! as

E
0

t

dt8•••<C„yR~u0!∨y2…~Log„yR~u0!∨y2…!12n. ~39!

Using the assumption~36!, taking t sufficiently small, and lettingR tend to infinity, we obtain
Q1(t)50 for all R0 and thereforeu15u2 . Q.E.D.

In Proposition 3, we have restricted our attention to functionsg satisfying~35!, which holds
in particular if g(r);(Log r)n for large r. One could consider more generally functionsg
satisfying the assumption~H2! of Ref. 7 and derive a similar result under suitable additio
restrictions onb.

We have considered so far the Cauchy problem for Eq.~1! with initial data inL loc
2 . In Ref. 7

we have also developed theories with initial data inL loc
r for r.2 and inH loc

1 . The localization
mechanism for the localLr estimates is exactly the same forr.2 as forr52 and theL loc

r theory
of Ref. 7 carries over to the situation covered by the assumption~H1!. It is clear that theH loc

1

theory of Ref. 7 also carries over to the present situation, although we have not checked
details.

We next comment on the optimality or rather lack thereof of the assumption~H1! as regards
the behavior ofg at infinity. In the framework of the present method, the crux of the argume
the use of Lemma 1, and requires the existence of concave functionsh1 and h2 such that
h1(v) h2(w) admits a concave majorantH(v,w) so that in particular, on the diagonalv5w, the
producth1 h2 should admit a concave majorant, and therefore satisfy

h1~v !h2~v !<Cv ~40!
J. Math. Phys., Vol. 38, No. 5, May 1997
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for large v. The functionh1 should increase sufficiently fast to allow for strict localizatio
compatible with~9!. With w a radial decreasing function,w(R)51, w(R1r 0)50, and r5R
1r 02uxu, one should have

r 05E
0

r0
dr5E

0

1

dwUdw

dr U
21

>CE
0

1

dw w21h1~e/uwu2!21/25~C/2!E
e

`

dv v21h1~v !21/2, ~41!

thereby leading to the localization condition

E`

dv v21h1~v !21/2,`. ~42!

On the other hand, the functionw5h2
21 should be estimated byrg(r), namely,

w~r!5h2
21~r!<Crg~r!. ~43!

For g(r) an increasing function ofr, the limiting situation in~43! would havew(r)>r, so that

w~r!5h2
21~r!<Crg„w~r!…, ~44!

and thereforeh2 should satisfy

h2~w!>Cwg~w!21, ~45!

a condition which should be nearly optimal in the relevant situation whereg(r) increases more
slowly thanr. Comparing~40! with ~45! yields the conditiong>Ch1 , which together with~42!
imposes

E`

dv v21g~v !21/2,`. ~46!

It is therefore a reasonable conjecture that~46!, possibly supplemented by suitable smoothne
monotony or convexity conditions, should be the optimal condition ong needed to ensure th
success of the present method. In the caseg(r).(Log r)n, that condition reduces ton.2.
Further candidates forg would beg(r);(Log r)2(Log Log r)n, again withn.2, and would
require a doubly logarithmic extension of the Ho¨lder inequality as a substitute for Lemma 1.
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Nonlinear dynamical systems and classical orthogonal
polynomials

K. Kowalski
Department of Theoretical Physics, University of Ło´dź, ul. Pomorska 149/153,
90-236 Łódź, Poland

~Received 22 May 1996; accepted for publication 12 November 1996!

It is demonstrated that nonlinear dynamical systems with analytic nonlinearities can
be brought down to the abstract Schro¨dinger equation in Hilbert space with boson
Hamiltonian. The Fourier coefficients of the expansion of solutions to the Schro¨-
dinger equation in the particular occupation number representation are expressed by
means of the classical orthogonal polynomials. The introduced formalism amounts
to a generalization of the classical methods for linearization of nonlinear differen-
tial equations such as the Carleman embedding technique and Koopman approach.
© 1997 American Institute of Physics.@S0022-2488~97!00303-4#

I. INTRODUCTION

In 1931 Koopman1 showed that one can associate with Hamiltonian systems of ordi
differential equations the Schro¨dinger equation in Hilbert space of square integrable functio
The observations of Koopman have become an important tool in the spectral theory of dyn
systems.2 In 1932 Carleman,3 following ideas of Poincare´ and Fredholm, demonstrated that no
linear systems of ordinary differential equations with polynomial nonlinearities can be reduc
an infinite system of linear differential equations. This approach is nowadays referred to
Carleman linearization or Carleman embedding. The Carleman approach has been succ
applied to the solution of numerous nonlinear problems~see Ref. 4 and references therein!. For
example it was used for calculating Lyapunov exponents5 and finding first integrals for the Loren
system.6 In his book7 Varadarajan extended the Koopman linearization to the very general ca
the phase space replaced with aG-space. WhenG5R and action of the group is given by the flow
the Varadarajan observations can be regarded as a generalization of the Koopman approac
case with non-Hamiltonian systems. Recently, such a generalization was rediscover
Alanson,8 who reported the possibility of reformulation of dynamical systems in the Hilbert sp
of square integrable functions. In 1982 Steeb9 demonstrated that the Carleman embedding ma
can be expressed with the help of Bose creation and annihilation operators. Inspired b
observation the author introduced in 1987 the Hilbert space approach to nonlinear dyn
systems.10 The formalism is based on the reduction of nonlinear dynamical systems with an
nonlinearities to the abstract, linear Schro¨dinger-like equation in Hilbert space with non-Hermitia
boson Hamiltonian. The treatment amounts to a far-reaching generalization of the Carlem
earization technique which corresponds to the particular case with the occupation number
sentation for the Schro¨dinger-like equation. On the other hand, it works also in the case
partial differential equations. The approach has been developed in a series of pape~see
monograph11 and references therein! and it has been shown therein to be an effective tool in
study of both ordinary and partial differential equations.

As remarked by Carleman3 ~see also Ref. 12! the simplest polynomial ansatz utilized in h
linearization scheme can be replaced by an orthogonal polynomial. Indeed, the author sho
Ref. 11 that the Koopman linearization is nothing but a version of the Carleman technique w
polynomial linearization ansatz coinciding with a multidimensional generalization of the Her
polynomials. It is worthwhile to note that Carleman, who discussed the Koopman formalis
Ref. 3 and wrote down the linearization transformation coinciding with that given by Her
polynomials, did not recognize such interpretation of the Koopman observations. So in both
0022-2488/97/38(5)/2483/23/$10.00
2483J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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of the Carleman and Koopman approach the system is linearized via a polynomial ansa
remark that the polynomials utilized by Carleman are orthogonal ones only in the comple
main. Now, using the Hilbert space formalism introduced by the author one can conne
Carleman polynomial linearization ansatz with the Schro¨dinger-like equation in Hilbert space. Th
reason of the non-Hermicity of the corresponding Hamiltonian is the fact that we deal
complex orthogonal polynomials. In summary, the common feature of the Carleman and Koo
approaches is an orthogonal polynomial ansatz which allows us to reduce the nonlinear dyn
systems to the Schro¨dinger or Schro¨dinger-like equation in Hilbert space. The aim of this work
to introduce a general method for linearization of nonlinear dynamical systems with an
nonlinearities including the Carleman technique and Koopman approach as a specia
Namely, we show that the linearization ansatz enabling reduction of dynamical systems
Schrödinger equation is generated by an arbitrary classical orthogonal polynomial.

The paper is organized as follows. In Sec. II we briefly recall the Carleman technique a
Hilbert space generalization. Section III is devoted to a short exposition of the Koopman l
ization. In Sec. IV we describe the method for linearization of nonlinear dynamical systems
general case of an arbitrary classical orthogonal polynomial. The explicit relations for the co
polynomials are discussed in Sec. V.

II. CARLEMAN LINEARIZATION AND THE HILBERT SPACE APPROACH TO
NONLINEAR DYNAMICAL SYSTEMS

We first briefly recall the Carleman technique.3 Consider the real analytic system

ẋ5F~x!, ~2.1!

whereF:Rk→Rk andF is analytic inx. Setting

fn5)
i51

k

xi
ni, ~2.2!

wherex5(x1 ,...,xk) satisfies~2.1! andniPZ1 ~the set of non-negative integers!, we arrive at the
linear differential-difference equation such that

ḟn5 (
mPZ1

k
Cnmfm . ~2.3!

Since we can introduce an order in the setZ1
k , therefore~2.3! is equivalent to the infinite linea

system of ordinary differential equations. In view of~2.2! the finite system~2.1! is embedded into
the infinite system implied by~2.3!. Indeed, it follows from~2.2! that the solutionx to ~2.1! is
linked to the solutionfn of ~2.3! by

xi5fei
, i51,...,k, ~2.4!

whereei5(0,...,0,1i ,0,...,0) is theunit vector ofR
k. Therefore, the Carleman linearization is al

referred to as the Carleman embedding technique.
We now outline the Hilbert space approach to nonlinear dynamical systems.10 Consider the

system~complex or real!

ż5F~z!, ~2.5!

whereF:Ck→Ck andF is analytic inz. Let us introduce the vectors in Hilbert space of the fo
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uz&85expS 12 (
i51

k

uzi u2D uz&, ~2.6!

wherez fulfill ~2.5! and uz& are normalized coherent states~see Appendix B!. On differentiating
both sides of~2.6! with respect to time we arrive at the following linear, abstract Schro¨dinger-like
equation in Hilbert space satisfied by the vectorsuz&8:

d

dt
uz&85M 8uz&8, ~2.7!

whereM 8 is the boson operator such that

M 85(
i51

k

ai
†Fi~a!. ~2.8!

Here ai
† , aj , i51,...,k, are the standard Bose creation and annihilation operators, respec

~see Appendix A!. Evidently, the solutions to the nonlinear system~2.5! are linked to the solutions
to the linear equation~2.7! by

auz&85zuz&8. ~2.9!

It thus appears that the integration of the nonlinear dynamical system~2.5! can be brought down
to the solution of the linear Schro¨dinger-like equation in Hilbert space~2.7!.

We now discuss the connection of the Hilbert space formalism with the Carleman line
tion. Writing the abstract equation~2.7! in the occupation number representation~see Appendix A!
we obtain

żn5 (
mPZ1

k
Mnm8 zm , ~2.10!

wherezn5^nuz&8 andMnm8 5 ^nuM 8um&. Using~2.6! and~B6! we get

zn5)
i51

k zi
ni

Ani !
, ~2.11!

wherez5(z1 ,...,zk) obeys~2.5!. Thus it turns out that the Carleman embedding technique
responds to the particular occupation number representation within the Hilbert space app
We note that the polynomials~2.11! form the orthonormal complete set in the Fock–Bargma
space specified by the inner product~B7! @see~B9!#. In other words,~2.11! is simply the normal-
ized version of~2.2!. It should be noted that in the case with monomials like~2.11! with k51, the
passage to the complex domain is necessary for obtaining the complete orthonormal set. In
can be easily demonstrated that there is no Hilbert space spanned by real monomialspn(x)5cnx

n.
However, it might be observed that~2.7! and ~2.9! hold in the real domain as well.

III. THE KOOPMAN LINEARIZATION

This section is devoted to a brief exposition of the Koopman linearization, more precise
generalization mentioned in the Introduction, with the help of the Hilbert space approac
scribed in Ref. 11. Consider the real analytic system

ẋ5F~x!. ~3.1!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Let ux&, where x fulfills ~3.1!, be the normalized eigenvectors of the position operators~see
Appendix C!. Using ~C5! and ~C2! we find that these vectors satisfy the linear Schro¨dinger-like
equation in Hilbert space of the form

d

dt
ux&5M ux&, ~3.2!

where the operatorM is given by

M52 i(
i51

k

p̂iFi~ q̂!, ~3.3!

where p̂i , q̂ j , i , j51,...,k, are the momentum and position operators, respectively. Clearly
solutions to the nonlinear system~3.1! are related to the solutions of the linear equation~3.2! by

q̂ux&5xux&. ~3.4!

We have thus shown that the nonlinear dynamical system~3.1! can be cast into the linea
Schrödinger-like equation~3.2!. Moreover, an easy calculation based on~3.2! and~C3! shows that
the vectors defined by

ux&̃ :5e~1/2!*0
t div F~x!dtux&, ~3.5!

obey the Schro¨dinger equation of the form

i
d

dt
ux&̃ 5Hux&̃ , ~3.6!

where the Hamiltonian is

H5
1

2 (
i51

k

„p̂iFi~ q̂!1Fi~ q̂! p̂i…. ~3.7!

In view of ~3.5! the solutions to~3.1! and ~3.6! are related by

q̂ux&̃ 5xux&̃ . ~3.8!

Thus it turns out that the nonlinear dynamical system~3.1! can be brought down to the abstra
Schrödinger equation~3.6!. Observe that the HamiltonianH is nothing but the Hermitian part o
the operatoriM . One may ask if we could analogously symmetrize the operatorM 8 given by
~2.8!. The negative answer follows from observations of Kano,13 who showed that whenever th
Hamiltonian is not linear in the Bose creation operators, then the coherent states become u
that is the relation~2.9! is violated during the time evolution. We finally remark that theL2 version
of the relations~3.5! and ~3.6! was originally introduced by Alanson.8

IV. LINEARIZATION IN HILBERT SPACE AND CLASSICAL ORTHOGONAL
POLYNOMIALS

A. Classical orthogonal polynomials

As we promised in the Introduction we now describe a general method for reductio
nonlinear dynamical systems to the Schro¨dinger-like or Schro¨dinger equation based on the linea
J. Math. Phys., Vol. 38, No. 5, May 1997
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ization ansatz generated by an arbitrary classical orthogonal polynomial. We begin by recalli
basic properties of classical orthogonal polynomials. Letpn(x) be a normalized classical orthogo
nal polynomial, that is we have

E
a

b

dx w~x!pn~x!pm~x!5dnm , ~4.1!

wherew(x) is the weight function andn, mPZ1 . The orthogonal polynomials satisfy the recu
rence formula

pn11~x!5~Anx1Bn!pn~x!2Cnpn21~x!, n50,1,2,... , ~4.2!

wherep21(x)50 and

An5
qn11

qn
, Bn5An~r n112r n!, Cn5

An

An21
. ~4.3!

The coefficientsqn and r n in ~4.3! are given by

pn~x!5qnx
n1qn8x

n211••• , r n5
qn8

qn
. ~4.4!

We note that the last formula of~4.3! onCn holds only for the normalized orthogonal polynom
als. We now specialize to the case with normalized classical orthogonal polynomials. We
have a generalized Rodrigues formula14

pn~x!5
1

Knw~x!

dn

dxn
@w~x!Xn#, ~4.5!

whereKn are constant andX is a polynomial with coefficients independent ofn, and the differ-
entiation formula14

X
dpn~x!

dx
5S an1

n

2
X9xD pn~x!1bnpn21~x!, ~4.6!

where

an5nX8~0!2 1
2X9r n , Anbn52Cn@q1K11~n2 1

2!X9#. ~4.7!

B. Reduction to the evolution equation in Hilbert space

We now come to the discussion of the linearization of nonlinear dynamical systems in H
space. As it is well known the orthogonal polynomials form the complete set inLw

2 .14 Based on
this observation we introduce the Hermitian operatorx̂ with the complete set of eigenvectors, su
that

x̂ux&5xux& ~4.8!

and

^nux&5w~x!1/2pn~x!, ~4.9!
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



the

ution

e

re-
n

2488 K. Kowalski: Dynamical systems and orthogonal polynomials

¬¬¬¬¬¬¬¬¬¬
whereun&, nPZ1 , are the basis vectors of the occupation number representation~see Appendix
A! and pn(x) is a normalized classical orthogonal polynomial. Evidently, the resolution of
identity for the statesux& can be written as

E
a

b

dxux&^xu5I . ~4.10!

On writing the eigenvalue equation~4.8! in the occupation number representation and using~4.9!,
~4.2!, ~4.3!, and~A10! we arrive at the following boson realization of the operatorx̂:

x̂5a
1

AN21AN
1

1

AN21AN
a†2

BN

AN
~4.11a!

5a
1

AN21AN
1

1

AN21AN
a†1r N2r N11 , ~4.11b!

whereN is the number operator. Consider now the differential equation

ẋ5F~x!, ~4.12!

whereF is analytic inx. Our aim is to study the dynamics of the time-dependent vectorsux&,
wherex satisfies~4.12!. These states will be seen to be stable with respect to the time evol
given by ~4.12!, that is ~4.8! holds at any time. Expanding the time-dependent vectorux& in the
basis of the vectorsun&, differentiating with respect to time and using~4.9!, ~4.6!, ~4.2!, ~4.5!, and
~A10! we find that the vectorsux& satisfy the Schro¨dinger-like equation in Hilbert space of th
form

d

dt
ux&5M ux&, ~4.13!

where the operatorM is

M5p̂
F~ x̂!

X
. ~4.14!

Here

p̂5
1

2 H a 1

AN21AN
@X9~N21!1q1K1#2@X9~N21!1q1K1#

1

AN21AN
a†

1@X9~N21!1q1K1#r N2@X9N1q1K1#r N111
B0K1

K0
2X812NX8~0!J . ~4.15!

In formulas~4.14! and~4.15! we have not designated for brevity the dependence ofX andX8 on
x̂. It should also be noted thatX9 is constant for arbitrary classical orthogonal polynomial. The
fore,X9 is a c-number in~4.15!. Now, it can be verified that the following commutation relatio
holds for arbitrary~normalized! classical orthogonal polynomial

@ x̂, p̂#5X. ~4.16!

Therefore, in view of~4.14! we have
J. Math. Phys., Vol. 38, No. 5, May 1997
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@ x̂, M #5F~ x̂!. ~4.17!

Hence, with the use of~4.13! we find that~4.16! is precisely the condition for stability of the
time-dependent statesux&, i.e.,~4.8! wherex fulfills ~4.12!, is valid at any time. In other words, th
solution to~4.12! and the solution of~4.13! are related by~4.8!. It thus appears that the solution o
the nonlinear differential equation~4.12! can be brought down to the solution of the linea
evolution, Schro¨dinger-like equation in Hilbert space~4.13!. We remark that~4.16! is equivalent
to the following identities satisfied by an arbitrary normalized classical orthogonal polynom

@X9~n22!1q1K1#r n2122@X9~n21!1q1K1#r n1@X9n1q1K1#r n1122X8~0!50,
~4.18!

1

An21
2 FX9S n2

3

2D1q1K1G2
1

An
2 FX9S n1

1

2D1q1K1G5X~r n2r n11!5XS 2
Bn

An
D , ~4.19!

whereX(r n 2 r n11) [ X(y)uy5r n2r n11
. We finally note that the formula~4.18! is a direct conse-

quence of the more general relation such that

@X9~n21!1q1K1#r n2@X9n1q1K1#r n1112nX8~0!1
B0K1

K0
50. ~4.20!

C. Reduction to the Schro ¨dinger equation

We now demonstrate that~4.12! can be furthermore reduced to the Schro¨dinger equation. First
observe that~4.20! is equivalent to the operator formula

p̂1p̂†52X8. ~4.21!

Further, owing to~4.16! the Hermitian operatork̂ defined as

k̂5
i

2
~p̂2p̂†! ~4.22!

satisfies the commutation relation

@ x̂, k̂#5 iX. ~4.23!

Using ~4.23!, ~4.22!, and~4.21! we find that the Hermitian operatorH such that

H5
1

2 S k̂ F~ x̂!

X
1
F~ x̂!

X
k̂D ~4.24!

is related to the operatorM of the form ~4.14! by

H5 i SM1
1

2

dF

dx̂D . ~4.25!

An easy inspection based on~4.13!, ~4.8!, and~4.25! shows that the vectors defined by

ux&̃ :5e~1/2!*0
t
~dF/dx!dtux&, ~4.26!

whereux& fulfills ~4.13!, satisfy the Schro¨dinger equation of the form
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i
d

dt
ux&̃ 5Hux&̃ . ~4.27!

By virtue of ~4.8! and ~4.26! we have

x̂ux&̃ 5xux&̃ , ~4.28!

wherex obeys~4.12!. Thus it turns out that the solution of the nonlinear equation~4.12! can be
cast into the solution of the Schro¨dinger equation~4.27!. We remark that in view of~4.25! the
HamiltonianH coincides with the symmetrization of the operatoriM .

D. Polynomial linearization ansatz

We note that~4.9! can be regarded as a linearization ansatz for~4.12!. Indeed, on writing
~4.13! in the occupation number representation we arrive at the linear differential-difference
tion satisfied bŷ nux&. In order to show that the actual treatment can be regarded as a gen
zation of the Carleman linearization technique we should reformulate it to deal with polyno
linearization ansatz instead of the nonpolynomial one given by~4.9!. Consider the vectors

ux&8:5w~x!21/2ux&, ~4.29!

whereux& fulfills ~4.13!. Taking into account~4.13! we find that these vectors satisfy the followin
evolution equation in Hilbert space:

d

dt
ux&85M 8ux&8, ~4.30!

whereM 8 is given by

M 85p̂8
F~ x̂!

X
, ~4.31!

where the operatorp̂8 is

p̂85p̂2
1

2

w8

w
X ~4.32a!

5
1

2 H a 1

AN21AN
X9~N21!2@X9~N21!12q1K1#

1

AN21AN
a†

2q1K1~r N2r N11!2
B0K1

K0
J . ~4.32b!

We remark that in view of~4.32a!

@ x̂, p̂8#5X, ~4.33!

which leads to

@ x̂, M 8#5F~ x̂!. ~4.34!

Clearly, the solution to~4.12! is linked to the solution of~4.30! by
J. Math. Phys., Vol. 38, No. 5, May 1997
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x̂ux&85xux&8. ~4.35!

We have thus shown that the solution to the nonlinear equation~4.12! can be reduced to the
solution of the linear Schro¨dinger-like equation~4.30!. On writing the abstract equation~4.30! in
the occupation number representation we arrive at the following equation:

ẋn5 (
mPZ1

Mnm8 xm , ~4.36!

wherexn5^nux&8 andMnm8 5 ^nuM 8um&. Equations~4.29! and~4.9! taken together yield

xn5pn~x!. ~4.37!

Thus it turns out that in the particular occupation number representation the presented form
describes linearization of~4.12! by means of the polynomial ansatz~4.37! given by an arbitrary
classical orthogonal polynomial.

E. Linearization of multidimensional nonlinear dynamical systems

We now generalize the actual treatment to the case with multidimensional nonlinear dy
cal systems. Having in mind the relation~2.2! which is crucial for the Carleman linearization, it
natural to postulate the following multidimensional generalization of classical orthogonal po
mials:

pn~x!5)
i51

k

pni~xi !, ~4.38!

wherepni(xi) is a~normalized! classical orthogonal polynomial andnPZ1
k . Evidently,pn~x! form

the orthonormal, complete set in thek-fold tensor product ofLw
2 . We can thus introduce the

Hermitian operatorsx̂i , i51,...,k, with complete set of eigenvectorsux&, xPRk, satisfying

@ x̂i , x̂ j #50, i , j51,...,k, ~4.39!

x̂ux&5xux&, ~4.40!

^nux&5S )
i51

k

w~xi !
1/2D pn~x!, ~4.41!

where un&, nPZ1
k , span the occupation number representation. Clearly, the resolution o

identity for the statesux& is

E
~a,b!k

dkxux&^xu5I . ~4.42!

Furthermore, it can be easily checked@see~A1! and~A2!# that thek-dimensional generalization o
~4.11! is

x̂i5ai
1

ANi21ANi

1
1

ANi21ANi

ai
†2

BNi

ANi

~4.43a!
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5ai
1

ANi21ANi

1
1

ANi21ANi

ai
†1r Ni2r Ni11 , i51,...,k.

~4.43b!

Consider now the nonlinear dynamical system

ẋ5F~x!, ~4.44!

whereF:Rk→Rk andF is analytic inx. Proceeding as with~4.12! we find that the time-dependen
vectorsux&, wherex fulfills ~4.44!, obey

d

dt
ux&5M ux&. ~4.45!

The boson operatorM is given by

M5(
i51

k

p̂ i

Fı~ x̂!

X~ x̂i !
, ~4.46!

where

p̂ i5
1

2 H ai 1

ANi21ANi

@X9~Ni21!1q1K1#2@X9~Nı21!1q1K1#
1

ANı21ANi

ai
†1@X9~Ni21!

1q1K1#r Ni2@X9Ni1q1K1#r Ni111
B0K1

K0
2X8~ x̂i !12NiX8~0!J , i51,...,k. ~4.47!

From ~4.43!, ~4.47!, and~4.16! @see also~A1! and ~A2!# it follows that

@ x̂i , p̂ j #5d i j X~ x̂ j !, i , j51,...,k. ~4.48!

Hence

@ x̂, M #5F~ x̂!. ~4.49!

As with ~4.16! we find that~4.48! is the condition for the stability of the time-dependent statesux&.
Therefore, the eigenvalue equation~4.40! is valid at any time. In other words, the nonline
dynamical system~4.44! can be brought down to the solution of the linear evolution equatio
Hilbert space~4.45!.

It is easy to show using observations of Sec. IV C that~4.44! can be cast into the Schro¨dinger
equation. Namely, we introduce the Hermitian operators

k̂ j5
i

2
~p̂ j2p̂ j

†!, j51,...,k, ~4.50!

which in view of ~4.48! obey

@ x̂r , k̂s#5 id rsX~ x̂s!, r ,s51,...,k. ~4.51!

Taking into account~4.51!, ~4.46!, and the generalization of~4.21! such that
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p̂ i1p̂ i
†52

dX~ x̂i !

dx̂i
, i51,...,k, ~4.52!

we find that the Hermitian operatorH, defined as

H5
1

2 (
i51

k S k̂i Fi~ x̂!

X~ x̂i !
1
Fi~ x̂!

X~ x̂i !
k̂i D , ~4.53!

is linked to the operatorM by

H5 i ~M1 1
2 div F!. ~4.54!

Therefore, the vectors

ux&̃ :5e~1/2!*0
t div F dtux&, ~4.55!

whereux& obeys~4.45!, satisfy the Schro¨dinger equation

i
d

dt
ux&̃ 5Hux&̃ . ~4.56!

Obviously, the following relation holds:

x̂ux&̃ 5xux&̃ , ~4.57!

werex fulfills ~4.44!. It thus appears that the nonlinear dynamical system~4.44! can be reduced to
the abstract Schro¨dinger equation~4.56!.

We finally discuss the multidimensional generalization of the actual treatment in the cas
the polynomial linearization ansatz~4.37!. The resulting formalism generalizes the approach ta
up by Carleman. Let us introduce the vectors of the form

ux&85S )
i51

k

w~xi !
21/2D ux&, ~4.58!

whereux& obeys~4.45!. Proceeding as in the case with~4.29! we arrive at the following evolution
equation in Hilbert space satisfied by the vectors~4.58!:

d

dt
ux&85M 8ux&8, ~4.59!

whereM 8 is

M 85(
i51

k

p̂ i8
Fi~ x̂!

X~ x̂i !
. ~4.60!

Here the operatorsp̂ i8 , i51,...,k, are given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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p̂ i85p̂ i2
1

2

w8~ x̂i !

w~ x̂i !
X~ x̂i ! ~4.61a!

5
1

2 H ai 1

ANi21ANi

X9~Ni21!2@X9~Ni21!12q1K1#

3
1

ANi21ANi

ai
†2q1K1~r Ni2r Ni11!2

B0K1

K0
J . ~4.61b!

Notice that

@ x̂i , p̂ j8#5d i j X~ x̂ j !, i , j51,...,k, ~4.62!

@ x̂, M 8#5F~ x̂!. ~4.63!

Clearly,

x̂ux&85xux&8. ~4.64!

Thus it turns out that the nonlinear dynamical system~4.44! can be brought down to the linea
Schrödinger-like equation in Hilbert space~4.59!. Writing ~4.59! in the occupation number rep
resentation we get

ẋn5 (
mPZ1

k
Mnm8 xm , ~4.65!

wherexn5^nux&8 andMnm8 5 ^nuM 8um&. Taking into account~4.58! and~4.41! we find

xn5pn~x!. ~4.66!

In view of the form of the relations~2.2!, ~2.3!, ~4.66!, ~4.38!, and~4.65!, it is plausible to treat the
actual formalism as a generalization of the Carleman embedding technique to the case w
linearization ansatz given by an arbitrary classical orthogonal polynomial. We recall tha
orthogonal polynomials~2.13! are complex. Nevertheless, as we demonstrate in the next se
the introduced approach works also in such the case.

V. EXAMPLES

A. Complex orthogonal polynomials

In this section we illustrate the general formalism described above by the examples
concrete classical orthogonal polynomials. We begin with the simplest case of the complex
nomials ~2.13! for k51. As a matter of fact, these polynomials are not considered as clas
ones. Nevertheless, they satisfy the most important relations characteristic for classical orth
polynomials such as the recurrence, Rodrigues, and differentiation formulas. No wonder th
introduced approach covers the case of polynomials~2.13!. To see this consider the comple
polynomials

pn~z!5
zn

An!
. ~5.1!

Evidently, for these polynomials@see~4.1!, ~4.2!, ~4.4!, and~2.14!#
J. Math. Phys., Vol. 38, No. 5, May 1997
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w~z,z* !5e2zz* , An5
1

An11
, Bn50, Cn50, ~5.2!

qn5
1

An!
, r n50. ~5.3!

We remark that the formula~4.3! on Cn does not hold in the case with complex orthogon
polynomials. Furthermore, the Rodrigues formula can be written as

pn~z!5
1

Knw~z,z* !

dn

dz* n
@w~z,z* !Xn#, ~5.4!

where

X51, Kn5~21!nAn!. ~5.5!

It can be easily checked with the use of~5.2!, ~5.3!, and~5.5! that the differentiation formula~4.6!
is also valid by the polynomials~5.1!. Now we can write the complex counterpart of relations~4.8!
and ~4.9! of the form

ẑuz&5zuz&, ~5.6!

^nuz&5w~z,z* !1/2pn~z!. ~5.7!

Proceeding as with~4.8! and ~4.9! we find

ẑ5a, ~5.8!

that is the statesuz& satisfying~5.6! are nothing but the standard coherent states~see Appendix B!.
Referring back to the earlier remark concerning the coefficientCn in the recurrence formula~4.2!
we note that the form of the operatorẑ is implied by ~5.2! and

ẑ5a
1

AN21AN
1

CN

ANAN
a†2

BN

AN
. ~5.9!

This formula is a generalization of~4.11! in the case with complex polynomials when the la
relation of ~4.3! does not take place.

Consider the differential equation

ż5F~z!, ~5.10!

where F is analytic in z. In opposition to the case of classical orthogonal polynomials,
time-dependent vectorsuz&, wherez fulfills ~5.10!, do not satisfy the linear evolution equation
Hilbert space. Indeed, applying the algorithm described in Sec. IV we get

d

dt
uz&5@ReF~z!1a†F~a!#uz&. ~5.11!

On the other hand, the vectors defined as

uz&85w~z,z* !21/2uz&5e~1/2!zz* uz&, ~5.12!
J. Math. Phys., Vol. 38, No. 5, May 1997
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which are the complex counterparts of the vectors~4.29!, are easily seen to obey

d

dt
uz&85M 8uz&8, ~5.13!

where the boson operatorM 8 is

M 85a†F~a!. ~5.14!

Notice that sinceX51 @see ~5.5!#, the operator~5.14! has the structure analogous to~4.31!.
Moreover, identifyingp̂8 with a† we see that~4.33! is valid as well. Furthermore, as an immedia
consequence of~5.14! and ~A1! we find

@a, M 8#5F~a!. ~5.15!

As with ~4.17! we conclude that the eigenvalue equation

auz&85zuz&8, ~5.16!

wherez satisfies~5.10!, holds at any time, that is the nonlinear equation~5.10! reduces to the
linear Schro¨dinger-like equation in Hilbert space~5.13!.

The generalization of the linearization algorithm in the case with the nonlinear dynam
system~2.5! is straightforward. Evidently, the counterparts of~4.38!, ~4.39!, ~4.40!, ~4.41!, and
~4.58! can be written as

pn~z!5)
i51

k

pni~zi !5)
i51

k
zi

Anı!
, ~5.17a!

@ai , aj #50, i , j51,...,k, ~5.17b!

auz&5zuz&, ~5.17c!

^nuz&5S )
i51

k

w~zi ,zi* !1/2D pn~z!5expS 2
1

2 (
i51

k

uzi u2D pn~z!, ~5.17d!

uz&85S )
i51

k

w~zi ,zi* !21/2D uz&5expS 12 (
i51

k

uzi u2D uz&. ~5.17e!

Proceeding analogously as in the case of~4.58! we arrive at Eq.~2.7!. Furthermore, identifying
p̂ i8 with aı

† we find that the formula~4.60! takes place also in the case with complex orthogo
polynomials. Using~2.8! and ~A1! we get the following counterpart of the relation~4.63!:

@a, M 8#5F~a!. ~5.18!

Clearly, ~5.18! leads to the formula~2.9!. Finally, the formula~2.11! is a direct consequence o
~5.17e!. We have thus shown that the particular case with the complex orthogonal polyno
~5.17a! corresponds to the Hilbert space approach discussed in Sec. II.

B. Hermite polynomials

We now examine the case of the Hermite polynomials within the actual treatment. LetHn(x)
be the Hermite polynomials. For these polynomials we have@see~4.1!#
J. Math. Phys., Vol. 38, No. 5, May 1997
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a52`, b5`, w~x!5e2x2. ~5.19!

Now let pn(x) be normalized Hermite polynomials, i.e.,

pn~x!5p21/422n/2
1

An!
Hn~x!. ~5.20!

The polynomialspn satisfy the recurrence formula~4.2!, where

An5A 2

n11
, Bn50, Cn5A n

n11
. ~5.21!

These formulas can be recovered from~4.3! with the help of the relations

qn5p21/42n/2
1

An!
, r n50. ~5.22!

The Rodrigues formula for polynomialspn is given by~4.5!, where

X51, Kn5p1/4~21!n2n/2An!. ~5.23!

Using ~5.21! we find that the operator~4.11! is

x̂5
1

&

~a1a†!, ~5.24!

that is

x̂5q̂, ~5.25!

whereq̂ is the position operator~see Appendix C!. Furthermore, taking into account~5.21!, ~5.22!,
and ~5.23!, we obtain the following formula on the operator~4.15!:

p̂5
1

&

~a†2a!. ~5.26!

A look at ~5.26! is enough to conclude that

p̂52 i p̂, ~5.27!

where p̂ is the momentum operator~see Appendix C!. Therefore, the operator given by~4.22!
coincides with the momentum operator, i.e.,

k̂5 p̂. ~5.28!

We now return to the Schro¨dinger-like equation~4.45!. Equations~4.46!, ~4.43!, ~4.47!, ~5.23!,
~5.25!, and~5.27! taken together lead to the operatorM given by~3.3!. Thus, the nonlinear system
~4.44! reduces to the linear Schro¨dinger-like equation~4.45!, whereM is expressed by~3.3!.
Moreover, by virtue of~4.53! and ~5.28! the system can be furthermore brought down to
Schrödinger equation~4.56!, where the HamiltonianH is given by~3.7!. It thus appears that the
particular case of the Hermite polynomials within the presented approach refers to the Koo
linearization.
J. Math. Phys., Vol. 38, No. 5, May 1997
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C. Jacobi polynomials

Our purpose now is to discuss the case of the Jacobi polynomials within the introd
formalism. The Jacobi polynomialsPn

(a,b)(x) are specified by

a521, b51, w~x!5~12x!a~11x!b, ~5.29!

wherea.21 andb .21. Let pn be the normalized Jacobi polynomials, so

pn~x!5F ~2n1a1b11!G~n11!G~n1a1b11!

2a1b11G~n1a11!G~n1b11! G1/2Pn
~a,b!~x!. ~5.30!

The coefficients in the recurrence formula~4.2! are of the form

An5
2n1a1b12

2
A ~2n1a1b11!~2n1a1b13!

~n11!~n1a11!~n1b11!~n1a1b11!
,

Bn5
a22b2

2~2n1a1b!
A ~2n1a1b11!~2n1a1b13!

~n11!~n1a11!~n1b11!~n1a1b11!
, ~5.31!

Cn5
2n1a1b12

2n1a1b
A n~n1a!~n1b!~n1a1b!~2n1a1b13!

~n11!~n1a11!~n1b11!~n1a1b11!~2n1a1b21!
.

Accordingly, the coefficientsqn and r n @see~4.4!# are

qn5F 2n1a1b11

22n1a1b11G~n11!G~n1a11!G~n1b11!G~n1a1b11!G
1/2

G~2n1a1b11!,
~5.32!

r n5
~a2b!n

2n1a1b
.

The expressions for the polynomialX and the coefficientKn in the Rodrigues formula~4.5! are

X512x2, Kn5~21!nF22n1a1b11G~n11!G~n1a11!G~n1b11!

~2n1a1b11!G~n1a1b11! G1/2. ~5.33!

Now taking into account~5.31! we find that the formula~4.11! takes the form

x̂5a
2

2N1a1b
A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!

1
2

2N1a1b
A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!
a†1

b22a2

~2N1a1b!~2N1a1b12!
.

~5.34!

Furthermore, making use of~4.15!, ~5.31!, ~5.32!, and~5.33!, we get
J. Math. Phys., Vol. 38, No. 5, May 1997
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p̂52a
2N1a1b22

2N1a1b
A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!

1
2N1a1b12

2N1a1b
A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!
a†1

b22a2

~2N1a1b!~2N1a1b12!
.

~5.35!

Finally, by virtue of~4.22! and ~5.32! we have

k̂5 i S 2aA ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!
1A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!
a†D .

~5.36!

Consider now the system~4.44!. Using ~4.46! and ~5.33! we find that it can be reduced to th
linear evolution equation in Hilbert space of the form~4.45!, with

M5(
i51

k

p̂ i

Fi~ x̂!

12 x̂i
2 , ~5.37!

where in view of~4.43! and~4.47! x̂i andp̂ i can be obtained immediately from~5.34! and~5.35!
by formal replacement ofa andN by ai andNi , respectively. That isx̂i5 x̂(a5ai ,N5Ni) and
p̂ i5p̂(a5ai ,N5Ni).

The system~4.44! can be furthermore brought down to the Schro¨dinger equation~4.56!. On
taking into account~5.36! we arrive at the following form of the corresponding Hamiltoni
~4.53!:

H5
1

2 (
i51

k S k̂i Fi~ x̂!

12 x̂i
2 1

Fi~ x̂!

12 x̂i
2 k̂i D , ~5.38!

wherek̂i5 k̂(a5ai ,N5Ni).
We now discuss the Hilbert space counterpart~4.59! of the system~4.44!. Using~4.32! we get

p̂852a
2~N21!

2N1a1b
A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!

1
2~N1a1b11!

2N1a1b
A ~N1a!~N1b!~N1a1b!

~2N1a1b21!~2N1a1b11!
a†

1
2~a2b!N~N1a1b11!

~2N1a1b!~2N1a1b12!
. ~5.39!

Therefore, the operatorM 8 given by ~4.60! takes the form

M 85(
i51

k

p̂ i8
Fi~ x̂!

12 x̂i
2 , ~5.40!

wherep̂ i8 5 p̂8(a 5 ai ,N 5 Ni).We finally recall that Gegenbauer polynomials, Legendre poly
mials, and Chebyshev polynomials are special cases of Jacobi polynomials. We also point o
the actual treatment cannot be applied in the case with Chebyshev polynomials of first kindTn(x).
Indeed, we haveT21(x)5xÞ0, which implies violating of the recurrence formula~4.2! for n50.
J. Math. Phys., Vol. 38, No. 5, May 1997
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D. Laguerre polynomials

We finally study the case of~generalized! Laguerre polynomialsLn
a(x) within the actual

approach. These polynomials correspond to

a50, b5`, w~x!5xae2x, ~5.41!

wherea.21. Let pn be the normalized Laguerre polynomials, that is

pn~x!5F G~n11!

G~n1a11!G
1/2

Ln
a~x!. ~5.42!

The coefficients in the recurrence formula~4.2! are

An52
1

A~n11!~n1a11!
, Bn5

2n1a11

A~n11!~n1a11!
, Cn5A n~n1a!

~n11!~n1a11!
.

~5.43!

The constantsqn and r n in ~4.3! are of the form

qn5
~21!n

AG~n11!G~n1a11!
, r n52n~n1a!. ~5.44!

The expressions for the polynomialX and the constantKn in the Rodrigues formula are

X5x, Kn5AG~n11!G~n1a11!. ~5.45!

Now, owing to~4.11! and ~5.43!, we get

x̂52aAN1a2AN1a a†12N1a11. ~5.46!

Furthermore, making use of~4.15! one obtains

p̂5 1
2~aAN1a2AN1a a†21!. ~5.47!

Hence, in view of~4.22!

k̂5
i

2
~aAN1a2AN1a a†!. ~5.48!

We are now in a position to write down Eqs.~4.46! and~4.53! in the case with Laguerre polyno
mials. We have

M5(
i51

k

p̂ i

Fi~ x̂!

x̂i
~5.49!

and

H5
1

2 (
i51

k S k̂i Fi~ x̂!

x̂i
1
Fi~ x̂!

x̂i
k̂i D , ~5.50!

wherex̂i5 x̂(a5ai ,N5Ni), p̂ i5p̂(a5ai ,N5Ni), and k̂i5 k̂(a5ai ,N5Ni). We now return to
~4.30!. Using ~4.32! we find
J. Math. Phys., Vol. 38, No. 5, May 1997
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p̂852AN1a a†1N. ~5.51!

Therefore, the operator~4.60! is

M 85(
i51

k

p̂ i8
Fi~ x̂!

x̂i
, ~5.52!

wherep̂ i85 p̂8(a5ai ,N5Ni).

VI. CONCLUSION

We have introduced in this work the approach generalizing the classical methods for l
ization of nonlinear dynamical systems such as the Carleman embedding technique and Ko
formalism. Moreover, in the light of the observations of Sec. V the Hilbert space appr
developed by the author can be also regarded as a special case of the treatment introduce
The role played by classical orthogonal polynomials in the presented formalism is remarkab
the one hand, the classical orthogonal polynomials have been shown to be the most natural
the Hilbert space linearization of nonlinear dynamical systems. On the other hand, the stab
classical orthogonal polynomials with respect to the nonlinear time-evolution has been d
strated to be one of the properties which actually determine these polynomials via ‘‘canon
algebraic relations like~4.16! and ~4.21!. As a consequence of the general algorithm the n
methods have been found in this work for linearization of nonlinear dynamical systems conn
with an arbitrary classical orthogonal polynomial, excluding the case with Hermite polynom
which has been shown herein to correspond to the classical Koopman approach. We note
opposition to the existing approaches mentioned above, these methods cover the case of
with the phase space different from the wholeRk. For example, in the case when the Hilbert spa
counterpart of the system~4.44! is ~4.45! with M given by~5.37!, we have the restrictive condition
xiÞ1, i51,...,k, wherex satisfies~4.44!. Analogously,~5.49! leads to the requirement thatxiÞ0,
i51,...,k, wherex fulfills ~4.44!. It is suggested that the phase space of the linearized nonl
dynamical system~4.44! should coincide with a subset of (a,b)k @see~4.1! and ~4.38!#, where
(a,b) is the interval associated with the corresponding classical orthogonal polynomial. Ther
the case of~5.37! refers to the system~4.44! such that the solution remains in ak-dimensional
cube~21,1!k. Clearly, an arbitrary system performing finite motion can be reduced to such on
appropriate rescaling. On the other hand,~5.49! corresponds to systems~4.44! with xPR1

k , where
R1 is the set of positive real numbers. The well-known example of such systems are rate eq
of chemical kinetics. The experience with the Koopman linearization, the Carleman embe
technique, and the Hilbert space approach indicates that the formalism introduced herein wo
a useful tool in the theory of nonlinear dynamical systems. Last but not least, we point ou
results of this paper would be of importance in the theory of orthogonal polynomials. Inde
might be observed that the formulas~4.8! and ~4.9! as well as the relations~4.16! and ~4.21!
mentioned above seem to provide a new algebraic approach to the theory of classical orth
polynomials. We also point out that relations~4.51! amount to a generalization of the Heisenbe
algebra~C1!. On the other hand, we have shown earlier~see Sec. IV! that this algebra can be
interpreted as a condition for stability of solutions to~3.2!.

ACKNOWLEDGMENTS

I would like to thank a referee for helpful comments.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



umber

tors

t states

2502 K. Kowalski: Dynamical systems and orthogonal polynomials

¬¬¬¬¬¬¬¬¬¬
APPENDIX A: BOSE OPERATORS AND OCCUPATION NUMBER REPRESENTATION

We recall the basic properties of the standard Bose operators and the occupation n
representation. The Bose creation~a†! and annihilation~a! operators, wherea† 5 (a1

† ,...,ak
†) and

a5(a1 ,...,ak), satisfy the Heisenberg–Weyl algebra

@ai , aj
†#5d i j , @ai , aj #5@ai

† , aj
†#50, i , j51,...,k. ~A1!

The Hermitian operatorsNi 5 ai
†ai , i51,...,k, are called the number operators. These opera

obey

@Ni , Nj #50, @Ni , aj #52d i j ai , @Ni , aj
†#5d i j ai

† , i , j51,...,k. ~A2!

Let us assume that there exists in the Hilbert space of statesH, a unique, normalized vectoru0&
~vacuum vector! such that

au0&50. ~A3!

We also assume that there is no nontrivial closed subspace ofH which is invariant under the
action of the Bose operators. The state vectorsun&, nPZ1

k , defined as

un&5S )
i51

k ai
†

Ani !
D u0&, ~A4!

are the common eigenvectors of the number operators, i.e.,

Nun&5nun&. ~A5!

These vectors form the orthonormal basis ofH, that is

^num&5)
i51

k

dnimi
, ~A6!

(
nPZ1

k
un&^nu5I . ~A7!

The action of the Bose operators on the vectorsun& has the following form:

ai un&5Ani un2ei&, ai
†un&5Ani11un1ei&, i51,...,k. ~A8!

We finally write down the following formulas corresponding to the case withk51, which were
frequently used throughout this work:

f ~N!a5a f~N21!, a†f ~N!5 f ~N21!a†, ~A9!

whereN5a†a is the number operator,

aun&5Anun21&, a†un&5An11un11&. ~A10!

APPENDIX B: COHERENT STATES

We now outline the main facts about the standard coherent states. Consider the coheren
uz&, wherezPCk, that is the eigenvectors of the Bose annihilation operators
J. Math. Phys., Vol. 38, No. 5, May 1997
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auz&5zuz&. ~B1!

The normalized coherent states can be defined as

uz&5expS 2
1

2 (
i51

k

uzi u2D expS (
i51

k

ziai
†D u0&, ~B2!

whereu0& is the vacuum vector. The coherent states are not orthogonal. We have

^zuw&5expF2
1

2 (
i51

k

~ uzi u21uwi u222zi*wi !G . ~B3!

These states form the complete~overcomplete! set. Namely,

E
R2k

dm~z!uz&^zu5I , ~B4!

where

dm~z!5)
i51

k
1

p
d~Re zi !d~ Im zi !. ~B5!

The passage from the occupation number representation to the coherent state represen
given by the kernel

^nuz&5S )
i51

k zi
ni

Ani !
D expS 2

1

2 (
i51

k

uzi u2D . ~B6!

On taking into account~B4!, ~A7! and ~B6! we arrive at the Fock–Bargmann space of analy
~entire! functions specified by the inner product

^fuc&5E
R2k

dm~z!expS 2(
i51

k

uzi u2D „f̃~z* !…* c̃~z* !, ~B7!

wheref̃~z* !5^zuf&exp(12( i51
k uzi u

2) andz* 5 (z1* ,...,zk* ). We remark that in view of~B4! and
~B6! the polynomials

pn~z!5)
i51

k zi
n

Ani !
~B8!

form the orthonormal complete set in the Fock–Bargmann space; that is, we have

E
R2
dm~z!expS 2(

i51

k

uzi u2D „pn~z* !…* pm~z* !5dnm , ~B9!

wherednm5 P i51
k dnimi

.

J. Math. Phys., Vol. 38, No. 5, May 1997
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APPENDIX C: POSITION AND MOMENTUM OPERATORS

We finally collect some basic properties of position and momentum operators. The po
(q̂! and momentum~p̂! operators, whereq̂5(q̂1 ,...,q̂k) andp̂5( p̂1 ,...,p̂k) satisfy the Heisenberg
algebra

@ q̂r , p̂s#5 id rs , @ q̂r , q̂s#5@ p̂r , p̂s#50, r ,s51,...,k. ~C1!

These operators are related to the Bose operators by

q̂5
1

&

~a1a†!, p̂5
i

&

~a†2a!,

~C2!

a5
1

&

~ q̂1 i p̂!, a†5
1

&

~ q̂2 i p̂!.

An immediate consequence of~C1! is

@ p̂, f ~ q̂!#52 i
] f ~ q̂!

]q̂
. ~C3!

Consider now the eigenvectorsuq&, qPRk, of the position operators

q̂uq&5quq&. ~C4!

The normalized eigenvectors can be expressed by

uq&5p2k/4 exp~ 1
2q

2!exp@2 1
2~a

†2&q!2#u0&, ~C5!

whereu0& is the vacuum vector. The statesuq& form the orthogonal and complete set, namely

^quq8&5d~q2q8!, ~C6!

E dkquq&^qu5I . ~C7!

The passage from the coordinate representation spanned by the vectorsuq& to the occupation
number representation is given by the kernel

^nuq&5S )
i51

k

pni~qi !D expS 2
1

2
q2D , ~C8!

wherepn(q) are normalized Hermite polynomials, that is

pn~q!5p21/422n/2
1

An!
Hn~q!. ~C9!
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Many-body Wigner quantum systems
T. D. Paleva),b) and N. I. Stoilovaa),c)
International Centre for Theoretical Physics, 34100 Trieste, Italy

~Received 19 September 1996; accepted for publication 18 December 1996!

We present examples of many-body Wigner quantum systems. The position and the
momentum operatorsRA andPA , A51,...,n11, of the particles are noncanonical
and are chosen so that the Heisenberg and the Hamiltonian equations are identical.
The spectrum of the energy with respect to the center of mass is equidistant and has
finite number of energy levels. The composite system is spread in a small volume
around the center of mass and within it the geometry is noncommutative. The
underlying statistics is an exclusion statistics. ©1997 American Institute of Phys-
ics. @S0022-2488~97!03103-4#

I. INTRODUCTION

In the present paper we continue the study of the Wigner quantum systems~WQSs! initiated
in Refs. 1–4. Our interest in the subject is stimulated by the observation that some WQSs
attractive features, which cannot be achieved in the frame of the canonical quantum mec
The WQS in Ref. 1~two noncanonical, nonrelativistic point particles interacting via harmo
potential!, for instance, exhibits a quarklike structure: the composite system has finite size
constituents are bound to each other; moreover the geometry is noncommutative, the d
coordinates do not commute. Another example following from Refs. 3 and 4 consists o
spinless particles, curling around each other, producing an orbital~internal angular! momentum
1/2.

Here we extend the results of Ref. 1 to the case of any number of particles. For defini
we considern11 particles of the same massm with a Hamiltonian

H tot5 (
A51

n11
~PA!2

2m
1

mv2

2~n11! (
A,B51

n11

~RA2RB!2, ~1.1!

whereRA5(RA1,RA2,RA3) and PA5(PA1,PA2,PA3), A51,...,n11, are the positions and th
momentum operators of the particles, respectively.

The new features of the WQSs stem from the circumstance that their position and mom
operators~RP-operators! do not in general satisfy the canonical commutation relations~CCRs!
~below and throughout [x,y]5xy2yx, $x,y%5xy1yx!

@RAj ,PBk#5 i\d jkdAB , @RAj ,RBk#5@PAj ,PBk#50, j ,k51,2,3, A,B51,...,n11.
~1.2!

In certain cases the defining relations are weaker than the CCRs~the one-dimensional oscillator o
Wigner,5 the osp~1/6! oscillators3! and therefore the canonical picture appears as a partic
representation of theRP-operators. In other cases~Ref. 1, the osp~3/2! oscillator3,4! the RP-
operators do not reproduce the canonical picture. The present paper is another example
kind.

a!Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria.
b!Electronic mail: tpalev@inrne.acad.bg
c!Electronic mail: stoilova@inrne.acad.bg
0022-2488/97/38(5)/2506/18/$10.00
2506 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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The idea for studying more general quantum systems belongs to Wigner5 ~see the discussion
in Refs. 1–4!, who has generalized a result of Ehrenfest,6 sometimes referred to as an Ehrenfe
theorem.7 The latter states~up to ordering details, which are important, but will not appear in
considerations! that in the Heisenberg picture of quantum mechanics the Hamiltonian~respec-
tively, the Heisenberg! equations are a unique consequence of the CCRs and the Heise
~respectively, Hamiltonian! equations. In Ref. 5 Wigner has proved a stronger statement. He
shown that for certain interactions the Hamiltonian equations can be identical to the Heise
equations for position and momentum operators, which do not necessarily satisfy the can
commutation relations. Wigner has demonstrated this on an example of a one-dimension
monic oscillator, studied subsequently by several authors.8 This observation is in the origin of ou
definition of a Wigner quantum system. The main point is that the position and the mome
operatorsRA5(RA1,RA2,RA3) and PA5(PA1,PA2,PA3), A51,...,n11, are considered as un
known operators, which have to be defined in such a way that the Heisenberg equations

ṖA52
i

\
@PA ,H tot#, RA52

i

\
@RA ,H tot# ~1.3!

are identical with the Hamiltonian equations

ṖA52
mv2

n11 (
B51

n11

~RA2RB!, ṘA5
PA
m
. ~1.4!

In addition theRP-operators have to satisfy other natural physical requirements. First, they
to be defined as Hermitian operators in a Hilbert spaceW, the state space of the system. Next, t
description should be covariant with respect to the transformations from the Galilean groupG. In
particular we have to define the generators ofG as polynomials ofRA5(RA1,RA2,RA3) and
PA5(PA1,PA2,PA3), A51,...,n11, ~and identify the generators of the space rotation gro
SO~3! in G! so thatRA5(RA1,RA2,RA3) andPA5(PA1,PA2,PA3) transform as vectors. Thes
restrictions on theRP-operators are in addition to those imposed from the requirement tha
Heisenberg equations~1.3! be identical with the Hamiltonian equations~1.4!.

Our considerations are in the Heisenberg picture all of the time. We underline that the r
depend on the dynamics, since the solution forRA ,PA we are searching for holds only for th
Hamiltonian~1.1!.

The paper is organized as follows. In the beginning of Sec. II we state the postulate
Wigner quantum system. Then accepting some natural assumptions, which hold in the ca
quantum mechanics, we separate the center of mass variables, which are postulated to be
cal. The rest of the problem is reduced to a noncanonical 3n-dimensional Wigner oscillator for the
internal variables, i.e., the Hamiltonian reads

H5 (
a51

n S pa
2

2m
1
mv2

2
ra
2 D . ~1.5!

In Sec. III we study one possible solution forra ,pa , a51,...,n. It is defined in terms of
operators, called creation and annihilation operators~CAOs!, which satisfy certain relations@see
Eq. ~3.8!#. In Sec. III A we construct a class of Fock representations of the CAOs. Each
representation space is a state space of the oscillator. It is irreducible and finite-dimension
set of all Fock spaces are labeled with one positive integerp51,2,... . As a result~Sect. III B! the
spectrum of the Hamiltonian~1.5! is equidistant and has min(3n11,p11) different values. The
related~n11!-particle system has finite space dimensions; the maximal distance between an
of its constituents isD 5 A6\p/(3n21)mv. The internal angular momentumM of the system
takes all integer values from 0 ton. A particular feature of the coordinate operators, correspond
J. Math. Phys., Vol. 38, No. 5, May 1997
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to each particle, is that they do not commute with each other. Therefore, although the dis
between the particles are integrals of motion, the position of each individual particle cann
localized. The kind of noncommutative geometry, obtained in this way, holds only in a very
volume around the center of mass. In a first approximation, namely, up to additive terms p
tional toA\, the coordinates of all species coincide with the center of mass coordinates@see Eq.
~3.31!#. In Sec. III C we discuss briefly the underlying algebraical structure of the CAOs. It t
out that the creation and the annihilation operators are odd generators of the orthosymplec
superalgebra sl~1/3n!. Therefore the Fock representations of the CAOs are in fact representa
of this Lie superalgebra. Section IV is not directly related to the Wigner quantum systems.
we describe briefly the statistics of the creation and the annihilation operators, c
A-superstatistics. In particular, we formulate the Pauli principle of the A-superstatistics, w
identify it as one of the exclusion statistics of Haldane.9 It turns out that the A-superstatistics
very similar to the statistics of theg-ons as introduced by Karabali and Nair.10 Some possible
applications of the A-superstatistics are also mentioned. We complete the paper~Sec. V!, trying to
justify why we interpret the noncanonical operatorsRa andPa as position and momentum oper
tors.

II. WIGNER QUANTUM SYSTEMS

To begin with we give the following definition of a Wigner quantum system. A system w
a Hamiltonian

H tot5 (
k51

N pk
2

2mk
1V~r1 ,r2 ,...,rN!,

which depends on 6N variablesr k andpk , k51,...,N, interpreted as~Cartesian! coordinates and
momenta, respectively, is said to be a Wigner quantum system if the following conditions

P1.The state spaceW is a Hilbert space. The observables are Hermitian~self-adjoint! opera-
tors inW. The expectation valuêA& of the observableA in a statef is ^A&5(f,Af)/(f,f).

P2.The Hamiltonian equations and the Heisenberg equations are identical~as operator equa
tions! in W.

P3.The description is covariant with respect to the transformations from the Galilean g
The postulateP1contains the very essence of any quantum description.P2 ~Wigner postulate!

is weaker than the requirement for the CCRs~1.2! to hold. Hence the setting is more general an
consequently, for certain interactions1–4 the results differ from the predictions of the canonic
theory. In the general case one has to care about the ordering of the operators, a problem
does not appear for the Hamiltonian~1.1!. We do not go into discussions of the postulate
Galilean invarianceP3. Here the setting is the same as in the canonical case~see, e.g., Ref. 11!. In
particular it ensures that the Hamiltonian and the Heisenberg equations do not prefer any o
space and time or any direction in space. The transition probabilityu~c,f!u, c,fPW remains
unchanged under the Galilean transformations of the states, etc.

We proceed to satisfyP1–P3 with noncanonical position and momentum operators. To
end we pass to new variables, which formally coincide with the Jacobi coordinates
momenta,12

R5
(A51
n11RA

n11
, P5 (

A51

n11

PA ,

ra5
(b51

a Rb2aRa11

Aa~a11!
, pa5

(b51
a Pb2aPa11

Aa~a11!
, a51,...,n. ~2.1!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Then, despite the fact thatR,P,ra ,pa are unknown operators, the HamiltonianH tot splits into a
sum of a center of mass~c.m.! HamiltonianHc.m. and an internal HamiltonianH,

H tot5Hc.m.1H, ~2.2!

where

Hc.m.5
P2

2m~n11!
, H5 (

a51

n S pa
2

2m
1
mv2

2
ra
2 D . ~2.3!

The Heisenberg equations~1.3! read in terms of Eq.~2.1!,

Ṗ52
i

\
@P,H tot#, Ṙ52

i

\
@R,H tot#, ṗa52

i

\
@pa ,H tot#,

ṙa52
i

\
@ra ,H tot#, a51,...,n. ~2.4!

The Hamiltonian equations~1.4! yield

Ṗ50, Ṙ5
P

m~n11!
, ṗa52mv2ra , ṙa5

pa

m
, a51,...,n. ~2.5!

The problem is to determine operatorsR,P,ra ,pa so that the postulatesP1–P3 hold. In these
variablesP2 says that Eq.~2.4! have to be equivalent to Eq.~2.5!. Certainly Eqs.~2.4! and ~2.5!
are satisfied with canonical operators@the CCRs below follow from Eq.~1.2!, since the transfor-
mation ~2.1! is a canonical one#, namely

@Ri ,r a j #5@Pi ,r a j #5@Ri ,pa j #5@Pi ,pa j #50, i , j51,2,3, a51,...,n, ~2.6a!

@Rj ,Pk#5 i\d jk , @Rj ,Rk#5@Pj ,Pk#50, j ,k51,2,3, ~2.6b!

@r a j ,pbk#5 i\dabd jk , @r a j ,r bk#5@pa j ,pbk#50, j ,k51,2,3, a,b51,...,n. ~2.6c!

We wish to study other, dynamically dependent, solutions. Our purpose is not to determ
possible operators, satisfyingP1–P3. Rather, we restrict ourselves to noncanonical solutions o
for the internal variablesra ,pa , a51,...,n. In accordance with the canonical case, we accept

Assumption 1:The c.m. variables commute with the internal variables, i.e., Eq.~2.6a! holds.
Under this assumption Eqs.~2.4! and~2.5! resolve into two independent groups, the first o

depending only on the c.m. position and momentum operators,

c.m. Hamiltonian equationsṖ50, Ṙ5
P

m~n11!
, ~2.7a!

c.m. Heisenberg equationsṖ52
i

\
@P,Hc.m.#, Ṙ52

i

\
@R,Hc.m.#. ~2.7b!

The second group depends only on the internal variables~a51,...,n!,

Internal Hamiltonian equationsṗa52mv2ra , ṙa5
pa

m
, ~2.8a!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Internal Heisenberg equationsṗa52
i

\
@pa ,H#, ṙa52

i

\
@ra ,H#. ~2.8b!

With the next assumption we solve equations~2.7!.
Assumption 2:The center of mass coordinates and momenta are canonical, they satis

~2.6b!.
Consequently the center of mass behaves as a free canonical point particle with a

m(n11). Thus we are left with Eq.~2.8!, which coincides with the Hamiltonian and the Heise
berg equations of a~noncanonical! 3n-dimensional harmonic oscillator.

Turning to the Galilean covariance, we note that in the canonical situation the state spW
carries a projective representation ofG and of its Lie algebrag. It is an exact representation of th
central extensionĝ of g with the generator of the total mass of the system. As in the canon
quantum mechanics, we accept the following identification between the generators ofg and some
of the observables of the~n11!-particle system.

Assumption 3:

10 The angular momentum operatorsJ5L1M are generators of the

algebra so~3! of the space rotations, ~2.9a!

20 H tot5Hc.m.1H is a generator of the translations in time, ~2.9b!

30 The operators of the total momentumP are generators of the space translations,~2.9c!

40 K5mR2Pt are generators of the accelerations. ~2.9d!

In Eq. ~2.9! t is the time andm5m(n11) is the mass of the system. This means we have alre
chosen a representation ofĝ with a valuem of the mass operator~which is one of the Casimir
operators!. L5(L1 ,L2 ,L3) are the operators of the angular momentum of the center of mas

Li5
1

2\ (
j ,k51

3

e i jk$Rj ,Pk%, ~2.10!

which also generate an so~3! algebra, denoted as so~3!c.m..M5(M1 ,M2 ,M3) are operators still to
be determined. In the fixed mass representation the generators ofĝ satisfy the commutation
relations~j ,k,l51,2,3!,13

@Jj ,Jk#5 i e jklJl , @Jj ,Pk#5 i e jklPl , @Jj ,Kk#5 i e jklKl , @Jj ,H tot#50, ~2.11a!

@Pj ,Pk#50, @Pj ,Kk#52 i\d jkm, @Pj ,H tot#50, ~2.11b!

@Kj ,Kk#50, @Kj ,H tot#5 i\Pj . ~2.11c!

The Galilean covariance is to a big extent covered by the above commutation relations,
have to be satisfied together with Eq.~2.8!. In particular, from Eq.~2.11! one concludes thatJ, P,
R, andK transform as vectors. From Eq.~2.11! however it does not follow thatra ,pa are vectors.
This is a problem still to be solved and we will solve it in a few steps.

Observe first of all that the generators of the center of massL , P, K andHc.m. satisfy Eq.
~2.11! ~with L j instead ofJj !. Hence these generators define a~projective! representation of an
algebra, isomorphic tog, denoted here asgc.m.. This is a representation of a point particle with
massm. The operatorsL and Hc.m. generate~a representation of! the subalgebra so~3!c.m.
%u~1!c.m.,gc.m..
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the canonical caseM is a vector operator, commuting withH and bothM andH are in the
enveloping algebra ofra andpa , a51,...,n. More precisely,

Mi5 (
a51

n

Ma i , Ma i5
1

2\ (
j ,k51

3

e i jk$r a j ,pak%. ~2.12!

Therefore, we also assume here thatM can be expressed in terms of the internal variables.
Assumption 4:The components ofM andH are generators of so~3!int%u~1!int . They are in the

enveloping algebra of the internal position and momentum operatorsra ,pa , a51,...,n. M ,ra ,pa

transform as vectors with respect to so~3!int :

@M j ,Mk#5 i e jklM l , @M j ,r ak#5 i e jkl r a l , @M j ,pak#5 i e jkl pa l , a51,...,n. ~2.13!

From Assumption 4 it follows that the operators

J5L1M , P, K5mR2Pt, H tot5Hc.m.1H ~2.14!

satisfy Eq.~2.11!. Moreover, the operatorsRA ,PA ,ra ,pa ,R,P,J,K ,L ,M transform as vectors. In
particular,

@Jj ,Ak#5 i e jklAl for any AP$RA ,PA ,ra ,pa ,R,P,J,K ,L ,M %. ~2.15!

In other words,P3 is a consequence of Assumption 4. From the same assumption we conclud
gc.m. commutes with so~3!int%u~1!int @with H being a generator ofu~1!int#. Therefore the~physical!
Galilean algebrag is a subalgebra of a larger~Lie! algebragc.m.%so~3!int%u~1!int . Hence a given
representation ofg is realized in a state spaceW, which is a tensor product of the canonic
‘‘free-particle’’ state spaceWc.m. with massm and a module~5representation space! Wint of the
algebra so~3!int%u~1!int ,

W5Wc.m.̂ Wint . ~2.16!

The c.m. variablesR,P,L are Hermitian operators inWc.m.. Therefore all operatorsH tot ,Hc.m.,
H,RA ,PA ,ra ,pa ,R,P,J,K ,L ,M will be Hermitian operators inW, if ra , pa andM are Hermitian
operators inWint . Thus conditionP1 holds if ~the still unknown operators! ra , pa andM are
Hermitian operators inWint .

We summarize. The~n11!-particle system with a Hamiltonian~1.1! is a Wigner quantum
system, i.e., the postulatesP1–P3 hold, if:

P1int . The state spaceWint is a Hilbert space. The observables~in this casera , pa , M , andH!
are Hermitian operators inWint .

P2int . The internal Hamiltonian equations~2.8a! and the internal Heisenberg equations~2.8b!
are identical~as operator equations! in Wint .

P3int . ~5Assumption 4!. The internal HamiltonianH and the components ofM are generators
of so~3!int%u~1!int . They are polynomials of the internal position and momentum operatorsra ,pa ,
a51,...,n, so that

@M j ,H#50, @M j ,Ak#5 i e jklAl , AkP$Mi ,r a i ,pa i u i51,2,3; a51,...,n%. ~2.17!

The above postulates identifyra andpa , a51,...,n as position and momentum operators o
noncanonical 3n-dimensional Wigner quantum oscillator. We proceed to study an examp
such an oscillator or, more precisely, of such oscillators, since the position and the mom
operators will have several inequivalent representations.
J. Math. Phys., Vol. 38, No. 5, May 1997
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III. sl(1/3 n ) WIGNER QUANTUM SYSTEMS

The problem of constructing a WQS with a Hamiltonian~1.1! has been reduced to a proble
of building a Wigner quantum oscillator, namely a 3n-dimensional noncanonical oscillator with
Hamiltonian

H5 (
a51

n S Pa
2

2m
1
mv2

2
ra
2 D , ~3.1!

Hamiltonian equations

ṗa52mv2ra , ṙa5
pa

m
, a51,...,n, ~3.2!

and Heisenberg equations

ṗa52
i

\
@pa ,H#, ṙa52

i

\
@ra ,H#, a51,...,n, ~3.3!

for which the conditionsP1int–P3int hold.
Equations~3.2! and ~3.3! are compatible only if

@H,pa#5 i\mv2ra , @H,ra#52
i\

m
pa . ~3.4!

In this section we introduce one particular set of Wigner quantum oscillators, which we
sl~1/3n! oscillators, and investigate some of the properties of the related~n11!-particle system.
The reason for choosing this name is of an algebraic origin and will be explained in Sec. I

A. Satisfying conditions P1 int –P3int

Introduce in place ofra , pa new unknown operators

aak
6 5A~3n21!mv

4\
r ak6 iA~3n21!

4mv\
pak , k51,2,3, a51,2,...,n. ~3.5!

For the sake of convenience we refer toaak
1 and aak

2 as creation and annihilation operato
~CAOs!, respectively. These operators should be not confused with Bose operators. Th
unknown operators we are searching for. In terms of these operators the internal Hamiltonia~3.1!
and the compatibility condition~3.4! read

H5
v\

3n21 (
a51

n

(
i51

3

$aa i
1 ,aa i

2 %, ~3.6!

(
b51

n

(
j51

3

@$ab j
1 ,ab j

2 %,aa i
6 #57~3n21!aa i

6 , i51,2,3, a51,2,...,n. ~3.7!

As a solution of Eq.~3.7! we choose operatorsaak
6 , k51,2,3,a51,2,...,n, which satisfy the

relations

@$aa i
1 ,ab j

2 %,agk
1 #5d jkdbgaa i

1 2d i jdabagk
1 , ~3.8a!

@$aa i
1 ,ab j

2 %,agk
2 #52d ikdagab j

2 1d i jdabagk
2 , ~3.8b!
J. Math. Phys., Vol. 38, No. 5, May 1997
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$aa i
1 ,ab j

1 %5$aa i
2 ,ab j

2 %50. ~3.8c!

We recall that all considerations are in the Heisenberg picture. The position and the m
tum operators depend on time. Hence, also the CAOs depend ont. Writing the time dependence
explicitly, we obtain:

Hamiltonian equations ȧak
6 ~ t !57 ivaak

6 ~ t !, ~3.9!

Heisenberg equationsȧak
6 ~ t !52

iv

3n21 (
b51

n

(
j51

3

@aak
6 ~ t !,$ab j

1 ~ t !,ab j
2 ~ t !%#. ~3.10!

The solution of Eq.~3.9! is evident,

aak
6 ~ t !5exp~7 ivt !aak

6 ~0! ~3.11!

and therefore if the defining relations~3.8! hold at a certain timet50, i.e., foraak
6 [aak

6 ~0!, then
they hold as equal time relations for any other timet. From Eq.~3.8! it follows also that Eq.~3.10!
is identical to Eq.~3.9!. For further references we formulate this result directly in terms ofra and
pa .

Conclusion 1: Within any representation spaceWint of the CAOs~3.8! the Hamiltonian equa-
tions ~3.2! are identical to the Heisenberg equations~3.3!, i.e., the conditionP2int holds. The
explicit time dependent solutions of these equations read

r ak~ t !5A \

~3n21!mv
~aak

1 e2 ivt1aak
2 eivt!, pak~ t !52 iAmv\

3n21
~aak

1 e2 ivt2aak
2 eivt!.

~3.12!

Turning to conditionP3int , we set

Ma j52 i (
k,l51

3

e jkl$aak
1 ,aa l

2 %52
3n21

2\ (
k,l51

3

e jkl$r ak ,pa l%, j51,2,3, a51,2,...,n.

~3.13!

Then

@H,Ma j #50, @Ma j ,Mak#5 i(
l51

3

e jklMa l , j ,k,l51,2,3, ~3.14!

i.e., for eacha51,2,...,n the operatorsMa5(Ma1,Ma2,Ma3) are generators of an so~3! algebra,
which we denote as so~3!a . Equation~3.8! yields that any two different algebras commute,

@so~3!a ,so~3!b#50, ;aÞb51,...,n. ~3.15!

It is straightforward to check that the operatorsH andMi5(a51
n Ma i satisfy Eq.~2.17!. Thus, we

have
Conclusion 2:Within any representation spaceWint of the CAOs~3.8! the operatorsH and

M5(M1 ,M2 ,M3) satisfy the conditionP3int .
It remains to define the~internal! position and the momentum operatorsra and pa , corre-

sponding to the CAOs~3.8!, as linear Hermitian operators in a Hilbert space, which will be
internal state spaceWint . In terms of the creation and the annihilation operators this means tha
Hermitian conjugate toaak

1 should be equal toaak
2 , i.e.,
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



esen-
esenta-
o

ual
in

rt

g a
s. The

2514 T. D. Palev and N. I. Stoilova: Many-body Wigner quantum systems

¬¬¬¬¬¬¬¬¬¬
~aak
1 !†5aak

2 . ~3.16!

The CAOs~3.8! have several representations. Here, as in Ref. 1, we consider only repr
tations which are obtained by the usual Fock space technique. The irreducible Fock repr
tions are labeled by one non-negative integerp51,2,..., called an order of the statistics. T
construct them assume that the corresponding representation spaceW(n,p) int contains~up to a
multiple! a cyclic vectoru0&, such that

aa i
2 u0&50, aa i

2ab j
1 u0&5pdabd i j u0&, i , j51,2,3, a51,2,...,n. ~3.17!

The above relations are enough for reconstructing the representation spaceW(n,p) int . Let

Q5$u11,u12,u13,u21,u22,u23,...,un1 ,un2 ,un3%.

Since (aa i
1 )250, from Eq.~3.17! one derives that the set of all vectors

up;Q&[up;u11,u12,u13,u21,u22,u23,...,un1 ,un2 ,un3&

5A~p2(a51
n ( i51

3 ua i !!

p! )
a51

n

)
i51

3

~aa i
1 !ua iu0&

[A~p2(a51
n ( i51

3 ua i !!

p!
~a11

1 !u11~a12
1 !u12~a13

1 !u13~a21
1 !u21

3~a22
1 !u22•••~an1

1 !un1~an2
1 !un2~an3

1 !un3u0& ~3.18!

with

ua i50,1, k[ (
a51

n

(
i51

3

ua i<p, ~3.19!

constitute an orthonormal basis inW(n,p) int with respect to the scalar product, defined in the us
way with ‘‘bra’’ and ‘‘ket’’ vectors and^0u0&51. We underline that the product of the multiples
Pa51

n P i51
3 (aa i

1 )ua i is ordered as indicated in Eq.~3.18!.
Let up;Q&6a i be a vector, obtained fromup,Q& after a replacement ofua i with ua i61. Then

the transformation of the basis under the action of the CAOs read

aa i
2 up;Q&5ua i~21!u111•••1ua,i21Ap2 (

b51

n

(
j51

3

ub j11up;Q&2a i , ~3.20a!

aa i
2 up;Q&5~12ua i !~21!u111•••1ua,i21Ap2 (

b51

n

(
j51

3

ub j up;Q&a i . ~3.20b!

The next conclusion is easily verified.
Conclusion 3:The operatorsra , pa , M , andH are Hermitian operators within every Hilbe

spaceW(n,p) int , p51,2,...
Remark:The requirement(a51

n ( i51
3 ua i<p can be skipped. In such a case one is gettin

larger representation space, which carries an indecomposible representation of the CAO
Hermiticity condition~3.16!, however, cannot be satisfied in this larger space. Ifp is not a positive
integer, Eq.~3.16! also cannot be fulfilled in a space with a positive definite metric.
J. Math. Phys., Vol. 38, No. 5, May 1997
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We have satisfied all requirements of conditionsP1int–P3int . Hence within each state spac
W(n,p) int the sl~1/3n!-oscillator is a Wigner quantum oscillator and the related~n11!-particle
system is a Wigner quantum system with a state space

W~n,p!5Wc.m.̂ W~n,p! int . ~3.21!

B. Properties of the sl(1/3 n ) quantum systems

1. Spectrum of the internal Hamiltonian

Note, first of all, that the internal state spaceW(n,p) int is finite-dimensional. From Eqs.~3.6!
and ~3.20! one concludes that the internal HamiltonianH is diagonal in the basis~3.18!,

Hup;Q&5
v\

3n21
~3np2~3n21!k!up;Q&, ~3.22!

where according to Eq.~3.19!

k50,1,2,...,min~3n,p!. ~3.23!

Therefore the internal energy of the system takes min(3n,p)11 different values,

Ek5
v\

3n21
~3np2~3n21!k!, k50,1,2,...,min~3n,p!. ~3.24!

As in the canonical oscillator the energy spectrum is equidistant. To each energyEk , there
correspond (k

3n) ~linearly independent! states, namely all basis vectorsup;U& with fixed value ofk.

2. Internal angular momentum

The internal state spaceW(n,p) int carries a reducible representation of each so~3!a . The
angular momentum of each oscillating ‘‘particle’’ is either 0 or 1,

Ma
2 up;Q&50 if ua15ua25ua3 ; Ma

2 up;U&52up;Q& otherwise. ~3.25!

Each basis vectorup;Q& is an eigenvector of the square of the internal angular momentumM2,

M2up;Q&5M ~M11!up;Q&, M51,2,...,n, ~3.26!

i.e., the internal angular momentum of the composite~n11!-particle system takes all intege
values between 0 andn. This conclusion holds for any representation of the CAOs. The m
plicity of each individual value ofM2 depends, however, on the order of the statisticsp, namely,
on the representation.

3. Geometry and space size of the system

Let us consider first the 3n-dimensional Wigner oscillator as such, independent of the in
~n11!-particle system. In order to avoid confusion, we refer to the constituents of the oscilla
oscillating ‘‘particles’’ ~or simply ‘‘particles’’!.

It is straightforward to check that the square of the radius vectorra
2 of each particle commute

with the ~internal! Hamiltonian and, moreover, all operatorsra
2 commute with each other,

@H,ra
2 #50, @ra

2,rb
2 #50, a,b51,...,n. ~3.27!

Hence all operatorsra
2 can be simultaneously diagonalized. The basis vectorsup;Q& are eigenvec-

tors of these operators,
J. Math. Phys., Vol. 38, No. 5, May 1997
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ra
2 up;Q&5

\

~3n21!mv S 3p23k1(
i51

3

ua i D up;Q&, a51,...,n. ~3.28!

The latter indicates that the ‘‘particles’’ move along spheres with radii

ur au5A\~3p23k1( i51
3 ua i !

~3n21!mv
, k50,1,2,...,min~3n,p!. ~3.29!

Setting in Eq.~3.29! k50, one obtains the maximal radius. Hence the spatial size of the osci
~its diameter! is

d52A 3\p

~3n21!mv
. ~3.30!

The different particles can stay simultaneously on spheres with different radii. The positions
particles on the spheres, however, cannot be localized, since the coordinate operators
commute with each other, [r a i ,r a j ]Þ0, iÞ j51,2,3. The geometry of the oscillator is noncom
mutative.

Let us turn to the~n11!-particle system. The expressions ofRA andPA in terms of the Jacob
variables and also in terms of the CAOs read

RA5R2AA21

A
rA211 (

a5A

n A 1

a~a11!
ra

5R2A \~A21!

~3n21!Amv
~aA21

1 1aA21
2 !1 (

a5A

n A \

~3n21!a~a11!mv
~aa

11aa
2!, ~3.31!

PA5
1

n11
P2AA21

A
pA211 (

a5A

n A 1

a~a11!
pa

5
1

n11
P1 iA\mv~A21!

~3n21!A
~aA21

1 2aA21
2 !2 i (

a5A

n A \mv

~3n21!a~a11!
~aa

12aa
2!. ~3.32!

Therefore, also in this case, the geometry is noncommutative. A new, somewhat unex
feature here is that the distance operators between the particles do not commute, namely in

@~RA2RB!2,~RC2RD!2#Þ0 if ~A,B!Þ~C,D !. ~3.33!

The only square-distance operator, which is diagonal in the basis~3.18!, is ~R12R2!
2. From the

general expression~3.31! we obtain

~R12R2!
252r1

25
2\

~3n21!mv (
i51

3

$a1i
1 ,a1i

2%. ~3.34!

Therefore

~R12R2!
2up;Q&5

2\

~3n21!mv S 3p23k1(
i51

3

u1i D up;Q&. ~3.35!

Hence the spectrum ofuR1 2 R2u [ A(R12R2)
2 reads
J. Math. Phys., Vol. 38, No. 5, May 1997
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A 2\

~3n21!mv S 3p23k1(
i51

3

u1i D , k50,1,2,...,min~3n,p!. ~3.36!

In particular, the maximal distanceD between the first particle and the second particle is

D5A 6\p

~3n21!mv
. ~3.37!

Since bothH and ~R12R2!
2 are diagonal operators, they commute,

@H,~R12R2!
2#50, ~3.38!

and therefore the distance between the first particle and the second particle is preserved in
is an integral of motion.

It is natural to expect that the spectrum ofuRA 2 RBu [ A(RA2RB)
2 for any AÞB A,B

51,...,n11 is the same as those ofuR12R2u. In particular, the maximal distance between t
particles with numbersA andB should beD. Whether this is, however, the case is not so eas
see. The point is that our construction is very asymmetrical, it depends on the way one is
bering the particles. In particular the Jacobi variables~2.1! and hence also the related CAOs~3.5!
do depend strongly on the fixed numbering. If one is renumbering the position and the mom
operators, settingR̃a5Rs~a! , P̃a5Ps~a! with sPSn being any permutation

S 1, 2, 3, ••• , n

s~1!, s~2!, s~3!, ••• , s~n!
D ,

this will lead to new creation and annihilation operatorsãa i
6 @see Eq.~3.5!# and hence in principle

to a new representation space according to Eq.~3.17!.
In the following we show that the representation~and the representation space! remains the

same when renumbering the particles. We diagonalize also~RA2RB!2 and show that its spectrum
is the same as of~R12R2!

2 @see Eq.~3.35!#. To this end we first formulate a simple propositio
which proof is straightforward.

Proposition 1:Let S be anyn3n symmetric orthogonal matrix:ST5S, STS51. Then
~a! The operators

ãa i
6 5 (

b51

n

Sbaab i
6 ~3.39!

satisfy Eq.~3.8!;
~b!

H5
v\

3n21 (
a51

n

(
i51

3

$aa i
1 ,aa i

2 %5
v\

3n21 (
a51

n

(
i51

3

$ã a i
1 ,ã a i

2 %. ~3.40!

~c! If Eq. ~3.17! holds, then

ã a i
2 u0&50, ã a i

2 ã b j
1 u0&5pdabd i j u0&, i , j51,2,3, a51,2,...,n. ~3.41!

~d! Let P[P(a11
1 ,a12

1 ,a13
1 ,a21

1 ,a22
1 ,a23

1 ,...,an1
1 ,an2

1 ,an3
1 ) be any polynomial of the creation

operators and P̃[P(ã 11
1 ,ã 12

1 ,ã 13
1 ,ã 21

1 ,ã 22
1 ,ã 23

1 ,...,ã n1
1 ,ã n2

1 ,ã n3
1 ). If [ H,P]50, then

[H,P̃]50.
J. Math. Phys., Vol. 38, No. 5, May 1997
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~e! If Pa51
n P i51

3 (aa i
1 )ua iu0& is an eigenvector of the operatorP with an eigenvaluec(p,Q),

i.e.,

P)
a51

n

)
i51

3

~aa i
1 !ua iu0&5c~p,Q! )

a51

n

)
i51

3

~aa i
1 !ua iu0&, ~3.42!

thenPa51
n P i51

3 (ãa i
1 )ua iu0& is an eigenvector ofP̃, corresponding to the same eigenvaluec(p,Q),

P̃ )
a51

n

)
i51

3

~ ã a i
1 !ua iu0&5c~p,Q! )

a51

n

)
i51

3

~ ã a i
1 !ua iu0&. ~3.43!

We proceed to find the transformations of the CAOs under permutations of the Car
coordinatesRa i and momentaPa i . From Eqs.~2.1! and ~3.5! one derives

aak
6 5A~3n21!mv

4\a~a11! H (
b51

a

Rbk2aRa11,kJ 6 iA ~3n21!

4mv\a~a11! H (
b51

a

Pbk2aPa11,kJ .
~3.44!

This relation is preserved if permuting the Cartesian variables:

ã ak
6 5A~3n21!mv

4\a~a11! H (
b51

a

R̃bk2aR̃a11,kJ 6 iA ~3n21!

4mv\a~a11! H (
b51

a

P̃bk2a P̃a11,kJ .
~3.45!

Consider the simplest permutation, namely a transposition

R̃A115RA , P̃A115PA , R̃A5RA11 , P̃A5PA11 , R̃C5RC , P̃C5PC if CÞA,A11.
~3.46!

Replacing in Eq.~3.45! R̃Ck and P̃Ck with RCk andPCk , C51,...,n11, and expressing the latte
through the CAOs from Eqs.~3.31! and ~3.32! we obtain

ã ak
6 5 (

b51

n

~sA11,A!baabk
6 , ~3.47!

wheresA11,A is ann3n matrix with the following nonzero matrix elements:

~sA11,A!A21,A2152~sA11,A!A,A5
1

A
, ~sA11,A!a,a51, aÞA21,A,

~sA11,A!A21,A5~sA11,A!A,A215
AA221

A
. ~3.48!

Equation~3.47! gives the transformation of the CAOs corresponding to the transposition~3.46!.
For anyA,B51,...,n11 set

SA,B5sA,A21sA21,A22sA22,A23•••s2,1sB,B21sB21,B22sB22,B23•••s3,2. ~3.49!

The above matrix leads to a transformation of the CAOs
J. Math. Phys., Vol. 38, No. 5, May 1997
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ã ak
6 5 (

b51

n

~SA,B!baabk
6 , ~3.50!

corresponding to a transposition 2↔B, followed by 1↔A of the Cartesian variables. Then from
Eqs.~3.34! and ~3.50! we derive

~RA2RB!25
2\

~3n21!mv (
i51

3

$ã 1i
1 ,ã 1i

2%. ~3.51!

The matrixSA,B satisfies the requirements of proposition 1: it is symmetric andSA,B
T SA,B51.

Therefore the operators~3.50! satisfy ~b! and ~c! of proposition 1. Consequently,~b!, ~3.34!, and
~3.51! yield

@H,~RA2RB!2#50, ~3.52!

whereas from~c! one concludes that the Fock space corresponding toã ak
6 is the same as ofaak

6 .
Writing Eq. ~3.35! in the form

2\

~3n21!mv (
i51

3

$a1i
1 ,a1i

2% )
a51

n

)
i51

3

~aa i
1 !ua iu0&

5
2\

~3n21!mv S 3p23k1(
i51

3

u1i D )
a51

n

)
i51

3

~aa i
1 !ua iu0&, ~3.53!

and applying~e! of proposition 1, we have

2\

~3n21!mv (
i51

3

$ã 1i
1 ,ã 1i

2% )
a51

n

)
i51

3

~ ã a i
1 !ua iu0&

5
2\

~3n21!mv S 3p23k1(
i51

3

u1i D )
a51

n

)
i51

3

~ ã a i
1 !ua iu0&,

i.e., @see Eq.~3.51!#,

~RA2RB!2)
a51

n

)
i51

3

~ ã a i
1 !ua iu0&5

2\

~3n21!mv S 3p23k1(
i51

3

u1i D )
a51

n

)
i51

3

~ ã a i
1 !ua iu0&.

~3.54!

Thus Pa51
n P i51

3 (ã a i
1 )ua iu0& are the eigenvectors of~RA2RB!2 and hence the spectrum o

uRA2RBu is Eq. ~3.36!, i.e., the same as that ofuR12R2u.
The conclusion is that the distances between the particles are quantized. The maximal d

is D as given with Eq.~3.37!. Hence the space size of the composite system isD. The system
exhibits a nuclear kind structure: then11-particles move in a small volume around the center
mass. Since the coordinates do not commute, the particles are smeared with certain pro
within the volume. For any two particles with, say, numbersA andB one can always diagonaliz
uRA2RBu simultaneously with the Hamiltonian, i.e., the distance is preserved in time. It is
possible, however, to diagonalize simultaneously all distance operators, since@see Eq.~3.33!# they
do not commute.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



nates.

ll

o

of all
as

r
not

late

cal
m

rs,

ra. The
s

finite-

all

ry the
ssible

a.
e

2520 T. D. Palev and N. I. Stoilova: Many-body Wigner quantum systems

¬¬¬¬¬¬¬¬¬¬
Let us try to analyze the reason and the amount of the noncommutativity of the coordi
Since these operators act in the spaceW(n,p)5Wc.m.̂ W(n,p) int , a more rigorous way to write
Eq. ~3.31! is

RA5R^111^ H 2AA21

A
rA211 (

a5A

n A 1

a~a11!
raJ , ~3.55!

where1 is the unity operator~in the corresponding space!. In the canonical quantum mechanic a
operators having a classical analogue, and in particular the coordinates of theAth particleRA are
operators only inWc.m., i.e.,RA5R^1. The only operator acting nontrivially inW(n,p) int is the
spin operatorM . In our case, due to the second term in Eq.~3.55!, the coordinate operators als
transformW(n,p) int . The second terms are small, they are proportional toA\ @see Eq.~3.31!#, and
therefore in a first approximation can be neglected. If so, then the coordinate operators
particlesRA coincide with the center of mass coordinatesR and the composite system behaves
a canonical point particle with massm5m(n11). The terms

H 2AA21

A
rA211 (

a5A

n A 1

a~a11!
raJ

in Eq. ~3.55! split the point particle inton11 ‘‘pieces,’’ which move in a volume with linea
dimensionD around the center of mass. Only within this small volume the coordinates do
commute. However, to check this ‘‘experimentally’’ is nontrivial, since it is impossible to iso
one of the particles, taking it away from the center of mass.

C. A short insight into the algebraic structure

In the present section~see also Ref. 1! we discuss briefly the underlying Lie superalgebrai
structure of the creation and the annihilation operators~3.8!. The presentation is independent fro
the other part of the paper.

As we have already indicated, any 3n pairs of canonical position and momentum operato
namely operators with relations~2.6c!, provide the simplest solution ofP1int–P3int . It is not so
well known that these operators can be considered as odd generators of a Lie superalgeb
simplest way to show this is to pass to the related Bose creation and annihilation operator

bak
6 5Amv

2\
r ak7

i

A2mv\
pak , a51,...,n, k51,2,3. ~3.56!

It is straightforward to show that the Bose CAOs give one particular representation, the in
dimensional Fock representation, of the relations

@$Ba i
j ,Bb j

h %,Bgk
e #5dagd ik~e2j!Bb j

h 1dbgd jk~e2h!Ba i
j ,

i , j ,k51,2,3,a,b,g51,...,n,j,h,e56 or 61. ~3.57!

Any set of operatorsBai
6 with relations~3.57! generate a Lie superalgebra~LS!.14 It turns out15

this is the orthosymplectic LS osp~1/6n!. The operatorsBa i
6 are its odd generators, whereas

anticommutators$Ba i
j ,Bb j

h % span the even subalgebra sp(6n). In the terminology of Kac16 osp~1/
6n! is one of the basic Lie superalgebras. Let us mention that in the quantum field theo
operatorsBa i

6 are known as para-Bose operators. They were introduced by Green as a po
generalization of the statistics of integer spin fields.17

The creation and the annihilation operators~3.8! also generate a basic Lie superalgebr1

Although its relations are similar to Eq.~3.57!, the algebra is very different. In this case it is th
J. Math. Phys., Vol. 38, No. 5, May 1997
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special linear Lie superalgebra sl~1/3n!. Its odd generators are the CAOs; all anticommutat
$aa i

1 ,ab j
2 % span the even subalgebra, which is the Lie algebra gl(3n). This is the reason to call the

~n11!-particle system with CAOs~3.8! an sl~1/3n! Wigner quantum system. Recently Okubo h
shown that the CAOs~3.8! can also be viewed as generators of a Lie supertriple system.18

Any representation of the CAOs~3.8! defines a representation of sl~1/3n! and vice versa.
Therefore the question to determine the representations of the CAOs~3.8! is equivalent to the
problem of constructing the representations of sl~1/3n!. The Hermiticity condition~3.16! defines
an antilinear anti-involution on sl~1/3n!. By definition the representations in Hilbert spaces, wh
satisfy Eq.~3.16! are called unitary representations~with respect to this anti-involution!. It turns
out all such representations are finite-dimensional. They were explicitly constructed in Ref. 1
are labeled with 3n numbers, the coordinates of the highest weight. Therefore the Fock repr
tations, considered here, give a small part of all representations, for which the cond
P1int–P3int can be satisfied.

We will consider elsewhere Wigner quantum systems with CAOs generating another
LS, namely sl~n/3!. The LSs sl~n/3! and sl~1/6n! belong to the classA in the classification of
Kac,16 whereas the algebras osp~1/6n! are from the classB. There are two more infinite classesC
andD of basic LSs. It will be interesting to see whether one can associate CAOs with som
those classes. Certainly one needs not to restrict to solutions, which generate simple LS
oscillator conditionsP1int–P3int can be satisfied with semisimple LSs and, in particular, with dir
sums of LSs as for instance

% i51
n sl~1/3! or % i51

n osp~3/2!. ~3.58!

This possibility will be a subject of future considerations.

IV. STATISTICS OF THE CREATION AND THE ANNIHILATION OPERATORS

Here we discuss briefly the statistics, corresponding to the algebra of the operators~3.8! and
compare it with the very similar statistics of theg-ons.10

To this end we interpretaa i
1 ~respectively,aa i

2 ! as an operator creating~respectively, annihi-
lating! a particle in a~one-particle! state~5orbital! (a i ). Then the Pauli principle of the statistic
corresponding to the CAOs~3.8! says that on every orbital there cannot be more that one par
@Fermi-kind property, following from Eq.~3.8c!#. In addition to this, however, it requires that n
more thanp orbitals can be simultaneously occupied. The latter is due to the requirement~3.19!,
namely (a51

n ( i51
3 ua i<p. If, for instance, certainp orbitals are occupied, then the possib

changeDub j of the occupation numbers of any other orbital is zero,Dub j50. Therefore the
A-superstatistics is among the exclusion statistics, introduced by Haldane.9 In fact it is very
similar to the statistics of theg-ons as defined by Karabali and Nair. We refer to it as to Karaba
Nair statistics~KN-statistics!. The latter goes beyond the thermodynamic formulation, attemp
a microscopic description of the many-body state space, generated out of a vacuum vect
polynomials of creation and annihilation operatorsaa i

6 ~we keep close to our notation!. In order to
compare it with the statistics of the CAOs~3.8!, we recall the main assumptions of the KN
statistics.

~1! If uQ&[uu11,u12,u13,u21,u22,u23,...,un1,un2,un3& is a state withua i particles on the orbital
(a i ), then

aa i
6 uQ&5c6~Q!uQ&6a i[uu11,u12,...,ua i61,...un2 ,un3&, ~4.1!

wherec6~Q! are constants, depending on the statistics.
~2! There exists a number operatorNa i of the particles on the orbital (a i ), which is a function

of aa i
1aa i

2 , so that
J. Math. Phys., Vol. 38, No. 5, May 1997
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@Na i ,ab j
6 #56dabd i j ab j

6 . ~4.2!

Therefore

Na i up,Q&5ua i up,Q&. ~4.3!

~3! For any numbersca i there exists an integerm, so that

S (
a51

n

(
i51

3

ca iaa i
6 D m11

50. ~4.4!

~4! The CAOs satisfy the relationsaa i
2ab j

2 5Ra i ,b jab j
2 aa i

2 , whereRa i ,b j are numbers.
~5! The CAOs satisfy in addition the relation [aa i

1aa i
2 ,ab j

2 ]50.
Clearly the main properties of the Fock representation of the CAOs~3.8! in W(p,n) are very

similar to the KN-statistics. Assumption~1! is the same as Eq.~3.20!. The number operator read

Na i5
p

3n21
1$aa i

1 ,aa i
2 %2

1

3n21 (
b51

n

(
i51

3

$ab j
1 ,ab j

2 %. ~4.5!

Therefore assumption~2! also holds, butNa i is not a function only ofaa i
1aa i

2 , but of all creation
and annihilation operators. Assumption~3! holds in our case form5p and ~4! is fulfilled with
Ra i ,b j521. Assumption~5! of the KN-statistics is not satisfied in our case.

Finally, we mention that the creation and the annihilation operators~3.8! ~with n5`! were
introduced for the first time in quantum field theory as a possible generalization of the statis
the tensor fields.20 In that case they generate the infinite-dimensional Lie superalgebra sl~1/̀ !. The
corresponding statistics were called A-superstatistics. Recently a representation of the A
statistics, corresponding top51 and called ortho-Fermi statistics was independently propose
Mishra and Rajasekaran.21

V. CONCLUDING REMARKS

The most difficult question to answer in relation to the present approach is why we inte
the noncanonical operatorsRa and Pa as coordinates and momenta. A rigorous proof to t
question we cannot give. However, there exists no proof why the CCRs should necessaril
This has been noted already by Wigner.5 All main quantum postulates are satisfied by any WQ
A criterion for accepting or rejecting a given WQS has to be its predictions and finally
experiment. In this respect some of the predictions of the WQSs are of interest. A quite
nonconventional feature of the sl~1/3n!-quantum system, for instance, is its finite size. The p
ticles move in a small volume around the center of mass. In a first approximation@see Eq.~3.31!#,
neglecting the terms proportional toA\, Ra andPa are canonical, they coincide withR andP. The
noncommutativity of the coordinates and, more generally, the deviation from the CCRs, is d
small, proportional toA\, terms added to the c.m. coordinates and momenta. As a result a
particle of massm5m(n11) splits inton11 pieces with massm. Only those small, proportiona
to A\, coordinates of the pieces with respect to the center of mass are noncommutative.
way the canonical point particle is ‘‘dressed’’ with internal structure and it is this dressing w
is noncanonical. In the limit\→0 the structure disappears; alln11 pieces fall onto the center o
mass. The composite system again becomes a free point particle. It seems to us that such a
deserves attention. After all, it is unclear so far whether the protons and the neutrons w
nucleus or, say, the constituents of a hadron, the quarks, are canonical.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In answering the above question we could have also been more formal. Nowadays, foll
the ideas of Connes,22 a lot of work is done in the field of the noncommutative geometry. T
quantum groups and the deformed oscillators related to them~see Ref. 23 for a list of references!
provide other examples of noncanonical quantum systems.
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Attractors for the Davey–Stewartson systems on R2
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In the present paper, we study the long time behavior of solutions for the Davey–
Stewartson systems onR2. We first derive the uniforma priori estimates for the
solutions of these systems inH1(R2). Then we show the existence of the compact
global attractor for the strong topology ofH1(R2). © 1997 American Institute of
Physics.@S0022-2488~97!03203-9#

I. INTRODUCTION

The Davey–Stewartson systems

i
]u

]t
1d

]2u

]x2
1

]2u

]y2
5auuu2u1bu

]w

]x
, ~1.1!

]2w

]x2
1m

]2w

]y2
5

]

]x
~ uuu2!, ~1.2!

were first derived by Davey and Stewartson1 in the context of water waves, whereu is the
complex amplitude andw is the real mean velocity potential. These systems model the evolu
of weakly nonlinear water waves that travel predominantly in one direction, but in which the
amplitude is modulated slowly in two horizontal directions. The real parametersd, a, b, andm can
assume both signs. Davey–Stewartson systems can be classified as elliptic–elliptic, e
hyperbolic, hyperbolic–elliptic, and hyperbolic–hyperbolic according to the respective sig
~d,m!: ~1,1!, ~1,2!, ~2,1!, and~2,2!. Equations~1.1! and ~1.2! were also derived by Djord-
jevic and Redekopp,2 and Ablowitz and Haberman.3 Various properties of solutions for Davey
Stewartson systems have been investigated by many authors including Ghidaglia and Saut,4 Anker
and Freeman,5 Ablowitz and Fokas,6 Tsutsumi,7 Hayashi and Saut,8 Linares and Ponce,9 and the
references therein.

In the present paper, we discuss the asymptotic behavior of solutions for the follo
Davey–Stewartson systems with zero-order dissipation:

i
]u

]t
1

]2u

]x2
1

]2u

]y2
1 idu5auuu2u1bu

]w

]x
1 f ~x,y!, ~1.3!

]2w

]x2
1

]2w

]x2
5

]

]x
~ uuu2!, ~1.4!

whered.0, f (x,y)PL2(R2). Our aim here is to derive the existence of the global attractor
systems~1.3! and~1.4!. In Sec. II, we first derive the uniforma priori estimates for the solution
of systems~1.3! and~1.4! in H1(R2). In particular, we show that there exists a bounded absorb
set inH1(R2) for systems~1.3! and~1.4!. In Sec. III, we apply a splitting method in the spirit o
Ref. 10 to derive the compactness of the trajectories of systems~1.3! and~1.4! in L2(R2). Similar
0022-2488/97/38(5)/2524/11/$10.00
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splitting methods have been used by Feireislet al.,11 and Laurencot.12 In Sec. IV, by an energy
equation and an idea of Ball13 we construct the global attractor for systems~1.3! and ~1.4! in
H1(R2).

II. THE SOLUTION SEMIGROUP AND A PRIORI ESTIMATES

In this section, we consider the following Davey–Stewartson systems:

i
]u

]t
1Du1 idu5auuu2u1bu

]w

]x
1 f ~x,y!, ~2.1!

Dw5
]

]x
~ uuu2!, ~2.2!

where f (x,y)PL2(R2), d.0 and

a>0, a1b>0. ~2.3!

In order to write systems~2.1! and ~2.2! as a single equation foru, we begin by expressingw in
terms ofu by solving the Poisson-like equation~2.2!. We set

wx5E~ uuu2!, ~2.4!

where the singular integral operatorE is defined in Fourier variables by

E~ f !̂~j1 ,j2!5
j1
2

j1
21j2

2 f̂ ~j1 ,j2!5p~j! f̂ ~j1 ,j2!. ~2.5!

It follows from systems~2.4! and ~2.5! that

iE~v !iL2~R2!<iviL2~R2! , iwxiL2~R2!<iuiL4~R2!

2 . ~2.6!

Obviously, systems~2.1! and~2.2! can be reduced to a nonlinear nonlocal Schro¨dinger equations

i
]u

]t
1Du1 idu5auuu2u1buE~ uuu2!1 f ~x,y!, ~2.7!

which is complemented with the initial condition

u~x,y,0!5u0~x,y!. ~2.8!

Assume that~2.3! holds. Then it follows from Ref. 4 that;u0PH1(R2), problems~2.7! and~2.8!
possess a unique solutionu(t) defined onR1 such that

u~ t !PC~@0,̀ !;H1~R2!!ùC1~@0,̀ !;H21~R2!!,

and the mappingu0→u(t) is continuous onH1(R2). Moreover, ifu0PH2(R2), then

u~ t !PC~@0,̀ !;H2~R2!!ùC1~@0,̀ !;L2~R2!!.

And thus systems~2.7! and ~2.8! define an operator semigroupS(t)(t>0) which mapsH1(R2)
intoH1(R2), andS(t)u05u(t), the solution of systems~2.7! and~2.8!. Throughout this paper, we
denote byi• i the norm ofH5L2(R2) with their usual inner product~•,•!, denote byi•ip the norm
of Lp(R2) for all 1<p<` ~i•i25i•i!, and byi•iX the norm of any Banach spaceX.
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For later purposes, we first establish the following.
Lemma 2.1: If u(t) is a solution of problems (2.7) and (2.8), then u(t) satisfies

iu~ t !i<C1 , ;t>t1 ,

where C1 is a constant depending only ond and f, t1 depends ond, f and R wheniu0i<R.
Proof: Taking the imaginary part of the inner product of Eq.~2.7! with u in H, we see that

d

dt
iui212diui252 Im~ f ,u!. ~2.9!

Since

2 Im~ f ,u!<2i f iiui<diui21
1

d
i f i2.

Then it follows from Eq.~2.9! that

d

dt
iui21diui2<

1

d
i f i2.

By the Gronwall lemma we infer that

iu~ t !i2<e2dtiu~0!i21
1

d2
i f i2, ;t>0,

<R2e2dt1
1

d2
i f i2<

2

d2
i f i2, ;t>t0 , ~2.10!

wheret052/d ln Rd/i f i , which concludes Lemma 2.1.
Lemma 2.2: Assume that (2.3) holds, then we have

i“u~ t !i<C2 , ;t.t2 ,

where C2 is a constant depending only ond and f, t2 depends ond, f and R wheniu0iH1 < R.
Proof: Taking the real part of the inner product of Eq.~2.1! with ut in H, we find that

2
1

2

d

dt
i“ui21ReS idE uūtdxD5

1

4
a

d

dt E uuu4dx1
b

2 E wxuuu t
2dx1Re E f ūtdx.

~2.11!

Taking the real part of the inner product of Eq.~2.1! with u in H, we see that

ReS i E utūdxD2i“ui25aE uuu4dx1bE wxuuu2dx1Re E f ūdx. ~2.12!

Due to

ReS idE uūtdxD52ReS idE ūutdxD , ~2.13!

we deduce that
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ReS idE uūtdxD52di“ui22adE uuu4dx2dbE wxuuu2dx2d Re E f ūdx. ~2.14!

Then it follows from Eqs.~2.11! and ~2.14! that

2
1

2

d

dt
i“ui22di“ui22adE uuu4dx2dbE wxuuu2dx2d Re E f ūdx

5
a

4

d

dt E uuu4dx1
b

2 E wxuuu t
21Re E f ūt . ~2.15!

Note that Eq.~2.2! implies that

E wxuuu t
2dx52E w tuuux

2dx, ~2.16!

and then we have

E wxuuu t
2dx5

d

dt E wxuuu2dx2E wxtuuu2dx5
d

dt E wxuuu2dx1E w tuuux
2dx

5
d

dt E wxuuu2dx2E wxuuu t
2dx.

~2.17!

This shows that

E wxuuu t
2dx5

1

2

d

dt E wxuuu2dx. ~2.18!

By Eqs.~2.15! and ~2.18! we get that

d

dt S i¹ui21
a

2 E uuu4dx1
b

2 E wxuuu2dx12 ReE f ūdxD12dS i¹ui21
a

2 E uuu4dx

1
b

2 E wxuuu2dx12 ReE f ūdxD1daE uuu4dx1bdE wxuuu2dx22d Re E f ūdx50.

~2.19!

It follows from Eq. ~2.2! that

2i¹wi25E wuuux
2dx,

and then

E wxuuu2dx52E wuuux
2dx5i¹wi2. ~2.20!

By Eq. ~2.6! we find that

E wxuuu2dx<iwxiiui4
2<iui4

45E uuu4dx. ~2.21!
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Thus we claim that

aE uuu4dx1bE wxuuu2dx>~a1b!E wxuuu2dx ~by Eq. ~2.21!!

5~a1b!i¹wi2 ~by Eq. ~2.20!!.

By Eq. ~2.3! we see that

aE uuu4dx1bE wxuuu2dx>0. ~2.22!

By Eqs.~2.19! and ~2.22! we get that

d

dt S i¹ui21
a

2 E uuu4dx1
b

2 E wxuuu2dx12 ReE f ūdxD12dS i¹ui21
a

2 E uuu4dx

1
b

2 E wxuuu2dx12 ReE f ūdxD<2d Re E f ūdx

<2di f iiui<C, ;t>t0 ~by Lemma 2.1!.
~2.23!

It follows from the Gronwall lemma that;t>t0 :

i¹u~ t !i21
a

2 E uuu4dx1
b

2 E wxuuu2dx12 ReE f ūdx

<e22d~ t2t0!S i¹u~ t0!idx1
a

2 E uu~ t0!u4dx

1
b

2 E wxuu~ t0!u2dx12 ReE f ūdxD1
C

2d
. ~2.24!

Similar to ~2.24!, we can also find that

i¹u~ t0!i21
a

2 E uu~ t0!u4dx1
b

2 E wxuu~ t0!u2dx12 ReE f ū~ t0!dx

<e22dt0S i¹u~0!i21
a

2 E uu~0!u4dx1
b

2 E wx~0!uu~0!u2dx12 ReE f ū~0!dxD1C0

<e22dt0~ i¹u~0!i21 1
2 ~a1ubu!iu~0!i4

412i f iiu~0!i !1C0 ~by Eq. ~2.6!!

<e22dt0~ iu~0!iH1
2

1C1iu~0!iH1
4

1C2iu~0!i !1C0<K~R!, ~2.25!

whereK(R) depends onR wheniu0iH1 < R. By ~2.24! and~2.25! we get that

i“u~ t !i21
a

2 E uuu4dx1
b

2 E wxuuu2dx12 ReE f ūdx<K~R!e22d~ t2t0!1
C

2d
,

<
C

d
, ;t>t1 , ~2.26!
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wheret15max$t0 ,t01~1/2d! ln 2dK(R)/C%. By Eqs.~2.2! and ~2.26! we see that

i“u~ t !i2<22 ReE f ūdx1
C

d
<2i f iiui1

C

d
<C1 , ;t>t1 ,

which concludes Lemma 2.2.
We observe that Lemma 2.1 and Lemma 2.2 show that there exists a bounded absorb

for S(t) in H1(R2). In fact, denote by

B5$uPH1~R2!:iuiH1<C11C2%, ~2.27!

whereC1 andC2 are the constants in Lemma 2.1 and Lemma 2.2. Then it follows thatB is a
bounded absorbing set forS(t) in H1(R2).

Lemma 2.3:;t>0, the mapping S(t) is continuous on bounded sets of H1(R2) for the
topology of L2(R2).

Proof: Applying Lemma 2.1 and Lemma 2.2, we can derive this lemma by the same p
dure of Lemma 2.1 in Ref. 4. So we omit it here.

III. COMPACTNESS OF TRAJECTORIES IN H

In this section, we derive the compactness of trajectories of systems~2.7! and~2.8! in H. To
this end, we denote byu(x) a smooth function such that

u~x!5 H10 if uxu<1
if uxu>2,

and 0<u(x)<1. Obviously,u(x/r ) f→ f asr→1` in H. Then;eP~0,1!, there existsr ~e!.0 such
that

I f2uS x

r ~e! D f I
H

<e. ~3.1!

In the following, we set

f e5uS x

r ~e! D f , eP~0,1!, ~3.2!

;eP~0,1! and u0PH2(R2)ùB @where B as in Eq. ~2.27!#. Then we know that
u(t)PC([0,`),H2(R2)). Consider the following system:

i
]

]t
ve1~12 i e!Dve1 idve5auuu2ve1bveE~ uuu2!1 f2 f e2 i eDu, ~3.3!

ve~0!5u0 ~3.4!

and

i
]

]t
we1~12 i e!Dwe1 idwe5auuu2we1bweE~ uuu2!1 f e , ~3.5!

we~0!50. ~3.6!
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It is easy to see that systems~3.3! and~3.4! have a unique solutionve(t)PC([0,`),H2(R2)), and
systems ~3.5! and ~3.6! have a unique solutionwe(t)PC([0,`),H2(R2)). Moreover,
u(t)5ve(t)1we(t).

Lemma 3.1:;eP~0,1!, and u0PH2(R2)ùB, then we have

ive~ t !i<C1Ae, ;t>t1 ,

where C1 depends only ond, and f; t1 depends ond, f , e and R wheniu0iH1 < R.
Proof: Taking the imaginary part of the inner product of Eq.~3.3! with ve in H, we find that

1

2

d

dt
ivei21ei“vei21divei25Im E ~ f2 f e!v̄edx1e Re E “u•“ v̄edx

<i f2 f eiivei1ei“uii“vei

<eivei1eC2i“vei @by Eq. ~3.1! and Lemma 2.2#

<
1

2
divei21

e2

2d
1
1

2
eC2

21
1

2
ei“vei2, ;t>t2 .

Hence

d

dt
ivei21divei2<SC2

21
1

d D e, ;t>t2 .

The above and Gronwall lemma imply Lemma 3.1.
Lemma 3.2:;eP~0,1!, u0PH2(R2)ùB, then we have

ixwe~ t !i<C2~e!, ;t>t2 ,

where C2~e! depends ond, f ande; t2 depends ond, f , e and R wheniu0iH1 < R.
Proof: Taking the imaginary part of the inner product of Eq.~3.5! with uxu2we in H, we find

that

1

2

d

dt
ixwei21dixwei21eE uxu2u“weu2dx52 Im E ~“we•x!w̄edx22e Re E ~“we•x!w̄edx

1Im E uxu2~ f ew̄e!dx.

Since f e has compact support,uxu f ePH, and then we have

1

2

d

dt
ixwei21dixwei21eE uxu2u“weu2dx<2~11e!ix“weiiwei1ix feiixwei

<2C~11e!ix“wei1ix feiixwei

~by iwei5iu2vei<iui1ivei<C, since Lemma 2.2 and Lemma 3.1)

<eix“wei21
1

e
~11e!2C21

1

2
dixwei21

1

2d
ix fei2.

Hence we find that
J. Math. Phys., Vol. 38, No. 5, May 1997
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1

2

d

dt
ixwei21

1

2
dixwei2<C0S 1e 1ix fei2D , ;t>t0 .

The above and Gronwall lemma conclude Lemma 3.2.
Lemma 3.3:;hP~0,1!, there exists T~h!.0 such that when t>T(h), S(t)B can be covered

by finite numbers of balls of H of radiuse.
Proof: The proof of this lemma is given in Ref. 12. For the sake of completeness, we s

it. We first consideru0PH2(R2)ùB and put

e5minH 1, h2

16C1
2 J , Ah5

4K2~e!

h
, T~h!5max$t1 ,t2%.

Then by Lemma 3.1 and Lemma 3.2 we see that, fort>T(h),

S E
uxu>Ah

uu~ t !u2dxD 1/2<uveu1S E
uxu>Ah

uwe~ t !u2dxD 1/2
<C1Ae1

1

Ae
ixwei<C1Ae1

1

Ae
C2~e!<

h

4
1

h

4
5

h

2
.

Thus

Iu~ t !2uS x

Ah
D u~ t !I

H

5S E
uxu>Ah

Uu~ t !2uS x

Ah
D u~ t !U2dxD 1/2

<S E
uxu>Ah

uu~ t !u2dxD 1/2
<

h

2
, ;t>T~h!. ~3.7!

It follows from Lemma 2.1 and Lemma 2.2 that the set

H uS x

Ah
DS~ t !u0 , u0PH2~R2!ùBJ

is bounded inH0
1~V!, whereV5$xPR2:uxu<2Ah%. And then it is compact inL2~V!. This result

and Eq.~3.7! imply that whent is large enoughS(t)(H2(R2)ùB) may be covered by a finite
number of balls ofL2(R2) of radius 3h/4. By the continuity ofS(t) in H1(R2) we conclude
Lemma 3.3.

As an immediate consequence of Lemma 3.3 we have
Lemma 3.4: Assume that ynPB, tn→1`, then there exists a subsequence of S(tn)yn that

converges strongly in H.

IV. THE GLOBAL ATTRACTOR

In this section, we construct the global attractor for the dynamical systemS(t) in H1(R2). Let

A5 ù
s>0

ø
t>s

S~ t !B,

whereB is given in Eq.~2.27!, and the closure is taken inH1(R2). In what follows, we shall show
thatA is the compact global attractor forS(t) in H1(R2). To the end, we introduce functionals
J. Math. Phys., Vol. 38, No. 5, May 1997
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G~u!52iui21
a

2 E uuu4dx1
b

2 E wxuuu2dx12 ReE f ūdx, ~4.1!

H~u!52daE uuu4dx2bdE wxuuu2dx12d Re E f ūdx. ~4.2!

Then it follows from Eq.~2.19! that

d

dt
~ iu~ t !iH1

2
1G~u~ t !!!12d~ iu~ t !iH1

2
1G~u~ t !!!5H~u~ t !!. ~4.3!

Note that ifwx5E(uuu2), Cx5E(uvu2), then

U E ~wxuuu22Cxuvu2!dxU<U E ~wx2Cx!uuu2dxU1U E Cx~ uuu22uvu2!dxU
<iwx2Cxiiui4

21iCxiiuuu22uvu2i

<iuuu22uvu2i~ iui4
21ivi4

2!<~ iui4
21ivi4

2!~ iui41ivi4!iu2vi4 .

~4.4!

By Eqs.~4.1!, ~4.2!, and~4.4! we can easily deduce the following.
Lemma 4.1: Assume thatvPH1(R2), un is a bounded sequence in H

1(R2). If un→v strongly
in H, then G(un)→G(v), and H(un)→H(v).

Proof: Since

iun2vi4<Ciun2vi1/2iun2viH1
1/2, ~4.5!

by assumption we find thatun→v in L4(R2) strongly. Equations~4.5!, ~4.1!, ~4.2!, and ~4.4!
conclude Lemma 4.1.

Theorem 4.1: Assume that (2.3) holds. ThenA is the compact global attractor for system
(2.7) and (2.8).

Proof: Assume thatwk
0PB, tk→1`, then this theorem will be proved if we are able to sho

that there existswPH1(R2) such that~some subsequence of! the sequenceS(tk)wk
0 converges to

w strongly inH1(R2).
Fix T.0, without loss of generality, we can assumetk>T. By Lemma 2.1 and Lemma 2.2 w

know thatS(tk2T)wk
0 is bounded inH1(R2). And then there existvPH1(R2) and a subsequence

which is still denoted byS(tk2T)wk
0, such that

S~ tk2T!wk
0→v in H1~R2! weakly. ~4.6!

By Lemma 3.4 we can assume that

S~ tk2T!wk
0→v in H strongly. ~4.7!

Set

wk~ t !5S~ t !S~ tk2T!wk
05S~ tk1t2T!wk

0. ~4.8!

By Eq. ~4.7! and Lemma 2.3 we see that

wk~ t !→S~ t !v in H strongly. ~4.9!
J. Math. Phys., Vol. 38, No. 5, May 1997
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On the other hand, by the boundedness ofwk(T)5S(tk)wk
0 in H1(R2). We can also assume tha

there existswPH1(R2) such that

S~ tk!wk
0→w in H1~R2! weakly, ~4.10!

S~ tk!wk
0→w in H strongly. ~4.11!

By Eqs. ~4.9! and ~4.11! we infer thatw5S(T)v. Because any solution of Eqs.~2.7! and ~2.8!
satisfies Eq.~4.3!, we find that

iwk~ t !iH1
2

1G~wk~ t !!5e22dt~ iS~ tk2T!wk
0iH1

2
1G~S~ tk2T!wk

0!!1E
0

t

e2d~t2t !

3H~S~ tk1t2T!wk
0!dt. ~4.12!

By Eq. ~4.9! and Lemma 4.1 we see that

G~wk~ t !!→G~S~ t !v !, G~S~ tk2T!wk
0!→G~v !,

H~S~ tk1t2T!wk
0!→H~S~t!v !.

Then takingt5T in Eq. ~4.12!, it follows from the Lebesgue dominated convergence theorem

lim sup
k→`

iS~ tk!wk
0iH1

2
1G~S~T!v !<e22dT~C1G~v !!1E

0

T

e2d~t2T!H~S~t!v !dt. ~4.13!

Due tow5S(T)v, similar to Eq.~4.12! we have

iwiH1
2

1G~w!5e22dT~ iviH1
2

1G~v !!1E
0

T

e2d~t2T!H~S~t!v !dt. ~4.14!

By Eqs.~4.13! and ~4.14! we get

lim sup
k→`

iS~ tk!wk
0iH1

2 <iwiH1
2

1Ce22dT2e22dTiviH1
2 <iwiH1

2
1Ce22dT.

Let T→`, we find that

lim sup
k→`

iS~ tk!wk
0iH1

2 <iwiH1
2 . ~4.15!

On the other hand, by Eq.~4.10! we infer that

lim inf
k→`

iS~ tk!wk
0iH1

2 >iwiH1
2 . ~4.16!

It follows from Eqs.~4.15! and ~4.16! that

lim
k→`

iS~ tk!wk
0iH1

2
5iwiH1

2 . ~4.17!

By Eq. ~4.17! and the weak convergence we conclude thatS(tk)wk
0→w strongly inH1(R2). And

then the proof of Theorem 4.1 is complete.14
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The finite-band solution of the Jaulent–Miodek equation
Ruguang Zhou
Institute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

~Received 3 October 1996; accepted for publication 16 December 1996!

A method to construct the finite-band solution to the soliton equation is presented.
We take the Jaulent–Miodek equation as an example. With the use of the nonlin-
earization of Lax pair, the Jaulent–Miodek equation is decomposed into two finite-
dimensional integrable systems, whose properties are studied from the view of an
r -matrix. Then through solving these finite-dimensional integrable systems, the
finite-band solution of the Jaulent–Miodek equation is obtained. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!03303-3#

I. INTRODUCTION

In the past several years, some relations between the infinite dimensional integrable s
~IDISs!, or soliton equations and the finite dimensional integrable systems~FDIHSs! have been
revealed. The technique of nonlinearization of the Lax pair,1 or the technique of restricted flow2

provides us with a bridge from the IDIHSs to the FDIHSs. Through nonlinearization of the
pair, the 111 dimensional soliton equation is decomposed into two commutative fin
dimensional Hamiltonian systems:x-flow and tn-flow.

These resulting Hamiltonian systems have been extensively and thoroughly investigated
have Lax representations3,4 and one of the Lax operators usually satisfies ther -matrix relation;
thus they are completely integrable in the Liouville sense. Moreover the general pattern
separation of the variables summarized by Sklyanin in Ref. 5 usually can be applied to
systems hence we can find the angle-action variables for them. In other words, some o
systems can be integrated by the separation of the variables. It is natural to ask whether
obtain the solution of the corresponding soliton equation with the solved finite dimensional
grable systems and what kind of solution we can obtain.

In this paper, we take the Jaulent–Miodek equation as an example to show how to obt
solution with the aid of the nonlinearization of the Lax pair method. The solution we obtain
the finite-band solution. As is well known, the finite-band solution is an important solution o
soliton equation. It is associated with the periodic problem and directly relates to the alg
geometry. In the degenerated case from them one can obtain some other kind of solution,
theN-soliton solution and the elliptic function solution.6 It was developed first by Matveev, Its
Novikov, Marchenko and Dubrovin etc. The finite-band solutions to the Korteweg–de V
~KdV! equation, Sine–Gordon equation, nonlinear Schro¨dinger equation, Toda lattice, etc., hav
been found~Refs. 6 and 7 and 8 and 9!. Compared with their method, our method has nothing
do with any assumptions on the periodicity condition of the potentials. Our method can wo
soliton equations, such as the KdV equation, Ablowitz–Kaup–Newell–Segur~AKNS! equation,
or Toda lattice.10,11Application to other soliton equations is under way. It will most likely provi
a new approach to search for the finite-band solutions of the other soliton equations.

The organization of this paper is as follows. We first apply the nonlinearization method t
Lax pair of the Jaulent–Miodek equation. Two finite dimensional Hamiltonian systems and
Lax representations are obtained in the next section. Among these Lax pairs, there is a co
Lax operatorL~l!. In Sec. III, we show thatL~l! satisfies ther -matrix relation. Therefore,
according to the general theory of ther -matrix,12 these two finite dimensional Hamiltonian sy
tems are completely integrable. Then in Sec. IV, we find a group of common angle-action
ables for these two FDIHSs. By using the reciprocity theorem for Abelian integrals, we obta
finite-band solution of the Jaulent–Miodek equation in Sec. V.
0022-2488/97/38(5)/2535/12/$10.00
2535J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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II. THE NONLINEARIZATION OF THE LAX PAIR OF THE JAULENT–MIODEK
EQUATION

It is well known that the Jaulent–Miodek equation

H qt52 3
2qqx2r x

r t5
1
4qxxx2rqx2

1
2qrx

~1!

associates with the Jaulent–Miodek spectral problem13

cx5U~u,l!c[S 0 1

2l21ql1r 0Dc, c5S c1

c2
D , u5S qr D , ~2!

wherel is a spectral parameter;q and r are the potentials, which may take complex numb
values in physics.14

The corresponding auxiliary spectral problem of~2! is as follows:4

c tn
5V~n!~u,l!c, ~3!

V~n!5 (
m50

n S am bm

cm 2am
D ln2m1S 0 0

lbn111bn122qbn11 0D , ~4!

wheream ,bm ,cm are determined by the following recursion relation:

KGm5JGm , am52 1
2bmx , cm5amx2bm121qbm111rbm , ~5!

K5S ] 0

0 2 3
4]

31r ]1 1
2r x

D , J5S 0 ]

] 2q]2 1
2qx

D , Gm5S bm11

bm D ~6!

with the initial condition

a05a15a25b05b150, b2521, b352 1
2q, c051, c152 1

2q. ~7!

The compatible condition of Eqs.~2! and ~4! is

Utn
2Vx

~n!1@U,V~n!#50 ~8!

which leads to the Jaulent–Miodek equation hierarchy

utn52JGn11 , ~9!

in particular, sett5t3 and the Jaulent–Miodek equation is obtained.
As usual,1,4 we takeN distinct numbersl1,l2,...,lN and consider the following system o

equations:

S c1 j

c2 j
D
x

5U~u,l j !S c1 j

c2 j
D[S 0 1

2l j
21ql j1r 0D S c1 j

c2 j
D , j51,...,N. ~10!

Under the zero boundary condition at infinity or the periodic boundary, through a direct ca
tion, we can get~up to a constant factor!
J. Math. Phys., Vol. 38, No. 5, May 1997
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dl j

du
5
1

2 S l jc1 j
2

c1 j
2 D , j51,...,N. ~11!

Remark:Here in order to compute the variational derivatives, we must use the follow
boundary condition: zero boundary condition at infinity or a periodic boundary condition. H
ever, it is easy to see that this condition is not necessary. Therefore, we drop this condition
next discuss and regard Eq.~11! as a formal definition. Maybe the best interpretation to the n
Bargmann constraint is the symmetry constraint.

Consider the Bargmann constraint1

G35S b4b3D5(
j51

N
dl j

du
52

1

2 S ^Lc1 ,c1&
^c1 ,c1&

D , ~12!

i.e.,

q5^c1 ,c1&, r5^Lc1 ,c1&2 3
4^c1 ,c1&

2. ~13!

Hereafter we accept the following notation:c j5(c j1,...,c jN)
T, L5diag~l1,...,lN!; ^•,•& de-

notes the standard inner product in spaceRN.
Under the constraint~13!, Eq. ~2! is nonlinearized into the Hamiltonian system,

c ix5
]H0

]c2
, c2x52

]H0

]c1
, ~14!

where

H05
1
2^c2 ,c2&1 1

2^L
2c1 ,c1&2 1

2^c1 ,c1&^Lc1 ,c1&1 1
8^c1 ,c1&

3. ~15!

Proposition 1: The solutions q,r given by Eqs. (13) and (14) solve the stationary Jaulent–Miodek
equation

GN131a1GN121•••1aNG350. ~16!

That is to say, the solution is a finite-band solution of the Jaulent–Miodek equation hierarchy.
Herea1,...,aN are some constants determined by

)
j51

N

~l2l j !5lN2a1l
N211•••1~21!NaN . ~17!

Proof: First a direct calculation can lead to

K
dl j

du
5l j J

dl j

du
. ~18!

On the other hand, we know: KGm5JGm11. Acting the operator(J
21K)k on the constraint (12),

we get

Gk131(
j51

N

l j
k dl j

du
. ~19!

Consider the polynomial
J. Math. Phys., Vol. 38, No. 5, May 1997
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K~l!5)
j51

N

~l2l j !5ln2a1l
N211•••1~21!NaN . ~20!

Notice! Do not confuse K~l! with the operator K, which is independent ofl.
Therefore

GN132a1GN121•••1~21!NaNG35(
j51

N

K~l j !
dl j

du
50. ~21!

This completes the proof of this proposition.

In the same way, under constraints~13! and~14!, the corresponding auxiliary spectral proble
also can be nonlinearized into a finite-dimensional system, usually a Hamiltonian syste
particular, forn53 it yields the following Hamiltonian system:

c1t5
]H1

]c2
, c2t52

]H1

]c1
~22!

with

H152 1
2^L

3c1 ,c1&2 1
2^Lc2 ,c2&1 1

4^c1 ,c2&
2 ~23!

2 1
4^c1 ,c1&^c2 ,c2&1 1

4^c1 ,c1&^L
2c1 ,c1& ~24!

2 1
8^c1 ,c1&

2^Lc1 ,c1&1 1
4^Lc1 ,c1&

2. ~25!

From Ref. 4, we know the following.
Proposition 2: Hamiltonian systems (14) and (22) respectively, have the Lax represent

Lx5@Ũ,L# ~26!

and

Lt5@Ṽ~3!,L# ~27!

with

Ũ5S 0 1

2l21^c1 ,c1&l1^Lc1 ,c1&2 3
4^c1 ,c1&

2 0D , ~28!

L~l!5S A~l! B~l!

C~l 2A~l!D , Ṽ~3!5S 1
2^c1 ,c2& 2l2 1

2^c1 ,c1&

D~l! 2 1
2^c1 ,c2&

D , ~29!

where

A~l!5
1

2 (
j51

N
c1 jc2 j

l2l j
, B~l!5212

1

2 (
j51

N c i j
2

l2l j
,

C~l!52l22
1

2
^c1 ,c1&l2

1

2
^Lc1 ,c1&1

3

8
^c1 ,c1&

31
1

2 (
j51

N c2 j
2

l2l j
,

J. Math. Phys., Vol. 38, No. 5, May 1997
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D~l!5l32 1
2^c1 ,c1&l

21~ 1
4^c1 ,c1&

22^Lc1 ,c1&!l1 1
2^c2 ,c2&

2 1
2^L

2c1 ,c1&1 1
2^c1 ,c1&^Lc1 ,c1&. ~30!

Finally, through a direct check, we get the following.
Proposition 3: If ~c1, c2! satisfies Eqs. (14) and (22), then

q5^c1 ,c1&, r5^Lc1 ,c1&2 3
4^c1 ,c1&

2 ~31!

is the solution of Jaulent–Miodek equation.
Combining Proposition 1 and Proposition 3, we know that solution~31! is the finite-band

solution of Jaulent–Miodek equation.

III. COMMUTATIVITIES OF THE FLOWS

In the standard Poisson bracket of the symplectic space (R2N),dc2∧dc1), it is not difficult to
find that

$A~l!,A~m!%5$B~l!,B~m!%50, ~32!

$C~l!,C~m!%52~^c1 ,c1&2l2m!~A~m!2A~l!!, ~33!

$A~l!,B~m!%5
1

m2l
~B~m!2B~l!!, $B~l!,C~m!%5

1

m2l
~A~m!2A~l!!, ~34!

$A~l!,C~m!%5
1

m2l
~C~l!2C~m!!1B~l!~^c1 ,c1&2l2m!. ~35!

Introduce the notation of Ref. 15:L1(l)5L(l)^ I , L2(m)5I ^L(m), I is the 232 unit
matrix;$L1(l) ,̂ L2(m)% i j ,kl5 $L1(l) ik ,L2(m) j l %.

Proposition 4: The L-operator L~l! satisfies

$L1~l! ,̂ L2~m!%5@r 12~l,m!,L1~l!#2@r 21~l,m!,L2~m!#, ~36!

r 12~l,m!5
1

m2l
P2~^c1 ,c1&2l2m!s2 ^ s2 ~37!

and

r 21~l,m!5r 12~m,l!, ~38!

where P5 1
2(I1( j51

3 s j ^ s j ) is the pemutative matrix, andsj is the Pauli matrix. Then according
to the general theory of ther -matrix,12 we have

$Tr L2~l!,Tr L2~m!%50, ~39!

which ensures the involution property of the integrals of motion obtained from expandingL2~l! in
powers ofl. Explicitly

Tr L2~l!52detL~l!5A2~l!1B~l!C~l!5l21(
j51

N
I j

l2l j
, ~40!

where
J. Math. Phys., Vol. 38, No. 5, May 1997
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I j5
1

2
c2 j
2 2

1

4
^Lc1 ,c1&c1 j

2 1
1

8
^c1 ,c1&c1 j

2 1
1

2
l j
2c1 j

2

2
1

4
^c1 ,c1&l jc1 j

2 1
1

4 (
j51
jÞk

N
~c1 jc2k2c1kc2 j !

2

lk2l j
. ~41!

we have

$I j ,I k%50. ~42!

That is to say,I 1 ,I 2 ,...,I N are N independent involution system. Moreover we notice t
H05( j51

N I j , H152( j51
N l j I j . It follows that

Proposition 5: Both the Hamiltonian systems (20) and (22) are completely integrable sy
in the Liouville’s sense; and the x-flow and t-flow are commutative in the symplectic spa
(R2N,dc2∧dc1).

Remark:It is this proposition that allows us to seek the solution satisfying the equatio
x-flow and t-flow simultaneously.

IV. ANGLE-ACTION VARIABLES

In this section, we want to find a group of common angle-action variables for thex-flow and
the t-flow. To this end, we set

detL~l!5
P~l!

K~l!
, ~43!

whereK~l! is defined by Eq.~20! and

P~l!5PN12l
N121PN11l

N111•••1P0

is a polynomial of orderN12 in terms ofl.
Equation~43! yields

PN1251, PN1152a1 , PN5a2 ,

PN2152a31H0 , PN225a42a1H02H1 . ~44!

In general,Pk consists ofI j8s and constantsl j8s; thusPk andPj are in involution to each other. Fo
our Hamiltonian functionsH0 andH1, we have

H05a31PN21 , H152PN222a1PN211a42a1a3 . ~45!

Introduce new variables:u1 ,...,uN , which are theN zero point ofB~l!, i.e.,

11
1

2 (
j51

N c1 j
2

l2l j
5

Pk51
N ~l2uk!

Pk51
N ~l2l j !

. ~46!

Here we assume the choices ofl j8s makeB~l! exactly haveN distinct simple roots and let

lN,uN,lN21,•••,l1,u1 . ~47!

AnotherN new variables:v1 ,v2 ,...,vN are defined byvk5A(uk), k51,2,...,N. For these new
variables, making the relation~34! we have16
J. Math. Phys., Vol. 38, No. 5, May 1997
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Proposition 6: New variables$uk ,vk%k51
N are canonically conjugated, i.e.,

$uj ,uk%5$v j ,vk%50, $uk ,v j%5d jk . ~48!

It follows from Eq. ~46! that

^c1 ,c1&52a122(
k51

N

uk , ~49!

^Lc1 ,c1&52(
k, j

ukuj22a1(
k51

N

12a1
222a2 . ~50!

Therefore

q5^c1 ,c1&52a122(
k51

N

uk ,

r5^Lc1 ,c1&2 3
4^c1 ,c1&

2

522S (
k51

N

ukD 22 (
k51

N

uk
214a1(

k51

N

uk2a1
222a2 . ~51!

Following Refs. 17 and 18, we consider the separation of variables of the HamiltonianP~l! in
order to find the angle-action variables. From Eq.~43!, we know

P~uk!52vk
2K~uk!, k51,...,N. ~52!

Using the Lagrange interpolation,P~l! can be expressed as

P~l!5Q~l!H l22S a12 (
k51

N

ukD l1a22a1(
k51

N

uk1 (
k51

N

uk(
j51

N

uj J 2 (
k51

N
Q~l!K~uk!

~l2uk!Q8~uk!
vk
2,

~53!

where

Q~l!5)
k51

N

~l2uk!. ~54!

Replacevk by ]S/]uk and interpret the coefficient ofP~l!: P0 ,P1 ,...,PN21 as the integration
constants. The Hamilton–Jacobi equation follows:

Q~l!H l22S a12 (
k51

N

ukD l1a22a1(
k51

N

uk1 (
k51

N

uk(
j51

N

uj J 2 (
k51

N
Q~l!K~uk!

~l2uk!Q8~uk!
S ]S

]uk
D 2

5P~l!. ~55!

We wish to look at the functionS with the formS(u1 ,...,uN)5(k51
N sk(uk).

Inserting into Eq.~56!, dividing two sides byQ~l! and taking residue atl5uk , we get

S ]Sk
]uk

D 252
P~uk!

K~uk!
, k51,...,N. ~56!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Finally, we have

S5 (
k51

N E
c0

ukA2
P~l!

K~l!
dl, ~57!

wherec0 is an arbitrary fixed constant.
Therefore the linear coordinates are

Qj5
]S

]Pj
5
1

2 (
k51

N E
0

uk l j

A2K~l!P~l!
dl, j50,...,N21. ~58!

Thus, in the symplectic space (R2N,( j51dQj∧dPj ), the flows generating from the Hamiltonian
H0 andH1 are, respectively,

Qj5Qj
01d j ,N21x ~59!

and

Qj5Qj
02~d j ,N221a1d j ,N21!t, j50,...,N21. ~60!

In order to find the solution of the Jaulent–Miodek equation, we must express(k51
N uk and

(k51
N uk

2 in terms of au function, whereuk solves the system of equations

Qj5Qj
01d j ,N21x2~d j ,N221a1d j ,N21!t, j50,...,N21 ~61!

or more explicitly

(
k51

N E
0

uk
w̃j5f̃ j , j50,...,N21, ~62!

where

ṽ j5
l j

2A2K~l!P~l!
dl, f̃ j5Qj

01d j ,N21x2~d j ,N221a1d j ,N21!t.

V. THE FINITE-BAND SOLUTION OF JAULENT–MIODEK EQUATION

Suppose the hyperelliptic curveG: m21K(l)P(l)50 be smooth. SinceK(l)P(l) is a poly-
nomial of order 2N12 in terms ofl, ` is not the branch point ofG. Thus there are two infinite
points:`1, `2 on G. By ~l,6m! we denote the point ofG.

OnG we fix a regular circle of paths:a1 ,a2 ,...,aN ; b1 ,b2 ,...,bN , which are independent an
have the intersection numbers as follows:

ai+aj5bi+bj50, ai+bj5d i , j . ~63!

It is easy to see thatṽ j is the homomorphic differential onG. Normalizeṽ j into vj ,

v j5 (
l50

N21

r j l ṽ l , j51,...,N ~64!

such that
J. Math. Phys., Vol. 38, No. 5, May 1997
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R
ai

v j5d i j . ~65!

Now we first introduce some notations. Setrbi
v j 5 Bi j . Denote bydi and Bi the component

of the vectorsdi j andBi j , respectively. And letT be the lattice generated by 2N vectors$d i ,Bj%.
Thus we can obtain the Jacobi varietyJ5CN/T.

Consider the Abel map onG,

A~P!5H E
P0

P

v j J ,
whereP0 is a fixed point of Riemann surfaceG and suppose that (c0 ,m(c0)) is not a branch point;
P is an arbitrary point.

MoreoverA(P) can be linearly extended into divisor

AS ( nkPkD5( nkA~Pk!.

The Riemannu function onG is defined as follows:19 for any zPCN

u~z!5 (
ZPZN

expp i ~BZ,Z!12p i ~z,Z!,

~66!

~BZ,Z!5( Bi j zizj , ~z,Z!5( ziz i ,

which is an entire function and has the following properties:

u~2z!5u~z!, u~z1dk!5u~zk!, u~z1Bk!5u~z!exp$2p i ~Bkk12zk!%. ~67!

It follows from Eq. ~62! that

(
k51

N E
0

uk
v j5 (

l50

N21

r j l @Ql
01d l ,N21x2~d l ,N221a1d l ,N21!t#:5f j . ~68!

By the Riemann theorem,19 we know that if

(
k51

N E
P0

Pk
v j5f j , j51,...,N, ~69!

thenPk5(uk ,m(uk)) are the onlyN zero points of the function

f ~l!5u~A~P!2f2K ! ~70!

whereP5~l,6!, f5~f1,...,fN!, andKPCN is the Riemann constant determined byG itself.
In order to obtain the solutionsq andr , we have to compute the zero point off ~l!. Let us cut

the Riemann surface along all the contoursak ,bk to form a simple connected region. In this regio
function F~l! is single-valued. Byg denote the boundary of this region; theng consists of 4N
edges with the order:a1

1b1
1a1

2b1
2a2

1b2
1a2

2b2
2•••aN

1bN
1aN

2bN
2. Where symbols

‘‘ 1,2’’ denote the orientation.
Proposition 7:
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1

2p i R
g
lkd ln f ~l!5Ck~G! ~71!

is a constant independent off.
Proof: f~l! values in both of cut sores is as follows.
For U j 5 *P0

P v,we have

U j~P!ua
i
25U~P!ua

i
11E

bi

v j5Uj~P!ua
i
11Bi j , ~72!

Uj~P!ub
i
25U~P!ub

i
12E

ai

v j5Uj~P!ub
i
12d i j . ~73!

Therefore, according to the properties of the theta-function, we get

f ~l!ub
i
25 f ~l!ub

i
1, ~74!

f ~l!ua
i
25 f ~l!ua

i
1 exp$2pA21~Bii12Ui~P!!%. ~75!

Finally,

d ln f ~l!ua
i
25d ln f ~l!ua

i
122p iv i ~76!

thus

Ck~G!5(
j51

N E
aj

lkv  , ~77!

which is independent of$fj %.
We have

1

2p i R
g
lkd ln f ~l!5(

l51

N

ul
k1(

j51

2

Resl5` j
lkd ln f ~l!, ~78!

i.e.,

(
l51

N

ul
k5Ck~G!2(

j51

2

Resl5` j
lkd ln f ~l!. ~79!

Next we want to compute the residue of the functionlkd ln f ~l! at the points̀ 1 and`2.
Notice that the local coordinates arez5l21 in both points `1 and `2 and that `1

5 (0,AK(z50)P(z50),`25 (0,2AK(z50)P(z50).
At `1

f ~z!5uS ...,2f j2Kj2h1 j2
1

2i E0
z ( l51

N21r j ,lz
2 l22

AK~z21!P~z21!
dz,...D

5uS ...,f j1Kj1h1 j1
1

2i F r j ,N2111
1

2
~r j ,N2212a1r j ,N21!z

21O~z3!G ,...D ~80!
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Hereh1 j 5 *`1

P0v j and we have used the fact thatu-function is an even function.

Noting the expression offj , we get

f ~l!5u1
1

2i (
j51

N
]u

]h1 j
r j ,N21z1

1

4 (
j51

N
]u

]h1 j
~2r j ,N221a1r j ,N21!z

2

2
1

8 (
j ,k51

N
]2u

]h1 j]h1k
r j ,N21r k,N21z

21O~z3!5u~f1K1h1!

1
1

2i
uxz2

1

8
uxxz

22
1

8i
~2u t1a1ux!z

21O~z3!, ~81!

where all the functionsu and its derivatives value inf1K1h1.
Thus

Res̀
1
ld ln f ~l!5

1

2i
]x ln u~f1K1h1!, ~82!

Res̀
1
l2d ln f ~l!52

1

4
]x

2 ln u~f1K1h1!2
1

4i
~2] t1a1]x!u~f1K1h1!. ~83!

In the same way, at̀ 2

Res̀
2
ld ln f ~l!52

1

2i
]x ln u~f1K1h2!, ~84!

Res̀
2
l2d ln f ~l!52

1

4
]x

2 ln u~f1K1h2!1
1

4i
~2] t1a1]x!u~f1K1h2! ~85!

whereh2 j 5 *`2

P0v j thus

(
k51

N

uk5C1~G!2
i

2
]x ln

u~b1!

u~b2!
, ~86!

(
k51

N

uk
25C2~G!1

1

4
]x
2 ln u~b1!u~b2!2

i

4
~2] t1a1]x!ln

u~b1!

u~b2!
, ~87!

whereb j5f1K1h j .
Therefore from Eq.~52!, we know that the solution of Jaulent–Miodek equation is

q5C1~G!1
i

2
]x ln

u~b1!

u~b2!
, ~88!

r522SC1~G!1
i

2
]x ln

u~b1!

u~b2!
D 22C2~G!2

1

4
]x
2 ln u~b1!u~b2!1

i

4
~2] t1a1]x!ln

u~b1!

u~b2!

14a1C1~G!22i ]x ln
u~b1!

u~b2!
2a1

222a2 . ~89!
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This is the finite-band solution of the Jaulent–Miodek equation.

VI. CONCLUSION

In this paper, we have studied how to obtain the finite-band solution of the Jaulent–M
equation with the aid of the nonlinearization of its Lax pair. We have also discussed the prop
of the finite-dimensional integrable system resulted from the nonlinearization from the vie
r -matrices. The method we used is valid for some other soliton equations. The difficulty is u
in solving the finite-dimensional integrable system; more precisely, usually in looking fo
separable variables for the FDIHSs.

ACKNOWLEDGMENTS

The author is grateful to Professor Chaohao Gu and Hesheng Hu, Cewen Cao, Zixiang
for their guidance and also to Dr. Zhijun Qiao for valuable suggestions. This project is supp
by The Doctoral Programme Foundation of Institute High Education and by the Natural Sc
Foundation of Shanghai.

1C. W. Cao, Sci. Chain A33, 528 ~1990!.
2M. Antonowicz and S. Rauch-Wojciechowski, Phys. Lett. A147, 455 ~1990!.
3M. Antonowicz and S. Rauch-Wojciechowski, Phys. Lett. A171, 303 ~1992!.
4Y. B. Zeng and Y. S. Li, J. Phys. A26, L273 ~1993!.
5E. K. Sklyanin, Prog. Theor. Phys. Suppl.118, 35 ~1995!.
6S. P. Novikov, S. V. Manakov, L. P. Pitaevskij, and V. E. Zakharov,Theory of Solitons. The Inverse Scattering Meth
~Nauka, Moscow, 1980!.

7V. I. Arnol’d and S. P. Novikov,Encyclopedia of Mathematical Sciences~Springer, Berlin, 1990!, Vol. 4.
8Y. C. Ma and M. J. Ablowitz, Stud. Appl. Math.65, 113 ~1979!.
9E. R. Tracy, H. H. Chen, and Y. C. Lee, Phys. Rev. Lett.53, 218 ~1984!.
10R. G. Zhou~unpublished!.
11Z. J. Qiao~unpublished!.
12O. Babelon and C. M. Villet, Phys. Lett. B237, 411 ~1990!.
13M. Jaulent and K. Miodek, Lett. Math. Phys.1, 243 ~1976!.
14M. Jaulent, J. Math. Phys.17, 1351~1976!.
15L. D. Faddeev and L. A. Takhtajan,Hamiltonian Methods in the Theory of Soliton~Springer, Berlin, 1987!.
16E. K. Sklyanin, Commun. Math. Phys.150, 18 ~1992!.
17O. Babelon and M. Talon, Nucl. Phys. B379, 321 ~1992!.
18J. Harnad and P. Winternitz, Commun. Math. Phys.172, 263 ~1995!.
19P. Griffiths and J. Harris,Principles of Algebraic Geometry~Wiley, New York, 1978!.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



etry.

e
ld

rder

v,

or

e

¬¬¬¬¬¬¬¬¬¬
Homothetic motions of spherically symmetric space–times
Daud Ahmad and M. Ziad
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

~Received 7 November 1995; accepted for publication 2 December 1996!

The homotheties of spherically symmetric space–times admitting maximal isom-
etry groups larger than SO~3! are found along with their metrics, using the homo-
thety equations and without imposing any restriction on the stress-energy tensor. It
turns out that there are either 11 or 7 or 5 homotheties. For the space–times with
SO~3! as a maximal group, solution is provided in the form of derivatives of metric
coefficients, which then requires a further classification, for example, according to
different types of stress-energy tensor, as has been done by Eardley@Commun.
Math. Phys.37, 287 ~1974!#, Cahill and Taub@Commun. Math. Phys.21, 1
~1971!#, and McIntosh@Phys. Lett. A50, 429~1975!#. © 1997 American Institute
of Physics.@S0022-2488~97!01405-9#

I. INTRODUCTION

Many exact solutions of Einstein field equations were found by requiring certain symm
These symmetry properties require a space–time to admit a certain Lie groupGm , wherem is
equal to the number of generatorsK5ka(]/]xa), the Killing vector fields~KVs! satisfying

L
K
gab50, a,b,c,...50,1,2,3. ~1.1!

The homothetic motions or homothetiesH5Ha(]/]xa) of a space–time~with corresponding
homothety groupHr! are defined as

L
H
gab5Hc

“cgab1gac“bH
c1gbc“aH

c52bgab , ~1.2!

whereb is a scalar parameter andb50 implies homotheties and KVs are identical.
It is well known1 that for a Riemannian spaceVn , the maximum group of motions could b

of the order less than or equal ton(n11)/2. Fubini2 has proved that a Riemannian manifo
Vn cannot admit a maximal group of the ordern(n11)/221. Yegorov3 proved a result for
Lorentzian manifolds, according to which the maximum group of mobility cannot be of the o
n(n11)/222.

It is well known4 that for a Riemannian manifold with metricgab and admittingGm as the
maximal group of isometries,Hr could be at the most of the orderr5m11. Thus for aVn , Hr

could be at the most of the orderr5n(n11)/211. Now using the results of Fubini and Yegoro
a space–timeVn cannot admit a homothety groupHr with r5n(n11)/22 i , wherei50,1.

It is known5 that spherically symmetric space–times

ds25en~ t,r !dt22el~ t,r !dr22ex~ t,r !dV2, ~1.3!

wheredV25du21sin2 u dw2 cannot admit aG5 as the maximal group of motions. Therefore f
spherically symmetric space–times the possible maximal homothety groupsHr could be of the
order r54,5,7,8,11. Here it comes out thatrÞ8; whereas forr511, the only space–time is th
Minkowski; for r57 there are four space–times given by metrics~3.1! and ~3.3!; for r55 there
0022-2488/97/38(5)/2547/6/$10.00
2547J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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are three space–times given by the metrics~2.1!, ~2.2!, and~2.3!; for r 5 4 these space–times ca
be further classified according to different types of stress-energy tensor as have been done
Cahill and Taub.6

Our approach is to solve Eqs.~1.2! for the metric~1.3!. For this we follow the procedure use
earlier to classify the spherically symmetric space–times according to their isometrie
metrics.5,7 The solution of Eqs.~1.2! for the metric~1.3! upto known functions ofu andw comes
out to be

H5@2r 2em2n$sin u~ ġ1 sin w2ġ2 cosw!1ġ3 cosu%1g4#
]

]t

1@r 2em2l$sin u~g18 sin w2g28 cosw!1g38 cosu%1g5#
]

]r

1@2cosu~g1 sin w2g2 cosw!1g3 sin u1~c1 sin w2c2 cosw!#
]

]u

1@2cosecu~g1 cosw1g2 sin w!1cot u~c1 cosw1c2 sin w!1c3#
]

]w
, ~1.4!

where dot and dash denote derivatives wrtt and r , respectively,cj ( j51,2,3) correspond to the
generators of SO~3! andgl [gl (t,r ) (l 51,2,3,4,5) are subject to the constraints

2 ẋex2nġ j1x8ex2lgj812gj50, ~1.5!

2g̈ j1~2ẋ2 ṅ !ġ j2n8en2lgj850, ~1.6!

2ġ j1~x82n8!ġ j1~ ẋ2l̇ !gj850, ~1.7!

2gj91~2x82l8!gj82l̇el2nġ j50, ~1.8!

ẋg41x8g552b, ~1.9!

2ġ41 ṅg41n8g552b, ~1.10!

eng482elġ550, ~1.11!

2g581l8g51l̇g452b. ~1.12!

A complete solution of Eqs.~1.5!–~1.12! provides all possible metrics with their homothetie
It is known7 that spherically symmetric space–times admitting SO~3! as the nonmaximal group o
motions consist of the space–times admittingG4[SO(3)̂ R ~R is timelike or spacelike! as the
minimal isometry group. Here it comes out that~i! n5n(r ), l5l(r ), x52 ln r and ~ii !
n5n(r ), l50, x 5 2 ln a ~wherea is a constant! if R is timelike, and~i! n5n(t), l5l(t),
x52 ln t and ~ii ! n50, l5l(t), x52 ln a if R is spacelike~solution discussed in Sec. II!, the
space–times admittingG4[SO(3)̂ R ~R is null! as the maximal group of motions. Her
n5l50 andx5 f (t1ar ) (a561) ~solution discussed in Sec. II!, the space–times admittin
G6[SO(4), SO(3)JR3, and SO~1,3! as maximal group of motions. These space–times incl
the Robertson–Walker~RW! space–times~3.1! and an additional RW-like space–time~3.3!,
which admits SO~1,3! as the maximal isometry group~solution discussed in Sec. III!. The solution
J. Math. Phys., Vol. 38, No. 5, May 1997
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for the space–times admittingG3[SO~3! as the maximal isometry group is discussed in Sec.
The stress-energy tensors of the self-similar solutions found are discussed in their releva
tions.

II. HOMOTHETIES OF THE SPACE–TIMES ADMITTING G4

The space–times~1.3! admittingG4[SO~3!^R whereR is timelike reduce to~A! ṅ50, l̇
5 0 andx5 ln r2; and~B! ṅ50, l50, x5 ln a2, wherea is constant. Cases~A! and~B! include all
static spherically symmetric space–times and the Bertotti–Robinson metrics. Equation~1.9! for
the case~B! implies b50. Thus there does not exist any Bertotti–Robinson-type metric w
admits a nontrivial homothetic motion.

For the case~A! Eqs. ~1.5!–~1.12! give either 11 homotheties, which correspond to
Minkowski space–time, for which the maximal group is SO(1,3)JR4, or

ds25r 2~12a!dt22dr22r 2dV2 ~aÞ1!, ~2.1!

wherea is a scalar parameter and correspondinglygj50 andg45abt1c0 , g55rb. Thus there
are five homotheties given by Eq.~1.4!.

Analogously for the space–times admittingG4[SO~3!^R whereR is spacelike, it is easy to
see that there exists only one space–time given by

ds25dt22t2~12a!dr22t2dV2, ~2.2!

which also admits five homotheties withgj50, g45bt, andg55abr1c0 .
For the space–times admittingG4[SO(3)̂ R whereR is null. The solution of the Eqs

~1.5!–~1.12! gives

ds25dt22dr22b2~ t1ar !2dV2 ~2.3!

with gj50, g45bt1c4 , andg55br2ac4 , thus admitting five homotheties. This completes t
classification of space–times admittingG4 as the minimal group of motions. It may be of intere
to note that metrics~2.1!–~2.3! admitG4 as the maximal group of motions and thus one ex
homothety corresponding to the arbitrary constantb.

For the space–times admittingH5 as the maximal homothety group, stress energy ten
come out to be

T0050, T1152~12a!r22, T225~12a!2, T335T22 sin
2 u,

for the space–time~2.1!. HereT522(12a)(22a)r22 and thus for positive energy condition t
besatisfied1, a , 2;

T0052~22a!t22, T11522t22, T2252~a21!2,

T3352~a21!2 sin2 u,

for the space–time~2.2!. HereT52t22@a223a131t2(a21)# which is positive for every value
of a. However, if one requires energy density to be positive, one must havea,2;

T005@b~ t1ar !#2252T11, T22505T33,

for the space–time given by Eq.~2.3!. HereT52@b(t1ar )#22, which remains always positive
If this space–time is interpreted as a perfect fluid, the radial pressure and the energy d
balance each other for every value oft, and for larget both of these vanish.
J. Math. Phys., Vol. 38, No. 5, May 1997
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III. HOMOTHETIES OF THE SPACE–TIMES ADMITTING G6 AS THE MAXIMAL GROUP

The space–times~1.3! admittingG6[SO(4), SO(3)JR3, and SO~1,3! as maximal group of
motions include

ds25dt22ex~ t !@dr21S2~m,r !dV2#, ~3.1!

whereS5a sinh(r/a), r , and sin(r/a) for m51/a2, 0, 21/a2 ~a being an arbitrary constant!,
respectively, subject to the constraints

2me2x~ t !1 ẍÞ0. ~3.2!

ds25ey~r !@dt22a2 cosh2~ t/a!dV2#2dr2, ~3.3!

subject to the constraint

2e2y~r !1a2y9~r !Þ0 ~3.4!

and admitting SO~1,3! as the maximal isometry group. Now the solution of Eqs.~1.5!–~1.12! for
the metrics~3.1! gives

ex52~at1g!2, a2Þ1/a2

5d~ t2g!a, aÞ0
5~at1g!2, a2Þ21/a2

J , ~3.5!

wherea, g, andd are arbitrary constants with

gj5cj13 cothS raD , g45
b

a
~at1g!, g550, m.0, ~3.6!

gj5
1

r
cj13 , g45b~ t2g!, g55

b

2
r ~22a!, m50, ~3.7!

gj5cj13 cot~r /a!, g45
b

a
~at1g!, g550, m,0, ~3.8!

respectively.
The solution of Eqs.~1.5!–~1.12! for the metric~3.3! yields

ey~r !5~ar1b!2, a2Þ1/a2, ~3.9!

with

gj5cj13 tanh S raD , g450, g55
b

a
~ar1g!. ~3.10!

This completes the classification of this case which gives again a proper homothety f
space–times~3.1! and ~3.3! with ex(t) andey(r ) given by Eqs.~3.5! and ~3.9!, respectively. The
nonvanishing stress-energy tensor components for these space–times are

T0053A2~at1b!22, T1152A2, T2252AS2~m,r !,

T335T22 sin
2 u,
J. Math. Phys., Vol. 38, No. 5, May 1997
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for the spacetimes~3.1! with A5a271/a2Þ0, respectively. HereT56A(at1b)22 and in both
of these cases one gets the energy,v, and the pressure,p, satisfying the relationv523p, which
is unphysical;

T005
3
4 a2~ t2g!22, T1152 1

4 ad~3a24!~ t2g!22,

T2252 1
4 ad~3a24!r 2~ t2g!22, T335T22 sin

2 u,

for the space–time~3.1! withm50. HereT 5 3a(a 2 1)(t 2 g)22 andv 5 (3/4k)a2(t 2 g)22

53p for a51. However, fora 5 4/3 one getsp 5 0 andv 5 4
3(t 2 g)22 for which it represents a

dust solution; for the space–time~3.9!

T0052A2, T1153A2~ar1g!22, T225A2a2 cosh2 t/a,

T335T22 sin
2 u and T526A2~ar1g!22 with A5a22a22Þ0.

IV. HOMOTHETIES OF SPACE–TIMES ADMITTING G3[SO(3) AS THE MAXIMAL
ISOMETRY GROUP

In this section space–times~1.3! admittingG4 and higher isometry groups are excluded. F
space–times to have SO~3! as the maximal isometry group one must haveg(t,r )50. However,
for a space–time to have a homothetic motion,g4(t,r ) andg5(t,r ) satisfying Eqs.~1.5!–~1.12!
must include only one arbitrary constant, theb corresponding to the scale parameter of t
homothety. The solution of Eqs.~1.5!–~1.12! yields

X45g4
]

]t
1g5

]

]r
, ~4.1!

where eitherẋ8Þ ẍ or ẋ85 ẍ. If ẋ8Þ ẍ and ṅx82n8ẋÞ0, then

g45
22b~n82x8!

ṅx82n8ẋ
, g55

2b~ṅ2 ẋ!

ṅx82n8ẋ
, ~4.2!

subject to the constraints

S n82x8

ṅx82n8ẋD50, ~4.3!

2@~ ṅ2 ẋ!8~ ṅx82n8ẋ!2~ ṅ2 ẋ!~ ṅx82n8ẋ!8#

1@l8~ ṅ2 ẋ!2l̇~n82x8!2~ ṅx82n8ẋ!#~ ṅx82n8ẋ!50, ~4.4!

and

enS n82x8

ṅx82n8ẋD 8
1elS ṅ2 ẋ

ṅx82n8ẋD
–

50, ~4.5!

whereas forṅx8 2 n8ẋ 5 0,X4 does not exist. Ifẋ8 5 ẍ, then

g45
2b2x8g5

ẋ
, ~4.6!

where
J. Math. Phys., Vol. 38, No. 5, May 1997
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g55kF12 ~l82x8ẋ!1H ẋ2x8

x82
ẍ1

1

2

ṅ ẋ

x8
2
1

2

n8ẋ2

x82 J el2n2
ẋx92x8n̈

ẋx8 G21

3F12l̇ ẋ1
2ẍ

ẋx8
2

ẋ2

x82
2
2ẍ2 ṅ ẋ

x82 Gel2n ~4.7!

along with the constraints on the metric, which are obtained by putting these values ofg4 and
g5 in Eqs.~1.10!–~1.12!.

V. CONCLUSION

We have been able to classify spherically symmetric space–times according to their ho
eties and metrics without imposing any restriction on the stress-energy tensorTab . It turns out that
the possible homothety groupsHr could be of dimensions 4, 5, 7, and 11. There is only o
space–time, the Minkowski space–time which admits anH11 whereas there are three metri
given by Eqs.~2.1!–~2.3! admittingH5 as the maximal group of homotheties while there are f
space–times given by metrics~3.1! with ~3.5! and ~3.3! with ~3.9!, admittingH7 as the maximal
group of homotheties. For space–times to admitH4 as the maximal group of homotheties, it
shown that the space–times should satisfy additional differential constraints given by Eqs.~4.3!–
~4.7!. The solution of these differential constraints needs further study, e.g., one could cl
these metrics according to different types of stress-energy tensor as has been done, e.g., b
and Taub.6
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Global effects due to a chiral cone
Valdir B. Bezerra
Departamento de Fı´sica, Universidade Federal da Paraı´ba, Caixa Postal, 5008,
58051-970 Joa˜o Pessoa, Pb, Brazil

~Received 28 September 1995; accepted for publication 30 September 1996!

Scalar and spinor quantum particles are considered in the background space–time
generated by a chiral cosmic string. It is shown that in this chiral conical space–
time, the wave functions, the energy spectra, and the scattering amplitude associ-
ated with a quantum scalar particle depend on the global features of this space–
time. In the case of a spinor particle, we study this dependence on the wave
functions, energy, and current. These dependences represent gravitational ana-
logues of the well-known Aharonov–Bohm effect in electrodynamics. Using the
Hamilton–Jacobi equations, we also look into the motion of light rays and show
how the effective potential depends on the global features of the chiral conical
space–time. ©1997 American Institute of Physics.@S0022-2488~97!01703-9#

I. INTRODUCTION

Topological defects of space–time can be characterized by a space–time metric wit
Riemann–Christoffel curvature tensor everywhere, except on the defects, i.e., by conic-typ
vature singularities. Examples of these topological defects are domain walls1 and cosmic strings.1,2

Cosmic strings provide a bridge between the physics in microscopic and macroscopic scale
are linear topological defects, analogous to vortex filaments in superfluid helium, and may
been formed3 in the very beginning of the Universe.

The local flatness of the space–time surrounding a straight cosmic string means that t
no local gravity due to the string. However, we have some very interesting gravitational e
associated with the nontrivial topology of the spacelike sections around the cosmic string. A
these effects, a cosmic string can act as a gravitational lens,1 it can induce a repulsive force on a
electric charge at rest,4 it can produce the Casimir effect,5 the gravitational analog6 of the elec-
tromagnetic Aharonov–Bohm effect,7 and others in the context of quantum field theory.8

Another solution of Einstein equations which has conical singularity is the spinning co
string,9 which is believed to correspond to the four-dimensional counterpart of the spinning
particle solution of the~211!-dimensional gravity.10,11 From the topological point of view, this
solution has received much attention because the spinning cosmic string produces a shif
angular momentum of a particle, and this fact can be responsible by the generation of gravit
anyons.12 Some others aspects of these strings have been studied in some detail.9,11,13,14

Recently, Gal’tsov and Letelier15 have shown that the~211!-dimensional spinning particle
solution,10 when lifted to~311! dimensions by an appropriate boost, gives rise to a new mod
string with helical structure in time coordinate as well as in the space coordinate along whi
string lies. We call this space–time chiral conical space–time. The metric corresponding
space–time is also locally flat away from the axisr50, but not globally flat. The helical structure
~in space and time!, however, produce some global effects like a time delay and az splitting of
two images, for a string along thez axis, associated with an object placed in this space–time

The line element corresponding to this chiral conical space–time is given by15

ds25~dt14J0 dw!22dr22a2r2 dw22~dz14J3 dw!2 ~1.1!

in a cylyndrical coordinate system (t,r,w,z) with r>0 and 0<w<2p. The parametersJ0 andJ3
are related to angular momentum and torsion, respectively, anda5124m, wherem is the linear
0022-2488/97/38(5)/2553/12/$10.00
2553J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ght
;
e

the

the

-

ocal
ravity.
at this
hiral

me on
variant

the
w how
motion

ational

2554 Valdir B. Bezerra: Global effects due to a chiral cone

¬¬¬¬¬¬¬¬¬¬
mass density of the string~in units where Newton’s gravitational constant and the velocity of li
are taken equal to 1!. With J050 andJ350, Eq. ~1.1! represents the metric of a cosmic string2

with J350 only, it represents a spinning string;10,11and with onlyJ050, it represents a space–tim
generated by a cosmic dislocation.15 In the language used in crystallography,J0 andJ3 are related
to dislocations anda is related to disclinations. Therefore, the chiral cosmic string, besides
usual disclination that represents a cosmic string, has a timelike dislocation~spin! and a spacelike
dislocation.

The metric given by Eq.~1.1! is actually a locally flat one as we can see by applying
transformations

t→T5t14J0w, w→u5aw, z→Z5z14J3w. ~1.2!

In terms ofT, u, andZ, the metric given by Eq.~1.1! can be written as

ds25dT22dr22r2du22dZ2. ~1.3!

The manifold associated with metric~1.3! is obtained16 by cutting along the closed half-three
planesw50 andw5w0, where 0,w0,2p ; then, we remove the two-planer50 and the region
0,w,w0, and identify the two open half-three-planes, after translating in thet direction by 8pJ0,
and in thez direction by 8pJ3. As in the cases of static and stationary cosmic strings, the l
flatness of the chiral conical space–time under consideration implies that there is no local g
However, there are some very interesting gravitational effects associated with the fact th
space–time is not globally flat. All the effects associated with this global feature of this c
conical space–time we shall call ‘‘global effects.’’

In this paper we study some effects of the global features of the chiral conical space–ti
the states of quantum particles. To do this we use Klein–Gordon and Dirac equations in co
forms, solve them, find the energy spectra, study the scattering amplitude~scalar case!, and
determine the current~spinor case!. We also discuss the shift in the angular momentum and
consequences of it. Finally, we make use of the Hamilton–Jacobi equations in order to sho
the effective potential depends on the global features of this space–time and to study the
of light rays.

II. SCALAR PARTICLE IN THE CHIRAL CONICAL SPACE–TIME

Let us consider a scalar quantum particle embedded in a classical background gravit
field. Its behavior is described by the covariant Klein–Gordon equation

F 1

A2g
]m~A2ggmn]n!1m2Gc50, ~2.1!

wherem is the mass of the particle,g is the determinant of the metric tensorgmn , and\5c51
units are chosen. In the space–time of a chiral cosmic string given by metric~1.1!, Eq. ~2.1!
reduces to

H ] t
22

1

r
]r~r]r!2

1

a2r2
@~4J0] t2]w!21~4J3]z2]w!2132J0J3] t]z1]w

21~]z
22m2!r2#J c50.

~2.2!

The solution of Eq.~2.1! can be obtained using the following ansatz,

c~ t,r,w,z!5exp~2 iEt1 i l w1 ikz!R~r!, ~2.3!

whereE, l , andk are constants.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the flat coordinates (T,r,u,Z), Eq. ~2.3! can be written as

c~T,r,u,Z!5exp~2 iET1 i l effu1 ikZ!R~r!, ~2.4!

which can be expressed in the coordinates (t,r,w,z) as

c~ t,r,w,z!5exp@2 iEt1 i ~a l eff24EJ014kJ3!w1 ikz#R~r!. ~2.5!

Comparing Eqs.~2.5! and ~2.3! we conclude that the state now has a fractional ang
momentum given by

l eff5
l14EJ024kJ3

a
, ~2.6!

wherel50,61,62,... . ~Remember that the variablew takes values between 0 and 2p.! From the
result given by Eq.~2.6! we can see that if we parallel transport a particle in the backgro
space–time of a chiral cosmic string, the wave function will acquire a phasee2p i l eff. This means
that the final wave function must be changed according to

c→c85e2p i l effc5expF2p i

a
~ l14EJ024kJ3!Gc. ~2.7!

The previous result is formally the same12 as obtained some time ago in the context
~211!-dimensional Einstein gravity.

This shift in the angular momentum due toJ0 andJ3 corresponds to the shift of the magnet
quantum numberl after quantization,

l→
l14~EJ02kJ3!

a
, ~2.8!

enlarged by the factor 1/a. PuttingJ350, this result becomes similar to the one17 obtained recently
in the space–time of a rotating gauge string. It is also analogous to the shiftl→ l2eF/2p in the
electromagnetic Aharonov–Bohm effect,7 whereF is the magnetic flux.

In the case of a spinning cosmic string this shift is responsible for producing gravitat
anyons.12 In the present case, we have a fractional angular momentum produced by an energ
plus a momentum-torsion composite systems.

From Eq.~2.6! we get that forJ050 anda51, which corresponds to a cosmic dislocatio
~system composed of momentum and torsion!, the shift in the angular momentum quantum nu
ber is due to the torsion; whenJ350 anda51, we obtain a composite system of energy and s
with a fractional quantum numberl eff5l14EJ0. It is interesting to note that ifJ0E5kJ3 , the
change inl ~angular momentum! is the same as obtained when there is no torsion nor ang
momentum of the source which corresponds to the cosmic string case.

An immediate consequence of Eq.~2.6! is that the angular momentum operatorLop should
transform as

Łop5
2 i

a
~]w14J0] t14J3]z!. ~2.9!

Compared toLop for the spinning cosmic string case, we have an additional contribu
(24iJ3/a)]z that takes account of the torsion.

As a conclusion we can say that a quantum scalar particle moving around a chiral c
string has angular momentum quantized according
J. Math. Phys., Vol. 38, No. 5, May 1997
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angular2momentum5
1

a S integer1 1

2p
~energy!~8J0!2

1

2p
~momentum!~8J3! D .

Then, the angular momentum spectrum differs from the usual one when these parame
different from zero. This also gives rise to an analog of the electromagnetic Aharonov–B
effect.7

Note that this quantization condition for the angular momentum is affected by the torsio
reduces to a known result17 for J350.

Returning to coordinates (t,r,w,z) and using the ansatz given by Eq.~2.3!, then Eq.~2.2!
reduces to

H r]r~r]r!1@E22~k21m2!#r22F ~4J0E1 l !24kJ3
a G2JR~r!50. ~2.10!

Equation~2.9! is a Bessel differential equation whose solution is given by

Rlk~r!5Clk
~1!Junu~kr!1Clk

~2!Nunu~kr!, ~2.11!

wherek25E22(k21m2), n5[(4J0E1 l )24kJ3]/a, Clk
(1) andClk

(2) are normalization constants
andJun u andNun u are Bessel functions of first and second kind, respectively.

Similar solutions to this one given here were obtained for a point particle~static and
stationary!13,18 in the context of~211!-dimensional Einstein gravity and also in the cosmic str
space–time.18

Now, we assume that the scalar quantum particle is restricted to move in a region boun
the cylindrical surfacesr5a andr5b, whereb.a. Considering the boundaries of this region
impenetrable, we require that the wave functionc (t,r,w,z) vanishes on them and outside th
region. It is interesting to examine the quantum particle restricted to move between two cyl
because this permits us to determine the energy spectrum of the particle. The boundary con

R~a!5R~b!50 ~2.12!

determine the energy levels of the particle in stationary state between the cylindrical surfacer5a
andr5b. This condition yields the following equation for the energy spectrum of the partic

Junu~ka!Nunu~kb!2Junu~kb!Nunu~ka!50. ~2.13!

It is obvious that the energy levels depend on the parametersJ0, J3, and a, because
c (t,r,w,z) depends on these parameters. In order to obtain the energy spectrum explicitly w
consider the situation in whichka@1 andkb@1. Then, using Hankel’s asymptotic expansion19

whenn is fixed, we get

Junu~ka!;A 2

pka FcosS ka2
n

2
p2

p

4 D2
4n221

8ka
sinS ka2

n

2
p2

p

4 D G , ~2.14!

Nunu~ka!;A 2

pka FsinS ka2
n

2
p2

p

4 D1
4n221

8ka
cosS ka2

n

2
p2

p

4 D G , ~2.15!

and similar expressions forJunu(kb) andNunu(kb) with a interchanged forb. Putting Eqs.~2.14!
and~2.15! and similar expressions forJunu(kb) andNunu(kb) in the condition given by Eq.~2.13!,
we obtain the following result:
J. Math. Phys., Vol. 38, No. 5, May 1997
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k2;S np

b2aD
2

1
4@~4J0E1 l !24kJ3#

2

4aba2 2
1

4ab
, ~2.16!

where we have used the fact thatn5[(4J0E1 l )24kJ3]/a.
Remembering thatk25E22(k21m2), we get finally from Eq.~2.16! that

Elk5
4J0~ l24kJ3!

aba2 1Elk
~0! , ~2.17!

where

Elk
~0!5Am21k21

~ l24kJ3!
2

aba2 1
4ab~np!22~b2a!2

4ab~b2a!2
.

From the expression forElk
(0) we see that whenb→a, E→`, so that in order to get the limi

E→const, we have to introduce an attractive potential in the regiona<r<b to compensate for the
increasing of the energy of the radial modes in this limit. Doing this we get

Elk
~0!5Am21k21

~ l24J3!
2

a2a2 2
1

4a2
.

Note that forJ050 andJ3Þ0 ~cosmic dislocation!, the energy expression is formally equal
the cosmic string case,20 but with l→ l eff5l24kJ3, which means that the energy levels decrea
as compared to the cosmic string case. ForJ350 andJ0Þ0 ~spinning cosmic string!, the energy
increases by a factor that depends onJ0 anda.

For the general solution given by Eqs.~2.3! and ~2.10! and from Eq.~2.17! we see that the
wave function and the energy depend on the deficit angle, angular momentum, and torsion
source. However, outside the chiral string, the Riemann–Christoffel curvature tensor va
everywhere, except on the chiral string. Then we conclude that the wave function and theref
probability of finding a particle around the chiral cosmic string as well as the energy are aff
by the global~topological! properties of this space–time.

Now, we return to the solution of Eq.~2.10! and consider only the regular part of that whic
is given by

Rlk,reg~r!}~61! lJ~ l14EJ024kJ3!/a , ~2.18!

where the ‘‘plus sign’’ corresponds to the casel>2[4(EJ02kJ3)], the ‘‘minus sign’’ corre-
sponds to the casel,2[4J0E24kJ3], and [x] means the largest integer less than or equal tox.

The associated phase shifts are

d l56
p

2 F l ~12a21!2
4~J0E2kJ3!

a G . ~2.19!

From the expressions for the phase shifts we can compute the scattering amplitudef ~u! which
is defined by13

f ~u!5
1

A2pk
(
l

~e2id l21!eil u. ~2.20!

Therefore, using Eqs.~2.19! and~2.20! and doing the appropriate regularization as in Refs.
and 18, we get the following result for the scattering amplitude:
J. Math. Phys., Vol. 38, No. 5, May 1997
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f ~u!52
ip

A2pk
(
l

@e4ip~J0E2kJ3!/ad~u1v22p l !1e24p i ~J0E2kJ3!/ad~u2v22p l !

22d~u22p l !#1 f ~0!~u!, ~2.21!

where

f ~0!~u!5
i

A2kp
e4p i ~J0E2kJ3!/aA~u,v!2e24p i ~J0E2kJ3!/aA~u,2v!,

A(u,6 v)5 e24i @EJ02kJ3#(u6v)/(12ei (u6v)), and v52p~12a21!.
From the previous results we conclude that the phase shifts and the scattering am

depend on the parametersa, J0, and J3. Therefore these quantities are affected by the glo
aspects of the space–time under consideration.

III. SPINOR PARTICLE IN THE CHIRAL CONICAL SPACE–TIME

Now let us consider a spinor particle embedded in a classical background gravitationa
The covariant Dirac equation, governing the particle, in a curved space–time, for a spinor fic,
may be written~in units\5c51! as

@ igm~x!]m1 igm~x!Gm~x!#c~x!5mc~x!, ~3.1!

wheregm(x) are the generalized Dirac matrices and are given in terms of the standard flat
Dirac matrices~g(a)! as

gm~x!5e~a!
m ~x!g~a!, ~3.2!

wheree(a)
m (x) are tetrad components defined by

e~a!
m e~b!

n h~a!~b!5gmn.

The productg mGm that appears in Dirac equation can be written as21

gmGm5g~a!
„A~a!~x!1 ig~5!B~a!~x!…, ~3.3!

with g~5!5ig~0!g~1!g~2!g~2! andA(a) andB(a) given by

A~a!5
1
2~]me~a!

m 1e~a!
r Grm

m ! ~3.4!

and

B~a!5
1
2e~a!~b!~c!~d!e

~b!me~c!n]men
~d! , ~3.5!

wheree(a)(b)(c)(d) is the completely antisymmetric fourth-order unit tensor.
In order to yield the proper flat space–time limit,a51 andJ05J350, we will choose the

following set of tetrads:

e~0!
m 5d0

m , e~1!
m 5

4J0
ar

sin wd~0!
m 1coswd~1!

m 2
1

ar
sin wd2

m1
4J3
ar

sin wd~3!
m ,

~3.6!

e~2!
m 5

24J0
ar

coswd~0!
m 1sin wd~1!

m 1
1

ar
coswd2

m2
4J3
ar

cosrd~3!
m , e~3!

m 5d~3!
m .
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Computing the expressions forA(a) andB(a) and putting these into Eq.~3.2!, we get

gmGm5
1

2r S 12
1

a Dg~r!, ~3.7!

whereg~r!5coswg~1!1sinwg~2!.
Now, using Eqs.~3.6! and ~3.7! and the relationg~w!52sinwg~1!1coswg~2!, we obtain the

following Dirac equation:

H ig~0!] t1 ig~r!F]r2
1

2r S 12a

a D G1
i

ar
g~w!~]w24J0] t24J3]z!1 ig~3!]z2mJ c50.

~3.8!

In order to exploit the symmetry of the space–time associated with a chiral cosmic strin
will consider the following representation of Dirac matrices:

g~0!5S s3 0

0 2s3D , g~1!5S is2 0

0 2 is2D ,
~3.9!

g~2!5S 2 is1 0

0 is1D , g~3!5S 0 1

21 0D ,
wheres1, s2, ands3 are the usual Pauli matrices.

Choosing the ansatz

c5S AE1m u1~r!

iAE2m u2~r!eiw
D exp~2 iEt1 i l w1 ikz!, ~3.10!

we obtain the following equations foru1~r! andu2~r!:

H d2

dr2
1
1

r

d

dr
2

1

r2 F l14~EJ02kJ3!11/2

a
2
1

2G21~E22m2!J u1~r!50,

~3.11!

H d2

dr2
1
1

r

d

dr
2

1

r2 F l14~EJ02kJ3!11/2

a
1
1

2G21~E22m2!J u2~r!50.

The general solution of Eqs.~3.11! is given by

ui~r!5Ci ,l
~1!Jun1~ i21!u~kr!1Ci ,l

~2!Nun1~ i21!u~kr!, ~3.12!

where i51,2, k25E22m2, and n5@l14(J0E2kJ3)11/2#/a21
2, Ci ,l

(1) and Ci ,l
(2) are constant

spinors, andJun1( i21)u~kr! andNun1( i21)u~kr! are Bessel functions of the first and second kin
From these results we see that the wave function depends on the parametersa, J0, andJ3, which
determine how this space–time is different from the Minkowski one from the point of view o
topology. Note that forJ350 we recover the result concerning the spinning cosmic string.13

With relation to the energy, we can see that it depends explicitly on these paramete
expected because of the dependence of the wave function on them. Then, let us consi
solution regular at the originc ;Jun1( i21)u~kr!. The requirement thatc must vanish atr5a and
r5` implies that forr finite, we haveJun1( i21)u~k!50 and consequently

k5
j un1~ i21!u,n

a
, ~3.13!
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where j un1( i21)u,n is the n-th positive root ofJun1( i21)u(n) ~n51,2,3...!, which depends on
un1~i21!u, and consequently ona, J0, andJ3.

From the result given by Eq.~3.13!, we can write

E25m21S j un1~ i21!u,n

a D 2. ~3.14!

Now, let us compute the current, which is defined by

j m5c̄gmc. ~3.15!

If c is a massive field,j m can be written as

j m5
1

2m
~ c̄smlc! ,l1

i

4m
gmlc̄]Jlc1

i

4m
c̄~@g ,l

l ,gm#1@gl,g ,l
m #!c1

i

2m
c̄@glGl ,g

m#c,

~3.16!

wherec̄]Jlc5c̄]lc2(]lc̄)c. Equation~3.16! represents the Gordon decomposition of the Di
probability currentj m.

In the space–time of the chiral cosmic string, we have

@g ,l
l ,g0#5

2

ar
g~0!g~r!1

8J0
a2r2

g~r!g~w!, @gl,g ,l
0 #5

4J0
r2 S a21

a2 D @g~r!,g~w!#,

@glGl ,g
0#5

1

r S 1a21D S g~0!g~r!2
4J0
ar

g~w!g~r!D ,
@g ,l

l ,gr#5@gl,g ,l
r #5@glGl ,g

r#50, @g ,l
l ,gw#5

1

a2r2
@g~w!,g~r!#,

@gl,g ,l
w #52@glGl ,g

w#5
1

ar2 S 1a21D @g~r!,g~f!#,
~3.17!

@g ,l
l ,g3#5

1

ar
@g~3!,g~r!#1

4J3
a2r2

@g~r!,g~w!#,

@gl,g ,l
3 #5

4J3
ar2 S 12

1

a D @g~r!,g~w!#,

@glGl ,g
3#5

1

2r S 12
1

a D @g~r!,g~3!#2
2J3
ar2 S 12

1

a D @g~r!,g~w!#;

s015
i

2
@g0,g1#5 ig~0!g~r!2

2J0
ar

@g~w!, g~r!#, s025
i

ar
g~0!g~w!,

s035 ig~0!g~3!2 i
2J0
ar

@g~w!,g~3!#2 i
4J3
ar

g~0!g~w!,

s125
i

2ar
@g~r!,g~w!#, s135

i

2
@g~r!,g~3!#2

i2J3
ar

@g~r!,g~w!#,
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s235
i

2ar
@g~w!,g~3!#,

gmGm5
1

2r S 12
1

a Dg~r!.

Then, using Eq.~3.16! and the results in~3.17!, we get

j 05“a–P2
4J0
ar F 1ar

Mz2~“a3M !wG2
4J3
ar

]zPw1rconv,

j r52] tPr1~“a3M !r2
4

ar
~J0] t1J3]z!Mz1 j ~r!,conv,

~3.18!

j w52] tPw1~“a3M !w1
1

r S 12
1

a DMz1 j ~w!,conv,

j z52] tPz1~“a3M !z1
4J0
ar

] tM r2
4J3
ar F S 1

ar
2]rDMz2] tPwG1 j ~z!,conv,

where the convective parts~subscript ‘‘conv.’’! are derived from (i /4m)gmlc̄]Jlc and“a means
the gradient operator in the background space–time of the cosmic string. The polarization
ties are given by

Pr5
i

2m
c̄g~0!g~r!c, Pw5

i

2m
c̄g~0!g~w!c,

~3.19!

Pz5
i

2m
c̄g~0!g~3!c,

and the components ofM are

M r5
i

4m
c̄@g~w! ,g~3!#c, Mw5

i

4m
c̄@g~3! ,g~r!#c,

~3.20!

Mz5
i

4m
c̄@gr ,gw#c.

The vectorM has the meaning of a magnetization current density with regard to an ext
electromagnetic field.

From the previous results we conclude that the current also depends on the conicity
space–time as well as on the angular momentum and torsion of the source throughout the
etersa, J0, andJ3, respectively. It differs from the Minkowski space–time case by terms c
taining these parameters. In the case in whichJ350, we obtain the results corresponding to t
spinning cosmic string. Therefore, the fact that the space–time generated by a chiral cosmic
is locally but not globally flat is coded into the probability current.

IV. SCATTERING OF LIGHT RAYS

To look into the motion of light rays in this background space–time let us use the Hami
Jacobi equation which is given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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gmnS ]S

]xmD S ]S

]xnD5m2, ~4.1!

whereS is the generating function which is assumed to have the form

S52Et1R~r!1Lzf1pzz, ~4.2!

with E the energy,pz the linear momentum, andLz the azimuthal angular momentum.
The Hamilton–Jacobi equation in the space–time under consideration then reduces to

S ]R

]r D 25E22V~r!, ~4.3!

where

V~r!5m2F11S pzmD 21 1

m2r2 S ~4EJ01Lz!
2

a2 2
8pzJ3~4EJ022pzJ31Lz!

a2 D G . ~4.4!

From Eq.~4.4! we see thatV~r! ~the effective potential! depends on the deficit angle of th
space–time under consideration and on the spin and torsion of the source, and, as a conse
R~r! and the trajectories of a particle, in this space–time, depend on these quantities.

Equation~4.3! can be easily solved and the result is

R~r!5AA2r22B21B arcsinS B

Ar D , ~4.5!

whereA25E22m22pz
2 andB25(1/a2)[(4EJ01Lz)

228pzJ3(4EJ022pzJ31Lz)].
If we impose, as desired, thatR~r!.0 for a certain critical value ofr, sayrc , we obtain

r.rc5B/A . ~4.6!

Then,R~r! is defined only forr.rc . For the particular situation wherepz50, Lz50, and
J050 ~spinning cosmic string case!, we obtain

r.rc5
4J0
a F12SmE D 2G21/2

>
4J0
a

. ~4.7!

Note that in this case~spinning string!, for r,4J0/a, thew coordinate becomes timelike, an
due to its periodicity, closed timelike curves exist in this region.22 However, the condition given
by Eq.~4.7! tells us that we are outside this region and therefore we have no problems conc
causality. In fact, in a physically realistic model for a spinning cosmic string closed time
curves are absent.22

Using the equations of motion for test particles which are obtained f
m(dxm/ds)52gmn(]S/]x

m), wheres is a parameter along the curve~trajectory!, we get

m
dt

ds
5S 12

16J0
2

a2 r2D 2
4J0Lz

a2 r2, ~4.8a!

dr

ds
5F S EmD 22V~r!G1/2, ~4.8b!
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m
dw

ds
5

4

a2r2 SEJ02pzJ31
1

4
LzD , ~4.8c!

m
dz

ds
5S 11

16J3
2

a2r2D pz2 4J3
a2r2

~4EJ01Lz!. ~4.8d!

Now, let us analyze the bending of light rays for a photon coming from infinity perpend
larly to the chiral string, with impact parameterb and scaping to infinity. To obtain the tota
change inw ~which we denoteDw!, let us use Eqs.~4.8b! and ~4.8c! and take the limitsm→0,
pz/E→k, andLz/E→b. Then, we get

Dw5
2~4J01b!

a E
rmin

` dr

r@a2r22~4J01b!2#1/2
, ~4.9!

wherermin5b/a.
Computing the integral given by Eq.~4.9! we obtain

Dw5 p/a , ~4.10!

which is the same result as obtained in the presence of a cosmic string. This result tells us
presence of spin and torsion does not affect the variation in the anglew. Therefore, when the radia
coordinate changes from a very large distance to a point closest to the chiral cosmic stri
change inw is p/a. From this result it follows that the scattering angledw is given bydw57p„~a
21!/a…, the signs7 being are related with the side the source is passed. This result is kno
the case of a spinning source in the context of~211!-dimensional gravity. This effect is purely o
global nature.

V. FINAL REMARKS AND CONCLUSIONS

A quantum particle, as well as a classical one, in the background space–time around a
cosmic string is influenced by the global aspects of this spacetime. This can be seen fro
dependence of the wave function, angular momentum, energy and current associated w
particle, the effective potential, and the trajectories of classical particles on the deficit angle a
the angular momentum and torsion of the source. All these effects are due exclusively
global features of the background space–time under consideration and represent gravi
analogs of the Aharonov–Bohm effect for bound states of a charged particle in the presen
confined magnetic flux. In the case involving fermions, these results can, in principle, be u
experiments to detect the presence of a torsion line corresponding to the chiral cosmic str

Qualitatively, these results may be the same in the context of nonrelativistic quantum
chanics. Therefore, in condensed matter physics, an electron~or hole! in a solid with dislocation
and/or disclination as topological defects is influenced by global aspects of these defects, af
in this way, some properties of the solid.

All the effects mentioned here are due to the global features of the chiral conical space
and this gives evidence for the importance of considering the global properties of the backg
space–time when describing the physics of a given system.
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Form invariance of differential equations
in general relativity
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Einstein equations for several matter sources in Robertson–Walker and Bianchi I
type metrics, are shown to reduce to a kind of second-order nonlinear ordinary
differential equationÿ1a f (y) ẏ1b f (y)* f (y)dy1g f (y)50. Also, it appears in
the generalized statistical mechanics for the most interesting valueq521. The
invariant form of this equation is imposed and the corresponding nonlocal trans-
formation is obtained. The linearization of that equation for anya, b, andg is
presented and for the important casef5byn1k with b5a2 (n11)/(n12)2 its
explicit general solution is found. Moreover, the form invariance is applied to yield
exact solutions of some other differential equations. ©1997 American Institute of
Physics.@S0022-2488~97!02603-0#

I. INTRODUCTION

Exact solutions of the Einstein equations are difficult to obtain due to their nonlinear na
There exist several interesting physical problems where the Einstein field equations for ho
neous, isotropic and spatially flat cosmological models with no cosmological constant1–6 and for
a time decaying cosmological constant,7 or Bianchi I type metric8 with a variety of matter sources
reduce to particular cases of the second-order nonlinear ordinary differential equation

ÿ1a f ~y!ẏ1b f ~y!E f ~y!dy1g f ~y!50, ~1!

wherey5y(x), f (y) is a real function and the dot means differentiation with respect tox. a,
b, andg are constant parameters.

Recently, it was shown that some galactic models of astrophysical relevance, when in
gated with the ‘‘generalized’’ statistical mechanics,9 can be exactly described by solutions to t
Boltzmann equations that maximize the generalized Tsallis entropy forq521,10 and it was found
that the corresponding probability distribution function satisfies Eq.~1!.11

It is believed that quantum effects played a fundamental role in the early Universe
instance, vacuum polarization and particle production arise from a quantum description of m
It is known that both of them can be modeled in terms of a classical bulk viscosity.12 Using the
relativistic second-order theory of nonequilibrium thermodynamics—called extended irreve
thermodynamics developed in Refs. 13 and 14—it was considered a homogeneous isotrop
tially flat universe, filled with a causal viscous fluid whose equilibrium pressure obeys ag-law
equation of state, while the transport equation of the viscous pressure is

s1tṡ523zH2
1

2
etsS 3H1

ṫ

t
2

ż

z
2
Ṫ

T
D , ~2!

a!Fellow of the Consejo Nacional de Investigaciones Cientı´ficas y Técnicas.
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with e50.15 Following Ref. 16 form51/2, it was shown in Ref. 1 that the expansion rate satis
a modified Painleve´–Ince equation that has the form of Eq.~1! with f (y)5y andg50.

Cosmological models with a viscous fluid source have been studied using the full c
irreversible thermodynamics with the full version of the transport equation for the bulk vis
pressure.17,5,6Relating the equilibrium temperatureT with the energy density in the simplest wa
to guarantee a positive heat capacity, it was shown that the expansion rate satisfies Eq.~1! for
m51/2, with f (y)5y21/r andg50.5 Also, the early time evolution of a dissipative universe lea
to an equation for the expansion rate that has the form~1!,4,18 in the relaxation dominated regime

Another interesting example appears when an anisotropic universe, described by a B
type I metric, is driven by a minimally coupled scalar field with an exponential potential.
Klein–Gordon equation for the scalar field and the Einstein equations for the metric are exp
in terms of the semiconformal factorG and their derivatives.19 Then, the solutions of this equatio
set can be obtained if one is able to solve the following Einstein equation forG,

G
G̈

Ġ
1~c21!Ġ1

c1

Ġ
5c2 , ~3!

which, making the substitutionG5y1/c Eq. ~3! becomes~1!.8 A similar result is obtained in the
particular case when the Bianchi type I metric reduces to a flat Robertson–Walker space-2

From the generalized Tsallis entropy, defined as9

Sq5k~q21!21(
i

~pi2pi
q!, ~4!

the generalized statistical mechanics can be constructed wherek is a positive constant,q is a real
number that characterizes the statistic and the sum is made over all the microscopic configu
whose probabilities arepi . It leads to the conventional Boltzmann–Shannon statistic in the l
q→1 and it is found to be a good framework to study astrophysical problems, as are the
alized Freeman disk20 and Kalnajs oscillations of a slab of stars.21 Taking the generalized Fishe
information for Tsallis statistics22

I q5 K S ~d/dx! f d
f d~x! D 2L , ~5!

wheref d(x) is the probability distribution function, and solving the variational problem in orde
find the distribution function that maximizes the Fisher information, a differential equation of
~1! is obtained fory5 ḟ d/ f d , where f (y)5y, a5(2q21), b5 1

2q(q21), andg50.11 For rel-
evant physical applications the most interesting value of the statistic parameter isq521,10 in this
case the above equations can be solved explicitly and the general solution will be given in S

Thus, it turns out to be of great interest to analyze Eq.~1! from the physical and mathematica
point of view. The paper is organized as follows, in Section II we introduce an invariant form
use it to reduce Eq.~1! to a linear, inhomogeneous ordinary second-order differential equa
with constant coefficients, by means of a nonlocal transformation. Then, its parametric g
solution is given. In Section III we extend the nonlocal transformation and find the explicit ge
solution of a modified Painleve´–Ince equation forb51/9.23 In Section IV we use the nonloca
invariance to obtain a new class of differential equations for which the general solution is f
In Section V the conclusions are stated.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



been
ted. To

on

ial

2567Luis P. Chimento: Form invariance of differential equations

¬¬¬¬¬¬¬¬¬¬
II. FORM INVARIANCE

The differential equation~1!, which appears in several interesting physical problems, has
solved and studied in particular cases using nonlocal transformations, as was previously sta
investigate Eq.~1! we write it in invariant form

ÿ

f ~y!
1a ẏ1bE f ~y!dy1g5

ȳ 9

f̄ ~ ȳ!
1ā ȳ 81b̄E f̄ ~ ȳ!dȳ1ḡ, ~6!

under the nonlocal transformation group defined by the transformation

b f ~y!dy5b̄ f̄ ~ ȳ!dȳ, ~7!

b

a
f ~y!dx5

b̄

ā
f̄ ~ ȳ!dx̄, ~8!

b

a2 5
b̄

ā 2
, ~9!

bc1g5b̄ c̄1ḡ, ~10!

where f̄ ( ȳ) is a real function ofȳ 5 ȳ( x̄), the prime indicates differentiation with respect tox̄,
ā, b̄, ḡ are constant parameters, andc( c̄) is an integration constant provided by the integral
the left~right! hand side of Eq.~6!. By invariant form we mean that the left-hand side of Eq.~6!
transforms into the right-hand side under the nonlocal transformation defined by Eqs.~7–10! for
any functionsf , f̄ . The parametersa, b, g, ā, andb̄ satisfy Eqs.~9 and 10!.

The form invariance group can be used to linearize Eq.~1!. In fact, taking the function
f̄ ( ȳ)51, ā5a, b̄5b, andḡ 5 g ~this meansc̄ 5 c) in the invariant form~6! and the transfor-
mation ~7–10!, they become

ÿ

f ~y!
1a ẏ1bE f ~y!dy1g5 ȳ 91a ȳ 81b ȳ1bc1g, ~11!

ȳ5E f ~y!dy, x̄5E f ~y!dx. ~12!

Without loss of generality we choosec̄5c50. So, if the invariant~11! vanishes, then, Eq.~1!
transforms into

ȳ 91a ȳ 81b ȳ1g50, ~13!

under the transformation of variables~12!. This is a linear, second-order ordinary different
equation with constant coefficients. Its general solution is

~a! bÞ
a2

4

ȳ5c1exp ~l1x̄!1c2exp ~l2x̄!2
g

b
, ~14!
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where l1 and l2 are the roots of the characteristic polynomial of Eq.~13!. We indicate the
integration constants withc, c1, . . . , cn and c̄, c̄1, . . . , c̄n .

~b! b5
a2

4

ȳ5~c11c2x̄! exp S 2
x̄

2D2
g

b
. ~15!

The real solutions can be classified as follows~we also assume thata, b, andg are real!. For
a.0 andb,a2/4 we have two real, negative roots for a strong damped solution. Forb5 a2/4
we have a double-negative root for a critically damped solution. Fora.0 andb.a2/4 we have
two complex roots with negative real parts for a weakly damped solution. For the casea,0
growing solutions occur.

The transformation of variables~12!, relates the general solution of Eq.~1! with ȳ( x̄) through
Eq. ~14!. We find that

y5y~ ȳ~ x̄!!, ~16!

x5E 1

f ~y~ ȳ~ x̄!!!
dx̄ ~17!

are the parametric equations forx and y in terms of x̄. In the particular casef (y)5y we have
shown that a class of nonlinear modified Painleve´–Ince equations can be transformed into a line
second-order ordinary differential equation by a nonlocal transformation.

The theory introduced by Lie considers the invariance of the differential equations under
transformations. He showed that the one-dimensional free particle equation has the
dimensional SL~3,R! group of point transformations. This is the maximum number of symm
generators for a second-order differential equation of the form24

ÿ1h~ ẏ,y,x!50. ~18!

In our case Eq.~1! has the form of Eq.~18!. Then, it has eight or less point symmetries. Howev
it becomes Eq.~13! under the transformation of variables~12! and can be cast into the free partic
equation by a local point transformation. So, Eq.~13! always has eight symmetry generators. W
conclude this section by observing that the nonlocal transformation~7–10! changes the number o
symmetry generators for the class of differential equations~1! and the physics contained in th
original problem.

The nonconstant parameters case: Here we allow the parameters in Eq.~1! and in the trans-
formation ~7–10! to be functions of the independent variable, that is,a5a(x), b5b(x), and
g5g(x). In order to preserve the form~1! we chooseā( x̄) 5 a( x̄) andb̄( x̄) 5 b( x̄). In this case,
the invariant form~6! reads

ÿ

f ~y!
1a~x!ẏ1b~x!E f ~y!dy1g~x!5

ȳ 9

f̄ ~ ȳ!
1a~ x̄!ȳ 81b~ x̄!E f̄ ~ ȳ!dȳ1g~ x̄!, ~19!

wherex̄ is the transformed of the pointx. Therefore, takingḡ 5 g and f̄ ( ȳ)51 we can linearize
the equation

ÿ1a~x! f ~y!ẏ1b~x! f ~y!E f ~y!dy1g~x! f ~y!50, ~20!
J. Math. Phys., Vol. 38, No. 5, May 1997
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which transforms into

ȳ 91a~ x̄!ȳ 81b~ x̄!ȳ1g~ x̄!50. ~21!

An important physical problem of general relativity, concerning the motion of expan
shear-free perfect fluids,25 is governed by the ordinary differential equation

ÿ5F~x!y2, ~22!

whereF(x) is an arbitrary function from which the equation of state can be computed. A com
symmetry analysis of this differential equation was given in Ref. 26. Here we see that
contained in the set of equations~20! when a(x)50, b(x)5 23F(x)/2, g(x)50, and
f (y)5y1/2. Then, choosingf̄ ( ȳ) 5 ( ȳ)21/2 in Eqs.~7–10!, the transformation of variables is

ȳ5
y3

9
, x̄5E y2

3
dx, ~23!

and Eq.~22! becomes

ȳ 953F~ x̄!, ~24!

thus

ȳ5E F E F~ x̄!dx̄Gdx̄1c1x̄1c2 , ~25!

is the general solution of the simple linear equation~24!.

III. EXTENDED NONLOCAL TRANSFORMATION

The integral in Eq.~17! can be performed analytically and the general solutiony5y(x) of Eq.
~1! obtained explicitly for a special set of functionsf (y). For this purpose we generalize th
nonlocal transformation group defined by Eqs.~7–10! extending it to

f 11~y!dy1 f 12~y!dx5 f̄ 11~ ȳ!dȳ1 f̄ 12~ ȳ!dx̄, ~26!

f 21~y!dy1 f 22~y!dx5 f̄ 21~ ȳ!dȳ1 f̄ 22~ ȳ!dx̄. ~27!

For simplicity we begin our investigations restricting ourselves to the casex5 x̄, that is,
f 215 f̄ 2150, f 225 f̄ 2251 and requiring the invariant form~6! to be invariant under the remainin
nonlocal transformation group, defined by Eqs.~26 and 27! with the above restrictions. Unde
these assumptions we can write the nonlocal transformation as

ẏ̄5p1qẏ, ~28!

where the functionsp andq are expressed in terms of the functionsf 11, f 12, f̄ 11, and f̄ 12. So,
they have a specific dependence on the variablesy and ȳ

p~y,ȳ!5
f 12~y!

f̄ 11~ ȳ!
2
f̄ 12~ ȳ!

f̄ 11~ ȳ!
, ~29!

q~y,ȳ!5
f 11~y!

f̄ 11~ ȳ!
. ~30!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Inserting Eq.~28! in Eq. ~6! we get

ÿ

f
1a ẏ1bE f dy1g5

q

f̄
ÿ1F]q]y

1q
]q

] ȳG ẏ
2

f̄
1F]p]y

1q
]p

] ȳ
1p

]q

] ȳG ẏf̄
1
p

f̄

]p

] ȳ
1ā@p1qẏ#1b̄E f̄ d ȳ1ḡ, ~31!

and comparing the coefficients ofẏ2, we have

]q

]y
1q

]q

] ȳ
50, ~32!

whose solution is

q~y,ȳ!5
ȳ

y
. ~33!

Using Eq.~33! and comparing the coefficients ofÿ we easily find thatf5y and f̄5 ȳ. But, the
comparisons of the coefficients ofẏ and the remaining terms give the equations

a5F]p]y
1
ȳ

y

]p

] ȳ
1
p

yG1ȳ1ā
ȳ

y
, ~34!

bE ydy1g5
p

ȳ

]p

] ȳ
1āp1b̄E ȳdȳ1ḡ. ~35!

The functionp that satisfies Eq.~34! is given by

p~y,ȳ!5
a

3
yȳ2

ā

3
ȳ 21h~y,ȳ!, ~36!

where the functionh(y,ȳ) satisfies the partial differential equation

y
]h

]y
1 ȳ

]h

] ȳ
1h50. ~37!

It can be seen that the solutions of Eq.~37! are given byh5h0 /y, whereh0 is an arbitrary
function of the quotientȳ/y. So, the form of the solution forp is

p~y,ȳ!5
a

3
yȳ2

ā

3
ȳ 21

h0~ ȳ/y!

y
. ~38!

Comparing Eq.~30! with Eq. ~33! we havef̄ 11( ȳ)51/ȳ, and comparing Eq.~29! with Eq. ~38!, we
obtain

h0~ ȳ/y!5c1
y

ȳ
1c2

ȳ

y
. ~39!

Inserting Eq.~39! in Eq. ~35! we find thatc15c250, g1bc5b̄ c̄1ḡ, and
J. Math. Phys., Vol. 38, No. 5, May 1997
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b5
2a2

9
, b̄5

2ā 2

9
. ~40!

Therefore, the final invariant form and the resulting nonlocal transformation are

ÿ

y
1a ẏ1

a2

9
y21bc1g5

ÿ̄

ȳ
1ā ẏ̄1

ā 2

9
ȳ 21b̄ c̄1ḡ, ~41!

ẏ

y
1

a

3
y5

ẏ̄

ȳ
1

ā

3
ȳ. ~42!

In the particular case in which the invariant form~41! vanishes, the left-hand side gives rise to
nonlinear differential equation

ÿ1ayẏ1
a2

9
y31gy50 ~43!

~where, without loss of generality we have takenc5 c̄50, so that,g5ḡ), that can be solved using
the invariance properties formulated above. To do this, we makeā50 on the right-hand side o
Eq. ~41!. Then, inserting its solution in Eq.~42!, it can be integrated giving the general solutio

y5
3

a

2c1x1c2
c1x

21c2x1c3
, g50. ~44!

y5
3Ag

a

c1exp~Agx!1c2exp~2Agx!

c1exp~Agx!2c2exp~2Agx!1c3
, gÞ0. ~45!

It can be seen that Eq.~43! has eight Lie point symmetries and it is equivalent to a second-o
linear differential equation under a point transformation.27 On the other hand, for any other valu
of the coefficientb Þ 2a2/9, Eq.~43! has two point Lie symmetries and we cannot find a po
transformation that cast it in a linear equation.27 However, using the invariant form~11! and the
transformation of variables~12! for f5y, we have proved that Eq.~43! can always be linearized
whatever the value of the coefficient ofy3 is. Therefore, using the invariance properties of t
form ~6! we have obtained the same results that come by the Lie theory of symmetries. In ad
we have linearized Eq.~43! when it has less than eight Lie point symmetries.

IV. SOLUTION OF NEW CLASSES OF DIFFERENTIAL EQUATIONS

Now, we are going to investigate the case when the invariant expression~6! vanishes, and we
shall construct several important classes of solvable second-order nonlinear ordinary diffe
equations. To do this, we must seek the nonlocal transformation defined by Eqs.~28! and~33! with
the condition that the invariant~31! vanishes. This leads to the equations that determine it

a f5
y

ȳ
F]p]y

1
ȳ

y

]p

] ȳ
1
p

yG1ā f̄ , ~46!

b f E f dy1g f5
y

ȳ
Fp ]p

] ȳ
1āp f̄1b̄ f̄ E f̄ d ȳ1ḡ f̄ G , ~47!
J. Math. Phys., Vol. 38, No. 5, May 1997
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and we shall show a set of functionsf , f̄ for which the nonlocal transformation exists. The soluti
of Eq. ~46! can be obtained writing

p~y,ȳ!5a ȳp0~y!1p1~ ȳ!1p2~y,ȳ!, ~48!

where each function satisfies

f52p01yp08 , ~49!

p181
p1

ȳ
1ā f̄50, ~50!

y
]p2
]y

1 ȳ
]p2
] ȳ

1p150, ~51!

where the prime indicates the derivative with respect to the argument of the function. Solvin
system~49–51! and inserting their solutions in Eq.~48!, we find the solution of Eq.~46!, that is:

p~y,ȳ!5a
ȳ

y2E y fdy2
ā

ȳ
E f̄ ȳdȳ1

h0~ ȳ/y!

y
. ~52!

Comparing Eq.~52! with Eq. ~29!, the functionh0( ȳ/y) is given by Eq.~39!, but these terms can
be absorbed in a redefinition of the integration constants provided by the two integrals of Eq~52!.
Then, without loss of generality we take them equal to zero.

From Eqs.~47 and 52! we obtain the difficult integrodifferential equation that satisfies
functions f and f̄ . It reads

2
a2

y4 F E f ydyG21b
f

yE f dy1g
f

y
52

ā 2

ȳ 4 F E f̄ ȳdȳG21b̄
f̄

ȳ
E f̄ d ȳ1ḡ

f̄

ȳ
. ~53!

In what follows we shall show a set of functionsf , f̄ that are solutions of this integrodifferentia
equation and construct three sets of nonlinear differential equations that can be lineariz
explicitly solved.

A. Case a

An interesting solvable equation set can be obtained when we choose the functionsf , f̄ as:

f5byn1k, f̄5b̄ȳ n̄1 k̄. ~54!

Taking into account that the left-hand side of Eq.~53! depends ony and its right hand side
depends onȳ, it must be a constant. So, inserting the functions given by Eq.~54! in Eq.~53! and
after some algebra, it provides the constraints satisfied by the parameters

b5a2
n11

~n12!2
, b̄5ā 2

n̄11

~ n̄12!2
, ~55!

bk22a2
k2

4
5b̄ k̄

2
2ā 2

k̄
2

4
. ~56!

In addition, the functionp(y,ȳ) is given by
J. Math. Phys., Vol. 38, No. 5, May 1997
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p~y,ȳ!5a ȳF b

n12
yn1

k

2G2ā ȳF b̄

n̄12
ȳ n̄1

k̄

2G . ~57!

Finally inserting Eqs.~54!–~56! in the invariant form~6!, we have

ÿ1a @byn1k# ẏ1bFb 2
y2n11

n11
1bk

n12

n11
yn111k2yG50, ~58!

ÿ̄1ā @ b̄ȳ n̄1 k̄# ẏ̄1b̄F b̄ 2 ȳ 2n̄11

n̄11
1b̄k̄

n̄12

n̄11
ȳ n̄111 k̄

2
ȳG50. ~59!

Besides, from Eqs.~28!, ~33!, and ~57! we obtain the nonlocal transformation~26! in invariant
form

ẏ

y
1

abyn

n12
1

ak

2
5
ẏ̄

ȳ
1

āb̄ȳ n̄

n̄12
1

ā k̄

2
, ~60!

that links Eqs.~58! and ~59!. To integrate these equations we use their invariant property a
with Eqs. ~55! and ~56! and analyze two different cases. In the first case, we chooseb̄50,
ā5a, k̄5k, and n̄5n. Then, b̄5b by Eqs. ~56! and ~59! reduces to a linear second-ord
differential equation forȳ5 ŷ with constant coefficients

ÿ̂1akŷ
˙
1a2k2

n11

~n12!2
ŷ50. ~61!

Integrating Eq.~60! for the above value of the parameter, we obtain the general solution o
~58!

yn5
n12

abn

ŷn

E ŷndx

, ~62!

whereŷ is any solution of Eq.~61!. In the second case, when we chooseb50, a 5 ā, k5 k̄, and
n5n̄, Eq. ~58! reduces to Eq.~61! for y5 ŷ and the general solution of Eq.~59! is

ȳ n̄5
n̄12

āb̄n̄

ŷ n̄

E ŷ n̄dx

, ~63!

whereȳ̂ is any other solution of Eq.~61!. Inserting the general solution of the Eqs.~58! and~59!,
given by Eqs.~62! and~63!, in the nonlocal transformation~60!, it can be integrated and the fina
relation between the variablesy and ȳ, that transforms Eqs.~58! and ~59! one on each other, is

yF E ŷndxG1/nexpS ak

2
xD 5 ȳF E ŷ n̄dxG1/n̄expS ā k̄

2
xD . ~64!

For the particular casen5n̄521, we obtaing5a2b and ḡ5ā 2b̄. All the remaining equa-
tions ~60!–~64! can be applied forn521 andn̄521 because they do not depend explicitly
the parametersb, b̄, g, andḡ.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the next subsections we investigate other generalizations of Eqs.~58! and~59!, that can be
linearized and solved.

B. Case b

Writing the equations set~58! and ~59! as

F~ ÿ,ẏ,y!50, F̄~ÿ̄,ẏ̄,ȳ!50, ~65!

a generalization of both equations can be done expressing them in the following way,

1

y
F~ ÿ,ẏ,y!5

1

ȳ
F̄~ ÿ̄, ẏ̄,ȳ!, ~66!

which is invariant under the nonlocal transformation given by Eq.~60!. It is easy to prove that the
new functions

F̃~ ÿ,ẏ,y!5F~ ÿ,ẏ,y!1dy, F̄
˜

~ ÿ̄, ẏ̄,ȳ!5F̄~ ÿ̄, ẏ̄,ȳ!1d ȳ, ~67!

whered is a constant parameter, also satisfy the invariant condition~66!

1

y
F̃~ ÿ,ẏ,y!5

1

ȳ
F̄
˜

~ ÿ̄, ẏ̄,ȳ!. ~68!

Thisgauge symmetrygenerates a new nonlinear equation that can be linearized and solved. I
when the invariant in Eq.~68! vanishes, it gives rise to a set of equations that transform on
each other under the same nonlocal transformation, these are:

ÿ1a@byn1k# ẏ1bFb2 y2n11

n11
1bk

n12

n11
yn111k2yG1dy50, ~69!

ÿ̄1ā @ b̄ȳ n̄1 k̄# ẏ̄1b̄F b̄ 2 ȳ 2n̄11

n̄11
1b̄k̄

n̄12

n̄11
ȳ n̄111 k̄

2
ȳG1d ȳ50. ~70!

In particular, to solve Eq.~69! we chooseb̄50, ā5a, k̄5k, andn̄5n (b̄ 5 b by Eq.~56!! in Eq.
~70!. Then, it reduces to

ÿ̄1akẏ̄1Fa2k2
n11

~n12!2
1dG ȳ50. ~71!

Inserting the solutions of Eq.~71! in Eq. ~60! and integrating it for the selected parameters,
reduce Eq.~69! to quadratures

y5F n12

abn

ȳ n

E ȳ ndxG 1/n. ~72!

For the particular caseb̄5b51, k5 k̄50, n5n̄51, andd5g, Eqs.~69! and~70! reduce to Eq.
~43!, the variable transformation~60! reduces to Eq.~42!, and Eq.~64! gives the relation between
the variablesy and ȳ that leaves invariant~41!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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C. Case c

There is an important result that can be deduced from Eq.~60! whenā5a and k̄5k, in this
case the nonlocal transformation~60! is k-independent,

ẏ

y
1

abyn

n12
5
ẏ̄

ȳ
1

ab̄ȳ n̄

n̄12
, ~73!

and by Eqs.~55! and ~56!

n̄5n, n̄5
2n

n11
. ~74!

So, if we takek(x) and d(x) as functions of the independent variablex instead of constan
parameters, then, there is no change in the deduction of the variable transformation~73!, that
comes from Eqs.~46! and~47!. This means that the set of equations Eqs.~69! and~70! give rise
to new solvable equations that transform between them by the nonlocal transformation~73!

ÿ1a@byn1k~x!# ẏ1bFb2 y2n11

n11
1bk~x!

n12

n11
yn111k2~x!yG1d~x!y50, ~75!

ÿ̄1a@ b̄ȳ n̄1k~x!# ẏ̄1bF b̄ 2 ȳ 2n̄11

n̄11
1b̄k~x!

n̄12

n̄11
ȳ n̄111k2~x!ȳG1d~x!ȳ50. ~76!

For instance, to obtain the solutions of Eq.~75! we takeb̄50 andn̄5n in Eq. ~76! and it becomes
a general homogeneous linear second-order differential equation

ÿ̄1ak~x! ẏ̄1Fa2k2~x!
n11

~n12!2
1d~x!G ȳ50, ~77!

then, inserting the solutions of this equation in Eq.~72!, we reduce Eq.~75! to quadratures.

V. CONCLUSIONS

We have introduced a new invariance concept that leads to classes of second-order no
ordinary differential equations which are equivalent under nonlocal transformations. These c
contain a second-order linear ordinary differential equation with constant coefficients. The
metric expression of the solutions for an arbitrary functionf (y) and any values of the paramete
a, b, and g, has been found. Also, the case in which these parameters are functions
independent variable has been investigated. Several important physical problems are mat
cally described by these equation classes. Many of these arise in general relativity wh
Einstein field equations are investigated for homogeneous, isotropic, and spatially flat cosm
cal models with no cosmological constant, or Bianchi I type metric with a variety of m
sources. Also, the probability distribution function, which maximizes the Fisher’s informa
measure in the generalized statistical mechanics, was found to satisfy Eq.~43! for the most
interesting valueq521.11

Takingx5 x̄ in the nonlocal transformation, and imposing the form invariance of the gen
expression~6!, we have obtained a modified Painleve´–Ince equation~43!. The nonlocal transfor-
mation of variables and the general solution of these equations has been found. In this c
equation has the eight-dimensional group of Lie point group symmetries SL~3,R! and this is the
maximum number of point symmetries that a second-order differential equation can have.
sets of new nonlinear second-order differential equations are generated, that can be lineari
J. Math. Phys., Vol. 38, No. 5, May 1997
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solved explicitly ~58,69,75!. It is also to be remarked that the use and application of the f
invariance have led to exact solution of differential equations whose solution were unknow
particular for modified Painleve´–Ince equations and polynomical differential equations, wh
usually appear in problems related with quantum effects in the very early Universe, originat
the vacuum polarization terms and particle production arising from a quantum descripti
matter, or when both of them are modeled in terms of a classical bulk viscosity.

In general, the problem of finding solutions of nonlinear ordinary differential equation
mains open. One direction along which one can proceed is to reduce them to a linear or
differential equation. For instance, when Eq.~1! possesses eight-parameter Lie group it is line
izable by a point transformation. On the other hand, the nonlocal transformation~7–10! linearizes
Eq. ~1! even when it has less symmetries. Thus, it could mean that it has more nonlocal sy
tries. We conclude that it is very interesting to study this kind of nonlocal transformation
variables and their associated nonlocal symmetries, which have received up to now little att
We shall continue exploring this subject in future papers.
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Solutions of the Regge equations on some triangulations
of CP2
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Simplicial geometries are collections of simplices making up a manifold together
with an assignment of lengths to the edges that define a metric on that manifold.
The simplicial analogs of the Einstein equations are the Regge equations. Solutions
to these equations define the semiclassical approximation to simplicial approxima-
tions to a sum over geometries in quantum gravity. In this paper, we consider
solutions to the Regge equations with a cosmological constant that give Euclidean
metrics of high symmetry on a family of triangulations ofCP2 presented by Ban-
choff and Kühnel. This family is characterized by a parameterp. The number of
vertices grows larger with increasingp. We exhibit a solution of the Regge equa-
tions for p52 but find no solutions forp53. This example shows that merely
increasing the number of vertices does not ensure a steady approach to a continuum
geometry in the Regge calculus. ©1997 American Institute of Physics.
@S0022-2488~97!03403-8#

I. INTRODUCTION

The sums over geometries that arise in quantum gravity may be approximated, and p
even defined, by the methods of the Regge calculus.1 Smooth, four-dimensional, geometries a
approximated by simplicial geometries built from a finite number of four-simplices joined toge
so as to give a triangulation of a manifold. Different manifolds are represented by putting
plices together in different ways. Different metrics are obtained~in general! by different assign-
ments of lengths to the edges of the simplices. A sum over topologies is approximated by
over different ways of assembling four-simplices. A sum over metrics on a given manifo
approximated by a multiple integral over the squared edge-lengths. In the Euclidean func
integral approach to quantum gravity typical integrals have the form

E
C
dS1A~si ,M !exp@2I ~si ,M !/\#, ~1.1!

whereM is a closed, compact simplicial four-manifold,I (si ,M ) is the Regge gravitational action
andA(si ,M ) is some quantity of interest to be averaged in this way. BothI andA are functions
of the squared edge-lengthssi ,i51, . . . ,n1 which are integrated along a contourC with an
appropriate measuredS1. Such simplicial approximations to sums over geometries have b
discussed in several places2,3 and applied to a number of problems in quantum cosmology.4–7

In some limits, the integral~1.1! may be evaluated semiclassically using the method
steepest descents. The value of the integral is then dominated by the contribution near one
of stationary points of the action~through which the steepest descents distortion of the con
passes!. At these,

a!Present address: Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93108; Electron
hartle@itp.ucsb.edu

b!Permanent address: Central Research Institute for Physics, P.O. Box 49, H-1525 Budapest, Hungary; Electro
perjes@rmki.kfki.hu
0022-2488/97/38(5)/2577/10/$10.00
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]I ~sj ,M !

]si
50, i51, . . . ,n1 . ~1.2!

These algebraic equations are the simplicial analogs of the Einstein equations and are ca
Regge equations. Solutions of the Regge equations on various triangulations of different ma
are therefore of interest.

Large sets of algebraic equations like Eq.~1.2! are not always easy to solve, especially wh
the domain of the solution is constrained, as it is here because of the triangle inequalities an
higher dimensional analogs. However, when the triangulation has a symmetry, solutions con
with that symmetry are more easily obtained. A number of solutions of this type on triangula
of the manifoldsS4 andCP2 were exhibited in Ref. 8~Paper II!. Recently Banchoff and Ku¨hnel9

have exhibited a family of symmetric triangulations of the manifoldCP2. With such families, it is
possible to observe the behavior of the Regge approximation to a given spacetime as the
of vertices is increasing. In this paper we investigate the solution of the Regge equations~1.2! on
some of these triangulations.

For completeness, some requisite properties ofCP2 are summarized in Section II. Th
Banchoff–Kühnel triangulations are described briefly in Section III. They are characterized b
integerp>2. With n5p21p11, each triangulationCPn13

2 hasp21p14 vertices, 3pn edges,
2(6p25)n triangles, 15(p21)n tetrahedra, 6(p21)n four-simplices, and a symmetry group o
order 6n. Maximally symmetric solutions with edges related by this symmetry group are spe
by p independent edge-lengths. Thus, by varyingp one has an increasingly large family of high
symmetric triangulations ofCP2.

We use a computer program to find analytic expressions for the actionI (si ,CPn13
2 ) as a

function of the independent edges in a symmetric assignment of the edges. We exhibit a s
of the Regge equations~1.2! for p52 and compare it with that of one other triangulation10 not in
this family. For p53 we find no solution. This shows that, even with triangulations of h
symmetry, one cannot always expect to find the discrete analogs of the continuum soluti
Einstein’s equations. We discuss the reason this family of triangulations exhibits these ph
ena.

II. THE FUBINI–STUDY METRIC OF CP2

The complex projective planeCP2 is defined by equivalence classes of points (Z1,Z2,Z3) of
the complex Euclidean 3-spaceC3 with the origin excluded. The equivalence relation
(Z1,Z2,Z3)5(lZ1,lZ2,lZ3) for any non-zero complexl. CP2 possesses a continuum metric
high symmetry called the Fubini–Study metric. We follow Gibbons and Pope11 in a brief review
of its properties. Points inCP2 may be labeled by coo¨rdinates

z i5Zi /Z3, i51,2 ~2.1!

for Z3Þ0.
As described in Ref. 11, the Fubini-Study metric onCP2 is constructed from the Euclidea

metric on the round 5-sphere inC3,

uZ1u21uZ2u21uZ3u25
6

L
, ~2.2!

whereL is a constant. Defining Euler angles (c,u,f) and a radial coordinater by

z15rcos~u/2!ei ~c1f!/2, ~2.3!

z25rsin~u/2!ei ~c2f!/2, ~2.4!
J. Math. Phys., Vol. 38, No. 5, May 1997
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the Fubini–Study metric is

ds25
dr2

~11lr 2!2
1

r 2

4~11lr 2!2
~dc1cosudf!21

r 2

4~11lr 2!
~du21sin2udf2!, ~2.5!

wherel5L/6. This coordinate system for 0<u<p, 0<f<2p, 0<c<4p, and 0<r<` covers
R4 except atr50, u50 andu5p.

The Euclidean metric~2.5! satisfies the Einstein equation

Rab54Lgab ~2.6!

so thatL is the cosmological constant. It is to this solution of the continuum Einstein equa
that we shall compare our solutions of the Regge equations on triangulations ofCP2.

III. THE TRIANGULATION

A remarkable sequence of triangulations of the complex projective planeCP2 has been
presented by Banchoff and Ku¨hnel.8 It is based on Coxeter’s regular map$3,6%1,p of the flat torus
T2. The latter is defined by an array of

n5p21p11 ~3.1!

vertices~wherep52,3, . . . ) of atessellation of the two-torusT2 by equilateral triangles. Num
bering these vertices by the non-negative integersk~mod n), they may be located on a tw
dimensional ‘‘plane’’ inCP2 at values of the coo¨rdinates~2.1!

z15e2p ik/n, z25e22p ipk/n. ~3.2!

The triangulationCPn13
2 is constructed as the union of three solid 4-ballsB1 ,B2 ,B3. The flat

torusT2 is the common intersection of the three balls. The triangulation of each of these
consists of 4-simplices, four vertices of which lie on the boundary torusT2, and one vertex at the
point of CP2 defined by the following points inC3:

X5~1,0,0! for B1, Y5~0,1,0! for B2 , Z5~0,0,1! for B3 . ~3.3!

Three kinds of chains of 4-simplicesCm5Cm(X
i) are explicitly defined by one of the vertice

Xi5(X,Y,Z) and four of the vertices~3.2! as follows:

C15$ j21, p1 j21, ~k11!p1 j21, ~k12!p1 j21, Xi%, ~3.4a!

C25$ j21, p1 j , ~k11!~p11!1 j21, ~k12!~p11!1 j21, Xi%, ~3.4b!

C35$ j21, j , k1 j , j1k11, Xi%~mod n!, j51,2, . . . ,n, k51,2, . . . ,p21.
~3.4c!

For eachp, the triangulationCPn13
2 is given by the union of the three ballsBi5Cj (X

i)
øCk(X

i), i51,2,3,j ,kÞ i .
The number of 4-simplices in the triangulationCPn13

2 is n456(p321). One may employ the
necessary relation for a combinatorial 4-manifold

5n452n3 ~3.5!

together with the Euler number

n02n11n22n31n453 ~3.6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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and the Dehn–Sommerville relation

2n123n214n325n450 ~3.7!

to compute the numbernk of k-simplices. The numbers aren05n13, n153 pn, n2
52 (6p25)n, n3515 (p21)n, n456(p321).

The symmetry group ofCPn13
2 is generated by the cyclic permutations

T5~k→k11~mod n!!, S5~k→pk~mod n!!~XYZ!, R5~k→2k~mod n!!. ~3.8!

We denote the group byGp .
When the symmetry group of the triangulation is an isometry of the simplicial geometr

say that we have amaximally symmetricgeometry. We shall be interested only in maxima
symmetric solutions of the Regge equations~1.2!. As a consequence of this isometry, the edges
a maximally symmetric geometry lying onT2 are all equal, and the length will be taken to
a. The cone edges from the vertices inT2 to the ending verticesX, Y, or Z are also all equal. The
length of these will be taken to beb. There existp22 trajectories of internal edges among t
vertices ofT2 for p.2. These will have the respective lengthsck , k51,2, . . . ,p22.

The 2n(6p25) triangles are of three distinct types. Those with the edges lying on
boundary torus form a single orbit of length 2n under the isometries. Two orbits, from represe
tative triangles (0,1,p11) and (0,p,p11), are generated by the translationsT and interchanged
by the reflectionsR. Forp>3, there existp22 orbits of interior triangles, each of length 3n. The
interior triangles have three vertices and two edges on the boundary torus and one edge
flat solid torus. The third type of triangle lies on a side of a cone, with one of the vertices b
eitherX, Y, or Z. The cone triangles form a single orbit of length 3n under the symmetries. Ther
are 2p22 orbits of the four-simplices defined by Eq.~3.4!.

IV. SOLUTIONS AND NON-SOLUTIONS

In this section we consider solutions to the Regge equations~1.2! on the triangulations
CPn13

2 . These equations define an extremum of the Regge actionI (si ,M ) that is the simplicial
analog of the Euclidean continuum action

l 2I @g,M #52E
M
d4xAg~R22L!. ~4.1!

Here, l is A16p times the Planck length in units where\5c51 andL is the cosmological
constant. Specifically, the Regge action is, for a closed manifold,

l 2I ~si ,M !522 (
sPS2

V2~s!u~s!1~6H2/ l 2! (
tPS4

V4~t!. ~4.2!

The first sum is over all triangles and defines the curvature actionl 2I curv. The area of triangle
s isV2(s) andu(s) is its deficit angle which is 2p minus the sum of the dihedral angles betwe
the tetrahedral faces of the four-simplices that meets. The second sum is over the four-simplic
t. V4(t) is the volume of the four-simplext, and we have introduced the dimensionless meas
of the cosmological constantH2 by writing L53H2/ l 2. For more details on the meaning of the
quantities as well as an explanation of how to express them as functions of the squared
lengthssi see, e.g., Paper I.

We seek only maximally symmetric solutions of the Regge equations~1.1! as described in
Section III. The simplest case isp52. The symmetry groupG2 is of order 42. Maximally
symmetric geometries are characterized by the two independent edge lengthsa andb. There are
five orbits for the triangles underG2 whose properties are spelled out in Table I. Their areas
J. Math. Phys., Vol. 38, No. 5, May 1997
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deficit angles are given in Table II in terms ofa andb. There are 2 orbits of length 21 for th
four-simplices. In a maximally symmetric geometry all volumes have the same value:

V45
1
4a

3~8b223a2!1/2. ~4.3!

We developed aMATHEMATICA program12 to find various properties including the analytic form
the action~4.2! for an arbitrary triangulated space time in Regge calculus. The analytic expre
for the action whenp52 is

l 2I5
21a3A23 a218 b2H2

8 l 2
235A3a2p263A2a414 a2b2p184A3a2

3arccosS a

2A2A2a213 b2
D 1126A2a414 a2b2arccosS 2a212 b2

2 ~a223 b2!D . ~4.4!

For p53 the maximally symmetric geometries are specified by three independent edge-lenga,
b, andc. The analytic expression for the Regge action is

l 2I5
39

8

H2

l 2
~Ac4~22a21c2!~2a228b21c2!1Aa2c2~24a4112a2b21a2c224b2c2!!

213S2A3a2p19A2a414a2b2p26A3a2arccosS ac

2A~a223b2!~23a21c2!
D

23A2a414a2b2arccosS 22a416a2b21a2c224b2c2

2~a423a2b2! D

TABLE I. The orbits of triangles forp52.

Triangle
orbit

Are all
edges on
T2?

Number of
vertices on

T2 Length

Number of
incident

4-simplices Representative

a Yes 3 14 6 ~0,1,3!
b No 3 21 4 ~0,1,4!
g No 2 21 5 ~0,1,7!
d No 2 21 4 ~0,1,8!
e No 2 21 3 ~0,1,9!

TABLE II. Areas and deficit angles of the triangles.

Triangle orbit Area Deficit angle

a A1 2p26u1

b A1 2p24u1

g A2 2p25u2

d A2 2p24u2

e A2 2p23u2

A15(A3/4)a2, A25
1
4a(4b

22a2)1/2

u15arccos$A2a/4(3b22a2)1/2%
u25arccos@(a222b2)/(2a226b2)#
J. Math. Phys., Vol. 38, No. 5, May 1997
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212A2a414a2b2arccosS ~2a212b2!c

2A~a223b2!A
D 212A2a414a2b2arccosS ~2a212b2!c2

2A D
19pA4a2c22c4212arccosS c~2a22c2!

2A2A~22a21c2!A
DA4a2c22c4

26arccosS a42a2c2/2

Aa2~23a21c2!A
DA4a2c22c416pC23arccosS ~a222b2!~22a21c2!

2A DC
26arccosS 22a418a2b226b2c21c4

2A DCD , ~4.5!

where

A5Aa424a2b21b2c2, C5A4b2c22c4. ~4.6!

And so on.
We now consider the solutions of the Regge equations~1.2! for p52 andp53. For maxi-

mally symmetric solutions it is enough to extremize the actions~4.4! and~4.5! as a function of the
independent squared edge lengths. We searched for solutions by a combination of graphi
numerical techniques — using contour maps of the action to understand its behavior an
numerical evaluations of the Regge equations to find solutions. We studied the normN(si)
[S i(]I /]si)

2 to locate solutions accurately at its zeros. We compared results following from
analytic forms~4.4! and ~4.5! with a general code which computes each of the Regge equa
]I /]si ,i51,•••,n1 without assumption of symmetry. There was agreement.

A contour map of the action of thep52 triangulationCP10
2 is shown in Figure 1. Using the

methods described above we found a maximally symmetric solution at

a52.26~ l /H !, b51.87~ l /H !. ~4.7!

The properties of this solution can be compared with the maximally symmetric contin
metric—the Fubini–Study metric described in Section II—and with the solution on the Ku¨hnel–
Lassmann triangulation (CP9

2) of CP2 discussed in Paper II. To do that we compare the value
two invariants among the different solutions. One is the total volumeVtot and the other is the
curvature action defined by

Vtot5 (
tPS4

V4~t![B~ l /H !4, ~4.8!

I curv522 (
sPS2

V2~s!u~s![2A~Vtot / l
4!1/2. ~4.9!

Table III shows the dimensionless constantsA andB for the various solutions.13 For the
continuum Fubini–Study metric we have in particular

A512A2p, B52p2. ~4.10!

By these measures the progression fromCP9
2 to CP10

2 is only slight, and both give tolerable
approximations to the continuum results.
J. Math. Phys., Vol. 38, No. 5, May 1997
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For p53 we found no solution. A careful search of the normN(si)5S i(]I /]si)
2 showed it

approaching a minimum value but that value was not zero. We do not find a saddle point f
triangulationCP16

2 . Moving from p52 to p53 therefore results in a worse approximation to t
continuum Fubini–Study metric.

V. EIGENVALUES OF THE SECOND VARIATION

In addition to the extrema of the action, its second variation

I i j
~2!5

]2I

]si]sj
~5.1!

is important for the evaluation of the semiclassical approximation to sums over simplicial g
etries like Eq.~1.1!. The prefactor of the semiclassical approximation is the inverse square ro
the determinant ofI i j

(2) evaluated at the contributing extrema. This determinant is the produ

FIG. 1. A contour map of the action for thep52 triangulationCP10
2 . Contour lines of constantH2I , whereI is the action

~4.2!, are shown as a function of the two independent edge lengthsa andb in a maximally symmetric assignment of edg
lengths. The contour lines ofH2I are spaced by 2.35 dimensionless units. One or more of the triangle inequalities o
higher dimensional analogs are violated in the ‘‘prohibited region’’ at the lower right of the diagram. There is a
point and a solution of the Regge equations ata52.26l /H andb51.87l /H.

TABLE III. Comparison of solutions.

Curvature action
A

Total volume
B

CP9
2 50.4 17.59

CP10
2 51.00 17.96

Fubini–Study 53.29 19.74
J. Math. Phys., Vol. 38, No. 5, May 1997
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the eigenvalues ofI i j
(2) The signs of these eigenvalues determine the steepest descents direc

the extrema. Small eigenvalues signal the approximate diffeomorphism invariance that oc
Regge calculus.2 For these and other reasons the eigenvalues of Eq.~5.1! at the extrema of the
action are of interest. The eigenvalues ofI i j

(2) for thep52 symmetric solution are shown in Tab
IV. The table shows the eigenvaluesl and their multiplicitiesrl . The eigenvalues of a maximall
symmetric solution may be classified by the irreducible representations of that group an
multiplicities of these eigenvalues are given by the dimensions of these irreducible repre
tions.

There are seven classes of the groupG2 whose orders and characters are given in Table
This shows the classes arranged horizontally with their orders on the top line and the value
characters on those classes arranged vertically for the seven possible irreducible represe
An element of the symmetry group sends some edges into others thereby producing
dimensional reducible representation ofG42. The irreducible representations it contains label
eigenvalues ofI i j . The number of times a given irreducible representation occurs in this redu
representation may be found by analyzing its characters into the characters of the irred
representations.~For more explicit details see, e.g., Paper II, Section IV.! The result is that the
reducible representation decomposes as 2•1110•1210•1310•1412•1512•1616•61. Here,
the individual terms in this sum correspond to the irreducible representations in Table II and
in the order listed there. The second factor in each summand is the dimension of the irred
representation and multiplication indicates the number of times it occurs in the 42-dimen
reducible representation. The multiplicities of the eigenvalues calculated numerically and s
in Table II are consistent with this analysis although there is an unexplained degeneracy b
a 6 and two 1’s resulting in the multiplicity of 8 and between two 1’s resulting in a multiplicity
2. This kind of degeneracy also occurs with the eigenvalues of the symmetric solution ofCP9

2

~Paper II! in the flat, symmetric assignment of edge lengths to certain triangulations ofT3.14 It thus
seems to be a feature of a wide range of triangulations.

TABLE IV. Eigenvalues and multiplicities of]2I /]si]sj evaluated at the
p52 stationary point.

l 4H21l rl l 4H21l rl

21.74 1 20.12 6
21.24 2 20.05 6
20.63 6 10.07 6
20.39 6 10.28 1
20.18 8

TABLE V. Character table for the symmetry group of thep52 triangula-
tion.

1 6 7 7 7 7 7

1 1 1 1 1 1 1
1 1 21 1 1 21 21
1 1 21 e e2 2e 2e2

1 1 21 e2 e 2e2 2e
1 1 1 e e2 e e2

1 1 1 e2 e e2 e
6 21 0 0 0 0 0

e5exp(2pi/3)
J. Math. Phys., Vol. 38, No. 5, May 1997
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Other features of the eigenvalues are immediately apparent from Table IV. Two of the e
values are positive and the rest are negative. The largest positive eigenvalue correspon
uniform change in all edges. The number of positive eigenvalues available to represen
physical degrees of freedom is thus slightly larger than in the slightly smaller triangula
CP9

2, discussed in Paper II.
Some eigenvalues are small but none are exactly zero. There are thus directions in th

of edge lengths in which the action varies slowly as it would for an approximate diffeomorp
but none in which it is exactly constant.

VI. DISCUSSION

One might have naively expected that the more refined the triangulation of a manifoM
becomes, the better the approximation the solution to its Regge equations will be to a solu
the continuum. The Banchoff–Ku¨hnel sequenceCPn13

2 shows this is not generally the case. In t
first two steps one moves from a solution which is a reasonable approximation by some me
to no solution at all! The reason for this is to be found in the nature of the refinement. As we
along the sequence of triangulations of higherp, it is the triangulation of torusT2 which is refined,
while the number of ‘‘exterior’’ vertices (X,Y,Z) remain fixed. If the vertices are embedded in t
Fubini–Study geometry as described in Ref. 8, the edges inT2 better approximate the Fubini–
Study distances between vertices with increasingp. However, the cone edgesb remain constant.15

The example of theCPn13
2 ’s shows that sequences of triangulations of a given manifold

have to be chosen carefully if the solutions of the Regge equations are to converge to th
tinuum solution of the Einstein equations.
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s andh is the longest edge in the triangulation. The fatness parameterQ for a whole triangulation is the infimum of
Q(s) over all simplices in the triangulation. Barrett and Parker show that the metrics of a sequence of sim
geometries converge to a continuum when, among several other important conditions, the fatness parameter
bounded away from zero along the sequence. For thep52 solution described in Section IV, we findQ50.0856. For
p53 we cannot calculateQ at a solution because we found none. It would be interesting to calculateQ for the
embedding ofCPn13

2 in the Fubini–Study geometry~Ref. 8! and study how it changes asn is increased.
16J. W. Barrett and P. E. Parker, J. Approx. Th.76, 107 ~1994!.
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Propagation of light in the stationary field of multipole
gravitational lens

S. M. Kopeikina)
National Astronomical Observatory, 2-21-1, Ohsawa, Mitaka, Tokyo 181, Japan

~Received 1 October 1996; accepted for publication 3 December 1996!

A rigorous mathematical formalism for calculating the propagation of light rays in
the stationary post-Newtonian field of an isolated celestial body~or system of
bodies! considered as a gravitational lens having a complex multipole structure is
developed. Symmetric trace-free tensors are used in the definition of gravitational
multipoles instead of the less convenient~in general situations! scalar and vector
spherical harmonics. Two types of perturbations of light rays, caused correspond-
ingly by the mass and spin multipoles, are analyzed in full detail. A new simple
method of integration for the equations of light propagation is proposed. This
method enables us for the first time to obtain complete expressions both for the
relativistic time delay and for the angle of the total deflection of light in any order
of multipole perturbations without restriction. The results thus obtained can be
applied to the interpretation of the secondary weak gravitational lens effects pro-
duced by the solar system bodies, stars, binary pulsars, and galaxies where the
influence of higher-order multipoles on the propagation of null rays may be impor-
tant and measurable. The methods developed in the paper can be also applied to
physical optics of multipole electromagnetic lenses and for calculation of propaga-
tion of gravitational waves through the curved space–time. As a particular appli-
cation of the method the generalized equation for a multipole gravitational lens is
derived using Cartesian coordinates and symmetric transverse-traceless tensors.
© 1997 American Institute of Physics.@S0022-2488~97!02605-4#

I. INTRODUCTION

The theoretical prediction and the observational appearance of relativistic effects asso
with the physical process of light propagation in the gravitational fields of various celestial b
have been a matter of considerable interest among physicists and astronomers for quite a
The gravitational microlensing effects exhibited by point mass deflectors may be considered
simplest particular example. Such effects are well understood and have been extensively ex
by the OGLE1 and MACHO2 collaborations in their search for dark matter in our galaxy.3 Gravi-
tational macrolensing effects exhibited by nonspherically symmetric deflectors producin
tended arclike images of numerous background galaxies4 are very useful for probing the mas
distribution of galaxy clusters.5 The relativistic time delay between the brightness variations
two images in cosmological gravitational lenses is proportional to the Hubble time6,7 and, in
combination with lens statistics, can be used to determine fundamental cosmol
parameters.8,9

Unconventional theories of gravity which describe gravity in terms of a metric and on
more additional~scalar, vector, etc.! fields, predict photon deflections and relativistic time dela
which are different from the predictions of standard General Relativity Theory.10,11Thus, careful
measurements of relativistic effects involved in light propagation can serve as a powerful to
discrimination between various theories of gravity. Indeed, a rather remarkable fact is th

a!Electronic mail address: sergeikk@cc.nao.ac.jp, kopeikin@msn.com On leave from Astro Space Centre of P. N.
Physical Institute of Russian Academy of Sciences, Leninskii Prospect, 53, Moscow 117924, Russia.
0022-2488/97/38(5)/2587/15/$10.00
2587J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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propagation of light is subject to the influence of both the time–time as well as the space–
components of the metric tensor in the first order of relativistic small parameterh.GM/c2d
~whereG is the universal gravitational constant,c is the speed of light,M is the characteristic
mass of the body deflecting light rays, andd is the impact parameter of the photon’s trajector!.
This fact allows for a test of General Relativity Theory which is completely independent o
red-shift test and tests involving the relativistic advance of the perihelion of Mercury.12 Moreover,
the detailed study of relativistic effects inherent in the propagation of radio signals in the g
tational field of binary pulsars13,14 has shown that the approach can be used to probe Ge
Relativity Theory in the strong-field gravity regime with an unparalleled degree of accurac
present, the main relativistic effects in the light propagation are confirmed at the level 0.5
solar system astrometric observations,12 and at about the 0.8% level in observations of the stro
gravitational field effects of~a neutron star! companion of pulsar PSR 1534112.15

New astrometric and astrophysical projects such as ground-based large baseline optica
ferometers CHARA, VLTI, etc.,16 the optical interferometer in space, POINTS,17 space VLBI
observatories RADIOASTRON,18 and VSOP,19 will be realized in the foreseeable future. All o
these instruments will have very precise observational accuracy attaining 1–10 microarcs
and will yield substantially improved measurements of positions, motions, diameters, and i
of stars, quasars, galaxies, and their clusters as well as new observational tests of general r
in the solar system. In addition, pulsar timing techniques are developing quite rapidly and
now entered a phase of maximum impact on astronomical observations made with radi
scopes. It is expected that the invention of a nontraditional pulsar timing software-based
persion system developed by Joe Taylor and collaborators20 will eliminate the largest sources o
systematic errors now present in the highest-precision timing experiments, greatly improvi
quality of measurements obtained in the areas of relativistic gravity, fundamental astrom
cosmology, and time-keeping metrology. Reliable processing all above mentioned highly p
observations will require an accounting of the more sophisticated relativistic effects in the p
gation of light in the gravitational fields of the bodies.

The post-post-Newtonian perturbations from the spherically symmetrical part of a gra
tional field, as well as the post-Newtonian perturbations caused by high-order gravitationa
tipoles of a system of bodies, deserve a special consideration. Testing post-post-Newtonian
will give a new experimental access to the nonlinear structure of General Relativity Theory
the investigation of light propagation in a field of high-order multipoles will allow a ‘‘fin
structure’’ study of the matter distribution and rotational parameters of astronomical objec
flecting light rays. The latter effects may play an especially important role in the modellin
cosmological gravitational lenses since essential deviations from spherical symmetry are fo
the mass distribution of clusters of galaxies.5,21 Quite possibly, measurement of higher-ord
multipole relativistic effects in the propagation of pulsar radio signals in nearly edge-on b
systems containing a black hole as the pulsar’s companion might give us an unbiased quan
confirmation of the black hole’s existence. In addition, examination of relativistic effects in pr
gation of electromagnetic waves in the gravitational field of the solar system bodies has sh22

that the effects caused by rotation and oblateness of the bodies have a magnitude alread
sible for measuring by the present day VLBI technique.

The post-post-Newtonian relativistic effects have been studied by many authors~see, for
instance, Ref. 23 and references therein!. As for the relativistic effects in a field of high-orde
multipoles, only the perturbations from the spin dipole and the mass quadrupole moment
been thoroughly investigated so far~see Refs. 24–26 and references therein!. The main goal of the
present paper is to generalize the results of previous authors and to obtain an exhaustive
tion of relativistic effects inherent in the propagation of light in the field of any mass and
higher-order multipole. We propose a new method of integration for the equations of the p
gation of light, essentially modernizing the approach used in Refs. 23–25. The foundation
method is an extensive use of symmetric trace-free~STF! and symmetric transverse-tracele
J. Math. Phys., Vol. 38, No. 5, May 1997
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~STT! tensors. These tensors are very convenient for describing the multipole structure
gravitational field27 and the projective geometry of a bundle of null rays created by the propa
ing electromagnetic~or gravitational! waves. Our results refine the treatment of the problem
propagation of null rays in a field of high-order gravitational multipoles. It is worth emphasi
that the method of integration of equations of propagation of light being developed in the p
paper does not presuppose the smallness of the impact parameter of the light ray—the co
used to be imposed in the analysis of cosmological gravitational lenses. Therefore, our res
applicable to the wide range of possible relative configurations of lensing mass and observ
can be used both for the processing of highly precise astrometric observations and in the tre
cosmological gravitational lenses without any restrictions. We note also that the methods
considered here have analogs in the field of physical optics of multipole electromagnetic len28

and could be applied there as well after making an appropriate replacement of scalar and
gravitational potentials by their electromagnetic counterparts.

In Sec. II we give definitions of the mass and spin multipole moments of gravitational
using symmetric trace-free tensors. The equations of motion of the massless test particle~photon,
graviton! are given in Sec. III. The very method of integration of the equations of motio
discussed in full detail in Sec. IV. Perturbations of trajectory of the particle are discussed in
V. Finally, in Sec. VI, we give exact expressions for two basic relativistic effects, namely
gravitational time delay~Shapiro effect! and the deflection angle. The multipole as well as tra
parent gravitational lens equations are also derived as a methodological application. A de
and a short description of the properties of symmetric trace-free as well as symmetric trans
traceless tensors are outlined in the Appendices.

II. MULTIPOLE MOMENTS OF GRAVITATIONAL FIELD

Let us consider the case of an isolated astronomical system composed of a gravitating b
a system of bodies. Far away from the system, the space–time is asymptotically flat. We s
that space–time is covered by four-dimensional coordinates with the time coordinatet, and three
spatial coordinatesxi5x ~all small Latin indices run 1,2,3!. The origin of the spatial coordinate
is chosen to be the center of mass of the system. The gravitational field of the system
described in the first post-Newtonian approximation by ‘‘scalar’’ and ‘‘vector’’ gravitatio
potentials.23 We restrict ourselves to the consideration of a stationary situation when the gr
tional potentials depend only on the spatial coordinates. It simplifies calculations when on
neglect all the time derivatives of the potentials. The nonstationary case makes calculations
more lengthy and cumbersome~see, for instance, Ref. 25!. We used to work in geometrized unit
whereG5c51.

The ‘‘scalar’’ potentialU has the usual form

U~x!5E
V
d3x s~x8!ux2x8u21, ~1!

where s~x! is the mass density distribution expressed through the energy-momentum
Tab (a,b50,1,2,3):

s5c22~T001Taa!, ~2!

and we denote the spatial components of vectors by bold letters.29

The general multipole expansion of the ‘‘scalar’’ potential outside the gravitating syste
given by

U~x!5
M

r
1(

l52

`
~21! l

l !
T ,a1•••al.

] l

]x,a1•••]xal. S 1r D , ~3!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where r[uxu, M is the post-Newtonian mass of the system, andT ,a1•••al. are the symmetric
trace-free~STF! mass multipole moments of the system. They are defined as integrals:30,31

M5E
V
d3x s~x!, ~4!

T ,a1•••al.5(
V

d3x s~x!x,a1•••al., ~5!

wherex,a1•••al.5x,a1xa2•••xal., the acuteangular brackets denote STF operator~see Appen-
dix A!, andV means the total volume of the isolated astronomical system under consideratio
dipole momentT a is absent in the expansion~3! since we took the origin of the coordinates at t
center of mass of the system.

The ‘‘vector’’ potentialUa has the form

Ua~x!5E
V
d3x sa~x8!ux2x8u21, ~6!

wheresa(x) is the current density distribution expressed through the energy-momentum t
Tab (a,b50,1,2,3) as follows:

sa5c21T0a. ~7!

The multipole expansion of the ‘‘vector’’ potential of stationary gravitating systems is g
by27,30

Ui~x!52(
l51

`
l ~21! l

~ l11!!
e iabS,ba1•••al21.

] l

]x,a]xa1•••]xal21. S 1r D , ~8!

whereS,a1•••al. are the STF spin multipole moments:

S, i1••• i l.5E
V
d3x x, i1••• i l21e i l.abxasb~x! ~9!

and the acute angle brackets around spatial indices again indicate that they are STF s
tensors.

III. EQUATIONS OF MOTION OF PHOTON’S PROPAGATION

Let the motion of a photon be given by the mixed initial-boundary conditions23

x~ t0!5x0,
dx~2`!

dt
5k, ~10!

where k251 and again one denotes the spatial components of vectors by bold letters.
conditions define the coordinatesx0 of the photon at the moment of emissiont0 and its velocity at
an infinite distance from the origin of the spatial coordinates, which is equal to the phys
measurable laboratory value of speed of lightc.

The equations of propagation for photons in a stationary gravitational field are thus mere
equations of null geodesics in vacuum, and are given in the first post-Newtonian approximat
the formulas25
J. Math. Phys., Vol. 38, No. 5, May 1997
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ẍi5U ,i1U ,i ẋ
224U , j ẋ

j ẋi24~U , j
i 2U ,i

j !ẋ j24U ,k
j ẋ j ẋkẋi , ~11!

where the dots over the vectors indicate differentiation with respect to time, and the co
indicates partial derivatives with respect to the spatial coordinates. Everywhere the repeate
ces mean summation from 1 to 3. The given equations are the ordinary second-order diffe
equations. It depends not only on the ‘‘scalar’’ but the ‘‘vector’’ potential also, and, in that se
is quite similar to the equation of propagation of electrons in electron optics when magnetic
are involved and electromagnetic vector potential must be considered.32 In such situations~both in
gravity and electromagnetism! the rays of photons or electrons are no longer orthogonal traje
ries of the equiphase surfaces. So, the simple ‘‘method of triangles’’33 cannot be applied any mor
for the derivation of the equation of gravitational lens and one has to resort to rigorous
ematical technique.

The right-hand side of Eq.~11! includes also terms which depend on the coordinate velo
ẋi of the photon being close toc. Thus, it is admissible to make the replacementẋi5ki on the
right-hand side of the equation. The resulting equation is

ẍi52U ,i24U , j k
jki24~U , j

i 2U ,i
j !kj24U ,p

j kjkpki . ~12!

This equation is to be solved by iterations to get a perturbed trajectory of the photon propa
through the gravitational field of the astronomical system under consideration.

To accomplish this, one substitutes the expressions~3! and~8! for the gravitational potentials
into the right-hand side of Eq.~12!, yielding

ẍi52~kikj2Pi j !FM1(
l52

`
~21! l

l !
T ,a1•••al.

] l

]x,a1•••]xal.G S xjr 3D24(
l51

`
~21! l l

~ l11!!

3~e iabkj2eabckcPi j !S
,ba1•••al21.

] l

]x,a]xa1•••]xal21. S xjr 3D , ~13!

where

Pi j5d i j2kikj ~14!

is the projection operator onto the plane being orthogonal to the vectorki , e i jk is the fully
antisymmetric Levi–Cita symbol, and all the quantities on the right-hand side are conside
the Newtonian approximation only. Let us note that the projection operatorPi j has only two
algebraically independent components. One should integrate the obtained equation two tim
respect to time to get a perturbed photon’s trajectory.

IV. METHOD OF INTEGRATION OF THE EQUATIONS OF MOTION

To integrate Eq.~13! we resort to an approximation method. In the Newtonian approximat
the unperturbed trajectory of the light ray is a straight line:

xi~ t !5xN
i ~ t !5x0

i 1ki~ t2t0!, ~15!

wheret0 is a moment of the photon emission from the pointx0
i , andki5k is a constant unit vecto

being tangent to the nonperturbed trajectory. In the Newtonian approximation, the coor
speed of the photonẋi5ki .

It is convenient to introduce a new independent parametert along the photon’s trajectory
according to the rule

t5k–x5t2t01k–x0, ~16!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where the dot symbol ‘‘•’’ between two vectors denotes the Euclidean dot product of two vec
The momentt0 of the signal’s emission corresponds to the numerical value of the paramett0
5k–x0, and the momentt50 corresponds to the moment of the closest approach of the un
turbed trajectory of the photon to the origin of the coordinate system. Using parametert, the
equation of unperturbed trajectory can be represented as

xi~t!5xN
i ~t!5kit1j i , ~17!

and the distancer of the photon from the origin of coordinate system is given by

r5r N~t!5~t21d2!1/2, ~18!

where the constant transverse vectorj i5j5k3(x03k), d5uju, and the symbol ‘‘3’’ between
two vectors denotes the Euclidean cross product. The vectorj i is the impact parameter vecto
being orthogonal to the unperturbed trajectory. The relations

r1t5d2/~r2t!, r 01t05d2/~r 02t0!, ~19!

are also useful for comparing our results with those obtained elsewhere~for example, see Refs. 2
and 25!, and for transforming the resulting expressions.

To complete the calculations, it is convenient to use the next decomposition of t
dimensional spatial partial derivatives:

]

]xi
5

]

]j j
1ki

]

]t
. ~20!

The formula~20! is a covariant vector representation of the contravariant vector

dxi5dj i1ki dt, ~21!

and can be easily confirmed using the rules of contraction of vectors and covectors:23

K ]

]xj
, dxi L 5d j

i . ~22!

As a consequence of the formulas~20!–~22!, we obtain the useful result

]j i

]j j
5Pj

i5Pi j5Pi j . ~23!

It is worthy to note again that coordinatesj i lie at the plane being orthogonal to the vectorki .
Therefore, only two of threej1, j2, j3 are, in fact, independent. It may help to explain t
formula ~23! from the geometrical point of view.

Let us stress also that the new variablesj i and t can be considered as being complete
independent. Thus, with the decomposition~20! at our disposal, the expression for thel th STF
partial derivative is

] l

]x,a1•••]xal.
5 (

p50

l
l !

p! ~ l2p!!
k,a1

•••kap]̂ap11
•••]̂al.

]p

]tp
, ~24!

where a new shorthand notation]̂a[]/]ja has been used.
Integration with respect to timet along the photon’s trajectory is now completely equivale
J. Math. Phys., Vol. 38, No. 5, May 1997
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to integration with respect to the parametert. It may be simply confirmed that for any arbitrar
functionF(t,j i), the following result is true:

E ]

]t
F~t,j i !dt5F~t,j i !1C~j i !, ~25!

whereC(j i) is an arbitrary function of the constant impact parameter. Moreover, all pa
derivatives with respect toj i can be taken off the sign of time integrals when calculating th
along the photon’s trajectory.

All of these remarks simplify the next calculations so drastically that the only integrals
need to be taken are

E
2`

t ] l

]x,a1•••]xal. S xir 3Ddt5A,a1•••al.
i ~t! ~26!

and

E
t0

t E
2`

t ] l

]x,a1•••]xal. S xir 3Ddt5B,a1•••al.
i ~t!2B,a1•••al.

i ~t0!. ~27!

The tensor functions in the formulas under consideration are given by

A,a1•••al.
i ~t!5 ]̂,a1

•••]̂al.F j i

d2 S t

r
11D2

ki

r G
1 (

p51

l
l !

p! ~ l2p!!
k,a1

•••kap]̂ap11
•••]̂al.

]p21

]tp21 S xir 3D ~28!

and

B,a1•••al.
i ~t!5 ]̂,a1

•••]̂al.F j i

d2
~r1t!2ki ln~r1t!G1 lk,a1

]̂a2•••]̂al.S j i

d2
t

r
2
ki

r D
1 (

p52

l
l !

p! ~ l2p!!
k,a1

•••kap]̂ap11
•••]̂al.

]p22

]tp22 S xir 3D . ~29!

To complete differentiation in formulas~28! and ~29! the functionr is to be substituted for its
value given by the expression~18!. If necessary, after taking all corresponding derivatives,
variablet may be replaced by its original valuet5k–x, andt0 may be replaced byk–x0.

Now we are ready to discuss the relativistic perturbations of the photon’s trajectory in the
of higher-order gravitational multipoles of an isolated astronomical system.

V. PERTURBATIONS OF THE PHOTON’S TRAJECTORY

It follows from Eq. ~13! that a perturbed photon’s trajectory contains two types of pertu
tions arising from the existence of mass and spin multipole moments, respectively. They are
linearly on the right-hand side of this equation. Thus, the coordinate speed of the photon a
trajectory can be represented in the form

ẋi~t!5ki1 ẋS
i ~t!1 ẋQ

i ~t!1 ẋK
i ~t! ~30!

and

xi~t!5kit1j i1xS
i ~t!1xQ

i ~t!1xK
i ~t!, ~31!

where the functionxS
i (t) relates to the Schwarzschild part of the gravitational field, the func
J. Math. Phys., Vol. 38, No. 5, May 1997
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xQ
i (t) describes the mass~quadrupole and higher! multipole perturbations, andxK

i (t) describes
the spin induced perturbations. All of them are obtained in a straightforward manner after tw
integration of Eq.~13! using formulas~28! and ~29!.

The functionxS
i (t) yields well-known perturbations of the photon’s trajectory which ar

from the spherically symmetric~mass! monopole component of the gravitational field:22

ẋS
i ~t!522M F j i

d2 S t

r
11D1

ki

r G , ~32!

xS
i ~t!52M Fki ln r 01t0

r1t
2

j i

d2
~r2r 01t2t0!G . ~33!

The monopole perturbations have the largest magnitude among other multipole perturbat
deviations from the spherically symmetric distribution of matter are small enough.
A. Mass multipole perturbations

For higher-order mass multipole perturbations one has

ẋQ
i ~t!522(

l52

`
~21! l

l !
T ^a1•••al &]̂,a1

•••]̂al.F j i

d2 S t

r
11D2

ki

r G
12(

l52

`

(
p51

l
~21! l

p! ~ l2p!!
T ,a1•••al.k,a1

•••kap]̂ap11
•••]̂al.

]p21

]tp21 S kit2j i

r 3 D ~34!

and

xQ
i ~t!5Qi~t!2Qi~t0!, ~35!

where

Qi~t!522(
l52

`
~21! l

l !
T ,a1•••al.]̂,a1

•••]̂al.F j i

d2
~r1t!1ki ln~r1t!G

22(
l52

`
~21! l

~ l21!!
T ,a1•••al.k,a1

]̂a2•••]̂al.F j i

d2
t

r
1
ki

r G
12(

l52

`

(
p52

l
~21! l

p! ~ l2p!!
T ,a1•••al.k,a1

•••kap]̂ap11
•••]̂al.

]p22

]tp22 S kit2j i

r 3 D . ~36!

For the pure quadrupole case, whenl52, one obtains the formulas derived previously by Klion
and Kopeikin.25

B. Spin multipole perturbations

Spin multipole perturbations can be expressed most appropriately in the form

ẋK
i ~t!524(

l51

`
~21! l l

~ l11!!
~e iabkj2eabckcPi j !S,ba1•••al21.A,aa1•••al21.

j ~t! ~37!

and

xK
i ~t!524(

l51

`
~21! l l

~ l11!!
~e iabkj2eabckcPi j !S,ba1•••al21.

3@B,aa1•••al21.
j ~t!2B,aa1•••al21.

j ~t0!#. ~38!
J. Math. Phys., Vol. 38, No. 5, May 1997
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For a pure spin dipole~Kerr or Lense–Thirring! perturbation, whenl51, the expressions~37! and
~38! coincide precisely with the formulas given, for example, in Ref. 24.

VI. BASIC RELATIVISTIC EFFECTS

There are two main relativistic effects inherent in the propagation of photons through a
of high-order multipoles, namely, the gravitational~Shapiro! time delay and gravitational deflec
tion of light. Using the technique developed above, we can treat them in a relatively simple

A. Time delay

The gravitational time delay is derived from Eq.~31!, which can be more clearly expressed

xi2x0
i 5ki~ t2t0!1xS

i ~t!1xQ
i ~t!1xK

i ~t!. ~39!

To obtain the expression for the time delay one multiplies this equation by itself and then fi
differencet2t0 . The result is

t2t05ux2x0u1DS1DQ1DK , ~40!

whereux2x0u is the usual Euclidean distance between the points of emission,x0, and reception,
x, DS is the classical Shapiro delay produced by the spherically symmetric part of the gravita
field, DQ describes an additional time delay caused by the mass quadrupole, octupole, an
order moments, andDK is the Kerr delay due to the stationary rotation of the gravitating syst
Specifically, one has

DS52M ln
r1t

r 01t0
, ~41!

DQ52(
l52

`
~21! l

l !
T ,a1•••al.]̂,a1

•••]̂al. ln
r1t

r 01t0

12(
l52

`
~21! l

~ l21!!
T ,a1•••al.k,a1

]̂a2•••]̂al. F1r2
1

r 0
G

12(
l52

`

(
p52

l
~21! l

p! ~ l2p!!
T ,a1•••al.k,a1

•••kap]̂ap11
•••]̂al.F ]p22

]t0
p22 S t0

r 0
3D 2

]p22

]tp22 S t

r 3D G ,
~42!

DK524e iabk
i(
l51

`
~21! l l

~ l11!!
S,ba1•••al21.]̂,a]̂a1•••]̂al21. ln

r1t

r 01t0

24e iabk
i(
l52

`
~21! l l 2

~ l11!!
S,ba1•••al21.k,a]̂a1•••]̂al21.S 1r2

1

r 0
D

14e iabk
i(
l53

`

(
p52

l
~21! l

l11

l

p! ~ l2p!!
S,ba1•••al21.k,aka1•••kap21

]̂ap•••]̂al21.

3F ]p22

]t0
p22 S t0

r 0
3D 2

]p22

]tp22 S t

r 3D G . ~43!

The magnitudes of different components of the time delay can be estimated under conditio
J. Math. Phys., Vol. 38, No. 5, May 1997
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min(d/r,d/r0) ! 1 as follows:DS;(GM/c3)ln(rr0 /d
2), DQ;(GM/c3)(R/d) l« l , DK;(GM/c3)

3(R/d) l(v/c), whereR is the characteristic size of the lensing mass,v is the characteristic spee
of its internal motions, and« l is dimensionless value of thel th miltipole moment (« l<1).

B. Deflection of light

1. Angle of the total deflection

Let us introduce the notationn i5 ẋi(`) and consider Eq.~30! in the limiting case whent
5`. In this limit, one hast5r and t/r1152. The numerical value of scalar product (n–n),
where the unit vectorni5j i /d, determines the cosine of the anglep/21a, wherea is the total
deflection of light passing through the field of the gravitating system in question. We conside
the paraxial~i.e., small-angle! approximation where sina5a1O(a3). Thus, taking the limit
t→` in Eq. ~30! and calculating the scalar product (n–n), one gets

a5aS1aQ1aK , ~44!

where aS , aQ , and aK are the angles of the gravitational deflection of light caused by
Schwarzschild, mass, and spin multipole perturbations, respectively. They are calculated us
equalities

]̂ ^a1•••a1&

j i

d2
5 ]̂ ^a1•••al &

j i

d2
5 ]̂ ^ ia1•••al &

ln d, ~45!

as well as formulas given in Appendix. In addition, one has introduced abbreviated no
]̂ ^a1•••al &

5 ]̂ ^a1
•••]̂al & , where henceforththe obtuse angular brackets around indices design

symmetric transverse-traceless~STT! tensors which are explained in more detail in Appendix
This yields

aS5
4M

d
, ~46!

aQ52
4

d (
l52

`
~21! l

~ l21!!
T ^a1•••al &]̂ ^a1•••al &

ln d, ~47!

aK5
8

d
eabckc(

l51

`
~21! l l 2

~ l11!!
S ^ba1•••al21&]̂ ^aa1•••al21& ln d. ~48!

The magnitudes of different components of the deflection angle are estimated as followaS

;GM/c2d, aQ;aS(R/d)« l , aK;aS(R/d)
l(v/c). We are now able to obtain the equation f

gravitational lensing in the field of higher-order multipoles.

2. The multipole gravitational lens equation

As a particular consequence of application of our method, the gravitational lens equatio
be obtained directly from the formula~39!, where when deriving the equation, we should negl
all quantities having magnitudesd/r and d/r 0 in comparison to the main terms. Taking in
account the relationship~40! and designatingKi5(xi2x0

i )/ux2x0u, one obtains

Ki5ki2
r

R
a i1OS dr D1OS dr 0D , ~49!
J. Math. Phys., Vol. 38, No. 5, May 1997
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wherer is the distance from the center-of-mass of the gravitating body being considered as
R5ux2x0u is the distance between the point of emission of photon,x0, and observer being at th
point x, anda i is the dimensionless vector relating to the anglea of the total deflection of light by
means of the simple formulaa ini5a. The exact expression for the vectora i is

a i5aS
i 1aQ

i 1aK
i , ~50!

where

aS
i 5

4M

d2
j i , ~51!

aQ
i 54(

l52

`
~21! l

l !
T ^a1•••al &]̂ ^ ia1•••al &

ln d, ~52!

aK
i 528eabckc(

l51

`
~21! l l

~ l11!1
S ^ba1•••al21&]̂ ^ iaa1•••al21& ln d. ~53!

It is worthy to note that the trajectory of a light ray in the field of the higher-order multipoles
no longer be considered flat. There is not only a bending of the trajectory but also a torsio
consequence of expression~53!.

It is convenient to rewrite Eq.~49! using astronomical coordinates corresponding to the pl
of the sky. For this purpose let us introduce a triad of the unit vectors (I0,J0,K0). The vector
K0 points from the observer toward the gravitational lens, and the vectorsI0 andJ0 lie in the plane
of the sky orthogonal to the vectorK0. Vector I0 is directed to the east, andJ0 points toward the
north celestial pole. In this system, the vectorsk andK can be represented as

k5j/r 01N, ~54!

N5z/r 01K0, ~55!

K5h/r 01K0, ~56!

wherez i andh i are vectors lying in the plane of the sky, and the vectorNi52x0
i /r 0 . Finally, the

lens equation results in

h i5z i1j i2
rr 0
R

a i~j!. ~57!

This equation describes the mapping from the object plane onto the image plane with the or
the coordinate system being chosen to arbitrarily. It generalizes the well-known pointlike defl
equation for the event of higher-order gravitational multipoles.

3. The transparent gravitational lens equation

In cosmological gravitational lenses, light rays can propagate not only outside but also
the gravitational lens. It is not difficult to generalize Eq.~57! to include the consideration o
transparent gravitational lens. We suppose that the surface of the lens is smooth, and is de
by the equationF(j,z)50, where the coordinatez is directed along the unperturbed trajectory
the photon, andj5(j1,j2) are the transverse coordinates. This equation may be inverted to o
an explicit dependencez5 f (j1,j2). After integrating Eq.~12!, expanding it into series ove
transverse coordinates (j1,j2), and omitting terms of orderd/r andd/r 0 , as previously, we obtain
J. Math. Phys., Vol. 38, No. 5, May 1997
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a i~j!54]̂ ic~j!, ~58!

where the gravitational lens potential

c~j!5E
D
d2j8S~j8!lnuj2j8u, ~59!

andD indicates a two-dimensional domain occupied by thesurfacemass densityS~j!:

S~j!5E
f2~j!

f1~j!

dz@s~j,z!22kjs j~j,z!#. ~60!

Note that the gravitational lens equations~58! and~59! are the same as in the ‘‘classic’’ theory33

but thesurfacemass density,S~j!, includes now both the mass and the current densities of ma
This is may be important for gravitational lenses in which the matter has extraordinary
velocities like in active galactic nuclei~AGN! or relativistic stellar clusters. Because the surface
the lens has been assumed to be simple enough, the line of sight intersects it at only two
f1(j), and,f2(j), for z>0 andz,0, respectively. In principle, more complicated configuratio
of the matter distribution inside the lens can be expected. In such an event, the integral rep
tations of thesurfacedensities are to be more complicated.

Multipole expansion of the potentialc~j! in terms of the STT tensors~see Appendix B! is

c~j!5m ln d1I12(
l51

`
2l21

l

n̂^a1•••al &

dl
I

2
^a1•••al &2(

l51

`
2l21

l
j^a1•••al &I

1
^a1•••al & , ~61!

wherem is the mass enclosed by a tube whose cross section is a circle of radiusd:

m5E
D2

d2j S~j!. ~62!

MeanwhileI
2
^a1•••al & andI

1
^a1 ...al & are the internal and external multipole moments of the deflec

Both are STT tensors, and are given by the formulas

I15E
D1

d2j S~j!ln d, ~63!

I
1
^a1•••al &5E

D1

d2j S~j!
ĵ ^a1•••al &

j2l
, ~64!

I
2
^a1•••al &5E

D2

d2j S~j!ĵ ^a1•••al &. ~65!

Here D2 and D1 designate the spatial cylindrical domains whereuj8u,d, and uj8u.d. It is
noteworthy to point out that, whenD2 exceeds the cross section of the lens, the external multi
momentsI

1
^a1•••al &[0, and the internal multipole momentsI

2
^a1•••a1& coincide exactly with the

multipole moments,J^a1•••al & of the external gravitational field of the lens. Under these circu
stances, the expression~58! can be converted exactly to~50!.

We expect that STT tensors will find considerable utility when applied to the problem
inverting images in cosmological gravitational lenses. The multipole STT expansions are
sented in Cartesian orthogonal coordinates of the observer plane and should be more app
J. Math. Phys., Vol. 38, No. 5, May 1997
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for the analysis of charge-coupled-device~CCD! camera images of galaxies than the polar co
dinates and trigonometric functions21 no matter whether the deflector has a center of symmetr
not. This is explained by the fact that the technological structure of the CCD plate already
an orthogonal coordinate system. So, the application of STT tensors excludes redundant in
diate trigonometrical transformations in the procedure of inverting the gravitational lens equ
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APPENDIX A: SYMMETRIC TRACE-FREE TENSORS

The symmetric trace-free~STF! Cartesian tensors of rankl generate an irreducible represe
tation of ‘‘weight’’ l and dimension 2l11 of the group of proper rotation SO~3!. The explicit
expression of the STF part of a tensorAa1•••al

is27,30

$Aa1•••al
%STF[A,a1•••al.

5 (
k50

@1/2 l #

ak
l d (a1a2•••da2k21a2k

Sa2k11•••a1)b1b1•••bkbk
, ~A1!

where

Sa1•••al
5A~a1•••al !

, ~A2!

with numerical coefficients

ak
l 5~21!k

l !

~ l22k!! ~2k!!!

~2l22k21!!!

~2l21!!!
. ~A3!

Here and there the round brackets around indices denote symmetrization,@ 1
2p] is the integer part

of 1
2l , dab5db

a5dab5diag(1,1,1) is the Kronecer’s symbol, and repeated indices indicate sum
tion from 1 to 3. For example,T^ab&5T(ab)2

1
3dabTkk ; T^abc&5T(abc)2

1
5dabTckk2

1
5dbcTakk

2 1
5dcaTbkk , etc.
The STF tensors are well understood. We refer the reader to Refs. 27, 30, 31, 34, and

a detailed description of properties of these tensors and their usage in gravity theory. The
metric transverse-traceless~STT! tensors are less well known.

APPENDIX B: SYMMETRIC TRANSVERSE-TRACELESS TENSORS

The symmetric transverse-traceless Cartesian tensors of rankl generate an irreducible repre
sentation of ‘‘weight’’ l and dimension 2l of the group of proper rotation SO~2!. The explicit
expression of the STT part of a tensorAa1•••al

is

$Aa1•••al
%STT5Â^a1•••al &

5 (
k50

@1/2 l #

bn
l P(a1 ,a2

•••Pa2k21a2k
Wa2k11•••a1)b1b1•••bkbk

, ~B1!

Wa1•••al
5$Pa1b1

•••Palbl
Ab1•••bl

%S, ~B2!

where ‘‘S’’ denotes the full symmetrization over all free indices,Pi j is the projection operato
onto the plane orthogonal to the vectorki defined by~14!, and the numerical coefficientsbn

l are
@compare with~A3!#
J. Math. Phys., Vol. 38, No. 5, May 1997
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bn
l 5~21!n

l !

~ l22n!! ~2n! !

~2l22n22!!!

~2l22!!!
5

~21!n

22n
l

n!

~ l2n21!!

~ l22n!!
. ~B3!

We state here, without proofs, some formulas which were useful in our calculations
follow Ref. 30 and use the special notationA$a1•••al %

. This is convenient in practical calculation
for the un-normalized sum(sPXAas(1)•••as( l )

whereX is the smallestset of permutations of
(1••• l ), which makesA$a1•••al %

fully symmetrical ina1•••al . For instance,P$abPcd%5PabPcd

1PacPbd1PadPbc . We also use abbreviationsn̂^a1•••al &
[n^a1•••nal

& , andD[]̂a]̂a . The list of

practically useful formulas is as follows:

P(a1a2
•••Pa2k21a2k

na2k11
•••nal )5

~2k!!! ~ l22k!!

l !
P$a1a2

•••Pa2k21a2k
na2k11

•••nal % , ~B4!

n̂~a1•••al !
5 (

k50

@1/2 l #
~21!k

2k
~ l2k21!!

~ l21!!
P$a1a2

•••Pa2k21a2k
na2k11

•••nal % , ~B5!

]̂^a1•••al &
5 (

k50

@1/2 l #
~21!k

2k
~ l2k21!!

~ l21!!
P$a1a2

•••Pa2k21a2k
]̂a2k11

•••]̂al %D
k, ~B6!

nin̂^a1•••al &
5n̂^ ia1•••al &

1 1
2Pi ^a1

n̂a2•••al &
, ~B7!

nin̂^ ia1•••al &
5 1

2n̂^a1•••al &
, l>1, ~B8!

]̂ i n̂^a1•••al &
5

l

d
@ni n̂^a1•••al &

22n̂^ ia1•••al &
#, ~B9!

D ln d50, dÞ0, ~B10!

]̂^a1•••al &
ln d5~21! l~2l22!!!

n̂^a1•••al &

dl
, ~B11!

ni ]̂ ^ ia1•••al &
ln d52

l

d
]̂ ^a1•••al &

ln d, l>1. ~B12!

The given formulas differ from the corresponding ones for STF tensors30 by numerical coeffi-
cients. This is explained by the fact that STT tensors reside in two-dimensional space only

1A. Udalski, M. Szyma´nski, K. Z. Stanek, J. Kaluz˙ny, M. Kubiak, M. Mateo, W. Krzemin´ski, B. Paczyn´ski, and R.
Venkat, ‘‘The Optical Gravitational Lensing Experiment. The optical depth to gravitational microlensing in the dire
of the galactic bulge,’’ Acta Astron.44, 165–189~1994!.

2C. Alcock, R. A. Allsman, T. S. Axelrod, D. P. Bennett, K. H. Cook, K. C. Freeman, K. Griest, J. A. Guern, M
Lehner, S. L. Marshall, H.-S. Park, S. Perlmutter, B. A. Peterson, M. R. Pratt, P. J. Quinn, A. W. Rodgers, C. W. S
and W. Sutherland, ‘‘Experimental limits on the dark matter halo of the galaxy from gravitational microlensing,’’
Rev. Lett.74, 2867–2871~1995!.

3B. Paczyn´ski, ‘‘Gravitational microlensing by the galactic halo,’’ Astrophys. J.304, 1–5 ~1986!.
4R. D. Blandford and I. Kovner, ‘‘Formation of arcs by nearly circular gravitational lenses,’’ Phys. Rev. A38, 4028–4035
~1988!.

5J. A. Tyson, F. Valdes, and R. A. Wenk, ‘‘Detection of systematic gravitational lens galaxy image alignments: m
dark matter in galaxy clusters,’’ Astrophys. J.349, L1–L4 ~1990!.

6M. Sasaki, ‘‘Cosmological gravitational lens equation,’’ Prog. Theor. Phys.90, 753–781~1993!.
7T. Futamase, ‘‘On the validity of the cosmological lens equation in General Relativity,’’ Prog. Theor. Phys.~Lett.! 93,
647–652~1995!.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



d M.

J.

on.

ivistic

Phys.

o-

phys.

.

level

.

erva-

tside

Dyn.

f the

2601S. M. Kopeikin: Propagation of light in the stationary field

¬¬¬¬¬¬¬¬¬¬
8R. Kayser, ‘‘The time delay between multiple quasar images,’’ inGravitational Lenses in the Universe, Proc. 31st Lie`ge
Int. Astroph. Coll., edited by J. Surdej, D. Fraipont-Caro, E. Gosset, S. Refsdal, and M. Remy~Universite de Lie`ge,
Institut d’astrophysique, Lie`ge, Belgique, 1993!, pp. 5–13.

9P. King, ‘‘Determining cosmological parameters through statistics of red shifts of lens galaxies,’’ inGravitational Lenses
in the Universe, Proc. 31st Lie`ge Int. Astroph. Coll., edited by J. Surdej, D. Fraipont-Caro, E. Gosset, S. Refsdal, an
Remy ~Universite de Lie`ge, Institut d’astrophysique, Lie`ge, Belgique, 1993!, pp. 33–38.

10J. D. Bekenstein and R. H. Sanders, ‘‘Gravitational lenses and unconventional gravity theories,’’ Astrophys.429,
480–490~1994!.

11P. H. Lim, J. M. Overduin, and P. S. Wesson, ‘‘Light deflection in Kaluza–Klein gravity,’’ J. Math. Phys.36, 6907–
6914 ~1995!.

12C. M. Will, Theory and Experiment in Gravitational Physics~Cambridge U.P., Cambridge, 1993!.
13T. Damour and J. H. Taylor, ‘‘Strong-field tests of relativistic gravity and binary pulsars,’’ Phys. Rev. D45, 1840–1868

~1992!.
14O. V. Doroshenko and S. M. Kopeikin, ‘‘Relativistic effect of gravitational deflection of light in binary pulsars,’’ M
Not. R. Astron. Soc.274, 1029–1038~1995!.

15J. H. Taylor, A. Wolszczan, T. Damour, and J. M. Weisberg, ‘‘Experimental constraints on strong-field relat
gravity,’’ Nature345, 132–136~1992!.

16J. T. Armstrong, D. J. Hutter, K. J. Johnston, and D. Mozurkewich, ‘‘Stellar optical interferometry in the 1990s,’’
Today5, 42–49~1995!.

17J. F. Chandler and R. D. Reasenberg, ‘‘POINTS: A global reference frame opportunity,’’ inInertial Coordinate System
on the Sky, edited by J. H. Lieske and V. K. Abalakin~Kluwer, Dordrecht, 1990!, IAU Symp. No. 141, pp. 217–228.

18N. S. Kardashev and V. I. Slysh, ‘‘The RADIOASTRON project,’’ inThe Impact of VLBI on Astrophysics and Ge
physics, edited by M. J. Reid and J. M. Moran~Kluwer, Dordrecht, 1988!, pp. 433–440.

19H. Hirabayashi, M. Inoue, and H. Kobayashi, eds.,Frontiers of VLBI~Universal Academy, Tokyo, 1991!.
20I. Cognard, J. A. Shrauner, J. H. Taylor, and S. E. Thorsett, ‘‘Giant Radio Pulses from a Millisecond Pulsar,’’ Astro
J. 457, L81–L84 ~1996!.

21P. Schneider and A. Weiss, ‘‘A practical approach to~nearly! elliptical gravitational lens models,’’ Astron. Astrophys
247, 269–275~1991!.

22V. A. Brumberg, S. A. Klioner, and S. M. Kopeikin, ‘‘Relativistic reduction of astrometric observations at POINTS
of accuracy,’’ inInertial Coordinate System on the Sky, edited by J. H. Lieske and V. K. Abalakin~Kluwer, Dordrecht,
1990!, IAU Symp. No. 141, pp. 229–240.

23V. A. Brumberg,Essential Relativistic Celestial Mechanics~Hilger, Bristol, 1991!.
24S. A. Klioner, ‘‘Influence of the quadrupole field and rotation of the bodies on the light propagation,’’ Astron. Zh68,
1046–1062~1991! ~in Russian!.

25S. A. Klioner and S. M. Kopeikin, ‘‘Microarcsecond astrometry in space: Relativistic effects and reduction of obs
tions,’’ Astron. J.104, 897–914~1992!.

26S. O. Sari, ‘‘Gravitational deflection of light by a rotating astrophysical object,’’ Astrophys. J.462, 110–113~1996!.
27K. S. Thorne, ‘‘Multipole expansions of gravitational radiation,’’ Rev. Mod. Phys.52, 299–339~1980!.
28L. A. Baranova and S. Ya. Yavor, ‘‘The optics of round and multipole electrostatic lenses,’’ inAdvances in Imaging and
Electron Physics, edited by P. W. Hawkes~Academic, London, 1989!, Vol. 76, pp. 1–207.

29Throughout the paper the repeated Latin indices imply the Einstein rule of summation.
30L. Blanchet and T. Damour, ‘‘Radiative gravitational fields in General Relativity. I. General structure of the field ou
the source,’’ Philos. Trans. R. Soc. London Ser. A320, 379–430~1986!.

31L. Blanchet and T. Damour, ‘‘Post-Newtonian generation of gravitational waves,’’ Ann. Inst. Henri Poincare´ 50, 377–
408 ~1989!.

32G. Pozzi, inAdvances in Imaging and Electron Physics, edited P. W. Hawkes~Academic, London, 1995!, Vol. 93, pp.
173–218.

33P. Schneider, J. Ehlers, and E. E. Falco,Gravitational Lenses~Springer Verlag, Berlin, 1992!.
34T. Hartmann, M. H. Soffel, and T. Kioustelidis, ‘‘On the use of STF-tensors in celestial mechanics,’’ Cels. Mech.
Astron.60, 139–159~1994!.

35V. A. Brumberg and S. M. Kopeikin, ‘‘Relativistic reference systems and motion of test bodies in the vicinity o
Earth,’’ Nuovo Cimento B103, 63–98~1989!.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ed by
-

nd
m
single-

n

e that

of

¬¬¬¬¬¬¬¬¬¬
On the thermodynamical interpretation of perfect fluid
solutions of the Einstein equations with no symmetry
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N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00 716,
Warszawa, Poland and College of Science, Polish Academy of Sciences, Warszawa,
Poland

Hernando Quevedo and Roberto A. Sussman
Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, A.P. 70543,
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The Gibbs–Duhem equationdU1pdV5TdS imposes restrictions on the perfect
fluid solutions of Einstein equations that have a one-dimensional symmetry group
or no symmetry at all. In this paper, we investigate the restrictions imposed on the
Stephani Universe and on the two classes of models found by Szafron. Upon the
Stephani Universe and theb8Þ0 class of Szafron symmetries are forced. We find
the most general subcases of theb850 model of Szafron that are consistent with
the Gibbs–Duhem equation and have no symmetry. ©1997 American Institute of
Physics.@S0022-2488~97!02012-9#

I. INTRODUCTION

In relativity, a perfect fluid is defined as a continuous medium whose state is determin
the energy–density~e!, the pressure (p) and the four-velocity~ua! fields, and whose energy
momentum tensor has the form

Tab5~e1p!uaub2pgab ~1.1!

@we will use the signature~1, 2, 2, 2!, Greek indices running through the values 0, 1, 2, 3 a
Latin indices running through the values 1, 2, 3#. Indeed, this form of the energy–momentu
tensor guarantees that energy transport occurs only by means of mass-flow. However, a
component perfect fluid must also obey the Gibbs–Duhem equation:

dU1pdV5TdS, ~1.2!

which forms a part of the second law of thermodynamics, whereU is the internal energy,p is the
pressure,V is the volume,T is the temperature andS is the entropy of a thermally isolated portio
of a perfect fluid.

In relativity, and in particular in cosmology, we require that Eq.~1.2! applies when the
internal energy, volume and entropy are referred to one particle of the fluid. If we assum
there exists a functionn ~the particle number density! which is conserved,

~nua! ;a50, ~1.3!

thenU5e/n, V51/n andS5s/n, wheres is the entropy–density, and the relativistic version
Eq. ~1.2! for a perfect fluid with the energy–momentum tensor~1.1! takes the form

d~e/n!1pd~1/n!5TdS. ~1.4!

a!Electronic mail: akr@alfa.camk.edu.pl
0022-2488/97/38(5)/2602/9/$10.00
2602 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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It is usually taken for granted that this equation applies. However, most of the perfect
solutions of the Einstein equations considered in the literature are thermodynamically trivial
way or another. For dust,p50, e/n5const andS5const, so~1.4! is no limitation. For perfect
fluids with a barotropic equation of statee5e(p), Eq. ~1.4! with dS50 is a part of the definition
of a solution. For cosmological models with a Robertson–Walker, Kantowski–Sachs or Bia
type geometries, all the functionse, p andn depend only on the comoving timet of the fluid, so
any equation of state can be imposed on them, and then~1.4! simply defines entropy. For solution
that have a symmetry group with two-dimensional orbits~for example, the spherically symmetri
ones!, the functionse, p andn depend on two variables only. In this case, the left-hand sid
~1.4! is a differential form in two variables and is guaranteed to have an integrating factor, h
T andS obeying~1.4! are guaranteed to exist.

Problems appear when the perfect fluid solution in question has a one-dimensional sym
group or no symmetry at all. For such solutions,e, p andn depend on three or four variables, an
the existence of an integrating factor for the left-hand side of~1.4! is an additional limitation on
the state functions. This problem has received only fleeting attention in the literature~see below!.
In this paper, we shall consider the consequences of~1.4! for a few perfect fluid cosmologica
models with no symmetry. If [d(e/n)1pd(1/n)] has no integrating factor, then the solution c
be interpreted as a mixture of perfect fluids~possibly interacting through reversible chemic
reactions!, but not as a single-component perfect fluid. If~1.3! and ~1.4! can be imposed simul
taneously, then, for brevity, we shall say that the model allows for a thermodynamical sc
Note that~1.3! merely defines the functionn(x) and is no limitation on any model; the limitation
all result from~1.4!.

Bona and Coll1 were apparently the first to observe that~1.4! may restrict a metric: they
showed that the Stephani Universe2–5 allows for a thermodynamical scheme only if the met
acquires a 3-dimensional symmetry group acting on two-dimensional orbits. Relativistic th
dynamics of perfect fluids was discussed at length by Coll and Ferrando6 without invoking explicit
examples. Quevedo and Sussman7 gave an example of the Szarfronb850 model8 that has no
symmetry and allows for a thermodynamical scheme, and showed that the parabolic Szafronb8Þ0
model does not allow for it unless it has a symmetry. Quevedo and Sussman9 also analyzed the
conditions for the existence of a thermodynamical scheme in the Stephani Universe, and d
the corresponding nonbarotropic equation of state. In this case the equation of state does n
any plausible physical interpretation. The Gibbs–Duhem equation~1.4! together with the conti-
nuity equation~1.3! were also discussed by Goode10 and by Coley.11 Goode discussed them as a
element of thermodynamical interpretation of a solution with a heat-conducting dust so
Goode’s solution, before thermodynamics is imposed on it, is a generalization of theb850 solu-
tion of Szekeres.12 After imposing the thermodynamical relations, the solution simplifies. Whe
the simplification necessarily involves symmetries is not known. Coley11 emphasized the impor
tance of considering~1.3!–~1.4! as a necessary part of physical interpretation of any cosmolog
model. This seems to be the whole body of literature on the subject published so far.

In this paper, we identify the most general Szafron models of theb850 family that allow for
a thermodynamical scheme~Sec. IV! even though they have no symmetry; we also verified t
the general Szafron models of theb8Þ0 family do not allow a thermodynamical scheme unle
they have symmetries~Sec. V!. These are the main results of the paper. In addition, in Sec. I
describe the necessary conditions for the existence of the thermodynamical scheme, and in
we give some additional details of the result of Bona and Coll1 for the Stephani Universe.

The models of Stephani2 and of Szafron8 are so far the only known exact solutions of th
Einstein equations that have no symmetry, can be considered to be cosmological models~because
they generalize the Robertson–Walker class of solutions! and allow for nontrivial thermodynam
ics; see also Ref. 13. The other class of solutions found by Stephani14 has no symmetry as well
and has some cosmological relevance,13 but it has constant pressure. Therefore its source is in
dust in a spacetime with cosmological constant, and~1.4! is trivially satisfied for it. The well-
J. Math. Phys., Vol. 38, No. 5, May 1997
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known Szekeres solutions12 with no symmetry are the dust limit of the Szafron models conside
here, and so pose no thermodynamical problems either.

II. THE NECESSARY CONDITIONS FOR THE EXISTENCE OF THE THERMODYNAMICAL
SCHEME

Let us write~1.4! in the form

v:5~1/n!de2~1/n2!~e1p!dn5TdS. ~2.1!

In general, the quantitiese, and p are obtained from Einstein’s equations as functions of
coordinates. Equation~1.3! can always be integrated yielding a functionn in terms of the coor-
dinates, and sov will be a given differential form in four variables~although the form is spanne
on just two differentials,de anddn, the functionp will in general be functionally independent o
e andn!. Equation~2.1! can be solved forT andS if v has an integrating factor, i.e. ifv`dv50.
This may be written equivalently as

de`dp`dn50, ~2.2!

which means that a functional dependence~an equation of state! connectse, p andn.
Note that Eq.~1.3! is a necessary, but not a sufficient condition forn to be interpreted as a

particle number density. The physical particle number density must obey a thermodynam
meaningful equation of state, which should be derived from Eq.~2.2!. In this paper, we shall no
impose any condition onn apart from~1.3! and~2.2!. Therefore, only our negative results will b
conclusive: if ~1.3! and ~2.2! imply additional symmetry, then the model does not allow fo
thermodynamical scheme in general. If~1.3! and ~2.2! can be imposed without introducing
symmetry, then additional work on the interpretation ofn is required. This we postpone to
separate paper.

The result of this paper is that for the Szafron models withb8Þ0 a nontrivial thermodynami-
cal scheme imposes symmetries, while the Szafron models withb850 are restricted by the ther
modynamical scheme in a different way which not necessarily implies a symmetry.~We call the
thermodynamical scheme trivial if it impliesp5const, and in particularp50.!

III. THE THERMODYNAMICAL SCHEME IN THE STEPHANI UNIVERSE

The metric of the Stephani Universe is

ds25D2dt22V22~ t,x,y,z!~dx21dy21dz2!, ~3.1!

where

V5R21$11 1
4 k~ t !@~x2x0~ t !!21~y2y0~ t !!21~z2z0~ t !!2#%, D5F~ t !V,t /V, ~3.2!

and F(t), R(t), k(t), x0(t), y0(t) and z0(t) are arbitrary functions of time. The source in th
Einstein equations is a perfect fluid with the velocity fieldua5D21d0

a and energy–densitye and
pressurep given by

ke53C2~ t !, kp523C212CC,tV/V,t , ~3.3!

wherek58pG/c4 andC(t) is connected with the other functions of time by

k~ t !5@C2~ t !21/F2~ t !#R2~ t !. ~3.4!
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The Stephani Universe has in general no symmetry and is the most general conforma
perfect fluid solution with nonzero expansion~see theorem 32.15 in Ref. 15!. A particle number
density function obeying~1.3! has here the formn5N(x,y,z)V3, whereN is an arbitrary function.

The problem of existence of a thermodynamical scheme in this model was solved by
and Coll.1 The scheme exists whenV has the special form

V5
k

4R
~x21y21z222x0x14Ax014B!, ~3.5!

whereA andB are arbitrary constants. Only the rotational symmetry in the (y,z) plane is evident
here, but in fact this subcase of the Stephani Universe has a 3-dimensional symmetry group
on 2-dimensional orbits; see Ref. 1. The generators of the group, found from the Killing equa
are

k15S 2
1

2
xy1AyD ]

]x
1F14 ~x22y21z2!2Ax2BG ]

]y
2
1

2
yz

]

]z
,

k25S 2
1

2
xz1AzD ]

]x
2
1

2
yz

]

]y
1F14 ~x21y22z2!2Ax2BG ]

]z
, ~3.6!

k35z
]

]y
2y

]

]z
,

and the commutators among them are [k1 ,k2]5(A21B)k3 , [k2 ,k3]5k1 and [k3 ,k1]5k2 . From
here, it is seen that withB.2A2 the solution is spherically symmetric, withB,2A2 it is
hyperbolically symmetric, and withB52A2 it is plane symmetric. This result is equivalent to th
one by Bona and Coll1 except that Bona and Coll obtained it by postulating invariance ofn with
respect to~3.6!, while we have found that it is a general solution of the conditions for a ther
dynamical scheme, and invariance ofn necessarily follows. TheN5n/V3 is restricted by~2.2! to
the form

N5CG~w!/~x22A!3, ~3.7!

whereC is an arbitrary constant,G is an arbitrary function and

w:5x1~y21z214A214B!/~x22A!. ~3.8!

In Ref. 9, the thermodynamical scheme conditions for a special case of the solution~3.5! were
investigated using the work by Bona and Coll.16 The result of Ref. 9 is erroneous; that spec
solution admits in fact a 3-dimensional group of isometries.

IV. THE THERMODYNAMICAL SCHEME IN THE SZAFRON MODELS WITH b850

The metric of the Szafron models withb850 is

ds25dt22e2adz22e2b~dx21dy2!, ~4.1!

where

eb5F~ t !/@11 1
4 k~x21y2!#, ~4.2!

ea5l~ t,z!1Seb, ~4.3!
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S5@ 1
2 U~z!~x21y2!1V1~z!x1V2~z!y12W~z!#, ~4.4!

k is an arbitrary constant,U(z), V1(z), V2(z) andW(z) are arbitrary functions, the functionF(t)
is determined by the equation

2F,tt /F1F,t
2/F21k/F21kp~ t !50, ~4.5!

wherep(t) ~the pressure in the perfect fluid source! is an arbitrary function, and the functio
l(t,z) is determined by the equation

Fl,tt1F,tl,t2~F,tt1F,t
2/F1k/F!l5U~z!1kW~z!. ~4.6!

The source in the Einstein equations is a geodesically and irrotationally moving perfec
with the pressurep(t), the velocity fieldua5d0

a and the energy-density given by

ke52E~ t,z!e2a13~F,t
21k!/F2, ~4.7!

where

E~ t,z!:5lF,tt /F2l,tt[F,tl,t /F2~F,t
21k!l/F22~U1kW!/F. ~4.8!

The b850 means thatb does not depend onz; this case has to be considered separa
because the limitb,z→0 of the corresponding solutions withb,zÞ0 is singular; see Sec. V. An
overview of properties of these solutions, along with a complete list of literature about the
given in Ref. 13. Theb850 solutions simultaneously generalize the Robertson–Walker~R–W!
metrics~which result whenl50 andU52kW, k is the spatial curvature index in the limit! and
metrics with the Kantowski–Sachs~K–S! symmetry13,17,18 ~which result when
U5V15V25W5l,z50!.

With no loss of generality, we can assumeW(z)50. This specialization amounts to jus
redefiningU andl ~see Ref. 13!, and we shall do so in the following.~After such a specialization
the R–W limit changes to$U52ku(z), l5Fu%!. Note that the coordinatez is not defined
uniquely. All the formulae given are covariant with the transformationsz5 f (z8), where f is an
arbitrary function. The particle number density function obeying~1.3! has here the form
n5N(x,y,z)e2a22b, whereN(x,y,z) is an arbitrary function.

Equation~2.2! implies hereN5e2BF(SeB,z), whereeB5eb/F, and

@~l/F1X!E,Z2El,Z /F#F,X /F1EF,Z /F5E,Z , ~4.9!

whereX5SeB, Z5z. This is a quasi-linear partial differential equation determiningF(X,Z).
However, the coefficients in~4.9! do depend on time, whileF should be, by the definition ofN,
independent oft. We first solve~4.9! as ifF were allowed to depend ont, and then we impose the
conditionF,t50. The general solution of~4.9! is F5EG~U!, whereG is an arbitrary function and
U:5(l/F1X)/E1 f (t), with f (t) being another arbitrary function. The conditionF,t50 reads
now as

E,tG1G,U@~l/F!,t2~l/F1X!E,t /E1 f ,tE#50. ~4.10!

Three cases arise here: I.E,t505G,U , this will turn out to be included in the case III below an
does not require a separate treatment; II.E,t50, (l/F),t52 f ,tE, this one will be considered
separately further on; III.E,tÞ0ÞG,U , this is the generic case that we will consider first.

In case III, Eq.~4.10! impliesG,UU50, i.e.,F5A(l/F1X)1c(t)E, whereA is an arbitrary
constant andc(t) is an arbitrary function. Now it is seen that the caseE,t505G,U is contained
here as the subcaseA505E,t5c,t . We can assumecÞ0 because withc50 the conditionF,t50
J. Math. Phys., Vol. 38, No. 5, May 1997
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implies eitherA5F50, i.e., n502a thermodynamical nonsense, or~l/F!,t50, i.e., a R–W
metric. The conditionF,t50 implies nowAl/F1cE5H(z), whereH(z) is an arbitrary func-
tion. Substituting the definition ofE into this we obtain

l,t5K~ t !l1L~ t,z!, ~4.11!

where

K~ t !:5F,t /F1k/~FF,t!2A/~cF,t!, L~ t,z!:5U~z!/F,t1H~z!F/~cF,t!. ~4.12!

~We may assumeF,tÞ0 because otherwisep5const.! The solution of Eq.~4.11! is

l5J~z!e*Kdt1e*KdtE Le2*Kdtdt, ~4.13!

whereJ(z) is another arbitrary function ofz. Substituting~4.13! into ~4.6! we obtain an equation
of the following form:

J~z!F1~ t !1U~z!F2~ t !1H~z!F3~ t !50, ~4.14!

whereF1 , F2 andF3 are functions oft composed ofF,c and their derivatives~see Appendix A!.
Three possibilities now arise.

~a! All the three functionsJ, U and H are linearly independent. Then~4.14! implies
F15F25F350, and it can be shown from~4.5! and ~4.6! that p5const, so this case is thermo
dynamically trivial.

~b! Two of the functions$J,U,H% are linearly independent, while the third one is their line
combination. In each of these cases, two linear combinations of the functions$F1 ,F2 ,F3% must
vanish, which leads to a set of two differential equations to be obeyed byc(t) andF(t). Some of
the resulting solutions are nontrivial, but not all of them. For example, the trivial solution
point ~a! reappears in the two cases:H50, with $J,U% being linearly independent, andU50, kÞ0
with $J,H% being linearly independent. However, withU5k50 and$J,H% being linearly inde-
pendent, the functionsF andc have to obey only one equation:

F,tt52A/c13F,t
2/F2c,tF,t /c, ~4.15!

which means thatF(t) can be arbitrary,p(t) ~in general nontrivial! is determined by~4.5! with
k50, andc(t) is determined by~4.15!. It can be shown~by careful retracing and adaptation of th
reasoning in Ref. 19 to the casepÞ0! that withU5k50, ~l/F!,tÞ0 and genericV1 andV2 the
model has no symmetry. Hence, the case we have just identified is an example of a Szafrob850
model with no symmetry that allows for a thermodynamical scheme.

~g! Each pair in the set$J,U,H% is linearly dependent. This means that there is only o
function of z in this set and thatF andc are connected by~4.14! with J, U, andH replaced by
arbitrary constants, i.e.,F(t) is again arbitrary. It can be shown again that the Szafron model
in general no symmetry also in this case, so we have here another example of a model
thermodynamical scheme and with no symmetries. The case discussed by Quevedo and S7

is contained in the class~g! as the caseJ5H5F250.
It remains now to investigate the case II of the three cases listed after Eq.~4.10!. We have then

E,t50 and

l52E~z! f ~ t !F~ t !1H~z!F~ t !, ~4.16!

whereE(z) andH(z) are arbitrary functions. Thisl must obey~4.6! with W50 and~4.8! with
E5E(z). The conditionF,t50 is identically satisfied. This subcase has nonzero shear as lo
J. Math. Phys., Vol. 38, No. 5, May 1997
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f ,tÞ0 ~if f ,t50, then the thermodynamically trivial solution withF,t50 results!. Equations~4.16!,
~4.6! and ~4.8! lead to the following two equations determiningF and f :

f ,t5k f /~FF,t!21/F,t2C/~FF,t!, ~4.17!

F~F1C!F,tt2k~F1C!2~3F1C!F,t
25~2k1FF,tt2F,t

2!k f , ~4.18!

whereC is an arbitrary constant. The functionsE, H andU are connected bykH1U5CE. When
k50, Eq.~4.18! decouples from~4.17!. Even in that special case,p is not constant and the solutio
has in general no symmetry. Hence, this is another example of a Szafronb850 model without a
symmetry and with a nontrivial thermodynamical scheme.

V. THE THERMODYNAMICAL SCHEME IN THE SZAFRON MODELS WITH b8Þ0

The metric of these models is of the same form as in~4.1! but here~in a notation adapted from
Szafron8!:

eb5F~ t,z!/S~x,y,z!, ea5h~z!S•~eb!,z , ~5.1!

S:5A~z!~x21y2!12B1~z!x12B2~z!y1C~z!, ~5.2!

whereh, A, B1, B2 andC are arbitrary functions ofz, the functionF(t,z) is determined by Eq.
~4.5! with k being a function ofz that obeys the relationship:

AC2B1
22B2

25 1
4 @h22~z!1k~z!#. ~5.3!

Note that the limitb,z→0 of this solution is singular. Therefore the caseb,z50 discussed in Sec
IV has to be derived separately from the Einstein equations. The source in the Einstein eq
is again a geodesically and irrotationally moving perfect fluid with the velocity fieldua5d0

a , the
arbitrary pressurep(t), and the energy–density:

ke5~h/F2!E~ t,z!e2a13~F,t
21k!/F2, with E~ t,z!5F~F,t

21k!,z22F,z~F,t
21k!.

~5.4!

The R–W limit results whenF5zR(t), andk5k0z
2, wherek0 is a constant~the spatial curvature

index of the R–W metric!.13,20 The particle number density function defined by~1.3! is here
n5N(x,y,z)e2a22b. In this case, Eq.~2.2! can be shown~by a rather long and tedious calcula
tion! to either reduce the solution~5.1!–~5.4! to dust or to impose a symmetry group on it. Th
group has at least 3 dimensions, and its orbits are at least two-dimensional. Hence, for th
of Szafron models a nontrivial thermodynamical scheme can exist only if there are symmet
the spacetime.

VI. CONCLUSIONS

We have verified the following
1. For the Stephani Universe and the Szafron models withb8Þ0 a nontrivial thermodynamica

scheme~that is, one in whichpÞ0! can exist only in those subcases in which the spacet
acquires an at least 3-dimensional symmetry group acting on at least 2-dimensional orbits

2. The Szafron model withb850 does have subcases that have no symmetry and allow
nontrivial thermodynamical scheme. In the subcase of class~g! in Sec. IV, the scale factorF(t)
remains arbitrary, but the form of the functionl is limited. In the nontrivial subcases of class~b!,
the evolution of the scale factor is fixed, while the generality ofl is limited to a lesser degree.

Like we stated in the Introduction, only the first result is conclusive. For the Szafron m
with b850 it remains to be verified whether among the functionsn there are any which obey a
J. Math. Phys., Vol. 38, No. 5, May 1997
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interpretable equation of state. Also, as stated in the Introduction, the negative result of p
above only means that these models cannot be interpreted as single-component perfect fl
remains to be seen whether they can be interpreted as noninteracting mixtures of perfect fl
mixtures in which reversible chemical reactions occur. Our results show that there is no s
connection between the existence of a thermodynamical scheme and symmetries.

The hope that motivated this paper was that the Gibbs–Duhem equation~1.2! would force a
definite form upon the arbitrary functions of time in the models, and thus would play a simila
as the equation of state does. This happens indeed in the class~b! models of Sec. IV, but it is not
a general rule. In the class~g! models of Sec. IV, the one arbitrary function of time,p(t), survives
intact after the integrability of~1.2! is ensured.

In those classes in which arbitrary functions of time are present in spite of the lac
symmetry, an equation of state still has to be imposed on the resulting solution. We reca~see
Refs. 3 and 21! that for the Szafron model the barotropic equation of statep5p(e) trivializes it to
a spatially homogeneous one~and in particular to an R–W one in some cases!.
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APPENDIX A

The three functions appearing in Eq.~4.14! are defined as follows:

F1~ t !5Fk/F2kF,tt /F,t
21AFc,t /~c2F,t!1AFF,tt /~cF,t

2!

1S kF2
A

c D 2F/F,t
22

3A

c GexpS E KdtD , ~A1!

F2~ t !5F1~ t !E ~1/F,t!expS 2E KdtDdt111
k

F,t
22

AF

cF,t
22

FF,tt
F,t

2 , ~A2!

F3~ t !5F1~ t !E F F

cF,t
GexpS 2E KdtDdt1S F

c D
3F11

k

F,t
22

AF

cF,t
22

FF,tt
F,t

2 G1
2F

c
2

F2c,t
c2F,t

, ~A3!

whereK(t) is given by~4.12!.
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Stationary Bianchi type II perfect fluid models
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Einstein’s field equations for stationary Bianchi type II models with a perfect fluid
source are investigated. The field equations are rewritten as a system of autono-
mous first-order differential equations. Dimensionless variables are subsequently
introduced for which the reduced phase space is compact. The system is then
studied qualitatively using the theory of dynamical systems. It is shown that the
locally rotationally symmetric models are not asymptotically self-similar for small
values of the independent variable. A new exact solution is also given. ©1997
American Institute of Physics.@S0022-2488~97!04505-2#

I. INTRODUCTION

Dynamical systems methods have been used for over 20 yr for studying the behav
different models in general relativity, especially in the field of cosmology; see, e.g., Ref. 1
dynamical systems approach constitute a powerful tool when one wants to study asympto
intermediate behavior. It allows one to obtain a good understanding of the models, even tho
may be impossible to solve the corresponding equations exactly. Most of the attractors
cosmological context have turned out to be self-similar solutions, but there are also more
ones, e.g., the Mixmaster attractor. In this paper we will apply the dynamical systems appro
the stationary Bianchi type II models. It will be shown that the locally rotationally symme
~LRS! models are not asymptotically self-similar for small values of the independent vari
Instead the attractor is described by a heteroclinic cycle. To our knowledge, the stationar
type II models yield the simplest example of a non-self-similar attractor in general relativity

We will consider Bianchi type II models that admit a simply transitive group of isomet
acting on three-dimensional hypersurfaces, which are time-like. The line element can be wri
ds25habv

avb, where theva’s are the 1-forms,

v05D1~x!~dt1cy dz!, v15dx, v25D2~x!dy, v35D3~x!dz, ~1!

andhab5diag(21,1,1,1). The parameterc is a constant. The source is assumed to be a per
fluid for which the energy-momentum tensor has the formTab5muaub1p(hab1uaub), wherem
is the energy-density,p the pressure, andua the 4-velocity of the fluid. The components of th
fluid 4-velocity areua5(1,0,0,0). An equation of state of the formp(m)5(g21)m with 1,g
,2 is also assumed. The metric coefficientsD1 , D2 , andD3 are closely related to the kinematic
properties of the normal congruence of the symmetry surfaces. Note that this congrue
space-like. The expansionu and the shears6 are given by

u5
d

dx
~ ln D1D2D3!,

s152
1

2

d

dx S ln D1
2

D2D3
D , s25

)

2

d

dx S ln D2

D3
D . ~2!
0022-2488/97/38(5)/2611/5/$10.00
2611J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ng the
er the
n

ng the
pact

2612 U. S. Nilsson and C. Uggla: Stationary Bianchi type II perfect fluid models

¬¬¬¬¬¬¬¬¬¬
We also define

n5
1

4
c2S D1

D2D3
D 2.0. ~3!

Einstein’s equations,Gab5Tab , lead to the following.
Evolution equations:

u̇52 1
3u

22 2
3s1

2 2 2
3s2

2 2 1
2~22g!m, ~4!

ṡ152us114n2gm, ~5!

ṡ252us2 , ~6!

ṅ52 2
3~u14s1!n. ~7!

Defining equation for m:

~g21!m5 1
3u

22 1
3s1

2 2 1
3s2

2 2n. ~8!

These equations can also be found from the orthonormal frame approach by specializi
equations of Ref. 2 to the present models. The above set of equations is invariant und
transformation (u,s1 ,s2 ,n)→(u,s1 ,2s2 ,n). Therefore, without loss of generality, one ca
assumes2>0. We can use the fact thatm is non-negative, together with Eq.~8!, to see thatu is
a ‘‘dominant’’ quantity. Note also thatu, because of Eq.~8!, cannot change sign.

We now introduceu-normalized variables:

S65
s6

u
, N5

3n

u2
, V5

3m

u2
. ~9!

The introduction of a dimensionless independent variableh according tou dx53 dh, leads to a
decoupling of theu equation,

u85
du

dh
52~11q!u, q:52S1

2 12S2
2 1

1

2
~22g!V. ~10!

The remaining equations can now be written in dimensionless form.
Evolution equations:

S18 52~22q!S114N2gV, ~11!

S28 52~22q!S2 , ~12!

N852~q24S1!N. ~13!

Defining equation for V:

~g21!V512S1
2 2S2

2 2N. ~14!

The boundary consists of a number of invariant sets that are important in understandi
dynamics of interior orbits and we will therefore include them. Moreover, this yields a com
reduced phase space. The boundary is given by~i! the static Bianchi type I models,N50, and~ii !
the vacuum submanifold,V50. There is also the locally rotationally symmetric~LRS! submani-
J. Math. Phys., Vol. 38, No. 5, May 1997
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fold given by S250, which divides the phase space into two parts, related by the dis
symmetryS2→2S2 . Note that the rotation of the fluid is nonzero, sincev25n5Nu2/3.2

II. DYNAMICAL SYSTEMS ANALYSIS

We start by listing the equilibrium points and the corresponding value ofV, which shows if
the point is located on the vacuum submanifold or not. The eigenvalues for each point ar
given but we refrain from giving the eigenvectors explicitly.

The equilibrium points K:

S1
2 1S2

2 51, N50; V50, ~15!

~5g26!12gS1

g21
, 4~122S1!, 0. ~16!

The equilibrium point W:

S15
22g

2~5g24!
, S250, N5

3~5g224!

4~5g24!2
, V5

3~7g26!

~5g24!2
, ~17!

212~g21!263Al

2~5g24!~g21!
, 212

g21

5g24
, ~18!

where

l52~g21!@8~g21!32~7g26!~5g224!#. ~19!

The first two eigenvalues ofW are always complex with a negative real part for 1,g,2. The
point lies in the LRS submanifold and corresponds to the self-similar solution in Ref. 3.

Second, we note that the equations corresponding to the static Bianchi type I boundN
50, can be solved exactly. We find that

S25
s2

11As1
~11AS1!, A:5

5g26

2g
, ~20!

wheres6 are constants satisfyings1
2 1s2

2 51. The vacuum boundary,V50, is also solvable:

S25
s2

s122
~S122!, N512S1

2 2S2
2 . ~21!

A non-LRS exact solution that is characterized by a constant value ofS15(22g)/„2(5g24)…
can also be found~the solution was found using the Hamiltonian approach developed in Re
see the Appendix for the explicit line element!. The orbit starts on the Kasner circleK and ends at
the pointW. This solution is important as the orbits in the interior non-LRS part of the ph
space spiral around it. The situation is analogous to that of the spatially homogeneous Bianc
II models.5

The system of differential equations admits an increasing monotone functionZ in the interior
phase space, excluding the pointW whereZ takes its maximum value~this monotone function has
been found by using the Hamiltonian methods developed in Chap. 10 in Ref. 1!. The function is
given by

Z5
NmV12m

~12vS1!2
, v:5

22g

2~5g24!
, m:5

5g224

~11g210!~3g22!
, ~22!
J. Math. Phys., Vol. 38, No. 5, May 1997
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with

Z8

Z
516~g21!

„2~5g24!S12~22g!…213~3g22!~11g210!S2
2

~11g210!~3g22!@2~5g24!2~22g!S1#
. ~23!

This monotone function prevents the existence of equilibrium points, periodic orbits, recu
orbits, and homoclinic orbits in this region; see, e.g., Ref. 6.

The phase portraits of the boundaries are given in Figs. 1~a!–1~d! while the phase portrait o
the LRS submanifold is shown in Fig. 1~e!. We see from the latter that orbits asymptotica
approachW whenh→`, while for h→2` there exists a heteroclinic cycle, described by t
LRS type I and the LRS vacuum submanifolds. Figure 1~f! depicts the phase space of the Bianc
type II non-LRS models. Note, in particular, the exact solution characterized byS15(2
2g)/„2(5g24)…. All other non-LRS orbits start at the Kasner circle,K, and spiral around this
orbit towardW. In this case the LRS heteroclinic cycle is no longer an attractor. Instea
describes the intermediate behavior of those orbits that come ‘‘close’’ to it.

So far we have only discussed the mathematical features of the stationary type II m
However, they might also be of some physical interest. Wainwright has speculated that the
tion corresponding to the equilibrium pointW might be interpreted as an approximation to t
interior of a rotating disk of matter.3 This interpretation should also pertain to the non-self-sim
LRS models and perhaps also to the non-LRS models since they asymptotically approaW.
However, the main importance of the present models is probably as part of a bigger picture,
they may act as building blocks. The phase space of the present models form part of the bo
of more general stationary Bianchi models and hypersurface self-similar models~see Ref. 2!.
These models in turn form part of the boundary of more general models like the phys
interestingG2 models; see, e.g., Ref. 7. When studying these models one thus has to be ob
of the behavior associated with the present heteroclinic cycle, which could be expected to d
asymptotic or intermediate oscillating spatial behavior.
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FIG. 1. The phase portraits of the stationary Bianchi type II models corresponding to~a! theN50 boundary for 1,g
,

6
5, ~b! theN50 boundary forg5

6
5, ~c! theN50 boundary for

6
5,g,2, ~d! the vacuum boundary,V50 projected onto

theS6 plane,~e! the LRS submanifold,S250, and~f! the full phase space.
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APPENDIX A: THE NON-LRS EXACT SOLUTION

The line element for the non-LRS exact solution is given by

ds252@x~x1a!#1/2~dt1cy dz!21@x~x1a!#q dx21xp1~x1a!p2dy21xp2~x1a!p1dz2,
~A1!

with

q52
3g24

4~g21!
, p65

3g226d

8~g21!
,

~A2!

d5A~11g210!~3g22!, c25
5g224

16~g21!2
,

wherea is a constant. Settinga50 yields the self-similar solution of Ref. 3. For the remaini
non-self-similar solutions one can seta51 by using the scale invariance.
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General static axially symmetric solutions of (2 11)-
dimensional Einstein-Maxwell-Dilaton theory

Dahl Park and Jae Kwan Kim
Department of Physics, KAIST, Taejon 305-701, Korea

~Received 6 August 1996; accepted for publication 10 December 1996!

We obtain the general static solutions of the axially symmetric~211!-dimensional
Einstein-Maxwell-Dilaton theory by dimensionally reducing it to a two-
dimensional dilaton gravity theory. The solutions consist of the magnetically
charged sector and the electrically charged sector. We illuminate the relationship
between the two sectors by pointing out the transformations between them.
© 1997 American Institute of Physics.@S0022-2488~97!01505-3#

I. INTRODUCTION

The low dimensional analogs of the four-dimensional general relativity are useful mod
extract the analytic information about the physics of gravitation, due to their vastly simp
dynamical content. Among particularly important models of this kind are the~211!-dimensional
general relativity1–3 and the various two-dimensional dilaton gravity models,4 such as the Callan
Giddings-Harvey-Strominger theory5 and the Jackiw-Teitelboim6 theory. If we only consider the
axially symmetric sector of the~211!-dimensional general relativity, the dynamics of the probl
becomes essentially two-dimensional. The focus of this paper is to obtain the general
solutions of the axially symmetric~211!-dimensional Einstein-Maxwell-Dilaton theory by dimen
sionally reducing it to a two-dimensional dilaton gravity theory.

The dimensional reduction we use in this paper has been originally utilized in Ref. 7 to o
general static spherically symmetric solutions of theD-dimensional (D.3) Einstein-Maxwell-
Scalar theories. However, as reported in that paper, the determination of the analytic solut
the three-dimensional theory requires a different method, so it was not discussed there.
paper, we find it is actually rather straightforward to give an analytic treatment of the t
dimensional case. In that sense this paper is a natural supplement for Ref. 7. However
important motivation for this work comes from the fact that the~211!-dimensional gravity itself
is interesting. What we get in this paper is general static and axially symmetric solutions. Thu
recover as special cases the results of Ref. 2 where the magnetically charged, static, and
symmetric solution is obtained, and Ref. 3, where one finds the electrically charged so
Moreover we also include a dilaton field, which plays an important role in string theory, or o
Klein-Kaluza type theories,8 in our general consideration.

In the following section, we present the dimensional reduction of the~211!-dimensional
gravity theory to a two-dimensional dilaton gravity theory. The geometrical property of the ax
symmetric ~211!-dimensional space-time is different from that of the spherically symme
D-dimensional space-time. Thus, the treatment ofU(1) gauge field is quite different from th
D-dimensional Einstein-Maxwell-Scalar theories. We are led to separately consider the e
cally charged case and the magnetically charged case. The general static solutions of the r
two-dimensional dilaton gravity theory for electrically charged case are presented in the A
dix, from which we can also get magnetically charged solutions by utilizing an electric/magn
duality-like transformation. Our results in the Appendix are in itself interesting, since it g
exact general static solutions for a class of the two-dimensional dilaton gravity theorie
considered elsewhere in literature. The class of theories in the Appendix contains, as its
case, the~211!-dimensional gravity which is the main concern of this paper.
0022-2488/97/38(5)/2616/10/$10.00
2616 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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II. GENERAL SOLUTIONS OF THE (211)-DIMENSIONAL GENERAL RELATIVITY

We consider the axially symmetric reduction of the~211!-dimensional Einstein-Maxwell-
Dilaton theory

I5E d3xAg~3!SR~3!2
1

2
g~3!i j ] i f ] j f1

1

4
ex fF2D ~1!

to a two-dimensional dilaton gravity theory. HereR(3) andgi j
(3) represent the~211!-dimensional

scalar curvature and metric tensor, respectively, and Latin indicesi , j run over the~211! space-
time coordinate labels. We also haveF the curvature two-form for aU(1) gauge field andf a
dilaton field. We can writeFi j5] iAj2] jAi in terms of the vector potentialAi . The non-zero
value of the real parameterx couples the dilatonf to theU(1) gauge field in the manner found i
the Klein-Kaluza theory or in the low energy target space effective theory of the string theory8 As
the first step of the dimensional reduction, we write the axially symmetric~211!-dimensional
metric as the sum of the longitudinal part~with two-dimensional metricgab where Greek indices
a, b run over the~111! space-time coordinate labels! and the transversal angular part

ds25gabdx
adxb2e24fdu2. ~2!

The transversal angular part corresponds to a unit circle in the case of the axial symmetry,
u corresponds to the angle of a point on the circle. For definiteness, we choose to descr
longitudinal two-dimensional space-time in terms of conformal gauge with conformal coord
x6. In other words, we havegabdx

adxb52exp(2r)dx1dx2 for the longitudinal metric, where
exp(2r) is the conformal factor. Thef field, the scale factor of the transversal metric, will
interpreted as the two-dimensional dilaton field under the dimensional reduction. We us
(122) signature throughout this paper. The axial symmetry requires that the metricgab , the
dilaton field f and the two-dimensional dilaton fieldf do not depend onu. The three component
of the ~211!-dimensional two-form curvature,F21 , F1u , andF2u, should not depend onu
either~in fact their vector potential can also be chosen to be independent ofu). However, unlike
the higher dimensional spherical symmetry case,F6u do not have to vanish in general under t
requirement of the axial symmetry.

The equations of motion from our action~1! are given by

Ri j
~3!2 1

2R
~3!gi j

~3!5Ti j
m ~3!

by varying the action with respect to the~211!-dimensional metric tensor,

Di~e
x fFi j !50 ~4!

for theU(1) gauge field, and

g~3!i j DiD j f1
x

4
ex fF250 ~5!

for the dilaton fieldf . HereD denotes the covariant derivative in~211!-dimensional space-time
and Ti j

m is the stress-energy tensor of theU(1) gauge field and the dilaton fieldf . After the
imposition of the axial symmetry, all of the above equations, except the (6,u) components of Eq.
~3!, can be obtained from a two-dimensional dilaton gravity action

I5E d2xA2ge22fFR2
1

2
gab]a f ]b f1

1

4
ex fgabggdFagFbd2

1

2
ex f14fgabFauFbuG , ~6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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which is obtained from~1! by imposing the axial symmetry and integrating out theu coordinate.
We note that the sum over the repeated indices run only throughx1 andx2, the two-dimensional
longitudinal space-time. By varying~6! with respect to the two-dimensional metricgab , we
recover (1,1), (2,2) and (2,1) component equations of~3!. The (u,u) component of~3! is
obtained by varying~6! with respect to the two-dimensional dilaton fieldf. The two-form cur-
vature of the gauge fieldF is composed of the electric fieldF21 and the magnetic fieldF6u .
When we consider static and axially symmetric equations of motion, we can show
F1u5]1Au5]2Au5F2u sinceA6 does not depend onu and, under a suitable choice of con
formal coordinates,Au depends only on a space-like coordinatex5x11x2. Thus,F6u contains
only magnetic fields and no electric fields~i.e., F1u2F2u50), as far as the static analysis
concerned. By inserting~2! into the (6,u) components of the Einstein tensorRi j

(3)2gi j
(3)R(3)/2, we

can verify that they identically vanish. Consequently, the (6,u) components of Eq.~3! reduce to

T6u
m 56ex f22rF12Fu61 1

2 ]6 f ]u f50,

which becomes

F12Fu650 ~7!

upon imposing the axial-symmetry. Thus, our original system reduces to a two-dimensiona
ton gravity action~6!, which is of the type we solve in the Appendix. The only missing inform
tion in ~6! is supplied by Eq.~7!; it simply states that we have either electrically charged soluti
or magnetically charged solutions, but no dyonic solutions which have both magnetic and e
charges.

First, we consider the purely electrically charged case, for which we setF6u50 and
F21Þ0. Then, we immediately find~6! reduces to~A1! in the Appendix with the assignment o
g5m5e50. Thus, we can follow the calculations in the Appendix leading to the action

I e5E dxF V̇ṙ2
1

4
V ḟ 21

1

4
ex f22rVȦ2G , ~8!

where we introduceV5exp(22f) and a space-like coordinatex5x11x2. All the functions
depend only onx, and we also introduceF215Ȧ with the overdot representing the differentiatio
with respect tox. Getting the general static solution in the conformal gauge is tantamou
solving the equations of motion derived from the action~8! under the gauge constraint

V̈22ṙV̇1 1
2 V ḟ 250. ~9!

From Eq.~A22!, Eq. ~A24!, Eq. ~A25! and Eq.~A26!, we get

2uQue2r5ex f1e2sI~A!, ~10!

f ~A!5
1

x
~2sI~A!2 lnuP~A!u!1 f 1 , ~11!

V25e24f0uP~A!u22/x2e~8s22 f2!I ~A!/~2sx2!, ~12!

x2x05E V~A!

P~A!
dA, ~13!

whereQ, s, f 0, c, f 1, f0 andx0 are constants of integration9 and
J. Math. Phys., Vol. 38, No. 5, May 1997
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P~A!5~2s2x f 0!A1
x2

2
QA21c.

HereQÞ0, f 252x2f 0
214sx f 012x2Qc and I (A)5*P(A)21dA. From Eq.~A27!, we can re-

write the ~211!-dimensional metric in the geometric gauge as

ds25
P

2Q
ex fFdT22 1

16P2 S dAdf D 2dr2G2r 2du2, ~14!

where r5V and 2T5x12x2 is the natural time-like coordinate orthogonal to the space-
coordinatex5x11x2.

Now we consider the purely magnetically charged case whereF2150 and F6uÞ0. To
obtain the general static solutions, we once again assume all fields depend on a single sp
variablex5x11x2 under a suitable choice of the conformal gauge. The static magnetic field
thus, be written asF2u5F1u5Ȧ, where the overdot represents the differentiation with respec
x, as before. Then, the static equations of motion from~6! can be derived from the following
action,

I m5E dxF V̇ṙ2
1

4
V ḟ 22

1

4
ex fV21Ȧ2G , ~15!

along with the gauge constraint whose static version is given by the condition

V̈22ṙV̇1 1
2 V ḟ 21 1

2e
x fV21Ȧ250. ~16!

We could follow the analysis in the fashion given in the Appendix to solve the above equatio
motion. However, we take an alternative route here. We observe that there exists a transfor
of fields that maps~15! into ~8!. Namely, under the transformationT me defined by

T me:~V,er,A, f !→~er,V,2 iA, f !,dx→erV21dx, ~17!

the magnetic action~15! transforms exactly into the electric action~8!. In addition to this, under
the transformationT em defined as

T em:~V,er,A, f !→~er,V,1 iA, f !,dx→erV21dx, ~18!

the electric action~8! changes into the magnetic action~15!. We note that bothT emsT me and
T mesT em are the identity map in the space of fields. In fact, recalling thatF125Ȧ in the
electrically charged case andF6u5Ȧ in the magnetically charged case, the above transformat
are similar to the usual electric/magnetic duality transformations where one transformsBW→2EW

(T me in our case! andEW→BW (T em in our case!.
Given these transformations, it is straightforward to write down the solutions for the mag

case utilizing our previous results for the electrically charged solutions. We introduceT me as a
field redefinition

V5er̄ ,er5V̄, f5 f̄ ,A52 iĀ,dx5er̄ V̄21dx̄. ~19!

Then the equations of motion for the redefined fields become identical to those in the elect
charged case and, as a result, the integrated form of them is given in~A13!–~A16! in the Appen-
dix. We have
J. Math. Phys., Vol. 38, No. 5, May 1997
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f 05V̄ f̄ 81
x

2
ex f̄ 22 r̄ V̄Ā8Ā, ~20!

2iQ5ex f̄ 22 r̄ V̄Ā8, ~21!

c05 r̄8V̄82 1
4 V̄ f̄ 821 1

4e
x f̄ 22 r̄ V̄Ā82, ~22!

s1c0x̄5 r̄8V̄, ~23!

where the prime denotes the differentiation with respect tox̄. The gauge constraint~16! changes
into

V̄r̄92 r̄8V̄81 1
2 V̄ f̄ 822 1

2e
x f̄ 22 r̄ V̄Ā8250 ~24!

under the field redefinition. Usingr̄9V̄5c02 r̄8V̄8, which is obtained by differentiating Eq.~23!,
we find that~24! precisely reduces to a conditionc050 just as~9! gives the same condition. Thus
we can write down the solutions~using original field variables! immediately as follows:

2QV2e2x f5~2s2x f 0!A2
x2

2
QA21c[P~A!, ~25!

f ~A!5
1

x
~2sI~A!2 lnuP~A!u!1 f 1 , ~26!

e2r5e24f0uP~A!u22/x2e~8s22 f2!I ~A!/~2sx2!, ~27!

x2x05E V~A!

P~A!
dA, ~28!

where f 252x2f 0
214sx f 022x2Qc. These are the general static solutions for the magnetic

charged case.
The transformationsT me andT em are similar to the usual electric/magnetic duality. In ge

eral time-dependent~211!-dimensional case, there are two components for the electric field a
single component for the magnetic field. Thus, this is not a duality transformations in the
sense of the four-dimensional case. However, as far as static solutions are concerned, the
of components for both electric and magnetic fields is one, so the existence of duality-like
formations is not as bothering as it first seems.

If F215F6u50, the equations of motion are solved in the Appendix. From Eq.~A17!, Eq.
~A18! and Eq.~A20!, we have

f ~z!5plnu ln zu1p~ lnu2su2r0!, ~29!

ds25~ ln z!2dt22u ln zup
2/2c1

22z22~dz21z2du2!, ~30!

wherep5 f 0 /s, c1
25u2su2p2/2er0p

2/222c1 /s, ln z56er/(2s) anddt562sdT. These results are th
same as those given in Ref. 2.

In the absence of the dilaton field, namely iff 05 f 15x50, our results reduce to the solution
found in the literature. For electrically charged solutions, Eq.~10! becomes

2Qe2r52sA1c ~31!
J. Math. Phys., Vol. 38, No. 5, May 1997
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and Eq.~12! yields10

V5e22f0e2QA/~2s!. ~32!

The x-dependence is given from Eq.~13! as

x2x05e22f0E eQA/~2s!

2sA1c
dA. ~33!

The ~211!-dimensional metric becomes

ds258Q2lnS r cr Ddt22 1

8Q2 S lnS r cr D D 21

dr22r 2du2, ~34!

where lnrc5Qc/(4s2)22f0, r5V anddt56s/(2Q2)dT. The electric field is

Frt57
Q

r
. ~35!

The above result is the same as the solution found by Gottet al.3. The magnetically charged
solutions are given by carefully takingx→0 limit of Eqs. ~26!–~28!:

2QV252sA1c, ~36!

e2r5e24f0eQA/s, ~37!

dA

dx
52QV. ~38!

The ~211!-dimensional metric for magnetic case is

ds25
e24f02cQ/~2s2!

4s2
eQ

2r2/s2@dt22dr2#2r 2du2, ~39!

wheredt562sdT, as given in Ref. 2. We note that even if the metric in~39! is related to the
metric ~34! via T me, the forms of each metric look quite different from each other in the g
metric gauge. The choice of conformal gauge makes the existence ofT me andT em clear.

III. DISCUSSIONS

We get the general axially symmetric static solutions of the~211!-dimensional Einstein-
Maxwell-Dilaton theory in this paper. The reason for the difference between this case and th
of theD-dimensional Einstein-Maxwell-Scalar theories (D.3) comes from the difference of th
transversal space in each case. In~211!-dimensional axially symmetric geometry, we have
Abelian symmetry, while the rotational symmetries forD.3 cases are non-Abelian. Thus, th
s-wave sector of the~211!-dimensional theory contains the magnetic sector. Another indi
consequence of this difference is that the decoupled equation for theV field @Eq. ~A25!# is the first
order differential equation rather than the second order one inD.3 case. This makes the analys
in this paper much simpler than that of Ref. 7. This illustrates our general point that the
dimensional analogs of the four-dimensional Einstein theory provide a more analytically tra
framework for the study of the gravitation.

The recent interest in~211!-dimensional gravity is partly due to Ref. 11 where one fin
black hole solutions after adding the negative cosmological constant term to the gravity acti
J. Math. Phys., Vol. 38, No. 5, May 1997
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consider in this paper.12 Thus, one of the most immediate generalizations of this paper is to
the negative cosmological constant to our action. It is interesting to note that the transform
T em andT me still exchange the magnetic and the electric sector of the theory even unde
generalization, rather similar to the conventional electric/magnetic duality in the four-dimens
Maxwell theory. Thus, in future attempts to solve the theory following our lines, it is suffic
enough to consider only the magnetic~or electric! sector of the theory. Additionally, it remains t
be seen whether one can find dyonic solutions in~211!-dimensional gravity coupled with a
U(1) gauge field, once we relax the condition of the rotational symmetry. The transforma
T em andT me will be helpful in getting an answer to this question.
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APPENDIX A: SOLUTIONS OF A CLASS OF TWO-DIMENSIONAL DILATON GRAVITY
THEORIES

The action we consider here is given by

I5E d2xA2ge22fFR1ggab]af]bf1me2lf2
1

2
gab]a f ]b f1

1

4
eef1x fF2G , ~A1!

whereR denotes the two-dimensional scalar curvature andF the curvature two-form for an
Abelian gauge field.f and f represent a dilaton field and a massless scalar field, respectively
parametersg, m, l, e and x are assumed to be arbitrary real parameters satisf
422l2e50 and 422l2g1e50. This case is not considered in Ref. 7 where they solved
422l2e Þ 0 and 422l2g1e50 case.

We choose to work in a conformal gauge given byg1252e2r1gf/2/2,g225g1150, and
choose the negative signature for a space-like coordinate and the positive signature for a tim
coordinate. In this conformal gauge our original action, modulo total derivative terms, is simp
to be

I5E dx1dx2S 4V]1]2r1
m

2
e2rV211V]1 f ]2 f2ex f22rVF21

2 D , ~A2!

whereV5e22f andF215]2A12]1A2 . The equations of motion in the conformal gauge a
given by

]1]2V1
m

4
e2rV211

1

2
ex f22rVF21

2 50, ~A3!

]1]2r2
m

8

e2r

V2 1
1

4
V]1 f ]2 f2

1

4
ex f22rF21

2 50, ~A4!

along with the equations for the massless scalar field

]1V]2 f1]2V]1 f12V]1]2 f1xex f22rVF21
2 50, ~A5!

and for the Abelian gauge fields

]2~ex f22rVF21!50, ~A6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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]1~ex f22rVF21!50. ~A7!

The equations for the Abelian gauge fields can be solved to give

F215e2x f12rV21Q, ~A8!

whereQ is a constant.
To get the solutions we need, in addition to the equations of motion, the gauge cons

resulting from the choice of the conformal gauge. They are given by

dI

dg66 50, ~A9!

whereI is the original action Eq.~A1!. We obtain the gauge constraints

]6
2 V22]6r]6V1 1

2 V~]6 f !
250. ~A10!

Now we have to find the static solutions of the equations of motion Eqs.~A3!–~A7! with the
constraints Eq.~A10!. The general static solutions can be found by assuming all functions ex
the gauge field depend on a single space-like coordinatex5x11x2. Then from Eq.~A8! we
observe that the variableF21 automatically becomes dependent only onx, and we can consis
tently reduce the partial differential equations into the coupled second order ordinary differ
equations~ODE’s!. The resulting ODE’s except the gauge constraint can be derived from
effective action

I5E dxF V̇ṙ2
m

8
e2rV212

1

4
V ḟ 21

1

4
ex f22rVȦ2G , ~A11!

where the overdot represents taking a derivative with respect tox and Ȧ5F21 . The gauge
constraints become

V̈22ṙV̇1 1
2 V ḟ 250. ~A12!

The general solutions of the above ODE’s are the same as the general static solutions
original action under a particular choice of the conformal coordinates.

The equations of motion can be integrated to the coupled nonlinear first order OD
constructing Noether charges of the effective action. We observe the following four contin
symmetries of the action Eq.~A11!:

f→ f1a, A→Ae2xa/2, A→A1a, x→x1a, x→xea, V→Vea,

wherea is an arbitrary real parameter of each transformation. The Noether charges for
symmetries are constructed as

f 05V ḟ1
x

2
ex f22rVȦA, ~A13!

2Q5ex f22rVȦ, ~A14!

c05 ṙV̇2
1

4
V ḟ 21

m

8
e2rV211

1

4
ex f22rVȦ2, ~A15!
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s1c0x5 ṙV. ~A16!

Note that the third Noether chargec0 is fixed to be zero (c050) by using the gauge constraint E
~A12! and the equation of motion forr which is derived from the effective action Eq.~A11!.

First, we find solutions when there is noU(1) gauge field. In the case ofs Þ 0, using Eq.
~A13!, Eq. ~A16! and Eq.~A15!, we get solutions forf andV in terms ofr as

f5
f 0
s

~r2r0!, ~A17!

V5ec1 /sef0
2
~r2r0!/~4s2!exp@me2r/~16s2!#, ~A18!

wherer0 andc1 are constants of integration. From Eq.~A16! we getx-dependence ofr as

x2x05s21E V~r!dr, ~A19!

wherex0 is a constant of integration. The metric becomes

ds254s2~ ln z!2dT22
V2

z2
~dz21z2du2! ~A20!

where lnz56er/(2s) and 2T5x12x2. In the case ofs50 we get

r5r0 ,

f5E f 0
V~x!

dx1 f 1 ,

V~x!5arbitrary function,

wherer0 and f 1 are constants of integration and 2f 0
25me2r0. The metric becomes

ds252e2r0F14 S dV

dx D 2dr22dT2G , ~A21!

wherer5V.
Second, we find solutions when theU(1) gauge field does not vanish. From Eq.~A13!, Eq.

~A16! and Eq.~A14! we get

2Qe2 r̄ 5~2s2x f 0!A1
x2

2
QA21c[P~A!, ~A22!

wherer̄5r2x f /2 andc is a constant of integration. From Eqs.~A13!, ~A14! and~A22! we can
determinef via

ḟ5
f 02xQA

P~A!
Ȧ, ~A23!

which upon integration becomes

f ~A!5
2s

x
I ~A!2

1

x
lnuP~A!u1 f 1 , ~A24!
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where I (A)5*P(A)21dA and f 1 is a constant of integration. The constant of integrationf 1
represents the trivial constant term which we can add to the scalar fieldf . Using Eqs.~A14! and
~A22!, we can rewrite Eq.~A15! as

8s
df

dA
5
4sQA12Qc2 f 0

2

P~A!
1

m

4Q
ex f . ~A25!

By integrating the above equation we getV(A) as a function ofA. SinceQ does not vanish, we
can findA as a function ofx by plugging Eq.~A22! into Eq. ~A14!,

x2x05E V~A!

P~A!
dA, ~A26!

wherex0 is the constant of integration. The metric is given by

ds252
P

2Q
ex f2gf/2F 1

16P2 S dAdf D 2dr22dT2G . ~A27!
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Affine realizations of sphere algebras
S. Brucea)
Departamento de Fı´sica, Universidad de Concepcio´n, Casilla 4009, Concepcio´n, Chile

P. Salgadob)
Sektion Physik, Universita¨t München, Theresienstrasse 37, 8000 Mu¨nchen 2, Germany
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The group Map(M ,G) of smooth mappings from a compact manifoldM to a
simple Lie groupG is an infinite-dimensional Lie group. The simplest case is when
M5S1. The central extension of the corresponding Lie algebra Map(S1,g) ~with g
the Lie algebra ofG! is an affine Kac–Moody algebra. The representations of
Map(S1,g) and of its central extension have been thoroughly investigated. Less
work has been done for higher-dimensionalM. We discuss the particular cases
whenM is the two- and three-spheresSn, n52,3. In this work we construct par-
ticular realizations of the centrally extended Map(Sn,g) from a given realization of
an affine Kac–Moody algebra. ©1997 American Institute of Physics.
@S0022-2488~97!01503-X#

I. INTRODUCTION

Let M be a compact manifold andG a compact simple Lie group. The group Map (M ,G) of
smooth maps fromM toG is an infinite-dimensional Lie group. The Lie algebra of this group a
its central extension, CMap(M ,g), arises naturally in many applications to field theory and s
tistical physics. The simplest case isM5S1 and the central extension is an affine Kac–Moo
algebra. The representations of Map(S1,g) and its central extensions have been thoroug
investigated.1 Less work has been done for higher-dimensionalM . Bars2 made an early, though
incomplete, study of the cases whereM is a two-sphere or a two-torus. Another interesti
example that has been worked out recently3 is the case whenM is a certain one-dimensiona
subspace ofSn, namely, the double coset SO(n,R)/SO(n11,R)/SO(n,R). The corresponding
mappings are those from ann-sphere toG which are invariant under left translations by eleme
from SO(n,R).

A general solution of the problem of the central extensions of Map(Sn,g), n52,3, has already
been obtained. The main results can be found in Refs. 4 and 5. Parallel studies, although
different perspective, have been carried out by other authors. In particular, the results of F
et al.5 are relevant. In this work affine realizations of the centrally extended Lie algebra
(Sn,g), n52,3, are constructed. In Sec. II the basic commutation relations of then-sphere algebra
are reviewed. In Sec. III the central extension of Map(Sn,g) is considered. Here we state that th
Kac–Moody algebra is contained in CMap(Sn,g). Next, we study some notably interesting e
tensions of Map(Sn,g) and their associated compatible~extended! diffeomorphism algebras. This
will allow us to construct realizations of the sphere algebras in terms of the Kac–Moody
Virasoro algebras. Our remarks are presented in Sec. IV.

II. ALGEBRAS

Let g be the Lie algebra of a compact simple Lie groupG andTa, 1<a<dim(g), a basis for
g with

@Ta, Tb#5 i f abcTc, ~2.1!

a!Electronic mail address: sbruce@halcon.dpi.udec.cl
b!Permanent address: Departamento de Fı´sica, Universidad de Concepcio´n, Chile.
0022-2488/97/38(5)/2626/5/$10.00
2626 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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where the structure constantsf abc satisfy the Jacobi identity and antisymmetry in the first tw
indices

f abdf dce1 f cadf dbe1 f bcdf dae50, f abc52 f bac. ~2.2!

For a compact simple finite-dimensional Lie algebrag we can choosef abc to be totally antisym-
metric satisfyingf abcf abd5dcd.

We denote by Map(Sn,G) the group of smooth mappingsg : Sn→G, from then-sphere toG,
and by Map(Sn,g) the corresponding infinite-dimensional Lie algebra. Near the identity

g~x!'12 i(
I

ua
I FI~x!T a[12 i(

I
ua
I T I

a . ~2.3!

Here theFl ’s form a complete set of orthogonal functions onSn. Identifying the u l
a as the

infinitesimal group parameters we see thatT l
a[T aFl are the generators of Map(Sn,g). This

algebra can be written as the productg^C`(Sn), whereC`(Sn) is the set of smooth functions o
then-dimensional sphere,Sn. The commutator is specified by the formula

@TaF1 , T
bF2#5@Ta, Tb# ^F1F2 . ~2.4!

whereF1 ,F2PC`(Sn).
To derive the expression for the commutation relations of the Lie algebra Map(S1,g) ~Ref. 1!

we identify u a
n as the infinitesimal parameters of Map(S1,G). We see thatTn

a[Tazn are the
generators of the algebra Map(S1,g). The basic commutation relations for the generatorsTn

a may
now be derived

@Tm
a , T n

b#5 i f abcT m1n
c . ~2.5!

On a basis where theT a’s are Hermitian operators, a consistent definition of the Hermitian adj

turns out to beT n
a† 5 T 2n

a .
For Map(S2,g),2,4 let us first consider the direct product of two spherical harmonics of

same arguments. They may be expanded in series as

Yl1m1
Yl2m2

5(
L

c~L1 ,L2 ;L !Ylm , ~2.6!

whereLi[l imi . Thus the commutation relations for the generatorsT L
a may now be derived

@T L1
a ,T L2

b #5 i f abcc~L1 ,L2 ;L !T L
c , ~2.7!

where there is a summation over the dummy indexL.
The analog of Eq.~2.7! for the three-sphere algebra may now be obtained. The manifoldS3 is

parametrized by the Euler anglesa,b,g ; the rotation matricesDmm
j (a,b,g) provide a complete

basis for functions onS3 ~from the Peter–Weyl theorem! and the analog of Eq.~2.6! for the
product of two rotation matrices is given by the celebrated Clebsch–Gordan expansion f
group SU~2!.

III. CENTRAL EXTENSIONS

Now we consider the basic commutation relations for the centrally extended algebras4 which
in general are of the form
J. Math. Phys., Vol. 38, No. 5, May 1997
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@T I1
a , T I2

b #5 i –* f abcc~ I 1 ,I 2 ;I !T I
c1dI1I2~A!

ab KA, ~3.1!

whereKA are the central generators that commute with each other and with all theT I
a generators

@KA, KB#50, @KA, T I
a#50. ~3.2!

Here,A is an index that labels the independent central elements; the precise nature of it w
made clear in the sequel.

At this point it is suitable to mention the result, stated by Pressley and Segal,6 concerning the
classification of the central extensions of the algebra Map(M ,g). The result is this: central exten
sions are labeled by elements of the spaceK5V1(M )/dV0(M ) of one-forms onM modulo exact
one-forms. Notice4 that in general the elements ofK are given by the sum of a coexact an
harmonic form. As before,M is a smooth manifold andG is compact and simple.

Returning to Eq.~3.1! we can look for nontrivial solutions ofdI1I2(A)
ab . By using the Jacobi

identity and the antisymmetry of the Lie commutators, a straightforward procedure whi
detailed in Ref. 4 allows one to obtain the nontrivial solutions

dI1I2~A!
ab 5dabdI1I2~A! , ~3.3!

where dI1I2(A) is a coefficient whose structure will depend on the manifoldM5Sn. For the
simplest case,n51, this coefficient will correspond to the central term of the Kac–Moody alge
CMap(S1,g), which is the central extension of the loop algebra Map(S1,g). This central extension
is unidimensional and essentially unique. On the chosen basis this is given by

dI1I2~A![dm1m2
5~21!m1m1dm11m2,0

. ~3.4!

For n52, CMap(S2,g) will be the central extension of the Lie algebra~2.7!. Here we find4

that the coefficientsdI1I2(A) have the form

dI1I2~A![dL1L2~L !5E
S2
Yl1m1S S ]Ylm

]m D ]

]f
2S ]Ylm

]f D ]

]m DYl2m2
dmdw. ~3.5!

Thus the independent extensions are labeled byL5( l ,m), andm5cosu.
For the case of the three-sphere algebra we have three variablesa, b, andg in contrast to two

of the earlier case. Consequently, we obtain a triply infinite set of central extensions

dJ1J2~J!
~r ! 5E D

m1m18

j 1 S ]Dmm8
j

]sp

]

]sq2
]Dmm8

j

]sq

]

]spDDm2m28

j 2 dV, ~3.6!

wheredV is the Haar measure onS3. Heres25z5cosb, s15a, s35g, and the independen
central terms are labeled byr ~51,2,3!, with p, q, andr in cyclic order, andJ5( j ,m,m8). Notice
that the coefficients~3.5! and ~3.6! are associated to coexact one-forms onSn since harmonic
one-forms are trivial onSn, n.1.

It is further known that Kac–Moody and Virasoro algebras can be combined into a large
algebra with the structure of a semidirect sum in which the Kac–Moody algebra appears
ideal. Is there a similar construction in the present case? For the spheresS2 andS3, the analogs of
the Virasoro algebra are, respectively, SDiff~S2! and SDiff~S3!—the algebras of area-preservin
diffeomorphisms ofS2 and S3. It has been shown4,5 that there does not exist a larger algeb
containing SDiff(Sn) and the centrally extendedn-sphere algebra. Note, however, that such str
ture does exist for SDiff(Sn) and the centerlessn-sphere algebra since the diffeomorphism alg
J. Math. Phys., Vol. 38, No. 5, May 1997
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bras act as derivations on the sphere algebras. This obstacle leads us to look for other
vector fields onSn which could form a semidirect sum with a particular extension of Map(Sn,g).
~See Ref. 5 for general treatment of diffeomorphisms compatible with a central extension.! To this
end we note that then-sphereSn, n.1, is a manifold which can be parametrized withm5n21
azimuthal angleswj , j51,...,m. This allows us to define a particularly interesting subset of ve
fields onSn. This set is defined by

Diff w~Sn!5$LI
~ j ![FI]/]w j%, ~3.7!

where theFI are again orthogonal functions onSn. Note that Diffw~S1! is just the centerless
Virasoro algebra. Now, the Lie algebras Diffw(S

n) and Map(Sn,g) form a semidirect sum since
the generators of the first set act as derivations on the elements of the second one. Thus

@LI1
~ j ! , TI2

a #5 im2
~ j !c~ I 1 ,I 2 ;I !TI

a . ~3.8!

The Lie algebra Diffw(S
n) can be centrally extended.7 One writes

@LI1
~ i ! , LI2

~ j !#5 ic~ I 1 ,I 2 ;I !~m2
~ i !LI

~ j !2m1
~ j !LI

~ i !!1CI1 ,I2~ I !
i j QI , ~3.9!

whereQI are the central generators that commute with each other and with each elementLI
( j ). The

Jacobi identity as applied to the commutator~3.9! leads to

c~ I 1 ,I 2 ;I !~m2
~ i !CII 3~B!

jk 2m1
~ j !CII 3~B!

ik !1c~ I 2 ,I 3 ;I !~m3
~ j !CII 1~B!

ki 2m2
~k!CII 1~B!

j i !

1c~ I 3 ,I 1 ;I !~m1
~k!CII 2~B!

i j 2m3
~ i !CII 2~B!

k j !50, ~3.10!

where a summation over the dummy indexI is understood. As a cocycle condition Eq.~3.10!
yields the desired central extensions. We can find some interesting nontrivial solutions o
~3.10!. For the case of the two-sphere algebra we take, say,i5 j5k51, I5L and set

CL1L2~L !
11 5m1~m1

221!c~L1 ,L2 ;L !dm11m2,0
. ~3.11!

The central term~3.11! resembles the one of the Virasoro algebra up to ac factor. We have not
found yet a general solution for the central extension of the whole Diffw~S3!. However, the
subalgebras$LJ

( i )%,Diff w~S3!, for i51 or i52, can be separately centrally extended. The cen
coefficientCJ1 J2 (J)

i j , i5 j , for these subalgebras are

CJ1J2~J!
i i 5m1

~ i !~m1
~ i !221!c~J1 ,J2 ;J!dm

1
~1!1m

2
~1!,0dm

1
~2!1m

2
~2!,0 . ~3.12!

The above shows that the number of central generatorsQL will be in fact infinite in both cases.
We now go back to Eq.~3.1!. We are interested in studying particular solutions for the cen

extensions~3.3! of then-sphere algebra,n52,3, which are compatible with the extended algeb
of diffeomorphisms onSn given above. It is easy to see that the sphere algebra central term
given

kLdL1L2~L !5dabm1k
Ldm11m2,0

c~L1 ,L2 ;L !, ~3.13a!

k~ i !JdJ1J2~J!
~ i ! 5dabm1k

~ i !Jdm11m2,0
dm181m28,0

c~J1 ,J2 ;J!. ~3.13b!

Now let us consider the case of the two-sphere algebras. Is it possible to construct a ce
extended sphere algebra Map(S2,g) from a given realization of the Kac–Moody algebra? T
J. Math. Phys., Vol. 38, No. 5, May 1997
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answer this question notice that we can realize the Lie algebras CMap(S2,g) and CDiffw~S2!, the
central extension of Diffw~S2!, associated with central terms~3.11! and ~3.13a! by setting

TL
a5Tlm

a [Ylm
~p!Tm

a , LL5Ylm
~p!Lm , KL5Klm[Ylm

~p!k, QL5Qlm[Ylm
~p!q, ~3.14!

where theTm
a and Lm are now the generators of a given representation of the semidirect

@Kac–Moody#%s@Virasoro# algebra, andk andq are the central generators of the correspond
algebras. TheYlm

(p)[Ylm(Vp) are spherical harmonics evaluated over a fixed pointp on the
two-sphere. The construction of the corresponding realization for the case of three-sphere
proceeds much the same way as in the previous case. The essential point is this: There a
two sets of central generators in contrast to the one of the early case. These will be written in
of those central generators labeled, according to the theorem of Pressley and Segal, with on
two possible harmonic one-forms on the two-torusT25S13S1. We conclude that the particula
realizations of CMap(Sn,g) defined above are basically determined by a realization of the K
Moody algebra CMap(S1,g) for n52 or a realization of CMap(T2,g) algebra, with a harmonic
central term, forn53, labeled by a pointp on the correspondingn-sphere. Correspondingly, th
associated compatible extended diffeomorphism algebras will be likewise constructed in te
a given realization of a Virasoro algebra. It is only in this sense that we call themaffine realiza-
tions of the sphere algebras.

IV. REMARKS

The Kac–Moody algebra is contained in Lie algebra CMap(Sn,g) ~Ref. 7! and particular
realizations of the extended sphere algebra are basically determined by a realization of the
Moody algebra. Here we recall that the WZW theory provides a Lagrangian realization o
Kac–Moody algebra. It is then motivating to look for an analogous realization of CMap(Sn,g).
Thus one would be able to use the Drinfeld–Sokolov reduction procedure to find a Lagra
realization of someW algebras which in turn are extended conformal algebras containing
Virasoro algebra.
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The Gel’fand–~Weyl!–Zetlin ~GWZ! description of theUq„sl~3!… irregular irreps at
roots of unity is explicitly given. Those are irreps fixed by the same parameters as
the unitary irreducible representations~UIRs! of SU~3! yet having dimensions
smaller than their classical counterparts, the reason being that to obtain an irregular
irrep one has to make factorization of an additional submodule. This description is
made geometrically transparent by an arrangement of the standard SU~3! GWZ
basis in a hexagonal pyramid, which is valid for anyq and seems new even for
q51. The pyramid has as a base the standard hexagon which gives the weight
space of the UIRs of SU~3! in the plane of third component of isospinI z and
hyperchargeY, while third dimension of this pyramid is related to the isospinI .
Algebraically this arrangement is related to a one-to-one correspondence between
the abstract GWZ states andmonomials in the algebra of raising generators
Uq~G

1!; however, those monomials are not in the standard Poincare´–Birkhoff–
Witt ~PBW! basis ofUq~G

1!. The additional factorization corresponds to taking
away an upper part of the pyramid, itself being a hexagonal pyramid representing
another SU~3! irrep of smaller dimension, which for roots of unity becomes the
submodule to be factored out. The technical tool in this factorization is the explicit
coincidence of two polynomials: one giving the singular vectors of the Verma
modules, the other used in the algebraic description of the pyramid. ©1997
American Institute of Physics.@S0022-2488~97!00203-X#

I. INTRODUCTION

This paper and the preceding one are the natural development of our joint paper with
Biedenharn1 in which we gave polynomial realization of arbitrary lowest weight~holomorphic!
representations ofUq„sl(n)…, most explicitly forn53. In the preceding paper2 we extended the
results of Ref. 1 in order to construct a polynomial realization of the so-called Gel’fand–~Weyl!–
Zetlin ~GWZ! basis forUq„sl~3!… for generic deformation parameterq, while here we treat the
case ofq being a root of 1.

We give a separate treatment since quantum group representation theory at roots of u
drastically different from the case of generic parameterq ~the latter being similar to the cas
q51!. This was realized soon after the introduction of quantum groups3,4 and a lot of attention was
attracted to the root of unity case. Let us mention only some early references: Refs. 5–10
more mathematical developments, while for the early applications to rational conformal
theories, integrable models, two-dimensional quantum gravity, we refer to Refs. 11–25 a

a!This paper and the preceding one are dedicated to L. C. Biedenharn, who died on February 12, 1996. These pape
natural development of our joint paper with Larry~Ref. 1!.

b!Permanent address: Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsa
Chaussee, 1784 Sofia, Bulgaria.
0022-2488/97/38(5)/2631/21/$10.00
2631J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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review ~Ref. 26!, and for later developments both from the mathematical and physical sid
refer to Ref. 27. The reason for this interest is that since the representation theory at roots o
is very different it thus offers more possibilities for the applications in physics. That is why
case should be studied in detail and explicated as much as possible.

In particular, let us mention the representations which we shall callirregular. These are
representations of quantum algebrasUq~G !, whereG is a simple Lie algebra~or a real form!,
which are parametrized by the same parameters as the finite-dimensional irreducible repr
tions ofG ~unitary for the compact form ofG !, yet have dimensions smaller than their classi
counterparts. The reason is that such representations which are irreducible for genericq ~as well
as in the classical case! become reducible and indecomposable, and to obtain an irredu
representation one has to factor out additional submodules.8 These are the representations whi
we consider in the present paper. For other types of representations that appear at roots o
e.g., periodic or semiperiodic, we refer to a recent paper~Ref. 28! and references therein.

In principle, the theory of the irregular representations is well developed since the cha
formulas are known, cf. e.g., Refs. 29@for Uq„sl~3!…# and 10.~Note that the approach of Ref. 1
is different from the one in Refs. 8, 9, and 29, nevertheless the character formulas coincide
corresponding classes of representations.! However, for the applications in physics it is importa
to know exactly which states remain in the irreducible representation after the additional f
ization at roots of unity. This is what we do in the present paper forUq„sl~3!…, though the method
works for arbitraryUq„sl(n)…, cf. Sec. V.

The present paper may be considered as a sequel to Ref. 2 in which we give an e
realization of theUq„sl~3!… GWZ basis as polynomial functions in three variables for genericq.
However, the paper is self contained and furthermore uses a little different~though some related
in spirit! tools than Ref. 2. In fact, one of the results we give for genericq seems to be new als
for q51. Namely, we give an arrangement of the standard SU~3! GWZ basis in a hexagona
pyramid. The pyramid has as a base the standard hexagon which gives the weight space
UIRs of SU~3! in the (I z ,Y) plane,I z being the third component of isospin andY the hypercharge.
The third dimension we add to get a pyramid is related to the different values of isospinI so that
for fixed (I z ,Y) the value of isospinI diminishes from the bottom up. Explicitly, this arrangeme
is related to a one-to-one correspondence between the abstract GWZ states andmonomialsin the
algebra of raising generatorsUq~G

1! applied to the lowest weight state.~A similar procedure
starting from the highest weight state is used in Ref. 2.! However, those monomials are not in th
standard Poincare´–Birkhoff–Witt basis ofUq~G

1!. We then consider the roots of unity case a
it turns out that our pyramid gives an exact and intuitively clear description of the states w
have to be eliminated in the irregular case. Namely, we take away an upper part of the py
itself being a hexagonal pyramid@and representing another SU~3! irrep of smaller dimension#.
More explicitly, for a fixed finite-dimensional representation of SU~3! there is a range of possibl
roots of unity for which the correspondingUq„sl~3!… representation is irregular.8 If we take
q5e2p i /N, then, asN varies in the allowed range, the factored out upper pyramid varies,
minimal factorization being when only the top~triangular!! layer is taken out@the factored out
SU~3! irrep is flat#, while the maximal factorization leaves only the bottom hexagonal layer,
the resultingUq„sl~3!… irregular irrep is flat. The technical tool in this factorization is the expl
coincidence of two polynomials inUq~G

1!: one giving the singular vectors of Verma modul
overUq„sl~3!…,8 the other used in the explicit algebraic description of our pyramid and actu
being written in monomial form. Of course, as we pass to roots of unity in some cases
necessary to redefine the GWZ states but this is not mixing states of the factored out
pyramid with the remaining states. Finally, let us note that although the normalized GWZ
was adapted toUq„sl(n)…, both for genericq, cf. Refs. 30–32, and in the root of unit
case,33,34,28,35the explicit description of the irregular irreps in terms of normalized GWZ sta
was given only for the lowest-dimensional flat irrep ofUq„sl~3!…,35 whose irrep was already
explicitly described by Verma module techniques in Refs. 8, 29, and 26. Our results in ter
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



. In the
malized
h

ch to

th the
and
s of

he

a

west

r

2633V. K. Dobrev and P. Truini: Irregular representations at roots of unity

¬¬¬¬¬¬¬¬¬¬
unnormalized GWZ states, or GWZ patterns, are independent from Refs. 33, 34, 28, and 35
same time the results of Ref. 35 may be used to show that the possible changes of the nor
GWZ basis of the irregular reducible representations ofUq„sl~3!… preserve the subspaces whic
form our irregular irreps, cf. the end of Sec. IV.

The paper is organized as follows. In Sec. II we give a short summary of the approa
quantum groups representations we use~cf. Refs. 8 and 9!. In particular, we recall explicit for-
mulas for all singular vectors necessary for the construction of the irregular irreps.8 In Sec. III we
present the construction of our pyramid, first as a geometric construction, and then wi
explicit algebraic formulas. In Sec. IV we combine the information from the singular vectors
from the pyramid arrangement to obtain the explicit GWZ description of all irregular irrep
Uq„sl~3!….

II. IRREGULAR REPRESENTATIONS OF Uq(sl(3))

Let G5G 1
%H%G 2 be a semisimple Lie algebra, whereH is a Cartan subalgebra ofG ,

G 1, resp.,G 2, are the positive, resp., negative, root vector spaces of the root systemD5D~G ,H!,
corresponding to the decompositionD5D1øD2 into positive and negative roots. We use t
standard deformationUq~G !3,4 given in terms of the Chevalley generators ofG , i.e.,Xi

6, HiPH,
i51,...,r5rankG @cf. below forG5sl(n)#. The elementsHi span the Cartan subalgebraH of
G , while the elementsXi

6 generate the subalgebrasUq~G
6!. A lowest weight module~LWM ! ML

overUq~G ! is given by the lowest weightLPH* ~H* is the dual ofH! and a lowest weight
vector v0 so thatXv050 if XPG 2, Hv05L(H)v0 if HPH. In particular, we use the Verm
modulesVL overUq„sl~G !… which are the lowest weight modules such thatVL>Uq~G

1!v0. If the
deformation parameterq is not a root of unity, a Verma module is reducible8 iff there exists a root
aPD1 andmPN such that

@~L2r,a ∨!1m#q50, a ∨52a/~a,a!, ~1!

where [x] q5(qx/22q2x/2)/(q1/22q21/2) andr is half the sum of the positive roots. Whenever~1!
is fulfilled there exists asingularvectorvs 5 va,ma in VL such thatvs¹Cv0,Xvs50,;XPG 2 and
Hvs5(L1maa)(H)vs , ;HPH. The spaceI a 5 Uq(G

1)va,ma is a proper submodule ofVL

isomorphic to the Verma moduleVL1maa with a shifted lowest weightL1maa.8 The singular
vector is given by8,36

vs5va,ma5P a,ma~G 1!v0 , ~2!

whereP a,ma is a unique~up to a nonzero multiplicative constant! homogeneous polynomial in
Uq~G

1! of weightmaa. In particular, for a simple roota5ai , the singular vector is just

vs5va i ,mi5~Xi
1!miv0 , mi[ma i

. ~3!

Whenq is a root of unity, then all Verma modules are reducible independently of the lo
weight. In particular, letq5e2p i /N, where NPN11, and let G be simply laced, i.e.,
G5An ,Dn ,En . Then any vector (Xa

1)kNv0 , aPD1, kPN, Xa
1 is the Cartan–Weyl generato

corresponding toa, is a singular vector.8 Furthermore, if~1! holds for somemPN, then it will
hold also if we replacem by m85m1kN.0, kPZ.8

We restrict now toUq„sl(n)… for which the generating relations are (r5n21)3,4

@Hj , Hk#50, @Hj , Xk
6#56ajkXk

6 , @Xj
1 , Xk

2#5d jk@Hj #q , ~4a!

~Xj
6!2Xk

62@2#qXj
6Xk

6Xj
61Xk

6~Xj
6!250, u j2ku51,

~4b!

@X
6 , Xk

6#50, u j2ku.1,
J. Math. Phys., Vol. 38, No. 5, May 1997
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where (ajk)5„2(a j ,ak)/(a j ,a j )…, j ,k51,2,...,n21, is the Cartan matrix of sl(n); aj are the
simple roots; the nonzero products between the simple roots are (a j ,a j )52, j51,...,n21,
(a j ,ak)521 for u j2ku51.

We further restrict to the caseUq„sl~3!…. Then there is only one nonsimple positive root, s
a35a11a2, the Cartan–Weyl generators corresponding to6a3 being

4,8

X3
656q61/4~q21/4X1

6X2
62q1/4X2

6X1
6!. ~5!

Then formula~2! for a5a3 is
8

vs
m5(

j50

m

aj~X1
1!m2 j~X2

1!m~X1
1! jv0 ,

~6!

aj5~21! ja0
@12L~H1!#q

@12L~H1!2 j #q
Smj D

q

, j50,...,m, a0Þ0,

or by the same expression with the changesX2
1↔X1

1, H1°H2 or in the ordered PBW basis:

vs
m5(

j50

m

bj~X2
1! j~X3

1!m2 j~X1
1! jv0 ,

~7!

bj5q~ j /2!„j1L~H1!21…Smj D
q

b0
Gq„j1L~H1!…

, j50,...,m, b0Þ0.

@More general explicit formulas for singular vectors, including all singular vectors forUq„sl(n)…,
are contained in Ref. 36. Note that the modules considered in Refs. 8 and 36 are highest
modules and the singular vectors are polynomials inXi

2; the translation of those formulas to th
lowest weight module setting is straightforward.#

The Verma moduleVL contains a unique proper maximal submoduleIL ~which contains all
submodulesI ma ,a!. Among the lowest weight modules with lowest weightL there is a unique
irreducible one, denoted byLL , i.e., LL5VL/IL. ~If VL is irreducible, thenLL5VL.! To obtain
the irreducible lowest weight moduleLL we have to factor out all singular vectors.

In the present paper we considerVL reducible with respect to~wrt! every simple root~and
thus wrt all positive roots!. Then for genericq we have thatL(Hk)512mk , k51,2, cf. ~1! and
~3!. ThenLL is finite dimensional and for genericq all such modules can be obtained in this w
~cf. Refs. 37 and 38!. Actually, it is enough to factorize the submodulesI i 5 I mi ,a i built on the
singular vectors~3!. The submodules built on singular vector corresponding to nonsimple root
factored out automatically being submodules of some~or all! I i . ForUq„sl~3!… the submodule built
on vs

m, cf. ~6! and ~7!, with m5m11m2 , is submodule of bothI i , sincevs
m is factorized in a

monomial form,8 and is a descendent of both singular vectorsva i ,mi, i51,2. The resulting factor
representations have the same dimension as the UIRs of SU~3!, „su~3!…, or the~anti!holomorphic
representations of SL~3!, „sl~3!…, which are parametrized by two positive integers which arem1
andm2 in our notation. The dimension formula is

dm1 ,m2
5 1

2m1m2~m11m2!, m1 ,m2PN. ~8!

Whenq is a root of 1,LL is finite-dimensional for any lowest weightL.9 Let q5e2p i /N. To
obtain LL one should do the same factorization as above; however, the submodulesI i

5 I m̄i ,a i where m̄i is obtained from the decomposition ofmi5m̄i1kiN, kiPZ1 , m̄i<N. The
J. Math. Phys., Vol. 38, No. 5, May 1997
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necessity of this decomposition comes from the fact that if~1! holds for somem, it will hold also
for any positivem8 differing fromm by an integer multiple ofN since [x] q5sin(px/N)/sin~p/N!.
Thus the singular vectorva i ,mi is a descendent ofva i ,m̄i.

The factorization of the above two submodules is enough unless the representation isirregu-
lar . ForUq„sl~3!… the irregular representations are characterized by the following inequalitie
the representation parameters:8

1,m̄1 ,m̄2,N,m̄11m̄2,2N. ~9!

In the irregular case one has to factorize also the submodule built on a singular vector give
formula derived from~6! or ~7! with m°m̄5m̄11m̄22N with the appropriate choice ofb0.

8

Explicitly, one first chooses in~7! b05Gq„m̄1L(H1)… and then substitutesL(H1)512m̄1 . The
resulting singular vector is

vs
m̄5(

j50

m̄

~21!m̄2 jq~ j /2!~ j2m̄1!S m̄j D
q

@m̄1212 j #q!

@m̄1212m̄#q!
~X2

1! j~X3
1!m̄2 j~X1

1! jv0 , ~10!

where we have used the relation

Gq~m̄112m̄1!

Gq~ j112m̄1!
5~21!m̄2 j

@m̄1212 j #q!

@m̄1212m̄#q!
. ~11!

The reason to factorize this additional submodule is that whilem1 ,m2,m, on the contrary for the
barred quantities one hasm̄1 ,m̄2.m̄, andvs

m̄ is not a descendent ofva i ,m̄i.
The resulting finite-dimensional representation in the irregular case has the follo

dimension:29

dim Lm̄1m̄2
5dm̄1 ,m̄2

2dm̄
18 ,m̄28

~12a!

5 1
2m̄1m̄2~m̄11m̄2!2 1

2m̄18m̄28~m̄181m̄28! ~12b!

5 1
2~m̄11m̄22N!„2m̄1m̄21N~2N2m̄12m̄2!…, ~12c!

wherem̄18 5 N 2 m̄2 andm̄28 5 N 2 m̄1. Actually it is clear that we may restrict to representati
parametersmi<N, thenm̄i5mi , and we shall do so hence forth.

Note that inequalities~9! naturally exclude the flat representations of SU~3! @obtained when
min(m̄1 ,m̄2)51#, and also show that the minimal possible value ofN is N53. If N53 then there
is only one irregular irrep, namely withm15m252 and dim57,8,29,26which corresponds to the
adjoint irrep of SU~3!, with dim58. @Note that since there are only two states with the sa
weight, the existence of a singular vectorvs

m̄ (m̄5m11m22N51), given already in Ref. 8,
means that in the irreducible subrepresentation all states have different weights, i.e., the
flat. This was further explicated in Ref. 26 by giving the weights of the seven states, cf.~2.16!.#

In a function space realization of the irreducible representations the singular vectors b
null or vanishing conditions,39 e.g., instead of~2! we have

P a,ma
„G~G 1!…u&50, ~13!

whereP a,ma is the same polynomial as in~2!, andG~ !, u&, resp. denotes the representation
Uq~G !, the lowest weight vector, resp. for the realization in question. In the last section we
apply this formalism to the GWZ basis arranged in a special way in the next section, and we
show that the vanishing condition arising from~10! is responsible for the decoupling of thos
GWZ states so as to obtain~12!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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III. WEIGHT PYRAMID OF THE SU(3) UIRs

A. Geometrical construction of the weight pyramid

First let us recall some well-known facts about the UIRs of SU~3! which hold also for the
~anti!holomorphic representations of SL~3!, also for the Lie algebras and quantum groups.
such a representation, i.e., the non-negative integersr 1 andr 2, so that we have a representation
dimensiondr111,r211, cf. ~8!. @Instead of the notationmi of the previous section we use in th
section the notationr i5mi21 which is usual when considering SU~3! representations.# It is
customary to depict the weight lattice of every such irrep in the (I z ,Y) plane. We recall that the
notation comes from the popular application in whichI z is the third component of isospin, andY
is the hypercharge. The points of the weight diagram form a hexagon, the sides of the he
containing alternativelyr 111 andr 211 points.~Thus, the hexagon degenerates into a triangl
r 1r 250.! Each point of the weight diagram represents all states with the same weight and dif
only by the values of isospinI , for which the correspondingI z is admissible. It is also customar
to connect all points with the same multiplicity. Then the resulting figure consists of ne
hexagons ifr 1r 2Þ0, the most outward one containing the states with multiplicity one, the
inwards—the states with multiplicity two, etc. Whenr 1r 250, the resulting figure consists o
nested triangles; moreover each weight has multiplicity one and that is why such represen
are calledflat.

Now for our purposes we shall replace this customary weight diagram with ahexagonal
pyramid ~when r 1r 2Þ0! in the following way. We consider now a three-dimensional pictu
adding also the direction perpendicular to the (I z ,Y) plane. The points in that plane have coord
nates, say, (i z ,y,0). Next we replace each point of the weight lattice of multiplicitym and
coordinate (i z ,y,0) by m equally spaced points in direction perpendicular to the (I z ,Y) plane
whose points have coordinates: (i z ,y,k), k50,1,...,m21. We consider now each point of the s
formed pyramid as one state, i.e., each point has also fixed value of isospinI and there is no
multiplicity. From the algebraic formulas given in next section we shall see that for fixed (I z ,Y)
the value of isospinI diminishes ask increases.

Thus, we obtain a pyramid of heightr 0[min(r 1 ,r 2).
Consider now the states with coordinates (i z ,y,k) for a fixedk. We shall say that these state

form a layer. We note now that by construction each such layer is actually a weight diagram
I z andY axis and has the form of a hexagon. Moreover, this hexagon has exactly the form
standard SU~3! weight diagram—the difference is that we put only one GWZ state at each sit
course, it is important how we distribute the states with the same weight and this is wh
explain next.

Let us agree, in order to save space, to omit the first row of the standard SU~3! Gel’fand
pattern

S r r 1 0

m12 m22

m11

D , ~14a!

r>m12>r 1 ,m11>m22>0, ~14b!

since we shall work with fixed representation parametersr 1 and r 2. Namely, we set

Fm12 m22

m11
G[S r r 1 0

m12 m22

m11

D . ~15!
J. Math. Phys., Vol. 38, No. 5, May 1997
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We place the GWZ states on our pyramid in the following manner. The bottom, or ze
layer contains both the lowest weight state and the highest weight state of our represen
Overall it contains the following states:

F r r 1
r 1

GF r r 1
r 111G•••F r r 1

r G ,
•••

F r 1
1 GF r 1

2 G••• F r 1
r G ,

F r 0
0 GF r 0

1 G••• F r 0
r G , ~16!

•••

F r 111 0
0 GF r 111 0

1 G••• F r 111 0
r 111 G ,

F r 1 0
0 GF r 1 0

1 G•••F r 1 0
r 1

G .
The lowest weight state@ r10

0# is in the bottom left corner, the highest weight state@ r r
r1# is in the

top right corner, of this hexagon.~Of course, these states and the others on the edges of this i
hexagon are with no multiplicity, so their placement is more or less standard.! Analogously, we
put the following states on thek-th layer,k<r 1 ,r 2 :

F r2k r1
r 1

G2F r2k r1
r 111 G•••F r2k r1

r2k G ,
•••

F r2k k11
k11 GF r2k k11

k12 G••• F r2k k11
r2k G ,

F r2k k
k GF r2k k

k11 G••• F r2k k
r2k G , ~17!

•••

F r 111 k
k GF r 111 k

k11 G••• F r 111 k
r 111 G ,

F r 1 k
k GF r 1 k

k11 G•••F r 1 k
r 1

G .
~Note thatk50 represents the bottom layer.! Clearly, there arer 12k11 states on the bottom row
of the above hexagon,r 12k12 states on the next row, etc., andr22k11 states on the middle
~longest! row, then the number of states decreases by one, the top row ha
r2k2r 1115r 22k11 states. If we sum these we obtain that the number of states in thekth
layer presented in~17! is

Nr1 ,r2
k 5 1

2~r11!~r12!1r 1r 213k223k~r11!. ~18!

From this it is easy to see that the number of states on the firstk layers is

(
s50

k21

Nr1 ,r2
s 5

k

2
„r 216r12r 1r 212k223k~r12!…. ~19!
J. Math. Phys., Vol. 38, No. 5, May 1997
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We make now the observation that the latter number is equal to the difference of two S~3!
dimensions:

(
s50

k21

Nr1 ,r2
s 5dr111,r2112dr1112k,r2112k , ~20!

i.e., the dimension of the irrep we are considering minus the dimension of an irrep with
representation parameterr i decreased byk. This seems natural since the latter representation
a weight pyramid with bottom layer the~k11!th layer of our pyramid. We note here the similari
of the formula~20! with ~12!, though they have different meaning and~20! is valid for anyq while
~12! is meaningful at roots of unity. The point is that, as we shall show in the next section
exactly the structure displayed above that is giving an exact and simple description of the
with dimension given by~12!.

B. Algebraic description of the weight pyramid

Now we explain the placement of the GWZ states on our pyramid. This is related
procedure to obtain all GWZ states starting from the lowest weight state.~A similar procedure
starting from the highest weight state is used in Ref. 2!. To derive the necessary relations betwe
the GWZ states, up to normalization constants, it is enough to use only the fact that the
states are eigenvectors of the operatorsÎ z , Ŷ, and Î

2:

Î z[
1
2H1 , ~21a!

Ŷ[ 1
3~H112H2!, ~21b!

Î 2[X1
2X1

11@ I z#q@ I z11#q , ~21c!

with I z , Y, and I , denoting the eigenvalues of the corresponding operators. Note thatÎ 2 is the
Casimir of theUq„sl~2!… quantum subgroup generated byX1

6 andH1. We recall the relation of
these eigenvalues to the parameters of the Gel’fand pattern:

Fm12 m22

m11
G5F I1 1

2Y1 1
3~r1r 1! 2I1 1

2Y1 1
3~r1r 1!

I z1
1
2Y1 1

3~r1r 1!
G . ~22!

Before giving the explicit formulas we mention some general facts: The states on a fixed r
a fixed layer~17! are states with the same values ofY andI , while I z varies between2I andI . On
a fixed layer the value ofY increases by 1 from the bottom to the top row. The states which h
the same weight and differ only by the value ofI are one above the other in the pyramid, the va
I decreasing from the bottom up. For the formulas, note that, though the normalization con
are not important for the procedure, we shall give them too using standard formulas, e.g., Re
41 ~q51!, 32, and 33.

First, we describe the states on a fixed layer~hexagon!, say, thekth one.
Starting from the state in low left corner of the hexagon, i.e.,@ r1k

k#, we first obtain the states
on the south-west edge of the hexagon:

~X2
1!sF r 1 k

k G5N 2~s,k!F r 11s k
k G , s50,1,...r 22k,

~23!

N 2~s,k!5S @s#q! @r 1111s#q! @r 2#q! @r 1112k#q!

@r 111#q! @r 22s#q! @r 1112k1s#q!
D 1/2.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Now we prove the following Lemma which is our main technical tool for the procedure
Lemma:Let c be an eigenstate ofÎ 2, Î z , and Ŷ with eigenvaluesm~m11!, 2m, and k,

respectively, and let

c15Ĉc,

whereĈ is the following operator:

Ĉ[X3
1@H1#q1X2

1X1
1qH1/25X1

1X2
1@H1#q1X2

1X1
1@12H1#q . ~24!

Then eitherc150 or c1 is an eigenstate ofÎ 2, Î z , and Ŷ with eigenvalues~m21
2!~m11

2!, 2m
11

2 and k11, respectively. In terms of Gel’fand pattern, ifc↔@m12
k
k#, thenc1↔@m12

k11
k11#

unlessk5r 1 .
Proof:We first notice thatc is a SU~2! @Uq„sl~2!…# lowest weight state (I52I z) and this is

the case if and only ifX1
2c50. Then one easily checks that alsoX1

2c150 and thus it is again an
eigenstate ofÎ 2 with I52I z . It remains to see thatc1 hasI z52m11

2 @sinceH1Ĉ5Ĉ(H111)#
and finally thatc1 hasY5k11 @sinceŶĈ5Ĉ(Ŷ11!#. d

Using the above Lemma we obtain the states on the north-west edge of the hexagon:

Ĉt~X2
1!r22kF r 1 k

k G5N 2~r 22k,k!ĈtF r2k k
k G5N 2~r 22k,k!N 3~ t !F r2k k1t

k1t G ,
t50,1,...,r 12k,

~25!

N 3~ t !5S @r2k11#q! @r22k11#q! @r 12k#q! @k1t#q!

@r2k112t#q! @r22k112t#q! @r 12k2t#q! @k#q!
D 1/2.

Now all other states of thekth layer are obtained by the action of the operatorX1
1 to the states

on the edges~23! and ~25!:

~X1
1!u~X2

1!sF r 1 k
k G5N 2~s,k!~X1

1!uF r 11s k
k G5N 1~u,s,k!N 2~s,k!F r 11s k

k1u G ,
s50,1,...r 22k, u50,1,...r 12k1s,

~26a!

N 1~u,s,k!5S @r 11s2k#q! @u#q!

@r 11s2k2u#q!
D 1/2

~X1
1!uĈt~X2

1!r22kF r 1 k
k G5N 2~r 22k,k!N 3~ t !~X1

1!uF r2k k1t
k1t G

5N 18~u!N 2~r 22k,k!N 3~ t !F r2k k1t
k1t1u G ,

t50,1,...r 12k, u50,1,...r22k2t,
~26b!

N 18~u!5S @r22k2t#q! @u#q!

@r22k2t2u#q!
D 1/2.

Finally we explain how to obtain the lower-left corner states@ r1k
k# starting from the lowest

weight state@ r10
0#. This is achieved by using again our Lemma:
J. Math. Phys., Vol. 38, No. 5, May 1997
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ĈkF r 1 0
0 G5N 38~k,r !F r 1 k

k G , k50,1,...,r 05min~r 1 ,r 2!,

~27!

N 38~k,r !5S @r11#q! @r 111#q! @r 1#q! @k#q!

@r112k#q! @r 1112k#q! @r 12k#q!
D 1/2.

For further use we note that relation~27! can be rewritten in two alternative ways:

N 38~k,r !F r 1 k
k G5)

s51

k

ĈsF r 1 0
0 G ~28a!

5(
j50

k

~21!k2 jq~ j /2!~ j2r121!S kj D
q

3
@r 12 j #q!

@r 12k#q!
~X2

1! j~X3
1!k2 j~X1

1! j F r 1 0
0 G , ~28b!

Ĉs[X3
1@s212r 1#q1X2

1X1
1q~1/2!~s212r1!5X1

1X2
1@s212r 1#q1X2

1X1
1@r 12s12#q .

~28c!

To show~28a! we use

ĈF r 1 0
0 G5Ĉ1F r 1 0

0 G , ~29!

and then by induction if~28a! holds for somek5t, then we use that

Ĉ)
s51

t

ĈsF r 1 0
0 G5)

s51

t

Ĉs~X3
1@H11s#q1X2

1X1
1q~H11s!/2!F r 1 0

0 G5)
s51

t11

ĈsF r 1 0
0 G .

To show~28b! we use~28a!, theUq„sl~3!… commutation relations, and~11!.
We should mention that similar formulas to~23! and ~26a! for the relation between GWZ

states may be found the literature, cf., e.g., Refs. 41, 32, and 33. While preparing a revision
paper we learned that a lowering operator similar to our raising operatorĈ has appeared in Ref
42.

To summarize: formulas~23! and ~25!–~27! give explicitly the states of our pyramid as th
GWZ basis states of the finite-dimensional irrep characterized byr 1 and r 2. This procedure
includes a one-to-one correspondence between the abstract GWZ states and certain mono
the algebra of raising generatorsUq~G

1! applied to the lowest weight state@though these mono
mials are not in the standard Poincare´–Birkhoff–Witt basis ofUq~G

1!#. Recalling that a polyno-
mial P of the algebraUq~G

1! corresponds to the statePv0 in a Verma module, we see that th
above gives also a one-to-one correspondence between the abstract GWZ states and certa
in the Verma moduleVL with the corresponding lowest weightL, namely such thatL(Hk)52r k .
The latter remark is useful since it enables us to work also withunnormalizedGWZ states which
are obtained from the normalized ones by setting in~23! and ~25!–~27! all coefficientsN equal
to one. To be more precise we denote the unnormalized GWZ states by@m12

m1

m22#8 and then
instead of~23! and ~25!–~27! define for the states on thekth layer ~hexagon!

F r 11s k
k1u G88~X1

1!u~X2
1!sĈkF r 1 0

0 G8, s50,1,...,r 22k, u50,1,...,r 12k1s, ~30a!
J. Math. Phys., Vol. 38, No. 5, May 1997
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F r2k k1t
k1t1u G88~X1

1!uĈt~X2
1!r22kĈkF r 1 0

0 G , t50,1,...,r 12k, u50,1,...,r22k2t,

~30b!

where@ r10
0#8 represents the lowest weight vector@~30a! gives the states on and below the midd

row of thekth layer, while~30b! gives the states on and above the middle row#. If we identify now
@ r10

0#8 with the lowest weight vectorv0 of the Verma moduleVL, then the states@m12
m11

m22#8

would represent states in the Verma module. More than that, since the GWZ basis is the b
the finite-dimensional irrepLL , which is a factor module of the Verma module, we may consi
theunnormalizedGWZ basis states also as states in the factor module. For further use we d
the unnormalized GWZ basis states in the factor module by@m12

m11

m22#9 and the lowest weight
vector by@ r10

0#9, those quantities being related as their primed counterparts in~30!.
Alternatively, if we want to have the GWZ states realized as polynomials@in three~complex

or real! variablesx,y,z# we first identify the lowest weight state@ r10
0# with the function 1 and then

use the following representation constructed in Ref. 1:

G3~X1
1!5x@r 12Nx#qq

~1/4!~Nz2Ny!1zDyq
~1/4!~r122Nx!, ~31a!

G3~X1
2!5Dxq

~1/4!~Nz2Ny!1yDzq
~1/4!~r122Nx!, ~31b!

G3~H1!52Nx2r 11Nz2Ny , ~31c!

G3~H2!52Ny2r 21Nz2Nx , ~31d!

G3~X2
2!5Dyq

~1/4!Nx, ~31e!

G3~X2
1!5y@r 21Nx2Nz2Ny#qq

2~1/4!Nx2zDxq
2~1/4!~2r2r11Nx2Nz2Ny11!, ~31f!

whereNt is the number operator, i.e.,Ntt
k5ktk, t5x,y,z, andDt5(1/t)[Nt] q is a q-difference

operator.
Clearly,G3(Xi

2) annihilate the function 1, andG3(Hi)152r i , while the action of any mo-
nomial of G3(Xi

1) will produce a polynomial in the variablesx,y,z. The explicit formulas ex-
pressing the GWZ states as such polynomials involveq-hypergeometric functions and were foun
in Ref. 2.

Finally we note the similarity of formula~28b! with the formula giving the singular vector in
~10!. It is this similarity that will be exploited in the next section in order to prove the exp
realization of the irregular irreps in terms of GWZ states.

IV. THE IRREGULAR IRREPS IN TERMS OF GWZ STATES

In the present section we combine the results of the previous sections to derive our
result. We setq5e2p i /N, so that [x] q5sin(px/N)/sin~p/N!. We consider the irregular represe
tations characterized by~9!, and we restrict the representation parametersr i5mi21 from Sec. III
according to the convention adopted at the end of Sec. II, i.e.,

1,r 111,r 211,N,r 11r 2125r12,2N. ~32!

With this the relevant singular vectors are@cf. ~3! and ~10!#
J. Math. Phys., Vol. 38, No. 5, May 1997
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v i5~Xi
1!r i11v0 , i51,2, ~33!

vs
m̄5P m̄~X1

1 ,X2
1 ,X3

1!v0 ,

P m̄5(
j50

m̄

~21!m̄2 jq~ j /2!~ j2r121!S m̄j D
q

@r 12 j #q!

@r 12m̄#q!
~X2

1! j~X3
1!m̄2 j~X1

1! j . ~34!

m̄5r122N.

As we discussed in Sec. II, to obtain an irreducible representation we have to factor o
Verma submodule built on these singular vectors, which means for the corresponding
module or in a function space realization of the lowest weight representations, to impos
corresponding null~vanishing! conditions, cf.~13!. For the unnormalized states this is straightfo
ward, while for the normalized states some redefinitions of the basis are needed when we c
the root of unity case~such redefinitions are shown in detail below!.

Using the realization of the factor module in terms of the unnormalized GWZ states as
in Sec. III, the null conditions following from~33! and ~34! are written as

~Xi
1!r i11F r 1 0

0 G950, i51,2, ~35a!

P m̄~X1
1 ,X2

1 ,X3
1!F r 1 0

0 G950. ~35b!

These are fulfilled by construction,~35a! being valid also for genericq as discussed in Sec. II. Fo
further use we note also@using the analog of~30! for the factor-module states and the factorizati
formula ~28b!#:

P m̄~X1
1 ,X2

1 ,X3
1!F r 1 0

0 G95)
s51

m̄

ĈsF r 1 0
0 G95F r 1 m̄

m̄ G950. ~35b8!

For the normalized GWZ basis the analogous null conditions

~Xi
1!r111F r 1 0

0 G50, i51,2, ~36!

P m̄~X1
1 ,X2

1 ,X3
1!F r 1 0

0 G50 ~37!

have to be demonstrated. We start with~36!. From ~23! one would obtain

~X2
1!r211F r 1 0

0 G5N 2~s,0!us5r211F r11 0
0 G5N 2~s,0!us5r211S r r 1 0

r11 0

0
D 50,

~38!
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
since the latter is an impossible GWZ state@the betweenness constraint~14b! is violated# and
N 2(s,0)us5r211; „Gq(r 21 12 s)…21us5r2115 0.Analogously from~26a!onewouldobtain

~X1
1!r111F r 1 0

0 G5N 1~u,0,0!uu5r111F r 1 0
r 111 G5N 1~u,0,0!uu5r111S r r 1 0

r 1 0

r 111
D

50. ~39!

Again the latter is an impossible GWZ state, andN 1(u,0,0)uu5r111;„Gq(r 111 2 u)…21uu5r111

50. Of course,~38! and ~39! hold also for genericq ~which is clear also from the demonstra
tion above!.

To show~37! we note that the expression giving@ r1m̄
m̄# is justP m̄(X1

1 ,X2
1 ,X3

1), namely, we
have@using ~28! with k5m̄, r5N1m̄22#

P m̄~X1
1 ,X2

1 ,X3
1!F r 1 0

0 G5)
s51

m̄

C̄sF r 1 0
0 G5N 38~m̄,N122m̄!F r 1 m̄

m̄ G50, ~40!

the last following from

N 38~m̄,N1m̄22!50, ~41!

which in turn follows from

@r11#q!

@r112k#q!
U
r5N1m̄22

k5m̄

5
@N1m̄21#q!

@N21#q!
5@N1m̄21#q@N1m̄22#q•••@N#q50

since [N] q5sin(pN/N)50 whenq5e2p i /N.
We note that condition~35b! @~37!, resp.# for the unnormalized~normalized, resp.! GWZ

states contains more information. It means also that the lower-left corner state@ r1m̄
m̄#9 ~@ r1m̄

m̄#,
resp.! on the m̄th layer of our pyramid vanishes~decouples, resp.! from the irrep. $Indeed,
@ r1m̄

m̄#9 is just zero, cf.~35b8!, as it should in a factor module of a Verma module.% The vanishing
~decoupling, resp.! of these states in turn implies the vanishing~decoupling, resp.! of the lower-left
corner states on the higher layers, i.e., the states@ r1k

k#9 ~@ r1k
k#, resp.! with k.m̄, which are

descendants of the states withk5m̄. This follows by noting that because of the factorizati
formula ~28b! we have

F r 1 k
k G95ĈkF r 1 0

0 G95Ĉk2m̄F r 1 m̄
m̄ G950, ~42a!

ĈkF r 1 0
0 G5N 38~k,N1m̄22!F r 1 k

k G50 for k.m̄. ~42b!

The latter following analogously to~41!:
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
N 38~k,N1m̄22!HÞ0 for k,m̄,
0 for k>m̄. ~43!

For consistency in~43! we have included also the casesk,m̄ showing that the lower-left corne
states inside the irrep are not decoupled.

Clearly, together with the lower-left corner states decouple also the states on their layer
all states on layersk5m̄,m̄11,...,r 0 . Thus, we are left with the states on the firstm̄ layers. Their
number is given by~19! and ~20! with k5m̄, which then coincides exactly with~12! if we take
into account that

m̄185N2m̄25N2r 2215r 1112m̄,
~44!

m̄285N2m̄15N2r 1215r 2112m̄,

where we have usedm̄5r122N.
Thus, we have obtained theexplicit description of the irregular representations of

Uq„sl~3!… in terms of the GWZ basis. These are the states displayed in~17! for k50,1,...,m̄21
5r112N, or their unnormalized analogs.

We note that in the case whenm̄51, i.e.,N5r11, the irregular irrep is flat.
Finally, we discuss the representation action ofUq„sl~3!… in our irregular irreps. First we stres

that when we considerunnormalizedGWZ states theUq„sl~3!… action is given straightforwardly a
action on a truncated Verma module basis and there is no need even to display it explicitly. A
more care is needed when we consider thenormalizedGWZ basis. First we recall the standa
action ofUq„sl~3!… on the normalized GWZ basis,41,33,34whenq is not a nontrivial root of 1:

H1Fm12 m22

m11
G5~2m112m122m22!Fm12 m22

m11
G , ~45a!

X1
1Fm12 m22

m11
G5~@m122m11#q!

j~@m112m2211#q!
j8Fm12 m22

m1111 G , ~45b!

X1
2Fm12 m22

m11
G5~@m122m1111#q!

12j~@m112m22#q!
12j8Fm12 m22

m1121 G , ~45c!

H2Fm12 m22

m11
G5„2~m121m22!2m112r2r 1…Fm12 m22

m11
G , ~45d!

X2
1Fm12 m22

m11
G5a1

1Fm1211 m22

m11
G1a2

1Fm12 m2211
m11

G , ~45e!

X2
2Fm12 m22

m11
G5a1

2Fm1221 m22

m11
G1a2

2Fm12 m2221
m11

G , ~45f!
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
a1
15

~@r2m12#q!
h1~@m122r 111#q!

h2~@m1212#q!
h3~@m122m1111#q!

12j

~@m122m2211#q@m122m2212#q!
1/2 , ~46a!

a2
15

~@r2m2211#q!
z1~@r 12m22#q!

z2~@m2211#q!
z3~@m112m22#q!

12j8

~@m122m22#q@m122m2211#q!
1/2 , ~46b!

a1
25

~@r2m1211#q!
12h1~@m122r 1#q!

12h2~@m1211#q!
12h3~@m122m11#q!

j

~@m122m22#q@m122m2211#q!
1/2 , ~46c!

a2
25

~@r2m2212#q!
12z1~@r 12m2211#q!

12z2~@m22#q!
12z3~@m112m2211#q!

j8

~@m122m2211#q@m122m2212#q!
1/2 , ~46d!

where the parametersj, j8, h1, h2, h3, z1, z2, z3 ~introduced in Refs. 33 and 34! take indepen-
dently the values 0,12, 1, the value

1
2 for all of them being the classical choice. Note, however, t

some of the nonclassical choices have to be excluded if we want that the coefficients
automatically become zero for impossible GWZ states. Thus, there are the following exclu
jÞ0, j8Þ1,h1Þ0,h2Þ1, z2Þ0, andz3Þ1. Note that partial cases of~45! were actually used in the
algebraic description of the pyramid above~with all extra parameters equal to12!. Note also that for
the unnormalized GWZ basis~45! would also hold; however, the coefficientsai

6 would be dif-
ferent. In particular, they will not contain any denominators.

For our purposes below we comment on the action of the generators in relation to our py
structure~still in the genericq case!. The action of the generatorsX1

6 is confined on fixed rows,
which is expected since these rows form irreps of theUq„sl~2!… quantum subgroup generated b
X1

6 ,H1 . The action of the generatorsX2
6 is more interesting. Consider thekth layer. Then under

the action the operatorX2
1 the states on the middle row~starting on the left with@ r2k

k
k#! and the

rows above it are mapped into a state on the same layer@cf. the second term in~45e!# and a state
on the layerk21 @cf. the first term in~45e!#, while the states below the middle row are mapp
into a state on the same layer@cf. the first term in~45e!# and a state on the layerk11 @cf. the
second term in~45e!#. Analogously, under the action the operatorX2

2 , the states on the middle row
and the rows below it are mapped into a state on the same layer@cf. the first term in~45f!# and a
state on the layerk21 @cf. the second term in~45f!#, while the states above the middle row a
mapped into a state on the same layer@cf. the second term in~45f!# and a state on the layerk11
@cf. the first term in~45f!#. Certainly, in all cases the two resulting states are one above the
since they have the same weights~eigenvalues ofHi!. Note also that in some cases one of the t
resulting states may miss when the initial state is on some of the sides or edges of the py

Whenq is a root of unity, as specified in the beginning of this section, there aretwo possible
problemswhen using formulas~45!. The first problem is that the action of the generatorsX2

6 is
mixing in general neighboring layers and thus we have to ensure that formulas~45! will respect
our factorization of the upper layers of the pyramid~which is so by construction if we us
unnormalized GWZ states!. The second, which is not specific for our approach and which
discussed in Refs. 28 and 35, is that there may arise zeros in the denominators of the coe
~46!. This necessitates modifications of~45! which were~partially! given in Ref. 35, and we have
to check that these modified formulas do not contradict our factorization.

We start with thefirst problem. Clearly, we have to check the action of the generatorsX2
6 only

when they act on the top layer of the truncated pyramid forming our irregular irrep, i.e., fo
layer with k5r112N:
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
FN21 r 1
r 1

GFN21 r 1
r 111 G•••FN21 r 1

N21 G
•••

FN21 r122N
r122N GFN21 r122N

r132N G•••FN21 r122N
N21 G

FN21 r112N
r112N GFN21 r112N

r122N G•••FN21 r112N
N21 G

•••

F r 111 r112N
r112N GF r 111 r112N

r122N G•••F r 111 r112N
r 111 G

F r 1 r112N
r112N GF r 1 r112N

r122N G•••F r 1 r112N
r 1

G . ~47!

Only action from this layer may lead to the layer above which is factored out and should no
with our irrep. Referring to the analysis above there are two problematic terms. The first
lematic term comes from second term of theX2

1 action@cf. ~45e!#, when it acts on the states on th
rows below the middle row. These states may be parametrized as follows, cf.~47!:

F r 11s r112N
r112N1t G , s50,1,...,N222r 1 , t50,1,...,N212r 21s, ~48!

wheres enumerates the rows~s50 labelling the bottom row!, while t enumerates the states on th
sth row ~t50 labelling the left-most state!. It is now easy to see that the action ofX2

1 does not lead
to the upper layer since the coefficienta2

1 is zero for any of the states~48! @with all extra
parameters in~45! set to 1

2#:

a2
15S @N#q@N2r 221#q@r122N#q@ t#q

@N1s2r 221#q@N1s2r 2#q
D 1/250 ~49!

since [N] q5sin(pN/N)/sin~p/N!50. Naturally, one checks also that the denominators are n
zero, i.e., the arguments of@ #q are different from 0,N, for which one uses the ranges ofs,t and
the inequalities~32!. For later reference we also note that the coefficientsa1

1 , a1
2 , a2

2 , are finite
for ~48!, i.e., the action ofX2

6 is well defined on these states. The second problematic term co
from the first term of theX2

2 action, cf.~45f!, when it acts on the states on the rows above
middle row. These states may be parametrized as follows, cf.~47!:

FN21 r112N1s
r112N1s1t G , s51,...,N212r 2 , t50,1,...,2N222r2s, ~50!

wheres enumerates the rows~s51 labeling the row immediately above the middle row, cor
sponding tos50!, while t enumerates the states on thesth row ~t50 labeling the left-most state!.
It is now easy to see that the action ofX2

2 does not lead to the upper layer since the coefficienta1
2

is zero for any of the states~50!:

a1
25S @r2N12#q@N212r 1#q@N#q@2N232r2s1t#q

@2N232r2s#q@2N222r2s#q
D 1/250 ~51!
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
since [N] q50, while the denominators are nonzero. For later reference we also note th
coefficientsa1

1 , a2
1 , a2

2 are finite for~50!, i.e., the action ofX2
6 is well defined on these states

We turn now to thesecond problem. This problem arises when there are denominators in~46!
in the form of [N] q and there are no such factors in the nominator to compensate this.
problem was discussed in Ref. 28 and~partially! solved in Ref. 35. The problem hastwo sub-
problems. The first subproblemis when the mentioned factors are just divergences. This
solved completely in Ref. 35. The solution is to take linear combinations of the relevant~two!
states in~45e! and ~45f! and to redefine the action so that the new action is well defined. W
respect to our construction we only have to ensure that the action on our irrep states does no
in linear combinations including states from the factored out layers.~Linear combinations of state
within the irrep are harmless and need no further discussion beyond Ref. 35.! Indeed, this is not
happening. To show this one has to use the construction of Ref. 35, which we shall do in th
of the generatorX2

2 which is given there explicitly.~Similar considerations are valid for theX2
1 .!

There are two possible linear combinations: involving states on neighboring layers and inv
states on next to neighboring layers. For linear combinations involving states on neighb
layers we have to consider as above only our states on the top layer of our irrep. Above w
already checked all rows on that layer except the middle one. On that row, which correspo
s50 in ~48!, there is a noncompensated zero in the caseN5r in the coefficienta2

2 coming from
the term [m122m2212]q in the denominator:

a2
2uk5r112N,s505S @N11#q@N2r 2#q@r112N#q@ t11#q

@2N212r #q@2N2r #q
D 1/2. ~52!

~There is the same situation for the coefficienta1
1 .! We take now a fixed state@N21

11t
1#,

t50,1,...,N22, on the row under consideration. Using the procedure of Ref. 35@cf. ~3.6.ii!, case
~b!, ~3.18! there; note that the representations parameterspi j there are related to ours b
pi j5mi j2 i #, we take a linear combination of this state with the state below:@N11t

0# ~on the
bottom layer, since forN5r our truncated pyramid has only two layers!. We denote the modified
states by†@N21

11t
1#‡ and†@N11t

0#‡, resp. The action ofX2
2 on the modified states is well defined

and on †@N11t
0#‡ maps to a linear combination of states inside our irrep, while the action

†@N21
11t

1#‡ would lead~in the general case! to a state outside our irrep. However, the coefficie
is zero in our situation@cf. Ref. 35~3.23!#:

X2
2F FN21 1

11t G G5S @2#q@N2r 121#q@N#q@N222t#q
@N22#q@N21#q

D 1/2F FN22 1
11t G G50. ~53!

It remains to consider states on the layer below the top one since it may happen that red
states from this layer will involve states from the top layer and the one above it. This may ha
when there are zeroes in the denominator of type [m122m22] q5[N] q @cf. Ref. 35 ~3.6.iii!#.
However, such singularities do not happen on this layer, cf. our parametrization of the
k5r2N. Thus, modifications due to singularities of the action on the top layer and the
below of our truncated pyramid do not involve states from the factored out layers above.

The second subproblemis when the factors [N] q in the denominators are compensated
zeroes which were present also in the genericq case and whose zeroes were guaranteeing tha
coefficients in~45! would automatically become zero for impossible GWZ states appearing o
rhs. The idea to solve this was given in Ref. 35, but no complete analysis was presented. T
is to use the extra parameters in~45! and~46!. We now give the analysis of these situations. Th
occur as follows:

~a! For the coefficienta1:1 @cf. ~46a!# for the states in the bottom layer,k50, on the rows given
by s5r112N,r122N, the first, second, resp., factor in the denominator becomes equ
[N] q which is compensated by the zero in the first factor of the numerator occurring
J. Math. Phys., Vol. 38, No. 5, May 1997
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¬¬¬¬¬¬¬¬¬¬
r2m1250 for the states on the rows~50!. However,a1
1 should be zero for those states sin

the state in~45e! then is an impossible GWZ state. To solve this problem one should
h151, then this zero wins over the one in the denominator which is under square roo

~b! For the coefficienta2
1 @cf. ~46b!# for the left-most statest50 on the~48! rowss5r2N22k,

s5r112N22k, on layersk<(r2N)/2, k<(r112N)/2, there are [N] q zeroes compen-
sating necessary zeros in the numerator occurring sincem112m2250. To solve this problem
one should setj850.

~c! For the coefficienta1
2 @cf. ~46c!# for the right-most statest5r22k2s on the ~48! rows

s5r2N22k, s5r112N22k, on layersk<(r2N)/2, k<(r112N)/2, there are [N] q
zeroes compensating necessary zeros in the numerator occurring sincem112m1250. To
solve this problem one should setj51.

~d! For the coefficienta1
2 @cf. ~46d!# for the states in the bottom layer,k50, on the rows given

by s5N2r 121, N2r 122, there are [N] q zeroes compensating necessary zeros in
numerator occurring sincem2250. To solve this problem one should setz350.

Thus, we have to make the choice:

j51, j850, h151, z350. ~54!

In addition, we set the remaining parameters equal to their classical value1
2. Thus we have instead

of ~45b!, ~45c! and ~46!

X1
1Fm12 m22

m11
G5@m122m11#qFm12 m22

m1111 G , ~45b8!

X1
2Fm12 m22

m11
G5@m112m22#qFm12 m22

m1121 G , ~45c8!

a1
15@r2m12#qS @m122r 111#q@m1212#q

@m122m2211#q@m122m2212#q
D 1/2, ~46a8!

a2
15@m112m22#qS @r2m2211#q@r 12m22#q

@m122m22#q@m122m2211#q
D 1/2, ~46b8!

a1
25@m122m11#qS @m122r 1#q@m1211#q

@m122m22#q@m122m2211#q
D 1/2, ~46c8!

a2
25@m22#qS @r2m2212#q@r 12m2211#q

@m122m2211#q@m122m2212#q
D 1/2. ~46d8!

Of course, we have to notice that the solution of this second subproblem is not interfering
the solution of the previously solved problems@cf. e.g., ~49! and ~51!#, though, of course, the
explicit expressions of the coefficients would be different. Also all vanishing results like~38!,
~39!, ~41!, and ~43! are valid with the new choice of extra parameters, though coeffici
N k ,N k8 ,N k9 used above would look~inessentially! differently.

Thus, theUq„sl~3!… action preserves our irregular irrep also when normalized GWZ state
used.

Following our argument leading to the above conclusion one may think that it might be
to determine the structure of the irregular irrep by just repeating the argument. Howeve
J. Math. Phys., Vol. 38, No. 5, May 1997
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would be a very difficult task since one would have to examine all states in the reducible
sentation. In our approach, the effective implementation of the singular vectors at roots of

and the operatorĈ make determination of the irregular irrep very easy.
It remains to mention that by implementation of the methods of Ref. 35 in the same

were given the GWZ states of the irregular flat irrep of dimension seven, whose irrep was a
given by Verma module methods in Refs. 8, 29, and 26~cf. also above!. However, the explicit
formulas~3.35! in Ref. 35 do not give a correct description of the irrep. We recall that the irre
flat, given byr 15r 251, N53. With our choice of the extra parameters we have for the co
cients ~46a8!–~46d8! when we consider the states from~50! with k5r112N50, s50,1,
t50,...,22s,

a1
15@0#qS @2#q@4#q

@32s#q@42s#q
D 1/250, ~55a8!

a2
15@ t#qS @12s#q

@22s#q
D 1/2, ~55b8!

a1
25@22s2t#qS @1#q@3#q

@22s#q@32s#q
D 1/2, ~55c8!

a2
25@s#qS @22s#q

@32s#q
D 1/2, ~55d8!

while when we consider the states from~48! with k5r112N50, s50, t50,1,

a1
15S 1

@2#q
D 1/2, ~55a88!

a2
15@ t#qS @3#q

@2#q
D 1/250, ~55b88!

a1
25@12t#q~@0#q!

1/250, ~55c88!

a2
25@0#qS @4#q

@3#q
D 1/250. ~55d88!

We can comment explicitly on the decoupling of the state@11
1#, which is the only one not on the

bottom layer of the original eight-dimensional adjoint representation. WhenqÞe2p i /3 it is ob-
tained from the state@21

1# through the coefficienta1
2 which now is zero, cf.~55c8! for s51, t50,

and also from the state@11
0# through the coefficienta2

1 which now is zero, cf.~55b9! for t51.
@Actually, this repeats the general argument explicated in~49! and~51!, with ths standard choice
of the extra parameters.# Analogously, the action of all generatorsXk

6 on the decoupled state@11
1#

gives zero, which is responsible the vanishing of the coefficientsa1
1 anda2

2 occurring because o
factors@3#q in the numerator.

Formulas ~3.35! of Ref. 35 differ slightly from ours because of the choice of the ex
parameters:j851

2 andh15
1
2, instead of our choicej850 andh151; the rest coincide. This leads t

the following problem: the action of the generatorX1
1 on the five states [2s1t

s] produces the
impossible states [3s1t

s] because the coefficienta1
1 is not zero@as it should, cf.~55a8!#:

~a1
1!Abd5S @0#q@2#q@4#q

@32s#q@42s#q
D 1/25~21!s/2 ~56!
J. Math. Phys., Vol. 38, No. 5, May 1997
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~used@2#q51, @4#q521 for q5e2p i /3!.
The flat irregular irreps ofUq„sl~3!… were discussed also in Ref. 43 but not in a GWZ ba

and without giving the dimension formula except for one of the two possible flat cases withN55,
namely, for the flat irregular irrep with (r 1 ,r 2)5~3,1! and dim518 ~also claimed to be describe
by the methods of Ref. 35!.

Finally we note that if we use the realization ofUq„sl~3!… recalled in~31!, then vanishing
conditions ~36! and ~37! follow just by substitutingG3~•! in these conditions and identifying
@ r10

0# with the function 1.

V. OUTLOOK

It is interesting to consider the extension of our approach toUq„sl(n)… for n.3. Things
become much more complicated since we have to factor out much more submodules a
geometric pictures are inn(n21)/2 dimensions. On the other hand, the singular vectors
known for anyn, cf. Ref. 36. Work in this direction is in progress.

Note added.We were prompted by the referee that another description of the irregular i
constructed by use of different methods is contained in Ref. 44, though we can not comm
this work since this Proceedings volume has not appeared yet.
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Differential Hopf algebra structure of the quantum
standard complex

Bernhard Drabanta)
Department of Mathematics, University of Leuven, Celestijnenlaan 200 B,
3001 Leuven-Heverlee, Belgium

~Received 3 November 1995; accepted for publication 7 February 1997!

We are investigating the quantum standard complex (K(q,g),d) of the quantum
enveloping algebraUq(g) for Lie algebrasg associated with the root systems,
An , Bn , Cn , andDn . It is a quantum version of the standard Koszul complex
associated to a Lie algebra as applied for instance in the BRS quantization proce-
dure in connection with spin representations. Using techniques from the theory of
braided monoidal categories we obtain a differential Hopf algebra structure on the
complex (K(q,g),d). © 1997 American Institute of Physics.
@S0022-2488~97!03705-5#

I. INTRODUCTION

In Ref. 1 a deformation of the standard complex of Lie algebras was found for qua
enveloping algebrasUq(g) of Lie algebrasg associated with the root systemsAn , Bn , Cn , and
Dn . The deformed standard complex (K(q,g),d) is the cross product ofUq(g) and the
q-exterior algebra of formsL(X) over the quantum vector fieldsX together with a derivatived
obeying the usual properties. In the classical theory of Lie algebras it is known that the sta
complex is also a differential graded or super-Hopf algebra. This means that the differen
d is compatible with the super-Hopf algebraic structure.2 The standard complex of Lie algebra
appears in the BRS quantization procedure in connection with the spin representations
system. Aq-deformed BRS method should involve a deformation of the Lie algebra complex
give rise for the investigation ofq-BRS spin representations. This is a direction of further inv
tigations with Jurcˇo. As a central result of the present paper we demonstrate that the qua
standard complex (K(q,g),d) is also a differential super-Hopf algebra. In some sense this ‘
alizes’’ the results of Refs. 3 and 4, where it was found that the algebra of the bicova
differential calculus on the quantum groupAq(G) is a differential super-Hopf algebra. Super-Ho
algebra structures on cross products of Hopf algebras have also been investigated in Re
generalization of~bicovariant! differential calculi on Hopf algebras in braided abelian catego
can be found in Ref. 6.

For the derivation of the main result of the paper we use in particular the concept of bos
tion in a braided category.7–9Bosonization is the process defined by Majid in Ref. 9. Starting w
a quasitriangular Hopf algebra or quantum groupH, this procedure transforms anyH-braided
bialgebra into an ordinary bialgebra. AnH-braided bialgebra or ‘‘braided group’’ in the catego
of H-modules means an algebra and coalgebra which areH-covariant and for which the coproduc
is braided-multiplicative, where the braiding is induced by the action ofH8. The generalization of
this process to the case whereH is itself a braided group and its so-called crossed mod
bialgebras has been done in Refs. 7, 8, and 10. In our paper we will show that the alge
quantum vector fieldsL(X) is a certain representation of the quantum doubleD(Uq(g)) ~Ref. 11!
of Uq(g). The quantum double as well as the quantum enveloping algebra are quasitriangu
therefore theD(Uq(g))-modules have a braiding.11 We show that the~graded! braided-Hopf

a!Address after January 1997: Institute of Theoretical Physics, University of Valencia, E-46100 Burjassot, Spain.
Electronic mail: drabant@lie1.uv.es
0022-2488/97/38(5)/2652/8/$10.00
2652 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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algebra structure onL(X) can be super-bozonized to an ordinary super-Hopf algebra in the s
of Refs. 7–9. It turns out that the quantum standard complex (K(q,g),d) is a sub-Hopf algebra o
this derived Hopf algebra cross product. Furthermore the differentiald of (K(q,g),d) is compat-
ible with the Hopf structure such that (K(q,g),d) becomes a Hopf algebra complex where t
counit is an augmentation.

In Sec. II we review generalities on braided monoidal categories, braided quasitriangu
and tensor~factor! Hopf algebras which are essentially due to the work of Joyal and Street12 and
Majid.9,13–15Section III is devoted to the investigation of the differential Hopf algebra prope
of the quantum standard complex. The main result will be formulated in Theorem 3.3. We
that the deformed standard complex (K(q,g),d) is a super-Hopf subalgebra of the cross produc
the quantum doubleD(Uq(g)) with the braided exterior Hopf algebra of quantum vector fie
L(X). The differentiald and the Hopf algebra structure render (K(q,g),d) a differential Hopf
algebra.

II. PRELIMINARIES AND NOTATIONS

A monoidal categoryC :5(C ,^ ,1) is a category equipped with a tensor product^ :C
3C→C and with a unit object1. Braided monoidal categories are additionally characterized
a functorial isomorphismCXY :X^ Y→Y^ X called braiding, whereX andY are objects inC .
The braidingC provides commutativity of the tensor product up to isomorphism.12 It fulfills the
identities

CXY^ Z5~ idY^ CXY!+~CXY^ idZ!, CX^ YZ5~CXZ^ idY!+~ idX^ CYZ!, ~2.1!

whereX, Y, Z are objects inC . The category is called symmetric ifC25 id. For instance the
categoryVeck with the usual tensor product̂ k and the unit object15k is a monoidal category
A ~trivial! braiding inVeck is given by the transpositiontXY(x^ n)5n^ x for all x in X and alln
in Y. Hence (Veck ,^ k ,k,t) is trivially a symmetric monoidal category. In a braided monoid
category~co-!algebras, bi-, and Hopf algebras,~co-!modules and bi-~co-!modules can be define
similarly as in the ‘‘ordinary’’ symmetric category of vector spaces but with the tensor tran
sition replaced by the braidingC. This program has been initiated by Majid in several articles
good survey of the ‘‘braided project’’ can be found e.g. in Refs. 9, 13–15. In our notation
denote a braided group or bialgebra inC by (B,m,h,D,e). It is an algebra (B,m,h) with unit h
and multiplicationm and a coalgebra (B,D,e) with counit e and comultiplicationD where the
comultiplication and the counit are algebra morphisms. In particular it holdsD+m5(m^m)
+( idB^ CBB^ idB)+(D ^ D). The antipode of a~braided! Hopf algebra is denoted byS. The
action of a~left! moduleV over an algebraA will be denoted bym:A^ V→V. The coaction of
a comoduleU over a coalgebraC is denoted byn:U→C ^ U. Majid introduced also the notion o
a quasitriangular Hopf algebra (H,R) in an arbitrary braided monoidal category.9,15 He defines
quasitriangularity and opposite comultiplication with respect to a certain class of modules oH as
follows. A morphismDop:H→H^H is called opposite comultiplication with respect to som
class Ô of H-left modules inC if (H,m,h,Dop,e) is a bialgebra inC and the identity (idH
^ m)+(D ^ idV)5CVH+(m ^ idH)+( idH^ CHV)+(D

op
^ idV) holds for all modules~V,m! in the

classÔ . The class of allH-left modules inC for which these conditions are fulfilled is denoted b
O (H,Dop). This is used in Ref. 9 to define quasitriangularity in the braided monoidal categoC .
H in C is called quasitriangular if an opposite comultiplicationDop and morphismsR,
R21:1→H^H exist forH such that

mH^H+~R^R21!5mH^H+~R21
^R!5hH^H , ~2.2!

~ idH^ D!+R5~m^ idH^H!+~ idH^ CHH^H!+~R^R!, ~2.3!
J. Math. Phys., Vol. 38, No. 5, May 1997
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~Dop
^ idH!+R5~ idH^H^m!+~CH^HH^ idH!+~R^R!, ~2.4!

mH^H+~Dop
^R!5mH^H+~R^ D!. ~2.5!

Through Eq. ~2.5! Dop is uniquely determined byR. Thus Ô (H,Dop) will be denoted by

Ô (H,R) in the following. In Ref. 15 it was proven that for every quasitriangular Hopf alge

(H,R) in C the classÔ (H,R) is a nonempty monoidal category inC where the morphisms ar

the H-left module morphisms, i.e.,Ô (H,R) is a full subcategory of the category ofH-left

modules inC . In addition the categoryÔ (H,R) is braided by the braiding

X3Y°ĈXY , ĈXY :5CXY+~mX^ mY!+~ idH^ CHX^ idY!+~R^ idX^ Y!, ~2.6!

whereX andY are objects inÔ (H,R).
From Ref. 9 it is known that a Hopf algebra (H,m,h,D,e) in the braided categoryC and an

H-left comodule coalgebra (Z,nZ ,DZ ,eZ) yield a coalgebra structure onZ^H through the co-
multiplication D̂ and the counitê given by

D̂:5~ idZ^ ~m^ idZ!+~ idH^ CZH!+~nZ^ idH! ^ idH!+~DZ^ D!, ê:5eZ^ e. ~2.7!

A dually analogous result holds for the construction of an algebra structure on the tensor p
of H with anH-left module algebra. The multiplication and the unit will be denotedm̂ and ĥ,
respectively. These facts are used in Refs. 7 and 8 to generalize Majid’s bosonization proc9

to braided categoriesC .
Theorem 2.1:LetY be a bialgebra in the braided categoryÔ (H,R) ~see Refs. 7 and 8!. Then

YmY
nY
’H:5(Y^H, m̂, h, D̂, ê) is a bialgebra inC . The comodule mapnY is given bynY :

5CYH+(mY^ idH)+( idH^ CHY)+(R^ idY). If Y is in addition a Hopf algebra inÔ (H,R) then
YmY

nY
’H is a Hopf algebra inC with antipode k̂:5(mY^ idH)+( idH^ CHY)+(eY^ D+S^SY

^ e)+D̂.
One immediately verifies that the morphismsiH :H→YmY

nY
’H, iH :5hY^ idH and

iY :Y→YmY
nY
’H, iY :5 idY^ h are monomorphic Hopf algebra morphisms and counital alge

morphisms, respectively. A dually analogous result holds for the morphismssH :YmY
nY
’H→H,

sH :5eY^ idH andsY :YmY
nY
’H→Y, sY :5 idY^ e. In particularH is a sub-Hopf algebra in

YmY
nY
’H andY is a subalgebra inYmY

nY
’H.

In general cross product Hopf algebras in a braided categoryC are completely characterize
by crossed module Hopf algebras over a Hopf algebra inC .10 It is shown in Refs. 7 and 15 tha
the categoryÔ (H,R) is a full subcategory of the category of crossed modules overH, and hence
the result in Theorem 2.1 adjusts oneself in the results of Ref. 10.

Finally we review the results of Ref. 16 on free braided planes or tensor Hopf algebr
braided categories ofC-vector spaces. We consider an ordinary quasitriangular Hopf alg
(H,R) and theH-left modulesHM. As a special case of the previous statements the cate

HM is braided with a braiding, which we denote byĈ(1) and which is given by Eq.~2.6!, where
C is replaced by the vector spacet. If one deals with graded modulesŶ one can use instead o
tYn ,Ym

the graded transpositiontYn ,Ym

(l) :5lnmtYn ,Ym
with any fixedlPC* .17,18 As a simple

consequence of Theorem 2.1 bosonization can also be performed with respect to thist (l). The
corresponding braiding inÔ (H,R) according to Eq.~2.6! will be denoted byĈ(l) henceforth.
This fact has been used in Ref. 8 to construct inhomogeneous quantum groups as Hopf alg
a braided category without additional dilaton generator. Given any moduleXPOb(HM) the
tensor spaceX^n is anH-left module inHM and the tensor algebraT(X)5 % n50

`
X^n is a graded

algebra in the categoryHM with the usual tensor multiplicationmT , the unit1T51PK and the
module action according tohx1T5eH(h)1T and hx(x1^ ...^xn)5(h(1)xx1^ ...^h(n)xxn
J. Math. Phys., Vol. 38, No. 5, May 1997
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on higher tensor products.T(X) is even a Hopf algebra in the braided category (HM,Ĉ) where
the comultiplication, counit and antipode are defined for anyxPX throughDT(x)5x^1T11T
^x, eT(x)50, andST(x)52x, respectively, and by braided~anti-!multiplicative continuation on
the higher tensor products.16 Suppose that (Ĉ)XX decomposes into projectors as (Ĉ)XX

5( i51
n a iPi , wherePiPj5d i j Pj , ( i51

n Pi5 idX^ X and for all iÞ jP$1,...,n% it holdsa iÞa j for
the scalar coefficients. If there is an indexi 0P$1,...,n% such thata i0

521 then the quotient spac

T̄i05T(X)/(mTPi0
(X^ X)) is again a Hopf algebra in the category (HM,Ĉ). If not one of the

coefficients in the projector decomposition of (Ĉ)XX equals to21 one can easily adjust th

braiding as Ĉ(2a i0
21) for any nonzero coefficienta i0

and one obtains (Ĉ2a i0)XX52Pi0
2( iÞ i0

(a i /a i0
)Pi .

III. THE QUANTUM STANDARD COMPLEX

The results recalled in Sec. II are now applied to the complex (K(q,g),d) which is a defor-
mation of the standard complex of Lie algebrasg associated with the root systemsAn , Bn , Cn or
Dn .

1 We supposeq not to be a root of unity. Since the quantum standard complex is less com
we give a short review of its construction and its essential properties. In this manner we h
make our argumentation for the derivation of the main result of this section more transpare
that reason we also need special versions of general results on the quantum double, q
vector fields and quantum invariant forms. We recall them directly in the course of this sect
make their specific connection to our results visible.

The adjoint representation19 of Uq(g) is given through ad:Uq(g)^Uq(g)→Uq(g), adu(v)
5(u(1)vSU(u(2));v, uPUq(g), whereSU is the antipode ofUq(g). It induces a representatio
of the quantized enveloping algebra on the right invariant ‘‘vector fields’’20 associated with a
bicovariant differential calculus on quantized simple Lie groups.21–23In what follows we consider
as vector fields a certain subspaceX,Uq(g) such thatX generatesUq(g).

20 A C-basis inX is
given through

Xa
b5db

a1U2 (
k51

N

L1a

kSU~L2k

b!, ~3.1!

whereN5n11 for An , N52n11 for Bn and N52n for Cn and Dn , a,bP$1,...,N%, and
(L6r

s) r ,s51,...,N are the regular functionals of the corresponding quantum group.20 The spaceX is
dual to the spaceG inv of right invariant one-forms

23 with basis$hb
aua,bP$1,...,N%% and with left

adjoint coactionFG :G inv→Aq^ G inv , whereAq is the quantum group dual toUq(g). Explicitly it
holds21,22,24

^Xa
b ,hc

d&5dadcb ,

^FG~h!,u^x&5^h,adu~x!&,

FG~h r
s!5(

t,u
SA~ tur !t

s
t^ hu

t, ~3.2!

with hPG inv and u^xPUq(g)^ X. The adjoint action ofX on X can also be written as
a deformed Lie bracket23 adx(y)5xy2mUs(x^ y), where x,yPX,Uq(g), mU is the
multiplication in Uq(g) and s:X^ X→X^ X is a linear transformation with certain specifi
properties.21,22,23 The matrix s is identified as the structure constants of some quantum
algebra.25 The theory of quantum and braided Lie algebras then has been developed further
26. For the vector fields under consideration,s can be written as a projector decompositi
s5(rPRrPr , PrPr85drr8Pr;r, r8PR, and(rPRPr5 idX^ X .

21 It holds 1PR,C. The space
J. Math. Phys., Vol. 38, No. 5, May 1997
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of quantized exterior formsL~X! is defined byL(X)5T(X)/(mTP1(X^ X))5 % j50
` L j (X).

1 It
becomes anN0-gradedUq(g)-module algebra through the action adˆ which is induced by ad, and
thereforeK(q,g):5L(X)ad̂ ’Uq(g) is anN0-graded algebra which containsL(X) andUq(g) as
subalgebras.1 Both in L(X) and inUq(g) the vector fieldsX are contained. For distinction it is
written xPX,L(X) and x̃PX̃,Uq(g). OnK(q,g)5 % j50

` L j (X)Uq(g)5 % j50
` Kj (q,g) a grade

indicating algebra isomorphismg:K(q,g)→K(q,g) exists such thatg(aj )5(21) jaj;aj
PKj (q,g). The central theorem of Ref. 1 states that onK(q,g) a derivatived with the following
properties can be uniquely defined:

d is Uq~g!—module morphism,

d~x!5 x̃PUq~g! ;xPL~X!,

d~kl !5d~k!l1g~k!d~ l ! ;k,lPK~q,g!. ~3.3!

From this it follows thatd250 anddg1gd50. The complex (K(q,g),d) is a deformation of the
Koszul complex of the Lie algebrasg associated with the root systemsAn , Bn , Cn , andDn .
Then the tensor spaceK^ (q,g)5K(q,g)^K(q,g) also becomes a complex with the usu
graded multiplication (u^uj )•(uk^v)5(21) jk(u•uk)^ (uj•v) for all uiPKi(q,g) and uj
PKj (q,g), with grade indicating algebra isomorphismG5g ^ g, and with derivative D
5(d^idK)1(g ^d). Explicitly it holds D(Kj

^ (q,g)),Kj21
^ (q,g), D(uv)5D(u)v

1G(u)D(v), D250, andDG1GD50 for all jPN0 andu,vPK^ (q,g).
To derive the main result of this section we will look for a quasitriangular Hopf algebra f

which the spaceL~X! is a representation. Then we can apply Theorem 2.1 and check ifK(q,g)
coincides with the bosonization product or at least is embedded in it. The quantum enve
algebraUq(g) for instance is a quasitriangular Hopf algebra withR-matrixR.11 @In general the
matrixR is an element of the topological tensor product ofUq(g) in the h-adic completion. In
this setting of quasitriangular Hopf algebras the notations and results of Sec. II can be esta
analogously.# For our purposes, however, it turns out that the quantum doubleD(Uq(g)) is a
better candidate. This fact is confirmed by a dual observation in Ref. 27 that the braiding
invariant forms of a bicovariant differential calculus is the braiding induced by a canonical
resentation of the quantum doubleD(A) of A; and similarly as in Ref. 4 we construct a repr
sentation of the quantum doubleD(Uq(g)) in the spaceL~X!. We use the description of th
quantum doubleD(Uq(g)) as two copies ofUg(g) and its quasitriangular structure which wa
found in Ref. 28. The analogous dual construction to Ref. 28 on the quantum groupAq was done
in Ref. 16—it was shown therein thatD(Aq) is a coquasitriangular Hopf algebra. TheR-matrix of
D(Uq(g)) is given by

R+5( R2
21

^R18^ DU~R1
21R28! ~3.4!

and the Hopf algebra structure is defined through

m+5~mU^mU!+~ idU^ tUU^ idU!,

h +5hU^ hU ,

D +5R21
23~ idU^ tUU^ idU!+~DU^ DU!~ .!R23,

e +5eU^ eU ,

S+5R21~SU^SU!~ .!R21
21, ~3.5!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where the obvious notation of Ref. 20 is used. We consider now the left coaction ofD(Aq) on
G inv according to Ref. 16,

FG
+ :H G inv→D~Aq! ^ G inv

h r
s°(

t,u
SA~ tur ! ^ tst^ hu

t. ~3.6!

Since the spacesX andG inv are dual to each other~and finite dimensional! the mapFG
+ in Eq. ~3.6!

induces a left action of the quasitriangular Hopf algebra (D(Uq(g)),R
+) on X according to

ad+:5(.)+FG
+ :D(Uq(g))^ X→X. From the definition it is obvious that ad5ad++(DU^ idX). The

braidingC0XX of the D(Uq(g))-moduleX is determined in the dual setting of Ref. 11 by t
coactionFG

+ and the coquasitriangular structure onD(Aq) from Ref. 16. The result on basi
elementsha

b
^ hc

dPG inv^ G inv is given by~see Ref. 29 and the dual of Eq.~2.6!!

C0XX
t ~ha

b
^ hc

d!5C0G invG inv
~ha

b
^ hc

d!5 (
t,u,v,w

L1u

cSU~L2d

t!~SA~ twa!t
b
v!•hu

t
^ hw

v

~3.7!

which leads toC0XX5s. The results of Sec. II can now be applied. Through the identifica
X>X1 and for l521 one finds that (Ĉ(21))XX52C0XX52s in the category ofN0-graded
D(Uq(g))-left modules. Thus according to Sec. II the spaceL~X! is a Hopf algebra in the braide
category (D(Uq(g))

M,^ ,C,Ĉ(21)) of N0-gradedD(Uq(g))-left modules. Theorem 2.1 then yield
the following corollary:

Corollary 3.1:L(X)’D(Uq(g)) is a graded super-Hopf algebra.
As usual the word ‘‘super’’ refers to the adjustment factor21 in the braidingsĈ(21) and

t (21). For further argumentation we need that the comultiplicationDU :Uq(g)→D(Uq(g)) is an
injective Hopf algebra homomorphism.28 Then Theorem 2.3 and the injective linear mappi
f:5(idL ^ DU):L(X)^Uq(g)→L(X)^D(Uq(g)) enable us to formulate

Theorem 3.2:f(L(X)^Uq(g)) is a Hopf subalgebra ofL(X)’D(Uq(g)) and thusL(X)
^Uq(g) becomes a super-Hopf algebra by canonical identification through the embeddingf. We
denote the Hopf algebra structure maps ofL(X)^Uq(g) by mK , hK , DK , eK , andSK . The
algebra (L(X)^Uq(g),mK ,hK) coincides with the algebraK(q,g) of Ref. 1. Therefore the spac
(K(q,g),DK ,eK ,SK) is a super-Hopf algebra.

Proof: L:5f(L(X)^Uq(g)) is N0-graded with respect to the grading inL(X)
5 % j50

` L i(X). If one can show thatm̂(L^L),L, D̂(L),L^L, Ŝ(L),L the proof is done.
Some calculation yields

m̂~~l ^u! ^ ~m ^v !!5( l•~u~1!xm! ^ DU~u~2!v !,

D̂~l ^u!5( l~1! ^ DU~R1
21
R28u~1!! ^ ~R2

21
^R18!x+l~2! ^ DU~u~2!!,

Ŝ~l ^u!5( ~DUSU~R1
21
R28u!~1!~R2

21
^R1!!x+SL~l! ^ DU~R1

2
R28u!~2! , ~3.8!

where we used the quasitriangularity of (D(Uq(g)),R
+), Eqs. ~2.7! and ~3.5!. In the above

relations x is the action ad̂: Uq(g)^ L(X)→L(X) and x+ is the action ad+ ˆ :D(Uq(g))
^ L(X)→L(X) which are induced from ad and ad+, respectively.
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the last part of this section we will show thatmK , hK , DK , eK , andSK of Theorem 3.22
respect the chain complex structure of (K(q,g),d) and its tensor square (K^ (q,g),D). Hence
K(q,g) is a Hopf algebra complex with augmentation. We formulate the central theorem of C
III.

Theorem 3.3:The complex (K(q,g),d) equipped with the graded Hopf algebra structure
Theorem 3.2 is a differential Hopf algebra. This means commutativity of the diagrams

and the corresponding diagrams whered, D, and 0 are replaced byg, G, and idC , respectively.
Proof: We sketch the proof of the identitySK+d5d+SK . Let Xk

l PX be a basis element o
X,L(X) according to Eq.~3.1!. Then using the notation of Ref. 1 one obtainsSKd(Xk

l )
5SU(X̃k

l )PUq(g). On the other side one getsdSK(Xk
l )52Sa,bSU(Qkb

la )X̃a
b where Qkb

la

5 Lb
1 l
SU(Lk

2a
). Using again the definition ofX̃a

b according to Eq.~3.1! yields dSK(Xk
l )

5SU(X̃k
l ). For uPUq(g),K(q,g) the identitydSK(u)5SKd(u) is trivially valid. Now let a, b

PK(q,g) be homogeneous elements of degreeâ and b̂, respectively, which obey the relation

dSK(a)5SKd(a) and dSK(b)5SKd(b). Then SKd(ab)5(21)(â21)b̂SK(b)dSK(a)

1(21)â b̂dSK(b)SK(a)5dSK(ab) where the fact has been used thatK(q,g) is a super-Hopf
algebra and thatd decreases the degree by 1. SinceX andUq(g) generateK(q,g) it follows that
SK+d5d+SK .
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An asymptotic limit law with a singularly perturbed drift
and a random noise

Jeong-Hoon Kima)

Applied Mathematical Sciences, Ames Laboratory, United States Department of Energy,
Iowa State University, Ames, Iowa 50011

~Received 7 April 1995; accepted for publication 23 December 1996!

An asymptotic stochastic initial value problem with a random microscale super-
posed upon a deterministic macroscale is considered in this article. We derive and
prove a limit theorem for the random problem with a rapidly varying deterministic
component. The asymptotic character of the stochastic initial value problem with a
small parameter is realized by solving a final value problem of which the infini-
tesimal generator consists of a singularly perturbed deterministic component and a
random fluctuation intensity component. We also give an estimate for the error in
the asymptotic approximation in terms of the small parameter. This abstract limit
theorem is reduced to a limit theorem for the stochastic processes solving a system
of stochastic differential equations. The corresponding infinitesimal generator of
the Kolmogorov–Fokker–Planck equation is obtained in an asymptotic form and
demonstrates how an effective driving force couples with a zero-mean random
perturbation in both drift and diffusion coefficients. Our theorem provides a char-
acterization of random noise for evanescent waves in a layered random medium.
© 1997 American Institute of Physics.@S0022-2488~97!00405-2#

I. INTRODUCTION

We are concerned with physical processes that solve a system of stochastic differentia
tions with a small parameter. The processes are assumed to take place in a space where
microscale fluctuations are superposed upon smoothly varying deterministic variations. Ba
this separation of scales, the asymptotic theory of stochastic differential equations has been
and applied to a variety of physical problems. These include the harmonic oscillator with
domly perturbed elastic constant, diffusion approximation in linear transport theory, radio
propagation in a turbulent atmosphere, microwaves in a wave guide with rough surface, ra
telegraph equation, nonlinear vibration with random noise, wave propagation in geophysic
dia, etc. The theory, in most cases, has dealt with the problems in which the solution pro
have a rapidly oscillating deterministic component so that it can be removed through c
procedures of centering. In this article, we wish rather to analyze the asymptotic character
stochastic processes that have a rapidly varying~not oscillating! driving force with a random
noise.

In the analysis of wave propagation in random media, limit theorems1–3 for stochastic differ-
ential equations with multiple scales have been applied to many problems.4–10 They became a
main mathematical tool to induce transport equations that characterize the multiple scatte
waves, including acoustic, electromagnetic, and elastic waves in random media. Here we
stochastic differential equations with a right-hand side composed of a rapidly varying dete
istic component and a randomly perturbed component. This type of theory usually assu
lower order random perturbation than the order of deterministic~averaged! variation. This scaling,
for example, can be found in the context of stochastic Boltzmann equations.11 Our random prob-
lem of interest, however, has different scaling conditions from those there; the random per

a!Present address: Dept. of Mathematics, Yonsei University, Seoul 120-749, Korea.~Electronic-mail:
jhkim96@bubble.yonsei.ac.kr!
0022-2488/97/38(5)/2660/16/$10.00
2660 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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tion has the same order as the deterministic variation. This work is motivated by our pre
work;12,13 the analysis of evanescent waves for a random scattering problem with a turning
requires a study of this kind of problem.

We can describe a generalized abstract stochastic initial value problem in terms of evo
operators, i.e., random propagators and effective propagators. We derive an abstract limit th
Banach space under the assumption of a broad class of stochastic perturbations, i.e.,
mixing.14 The adjoint form of the infinitesimal generator of the Fokker–Planck equation for
transition probability density is to be obtained in the context of an asymptotic theory of stoch
differential equations. We also obtain an estimate for the error in terms of the small parame
the problem. The abstract nature of our limit theorem is understood when this theorem is re
to a form that can be concretely applied to physical problems including wave propagati
random media.

In Sec. II, we state a limit theorem~Theorem 1! for an abstract stochastic initial valu
problem. We prove this limit theorem in Sec. III. In Sec. IV we reduce this abstract limit theo
to a limit theorem for the stochastic processes solving a system of stochastic differential equ
~Theorem 2!. In Sec. V we apply Theorem 2 to a wave propagation problem in a one-dimens
layered random medium and obtain an infinitesimal generator for the limiting process that
singularly perturbed drift term plus a random noise term.

II. A LIMIT THEOREM WITH A RAPIDLY VARYING DETERMINISTIC PART

In this section, we develop an abstract limit theorem in a framework based upon fun
spaces~separable Banach spaces! and evolution operators. The object of our study in this sec
is to obtain the asymptotic character of the expected value of the evolution processes repr
by random propagators for a stochastic initial value problem that has a rapidly varying dete
istic component.

We start with introducing some preliminary terminology and hypotheses. Let (V,F ,P) be a
probability space and letF s

t , 0<s<t<`, be a family ofs-algebras contained inF such that
F s1

t1,F s2

t2 , 0<s2<s1<t1<t2<`. The conditional properties relative toF 0
s are assumed to

have a regular version,12 i.e.,

~i! Ps(Au•) is F 0
s measurable for everyAPF , and

~ii ! Ps(•uv) is a probability measure onF for everyvPV.

Then we have representationE$•uF 0
s%5*V•Ps(dwuv8) almost everywhere. We assume thatP

satisfies the following strong mixing condition:

sup
s>0

sup
APF s1t

` ,BPF 0
s

uP~AuB!2P~A!u5r~ t !↓0, t↑`, ~1!

where monotonically decreasing nonnegative functionr is called the mixing rate and assumed
satisfy

E
0

`

r1/2~s!ds,`. ~2!

Let L0 be a separable Banach space whose norm is denoted byi•i0 . LetLk , 1<k<4, be
dense linear subspaces ofL0 such thatLk,Lk21 . Let i•ik denote a norm onLk , 1<k<4,
such that theLk spaces are also separable Banach spaces. We assume thati f ik21<i f ik , ; f
PLk , 1<k<4.

We define a bounded linear random operator, denoted byV(t,t,v), fromLk into Lk21 , 1
<k<4, for eachtP@0,t0#, tP@0,̀ ) andvPV. We shall assume that for each fixedt andt the
J. Math. Phys., Vol. 38, No. 5, May 1997
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operatorsV(t,t,v) are strongly measurable with respect to thes-algebra generated byB3F ,
whereB denotes the Borel sets on@0,̀ !. We assume further that for eacht, t and fPLk , 1
<k<4, V(t,t,v) f is stronglyF t

t measurable as a function ofvPV. Let us define the norm o
V(t,t,v) onLk→Lk21 , 1<k<4, by

iV~t,t,v!ik5 sup
fPLk , fÞ0

iV~t,t,v! f ik21

i f ik
. ~3!

SinceLk are separable Banach spaces,iV(t,t,v)ik is aF t
t measurable function ofv and jointly

measurable int andv.
For eacht, let V0(t) be a bounded linear deterministic operator fromLk into Lk21 , 1<k

<4. We define the norm ofV0(t) as in ~3!. Next we define a random operatorV1(t,t,v) from
Lk into Lk21 , 1<k<4, by

V~t,t,v! f5V0~t! f1V1~t,t/e2,v! f , ; fPLk ~4!

so thatV1(t,t,v) is a bounded linear operator whose norm is defined as in~3!. The random
operatorV1(t,t,v) satisfies the same measurability conditions asV(t,t,v).

To develop a limit theory for the problem of interest, we introduce a small positive param
e and consider an abstract stochastic initial value problem

d

dt
fe~t!5

1

e
V~t,t/e2,v!fe~t!, t.0, fe~0!5 f . ~5!

We also think of a deterministic initial value problem that is an averaged problem in the sens
the random component corresponding to the operatorV1(t,t/e

2,v) is suppressed:

d

dt
f0~t!5

1

e
V0~t!f0~t!, t.0, f0~0!5 f . ~6!

We then define the solution operatorsUe(s,t) andU0(s,t) by

fe~t!5Ue~s,t!fe~s!, f0~t!5U0~s,t!f0~s!, ~7!

and call these operators the random propagators and the effective propagators, respectivel
propagators are assumed to satisfy the following properties.

~a! Ue(s,t) andU0(s,t) are contraction operators onL0→L0 andUe(s,t) f , fPL0 , is

strongly F s/e2
t/e2 measurable. TheUe(s,t) and U0(s,t) are bounded operators o

Lk→Lk , 1<k<4.
~b! Finite propagator property:

Ue~s,h!Ue~h,t!5Ue~s,t!, Ue~t,t!5I, ~8a!

U0~s,h!U0~h,t!5U0~s,t!, U0~t,t!5I. ~8b!
~c! Infinitesimal forward and backward propagator properties:

I1e21E
s

t

Ue~s,h!V~h!dh5Ue~s,t!5I1e21E
s

t

V~h!Ue~h,t!dh, ~9a!

I1e21E
s

t

U0~s,h!V~h!dh5U0~s,t!5I1e21E
s

t

V~h!U0~h,t!dh ~9b!
J. Math. Phys., Vol. 38, No. 5, May 1997
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on L1 . Here we used notationV(t) instead ofV(t,t/e2,v) for brevity. We shall use also
V1(t) instead ofV1(t,t/e

2,v) from now on. Since we assume that the integrand is stron
measurable and its norm is integrable, the above integrals defined in Bochner’s sense15 exist and
finite.

Now we are ready to state our main result of this section.
Theorem 1:Let Ue(s,t), U0(s,t), V(t), V0(t) and V1(t), 0<s<t<t0 , be the operators

defined as above and satisfy the properties (a), (b) and (c). Suppose the mixing rate condit
is satisfied. Let us assume the following regularity conditions (i), (ii) and (iii) hold:

~i! For arbitrary fPL1 ,
E$V1~t!f %50. ~10!

~ii ! There are positive constantsãk , ak , b̃k and bk independent ofs, t and e such that for
arbitrary fPLk ,

iUe~s,t!f ik<b̃k$11~t2s!/e1•••1~~t2s!/e!k21%eãk~t2s!/eif ik a.e., k51,2, ~11a!

iU0~s,t! f ik<bk$11~t2s!/e1•••1~~t2s!/e!k21%eak~t2s!/eif ik , k51,...,4. ~11b!
~iii ! There are positive constants c˜k and ck independent oft and e such that for arbitrary f

PLk

iV~t!f ik21<c̃kif ik , k51,2, iV1~t! f ik21<cki f ik a.e., k51,...,4. ~12!

Let us define operator We(s) onLk11→Lk21,1<k<3, by

We~s! f5E
0

1/e

E$V1~s!U0~s,s1e2t !V1~s1e2t !U0~s1e2t,s! f %dt ~13!

and let Be(s,t) be a bounded operator onLk→Lk , 1<k<4, called a backward propagator, and
solve a final value problem

]sB
e~s,t!1L s

eBe~s,t!50, Be~t,t!5I ~14!

and satisfy the finite propagator property described in (8). Here the infinitesimal generatorL s
e is

defined onL2→L0 as the sum ofe21V0(s) and We(s), i.e., L s
e 5e21V0(s)1We(s). We

assume that the strong limit inL0 , denoted by B(s,t) f , of B
e(s,t) f ase→0 exists uniformly in

s and t and satisfies the rate of approach

sup
0<s<t<t0

iBe~s,t! f2B~s,t! f i0<eCt0
i f i4 , ; fPL4 . ~15!

Then E$Ue(0,t) f % converges strongly inL0 to B(0,t) f ase→0, 0<t<t0 , with the O(e) error.
More specifically, we have

sup
0<t<t0

iE$Ue~0,t! f %2B~0,t! f i0<eC~ f ;t0!, ; fPL4 , ~16!

where C( f ;t0) denotes a positive constant depending on f andt0 but independent ofe.

III. PROOF OF THE LIMIT THEOREM

The proof of Theorem 1 will consist of several lemmas including some useful properties
the random propagatorsUe(s,t), the effective propagatorsU0(s,t) and the backward propaga
torsBe(s,t). The main idea behind the proof of the limit theorem is to incorporate the effec
operators into the previously known diffusion approximation1–3,16 in the present scale condition
We prove the following two lemmas before we proceed with the proof of Theorem 1.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Lemma 1: The following variation of constants formulas hold for the propagators Ue(s,t)
and U0(s,t) and the operator V1(t) satisfying the properties(a), (b) and (c);

Ue~s,t!5U0~s,t!1e21E
s

t

U0~s,h!V1~h!Ue~h,t!dh, s,t, ~17a!

Ue~s,t!5U0~s,t!1e21E
s

t

Ue~s,h!V1~h!U0~h,t!dh, s,t. ~17b!

Proof: If we differentiateU0(s,h)Ue(h,t) with respect toh using the product rule, then

]h~U0~s,h!Ue~h,t!!5~]hU
0~s,h!!Ue~h,t!1U0~s,h!]hU

e~h,t!

5e21U0~s,h!V0~h!Ue~h,t!2e21U0~s,h!V~h!Ue~h,t!

52e21U0~s,h!V1~h!Ue~h,t!.

Here the forward propagator property forU0(s,h), the backward propagator property fo
Ue(h,t), and identity~4! were used. When one integrates the above identity froms to t, identity
~17a! can be obtained. Similarly, identity~17b! can be derived. h

Lemma 2: The backward propagators Be(s,t) satisfy the following identity:

Be~s,t!5U0~s,t!1E
s

t

U0~s,h!We~h!Be~h,t!dh, s,t. ~18!

Proof: To prove~18!, we differentiateU0(s,h)Be(h,t) with respect toh using the product
rule

]h~U0~s,h!Be~h,t!!5~]hU
0~s,h!!Be~h,t!1U0~s,h!]hB

e~h,t!

5e21U0~s,h!V0~h!Be~h,t!2U0~s,h!L h
eBe~h,t!

52U0~s,h!We~h!Be~h,t!.

Here the infinitesimal forward property forU0(s,h) and Eq.~14! were used. When the abov
identity is integrated froms to t, the above~18! can be obtained. h

To prove Theorem 1, let us first decompose the interval@0,t# into O(1) length intervals
@ke,(k11)e#, k50,1,...,m21, where without loss of generalitye is such thatt5me. Thenm
;O(e21) and for arbitraryfPL4

E$Ue~0,t! f %2Be~0,t! f5 (
k50

m21

E$Ue~0,~k11!e!Be~~k11!e,t! f2Ue~0,ke!Be~ke,t! f %

5 (
k50

m21

E$Ue~0,ke!@E$Ue~ke,~k11!e!gk%2Be~ke,~k11!e!gk#%

1 (
k50

m21

E$Ue~0,ke!@Ue~ke,~k11!e!gk2E$Ue~ke,~k11!e!gk%#%,

~19!

where gk5Be((k11)e,t) f . Since Ue(0,ke) are contraction operators onL0→L0 and
Be(s,t) are bounded operators onLk,1<k<4, the estimatei•i0 of the quantities in the bracke
of ~19! determines the estimate of~19! itself such that
J. Math. Phys., Vol. 38, No. 5, May 1997
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iE$Ue~0,t! f %2Be~0,t! f i0< (
k50

m21

iE$Ue~ke,~k11!e!gk%2Be~ke,~k11!e!gki0

1 (
k50

m21

iE$Ue~0,ke!Ue~ke,~k11!e!gk%2E$Ue~0,ke!

3E$Ue~ke,~k11!e!gk%%i0[ (
k50

m21

~ I1,k~ f !1I2,k~ f !!. ~20!

Let us estimateI1,k( f ) first. If we iterate the variation of constants formulas~17a! twice,
~17b! twice, and identity~18! twice, then we can obtain the following expansion

E$Ue~ke,~k11!e!gk%2Be~ke,~k11!e!gk

5Fe22E
ke

~k11!eE
s

~k11!e
E$U0~ke,s!V1~s!U0~s,l!V1~l!U0~l,~k11!e!gk%dl ds

2E
ke

~k11!e
U0~ke,s!We~s!U0~s,~k11!e!gkdsG

2E
ke

~k11!eE
s

~k11!e
U0~ke,s!We~s!U0~s,l!We~l!Be~l,~k11!e!gkdl ds

1e23E
ke

~k11!eE
s

~k11!eE
l

~k11!e
E$U0~ke,s!V1~s!U0~s,l!V1~l!U0~l,n!

3V1~n!•U0~n,~k11!e!gk%dn dl ds

1e24E
ke

~k11!eE
s

~k11!eE
l

~k11!eE
l

n

E$U0~ke,s!V1~s!U0~s,l!V1~l!Ue~l,m!V1~m!

•U0~m,n!V1~n!U0~n,~k11!e!gk%dm dn dl ds, ~21!

where hypothesis~10! was used.
In the following lemmas, we proceed with the term-by-term estimation of~21!. We use

repeatedly the following inequalities from assumption~11!. If 0<t2s<e, then for arbitraryf
PLk

iUe~s,t! f ik<b̃kke
ãki f ik a.e., k51,2, iU0~s,t! f ik<bkke

aki f ik , k51,...,4, ~22!

whereak , ãk , bk and b̃k are independent ofs, t ande. Also we use the fact that*0
` sr(s)ds

,` and 1/er1/2(1/e) is uniformly bounded ine coming from mixing rate condition~2!. One of the
main tools for each estimate is the Banach space version of mixing lemma.16 We cite it here
without proof as follows.

Lemma 3: LetL,M, andN be Banach spaces and let W(v) and U(v), vPV, bounded
operators onN →M andM→L, respectively. Let U be stronglyF 0

s measurable and W
stronglyF s1t

` measurable. Then

iE$UWf%2E$UE$Wf%%iL<2r~ t ! sup
v,v8

iU~v!W~v8! f iL , ; fPN . ~23!
J. Math. Phys., Vol. 38, No. 5, May 1997
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From now on, we will useCt0
to denote a positive constant depending on onlyt0 . The

constant multiple ofCt0
will be denoted also by the sameCt0

. We will use a general termz
instead ofke in the following Lemmas 4–7.

Lemma 4: For arbitrary fPL2 and 0<z,t0 ,

K[ I e22E
z

z1eE
s

z1e

E$U0~z,s!V1~s!U0~s,l!V1~l!U0~l,z1e! f %dl ds

2E
z

z1e

U0~z,s!We~s!U0~s,z1e! f ds I
0

<e2Ct0
i f i2 . ~24!

Proof: From the change of variablesl5s1e2t, identity ~13! becomes

We~s! f5e22E
s

s1e

E$V1~s!U0~s,l!V1~l!U0~l,s! f %dl, ; fPL2 . ~25!

We use Lemma 3~mixing lemma! to obtain

K5 I e22E
z

z1eE
z1e

s1e

E$U0~z,s!V1~s!U0~s,l!V1~l!U0~l,z1e! f %dl ds I
0

<e22E
z

z1eE
z1e

s1e

2r~~l2s!/e2!dl ds sup
z<s<z1e<l<z12e

sup
v,v8

iU0~z,s!V1~s!

3U0~s,l!•V1~l!U0~l,z1e! f i0

<e22E
0

e

2ur~u/e2!du•c1~b1e
a1!c2~b22e

a2!i f i2 , ~26!

where inequalities~12! and ~22! were used. Then, from the change of variables and the estim
*0

`sr(s)ds,`, we obtainK<e2Ct0
i f i2 for some positive constantCt0

. h

Lemma 5: For arbitrary fPL4 and 0<z,t0 ,

J[ I E
z

z1eE
s

z1e

U0~z,s!We~s!U0~s,l!We~l!Be~l,z1e! f dl ds I
0

<e2Ct0
i f i4 . ~27!

Proof: For arbitraryfPL2 , using Lemma 3, one obtains

iWe~s! f i0<E
0

1/e

2r~ t !dt sup
0<t<1/e

sup
v,v8

iV1~s!U0~s1e2t !V1~s1e2t !U0~s1e2t,s! f i0 .

~28!

From inequalities~12! and ~22!, the above inequality~28! becomes

iWe~s! f i0<E
0

`

2r~ t !dt•c1~b1e
a1!c2~b22e

a2!i f i2[g2i f i2 , ~29!

whereg2 is a positive constant independent ofs ande. Similarly, there exists a positive consta
g4 such thatiWe(l) f i2<g4i f i4 for arbitrary fPL4 . From ~22!, therefore, we obtain the fol
lowing inequality for the integrand ofJ:

iU0~z,s!We~s!U0~s,l!We~l!Be~l,z1e! f i0<g2~b22e
a2!g4iBe~l,z1e! f i4 . ~30!
J. Math. Phys., Vol. 38, No. 5, May 1997
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SinceBe(l,z1e) are bounded linear operators onLk→Lk , 1<k<4, the above inequality~30!
leads to estimateJ<e2Ct0

i f i4 for some positive constantCt0
. h

Lemma 6: For arbitrary fPL3 and 0<z,t0 ,

H[ I e23E
z

z1eE
s

z1eE
l

z1e

E$U0~z,s!V1~s!U0~s,l!V1~l!U0~l,n!V1~n!

•U0~n,z1e! f %dn dl ds I
0

<e2Ct0
i f i3 . ~31!

Proof: Let us consider the following change of variables:

s̃[s2z, l̃[l2s5l2~z1s̃ !, ñ[n2l5n2~z1s̃1l̃!. ~32!

Then the left-hand side of inequality~31! becomes

H5 I e23E
0

eE
0

e2s̃E
0

e2s̃2l̃
E$U0~z,z1s̃ !V1~z1s̃ !U0~z1s̃,z1s̃1l̃!V1~z1s̃1l̃!

•U0~z1s̃1l̃,z1s̃1l̃1 ñ !V1~z1s̃1l̃1 ñ !U0~z1s̃1l̃1 ñ,z1e! f %dñ dl̃ ds̃ I
0

.

~33!

In this step, we need an inequality

E
0

e2s̃E
0

e2s̃2l̃
~• !dñ dl̃<H E

0

e/2E
0

ñ
1E

e/2

e E
0

e2 ñ
~• !J dl̃ dñ1H E

0

e/2E
0

l̃
1E

e/2

e E
0

e2l̃
~• !J dñ dl̃,

~34!

where the integrand~•! is non-negative. We use this inequality and Lemma 3 to obtain

H<c1~b1e
a1!c2~b22e

a2!c3~b33e
a3!e23E

0

eF E
0

e/2E
0

ñ
1E

e/2

e E
0

e2 ñ
2r~ñ/e2!dl̃ dñ

1E
0

e/2E
0

l̃
1E

e/2

e E
0

e2l̃
2r~l̃/e2!dñ dl̃Gds̃ i f i3 . ~35!

Here inequalities~12! and ~22! and the symmetric property betweenñ and l̃ were used also.
Finally, from the estimate*0

`sr(s),`, ~35! leads to inequalityH<e2Ct0
i f i3 for some positive

constantCt0
. h

Lemma 7: For arbitrary fPL4 and 0<z,t0 ,

L[ I e24E
z

z1eE
s

z1eE
l

z1eE
l

n

E$U0~z,s!V1~s!U0~s,l!V1~l!Ue~l,m!V1~m!

•U0~m,n!V1~n!U0~n,z1e! f %dm dn dl ds I
0

<e2Ct0
i f i4 . ~36!

Proof: Let g1(s,l) denote the double integral with respect tom andn of the aboveL so that
J. Math. Phys., Vol. 38, No. 5, May 1997
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L5 I e24E
z

z1eE
s

z1e

g1~s,l!dl ds I
0

. ~37!

By the change of variables~32!, the aboveL becomes

L5 I e24E
0

eE
0

e2s̃
g1~z1s̃,z1s̃1l̃!dl̃ ds̃ I

0

. ~38!

Now let g2(m,n) denote the integrand of the double integralg1 so that

g1~z1s̃,z1s̃1l̃!5E
z1s̃1l̃

z1e E
z1s̃1l̃

n

g2~m,n!dm dn. ~39!

By the change of variables~32! ~usingm instead ofn there! and ñ[n2m5n2(z1s̃1l̃1m̃),
the above double integralg1 becomes

g1~z1s̃,z1s̃1l̃!5E
0

e2s̃2l̃ E
0

e2s̃2l̃2 ñ
g2~z1s̃1l̃1m̃,z1s̃1l̃1m̃1 ñ !dm̃ dñ. ~40!

Substitute~40! into identity ~38!. Then~38! becomes

L5 I e24E
0

eE
0

e2s̃E
0

e2s̃2l̃E
0

e2s̃2l̃2 ñ
E$U0~z,z1s̃ !V1~z1s̃ !U0~z1s̃,z1s̃1l̃!

•V1~z1s̃1l̃!Ue~z1s̃1l̃,z1s̃1l̃1m̃ !V1~z1s̃1l̃1m̃ !U0~z1s̃1l̃1m̃,z1s̃

1l̃1m̃1 ñ !V1~z1s̃1l̃1m̃1 ñ !U0~z1s̃1l̃1m̃1 ñ,z1e! f %dm̃ dñ dl̃ ds̃ I
0

. ~41!

Now we use inequality~34! for the double integral part in the middle of the above integral a
then use Lemma 3 to obtain

L<e24Ct0E0
eF H E

0

e/2E
0

ñ
1E

e/2

e E
0

e2 ñJ E
0

e2s̃2l̃2 ñ
2r~ñ/e2!dm̃ dl̃ dñ

1H E
0

e/2E
0

l̃
1E

e/2

e E
0

e2l̃J E
0

e2s̃2l̃2 ñ
2r~l̃/e2!dm̃ dñ dl̃Gds̃i f i4 , ~42!

whereCt0
5c1(b1e

a1)c2(b̃22e
ã2)c3(b33e

a3)c4(b44e
a4). Then we use the symmetric proper

betweenl andn and that*0
` sr(s)ds,` to obtain the desired estimateL<e2Ct0

i f i4 . h

From the above Lemmas 4–7~with z5ke and f5gk!, we achieve the fact that the supremu
norm of identity~21! is bounded bye2Ct0

i f i4 , i.e.,

I1,k~ f !<e2Ct0
~ igki21igki41igki31igki4!<e2Ct0

i f i4 , ~43!

where we used again the notational convention aboutCt0
.

Next, we estimateI2,k( f ) defined by~20!. Using the propagator properties~8!–~9!, we have
the equality

I2,k~ f !5e22I E
0

keE
ke

~k11!e

@E$Ue~0,s!V~s!V~l!Ue~l,~k11!e!gk%
J. Math. Phys., Vol. 38, No. 5, May 1997
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2E$Ue~0,s!V~s!E$V~l!Ue~l,~k11!e!gk%%#dl ds I
0

. ~44!

From Lemma 3, we then obtain the inequality

I2,k~ f !<e22E
0

keE
ke

~k11!e
2r~~l2s!/e2!dlds• sup

0<s<ke<l<~k11!e

sup
v,v8

iUe~0,s!V~s!

3V~l!Ue~l,~k11!e!gki0 . ~45!

We use the contraction property forUe(0,s) and inequalities~12! and ~22! to obtain

I2,k~ f !<e22c̃1c̃2~ b̃22e
ã2!igki2E

0

keE
ke

~k11!e
2r~~l2s!/e2!dl ds. ~46!

The above double integral in~46! has the following estimate:

E
0

keE
ke

~k11!e
r~~l2s!/e2!dl ds

<E
0

keE
ke2n

ke

r~n/e2!dm dn1E
ke

~k11!eE
0

~k11!e2n

r~n/e2!dm dn

<e4E
0

~k21!/e
ñr~ ñ !dñ1e3r1/2~1/e!E

~k21!/e

k/e

r1/2~ ñ !dñ. ~47!

Since*0
`sr(s)ds,` and 1/er1/2(1/e) is uniformly bounded ine, therefore, the desired estima

for I2,k( f ) is achieved, i.e.,I2,k( f )<e2Ct0
i f i4 for some positive constantCt0

.
Now, by substituting the two obtained estimatesI1,k( f ) andI2,k( f ) into ~20!, we finally have

iE$Ue~0,t! f %2Be~0,t! f i0< (
k50

m21

2e2Ct0
i f i4[eC~ f ;t0!, ; fPL4 , ~48!

for some positive constantC( f ;t0) which is independent ofe. Here the fact thatm;O(e21) was
used. Theorem 1, therefore, is proved from the triangle inequality once inequality~15! is applied
to the above~48!.

IV. A LIMIT LAW FOR STOCHASTIC DIFFERENTIAL EQUATIONS

In many physical applications,V(t,t,v) is a differential operator, in particular, a gradie
operator. The limiting process is the solution of a diffusion type parabolic partial differe
equation~the Kolmogorov–Fokker–Planck equation!. In this section, we reduce Theorem 1
Sec. II to a limit theorem for the solutions of stochastic differential equations on approp
function spaces and evolution operators.

Let (V,F ,P) be the same probability space as introduced in Sec. II andF(t,t,x,v) be a
function from@0,t0#3@0,̀ )3R3V intoR, wheret0 is a fixed positive number andR denotes
the set of real numbers. The random fieldF is assumed to be jointly measurable with respect to
arguments andF t

t measurable as a function ofvPV for each fixedt, t andx.
With a small positive parametere.0, we consider the following stochastic initial valu

problem~SIVP!:
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



have
.
,
et

its
aces of
y

P

ing

2670 Jeong-Hoon Kim: A limit law with a singularly perturbed drift

¬¬¬¬¬¬¬¬¬¬
d

dt
xe~t,s,x!5

1

e
F~t,t/e2,xe~t,s,x!,v!, t.s, xe~s,s,x!5x, ~49!

where the solutionxe(t,s,x) is F s/e2
t/e2 measurable as a function ofv for any fixedx. Also we

think of the following deterministic initial value problem:

d

dt
x0~t,s,x!5

1

e
F0~t,x0~t,s,x!!, t.s, x0~s,s,x!5x, ~50!

which is an averaged problem in the sense that zero-mean random fluctuation part, sayF1 , is
suppressed; the random fieldF(t,t/e2,x,v) is

F~t,t/e2,x,v!5F0~t,x!1F1~t,t/e2,x,v!. ~51!

We call the initial value problem~50! an effective initial value problem~EIVP!.
To apply an abstract limit theorem of Sec. II to the above SIVP and EIVP, we need to

appropriate function spaces and evolution operators associated with~49! and~50! on these spaces
Let C 0(Rc) be the space of bounded continuous functions ofRc with i•i0 the supremum norm
whereRc is the one-point compactification ofR. This is a separable Banach space. L
C k(Rc), k51,2,..., denote the space of real valued functions onRc with bounded continuous
derivatives up to orderk with i•ik the sum of the supremum norm of the function and
derivatives up to orderk. These spaces are separable Banach spaces and dense subsp
C0(Rc) such thatC k(Rc),C k21(Rc) and i f ik21<i f ik , ; fPC k(Rc). Then the necessar
measurability hypotheses can be conveniently verified with these function spaces.

Theorem 2: Let xe(t,s,x) and x0(t,s,x), 0<s<t<t0 , be the processes defined by SIV
(49) and EIVP (50), respectively. We assume that for each t F(t,t,x,v) is F t

t measurable for all
x PRc and thes-algebrasF s

t satisfy the strong mixing condition described by (1) with mix
rate condition (2). Let us assume that the following conditions (i), (ii), and (iii) hold:

~i! For eachtP@0,t0#, tP@0,̀ ) and xPRc ,
E$F1~t,t,x,v!%50. ~52!

~ii ! There exists a positive constant C.0 such that for alltP@0,t0#, tP@0,̀ ), xPRc and
vPV,

uF0~t,t,x!u<C, u] x..x
k F0~t,t,x!u<C, k51,...,4 ~53a!

uF1~t,t,x,v!u<C, u] x..x
k F1~t,t,x,v!u<C, k51,2. ~53b!

~iii ! Let ue(s,t,x; f ) be the solution of a parabolic partial differential equation

]su
e~s,t,x!1as

e ~x!]xx
2 ue~s,t,x!1bs

e ~x!]xu
e~s,t,x!50, s,t, ~54a!

ue~t,t,x!5f~x!, ~54b!

as
e ~x![e22E

s

s1e

E$F1~s,s/e
2,x,v!F1~l,l/e

2,x,v!Dl
s+T s

lx%dl, ~54c!

bs
e ~x![e21F0~s,x!1e22E

s

s1e

E$F1~s,s/e
2,x,v!]xF1~l,l/e

2,T s
lx,v!

1F1~s,s/e
2,x,v!F1~l,l/e

2,x,v!]x~Dl
s+Ts

l!x%dl, ~54d!

where Ts
lx[x0(l,s,x) and Dl

sx[]xx
0(s,l,x). The solutions ue(s,t,x; f ) converge uniformly

in s, t and x to a function, denoted by u(s,t,x; f ), ase→0 in a manner that the approximation
error is of order O(e). Then, for arbitrary fPC 4(Rc), we have
J. Math. Phys., Vol. 38, No. 5, May 1997
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sup
0<t<t0

sup
xPRc

uE$ f ~xe~t,0,x!!%2u~0,t,x; f !u<eC~ f ;t0!, ~55!

where C( f ;t0) denotes a positive constant depending on f andt0 but independent ofe.
Remark:We state the above theorem in terms of the scalar random fieldF(t,t/e2,x,v) rather

than the vector form for simplicity. It can, however, be extended to the vector random field
only simple technical modification. As a result of the above theorem, we demonstrate ho
effective driving force couples with a zero-mean random perturbation; the termsTs

l , Dl
s+Ts

l and
]x(Dl

s+Ts
l) that account for effective theory now couple with the zero-mean random fi

F1(t,t/e
2,x,v) in drift and diffusion coefficients.

Proof:We prove this theorem by reducing Theorem 1 in Sec. II to a special case~stochastic
differential equation version!. Let the operatorsV(t,t,v) andV1(t,t,v) be defined onC 1(Rc)
by

V~t,t,v! f5F~t,t,x,v!]xf , V1~t,t,v! f5F1~t,t,x,v!]xf , ; fPC 1~Rc!, ~56!

respectively. Then the random operatorV(t,t,v) is strongly measurable due to the fact tha
integral*V(t,t,v) fm(dx), fPC 1(Rc), mPC 0* (Rc), isF t

t measurable. HereC 0* (Rc) denotes
the space of finite signed Borel measures onRc as the dual space ofC 0(Rc). The random
operatorV1(t,t,v) is also strongly measurable by the same reason. Obviously, for everyt, t and
fPC 1(Rc), E$V1(t,t,v) f %50 since the random fieldF1(t,t,x,v) has zero mean. Let the norm
of the operatorV(t,t,v) as an operator fromC k(Rc) into C k21(Rc), 1<k<4, be defined by~3!
in Sec. II. Then the uniform boundedness of the random fieldF(t,t,x,v) implies the boundedness
of V(t,t,v) described as the property~iii ! in Theorem 1.

We define the operatorsUe(s,t) andU0(s,t) by

~Ue~s,t! f !~x!5 f ~xe~t,s,x!!, ~U0~s,t! f !~x!5 f ~x0~t,s,x!!, ; fPC 0~Rc!. ~57!

These propagators can be shown to satisfy the property~ii ! of Theorem 1 as follows. For EIVP
~50!, we first note expressions

]xx
0~t,s,x!5e1/e*s

t ]xF0~s,x0~s,s,x!!ds,

]xx
2 x0~t,s,x!5e1/e*s

t ]xF0~s,x0~s,s,x!!ds
•e21E

s

t

]xx
2 F0~s,x

0~s,s,x!!]xx
0~s,x0~s,s,x!!ds,

]xxx
3 x0~t,s,x!5e1/e*s

t ]xF0~s,x0~s,s,x!!dsH S e21E
s

t

]xx
2 F0~s,x

0~s,s,x!!]xx
0~s,x0~s,s,x!!dsD 2

1e21E
s

t

~]xxx
3 F0~s,x

0~s,s,x!!~]xx
0~s,x0~s,s,x!!!2

1]xx
2 F0~s,x

0~s,s,x!!]xx
2 x0~s,s,x!!dsJ ,

]xxxx
4 x0~t,s,x!5e1/e*s

t ]xF0~s,x0~s,s,x!!dsH S e21E
s

t

]xx
2 F0~s,x

0~s,s,x!!]xx
0~s,s,x!dsD 3

13S e21E
s

t

]xx
2 F0~s,x

0~s,s,x!!]xx
0~s,s,x!dsD S e21E

s

t

~]xxx
3 F0~s,x

0~s,s,x!!

3~]xx
0~s,s,x!!21]xx

2 F0~s,x
0~s,s,x!!]xx

2 x0~s,x0~s,s,x!!!dsD
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1e21E
s

t

~]xxxx
4 F0~s,x

0~s,s,x!!•~]xx
0~s,x0~s,s,x!!!3

13]xxx
3 F0~s,x

0~s,s,x!!]xx0~s,x
0~s,s,x!!]xx

2 x0~s,x0~s,s,x!!

1]xx
2 F0~s,x

0~s,s,x!!]xxx
3 x0~s,x0~s,s,x!!!dsJ .

Since]x...x
n F0(s,x), 1<n<4, are each bounded by a constantC independent ofs andx, there

exist positive constantsân andb̂n independent oft, s, x ande such that the above identities lea
to the inequalities

u]x..x
n x0~t,s,x!u<b̂n$~t2s!/e1•••1~~t2s!/e!n21%eân~t2s!/e, 1<n<4. ~58!

Using the chain rule for the derivatives ofU0(s,t) f , on the other hand, we can obtain

i]x..x
n U0~s,t! f i0<b̌nsup

x
(

i112i21•••1nin5n
u]xx0~t,s,x!u i1

3u]xx
2 x0~t,s,x!u i2•••u]x..x

n x0~t,s,x!u i ni f in , 1<n<4
~59!

for some positive constantb̌n independent oft, s ande. Now we apply inequalities~58! to ~59!
and rearrange the result to obtain the right side of the above~59! as the form of the right side o
~11b! with k5n. Since iU0(s,t) f ik is simply the sum ofi]x...x

n U0(s,t) f i0 , n50,1,2,...,k,
~11b! can be obtained for some suitably chosen positive constantsak andbk . For SIVP, by the
similar procedure as done above, we also can obtain condition~11a! for the propagators
Ue(s,t) due to the boundedness of the random fieldF(t,t,x,v) and its derivatives. Last we not
that the hypothesis for the backward propagatorBe(s,t) whose infinitesimal generator is now
given by

Ls
e 5as

e ~x!]xx
2 1bs

e ~x!]x , ~60!

is replaced by property~iii ! in Theorem 2. All the requirements for Theorem 1, therefore,
satisfied in the context of SIVP and EIVP defined in this section. h

V. EVANESCENT WAVES IN A LAYERED RANDOM MEDIUM

In this section, we apply Theorem 2 to a random scattering problem in which we can
acterize a rapidly varying signal with a random noise. The infinitesimal generator of the c
sponding Kolmogorov–Fokker–Planck equation will be displayed.

Let us consider a stochastic boundary value problem for splitted waves with a small para
e.0 in the frequency domain

d

dt
u~t,k!5

ik

e
A~t,t/e2,v!u~t,k!, 0<t<t0 , u[@u1,u2# t, ~61a!

u1~0,k!51, u2~t0 ,k!5G0u
1~t0 ,k!, ~61b!

where the dependent variableu1(t,k) represents an incident wave whileu2(t,k) corresponds to
a reflected wave. The 232 matrix A(t,t/e2,v) is decomposed into the sum of a determinis
partA0(t) and a mean-zero random partA1(t,t/e

2,v):
J. Math. Phys., Vol. 38, No. 5, May 1997
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A~t,t/e2,v!5A0~t!1A1~t,t/e2,v!. ~62!

We are interested in a random problem in which propagation, and thus multiple scatt
virtually does not occur. This is the case in one region of a random wave propagation pr
with a turning point considered in Ref. 12. In this type of problem, the solution to the follow
averaged problem for the above~61! should play a major role as a centering trajectory

d

dt
u0~t,k!5

ik

e
A0~t!u0~t,k!. ~63!

To obtain a form to which Theorem 2 can be applied, we need to recast the linear two
stochastic boundary value problem as a stochastic initial value problem so that we can ap
mate the stochastic evolution processes of the problem in terms of a final value problem~the
backward Kolomogorov equation! or an adjoint initial value problem~the Fokker–Planck equa
tion!. For the scattering variables of problem~61!, we define the reflection coefficient by

R~t,k!5
u2~t,k!

u1~t,k!
. ~64!

Then~61! becomes a nonlinear stochastic initial value problem~the Riccati differential equation!
for the reflection coefficient

dR

dt
5
ik

e
$A121~A112A22!R2A21R

2%, R~0!5G0 . ~65!

Here the direction of independent variable was reversed. If the problem of interest is, in part
in the unimodular reflection coefficient, i.e.,R(t)5eic(t), then the above nonlinear equation~65!
reduces to the Riccati equation for the phase function such as

dc

dt
5
ik

e
$~A112A22!1~A122A21!cosc%, c~0!5c0~G0[eic0!. ~66!

Let the coefficient matrixA0(t) of effective system~63!, expressed by

A0~t!5F Ā11~t! Ā12~t!

Ā21~t! Ā22~t!
G , ~67!

represent the effective coefficient matrix for the random equation of evanescent waves; the
ability mass should remain concentrated undergoing no virtual diffusive spreading. Then we
the limit theorem developed in Sec. IV to characterize the interplay between a determ
driving force and a random noise.

Let us take, for example, a stochastic geophysical model17,18 which displays the very rich
structure of refraction and random multiple scattering in the frequency range of present inter
this model, the coefficient matrix has the following structure:

A11
12

56r cosu1r21~c222sin2 u!secu, A2152A12, A2252A11, ~68!

wherer(t,t/e2), c(t,t/e2), and u represent density, sound speed, and an incidence ang
plane wave in a one-dimensional refractive random multilayer. The corresponding coef
matrix of effective system~63! generates a fundamental matrix belonging to a Lie group SU~1,1!
~Ref. 19! that leaves the Hermitian form invariant. We consider here the case that the av
J. Math. Phys., Vol. 38, No. 5, May 1997
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sound speed is large enough thatE$r21(c222sin2 u)%,0. In particular, this is true in one regio
of the turning point in the refractive, layered random medium if the sound speed linearly incr
ast increases. Then

Ā12~t!,0, uĀ12~t!u.uĀ11~t!u, ~69!

which leads to the fact that the physical waves are evanescent in the effective medium.
One way of analyzing the stochastic character of this type of problem is to replace Eq.~66! by

an equation with white noise type of random idealization~Brownian motion! and interpret the
equation in the sense of either Ito or Stratonovich.20 This will lead to the Fokker–Planck equatio
for the transition probability density of a diffusion process. Then asymptotic analysis fo
Fokker–Planck equation will reveal that the leading order equation becomes a variable coe
Ornstein–Uhlenbeck equation for the probability density of the process.

From a modeling point of view, however, our limit theory covers more broad range of ran
fluctuations and also provides more appropriate approximation in such a way that the drift
ficient of the infinitesimal generator has a lower order modification contributed by the ran
fluctuations and the diffusion coefficient contains the noise intensity coupled with the dete
istic variations. The comprehensive study of the above model done in this prospective c
found in Ref. 21; we close this section by displaying an infinitesimal generatorL s

e corresponding
to the above model

~L s
e f !~c!5F2~k/e!$Ā11~s!1Ā12~s!cosc%1~k2/e2!E

s

s1eFG12
s ~s,s!1G22

s ~s,s!cosc

1$G11~s,s!1G12
c ~s,s!1G21~s,s!cosc1G22

c ~s,s!cosc%

•~k/e!E
s

s

Ā12~ t !cosc0~ t,s,c!ek/e*s
t Ā12~u!sin c0~u,s,c!dudtGdsG]xf

1F ~k2/e2!E
s

s1e

$G11~s,s!1G12
c ~s,s!1G21~s,s!cosc1G22

c ~s,s!cosc%

•ek/eE
s

s

Ā12~ t !sin c0~ t,s,c!dt dsG]xx2 f , ~70a!

where the following notation was used:

G i j ~s,s!5E$~A1i~s,s/e2!2Ā1i~s!!~A1 j~s,s/e
2!2Ā1 j~s!!%, ~70b!

G i j
s ~s,s!5G i j ~s,s!sin c0~s,s,c!, G i j

c ~s,s!5G i j ~s,s!cosc0~s,s,c!. ~70c!

The usual asymptotic analysis for the Kolmogorov–Fokker–Planck equation with the abo
finitesimal generator can reveal the statistical distribution of the limiting stochastic procese
goes to zero.

VI. CONCLUSION

A diffusion type approximation for an asymptotic stochastic initial value problem wit
random microscale and a deterministic macroscale has been developed in this article. The
right-hand side of the stochastic equation contains a rapidly varying driving term. A final v
problem with its infinitesimal generator represents the asymptotic character of stochastic pro
solving the random problem through a combination of a singularly perturbed deterministic
ponent and a random noise component. For the applications of this analysis to physical pro
the problem is reduced to a limit theorem for a system of stochastic differential equations w
right-hand side that consists of a rapidly varying deterministic part and a random fluctuatio
of the same order~not a lower order!. It shows how the deterministic force of a rapidly varyin
J. Math. Phys., Vol. 38, No. 5, May 1997
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perturbation interplays with a random noise intensity in terms of the coupling of these two fa
contained in the drift and diffusion coefficients of the infinitesimal generator. As one applic
of our limit theory, we can characterize a random noise of evanescent waves in a layered r
medium. In particular, the limit theory can describe the asymptotic behavior of the random
cesses of a previously studied stochastic wave propagation problem12 in the ‘‘shadow’’ zone.

Our analysis represents an initial study of a stochastic problem with the form of s
introduced in this article since the assumption on the random fieldF in Theorem 2 is rather
stringent. However many problems of wave propagation in random media need to deal wi
example, a diffusion limit theory on a linear fieldF as developed in Ref. 3. In this connection t
type of a diffusion approximation discussed here should be further studied to obtain a
generalized and applicable form.
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Analytical formulas for Racah coefficients and 6- j symbols
of the quantum superalgebra U q(osp(1 z2))

Pierre Minnaert and Marek Mozrzymasa)

Laboratoire de Physique The´orique,b! UniversitéBordeaux I, Francec!
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Using the method of projection operators, analytical formulas for Racah coeffi-
cients and 6-j symbols of the quantum superalgebra Uq(osp(1u2)) are derived. The
formulas obtained by this method are transformed by means of algebraic identities
into symmetrical analytical formulas, the form of which are very similar to the
classical formulas obtained by Racah and Regge for su~2! Racah coefficients and 6-
j symbols. Symmetry properties of Uq(osp(1u2)) Racah coefficients and 6-j sym-
bols following from these analytical formulas are studied. In particular, it is shown
that, similarly to the su~2! classical case, in addition to the usual tetrahedral sym-
metry, 6-j symbols of the quantum superalgebra Uq(osp(1u2)) satisfy a Regge type
symmetry. ©1997 American Institute of Physics.@S0022-2488~97!05105-0#

I. INTRODUCTION

In this paper, we continue the analysis of Racah–Wigner calculus for the quantum su
gebra Uq(osp(1u2)), by theprojection operator method. This very effective method already
mitted us to derive the analytical formula for Clebsch–Gordan coefficients~denotedsqCG! of the
quantum superalgebra Uq(osp(1u2)) and many properties of these coefficients.

1 In Ref. 2, we also
defined the corresponding 3-j symbols~denotedsq3- j !. The analytical formula obtained by thi
method coincide with the formula derived by Kulish with the more conventional metho
recursion relations.3

In Ref. 4, we have defined Racah coefficients~denotedsqRC! and 6-j symbols ~denoted
sq6- j ! for the quantum superalgebra Uq(osp(1u2)). Racah coefficients were defined as the co
ficients that relate two reduced basis in two different reduction schemes of tensor product o
irreducible representations. As in the cases of su~2! or Uq(su(2)), Racah coefficients defined i
this way can be expressed in terms of Clebsch–Gordan coefficients. Due to this constr
using the properties of Clebsch–Gordan coefficients for the quantum superal
Uq(osp(1u2)), one canderive many properties of Racah coefficients, such as the symmetry
erties and the pseudo-orthogonalty relations. It has been shown also thatsq6- j symbols can be
defined from thesq3- j symbols and that they are related to Racah coefficients in a way simil
the cases of su~2! or Uq(su(2)).Then, symmetry properties and other properties ofsq6- j symbols
follow from the properties ofsq3- j symbols. However, in order to know everything abo
sqRC and sq6- j symbols, in particular to analyze their full symmetry properties, analyt
formulas are necessary.

In this paper, we use the projection operator method to derive analytical formulas forsqRC
coefficients andsq6- j symbols. This method was used earlier in Ref. 5 to derive the analy
formula for Racah coefficients of Uq(su(2)). Theanalytical formula forsq6- j symbols that we
obtain by this method is rather complicated and unsymmetrical. However, by means of alg
identities, it is possible to transform this unsymmetrical expression into a formula which
form very similar to the form obtained by Racah for su~2! coefficients.6 Moreover, it is possible to

a!On leave of absence from Institute of Theoretical Physics, University of Wroclaw, Poland.
b!Unité Associée au CNRS, URA 1537.
c!Postal address: 19, rue du Solarium, 33174 Gradignan, Cedex, France.
0022-2488/97/38(5)/2676/18/$10.00
2676 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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transform further the formula into a very symmetrical form similar to the expression give
Regge in his Nuovo Cimento letter in 1959.7 This symmetrical formula allows us to study th
symmetry properties ofsq6- j symbols. In particular, it follows readily from this expression th
sq6- j symbols have not only the usual tetrahedral symmetry but presents also an add
conditional Regge symmetry. Here we have an interesting phenomenon: Although the ana
formula itself has full Regge symmetry without any condition, because of the fact that the h
weights of Uq(osp(1u2)) are integers, we have to impose some condition on the values o
highest weights insq6- j symbol in order to preserve the integrity of all highest weights in
sq6- j symbol obtained after Regge transformation.

Using the analytical formula we also derive the values of some particularsq6- j symbols. For
instance, we give the expression ofsq6- j symbols where one highest weight is the sum of
remaining highest weights in a triangular triplet.

This paper is organized in the following way: Section II contains basic definitions and
tions, which will be necessary later on. In Sec. III, we derive the analytical formulas forsqRC
coefficients andsq6- j symbols and we give some particular values of these symbols. Sectio
is devoted to the analysis of the symmetry properties that follow from the analytical form
Finally, in Appendix A we give a table of values forsq6- j symbols where one highest weight
equal to one, and in Appendix B we collect algebraic identities that are used for the transform
of analytical formulas in Sec. III.

II. PRELIMINARIES

A. The irreducible representations of the quantum superalgebra U q(osp(1 z2))

The quantum superalgebra Uq(osp(1u2)) is generated by four elements:1, H ~even!, and
v6 ~odd! with the following ~anti!commutation relations

@H, v6#56
1

2
v6 , @v1 , v2#152

sh~hH !

sh~2h!
, ~2.1!

where the deformation parameterh is real andq5e2h/2 ~we chooseh.0 so thatq,1!. The
quantum superalgebra Uq(osp(1u2)) is a Hopf algebra with the following coproduct:

D~v6!5v6 ^qH1q2H
^v6 , ~2.2!

D~H !5H^111^H, D~1!51^1. ~2.3!

A representation of quantum superalgebra Uq(osp(1u2)) in a finite dimensional graded spaceV is
a homomorphismT:Uq(osp(1u2))→L(V,V) of the associative graded algebra Uq(osp(1u2)) into
the associative graded algebraL(V,V) of linear operators inV, such that

@T~H !, T~v6!#56
1

2
T~v6!, @T~v1!, T~v2!#152

sh~hT~H !!

sh~2h!
. ~2.4!

The irreducible representation space of highest weightl , V5Vl(l) is a graded vector space o
dimension 2l11 with basisem

lq(l), where2 l,m, l , andl50,1 is the parity of the highes
weight vectorel

l(l). The parity of the basis vectorsem
lq(l) is determined by the values ofl , m and

l:

deg~em
l ~l!!5 l2m1l mod~2!. ~2.5!

The vectorsem
lq(l) are pseudo-orthogonal with respect to an Hermitian form and their norma

tion is determined by the signature parametersw,c
J. Math. Phys., Vol. 38, No. 5, May 1997
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~em
lq~l!,em8

lq
~l!!5~21!w~ l2m!1cdmm8 , ~2.6!

where~,! denotes the Hermitian form in the representation space.
It has been shown in Ref. 2 that any finite dimensional grade star representati

Uq(osp(1u2)) is characterized by four parameters: the highest weightl ~a non-negative integer!,
the parityl of the highest weight vector in the representation space, and the signature para
w,c50,1 of the Hermitian form in the representation spaceV. The parityl and the signaturew
define the classe50,1 of the grade star representation by the relatione5l1w11(mod 2). In
such a representation the operators satisfy the following relations:

T~H !!5T~H !, T~v6!!56~21!eT~v7!, T~1!!5T~1!, ~2.7!

where~!! is the grade adjoint operation defined by

~T~X!! f ,g!5~21!deg~X!deg~ f !~ f ,T~X!g!, ~2.8!

for anyXPUq(osp(1u2)) and f ,gPV.
The operatorsT(v6) andT(H) act on the basisem

lq(l) in the following way:

T~H !em
lq~l!5

m

2
em
lq~l!,

T~v1!em
lq~l!5~21! l2mA@ l2m#@ l1m11#g em11

lq ~l!, ~2.9!

T~v2!em
lq~l!5A@ l1m#@ l2m11#g em21

lq ~l!,

where the symbol@n# is the graded quantum symbol defined by

@n#5
q2n/22~21!nqn/2

q21/21q1/2
~2.10!

andg5cosh(h/4)/sinh(2h). The representationT of classe which acts in the representation spa
Vl(l) with the Hermitian form characterized by the signature parametersw andc is denoted by
Twc
l e . However, for simplicity, the indicese,w,c will sometimes be omitted in the following.
For q51, the grade star representationTwc

l e of Uq(osp(1u2)) becomes a grade star represe
tation of the superalgebra osp~1u2! described in Ref. 8.

B. The projection operator for the quantum superalgebra U q(osp(1 z2))

The projection operator on the highest weight vectorPq acts linearly in the spaceV, the direct
sum of all representation spacesVl . It is defined by the following requirements:

@T~H !, Pq#50, T~v1!Pq50, ~Pq!25Pq, Pqel
lq~l!5el

lq~l!. ~2.11!

It has been shown in Refs. 1 and 2 that the operatorPq can be written in the form of a series

Pq5(
r50

`

cr~T~H !!~T~v2!!r~T~v1!!r , ~2.12!

where the coefficientcr(T(H)) is an operator

cr~T~H !!5
@4T~H !11#!

@4T~H !1r11#! @r #!g r . ~2.13!
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the following we will consider the action of the operator~2.12! in the finite dimensional
representation spaces, where only finite truncations of the series~2.12! will actually contribute, so
in these cases the convergence of the formal series~2.12! presents no problem. General formul
for the projection operator of quantum orthosymplectic superalgebras have been derived
roshkin and Tolstoy.9 In the limit q→1, the coefficientcr(T(H)) and therefore the projection
operatorPq are equal to the corresponding osp~1u2! coefficient and projection operatorP, cf. Ref.
10.

If we consider the spaceWm of all vectors of weightm, i.e.,Wm5$ f uT(H) f5(m/2) f %, then
the restriction ofPq to this space is denoted byPmq and it has the form

Pmq5(
r50

`

cr~m!~T~v2!!r~T~v1!!r , ~2.14!

where the coefficientscr(m) are now graded quantum numbers

cr~m!5
@2m11#!

@2m1r11#! @r #!g r . ~2.15!

The operatorsPq,Pmq are even and self-adjoint with respect to the grade adjoint operation, i.e
have

deg~Pq!5deg~Pmq!50, ~Pq!*5Pq, ~Pmq!*5Pmq. ~2.16!

C. Tensor product of irreducible representations

The spaceVl1(l1)^Vl2(l2) is a representation space for the tensor product of two repre
tationsTw1c1

l1e
^Tw2c2

l2e of the same classe. The bilinear Hermitian form in the tensor product spa

Vl1(l1)^Vl2(l2) is defined in the following way:

~~X1^X2!,~Y1^Y2!!5~21!deg~X2!deg~Y1!~X1 ,Y1!~X2 ,Y2!, ~2.17!

whereX1 ,Y1 andX2 ,Y2 are homogeneous elements ofVl1(l1) andV
l2(l2), respectively. The

generatorsv6 andH are represented in the spaceVl1(l1)^Vl2(l2) by the operators

v6
^ ~1,2!5~Tl1^Tl2!~D~v6!!5Tl1~v6! ^qT

l2~H !1q2Tl1~H !
^Tl2~v6!, ~2.18!

H^~1,2!5~Tl1^Tl2!D~H !5Tl1~H ! ^Tl2~1!1Tl1~1! ^Tl2~H !. ~2.19!

The tensor product of three irreducible representations of the same classe, Tw1c1

l1e
^Tw2c2

l2e

^Tw3c3

l3e act in the representation spaceVl1(l1)^Vl2(l2)^Vl3(l3), the tensor product of the

corresponding representation spaces. The bilinear Hermitian form in this space is defined w
bilinear Hermitian forms in each spaceVl i(l i), i51,2,3, and for the basis vectors we have

~em1

l1 ~l1! ^em2

l2 ~l2! ^em3

l3 ~l3!, en1
l1 ~l1! ^en2

l2 ~l2! ^en3
l3 ~l3!!

5~21!~( i, j ~ l i2mi1l i !~ l j2mj1l j !!~21!~( i51
3 w i ~ l i2mi !1c i !dm1 ,n1

dm2 ,n2
dm3 ,n3

.
~2.20!

The operatorsH,v6 are represented in the representation space by
J. Math. Phys., Vol. 38, No. 5, May 1997
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v6
^ ~12,3!5~Tl1^Tl2^Tl3!~~D ^ id !D~v6!!

5Tl1~v6! ^qT
l2~H !

^qT
l3~H !1q2Tl1~H !

^Tl2~v6! ^qT
l3~H !

1q2Tl1~H !
^q2Tl2~H !

^Tl3~v6!, ~2.21!

H^~12,3!5~Tl1^Tl2^Tl3!~~D ^ id !D~H !!

5Tl1~H ! ^Tl2~1! ^Tl3~1!1Tl1~1! ^Tl2~H ! ^Tl3~1!1Tl1~1! ^Tl2~1! ^Tl3~H !.

~2.22!

It has been shown in Refs. 2 and 4 that the tensor products of representationsTw1c1

l1e
^Tw2c2

l2e and

Tw1c1

l1e
^Tw2c2

l2e
^Tw3c3

l3e are representation of classe with respect to the Hermitian forms~2.17! and

~2.20!, respectively.
The projection operatorPlq is represented in the spacesVl1(l1)^Vl2(l2) and Vl1(l1)

^Vl2(l2)^Vl3(l3) by the following operators:

Plq^~1,2!5~Tl1^Tl2!~D~Plq!!5(
r50

`

cr~ l !~v2
^ ~1,2!!r~v1

^ ~1,2!!r , ~2.23!

Plq^~1,2,3!5~Tl1^Tl2^Tl3!~~D ^ id !D~Plq!!5(
r50

`

cr~ l !~v2
^ ~1,2,3!!r~v1

^ ~1,2,3!!r .

~2.24!

D. Uq(osp(1 z2)) Clebsch–Gordan coefficients

By definition, the Clebsch–Gordan coefficients (l 1m1l1 ,l 2m2l2u lml)q relate the pseudo
normalized basisem1

l1q(l1)^em2

l2q(l2) of V
l1(l1)^Vl2(l2) to the reduced pseudo-orthogonal ba

em
lq( l 1 ,l 2 ,l) of V

l(l) in the following way:

em
lq~ l 1 ,l 2 ,l!5 (

m1 ,m2

~ l 1m1l1 ,l 2m2l2u lml!qem1

l1q~l1! ^em2

l2q~l2!, ~2.25!

or equivalently

(
l ,m

~21!~ l2m!L~ l 1m1l1 ,l 2m2l2u lml!qem
lq~ l 1 ,l 2 ,l!5~21!~ l12m1!~ l22m2!em1

l1q~l1! ^em2

l2q~l2!,

~2.26!

wherem11m25m, L5 l 11 l 21 l and l is an integer satisfying the conditions

u l 12 l 2u< l< l 11 l 2 . ~2.27!

The reduced basisem
lq( l 1 ,l 2 ,l) is orthogonal but not positive definite, i.e., we have

~em
lq~ l 1 ,l 2 ,l!,em8

l 8q~ l 1 ,l 2 ,l!!5d l l 8dmm8~21!w~ l2m!1c,

where

w5L1l11w2 ~mod 2!, c5~L1l2!l11w2L1c11c2 ~mod 2!,

l5L1l11l2 ~mod 2!. ~2.28!
J. Math. Phys., Vol. 38, No. 5, May 1997
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In the following we will need the particular values of Clebsch–Gordan coefficients whenl5m.
This Clebsch–Gordan coefficient can be presented as follows:

~ l 1m1l1 ,l 2m2l2u l l l!q5~21!~ l12m11l1!~ l22m21l2!~21!~( i51
2 w i ~ l i2mi !1c i !

3
~em1

l1q~l1! ^em2

l2q~l2!,P
lq^~el1

l1q~l1! ^el2 l1

l2q ~l2!!!

~ l 1l 1l1 ,l 2l2 l 1l2u l l l!q
, ~2.29!

and its analytical formula takes the following form:2

~ l 1m1l1 ,l 2m2l2u l l l!q5~21!l1~ l2 l12m2!~21!~ l12m1!~ l22m2!1~ l12m1!~ l12m111!/2

3q~ l11 l22 l !~ l1 l22 l111!/4q2~ l12m1!~ l11!/2

3S @2l11#! @ l 21m2#! @ l 11m1#! @ l 11 l 22 l #!

@ l 12m1#! @ l 22m2#! @ l 22 l 11 l #! @ l 12 l 21 l #! @ l 11 l 21 l11#! D
1/2

.

~2.30!

For more details on Clebsch–Gordan coefficients of the quantum superalgebra Uq(osp(1u2)) see
Ref. 2.

E. Racah coefficients and 6- j symbols for U q(osp(1 z2))

The reduction of the tensor productVl1(l1)^Vl2(l2)^Vl3(l3) of representation spaces ca
be done, as in the classical case, in two different schemes. In the first scheme, one couples
representationsTl1 andTl2 and then the result is coupled to the representationTl3 in order to give
as a final result the representationTl . In the second scheme, one couplesTl1 with the resultTl23 of
the coupling of representationsTl2 andTl3 in order to yieldTl . These schemes can expressed
the short way

Tl,~~Tl1^Tl2!q^Tl3!q , Tl,~Tl1^ ~Tl2^Tl3!q!q . ~2.31!

The reduced bases corresponding to these schemes are given by the expressions

em
lq~ l 12,l 3 ,l!5(

mi

~ l 1m1l1 ,l 2m2l2u l 12m12l12!q~ l 12m12l12,l 3m3l3u lml!q

3em1

l1 ~l1! ^em2

l2 ~l2! ^em3

l3 ~l3!, ~2.32!

wherei51,2,3,12, and

em
lq~ l 1 ,l 23,l!5(

mi

~ l 2m2l2 ,l 3m3l3u l 23m23l23!q~ l 1m1l1 ,l 23m23l23u lml!q

3em1

l1 ~l1! ^em2

l2 ~l2! ^em3

l3 ~l3!, ~2.33!

wherei51,2,3,23, and we have

m5m11m21m3 , l5(
i51

3

~l i1 l i !1 l . ~2.34!

The basesem
lq( l 1 ,l 23,l) andem

lq( l 12,l 3 ,l) are orthogonal and normalized in the following way
J. Math. Phys., Vol. 38, No. 5, May 1997
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~em
lq~ l 12,l 3 ,l!, em8

l 8q~ l 128 ,l 3 ,l!!5~21!w12,3~ l2m!1c12,3d l l 8dmm8d l12l128 , ~2.35!

~em
lq~ l 1 ,l 23,l!, em8

l 8q~ l 1 ,l 238 ,l!!5~21!w1,23~ l2m!1c1,23d l l 8dmm8d l23l238 , ~2.36!

where

w1,235w12,35L1l11l21w3 ~mod 2!, L5 l 11 l 21 l 31 l ,

c12,35~ l 11 l 21 l 12!~L11!1~l11l31w2!L1(
i, j

l il j1(
i51

3

c i ~mod 2!,

c1,235~ l 21 l 31 l 23!~L11!1~l11l31w2!L1(
i, j

l il j1(
i51

3

c i ~mod 2!. ~2.37!

ThesqRacah coefficientsUs( l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q) of the quantum superalgebra Uq(osp(1u2)) are
defined in the standard way as the coefficients that relate two reduced bases in two di
reduction schemes4

em
lq~ l 12,l 3 ,l!5(

l23
~21!~ l21 l31 l23!~L11!Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!em

lq~ l 1 ,l 23,l!, ~2.38!

or equivalently

em
lq~ l 1 ,l 23,l!5(

l12
~21!~ l11 l21 l12!~L11!Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!em

lq~ l 12,l 3 ,l!. ~2.39!

In order to have better symmetry properties one can define the parity-dependent 6-j symbols for
Uq(osp(1u2)) ~denotedsq6- jl! which are related tosqRacah coefficients in the following way

Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!5~21!l1~ l21 l31 l23!1l3~ l11 l21 l12!~21!~ l11 l31 l121 l23!~L11!

3~21!L~L11!/2A@2l 1211#@2l 2311#H l 1l1 l 2l2 l 12l12

l 3l3 ll l 23l23
J
q

s

.

~2.40!

The parity dependence ofsq6- jl symbols can be factored out in a phase factor, so that
possible to define parity independent 6-j symbols for the quantum superalgebra Uq(osp(1u2))
~denotedsq6- j ! which are related tosq6- jl symbols by

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5~21!~( i51
6 l i !~( i51

6 l i !1~( i51
6 l il i !H l 1l1 l 2l2 l 3l3

l 4l4 l 5l5 l 6l6
J
q

s

. ~2.41!

Using Eq.~2.40!, we get the relation betweensq6- j symbols andsqRacah coefficients
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H l 1 l 2 l 12

l 3 l l 23
J
q

s

5~21!l1~ l21 l31 l23!1l3~ l11 l21 l12!~21!~ l11 l31 l121 l23!~L11!

3~21!L~L11!/2
~21!~( il i !~( i l i !1~( i l il i !

A@2l 1211#@2l 2311#
Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!,

~2.42!

where i runs over all indices. In order for thesq6- jl and sq6- j to exist, the four superspin
triplets

$ l 1 ,l 2 ,l 3%, $ l 3 ,l 4 ,l 5%, $ l 1 ,l 5 ,l 6%, $ l 2 ,l 4 ,l 6%, ~2.43!

must satisfy triangular constraints of the form~2.27!. For more information aboutsqRC, sq6- j
symbols, and on bases in representation spaces, see Ref. 4.

III. ANALYTICAL FORMULAE FOR RACAH COEFFICIENTS AND 6- j SYMBOLS OF THE
QUANTUM SUPERALGEBRA U q(osp(1 z2))

In order to derive the analytical formula for Racah coefficients, we consider the matrix
ments of the following operatorP acting in the representation spaceVl1(l1)^Vl2(l2)
^Vl3(l3), the tensor product of three representations

P5~ id^Pl23q^~2,3!!Plq^~1,2,3!~Pl12q^~1,2! ^ id !, ~3.1!

i.e., we consider the elements

Y5F~el2 l23

l1 ~l1! ^el2
l2~l2! ^el232 l2

l3 ~l3!,~ id^Pl23q^~2,3!!Plq^~1,2,3!~Pl12q^~1,2! ^ id !el1
l1~l1!

^el122 l1

l2 ~l2! ^el2 l12

l3 ~l3!!, ~3.2!

whereF is the phase factor

F5~21!~ l11 l232 l1l1!l21~ l31 l22 l231l3!l21~ l11 l232 l1l1!~ l31 l22 l231l3!

3~21!w1~ l11 l232 l !1w3~ l21 l32 l23!1( i51
3 c i. ~3.3!

Acting with the operatorid^Pl23q^ (2,3) on the left and with the operatorPl12q^ (1,2)^ id and
using relations~2.16!, ~2.29! we find that

Y5F~ l 1l 1l1 ,l 2l 122 l 1l2u l 12l 12l12!q~ l 2l 2l2 ,l 3l 232 l 2l3u l 23l 23l23!q

3~el2 l23

l1 ~l1! ^el23
l23~ l 2 ,l 3 ,l23!,P

lq^~1,2,3!el12
l12~ l 1 ,l 2l12! ^el2 l12

l3 ~l3!!. ~3.4!

Then, using relations~2.26!, ~2.37!, and~2.39!, we obtain that the matrix elementY is equal to

Y5~21!~ l11 l232 l !~ l31 l22 l23!~ l 1l 1l1 ,l 2l 122 l 1l2u l 12l 12l12!q

3~ l 2l 2l2 ,l 3l 232 l 2l3u l 23l 23l23!q~ l 12l 12l12,l 3l2 l 12l3u l l l!q

3~ l 1l2 l 23l1 ,l 23l 23l23u l l l!qU
s~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!. ~3.5!

On the other hand, introducing in the operator
J. Math. Phys., Vol. 38, No. 5, May 1997
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Plq^~1,2,3!5(
r50

`

cr~ l !~v2
^ ~1,2,3!!r~v1

^ ~1,2,3!!r ~3.6!

the relations, which follow from~2.4!

v1
^ ~1,2,3!r5 (

k50

r F rkG~q21!~v1
^ ~1,2!r2kq2kH^ ~1,2!

^v1
k ~3!q~r2k!H~3!, ~3.7!

v2
^ ~1,2,3!r5 (

k50

r F rkG~q!~v2
r2k~1!q2kH~1!

^ ~v2
^ ~2,3!!kq~r2k!H^ ~2,3!, ~3.8!

where

F rkG~q!5
@r #!

@r2k#! @k#!

is the graded quantum Newton symbol, and using relation~2.11!, we get

P5(
r50

`

cr~ l !~ id^Pl23q^~2,3!!~v2
r ~1!q2rH ~1!

^ id^qrH ~3!v1
r ~3!!~Pl12q^~1,2! ^ id !. ~3.9!

ThereforeY can be written as the sum of products of matrix elements of three operatorsid
^Pl23q^ (2,3)), (v2

r (1)q2rH (1)
^ id^qrH (3)v1

r (3)) and (Pl12q^ (1,2)^ id):

Y5(
r50

`

~21!r ~ l11 l31 l231 l12!cr~ l !F~el2 l23

l1 ~l1! ^el2
l2~l2! ^el232 l2

l3 ~l3!,~ id

^Pl23q^~2,3!!el2 l23

l1 ~l1! ^el121 l232 l2r
l2 ~l2! ^el2 l121r

l3 ~l3!!~el2 l23

l1 ~l1! ^el121 l232 l2r
l2 ~l2!

^el2 l121r
l3 ~l3!,~v2

r ~1!q2rH ~1!
^ id^qrH ~3!v1

r ~3!!el2 l231r
l1 ~l1! ^el121 l232 l2r

l2 ~l2!

^el2 l12

l3 ~l3!!~el2 l231r
l1 ~l1! ^el121 l232 l2r

l2 ~l2! ^el2 l12

l3 ~l3!,~P
l12q^~1,2! ^ id !el1

l1~l1!

^el122 l1

l2 ~l2! ^el2 l12

l3 ~l3!!, ~3.10!

where we have written only terms which give nonvanishing contribution in the products of m
elements. Using relations~2.9!, ~2.15!, and~2.29!, we may rewriteY in the form

Y5(
r50

`

~21!~ l32 l121 l !~ l231 l21 l121 l !~21!r ~ l11 l232 l1l11l2!

3~21!r ~r11!/2q~r /2!~ l232 l12!
@2l11#!

@2l1r11#! @r #!

3S @ l 12 l 231 l2r #! @ l 11 l 232 l #! @ l 31 l 122 l #! @ l 32 l 121 l1r #!

@ l 11 l 232 l2r #! @ l 12 l 231 l #! @ l 32 l 121 l #! @ l 31 l 122 l2r #! D
1/2

~ l 1l 1l1 ,l 2l 12

2 l 1l2u l 12l 12l12!q~ l 1l2 l 231rl1 ,l 2l 121 l 232 l2rl2u l 12l 12l12!q~ l 2l 2l2 ,l 3l 23

2 l 2l3u l 23l 23l23!q~ l 2l 121 l 232 l2rl2 ,l 3l2 l 121rl3u l 23l 23l23!q . ~3.11!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Comparing this expression with~3.5!, we obtain the formula forsqRacah coefficients

Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!

5~21!~ l32 l121 l !~ l231 l21 l121 l !1~ l31 l22 l23!~ l231 l12 l !(
r

~21!r ~ l11 l232 l1l11l2!

3~21!r ~r11!/2qr /2~ l232 l12!
@2l11#!

@2l1r11#! @r #!

3S @ l 12 l 231 l2r #! @ l 11 l 232 l #! @ l 31 l 122 l #! @ l 32 l 121 l1r #!

@ l 11 l 232 l2r #! @ l 12 l 231 l #! @ l 32 l 121 l #! @ l 31 l 122 l2r #! D
1/2

3
~ l 1l2 l 231rl1 ,l 2l 121 l 232 l2rl2u l 12l 12l12!q~ l 2l 121 l 232 l2rl2 ,l 3l2 l 121rl3u l 23l 23l23!q

~ l 12l 12l12,l 3l2 l 12l3u l l l!q~ l 1l2 l 23l1 ,l 23l 23l23u l l l!q
.

(3.12)

Substituting here the explicit expression~2.30! of Clebsch–Gordan coefficients, we obtain
general analytical formula forsqRacah coefficients in the form of a single sum of factor
fractions

Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!

5~21!l2~ l231 l21 l121 l !1~ l31 l121 l !~ l231 l11 l !~21!~1/2!~ l22 l232 l121 l !~ l22 l232 l121 l11!

3~@2l 1211#@2l 2311# !1/2

3
D~ l 1 ,l 2 ,l 12!D~ l 2 ,l 3 ,l 23!D~ l 12,l 3 ,l !D~ l 1 ,l 23,l !@ l 11 l 231 l11#! @ l 31 l 121 l11#!

@ l 12 l 231 l #! @ l 32 l 121 l #! @ l 22 l 11 l 12#! @ l 12 l 21 l 12#! @ l 22 l 31 l 23#! @ l 32 l 21 l 23#!

3(
r

~21!r ~ l11 l21 l31 l11!~21!r ~r11!/2@ l 11 l2 l 231r #! @ l 31 l2 l 121r #! @ l 21 l 231 l 122 l2r #!

@2l1r11#! @r #! @ l 12 l1 l 232r #! @ l 32 l1 l 122r #! @ l 22 l 232 l 121 l1r #!
,

(3.13)

where

D~a,b,c!5S @a1b2c#! @a2b1c#! @2a1b1c#!

@a1b1c11#! D 1/2

and the integer summation indexr runs over all values for which the arguments of all t
factorials are non-negative.

This formula shows thatsqRacah coefficients, similarly to Clebsch–Gordan coefficients
Uq(osp(1u2)), depend on the paritiesl i but depend neither on the classe nor on the signature
parametersw i , c i i51,2,3. In Ref. 5 a similar general analytical expression for Racah coefficie
of the quantum algebra Uq(su(2)) hasbeen derived through the same method of project
operators.

Using relation ~2.40! we get the following analytical formula for the parity depende
sq6- jl symbols:
J. Math. Phys., Vol. 38, No. 5, May 1997
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H l 1l1 l 2l2 l 12l12

l 3l3 ll l 23l23
J
q

s

5~21!~1/2!~ l11 l31 l231 l12!~ l11 l31 l231 l1211!

3~21!l1~ l21 l31 l23!1l2~ l231 l21 l121 l !1l3~ l11 l21 l12!1~ l11 l23!~ l31 l12!1 l ~ l11 l31 l231 l1211!

3
D~ l 1 ,l 2 ,l 12!D~ l 2 ,l 3 ,l 23!D~ l 12,l 3 ,l !D~ l 1 ,l 23,l !@ l 11 l 231 l11#! @ l 31 l 121 l11#!

@ l 12 l 231 l #! @ l 32 l 121 l #! @ l 22 l 11 l 12#! @ l 12 l 21 l 12#! @ l 22 l 31 l 23#! @ l 32 l 21 l 23#!

3(
r

~21!r ~ l11 l21 l31 l11!~21!r ~r11!/2@ l 11 l2 l 231r #! @ l 31 l2 l 121r #! @ l 21 l 231 l 122 l2r #!

@2l1r11#! @r #! @ l 12 l1 l 232r #! @ l 32 l1 l 122r #! @ l 22 l 232 l 121 l1r #!
.

~3.14!

Factorization of the parity dependence~2.42! yields the analytical formula for the parity indepe
dentsq6- j symbols

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5~21!~ l21 l5!~( i51
6 l i !1~ l11 l6!~ l31 l4!1 l2l51 l3l41 l1l6

3~21!~1/2!~ l11 l31 l41 l6!~ l11 l31 l41 l611!D~ l 1 ,l 2 ,l 3!D~ l 2 ,l 4 ,l 6!D~ l 3 ,l 4 ,l 5!D~ l 1 ,l 5 ,l 6!

3
@ l 11 l 61 l 511#! @ l 31 l 41 l 511#!

@ l 12 l 61 l 5#! @ l 42 l 31 l 5#! @ l 22 l 11 l 3#! @ l 12 l 21 l 3#! @ l 22 l 41 l 6#! @ l 42 l 21 l 6#!

3(
r

~21!r ~ l11 l21 l41 l511!~21!r ~r11!/2@ l 11 l 52 l 61r #! @ l 41 l 52 l 31r #! @ l 21 l 61 l 32 l 52r #!

@2l 51r11#! @r #! @ l 12 l 51 l 62r #! @ l 42 l 51 l 32r #! @ l 22 l 62 l 31 l 51r #!
.

~3.15!

This formula is rather complicated and unsymmetrical. However, using repeatedly the alg
identities~B2!–~B4! given in Appendix B, it is possible to transform this formula into the follo
ing more symmetrical analytical expression:

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

5~21!~ l21 l5!~( i51
6 l i !1~ l11 l6!~ l31 l4!1 l2l51 l3l41 l1l6

3~21!~1/2!~ l11 l31 l41 l6!~ l11 l31 l41 l611!D~ l 1 ,l 2 ,l 3!D~ l 2 ,l 4 ,l 6!D~ l 3 ,l 4 ,l 5!D~ l 1 ,l 5 ,l 6!

3(
v

~21!v~ l11 l31 l41 l6!~21!v~v11!/2@ l 11 l 31 l 41 l 6112v#!

@ l 42 l 21 l 62v#! @ l 32 l 51 l 42v#! @ l 12 l 51 l 62v#!

3
1

@v#! @ l 51 l 22 l 12 l 41v#! @ l 51 l 22 l 32 l 61v#! @ l 11 l 32 l 22v#!
, ~3.16!

wherev runs on integer values such that all arguments of the factorials are non-negative
formula is very similar in form to the corresponding well known formula given by Racah for
classical case of su~2!.6 Finally, performing the summation index substitution
J. Math. Phys., Vol. 38, No. 5, May 1997
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z5 l 11 l 31 l 41 l 62v, ~3.17!

we obtain the simplest and very symmetrical analytical formula forsq6- j symbols

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5~21!~1/2!~( i51
6 l i !~( i51

6 l i11!1( i51
6

~1/2!l i ~ l i21!D~ l 1 ,l 2 ,l 3!D~ l 2 ,l 4 ,l 6!D~ l 3 ,l 4 ,l 5!D~ l 1 ,l 5 ,l 6!

3(
z

~21!~1/2!z~z21!@z11#!

@z2 l 12 l 22 l 3#! @z2 l 42 l 22 l 6#! @z2 l 32 l 42 l 5#! @z2 l 12 l 52 l 6#!

3
1

@ l 11 l 31 l 41 l 62z#! @ l 51 l 21 l 31 l 62z#! @ l 11 l 21 l 41 l 52z#!
. ~3.18!

It is quite remarkable that, except for the phase factors, this formula has exactly the same f
Regge formula for 6-j symbols for the algebra su~2!.7

From these analytical formulas one can calculate particular values ofsq6- j symbols. For
example, when one argument vanishes, the value of thesq6- j symbols is

H l 1 l 2 l 3

l 3 0 l 1
J
q

s

5
~21!~1/2!~ l11 l21 l3!~ l11 l21 l311!

A@2l 111#@2l 311#
. ~3.19!

In the same way, ifl 55 l 31 l 4 , only one value of the summation indexz is possible in formula
~3.14!, and we obtain a simple expression for the correspondingsq6- j symbols

H l 1 l 2 l 3

l 4 l 31 l 4 l 6
J
q

s

5~21! l2~ l11 l21 l6!1 l1l61 l3l4~21!~1/2!~ l11 l31 l41 l6!~ l11 l31 l41 l611!

3S @2l 3#! @2l 4#! @ l 31 l 41 l 62 l 1#! @ l 11 l 22 l 3#! @ l 21 l 62 l 4#!

@ l 12 l 21 l 3#! @2 l 11 l 21 l 3#! @ l 11 l 21 l 311#! @ l 41 l 21 l 611#! D
1/2

3S @ l 11 l 31 l 42 l 6#! @ l 11 l 31 l 41 l 611#!

@ l 42 l 21 l 6#! @ l 12 l 32 l 41 l 6#! @ l 41 l 22 l 6#! @2l 312l 411#! D
1/2

.

~3.20!

It is also possible, for small fixed values of one highest weight, to derive from the general fo
simple algebraic expressions for particularsq6- j symbols. For instance, in Appendix A, th
analytic expressions ofsq6- j symbols in whichl 451 are given.

IV. PROPERTIES OF sqRACAH COEFFICIENTS AND sq 6-j SYMBOLS

A. Symmetry properties

We start our analysis of symmetry properties that follow from the analytical formulas
considering the symmetry related to the substitutionq→q21. The invariance ofsqRacah coeffi-
cients andsq6- j symbols with respect to this operation is not obvious since the symbol@n# itself
is not invariant whenq→q21. Namely, we have

@n#[@n#q5~21!n11@n#q21. ~4.1!
J. Math. Phys., Vol. 38, No. 5, May 1997
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By a direct calculation, one can easily check that, although the symbol@n# itself is not invariant,
the analytical formulas forsqRacah coefficients,sq6- jl and sq6- j symbols remain globally
invariant with respect to the substitutionq→q21, that is, we have

Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q!5Us~ l 1 ,l 2 ,l 3 ,l ,l 12,l 23,q
21! ~4.2!

and

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5H l 1 l 2 l 3

l 4 l 5 l 6
J
q21

s

, H l 1l1 l 2l2 l 3l3

l 4l4 l 5l5 l 6l6
J
q

s

5H l 1l1 l 2l2 l 3l3

l 4l4 l 5l5 l 6l6
J
q21

s

.

~4.3!

From formula~3.18!, it follows immediately that thesq6- jl symbols satisfy the same symmet
properties as su~2! and osp(1u2) 6-j symbols. Namely, they are invariant under any permutat
of columns and they are invariant under interchange of upper and lower arguments in each
columns, i.e., they possess the tetrahedralS4 symmetry. This result was already obtained in R
4 where it had been derived, in a rather laborious way, from the symmetry properties ofsq3- j
symbols, whereas here it is straightforward. Indeed, the analytical formula~3.18! exhibits in the
best way all symmetries ofsq6- j symbols. In particular it follows from it thatsq6- j symbols
possess additional symmetries of Regge type. Let us consider the following Regge transform
of highest weightsl i , (i51,2,•••,6) in sq6- j symbol

l 185 l 1 ,

l 485 l 4 ,

l 285 1
2~ l 21 l 31 l 52 l 6!,

l 585 1
2~ l 21 l 61 l 52 l 3!,

l 385 1
2~ l 21 l 31 l 62 l 5!,

l 685 1
2~ l 31 l 61 l 52 l 2!,

~4.4!

l 195 1
2~ l 11 l 21 l 42 l 5!,

l 495 1
2~ l 41 l 11 l 52 l 2!,

l 295 1
2~ l 21 l 11 l 52 l 4!,

l 595 1
2~ l 41 l 21 l 52 l 1!,

l 395 l 3 ,

l 695 l 6 ,
~4.5!

l 1-5 1
2~ l 11 l 31 l 42 l 6!,

l 4-5 1
2~ l 41 l 11 l 62 l 3!,

l 2-5 l 2 ,

l 5-5 l 5 ,

l 3-5 1
2~ l 11 l 31 l 62 l 4!,

l 6-5 1
2~ l 41 l 61 l 32 l 1!.

~4.6!

We remind the reader that for the quantum superalgebra Uq(osp(1u2)) the highest weights are a
integers. This is very important for the above transformations since one can check that in g
l i8 ,l i9 ,l i-( i51,2,•••,6) in the above relations need not be necessarily integers. For examp
l i , (i51,2,•••,6) are the following,

l 1510, l 256, l 355, l 453, l 554, l 656, ~4.7!

then for the third transformation~4.6! we get

l 1-56, l 2-56, l 3-59, l 4-57, l 5-54, l 6-52, ~4.8!

but for the first transformation~4.4! we obtain

l 18510, l 285
9

2
, l 385

13

2
, l 4853, l 585

11

2
, l 685

9

2
. ~4.9!

So, in this case,l i8 , (i51,2,••• ,6) are no longer highest weights for the quantum superalg
Uq(osp(1u2)). Therefore, it appears that some conditions have to be satisfied in order that R
transformations be true symmetries ofsq6- j symbols.

Let us introduce the following notation:
J. Math. Phys., Vol. 38, No. 5, May 1997
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Li , j ,k5 l i1 l j1 l k ~4.10!

for i , j ,k51,2,••• ,6. In this notation we have the following conditions for integrity ofl i8 , l i9 ,
l i- in relations~4.4–4.6!:

if L1,2,35L1,5,6 ~mod 2!, then l i8 , ~ i51,2,•••,6! are integers, ~4.11!

if L1,2,35L3,4,5 ~mod 2!, then l i9 , ~ i51,2,•••,6! are integers, ~4.12!

if L1,2,35L2,4,6 ~mod 2!, then l i- , ~ i51,2,•••,6! are integers. ~4.13!

Note that, because of the relation

L1,2,31L1,5,61L2,4,61L3,4,550 ~mod 2!, ~4.14!

conditions~4.11!–~4.13! could have been written in a different form; for instance, condition~4.11!
is equivalent to the conditionL2,4,65L3,4,5 (mod 2).

If we introduce relations~4.4!–~4.6! into the analytical formula~3.18!, we obtain the follow-
ing symmetries of thesq6- j symbols:

if L1,2,35L1,5,6 ~mod 2!, then

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5H l 1 1
2~ l 21 l 31 l 52 l 6!

1
2~ l 21 l 31 l 62 l 5!

l 4
1
2~ l 21 l 61 l 52 l 3!

1
2~ l 31 l 61 l 52 l 2!

J
q

s

; ~4.15!

if L1,2,35L3,4,5 ~mod 2!, then

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5H 1
2~ l 11 l 21 l 42 l 5!

1
2~ l 21 l 11 l 52 l 4! l 3

1
2~ l 41 l 11 l 52 l 2!

1
2~ l 41 l 21 l 52 l 1! l 6

J
q

s

; ~4.16!

if L1,2,35L2,4,6 ~mod 2!, then

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5H 1
2~ l 11 l 31 l 42 l 6! l 2

1
2~ l 11 l 31 l 62 l 4!

1
2~ l 41 l 11 l 62 l 3! l 5

1
2~ l 41 l 61 l 32 l 1!

J
q

s

. ~4.17!

We shall stress here that the right hand side of the analytical formula~3.18! is invariant with
respect to the Regge transformations~4.4!–~4.6! without any condition. Conditions~4.11!–~4.13!
are necessary to preserve the integrity of highest weights on the left hand side of the ana
formula, i.e., in thesq6- j symbol.

One can verify that anysq6- j symbol always satisfy one of the conditions~4.11!–~4.13! and
therefore anysq6- j symbol has one of the Regge symmetries~4.15!–~4.17!. This means that the
symmetry group of anysq6- j symbol is at leastS43S2 and contains at least 48 elements.

If an sq6- j symbol satisfies two of three conditions~4.11!–~4.13!, then, because of the
relation ~4.14!, the third one is also satisfied and we have

L1,2,35L1,5,65L2,4,65L3,4,5 ~mod 2!. ~4.18!

In this particular case thesq6- j symbol possesses the full set of Regge symmetries, tha
besides symmetries~4.15!–~4.17! we have also
J. Math. Phys., Vol. 38, No. 5, May 1997
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H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5H 1
2~ l 21 l 51 l 32 l 6!

1
2~ l 11 l 31 l 62 l 4!

1
2~ l 11 l 21 l 42 l 5!

1
2~ l 21 l 51 l 62 l 3!

1
2~ l 41 l 61 l 32 l 1!

1
2~ l 41 l 11 l 52 l 2!

J
q

s

~4.19!

5H 1
2~ l 21 l 31 l 62 l 5!

1
2~ l 11 l 31 l 42 l 6!

1
2~ l 21 l 11 l 52 l 4!

1
2~ l 31 l 61 l 52 l 2!

1
2~ l 41 l 11 l 62 l 3!

1
2~ l 41 l 21 l 52 l 1!

J
q

s

,

~4.20!

and together with the 24 tetrahedral symmetries, Regge symmetries form a group of rank
isomorphic to the groupS43S3 . Let us remark that in this case, similarly as in the classical c
of su~2!, in the set of five Regge symmetries~4.15!–~4.17!, ~4.19!, and~4.20! only one~4.15! is
essentially new; the other ones can be obtained from it and the tetrahedral symmetry.

For the classical case of su~2!, in order to exhibit all symmetries of 6-j symbols,
Bargmann11,12 proposed to associate a 334 array to a 6-j symbol. With this description, each of
the 144 symmetries of 6-j symbol is represented by some combinations of permutations of r
and columns of the array. This Bargmann representation of the full symmetries of a 6-j symbols,
can be extended in a natural way to the case ofsq6- j symbols for the quantum superalgebr
Uq(osp(1u2)). Let usassociate to ansq6- j symbol an array in the following way

H l 1 l 2 l 3

l 4 l 5 l 6
J
q

s

5F ~21!L2,4,6~ l 61 l 42 l 2! ~21!L1,5,6~ l 61 l 52 l 1! ~21!L3,4,5~ l 41 l 52 l 3!

~21!L1,5,6~ l 61 l 12 l 5! ~21!L2,4,6~ l 61 l 22 l 4! ~21!L1,2,3~ l 11 l 22 l 3!

~21!L3,4,5~ l 41 l 32 l 5! ~21!L1,2,3~ l 31 l 22 l 1! ~21!L2,4,6~ l 41 l 22 l 6!

~21!L1,2,3~ l 31 l 12 l 2! ~21!L3,4,5~ l 51 l 32 l 4! ~21!L1,5,6~ l 51 l 12 l 6!

G .
~4.21!

This array differs from the original one of Bargmann by the presence of phase factors in
entries of the array. The 24 tetrahedral symmetries of thesq6- j symbol are represented by
permutations of rows and columns of this array and the phases in the entries of the array tran
in the same way as the remaining part of the entries. It is not the case for Regge transform
where the phases transform in a different way than the remaining parts of the entries. For ins
for the third Regge transformation~4.6! we have

H 1
2~ l 11 l 31 l 42 l 6! l 2

1
2~ l 11 l 31 l 62 l 4!

1
2~ l 41 l 11 l 62 l 3! l 5

1
2~ l 41 l 61 l 32 l 1!

J
q

s

5F ~21!L1,2,3~ l 61 l 42 l 2! ~21!L3,4,5~ l 61 l 52 l 1! ~21!L1,5,6~ l 41 l 52 l 3!

~21!L3,4,5~ l 41 l 32 l 5! ~21!L2,4,6~ l 31 l 22 l 1! ~21!L1,2,3~ l 41 l 22 l 6!

~21!L1,5,6~ l 61 l 12 l 5! ~21!L1,2,3~ l 61 l 22 l 4! ~21!L2,4,6~ l 11 l 22 l 3!

~21!L1,2,3~ l 31 l 12 l 2! ~21!L1,5,6~ l 51 l 32 l 4! ~21!L3,4,5~ l 51 l 12 l 6!

G .
~4.22!

Comparing~4.21! and ~4.22!, we see that the right hand side of~4.22! is related to that one of
~4.21! by a permutation of the second and third rows only if condition~4.13! is satisfied, i.e., if

L1,2,35L2,4,6 ~mod 2!⇔L1,5,65L3,4,5 ~mod 2!. ~4.23!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Therefore, Regge transformations~4.4!–~4.6! are represented by permutations of rows of the ar
only if their respective conditions~4.11!–~4.13! are satisfied and then they are symmetries of
sq6- j symbol. If condition~4.14! holds, then all phases in the array~4.21! are identical and the
correspondingsq6- j symbol possesses the fullS43S3 symmetry.

In Ref. 2 it has been shown that Clebsch–Gordan coefficients possess also a Regg
symmetry. It seems, however, that similarly to the classical case of su~2!, there is no connection
between Regge symmetries ofsqClebsch–Gordan coefficients and Regge symmetry ofsq6- j
symbols.

B. The limit q51

In the limit q51, Racah coefficients,sq6- jl symbols andsq6- j symbols become coeffi
cients and symbols of the nondeformed Lie superalgebra osp~1u2! and present similar symmetr
properties. This follows from the fact that, in the limit under consideration, Clebsch–Go
coefficients, projection operatorsPq, Pmq, and basesem

lq(l), em
lq( l 1 ,l 23,l), em

lq( l 12,l 3 ,l) become
in a continuous way Clebsch–Gordan coefficients, projection operators, and bases for t
superalgebra osp~1u2! ~for more explicit formulas see Refs. 1, 2, and 4!.

In particular, forq51, thesq6- j symbols become identical, up to a phase factor (21)C, to
the sq6- j symbols of the superalgebra osp~1u2! defined in Ref. 13:

~21!CH l 1 l 2 l 3

l 4 l 5 l 6
J
q51

s

5H j 1 j 2 j 3

j 4 j 5 j 6
J
osp~1u2!

S

, ~4.24!

where j i5 l i /2 is the superspin and the phaseC is

C5(
i51

6

l i1~ l 11 l 4!~ l 21 l 5!1~ l 21 l 5!~ l 31 l 6!1~ l 31 l 6!~ l 11 l 4!. ~4.25!

The phase difference between the two symbols in~4.24! derives from the fact that in Ref. 13
different basis in the representation space had been used.

Thus, in the limitq→1, the functions defined by the analytical formula~3.18! of sq6- j
symbols tend continuously toward the numerical values of the correspondings6- j symbol. How-
ever, whenq→1, the analytical formula~3.18! loses its compact and symmetrical form. Th
phenomenon follows from the fact that, in the limitq→1, the value of the symbol@n# depends on
the parity of its argumentn. Indeed, from definition~2.10! of the symbol@n#, it follows that

@n#5H sinh~h/4!n
cosh~h/4!

,

cosh~h/4!n
cosh~h/4!

,

if

if

n

n

even

odd
⇒ lim

q→1
@n#5H 0,

1,

if

if

n

n

even

odd.
~4.26!

Thus we have, for instance,

lim
q→1

@ l 11 l 21 l 3#

@ l 11 l 22 l 3#
5H l 11 l 21 l 3

l 11 l 22 l 3
, if l 11 l 21 l 3 even

1, if l 11 l 21 l 3 odd.

~4.27!

Therefore, it is impossible to write down the analytical formula~3.18! for q51 without specifying
the parities of arguments of all symbols@n# in the formula, i.e., forq51, one cannot write an
analytical formula fors6- j symbols in a compact, symmetrical form similar to Eq.~3.18!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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However, in order to calculate the numerical value of a givens6- j symbol of the non de-
formed superalgebra osp~1u2!, it is always possible to calculate from Eq.~3.18! the corresponding
sq6- j symbol, which is a function ofq, and then calculate the limitq→1. The nondeformed cas
of the superalgebra osp~1u2! has been studied separately in Ref. 13 where, due to the inclu
sl~2!,osp~1u2!, it was possible to analyze all properties ofs6- j symbols and to compute the
numerical values without knowledge of their analytical formula. For allsq6- j symbols withl i
< 4, we have checked14 that their limitq→1 is equal to the numerical values of the correspond
s6- j symbols tabulated in Ref. 13.

APPENDIX A: ANALYTIC EXPRESSION OF sq 6-j SYMBOLS

Equation~3.19! gives the analytic expression of thesq6- j symbol when one of the argumen
vanishes. From the general analytic expression~3.18!, one can also derive the analytic expressi
of the sq6- j symbols with one argument equal to 1. These expressions are gathered in Ta

TABLE I. Analytical expression of the sq6- j symbols $1 l5 l6

l1 l2 l3%
q

s , where L

5(21)(1/2)(l11 l21 l5)( l11 l21 l511).

l6\ l3 l35l511

l211 LS@l11l22l5#@l11l22l511#@l12l21l5#@l12l21l511#

@2l211#@2l212#@2l213#@2l511#@2l512#@2l513# D1/2

l2 ~21!l11l211LS@l11l21l512#@l12l21l511#@2l11l21l511#@l11l22l5#@2#

@2l2#@2l211#@2l212#@2l511#@2l512#@2l513# D1/2

l221 LS@2l11l21l5#@2l11l21l511#@l11l21l512#@l11l21l511#

@2l221#@2l2#@2l211#@2l511#@2l512#@2l513# D1/2
l35l5

l211 ~21!l11l511LS@l11l21l512#@l12l21l5#@l11l22l511#@2111l21l511#@2#

@2l213#@2l211#@2l212#@2l5#@2l511#@2l512# D1/2

l2 ~21!l111L
@l11l22l5#@l12l21l5#1~21!l11l51l2@2111l21l5#@l11l21l512#

~@2l2#@2l211#@2l212#@2l5#@2l511#@2l512#!1/2

l221 ~21!l111LS@l11l21l511#@l11l22l5#@2l11l21l5#@l12l21l511#@2#

~@2l221#@2l2#@2l211#@2l5#@2l511#@2l512#! D1/2
l35l521

l211 LS@l11l21l511#@l11l21l512#@2l11l21l5#@2l11l21l511#

@2l211#@2l212#@2l213#@2l521#@2l5#@2l511# D1/2

l2 ~21!l511LS@l11l21l511#@l11l22l511#@l12l21l5#@2l11l21l5#@2#

@2l212#@2l2#@2l211#@2l5#@2l511#@2l521# D1/2

l221 2LS@l11l22l5#@l11l22l511#@l12l21l5#@l12l21l511#

@2l221#@2l2#@2l211#@2l521#@2l5#@2l511# D1/2
J. Math. Phys., Vol. 38, No. 5, May 1997
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APPENDIX B: ALGEBRAIC IDENTITIES

From the equation

Fn1r
k G5(

i50

r F n
k2 i GF ri G~21!~k2 i !~r2 i !q~r2 i !~n1r !/2q2r ~n2k1r !/2, ~B1!

one can derive the following factorial sum rules:

@a#!

@b#! @c#!
5(

s

~21!~a2b!~a2c!1s~c1b11!q~1/2!~a2b!~a2c!q2~1/2!as@a2b#! @a2c#!

@a2b2s#! @a2c2s#! @b1c2a1s#! @s#!
, ~B2!

(
s

~21!s~s11!/2q~1/2!s~b1c2a21!
@a2s#!

@b2s#! @c2s#! @s#!

5~21!c~c11!/21acq~1/2!bc
@b1c2a21#! @a2c#!

@b2a21#! @b#! @c#!
, ~B3!

for b.a>c>0, and

(
s

~21!s~s11!/2q~1/2!s~b1c2a21!
@a2s#!

@b2s#! @c2s#! @s#!
5~21!bcq~1/2!bc

@a2b#! @a2c#!

@a2b2c#! @b#! @c#!
,

~B4!

for a>b>0,a>c>0.
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Schouten–Nijenhuis brackets
L. K. Norris
Department of Mathematics, North Carolina State University,
Raleigh, North Carolina 27695-8205

~Received 29 April 1996; accepted for publication 3 December 1996!

The Poisson and graded Poisson Schouten–Nijenhuis algebras of symmetric and
antisymmetric contravariant tensor fields, respectively, on ann-dimensional mani-
fold M are shown to ben-symplectic. This is accomplished by showing that both
brackets may be defined in a unified way using then-symplectic structure on the
bundle of linear framesLM of M . New results inn-symplectic geometry are
presented and then used to give globally defined representations of the Hamiltonian
operators defined by the Schouten–Nijenhuis brackets. ©1997 American Insti-
tute of Physics.@S0022-2488~97!02005-7#

I. INTRODUCTION

n-symplectic geometry1–5 is the generalized symplectic geometry on the principal bundle
linear framesLM→M of an n-dimensional manifoldM that one obtains by taking th
Rn-valued soldering one-formu as the generalized symplectic potential. In this paper we desc
the explicit relationship of then-symplectic bracket onLM to the Schouten–Nijenhuis brackets
contravariant tensor fields onM , and use some new results inn-symplectic theory to exhibit
globally defined Hamiltonian operators associated with the Schouten–Nijenhuis brackets.

The Schouten–Nijenhuis bracket, first introduced by Schouten6 for contravariant tensor fields
was resolved by Nijenhuis7 into a Lie bracket (,)S/N and a graded Lie bracket@ ,#S/N for the spaces
of symmetricSX (M )5 % q51

` SX q(M ) and antisymmetricAX (M )5 % q51
` AX q(M ) contravari-

ant tensor fields, respectively, on a manifoldM . The Schouten–Nijenhuis bracket (,)S/N also acts
as a derivation on the associative algebra„SX (M ),^ s…, thus giving the spaceSX (M ) the
structure of a Poisson algebra.8 Similarly the Schouten–Nijenhuis bracket@ ,#S/N, which acts as a
graded derivation on the associative algebra„AX (M ),^ a…, gives the spaceAX (M ) the structure
of a graded Poisson algebra. One is led to ask the question:

Are these algebras symplectic? That is to say, are there symplectic structures that one c
to define the Schouten–Nijenhuis brackets?

This question is geometrical rather than algebraic in spirit. That is to say, we seek to unde
the geometrical significance of the Schouten–Nijenhuis brackets for tensor fields on a ma
M , since the algebraic significance of the Schouten–Nijenhuis brackets is now rather well
stood. In a manuscript devoted to a study of Poisson structures Bhaskara and Viswanath8 remark:
‘‘We have observed that this Schouten product is essentially algebraic in nature and th
differential geometric setting is only incidental.’’Their approach was to recast the Schoute
Nijenhuis bracket as a bracket formultiderivationsof the smooth functions onM . Michor9 has
characterized the Schouten–Nijenhuis bracket@ ,#S/N as the unique~up to a multiplicative constant!
natural concomitant mappingAX q(M )3AX r(M ) to AX q1r21(M ). Finally we note that
Kosmann-Schwarzbach10 has described how the Schouten–Nijenhuis brackets are related t
general idea of Loday brackets. Our objective in this paper is to explain the geometrical s
cance of the Schouten–Nijenhuis brackets in the specific case that they are defined for con
ant tensor fields on a manifoldM . The first step in this direction in this paper is to show that
Schouten–Nijenhuis brackets aren-symplectic by showing that both brackets may be defined
a manifoldM in a unified way in terms of then-symplectic bracket on the bundle of linear fram
LM→M .
0022-2488/97/38(5)/2694/16/$10.00
2694 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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It has long been known, going back to the comment by Nijenhuis11 in his 1955 paper, that the
Schouten–Nijenhuis bracket (,)S/N is related to the canonical Poisson bracket of the associ
functions on the cotangent bundleT*M of the manifold. Specifically, suppose thatf
P SX q(M ). Then f defines a real-valued functionf̃ on T*M by the formula

~1!

wheremPM anda is a covector inT*Mm . A function of this type is referred to12 as ahomo-
geneous polynomial observable of degree qonT*M . Denote by Polyq the space of homogeneou
polynomial observable of degreeq on T*M induced in this way by elements ofSX q(M ), and
denote the direct sum of these spaces by Poly. Then forf̃PPolyq and g̃PPolyr , one may define
a bracket operation(,):Polyq3Polyr→Polyq1r21 by the formula

~ f̃ ,g̃!5~ f ,g̃!S/N, ~2!

where fPSX q(M ) and gPSX r(M ) are the symmetric contravariant tensor fields onM that
define f̃ andg̃, respectively. It is easy to check that this bracket agrees with the restriction o
canonical Poisson bracket onT*M to Poly.

The argument can also be reversed.12 One first defines the polynomial observables P
intrinsically13 on T*M relative to the vertical polarization.14 Then eachfPPolyq is uniquely
related to an elements( f )PSX q(M ) on M . One can then define the bracket ofs( f ) and
s(g) to bes($ f ,g%) where $,% denotes the canonical Poisson bracket onT*M . One finds that
s($ f ,g%) is indeed equal to the Schouten–Nijenhuis bracket„s( f ),s(g)…S/N. For these reason
we may say that the Schouten–Nijenhuis bracket (,)S/N is symplectic. Note, however, that there
no possibility of lifting the Schouten–Nijenhuis bracket for antisymmetric tensor fields to defi
bracket onT*M since the right-hand side of~1! vanishes identically if the tensorf is antisym-
metric. In this paper we will show that both brackets may be considered asn-symplecticbrackets
in that both of the Schouten–Nijenhuis brackets onM can be defined in a unified way using th
n-symplectic bracket onLM . The conclusion to be drawn is that the Schouten–Nijenhuis brac
for contravariant tensor fields on a manifoldM may be thought of as remnants of th
n-symplectic structure onLM , and the geometrical significance of the Schouten–Nijenhuis br
ets is that they reflect the two independent degrees of freedom in specifying, for example,
p contravariant tensor field, namely the freedom to choose an arbitrary frame~theLM degree of
freedom! and the freedom to choose components~theTpRn degree of freedom!. These two inde-
pendent degrees of freedom are tied together by the GL(n,R) tensorial action, and this all show
up explicitly when the rankp contravariant tensor bundle is thought of as the vector bundle

LM3GL~n,R!T
pRn

associated toLM .
The second goal of the paper is to develop explicit globally defined formulas for the H

tonian operators defined by the Schouten–Nijenhuis brackets in terms of geometrical qua
that can be integrated to yield integral curves and their generalizations. Following the ideas
8 we define a Hamiltonian operatorXf for fPSX q(M ) by the formula

Xf~g!5~ f ,g!S/N ;gPSX ~M !. ~3!

These Hamiltonian operators, which generalize the Hamiltonian vector fields on a symp
manifold, form an infinite-dimensional vector space and clearly should have an algebraic str
related to the Poisson algebra„SX (M ),(,)S/N…. The question arises as to whether one can find
J. Math. Phys., Vol. 38, No. 5, May 1997
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explicit formula forXf in terms of tensors and other geometric objects and operations. Ther
parallel question for the Schouten–Nijenhuis bracket@ ,#S/N. Michor

9 obtains invariant formulas
for @ ,#S/N ~see also Ref. 15! and hence, implicitly, invariant formulas for the associated Ham
tonian operators. Our goal is to develop this further by obtaining explicit representations
Hamiltonian operators in terms of familiar geometric quantities. The basic idea can be des
as follows.

We recall7 that the original definition of the Schouten–Nijenhuis bracket was given in te
of local coordinates onM as follows. Consider, for example, the symmetric case. SupposeA and
B are symmetric rankp and q contravariant tensor fields, respectively, on ann-dimensional
manifoldM . Let their components with respect to some chart (xi) be denoted byAi1i2••• i p and
Bk1k2•••kq. Then the Schouten bracket ofA and B is a rankp1q21 symmetric contravarian
tensor field (A,B)S/N with components

~A,B!S/N
i1••• i p21 jk1•••kq215pAl ~ i1i2••• i p21

]

]xl
Bjk1•••kq21)2qBl ~k1•••kq21

]

]xl
Aji 1••• i p21), ~4!

where the round brackets~ ! around indices denotes symmetrization over those indices.
formula has the remarkable property that the right-hand side in invariant under the subst
]/]xi→“ i , where“ denotes the operation of covariant differentiation with respect to any tors
free linear connection. It is in fact this property that guarantees that the right-hand side o
formula indeed gives the components of a rankp1q21 tensor field. Thus for each choice of
symmetric linear connection, one can write down the above formula in a globally defined, in
ant way without reference to any coordinate system. One should then also be able to ext
invariant definition forXf on M , which would certainly involve the algebraic concepts
derivations9 and multiderivations.8 We prefer instead to seek representations in terms of geom
cal quantities, like vector fields, that can be integrated to yield geometrical information. T
rather than pursuing this directly, we will instead construct then-symplectic Hamiltonian opera
tors on LM , once we have established the fact that the Schouten–Nijenhuis bracke
n-symplectic. These Hamiltonian operators onLM turn out to be equivalence classes of vect
valued vector fields, where the equivalence classes reflect a certainn-symplectic gauge freedom
We will show that each choice of a torsion-free linear connection onLM breaks the gauge
symmetry and selects unique representatives from the equivalence classes. This symmetr
ing by torsion-free connections is then-symplectic characterization of the substitution freedo
]/]xi→“ i discussed above. In order to illustrate the significance of this symmetry breakin
apply the theory to the ‘‘free observer system’’ in a fixed curved space–time. We show that
selects the Levi-Civita connection defined by the space–time metric itself, then integration
timelike Hamiltonian vector field of the ‘‘free observer Hamiltonian’’ onLM yields freely falling
observers in the space–time, i.e., nonrotating observers moving along geodesics of the Lev
connection. If instead one fixes then-symplectic gauge by selecting an arbitrary torsion-fr
connection, then one still finds observers moving along the space–time geodesics of the
connection, but these observers experience ‘‘generalized rotational forces’’ that are genera
the nonmetricity of the chosen connection.

The structure of the paper is as follows. In Sec. II we show that both Schouten–Nije
brackets aren-symplectic. In Sec. III we first present a brief review of then-symplectic Hamil-
tonian operators associated with the vector-valued tensorial functions onLM . These
n-symplectic Hamiltonian operators are equivalence classes of sets of vector fields. W
present new results that show how to select representatives of then-symplectic Hamiltonian
operators for each choice of a torsion-free linear connection onLM . In Sec. IV we apply the
theory to the ‘‘free observer system’’ discussed above. Finally in Sec. V we present conclu
about the results of this paper and the relationship ofn-symplectic geometry, and henc
J. Math. Phys., Vol. 38, No. 5, May 1997
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Schouten–Nijenhuis brackets, to other more standard symplectic type theories. There is
Appendix which contains some facts aboutn-symplectic geometry that are needed earlier in
paper.

For later reference we collect together here much of the notation that will be used throu
the paper.

NOTATION

~1! X p(M ) denotes the space of smooth rankp contravariant tensor fields onM , with p>1.
~2! Tp(LM ) denotes the space of smooth GL(n,R)-tensorial functions onLM , with ranges

(^ )pRn.
~3! SX p(M ) andAX p(M ) denote the spaces of smooth rankp symmetric and antisymmetric

contravariant tensor fields, respectively, onM , with p > 1.
~4! SX (M )5 % p51

` SX p(M ) andAX (M )5 % p51
` AX p(M ).

~5! ^ s denotes the symmetric and̂ a the antisymmetric tensor product.
~6! STp(LM ) andATp(LM ) denote the spaces of smooth GL(n,R)-tensorial functions onLM ,

with ranges (̂ s)
pRn and (^ a)

pRn, respectively.
~7! ST(LM )5 % p51

` STp(LM ) andAT(LM )5 % p51
` ATp(LM ).

II. THE n-SYMPLECTIC STRUCTURE ON LM

The GL(n,R)-principal fiber bundle of linear framesLM of an n-dimensional manifoldM
supports a canonically definedRn-valued one-form, the so-called soldering one-formu ~see the
Appendix!. As defined in Ref. 4,n-symplectic geometry is the generalized symplectic geom
on LM that one obtains by takingdu as the generalized symplectic form. Some facts ab
n-symplectic geometry are listed in the Appendix, and the interested reader may find more
in Refs. 4 and 5.

We recall16 that a rankp contravariant tensor fieldf on ann-dimensional manifoldM is
uniquely related to â p(Rn)-valued tensorial functionf̂ on LM as follows. Represent a poin
uPLM by the pair (m,ei) where (ei), i51,2,...,n denotes a linear frame atmPM . Then for
eachp>1, one may consideru as the linear map

u:^
pRn→TpMm , u~j i i i2••• i p!5j i i i2••• i pei1^ei2^ ••• ^ei p ~5!

with inverse mapping

u21:TpMm→^
pRn, u21~j!5„j~ei1,ei2,...,ei p!…. ~6!

The domain ofu and the range ofu21 specialize to (̂ s)
pRn if f is symmetric, and to

(^ a)
pRn if f is antisymmetric.
Let p:LM→M be the canonical projectionp(m,ei)5m. Given fPX p(M ) one definesf̂

PTp(LM ) on LM by the formula

f̂ ~u!5u21~ f „p~u!…!. ~7!

One shows16 that such a functionf̂ satisfies the tensorial transformation law

Rg* ~ f̂ !5g21
• f̂ ;gPGL~n,R!, ~8!

whereRg denotes right translation onLM by gPGL(n,R), and the dot on the right-hand sid
denotes the standard action of GL(n,R) on ( ^ s)

pRn. Conversely, givenf̂PTp(LM ) onLM , one
definesfPX p(M ) onM by the formula

f ~m!5u„ f̂ ~u!…, ~9!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r

indices.

given
s of

tion

e

ce of
cts as a

ebra

f

tensor
es.
bracket

indices.

use the

2698 L. K. Norris: Schouten–Nijenhuis brackets

¬¬¬¬¬¬¬¬¬¬
whereu is any point inLM such thatp(u)5m. The tensorial character off̂ guarantees that the
right-hand side of this last equation is independent of whichuPp21(m) one uses, so thatf is well
defined.

Now let f̂5( f̂ i1••• i q)PSTq(LM ). Then the associatedn-symplectic Hamiltonian operato
vXf̂ b is determined by then-symplectic structure equation17

d f̂ i1••• i q52q!X
f̂

( i1••• i q21
4du i q), ~10!

where the round brackets around superscripts denote symmetrization over the inclosed

This equation determines an equivalence classvXf̂ b of (q21
n1q22) vector fields (X

f̂

i1••• i q21), and the

explicit local coordinate form of a representative of an equivalence class of vector fields is
in ~A9! below. Then-symplectic Hamiltonian operators turn out to be equivalence classe
vector fields because the symmetrization of the indices in~10! introduces a certain degeneracy@cf.
Appendix equations~A7! and ~A10!#. Nonetheless, one can define a bracket opera
$,%:STq(LM ) 3 STr(LM )→STq1r21(LM ) by the formula

$ f̂ ,ĝ% i1i2••• i q1r215q!X
f̂

( i1i2••• i q21~ ĝi qi q11••• i q1r21)! ~11!

for f̂PSTq(LM ) and ĝPSTr(LM ). In this formula (X
f̂

i1i2••• i q21) is any representative of th

equivalence classvXf̂ b . The bracket so defined is easily shown to be independent of the choi
representatives and has all the properties of a Poisson bracket. In particular the bracket a
derivation on the associative algebra (ST, ^ s).

Theorrem II.1: The space ST of symmetric tensorial functions on LM is a Poisson alg
with respect to the n-symplectic bracket$,% defined in (11).

One may now define a bracket on elements ofSX (M ) onM as follows. Forf P SX q(M ),
andg P SX r(M ) define (f ,g) to be the unique element ofSX q1r21(M ) determined by

~ f ,ĝ!5$ f̂ ,ĝ%. ~12!

It is known4 that this bracket is the Schouten–Nijenhuis bracket of f and g. Moreover, in Ref.
4 it is shown that (ST,$,%) is a proper subalgebra of the fulln-symplectic Poisson algebra o
symmetric tensor-valued functions onLM .

We have the result that the Schouten–Nijenhuis bracket for symmetric contravariant
fields on a manifold is both symplectic andn-symplectic, as it can be defined by both structur
However, as mentioned above, it does not seem possible to define the Schouten–Nijenhuis
for antisymmetric contravariant tensor fields in terms of the symplectic structure onT*M . On the
otherhand, we now show that the Schouten–Nijenhuis bracket@ ,#S/N is alson-symplectic.

Let f̂5( f̂ i1••• i q)PATq(LM ). Then the associatedn-symplectic Hamiltonian operatorvXf̂ b is
determined by then-symplectic structure equation

d f̂ i1••• i q52q!X
f̂

[ i1••• i q21
4du i q] , ~13!

where the square brackets around indices denote antisymmetrization over the inclosed

This equation determines an equivalence classvXf̂ b of (q21
n ) vector fields (X

f̂

i1••• i q21), and the

explicit local coordinate form of an equivalence class of vector fields is given in~A14! below.
These Hamiltonian operators again turn out to be equivalence classes of vector fields beca
antisymmetrization of the indices in~13! also introduces a degeneracy@cf. Appendix equations
~A12! and ~A15!#. As in the symmetric case one can define a bracket operation$,%:ATq(LM )
3ATr(LM )→ATq1r21(LM ) by the formula
J. Math. Phys., Vol. 38, No. 5, May 1997
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$ f̂ ,ĝ% i1i2••• i q1r215q!X
f̂

[ i1i2••• i q21~ ĝi qi q11••• i q1r21] ! ~14!

for f̂PATq(LM ) and ĝPATr(LM ). In this formula (Xf
i1i2••• i q21) is any representative of th

equivalence classvXf̂ b . The bracket so defined is easily shown
4 to be independent of the choice o

representatives.
Theorem II.2: Let f̂PATp(LM ), ĝPATq(LM ), and ĥPATr(LM ). Then the bracket op-

eration defined in (14) has the following properties:

$ f̂ ,ĝ%52~21!~p21!~q21!$ĝ, f̂ % ~15a!

05~21!~p21!~r21!
ˆ f̂ ,$ĝ,ĥ%‰1~21!~p21!~q21!

ˆĝ,$ĥ, f̂ %‰1~21!~q21!~r21!
ˆĥ,$ f̂ ,ĝ%‰ ~15b!

$ f̂ ,ĝ^ aĥ%5$ f̂ ,ĝ% ^ aĥ1~21!~p21!~q!ĝ^ a$ f̂ ,ĥ%. ~15c!

Remark:The spaceAT is the direct sumAT5 % p51
` ATp(LM ) of the rankp antisymmetric

tensor-valued tensorial functions onLM . We assign the degreeu f̂ u of an elementf̂ P ATp(LM ) as
follows:

u f̂ u5 H 0 if p is odd,
1 if p is even. ~16!

With this grading Theorem II.2 shows that (AT,$,%) is aZ2-graded Lie algebra with the bracke
acting as a graded derivation on (AT,^ a). Hence we have the following theorem.

Theorem II.3: The space AT of antisymmetric tensorial functions on LM is a graded Poi
algebra with respect to the n-symplectic bracket$,% defined in (14).

One may now define a bracket on elements ofAX (M ) on M as follows. For f
P AX q(M ), g P AX r(M ) defined@ f ,g# to be the unique element ofAX q1r21(M ) determined
by

@ f , ĝ#5$ f̂ ,ĝ%. ~17!

It is known4 that this bracket is, up to a sign, the Schouten–Nijenhuis bracket @ f ,g#S/N of f
and g. Specifically, we have the following theorem.

Theorem II.4: Let f P AX q(M ) and gP AX r(M ). Then the Schouten–Nijenhuis bracket
@ f , g#S/N and the bracket@ f , g# defined above in (17) by the n-symplectic structure on LM are
related by

@ f , g#5~2 ! u f u@ f ,g#S/N. ~18!

Remark:This sign difference is simply a consequence of the different orderings of the
symmetric indices in the original definition given by Nijenhuis7 and the definition~14!, and either
bracket can be redefined to absorb this factor. For example, if$,% in ~14! is replaced with a new
bracket$,%0 defined by

$ f̂ ,ĝ%0
i1i2••• i q1r215~21!q21q!X

f̂

[ i1i2••• i q21~ ĝi qi q11••• i q1r21] !, ~19!

then the bracket induced onM by using$,%0 on the right-hand side in~17!, and the Schouten–
Nijenhuis bracket@ ,#S/N coincide. We note that Michor9 also found it more natural to define th
Schouten–Nijenhuis bracket for antisymmetric fields with a sign that is opposite from the s
the original definition.7
J. Math. Phys., Vol. 38, No. 5, May 1997
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III. HAMILTONIAN OPERATORS

In order to discuss then-symplectic Hamiltonian operators efficiently, it is convenient to u
a multi-index notation. In the following we letI q 5 i 1 ...i q21 andJr 5 j 1 ...j r21 for q,r > 1. Then
we can use the notationXIq5Xi1••• i q21 to denote the individual vector fields that are contained i
set of vector fields (Xi1 ...i q21). In particular, we denote the equivalence classes of vector fi

determined byf̂PSTq andĝPSTr by vXf̂ b [ vX
f̂

I qb andvXĝb [ vX
ĝ

Jr b , respectively. In addition we
denote byHO(STq) the vector space of Hamiltonian operatorsvXf̂ b for f̂ P STq, and denote the
direct sum of the vector spacesHO(STq) byHO(ST). Similarly,HO(ATq) will denote the space
of n-symplectic Hamiltonian operatorsvXf̂ b for f̂ P ATq, andHO(AT) will denote the direct sum
of the vector spacesHO(ATq).

Define a bracket operation@ ,#:HO(STq) 3 HO(STr)→HO(STq1r21) by

@ vX̂ f̂ b , vX̂ĝb#5~@X
f̂

(I q, X
ĝ

Jr )# !, ~20!

where the bracket on the right-hand side is the ordinary Lie bracket of vector fields calcu
using arbitrary representatives, and the indices have been symmetrized. One shows that for

of representatives (X
f̂

I q) of vXf̂ b ,

q! r !

~q1r21!!
~@X

f̂

(I q, X
ĝ

Jr )# !PvX$ f̂ ,ĝ%b . ~21!

Thus the bracket@ vX̂ f̂ b ,@X̂ĝb# is well defined, and we write

@ vX̂ f̂ b , vX̂ĝb#5
~q1r21!!

q! r !
vX̂$ f̂ ,ĝ%b . ~22!

Moreover, it is known4 that the bracket defined in~20! is antisymmetric and satisfies the Jaco
identity.

Theorem III.1: The vector space HO(ST) of n-symplectic Hamiltonian operators (equiva
lence classes of Hamiltonian vector fields) on LM is a Lie algebra with respect to the br
defined in (20).

There is a parallel development for the Hamiltonian operators defined by the antisymm
tensor-valued functions onLM . Define a bracket operation@ ,#:HO(ATq)3HO(ATr)
→HO(ATq1r21) by

@ vX̂ f̂ b , vX̂ĝb#5~@X
f̂

[ I q, X
ĝ

Jr ] # !, ~23!

where the bracket on the right-hand side is the ordinary Lie bracket of vector fields calcu
using arbitrary representatives, and the indices have been antisymmetrized. As in the sym

case one shows that for any set of representatives (X
f̂

I q) of @Xf̂ #,

q! r !

~q1r21!!
~@X

f̂

(I q, X
ĝ

Jr )# !PvX$ f̂ ,ĝ%b . ~24!

Thus the bracket@ vX̂ f̂ b , vX̂ĝb# is also well defined, and as in~22! we write

@ vX̂ f̂ b , vX̂ĝb#5
~q1r21!!

q! r !
vX̂$ f̂ ,ĝ%b . ~25!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Theo-

ra-

g to

-
e

bra of
tor
tisym-

riant
g

tric

the
s

of
-

2701L. K. Norris: Schouten–Nijenhuis brackets

¬¬¬¬¬¬¬¬¬¬
As one would expect the algebraic properties of this bracket mirror the properties listed in
rem II.2 above for then-symplectic bracket of antisymmetric tensor-valued functions.

Theorem III.2: Let f̂PATp(LM ), ĝPATq(LM ), and ĥPATr(LM ), and let vX̂ f̂ b , vX̂ĝb ,
and vX̂ĥb denote the corresponding n-symplectic Hamiltonian operators. Then the bracket ope
tion defined in (23) has the following properties:

@ vX̂ f̂ b ,vX̂ĝb#52~21!~p21!~q21!@ vX̂ĝb ,vX̂ f̂ b#, ~26a!

05~21!~p21!~r21!
†vX̂ f̂ b ,@ vX̂ĝb ,vX̂ĥb#‡1~21!~p21!~q21!

†vX̂ĝb ,@ vX̂hb ,vX̂ f̂ b#‡

1~21!~q21!~r21!
†vX̂ĥb ,@ vX̂ f̂ b ,vX̂ĝb#‡ . ~26b!

These properties of then-symplectic bracket for the Hamiltonian operators correspondin
elements ofAT yield the following theorem.

Theorem III.3: The vector space HO(AT) of n-symplectic Hamiltonian operators (equiva
lence classes of Hamiltonian vector fields) on LM is a Z2-graded Lie algebra with respect to th
bracket defined in (23).

The point to be emphasized here is that the Hamiltonian operators for the Poisson alge
symmetric and antisymmetric tensorial functions onLM are equivalence classes of sets of vec
fields, rather than sets of vector fields. This is a consequence of the symmetrization and an
metrizations of the indices in the structure equations~10! and~13!. This fact is also related to the
observation7 that the local coordinate formulas for the Schouten–Nijenhuis brackets are inva
under the substitution] i→“ i mentioned earlier. This relationship follows from the followin
theorem.

Theorem III.4: Let Bi , i51,2,...,n, be the standard horizontal vector fields of a symme
linear connection one-formv on the bundle of linear frames LM of an n-dimensional manifold
M . Let Ej

i* , i , j51,2,...,n, denote the fundamental vertical vector fields on LM defined by
standard basis(Ej

i ) of gl(n,R). For f̂5( f̂ i I q)[( f̂ i1 ...i q)PSTq(LM ) define a set of vector field

X̃
f̂

I q
5

1

~q21!!
~ f̂ j I q!Bj1

1

q!
~Dkf̂

I qj !Ej
k* , ~27!

where Dk 5 Bk4D
v and Dv denotes exterior covariant differentiation with respect tov. Then

~X̃
f̂

I q!PvXf̂ b . ~28!

Proof: According to Appendix equation~A9! the local coordinate form of a representative
vXf̂ b can be given by specifying functionsTa

Iqb that satisfy~A10!. Let v be a torsion-free connec
tion one-form onLM . Then in the local canonical coordinates (xi ,pk

j ) defined in Appendix
equation~A2! the associated standard horizontal vector fields defined byv take the form

Bj5~p21! j
kS ]

]xk
1Gka

l p l
i ]

]pa
i D , ~29!

where the (Gka
l ) are the local coordinate components of the connectionv. In addition the local

coordinate formulas for the fundamental vertical vector fields onLM are

Ej
i*52pk

i ]

]pk
j . ~30!

Substituting these expressions into~27! one shows that~27! reduces to the form given in~A9!
where the functionsTa

Iqb satisfy ~A10!. j
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We have the result that each choice of a torsion-free linear connectionv on LM yields a
globally defined Hamiltonian operator for eachf̂PST, and hence selects a subspa
HOv(ST),HO(ST). The question remains whether or notHOv(ST) is a subalgebra under th
bracket defined above in~23!. While ~24! clearly is still satisfied, a direct calculation shows th

@X̃ f̂ ,X̃ĝ#}” X̃$ f̂ ,ĝ% . ~31!

The reason is that while the vertical component ofX̃$ f̂ ,ĝ% is clearly symmetric@see ~27!#, the
vertical component of@X̃ f̂ , X̃ĝ# is not symmetric. Fortunately, it is possible to modify the de
nition ~20! so that the bracket closes on the setHOv(ST) by enforcing symmetry on the vertica
components. This can be done globally onLM since then componentsu i of the soldering
one-form and then2 componentsv j

i of a connection one-formv together define a global basis o
one-forms ofLM .

Definition III.5: For f̂ P STq(LM ) and ĝP STr(LM ), let X̃f̂ 5 (X̃
f̂

I q) and X̃ĝ 5 (X̃
ĝ

Jr) be as in

(27) above for some torsion-free connection one-formv 5 (v j
i ). Define a bracket operation

@ ,#! :HO
v(STq) 3 HOv(STr)→HOv(STq1r21) by@X̃ f̂ , X̃ĝ#! 5 (@X̃ f̂ ,X̃ĝ#!

I qJr),where

@X̃ f̂ , X̃ĝ#!
I qJr5~@X̃ f̂ , X̃ĝ#

I qJr
4u i !Bi1~@X̃ f̂ , X̃ĝ#

(I qJr
4v j

i )!Ei
j* ~32!

and where the bracket on the right-hand side is the bracket defined in (20).
Remark:The symmetrization of the indices in the vertical component is the only differe

between this new bracket and the bracket defined in~20!. The tedious but straightforward proof o
the following theorem is omitted.

Theorem III.6: The bracket@ ,#! defined above in (32) satisfies

@X̃ f̂ , X̃ĝ#!5
~q1r21!!

q! r !
X̃$ f̂ ,ĝ% . ~33!

Corollary III.7: The space„HOv(ST),@ ,#!… is a Lie algebra.
For completeness, we quote without proof the analogous results for the Hamiltonian ope

for antisymmetric tensorial functions onLM .
Theorem III.8: Let Bi , i51,2,...,n be the standard horizontal vector fields of a symme

linear connectionone-form v on the bundle of linear frames LM of an n-dimensional manifold
M . Let Ej

i* , i , j51,2,...,n, denote the fundamental vertical vector fields on LM defined by
standard basis(Ej

i ) of gl(n,R). For f̂5( f̂ i I q)[( f̂ i1 ...i q)PATq(LM ) define a set of vector field

X̃
f̂

I q
5

1

~q21!!
~ f̂ j I q!Bj1

1

q!
~Dkf̂

I qj !Ej
k* , ~34!

where Dk 5 Bk4D
v and Dv denotes exterior covariant differentiation with respect tov. Then

~X̃
f̂

I q!PvXf̂ b . ~35!

Definition III.9: For f̂PATq(LM ) and ĝPATr(LM ), let X̃f̂5(X̃
f̂

I q) and X̃ĝ5(X̃
ĝ

Jr) be as in

(34) above for some torsion-free connection one-formv5(v j
i ). Define a bracket operation

@ ,#! :HO
v(ATq)3HOv(ATr)→HOv(ATq1r21) by @X̃ f̂ , X̃ĝ#!5((@X̃ f̂ , X̃ĝ#!

I qJr), where

@X̃ f̂ , X̃ĝ#!
I qJr5~@X̃ f̂ , X̃ĝ#

I qJr
4u i !Bi1~@X̃ f̂ , X̃ĝ#

[ I qJr
4v j

i ] !Ei
j* , ~36!

and where the bracket on the right-hand side is the bracket defined in (23).
J. Math. Phys., Vol. 38, No. 5, May 1997
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Remark:The antisymmetrization of the indices in the vertical component is the only di
ence between this new bracket and the bracket defined in~23!.

Theorem III.10: The bracket@ ,#! defined above (36) satisfies

@X̃ f̂ , X̃ĝ#!5
~q1r21!!

q! r !
X̃$ f̂ ,ĝ% . ~37!

Corollary III.11: The space„HOv(AT),@ ,#!… is a graded Lie algebra.

IV. APPLICATIONS: THE FREE OBSERVER SYSTEM IN SPACE–TIME

We have just seen that for each choice of a torsion-free linear connection one obtains
representatives of the equivalence classes of Hamiltonian operators for both symmetric an
symmetric tensorial functions onLM . We will refer to this freedom to choose a symmetr
connection as an ‘‘n-symplectic gauge freedom,’’ and will refer to a choice of symmetric c
nection as a ‘‘choice ofn-symplectic gauge.’’ In order to gain geometrical insight into the me
ing of then-symplectic gauge we apply the theory to the simpliest of all possible systems, na
the free observer systemin a four-dimensional spacetime manifoldM with metric tensor field
gW .

We first recall that the contravariant form of the metric tensor defines onT*M the free
particle HamiltonianH 5 (1/2m)g̃, wherem is the mass of the particle andg̃ is the function on
T*M defined bygW as in ~1!. The integral curves of the Hamiltonian vector field defined byH

project to the geodesics of the Levi–Civita connection defined by the metric tensor. Thefree
observer systemalluded to above is the observable defined onLM by gW , and is the analogue of th
free particle Hamiltonian.

The generalized Hamiltonian of thefree observer systemis thus the symmetric observab
Ĥ 5 ĝ whereĝ 5 (ĝi j ) P ST2(LM ) is the tensorial function defined onLM as in~7!. ~For simplic-
ity we have dropped the multiplicative constant 1/2m.! Then-symplectic structure equation~10!
determines the Hamiltonian operatorvXĝb , each member of which is anRn-valued vector field on
LM . In order to find integrals of this Hamiltonian operator we select ann-symplectic gauge,
namely an arbitrary torsion-free linear connectionv onLM . Then by Theorem III.4 we obtain th
following unique Hamiltonian operator forĝ:

X̃ĝ
i
5ĝi j Bj1

1
2~Dkĝ

i j !Ej
k* , i50,1,2,3. ~38!

In this specific case we use standard notation to rewrite this equation as

X̃ĝ
i
5ĝi j Bj1

1
2~Q̂k

i j !Ej
k* , i50,1,2,3, ~39!

whereQ̂k
i j 5 Dkĝ

i j is thenonmetricity18 of then-symplectic gaugev. Let us now find the integra
curve of X̃ĝ

0 that starts at the initial frameu0 P LM , whereu0 is such thatX̃ĝ
0(u0) projects to a

timelike vector atp(u0). Substituting~29! and ~30! into ~39! we obtain the following system o
equations for the integral curves ofX̃ĝ

0 in the local canonical coordinates defined in the Append

ẋb5gabpa
0, ṗa

j 52 1
2~Qa

bl22Gak
l gbk!pb

0p l
j . ~40!

From the definition of the generalized momentum coordinatesp j
i given in Appendix equation

~A2! we see that the second of the above equations is a transport equation for a coframe
than frame.
J. Math. Phys., Vol. 38, No. 5, May 1997
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This system of equations splits into the following two sets of equations:

ẋb5gabpa
0,

~41!

ṗa
052 1

2 ~Qa
bl22Gak

l gbk!pb
0p l

0,

and, fora 5 1,2,3,

ṗa
a52 1

2 ~Qa
bl22Gak

l gbk!pb
0p l

a . ~42!

Consider first the coupled system~41!. Using the relationship18 between the connection coe
ficientsGak

l , the Christoffel symbols$ jk
i %, and the nonmetricityQa

bl, one finds that the nonmetric
ity and then-symplectic gaugeGak

l cancel out, and that~41! reduces to the equation for th
geodesic of the Levi–Civita connection, namely

d2xi

dt2
1 H ijkJ dxj

dt

dxk

dt
50. ~43!

This part of the information contained in the system~40! is thereforen-symplectic gauge-invarian
and agrees with the corresponding result from the cotangent bundle. That this must be so
seen as follows. The structure equation forĝi j is

dĝi j522Xĝ
( i
4du j ). ~44!

Settingi 5 j 5 0 we obtain an equation forXĝ
0, namely

dĝ0052Xĝ
0
4du0, ~45!

which is essentially theLM form of Hamiltonian’s equations on the cotangent bundle, based
the ‘‘kinetic energy Hamiltonian’’ĝ00 5 gi j (x)p i

0p j
0, with p i

0 playing the role of the momentum
coordinatepi .

Next consider the remaining equations~42! which determines the transport of the spat
coframe along the geodesic, and which we will refer to as thetriad transport law. Substituting
pa
0 5 gabẋ

b from the first of equations~41!, and again using the relationship between the conn
tion coefficients, the Christoffel symbols of the metric tensor, and the nonmetricity, one
reduce this equation to the form

Dpa
a

Ds
5
1

2
~Qk.a

.l . 2Q.ak
l !ẋkp l

a , ~46!

where the covariant derivative on the left-hand side is taken with respect to the Levi-C
connection defined by the metric tensor. We consider two cases:

~1! If we choose the Levi–Civita connection for then-symplectic gauge, thenQa
jk [ 0, and the

triad is parallel transported along the geodesic. Since the unit tangent is also parallel
ported along the geodesic, this case corresponds to the truefree observer in space–time,
namely a freely falling~trajectory is a nonaccelerating geodesic!, nonrotating~triad is parallel
transported along a geodesic! observer.

~2! If we choose for then-symplectic gauge an arbitrary torsion-free connection that is not
unique Levi–Civita connection ofgW , thenQa

jk Þ 0, and the triad is no longer parallel tran
ported along the geodesic. Since the unit tangent is still parallel transported along the
sic, this case corresponds to a freely falling~trajectory is a nonaccelerating geodesic! observer
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



tensor
s of

ten–
ve the

ra-

other-
ic con-

f

h
uten–

ackets
-

nhuis
ets on

e
uten–

on

d fun-
already

rackets
er.

2705L. K. Norris: Schouten–Nijenhuis brackets

¬¬¬¬¬¬¬¬¬¬
whose three space is subject to the forces given on the right-hand side of~46!. These forces
include, but are not restricted to, rotations.

V. CONCLUSIONS

In this paper we have shown that the Schouten–Nijenhuis brackets of contravariant
fields on a manifoldM have a natural and fundamental geometrical interpretation in term
n-symplectic geometry on the bundle of linear framesLM of the manifoldM . From an abstract
algebraic point of view one might prefer the axiomatic, base manifold definition of the Schou
Nijenhuis brackets. For example, for the anti-symmetric contravariant tensor fields we ha
following.

Definition: ~See Refs. 9 and 19.! The Schouten–Nijenhuis bracket of antisymmetric cont
variant tensor fields on a manifoldM is the uniqueR-bilinear mapping

@ ,#:AX (M )3AX (M )→AX (M ), which

~1! extends the Lie bracket of vector fields,
~2! satisfies@X, f # 5 LX( f ) for all vector fieldsX and all smooth functionsf onM ,
~3! is graded antisymmetric,
~4! is a graded biderivation ofAX (M ).

However, this abstract definition does not lend itself easily to geometrical analysis. On the
hand we have seen that one may define the Schouten–Nijenhuis bracket for antisymmetr
travariant tensor fields onM geometrically onLM as follows:

Definition: For fPAX q(M ), gPAX r(M ) define @ f , g# to be the unique element o
AX q1r21(M ) determined by

@ f ,ĝ#5$ f̂ ,ĝ% ~47!

where the bracket on the right-hand side is then-symplectic bracket defined in equation~13!, and
f̂ andĝ are the tensorial functions onLM uniquely determined byf andg, respectively. Since the
n-symplectic bracket is defined in~14! in terms of then-symplectic Hamiltonian operators, whic
themselves are equivalence classes of sets of vector fields, this definition of the Scho
Nijenhuis bracket@ ,#S/N is clearly more geometrical, and lends itself to geometrical analysis.

There is a strong parallel between these two definitions of the Schouten–Nijenhuis br
and two definitions of linear connections on a manifoldM , namely the axiomatic Koszul defini
tion on the base manifoldM , and the geometrical definition of a linear connection onLM . We
recall that in the axiomatic approach one defines a linear connection onM as an operator“ with
a certain set of properties, much like the first definition given above for the Schouten–Nije
bracket@ ,#S/N. On the other hand, just as we have defined the Schouten–Nijenhuis brack
LM one may define16 a linear connection geometrically onLM as a horizontal distribution~or,
equivalently, as a Lie-algebra-valued connection one-form!. The axiomatic and frame bundl
definitions of linear connections are equivalent, as are the two definitions of the Scho
Nijenhuis brackets given above. However, it is clear that for geometrical analysis, theLM version
of the definition of a linear connection forM is the superior definition. The frame bundle versi
of linear connections is also clearly more fundamental, as it is the approach taken infoundational
studiesof differential geometry.~See, for example, Refs. 16, 20, and 21.! It is our assertion that
the frame bundle version of the Schouten–Nijenhuis brackets is also more geometrical an
damental than the base manifold version of the Schouten–Nijenhuis brackets. We have
demonstrated in Secs. III and IV the geometrical utility of then-symplectic version of the
Schouten–Nijenhuis brackets. That the frame bundle version of the Schouten–Nijenhuis b
is also more fundamental can be demonstrated by pursuing the above analogy a little furth
J. Math. Phys., Vol. 38, No. 5, May 1997
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We recall that a fundamental feature of the frame bundle definition of a linear connect
that once such a connection is specified, one may use that connection to define covarian
entiation of tensor fields onM in terms of the exterior covariant differentiation of the associa
tensorial fields onLM . In the construction one makes essential use of the fact that the va
tensor bundles may be considered as vector bundles associated toLM . Alternatively, one may use
the connection onLM to induce a connection for covariant differentiation of sections of the ten
bundles,16 thereby recovering the axiomatic Koszul definition of a connection. The point t
stressed here is that all features of linear connections on the tensor bundles flow from the
unifying definition of a linear connection onLM .

We point out that then-symplectic structure onLM also plays a basic, unifying role for th
various symplectic-type theories on the appropriate tensor bundles. In Ref. 5 it was argued t
canonical one-formq on the cotangent bundle of a manifoldM is induced from the
n-symplectic structure onLM , and that in fact all features of the symplectic geometry of tenso
observables onT*M are induced from corresponding structures onLM . Hence the symplectic
geometry for classical particle mechanics is induced from then-symplectic geometry onLM .
More recently2 it was pointed out that then-symplectic structure onLM induces a ‘‘canonical
p-form’’ on each of the form bundlesLpM , 1<p<n. As a special case one may suppose t
M→N is itself a vector bundle over a manifoldN, with dim (N)5k. The previous theorem
asserts2,3 that then-symplectic structure onLM induces a canonicalk-form on the bundle of
k-formsLkM . It has been shown22,23 that a certain subbundleZ of LkM is isomorphic with the
bundle of affine cojets of sections ofM→N, and that this subbundleZ is the appropriate phas
space for a field theory in which the sections ofM→N are the fields of the theory. In particula
Z supports a canonicalk-form, the so-called ‘‘multisymplectick-form.’’ In Refs. 2 and 3 it is
shown that this multisymplectic form is in fact the restriction to the subbundleZ of the form on
LkM induced by then-symplectic structure onLM . Hencen-symplectic geometry onLM not
only induces the canonical symplectic one-form for classical particle mechanics, but it al
duces the canonical multisymplectick-form for classical field theory. Just as the basic notio
about covariant differentiation of tensor fields can be traced back to, and are induced by, a
connection defined onLM , the basic features of symplectic and multisymplectic geometry on
form bundles can be traced back to, and are induced by, then-symplectic geometry onLM . These
facts clearly establish the fundamental nature ofn-symplectic geometry on frame bundles.

APPENDIX: SOME FACTS ABOUT n-SYMPLECTIC GEOMETRY

The principal fiber bundlep:LM→M of linear frames of ann-dimensional manifoldM is the
set of pairs (m,ei) where (ei), i51,2,...,n is a linear frame atmPM . The dimension ofLM is
the even numbern(n11), and the general linear group GL(n) acts onLM on the right by

~m,ei !•g5~m,eigj
i ! ~A1!

for eachg5(gj
i )PGL(n). Let (xi) be a coordinate chart onU,M . Define coordinates (xi ,pk

j ) on
Û5p21(U),LM by

xi~m,ei !5xi~m!, pk
j ~m,ei !5ej S ]

]xkU
m
D , ~A2!

where (ei) denotes the coframe dual to (ei). Moreover in~A2! I follow standard conventions an
write xi in place ofxi + p.

Let (r i), i 5 1,2,...,n, denote the standard basis ofRn. Then theRn-valued soldering one-form
u5u i r i on LM may be defined by

u~Xu!5u21
„dp~Xu!…, XuPTuLM , ~A3!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where u5(m,ei)PLM is viewed as the nonsingular linear mapu:Rn→Tp(u)M given by
u(j i r i)5j iei . In the local coordinates (xi ,pk

j ) the soldering one-formu take the form

u5~p j
i dxj !r i . ~A4!

Because this form is so similar to the formq 5 pjdx
j for the canonical one-form onT*M in local

canonical coordinates, we refer to the coordinates (xi ,pk
j ) as canonical coordinates onLM . It is

not difficult to show that the vector-valued two-formdu is nondegenerate in the sense that

X4du50⇔X50, ~A5!

An elementf̂ P STq(LM ) determines4 an equivalence classesvXf̂ b of ( q21
n1q22) vector fields

vX
f̂

i1••• i q21
b via then-symplectic structure equation

d f̂ i1•••I q52q!X
f̂

( i1••• i q21
4du I q), ~A6!

where round brackets on indices denote symmetrization. Note that althoughdu is nondegenerate
in the sense of~A5!, because of the symmetrization in~A6! the nondegeneracy is lost. For a give

f̂PSTq Eq. ~A6! only determines the vector fieldsX
f̂

i1••• i q21 up to addition of vector fields

Yi1••• i q21 satisfying the kernel equation

Y( i1••• i q21
4du I q)50. ~A7!

If a set of vector fieldsYi1••• i q21 satisfies~A7!, then each vector fieldYi1••• i q21 must be vertical.
For a givenf̂ P STq Eq. ~A6! thus determines an equivalence class of (^ s)

q21Rn-valued Hamil-

tonian vector fields (vX
f̂

i1••• i q21b), where two (̂ s)
q21Rn-valued vector fields are equivalent

their difference satisfies Eq.~A7!.
An elementf̂ 5 ( f̂ i1i2•••I q) P STq has the local canonical coordinate representation

f̂ i1i2•••I q5 f j 1 j 2••• j q~x!p j 1

i1p j 2

i2•••p j q

I q. ~A8!

The associated equivalence classes of Hamiltonian vector fieldsvX
f̂

i1i2••• i q21b determined by Eq.

~A6! have the local coordinate representations

X
f̂

i1i2••• i q21
5X 1

~q21!!
f j 1 j 2••• j q21k~x!

]

]xk
2

1

q! S ] f j 1 j 2••• j q

]xa
p j q
b 1Ta

j 1 j 2••• i j21bD ]

]pa
b C

3p j 1

i1p j 2

i2•••p j q21

i q21, ~A9!

where the functionsTa
i1i2••• i q21b must satisfy

Ta
~ i1i2••• i q21b!

50, ~A10!

but are otherwise arbitrary. These functionsTa
i1i2••• i q21b thus represent the undetermined part

vXf̂ b for f P STq(LM ).
An element f̂ P ATq(LM ) determines4 an equivalence classesvXf̂ b of (q21

n ) vector fields

vX
f̂

i1••• i q21b via then-symplectic structure equation

d f̂ i1•••I q52q!X
f̂

[ i1••• i q21
4du I q] , ~A11!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where square brackets@ # on indices denotes antisymmetrization. The antisymmetrization in~A11!
again introduces a degeneracy in the determination of the Hamiltonian operators. For a

f̂PATq Eq. ~A11! only determines the vector fieldsX
f̂

i1••• i q21 up to addition of vector fields

Yi1••• i q21 satisfying the antisymmetric kernel equation

Y[ i1••• i q21
4du I q]50. ~A12!

If a set of vector fieldsYi1••• i q21 satisfies~A12!, then each vector fieldYi1••• i q21 must be vertical.
For a givenf̂ P ATq Eq.~A11! thus determines an equivalence class of (^ s)

q21Rn-valued Hamil-

tonian vector fields (@X
f̂

i1••• i q21#), where two (^ s)
q21Rn-valued vector fields are equivalent

their difference satisfies Eq.~A12!.
An elementf̂ 5 ( f̂ i1i2•••I q) P STq has the local canonical coordinate representation

f̂ i1i2•••I q5 f j 1 j 2••• j q~x!p j 1

i1p j 2

i2•••p j q

I q. ~A13!

The associated equivalence classes of Hamiltonian vector fieldsvX
f̂

i1i2••• i q21b determined by Eq.

~A11! have the local coordinate representations

X
f̂

i1i2••• i q21
5S 1

~q21!!
f j 1 j 2••• j q21k~x!

]

]xk
2

1

q! S ] f j 1 j 2••• j q

]xa
p j q
b 1Ta

j 1 j 2••• i j21bD ]

]pa
bD

3p j 1

i1p j 2

i2•••p j q21

i q21 ~A14!

where the functionsTa
i1i2••• i q21b must now satisfy

Ta
@ i1i2••• i q21b#

50 ~A15!

but are otherwise arbitrary. These functionsTa
i1i2••• i q21b thus represent the undetermined part

vXf̂ b for f̂ P STq(LM ).
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22M. Gotay, ‘‘A multisymplectic framework for classical field theory and the calculus of variations, I: Covariant ha
tonian formalism,’’ inMechanics, Analysis and Geometry: 200 Years after Lagrange,edited by M. Francaviglia~North
Holland, Amsterdam, 1991!, pp. 203–235.

23M. Gotayet al., ‘‘Momentum maps and classical relativistic fields,’’ MSRI Preprint.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ics
roup is
iables

re, it is
v-
act
hey
y
ace

the

resen-
the
ucial in
.

riables

¬¬¬¬¬¬¬¬¬¬
Representations of Sp(6, R) and SU(3) carried
by homogeneous polynomials

Govindan Rangarajana)
Department of Mathematics and Centre for Theoretical Studies,
Indian Institute of Science, Bangalore 560 012, India
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In this paper, we study representations of Sp~6,R! and SU~3! carried by homoge-
neous polynomials of phase-space variables in six dimensions. These representa-
tions are very important for the study of symplectic integration techniques for
Hamiltonian systems. We obtain irreducible representations for Sp~6,R! and SU~3!
and explicit expressions for states within SU~3! representations in terms of phase-
space variables. ©1997 American Institute of Physics.@S0022-2488~97!05005-6#

I. INTRODUCTION

In the study of nonlinear Hamiltonian dynamics, the real symplectic group Sp(2n,R) and its
compact subgroups play an important role.1,2 Quite often, one studies the single particle dynam
of nonlinear Hamiltonian systems. Since this has three degrees of freedom, the relevant g
Sp~6,R!. Moreover, the equations of motion are formulated in terms of phase-space var
~generalized coordinates and momenta!. In particular, in Lie perturbation theory1 of Hamiltonian
dynamics, homogeneous polynomials of phase-space variables play a central role. Therefo
important to study the representations of Sp~6,R! carried by these polynomials. Further, in deri
ing symplectic integration algorithms3–6 for Hamiltonian systems, representations of comp
subgroups of Sp~6,R! ~especially SU~3!! carried by homogeneous polynomials are required. T
may also be useful in deriving metric invariants for symplectic maps.2 For these reasons, we stud
the representations of Sp~6,R! and SU~3! carried by homogeneous polynomials of phase-sp
variables.

In Section II, we introduce the mathematical preliminaries. In Section III, we study
irreducible representations of Sp~6,R! ~and its associated Lie algebra sp~6,R!! carried by homo-
geneous polynomials of phase-space variables. In Section IV, we study the irreducible rep
tations of SU~3! carried by these polynomials. We give explicit expressions for states within
representations in terms of phase-space variables in Appendix A. Such expressions are cr
developing symplectic integration algorithms.4 Concluding remarks can be found in Section V

II. PRELIMINARIES

We start by defining Lie operators. Let us denote the collection of six phase-space va
qi ,pi ( i 5 1,2,3) by the symbolz:

z5~q1 ,p1 ,q2 ,p2 ,q3 ,p3!. ~2.1!

The Lie operator corresponding to a phase-space functionf (z) is denoted by:f (z):. It is defined1

by its action on a phase-space functiong(z) as shown below:

: f ~z!:g~z!5@ f ~z!,g~z!#, ~2.2!

a!Electronic mail: rangaraj@math.iisc.ernet.in
0022-2488/97/38(5)/2710/10/$10.00
2710 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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where@ f (z),g(z)# denotes the usual Poisson bracket of the functionsf (z) andg(z). In particular,
if the Lie operator corresponding to a homogeneous polynomialf 2 of degree 2 acts on a homo
geneous polynomialgm of degreem, it gives back another homogeneous polynomialhm of degree
m:

: f 2 :gm5hm . ~2.3!

We next define the exponential of a Lie operator. It is called a Lie transformation and is giv
follows:1

e: f ~z!:5 (
n50

`
: f ~z!:n

n!
. ~2.4!

LetM be a 63 6 real symplectic matrix. That is, it satisfies the following symplectic condit

M̃JM5J, ~2.5!

whereM̃ is the transpose ofM andJ is the fundamental symplectic matrix.1 The set of all such
matrices forms the finite dimensional real symplectic group Sp~6,R!. We also have the following
relation between symplectic matrices and Lie transformations:1

e: f2
~c! :e: f2

~a! :zi5(
j51

6

Mi j zj[~Mz! i , ~2.6!

i.e., given any symplectic matrixM , one can find two unique second degree homogeneous p
nomials f 2

(c) and f 2
(a) such that the above relation is satisfied.

Finally, the set of all :f 2 :’s gives a realization the Lie algebra sp(6,R)1 if we define the Lie
product of two Lie operators :f 2 : and :g2 : to be their commutator$: f 2 :,:g2 :%. This commutator
can be shown to satisfy the relation

$: f 2 :,:g2 :%[: f 2<g2 :2:g2< f 2 :5:@ f 2 ,g2#:. ~2.7!

III. REPRESENTATIONS OF sp(6,R) AND Sp(6,R)

First, we study the representations of the symplectic algebra sp~6,R!. These representation
are obtained by the action of Lie operators on carrier spaces spanned by homogeneous po
als. They are shown to be irreducible and correspond to the representation (m,0,0) wherem is the
degree of the homogeneous polynomial. Next, we study the representations of the sym
group Sp~6,R! obtained by the action of linear Lie transformations on homogeneous polynom
We end by proving a couple of relations linking the representations of sp~6,R! with representations
of Sp~6,R!.

A. Representation of sp(6, R)

We have seen that the :f 2 :’s constitute the symplectic Lie algebra sp~6,R!. An N dimensional
representation of sp~6,R! is obtained by mapping each element :f 2 : onto aN 3 N matrix d( f 2)
such that the following conditions are satisfied for all :f 2 :, :g2 : belonging to sp~6,R!:7

d~a f21bg2!5ad~ f 2!1bd~g2!, a,bPR, ~3.1!

d~@ f 2 ,g2# !5$d~g2!,d~ f 2!%. ~3.2!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Irreducible representations of sp~6,R! carried by homogeneous polynomials inz can be ob-
tained as follows. LetP (m)(z) denote the set of all homogeneous polynomials inz of degree
m. From Eq.~2.3!, we get the following relation:

: f 2 :gm5@ f 2 ,gm#PP ~m! ;gmPP ~m!. ~3.3!

That is, the set of all elements belonging to sp~6,R! leavesP (m) invariant.
Let $Pa

(m)% be a basis for the setP (m). Typically, we choose these basis elements to be
monomials of degreem in the six phase-space variables. The number of basis monomialsN(m) of
degreem in the six phase-space variables is given by the relation8

N~m!5Sm15
m D . ~3.4!

From Eq.~3.3! and the completeness of the set$Pa
(m)%, we get the following relation

: f 2 :Pa
~m!~z!5d~m!~ f 2!a

bPb
~m!~z! a51,2, . . . ,N~m!, ~3.5!

whered(m)( f 2)a
b are coefficients multiplying the basis elements. Here we have used Eins

summation convention. This convention will be used throughout the rest of the paper unless
otherwise.

As we varya from 1 toN(m) in Eq. ~3.5!, the set of coefficientsd(m)( f 2)a
b gives rise to an

N(m) 3 N(m) matrix,d(m)( f 2), for each :f 2 : belonging to sp~6,R!. We claim that the set of such
matrices~obtained by letting :f 2 : range over the entire Lie algebra! gives anN(m)-dimensional
representation ofsp(6,R). To prove this, we have to verify that these matrices satisfy Eqs.~3.1!
and ~3.2!. From Eq.~2.7!, we obtain the relations

:a f21bg2 :Pa
~m!~z!5a: f 2 :Pa

~m!~z!1b:g2 :Pa
~m!~z!, a,bPR, ~3.6!

:@ f 2 ,g2#:Pa
~m!~z!5: f 2<g2 :Pa

~m!~z!2:g2< f 2 :Pa
~m!~z!. ~3.7!

Substituting Eq.~3.5! into these equations, we get the desired results.
We next prove that the above representationsd(m)( f 2) ~for eachm! are irreducible.

Theorem 1: The representationd(m)( f 2) of the Lie algebra sp~6,R! is irreducible.
Proof:We note thatP (m)(z) acts as a carrier space for the Lie operators :f 2:(Psp(6,R)). The

representationd(m)( f 2) is shown to be irreducible by proving that any invariant subspaceS(m) of
P (m)(z) has to be a trivial subspace. If the given subspaceS(m) contains only the identity elemen
~given by 0!, it is already a trivial subspace and we are done. Therefore, assume that the
invariant subspaceS(m) has at least one elementg other than the identity.

Lemma 1: q1
m is an element of the invariant subspaceS(m).

Proof: The elementg can be decomposed in terms of the linearly independent basis elem
Pi
(m) of P (m)(z) as follows:

g5AiPi
~m! , ~3.8!

where

Pi
~m!5q1

aip1
biq2

cip2
diq3

eip3
f i, i51,2, . . . ,N~m! ~3.9!

and

ai1bi1ci1di1ei1 f i5m. ~3.10!
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ly

ey

e
In

2713Govindan Rangarajan: Representations of Sp(6,R) and SU(3) carried

¬¬¬¬¬¬¬¬¬¬
HereN(m) is the dimension of the carrier spaceP (m)(z) and is given by Eq.~3.4!. The quantities
Ai are constants.

First, we pick a unique monomialP
*
(m) from among the basis monomialsPi

(m) in the expan-
sion forg as follows. Consider the following sequence of nested sets:

G0$G1$G2$G3$G4$G5 , ~3.11!

where@cf. Eq. ~3.9!#

G05$ i :AiÞ0%,

G15$ i :bi>bj ,; jPG0%,

G25$ i :ci>cj ,; jPG1%,

G35$ i :di>dj ,; jPG2%, ~3.12!

G45$ i :ei>ej ,; jPG3%,

G55$ i : f i> f j ,; jPG4%.

Note that elements of the above setsG j ( j50,1...,5) are nothing but the indices that unique
label the basis monomials.

It is easy to see thatG5 contains only a single element. If this were not true,G5 would contain
at least two distinct elementsi and j . This would imply that there are basis elementsPi

(m) and
Pj
(m) such that the following condition is satisfied:

bi5bj , ci5cj , di5dj , ei5ej , f i5 f j . ~3.13!

This in turn implies thatai andaj are also equal@cf. Eq. ~3.10!#. Therefore,Pi
(m) andPj

(m) would
be equal even though their indicesi and j are different. This contradicts our assumption that th
are linearly independent. The above argument proves that one of the subsetsG5 has a single
element. Of course, it is possible that one of theG l ’s ~for l , 5! already contains only a singl
element. In that case, all subsequentG j ’s ~for j . l ! will also have the same single element.
particular,G5 will have a single element which is what we require.

Let us denote the unique basis element corresponding to the only element ofGn by P*
(m), i.e.,

P
*
~m!5Pi

~m!~ iPGn!5q1
a
* p1

b
*q2

c
* p2

d
*q3

e
* p3

f
* . ~3.14!

Further, let us denote the coefficient associated withP
*
(m) in the decomposition ofg @cf. Eq. ~3.8!#

by A* . It is then easy to see that the following equation is satisfied:

F ~21!c*1e
*

2b*A*

:q1q3 :
f
*

f * !
:q1p3 :

e
*

e* !
:q1q2 :

d
*

d* !
:q1p2 :

c
*

c* !

:q1
2:b*
b* !

Gg5q1
m . ~3.15!

Since S(m) is assumed to be an invariant subspace under the action of sp~6,R!, the quantity
obtained by successive actions of :f 2 :’s on g is also an element ofS(m). Therefore, Eq.~3.15!
shows thatq1

m is an element ofS(m). This proves the lemma.
It can now be shown that any arbitrary elementh of P (m) is also an element ofS(m).

Decompose this element as follows:

h5BjPj
~m! . ~3.16!
J. Math. Phys., Vol. 38, No. 5, May 1997
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where the basis monomialsPj
(m) are specified by Eqs.~3.9! and ~3.10!. Then there exists an

operator that takes the elementq1
m into h as shown below:

(
j51

N FBj

aj !cj !ej !

m!

~21!bj1cj1 f j

2bj1dj1 f j
:p3

2: f j
:q3p2 :

~ej1 f j !

~ej1 f j !!
,:p2

2:dj
:q2p1 :

~m2aj2bj !

~m2aj2bj !!
:p1

2:bj Gq1m5h.

~3.17!

Thus we have shown that it is possible to map the elementg belonging toS(m) into an
arbitrary element ofP (m)(z) by the action of an appropriate combination of elements belongin
sp~6,R!. SinceS(m) was assumed to be an invariant subspace under the action of sp~6,R!, this
proves that every element ofP (m)(z) is also an element ofS(m). Therefore, ifS(m) is an invariant
subspace, it has to be a trivial subspace ofP (m). Henced(m)( f 2) is an irreducible representatio
of sp~6,R!.

B. Representation of Sp(6, R)

Irreducible representations of Sp~6,R! carried by homogeneous polynomials inz can be ob-
tained by once again utilizing the setP (m)(z). Consider the action of Sp~6,R! on this set. Using
Eq. ~3.3!, the following relation is seen to be true:

e: f2
~c! :e: f2

~a! :gmPP ~m! ;gmPP ~m!. ~3.18!

That is, the set of all symplectic matrices leavesP (m) invariant @cf. Eq. ~2.6!#. We again choose
$Pa

(m)% to be the set of basis elements forP (m)(z). From Eq.~2.6! we get the following result:

e: f2
~c! :e: f2

~a! :Pa
~m!~z!5Pa

~m!~Mz!5D ~m!~M !a
bPb

~m!~z! a51,2,••• ,N~m!, ~3.19!

whereD (m)(M )a
b is the coefficient corresponding toPb

(m)(z).
As a is varied from 1 toN(m), the set of coefficientsD (m)(M )a

b gives rise to anN(m)
3 N(m) matrix D (m)(M ) for eachM belonging to Sp~6,R!. We claim that this set of matrice
gives anN(m)-dimensional representation of Sp~6,R!. Consider the following quantity:

~e:g2
~c! :e:g2

~a! :!~e: f2
~c! :e: f2

~a! :!Pa
~m!~z!. ~3.20!

Denote the symplectic matrices corresponding to the two factors in the above equation byM and
M 8 @cf. Eq. ~2.6!#. From Eq.~3.19!, we get the following relation:

~e:g2
~c! :e:g2

~a! :!~e: f2
~c! :e: f2

~a! :!Pa
~m!~z!5D ~m!~MM 8!a

gPg
~m!~z!. ~3.21!

We can also evaluate the actions of the two factors on the basis element one after the o
obtain

~e:g2
~c! :e:g2

~a! :!~e: f2
~c! :e: f2

~a! :!Pa
~m!~z!5D ~m!~M !a

b
D ~m!~M 8!b

gPg
~m!~z!. ~3.22!

Comparing Eqs.~3.21! and ~3.22!, we obtain the desired relation

D ~m!~MM 8!5D ~m!~M !D ~m!~M 8!. ~3.23!

Next, we show that these representations are irreducible. For sp~6,R!, we proved that there are
no non-trivial subspaces ofP (m) that are invariant under the action of the :f 2 :’s. From Eqs.~2.6!
and~2.4!, it follows that there are no non-trivial invariant subspaces ofP (m) even under the action
of symplectic matricesM belonging to Sp~6,R!. Therefore, the representationsD (m)(M ) are
irreducible. In fact, they correspond to the irreducible representation (m,0,0) of Sp(6,R)2.
J. Math. Phys., Vol. 38, No. 5, May 1997
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We end this subsection by giving examples of the irreducible representations of Sp~6,R!. It is
obvious that theM ’s themselves form a six dimensional irreducible representation. This is c
the fundamental~or defining! representation. Formally, it can be obtained from Eq.~3.19! by
settingm equal to 1. Another important irreducible representation is the adjoint represen
D (2)(M ) obtained by settingm equal to 2 in Eq.~3.19!. From Eq.~3.4!, it is seen that this forms
a 21 dimensional irreducible representation of Sp~6,R!.

In the above discussions, we have been careful to distinguish between upper and lower
labeling the matrix elements of the representation. This is because anN(m)-dimensional repre-
sentation is~in general! not equivalent to its own transpose, i.e.,D̃ (m)(M ) is not a member of the
representationD (m). For the fundamental representation (m 5 1), it turns out that this distinction
is unnecessary sinceM̃ also belongs to the group of symplectic matrices.

C. Relations between representations of sp(6, R) and Sp(6,R)

One relation between the representationD (m)(M ) of the group and the representatio
d(m)( f 2) of the algebra is given as follows~providedM sufficiently close to the identity, in which
case, the two Lie transformations appearing in Eq.~2.6! can be combined into one!:

D ~m!~M !5D ~m!~e: f2 :!5ed
~m!~ f2!. ~3.24!

Another interesting relation between the representations of Sp~6,R! and sp~6,R! is given by
the following theorem.

Theorem 2: Denote the set of basis elements forP (2) by $wa%. Then

D ~2!~M !a
bd~m!~wb!5D ~m!~M !21d~m!~wa!D ~m!~M !. ~3.25!

Proof: It is clear that the set$wa% is identical to the set$Pa
(2)(z)%. In fact, the new notation

was adopted merely for notational convenience. From Eq.~3.19!, we get the following result:

:e: f2
~c! :e: f2

~a! :wa :5D ~2!~M !a
b :wb :. ~3.26!

We also obtain the relation

:e: f2
~c! :e: f2

~a! :wa :5e: f2
~c! :e: f2

~a! ::wa :e
2: f2

~a! :e2: f2
~c! :. ~3.27!

Comparing the last two equations, we find the result

D ~2!~M !a
b :wb :5e: f2

~c! :e: f2
~a! ::wa :e

2: f2
~a! :e2: f2

~c! :. ~3.28!

When the left and right hand sides of the above equation act on the basis elementPg
(m)(z), we

get the following relations@cf. Eqs.~3.5! and ~3.19!#:

D ~2!~M !a
b :wb :Pg

~m!~z!5D ~2!~M !a
bd~m!~wb!g

nPn
~m!~z!, ~3.29!

e: f2
~c! :e: f2

~a! ::wa :e
2: f2

~a! :e2: f2
~c! :Pg

~m!~z!5@D ~m!~M21!d~m!~wa!D ~m!~M !#g
nPn

~m!~z!.
~3.30!

We also have the following standard result:

D ~m!~M21!5@D ~m!~M !#21. ~3.31!

Inserting Eqs.~3.29!, ~3.30!, and~3.31! into Eq. ~3.28!, we get the desired result.
J. Math. Phys., Vol. 38, No. 5, May 1997
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IV. REPRESENTATIONS OF SU(3)

This section is devoted to study of representations of SU~3! carried by homogeneous polyno
mials in the phase-space variables. First, we briefly review relevant aspects of the represe
theory of SU~3!. Next, we list irreducible representations of SU~3! carried bymth degree homo-
geneous polynomials. Finally, we list the weight vectors within each irreducible represen
carried by homogeneous polynomials of degree less than five.

Irreducible representations of SU~3! are labeled by two indicesj 1 and j 2 .
7 The dimension of

the irreducible representation labeled by (j 1 , j 2) is given as follows:

N~ j 1 , j 2!5 1
2 ~ j 111!~ j 211!~ j 11 j 212!. ~4.1!

States within an irreducible representation are labeled byI ~total isotopic spin!, I 3 ~the third
component of isotopic spin! andY with hypercharge. We will denote the states within this rep
sentation as follows:

u j 1 , j 2 ;I ,I 3 ,Y&. ~4.2!

Here, we have abused notation to denote the eigenvalues corresponding to a operator
symbol used to denote the operator itself.

We now turn to the problem of determining the representations of SU~3! carried by homoge-
neous polynomials in the phase space variables. In the previous section, we have already s
homogeneous polynomials of degreem carry the irreducible representation (m,0,0) of Sp~6,R!.
Under the action of SU~3!, this representation will, in general, be reducible. But, it can be wri
as a direct sum of irreducible representations of SU~3!. This list of irreducible representations o
SU~3! constitutes the ‘‘branching rule’’ of (m,0,0). The required branching rule is given
follows:9

Theorem 3: The complete list of irreducible representations ofSU~3! carried by homoge-
neous polynomials of degree m in phase space variables is given as follows:

~m,0!,~m21,1!,...,~1,m21!,~0,m!,

~m22,0!,~m23,1!,...,~1,m23!,~0,m23!,

...

...

~0,0! if m is even

or ~1,0!,~0,1! if m is odd. ~4.3!

We next turn our attention to the weight vectors within each such representation~also called
states of a representation or basis vectors of SU~3!!. It can be shown10–12 that these states ar
associated with harmonic functions on the 5-sphereS5. The 5-sphere is defined by the relation

z1* z11z2* z21z3* z35r 251, ~4.4!

wherezj andzj* are given by the relations

zj5
1

&

~qj1 ip j !, ~4.5!
J. Math. Phys., Vol. 38, No. 5, May 1997
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zj*5
1

&

~qj2 ip j !. ~4.6!

Since we are interested in functions defined on the 5-sphereS5, it is convenient to parametrize
S5 in terms of polar coordinatesf1 , f2 , f3 , u and j. These coordinates are related to t
complex phase-space variableszj by the following relations

z15reif1 cosu, ~4.7!

z25reif2 sin u cosj, ~4.8!

z35reif3 sin u sin j, ~4.9!

where

0<f1 ,f2 ,f3<2p; 0<u,j<p/2. ~4.10!

It can be shown10 that states within the irreducible representation (j 1 , j 2) of SU~3! can be
associated with harmonic functions defined onS5 as shown below:

u j 1 , j 2 ;I ,I 3 ,Y&5
1

sin u
d1/6~ j 12 j 223Y16I13!,1/6~ j 12 j 223Y26I23!

1/2~ j 11 j 211!
~2u!d1/3~ j 12 j 2!11/2Y,I3

~ I !

3~2j!e1/3i ~ j 12 j 2!~f11f21f3!eiI 3~f22f3!e1/2iY~22f11f21f3!. ~4.11!

Here dm8,m
( j ) (b) are the usuald-functions that characterize the irreducible representation (j ) of

SU~2!. The sign convention for thed-function is taken to be that given in Edmonds,13 i.e.,

dm8,m
~ j !

~b!5^ jm8uexp~1 ibJy /h!u jm&, ~4.12!

whereu jm& denotes states within the representation (j ) of SU~2!.
We are now in a position to give explicit formulas for the states within the representatio

SU~3! carried byf n . Such expressions are necessary to construct some of the symplectic in
tion algorithms.4–6 These formulas are listed in Appendix A~due to lack of space, only expres
sions for small values ofn are given!. These are obtained using the basis functions introdu
earlier@cf. Eq. ~4.11!#. However, we multiply these basis functions~which are dimensionless! by
r n in order to get the dimensions properly.14 Thus we use the basis functions:

un; j 1 , j 2 ;I ,I 3 ,Y&[r nu j 1 , j 2 ;I ,I 3 ,Y&. ~4.13!

This multiplication does not change the eigenvaluesI , I 3 or Y. Moreover, the states within th
representation are given in terms ofz1 ,z2 ,z3 @cf. Eqs.~4.7!, ~4.8!, and ~4.9!# and their complex
conjugates instead of the original angular variables. This makes identification with the hom
neous polynomials easier. Each entry in Appendix A take the following general form:

I ,I 3 ,Y,un; j 1 , j 2 ;I ,I 3 ,Y&~z1 ,z1* ,z2 ,z2* ,z3 ,z3* !. ~4.14!

We only list the states within the representations for whichj 1 is greater than or equal toj 2 . Given
a stateun; j 1 , j 2 ;I ,I 3 ,Y& belonging to (j 1 , j 2), the corresponding state belonging to (j 2 , j 1) is
given byun; j 2 , j 1 ;I ,I 3 , 2 Y&. Moreover, it satisfies the following relation:

un; j 2 , j 1 ;I ,I 3 ,2Y&~z1 ,z1* ,z2 ,z2* ,z3 ,z3* !5~21! I1I3un; j 1 , j 2 ;I ,I 3 ,Y&~z1* ,z1 ,z3* ,z3 ,z2* ,z2!.
~4.15!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Therefore, given the states within the representation (j 1 , j 2), the states within (j 2 , j 1) are easily
obtained.

V. SUMMARY

In this paper, we looked at representations of Sp~6,R! and SU~3! carried by homogeneou
polynomials in six phase-space variables. It was shown that homogeneous polynomials of
m carry aN(m) @cf. Eq. ~3.4!# dimensional irreducible representation of Sp~6,R!. These irreduc-
ible representations break into a direct sum of irreducible representations for SU~3!. Explicit
expressions for SU~3! states within these representations were given in terms of phase vari
The above results should be useful in Lie perturbation theory of symplectic maps, especially
theory of symplectic integration.
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APPENDIX A: REPRESENTATIONS OF SU(3) CARRIED BY HOMOGENEOUS
POLYNOMIALS

A. Representations of SU(3) carried by f 0

I. j 1 5 0, j 2 5 0 ~one-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

0 0 0 r 0

B. Representations of SU(3) carried by f 1

I. j 1 5 1, j 2 5 0 ~three-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

1/2 1/2 1/3 z2

1/2 21/2 1/3 z3

0 0 22/3 A2z1

C. Representations of SU(3) carried by f 2

I. j 1 5 2, j 2 5 0 ~six-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

1 1 2/3 z2
2
2

1 0 2/3 A22z3
1 21 2/3 z3

2

1/2 1/2 21/3 A3z12
1/2 21/2 21/3 A3z1z3
0 0 24/3 A3z12
J. Math. Phys., Vol. 38, No. 5, May 1997
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II. j 151, j 251 ~eight-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

1/2 1/2 1 A3zz* z2
1/2 21/2 1 A3z1* z3
1 1 0 2A2z2z3*
1 0 0 z2* z22z3* z3

1 21 0 A2z2* z3
0 0 0 2z1* z12z2* z22z3* z3

1/2 1/2 21 2A3z1z3*

1/2 21/2 21 A3z1z2*

III. j 150, j 250 ~one-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

0 0 0 z1* z11z2* z21z3* z35r 2
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Weighted class operators: A new approach to tensor
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Weighted class operators, defined by averaging conjugation operators within fixed
representation of a compact group against a weight function living on a conjugacy
class, are discussed and their connection to the tensor operators is studied. Making
extensive use of the theory of induced representations we prove several results for
weighted class operators and in particular identify them, for weight functions being
suitable matrix elements of the given group, with irreducible tensor operators. The
results complement and extend those obtained earlier by the authors@A. Orłowski
and A. Strasburger, J. Phys. A27, 1971–1976~1994!# and others. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!00903-1#

I. INTRODUCTION

In the realm of the theory of finite groups the class operator is a well established and
concept. We recall that by a class operator within a given representation~in particular the group
algebra! g°T(g) P GL(V) of a finite groupG one means the sum of operatorsT(g) with the
elementsg ranging over a single conjugacy class ofG. Any class operator commutes wit
operatorsT(g) for all g P G, so if the representation is irreducible, it has to be a scalar multipl
the identity. In fact the scalar factor is readily seen to be the value of the normalized charac
the class in question. Extending the construction one can take general linear combinati
operators representing elements of a given conjugacy class and look for combinations tran
ing under the conjugation by group operators according to a certain representation ofG, rather
then simply being fixed by it. In other words, to search for tensor operators constructed
elements of a given conjugacy class. This was the aim of the classical papers of van Zant
de Vries,9 Kasperkovitz and Dirl,10 and Backhouse and Gard11 ~among many others!. Here we
wish to reconsider this problem from the point of view of induced representations of com
groups.

Aside from recent attempts to generalize the concept of the class operators to the rotat~or
SU~2!! group which were done in the papers of Fan and Ren,1 Backhouse,2 and Rembielin´ski,3

another impulse for this endeavor comes from a recent work by the authors~Orłowski and
Strasburger4!. There it was shown that this generalization of the class operator can be regar
a partial case of a much more general problem, namely, that of decomposing the group o
T(g) into parts transforming under conjugation according to a given irreducible represent
Such a construction has been given for arbitrary compact groups in Refs. 4 and 5.

On the other hand, the concept of a tensor operator is of fundamental importance in p
and mathematical physics, especially in the quantum theory of angular momentum~see, e.g., Ref.
6 and references therein!. Many various ramifications of this notion were also discussed in
literature.7,8 The main purpose of this paper is to elucidate connections between the notion
tensor operator, the above mentioned generalization of the class operator and the concep
0022-2488/97/38(5)/2720/8/$10.00
2720 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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induced representation. In view of the utmost importance of those concepts in physics it
tainly worthwhile to consider them from yet another angle.

Our approach to the construction of tensor operators is an outgrowth of the construct
Refs. 4 and 5, augmented by some ideas from the early papers mentioned above. As a re
point of our discussion we have chosen the notion of induced representation, applied here
context of functions defined on a conjugacy class in a given groupG. While this viewpoint was
implicit in some of the earlier work concerning the subject, we feel that bringing it to the f
ground simplifies and strengthens the results. It also allows the use of matrix elements of~finite!
group elements in distinction to the infinitesimal methods of the study of tensor operators,
e.g. on the use of weights of representations of Lie algebras, cf. a recent review by Biede7

and references therein.

II. BASIC CONSTRUCTIONS

We assume once and for all thatG is a compact topological group. Fix an elementg0 of G
and letC05C(g0)5$gg0g

21ug P G% be the conjugacy class ofg0. G acts transitively onC0 by
conjugationx°gxg21, thusC0 can be identified with the homogeneous spaceG/Z0 via the map
G/Z0 { xZ0°xg0x

21 P C0. HereZ0 denotes the centralizer ofg0, i.e. the closed subgroup ofG
consisting of elements ofG commuting withg0. The above identification provides for the s
called ‘‘in-class’’ parameters ofG arising from points of the coset spaceG/Z0. The notationẋ will
be adopted to mean the coset~in G/Z0 or other coset space considered! corresponding tox P G.

With this identification in force functions onC0 correspond to functions on the homogeneo
spaceG/Z0 while the action ofG by conjugation onC0 goes over to the usual left actio
xZ0°gxZ0 of G onG/Z0. For, say, continuous functionsw on the coset spaceG/Z0 we define
the left translations by

l~g!w~ ẋ!5w~g21ẋ!, ẋPG/Z0 , gPG. ~1!

Let the space of continuous functions onG/Z0 be denoted byC (G/Z0) and letdm( ẋ) denote the
uniqueG-invariant measure onG/Z0, such that the relation

E
G

w~x! dx5E
G/Z0

dm~ ẋ!E
Z0

w~xz! dz ~2!

holds for allw P C (G/Z0). Heredx anddz, respectively, denote invariant~Haar! measures on
G andZ0, normalized by the requirement that the total volume be 1.

As is well known, see, e.g., Ref. 12, the translationsl(g) extend to unitary operators on th
Hilbert spaceL2(G/Z0)5L2(G/Z0 , dm( ẋ)) of square integrable functions onG/Z0 with respect
to the measuredm( ẋ) and the assignmentg°l(g) is a unitary representation ofG in the Hilbert
spaceL2(G/Z0), the representation induced by the~one-dimensional! identity representation o
Z0.

Consider a continuous but not necessarily irreducible representationT:G→GL(V) of G on a
Hilbert spaceV — (T, V) for short. The mapx°T(x)T(g0)T(x

21) from G to GL(V) passes to
the quotientG/Z0 yielding an operator valued continuous functionG/Z0 { ẋ°T( ẋ; g0)
PGL(V).

Given a functionw P C (G/Z0) we define theweighted class operatorcorresponding to the
weight functionw by the integral

T~w; g0!5E
G/Z0

w~ ẋ!T~ ẋ; g0! dm~ ẋ!, wPC ~G/Z0!. ~3!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Notice that we do not assume here that the weight functionw is necessarily non-negative. Th
convergence of the integral is assured by the continuity ofw and compactness ofG/Z0. In fact,
using basic estimates for integrals on compact spaces, see, e.g., Ref. 12~Chapter 5!, or Ref. 13
~Chapter 6!, one can show that the above integral makes sense also for functionsw P L2(G/Z0).
For the case of a finite groupG the above construction reduces to the one considered in paper9–11

Thus we have the map, which we shall callthe weighted class operator mapbased on the
conjugacy classC05G/Z0

L2~G/Z0!{w°T~w; g0!PL~V! ~4!

which, with l defined by Eq.~1!, satisfies the intertwining relation

T~g!T~w;g0!T~g!215T~l~g!w;g0!. ~5!

Associated with any representation (T, V) of G there is the conjugation representatio
(C, L(V)) of G given by

C~g!:L~V!{A°T~g!AT~g21!PL~V!. ~6!

In the case when the representation (T, V) is infinite dimensional, it is more appropriate t
consider the conjugation representation as acting on the space HS (V) of Hilbert–Schmidt opera-
tors onV rather then on the spaceL(V) of all bounded operators onV. The former is a Hilbert
space with the Hilbert–Schmidt inner product tr(A*B), whereA, B P HS (V), and is left globally
invariant by the conjugation representation~6!. Moreover, if the original representation (T, V) is
unitary, so is the conjugation representation with respect to the Hilbert–Schmidt inner prod

Proposition 1: The mapw°T(w; g0) maps the space L2(G/Z0) into the spaceHS (V) of
Hilbert–Schmidt operators on V and intertwines the induced representation(l, L2(G/Z0)) with
the conjugation representation(C, HS(V)) defined by (6).

Remark: In fact one can push further to get rid of all the redundancy in the map
x°T(x)T(g0)T(x

21), if one notices that it is constant on right cosets of the subgroupZ0
T5$x

P GuT(x)T(g0)T(x21)5T(g0)%, the inverse image of the centralizer ofT(g0) in T(G), which
may be strictly larger than the centralizerZ0 itself. Proceeding as above, by integration w
functions onG/Z0

T with respect to the invariant measuredm̃( ẋ) we get the mapL2(G/Z0
T)

{ w°T̃(w; g0)5*G/Z
0
Tw( ẋ)T( ẋ; g0) dm̃( ẋ) P L(V) which again is intertwining the left transla

tions inL2(G/Z0
T) with the conjugation representation inL(V).

This construction has the advantage of being free of any redundancies, however, the pr
pays is that the coset spaceG/Z0

T varies with the representation considered and the compar
between different representations becomes difficult. We stick therefore to the former version
construction, i.e. to the map~4!.

III. THE CANONICAL DECOMPOSITION OF THE INDUCED REPRESENTATION

Having established in the previous section a connection of the class operators with the in
representations we shall now proceed to describe the structure~i.e. a decomposition into irreduc
ible representations! of the latter. Only the final results will be stated here, as the subject is
established and amply presented in the literature.12–14

As in the previous sectionG denotes a compact group andZ0 the centralizer of a fixed group
elementg0. Let Ĝ be the dual space of the groupG, i.e., the set of equivalence classes
irreducible unitary representations ofG andĜ0,Ĝ the subset consisting of~classes of! represen-
tations admitting nonzeroZ0-invariant vectors. For any representation (T, V) of a classa P Ĝ we
let V0 denote the subspace consisting ofZ0-invariant vectors and letm0(V:1)5dim V0 denote the
J. Math. Phys., Vol. 38, No. 5, May 1997
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multiplicity of the trivial ~one-dimensional! identity representation ofZ0 in the restriction ofT to
Z0. Since this number depends only on the classa of (T, V) we may writem(a)5m0(V:1). Note
m(a).0 if and only ifa P Ĝ0.

By the Frobenius Reciprocity Theorem~see Ref. 12, Section 4.3! an irreducible representa
tions (Ta, Va) of the classa with dimensiond(a) and characterxa occurs in the induced
representation (l, L2(G/Z0)) with the multiplicity m(a). The canonical subspac
La
2,L2(G/Z0) containing all irreducible subrepresentations of the classa is the image of the

orthogonal projectorPa given as a convolution operator with ‘‘normalized’’ characterxa ,
Paw( ẋ)5d(a)*Gx̄a(g)w(g

21ẋ) dg.
Now choose an orthonormal basis$ei

a% in Va in such a way that its firstm(a) vectors form
a basis in (Va)0 and the remaining ones span the complementaryZ0-invariant subspace. Denot
by t i j

a (g)5^ei
auTa(g)ej

a& the matrix elements of (Ta, Va) with respect to this chosen basis. He
the inner product̂ •u•& in Va is invariant under the representationTa. Observe that since the
matrix elements are rightZ0-invariant functions one can regard them as functions onG/Z0.

The structure of the induced representation (l, L2(G/Z0)) can now be described as follows
Proposition 2: The canonical decomposition of(l, L2(G/Z0)) is given by the orthogonal sum

L2~G/Z0!5 %

aPĜ0

La
2 , ~7!

where La
2 are the maximal invariant subspaces such that the restriction ofl is a multiple of a

representation belonging to the classa.
If V j

a is for 1< j<m(a) the subspace spanned by the set of conjugate matrix elem
$ta i j (g)u1< i<d(a)%, then Vj

a are mutually orthogonal, invariant, and irreducible subspaces
La
2 such that

La
25 %

j51

m~a!

Vj
a

and the restriction ofl to Vj
a belongs to the classa.

In particular, the ‘‘normalized’’ conjugate matrix coefficients d(a)1/2ta i j (g), with
1< j<m(a) and 1< i<d(a) form an orthonormal basis in La

2 which reduce the restriction o
l to the block diagonal form

In general, if$ei j
a u1< j<m(a),1< i<d(a)%, is an orthonormal basis inLa

2 such that for each
fixed j the set$ei j

a u1< i<d(a)% spans the invariant subspace ofLa
2 , then $ei j

a% will be called
reducing basis. This is to some extent similar to the notion ofconvenientbases inL2(G) studied
by Kasperkovitz and Dirl.10

To finish this section we state an auxiliary result, needed later on.
Lemma 3: Letxa(g)5tr(Ta(g)) be the character of the classa P Ĝ0, P0 the orthogonal

projector of Va onto (Va)0 and letka(g)5tr(P0T
a(g)P0)5( i51

m(a)ta(g) i i . Then
J. Math. Phys., Vol. 38, No. 5, May 1997
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E
Z0

xa~gh! dh5ka~g!. ~8!

To see this recall thatP05*Z0T
a(h) dh. Then

E
Z0

tr~Ta~gh!! dh5trS Ta~g!E
Z0

Ta~h! dhD 5tr~Ta~g!P0!5tr~P0T
a~g!P0!,

as required.

IV. CONNECTION WITH TENSOR OPERATORS

The concept of a tensor operator has been so extensively and with various degrees of
ality discussed in the literature, that we shall better explain the meaning we attach to it. We a
to the elegant formulation of L. Michel found in Ref. 15, where the following~purely algebraic!
definition was given.

Definition 1: Let (S, V) be a representation of a groupG, and let (U, H) be another repre-
sentation of the same groupG. Then a tensor operator of type (S, V) over the spaceH is a
~nonzero! linear mappingT:V→L(H), whereL(H) is the space of linear operators onH, inter-
twining T with the conjugation action~6! on L(H).

Explicitly, this means that the following equality is valid

T~S~g!v !5U~g!T~v !U~g!21, ; gPG, ; vPV. ~9!

A tensor operatorT:V→L(H) is called irreducible if the representation (S, V) is irreducible. If
a is the class of representation (S, V), then we say thatT is of the typea. Two irreducible tensor
operators of the same typeT1 :V1→L(H) and T2 :V2→L(H) are called independent if thei
images are different subspaces ofL(H) — note that the images being irreducible they can eit
be identical or have only zero in common.

In a more conventional formulation a tensor operator is understood to be a linearly ind
dent set of operators$Ti% on a carrier vector space of a certain representation (U, H) of G, such
that

U~g!TiU~g!215(
j
D ji ~g!Tj . ~10!

In this formulation it is assumed thatDi j (g) are matrix coefficients of a given representation of t
groupG. To see that this notion coincides with the one previously quoted, one has to cho
basis, say$v i%, of the spaceV and setTi5T(v i). Then~10! follows trivially from ~9! by taking
Di j (g) to be the matrix coefficients of S(g) defined by the usual recip
S(g)v i5( j51

dim V D ji (g)v j . Now the results from Sections II and III can be formulated as st
ments about tensor operators.

Theorem 4: The weighted class operator map (4) is a tensor operator of the type o
induced representation(l, L2(G/Z0)). The restriction of this map to any invariant and irredu
ible subspace Va P La

2 , if nonzero, is an irreducible tensor operator of typea.
We further note that by choosing a reducing basis$ei j

a% in La
2 and settingTi

(a, j )5T(ei j
a ) we

obtain m(a) sets $Ti
(a, j )% of operators transforming according to the formu

U(g)Ti
(a, j )U(g)215( j tki

a (g)Tk
(a, j ) , some of them may be zero, however. It seems that a gen

criterion for nonvanishing of an intertwining operator on a given irreducible subspace i
available. However in applications such a question is readily decided on the basis of the cle
J. Math. Phys., Vol. 38, No. 5, May 1997
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distinction between the two cases. An intertwining mapT:V→W from the spaceV of an irreduc-
ible representation of a compact group is either zero or has its kernel equal to$0%, i.e., does not
vanish on any point ofV, except forv50.

Corollary 1: A tensor operator of typea can be obtained by means of the weighted cl
operator map based on the conjugacy class C0 if and only if representations of classa contain the
trivial (identity) representation of Z0.

Corollary 2: The number of independent tensor operators of typea constructed by means o
the weighted class operator map does not exceed the number m(a)5dim(Va)0.

These two corollaries extend results of van Zanten and de Vries9 obtained for finite groups.
Note that for finite groups and also in other cases the upper bound in the Corollary 2 is ac
achieved.

V. DECOMPOSITION INTO WEIGHTED CLASS OPERATORS

In this final section we discuss the problem of completeness of the set of weighted
operators and show that in the case of an irreducible representation (T, V) it is complete in the
following natural sense.

Theorem 5: Every operator in L(V) is a linear combination of weighted class operators.
To show this consider an irreducible representation (T, V) of G belonging to the classa and

the conjugation representation (C, L(V)) given by the formula~6!. We write the canonical de
composition ofC in the following form

L~V!5 %

sPS~V!

W~s!5 %

sPS~V!

n~s!Hs, ~11!

whereW(s) is the subspace of operators inL(V) transforming under conjugation byT(g) ac-
cording to a multiple of the irreducible representation of the classs, S(V),Ĝ is the set of classes
of irreducible unitary representations ofG which occur in that decomposition. The far right ha
side of the equality is obtained by further decomposingW(s) into irreducibles. Here (Ts, Hs)
denotes a fixed representative of a classs P S(V) with dimensiond(s). Note thatn(s) — the
multiplicity of the classs in L(V) is closely related to the so-called 3j symbol, i.e., it is the
multiplicity of the representation of the classs in the tensor productā ^ a.

Usually, cf. Ref. 10, this decomposition is written in the form resembling the clas
Clebsch–Gordan decomposition. One chooses an orthonormal basis inL(V) compatible with this
decomposition. Thus vectors of the basis are denotedei j

s , where s describes the classes o
irreducible representations occurring in the decomposition, 1< i<n(s) distinguishes between
different copies of the same representation of the classs and 1< j<d(s) indexes vectors of a
given base within a fixed copy of the representation space. In particular for fixeds and i the set
$ei j

s u1< j<d(s)% is an orthonormal basis for an invariant subspace, on which the conjug
representation acts by a representation belonging to the classs. Now fix an orthonormal basis fo
V and letEi j P L(V) be a ‘‘matrix unit’’ corresponding to that basis, i.e., the linear map given
v°Ei j (v)5^v j uv&v i . Then the transition between the two bases is realized by the so-c
coupling coefficientsdefined in the following wayEi j5(smnc(a i ā j usmn)emn

s , which satisfy

t̄ l j
a~g!tki

a ~g!5 (
smnp

c~akā l usmp!* tpn
s ~g!c~a i ā j usmn!. ~12!

Now let S0(V),S(V) be the subset composed of representations possessing no
Z0-invariant vectors and denote byF V,L2(G/Z0) the subspace spanned by the conjugate ma
coefficientst̄ i j

s (g), with s P S0(V) and i , j satisfying inequalities 1< i<d(s), 1< j<m(s).
SinceS0(V) is finite, F V consists of continuous functions.

Then the preceding imply the following extension of the result in Ref. 4.
Theorem 6:Let g0 P G, g0 Þ e, but otherwise arbitrary.
J. Math. Phys., Vol. 38, No. 5, May 1997
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a! The weighted class operator map L2(G/Z0) { w→T(w; g0) P L(V), vanishes on the orthogo
nal complement toF V in L2(G/Z0).
b! For eachs P S0(V) and ks defined by Equation (8), the component of the operator T(g0)
relative to the orthogonal decomposition (11) equals d(s)T(k̄s ; g0) and thus

T~g0!5 (
sPS0~V!

d~s!T~ k̄s ; g0!. ~13!

Proof: The assertion in a! is clear, since the orthogonal complement toF V contains repre-
sentations not occurring inL(V), hence any intertwining operator fromF V into L(V) has to
vanish on this subspace. To prove the formula~13! we decomposeT(g0) according to~11!

T~g0!5 (
sPS0~V!

d~s!E
G

x̄s~g!T~gg0g
21! dg

and use the formulas~2! and ~8! to compute the last integral. h

From this, the stated completeness results immediately in virtue of the well-known Bur
theorem asserting that every operator in the spaceL(V) for irreducible (T, V) is a finite linear
combination ofT(g)’s.

VI. CONCLUSIONS

We have generalized the concept of the class operator to the case of the weighte
operator, defining the latter as the average of the conjugated operators within fixed represe
of a given compact group against a weight function living on a conjugacy class. By relatin
construction to the notion of induced representations we put on a solid footing somead hoc
constructions known in the theory of finite groups.

Examining this construction we have shown that the weighted class integrals provide u
explicitly constructed tensor operators, which type is determined, solely on the basis of cova
requirement, by the representation considered. The completeness of this construction is a
tablished. Thus we are led to believe that our results can be a good starting point for f
investigations of tensor operators for general compact groups, especially when complemen
a deeper analysis of the structure and decomposition of representations induced from cent
This line of investigations we intend to pursue in future publications.
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12A. Wawrzyńczyk,Group Representations and Special Functions~PWN and D. Reidel, Warszawa and Dordrecht, 198!.
13A. Robert,Introduction to the Representation Theory of Compact and Locally Compact Groups~Cambridge University
Press, Cambridge, 1983!.

14M. A. Naimark and A. I. Stern,Theory of Group Representations~Springer-Verlag, New York, 1982!.
15L. Michel, ‘‘Application of Group Theory to Quantum Physics; Algebraic Aspects,’’ inGroup Representations in
Mathematics and Physics, edited by V. Bargmann, Lecture Notes in Physics 6~Springer-Verlag, Berlin, 1970!, pp.
36–143.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ct
n

This
enta-

u

dition

of two
s of the

¬¬¬¬¬¬¬¬¬¬
Coupling coefficients for Lie algebra representations
and addition formulas for special functions
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Representations of the Lie algebra su~1,1! and of a generalization of the oscillator
algebra,b(1), areconsidered. The paper then introduces polynomials which are
related by the coupling~or Clebsch–Gordan! coefficients of the Lie algebra in
question; by making a proper choice, these polynomials themselves are related to
known special functions. The coupling of two or three representations of the Lie
algebra then leads to interesting addition formulas for these special functions. The
polynomials appearing here are generalized Laguerre and Jacobi polynomials for
the su~1,1! case, and Hermite polynomials for theb(1) algebra. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!00805-0#

I. INTRODUCTION

In a short paper, Granovskii and Zhedanov1 considered a new method to constru
3n j-symbols and applied it to the case of su~1,1!. Their method is potentially powerful, and ca
in principle be applied to other Lie algebras. On the other hand, their treatment of the su~1,1! case
is rather schematic. Moreover, the most interesting application is missing in their work.
application comes as a polynomial identity following from the tensor product of two repres
tions.

Here, we extend the method of Granovskii and Zhedanov, and apply it to two algebras: s~1,1!
and the oscillator algebrab(1). Thetensor product of two su~1,1! ~positive discrete series! rep-
resentations is treated in detail. Applying our method to this case yields an interesting ad
formula for generalized Laguerre polynomialsLn

(a)(x), which can be written in the following
form:

(
k50

n1 j

Qj~k;a,b, j1n!Lk
~a!~x!Ln1 j2k

~b! ~y!

5
~21! jn! j !

~a11! j~n1 j !!
~x1y! jLn

~a1b12 j11!~x1y!Pj
~a,b!S y2x

y1xD ; ~1.1!

herein,Q stands for a Hahn polynomial andP for a Jacobi polynomial.2–4 Applying the method
to the coupling of three representations yields a more involved addition formula, given in~4.10!.
As a side result, this method easily provides explicit expressions for the su~1,1! coupling and
recoupling coefficients.

The second Lie algebra considered in this paper is~a generalization of! the oscillator algebra
b(1). For this algebra, a class of unitary representations is considered; the tensor product
representations of this class can be completely reduced to a direct sum of representation
same class. The algebra is sufficiently simple to calculate the Clebsch–Gordan~or coupling! and

a!Senior Research Associate of N.F.W.O.~National Fund for Scientific Research of Belgium!.
Electronic mail address: Joris.VanderJeugt@rug.ac.be
0022-2488/97/38(5)/2728/13/$10.00
2728 J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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recoupling coefficients explicitly. These turn out to be related to a2F1 hypergeometric function, or
to a Wignerd-function. In this case, our method leads to the following addition formula
Hermite polynomials:

Hj~ax1by!Hn~ay2bx!5 (
k50

j1n S j1n
k Dan1kbj2k

2F1S 2n,2k
2 j2n ;

1

a2DHk~x!Hj1n2k~y!, ~1.2!

wherea21b251.
For convenience, we recall here the definition of a~generalized! hypergeometric function,

pFqS a1 ,...,apb1 ,...,bq
;zD5 (

k50

`
~a1!k•••~ap!k
~b1!k•••~bq!k

zk

k!
, ~1.3!

where (a)k5 a(a1 1)•••(a1 k2 1) @and(a)05 1# is thePochhammersymbol.Thehypergeom
ric functions appearing in this paper will always be terminating~that is, one of the numerato
parameters is a negative integer!, so that no questions of convergence arise.

Finally, the outlay of the paper is as follows. In Secs. II–IV, the case su~1,1! is treated. In Sec.
II we introduce some notation of Granovskii and Zhedanov.1 The coupling of two representations
and the calculation of the coupling coefficients, is given in Sec. III, together with the pro
~1.1!. In Sec. IV we treat the coupling of three representations, the determination of the reco
coefficient, and an interesting relation involving Jacobi polynomials and a4F3 series. The oscil-
lator algebrab(1), together with a class of unitary representations, is introduced in Sec. V.
coupling coefficients ofb(1) are determined in Sec. VI, where~1.2! is also deduced. In Sec. VII
the tensor product of threeb(1) representations is considered, leading to an identification of
recoupling coefficient with the coupling coefficient. In Sec. VIII some concluding remarks
made.

II. THE ALGEBRA su(1,1) AND A CLASS OF REPRESENTATIONS

The Lie algebra su~1,1! is generated byJ0 ,J6 , subject to the relations

@J0 ,J6#56J6 , @J1 ,J2#522J0 , ~2.1!

with the conditionsJ0
†5J0 and J6

† 5J7 . The positive discrete representations are labeled b
positive real numberk, and the orthonormal states or basis vectors of such a representation c
denoted byuk,n&, with n50,1,2,... . Theexplicit action of the generators in the representat
(k) is given by1,5

J0uk,n&5~n1k!uk,n&,

J1uk,n&5A~n11!~2k1n!uk,n11&, ~2.2!

J2uk,n&5An~2k1n21!uk,n21&.

The eigenvalue of the Casimir operator,C52J1J21J0
22J0 , on such a representation

k(k21).
Instead of considering the eigenstates ofJ0 in this representation (k), one can choose anothe

operator, e.g.,1

X52J02J12J2 ; ~2.3!
J. Math. Phys., Vol. 38, No. 5, May 1997
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we shall comment on what happens if one chooses another linear combination of the gen
later in this paper. The~generalized! eigenstates ofX in the representation (k) are labeled by
uk,x&, with

Xuk,x&5xuk,x&. ~2.4!

The overlap^k,xuk,n& can in principle be computed. The ratio of^k,xuk,n& and ^k,xuk,0& is a
quantity depending uponn, x, andk, and we write

^k,xuk,n&5^k,xuk,0&Qn~x;k!, ~2.5!

since it turns out thatQn(x,k) is a polynomial of degreen in x. To see this, calculate
^k,xuXuk,n& first by acting on the left, and then by acting on the right withX ~2.3!. Using~2.2! and
~2.4! one obtains

xQn~x;k!52~n1k!Qn~x;k!2A~n11!~2k1n!Qn11~x;k!2An~2k1n21!Qn21~x;k!.
~2.6!

Redefining

Qn~x;k!5A~2k!n
n!

qn~x;k!, ~2.7!

the polynomialsqn are determined by

~2k1n!qn11~x;k!5~2n12k2x!qn~x;k!2nqn21~x;k!, ~2.8!

together withq0(x;k)51 andq21(x;k)50. This implies the following expression forqn in terms
of a hypergeometric function or a generalized Laguerre polynomial:2,3

qn~x;k!51F1S 2n
2k ;xD5

n!

~2k!n
Ln

~2k21!~x!. ~2.9!

III. TENSOR PRODUCT OR COUPLING OF TWO su(1,1) REPRESENTATIONS

The tensor product of two unitary representations (k1) and (k2) is again unitary and thus
completely reducible. The decomposition can be obtained by counting the multiplicities o
J0-weights in the tensor product, and reads

~k1! ^ ~k2!5 %

j50

`

~k11k21 j !. ~3.1!

The coefficients relating the uncoupled states to the coupled states are known as Clebsch–
coefficients:

u~k1 ,k2!k,n&5 (
n1 ,n2

C~k1 ,n1 ,k2 ,n2 ;k,n!uk1 ,n1&uk2 ,n2&; ~3.2!

herein,k is of the formk11k21 j ~j a non-negative integer!, and the sum is over all integer
n1 ,n2(> 0), with (k11 n1)1 (k21 n2)5 (k1 n). TheactionofJ2 yields the followingrecurrence
relation for the Clebsch–Gordan coefficients:

An~2k1n21!C~k1 ,n1 ,k2 ,n2 ;k,n21!5A~n111!~2k11n1!C~k1 ,n111,k2 ,n2 ;k,n!
J. Math. Phys., Vol. 38, No. 5, May 1997
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1A~n211!~2k21n2!C~k1 ,n1 ,k2 ,n211;k,n!.

~3.3!

Putting hereinn 5 0 leads to the following relation:

C~k1 ,n1 ,k2 ,n2 ;k11k21n11n2,0!5~21!n1F ~n11n2!! ~2k21n2!n1
n1!n2! ~2k1!n1

G 1/2
3C~k1,0,k2 ,n11n2 ;k11k21n11n2,0!. ~3.4!

Using the orthogonality~unitarity! condition

(
n1 ,n2

C~k1 ,n1 ,k2 ,n2 ;k,n!251 ~3.5!

in ~3.4! determines

C~k1,0,k2 ,n2 ;k11k21n2,0!25~2k1!n2 /~2k112k21n221!n2. ~3.6!

Choosing the phase factor for this coefficient positive leads by means of~3.4! to the expression for
the Clebsch–Gordan coefficients withn 5 0:

C~k1 ,n1 ,k2 ,n2 ;k11k21n11n2,0!5~21!n1F ~n11n2!! ~2k11n1!n2~2k21n2!n1
n1!n2! ~2k112k21n11n221!n11n2

G 1/2.
~3.7!

Using this last expression and the recurrence relation obtained from theJ1 action, i.e.,

A~n11!~2k1n!C~k1 ,n1 ,k2 ,n2 ;k,n11!5An1~2k11n121!C~k1 ,n121,k2 ,n2 ;k,n!

1An2~2k21n221!C~k1 ,n1 ,k2 ,n221;k,n!,

~3.8!

together with the boundary conditions thatC must vanish when one of then-values is negative,
yields expressions for the Clebsch–Gordan coefficients withn . 0. The expression is then~pro-
vided n11n25 j1n! given by

C~k1 ,n1 ,k2 ,n2 ;k11k21 j ,n!5F ~2k1!n1~2k2!n2~2k1! j

n!n1!n2! j ! ~2k112k212 j !n~2k2! j~2k112k21 j21! j
G1/2

3~ j1n!! 3F2S 2k112k21 j21,2n1 ,2 j
2k1 ,2n2 j ;1D , ~3.9!

in terms of a terminating generalized hypergeometric series. Actually, we will not need~3.9! in
what follows, but only~3.7!. Moreover,~3.9! will be deduced in an easy way from our method
the end of this Section.

The action of each operatorY5Ji ( i50,6) on the tensor product of two representatio
(k1)^ (k2) is given byY^111^Y; thus this also holds forX. This implies that

X~ uk1 ,x& ^ uk2 ,y&)5Xuk1 ,x,k2 ,y&5~x1y!uk1 ,x,k2 ,y&. ~3.10!

Then it follows from~2.5! that
J. Math. Phys., Vol. 38, No. 5, May 1997
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^k1 ,x,k2 ,yu~k1 ,k2!k,n&5^k1 ,x,k2 ,yu~k1 ,k2!k,0&Qn~x1y;k!. ~3.11!

Using the tensor product decomposition foru(k1 ,k2)k,0&, one finds

^k1 ,x,k2 ,yu~k1 ,k2!k,0&5 (
n1 ,n2

C~k1 ,n1 ,k2 ,n2 ;k,0!^k1 ,xuk1 ,n1&^k2 ,yuk2 ,n2&

5 (
n1 ,n2

C~k1 ,n1 ,k2 ,n2 ;k,0!Qn1
~x;k1!Qn2

~y;k2!^k1 ,xuk1,0&^k2 ,yuk2,0&,

~3.12!

or, by introducing the function

S~x,y;k1 ,k2 ,k!5 (
n1 ,n2

C~k1,n1 ,k2 ,n2 ;k,0!Qn1
~x;k1!Qn2

~y;k2!, ~3.13!

one can write

^k1 ,x,k2 ,yu~k1 ,k2!k,0&5S~x,y;k1 ,k2 ,k!^k1 ,xuk1,0&^k2 ,yuk2,0&. ~3.14!

Similarly, using the tensor product decomposition foru(k1 ,k2)k,n&, one deduces

^k1 ,x,k2 ,yu~k1 ,k2!k,n&5 (
n1 ,n2

C~k1 ,n1 ,k2 ,n2 ;k,n!Qn1
~x;k1!

3Qn2
~y;k2!^k1 ,xuk1,0&^k2 ,yuk2,0&. ~3.15!

Substituting~3.14! and ~3.15! in ~3.11!, there comes

S~x,y;k1 ,k2 ,k!Qn~x1y;k!5 (
n1 ,n2

C~k1 ,n1 ,k2 ,n2 ;k,n!Qn1
~x;k1!Qn2

~y;k2!, ~3.16!

or, using orthogonality,

(
k,n

C~k1 ,n1 ,k2 ,n2 ;k,n!S~x,y;k1 ,k2 ,k!Qn~x1y;k!5Qn1
~x;k1!Qn2

~y;k2!. ~3.17!

Equations~3.13!, ~3.16!, and~4.4! are the basic formulas for our technique. It is interesting
see the consequences of these equations. First of all, one wishes to find a proper form forS. Using
the series expansion

(
r ,s

r1s5 j

~21!r S jr D 1F1S 2r
a ;xD 1F1S 2s

b ;yD5
xj

~a! j
2F1S 12 j2a,2 j

b ;
2y

x D , ~3.18!

and the special form~3.7! in ~3.13!, one arrives at

S~x,y;k1 ,k2 ,k11k21 j !5S ~2k2! j
~2k1! j~2k112k21 j21! j j !

D 1/2xj2F1S 12 j22k1 ,2 j
2k2

;
2y

x D .
~3.19!

Using first the series transformation
J. Math. Phys., Vol. 38, No. 5, May 1997
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2F1S a,2n
c ;zD5

~a!n
~c!n

~12z!n2F1S c2a,2n
12a2n ;

1

12zD , ~3.20!

and next the following relation in terms of a Jacobi polynomial2,3

2F1S 11a1b1n,2n
a11 ;t D5

n!

~a11!n
Pn

~a,b!~122t !, ~3.21!

one finds

S~x,y;k1 ,k2 ,k11k21 j !5~21! j@ j !/ ~~2k1! j~2k2! j~2k112k21 j21! j !#
1/2

3~x1y! j Pj
~2k121,2k221!S y2x

y1xD . ~3.22!

There are now two applications. First, consider~3.17! and substitutey52x. On the lhs of
~3.17! the2F1 coming from~3.19! can be summed using Vandermonde’s theorem,6 and it reduces
to

(
j50

n11n2 F ~2k112k21 j21! j~2k112k212 j !n11n22 j

~2k1! j~2k2! j~n11n22 j !! j !
G1/2C~k1 ,n1 ,k2 ,n2 ;k11k21 j ,n11n22 j !xj .

~3.23!

On the rhs of~3.17! there comes, apart from two square root factors related to~2.7!,

1F1S 2n1
2k1

;xD 1F1S 2n2
2k2

;2xD5 (
p50

n1

(
q50

n2 ~2n1!p
~2k1!p

xp

p!

~2n2!q
~2k2!q

~2x!q

q!

5 (
j50

n11n2 S n11n2
j D xj

~2k2! j
3F2S 2k112k21 j21,2n1 ,2 j

2k1 ,2n12n2
;1D .

~3.24!

The last expression is found by changing the summation variablesp andq to p andj 5 p 1 q, and
elementary manipulations. Taking into account the relevant square root factors, one finds b
expression~3.9! for the Clebsch–Gordan coefficients by comparing~3.23! and ~3.24!. Note that
we have used only the simple coefficients~3.7! in this derivation; so from these coefficients on
this technique provides a way to get expressions for all Clebsch–Gordan coefficients.

As a second application, consider~3.16!. ReplacingS by the Jacobi polynomial,Q by the
generalized Laguerre polynomials, and (2k1 2 1,2k2 2 1) by (a,b), the following addition formula
comes:

(
k50

n1 j

3F2S a1b1 j11,2k,2 j
a11,2n2 j ;1DLk~a!~x!Ln1 j2k

~b! ~y!

5
~21! jn! j !

~a11! j~n1 j !!
~x1y! jLn

~a1b12 j11!~x1y!Pj
~a,b!S y2x

y1xD . ~3.25!

For j50, this reduces to the known addition formula for generalized Laguerre polynom
@Ref. 4, eq.~22.12.6!#; also the casen50 reduces to a known relation. However, the general c
as given here in~3.25!, seems to be new.
J. Math. Phys., Vol. 38, No. 5, May 1997
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IV. COUPLING OF THREE su(1,1) REPRESENTATIONS

The tensor product of three representations, (k1), (k2) and (k3), can be formed in two ways
„(k1) ^ (k2)… ^ (k3) or (k1) ^ „(k2) ^ (k3)…. The coefficients relating the decomposition of the fi
to the decomposition of the second are recoupling coefficients, proportional to 62 j coefficients.
In an obvious notation, one writes

u„~k1 ,k2!k12,k3…k,n&5(
k23

U~k1 ,k2 ,k12,k3 ,k,k23!u„k1 ,~k2 ,k3!k23…k,n&. ~4.1!

The coefficientU is independent ofn ~Wigner–Eckart theorem!.
Using~3.14! twice in the coupling„(k1) ^ (k2)… ^ (k3) yields

^k1 ,x,k2 ,y,k3 ,zu~~k1 ,k2!k12,k3!k,0&5S~x1y,z;k12,k3 ,k!^k1 ,x,k2 ,yu~k1 ,k2!k12,0&^k3 ,zuk3,0&

5S~x,y;k1 ,k2 ,k12!S~x1y,z;k12,k3 ,k!^k1 ,xuk1,0&

3^k2 ,yuk2,0&^k3 ,zuk3,0&. ~4.2!

Using it in the coupling (k1)^ „(k2)^ (k3)… yields

^k1 ,x,k2 ,y,k3 ,zu~k1 ,~k2 ,k3!k23!k,0&5S~y,z;k2 ,k3 ,k23!S~x,y1z;k1 ,k23,k!^k1 ,xuk1,0&

3^k2 ,yuk2,0&^k3 ,zuk3,0&. ~4.3!

Relating~4.2! and ~4.3! by means of~4.1! we obtain

S~x,y;k1 ,k2 ,k12!S~x1y,z;k12,k3 ,k!5 (
k235k21k3

k2k1

U~k1 ,k2 ,k12,k3 ,k,k23!

3S~y,z;k2 ,k3 ,k23!S~x,y1z;k1 ,k23,k!. ~4.4!

Note that in this formulak23 assumes real values; by the summation symbol we mean thak23
takes all valuesk2 1 k3 ,k2 1 k3 1 1,...,k2 k1 in steps of one unit.

Again, this relation can be applied in two ways. First, choosingx 5 1 andy 5 2z, the rhs of
~4.4! reduces to

(
k235k21k3

k2k1

f ~k1 ,k2 ,k3 ,k23,k!U~k1 ,k2 ,k12,k3 ,k,k23!z
k232k22k3, ~4.5!

with f some numerical factor containing square roots and Pochhammer symbols. On the
hand, the lhs of~4.4! reduces, apart from square root factors, to a product of two2F1 series; one
with argumentz and one with argumentz/(z 2 1), and a factor (12 z)k2k122k3. Applying

~12z!m2F1S a,2m
c ;

z

z21D52F1S c2a,2m
c ;zD . ~4.6!

to the second2F1 combined with the power of (12 z), the lhs essentially reduces to a product
two 2F1 series with argumentz. Then one can use
J. Math. Phys., Vol. 38, No. 5, May 1997
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2F1S b1d2c1m1n,2m
b ;zD 2F1S c,2n

d ;zD
5 (

p50

m1n

~21!p
~c2m!p

~d!p
Sm1n

p D 4F3S b1d1p21,c2d2m2n,2m,2p
b,c2m,2m2n ;1D zp.

~4.7!

The technique to find~4.7! is essentially the same as in~3.24!. Comparing equal powers ofz in
~4.4!, under the given specialization~and taking into account the appropriate numerical facto!,
yields a single sum expression for the su~1,1! recoupling coefficients,

U~k1 ,k2 ,k12,k3 ,k,k23!

5@~2k2!k122k12k2
~2k3!k2k122k3

~2k2!k232k22k3
~2k1!k2k12k23

~k11k231k21!k2k12k23
#1/2

3@~2k1!k122k12k2
~k11k21k1221!k122k12k2

~2k12!k2k122k3
~k121k31k21!k2k122k3

3~2k3!k232k22k3
~2k23!k2k12k23

~k21k31k2321!k232k22k3
~k122k12k2!! ~k2k122k3!!

3~k2k12k23!! ~k232k22k3!! #
21/2~k1k11k21k321!k232k22k3

~k2k12k22k3!!

34F3S k11k21k1221,k21k31k2321,k11k22k12,k21k32k23
2k2 ,k1k11k21k321,k11k21k32k ;1D . ~4.8!

As a second application, one replaces allS-functions in~4.4! by Jacobi polynomials, and use
the just-obtained4F3 expression for the recoupling coefficient. Simplifying the numerical fact
and defining the polynomialsp related to the usual Jacobi polynomialsP by means of

pn
~a,b!~x,y!5

~x1y!n

~b11!n
Pn

~a,b!S y2x

y1xD , ~4.9!

this leads to

(
j50

m1n Sm1n
m D ~a1b1c1m1n12! j

~b1c1 j11! j
4F3S a1b1m11,b1c1 j11,2m,2 j

b11,a1b1c1m1n12,2m2n;1D
3pj

~b,c!~y,z!pm1n2 j
~a,b1c12 j11!~x,y1z!5pm

~a,b!~x,y!pn
~a1b12m11,c!~x1y,z!.

~4.10!

V. THE ALGEBRA b(1) AND A CLASS OF REPRESENTATIONS

The second Lie algebra considered in this paper is a generalization of the oscillator alge~or
boson algebra! in one dimension. It has a basis of four elementsb6, H, N with relations

@b2,b1#5H, @N,b6#56b6,
~5.1!

@H,x#50 for x5b6,N,

and unitarity conditionsH†5H, N†5N, (b6)†5b1. For the usual oscillator algebra, one tak
H51 and requiresN5b1b2. Here we do not assume these extra relations. The reason is tha
these extra relations the representation theory is very poor~only the Fock representation!, whereas
J. Math. Phys., Vol. 38, No. 5, May 1997
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for the given algebra~5.1! it is much richer. The algebra is also the Lie algebra of a Lie group
third-order real triangular matrices~Ref. 7, Section 5.1.1!. The algebrab(1) has a class of lowes
weight representations8 labeled by two positive numbersh andk, and orthonormal basis vector
uh,k,n&, with n50,1,2,... . Theaction of the Lie algebra elements on the states of the repre
tation (h,k) is given by

Huh,k,n&5huh,k,n&,

Nuh,k,n&5~k1n!uh,k,n&,
~5.2!

b2uh,k,n&5Ahnuh,k,n21&,

b1uh,k,n&5Ah~n11!uh,k,n11&.

It is easy to verify that it is a representation, and that it is unitary and irreducible ifh.0 andk
> 0. One finds back the usual Fock space forh51 andk50.

One can now apply the same technique as for the algebra su~1,1!. We shall introduce again an
operatorX, polynomialsQn andS, coupling and recoupling coefficientsC andU, etc. For these
quantities, the same notation is used for theb(1) case as for the su~1,1! case, in order not to
overload notation by adding an extra index referring to the algebra in question. This should
no confusion: in Secs. II–IV we deal with the su~1,1! case, and in Secs. V–VII with theb(1) case.

Consider here the operator

X5b11b2, ~5.3!

and its eigenstates

Xuh,k,x&5xuh,k,x& ~5.4!

in the representation (h,k). Writing the overlap̂ h,k,xuh,k,n& as

^h,k,xuh,k,n&5^h,k,xuh,k,0&Qn~x;h!. ~5.5!

the action ofX to the left and right in̂ h,k,xuXuh,k,n& yields

xQn~x;h!5Ah~n11!Qn11~x;h!1AhnQn21~x;h!, ~5.6!

with Q0(x;h) 5 1. This quantity is independent ofk, which is why we have left out the symbo
k from the beginning in~5.5!. Redefining

Qn~x;h!5qn~x;h!/An!, ~5.7!

the polynomialsqn are now defined through the recursion relation

qn11~x;h!5
x

Ah
qn~x;h!2nqn21~x;h!. ~5.8!

Together with the initial conditions, this implies that

qn~x;h!5Hn~x/Ah!, ~5.9!

with Hn themonicHermite polynomials.4 The present can also be understood in quantum
chanical harmonic oscillator language. Forh51 andk50, ~5.2! are the usual harmonic oscillato
J. Math. Phys., Vol. 38, No. 5, May 1997
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states. Then,~5.4! are the eigenstates of the position operator and~5.5! expresses that the wav
function in the position representation is equal to the ground state wave function times a H
polynomial.

VI. TENSOR PRODUCT OF TWO b(1) REPRESENTATIONS

The tensor product of two unitary representations (h1 ,k1) and (h2 ,k2) is unitary and com-
pletely reducible. By counting the multiplicities of theN-weights in the tensor product, on
obtains the decomposition of it:

~h1 ,k1! ^ ~h2 ,k2!5 %

j50

`

~h11h2 ,k11k21 j !. ~6.1!

The coefficients relating the uncoupled states to the coupled states are the Clebsch–Gord
ficients ofb(1):

u~h1 ,k1 ;h2 ,k2!h11h2 ,k11k21 j ,n&5 (
n1 ,n2

C~h1 ,h2 , j ;n1 ,n2 ,n!uh1 ,k1 ,n1&uh2 ,k2 ,n2&;

~6.2!

herein,n11n25 j1n, and the labelski have been omitted inC as we shall see that it is indepen
dent of them. To find expressions for the coefficientsC, one can use a recurrence relation fo
lowing from the action ofb2:

A~h11h2!nC~h1 ,h2 , j ;n1 ,n2 ,n21!5Ah1~n111!C~h1 ,h2 , j ;n111,n2 ,n!

1Ah2~n211!C~h1 ,h2 , j ;n1 ,n211,n!. ~6.3!

Puttingn50, this equation implies

C~h1 ,h2 , j ;n1 ,n2,0!5~21!n1Fh2n1h1
n1 S j

n1
D G 1/2C~h1 ,h2 , j ,0,j ,0!. ~6.4!

Using orthogonality of the Clebsch–Gordan coefficients the above formula implies

C~h1 ,h2 , j ;0,j ,0!25h1
j /~h11h2!

j ; ~6.5!

choosing the phase factor as (21) j then leads to an explicit expression for the Clebsch–Gor
coefficients withn50 ~where, of course,n1 1 n2 5 j !:

C~h1 ,h2 , j ;n1 ,n2,0!5~21! j2n1F S j
n1

D h1
j2n1h2

n1

~h11h2!
j G1/2. ~6.6!

Using the recurrence relation obtained from theb1 action, i.e.,

A~h11h2!~n11!C~h1 ,h2 , j ;n1 ,n2 ,n11!

5Ah1n1C~h1 ,h2 , j ;n121,n2 ,n!1Ah2n2C~h1 ,h2 , j ;n1 ,n221,n!,
~6.7!

one can determine the Clebsch–Gordan coefficients forn.0. We give here two expression
~compare Ref. 8, paragraph 4–17, or Ref. 7, section 8.6.2!:
J. Math. Phys., Vol. 38, No. 5, May 1997
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C~h1 ,h2 , j ;n1 ,n2 ,n!5dn11n2 , j1n~21!n2An1!n2! j !n!(
k

~21!kan1n222kbn12n12k

k! ~n22k!! ~n2k!! ~ j2n21k!!
~6.8!

5dn11n2 , j1n~21!n2
~n11n2!!a

n1n2bn12n

An1!n2! j !n!
2F1S 2n,2n2

2 j2n ;
1

a2D , ~6.9!

where

a5A h1
h11h2

, b5A h2
h11h2

, and thusa21b251. ~6.10!

From the first expression, one can see that these coefficients coincide with the W
d-functions:9

C~h1 ,h2 , j ;n1 ,n2 ,n!5dn11n2 , j1ndMM8
J

~b!,

with J5~n11n2!/2, M5~ j2n!/2, M 85~n12n2!/2, and tan
b

2
5Ah1 /h2. ~6.11!

Since for the present algebrab(1) we have again the actionY ^ 1 1 1 ^ Y for every element of
b(1), thesame analysis as in Sec. III can be made. Introducing the function

S~x,y;h1 ,h2 , j !5 (
n1 ,n2

C~h1 ,h2 , j ;n1 ,n2,0!Qn1
~x;h1!Qn2

~x;h2!, ~6.12!

there holds the equality

S~x,y;h1 ,h2 , j !Qn~x1y;h11h2!5 (
n1n2

C~h1 ,h2 , j ;n1 ,n2 ,n!Qn1
~x;h1!Qn2

~y;h2!.

~6.13!

First, let us find an appropriate form forS. Using ~5.7! and~6.8! in ~6.12!, with a andb as given
in ~6.10!, one finds

S~x,y;h1 ,h2 , j !5
1

Aj ! (
n150

j

~21! j2n1S j
n1

Daj2n1bn1Hn1S x

Ah1
DHj2n1S y

Ah2
D

5
1

Aj !
Hj S b x

Ah1
2a

y

Ah2
D . ~6.14!

In the last step, we have used the following identity@Ref. 3, eq.~10.13.40!#:

Hj~au1bv !5 (
k50

j S jkDakb j2kHk~u!Hj2k~v !, ~6.15!

whereu andv are arbitrary anda andb should satisfya2 1 b2 5 1.
Having obtained the expression~6.14! for S, we now have all ingredients to write~6.13! in an

appropriate form. Puttingu 5 x/Ah1 andv 5 y/Ah2, ~6.13! reduces to
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



rmite
lid also

te
ng

sis

e
of the

ecou-
fter
single
f,

ling

,

a-

2739J. Van der Jeugt: Addition formulas

¬¬¬¬¬¬¬¬¬¬
Hj~au1bv !Hn~av2bu!5 (
k50

j1n S j1n
k Dan1kbj2k

2F1S 2n,2k
2 j2n ;

1

a2DHk~u!Hj1n2k~v !,

~6.16!

where, of course,a andb stem from~6.10! and thus satisfya2 1 b2 5 1. The identity has been
derived using the monic Hermite polynomials; however, when rescaled to the usual He
polynomials the same factors appear on left- and right-hand sides so the same identity is va
for the usual Hermite polynomials.

VII. TENSOR PRODUCT OF THREE b(1) REPRESENTATIONS

It is then natural to consider the tensor product of threeb(1) representations and investiga
the consequences for a relation like~4.4! applied to the present algebra. In the first coupli
scheme, uh1 ,k1 ,n1& and uh2 ,k2 ,n2& are first coupled to u(h1 ,k1 ;h2 ,k2)h11h2 ,k11k2
1 j 12,n12&, and then withuh3 ,k3 ,n3& to a state denoted by

u~h1 ,h2!h3 ; j 12; j ,n&5u~~h1 ,k1 ;h2 ,k2!h11h2 ,k11k21 j 12,h3 ,k3!h1

1h21h3 ,k11k21k31 j ,n&. ~7.1!

In the second coupling schemeuh2 ,k2 ,n2& and uh3 ,k3 ,n3& are first coupled to
u(h2 ,k2 ;h3 ,k3)h2 1 h3 ,k2 1 k3 1 j 23,n23&, and then withuh1 ,k1 ,n1& to a state denoted by

uh1~h2 ,h3!; j 23; j ,n&5u„h1 ,k1 ;~h2 ,k2 ;h3 ,k3!h21h3 ,k21k31 j 23…h1

1h21h3 ,k11k21k31 j ,n&. ~7.2!

Note that j> j 12>0 and j> j 23>0, all j -values being integer. The coefficients relating the ba
~7.1! to the basis~7.2! are recoupling coefficients, and we write

u~h1 ,h2!h3 ; j 12; j ,n&5 (
j 2350

j

U~h1 ,h2 ,h3 ; j 12, j 23, j !uh1~h2 ,h3!; j 23; j ,n&, ~7.3!

where U is independent ofn ~Wigner–Eckart theorem! and also independent of th
k-representation labels~since the Clebsch–Gordan coefficients themselves are independent
k-values!.

Expanding the two coupling schemes explicitly, one can obtain an expression for the r
pling coefficientU as a~double! sum over the product of four Clebsch–Gordan coefficients. A
lengthy calculations, we realized that this complicated expression can be simplified to a
sum; moreover, it reduces to a similar expression as theb(1) Clebsch–Gordan coefficient itsel
but with different parameters. The final result is

U~h1 ,h2 ,h3 ; j 12, j 23, j !5C~h1h3 ,h1h21h2
21h2h3 , j 23; j2 j 12, j 12, j2 j 23!, ~7.4!

with C given in ~6.8!–~6.10!. Thus this algebra has the remarkable property that its recoup
coefficients are the same as its coupling coefficients~see also Ref. 7, Section 8.6.6!.

After this, there remains little to be done. An identity similar to~4.4! is also valid forb(1),
but since theU coefficients reduce toC coefficients and theS-functions to Hermite polynomials
the analogue of~4.4! simply reduces to~6.16!.

VIII. COMMENTS AND CONCLUSIONS

We have considered two Lie algebras, su~1,1! and b(1), together with a class of unitary
representations that is closed under the tensor product~i.e., the tensor product of two represent
J. Math. Phys., Vol. 38, No. 5, May 1997
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tions of this class can be decomposed as a direct sum of representations of the same cla!. The
relation with special functions stems from the introduction of an operatorX, as in~2.3! or ~5.3!.
The choice ofX may seem somewhat arbitrary. It is, however, restricted by the fact that the a
of X on the tensor product representation should be given byX^111^X, and moreoverX must
be unitary. Thus, for su~1,1! the most general choice forX in ~2.3! is ~up to an overall constant!

X5aJ02J12J2 . ~8.1!

Herea52 was considered, leading to Laguerre polynomials. Making this choicea52 leads to the
recurrence relation~2.8!, which coincides with the recurrence relation for Laguerre polynomi
For arbitrarya, it is also possible to identify the recurrence relation with one of known orthog
polynomials, although the polynomials are more complicated. Further investigation10 has shown
that for22,a,2, the corresponding polynomials are Meixner–Pollaczek polynomials, an
uau.2 Meixner polynomials~the casea522 again being related to Laguerre!. Using a related
but more sophisticated technique as in this paper, a relation similar to~1.1! has been derived10

with the Laguerre~resp. Jacobi! polynomials replaced by Meixner–Pollaczek~resp. continuous
Hahn! polynomials.

A similar remark can be made for the choice ofX for b(1). A more general expression woul
lead to a replacement of Hermite polynomials by Charlier polynomials.

The present technique works for quantum algebras as well. In that case, the choice foX is
restricted by the fact that it should be unitary~invariant under the* -operation!, and that it should
be ‘‘twisted primitive’’.10

The main results of the paper are mathematical, but there are a number of relation
physics. For the Lie algebra su~1,1! and its positive discrete series representations, the physic
approach was described by Bacry.5 A consequence of our results is that the su~1,1! operatorsJ0
and J6 have a realization as differential operators in a variablex, that the statesuk,n& have a
realization in terms of Laguerre polynomialsLn

(2k21)(x), such that the action~2.2! holds. The
action J0uk,n&5(n1k)uk,n& coincides with a Schrodinger equation, with discrete spect
k1n(n50,1,...). For anoperatorX of the formaJ02J12J2 the Schrodinger equation can als
be considered and in generalX has a continuous spectrum.5 The coupling and recoupling coeffi
cients of su~1,1! also have physical importance, although these have been derived already by
methods. For the oscillator algebrab(1) the relation with physics is clear: it is just a centr
extension of the boson algebra~harmonic oscillator algebra!. As a consequence, the represen
tions considered here are generalizations of the Fock space for the harmonic oscillator.
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Polyhedral representations of discrete differential
manifolds

Roman R. Zapatrin
Department of Mathematics, SPb UEF, Griboyedova 30/32, 191023, St. Petersburg,
Russiaa) and Division of Mathematics, Istituto per la Ricerca di Base, I-86075,
Monteroduni, Molise, Italy
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Any discrete differential manifoldM ~a finite set endowed with an algebraic
differential calculus! can be represented by appropriate polyhedronP (M). The
representation is proved to be exact for a special class of manifolds called basic.
The links with the finitary substitutes of continuous spaces introduced by R. Sorkin
are established. ©1997 American Institute of Physics.@S0022-2488~97!00101-1#

I. INTRODUCTION

For a long time it was the concept of differentiable manifold that was the arena on w
physical theories took place due to its adequacy to the intuitive feeling of what the physical
ought to be. However, the development of quantum theory gave rise to the idea of deprivi
space–time of its status of primordial object and inspired the development of the theories d
with ‘‘deeper’’ entities rather than space–time in order to make the latter an observable in a
general theory. Reasoning about space–time at very small scales gave rise to the theorie
the manifold was replaced by a discrete structure. The environment of the present paper is
by the following scope of ideas and techniques.

The first belongs to Geroch1 and asserts that even in classical general relativity the notio
the space–time manifold is essentially used only once: to set up the algebra of smooth fun
We can, instead, start from this~commutative! algebra as the basic object of the theory. Althoug
it remains nothing but a reformulation of the conventional theory and does not mean th
points ~events! are effectively smeared out.2

If we accept an algebra to be the starting object~called the basic algebra!, we can try to go
beyond the class of commutative Banach algebras representable by functions on manifo
particular, we can assume these algebras to be noncommutative, which gives rise to the n
mutative geometry.3 Another opportunity that looks very attractive from the computational po
of view is to assume the basic algebra to be finite-dimensional and commutative.

At first sight, these objects look very trivial and poor since any such algebra can be re
by the algebra of functions on a finite set with the discrete topology. However, even in cla
differential geometry a differentiable manifold is a topological space plus a differential stru
rather than simply a topological space. When applied to finite-dimensional commutative alg
this observation gives rise to the notion of discrete differential calculus and discrete differ
manifold.4,5 This construction will be recalled in Secs. II and III.

An important entity in the theory of discrete differential manifolds is that of thegenerated
topological spacebeing a finite or at most countable topological space associated with a dis
differential manifold~Sec. IV!. The generated topological space is intended to play the rol
finitary substitute for the continuous space–time manifold.

The finitary space–time substitutes introduced in Ref. 6 serve to simulate the conti
topological spaces. These techniques~reviewed in Sec. IV! may be treated as the generalization

a!Address for correspondence.
0022-2488/97/38(5)/2741/10/$10.00
2741J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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the Regge calculus in general relativity7 for the case when the metric is given up.8 The substitutes
are built from continuous manifolds by applying the coarse graining procedure yielding finite
most countableT0-spaces.

9

So, there are two sources of finitaryT0-spaces: the generated topological spaces of disc
differential manifolds5 on one hand, and the results of coarse graining of continuous topolo
spaces on the other.

In this paper the following techniques are suggested. Given a discrete differential man
the polyhedron~being a continuous topological space! is built and the coarse graining procedu
for it is specified so that the generated topological space of the discrete differential manifo
the finitary substitute of the polyhedron are isomorphicT0-spaces~the diagram on Fig. 1 is
commutative!.

Technically, it is done in the following way. A discrete differential calculus is represente
the quotient of the universal differential algebra over an appropriate differential ideal. In Se
the structure of differential ideals is studied. As a result, with any finite-dimensional dis
differential manifold (M,V) the abstract simplicial complexK5K (V) is associated. In Sec. V
the polyhedral representations of simplicial complexes associated with discrete differential
folds are considered, and the coarse graining procedure6,9 described in Sec. IV is specified in orde
to produce the finitary substitutes isomorphic to the topological spaces generated by the d
differential manifolds.

II. BASIC NOTIONS AND RESULTS

LetM be a finite set. An algebraicdifferential calculus4 onM is an extension of the algebr
A5Fun(M,C) ~calledbasic algebraof all C-valued functions onM to a graded differential
algebra (V,d):

V5V0
% V1

% •••% V r
% •••, ~1!

with V05A,d:V r→V r11 anddV r being the generating set for the nextA-bimoduleV r11. If
V r Þ 0 for somer andVs50 for everys.r , then the calculusV is said to have thedimension
r . The universal objectṼ5Ṽ(M) of such type is thedifferential envelope10 ofA. The setM is
assumed to be finite, andṼ can be explicitly described by setting itsnatural basis:4

FIG. 1. The environment of the contents of the paper.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Ṽ05span$ei u iPM%,

Ṽ15span$eiku i ,kPM,iÞk% ~2!

•••••••••

Ṽr5span$ei0 ,i1 , . . . ,i ru i 0 ,i 1 , . . . ,i rPM;;s51, . . . ,r ,i s21Þ i s%,

whereei :M→C is defined asei(k)5d ik . Then, eachṼ
r isA-bimodule:

ep•ei0 ,i1 , . . . ,i r•eq5dpi0
d i rqei0 ,i1 , . . . ,i r ~3!

and the graded productṼr3Ṽs→Ṽr1s is defined as

ei0 ,i1 , . . . ,i rej 0 , j 1 , . . . ,j s5d i r j 0ei0 ,i1 , . . . ,i r , j 1 , . . . ,j s ~4!

with the operatord:Ṽr→Ṽr11 having the form

dei0 ,i1 , . . . ,i r5(
s50

r

~21!s (
kÞ i s ,i s11

ei0 , . . . ,i s21 ,k,i s , . . . ,i r
. ~5!

The graded algebraṼ is universal in the sense that any particular differential calculusV~1!
can be covered by an epimorphismp:Ṽ→V of graded differentialalgebras over the basicalgebra
A. The kernel of this mappingp is said to bedifferential ideal in Ṽ. So, every differential
calculusV can be unambiguously characterized by appropriate differential idealI (V) in Ṽ. Let
us dwell on this issue in more detail.

Definition 1: A linear subspaceI#Ṽ is calleddifferential idealin Ṽ if

ṼI Ṽ#I , dI#I . ~6!

Denote byV(I )5Ṽ/I the differential calculus~1! induced by the differential idealI . The
decomposition of the graded algebraṼ gives rise to the decomposition ofI :

I5I 0
% •••%I r

% •••. ~7!

Then the definition of the differential calculusV(I ) is reformulated in terms ofI as follows:

dimV~I !5r⇔
def

I rÞṼr and ;s.r , I s5Ṽs.

Assumption:We shall consider only the differential ideals withI 050.
In the sequel, to introduce combinatorial structures we confine ourselves bybasic differential

ideals, namely, the ideals spanned over the elements of the natural basis~2!.
Lemma 1: LetI be a basic differential ideal,a5 i 0 , . . . ,i r and ea P I . Letb be a sequence

of elements ofM of whicha is a subsequence, i.e.,a#b. Then eb P I .
Proof: Use the induction overd5ubu2uau ~the difference of the lengths of the sequence!.

Supposed51; that meansb5 i 0 , . . . ,i t21 ,q,i t , . . . ,i r . Due to~6!, dea P I and is equal to~5!,
being the sum of the basis elements ofI ~assumed to be the basic ideal!. Therefore each summan
of ~5!, in particular,eb , is the element ofI . Now suppose the result is valid for allb such that
ubu2uau5s, and letb be such a supersequence ofa that ubu5ua1s11. Consider a sequenc
J. Math. Phys., Vol. 38, No. 5, May 1997
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b8 obtained fromb by deleting an element which does not belong to the sequencea. Theneb8
P I ~being the supersequence ofa of the lengthuau1s), and thereforeeb P I since it occurs in
the decomposition~5! for deb8. h

Corollary: Let I be a basic differential ideal anda andb be sequences of elements ofM
such thata#b. Theneb¹I⇒ea¹I .

It is suitable to impose the scalar product onṼ by assuming the natural basis~2! to be
orthonormal:

~ea ,eb!5H 1, if a5b,

0, otherwise.
~8!

Definition 2: Abasic differential calculusis the quotientV5V(I )5Ṽ/I of the differential
envelope over a basic differential idealI .

Using the scalar product~8! the following description of basic differential calculi was su
gested in Ref. 4. The quotient spaceV5Ṽ/I can be identified with the subspace ofṼ being the
orthocomplement toI , and we denote it with the same symbolV. Thus

V5span$ei0 , . . . ,eruei0 , . . . ,er¹I %

or, in other words, the basic differential forms constituting the idealI are said to bevanishingin
the differential calculusV:

ei0 , . . . ,i rPI⇔ei0 , . . . ,i r50,ei0 , . . . ,i r¹I⇔ei0 , . . . ,i rÞ0. ~9!

So, the Lemma 1 can be reformulated as follows:

;a#bebÞ0⇒eaÞ0. ~10!

Remark:It should be emphasized that the set ofbasicdifferential calculi introduced in this
section is a proper subset of all differential calculi considered in Ref. 4. This assumpti
essentially used in the sequel and the results presented below~having combinatorial nature! are not
valid for arbitrary differential calculi.

III. BASIC DISCRETE DIFFERENTIAL MANIFOLDS AND THEIR COMBINATORIAL
PROPERTIES

In classical differential geometry a differentiable manifold is a topological space equi
with a differential structure. Its finitary counterpart looks as follows.

Definition 3: Abasic discrete differential manifoldis a couple(M,V) whereM is a finite set
and V is a basic differential calculus (see Definition 2) over the functional alge
A5Fun(M). The dimensionof a discrete differential manifold is the greatest grade of
nonvanishing differential forms:

dimM5max$r uV rÞ0%.

If this number does not exist, the discrete differential manifold is said to be infinite dimens

dimM5`⇔
def

;rV rÞ0. ~11!

Taking into account the notation~9!, discrete differential manifolds are unambiguously det
mined by the collection of their nonvanishing basic differential forms,
J. Math. Phys., Vol. 38, No. 5, May 1997
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M5~M,V!5~M,K !,

whereK5K (M ) is the collection of the sequencesa of elements of the setM such that

aPK⇔
def

eaÞ0. ~12!

The set of sequencesK can be decomposed in the following way:

K5K 1øK 2ø•••øK rø•••,aPK r⇔aPK anduau5r .

Lemma 2: If ( i 0 , . . . ,i r) P K r , then for any s such that0<s<r we have
( i 0 , . . . ,i s , . . . ,i r)PK r21.

Proof: The proof follows from the corollary from Lemma 1.h

The componentK 1 of the collectionK gives rise to a binary relation on the setM, denoted
a:

ia j⇔
def

~ i , j !PK 1⇔ei j¹I . ~13!

Since noeii is the basic form,eii¹I , hence the relationa onM is reflexive:; i P M ia i . It
follows immediately from Lemma 2 that

~ i 0 , . . . ,i r !PK r⇒;s,t,0<s<t<r ,i sa i t . ~14!

Definition 4: A basic discrete differential manifold M is called anetwork manifoldif its
differential structure is completely defined on the level of its one-forms, that is, the reverse
implication (14) holds:

K r5$~ i 0 , . . . ,i r !u;s,t 0<s<t<r i sa i t%. ~15!

Remark:Note that the appropriate differential ideal is the smallestbasic~rather than ordinary!
differential ideal spanned on the vanishing one-forms.

Lemma 3: Let M5(M,V) be a discrete differential manifold such that the setM is finite. If
M is infinite dimensional, then the relationa on the setM is not antisymmetric:

dim M5`⇒' i , jPM,iÞ j : ia j , ja i .

If M is a network manifold, the above implication holds in both directions.
~A relationa on a setM is called antisymmetric11if no pair of distinct elements iÞ j of

M satisfies both ia j and ja i .)
Proof: Letm5card M. Consider a numberr.m and letei0 , . . . ,i r Þ 0: it exists due to~11!.

Then at least one elementi P M occurs at least twice in the string (i 0 , . . . ,i r), that is for some
s,t such thats.t11 we havei5 i s5 i t . Denote j5 i s11. Then j Þ i by virtue of ~2!, and
according to~14! ia j and ja i .

Now letM be a network manifold. Leti Þ j andia ja i . For anyr.0 consider the sequenc
( i j ••• i j ) of length 2r . Then, according to~15! ei j ••• i j Þ 0, thus dimM5`.

Corollary: Let dimM,`. If ea Þ 0 inM , then all the elements of the stringa are different.
Therefore

card$ i 0 , . . . ,i r%5 length~ i 0 , . . . ,i r !. ~16!
J. Math. Phys., Vol. 38, No. 5, May 1997
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From now on we confine ourselves by finite-dimensional discrete differential manifolds
recall further definitions.

Definition 5: A set K with a relationa on it is calledtotally orderedif the relationa has the
following properties: for any i, j ,k P K,

ia i ~reflexivity!, ia j , ja i⇒ i5 j ~antisymmetry!,
~17!

ia j , jak⇒ iak ~transitivity!, ia” j⇒ ja i ~linearity!.

Note that any subset of a totally ordered set is totally ordered as well. The following le
shows the relevance of total orders in the theory of basic discrete differential manifolds.

Lemma 4: Let M5(M,V) be a finite-dimensional basic discrete differential manifold. Co
sider asequencea. Then the following implication holds:

eaÞ0⇒~a,a ! is totally ordered. ~18!

Moreover, if M is a network manifold, the implication (18) holds in both directions.
Proof: The implication ~18! follows from ~14! and the definition~17!. Now let M be a

network manifold anda5$ i 0, . . . ,i r% be a totally ordered~with respect toa) subset ofM. Arrange
the elements of theseta to form thesequencea such thati 0a i 1a•••a i r . Then the transitivity
of the relationa implies that for alls,t such that 0<s,t<r we haveeisi t Þ 0. Thereforeea

Þ 0 by virtue of~15!.
So, from the combinatorial point of view the basic discrete differential manifolds are ch

terized in the following way. We have a setM with a reflexive antisymmetric~but not generally
transitive! relationa on it. Then we select a familyK of subsets ofM such that

~1! any elementa P K is totally ordered by the relationa,
~2! K is hereditary:a PK ,b#a⇒b PK ,
~3! K contains all singletons~sincea is reflexive!: ; i P M$ i % P K .

Then we can build the basic discrete differential calculusV onA5Fun(M) by putting

V5V~K !5span$eauaPK %.

In particular, whenM is a finite-dimensional network discrete differential manifold, the appro
ate familyK (M) is the collection ofall a-totally ordered subsets ofM.

To conclude the section, note that the properties of the familyK listed above coincide with
the definition of ordered simplicial complex. We shall return to this issue in Sec. V.

IV. TWO SOURCES OF FINITE TOPOLOGICAL SPACES

The first source described in this section is the procedure manufacturing
T0-topological spaces~calledgenerated topological spaces

4! from discrete differential manifolds
The second source is the coarse graining procedure applicable to arbitrary topological
which also yields the finiteT0-spaces.

6,9 Begin with the first source.
Generated topological spaces:Let M5(M,V) be a basic discrete differential manifold an

K5K (M) be the collection of its nonvanishing basic forms~12!. ~In Ref. 5 the setK is
denoted byM.) Define the topologyt on the setK by setting its prebase of open se
$Ua%,aPK :

Ua5$bPK ua#b%.

Definition 6: The topological space(K ,t) defined above is called thegenerated topologica
space (K ,t) of the basic discrete differential manifold M.
J. Math. Phys., Vol. 38, No. 5, May 1997
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It was shown in Ref. 5 that the topology of any generated topological space is alwaysT0 ~that
is, for each pair of distinct points ofK there is an open set containing one point but not the oth!.

Example:Let M5$1,2,3%. Define the relationa onM as 1a 2 a 3 a 1 ~not being
transitive!. The graph of the relation is in Fig. 2~a!. LetM be thenetworkmanifold induced by the
relationa onM. Then

V5span$e12,e23,e31%

and hence dimM51. The generated spaceK is

K5$1,2,3,12,23,31%,

and the topologyt onK is depicted in Fig. 2~b! in terms of the appropriate Hasse graph~see
Refs. 4,6, and 9 for details!.

Finitary substitutes: Let V be a topological space and letT 5$Va% be its finite open covering
V5øVa . Define the new topologyt on V as that generated by the collectionT considered
prebase of open sets. The set (V,t) is in general not evenT0-space, therefore the theorem of th
uniqueness of limits of sequences may not hold. Define the relation denoted→ on the setV as
follows:

x→y⇔y5 lim
t

$x,x, . . . ,x, . . . %,

where limt denotes the limit with respect to the topologyt or, in a more transparent form,

x→y⇔~;ayPVa⇒xPVa!.

In general, the relation→ is a preorder on the setV, hence we can consider its quotie
K5V/; with respect to the equivalence;:

x;y⇔x→y,y→x. ~19!

As a result, the setK is partially ordered by the relation→ and the topologyt induced onK as
the quotient set is already theT0-topology. The detailed account of this procedure can be foun
Refs. 6 and 8.

Example:Let V be a circle,V5eif. Consider the coveringT 5$Va ,Vb ,Vg%:

Va5$eifu2p/2,f,1p%,Vb5$eifup/2,f,3p/4%,Vg5$eifu2p,f,1p/4%.

Then the equivalence classes~19! ~that is, the elements ofK ) are

FIG. 2. ~a! The graph of the relationa. ~b! The Hasse graph of the topological spaceK . A setA#K is open iff with
every elementa P A it contains all elements lying belowa and linked with it.
J. Math. Phys., Vol. 38, No. 5, May 1997
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15$eifu2p/2,f,1p/4%,

125$eifup/4,f,p/2%,

25$eifup/2,f,p%, 235$eip%,

35$eifu2p,f,2p/2%,

315$e2 ip/2%,

and the induced partial order has the same Hasse diagram as that depicted in Fig. 2~b!.
It will be shown in Sec. V how, starting from an arbitrary finite-dimensional basic disc

differential manifold, to build a continuous metrical space~namely, a polyhedron! and specify its
open covering so that the resultingT0-spaces would be the same. To do it, we have to introd
one more technical issue.

Simplicial coarse graining of polyhedra:Let P be a simplicial complex anduP u be its
realization by a polyhedron in a Euclidean spaceE . That means thatuP u is the union of well-
positioned geometrical simplicesa in E . Initially, uP u is the metrical space being the subset of t
spaceE with the standard Euclidean metric and having the topology associated with this m
For every pointx Pu P u of the polyhedron, consider itsstar,

St~x!5ø$auxPa%,

and then define the neighborhood of the pointx as the interior ofSt(x) in uP u:

Vx5IntuP uSt~x!

~note that for somex Þ y the neighborhoods may coincide!. EvidentlyT 5$Vxux P uP u% is the
open covering ofuP u. Moreover, infinite as the setuP u is, the coveringT is finite. The elements
of T are in 1–1 correspondence with the simplices ofP :

;aPPxPa⇔yPa, iff Vx5Vy .

Now consider the topologyt on uP u induced by the coveringT thought of as open prebase
and the appropriateTo-quotient. For everyVa ,Vb P T , the intersectionVaùVb5Vaùb is either
u or an element ofT , thereforeT is the base~rather than prebase! of the topologyt.

Lemma 5: There is the 1–1 correspondence between the simplices ofP and the points of the
quotient space:

P5uP u/;.

Proof: Associate with every simplexa P P its ‘‘local interior’’ I (a):

I ~a!5$~m0
a , . . . ,m r

a!u; i51, . . . ,r , 0,m i
a,1%,

wherer is the dimension of the simplexa andm i
a are its baricentric coordinates. For the vertic

y PP ,put

I ~v !5$v%.

The collection$I (a)ua P P % is the partition of the polyhedronuP u. Herex,y P I (a) implies
Vx5Vy , and vice versaVx5Vy implies'a:x,y P I (a).
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



led

stitute

basic
t

ial

ent

-

-

2749Roman R. Zapatrin: Polyhedral representations

¬¬¬¬¬¬¬¬¬¬
So, we may conclude that the resulting quotientT0-space is the simplicial complexP itself
~that is, the points of the finitary substitute are the simplices ofuP u). The open base of the
topologyt on P is the collection of the stars of all simplices ofP .

The appropriate open covering of the polyhedronuP u is calledsimplicial since it does not
depend on particular realizationuP u of the complexP .

Example:Let the polyhedronuP u be the triangle without interior whose vertices are label
by 1, 2, 3. Then the appropriate simplicial complex isP5$1,2,3,12,13,23% ~for brevity I denote
15$1%,125$1,2%, and so on!. The simplicial coveringt consists of six sets,

V125~1,2!, V15~1,2!ø~1,3!,

V235~2,3!, V25~1,2!ø~2,3!,

V135~1,3!, V35~1,3!ø~2,3!,

where(.,.) denotes the open interval between appropriate vertices. Then the finitary sub
induced by the simplicial coveringT is the finite topological space depicted on the Fig. 2~b!.

V. POLYHEDRAL REPRESENTATIONS OF BASIC DISCRETE DIFFERENTIAL
MANIFOLDS AND THE CORRESPONDENCE THEOREM

In this section the main result of the paper is formulated, namely the transition from
discrete differential manifolds to polyhedra associated with the sameT0-spaces is described. Le
M5(M,V) be a finite-dimensional basic discrete differential manifold.

Lemma 6: Let$ i 0 , . . . ,i r% be a subset ofM. Then there exists at most one basic different
form ea such that

~1! a is a permutation of the elements$ i 0 , . . . ,i r%,
~2! eaÞ0.

Proof:Suppose there areea andeb such thatb is obtained froma by a nontrivial permutation
s. Leta5( i 0 , . . . ,i r). Sinces Þ id, there exists a pair of distinct elementsi , j P M such thati
precedesj in a and j precedesi in b. Thus it follows from ~14! that ia j and ja i , which
contradicts with the assumption dimM,` ~Lemma 3!.

With any finite-dimensional basic discrete differential manifoldM5(M,V), its generated
topological spaceK (M ) ~Definition 6! may be considered as the collection ofsubsets~rather
than-sequences! of the setM: due to Lemma 6 we can forget about the order and differ
ordered sets will become different sets~note that this does not work when dimM5`!)

Recalling the properties ofK (M ) established in the end of Sec. III we see thatK (M ) is
exactly the simplicial complex with the set of verticesM.

Definition 7: Apolyhedral representationof a discrete differential manifold M is the polyhe
dron uK u being a geometrical realization of the simplicial complexK .

Now the main result of the paper can be formulated as the followingcorrespondence theorem:
Theorem 1: Let M5(M,V) be a finite-dimensional discrete differential manifold,K (M ) be

its polyhedral realization. The following two T0-spaces are isomorphic:

~1! The finitary substituteuK u/T with respect to the simplicial coveringT of uK u.
~2! The generated topological spaceK of the basic discrete differential manifold M.

Proof: In fact, everything is already proved. The points of bothT0-spaces are in 1–1 corre
spondence with the elements of the complexK (M ). The partial orders on both finite setsK and
uK u/T are the same being the set inclusion of simplices. ThusK anduK u/T are homeomorphic.
J. Math. Phys., Vol. 38, No. 5, May 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



fold
ntial
dra or
rential

et of
in

o
re are

able

hys.

s,’’ J.

2750 Roman R. Zapatrin: Polyhedral representations

¬¬¬¬¬¬¬¬¬¬
VI. CONCLUDING REMARKS

In Ref. 5 the question which finiteT0-spaces are generated by a discrete differential mani
remained open. In this paper theseT0-spaces are characterized for the case of basic differe
calculi. Moreover, it is seen that simplicial complexes and related structures such as polyhe
simplicial spaces are more adapted to be the topological realizations for discrete diffe
manifolds rather than finitary topological spaces of general form.

However, it should be pointed out that the basic differential calculi form a proper subs
discrete differential calculi.4 The restriction is that we force the appropriate differential ideals
Ṽ to be the linear spans of elements of the preferred basis~2!. There are differential ideals which
are generated by the linear combinations of the forms~2! of degree higher than one, but which d
not contain the summands. The results of this paper having essentially combinatorial natu
not applicable to this class of calculi.
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Comment on: Diffusion through a slab
U. D. J. Gieseler and J. G. Kirk
Max-Planck-Institut fu¨r Kernphysik, Postfach 10 39 80, D-69029 Heidelberg, Germany

~Received 2 December 1996; accepted for publication 20 January 1997!

Mahan@J. Math. Phys.36, 6758~1995!# has calculated the transmission coefficient
and angular distribution of particles which enter athick slab atnormal incidence
and which diffuse in the slab with linear anisotropic, non-absorbing, scattering.
Using orthogonality relations derived by McCormick and Kusˇčer @J. Math. Phys.6,
1939~1965!; 7, 2036~1966!# for the eigenfunctions of the problem, this calculation
is generalized to a boundary condition with particle input atarbitrary angles. It is
also shown how to use the orthogonality relations to relax in a simple way the
restriction to a thick slab. ©1997 American Institute of Physics.
@S0022-2488~97!03205-2#

We consider the equation of radiative transfer with anisotropic scattering in a uniform
which occupies the space 0,z,D, together with a boundary condition which allows particles
enter the slab through the surfacez50 at an angleu5arccosm0 to the normal:1

m
]

]z
f ~z,m!1 f ~z,m!5

1

2E21

1

dm8 f ~z,m8!1
3

2
mg1E

21

1

dm8m8 f ~z,m8!, ~1!

f ~0,m!52 d~m2m0!

f ~D,2m!50 J , for m.0. ~2!

For thick slabs (D@1), Mahan2 has presented a solution to this problem which is valid only
m051. Generalization to arbitrarym0 is of interest when, for example, the particles which en
the slab come from a point source at finite distance, or diffuse before entering the slab.
problems require an integration over the range of incident angles. Even for collimated beam
experimental situation is generally one in which the particles are not normally incident. Ma
method is not readily generalized to solve this problem: his Eq.~78! does not hold when
m0Þ 1, since thenA21(m0) Þ 0.

The general solution to Eq.~1! is3

f ~z,m!5as13 j @m2z~12g1!#1E
0

1

dnH ML~n!

n2m
e2z/n1d~n2m!A~n!ML~n!e2z/nJ

1E
21

0

dnH MR~n!

n2m
e~D2z!/n1d~n2m!A~n!MR~n!e~D2z!/nJ , ~3!

where the constantsas and j , and the functionsML(n) andMR(n), are to be determined from th
boundary conditions. The explicit form of the functionA(m) reads4 as

A~m!522
Q1~m!

P1~m!
5
2

m
~12marctanhm!5

2

m
l~m!, ~4!

wherel(m) is defined by McCormick and Kusˇčer.5 To apply the orthogonality relations, it i
necessary to rewrite the solution in terms of the eigenfunctions used by McCormick and Kuˇčer:6
0022-2488/97/38(5)/2751/4/$10.00
2751J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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fn~m!5
n

2
P

1

n2m
1l~n!d~n2m!, ~5!

which have the property

f2n~m!5fn~2m!. ~6!

Equation~3! can then be written as

f ~z,m!5as13 j @m2z~12g1!#1E
0

1

dnM̃L~n!fn~m!e2z/n1E
0

1

dnM̃R~2n!f2n~m!e~z2D !/n,

~7!

where we have absorbed the factor 2/m into the definition of the functionsM̃R(m) and M̃L(m)
according to

M̃R~m!:5
2

m
MR~m!, M̃L~m!:5

2

m
ML~m!. ~8!

The boundary conditions@Eq. ~2!# then become

2d~m2m0!5as13 jm1E
0

1

dnM̃L~n!fn~m!1E
0

1

dnM̃R~2n!f2n~m!e2D/n, ~9!

05as23 jm23 jD ~12g1!1E
0

1

dnM̃L~n!f2n~m!e2D/n1E
0

1

dnM̃R~2n!fn~m!. ~10!

Defining

B6~n!:5 1
2 @M̃L~n!6M̃R~2n!#, ~11!

and adding and subtracting Eqs.~9! and ~10!, leads to

d~m2m0!5H as

3 jmJ 7
3

2
jD ~12g1!1E

0

1

B6~n!fn~m!dn6E
0

1

B6~n!e2D/nf2n~m!dn.

~12!

In order apply the orthogonality relations, these equations must be multiplied by a weight fun
This function, denoted here and in McCormick and Kusˇčer7 by g(m), is related, but not identical
to theg(m) defined by Mahan,2 and is given by8

g~m!5
3

2

m

X~2m!
, 0<m<1 . ~13!

The functionX(2m) can be written in terms of the Ambartsumian function9 c(m) or the Chan-
drasekharH-function.10 In the limit c→1 these relationships are11,12

X~2m!5
A3

c~m!
5

A3
H~m!

. ~14!

Tables ofX(2m), for 0<m<1 are given by Case and Zweifel;11 numerical evaluation is straight
forward using the representation13
J. Math. Phys., Vol. 38, No. 5, May 1997
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X~2m!5expH 2c

2 E
0

1

dxS 11
cx2

12x2D ln~x1m!

@12cxarctanh~x!#21~pcx/2!2 J , ~15!

wherec is the albedo for single scattering, equal to unity in the case discussed here. W
multiply Eq. ~12! by g(m) and integrate overm from 0 to 1. The integrals overm can be solved
using relations provided by McCormick and Kusˇčer7 ~the numbers above the equals signs in
following refer to the relevant equation numbers!:

E
0

1

g~m!dm5
16

g05
63

1, ~16!

E
0

1

g~m!mdm5
16

g15
25

n̄g05
63

n̄5
83

z0ub5050.7104, ~17!

E
0

1

fn~m!g~m!dm5
69

0, ~18!

E
0

1

f2n~m!g~m!dm5
703

4

n2

g~n!
5

n

2
X~2n!. ~19!

If we denote the extrapolation distance for the Milne problem in the case of isotropic scat
z0ub5050.7104 by simplyz0, then, using the above relations, Eq.~12! becomes

3

2

m0

X~2m0!
5H as

3 jz0
J 7

3

2
jD ~12g1!6E

0

1

B6~n!e2D/n
n

2
X~2n!dn. ~20!

The functionsB6(m) can be calculated by multiplying Eq.~12! by fn8(m)g(m) and integrating
over m from 0 to 1. Using the orthogonality relations,14 one finds inhomogeneous Fredhol
equations forB6(m) which can be solved by Neumann iteration.15 In the thick slab approxima-
tion, where terms of ordere2D are ignored, these Fredholm equations are trivially solved. Eq
tion ~20! for as and j is then also trivial and independent ofB6(m):

3

2

m0

X~2m0!
5H as

3 jz0
J 7

3

2
jD ~12g1!. ~21!

Once the functionsB6(m), and henceML(m) andMR(m) have been found, Eq.~21! provides
as and j and, therefore, the densityf (m,z). It is in principle possible to follow this procedur
taking into account higher order terms} e2D. However, the equations become complicated in t
case.

Equations~21! enable the transmission coefficientT to be evaluated directly. In terms of th
X function we find

T5 j5
m0

X~2m0!

1

D~12g1!12z0
. ~22!

This result generalizes to arbitrarym0 (0<m0<1) the result of Mahan2 @Eq. ~110!#, with which it
agrees form051. In the case of isotropic scattering,g150, Eq. ~22! is in agreement with the
result of McCormick and Mendelson12 @Eq. ~35!#.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Finally, it should be noted that McCormick and Kusˇčer16 have also found orthogonality
relations which can be used to solve half-space transport problems with higher order aniso

1Reference 2, Eqs.~4!–~6!.
2G. D. Mahan, J. Math. Phys.36, 6758~1995!.
3Reference 2, Eqs.~88! and ~89!.
4Reference 2, Eq.~29!.
5Reference 7, Eq.~5! in which, for the case of pure scattering considered here, the limitc→1 must be taken.
6Reference 7, Eq.~4!, and Ref. 11, Section 6.9.
7N. J. McCormick and I. Kusˇčer, J. Math. Phys.6, 1939~1965!.
8Reference 7, Eq.~15!, taking the limitc→1.
9Reference 2, Eq.~7!.
10S. Chandrasekhar,Radiative Transfer~Dover, New York, 1960!, using the definition ofH appropriate for isotropic
scattering.

11K. M. Case and P. F. Zweifel,Linear Transport Theory~Addison–Wesley, London, 1967!.
12N. J. McCormick and M. R. Mendelson, Nucl. Sci. Eng.20, 462 ~1964!.
13Reference 11, p. 130, Eq.~39!.
14Reference 7, Eqs.~64! and ~65!.
15Reference 12 treats the case of isotropic scattering.@Note that the expressions forB6(m) given there contain errors.#
16N. J. McCormick and I. Kusˇčer, J. Math. Phys.7, 2036~1966!.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Comment on: Path integral solution of the Schro ¨dinger
equation in curvilinear coordinates: A straightforward
procedure [J. Math. Phys. 37, 4310–4319 (1996)]

Alexander Wurm and John LaChapelle
Department of Physics and Center for Relativity, University of Texas, Austin, Texas 78712

~Received 31 December 1996; accepted for publication 31 December 1996!

@S0022-2488~97!02905-8#

In the paper ‘‘Path integral solution of the Schro¨dinger equation in curvilinear coordinate
A straightforward procedure,’’ a framework for functional integration due
Cartier–DeWitt-Morette1 was used to construct the solution of the Schro¨dinger equation in cur-
vilinear coordinates. The specific case of three-dimensional spherical coordinates was inclu
an example. Alexander Wurm’s Master thesis2 contains explicit expressions for the parametriz
tion, its solution, and the Lie derivatives for the case ofn-dimensional spherical coordinates. W
believe that it would be convenient to catalog these formulas here.

We usen-dimensional spherical coordinates

xn5r cosun21,

xn215r sin un21 cosun22,

A

x25r sin un21 sin un22••• sin u2 cosu1,

x15r sin un21 sin un22••• sin u1, ~1!

where 0, r , `, 0 < u1 , 2p and 0< u i , p for i 5 2,...,n 2 1. ~Notice: The determinant o
the transformation matrix is negative.!

Set

dxi5M j
i dj j , ~2!

where the$j j% are the spherical coordinates$r ,u1,...,un21%.
The parametrization is then given by

dj~ t,z!5M21dz~ t ! ~3!

which is explicitly:
~Notice: The time dependence of the angles is suppressed.!

dr~ t,z!5sin un21••• sin u1dz1~ t !1sin un21••• sin u2 cosu1dz2~ t !

1sin un21••• sin u3 cosu2dz3~ t !1•••1sin un21 cosun22dzn21~ t !

1cosun21dzn~ t !,
0022-2488/97/38(5)/2755/3/$10.00
2755J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics
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dun21~ t,z!5
cosun21 sin un22••• sin u1

r ~ t !
dz1~ t !1

cosun21 sin un22••• sin u2 cosu1

r ~ t !
dz2~ t !

1
cosun21 sin un22••• cosu2

r ~ t !
dz3~ t !1•••1

cosun21 cosun22

r ~ t !
dzn21~ t !

2
sin un21

r ~ t !
dzn~ t !,

dun22~ t,z!5
cosun22 sin un23••• sin u1

r ~ t !sin un21 dz1~ t !1
cosun22 sin un23••• sin u2 cosu1

r ~ t !sin un21 dz2~ t !

1
cosun22 sin un23••• cosu2

r ~ t !sin un21 dz3~ t !1•••1
cosun22 cosun23

r ~ t !sin un21 dzn21~ t !

2
sin un22

r ~ t !sin un21 dz
n~ t !,

•

•

•

du2~ t,z!5
cosu2 sin u1

r ~ t !sin un21••• sin u3
dz1~ t !1

cosu2 cosu1

r ~ t !sin un21••• sin u3
dz2~ t !

2
sin u2

r ~ t !sin un21••• sin u3
dz3~ t !,

du1~ t,z!5
cosu1

r ~ t !sin un21••• sin u2
dz1~ t !2

sin u1

r ~ t !sin un21••• sin u2
dz2~ t !, ~4!

with

H r ~ t f !5r f ,
u i~ t f !5u f

i , i51,2,...,n21. ~5!

The solution of Eq.~4! is

r ~ t,z!5H (
i51

n

~xi !2J 1/2:5$~r f sin u f
n21••• sin u f

11z1~ t !!21•••1~r f cosu f
n211zn~ t !!2%1/2,

tan un21~ t,z!5
$( i51

n21~xi !2%1/2

xn
,

A

tan u2~ t,z!5
$~x1!21~x2!%1/2

x3
,

tan u1~ t,z!5
x1

x2
. ~6!
J. Math. Phys., Vol. 38, No. 5, May 1997
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From Eq.~4! one can read off the vector fields. They are the column vectors of the tran
mation matrixM21 without thet dependence.

The corresponding Lie derivatives for the partial differential equation~see Ref. 1! are the
same as the vector fields in the flat space case. We give one example:

Lx~1!
5X~1!5sin un21••• sin u1

]

]r
1
cosun21 sin un22••• sin u1

r

]

]un21

1
cosun22 sin un23••• sin u1

r sin un21

]

]un22 1•••1
cosu2 sin u1

r sin un21••• sin u3
]

]u2

1
cosu1

r sin un21••• sin u2
]

]u1
. ~7!

Substituting these Lie derivatives into the partial differential equation will result in the Sc¨-
dinger equation~see Ref. 3! in n-dimensional spherical coordinates.

1P. Cartier and C. DeWitt-Morette, ‘‘A new perspective on functional integration,’’ J. Math. Phys.36, 2237–2312~1995!.
2A. Wurm, ‘‘Angular-momentum-to-angular momentum transition in the DeWitt/Cartier path integral formalism,’’ M
thesis, University of Texas at Austin, 1995.
J. Math. Phys., Vol. 38, No. 5, May 1997
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Geometric approach to inverse scattering for the
Schrö dinger equation with magnetic and electric potentials

Silke Ariansa)
Institut für Reine und Angewandte Mathematik, RWTH Aachen,
D-52056 Aachen, Germany

~Received 20 September 1996; accepted for publication 21 January 1997!

We consider the HamiltonianH5„p2A(x)…2/(2m)1V(x) of a quantum particle
in a magnetic fieldB5rot A and a potentialV in space dimensionsn>2. If V is of
short range, then the high-velocity limit of the scattering operator uniquely deter-
mines the magnetic fieldB and the potentialV. If, in addition, long-range poten-
tials Vl are present, some knowledge of~the far out tail of! Vl is needed to define
a modified Dollard wave operator and a scattering operatorSD. Again its high-
velocity limit uniquely determinesB andV5Vs1Vl . Moreover, we give explicit
error bounds which are inverse proportional to the velocity. ©1997 American
Institute of Physics.@S0022-2488~97!01205-X#

I. INTRODUCTION

We study a two-body quantum mechanical system in an electromagnetic field in more th
equal to two space dimensions. Here the interactions are given by a magnetic fieldB, which is
equal torot A for a vector potentialA, and a scalar potentialV. In our article we consider the
nonrelativistic Schro¨dinger case.

In the direct problem the magnetic field and the scalar potential are given. The aim is to
existence and completeness of the wave operators. This has been done by various autho
electromagnetic case~e.g., Ref. 1 and references there!. In the inverse problem the scatterin
operator, which is an operator from the incoming to the outgoing states, is given. The aim
unique reconstruction of the magnetic field and the scalar potential.

The main result of this article is that the high-velocity limit of the scattering operator uniq
determines the magnetic field and the scalar potential. We give reconstruction formulas
contain the x-ray transform of the scalar potential and some expression similar to the
transform of the vector potential. As the x-ray transform cannot be uniquely inverted in s
dimension one, we consider dimensions greater than or equal to two.

We cannot expect a reconstruction of both the magnetic and electric field in one step as
Dirac case~see Ref. 2!, where the order of the vector and the scalar potential is the same, be
in the definition of the Hamiltonian~1.3! the order of the vector potential is one and the order
the scalar potential is zero. Therefore we first find a reconstruction for the magnetic fieldB. Then,
knowingB, we can find a reconstruction for the scalar potential.

The main difficulty was finding integrable majorants to show that the difference of the w
operator~with the scalar potential! and the limit operator~without the scalar potential! is inverse
proportional to the velocity~Lemmata 6 and 7!. Then we are allowed to interchange the hig
velocity limit and the integral and are able to find the reconstruction formula for the s
potential. Another difficulty was to avoid assumptions on the second derivative of the v
potential. With the help of~2.10! and~2.12! we only need decay assumptions on a quantity wh
is proportional to the current density in three dimensions.

The article is organized as follows. In Sec. I we make assumptions on the potentials an
our results. In Sec. II we give the proofs of Theorems 1 and 2 in the short-range case. In S

a!Electronic mail address: silke@iram.rwth-aachen.de
0022-2488/97/38(6)/2761/13/$10.00
2761J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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we generalize the results to the long-range case and prove Theorems 3 and 4. In Sec.
remark that we can construct suitable gauges for the vector potential if the magnetic fi
compactly supported. Then we do not need decay assumptions of the vector potential for p
the reconstruction formulas.

The scalar potential can be split into a short-range and a long-range part:V5Vs1Vl .
Vs is assumed to be short range, i.e.,VsPV SRwith

V SR:5HVsuVs is Kato small with relative bound,1,

E
0

`

dRiVs~y!F~ uyu>R!~2D11!21i,`J ,
where F(yPM) denotes the multiplication operator with the characteristic funct
x$yPM%(y). V

l is assumed to be long range~i.e.,VlPC1(Rn), Vl tends to zero asymptotically an
u“Vl(y)u<const(11uyu)2g with g.3/2!. Each component of the field strength tensorF5dA is
Kato small, and the decay for each component is assumed as

iFi j ~y!F~ uyu>R!~2D11!21i<const~11R!2~21d!, d.0. ~1.1!

In addition we assume

i] iFi j ~y!F~ uyu>R!~2D11!21i<const~11R!2~21 d̃ !, d̃.0. ~1.2!

In n53 dimensions the vector (( i51
3 ] iFi j ) j51,2,352rot B and up to a constant equal to th

current density. Each component of the vector potential is supposed to be a continuous,
rangeL2-function with short-range divA. For A i andFi j a regularization with (2D11)21/2 is
sufficient. We remark that for the proof of the reconstruction formulas the decay assumptio
the vector potential can be weakened, if the magnetic field is compactly supported~see Generali-
zation!. By H05(1/2m)p2 we denote the free Hamiltonian and by

H5
1

2m
~p2A~x!!21V~x!5H02

1

m
A~x!p1

i

2m
div A1

1

2m
uAu2~x!1V~x! ~1.3!

we denote the interacting Hamiltonian with reduced massm and momentump52 i“x . Then the
interacting Hamiltonian is self-adjoint on the domainD(H)5D(H0)5W2,2(Rn) in the Hilbert
spaceH5L2(Rn).

In the special case, whenV is of short range, the wave operators

V6 :5s-lim
t→6`

eiHte2 iH0t ~1.4!

exist and are complete~see, e.g., Ref. 1, Theorem 4.1, and Ref. 3, Theorem 3.7!. The scattering
operatorS is

S:5~V1!*V2 . ~1.5!

Let F0PH be a normalized asymptotic configuration with compact momentum support in
ball of radiusmh, h.0, and momentum space wave functionf0PC0

`
„Bmh(0)…. We can find a

function fPC0
`(Rn) such thatF05 f (p)F0 . By Fv we denote the boosted configuration tran

lated bymv in momentum space, wherev is the velocity:

Fv5eimvxF0⇔f̂v~p!5f̂0~p2mv!, ~1.6!
J. Math. Phys., Vol. 38, No. 6, June 1997
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which has compact velocity support inBh(v). Let v:5uvu and without loss of generality letv
>16h. We will obtain asymptotics ofS for the high velocity limit in an arbitrary direction
v̂:5v/v for v→`.

Theorem 1: Suppose that V5Vs. Then the following formula for the asymptotics of S ho
for all Fv , Cv as in Eq. (1.6):

lim
v→`

~SFv ,Cv!5~ei*2`
` v̂A~x1j v̂! djF0 ,C0!. ~1.7!

In particular, the scattering operator S uniquely determines the magnetic fieldB.
In the following we will useT(B) andT̃(B,Vl) as abbreviations for explicit operators whic

are independent ofVs to avoid long formulas, but we will give the reference number where
can find the explicit operators in this article.

RegardingS as a mapping from the set of short-range potentialsV SR into the set of bounded
operatorsL(H), we have the following

Theorem 2: Suppose that V5Vs. Then the following reconstruction formula holds for a
Fv, Cv as in Eq. (1.6):

lim
v→`

iv„~e2 i*2`
` v̂A~x1j v̂!djS21!Fv,Cv…2„T~B!F0 ,C0…5E

2`

`

„Vs~x1t v̂!F0 ,C0… dt, ~1.8!

where T(B) is an explicit operator which is independent of Vs [see (2.29)]. In particular, for a
given magnetic fieldB the scattering map

S~B,• !:V SR→L~H!

is injective.
For V5Vs1Vl , the modified Dollard wave operators

V6
D :5s2 lim

t→6`

eiHtUD~ t,0! with UD~ t,0!5e2 iH0te2 i*0
t Vl ~sp/m!ds ~1.9!

exist and are complete~see, e.g., Ref. 1, Theorem 4.1 and Ref. 3, Theorem 3.14!, and

SD5~V1
D !*V2

D ~1.10!

is the scattering operatorSD. Since the splitting ofV into a short- and a long-range part is n
unique the Dollard wave operators are not uniquely defined. Nevertheless, the magnetic fie
the scalar potential are uniquely obtained from any of the scattering operatorsSD.

Theorem 3:The same formula for the asymptotics of SD as in the short-range case holds fo
all Fv, Cv as in Eq. (1.6):

lim
v→`

~SDFv,Cv!5~ei*2`
` v̂A~x1j v̂! djF0 ,C0!. ~1.11!

In particular, the scattering operator SD uniquely determines the magnetic field.
Theorem 4: The following reconstruction formula holds for allFv, Cv as in Eq. (1.6):

lim
v→`

iv„~e2 i*2`
` v̂A~x1j v̂! djSD21!Fv,Cv…2„T̃~B,Vl !F0 ,F0…5E

2`

`

„Vs~x1t v̂!F0 ,C0… dt,

~1.12!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where T̃(B,Vl) is an explicit operator which is independent of Vs [see (3.12)]. In particular, for
a given magnetic field, B and a long-range potential Vl the scattering map

SD~B,Vl ,• !:V SR→L~H!

is injective.
Moreover, the following formula holds for allFv, Cv as in Eq. (1.6):

lim
v→`

iv~@e2 i*2`
` v̂A~x1j v̂!djSD,p1#Fv ,Cv!2„T̄~B!F0 ,C0…

5E
2`

`

$„Vs~x1t v̂!p1F0 ,C0…

1„Vs~x1t v̂!F0 ,p1C0…1 i „~]1V
l !~x1t v̂!F0 ,C0…%dt, ~1.13!

where T̄(B) is an explicit operator which is independent of V. In particular, if B is given, any of
the scattering operators SD uniquely determines the total potential V.

All formulas hold in the high-velocity limit. For large, but fixed,v we obtain an error term o
orderO (v21) @see~2.30! and ~3.13! for details#.

Remark 5: For two short-rangeA and Ã with B5rot A5rot Ã , we can find a functionl
PC2(Rn) tending to zero asymptotically withÃ5A1“l. Then S(D) and exp„6*2`

` v̂A(x
1j v̂)dj… are gauge invariant under these gauge transformations and all formulas are inde
dent of the special choice of the gauge.

Our proofs use a geometric, time-dependent method developed by Enss and Wede
method has been used in Ref. 4 to prove Theorems 2 and 4 in the case without magnetic

To our knowledge the case with magnetic fields was previously treated by Novikov
Khenkin in Ref. 5. Eskin and Ralston proved in Ref. 6 that the scattering operator at fixed e
uniquely determines the magnetic field and the scalar potential by stationary phase meth
exponentially decayingA andVs. The results of Nicoleau in Ref. 7 are similar to our Theore
1–4: By stationary methods he proves that the high-energy limit uniquely determines the ma
field and the scalar potential, where the potentials have to beC`-functions with stronger decay
assumptions on higher derivatives, but not necessarily short-range vector potential. In these
singularities of the short-range part are not included.

II. PROOF IN THE SHORT-RANGE CASE V5Vs

We first computeV2Fv using the abbreviation

I ~x,p!:5H2H05Vs~x!1
i

2m
div A1

1

2m
uAu2~x!2

1

m
A~x!p ~2.1!

for the short-range interaction by the scalar and the vector potentials.

V2Fv5Fv2E
2`

0

dt
d

dt
~eiHte2 iH0t!Fv

5Fv2E
2`

0

dt eiHt iI ~x,p!e2 iH0tFv

5eimvxF02E
2`

0

dt eimvxei ~H1„p2A~x!…v!t i I ~x,p1mv!e2 i ~H01pv!tF0 , ~2.2!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where the relatione2 imvxf (p)eimvx5 f (p1mv) is used. With the abbreviations

H2 :5H/v1„p2A~x!…v̂ and H1 :5H0 /v1pv̂ ~2.3!

and the substitutiont5vt we obtain

V2Fv5eimvxV2~H2 ,H1!F0 .

If there is an integrable bound of the integrand in~2.2! uniformly in v we can interchange the
high-velocity limit and the integral by the dominated convergence theorem. SinceA, div A,
uAu2, andVs are of short range the existence of such an integrable bound can be shown as
case without magnetic field~see Ref. 4, Lemma 2.2!. We conclude

lim
v→`

e2 imvxV2Fv5F02E
2`

0

dt ei „p2A~x!…v̂t
„2 iA~x!v̂…e2 ipv̂tF0

5 lim
t→2`

ei „p2A~x!…v̂te2 ipv̂tF0

5:V2~„p2A~x!…v̂,pv̂!F0 , ~2.4!

where s-limv→` exp(iH2t)5exp(i„p2A(x)…v̂t) and s-limv→` exp(iH1t)5exp(ipv̂t) for fixed t is
used. We observe that the terms of order zero~div A, uAu2, andVs! vanish and only the term o
order one remains in the high-velocity limit. It is obvious that the same computation can be
for V1 ~by replacing2` with 1`!. Analogously we obtain

V1~„p2A~x!…v̂,pv̂!:5s2 lim
t→1`

ei „p2A~x!…v̂te2 ipv̂t. ~2.5!

We can prove that

ei ~p2A~x!!v̂te2 ipv̂tei*0
t v̂A~x1j v̂! dj51

holds for alltPR by showing that the derivativesd/dt of both sides are equal. Consequently w
get the following explicit expressions for~2.4! and ~2.5!:

V2~„p2A~x!…v̂,pv̂!F05e1 i*2`
0 v̂A~x1j v̂! djF0 , ~2.6!

V1~„p2A~x!…v̂,pv̂!C05e2 i*0
`v̂A~x1j v̂! djC0 . ~2.7!

Therefore the scattering operatorS is equal to exp„i*2`
` v̂A(x1j v̂) dj… in the high-velocity limit

v→` and we obtain formula~1.7!:

lim
v→`

~SFv ,Fv!5~ei*2`
` v̂A~x1j v̂! djF0 ,C0!.

So far we have only used that divA and the components ofA are inV SR.
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As A is continuous we infer*2`
` v̂A(x1j v̂) dj from above. This integral transform unique

determines the magnetic fieldrot A5B @see Ref. 2, Lemma 3.4, forAP„L2(Rn)…nù„C0(Rn)…n

and Ref. 8, Lemma 3.4, forAP„C2(Rn)…n and more decay assumptions onA#. Hence Theorem 1
is proved. j

Now B is given and after choosing a short-rangeA with rot A5B especially
V6(„p2A(x)…v̂,pv̂) is known. Because of~2.4! we are interested in the difference

V6~H2 ,H1!2V6~„p2A~x!…v̂,pv̂!. ~2.8!

We need the following intertwining properties ofV6(„p2A(x)…v̂,pv̂) in order to show that the
norm of this difference is of orderO (v21):

„p2A~x!…V6~„p2A~x!…v̂,pv̂!5V6~„p2A~x!…v̂,pv̂!S p2A~x!2“E
0

6`

v̂A~x1j v̂! dj D
~2.9!

5V6~„p2A~x!…v̂,pv̂!S p2E
0

6`

~ v̂3B!~x1j v̂! dj D ,
~2.10!

and for finitetPR:

„p2A~x!…e2 i*0
t v̂A~x1j v̂! dj5e2 i*0

t v̂A~x1j v̂! djS p2A~x!2“E
0

t

A~x1j v̂! dj D ~2.11!

5e2 i*0
t v̂A~x1j v̂! djS p2A~x1t v̂!2E

0

t

~ v̂3B!~x1j v̂! dj D .
~2.12!

Equalities~2.9! and ~2.11! can be proven by showing

d

ds
~ei*0

t v̂A~x1j v̂! dj s
„p2A~x!…e2 i*0

t v̂A~x1j v̂! dj s!5
d

ds S p2A~x!2“E
0

t

v̂A~x1j v̂! dj sD .
An easy calculus gives“*0

6`v̂A(x1j v̂) dj5*0
6`( v̂3B)(x1j v̂) dj2A(x), respectively,

“*0
t v̂A(x1j v̂) dj5*0

t ( v̂3B)(x1j v̂) dj1A(x1t v̂)2A(x), and thus equalities~2.10! and
~2.12!, where we use the three-dimensional notation (v̂3B) for all dimensions with (v̂3B) as a
notation for

~ v̂3B! i5(
j51

n

Fi j v̂j . ~2.13!

In the following we use the abbreviation

F̂6~x!:5E
0

6`

~ v̂3B!~x1j v̂! dj. ~2.14!

Lemma 6: For H2 and H1 as defined in (2.3),

i$V6~H2 ,H1!2V6~„p2A~x!…v̂,pv̂!%F0i5O ~v21!. ~2.15!

Proof:We formally compute the difference
J. Math. Phys., Vol. 38, No. 6, June 1997
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V6~H2 ,H1!2V6~~p2A~x!!v̂,pv̂!

5 lim
t→6`

eiH2te2 iH1t2e2 i*0
t v̂A~x1j v̂! dj

5 lim
t→6`

eiH2t$12e2 iH2te2 i*0
t v̂A~x1j v̂! djeiH1t%e2 iH1t

52 lim
t→6`

eiH2tE
0

t

dt
d

dt
$e2 iH2te2 i*0

t v̂A~x1j v̂! djeiH1t%e2 iH1t

5 lim
t→6`

eiH2tE
0

t

dt e2 iH2ti $H2e
2 i*0

t v̂A~x1j v̂!dj

2e2 i*0
t v̂A~x1j v̂!dj@H12 v̂A~x1t v̂!#%eiH1te2 iH1t

5 lim
t→6`

E
0

t

dt eiH2ti $H2e
2 i*0

t2t v̂A~x1j v̂!dj2e2 i*0
t2t v̂A~x1j v̂!dj@H12 v̂A„x1~ t2t!v̂…#%e2 iH1t.

~2.16!

Now we calculate the following difference with the help of~2.12!:

$H2e
2 i*0

t2t v̂A~x1j v̂! dj2e2 i*0
t2t v̂A~x1j v̂! dj@H12 v̂A„x1~ t2t!v̂…#%

5v21e2 i*0
t2tv̂A~x1j v̂! djH 2

1

2m
pS E

0

t2t

~ v̂3B!~x1j v̂! dj1A„x1~ t2t!v̂…D
2

1

2m S E
0

t2t

~ v̂3B!~x1j v̂!dj1A„x1~ t2t!v̂…D p
1

1

2m S E
0

t2t

~ v̂3B!~x1j v̂!dj1A„x1~ t2t!v̂…D 21Vs~x!J
'

t→1`

v21e2 i*0
6`v̂A~x1j v̂! djS 2

1

2m
pF̂6~x!2

1

2m
F̂6~x!p1

1

2m
F̂6
2 ~x!1Vs~x! D ,

where we used (v̂3B) v̂50 which follows, from the antisymmetry of the field strength tens
F. Sincei(11x2)3/2F0i<const,`, the norm of~2.15! in the caset.0 ~the caset,0 is treated
analogously! is bounded by

v21E
0

t

dt I H 2
1

2m
~p2mv!S E

0

t2t

~ v̂3B!~x1j v̂! dj1A~x1t v̂! D
2

1

2m S E
0

t2t

~ v̂3B!~x1j v̂! dj1A~x1t v̂! D ~p2mv!

1
1

2m S E
0

t2t

~ v̂3B!~x1j v̂!dj1A~x1t v̂! D 21Vs~x!J
3e2 iH0t/v f ~p2mv!~11x2!23/2I<

!

v21E
0

t

dt h~ utu!. ~2.17!

If there is such an integrable majoranthPL1(@0,6`),dt) for the norm~2.17! uniformly in v, we
finished the proof.
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The integrability of the summand withVs is proven in Ref. 4, Lemma 2.2. We know that fo
a function f̄PC0

`(Rn) with f̄[1 on the support off i*0
t2t dj ( v̂3B) i(x1j v̂)F(ux2t v̂u

<utu/4) f̄ (p)i<const(11utu)2(11d), d.0, because of

E
0

t2t

dj i~ v̂3B! i~x1j v̂!F~ ux2t v̂u<utu/4! f̄ ~p!i<E
t

t

dj i~ v̂3B! i~x1j v̂!F~ uxu<utu/4! f̄ ~p!i

<E
t

t

dj i~ v̂3B! i~x!F~ ux2j v̂u<uju/4! f̄ ~p!i<(
j51

n E
t

t

dj i v̂jFi j ~x!F~ uxu<3uju/4! f̄ ~p!i

<const(
j51

n E
t

t

dj ~11uju/2!2~21d!

<const~11utu!2~11d!, ~2.18!

where we used the decay assumption on each componentFi j . Besides

iA i„x1~ t2t!v̂…F~ ux2t v̂u<utu/4! f̄ ~p!i5iA i~x!F~ ux2t v̂u<utu/4! f̄ ~p!i

<iA i~x!F~ uxu>3utu/4! f̄ ~p!i

<h1~ utu!, ~2.19!

where we used that each component ofA is of short range. For the terms in~2.17! with p2mv on
the left side, we have to calculate the commutator withp and infer( i , j51

n ] iFi j v̂j and divA. In the
same way as above we can show that

I E
0

t2t

dj (
i , j51

n

] iFi j v̂j~x1j v̂!F~ ux2t v̂u<utu/4! f̄ ~p!I<h2~ utu! ~2.20!

and

idiv A„x1~ t2t!v̂…F~ ux2t v̂u<utu/4! f̄ ~p!i<h3~ utu! ~2.21!

by using the decay assumptions on] iFi j and divA. We remark that inn53 dimensions
( i , j51
3 ] iFi j v̂j52rot rot Av̂ 52rot Bv̂52m0jv̂ with permeability constantm0 and current den-

sity j . The integrable bound can be shown as in Ref. 4, Proof of Lemma 2.2, by using

iF~ uxu>utu/8!~11x2!23/2i<const~11utu!22 ~2.22!

and

iF~ ux2t v̂u>utu/4!e2 iH0t/v f ~p2mv!F~ uxu<utu/8!i<Cl~11utu!2 l ~2.23!

uniformly in v for l51,2,...,which is a propagation property expressing the fact that the solut
of the free Schro¨dinger equation have rapid decay away from the classically allowed region~see
Ref. 9, Proposition 2.10, or Ref. 4, Proposition 2.1!. j

To get shorter formulas we define
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ula

2769Silke Arians: Inverse scattering for the Schrödinger equation

¬¬¬¬¬¬¬¬¬¬
K6~p,x!:52
1

2m
pF̂6~x!2

1

2m
F̂6~x!p1

1

2m
F̂6
2 ~x! ~2.24!

with F̂6 as defined in~2.14!. In particular, the proof of Lemma 6 shows

v$V6~H2 ,H1!2V6~„p2A~x!…v̂,pv̂!%F0 '
v→`

i E
0

6`

dt e2 i*0
6`v̂A~x1j v̂! dj

„Vs~x1t v̂!

1K6~p,x1t v̂!…F0 , ~2.25!

where s-limv→` exp(iH2t)5exp(i„p2A(x)…v̂t) and s-limv→` exp(iH1t)5exp(ipv̂t) for fixed t
is used. Hence we already know that

V6~H2 ,H1!2V6~„p2A~x!…v̂,pv̂!5:R65O ~v21!

and s-limv→` vR6 is explicitly known. Now we complete the proof of the reconstruction form
for Vs and calculate the following limit:

~2.26!

We subtract the terms ofR6 which only depend onB, multiply in the scalar product with
exp„2 i*2`

` v̂A(x1j v̂)dj… and obtain

lim
v→`

iv~e2 i*2`
` v̂A~x1j v̂! dj~S2ei*2`

` v̂A~x1j v̂! dj!Fv ,Cv!

2E
0

`

~e2 i*2`
` v̂A~x1j v̂! djK1~p,x1t v̂!ei*2`

` v̂A~x1j v̂! djF0 ,C0! dt

2E
2`

0

„K2~p,x1t v̂!F0 ,C0… dt ~2.27!

5E
2`

`

~Vs~x1t v̂!F0 ,C0… dt, ~2.28!

which is the desired reconstruction formula in Theorem 2 with the following operatorT(B) which
is independent ofVs:
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T~B!:5E
0

`

e2 i*2`
` v̂A~x1j v̂! djK1~p,x1t v̂!ei*2`

` v̂A~x1j v̂! dj dt1E
2`

0

K2~p,x1t v̂! dt

~2.29!

andK6 defined in~2.24!. The error term can be calculated from~2.26! and is bounded by

v21ivR2F0iivR1C0i . ~2.30!

Therefore the error bounds are of orderO (v21).
HereS is known andB is known. Then the terms depending only onB can be computed and

~2.28! is known for allF0 andC0 in a dense set. The injectivity of the scattering map results fr
the fact that the reconstruction of the potentialVs can be reduced to the inversion of the Rad
transform of a bounded, continuous, square integrable function onR2 ~see Ref. 4, Proof of
Theorem 1.1! which uniquely determines the function~see Ref. 10, Chapter I, Theorem 2.17!.
Hence Theorem 2 is proved. j

III. PROOF IN THE LONG-RANGE CASE V5Vs1Vl

Now H5„p2A(x)…/(2m)1V(x) with V5Vs1Vl . We use the abbreviation

I l~x,p,t !:5Vl~x!2Vl~ tp/m! ~3.1!

for the long-range interaction and computeV2
DFv :

V2
DFv5Fv2E

2`

0

dt
d

dt
„eiHtUD~ t !…Fv

5eimvxF02E
2`

0

dt eimvxei ~H1„p2A~x!…v!ti $I ~x,p1mv!

1I l~x,p1mv,t !%e2 i ~H0t1pvt1*0
t Vl „s~p1mv!/m… ds!F0 . ~3.2!

With the abbreviations

H2 :5H/v1„p2A~x!…v̂ and H1
D~t!:5H0 /v1pv̂1v21Vl S p1mv

m

t

v D , ~3.3!

whereH1
D(t) generates

ŪD~t/v,0!:5expH 2 i XH0t/v1pv̂t1v21E
0

t

Vl S p1mv

m

s

v DdsCJ , ~3.4!

we obtain the following relation:

V2
DFv5eimvxV2~H2 ,H1

D!F0 .

If there is an integrable bound of the integrand in~3.2! uniformly in v, we can interchange the
high-velocity limit and the integral. SinceA, div A, uAu2, andVs are of short range, the existenc
of such an integrable bound forI can be shown as in the case without magnetic field~see Ref. 4,
Lemma 3.2!. The integrable bound forI l is given in Ref. 4, Lemma 3.3. Similar to the short-ran
case we conclude

lim
v→`

e2 imvxV2
DFv5V2~„p2A~x!…v̂,pv̂!F0 , ~3.5!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where s-limv→` exp(iH2t)5exp(i„p2A(x)…v̂t) and s-limv→` exp„iH 1
D(t)…5exp(ipv̂t) for fixed

t is used. It is obvious that the same computation can be done forV1
D ~by replacing2` with

1`!.
Then the scattering operatorSD yields the same high-velocity limit as in the short-range ca

that isSD '
v→`

exp„i*2`
` v̂A(x1j v̂)dj…, and we obtain formula~1.11!:

lim
v→`

~SDFv ,Cv!5~ei*2`
` v̂A~x1j v̂!djF0 ,C0!.

So far we have only used that divA and the components ofA are inV SR.
For AP„L2(Rn)…nù„C0(Rn)…n formula ~1.11! uniquely determines the magnetic fieldB,

which has been noted above. Hence Theorem 3 is proved. j

Now B is given and after choosing a short-rangeA with rot A5B especially
V6(„p2A(x)…v̂,pv̂) is known. Again, we are interested in the difference

V6~H2 ,H1
D!2V6~„p2A~x!…v̂,pv̂! ~3.6!

and show
Lemma 7: For H2 and H1

D as defined in (3.3),

i$V6~H2 ,H1
D!2V6~„p2A~x!…v̂,pv̂!%F0i5O ~v1!. ~3.7!

Proof:We compute the difference and obtain similar to~2.16!:

V6~H2 ,H1
D!2V6~„p2A~x!…v̂,pv̂!

52 lim
t→6`

eiH2tE
0

t

dt
d

dt
$e2 iH2te2 i*0

t v̂A~x1j ŷ! djŪD
„~ t2t!/v,t/v !%ŪD~ t/v,0!

5 lim
t→6`

E
0

t

dt eiH2ti $H2e
2 i*0

t2t v̂A~x1j v̂!dj2e2 i*0
t2t v̂A~x1j v̂!dj @H1

D~ t2t!

2 v̂A„x1~ t2t!v̂…#%ŪD~t/v,0! ~3.8!

with ŪD(t/v,0) as defined in~3.4!. Then~3.8! is bounded by

v21 lim
t→6`

E
0

t

dt I H 2
1

2m
~p2mv!S E

0

t2t

~ v̂3B!~x1j v̂! dj1A~x1t v̂! D
2

1

2m S E
0

t2t

~ v̂3B!~x1j v̂! dj1A~x1t v̂! D ~p2mv!

1
1

2m S E
0

t2t

~ v̂3B!~x1j v̂! dj1A~x1t v̂! D 2
1Vs~x!1Vl~x!2Vl S pm t

v D JUD~t/v,0! f ~p2mv!~11x2!22I
<
!

v21E
0

6`

dt h~ utu!. ~3.9!
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If we find an integrable majoranthPL1(@0,6`),dt) for the norm ~3.9! uniformly in v we
finished the proof.

The integrability of the summand withVs is proven in Ref. 4, Lemma 3.2, and of the sum
mand withVl(x)2Vl

„(p/m)t/v… in Ref. 4, Lemma 3.3. With~2.18!–~2.21! the integrability of the
remaining terms can be shown as in Ref. 4, Proof of Lemma 3.2, with the help of~2.23! and

iF~ uxu>utu/8!e2 i*0
t/vVl ~sp/m! dsf ~p2mv!~11x2!22i<C~11utu!2~21e! ~3.10!

with e.0. For the propagation property of the Dollard correction~3.10! see Ref. 4, Proposition
3.1. j

Similar to ~2.25! the proof of Lemma 7 shows withK6 as defined in~2.24!:

v$V6~H2 ,H1
D!2V6~„p2A~x!…v̂,pv̂!%F0

'
v→`

i E
0

6`

dt e2 i*0
6` v̂A~x1j v̂! dj$Vs~x1t v̂!1Vl~x1t v̂!2Vl~t v̂!%F0

1 i E
0

6`

dt e2 i*0
6` v̂A~x1j v̂! djK6~p,x1t v̂!F0 ,

where s-limv→` exp(iH2t)5exp(i„p2A(x)…v̂t) and s-limv→` exp„iH 1
D(t)…5exp(ipv̂t) for fixed

t is used. Hence we already know that

V6~H2 ,H1
D!2V6~„p2A~x!…v̂,pv̂!5:R6

D5O ~v21!

and s-limv→` vR6
D is explicitly known. As in the short-range case we complete the proof of

reconstruction formula forVs and obtain

lim
v→`

iv~e2 i*2`
` v̂A~x1j v̂! dj~SD2ei*2`

` v̂A~x1j v̂! dj!Fv ,Cv!

2E
0

`

~e2 i*2`
` v̂A~x1j v̂! djK1~p,x1t v̂!ei*2`

` v̂A~x1j v̂! djF0 ,C0! dt

2E
2`

0

~K2~p,x1t v̂!F0 ,C0! dt2E
2`

`

~$Vl~x1t v̂!2Vl~t v̂!%F0 ,C0! dt

5E
2`

`

„Vs~x1t v̂!F0 ,C0) dt, ~3.11!

which is the reconstruction formula~1.12! in Theorem 4 with the following operatorT̃(B,Vl)
which is independent ofVs:

T̃~B,Vl !:5E
0

`

e2 i*2`
` v̂A~x1j v̂! djK1~p,x1t v̂!ei*2`

` v̂A~x1j v̂! dj dt1E
2`

0

K2~p,x1t v̂! dt

1E
2`

`

$Vl~x1t v̂!2Vl~t v̂!% dt ~3.12!

andK6 defined in~2.24!. The injectivity of the scattering map has already been shown in
short-range case above. Again the error term is bounded by

v21ivR1
DF0iivR1

DC0i ~3.13!
J. Math. Phys., Vol. 38, No. 6, June 1997
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and is therefore of orderO (v21).
A short computation for the commutator of exp„2 i*2`

` v̂A(x1j v̂) dj…SD with the first com-
ponent of the momentump1 , gives~1.13!. Then the total potentialV can be computed from~1.13!
~see Ref. 4, Proof of Theorem 1.2!. Hence Theorem 4 is proved. j

IV. GENERALIZATION

For magnetic fields with compact support we can construct suitable gauges for the
potential. In this case we do not need decay assumptions of the vector potential for provi
reconstruction formulas. For the reconstruction of the magnetic field, we needA iPC0ùL2 in
addition. See Ref. 11 for details.
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On the Casimir energy for a 2 N-piece relativistic string
I. Brevika)
Division of Applied Mechanics, Norwegian University of Science and Technology,
N-7034 Trondheim, Norway

R. Sollieb)
IKU, Sintef Group, N-7034 Trondheim, Norway

~Received 12 December 1996; accepted for publication 27 February 1997!

The Casimir energy for the transverse oscillations of a piecewise uniform closed
string is calculated. The string consists of 2N pieces of equal length, of alternating
type I and type II material, and is taken to be relativistic in the sense that the
velocity of sound always equals the velocity of light. By means of a new recursion
formula we manage to calculate the Casimir energy for arbitrary integersN. Agree-
ment with results obtained in earlier works on the string is found in all special
cases. As basic regularization method we use the contour integration method. As a
check, agreement is found with results obtained from thez function method~the
Hurwitz function! in the case of lowN(N51–4). The Casimir energy is generally
negative, and the more so the larger is the value ofN. We illustrate the results
graphically in some cases. The generalization to finite temperature theory is also
given. © 1997 American Institute of Physics.@S0022-2488~97!01006-2#

I. INTRODUCTION

When dealing with zero point energies in quantum field theory, it is generally desirable to
with simple models that can be calculated explicitly, in detail. In the first place one can de
strate the physical equivalence between different regularization schemes in this way. Secon
more important point physically, such considerations can help us to understand the issue
energy of the vacuum state in a real system, quite a compelling goal. The relativistic, piec
uniform string model is in our opinion a model that is useful in this context. It is two-dimensio
it is easy to handle mathematically as a mechanically vibrating system, it lies open to s
different regularization schemes, and finally it is easily generalizable to the case of finite tem
tures. The model was introduced by Brevik and Nielsen in 1990,1 for the most simple case of
two-piece string. Later, the model in generalized form was analysed from various poin
view.2–5We shall not give a survey of these earlier developments here, but focus attention i
directly on the case where the string is divided into 2N pieces, of alternating type I and type
material, withN an integer. This is the case studied in Ref. 4. The new element in our pr
analysis is that we shall show explicitly how the Casimir energy is found whenN is arbitrary~in
Ref. 4 we carried out the calculation in full only whenN52!. The key point is that we will be able
to relate a 2(N11)-piece string to a 2N-piece string by means of a recursion formula. The wh
formalism becomes in turn remarkably simple. Again, we see here an example of how we
composite string model fits into the standard formalism of quantum field theory. The regul
tion method that we find to be the most advantageous one, is that involving contour integ
~the so-called argument principle!. This method was introduced in the context of Casimir cal
lations by van Kampen, Nijboer, and Schram,6 and was used also in Refs. 3–5. One of the virtu
of this method is that it is easily generalizable to the case of finite temperatures. We also
below how the Casimir energy can be found, in principle, if one uses instead thez-function

a!Electronic mail: Iver.H.Brevik@mtf.ntnu.no
b!Electronic mail: Roger.Sollie@iku.sintef.no
0022-2488/97/38(6)/2774/12/$10.00
2774 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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regularization~the Hurwitz function!. The equivalence is verified explicitly for the cases wh
N53 andN54 ~for N51 andN52 the equivalence was found earlier, respectively, in Refs
and 4!.

Figure 1 shows, as an illustration, the string whenN56. The total length isL. There are thus
in this particular case 12 equal pieces, each of lengthL/12, of alternating type I and type I
material, corresponding to tensionsTI andTII . The mechanical system is for arbitraryN relativ-
istic, in the sense that the velocity of sound everywhere equals the velocity of light,

vs5~TI /r I!
1/25~TII /r II !

1/25c, ~1!

r I andr II being the mass densities. We shall consider the transverse oscillations, calledc, of the
string. The boundary conditions at the functions are thatc itself, as well as the transverse elas
forceT]c/]s ~s denoting the length coordinate along the string!, are continuous.

Is there any direct physical meaning of a string of this type? We are not aware of any
application of the model, although it seems natural to suggest that such strings played a p
role in the early universe. It is quite remarkable, as a result of our analysis, that the Casimir e
is generally negative. Its absolute value increases monotonically withN. That is, if there were
some sort of ‘‘phase transition’’ in the early universe, a string would be able to diminish its
point energy by dividing itself into a larger number of pieces. This effect is particularly transp
from the formula for Casimir energy in the limit ofx5TI /TII→0; cf. Eq. ~38! below.

From a wider perspective, our composite string model is related to other string model
posed in the recent past, all of them with the main purpose of getting more physical insigh
the energy spectrum and the vacuum state. For instance, Ferrer and de la Incera analy
energy spectrum for an open and homogeneous string, with charges attached to its end
magnetic background.7 See also related papers of Odintsov, Lichtzier, and Bytsenko,8 and of
Odintsov.9 The connection between the Casimir energy phenomena and tachyon problem
studied by Nesterenko,10 and by D’Hoker, Sikivie, and Kanev.11 An interesting variant of the
composite string model is to assume a twisted string loop; cf. the recent paper of Bayin, K
and Ozcan.12

We put henceforth\5c51. The next section deals with the contour integration method,
the case of an arbitrary integerN. The central recursion formula is given in Eq.~11!; its solution
is given in Eq.~15!. Section III deals with diagonalization of the elemental matrixL, and derives
essentially the dispersion function. The basic integral expression for the Casimir energy is d

FIG. 1. String of lengthL, of alternating type I and type II material, in the case whenN56.
J. Math. Phys., Vol. 38, No. 6, June 1997
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in Sec. IV. Section V deals with the alternativez function regularization technique. The genera
zation to finite temperature theory is given in Sec. VI. Conclusions are given in Sec. VII.

II. GENERAL FORMALISM
A. The eigenvalue problem

The string of total lengthL is assumed to be divided into 2N pieces, of alternating type I an
type II material as mentioned above, and has thus 2N junctions which will be numbered byj
51,2,...,2N. We introduce the symbolx for the tension ratio, and also the symbolpN ~cf. Ref. 4!,

x5TI /TII , pN5vL/N. ~2!

It is convenient to introduce also another symbola,

a5~12x!/~11x!. ~3!

As shown in Ref. 4, the eigenfrequenciesv of the string are determined from the equation

det@M2N~x,pN!21#50, ~4!

where

M2N~x,pN!5)
j51

2N

M ~ j !~x,pN!. ~5!

The component matrices can be expressed as

M ~ j !~x,pN!55
11x

2x S 1 2ae2 i jpN

2aei jpN 1 D , j odd

11x

2 S 1 ae2 i jpN

aei jpN 1 D , j even

~6!

for j51,2,...,(2N21). At the last junction, forj52N, the matrix will be of a particular form
~here and henceforth given an extra prime for clarity!,

M 8~2N!~x,pN!5
11x

2 S e2 iNpN ae2 iNpN

aeiNpN eiNpN D . ~7!

From Eqs.~5!–~7! it follows that, except from a scaling factor, the matrixM2N will depend on
x only through the variablea(x). It is therefore convenient to scale the matrices asM2N(x,pN)
5@(11x)2/4x#Nm2N(a,pN). The new matrices can be calculated as

m2N~a,pN!5)
j51

2N

m~ j !~a,pN!, ~8!

where

m~ j !~a,pN!5S 1 7ae2 i jpN

7aei jpN 1 D ~9!

for j51,2,...,(2N21). Here the sign convention is to use1/2 for even/oddj . The last matrix
m8(2N)(a,pN) in Eq. ~8! can be read off directly from Eq.~7!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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B. Exact solution for arbitrary N

We shall now calculate the matrixm2N(a,pN) for generalN. This aim will be achieved by
first establishing a recursion formula. For a string that is divided into 2(N11) pieces we can,
according to Eq.~8!, write the scaled resultant matrix as

m2~N11!5@m~1!
•...•m8~2N!#•@~m8~2N!!21

•m~2N!
•m~2N11!

•m8~2N12!#. ~10!

All these matrices havepN11 as their second argument. We can therefore write

m2~N11!~a,pN11!5m2N~a,pN11!•L~a,pN11!, ~11!

where the matrixL is a product of four matrices,L5(m8(2N))21
•m(2N)

•m(2N11)
•m8(2N12),

evaluated atpN11 . We find that

L~a,p!5S a b
b* a* D , ~12!

where

a5e2 ip2a2, ~13!

b5a~e2 ip21!. ~14!

It is seen that the matrixL does not depend onN explicitly, but only through the variablep
5pN115vL/(N11). This fact will enable us to give an explicit solution, since then

m2N~a,pN!5LN~a,pN!. ~15!

The obvious way to continue is now to calculate the eigenvalues ofL, and express the elemen
of M2N as powers of these. Before doing that, we will check the formalism for low value
N.

C. The case N51

This is the trivial case, since

M25SM11 M12

M21 M22
D5

~11x!2

4x S a b
b* a* D , ~16!

which means that

M115
~11x!2

4x Fe2 ivL2S 12x

11xD
2G ,

M125
12x2

4x
~e2 ivL21!, ~17!

sincep is here equal tovL.
J. Math. Phys., Vol. 38, No. 6, June 1997
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D. The case N52

Using the general formalism, we find that

M45SM11 M12

M21 M22
D5

~11x!4

16x2 S a21bb* b~a1a* !

b* ~a1a* ! a* 21bb* D , ~18!

which means that

M115
~11x!4

16x2
@~e2 ip2a2!212a2~12cosp!#,

~19!

M125
~11x!2~12x2!

8x2
~e2 ip21!~cosp2a2!,

with p5vL/2. These expressions are in agreement with Eq.~15! in Ref. 4. Our present notation
implies a significant simplification in the expressions, as compared to those given in Ref. 4

E. The case N53

This situation, corresponding to a six-piece string, can be analyzed similarly. We obtai

M65
~11x!6

64x3 S a~a21bb* !1bb* ~a1a* ! b@a21bb*1a* ~a1a* !#

b* @a* 21bb*1a~a1a* !# a* ~a* 21bb* !1bb* ~a1a* !
D . ~20!

III. DIAGONALIZATION

We have so far found the exact solution~15! for m2N . To calculate powers ofL, we will
diagonalize this matrix. First, we see that the eigenvaluesl6 of L are roots of the polynomial

P~l!5det~L2l1!5l222~cosp2a2!l1~12a2!2, ~21!

giving

l65cosp2a26@~cosp2a2!22~12a2!2#1/2. ~22!

These eigenvalues are in general complex. Powers of the matrixL are

LN5K S l1
N 0

0 l2
N DK21, ~23!

whereK is a matrix whose columns consist of the eigenvectors ofL. Also note that we can
calculate the determinant and the trace ofLN directly; from Eq.~23! we get

det~LN!5l1
Nl2

N , tr~LN!5l1
N1l2

N . ~24!

Let us now consider the dispersion function for the string. According to Eq.~4!, the dispersion
function is essentially the same as det(M2N21). Let us denote the latter function byGN

x (v),

GN
x ~v!5det~M2N21!5det~M2N!2tr~M2N!11. ~25!

We can then writeM2N5(12a2)2NLN. It follows that

GN
x ~v!5~12a2!22Nl1

Nl2
N2~12a2!2N~l1

N1l2
N !11522~12a2!2N~l1

N1l2
N !, ~26!
J. Math. Phys., Vol. 38, No. 6, June 1997
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in view of the relationshipsl1l25(12a2)2, l11l252(cosp2a2) which follow from Eq.
~21!. Although the eigenvaluesl6 are in general complex, as mentioned, the combinati
l1l2 and (l11l2) are always real. Starting from the expression~26!, we can now calculate the
Casimir energy of the system.

IV. CASIMIR ENERGY: CONTOUR INTEGRATION METHOD

The Casimir energyEN describes the effect from the nonhomogeneity of the string only,
is thus required to vanish for a uniform string. Therefore,EN is equal to the zero-point energy fo
the composite string, minus the zero-point energyEN

I1II for the uniform string, i.e.,

EN5EN
I1II2Euniform. ~27!

Because the string is assumed to be relativistic, satisfying condition~1!, it is irrelevant here
whether the uniform string is made up of type I, or type II, material. The energyEuniform is the
same in either case~cf. also the discussion on this point in Ref. 1!.

The most general and powerful way to proceed in the present case is to use the c
integration method. The starting point is the so-called argument principle, as used also in pr
works,3–5

1

2p i R v
d

dv
lnug~v!udv5( v02( v` . ~28!

Hereg(v) is any meromorphic function whose zeros arev0 and whose poles arev` inside the
integration contour. We choose the contour shown in Fig. 2, and identifyg(v) with the dispersion
functiongN

x (v) for the string. The last-mentioned function is essentially the same as our fun
GN
x (v) above, defined in Eq.~25!, but we will have to introduce a modifyingx-dependent factor

betweengN
x (v) andGN

x (v) to satisfy the limiting constraint on the system~see below!. Before
determining this factor, let us in accordance with Eq.~27! subtract off the zero-point energy of th
uniform string, corresponding tox51,

EN~x!5
1

4p R v
d

dv
lnU gN

x ~v!

gN
x51~v!

Udv. ~29!

FIG. 2. Integration contour in the complexv plane.
J. Math. Phys., Vol. 38, No. 6, June 1997
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The contribution to the integral from the semicircle in Fig. 2 is seen to vanish in the
R→`. The remaining integral along the imaginary frequency axis (j52 iv) is integrated by
parts, while keepingR finite and taking advantage of the symmetry of the integrand about
origin. We get

EN~x!52
R

2p
lnU gN

x ~ iR!

gN
x51~ iR!

U1 1

2p E
0

R

lnU gN
x ~ i j!

gN
x51~ i j!

Udj. ~30!

The constraint that we shall impose on the system is that the surface term vanishes in the
largeR, i.e.,

lim
R→`

gN
x ~ iR!

gN
x51~ iR!

51. ~31!

From Eq.~22! it follows, with p5 iRL/N, RL/N being a large quantity, that

l1.eRL/N22a2, l25O ~e2RL/N!. ~32!

Then Eq.~26! yields

GN
x ~ iR!.2~12a2!2NeRL, GN

x51~ iR!.2eRL, ~33!

and it follows that the sought relationship betweenGN
x (v) and the dispersion functiongN

x (v) is

gN
x ~v!5~12a2!NGN

x ~v!52~12a2!N2~l1
N1l2

N !. ~34!

Condition ~31! is thereby satisfied.
To calculate the integral in Eq.~30! we need to know alsogN

x51( i j). In this casea50, and
one can easily show thatl65exp(6q), with q5jL/N. One finds that

gN
x51~ i j!524 sinh2SNq2 D , ~35!

and so we arrive at the following expression for the Casimir energy, for arbitraryx and an
arbitrary integerN,

EN~x!5
N

2pL E
0

`

lnU2~12a2!N2@l1
N ~ iq !1l2

N ~ iq !#

4 sinh2~Nq/2!
Udq. ~36!

Here the eigenvaluesl6 for complex arguments are

l6~ iq !5coshq2a26@~coshq2a2!22~12a2!2#1/2. ~37!

Figure 3 shows howENL ~in dimensional unitsENL/\c! varies withx for some different values
of N. Sincea occurs quadratically in Eqs.~26! and ~22!, it follows that the eigenvalue spectrum
of the system is invariant under the transformationx→1/x. It is therefore sufficient to show the
variations in Casimir energy for the tension ratio interval 0,x<1 only. It is seen that the energ
is generally negative, and the more so the larger is the integerN. A string, initially uniform
corresponding to Casimir energy equal to zero, can accordingly at any time diminish its zero
energy simply by dividing itself into a larger number of pieces of alternating type I/II materia
becomes very natural to wonder if not ‘‘phase transitions’’ of this sort were playing a physica
at some stage in the early universe.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Let us consider finally the limiting case of extreme tension ratio,x→0. It turns out that this
case is solvable analytically. Namely, since nowa→1, we see from Eq.~37! that l250, l1

54 sinh2(q/2). From Eq.~36! we then get

EN~0!5
N

pL E
0

`

lnU2N sinhN~q/2!

2 sinh~Nq/2!
Udq52

p

6L
~N221!. ~38!

This is quite a remarkable result. In this limiting case the Casimir energy is, apart from an ad
constant, simply quadratic inN. For N51, the energy vanishes, in accordance with Eq.~22! in
Ref. 1. ForN52, the energy becomesE2(0)52p/2L, in accordance with Eq.~27! in Ref. 4. In
Fig. 4 we have plotted the Casimir energy, normalized with the energyEN(0) at x50, i.e.,
2EN(x)/EN(0). The figure displays all the different values ofN shown in Fig. 3. Note that,
within numerical accuracy, all the curves seem to collapse into one single curve. This sugg
very simple scaling of the energy withN, for arbitrary values ofx.

V. z-FUNCTION METHOD

This powerful regularization method~for a general treatise, see Ref. 13! can be used as a
alternative to calculate the Casimir energy. We then first have to calculate the eigenvalue sp
for v explicitly, by solving the dispersion relationGN

x (v)50 @or gN
x (v)50#. From Eq.~26! it

follows that we have to solve the equation

FIG. 3. Nondimensional Casimir energy vsx5TI /TII for some values ofN.

FIG. 4. The Casimir energy scaled with the value atx50, plotted vsx5TI /TII for the samevalues ofN as in Fig. 3.
J. Math. Phys., Vol. 38, No. 6, June 1997
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l1
N1l2

N52~12a2!N ~39!

with respect tov, l6 being given by Eq.~22!. It is convenient to make use of the following simp
recursion formula forS(N)[l1

N1l2
N :

S~N!52~cosp2a2!S~N21!2~12a2!2S~N22!, N>2. ~40!

This formula follows directly from Eq.~22!. It is assumed here that the value ofp is kept fixed,
equal tovL/N, at all the recursion steps of Eq.~40!. The initial values ofS(N) areS(0)52,
S(1)5l11l252(cosp2a2).

Once the eigenfrequency spectrum has become determined for some chosen value oN, the
zero-point energy can be calculated as1

2(vn , summed over all the branches. The degeneracy
to be taken into account explicitly, for each branch. Thez function that comes into play here is th
Hurwitz function, originally defined as

z~s,a!5 (
n50

`

~n1a!2s ~0,a<1, Res.1!. ~41!

In practice, we need only to take into account the property

z~21,a!52 1
2~a

22a1 1
6! ~42!

of the analytically continued function~cf. Ref. 2!.
Let us check thez-function method in some simple cases. First, ifN51 we see from Eq.~39!

that cosp5cosvL51, which meansv52pn/L with n51,2,3,... . This is the same spectrum a
for a uniform string. The Casimir energy accordingly vanishes, as it should. Next, ifN52 we find
from Eqs.~39! and~40! that there are two branches, given by cosp51 and cosp52a221 respec-
tively, with p5vL/2. This is in agreement with Eq.~21! in Ref. 4, and will not be further
considered here. Let us instead putN53. Then Eqs.~39! and ~40! lead to the equation

~cosp21!~2 cosp23a211!250 ~43!

for determining the allowed values ofp5vL/3. There are thus two branches in this case. The
branch, corresponding to cosp51, is degenerate. One may physically associate this degene
with the right–left symmetry of the uniform string. The second branch, corresponding top
51

2(3a221), is also degenerate. Mathematically, this degeneracy occurs because of the
power of the second factor in Eq.~43!. Physically, the degeneracy may be considered a
consequence of two single branches that have merged together. The solution of the second
can be written

v5
3

L
arccos

3a221

2
5
3p

L
3 H ~b12n!,

~22b12n!, ~44!

wheren50,1,2,... andwhereb is a number lying in the interval 0,b<2/3. The zero-point
energy of the composite string becomes

E3
I1II523

1

2 S 6p

L D (
n51

`

n123
1

2 S 3p

L D (
n50

`

~2n1b!123
1

2 S 3p

L D (
n50

`

~2n122b!, ~45!

the prefactor 2 in each term describing the degeneracy. It is seen that it is the presence
b-term that forces us to use the Hurwitz function instead of the Riemann function. Use of
tionship ~42! now leads to
J. Math. Phys., Vol. 38, No. 6, June 1997
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E3
I1II5

6p

L
z~21,1!1

12p

L
z~21,b/2!52

3p

2L
~12b!2, ~46!

where we have taken into account thatz(21,12a)5z(21,a). Subtraction ofEuniform52p/6L
yields the Casimir energy forN53,

E3~x!5
p

6L
@129~12b!2#. ~47!

Explicit calculation shows that this expression gives values in agreement with those found
Eq. ~36!. In particular,E3(0)524p/3L, in agreement with Eq.~38!.

Finally, let us putN54. From Eqs.~39! and ~40! we then obtain

~cosp21!~cosp2a2!2~cosp22a211!50 ~48!

as the equation determiningp5vL/4. There are in this case three branches. The two
branches, corresponding to cosp51 and cosp5a2, are degenerate, whereas the third bran
corresponding to cosp52a221, is not. Let us denote the two last-mentioned branches by ind
1 and 2. Thus, for the second branch we have

v5
4

L
arccosa25

4p

L
3 Hb112n,

~22b112n!, ~49!

with 0,b1,
1
2, whereas for the third branch

v5
4

L
arccos~2a221!5

4p

L
3 Hb212n,

~22b212n!, ~50!

with 0,b2<1. The zero-point energy becomes

E4
I1II523

1

2 S 8p

L D (
n51

`

n123
1

2 S 4p

L D (
n50

`

~2n1b1!123
1

2 S 4p

L D (
n50

`

~2n122b1!

1
1

2 S 4p

L D (
n50

`

~2n1b2!1
1

2 S 4p

L D (
n50

`

~2n122b2!

5
8p

L
z~21,1!1

16p

L
z~21,b1/2!1

8p

L
z~21,b2/2!

52
p

L F2~12b1!
21~12b2!

22
1

3G , ~51!

and so the Casimir energy becomes

E4~x!5
p

2L
@124~12b1!

222~12b2!
2#. ~52!

Again, explicit evaluation leads to agreement with the integral formula~36!. We see that when
using thez-function method we have to determine the eigenfrequency spectrum explicitly
thereafter put in the degeneracies by hand. The very useful bonus associated with our c
integration technique above, is that the degeneracies precisely correspond to the multiplic
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In
in the

dily
i-

ra

the
only.

es the

ry at

of

era-
r

the

2784 I. Brevik and R. Sollie: On the Casimir energy for a 2N-piece relativistic

¬¬¬¬¬¬¬¬¬¬
the zeros in the argument principle, Eq.~28!, and need not be taken into account explicitly.
view of these properties, the contour integration method appears to be the simplest method
present case.

VI. FINITE TEMPERATURE THEORY

The generalization of theT50 theory above to the case of finite temperatures is rea
accomplished by starting from the integral expression~36! and replacing the integral over imag
nary frequencies by a sum,

E
0

`

dj→2pkBT(
n50

`

8, ~53!

the prime meaning that then50 term is taken with half weight. Introducing the Matsuba
frequenciesjn52pnkBT we then get

EN
T~x!5kBT(

n50

`

8 lnU2~12a2!N2@l1
N ~ i jnL/N!1l2

N ~ i jnL/N!#

4 sinh2~jnL/2!
U ~54!

as the expression giving the Casimir energy, valid at any temperatureT. Here,l6( i jnL/N) are
given by Eq.~37!, with q→qn5jnL/N. It is useful to note that

l1~ iqn!1l2~ iqn!52~coshqn2a2!. ~55!

There are several special cases of interest here. First, if the string is uniform (x51), we get
from Eq. ~54! that EN

T(1)50. This is as we would expect, since even at finite temperatures
Casimir energy is intended to describe the influence from the inhomogeneity of the string
Next, if N51, x arbitrary, we also get a vanishing result,E1

T(x)50. If N52, we get forE2
T(x) the

same integral expression as in Eq.~36! in Ref. 4. For larger values ofN, N53,4,...., we can
develop the integral expressions in the same way. In particular, in the case ofx→0 we get the
simple formula

EN
T~0!52kBT(

n50

`

8 lnU2N sinhN~jnL/2N!

2 sinh~jnL/2!
U. ~56!

We shall not discuss this topic in further detail here. As shown in Ref. 3, for practical purpos
series can be evaluated fairly easily by means of a computer program.

The Casimir energy found here may be helpful also in the construction of string theo
finite temperatures~for a review, see Chap. 8 of Ref. 13!, with further possible applications in
string cosmology.

VII. CONCLUSIONS

In this paper we have found the general expression for the Casimir energy for the 2N-piece
relativistic string, for an arbitrary integerN, and for arbitrary ratio between the two kinds
material. The expression forEN(x), at temperatureT50, is given in Eq.~36!. The present work
generalizes earlier works,1–4 and is in agreement with them in all special cases. At finite temp
turesT, the corresponding Casimir energyEN

T(x) is given in Eq.~54!. The key new element in ou
analysis is the recursion formula~11! and its explicit solution~15!, which enables us to find
EN(x) for arbitraryN. The use of this recursion formula greatly simplifies the calculation of
dispersion functionGN

x (v) or gN
x (v); cf. Eqs.~26! and ~34!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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The regularization method used in the derivation of Eq.~36! was the contour integration
method~argument principle!, originally introduced in Casimir-type of calculations in Ref. 6. The
are three reasons why we consider this regularization method to be preferable in the p
problem.

~1! The method is simple, in that we do not have to solve for the eigenvalue spectrum exp
Moreover, we do not have to take into account the degeneracies explicitly; they are aut
cally accounted for, in the multiplicities of the zeros in the argument principle.

~2! The generalization to arbitrary integersN is straightforward.
~3! The generalization to finite temperature theory is straightforward.

As a check of the results obtained from the contour integration method, we gave in Sec
independent derivation based upon thez function method. The actualz function here is the
Hurwitz function. When proceeding in this way, the eigenvalue spectrum has to be worke
and the degeneracies have to be put in by hand. Explicit evaluation in the casesN53 andN
54 gave results in agreement with the integral formula~36!.

A remarkable physical result is that the Casimir energy is always negative, and the m
the higher is the value ofN. An eclatant example of this behavior is expression~38!, showing the
Casimir energy in the casex→0. A string can always lower its zero-point energy by dividing its
into a larger number of pieces, of alternating type I/II material. Perhaps were processes of th
taking place in the early universe, as some sort of ‘‘phase transitions.’’

Another point worth noticing is the apparent scaling of the Casimir energy withN for arbi-
trary values ofx, which is strongly suggested by Fig. 4.
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The generalized Koszul differential in the BRST
quantization

Radu Constantinescu
Department of Theoretical Physics, University of Craiova, 13 A.I. Cuza, 1100 Craiova,
Romania

~Received 25 September 1996; accepted for publication 5 March 1997!

A new geometrical structure is proposed for a differential complex of the Koszul
type. The generators of the complex are structured on more levels and new gradu-
ations are used. A generalized differential that can be split in many pieces acts on
the generators. The first two items are identified with the Koszul operators from the
sp~2! BRST quantization. This result suggests the possibility of the implementation
of a symmetry bigger than sp~2!. The third order Koszul differential is effectively
constructed. As an application of this construction, the BRST charges and the
extended Hamiltonian suitable for the sp~3! BRST quantization of a first rank gauge
theory are presented. ©1997 American Institute of Physics.
@S0022-2488~97!02806-5#

I. INTRODUCTION

In the process of BRST quantization of gauge theories, one of the most important ingre
is the differential operator acting in the Koszul–Tate complex of the ghost momenta. This o
tor, denoted in the case of the standard BRST theory bydK , is an odd and acyclic differential:

dK
250; e~dK!51,

~1!

dKA50⇒~' !B s.t. A5dKB.

In the Hamiltonian formalism,1 the phase spaceG on which the BRST symmetry is constructe
contains the original variables$qi ,pi%, the Koszul complex of the ghost momentaPak

, ak

51,...,mk , as well as the so-called ‘‘longitudinal sector’’ generated by an equal number of g
Qak, ak51,...,mk . The longitudinal derivatived acts on the second sector, so that the BR
symmetry is to be defined as

s[dK1d1 ‘ ‘more.’ ’ ~2!

The part ‘‘more’’ in ~2! is chosen so as to insure the nilpotency and the acyclicity of the ope
s. The ghost variables$Qak,Pak

% are characterized by the graduation in respect with the ‘‘gh
number’’ (gh), that is positive for the ghosts and negative for the ghost momenta. The ‘‘re
tion degree’’~res! is also defined as being zero for the ghost and ‘‘2gh’’ for the ghost momenta.
The concrete structure ofG depends on the theory under consideration.

After the formulation of the standard BRST theory, the possibility of an extension of
theory so as to include a new symmetry, called the anti-BRST symmetry, had been pointe
Such an extension was achieved, first by Batalin, Lavrov, and Tyutin,2,3 followed by the Gregoire
and Henneaux version.4,5 This one is based—in the Hamiltonian formalism—on the idea of
plication of the constraints attached to a gauge theory. For both versions, two anticomm
differentials s1 and s2 , united in a sp~2! global symmetry group, were to be built. The tw
operators are known as the BRST, respectively, the anti-BRST symmetry, and together they
the extended BRST symmetry. The correspondent phase space was parametrized by a numb
canonical pairs of ghosts and ghost momenta, their spectrum depending, as for the standa
0022-2488/97/38(6)/2786/9/$10.00
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on the type of the theory. In the Koszul complex defined by the ghost momenta there are no
differentialsd1 andd2 that act in a symmetrical manner in this complex. Each of the two opera
s1 ,s2 can be expressed in the form~2!:

sa5da1da1 ‘ ‘more,’ ’ a51,2. ~3!

One can attach to the total symmetrysT5s11s2 a total differential:

dT5d11d2 . ~4!

Since, by definition, one has

d1d21d2d150, ~5!

the relations~4! and ~5! imply the nilpotency ofdT:

~dT!25~d11d2!
250. ~6!

Despite the relation~6!, the differentialsd1 and d2 seems to be two different objects and t
significance of the operatordT is not evident. For example, it is important to remark that
decomposition~4! does not induce a similar decomposition on the level of the Koszul comp1

The aim of this paper is to point out that the operatorsd1 andd2 from the case of sp~2!–BRST
symmetry could be analyzed as the first two pieces of a generalized Koszul operator:

dT5d11d21d31••• . ~7!

This generalized operator acts on the complex determined by the ghost momenta as
previous theories, but it is built using a different graduation for the variables. The relatio~7!
suggests the possibility of an analogous generalization for the BRST operator:

sT5s11s21s31••• . ~8!

In other words, the implementation to the gauge theories ofa generalized BRST symmetry, bigger
than sp~2!, would be possible. The BRST operator,s1 , and the anti-BRST operator,s2 , would
represent boundary cases of this generalized symmetry. One can mention that the proof
existence of at least a sp~3! BRST symmetry for irreducible theories is already achieved.6

The paper has the following structure: in Sec. II a generalized Koszul–Tate differential w
constructed. It will act on a differential complex whose generators are structured on several
and it could be decomposed in more independent anticommuting and nilpotent operators. T
piece of this decomposition could be identified as the standard Koszul–Tate differential an
appear in our theory as a ‘‘horizontal’’ operator. The geometrical significance of the o
da-differentials will be discussed in Sec. III. We shall present the concrete structure of the K
complex for an irreducible theory if we wantdT to be decomposed in three independent opera
~Koszul differential of order 3!. In order to make clear the physical interest of our construction
Sec. IV we shall use the results of Sec. III in the sp~3! quantization of the first rank gauge theorie
The paper will end with some concluding remarks concerning the two main aspects tackled
work: ~i! a new structure of the extended phase space in the BRST quantization and~ii ! the
existence of a generalized BRST symmetry.

II. THE LEVEL STRUCTURE OF THE GENERATORS

In this section we shall be interested in the construction of a generalized differential acti
the variables of a Koszul complex. This generalized differential will be calledthe Koszul differ-
ential of order N and it can be decomposed in the form
J. Math. Phys., Vol. 38, No. 6, June 1997
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dT[(
c51

N

dc , ~dT!250. ~9!

Each partdc of the previous relation could be imagined as a ‘‘copy’’ of the one and same ope
The effective construction ofdT for the caseN53, as well as the discussion concerning t
significance of this decomposition, will be detailed in the next section.

In our scheme a new graduation of the variables will be joined to the standard gradu
following the ghost number. This new graduation is based on the stratification of the phase
on more ‘‘levels’’ L ( l ), lPR.

Identical ‘‘copies’’ of the same ghost-type variables could exist at different levels.
As a result, all the variables are to be characterized by three numbers:

~i! the ghost number „gh… is defined in the standard manner:g.0 for ghosts andg,0 for
ghost momenta;

~ii ! the level number „lev… is an integer~positive, negative or zero! characterizing the level on
which the variables are situated; and

~iii ! thecopy number „cop… is a natural number designating the degree of multiplication of
same set of variables.

Remark 1:For an arbitrary variableA we shall adopt the notation

A[ Ac

~g,l !

, g[gh, c[cop, l[ lev. ~10!

In any ‘‘composition’’ process of two variablesA andB we suppose that the pair (g,l ) will satisfy
the rule

A
~g1 ,l1!

* B
~g2 ,l2!

5 C
~g11g2 ,l11 l2!

. ~11!

Remark 2:We shall construct the level structure of the variables so that the ‘‘true’’ varia
and the functions depending on these only are to be placed on the level withl50 ~the ‘‘ground’’
level!. Moreover, we shall suppose that these variables will never be multiplied so that their
number will always bec51. The ghosts will occupy the positive levels and the ghost mom
will be laid on the negative levels. So, we shall consider that

A
~g,l !

[0 if g>0 and l,0,
~12!

A
~g,l !

[0 if g<0 and l.0.

Remark 3:The same three-graduation is to be used for the operators. In this case the
degree is to be a positive number specifying the number of levels that the variables can ‘‘j
under the action of the operator. For example, the generalized Koszul differential~9! will act in the
ghost-momenta sector (l,0) and it first pieces can be defined in the following manner:

~i! d1[ d
(1,0)

1 :L
( l )→L ( l ) acts as a ‘‘horizontal’’ differential, leaving the variables on the sa

level.

~ii ! d2[ d
(1,1)

2 :L
( l )→L ( l11), is the second item and it will increase the ghost and the le

numbers of the variables with one unit, except those which are already on theL (0)-level, for
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



the

e case
to the

sed as

e

2789Radu Constantinescu: Quantization of gauge theories

¬¬¬¬¬¬¬¬¬¬
which, according to~12!, we shall postulate thatd2 A
(g,0)

[0.

~iii ! d3[ d
(1,2)

3 :L
( l )→L ( l12) induces a two-level jump of the variables. It has trivial action on

variables withl50,21, again because of~12!.
To conclude, we shall consider that

dc A
~g,l !

50 for l>22c, c51,2,... . ~13!

It is very important to see that, in the general case, for the operatorsdc we have

l ~dc!5c~dc!215c21. ~14!

III. THE KOSZUL DIFFERENTIAL OF ORDER 3

We shall pass now to the effective construction of the generalized Koszul operator for th
of an irreducible theory, that is to say for a constrained system whose dynamic is subjected
independent first-class constraintsGa[Ga(q,p), a51,...,m:

@Ga , Gb#5 f ab
g Gg , @H0 , Ga#5Va

bGb . ~15!

The Grassmann parities of the Hamiltonian and of the constraints aree(H0)50 and e(Ga)
5ea .

To be more concrete, we shall be interested in a Koszul differential that could be expres
the sum of three anticommuting differentials:

dT5d11d21d3 ,

dadb1dbda50, a,b51,2,3. ~16!

In order to insure the existence of such an operatordT, we will set the ghost momenta on mor
levels.

~i! The L (0) level is to retain thel50 variables, among which the constraints~15! that,
depending on the true variables (qi ,pi), are not to be multiplied (c[1). According to our previ-
ous statements, the constraints would be written in the form

Ga5 G
~0,0!

a1 , l ~Ga!50, c~Ga!51, a51,...,m. ~17!

As in the standard BRST theory and on the basis of~14!, we postulate that

dcGa1

~0,0!

50⇒~' ! Pab

~21,l !

s.t. dc
~1,c21!

Pab

~21,l !

5dbcGa1

~0,0!

, b,c51,2,3. ~18!

For reasons related to the conservation of the level numbers, we must consider

l ~Pab!512c~Pab![12b. ~19!

By ~18! we have introduced three copies of the set of momentaPab ; b51,2,3, but only the
variablesPa1 havel50 and by that they are positioned on the levelL (0). We shall have

d1Pa15Ga , d2Pa150, d3Pa150. ~20!

The nontrivial cycles which are generated by~20! do require variables from inferior levels.
J. Math. Phys., Vol. 38, No. 6, June 1997
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~ii ! The L (21) level is to retainl521 variables. As we have seen, such variables are

momentaPa2[ Pa2

(21,21)

. Using~18!, the action of the operatorsda on these variables is to be give
by

d1Pa250, d2Pa25Ga , d3Pa250. ~21!

On the same level we shall put a set of variablespa[ pa

(22,21)

with g(pa)522 and l521,
variables which are designed to kill the cycles that are generated by the first relation~21!. It is easy
to check up that the new momenta could solve also the problems created by the second
from ~20!. We shall define

d1pa52Pa2 , d2pa5Pa1 , d3pa50. ~22!

For an irreducible theory, Pa

(21,21)

and pa

(22,21)

are the only variables laying in theL (21)-level.
~iii ! The L (22) level. The process of cancelling the nontrivial cycles which are still maintai

in the theory asks for variables withl522. We have defined already the momentaPa3

(21,22)

and, in
addition to these, we shall import at this level a new copy of the variablespa . So, theL

(22) level

will contain Pa

(21,22)

and pa

(22,22)

, the action of the differentialsdc being defined by

d1 Pa

~21,22!

50, d2 Pa

~21,22!

50, d3 Pa

~21,22!

5Ga ~23!

and

d1 pa

~22,22!

5 Pa

~21,22!

, d2 pa

~22,22!

50, d3 pa

~22,22!

52 Pa

~21,0!

. ~24!

Unfortunately, the until now considerate ghost-momenta spectrum does not assure the
tency and the anticommutativity of the operatorsdc . So, we have to supply the spectrum wi
momenta from the next level.

~iv! The L (23) level is to ensure the killing of all nontrivial cycles by two sets of momen
One of these sets will be the third copy ofpa and the second one will contain the new variab

ta[ ta

(23,23)

. Their definitions will be given by the following relations:

d1 pa

~22,23!

50, d2 pa

~22,23!

52 Pa

~21,22!

, d3 pa

~22,23!

5 Pa

~21,21!

, ~25!

d1 ta

~23,23!

5 pa

~22,23!

, d2 ta

~23,23!

5 pa

~22,22!

, d3 ta

~23,23!

5 pa

~22,21!

. ~26!

One can see that the following graduation rules must be considered:

gh~ta!523, c~ta!51,
~27!

l ~ta!532~a1b1c!523 for aÞbÞc.

By direct computation one can check up that, by these definitions, the properties~16! are true for
the operatorsda , a51,2,3.

Remark 4:The action of the operatorsda on the ghost momenta could be expressed i
condensed form by the relations

daPab5dabGa , a,b51,2,3; dab5Kronecker symbol,
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ction
fined

sfy the

a-

n
l
Mills

2791Radu Constantinescu: Quantization of gauge theories

¬¬¬¬¬¬¬¬¬¬
dapab5eabcPac with e12351[the total antisymmetric tensor, ~28!

data5paa , a51,2,3.

To agree with these relations, we must identify

pa1[ pa

~22,23!

, pa2[ pa

~22,22!

, pa3[ pa

~22,21!

. ~29!

Remark 5:The conservation of thelevel numberin the second relation~28! implies

l ~pab!522a2c for aÞbÞc. ~30!

So, we shall identify thecop numberof the variablespab as

c~pab!5b. ~31!

IV. THE sp(3)-BRST SYMMETRY FOR THE FIRST RANK THEORIES

We shall offer now a concrete proof concerning the physical interest that our constru
could present. We shall analyze the possibility of using the third-order Koszul differential, de
in the previous section, in order to obtain a triple BRST symmetry.

The decomposition~16! suggests the existence of three differentialssa , a51,2,3, which, on
the differential complex attached to the phase space of an arbitrary gauge system sati
algebra:

sasb1sbsa50, a,b51,2,3. ~32!

These three nilpotent differentials would define a sp~3!-BRST symmetry given by

sT5s11s21s3 . ~33!

As in the standard BRST theory, as well as in the sp~2! case, the differentialsT is canonically
generated by a total BRST changeVT:

sT•F5@F, VT#, ~34!

where @,# denotes a generalized Poisson bracket that will be defined below. The relation~33!
imposes a similar decomposition forVT:

VT5V11V21V3 , ~35!

where the chargesVa , a51,2,3, are odd functions,e(Va)51, and they satisfy the master equ
tions:

@Va , Vb#50, a,b51,2,3. ~36!

The relations of the type~3! determine the boundary conditions forVa .
The proof of the existence in the general case of a total BRST charge of the form~35! makes

the object of Ref. 6. In this section we shall effectively build up the chargesVa , a51,2,3, for a
first rank gauge theory. Such a theory is an irreducible gauge theory defined by the relatio~15!
where we suppose that the structure coefficients*ab

g andVa
b do not depend on the dynamica

variables. The theories of rank 1 are very important as long as the gravity, the Yang–
theories, and others useful examples of gauge theories belong to this category.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Until now we have chosen the adequate ghost momenta spectrum in order to construct
Koszul differential for an irreducible gauge theory. However, the canonical quantization as
a canonical pair for each momentum. We shall define a ghost for each ghost momentum a
do assign to each of these ghost variables a positiveghost numberand a positivelevel number. If
we shall denote byPA5$pi ,Paa ,paa ,ta% the set of the momenta defined above, the coordin
canonically conjugated to them would be, respectively,

QA5$qi ,Qaa,laa,ha%.

The canonical conjugation is defined with respect to the Poisson superbracket that,
extended phase space$QA,PA%, has the form2,3

@F,G#5
dF

dQA

dG

dPA
2~21!e~F !e~G!

dG

dQA

dF

dPA
. ~37!

The Grassmann parity of the variables will be given by

e~Ga!5e~la!5e~pa![ea ,
~38!

e~Qa!5e~Pa!5e~ha!5e~ta![ea11.

From ~37! it is easy to verify that

@Qaa, Pbb#5db
adb

a , @laa, pbb#5db
adb

a , @ha, tb#5db
a . ~39!

The graduation rules observed by the couples of the canonically conjugated variables

g~QA!52g~PA!, l ~QA!52 l ~PA!, c~QA!5c~PA!. ~40!

In order to keep the line of the standard BRST approach, we shall adopt in our theory t
resolution degree. It vanishes for all the ghosts and has opposite value with the ghost numb
the momenta:

res~QA!50, res~PA!52gh~PA!. ~41!

For the Koszul differentialsdc[ d
(1,c21)

we shall define:

res~dc!52gh~dc!521, c51,2,3. ~42!

Any function depending on the ghost momenta can be decomposed according to the res
degree. For example, the chargesVa , a51,2,3, can be written in the form

Va5 (
n>0

Va

~n!

, res~Va

~n!

!5n. ~43!

We can conclude now that the sp~3!-BRST quantization of an irreducible gauge theory as
for an extended phase space whose generators, in our construction, could be structured as
J. Math. Phys., Vol. 38, No. 6, June 1997
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L ~3!:
la1
~2,3!

ha1
~3,3!

L ~2!:
Qa3
~1,2!

la2
~2,2!

L ~1!:
Qa2
~1,1!

la3
~2,1!

L ~0!:
Pa1

~21,0!
Ga~q,p!

Qa1
~1,0!

L ~21!:
pa3

~22,21!

Pa2

~21,21!

L ~22!:
pa2

~22,22!

Pa3

~21,22!

L ~23!:
ta1

~23,23!

pa1

~22,23!

~44!

The ‘‘ground level’’, L (0), contains exactly the variables characterizing the standard B
construction. If we should retain the variables of the levelsL (21), L (0), andL (1) only, we should
recover the extended phase space of the sp~2! quantization.

Because in our case the total BRST symmetry,sT, is decomposed in the form~33!, that
contains three items, we shall call the sp~3! symmetry the theory of order 3. In this terminolog
the standard BRST theory represents a first-order theory, while the sp~2! case could be identified
with a theory of order 2.

Using the decomposition~43!, along the line of the homological perturbation theory,7 one can
solve the master equations~36!. It is important to note that typical for the first rank theories is t
fact that the BRST charges are linear in the ghost momenta:8

Va5GaQ
aa1PabX

aba1pabY
aba1taZ

aa. ~45!

The concrete expressions for the functionalsXaba, Yaba, andZaa are given in Ref. 9. More
interesting in our context is the solution for the problem

@H, Va#50, a51,2,3, ~46!

whereH represents the BRST extension of the HamiltonianH0 of the theory

e~H !50; HuG5P5p5t505H0 . ~47!

Using again the homological perturbation theory, one can find9

H5H01Va
bPbaQ

aa1Va
bpbal

aa1Va
btbha. ~48!

By the comparison of~48! with the similar expressions of the extended Hamiltonian in
standard1 and in the sp~2!-BRST theories,10 we remark, once more, that the last two cases aris
our construction as first-order and, respectively, second-order theories.

V. CONCLUDING REMARKS

The main goal of this paper was to propose a new pattern for structuring the variables
extended phase space in the BRST quantization. We have paid a special attention to the
complex generated by the ghost-momenta and we have proved that one can define a gen
differential of the form~9! with any number of items. We have proposed that the number of pi
in the decomposition~9! to be called the order of the Koszul differential.
J. Math. Phys., Vol. 38, No. 6, June 1997
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It is very interesting to remark that the number of momentaPaa
that is to be used for the

definition of the extended phase-space is, in our construction, tightly connected with the or
the differentialdT that we want to define, which means the number ofda in the decomposition
~15!. For example, we have the following.

The first-order differentialdT[d1 satisfies the properties of nilpotency and acyclicity if t
extended phase space~44! would be reduced to the variables of the levelL (0):$Pa0

,pi ,q
i ,Qa0%.

This is exactly the set that generates the extended phase space of an irreducible theory
standard BRST theory.

For the second-order differentialdT5d11d2 we obtain from~44! a phase space generated
the variables of the levelsL (21),L (0),L (1). It is the same structure as in the sp~2! theory again.

Our construction suggests the conclusion that the Koszul operators used in the standa
even in the sp~2! BRST theory represent in fact the lowest-order approximations of a genera
Koszul differential.

The physical interest of these results consists in the possibility of the extension of the
posed level structure from the Koszul complex to the whole extended phase space suitable
BRST quantization. The example analyzed in Sec. IV of this paper shows that the standard
symmetry could be seen as the first-order approximation of a generalized BRST symmetr
existence of the ‘‘non-minimal sector’’ in the standard theory asserts our interpretation. The t
we propose offers the exact structure of this nonminimal sector, as well as of the part ‘‘m
from the relation~2!.

In conclusion, we propose a new possibility in organizing a differential complex of the Ko
type from the point of view of the geometrical structure. Applying this construction to the w
extended phase space, the question ‘‘Is it possible to implement more than the sp~2! BRST
symmetry?’’ has a positive answer. The BRST symmetry and the anti-BRST symmetry seem
pieces of one and the same generalized symmetry.
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Quasi-exactly solvable spin 1/2 Schro ¨dinger operators
Federico Finkel, Artemio González-López, and Miguel A. Rodrı́guez
Departamento de Fı´sica Teo´rica II, Universidad Complutense, 28040 Madrid, Spain

~Received 31 July 1996; accepted for publication 22 October 1996!

The algebraic structures underlying quasi-exact solvability for spin 1/2 Hamilto-
nians in one dimension are studied in detail. Necessary and sufficient conditions for
a matrix second-order differential operator preserving a space of wave functions
with polynomial components to be equivalent to a Schro¨dinger operator are found.
Systematic simplifications of these conditions are analyzed, and are then applied to
the construction of new examples of multi-parameter QES spin 1/2 Hamiltonians in
one dimension. ©1997 American Institute of Physics.@S0022-2488~97!03905-4#

I. INTRODUCTION

Symmetries have traditionally played an essential role in quantum mechanics. For
remarkable Hamiltonians, the knowledge of enough symmetries leads to a complete chara
tion of the spectrum by algebraic methods.1 In general, however, the spectrum of an arbitra
Hamiltonian cannot be calculated analytically. During the last decade, a remarkable interm
class ofquasi-exactly solvable~QES! spectral problems was introduced, for which a finite part
the spectrum can be computed by purely algebraic methods.2–4 The key feature in the latter clas
of spectral problems is that the HamiltonianH is expressible as a quadratic combination of t
generators of a finite-dimensional Lie algebrag of first order differential operators preserving
finite-dimensional module of smooth functionsN . Thus,H restricts to a linear transformation i
the finite-dimensional vector spaceN , and therefore part of its spectrum can be computed
matrix eigenvalue methods. Appropriate boundary conditions must be imposed so that the
functions thus obtained qualify as physical wave functions, as, e.g., square integrability i
represent bound states of the system.5

These ideas, originally introduced for scalar Hamiltonians describing spinless particles,
generalized to include particles with spin. The first step in this direction was taken by Shifma
Turbiner,6 using the fact that a Hamiltonian for a spin 1/2 particle ind spatial dimensions can b
constructed from a Lie superalgebra of first order differential operators ind ordinary~commuting!
variables and one Grassmann~anticommuting! variable. Alternatively,7 232 matrices~or N3N
matrices for particles of arbitrary spin8! can be used to represent the Grassmann variable. H
ever, in stark contrast with the scalar case, very few examples of matrix QES Schro¨dinger opera-
tors have been found thus far.6 There are two important conceptual reasons for this fact. First,
algebraic structures underlying partial integrability in the matrix case are richer and less u
stood than in the scalar case. For one thing, as mentioned before, for matrix Hamiltonia
superalgebras of matrix differential operators naturally come into play, whereas in the scala
only Lie algebras need be considered. Moreover, as we shall explain in Section III, one ev
to go beyond Lie superalgebras of matrix differential operators in order to explain quasi-
solvability in the matrix case.7,8 Second,9,5 every scalar second order differential operator in o
dimension can be transformed into a Schro¨dinger operator of the form2]x

21V(x) by a suitable
change of the independent variablex and a local rescaling of the wave function. For mat
differential operators, the analogue of this result—V(x) being now a Hermitian matrix of smoot
functions—is no longer true unless the operator satisfies quite stringent conditions, as we sh
in detail in Section IV.

The aim of this paper is to achieve a better theoretical understanding of quasi-exact solv
in the matrix case, which will enable us to construct new examples of matrix QES Schro¨dinger
0022-2488/97/38(6)/2795/17/$10.00
2795J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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operators. To this end, in Sections II and III we study the algebraic properties of certain alg
of matrix QES operators, reviewing the literature on the subject and obtaining new results a
In particular, we give a complete characterization of the form of a QES matrix differential ope
preserving a finite-dimensional space of wave functions with polynomial components. Fo
important particular case of spin 1/2 particles, we derive in Section IV necessary and suf
conditions for a QES operator to be equivalent to a non-trivial Schro¨dinger operator. These
conditions turn out to be too complicated to be solved in full generality, and so in Sections V
VI we introduce some key simplifications that will prove very useful in the task of finding exp
examples. Finally, the previous results are applied in Section VII to the construction of
examples of multi-parameter QES spin 1/2 Hamiltonians in one dimension.

II. SCALAR QES OPERATORS

We start with the scalar case, introducing the basic concepts and definitions and stati
theorems for the one-dimensional case which will play an important role in what follows. S
the results of this section are fairly standard, we will skip many details and all the proofs, refe
the reader to the review articles~Ref. 4! and ~Ref. 9! for an in-depth study.

Let M denote an open subset ofRd, and letD1(M ) be the Lie algebra of first order differ
ential operators

X5(
i51

d

j i~z!
]

]zi
1h~z!, z5~z1,...,zd!PM ,

acting onC`(M ), the Lie bracket being defined as the usual commutator between operato

@X,Y#5XY2YX, X,YPD1~M !.

Definition 2.1: A finite-dimensional Lie subalgebrag of D1(M ) is calledquasi-exactly solv-
able ~QES! if it preserves a finite-dimensional moduleN ,C`(M ). A differential operator T is
QES if it lies in the universal enveloping algebraU~g! of a QES Lie algebrag.

In general, quasi-exact solvability of a given differential operatorT cannot be ascertaine
a priori. Therefore, the procedure usually followed consists in classifying QES Lie alge
modulo a suitable equivalence relation, and then using the canonical forms in the classifi
thus obtained to construct QES operators.

Definition 2.2: Two differential operators T(z) and T̄( z̄) are equivalentif they are related by
a change of the independent variables

z̄5w~z! ~1!

and a local scale transformation by a non-vanishing function U(z), i.e.

T̄~ z̄!5U~z!T~z!U21~z!. ~2!

The corresponding notion of equivalence for QES algebras follows directly, i.e. two QES
algebrasg and ḡ are equivalent if their elements can be mapped into each other by afixed
transformation~1!-~2!. Their associated finite-dimensional modulesN andN̄ are then related by

N̄ 5U•N , ~3!

the functions being expressed in the appropriate coordinates. The local classification of
dimensional QES Lie algebras under the above notion of equivalence has already been com
for the case of one and two~real or complex! variables. Here we shall need only the on
dimensional case.10–12,2
J. Math. Phys., Vol. 38, No. 6, June 1997
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Theorem 2.3: Every (non-singular) QES Lie algebra in one (real or complex) variable
locally equivalent to a subalgebra of one of the Lie algebras

gn5Span$]z ,z]z ,z
2]z2nz,1%, ~4!

where nPN. The associatedgn-module isN n5P n , the space of polynomials of degree at mo
n.
~The two-dimensional case, which is considerably more complicated but is not needed f
sequel, is discussed in Refs. 13, 12 and 14.!

According to the previous theorem, every one-dimensional~scalar! QES differential operator
T̄ is locally equivalent to an operatorTPU(gn) preservingP n for a suitablen. A partial converse
of the latter result follows from the following remarkable theorem due to Turbiner.15

Theorem 2.4:Let T(k) be a k-th order linear differential operator preservingP n . We then
have:

~i! If n>k, then T(k) may be represented by a k-th degree polynomial in the operators

Jn
15z2]z2nz, Jn

05z]z2
n

2
, Jn

25J25]z. ~5!

~i! If k.n, then T(k)5T]z
n111T̃, where T is a linear differential operator of order k2n

21, and T̃ is a linear differential operator of order at most n satisfying (i).

The operators$Jn
1 ,Jn

0,J2% defined above span a QES Lie algebraĝn isomorphic tosl~2!, and the
Lie algebrasgn in Theorem 2.3 are simply a central extension by the constant functions o
correspondingĝn .

III. ALGEBRAIC PROPERTIES OF PVSP OPERATORS

In the last section we have seen that every scalar QES scalar differential operator
variable is essentially~up to equivalence! a polynomial in the generators of a Lie algebraĝn
preservingP n ~for suitablen!. When working with vector-valued wave functions, the natu
generalization ofP n is the polynomial vector spaceP n1 ,...,nN

5P n1
% ••• %P nN

, with elements
C(z)5(c1(z),...,cN(z))

t such that each componentc i is a polynomial of degree at mostni with
complex coefficients.

Definition 3.1: An N3N matrix differential operator T is calledpolynomial vector space
preserving~PVSP! if it preservesP n1 ,...,nN

5P n1
% ••• %P nN

for some non-negative integers ni ,
i51,...,N.

We will denote byP n1 ,...,nN
(k) the complex vector space of linear PVSP operators of orde

mostk preservingP n1 ,...,nN
. Following Refs. 7 and 8, we will restrict ourselves in this paper

studying matrix PVSP differential operators. As we will be mainly concerned with spin
particles, the caseN52 deserves special attention.

A. Case N52

Let n>D be non-negative integers, and consider the following set of matrix differe
operators:

T15S Jn2D
1 0

0 Jn
1D , T05S Jn2D

0 0

0 Jn
0D , T25S J2 0

0 J2D , J5
1

2 S n1D 0

0 nD ,
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Qa5zas2, Q̄a5q̄a~n,D!s1, a50,...,D, ~6!

with

q̄a~n,D!5 )
k51

D2a

~z]z2n1D2k!]z
a , ~7!

where we have adopted the convention that a product with its lower limit greater than the
one is automatically 1, and

s15~s2! t5S 0 1

0 0D .
It can be easily checked that the 612D operators in~6! ~and also any polynomial thereof!
preserveP n2D,n . We now introduce aZ2-grading in the set of 232 matrix differential operators
D232 as follows: an operator

T5S a b

c dD ,
wherea,b,c,d belong to the spaceD of scalar differential operators, is said to be even ifb5c
50, and odd ifa5d50. Therefore, theT’s andJ are even and theQ’s andQ̄’s odd. This grading,
combined with the usual product~composition! of operators, endowsD232 with an associative
superalgebra structure. We can also construct a Lie superalgebra inD232 by defining a general-
ized Lie product by

@A,B#s5AB2~21!degA degBBA. ~8!

However, this product does not close within the vector space spanned by our operators~6!, except
for D50,1. The explicit commutation relations are as follows:7,8

@T1,T2#522T0, @T6,T0#57T6,

@J,Te#50, @J,Qa#52
D

2
Qa , @J,Q̄a#5

D

2
Q̄a ,

@Qa ,T
e#5S 2a1

D

2
~11e! DQa1e , @Q̄a ,T

e#5S a2
D

2
~12e! D Q̄a2e ,

$Q̄a ,Qb%5H Mab~T2!a2b, a>b

~T1!b2aMba , b>a,

$Qa ,Qb%5$Q̄a ,Q̄b%50, ~9!

wheree51,0,2, andMab is given, fora>b, by

Mab5 )
j50

D2a21

~T01Jc2 j2bP2! )
k50

b21

~T01J2k2~D2a!P1!

with Jc5D212J, and
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P1512P25S 1 0

0 0D .
As shown in Ref. 7,Mab can be expressed in terms ofT

0, J, the identity, and the Casimir fo
the even subalgebra

C52
1

2
~T1T21T2T1!1T0T05

1

4 Sm~m12! 0

0 n~n12!
D , ~10!

wherem5n2D, independently fromn and the projectorsP1 andP2 . It can be readily verified
that $Q̄a ,Qb% gives aD-th order even differential operator, so the vector space spanned b
operators in~6! is not closed under the Lie product~8! wheneverD>2. Moreover, it is not
difficult to show that the Lie superalgebrasD generated by the operators~6! is in this case infinite
dimensional. Indeed, if we commute$Q̄D ,Q0%5(T2)D with $Q̄0 ,QD%5(T1)D iteratively we
obtain monomials inT1, T0, T2 of increasingly higher order. ForD51 the underlying algebraic
structure is the classical simple Lie superalgebraosp~2,2!,4,16 whereas forD50 it is h1% sl(2),
whereh1 is the 3-dimensional Heisenberg superalgebra. As remarked in Ref. 7, in this latte
we can leave the grading aside and replaceJ51 by J̃5s3 , ending up with the Lie algebra
sl(2)% sl(2).

We now state the analogue of Theorem 2.4 for PVSP operators preservingP n2D,n ~a version
of this theorem was first mentioned without proof by Turbiner forD51 in Ref. 16, and subse
quently by Brihaye and Kosinski for arbitraryD, Ref. 7!. It turns out that the operators~6! play the
same role in the matrix case as theJ’s in ~5! do in the scalar one.

Theorem 3.2: Let n>m, and D5n2m. Let T(k) be a k-th order differential operator in
Pm,n
(k) . We then have:

~i! If m>k, then T(k) is a polynomial in the operators (6), with J replaced by J˜ if D50.
~ii ! If n>k.m, then T(k)5T]z

m111T̃, where T and T˜ are matrix linear differential operators
of the form

T5Sa~k2m21! 0

c~k2m21! 0D, T̃5Sã ~m! b̃~k!

c̃ ~m! d̃~k!D,
where the superscripts indicate the highest possible derivative in each entry, and T˜ satisfies
(i).

~iii ! If k.n, then T(k)5T]z
n111T̃, where T is a232 matrix linear differential operator of

order k2n21, and T̃:Pm,n→Pm,n is a linear PVSP operator of order at most n verifyin
(i) or (ii) .

The proof of these results is based on a straightforward analysis, using Theorem 2.4, of the
of the components ofT(k) onPm,n . A somewhat weaker version of the previous theorem, nam
that any differential operator preservingPm,n can be expressed as the sum of a polynomial in
generators ofsD plus a differential operator annihilatingPm,n , follows directly from Burnside’s
theorem,17,18 applied to the complexification ofsD .

The next issue to be addressed is to find out the number of parameters determining a
k-th order linear differential operator preservingPm,n , that is, the dimension ofPm,n

(k) . In the
scalar case, anyk-th degree polynomial inJn

1 , Jn
0, J2 may be constructed from the monomia

$(Jn
6) r(Jn

0)s2r%r50
s , s50,...,k, and so dimP n

(k)5(k11)2 if n>k.15 Remarkably, in the matrix
case we have dimPm,n

(k) 54(k11)2 independently ofm and n, providedm>k>n2m,7 as a
consequence of the following Lemma:
J. Math. Phys., Vol. 38, No. 6, June 1997
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Lemma 3.3: The following monomials form a basis of the vector space of polynomials
operators (6) of differential order at most k:

$X~T6!r~T0!s2r%r50
s , $Qa~T1!s%a51

D , s50,...,k, ~11!

where X51, J ~or J̃, if D50!, Q0 , along with, if k>D:

$Q̄0~T
6!r~T0!s2r%r50

s , $Q̄a~T2!s%a51
D , s50,...,k2D. ~12!

Proof: Linear independence of the monomials is straightforward from the definition of
operators. Completeness is a consequence of the following facts. In the first place, everyJs is a
linear combination of$1, J% ~and analogously forJ̃!. Secondly,JQa is proportional toQa , and
QaQb50 ~and the same for theQ̄’s!. Third, any productQaQ̄b is a diagonal PVSP operator, an
thus expressible through theT’s andJ ~or J̃!. Finally, the formulas (a>1)

QaT
05Qa21T

11
n2D

2
Qa , QaT

25Qa21T
01

n2D

2
Qa21 ,

Q̄aT
05Q̄a21T

21S n211D Q̄a , Q̄aT
15Q̄a21T

01S n211D Q̄a21 ,

allow us to remove everyT0 andT2 ~respectivelyT1! from the monomials withQa ~respectively
Q̄a!, a51,...,D. Q.E.D.

Corollary 3.4: Let n>m>k, andD5n2m. We then have:

dim Pm,n
~k! 5H 4~k11!2, k>D

~k11!~3k1D13!, D.k
.

If m,k, dim Pm,n
(k) is no longer finite, as arbitrary differential operators are involved in this c

B. Case N>2

We now examine briefly some aspects of the caseN.2. Let n1<•••<nN be non-negative
integers, and letD i j5nj2ni , wherej. i . Consider the following set ofN3N matrix differential
operators:8

Te5diag~Jn1
e ,...,JnN

e !, e51,0,2,

Pi5diag~0,...,0,1,0,...,0!,

Qa~ i , j !5zal i j , i. j , a50,...,D j i ,

Q̄a~ i , j !5q̄a~nj ,D i j !l i j , j. i , a50,...,D i j , ~13!

where (l i j )pq5d ipd jq . It can be readily verified that the operators in~13! preserveP n1 ,...,nN
. A

complication arising whenN.2 is to define a suitable composition law between the latter op
tors. In the approach of Brihayeet al.,8 this composition law is defined to be an anticommutato
both operators are off-diagonal and a commutator otherwise, but the algebra thus obtaine
longer a Lie superalgebra, since the anticommutator of two off-diagonal operators is not alw
diagonal one. This reflects the fact that theZ2-grading we introduced forN52 ~i.e. classifying the
operators in diagonal and off-diagonal! does not define an associative superalgebra inDN3N when
N.2, for the usual product~composition! of two off-diagonal matrix differential operators is no
J. Math. Phys., Vol. 38, No. 6, June 1997
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necessarily diagonal. A possible generalization of thisZ2-grading endowingDN3N with an asso-
ciative superalgebra structure can be defined as follows. An operatorT5al i j , whereaPD , is
said to be even~respectively odd! if i1 j is even~respectively odd!. Hence, any diagonal operato
is even. We can likewise use this grading and the generalized Lie product~8! to construct a Lie
superalgebra structure inDN3N . It is not clear, however, whether this construction is really use
and so it will not be further discussed.

As remarked by Brihayeet al.,8 Theorem 3.2 can be easily generalized to arbitraryN, the
operators~13! playing the same role as those in~6! for N52. Moreover, it is not difficult to show
that dimP n1 ,...,nN

(k) is still independent of theni ’s if they are large enough and their differences a

small enough. More precisely, ifn1>k, we have:

dim P n1 ,...,nN
~k! 5H N2~k11!2, k.D1N

N~N11!

2
~k11!21~k11!(

i, j
u i j , D1N.k,

whereu i j5D i j if D i j.k, andu i j5k11 if D i j<k. If k.n1 , arbitrary differential operators ar
involved and thusP n1 ,...,nN

(k) is infinite-dimensional.

Although no attempt will be made here to give a formal definition of a QES algebra of m
differential operators, it is clear that Definition 2.1 of a QES differential operator is too restri
in the matrix case. Indeed, the results of this section suggest that in the matrix case one
include at least Lie superalgebras of differential operators—not necessarily finite-dimension
spanned by first order operators—preserving a finite-dimensional module of functions amo
class of matrix QES algebras. In any case, it is intuitively clear that PVSP operators are
particular class of QES operators.

IV. SPIN 1/2 SCHRÖDINGER OPERATORS

From now on we will deal only with 232 matrix second order differential operators~N5k
52 in the notation of the previous sections!. We start by formally defining the class of matr
Schrödinger operators:

Definition 4.1: A Schro¨dinger-like operator is a second order differential operator of the fo
H52]x

21V(x), where V is an arbitrary232 (complex) matrix. A Schro¨dinger operator (or
Hamiltonian) is a Hermitian Schro¨dinger-like operator, i.e. the matrix V is of the form

V5S v1~x! v* ~x!

v~x! v2~x!
D , ~14!

wherev1 and v2 are real-valued functions andv is an arbitrary complex-valued function.
The notion of equivalence we shall use for matrix differential operators is the same as

scalar case~see Definition 2.2!, where now the gauge factorU(z) is an invertible complex 2
32 matrix. We will be interested in constructing one-dimensional Schro¨dinger operatorsH
equivalent to a second order differential operatorT in Pm,n

(2) , with D5n2m>0. This equivalence
can then be used to constructm1n12 eigenfunctions ofH from the corresponding ones ofT
obtained by diagonalization of the (m1n12)3(m1n12) Hermitian matrix representingT in
Pm,n . We will assume thatm>2, and thusT is a polynomial in the operators~6!, according to
Theorem 3.2

Let T:Pm,n→Pm,n (n>m>2) be a second-order PVSP operator. From Theorem 3.2 we

2T5A2~z!]z
21A1~z!]z1A0~z!, ~15!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where theAi ’s are 232 matrices with polynomial entries~in this section, capital letters will be
reserved for matrices!. Assume thatT(z) is equivalent to a Schro¨dinger operatorH(x) under a
gauge transformationU(z) and a local change of variable by a real-valued functionx5w(z), i.e.

2T~z!52U21~z!H~x!U~z!5]x
212A]x2B, ~16!

with

A~x!5Ũ21Ũx , B~x!5Ũ21VŨ2A22Ax , Ũ~x!5U~w21~x!!.

Here and in what follows, a subscriptedx denotes derivation with respect tox, while derivatives
with respect toz will be denoted with a prime8. ExpressingT(z) in the variablex, we obtain the
operatorT̃(x) given by

2T̃~x!5@A2w82]x
21~A1w81A2w9!]x1A0#w21~x! , ~17!

and comparing with~16! we conclude thatA2 must be a multiple of the identity. It then follow
that the only monomials in Lemma 3.3 which contribute toA2 are$(T6) r(T0)22r% r50

2 , and taking
into account the explicit form of theTe’s ~see~6!!, we conclude thatA2 is a 4-th degree polyno
mial p4 times the identity matrix.~Unless otherwise stated, we will denote bypn(z) an arbitrary
polynomial inz of degree at mostn with complex coefficients.! We also deduce thatw(z) satisfies
the equationp4w8251, or

x5Ez 1

Ap4~s!
ds, ~18!

and thus the coefficients ofp4 must be real. Identifying the corresponding remaining terms in~16!
and ~17!, we then get

A~x!5
1

2Ap4
SA12

1

2
p48DU

w21~x!

, B~x!52A0uw21~x! . ~19!

Thus, we have shown:
Theorem 4.2:Let T be a PVSP operator inPm,n

(2) , with n>m>2. Then T is equivalent to a
Schrödinger-like operator if and only if it is of the form

2T5p4]z
21A1]z1A0 . ~20!

The operator T is equivalent to a Schro¨dinger operator2]x
21V(x) if and only if (20) holds, and

in addition there is an invertible matrix U˜ satisfying the differential equation

Ũx5ŨA ~21!

and such that

V5ŨW̃Ũ21, where W̃5B1A21Ax , ~22!

is Hermitian (with x, A, and B given by (18) and (19)).
The eigenfunctions of the HamiltonianH are of the form c(x)5ŨC̃ with C̃(x)

5C(w21(x)), whereC(z) is an eigenfunction ofT andc must satisfy suitable boundary con
ditions to qualify as a physical wave function.
J. Math. Phys., Vol. 38, No. 6, June 1997
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We note that once an invertible solutionŨ of equation~21! has been found, any othe
invertible solution is of the formU0Ũ for someU0 in GL~2,C!. In fact, multiplying Ũ by such
U0 is equivalent to performing a further constant scale transformation byU0 . In the scalar case
this additional freedom is absent, for differential operators are unaffected by scale transform
by constant functions. Note also that a scale transformation by an arbitrary constant matrixU0 will
not map every Hamiltonian into another Hamiltonian, unlessU0 belongs toR

13U(2).
A matrix differential operator will be calleduncoupledif it is either upper or lower triangular

SinceA2 in ~15! must be a multiple of the identity matrix, it follows that a PVSP operator of
form ~20! will be automatically uncoupled wheneverD.1, as none of the monomials~12! can
then be present inT. Moreover, the following result shows that any Hamiltonian we may ob
from T whenD.1 will be essentially diagonal:

Proposition 4.3: Every Hamiltonian H obtained from an uncoupled PVSP operator T o
form (20) is diagonal, up to equivalence.

Proof: If T is uncoupled, the integration of equation~21! is straightforward. MultiplyingŨ
from the left by an appropriateU0 in R13U(2), weconstruct a new gauge factor uncoupled
the same way asT. Using this new gauge factor, we obtain a HamiltonianĤ given by

Ĥ5U0HU0
215U0ŨT̃~U0Ũ !21,

which is both diagonal and equivalent to the initial one. Q.E.D.
Consequently, the only cases we need to consider areD50,1.
There are two main difficulties associated with the method just outlined for constructing

spin 1/2 Hamiltonians. In the first place, one needs to invert the elliptic integral~18! in order to
computez as a function ofx, which is no easy task. Secondly, the differential equation~21!
cannot in general be solved in closed form, thus preventing us from verifying the Hermitic
V. The former complication can be overcome, as we shall see in the next section. The la
more difficult to handle, although imposing further constraints on the initial PVSP operator
contribute to simplify the problem, as shown in Section VI.

We shall finish this section with a few remarks on the physical significance of matrix Sc¨-
dinger operators. First of all, one-dimensional 232 matrix Schro¨dinger operators can be obtaine
by separation of variables from the three-dimensional Pauli Hamiltonian describing a sp
charged particle in non-relativistic quantum mechanics. Consider, indeed, the Pauli Hamilt

HPauli5~ i¹1eA!21ef2es•B,

where f and A5(A1,A2,A3) are respectively the scalar and vector potential of the exte
electromagnetic field,B5“3A is the magnetic field,s5(s1,s2,s3) are the Pauli matrices,e is
the electric charge, and physical units have been chosen so that\5c52m51. If, for example, the
vector and scalar potentials depend only on thex coordinate~and we take, without loss of gen
erality, A150! thenHPauli obviously commutes with they andz components of the linear mo
mentum. The eigenfunctions ofHPauli can then be sought in the form

ei ~pyy1pzz!c~x!; py ,pzPR,

where the two-component spinorc(x) is an eigenfunction of the one-dimensional matrix Sch¨-
dinger operator with potential~14! given by

v j~x!5ef1~eA22py!
21~eA32pz!

21~21! je
dA2

dx
, j51,2,

v~x!5 ie
dA3

dx
.
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More surprisingly, one-dimensional 232 matrix operators are also directly related to Dirac
relativistic equation for a spin 1/2 charged particle in an external electromagnetic field. To se
let us write the latter equation as

~ i ]”2eA”2m!C~x!50, ~23!

wherea”5gmam , thegm’s are 434 matrices satisfying

$gm,gn%52gmn,

the metric tensor (gmn)5diag(1,21,21,21) is used to raise and lower indices,]m5]/]xm, x0

5t, A05f andm is the particle’s mass. Multiplying Dirac’s equation by the operatori ]”2eA”
1m we easily arrive at the second-order equation

F ~ i ]2eA!22m22
e

2
FmnsmnGC50, ~24!

wheresmn5 i /2@gm,gn# andFmn5]mAn2]nAm is the electromagnetic field strength tensor. In t
chiral representation of the gamma matrices,19 ~24! decouples into two independent equations
the upper and lower componentsC6(x) of C(x), namely~cf. Ref. 20!

@~ i ]2eA!22m21es•~B7 iE!#C650.

If the electromagnetic four-potentialAm is time-independent, and we look for solutions of Dirac
equation with well-defined energyE, i.e. we setC65e2 iEtc6(x,y,z), we obtain the following
equation forc6 :

@~ i¹1eA!22~E2eA0!21m22es•~B7 iE!#c650, ~25!

which has the same structure as Pauli’s non-relativistic equation. Just as was the case with
equation, separation of variables in~25! often leads to the eigenvalue problem for a on
dimensional matrix Schro¨dinger operator. For instance, suppose thatA050 and thatA is of the
form

A5Aw~r!ew1Az~r!ez

in cylindrical coordinates (r,w,z). The left-hand side of~25! then commutes with thez compo-
nents of the linear momentum (2 i ]z) and the total angular momentum (2 i ]w11/2s3), which
allows us to look for solutions of~25! of the form

c~r,w,z!5eipzzSR1~r!ei ~ j z21/2!w

R2~r!ei ~ j z11/2!wD , pzPR, j zPN1
1

2
. ~26!

Here we have dropped the subscript6, sincec1 andc2 satisfy the same equation. Substitutin
~26! into ~25! we obtain that the two-component spinor (f 1(x) f 2(x))

t5x1/2(R1(x) R2(x))
t is an

eigenfunction of the one-dimensional 232 matrix Schro¨dinger operator on~0,̀ ! with potential

V~x!5~pz2eAz~x!!21e2Aw
2~x!1e

dAz
dx

~x!s22e
Aw~x!

x
~2 j z2s3!1

j z
x2

~ j z2s3!,

with eigenvalueE22m2 and boundary conditionf 1(0)5 f 2(0)50. See also Ref. 21 for a differen
approach.
J. Math. Phys., Vol. 38, No. 6, June 1997
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V. GL(2) ACTION AND CANONICAL FORMS

In this section we will study how the GL~2! action on the projective lineRP1 induces an
automorphism in the superalgebrassD generated by the operators~6!. This will allow us to reduce
the polynomialp4(z) to some simple canonical forms, facilitating the evaluation of the inte
~18!. These ideas were first applied in the context of QES systems to analyze the normaliz
of the wave functions of scalar QES Hamiltonians.5 We introduce some definitions and results
the scalar case, and then show how to extend these concepts to the matrix superalgebrassD .

The action of GL(2)5GL(2,R) on RP1 via linear fractional or Mo¨bius transformations,

z°w5
az1b

gz1d
, C5S a b

g d D , uCu5ad2bgÞ0, ~27!

induces an action onP n , mapping a polynomialp(w) to the polynomialp̄(z) given by

p̄~z!5~gz1d!npS az1b

gz1d D . ~28!

This defines an irreducible multiplier representation of GL~2! in P n ,
22 which will be denoted by

rn,0 . Since the infinitesimal generators of this multiplier representation coincide with the ge
tors of gn , cf. ~4!, it follows that the representationrn,0 induces an automorphism of the Li
algebraĝn spanned by theJn

e ’s in ~5!.5 Performing the explicit scale transformation and change
variable,

Jn
e~w!°~gz1d!nJn

e S az1b

gz1d D ~gz1d!2n, ~29!

we obtain:

S Jn1Jn0
J2

D °
1

uCu S a2 2ab b2

ag ad1bg bd

g2 2gd d2
D S Jn1Jn0

J2
D .

Therefore, theJn
e ’s transform according to the representationr2,215r2,0^ det21 of GL~2!, where

det21 is the reciprocal of the representation det:C°uCu. It is convenient at this stage to introduc
a larger class of representations of GL~2!:

Definition 5.1: Let n>0, i be integers. The (irreducible) multiplier representationrn,i of
GL~2! on P n is defined by

p~w!° p̄~z!5~ad2bg! i~gz1d!npS az1b

gz1d D .
We note the isomorphism betweenrn,i andrn,0^deti. As shown in Ref. 5, a second-degre

polynomial in theJn
e ’s ~in fact, any operator inP n

(2) if n>2, or any QES operator on the lin
modulo equivalence, according to Theorems 2.3 and 2.4! may be written as

p2~Jn
e !5p]z

21S q2
n21

2
p8D ]z1r2

n

2
q81

n~n21!

12
p9, ~30!

wherep, q, andr are polynomials inz of degrees 4, 2, and 0 respectively. The transformation
p2(Jn

e) under the action~29! is easily described in terms of the triple (p,q,r ).5
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Lemma 5.2: Let p2 be a second-degree polynomial in the operators Jn
e(w), determined by the

triple (p(w),q(w),r ). Then, the transformed polynomial p2̄ under theGL~2! action (29) is de-
termined by the triple( p̄(z),q̄(z), r̄ ) given by

p̄~z!5
~gz1d!4

uCu2
pS az1b

gz1d D , q̄~z!5
~gz1d!2

uCu
qS az1b

gz1d D , r̄5r .

Therefore, a second-degree polynomialp2 in theJn
e ’s transforms according to the direct su

representationr4,22% r2,21% r0,0 under the GL~2! action ~29!. One can choose a particularl
simple representative of the GL~2! orbit generated byp2 by placing the polynomialp ~assumed to
be real! in its associated triple (p,q,r ) in canonical form.23

Theorem 5.3:Every non-zero quartic real polynomial p(z) transforming under the represen
tation r4,22 of GL~2! is equivalent to one of the following canonical forms:

~1! n~z41tz211!, tÞ62, ~5! n~z221!,

~2! n~z41tz221!, ~6! nz2,

~3! n~z211!2, ~7! z,

~4! n~z211!, ~8! 1,

~31!

wherenÞ0 and t are real numbers.
We now generalize these results to the matrix case. The induced action of GL~2! on

P n2D,n analogous to~28! is:

S p1~w!

p2~w! D°S p̄1~z!

p̄2~z! D5Û~z!S p1~w~z!!

p2~w~z!! D ,
where

Û~z!5diag~~gz1d!n2D,~gz1d!n!,

andw(z) is given by ~27!. This representation of GL~2! in P n2D,n is obviously isomorphic to
rn2D,0% rn,0 . The following Lemma describes the induced action onsD :

Lemma 5.4: The action ofGL~2! on sD given by

X~w!°X̄~z!5Û~z!XS az1b

gz1d D Û21~z!, XPsD , ~32!

defines a Lie superalgebra automorphism. The generators ofsD , cf. (6), transform according to
the following irreducible representations:

$Te%→r2,21 , $J%→r0,0,

$Qa%→rD,0 , $Q̄a%→rD,2D .

A straightforward generalization of equation~30! and of Lemma 5.2 to a second-degr
polynomial in theTe’s shows that the~real! polynomial p4 in ~20! transforms according to the
representationr4,22 under the GL~2! action~32!. We will henceforth assume thatp4 is one of the
canonical forms given in Theorem 5.3. The integral~18! and the inversez5w21(x) can then be
easily computed for each of these canonical forms.9

Before finishing this section, let us point out that equations~21! and~22! adopt a simpler form
in the variablez, because in that case only rational functions appear. Explicitly, the equatio
the gauge factor reads:
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



he
uations

e
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U85UÂ, with Â~z!5
Auw~z!

Ap4
5

1

2p4
SA12

1

2
p48D , ~33!

while Ũ andW̃ in equation~22! are substituted byU andW, where

W52A01p4Â81p4Â
21 1

2 p48Â. ~34!

We now use Theorem 3.2, Lemma 3.3 and the explicit form of the operators~6! to computeÂ and
A0 for the most general operator inP n2D,n

(2) of the form~20!, in the casesD50, 1. We denote by
pn

a the polynomial( i50
n a iz

i , wherea i are arbitrary complex numbers. If the polynomialp4 is not
one of the first three canonical forms, we obtain:

CaseD50:

p4Â5S p2a p2
b

p2
c p2

dD , A05S â022na2z b̂022nb2z

ĉ022nc2z d̂022nd2z
D . ~35!

CaseD51:

p4Â5S p2a p1
b

p3
c p2

dD , A05S â022~n21!a2z 22nb1

ĉ01 ĉ1z22~n21!c3z
2 d̂022nd2z

D , ~36!

where â0 , b̂0 , ĉ0 , ĉ1 , and d̂0 are arbitrary complex numbers. Ifp4 is one of the first three
canonical forms, the following extra terms are present inp4Â andA0 :

p4Â→2diag~~n2D!nz3,nnz3!, ~37!

A0→1diag~~n2D!~n2D21!nz2,n~n21!nz2!. ~38!

VI. THE GAUGE FACTOR

In this section we will deal with the differential equation~33! for the gauge factorU(z). As
remarked in Section IV, this equation cannot be solved in closed form for everyÂ. Alternatively,
~33! can be written as two~uncoupled! identical first-order linear systems; unfortunately, t
associated scalar second-order ordinary differential equation is not any of the standard eq
of Mathematical Physics.

However, if we restrict ourselves to matricesÂ satisfying the equation

F Â~z!,E
z0

z

Â~s!dsG50, ~39!

for somez0PR, we can readily integrate the gauge equation~33!. Recall that this condition on
Â was indeed verified by the QES Schro¨dinger operator found by Shifman and Turbiner.6 If ~39!
is satisfied, we shall say that we are in thecommuting case. In this case, the general solution of th
gauge equation is given by:

U~z!5U0 exp E
z0

z

Â~s!ds, ~40!
J. Math. Phys., Vol. 38, No. 6, June 1997
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whereU0 is in GL(2,C). We will make use of the following elementary Lemma to describe
most general form ofÂ in the commuting case:

Lemma 6.1: Let M(z) be a232 matrix satisfying equation (39). Then M is of the form:

M5 f ~z!M01g~z!, ~41!

where f and g are scalar functions, and M0 is a 232 constant matrix.
With this Lemma in mind, looking at the expressions forÂ(D50,1) that we obtained in

Section V, cf.~35!–~37!, we find that the most generalÂ satisfying~39! is of the form

p4Â5 p̂2~z!1Ǎ~z!,

where, as usual,p̂2 denotes a second-degree polynomial inz with complex coefficients, and the
matrix Ǎ is given in Table I.

Note that ifD51 andp4 is one of the first three canonical forms, every Hamiltonian we
possibly obtain will be diagonal, modulo equivalence.

Finally, let us remark that in thenon-commuting case~that is, when@Â,*zÂ#Þ0), we may
still be able to integrate~33! explicitly by imposing other constraints onÂ, as e.g. assuming it is
uncoupled. Alternatively, ifp4 is not any of the first three canonical forms, and we assume tha
columns~or rows! of Â are proportional to each other~the ratio of the respective entries being
constant!, we can also reduce~33! to quadratures. Unfortunately, we have not been able to
any interesting examples of QES Hamiltonians in the non-commuting case.

VII. EXAMPLES

In this final section we exhibit some new examples of spin 1/2 Schro¨dinger operators equiva
lent to a PVSP operator of the form~20!. In the previous section we have seen how, by restrict
ourselves to the commuting case, we were able to integrate equation~33! explicitly. This is not,
however, the end of the problem, for we must still check that the matrix

V5UWU21uw21~x! , ~42!

with W given by~34!, is Hermitian. Moreover, one has to make sure that the algebraic eigen
tions ofH ~of the formUCuz5w(x) , with C(z)PP n2D,n! satisfy appropriate boundary condition
We shall restrict ourselves in this paper to QES Hamiltonians with square integrable eige
tions, corresponding to bound states of the system. We will also require the expected value
potentialV to be bounded from below, i.e.

^c,Vc&>cici2, with cPL2~R! %L2~R!, ~43!

for somecPR. Again, if we start with the most general PVSP operator of the form~20! and we
limit ourselves to the commuting case, even if no conceptual difficulty is involved, the alge

TABLE I. Matrix Ǎ(z) for the canonical forms 128~a,b,g P C!.

p4 in canonical forms 1-3 p4 in canonical forms 4-8

D50
p2Sa b

g 2a
D2nnz3 p2Sa b

g 2a
D

D51
~p22nz3!Sn21 0

g n
D p1Sa b

g 2a
D, p2Sa 0

g 2a
D, p3S0 0

g 0
D
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constraints imposed by all these conditions turn out to be very complicated to solve in
generality. This situation is analogous to what we find when trying to construct scalar
Schrödinger operators in more than one spatial dimension.4,9 In fact, in the commuting case with
D50 we were not able to find any non-trivial example satisfying all the required physical
ditions. We conjecture that in this case all QES potentials are either non-normalizable
bounded from below, or diagonalizable by a constant gauge transformation.

We now present some relevant examples of QES spin 1/2 Hamiltonians for the comm
case withD51.

Example 1:Let T be the four-parameter PVSP operator given by

2T5~T0!212a2T
112~n11!T022JT012b1Q̄012b0Q̄122b1Q0T

0

22b0Q0T
22~4a2b01~3n11!b1!Q024a2b1Q12S 2d̂01n1

1

2D J,
with all the parameters real. Sincep45z2 we are in case 6 of Theorem 5.3. Solving equation~18!
for z, we obtainz5ex. The gauge factor reads:

U~z!5Azea2zS cosu sin u

2sin u cosuD , where u52
b0
z

1b1 log z.

Using ~42!, we obtain a potentialV(x) with entries given by~see~14!!:

v j52b0
2e22x22b0b1e

2x1~2n11!a2e
x1a2

2e2x1~21! j~a~x!cos 2ũ2b~x!sin 2ũ!, j51,2

v5a~x!sin 2ũ1b~x!cos 2ũ,

whereũ5b1x2b0e
2x, and

a~x!52
d̂0
2

1a2e
x, b~x!5~2n11!b112a2~b01b1e

x!.

We have ignored a constant multiple of the identity inV, which is equivalent to fixing a new
origin in the energy scale. It may be easily verified that the expected value of the poten
bounded from below, that is, equation~43! holds, if and only ifb050. ~Note, however, that even
in this case the amplitude of the oscillations ofv(x) tends to infinity asx→1`.! Finally, the
conditiona2,0 is necessary and sufficient to ensure the square integrability of the eigenfun
c(x).

Example 2:As our second example, we consider:

2T5T2T012a1T
01~ 2a01n2 1

2!T22JT212b1Q̄022b1Q0T
0

2b1~4a013n11!Q024a1b1Q112~2â02a1!J,

where all the coefficients are real, andb1Þ0. Sincep45z ~case 7!, we havez5x2/4. The gauge
factor is chosen as follows:

U~z!5za0ea1zS cosb1z sin b1z

2sin b1z cosb1z
D .

The entries of the potentialV(x) are given by
J. Math. Phys., Vol. 38, No. 6, June 1997
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v j5
2a0~2a021!

x2
1
1

4
~a1

22b1
2!x21~21! j S â0 cosb1x22

2a~x!sin
b1x

2

2 D ,
v5â0 sin

b1x
2

2
1a~x!cos

b1x
2

2
,

with j51, 2, anda(x) is defined by

a~x!5
b1
2

~4a014n111a1x
2!.

We first note that the potential is singular at the origin unlessa050,1/2. Let us introduce the
parameterl52a021, in terms of which the coefficient ofx22 in v j is l(l11). If l is a
non-negative integerl , we may regard

~2]x
21V~x!2E!c~x!50, 0,x,`, ~44!

as the radial equation obtained after separating variables in the three-dimensional Schro¨dinger
equation with a spherically symmetric Hamiltonian given by

Ĥ52D1U~r !, with U~x!5V~x!2
l ~ l11!

x2
,

whereD denotes the usual flat Laplacian. Given a non-negative integerl and a spherical harmoni
Ylm(u,f), if c is an eigenfunction for the equation~44! satisfying

lim
x→01

c~x!50, ~45!

then

Ĉ~r ,u,f!5
c~r !

r
Ylm~u,f!

will be an eigenfunction forĤ with angular momentuml . If l is not a non-negative integer, w
shall consider~44! as the radial equation for the singular potentialU(r )5V(r ) at zero angular
momentum. The potentialU(r ) is physically meaningful, in the sense that the HamiltonianĤ
admits self-adjoint extensions and its spectrum is bounded from below, wheneverlÞ21/2.24,5

The boundary condition~45! must be satisfied in the singular case forall values ofl. This
boundary condition is verified if and only ifa0.0. The expected value of the potential is bound
from below whenever

Ua1b1U.11&.

Finally, the conditions

a0>0, a1,0,

ensure thatc lies in L2(I )%L2(I ), whereI5@0,̀ ) in the singular case or at zero angular m
mentum, orI5R in the non-singular one-dimensional case.
J. Math. Phys., Vol. 38, No. 6, June 1997
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12A. González-López, N. Kamran, and P. J. Olver, ‘‘Quasi-exactly solvable Lie algebras of first order differential ope
in two complex variables,’’ J. Phys. A24, 3995-4008~1991!.
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Multiperiodic coherent states and the
Wentzel–Kramers–Brillouin exactness.
II. Noncompact case and classical theories revisited
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We show that the Wentzel–Kramers–Brillouin approximation gives the exact re-
sult in the trace formula of ‘‘CQN, ’’ which is the noncompact counterpart of
CPN, in terms of the ‘‘multiperiodic’’ coherent state. We revisit the symplectic
2-forms onCPN andCQN and, especially, construct that onCQN with the unitary
form. We also revisit the exact calculation of the classical partition functions of
them. © 1997 American Institute of Physics.@S0022-2488~97!02606-6#

I. INTRODUCTION

Recently there have been many discussions1–4 on the system in which the Wentzel–Kramers
Brillouin ~WKB! approximation gives the exact result~We call this fact the ‘‘WKB exactness’’! in
path integral in connection with the Duistermaat–Heckman~DH! theorem.5,6 As for our work we
have shown that SU~2! spin and its noncompact counterpart SU~1,1! is the WKB exactness in the
path integral formulas constructed in terms of the spin coherent state with the discrete
method.7 We have also shown8,9 the WKB exactness of their extensions; some unitary repre
tations ofU(N 1 1) andU(N,1), whose parameter spaces~phase spaces! areCPN andCQN,
respectively, in terms of the generalized coherent states10 with the help of the Schwinger boso
method.11 Hereafter, for simplicity, we use the terminology ‘‘the representation ofCPN(CQN)’’
for the representation ofU(N 1 1)(U(N,1)) corresponding toCPN(CQN).

Then there arises the question whether the WKB exactness depends on some special c
states. It is important to investigate the WKB exactness of the same systems in terms o
coherent states. With respect to the SU~2! spin, there is another expression, the Nielsen–Rohr
formula,12 which is constructed in terms of the periodic coherent state.13We have shown the WKB
exactness of the Nielsen–Rohrlich formula14 and its extension toU(N 1 1), which is constructed
in terms of the ‘‘multiperiodic’’ coherent state,15 although the handling of the trace formulas
more delicate than that in terms of the generalized coherent state. In the first half of this pap
discuss the trace formula of some representation ofU(N,1) and the WKB exactness.

In the latter half of this paper, we revisit classical systems whose phase spaces areCPN and
CQN, respectively. We reconsider the symplectic 2-forms onCPN, CQN, andCP( l 2(C)). By
skillfully embeddingCQN to CP( l 2(C)), we obtain the symplectic 2-form onCQN by the
pullback of that onCP( l 2(C)). This embedding corresponds to a unitary representation
U(1,N). The embedding ofCPN to CP( l 2(C)) is trivial. Thus we can understand the symplec
2-forms onCPN andCQN in a universal manner. Next we revisit the exact calculations of
classical partition functions ofCPN and CQN. Applications of the DH theorem to classica
systems have already been done for some symmetric spaces.16 However the direct calculation of it
which should be compared with that of the stationary phase approximation, is in general no
to perform. For the classical partition functions ofCPN andCQN, we give two calculations by

a!Electronic mail: fujii@yokohama-cu.ac.jp
b!Electronic mail: fnhs1scp@mbox.nc.kyushu-u.ac.jp
0022-2488/97/38(6)/2812/20/$10.00
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direct calculation and one by lifting to the Gaussian integral forms. The comparison between
two methods gives us another understanding of the DH theorem and may give a hint f
extension of the DH theorem to quantum mechanics~namely, the WKB exactness in our term
nology or the ‘‘functional residue theorem’’ in mathematical terminology!. The partition function
of CQN is written by an indefinite form@by means ofU(1, N)#. To give it a unitary form, we use
the embedding stated above. Then it is given by the pullback of that ofCP( l 2(C)). For the
partition functions ofCPN andCQN, we can also gain a universal understanding.

II. TRACE FORMULA AND THE WKB EXACTNESS OF PATH INTEGRAL

In this section we show the WKB exactness of a representation ofCQN. In Sec. II A we
construct the trace formula with the help of the Schwinger boson method.11We calculate the trace
formula exactly in Sec. II B. Then in Sec. II C we make the WKB approximation and compar
result with that of the exact calculation.

A. Construction of the trace formula

u(N,1) algebra is defined by

@Eab ,Egd#5hbgEad2hdaEgb ,
~2.1!

hab5diag~1,..., 1,21! ~a,b,g,d51,...,N11!,

with a subsidiary condition

2 (
a51

N

Eaa1EN11,N115K ~K5N,N11,...!. ~2.2!

We identify these generators with creation and annihilation operators of harmonic oscillato

Eab5aa
†ab , Ea,N115aa

†aN11
† ,

~2.3!

EN11,a5aN11aa , EN11,N115aN11
† aN1111,

wherea, a† satisfy

@aa ,ab
† #51, @aa ,ab#5@aa

† ,ab
† #50 ~a,b51,2,...,N11!, ~2.4!

and the Fock space is

$un1 ,...,nN11&un1 ,n2 ,...,nN1150,1,2,...%,
~2.5!

un1 ,...,nN11&[
1

An1! •••nN11!
~a1

†!n1•••~aN11
† !nN11u0,0,...,0&.

The representation space is

1K[ (
$n%50

` Un1 ,...,nN ,K211 (
a51

N

naL K n1 ,...,nN ,K211 (
a51

N

naU, ~2.6!

where
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(
$n%50

`

[ (
n150

`

(
n250

`

••• (
nN50

`

. ~2.7!

The multiperiodic coherent state is defined by

uw&[uw1 ,...,wN&[
1

~2p!N/2 (
$m%50

` A ~K21!!

m1! •••mN! ~K211(a51
N ma!!

3 )
a51

N

$e2 imawa~Ea,N11!
ma%u0,...,0,K21&

5
1

~2p!N/2 (
$m%50

`

expS 2 i (
a51

N

mawaDUm1 ,...,mN ,K211 (
a51

N

maL ,
~2.8!

which has the periodic property

uw1 ,...,wa12np,...,wN&5uw1 ,...,wa ,...,wN&, ~2.9!

for eachwa(a 5 1,...,N). These states satisfy the resolution of unity

E
0

2p

)
a51

N

dwauw&^wu51K . ~2.10!

Their inner product is

^wuw8&5
1

~2p!N (
$m%50

`

expS i (
a51

N

ma~wa2wa8 !D . ~2.11!

We adopt the Hamiltonian

Ĥ[ (
a51

N11

caEaa5 (
a51

N

maEaa1KcN11 , ~2.12!

where

ma[ca1cN11 . ~2.13!

Its matrix element is

^wuĤuw8&5S (
a51

N

ma

]

]~ iwa!
1KcN11D ^wuw8&. ~2.14!

To construct a path integral formula, we rewrite the inner product~2.11! with the help of the
formula

(
m5m0

m1

eimw f ~m!5 (
n52`

` E
m02e0

m11e0
dpeip~w12np! f ~p! ~0,e0,1!,

~2.15!

for m0 ,m1PZ,

as
J. Math. Phys., Vol. 38, No. 6, June 1997
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^wuw8&5 )
a51

N F 1

2p (
na52`

` E
2e0

`

dpae
ipa~wa2wa812nap!G

5 (
$na%52`

` E
2e0

`

)
a51

N
dpa

2p
expS i (

a51

N

pa~wa2wa812nap!D . ~2.16!

We make a change of variables such that

p̃a5pa1 1
2, e52e01

1
2 ~0<e, 1

2!, ~2.17!

to obtain

^wuw8&5 (
$na%52`

` E
e

`

)
a51

N

dp̃a expS i (
a51

N

~ p̃a21/2!~wa2wa812nap!D . ~2.18!

The Feynman kernel is defined by

K~wF ,wI ;T![^wFue2 iĤ TuwI&5 lim
M→`

^wFu~12 iDtĤ !MuwI& ~Dt[T/M !, ~2.19!

wherewI(wF) is the initial ~final! state andT is time interval. By inserting the resolution of unit
~2.10! between each (12 iDtĤ) of its product, the kernel becomes

K~wF ,wI ;T!5 lim
M→`

E
0

2p

)
i51

M21

)
a51

N
dwa~ i !

2p )
j51

M

^w~ j !u~12 iDtĤ !uw~ j21!&U
w~0!5wI

w~M !5wF

.

~2.20!

Each term of the product becomes

^w~ j !u~12 iDtĤ !uw~ j21!&5 (
$n~ j !%52`

` E
e

`

)
a51

N

dpa~ j !

3expS i (
a51

N

~pa~ j !11/2!~wa~ j !2wa~ j21!12na~ j !p!D
3F12 iDtH (

a51

N

maS pa~ j !2
1

2D1KcN11J G
5 (

$n~ j !%52`

` E
e

`

)
a51

N

dpa~ j !

3expS i (
a51

N

~pa~ j !11/2!~wa~ j !2wa~ j21!12na~ j !p!D
3expF2 iDtH (

a51

N

maS pa~ j !2
1

2D1KcN11J G , ~2.21!

where the primes ofp’s have been omitted and the explicit form of the inner product~2.18! has
been put in the first equality, andO(Dt2) terms, which vanish in theM→` limit, have been
omitted in the second equality. Thus the kernel~2.20! is
J. Math. Phys., Vol. 38, No. 6, June 1997
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K~wF ,wI ;T!5 lim
M→`

e2 iKcN11T)
a51

N F S )
i51

M

(
na~ i !52`

` D E
0

2p

)
i51

M21
dwa~ i !

2p E
e

`

)
j51

M

dpa~ j !

3expF i(
k51

M S pa~k!2
1

2D ~wa~k!2wa~k21!12na~k!p2Dtma!G G
5 lim

M→`

e2 iKcN11T)
a51

N F (
na8 ~M !52`

` E
2`

`

)
i51

M21 dwa8 ~ i !

2p E
0

`

)
i51

M

dpa~ j !

3expF i(
k51

M S pa~k!2
1

2D ~wa8 ~k!2wa8 ~k21!2Dtma!G GU
w

a8 ~0!5~w I !a

wa8 ~M !5~wF!a12na8 ~M !p

,

~2.22!

where changing variables

na8 ~k!5(
l51

k

na~ l !, wa8 ~k!5wa~k!12na8 ~k!p, ~2.23!

leads to

wa~k!2wa~k21!12na~k!p5wa8 ~k!2wa8 ~k21!,
~2.24!

(
na~ i !52`

` E
2na~ i !p

2~na~ i !11!p

dwa~ i !5E
2`

`

dwa8 ~ i !,

has been made. To compare the kernel with that of the compact case, we further put

pa~k!5cosh~ua~k!!21. ~2.25!

Finally we obtain

K~wF ,wI ;T!5 lim
M→`

e2 iKcN11T)
a51

N FexpS i 32 maTD (
na~M !52`

`

expS 2 i
3

2
~wa~M !2wa~0!! D

3E
2`

`

)
i51

M21
dwa~ i !

2p E
0

`

)
j51

M

sinh~ua~ j !!dua~ j !

3expF i(
k51

M

cosh~ua~k!!~wa~k!2wa~k21!2Dtma!G GU
wa~0!5~w I !a

wa~M !5~wF!a12na~M !p

~2.26!

in the u expression.
The trace formula is defined by

Z[E
0

2p

)
a51

N

dwa^wue2 iĤ Tuw&[E
0

2p

)
a51

N

dwaK~wF ,wI ;T!. ~2.27!

From Eq.~2.26!, the explicit form is
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Z5 lim
M→`

e2 iKcN11T)
a51

N FexpS i 32 maTD (
na52`

`

e2 i3nap

3E
0

2p dwa~M !

2p E
2`

`

)
i51

M21
dwa~ i !

2p E
0

`

)
j51

M

sinh~ua~ j !!dua~ j !

3expF i(
k51

M

cosh~ua~k!!~wa~k!2wa~k21!2Dtma!G GU
wa~M !5wa~0!12nap

.

~2.28!

This is the trace formula ofCQN.
Comparing Eq.~2.28! with the trace formula ofCPN,15

Z5expS 2 iQcN11T1 i
1

~N11! (
a51

N

22a11maTD
3 (

n152`

`

••• (
nN52`

`

expS 2 i
1

~N11! (
a51

N

22a112nap D
3 lim

M→`
)
a51

N H E
2nap

2~na11!p

dwa~M !J E
2`

`

)
i51

M21

)
a51

N

dwa~ i !

3)
j51

M H lNE
0

pS sin2 u1~ j !

2 D N21

sin u1~ j !
du1~ j !

2p

3•••E
0

p

sin2
uN21~ j !

2
sin uN21~ j !

duN21~ j !

2p E
0

p

sin uN~ j !
duN~ j !

2p J
3expF2il (

k51

M

(
a51

N S )
b51

a21

sin2
ub~k!

2 D cos2 ua~k!

2

3~wa~k!2wa~k21!2Dtma!GU
wa~0!5wa~M !12nap

,

ma[ca2cN11 , l[
Q

2
1

1

N11
, ~2.29!

we find that Eq.~2.28! consists of the product of independent terms ona while Eq. ~2.29! does
not.

B. The exact calculation

We calculate the trace formula exactly. In thep expression the trace formula is

Z5 lim
M→`

e2 iKcN11T)
a51

N F (
na52`

` E
0

2p dwa~M !

2p E
2`

`

)
i51

M21
dwa~ i !

2p E
0

`

)
j51

M

dpa~ j !

3expF i(
k51

M S pa~k!2
1

2D ~wa~k!2wa~k21!2Dtma!G GU
wa~M !5wa~0!
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5 lim
M→`

e2 iKcN11T)
a51

N FexpS i2 maTD (
na52`

`

e2 inap

3E
0

2p dwa~M !

2p E
2`

`

)
i51

M21
dwa~ i !

2p E
0

`

)
j51

M

dpa~ j !expF2 i (
k51

M21

~pa~k11!2pa~k!!wa~k!

1 i ~pa~M !2pa~1!!wa~M !1 ipa~1!•2nap2 iDtma(
k51

M

pa~k!G GU
wa~M !5wa~0!

. ~2.30!

By rewriting thew integrals to thed functions, Eq.~2.30! becomes

Z5 lim
M→`

e2 iKcN11T)
a51

N FexpS i2 maTD (
na52`

`

e2 inapE
0

2p dwa~M !

2p E
0

`

)
j51

M

dpa~ j !

3expF i ~pa~M !2pa~1!!wa~M !1 ipa~1!•2nap2 iDtma(
k51

M

pa~k!G
3 )

l51

M21

d~pa~ l11!2pa~ l !!G
5 lim

M→`

e2 iKcN11T)
a51

N FexpS i2 maTD (
na52`

`

e2 inapE
0

`

dpa~M !eipa~M !~2nap2maT!G ,
~2.31!

where pa(k) and wa(M ) integrals have been made in the second equality. Performing
pa(M ) integrals@we regularizeipa(M )(2nap 2 maT)→ ipa(M )(2nap 2 maT 1 i e) for the
pa(M ) integrals to converge#, we obtain

Z5e2 iKcN11T)
a51

N FexpS i2 maTD 1

i (
na52`

` exp~ i2nap• 1
2!

2nap1maT
G , ~2.32!

where we have changedna→ 2 na . By applying the formula~see Appendix A!,

(
n52`

`
ei2npe

2np1w
5

ie2 iwe

12e2 iw ~0,e,1!, ~2.33!

the final form becomes

Z5
e2 iKcN11T

Pa51
N ~12e2 imaT!

. ~2.34!

C. The WKB approximation

From theu expression of the trace formula~2.28!, we read the solutions of the equations
motion as

ua~k!50, ~2.35!

for all k with thewa’s are arbitrary. We consider the WKB approximation as the largeK expan-
sion. We therefore make a change of variables such that
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ua~k!501xa~k!/AK. ~2.36!

The leading order term of the expansion becomes

Z0[ lim
M→`

e2 iKcN11T)
a51

N Fexp S i 32 maTD (
na52`

`

e2 i3napE
0

2p dwa~M !

2p

3E
2`

`

)
i51

M
dwa~ i !

2p E
0

`

)
j51

M
xa~ j !dxa~ j !

K
expF i(

k51

M S 11
xa~k!2

2K D
3~wa~k!2wa~k21!2Dtma!G G . ~2.37

Putting

ya~k!5
xa~k!2

2K
, ~2.38!

we obtain

Z05 lim
M→`

e2 iKcN11T)
a51

N FexpS i2 maTD (
na52`

`

e2 inapE
0

2p dwa~M !

2p E
2`

`

)
i51

M21
dwa~ i !

2p

3E
0

`

)
j51

M

dya~ j !expF i(
k51

M

ya~k!~wa~k!2wa~k21!2Dtma!G G
5 lim

M→`

e2 iKcN11T)
a51

N F (
na52`

` E
0

2p dwa~M !

2p E
2`

`

)
i51

M21
dwa~ i !

2p E
0

`

)
j51

M

dya~ j !

3expF i(
k51

M S ya~k!2
1

2D ~wa~k!2wa~k21!2Dtma!G GU
wa~M !5wa~0!

. ~2.39!

Comparing Eq.~2.39! and thep expression of the trace formula~2.30!, we find that they are quite
the same. Thus without any explicit calculations we obtain the result of the WKB approxima

Z05
e2 iKcN11T

Pa51
N ~12e2 imaT!

, ~2.40!

and conclude thatthe WKB approximation gives the exact result.

III. SYMPLECTIC 2-FORMS ON CPN AND CQN REVISITED

So far we have dealt with quantum mechanics. In this section we revisit the~classical!
symplectic 2-forms onCPN andCQN. It is known that we can adopt a unitary form in finit
dimension for the representation of compact groups, while we cannot construct a unitary fo
the noncompact groups because of the indefiniteness. A unitary form for them must be in i
dimension. We construct the symplectic 2-form onCQN with the unitary form onCP( l 2(C)).
This construction gives a unified treatment with the compact case,CPN.

CPN is defined by

CPN[$PPM ~N11;C!uP25P,P†5P,Tr P51%
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55 US 1 0

�

0

D U21uUPU~N11!6 >
U~N11!

U~1!3U~N!
. ~3.1!

CPN is connected and has anN 1 1 local charts:CPN 5 U1øU2ø•••øUN11 . An elementP1 on
U1 is

P15
1

11j†j S 1 j†

j jj†
D , jPCN, ~3.2!

andPa onUa(a 5 2,...,N 1 1) is obtained fromP1 asPa 5 AaP1Aa
21 ~Aa is some permutation

matrix!. The symplectic 2-form onCPN is defined and given by

vCPN[Tr PdP`dP5
1

11j†j
dj†`S 1N2

jj†

11j†jDdj. ~3.3!

The volume form onCPN is then

VCPN[
vCPN
N

N!
5

Pa51
N dja* dja

~11j†j!N11 . ~3.4!

CQN is defined by

CQN[$QPM ~N11;C!uQ25Q,hQ†h5Q,Tr Q51%, ~3.5!

which consists of two connected components;

CQN5CQ1
NøCQ2

N ,

CQ1
N[5 VS 1 0

�

0

D V21uVPU~1,N!6 >
U~1,N!

U~1!3U~N!
>DN~C![$zPCNuz†z,1%,

~3.6!

CQ2
N[5 VS 0 1

�

0

D V21uVPU~1,N!6 ,
where

U~1,N![$VPM ~N11;C!uV†hV5h%, ~3.7!

and

h[diag~1,21,...,21!. ~3.8!
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We should note that although we have used, in Sec. II,h5diag~1,...,1,21! for consistency
with the previous work,8 we use Eq.~3.8! in this section. Hereafter we consider theCQ1

N part only
and we writeCQ1

N asCQN. CQN has only one local chart

Q5
1

12j†j S 1 2j†

j 2jj†
D , jPDN. ~3.9!

The symplectic 2-form onCQN is defined and given by

vCQN[Tr~QdQ`dQ!5
1

12j†j
dj†`S 1N1

jj†

12j†jDdj. ~3.10!

Thus the volume form is

VCQN[
vCQN
N

N!
5

Pa51
N dja* dja

~12j†j!N11 . ~3.11!

We have obtained the symplectic 2-forms onCPN andCQN. The difference between them i
sign of denominators. The expression ofCPN is unitary, while that ofCQN is not unitary. Now we
constructvCQN in unitary form by taking account of the above difference. We embedCQN to
CP( l 2(C)). CP( l 2(C)) is defined by

CP~ l 2~C!![$PPM ~ l 2~C!!uP25P,P†5P,Tr P51%, ~3.12!

wherel 2(C) is defined by

l 2~C![$zPC`uz†z,`%, ~3.13!

andM ( l 2(C)) denotes whole matrices of bounded linear operators froml 2(C) to l 2(C). We put

P̂[ P̂~ ĵ!5
1

11 ĵ†ĵ
S 1 ĵ†

ĵ ĵĵ†
D , ĵP l 2~C!. ~3.14!

The symplectic 2-form is defined and given by

v̂[Tr~ P̂dP̂`dP̂!5
1

11 ĵ†ĵ
S dĵ†`dĵ2

dĵ†ĵ` ĵ†dĵ

11 ĵ†ĵ
D . ~3.15!

Hereafter we identifyl 2(C) as the Fock space generated fromCN,

l 2~C!>C%CN
%CN

^CN
% ••• % ~CN! ^n

% •••, ~3.16!

and assign

ĵ[~j,j^ j,...,j^n,...!T, jPDN. ~3.17!

Then noting that

ĵ†ĵ5j†j1~j†j!21•••1~j†j!n1•••5
j†j

12j†j
, ~3.18!

and
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e

2822 K. Fujii and K. Funahashi: Multi-periodic CS and the WKB-exactness II

¬¬¬¬¬¬¬¬¬¬
ĵ†dĵ5
1

~12j†j!2
j†dj, dĵ†ĵ5

1

~12j†j!2
dj†j,

~3.19!

dĵ†`dĵ5
1

~12j†j!2
dj†`dj1

2

~12j†j!3
dj†j`j†dj,

we obtain the explicit form of Eq.~3.15! as

v̂5
1

12j†j S dj†`dj1
dj†j`j†dj

12j†j D5
1

12j†j
dj†`S 1N1

jj†

12j†jDdj. ~3.20!

This result is quite the same with Eq.~3.10!. The symplectic 2-form onCQN was constructed with
the unitary expression. We note that a similar discussion forCPN is also possible. However th
embedding ofCPN to CP( l 2(C)) is trivial,

j→ ĵ5S j

0
A
D . ~3.21!

IV. CLASSICAL PARTITION FUNCTIONS ON CPN AND CQN REVISITED

In this section we revisit the classical partition functions ofCPN andCQN. We calculate them
directly. We also calculate them by lifting to the Gaussian forms.

A. The partition function of CPN

CPN is defined in Eq.~3.1!. By putting

z5US 1
0
A
0
D [Ue1 , ~4.1!

an element ofCPN becomes

P5US 1 0

�

0

D U215zz†. ~4.2!

Now we define

SC
N[$zPCN11uz†z51%5$Ue1uUPU~N11!%>

U~N11!

U~N!
, ~4.3!

and a map

p:SC
N→CPN, p~z![zz†. ~4.4!

Equation~4.2! indicates thatp is an onto-mapping. Also

p~eiuz!5p~z!, ~4.5!
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holds. Thusp induces the principalU(1) bundle,

U~1!→SC
N→CPN. ~4.6!

We define a Hamiltonian as

H[Tr~Ph!5Tr~zz†h!5z†hz under z†z515 (
a50

N

uauzau2, ~4.7!

where

h5S u0

u1

�

uN

D ~0,u0,u1,•••,uN!. ~4.8!

Thus the ‘‘Gaussian form’’ of the partition function ofCPN is defined by

Z[E Pa50
N dza* dza

pN11 E
2`

` dl

2p
e2rH2 il~z†z21!5E Pa50

N dza* dza

pN11 E
2`

` dl

2p
expF2r (

a50

N

uauzau2

2 ilS (
a50

N

uzau221D G . ~4.9!

To examine the equivalence between Eq.~4.9! and the standard form of the partition functio
which is given by

E VCPNe
2r Tr~Ph! , ~4.10!

we make a change of variables such that

ja5za /z0 ~a51,...,N!,
~4.11!

h5z0S (
a50

N

uza /z0u2D 1/2.
Equation~4.9! then becomes

Z5E
2`

` dl

2p E
CN

Pa51
N dja* dja

pN~11j†j!N11 E
C

dh

p
uhu2NexpF2r

u01(a51
N uaujau2

~11j†j!N11 2 il~ uhu221!G .
~4.12!

After integrating the angular part ofh and writing thel integral as thed function, we obtain

Z5E
CN

Pa51
N dja* dja

pN~11j†j!N11 E
0

`

dvvNd~v21!expF2rv
u01(a51

N uaujau2

11j†j
G

5E
CN

Pa51
N dja* dja

pN~11j†j!N11 expF2r
u01(a51

N uaujau2

11j†j
G , ~4.13!
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where we have puth 5 Aveif. This is of course the standard form of the classical partit
function ofCPN.

By the DH theorem, we evaluate in Ref. 8 this integral, Eq.~4.13!, to become

Z5 (
a50

N
e2rua

rNPb50
bÞa

N
~ub2ua!

. ~4.14!

We calculate Eq.~4.13! directly. Making a change of variables such that

ja5Auae
iwa, ~4.15!

and performing thewa integrals, we obtain

Z5E
0

` Pa51
N dua

~11(a51
N ua!N11 expF2r

u01(a51
N uaua

11(a51
N ua

G ,
5e2ru0E

0

` Pa51
N dua

~11(a51
N ua!N11 expF2r

(a51
N ~ua2u0!ua

11(a51
N ua

G . ~4.16!

We will obtain Eq.~4.14! by mathematical induction forN. Changing variables such that

ua5tauN ~a51,...,N21!,

x5 (
a51

N

ua , ~4.17!

]~u1 ,...,uN!

]~ t1 ,...,tN21 ,x!
5

xN21

~11(a51
N21ta!N

,

leads to

ZN11~r;u0 ,u1 ,...,uN!5e2ru0E
0

` xN21dx

~11x!N11 E
0

` Pa51
N dta

~11(a51
N21ta!N

3expF2r
x

11x

~uN2u0!1(a51
N21~ua2u0!ta

11(a51
N21ta

G
5e2ru0E

0

` xN21dx

~11x!N11 ZNS r
x

11x
;u12u0 ,...,uN2u0D , ~4.18!

where we have writtenZ asZN11(r;u0 ,u1 ,...,uN) to emphasize dependency on the paramat
By assumption we put

ZNS r
x

11x
;u12u0 ,...,uN2u0D5 (

a51

N expF2r
x

~11x!
~ua2u0!G

S r
x

11xD
N21

Pb51
bÞa

N
$~ub2u0!2~ua2u0!%

,

~4.19!

to obtain
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ZN11~r;u0 ,u1 ,...,uN!5
e2ru0

rN21 (
a51

N
1

Pb51
bÞa

N
~ub2ua!

E
0

` dx

~11x!2
expF2r

x

~11x!
~ua2u0!G

5
e2ru0

rN21 (
a51

N
1

Pb51
bÞa

N
~ub2ua!

12e2r~ua2u0!

r~ua2u0!

5
1

rN F2 (
a51

N
e2ru0

Pb50
bÞa

N
~ub2ua!

1 (
a51

N
eru0

Pb50
bÞa

N
~ub2ua!G . ~4.20!

Noting the relation~see Appendix B!,

(
a51

N
1

Pb50
bÞa

N
~ub2ua!

52
1

Pb51
N ~ub2u0!

, ~4.21!

we finally obtain

ZN11~r;u1 ,...,u0!5
1

rN F e2ru0

Pb51
N ~ub2u0!

1 (
a51

N
e2ru0

Pb50
bÞa

N
~ub2ua!G5

1

rN (
a50

N
e2rua

Pb50
bÞa

N
~ub2ua!

.

~4.22!

Equation~4.22! coincides with the result of the DH theorem. In other words the DH theorem h
in the partition function ofCPN.

Next we calculate Eq.~4.9!. To obtain Eq.~4.13!, we perform thel integral in Eq.~4.9!. Now
we perform thez integrals, which are the Gaussian, before thel integrals to obtain

Z5E
2`

` dl

2p
e2 ilE Pa50

N dza* dza

pN11 expF2 (
a50

N

~rua1 il!uzau2G5E
2`

` dl

2p
eil )

a50

N
1

rua1 il
.

~4.23!

Equation~4.23! is easily calculated by contour integral to be

Z5 (
a50

N

Resz5 irua
eiz)

b50

N
1

rub1 iz
5 (

a50

N

e2rua )
b50
bÞa

N
1

r~ub2ua!
. ~4.24!

Of course this result coincides with Eq.~4.22!. We note that Eq.~4.22! @and Eq.~4.24!# can be
written by the determinant form

Z5
1

rN Ue2ru0 e2ru1 ••• e2ruN

1 1 ••• 1

u0 u1 ••• uN

A A � A

u0
N22 u1

N22 ••• uN
N22

U YU 1 1 ••• 1

u0 u1 ••• uN

u0
2 u1

2 ••• uN
2

A A � A

u0
N21 u1

N21 ••• uN
N21

U . ~4.25!
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B. The partition function of CQN

CQN is defined in Eq.~3.5!. By putting

z5VS 1
0
A
0
D 5Ve1 , ~4.26!

an element ofCQN becomes

VS 1 0

�

0

D V215VS 1 0

�

0

D V†h5zz†h, ~4.27!

where we have usedV21 5 hV†h in Eq. ~3.7!. Then we define

QC
N[$zPCN11uz†hz51%5$Ve1uVPU~1,N!%>

U~1, N!

U~N!
, ~4.28!

and a map

p:QC
N→CQN, p~z![zz†h. ~4.29!

From Eq.~4.27!, we find thatp is onto-mapping. Also

p~eiuz!5p~z!, ~4.30!

holds. Thusp induces the principalU(1) bundle,

U~1!→QC
N→CQN. ~4.31!

We define a Hamiltonian as

H[Tr Qh5Tr~zz†hh!5z†hhz under z†hz51, ~4.32!

where we have put

Q[zz†h, ~4.33!

and

h5S u0

u1

�

uN

D ~u0.u1.•••.uN.0!. ~4.34!

We should pay attention to the ordering ofua’s. @See Eq.~4.8!.# The explicit form of Eq.~4.32!
is
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H5u0uz0u22 (
a51

N

uauzau2. ~4.35!

Thus the ‘‘Gaussian form’’ of the partition function ofCQN is defined by

Z[E Pa50
N dza* dza

pN11 E
2`

` dl

2p
e2rH1 il~z†hz21!

5E Pa50
N dza* dza

pN11 E
2`

` dl

2p
expF2rS u0uz0u22 (

a51

N

uauzau2D 1 ilS uz0u22 (
a51

N

uzau221D D .
~4.36!

To examine the equivalence between~4.36! and the standard form, we make a change
variables such that

z5z0A12 (
a51

N

uza /z0u2,
~4.37!

ja5za /z0 ~a51,...,N!.

Equation~4.36! then becomes

Z5E
DN

Pa51
N dja* dja

pN~12j†j!N11 E dz* dz

p
d~ uju221!expF2ruzu2

u02(a51
N uaja* ja

12j†j
G . ~4.38!

Puttingz 5 Areiw and integrating with respect tor andw, we obtain

Z[E
DN

Pa51
N dja* dja

pN~12j†j!N11 expF2r
u02(a51

N uaja* ja

12j†j
G . ~4.39!

This is the standard form of the classical partition function ofCQN.
Now we calculate Eq.~4.39! directly. Making a change of variables such that

ja5Auae
iwa, ~4.40!

and performingwa integrals, we obtain

Z5E
(a51
N ua,1

Pa51
N dua

~12(a51
N ua!N11 expF2r

u02(a51
N uaua

12(a51
N ua

G
5e2ru0E

(a51
N ua,1

Pa51
N dua

~12(a51
N ua!N11 expF2r

(a51
N ~u02ua!ua

12(a51
N ua

G . ~4.41!

Then putting

xa5
ua

12(a51
N ua

~1<a<N!,

~4.42!

]~u1 ,...,uN!

]~x1 ,...,xN!
5

1

~11(a51
N xa!N11 ,
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leads to

Z5e2ru0E
0

`

)
a51

N

dxa expF2r (
a51

N

~u02ua!xaG5
e2ru0

Pa51
N r~u02ua!

. ~4.43!

This is the exact result, which corresponds to Eq.~4.22! in theCPN case.
Next we perform thez0 integral as the Gaussian in Eq.~4.36!,

Z5E
2`

` dl

2p

e2 il

ru02 il )
a51

N E dza* dza

p
eza* ~rua2 il!za5e2ru0)

a51

N E
2`

` dza* dza

p
e2rza* ~u02ua!za,

~4.44!

where we have made residue calculations with respect tol in the second equality. Noting tha
u0 2 ua . 0, we perform theza integral to find

Z5e2ru0
1

Pa51
N r~u02ua!

. ~4.45!

This result corresponds to Eq.~4.24! in theCPN case and, of course, coincides with Eq.~4.43!.
We note that, similar to theCPN case, Eqs.~4.25!, ~4.43!, @or ~4.45!# can be written by the
determinant form

Z5
~21!N

rN Ue2ru0 0 ••• 0

1 1 ••• 1

u0 u1 ••• uN

A A � A

u0
N22 u1

N22 ••• uN
N22

U YU 1 1 ••• 1

u0 u1 ••• uN

u0
2 u1

2 ••• uN
2

A A � A

u0
N21 u1

N21 ••• uN
N21

U . ~4.46!

C. The partition function of CQN from the ‘‘universal’’ partition function of CP(l 2(C))

CP( l 2(C)) is defined in Eq.~3.12! and the symplectic 2-form is in Eq.~3.15!. Since the
‘‘Liouville measure,’’ limN→`v̂N/N!, diverges, there needs some regularization. If it is possi
the ‘‘universal’’ partition function is defined by

E
CP~ l2~C!!

dvCP~ l2~C!!~ P̂!e2r Tr~ P̂Ĥ !, ~4.47!

wheredvCP( l2(C)) is a regularized measure. Unfortunately we do not know whether Eq.~4.47! can
be defined, however we can define the pullback toCQN. The definition ofCQN is given in Eq.
~3.5! and the symplectic 2-form ofCQN is given in Eq.~3.10!. Thus we obtain

vCQN
N

N!
5

v̂CP~ l2~C!!

N

N!
, ~4.48!
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by Eq. ~3.20!. The Hamiltonian ofCQN is given in Eq.~4.34!. We define a Hamiltonian of
CP( l 2(C)) from that ofCQN such that

~4.49!

where

ũ5S u1

�

uN
D . ~4.50!

Using the explicit form ofP̂ in Eq. ~3.14!

P̂5
1

11 ĵ†ĵ
S 1 ĵ†

ĵ ĵĵ†
D 5~12j†j!S 1 jj† *

jj†^ jj†

�

** ~jj†! ^ ~n21!

�

D ,

S ~11 ĵ†ĵ!21512j†j,

* ,** denote unnecessary elements for later calculation,D ~4.51!

we obtain

Tr~ P̂Ĥ !5~12j†j!Fu01 (
n52

`

$nu0j
†j2~n21!j†ũj%~j†j!n22G

5~12j†j!~u02j†ũj! (
n51

`

n~j†j!n215
u02j†ũj

12j†j
5

u02(a51
N uaujau2

12(a51
N ujau2

. ~4.52!

This is nothing but Tr(QH) on CQN. Thus we obtain the partition function;

Z[E
DN

Pa51
N dja* dja

pN~12j†j!N11 expF2r
u02(a51

N uaja* ja

12j†j
G , ~4.53!

which is just the partition function ofCQN, Eq. ~4.39!.

V. DISCUSSION

We have examined the WKB exactness of the trace formula of some representat
U(N,1) in terms of the multiperiodic coherent state as an extension of our previous works
will be able to examine the WKB exactness of trace formulas in representations of com
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manifolds such as the Grassmann manifolds or the flag manifolds in terms of some coheren
However all of the coherent states will not lead to the WKB exactness. It is interesting to no
classes of coherent states that lead to the WKB exactness.

We have performed the exact calculations of the classical partition functions ofCPN and
CQN by direct calculations and by lifting to the Gaussian forms. Also we have constructed th
CQN by embedding toCP( l 2(C)) to give a unified treatment with the compact case,CPN. These
discussions will be extended to the Grassmann manifolds straightforwardly.17 Also it may be
applied to the flag manifolds.
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APPENDIX A: THE PROOF OF EQ. (2.33)

We prove the formula,

(
n52`

`
ei2npe

2np1w
5

ie2 iwe

12e2 iw ~0,e,1!. ~A1!

Consider the function

f ~x!5e2 iwx ~0,x,1!, ~A2!

and expand it as the Fourier series

e2 iwx5 (
n52`

`

f ne
i2pnx. ~A3!

Its coefficient is then read as

f n5E
0

1

dxe2 i2pnxe2 iwx5
12e2 iw

i ~2pn1w!
. ~A4!

Thus Eq.~A3! is

e2 iwx5
12e2 iw

i (
n52`

`
ei2pnx

2pn1w
, ~A5!

and then

(
n52`

`
ei2pnx

2pn1w
5

ie2 iwx

12e2 iw . ~A6!

If we put x 5 e in Eq. ~A6!, we just obtain the formula. Also we can write Eq.~A6! to the form

(
n52`

`
ei2pnx

2pn1w
5

ei ~1/22x!w

2 sin~w/2!
, ~A7!

which is the formula used in Ref. 14.
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



2831K. Fujii and K. Funahashi: Multi-periodic CS and the WKB-exactness II

¬¬¬¬¬¬¬¬¬¬
APPENDIX B: THE PROOF OF EQ. (4.21)

We define symbols

D[ )
a50

N

)
b50

a21

~ua2ub!,

~B1!

D~a![ )
b50
bÞa

N

)
g50
gÞa

b21

~ub2ug!,

whereD is theN11th Vandermonde’s determinant andD~a! is Nth one omittedua . Then the
relation

)
b50
bÞa

N

~ub2ua!5~21!a
D

D~a!
, ~B2!

holds. Thus the left-hand side of Eq.~4.21! is

(
a51

N
1

Pb50
bÞa

N
~ub2ua!

5 (
a50

N
1

Pb50
bÞa

N
~ub2ua!

2
1

Pb51
N ~ub2u0!

5 (
a50

N
~21!aD~a!

D

2
1

Pb51
N ~ub2u0!

5
1

D U 1 1 ••• 1

1 1 ••• 1

u0 u1 ••• uN

u0
2 u1

2 ••• uN
2

A A � A

u0
N21 u1

N21 ••• uN
N21

U2
1

Pb51
N ~ub2u0!

52
1

Pb51
N ~ub2u0!

5@rhs of Eq. ~4.21!#. ~B3!
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Scattering theory for finitely many sphere interactions
supported by concentric spheres

M. N. Hounkonnou and M. Hounkpe
Institut de Mathe´matiques et de Sciences Physiques, Universite´ Nationale du Benin,
BP 613 Porto-Novo, Benin

J. Shabania)
UNESCO Nairobi Office, P. O. Box 30592 Nairobi, Kenya

~Received 29 August 1996; accepted for publication 5 March 1997!

We study stationary scattering theory for finitely many sphere interactions formally
given by the HamiltonianH52D1( j51

N a jd(uxu2Rj ) and its generalizations to
the case of interactions of the second type and interactions with nonseparated
boundary conditions. In a previous publication@J. Math. Phys.29, 660–664
~1988!#, it was shown that the self-adjoint HamiltonianH $a l %,$R% corresponding to
H may be defined as a limit in norm resolvent convergence of a familyH« of local
scaled short-range Hamiltonians. In this paper we also study scattering theory
corresponding toH« and show that the scattering quantities associated withH«

converge to those ofH $a l %,$R% as«→0. © 1997 American Institute of Physics.

@S0022-2488~97!01906-3#

I. INTRODUCTION

In recent years, there has been a lot of interest in the study of sphere interactions b
relativistic and nonrelativistic quantum mechanics.1–11

At the beginning, the interest was concentrated on thed-sphere interaction, formally given in
three dimensions by the HamiltonianH52D1ad(uxu2R) and on a model obtained by formall
interchanging the role off and f 8 in the domain ofH @see Eq.~11!#. The latter which is defined
by the HamiltonianH̃b @Ref. 1, Eq. 6.8# was inadequately called ‘‘d8-sphere interaction.’’ From
now on, we will call12 the interaction corresponding toH̃b a d-sphere interaction of the secon
type.

The self-adjoint Hamiltonians associated with these interactions were first defined1 by a
straightforward application of the theory of self-adjoint extensions of closed symmetric ope
in Hilbert spaces. Later, alternative definitions were formulated using the theory of closed
metric lower semibounded forms.6,7

Some of the results obtained for the interactions mentioned above have been genera
sphere interactions supported by finitely many concentric spheres both in the case of sepa2,3

and nonseparated boundary conditions.4 Yet the scattering theory corresponding to these gen
interactions was still missing and the present paper aims at filling this gap.

The paper is organized as follows. In Sec. II, after recalling briefly the basic properties o
quantum HamiltonianH $a l %,$R% @see Eq.~12!# describing finitely many sphere interactions wi
separated boundary conditions, we discuss stationary scattering theory correspond
H $a l %,$R% .

It was shown2 thatH $a l %,$R% may be obtained as a limit in norm resolvent topology of a fam
of local scaled short-range HamiltoniansH« defined by Eq.~20!. In this section, we study the
scattering theory corresponding toH« and show that the on-shell scattering amplitude and
scattering operator associated withH« converge nicely to those ofH $a l %,$R% as«→0.

a!On leave of absence from University of Burundi, Faculty of Science, B.P. 2700 Bujumbura, Burundi.
0022-2488/97/38(6)/2832/19/$10.00
2832 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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In Sec. III we study the scattering theory for finitely many sphere interactions of second
supported by concentric spheres. In Sec. IV we generalize the results of Sec. II to the c
nonseparated boundary conditions.

Finally in Sec. V we indicate how one may generalize finitely many sphere interactions o
second type~presented in Sec. III! to the case of nonseparated boundary conditions. The scatt
theory corresponding to this model may be performed systematically following, e.g., the m
used in Sec. IV.

II. FINITELY MANY SPHERE INTERACTIONS: SEPARATED BOUNDARY CONDITIONS

A. Basic properties

1. Definition of the model

In this section, following Ref. 2, we give in dimensionn53 the precise mathematical formu
lation of the quantum Hamiltonian describingNd-interactions with support on concentric spher
of radii 0,R1,•••,RN formally given by

H52D1(
j51

N

a jd~ uxu2Rj !. ~1!

Consider inL2(IR3) the closed, symmetric and non-negative operator

Ḣ52D,

D~Ḣ !5$ fPH2,2~ IR3!u f ~]K~O,Rj !!50; 1< j<N%, ~2!

whereHm,n(V) is the Sobolev space of indices (m,n) andK(O,Rj ) is the closed ball of radius
Rj centered at the origin inIR3.

Next we decomposeL2(IR3) with respect to angular momenta

L2~ IR3!5L2~~0,̀ !;r 2dr ! ^L2~S2! ~3!

and introduce the unitary transformation

Ũ:H L2~~0,̀ !;r 2dr !→L2~~0,̀ !!,

f°~Ũ f !~r !5r f ~r !,
~4!

in order to get the following decomposition ofL2(IR3):

L2~ IR3!5 %

l50

`

Ũ21L2~~0,̀ !;dr ! ^ @Yl
2 l , . . . ,Yl

l #, ~5!

where the spherical harmonicsYl
m , l P INo ,2 l<m< l , provide a basis forL2(S2) (S2, the unit

sphere inIR3) and @•••# denotes the linear span of vectors inL2(S2).
With respect to the decomposition~5!, Ḣ reads

Ḣ5 %

l50

`

Ũ21ḣl ,$R%Ũ^1, ~6!

where

ḣl ,$R%52
d2

dr2
1
l ~ l11!

r 2
, ~7!
J. Math. Phys., Vol. 38, No. 6, June 1997
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D~ ḣl ,$R%!5$ fPL2~~0,̀ !!u f , f 8PACloc~~0,̀ !!;

f ~01!50 if l50; f ~Rj6!50;
~8!

2 f 91 l ~ l11!r22fPL2~~0,̀ !!%,

lPINo , 1< j<N, $R%5$R1 , . . . ,RN%.

It is shown2 that ḣl ,$R% has deficiency indicies (N,N) and that the deficiency subspaceN2 k̄ is
spanned by theN linearly independent functions

f l , j~k,r !5H ip

2
Rj
1/2Hl11/2

~1! ~kRj !r
1/2Jl11/2~kr !; r<Rj

ip

2
Rj
1/2Jl11/2~kRj !r

1/2Hl11/2
~1! ~kr !; r>Rj

~9!

Im k.0, 1< j<N,

whereJn(z) is a Bessel function andHn
(1)(z) is a Hankel function of the first type of ordern.13

Therefore14 all self-adjoint~sa! extensions ofḣl ,$R% are given by anN
2-parameter family of sa

operators.
In this section, we will consider the followingN-parameter family of sa extensions ofḣl ,$R%

hl ,$a l %,$R%52
d2

dr2
1
l ~ l11!

r 2
, ~10!

D~hl ,$a l %,$R%!5$ fPL2~~0,̀ !!u f , f 8PACloc~~0,̀ !\$R%!;

f ~01!50 if l50; f ~Rj2!5 f ~Rj1![ f ~Rj !;

f 8~Rj1!2 f 8~Rj2!5a j l f ~Rj !; ~11!

2 f 91 l ~ l11!r22fPL2~~0,̀ !!%, $a%5$a1l , . . . ,aNl%,

2`,a j l<`, lPINo, 1< j<N.

The casea j l50 for all j51, . . . ,N ~i.e., $a l%50) coincides with the free kinetic energy Hami
tonianhl ,o for fixed angular momentuml .

The operatorH $a l %,$R% given inL2(IR3) by

H $a l %,$R%5 %

l51

`

Ũ21hl ,$a l %,$R%Ũ^1 ~12!

provides a mathematical defintion of the formal expression~1!. ActuallyH $a l %,$R% provides a slight
generalization of~1! sincea j may depend onl .

If $a l%5`, thenH`,$R% coincides with the Laplacian with a Dirichlet boundary condition
]K(O,Rj ). The case$a l%50 yields the free Hamiltonian:

Ho52D; D~Ho!5H2,2~ IR3!. ~13!

The resolvent ofhl ,$a l %,$R% andH $a l %,$R% are given by the following theorem:
J. Math. Phys., Vol. 38, No. 6, June 1997
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Theorem 2.1:If a j l Þ 0 for all j51, . . . ,N, then the following holds:
~i! The resolvent ofhl ,$a l %,$R% is given by

~hl ,$a l %,$R%2k2!215~hl ,o2k2!211 (
j , j 851

N

m j j 8~k!~f l , j 8~2 k̄!,.!f l , j~k!,

k2Pr~hl ,$a l %,$R%!, Imk.0, lPINo , ~14!

where

@m~k!# j j 8
21

52@a j l
21d j j 81gl ,k~Rj ,Rj 8!# j , j 851

N , ~15!

f l , j (k,r ) is given by Eq.~9! and

gl ,k5~hl ,o2k2!21, Imk.0, ~16!

is the free resolvent with integral kernel

gl ,k~r ,r 8!5H ip

2
r 1/2Hl11/2

~1! ~kr !r 81/2Jl11/2~kr8!; r 8<r ,

ip

2
r 81/2Hl11/2

~1! ~kr8!r 1/2Jl11/2~kr !; r 8>r ,

~17!

Im k.0.

~ii ! The resolvent ofH $a l %,$R% is given by

~H $a l %,$R%2k2!215~Ho2k2!211 %

l50

`

%

m52 l

l

(
j , j 851

N

m j , j 8~k!~ u.u21f l , j 8~2 k̄!Yl
m ,.!

3u.u21f l , j~k!Yl
m , ~18!

k2Pr~H $a l %,$R%!, Im k.0.

2. Approximation of H $a l %,$R% by a family of local scaled short-range Hamiltonians

It was shown2 that hl ,$a l %,$R% and consequentlyH $a l %,$R% can be obtained as a limit of
sequence of local scaled short-range Hamiltonians.

Let l j l :@0,̀ )→IR , l P INo , be analytic near the origin withl j l (01)50.
Next we define inL2((0,̀ )) the form sum15

hl ,«5hl ,o1̇«22(
j51

N

l j l ~«!Vj S r2Rj

« D ~19!

and introduce inL2(IR3) the operator

H«5 %

l50

`

Ũ21hl ,«Ũ^1. ~20!

Theorem 2.2 ~see Ref. 2!: If for all j51, . . . ,N, the functionVj :IR→IR is measurable,
Vj (r )[0 for r,0 andVj P L1((Rj ,`)), then we have the following:
J. Math. Phys., Vol. 38, No. 6, June 1997
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~i! hl ,« converges in the norm resolvent sense tohl ,$a l %,$R% as «→01 , i.e., if k2

P r(hl ,$a l %,$R%), thenk
2 P r(hl ,«) for « small enough and

n2 lim
«→01

~hl ,«2k2!215~hl ,$a l %,$R%2k2!21, ~21!

where

a j l5l j l8 ~0!E
Rj

`

drVj~r !, lPINo . ~22!

~ii ! H« converges in the norm resolvent sense toH $a l %,$R% as«→01 .

B. Scattering theory

1. Scattering theory for the pair (h l ,$a l %,$R% ; h l ,o)

For k>0, let us define the function

F l ,$a l %,$R%~k,r !5Fl
~0!~k,r !1 (

j , j 851

N

m j j 8~k!Fl
~0!~k,Rj !ĝl ,k~Rj ,r !, ~23!

where

ĝl ,k~r ,r 8!5H Fl
~0!~k,r !Ĝl

~0!~k,r 8!; r<r 8

Fl
~0!~k,r 8!Ĝl

~0!~k,r !; r>r 8,
~24!

Fl
~0!~k,r !5GS l1 3

2D S k2D
2 l21/2

r 1/2Jl11/2~kr !, ~25!

Ĝl
~0!~k,r !52

ip

2
GS l1 3

2D
21S k2D

l11/2

r 1/2Hl11/2
~2! ~kr !. ~26!

In ~25! and~26!, Jn(z) is a Bessel function andHn
(2)(z) is a Hankel function of the second type o

order n.13 A straightforward computation shows that the functionF l ,$a l %,$R%(k,r ) satisfies the
following conditions:

F l ,$a l %,$R%~k,Rj1!5F l ,$a l %,$R%~k,Rj2![F l ,$a l %,$R%~k,Rj !, ~27!

F l ,$a l %,$R%8 ~k,Rj1!2F l ,$a l %,$R%8 ~k,Rj2!5a j lF l ,$a l %,$R%~k,Rj !, ~28!

2F l ,$a l %,$R%9 ~k,r !1 l ~ l11!r22F l ,$a l %,$R%~k,r !5k2F l ,$a l %,$R%~k,r !; k>0. ~29!

Therefore F l ,$a l %,$R%(k,r ) constitute a set of generalized eigenfunctions associated
hl ,$a l %,$R% or in other words the scattering wave functions ofhl ,$a l %,$R% .

As usual, the phase shifts ofhl ,$a l %,$R% may be obtained through the asymptotic behavior
F l ,$a l %,$R%(k,r ) as r→`. Indeed, one has16
J. Math. Phys., Vol. 38, No. 6, June 1997
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F l ,$a l %,$R%~k,r ! ——→
r→`

k.0
Al~k!sinSkr2 lp

2
D1 (

j , j 851

N

m j j 8~k!@Fl
~0!~k,Rj !#

2Bl~k!expF2 i Skr2 lp

2
D G

5H Al~k!2 iBl~k! (
j , j 851

N

m j j 8~k!@Fl
~0!~k,Rj !#

2J sinS kr2 lp

2 D

1Bl~k! (
j , j 851

N

m j j 8~k!@Fl
~0!~k,Rj !#

2 cosS kr2 lp

2 D ~30!

5@C1,l
2 ~k!1C2,l

2 ~k!#1/2 sinS kr2 lp

2
1d l ,$a l %,$R%~k! D1o~1!, ~31!

which defines the phase shifts by

d l ,$a l %,$R%~k!52arctan
C2,l~k!

C1,l~k!
52arctan

Bl~k!( j , j 851
N m j j 8~k!@Fl

~0!~k,Rj !#
2

Al~k!2 iBl~k!( j , j 851
N m j j 8~k!@Fl

~0!~k,Rj !#
2 ,

~32!

where we have used the following notations:16

Al~k!522 lk2 l21G~2l12!G~ l11!21, ~33!

Bl~k!5
1

kAl~k!
. ~34!

The on-shell scattering matrix is given by

Sl ,$a l %,$R%~k!5exp@2id l ,$a l %,$R%~k!#5122ikBl
2~k! (

j , j 851

N

m j j 8~k!@Fl
~0!~k,Rj !#

2. ~35!

At this stage, one can show thatSl ,$a l %,$R%(k) has a meromorphic continuation ink to all IC and
that the poles ofSl ,$a l %,$R%(k) coincide with bound states and resonances ofhl ,$a l %,$R% .

The corresponding effective range expansion then reads17

@~2l11!!! #2k2l11 cot d l ,$a l %,$R%~k!52al ,$a l %,$R%
21 1 1

2 r l ,$a l %,$R%k
21o~k4!, ~36!

where the coefficientsal ,$a l %,$R% and r l ,$a l %,$R% are called partial wave scattering length and effe
tive range parameter, respectively.

A straightforward calculation shows that

al ,$a l %,$R%52 (
j , j 851

N

m j j 8~0!Rj
2~ l11! . ~37!

The on-shell scattering amplitudef $a l %,$R%(k,v,v8) associated withH $a l %,$R% is defined by
J. Math. Phys., Vol. 38, No. 6, June 1997
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f $a l %,$R%~k,v,v8!54p(
l50

`

(
m52 l

l
e2id l ,$a l %,$R%~k!21

2ik
Yl
m~v8!Yl

m~v!

54p(
l50

`

(
m52 l

l

f l ,$a l %,$R%~k!Yl
m~v8!Yl

m~v!,

k>0, v,v8PS2, ~38!

where the partial wave scattering amplitudef l ,$a l %,$R%(k) is given by

f l ,$a l %,$R%~k!52Bl
2~k! (

j , j 851

N

m j j 8~k!@Fl
~o!~k,Rj !#

2. ~39!

The on-shell scattering operatorS$a l %,$R%(k) in L2(S2) associated withH $a l %,$R% is defined by

~S$a l %,$R%~k!f!~v!5f~v!2
k

2ipES2dv8 f $a l %,$R%~k,v,v8!f~v8!, k>0;

v,v8PS2, ~40!

which means thatS$a l %,$R%(k) reads

S$a l %,$R%~k!5112ik(
l50

`

(
m52 l

l

f l ,$a l %,$R%~k!~Yl
m ,.!Yl

m~v!. ~41!

2. Scattering theory for the pair (H« ;Ho)

In this section, we discuss stationary scattering theory corresponding to the Schro¨dinger
operatorH« defined by Eq.~20! and show that the on-shell scattering amplitude and the scatte
operator associated withH« converge tof $a l %,$R%(k) andS$a l %,$R%(k), respectively, as«→01 .

We will use the assumptionsVj :IR→IR is measurable,Vj[0 for r,0 and Vj

P L1((Rj ,`)) and follow
18 the analogous treatment as that of point interactions.

Denote byU« the unitary dilatation group inL2((0,̀ )) given by

~U« f !~r !5«21/2f S r« D , «.0, fPL2~~0,̀ !!, ~42!

and define

v j~r !5uVj~r !u1/2, uj~r !5uVj~r !u1/2 sgn@Vj~r !#. ~43!

Next we introduce inL2(IR3)N the quantities

F«
6~kv,x!5~f«,1

6 ~kv,x!, . . . ,f«,N
6 ~kv,x!!, ~44!

where for«,k.0, we have used the following definitions:

f«, j
1 ~kv,x!5u«, j~r !(

l50

`

(
m52 l

l

F̃ l
~o!~k,r !Yl

m~v!5(
l50

`

(
m52 l

l

f l ,«, j
1 ~k,r !Yl

m~v!, ~45!
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f«, j
2 ~kv,x!5v«, j~r !(

l50

`

(
m52 l

l

F̃ l
~o!~k,r !Yl

m~v!5(
l50

`

(
m52 l

l

f l ,«, j
2 ~k,r !Yl

m~v!, ~46!

u«, j~r !5uj~~r2Rj !/«!, ~47!

v«, j~r !5v j~~r2Rj !/«!, ~48!

F̃ l
~o!~k,r !5Bl~k!Fl

~o!~k,r !. ~49!

The on-shell scattering amplitude corresponding toH« is then defined as

f «~k,v,v8!54p~F«
1~kv!,t«~k!F«

2~kv8!!, ~50!

wheret«(k) is the transition operator forH« in L2(IR3).
The on-shell scattering operatorS«(k) in L2(S2) associated withH« reads

~S«~k!f!~v!5f~v!2
k

2ipES2dv8 f «~k,v,v8!f~v8!. ~51!

DecomposingL2(IR3) with respect to angular momenta, one can rewrite~50! in the form

f «~k,v,v8!54p(
l50

`

(
m52 l

l

f l ,«~k!Yl
m~v8!Yl

m~v!, ~52!

where the partial wave scattering amplitudef l ,«(k) is given by

f l ,«~k!5 (
j , j 851

N

~f l ,«, j
1 ~k,r !,t l ,«, j j 8~k!f l ,«, j 8

2
~k,r 8!! ~53!

and r and r 8 are just integration variables.
We note that in~53!, the elementst l ,«, j j 8(k) in L

2((0,̀ )) of the transition operatort«(k) are
defined by

t l ,«, j j 8~k!5«22l j l ~«!@11B̂l ,«~k!# j j 8
21,

«.0, Im k>0, kÞ0, k2¹E« , ~54!

where the operatorsB̂l ,«(k) are defined by

B̂l ,«~k!:L2~~0,̀ !!N→L2~~0,̀ !!N,
~55!

@B̂l ,«~k!~g1 , . . . ,gN!# j5 (
j 851

N

B̂l ,«, j j 8~k!gj 8 ;gjPL2~~0,̀ !!,

B̂l ,«, j j 8~k!5«22l j l ~«!u«, jgl ,kv«, j 8 , ~56!

and

E«5$k2PIC2$0%uBl ,«~k!g5g for some gPL2~~0,̀ !!N%. ~57!

The operatorBl ,«(k) in ~57! is defined by2
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Bl ,«~k!:L2~~0,̀ !!N→L2~~0,̀ !!N,
~58!

@Bl ,«~k!~g1 , . . . ,gN!# j5 (
j 851

N

Bl ,«, j j 8~k!gj 8 ; gjPL2~~0,̀ !!,

whereBl ,«, j j 8(k) is defined through its integral kernel by

Bl ,«, j j 8~k,r ,r 8!5«21l j l ~«!uj~r !gl ,k~«r1Rj ,«r 81Rj 8!v j 8~r 8!. ~59!

Theorem 2.3:For all j51, . . . ,N, let Vj :IR→IR be measurable,Vj[0 for r,0 andVj

PL1((Rj ,`)).
If a j l5l j l8 (0)*Rj

` drVj (r ), then the operatorS«(k), k.0, converges toS$a l %,$R% as«→01 .

If in addition Vj have compact support, thenS«(k) is analytic in« near«50 and we obtain
the following expansion:

S«~k!5S$a l %,$R%~k!1o~«!. ~60!

Proof: First, from Eqs.~51! and~52!, we note that the«-dependence ofS«(k) occurs only in
f l ,«(k). Therefore, it suffices to prove thatf l ,«(k) converges tof l ,$a l %,$R%(k) as«→0.

Next, using Eq.~54! we can rewrite~53! in the form

f l ,«~k!5 (
j , j 851

N

«21l j l ~«!~v j F̃ l
~o!~k,«r1Rj !,U«

21@11B̂l ,«~k!# j j 8
21U«uj 8F̃ l

~o!~k,«r 81Rj !!,

~61!

wherer and r 8 are integration variables.
Using the relation

U«
21@11B̂l ,«~k!#21U«5@11B̃l ,«~k!#21, ~62!

whereB̃l(k) [ B̃l ,0(k) is defined by
2

B̃l~k!:L2~~0,̀ !!N→L2~~0,̀ !!N,

@B̃l~k!~g1 , . . . ,gN!# j5 (
j 851

N

B̃l , j j 8~k!gj 8 ; gjPL2~~0,̀ !!, ~63!

B̃l , j j 8~k!5l j l8 ~0!gl ,k~Rj ,Rj 8!~v j 8 ,.!uj , ~64!

we may finally writef l ,«(k) in the form

f l ,«~k!5 (
j , j 851

N

«21l j l ~«!~v j F̃ l
~o!~k,«r1Rj !,@11B̃l ,«~k!# j j 8

21uj 8F̃ l
~o!~k,«r 81Rj !!. ~65!

By dominated convergence we obtain

lim
«→0

f l ,«~k!5 (
j , j 851

N

l j l8 ~0!F̃ l
~o!~k,Rj !~v j ,@11B̃l~k!# j j 8

21uj 8!F̃ l
~o!~k,Rj !. ~66!

Furthermore, Eq.~64! implies that
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@11B̃l~k!# j j 8
21

5d j j 82l j l8 ~0! (
m51

N

gl ,k~Rj ,Rm!@m̂~k!# j 8m
21

~v j 8 ,.!uj , ~67!

where

@m̂~k!# j j 85@d j j 81l j l8 ~0!~v j ,uj !gl ,k~Rj ,Rj 8!# j , j 851
N . ~68!

If l j l8 (0)(v j ,uj ) Þ 0 for all j51, . . . ,N, then a comparison with Eq.~15! shows that

@m̂~k!# j 8m
21 l j l8 ~0!~v j ,uj !52m j j 8~k!. ~69!

Now, inserting~67!–~69! into ~66!, we obtain

lim
«→0

f l ,«~k!52 (
j , j 851

N

m j j 8~k!@ F̃ l
~o!~k,Rj !#

25 f l ,$a l %,$R%~k!. ~70!

If l j ol
8 (0)(v j o,ujo)50 for somej o , then all terms withj5 j o in ~68!–~69! vanish and hence

do not appear in~70!. Therefore@m(k)# contains precisely thosea j l which are nonvanishing.
If Vj have compact support, thenBl ,«(k) is analytic in« for « small enough and fixedk which

implies thatS«(k) is analytic in« near«50.

III. FINITELY MANY SPHERE INTERACTIONS OF THE SECOND TYPE: SEPARATED
BOUNDARY CONDITIONS

A. Definition of the model

In this section we study a model introduced3 under the name finitely manyd8-sphere inter-
actions. As indicated in the introduction, in this paper we will call this model the finitely m
sphere interactions of the second type.

Consider inL2(IR3) the closed, symmetric and non-negative operator

Ḧ52D,
~71!

D~Ḧ !5$ fPH2,2~ IR3!u f 8~]K~O,Rj !!50; 1< j<N%.

Using relations~3!–~5!, one may rewrite~71! in the form

Ḧ5 %

l50

`

Ũ21ḧl ,$R%Ũ^1, ~72!

where

ḧl ,$R%52
d2

dr2
1
l ~ l11!

r 2
,

D~ ḧl ,$R%!5$ fPL2~~0,̀ !!u f , f 8PACloc~~0,̀ !!;

f ~01!50 if l50; f 8~Rj6!50;
~73!

2 f 91 l ~ l11!r22fPL2~~0,̀ !!%,

lPINo , 1< j<N, $R%5$R1 , . . . ,RN%.
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It is shown3 that ḧl ,$R% has deficiency indices (N,N) and that the deficiency subspaceÑ2 k̄ is
spanned by theN linearly independent functions

f̃ l , j~k,r !5H ip

2
@r 1/2Hl11/2

~1! ~kr !# r5Rj
8 r 1/2Jl11/2~kr !; r,Rj

ip

2
@r 1/2Jl11/2~kr !# r5Rj

8 r 1/2Hl11/2
~1! ~kr !; r.Rj

~74!

Im k .0, 1< j<N.

Again,14 all sa extensions ofḧl ,$R% are given by anN2-parameter family of sa operators.
In this section, we will consider the followingN-parameter family of sa extensions o

ḧl ,$R% :

hl ,$b l %,$R%52
d2

dr2
1
l ~ l11!

r 2
, ~75!

D~hl ,$b l %,$R%!5$ fPL2~~0,̀ !!u f , f 8PACloc~~0,̀ !\$R%!;

f ~01!50 if l50 ; f 8~Rj2!5 f 8~Rj1![ f 8~Rj !;

f ~Rj1!2 f ~Rj2!5b j l f 8~Rj !; ~76!

2 f 91 l ~ l11!r22fPL2~~0,̀ !!%, $b l%5$b1l , . . . ,bNl%,

2`,b j l<`, lPINo, 1< j<N.

We define the quantum Hamiltonian describingN-sphere interactions of the second type of ra
R1,••• , RN as the operatorH $b l %,$R% given inL

2(IR3) by

H $b l %,$R%5 %

l50

`

Ũ21hl ,$b l %,$R%Ũ^1. ~77!

If $b l%5`, thenH`,$R% coincides with the Laplacian with a Neumann boundary condition
]K(O,Rj ). The case$b l%50 yields the free Hamiltonian:

Ho52D; D~Ho!5H2,2~ IR3!. ~78!

The resolvent ofhl ,$b l %,$R% andH $b l %,$R% are given by the following theorem.3

Theorem 3.1: If b j l Þ 0 for all j51, . . . ,N, then we have the following:
~i! The resolvent ofhl ,$b l %,$R% is given by

~hl ,$b l %,$R%2k2!215~hl ,o2k2!211 (
j , j 851

N

m̃ j j 8~k!~f̃ l , j 8~2 k̄!,.!f̃ l , j~k!,

~79!

k2Pr~hl ,$b l %,$R%!, Im k.0, lPINo ,

where

@m̃~k!# j j 8
21

5@b j l
21d j j 82f̃ l , j8 ~k,Rj 8!# j , j 851

N . ~80!
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The functionf̃ l , j (k,r ) is defined by Eq.~74! and (hl ,o2k2)21 is the free resolvent.
~ii ! The resolvent ofH $b l %,$R% is given by

~H $b l %,$R%2k2!215~Ho2k2!211 %

l50

`

%

m52 l

l

(
j , j 851

N

m̃ j j 8~k!~ u.u21f̃ l , j 8~2 k̄!Yl
m ,.!u.u21f̃ l , j~k!Yl

m ,

k2Pr~H $b l %,$R%!, Im k.0. ~81!

B. Scattering theory for the pair ( h l ,$b l %,$R% ; h l ,o)

For k>0, let us define the function

F l ,$b l %,$R%~k,r !5Fl
~o!~k,r !1 (

j , j 851

N

m̃ j j 8~k!Fl
~o!8~k,Rj !f̂ l , j~k,r !, ~82!

where

f̂ l , j~k,r !5H d

dr
Ĝl

~o!~k,r !ur5Rj
Fl

~o!~k,r !; r,Rj ,

d

dr
Fl

~o!~k,r !ur5Rj
Ĝl

~o!~k,r !; r.Rj ,

~83!

andFl
(o) , Ĝl

(o) are given by Eqs.~25! and ~26!, respectively.
A straightforward calculation shows thatF l ,$b l %,$R% fulfills the following conditions:

F l ,$b l %,$R%8 ~k,Rj1!5F l ,$b l %,$R%8 ~k,Rj2![F l ,$b l %,$R%8 ~k,Rj !, ~84!

F l ,$b l %,$R%~k,Rj1!2F l ,$b l %,$R%~k,Rj2!5b j lF l ,$b l %,$R%8 ~k,Rj !, ~85!

2F l ,$b l %,$R%9 ~k,r !1 l ~ l11!r22F l ,$b l %,$R%~k,r !5k2F l ,$b l %,$R%~k,r !; k>0. ~86!

ThereforeF l ,$b l %,$R%(k,r ) are scattering wave functions ofhl ,$b l %,$R% .
Let us now consider the asymptotic behavior ofF l ,$b l %,$R% as r→`.

F l ,$Bl %,$R%~k,r ! ——→
r→`

k.0
Al~k!sinSkr2 lp

2
D1 (

j , j 851

N

m̃ j j 8~k!@Fl
~0!8~k,Rj !#

2

3Bl~k!expF2 i S kr2 lp

2 D G
5H Al~k!2 iBl~k! (

j , j 851

N

m̃ j j 8~k!@Fl
~0!8~k,Rj !#

2J sinS kr2 lp

2 D
1Bl~k! (

j , j 851

N

m̃ j j 8~k!@Fl
~0!8~k,Rj !#

2cosS kr2 lp

2 D
5@C̃1,l

2 ~k!1C̃2,l
2 ~k!#1/2 sinS kr2 lp

2
1d l ,$b l %,$R%~k! D1o~1!, ~87!
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which defines the phase shifts by

d l ,$b l %,$R%~k!52arctan
C̃2,l~k!

C̃1,l~k!
52arctan

Bl~k!( j , j 851
N m̃ j j 8~k!@Fl

~0!8~k,Rj !#
2

Al~k!2 iBl~k!( j , j 851
N m̃ j j 8~k!@Fl

~0!8~k,Rj !#
2
.

~88!

The on-shell scattering matrix is given by

Sl ,$b l %,$R%~k!5exp@2id l ,$b l %,$R%~k!#5122ikBl
2~k! (

j , j 851

N

m̃ j j 8~k!@Fl
~0!8~k,Rj !#

2. ~89!

The corresponding effective range expansion reads

@~2l11!!! #2k2l11 cot d l ,$b l %,$R%~k!52al ,$b l %,$R%
21 1 1

2 r l ,$b l %,$R%k
21o~k4!, ~90!

where the scattering lengthal ,$a l %,$R% is given by

al ,$b l %,$R%52~ l11!2 (
j , j 851

N

m̃ j j 8~0!Rj
2l . ~91!

The on-shell scattering amplitudef $b l %,$R%(k,v,v8) associated withH $b l %,$R% is defined by

f $b l %,$R%~k,v,v8!54p(
l50

`

(
m52 l

l
e2id l ,$b l %,$R%~k!21

2ik
Yl
m~v8!Yl

m~v!

54p(
l50

`

(
m52 l

l

f l ,$b l %,$R%~k!Yl
m~v8!Yl

m~v!,

k>0, v,v8PS2, ~92!

where the partial wave scattering amplitudef l ,$b l %,$R%(k) is given by

f l ,$b l %,$R%~k!52Bl
2~k! (

j , j 851

N

m̃ j j 8~k!@Fl
~o!8~k,Rj !#

2. ~93!

The on-shell scattering operatorS$b l %,$R%(k) in L2(S2) associated withH $b l %,$R% is defined by

~S$b l %,$R%~k!f!~v!5f~v!2
k

2ipES2dv8 f $b l %,$R%~k,v,v8!f~v8!, ~94!

which means thatS$b l %,$R%(k) reads

S$b l %,$R%~k!5112ik(
l50

`

(
m52 l

l

f l ,$b l %,$R%~k!~Yl
m ,.!Yl

m~v!. ~95!
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IV. FINITELY MANY SPHERE INTERACTIONS: NONSEPARATED BOUNDARY
CONDITIONS
A. Definition of the model

Let us consider the operatorḢ defined by Eq.~2!. After decomposingL2(IR3) with respect to
angular momenta and introducing the operatorŨ defined by Eq.~4!, we may writeḢ in the form
@see Eq.~6!#

Ḣ5 %

l50

`

Ũ21ḣl ,$R%Ũ^1,

where the operatorḣl ,$R% defined by Eqs.~7! and ~8! has deficiency indices (N,N) and therefore
admits anN2-parameter family of sa extensions.

In Sec. I we discussed a specialN-parameter familyhl ,$a l %,$R% of sa extensions ofḣl ,$R%

corresponding to separated boundary conditions on each of theN concentric spheres.
In this section, we consider the generalN2-parameter family of sa extensions ofḣl ,{R}

defined4 as follows.
First, we note from the theory of sa extensions of symmetric operators in Hilbert spaces14 that

the general familyhl ,U,$R% of sa extensions ofḣl ,$R% is given by

D~hl ,U,$R%!5H g1(
j51

N

CjFf l , j11 (
j 851

N

U j j 8f l , j 82GUgPD~ ḣl ,$R%!,CjPIC J , ~96!

hl ,U,$R%H g1(
j51

N

CjFf l , j11 (
j 851

N

U j j 8f l , j 82G J 5ḣl ,$R%g1 i(
j51

N

CjFf l , j12 (
j 851

N

U j j 8f l , j 82G ,
~97!

whereUj j 8 , 1< j , j 8<N, denotes a unitary matrix inICN andf l , j65f l , j (A6 i ,r ),ImA6 i.0
provides a basis of ker@ ḣl ,$R%

* 7 i #, respectively.

In the notation used here above,f l , j (k,r ) is the function defined by Eq.~9! and ḣl ,$R%
*

represents the adjoint ofḣl ,$R% .
Using Eqs.~3!–~5! one may show that the general family of sa extensions ofḢ is given by

HU,$R%5 %

l50

`

Ũ21hl ,U,$R%Ũ^1. ~98!

By definition, we will callHU,$R% the quantum Hamiltonian describingN-sphere interactions
with support on concentric spheres corresponding to nonseparated boundary conditions.

The caseU521, i.e.,Uj j 852d j j 8, gives the free Hamiltonian:

H21,$R%[Ho52D, D~Ho!5H2,2~ IR3!. ~99!

The resolvent ofhl ,U,$R% andHU,$R% are given by the following theorem:4

Theorem 4.1: If Uj j 8Þ2d j j 8 for all j , j 851, . . . ,N, then we have the following:
~i! The resolvent ofhl ,U,$R% is given by

~hl ,U,$R%2k2!215~hl ,o2k2!211 (
j , j 851

N

@Ml~k!# j j 8~f l , j 8~2 k̄!,.!f l , j~k!, ~100!

k2Pr~hl ,U,$R%!, Im k.0, lPINo ~101!

with4
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@Ml~k!#215~UT11!21@gl~Ai !2gl~A2 i !#1gl~A2 i !2gl~k!, ~102!

where we have used the notation

@gl~k!# j j 85f l , j~k,Rj 8!5gl ,k~Rj ,Rj 8! ~103!

andUT denotes the transposed matrix ofU in ICN.
~ii ! The resolvent ofHU,$R% is given by

~HU,$R%2k2!215~Ho2k2!211 %

l50

`

%

m52 l

l

(
j , j 851

N

@Ml~k!# j j 8

3~ u.u21f l , j 8~2 k̄!Yl
m ,.!u.u21f l , j~k!Yl

m ,

k2Pr~HU,$R%!, Im k.0. ~104!

We note that the elements of the domainD(hl ,U,$R%) may be characterized
4 in the following way

in terms of boundary conditions. For every functionf P D(hl ,U,$R%) and every fixed pointRj we
have

f l~Rj1!5 f l~Rj2![ f l~Rj !, ~105!

f l8~Rj1!2 f l8~Rj2!5 (
j 851

N

@L l~k!# j j 8 f l~Rj 8!, ~106!

whereL l is defined by

2@L l~k!#215@Ml~k!#211gl~k!. ~107!

B. Scattering theory for the pair ( h l ,U,$R% ; h l ,o)

For k>0, let us define the function

F l ,U,$R%~k,r !5Fl
~o!~k,r !1 (

j , j 851

N

@L l~k!# j j 8Fl
~o!~k,Rj 8!ĝl ,k~Rj ,r !, ~108!

where the functionĝl ,k(r ,r 8) is given by Eq.~24!.
A straightforward calculation shows thatF l ,U,$R%(k,r ) are the scattering wave functions o

hl ,U,$R% .
The asymptotic behavior ofF l ,U,$R% as r→` yields
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F l ,U,$R%~k,r ! ——→
r→`

k.0
Al~k!sinSkr2 lp

2
D1Bl~k! (

j , j 851

N

@L l~k!# j j 8Fl
~o!~k,Rj 8!Fl

~o!~k,Rj !

3expF2 i S kr2 lp

2 D G
5H Al~k!2 iBl~k! (

j , j 851

N

@L l~k!# j j 8Fl
~0!~k,Rj 8!Fl

~o!~k,Rj !J sinS kr2 lp

2 D
1Bl~k! (

j , j 851

N

@L l~k!# j j 8Fl
~0!~k,Rj 8!Fl

~o!~k,Rj !cosS kr2 lp

2 D
5@D1,l

2 ~k!1D2,l
2 ~k!#1/2sinS kr2 lp

2
1d l ,U,$R%~k! D1o~1!. ~109!

Equation~109! then defines the phase shifts by

d l ,U,$R%~k!52arctan
D2,l~k!

D1,l~k!
52arctan

Bl~k!( j , j 851
N

@L l~k!# j j 8Fl
~0!~k,Rj 8!Fl

~o!~k,Rj !

Al~k!2 iBl~k!( j , j 851
N

@L l~k!# j j 8Fl
~0!~k,Rj 8!Fl

~o!~k,Rj !
.

~110!

The on-shell scattering matrix is given by

Sl ,U,$R%~k!5exp@2id l ,U,$R%~k!#5122ikBl
2~k! (

j , j 851

N

@L l~k!# j j 8Fl
~0!~k,Rj 8!Fl

~o!~k,Rj !.

~111!

The corresponding effective range expansion reads

@~2l11!!! #2k2l11 cot d l ,U,$R%~k!52al ,U,$R%
21 1 1

2 r l ,U,$R%k
21o~k4!, ~112!

where the scattering lengthal ,U,$R% is given by

al ,U,$R%52 (
j , j 851

N

@L l~0!# j j 8~RjRj 8!
l11. ~113!

The on-shell scattering amplitudef U,$R%(k,v,v8) corresponding toHU,$R% is defined by

f U,$R%~k,v,v8!54p(
l50

`

(
m52 l

l
e2id l ,U,$R%~k!21

2ik
Yl
m~v8!Yl

m~v!

54p(
l50

`

(
m52 l

l

f l ,U,$R%~k!Yl
m~v8!Yl

m~v!,

k>0, v,v8PS2, ~114!

where the partial wave scattering amplitudef l ,U,$R%(k) is given by
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f l ,U,$R%~k!52Bl
2~k! (

j , j 851

N

@L l~k!# j j 8Fl
~0!~k,Rj 8!Fl

~o!~k,Rj !. ~115!

The on-shell scattering operatorSU,$R%(k) in L2(S2) associated withHU,$R% is defined by

~SU,$R%~k!f!~v!5f~v!2
k

2ipES2dv8 f U,$R%~k,v,v8!f~v8!, ~116!

which means thatSU,$R%(k) reads

SU,$R%~k!5112ik(
l50

`

(
m52 l

l

f l ,U,$R%~k!~Yl
m,.!Yl

m~v!. ~117!

V. FINITELY MANY SPHERE INTERACTIONS OF THE SECOND TYPE:
NONSEPARATED BOUNDARY CONDITIONS

In this section we discuss how to generalize the model and the results presented in Se
the case of nonseparated boundary conditions.

This is still an open problem.
Let us consider the operator

Ḧ5 %

l50

`

Ũ21ḧl ,$R%Ũ^1 ~118!

given by Eq.~72!, whereḧl ,$R% defined by Eq.~73! has deficiency indices (N,N) and therefore
admits anN2-parameter family of sa extensions.

In Sec. III, we discussed a particularN-parameter family of sa extensions ofḧl ,$R% correspond-
ing to separated boundary conditions. In this section we show how one may define the g
N2-parameter family of sa extensions ofḧl ,$R% .

From the general theory of sa extensions of symmetric operators in Hilbert spaces14 it follows
that the generalN2-parameter familyhl ,Û,$R% of sa extensions ofḧl ,$R% is given by

D~hl ,Û,$R%!5H g1(
j51

N

djF f̃ l , j11 (
j 851

N

Û j j 8f̃ l , j 82GUgPD~ ḧl ,$R%!,djPIC J , ~119!

hl ,Û,$R%H g1(
j51

N

djF f̃ l , j11 (
j 851

N

Û j j 8f̃ l , j 82G J 5ḧl ,$R%g1 i(
j51

N

djF f̃ l , j12 (
j 851

N

Û j j 8f̃ l , j 82G ,
~120!

whereÛ j j 8 , 1< j , j 8<N, denotes a unitary matrix inICN and f̃ l , j65f̃ l , j (A6 i ,r ), ImA6 i.0,
provides a basis of ker@ ḧl ,$R%

* 7 i #, respectively.
The functionf̃ l , j (k,r ) here above is defined by Eq.~74! and ḧl ,$R%

* is the adjoint ofḧl ,$R% .
The quantum Hamiltonian describing finitely many sphere interactions of the second

supported by concentric spheres may then be defined by the following operator inL2(IR3):

HÛ,$R%5 %

l50

`

Ũ21hl ,Û$R%Ũ^1. ~121!

From Krein’s formula,14 the resolvent ofhl ,Û$R% is given by
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~hl ,Û$R%2k2!215~hl ,o2k2!211 (
j , j 851

N

@M̃ l~k!# j j 8~f̃ l , j 8~2 k̄!,.!f̃ l , j~k!, ~122!

where the elements@M̃ l(k)# j j 8 may be obtained using, e.g.,4 well known techniques.
Again,4 it should be possible to show that the domainD(hl ,Û,$R%) contains exactly those

functions f satisfying the following boundary conditions at each fixedRj :

f l~Rj1!5 f l8~Rj2![ f l8~Rj !, ~123!

f l8~Rj1!2 f l~Rj2!5 (
j 851

N

@L̃l~k!# j j 8 f l8~Rj 8!, ~124!

where@L̃l(k)# should be linked to@M̃ l(k)# by a relation analogous to Eq.~107!.
From Eq. ~123! and Eq. ~124!, one may show that the wave functions corresponding

hl ,Û,$R% are given by

F l ,Û,$R%~k,r !5Fl
~o!~k,r !1 (

j , j 851

N

@L̃l~k!# j j 8Fl
~0!8~k,Rj 8!f̂ l , j~k,r !, ~125!

where the functionf̂ l , j (k,r ) is given by Eq.~83!.
Using standard techniques, one may then obtain the following results.
The phase shifts ofhl ,Û,$R% are defined by

d l ,Û,$R%~k!52arctan
Bl~k!( j , j 851

N
@L̃l~k!# j j 8Fl

~0!8~k,Rj 8!Fl
~o!8~k,Rj !

Al~k!2 iBl~k!( j , j 851
N

@L̃l~k!# j j 8Fl
~0!8~k,Rj 8!Fl

~o!8~k,Rj !
. ~126!

The on-shell scattering matrix is given by

Sl ,Û,$R%~k!5exp@2id l ,Û,$R%~k!#5122ikBl
2~k! (

j , j 851

N

@L̃l~k!# j j 8Fl
~0!8~k,Rj 8!Fl

~o!8~k,Rj !.

~127!

The corresponding effective range expansion reads

@~2l11!!! #2k2l11 cot d l ,Û,$R%~k!52al ,Û,$R%
21

1 1
2 r l ,Û,$R%k

21o~k4!, ~128!

whereal ,Û,$R% is given by

al ,Û,$R%52~ l11!2 (
j , j 851

N

@L̃l~0!# j j 8~RjRj 8!
l . ~129!

Finally the partial wave scattering amplitude is given by

f l ,Û,$R%~k!552Bl
2~k! (

j , j 851

N

@L̃l~k!# j j 8Fl
~0!8~k,Rj 8!Fl

~o!8~k,Rj !. ~130!
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Constrained quantization on symplectic manifolds
and quantum distribution functions

G. Jorjadzea)
Department of Theoretical Physics, Tbilisi Mathematical Institute,
M. Aleksidze 1, 380093 Tbilisi, Georgia
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A quantization scheme based on the extension of phase space with application of
constrained quantization technique is considered. The obtained method is similar to
the geometric quantization. For constrained systems the problem of scalar product
on the reduced Hilbert space is investigated and a possible solution to this problem
is given. Generalization of the Gupta–Bleuler-like conditions is done by minimi-
zation of quadratic fluctuations of quantum constraints. The scheme for the con-
struction of generalized coherent states is considered and relation with Berezin
quantization is found. The quantum distribution functions are introduced and their
physical interpretation is discussed. ©1997 American Institute of Physics.
@S0022-2488~97!03305-7#

I. INTRODUCTION

It is well-known that the standard canonical quantization is not the universal method fo
quantization of Hamiltonian systems. Actually, this method is applicable only for the systems
a phase space having the cotangent bundle structure. For the generalization of canonical
zation different methods were developed and the geometric quantization1 is accepted as the mos
general one.

In2,3 a quantization scheme based on the extension of phase space was proposed.
extended system some constraints were introduced, and, further, the method of constraine
tization ~see Refs. 4–6! was used. The obtained quantization turned out to be very similar to
geometric one. The present work is a continuation of the activity started in Ref. 2.

A similar method with extension of phase space was introduced in Ref. 7~see also Ref. 8!,
where for the quantization of constrained extended system the BFV~BRST! method was used
The phase-space extension method with rather different physical interpretations was consid
other papers as well~see Refs. 9–12!. In Ref. 7 one can find a wide variety of references
different quantization methods and their short analyses.

The present paper is organized as follows. In Sec. II the extended system is introduce
phase space of the extended system is a cotangent bundle over the initial symplectic manifM.
For the quantization of the extended system the canonical method is used and the prequan
operators arise as a result of some natural operator ordering.

In Sec. III for the extended system a certain constrained surfaceF f k
50 is introduced. The

constraint functionsF f k
can be characterized by some complete set of observablesf k of the initial

system, and they form the set of the second class constraints. Further, the constraint op
F̂f are introduced, and for the restriction of the extended quantum system the Dirac (F̂f uC&
50) and the Gupta–Bleuler-like@(F̂f1 i eF̂g)uC&50] conditions are used. Certainly, the Dira
conditions are used only for a half of the constraints~which commute with each other!. The same
number of complex conditions is used in Gupta–Bleuler case as well. In the case of
conditions the problem of scalar product arises.13 A possible solution to this problem is considere
in Appendix A, where the limiting procedure (e→0) with normalized physical states is used.

a!Electronic mail: jorj@imath.acnet.ge
0022-2488/97/38(6)/2851/29/$10.00
2851J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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In Sec. IV, illustrating the quantization scheme described above, we consider two exam
The first one is a quantization on a plane and the second one on a cylinder.

In Sec. V we generalize the Gupta–Bleuler-like conditions. For this we use the minimiz
principle for quadratic fluctuations of quantum constraints. The obtained condition contains
straint operators in second order, and for a physical wave function it is an elliptic type equat
the phase spaceM.

In Sec. VI we introduce the coherent states, which are related with some complete
observables. Coherent states are constructed as the functions on the phase space and, at
time, they are parametrized by the points of the phase space. Such coherent states m
uncertainties of those observables to which they are related to. At the end of the secti
construct the special coherent states on a cylinder and study their behavior in the limit wh
squeezing parameter tends to zero. In this limit we get the eigenstates of the angular mom

In Sec. VII we introduce a quantum distribution function as a square of the modulus
physical wave function. We get some smooth distributions on the phase space, and corresp
functions satisfy some elliptic type equation. This equation specifies the distribution function
the pure states. Generalization for the mixed states is done as a convex combination of th
ones. There are different classes of quantum distributions functions and each class is rela
certain complete set of observables of the system in consideration. We discuss the p
interpretation of these distribution functions. Namely, we interpret them as the distribution
tained in the experiment with simultaneous measurement of observables which define the
class. At the end of the paper we discuss the possibility for the formulation of quantum mec
in terms of quantum distribution functions without referring to the Hilbert space and the ope
formalism.

II. QUANTIZATION ON A COTANGENT BUNDLE

We start with an introduction of some standard notations of the Hamiltonian dynamics~see
Ref. 1!.

The phase space of a classical system is a symplectic manifoldM with the symplectic form
v51/2vkl(j)djk∧dj l , wherejk (k51,...,2N) are some local coordinates onM. For simplicity,
the two-formv is assumed to be exact:v5du. Thus,vkl5]ku t2] luk , whereuk(j) are com-
ponents of the one-formu5uk(j)djk.

Observables are smooth real functions onM, and the set of all observablesO (M) has the
natural Poisson–Lie structure.

The Hamiltonian vector field constructed for an observablef (j) is given by

Vf5V f
k]k , with V f

k5vkl] l f , ~2.1!

wherevkl is the inverse~to vkl! matrix: v i jv jk5dk
i .

The Poisson bracket of two observablesf andg is defined by

$ f ,g%[2v~Vf ,Vg!52]kfv
kl] lg ~2.2!

and for global coordinates we have

$jk,j l%52vkl~j!. ~2.3!

The Hamilton functionH5H(j) generates the dynamics of the system through the Ham
equations

j̇ i5V H
i ~j!

and these equations can be obtained by variation of the action
J. Math. Phys., Vol. 38, No. 6, June 1997
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S5E @uk~j!j̇k2H~j!#dt. ~2.4!

If the Hamiltonian system is constructed from a nonsingular Lagrangian, then the phase
M is a cotangent bundle over the configuration spaceQ of the corresponding Lagrangian syste
(M5T*Q). In that case we have a separation of all coordinatesjk(k51,...,2N) into two ca-
nonically conjugated parts. The first part is formed by ‘‘coordinates’’ (qa) of the configuration
spaceQ, and the second by corresponding ‘‘momenta’’ (pa) (a51,...,N). The latter are un-
bounded (2`,pa,1`) and we can use the standard scheme of canonical quantization wit
rule:

qa→q̂a5qa, pa→ p̂a52 i\
]

]qa . ~2.5!

According to Darboux’s theorem, the canonical coordinates exist on an arbitrary symp
manifold; but in general, such coordinates exist only locally,1 and there is no global cotangen
bundle structure with unbounded momenta. Consistent quantization requires realization
only the classical commutation relations, but of spectral conditions as well. Respective
general, the rule~2.5! is not acceptable, since the spectra of the differential operators are
bounded.

Note that a symplectic manifold of general type naturally arises for the systems with sin
Lagrangian~for example for gauge theories!, when we apply the Dirac’s procedure for constrain
dynamics.4–6

To generalize the quantization method for such cases too we introduce some auxiliary H
tonian system with the phase spaceT*M, whereT*M is the cotangent bundle over the sym
plectic manifoldM. The new system has 4N dimension, and we choose the 1-formU
5Pkdjk, where (Pk ,j

k) are the standard coordinates on the cotangent bundleT*M: Pk

5P(]jk). So, the coordinatesPk play the role of ‘‘momenta,’’ while thejk are ‘‘coordinates.’’
The corresponding symplectic form is canonical:dU5dPk∧djk, and for the Poisson brackets o
the new system we have@compare with~2.3!#

$jk,j l%*505$Pk ,Pl%* , $Pk ,j
l%*5dk

l . ~2.6!

The index* is used to make a difference between the Poisson brackets~2.2! and~2.6!. Below we
denote the initial system byM , and the extended new system byT*M .

Let us introduce the vector fieldF@FPV(M)# as the solution of the equation

v~F,• !5~u2P!~• !, ~2.7!

wherev(F,•) denotes the contraction ofv with F:v(F,•) l5Fkvkl . Since the symplectic form
v is nondegenerated, Eq.~2.7! defines the vector fieldF uniquely, and the components of this fie
are given by

Fk5vkl~Pl2u l !. ~2.8!

Respectively, we get the map@T*M°V(M)# of the cotangent bundleT*M to the space of
vector fields onM. Using this vector fieldF and some observablef (j)PO (M) we can con-
struct the functionFf on T*M

F f[F~ f !5Fk]kf ~2.9!

and from~2.8! we have
J. Math. Phys., Vol. 38, No. 6, June 1997
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F f5u~Vf !2P~Vf !, ~2.10!

whereVf is the Hamiltonian vector field~2.1!.
The definition of functionsF f by ~2.9!, at the same time, gives the map

O ~M!°O ~T*M!

of observables of the systemM to the certain class of functions onT*M. Then, from~2.6!–
~2.10! we obtain

$F f ,Fg%*52$ f ,g%2F$ f ,g% , $F f ,g%*52$ f ,g%. ~2.11!

Note, that these commutation relations are written for the systemT*M , and here for the functions
$ f ,g% andg we use the same notations as for the corresponding observables onM. Strictly, of
course, we should distinguish between these functions. However, it is generally simpler no
this except in case of possible confusion.

Now, let us introduce a new map fromO (M) to O (T*M)

f°Rf[ f2F f , ~2.12!

which in local coordinates (Pk ,j
k) takes the form

Rf5 f ~j!1]kf ~j!vkl~j!~Pl2u l~j!! ~2.13!

and using~2.11! we get

$Rf ,Rg%*5R$ f ,g% . ~2.14!

Note that a change of the one-formu by an exact formdF:uk(j)→uk(j)1]kF(j), corre-
sponds to the trivial canonical quantization of the systemT*M :

Pk→Pk2]kF~j!

generated by the functionF(j).
We choose the Hamiltonian of the extended systemT*M to be equal toRH , whereH

5H(j) is the initial Hamiltonian. Respectively, for the systemT*M the action~2.4! takes the
form

ST*M5E @Pk~j!j̇k2RH~P,j!#dt. ~2.15!

The linear map~2.12! has two remarkable properties:
~1! It preserves the Poisson brackets@see~2.14!#.
~2! The functionsRf contain the momentum variablesPk no higher than in the first degre

@see~2.13!#.
Below we use these properties for the construction of the corresponding quantum operato

As it was mentioned above, the systemT*M can be quantized by the scheme of canoni
quantization. This means that the Hilbert spaceH̃ is the space of square integrable functionsC~j!
onM:H̃5L2(M). It is convenient to introduce the invariant measure onM

dm~j![Av~j!d2Nj with v~j![detvkl~j! ~2.16!

and to define the scalar product by
J. Math. Phys., Vol. 38, No. 6, June 1997
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^C2uC1&5E dm~j!C2* ~j!C1~j!. ~2.17!

According to the scheme of canonical quantization for the functionf (j) we have the correspond
ing operatorf̂ which acts on a wave functionC~j! as the multiplication byf (j). Taking into
account the remarks mentioned above@see after~2.11!#, we use the same notationf (j) for this
operatorf̂ as well: f̂[ f (j).

Further, the rule~2.5! defines the Hermitian operatorsP̂k

P̂k52 i\]k2 i\
]kv~j!

4v~j!
, ~2.18!

where the additional term, proportional to]kv, arises from the measure~2.16! in ~2.17!.
Construction of Hermitian operators, in general, has an ambiguity connected with the ord

of coordinate and momentum operators in the functions of corresponding observables. F
functionsRf this ordering problem is only for the term]kfv

klPl @see~2.13!#. When the momen-
tum operator is only in the first degree, it is easy to see that the following symmetric order

]kfv
klPl→ 1

2~]kfv
klP̂l1 P̂l]kfv

kl! ~2.19!

defines a Hermitian operator, and for those operators there are no anomalies in the q
commutation relations.

Using the Jacobi identityv i l ] lv
jk1v j l ] lv

ki1vkl] lv
i j50, one can check that

]k~Avvkl!50. ~2.20!

Choosing the ordering~2.19! in ~2.13!, from ~2.18! and ~2.20! we obtain

R̂f5 f ~j!2u~Vf !2 i\Vf , ~2.21!

whereVf is the Hamiltonian vector field~2.1!, andu(Vf) is the value of the one-formu on this
field: u(Vf)5ukv

kl] l f . So, the operatorR̂f is constructed from the invariant terms, and it does
depend on the choice of coordinatesjk onM.

Since the operator ordering~2.19! avoids anomalies in the commutation relations, from~2.14!
we get

@R̂f ,R̂g#52 i\R̂$ f ,g% ~2.22!

and this is the most interesting point of the described quantization scheme on the cotangent
of a symplectic manifold.

It is remarkable, that the operators~2.21! ~which arise naturally in our scheme! are the
prequantization operators of the theory of geometric quantization, and a representat
Poisson–Lie algebra by these operators is a well-known fact from this theory.1

After canonical quantization on the cotangent bundleT*M our goal is to use this quantum
theory for the quantization of the initial systemM , and in the next section we consider th
connection between these two systems.

III. CONSTRAINTS ON A COTANGENT BUNDLE

Geometrically there is a standard projection (p:T*M→M) of the cotangent bundle
T*M to the initial phase spaceM. To find the dynamical relation between these two systems
introduce a constraint surface on the cotangent bundleT*M, and define it as the kernel of th
J. Math. Phys., Vol. 38, No. 6, June 1997
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mappingT*M→V(M) given by ~2.7! and ~2.8!. It means that on the constraint surface t
vector fieldF vanishes (F50), and if we use the functionsF f(P,j) @see~2.9!# this surface can
be written as

F f50, ; f ~j!PO ~M!. ~3.1!

Using ~2.11! and ~2.12! we obtain

$Rf ,Fg%*5F$ f ,g% ~3.2!

and we see, that~3.1!, i.e., the constraint surface, is invariant under the canonical transforma
generated by the functionsRf . In particular it is invariant in dynamics generated by the Ham
tonianRH .

In local coordinates the surface~3.1! can be written as

Pk2uk~j!50 ~3.3!

@see~2.8!–~2.10!#, and respectively, the momentaPk are defined uniquely. Hence, the coordina
jk(k51,...,2N) can be used for the parametrization of the constraint surface, and this surf
diffeomorphic to the manifoldM. Then, the reduction procedure gives@see~3.3! and ~2.13!#

PkdjkuF505uk~j!djk, RHuF505H~j!

and the action~2.15! of the systemT*M is reduced to~2.4!. Thus, we conclude that the classic
systemT*M restricted on the constraint surfaceF f50 is equivalent to the initial one.

To find the connection on the quantum level too, we have to quantize the systemT*M taking
into account the constraints~3.1!.

Before beginning the quantum part of the reduction scheme, let us note that the cons
~3.1! are written for an arbitrary observablef (j), and since the constraint surfaceF50 is 2N
dimensional, only the finite number of those constraints are independent.

To select the independent constraints we introduce the complete set of observablesM.
The set of observables$ f n(j)PO (M);(n51,..., K)% is called complete, if any observabl
f (j)PO (M) can be expressed as a function of this set

f5F ~ f 1 ,...,f K!. ~3.4!

It is clear thatK>2N, and we can choose the set withK52N only for the manifolds with global
coordinates. ForK.2N there are some functional relations for the setf 1 ,...,f K , and locally only
2N of these functions are independent. Then, from~2.9! and ~3.4! we have

F f5
]F

] f n
F f n

~3.5!

and the constraints~3.1! for arbitrary f are equivalent toK constraints

F f n
50 ~n51,...,K !. ~3.6!

In particular, in the case of global coordinates we can introduce only 2N constraintsF f n
(n

51,...,2N). If it is not specified, below we are assuming that the manifoldM has global coor-
dinates and a set of functionsf 1 ,...,f 2N is complete. Note that the constraint surface and
reduced classical system are independent on the choice of such complete set. Using~2.11!, we see
that on the constraint surface~3.1! the rank of the matrix$F f n

,F fm
%* is equal to 2N. Therefore,

these constraints, in Dirac’s classification, are the second class constraints.
J. Math. Phys., Vol. 38, No. 6, June 1997
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For constrained dynamical systems there are, actually, two schemes of quantization:
~A! ‘‘First reduce and then quantize.’’
~B! ‘‘First quantize and then reduce.’’
By the scheme A we are returning to the initial problem of quantization on the manifoldM.

Therefore, it is natural to use the scheme B, especially as the first step of this scheme w
already accomplished.

To justify our strategy it is necessary to show, that the schemes A and B give equiv
quantum theories, when the systemM is quantizable by the canonical method, and also, i
worthwhile to have a certain general receipt for accounting for the constraints~3.6! on the quan-
tum level.

According to the scheme B the next step is a construction of Hermitian constraint oper
From ~2.10! and ~2.19! the operators

F̂f5 i\Vf1u~Vf ! ~3.7!

are Hermitian, and by direct calculation we obtain

@F̂f ,F̂g#5 i\~$ f ,g%1F̂$ f ,g%!, ~3.8!

@R̂f ,F̂g#52 i\F̂$ f ,g% . ~3.9!

These commutators are quantum versions of the relations~2.11! and ~3.2!. As it was expected,
there are no anomalies for them@see~2.22!#.

Now, we should make reduction of the Hilbert spaceL2(M) using the constraint operator
~3.7! for some complete set of functionsf 1 ,...,f 2N . The reduced Hilbert space for the constrain
systems is called the physical Hilbert space as well, and we denote it byHph.

For systems with 2N second class constraints there is the following reduction procedur4–6

one has to select a subset ofN constraintsF̂1 ,...,F̂N , which can be treated as the first cla
constraints~independently from others!, and then, construct a physical Hilbert spaceHph from the
states which satisfy the Dirac conditionsF̂auCph&50, a51,...,N. Note, that we cannot put al
constraints equal to zero in strong sense (F̂kuC&50, k51,...,2N), since it is in contradiction with
commutation relations of the second class constraints.

Using ~2.11! and ~3.8!, it is easy to see that, in our case, the first class constraints wi
commuting, and the described procedure implies selection ofN commuting observablesf a , a
51,...,N; $ f a , f b%50, and further, solution of the differential equations

F̂f a
Cph~j!50 ~a51,...,N!. ~3.10!

Construction of physical states by selection ofN commuting observables is quite natural from t
point of view of standard quantum mechanics, and we shall return to this point later.

Equations~3.10! are the first-order linear differential equations and, in principle, they can
explicitly integrated to describe corresponding wave functions. But at this stage of quanti
scheme B two significant problems usually arise: The first is connected with the introducti
scalar product for the physical states,13 and the second, with the definition of observable opera
on these states.

For the first problem, the point is that the Dirac conditionsF̂auCph&50, in general, have no
solutions in the Hilbert space where the first stage of quantization was accomplished.

In our case, solutions of~3.10!, as a rule, are not square integrable onM ~usually they are
generalized functions!, and the scalar product~2.17! needs modification. On the other hand,
certain measure in scalar product defines the class of functions square integrable by this m
Thus, a measure for the new scalar product and the class of solutions of~3.10! should be adjusted
J. Math. Phys., Vol. 38, No. 6, June 1997
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A possible solution of this problem is based on the introduction of complex constraints.14 Note
that classical observablesf (j) are assumed to be real functions on a phase space, but it is
that the whole considered construction~except for the self-adjointness! can be naturally extende
for complex valued functions@ f (j)5 f 1(j)1 i f 2(j)# as well.

Using the remaining part of constraintsF f N11
,...,F f2N

, one can introduce constraints for th
complex functionsZa5 f a1 i e f N1a and consider the equations

~F̂f a
1 i eF̂f N1a

!uCe&50 ~a51,...,N!. ~3.11!

Here, 1<a<N, $ f a , f N1a%Þ0, ande is some real parameter. Sometimes we omit the index ‘‘p
for the physical vectors and physical Hilbert space, and use the indexe only.

The condition~3.11! looks like Gupta–Bleuler quantization,15,16 and for normalizable solu-
tions uCe& the mean values of corresponding constraints vanish

^CeuF̂f a
uCe&50 ^CeuF̂f N1a

uCe&50.

It turns out that solutions of~3.11! could be square integrable indeed, and then they form s
subspace of the Hilbert spaceL2(M) ~see the examples below!. The corresponding reduce
physical Hilbert space we denote byHe . We haveCe(j)PHe,L2(M),L2* (M), where
L2* (M) is the space dual to the Hilbert spaceL2(M). If we consider the physical state
uCe& as the vectors of the dual spaceL2* (M), then the suitable choice of the normsiCei , and
some smooth dependence on the parametere can provide existence of the limit

lim
e→0

uCe&5uCph&,

where uCph&PHph,L2* (M). Obtained physical statesuCph& specify the class of solutions o
~3.10!, and the scalar product for them is defined by

^C2phuC1ph&5 lim
e→0

^C2euC1e&
iC2eiiC1ei , ~3.12!

whereuC1ph& and uC2ph& are the limits ofuC1e& and uC2e&, respectively. Note, that in the limi
e→0 the norm of vectorsiCei usually diverges, but the scalar product~3.12! remains finite
(u^C2phuC1ph&u<1). For more details see the Appendix and the examples below.

It is remarkable that the choice of physical states by the conditions~3.10! and ~3.11! is
equivalent to the choice of real and complex polarizations of geometric quantiza
respectively.1

The second above-mentioned problem arises when the reduced Hilbert space is not in
under the action of some prequantization operatorR̂g . The invariance condition for~3.10! is @see
~3.9!#

@R̂g ,F̂f a
#5 (

b51

N

da
bF̂f b

~1<a<N!

and, from~3.9! we see that it is not valid for arbitraryg(j). Moreover, even if a prequantizatio
operator acts invariantly onHph, this operator can be non-Hermitian onHph, when the latter is
not a subspace ofL2(M) and the Hilbert structure is introduced additionally.

For the definition of the corresponding observable operator on the physical Hilbert spac
can deform the prequantization operator adding quadratic and higher powers of con
operators.2 Then, using the commutation relations~3.8! and ~3.9!, one can construct a new He
mitian operator, which is invariant on the reduced Hilbert space. Of course, there are dif
J. Math. Phys., Vol. 38, No. 6, June 1997
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possible deformations, and in general, they define different operators on the physical H
space. In terms of usual canonical quantization, different deformations correspond to dif
operator orderings. This is the standard ambiguity of quantum theories which vanishes
classical limit\→0. Note that corresponding deformed classical functions are indistinguish
on the constraint surfaceF f50.

The described quantization scheme we call E-quantization scheme. In the next sect
consider application of this scheme for some simple examples. We use these examples as a
our approach as well.

IV. EXAMPLES OF E-QUANTIZATION SCHEME

Example 1. LetM be a planeM[R2, with the standard coordinatesj1[p, j2[q, and the
symplectic formv5dp∧dq. The coordinatesp andq are global and from~2.10! we get

Fp5
1
2p2Pq , Fg5

1
2q1Pp ,

where, for convenience, we choose the one-formu5 1
2pdq2 1

2qdp. The corresponding constrain
operators are

F̂p5
1
2p1 i\]q , F̂q5

1
2q2 i\]p ~4.1!

and, according to~3.11!, for the physical vectorsuCe& we can write the equation

~F̂q2 i eF̂p!uCe&50. ~4.2!

Solution of ~4.2! is

Ce~p,q!5expS 2
ep2

2\ DexpS 2
ipq

2\ Dc~q2 i ep! ~4.3!

with an arbitrary functionc. For the square integrability of these solutions the parametere should
be positive (e.0) and we can specify the class of functionsc, for example, by

c~j!5expS 2
gj2

2 DP~j! ~j[q2 i ep!, ~4.4!

whereg is some fixed positive parameter (g.0), andP(j) is any polynomial. Then, for suffi-
ciently smalle the functions~4.3! will be square integrable on the plane and they form the phys
subspaceHe , @HePL2(R

2)#.
To investigate the casee50, we consider the limite→0 in ~4.3! ~see the Appendix!, and get

Cph~p,q!5expS 2
ipq

2\ Dc~q!. ~4.5!

It is clear that these functions are not squared integrable on the plane, but they are well-d
elements of the dual spaceCph(p,q)PL2* (R

2). The functions~4.5! form the physical Hilbert
spaceHph, and they are solutions of~4.2! with e50. Using rule~3.12!, we obtain

^C2phuC1ph&5
1

N1N2
E c2* ~q!c1~q! dq, ~4.6!

where
J. Math. Phys., Vol. 38, No. 6, June 1997
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Ni
25E uc i~q!u2 dq ~ i51,2;Ni.0!.

Action of the prequantization operators

R̂p5
1
2p2 i\]q , R̂q5

1
2q1 i\]p ~4.7!

on the physical states~4.5! gives

R̂pCe~p,q!5expS 2
ipq

2\ D ~2 i\!c8~q!, R̂qCe~p,q!5expS 2
ipq

2\ Dqc~q!. ~4.8!

Thus, from ~4.6!–~4.8! we have the standard coordinate representation of quantum mech
Similarly, one can obtain the momentum representation in the limite→` with corresponding
choice of the class of solutions~4.4!.

In complex coordinates

z5
q1 i ep

A2e\
, z*5

q2 i ep

A2e\
~4.9!

Eq. ~4.2! takes the form

S ]z1
z*

2 DCe~z,z* !50 ~4.10!

and we obtain the solutions

Ce5exp~2 1
2uzu2!F~z* !, ~4.11!

whereF(z* ) is any holomorphic function ofz* . Comparing~4.11! and ~4.3! we haveF(z* )
5exp(1/2z* 2) c(A2e\ z* ). From the point of view of canonical quantization the compl
coordinatesz andz* @see~4.9!# are the classical functions of annihilation and creation opera
~â and â* !, respectively. The corresponding prequantization operators

R̂z5
z

2
1]z* , R̂z*5

z*

2
2]z

act invariantly on the physical Hilbert spaceHe , and we have

R̂zCe5exp~2 1
2uzu2!F8~z* !, R̂z*Ce5exp~2 1

2uzu2!z*F~z* !.

Thus the reduction onHe gives the holomorphic representation of quantum mechanics,17 and we
see again that the quantum theory of E-quantization scheme is equivalent to the ordinary ca
one. The physical Hilbert spacesHe for different e are different subspaces ofL2(R

2), but, due
to Stone–von-Neumann theorem,18,19the corresponding representations of canonical commuta
relations are unitary equivalent to each other.

Further, from standard quantum mechanics we have

^p,q;euC&5E dx ^p,q;eux&c~x!, ~4.12!

wherec(x)[^xuC& is a wave function of the coordinate representation andup,q;e& is a standard
coherent state20,21
J. Math. Phys., Vol. 38, No. 6, June 1997
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âup,q;e&5
q1 i ep

A2e\
up,q;e&. ~4.13!

Respectively, the ‘‘matrix element’’̂p,q;eux& is given by

^p,q;eux&5S 1

pe\ D 1/4expS i

2\
pqDexpS 2

i

\
pxDexpS 2

~x2q!2

2e\ D . ~4.14!

Then, from~4.12! and ~4.14! we obtain

lim
e→0

^p,q;euC&S 1

4pe\ D 1/45expS 2
ipq

2\ Dc~q!. ~4.15!

It is well-known that the matrix element^p,q;euC& is connected to the wave function of holo
morphic representation~see Refs. 17 and 20!

^p,q;euC&5exp~2 1
2uzu2!F~z* !, ~4.16!

where the variablesp,q andz,z* are related by~4.9!. On the other hand, from the equivalence
the holomorphic representation and E-quantization scheme, the wave function in~4.16!
C̃e(p,q)[^p,q;euC& can be considered as a vector of the physical Hilbert spaceHe @compare
~4.11! and~4.16!#. Then,~4.12! and~4.15! will be similar to ~4.3! and~4.5!, respectively. Only it
should be noted that the two physical statesCe(p,q) and C̃e(p,q), constructed by the sam
function c(q)PL2(R

1), are different@Ce(p,q)ÞC̃e(p,q)# @see ~4.3! and ~4.12!#, and they
coincide only in the limite→0. This short remark indicates different possibilities of describ
limiting procedure~for more details see the Appendix!.

Example 2. LetM be a cylinderM[R13S 1, with the coordinatesj1[SPR1, j2[w
PS 1 and the symplectic formv5dS̀ dw. This is a model of rotator whereS is the angular
momentum.

Since a cylinder is a cotangent bundle over a circle, the canonical quantization for this
is realized on the space of square integrable functionc(w) on a circle@c(w)PL2(S

1)#. The
quantization rule~2.5! gives

Ŝc~w!52 i\]wc~w!, coŝwc~w!5coswc~w!, sin̂ wc~w!5sin wc~w! ~4.17!

and the operatorŜ has the discrete spectrumSn5n\, (nPZ), with the eigenfunctionscn(w)
51/A2p exp(inw).

The coordinatew is not global, and for the one-form we chooseu5Sdw. The set of functions

f 15S, f 25cosw, f 35sin w

is complete~with the relationf 2
21 f 3

251!, and for the corresponding constraint operators we

F̂S5S1 i\]w , F̂cosw5 i\ sin w]S , F̂sin w52 i\ cosw]S . ~4.18!

Note, that there is a possibility to have a complete set of observables with only two function
example,

f̃ 15eS/l cosw, f̃ 25eS/l sin w ~4.19!
J. Math. Phys., Vol. 38, No. 6, June 1997
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wherel is some constant parameter~with dimension of angular momentum!. These functions are
global coordinates on a cylinder and they give the map of a cylinder on to a plane without o
( f̃ 1 , f̃ 2)PR22$0%.

The wave functionsc(w) of ‘‘ w representation’’ can be obtained in E-quantization scheme
@see~4.18!#

F̂coswCph~S,w!50 and ~or! F̂sin wCph~S,w!50. ~4.20!

But it is clear that these functions are not normalizable on a cylinder. The case of the con

F̂SCph~S,w!50 ~4.21!

is more complicated, since this equation has no global regular solutions. In the class of gene
functions one can find the solutions of the type

Cph,n5d~S2n\!exp~ inw! ~nPZ!, ~4.22!

which obviously are not square integrable. To investigate these classes we need a limiting
dure similarly to example 1. Such procedure we consider in Sec. V with some motivation
generalization of condition~3.11!, and here, in the remaining part of this section, we construct
example of physical Hilbert spaces as the subspaces ofL2(R

13S 1). For this we introduce the
complex coordinates related to~4.19!

z5 f̃ 12 i f̃ 25exp~S/l2 iw!, z*5 f̃ 11 i f̃ 25exp~S/l1 iw! ~4.23!

and impose condition~3.11! for e51: F̂z* uCph&50. The corresponding equation

S ]z1
l

2\

loguzu
z DCph~z,z* !50 ~4.24!

has the solutions

Cph~z,z* !5expS 2
l

2\
~ loguzu!2Dc~z* !, ~4.25!

wherec(z* ) is any holomorphic function (]zc50) on the plane without origin, and it has th
expansion

c~z* !5 (
n52`

`

dnz*
n.

Respectively, solution~4.25! takes the form

Cph~S,w!5 (
n52`

`

cn expS 2
~S2n\!2

2l\ Dexp~ inw! ~4.26!

with cn5dn exp(\n
2/2l), and square integrability gives

(
n52`

`

ucnu2,`. ~4.27!
J. Math. Phys., Vol. 38, No. 6, June 1997
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The prequantization operator of angular momentum isR̂S52 i\]w @see~2.12! and~4.18!#. It
is a well-defined operator on the physical subspace~4.26!, and has the same nondegenera
spectrum as the operatorŜ of the canonical quantization. Thus, we see the unitary equivalenc
these two quantizations.

V. MINIMAL FLUCTUATIONS OF QUANTUM CONSTRAINTS

In the case of example 1 the constraint operatorsF̂p andF̂q have the canonical commutatio
relations@see~4.1!#

@F̂p ,F̂q#5 i\. ~5.1!

Recall that due to quantum uncertainties, we cannot putF̂puC&50 and F̂quC&50 simulta-
neously. The condition~4.2! is equivalent to the choice of physical statesuCe& as the ‘‘vacuum’’
states inFp , Fq variables. Then the mean values of constraints are equal to zero

^CeuF̂puCe&50, ^CeuF̂quCe&50

and the product of quadratic fluctuations is minimal

^CeuF̂p
2uCe&^CeuF̂q

2uCe&5\2/4.

Thus for this simple example, the meaning of condition~3.11! is that the obtained physical state
uCe& provide the best realization of the classical constraintsFp50,Fq50 on the quantum level

Let us consider condition~3.11! in general case. Note that if two functionsf a and f N1a are
canonically conjugated:$ f a , f N1a%51, then the corresponding constraint operators have cano
commutation relations@see~3.8!#. Therefore, for the construction of physical states by~3.11! it is
natural to choose the functionf N1a as a canonically conjugated tof a , and repeat the calculation
of example 1 inf a , f N1a variables. Unfortunately this simple procedure, in general, fails.
reason is that the canonically conjugated variablef N1a usually exists only locally and correspond
ing constraintF f N1a

is not well-defined both on classical and quantum levels. For exam
canonically conjugated variable to the harmonic oscillator HamiltonianH51/2(p21q2) is the
polar anglea

p5A2H cosa, q5A2H sin a.

Choosing the one-formu51/2(pdq2qdp), we get

F̂H5H1 i\]a

and for the operatorF̂a one can formally writeF̂a52 i\]H , but this operator is not self-adjoin
Then, though the equation

~F̂H1 i eF̂a!uC&50 ~5.2!

has integrable solutions@for example,C(p,q)5exp(2H2/2e\)#, nevertheless they are not accep
able for the physical states, since the mean values of the constraint operatorsF̂H andF̂a do not
vanish, and minimization of quadratic fluctuations is not achieved as well.

For e50 one can write the formal solution of~5.2! @like ~4.22!#: C5d(H2\n)exp(ina), and
since H>0, such ‘‘solutions’’ exist only forn>0. Then, the prequantization operatorR̂H5
2 i\]a has the spectrumHn5\n, n>0. The situation is similar for any completely integrab
system.22 In action-angle variablesI a , wa(a51,...,N) we have the one-formu5I adwa and the
HamiltonianH5H(I 1 ,...,I N). Then, the constraint and prequantization operators take the fo
J. Math. Phys., Vol. 38, No. 6, June 1997
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F̂I a
5I a1 i\]wa

, R̂I a
52 i\]wa

, R̂H5H2
]H

]I a
F̂I a

. ~5.3!

If wa are the cyclic variables (waPS 1), then by described formal operations we obtain
‘‘physical states’’

Cph~ I ,w!5 )
a51

N

d~ I a2\na!exp~ inawa! ~5.4!

as the ‘‘solutions’’ of the equations

F̂I a
Cph~ I ,w!50.

The spectra of prequantization operators~5.3! on these ‘‘physical states’’ are

~ I a!na5\na and Hn1 ,...,nN
5H~\n1 ,...,\nN!,

wherena are integer numbers, and corresponding admissible values are chosen according
possible classical values of the variablesI a ~as, for example,n>0 for the harmonic oscillator!. It
is remarkable that these formal results correspond to the quantization rule.

I aDwa5 R padqa52p\na

which is almost the semiclassical one. From these formal operations it seems that the qu
problem is solvable for any completely integrable system; but of course, these expression
only symbolic meaning, and~5.4! needs further specification, taking account ofN other con-
straints and limiting procedure as well.

After these remarks let us consider the case when observablesf a and f N1a @in ~3.11!# are not
canonically conjugated to each other. For the convenience we use the notationsf a[ f , f N1a

[g, and introduce the corresponding constraint operatorsF̂f andF̂g .
It turns out that, in general, Eq.~3.11! has no normalizable solutions at all, and choice of s

~or value! of e does not help. If we intend to deal with arbitrary observables and sympl
manifolds we have to generalize condition~3.11!. For this purpose we introduce the minimizatio
principle for quadratic fluctuations of quantum constraints.

Quadratic fluctuations of two Hermitian operatorsF̂f and F̂g can be characterized by th
functionalU(C)

U~C![^CuF̂f
2uC&^CuF̂g

2uC&, ~5.5!

whereuC& is a vector with the unit norm̂CuC&51.
Then, one can postulate the principle that the physical states provide minimization o

functional~5.5!. For two arbitrary Hermitian operators the minimization problem of uncertain
was studied in Refs. 23 and 24. In those papers the minimization problem was consider
another functionalU1(C)

U1~C![
^CuF̂f

2uC&^CuF̂g
2uC&

^CuÂuC&2
~5.6!

as well, where the operatorÂ is the commutator
J. Math. Phys., Vol. 38, No. 6, June 1997
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Â52
i

\
@F̂f ,F̂g#. ~5.7!

In this section we consider only the functionalU(C).
Using the results of Refs. 23 and 24 and taking variation of the functional~5.5! we get the

equation for the physical wave functionsuCph&

1

2a2
F̂f
2uCph&1

1

2b2
F̂g
2uCph&5uCph& ~5.8!

with the subsidiary conditions

a25^CphuF̂f
2uCph&, b25^CphuF̂g

2uCph&, ~5.9!

wherea andb are some fixed parameters. Possible values of these parameters are defined f
following procedure: At first we have to solve the equation~5.8! with free parametersa,b and
select the solutions with the unit norm which satisfy~5.9!. Usually after this we still have a
freedom ina andb. Then we must choose one of those pairs with minimal product ofab ~we
assume botha andb to be non-negative!. The fixed values of the parametersa andb provide that
the solutions of~5.8! form the linear space as the subspace ofL2(M). This subspace should
define the physical Hilbert spaceHph[H (a,b) of the system.

Thus, instead of the first-order differential equation~3.11! with one parametere we get the
second-order equation~5.8! with two parametersa,b and subsidiary conditions~5.9!. Note that a
possible limiting procedure in~5.8! for a→0 ~or b→0! can specify the physical statesuCph& with
F̂f uCph&50 ~or F̂guCph&50).

For the test of the formulated principle, at first we consider again example 1. In this ca
constraint operatorsF̂f[F̂p and F̂g[F̂q have the canonical commutation relations~5.1!. Then
~5.8! looks like the harmonic oscillator eigenvalue problem with the frequencyv51/ab and the
eigenvalueE51. Respectively, we get\(n11/2)5ab. One can check that all the oscillator
eigenstatesun& satisfy the conditions~5.9! and therefore the minimalab(ab5\/2) corresponds to
the vacuum state (n50) given by (aF̂q2 ibF̂p)uCph&50. Thus for the physical states we arriv
again at~4.2! with e5b/a, and the limiting procedurea→0 ~or b→0! can be accomplished in
similar way.

Now, let us consider example 2 with the constraint operators~4.18!. For convenience we can
construct the operatorÔ[F̂sinw

2 1F̂cosw
2 , and minimize the product̂CuF̂S

2uC&^CuÔuC&. From
~4.18! we haveÔ52\2]S

2, and we see that this operator is a square of the Hermitian ope
F̂w[2 i\]S (Ô5F̂w

2). Then, from the variation principle we get the equation~5.8! with F̂f

5S1 i\]w and F̂g52 i\]S . Since these two Hermitian operators have the canonical comm
tion relations, we arrive again at the oscillator problem. Only, now the ‘‘ground’’ state shou
obtained from the equation

SS1 i\]w1
a

b
\]SD uCph&50. ~5.10!

Hence, for this example, using the minimization principle, we arrive at the equation~5.10!. It is
interesting to note that the equations~5.10! and~4.24! are equivalent, and the functions~4.26! with
l5a/b are the solutions of~5.10! as well.

In ~5.10! we can accomplish the limiting procedure to the equations~4.21! @or ~4.20!# taking
the corresponding limitsa/b5l→0 ~or l→`!.

Using ~4.26! we see that the functions
J. Math. Phys., Vol. 38, No. 6, June 1997
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Cl,n~S,w!5S \

pl D 1/4 expS 2
~S2n\!2

2l\ Dexp~ inw! ~5.11!

form the orthonormal basis for the physical states~5.10!. The behavior of these basis functions
singular whenl→0 ~or l→`!. But, with some suitable renormalization, the corresponding lim
exist in the dual spaceL2* (R

13S 1) ~see the Appendix!. Indeed, the limitl→0 of the function

C̃l,n~S,w!5
1

A2\
S 1

pl D 1/4Cl,n~S,w!

is the generalized function~4.22!, while the limit l→` of the functions

CM l,n~S,w!5
1

&

S l

p\ D 1/4Cl,n~S,w!

gives the standard basis for ‘‘w representation’’@see~4.17! and ~4.20!#.
According to the rule~3.12!, obtained physical states~4.22! @similarly, the statescn(w)

51/A2p exp(inw)# form an orthonormal basis of the corresponding reduced Hilbert space.
Any physical state~5.10! with the unit norm can expanded in the basis~5.11!

Cl~S,w!5 (
n52`

`

anCl,n~S,w! with (
n52`

`

uanu251.

Here the numbersan can be interpreted as the probability amplitudes for the angular momen
and it is clear that the functionsCl(S,w) describe one and the same quantum physical state fo
l. Using the form of the basis functions~5.11! we get

lim
l→0

uCl~S,w!u252p\ (
n52`

`

uanu2d~S2n\!, ~5.12!

where we take into account that

lim
l→0

Cl,n* ~S,w!Cl,m~S,w!50 when mÞn.

We see that the right-hand side of~5.12! describes the angular-momentum distribution function
the corresponding physical state.

We use this property in Sec. VII for the physical interpretation of wave functionCph(j), and
now, in the next section, we return to the condition~3.11! for further investigation.

VI. MINIMAL UNCERTAINTIES AND COHERENT STATES

The minimization principle for quadratic fluctuations applied for the functionalU1(C) ~5.6!
gives

1

2a2
F̂f
2uCph&1

1

2b2
F̂g
2uCph&2

Â

A
uCph&50, ~6.1!

whereÂ is a commutator~5.7!, A is a parameter, and solutionsuCph& should satisfy~5.9! and the
condition ^CphuÂuCph&5A as well ~see Refs. 23 and 24!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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There is some relation between the minimization of the functionalU1(C) and the condition
~3.11!. In our notations the condition~3.11! has the form

~F̂f1 i eF̂g!uCe&50 ~6.2!

and for the wave functionCe(j) it is the first-order differential equation. Of course, it is mu
easier to analyze solutions of~6.2! than to investigate~5.8! @or ~6.1!#, which are the second-orde
equations with two~or three! free parameters and subsidiary conditions~5.9!. But, to be acceptable
for the physical states, the corresponding solutions of~6.2! should belong to the domain o
definition of self-adjoint operatorsF̂f andF̂g . Except finiteness of the norm ofuCe&, this means
that the operatorsF̂f and F̂g must be Hermitian on these functions. As it was pointed out
general, these conditions are not fulfilled, and in that case we have to use the minimi
principle for quadratic fluctuations of quantum constraints. But, if for some reale, solutions of
~6.2! satisfy the two conditions mentioned above, then one can derive that~see Refs. 23 and 24!

^CeuF̂f
2uCe&5

\eA

2
, ^CeuF̂g

2uCe&5
\A

2e
where ^CeuÂuCe&5A

and corresponding physical statesuCe& provide minimization of the functionalU1(C): U1(Ce)
5\2/4. Note ~and it is natural! that such functionsuCe& satisfy ~6.1! ~uCph&5uCe&), with a2

5\eA/2, b25\A/2e, andA5^CeuÂuCe&. To be convinced, it is sufficient to act on~6.2! by the
operatorF̂f2 i eF̂g .

When the commutatorÂ in ~6.1! is a c number Eqs.~6.1! and ~5.8! are equivalent and they
define the same physical Hilbert spaces as the subspaces ofL2(M). But, in general, these
subspaces are different, and for their physical interpretation further investigation is require

Let us return again to the choice of physical states by condition~3.11! @or ~6.2!#. For simplic-
ity we consider the two-dimensional case with coordinatesj[(j1,j2), and the observablesf and
g can play the role of these coordinates as well.

Suppose that, for some reale, solutions of~6.2! satisfy the required conditions, and henc
they are acceptable for the physical states. In complex variables

z5 f ~j!2 i eg~j!, z*5 f ~j!1 i eg~j! ~6.3!

condition ~6.2! can be written asF̂z* uCph&50. The corresponding differential equation has t
form @see~4.10! and ~4.24!#

S ]z2
i

\
uzDCph50, ~6.4!

whereuz is the component of the one-formu5uzdz1uz*dz* . Solutions of~6.4! are

Cph~j!5expS 2
1

2\
S~j! Dc~z* !, ~6.5!

where ]zS522iuz , the coordinatesz and j are related through~6.3!, and c(z* ) is almost
arbitrary. Only this holomorphic functionc(z* ) should provide a finite norm of physical state
cph(j).

The prequantization operatorR̂z*5z*2F̂z* acts invariantly on the physical states~6.5!, and
this action is given as a multiplication of corresponding wave functionsc(z* ) by z*

R̂z*Cph~j!5z* ~j!Cph~j!. ~6.6!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Using ~3.8! and ~3.5! we get

@R̂z ,F̂z* #52 i\F̂$z,z* %52e\]z~$ f ,g%!F̂z12e\]z* ~$ f ,g%!F̂z .

and if the Poisson bracket$ f ,g% is not a constant, then the physical Hilbert space~6.5! is not
invariant under the action of prequantization operatorR̂z . In this case, the deformation procedu
is rather problematic, and to define the operatorẑ we use the relation betweenz,z* variables.
Since the operatorẑ1[R̂z* is well-defined on the physical states~6.5!, it is natural to introduce
the operatorẑ as Hermitian conjugated toR̂z* : ẑ[(R̂z* )

1. Respectively, operatorsf̂ andĝ will be

f̂5 1
2~ ẑ1 ẑ1!, ĝ5

i

2e
~ ẑ2 ẑ1!. ~6.7!

If Cph,n(j) is some orthonormal basis of the physical Hilbert space~6.5!, then the action of the
operatorẑ on any stateCph(j) can be written as

ẑCph~j!5(
n

Cph,n~j!^Cph,nuẑuCph&5(
n

Cph,n~j!~ ẑ1Cph,nuCph&

5(
n

Cph,n~j!E dm~j8!Cph,n* ~j8!z~j8!Cph~j8!, ~6.8!

wheredm(j8) is the standard measure~2.16!.
Let us introduce the wave functionxz(j):

xz~j![(
n

Cph,n* ~z!Cph,n~j!, ~6.9!

where the parametersz[(z1,z2) take the same values as the coordinates (j1,j2). So ~6.9! is an
expansion of the wave functionxz(j) in the basisCph,n(j) with the coefficientsCph,n* (z).

With some assumptions about the analytical structure onM one can prove~see Refs. 21 and
25!, that the functionxz(j) is well-defined onL2(M) and the corresponding norm

E dm~j!uxz~j!u25(
n

Cph,n* ~z!Cph,n~z!5xz~z! ~6.10!

does not depend on the choice of the basisCph,n(j).
Then for an arbitrary physical stateuCph&, ~6.9! yields

^xzuCph&5E dm~j!xz* ~j!Cph~j!5Cph~z!. ~6.11!

If we act with the operatorẑ on the statexz(j), and use~6.6!, ~6.8!, and~6.11!, we obtain

ẑxz~j!5^xjuẑuxz&5^xzuẑ1uxj&*5~ ẑ1xj~z!!*5~z* ~z!xj~z!!*5z~z!xz~j!, ~6.12!

where the complex valued functionsz(z) andz* (z) are given by~6.3!, and we take into accoun
that

xj* ~z!5xz~j!

which is apparent from the definition~6.9!.
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



n
lex

rt

nd the

g
s
e

ely,

tes
l states

2869G. Jorjadze: Constrained quantization

¬¬¬¬¬¬¬¬¬¬
Thus, we see that the functionxj(j8) is the eigenstate of the operatorẑ with the eigenvalue
z5z(j). This state is uniquely characterized by the complex parameterz, and we denote the
corresponding ‘‘bra’’ and ‘‘ket’’ vectors bŷ zu and uz&, respectively. We also use the notatio
uz&[u f̄ ,ḡ;e&, where f̄5 f (j) and ḡ5g(j) are the real and the imaginary parts of the comp
numberj.

The definition~6.9! gives that the set of vectorsuz& is a complete one on the physical Hilbe
spaceHph

E dm~j!uz~j!&^z~j!u5 Î .

It is remarkable that this condition of completeness allows us to introduce the covariant a
contravariant symbols of Berezin quantization.25

Further, for the Hermitian operators~6.7! the relation~6.12! takes the form

~ f̂2 i eĝ!u f̄ ,ḡ;e&5~ f̄2 i eḡ!u f̄ ,ḡ;e& ~6.13!

which gives

^ f̄ ,ḡ;eu f̂ u f̄ ,ḡ;e&5 f̄ , ^ f̄ ,ḡ;euĝu f̄ ,ḡ;e&5ḡ.

Then, using the method described in Refs. 23 and 24 we obtain

^ f̄ ,ḡ;eu~ f̂2 f̄ !2u f̄ ,ḡ;e&^ f̄ ,ḡ;eu~ ĝ2ḡ!2u f̄ ,ḡ;e&

^ f̄ ,ḡ;euĈu f̄ ,ḡ;e&2
5

\2

4
, ~6.14!

whereĈ is the commutator

Ĉ5 i /\@ f̂ ,ĝ#. ~6.15!

One can show~see Ref. 23! that the number\2/4 is the minimal value for the correspondin
quadratic fluctuations. Therefore, the quantum stateu f̄ ,ḡ;e& minimizes the quadratic fluctuation
of the observablesf andg around the valuesf̄ and ḡ. In this respect they are very similar to th
standard coherent states of quantum mechanicsup,q,e& @see ~4.13!#, which minimize the
coordinate-momentum uncertainty.

Note that the operatorsf̂ and ĝ generally are not the prequantization ones, and respectiv
the operatorĈ has not the form~2.22!.

For the considered examples~see Sec. IV! many technical calculations with coherent sta
can be accomplished explicitly. In the case of a plane the orthonormal basis for the physica
~4.11! can be chosen as

Cph,n~p,q!5expS 2
1

2
uzu2D z* n

An!
.

Then, from~6.9! and ~6.11! we get

xp1 ,q1
~p,q!5exp~2 1

2uzu2!exp~2 1
2uz1u2!exp~z1* z!5^z1uz&

and these states have the unit norm for arbitraryz1 @see~6.10!#. Comparing~6.11! and ~6.13! to
~4.16! and ~4.13! we see that the statesuz& are just the usual coherent statesup,q,e& mentioned
above.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In the case of a cylinder we have

f5eS/l cosw, g5eS/l sin w, e51

and the corresponding complex variables~4.23!. The physical Hilbert space is defined by~4.25! or
~4.26!, and it has the orthonormal basis~5.11!. Here, we omit the index ‘‘ph,’’ arguments of th
functions, and denote the corresponding basis byuCn&. The statesuCn& are the eigenstates of th
operatorŜ[R̂S52 i\]w , with the eigenvaluesn\. Then, from~6.9! and ~5.11!, we get

uz&5S \

pl D 1/4 (
n52`

`

expS 2
~S2n\!2

2l\ Dexp~ inw!iCn&. ~6.16!

This state has the finite norm

^zuz&5S \

pl D 1/2 (
n52`

`

expS 2
~S2n\!2

l\ D
and in the limitl→0 we obtain

^zuz&→ (
n52`

`

d~S/\2n!. ~6.17!

Since the operatorẑ1 acts as the multiplication byz* @see~4.23!#, for the basis vectors~5.11! we
get

ẑ1uCn&5expS \n

l
1

\

2l D uCn11&.

Respectively, the Hermitian conjugated operatorẑ is

ẑuCn&5expS \n

l
2

\

2l D uCn21& ~6.18!

and we obtain the commutator

@ ẑ,ẑ1#52 exp~2Ŝ/l!sinh~\/l!.

Note that the operatorẑ is not the prequantization one, and the corresponding classical com
tation relation is

$ẑ,ẑ1%5
2i

l
exp~2S/l!.

Now, from ~6.18! and ~6.16!, we can check that the statesuz& are the eigenstates of th
operatorẑ with the eigenvaluesz5exp(S/l2iw).

The statesuz& in ~6.16! are defined for arbitrary value of the variableS. At the same time, the
states, with fixed value of the angular momentum (DS50), exist only for the discrete values o
S (Sn5\n). Of course, the statesuz& are not the eigenstates of the operatorŜ, but, from ~6.14!,
it is expected thatDS→0 whenl→0. Therefore, it is interesting to investigate the behavior of
statesuz& whenl→0.

Note that expansion~6.16! can be considered as the definition of the statesuz& for a quantum
theory of a rotator in abstract Hilbert space; only the basis vectorsuCn& should be the eigenstate
J. Math. Phys., Vol. 38, No. 6, June 1997
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of the angular momentum operatorŜ with the eigenvaluesSn5\n. With this remark we can
neglect the dependence on the parameterl in the basis vectorsCn , and consider behavior~when
l→0! of corresponding coefficients only. If we introduce the vectoruS,w;l& with the unit norm

uS,w;l&[
uz&

^zuz&1/2

then from~6.16! we get

uS,w;l&5 (
n52`

`
dn~S,l!

d~S,l!
exp~ inw!uCn&,

where

dn~S,l!5expS 2
~S2n\!2

2l\ D , d2~S,l!5 (
n52`

`

dn
2 ~d.0!.

In the limit l→0, dn(S,l)/d(S,l)→cn(S), and for the coefficientscn(S) we get:

~a! cn(S)50, if S,\(n21/2) or S.\(n11/2);
~b! cn(S)51/&, if S5\(n21/2) or S5\(n11/2);
~c! cn(S)51, if \(n21/2),S,\(n11/2).
~d! We see thatuS,w;l&→exp (inw)uCn&, wheren is the nearest integer number toS/\. But if

S/\ is exactly in the middle of two integers:S/\5n11/2, then uS,w;l&
→1/& (exp (inw)uCn&1exp(i(n11)w)uCn11&). So, whenl→0, all statesuS,w;l&, with
\(n21/2),S,\(n11/2), ‘‘collapse’’ to the stateuCn&.

~e! Using ~6.11! and~6.17! we see that the obtained behavior of the statesuS,w;l& for smalll
is in accordance with the corresponding behavior of the wave functions of E-quantiz
scheme given by~5.12!.

VII. QUANTUM DISTRIBUTION FUNCTIONS AND A MEASUREMENT PROCEDURE

For the physical interpretation of wave functionsCph(j) we refer again to Eq.~6.2!, where the
functions f (j) andg(j) are two noncommuting observables ($ f ,g%Þ0) on the two-dimensiona
phase spaceM. We assume that solutions of~6.2! Ce[Cph(j) define the physical Hilbert spac
as the subspace ofL2(M). To emphasize dependence on the observablesf , g, and on the
parametere, we denote this physical Hilbert space here byHe( f ,g).

OnHe( f ,g) the operatorsf̂ and ĝ have the form~6.7!, where the operatorẑ1 acts on wave
functionsCph(j) as the multiplication byz* (j)5 f (j)1 i eg(j), and the operatorẑ is its Hermit-
ian conjugated. Then, for mean values of these operators we get

^Cphu f̂ uCph&5E dm~j!uCph~j!u2f ~j!, ^CphuĝuCph&5E dm~j!uCph~j!u2g~j!. ~7.1!

We see thatuCph(j)u2 can be interpreted as some ‘‘distribution function’’ on the phase spaceM.
For further investigation we introduce the modulus and phase of wave functionsCph(j)

Cph~j!5eia~j!Ar~j! ~7.2!

and, from~6.2! and ~7.2!, we have two real equations

Vfa1
e

2
Vg~ log r!5

1

\
u~Vf !, Vga2

1

2e
Vf~ log r!5

1

\
u~Vg!, ~7.3!
J. Math. Phys., Vol. 38, No. 6, June 1997
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whereVf andVg are the corresponding Hamiltonian vector fields@see~2.1!#.
One can check a validity of the following relations:

@Vf ,Vg#5V$ f ,g%5
$$ f ,g%,g%

$ f ,g%
Vf2

$$ f ,g%, f %

$ f ,g%
Vg

and

Vfu~Vg!2Vgu~Vf !5$ f ,g%1u~V$ f ,g%!.

Using these relations, we can exclude the functiona(j) from ~7.3!, and obtain the equation onl
for r(j)

F \

2e S 1

$ f ,g%
Vf D 21 \e

2 S 1

$ f ,g%
VgD 2G log r52

1

$ f ,g%
. ~7.4!

Note that in variablesf ,g this equation takes the form

\

2 S 1e ]g
21e] f

2D log r52
1

$ f ,g%
, ~7.5!

where the Poisson bracket$ f ,g% can be considered as the function off andg.
Any solution of ~7.4! r(j) defines corresponding phasea(j) up to the integration constan

@see~7.3!#. This constant phase factor is unessential for physical states~7.2! and, respectively,
there is one-to-one correspondence between the ‘‘distribution functions’’r(j)5uCph(j)u2 and the
pure states described by a projection operatorP̂Cph

[uCph&^Cphu

r~j!↔ P̂Cph
. ~7.6!

With this remark we can use the indexr for the corresponding pure states as well:P̂Cph
[ P̂r .

From ~7.2! and ~6.11! we have

r~j!5uC~j!u25^z~j!uCph&^Cphuz~j!&5^z~j!uP̂ruz~j!&, ~7.7!

where uz& is a coherent state related to the observablesf and g @see~6.9! and ~6.13!#. If one
introduces the covariant symbolPr(j) of the projection operatorP̂r

Pr~j![
^z~j!uCph&^Cphuz~j!&

^z~j!uz~j!&

then from~7.7! we haver(j)5Pr(j)^z(j)uz(j)&, and correspondence~7.6! describes the well-
known connection between operators and their covariant symbols~see Ref. 25!.

Let F(j) be any observable onM and F̂ corresponding operator on the physical Hilbe
spaceHe( f ,g). Standard quantum-mechanical mean values are calculated by

^CphuF̂uCph&5Tr~ F̂ P̂r![^F̂&r . ~7.8!

We introduce the new mean valuesF̄r :

F̄r[E dm~j!F~j!r~j!. ~7.9!
J. Math. Phys., Vol. 38, No. 6, June 1997
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In general,̂ F̂&rÞF̄r , but forF5 f andF5g these mean values are the same for an arbitrary s
r @see~7.1!#

f̄ r5^ f̂ &r , ḡr5^ĝ&r . ~7.10!

Using ~6.6! and ~6.7!, for the operatorsf̂ 2 and ĝ2 we obtain

f̄ r
25^ f̂ 2&r1

e\

2
^Ĉ&r ; ḡr

25^ĝ2&r1
\

2e
^Ĉ&r , ~7.11!

where the operatorĈ is the commutator~6.15!.
Quadratic fluctuations calculated for the mean values~7.8! and ~7.9!, respectively, are

~DF̂ !r
25^F̂2&r2^F̂&r

2, ~DF !r
25F̄r

22~ F̄r!2. ~7.12!

Then, from~7.10! and ~7.11! we have

~D f !25~D f̂ !21
e\

2
^Ĉ&, ~Dg!25~Dĝ!21

\

2e
^Ĉ&. ~7.13!

Introduced ‘‘distribution functions’’ can be generalized for mixed states as well. Any m
state is described by a density matrix operatorr̂,26 which is Hermitian (r̂5 r̂1), semipositive
~^cur̂uc&>0, for any stateuc&!, and it has the unit trace (Trr̂51). Respectively, any densit
matrix operator has the spectral expansion

r̂5(
n

cnuc&^cnu, ~7.14!

where ucn& are the orthonormal eigenvectors ofr̂, cn are the corresponding positive (cn.0)
eigenvalues, and(ncn51.

Similarly to ~7.7! we define the ‘‘distribution function’’r(j) connected with the covarian
symbol of r̂

r~j![^z~j!ur̂uz~j!&. ~7.15!

Using the spectral expansion~7.14! we get that a ‘‘distribution function’’ of a mixed state can b
expressed as a convex combination of ‘‘distribution functions’’ of pure ones

r~j!5(
n

cnrn~j! ~0,cn,1!. ~7.16!

One can easily check that the relations~7.10!–~7.13! are valid for the mixed states as well
Thus, in general, a ‘‘distribution function’’r(j) is a non-negative function on the phase spa

M, and it satisfies the standard condition of classical distributions

E dm~j!r~j!51. ~7.17!

For a givenf (j), g(j), ande the ‘‘distribution functions’’r(j) look like classical ones, and at th
same time they describe all possible quantum states uniquely. These functions we call the q
distribution functions. Sometimes it is convenient to indicate the dependence on the obse
f , g, and the parametere explicitly: r(j)[r(ju f ,g;e).
J. Math. Phys., Vol. 38, No. 6, June 1997
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We can compare the quantum distribution functionr(ju f ,g;e) to the Wigner function
rw(j), which is the Weyl symbol of a density matrix operator.27 For any Wigner function
rw(j) we have the ‘‘classical’’ formula for quantum-mechanical mean values

^F̂&r5E dm~j!F~j!rw~j!. ~7.18!

Though this formula is valid for an arbitrary observableF(j), nevertheless Wigner function
cannot be interpreted as a function of probability density. Due to uncertainty principle there
such function on the phase space of the corresponding classical system. In general, the
function is even negative in some domain of a phase space. It should also be noted that the
function is defined only for a ‘‘flat’’ phase space (M5R2N) and Cartesian coordinates.

A quantum distribution functionr(ju f ,g;e) can be considered for almost arbitrary ‘‘coord
nates’’ f , g. It is always positive, but the ‘‘classical’’ formula~7.18! ~with substitutionrw by r!
is valid only for the functionsF5 f , or F5g ~and their linear combination!.

For the physical interpretation of quantum distribution functionsr(ju f ,g;e) we consider
again example 1~see Sec. IV! with M5R2, f[q, g52p. In this case~7.13! takes the form

~Dq!25~Dq̂!21
e\

2
, ~Dp!25~D p̂!21

\

2e
, ~7.19!

where (Dq̂)2 and (D p̂)2 are usual quantum mechanical quadratic fluctuations of coordinate
momentum, and they satisfy the Heisenberg uncertainty relation

~D p̂!2~Dq̂!2>
\2

4
. ~7.20!

Suppose that a quantum particle is described by a wave functionc(q). The function
uc(q)u2 is a probability density of coordinate distribution, and the quadratic fluctuation (Dq̂)2 is
calculated by the classical formula

~Dq̂!25E dq q2uc~q!u22S E dq qUc~q!U2D 2.
The distribution functionuc(q)u2, in principle, can be measured, and the corresponding exp
ment we denote byEq . Theoretically it is assumed that in the experimentEq the coordinate can
be measured with an absolute precision, and the quantum system can be prepared in a giv
c(q) as many times as it is necessary for a good approximation of the functionuc(q)u2. A
statistical distribution of the coordinate, obtained in such experiment, is the intrinsic propert
quantum system in a given state: In general, in a pure state a definite value has som
observable~for example, energy!, but not the coordinate.

Similarly, the momentum distribution for the same state is described by the fun
uc̃(p)u2, and for a good approximation of the functionuc̃(p)u2 we need the experimentEp with a
precise measurement of the momentum. Note that the functionc̃(p) is the Fourier transformation
of c(q).

One possible method for measuring of a coordinate and a momentum of a quantum par
a scattering of a light on this particle~see Ref. 26!. It is well-known that in such an experiment th
precise measurement of the coordinate can be achieved by photons with a very short wav
l ~high energy!. On the contrary, photons of low energy are needed for the measureme
momentum. ThusEq andEp are two essentially different experiments. Theoretically, the exp
mentEq is the measurement with photons of ‘‘zero wavelength’’:l→0, and the experimentEp

requires photons of ‘‘zero energy’’:l→`.
J. Math. Phys., Vol. 38, No. 6, June 1997
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But real experiments, of course, are with photons of finite and nonzero wavelengthl. The
experiment with some fixed wavelengthl we denote byEl . In this experiment there are the erro
in measuring of both coordinate and momentum. The first oneDq is proportional to the photon’s
wavelengthl, while the error of momentumDp is proportional to the photon’s momentum~see
Ref. 26! pl52p\/l. Respectively, we can write

Dq5al, Dp5b
\

l
, ~7.21!

wherea andb are dimensionless parameters of order 1.
Thus in the experimentEl we have two different fluctuations: The first one@(Dq̂), (D p̂)# is

the intrinsic property of a quantum system, and the second@(Dq), (Dp)# is related to the mea
surement procedure. Then, for the total quadratic fluctuations we can write

~D tq!25~Dq̂!21~Dq!
25~Dq̂!21a2l2,

~7.22!

~D tp!25~D p̂!21~Dp!
25~D p̂!21

b2\2

l2 .

As it was mentioned, the fluctuations (Dq̂) and (D p̂) satisfy the uncertainty relation~7.20!.
Assuming that for the ideal experimentab51/2, from ~7.21! we get another uncertainty relatio

DqDp5
\

2
. ~7.23!

With this assumption, from~7.19! and ~7.22!, we can write

~D tq!25~Dq!2, ~D tp!25~Dp!2.

Then the parametere is related to the wavelengthl and at the same time it fixes the ratio of th
experimental errors

e5
Dq

Dp
. ~7.24!

Note that for the total fluctuations we get the uncertainty relation

~Dp!~Dq!>\.

Since the quadratic fluctuations (Dq)2 and (Dp)2 are calculated by the mean values of t
function re(p,q), it is natural to suppose that the quantum distribution functionre(p,q)
5uCe(p,q)u2 is the distribution obtained in the experimentEl with simultaneous measuremen
of the coordinate and the momentum.

This idea can be easily generalized assuming that the quantum distribution fun
r(ju f ,g:e) is the distribution on the phase space obtained in some ideal experiment with s
taneous measuring off andg observables. In such an experiment we have the unavoidable e
D f and Dg connected with the measurement procedure with micro-objects. For correspo
fluctuations there is the additional uncertainty principle@see~7.23!#, and the parametere specifies
the experiment by fixing the ratio of the errorse5D f /Dg .

If the function r(j)[r(ju f ,g;e) is really measurable, then in the limite→0 this function
r~j! should describe the experimental distribution of the exact measurement of the obse
f . It is obvious that for the observablef with discrete spectrum the corresponding functionr~j!
J. Math. Phys., Vol. 38, No. 6, June 1997
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should be localized in the points of this spectrum. Thus by asymptotics of quantum distrib
functions one can obtain the spectrum of the physical observables@see~5.12! and the end of Sec
VI #.

We see that quantum distribution functions can play some fundamental role for the int
tation of quantum theory. It is natural to try to formulate quantum mechanics in terms of
distribution functions, especially as they describe all possible states of a quantum system un
But for this it is worthwhile to have an independent~without referring to the Hilbert space!
description of the set of functionsr(j)[r(ju f ,g;e). Corresponding functions are positive, satis
~7.17!, and at the same time they essentially depend on the choice of observablesf andg and of
the parametere. On the other hand, the set of physical states is a convex one, where the bou
points are the pure states. So for the description of our set we need to specify the distr
functions of pure states, but the latter are given as the solutions of~7.4!. Thus in this approach Eq
~7.4! plays an important role. Actually it describes the set of all physical states and, respec
it contains the information about quantum uncertainties, both the intrinsic and the experim
ones.

Note that on the left-hand side of the corresponding equation there is the Laplace operat@see
~7.4! and~7.5!# and we have some metric structure induced on the phase spaceM. It is remark-
able that this metric structure is related to the experimental errors. Indeed, in the case of e
1 the errorsDp ,Dq , and the parametere are related by~7.24!, and we see that the correspondin
equation~7.5! takes the form

~Dq
2]q

21Dp
2]p

2!log r521.

A similar ‘‘shadow’’ metric on a phase space was introduced in Ref. 11.
If the equation for the quantum distribution functions of pure states really has a fundam

character, then one might expect that it can be derived from some general principle. A su
principle could be the minimization of certain functional, and we arrive to the problem of
struction of the corresponding functional. Since the minimization should be achieved on
states, it is natural to interpret such functional as the entropy of a quantum system. Respe
one candidate for such functional is the standard quantum-mechanical entropyS52Tr( r̂ log r̂)
which can be expressed as the functional ofr(j).

Formulation of quantum mechanics based on the entropy minimization principle for the
surable distribution functions seems very interesting and it needs further investigation.
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APPENDIX: A SCALAR PRODUCT OF PHYSICAL STATES

Let f ,g be two noncommuting observables andF̂f ,F̂g the corresponding constraint operato
~3.7!. As it was mentioned, these operators are Hermitian on the Hilbert spaceH[L2(M).
Suppose, that the equation@see~3.11!#

~F̂f1 i eF̂g!uCe&50 ~A1!
J. Math. Phys., Vol. 38, No. 6, June 1997
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has normalizable solutions for anyeP(0,d), whered is some positive number. The solutions wi
fixed e form some subspaceHe of the Hilbert spaceH. We assume that each subspace can
represented asHe5FeH0 , whereH0 is some linear space, andFe is a linear invertible map

Fe :H0→He , Fe
21:He→H0 . ~A2!

In practical applications the linear spaceH0 automatically arises from the form of the gener
solution of ~A1!; only it should be specified from the condition of square integrability of co
sponding functionsCe5Fec, wherecPH0 . For example, in the case of Eq.~4.2!, the general
solution ~4.3! and ~4.4! is described by the space of polynomialsP(j), and it can be interpreted
asH0 . The representation~4.12! and~4.16! of the same solutions is different, and in that case,
spaceH0 is obviouslyL2(R

1). As for the general solution~4.25! and~4.26!, the spaceH0 is a
space of Fourier modescn , nPZ, with (ucnu2,` @see~4.27!#.

The space of linear functionals on the Hilbert spaceH is called the dual~toH! space, and we
denote it byH* . From our definitions we have

Ce5FecPHe,H,H* .

Suppose that the set of vectorsFec with any fixedcPH0 has the limit (e→0) in the dual space
H* , and this limit defines the vectorc*PH*

lim
e→0

Fec5c* . ~A3!

Such linear functionalc* usually is unbounded, and the limit in~A3! means that for anyC
PH we have

lim
e→0

^FecuC&5c* ~C!, ~A4!

wherec* (C) denotes the value of the functionalc* on the corresponding vectorCPH. If we
change the mapFe by

Fe→F̃e5a~e!Fe ,

where a(e) is some ‘‘scalar’’ function of the parametere, then the new mapF̃e provides a
representation of the subspaceHe in the same form:He5F̃eH0 . It is obvious that the existenc
of the limit in ~A3! essentially depends on the suitable choice of the normalizable fun
a(e).

The action of some operatorÔ on the functionalc* can be defined by

Ôc* ~C![c* ~Ô1C!, ~A5!

whereÔ1 is the Hermitian conjugated toÔ.
The normiCei of the vectorsCe5Fec, with fixedc, usually diverges whene→0, but if we

assume that

eiFeci→0 ~A6!

then we can prove thatc* satisfies the equationF̂fc*50. Indeed, from~A3!–~A6! we have

F̂fc* ~C!5c* ~F̂fC!5 lim
e→0

^FecuF̂fC&5 lim
e→0

^CeuF̂fC&5 lim
e→0

i e^CeuF̂gC&50,
J. Math. Phys., Vol. 38, No. 6, June 1997
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where we take into account that the functionCe5Fec satisfies~A1!. Thus~A3! defines the map
F* :H0→H* , and corresponding functionalsc*5F*c satisfy condition~3.10!.

Further let us assume thatF*cÞ0 whenevercÞ0. Then the spaceHph[F*H0 , as the
linear space, will be isomorphic toH0 , and, respectively, isomorphic to eachHe as well @see
~A2!#.

If for ;e1 , e2P(0,d) the map

Fe2
Fe1

21:He1
→He2

~A7!

is a unitary transformation, then one can introduce the Hilbert structure onH0 andHph by
definition of the scalar product

^c2uc1&[^F*c2uF*c1&[^Fec2uFec1&. ~A8!

It is obvious that in the case of unitarity of transformations~A7! the scalar product~A8! is
independent on the choice of the parametere, and the corresponding Hilbert structure is a natu
one. But, in general, transformation~A7! is not unitary, and there is no special Hilbert structure
H0 . Respectively, we have the problem for the scalar product on the spaceHph, especially that
corresponding functionals are unbounded and have the ‘‘infinite norm’’ in the Hilbert spaceH.

Note that for the general solutions~4.3! and ~4.4!, the corresponding transformation~A7! is
not the unitary one, while the general solution~4.11! and~4.12!, ~4.16! provides unitarity explic-
itly

C̃e2
~p,q!5E dpdq

2p\
^p,q;e2up8,q8;e1&C̃e1

~p8,q8!.

Below we describe some procedure for the solution of the scalar product problem in
general case too.

In ordinary quantum mechanics a physical state is represented by a ray in a Hilbert spa
all vectors on the same ray are physically indistinguishable. So, if we suppose that the
uc* & has some normic* i , then the normalized vector

uc* &&[
uc* &
ic* i ~A9!

describes the same physical state. It is just the scalar product of such normalized vectors t
the physical meaning. Up to the phase factor, this scalar product describes the ‘‘angle’’ be
the rays, and defines the probability amplitude.

We introduce the scalar product of such normalized vectors by

^^c2* uc1* &&[ lim
e→0

^C2euC1e&
iC2eiiC1ei , ~A10!

where the limits ofuC1e& anduC2e&, respectively, are the functionalsuc1* & anduc2* & @see~A3!#,
and the latter are related touc1* && and uc2* && by ~A9!. When the limit~A10! exists, it should
define the scalar product of the normalized physical states. Then the scalar product for ar
vectors can be obtained uniquely up to a rescaling.

It is obvious that in the case of unitarity of transformations~A7!, the definitions of scalar
product~A8! and ~A10! are equivalent.

Note that the described scheme for the definition of the scalar product of physical states~3.10!
can be generalized for other constrained systems as well.
J. Math. Phys., Vol. 38, No. 6, June 1997
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A factorization of a special type S matrix into Jost
matrices
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Samara State University, 443011, Samara, Russia
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An effective algebraic approach toS-matrix factorization into Jost matrices is de-
veloped for the case of a 232 S matrix that can be diagonalized by means of a
rotation by an angle whose tangent is a rational function ofk2. The Jost matrix is
given as a solution of the boundary value Riemann–Hilbert problem. ©1997
American Institute of Physics.@S0022-2488~97!00406-4#

I. INTRODUCTION

As it is well known, the Jost function plays an important role in scattering theory,1 and
particularly in the inverse scattering problem.2–5One of the methods of obtaining the Jost functi
F(k) is to solve the Reimann–Hilbert problem for the half-plane. In the frame of scattering th
the solution of this problem is reduced to theS-matrix factorization in terms of Jost matrices.1 The
Jost matrix is also used to obtain the solutions of nonlinear differential equations~see, e.g., Refs
6, 7!.

At the present time a number of different approaches to the Jost matrix construction
e.g., Refs. 8–15. However, in the general matrix case the Jost matrix cannot be cons
effectively. It is known only that the matrix boundary value problem can be reduced to a sy
of singular integral equations.8,16 While solving it one needs to take into account the followi
important fact. The Jost matrix arises at an intermediate stage in the investigation of v
problems, so its explicit form must be the most adequate for analytical and numerical calcula

In this connection, one is interested in obtaining the solution avoiding integral equation
Let us note that the procedure of obtaining the Jost matrix can be effectively simplified

Smatrix is factorized previously.10 This enables one to write the result in a compact form, as
be seen below from the concrete example.

In this paper we shall consider the special case of a 232 Smatrix that can be diagonalized b
means of a rotation by an angle whose tangent is a rational function ofk2. Some of preliminary
results were presented in Ref. 17.

This paper is organized as follows. In Sec. II the boundary value Riemann–Hilbert pro
for theS-matrix is formulated. Our algebraic approach consists of three steps. In Sec. III th
step S-matrix factorization—prefactorization—is realized. The ‘‘correcting matrix’’ conc
needed to solve the boundary value problem is discussed in Sec. IV. In Sec. V the final res
the Jost matrix is obtained. The effectiveness of our approach is demonstrated in Sec. VI
well-known effective radius approximation.18

II. THE FORMULATION OF THE PROBLEM

The general mathematical formulation of the problem is the following. One needs to fin
piecewise holomorphic matrixF(k) ~i.e., its matrix elements are piecewise holomorphic fu
tions! in the upper and lower half-planes. Boundary values ofF(k) satisfy the following condition
on the real axis:

F1~k!5S21~k!F2~k!, Im k50, 2`,k,`. ~1!
0022-2488/97/38(6)/2880/8/$10.00
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Here F1(k) is a matrix holomorphic in the upper half-plane,F2(k)—in the lower one,k is
momentum in the center-of-mass system,S(k) is the scattering matrix that is nonsingular:

detS~k!Þ0, Im k50, ~2!

and the Ho¨lder condition is valid for its matrix elementssi j (k), i , j51,2 on the real axis,

usi j ~k1!2si j ~k2!u<Auk12k2um, A.0, 0,m<1, i , j51,2. ~3!

Standard conditions are imposed on the scattering matrixS(k) and on theF(k) matrix @the
boundary values of the matrixF(k) are the Jost matrices#:1

S†~k!5S21~k!5S* ~k!5S~2k!, Im k50, ~4!

lim
k→6`

S~k!5I , ~5!

F1* ~k!5F1~2k!5F2~k!, Im k50, ~6!

whereI is the unity matrix. As usual, the physical formulation of the problem requires, in addi
the asymptotic condition

lim
k→6`

F1~k!5I , ~7!

and the condition

detF1~ ik j !50, k j.0, j51,2,...,m, m,1`, ~8!

to be satisfied~m is the number of bound states!.
In the nonmatrix case the solution of the problem formulated above can be given explic19

F6~k!5P6~k!expS 1

2p i E2`

1` ln„S21~k8!P2
2 ~k8!…

k82k7 i0
dk8D , ~9!

P6~k!5)
j51

m
k7 ik j

k6 ik j
, ~10!

P6~k![1, m50. ~11!

However, in the general case the matrices given by Eqs.~9!–~11! do not satisfy the boundary
value condition~1!, because one cannot determine the logarithm: the main property lnAB5ln A
1ln B is not fulfilled if the matricesA andB do not commute@e.g.,A5S(k1), B5S(k2), k1
Þk2#.

To construct the Jost matrix in this case let us begin with the first stage—preliminary fa
ization of theSmatrix—‘‘prefactorization.’’

III. THE S-MATRIX PREFACTORIZATION

Now the problem of finding the Jost matrix is reduced to the boundary value problem~1! with
conditions~2!–~8!. TheSmatrix can be diagonalized by the use of an orthogonal transforma

S~k!5U~k2!S ei2d1~k! 0

0 ei2d2~k!DU21~k2!, Im k50, ~12!
J. Math. Phys., Vol. 38, No. 6, June 1997
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whered j (k), j51,2 are the real-valued phase shifts,

d j~2k!52d j~k!, d~6`!50, j51,2.

The matrixU(k2), as usual, can be written in the form

U~k2!5S cose~k2! sin e~k2!

2sin e~k2! cose~k2!
D ,

wheree(k2) is the real-valued function. We shall approximate the tangent ofe(k2) by a rational
function:

tan e~k2!5
PM~k2!

QN~k2!
. ~13!

HerePM(k
2) andQN(k

2) are polynomials ink of the degree 2M and 2N, respectively. Without
loss of generality one can suppose that the polynomials have no zeros simultaneously. Th
onal part of theSmatrix ~12! can be factorized:

S e2id1~k! 0

0 e2id2~k!D 5S f 12~k! 0

0 f 22~k!
D S f 11

21~k! 0

0 f 21
21~k!

D , ~14!

where f j6(k), j51,2 are the solutions

f j1~k!5e22id j ~k! f j2~k!, j51,2,

of the boundary value problems given by Eqs.~9!–~11!. Let us note that if the number of boun
states forj51 is equal tom1 then one must changem for m1 in ~9!–~11!. Similarly, one has to
changem for m2 for j52; m11m25m. Taking into account~13!, ~14! the problem~1! can be
written in the form

F1
~0!~k!5S21~k!F2

~0!~k!, ~15!

with

F6
~0!~k!5S QN~k2! PM~k2!

2PM~k2! QN~k2!
D S f 16~k! 0

0 f 26~k!
D . ~16!

So the preliminary factorization of theSmatrix is realized.

IV. THE ANALYTICAL PROPERTIES OF THE MATRIX F1
(0)(k )

The matrixF1
(0)(k) has a number of properties that are characteristic for the Jost matrix.

follows from Eq. ~16!, F1
(0)(k) is analytical in the upper half-plane and the following equatio

take place:

F1
~0!* ~k!5F1

~0!~2k!5F2
~0!~k!, Im k50. ~17!

Nevertheless,F1
(0)(k) is not a solution to the boundary value problem of Sec. II because~1! the

condition~7! is not satisfied;~2! detF1
(0)(k) has nonphysical extra zeros originated by the roots

the equations:

QN~k2!1 iPM~k2!50, ~18!
J. Math. Phys., Vol. 38, No. 6, June 1997
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QN~k2!2 iPM~k2!50. ~19!

Using ~16! one can write

detF1
~0!~k!5„QN

2 ~k2!1PM
2 ~k2!…f 11~k! f 21~k!,

so that the condition~8! is not satisfied.
Let us emphasize one particularly important feature of the roots of Eqs.~18! and ~19!. The

polynomials are even functions ofk and are not equal to zeros simultaneously~see Sec. III!, so
that Eqs.~18! and ~19! have no roots if Imk50, or if Rek50. Let us also notice that for realk
Eqs.~18! and~19! are complex conjugate, and we can denote the roots of Eq.~18! by 6 il j , and
those of Eq.~19! by 6 il j* , j51,2,...,L, L5max$M,N%. For definiteness let us suppose Im(ilj)
.0, j51,2,...,L. It is easy to see that the positions of all roots are symmetrical relatively to
and imaginary axes. We shall refer to these roots as to nonphysical zeros of theF1

(0)(k)-matrix
determinant. The symmetry described in this section is of great importance for the solution
boundary value problem.

Let us consider first the case of simple zeros. In order to obtain the Jost matrix, one need
to remove the nonphysical zeros from the detF1

(0)(k), but in such a way that the analytical prop
erties of the matrixF1

(0)(k) remain unchanged and the condition~7! is fulfilled. Let us multiply the
boundary value condition~15! from the right by a rational real matrixW(k2),

F1
~0!~k!W~k2!5S21~k!F2

~0!~k!W~k2!.

If the matrixW(k2) is such that conditions onF1
(0)(k) mentioned above are fulfilled, then the Jo

matrix F1(k) is of the form

F1~k!5F1
~0!~k!W~k2!. ~20!

We will refer to the matrixW(k2) as the correcting matrix. The method of obtaining the expl
form ofW(k2) is based on the ideas of Refs. 9, 10, and 20.

V. THE CONSTRUCTION OF THE CORRECTING MATRIX W(k 2)

Let us make use of the symmetry property of the nonphysical zeros~Sec. IV! and let us fix
four of them:6 il1 ,6 il1* . We shall now remove these nonphysical zeros from detF1

(0)(k). To do
this let us consider first the matrix

W1~k
2!5P1

1

~k2 il1!~k1 il1!
1~ I2P1!

1

~k2 il1* !~k1 il1* !
, ~21!

whereP1 is a projection matrix,

P1
25P1 . ~22!

Using the fact that~22! implies

detP150, SpP151,

it is easy to check that

detW1~k
2!5

1

~k1l1
2!~k1l1

2* !
. ~23!

Now we can obtain a new matrix:
J. Math. Phys., Vol. 38, No. 6, June 1997
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F1
~1!~k!5F1

~0!~k!W1~k
2!.

As can be seen from Eq.~23!, the detF1
(1)(k) has no zeros at the pointsk56 il1 ,6 il1* .

Now we need to verify the analyticity ofF1
(1)(k) in the upper half-plane and the properti

analogous to~17!. This second condition will be satisfied if

P1*5I2P1 . ~24!

The explicit form ofP1 must be chosen in such a way that the matrixF1
(1)(k) will have no poles

at the pointsk5 il1 ,il1* . Taking into account Eqs.~22! and ~24!, we can define

P15
1

SpY1
Y1 , ~25!

with

Y15S f 21~ il1! 0

0 f 11~ il1!
D S 1 2 i

i 1 D S f 11* ~ il1! 0

0 f 21* ~ il1!
D . ~26!

Now F1
(1)(k) has no poles in the upper half-plane. To check this fact it is sufficient to show

the following equations are satisfied:

F1
~0!~ il1!P150, ~27!

F1
~0!~ il1* !~ I2P1!50. ~28!

This can be done using the explicit form ofF1
(0)(k) andP1 @~16! and~25!, ~26!, respectively# and

the fact thatk5 il1 is the root of Eq.~18!, andk5 il1* is the root of Eq.~19! ~see the example o
Sec. VI!.

After the removal of 4(n21), n<L nonphysical zeros we obtain forF1
(n)(k):

F1
~n!~k!5F1

~n21!~k!Wn~k
2!, ~29!

Wn~k
2!5Pn

1

~k2 iln!~k1 iln!
1~ I2Pn!

1

~k2 iln* !~k1 iln* !
, ~30!

wherePn has properties analogous to the Eqs.~22!, ~24! and is of the form

Pn5
1

SpYn
Yn , ~31!

Yn5Wn21
21 ~2ln

2!3•••3W1
21~2ln

2!S f 21~ il1! 0

0 f 11~ il1!
D S 1 2 i

i 1 D S f 11* ~ il1! 0

0 f 21* ~ il1!
D

3@W1~2ln
2!3•••3Wn21~2ln

2!#* . ~32!

It is easy to show that detF1
(n)(k) has no nonphysical zerosk5 il j ,il j* , j51,2,...,n, and the

matrix F1
(n)(k) is analytical in the upper half-plane.

When all nonphysical zeros are removed andL(L5max$M,N%) projection matrices are ob
tained, then taking into account Eq.~7! one has for the correcting matrix

W~k2!5W1~k
2!3•••3WL~k

2!C, ~33!
J. Math. Phys., Vol. 38, No. 6, June 1997
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C55
1

qN
I , N.M ,

1

pM
S 0 21

1 0 D , N,M ,

S qN pM

2pM qN
D 21

, N5M ,

~34!

wherepM ,qN are the highest degree coefficients in the polynomialsPM(k
2), QN(k

2), respec-
tively. Equations~20!, ~21!–~34! give the solution of the boundary value problem of Sec. II in th
case of the approximation~13! for e(k2).

The boundary value problem of Sec. II can be solved in the case of multiple nonphy
zeros, too. However, in this case, one cannot write simple explicit equations for the proje
matrix, although the idea of the construction remains to be the same. Let us notice, howeve
as was mentioned above, Jost matrices are used usually as an intermediate step during the
of physical problems, and it is very useful to have a definite simple form of them. For this pur
it is more convenient to have simple zeros. This is always possible to be done remaining with
limits of the experimental error, keeping in mind that the polynomialsPM(k

2),QN(k
2) give an

approximation for tane(k2).

VI. THE EXAMPLE

As an example let us consider the elastic neutron–proton scattering with the phase
dS(k),dD(k) in the effective radius approximation. In this case we have18

e2idS~k!5
~k1 ik!~k1 iw!

~k2 ik!~k2 iw!
, e2idD~k!51, tane~k2!5

k2

2x2 ,

wherek5 ik is the bound state point, so that atm51 the condition~8! is to be taken into account.
TheSmatrix is a rational function and has the form

S~k!5
1

k414x4 S 2x2 k2

2k2 2x2D S ~k1 ik!~k1 iw!

~k2 ik!~k2 iw!
0

0 1
D S 2x2 2k2

k2 2x2 D
Let us perform theS-matrix prefactorization in terms of matricesF6

(0)(k) @see~15!, ~16!#

F6
~0!~k!5S 2x2 k2

2k2 2x2D S k7 ik

k6 iw
0

0 1
D .

In our case the polynomialsPM(k
2), QN(k

2) @see~13!# are of the form

PM~k2!5k2, QN~k2!52x2,

with M51, N50. The number of projection operatorsPj , j51,2,..., isL, L5max$M,N% ~see
Sec. V!. In our caseL51, so to obtain the Jost matrix we need to construct only one projec
matrix P1 . The nonphysical zeros of detF1

(0)(k) are the roots of Eqs.~18! and~19! k56 il1 and
6 il1* , respectively, withl15x(12 i ).

Following ~25! and ~26! it is easy to obtain the projection matrixP1 in the form
J. Math. Phys., Vol. 38, No. 6, June 1997
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P15
1

2h S h1 ix~w1k! 2 i ~x21~x1w!2!

i ~x21~x2k!2! h2 ix~w1k!
D ,

h5x21~x1w!~x2k!.

Using the condition~7! one has for the Jost matrix

F1~k!5S 2x2 k2

2k2 2x2D S k2 ik

k1 iw
0

0 1
D FP1

1

k21l1
2 1~ I2P1!

1

k21l1
2* G S 0 21

1 0 D .
Instead of theP1 matrix we can use theP matrix defined by

P15S 0 1

21 0DPS 0 21

1 0 D .
Now

F1~k!5S k2 22x2
k2 ik

k1 iw

2x2 k2
k2 ik

k1 iw

D FP 1

k21l1
2 1~ I2P!

1

k21l1
2* G . ~35!

This simple case considered as an example was investigated in Ref. 18, and one can show~35!
is nothing else than the well-known result of Ref. 18 for the Jost matrix, but in a more com
form. Our projection matrixP is justP3—one of the projection matrices of Ref. 18. However, t
S-matrix prefactorization and the use of the symmetry property for nonphysical zeros mak
algebraic method more effective and allows one to apply it in more complicated cases.

VII. CONCLUSION

We have developed an effective algebraic method of the explicit factorization of the32
S matrix of a special type in terms of the Jost matrices. The only approximation used
rational form for the tane(k2). One of the main advantages of the method is the fact that
number of projection matrices involved does not depend on the phase shift approximation
obtained Jost matrices have a simple compact explicit form and can be used in a num
physical situations~see, e.g., Ref. 4!.

Our result, as a mathematical result, is of independent interest by its own rights, too. We
enlarged the class of unitary matrices for which the solution of the Riemann–Hilbert bou
value problem can be obtained in a way avoiding systems of singular integral equations.

1R. G. Newton,Scattering Theory of Waves and Particles, 2nd ed.~Springer-Verlag, New York, 1982!.
2R. G. Newton,Inverse Schro¨dinger Scattering in Three Dimensions~Springer-Verlag, New York, 1989!.
3K. Chadan and P. C. Sabatier,Inverse Problem in Quantum Scattering Theory, 2nd ed.~Springer-Verlag, New York,
1989!.

4H. V. von Geramb and H. Kohlhoff, Lecture Notes Phys.427, 285 ~1994!.
5V. E. Troitsky, Lecture Notes Phys.427, 50 ~1994!.
6S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov,Theory of Solitons~Consultants Bureau, New York
1984!.

7R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,Solitons and Nonlinear Wave Equations~Academic, New
York, 1982!.

8R. G. Newton and R. Jost, Nuovo Cimento1, 590 ~1955!.
9T. Fulton and R. G. Newton, Nuovo Cimento3, 677 ~1956!.
10V. E. Troitsky, Theor. Math. Fiz.37, 243 ~1978! @English translation: Theor. Math. Phys.37, 996 ~1978!#.
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



2887Krutov, Muravyev, and Troitsky: A factorization of an S matrix into Jost matrices

¬¬¬¬¬¬¬¬¬¬
11V. M. Muzafarov, Yad. Fiz.27, 1686~1978! @English translation: Sov. J. Nucl. Phys.27, 884 ~1978!#.
12R. G. Newton, J. Math. Phys.21, 493 ~1980!.
13V. M. Muzafarov, Theor. Math. Fiz.58, 184 ~1984! @English translation: Theor. Math. Phys.58, 121 ~1984!#.
14R. G. Newton, J. Math. Phys.31, 10 ~1990!.
15M. Coz, Lecture Notes Phys.427, 353 ~1994!.
16N. P. Vekua,Systems of Singular Integral Equations~Noordhoff, Groningen, 1967!.
17O. I. Kisaev, A. F. Krutov, D. I. Muravyev, and V. E. Troitsky, Lecture Notes Phys.427, 163 ~1994!.
18R. G. Newton and T. Fulton, Phys. Rev.107, 1103~1957!.
19F. D. Gakhov,Boundary Value Problems~Pergamon, Oxford, 1966!.
20G. N. Chebotarev, Uch. Zapiski Kazan. Univ. Mat.116, 31 ~1956! ~in Russian!.
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ed

the ex-

as gen-

¬¬¬¬¬¬¬¬¬¬
Fock representations of exchange algebras with involution
A. Liguori
Dipartimento di Fisica dell’Universita` di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy

M. Mintcheva)
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
and Dipartimento di Fisica dell’Universita` di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy

M. Rossi
Dipartimento di Fisica dell’Universita` di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy

~Received 2 April 1996; accepted for publication 23 January 1997!

An associative algebraAR with exchange properties generalizing the canonical
~anti!commutation relations is considered. We introduce a family of involutions in
AR and construct the relative Fock representations, examining the positivity of the
metric. As an application of the general results, we rigorously prove unitarity of the
scattering operator of integrable models in 111 space-time dimensions. In this
context the possibility of adopting various involutions in the Zamolodchikov–
Faddeev algebra is also explored. ©1997 American Institute of Physics.
@S0022-2488~97!00505-7#

I. INTRODUCTION

In relation with generalized statistics in quantum field-theory we have recently investigat1–3

an associative algebraAR ~with identity element1!, whose generators$aa(x),a*
a(x):a

5 1,...,N,x P Rs% satisfy the quadratic constraints

aa1
~x1!aa2

~x2!2Ra2a1

b1b2~x2 ,x1!ab2
~x2!ab1

~x1!50, ~1.1!

a* a1~x1!a*
a2~x2!2Rb2b1

a1a2~x2 ,x1!a*
b2~x2!a*

b1~x1!50, ~1.2!

aa1
~x1!a*

a2~x2!2Ra1b2

a2b1~x1 ,x2!a*
b2~x2!ab1

~x1!5da1

a2d~x12x2!1. ~1.3!

Hereafter the sum over repeated upper and lower indices is understood. The entries of
change factorR are complex valued measurable functions onRs3Rs, obeying

Ra1a2

g1g2~x1 ,x2!Rg1g2

b1b2~x2 ,x1!5da1

b1da2

b2, ~1.4!

Ra1a2

g1g2~x1 ,x2!Rg2a3

g3b3~x1 ,x3!Rg1g3

b1b2~x2 ,x3!5Ra2a3

g2g3~x2 ,x3!Ra1g2

b1g1~x1 ,x3!Rg1g3

b2b3~x1 ,x2!. ~1.5!

These compatibility conditions are assumed throughout the article and can be considered
eral requirements onR, which together with Eqs.~1.1!–~3! define the exchange algebraAR .
Equation~1.5! is the spectral quantum Yang–Baxter equation in its braid form,Rs playing the role
of spectral set. Notice that the particular constant solutions

Ra1a2

b1b256da1

b2da2

b1 ~1.6!

a!Electronic mail: mintchev@ipifidpt.difi.unipi.it
0022-2488/97/38(6)/2888/11/$10.00
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of ~1.4!, ~5! give raise to the familiar algebrasA6 of canonical~anti!commutation relations.
It is well known that involutions play an essential role in the theory of associative alge

and their representations. For this reason we consider below a set of involutions inAR , which are
defined as follows. LetHN be the family of invertible HermitianN3N matrices and letM be the
set of matrix valued functionsm: Rs→HN , such that the entries ofm(x) andm(x)21 are mea-
surable and bounded inRs. It is easy to check that the mappingI m given by

I m :a*
a~x!°ma

b~x!ab~x!, ~1.7!

I m :aa~x!°a* b~x!m21
b
a~x!, ~1.8!

and extended as an antilinear antihomomorphism onAR , defines an involution inAR provided
thatmP M satisfies

Ra1a2

†g1g2~x1 ,x2!mg1

b1~x1!mg2

b2~x2!5ma1

d1~x2!ma2

d2~x1!Rd1d2

b1b2~x2 ,x1!. ~1.9!

Here and in what follows the dagger stands for Hermitian conjugation, i.e.,

Ra1a2

†g1g2~x1 ,x2![R̄g1g2

a1a2~x1 ,x2!,

the bar indicating complex conjugation.
In the sequel we denote byM(R) those elements ofM which obey Eq.~1.9!. By construc-

tion eachm P M(R) gives rise to an associative algebra with involution$AR ,I m%. In Refs. 1–3
we have studied the special case when the identity matrixe P M belongs toM(R), i.e., when
R satisfies

Ra1a2

†b1b2~x1 ,x2!5Ra1a2

b1b2~x2 ,x1!. ~1.10!

Under this condition, the involutionI e which is standard inA6 , works also inAR . The require-
ment~1.10! is however a bit restrictive and excludes some interesting cases. Take for examp
exchange factor (N. 2)

R~x1 ,x2!5 (
a51

N

Eaa ^Eaa1
eipx122e2 ipx12

qeipx122q21e2 ipx12 (
a,b51
aÞb

N

Eab ^Eba

1
q2q21

qeipx122q21e2 ipx12 S eipx12 (
a,b51
a.b

N

Eaa ^Ebb1e2 ipx12 (
a,b51
a,b

N

Eaa ^EbbD ,
~1.11!

whereEab are theWeyl matrices,x1 , x2 P R andx12[ x1 2 x2 . The matrix~1.11! stems from the
quantum deformation of the affine Lie algebraAN21

(1) and satisfies~1.4!, ~5! for any p,q
PC\$0%. The setM(R) depends on the values of the parametersp,q. One finds thate
PM(R) if and only if p,q P R. If instead Rep 5 0, uqu 5 1, andq Þ 61 one still hasM(R)
ÞB @the matrixma

b 5 da
N112b for instance belongs toM(R)#, but e¹M(R). Notice that this

second range of values ofp andq is relevant for applications in 111 dimensional conformal field
theory. Indeed, the exchange factor of the SU(N) Wess–Zumino–Witten~WZW! model is

RWZW~x1 ,x2!5 lim
Im p→`

R~x1 ,x2!, Rep50, uqu51, qÞ61, ~1.12!

which besidesq, actually depends only on the sign ofx12.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In the present article we pursue further our investigation in Refs. 1–3, replacing the con
~1.10! with the weaker requirementM(R)ÞB. Varying mPM(R), we are interested in the
construction of the Fock representationsF R,m of $AR ,I m%. Such representations have the fo
lowing general structure. LetL be a locally convex and complete topological linear space oveC.
The generators ofAR are represented inL as linear operators with common and invariant den
domainD,L. There exists a cyclic vector~vacuum state! VPD , which is annihilated by
aa(x). D is equipped with a nondegenerate sesquilinear form~inner product! ^•,•&m , which is at
least separately continuous. Finally,^V,V&m51 and I m is realized inL as a conjugation with
respect tô •,•&m . Technically the last requirement reads

^a* a~x!w,c&m5ma
b~x!^w,ab~x!c&m , ~1.13!

for anyw,c P D . Using thataa(x) annihilateV, Eq. ~1.13! allows for a purely algebraic deriva
tion of the vacuum expectation values

^a* a1~x1!...a*
an~xn!V,a* b1~y1!...a*

bn~yn!V&m , n>1. ~1.14!

The analysis performed in Section II shows that there are two general categories of
representations ofAR . The representationF R,m will be called of type A if ^•,•&m is positive
definite; otherwise we will say thatF R,m is of type B. These two classes of representations ca
equivalently characterized by introducing the subsetM(R)1[$mPM(R):m(x).0%. We shall
prove in fact thatF R,m is of type A if and only ifmPM(R)1 . The standard probabilistic
interpretation of quantum field theory applies directly only to the A-series. This does not me
course that the B-series has no physical applications. In that case one has to isolate first a p
subspace, wherê•,•&m is non-negative. This is done usually by symmetry considerations
may depend on the specific model under consideration. An example illustrating this situation
WZW-model. From Eqs.~1.11!, ~12! it follows thatM(RWZW)Þ0” butM(RWZW)150”. Accord-
ingly, only the B-series is not empty, which seems to be the origin of the indefinite metric i
manifest braid group invariant approach4 to the WZW model.

Besides generalized statistics and conformal invariant models, the Fock represen
F R,m have relevant applications also in a quite different area of quantum field theory, name
S-matrix approach5–7 to 111 dimensional integrable systems. As observed already in Re
interpreting the arguments ofR as the rapiditiesu1 ,u2PR of two asymptotic particles,AR

becomes nothing else but the Zamolodchikov–Faddeev algebra.5,6 We will show in this context
that the representationsF R,m control three basic features of the scattering theory of integra
models: the metric in the asymptotic state space, asymptotic completeness, and unitarity
scattering operator. In this respect our results below generalize the Fock space treatmen
nonlinear Schro¨dinger equation in 111 space-time dimensions developed by Davies.8

The article is organized as follows. In Sec. II we construct the representationsF R,m and
establish their main properties. Section III concerns theS-matrix of integrable models in 111
space-time dimensions. We prove unitarity ofS and show that different involutions inAR can be
physically interpreted as different ‘‘dressings’’ of the standard asymptotic states.

II. FOCK REPRESENTATIONS

We start the construction of the Fock representationF R,m of $AR ,I m% with the one-particle
Hilbert space

H5 %

a51

N

L2~Rs!, ~2.1!

equipped with the standard scalar product
J. Math. Phys., Vol. 38, No. 6, June 1997
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~w,c!5E dsxw†a~x!ca~x!5 (
a51

N E dsxw̄a~x!ca~x!. ~2.2!

At this stage we need the technical assumption that multiplication byRa1a2

b1b2(x1 ,x2) in L2(R2s)

preservesL2-integrability. We observe in passing that this quite mild requirement onR is actually
automatically verified if for instanceM(R)1Þ0” . This last condition ensures the existence of ty
A representations ofAR and is also relevant in factorized scattering theory.

Let us denote byHn then-fold tensor powerH^n. Any elementw P Hn can be viewed as
a column whose entries arewa1 ...an

(x1 ,...,xn). For n>2 we focus on those elements ofHn,
which behave under the exchange of two consecutive arguments as follows:

wa1 ...an
~x1 ,...,xi ,xi11 ,...,xn!5@Rii11~xi ,xi11!#a1 ...an

b1 ...bnwb1 ...bn
~x1 ,...,xi11 ,xi ,...,xn!,

~2.3!

where

@Ri j ~xi ,xj !#a1 ...an

b1 ...bn5da1

b1da2

b2•••da i

b î•••da j

b ĵ•••dan

bnRa ia j

b ib j~xi ,xj !, ~2.4!

the hat indicating that the corresponding symbol must be omitted. From our assumptions
R it follows that Eq. ~2.3! uniquely determines a closed subspaceH R

n,H n. SettingH R
0

5C1 andH R
15H, we introduce the finite particle spaceF R,m

0 (H) as the~complex! linear
space of sequencesw 5 (w (0),w (1),...,w (n),...) with w (n) P H R

n andw (n) 5 0 for n large enough.
The vacuum state isV5(1,0,...,0,...).

At this point, following Ref. 1, we define onF R,m
0 (H) the annihilation and creation opera

tors$a( f ),a* ( f ): f P H % settinga( f )V50 and

@a~ f !w#a1 ...an
~n! ~x1 ,...,xn!5An11E dsx f†a0~x!wa0a1 ...an

~n11! ~x,x1 ,...,xn!, ~2.5!

@a* ~ f !w#a1 ...an
~n! ~x1 ,...,xn!5

1

An
f a1

~x1!wa2 ...an
~n21! ~x2 ,...,xn!

1
1

An (
k52

n

@Rk21k~xk21 ,xk!•••R12~x1 ,xk!#a1 ...an

b1 ...bnf b1
~xk!wb2 ...bn

~n21!

3~x1 ,...,x̂k ,...,xn!. ~2.6!

Clearly, a( f ) and a* ( f ) leave invariantF R,m
0 (H), which is therefore the candidate for th

domainD . For deriving the commutation properties onF R,m
0 (H) it is convenient to introduce

the operator-valued distributionsaa(x) anda*
a(x) defined by

a~ f !5E dsx f†a~x!aa~x!, a* ~ f !5E dsx fa~x!a* a~x!, ~2.7!

Using Eqs.~1.4!, ~5! and the definitions~2.5!–~7!, after some straightforward but long algebra o
proves the following statement.

Proposition 1: The operator-valued distributions$aa(x),a*
a(x)% obey Eqs.~1.1!–~3! on

F R,m
0 (H).
Assuming thatM(R)Þ0” , we proceed further by implementing the involutions$I m :m

PM(R)%, i.e., by constructing for eachmPM(R) a sesquilinear form̂•,•&m on F R,m
0 (H),
J. Math. Phys., Vol. 38, No. 6, June 1997
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satisfying~1.13!. Let D0,F R,m
0 (H) be the subset generated by applying polynomials ofa( f )

anda* ( f ) onV. The form^•,•&m is fixed onD0 by the expectation values~1.14!, which in turn
are determined algebraically. In what follows we adopt the following extension of this form
F R,m

0 (H):

^w,c&m5 (
n50

`

^w~n!,c~n!&m , ~2.8!

where

^w~0!,c~0!&m5w̄~0!c~0!, ~2.9!

^w~n!,c~n!&m5E dsx1 ...d
sxnw

~n!†a1 ...an~x1 ,...,xn!ma1

b1~x1!•••man

bn~xn!cb1 ....bn
~n! ~x1 ,...,xn!.

~2.10!

The right hand side of~2.8! always makes sense because for anyw,cPF R,m
0 (H) the series is

actually a finite sum. One easily proves
Proposition 2: The inner product (2.8) is nondegenerate onF R,m

0 (H) and the involution
constraint Eq. (1.13) is satisfied.

The next important question concerns the positivity of^•,•&m and is answered by
Proposition 3: The inner product̂•,•&m is positive definite onF R,m

0 (H) if and only if
mPM(R)1 .

The proof of this statement is quite simple; we would like to observe only that
mPM(R)\M(R)1 the form ^•,•&m is not positive definite even on the subspaceD0 . Proposi-
tion 3 illustrates the close relationship between the involutionI m and the metric ofF R,m

0 (H).
According to the terminology adopted in the introduction, type A representations ofAR are
associated withM(R)1 ; the elements ofM(R)\M(R)1 give raise to the B-series.

The final step in completing the derivation ofF R,m is the construction of the representatio
spaceL. It is necessary at this stage to consider the classes A and B separately
mPM(R)1 the inner product space$F R,m

0 (H),^•,•&m% is actually a pre-Hilbert space. Le
F R,m(H) be the completion ofF R,m

0 (H) with respect to the Hilbert space topology. Clear
L 5 F R,m(H) satisfies all the requirements.

For type B representations there is no distinguished Hilbert-space topology for comp
F R,m

0 (H). The most natural substitute is the topologyt defined by the family of seminorms

sc~w![u^c,w&mu, w,cPF R,m
0 ~H!. ~2.11!

It turns out9 that t is the weakest locally convex topology in whicĥ•,•&m is separately
t-continuous. Moreover,t is a Hausdorff topology, because^•,•&m is nondegenerate. Therefor
F R,m

0 (H) admits a unique~up to isomorphism! t-completion, which has all the needed propert
and provides the spaceL for the B-series.

We conclude with some general remarks about the representationsF R,m . First of all, suppose
thatmÞ m8 both belong toM(R). One can construct thenF R,m andF R,m8 , which turn out to be
inequivalent representations ofAR . Our second observation concerns class A only and is ba
on the fact that anymPM(R)1 can be represented in the formm(x)5p†(x)p(x), wherep(x) is
an invertible matrix. Notice thatp(x) is not unitary unlessm(x)5e. As a consequence of~1.9!
one has that the factor

Ra1a2
8b1b2~x1 ,x2!5pa1

g1~x1!pa2

g2~x2!Rg1g2

d1d2~x1 ,x2!p
21

d1

b1~x2!p
21

d2

b2~x1!. ~2.12!
J. Math. Phys., Vol. 38, No. 6, June 1997
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satisfies~1.10!, i.e., ePM(R8)1 . One can verify that the algebras$AR ,I m% and $AR8 ,I e% are
isomorphic and that the representationsF R,m andF R8,e are equivalent. In other words, for an
mPM(R)1 one can equivalently replaceI m with I e , suitably modifying@see Eq.~2.12!# the
exchange factorR.

III. ON THE SCATTERING OPERATOR OF INTEGRABLE MODELS

In this section we investigate some basic aspects of theS-matrix-approach5–7 to integrable
models in 111 space-time dimensions. This approach has been in continuous developmen
the last fifteen years, with recent efforts being devoted mainly to the derivation of form facto
local operators,10,11 the study of integrable deformations12,13 of conformal field theories, and th
treatment of models with reflecting boundary conditions.14,15 In spite of great progress made o
the subject, certain fundamental features have not been yet rigorously established and
essential for the new developments, are usually postulated. Our scope below is to fill some
gaps; we examine the metric in the asymptotic space, the property of asymptotic comple
and prove afterwards unitarity of the scattering operator. Referring for details to the or
papers on scattering in integrable models, we introduce now only those structures which al
to make contact with our framework.

The asymptotic particles of an integrable quantum field theory in 111 dimensions are pa
rametrized in general by their rapidityuPR and internal ‘‘isotopic’’ indexa51,...,N. The
fundamental building block for constructing the scattering operator is aN23N2-matrix
R(u1 ,u2) with measurable entriesRa1a2

b1b2(u1 ,u2) which satisfy~1.4! ~called in this context formal

unitarity! and~1.5!. Allowing for R to depend onu1 andu2 separately, we will also cover system
which need not be Lorentz invariant. No assumptions about parity and time-reversal inva
will be made. Finally, instead of the condition~1.10! usually adopted in the literature, we sha
assume

M~R!1ÞB. ~3.1!

We refer to~3.1! asweakHermitian analyticity and emphasize that~3.1! is indeed less restrictive
then~1.10!. For showing this it is enough to find an exchange factorR for whichM(R)1Þ0” and
e¹M(R). Let us consider for instance

R~u1 ,u2!5H Pa^a for u1.u2 ,

P for u15u2 ,

Pa21
^a21 for u1,u2 ,

~3.2!

where

P[ (
a,b51
aÞb

N

Eab ^Eba

anda is an invertibleN3N matrix such thata21Þa†. It is easily seen that~3.2! satisfies~1.4!,
~5!, but violates~1.10!. Now, take for simplicityN52 and

a5S 21 1

0 1D .
One directly verifies that
J. Math. Phys., Vol. 38, No. 6, June 1997
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m5S 2 21

21 1 D PM~R!1 ,

which concludes the argument.
From now on we consider any exchange factor satisfying~1.4!, ~5! and ~3.1!; the associated

algebraAR is called the Zamolodchikov–Faddeev~Z–F! algebra. It is perhaps useful to obser
here that the authors working on integrable models usually use a slightly different not
adopting a matrixSa1a2

b1b2(u1 ,u2) related toRa1a2

b1b2(u1 ,u2) by

Sa1a2

b1b2~u1 ,u2!5Ra2a1

b1b2~u1 ,u2!.

In order to keep contact with the previous sections, we will use theR-notation.
A straightforward but crucial observation is that the Z–F algebraAR alone does not deter

mine the scattering operator we are looking for. One must fix in addition an involution inAR . For
this purpose we focus on the involutions$I m :mPM(R)%. We postpone the discussion of th
physical meaning of the choice ofmPM(R) to the end of this section. In order to get an id
about the different involutions which can be adopted, it is instructive for the time being to des
the setM(R) for some familiar integrable models. We start with the Toda type exchange f

Ra1a2

b1b2~u1 ,u2!5exp@ ir a1a2
~u1 ,u2!#da1

b2da2

b1, ~3.3!

where$r a1a2
(u1 ,u2):a1 ,a251,...,N% are real valued functions satisfying

r a1a2
~u1 ,u2!1r a2a1

~u2 ,u1!52pk, kPZ. ~3.4!

If r a1a2
are otherwise generic, one has

M~R![M~R!min5$ma
b~u!5la~u!da

b :la~u!PB~R!%,

whereB(R) is the set of real valued functionsf such that bothf and 1/f are bounded. If instead
r a1a2

are all equal, thenM(R)[M(R)max5M is maximal. Clearly, other appropriate condition
on r a1a2

give rise to various intermediate cases in which one hasM(R)min,M(R)
,M(R)max.

Our next example is the SU~2! Thirring model (N52). Settingu12[u12u2 , one has in this
case

Ra1a2

b1b2~u1 ,u2!5
A~u12!

~u122p i !A~2u12!
~u12da1

b2da2

b12p ida1

b1da2

b2!, ~3.5!

A~u!5GS 121
u

2p i DGS 2
u

2p i D ~3.6!

and one can directly verify that

M~R!5$ma
b~u!5l~u!ma

b :l~u!PB~R!, mPH2%.

We consider finally the O~3! nonlinear sigma model (N53) with
J. Math. Phys., Vol. 38, No. 6, June 1997
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Ra1a2

b1b2~u1 ,u2!5
1

~u121p i !~u1222p i !
@u12~u122p i !da1

b2da2

b1

22p i ~u122p i !da1

b1da2

b212p iu12da1a2
db1b2#. ~3.7!

It turns out in this case that

M~R!5$ma
b~u!5l~u!ma

b :l~u!PB~R!, mPH3 , m tm5e%,

wherem t is the transpose of theu-independent matrixm.
After these concrete examples, illustrating the setM(R), we return to the general framework

The existence of an operator realization of the Z–F algebraAR with the standard involutionI e in
a Hilbert space is a basic axiom~see e.g., Ref. 9! and a starting point of factorized scatterin
theory. In this respect, the explicit construction of the Fock representationF R,m of $AR ,I m%
allows for a rigorous investigation of the scattering operator. A first piece of relevant inform
can be extracted already from proposition 3, which implies thatmPM(R)1 is a necessary and
sufficient condition for positivity of the metric in the asymptotic space. For this reason in
follows we focus on type A representations, which according to our observation at the end
previous section can be treated in two equivalent ways. One can keepR fixed and varym
PM(R)1 . The alternative is to fix the involutionI e and to consider all exchange factors relat
to R by ~2.12! with p(u) such thatp†(u)p(u)PM(R)1 . We adopt below the first description

Besides the metric, the other crucial feature characterizing unitary scattering operators
property of asymptotic completeness. Before formulating a precise statement, it is useful
scribe briefly the conventional construction5 of the asymptotic in- and out-spaces adapted to
framework. For this purpose we introduce the following relation in the space of infinitely di
entiable functions with compact supportC0

`(R):

f 1, f 2⇔u1,u2 ;u1Psupp~ f 1!, ;u2Psupp~ f 2!. ~3.8!

Then the asymptotic spacesF in andF out are generated by finite linear combinations of the vect
(k>1)

E in5$V, a* ~ f 1!...a* ~ f k!V: f 1a1
..... f kak

, ;a1 ,...,ak51,...,N%. ~3.9!

and

Eout5$V, a* ~g1!...a* ~gk!V:g1b1
,...,gkbk

, ;b1 ,...,bk51,...,N%, ~3.10!

respectively. By construction bothF in andF out are linear subspaces ofF R,m(H). Those ele-
ments ofF R,m(H) which belong neither toF in nor to F out are called mixed vectors. Fo
example, linear combinations involving both in- and out-states are in general mixed vector

In the literature on integrable models~see e.g., Refs. 9, 10! one usually assumes at this sta
the property of~weak! asymptotic completeness. In our framework the spacesF R,m(H), F in and
F out are under control and instead of postulating, we will actually show that asymptotic com
ness holds in its strong form. Namely, we prove

Proposition 4:F in andF out separately are dense inF R,m(H).
Proof:We focus first onF in. Let w P F R,m(H) and let us assume that

^w,c&m50 ;cPF in. ~3.11!

In order to prove the thesis, we have to show thatw5(w (0),w (1),...,w (n),...)50. Obviously
w (0)50. Let us considerw (n) for arbitrary but fixedn . 1. Equation~2.6! and Eq.~3.11! imply that
J. Math. Phys., Vol. 38, No. 6, June 1997
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^w~n!,a* ~ f 1!...a* ~ f n!V&m5E du1 ...dunw
~n!†a1 ...an~u1 ,...,un!

3ma1

b1~u1!...man

bn~un! f 1b1
~u1!...f nbn

~un!50 ~3.12!

for all f 1 ,...,f n such thatf 1a1
. .... f nan

;a1 ,...,an 5 1,...,N. Therefore

wa1 ...an
~n! ~u1 ,...,un!50. ~3.13!

in the domainu1 . ... . un . Finally, using thatw
(n)PHR

n has definite exchange properties@see
Eqs. ~2.3!, ~4!#, one can extend the domain of validity of~3.13! and conclude thatw (n) actually
vanishes almost everywhere inRn. A similar argument applies also to the case ofF out.

At this point we are ready to define the scattering matrixS and to prove that it is a unitary
operator inF R,m(H). The construction consists essentially of three steps. One first definS
mappingEout ontoE in according to

SV5V, ~3.14!

Sa* ~g1!a* ~g2!...a* ~gk!V5a* ~gk!a* ~gk21!...a* ~g1!V, ~3.15!

whereg1b1
, ... , gkbk

, ;b1 ,...,bk51,...,N. It is easy to check that

^Scout,Swout&m5^cout,wout&m , ;cout,woutPEout. ~3.16!

Moreover,S is invertible and

^S21c in,S21w in&m5^c in,w in&m , ;c in,w inPE in. ~3.17!

The second step is to extendS andS21 by linearity to the wholeF out andF in, respectively.
Clearly, we have to show that these extensions are correctly defined. Indeed, consider for in
S and suppose that there exist a sequence

g1b1

i ,...,gkbk

i , ;b1 ,...,bk51,...,N, i51,...,M ,

such that

a* ~g1!a* ~g2!...a* ~gk!V5(
i51

M

a* ~g1
i !a* ~g2

i !...a* ~gk
i !V. ~3.18!

In order to demonstrate that the linear extension ofS is not ambiguous, we have to prove that

a* ~gk!a* ~gk21!...a* ~g1!V5(
i51

M

a* ~gk
i !a* ~gk21

i !...a* ~g1
i !V. ~3.19!

The argument is as follows. In the domainu1,u2,•••,uk Eq. ~3.18! implies that

g1b1
~u1!g2b2

~u2!...gkbk
~uk!5(

i51

M

g1b1

i ~u1!g2b2

i ~u2!...gkbk

i ~uk!. ~3.20!

Because of the support properties of$gj% and$gj
i % Eq. ~3.20! actually holds inRk, which proves

in turn the validity of Eq.~3.19!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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It is easy to see also that Eqs.~3.16!, ~17! remain valid for the linear extensions ofS and
S21 onF out andF in, respectively. This fact implies in particular that bothS andS21 are bounded
linear operators.

Finally, one extendsS andS21 by continuity toF R,m(H). Because of asymptotic complete
ness the extensions are unique and define the unitary scattering matrix and its inverse. W
that besides conditions~1.4!, ~5!, this general construction makes use only of weak Hermit
analyticity ~3.1!. Applied to the particular examples considered in the beginning of this sectio
reproduces the known scattering operators.

We would like to elaborate now on the physical meaning of the choice of involution. Le
consider two generic asymptotic statesw in P F in andcoutP F out. If bothm, eP M(R)1 , onemay
compare the transition amplitudes associated with the involutionsI m and I e . One finds

^cout,w in&m5^cout,w̃ in&e5^c̃out,w in&e , ~3.21!

wherew̃ in and c̃out are the ‘‘dressed’’ in- and out-states

w̃a1•••an
in ~u1 ,...,un!5ma1

g1~u1!...man

gn~un!wg1 ...gn
in ~u1 ,...,un!, ~3.22!

c̃b1 ...bn
out ~u1 ,...,un!5m†

b1

g1~u1!...m
†

bn

gn~un!cg1 ...gn
out ~u1 ,...,un!. ~3.23!

It follows from Eq. ~3.21! that the effect of the involutionI m is exactly reproduced inF R,e by
appropriate dressing~3.22!, ~23! of the in- or out-states. Heuristically this dressing can be in
preted as a consequence of the presence of some external classical potential.

The results of this section can be summarized as follows.
Proposition 5: Suppose that the exchange factor R satisfies (1.4), (5) and (3.1). The

scattering operator associated toF R,m with mPM(R)1 is unitary.
Let us mention finally that for Lorentz invariant systemsR actually depends on the differenc

u12[ u1 2 u2 . Moreover, one usually assumes thatR admits a suitable continuation to the compl
u12-plane, which satisfies crossing symmetry, has certain pole structure, etc. As it can be ex
and as we have shown above however, the unitarity of theS-matrix depends exclusively on th
behavior of the exchange factorR for u12 P R.

IV. OUTLOOK AND CONCLUSIONS

This article continues our investigation of the exchange algebraAR defined by Eqs.~1.1!–~3!.
We introduced here a family$I m :mPM(R)% of involutions inAR and constructed the relativ
Fock representations$F R,m :mPM(R)%, examining the positivity of the metric. As a particula
application of the general results, we studied the scattering operator of integrable quantum
theory models in 11 1 space–time dimensions, proving its unitarity. One can develop16 analogous
Fock representation formalism for theS-matrix of integrable models with reflecting bounda
conditions.

We would like to conclude with the following general consideration concerningAR .
Previously1–3 we investigated this algebra in relation with generalized statistics. This fact an
present results reveal the remarkable property ofAR to describe contemporary two differen
physical concepts. Generalized statistics are associated withAR in the coordinate space. Facto
ized scattering is described also byAR , but in momentum~rapidity! space. It is worth stressing
that in general these two algebras are not related by a Fourier transform. Indeed forR-factors
which are not constant,~1.1!–~3! change drastically under Fourier transformation; starting fr
local constraints in coordinate~momentum! space one obtains nonlocal relations, involving in
gration in momentum~coordinate! space. Compared to the canonical~anti!commutation relations,
this is a new phenomenon which presumably has other interesting applications.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Perturbation theory and the classical limit of quantum
mechanics

S. M. McRaea) and E. R. Vrscay
Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

~Received 11 June 1996; accepted for publication 25 February 1997!

We consider the classical limit of quantum mechanics from the viewpoint of per-
turbation theory. The main focus is time dependent perturbation theory, in particu-
lar, the time evolution of a harmonic oscillator coherent state in an anharmonic
potential. We explore in detail a perturbation method introduced by Bhaumik and
Dutta-Roy@J. Math. Phys.16, 1131~1975!# and resolve several complications that
arise when this method is extended to second order. A classical limit for coherent
states used by the above authors is then applied to the quantum perturbation ex-
pansions and, to second order, the classical Poincare´–Lindstedt series is retrieved.
We conclude with an investigation of the connection between the classical limits of
time dependent and time independent perturbation theories, respectively. ©1997
American Institute of Physics.@S0022-2488~97!01406-0#

I. INTRODUCTION

This paper represents a continuation of a series of investigations of classical limits of qu
mechanical perturbation expansions. Previously1 we showed that the classical mechanical~CM!
version of the Hellmann–Feynman~HF! theorem could be used to generate the CM Poincare´–von
Zeipel perturbation expansions2 of a periodic orbit with fixed classical actionJ. The CM
Poincare´–von Zeipel perturbation expansion associated with a periodic orbit having actionJ can
be obtained from the quantum mechanical~QM! Rayleigh–Schro¨dinger expansion of an eigensta
by the following classical limit:n→`,\→0, with n\5J. This limit was first applied to the
one-dimensional quartic anharmonic oscillator by Turchetti3 and then studied rigorously by Graf
and Paul.4 ~The most important features of this classical limit are summarized in Appendix!

In this paper we focus on time dependent quantum mechanical perturbation theory w
same goal in mind, i.e. retrieving classical mechanical perturbation expansions from the
counterparts by means of an appropriate classical limit which involves the mathematical ope
\→0. Here we explore in some detail a perturbation method introduced by Bhaumik and D
Roy ~BD!5 which involves harmonic oscillator coherent states~HOCS! ua&, whereaPC. As is
well known,6–8 in the time evolution of a HOCS under the harmonic oscillator Hamiltonian,
quantum expectation valuêx(t)& becomes the classical functionx(t)5A cos(v0t1f) when the
following classical limit is taken:\→0,uau→`, with uauA\ fixed and proportional toA. BD
applied this classical limit of coherent states~which we refer to as CLCS! to the time dependen
quantum mechanical perturbation expansion for an anharmonic oscillator where the initial
tion C(x,0) was a perturbed HOCS. It was observed that in this classical limit the perturb
expansion for̂ C(x,t)ux̂uC(x,t)& becomes, at least to first order, the Poincare´–Lindstedt pertur-
bation series for the positionx(t) of the periodic orbit for the classical anharmonic oscillat
@Here,C(x,t) is the solution of the time dependent Schro¨dinger equation for the anharmon
potential.# Subsequently, the BD perturbation method was applied to a variety of Hamiltonian9–17

and the classical perturbation series retrieved in all cases. However, all calculations, inc
those of BD, were performed only to first order. In a number of papers, it was concluded th

a!Present address: Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canad
0022-2488/97/38(6)/2899/23/$10.00
2899J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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extension of this perturbation method and its classical limit would be straightforward. Indeed
somewhat cavalier fashion, it was also suggested that this procedure could actually repre
easier method to generate the well known classical perturbation expansions for periodic orb
have found that this isnot the case. Indeed, a proper calculation of even the second order qua
corrections involves a great deal of care and the extension to higher orders is not obviou
quantum results involve infinite summations which can be written in closed form only if first o
terms are retained, but cannot be expressed in closed form if higher order terms are inclu
addition, the success of this method depends heavily upon the initial conditions chosen
quantum problem. We show below that ‘‘secular terms’’ in the classical limit of the quan
expansions are avoided if the initial conditions specified by BD are chosen. The proper cla
mechanical expansions may be obtained~at least to second order!, but only if a proper ‘‘renor-
malization’’ of expansions is performed. This is actually analogous to what happens in cla
mechanics, as we explain below. Preliminary results18 and later progress19 of this procedure have
been reported. Complete details are to be found in the thesis of McRae.20

The complications in higher order calculations mentioned above are not limited to pert
tion theory in the Schro¨dinger picture—they also appear in the Heisenberg picture. We have
studied this problem and refer the reader to Ref. 21 for details.

We conclude this paper by establishing a connection between then\5J classical limit of time
independent~Rayleigh–Schro¨dinger! perturbation theory and theuauA\ classical limit of time
dependent coherent state perturbation theory. The connection between these two limits
obvious apart from the common mathematical operation of letting\→0. Some insight is provided
from an analysis of the unperturbed harmonic oscillator problem. This connection between
also reveals that an infinity of quantum mechanical wavefunctions contribute to the construc
a single classical orbit in the classical limit.

Many of the calculations presented in this paper were done with the aid of the sym
computation package MAPLE.22,23

II. CLASSICAL PERTURBATION THEORY: ESSENTIALS

Of specific interest are periodic solutions (x(t),p(t)) to Hamilton’s equations of motion
ẋ(t)5]H/]p and ṗ(t)52]H/]x, in particular, where the Hamiltonian functionH(x,p) is the
perturbation of a solvable problem,

H~x,p!5H ~0!~x,p!1lH ~1!~x,p!. ~2.1!

A standard technique for determining periodic orbits of such perturbed problems is the Poin´–
Lindstedt method~see Nayfeh24 p. 58, Murdock25 p. 157, or Verhulst26 p. 130, for example!. It is
normally applied to problems having the form

ẍ1v0
2x5« f ~ t,x,ẋ,«!, ~2.2!

where f either does not depend explicitly upont ~i.e., an autonomous system! or is periodic in
t. The key idea of this method is that aT-periodic solution to Eq.~2.2! is written as a generalized
asymptotic expansion of the form

x~ t !5 (
n50

N

xk~s!ek1O~eN11!, as e→0, ~2.3!

where the perturbation coefficientsxk(s) areT-periodic in the scaled time variables5vt. The
frequencyv is expressed as an asymptotic expansion in powerse, i.e.

v5v01v1e1v2e
21••• . ~2.4!
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The correctionsvk are typically determined by the requirement that no secular, or unboun
solutions~e.g.,tsinv0t) may appear. Details of this procedure and applications may be found i
references cited above.

We shall be primarily concerned with the quartic anharmonic oscillator Hamiltonian,

H~x,p!5
p2

2m
1
mv0

2

2
x21lx4. ~2.5!

From Hamilton’s equations we have

ẍ1v0
2x1«x350, ~2.6!

where«54lm21. Now assume that the initial conditions are given by

x~0!5A, ẋ~0!50. ~2.7!

The net result, to second order inl, is

x~ t !5A cos~vt !1
A3l

8mv0
2 @cos~3vt !2cos~vt !#1

A5l2

16v0
4m2

3F234 cos~vt !26 cos~3vt !1
1

4
cos~5vt !G1•••, ~2.8!

where

v5v01
3A2

2mv0
l2

21A4

16m2v0
3 l21

81A6

32m3v0
5 l31•••. ~2.9!

The perturbation expansion for the momentum can be found by differentiating Eq.~2.8!:

p~ t !5mẋ~ t !52mv0A sin~vt !1
A3l

8v0
@211 sin~vt !23 sin~3vt !#

1
A5l2

64mv0
3 @73 sin~vt !136 sin~3vt !25sin~5vt !#1•••. ~2.10!

From Eq.~2.9!, the frequencyv depends upon the amplitude of oscillationA, a behavior charac-
teristic of nonlinear oscillations.We are particularly interested in how such nonlinear featur
emerge from ‘‘linear’’ quantum mechanics as\→0.

Finally, it is extremely important to note that the Poincare´–Lindstedt perturbation expansion
are sensitive to the initial conditions assumed for the problem. For example, the expansions
~2.8! and ~2.9! arise from the rather standard initial conditions of Eq.~2.7!. However, a look at
Nayfeh,24 for example, reveals a slightly different expansion—the second order correction i
frequency has~apart from normalization! a numerical factor of1516 instead of2116. In Nayfeh,24 a
different set of initial conditions was imposed. One can make a correspondence between t
expansions with a proper ‘‘renormalization’’ of the amplitude of oscillation, as we now br
show. This is a rather important feature that has been ignored in a number of papers, esp
when the results are compared to references such as Nayfeh.24

In Nayfeh’s approach, the initial conditions for eachxk(s) in Eq. ~2.3! are chosen so that th
characteristic solution for each differential equation in the hierarchy is zero. Note that i
resulting solutions,
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x̃~ t !5A cos~ṽt1w!1
A3l

8v0
2m

cos@3~ṽt1w!#

1
A5l2

64v0
4m2 $221 cos@3~ṽt1w!#1cos@5~ṽt1w!#%1•••, ~2.11!

ṽ5v01
3A2l

2mv0
2
15A4l2

16m2v0
3 1•••, ~2.12!

the initial conditionx̃(0) is a series inl. By settingw50 and inverting the series

A5A1
A3l

8v0
2m

2
5A5l2

16v0
4m2 1•••, ~2.13!

one can recover the solutions in Eqs.~2.8! and ~2.9!.
We show below that quantum mechanical expansions will also demonstrate such a ph

enon with respect to initial conditions.

III. QM TIME DEPENDENT PERTURBATION THEORY

We now consider the quantum mechanical counterpart of the previous section, name
time evolution of quantum states under the influence of perturbed Hamiltonians, as determi
the time dependent Schro¨dinger equation~TDSE!,

i\
]C

]t
~x,t !5ĤC~x,t !, ~3.1!

where

Ĥ5Ĥ ~0!1lĤ ~1!. ~3.2!

As usual, it is assumed that the eigenvalues and eigenfunctions of the unperturbed time in
dent Schro¨dinger equation are known:

Ĥ ~0!fn
~0!5En

~0!fn
~0! , n50,1, . . . . ~3.3!

Let the time independent Schro¨dinger equation for the Hamiltonian in Eq.~3.2! be denoted by

Ĥfn5Enfn , n50,1,2, . . . . ~3.4!

Our focus will be the QM counterpart to Eq.~2.5!, namely, the QM quartic anharmonic oscillato
with Hamiltonian

Ĥ~ x̂,p̂!5
p̂2

2m
1
mv0

2

2
x̂21l x̂4. ~3.5!

There are two major concerns in the formulation of a perturbation method.

~1! The basis set:The usual procedure in the Schro¨dinger picture is to assume a perturbati
expansion for the wavefunctionC(x,t) in terms of theunperturbedeigenfunctionsfn

(0)(x) of
Ĥ (0). As in classical perturbation theory, however, there is a price to pay, namely, the appe
of secular terms. Dirac’s27–30 variation of constants method is the most common approac
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ar and
ere the
-
. This
oy, i.e.

f Eq.

o the

ose
tes,
er the
ar-

nic

2903S. M. McRae and E. R. Vrscay: Perturbation theory and the classical limit

¬¬¬¬¬¬¬¬¬¬
removing secular terms from perturbation expansions in the unperturbed basis. Langhoffet al.31

have clarified certain aspects of the Dirac method such as how to deal properly with secul
normalization terms at higher orders, but their methods are developed only for situations wh
initial condition is a single unperturbed eigenfunction. Bhattacharyya32,33 introduced an undeter
mined phase method which can be adapted to handle more complicated initial conditions
method provides the same result as the BD method. The method of Bhaumik and Dutta-R
assuming an expansion in the eigenfunctionsfn(x) of the perturbed Hamiltonian

Ĥ5Ĥ (0)1lĤ (1), essentially bypasses the problem of secular terms. If the initial condition o
~3.1! may be written as

C~x,0!5 (
n50

`

Cnfn~x!, ~3.6!

then its time evolution in the ‘‘diagonal’’ basis$fn% is given simply by

C~x,t!5(
n50

`

Cne
2iEnt/\fn~x!. ~3.7!

This formulation may be considered as a kind of scaling of time, roughly analogous t
Poincare´–Lindstedt method of classical mechanics.

~2! The initial condition C(x,0): The goal is to produce dynamical quantum states wh
classical limits yield periodic orbits inx-p phase space. This rules out the use of eigensta
whose time evolution involves only a change in phase. Instead, it is more natural to consid
harmonic oscillator coherent states~HOCS!, which are dynamical states of the unperturbed h
monic oscillator. The HOCS are defined as6–8,34–40

ua&5e2uau2/2(
n50

` an

An!
fn

~0!~x!, ~3.8!

where thefn
(0)(x) denote the harmonic oscillator eigenfunctions andaPC. If C(x,0)5ua& in Eq.

~3.1! and Ĥ is the Hamiltonian for the harmonic oscillator, then

C~0!~x,t!5e2iv0t/2uae2 iv0t&. ~3.9!

In other words, a HOCS remains a HOCS. From

^C~0!~x,t!ux̂uC~0!~x,t!&5A 2\

mv0
uaucos~v0t1w!, ~3.10!

wherea5uaue2 iw, and the classical harmonic oscillator solutionx(t)5Acos(v0t1w), one may
define the following classical limit for coherent states~CLCS!:

CLCS: limuau→`,\→0, with \uau25g[
mv0

2
A2. ~3.11!

It also follows that

lim
CLCS

uC~0!~x,t !u25d@x2Acos~v0t1w!#, ~3.12!

whered(x) denotes the Dirac delta function. An analogous result holds for momentum.

Bhaumik and Dutta-Roy5 employed the CLCS to study the TDSE for perturbed harmo
oscillator problems using coherent states. Their method may be summarized as follows.

~1! Assume the following initial condition for the TDSE in Eq.~3.1!:
J. Math. Phys., Vol. 38, No. 6, June 1997
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C~x,0!5ua&85e2uau2/2(
n50

` an

An!
fn~x!, ~3.13!

where thefn(x) denote the solutions to theperturbedharmonic oscillator eigenvalue problem
given in Eq.~3.4!.

~2! Solve the TDSE forC(x,t) as a perturbation series inl. This is relatively straightforward in
the diagonalfn basis.

~3! Apply the CLCS to the the perturbation expansion for the quantum expectation value^x&(t)
5^C(x,t)ux̂uC(x,t)& to produce a perturbation series^x&CLCS(t).

BD performed the above calculation, but only to first order. It was observed that the p
bation serieŝx&CLCS(t) agreed with the Poincare´–Lindstedt series forx(t) for the corresponding
perturbed classical problem. However, as we show below, both the calculation of secon
higher order terms and their comparison with classical expansions must be done with e
care. There are two major points.

~1! Secular terms are avoided in the BD method.
~2! Since the initial conditions of this problem do not involve an unperturbed coherent

higher order terms donot agree~in the classical limit! with the expansion in Eqs.~2.8! and
~2.9!, in particular, with regard to the perturbation series for the frequencyv(l).

In order to better understand the nature of the classical limit of such time dependent qu
perturbation expansions, we have examined this perturbation method in the perturbed os
basis usingtwo different sets of initial conditions, which we refer to as follows.

Method 1: The initial condition is the exact HOCSua& in Eq. ~3.8!,
Method 2: The initial condition used by BD; a kind of perturbed HOCSua&8 in Eq. ~3.13!.

Method 1 would seem to be the natural choice since one starts with a HOCS with a
defined classical limit/amplitude. It will be seen, however, that Method 2 is a far more conve
way to both calculate the perturbation expansion for^x&(t) and take its classical limit. In both
cases, it is useful to employ a set of perturbed eigenfunctionsfn of Ĥ which satisfy theorthonor-
malization condition ^fmufn&5dm,n rather than theintermediate normalizationcondition
^fn

(0)ufn&51 when constructing the RS perturbation expansions. Details of these two diff
normalization conditions are given by Hirschfelderet al.41 ~Note: This important point did no
have to be considered by BD since both normalization methods give the same results
order.!

A. Method 1: HOCS initial condition

Using the initial condition of Eq.~3.8! and the expansion of Eq.~3.6! and the fact that
^fkufn&5dkn we have

Cn5e2uau2/2(
k50

` ak

Ak!
^fnufk

~0!&. ~3.14!

Using Eq.~3.7!

^C~x,t !uâuC~x,t !&5 (
n50

`

(
m50

`

CnCm* expF i t\ ~Em2En!G^fmuâufn&, ~3.15!

whereâ is the annihilation operator:
J. Math. Phys., Vol. 38, No. 6, June 1997
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â5
1

A2m\v0

~mv0x̂1 i p̂ !. ~3.16!

Now, the method will be applied to the quartic anharmonic oscillator whose Hamiltonian is g
by Eq.~3.5!. The~time independent! Rayleigh Schro¨dinger perturbation theory~RSPT! expansions
in l for the eigenvalueEn and the eigenvectorfn are first constructed:

En5En
~0!1En

~1!l1En
~2!l21O~l3!, ~3.17!

fn5fn
~0!1fn

~1!l1fn
~2!l21O~l3!. ~3.18!

For future reference,

En
~0!5\v0~n11/2!, ~3.19!

En
~1!5

3\2

4m2v0
2
~2n212n11!, ~3.20!

En
~2!52

\3

m4v0
5 S 174 n31

51

8
n21

59

8
n1

21

8
D , ~3.21!

En
~3!5

\4

2m6v0
8 S 3758 n41

375

4
n31177n21

1041

8
n1

333

8
D , ~3.22!

fn
~1!5

\

4m2v0
3 F14An~n21!~n22!~n23!fn24

~0! 1~2n21!An~n21!fn22
~0!

2~2n13!A~n11!~n12!fn12
~0!

2
1

4
A~n11!~n12!~n13!~n14!fn14

~0! G , ~3.23!

and

fn
~2!5

\2

16m4v0
6 F 132An~n21!•••~n27!fn28

~0!

1
1

12
~6n211!An~n21!•••~n25!fn26

~0!

1~2n229n17!An~n21!~n22!~n23!fn24
~0!

2
1

4
~2n31129n22107n166!An~n21!fn22

~0!

2
1

16
~65n41130n31487n21422n1156!fn

~0!
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¬¬¬¬¬¬¬¬¬¬
2
1

4
~2n32123n22359n2300!A~n11!~n12!fn12

~0!

1~2n2113n118!A~n11!•••~n14!fn14
~0!

1
1

12
~6n117!A~n11!•••~n16!fn16

~0!

1
1

32
A~n11!•••~n18!fn18

~0! G . ~3.24!

Using the notation

Cn5Cn
~0!1lCn

~1!1l2Cn
~2!1O~l3!, ~3.25!

and substituting Eq.~3.18! into Eq. ~3.15! yields

^C~x,t !uâuC~x,t !&5S11l~S21S3!1l2~S41S51S6!1O~l3!, ~3.26!

where

S15 (
n50

`

(
m50

`

expF i t\ ~Em2En!GCn
~0!Cm*

~0!^fm
~0!uâufn

~0!&, ~3.27!

S25 (
n50

`

(
m50

`

expF i t\ ~Em2En!G~Cn
~0!Cm*

~1!1Cn
~1!Cm*

~0!!^fm
~0!uâufn

~0!&, ~3.28!

S35 (
n50

`

(
m50

`

expF i t\ ~Em2En!GCn
~0!Cm*

~0!~ ^fm
~0!uâufn

~1!&1^fm
~1!uâufn

~0!& !, ~3.29!

S45 (
n50

`

(
m50

`

expF i t\ ~Em2En!G~Cn
~2!Cm*

~0!1Cn
~1!Cm*

~1!1Cn
~0!Cm*

~2!!^fm
~0!uâufn

~0!&,

~3.30!

S55 (
n50

`

(
m50

`

expF i t\ ~Em2En!GCn
~0!Cm*

~0!~ ^fm
~0!uâufn

~2!&1^fm
~1!uâufn

~1!&1^fm
~2!uâufn

~0!& !,

~3.31!

and

S65 (
n,m50

`

expF i t\ ~Em2En!G~Cn
~1!Cm*

~0!1Cn
~0!Cm*

~1!!

3~^fm
~0!uâufn

~1!&1^fm
~1!uâufn

~0!& !. ~3.32!

We now wish to rearrange these expansions in order to facilitate the application of the cla
limit. First consider the zeroth order termS1. Using properties of the annihilation operator acti
on the harmonic oscillator wave function, we have
J. Math. Phys., Vol. 38, No. 6, June 1997
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^fm
~0!uâufn

~0!&5Andm,n21 . ~3.33!

From Eqs.~3.14!, ~3.18!, and~3.25!,

Cn
~0!5e2uau2/2

an

An!
. ~3.34!

The zeroth order term then becomes

S15ae2uau2(
n50

` uau2n

n!
expF i t\ ~En2En11!G . ~3.35!

The discussion of the classical limit of this expression will be deferred until later.
Consider the first order expressions. From Eqs.~3.14!, ~3.18!, ~3.23!, ~3.25!, ~3.33!, and~3.34!

we have

S25
\

4m2v0
3e

2uau2H a5

4 (
n50

`

expF i t\ ~En142En15!G uau2n

n!

1a3(
n50

`

expF i t\ ~En122En13!G uau2n

n!
~2n13!

2a~a* !2(
n50

`

expF i th ~En2En11!G uau2n

n!
~2n13!

2
a~a* !4

4 (
n50

`

expF i t\ ~En2En11!G uau2n

n!

1
~a* !3

4 (
n50

`

expF i t\ ~En132En14!G uau2n

n!
~n14!

1a* (
n50

`

expF i t\ ~En112En12!G uau2n

n!
~2n217n16!

2a3(
n50

`

expF i t\ ~En2En11!G uau2n

n!
~2n15!

2
a5

4 (
n50

`

expF i t\ ~En2En11!G uau2n

n! J . ~3.36!

It is difficult to take the classical limit of the above expression. Equation~B2! can be used to cas
Eq. ~3.36! in a form that is more amenable to taking the classical limit. Sincea is a complex
number, leta5uaue2 iw. In order to ensure that the quantum initial conditions correspond to
classical initial conditions given in Eq.~2.7!, we require thatw50 @see Eq.~3.10! and Section
III C #. Since it simplifies the results, we will replacea with uau at this point. The simplified
version of Eq.~3.36! is

S25
\

4m2v0
3e

2uau2H F12 ~T4,52T0,1!14~T3,42T1,2!G uau5

1@28T0,1112T2,31T3,4#uau316T1,2uauJ , ~3.37!
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where

Tj ,k5 (
n50

` uau2n

n!
expF i t ~En1 j2En1k!

\ G . ~3.38!

After performing similar simplifications on the other terms, we obtain

S35
\

4m2v0
3e

2uau2$uau3@2T0,326T2,12T3,0#26uauT1,0%, ~3.39!

S45e2uau2
\2

16m4v0
6
$@ 1

8 ~T0,11T8,922T4,5!12~T1,21T7,822T4,5!

18~T2,31T6,722T4,5!22~T3,41T5,622T4,5!#

3uau91@ 16
3 ~T0,12T3,4!154~T1,22T3,4!154~T2,32T4,5!190~T5,62T3,4!1 74

3 ~T6,72T4,5!

1 3
2 ~T7,82T3,4!1 16

3 ~T3,42T4,5!#uau71@66T0,11297T1,22366T2,32444T3,41306T4,5

195T5,61
15
2 T6,7#uau51@270T0,12

669
2 T1,22624T2,31342T3,41120T4,5115T5,6#uau3

1@2 177
2 T0,12192T1,2190T2,3130T3,41

15
2 T4,5#uau%, ~3.40!

S55e2uau2
\2

16m4v0
6
$@3T0,522T5,0260T1,4121T4,11

27
2 T2,31138T3,2#uau5

1@2120T0,3142T3,01
81
2 T1,21414T2,1#uau31@9T0,11180T1,0#uau%, ~3.41!

and

S65e2uau2
\2

16m4v0
6
$@~T4,72T0,3!1 1

2 ~T3,02T7,4!13~T2,12T6,5!18~T3,62T1,4!14~T4,12T6,3!

124~T3,22T5,4!#uau71@3T1,0196T2,1224T0,3112T3,0148T2,5224T5,22168T4,316T3,6

23T6,3221T5,4#uau51@48T1,01108T1,4254T4,12252T3,2118T2,529T5,2224T4,3#uau3

1@60T0,3230T3,0272T2,1112T1,426T4,1#uau%. ~3.42!

We have now accounted for all terms in the asymptotic expansion of Eq.~3.26!. For a more
detailed account of these calculations, we refer the reader to the thesis of McRae.20

B. Method 2: Perturbed HOCS initial condition (BD)

As stated earlier, the initial condition used by BD is

F~x,0!5e2uau2/2(
n50

` an

An!
fn . ~3.43!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Assuming the expansion

F~x,t !5 (
n50

`

C n expS 2
iEnt

\ Dfn~x!, ~3.44!

we have

^F~x,t !uâuF~x,t !&5 (
n50

`

(
m50

`

C nC m* expF i t\ ~Em2En!G^fmuâufn&, ~3.45!

where

C n5e2uau2/2
an

An!
. ~3.46!

Obviously, the expression forC n much simpler than that ofCn in Method 1, cf. Eq.~3.14!. The
solution of Method 2 is comprised of theS1, S3, andS5 terms of Method 1.

C. Classical Limit of Method 1

For the sake of notation, let

^C~x,t !ux̂uC~x,t !&5 (
n50

`

^x̂&~n!ln. ~3.47!

Using Eq.~3.26! and the fact that

x̂5A \

2mv0
~ â1â†!, ~3.48!

the zeroth order term is given by

^x̂&~0!5A \

2mv0
~S11S1* !. ~3.49!

Settinga5uaue2 iw and using Eqs.~3.11!, ~3.35!, and~B8!, it follows that

lim
CLCS

^x̂&~0!5A cos~Wt1w!, ~3.50!

where the frequencyW admits the series expansion given in Eq.~B9!.
At this point, we can note two discrepancies from the zeroth order classical solution giv

Eqs.~2.8! and ~2.9!.

~1! There is no phase term in the classical solution@due to the initial conditions in Eq.~2.7!#. This
can be easily remedied by settingw50 in the quantum result.

~2! The frequency expansion in Eq.~B9! doesnotagree with the classical frequency expansion
Eq. ~2.9!, specifically as regards the second order term. The explanation for this observa
a bit more subtle.

Consider the zeroth order term from the classical Poincare´–Lindstedt method,A cos(vt). From
Eqs.~2.9! and ~B9!, we can write the classical Poincare´–Lindstedt frequency as
J. Math. Phys., Vol. 38, No. 6, June 1997
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v5W1
15A4l2

8m2v0
3 2

147A6l3

16m3v0
5 1•••. ~3.51!

Writing the classical Poincare´–Lindstedt solution forx(t) given in Eq.~2.8! in terms ofW and
replacing other trigonometric functions with the first few terms of their Taylor series expans

x~ t !5A cos~Wt!1
A3l

8mv0
2 @cos~3Wt!2cos~Wt!#2

15A5l2t

8m2v0
3 sin~Wt!

1
A5l2

16m2v0
4 F234 cos~Wt!26 cos~3Wt!1

1

4
cos~5Wt!G

1
A7l3t

64m3v0
5 @603 sin~Wt!245 sin~3Wt!#

2
225A9l4t2

128m4v0
6 cos~Wt!1O~l4!. ~3.52!

Thus, in order for the classical limit of the BD method to agree with the classical Poinc´–
Lindstedt results, secular terms must arise from the classical limit of higher order terms
quantum BD series. This turns out to be the case, as we now show.

Consider the classical limit of the first order terms in Eq.~3.47!:

^x̂&~1!5A \

2mv0

~S21S2*1S31S3* !. ~3.53!

Using Eqs.~3.37! and ~3.39!,

^ x̂&~1!5A \3

32m5v0
7e

2uau2H F12 ~T4,52T0,1!14~T3,42T1,2!G uau5

1@28T0,1112T2,31T3,412T0,326T2,12T3,0#uau3

16@T1,22T1,0#uauJ 1 complex conjugate. ~3.54!

In order to calculate the classical limit of theuau5 term, we must use the results given in Eq
~B11! and~B12!. The classical limit of the other terms can be obtained with the use of Eq.~B8!.
The result is

lim
CLCS

^x̂&~1!5
A3

8mv0
2 @cos~3Wt!2cos~Wt!220ts sin~Wt!#, ~3.55!

wheres is given by Eq.~B12!. Explicitly writing out the first few terms ofs, we have

lim
CLCS

l^x̂&~1!5
A3l

8mv0
2 @cos~3Wt!2cos~Wt!#2

15A5l2t

8m2v0
3 sin~Wt!1

255A7l3t

32m3v0
5 sin~Wt!1O~l4!.

~3.56!

Note that the first term ins gives the orderl2 secular term that was predicted in Eq.~3.52! by
rearranging the classical solution.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now consider the classical limit of the second order terms@see Eqs.~3.40!, ~3.41!, and~3.42!#:

^x̂&~2!5A \

2mv0

~S41S4*1S51S5*1S61S6* !. ~3.57!

The classical limit of theuau9, uau7, anduau5 terms can be found with the aid of Eqs.~B11! and
~B14!. Keeping only the first term ofs @see Eq.~B12!#, we have that

lim
CLCS

l2^x̂&~2!5
A5l2

16v0
4m2 F234 cos~Wt!26 cos~3Wt!1

1

4
cos~5Wt!G1

93A7l3t

64m3v0
5 sin~Wt!

2
45A7l3t

64m3v0
5 sin~3Wt!2

225A9l4t2

128m4v0
6 cos~Wt!1O~l4!. ~3.58!

Comparing Eqs.~3.56! and ~3.58! with Eq. ~3.52!, we see that we can account for the secu
terms which arise from the classical limit of the BD method.In addition, if Eq. (3.51) is used to
write the results of Eqs. (3.50), (3.56), and (3.58) in terms ofv, and the trigonometric functions
involving (v2W) are replaced by the first few terms of their Taylor series expansions, we o
the Poincare´–Lindstedt perturbation expansion of Eqs. (2.8) and (2.9).

In summary, the application of the CLCS to the quantum perturbation expansion yield
Method 1 produces a classical expansion with secular terms. However, if the Poincare´–Lindstedt
perturbation expansion to the initial value problem of Eqs.~2.6! and~2.7! is written in terms of the
frequency expansion obtained from Method 1 and then expanded, an identical expansio
secular terms is obtained.Conversely, the classical expansion yielded by Method 1, complete
secular terms, can be transformed into the Poincare´–Lindstedt perturbation expansion.

D. Classical limit of Method 2 (BD)

This proceeds in a manner similar to that of Method 1 above. In order to avoid confusion
the constantA of Method 1, we denote the CLCS here as\→0, uau→`, with \uau2

5A2mv0/2. The result is

^F~x,t !ux̂uF~x,t !&CLCS5A cos~W t !1
A3l

8mv0
2

@cos~3W t !26 cos~W t !#

1
A5l2

128v0
4m2

@303 cos~W t !278 cos~3W t !12 cos~5W t !#1•••,

~3.59!

with

W 5v01
3A2l

2mv0

2
51A4

16m2v0
3

l21
375A6

32m3v0
5
l31•••. ~3.60!

In order to compare these results with the classical Poincare´–Lindstedt results of Eqs.~2.8! and
~2.9!, we need to invert the series

^F~x,0!ux̂uF~x,0!&5A5A2
5A3

8mv0
2 l1

227

128

A5

m2v0
4 l21•••, ~3.61!
J. Math. Phys., Vol. 38, No. 6, June 1997
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to obtain

A5A1
5

8

A3

mv0
2 l2

77

128

A5

m2v0
4 l21•••. ~3.62!

When this expansion forA is substituted into Eqs.~3.59! and~3.60!, then the classical Poincare´–
Lindstedt expansions of Eqs.~2.8! and ~2.9! are obtained.

In addition we have

^C~x,t !u p̂uC~x,t !&CLCS52Amv0 sin~W t !2
A3l

8v0

@3 sin~3W t !16 sin~W t !#

1
A5l2

64mv0
3 F25 sin~5W t !181 sin~3W t !1

249

2
sin~W t !G1•••,

~3.63!

with W as given in Eq.~3.60!. Once the substitution of Eq.~3.62! is made, then the classica
Poincare´–Lindstedt expansion forp(t) of Eq. ~2.10! is obtained.

In summary, the CLCS applied to Method 2 also yields a Poincare´–Lindstedt perturbation
expansion for a classical periodic orbit. However the amplitudeA of this orbit is given by Eq.
~3.62! and not simplyA. This is in analogy to the situation for classical orbits shown in Section

IV. THE CONNECTION BETWEEN THE N\ AND THE zaz2\ CLASSICAL LIMITS FOR
THE HARMONIC OSCILLATOR PROBLEM

The connection between theN\ and theuau2\ classical limits~for time independent and time
dependent perturbation theories, respectively! is not obvious apart from the common mathemati
operation of letting\→0. This section will provide some insight by investigating the class
limit of the quantum probability density for the harmonic oscillator problem.

A. The classical probability density

Here we assume the special case of a bounded periodic orbit in one spatial dimensio
potential wellV(x) with turning points atx1 and x2. Since the classical probability density
inversely proportional to the the velocity (v(x)),

Pcl~x!5N
1

AE2V~x!
, ~4.1!

whereN is determined by the normalization condition

E
x1

x2
Pcl~x!dx51. ~4.2!

For the harmonic oscillator,

V~x!5
mv0

2

2
x2, ~4.3!

the turning points are andx152A andx25A, where
J. Math. Phys., Vol. 38, No. 6, June 1997
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A5A 2E

mv0
2
5A 2J

mv0

, ~4.4!

andJ is the classical action of the orbit. Thus,

Pcl~x!5H 1

pAA22x2
, for uxu,A,

0, for uxu.A.

~4.5!

The classical probability density along with the corresponding quantum probability dens
depicted in Fig. 1.

B. The probability density of the harmonic oscillator coherent state and its classical
limit

Consider the probability distribution for the harmonic oscillator coherent state and its cla
limit given in Eq. ~3.12!. In order to compare this result with the probability density for
ensemble of classical orbits given in Eq.~4.5!, we can take a time average over one period
oscillation,42 T52p/v0:

lim
CLCS

1

TE0
T

uC~0!~x,t !u2dt5
1

TE0
T

d@x2A cos~v0t1w!#dt. ~4.6!

Using the fact that@Ref. 8, p. 1471, Eq.~21!#

d@g~ t !#5(
j

d~ t2t j !

ug8~ t j !u
, ~4.7!

where thet j are the simple zeroes ofg(t), it can be shown that the right hand side of Eq.~4.6! is
equal to the classical probability density in Eq.~4.5!.

FIG. 1. The classical (Pcl(x)) and quantum (ufn
(0)(x)u2,n550) probability densities for the harmonic oscillator.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now consider the coherent state written in terms of the harmonic oscillator stationary
basis functions:

C~0!~x,t !5e2uau2/2(
n50

` an

An!
expF2 i tv0S n1

1

2
D Gfn

~0!~x!. ~4.8!

The time average of the magnitude of the above wavefunction is

1

TE0
T

uC~0!~x,t !u2dt5e2uau2(
n50

` uau2n

n!
ufn

~0!u2. ~4.9!

The coefficients of this sum constitute a Poisson density function,

e2uau2uau2n

n!
, ~4.10!

which is plotted in Fig. 2. If we assume for the moment thatn is a continuous variable,~say
x), we can write the Poisson density function in terms of the gamma function,

f ~x!5
e2uau2uau2x

G~x11!
. ~4.11!

The derivative off (x) is given by

f 8~x!5
e2uau2uau2x@ lnuau22c~x11!#

G~x11!
, ~4.12!

wherec(•) is the digamma~or psi! function @see Abramowitz and Stegun,43 p. 258, Eq.~6.3.1!#.
From Abramowitz and Stegun,43 p. 259, Eq.~6.3.18!,

c~x11!; ln~x11!2
1

~2x12!
1•••, x→`, ~4.13!

FIG. 2. The Poisson distributione2uau2uau2n/n!. The first peak corresponds touau517 and the second touau527.
J. Math. Phys., Vol. 38, No. 6, June 1997
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so that there is a critical point atx'uau221, for largex ~and hence for largeuau). This means that
the maximum of the Poisson distribution is approximately located atn'uau2 for large uau. The
fact that the dominant contribution in the sum of harmonic oscillator wavefunctions is due to
functions with quantum numbers in the neighborhood ofn'uau2 was noted by Schro¨dinger in his
paper which introduced the harmonic oscillator coherent states.6,7 LetN denote the value ofn with
the maximum contribution to the sum in Eq.~4.9! ~i.e.,N'uau2). Note that the maximum doesnot
become sharper and higher asuau increases. From Abramowitz and Stegun,43 p. 929 the variance
of the Poisson distribution isuau2 so that the distribution spreads out asuau increases~see Fig. 2!.
This means that the classical limit of coherent states does not just select a single wavefun
n'uau2. Instead, an increasing number of wavefunctions are included in the classical limit.
supports Ballentine’s statement44 that the classical limit of a quantum state is an ensemble
classical orbits, not a single classical orbit.

We have already shown, using thex-representation of the probability density that Eq.~4.9!
goes to the classical probability density in the CLCS@see Eqs.~4.6! and~4.7!#. The proof of this
fact using the representation in terms of the harmonic oscillator stationary states@i.e., the right
hand side of Eq.~4.9!#, is less elegant but it does however provide some insight into the inter
between the CLCS@see Eq.~3.11!# and the\→0, n→`, n\5J limit for stationary states.

The basic idea~inspired by Liboff,45 p. 55! is to use the change of variables

z5
n2uau2

uau
~4.14!

to transform the sum weighted by a discrete Poisson distribution to an integral weighted
continuous Gaussian distribution. Using Stirling’s formula@see Abramowitz and Stegun,43 p. 257,
Eq. ~6.1.37!#, one can show that

e2uau2uau2n11

n!
;

1

A2p
expS 2z2

2 D , uau→`. ~4.15!

Note that sincen5N(11z/uau), the WKB approximation46 for ufn
(0)(x)u2 is valid in the CLCS. It

can be shown that the WKB approximation forufn
(0)(x)u2 goes to zero in the CLCS foruxu.A,

whereA is given in Eq.~4.4!. For2A,x,A,

ufnWKB
~0! ~x!u25

mv0

pA2Q~x!
H 11sinF 2

\
E

2A

x A2Q~y!dyG J , ~4.16!

whereQ(x)5m2v0
2x222mE. Letting Jn5n\ andJN5N\,

1

\
5

n

Jn
5

uauz1uau2

Jn
;

uauz1uau2

JN
, uau→`, ~4.17!

so that

e2uau2(
n50

` uau2n

n!
ufn

~0!~x!u2;
1

A2p3~A22x2!
E

2`

`

e2z2/2

3H 11sinF S 2uauz

JN
1

uau2

JN
D E

2A

x A2Q~y!dyG J dz. ~4.18!
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Since the second part of the integral vanishes asuau→`, we have the required result. See t
thesis of McRae20 for more details of this proof.

V. CONCLUSIONS

A major goal of this paper has been to point out several aspects of the method of BD5 which
have not previously appeared in the literature. It is misleading to state that the BD method
easily extended to higher orders or that taking the classical limit of the results of this method
efficient approach to performing classical perturbation theory. As we have seen, in gener
second order calculations involve infinite summations for which a closed form cannot be fou
the initial condition is chosen to be a harmonic oscillator coherent state~Method 1!, secular terms
emerge in the classical limit. Knowing the classical frequency (v), these results can be rewritte
in terms ofv to remove these secular terms and obtain the classical Poincare´–Lindstedt expan-
sion. If the initial condition is chosen to be a perturbed coherent state@see Eq.~3.43!#, as has been
done in the literature, then the resulting solution must be rearranged in order to agree w
classical solution for higher orders in the perturbation parameter.

We have been able to pinpoint the location of secular terms which cause problems
classical limit when the initial conditions of Method 1 are assumed. In S3, the terms of
a4 anda5 ~which would lead to secular terms in the classical limit! cancel each other out in th
expression^fm

(0)uâufn
(1)&1^fm

(1)uâufn
(0)&. Similarly in S5, terms of ordera6 to a9 disappear

through cancellation in the expression^fm
(0)uâufn

(2)&1^fm
(1)uâufn

(1)&1^fm
(2)uâufn

(0)&. These fortu-
itous cancellations do not occur in the expressionCn

(0)Cm*
(1)1Cn

(1)Cm*
(0) in S2 and S6, or in the

expressionCn
(2)Cm*

(0)1Cn
(1)Cm*

(1)1Cn
(0)Cm*

(2) in S4, causing secular terms to emerge in the c
sical limit. Admittedly, a deeper reason for this appearance of secular terms is not known
time. In addition, there remains the question of whether secular terms will emerge at higher
from the second choice of initial conditions. Clearly further work is needed to understand
problems completely. We hope that our study would inspire further investigations.

The method of Bhattacharyya32,33has also been investigated20 using the initial conditions of a
HOCS. It is found to yield the same results as BD Method 1. As such, Bhattacharyya’s m
will encounter the same problem of secular terms emerging in the classical limit for this i
condition.

Obtaining classical Poincare´–Lindstedt perturbation expansions from a classical limit of
herent states is not unexpected. It turns out that the classical limit of coherent states given
~3.11! is also valid for solutions of the time development of a harmonic oscillator coherent sta
an anharmonic potential. Several authors47–51 have considered classical limits of coherent st
time evolution. In particular, Hagedorn49 rigorously proved a result originally introduced b
Heller.52 Heller calculated the time evolution of certain Gaussian wave packets semi-class
Hagedorn rigorously showed that the quantum evolution of these wave packets approac
classical solution asymptotically as\→0. At this point, it is appropriate to mention tha
Combescure53 has extended Hagedorn’s results to the case of explicitly time dependent pe
Hamiltonians where the classical equations of motion possess periodic orbits.

In Section IV, we have shown the connection between two types of classical limit which
the common mathematical operation of letting\→0. The classical limit for coherent states al
involves then\5J limit for energy eigenstates. In the harmonic oscillator~and perturbed anhar
monic oscillator!, the connection between the two limits implies that an increasing numbe
eigenstates are included as\→0 in order to produce a delta function distribution which is ce
tered on the classical periodic orbit.
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APPENDIX A: CLASSICAL LIMIT OF RSPT

It has been shown that a classical limit of the quantum mechanical Rayleigh–Schro¨dinger
perturbation series~see for example the review article of Hirschfelderet al.41! for the energy
eigenvalues can be taken to yield the classical canonical~i.e., action preserving! perturbation
series. Turchetti3 was the first to study the classical limit of the Rayleigh–Schro¨dinger perturba-
tion series for one dimensional anharmonic oscillators. For more on the results of this secti
the paper of McRae and Vrscay1 and references therein.

Quantum mechanically, the eigenvalue problem to be solved is

@Ĥ ~0!1lV̂#fn~x!5Enfn~x!, ~A1!

where the solutions of the unperturbed eigenvalue problem,

Ĥ ~0!fn
~0!~x!5En

~0!fn
~0!~x!, ~A2!

are known. In the above equations,Ĥ (0) denotes the unperturbed quantum Hamiltonian,l is the
perturbation parameter,V̂ is the perturbing potential,fn(x),fn

(0)(x), En , andEn
(0) are the eigen-

functions and the energy eigenvalues of the perturbed and unperturbed systems, respe
Using Rayleigh–Schro¨dinger perturbation theory, a perturbation series for the energy,

En~\!5(
j50

`

En
~ j !~\!l j , ~A3!

can be calculated.
In the corresponding classical situation, consider a Hamiltonian of the form

H~x,p!5H ~0!~x,p!1lV~x!, ~A4!

whereH (0)(x,p) is the Hamiltonian of the unperturbed classical system,l is the perturbation
parameter, andV(x) is the perturbing potential. One can use Poincare´–von Zeipel perturbation
theory to find a perturbation expansion for the classical energy in terms of the action va
J:

E~J!5(
j50

`

E~ j !~J!l j . ~A5!

It is not immediately obvious which classical energy out of an infinite continuum of pos
energies is being calculated in the perturbation series of Eq.~A5!. It turns out to be the energy o
the periodic orbit in phase space that possesses the same actionJ as the unperturbed system. Th
is due to the fact that classical canonical perturbation theory preserves the action.

The appropriate classical limit for Turchetti’s result is\→0, n→`, with n\5J. In this limit,
the quantum perturbation series forEn goes to the classical perturbation series forE.

Graffi and Paul4 have rigorously proved the validity of then\ classical limit for theN
dimensional harmonic oscillator with nonresonant frequencies and an entire holomorphic pe
J. Math. Phys., Vol. 38, No. 6, June 1997
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ing potential. Alverez, Graffi and Silverstone54 have shown that the Rayleigh–Schro¨dinger per-
turbation series for the energy can be rearranged to give the classical series plus con
subseries that give corrections in powers of\, through investigations of the quartic54 and cubic55

one dimensional anharmonic oscillators. McRae and Vrscay56,1 introduced a method of calculatin
the classical energy series of Eq.~A5! analogous to the quantum Hellmann–Feynman meth
which is easier to calculate to large order than the Poincare´–von Zeipel method. The classica
limit of perturbation series for radial hydrogenic problems was also investigated. Finally,
important to mention another method of classical perturbation theory, the Birkhoff,57 Gustavson58

normal form perturbation theory and its quantum analogue.59–64

APPENDIX B: CLASSICAL LIMIT RESULTS FOR THE BD METHOD

This appendix contains several results which are useful for calculating classical lim
expressions from the BD method. If we only keep terms to first order inl, the BD solutions are
made up of summations of the form

e2uau2(
n50

` uau2n

n!
exp@a1b\l~n1c!# ~B1!

~wherea, b and c are constants!, for which a closed form can be found and the classical li
taken. If higher order terms inl are retained, then the exponentials will contain terms of or
n2 and higher and a closed form for the summations can no longer be found. In this cas
results of this appendix are required in order to obtain the classical limit. In the literature5,9–17

only first order perturbative solutions have been given so that the details of the complic
which occur for taking the classical limit of higher order terms have not been published be

The following result may be proved by induction using properties of Stirling numbers o
second kind which can be found in Abramowitz and Stegun43 on p. 824,

e2uau2(
n50

`

expF i t\ ~En1 j2En1k!G uau2n

n!
np

5e2uau2(
l50

p21

S p
~p2 l ! (

n50

`

expF i t\ ~En1 j1p2 l2En1k1p2 l !G uau2~n1p2 l !

n!
, ~B2!

for p51,2, . . . ,whereS n
(m) are Stirling numbers of the second kind. Note that for the special

of j5k we have

e2uau2(
n50

` uau2n

n!
np5 (

l50

p21

S p
~p2 l !uau2~p2 l !, for p>1. ~B3!

The following result was first proved by Benoit:18

L5 lim
CLCS

e2uau2(
n50

` uau2n

n!
expF (

j50

`

\ j(
k50

j

aj ,kn
kG5expF (

k50

`

ak,kg
kG , ~B4!

whereg andCLCSare defined in Eq.~3.11!. The above limit may be proved by expanding t
exponential in the left hand side of Eq.~B4! in a Taylor series, rearranging so that all of the\
terms are collected together, and then using the result which follows to take the classica
From Eq.~B3!,
J. Math. Phys., Vol. 38, No. 6, June 1997
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e2uau2(
n50

` uau2n

n!
\ jnk5 (

i50

k21

S k
~k2 i !uau2~k2 i !\ j , k>1, ~B5!

so that

lim
CLCS

e2uau2(
n50

` uau2n

n!
\ jnk5H g j , if k5 j ,

0, if j.k,

`, if j,k.

~B6!

As a particular case, consider the classical limit of

S5e2uau2(
n50

`

expF i t\ ~En1 j2En1k!G uau2n

n!
. ~B7!

Using the series expansion of Eq.~3.17! and Eqs.~3.19!–~3.22!, for the quartic anharmonic
oscillator, we have

lim
CLCS

e2uau2(
n50

`

expF i t\ ~En1 j2En1k!G uau2n

n!
5exp@ i t ~ j2k!W#, ~B8!

where

W5v01
3g

m2v0
2
l2

51

4

g2

m4v0
5
l21

375

4

g3

m6v0
8
l31O~l4!

5v01
3A2

2mv0

l2
51

16

A4

m2v0
3
l21

375

32

A6

m3v0
5
l31O~l4!. ~B9!

Note that in deriving Eq.~B4! we expanded the exponential. This means that the resulting clas
limit is valid only for finite times.

Using similar techniques, it may be shown that

lim
CLCS

uau2e2uau2(
n50

` uau2n

n! H expF (
j50

`

\ j(
k50

j

aj ,kn
kG2expF (

j50

`

\ j(
k50

j

bj ,kn
kG J

5expF (
j50

`

aj jg
j G (
k51

`

~ak,k212bk,k21!g
k, ~B10!

whenaj j5bj j for j50, . . . ,̀ . Applying the above result to the situation which arises in the
calculations,

lim
CLCS

uau2e2uau2@Tj ,k2TJ,K#5exp@ i t ~ j2k!W# i t ~ j 22k22J21K2!s, ~B11!

when j2k5J2K, whereW is given in Eq.~B9! and

s5
3A2l

4mv0

2
51A4l2

16m2v0
3

1
1125A6l3

64m3v0
5

1•••. ~B12!

The final result is
J. Math. Phys., Vol. 38, No. 6, June 1997
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lim
CLCS

uau4e2uau2(
n50

` uau2n

n! H expF (
j50

`

\ j(
k50

j

ajkn
kG1expF (

j50

`

\ j(
k50

j

bjkn
kG

22expF (
j50

`

\ j(
k50

j

djkn
kG J

5expF (
j50

`

aj jg
j G (
k52

`

gkH 2~ak,k221bk,k2222dk,k22!

1
1

2 (
i51

k21

~ai ,i21ak2 i ,k2 i211bi ,i21bk2 i ,k2 i2122di ,i21dk2 i ,k2 i21!J , ~B13!

when aj j5bj j5dj j and aj , j211bj , j2122dj , j2150. This enables us to calculate the classi
limit of terms such as theuau9 term in Eq.~3.40!:

lim
CLCS

uau4e2uau2@Tj ,k1TJ,K22TJ ,K #

5exp@ i t ~ j2k!W#H A4l2

4m2v0
2 F29t2

8
~ j2k!2@~ j1k!21~J1K !222~J1K !2#

1
i t

v0
@ j 32k31J32K322~J 32K 3!#1O~l3!G J , ~B14!

when j2k5J2K5J2K and j 22k21J22K222(J 22K 2)50.
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Canonical quantization of photons in a Rindler wedge
Valter Morettia)
Dipartimento di Fisica, Universita` di Trento and Istituto Nazionale di Fisica Nucleare,
Gruppo Collegato di Trento, 38050 Povo (TN), Italy
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Photons and thermal photons are studied in the Rindler wedge employing Feyn-
man’s gauge and canonical quantization. A Gupta–Bleuler-like formalism is ex-
plicitly implemented. Nonthermal Wightman functions and related~Euclidean and
Lorentzian! Green functions are explicitly calculated and their complex time ana-
lytic structure is carefully analyzed using the Fulling–Ruijsenaars master function.
The invariance of the advanced minus retarded fundamental solution is checked
and a Ward identity discussed. It is suggested that the KMS condition can be
implemented to define thermal states also dealing with unphysical photons. Follow-
ing this way, thermal Wightman functions and related~Euclidean and Lorentzian!
Green functions are built up. Their analytic structure is carefully examined employ-
ing a thermal master function as in the nonthermal case and other corresponding
properties are discussed. Some subtleties arising dealing with unphysical photons in
the presence of the Rindler conical singularity are pointed out. In particular, a
one-parameter family of thermal Wightman and Schwinger functions with the same
physical content is proved to exist due to a remaining~nontrivial! static gauge
ambiguity. A photon version of the Bisognano–Wichmann theorem is investigated
in the case of photons propagating in the Rindler Wedge employing Wightman
functions. In spite of the found ambiguity in defining Rindler Green functions, the
coincidence of (b52p)-Rindler Wightman functions and Minkowski Wightman
functions is proved dealing with test functions related to physical photons and
Lorentz photons. ©1997 American Institute of Physics.
@S0022-2488~97!05205-5#

I. INTRODUCTION

As is well known, the Rindler wedgeWR is defined by the inequalityx.utu in a fixed system
of rectangular coordinates (t,x,y,z) in Minkowski space-time.WR is a globally hyperbolic sub-
manifold of Minkowski space-time. In this paper, we shall considerWR as an open set. A globa
coordinate frame (t,r,y,z) onWR is obtained by setting

x5r cosht, t5r sinh t, ~1!

for r.0, so thatx22t25r2.
Notice that any liner5r0 , y5y0 , z5z0 is the trajectory of a uniformly accelerated particl

with proper accelerationa5r0
21 and proper times5at along the trajectory. Furthermore, th

surfacest5constant are Cauchy surfaces ofWR . The Minkowski metric takes the form of th
Rindler metric

ds252r2dt21dr21dxt
2 ,

with r.0 andxt5(y,z).

a!Electronic mail: moretti@science.unitn.it
0022-2488/97/38(6)/2922/32/$10.00
2922 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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As is well-known, the Minkowski metric admits the timelike Killing fieldK5]t in WR . This
vector generates the isometryt→t1t0 . The hypersurfacer50, i.e.,x22t250 is aKilling event
horizonwhich bifurcates1 in the transverse two-planex5t50. We remind that the Rindler metri
approximates the metric near the horizon of a Schwarzschild black hole. In this sense, the p
in the Rindler wedge is a toy model of the physics around a black hole. Thus, we expect tha
result of this paper can be extended to the Schwarzschild black hole case.

In the present paper we shall study the quantum field theory in the Rindler regionWR in the
case of a photon field by building up its Fock representation over theFulling vacuumuF& which
is invariant undert-translations.2–5 Other authors have studied photon field or thermal photon
the Rindler wedge, directly employing the strength fieldFmn instead of the vectorial field
Am ,

6,7 thus avoiding gauge related problems, or they have analyzed particular problems on8 In
this paper we shall develop a more mathematical and systematic studying using the fieldAm .

In Sec. I, we shall implement a canonical approach to quantization of the vectorial p
field using Feynman’s gauge, taking care to correctly deal with the arising unphysical photo
fact, a Gupta–Bleuler-like formalism will be explicitly implemented and thenon-Hilbertian struc-
ture of the quantum state space analyzed.

In Sec. II, the Wightman functions will be built up within the framework of a three-smea
distributional formalism. The whole analytic structure of these functions, the related Schw
function, Feynman propagator, and the advanced-minus-retarded function will be analyze
ploying a Rindler-time complexmaster functionintroduced by Fulling and Ruijsenaars for th
scalar case.9 In particular, the expected invariance of the advanced-minus-retarded function w
proved. Finally, a Ward identity will be discussed.

In Sec. III, we shall propose a definition of thermal states in terms of Wightman func
which uses the KMS condition also dealing with unphysical photons. We shall see tha
definition agrees with all the expected physical requirements. The thermal Wightman fun
will be explicitly built up employing the sum over images method and a thermal master fun
analysis will be implemented. We shall see that some gauge ambiguities remain in the de
of these Green functions. In fact we shall find a one-parameter class of physically equi
master~Schwinger, Wightman! functions which, different from the scalar case, are defined a
from the conical singularity. This is due to static nontrivial unphysical terms which affect al
thermal Green functions. In the caseb52p ~absence of conical singularities! only one particular
Green function defined on the whole Euclidean manifold will arise from the above-menti
class. The Wightman functions, related by analytic continuation to this special Schwinger
tion, will give rise to the local coincidence of the Minkowski vacuum with theb52p thermal
Rindler state. This coincidence generalizes, in terms of Wightman functions, the Bisogn
Wichmann theorem7,10,11 including the photon field. This local vacua identity, considered a
Wightman functions identity, will be proved employing physical or Lorentz test wave functi

II. PHOTON FIELD QUANTIZATION AND GUPTA–BLEULER FORMALISM IN A
RINDLER WEDGE

A. Indefinite scalar product

The first step to quantize a~quasi-! free field theory in a globally hyperbolic space-tim
consists of the definition of an appropriate conserved indefinite scalar product with resp
spatial Cauchy 3-surfaces of space-time; this inner product does not depend on the pa
choice of a Cauchy surface.1,12 We shall suppose to work inWR using coordinates
(x0,x1,x2,x3)5(t,r,y,z) defined above. It is convenient to represent the inner product on
x05t5constant spatial surfaces, they being Cauchy surfaces. A natural choice of a qu
vacuum~Fulling vacuum in our case! is obtained by decomposing the field over normalized mo
which are imaginary exponentials in the chosen time.13,14 Thus, the creation and destructio
operators related to these modes define both the quantum vacuum and the correspondin
representation.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Let us define the canonical conjugate momentum of thereal field Am in the case of Feynman
gauge asa!

)A
mn :5

]L

]]mAn
5A2g@¹nAm2¹mAn2gmn¹aA

a#5A2g~Fmn2gmn¹aAa!,

where¹m is the covariant derivative and

L:52A2gF14FmnF
mn2

1

2a
~¹nAn!2G

a51

52
A2g

2
@¹mAn¹mAn1~Cov. Deriv.!# ~2!

is the Lagrangian of the photon in theFeynman gauge, g standing everywhere for the determina
of the complete metric. Classically, one has to impose theLorentz condition,

¹mAm50, ~3!

as constraint on the solutions of the vectorial Klein–Gordon equation produced by the Lagra
~2! as motion equations

¹m¹mAn~x!50. ~4!

Dealing with generallycomplexphoton wave functions, the usual canonical conserved indefi
scalar product reads8

~A,B!5 i E
(
dSAhnm

~An*)B
mn2Bn)A*

mn!

A2g
, ~5!

wheredS:5dx1dx2dx3, ( is a x0 constant Cauchy surface, andn52dx0/A2(dx0,dx0) is its
normalized, positive time oriented, normal vector. Finally,h is the determinant of the Euclidea
3-metrichi j induced on(.

A simpler conserved scalar product follows from theFermi Lagrangianobtained by dropping
the classically unimportant total derivative term in Eq.~2!. The motion equations remain Klein
Gordon Equations~4!. Dealing with this as in the previous case, we obtain a new conserved
product,

~A,B!852 i E
(
dSAhnmAn*¹JmB

n,

where f¹Jmg:5 f¹mg2g¹m f . The relation between the two scalar products reads, due to
antisymmetry of the tensorDAB

mn , as

~A,B!2~A,B!85 i E
(
dSAhnm¹nDAB

mn ,5 i E
(
dx1dx2dx3 (

i51,2,3
] i~A2gDAB

0i !,

where we definedDAB
mn :5A* mBn2A* nBm and used, in ourstatic coordinatesb!

nm5
2dm

0

A2g00
, g005

h

g
, dSAhnm52dx1dx2dx3A2gdm

0 .

The integral written above becomes a two-dimensional integral over the edge]( of (. This
vanishes provided convenient boundary conditions on the fieldsAm andBm are satisfied dependin
on the behavior ofA2g (5r in our case! on this edge, and thus the scalar products (,) a
J. Math. Phys., Vol. 38, No. 6, June 1997
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(,)8 coincide. As in the case of a scalar field,1,14 it might be possible to build up the whole theo
by considering only realC` classical fields solutions of motion equations with acompact support
on Cauchy surfaces(. Using such functions, the two above-mentioned scalar products triv
coincide. However, this choice~at least dealing with the spinless case! requires one to deal with
wave functions containing both positive and negative frequencies.1,14 For the time being, we only
assume to deal with positive frequency smooth solutions of KG equations without spec
further details. We suppose to deal with the scalar product (,) only. Later, defining Wigh
functions, we shall employ wave functions with spatial compact support containing both po
and negative frequencies and thus we shall reconsider the identity (,)5(,)8.

B. Canonical formalism

Proceeding to the quantization of photon field inWR , using coordinates (t,r,xt), we have to
look for a decomposition of thereal field Am as

Am~x!5E
R2
dktE

0

1`

dv (
l50

3

$a~l,v,kt!
Am

~l,v,kt!~x!1C.C.%. ~6!

The positive frequency modes

Am
~l,v,kt!~x!5Am

~l,v,kt!~r,xt!e
2 ivt

must be linearly independent solutions of Klein–Gordon equations~4!. We require the following
normalization of the modes with respect to the scalar product(,):

~A~l,v,kt!,A~l8,v8,kt8!!5hll8d~kt2kt8!d~v2v8!, ~7!

~A* ~l,v,kt!,A* ~l8,v8,kt8!!52hll8d~kt2kt8!d~v2v8!, ~8!

~A* ~l,v,kt!,A~l8,v8,kt8!!50, ~9!

wherehmn[hmn[diag(21,1,1,1,).c! From Eq.~7!, it arises that

~A,A8!5E
R2
dktE

0

1`

dv (
l50

3

a~l,v,kt!
* a~l,v,kt!

8 hll8, ~10!

whereAm andAm8 are~generally complex! positive frequencyphoton wave functions. The Fourie
coefficientsa(l,v,kt) are such that the corresponding positive frequency wave functionA results
are smooth.d! These coefficients, understood as functions of the variablesv andkt , define one-
particle quantum statesuCA&.

Holding the normalization relations~7!–~9!, it simply follows from Eq.~6! that

a~l,v,kt!
5hll8~A

~l8,v8,kt8!,A!,

a~l,v,kt!
* 52hll8~A*

~l8,v8,kt8!,A!.

We have to interpret these coefficients as operators to quantize. As usual, the equal timecanonical
commutationsrules of the operatorÂ and its conjugate momentumP̂ imply the bosoniccommu-
tations rules of the operatorsâ and â†. They read, respectively, as

@Âm~x!,naP̂an~x8!#t5t85 idm
n d~r2r8!d~xt2xt8!I ~11!
J. Math. Phys., Vol. 38, No. 6, June 1997
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@the remaining (independent) equal time commutators vanish#, wheren:52dt/A2(dt,dt), and

@ â~l,v,kt!
,â

~l8,v8,kt8!

†
#5hll8d~kt2kt8!d~v2v8!I ~12!

@the remaining (independent) commutators vanish#.
We expect that not all one-particle quantum states are representable by smooth p

frequency wave functions. This should hold only for states belonging to a linear manifoldM

supposed to bedense~in some topology! in the whole one-particle quantum states space.
expect that one-particle quantum states spaceH can be represented as analgebraic tensorial
producte! H:5C4^H0 whereR1 :5@0,1`); H0 being L

2(R23R1) or a proper closed sub
space of this. We can write

uC&[@C0~kt ,v!,C1~kt ,v!,C2~kt ,v!,C3~kt ,v!#, ktPR2, vPR1 . ~13!

Finally,H has to be endowed with a scalar product compatible with the above-written com
tation relations. This reads as

^CuC8&:5 (
l,l850

3

hll8E
R
dktE

R1

dvCl* ~kt ,v!Cl8
8 ~kt ,v!.

The spaceH cannotbe considered a properly defined Hilbert space due to the presence
indefinitematrix h. This matrix appears due to the unphysical degrees of freedom represen
nontransverse photons necessary in order to deal with a gauge constraint explicitly covarian
Lorentz condition Eq.~3!. The problem is the same as in Minkowski coordinates quantizatio

The positive frequency wave function related with agenericvectoruC&PM is the following
positive frequency smooth function:

Am~x!5E
R
dktE

R1

dv (
l50

3

Cl~kt ,v!A~l,v,kt!~x!, ~14!

and thus the coincidence of the two scalar product (A,B) and ^CAuCB& results are evident.
The inverse formula of Eq.~14!, following from the normalization relations of the modes

Eqs.~7!, ~8!, and~9!, holds in the same spaceM,

Cl~kt ,v!52~A~l,v,kt!,A!52 i E
(
dSAhnm@An

* ~l,v,kt!~FA
mn2gmn¹aA

a!

2An~FA* ~l,v,kt!
mn

2gmn¹aA*
~l,v,kt!a!#

or, providedA vanish on the edge of(, it reads as

Cl~kt ,v!52~A~l,v,kt!,A!85 i E
(
dSAhnmAn

* ~l,kt ,v!
¹JmA

n.

The relations~12! have to be more correctly understood as

@ âC ,âC8
†

#5^CuC8&I ~5~AC ,AC8!I if uC&,uC8&PM)

@the remaining (independent) commutators vanish#, whereâC and âC
† , when uC&PM, are in-

terpreted as

âCA
5~A,Â! ~antilinear in A!,
J. Math. Phys., Vol. 38, No. 6, June 1997
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âCA

† 52~A* ,Â! ~ linear in A!.

Â has to be interpreted as anoperator valued distributionworking on smooth positive frequenc
photon wave functionsA.

These identities make sense dealing with an appropriate invariant linear manifold den~in
some topology! in the symmetrized Fock-like spaceF (H)s , algebraicallybuilt up as a normal
symmetrized Fock space, withâ and â† being destruction and creation operators. TheFulling
vacuumuF& is defined as

âCuF&50, uC&PH.

By the normalization relations and, in particular, because of the trivial time dependence
modes, the Rindler Hamiltonian of the photons results are diagonal if written in term
â(l,v,kt) and â(l8,v8,kt8)

†
, the spectral parameter beingv. Using the normal order prescription, w

have

:Ĥ:5:E
(
dS~A2gnsP̂snnl]lÂn2L̂!:5E dktdvv (

l50

3

hllâ~l,v,kt!
† â~l,v,kt!

.

Thus we can consider the quanta generated byâ
(l8,v8,kt8)
†

as defined Rindler-energy particle

However, there arise particles ofnegativenorm and energy due the anomalous commutation
of âl50 and âl50

† as in the Minkowskian case.f! We expect that aGupta–Bleuler-like formalism
~see Ref. 15, for example! can be used in order to deal more correctly with the Feynman ga

C. Normal modes and one-particle space

Let us seek a set of normal modes solutions of the Klein–Gordon equation and satisfyi
constraints in Eqs.~7!–~9!. We report the results and some comments here. All the calculation
contained in Appendix A.

We start with the independent modes suggested by Higuchi, Matsas, and Sudarsky in

Am
~ I ,v,kt![C~ I ,v,kt!~0,0,kzf,2kyf!, ~15!

Am
~ II ,v,kt![C~ II ,v,kt!S r]rf,2 i

v

r
f,0,0D , ~16!

Am
~G,v,kt![C~G,v,kt!~2 ivf,]rf,ikyf,ikzf![C~G,v,kt!]mf, ~17!

Am
~L,v,kt![C~L,v,kt!~0,0,kyf,kzf!, ~18!

where the coefficientsC are normalization constants, and the fieldf5f (v,kt)(x) is the mode
solution of thescalarKlein–Gordon equation inWR ,

f~v,kt!~x!5Kiv~k'r!ei ~ktxt2vt!. ~19!

Kn(z) is a well-known MacDonald function of imaginary index,16 k' :5Aky21kz
2, and

ktxt :5kyy1kzz. The Klein–Gordon equation reads as

S 2
1

r
]t
21]rr]r1r¹ t

2Df50,
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¬¬¬¬¬¬¬¬¬¬
and the solutionf5f (v,kt) also satisfies

]t
2f52v2f, ¹ t

2f:5 (
a5y,z

]a
2f52k'

2f.

It can be simply proved that modesI andII satisfy the Lorentz condition~3!. The modeG is
proportional to]mf and thus it is apure gauge mode; note that this also satisfies the Loren
condition becausef is a solution of the scalar Klein–Gordon equation. The modeL does not
satisfy the gauge condition. Using the inner product(,), onefinds the modeI to be normal to the
mode II , furthermore the linear space spanned by the unphysical modesG andL results to be
normal to the modesI andII . Departing from the work of Ref. 8, we follow a different choice
unphysical modes in order to have a complete set of normal to each other modes. We defi
modes, considering two convenient linear combinations of unphysical modesG andL,

Am
~1,v,kt![C~1,v,kt!~0,0,kzf,2kyf!, ~20!

Am
~2,v,kt![C~2,v,kt!S r]rf,2 i

v

r
f,0,0D , ~21!

Am
~3,v,kt![C~3,v,kt!~2 ivf,]rf,0,0!, ~22!

Am
~4,v,kt![C~4,v,kt!~0,0,ikyf,ikzf!. ~23!

Following the calculations of Appendix A we may define normalized modesAm
(l,v,kt) ,

Am
~0,v,kt![

Asinhpv

2p2k'

~2 ivf,]rf,0,0![Am
~G,v,kt!2 iAm

~L,v,kt! , ~24!

Am
~1,v,kt![

Asinhpv

2p2k'

~0,0,kzf,2kyf!, ~25!

Am
~2,v,kt![

Asinhpv

2p2k'
S r]rf,2 i

v

r
f,0,0D , ~26!

Am
~3,v,kt![

Asinhpv

2p2k'

~0,0,ikyf,ikzf![ iAm
~L,v,k! . ~27!

Using these modes, the normalization relations—Eqs.~7!–~9!— are satisfied.
To conclude, we are able to suggest a possible definition of the spaceM and the one-particle

spaceH. However, we shall not study this topic in depth. Let us consider the setS of theC` real
wave function solutions of the vectorial KG equation with spatialcompact supportat
utu,1`g! and such that their transverse Fourier transform vanishes with orderuktun for some
n>1 askt→0. They are, for example, transverse coordinate Laplacians ofC` compact support
KG solutions. The required condition, passing to the Fourier decomposition through Eq.~29! ~see
below!, cancels against the divergent factork'

21 in the modes and assures a finiteL2 norm ~see
below!.h! The following decomposition arises~note the presence of negative frequencies!:

Am~x!5E
R
dktE

R1

dv (
l50

3

Cl~kt ,v!Am
~l,v,kt!~x!1 (

l50

3

Cl* ~kt ,v!Am
* ~l,v,kt!~x!, ~28!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where

Cl~kt ,v!52~A~l,v,kt!,A!52~A~l,v,kt!,A!8, ~29!

because the boundary terms vanish due to compact support ofA. Employing the previously found
normal modes and standard properties of MacDonald’s functions16 it is possible to prove that thes
scalar products are finite. Similarly it is possible to obtain (l50,1,2,3),

E
R23R1

uCl~kt ,v!u2dktdv,1`,

whenAPS. We defineS :5^S&R , i.e., thereal linear space spanned by the setS. We can define
M as thecomplexlinear spaceM:5^M &C , whereM is the set of states defined by the left-ha
side of Eq.~29! whenAPS. The positive frequency wave functions of the stateuC&PM are
written in Eq. ~14!. The one photon Hilbert space is thus defined asH5M̄5C4^ TH0 . The
closure as well as the topological tensorial product will be defined employing a certain top
specified in the following section.

D. Gupta–Bleuler formalism in a Rindler space

Following the Minkowskian theory, the quantum states space of the whole theory mu
formally defined as the space of vectorsuC&PF (H)s satisfying the Lorentz constraint,

¹mÂm
1~x!uC&50, ~30!

where Âm
1 is the part of the operatorÂ containing only destructor operators. Equation~30! is

equivalent to

~ â~3,kt ,v!2â~0,kt ,v!!uC&50 for all thekt ,v. ~31!

This equation defines the physical quantum states exactly as in the case of the Minkowski
Furthermore, it can be simply proved that

¹mAm
~a,v,kt!50 for a51,2. ~32!

These modes definereal particles, endowed with a positive norm and a positive energy. They
the transverse photons, namely the two physical degrees of freedom of Rindler photons.

TheGupta–Bleuler formalism can be employed as in flat coordinates. Equation~31! reads in
a nonformal representation@where the indices of destructor operators are referred to the not
in Eq. ~13!# as

~ â@F,0,0,0#2â@0,0,0,F#!uC&50 for all FPH0 . ~33!

The space of these vectors will be termedF (HL)s . Theone-particlespaceHL can be defined
introducing the following operators:

âF :5
1

A2
~ â@F,0,0,0#2â@0,0,0,F#! b̂F :5

1

A2
~ â@F,0,0,0#1â@0,0,0,F#!.

Thus Eq.~33! reads simply as

âFuC&50 for all theFPH0 ,
J. Math. Phys., Vol. 38, No. 6, June 1997
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¬¬¬¬¬¬¬¬¬¬
andHL contains one-particle states defined by the creation operatorsâ1
† , â2

† , â†5b̂* only ~the
adjoint b̂* is defined below!.

One can trivially obtain the form of the wave function ofuC&PHL passing to the base of th
modesA(1), A(2), A(G), A(L) previously introduced. This reads as

Am
L ~x!5E

R2
dktE

R1

dv (
l51,2,G

Cl~kt ,v!Am
~l,v,kt!~x!.

These wave functions satisfy the Lorentz condition in Eq.~3!.
We define thephysical Fock spaceF (HP)s by requiring the total absence ofunphysical

photons,

â@F,0,0,0#uC&5â@0,0,0,F#uC&50 for all FPH0 .

The wave functions of the states of this space read as

Am
P~x!5E

R2
dktE

R1

dv (
l51,2

Cl~kt ,v!Am
~l,v,kt!~x!.

Obviously, it holds thatF (H)s.F (HL)s.F (HP)s .
It is possible to define a metrical topology compatible with the physics of the system.

lowing the Minkowski, Gupta–Bleuler formalism, we define a new, positive defined, scalar p
uct of uC& and uC8&PH by

^C/C8&:5 (
l,l850

3

dll8E
R
dktE

R1

dvCl* ~kt ,v!Cl8
8 ~kt ,v!.

We shall call this unphysical scalar product theEuclideanscalar product. Employing this we ma
makeH5C4^ TH0 a correctly definedHilbert space.H0 results to beL

2(R23R1) or a proper
closed subspace of this obtained imposingM̄5C4^ TH0 . We can correctly define the Fock spa
F (H)s as a Hilbert space, too. Finally, we can define the spacesF (HL)s andF (HP)s as closed
subspaces by taking the topological closure of the corresponding algebraically defined
manifolds. Using the norm related with the Euclidean scalar product, i.e., the Euclidean nor
can also define topological tools on the space of operators, in particular we can define the
~including its domain! of an operatorÔ represented by the symbolÔ* . Then we introduce on
F (H)s the limited operatorM as the only operator satisfyingi!

M uF&5uF&, MM5I , M*5M

and furthermore,

Mâl5hllâlM ~and thusMâl
†5hllâl

†M !.

Now, we can define thephysicalscalar product, by the continuous sesquilinear form,

^CuC8&:5^C/M /C8&. ~34!

Employing this definition, one has to define the adjoint with respect to the physical s
product~including the definition of the domain of the adjoint! as

Ô†5MÔ*M .

In particular, it holds that
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ments

ucts.

.

-

2931Valter Moretti: Canonical quantization of photons

¬¬¬¬¬¬¬¬¬¬
âl*5hllâl
† , â†5b̂* , b̂†5â* , M†5M*5M .

Starting from the formulas obtained above, it can be simply proved that the following state
hold:

if uC&,uC8&PF ~HP!s then ^CuC8&5^C/C8&,

if uC&,uC8&PF ~HL!s then ^CuC8&5^C/PP /C8&,

wherePP is the normal projector onto the~closed! physical Fock spaceF (HP)s . Working in the
spaceF (HL)s , only the physical part of the state contributes to the physical scalar prod
Thus, we have found exactly the same features which appear in Minkowski theory.15 In particular,
a necessary condition to consider an operatorÔ physically sensible, i.e., agauge invariant ob-
servable, consists of the requirement

^CuÔuC8&5^C/PPÔPP /C8&,

for all the vectorsuC&,uC8&PF (HL)s which make sensible the left-hand side of this identity

III. WIGHTMAN FUNCTIONS AND RELATED GREEN FUNCTIONS

A. Wightman functions, related Green functions, and their analytic structure

In this section we shall calculate, following a quite rigorous way, theWightman functionsof
Fulling vacuum for the fieldÂm . They are the distributional kernel involved calculating

^Fu~A,Â!~A8,Â!uF&

5E
(
dSAh~x!nnE

(
dS8Ah~x8!n8n8Am~x!A8m8~x8!¹J n¹J n8^FuÂm~x!Âm8~x8!uF&,

~35!

whereA andA8 belong toS . Notice that, employing such wave functions, (,)5(,)8. We shall use
only the notation (,) for the sake of simplicity. We stress that the left-hand side of Eq.~35! is
defined independently on the right-hand side:^FuÂm(x)Âm8(x8)uF& is defined just to make sen
sible Eq.~35! in a distributional-like sense.

Alternatively one could try to define the Wightman functions by using afour smearedfor-
malism~see Appendix C!. In this paper we prefer to use thethree smeared formalismbased on Eq.
~35!.

Let us consider the equation

~A,Â!5âCA
2âCA

† ,

which holds whenA,A8PS are real. Thus uCA&,uCA8&PM are obtained employing Eq.~29!.
Substituting this into the left-hand side of Eq.~35!, it arises thatj!
J. Math. Phys., Vol. 38, No. 6, June 1997
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¬¬¬¬¬¬¬¬¬¬
^Fu~A,Â!~A8,Â!uF&52^FuâCA
âCA

† uF&

52^CAuCA8&

52E
R2
dktE

R1
dv(

ll8
hll8ClA* ~kt ,v!Cl8A8~kt ,v!

52(
ll8

hll8ER2dktER1
dvE

(
dSAhnmAn

~l,kt ,v!
¹JmA

n

3E
(
dS8Ahnm8A

n8
* ~l8,kt ,v!

¹Jm8A8n8.

It is possible to change the order of the integrals on the right-hand side of the equation w
above by introducing ane-prescription in the time variable appearing into normal modes. T
follows from a careful analysis of the considered modes. Thus we obtain in a distributional
~namely taking the limite→01 at the end of calculation!,

^Fu~A,Â!~A,Â8!uF&

52E
(
dSAh~x!nnE

(
dS8Ah~x8!n8n8Am~x!Am8~x8!¹J n¹J n8^FuÂm~x!Âm8~x8!uF&,

where

^FuÂm~x!Âm8~x8!uF&~5^FuÂm~x!Âm8~x8!uF&e!:

5E
R2
dktE

0

1`

dv(
ll8

hll8Am
~l,v,kt!~r,xt!Am8

* ~l,v,kt!~r8,xt8!e2 iv~t2t82 i e!.

Using less rigor, we can obtain the same result by expanding the field operators which
in the formal object ^FuÂm(x)Âm8(x8)uF& over the normal modes and introducing th
e-prescription by hand.

Using the modes in Eqs.~24!–~27!, the expression~19! of the fieldf, and substituting all of
them in the equation above, one finds the following integral decomposition:

Wmm8
1

~x,x8!~5Wmm8
1

~x,x8!e!:

5^FuÂm~x!Âm8~x8!uF&

5
1

4p4E
R2
dkt

eikt~xt2xt8!

k'
2 Dmm8E

0

1`

dv sinhpvKiv~k'r!Kiv~k'r8!e2 iv~t2t82 i e!.

~36!

The operatorDmm8 is defined as

Dtt8:52]t]t81r]rr8]r8,

Drr8:5
1

rr8
@]t]t82r]rr8]r8#,

Dtr8:5
1

r8
@]t8r]r2]tr8]r8#,
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Drt8:5
1

r
@]tr8]r82]t8r]r#,

Dyy8:5Dzz85k'
2 ~5kt

2!

and all the remaining terms vanish.
We shall explicitly calculate the integrals written above employing an indirect method~details

are reported in Appendix B!.
We need some preliminary definitions and results.
Let us define the quantitya by

cosha~r,r8,xt2xt8!5
r21r821uxt2xt8u

2

2rr8
5
1

2S r

r8
1

r8

r
1

uxt2xt8u
2

rr8
D ~37!

and let us remember the form of the Wightman function on the Fulling vacuum of amassless
scalar field propagating inWR ~see Ref. 17 and references therein!,

W1~x,x8!5W1~t2t8,r,r8,xt2xt8!

5
1

4p4E
R2
dkte

ikt~xt2xt8!E
0

1`

dv sinhpvKiv~k'r!Kiv~k'r8!e2 iv~t2t82 i e!

5
1

4p2

a

rr8 sinha

1

a22~t2t82 i e!2
. ~38!

The integrand in the latter formula differs from the integrand in Eq.~36! due to the absence o
the factork'

22 and the operatorDmm8, only. Remember that it formally holds inR
2 that

2p ln
uxtu
m0

5E
R2
dkt

eiktxt

kt
2 where m0 :5E

0

1

du
12J0~u!

u
2E

1

1`

du
J0~u!

u
.

This is the Fourier decomposition of a well-knownGreen functionof the two-dimensional Laplace
operator. This distributional Fourier decomposition works when the logarithm in thext space acts
as an integral kernel on aL1 test functionf (xt), provided this remain inL

1 when multiplied with
the logarithm and have a Fourier transformf̂ (kt) vanishing atkt50.k! In this case the following
integrals exist and it holds:

E
R2
dkt

f̂ ~kt!

kt
2 52pE

R2
dxt ln

uxtu
m0

f ~xt!.

In particular f̂ (0)50 trivially holds when the functionf (xt) is a Laplacian of a function which
decays opportunely asuxtu→1`.l! Thus, we expect that the right-hand side of Eq.~36! can be
written as, in the cases ofDtt8, Drr8, Drt8, Dtr8,

Wmm8
1

~x,x8!5
1

2pER2dxt9 ln
uxt9u
m0

Dmm8W
1~t2t8,r,r8,uxt92~xt82xt!u!, ~39!

provided the functionDmm8W
1(t2t8,r,r8,xt9) be a Laplacian of a function which decays

required. Notice also that the integrand belongs toL1(R2) as one can verify by a direct calculatio
from the asymptotic behavior ofDmm8W

1(xt) by Eq. ~38!.
Let us consider the action of the operatorDtt852rr8Drr8 and thus the explicit expression

of the functionsWtt8
1 (x,x8) andWrr8

1 (x,x8).
J. Math. Phys., Vol. 38, No. 6, June 1997
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In Appendix B we shall prove the following remarkable identity:

Dtt8W
1~t2t8,r,r8,xt!5rr8¹ t

2@cosha~r,r8,xt!W
1~t2t8,r,r8,xt!#. ~40!

Using the fact that lnuxtu is a Green functionm! of ¹ t
2 , i.e.,

1

2pER2dxt lnuxtu¹ t
2g~yt2xt!5

1

2pER2dxt lnuyt2xtu¹ t
2g~xt!52g~yt!

and recalling Eq.~39!, it arises that

Wtt8
1

~x,x8!52
Wrr8

1
~x,x8!

rr8
52rr8 cosha~r,r8,xt2xt8!W1~t2t8,r,r8,xt2xt8!.

Let us consider the action of the operatorDtr8 and thus the explicit expressions of the functio
Wtr8

1 (x,x8) andWrt8
1 (x,x8).

It is possible to prove another remarkable identity,~see Appendix B! namely,

Dtr8W
1~t2t8,r,r8,xt!52r~t2t8!¹ t

2S sinha

a
W1D ~41!

and thus, dealing with it as in the previously considered case,

Wtr8
1

~x,x8!52
rWrt8

1
~x,x8!

r8
5r~t2t8!

sinha~r,r8,xt2xt8!

a
W1~t,t8,r,r8,xt2xt8!.

The cases ofDyy8 andDzz8 are very trivial. In fact, the action of these operators on the integr
in Eq. ~36! cancels against the termk'

22 . Thus we have

Wyy
1 ~x,x8!5Wzz

1~x,x8!5W1~x,x8!.

Summarizing, the following Wightman functions calculated on Fulling vacuum state ari

Wtt8
1

~x,x8!52rr8Wrr8
1

~x,x8!5
21

4p2

a cotha

a22~t2t82 i e!2
, ~42!

Wrt8
1

~x,x8!52r8r21Wtr8
1

~x,x8!5
21

4p2r

t2t82 i e

a22~t2t82 i e!2
, ~43!

Wyy8
1

~x,x8!5Wzz8
1

~x,x8!5W1~x,x8!5
a

4p2rr8 sinha

1

a22~t2t82 i e!2
. ~44!

Notice thatWmm8
2 (x,x8)5@Wmm8

1 (x,x8)#* .
Let us consider theanalytic structureof the Wightman functionsW1 andW2 extended to the

whole complext2t8 plane, whenr,r8P(0,1`),xt ,xt8PR2 are fixed. We have to conside
e50 andt2t8→z5t2t81 i (s2s8) (t,t8,s,s8PR) a generally complex number.

The structure is the same as in the scalar and massless case.9 It is possible to extend both th
functions on the time complex plane except for the possible appearance of simple poles~instead of
branch points! situated at

z5t2t85a~r,r8,xt ,xt8!
J. Math. Phys., Vol. 38, No. 6, June 1997
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namely

~x2x8!21uxt2xt8u
22~ t2t8!250 .

Then, the poles appear just in case oflightlike related arguments. Hence, the extended functi
Wmn8

1 andWmn8
2 result to be holomorphic on the whole remaining complexz plane and both

determine the same analytic continuation on justoneRiemann sheet. In other terms each of the
functions is an analytic continuation of the other.

We will term the shared extended function themaster functionG mm8(r,r8,xt ,xt8 ,z)
9 where

zPC. This reads as

G mm8~r,r8,xt ,xt8 ,z!5Vmm8~r,r8,xt ,xt8 ,z!G ~r,r8,xt ,xt8 ,z!, ~45!

whereG is the master function, built up dealing with the same method, of a massless scala

G ~r,r8,xt ,xt8 ,z!:5
a

4p2rr8 sinha

1

a22z2
,

and the nonvanishing bivectorsVmm8 are

Vtt8~r,r8,xt ,xt8 ,z!52rr8Vrr8~r,r8,xt ,xt8 ,z!52rr8 cosha,

Vrt8~r,r8,xt ,xt8 ,z!52r8r21Vtr8~r,r8,xt ,xt8 ,z!52r8~t2t8!
sinha

a
,

Vyy8~r,r8,xt ,xt8 ,z!5Vzz8~r,r8,xt ,xt8 ,z!51.

The functionsWmm8
1 andWmm8

2 are then obtained fromG mm8 by restricting the complex argumen
z to the real axis avoiding the poles from the lower or the upperz complex semiplane, respec
tively. This approach to thez real axis is represented by thee-prescription~also in a distributional
sense!.

B. Propagator, Schwinger function, advanced minus retarded function

It is possible to define the photonFeynman propagator GF(x,x8)mm8 by evaluatingG mm8 on
the imaginaryz axis followed by an anticlockwise rigid rotation of the domain from the imagin
axis to the real axis.9 Equivalently one can write down,9

iGF~x,x8!mm8:5u~t2t8!Wmn8
1

~x,x8!1u~t82t!Wmn8
2

~x,x8!.

Employing the Klein–Gordon equations which are satisfied by the Wightman functions w
above, remembering that the derivative of a theta function is a delta function, and moreover
the canonical commutation relations Eq.~11!, we also obtain

gab~x!¹x
a¹x

bGF~x,x8!mm85gmm8~x!@2g~x!#1/2d~x,x8!.

This equation holds for test functions with support inside ofWR ~considered as an open set!. Thus,
that propagator is a properGreen functionof vectorial and massless KG equation as we expec

Finally, let us define thetwo-point Schwinger functionas ~there isno summation over re-
peated indexes!

Smm8~r,r8,xt ,xt8 ,s2s8!:5s~m!s~m8!G mn8@r,r8,xt ,xt8 ,i ~s2s8!#,
J. Math. Phys., Vol. 38, No. 6, June 1997
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wherer,r8P(0,1`), xt ,xt8PR2, ands,s8PR, and we defined,

s~s!:52 i if s50~[t!,

s~s!:51 if s51,2,3~[r,xt!.

This Euclidean function is real and decays asus2s8u→`. We can writeSmm8(x,x8) as

Smm8~xE ,xE8 !5Vmm8~xE ,xE8 !S~xE ,xE8 !,

wherexE :5(s,r,xt) and the Euclidean bivectorsVmm8 are trivially defined.

S~xE ,xE8 !:5
a

4p2rr8 sinha

1

~s2s8!21a2

is the well-knownscalarSchwinger function in the Rindler wedge19 satisfying

gab
E ~xE!¹E

a¹E
bS~xE ,xE8 !52@gE~xE!#21/2d~xE ,xE8 !.

Starting from the latter equation, some calculations lead us ton!

gab
E ~xE!¹E

a¹E
bSmm8~xE ,xE8 !52gmm8

E
~xE!~gE~xE!!21/2d~xE ,xE8 !,

wheregmn
E :5diag(1r2,1,1,1) is theEuclidean metricassociated with the initial Rindler metri

and the covariant derivative is defined with respect to this metricgmn
E . ThusSmm8 is aEuclidean

Green functiondecaying asus2s8u→` of the vectorial KG equation on test functions wi
support in$rP(0,1`),xtPR2,sPR%. Note the points withr50 are singular points of the Eu
clidean manifold. We have defined our Euclidean manifold in order to exclude these point
that we have found is very similar to the case of a scalar field propagating in the whole Minko
manifold as well as in the Rindler wedge.9,13,14

Finally, let us consider theadvanced minus retardedfundamental solution, namely, the field
operators commutator. We shall deal with it in contravariant components,

Emm8~x,x8!:5W1mm8~x,x8!2W2mm8~x,x8!5@Âm~x!,Âm8~x8!#. ~46!

We have from Eqs.~42!–~44!,o!

Ett8~x,x8!52
1

rr8
Err8~x,x8!5

ia cotha

2pr2r82
sign~t2t8!d~a22~t2t8!2!, ~47!

Ert8~x,x8!52
r

r8
Etr8~x,x8!5

i ~t2t8!

2prr82
sign~t2t8!d~a22~t2t8!2!, ~48!

Eyy8~x,x8!5Ezz8~x,x8!5
2 ia

2prr8 sinha
sign~t2t8!d~a22~t2t8!2!. ~49!

It is possible to prove that the vectorial advanced minus retarded fundamental solution redu
the Minkowskian one, when the domain of test functions is restricted to the Rindler wedge
shall just sketch a proof of this in the following.

The advanced minus retarded solution of a photon field propagating in the whole Minko
space results are to be writtenp! in our initial Minkowskian coordinates
(x0,x1,x2,x3)[(t,x,xt)[(t,x) as
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



as far
lations,

of

ts

fields
s, the

-

as
on this
.

2937Valter Moretti: Canonical quantization of photons

¬¬¬¬¬¬¬¬¬¬
EM
mn~x,x8!5hmn

2 i

2p
sign~ t2t8!d~~ t2t8!22ux2x8u2!.

Remaining in a Minkowskian base of the tangent space, but passing to Rindler coordinates
as the arguments of the functions are concerned, employing standard distributional manipu
one can also write downEM

mn(x,x8) in WR as
q!

EM
mn~x,x8!5hmn

2 ia

2prr8 sinha
sign~t2t8!d~a22~t2t8!2!. ~50!

Starting fromEmm8 expressed in Rindler coordinates by Eqs.~47!–~49! and coming back to
Minkowski tetrad, we find just the right-hand side of Eq.~50!. Take into account that, because
the presence of adelta function in Eqs.~47!–~49!, it is possible to changeut2t8u with a ~and so
on! during calculations.

C. A Ward identity

Let us consider the following identity~where primed derivatives works on primed argumen!:

gms~x!¹sGF
mn8~x,x8!2¹n8GF~x,x8!50, ~51!

whereGF is the scalar massless Feynman propagator. Recalling that equal time evaluated
operators commute and the definition of Feynman propagator in terms of Wightman function
formula written above results to be equivalent to

¹mWmn8
6

~x,x8!52gn8l8~x8!¹l8W6~x,x8!. ~52!

The identity in Eq.~51! is very important because it is aWard identityfor the photon field in the
Feynman gauge obtained~in Minkowskian coordinates! by a path integral quantization and im
posing the BRST invariance.20 r!

It is possible to prove Eq.~52! by explicitly calculating both sides through the formul
obtained above. This proof does not contain interesting comments and we do not report
here. Conversely, we shall report a less rigorous but physically more interesting proof of Eq~52!.
This ‘‘proof’’ points out the role of physical and unphysical modes in Ward’s identity.

Holding Eq.~32!, it is necessary to prove only that~the proof for the case ofW2 is identical!

¹mE dvdkt@Am
~3,v,kt!~x!A

m8
* ~3,v,kt!~x8!2Am

~0,v,kt!~x!A
m8
* ~0,v,kt!~x8!#52]m8W

1~x,x8!.

Employing the modesAG and AL which appear in Eqs.~24! and ~27!, and noticing that
¹mAm

G50, the identity above written reduces to

i E dvdkt¹
mAm

~L,v,kt!~x!A
m8
* ~G,v,kt!~x8!52]m8W

1~x,x8!.

Expanding the covariant derivative in the integrand and evaluating the modesAG andAL in terms
of the fieldf by Eqs.~17! and ~18!, the identity to be proved reads as

2E dvdkt
sinhpv

4p4 f~v,kt!~x!]m8f*
~v,kt!~x8!52]m8W

1~x,x8!.

This holds by definition ofW1.
J. Math. Phys., Vol. 38, No. 6, June 1997
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IV. THERMAL GREEN FUNCTIONS AND SUBTLETIES WITH GAUGE INVARIANCE

A. Photon KMS states

Dealing with static coordinates (x,t) in a spatially finite static region of a space-time, t
scalarthermalWightman functions are defined as~see, e.g., Ref. 13!

Wb
1~x,x8,t2t8!5Zb

21 Tr$e2bĤf̂~x,t !f̂~x8,t8!%, ~53!

Wb
2~x,x8,t2t8!5Zb

21 Tr$e2bĤf̂~x8,t8!f̂~x,t !%, ~54!

whereZb :5e2bĤ is the partition function of the field at temperatures! T051/b.
These formulas have to be opportunely mathematically interpreted due to the ‘‘oper

f̂f̂, which is not a~trace class! bounded operator. However, we shall not discuss this h
because our discussion has to be understood just in a heuristic sense~for details see Refs. 9 and 1
and references therein!. By extending the thermal Wightman functions defined above to the c
plex time, we can recover the KMScondition22 due to cyclic property of the trace,9,13

Wb
6~x,x8,t2t87 ib!5Wb

7~x,x8,t2t8!.

Provided appropriate mathematical conditions hold,9 these Wightman functions can be co
tinued into an analytic function, thethermalmaster functionG b(x,x8,z), defined in the time
complex planez5t2t81 i (s2s8), periodic in the imaginary times2s8 with period b. This
function results to be defined on the wholez plane except for cuts on the real axis~periodically
repeated along the imaginary axis, see the figures in Ref. 9! corresponding to light-related argu
ments. The cuts terminate on branch points which become simple poles in the case of a m
field. The Wightman functionsWb

1 andWb
2 result to be defined by approaching the real axis fr

the lower semiplane and the upper semiplane, respectively~following the e-prescription!. The
discontinuity crossing the cuts gives rise to the coincidence of the difference of the two Wigh
functions and the (b independent! advanced minus retarded fundamental solution.

In case of fields propagating inside of aninfinite spatial volume the partition function define
as a trace does not exist. However, other possible definitions follow from path integral~and z
function or heat-kernel methods! but this is not our case. Following Ref. 22~see also Refs. 1 and
11! the ~quasifree! scalar thermal states can be defined by analgebraic approach in terms of
*2, Weyl, C*2, and Von Neuman algebras as functionals on the algebra of the field. In
case, provided appropriate mathematical requirements are satisfied,9 the thermal Wightman func-
tions are~positive! integral kernels bisolutions of the motion equations which satisfy the K
condition written above, having the analytic structure previously pointed out and producin
advanced minus retarded fundamental solution by difference. Hence, one can use the
kernels to build up the~quasifree! state as a positive functional on the (*2, etc.! algebra gener-
ated by the field.

The algebraic way to define thermal Wightman functions and thermal states agrees w
naive procedure@based on Eqs.~53! and ~54!# whenever that can be implemented in som
sense—in particular, when the naive method is correctly used in a finite box with conve
boundary conditions and the box walls are moved away to infinity in the end.9,11

Other remarkable facts are also important. It is possible to prove that the thermal m
function G b(x,x8,z) evaluated on the imaginary time axis, the Schwinger funct
S b(x,x8,s):5G b(x,x8,is), coincides with an imaginary timeperiodic Green function of the
Euclidean Laplace operator. This operator is defined in the imaginary time periodic Euc
section of the manifold with periodb. In this way, the previously written KMS conditions direct
follow from the imaginary time periodicity of the manifold.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Another important point is thesum over images method. It is well-known9 that the above-
considered extended periodic Green functions can be obtained from the nonthermal ones
following sum:

G b~x,x8,z!5 (
nPZ

G ~x,x8,z1 inb!,

whereG (z) is the analytic extension to the complex time of thenonthermal master function
Furthermore it can be proved9 thatG `(z)5G (z), where` denotes the limit asb→1`. All these
topics have been more or less rigorously implemented in the scalar and spinorial case in d
manifolds and, in particular, in the Rindler wedge for massless fields, as well as in relation
cosmic string theory~see, e.g., Refs. 6, 9, 17, and 23, and references therein!.

Let us consider the case of a photon field in Feynman’s gauge.
Obviously, it is possible to directly define strength fieldFmn Wightman functions avoiding

unphysical particles and gauge related problems. However, this is not a completely satis
way because, for instance, in implementing an interaction theory one must directly use th
Am in dealing with the minimal coupling.

We shall start by supposing to work within a finite box in order to have a well-defi
partition function and to be able to use the naive formalism. The following discussion is
heuristic, no mathematical rigor is used.

The hardest problem is due to the presence of unphysical degrees of freedom. Such a d
has been pointed out by Bernard24 in dealing with the Euclidean path integral formalism to defi
the photon partition functions in an arbitrary gauge. He proved that the correct definition
depending on the gauge, is the trace over the physical degrees of freedom only,

Zphysb5 (
Cnphys

^Cnue2bĤuCn&.

Successively, this definition has to be rewritten as a path integral in the chosen gauge
Faddeev–Popov ghost procedure in such a manner to include the unphysical modes in th
tional integral. Following this way, we can start to formally define a large box in the Rin
wedge,

Wbmm8
phys1

~r,r8,xt ,xt8,t2t8!:5Zphysb
21 (

Cnphys
^Cnue2bĤÂm

phys~r,xt ,t !Âm8
phys

~r8,xt8,t8!uCn&,

~55!

and

Wbmm8
phys2

~r,r8,xt ,xt8,t2t8!:5Zphysb
21 (

Cnphys
^Cnue2bĤÂm8

phys
~r8,xt8,t8!Âm

phys~r,xt ,t !uCn&,

~56!

whereÂm
physcontains only the transverse modes, i.e.,l51 and 2 anduCn& denotes the eigenvecto

of Ĥ with eigenvalueEn .
Now we can add to these Wightman functions an unphysical part related to the cons

gauge choice, the Feynman gauge in the present case. This part has to vanish when the W
functions act on physical wave functions. Such a procedure must not affect the Wightman
tions calculated by the strength fieldFmn .

Our proposal consists of the formal definition~the definition ofW2 being obvious!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Wbmm8
Feynman1

~r,r8,xt ,xt8,t2t8!:5ZEb
21(

n
^Cn /e

2bĤÂm~r,xt ,t !Âm8~r8,xt8,t8!/Cn&, ~57!

where

ZEb5Tr E e
2bĤ:5(

n
^Cn /e

2bĤ/Cn&.

The indexE denotes the use of the Euclidean scalar product in calculating the trace above.
that Ĥ is non-negative, employing the Euclidean scalar product, in fact we have

Ĥ5E dktdvv (
l50

3

hllâ~l,v,kt!
† â~l,v,kt!

5E dktdvv (
l50

3

dllâ~l,v,kt!
* â~l,v,kt!

,

and thus no problem on the divergence of the trace arises. It is quite simply proved that fo

Wbmm8
Feynman1

5Wbmm8
phys1

1Zunph
21 (

Cnunph
^Cn /e

2bĤÂm
unphÂm8

unph/Cn&,

where the vacuum state is included in the sum over unphysical states. Notice that the seco
vanishes when employing physical test wave functions. Using such wave functions the Wig
functions are also positively defined by construction. We also stress that, by the definition
~57!, the difference of the two Wightman functions does not depend onb and reproduces the
nonthermal commutator. Finally, the thermal strength Wightman functions calculated as deri
of the Wightman functions defined in Eqs.~55! and ~56! coincide with those obtained by th
derivatives of the physical Wightman functions defined in Eq.~57!. This is just a trivial conse-
quence ofFmn

(G)(x)5Fmn
(L)(x)50.

Our definition trivially satisfies KG equations and maintains the KMS condition due to cy
property of the trace involved in Eq.~57!. Following the way employed in Ref. 9, we also expe
to find the analytic structure previously pointed out. Furthermore, the Ward identity in Eq.~51!
can be formally proved employing the same method. Finally, one finds the nonthermal Wigh
functions as the limitb→1`.

We stress that different proposals of definition involving, in Eq.~57!, the physical scalar
product defined in Eq.~34!, instead of the Euclidean one, do not maintain the KMS condition. T
is due to the presence of the operatorM which does not permit one to take advantage of the cy
property of the trace.

B. Thermal Wightman functions and related thermal Green functions

Taking account of the heuristic discussion performed above, we shall define the th
Wightman functions of the photons in the Feynman gauge by requiring that they are bisoluti
KG equations, satisfy the KMS condition, take on the analytic structure of the scalar Wigh
functions, and produce the advanced minus retarded fundamental solution of Eq.~46! by the usual
difference.

We shall try to build up such Wightman functions by a thermal master function obtaine
summing over images. Recall the series,

(
nPZ

1

~a1n!22b2
5

p

2b
$cot@p~a2b!#2cot@p~a1b!#%,

which is absolutely convergent, fora,bPC such that both sides are defined and
J. Math. Phys., Vol. 38, No. 6, June 1997
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(
nPZ

a1n

~a1n!22b2
5

p

2
$cot@p~a2b!#1cot@p~a1b!#%,

and is convergent in the sense of the principal value~namely, limN→1`( unu,N), for a,bPC such
that both sides are defined. Then, let us consider the thermal master function defined as

G bmm8~r,r8,xt ,xt8 ,z!:5 (
nPZ

G mm8~r,r8,xt ,xt8 ,z1 inb!, ~58!

whereG mm8(r,r8,xt ,xt ,z) was defined in Eq.~45!. The convergence is understood as punct
convergence in the sense of the principal value at least.

Employing the results above as well as trivial calculations we find~rearranging the result in a
convenient form for future reference! that

G btt8~z!5
21

4pb sinha

cosh~2pz/b!sinha1sinhF S 2p

b
21DaG

cosh~2pa/b!2cosh~2pz/b!
2

1

4pb
, ~59!

G brr8~z!52
1

rr8
G btt8~z!, ~60!

G brt8~z!52
1

4pbr

sinh~2pz/b!

cosh~2pa/b!2cosh~2pz/b!
, ~61!

G btr8~z!52
r8

r
G brt8~z!, ~62!

G byy8~z!5G bzz8~z!5G b~z!. ~63!

G b(z) is the thermal master function of a massless scalar field obtained summing over ima
the previously calculated nonthermal master function. Notice the periodicityb in the imaginary
time. We can considerz5t2t86 i e to obtain the thermal Wightman functions. We repo
Wbmm8

1 only,Wbmm8
2 is obtained by a complex conjugation of the former,

Wbtt8
1

~x,x8!5
21

4pb sinha

cosh@2p~t2t82 i e!/b#sinha1sinh@~2p/b 21!a#

cosh~2pa/b!2cosh~2p~t2t82 i e!/b!
2

1

4pb
,

~64!

Wbrr
1 ~x,x8!52

1

rr8
Wbtt8

1
~x,x8!, ~65!

Wbtr8
1

~x,x8!52
1

4pbr8

sinh~2p/b ~t2t82 i e!/b!

cosh~2pa/b!2cosh~2p~t2t82 i e!/b!
, ~66!

Wbrt8
1

~x,x8!52
r8

r
Wbtr8

1
~x,x8!, ~67!

Wbyy8
1

~x,x8!5Wbzz8
1

~x,x8!5Wb
1~x,x8!. ~68!

Wb
1(x,x8) is the well-known Rindler thermal Wightman function of a massless scalar field,17,19
J. Math. Phys., Vol. 38, No. 6, June 1997
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Wb
1~x,x8!5

1

4pbrr8 sinhaF sinh~2pa/b!

cosh~2pa/b!2cosh~2p~t2t82 i e!/b!G .
The vectorial Wightman functions written above trivially satisfy the KMS condition and
related thermal master function has the required analytic structure. In particular, there a
branch points but a pair of simple poles periodically repeated in the imaginary time with p
b. The two poles on the real time axis correspond lightlike related arguments.t!

Moreover, some calculations involving standard distributional properties prove the differ
Wbmm8

1 (x,x8)2Wbmm8
2 (x,x8) coincides with the advanced minus retarded solution define

Eq. ~46!. We might prove that the obtained vectorial Wightman functions define apositivebifunc-
tional working on physical test wave functions. We shall prove this in the caseb52p only.

Some comments on the obtained functions are necessary. First let us evaluate the
master function along the time imaginary axis. We obtain the thermal Schwinger func
@(xE

0 ,xE
1 ,xE

2 ,xE
3)[(s,r,y,z)#,

Sb008~xE ,xE8 !5
1

4pb sinha

cos~2p~s2s8!/b!sinha1sinh@~2p/b 21!a#

cosh~2pa/b!2cos~2p~s2s8!/b!
1

1

4pb
, ~69!

Sb 118~xE ,xE8 !5
1

rr8
Sb 008~xE ,xE8 !, ~70!

Sb 018~xE ,xE8 !5
21

4pbr8

sin~2p ~s2s8!/b!

cosh~2pa/b!2cos~2p~s2s8!/b!
, ~71!

Sb 108~xE ,xE8 !52
r8

r
Sb 018~xE ,xE8 !, ~72!

Sbyy8~xE ,xE8 !5Sbzz8~xE ,xE8 !5Sb~xE ,xE8 !. ~73!

This bivectorial function trivially defines a periodic vectorial Laplacian Green function in
Euclidean section of the manifold with imaginary time periodb. This follows from Eq.~58! when
one supposesz5 is, considers the series as a series of distributions, and recalls that the nonth
Schwinger function is a Green function in the nonperiodic Euclidean manifold. The functio

Sb~xE ,xE8 !5
1

4pbrr8 sinhaF sinh~2pa/b!

cosh~2pa/b!2cos~2p~s2s8!/b!G
is a Rindler thermal Schwinger function for a massless scalar field~see also Ref. 19 where
different nomenclature is used! obtained, for instance, by the sum over images method. Few w
on this function in relation to the vectorial found ones are necessary. The correspondin
functions of the scalar Schwinger function have support in$sP@0,b),rP@0,1`),y,zPR2%
~where 0[b). Different from the caseb51` ~i.e., the nonthermal case!, the scalar therma
Schwinger function is defined also whenr8→0 andr.0 ~and vice versa!, namely, when one of
the arguments stays on thetip of the Euclidean Rindler cone. Recall that the Euclidean Rind
manifold is diffeomorphic toC b3R2 where the first factor is a cone of angular deficit 2p2b.
There,s is the angular variable andr the radial one. We have

S0~xE ,xt8!:5Sb~xE ,xE8 !ur8→05
1

2pb~r21uxt2xt8u
2!
,

and¹E
2S0(xE ,xt8)50 wheneverr.0.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Carefully employing second Green’s identity, one can quite simply proveu!

E
C b3R2

d4xEAgE~xE!S0~xE ,xt8!¹E
2 f ~xE!52 f ~s,r8,xt8!ur850 .

Thus, we see that, in the massless scalar case, the Schwinger function is a Green function
wholeEuclidean manifold whenever 0,b,1`. The case of the vectorial field is quite differen

In order to study that case it is convenient to write the vectorial Schwinger functions
unitary normalized base of the cotangent space~a tetrad!. This avoids troubles related to a
anomalous normalization of coordinate base vectors in the limitr→0. This vectorial Schwinger
function, by normalizing the baseds,dr,dxt , takes on a factorr21 (r821) for each 0- (08-!
component. The 118- component, and the transverse onesyy8, zz8 do not change. Except for th
caseb52p which we shall study later, the limit asr8→0 (r fixed! produces vanishing or infinite
nontransverse components of the vectorial Schwinger function, depending on the si
b22p.

Such an anomalous behavior for the vectorial case seems related to the presence of the
singularity on the tip of a cone, which does not permit one to unambiguously define the ta
~cotangent! space and the metric tools there.

Let us directly consider the found vectorial thermal Wightman functions. We notice that
reduce to the correct nonthermal limit Eqs.~42!–~44!—in the caseb→1`. Furthermore, one can
prove by direct calculations that both KG equations and the Ward identity holding in the non
mal case Eq.~52! are satisfied. We do not further report on this here because the proof doe
involve interesting comments.

C. Subtleties with gauge invariance

Let us consider the strangestatic term dWbmm8(x,x8) added to thett8 andrr8 transversal
thermal Wightman functions@see Eqs.~64! and ~65!#. In components it reads as

dWbtt8~x,x8!52
1

4pb
, dWbrr8~x,x8!5

1

4pbrr8
~74!

~all the remaining components vanish!.
This term does not contribute to the zero temperature limit because this vanish

b→1`. Furthermore, this term is responsible for an apparently bad behavior of the th
Wightman functions asuxt2xt8u→1` whenb,1`. In fact, the thermal Wightman functions d
not vanish in this limit. However, considering thermal states, the requirement of a vanishing
distance fields correlation is not so strictly necessary. Anyhow, we shall see that in the p
case thephysicalcorrelations do vanish in the considered limit, because the terms in Eq.~74! do
not contribute to the ‘‘physical part’’ of Wightman functions.

Also notice that, because of the form ofdWbmm8(x,x8), this term does not affect the Wight
man functions calculated by the strength field operatorF̂mn(x). In fact, the contribution to the
strength field thermal Wightman functions reads as

d^F̂mn~x!F̂m8n8~x8!&b5¹m¹n8
8 dWbmm8~x,x8!2¹n¹m8

8 dWbmn8~x,x8!2¹m¹n8
8 dWbnm8~x,x8!

2¹m¹m8
8 dWbnn8~x,x8!.

In order to obtain some nonvanishing term in this sum, it must bem5n5r andm85n85r8. In
such a situation the four terms cancel each other and the final result vanishes.

Let us provedWbmm8(x,x8) containsgauge termsonly, has a vanishing covariant divergenc
and satisfies vectorial Klein–Gordon equations.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In particular, the vanishing covariant divergence implies that the termdWbmm8(x,x8) can be
omitted ~or that we can use a different valueb8Þb) in checking the previously discussed Wa
identity.

We can write,

dWbmm8~x,x8!5¹m¹m8
8 F~x,x8! where F~x,x8!:5

21

4pb
~tt82 ln r ln r8!. ~75!

Hence, only gauge terms appear indWbmm8(x,x8).
dWbmm8(x,x8) has a vanishing covariant divergence because¹m¹mF(x,x8)50 due to Eq.

~75!. Furthermore, due the commutativity of covariant derivative inside of a flat manifold, we
also¹s¹sdWbmm8(x,x8)50.

Finally, let us prove that the considered term produces no contribution to the value of th
Wightman functions when they act on,at least one, physical test wave function. More generall
we shall prove

E
(
dSnmAhAn~x!¹JmdWb

nn8~x,x8!50, ~76!

whereAPS satisfies also¹mA
m50. This includes the wave functions built up employing phy

cal modesA(1),A(2) as well as the gauge modesA(G) @see Eqs.~24!–~27!#, namelyphysicaland
Lorentzwave functions. An analog proof can be produced by employing a four smeared form
introduced in Appendix C and, in that case, the constraint¹mA

m50 becomes¹mF
m50 where

Fm(x) is a four smeared test function.
The left-hand side of Eq.~76! can be written, due to Eq.~75! ~omitting the unimportant

second argument ofF and its covariant derivative! as

E
(
dSnmAhAn~x!¹Jm¹nF~x!5E

(
dSnmAh¹n@An~x!¹JmF~x!#,

where we used the vanishing covariant divergence of the wave function. We can expa
integrand by adding and subtracting a convenient term, obtaining

E
(
dSnmAhAn~x!¹Jm¹nF~x!

5E
(
dSnmAh¹n@An¹mF2Am¹nF#1E

(
dSnmAh¹n@Am¹nF2F¹mAn#

5E
(
dSnmAh¹nG

nm1E
(
dSnmAhFmn¹nF].

We definedGmn:5An¹mF2Am¹nF, Fmn:5¹nAm2¹mAn and used¹n¹nF50 as well as
¹n¹mAn5¹m¹nA

n50 due to the flatness of the space. Notice that, due to Klein–Gordon e
tions, ¹nF

mn50. Thus, integrating by parts in the latter integral and reintroducing the se
argumentsx8 with its covariant derivative, we can write

E
(
dSnmAhAn~x!¹JmdWb

nn8~x,x8!5¹n8E
(
dSnmAh¹n~Gnm~x,x8!2Fmn~x!F~x,x8!!.

The integral on the right-hand side, due to the antisymmetry of the integrand tensor, reduc
J. Math. Phys., Vol. 38, No. 6, June 1997
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E
(
dx1dx2dx3 (

i51,2,3
] i@A2g~Gi02FF0i !#.

This vanishes due to the compactness of the spatial support ofA.
We may conclude the static termdWbmm8

6 (x,x8) represents a remaining staticgauge ambigu-
ity which does not affect the physical part of the theory. We can omit this term inWbtt8

6 (x,x8) and
Wbrr8

6 (x,x8) or conversely, we can change the valueb appearing indWbmm8
6 (x,x8) into a

‘‘wrong’’ variable valueb8Þb without affecting the physics. This determines aone parameter
class of possible thermal~and nonthermal in the limitb→1`) Wightman functions carrying the
same physical content. These changes can be implemented directly in the thermal master f
in Eqs.~59! and~60! or in the thermal Schwinger functions in Eqs.~69! and~70! where we have

dSb8mm8~xE ,xE8 !5¹m¹m8
8 F~xE ,xE8 ! where F~x,x8!:5

1

4pb8
~ss81 ln r ln r8!. ~77!

All these Euclidean time static terms are solutions of the Laplace equation away from
conical singularity. Thus, the resulting Schwinger functions remain Euclidean Green functio
the Laplacianaway from the conical tip. No choice of the valueb8, b8→1` included, produces
a vectorial Green function on thewholemanifold if the period of the manifoldbÞ2p. This is due
to the bad behavior asr(r8)→0 of the termsSb018 andSb108 nondependent ondSb8mm8(x,x8).

When the period of the manifoldb takes the value 2p, no conical singularity appears and th
selects just one Schwinger function. This Schwinger function is the only Green function o
Laplacian in the class previously considered defined in thewholeEuclidean manifold. This cor-
responds to the Schwinger function withb8→1`, i.e., dropping11/4pb in Eq. ~69! and the
corresponding added static term inSb 118(x,x8).

D. Coincidence of quantum photon vacua

In the case of a scalar field, the Wightman functions of Minkowski vacuum restricted in
of a Rindler wedges coincide with the thermal Wightman functions withb52p calculated with
respect to the Fulling vacuum. This is the content of the Bisognano–Wichmann theorem in
of Wightman functions.10,11 This property can be extended on the quantum state by GNS
similar theorems. This property also holds for spin 1/2 in terms of Wightman functions at
~see, e.g., Refs. 17 and 23!. In the case of photons, despite the gauge ambiguity in defining Rin
Green functions we have found the coincidence of Wightman functions holds, dealing wit
wave functions corresponding to physical photons and also for photons carrying modesA(G). This
is in the case of photons belonging to the Lorentz spaceHL . Notice also that the positivity of the
Wightman functions, working with physical~Lorentz! states, results to be trivially proved due th
positivity of the Minkowski Wightman functions in the caseb52p.

Following an algebraic approach, one can try to build up a minimal* -algebra generated
through the field operators when they act on physical wave functions and/or Lorentz wave
tions. In this background, one should try to implement a GNS reconstruction to extend
‘‘physical part’’ of the quantum states the local coincidence of Wightman functions. Howeve
do not consider these topics in this paper.

One can verify the coincidence of the above considered Wightman functions inside o
open Rindler wedge in the following way. First one considers the thermal Wightman func
defined in Eqs.~64!–~68!, droppingall the static termsdWbmm8

6 (x,x8), namely, by considering the
limit as b8→1` in the one-parameter Wightman functions class previously discussed.
omission does not affect the final result by dealing with test wave functions correspondi
J. Math. Phys., Vol. 38, No. 6, June 1997
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states belonging toHL . Then, one has to translate the obtained functions in Minkowski coo
nates. The resulting functions represent just the~nonthermal! Minkowski Wightman functions in
Feynman’s gauge,

W6mm8~x,x8!5
1

4p2

hmm8

ux2x8u22~ t2t87 i e!2
.

We report just a technical comment. In order to prove the considered identity using
smeared distributions, it is convenient to work on the Rindler Cauchy surface
t(5t8)5t(5t8)50. This is a part of a Minkowski Cauchy surface. Then, one has to prove
coincidence of the Wightman functions dealing with wave functions with a spatial compact
port in WR ~hence, noncontaining points withr,r850) employing the usual indefinite scala
product. The result follows noticing that, on the considered Cauchy surface] t5r21]t , and the
following three smeared distributionalidentities hold there~i.e., att5t85t5t850):

1

2rr8@cosha2cosh~t2t87 i e8!#
5

1

ux2x8u22~ t2t87 i e!2
,

]tS 1

2rr8@cosha2cosh~t2t87 i e8!# D5] tS 1

ux2x8u22~ t2t87 i e!2D ,
]t]t8S 1

2rr8@cosha2cosh~t2t87 i e8!# D5] t] t8S 1

ux2x8u22~ t2t87 i e!2D .
Similar results also arise dealing with Schwinger functions. However, in that case an imp
geometrical difference arises. The Euclidean Rindler coordinates, as the Euclidean Mink
coordinates, cover thewholeEuclidean section of Minkowski space-time. Thus, we expect to
a coincidence of Rindler Schwinger functions and Minkowski Schwinger functions everywh

The transformation law from Euclidean Rindler coordinates (s,r,y,z) to Euclidean rectangu
lar coordinates (r 1,r 2,r 3,r 4) reads as

r 15r coss, r 45r sin s, r 25y, r 35z.

In the present caseb52p, the Rindler Schwinger function of Eqs.~69!–~73!, more generally
containingb8, 0,b8,1`, in the static term of Eq.~77!, are Green functions of the Laplac
operator in the manifoldR42$(0,r 2,r 3,0)ur 2,r 3PR% endowed with the usual flat Euclidean me
ric. If b52p no conical singularity appears and thus no problem arises in defining Lapla
Green functions on the whole Euclidean manifold. One may build up the only Green fun
defined on thewholeR4 which decays,

S~xE ,xE8 !aa8:5
1

4p2

daa8

dmn~rm2r 8m!~r n2r 8n!
,

This everywhere defined Green function coincides both with the only photon Minko
Schwinger function in the Feynman gauge which decays asur 4u→1` and the Rindler Schwinge
function containing no Rindler static terms pointed out in the previous section.

V. SUMMARY

In this paper we proved that it is possible to build up a mathematically consistent cano
theory for a quasifree photon field propagating in the Rindler wedge, based on a generaliza
the Gupta–Bleuler formalism in the Rindler wedge and also considering thermal photon
J. Math. Phys., Vol. 38, No. 6, June 1997
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employed a three-smeared formalism, however generalizations to a four-smeared form
should be straightforward. We proved that the Fulling–Ruijsenaars formalism based on a~ther-
mal! master function can be extended to include the vectorial photon field recovering prop
similar to those in the massless scalar case. We proved also that the gauge invariance nee
care than in the Minkowskian case, in particular dealing with the thermal case~KMS conditions!
and studying the generalization of the Bisognano–Wichmann theorem for photons in ter
Wightman functions. In fact, a Rindler nonstatic gauge ambiguity coupled with the presence
conical singularity appears whenbÞ2p. Such a gauge ambiguity is not removed also impos
the validity of the Ward identity which arises from BRST invariance.

In the caseb52p, we saw that the theory produces the expected coincidence of the th
Rindler Wightman~Schwinger! functions with the Minkowski vacuum Wightman~Schwinger!
functions as far as the physical part of those functions is concerned.
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APPENDIX A: NORMALIZATION OF RINDLER PHOTON MODES

In this Appendix we shall find the normalization coefficientsC(a,v,kt) of the modes in Eqs.
~20!–~23! using the scalar product (,) defined in Eq.~5!. It can be simply proved that

~A3,A4!50 .

The remaining scalar products of different modes vanish as specified in Sec. III B. Thu
modes appearing in Eqs.~20!–~23! define a set ofnormal to each othermodes. Let us normalize
them as required by Eqs.~7!–~9!. The normalizedAm

(2,v,kt) reads as

Am
~2,v,kt!5

Asinhpv

2p2k'
S r]rf,2 i

v

r
f,0,0D . ~A1!

Let us prove this. Employing the definition of (,) we obtain

~A~2,v,kt!,A~2,v8,kt8!!

5 i E dxt
dr

r
C* ~2,v,kt!C~2,v8,kt8!H 1r ]tf*

~v,kt!S ]rr]rf~v8,kt8!2
1

r
]t
2f~v8,kt8!D

52
1

r
]tf

~v8,kt8!S ]rr]rf* ~v,kt!2
1

r
]t
2f* ~v,kt!D J

52 i E dxt
dr

r
C* ~2,v,kt!C~2,v8,kt8!~]tf*

~v,kt!¹ t
2f~v8,kt8!2]tf

~v8,kt8!¹ t
2f~* ,v,kt!!

5E dr

r
C* ~2,v,kt!C~2,v8,kt!~2p!2d~kt2kt8!~v1v8!k'

2Kiv~ktr!Kiv8~ktr!

5C* ~2,v,kt!C~2,v8,kt!~2p!2d~kt2kt8!~v1v8!k'
2 E

0

1`dr

r
Kiv~ktr!Kiv8~ktr!.

Recalling the relation,
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E
0

1`

drr21Kiv~k'r!Kiv8~k'r!5
p2

2v sinhpv
d~v2v8!, ~A2!

and choosing the coefficientC2 as real, we find the form~A1! of the modeA2 producing the
required ‘‘delta’’ normalization.

In the case ofC1 we find

1

C* ~1,v,kt!C~1,v8,kt8!
~A~1,v,kt!,A~1,v8,kt8!!5 i E dxt

dr

r (
a5y,z

Aa
* ~1,v,kt!]JtAa

~1,v8,kt8!
,

where we also used the fact that the only nonvanishingChristoffel symbolswhich appear in our
coordinates areGtr

t 5Grt
t 51/r andGtt

r 5r (t is the Rindler time andr is the nontrivial spacelike
Rindler coordinate: they are not generic indexes!.

Recalling the form ofA(b,v,kt) as function off given in Eq.~19!, we obtain

1

C* ~1,v,kt!C~1,v8,kt8!
~A~1,v,kt!,A~1,v8,kt8!!

5~v1v8!~2p!2k'
2ei ~v2v8!td~kt2kt8!E dr

r
Kiv~k'r!Kiv8~k'8 r!. ~A3!

Using the relation in Eq.~A2! and choosing the simplest phase, it arises that

C~1,v,kt!5
Asinhpv

2p2k'

5C~2,v,kt!.

Finally, we have, by inserting this result in Eq.~20!,

Am
~1,v,kt!5

Asinhpv

2p2k'

~0,0,kyf,2kxf!.

Employing similar calculations, we also obtain

C~4,v,kt!5
Asinhpv

2p2k'

5C~2,v,kt!

and thus

Am
~4,v,kt![

Asinhpv

2p2k'

~0,0,ikxf,ikyf!. ~A4!

Calculations for the caseC(3,v,kt) are more complicated.
Let us start noting that, from Eqs.~22!, ~17!, and~18!,

Am
~3,v,kt!5C~3,v,kt!FAm

~G,v,kt!

C~G,v,kt!
2 i

Am
~L,v,kt!

C~L,v,kt!
G .

Note also that (A(G,v,kt),A(G,v8,kt8))50 becauseFAG
mn

50 and¹mA
Gm50.

Then, choosingC35C* 35CG5C* G5CL5C* L we find

Am
~3,v,kt!5@Am

~G,v,kt!2 iAm
~L,v,kt!#,
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and thus~omitting obvious indexes!

~A~3,v,kt!,A~3,v8,kt8!!52 i ~AG,A8L!1 i ~AL,A8G!1~AL,A8L!

5 i ~AG,A8L!1 i ~AL,A8G!1
C3C83

C4C84
~A4,A84!,

where, as we found,C(4,v8,kt8)5Asinhpv/2p2k'
2 .

It follows expanding the formula above (i5r,y,z and there is understood a summation ov
repeated indexes!:

1

C~3,v,kt!C~3,v8,kt8!
~A~3,v,kt!,A~3,v8,kt8!!5

1

C~3,v,kt!C~3,v8,kt8!
E dxt

dr

r
~Ai*

GFt i8
L2At*

G¹mA8Lm!

2
1

C~3,v,kt!C~3,v8,kt8!
E dxt

dr

r
~Ai8

GFt i*
L2At8

G¹mA*
Lm!

1
1

C~4,v,kt!C~4,v8,kt8!
d~kt2kt8!d~v2v8!.

Executing the integrals and using Eq.~A2! we obtain the final result,

1

C~3,v,kt!C~3,v8,kt8!
~A~3,v,kt!,A~3,v8,kt8!!5S 2

2

C~3,v,kt!C~3,v8,kt8!
1

1

C~4,v,kt!C~4,v8,kt8!D
3d~kt2kt8!d~v2v8!.

We shall takeC(3,v,kt)5C(4,v,kt) and thus we have the following normalization relation:

~A~3,v,kt!,A~3,v8,kt8!!52d~v2v8!d~kt2kt8!,

where

A~3,v,kt!5
Asinhpv

2p2k'

~2 ivf,]rf,0,0!.

We have found the normalization constant of all the modes,

C~1,v,kt!5C~2,v,kt!5C~3,v,kt!5C~4,v,kt!5C~L,v,kt!5C~G,v,kt!5
Asinhpv

2p2k'

.

APPENDIX B: SOME USEFUL MATHEMATICAL RELATIONS

In this Appendix we shall prove Eqs.~40! and ~41!.
Let us start with Eq.~40!. Note that, because of the trivial dependence ont and t8 of the

functionW1, we can redefineDtt8, when it acts on W1, as

Dtt85
1
2 ~]t

21]t8
2

!1r]rr8]r8.

Working on a solution of thescalarKG equation likeW1 which is a scalar KG solution in both
arguments also in the present casee.0, it arises that
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1

r
]t
25]rr]r1r¹ t

2 ,

where we posed¹ t
25( i5y,z] i

2 . Thus we may write downDtt8 as

Dtt85
1
2 @r2¹ t

21r82¹ t8
21~] ln r1] ln r8!

2#5 1
2 @r2¹ t

21r82¹ t
214] ln rr8

2
#. ~B1!

In the latter term we considered as independent variablesu:5 ln(rr8) andv:5 ln(rr821). These
variables appear in the expression defininga, Eq. ~37!, anda appears inW1 as precised by Eq
~38!.

Let us consider the action onW1 of the last term in the equation written above,

] ln rr8W
1~t2t8,u,v,xt!52W11

]W1

]a

]a

] ln rr8

52W11
]W1

]a

1

sinha

] cosha

] ln rr8
52W12

]W1

]a

1

sinha

xt
2

2rr8
,

~B2!

where we used the formula of simple proof,

] cosha

] ln rr8
52

xt
2

2rr8
.

Notice that

xt
2 ]W1

]xt
2 5

]W1

]a

xt
2

sinha

] cosha

]xt
2 5

]W1

]a

1

sinha

xt
2

2rr8
. ~B3!

Comparing Eq.~B2! with Eq. ~B3! it arises that

] ln rr8W
152W12xt

2 ]W1

]xt
2 52S 11xt

2 ]

]xt
2DW152S 11

1

2
uxtu

]

]uxtu
DW1. ~B4!

Iterating the process by considering that] ln rr8 and uxtu] uxtu
commute, we obtain

] ln rr8
2 W15W11uxtu] uxtu

W11
xt
2

4
¹ t
2W1,

where we used the independence ofW1 on the angular variable of 2-vectorxt . Substituting this
expression in Eq.~B1!, we find just Eq.~40!

Dtt8W
15 1

2 ~r2¹ t
21r82¹ t

21xt
2¹ t

2!W112W112uxtu] uxtu
W1

5rr8 cosha¹ t
2W112W112uxtu] uxtu

W15rr8¹ t
2~coshaW1!,

where we used the formulas following from Eq.~37!,

] uxtu
cosha~r,r8,xt!5

2uxtu
rr8

~B5!

and
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¹ t
2 cosha~r,r8,xt!5

2

rr8
. ~B6!

In order to prove Eq.~41! notice that, because of the dependence ofW1 on t2t8, the operator
Dtr8 acting onW1 can be written down as

Dtr852
1

r8
~r]r1r8]r8!]t52

2

r8
] ln rr8]t522r]rr8]t .

We consideredU:5rr8 andV:5r/r8 as independent variables above. Furthermore, from
definition ofW1, Eq. ~38!, we also obtain

]tW
15

22~t2t8!W1

~t2t82 i e!22a2 .

And thus we have, posingT:5t2t82 i e,

Dtr8W
152r]rr8F 2TW1

T22a2G52
rT

p2 ]rr8F a

rr8 sinha

1

~T22a2!2G
52

Tr

p2 H 21

r2r82
a

sinha

1

~T22a2!2
1

1

rr8
]rr8F a

sinha

1

~T22a2!2G J
5
Tr

p2 H 1

r2r82
a

sinha

1

~T22a2!2
1

xt
2

r2r82
]

]xt
2 F a

sinha

1

~T22a2!2G J ,
where we used the formula

]

]rr8
f S xt

2

rr8
D 52

xt
2

rr8

]

]xt
2 f S xt

2

rr8
D .

We have

Dtr8W
15

Tr

p2r2r82 H a

sinha

1

~T22a2!2
1xt

2 ]

]xt
2 F a

sinha

1

~T22a2!2G J
5

Tr

p2r2r82
]

]xt
2Fxt2 a

~T22a2!2 sinha G . ~B7!

Notice that the following holds:

a

~T22a2!2 sinha
5rr8

]

]xt
2

1

T22a2 .

Substituting this in the latter line we have

Dtr8W
15

T

p2r8

]

]xt
2 Fxt2 ]

]xt
2

1

T22a2G5
T

4p2r8uxtu
]

]uxtu
F uxtu ]

]uxtu
1

T22a2G
5

T

4p2r8
¹ t
2 1

T22a2 52r~t2t8!¹ t
2S sinha

a
W1D .

Thus Eq.~41! has been proved.
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APPENDIX C: FOUR SMEARED FORMALISM AND WIGHTMAN FUNCTIONS

We shall introduce the definition of Wightman functions based on afour smeared formalism
~see, e.g., Ref. 1 for the scalar case on a curved space!. Wightman functions

^FuÂm(x)Âm8(x8)uF& are defined within this formalism by imposing

^FuÂ~F !Â~F8!uF&5E
WR

d4xA2g~x!E
WR

d4x8A2g~x8!Fm~x!F8m8~x8!^FuÂm~x!Âm8~x8!uF&,

whereFn(y)PC0
`(WR) for n50,1,2,3 and we defined

^FuÂ~F !Â~F8!uF&:5^Fu~AF ,Â!~AF8,Â!uF&.

The functionsAF are solutions of the KG equation carrying a compact support on Cauchy sur
obtained from functionsF as

AF
m~x!5E

WR

d4yA2g~y!E~x,y!mnFn~y!. ~C1!

E(x,y) is the ‘‘advanced minus retarded’’ fundamental solution of the KG equation~see Sec.
III B !. Formally speaking~see Refs. 1 and 14 for the scalar case!,

E~x,y!mn :5@Âm~x!,Ân~y!#.

Because of the independence of the quantum state of that function, we expect to find, emp
test functions with support inside of the open setWR ,

E~x,y!5E~x,y!M , ~C2!

the latter two-point function being the Minkowski advanced minus retarded fundamental sol
We have proved this statement in Sec. III B.

Notice thatE(x,y)M is ~distributionally! vanishing outside of the light cone aty and this
assures the compactness of the spatial support of the functionsAF whenever the functionsF
belong toC0

` .
Another important property which can be simply proved employing Minkowskian coordi

through Eqs.~C1! and ~C2! is:

¹mAF
m~x!5E

WR

d4yA2g~y!E~x,y!S¹nF
n~y!,

whereE(x,y)S is thescalaradvanced minus retarded fundamental solution.
Finally, notice that¹nF

n50 implies¹mAF
m50.

a!We are employing the signature (21,1,1,1) and thus some sign results to be changed with respect to Ref. 8 wher
used the opposite signature.

b!Recall also the identityGmn
m 5]n$ lnA2g%.

c!This isnot the metric in Rindler coordinates which isgmn[diag(2r2,1,1,1,).
d!As discussed above, the stronger assumption of edge-vanishing test wave functions permits us to drop bounda
arising by changing the scalar product (,) with (,)8. Thus, in the weak sense, one can drop similar boundary terms
in Eqs.~7!–~9! and rewrite these in terms of (,)8.

e!We shall indicate bŷ T the topological~Hilbertian! tensorial product.
f!The energy is negative being^Fuâ0Ĥâ0

†uF&,0. However, the Hamiltonianeigenvaluesof the quanta generated bya0
† are

positive.
g!Recall that the spatial surfaces do not contain the points withr50 becauseWR is an open set. The spatial support of th
considered solution can contain points withr50 ~the horizons! only asutu→1`.
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h!Thedr integration, due to the factorKiv(k'r), produces a logarithmically divergent function askt→0 which does not
affect this result.

i!These formulas hold on the linear manifoldD , dense in the considered topology, containing all the Fock states carr

whatever finite number of particles.D results to be invariant under the action ofâ, â†, as well asM .
j!Due to M̄5H, we can approximate all the scalar product of the states inH by complex linear combinations o
Wightman functions withA,A8PS .

k!See for example Ref. 18 in part II Sec. 6.5, changing the hypotheses of the example h! and using the same proof.
l!If f (xt)5¹ t

2g(uxtu), it is sufficient that]g(xt)/] lnuxtu→0 asuxtu→1`. This holds in both cases examined below.
m!In order to use the following formula it is sufficient, ifg(xt)5g(uxtu), that g(xt)→0 and lnuxtu ]g(xt)/] lnuxtu→0 as

uxtu→`. This holds in the present case~as well as in the next one! where we have ~as
uxtu→1`)g(uxtu)5coshaW1;(lnuxtu)21 ~andg(uxtu)5 sinha/aW1;(lnuxtu)22).

n!In particular, notice thatVmm8(xE ,xE8 )uxE5x
E8
5gmm8

E (xE).
o!Use standard identities as 1/x6 i e5PV1/x7 ipd(x).
p!This follows trivially from the Green functions calculated in Refs. 13 and 15.
q!We use in particular the identity following directly from Eq.~1!. 2rr8(cosh(t2t8)2cosha)5ux2x8u22(t2t8)2 and
sign(t2t8)5sign(t2t8) holding for test functions of the variablex with support inside of the closed light cone atx8.

r!Notice that the scalar propagatorGF coincides with the ghost propagator.
s!The ‘‘local’’ temperatureT measured by an observer situated at a fixed spatial point is related toT0 by the Tolman
relationT5T0 /A2g00 see Ref. 21.

t!The condition cosh@(2p/b) a#2cosh@(2p/b) (t2t8)#50 is equivalent to cosha2cosh(t2t8)50 or, employing
Minkowskian coordinates,ux2x8u22(t2t8)250.

u!Notice that we must define the smooth test functions requiring alsof (s,r,xt)ur505 f (s8,r,xt)ur50 whatevers,s8
P(0,b# andxtPR2. In order to prove the following formula note also (xt P R2)r2/(r21uxt2xt8u

2)2→pd(xt2xt8) as
r→01.
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16Erdélyi et al., Higher Transcendental Functions~McGraw-Hill, New York, 1953!; G. N. Watson,A Treatise on the
Theory of Bessel Functions~Cambridge University Press, Cambridge, 1966!.

17V. Moretti and L. Vanzo, Phys. Lett. B375, 54 ~1996!.
18V. S. Vladimirov,Generalized Functions in Mathematical Physics~MIR, Moscow, 1979!.
19J. S. Dowker, J. Phys. A10, 115 ~1977!; J. S. Dowker, Phys. Rev. D18, 1856~1978!.
20S. Pokorski,Gauge Field Theories~Cambridge University Press, Cambridge, 1987!.
21L. D. Landau and E. M. Lifshits,Statistical Physics~Pergamon, London, 1958!.
22R. Kubo, J. Math. Soc. Jpn.12, 570 ~1957!; P. C. Martin and J. Schwinger, Phys. Rev.115, 1342~1959!; R. Haag, N.
M. Hugenholtz, and M. Winnink, Commun. Math. Phys5, 215 ~1967!.

23B. Linet, Class. Quantum. Grav.13, 97 ~1996!; J. Math. Phys.36, 3694~1995!; Class. Quantum Grav.9, 2429~1982!.
24C. W. Bernard, Phys. Rev. D9, 3312~1974!.
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



lds
ation
by
res of

as
ry was
t the
ole

ille
to

opole

ith
topo-
it
BRST
the
er

iberg–
ds of
e
le. Thus
-
the

as a

¬¬¬¬¬¬¬¬¬¬
Langevin approach for Abelian topological gauge theory
Yűji Ohta
Department of Mathematics, Faculty of Science, Hiroshima University,
Higashi-Hiroshima 739, Japan

~Received 4 September 1996; accepted for publication 7 November 1996!

An Abelian topological action is constructed from the quantization of Seiberg–
Witten monopole equations as ‘‘Langevin equations.’’ The starting point is an
analogous action to the Labastida–Pernici’s non-supersymmetric action for
Donaldson theory. As the local symmetry of the action is first stage reducible, the
quantum action is obtained by using Batalin–Vilkovisky quantization procedure.
We can also obtain off-shell quantum action and BRST transformation. ©1997
American Institute of Physics.@S0022-2488~97!02105-1#

I. INTRODUCTION

Topological field theories1 are very powerful tools to study topological invariants of manifo
in the languages of quantum field theory. For example, it is well-known that the correl
functions of twistedN52 supersymmetric Yang–Mills theory on four manifold developed
Witten2 can be interpreted as the Donaldson polynomials which classify the smooth structu
topological four manifolds.

In the recent studies of the electric-magnetic duality ofN52 supersymmetric SU~2! Yang–
Mills gauge theory,3–8 the existence of a dual U~1! gauge theory in the strong coupling regime w
pointed out. In the case of Donaldson theory, the associated topological quantum field theo
related to the moduli problem of self-dual Yang–Mills equation, i.e., instanton equation, bu
description for this U~1! field theory is related to the moduli problem of Seiberg–Witten monop
equations.9 ~It is known that the solution to the monopole equations onR3 have Dirac monopole10

of minimal magnetic charge.11 On R2 the monopole equations can be regarded as a Liouv
vortex equation.12 Furthermore, the solution onR can be expressed as a kink-anti-kink solution
w4 theory.12! The particularly interesting fact is that the partition function of this U~1! theory
produces a new topological invariant called Seiberg–Witten invariant.9,13–16

On the other hand, in the construction of the topological action associated with the mon
equations, Labastida and Marin˜o17 took Mathai–Quillen formalism18–20 and the resulting action
turned out to be that of the twistedN52 supersymmetric Abelian Donaldson theory coupled w
a twistedN52 hypermultiplet. We can, of course, choose another method to construct the
logical action.21–23In these studies, the dual U~1! gauge theory was written as Witten type, i.e.,
was shown that the topological action associated with the monopoles could be written by a
commutator. As is well-known, a topological field theory of Witten type can be obtained from
quantization of some Langevin equations.24 Our approach for Seiberg–Witten theory in this pap
is based on this general prescription.

The paper is organized as follows. In Sec. II, we consider the action which produces Se
Witten monopole equations including auxiliary fields and discuss its local symmetry. Two kin
topological shifts, i.e., shifts for the gauge connection25–27 and spinor field, are required. Th
gauge algebra has an on-shell zero mode and therefore it is classified as first stage reducib
we are inspired to apply Batalin–Vilkovisky procedure.28–32 In Sec. III, the construction of quan
tum action is demonstrated by the Batalin-Vilkovisky quantization procedure. We derive
BRST transformation rules in Sec. IV. With this in mind, we rewrite the quantum action
BRST commutator. Section V is a summary.
0022-2488/97/38(6)/2954/9/$10.00
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A. Notations

We use the following notations throughout the paper unless we mention otherwise. LetM be
a compact orientable four manifold without boundary andgmn be its Riemannian metric tensor
with g5 detgmn . We use the local coordinates onM as xm . gm are Dirac’s gamma matrice
satisfying$gm ,gn%52gmn andsmn5@gm ,gn#/2.M is a commuting Weyl spinor and thus will b
treated as a boson. We meanM̄ as a complex conjugate ofM . Spinor indices are suppressed. T
Greek indicesm,n,a, etc. run from 0 to 3. The repeated indices are assumed to be sum
emnrs are anti-symmetric tensors withe012351. Anti-symmetrization is denoted a
A[aBb]5AaBb2AbBa .

II. LOCAL SYMMETRY

First,M is assumed to have Spin structure~see also Ref. 5!. Then there exist rank two
positive and negative spinor bundlesS6. We introduce a complex line bundleL and connections
denoted asAm on L. The Weyl spinorM (M̄ ) is a section ofS1

^L (S1
^L21). If M does not

have Spin structure, we introduce Spinc structure and Spinc bundlesS6
^L, whereL2 is a line

bundle. However, below, we assume Spin structure, for simplicity.
The Abelian Seiberg–Witten monopole equations9 are then defined by

Fmn
1 1

i

2
M̄smnM50,

~2.1!

igmDmM50,

whereFmn
1 are the self-dual parts of the U~1! curvature tensors

Fmn5]mAn2]n Am ,
~2.2!

Fmn
1 5Pmnrs

1 Frs,

andPmnrs
1 the self-dual projector defined by

Pmnrs
1 5

1

2 S dmrdns1
Ag
2

emnrsD . ~2.3!

Here,Dm are twisted Dirac operators defined by

Dm5]m1vm2 iAm , ~2.4!

where

vm5
1

4
vm

ab@ga ,gb# ~2.5!

are the spin connection one-forms. Note that the second term in the first equation of~2.1! is also
self dual.5 This can be easily seen fromg5M5M and contraction withsmn.

Let us rewrite~2.1! using auxiliary fieldsGmn andn as

Gmn2Fmn
1 2

i

2
M̄smnM50,

~2.6!

n2 igmDmM50,
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whereGmn are self-dual fields which satisfyGmn
1 5Pmnrs

1 Grs. Of course, we regard the monopo
equations are recovered by the gauge

Gmn5n50. ~2.7!

The simplest action which reproduces~2.6! is

Sc5
1

4EMAgdx4F SGmn2Fmn
1 2

i

2
M̄smnM D 212~n2 igmDmM !~n2 igmDmM !G . ~2.8!

Similar presentations for Donaldson theory was used by Labastida and Pernici25 and for other
topological field theories by Birminghamet al.31 Below, we suppressAg for simplicity.

The action~2.8! is invariant under the infinitesimal local gauge transformation

dAm5]mu1em , dM5 iuM1w,
~2.9!

dGmn5Pmnrs
1 F] [res]1

i

2
~ w̄srsM1M̄srsw!G ,

dn5 igmDmw1gmemM1 iun,

whereu P R is a usual gauge transformation parameter,em P R are topological shift parameters i
the functional space of the U~1! gauge connection26,27andw is a similar complex parameter in th
spinor space.

It is important to notice that the gauge algebra~2.9! possesses on-shell zero mode. In fa
setting

u5L, em52]mL, w52 iLM , ~2.10!

we can easily find that~2.9! closes

dAm50, dM50, dGmn50, ~2.11!

dn5 iL~n2 igmDmM !uon-shell50,

when the equation of motion ofn is used.
In general, the local symmetry for some fieldsf i can be written in the form

df i5Ra
i ~f!ea, ~2.12!

whereea are some local parameters~do not confuse them with the preceding shift paramet
themselves! and indices are to be regarded as the label of fields. Whendf i50 for non-zeroea,
this symmetry is classified as first stage reducible. In this case, we can find zero-eigenv
Za

a satisfyingRa
i Za

a50. When the symmetry is on-shell reducible, we can find such eigenve
by using equations of motion. If we use these terminologies, the local symmetry~2.9! is first stage
reducible and the zero-eigenvectors can be found by using the equation of motion ofn.

With this in mind, we can find from~2.11! that

dAm :Ru
AmZL

u 1Ren

AmZL
en50,

dM :Ru
MZL

u 1Rw
MZL

w 50, ~2.13!
J. Math. Phys., Vol. 38, No. 6, June 1997
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dGmn :Rer

GmnZL
er1Rw

GmnZL
w 1Rw̄

GmnZL
w̄ 50,

dn:Ru
nZL

u 1Rw
nZL

w 1Rem

n ZL
em50,

where

Ru
Am5]m , Ren

Am5dmn , Ru
M5 iM , Rw

M51,

Rea

Gmn5Pmnrs
1 ] [rds]a, ~2.14!

Rw
Gmn5

i

2
Pmnrs

1 M̄srs,

Ru
n5 in, Rw

n 5 igmDm , Rem

n 5gmM ,

and

ZL
u 51, ZL

em52]m , ZL
w 52 iM . ~2.15!

In the above expressions, we have definedRa
i (f):5Ra

f i
for convenience.

III. TOPOLOGICAL ACTION

As the local symmetry~2.9! has been found to be first stage reducible, we can apply Bata
Vilkovisky algorithm to construct a topological action. The readers who are unfamiliar to
method should refer to References 1 and 28–32.

First we must assign a suitable ghost field to each local parameter. For the case at ha

u→c, em→cm , w→N, L→f. ~3.1!

Note that the first three are first generation ghosts, while the last one is due to the s
generation observed in~2.11!. Then the minimal setFmin of the fields is given by

Am M Gmn n cm c N f

01 01 01 01 12 12 12 21
, ~3.2!

where the number denotes the ghost number and the sign of superscript denotes Grassman
i.e., if the field is boson~fermion!, it is 1 (2). Similarly, the minimal set of anti-fieldsFmin*
which have opposite statistics to the corresponding field is given by

Am* M* Gmn* n* cm* c* N* f*

212 212 212 212 221 221 221 232. ~3.3!

Note that the ghost numbers equal the ghost number of the fields minus one.
In order to use the Batalin–Vilkovisky algorithm, we should solve the master equation

] rS

]FA

] lS

]FA*
2

] rS

]FA*
] lS

]FA 50 ~3.4!
J. Math. Phys., Vol. 38, No. 6, June 1997
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for an action like objectS(F,F* ), wherer ( l ) denotes right~left! derivative. Here,F denotes the
set of fields includingF min ~the corresponding set of anti-fields would be obvious!. As
S(F,F* ) is bosonic, the master equation reduces to the simple form

] rS

]FA

] lS

]FA*
50. ~3.5!

The solutionS exists in the form of anti-field expansion

S5Sc1F i*Ra
i C1

a1C1a* ~Zb
aC2

b1Tbg
a C1

gC1
b!1C2g* Aba

g C1
aC2

b1F i*F j*Ba
j i C2

a1•••, ~3.6!

whereC1
a(C2

a) denote generally the first~second! generation ghosts and only relevant terms in o
case are shown. Here, we have usedFmin

A 5(f i ,C1
a ,C2

b), wheref i are fields. The expansion
coefficients are determined from the relations

Ra
i Zb

aC2
b22

] rSc
]f j Ba

j i C2
a~21! u i u50,

] rRa
i C1

a

]f j Rb
j C1

b1Ra
i Tbg

a C1
gC1

b50, ~3.7!

] rZb
aC2

b

]f j Rg
j C1

g12Tbg
a C1

gZd
bC2

d1Zb
a Adg

b C1
gC2

d50,

whereu i u is the Grassmann parity ofi -th field ~the above relations can be easily derived from
master equation with~3.6!!.

We find that the solution to~3.5! is

S~Fmin ,Fmin* !5Sc1A* m~]mc1cm!1M* ~ icM1N!1M̄* ~2 icM̄1N̄!

1G* mnPmnrs
1 F] [rcs]1

i

2
~N̄srsM1M̄srsN!G

1n* ~ igmDmN1gmcmM1 icn!

1 n̄* ~ igmDmN1gmcmM1 icn!1c*f2cm* ]mf2 iN* ~fM1cN!

1 iN̄* ~fM̄1cN̄!12in* n̄*f, ~3.8!

where we have omitted the integration overM for the miscellaneous terms.
We augmentFmin by new fieldsxmn ,dmn ,m(m̄),b(b̄),l,r,h,e and the corresponding ant

fields. Their ghost number and Grassmann parity are given by

xmn dmn m b l r h e

212 01 212 01 221 212 212 01 ~3.9!

and

xmn* m* l* r*

01 01 12 01, ~3.10!
J. Math. Phys., Vol. 38, No. 6, June 1997
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wherexmn(xmn* ) anddmn are self-dual anddmn ,b,e andh are Lagrange multiplier fields. Thes
Lagrange multiplier fields do not have anti-fields and therefore their BRST transformation
will be set to zero. ThenF consists ofFmin and ~3.9!, while F* consists ofFmin* and ~3.10!.

Then we look for the solution

S̃5S~Fmin ,Fmin* !1x* mndmn1m̄* b̄1m* b1r* e1l*h. ~3.11!

In order to findS̃, we must fix the gauge. We choose the following gauge condition

Gmn50, n50, n̄50, ]mAm50, 2]mcm1
i

2
~N̄M2M̄N!50, ~3.12!

where the last expression is the same ‘‘gauge condition’’ used by Zanget al.21 Thus we can find
the gauge fermion

C52xmnGmn2m̄n2mn̄1r]mAm2lF2]mcm1
i

2
~N̄M2M̄N!G . ~3.13!

Note thatC has the ghost number21 and odd Grassmann parity.
The quantum actionSq can be obtained by dropping anti-fields by the restriction

F*5
] rC

]F
. ~3.14!

Thus we obtain

Gmn* 52xmn , xmn* 52Gmn , n*52m̄, n̄*52m, m̄*52n, m*52 n̄,

M*52
i

2
lN̄, M̄*5

i

2
lN, N*5

i

2
lM̄ , N̄*52

i

2
lM ,

~3.15!

r*5]mAm , Am*52]mr, cm*52]ml,

l*52F2]mcm1
i

2
~N̄M2M̄N!G , c*50.

Then the quantum actionSq is given by

Sq5S̃~F,F*5] rC/]F!. ~3.16!

After some algebraic works, we find that

Sq5Sc1~2hf1fM̄M2 iN̄N!l2F2]mcm1
i

2
~N̄M2M̄N!Gh2m̄~ igmDmN1gmcmM1 icn!

1~ igmDmN1gmcmM1 icn!m12ifm̄m2xmnPmnrs
1 F] [rcs]1

i

2
~N̄srsM1M̄srsN!G

1r~hc1]mcm!2dmnGmn2b̄n2 n̄b1e]mAm . ~3.17!

It is easy to find that~3.17! with c50 is consistent with the action found by Zanget al.21
J. Math. Phys., Vol. 38, No. 6, June 1997
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IV. BRST TRANSFORMATION

It is now easy to obtain the BRST transformation rule, which is defined by

dBFA5e
] r S̃

]FA*
U

F*5]rC/]F

, ~4.1!

wheree is a constant Grassmann odd parameter. We find that

dBAm52e~]mc1cm!, dBM52e~ icM1N!,

dBGmn52ePmnrs
1 F2] [rcs]1

i

2
~N̄srsM1M̄srsN!G ,

dBn52e~ igmDmN1gmcmM1 icn2 imf!, ~4.2!

dBc5ef, dBcm52e]mf, dBr5ee, dBl52eh, dBm5eb,

dBN52 i e~fM1cN!, dBxmn5edmn , dBf5dBdmn5dBe5dBb5dBh50.

Equation~4.2! is nilpotent on-shell, i.e., the quantum equation of motion forn must be used in
order to close~4.2!. Note that if we set in the transformation rule ofGmn andn,

2] [rcs]1
i

2
~N̄srsM1M̄srsN!50,

~4.3!

igmDmN1gmcmM50,

these can be recognized as the linearization of the monopole equations.21

We have obtained the BRST transformation rule and the quantum action. However, sin
BRST transformation rule is on-shell nilpotent, we should integrate outn in order to obtain
off-shell quantum action and BRST transformation.

Firstly, let us consider the following terms in~3.17!,

1

4
~Gmn2Xmn!21

1

2
~n2 igmDmM !~n2 igmDmM !2 i m̄cn1 icnm2b̄n2 n̄b2dmnGmn ,

~4.4!

where

Xmn5Fmn
1 1

i

2
M̄smnM . ~4.5!

Heren andGmn can be integrated out and then~4.4! can be arranged into

2dmnd
mn2dmnX

mn22ub8u21b̄8igmDmM1 igmDmMb8, ~4.6!

where

b852b1 imc. ~4.7!

ThenSq can be represented by
J. Math. Phys., Vol. 38, No. 6, June 1997
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Sq5$Q,C̃%, ~4.8!

where

C̃52xmn~Xmn1dmn!1m~b82 igmDmM !1m̄~b82 igmDmM !1r]mAm

2lF2]mcm1
i

2
~N̄M2M̄N!G , ~4.9!

with

dBb852 i e~b8c1mf!. ~4.10!

Now Q is the off-shell BRST charge. It is interesting to compare~4.8! with the actions of other
approaches.

V. SUMMARY

In this paper, we have taken the Batalin–Vilkovisky quantization procedure and constr
the Abelian topological action and the BRST transformation associated with Seiberg–W
monopoles. In this study, we have also found the off-shell topological action and off-shell B
transformation.

We are also interested in the topological field theory related to the non-Abelian Seib
Witten monopole equations. The topological action has been obtained by twisting of theN52
supersymmetric Yang–Mills theory coupled with one hypermultiplet33,34 or by Mathai–Quillen
formalism.35,36We will discuss the non-Abelian and lower dimensional topological field theo
associated with the monopoles and compare them with the topological Bogomol’nyi mon
field theory in a forthcoming paper.
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A chiral spin theory in the framework of an invariant
evolution parameter formalism

B. Sarel
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty
of Exact Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel

L. P. Horwitza)
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We present a formulation for the construction of first-order equations which de-
scribe particles with spin, in the context of a manifestly covariant relativistic theory
governed by an invariant evolution parameter; one obtains a consistent quantized
formalism dealing with off-shell particles with spin. Our basic requirement is that
the second-order equation in the theory is of the Schro¨dinger–Stueckelberg type,
which exhibits features of both the Klein–Gordon and Schro¨dinger equations. This
requirement restricts the structure of the first-order equation, in particular, to a
chiral form. One thus obtains, in a natural way, a theory of chiral form for massive
particles, which may contain both left and right chiralities, or just one of them. We
observe that by iterating the first-order system, we are able to obtain second-order
forms containing the transverse and longitudinal momentum relative to a timelike
vector tmt

m521 used to maintain covariance of the theory. This timelike vector
coincides with the one used by Horwitz, Piron, and Reuse to obtain an invariant
positive definite space–time scalar product, which permits the construction of an
induced representation for states of a particle with spin. We discuss the currents and
continuity equations. The transverse and longitudinal aspects of the particle are
complementary, and can be treated in a unified manner using a tensor product
Hilbert space. Introducing the electromagnetic field we find an equation which
gives rise to the correct gyromagnetic ratio, and is fully Hermitian under the pro-
posed scalar product. Finally, we show that the original structure of Dirac’s equa-
tion and its solutions is obtained in the highly constrained limit in whichpm is
proportional totm on mass shell. The chiral nature of the theory is apparent. We
define the discrete symmetries of the theory, and find that they are represented by
states which are pure left or right handed. ©1997 American Institute of Physics.
@S0022-2488~97!03005-3#

I. INTRODUCTION

The Dirac theory of the spin-12 particles, like the Klein–Gordon description of particles wit
out spin, makes use of wave functions which are not localized, as pointed out by Newto
Wigner.1 The equations of motion, although useful for describing the properties of quantum fi
are not adequate for the construction of effective one-particle quantum theories. It has been
that the use of an invariant parameter to describe the evolution of states which are off-mas
provides a general framework in which this problem is solved.2,3

First-order equations for particles with spin12, for which the evolution of the entire system
governed by an invariant parameter, have been searched for and studied by many over th
Their importance lies in describing the behavior of the spin degrees of freedom of ferm

a!On sabbatical leave from School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sc
Tel Aviv University, Ramat Aviv, Israel and Department of Physics, Bar Ilan University, Ramat Gan, Israel.
0022-2488/97/38(6)/2963/33/$10.00
2963J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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particles in such theories. We can trace the formulation of covariant quantum theories w
invariant evolution parameter from Fock,4 through Stueckelberg,5 Nambu,6 Schwinger,7 and
Feynman,8 up to more recent work done by Cooke,9 Horwitz and Piron,2 and Fanchi.10

Second-order equations for spin-1
2 particles have been found and studied by Fock,

4 Feynman,8

Horwitz et al.,11 and Reuse.12 A number of first-order equations for spin-1
2 particles have been

proposed by Nambu,6 Feynman,8 Kubo,13 and Davidon.14 The Dirac equation15 does not contain
an invariant evolution parameter, and applies to a three-dimensional measure space. For
mary of the subject and an extensive list of references see Fanchi.16 Some of the first-order
equations were introduced in anad hocmanner, and some of the formulations were incompati
with the postulated second-order equation for the evolution of a free particle in the correspo
theories. In some cases they led to free evolution equations which aresecond orderin the invariant
parameter, admitting solutions which propagate forward and backward, thus invalidating t
terpretation of the invariant parameter as an unidirectional evolution parameter,17,18a feature that
is quite important for the interpretation of the theory.

In this paper we propose a first-order equation of motion for a spin-1
2 particle, in the frame-

work of the formalism developed by Horwitz and Piron,2 which is consistent with the form of the
second-order evolution equation for a free particle, the Schro¨dinger–Stueckelberg equation

i ]tc5
PmPm

2M
c. ~1!

It seems that this kind of evolution kernel, proportional toPmPm , is best suited to describe
covariant theory~see Fanchi19!. It leads to the correct relation for the velocities of a classi
particle and permits separation of variables in the many body case.2

We find that to achieve the goal of obtaining a first-order equation for a spin-1
2 particle, it is

necessary to introduce nilpotent operators which result in a chiral theory even though we a
restricted to massless fermions. This result may be relevant to the present situation in
interactions and neutrino physics, where one finds chiral fields although it is not clear the ne
mass is zero, and when theories beyond the standard model are considered.20–22We shall restrict
our study of interactions here, however, to the case of the U~1! electromagnetic gauge.

The general outline of this work is as follows. In Sec. II we present a short summary o
basics of the formalism we use. We then establish our basic requirements of the equation,
logic in deriving it. In Sec. III we define the basic structure of the equations of motion, the
of a continuity equation, currents, and probability density. The basic requirements force us t
nilpotent matrices as building blocks for the equation, so we investigate all possible nilp
434 matrices in Appendix A,~and state some useful facts about them!, and we state the Lorent
covariant appropriate nilpotent forms. We observe that it is not possible to construct a
Schrödinger–Stueckelberg-type equation by iteration at this stage. In Sec. IV, we construc
equations of motion, for transverse and longitudinal modes. In Sec. V, we investigate the fo
the resulting currents and establish the validity of the form of the probability density for
versions. In Sec. VI we define the tensor product Hilbert space over the longitudinal and
verse modes, and show that our formulation is fully compatible with the one of Horwitz
Arshansky.23 It is shown in this framework that the equations for the transverse and longitu
modes can be combined to a single Schro¨dinger–Stueckelberg equation. Next, in Sec. VII, w
introduce a minimal coupling for the gauge field, producing electromagnetic interaction
discuss the second-order form of the generator of motion, and show it coincides with th
achieved by Horwitz and Arshansky.23 It implies the correct gyromagnetic ratio, and is ful
Hermitian under the positive definite, invariant scalar product for the quantum-mechanical H
space. In Sec. VIII, we show that we recover the original Dirac equation and its solutions
limit where pm is constrained to be proportional totm on mass shell. We observe the connecti
between the transverse and longitudinal equations, and the spin and convection currents,
J. Math. Phys., Vol. 38, No. 6, June 1997
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tively, of the Gordon decomposition of the Dirac current. The solutions of the equations of m
are discussed in Appendix B. We explore the discrete symmetries of the theory, in Appen
and define the generalized parity, charge conjugation, andt reversal transformations. The stat
that are transformed one into the other under these transformations are pure left or right h

We use the notation

xm[~x0,x1,x2,x3!

and we shall always use the symbolx0 as the time component, and reservetm for the timelike
vector. We use an opposite metric relative to the Bjorken–Drell convention24

g0052152g1152g2252g33.

Furthermore, we shall use the notation

~g•v ![~gmvm!,

wherevm is a four-vector. We also use the uppercasePm to denote an operator, and lowerca
pm for eigenvalues.

II. t FORMALISM

We refer to the invariant parameter ast, the invariant universal world time, which describ
the evolution of an event moving through space–time. The notion of the need of some inv
evolution parameter to replace the covariant time is not new, and we give some of the argu
as presented in Ref. 25.

Nonrelativistic quantum mechanics uses the Newtonian universal time to describe a s
terms of square integrable functions over three-space at a specific time, which evolve accor
Schrödinger’s equation. But the Hilbert spaces associated with different times are distinc
cannot superpose wave functions at different times. This situation is inconsistent with s
relativity. Viewed from some other frame the wave function becomes a function on diffe
times, thus losing its interpretation as a state.

The Klein–Gordon and Dirac equations have been able to resolve the problems of cova
they have a manifestly covariant form. But the problem of constructing localized states
remains. The inconsistency of the solutions of the Klein–Gordon equation as an amplitude
local probability density was shown by Newton and Wigner.1 They showed that the distributio
corresponding to a localized particle is an eigenfunction of the operator

XNW5 i S ]

]p
2

p

2E2D ~2!

and the wave function corresponding to a localized particle is spread out by the orde
Compton wavelength. They reached similar conclusions concerning the Dirac equ
Hegerfeldt26 has shown that a distribution at a specific time, defined to have compact suppo
localized in some other sense, does not maintain its localizability, and evolves out of the
cone, i.e., acausally.

Quantum field theories make the transformation laws of special relativity and quantum
chanics consistent by assigning the spatial variables to the same parametric role as the tim
dynamical variables are operator valued fields which are functions on this parametric space
But the one particle sector wave functions of such theories describing the transition amp
between the vacuum and one particle states suffers from the same difficulties as mentioned
Predictions of phenomena concerning local properties in space–time are very difficult to form
J. Math. Phys., Vol. 38, No. 6, June 1997
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and interpret~e.g., interference phenomena!, although spectral properties of nonlocal observab
~energy, Lamb shift, anomalous magnetic moment!, can be computed and are in excellent agr
ment with experiment.

The basic difficulty of developing a consistent theory which incorporates the ideas of sp
relativity and quantum mechanics is related to questions concerning the relationship betwee
and locality. On one hand, space and time transform with the Lorentz group~and thus this
relativistic time has a geometrical interpretation!, and on the other hand, in a specific frame, it h
been considered as a measure of evolution, of change. A way to resolve this ambiguity is to
the state of a system in terms of a distribution of events in space and time, while their evo
is parametrized by the time indicated on an ideal clock which is associated with every in
frame~see Ref. 27 for further discussion!. We call this parameter the universal timet, and it can
be identified with Newton’s time.

Stueckelberg,5 Horwitz and Piron,2 and others7,8,10developed an underlying formalism inco
porating the invariant parametert which enabled them to construct a consistent manifestly co
riant relativistic classical and quantum theory. The Newton–Wigner2 as well as the
Landau–Peierls28 problems have been understood in this framework. Two body problems, bo
bound states and scattering have been treated, and the Zeeman29 effect and selection rules30 for
radiation worked out. The spinless theory, in interaction with radiation@U~1! gauge field# has been
second quantized.31 We state briefly the main principles of the formalism.

The equations of motion of the classical theory may be derived from the Hamilton princ2

dE ~pmdq
m2K~pm,qm!dt!50. ~3!

This principle is equivalent to the canonical equations

dpm

dt
52

]K

]qm ,
dqm

dt
5

]K

]pm
, ~4!

describing the motion of an ‘‘event’’ along its world line~trajectory!. For example, for a free even
one takes

K05
pmpm

2M
5
p22E2

2M
, ~5!

whereM is a given property of the event, and sets the scale betweent and the quantities of
motion. We then have

dx

dt
5

p

M
;

dt

dt
5

E

M
. ~6!

The proper time interval for the motion of a free event is defined by

ds25dt22dx2 ~7!

and satisfies

ds25
m2

M2 dt2, ~8!

wherem25E22p2 is a dynamical variable to be determined by initial conditions and dynamic
the system. If initial conditions are chosen so thatm25M2, the ‘‘on-shell’’ condition, then the
proper time interval and the universal world timet, coincide. It should be noted that the theory
J. Math. Phys., Vol. 38, No. 6, June 1997
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not constrained to timelike motion, so tachyonic propagation of events is possible. Howeve
does not imply explicitly the existence of tachyonic particles in laboratory measurements
one generally observes asymptotic states as the initial and final outcome of collision experi
Due to the asymptotic conservation of the generator of free propagationPmPm/2M , for example,
in potential scattering, states that are initially in timelike motion are timelike in the asymp
final state as well. The structure of the theory, however, does not exclude tachyonsa priori,
classically or quantum mechanically.

In the quantum domain, the states of the system for a givent are described in the Hilber
spaceL2(R4,d3xdt), the space of square integrable functions of four variables given for
spinless case as (c,x)5*c* xd4x. We shall show that we obtain the scalar product for spi1

2

particles suggested by Horwitz and Arshansky,23 and Arensburg and Horwitz,32 as given below in
Eq. ~11!, from considerations of the equation of continuity.

The observables of space–time coordinates and momenta satisfy the commutation rel

i @Pm,Qn#5gmn1. ~9!

The evolution of a state vector is described by the Schro¨dinger type equation

i ]tc5Kc, ~10!

where for a free particleK5P2/2M , resulting in the Schro¨dinger–Stueckelberg equation~1!.
Horwitz and Arshansky23 have suggested a second-order equation for particles with sp1

2.
They argue as follows. For a particle with spin the components of the wave function
transform as a representation of the Lorentz group. The norm must be invariant, so the rep
tation must be unitary. But the Lorentz group is a noncompact group, therefore the unitar
resentations are infinite dimensional, containing all spins; such a ladder representation
however, introduce problems with the application of the Pauli principle, for example, in
Sommerfeld model of a metal. If one were to use an induced representation based on the
four-momentum as done by Wigner,33 the expectation value ofxm, which by Eq.~9! is replaced by
i (]/]pm), would not be covariant~the derivative acts on the unitary operator of the little gro
defined bypm!. Their solution consisted of introducing a representation induced on the little g
of a unit timelike vector, which we denote here bytm, which commutes withxm andpm. They
described the transformation properties of the wave function, and found the form of the po
definite, covariant norm to be

N5E d4xc̄tt~x!~g•t !ctt~x!, ~11!

wherectt(x) is the Dirac spinor, andg
m the usual Dirac matrices. They constructed the Hermit

and anti-Hermitian parts of the operator (g•P) under the scalar product associated with the no
These are, in Hermitian form@under the norm~11!#,

KL5 1
2~~g•P!1~g•t !~g•P!~g•t !!52~P•t !~g•t !, ~12!

KT5 1
2g

5~~g•P!2~g•t !~g•P!~g•t !!522ig5~P•K !~g•t !, ~13!

whereKm5Smntn ,S
mn5 1

4i @gm,gn#, and the subscriptsT andL denote transverse and longitud
nal parts relative to the timelike vectortm . Since

KL
25~P•t !2; KT

25P21~P•t !2 ~14!

for the equation of evolution, Eq.~10!, one can write
J. Math. Phys., Vol. 38, No. 6, June 1997
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i ]tc5
1

2M
~KT

22KL
2!c. ~15!

By introducing minimal couplingPm→Pm 2 eAm they then obtained

i ]tc5
~P2eA!2

2M
c1

e

2M
S t

mnFmnc, ~16!

where

S t
mn5Smn1Kmtn2Kntm. ~17!

This equation reproduces the correct gyromagnetic ratio, and does not contain the non-He
spin term appearing in Dirac’s electromagnetically coupled, second-order equation@in the special
frametm5(1,0,0,0), one easily sees thatS0 j is canceled so that there is no direct coupling of t
electric field with spin in this special frame#. Note thatSmnFmn , appearing in the Dirac second
order equation, containsis•E as well ass•H; the former is not Hermitian in the norm
*c* (x)c(x)d3x, which is Dirac’s scalar product.

In a later work, Arensburg and Horwitz32 extended the formalism to a first-order equation
spin 1

2. Since theKT part is responsible for the production of the correct gyromagnetic ratio,
postulated a first-order equation of the form

i ]tc52~P•KT!~g•t !c. ~18!

~Their KT is equivalent to that of Ref. 23 up to a factor2 ig5!. Furthermore, they found its
solutions and associated current, and showed that the current, although exhibiting a sp
nature at each point on the orbit~defined bytm!, integrated over all possibletm in the forward light
cone~completing the natural scalar product of an induced representation!, reduces to a timelike
current vector.

Equation~18! does not, however, conform to the Schro¨dinger–Stueckelberg equation~1! by
iteration; it leads to a second-order equation int. This is our original motivation in trying to obtain
a new kind of first-order equation for spin-1

2 particles in this framework.

III. GENERAL FEATURES OF THE EQUATIONS

A. Basic structure

In our attempt to find a manifestly covariant equation for an event with spin we require
general features of the equation concerning the relation between first- and second-order eq
namely the Dirac equation and the Klein–Gordon equation. We proceed from the point of
that a first-order equation is an additional condition on the second-order one, while at the
time introducing the notion of spin. In the process we narrow down the number of ava
options and maintain only the suitable ones.

The desired equation should contain first-order derivatives only, giving equal footing t
treatment of space and time. Another requirement is that the equation be Lorentz covaria
we wish the equation to be form covariant in respect to the choice of inertial frames. We a
that the space–time derivatives are coupled to an object constructed fromgm matrices and perhap
some other four-vectors, and work with Dirac spinors, since we want the theory to be as cl
possible to the standard theory of Dirac. For the actual Lorentz transformations of the
functions and equations we use the well-known form24,34 ~this form is also applicable to the mor
general case treated in Refs. 11 and 23; we usesmn in place ofSmn henceforth for notationa
simplicity!
J. Math. Phys., Vol. 38, No. 6, June 1997
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S~L!5e2~ i /4!smnvmn, ~19!

where

smn5
i

2
@gm,gn# ~20!

andvmn are the antisymmetric transformation parameters.
We also require the equation to conform to a form of the Schro¨dinger–Stueckelberg equatio

by iteration, thus ensuring the free solutions of the spin particle to also be solutions of tha
of Schrödinger–Stueckelberg equation, in parallel to the relation between Dirac’s equation a
Klein–Gordon equation. This way each component of the wave function satisfies the free fo
the Schro¨dinger–Stueckelberg equation separately. From another point of view we may rega
desired equation as an additional condition on the solutions of the Schro¨dinger–Stueckelberg
equation, as the Dirac equation is to those of the Klein–Gordon equation.

Now we postulate the most general form of a first-order spin equation

L~P!c5s2N2i ]tc1s1MN1c, ~21!

whereL(P) is a linear function of first-order space–time derivatives, namely a function ofPm ,
ands1 ands2 are sign variables to be determined.N1 andN2 are unknown matrices at this stag
The second term on the right-hand side of Eq.~21! has no derivatives. To compensate for t
dimensional deficiency we introduce the scale factorM , which appears in the Schro¨dinger–
Stueckelberg equation. This term is necessary for maintaining the first-order derivative in r
to t, after the iteration is done.

To get the Schro¨dinger–Stueckelberg equation we multiply byL(P) on the left

L2~P!c5s2L~P!N2i ]tc1s1ML~P!N1c. ~22!

Now, let us define the commutators and anticommutators for the operators in Eq.~21!

C̃l1[$L~P!,N1%, C̃l2[$L~P!,N2%,

C̃nn[$N1 ,N2%, Cl1[@L~P!,N1#, ~23!

Cl2[@L~P!,N2#, Cnn[@N1 ,N2#.

We substitute Eq.~21! into Eq. ~22! to obtain

L2~P!c5N2
2 ]t

2c2s1s2MC̃nni ]tc1s2C̃l2i ]tc1s1MC̃l1c2M2N1
2 c. ~24!

We do not want second-order derivatives in respect tot, so we must have

N2
2 50. ~25!

Since we postulated that only first-order space–time derivatives appear inL(P), and since Eq.
~24! is supposed to coincide with the Schro¨dinger–Stueckelberg equation~1!, we require in addi-
tion to Eq.~25! also that

C̃l15C̃l250. ~26!
J. Math. Phys., Vol. 38, No. 6, June 1997
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This gets rid of first-order space–time derivatives in Eq.~24!, and leaves only second-order on
in L2(P). We still have an unwanted term,M2N1

2 c, and we require it to be zero~we could
alternatively absorb it in the phase of the wave function!. Thus, we obtain

@2s1s2MC̃nn#
21L2~P!c~ c̃ !5 i ]tc~ c̃ ! , ~27!

which is of the form of the desired equation~1!, if we can find a solution for the conditions

L2~P!56P2; C̃nn562. ~28!

The subscript (c̃) in Eq. ~27! represents an equation derived using anticommutators.
We may use commutators instead of anticommutators, and repeating the previous pro

we reach the same conclusions concerningN1 , N2 , and C̃nn . However, this time there is the
requirement that

Cl15Cl250. ~29!

The equation analogous to Eq.~27! is

@s1s2MC̃nn#
21L2~P!c~c!5 i ]tc~c! . ~30!

The subscript (c) represents an equation derived using commutators. As we see later on, we
need both forms. In addition, we require that the equation have a continuity equation, con
positive definite probability, and currents.

B. Continuity equation and currents

We are interested in achieving a continuity equation24,34,35for Eq. ~21! of the form

]a j
a50; ~a50,1,2,3,t! ~31!

in order to obtain the usual interpretation, wherej t5r should be the probability density, con
served through Eq.~31!. We observe that sinceN2 is nilpotent, the probability density cannot b
of the usual Dirac formc†c, but contains a matrix betweenc† andc @a nilpotent does not have
an inverse so there is no way to get a purei ]tc term in Eq.~21!#. References 23 and 32 show th
the scalar product for the second-order equation obtained from Eq.~11! is

~fDirac,cDirac!5E d4pf̄Dirac~g•t !cDirac, ~32!

where tm is the same timelike four-vector with normt2521 mentioned earlier. The timelike
nature oftm is crucial for the scalar product to be positive definite.@Of course,f, c depend on
tm, so that~32! is a covariant structure on a bundle~i.e., as an induced representation!#. The
probability density is just the special case of the integrand of the scalar product whenf5c. To
find the continuity equation one multiplies the equation from the left byc†g0, and the conjugated
equation from the right byg0c, and then subtract one from the other. In order to achieve the f
~31! we must have

g0~N1!†g05N1 , g0~N2!†g05N2 , ~33!

g0~L†~2PQ !!g052L~PQ !,

and finally we get
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]m~c̄bmc!5s2]t~c̄N2c!, ~34!

where it is assumed that the form ofL(P) is bmi ]m , andb
m is some yet unspecified object wit

a Lorentz index which couples toPm . We must therefore now search for nilpotents for whi
(c̄N2c) is positive. A general analysis is carried in Appendix A.

C. Acceptable nilpotents

One finds~in Appendix A! that the candidates for nilpotents which pertain to a posit
definite probability density are:

~g• l ~6 !!:~g•t !~16g5!,

~g• l ~6 !!:~g•t !6sts, ~35!

~g•t !6 ig5:~g•t !6sts,

where we denote

sts[smntmsn ~36!

and l , s, andt are lightlike, spacelike, and timelike vectors, respectively.
Nilpotents of this type come innonequivalentpairs, in the sense that no unitary transformati

connects the members of the pair~see Appendix A!. Furthermore, pairs in thecolumnsof Eqs.
~35! areequivalentsince we are able to transform from one to another through a unitary tran
mation. In any case we look at all four possibilities in the quest forL(P). Each nilpotent can be
seen to be formed of two parts, a projection operatorPr6 , and (g•t), such that (g•t)•Pr2

5 Pr1 • (g • t). Inparticular,

~g• l ~6 !!5~g•t !~16~g•t !~g•s!!,

~g•t !6 ig55~g•t !~16 i ~g•t !g5!,
~37!

~g•t !6~g•t !g55~g•t !~16g5!,

~g•t !6sts5~g•t !~16 i ~g•s!!.

The last of Eqs.~37! is due to the fact that (t•s) 5 0 andsts5 i /2@(g•t),(g•s)#.

D. The four-momentum part: L (P)

We wishL(P) to be linear in first derivatives, have zero anticommutators withN6 @see Eq.
~26!#, produce the four-current part of the continuity equation, iterate to6 P2, and be Lorentz
covariant. We check the four available forms of nilpotents in Eqs.~35!, stemming from the
specific reference frame in which they were found. To comply with Eq.~26! we search for allG’s
~see Appendix A! which anticommute withN6 , then we couplePm in all possible ways, and
check the anticommutators, and other criteria. The same procedure must be repeated for c
tators of Eq.~29!. Going through all options of Eq.~37! is a tedious process, and we shall state o
choice and the reasoning behind it, which applies to commutators and anticommutators alik
consider the transverse and longitudinal options separately, combining them in Sec. VI. Fro
anticommutator forms we choose

N65~g•t !~16g5! ~38!
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and

L'~P!5smnPmtn . ~39!

This is because in doing so, we deal with only one additional four-vector,tm , while retaining the
ability to achieve the gyromagnetic ratio, and exhibiting some features concerning chirality d
the use of the projection operators12(1 6 g5). It also seems that this is the simplest choice wh
has as many benefits as possible in this situation. As we show later on, this choice gives ris
transverse Schro¨dinger–Stueckelberg equation. Not excluding the existence of a longitu
equation also, we follow our current choice forN6 , and take the simplest choice for the long
tudinal equation, namely

L i~P!5 i ~P•t !. ~40!

IV. THE EQUATIONS OF MOTION

We now discuss the consequences of the above choice for the forms ofN6 andL(P)’s. This
discussion concerns what we call the transverse and longitudinal Schro¨dinger–Stueckelberg equa
tions.

A. Transverse equations of motion

We have

C̃nn5$~g•t !~12g5!,~g•t !~11g5!%524t2 ~41!

taking t2521, a unit timelike four-vector, we have to arrange an additional factor of 2 to ge
desired form of 1/2M . We place this factor withN1 .

From ~21! it follows that the equation of motion is

2\c~smni ]mtn!c'5\s2~g•t !~12g5!i ]tc'1s1

Mc2

2
~g•t !~11g5!c' . ~42!

We display\ andc in this principal equation; elsewhere we take\5c51. It is understood that
x0[ct. Notice that in our metricPm52 i (]/]xm). Defining the transverse and longitudinal m
mentum, relative totm , as

P'm5Pm1~P•t !tm , ~43!

Piu52~P•t !tm ~44!

it follows that

~sPt!25t2P'
252P'

2

and we obtain thetransverseSchrödinger–Stueckelberg equation

P'
2

2M
c'5 i ]tc' , ~45!

where we have chosens1s251 ~the choices of22 or 11 are related to the chiral structure!.
Using the notation of Horwitz and Arshansky,23 L2(P)52KT

2, which generates the evolution o
transverse momentum only. Note thatc' contains only the transverse space–time coordina
Similarly, we have
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Pi
2

2M
c i5 i ]tc i ~46!

for the longitudinal case~see Sec. IV B!, wherec i contains only longitudinal space–time coo
dinates.

Since Eq.~42! contains projectors we can decompose it into two coupled equations by
tiplying it from the left with the same projectors. Denoting the wave function as composed o
chiral spinors,~two-component spinors in the chiral representation!,

cL5 1
2~12g5!c, cR5 1

2~11g5!c ~47!

we obtain

~g•t !~sPt!c'L5s1Mc'R , ~48!

~g•t !~sPt!c'R52s2i ]tc'L . ~49!

This is an explicit chiral decomposition, not symmetric for left- and right-handed spinors, a m
discussed later on. Such a form for equations of the first order int formalism has been propose
by Davidon,14 in a somewhatad hocmanner. He could not overcome the problem of finding
positive definite probability density, and he obtained a non-Hermitian spin term after couplin
electromagnetic field. The equations~48! and ~49! are completely equivalent to the one equati
~42!; it is just a rewriting.

Instead of Eq.~42!, we could equally well introduce a complementary equation with
places of the nilpotents interchanged

2smni ]mtnw'5s2~g•t !~11g5!i ]tw'1s1

M

2
~g•t !~12g5!w' , ~50!

where we left the signs in place. Equation~50! has all the features of Eq.~42!, except that the role
of the left- and right-handed spinors is interchanged.

Now, if we abide by Eq.~42!, and describe the theory as portraying the evolution o
left-handed spinor,c'L , while c'R is just a sort of auxiliary field, we give up right-hande
events. This cannot be done without some justification. In Sec. V we see that such an eq
gives rise to a continuity equation~through a simple procedure similar to the one performed for
Dirac equation!, where the probability density is composed of left-handed spinors only.

The interpretation ofc'R as an auxiliary field, justified by Eqs.~49! and ~48! where only
c'L is seen to evolve according tot, the existence of the other equally justified equation~50!, the
inability to prefer Eq.~42! over Eq.~50!, and the requirement for a reasonable probability dens
lead us to a unification of the two.

We define

f'[c'L1w'R , x'[c'R1w'L . ~51!

These are now four-spinors, wherex' is an auxiliary field, andf' is the main field, evolving with
t. The two sets of coupled equations~48! and ~49! and their nilpotent exchanged counterpa
become

~g•t !~sPt!f'5s1Mx' , ~52!

~g•t !~sPt!x'52s2i ]tf' ~53!
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by just adding them up. We denote them as the ‘‘extended’’ form. We therefore have achie
satisfactory probability density of four-spinors, which is sufficient for the two irreducible re
sentations of SL(2,C) ~see Refs. 23 and 32!. Of course by iteration we get the transver
Schrödinger–Stueckelberg equation forf' and forx' .

B. Longitudinal equations of motion

In dealing with a first-order equation that agrees with the longitudinal Schro¨dinger–
Stueckelberg equation, Eq.~46!, we check it for the nilpotents and momentum part we choo
Since the nilpotents are the same as for the transverse version all conclusions from Sec
apply here too. IteratingL i(P) we getPi

252(P • t)2, and the relation betweens1 to s2 is
maintained as in the transverse case. The equation of motion is

i ~2 i ]mt
m!c i5s2~g•t !~12g5!i ]tc i1s1

M

2
~g•t !~11g5!c i . ~54!

Using projectors of Eq.~47! we can decompose it in two coupled equations, following the p
cedure for the transverse case.

Exchanging the place of nilpotents in the equation to get the complementary equatio
motion for the right-handed part as the main field, while maintaining the interpretation o
auxiliary field, and adding the two types of equations as in the transverse case, leads to the c
equations

i ~g•t !~P•t !f i5s1Mx i , ~55!

i ~g•t !~P•t !x i52s2i ]tf i ~56!

with the same structure off i andx i as in the transverse case.

V. PROBABILITY DENSITY AND CURRENTS

The continuity equations for the transverse and longitudinal versions are obtained by us
procedure for obtaining the primary form of a continuity equation in Sec. III B. We show tha
currents form consistent continuity equations.

Using the procedure in Sec. III B on Eq.~42!, we obtain

2]m~c̄'smntnc'!52s2]t~c̄'~g•t ! 12~12g5!c'!. ~57!

We observe that the right-hand side of Eq.~57! is a probability density,exactly in the sense
defined by Horwitz and Arshansky,23 but achievedwithoutexplicit group theoretical arguments.
is obviously positive definite for wave functions containing left-handed components, which c
seen by transforming to a reference frame wheretm5(1,0,0,0). We denote this probability densi
~in the chiral representation ofg matrices! as

r'L[~c̄'~g•t ! 12~12g5!c'!5c†
'L~ s̃mtm!c'L , ~58!

where

s̃m[~1,2s i !; sm[~1,s i ! ~59!

and s i are the Pauli matrices. The appearance ofr'L only in Eq. ~57! is the chief reason for
introducing both Eqs.~42! and~50!. From Eq.~50! we obtain in the same wayr'R , and we can
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add them together, and obtainr'5r'L1r'R , thus having the a density containing bo
SL(2,C) representations as in Refs. 23 and 32. Sincer'R is also positive definite, so isr' , as
required.

We define the four-currents in Eq.~57! as

j'L
m [c̄'~smntn!c' ~60!

so we actually have

2]m j'L
m 52s2]tr'L , ~61!

which is the five-dimensional conservation theorem required. Let us consider

c̄'L~sPt!c'R52s2c̄'L~g•t !i ]tc'L ~62!

and the conjugate of Eq.~62!

c̄'R~sPQ t !c'L52s2~ i ]tc̄'L!~g•t !c'L . ~63!

Using Eq.~48!, and the sum of Eqs.~62! and ~63! we get

]tr'L5
i

2M
c̄'L~g•t !~2PW'

21PQ'
2 !c'L , ~64!

where

P'm[2 i ]'m[2 i ]m1~2 i ]n•t
n!tm ,

P'
252]'m]'

m . ~65!

Then we have

]tr'L5
i

2M
]'m~c̄'L~g•t !]J'

mc'L!. ~66!

This form of current resembles the Klein–Gordon current, and when taken in a frame w
tm5(1,0,0,0) we recover the space part of the current.

We now consider the combination of the above methods and equations concerning Eq~42!,
with their application to the nilpotent interchanged equation, Eq.~50!. The same line of thought
when applied to Eq.~50!, yields the same results, onlyw'R replacesc'L , w'L replaces
c'R , ]tr'R replaces]tr'L . Ultimately we get the continuity equation for the main field

]t~f̄'~g•t !f'!5
i

2M
]'m~f̄'~g•t !]J'

mf'!. ~67!

We have a physical behavior of the particles described by our equations, which resemb
physical behavior of Dirac’s particles, without the use of Dirac’s equation, but using instea
transverse equation. It is interesting to observe that the Dirac type currents were obtained fr
probability densityof our theory. We may view this as though our theory is in some sen
fundamental underlying structure for what is essentially Dirac’s theory.

We remark, moreover, that we have obtained in our method, a scalar product which
with that of Ref. 23, i.e.,
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~f'1 ,f'2!5E d4xf̄'1~g•t !f'2 . ~68!

Using the procedure in Sec. III B on Eq.~54!, we obtain

c̄ i]Jmt
nc i52s2i ]t~c̄ i~g•t ! 12~12g5!c i!, ~69!

where the positive definite quantity on the right-hand side corresponds to a longitudinal
density.

Finally we state the equation forf i , the four-spinor main field

]t~f̄ i~g•t !f i!5
i

2M
] im~f̄ i~g•t ! ]J i

mf i!. ~70!

The solution of the equations of motion is given in Appendix B.

VI. PRODUCT HILBERT SPACE

The vectortm splits the evolution of the momentum into two parts, the transverse and
longitudinal. These two modes of the motion of an event, transverse and longitudinal, are co
mentary. Therefore, the overall Hilbert space is the tensor product of the transverse and lo
dinal Hilbert spaces

H5H' ^H i . ~71!

Considering the free event, the probability density is

r5r'•r i . ~72!

By defining

L'5~g•t !~sPt!, ~73!

L i5 i ~g•t !~P•t !, ~74!

v52M , ~75!

and absorbing the signss1 ,s2 into f or x, the transverse and longitudinal equations can
expressed in a similar manner

L'f'5vx' , ~76!

L'x'5 i ]tf' ~77!

and

L if i5vx i , ~78!

L ix i5 i ]tf i . ~79!

In the product Hilbert space we define

f5f' ^ f i , ~80!

x5x' ^ x i ~81!
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andL' ,L i operate on their respective factors.
We are interested in getting a unified equation for the transverse and longitudinal m

conforming to the full Schro¨dinger–Stueckelberg equation. Considering (L'1L i)2 we find

~L'1L i!
2f5v i ]tf12Lf, ~82!

where

L5L' ^L i . ~83!

Since

~L'1L i!
25L'

21L i
212L ~84!

we obtain

~L'
21L i

2!f5v i ]tf, ~85!

which is the desired full Schro¨dinger–Stueckelberg equation.

VII. INTERACTING CHARGED EQUATIONS

To introduce the electromagnetic coupling,~see Ref. 35 for a more complete discussion;
fifth field arises as compensation for thet-derivative in the Schro¨dinger–Stueckelberg equation!
we define the electromagnetic field appropriately on the manifold of the tensor product spac

aa~x,t![aa~x' ,xi ,t!, ~86!

wherea 5 0,1,2,3,t. We may therefore define

L'
P5~g•t !~sPt !, ~87!

L i
P5 i ~g•t !~P•t !, ~88!

where

Pm5Pm2eam. ~89!

Note that althoughL' andL i act on the tensor product space asL' ^1 and1^L i , this is no longer
true, in general, forL'

P andL i
P . Let us start by defining equations containing fields of the fo

a'm andaim

~g•t !@smn~Pm2ea'm~x' ,t!!tn#~f'~x' ,t! ^1!5v~x'~x' ,t! ^1!, ~90!

~g•t !@smn~Pm2ea'm~x' ,t!!tn#~x'~x' ,t! ^1!5@~ i ]t1ea't~x' ,t!!f'~x' ,t!# ^1,
~91!

and

i ~g•t !@~Pm2eaim~xi ,t!!tm#~1^ f i~xi ,t!!5v~1^ x i~x' ,t!!, ~92!

i ~g•t !@~Pm2eaim~xi ,t!!tm#~1^ x i~xi ,t!!51^ @~ i ]t1eait~xi ,t!!f i~xi ,t!#. ~93!

Now, since we can write

( ~a'
nf' ^ai

nf i!~x' ,xi!5( a'
n ~x'!ai

n~xi!f'~x'!f i~xi!, ~94!
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wheren is some index, the limit of this sum can approximate any functiona(x), i.e.,

( a'
n ~x'!ai

n~xi!f'~x'!f i~xi!5a~x!f'~x'!f i~xi!. ~95!

Since we have gauge invariance

a'm~x'!→a'm~x'!1
1

e
]'mL'~x'!, ~96!

aim~xi!→aim~xi!1
1

e
] imL i~xi! ~97!

we may generalize the gauge invariance to

am~x' ,xi ,t!→am~x' ,xi ,t!1
1

e
]mL~x' ,xi ,t! ~98!

and

at~x' ,xi ,t!→at~x' ,xi ,t!2
1

e
]tL~x' ,xi ,t!. ~99!

These hold for the equations

~g•t !~sPt !'~f' ^ f i!5v~x' ^ f i!, ~100!

~g•t !~sPt !'~x' ^ x i!5~ i ]tf'! ^ x i1eat~f' ^ x i!, ~101!

i ~g•t !~P•t ! i~f' ^ f i!5v~f' ^ x i!, ~102!

i ~g•t !~P•t ! i~x' ^ x i!5x' ^ ~ i ]tf i!1eat~x' ^ f i!, ~103!

since in each equation we can refer to the other variable~sayi in the' equation!, as a parameter
The subscript on the matrix operators on the left-hand side of the equations means that we
with derivatives on the relevant factor space.

We can therefore define the form of the basic equations as

L'
Pf'5vx' , ~104!

L'
Px'5~ i ]t1eat!f' ~105!

and

L i
Pf i5vx i , ~106!

L i
Px i5~ i ]t1eat!f i . ~107!

DenotingLP as the tensor product operator obtained fromL'
P andL i

P as

LP5L'
P

^L i
P ~108!

we obtain
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LPf5v2x, ~109!

LPx5~ i ]tf'! ^ ~ i ]tf i!1e2at
2f1eati ]tf. ~110!

As before, we obtain from the squared expression

~L'
P1L i

P!2f5v~ i ]t1eat!f12LPf. ~111!

Therefore we find

@~L'
P!21~L i

P!2#f5v~ i ]t1eat!f, ~112!

which is exactly the full electromagnetically coupled Schro¨dinger–Stueckelberg equation. Now
using the fact that

~smnPmtn!~srlPrtl!5 1
4~@Pm ,Pr#@smntn ,s

mrtl#1$Pm ,Pr%$s
mntn ,s

mrtl%! ~113!

the definition~this quantity was defined by Horwitz and Arshansky23 as well!

22is t
mr5@smntn ,s

rltl#52i ~smrt22~smltl!tr2~snrtn!tm! ~114!

and

$smnvn ,s
rlvl%52~v2gmr2vmvr! ~115!

and the relation

@Pm ,Pn#5 ie fmn ~116!

we get

~L'
P!25P'

22
e

2
s t

mn f mn ~117!

by defining

P'm[Pm1~P•t !tm . ~118!

Furthermore, we have

~L i
P!252~P•t !2, P'

25P21~P•t !2

and it is easy to see that Eq.~112! is

~ i ]t1eat!f5
1

2M FP22
e

2
s t

mn f mnGf, ~119!

which is exactly the same equation found by Horwitz and Arshansky.23 This shows that our
formulation is fully consistent with theirs.

The gyromagnetic ratio is taken as the ratio between the coefficients of the termsP2 and
(e/2)s t

mn f mn , giving the correct relation of relative size and sign, between the momentum,
coupling, and mass terms~see Ref. 34!. Furthermore, we obtain, as in Horwitz and Arshansky23

a fully Hermitian spin term, as opposed to the Dirac case~and the additionalat field which they
did not use!.
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VIII. THE DIRAC LIMIT

We have seen that it is impossible under the assumptions of Sec. III to find a single first
equation which iterates to the full Schro¨dinger–Stueckelberg equation. Therefore, we resorte
the combined product Hilbert space description in Sec. VI. However, by making a slight m
cation we can obtain the full Schro¨dinger–Stueckelberg equation by iteration from a single eq
tion. This modification is the necessary ingredient to see the connection between the
developed so far and Dirac’s theory.

The modified approach that we use to employ a single equation is to break up the op
L(P) to two parts, which have different algebraic structure with respect to the nilpotentsN6 . This
will enable us to obtain the full Schro¨dinger–Stueckelberg equation upon iteration.

Let us assume thatL(P) is composed explicitly of two parts,L1(P) andL2(P). Then, the
general form of the first-order equation is

~L1~P!1L2~P!!c5s2N2i ]tc1s1MN1c. ~120!

We now multiply Eq.~120! from the left by (L1(P) 2 L2(P)). To be able to insert Eq.~120! into
the new equation we must have

$L1~P!,N6%50, @L2~P!,N6#50. ~121!

Requiring that

@L1~P!,L2~P!#50 ~122!

and thatN6 are nilpotents, we obtain

~L1
2~P!2L2

2~P!!c52s2s1MC̃nni ]tc. ~123!

Performing an evaluation process similar to the one done in Sec. III, we make the simplest
which is

L1~P![~sPt!; L2~P![ i ~P•t ! ~124!

and the nilpotents areN6 5 (g • t)(16 g5). The equation of motion is

~2smni ]mtn1 i ~2 i ]mt
m!!c5s2~g•t !~12g5!i ]tc1s1

M

2
~g•t !~11g5!c. ~125!

Iterating we get thefull Schrödinger–Stueckelberg equation~1!. We obtain the currents

2 i ]n~c̄snmtmc!1c̄]Jmtmc)52s2i ]t~c̄L~g•t !cL!, ~126!

which can be written as

2tm j L
m52]ts2tm~c̄Lg

mcL!, ~127!

where

j L
m[~]n~c̄snmc!1c̄ i ]Jmc!. ~128!

It is clearly seen thatj L
m resembles the definition of the Gordon decomposition of currents of

Dirac equation.
An equation with the roles ofN6 interchanged can be built, resulting in a similar Gord

decomposition but this time only right-right terms appear in the current. When we discuss
J. Math. Phys., Vol. 38, No. 6, June 1997
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transverse and longitudinal equations we could transform between the two versions opposit
nilpotent assignment by a suitable transformation. Decomposing Eq.~125! by projection into two
coupled equations we find

2 i ~g•P!cL5s1McR , 2 i ~g•P!cR52s2i ]tcL . ~129!

At this stage thetm dependence of the equations disappears; we deal with this below. Taking
equations to mass shell, choosings15s2521, we obtain

2 i ~g•P!cL52mcR , 2 i ~g•P!cR5mcL ~130!

and for the equation withN6 interchanged

2 i ~g•P!wR52mwL , 2 i ~g•P!wL5mwR . ~131!

To transform from Eq.~130! to Eq.~131!, we can multiplyc by2 (1/m)(g•P) ~working on shell!
to exchange the roles of the left- and right-handed spinors, therefore the relation betweenc andw
is

2
smpm

m
cR5wL ; 2

s̃mpm

m
cL5wR . ~132!

This implies that

wL52 icL ; wR5 icR ~133!

and the relation between the main fieldf and the auxiliary fieldx is

f5 ix. ~134!

Using Eq.~133!, Eqs.~130! and ~131! are then exactly the Dirac equation in the chiral repres
tation ~holding for both the main and auxiliary fields!

~g•P!fR52mfL ,
~135!

~g•P!fL52mfR .

This implies, of course, the Dirac current and continuity equations for the main and auxiliary
f andx.

When electromagnetic coupling is introduced in Eq.~125!, assuming thatat50 ~Coulomb-
like gauge! andam independent oft ~restricting ourselves to the zero mode! for simplicity, we
obtain for the second-order equation

i ]tc5
1

2M FP22
e

2
smn f mnGc, ~136!

which has the usual non-Hermitian term, and conforms to the second-order charged Dirac e
@wheni ]t→ 2 (m2/2M ), see Ref. 7#. We therefore see that the decomposition into transverse
longitudinal modes was essential to achieve a Hermitian interaction as well as the Schro¨dinger–
Stueckelberg form.

All the discussion above can be approached from a different point of view. If we take
longitudinal equations of motion, and assume that the momentum is in the direction of the
vector tm , such that
J. Math. Phys., Vol. 38, No. 6, June 1997
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Pm5atm ; P252a2 ~137!

then the longitudinal equations of motion become

2 i ~g•P!c iL5s1Mc iR ,
~138!

2 i ~g•P!c iR52s2i ]tc iL

with a similar result for the nilpotent interchanged equation. Making the identificationc5c i ,
these are exactly Eqs.~129!. One can now understand howtm disappeared previously in Eqs
~129!. Furthermore, looking at the basic structure of the solutions of the longitudinal equatio
f i ~see Appendix B!, Eq. ~B21!, and replacingtm by pm /m in z i

2(t), ~on-shell condition!, we
obtain the exact non-normalized solutions of the Dirac equation in the chiral representation

z1~p![S 2~1/m!smpmj1
j1

D , z2~p![S j2
2~1/m!s̃mpmj2

D , ~139!

wherej1,2 are two independent two-spinors; this is also apparent from Eq.~132! ~actually, when
taken in the energy representation of the Dirac matrices these solutions correspond to the p
energy, andz i

1(t) solves the Dirac equation for the negative energy!.
It seems that aspm departs from the direction oftm , we depart from the Dirac description, an

the event is described by two independent equations of motion, transverse and longitudin
event evolution int becomes different for the two versions, differing in phase and spinor con
At the same time the auxiliary fields are spontaneously generated in the transverse case a
the Dirac field in the longitudinal case. Furthermore, the auxiliary field, treated as a mathem
convenience, but seen to be strongly related to the main field, Eq.~134!, may be a further
indication of the amount of departure from the on-shell Dirac theory.

IX. CONCLUSIONS

Accepting a second-order spin equation of the form of the Schro¨dinger–Stueckelberg equatio
as the basic structure of the theory, and requiring that the free solutions of a first-order equa
also the solutions of the second-order one, lead to transverse and longitudinal equations.
selection process we chose the most suitable forms for the ingredients of these equatio
introduced the induced representations on a timelike vectortm and an auxiliary field so that the
theory can be consistent. The evolution of the free event is governed by two complem
equations, the transverse and longitudinal. We manage to unify the complementary behavio
event, transverse and longitudinal, with the use of a product Hilbert space. Then, after introd
the electromagnetic coupling, we obtain the correct gyromagnetic ratio~and the second-orde
charged equation describing the evolution of the main field!; this coupling term is fully Hermitian
under the scalar product. Finally, we showed how the theory goes over to the Dirac theory
limit in which pm is in the direction oftm on mass shell. In this limit the theory changes
structure. The first-order transverse equation no longer exists; its auxiliary field andt evolution
disappear, and the longitudinal equation takes on a new meaning, leading to the original
equation. We also display, in Appendix B, the solutions of the equations, which are charact
by the ‘‘extended helicity’’ and ‘‘chiral precedence’’ for the transverse case, and by ‘‘exten
helicity’’ and ‘‘extended parity’’ in the longitudinal case. Both cases have the same prope
under the generalized parity, charge conjugation, andt reversal transformations~as shown in
Appendix C!. The objects which transform one into the other under these transformations ar
left- or right-handed spinors, thus exhibiting the chiral nature of the theory.
J. Math. Phys., Vol. 38, No. 6, June 1997
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APPENDIX A: IDEMPOTENTS AND NILPOTENTS

1. Idempotents

Let us consider idempotents of the form~we carry out the analysis in a given Lorentz fram
and discuss later the corresponding invariant forms!

Pi65 1
2~16G i !, ~A1!

whereG i are elements of the Dirac Clifford algebra. We state some known facts about
matrices.36,37

G i
251, ~A2!

G i
215G i , ~A3!

G i
†5G i ~ i51,...,16!, ~A4!

where ‘‘†’’ implies complex conjugate transpose, and forj Þ k,

G jGk5e jkG l , e jkP$1,21,i ,2 i %, ~A5!

GkG j5~e jk!
21G l . ~A6!

There are 15 pairs ofPi6 . In fact they are equivalent under automorphism. We show this
defining a unitary transformationTj such that

Tj5
1

&

~11 iG j !; Tj
215

1

&

~12 iG j !5Tj
† . ~A7!

UsingTj we can transform from oneG to another. IfG i andG j commute we have

@G j ,G i #50⇒@Tj ,G i #50⇒TjG iTj
215G i ~A8!

and because of Eqs.~A5! and~A6! we have~for i Þ j !

@G j ,G i #50⇒G iG j2G jG i5~e i j2e i j
21!Gk50⇒e i j5e i j

21⇒e i j561 ~A9!

and

@G i ,G j #50⇒$G i ,G j%Þ0. ~A10!

G i is invariant under the transformationTj ; we find a tripletG i ,G j ,Gk which commute among
themselves, whereGk5G iG j . These triplets form maximal commuting sets.

On the other hand, ifG i andG j do not commute then

@G j ,G i #Þ0⇒@Tj ,G i #Þ0⇒~e i j2e i j
21!GkÞ0⇒e i jÞe i j

21⇒e i j56 i ~A11!

This means that for the noncommuting case we have

@G j ,G i #562iGk ~A12!

and so

TjG iTj
215 1

2~G i1 i @G j ,G i #1G jG iG j !57Gk . ~A13!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Furthermore we find that

@G i ,G j #Þ0⇒$G i ,G j%50. ~A14!

We can transformG i into Gk using G j . This is a Pauli algebra structure for the tripl
G i ,G j ,Gk

@G j ,G i #562iGk ; $G j ,G i%50,

@G i ,Gk#562iG j ; $G i ,Gk%50,

@Gk ,G j #562iG i ; $Gk ,G j%50. ~A15!

FromPi6 andPj6 from a maximal commuting set, we can form four primitive idempote

Pi6Pj65~ 1
2!
2~16G i !~16G j !. ~A16!

We shall denote these by

P̃a5Pi6Pj6 ~a51,2,3,4!, ~A17!

where

a51→ i1, j1, a52→ i1, j2,
~A18!

a53→ i2, j1, a54→ i2, j2.

The triplets of nontrivial commutingG’s are ~the numbers refer to the index of the matrices, s
Refs. 35 and 38!:

6,9,16
16,8,11
2,10,14

6,4,15
16,7,10
11,5,12

6,5,14
15,2,11
14,3,8

9,2,13
15,3,7
13,5,7

9,3,12
10,4,12
8,4,13

.

For building P̃a’s we can take any pair from a given triplet, and achieve the same result~get the
sameP̃a’s for the triplet!; this is because

P̃a5~ 1
2!
2~16G i6G j6G iG j ! ~A19!

and

G iG j56Gk . ~A20!

Furthermore, eachG appears only inthreeof the above triplets, and we can transform from o
triplet to another in this ‘‘trio’’ of triplets, by a unitary transformation, thus transforming betw
different sets ofP̃a’s. If we denote the trio of triplets in which aG matrix ~say, ‘‘a’’! appears as

a,b,c

a,d,e

a,f ,g
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



aining

se
e can
ll sets

ave

s,
he

l.

ful

2985B. Sarel and L. P. Horwitz: A chiral spin theory in the framework

¬¬¬¬¬¬¬¬¬¬
then we find that we always have a Pauli type relation of anticommutators among the rem
pairs, for example such as:

$b,d%5$b, f %5$d, f %50,

$b,e%5$b,g%5$e,g%50,

here we took ‘‘b’’ as the ‘‘pivot’’ ~i.e., ‘‘b’’ is used for Tb). This enables us to takeTb and
transform the second triplet into the third:a,d,e→a, f ,g ~it can be done equally well with ‘‘c’’ as
a ‘‘pivot’’ !, thus getting a transformed set ofP̃a’s. This way we can take a triplet in a trio, and u
it to transform between the other two triplets. Looking at the existing triplets we see that w
transform from any triplet to any other by a suitable choice of unitary transformations, i.e., a
of P̃a’s are equivalent up to a unitary transformation.

2. Nilpotents

We can produce nonprimitive level nilpotents by taking

ni j5~G i6 iG j !, ni j
256 i $G i ,G j% ~A21!

and requiring that$G i ,G j% 5 0.
Now we turn to primitive level nilpotents. In a certain representation we h

P̃k5ekk , (k51,2,3,4) whereekk is the matrix which has a ‘‘1’’ in thekth row andkth column,
and all other places are zero. Since the matricesenm ,(nÞm) are nilpotent~we have twelve of
these!, we get for any Dirac matrixA:

eiiAekk5a ikeik , ~A22!

wherea ik is the element on thei th row, kth column, inA. Once we have these 12 nilpotent
others can be built from them. If we want to represent the nilpotents with the help of tG
matrices we need to have

Nik j5 P̃iGkP̃j ,
~A23!

Nik j
2 5 P̃iGkP̃j P̃iGkP̃j50 ~ iÞ j !

this is becauseP̃j P̃i50 always. We must guard againstNik j being zero, therefore wemust not
have@ P̃i ,Gk#50 or @ P̃j ,Gk#50 and iÞ j . In this case, fori5 j , the representation is diagona
Actually if we take a closer look atP̃i ,P̃j , for example,

P̃i5Pn6Pm6 , P̃j5Pn6Pm7 , ~A24!

then if $Gk ,Gm%50, GkPm65Pm7Gk , andPm flips sign. We can summarize the nonzero use
nilpotents as follows:

~1! $Gk ,Gm%50; @Gk ,Gn#50⇒

P̃iGkP̃j5Pn6Pm6GkPn6Pm75GkPn6Pm75GkP̃j ,
~A25!

P̃i 8GkP̃j 85Pn7Pm6GkPn7Pm75GkPn7Pm75GkP̃j 8 .

~2! $Gk ,Gm%50; $Gk ,Gn%50⇒
J. Math. Phys., Vol. 38, No. 6, June 1997
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P̃iGkP̃j5Pn6Pm6GkPn7Pm75GkPn7Pm75GkP̃j ,
~A26!

P̃i 8GkP̃j 85Pn6Pm7GkPn7Pm65GkPn7Pm65GkP̃j 8 ,

thus showing that there areNik jÞ0. The first entry results in four nilpotents which are equivale
to the four generated by the second entry up to a sign. Since both cases are equivalent w
concentrate on the second case. We find that any two commutingG’s, haveexactlyfour mutual
anticommutingG’s in common. Taking the two commutingG’s as a pair from a triplet, then fo
each pair the four anticommutingG’s are distinct. Therefore we get a ‘‘structure’’ which can
illustrated by a specific example; for the tripletP2 ,P11,P15 the relevant structure is:

P11,P15:G9 ,G10,G13,G14,

P2 ,P11:G3 ,G4 ,G6 ,G7 ,

P15,P2 :G5 ,G8 ,G12,G16.

The P’s can be thought of as idempotent generators, and theG’s as nilpotent generators. Th
structure covers allG’s. From the twoP’s in a row we can build the fourP̃a’s. We may take any
G from that specific row to produce the four nilpotents~all G’s in a row produce the sam
nilpotents!. The three rows produce four distinct nilpotents each, summing up to the bas
required for 434 matrices. The important thing to remember is that by a unitary transforma
we can transform from one triplet to another, and thus from one structure to another, hen
structures are equivalent up to a unitary transformation. A special feature of the above str
(P2 ,P11,P15) is that it produces the idempotents and nilpotents characterized by the ma
ei j .

3. Nilpotents for N6

Since we are looking forN2 which gives us a positive definite probability density, Eq.~34!,
we needN2 to include an ‘‘anchor’’ in the form ofg0, which assures a positive part, and up
one more term~which should be smaller or equal to the anchor sinceg matrices are orthogonal!.
Now, considering the form of the currents in Eq.~34!, g05G2 is the only anchor possible becau
of the appearance ofg0 in c̄, so we have to look at the row in the structure whereG2 resides and
calculate the nilpotents~all other rows will not produce nilpotents with this anchor!. We take, for
example, the structure:

P6 ,P16:G2 ,G3 ,G12,G13,

P6 ,P9 :G7 ,G8 ,G10,G11,

P9 ,P16:G4 ,G5 ,G14,G15

and focus on the first row. Now we generate nilpotentsNi , (i51,2,3,4), and in terms of theg
matrices we get their Lorentz invariant form:

N15~g• l ~12 !!1~g• l ~11 !!g5,

N25~g• l ~12 !!2~g• l ~11 !!g5,
~A27!

N35~g• l ~11 !!1~g• l ~12 !!g5,

N45~g• l ~11 !!2~g• l ~12 !!g5,
J. Math. Phys., Vol. 38, No. 6, June 1997
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where we used for the four-vectorsl (16) the notation

l ~12 !5~ l 0 ,2 l 0,0,0!, l ~11 !5~ l 0 ,l 0,0,0! ~A28!

and l 0 is some number.
The requirement for a positive definite probability density implies a reduction in half of

participating matrices in each nilpotent combination of Eqs.~A27!; we can do this by reverting to
the nonprimitive level nilpotents by consideringN16N2 , N16N3 , N36N4 , andN26N4 . The
results are:

~g• l ~12 !!, ~g• l ~11 !!g5, ~g•t !~11g5!, 2~g•s~1!!~12g5!,
~A29!

~g• l ~11 !!, ~g• l ~12 !!g5, ~g•t !~12g5!, 2~g•s~1!!~11g5!,

where the four-vectorss(1) and t have been used

t5~ t0,0,0,0!, s~1!5~0,s1,0,0! ~30!

and t0 , s1 are numbers. Going to nonprimitive level nilpotents, we get twice as many nilpo
~eight!, which come in pairs differing in sign. Each pair can be a good candidate forN1 , N2 .
From the nilpotents in Eqs.~A29!, only (g• l (16)) and (g•t)(16g5) are valid for a positive
definite probability density@having (g•t) as a Lorentz covariant positive definite ‘‘anchor’’#.
Furthermore, it seems that (g• l (16)) and (g•t)(16g5) should not be treated equivalently, sin
they are derived from the same row in the same structure.

Carrying out the procedure of finding nilpotents on the 12 available structures,~there are 15
triplets, but three of them includeG2 as an idempotent generator instead of a nilpotent genera!,
we find the following nilpotents. We mention only those which are in the relevant row in
structure containingG2 , and giving rise to nilpotents which have a chance of being posi
definite:

~g• l ~16 !!,
~g•t !6sts~2!,

~g• l ~26 !!,
~g•t !6sts~3!,

~g• l ~36 !!,
~g•t !~16g5!,

~g•t !6sts~1!,
~g•t !6 ig5, ~A31!

where

s~26 !5~0,0,6s2,0!, s~36 !5~0,0,0,6s3!,
~A32!

l ~26 !5~ l 0,0,6 l 0,0!, l ~36 !5~ l 0,0,0,6 l 0!.

APPENDIX B: SOLUTIONS OF THE EQUATIONS

1. Solutions of the transverse equation

We consider plane-wave solutions that satisfy the transverse Schro¨dinger–Stueckelberg equa
tion as well, of the form

f'tt~p!;e2 i ~p'
2 /2M !t1 ipxu'~p,t !, ~B1!

whereu'(p,t) is a four-spinor dependent on the specific momentum and vectortm . We observe
that Eqs.~52! and ~53! commute with the operator

h~p,t ![
i

up'u ~spt!g5. ~B2!
J. Math. Phys., Vol. 38, No. 6, June 1997
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This operator was shown by Horwitz and Arshansky23 to correspond to helicity in the frame wher
tm5(1,0,0,0),

i

up'u ~spt!g5→
S–p

upu
~B3!

so we shall callh(p,t) the extended helicity operator. An interesting feature of the exten
helicity operator is that in the reference frame wherepm5(p0,0,0,0), we get

i

up'u ~spt!g5→
S–t

utu
. ~B4!

This is because in this frameup'u51p0At2. The operatorh(p,t) can be decomposed into tw
partial operatorsh(p,t)5h5(t)•hp(p,t) which are

h5~ t ![ i ~g•t !g5, ~B5!

hp~p,t ![
1

up'u ~spt!~g•t ! ~B6!

and where they all commute. The operatorh5(t) when looked upon in the frame wher
tm5(1,0,0,0) is seen to be

h5~ t !→ ig0g55S 0 i

2 i 0D . ~B7!

It exchanges the left- and right-handed parts of the wave function, and gives them a relative
factor. The left part is rotated counterclockwise byp/2 in the complex plane and the right part
rotated clockwise by the same amount. We call this operator the chiral precedence op
because its eigenvalues indicate which chiral part precedes the other relative to a counterclo
rotation in the complex plane. This is an interesting feature of the solutions of the equatio
motion since it expresses an inherent broken symmetry between the left and the right parts
wave function. Moreover, it gives physical meaning to therelative phase of the wave function’s
components, and creates a coherence which is preserved through the evolution. This featur
wave function is independent of its momentum.

We assumed a four-spinor as the basic structure of the solutions, therefore we can use
these operators to characterize completely the four available solutions. The chiral prec
operator~for this purpose the product of helicity operator and chiral precedence operator h
same effect! also transforms Eq.~42!, the equation of motion, into Eq.~50!, the equation of motion
with interchanged nilpotents, and vice versa, therefore relatingc' to w'

i ~g•t !g5c'5w' . ~B8!

This way, the structure of the main field~and auxiliary field! is set to conform to the eigenvecto
of the chiral precedence projection operator

Ph565 1
2~16 i ~g•t !g5!, ~B9!

wherePh56
2 5Ph56 . This projection operator is connected to the projection part of one of

nilpotent options~discussed in Appendix A!, Eqs.~37!, and is nonequivalent to the nilpotents w
use, since we cannot transform from one to the other by a unitary transformation.

The solutions are seen to be
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



y the

erator

e four

.
ith the

2989B. Sarel and L. P. Horwitz: A chiral spin theory in the framework

¬¬¬¬¬¬¬¬¬¬
z'
1~ t ![S ismtmj1

j1 D , z'
2~ t ![S j2

i s̃mtmj2D , ~B10!

where the superscript6 denotes the eigenvalue of the eigenvectors when operated upon b
chiral precedence operator. WhenPh51 operates onz'

1(t) it gives 1, and onz'
2(t) it gives 0. The

opposite happens forPh52 . In the special frame wheretm5(1,0,0,0) the solutions are

z'
15S i j1

j1 D , z'
25S j2

i j2 D ~B11!

andj6 can be taken as two independent vectors, for example

j15S 10D , j25S 01D . ~B12!

Since each spinor can be decomposed and characterized by the helicity projection op

Ph65
1

2 S 16
i

up'u ~spt!g5D , ~B13!

wherePh6
2 5Ph6 , and by the chiral precedence operator, we use them to characterize th

available solutions for a specific momentum.
In order to find the general form of the solutions, we consider the projection operatorsPh6

andPh56 which commute. We can form the following non-normalized solutions:

u'
rs~p,t !5

1

2 S 11es
i

up'u ~spt!g5D z'
r ~ t !, ~B14!

wherez'
r (t) are boosted four-spinors composed of stackedj6 two-spinors as in Eq.~B11!, and

es is 61 depending on the eigenvalues of the extended helicity operator.
We compute the total integrated currents on all space–time and alltm , from Eq.~67!, by using

j't
m 5 ( i /2M )(f̄'tt(g • t)]J'

mf'tt) weobtain

J'm5 K p'm

M L . ~B15!

Now, p'm is spacelike, and so isj'm . Since we perform the integration overtm , thus having
various components ofpm , it is possible to acquire a timelikeJ'm current, as in Ref. 32.

2. Solutions of the longitudinal equation

For the longitudinal equation we consider the plane-wave solutions of the form

f itt~p!;e2 i ~pi
2/2M !t1 ipxui~p,t !. ~B16!

Again the equations of motion, Eqs.~55! and ~56! commute with the helicity operator from Eq
~B2!, so it can be used to characterize the solutions. Two more operators that commute w
equations of motion are

ht~ t ![~g•t !, ~B17!
J. Math. Phys., Vol. 38, No. 6, June 1997
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hpt5~p,t ![~g•t !
i

up'u ~spt!g5, ~B18!

wherehpt55ht(p,t)•h(p,t), and they all commute. Notice that

ht~ t !5 ig5h5~ t !, hpt5~p,t !5 ig5hp~p,t !.

The characterization is by the projection of helicity Eq.~B13! and the projection operator

Pht6
5 1

2~16~g•t !!. ~B19!

The operatorht(t) in the frame wheretm5(1,0,0,0) is seen to be justg0 which is the parity
operator; we denote it as the extended parity operator. Therefore the characterization
solutions of the longitudinal equation is done by extended helicity and extended parity
extended parity operator also transforms Eq.~54! into its counterpart with nilpotents exchange
and vice versa. We obtain the relation

~g•t !c i5w i . ~B20!

The solutions are seen to be

z i
1~ t ![S smtmj1

j1 D , z i
2~ t ![S j2

2s̃mtmj2D , ~B21!

where the superscript6 denotes the eigenvalue of the eigenvectors when operated upon b
extended parity operator. In the special frame wheretm5(1,0,0,0) the solutions are

z i
15S j1

j1 D , z i
25S j2

2j2 D ~B22!

andj6 can be taken as two independent vectors. The general form of the non-normalized
solutions is

ui
rs~p,t !5

1

2 S 11es
i

up'

~spt!g
5D z i

r~ t !, ~B23!

where es has the same meaning as in the transverse case, andr denotes the eigenvalues o
extended parity.

As for the integrated currents usingj it
m 5 2( i /2M )(f̄ i(g • t)]Ji

mf i), we find

Jim5 K pim

M L . ~B24!

In a frame wheretm5(1,0,0,0), the zeroth component of the currentsj im is the only one which
survives due to the vanishing of]' i in this frame, so the currents are timelike. In accordance w
Lorentz invariance this is true in any reference frame. As in the transverse case,Jim may be
timelike, depending on the relative weights of the wave packet’s components.

APPENDIX C: DISCRETE SYMMETRIES

When dealing with the discrete symmetries of the theory it is necessary to know ho
pre-Maxwell fieldaa , (a 5 0,1,2,3,t) transforms. We require that the free kinetic term of t
J. Math. Phys., Vol. 38, No. 6, June 1997
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pre-Maxwell field~see Ref. 27! 1
4 l f ab f ab be invariant. Furthermore, we define some new for

of solutions for both the transverse and longitudinal equations, which are just the ones defi
Appendix B but transformed, and are helpful for a full discussion. The basic form of the solu
of the transverse equations are given in Eq.~B10!; we redefine them by choosingj6 to be an
eigenvector of2 is2 with eigenvalues of6 i

j15S i1D , j25S 1i D . ~C1!

Multiplying each component ofz'
1(t) by 2 i s̃mtm , and each component ofz'

2(t) by 2 ismtm ,
and exchangingj1 by j2, we get

h i
1~ t ![S j2

2 i s̃mtmj2D , h'
2~ t ![S 2 ismtmj1

j1 D . ~C2!

The basic form of the solutions of the longitudinal equations is given in Eq.~B21! by multiplying
both components ofz i

1(t) by s̃mtm , andz i
2(t) by 2 smtm , and exchangingj

1 by j2, we get

h'
1~ t ![S j2

s̃mtmj2D , h i
2~ t ![S 2smtmj1

j1 D . ~C3!

We now proceed to the treatment of parity, charge conjugation, andt reversal.

1. Parity

The transverse charged equations of motion exhibit a symmetry under the inversion of
The transformation is

x→2x,

P→2P, t→2t,
~C4!

a~x!→a~x8!52a~x!.

Applying it to the charged transverse equations of motion we see that the wave functions
form ~up to a phase! as

f'tt
P ~x!5g0f'tt0 ,2t~x

0,2x!,
~C5!

x'tt
P ~x!5g0x'tt0 ,2t~x

0,2x!,

where the superscriptP denotes parity. The same is true for the charged longitudinal equatio
motion, where we find the wave functions transforming as

f itt
P ~x!5g0f itt0 ,2t~x

0,2x!,
~C6!

x itt
P ~x!5g0x itt0 ,2t~x

0,2x!.

The solutions of the transverse equations are constructed from a helicity projection operat
a z'

6(t) part. A similar situation exists for the longitudinal equations.
When we check the action of parity on thez'

6(t) parts of the solutions of the transvers
equation, we find
J. Math. Phys., Vol. 38, No. 6, June 1997
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Pz'
1~ t ![g0z'

1~ t0 ,2t!5z'
2~ t !,

~C7!

Pz'
2~ t ![g0z'

2~ t0 ,2t!5z'
1~ t !

and similarly forh'
1 ,h'

2 . On the other hand, for the solutions of the longitudinal equations,
find

Pz i
1~ t ![g0z i

1~ t0 ,2t!5h i
1~ t !,

~C8!

Pz i
2~ t ![g0z i

2~ t0 ,2t!5h i
2~ t !

and similarly forh i
1 ,h i

2 whereh andz exchange places. We can make a combination of st
for which this transformation makes them transform one into the other. This combination is u
also for charge conjugation andt reversal. The combination is

P~z i
1~ t !6h i

2~ t !!5~z i
2~ t !6h i

1~ t !!,
~C9!

P~z i
2~ t !6h i

1~ t !!5~z i
1~ t !6h i

2~ t !!.

Doing the same thing for the transverse case one obtains a similar result. On the other hand
we check the action of normal parity on the helicity projection operator part of the solution
find

g0Ph6~p0 ,2p,t0 ,2t!5Ph7~p,t !g0 ~C10!

therefore the helicity flips sign.
Another type of parity is what we call generalized parity, denoted byP , including the regular

parity and a time inversion. Usually the discrete symmetry under time inversion is treated
rately and differently from that of parity, as an anti-Hermitian operator. In our theory time is
another dimension distinguished from the space dimensions by the metric tensor, and the ev
is governed byt. Therefore the role of time as described by Wigner is transferred tot, the time
symmetry becoming much simpler. This generalized parity transformation is

xm→2xm , Pm→2Pm ,
~C11!

tm→2tm , am→2am .

When we come to define the way the wave functions transform we have a few options
charged form of Eqs.~52! and ~53!

~g•t !~sPt !f'5s1Mx' ,
~C12!

~g•t !~sPt !x'52s2~ i ]t1eat!f'

permits two compensating operators for the transformation of Eqs.~C11!, g5 and (g•t). We
prefer to useg5 as a generalized parity operator because it is not coupled to any four-ve
Applying the transformation we find that the wave functions transform~up to a phase! as

f'tt
P ~x!5g5f't,2t~2x!,

~C13!

x'tt
P ~x!5g5x't,2t~2x!.

A similar transformation holds for the longitudinal equations of motion. As can be see
operating on the solutions of transverse and longitudinal equations, we get
J. Math. Phys., Vol. 38, No. 6, June 1997
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P z',i
1 ~ t ![g5z',i

1 ~2t !51z',i
1 ~ t !,

~C14!

P z',i
2 ~ t ![g5z',i

2 ~2t !52z',i
2 ~ t !

and

Ph',i
1 ~ t ![g5h',i

1 ~2t !52h',i
1 ~ t !,

~C15!

Ph',i
2 ~ t ![g5h',i

2 ~2t !51h',i
2 ~ t !.

Therefore, the generalized parity operation on the transverse equations brings the set of s
into themselves.

Here too, we can use combinations which behave under generalized parity the same as
for the regular parity, but now the behavior of the transverse and longitudinal solutions
same. For the transverse and longitudinal cases we have

P ~z',i
1 ~ t !6h',i

2 ~ t !!51~z',i
1 ~ t !6h',i

2 ~ t !!,
~C16!

P ~z',i
2 ~ t !6h',i

1 ~ t !!52~z',i
2 ~ t !6h',i

1 ~ t !!.

Note that the combinationsz1(t)1h2(t),z2(t)2h1(t) are pure right handed, and the combin
tions z1(t)2h2(t),z2(t)1h1(t) are pure left handed, for both' and i. The extended helicity
operator remains unchanged underP , so there is no helicity flip in this case.

2. Charge conjugation

The theory is symmetric under charge conjugation. We define the charge conjugation
tion, denoted byC , as the transformation necessary to bring the charged equations of mot
the same form only with the sign ofe reversed. First conjugate the equations to obtain35

~g•t !* ~smn* ~2Pm2eam!tn!f'tt8* ~x8!5s1Mx'tt8* ~x8!,
~C17!

~g•t !* ~smn* ~2Pm2eam!tn!x'tt8* ~x8!52s2~2 i ]t1eat!f'tt8* ~x8!

then make the substitution

at→2at , t→2t, ~C18!

which is required to bring the equations to the correct form. This is consistent with the invar
of the free kinetic term of the pre-Maxwell field14l f

ab f ab . The next step is to multiply them by
( ig5g2)5(g5Cg0) whereC5 ig2g0. The wave functions transform~up to a phase! as

f'tt
C ~x!5 ig5g2f',2t,t* ~x!,

~~19!

x'tt
C ~x!5 ig5g2x',2t,t* ~x!.

The same result holds for the longitudinal equations. This transformation includes at reversal for
its consistency.

To see the consequences of performing charge conjugation to the solutions of the tran
equation, we define solutions as in Eq.~B14!, usingh'

r (t),

w'
rs~p,t !5

1

2 S 11es
i

up'u ~spt!g5Dh'
r ~ t !. ~C20!
J. Math. Phys., Vol. 38, No. 6, June 1997
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The subscripts in Eq. ~C20! denotes the eigenvalue of the extended helicity operator. Consid
a free event, we have for the helicity projection operator

ig5g2Ph6* 5Ph7ig
5g2 ~C21!

so we can use the combination

C ~z'
1~ t !6h'

2~ t !!52~z'
2~ t !6h'

1~ t !!,
~C22!

C ~z'
2~ t !6h'

1~ t !!51~z'
1~ t !6h'

2~ t !!.

These combinations have mixed eigenvalues of the chiral precedence operator, posit
z'

1(t), h'
1(t) and negative forz'

2(t), h'
2(t). Therefore for the combination we obtain

C e2 i ~p'
2 /2M !t1 ipx~u'

r ,s~p,t !6w'
2r ,s~p,t !!52e re

2t~p'
2 /2M !t2 ipx~w'

r ,2s~p,t !6u'
2r ,2s~p,t !!,

~C23!

wheree r is 61 depending on the value ofr , either1 or 2. The state transforms into the othe
helicity state. Since no space inversion was performed, we get a helicity flip. Therefore, the c
conjugated wave function describes an event with opposite charge and spin, moving in the
site direction. As mentioned in Appendix C 1 dealing with parity, these combinations are pur
or right-handed spinors. For example, the charge conjugated left-handed spinor is a right-h
spinor with opposite charge moving in the opposite direction.

Repeating these operations for the solutions of the longitudinal equations, we find s
results, we have only to change the subscript' to i.

3. t reversal

Here we discusst reversal in the sense introduced by Wigner; reversing the evolution pa
eter we reverse the motion of the event, thus creating a current in the opposite directio
operations needed for thet reversal symmetry, denoted asT , result in the same operations a
those for the charge conjugation as can be seen by performing the operation

t→2t ~C24!

on the equations of motion. To compensate we have to take

am→2am ~C25!

and applying this to Eqs.~C12! while taking the conjugate of the equations, we get the trans
mation properties of the wave functions

f'tt
T ~x!5g5g2f',2t,t* ~x!, x'tt

T ~x!5g5g2x',2t,t* ~x!. ~C26!

As usual, the longitudinal equations have the same transformation properties. We can rep
same arguments given for the charge conjugation. Although the transformation looks the s
the charge conjugation one, the reason for doing it stems from Wigner’s idea of time rev
However, we obtain a charge conjugated event.

4. PC T invariance

The most striking thing about these discrete transformations is the identity of the c
conjugation transformation andt reversal transformation in the sense of Wigner. Conceptually
is understood using Feynman diagrams. We know from Dirac’s theory that a charge conju
J. Math. Phys., Vol. 38, No. 6, June 1997
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electron, i.e., a positron, moves backward in space–time with opposite charge. This is e
what at reversal means. Seen in the four-dimensional world~a projection of the trajectory on
space–time at a specifict!, a t reversal changes the charge, direction, and helicity. Conclu
that charge conjugation andt reversal have the same consequences, a fullPC T transformation is
just a generalized parity transformation. We get an event with opposite motion in space
relative to the state before conjugation, with the same helicity and charge. The symmetry
generalized parity is a direct consequence of the manifest covariance built into the theory.
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The Dirac equation for a particle subject to a Coulomb potential, a 1/r scalar
potential, and the potential of a magnetic monopole is solved by separation of
variables using the spin-weighted spherical harmonics and the bound states are
obtained. It is shown that the separation constants are the eigenvalues of the
z-component and the square of the total angular momentum, which includes that of
the electromagnetic field and the spin of the particle. We find that, under certain
conditions, there exist solutions where the spin is in the outward or inward radial
direction. © 1997 American Institute of Physics.@S0022-2488~97!04705-1#

I. INTRODUCTION

The spin-weighted spherical harmonics were introduced by Newman and Penrose1 in the
study of the asymptotic behavior of the gravitational field. These functions are very useful to
systems of partial differential equations governing tensor or spinor fields by separation of
ables~see, e.g., Refs. 2–6!, and in the solution of the Schro¨dinger equation for a spinless partic
in a central potential and the field of a magnetic monopole one obtains the eigenvalue eq
satisfied by the spin-weighted spherical harmonics. An equivalent set of functions, called m
pole harmonics, has been employed in Refs. 7–9, to express the solution of the Schro¨dinger and
the Dirac equation for an electron in the field of a magnetic monopole.~See, e.g., Ref. 10 for a
comparison of the spin-weighted spherical harmonics and the monopole harmonics.!

The Dirac equation for a charged particle in a Coulomb field and a magnetic monopole
has been solved by diverse techniques~see, e.g., Refs. 11 and 12 and the references cited the!
which, however, lead to somewhat involved expressions that hinder the analysis of the sol
The aim of this paper is to show that the separation of variables method can be applie
straightforward manner to solve the Dirac equation for a particle in the presence of a Co
field, a magnetic monopole field, and a 1/r scalar potential, making use of the spin-weight
spherical harmonics which allows us to give a simple and general expression for the solu
the Dirac equation. In Ref. 12 the same problem, with an additional Aharonov–Bohm pote
has been considered, expressing the angular dependence of the solutions in terms of the
polynomials, which yields four different expressions depending on the values of the sepa
constants~see also Ref. 11!.

In Sec. II we summarize the relevant information concerning the spin-weighted sph
harmonics~a more detailed treatment can be found in Refs. 1, 2, and 13, whose conventio
followed here! and the Dirac equation is written in a spinor basis adapted to the spherical
dinates. In Sec. III, the Dirac equation is solved by separation of variables and we point o
existence of solutions where the spin of the particle is aligned in the radial direction. In Sec.
show that the separable solutions are eigenspinors of thez-component and the square of the to
angular momentum of the particle and the electromagnetic field.
0022-2488/97/38(6)/2996/11/$10.00
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II. PRELIMINARIES

The spin-weighted spherical harmonics,sYjm , are functions defined on the two-sphere, fin
everywhere, which are defined, up to a normalization factor, by1

ZpZ~sYjm!5~s~s11!2 j ~ j11!!sYjm ,

2 i
]

]w sYjm5msYjm . ~1!

The operatorsZ andZp, acting on a quantityh with spin weights, are given by

Zh[2S ]

]u
1

i

sin u

]

]w
2s cot u Dh,

~2!

Zph[2S ]

]u
2

i

sin u

]

]w
1s cot u Dh.

Z raises the spin weight in one unit,Zp lowers the spin weight in one unit, andsYjm has spin weight
s. From the definitions~2! it follows that

ZpZh2ZZph52sh, ~3!

wheres is the spin weight ofh, and making use of Eq.~1! one finds thatZsYjm}s11Yjm and

ZppsYjm}s21Yjm . The functionssYjm are normalized according to

E
0

2pE
0

p

sYjm~u,w!sYjm~u,w!sin ududw51,

and the phase of these functions is chosen in such a way that

Z~sYjm!5A~ j2s!~ j1s11!s11Yjm ,
~4!

Zp~sYjm!52A~ j1s!~ j2s11!s21Yjm ,

and0Yjm5Yjm . The indicess, j , andm of sYjm can take the values

s50,6 1
2,61,..., j5usu,usu11,usu12,..., m52 j ,2 j11,...,j . ~5!

When s is an integer,j andm are integers and whens is a half-integer,j andm are also
half-integers. As a consequence of Eq.~1!, for a given value ofs, the functionssYjm are orthogo-
nal, thus

E
0

2pE
0

p

sYjm~u,w!sYj 8m8~u,w!sin ududw5d j j 8dmm8. ~6!

Furthermore, the set of functionssYjm , with s fixed, is complete in the sense that any quan
with spin weights can be expanded in a series of thesYjm .

The spin-weighted spherical harmonics are related to several special functions such
WignerD-functions,2,14 the Jacobi polynomials, and the hypergeometric functions. Using Eqs~1!
and ~2! one can show that
J. Math. Phys., Vol. 38, No. 6, June 1997
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¬¬¬¬¬¬¬¬¬¬
sYjm~u,w!5C~12cosu!a/2~11cosu!b/2Pn
~a,b!~cosu!eimw, ~7!

wherePn
(a,b) are the Jacobi polynomials,

a5um1su, b5um2su, n5 j2 1
2~a1b!5 j2max$umu,usu%, ~8!

andC is a normalization constant~see also Ref. 7!. ~Note thatn is always an integer.!
Since we want to solve the Dirac equation for a spin-1

2 particle subject to a Coulomb field,
Dirac magnetic monopole field, and a scalar 1/r potential by separation of variables, owing to t
symmetry of the fields, it is convenient to use spherical coordinates as well as a spinor
induced by the spherical coordinates.

The two-component spinor

o[S cos~u/2!e2 iw/2

sin~u/2!eiw/2 D , ~9!

is associated to the spherical coordinates (r ,u,w) by virtue of the relations

êu1 i êw5oteso, êr5o†so, ~10!

where$êr ,êu ,êw% is the orthonormal basis induced by (r ,u,w), ot ando† are the transpose an
the Hermitian adjoint ofo, respectively, thes i are the Pauli matrices and

e[S 0
21

1
0D .

Furthermore, letting

i[eō5S sin~u/2!e2 iw/2

2cos~u/2!eiw/2D , ~11!

the set$o,2i% is a basis for the two-component spinors. Thus, any two-component spinor
u can be written as

u5u2o2u1i, ~12!

whereu2 andu1 are complex functions.
The Dirac equation in the presence of an electromagnetic field,f, A, and a scalar potentia

V can be written as

i\
]c

]t
5Hc[

\c

i
a–S ¹2

ie

\c
ADc1~Mc21V!bc1efc, ~13!

whereM ande are the rest-mass and the electric charge of the particle. Making use of the sta
representation

a i5S 0 s i

s i 0 D , b5S 1 0

0 21D
and expressing the four-component spinor fieldc in the form

c5S uv D , ~14!
J. Math. Phys., Vol. 38, No. 6, June 1997
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whereu andv are two-component spinor fields, one finds that Eq.~13! amounts to

i\]u/]t52 i\cs–~¹2 ieA/\c!v1~Mc21V1ef!u,
~15!

i\]v/]t52 i\cs–~¹2 ieA/\c!u2~Mc21V2ef!v.

By expressing the spinor fieldsu andv in terms of the basis$o,2i% as in Eq.~12! and using the
fact that

s–¹o5
1

r
o2

cot u

2r
i, s–¹i52

cot u

2r
o2

1

r
i, ~16!

from Eq. ~15! one obtains

1

c

]u2

]t
52

1

r S ]

]r
2

ie

\c
Ar D ~rv2!2

1

r S ]

]u
2

i

sin u

]

]w
1
1

2
cot u D v11

ie

\c
~Au2 iAw!v1

2
i

\c
~Mc21V1ef!u2 ,

~17!

1

c

]u1

]t
5
1

r S ]

]r
2

ie

\c
Ar D ~rv1!2

1

r S ]

]u
1

i

sin u

]

]w
1
1

2
cot u D v21

ie

\c
~Au1 iAw!v2

2
i

\c
~Mc21V1ef!u1 ,

and two similar equations obtained by interchangingu6 andv6 and inverting the sign ofMc2

1V. Here,Ar , Au , andAw denote the components of the vector potential with respect to the b
$êr ,êu ,êw%. @Note that the combinationsAr , Au6 iAw appearing in Eq.~17! are precisely those
with a well-defined spin weight.#

Now we shall restrict our attention to the specific case where

Ar505Au , Aw5g
~12cosu!

r sin u
, f52

Ze

r
, V52

k

r
, ~18!

in some gauge, whereg is the magnetic charge of a Dirac monopole,2Ze represents an electri
charge, andk is an arbitrary constant. Then, from Eqs.~17! and ~18! we have

1

c

]u2

]t
52

1

r

]

]r
~rv2!2

1

r S ]

]u
2

i

sin u

]

]w
1S q1

1

2D cot u2
q

sin u D v1

2
i

\c SMc22
Ze21k

r Du2 ,

1

c

]u1

]t
5
1

r

]

]r
~rv1!2

1

r S ]

]u
1

i

sin u

]

]w
2S q2

1

2D cot u1
q

sin u D v2

2
i

\c SMc2 2
Ze21k

r Du1 ,

1

c

]v2

]t
52

1

r

]

]r
~ru2!2

1

r S ]

]u
2

i

sin u

]

]w
1S q1

1

2D cot u2
q

sin u Du1
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



-

e a

3000 G. F. Torres del Castillo and L. C. Cortés-Cuautli: Dirac equation in a magnetic monopole

¬¬¬¬¬¬¬¬¬¬
1
i

\c SMc21
Ze22k

r D v2 ,

1

c

]v1

]t
5
1

r

]

]r
~ru1!2

1

r S ]

]u
1

i

sin u

]

]w
2S q2

1

2D cot u1
q

sin u Du2

1
i

\c SMc21
Ze22k

r D v1 , ~19!

where we have introduced the abbreviation

q[
eg

\c
. ~20!

According to Dirac’s quantization condition, the dimensionless parameterq can only take the
values

q50,6 1
2,61,... ~21!

III. SEPARATION OF VARIABLES

Noticing that the operators~2! with s5q6 1
2 appear in Eq.~19!, we look for separable solu

tions to Eq.~19! of the form

u25g~r !q21/2Yjm~u,w!eiqwe2 iEt/\,

u15G~r !q11/2Yjm~u,w!eiqwe2 iEt/\,
~22!

v25 f ~r !q21/2Yjm~u,w!eiqwe2 iEt/\,

v15F~r !q11/2Yjm~u,w!eiqwe2 iEt/\,

whereg(r ), G(r ), f (r ), andF(r ) are functions of the radial coordinate only. In order to hav
nontrivial solution, the quantum numberj must satisfy the inequalityj>uq2 1

2u or j>uq1 1
2u ~but

not necessarily both! @see Eq.~5!#; thus,

j5H 1
2,

3
2,... if q50

uqu2 1
2,uqu1 1

2,uqu1 3
2,... if qÞ0.

~23!

WhenqÞ0 ~i.e., when the magnetic charge of the monopole does not vanish!, and j5uqu2 1
2, Eq.

~19! also admits separable solutions of the form~22!, with the definition

sYjm[0 if j,usu, ~24!

which is consistent with Eq.~4!.
Substituting Eq.~22! into Eq. ~19!, making use of Eq.~4!, if jÞuqu2 1

2, one obtains

1

r

d

dr
~r f !1AS j1 1

2D
2

2q2
F

r
5

i

\c SE2Mc21
Ze21k

r Dg,
2
1

r

d

dr
~rF !2AS j1 1

2D
2

2q2
f

r
5

i

\c SE2Mc21
Ze21k

r DG,
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¬¬¬¬¬¬¬¬¬¬
1

r

d

dr
~rg !1AS j1 1

2D
2

2q2
G

r
5

i

\c SE1Mc21
Ze22k

r D f , ~25!

2
1

r

d

dr
~rG !2AS j1 1

2D
2

2q2
g

r
5

i

\c SE1Mc21
Ze22k

r DF
~the casej5uqu2 1

2 will be treated below!. Letting

A[
1

&

~G1g!, B[
1

&

~G2g!, C[
i

&

~ f2F !, D[2
i

&

~ f1F !, ~26!

one finds that Eq.~25! amounts to

1

r

d

dr
~rA !1AS j1 1

2D
2

2q2
A

r
5

1

\c SE1Mc21
Ze22k

r DC,
~27!

2
1

r

d

dr
~rC !1AS j1 1

2D
2

2q2
C

r
5

1

\c SE2Mc21
Ze21k

r DA,
and

1

r

d

dr
~rB !2AS j1 1

2D
2

2q2
B

r
5

1

\c SE1Mc21
Ze22k

r DD,
~28!

2
1

r

d

dr
~rD !2AS j1 1

2D
2

2q2
D

r
5

1

\c SE2Mc21
Ze21k

r DB.
The systems of ordinary differential equations~27! and ~28! can be written in the common

form

dR1
dr

1
k

r
R15

1

\c SE1Mc21
Ze22k

r DR2 ,
~29!

2
dR2
dr

1
k

r
R25

1

\c SE2Mc21
Ze21k

r DR1 ,

where, in the first case,k5A( j1 1
2)
22q2, R15rA, R25rC and, in the second case,k

52A( j1 1
2)
22q2, R15rB, R25rD . Making use of the definitions

m[
Mc21E

\
, n[

Mc22E

\
, r[Amnr , k̃[

k

\c
, ~30!

where it is assumed thatE,Mc2 ~i.e., we are considering bound states only!, from Eq. ~29! we
obtain

dR1
dr

1
k

r
R15S Za2 k̃

r
1Am

n
DR2 ,

~31!

2
dR2
dr

1
k

r
R25S Za1 k̃

r
2An

m DR1 ,
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wherea5e2/\c is the fine structure constant. Looking for series solutions of Eq.~31! of the form

R1~r!5e2r (
p50

`

apr
s1p, R2~r!5e2r (

p50

`

bpr
s1p, ~32!

one obtains the recurrence relations

Am

n
bp211ap2152~Za2 k̃!bp1~s1p1k!ap ,

~33!

An

m
ap211bp215~Za1 k̃!ap1~s1p2k!bp ,

and

2~Za2 k̃!b01~s1k!a050, ~Za1k̃!a01~s2k!b050. ~34!

Then, Eq.~34! yields

s5Ak22Z2a21 k̃ 25A~ j1 1
2!
22q22Z2a21 k̃ 2, ~35!

and from Eq.~33! it follows that

Fs1p1k2Am

n
~Za1 k̃!Gap5FAm

n
~s1p2k!1Za2 k̃Gbp . ~36!

SinceR1 andR2 must vanish at the origin, from Eqs.~32! and ~35! we see that (j1 1
2)
22q2

2Z2a21 k̃ 2 must be positive.
Since we are looking for bound states, we shall assume that both series in Eq.~32! contain a

finite number of terms. SettingaN1150, Eq.~36! givesbN1150, and from Eq.~33! one obtains

bN52An

m
aN . ~37!

Substituting Eq.~37! into Eq. ~36! one finds that@Za(m2n)1 k̃(m1n)#/Amn52(s1N); there-
fore, making use of Eq.~30!, it follows that15

E5Mc2H 2
k̃Za

Z2a21~s1N!2
6AS k̃Za

Z2a21~s1N!2
D 21 ~s1N!22 k̃ 2

Z2a21~s1N!2
J , ~38!

whereN50,1,2,..., ands is given by Eq.~35!.
In the exceptional case wherej5uqu2 1

2, which is possible only ifq is different from zero, two
spin-weighted components of the wave function~22! vanish @see Eq.~24!#. For q.0, Eq. ~22!
reduces to

u25g~r !q21/2Yq21/2,m~u,w!eiqwe2 iEt/\,

v25 f ~r !q21/2Yq21/2,m~u,w!eiqwe2 iEt/\, ~39!

u1505v1 ,

and forq,0,
J. Math. Phys., Vol. 38, No. 6, June 1997
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u15G~r !q11/2Y2q21/2,m~u,w!eiqwe2 iEt/\,

v15F~r !q11/2Y2q21/2,m~u,w!eiqwe2 iEt/\, ~40!

u2505v2 .

Substitution of Eqs.~39! and~40! into Eq.~19! leads to Eq.~29! with k50 and the identifications
R15rg(r )/&, R25 ir f (r )/&, in the first case, orR15rG(r )/&, R252 irF (r )/& in the case
of the solution~40!. Hence, Eqs.~32!–~38! also apply whenj5uqu2 1

2 and, according to Eq.~35!,

s5A k̃ 22Z2a2. ~41!

Therefore, the solutions~39! and ~40! are well behaved at the origin provided

k̃ 2.Z2a2. ~42!

Thus, in the casej5uqu2 1
2, the presence of the scalar potential is crucial.

The solutions~39! and~40! represent states where the spin of the particle is aligned with
outward or inward radial direction, respectively, as can be seen from Eq.~12!, using the facto and
i are eigenspinors of the radial component of the spin with eigenvalues\/2 and2\/2, respec-
tively, which follows from the second equation in Eq.~10! and the analogous relationi†si
52êr .

When one considers a charged Dirac particle in the field of a magnetic monopole alone
Ref. 8, condition~42! cannot be satisfied, and the solutions~39! and~40! @called type~3! solutions
in Ref. 8# are not well behaved at the origin. This problem is solved in Ref. 8 by adding an
magnetic moment to the charged particle~see also Ref. 9!.

IV. CHARACTERIZATION OF THE SEPARABLE SOLUTIONS

As is well known, the angular momentum,r3(mv), of a classical charged particle in the fie
of a magnetic monopole is not conserved; however,r3(mv)2(eg/c)(r /r ) is a constant of mo-
tion. The term2(eg/c)(r /r ) is the angular momentum of the electromagnetic field~see, e.g., Ref.
16!. Taking into account the relationp5mv1eA/c and the existence of spin, one can expect t
the operator

S J 0

0 JD ,
where

J[
\

i
r3¹2

e

c
r3A2

eg

c

r

r
1

\

2
s, ~43!

commutes with the Hamiltonian,H, appearing in Eq.~13!. In order to make use of the expressio
~22! and to find the meaning of the separation constants, it is convenient to obtain the rep
tation of the operatorJ with respect to the basis$o,2i%.

From Eqs.~9!, ~11!, and~12! it follows that the components of a two-component spinoru with
respect to the Cartesian basis,u1, u2, are related with the spin-weighted components,u2 , u1

~i.e., the components with respect to$o,2i%) by means of

S u1u2D5S cos~u/2!e2 iw/2 2sin~u/2!e2 iw/2

sin~u/2!eiw/2 cos~u/2!eiw/2
D S u2

u1
D , ~44!
J. Math. Phys., Vol. 38, No. 6, June 1997
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therefore,

S u2

u1
D5S cos~u/2!eiw/2 sin~u/2!e2 iw/2

2sin~u/2!eiw/2 cos~u/2!e2 iw/2D S u1u2D[LS u1u2D . ~45!

A straightforward computation, making use of Eqs.~18!, ~20!, ~44!, and ~45! shows that
LJL21, which represents the operatorJ in the basis$o,2i%, is diagonal and is given by

J6[J16 iJ2

5\ei ~q61!wS 6
]

]u
1 i cot u

]

]w
2

~q2 1
2!

sin u
0

0 6
]

]u
1 i cot u

]

]w
2

~q1 1
2!

sin u

D e2 iqw, ~46!

J352 i\eiqwS ]

]w
0

0
]

]w

D e2 iqw. ~47!

Using the representation~46!–~47! it can be readily seen that the components ofJ satisfy the usual
commutation relations of the angular momentum,@J3 ,J6#56\J6 , @J1 ,J2#52\J3 . Further-
more, the square of the total angular momentum,J2, with respect to the basis$o,2i% can be
represented as

J252\2eiqwS ZpZ2~q2 1
2!~q1 1

2! 0

0 ZpZ2~q1 1
2!~q1 3

2!
D e2 iqw ~48!

if we consider that this operator acts on columns whose entries have spin weightq2 1
2 and

q1 1
2.
From Eqs.~22! and ~26! we see that the separable solutions of Eq.~19! are of the form

S u2

u1

v2

v1

D 5S A~r !qXj11/2
m

iC~r !qX2 j21/2
m De2 iEt/\1SB~r !qX2 j2 j /2

m

iD ~r !qXj11/2
m De2 iEt/\, ~49!

where

qXj11/2
m [

1

&

eiqwS q21/2Yjm

q11/2Yjm
D , qX2 j21/2

m [
1

&

eiqwS 2~q21/2Yjm!

q11/2Yjm
D . ~50!

Owing to Eq.~6!, for a fixed value ofq, the spinor fields~50! are orthonormal

E
0

2pE
0

p

~qXp
m!†qXp8

m8 sin ududw5dpp8dmm8 , ~51!

and from Eqs.~1!, ~47!, and~48! it follows that
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J3~qXp
m!5m\~qXp

m!, J2~qXp
m!5 j ~ j11!\2~qXp

m!. ~52!

@Equations~51!, ~52!, and ~54!, below, also apply whenj5uqu2 1
2, taking into account Eq.~24!

and suppressing the normalization factor 1/& in Eq. ~50!.# Thus, the separable solutions~22! @or,
equivalently, Eq.~49!# are eigenstates of thez-component and the square of thetotal angular
momentum~which includes the angular momentum of the electromagnetic field and the spin
particle! with eigenvaluesm\ and j ( j11)\2, respectively. It should be noticed that the solutio
~22! depend on the azimuthal anglew through the factorei (m1q)w. Since the indices of the
spin-weighted spherical harmonics are all integral or all half-integral,m1q is always half-
integral. Note also thatJ6(qXp

m)}qXp
m61.

As in the case of the Dirac equation with a Coulomb potential, the fact that the r
equations~25! can be partially decoupled@Eqs. ~27! and ~28!# is related to the existence of a
operator,K, that commutes with the Hamiltonian and the angular momentum. In fact, it is ea
see that the spinor fieldsqXp

m are also eigenspinors of

Q[\eiqwS 0 2Zp

Z 0
D e2 iqw, ~53!

since, using Eq.~4!,

Q~qX6~ j11/2!
m !56A~ j1 1

2!
22q2\~qX6~ j11/2!

m !, ~54!

and, therefore, the four-component spinors on the right-hand side of Eq.~49! are eigenspinors o

K[S 2Q 0

0 QD , ~55!

with eigenvalues2A( j1 1
2)
22q2\ andA( j1 1

2)
22q2\, respectively. Using Eqs.~3!, ~48!, and

~53! it is easy to see that

Q25J22~q22 1
4!\

2. ~56!

Taking into account the fact that the operatorsZ andZp appearing in Eq.~53! act on functions with
spin weightq2 1

2 andq1 1
2, respectively, making use of Eqs.~2!, ~18!, ~20!, ~44!, ~45!, and~53!

one finds that, with respect to the Cartesian basis, the operatorQ is represented by

L21QL52s–S \

i
r3¹2

e

c
r3AD2\. ~57!

Finally, the spinor fields

qx6~ j11/2!
m [L21

qX6~ j11/2!
m , ~58!

are the common eigenspinors ofJ3 , J
2, and2s–((\/ i )r3¹2(e/c)r3A)2\, with respect to

the Cartesian basis@see Eq.~44!#. In the case whereg andk vanish, the preceding results redu
to those of Ref. 4.

V. CONCLUDING REMARKS

When the spin-weighted spherical harmonics are employed in the solution of syste
partial differential equations, as in the case considered here, one does not have to know
hand a set of mutually commuting operators; in fact, the form of such operators and their
J. Math. Phys., Vol. 38, No. 6, June 1997
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mutativity is more easily established starting from the separable solutions, as we have sh
Sec. IV. It may also be remarked that identities such as Eq.~56! are very easily found by

expressing the operators involved in terms ofZ andZp. Note also that these raising and lowerin
operators@Eq. ~2!# arise in a natural way when one expresses the equations involved in ter
quantities with a well defined spin weight.

Making use of Eqs.~7! and ~8!, one can express the separable solutions~22! in terms of the
Jacobi polynomials as in Refs. 11 and 12; however, the presence of the absolute values in~8!
makes it necessary to consider separately several cases.

It should be remarked that, even though the vector potential for a magnetic monopole
spherically symmetric, the presence of the magnetic monopole field is, essentially, accoun
by simply adding the parameterq to the spin weight of the components of the wave function
similar behavior has been found in Ref. 11, where the Dirac equation is written in terms o
complex coordinates.

It is also remarkable that in the radial equations~29!, the presence of the magnetic monopo
field is hidden in the definition of the parameterk. This means that from the solution of the radi
equations without the magnetic monopole field, one can immediately obtain the correspo
solution with the magnetic monopole field present by just replacing (j1 1

2)
2 by ( j1 1

2)
22q2 in the

definition of k. ~For that reason, the solution of the Dirac equation given in Ref. 8 involves
Bessel functions, as in the case of a free particle.!
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On the integrability of pure Skyrme models
in two dimensions
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We point out that some recently studied pure skyrme models in~210! dimensions
are completely integrable. We discuss some implications of this fact. ©1997
American Institute of Physics.@S0022-2488~97!01306-6#

I. INTRODUCTION

Recently, Gisiger and Paranjape1 have discussed a model which is derived from the ba
Skyrme model.2,3 The baby Skyrme model is defined by the following Lagrangian density:

L5S a
1

2
]af]af2

k2

4
~]af3]bf!~]af3]bf!2m2~12nf! D . ~1.1!

Heref[(f1 ,f2 ,f3) denotes a triplet of scalar real fields which satisfy the constraintf251;
]x5(]/]x) and (]a]a5] t]

t2] i]
i).

The first term in Eq.~1.1! is the familiar Lagrangian density of the pureS2 s model. This
model has been the subject of many studies; for earlier work see Refs. 4 and 5 and for more
work see Refs. 3–6. The second term, fourth order in derivatives, is the~211! dimensional analog
of the Skyrme term of the three-dimensional Skyrme model.7 The last term is often referred to a
a potential term. The last two terms in the Lagrangian~1.1! are added to guarantee the stability
a Skyrmion.8

The model studied by Gisiger and Paranjape7 corresponds to taking the limita→0, i.e., the
vanishing of the pureS2 term.

Then they take anN soliton ~‘‘on top of each other’’! ansatz

f5~sin f ~r !cosNu, sin f ~r !sin Nu, cos f ~r !!, ~1.2!

whereN is an integer~and is equal to the number of solitons!, and r andu are the usual polar
coordinates in thex,y plane.

They solve the equation forf which is

N2f 9~r !
sin2 f ~r !

r
1N2f 8~r !

sin 2f ~r !

2r
2N2f 8~r !

sin2 f ~r !

r 2
2m2r sin f ~r !50, ~1.3!

and find that its solutions are either

sin f ~r !50, ~1.4!

or

a!Electronic mail: Leznov@mx.ihep.su
b!Electronic mail: B.M.A.G.Piette@uk.ac.durham
c!Electronic mail: W.J.Zakrzewski@uk.ac.durham
0022-2488/97/38(6)/3007/5/$10.00
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12cos f ~r !5
m2r 4

8N2 1
ar2

2
1b. ~1.5!

Moreover, as they point out, we can take one solution for some region of thex,y plane and then
go over to the other in the other region. For the last procedure to work the two solutions
coincide on the boundary; moreover, for smoothness we have to check whether the derivat
f ~of a given order! are also continuous at this boundary. This they achieve by choosing the v
of the constantsa andb in Eq. ~1.5! and their final solution involves a soliton described by E
~1.5! for r<r 0 and Eq.~1.4!, i.e., pure vacuum forr>r 0 for some choice ofr 0 . They then discuss
various properties of this solution.

One may wonder whether these results are very dependent on their ansatz~1.2!. However, as
we will show, the model studied by Gisiger and Paranjape~like other models which differ from
theirs by the choice of the potential term! is integrable. Thus many of the results observed
Gisiger and Paranjape generalize to more general field configurations.

In the next section we show that the equations of motion of the model can be integrated
~for any field configuration! and then argue that this demonstrates the integrability of the mode
the following section we discuss some solutions of our first order equation and compare our
with those of Gisiger and Paranjape.

II. EQUATIONS OF MOTION

To perform the integration of the equations of motion we project thef251 onto the complex
plane by a stereographic projection and describe the field by the complex function

w5
f12 if2

11f3
.

In terms of this new functionw, the Lagrangian~up to an overall factor! is given by

L5E dx2S 2

S ]w*

]x

]w

]y
2

]w

]x

]w*

]y D 2
~11uwu2!4

12m2
uwu2

11uwu2
D , ~2.1!

and the equation of motion takes the form

2]x
F 2 ]w

]y S ]w*

]x

]w

]y
2

]w

]x

]w*

]y D
~11uwu2!4

G1]y
F 2 ]w

]x S ]w*

]x

]w

]y
2

]w

]x

]w*

]y D
~11uwu2!4

G
24

S ]w*

]x

]w

]y
2

]w

]x

]w*

]y D 2
~11uwu2!5

w22m2S w

~11uwu2!2D50. ~2.2!

Of course the other equation is the complex conjugate of Eq.~2.2!.
If we define the density

M52

S ]w*

]x

]w

]y
2

]w

]x

]w*

]y D 2
~11uwu2!4

1
2m2

11uwu2
, ~2.3!

and if we multiply Eq.~2.2! by (]w* /]x) and add to it the complex conjugate of Eq.~2.2!
multiplied by (]w/]x), the resultant expression can be written as
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]xM50. ~2.4!

Similarly, if we multiply Eq.~2.2! by (]w* /]y) and add to it the complex conjugate of Eq.~2.2!
multiplied by (]w/]y), we have

]yM50. ~2.5!

Taken together, Eqs.~2.4! and ~2.5! imply that the equation of motion reduces to the first ord
equation

M52

S ]w*

]x

]w

]y
2

]w

]x

]w*

]y D 2
~11uwu2!4

1
2m2

11uwu2
5B, ~2.6!

whereB is a constant.
Moreover, the following current

J5~J1 ,J2!5~ j 1~y!M , j 2~x!M !, ~2.7!

where j 1 and j 2 are arbitrary functions ofy andx respectively, is conserved,

]xJ11]yJ250. ~2.8!

We have thus performed one integration of the equation of motion and we have shown th
model defined by Eq.~1.1! has an infinite number of conserved quantities, and is thus integr

We see that the problem of solving the equation of motion has been reduced substant
we only have to solve a first order nonlinear partial differential equation. Asw is a complex
function we can put

w5GeiK . ~2.9!

Then Eq.~2.6! becomes

4G2
~]xG]yK2]xK]yG!2

~11G2!4
1

2m2

11G2 5B. ~2.10!

Clearly, we can take forK whatever we want—then we end up with an equation forG. Thus a
general solution will depend on one arbitrary function of two variables and on the integr
constants of Eq~2.10!.

If we want to integrate Eq.~2.10! explicitly it may be convenient to replace functionG by
G→P5&/A11G2. Then Eq.~2.10! becomes

m2P41~]xP]yK2]yP]xK !25BP2. ~2.11!

Note a large class of symmetries of this equation; e.g. (P,K→P,K1 f (P)); etc. Similar symme-
tries have been discussed in more detail in Ref. 9.

III. SPECIAL CASES

First of all, let us rewrite Eq.~2.6! as

4
S U]w]zU

2

2U ]w

]z* U
2D 2

~11uwu2!4
1S 2m2

11uwu2D5B, ~3.1!
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wherez5x1 iy ~andz*5x2 iy!. Then, changing variables

w5h~ uuu2!u, ~3.2!

whereh satisfies

h212g
]h

]uuu2
56Ab~11h2uuu2!42g~11h2uuu2!3, ~3.3!

B54b andm252g we see that Eq.~3.1! becomes

U]u]zU
2

2U ]u

]z* U
2

51, ~3.4!

i.e., the equation whose solutions have been discussed before.9

Luckily Eq. ~3.3! is easy to solve; its solutions are given by

h25
4g

uuu2@4b2g2@ uuu22j#2#
, ~3.5!

wherej is a constant of integration. However, although we have an explicit solution, this sol
is only valid locally; asumu2 increasesh2 becomes negative. On the other hand, it is difficult
find solutions of Eq.~3.4! which do not lead touuu2 becoming large. The simplest solution of E
~3.4! corresponds tou5z.

Another possible ansatz~in fact the ansatz made by Gisiger and Paranjape1! corresponds to
settingK5u, wherez5reiu in Eq. ~2.10! andG5G(r ). Then Eq.~2.10! becomes

4G2
~] rG!2

r 2~11G2!4
1

2m2

11G2 5B. ~3.6!

Then puttingG25V we find that Eq.~3.6! becomes

] rV5rAB~11V!422m2~11V!3, ~3.7!

which has as its solution

V5211
4g

4b2g2~r 22j!2
, ~3.8!

with the notation as before.
Note that if we chooseB54b52m2 then, given thatg5(m2/2), V is given by

V5
m2~r 22j!2

82m2~r 22j!2
. ~3.9!

Then choosingj5(2&/m) we have a fieldV which interpolates smoothly betweenV5` for r
50 andV50 for r5r 05(2&/m). Moreover, whenB54b52m2, V5G250 is a solution of
Eq. ~3.6!. Thus, as it is easy to check, we have recovered the solution of Gisiger and Para1

who take Eq.~3.9! for r<r 0 andV50 for r>r 0 .
However, this idea of combining two different solutions does not have to be done onl

B52m2. If we takeb<g then it is easy to see that we can take as our solution of Eq.~3.6! G2

5V given by
J. Math. Phys., Vol. 38, No. 6, June 1997
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V5
g2b

b
for r 2>j,

~3.10!

V5

g2b1
g2

4
~r 22j!2

b2
g2

4
~r 22j!2

for r 2<j.

It is easy to check that not onlyG is continuous atr5Aj but also so is] rG. However, if
B,2m2 the energy of this solution is infinite~this comes from the range ofr.Aj whereV
5(g2b)/b gives a constant but nonvanishing energy density!. Obviously these solutions ca
acquire a finite energy if we add a constant to Eq.~1.1!, to change the zero of energy.

IV. FURTHER COMMENTS

We have shown that the model studied by Gisiger and Paranjape is integrable, in the
that its equations of motion can be integrated once and that it has an infinite number of con
currents. We have looked at some solutions of the model, in particular those solutions whic
be obtained by joining together two separate solutions. The method of Gisiger and Paranjap1 can
be generalized to more general field configurations. It produces solutions which are cont
~with their first derivatives! at the points of transition from one solution to the other one.

The property of integrability of the model studied by Gisiger and Paranjape easily gener
to other models in this class; it holds for all ‘‘pure’’ Skyrme models~i.e., models with no pure
S2 term but with different potential terms!.9
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Summational invariants
Christof Mackrodta) and Helmut Reeh
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General summational invariants, i.e., conservation laws acting additively on
asymptotic particle states, are investigated within a classical framework for point
particles with nontrivial scattering. ©1997 American Institute of Physics.
@S0022-2488~97!03206-4#

I. INTRODUCTION AND STATEMENTS

Summational invariants, or collision invariants in classical Galilei- or Lorentz-invariant
chanics, correspond to additive conservation laws or symmetries of theSmatrix in particle phys-
ics, also called local charges.1 A subclass plays a role in the kinetic theory of gases. In Ref
where also references to other authors and early papers are given, the general form o
invariants was investigated under the assumption that there is elastic scattering between
volved particles at least in an open neighborhood of forward scattering in a certain refe
system. However, the proof presented in Ref. 2 for the general case of a collision inv
depending explicitly on time, is rather involved and unpleasant to read. An investigation
different method was given in Ref. 3. On the other hand, about the same time, a differen
elegant derivation by Wichmann became known concerning the restricted class of summ
invariants depending only on the momenta of the particles~see Refs. 4 and 1!. There only the
existence of one nontrivial scattering process and all Lorentz transforms of this process wa
assumed. It is the aim of the present work to extend this idea of Wichmann to the genera
The result can also be looked at as a classical version of the Coleman–Mandula theo
particle theory5 ~also see Refs. 1, 6, and references quoted therein!.

In classical mechanics an observable is a function on phase space, possibly with an e
dependence on time. It is conserved if its total time derivative vanishes. One calls it a summ
invariant if it may be written as the sum of contributions of asymptotic particles in scatte
processes. For a two-particle scattering process this amounts to

f 1~x1
in ,p1

in ,t !1 f 2~x2
in ,p2

in ,t !5 f 1~x1
out,p2

out,t !1 f 2~x2
out,p2

out,t !

and

d

dt
f j~x

ex,pex,t !50,

where xex, pexPR3, ex5in, out, are the data of asymptotic particle configurations at timet.
Henceforth we drop the index ex. As shown in Ref. 2, the last equation allowsf j to be a function
of p and s:5M jx2pt in the Galilei invariant case ands:5Ap21M j

2x2pt in the Lorentz-
invariant case, whereM j denotes the mass of the particles. We therefore study the equation

(
j51

4

f j~pj ,sj !50, ~1!

a!Now at Provinzial Versicherung, Provinzialplatz 1, D-40591 Du¨sseldorf, Germany.
0022-2488/97/38(6)/3012/8/$10.00
3012 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t the
eneral
hown

hen

shing

with
ms

three

plane

e a
he rest

3013C. Mackrodt and H. Reeh: Summational invariants

¬¬¬¬¬¬¬¬¬¬
suppressing a temporary change of notation forf 3 , f 4 for notational convenience, wherepj , sj
PR3 are the data of two particles before (j51,2) and after (j53,4) one nontrivial scattering
process~i.e., the momenta change direction during collision! or the Galilei, respectively, Lorentz
transformed data of that process. In view of applications in particle physics, we allow tha
particles change their identity and mass during the collision. Our aim is to determine the g
solution of~1!. Here the question arises of the admitted class of functions. In Ref. 2 it was s
for M j.0 ~by convolution over translations and boosts! that it suffices to studyC` functionsf j to
get the result for functions being locally integrable. Hence, we assume here that thef j (p,s) are
C` and in addition polynomially bounded ins for all finite p. We demonstrate forM j.0 the
following.

Theorem: Assume (1) and the assumptions just mentioned. T
f j (p,s)5a ˚p2/2M j1a–p1b(s3p)/M j1c–s1d(p–s)/M j1e–s2/M j1kj , with M11M2

5M31M4 and with 12 constant numbers a ˚,a,...,e, independent of j and a number kj (k1
1k25k31k4) in the Galilei-invariant case. Whereas fj5a ˚–(p21M j

2)1/21a–p
1b(s3p)/(p21M j

2)1/21c–s1kj in the Lorentz-invariant case with ten constants a ˚,...,c and
kj .

With other words: Thef j are linear combinations of the generators of the Schro¨dinger group
or the Poincare´ group, respectively~concerning the two generators of the Schro¨dinger group
besides those of the Galilei group see Ref. 7 and a remark in Ref. 2! and a constantkj . Only the
latter besides the masses may depend onj .

There are similar results for the relativistic case if some or all of the particles have vani
mass.

II. PROOFS

We start with a few auxiliary lemmata. Consider a two-particle scattering configuration
two incoming (j51,2) and two outgoing (j53,4) free particles. There are coordinate syste
such that all momentapj are in the (x,y) coordinate plane.

Lemma 1: There are sequences of Lorentz (Galilei) transformations, such that (i)pk varies in
an open set in the plane. (ii) For each particular of these transformations, one of the other
pe remains unchanged.

Proof: ~a! For theGalilei-invariant caseconsider the four velocitiesv1 ,...,v4 that are differ-
ent from each other for any nontrivial scattering process. A Galilei transformation within the
that leavesv1 invariant variesvk on a circle aroundv1 . Hence, by leaving, e.g., firstv1 invariant
thenv2 , we may changev3 to any point in an open neighborhood in the plane.~b! Similar in the
relativistic case: In the rest frame of particle 2 (p250), a Lorentz transformation leavingp2
invariant is a rotation in the plane, in the notation ofSL(2C),

p→e~ i /2!aszpe2~ i /2!asz5p1a
i

2
@sz ,p#1O~a2!,

whereas a Lorentz transformation leavingp1 invariant is

p→p1
1/2e~ i /2!bszp1

21/2pp1
21/2e2~ i /2!bszp1

1/25p1bp1
1/2 i

2
@sz ,p1

21/2pp1
21/2#p1

1/21O~b2!.

By computation withs matrices, it can be shown that for smalla andb the pointp moves along
different directions in the plane, hencep may change there in an open neighborhood. Sinc
Lorentz boost in the plane transforms open sets into open sets, this is not restricted to t
system of particle 2. h

Lemma 2: Let fj (p) be rotational invariant. Then fj5a ˚Ap21M j
21kj or

f j5a ˚p2/2M j1kj with constant numbers a ˚, kj in the Lorentz- or Galilei-invariant case, and
M11M25M31M4 in the latter.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proof: ~a! Relativistic case:Reparametrizef j (p)5gj (Ap21M j
2) and choose a reference sy

tem such that allpj are in the (x,y) plane. An infinitesimal boost in thex direction@the generator
is Ap21M j

2(]/]px)# and in they direction applied to~1! yields

(
j51

4

pj ,xgj8~Apj21M j
2!50, ~2a!

(
j51

4

pj ,ygj8~Apj21M j
2!50, ~2b!

where8 denotes the derivative with respect to the argument. A finite boost withv in thez direction
yields

gj~Ap21M j
2!→gjS Ap21M j

22pzv

A12v2
D .

Insertion into Eq.~1!, differentiation with respect tov at pz50, multiplication of the resulting
equation byA12v2/v, and afterward lettingv→0 yields

(
j51

4

Apj21M j
2gj8~Apj21M j

2!50. ~2c!

With pj fixed, the three equations~2! are a homogeneous linear system forgj8(Apj21M j
2). If

g18(Ap121M1
2)Þ0, we get, after dividing byg18 the inhomogeneous system,

p1,x52(
j52

4

pj ,x
gj8~Apj21M j

2!

g18~Ap121M1
2!
,

p1,y52(
j52

4

pj ,y
gj8~Apj21M j

2!

g18~Ap121M1
2!
,

Ap121M1
252(

j52

4

Apj21M j
2
•

gj8~Apj21M j
2!

g18~Ap121M1
2!

for gj8/g18 , j52,...,4. The corresponding 333 determinant does not vanish for a nontrivial sc
tering process.@The determinant is invariant under a proper Lorentz transformation in the p
and its value in the rest system of particle 2 is2M2

2(p3,xp4,y2p4,xp3,y)Þ0 sincep3 andp4 are not
parallel for a nontrivial scattering process.# The unique solution in view of energy–momentu
conservation yields

g18~Ap121M1
2!5gj8~Apj21M j

2!, j52,3,4, ~3!

for the scattering process considered.
Did we instead haveg18(Ap121M1

2)50, then Eq.~2! would yield a homogeneous system f
gj8(Apj21M j

2), j52,3,4 with a nonvanishing determinant, hence again Eq.~3!.
Applying Lemma 1 to Eq.~3!, we getgj8(Ap21M j

2)5const forpP open neighborhood in

the plane and hence for allpP plane; hencegj5a ˚•Ap21M j
21bj .
J. Math. Phys., Vol. 38, No. 6, June 1997
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~b! Galilei invariant case: We reparametrizef j5:gj (p
2/2M j ), proceed as in the relativistic

case, and get again three linear equations. The relevant determinant now is

Up2,x p3,x p4x

p2,y p3,y p4,y

M2 M3 M4

U ,
with the valueM2( p̂3,xp̂4,y2 p̂4,xp̂3,y)Þ0 in the rest system of particle 2, withp̂ denoting the
momenta in this system. But the determinant is invariant under Galilei boosts. To see th
pj5M jwj . Then the determinant is

M2•M3•M4Uw2,x w3,x w4,x

w2,y w3,y w4,y

1 1 1
U5M2M3M4Uw2,x w3x2w2x w4x2w2x

w2y w3y2w2y w4y2w2y

1 0 0
U .

5M2~ p̂3xp̂4y2 p̂4xp̂3y!.

The assertion then follows as in case~a!. h

We now come to the result of Wichmann.
Lemma 3: Let fj (p) satisfy (1) for a nontrivial scattering process and all its Lorentz tran

forms (or Galilei transforms). Then fj (p)5a–p1a ˚Ap21M j
21kj (or f j5a–p1a ˚p2/2M j

1kj ).
Proof: ~a! Relativistic case: Consider~1! for all pj in the (x,y) plane. Infinitesimal rotations

aroundx andy axis yield

(
j
pj ,x

]

]pz
f j~pj !50, ~4a!

(
j
pj ,y

]

]pz
f j~pj !50, ~4b!

and an infinitesimal boost in thez direction yields

(
j

Apj21M j
2

]

]pz
f j~pj !50. ~4c!

This is a homogeneous linear system for the (]/]pz) f j (pj ). As in Lemma 2 we get

]

]pz
f 1~p1!5

]

]pz
f 2~p2!5

]

]pz
f 3~p3!5

]

]pz
f 4~p4!,

and Lemma 1 gives

]

]pz
f j~p!5

]

]pz
f k~0!, pP~x,y!2plane, ~5!

for all j ,k. In the same way it follows for the rotated scattering process such
pjP(x,z)-plane,

]

]py
f j~p!5

]

]py
f k~0!, pP~x,z!2plane. ~58!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Consider now for one particularj the summational invariant

f̌ j~p!:5 f j~p!2p “ f 1~0!,

and choose the coordinate system such thatpj points into thex direction. The other particles now
may be rotated around this direction so that they are either in the (x,y) plane or in the (x,z) plane.
Because of~5!, ~58! the derivatives off̌ j in direction orthogonal top vanish. Hencef̌ j depends
only onpj

2 and Lemma 2 proves the assertion.
~b! The proof for the Galilei invariant case follows by the same method. h

We now turn to the general case off j (p,s) depending also ons. As a first step we have the
following lemma.

Lemma 4: Let fj (p,s) be locally integrable inp,s, polynomially bounded ins for every fixed
p, and fulfilling (1) for a nontrivial scattering process and all Poincare´ (or Galilei) transforms of
this process. Then fj (p,s) is polynomial ins.

Proof: Since we may renumber, it suffices to prove the assertion forf 1 . Because of conser
vation of angular momentum, the scattering process occurs in a plane. The components' of sG
orthogonal to this plane is conserved for every particle. Hencef j5h(sj ,') fulfills ~1! for arbitrary
functionsh. However, this would not be additive sincef 1 would depend also on the data o
particle 2, for instance.

Consider the scattering configurationp1 , s1 ,...,p4 , s4 , where the particles move in a plan
After a possible change of the reference system, also the origin of the coordinatessj is in this
plane. We therefore need only considerpj ,sj in this plane.

Consider first therelativistic case. We reparametrize,

f j~p,s!5:gjS p, s

Ap21M j
2D .

A shift of the origin bya in the plane shows that

gjS p, s

Ap21M j
2

1aD
is a summational invariant~s.i.! too as is,

E gjS p, s

Ap21M j
2

1aD x~a!d2a5E e2 iq~s/Ap21M j
2!
•g̃ j~p,q!x̃~q!d2q, ~6!

for any test functionxPS (R2) with suitably defined Fourier transformsg̃ j ,x̃. Hereg̃ j (p,q) is a
tempered distribution with respect toq for everyp.

A shift of the origin of time~s→s2pt! andn-fold differentiation with respect tot at t 50 and
insertion into Eq.~1! yields

E (
j51

4

~q•vj !
n@e2 i ~q•sj /Apj

2
1M j

2!g̃ j~pj ,q!#x̃~q!d2q50, ~7!

in particular forn50,1,2,3 and for all test functions. Herevj5pj /Apj21M j
2 denotes the velocity

of the particles.
Choose nowx̃(q) with support in a suitable small open neighborhoodUq0

of some fixed
q0Þ0 and let it depend onn, and add a summation onn in ~7!. Consider the 434 matrix,

Anj~q!5~qvj !
n.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Assume it has a nonvanishing determinant atq0 and by continuity for allqPUq0
~suitably cho-

sen!. Then the inverse matrix exists and isC` for all qPUq0 . In ~7! ~summed overn with x̃n
dependent! x̃n(q) may be replaced by

Amn
21~q!x̃m~q!,

with x̃m having support inUq0
and arbitrary otherwise. Hence

e2 i ~qsj /Apj
2
1M j

2!g̃ j~pj ,q!50,

;g̃PUq0
, ; j ~as a distribution!.

Thus we need only show that givenq0Þ0 and anyp1 thatp2 ,p3 ,p4 may be chosen such tha
detAÞ0 because theng̃1(p1 ,q) has support only atq50 andg1(p,s) is polynomial ins.

To do this, we observe that the Vandermonde determinant,

U 1 1 1 1

x1 x2 x3 x4

~x1!
2 ~x2!

2 ~x3!
2 ~x4!

2

~x1!
3 ~x2!

3 ~x3!
3 ~x4!

3

U ,
vanishes if and only if two~or more! of thexj are equal~which easily follows by induction!. In our
case,xj5q•vj . Choose nowq0Þ0 andv1 . Assume we hadq•v5q•w ~wherev could also be
v1!. We apply a boostL1 into the rest system of particle 1~v→v8!, then a rotation byw in the
plane~v8→v9! and then a boost (L1)

21 back ~v9→v-!. Thenp1 remains unchanged. For conve
nience of the calculation, we choose a reference system such thatv15(V,0,0) points into thex
direction. The transformation formulas may be found, e.g., in Ref. 8. The result for smallw is

vx-5vx1S 2vy
A12V2

1
vxvyV

A12V2D w1O~w2!,

vy-5vy1S vx2V

A12V2
1

vy
2V

A12V2
D w1O~w2!,

and likewise forw-. HereV5v1,x andc51 ~the velocity of light! so that alluvu,1. Hence

q~v-2w-!5q~v2w!1q3~v2w!
1

A12V2
w1„~q•v!vy2~q•w!wy…

V

12V2 w1O~w2!

~with u3v:5uxvy2uyvx). In our caseq~v2w!50, i.e.v2w'q. If also q~v-2w-!50, we have

q3~v2w!5~q–v!~vy2wy!•V.

Now the absolute value of the left-hand side isuquuv2wu; that of the rhs, however, is smaller tha
uquuvy2wyuuvu•uVu,uquuv2wu, a contradiction since for a nontrivial scattering process,vj
Þvk; iÞk.

The proof for the Galilei invariant case can be done by the same method. h

Proof of the theorem: Here we only reproduce the proof for theGalilei-invariant case, which
is more complicated due to the two additional invariants of the Schro¨dinger group, which in
special cases may show up, although not always~see Refs. 7 and 2!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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An infinitesimal time translation applied tof j (p,s), s5M jx2pt, shows that
pk(]/]sk) f j (p,s) is summational invariant~s.i.! too, as ispkpl(]/]sk)(]/]sl) f j (p,s) ~summation
convention with respect tok,l !, and so on with higher-order derivatives. Due to Lemma 4,f j is a
polynomial ins. Combined with Lemma 3, it follows thatf j is at most of second order ins,

f j~p,s!5a jkl~p!sksl1b j ,k~p!sk1g j~p!

and

a j ,kl~p!5a0•
dkl
2M j

.

Applying now an infinitesimal shift in space, we see thatM j (]/]sk) f j is also s.i., hence

a0•sk1M jb j ,k~p!

~no summation with respect toj !. Sincea0sk is s.i. in a Galilei-invariant theory, it may be
dropped, and by Lemma 3,

M jb j ,k~p!5bk

p2

2M j
1bklpl1b j ,k

0 ,

with bk , bkl , b j ,k
0 independent ofp and

f j~p,s!5a0

s2

2M j
1

p2

2M j
2 bksk1bkl

plsk
M j

1b j ,k
0 sk

M j
1g j~p!.

Applying an infinitesimal time translation, we get now

a0

skpk
M j

1
p2

2M j
2 bkpk1

1

2
~bkl1b lk!

pkpl
M j

1b j ,k
0 pk

M j
. ~8!

Averaging~8! over all rotations gives the s.i.

a0

s–p

M j
1
1

2
„trace~bkl!…•

p2

M j
.

The second term again may be omitted, hence eithera050 or s–p/M j is s.i. In both cases the firs
term in ~8! can be omitted. Lemma 3 requiresbk50, 1/2(bkl1b lk)51/2b̂dkl , b j ,k

0 5M j•b̂k .
Thus

f j~p,s!5a0

s2

2M j
1b̂•

p–s

M j
1b

s3p

M j
1bksk1g j~p!. ~9!

The third and fourth terms may be omitted. Averaging over all rotations gives

f̄ j~p,s!5a0

s2

2M j
1b̂

p–s

M j
1ḡ j~p

2!. ~98!

By taking the difference and applying Lemma 3 we getg j (p)5a–p1ḡ j (p
2). Now s is invariant

under Galilei boosts. After applying an infinitesimal boost to~98!, Lemma 3 givesḡ j5a ˚
•p2/2M j1hj . h
J. Math. Phys., Vol. 38, No. 6, June 1997
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Remarks: ~i! The assumption thatf j (p,s) is polynomially bounded inswas used in Lemma 4
We do not know whether this is crucial for the result.~ii ! The arguments presented assume that
space dimension is three. Whereas for space dimension 2 there is a similar result, the situa
space dimension 1 is different~see, e.g., Ref. 2!. ~iii ! In particle theory and in quantum mechani
there is a corresponding result for particles with spin~Refs. 5, 6, and 9!. In the mechanics of, e.g.
billiard balls having intrinsic angular momentum there seem to be only partial results.10
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Effect algebras and statistical physical theories
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The dichotomic physical quantities of a physical system can be naturally hosted in
a mathematical structure, called effect algebra, of which orthomodular posets and
Boolean algebras are particular examples. We examine how effect algebras arise
inside statistical physical theories and, conversely, we study to what extent an
effect algebra can be taken as a primitive structure on which a satisfactory statis-
tical physical model equipped with a convex set of states can be constructed.
© 1997 American Institute of Physics.@S0022-2488~97!03505-6#

I. INTRODUCTION

In the last few years the notion of effect algebra has received much attention within the s
on the mathematical foundations of quantum mechanics.1–9 Effect algebras appear to be th
natural outcome in the search of a mathematical structure that captures the fundamental as
the elementary two-valued physical quantities, or effects, pertaining to a physical system
notion of effect algebra is sufficiently general to encompass the traditional order structur
companying classical systems~Boolean algebras! and quantum systems~orthomodular posets!, but
it is sufficiently structured to carry a meaningful interplay with the physically relevant notion
states and of observables.

The purpose of this paper is to outline the relationship between the notion of effect al
and the so-called operational, or convex, approach, in which the states of the physical syst
taken as primitive elements and the convex set they form is the basic structure on whi
descriptive model is built up. The approach we are referring to goes back to Ludwig~see Ref. 10!;
the name ‘‘operational’’ was proposed by Davies and Lewis11 and is now widely used~see, e.g.,
Ref. 12!. In this operational approach the observables are derived entities: we shall ado
physically natural definition~introduced in Ref. 13! according to which an observable is an affi
map from the convex set of states into the family of the probability measures on the sp
which the observable takes values.

After reviewing in Section II the mathematical scheme of effect algebras, we exami
Section III how this scheme emerges from the convex approach. Section IV deals with t
versed problem: we examine the requirements that an effect algebra must meet in order to p
role of a basis for a satisfactory physical model. A crucial requirement is that the elements
effect algebra should be separated by the probability measures on the effect algebra itse
requirement singles out the class of the ‘‘admissible’’ effect algebras, which turn out to exh
number of significant properties. In Section V we discuss the conditions that make the c
approach equivalent to the framework based on an effect algebra.

From a formal point of view our results provide also a counterpart of the linearization p
dure for orthomodular posets.14 We find also a close connection with a theorem of Bennett
Foulis15 ~see also Ref. 1, p. 1373! stating that an effect algebra with an order determining se
probability measures is an interval effect algebra. Finally, our results contribute to answe
question advanced by Greechie and Foulis~the research project 4.6 of Ref. 1!.
0022-2488/97/38(6)/3020/11/$10.00
3020 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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II. EFFECT ALGEBRAS

An effect algebrais defined as a setE containing two special elementso,e and equipped with
a partial binary operation% ~to be calledsum! satisfying the properties:

~i! a%b5b%a,
~ii ! a% (b% c)5(a%b)% c,
~iii ! for everya P E there is inE a unique element, denotede*a, such thata % (e*a) is

defined and equalse,
~iv! if a % e is defined thena5o.

An effect algebra hosts in a natural way a partial order relation defined as follows: ifa,b
P E we writea<b if there isc P E such thata % c is defined anda % c5b.

As better seen in the next section, the elements of an effect algebra -in short the effect
be naturally interpreted as dichotomic physical quantities, or events, pertaining to some ph
system. To visualize how an event can be operationally generated one could associate
statement of the form: ‘‘the measurement of a given physical quantity gives an outcome tha
into a given numerical interval.’’ Of course, each state of the physical system will assign
probability of occurrence to every event. In this operational perspective the effect-sum% will be
defined only for those pairs of effects such that, for each state of the physical system, the
the probabilities of their occurrence does not exceed 1~we might say that these are ‘‘orthogonal
effects!: in this case the sum of the two events will be the event whose probability of occurr
is just the sum of these two probabilities. Notice that the effect-suma % b is obviously an upper
bound of the effectsa,b, with respect to the partial ordering said above; however it need no
the least upper bound.

We come now to the notion of infinite sums in an effect algebra: if$ai : i51,2, . . .% is an
infinite sequence of elements of an effect algebraE we say that the suma1 % a2 % . . . is defined
in E if the finite sumssn :5a1 % a2 % . . . % an are defined for everyn and the increasing sequenc
$sn :n51,2, . . .% has inE a least upper bounds under the order relation said above. Then
write s5( i51

` ai .
An effect algebraE will be calleds-complete if every increasing sequence of its elements

a least upper bound.
Let us now consider the notion of morphism between effect algebras.
Definition 1:Given two effect algebrasE1, E2, a mapf:E1→E2 is called a morphism if

~i! f(e1)5e2,
~ii ! if a % b is defined inE1 thenf(a) % f(b) is defined inE2 andf(a) % f(b)5f(a % b).

A morphism is called as-morphism if, for any infinite sequence$ai :ai P E1,i51,2, . . .%
such that ( i51

` ai is defined in E1, the sum ( i51
` f(ai) is defined in E2 and

f(( i51
` ai)5( i51

` f(ai).
The unit interval@0,1# of the real lineR forms, under the addition operation of real numbe

a trivial example of effect algebra.
Definition 2:A probability measure on an effect algebraE is as-morphism ofE into @0,1#.

The set of all probability measures onE will be denotedS (E).
Notice that a weaker notion of probability measure on an effect algebra is sometimes

with only finite additivity assumed. In this paper the termmeasurewill always imply
s-additivity.

An effect algebra need not admit probability measures. Indeed orthomodular posets a
ticular instances of effect algebras~they are effect algebras satisfying the ‘‘coherence’’ conditi
see Ref. 1! and it is known16 that there are orthomodular posets admitting no probability meas

Remark 1:If an effect algebraE admits probability measures thenS (E) is endowed with a
natural convex structure: for anya1 ,a2PS (E) andl1 ,l2P@0,1# we definel1a11l2a2 to be
the mapa°l1a1(a)1l2a2(a) of E into @0,1#.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In the sequel the following definition will be useful:
Definition 3:An effect algebraE is said to be admissible if it is separated byS (E), i.e., if for

anya,bP E ,aÞ b, there isa P S (E) such thata(a) Þ a(b).
This admissibility notion will appear as a necessary requirement for any effect algeb

physical interest. In Section IV a number of relevant properties of admissible effect algebra
be given.

Let now J be a measurable space and notice that the Booleans-algebraB(J) of the
measurable subsets ofJ is a s-complete effect algebra under the partial binary operat
% defined only for pairs of disjoint elements and identified with the set-theoretic union~the zero
element is the empty set while the unit element is the wholeJ). In view of this fact we come now
to a relevant definition.

Definition 4: Let E be an effect algebra andJ a measurable space. As-morphism of
B(J) into E is called anE-valued measure onJ.

Now we have:
Lemma 1:Any E-valued measureE on a measurable spaceJ defines an affine map

AE:S (E)→M1
1(J), whereM1

1(J) is the convex set of all the probability measures onJ.
Proof: Let a P S (E). The set functionAEa:B(J)→@0,1# defined byAEa(X)5a(E(X)) is

a probability measure onJ. Indeed, take a sequence$Xi :Xi P B(J),i51,2, . . .% such that
XiùXj5B,i Þ j , and notice thata(E(ø i51

` Xi))5a(( i51
` E(Xi))5( i51

` a(E(Xi)). It is clear that
AE(la11(12l)a2)5lAEa11(12l)AEa2 for anya1 ,a2 P S (E). h

The notion of effect algebra appeared independently~under various names! in several papers
as a generalization of orthomodular posets and as an algebraic structure able to capture th
properties of effects in operational statistical theories: we refer in particular to the pape
Cattaneo and Nistico’3, Dalla Chiara and Giuntini,4 Giuntini and Greuling,5 Kopka and
Chovanec,6 Pulmannova,7 besides the ones of Greechie and Foulis1 and Gudder2 which have also
the character of review papers on effect algebras.

III. FROM STATES TO EFFECT ALGEBRAS

Typical of the convex, or operational, approach to a statistical theory is the fact that the
of the physical system under discussion are taken as primitive, undefined elements. Othe
tities of interest, as the observables, are then defined on the basis of the setS of states. Convexity
is a natural structure ofS: it translates the physical possibility of mixing different preparations
the physical system.

The very notion of convexity presupposes thatS is a convex subset of a real linear space, s
L. The linear hull ofS in L will be denotedV(S) and we assume without loss of generality th
the origin ofV(S) does not belong toS. About the properties ofV(S) we have the following.

Lemma 2:

~i! If the elements of the convex setS are separated by a subset of the convex setAb(S) of all
real-valued bounded affine functions onS thenV(S) is a base-norm space;

~ii ! if V(S) is a base-norm space, thenAb(S) is an order-unit Banach space.

Proof:

~i! We prove first thatS is linearly bounded, that is the intersection ofS with any affine line
l lying in the hyperplane ofS is bounded. In fact, shouldSù l be unbounded, it would be
impossible to separate its elements by a bounded function, contrary to the assumpti
S is separated by a subset ofAb(S). The proof that ifS is linearly bounded thenV(S) is a
base-norm space is given in Ref. 17.

~ii ! It is known that the Banach dual of a base-norm space is an order-unit Banach space~Ellis
theorem, see, e.g., Ref. 17, p. 27!. Hence the Banach dualV(S)* of V(S) is an order-unit
Banach space, the order unit being the linear functional onV(S) which takes the value 1 on
J. Math. Phys., Vol. 38, No. 6, June 1997
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every element ofS. The natural linear order and norm isomorphismt betweenV(S)* and
Ab(S) is defined by taking fort(c), cPV(S)* , the restriction ofc to S while
t21(a), aPAb(S), is the unique linear extension ofa overV(S). It is clear that the order
unit of V(S)* is then mapped onto the unit functione of Ab(S) ~i.e., e(a)51 for all a
P S). The order-unit normici of cPV(S)* has to be equal to the Banach dual norm~the
mentioned Ellis theorem!, hence ici5sup$uc(a)u:aPConv(Sø2S)%5sup$uc(a)u:a
P S%5sup$ut(c))(a)u:aPS%5it(ci , the sup-norm onAb(S). We make use of the abbre
viation Conv to denote ‘‘the convex hull of.’’ h

Come now to the notion of observable. From the physical point of view an observable h
determine, for every state of the physical system, a probability measure on the space~typically the
real line! in which that observable takes values. Thus we are led to the following definition
J be a measurable space, with the associated Booleans-algebraB(J) of subsets ofJ; an
observableA on the convex setS of states is defined as an affine mapA:S→M1

1(J) where
M1

1(J) is the convex set of all the probability measures onJ. Explicitly, the affinity conditions
means thatA(la11(12l)a2)5lAa11(12l)Aa2 for anya1 ,a2 P S. The measurable spac
J will be called the outcome space of the observableA.

This notion of observable, though more general than the ones adopted in standard c
statistical mechanics and in standard quantum mechanics, is not new in the literature13,18–20and
covers the essential properties of physical and probabilistic concepts like those of coarse21,
fuzzy random variable,22 Markov kernel,23 etc.

Remark 2:The convex structure ofM1
1(J) induces the notion of convex combinations

observables having the same outcome space: ifA1 ,A2 are two observables onS andJ is their
common outcome space thenlA11(12l)A2, l P @0,1#, is the observableS→M1

1(J) whose
action ona P S is given bylA1a1(12l)A2a.

We come now to the effect algebras that naturally arise inside the convex approach.
Definition 5: Given the convex set S, the elements of the order interva

@oS ,eS#:5$oS<a<eS :a P Ab(S)%, whereoS ,eS are the null and, respectively, the unit functio
onS, are called effects onS. In other words, the effects are the affine functions fromS into @0, 1#;
thus they form a class of fuzzy sets inS.

Notice that the simplest nontrivial observables on a convex setS are those which have a
two-point outcome spaceJ5$j8,j9%. Since a probability measure on$j8,j9% is uniquely deter-
mined by the value it takes at the singleton$j8%, any observableA:S→M1

1($j8,j9%) is uniquely
determined by an affine function ofS into @0,1# so that the effects can be considered as elem
tary two-valued observables.

The set@oS ,eS#, with the partial binary operation of addition of real functions~defined only
on the pairs of elements whose sum is still in@oS ,eS#), is obviously an effect algebra, specifical
an interval effect algebra which iss-complete~see Lemma 6 of the Appendix!. Let us stress tha
the % operation abstractly introduced in the previous section becomes, for the effect a
@oS ,eS#, the familiar addition1.

Since@oS ,eS# is an effect algebra we can consider@oS ,eS#-valued measures on some me
surable spaceJ according to Definition 4, and we call themeffect-valuedmeasures.

Theorem 1: Let S be a convex set separated by@oS ,eS#. Then

~i! every observableA:S→M1
1(J) defines an effect-valued measureEA:B(J)→@oS ,eS# on

its outcome space by (EA(X))(a):5(Aa)(X),a P S,XP B(J);
~ii ! every effect-valued measureE:B(J)→@oS ,eS# defines an observableA

E:S→M1
1(J) by

(AEa)(X):5(E(X))(a),aPS,XPB(J);
~iii ! E(AE)5E andA(EA)5A for any observableA and any effect-valued measureE.

Proof:
J. Math. Phys., Vol. 38, No. 6, June 1997
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~i! If $Xi : i51,2, . . .% is any sequence of disjoint elements ofB(J), we have
(EA(ø i51

` Xi))(a) 5 (Aa)(ø i51
` Xi) 5 ( i51

` (Aa)(Xi) 5 ( i51
` (EA(Xi))(a)

5 (( i51
` EA(Xi))(a) for everya P S; this shows thes-additivity ofEA.

~ii ! Clearly the set functionAEa is a probability measure onJ and the mapAE:S→M1
1(J) is

affine.
~iii ! We have (E(AE)(X))(a)5(AEa)(X)5(E(X))(a) and (A(EA)a)(X)5(EA(X))(a)

5 (Aa)(X). h

We can now speak of the probability measures on@oS ,eS# and it is natural to ask how they ar
related to the elements ofS. To everya P Swe can associate a probability measure on@oS ,eS# as
specified by the following lemma.

Lemma 3:For anya P S the mapma :@oS ,eS#→@0,1# given byma(a)5a(a),a P @oS ,eS#
defines a (s-additive! probability measure on@oS ,eS#.

Proof: Consider a sequence$ai :ai P @oS ,eS#,i51,2, . . .% such that ( i51
` ai :

5 sup$( i51
n ai :n51,2, . . .% exists in @oS ,eS#. Known properties of order-unit spaces imp

sup$( i51
n ai :n51,2, . . .%5w*2 limn→`$( i51

n ai :n51,2, . . .% and ensure the existence of th
limit.24 As anya P S generates by evaluation aw* -continuous functional onAb(S) we have that
ma is s-additive. h

With reference to the notion of admissibility expressed by Definition 3 the following rem
is worthwhile.

Remark 3:By definition,@oS ,eS# is separated byS: due to Lemma 3 it is also separated by t
setS (@oS ,eS#) of the probability measures on it. Thus@oS ,eS# is an admissible effect algebra
From the physical point of view this fact expresses the obvious requirement that two elem
observables can be recognized as distinct only if there is a preparation of the physical s
~namely a state! that gives to them different probabilities.

Given that everya P S determines a probability measure on@oS ,eS#, the natural question
arises whether every probability measure on@oS ,eS# comes from an element ofS. A positive
answer occurs with standard quantum mechanics whereS is the setSQ of all density operators on
some separable complex Hilbert spaceH: indeed it is known~see, e.g., Ref. 25! thatAb(SQ) can
be identified with the space of bounded self-adjoint operators onH and all probability measure
on @oSQ,eSQ# are generated by density operators. But one can pick up situations in whic

answer to the above question is negative: ifS is an open segment on the reals, say ]0,1@ , it is
easily realized thatS (@oS ,eS#) contains also the two Dirac measures concentrated at the bo
ary points 0,1 so that it is isomorphic to the closed segment@0,1#.

Though we can conceive convex sets for which not every probability measure on the e
comes from an element of the given convex set, we have the following theorem.

Theorem 2: Let S be a convex set separated by@oS ,eS#. ThenS is w* -dense in the se
S (@oS ,eS#) of all the probability measures on the effect algebra@oS ,eS#.

Proof: Lemma 3 provides an embedding ofS, the base ofV(S), into S (@oS ,eS#); we now
prove that there is an embedding ofS (@oS ,eS#) into the base S̃ of V(S)**. Given
mPS (@oS ,eS#) and a P @oS ,eS#, take an integerm and suppose thatmaP@oS ,eS#: then the
additivity of m implies m(ma)5mm(a). Similarly, if n is an integer, we have
m@(1/n) a#5 (1/n) m(a). Hence alsom@(m/n) a#5 (m/n) m(a). Thes-additivity of m implies
in turn the same property for real numbers: ifl is a real number such thatla P @oS ,eS# and if the
sequence of rational numbers$l i : i51,2, . . .% converges to l then we can write
la5l1a1( i51

` (l i112l i)a and thes-additivity together with the linearity ofm under multipli-
cation by rationals imply now m(la)5m(l1a)1m(( i51

` (l i112l i)a)
5 (l11( i51

` (l i112l i))m(a)5lm(a). Thusm extends linearly overAb(S) and defines uniquely
an element of the baseS̃ of the base norm spaceAb(S)* .

The composition of the mapS→S (@oS ,eS#) of Lemma 3 with the mapS (@oS ,eS#)→S̃
J. Math. Phys., Vol. 38, No. 6, June 1997
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discussed above is an embeddingS→S̃ which is the restriction of the canonical embeddi
F:V(S)→V(S)** , which in turn is known to be an isometric isomorphism~see, e.g., Ref. 26
Theorem III.4!. SinceS is order determining onAb(S) we can apply Theorem 1a of Ref. 27 t
conclude that the image ofS underF is w* -dense inS̃, hence also inS (@oS ,eS#). h

Notice that the effect algebra@oS ,eS# is naturally endowed with a convex structure: in fac
convex combination of affine functions fromS into @0, 1# is still an affine functionS→@0,1#. This
fact makes it possible to speak of extreme elements of the convex set@oS ,eS#: they are often
called sharp effects. Though not univocal, the notion of sharp observables and sharp ef
together with the complementary notion of fuzzy observables and fuzzy effects, proves
relevant in foundational and logical aspects of physical theories~see, e.g., Refs. 2,4,12,13!.

In analogy to Remark 2 we can also notice that the natural convex structure of@oS ,eS#
induces the notion of convex combination of effect-valued measures on a measurable spacJ: if
E1 ,E2 :B(J)→@oS ,eS# are two effect-valued measures onJ, then their convex combination
lE11(12l)E2 is the effect-valued measure onJ that takes the valuelE1(X)1(12l)E2(X) at
X P B(J). In view of the correspondence between observables and effect-valued measures
fied by Theorem 1 we can expect that the notion of convex combinations of observables h
the same outcome space is strictly related to the notion of convex combinations of effect-v
measures on a same measurable space. In fact, it is immediate to check th
A1 ,A2 :S→M1

1(J) and A5lA11(12l)A2, lP@0,1#, then EA5lEA11(12l)EA2; con-
versely, ifE1 ,E2 :B(J)→@0S ,eS# andE5lE11(12l)E2, thenA

E5lAE11(12l)AE2.

IV. FROM EFFECT ALGEBRAS TO CONVEXITY FRAMEWORKS

In this section we shall discuss to what extent an effect algebra can generate a satis
description of a physical system; more specifically, to what extent an effect algebra can be
as the primitive structure carrying a convexity framework of a statistical theory.

As in Section II, letE be an effect algebra, that we take as the fundamental structure
physical model, and we interpret its elements as elementary two-valued physical quantitie

It is natural to assume that every probability measure onE represents a state of the physic
system: the setS (E) introduced in Section II is thus taken as the set of states and its co
structure~outlined in Remark 1! corresponds to the statistical mixing of samples of the phys
system produced by different preparation procedures.

On physical grounds we have to assume, as a minimal requirement, thatE is admissible, in
the sense of Definition 3. Indeed, the admissibility condition now says that distinct eleme
observables must be separated by some state of the physical system. Thus the restri
admissible effect algebras appears crucial to allow an effect algebra to be the basis of a p
model.

We shall now list a number of facts that make the class of admissible effect algebr
interesting one, both from the mathematical and the physical point of view.

A first fact is that for an admissible effect algebraE it is meaningful to speak of the se
@oS (E) ,eS (E)# of the affine functions fromS (E) ~which is now ensured to be nonempty! into
@0,1#, that is the effects~in the sense of Definition 5! on the convex setS (E). It is then natural to
ask whether there is a correspondence between the elements ofE and the elements o
@oS (E) ,eS (E)#. The answer is partially contained in the next theorem.

Theorem 3: If E is an admissible effect algebra then the evaluation of its element
S (E) defines the natural injective morphism~the evaluation map! y:E→@oS (E) ,eS (E)# given by
ya(a):5a(a) for everyaP E ,a P S (E).

Proof: Clearly the evaluation mapy is an embedding due to the fact thatS (E) separates
E . If for a,b P E the effect algebraic suma % b is defined thena(a % b)5a(a)1a(b) for every
a P S (E). This implies thaty preserves the effect algebra structure ofE . h

The fact expressed by the above theorem, that an admissible effect algebra can be em
J. Math. Phys., Vol. 38, No. 6, June 1997
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into an effect algebra of functions from a set into@0,1#, can be seen as a particular case of a m
general fact. We have indeed the following lemma.

Lemma 4:An effect algebra is admissible if and only if there is an injective morphism o
into an effect algebra of functions from a set into@0,1#.

Proof: Having in mind Theorem 3, we have only to prove that every effect algebraF of
functions from a setT into @0,1# is admissible. Indeed, iff i :T→@0,1#,i51,2, . . . , belongs to
F and if the pointwise sumf5( i51

` f i does exist inF , thenf (a)5( i51
` f i(a) for anya P T. This

means that anya P T defines a probability measure onF , and moreoverF is separated by thes
probability measures, so that it is admissible. h

The above lemma can be paraphrased by saying that every admissible effect algebra a
representation in terms of fuzzy sets in some set: representations of this kind have been r
worked out by Dvurecenskij.28 Notice that the representation of elementary observables by m
of functions on the set of states appears also in the framework of quantum logic.29,30

According to Theorem 3 every element of an admissible effect algebraE generates an elemen
of @oS (E) ,eS (E)#, but the converse need not be true: it is not guaranteed that every elem
@oS (E) ,eS (E)# comes from an element ofE . A counterexample can be found in the mathemati
edifice of standard quantum mechanics: the projectors in a Hilbert space form an admissible
algebra and Gleason’s theorem says that~if the dimension of the Hilbert space is not less than!
the probability measures on this effect algebra are just the density operators, but the affin
tions on the density operators with values in@0,1# are known to be in a one-to-one corresponden
with the positive operators having mean value at every state not bigger than 1. The family o
positive operators is definitely bigger than the family of projectors.

Having in mind that for an admissible effect algebraE we can only assert that it can b
embedded into@oS (E) ,eS (E)#, we can ask which elements should be added toE in order to
approach the whole@oS (E) ,eS (E)#. As shown by the next theorem the answer is that what sho
be added are the convex combinations of the elements ofE with respect to the convexity inherite
from S (E).

Theorem 4: If E is an admissible effect algebra then the convex hull ofy(E) is w* -dense in
@oS (E) ,eS (E)#.

Proof: The normed linear spacesV(S (E)) andAb(S (E)) form a dual pair, hence the pola
@Conv(S (E)ø2S (E))#o equals the unit ball@2eS (E) ,eS (E)#5(2@oS (E) ,eS (E)#2eS (E)) of
Ab(S (E) ~Banach-Alaoglu theorem, see e.g., Ref. 31!. On the other hand
(2y(E)21)o5Conv(S (E)ø2S (E)) and the bipolar theorem~see, e.g., Ref. 32! implies the
assertion. h

Let us remark that not only an admissible effect algebraE is separated byS (E) but also,
conversely,S (E) is separated byE , since the former is a set of distinct probability measures
E . Taking now into account the previous Theorem 3, we see thatS (E) is also separated by
y(E),Ab(S (E)) so that, by Lemma 2,V(S (E)) is a base-norm space andAb(S (E)) is an
order-unit space. Thus we see that an admissible effect algebra generates the du
Ab(S (E)), V(S (E)) typical of the convex, or operational, approach.

The connection between effect algebras and the structure of base-norm spaces, with th
order-unit spaces, is further specified by the next theorem.

Theorem 5:Let E be an admissible effect algebra and letW(E) denote the linear subspace
Ab(S (E)) spanned byy(E). Then

~i! iai5sup$ua(a)u:a P E% for everya belonging to the base-norm spaceV(S (E));
~ii ! W(E) is an order-unit space under the norm inherited fromAb(S (E)).
Proof:
~i! The base norm is defined byiai :5 inf$l:l>0, aPlConv(S (E)ø2S (E))% and we

have Conv(S (E)ø2S (E))5$a:ua(a)u<1, aPE% so thata P lConv(S (E)ø2S (E)) if and
only if ua(a)u<l for everyaPE . This implies thatiai5sup$ua(a)u:aPE%.

~ii !The order-unit norm onAb(S (E)) is clearly the sup-norm~see Lemma 2! and the same
J. Math. Phys., Vol. 38, No. 6, June 1997
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holds for the inherited norm onW(E). Thus for anya P W(E) we haveiai5sup$ua(a)u:a
PS (E)%5 inf$l:l>0, 2l<a(a)<l, aPS (E)%5 inf$l:l>0, 2le(a)<a(a)<le(a), a
PS (E)%5 inf$l:l>0, aPl@2e,e#%. h

The above remarks, together with Lemma 2 provide a contribution to a research p
formulated by Greechie and Foulis~see Ref. 1, item 4.6!.

Come now to the notion of observable. It is natural to define the observables on the ba
the convex setS (E) which is interpreted as the set of states: explicitly, ifJ is a measurable spac
then an observable taking values inJ is an affine mapS (E)→M1

1(J).
In view of Lemma 1 everyE-valued measure on a measurable spaceJ defines an observable

but does every observable come from aE-valued measure on some measurable space? In ge
the answer is no. A paradigmatic counterexample lies again in the framework of standard qu
mechanics. Take the effect algebra formed by all projection operators in a Hilbert space so t
E-valued measures onR are simply the projection-valued measures onR ~PV measures!: a
general observable on the set of states, namely an affine map from the convex set of
operators intoM1

1~R!, is now associated to a positive-operator-valued measure~POV measure! on
R, and the class of POV measures is definitely bigger than the class of PV measures.

Thus the property expressed by item~i! of Theorem 1 for a particular class of effect algebr
~the ones occurring within the convex approach! does not hold for a generic admissible effe
algebra.

Summing up, we have seen that for an admissible effect algebraE it is not guaranteed tha
every element of@oS (E) ,eS (E)# comes from an element ofE , nor it is guaranteed that ever
observable onS (E) comes from anE-valued measure. These two facts are however stri
correlated, as specified by the following theorem.

Theorem 6:Let E be an admissible effect algebra. Every affine mapS (E)→M1
1(J) defines

anE-valued measure on the measurable spaceJ if and only if every element of@oS (E) ,eS (E)#
defines an element ofE .

Proof: Suppose that every affine mapS (E)→M1
1(J) defines anE-valued measure onJ.

For arbitrarya P @oS (E) ,eS (E)# andj1 ,j2 P J take the@oS (E) ,eS (E)#-valued measureEa onJ
defined by:Ea(X)5a if j1 P X andj2¹X, Ea(X)5eS (E)2a if j1¹X andj2 P X, Ea(X)5B if
j1 ,j2¹X, Ea(X)5@oS (E) ,eS (E)# if j1 ,j2 P X. This@oS (E) ,eS (E)#-valued measureEa defines an
affine mapAEa:S (E)→M1

1(J) by (AEaa)(X):5(Ea(X))(a), a P S (E), X P B(J). But the
hypothesis ensures thatEa has to bey(E)-valued, hence botha andeS (E)2a have to belong to
y(E). As a was arbitrary we conclude thaty is surjective.

To prove now the reverse property suppose that every element of@oS (E) ,eS (E)# defines an
element ofE . By Theorem 1~i! we know that any affine mapA:S (E)→M1

1(J) defines a
@oS (E) ,eS (E)#-valued measure onJ. But our hypothesis now ensures that this is also
E-valued measure. h

V. CONSISTENCY PROPERTIES

The following definitions will be useful.
Definition 6:A convex setS will be called consistent if there is an affine bijection betwe

S andS (@oS ,eS#), in short ifS5S (@oS ,eS#).
Definition 7: An admissible effect algebraE will be called consistent if there is a bijectiv

morphism betweenE and @oS (E) ,eS (E)#, in short if E5@oS (E) ,eS (E)#.
A familiar example of a consistent set of states occurs in the standard quantum descr

while an example of consistent effect algebra is provided by the operational quantum mecha
described in Ref. 12.

There is an intertwining between the above notions of consistency, as specified by th
lowing lemma.

Lemma 5:
~i! If a convex setS is consistent then the admissible effect algebra@oS ,eS# is consistent;
J. Math. Phys., Vol. 38, No. 6, June 1997
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~ii ! if an admissible effect algebraE is consistent then the convex setS (E) is consistent.
Proof:
~i! Denote @oS ,eS# by E . Then the consistency ofS reads S5S (E), hence

E5@oS (E) ,eS (E)#, which is the consistency condition forE ;
~ii ! denoteS (E) by S. Then the consistency condition forE readsE5@oS ,eS#, hence

S5S (@oS ;eS#), which is the consistency condition forS. h

Notice that Theorem 6 can now be rephrased by saying that an admissible effect algebE is
consistent if and only if every observable onS (E) comes from anE-valued measure.

In Section III we have seen that the convex approach, based on a convex setS of states of the
physical system, naturally generates the admissible effect algebra@oS ,eS#. The density property
expressed by Theorem 2 says that the states~the elements ofS) are physically indistinguishable
from the probability measures on@oS ,eS# since every element ofS (@oS ,eS#) can be approached
with arbitrary accuracy by elements ofS. This makes natural, and avoiding mathematical co
plications, to assume from the outset that the convex setS is consistent. Notice that the family o
consistent convex sets includes the convex sets which are the convex hull of their extrem
ments: in our context these are the sets of states which have pure states and such that eve
state is a convex combination of pure states. Thus the restriction to consistent convex sets o
encompasses a familiar pattern of statistical physical models.

Notice also that a consistent convex setS is obviously separated by@oS ,eS#, so that the
hypothesis often made in Section III, notably in Theorem 1, is automatically met.

Thus the convex approach based on a consistent set of statesS is perfectly closed with respec
to the effect algebra naturally arising in it: the probability measures on@oS ,eS# give back the
elements ofS and the effect-valued measures are just the observables onS ~see Theorem 1!.

When one adopts an effect algebraE , in particular an admissible one, as the basis o
physical model, the relevant facts are the ones reviewed in Section IV. Now the model
general, not closed: an admissible effect algebraE is, in general, a structure not sufficiently ric
to ensure the equivalence betweenE itself and the effect algebra@oS (E) ,eS (E)# built on the set
S (E) of states, nor the equivalence betweenE-valued measures and observables onS (E). The
root of this situation lies in the fact that an effect algebra, even if admissible, does not ca
intrinsic convex structure. As a consequence, also the set ofE-valued measures~on some mea-
surable space! is not intrinsically endowed with a notion of convexity.

To build a satisfactory physical model we have to start from a more structured object, t
from a consistent effect algebra. In this case the model becomes closed: the effects on the
set of statesS (E) correspond to the elements ofE , and theE-valued measures are just th
observables onS (E).

The assumption of consistency for the basic effect algebra is physically equivalent to
pleteE ~more exactly its imagey(E) in @oS (E) ,eS (E)#) by all the convex combinations of it
elements: in fact Theorem 4 ensures that every element of@oS (E) ,eS (E)# can be approached with
arbitrary accuracy by elements of the convex hull ofy(E). The completion of the effect algebra b
these convex combinations is physically meaningful: the physical relevance of convex com
tions of effects and of effect-valued measures is discussed, e.g., in Ref. 12~in particular the
Example 3, p. 10!.

Summing up, the convex framework based on a consistent set of states is fully equiva
the framework based on a consistent effect algebra: each one generates the other in a circu
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APPENDIX: s-MORPHISMS OF ADMISSIBLE EFFECT ALGEBRAS

We are going to comment on how as-morphism of admissible effect algebras can be imp
mented by means of an affine map between the convex sets of probability measures
algebras.

Lemma 6:Let S be a linearly bounded convex set: the interval effect algebra@oS ,eS# is
s-complete.

Proof:According to Lemma 2, the linear boundedness ofS implies thatAb(S) is an order-unit
Banach space, dual to the base norm spaceV(S). In this context it is known that any increasin
sequence in@oS ,eS# converges pointwise to its least upper bound.24 h

Lemma 7:Let S1 ,S2 be linearly bounded convex sets. Any affine mapA:S1→S2 defines a
s-morphism@oS2,eS2#→@oS1,eS1#.

Proof: Any affine mapA:S1→S2 extends linearly to the mapÃ: V(S1)→V(S2) and then
defines the Banach dualÃ* :Ab(S2)→Ab(S1). LetA* :@oS2,eS2#→@oS1,eS1# denote the restriction

of Ã* to @oS2,eS2#. As Ã is norm continuous, the dualÃ* is w* -continuous and consequently i
restrictionA* is pointwise continuous. This implies that any pointwise convergent sequen
elements of@oS2,eS2# is transformed into a similar sequence in@oS1,eS1#, what in turn implies that
A* is as-morphism. h

Theorem 7: Let E1 ,E2 be two admissible effect algebras, andy1 :E1→Ab(S (E1)),
y2 :E2→Ab(S (E2)) the corresponding evaluation maps.

~i! Any s-morphismf:E1→E2 of the two admissible effect algebras defines an affine m
Af:S (E2)→S (E1) such thatf(a)5y2

21((Af)* (y1(a))) for everya P E1 .
~ii ! Any affine mapA:S (E2)→S (E1) defines as-morphismfA:E1→Ab(S (E2)) such that

AfA
5A.
Proof: ~i! The composition of two s-morphisms is a s-morphism, hence

a +f:E1→ E2→@0,1# is a probability measure onE1 for any aPS (E2). Define
Af:S (E2)→S (E1) by A

f(a):5a + f; obviouslyAf is affine. For everya P S (E2) and every
a P E1 we have: a(y2

21((Af)* (y1(a))))5 ((Af)* (y1(a)))(a)5 (y1(a))(A
f(a))

5 (Af(a))(a)5a(f(a)), hencef(a)5y2
21((Af)* (y1(a))) becauseS (E2) separatesE2 ~the

admissibility condition!.
~ii ! For anya P E1 , the compositiony1(a) + A:S (E2)→S (E1)→@0,1# is an affine function

onS (E2) hence it belongs toA
b(S (E2)). The mapE1→Ab(S (E2)) obtained in this way will be

denotedfA: clearly fA5A* + y1 and fA is a s-morphism because bothA* and y1 are
s-morphisms. For every aPS (E2) and aPE1 we have: (AfA

a)(a)5(fA(a))(a)
5 (A* (y1(a)))(a)5(y1(a))(Aa)5(Aa)(a), henceAfA

5A. h
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Statistical solutions of the Navier–Stokes equations
on the phase space of vorticity and the inviscid limits
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Using the methods of Foias@Sem. Math. Univ. Padova48, 219–343~1972!; 49,
9–123~1973!# and Vishik–Fursikov@Mathematical Problems of Statistical Hydro-
mechanics~Kluwer, Dordrecht, 1988!#, we prove the existence and uniqueness of
both spatial and space–time statistical solutions of the Navier–Stokes equations on
the phase space of vorticity. Here the initial vorticity is in Yudovich space and the
initial measure has finite mean enstrophy. We show under further assumptions on
the initial vorticity that the statistical solutions of the Navier–Stokes equations
converge weakly and the inviscid limits are the corresponding statistical solutions
of the Euler equations. ©1997 American Institute of Physics.
@S0022-2488~97!01106-7#

I. INTRODUCTION

Statistical study of the Navier–Stokes equations was initiated by Hopf1 for the purpose of
describing turbulent flow and developed as a coherent mathematical theory by F2

Vishik–Fursikov,3 and others. Roughly speaking, a statistical solution is a probability mea
concentrated on the individual solution space associated with the initial value problem fo
Navier–Stokes equations.

In this paper we are concerned with the statistical solutions of the Navier–Stokes equati
the phase space of vorticity. Their corresponding initial measure concentrated onY of initial
vorticity, whereY5L1ùLc

` is the Yudovich space. There exists a classical theory of existe
and uniqueness for individual solutions in the setting.4 Several important statistical equilibrium
theories~Refs. 5 and 6! are for vorticity in this phase space. Recently we have established
inviscid limit results for individual solutions corresponding to initial vorticity inY ~Refs. 7 and 8!.
So it is natural to study the statistical solutions and their inviscid limits related to this phase s

We will consider both spatial and space–time statistical solutions. Foias2 and
Vishik–Fursikov3 define spatial and space–time statistical solutions on velocity spaces and
their existence and uniqueness, respectively. The classical Galerkin approximation plays
role in their proof of existence. We adopt their definitions to define spatial and space
statistical solutions on the phase space of vorticity corresponding to initial measurem on Y.
Thanks to the recent results of the existence and uniqueness of individual solutions withL1 initial
data~Refs. 9 and 10!, we are able to construct explicitly the defined statistical solutions with
appealing to Galerkin approximation. Our proofs of uniqueness are similar to theirs. The in
limit results of the statistical solutions are obtained with more regularity assumptions on
measures.

Finally we remark that because there is no homogeneous Borel measure onLp\$0%(1<p
,`), the phase spaceY as a subspace ofLp does not support any homogeneous measure ex
the trivial one. It would be interesting to introduce physically proper spaces of vorticity on w
a homogeneous measure can concentrate.

II. PRELIMINARIES

We consider the two-dimensional Navier–Stokes and Euler equations,

]u

]t
1u–“u1“p5n Du,
0022-2488/97/38(6)/3031/15/$10.00
3031J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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“–u50.

The kinematic viscosityn is a positive number in the case of the Navier–Stokes equation
equals zero for the Euler equations. The vorticity

v~x,t !5
]u2
]x1

2
]u1
]x2

obeys the nonlinear advection-diffusion equation,

~] t1u–“2nD!v50. ~2.1!

The vorticity equation can be viewed as the basic evolution equation. In this formulatio
velocity is computed from the vorticity via the Biot–Savart law:

u5K*v, ~2.2!

where

K~x!5
1

2p
“

' log~ uxu!.

We consider the initial vorticity in the space

Y5L1~R2!ùLc
`~R2!

of bounded functions with compact support and the norm onY is the sum ofL1 andL` norms.
For initial vorticity in Y there exists a unique global in the weak time solution of the Eu

equations, as shown by Yudovich.4 The well-posedness for the Navier–Stokes equations w
L1(R2) initial data has also been established. More precisely, we see the following.

Theorem 2.1:Let the initial vorticityv0PL1(R2). Then there exist unique C` functionsv
and u onR23R1 that satisfy Eqs. (2.1) and (2.2). Furthermore, the operator S:v0°v and its
derivatives] t

k
“

aS (for every integer k and double-indexa) are continuous maps as follows:

S: L1~R2!°C„R̄1 ,L1~R2!…ùC~R1 ,W1,1ùW1,̀ !

] t
k
“

aS: L1~R2!°C„R1 ,L1~R2!ùL`~R2!….

In particular, everyv0PL1(R2) determines a continuous trajectory Sv0PL1(R2), which de-
pends continuously onv0.

This theorem has been recently proved by Ben-Artzi9 and Brezis.10We will especially use the
continuity of the operatorS.

We will also need the following estimates and exponential decay results, which are prov
Ref. 7.

Theorem 2.2:Let v0PY be the initial vorticity andv be the corresponding solution of th
Navier–Stokes equations. Then for all t>0,

iv~•,t !iLP<iv0iLP, 1<p<`,

iu~•,t !iL`<U[Aiv0iL1iv0iL`,

where u is the velocity corresponding tov. Furthermore, if the support of the initial vorticity is
included in the disk,
J. Math. Phys., Vol. 38, No. 6, June 1997
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$x:uxu<L%.

Then the vorticity satisfies

uv~x,t !u<iv0iL`e2A11~Ux!2/n2, ~2.3!

for all xPQt,

Qt5$x:uxu>C~L1n/U1Ut !%.

The following energy estimates will also be used.
Proposition 2.3: Letv0PY be the initial vorticity andv be the solution of the Navier–Stokes

equations. Then for each T>0,

max
0<t<T

iv~•,t !iL2
2

12nE
0

T

iv~•,t!iH1
2 dt<iv0iL2

2 , ~2.4!

max
0<t<T

Idv

dt
~•,t !I

H22

<~U1n!iv0iL2. ~2.5!

Proof: We obtain from multiplying the Navier–Stokes equations of vorticity byv and inte-
grating overR2,

1

2

d

dt ER2uv~x,t !u2 dx1E
R2

~u–“v!•v dx5nE
R2

~Dv!•v dx.

We are able to integrate the above terms by parts because of Theorem 2.2 and eventually
~2.4!. The inequality ~2.5! is obtained after multiplying the Navier–Stokes equations byv
PH2(R2) and integrating by parts.

We will useB(X) to denote thes algebra of the Borel sets of a nonempty setX. Often we
will use the following basic measure transform lemma without mention.

Lemma 2.4: Let Xi be a space withs algebraB i for i51,2 and

S:X1°X2

be a measurable mapping andm be a measure on X1 . Define

A*m~Ã!5m~S21Ã!, ;ÃPB2 .

Then we have

E g~u!dA* m~u!5E g~Su0!dm~u0!,

if either g(Su0) is m(du0) integrable or g~u! is A*m integrable.

III. SPACE–TIME STATISTICAL SOLUTIONS

We will also use the functional spacesV andZ:

V [H v:vPL2~@0,T#,H1!ùL`~@0,T#,L2!,
dv

dt
PL`~@0,T#,H22!J ,
J. Math. Phys., Vol. 38, No. 6, June 1997
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Z[L2~@0,T#,L2!ùC~@0,T#,H22!,

with the corresponding norms

iviV 5iviL2~@0,T#,H1!1iviL`~@0,T#,L2!1 Idv

dt I
L`~@0,T#,H22!

,

iviZ5iviL2~@0,T#,L2!1iv~•,t !iL`~@0,T#,H22! .

Clearly,V continuously embedded inZ throughoutTP(0,̀ ) is arbitrary but fixed.
Proposition 2.3 implies that the solution~vorticity! v of the Navier–Stokes equations wit

initial vorticity v0 in Y is in V .
Let m(v0) be the initial probability measure concentrated onY satisfying

E
Y

iv0iL2
2 dm~v0!,`. ~3.1!

The space–time statistical solution of the Navier–Stokes equations on the phase space of v
can be defined by adopting the definition of Vishik and Fursikov.2

Definition 3.1: A space–time statistical solution of the Navier–Stokes equations correspond
ing to the initial measurem is a probability measure P onZ, such that (i) P is supported onV ,
i.e., P~V !51; (ii) there exists a set W closed inV such that

WPB~Z!, P~W!51,

and W includes the solutions of the Navier–Stokes equations; (iii) measure P andm are related by
the formula

P~g0
21Ã0!5m~Ã0!, ;Ã0PB~Y!,

whereg0
21Ã05$v:vPZ,g0vPÃ0% and g0(v)5v(0);

(iv) the inequality holds,

E S niviL2~@0,T#,H1!

2
1iv~ t !iL2

2
1iviL`~@0,T#,L2!

2
1 Idv

dt I
L`~@0,T#,H22!

D dP~v!

<CE
Y

iv0iL2
2 dm~v0!, ;tP@0,T#, ~3.2!

where C is constant independent ofn.
We define a probability measure onZ,

P~Ã!5m~S21Ã!, ;ÃPB~Z!, ~3.3!

whereS21Ã is the preimage ofÃ andS is the solution operator of the Navier–Stokes equatio
defined in Theorem 2.1. The following proposition shows thatS:Y°Z is continuous. Therefore
S21ÃPB(Y) for anyÃPB~Z!, that is,~3.3! is well defined.

Proposition 3.2: S:Y°Z is continuous.
Proof: Letv1 ,v2PY andvmax5max$iv1iL`,iv2iL`%. By the definition of the norm onZ,

iSv12Sv2iZ
2 5E

0

T

iSv1~•,t!2Sv2~•,t!iL2
2 dt1 max

0<t<T
iSv1~•,t !2Sv2~•,t !iH22

2 .
J. Math. Phys., Vol. 38, No. 6, June 1997
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Theorem 2.2 and the continuity of the embeddingL2(R2)°H22(R2) imply that

iSv12Sv2iZ
2 <2vmaxE

0

T

iSv1~•,t!2Sv2~•,t!iL1 dt12vmax max
0<t<T

iSv1~•,t !2Sv2~•,t !iL1.

The above estimate and Theorem 2.1, i.e., the continuity of

S:L1~R2!°C„R̄1 ,L1~R2!…,

imply the continuity ofS:Y°Z, which concludes the proof of this proposition.
We now prove thatP is a space–time statistical solution.
Theorem 3.3: The measure P defined in (3.3) is a space–time statistical solution of the

Navier–Stokes equations with initial measurem in the sense of Definition 3.1.
Proof: We first prove the inequality~3.2!. By integrating inequalities~2.4!, ~2.5! of Proposi-

tion 2.3 with respect todm(v0), we obtain

E S max
0<t<T

iv~•,t !iL2
2

12nE
0

T

iv~•,t!iH1
2 dt D dP~v!<C1E iv0iL2

2 dm~v0!,

E Idv

dt I
L`~@0,T#,H22!

dP~v!<C2E
Y

iv0iL2
2 dm~v0!,

for some constantC1 andC2 . In particular, these estimates imply~3.2! and

E iviV dP~v!,`,

that is,P(V )51.
We can define, thanks to Theorem 2.1,

W5SY.

Clearly,W consists of the solutions of the Navier–Stokes equations. Using the idea in Ref.
can prove thatW is closed inV andWPB(Z). Furthermore,

P~W!5P~SY!5m„S21~SY!…5m~Y!51.

Let ÃPB(Y). As remarked in Ref. 3,

g0
21Ã[$vPZ:g0vPÃ%PB~Z!.

SinceS21g0
21Ã is the preimage ofg0

21Ã with respect toS:Y°Z,

S21g0
21Ã5Ã,

P~g0
21Ã!5m~S21g0

21Ã!5m~Ã!,

which implies~iii ! of Definition 3.1.
Thus we have shown that the measure defined in~3.3! is a space–time statistical solution a

in Definition 3.1.
Following the idea of Vishik and Fursikov,3 we can also prove that the probability measu

P defined in~3.3! is the unique space–time statistical solution corresponding to the initial mea
m.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Theorem 3.4:The space–time statistical solution P in the sense of Definition 3.1 is uniqu
determined by the initial measurem.

Proof: First we can show that for anyQPB(Z),

g0~QùSY!PB~Y!.

The uniqueness of the solution of the Navier–Stokes equations implies

g0
21
„g0~QùSY!…ùSY5QùSY.

Using the above inequality andP(SY)51,

P~Q!5P~QùSY!5P~g0
21
„g0~QùSY!…ùSY!5P~g0

21
„g0~QùSY!…!5m„g0~QùSY!….

That is,P is uniquely determined bym.

IV. INVISCID LIMIT OF SPACE–TIME STATISTICAL SOLUTIONS

Let m be the initial probability measure satisfying~3.1! andP~NS! be the space–time statistica
solution obtained in the previous section. To show the existence of the inviscid limit~asn→0!, we
need to make further assumptions on the initial data:

E iv0iH1 dm~v0!,`, ~4.1!

and we have the following.
Proposition 4.1: Assume that the initial vorlicityv0 and measurem satisfy assumption (3.1)

Then the individual solution (vorticity)v (NS) and the statistical solution P(NS) of the Navier–
Stokes equations with initial vorticityv0 and, respectively, measurem satisfy for any given
TP(0,`),

E S max
0<t<T

iv~NS!~•,t !iH1
2

1nE
0

T

iv~NS!~•,t!iH2
2 dt D dP~NS!~v~NS!!<c1 , ~4.2!

E Idv~NS!

dt I
L`~0,T;H22!

dP~NS!~v~NS!!<c2 , ~4.3!

where c1 ,c2 are constants independent ofn for small n.
Proof: Sincev (NS) decays foruxu→` ~see Theorem 2.2!, we can show by the standard ener

estimate that

max
0<t<T

iv~NS!~•,t !iH1
2

1nE
0

T

iv~NS!~•,t!iH2
2 dt<c1 , ~4.4!

wherec1 does not depend onn but may depend onT. We obtain~4.2! by integrating both sides
of ~4.4! with respect todm(v0). ~4.3! is an easy consequence of Proposition 2.3.

The statistical solution of the Euler equations on the vorticity phase space can be d
through Definition 3.1 by formally settingn50. We can construct the space–time statisti
solution of the Euler equations as the inviscid limit ofP(NS) of the Navier–Stokes equations.

Theorem 4.2: Let the initial vorticily v0 and measurem satisfy the assumption (3.1) an
P(NS) be the statistical solulion of the Navier–Stokes equations constructed in the previous s
tions. Then there exists a weak inviscid limit cluster point P(E) of P(NS) such that P(E) is the
statistical solution of the Euler equations. Furthermore. P(E) satisfies the estimates
J. Math. Phys., Vol. 38, No. 6, June 1997
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E max
0<t<T

iv~E!~•,t !iH1
2 dP~E!~v~E!!<c1,`,

E Idv~E!

dt I
L`~@0,T#;H22!

dP~E!~v~E!!<c2,`,

wherev (E) is the vorticity of the Euler equations with initial vorticityv0.
The following Prokhorov’s weak compactness result11 plays an important role in the proof o

Theorem 4.2.
Lemma 4.3: Let X1 and X2 be two Banach spaces such that X2 is separable and X1 is

compactly imbedded in X2 . Assume thatM is a family of probdbility measures defined o
B(X2) with support onB(X1). If for any mPM, i•iX1 is m-measurable and

sup
mPM

E i f iX1 dm~ f !,`,

thenM is weakly compact.
Proof of Theorem 4.2:We just sketch the proof. Estimates~4.2!, ~4.3! of Proposition 4.1

imply

E
V

ivin dP~NS!~v!<C,

whereC is independent ofn. SinceV is compactly imbedded inZ, we can use Prokhorov’s
theorem. That is,P(NS) is weakly compact inZ and we chooseP(E) as a weak cluster point onZ.
We can check thatP(E) is the statistical solution of the Euler equation. The two estimates
P(E) hold because of the bounds in the estimates~4.2!, ~4.3! are uniform for smalln.

V. SPATIAL STATISTICAL SOLUTIONS

We will useBC to denote the space of real bounded continuous functions onL2(R2) and
C 2 to denote the space of functionsF on L2(R2) such that

iFiC 2
[sup

v

uF~v!u
11iviL2

2 ,`.

Let m be a Borel probability measure concentrated onY and satisfy

E
Y

iv0iL2
2 dm~v0!,`. ~5.1!

The spatial statistical solution of the Navier–Stokes equations on the vorticity phase sp
defined as follows. A quite similar definition of spatial statistical solutions on the velocity s
was given by Foias in Ref. 2.

Definition 5.1: A family of Borel probability measures$m t%0,t,T on L
2(R2) is called a spatial

statistical solution of the Navier–Stokes equations on the vorticity phase space correspondin
m if it satisfies

~i!

t°E c~v!dm t~v! is measurable on@0,T# for all cPBC;
J. Math. Phys., Vol. 38, No. 6, June 1997
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~ii !

E iviL2
2 dm t~v!PL`~@0,T# !;

~iii !

E iviH1
2 dm t~v!PL1~@0,T# !;

~iv!

E
0

TE
L2

@2F t8~ t,v!1n~„v,Fv8 ~ t,v!…!1„u•“v,Fv8 ~ t,v!…#dm t~v!dt5E
Y
F~0,v!dm~v!,

for all F~t,v!5r~t!f~v! with r(t)PC0
`(@0,T)) andfPT , where u is the corresponding velocit

of v andT is a class of real functionsf defined on H1 satisfying the following:

~A! uf(v)u<c11c2iviH1, for anyv P H1 and some constants c1 , c2 that may depend onf;
~B! f is Frechet L2 differentiable in the direction of H1 i.e.,'fv8 P L2 such that forv P H1,

1

iviH1
uf~v1v!2f~v!2~fv8 ,v!u→0, as iviH1→0;

~C! f8 is continuous from H1 to H1 andf8 is bounded.

We shall now prove the existence of the spatial statistical solutions. Letv(•, t)
5S(t)v0(•) be the unique solution~vorticity! of the Navier–Stokes equations corresponding
the initial datav0 P Y, whereS(t) is the solution operator defined in Theorem 2.1. We n
define a Borel probability measure onL2(R2),

mt~Ã!5m„S~ t !21Ã…, ;ÃPB~L2!, ~5.2!

whereB(L2) stands for thes algebra ofL2(R2).
Proposition 5.2: For all tP@0,T#, m t in ~5.2! is well defined.
Proof: We only need to show that for anytP@0,T#, S(t):Y°L2 is continuous. In fact, for

any tP@0,T# andv1 ,v2PY,

iS~ t !v12S~ t !v2iL2
2 <2ṽiS~ t !v12S~ t !v2iL1,

whereṽ5max$iv1iL`, iv2iL`%. This estimate and the continuity of

S:L1~R2!°C„R̄1 ,L1~R2!…

imply thatS(t):Y°L2 is continuous.
Theorem 5.3: The family of probability measures$m t%0<t<T defined in (5.2) is a spatia

statistical solution of the Navier–Stokes equations on the phase space of vorticity.
Proof: We need to check thatm t given by ~5.2! satisfies~i!, ~ii !, ~iii !, and~iv! of Definition

5.1. First we check~i!. By the definition ofm t(v),

E c~v!dm t~v!5E c~S~ t !v0!dm~v0!,

for cPBC. The continuity ofc and S imply the continuity of *c(v)dm t(v) and thus its
measurability on@0,T#.

~ii ! and ~iii ! are easy consequences of the estimates in Proposition 2.3.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now we prove~iv!. First we show that the functional

g~F!5E
0

TE
L2

@2F t8~ t,v!1n~„v,Fv8 ~ t,v!…!1„u•“v,Fv8 ~ t,v!…#dm t~v!dt

makes sense. ForF(t,v)5r (t)f(v) with r (t)PC0
`(@0,T)) andfPT ,

F t8~ t,v!5r 8~ t !f~v!, Fv8 ~ t,v!5r ~ t !f8~v!,

are continuous from@0,T#3H1 toR. Clearly,u5K*v as a function oft andv is continuous from
@0,T#3H1 to R. Thus,

h~F!5F t8~ t,v!1n~„v,Fv8 ~ t,v!…!1„u•“v,Fv8 ~ t,v!…,

is continuous from@0,T#3H1 to R. Furthermore, the definition ofF and the fact thatiuiL`

<U ~see Proposition 2.2! lead to

uh~F!u<c11c2iviH11c3niviH11c4UiviH1,

wherec12c4 are constants depending onf ~but independent oft,v!. ~iii ! and the above estimat
imply thatg(F) makes sense.

We have from multiplying the Navier–Stokes equations of vorticity byr (t)f8(v) with
r (t)PC0

`(@0,T)) andfPT ,

d

dt
„r ~ t !f~v!…2r 8~ t !f~v!1„u•“v,r ~ t !f8~v!…5n„Dv,r ~ t !f8~v!…

after integrating with respect tot,

2E
0

T

f~v!r 8~ t !dt1E
0

T

r ~ t !„u•“v,f8~v!…dt5E
0

T

r ~ t !„Dv,f8~v!…dt1r ~0!f~v0!.

~5.3!

Due to the results of Theorem 2.1 and Theorem 2.2, more precisely, the fact that

“v:L1~R2!°C„R1 ,L1ùL`~R2!…

vanishes at infinity, we integrate by parts to obtain

„Dv,f8~v!…52~„v,f8~v!…!. ~5.4!

We obtain~iv! by integrating~5.3! with respect todm(v0) and using~5.4!.
Our next goal is to show that the spatial statistical solution of the Navier–Stokes equatio

the phase space of vorticity is uniquely determined by the initial probability measurem. Here we
assume that the initial measurem has bounded support inY, i.e., for some constanta,

suppm,$vPY:iviY<a%.

The definition ofm t in ~5.2! implies that for alltP@0,T#,

suppm t,$vPL2:iviL2<r %[B1 ,

for some constantr.0.
We shall need the following lemma, whose proof is quite similiar to that given by Foias2
J. Math. Phys., Vol. 38, No. 6, June 1997
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Lemma 5.4: Let$m t%0,t,T be a family of Borel probability measures on L
2 satisfying (i), (ii),

(iii) and let m be a probability onY such that (5.1) holds. Then the following two conditions a
equivalent: (iv)$m t%0,t,T satisfies the equation

E
0

TE
L2

@2F t8~ t,v!1n~„v,Fv8 ~ t,v!…!1„u•“v,fv8 ~ t,v!…#dm t~v!dt5E
Y
F~0,v!dm~v!,

for all F(t,v)5r (t)f(v) with r(t)PC0
`(@0,T)) andfPT ; (iv8) $m t%0,t,T satisfies the equa

tion

E
L2

F~ t,v!dm t~v!1E
0

tE
L2

$@2Fs8~s,v!1n~„v,Fv8 ~s,v!…!

1„u•“v,Fv8 ~s,v!…#dms~v!%ds5E
Y
F~0,v!dm~v!

for all tP(0,T) and FPT 1 , whereT 1 is the class of real functions defined on@0,T#3H1,
satisfying

(A1) F(t,v) is continuous in(t,v)P@0,T#3H1,

uF t8~ t,v!u<c11c2iviH1,

for some constants c1 ,c2;
(B1) F(t,v) is FrechetL2 differentiable in the direction ofH1,
(C1) Fv8 ( • , • ) is continuous from@0,T#3H1 to H1 and is bounded. Clearly,T 1 containsT .
We can now state the uniqueness theorem and the idea of its proof is from Ref. 2.
Theorem 5.5:Suppose thatm has bounded support inY. Then any space statistical solutio

of the Navier–Stokes equations on the phase space of vovticity with bounded support in1 is
uniquely determined bym.

Proof: Let $m̃ t%0<t<T be another statistical solution satisfying the conditions in the theor
First we show that for anytP@0,T# andfPT ,

E
L2

f~v!dm̃ t~v!5E
L2

f~v!dm t~v!.

Let fPT and F(t,v)5f(S(t2t)v), tP@0,t#, whereS is the solution operator of the
Navier–Stokes equations defined in Theorem 2.1. It is easy to check thatFPT 1 . By Lemma 5.4,
the space statistical solution$m̃ t% should satisfy

E
L2

F~ t,v!dm̃ t~v!1E
0

tE
L2

@2Fs8~s,v!1n~„v,Fv8 ~s,v!…!

1„u•“v,Fv8 ~s,v!…#dm̃s~v!ds5E
Y
F~0,v!dm~v!,

sinceF(t,v)5f„S(t2t)v…,

E
L2

f~v!dm̃ t~v!2E
Y
f„S~ t !v…dm~v!5E

0

tE
L2

@2Fs8~s,v!1n~„v,Fv8 ~s,v!…!

1„u•¹v,Fv8 ~s,v!…#dm̃s~v!ds, ~5.5!

but
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Fs8~s,v!5S f8„S~ t2s!v…,
d

ds
„S~ t2s!v…D . ~5.6!

The right-hand side of~5.5! actually becomes zero after we replaceFs8 by the formula~5.6! in it.
Thus,

E
L2

f~v!dm̃ t~v!5E
Y
f~S~ t !v!dm~v!.

On the other hand, by the definition of$m t%0<t<T ,

E
L2

f~v!dm t~v!5E
Y
f~S~ t !v!dm~v!.

Thus, for all tP@0,T# andfPT ,

E
L2

f~v!dm̃ t~v!5E
L2

f~v!dm t~v!.

We obtain by using the result of Lemma 5.6 below,

E
B1

C~v!dm̃ t~v!5E
B1

C~v!dm t~v!,

for all tP@0,T# andCPC(B1), the space of all continuous real functionals onB1 with respect to
the weak topology onL2. Since onB1 the Borel sets with respect toL2 weak topology coincide
with those with respect to the usualL2 topology. Thus,

m̃ t~Ã!5m t~Ã!, for any Borel setÃ,B1 .

Since the supports of both measures are also included inB1 , we have for alltP@0,T#,

m̃ t5m t ,

which concludes the proof of this theorem.
We have used the following lemma in the proof.
Lemma 5.6: The set$F( • )uB1 ,FPT % is dense inC(B1).
This lemma can be found in Ref. 2.

VI. INVISCID LIMIT OF SPATIAL STATISTICAL SOLUTIONS

In this section we prove the existence of the inviscid limit of the spatial statistical solu
constructed in the previous sections and, furthermore, we show that this inviscid limit is the
statistical solutions of the Euler equations. The idea of the proofs for these results come
Foias.2 Our proof is also similar to that of Chae12 for the inviscid limit of statistical solutions
defined on the phase space of velocity.

We need to make further assumptions on the initial data:

E iv0iH1 dm~v0!,`, ~6.1!

and we have with these assumptions the following.
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Proposition 6.1: Letv0 be the initial vorticity satisfying (5.1) andv
(NS) be the corresponding

solution (vorticity) of the Navier–Stokes equations. Assume that$m t
(NS)%0<t<T be the spatial

statistical solution of the Navier–Stokes equations with initialm obtained in the previous sections
Then

sup
0<t<T

E iv~NS!iH1
2 dm t

~NS!1nE
0

TE iv~NS!~•,t !iH2
2 dm t

~NS! dt<C, ~6.2!

for some constant C independent ofn.
The proof of this inequality is similiar to that of Proposition 4.1.
The definition of the statistical solution of the Euler equations on the vorticity phase spa

obtained from that of the Navier–Stokes equations by formally takingn50 and restricting the tes
functionsF to T 2 , a subclass ofT . T 2 consists of functions of the type

F~ t,v!5r ~ t !f~v!, r ~ t !PC0
`~@0,T!!,

andf(v)5c„(v,g1), (v,g2),..., (v,gk)…, wherecPC1(Rk) has bounded first derivatives an
for 1< i<k, giPH1.

Our main results are included in the following theorem.
Theorem 6.2: Let m be a Borel probability measure onY satisfying (5.1) and

$m t
(NS)%0<t<T be the corresponding spatial statistical solutions of the Navier–Stokes equations on

the vorticity phase space. If we further assume thatv0 and m satisfy (6.1), then there exists
subsequence$m t

(NS)%0<t<T (we use the same notation for this subsequence) and a family of B
probability measures$m t%0<t<T on L2 such that

t°E F~v!dm t~v!, is measurable on@0,T#, for all FPC 2 ,

lim
n→0

E
0

TE F~ t,v!dm t
~NS! dt5E

0

TE F~ t,v!dm t dt, for all FPL1~0,T;C 2!.

Furthermore,$m t%0<t<T is a spatial statistical solution of the Euler equation on the vortic
phase space corresponding tom.

To prove this theorem, we need the following lemma.
Lemma 6.3: Let$m t

n% be a family of Borel probability measures such that
~a! t°*F(w)dm t

v(v) is measurable on@0,T#, ;F P BC;
~b! For some constant C,sup0<t<T*iwiH1

2 dm t
n(v)<C, ;v.0;

~c! uvu2 is uniformly integrable with respect tom t
n , i.e., for;e . 0, there exists a re.0 such

that

E
$v:uvu.r e%

uvu2 dm t
n~v!<e.

Then there exists a family of Borel probability measures$m t% such that

t°E F~v!dm t~v!, is measurable on@0,T#, ;FPBC,

lim
n→0

E
0

TE f~ t,v!dm t
n~v!dt5E

0

TE f~ t,v!dm t dt, ;fPL1~0,T;C 2!.
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Proof of Theorem 6.2:We sketch the proof. It is easy to check that the statistical solution of
Navier–Stokes equations$m i

(NS)% satisfy all the conditions in the lemma. By applying this lemm
we obtain a family of probability measures$m t% as the inviscid limit of$m t

(NS)%. We can show that
$m t% is actually a spatial statistical solution of the Euler equations on the phase space of vo
In fact, we only need to prove equality~iv! in Definition 5.1 withn50 andFPT 2 . The idea of
showing~iv! is to check that each term of the intergrand in~iv! is in L1(0,T;C 2) and then use the
limit equality

lim
n→0

E
0

TE F~ t,v!dm t
~NS! dt5E

0

TE F~ t,v!dm t dt, ;FPL1~0,T;C 2!.

Further details are omitted.
Proof of Lemma 6.3:We consider the functional

Fn~F!5E
0

TE
L2

F~ t,v!dm t
n~v!dt, FPL1~0,T;C 2!.

This functional is well defined because*L2f(v)dm t(v) is measurable on@0,T# for any f
PC 2 . This can be seen from assumption~a! and the fact that anyfPC 2 can be written as the
limit of fk5min(f,k), which is inBC.

Furthermore, we show thatFnP„L1(0,T;C 2)…8:

uFn~F!u<E
0

TE iF~ t,• !iC 2
~11ivi2!dm t

n~v!dt<C iFiL1~0,T;C 2! ,

whereC does not depend onn and we have used inequality~6.2! in the above. By the Banach–
Alaoglu theorem there exists aFP„L1(0,T;C 2)…8 such that for a subsequence,

Fn→F, in the weak2* sense in„L1~0,T;C 2!…8.

Let l be a strong lifting ofL`(@0,T#).2 By the integral representation theorem, there exis
family $Ft%0<t<T,(C 2)8 such that

F~F!5E
0

T

^Ft ,F~ t !&dt, ;FPL1~0,T;C 2!,

sup
0,t,T

iFti5iFi ,

l„F,~F!…~ t !5Ft~F!, ;FPC 2 , ;tP@0,T#.

Next, we want to show that for anytP@0,T# there is a Borel probability measurem t on L
2

such that

^Ft ,F&5E
L2

F~v!dm t~v!, ;FPBC.

The idea of the proof is to use Daniell’s theorem~see Lemma 6.4 below!. First, we can prove tha
for anyFPBC,

u^Ft ,F&u<sup
Br

uFu1
c

r 2
uFuBC , ;r.0, a.e. tP@0,T#, ~6.3!
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whereBr is the ball of radiusr in L2. For the lifted familyFt the above estimate holds for a
tP@0,T#. Let Fm>0 be a sequence inBC such thatFm→0 pointwise asm→`. By Dini’s
theorem,

sup
Br

uFmu→0, m→`.

Thus, by lettingr→` in ~6.3!,

lim
m→`

^Ft ,Fm&50, ;tP@0,T#.

Daniell’s theorem then implies that for alltP@0,T# there exists a Borel measurem t ,

^Ft ,F&5E F~v!dm t~v!, FPBC, tP@0,T#.

It is easy to see thatm t is actually a probability measure. By takingF(t,v)5r (t)PL1(@0,T#) in

lim
n→0

E
0

TE F~ t,v!dm t
n~v!dt5E

0

T

^Ft ,F~ t !&dt,

we obtain^Ft,1&51, that is,*dm t(v)51.
Thus we have proved that there exists a Borel probability measurem t such that

E
0

TE F~ t,v!dm t
n~v!dt→E

0

TE F~ t,v!dm t~v!dt, as n→0, ~6.4!

for all FPL1(0,T;BC).
We can prove that the above limit equality~6.4! actually holds for a broader class of te

functionsFPL1(0,T;C 2). The main idea of showing this extension is to approximateC 2 func-
tions byBC functions and use the uniform integrability ofiviL2 with respect tom t

n . We will not
give more details.

We have used Daniell’s theorem, which states the following.
Lemma 6.4: Let F be a positive linear function on BC satisfying Daniell’s condition

$fm% is a sequence in BC that decreases to zero pointwise, thenlimm→`^F,fm&50. Then there
exists a Borel measure P on L2 such that

^F,f&5E f dP, ;fPBC.
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The Meissner effect and the Ginzburg–Landau equations
in the presence of an applied magnetic field

Masayoshi Tsutsumi, Hironori Kasai, and Takeshi Ōishi
Department of Applied Physics, Waseda University, Tokyo 169, Japan

~Received 30 October 1996; accepted for publication 21 November 1996!

It is shown that a way of phenomenological description of the Meissner effect in a
superconductor under an applied magnetic field is to consider the minimizing prob-
lem of the Gibbs free energy under the constraints of complete expulsion of mag-
netic field from the superconducting states. ©1997 American Institute of Physics.
@S0022-2488~97!00206-5#

I. INTRODUCTION

Let D denote the domain inRd(d52,3) occupied by the lowTc superconducting material
The boundary]D is assumed to be sufficiently smooth. The Ginzburg–Landau theory is bas
the principle that the material is in a state such that the Gibbs free energy, given in norm
units by

F~f,A!5E
D

1

2
uDAfu21

l

4
~12ufu2!21

1

2
urot Au22rot A–Hext dx, ~1!

is minimized~locally!. HereDAf[“f2 iAf; f andA denote the complex order parameter a
magnetic potential, respectively;Hext is the applied magnetic field andl is a dimensionless
coupling constant withl,1/& andl.1/& describing the type I and type II superconducto
respectively. The Ginzburg–Landau free energy functionalF(f,A) has a very important property
namely, gauge invariance. If, for somecPH2(D), we put

z5feic and Q5A1¹c,

thenF(z,Q)5F(f,A), and (f,A) and (z,Q) are said to be gauge equivalent.
If we use standard techniques from the calculus of variations, the~local! minimizers ofF with

respect variations inf andA yields the Ginzburg–Landau equations,

DA
2f1l~12ufu2!f50, in D ~2!

and

rot2 A1
i

2
„f*DAf2f~DAf!* …5rot Hext, in D. ~3!

Here* denotes the complex conjugate. The natural boundary conditions are prescribed~see Refs.
1 and 2! by

DAf–nu]D50 ~4!

and

~rot A2Hext!3nu]D50. ~5!

Here and in the sequeln denotes the unit outer normal vector to]D. These equations and th
boundary conditions~4!, ~5! can be derived as an appropriate limit of the BCS microscopic the
of superconductivity~see Ref. 3!.

In Ref. 1, Carroll and Glick proved existence and uniqueness theorems for weak soluti
the problem~2!–~5! under the condition that bothl and Hext are sufficiently small. Klimov4
0022-2488/97/38(6)/3046/9/$10.00
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investigated the existence of multiple weak solutions to~2!–~5! with the assumption that the
external magnetic field is not applied. In Ref. 5, Yang considered the existence of lowest-
energy-solutions of the Ginzburg–Landau equations~2!, ~3! in R3 in the presence of an arbitrar
external magnetic field. Yang6 also investigated the inhomogeneous Dirichlet problem in
bounded or exterior domain. All the results are obtained in the Coulomb gauge, namely,A
50.

Put f5Feiv andV5“v2A, whereF andv are real-valued functions. Then, observin
that rotV52rot A and rot2 V5grad divV2DV, the problem~2!–~5! can be rewritten as

DF2uVu2F1l~12F2!F50, in D, ~6!

“F–V50, in D, ~7!

and

DV2F2V5rot Hext, in D, ~8!

with

]F

]nU
]D

50, ~rot V1Hext!3nu]D50, V–nu]D50. ~9!

Here we choose the gauge as divV50.
We call the system~6!–~8! the real Ginzburg–Landau equations. Conversely, we easily

that solutions~f,A! can be constructed from~F,V!.
Proposition 1: Suppose that~F,V! is a smooth solution of the real Ginzburg–Landau equa-

tions (6)–(8) with div V50 and satisfies the boundary condition (9). Letv be any harmonic
function. Define~f,A! by

f5Feiv, A5“v2V.

Then, ~f,A! solves the Ginzburg–Landau equations (2), (3) with (4), (5) in the Coulomb gaug
The following lemma is the first step to formulate our problem.
Lemma 1: Let D0 be a connected component of the set$x:rot V50%. Then, we may take

V50 on D0 .
Proof: Since rotA52rot V50 and divA50 on D0 , A is constant on it ~see

Dautray–Lions,7 Part A!. Let A5(A1 ,...,Ad) and takev5( j51
d Ajxj . j

Before discussing the celebrated Meissner effect in a superconductor, we introduce t
lowing function spaces:

H1~D !5$u:D→R;~ iuiL2
2

1i“uiL2!1/2,`%,

H1~D !5$u:D→Rd;u5~u1 ...,ud!,uiPH1~D !~ i51,...,d!%,

H1~div;D !5$uPH1~D !;div u50%,

Hn
1~div;D !5$uPH1~div;D !;u–nu50%.

In general, function spaces expressed with boldfaced letters@e.g.,L2(D)# denote those concerne
with vector-valued functions inRd.

The Meissner effect in a superconductor cooled below the critical temperature may be
acterized by a complete or partial expulsion of the magnetic field from this supercondu
material when the applied magnetic field is weak; however, the normal state will resume wh
J. Math. Phys., Vol. 38, No. 6, June 1997
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applied magnetic field is sufficiently strong. For type I below the critical temperature the tran
between superconducting and normal states as the applied magnetic field is raised or lower
places by means of phase boundaries separating the superconducting region from the
region sweeping through the material and hence, there is a mosaic region consisting of su
ducting and normal regions. For type II we have two critical temperatures in between ther
so-called mixed state that consists of many normal filaments embedded in a supercond
matrix. The system~6!–~8! cannot explain the above phenomena. Indeed, if the set$x:F(x)
50% of normal states contains a open ball, then applying the well-known unique continu
theorem, we see thatF(x) is identically zero. Moreover, even if the set$x:F(x)50% of normal
states is a boundary of a domain inD, the strong maximum principle implies tha
DF¹H2(D), which contradicts the fact that every minimizer~F,V! of F(Feiv,“v2V) lies in
H2(D)3H2(D), provided that rotHextPL2(D). Besides, suppose that the magnetic flux den
B5rot A52rot V50 in a connected domainD0,D. Then, in view of Lemma 1, we know tha
V50. This gives a contradiction to~8! provided rotHextÞ0 in D0 . We do not find any math-
ematically rigorous proof of the Meissner effect so far in the literature. Physicists usually ex
the Meissner effect by using the London approximation of the problem.

Our aim in this paper is to propose a way to express the mosaic or mixed states as wel
Meissner effect by imposing the complete expulsion constraint to the minimizing problem fo
real version of Gibbs free energy. Our constraint modifies the real Ginzburg–Landau equat
follows:

F„DF2uVu2F1l~12F2!F…50, in D, ~10!

FV50, in D, ~11!

and

V j~DV j2F2V j2@rot H~ext!# j !50 ~ j51,...,d!, in D, ~12!

whereV5(V1 ,...,Vd) and @a# j denotes thej th element of vectora. Besides, in the above
equationsu Du should be considered as

“–~u “u!2u“uu2.

We call the system~10!–~12! the modified real Ginzburg–Landau equation.
We will establish the existence of nontrivial solutions to~10!–~12! with ~9! in the presence of

an external magnetic field for anyl.0. Here we say that the solutions~F,V! of ~10!–~12! are
trivial if F or V is identically zero. Constructed solutions have good expressions for the phy
phenomena of superconductivity.

II. MAIN RESULT

We begin by rewriting the Gibbs free energyF(f,A) in terms of ~F,V! and put f (F,V)
5F(Feiv,“v2V). Thus

f ~F,V!5E
D

1

2
u“Fu21

1

2
uFVu21

l

4
~12F2!21

1

2
urot Vu21rot V–Hext dx. ~13!

If we use standard techniques from the calculus of variations forf (F,V) with respect to~F,V!,
we obtain

DF2uVu2F1l~12F2!F50, in D ~14!

and
J. Math. Phys., Vol. 38, No. 6, June 1997
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2rot2 V2F2V5rot Hext, in D, ~15!

with the boundary condition~9!. At first glance we miss~7!. However, since div rotu50 for all
uPH2(D) and divV50, from ~15! we deduce that

“F–V50, in D.

Thus, it is enough to consider the minimizing problem for

f ~F,V!.

The complete expulsion constraint by the Meissner effect means that

rot A52rot V50,

on the superconducting region given by the setD05$x:F(x).0%. By Lemma 1, we may suppos
that the constraint is expressed as

FV50, in D. ~16!

We investigate the minimizing problem forf (F,V) under the constraint~16!. In order to simplify
the arguments, instead off (F,V), we consider the minimizing problems for the functiona
defined by

E~F,V!5E
D

1

2
u“Fu21

1

2
uFVu21

l

4
~12F2!21

1

2
urot V1Hextu2 dx.

Here and in the sequeli•i denotesi•iL2(D) . Clearly, (F,V) is a minimizer off if and only if it
is a minimizer ofE.

In order to treat the constraint, we employ the following singular perturbation technique

Em~F,V![E~F,V!1
1

m
iFVi2,

wherem is a positive parameter tending to zero.
Definition 1: We say that a region D0 in D is appropriate if D0 is a sum of finite number o

connected components D0i ( i51,2,...,I ) that satisfy the following assumptions.
(1) The boundary]D0i is smooth and D0i is locally situated on one side of]D0i ; ]D0i has

finite number of connected components D0i
1 ,...,D0i

J .
(2) The open set D0i that can be multiply connected, is made simply connected by a fi

number of regular cuts:S i1 ,...,S iK ; theS i j are K smooth varieties of dimension d21 such that
S i jùS ikÞB ( jÞk) and nontangential to]D0i .

We have the following theorem.
Theorem 1: Suppose thatdiv Hext50 in D, HextPL2(D) is not identically zero in D, and

there exists an appropriate region D0 of D such that

Hext•nu]D0i
50, ~ i51,2,•,I !,

E
S ik

Hext•n dS ik50 ~ i51,2,...,I ,k51,2,...,K !,

and
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E
D

uHextu2 dx<minH l

2
uDu,

l

2
uD0u1E

D0

uHextu2 dxJ . ~17!

Let

K0[$~F,V!PH1~D !3Hn
1~div;D !;iFVi50%.

Then, there exists at least one minimizer(F0 ,V0) of the functional E overK0\$0%
3Hn

1(div;D). Moreover,0<F0<1 and

E~f0 ,V0!5 inf
~F,V!PK0

E~F,V!5 lim
m→0

inf
~F,V!PH13Hn

1

Em~F,V!.

The minimizer(F0 ,V0)PH1(D)3Hn
1(div;D) is a nontrivial solution the boundary value proble

for the modified real Ginzburg–Landau equations (10)–(12) with the boundary condition (9).

III. PROOF OF THEOREM 1

For eachm.0, let

Mm5 inf
H13Hn

1

Em~F,V!.

SinceEm(F,V) is non-negative,Mm is a non-negative number. Therefore, there exists a m
mizing sequence$(Fn ,Vn)%,H1(D)3Hn

1(div;D) such that

Em~Fn ,Vn!→Mm ~n→`!.

By definition, for a givene.0 we can assume that for allnPN,

Em~Fn ,Vn!<Mm1e.

Then we easily see that the sequence$(Fn ,Vn)% is bounded inH1(D)3Hn
1(D). Hence, there

exist (Fm,Vm)PH1(D)3Hn
1(div;D) and a subsequence of$(Fn ,Vn)% ~also denoted by

$(Fn ,Vn)%!, such that asn→`,

~Fn ,Vn!→~Fm,Vm!, weakly in H1~D !3Hn
1~D !.

By Rellich’s theorem we see that

~Fn ,Vn!→~Fm,Vm!, strongly in Lp~D !3L p~D !,

where 1<p,` (d52) and 1<p,6 (d53). Using the lower semicontinuity of norms of Hil
bert spaces with respect to the weak topology and by the standard argument, we s
(Fm,Vm) is a minimizer ofEm in H1(D)3Hn

1(div;D).
We now show that the minimizer (Fm,Vm) is nontrivial. We first note that

Em~1,0!5E~1,0!5 1
2iHexti2.

Let V̂ be the solution to the problem

DV2rot Hext50,

with div V50 and
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~rot V1Hext!3nu]D50, V–nu]D50.

Then, we have

Em~0,V̂!5E~0,V̂!5
l

4
uDu.

By assumption,

Em~0,V̂!.Em~1,0!.

Let D05ø i51
I D0i be the open~not necessarily connected! proper subset ofD that satisfies the

assumptions stated in Theorem 1. Consider the boundary value problem

DF1l~12F2!F50, in D\D0 , ~18!

with

]F

]nU
]D

50, Fu]D0
50. ~19!

Let F̃ be the nontrivial non-negative solution of~18!, ~19!. DefineF1 by

F1~x!5H F̃~x!, xPD\D0 ,

0, xPD0 .

Our assumption yields thatHext lies in the image of rotation in everyD0i , that is, there exists
ṼiPH0

1(D0i) ( i51,2,...,I ) such that

rot Ṽi52Hext, in D0i , ~20!

with div Ṽi50 ~see Dautray–Lions,7 Part A!. DefineV1 by

V1~x!5H Ṽi~x!, xPD0i ,

0, xPD\~ø i51
I D0i !.

Then, we see that (F1 ,V1)PK0 and

Em~F1 ,V1!5E~F1 ,V1!5
l

4 E
D\D0

~12F1
4!dx1

1

2 E
D\D0

uHextu2 dx. ~21!

Indeed, multiplying~18! by F1 and integrating by parts overD\D0 , we get

E
D\D0

u“F1u2 dx5lE
D\D0

~12F1
2!F1

2 dx.

From ~21! we have

Em~F1 ,V1!<
l

4
uD\D0u1

1

2 E
D\D0

uHextu2 dx,

from which it follows that
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Em~F1 ,V1!,Em~1,0! „,Em~0,V̂!…, ~22!

provided thatD0 is chosen such that

E
D

uHextu2 dx<
l

2
uD0u1E

D0

uHextu2 dx.

Therefore, the minimizer (F0 ,V0) is nontrivial.
The minimizer (Fm,Vm) is a solution of the following boundary value problem:

DF2„11~2/m!…uVu2F1l~12F2!F50, in D, ~23!

and

DV2„11~2/m!…F2V2rot Hext50, in D, ~24!

with the boundary condition~9!. Here we have used the fact that rot2 V5grad divV2DV
52DV.

Lemma 2:

0<Fm<1, in D.

Proof: Fm is non-negative sinceEm(F,V)5Em(uFu,V) ~see Ref. 8, Lemma 7.6!. In view of
Eq. ~23!, we see thatDFmPL2(D). By @p#1 we denote the positive part of a functionp.
Multiplying ~23! by @F21#1 and integrating by parts overD, we obtain

E u“u@F21#1u2 dx1S 11
2

m D E uVu2F@F21#1 dx1lE F~F11!@F21#1
2 dx50,

from which we deduce that

@F21#150, in D.

Hence we have 0<Fm<1.
We now establish the existence of a minimizer ofE in K0 by lettingm tend to zero.
SinceK0 is a closed nonempty subset ofH1(D)3Hn

1(div;D), we have

Mm5 inf
H13Hn

1

Em~F,V!<E~F0,V0!5M0,1`,

for any fixed (F0,V0)PK0 . Hence,Mm is bounded by a constantM0 independent ofm. Then, we
see that the net$(Fm,Vm)% is bounded inH1(D)3Hn

1(div;D). Hence, there exist (F0 ,V0)
PH1(D)3Hn

1(D) and a subsequence$(Fmn,Vmn)% of $(Fm,Vm)% such that, asmn→0
(n→`),

~Fmn,Vmn!→~F0 ,V0!, weakly in H1~D !3Hn
1~div;D !,

~Fmn,Vmn!→~F0 ,V0!, strongly in Lp~D !3L p~D !,

where 1<p,` (d52) and 1<p,6 (d53). We note that

FmnVmn→F0V0 , strongly in L2~D !.

Moreover, we have
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iFmVmi2<mC,

from which it follows that

FmnVmn→0, strongly in L2~D !.

HenceF0V050. Thus, we see that (F0 ,V0)PK0 .
We have for anym,

E~Fm,Vm!< inf
~F,V!PH13Hn

1

Em~F,V!5Em~Fm,Vm!<E~F0,V0! ~;F0,V0!PK0 .

Using the lower semicontinuity of norms of Hilbert spaces with respect to the weak topolog
see that

E~F0 ,V0!< lim inf
n→`

Emn
~Fmn,Vmn!

< lim sup
n→0

E~Fmn,Vmn!1 lim sup
n→0

1

mn
iFmnVmni2

<E~F0,V0!,

for any (F0,V0)PK0 . Since (F0 ,V0)PK0 , we have

E~F0 ,V0!5 inf
~F,V!PK0

E~F,V! X5 lim
n→`

E~Fmn,Vmn!5M C. ~25!

This yields that

lim
m→0

1

m
iFmVmi250 ~26!

and

inf
~F,V!PK0

E~F,V!5 lim
m→0

inf
~F,V!PH13Hn

1
Em~F,V!.

Since 0<Fm<1, we can assume that

Fmn→F0 , weakly star inL`~D !,

and 0<F0<1.
We finally prove that the minimizer (F0 ,V0)PH1(D)3Hn

1(div;D) is a nontrivial solution of
the boundary value problem for the modified real Ginzburg–Landau equations~10!–~12! with the
boundary condition~9!.

In view of ~23!, we see thatDFmPL2(D) for fixed m.0. Multiplying ~23! @resp.,~24!# by
Fm ~resp.,Vm!, we have

Fm~DFm2~112/m!uVmu2Fm1l~12~Fm!2!Fm!50, in D ~27!

and

V j
m~DV j

m2„11~2/m!…~Fm!2V j
m2@rot Hext# j !50 ~ j51,...,d!, in D. ~28!
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From ~25! we can deduce that asn→`,

“Fmn→“F0 , strongly in L2~D !

and

¹Vmn→¹V0 , strongly in L2~D !.

Hence, for anywPW1,2(D)ùL`(D), we have

E
D

Fmn DFmnwdx52E
D

Fmn
“Fmn

–“w dx2E u“Fmnu2w dx

→2E
D

F0 “F0–“w dx2E u“F0u2w dx,

asn→`.
Analogously, we have for anycPW1,4(D),

E
D

V j
mn DV j

mn c dx→2E
D

V0 j “V0 j–“c dx2E u“V0 j u2c dx. ~29!

Letting n tend to infinity in ~27! and ~28!, we obtain

“–~F0 “F0!2u“F0u21l~12F0
2!F0

250, ~30!

“–~V0 j “V0 j !2u“V0 j u22@rot Hext# jV0 j50, ~31!

F0V050, in D, ~32!

and

]F0

]n U
]D

50, ~rot V01Hext!3nu]D50, V0–nu]D50, ~33!

from which it follows that (F0 ,V0) satisfies~10!–~12! sinceF0V050. From ~22! we see that
(F0 ,V0) is a nontrivial solution.

This completes the proof of Theorem 1.
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A constraint algorithm for singular Lagrangians subjected
to nonholonomic constraints
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Instituto de Matema´ticas y Fı́sica Fundamental, Consejo Superior de Investigaciones
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We construct a constraint algorithm for singular Lagrangian systems subjected to
nonholonomic constraints which generalizes that of Dirac for constrained Hamil-
tonian systems. ©1997 American Institute of Physics.@S0022-2488~97!00806-2#

I. INTRODUCTION

The natural geometrical setting for mechanics are tangent and cotangent bundles.1 In fact, a
Lagrangian functionL5L(qA,q̇A) is a function defined on the tangent bundleTQ of the configu-
ration manifoldQ. TQ is the space of velocities, and it is connected with the phase spac
generalized momentaT*Q via the Legendre transformation. The geometries ofTQ and T*Q
permit us to derive in an intrinsic way the motion equations~Euler–Lagrange and Hamilton
equations!. The procedure works well ifL is regular, which is the case for natural Lagrangia
sayL is of the formL5T2V, whereT is a kinetic energy derived from some Riemannian me
on Q and V is a potential energy. However, ifL is singular, the motion equations have n
solutions in general. Motivated by the problem of quantization of singular systems, Dirac2 devel-
oped a constraint algorithm giving a final constraint submanifold where a solution~up to some
gauge ambiguity! exists. The so-called Dirac–Bergmann algorithm was later globalized by G
and Nester.3,4

On the other hand, we have recently developed a geometrical setting for nonholonom
grangian systems.5–10 In some cases, the system does not admit solutions on the given cons
submanifold. Thus, we have developed a constraint algorithm which is very similar to th
Dirac.

The purpose of this paper is to construct a constraint algorithm for singular Lagra
systems subjected to nonholonomic constraints, in such a way that both algorithms are com

II. SINGULAR LAGRANGIANS SUBJECTED TO NONHOLONOMIC CONSTRAINTS

Let L:TQ→R be a Lagrangian function defined on the space of velocitiesTQ of an
n-dimensional configuration manifoldQ. We denote bytQ :TQ→Q the canonical projection. The
fibred coordinates inTQ are denoted by (qA,vA), 1<A<n. L is said to be regular if the Hessia
matrix

S ]2L

]vA]vBD
is regular. Otherwise, it is called singular or degenerate. The energyEL is defined to beEL

5CL2L, whereC5vA (]/]vA) is the Liouville vector field onTQ. We denote byaL the

a!Electronic address: mdeleon@pinar1.csic.es
b!Electronic address: dmartin@sr.uned.es
0022-2488/97/38(6)/3055/8/$10.00
3055J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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Poincare´–Cartan one-form defined byaL5J* (dL) and byvL52daL the Poincare´–Cartan two-
form, whereJ5dqA^ ]/]vA is the canonical almost tangent structure onTQ. ~For a definition of
C andJ we refer to Ref. 1.! As we know,L is regular if and only ifvL is symplectic. In this case
the motion equation

i XvL5dEL ~1!

has a unique solutionjL onTQ. jL is a SODE~second-order differential equation! which is called
the Euler–Lagrange vector field. The SODE character is geometrically expressed by the alg
conditionJjL5C. The solutions ofjL ~that is, the projections of its integral curves! are just the
solutions of the Euler–Lagrange equations.

If L is singular,vL is presymplectic and Eq.~1! has in general no solution onTQ. However,
we can develop the Gotay and Nester algorithm3 ~a geometrization of the Dirac–Bergman
algorithm2! and obtain a sequence of submanifolds

•••→Pk→•••→P2→P15TQ.

If the algorithm stabilizes at some integerk, sayPk5Pk115Pf , we obtain a solutionX on the
final constraint submanifoldPf , that is, there existsXPX(Pf) such that

~ i XvL5dEL! /Pf .

Now, we suppose thatL is subjected to a system ofm nonholonomic constraints$f i ;1< i<m%
~with m,n!, which are affine in the velocities; that is,f i :TQ→R is a function which can be
locally expressed as follows:

f i5~m i !A~q!vA1hi~q!, ~2!

where (m i)A andhi are functions onQ. Let us recall that an affine functionf5mA(q)v
A1h on

TQ may be globally defined byf5m̂1hV, wherem5mA(q)dq
A is a one-form onQ and hV

5h+tQ . Herem̂:TQ→R denotes the function defined bym̂(Xq)5^m(q),Xq&, ;XqPTqQ. Thus,
there arem one-forms$m i% andm functions$hi% defined onQ such that

f i5m̂ i1hi
V , 1< i<m,

with m i5(m i)Adq
A.

The dynamics of the constrained system is determined by a vector field which is tangent
submanifold defined by the vanishing of the constraints. In geometrical terms, we have to m
the motion equation~1! and obtain the following system of equations:

i XvL5dEL1l im i
V , df i~X!50, ~3!

wherem i
V5tQ*m i . The functionsl i are Lagrange multipliers.

The case whenL is regular has been studied in many recent papers~see Refs. 5, 9, and 11–23
and the references therein.! Even in that case, Eqs.~3! have no solutions in general~see Ref. 5!.
The purpose of this paper is to develop an algorithm which generalizes that by Gota
Nester.3,4

We put P̄15P15TQ and define the subsetP̄2 of P1 as follows:

P̄25$xPTQ/^dEL1l im i
V ,kervL&~x!50,f i~x!50, for somel iPR%.

This means the following. If dim kervL5r , we take a local basiŝW1 ,W2 ,...,Wr& of ker vL

defined on a neighborhoodU of a pointxPTQ. Hence, the condition
J. Math. Phys., Vol. 38, No. 6, June 1997
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^dEL1l im i
V ,kervL&~x!50

is equivalent to

Wa~EL!1l im i
V~Wa!50, 1< i<m, 1<a<r . ~4!

If the rank of the matrixC15„m i
V(Wa)… is constant and

rank„m i
V~Wa!…5rank„m i

V~Wa!,Wa~EL!…,

then Eqs.~4! have at least a solution for some values of the Lagrange multipliersl i . It is possible
that ~4! gives directly an inconsistency~type 051!, and then we say that Eqs.~4! are inconsistent.
In order to avoid this problem, we impose, as in the Dirac–Bergmann–Gotay–Nester algorit2,3

the condition that these equations do not involve an inconsistency. If the rank of the matrixC1 is
equal tor 1 with r 1<min(r,m), the number of Lagrange multipliersl i determined by Eqs.~4! is
m2r 1 . It should be noticed that the determinants of the submatrices obtained by enlarg
regular submatrix ofC1 of order r 1 yield the new constraints which define the submanifoldP̄2 .

If Eqs. ~4! do not involve an inconsistency, there exists at least a vector fieldX along P̄2

which verifies~4!, but in general it is not tangent toP̄2 . Therefore, we take the collectionP̄3 of
the points inP̄2 where there exists a solution which is tangent toP̄2 . To do this, for everyx
P P̄2 , we define

TxP̄2
'5$vPTx~TQ!/vL~x!~u,v !50,;uPTxP̄2%.

Notice that kervL(x),TxP̄2
' , for all xP P̄2 . Now, the obstruction to find solutions which a

tangent toP̄2 is justTP̄2
' . Thus, we define

P̄35$xP P̄2 /^dEL1l im i
V ,TP̄2

'&~x!50, for somel iPR%.

Again, if we choose a local basis forTP̄2
' ~for instance, enlarging the above basis$W1 ,...,Wr% for

ker vL to $W1 ,...,Wr ,V1 ,...Vs%!, we obtain a system of equations

Wa~EL!1l im i
V~Wa!50, Vā~EL!1l im i

V~Vā !50,

1<a<r , 1<ā<s, and we can get the local equations definingP̄3 .
There exists a solutionX along P̄3 which is tangent toP̄2 . However,X does not need to be

tangent toP̄3 . We proceed as above and obtain a sequence of constraint submanifolds

•••→ P̄k→•••→ P̄3→ P̄2→P15TQ,

where, for allk.2, we have

P̄k115$xP P̄k /^dEL1l im i
V ,TP̄k

'&~x!50, for somel iPR%,

with

TxP̄k
'5$vPTxTQ/v~x!~u,v !50,;uPTxP̄k%.

If this algorithm stabilizes, that is, there exists an integerk such thatP̄k5 P̄k11 , and dimP̄k

.0, we obtain a final constraint submanifoldP̄k where a completely consistent solution of th
dynamics exists. We denote this submanifold byP̄f and it will be called the final constrain
J. Math. Phys., Vol. 38, No. 6, June 1997
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submanifold. Then there exists a vector fieldj on P̄f which is a solution of Eq.~3!. ~Of course,
j1Z, Ze ker vLùTP̄f is a solution, too.! In this process, some Lagrange multipliers may rem
undetermined and the others ones will rest completely fixed onP̄f .

Example:Let L:TR2→R be given by

L~q1,q2,v1,v2!5 1
2~v

1!21 1
2~q

1!2q2.

We have

EL5 1
2~v

1!22 1
2~q

1!2q2, vL5dq1∧dv1,

from which we deduce that

ker vL5 K ]

]q2
,

]

]v2L .
If we study the dynamics for the free problem, we obtain the following constraints submani

P25$~q1,q2,v1,v2!PR4/q150% and P35$~q1,q2,v1,v2!PR4/q150, v150%.

In that case, the dynamics is fully undetermined on the final constraint submanifoldP3 .
Now, we suppose that the Lagrangian system is subjected to the constraintf5v1. Thus, the

motion equations are

i XvL5dEL1ldq1, dv1~X!50.

In such a case, if we apply our constraint algorithm, we obtain that the dynamics stabilizes
submanifoldP̄25P3 given by

P̄25$~q1,q2,v1,v2!PR4/q150, v150%.

Taking coordinates (q2,v2) on P̄2 we obtain that the dynamics is determined by the vector fi

f
]

]q2
1g

]

]v2
,

where f ,gPC`( P̄2).
Next, consider the following constraint:f5v2. Then, the motion equations are

i XvL5dEL1ldq2, dv2~X!50.

We will compute the pointsx such that

^dEL1ldq2,kervL&~x!50.

We obtain that allxPTQ satisfy this equation for the following particular value of the Lagran
multiplier:

l5 1
2~q

1!2.

Moreover, the final constraint submanifold is

P̄25$~q1,q2,v1,v2!PR4/v250%,

and the dynamics is determined by the vector fields
J. Math. Phys., Vol. 38, No. 6, June 1997
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X5v1
]

]q1
1q1q2

]

]v1
1 f

]

]q2
,

where fPC`( P̄2) and coordinates (q1,q2,v1) on P̄2 are taken.
Remark 1:Notice that the example shows that the behavior of the algorithms for the

singular Lagrangian system and the constrained Lagrangian system may dramatically diffe

III. THE HAMILTONIAN FORMALISM

Let T*Q be the cotangent bundle with canonical projectionpQ :T*Q→Q. Denote by
Leg:TQ→T*Q the Legendre mapping defined by a LagrangianL. As we know, Leg is locally
written by Leg(qA,VA)5(qA,pA5]L/VA). If L is singular, Leg is not a diffeomorphism. How
ever, we suppose thatL is almost regular, i.e.,M15Leg(TQ) is a submanifold ofT*Q and, Leg
is a submersion ontoM1 with connected fibers. The restriction of Leg to its image will be deno
by Leg1 :TQ→M1 and it is a fibration. The submanifoldM1 will be called the primary constrain
submanifold. LetlQ5pAdq

A be the Liouville one-form andvQ52dlQ the canonical symplectic
form on T*Q. Here, (qA,pA) are fibered coordinates inT*Q. Since the Lagrangian is almos
regular, the energyEL is constant along the fibers of Leg. Therefore,EL projects onto a function
h1 onM1 : h1„Leg(x)…5EL(x), ;xPTQ. This construction is just the globalization of the one
Dirac.2,3

If we denote byv1 the restriction ofvQ to M1 , then (M1 ,v1) is a presymplectic manifold
In order to obtain the Hamiltonian formalism for the singular Lagrangian system subjected
nonholonomic constraints, we assume that the constraints$f i ;1< i<m% are Leg projectable, tha
is,

Z~f i !50, ;ZPker T Leg, ; iP$1,...,m%.

In such a case, we obtain constraintsf̄ i (1< i<m) on the Hamiltonian side which are defined b
f̄ i„Leg(x)…5f i(x), ;xPTQ. Moreover, if we consider the one-formsm̄ i5pQ*m i , we obtain that
Leg* m̄ i5m i

V . We write the following system of equations on the submanifoldM1 :

i X̄v15dh11l̄im̄ i , df̄ i~X̄!50. ~5!

As in the above section, we can develop a constraint algorithm for this system of equation
obtain the following sequence of submanifolds:

M̄25$x̄PM1 /^dh11l̄im̄ i ,kerv1&~ x̄!50, f̄ i~ x̄!50, for some l̄iPR%,

and, givenM̄k , we obtainM̄k11 as follows:

M̄ k115$x̄PM̄ k /^dh11l̄im̄ i ,TM̄k
'&~ x̄!50, for some l̄iPR%,

where

Tx̄M̄ k
'5$v̄PTx̄M̄1 /v1~ x̄!~ ū,v̄ !50, ;ūPTx̄M̄ k%.

~We put M̄15M1 .!
A direct computation shows that Leg1 :TQ→M1 satisfies Leg1( P̄2)5M̄2 , and the restriction

Leg2 : P̄2→M̄2 is again a fibration. Proceeding further we obtain a sequence of fibra
Legk : P̄k→M̄ k which relates the Lagrangian and the Hamiltonian sides. Consequently, the b
J. Math. Phys., Vol. 38, No. 6, June 1997
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ior of the algorithms is the same in both sides, i.e., if the algorithm stabilizes on somek in the
Lagrangian side, the same holds for the Hamiltonian side and conversely. We then obta
following commutative diagram:

Thus, we have proved that the Lagrangian and Hamiltonian formulations are equivalent
is, given a vector fieldjPX( P̄f) which is a solution of~3! and Legf projectable, then its projec
tion j̄5T Legf(j) is a solution of~5!. Conversely, ifj̄PX(M̄ f) is a solution of~5!, then each
projectable vector field onP̄f onto j̄ is a solution of~3!.

Example (continued):Let L be the Lagrangian function defined in the example and supp
that it is subjected to the constraintf5v1.

Since the Legendre mapping is given by

Leg~q1,q2,v1,v2!5~q1,q2,v1,0!,

we obtain that

M15Leg~TQ!5$~q1,q2,p1 ,p2!PT*Q/p250%

and

v15dq1∧dp1 , h15
1
2 p1

22 1
2~q

1!2q2,

taking coordinates (q1,q2,p1) onM1 .
Since the constraintf projects onto the constraintf̄5p1 , we have that the motion equation

are

i X̄v15dh11l̄dq1, X̄~p1!50. ~6!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Applying the algorithm, we arrive to the final constraint submanifold:

M̄25$~q1,q2,p1 ,p2!PT*Q/q150, p150, p250%.

The dynamics is undetermined, that is, each vector fieldg(]/]q2) with gPC`(M2) is a solution
of the dynamics on the Hamiltonian side.

IV. THE SECOND-ORDER DIFFERENTIAL EQUATION PROBLEM

In Sec. II, we found a final constraint submanifoldP̄f where there exists at least a complete
consistent solutionj of the dynamics. However, in general, these solutions do not verify the SO
condition, that is, (Jj5C) / P̄ f . ~It should be noticed that the Euler–Lagrange equations are, in
of second order.! To solve this problem we will proceed as in the case of free singular Lagrang
~see Ref. 4!.

Assume thatj is Legf projectable onto a vector fieldZPX(M̄ f). We remark that since
Legf is a fibration, we can always choose a Legf-projectable solutionj. In fact, we pick a solution
Z of Eq. ~5! and then liftZ to P̄f by means of a connection in the fibration Legf : P̄f→M̄ f , for
instance. Suppose thatj is locally given by

j5AA
]

]qA
1B A

]

]vA
.

Sincej verifies Eq.~3!, we deduce thatj*5Jj2CP ker vLùIm J5ker T Leg. Sincej is pro-
jectable we get thatAA is constant along the fibers of the fibrationLegf : P̄f→M̄ f . Take an
arbitrary point (q0

A ,v0
A)P P̄f and put Leg(q0

A ,v0
A)5z0 . The integral curve ofj* with that initial

datum iss(t)5„q0
A ,AA2e2t(AA2v0

A)…. A direct calculation shows that

lim
t 1`

s~ t !5~q0
A ,AA!. ~7!

Therefore the limit point is in the fiber overz0 . Thus, we have obtained a global secti
s:M̄ f→ P̄f of Legf and a submanifoldS5s(M̄ f) of P̄f . A direct computation from~7! shows that
(j* )/S50. Hence, if we denote byj̃ the vector fieldTs(Z)PX(S), we get

~ i j̃vL5dEL1l im i
V! /S , ~df i~ j̃ !50! /S , ~Jj̃5C! /S . ~8!

Example (continued):Following with the LagrangianL and the constraintf5v1, we now study
the second-order differential equation problem on the Lagrangian side.

If we choose a projectable solution of the motion equations ofP̄f , namely

j5 f ~q2!
]

]q2
,

we obtain

S5$~0,q2,0,f ~q2!!PTQ/q2PR%,

and

j̃5 f ~q2!
]

]q2
1 f ~q2!

] f

]q2
]

]v2
.
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On integrable potential perturbations of the billiard system
within an ellipsoid

V. Dragović and B. Jovanović
SANU, Mathematical Institute, Knez Mihailova 35, 11000 Belgrade, Serbia, Yugoslavia

~Received 3 July 1996; accepted for publication 20 November 1996!

Generalizing Kozlov’s method of integrable potential perturbations for systems
with three degrees of freedom, new integrable billiard systems within ellipsoid in
R3 are constructed. Two countable families of the basic solutions in the class of the
Laurent polynomials are obtained. Explicit formulas are given. ©1997 American
Institute of Physics.@S0022-2488~97!03405-1#

I. INTRODUCTION

The analysis of completely integrable Hamiltonian systems is usually the first step in u
standing the geometry and dynamics of more complicated Hamiltonian systems. Complet
tegrable cases are not generic in the set of all Hamiltonian systems, and a general perturb
an integrable system is not integrable.1 Among the systems with two degrees of freedom the m
popular integrable examples are the Birkhoff billiard system within ellipse and the Jacobi pro
of the geodesics on the two-dimensional ellipsoid.

In a recent paper,2 Kozlov suggested the method of finding integrable potential perturbat
~IPPs! for such systems, and he found a few examples. Using his method, countable fami
IPPs were constructed~exhaustive in the class of Loran polynomials! for billiards within ellipse in
Ref. 3, for Jacobi problem in Ref. 4, and for billiards on the surfaces with constant curvatu
Ref. 5.

By extending Kozlov’s method onto the three-dimensional case, in this paper we fou
countable family of IPPs for the billiard system within a two-dimensional ellipsoid.

Usually a billiard system describes a particle moving freely within some enclosure, wit
billiard having a low elastical reflection at the boundary, i.e. so that the impact and the refle
angles are equal.

The billiard system within an ellipsoid inR3,

x2

a
1
y2

b
1
z2

c
51, a,b,c, ~1!

is completely integrable~see Refs. 6 and 7!. The Hamiltonian is

H0~ ẋ,ẏ,ż,x,y,z!5 1
2~ ẋ

21 ẏ21 ż2!. ~2!

Let us recall that ann-dimensional Hamiltonian system with HamiltonianH is completely inte-
grable if it hasn functionally independent integralsFi , i P $1,...,n%, which are in involution,

$H,Fi%50, iP$1,...,n%, ~3!

$Fi ,F j%50, i , jP$1,...,n%. ~4!

For the billiard we have an additional condition—thatFi does not change at the reflection
Interesting geometrical questions connected with that system were studied in Refs. 8 a
0022-2488/97/38(6)/3063/6/$10.00
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II. INTEGRABLE POTENTIAL PERTURBATIONS

We are starting with the following integrals6 of the system defined by Eqs.~1! and ~2!:

F̃15 ẋ21
~xẏ2yẋ!2

a2b
1

~xż2zẋ!2

a2c
,

F̃25 ẏ21
~xẏ2yẋ!2

b2a
1

~yż2zẏ!2

b2c
, ~5!

F̃35 ż21
~xż2zẋ!2

c2a
1

~yż2zẏ!2

c2b
.

Following Kozlov’s ideas~see Ref. 2! we want to find potentialV(x,y,z) such that the billiard
system with Hamiltonian

H~ ẋ,ẏ,ż,x,y,z!5H01V~x,y,z! ~6!

has the integrals

Fi5F̃ i1 f i , ~7!

where f i are functions depending only on the coordinates

f i5 f i~x,y,z!. ~8!

The choice of perturbation to depend only on the coordinates guarantees thatFi remains un-
changed at reflections. Replacing Eqs.~6! and ~7! in Eq. ~3!, using Eqs.~2!, ~5!, and~8! we get

$F̃11 f 1 ,H%52ẋ~2Vx!12
~xẏ2yẋ!

a2b
~2xVy1yVx!12

~xż2zẋ!

a2c
~2xVz1zVx!

1 ẋ f x
11 ẏ f y

11 żf z
150. ~9!

From Eq.~9! and a similar expression forF̃2 1 f 2 we have

f x
152Vx1

2y

a2b
~yVx2xVy!1

2z

a2c
~zVx2xVz!,

f y
15

2x

a2b
~xVy2yVx!, f z

15
2x

a2c
~xVz2zVx!, f x

25
2y

b2a
~yVx2xVy!,

~10!

f y
252Vy1

2x

b2a
~xVy2yVx!1

2z

b2c
~zVy2yVz!,

f z
25

2y

b2c
~yVz2zVy!.

The corresponding system of the compatibility conditions for system~10! is
J. Math. Phys., Vol. 38, No. 6, June 1997
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3ygVx23xgVy1xygVxx2xygVyy1~gy22gx22az21ag!Vxy1axzVzy50,

3zaVx23xaVz1axzVxx2axzVzz1~az22ax22gy22ag!Vxz1gxyVyz50,

~ax21gx2!Vzy2axzVxy2gxyVxz50,
~11!

3ybVx23xbVy1bxyVxx2bxyVyy1~by22bx21az21ab!Vxy2azyVxz50,

~by21ay2!Vxz2bxyVyz2ayzVxy50,

3azVy23ayVz1azyVyy2ayzVzz1~az22ay22bx21ab!Vyz1bxyVxz50.

We used the notation:a5a2b, b5b2c, g5c2a. Soa1b1g50. Every solution of Eq.~11!
is the potential of the billiard with two additional integralsF̃11 f 1 , F̃21 f 2 . Systems~10! and~11!
are linear. So if (V, f 1 , f 2) and (V8, f 18 , f 28) are solutions of Eqs.~10! and~11! a linear combination
(aV1bV8,a f 11b f 18 ,a f 21b f 28) also is.

Since the considered system has more than two degrees of freedom~3!, as a slight difference
from the cases considered in Refs. 2–5 the conditions of type~4! are not satisfied automatically
Thus, in addition to system~11! for the complete integrability, we need

$F̃11 f 1 ,F̃21 f 2%50. ~12!

Proposition 1: If F̃ i are given with Eq.~5! and f i satisfy condition~10! then F̃11 f 1 and F̃2

1 f 2 are in involution.
Proof: $F̃11 f 1 ,F̃21 f 2%5$F̃1 ,F̃2%1$F̃1 , f 2%2$F̃2 , f 1%1$ f 1 , f 2%•$F̃1 ,F̃2%50 since F̃ i are

integrals in involition of system~1!, ~2!. $ f 1 , f 2%50 because of Eq.~8!. So, we have to prove

$F̃1 , f 2%5$F̃2 , f 1%. ~13!

f 2 depends only on the coordinates so$F̃1 , f 2%52^(F̃1ẋ ,F̃1ẏ ,F̃1ż),( f x
2, f y

2, f z
2)&. Using explicit

formulas forF̃ iẋ , F̃ i ẏ , F̃ iż from Eq. ~5! and f x
i , f y

i , f z
i from Eq. ~10!, after some computations

Eq. ~13! follows. h

III. LAURENT POLYNOMIAL SOLUTIONS

We are going to find the solutions of Eq.~11! in form of the Laurent polynomials

V~x,y,z!5 (
k<n,m,p< l

an,m,px
nymzp, k,lPZ. ~14!

Proposition 2.If the polynomial ~14! is a solution of~11! then coefficientsan,m,p satisfy-
system of difference equations,

amnam,n,l5~ l1n1m!~nam22,n,l2mam,n22,l !,

gmlam,n,l5~ l1n1m!~mam,n,l222 lam22,n,l !, ~15!

bnlam,n,l5~ l1n1m!~ lam,n22,l2nam,n,l22!.

System~15! is very similar ~but more complicated! to that obtained in Ref. 3. Using a
analogous procedure, we can get the next theorem. Note that every solution of Eq.~15! can be
separated into two solutions: one with one index negative—purely Laurent polynomial, and an-
other with all indexes non-negative—polynomial solution.
J. Math. Phys., Vol. 38, No. 6, June 1997
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LetSmn D50, m,n exceptSm0 D51.

Theorem 1:The base of linear PDE system~11! in a form of purely Laurent polynomials is give
with

ø
l0>1

$Wl0
% ø
m0>1

$Wm0
8 % ø

n0>1
$Wn0

9 %,

where

Wl0
5

1

z2l0 (
0<m1n1k, l0

~ l 02k21!!

m!n! ~ l 0212k2m2n!!
•

~21!n

gmbn •

Pm,n
k ~b,g!

gkbk x2my2nz2k

andPm,n
k are polynomials satisfying:

~b1g!Pm,n
k 5gPm21,n

k 1bPm,n21
k ,

~16!

Pm,n
k 5Pm21,n

k 1bPm,n
k21, Pm,n

k 5Pm,n21
k 2gPm,n

k21,

with initial conditionsPm,n
0 51, P0,0

k 50, k.0.
ForWm0

8 andWn0
9 we have similar expressions.

Lemma:PolynomialsPm,n
k which satisfy Eq.~16! are

Pm,n
k ~b,g!5(

i50

k Sm1k212 i
k2 i D •S n1 i21

i D ~21! ibk2 ig i .

Examples:Let us write down a few examples of the obtained integrable potentials
corresponding integrals,

W15
1

z2
, f 15

2

a2c

x2

z2
, f 25

2

b2c

y2

z2
, W25

1

z4 S 11
x2

g
2
y2

g D ,
f 152

2x2

z4~c2a! S 11
x2

c2a
1

y2

c2b
1

z2

c2aD ,
f 252

2y2

z4~c2b! S 11
x2

c2a
1

y2

c2b
1

z2

c2bD ,
W35

1

z6 S 11
2x2

g
2
2y2

b
2
2x2y2

bg
1
x2z2

g2 1
y2z2

b2 1
x4

g2 1
y4

b2D ,
W45

1

z8 S 11
3x2

g
2
3y2

b
1
3x4

g2 1
3y4

b2 1
x3

g32
y3

b3 1
2x2z2

g2 1
2y2z2

b2

1
2~g2b!

g2b2 x2y2z21
2x4z2

g3 2
2y4z2

b3 1
x2z4

g3 2
y2z4

b3 D .
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3067V. Dragović and B. Jovanović: Integrable billiards within ellipsoid

¬¬¬¬¬¬¬¬¬¬
IV. POLYNOMIAL SOLUTIONS

Using the following notation:

a2m,2n,05b~a!2m,2n , a0,2n,2l5b~b!2n,2l , a2m,0,2l5b~g!2l ,0 , ~17!

the difference equations~15! can be written in the form

lpqbp,q5~p1q!~qbp22,q2pbp,q22!, p,q>0, ~18!

with l equal toa, b, or g. The general solution of Eq.~18! for p, q.0 is

b~l!2p,2q5
~p1q!!

p!q!
•

1

lp1q H (
t51

q

~21!q2tS p1q2t21
p21 Dl8b0,2t

1(
t51

p

~21!qS p1q2t21
q21 Dl tb2t,0J . ~19!

We want the solutions in a polynomial form, so we have additional conditions,

b~l!2p,2q50, p1q>r , l5a,b,g. ~20!

From Eqs.~20! and ~19! we get equations for the ‘‘initial condition,’’b0,2t andb2t,0 ,

2qb~l!2~r2q!,2q5~2~r2q!12!b~l!2~r2q!22,2q12 ,

0<q<r21, l5a,b,g. ~21!

In addition to Eq.~21!, we have from Eq.~17! the following compatibility conditions:

a0,2n,05b~a!0,2n5b~b!2n,0 , a2m,0,05b~a!2m,05b~g!0,2m , a0,0,2l5b~b!0,2l5b~g!2l ,0 .

A few examples of the base polynomial solutions are given below,

V1~x,y,z!5x21y21z2, f 152x2, f 252y2,

V2~x,y,z!5ax21by21cz22~x21y21z2!2,

f 152ax222x422x2y222x2z2,

f 252bx222y422y2x222y2z2,

V3~x,y,z!5a2x21b2y21c2z222~x21y21z2!~ax21by21cz2!1~x21y21z2!3,

f 152x614x4~y21z22a!12x2~a21~y21z2!22~a1b!y22~a1c!z2!,

f 252y614y4~x21y22b!12y2~b21~x21z2!22~a1b!x22~b1c!z2!.

V. CONCLUSION

The case of the billiard system withinn-dimensional ellipsoid is a straightforward genera
zation of the two-dimensional case~see Refs. 1, 2, and 6!. So, the procedure of IPP considered
this paper can directly be applied to then-dimensional systems. However, the formulas would
more complicated.
J. Math. Phys., Vol. 38, No. 6, June 1997
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There is an interesting connection with the situation which was considered in Ref. 8.
Ref. 8 it follows that potentials of the form

V~l1 ,l2 ,l3!5
F1~l1!

~l12l2!~l12l3!
1

F2~l2!

~l22l1!~l22l3!
1

F3~l3!

~l32l1!~l32l1!

in Jacobi elliptical coordinates give separable systems. It was pointed out by the refere
choosing

F1~l!5F2~l!5F3~l!5ln12,

leads to ourVn , and

F1~l!5F2~l!5F3~l!51/~l2c!n

givesWn .
@Separability in elliptical coordinates for the systems obtained in Ref. 4 was proved i

meantime by one of the authors~V.D.!.#
At the end, let us note that starting from the family of integrals different from Eq.~5!, the

obtained set of IPP systems does not change.

ACKNOWLEDGMENTS

It is a pleasure to thank the referee for useful suggestions. This research is suppor
Ministry of Science and Technology of Serbia, Project No. 04M03.

1V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt,Dinamical system III~Springer, Berlin, 1988!, p. 291.
2V. V. Kozlov, ‘‘Some integrable generalizations of the Jacobi problem on geodesics on the ellipsoid,’’ Prikl. M
Mech.59, 3–9 ~1995!.
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New finite-dimensional integrable systems and explicit
solutions of Hirota–Satsuma coupled Kortweg–de Vries
equation
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The nonlinearization approach is extended to the Hirota–Satsuma coupled
Kortweg–de Vries~KdV! equation associated with a 434 matrix spectral problem,
from which two new finite-dimensional integrable Hamiltonian systems are ob-
tained in the Liouville sense. It is shown that the solutions of this coupled KdV
equation are reduced to solving a compatible system of ordinary differential equa-
tions. The reductions of the two Hamiltonian systems and their separability are
discussed. An interesting connection between the two reduced Hamiltonian systems
in the case of one-parameter and known two-dimensional integrable systems is
revealed. As application, some explicit solutions of the Hirota–Satsuma coupled
KdV equation are derived. ©1997 American Institute of Physics.
@S0022-2488~97!04805-6#

I. INTRODUCTION

It is well known that the study of constructing new finite-dimensional integrable systems
infinite-dimensional ones is important,1,2 which has aroused increasing interest in the last f
years. Recently a systematic approach has been developed by Cao3–5 to get new finite-dimensiona
integrable systems through the nonlinearization of the Lax pairs of soliton hierarchies
certain constraints between the potentials and the eigenfunctions. A considerable number
finite-dimensional integrable systems in the Liouville sense have been obtained from the k
soliton hierarchies. Another important application of the nonlinearization approach is tha
solutions of the soliton equations are reduced to solving the compatible systems of or
differential equations.

In this paper, the nonlinearization approach is extended to the Hirota–Satsuma co
Kortweg–de Vries~KdV! equation which is connected with the 434 matrix spectral problem. In
Sec. II, a constraint between the potentials and the eigenfunctions is proposed, which depen
on a Lax pair of the Hirota–Satsuma coupled KdV equation but does not depend on the H
Satsuma hierarchy. Under the constraint, the Lax pair and its adjoint one6,7 are nonlinearized into
two new finite-dimensional Hamiltonian systems. It is shown that the solutions of the Hir
Satsuma coupled KdV equation are reduced to solving a compatible system of ordinary dif
tial equations. The reductions of the two Hamiltonian systems and their separability are disc
An interesting connection between the two reduced Hamiltonian systems in the case o
parameter and known two-dimensional integrable systems8,9 is given. In Sec. III, by using the
stationary zero-curvature equation and introducing a generating function of conserved int
the two finite-dimensional Hamiltonian systems are shown to be integrable in the Liouville s
In Sec. IV, based on the result of the Sec. II, 16 explicit solutions of the Hirota–Satsuma co
KdV equation, including periodic solutions, are obtained.

a!Mailing address.

0022-2488/97/38(6)/3069/12/$10.00
3069J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



n

t
ion

e that

cal-

ry

3070 X. Geng and Y. Wu: New finite-dimensional integrable systems

¬¬¬¬¬¬¬¬¬¬
II. FINITE-DIMENSIONAL HAMILTONIAN SYSTEMS

Consider the 434 matrix spectral problem10

cx5Uc,U5S 0 0 1 0

0 0 0 1

u1v l 0 0

l u2v 0 0

D , c5S c1

c2

c3

c4
D ~2.1!

and its auxiliary problem

c t5Vc, V5~Vi j !434 , ~2.2!

wherel is a constant spectral parameter,

V1152 1
4~ux22vx!, V1250, V135

1
2~u22v !, V1452l,

V2150, V2252 1
4~ux12vx!, V2352l, V245

1
2~u12v !,

V315
1
2~u

222v22uv !2 1
4~uxx22vxx!2l2, V3252 1

2lu, V335
1
4~ux22vx!, V3450,

V4152 1
2lu, V425

1
2~u

222v21uv !2 1
4~uxx12vxx!2l2, V4350, V445

1
4~ux12vx!.

The compatibility condition between Eqs.~2.1! and ~2.2! yields the zero-curvature equatio
Ut2Vx1@U,V#50, which is equivalent to the Hirota–Satsuma coupled KdV equation,10–12

ut5
1
4~2uxxx16uux!23vvx , v t5

1
2~vxxx23uvx!. ~2.3!

It is an important fact that the system~2.3! has another Lax pair,

fx52UTf, f5~f1,f2,f3,f4!T, ~2.4!

f t52VTf, ~2.5!

which are the adjoint equations of Eqs.~2.1! and ~2.2!. As a matter of fact, we easily verify tha
the compatibility condition between Eqs.~2.4! and~2.5! leads to the same zero-curvature equat
as that of Eqs.~2.1! and ~2.2!, i.e., the Hirota–Satsuma coupled KdV equation~2.3!.

To calculate the gradient of the eigenvalue with respect to the potentials, we assum
u→u1edu, v→v1edv, denote]/]eue50 by a dot. The underlying intervalV is (2`,`) or
(2 l ,l ) under the decaying condition at infinity or periodic condition, respectively. A direct
culation shows by Eqs.~2.1! and ~2.4! that ~see also Ref. 16!

~fTċ !x5fTU̇c. ~2.6!

Proposition 1:Suppose thatl is an eigenvalue of the spectral problems~2.1! and~2.4!, then

E
V

fTU̇cdx50. ~2.7!

The formula~2.7! is a general fact, which is suitable for other spectral problems.
Proof: The integration of the left-hand side of equality~2.6! vanishes because of the bounda

conditions. The proof is completed.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Let l1 ,...,lN be N distinct eigenvalues of Eqs.~2.1! and ~2.4!, with the associated eigen
functions denoted byqj

k5ck(l j ) andpj
k5fk(l j ), 1< j<N, 1<k<4. Then the systems assoc

ated with Eqs.~2.1!, ~2.4!, ~2.2!, and~2.5! can be written in the form

~qj
1,qj

2,qj
3,qj

4!x5~qj
1,qj

2,qj
3,qj

4!U~l j !
T, ~2.8a!

~pj
1,pj

2,pj
3,pj

4!x52~pj
1,pj

2,pj
3,pj

4!U~l j !, ~2.8b!

~qj
1,qj

2,qj
3,qj

4! t5~qj
1,qj

2,qj
3,qj

4!V~l j !
T, ~2.9a!

~pj
1,pj

2,pj
3,pj

4! t52~pj
1,pj

2,pj
3,pj

4!V~l j !. ~2.9b!

By using formula~2.7!, we have

E
V

@~qj
1pj

41qj
2pj

3!dl j1~qj
1pj

31qj
2pj

4!du1~qj
1pj

32qj
2pj

4!dv#dx50,

which implies that the gradient of the eigenvaluel j with respect to the potentialsu andv is

¹l j5~dl j /du,dl j /dv !T5~qj
1pj

31qj
2pj

4,qj
1pj

32qj
2pj

4!T, 1< j<N

with the condition

E
V

~qj
1pj

41qj
2pj

3!dx521.

Let us consider the following constraint:

1

4 S trSV ]U

]u D , trSV ]U

]v D D T5(
j51

N

¹l j , ~2.10!

which only depends on the Lax pair of the Hirota–Satsuma coupled KdV equation but doe
depend on the Hirota–Satsuma hierarchy. The constraint~2.10! can be rewritten as follows:

u54^q1,p3&14^q2,p4&, v52^q2,p4&22^q1,p3&, ~2.11!

whereqk5 (q1
k ,...,qN

k )T, pk5 (p1
k ,...,pN

k )T, 1< k< 4,̂ • , • & denotes thestandard innerproduct
RN. Substituting Eq.~2.11! into Eq. ~2.8!, we get the finite-dimensional Hamiltonian system

qx
k5

]H

]pk
, px

k52
]H

]qk
, 1<k<4 ~2.12!

with the Hamiltonian

H5^Lq1,p4&1^Lq2,p3&1^q3,p1&1^q4,p2&16^q2,p4&^q1,p3&1^q1,p3&21^q2,p4&2,

whereL5diag(l1,...,lN). Noticing Eqs.~2.11! and~2.12!, we easily obtain the following equali
ties:

ux22vx58~^q3,p3&2^q1,p1&!, ux12vx58~^q4,p4&2^q2,p2&!,

uxx22vxx532~^q1,p3&13^q2,p4&!^q1,p3&18^Lq2,p3&18^Lq1,p4&216̂ q3,p1&, ~2.13!
J. Math. Phys., Vol. 38, No. 6, June 1997
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uxx12vxx532~3^q1,p3&1^q2,p4&!^q2,p4&18^Lq1,p4&18^Lq2,p3&216̂ q4,p2&.

Substituting the above expressions and Eq.~2.11! into Eq. ~2.9! yields another finite-dimensiona
Hamiltonian system,

qt
k5

]F0

]pk
, pt

k52
]F0

]qk
, 1<k<4, ~2.14!

with the Hamiltonian

F052^L2q2,p4&2^L2q1,p3&2^Lq3,p2&2^Lq4,p1&22~^q1,p3&1^q2,p4&!~^Lq1,p4&

1^Lq2,p3&!14~^q1,p3&^q3,p1&1^q2,p4&^q4,p2&!1~^q1,p1&2^q3,p3&!2

1~^q2,p2&2^q4,p4&!2.

The finite-dimensional Hamiltonian systems~2.21! and ~2.14! are completely integrable in th
Liouville sense~see Sec. III!. It is easy to verify that the Hamiltonian functionsH andF0 are in
involution, $H,F0% 5 0, with respect to the Poisson bracket by

$E,F%5 (
k51

4

(
j51

N S ]E

]qj
k

]F

]pj
k2

]E

]pj
k

]F

]qj
kD .

Thus the systems~2.12! and~2.14! are consistent and their involutive solution is a smooth funct
of (x,t).13,14

Theorem 1:Let l1 ,...,lN beN distinct parameters andqk(x,t), pk(x,t), 1 < k < 4, be invo-
lutive solutions of the consistent systems~2.11! and ~2.13!. Then (u(x,t),v(x,t)) determined by
Eq. ~2.11! is a solution of the Hirota–Satsuma coupled KdV equation~2.3!.

Proof: Through direct verifications.
In what follows, we consider the reduction of the Hamiltonian systems~2.12! and~2.14!. Let

q352p1, q452p2, p35q1, p45q2.

Then Eqs.~2.12! and ~2.14! are respectively reduced to

qx
i 5

]Ĥ

]pi
, px

i 52
]Ĥ

]qi
, 1< i<2, ~2.15!

qt
i5

]F̂0

]pi
, pt

i52
]F̂0

]qi
, 1< i<2, ~2.16!

where the Hamiltonian functions are

Ĥ5^Lq1,q2&2 1
2^p

1,p1&2 1
2^p

2,p2&1 1
2^q

1,q1&213^q1,q1&^q2,q2&1 1
2^q

2,q2&2,

F̂052 1
2^L

2q1,q1&2 1
2^L

2q2,q2&1^Lp1,p2&22~^q1,q1&1^q2,q2&!^Lq1,q2&

22~^q1,q1&^p1,p1&2^q1,p1&2!22~^q2,q2&^p2,p2&2^q2,p2&2!.

Corollary 1: Let l1 ,...,lN beN distinct parameters and (q1(x,t),q2(x,t),p1(x,t),p2(x,t))
be an involutive solution of the consistent systems~2.15! and~2.16!. Then (u(x,t),v(x,t)) defined
by

u~x,t !54~^q1,q1&1^q2,q2&!, v~x,t !52~^q2,q2&2^q1,q1&! ~2.17!
J. Math. Phys., Vol. 38, No. 6, June 1997
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is a solution of the Hirota–Satsuma coupled KdV equation~2.3!.
Remark 1:Under the transformation:q1 5 q2 5 q, p1 5 p2 5 p, theHamiltonian system~2.15!

and ~2.16! are reduced to known integrable systems with the Hamiltonian functions

H̃5 1
2^Lq,q&2 1

2^p,p&12^q,q&2,

F̃052^L2q,q&1^Lp,p&24^q,q&^Lq,q&24^q,q&^p,p&14^q,p&2,

which are connected with the Lax pair of the KdV equation.14

In the case of one parameter (N 5 1), the Hamiltonian functionsĤ andF̂0 are reduced to

Ĥ5l1q
1q22 1

2~p
1!22 1

2~p
2!21 1

2~q
1!413~q1!2~q2!21 1

2~q
2!4, ~2.18!

F̂052 1
2l1

2@~q1!21~q2!2#1l1p
1p222l1@~q

1!21~q2!2#q1q2, ~2.19!

and the Hamiltonian systems~2.15! and ~2.16! are equivalent to

qxx
1 52~q1!316q1~q2!21l1q

2, qxx
2 52~q2!316q2~q1!21l1q

1, ~2.20!

qtt
15l1

2@l1q
216q1~q2!212~q1!3#, qtt

25l1
2@l1q

116~q1!2q212~q2!3#. ~2.21!

The separating variables are defined by Cartesian coordinates

f5q11q2, g5q12q2. ~2.22!

The resulting equations from Eqs.~2.20! and ~2.21! are of the following form:

f xx52 f 31l1f , gxx52g32l1g, ~2.23!

f tt5l1
2~2 f 31l1f !, gtt5l1

2~2g32l1g!. ~2.24!

Corollary 2: Let (f (x,t),g(x,t)) be a solution of Eqs.~2.23! and ~2.24!. Then
(u(x,t),v(x,t)) given by

u~x,t !52~ f 21g2!, v~x,t !522 f g ~2.25!

is a solution of the Hirota–Satsuma coupled KdV equation~2.3!.
Remark 2:The Hamiltonian system determined by Eq.~2.18!, asl1 5 0, is reduced to the

Hamiltonian system in Refs. 8 and 9, andl1
21F̂0ul150 5 p1p222@(q1)21(q2)2#q1q2 is the cor-

responding second integral of motion.

III. THE INTEGRABILITY

In order to prove that the finite-dimensional Hamiltonian systems~2.12! and~2.14! are com-
pletely integrable in the Liouville sense, we consider the stationary zero-curvature equatio

V̂x5@U,V̂#, V̂5~V̂i j !434 , ~3.1!

where each entryV̂i j 5 V̂i j (A,B,C,D) is a Laurent expansion inl,

V̂1152Bx2Cx , V̂125
1
2l~Dx22A!, V̂1352~B1C!, V̂1452lD,

V̂215
1
2l~Dx12A!, V̂225Cx2Bx , V̂2352lD, V̂2452~B2C!,
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V̂3152~u1v !~B1C!2Bxx2Cxx2l2D,

V̂3252l~B1C!2l~u2v !D1 1
2l~Dxx22Ax!, V̂335Bx1Cx ,

V̂3452 1
2l~Dx12A!, V̂4152l~B2C!2l~u1v !D1 1

2l~Dxx12Ax!,

V̂425Cxx2Bxx12~u2v !~B2C!2l2D,

V̂435
1
2l~2A2Dx!, V̂445Bx2Cx ,

A5(
j>0

Ajl
22 j , B5(

j>0
Bjl

22 j , C5(
j>0

Cjl
22 j , D5(

j>0
Djl

22 j .

As a result of direct calculations, Eq.~3.1! can be written in the form

Ax52C1vD, 8Bx5u1D24vA,
~3.2!

u1B1u2C52l2Dx , u1C1u2B52l2A,

that is

A050, D0x50,

Ajx52Cj1vDj , 8Bjx5u1Dj24vAj , ~3.3!

u1Bj211u2Cj2152Djx , u1Cj211u2Bj2152Aj ,

where

u152]312]u12u], u252~]v1v]!.

We chooseB05
1
4u, C052 1

2v, andD051. ThenAj , Bj , Cj , andDj can be uniquely determine
by the recursion relation~3.3! when all the constants of integration are taken to be zero. He
there exists at least one such nontrivial solution of the stationary zero-curvature equation~3.1!.
From Eq.~3.3!, we have

KGj215JGj , G05
1
4~u,22v !T, ~3.4!

whereGj5(Bj ,Cj )
T, K andJ are two skew-symmetric operators,

K5S u1 u2

u2 u1
D , J54S 4]u3] 4]u3v]21

4]21vu3] ]2114]21vu3v]21D ,
withu35 (u124v]21v)21,]]215 ]21] 51.

To search for the involutive system of conserved integrals for the Hamiltonian systems~2.12!
and ~2.14!, we introduce a generating function of conserved integrals

F ~l!5 (
1< i, j<4

U V̂ii V̂i j

V̂ j i V̂ j j
U , ~3.5!

which is an independent constant ofx. As a matter of fact, differentiatingF ~l! with respect to
x and cancellingV̂i jx by Eq. ~3.1! yield thatF (l)x50. It is not difficult to calculate that
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



3075X. Geng and Y. Wu: New finite-dimensional integrable systems

¬¬¬¬¬¬¬¬¬¬
F ~l!5l2@D~Dxx14B22uD!12A22 1
2Dx

2#22~Bx
21Cx

2!

14B~Bxx22uB22vC1l2D !14C~Cxx22uC22vB!. ~3.6!

A direct calculation shows by Eq.~2.12! that

s jx
~1!52s j

~3!1vs j
~4! , 8s jx

~2!5u1s j
~4!24vs j

~1! ,
~3.7!

u1s j
~2!1u2s j

~3!52l j
2s jx

~4! , u1s j
~3!1u2s j

~2!52l j
2s j

~1! ,

where

s j
~1!5l j

21~qj
2pj

12qj
1pj

21qj
4pj

32qj
3pj

4!, s j
~2!5dl j /du,

s j
~3!5dl j /dv,s j

~4!522l j
21~qj

1pj
41qj

2pj
3!.

From Eq.~3.7!, we have

K¹l j5l j
2J¹l j , 1< j<N. ~3.8!

It is easy to see that Eq.~2.10! is equivalent to the following Bargmann constraint:

G05 (
k51

N

¹lk . ~3.9!

Noticing Eqs.~3.4!, ~3.8!, and~3.9!, we obtain the restriction

Bj5^L2 jq1,p3&1^L2 jq2,p4&, Cj5^L2 jq1,p3&2^L2 jq2,p4&, ~3.10!

which is a special solution of Eq.~3.4!. Using Eqs.~3.3!, ~3.7!, and~3.10!, we have

Aj5^L2 j21q2,p1&1^L2 j21q4,p3&2^L2 j21q3,p4&2^L2 j21q2,p4&,
~3.11!

Dj522~^L2 j21q1,p4&1^L2 j21q2,p3&!, j>1.

From Eqs.~2.12!, ~3.10!, and~3.11!, we get

Bjx5^L2 jq3,p3&1^L2 jq4,p4&2^L2 jq1,p1&2^L2 jq2,p2&,

Cjx5^L2 jq3,p3&1^L2 jq2,p2&2^L2 jq1,p1&2^L2 jq4,p4&, ~3.12!

Djx52~^L2 j21q1,p2&1^L2 j21q2,p1&2^L2 j21q3,p4&2^L2 j21q4,p3&!,

Bjxx22uBj22vCj1Dj11522~^L2 jq3,p1&1^L2 jq4,p2&!,

Cjxx22uCj22vBj52^L2 jq4,p2&, ~3.13!

Djxx22uDj14Bj54~^L2 j21q3,p2&1^L2 j21q4,p1&!.

Substituting Eqs.~3.10!–~3.13! and the Laurent expansions ofA, B, C, D into Eq. ~3.6!, we
obtain

F ~l!5 (
m>0

l22mFm , ~3.14!
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where

Fm52^L2m12q2,p4&2^L2m12q1,p3&2^L2m11q3,p2&2^L2m11q4,p1&22~^q1,p3&1^q2,p4&!

3~^L2m11q1,p4&1^L2m11q2,p3&!14(
j50

m

~^L2 jq1,p3&^L2m22 jq3,p1&1^L2 jq2,p4&

3^L2m22 jq4,p2&!1(
j50

m U^L2 jq1,p1&2^L2 jq3,p3& ^L2m22 jq2,p2&2^L2m22 jq4,p4&

^L2 jq4,p4&2^L2 jq2,p2& ^L2m22 jq1,p1&2^L2m22 jq3,p3&
U

1(
j51

m U^L2 j21q1,p4&1^L2 j21q2,p3& ^L2m22 j11q2,p1&2^L2m22 j11q3,p4&

^L2 j21q4,p3&2^L2 j21q1,p2& ^L2m22 j11q4,p1&1^L2m22 j11q3,p2&
U. ~3.15!

To proveFm (m>0) are in involution in pairs,$Fk ,Fm%50, we introduce a bilinear function

Q
ik

l onR
N and its partial-fraction expansion and Laurent expansion:

Q
ik

l5^~l22L2!21qi ,pk&5(
j51

N qj
i pj

k

l22l j
2 5 (

m>0
l22m22^l2mqi ,pk&.

Then Eq.~3.14! can be written as

l22F ~l!52Q
24

l~L2!2Q
13

l~L2!2Q
32

l~L!2Q
41

l~L!22~^q1,p3&1^q2,p4&!~Q
14

l~L!1Q
23

l~L!!

1l2@4Q
13

lQ
31

l14Q
24

lQ
42

l1~Q
11

l2Q
33

l!21~Q
22

l2Q
44

l!2#12~Q
14

l~L!1Q
23

l~L!!

3~Q
41

l~L!1Q
32

l~L!!12~Q
12

l~L!2Q
43

l~L!!~Q
21

l~L!2Q
34

l~L!!

with Q
ik

l(L
l)5^(l22L2)21L lqi ,pk&. Through tedious calculations we have

$F ~l!,F ~m!%50, ;l, mPC

in a similar way to Ref. 15, which implies

$Fn ,Fm%50, ;n, m>0.

A direct calculation shows that$H,Fm%50, and the independence of conserved integrals of
~2.12! has been recently discussed in Ref. 16. Hence we obtain immediately the following

Theorem 2: The finite-dimensional Hamiltonian systems determined by Eqs.~2.12! and
~2.14! are completely integrable in the Liouville sense.

IV. THE SOLUTIONS OF HIROTA–SATSUMA COUPLED KdV EQUATION

In this section we shall apply the corollary 2 of theorem 1 to give the solutions of
Hirota–Satsuma coupled KdV equation. Assume thatl15j2.0(j.0). Then Eq.~2.23! is
equivalent to

f x
25 f 41j2f 21a, gx

25g42j2g21b, ~4.1!

wherea andb are integral constants.
~i! Let a,0 andb,0. Equation~4.1! can be written in the form,
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f x5e1A~ f 22a1!~ f
21a2!, ~4.2!

gx5e2A~g22b1!~g
21b2!, ~4.3!

where

a15
1
2~Aj424a2j2!, a25

1
2~Aj424a1j2!,

b15
1
2~Aj424b1j2!, b25

1
2~Aj424b2j2!.

Here and in the following we assumee i5 6 1(1< i<14). From Eq.~4.2!, we have

e1x1g15E
Aa1

f du

A~u22a1!~u
21a2!

5
1

Aa11a2
E
0

A12a1 / f
2 dv

A~12v2!~12k1
2v2!

, ~4.4!

whereg1 is a function oft,k1
25a2 /(a11a2), u

25a1 /(12v2). Equation~4.4! determines the
Jacobi elliptic function

A12
a1

f 2
5sn~Aa11a2~e1x1g1!,k1!

which gives a solution of Eq.~4.2!

f5Aa1 nc~Aa11a2~e1x1g1!,k1!. ~4.5!

In a similar way, we get a solution of Eq.~4.3!,

g5Ab1 nc~Ab11b2~e2x1g2!,k2!, ~4.6!

whereg2 is a function oft, k2
25b2 /(b11b2). Substituting Eqs.~4.5! and ~4.6! into Eq. ~2.24!

and noticing

j25a22a15b12b2 , a52a1a2 , b52b1b2 ,

we obtain

g15e3~a22a1!t1d1 , g35e4~b12b2!t1d2 ,

which together with Eqs.~4.5! and ~4.6! gives a solution of the system~2.23! and ~2.24!,

f 15Aa1 nc~Aa11a2~e1x1e3~a22a1!t1d1!,k1!, ~4.7!

g15Ab1 nc~Ab11b2~e2x1e4~b12b2!t1d2!,k2!. ~4.8!

Here and in the followingd j (1< j<8) are integral constants.
~ii ! Let 0, a , 1

4j
4, 0, b , 1

4j
4. ThenEq.~4.1! is equivalent to

f x5e5A~ f 21a3!~ f
21a4!, ~4.9!

gx5e6A~g22b3!~g
22b4!, ~4.10!

where

a35
1
2~j22Aj424a!, a45

1
2~j21Aj424a!,
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b35
1
2~j22Aj424b!, b45

1
2~j21Aj424b!.

Noticing Eq.~4.9! and the transformationu5Aa3v/A12v2, we have

e5x1g35E
0

f du

A~u21a3!~u
21a4!

5
1

Aa4
E
0

Af2/~a31 f2! dv

A~12v2!~12k3
2v2!

,

which implies

A f 2

a31 f 2
5sn~Aa4~e5x1g3!,k3!, k3

2512
a3

a4
. ~4.11!

By Eq. ~4.11!, we have

f5Aa3 sc~Aa3~e5x1g3!,k3!. ~4.12!

From Eq.~4.10!, we have

2e6x2g45E
g

1` du

A~u22b3!~u
22b4!

5
1

Ab4
E
0

Ab4/g dv

A~12v2!~12k4
2v2!

, ~4.13!

wherek4
25b3 /b4 , u5Ab4/v. Equation~4.13! implies

g52Ab4 ns~Ab4~e6x1g4!,k4!. ~4.14!

Substituting Eqs.~4.12! and ~4.14! into the system~2.24! and noticing

j25a31a45b31b4 , a3a45a, b3b45b,

we have

g3~a31a4!e7t1d3 , g45~b31b4!e8t1d4 .

Then we obtain a solution of the system~2.23! and ~2.24!

f 25Aa3 sc~Aa3~e5x1e7~a31a4!t1d3!,k3!, ~4.15!

g252Ab4 ns~Ab4~e6x1e8~b31b4!t1d4!,k4!. ~4.16!

~iii ! Let a5 1
4j

4 andb5 1
4j

4. Equation~4.1! is reduced to

f x5e9~ f
21 1

2j
2!, gx5e10~g

22 1
2j

2!, ~4.17!

from which we have

f5
j

&

tan
j

&

~e9x1g5!, ~4.18!

g52
j

&

tanh
j

&

~e10x1g6!. ~4.19!

Substituting Eqs.~4.18! and ~4.19! into Eq. ~2.24!, we have
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g55e11j
2t1d5 , g65e12j

2t1d6 .

Hence we get a solution of the system~2.23! and ~2.24!,

f 35
j

&

tan
j

&

~e9x1e11j
2t1d5!, ~4.20!

g352
j

&

tanh
j

&

~e10x1e12j
2t1d6!. ~4.21!

~iv! Let a50, b50. Equation~4.1! is reduced to

f x5e13fAf 21j2, gx5e14gAg22j2, ~4.22!

from which we have

f52j cschj~e13x1g7!, ~4.23!

g52j cscj~e14x1g8!. ~4.24!

Substituting into Eq.~2.24!, we have

g75e15j
2t1d7 , g85e16j

2t1d8 .

Thus we obtain a solution of the system~2.23! and ~2.24!,

f 452j cschj~e13x1e15j
2t1d7!, ~4.25!

g452j cscj~e14x1e16j
2t1d8!. ~4.26!

Using the corollary 2 of theorem 1, we obtain 16 explicit solutions (ui j (x,t),v i j (x,t)), given
by

ui j ~x,t !52~ f i
21gj

2!, v i j ~x,t !522 f igj , 1< i , j<4, ~4.27!

of the Hirota–Satsuma coupled KdV equation~2.3!.
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Uncertain dynamical systems defined by pseudomeasures
Andreas Hamm
Fachbereich Physik, Universita¨t GH Essen, 45117 Essen, Germany
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This paper deals with uncertain dynamical systems in which predictions about the
future state of a system are assessed by so-called pseudomeasures. Two specia
cases are stochastic dynamical systems, where the pseudomeasure is the conven
tional probability measure, and fuzzy dynamical systems in which the pseudomea-
sure is a so-called possibility measure. New results about possibilistic systems and
their relation to deterministic and to stochastic systems are derived by using idem-
potent pseudolinear algebra. By expressing large deviation estimates for stochastic
perturbations in terms of possibility measures, we obtain a new interpretation of the
Freidlin–Wentzell quasipotentials for stochastic perturbations of dynamical sys-
tems as invariant possibility densities. ©1997 American Institute of Physics.
@S0022-2488~97!01206-1#

I. INTRODUCTION

Modeling natural processes by deterministic dynamical systems requires usually simp
approximations and assumptions. It is reasonable to look for methods which take into acco
uncertainties caused by these inevitable simplifications.

The historically oldest method is probability theory: If the uncertainties can be interpret
the cumulative effect of a large number of independent small perturbations, the rules of prob
theory can be applied to estimate how often in a large sample of identical processes an a
occurring event would be close to the deterministically predicted event within certain bounds
arguably most successful results of this strategy can be found in statistical mechanics.

About 30 years ago, Zadeh1 introduced a different approach to uncertainties: The theory
fuzzy sets. This theory has become increasingly popular as a successful tool for modeling
tainties in various applications, notably in engineering~process control! and information technol-
ogy ~expert systems!.

The advantages of this approach when compared to probability theory are a higher flex
of rules, an intuitive appeal, and some computational merits. These advantages are favora
the handling of uncertainties in single events for which no statistical information is available
for quantifying semantic statements about uncertainties. On the other hand, there are bitt
troversies about the epistemological justification of fuzzy methods. But although in some
cations of fuzzy tools a hint of arbitrariness can still be detected, there are now well-deve
systematic ways of using the fuzzy approach, in particular the branch called possibility the2

It is not the intention of this article to explain or to justify the fuzzy approach, and there
be little doubt that it will never reach the same importance in theoretical physics as the pro
listic approach. But the existence of nonprobabilistic concepts of uncertainty suggests tha
questions that are asked about the effect of random perturbations on dynamical systems
posed in a wider framework. Such questions belong often to one of the following classes:

~i! Stability questions: Which of the features of a deterministic dynamical system are rob
small uncertainties?

~ii ! Asymptotics of weak perturbations: Are there approximations for the deviations o
uncertain system from a deterministic system when the uncertainties are small?

It is obvious that it makes sense to try to answer questions of the first type in a way wh
0022-2488/97/38(6)/3081/29/$10.00
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as independent of a special model of uncertainty as possible. Here, the results of Sec. V ab
sets of states which dominate the long-term behavior in an uncertain system are an inte
example. It will turn out that these sets are roughly identical to the chain recurrent sets3 of the
underlying deterministic system—independent of whether the uncertainties are modeled acc
to probability theory or according to possibility theory. On the other hand, questions of the s
type do not ask for such generality and model independence, as they usually refer to co
situations. There seems to come little direct motivation from concrete physical problems to
possibilistic systems. However, we will show in Sec. VI that possibilistic systems can be us
a tool for finding approximate results about probabilistic systems and for solving variat
problems. This insight forms a new motivation for theoretical physicists to look at possibi
methods, and it bridges the gulf between probability theory and possibility theory. We me
already here that the most interesting link between probability theory and possibility theo
established by the much used estimates of large deviation type.4,5 In the context of dynamica
systems this means that the so-called quasipotentials or nonequilibrium potentials,6–9 a standard
tool for studying stochastic perturbations, have a natural interpretation in the context of poss
theory.

From the start we will introduce the nonprobabilistic approaches to uncertainty not
contrast but as a generalization of the probabilistic approach. This is made easy by followi
Zadeh’s original way of modifying set theory~or logic!, but by generalizing the notions o
measure and integral. Several authors have suggested such generalizations~e.g., Refs. 10–12!; we
follow most closely Sugeno’s work11 on ‘‘pseudo-additive measures.’’ Our definitions diff
slightly from Sugeno’s in that we stress the algebraic properties of the ‘‘pseudo-additive
grals.’’ Since we introduce several generalizations of well-known mathematical objects, we
convenient to use the prefix ‘‘pseudo’’ to name the generalized versions.

The algebraic properties of pseudointegrals bring us to another essential ingredient
paper: Pseudolinear algebra. Over the last years there have been increasingly many applica
this interesting branch of mathematics~e.g., in finite automata,13 morphology neural networks,14

image processing,15 and one-dimensional crystallographic models16!, indicating that it is worth-
while to advocate a wider spread of its ideas. A particularly well-studied special case of ps
linear algebra is the so-called idempotent algebra which has its roots in optimization theory.
seem to be several authors which have discovered its main results independently~for reviews see
Refs. 17–20!.

While most of the existing results in idempotent pseudolinear algebra refer to fi
dimensional situations, we need infinite-dimensional versions. Section IV contains our resu
the pseudolinear eigenvalue problem on a function space. Recently some similar and som
ger results became available through Ref. 20, and some of the results have been known
language of infinite horizon problems in optimization theory for a while.21 Nevertheless, a com
plete presentation of our approach is important here, not only for the sake of self-consiste
this paper but because our approach, unlike Ref. 20, concentrates on the structure of the
functions which will have the meaning of invariant possibility densities or quasipotentials in
applications.

The material in this paper is organized as follows. In Sec. II we introduce the definitio
semirings, pseudomeasures, and pseudointegrals. In Sec. III we explain how these concept
used to model uncertain dynamical systems and show that invariant pseudodensities for th
acterization of their long-term behavior fulfill a pseudolinear eigenvalue equation. Sectio
contains the solution of this eigenvalue problem under the algebraic assumption of idempote
pseudoaddition. This assumption is fulfilled if the pseudomeasures are possibility measure
tion V is devoted to the study of links between possibilistic and deterministic systems, and w
show a connection between solutions of the pseudolinear eigenvalue problem and chain re
sets of deterministic systems. Finally, in Sec. VI we will use possibilistic systems to derive r
about stochastic systems. In particular we will formulate the so-called large deviation prope
J. Math. Phys., Vol. 38, No. 6, June 1997
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terms of possibility measures and explain the connection to quasipotentials.

II. PSEUDOMEASURES AND PSEUDOINTEGRALS OVER SEMIRINGS

Let (X,A) be a measurable space~i.e.,A is as-algebra of subsets ofX!. A pseudomeasure
is a certain set functionP̂:A→E which is introduced in order to assess the guess that an ele
of X belongs toAPA at P̂(A). We give some structure to the evaluation setE which makes it
suitable for such assessments.

Definition II.1: An ordered commutative monoid is a quadruple(E,<,1̂,0̂! with

~i! (E,<) is a partially ordered set (i.e., there is a reflexive, transitive, and antisymme
relation < on E!.

~ii ! (E,1̂) is a commutative semigroup (i.e.,1̂ is an associative and commutative bina

operation on E). The operation1̂ is called pseudoaddition.
~iii ! 0̂ is an identity element of E under1̂ (i.e., a10̂5a for all aPE).
~iv! 1̂ is a monotone operation on(E,<) (i.e., a<b for a,bPE implies a1̂c<b1̂c for all

cPE).

(E,<,1̂,0̂! is called positively ordered commutative monoid if in addition0̂<a for all aPE.
For questions of convergence it is most convenient to deal with a special type of pa

ordered sets:
Definition II.2: A partially ordered set(E,<) in which each subset G,E has a least upper

boundsupG as well as a greatest lower boundinf G is called a complete lattice.
A partially ordered set(E,<) in which for each pair(a,b)PE3E either a<b or b<a (i.e.,

a and b are comparable) is called totally ordered.
Example II.3:Simple but important examples of complete lattices are

~1! I5@0, 1#,
~2! E5Rø$2`,`%,
~3! E15$aPR:a>0%ø$`%,
~4! E25$aPR:a<0%ø$2`%,

with the usual order relation< for real numbers. These examples are all totally ordered.
For every complete lattice (E,<), (E,<,1̂,0̂! with 0̂5 inf E anda1̂b5sup$a,b% is a posi-

tively ordered commutative monoid.
Two other examples for pseudoadditions area1̂b5a1b onE5E1 anda1̂b5a1b2ab on

E5I .
Pseudoadditions in positively ordered commutative monoids, especially forE5I , are called

triangular conorms and have been studied in great detail in the context of probabilistic m
spaces.22

Definition II.4: The limit superior of a sequence(ai) i51,2,... of elements of a complete lattic
is defined as

lim ai5 inf
j
sup
i> j

ai ,

and the limit inferior as

lim ai5sup
j

inf
i> j

ai .

If lim ai5 lim ai5a* then (ai) is called order convergent to the limit a*5 lim ai .
From now on we assume that the pseudoaddition is continuous:
J. Math. Phys., Vol. 38, No. 6, June 1997
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lim
i

~ai1̂bi !5 lim
i
ai1̂lim

i
bi .

Definition II.5: Let(E,<) be a complete lattice, (E,<,1̂,0̂! a positively ordered commutativ
monoid, and(X,A) a measurable space. A pseudomeasure is a set function Pˆ :A→E with the
properties

~i! P̂(B)50̂,
~ii ! P̂(ø iAi)5Ŝi P̂(Ai) for every family(Ai) of pairwise disjoint AiPA.

Here, the obvious symbolŜ for pseudosums was used.
Sets of pseudomeasure0̂ are called P̂-nullsets. Statements which are true for all xPX2O

with O a P̂-nullset are said to hold( P̂-) almost everywhere.
Having defined a generalization of measures, we next generalize integrals. Again we a

by the aim to retain some of the algebraic properties of the conventional integral. Therefo
introduce a further operation onE.

Definition II.6: A positively ordered commutative semiring is the collection(E,<,1̂,0̂,•̂,1̂)
where0̂Þ1̂ and

~i! (E,<,1̂,0̂! is a positively ordered commutative monoid.
~ii ! (E,<,•̂,1̂) is an ordered commutative monoid. The operation•̂ is called pseudomultipli-

cation.
~iii ! (a1̂b) •̂c5a•̂c1̂b•̂c for all a,b,cPE.
~iv! 0̂•̂a50̂ for all aPE.

If in addition a•̂b50̂⇒a50̂ or b50̂, then the semiring is called entire. If a •̂c5b•̂c⇒a
5b for all a,b,cPE, cÞ0̂, then the semiring is called cancellative.

In the following we assume continuity of the pseudomultiplication:

lim
i

~ai •̂bi !5 lim
i
ai •̂ lim

i
bi .

From now on, we deal only with entire semirings.
Example II.7:For every complete latticeE, (E,<,1̂,0̂,•̂,1̂! with 0̂5 inf E, 1̂5supE, a1̂b

5sup$a,b%, anda•̂b5 inf$a,b% is an ordered commutative semiring.
Some examples for semirings involving the lattices of Example II.3 are

~i! E5E1, 0̂50, 1̂51, a1̂b5a1b, a•̂b5ab,
~ii ! E5I , 0̂50, 1̂51, a1̂b5max$a,b%, a•̂b5ab,
~iii ! E5I , 0̂50, 1̂51, a1̂b5max$a,b%, a•̂b5min$a,b%,
~iv! E5E2, 0̂52`, 1̂50, a1̂b5max$a,b%, a•̂b5a1b.

There is a close relation between Examples~ii ! and ~iv!: Because of exp(max$a,b%)
5max$exp(a),exp(b)%, exp(a1b)5exp(a)exp(b), exp(2`)50, and exp(0)51, the exponential
function is a semiring morphism between those examples.

All the Examples~i!–~iv! are entire semirings. Examples~i!, ~ii !, and~iv! are cancellative.
Pseudomultiplications with 1ˆ5supE, especially forE5I @as in Examples~ii ! and ~iii !#, are

called triangular norms, and the semiring is then called absorptive.
Definition II.8: A function f:X→E is called measurable if for every aPE the set $x

PX: f (x)<a% is inA.
The space of measurable functions f:X→E is denoted byM.
J. Math. Phys., Vol. 38, No. 6, June 1997
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The definition of pseudointegrals of measurable functions is strictly analogous to the d
tion of conventional integrals:

Definition II.9: For A,X define the characteristic function

xA~x!5H 1̂ if xPA,

0̂ if x¹A.

A simple function is a function h:X→E which can be written as

h~x!5(ˆ
n

i51
hi •̂xAi

with disjoint AiPA, hiPE, i51,...,n (nPN). We denote the space of measurable simple fu
tions byH.

For hPH, BPA, and a pseudomeasure Pˆ we define

I ~h;B; P̂!5(ˆ
n

i51
hi •̂ P̂~AiùB!.

Definition II.10: The pseudointegral of a measurable function f:X→E over a set BPA with
respect to a pseudomeasure Pˆ is defined by

Eˆ
B
f ~x! •̂ P̂~dx!5sup$I ~h;B; P̂!:hPH,h< f %.

Here, the notation h< f means that h(x)< f (x) for all xPX.
Example II.11:In many situations there is a particularly simple reference pseudomeasuQ̂

with respect to which most pseudointegrals are calculated, in which case we use the fol
abbreviated notation:

Eˆ
X
f ~x! •̂Q̂~dx!5Eˆ

X
f ~x! •̂dx.

In the caseE5E1, 1̂51, 0̂50, X5Rn, the standard reference measureQ̂ is the Lebesgue
measure.

In the casea1̂b5sup$a,b% we use

Q̂~A!51̂ for all APA2$B%.

Then we obtain

Eˆ
A
f ~x! •̂dx5sup$ f ~x!:xPA%.

The first part of the following proposition is obvious, and the second part can be proved lik
theorem of monotone convergence for conventional integrals:

Proposition II.12: (i) If f<g for measurable f,g, then *̂Xf (x) •̂P̂(dx)<*̂Xg(x) •̂P̂(dx).
~ii ! Let $ f i% be a sequence of measurable functions with

f 1< f 2<••• .
J. Math. Phys., Vol. 38, No. 6, June 1997
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Then

lim
i

Eˆ
X
f i~x! •̂ P̂~dx!5Eˆ

X
lim
i

f i~x! •̂ P̂~dx!.

Pseudointegrals are pseudolinear. Pseudolinearity is a generalization of linearity which in
the concept of semimodules as a generalization of vectorspaces.

Definition II.13: A positively ordered semimodule over a positively ordered semiring(E,
<,1̂,0̂,•̂,1̂) is a positively ordered commutative monoid(V,<,1̂,0̂! for which an external opera-
tion, •̂:E3V→V, called pseudomultiplication by a scalar, is defined and has the following p
erties:

~i! (a•̂b) •̂v5a•̂(b•̂v),
~ii ! (a1̂b) •̂v5(a•̂v)1̂(b•̂v),
~iii ! a•̂(v1̂w)5(a•̂v)1̂(a•̂w),
~iv! 0̂•̂v50̂,
~v! 1̂•̂v5v,
~vi! a<b⇒a•̂v<b•̂v,
~vii ! v<w⇒a•̂v<a•̂w,

where a,bPE andv,wPV.
Note that in this definition each of the symbols1̂, •̂, and 0̂ has two different meanings which

however, can clearly be distinguished by the context in which the symbols are used.
Special cases of semimodules are modules, where pseudoaddition is invertible, and

spaces, where additionally pseudomultiplication is invertible for non0ˆ elements.
Definition II.14: Let V and W be semimodules over a semiring E. A map H:V→W is called

a semimodule morphism or a pseudolinear map if

~i! H(v1̂w)5H(v)1̂H(w),
~ii ! H(a•̂v)5a•̂H(v),

for all v,wPV and aPE.
Pseudolinearity of pseudointegration is expressed in the following obvious proposition.
Proposition II.15:(M,<,1̂,0̂! with

~ f 1̂g!~x!5 f ~x!1̂g~x!,

0̂~x!50̂,

~a•̂ f !~x!5a•̂ f ~x!.

for all f ,gPM, xPX, and aPE, and< defined as in Definition II.10 is a positively ordere

semimodule over(E,<,1̂,0̂,•̂,1̂!.
Pseudointegration defines a semimodule morphism

I :M→E,

Eˆ
X
f ~x! •̂ P̂~dx!.

Measurable functions can be used to define new pseudomeasures via pseudointegrals.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition II.16: If fPM, the set function Pˆ f :A→E defined by

P̂f~A!5Eˆ
A
f ~x! •̂ P̂~dx!

is a pseudomeasure.
The function f is then called the pseudodensity ofP̂f with respect toP̂, and P̂f is called

absolutely continuous with respect toP̂.
If P̂f is not absolutely continuous with respect toP̂, there is no pseudodensity as a measura

function, but it may be defined as a distribution.

III. UNCERTAIN DYNAMICAL SYSTEMS DEFINED BY TRANSITION PSEUDOMEASURES

The tool of pseudomeasures makes it possible to define a quite general concept of un
dynamical systems with discrete time:

Definition III.1: An uncertain dynamical system with discrete time on a measurable p
space(X,A) is defined by a family( P̂x)xPX of pseudomeasures on X with values in a positiv

ordered commutative semiring(E,<,1̂,0̂,•̂,1̂!. The system is called normal if Pˆ
x(X)51̂ for all

xPX.
Remark III.2:The pseudomeasuresP̂x are interpreted as one-step transition pseudomeas

If at time t the system is in a statex, then the guess that at timet11 the system will be in a state
in APA is assessed atP̂x(A).

This definition includes deterministic discrete-time systems, usually defined by a
F:X→X, as a special case, namely the caseP̂x5 d̂F(x) . Here, d̂x is the Dirac pseudomeasure
defined by

d̂x~A!5H 1̂ if xPA,

0̂ if x¹A.

Definition III.3: For NPN the N-step transition pseudomeasure from xPX to APA is
defined by the following recursion formula:

P̂x
@N#~A!5Eˆ

X
P̂y~A! •̂ P̂x

@N21#~dy!.

Remark III.4:Pseudoaddition decides about how one-step transitions to unions of se
assessed and is therefore related to a generalized logical ‘‘or.’’

Pseudomultiplication comes into play when evaluating multi-step transitions. It is related
generalized ‘‘and.’’ For example, the two-step transition measure is obtained by pseudointeg
over all intermediate points the pseudoproduct of the assessment of doing first one step
intermediate point and then one step from there to the final set.

Example III.5:The best-known example of an uncertain dynamical system is a stoch
dynamical system. In this case,E5E1, 1̂51, •̂5•, 0̂50, 1̂51—like in Example II.7~i!—and
the transition pseudomeasures are transition probabilities. Stochastic systems have be
extremely successfully for modeling uncertainties. This is especially true in all situations whe
least in principle, the frequencies of certain transitions can be observed at a large num
identical copies of the system.

However, there are situations where other rules of assessing uncertainties can be more
Here is an example: Assume that changing a system from statex into statey costs an amoun
2p(x,y) wherep(x,y)PE2 ~we count the costs as negative gains!. We do not know who runs the
J. Math. Phys., Vol. 38, No. 6, June 1997
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system, so we cannot predict its future with certainty, but we assume that whoever runs the
will try to minimize the costs. So, a reasonable assessment of the guess that the system is in
in A at time t11 after being in statex at time t is

P̂x~A!5sup$p~x,y!:yPA%,

and a guess for being inA at time t12 would be assessed at

P̂x
@2#~A!5sup$p~x,y!1p~y,z!:yPX,zPA%.

This means that for this example we would chooseE5E2, 1̂5sup, •̂51, 0̂52`, and
1̂50—like in Example II.7~iv!.

This example shows that the choice1̂5sup is typical for systems which can be formulated
optimization problems.

In the context of fuzzy set theory the choice1̂5sup is often denoted by the adjectiv
‘‘possibilistic.’’ For instance, the pseudomeasures for that choice are called possibility mea
They offer a more diverse assessment of the possibility of events than a strict Boolean cla
tion of states into possible and impossible states. The Boolean case is realized by the s
~$0,1%, <, sup, 0, inf, 1!. Replacing the evaluation set$0, 1% by the unit intervalI , one can try to
quantify colloquial expressions like ‘‘nearly impossible’’ or ‘‘maybe possible.’’

Definition III.6: A pseudomeasure Sˆ * is called invariant pseudomeasure of the uncerta
system( P̂x) if for all APA

Ŝ* ~A!5Eˆ
X
P̂y~A! •̂Ŝ* ~dy!.

Remark III.7:Invariant pseudomeasures of uncertain systems are important for their long
behavior. If we assess the presumable state of a system at timet on the basis of a pseudomeasu
Ŝt , then the pseudomeasureŜt11 , defined by

Ŝt11~A!5Eˆ
X
P̂y~A! •̂Ŝt~dy!.

for APA, gives the assessment at timet11.
Therefore invariant pseudomeasures are fixed points of the dynamics of assessmen

depending on their stability properties they may characterize the importance of subsets of th
space for the presumable long-term behavior of the uncertain system.

Normality of a system guarantees thatŜt11(X)5Ŝt(X), indicating that the system is close
It is often convenient to work with pseudodensities instead of pseudomeasures.
Definition III.8: Let Q̂ be a standard reference pseudomeasure (see Example II.11). I

transition pseudomeasures Pˆ
x have pseudodensities pˆ (x,•), i.e.,

P̂x~A!5Eˆ
A
p̂~x,y! •̂dy,

then these pseudodensities are called transition pseudodensities of the uncertain dynamic
tem.

In terms of transition pseudodensities, normality of the system means
J. Math. Phys., Vol. 38, No. 6, June 1997
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Eˆ
X
p̂~x,y! •̂dy51̂

for all xPX.
Definition III.9: An uncertain dynamical system with transition pseudodensities pˆ (x,y) is

called deterministically motivated if there is a map F:X→X such that pˆ (x,y)< p̂„x,F(x)… for all
x, yPX and p̂(x,y)5 p̂„x,F(x)… only if y5F(x).

In such a system a transition fromx to F(x) is assessed at the highest value among
transitions so that this case models what happens to the deterministic system given byF if it is
perturbed by uncertainties.

Proposition III.10: If an uncertain system has transition pseudodensities pˆ (x,y), and if there
is a function sˆPM which solves for all yP X the equation

ŝ~y!5Eˆ
X
ŝ~x! •̂ p̂~x,y! •̂dx,

then P̂ŝ (see Proposition II.16 for the notation) is an invariant pseudomeasure. sˆ is called invari-
ant pseudodensity.

The dynamics of pseudomeaures described in Remark III.7 reads on the level of pseu
sities as follows:

ŝt11~y!5Eˆ
X
ŝt~x! •̂ p̂~x,y! •̂dx.

Definition III.11: A measurable function k:X3X→E defines a pseudolinear operator Ok on
M by

~Okf !~x!5Eˆ
X
k~x,y! •̂ f ~y! •̂dy.

The function k is called the pseudointegral kernel of Ok .
The transposed operator Ok* is defined by

~Ok* f !~x!5Eˆ
X
f ~y! •̂k~y,x! •̂dy.

Corollary III.12: In terms of the newly introduced operators, the equations in Proposi
III.10 read as follows:

ŝt115Op̂
* ŝt

and

ŝ5Op̂
* ŝ.

Generalizing a further concept of linear algebra, we can say the last equation means t
invariant pseudodensityŝ is an eigenfunction of the operatorOp̂

* with eigenvalue 1ˆ.
Definition III.13: Let V be a semimodule over a commutative semiring E and H:V→V a

pseudolinear map. If there is avPV2$0̂% and an aPE such that
J. Math. Phys., Vol. 38, No. 6, June 1997
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H~v !5a•̂v,

then a is called an eigenvalue of H, and v is called an eigenelement corresponding to th
eigenvalue. The set of eigenelements corresponding to a together with0̂PV is denoted by Va .

Proposition III.14: The space Va is a sub-semimodule of V.
Thus, the search for invariant pseudodensities of uncertain systems is an eigen

eigenfunction problem~or eigenproblem for short! on a function space with the structure of
semimodule.

The special case of a stochastic system leads to a classical eigenproblem on a vecto
and this is the situation which has been studied most.

It is too much to expect that a lot can be said about the general eigenproblem, but the
space case is not the only one which can be analyzed in great detail. The following section
with the case of idempotent pseudoaddition, which is in some aspects even simpler than the
space case.

IV. THE EIGENPROBLEM FOR PSEUDOINTEGRAL OPERATORS ON IDEMPOTENT
SEMIMODULES

In order to construct eigenfunctions of pseudointegral operators on semimodules it is us
introduce iterated kernels and transitive closures:

Definition IV.1: Let k(x,y)5k1(x,y) be a pseudointegral kernel. The iterated kernels are th
defined for N>1 by

kN11~x,y!5Eˆ
X
kN~x,z! •̂k~z,y! •̂dz.

In the case k(x,y)5 p̂(x,y) they are called N-step transition pseudodensities. The transiti
closure of the kernel is

Tk~x,y!5(ˆ
`

N51
kN~x,y!.

Definition IV.2: A point aPX is called a basis point for a kernel k(x,y) if there is a (not
necessarily unique) c(a)PE, c(a)Þ0̂, such that

c~a! •̂Tk~a,a!5c~a! •̂„Tk~a,a!1̂d̂~a,a!…,

whered̂(y,x) is the pseudodensity of the Dirac pseudomeasured̂x introduced in Remark III.2.
The set of all basis points for k(x,y) is denoted by Bk .
Proposition IV.3: Let k(x,y) be a pseudointegral kernel. Then for every aPBk and c(a)

fulfilling the defining property of Bk , the functionCk,a(x)5c(a) •̂Tk(x,a) is an eigenfunction of
Ok and the functionFk,a(x)5c(a) •̂Tk(a,x) is an eigenfunction of Ok* , both with eigenvalue1̂.

Proof: From

Tk~x,a!5Eˆ
X
k~x,y! •̂„Tk~y,a!1̂d̂~y,a!…•̂dy

we obtain by pseudomultiplying both sides byc(a)

Ck,a~x!5Eˆ
X
k~x,y! •̂Ck,a~y! •̂dy5OkCk,a~x!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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The statement aboutFk,a can be proved analogously. h

Proposition IV.3 is obviously not useful in the conventional vector space case, but it is th
to the eigenproblem in so-called idempotent semimodules.

Definition IV.4: A semimodule V is called idempotent if the pseudoaddition on the unde
semiring E is idempotent, i.e.,

a1̂a5a for all aPE.

Remark IV.5:In a positively ordered monoidE there is only one operation which qualifies
an idempotent pseudoaddition: We know that fora,bPE, a<a1̂b andb<a1̂b. Now assume
cPE is another upper bound ofa andb: a<c andb<c. Then we havea1̂b<c1̂c5c, showing
thata1̂b5sup$a,b%. Consequently, the standard pseudointegral of a function is its supremum~cf.
Example II.11!, and the Dirac pseudodensityd̂(a,a) appearing in Definition IV.2 is equal to 1ˆ.

Thus, the case of idempotent semimodules is what we are interested in when we stu
possibilistic systems of Example III.5.

Remark IV.6:In the case of idempotent semimodules the condition foraPX being a basis
point has an especially simple form ifk(x,y) is bounded above by 1ˆ. SinceTk(x,y) is then
bounded above by 1ˆ, too, the condition in Definition IV.2 can be reduced to

c~a! •̂Tk~a,a!5c~a!.

In a cancellative semiring this is obviously equivalent to

Tk~a,a!51̂.

Definition IV.7: The set of normal basis points for a kernel k(x,y) is defined as

Rk5$xPX:Tk~x,x!51̂%.

Rk is a subset ofBk . For k bounded by 1ˆ in a cancellative semiring we knowBk5Rk , but in the
noncancellative case this is generally not true.

Example IV.8:In the casea•̂b5 inf$a,b% it is easy to see thatBk5X. For everyaPX the
condition of Definition IV.2 can be fulfilled withc(a)5Tk(a,a).

Nevertheless, for kernels bounded by 1ˆ the normal basis points have a special importance
any case:

Remark IV.9:The eigenfunctions from Proposition IV.3 have the property*̂XCk,a~x!•̂dx51̂

and *̂XFk,a(x) •̂dx51̂ if and only if c(a)51̂ so thataPRk . This follows from the fact that

Ck,a(x)<c(a)5Ck,a(a) which means*̂XCk,a(x) •̂dx5c(a).
Next, we study the case thatRk contains more than one point and the relation between

different eigenfunctions that can then be constructed as described in Proposition IV.3.
Definition IV.10: Two normal basis points a,bPRk are called equivalent a;kb if

Tk~a,b! •̂Tk~b,a!51̂.

Since the relation;k is an equivalence relation on Rk , every normal basis point aPRk is a
representative of an equivalence class, which is denoted by@a#k .

Proposition IV.11: If a;kb for a,bPRk , then

Fk,a~x!5Tk~a,b! •̂Fk,b~x!

and
J. Math. Phys., Vol. 38, No. 6, June 1997
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Ck,a~x!5Tk~b,a! •̂Ck,b~x!.

Proof:We show the first statement; the second follows analogously.
We have

Tk~a,b! •̂Fk,b~x!<Eˆ
X

Tk~a,y! •̂Tk~y,x! •̂dy5(ˆ
`

N,M51
kN1M~a,x!5(ˆ

`

N52
kN~a,x!<Fk,a~x!.

On the other hand, from equivalence ofa andb follows

Fk,a~x!5Tk~a,b! •̂Tk~b,a! •̂Fk,a~x!<Tk~a,b! •̂Fk,b~x!,

which completes the proof. h

Proposition IV.11 shows that the eigenfunctions constructed with equivalent normal
points differ by a scalar factor only.

In order to derive more results about the eigenproblem we need more assumptions ab
spaceX and the kernelk.

We assume in the following that the state spaceX is a compact metric space.
It will turn out to be useful to have sort of a mean-value theorem for pseudointegrals, an

will dictate the regularity property we require of functions that appear as pseudointegrands
Definition IV.12: A function f:X→E is called upper semicontinuous if for all xPX and for all

sequences(xi) with lim i→` xi5x

lim f ~xi !< f ~x!.

Lemma IV.13: Let X be a compact metric space and f:X→E be upper semicontinuous. The
under each one of the conditions

~i! (E,<) is totally ordered,
~ii ! X is pathwise connected,

there exists a yPX such that

f ~y!5Eˆ
X

f ~x! •̂dx.

Proof: Under the first condition the result follows like the well-known result that up
semicontinuous real functions attain their suprema on compact sets.

The second condition is sufficient since all elements in the image of a path inX under an
upper semicontinuous function are comparable. h

From now on we make assumptions that guarantee that Lemma IV.13 can be appli
particular we assume thatk is upper semicontinuous in both arguments~which implies thatkN and
Tk are upper semicontinuous! and that either all elements ofE are comparable or all sets ove
which integrals are taken are pathwise connected.

Proposition IV.3 can be used to show that 1ˆ is an eigenvalue and to construct correspond
eigenfunctions only ifBk is not empty. The following definition leads to a sufficient condition
existence of a normal basis point.

Definition IV.14: The kernel k is called definite if*̂XTk(x,x) •̂dx51̂.
A direct consequence of Lemma IV.13 is
Proposition IV.15: Under the conditions of Lemma IV.13 and if k is definite, thenRkÞB.
An important class of definite kernels are the normal kernels.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition IV.16: A normal kernel k is bounded by1̂ and definite.
Proof: Suppose that there arex,yPX such thatk(x,y) is not less or equal 1ˆ. Then clearly

*̂Xk(x,z) •̂dz.1̂ in contradiction of the normality ofk. So k(x,y) is bounded by 1ˆ for all x,y
PX.

Sincek is bounded by 1ˆ, so are the iterated kernelskN(NPN) andTk .
Normality of k and Lemma IV.13 imply that for everyxPX there is ayPX such that

k(x,y)51̂. Therefore we can find an infinite sequence (xi) i51,2,... such that for everynPN

kn~x1 ,xn11!51̂.

SinceX is a compact metric space there is a subsequence (zj )5(xi j) which converges to some
zPX. For anym,nPN with m,n we have

Tk~zm ,zn!>kin2 im
~zm ,zn!51̂,

and thereforeTk(zm ,zn)51̂.
Now fix m and let n→`. Upper semicontinuity ofTk in the second argument implie

Tk(zm ,z)>1̂ and thereforeTk(zm ,z)51̂. Finally, m→` and upper semicontinuity in the firs
argument givesTk(z,z)51̂ which shows, together with the upper bound 1ˆ for Tk , that k is
definite. h

The next statement shows that eigenfunctions constructed like in Proposition IV.3 are ps
linearly independent if they start from nonequivalent normal basis points.

Proposition IV.17: If K is a compact subset of Rk , k is a kernel bounded by1̂, l is an upper
semicontinuous function on K, and for bPRk and all xPX

Fk,b~x!5Eˆ
K

l~a! •̂Fk,a~x! •̂da,

then b is equivalent to one of the elements of K.
An analogous result holds for the functionsCk,a(x).
Proof:We have

1̂5Fk,b~b!5Eˆ
K

l~a! •̂Fk,a~b! •̂da.

By Lemma IV.13 there is anaPK such that

1̂5l~a! •̂Fk,a~b!.

Since k is bounded by 1ˆ we haveFk,a(x)<1̂ for all aPRk and all xPX. Therefore the last
equation shows thatl~a! cannot be smaller than 1ˆ. However, on the other hand we have

1̂>Fk,b~a!>l~a! •̂Fk,a~a!5l~a!

from which we can concludel(a)51̂. But this means that

Fk,a~b!5Fk,b~a!51̂,

which shows thatb;ka.
The next result shows that the construction of Proposition IV.3 leads to all eigenfunctio

Ok andOk* with eigenvalue 1ˆ.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition IV.18: Let k be a kernel bounded above by1̂ and w a positive, upper semicon
tinuous eigenfunction of Ok* with eigenvalue1̂. Then

w~x!5Eˆ
Bk

w~a! •̂Tk~a,x! •̂da

for all xPX.
Similarly, for a positive, upper semicontinuous eigenfunctionc of Ok with eigenvalue1̂,

c~x!5Eˆ
Bk

c~a! •̂Tk~x,a! •̂da

for all xPX.
Proof: If w is an eigenfunction ofOk* with eigenvalue 1ˆ, it is an eigenfunction ofOTk

* with

eigenvalue 1ˆ, too, and, therefore,

w~x!5Eˆ
X

w~a! •̂Tk~a,x! •̂da>Eˆ
Bk

w~a! •̂Tk~a,x! •̂da

for all xPX.
On the other hand we can use the eigenfunction property ofw and Lemma IV.13 to construc

a sequence (xi) such that for alli

w~xi !5w~xi11! •̂k~xi11 ,xi !

and therefore forj. i

w~xi !5w~xj ! •̂k~xj ,xj21! •̂ ••• •̂k~xi11 ,xi !<w~xj ! •̂k~ j2 i !~xj ,xi !<w~xj ! •̂Tk~xj ,xi !.

We start the construction of (xi) with x05xPX. The sequence (xi) has a convergent subsequen
(xin) with limn→` xin5bPX, and we will show later thatbPBk . Using the upper semicontinuity
of w andTk we obtain in the limitn→`

w~x!< lim w~xin! •̂Tk~xin,x!<w~b! •̂Tk~b,x!<Eˆ
Bk

w~a! •̂Tk~a,x! •̂da,

which, together with the opposite inequality, establishes the statement aboutw.
The last step is to show thatbPBk . We use one of the above inequalities:

w~xim!<w~xin! •̂Tk~xin,xim!

and let firstn→` and thenm→`. Using the upper semicontinuity ofTk we obtain

lim w~xin!< lim w~xin! •̂Tk~b,b!.

However, sinceTk is bounded above by 1ˆ this means

lim w~xin!5 lim w~xin! •̂Tk~b,b!.

Therefore, forb the condition of Definition IV.2 is fulfilled withc(b)5 lim w(xin). h
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now we turn to the question of eigenvalues different from 1ˆ.
Definition IV.19: A kernel k is called strongly connected if for all x,yPX, xÞy,

Tk~x,y!.0̂.

Remark IV.20:A kernel is certainly strongly connected ifk(x,y).0̂ for all x,yPX, xÞy. A
kernel is certainly not strongly connected if there are two nonempty setsX1 ,X25X2X1 such that
k(x,y)50̂ for all xPX1 andyPX2 , because for thosex,y it is clear thatTk(x,y)50̂.

Proposition IV.21: If k is strongly connected and ifc is an upper semicontinuous eigenfun
tion of Ok ~or Ok* ! with eigenvaluel, thenl.0̂ andc(x).0̂ for all xPX.

Proof: Assume thatl50̂. Then the eigenvalue equation implies

k~x,y! •̂c~y!50̂

for all x,yPX. There must be at least oney*PX such thatc(y* )Þ0̂. This meansk(x,y* )50̂ for
all xPX in contradiction to the strong connectedness ofk. Thereforel.0̂.

Assume now thatX15$xPX:c(x)50̂% is not empty. Also,X25X2X1 is not empty. The
eigenvalue equation leads to

Eˆ
X2

k~x,y! •̂c~y! •̂dy50̂

for all xPX1 , and this implies

k~x,y!50̂

for all xPX1 andyPX2 . Remark IV.20 shows that this is a contradiction to the strong conn
edness ofk; henceX1 must be empty. h

Proposition IV.22: If k is a definite, strongly connected kernel with values in a cancella
semiring andl is an eigenvalue of Ok or Ok* with an upper semicontinuous eigenfunctionc, then
l51̂.

Proof: First we show thatl,1̂ is not possible.
The eigenvalue equation implies that

l •̂c~x!>k~x,y! •̂c~y!

for all x,yPX. Consider a cyclic sequencey0 ,y1 ,...,yN5y0 . Repeated use of the above inequ
ity shows

k~y0 ,y1! •̂••• •̂k~yN21 ,y0!<l •̂••• •̂l<l,

where we used already the assumptionl,1̂ and the cancellation law, keeping in mind thatc is
positive.

This is true for anyy0PX and any cyclic sequence fromy0 to y0 . Taking the supremum we
find

Eˆ
X

Tk~y,y! •̂dy<l,1̂,

which contradicts the definiteness ofk.
Next we show that the assumptionl.1̂ leads to a contradiction, too.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Construct a sequence (xi) such that

l •̂c~xi !5k~xi ,xi11! •̂c~xi11!.

For n.m this leads to

l •̂c~xm!<Tk~xm ,xn! •̂c~xn!.

Concentrating on a convergent subsequence and using semicontinuity this implies

1̂,l<Tk~b,b!

for b an accumulation point of (xi). But this contradicts the definiteness ofk again. h

Proposition IV.23: If k is a strongly connected kernel with values in a semiring with m
plicative inverses andl is an eigenvalue of Ok or Ok* with an upper semicontinuous eigenfunctio
c, then the kernell21

•̂k(x,y) is definite.
Proof: The eigenvalue equation forOk allows the construction of a sequence (xi) such that

c~xi !5l21
•̂k~xi ,xi11! •̂c~xi11!.

Introducing the abbreviationk̃(x,y)5l21
•̂k(x,y) we obtain

c~xm!<Tk̃~xm ,xn! •̂c~xn!

for m,n. For an accumulation pointb of (xi) this means

1̂<Tk̃~b,b!.

On the other hand, the eigenvalue equation can be used to show the estimate

Eˆ
X

Tk̃~x,x! •̂dx<1̂.

Both results together lead to

Eˆ
X

Tk̃~x,x! •̂dx51̂.

h

Remark IV.24:Proposition IV.23 shows that in the case of a strongly connected kerne
under the assumption of multiplicative invertibility the eigenvalue is unique, and the eigen
tions can be found by studying a definite kernel.

The fact that

Eˆ
X

Tk̃~x,x! •̂dx51̂

leads to an interesting interpretation of the eigenvaluel, at least in a radicable semiring. A
semiringE is called radicable if for everybPE and everynPN the equation

)ˆ
n

i51
a5b
J. Math. Phys., Vol. 38, No. 6, June 1997
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has a unique solutionaPE, denoted byAn bˆ .
The definiteness ofk̃ means that the supremum over all productsP̂i51

N l21
•̂k(xi21 ,xi) over

cyclic sequences withx05xN is 1̂, or, if we call

AN P̂
i51

N

k~xi21 ,xi !
̂

a cycle mean, thatl is the maximal cycle mean.
We end this section with an example which shows that the cancellation law was essen

the derivation of uniqueness of the eigenvalue. Here is the extreme noncancellative situa
Example IV.8 again:

Example IV.25:In the casea•̂b5 inf$a,b% everylPE, lÞ0̂, is an eigenvalue of everyOk

andOk* . We know from Example IV.8 that 1ˆ is an eigenvalue. So, there exists a functionc such
that

Eˆ
X

k~x,y! •̂c~y! •̂dy5c~x!.

However, thenl •̂c fulfills for any lÞ0̂ the eigenvalue equation

Eˆ
X

k~x,y! •̂l •̂c~y! •̂dy5l •̂l •̂c~x!,

showing thatl is an eigenvalue.

V. CONNECTIONS BETWEEN POSSIBILISTIC AND DETERMINISTIC SYSTEMS

In Remark III.7 and Corollary III.12 we noted already that the eigenfunctionsw of a pseudo-
integral operatorOp̂

* on an idempotent semimodule with eigenvalue 1ˆ, which we found in the
previous section, are important for the long-term behavior of a possibilistic system with tran
possibility densityp̂: They are the fixed points of a dynamics of possibility densities. If at so
moment the possibility of finding the system in the statex is assessed atw(x) for everyxPX, then
this assessment will not change in the future.

Now it is interesting what will happen to initial possibility densities which are not eigenfu
tions ofOp̂

*—whether they converge to one of the stationary possibility densities. Unfortuna
such a convergence is not guaranteed in general, but only in special cases.

Proposition V.1: Let a possibilistic system on a compact metric space X be described
transition possibility density pˆ (x,y) which is upper semicontinuous and bounded above by1̂. If
p̂(a,a)51̂ for every aPBp̂ , then in the dynamics of possibility densities,

ŝt115Op̂
* ŝt ,

starting from any initial possibility density sˆ0PM, ŝt converges pointwise to an invariant po
sibility density as t→`.

Proof: All we have to do is to show that limN→` p̂N(x,y) exists for allx,yPX since then

lim
t→`

ŝt~y!5Eˆ
X

ŝ0~x! •̂ lim
t→`

p̂t~x,y! •̂dx
J. Math. Phys., Vol. 38, No. 6, June 1997
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and

Eˆ
X

lim
t→`

ŝt~x! •̂ p̂~x,y! •̂dx5Eˆ
X

ŝ0~x! •̂ lim
t→`

p̂t11~x,y! •̂dx5 lim
t→`

ŝt~y!.

We will show that for allx,yPX there is a basis pointaPBp̂ such that

lim
N→`

p̂N~x,y!5Tp̂~x,a! •̂Tp̂~a,y!.

Consider an infinite sequence (j i) in X such that

lim
N

p̂N~x,y!5 lim
n→`

p̂~x,j1! •̂)ˆ
n21

j51
p̂~j j ,j j11! •̂ p̂~jn ,y!.

There is a subsequence (j i k) converging to someaPX. We will show now thata is a basis point.
For anyk we have

)ˆ
i k11

j5 i k
p̂~j j ,j j11!5 p̂i k112 i k

~j i k,j i k11
!

and therefore

lim
N

p̂N~x,y!5 p̂i k112 i k
~j i k,j i k11

! •̂ lim
n→`

p̂~x,j1! •̂ ••• •̂ p̂~j i k21 ,j i k!

•̂ p̂~j i k11
,j i k1111! •̂ ••• •̂ p̂~jn ,y!<Tp̂~j i k,j i k11

! •̂ lim
n→`

p̂~x,j1!• •••

•̂ p̂~j i k21 ,j i k! •̂ p̂~j i k11
,j i k1111! •̂ ••• •̂ p̂~jn ,y!.

Taking the upper limit overk and using upper semicontinuity we see that

lim
N

p̂N(x,y)<Tp̂(a,a) •̂F limk lim
n→`

p̂(x,j1) •̂ ••• •̂ p̂(j i k21 ,j i k) •̂ p̂(j i k11
,j i k1111) •̂ ••• • p̂(jn ,y) G .

However, the factor in square brackets cannot be larger thanlimN p̂N(x,y). Together with
Tp̂(a,a)<1̂ this implies

lim
N

p̂N~x,y!5Tp̂~a,a! •̂ lim
N

p̂N~x,y!.

According to Remark IV.6 withc(a)5 limN p̂N(x,y) this means thataPBp̂ . Now we know on
the one hand that

lim
N

p̂N~x,y!<Tp̂~x,a! •̂Tp̂~a,y!,

and, on the other hand, that

limN p̂N~x,y!> limN p̂N~x,a! •̂ limN p̂N~a,y!.

The assumptionp̂(a,a)51̂ guarantees that
J. Math. Phys., Vol. 38, No. 6, June 1997
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lim
N→`

p̂N~x,a!5Tp̂~x,a! and lim
N→`

p̂N~a,y!5Tp̂~a,y!,

and therefore

lim
N→`

p̂N~x,y!5Tp̂~x,a! •̂Tp̂~a,y!.

h

The previous proposition shows again that the basis points of a definite possibilistic syste
decisive for its long-term behavior. It is interesting to look for the meaning of basis points
normal deterministically motivated system, i.e., according to Definitions III.1 and III.9 a sy
with p̂(x,y)51̂ if and only if y5F(x) where the mapF:X→X describes a deterministic system

We first recall some concepts from the theory of deterministic systems~see, e.g., Ref. 3!.
Definition V.2: Let a deterministic discrete time dynamical system be defined by a conti

map F:X→X on a metric space X.
The set of nonwandering points for F, denoted byV(F), is defined as the set of points

PX for which the following statement is true: For every neighborhood U of x and every T.0
there is a t.T such that Ft(U)ùUÞB.

A sequence(xi) of points in X is called an«-pseudoorbit for F if for all indices i

d„F~xi21!,xi…,«,

where d(•,•) denotes the metric on X.
The set of chain-recurrent points for F, denoted byR(F), is defined as the set of points

PX for which the following statement is true: For every«.0 there is an«-pseudoorbit which
starts and ends in x.

OnR(F) the following equivalence relation, called chain equivalence;R(F) , is defined:
For x,yPR(F) we have x;R(F)y if for every«.0 there is an«-pseudoorbit from x to y and
an «-pseudoorbit from y to x. The equivalence class containing x is denoted by@x#R(F) .

Proposition V.3: Let a normal possibilistic system pˆ :X3X→E be motivated by a determin
istic system F:X→X ~X compact, p̂ upper semicontinuous, F continuous). Then we have

V~F !#Rp̂#R~F !.

Proof: If xPV(F) there are by definition a sequence (yn) of points inX and a sequence
(tn) of integers such thatyn→x andFtn(yn)→x asn→`. We know thatp̂„yn ,F

tn(yn)…51̂ and,
since p̂ is normal, this means thatTp̂„yn ,F

tn(yn)…51̂, too. Upper semicontinuity leads t
Tp̂(x,x)51̂, and thereforexPRp̂ .

The second inclusion can be shown in the following way: Supposex¹R(F). This means that
there is an«.0 such that there is no«-pseudoorbit fromx to x, or, in other words, that for every
sequence (xi)0< i<N with x05xN5x, N arbitrary, there is aj with 0< j,N such that
d„F(xj ),xj11…>«. However, because of upper semicontinuity ofp̂, this can be reformulated to
the statement that there is ac,1̂ such that for every sequence (xi)0< i<N with x05xN5x, N
arbitrary, there is aj with 0< j,N such thatp̂(xj ,xj11)<c. This impliesp̂N(x,x)<c for every
N and thereforeTp̂(x,x)<c, showing thatx¹Rp̂. h

The arguments of the second part of the proof show thatTp̂(x,y)51̂ implies that for every
«.0 there is an«-pseudoorbit starting inx and ending iny. If the reverse were true, this woul
mean thatRp̂5R(F) and even@x# p̂5@x#R(F) for everyxPR(F). However, this equality does
not hold in all situations, but in some important cases, as the next Propositions will show~see also
Ref. 23!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition V.4: Let a normal possibilistic system pˆ :X3X→E be motivated by a determin
istic system F:X→X ~X compact, p̂ upper semicontinuous, F continuous). If for everyx.0 there
is an«.0 such that every«-pseudoorbit(yt) in @x#R(F) fulfills d„yt ,F

t(y)…,x for all t and some
yP@x#R(F) (the so-called shadowing property), then@x#R(F)5@x# p̂ .

Proof: The conditions of the Proposition imply that for everyx.0 and everyx1 ,x2
PR(F) with x1;R(F)x2 there is an orbit underF starting in y1 and leading toz1 with
d(x1 ,y1),x andd(x2 ,z1),x, and an orbit starting iny2 and leading toz2 with d(x2 ,y2),x and
d(x1 ,z2),x. Obviously,Tp̂(y1 ,z1)51̂ andTp̂(y2 ,z2)51̂. However, upper semicontinuity the
leads toTp̂(x1 ,x2)5Tp̂(x2 ,x1)51̂, showing thatx1; p̂x2 . h

Proposition V.5: Let a normal possibilistic system pˆ :X3X→E be motivated by a determin
istic system F:X→X ~X compact, p̂ upper semicontinuous, F continuous). For A,X define
c(A)5 inf$ p̂(y,z):F(y),zPA%. Let xPR(F) and c* be the supremum of all cPE with the
following property:

There is ar.0 and a coverU of @x#R(F) such that

)ˆ
UPU

c~Ur!.c,

where Ur5$xPX:d(x,U),r%.
If c*51̂, then @x#R(F)5@x# p̂ .
Proof: Suppose thatcPE fulfills the above-mentioned property with somer.0 and some

coverU. If x1;R(F)x2 , there is ar-pseudoorbit (yi)1< i<N from x1 to x2 . Set j 151 and define
j k for k.1 recursively in the following way:yj k21 is the last point of (yi)1< i,N whose image
underF lies in Uk21 whereUkPU is the set which containsF(yj k).

This construction leads to a sequence (yj k)1<k< k̃ with j k̃5N( k̃<N). The sequence

(yj k)1<k, k̃ has at most one member in everyUPU, and for all k with 1<k, k̃ the points
yj k11

and F(yj k) lie in the same setUr . However, this means according to the definition
c(Ur) that

Tp̂~x1 ,x2!> p̂~ k̃21!~x1 ,x2!>)ˆ
UPU

c~Ur!.c.

Taking the supremum over allc we see thatTp̂(x1 ,x2)51̂. This and the analogous statement w
reversed roles forx1 andx2 leads tox1; p̂x2 . h

Corollary V.6: Let a•̂b5 inf$a,b%, and p̂ be continuous. Then@x#R(F)5@x# p̂ for all x
PR(F).

Proof: Sincep̂ is normal, deterministically motivated, and continuous, for allc,1̂ there is a
d.0 such thatp̂(y,z).c for all y,zPX with d„F(y),z…,d. Setd53r and letU be a cover of
@x#R(F) with sets of diameters smaller thanr. Then for ally,zPUr we haved(y,z),3r5d and
thereforec(Ur).c. This is true for anyUPU, and so

)ˆ
UPU

c~Ur!5 inf
UPU

c~Ur!.c.

As this construction works for allc,1̂ we havec*51̂. h

Corollary V.7: Let(E,1̂,0̂,•̂,1̂)5(E2,max,2`,1,0) [see Example 11.7 (iv)]. Let the norma
deterministically motivated, continuous possibility density pˆ be of order r, i.e., there is a C
PE2, CÞ0, and ad*.0 such that

p̂~x,y!>C@d„y,F~x!…# r
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t

totally
ssible
bility:

class is

normal

ic

3101Andreas Hamm: Uncertain dynamical systems

¬¬¬¬¬¬¬¬¬¬
for all x,yPX with d„y,F(x)…,d* .
If the Hausdorff dimension of@x#R(F) is less than r, then @x#R(F)5@x# p̂ .
Proof:Recall that the fact thatr is larger than the Hausdorff dimension of@x#R(F) implies that

the Hausdorff measure of@x#R(F) in dimensionr is 0. This means that for every«.0 and for
everyd.0 there is a coverU of @x#R(F) such that diam(U),d for all UPU and

(
UPU

@diam~U !# r,«.

Sincep̂ is of orderr , one can choosed5 1
3d* and thereby guarantee that ifF(y), zPUd , then

p̂~x,y!>C@d„y,F~x!…# r.C@diam~U !# r ,

and thereforec(Ud).C@diam(U)# r .
Thus, for every«.0 and with the choicer5d, we found a coverU of @x#R(F) such that

(
UPU

c~Ur!.C«.

However, this is exactly the condition of Proposition V.5, formulated for (E,1̂,0̂,•̂,1̂!
5(E2,max,2`,1,0). h

We now look at stability in the context of possibilistic systems.
Definition V.8: For a possibility density sˆ (x) with values in an absorptive semiring, the se

I ŝ5$xPX: ŝ~x!50̂%

is called the set of impossible points, and the set

T ŝ5$xPX: ŝ~x!51̂%

is called the set of totally possible points.
Assume that in a possibilistic system at some time a certain set of states is regarded as

possible whereas all other states are impossible. If for all future times the set of totally po
states does not change, then this set has a stability property which we call possibilistic sta

Definition V.9: Let a possibilistic system be given by a transition possibility density pˆ (x,y)
with values in an absorptive semiring. A set A,X is called possibilistic stable if for all tPN

T O
p̂t
* xA

5A.

Remark V.10:Definition V.9 leads to a subdivision of equivalence classes@x# p̂ into stable and
nonstable classes of normal basis points. It is easy to see that a stable equivalence
characterized by the following property: There is noyP@x# p̂ and noz¹@x# p̂ such thatTp̂(y,z)
51̂. Still another characterization of stable classes is the following:@x# p̂ is stable iff T F p̂,x

5@x# p̂ .
One can show that every possibilistic stable set includes at least one stable class of

basis points.
Remark V.11:For the equivalence classes@x#R(F) of chain recurrent points of a determinist

systemF, stability can be defined in the following way:@x#R(F) is called stable if for all
z¹@x#R(F) there is an«.0 such that no«-pseudoorbit leads from@x#R(F) to z. Ruelle

24 calls a
stable@x#R(F) an attractor of the deterministic systemF.

In cases in which for a deterministically motivated possibilistic system the classes@x#R(F) and
@x# p̂ coincide, the two definitions of stability correspond.
J. Math. Phys., Vol. 38, No. 6, June 1997
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We sum up the findings of this section: In a deterministically motivated normal possibi
system the long-term behavior is governed by the normal basis points, which include the no
dering points of the deterministic system and are contained in the set of chain-recurrent
The stability of classes of normal basis points can be recognized by the shape of the maxim
corresponding eigenfunctions of the pseudointegral operator which has the transition possib
a kernel. These eigenfunctions can be calculated from the transitive closure of the tra
possibility. The definition of stable classes of basis points is similar, and in certain cases e
lent, to Ruelle’s attractor definition. This shows that this attractor definition is robust to unce
ties which can be modeled possibilistically.

VI. CONNECTIONS BETWEEN POSSIBILISTIC AND STOCHASTIC SYSTEMS

Certain possibilistic systems can be used to obtain information about stochastic system
first example we discuss the application of systems with transition possibility densities i

semiring (E,1̂,0̂,•̂,1̂!5(@0,1#,max,0,min,1)@see Example II.7~iii !# to stochastic systems in whic
the transition probabilities have compact support.

More specifically, let (Px
(a)) be a family of transition probabilities on a compact metric st

spaceX, depending continuously, in the topology of weak convergence, onx and on the paramete
aP@0,1# such that

suppPx
~a!,suppPx

~b! strictly if a.b

for all xPX.
Under the present conditions there is at least one family (S(a)* ) of invariant measures of the

stochastic systemsPx
(a) with a continuous dependence ona.

Now define for allx,yPX

p̂~x,y!5max$a:yPsuppPx
~a!%.

Interpret these as transition possibility densities in the semiring (E,1̂,0̂,•̂,1̂!
5(@0,1#,max,0,min,1).

Further define for allxPX

ŝ~x!5max$a:xPsuppS~a!* %.

Proposition VI.1: With the notation introduced above, the function sˆ is an invariant possibility
density of the possibilistic system defined by pˆ .

Proof:We start with the equation of invariance

S~a!* ~A!5E
X
Py

~a!~A!S~a!* ~dy!,

APA.
So we can write

ŝ~x!5maxH a:xPsuppE
X
Py

~a!~ .!S~a!* ~dy!J .
However,xPsupp*XPy

(a)(.)S(a)* (dy)iff there is at least oneyPX such that

xPsuppPy
~a! and yPsuppS~a!* .
J. Math. Phys., Vol. 38, No. 6, June 1997
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This means thata must be smaller or equal to the minimum ofp̂(y,x) and ŝ(y) for at least one
y, and hence

ŝ~x!5max
yPX

min$ŝ~y!,p̂~y,x!%5Eˆ
X

ŝ~y! •̂ p̂~y,x! •̂dy5~Op̂
* ŝ!~x!.

h

Example VI.2:An important special case of the situation described above is the case whe
all xPX

Px
~1!5dF~x!

with a continuous functionF:X→X. The stochastic system can then be regarded as a stoc
cally perturbed deterministic system given byF. The transitiona→1 describes vanishing nois
strength.

A concrete example would be a dynamical system with additive noise,

xt115F~xt!1~12a!j t ,

wherej t are uncorrelated random variables distributed according to a probability measure
compact support.

The possibilistic systemp̂ is obviously deterministically motivated byF.
Putting together the results of Sec. IV and Corollary V.6 we see from Proposition VI.1 tha

limiting invariant measuresS(1)* are concentrated on classes of chain recurrent points—in ag
ment with other, more detailed results.24,23

The support of the invariant measure in the case of nonvanishing noise strength«512a can
be obtained from the corresponding eigenfunctionŝ of Op̂

* as the level cut

$xPX: ŝ~x!>12«%.

A second way of connecting possibilistic systems to stochastic systems makes use of expo
estimates which belong to the so-called ‘‘large deviation’’ method.4,5 The famous large deviation
principle can conveniently be expressed in the language of possibility measures:

Definition VI.3: A family of probability measures(P(«))«.0 on a complete separable metri
space X is said to obey the large deviation principle with possibility measure Pˆ with values on the

semiring(E,1̂,0̂,•̂,1̂)5(E,max,2`,1,0) [see Example II.7 (iv)] if Pˆ has an upper semicontinu
ous possibility density pˆ and if for all subsets A,X

P̂~Ao!< lim
«→0

inf « log P~«!~A!< lim
«→0

sup« log P~«!~A!< P̂~Ā!,

where Ao is the interior of A and Āits closure.
Note that the fact that probability measures are normalized implies that the possibility

sures appearing in the large deviation property must be normal. The negative ofp̂ is usually called
rate function. A frequently imposed further condition is that the level cuts ofp̂ be compact. Since
we are assuming a compactX anyway, this condition is fulfilled automatically here.

If the rate function is continuous, then we have because of compactX

lim
«→0

« log P~«!~A!5 P̂~A!

for all openA,X.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Many of the results obtained by large deviation methods have a suggestive formulat
possibilistic language. Here is an example:

Proposition VI.4 (Varadhan’s generalized Laplace method): Let(P(«)) have the large devia-
tion property with possibility measure Pˆ . Let G:X→E2 be a continuous function. Then

lim
«→0

« log E
X
expSG~x!

« DP~«!~dx!5Eˆ
X

G~x! •̂ P̂~dx!.

We now look at a family of stochastic dynamical systems whose transition probabilities h
large deviation property.

Proposition VI.5: Assume that a family(Px
(«)) of transition probabilities on a compact stat

space X with continuous dependence on xPX has the large deviation property with transitio
possibility P̂x and that the possibility density is continuous. If there is a family(S(«)* ) of invariant
measures of the stochastic systems Px

(«) that has the large deviation property with a possibili
measure Sˆ * , then Ŝ* is an invariant possibility of the possibilistic system defined by Pˆ

x , i.e.,

Ŝ* ~A!5Eˆ
X

P̂y~A! •̂Ŝ* ~dy!

for all open APA.
Remark VI.6:This proposition is a simple consequence of the Laplace–Varadhan-typ

proximation of integrals. However, it does by no means prove the fact that invariant measu
the stochastic systems actually have the large deviation property. Proofs of this property or
estimates exist for a wide range of systems but require considerably more work.8,25 They go back
to the work of Wentzell and Freidlin6 on random perturbations of dynamical systems, which is
continuous time analogue of what we are discussing here. From this background the nega
the possibility densityŝ of Ŝ* has the name quasipotential.

In the case where the stochastic systems are random perturbations of a deterministic
F the corresponding possibilistic system is of course deterministically motivated byF.

Quasipotentials have been discussed in the physical literature as nonequilibrium gene
tions of thermodynamic potentials~see Ref. 7 for a review!. The discrete time version8,9,26 has
been used successfully to investigate the influence of noise on renormalization schemes
context of transitions from regular to chaotic behavior,27 and other universal aspects of the infl
ence of noise on bifurcations.28

In the physical literature one usually finds heuristic derivations of quasipotentials instea
strict application of the mathematical results from the Wentzell–Freidlin tradition. These de
tions use approximations of the Laplace type, not unlike our motivation for Proposition VI.
this way, for the case of Gaussian noise, the following equation was found in Ref. 26 for
mining the quasipotential (2 ŝ):

„2 ŝ~y!…5min
x

@„2 ŝ~x!…1 1
2„y2F~x!…2#.

In our language of pseudomeasures this is the statement thatŝ is an eigenfunction of the pseudo
linear operatorOp̂

* , p̂(x,y)52 1
2„y2F(x)…2, with eigenvalue 1ˆ50—in agreement with Proposi

tion VI.5.
Applying the results of Secs. IV and V, one sees immediately several facts about quasi

tials which were so far only accessible by following the details of the proofs of the Wentz
Freidlin approach, and not by the heuristic approaches. This refers in particular to the defini
J. Math. Phys., Vol. 38, No. 6, June 1997
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basis classes, their importance for the construction of quasipotentials, and their relation
defined by properties of deterministic systems~like nonwandering sets, chain-recurrent sets, a
attractors!.

The connection between quasipotentials and the possibilistic algebra brings another
tage, namely a systematic approach to the numerical computation of quasipotentials. I
computations the eigenfunction problem is transformed into anN-dimensional eigenvalue problem
based on the semiring (E2,max,2`,1,0) by discretizing the spaceX into a finite space ofN
points. There are well-known and well-studied numerical algorithms for this finite-dimens
problem~which is equivalent to the problem of finding shortest paths in a graph29!.

Remark VI.7:Consider the eigenproblem for eigenvalue 1ˆ on the semimodule (E2)N with

operations1̂5max and•̂51 and definite transition possibilitiesp̂i j :

ŝj5(ˆ
N

i51
ŝi •̂ p̂i j5 max

i51,...,N
~ ŝi1 p̂i j !.

Interpreting2 p̂i j as the length of the arc (i j ) in a directed graph, the computation of anŝj
amounts to finding the shortest path~whose length then is2 ŝj ! between a basis point andj .

Following the pseudolinear formalism one can write down a general algorithm for solvin
eigenproblem which is analogous to the Gauss–Seidel algorithm of linear algebra. The re
algorithm is equivalent to Ford’s algorithm30 for solving the shortest path problem. The computi
time required for that algorithm is at mostO (N3).

If p̂ is not definite, the computation of the eigenfunctions has to be preceded by the co
tation of the eigenvaluel, which is the negative of the minimal cycle mean in graph theor
language~see Remark IV.24!. An appropriate method is Karp’s algorithm~see Ref. 31!, again
with a computing time ofO (N3).

These combinatorial matrix-type methods compete with certain iterative methods which
a time of orderO (N2) for each step of the iteration~see Ref. 32!. However, ifp̂ is bounded above
by 1̂50 ~i.e., there are no arcs of negative length in the graph!, there is a faster combinatoria
algorithm, called Dijkstra’s algorithm.33 Computing times are of orderO (N2) in this case, so tha
the iterative methods mentioned above are no longer an attractive alternative.

For a deterministically motivated problem it is possible to further reduce computing time
concentrating on those arcs (i j ) for which the point with labelj lies in a small neighborhood o
the deterministic image of the point with labeli , and this algorithm appears to be the mo
efficient general method for the computation of quasipotentials.

We know from Sec. IV that there are pseudolinearly independent invariant possibility d
ties for a normal possibilistic system as soon as there is more than one equivalence class
points. For this case we have to discuss which pseudolinear combinations of invariant pos
densities qualify for being quasipotentials.

Proposition VI.8: Consider the situation of Proposition VI.5. If Pˆ
x has the possibility density

p̂(x,y), then the invariant possibility density sˆ characterizing the large deviation property o
(Ŝ(«)* ) can be written as

ŝ~x!5Eˆ
R
p̂
s
ŝ~a! •̂Tp̂~a,x! •̂da

where Rp̂
s is the union of stable classes.

The values of sˆ (a) for aPRp̂
s have to fulfill the following equations:

Eˆ
R
p̂
s

2@a# p̂

ŝ~a! •̂Tp̂~a,b! •̂db5Eˆ
R
p̂
s

2@a# p̂

ŝ~b! •̂Tp̂~b,a! •̂db
J. Math. Phys., Vol. 38, No. 6, June 1997
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for all aPRp̂
s .

Proof: SinceS(«)* is an invariant measure for the transition probability measuresPx
(«) , we

have for everyAPA

E
A
E
X2A

Pa
~«!~dy!S~«!* ~da!5E

A
E
X2A

Py
~«!~da!S~«!* ~dy!.

On the level of the corresponding possibility densities this reads

Eˆ
X2A

ŝ~a! •̂ p̂~a,y! •̂dy5Eˆ
X2A

ŝ~y! •̂ p̂~y,a! •̂dy.

In this equation,p̂ can be replaced byp̂N for any NPN, and therefore byTp̂ . We setA5$x

PX:Tp̂(a,x)<*̂R
p̂
s

2@a# ṗ
Tp̂(a,y)•dy% whereaPRp̂

s . We see that the domain of pseudointegrat

on the left-hand side can be replaced byRp̂
s
2@a# p̂ .

On the right-hand side we insert

ŝ~y!5Eˆ
Rp̂

ŝ~b! •̂Tp̂~b,y! •̂db,

which is a consequence of Proposition IV.18. SinceyPX2A, the pseudointegration can b
restricted toRp̂

s
2@a# p̂ , and we have

Eˆ
R
p̂
s

2@a# p̂

ŝ~a! •̂Tp̂~a,y! •̂dy5Eˆ
X2A

Eˆ
R
p̂
s

2@a# p̂

ŝ~b! •̂Tp̂~b,y! •̂db•̂Tp̂~y,a! •̂dy.

Carrying out the pseudointegral overy we arrive at the stated relation between the coefficie
ŝ(a). h

Remark VI.9:In the case that there is a finite numberL of stable basis classes, Propositio
VI.8 gives L pseudolinear equations for the coefficient for theL independent eigenfunctions
However, onlyL21 of these equations are pseudolinearly independent. The coefficient

uniquely determined if we add the normalization condition*̂Xŝ(x)51̂50.
Freidlin and Wentzell describe a graph method for solving the condition from Propos

VI.8. This is quite natural since the condition is similar to a Kirchhoff rule, for which gra
methods have a long tradition.

In the literature about quasipotentials~e.g., Refs. 9 and 34! a connection to Hamiltonian
systems has been established and exploited. In the same spirit we formulate a connection b
symplectic maps~see, e.g., Ref. 35! and possibilistic systems evaluated on the semir
(E2,max,2`,1,0). We briefly sketch some aspects of this connection; details can be found
literature mentioned above.

Let G:X3X→R, X,Rd, be a differentiable function such that the mapq8°]1G(q,q8) is a
diffeomorphism for all qPX. Let G be a generating function for a symplectic mapH̃:X
3Rd→X3Rd, (q,p)°(q8,p8), i.e.,

p85]2G~q,q8!,

p52]1G~q,q8!,
J. Math. Phys., Vol. 38, No. 6, June 1997
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where] i denotes differentiation with respect to thei th argument. LetP:X3Rd→X be the pro-
jectionP(q,p)5q.

Proposition VI.10: Define a possibilistic system on X by a possibility density with valu
(E2,max,2`,1,0):

p̂52G

where G is a generating function for the symplectic map H.
If (q0 ,...,qN) is a sequence of points in X for which

p̂N~q0 ,qN!5)ˆ
N

i51
p̂~qi21 ,qi !5(

i51

N

p̂~qi21 ,qi !,

then it is the projection of the trajectory under H which starts in the pointv05„q0 ,
2]1G(q0 ,q1)…: qi5P„Hi(v0)….

This follows directly from making use of differentiability in the maximization required for
determination ofp̂N .

The determination ofTp̂(x,y) requires then a maximization among all trajectories undeH
which start with aq-componentx and end with aq-componenty.

The normal basis points of a definite possibilistic system are those recurrent points
symplectic map along whose trajectories the sums ofG(q,q8) have the globally minimal value 0

If p̂ is normal, then the space$(q,p):p50% is invariant underH. This follows from the fact
that because of normality there is for each pointq a point q8 such thatG(q,q8) attains its
minimum 0, which implies]2G(q,q8)50 and]1G(q,q8)50. Note that the invertibility condition
on ]1G can only be fulfilled if the normal possibilistic system is deterministically motivated b
mapF:X→X. On $(q,p):p50% the symplectic map reduces toH(q,0)5„F(q),0…. The recurrent
points corresponding to basis points havep50, too.

Using the connection betweenp values and derivatives ofp̂ one can write

]2p̂N~q0 ,qN!5pN ,

whereHN(v0)5(qN ,pN). Analogously,

]1p̂N~q0 ,qN!5p0 .

These equations can be used to determine eigenfunctionsTp̂(a,x) andTp̂(x,a), a a basis point, by
integrating thep values along invariant manifolds emanating from the point (a,0). Without going
into the details of Lagrangian manifolds~see, e.g, Ref. 36!, we mention that generically thes
invariant manifolds have tangling bends which lead to accumulating Maxwell points at whic
eigenfunctions are not differentiable~see Ref. 9; many interesting aspects of this phenome
have been studied in the case of quasipotentials for continuous time systems34,37–39!.

The relation between symplectic maps and possibilistic systems suggests a potentiall
field of applications where idempotent pseudolinear algebra can be used in variational pro
and Hamiltonian mechanics.

An early example for such an application can be found in the method of effective pote
for one-dimensional infinite chains of atoms~such as the Frenkel–Kontorova model!, introduced
by Chou and Griffiths.16 This method can be translated into the language of uncertain dynam
systems: We ask for the possibility that the position of an atom at sitet11 in the chain is
xt11 , knowing that the position of the atom at sitet is xt . This possibility is assessed at a valu
2K(xt ,xt11) in the semiring~E

2,max,2`,1,0! whereK(xt ,xt11) is the energy which is adde
to the system when adding the atom numbert11 at positionxt11 to a semi-infinite chain which
ends with thetth atom at positionxt .
J. Math. Phys., Vol. 38, No. 6, June 1997
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In general, the possibilistic system defined in this way is not normal and not even definite
therefore it does not have an invariant possibility density. However, the semiring has an inv
pseudomultiplication and is radicable and absorptive, and ifK is bounded, Proposition IV.23 an
Remark IV.24 are applicable. Thus, ifl is the minimal cycle mean (1/N)S i51

N K(qi21 ,qi) over
cyclic sequences (q1 ,...,qN), then k̃(x,y)5l2K(x,y) is definite, andOk̃

* has the eigenvalue 1ˆ

50 whose eigenfunctions can be called conditionally invariant possibility densities in analo
the notion of conditionally invariant measures of deterministic systems.40,41 From Sec. IV we
know that the basis classes~Definitions IV.7 and IV.10! for k̃ play a crucial role in finding the
conditionally invariant possibility densities.

Interestingly, all the concepts introduced in order to describe the possibilistic system
useful interpretations in the original context of the underlying system of atoms: The eigenval
is the minimal energy per atom in the chain. The basis classes@a# k̃ , aPRk̃ , are the pure ground
states of the chain. The conditionally invariant possibility densityF k̃ ,a(x)5Tk̃(a,x), aPRk̃ , is
an effective potential acting on the right-most atom with positionx in a semi-infinite chain
extending to the left, asymptotically approaching the ground state configuration@a# k̃ . Similarly,
C k̃ ,a(x)5Tk̃(x,a) is an effective potential for the left-most atom in a semi-infinite chain exte
ing to the right. The two effective potentialsF k̃ ,a(x) and C k̃ ,a(x) can be used to comput
excitation energies of defects, see Ref. 16.

This last example shows that the concept of possibilistic dynamical systems can be use
only as a method for dealing with uncertainties but, beyond our initial motivation, also a
approach to general variational problems.
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The Kadomtsev–Petviashvili equation under rapid forcing
Irene M. Moroz
Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, United Kingdom

~Received 30 September 1996; accepted for publication 10 December 1996!

We consider the initial value problem for the forced Kadomtsev–Petviashvili equa-
tion ~KP! when the forcing is assumed to be fast compared to the evolution of the
unforced equation. This suggests the introduction of two time scales. Solutions to
the forced KP are sought by expanding the dependent variable in powers of a small
parameter, which is inversely related to the forcing time scale. The unforced system
describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave
propagation and is studied in two forms, depending upon whether gravity domi-
nates surface tension or vice versa. We focus on the effect that the forcing has on
the one-lump solution to the KPI equation~where surface tension dominates! and
on the one- and two-line soliton solutions to the KPII equation~when gravity
dominates!. Solutions to second order in the expansion are computed analytically
for some specific choices of the forcing function, which are related to the choice of
initial data. © 1997 American Institute of Physics.@S0022-2488~97!00306-X#

I. INTRODUCTION

Having investigated the effects of rapid forcing on some one-dimensional integrable
nonintegrable evolution equations~Refs. 1, 2!, we consider two-dimensional integrable equatio
~or 211-dimensional systems, as they are sometimes called!. In this paper we shall consider th
Kadomtsev–Petviashvili equation~hereafter abbreviated to KP!,

~ut16uux1uxxx!x13s2uyy50, ~1.1!

where s2561, which is a two-dimensional generalization of the Korteweg–de Vries~KdV!
equation:

ut16uux1uxxx50, ~1.2!

and describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propag3

The KP equation was first derived by Ref. 4 and is usually studied in two forms: KPI and K

A. KPII

When s251 we get the KPII equation in which gravity dominates over surface tensi5

Satsuma6 demonstrated the existence ofN-line soliton solutions for KPII. These are two
dimensional generalizations of the one-dimensional KdV soliton, in which each soliton trav
a different direction, leading to oblique interactions. The one-line soliton solution is given in
3 as

u~x,y,t !52k2 sech2@k~x1ly2~4k213s2l2!t1d0!#, ~1.3!

with s251, and represents a soliton travelling at an anglel to they axis ~see Fig. 1.2.1 on p. 12
of Ref. 3!. The two-line soliton solution is

u~x,y,t !52
]2 ln F~x,y,t !

]x2
, ~1.4!
0022-2488/97/38(6)/3110/13/$10.00
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where

F~x,y,t !511exp~h1!1exp~h2!1exp~h11h21A12!, ~1.5a!

h j52k j@x1l j y2~4k j
213s2l j

2!t#1d j , ~1.5b!

exp~A12!5
4~k12k2!

22s2~l12l2!
2

4~k11k2!
22s2~l12l2!

2 , ~1.5c!

and j51,2 in ~1.5b! @see Eq.~1.2.9! and Fig. 1.2.2 in Ref. 3#. Each line soliton is essentially
KdV soliton away from the interaction region, and has the usual phase shift. However, suc
solitons do not decay to zero in all directions asR5(x21y2)1/2→` ~specifically along their axes!.
In this paper we shall consider the effects of rapid forcing on the one- and two-line so
solutions.

B. KPI

Whens2521 we get the KPI equation7,8 in which surface tension dominates. For KPI th
N-line soliton states areunstable, whereas the lump solutions arestable. The one-lump solution
takes the form

u~x,y,t !5
4$2@x1ly13~l22m2!t#21m2~y16lt !21m22!%

$@x1ly13~l22m2!t#21m2~y16lt !21m22%2
, ~1.6!

which decays algebraically asR→` @see Eq.~1.2.11! and Fig. 5.2.1 of Refs. 3 and also 9 and 10#.
We shall consider the effects of rapid forcing on~1.6!.

This paper is structured as follows. In Sec. II we review the perturbation problem fo
rapidly forced KdV equation,11 concentrating on the consistency between the choice of for
function and the higher-order terms in the series expansion. We present the analysis for the
forced KPI/II problems in Sec. III. In Sec. IV we discuss the choice of forcing functions
present specific examples for~1.5! and ~1.6! in Sec. V. Section VI contains our conclusions.

II. THE RAPIDLY FORCED KdV EQUATION

In this section, we review the perturbation analysis for the rapidly forced KdV equatio
Ref. 11 in the context that pertains to the compatibility of the initial data with the choice o
forcing function and the higher-order terms in the series expansion.

A. Analysis

Consider the rapidly forced KdV equation,

ut16uux1uxxx5 f ~x,t/e!, ~2.1!

where 0,e!1. Following Ref. 11 we introducet5t/e, so that time derivatives transform ac
cording to the rule]/]t→(1/e)(]/]t)1]/]t. Then~2.1! becomes

ut16uux1uxxx1ut /e5 f ~x,t!. ~2.2!

We seek the series solution

u~x,t,t!5 (
n50

`

enun~x,t,t!, ~2.3!

so that~2.2! becomes
J. Math. Phys., Vol. 38, No. 6, June 1997
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(
n50

`

enunt16 (
i , j50,i1 j5n

`

enuiujx1 (
n50

`

enunxxx1 (
n50

`

en21unt5 f ~x,t!. ~2.4!

Equating powers ofe to zero we getu05u0(x,t) for the leading-order term, whereu0 evolves
according to the unforced KdV equation. TheO(1) problem gives

u1~x,t,t!5U1~x,t !1v1~x,t!, ~2.5!

where

v1~x,t!5E t

f ~x,t!dt, ~2.6a!

U1~x,t !5
]u0
]a

, ~2.6b!

and ‘‘a’’ can denote eitherx or t ~see Ref. 1!.
The solution to theO(e) problem is

u2~x,t,t!5U2~x,t !1v2~x,t,t!, ~2.7!

where

U2~x,t !5
1

2

]2u0
]a2 , ~2.8a!

v2~x,t,t!52E t

@6~u0v1!x1v1xxx#dt, ~2.8b!

and we have used the results of Ref. 1 to determineU2(x,t).

B. Initial conditions

Suppose the KdV equation is to be solved subject to the initial datau(x,0) 5 g(x).
We consider two situations:~a! g(x) defines the leading-order initial data only, so that

u0~x,0,0!5g~x!, un~x,0,0!50, ;n>1, ~2.9!

~b! the initial data enters at all orders, so that

uj~x,0,0!5gj~x!, ; j>0. ~2.10!

We now consider the consequences of~a! and~b! for the choice of forcing function, and hence th
solution of the KdV perturbation problem. Suppose we take the forcing function to bef (x,t)
5 r (x)s(t), then~2.5! and~2.6! imply that

u1~x,t,t!5u0a~x,t !1r ~x!E t

s~t!dt, ~2.11!

whereu0a5]u0 /]a. Using the initial conditions given by~2.9!, we can show thatr (x) is given
by

r ~x!52
u0a~x,0,0!

@*ts~t!dt#t50
. ~2.12!
J. Math. Phys., Vol. 38, No. 6, June 1997
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For example, suppose we takes(t)5sin(t). Then~2.12! simplifies to

r ~x!5u0a~x,0,0!, ~2.13!

so that

f ~x,t!5u0a~x,0,0!sin~t!, ~2.14!

and with the choice ofa5x, we recover Eq.~6.10! of Ref. 11.
Now suppose that we use the initial conditions given by~2.10!. We now have

u1(x,0,0)5g1(x), where

g1~x!5u0a~x,0,0!1r ~x!F E t

s~t!dt G
t50

. ~2.15!

For the choice ofs(t)5sin(t), ~2.15! reduces to

r ~x!5u0a~x,0,0!2g1~x!, ~2.16!

and we are at liberty to choose any forcing function that is consistent with~2.16!. If we prescribe
g1(x), then r (x) is determined; if we specifyr (x), then g1(x) is determined. Hence~2.10!
imposes compatibility conditions between the initial data and the forcing function that mu
satisfied at each order in the series expansion.

C. Forcing function and higher-order solutions

TheO(e) t-independent problem is

u2t52@6u0v1x16v1u0x1v1xxx#, ~2.17!

wherev1(x,t,t)5*t f (x,t)dt. For f (x,t)5r (x)s(t), we can use~2.6b! and~2.12! to show that

u2t5@6u0u0ax16u0au0x1u0axxx#
s~t!

s~0!
. ~2.18!

If we differentiate the unforced KdV equation wrta, substitute into~2.18!, and use~2.6b! we get

u2t52U1t

s~t!

s~0!
, ~2.19!

so that

v2~x,t,t!52U1t

*ts~t!dt

s~0!
. ~2.20!

If ~2.9! holds thenU2(x,0,0)50 and

U2~x,0!5U1t

*ts~t!dt

s~0!
. ~2.21!

From ~2.8a! we see that this cannot hold in general, and we deduce that the choice of initia
~2.9! is incompatible with the higher terms in the perturbation series solution ofu(x,t). Such
problems do not arise for~2.10!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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III. THE RAPIDLY FORCED KP EQUATION

We now develop a series solution for the rapidly forced KP equation, following the proce
described in Refs. 11, 1.

A. Perturbation analysis

Consider the rapidly forced KP equation,

~ut16uux1uxxx!x13s2uyy5 f ~x,y,t/e!. ~3.1!

As before, we introduce a rapid time scalet5t/e, so that~3.1! becomes

~ut16uux1uxxx!x13s2uyy1
1

e
uxt5 f S x,y, te D . ~3.2!

With the series expansion

u~x,y,t,t!5 (
n50

`

enun~x,y,t,t!, ~3.3!

~3.2! becomes

(
n50

`

enuntx16 (
i , j50,i1 j5n

`

enuixujx16 (
i , j50,i1 j5n

`

enuiujxx1 (
n50

`

enunxxxx

13s2(
n50

`

enunyy1 (
n50

`

en21unxt5 f ~x,y,t!, ~3.4!

so that upon equating powers ofe to zero we obtain

O~e21!:u0xt50, ~3.5a!

O~e0!:u0xt16~u0u0x!x1u0xxxx13s2u0yy1u1xt5 f , ~3.5b!

O~e!:u1xt16~u0u1x!x16~u1u0x!x1u1xxxx13s2u1yy1u2xt50, ~3.5c!

etc.

B. O(e21) problem

Integrating~3.5a! wrt x andt gives

u0~x,y,t,t!5U0~x,y,t !1w~y,t,t!. ~3.6!

For lump and line solutions we haveu0→0 for fixedy asx→ 6 `, so thatw0(x,t,t)50, and~3.6!
becomes

u0~x,y,t,t!5U0~x,y,t !, ~3.7!

whereU0(x,y,t) will be determined by theO(1) problem.
J. Math. Phys., Vol. 38, No. 6, June 1997
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C. O(1) problem

Using theO(e21) problem, we can split~3.5b! into t-dependent andt-independent equations

U0xt16~U0U0x!x1U0xxxx13s2U0yy50, ~3.8a!

u1xt5 f ~x,y,t!. ~3.8b!

ThusU0(x,y,t) evolves according to the unforced KP equation~1.1!, while ~3.8b! integrates to
give

u1~x,y,t,t!5U1~x,y,t !1G1~x,y,t,t!, ~3.9!

where

G1~x,y,t,t!5ExE t

f ~x,y,t!dt dx, ~3.10!

andU1(x,y,t) is determined by theO(e) problem.

D. O(e) problem

Substituting~3.7! and ~3.9! into ~3.5c!, and splitting the resulting equation intot-dependent
andt-independent components gives

U1xt16U0U1xx112U0xU1x16U1U0xx1U1xxxx13s2U1yy50, ~3.11a!

G1xt16U0G1xx112U0xG1x16G1U0xx1G1xxxx13s2G1yy1u2xt50. ~3.11b!

Following Ref. 1, we can show that~3.11a! is identical to differentiating the KP equation~3.8a!
wrt a ~wherea can be taken to bex, y, or t!, and then taking

U1~x,y,t !5
]U0

]a
. ~3.12!

Integrating~3.11b! wrt x andt gives

u2~x,y,t,t!5U2~x,y,t !1G2~x,y,t,t!, ~3.13!

where

G2~x,y,t,t!52E tFG1t16U0G1x16G1U0x1G1xxx13s2Ex

G1yydxGdt, ~3.14!

and we have again chosen thex-independent term to be zero.
From thet-independentO(e) problem we get, following Ref. 1,

U2~x,y,t !5
1

2

]2U0

]a2 , ~3.15!

so that we now have the solution to the perturbed KP equation, correct toO(e2).

IV. COMPATIBILITY OF FORCING FUNCTIONS

We have already discussed in Sec. II how the initial conditions and the forcing function
be mutually compatible for the solution of the rapidly forced KdV equation to proceed. Ther
J. Math. Phys., Vol. 38, No. 6, June 1997
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found out that when the initial data enter at leading order only, the forcing function is determ
by theO(1) t-dependent problem and inconsistencies can arise in the higher-order prob
when the initial data influences all terms in the perturbation expansion, such inconsistences
avoided by an appropriate choice of initial conditions at each order in the expansion. We
consider the analogous situations for the KP equations.

A. Case I

When the initial data affects only the leading-order problem, so that

u0~x,y,0,0!5g~x,y!, un~x,y,0,0!50, ;n>1, ~4.1!

and with f (x,y,t)5R(x,y)s(t), ~3.9! gives

Ex

R~x,y!dx52
U0a~x,y,0!

@*ts~t!dt#t50
, ~4.2!

where we have used~3.12!. With the choice ofs(t)5sin(t), ~4.2! may be differentiated wrtx to
yield

R~x,y!5U0ax~x,y,0!, ~4.3!

so that the forcing function becomes

f ~x,y,t!5U0ax~x,y,0!sin~t!. ~4.4!

We must now ensure the compatibility of~4.4! with the next order in the perturbation expansio
The details are given in the next section fors(t)5sin(t).

B. Case II

We now suppose that the initial data enters at all orders in the perturbation expansion

uj~x,y,0,0!5gj~x,y!, ; j>0. ~4.5!

Then

g0~x,y!5U0~x,y,0!, ~4.6a!

gj~x,y!5Uj~x,y,0!1Gj~x,y,0,0!, ; j>1. ~4.6b!

Therefore, provided we choose thegj (x,y) appropriately, we are able to prescribe a forci
function in advance, which will be compatible with the series solution to all orders.

V. SOME EXAMPLES

We now consider the effects of rapid forcing on the one- and two-line soliton solution
KPII @see~1.3!–~1.5!# and the one-lump solution of KPI@see~1.6!# for two choices of forcing
function.

A. KPII

The solution toO(e2) of the rapidly forced KPII equation is

u~x,y,t,t!5U0~x,y,t !1e@U0a~x,y,t !1G1~x,y,t,t!#1e2@ 1
2U0aa~x,y,t !1G2~x,y,t,t!#1••• .

~5.1!
J. Math. Phys., Vol. 38, No. 6, June 1997
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1. Example 1

If

f ~x,y,t!5u0xx sin~t!, ~5.2!

then ~3.9! becomes

u1~x,y,t,t!5u0x~x,y,t !2u0x cos~t!, ~5.3!

where we have used~2.6b! with a5x. At t505t, we see thatu1(x,y,0,0)50, so thatg1(x,y)
50 by ~4.5! @which is also consistent with~4.1!#. ThusG1(x,y,t,t)52u0x cos(t). Differentiat-
ing ~3.13! and ~3.14! wrt t and substituting forG1(x,y,t,t), we obtain

u2t~x,y,t,t!5cos~t!@U0xt16U0U0xx16U0x
2 1U0xxxx13s2U0yy#. ~5.4!

By ~3.8a! we see that the rhs of~5.4! is zero, so thatG2(x,y,t,t)50 and~5.1! simplifies to give

u~x,y,t,t!5U0~x,y,t !1e@U0x~12cost!#1 1
2e

2U0xx1••• . ~5.5!

Note that if we now sett505t, then

u2~x,y,0,0!5 1
2e

2U0xx~x,y,0!, ~5.6!

which is nonzero in general. Thus~4.1! cannot be satisfied, but~4.6! holds, provided we choose
the initial condition

g2~x,y!5 1
2U0xx~x,y,0!. ~5.7!

2. Example 2

If we now take

f ~x,y,t!5u0x sin~t!, ~5.8!

then ~3.9! becomes

u1~x,y,t,t!52u0 cos~t!1u0x , ~5.9!

and it is no longer possible to satisfy~4.1!, whereas~4.6! gives

g1~x,y!5u0x2u0 . ~5.10!

If we integrate the KP equation wrtx, then we can again show thatu2t(x,y,t,t)50, so that
G2(x,y,t,t)50 as before. Thus~5.1! simplifies to give

u~x,y,t,t!5U01e@U0x2U0 cos~t!#1 1
2e

2U0xx1••• . ~5.11!

Again we see that~4.1! cannot hold, while~4.6! gives ~5.7!, as in Example 1.

3. Discussion of numerical results for KPII

We now describe the results of the numerical integrations of~5.5! and ~5.11!, only showing
plots where there is a substantial difference in the behavior between the various forced a
unforced solutions for some typical values of the parameters appearing in~1.3! and ~1.5!.

Figure 1 compares the unforced with the forced one-line soliton solution of KPII@as given by
~5.5!# whenl50.6, k51, d0 5 0 at the timest50,1,2,3,4,5 and fory50. In Fig. 1~a! we took
J. Math. Phys., Vol. 38, No. 6, June 1997
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e50.2, while in Fig. 1~b!, e50.4. The graphs fory.0 are shifted to the left and those fo
y,0 are shifted to the right. In all cases considered, the maximum amplitudes of the fo
solutions vary cyclically witht and are shifted to the left in comparison with the unforc
solutions. When the forcing function~5.2! is replaced by~5.8!, so that~5.11! is the appropriate
series solution, the plots~not shown here! resemble those in Fig. 1. Now, however, there is
greater variation in the maximum amplitude of the forced solution, with the possibility for
forced amplitude to be much less than the unforced amplitude. The forced solution is s
farther to the left of the unforced solution.

Figures 2~a! and 2~b! show the time evolution of the unforced and forced two-line solit
solution of KPII aty528 for e50.2 ande50.4, respectively, with the forcing function~5.2!.
The parameter values are given in the figure caption. Initially the amplitude of the forced sol
is less than that of the unforced solution. Whene50.2 both line solitons have a single pea
whereas fore50.4 the larger line soliton always has a double peak. Ify.0, the two solitons just
move farther apart and do not interact with one another, and so we restrict our attenti
y,0. In Fig. 2~a! the forced solution initially has a smaller amplitude before the interaction t
does its unforced counterpart. After the interaction there is a shift to smallerx values, but the
forced amplitude is now larger than the unforced amplitude. In Fig. 2~b! the larger soliton loses its
double-peaked character during the interaction, but recovers it afterward for times later tha
shown in the plots. There is no apparentx shift, except during the interaction, and the force
solution is smaller than the unforced solution, both before and afterward.

For the second choice of forcing function~5.8!, the amplitudes of the unforced solution a

FIG. 1. ~a! Comparison between the unforced and the forced solutions@throughO(e2)# for the one-line soliton solution of
KPII with e50.2, y50, andt50,1,2,3,4,5 whenl50.6, k51, andd050. The forcing function is given by~5.2!. ~b! The
same as in~a!, but for e50.4.
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 2. ~a! Comparison between the unforced and the forced solutions@throughO(e2)# for the two-line soliton solution of
KPII with e50.2, t50,1,2,3, andy528, whenk151, k251.6, l150.5, l2520.5, d15d250. The forcing function
is given by~5.2!. ~b! The same as in~a!, but for e50.4 andt50,1,1.5,2.
J. Math. Phys., Vol. 38, No. 6, June 1997
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t50 are greater than those of the forced solution for bothe50.2 ande50.4, as well as being
shifted to the right. Fore50.4, the larger soliton has a peak/trough structure away fromy50. The
temporal evolution of the forced solution fore50.2 ~not shown here! is similar to that shown in
Fig. 2~a!, while for e50.4, the double peak of Fig. 2~b! is replaced by the peak/trough of Fig. 3

B. Discussion of numerical results for KPI

Whens2521, we obtain the KPI equation. Then-line solitons are now unstable and so w
just consider the one-lump solution, given by~1.6!. We can show that for the same choices o
forcing function considered above for KPII, we obtain the same solution toO(e2), namely~5.5!
for Example 1 and~5.11! for Example 2. The solutions are shown in Fig. 4 for typical values
l andm @see~1.6!# for the forcing function~5.2!.

Figures 4~a! and 4~b! show comparisons between the unforced and the forced one-lu
solution of KPI for e50.2 and e50.4 respectively, wheny524,0,4; t50,1,2,3,4,5;l51,
m50.5, and the forcing function is given by~5.2!. The amplitude of the forced solution is always
larger than that of the unforced solution, and both solutions move to the left ast increases. For
~5.8!, the amplitude of the forced solution is similar in character to that displayed in Fig. 4 bu
larger than that of the unforced solution and is omitted here.

VI. CONCLUSIONS

In this paper, we have studied the effects of rapid temporal forcing on
211-dimensional integrable systems KPI and KPII, using the technique developed in Refs. 1
Perturbation series expansions for the forced solutions were developed up toO(e2) and the
behaviors compared with the unforced solutions for two choices of forcing function. Also
cussed was the necessity for ensuring the compatibility of the forcing function with the in

FIG. 3. The same as in Fig. 2~b!, but for the forcing function~5.8! and t50,1,1.5,2.5.
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 4. ~a! Comparison between the unforced and the forced solutions@throughO(e2)# for the one-lump solution of KPI
with e50.2, t50,1,2,3,4,5, andy524,0, whenl51, m50.5. The forcing function is given by~5.2!. ~b! The same as
in ~a!, but for e50.4.
J. Math. Phys., Vol. 38, No. 6, June 1997
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conditions, a point that was not fully brought out in Ref. 11, but that has been discussed in S
for the KdV equation and in Sec. IV for KPI and KPII. We have chosen to illustrate the ge
theory for the one-line and two-line soliton solutions of KPII and the one-lump solution of K

One conclusion of the numerical integrations is the tendency of the forced solutions
behind the unforced solutions wrt the spatial displacement. There is also the developm
amplitude modulation in the forced line solitons of KPII, as compared with their unforced c
terparts, as well as the development of a double-peak or peak/trough structure for larger
of e.

While we have only illustrated our results for a small subclass of possible forcing func
and for three choices of solution, we have been able to demonstrate that the effects of rapid
can considerably alter the behavior of the unforced solution.
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Higher-dimensional dromion structures:
Jimbo–Miwa–Kadomtsev–Petviashvili system
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Starting from ann ‘‘plane’’ soliton solution of a conditionally integrable (n11)-
dimensional system, one can find a dromion solution which is localized in all
directions for a suitable potential. The dromion structures for a
(311)-dimensional conditionally integrable system, Jimbo–Miwa–Kadomtsev–
Petviashvili~JMKP! equation system, are studied in detail. Though a special type
of multi-dromion solution is allowed for the JMKP system, all the dromions can
only be located on a moving line. The interactions among dromions are not elastic.
In addition to a phase shift, the ‘‘shape’’ of two dromions may also be changed
after interaction. ©1997 American Institute of Physics.
@S0022-2488~97!01105-5#

I. INTRODUCTION

Though the soliton structures and properties of (111)-dimensional integrable nonlinear evo
lution equations are now very well understood, the soliton structure in higher spatial dimen
continues to be much more intricate. Recently, since the pioneering work of Boitiet al.,1 the study
of the exponentially localized soliton solutions, called dromions, in (211)-dimensions has bee
attracting the attention of physicists and mathematicians. Usually, dromion solutions are driv
two or more nonparallel straight-line ghost solitons. For instance, for the Davey–Stewartson~DS!2

and the Nizhnik–Novikov–Veselov~NNV!3 equations, their dromion solutions are driven by tw
perpendicular line ghost solitons.1,4 For the Kadomtsev–Petviashvili~KP! equation, the dromion
solutions are driven by nonperpendicular line ghost solitons.5 For one type of nonlinear models
say, the DS, NNV, and asymmetrical NNV~ANNV !6 equations, the dromion solutions exist fo
the physical fields. However, for other types of equations like the KP and the breaking s
equations, the dromion solutions exist only for some suitable potentials of the fields.5,7 More
recently, even more generalized dromion solutions which are driven by curved and straig
solutions for some types of (211)-dimensional nonlinear modes are found.8,9

Now a very important question is: What kind of dromion structures can be foun
(311)-dimensional models? In order to answer this question, Lou had studied the dromi
structures of anonintegrable(311)-dimensional KdV-type equation,10

wt16wxwy1wxxy1wxxxxz160wx
2wz110wzwxxx120wxwxxz50. ~1!

There is a rich structure of the dromion solution of the equation~1!. For instance, ring-type
dromion solutions which have not yet been found in (211)-dimensions are allowed for som
potentials of ~1!. We hope to know whether the dromion structures can be found i
(311)-dimensional integrable model. Unfortunately, we have not yet found

a!Corresponding author. Electronic mail address: sylou@fudan.ihep.ac.cn
0022-2488/97/38(6)/3123/14/$10.00
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(311)-dimensional completely integrable model. So, in this paper we discuss only the dro
solutions of a conditionally integrable model, the Jimbo–Miwa–Kadomtsev–Petviashvili~JMKP!
system,11

uxxxy13~uuy!x13uxx]x
21uy13uxuy12uyt23uxz50, ~2!

~uxxx16uux!x13uyy24uxt50, ~3!

after discussing the general properties of dromion solutions of a higher dimensional conditi
integrable model.

It was known that the single Jimbo–Miwa equation~JME! ~2! alone does not pass any of th
conventional integrability tests.12 However, if one considers that a subset of solutions of the J
~2! for fixed z50 also satisfies the KP equation~3!, then these solutions do pass the Painle´
test12,13and other integrability tests, say, possessing infinitely many generalized symmetries
constitute generalizedw` algebra.14

In the next section, we discuss first the general aspect of higher-dimensional dromion
structed from the KdV-type higher-dimensional ‘‘plane’’ solitons. The possible dromion struc
of the JMKP system~2! and ~3! are studied in Sec. III. Section IV contains a summary a
discussions.

II. HIGHER-DIMENSIONAL DROMIONS CONSTRUCTED FROM ‘‘PLANE’’ SOLITONS OF
THE KdV-TYPE SYSTEMS

Let us first consider the generalized (n 1 1)-dimensional conditionally KdV-type bilinea
equation system

Aa~DX![Aa~Dx1
,Dx2

,...,Dxn
,Dt!F•F50, a51,2,...,M , ~4!

where Aa , (a51,2,...,M ) are even functions of their variables,X5(x1 ,x2 ,...,xn ,t), DX

5(Dx1 ,Dx2 ,...,Dxn ,Dt) and theD-operators are defined by15,16

Aa~DX!5Aa~]X2]X8!F~X!F~X8!uX85X . ~5!

We call equation system~4! conditionally integrable meaning that not every one of~4! is inte-
grable but the solutions which satisfy all the equations of~4! do possess some kinds of integr
bility properties, especially multi-‘‘plane’’ soliton solutions. A solution plane soliton means
solution is finite on a ‘‘plane’’ ~which is determined byh5P1x1P2x1•••1Pnxn1vt
1const50! and decays exponentially apart from the plane.

For n52 andM51, Hietarinta had pointed out that5 a single dromion solution of~4! ~with
n 5 2,M 5 1!may exist if a physical field is defined proprietary@x1 5 x, x2 5 y, x5 (x,y)#,

u5L~]x!K~]x!ln F[~a]x1b]y!~g]x1d]y!ln F, adÞgb, ~6!

such that it annihilates two kinds of one-line soliton solutions,

F511eh, h5P•X1const, ~7!

with

P5~bP,2aP,V! or P5~dq,2gq,v!. ~8!

In other words, if the KdV-type equation~4! ~with n52,M51! possesses two kinds of single-lin
soliton solutions of the form~7! with ~8!, then the physical field should be defined by~6!. From
~6!–~8! we see that if we take a space transformation
J. Math. Phys., Vol. 38, No. 6, June 1997
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bx2ay52Dy1 , dx2gy5Dx1 , D[ad2gb, ~9!

then ~6!–~8! are changed to

u5L~]x!K~]x!ln F[]x1]y1 ln F, ~10!

F511eh15P1•X11const, ~11!

with

X15~x1 ,y1 ,t !, P15~p1,0,V!, or P15~0,q1 ,v!, ~12!

p1 [ qD andq1 [ 2pD. That is to say, in the new space–time (x1 ,y1 ,t), the dromion solutions
are driven by ghost line solitons which are perpendicular to two coordinate axes. Two types
solitons are annihilated by two perpendicular linear operators]x1 and]y1 while a dromion which
is located at the cross point of the two line solitons survived.

To extend the above discussions in higher dimensions, we should note that the intersec
two n-dimensional ‘‘planes’’ is still a ‘‘plane’’ in (n21)-dimensions. So it is impossible t
construct an (n11)-dimensional dromion solution which decays in all directions from less t
n plan solitons.

Similar to the (211)-dimensional case, for general system~4!, the physical field possessin
dromion solutions which are localized in all directions and constructed by plane solitons sho
defined as

u5)
i51

n S (
j51

n

ai j ]xj D ln F ~13!

with

D[detAÞ0, Ai j5ai j , ~14!

such thatn nonparallel ‘‘plane’’ solitons are annihilated byn nonparallel linear operators

Li~]x![(
j51

n

ai j ]xj .

From Eqs.~13! and ~14!, we know that if we take transformation

y5Bx @x5~x1 ,x2 ,...,xn!
T, y5~y1 ,y2 ,...,yn!

T#, ~15!

whereB [ A21 is the inverse matrix ofA, Eq. ~13! can be changed as

u5]y1]y2•••]yn ln F. ~16!

The constantsai j in ~13! @or bi j in ~15!# should be determined such that the system~4! has soliton
solution with

Fi511exph i , i51,2,...,n, ~17!

h i5pi•x1v i t1const[(
j51

n

pi j xj1v i t1const5kiyi1v i t1const, pi j5kibi j . ~18!

It is easy to check that, if~17! is a solution of~4!, pi j andv i are related byM conditions
J. Math. Phys., Vol. 38, No. 6, June 1997
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Aa~Pi !5Aa~pi1 ,pi2 ,...,pin ,v i !50, a51,2,...,M . ~19!

An n ‘‘plane’’ soliton solution, if it exists, can always be constructed for an equation syste
type ~4! in the standard way:5,11

F511(
i51

n

exph i1(
i, j

n

Ai j exp ~h i1h j !

1 (
i, j,k

Ai j AjkAik exp ~h i1h j1hk!1•••1S)
i, j

Ai j Dexp(
i51

n

h i , ~20!

where

Ai j52
Aa~Pi2Pj !

Aa~Pi1Pj !
.0. ~21!

The existent condition ofn ‘‘plane’’ soliton solutions requires thatAi j given by ~21! are a
independent.

Substituting~20! with ~18!, ~19! and ~21! into ~13! or ~16! we obtain a single (n 1 1)-
dimensional dromion solution which is localized in all directions.

III. DROMION SOLUTION OF THE JMKP SYSTEM

A. Single dromion driven by three plane solitons

The so-called KP hierarchy introduced by Jimbo and Miwa is just a special example of s
~4!. This is an infinite sequence of equations involving an increasing number of indepe
variables. Jimbo and Miwa1 gave at function solution to the KP hierarchy that represents
N-soliton solution. Equations~3! and ~2! are the first and second equations of the KP hierarc

The dromion structures of the whole hierarchy can be given by using the discussion of th
section. We give out only the detailed results of the (311)-dimensional system~2! and~3!. The
dependent variable-related transformation

u52~ ln F !xx ~22!

changes the JME~2! and the KPE~3! to their bilinear forms

A1~DX!F•F[~DxDz2
1
3Dx

3Dy2
2
3DyDt!F•F50, ~23!

A2~DX!F•F[~Dx
413Dy

224DxDt!F•F50. ~24!

It is straightforward to verify that the single plane soliton of~23! and ~24! has the form

F511exph, h5px1qy1rz1vt1const, ~25!

with the dispersion relations

A1~P![pr2 1
3p

3q2 2
3qv50, ~26!

A2~P![p413q224pv50. ~27!

In order to construct a (311)-dimensional dromion solution of the JMKP system, we sho
use the general three plane soliton solution of~23! and ~24! which has the form
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



tential

e

3127H.-Y. Ruan and S.-Y. Lou: Higher-dimensional dromion structures

¬¬¬¬¬¬¬¬¬¬
F511eh11eh21eh31A12e
h11h21A13e

h21h31A23e
h21h31A12A13A23e

h11h21h3, ~28!

h i5pix1qiy1r iz1v i t1h0i , ~29!

where

~pi ,qi ,r i ,v i !, i51,2,3,

are three sets of different constants which satisfied~8! and ~9! with

D[p1q2r 31p2q3r 11p3q1r 22r 1q2p32r 2q3p12r 3q1p2Þ0, ~30!

and the interaction constantAi j between two plane solitonsh i andh j is given by

Ai j[2
A1~Pi2Pj !

A1~Pi1Pj !
52

A2~Pi2Pj !

A2~Pi1Pj !
5
pi
2pj

2~pi2pj !
22~piqj2pjqi !

2

pi
2pj

2~pi1pj !
22~piqj2pjqi !

2 . ~31!

From the discussions of the last section, we know that a dromion solution may exist for a po
in the form

w5~a1]x1b1]y1c1]z!~a2]x1b2]y1c2]z!~a3]x1b3]y1c3]z!ln F ~32!

instead of the fieldu, ~10!, itself. From Eqs.~28! and ~29!, we know that if we make a spac
transformation

p1x1q1y1r 1z5px1 , p2x1q2y1r 2z5qy1 , p3x1q3y1r 3z5rz1 , ~33!

and fix the constantsai , bi , andci in ~32! as

ai5
p

D
~qi11r i122r i11qi12!, bi5

q

D
~r i11pi122pi11r i12!, ci5

r

D
~pi11qi122qi11pi12!,

~34!

where (pi ,qi ,r i)5(pi23 ,qi23 ,r i23) if i . 3 andD is same as in~30!, then the potentialw
becomes

w5]x1]y1]z1 ln F5
pqr

F1
2

F2

F
. ~35!

with

F15e2~1/2!~h11h21h3!1e~1/2!~h12h22h3!1e~1/2!~h22h12h3!1e~1/2!~h32h22h1!1A12e
~1/2!~h11h22h3!

1A13e
~1/2!~h11h32h2!1A23e

~1/2!~h21h32h1!1A12A23A13e
~1/2!~h11h21h3!, ~36!

F25a01a1e
h11a2e

h21a3e
h32a3A12e

h11h22a1A23e
h21h3

2a2A13e
h11h32a0A123e

h11h21h3, ~37!

a0521A1232A122A132A23, a15A121A132A231A12322A12A13, A1235A12A23A13,

~38!

a25A121A232A131A12322A12A23, a35A131A232A121A12322A13A23,
J. Math. Phys., Vol. 38, No. 6, June 1997
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and

h15p1x11v1t1h10, h25qy11v2t1h20, h35rz11v3t1h30. ~39!

It is easy to see that the potentialv shown by Eq.~35! is localized in all directions becaus
F2 /F1 is finite andF1

22 decays exponentially asr [ Ax121y1
21z1

2→`. We can also see this
property graphically. Because we cannot make a four-dimensional graph it is difficult to give
picture of the structure of the (311)-dimensional dromion~35!. However, it is possible to see th
localized property of~35! at a fixed time by using some different three-dimensional projec
graphs. Because the dromion solution~35! is constructed by three plane solitonsh1 5 0, h2 5 0,
andh3 5 0, we may observe the localized property of the dromion from the projective plot
these planes. In Fig. 1, we takeh1 5 x1 1 1

4t, h2 5 4x 1 y 1 257
32z 1 259

16t [ y1 1 259
16t, and

h3 5 5x1 y1 313
25z1 157

5 t [ z1 1 157
5 t simply. Figure 1~a! is a project plot of~35! by fixingh1 5 0 at

time t 5 0. From Fig. 1~a!, we know that the plane soliton which is located on planeh1 5 0 has
been annihilated everywhere except near the originaly1 5 z1 5 0. In the same way Figs. 1~b! and
1~c! are the projective plots on other two planes at timet50. From Figs. 1~b! and 1~c! we see also
that other two plane solitons have been annihilated everywhere except near the original. I
mary Fig. 1 shows us that three plane solitons are all annihilated while a dromion which is lo
at the cross point of three planes~the original point at timet50 for h i050! survived.

Figure 2 shows the localized property of~35! in an alternative way by fixingr 2 [ x1
2 1 y1

2

1 z1
2 for some differentr . The figures in Fig. 2 are the plots of~35! near its maximum by replacing

z15Ar 22x1
22y1

2 for r510, 20, and 30, respectively, while the planesh1 , h2 , andh3 are taken
as in Fig. 1. From Figs. 2~a!–2~c!, we see that the maximum of the dromion soliton~35! decays
exponentially asr→`, say,uwumax' 83 1023 for r 5 10, uwumax' 1.23 1027 for r 5 20, and
uwumax'3.5310212 for r530.

Figure 3 contains the plots of another potential

v522]x1]y1 ln F. ~40!

From Figs. 3~a!–3~c!, we see that though two operators]x1 and ]y1 have annihilated one plan
soliton which is located onh3 5 0 @see Fig. 3~a!#, the other two plane solitons~which are given by
h1 5 0 andh2 5 0! have not been annihilated in all directions@see Figs. 3~b! and 3~c!#.

B. Multi-dromions constructed from multi-plane solitons

From Eqs.~32! and ~34!, we know that becauseai , bi , ci are qi , pi , r i dependent, the
multi-dromion solutions for the potentialw given by Eq.~32! are allowed only for a special form
such that three linear operatorsai]x 1 bi]y 1 ci]z ( i 5 1,2,3) with fixedai ,bi ,ci annihilate all the
plane solitons. In other words the only allowed plane solitons must be perpendicular to the a
the new space coordinatesx1 ,y1 ,z1 . Furthermore, because of the equations~26! and~27!, one can
easily see that the only possibleN dromions are constructed from (N12) plane solitons with
(q2r 3Þq3r 2)

h15p1x1 1
4p1

3t1h10[p1x11
1
4p1

3t,

h25p2x1q2y1r 2z1v2t1h20[qy11v2t1h20,
~41!

h35p3x1q3y1r 3z1v3t1h30[rz11v3t1h30,

h i5pix1 1
4pi

3t1h i0[pix11
1
4pi

3t1h i0 , i54,5,...,N12,
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 1. The projective plots of the (311)-dimensional dromion@Eq. ~35!# on the three ghost plane withh1 5 x1 1
1
4t,

h2 5 y1 1
259
16 t, andh3 5 z1 1

157
5 t at t 5 0. ~a! The projective plot of dromion on the planeh3u t50 5 z1 5 0. ~b! The

projective plot of the dromion on the planeh1u t50 5 x1 5 0. ~c! The projective plot of the dromion on the planeh2u t50

5y150.
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 2. The projective plots of the dromion near the maximum ofuwu and fixedr 2 [ x1
2 1 y1

2 1 z1
2 at t 5 0. The parameters

of the planes are same as in Fig.~1!. The fixing radiusr for the figures are~a! r 5 10,~b! r 5 20, and~c! r 5 30, respectively.
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 3. The projective plots of the potentialv 5 22]x1]y1 ln F with the sameF as in Figs. 1 and 2.~a! The projective plot
of v for h3u t50 5 z1 5 0. ~b! The projective plot ofv for h1u t50 5 x1 5 0 5 0. ~c! The projective plot ofv for h2u t50 5 y
50.
J. Math. Phys., Vol. 38, No. 6, June 1997
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w5]x1]y1]z1 ln F[
1

~q2r 32r 2q3!
3 „~q2r 32r 2q3!]x1~r 2p32p2r 3!]y

1~p2q32p3q2!]z…~r 3]y2q3]z!~q2]z2r 2]y!ln F
~42!

F511(
i51

N

exph i1(
j, i

Ai j exp ~h i1h j !1•••1S)
j. i

Ai j DexpS (
k51

N

hkD , Ai j.0,

and all the dromions are located on the intersection line of the plane solitonsh2 5 0 andh3 5 0.
In other words, in the new spacex1 , y1 , z1 , N dromions (N > 2) are located on a line paralle

to thex1 axis and the line is fixed by

y152
1

4qp2
~p2

413q2
2!t2

1

q
h20,

~43!

z152
1

4rp3
~p3

413q3
2!t2

1

r
h30.

The evolution of theN dromions can be separated to two parts. The first part is that the
moves in the velocity

v52
1

4qp2
~p2

413q2
2!j12

1

4rp3
~p3

413q3
2!k1 , ~44!

wherej1 andk1 are the unit vectors along withy1 andz1 axes, respectively, and the second p
is that theN dromions move along with the negative direction of the line in the velocities

v i52
pi
2

4
, i51,4,5,...,N12. ~45!

To discuss the interactions among multi-dromions, we may ‘‘sit’’ on the moving line give
~43!. That is to say we may consider the interactions among the dromions in one dimensio
(111)-dimensional integrable models, like the KdV equation, the interactions among soliton
completely elastic. There is no energy exchange among solitons when they are interactin
shapes and velocities of the solitons are unchanged after interaction. The only effect
interaction is the phase shifts. On the other hand, the interactions among the dromions
JMKP are not elastic. Figure 4 is a plot of the evolution of two dromions which are driven by
ghost plane solitons along with the moving line. And the four ghost plane solitons are deter
by

h15x1
1

4
t120[x11

1

4
t120, h254x1y1

257

32
z1

259

16
t[y11

259

16
t,

~46!

h355x1y1
313

25
z1

157

5
t[z11

157

5
t, h45

5

4
x1

125

256
t2205

5

4
x11

125

256
t220.

From Fig. 4 we can see that after interaction, in addition to the phase shifts, the shapes
dromions are also changed while the velocities of two dromions remain unchanged. To o
the changes of the dromion shape among interaction, we may also observe the project p
sitting on a moving plane, say,h3 5 0, instead of on a moving line. Figure 5 is the project plots
two dromion interactions at timest 5 2125,2 25, 0, 25, and 95, respectively, with
J. Math. Phys., Vol. 38, No. 6, June 1997
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h15x11
1

4
t, h252x1

17

8
z1z1

19

8
t[2y11

19

8
t,

~47!

h353x1y1
41

9
z17t[3z117t50, h45

1

2
x11

1

32
t.

From Figs. 5~a!–5~c!, we see that the shapes of two dromions change explicitly before and
interaction. For some given parameters, say, as in Fig. 5, the large dromion~with large amplitude!
becomes larger and the small dromion becomes smaller, while for other types of paramete
as in Fig. 4, the large dromion becomes smaller while the small dromion becomes larger.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have studied the possible structures of (n11)-dimensional dromions which
are constructed by multi-‘‘plane’’ solitons. Usually for an (n11)-dimensional conditionally inte-
grable model, a single dromion solution which is constructed fromn nonparallel ‘‘plane’’ solitons
and localized in all directions can be found for a suitable potential. Generally, because the
tial is n-plane soliton dependent, the form of the multi-dromion solution for an (n11)-
dimensional model (n.2) is highly restricted.

The details about the (311)-dimensional dromion solutions of the JMKP system are d
cussed carefully. For the JMKP system, the multi-dromion solutions are only allowed for a s
type form. All the dromions can only be located on a moving line which is the intersect line o
ghost plane solitons. In a suitable space transformation the potential which possesses
dromions has the formw;]x1]y1]z1 ln F with x15x andF is a multi-plane soliton solution in
which two plane solitons are perpendicular toy1 and z1 axes, respectively, and all other plan
solitons are perpendicular to thex axes.

In addition to the phase shifts, the shapes of the dromions will also be changed whi
velocities of the dromions remain unchanged among interactions.

FIG. 4. The plot of the interactions of two dromions observed on the moving lineh2 5 4x 1 y 1
257
32z1

256
16 t [ 4y1 1

256
16 t

5 0 andh3 5 5x 1 y 1
313
25z1

157
5 t [ 5z1 1

157
5 t [ 0 while other two plane solitons are determined byh1 5 x1 1

1
4t 1 20

andh45
5
4x11

125
256t220.
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FIG. 5. The plots of the interactions of two dromions observed on themoving planeh3 5 3x1 y 1
41
9 1 7t [ 3z1 5 7t 5 0.

Theother threeplanesolitonsaredeterminedbyh15 x11
1
4t, h25 241

17
8z1 y1

19
8 t [ 2y11

19
8 t andh45

1
2x11

1
32t. The

time of the figures are~a! t 5 2125,~b! t 5 225,~c! t 5 0, ~d! t 5 25, and~e! t 5 95.
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In Ref. 10, we know that for the KdV type equation~1!, in addition to that constructed from
the plane solitons there are some other types of multi-dromion solutions which are const
from both plane and camber solitons. Especially, ring type dromions exist for the KdV
equation~1!. However, we have not yet found any other types of dromions except those
structed by plane solitons for the JMKP system~2! and ~3!. Additional study of the higher
dimensional dromions is worthwhile.
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On the dimension of the global attractor for the damped
Sine–Gordon equation

Guanxiang Wang and Shu Zhu
Department of Mathematics, Peking University,
Beijing 100871, People’s Republic of China

~Received 6 December 1996; accepted for publication 3 January 1997!

This article gives a more precise estimate on the dimension of the global attractor
for the damped Sine–Gordon equation. The gained Hausdorff dimension remains
small for large damping, which conforms to physics. ©1997 American Institute
of Physics.@S0022-2488~97!01706-4#

I. INTRODUCTION

The purpose of this article is to estimate in detail the dimension of the global attractor fo
damped Sine–Gordon equation which describes the dynamics of Josephson tunnel junctio
continuous pendulum.1 The equation can be written

utt1aut2Du1sin u5 f in V3R1 , ~1!

wherea.0 and f are given andV is an open bounded set ofRn with a boundaryG sufficiently
regular. The initial conditions are

u~x,0!5u0~x!, ut~x,0!5u1~x!, ~2!

and the Dirichlet boundary condition is

u50 on G3R1 . ~3!

Ghidaglia and Temam in Ref. 2 gave the existence of the global attractor for system~1!–~3! and
proved that the dimension of the attractor is bounded for givena.0. Furthermore, Temam
obtained in Ref. 3 a formula of the upper bound of the dimension. However, the estimates in
3 are so crude that the dimension of the attractor can only be bounded by infinity whe
coefficienta of damping is large, which is obviously not precise in the physical sense. To o
come this disagreement, by carefully estimating and splitting the positivity of the linear ope
in the corresponding evolution equation of the first order in time, this article obtains a more
upper bound of the dimension for the attractor.

Theorem: The Hausdorff dimension dH of the global attractor for the Sine–Gordon system
(1)–(3) satisfies

dH50 f or l1>1, ~4!

dH<minHm:mPN,
1

m (
j51

m
1

l j
<

2l1a
2

Aa214l1~a1Aa214l1!
J f or l1,1 ~5!

wherel j , j51, ..., are the eigenvalues of the operator A52D under condition (3) satisfying
0,l1<l2,..., andN is the set of natural numbers.

It should be pointed out that~5! is valid for anyl1.0, a.0, andn>1. Obviously,dH will
be bounded whena large since
0022-2488/97/38(6)/3137/5/$10.00
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¬¬¬¬¬¬¬¬¬¬
2l1a
2

Aa214l1~a1Aa214l1!
→l1 as a→`.

Moreover,~5! shows that thedH here is much less than that obtained in Ref. 3, even for smaa.

II. PROOF OF THE THEOREM

The proof of the theorem consists of two lemmas with some propositions as below. Le

~u,v !5E
V
uv dx, uuu5~u,u!1/2, for u,vPL2~V!

and

„~u,v !…5(
i51

n

~Diu,Div !, iui5„~u,u!…1/2, for u,vPH0
1~V!

denote the usual scalar products and norms inL2(V) andH0
1(V), respectively. For convenience

we omit statements of the existence and uniqueness of solution of~1!–~3! which define a con-
tinuous semigroup of mapping

S~ t !:$u0 ,u1%→$u,ut% for t>0 ~6!

from E05H0
1(V)3L2(V) into itself. We also omit the statement of the existence of the glo

attractor for~1!–~3! ~see, e.g., Ref. 3 for detail!.
Lemma 1: If the first eigenvaluel1 of A52D under (3) satisfiesl1>1, then the dimension

of the attractor for (1)–(3) is zero.
Proof: Since the system~1!–~3! is a gradient system~see, e.g., Ref. 4! and it is easy to check

that the steady solutions of~1! are hyperbolic, it is sufficient to prove that the steady solution
the Sine–Gordon equation~1! with boundary~3! is unique inL2(V) under the assumptions of th
lemma. The only difficulty in doing that is to deal with the casel151, which is also easy becaus
the special form of the nonlinear term in Eq.~1!. We omit the details. h

In the sequel, it is convenient to reduce~1! to an evolution equation of the first order in tim
Let w5$u,v%, v5ut1«u, where« is carefully chosen as

«5
l1a

a214l1
, ~7!

and write~1! as

w t1Lw1G~w!5F, ~8!

whereF5$0,f %, G(w)5$0,sinu%, and

L5S «I 2I

A2«~a2«!I ~a2«!I
D . ~9!

We can then consider~8! and ~2! as an evolution problem in the product spaceE05H0
1(V)

3L2(V), which is a Hilbert space for the natural scalar product and norm

~w,c!E05„~u1 ,u2!…1~v1 ,v2!, uwuE05~w,w!E0
1/2 ~10!
J. Math. Phys., Vol. 38, No. 6, June 1997
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for w5$u1 ,v1% andc5$u2 ,v2%PE0 . First, we have a proposition on the positivity of the ope
tor L, which plays the center role in this article.

Proposition 1: Forw5$u,v%PE0 ,

~Lw,w!E0>l uwuE0
2 1

a

2
uvu2, ~11!

where

l 5
a

4 S 12
a

Aa214l1
D . ~12!

Remark: The second term on the right side of (11) is the center role to ensure the dime
of global attractor remains bounded asa increases and thel in (12) is the largest value ofl
which keeps (11) valid in this method. If we denotel in (12) by l 0 , then (11) is valid forl
P@0, l 0#.

Proof of Proposition 1:Let us denote

~Lw,w!E02l uwuE0
2 2

a

2
uvu2[a~u,v !. ~13!

Then by~9! and ~10!

a~u,v !5~«2l !iui21S a

2
2«2l D uvu22«~a2«!~u,v !

>~by Poincare inequality!

>~«2l !iui21S a

2
2«2l D uvu22

«~a2«!

Al1

iviuvu

>~«2l !iui21S a

2
2«2l D uvu22

«a

Al1

iuiuvu, ~14!

substitute~7! and ~12! into ~14!. Elementary computations show

4~«2l !S a

2
2«2l D5

«2a2

l1
,

i.e.,

a~u,v !>0 for uPH0
1~V!, vPL2~V!. ~15!

Thus ~13! and ~15! imply ~11!. h

To estimate the dimension of the attractor for~1!–~3! @or ~8! and ~2!#, consider the first
variation equation of~8!,

C85F8~w!C ~16!

with initial condition

C~0!5h, h5$j,z%PE0 , ~17!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where

F8~w!52„L1G8~w!… ~18!

G8~w!5S 0 0

cosu 0D ~19!

andw5$u,v% is a solution of~8! and~2!. It is shown in Ref. 3 that~16! and~17! are a well-posed
problem inE0 . We will need another proposition borrowed from Ref. 3.

Proposition 2: For any orthonormal family of elements of E0 , $j j ,z j%, j51,...,m, we have

(
j51

m

uj j u2<(
j51

m

l j
21.

Now we have the lemma about the dimension of the attractor.
Lemma 2: The Hausdorff dimension dH of the attractor for the Sine–Gordon system (1)–(3)

satisfies

dH<minHm:mPN,
1

m (
j51

m
1

l j
<

2l1a
2

Aa214l1~a1Aa214l1!
J . ~20!

Proof:We considerm solutionsC1 ,...,Cm of ~16! and~17!. At a given timet, letQm(t) be
the orthogonal projector inE0 onto the space spanned byC1(t),...,Cm(t). Let F j (t)
5$j j (t),z j (t)%, j51,...,m, denote an orthonormal basis of Qm(t)E0

5span$C1(t),...,Cm(t)%. Now, consider

Tr F8„w~t!…+Qm~t!5(
j51

m

~F8„w~t!…F j~t!,F j~t!!

52(
j51

m

~LF j ,F j !E02(
j51

m

~G8~w!F j ,F j !E0. ~21!

By Proposition 1

~LF j ,F j !E0>l uF j uE0
2 1

a

2
uz j u2, ~22!

and by~19!

„G8~w!F j ,F j…E0
<uj j uuz j u. ~23!

We observe thatuF j uE051 since the familyF j is orthonormal inE0 and hence

(
j51

m

„F8~w!F j ,F j…E0
<2ml 2(

j51

m
a

2
uz j u21(

j51

m

uj j uuz j u

<2ml 1
1

2a (
j51

m

uj j u2

<~by Proposition 2!

<2ml 1
1

2a (
j51

m
1

l j
, ~24!
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



3141G. Wang and S. Zhu: Dimension of attractor for SGE

¬¬¬¬¬¬¬¬¬¬
wherew is a solution of~8! and ~2! andt>0. Thus, by~21!,

Tr F8„w~t!…+Qm~t!<0 ~25!

if m is so large that

1

m (
j51

m
1

l j
<2al 5

2l1a
2

Aa214l1~a1Aa214l1!
. ~26!

By Theorem V.33 in Ref. 3,~25! implies ~20!. h

Lemmas 1 and 2 imply the theorem.
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A Lanczos potential in Kerr geometry
Göran Bergqvista)
Department of Mathematics, Ma¨lardalen University, S-721 23 Va¨sterås, Sweden

~Received 31 December 1996; accepted for publication 27 February 1997!

A Lanczos potential is a tensor of rank 3 for which a certain combination of
derivatives always equals the Weyl tensor. General existence theorems have been
proved before and some explicit expressions for Lanczos potentials in certain
spacetimes have been found. In this paper we explicitly study a Lanczos potential
in Kerr spacetime obtained from a previously studied flat connection. As an appli-
cation it is shown that the mass can be expressed as an integral of the Lanczos
potential. © 1997 American Institute of Physics.@S0022-2488~97!00906-7#

I. INTRODUCTION AND NOTATION

Although Kerr spacetime is one of the most studied spacetimes in general relativity, the
still new features to be discovered. One may expect some of these features, which sometim
be studied in an explicit manner in Kerr spacetime, to hold in more general spacetimes.
paper we shall demonstrate that there is a relation between the mass and a ‘‘potential’’ of the
tensor, a so-called Lanczos potential. Furthermore, this Lanczos potential is related to
connection which has been used to study not only mass but also angular momentum and
gation of spinors.

The outline of the paper is as follows. Below we introduce some notation. In Sec. II we d
the Lanczos potential in general and review some general existence results. In Sec. III we
Kerr–Schild form of the Kerr metric to define a flat connection and we list some spin coeffi
equations to be used later. In Sec. IV the flat connection is then shown to define a La
potential and in Sec. V we express the mass in terms of the potential. We then comment
spinor formulation of the results in Sec. VI and finish with a discussion.

Notation:We shall consider four dimensional spacetimes with signature1222 of the metric
gab . We use the abstract index notation.1 Tensors have indicesa,b,c... and spinors
A,A8,B,B8,... with the usual identificationa5AA8. The antisymmetric spinoreAB is related to
the metric by gab5eABēA8B8 . We will use the GHP formalism~compact spin coefficien
formalism!1,2 with a spinor basis (oA ,ıA) corresponding to a null tetrad (l a ,na ,ma ,m̄a). This
tetrad will in Kerr spacetime be the natural typeD spacetime tetrad, i.e.,oA and ıA are the
principal null directions of the Weyl spinor. In this case the only nonvanishing spin coeffic
arer, r8, t, andt8 while the only nonzero component of the Weyl spinor isC2 . We shall use
both¹aXb andXb;a to denote the covariant derivative ofXb . X(ab) means symmetrization ove
the indicesa andb andX@ab# antisymmetrization.X@aubuc# means antisymmetrization overa and
c but not overb.

II. LANCZOS POTENTIALS

Although in this paper we shall work with the Lanczos potential of the Weyl tensorCabcd, the
concept of a Lanczos potential can be defined for more general tensors which we refer to a
candidates.3 By a Weyl candidateWabcd we mean a tensor with the symmetries of the We
tensor, that is

Wabcd5W@ab#cd5Wab@cd#5Wcdab, Wa
bad505Wa@bcd# . ~2.1!

a!Electronic mail: gbt@mdh.se
0022-2488/97/38(6)/3142/13/$10.00
3142 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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3143Göran Bergqvist: A Lanczos potential in Kerr geometry

¬¬¬¬¬¬¬¬¬¬
Definition: A Lanczos potential of a Weyl candidateWabcd is a tensorLabc satisfying

Wabcd52Lab@c;d#12Lcd@a;b#2ga[c~ I ubud]1I d]b!1gb[c~ I uaud]1I d]a!1 4
3ga[cgd]bL

e f
e; f , ~2.2!

Labc1Lbac50, ~2.3!

and

Labc1Lbca1Lcab50, ~2.4!

where

I ab5La
e
b;e2La

e
e;b . ~2.5!

The existence of such a potential for the Weyl tensor in four dimensions was first propos
Lanczos.4 Proofs of existence of Lanczos potentials of any Weyl candidate in four dimens
have been given by Bampi and Caviglia5 and by Illge6 using spinors. In other dimensions a
existence proof seems to be lacking.3

There is in fact a lot of freedom in the choice of Lanczos potential for a given Weyl candi
ThereforeLabc is sometimes required to satisfy two extra conditions, one algebraic

Lab
b50. ~2.6!

and one differential

Lab
c
;c50. ~2.7!

Bampi and Caviglia however showed thatLab
b andLab

c
;c make take any values, and the choice

these values does not affect the Weyl candidate in Eq.~2.2!. The conditions~2.6! and ~2.7! are
therefore pure gauge conditions, called the Lanczos algebraic and differential gauges, respe
and we shall not require them to be satisfied.

From now on we shall restrict our attention to the actual Weyl tensorCabcd and not discuss
other possible Weyl candidates.

Explicit expressions for Lanczos potentials of the Weyl tensor have been studied by
Dolan and Kim,7 Torres del Castillo,8,9 and López Bonillaet al.10 In Refs. 8–10 Lanczos poten
tials for various algebraically special spacetimes, including all typeD vacuum spacetimes an
Kerr–Newman spacetime were obtained but no applications were discussed.

In Secs. IV and V we shall explicitly study a Lanczos potential in Kerr spacetime an
relations to other mathematical and physical quantities. In Sec. VI we discuss the spinor f
lation of these results and also remark on the gauge conditions in the spinor formulation.

For a comprehensive and updated review on results concerning the Lanczos poten
general, we refer to the paper by Edgar and Ho¨glund.3

III. A FLAT KERR CONNECTION

We begin by describing Kerr spacetime using the GHP formalism1,2 and by listing some
equations needed in Sec. IV. The nonzero spin coefficients arer, r8, t, and t8 and the only
nonzero component of the Weyl spinor isC2 . Hence we have

s5s85k5k85C05C15C35C450. ~3.1!

Recall the notationD, D8, Z, and Z8 of the differential operators of the formalism and thatI
p

5I, Ip8 5 I8, andZp5Z8. The Ricci equations that we shall use are
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Z8r̄5~ r̄2r!t̄, ~3.2a!

Ir5r2, ~3.2b!

It̄5 r̄~ t̄2t8!, ~3.2c!

Z8t85t82, ~3.2d!

Z8t̄5 t̄2. ~3.2e!

The Bianchi identities needed are

IC253rC2 , ~3.3a!

Z8C253t8C2 , ~3.3b!

ZC253tC2 . ~3.3c!

Applying the commutatorIZ82Z8I to C2 gives
2,11

It85Z8r. ~3.4!

The same commutator applied tor gives

I~Z8r!53rZ8r, ~3.5!

which by Eqs.~3.2b! and ~3.4! gives

It85Z8r52Kr3, ~3.6!

where the integration ‘‘constant’’K satisfies

IK50. ~3.7!

Therefore

t85K11Kr2, ~3.8!

but K150 in Kerr spacetime.11 Substituting Eq.~3.8! into Eq. ~3.2c! we get

It̄5 r̄~ t̄2Kr2! ~3.9!

from which

t̄5K2r̄2Krr̄ ~3.10!

but alsoK250.11

We can now summarize some useful results,

t85Kr2, ~3.11a!

t̄52Krr̄, ~3.11b!

It85Z8r52rt8. ~3.11c!

Finally, Eq. ~3.3a! implies
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C25Mr3, ~3.12!

whereM in fact is an absolute constant, the mass parameter of Kerr spacetime.11

We shall also use the expansion of the derivative¹a with respect to the tetrad. In general
the GHP formalism we have that

¹a5 l aI81naI2maZ82m̄aZ ~3.13!

when acting on a zero weight quantity.1

We now continue by describing a flat connection in Kerr spacetime. Following Ref. 12
define the real, zero weight tensor

HAA8BB85Hab5
r1 r̄

2r3
C2l al b ~3.14!

and a spinor

GAA8BC52¹ (C
B8HB)AA8B8 . ~3.15!

Here we shall use thatl a5oAōA8 , whereoA is a principal null direction of the Weyl spinor
Writing Eq. ~3.14! out, we find13

GAA8BC5
1

2r
C2ōA8S 2oAiBoC2oAoBiC2

r1 r̄

r
iAoBoC1

t̄2t8

r
oAoBoCD . ~3.16!

With ¹a being the standard, metric, torsion-free, Levi–Civita connection, we may define a
connection¹̂a5¹̂AA8 by

¹̂AA8lB5¹AA8lB1GAA8B
ClC . ~3.17!

The following was shown in Ref. 12:

Theorem:¹̂a as defined by Eq.~3.17! is a flat and metric connection in Kerr spacetime.

This means that the corresponding Riemann tensorR̂abcd50 and that¹̂agbc50. The connec-
tion however has torsion. That¹̂a is flat implies that the equation

¹̂AA8lB50 ~3.18!

has a solution space of two complex dimensions on any spacetime domain.
The relation betweenGAA8BC and the mass-parameterM of Kerr spacetime will be discusse

in Sec. V. We remark that the equation

¹̂axb5gab2Hab ~3.19!

has a four-dimensional real affine solution space and by defining

mA85xAA8l
A ~3.20!

which then will satisfy the generalized twistor equation

¹̂A(A8mB8)52HAA8BB8l
B, ~3.21!

where

lA5 1
2 ¹̂A

B8mB8 , ~3.22!
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one can also find a relation betweenGAA8BC and the angular momentum of Kerr spacetime. W
refer to Refs. 12 and 14 for more details. The right-hand side of Eq.~3.18! indicates some relation
to the Kerr–Schild form of the metric and this has in fact been studied by Harnett.15 The first
appearance ofGAA8BC was in Ref. 13 when some spinor propagation equations similar to
techniques of the positive energy theorem were explored.

IV. A LANCZOS POTENTIAL DEFINED BY THE FLAT CONNECTION

We shall in this section prove that the flat Kerr connection can be used to define a La
potential for the Weyl tensor in Kerr spacetime. WithGAA8BC defined by Eq.~3.16! we define

Labc52 1
2~GCC8ABēA8B81ḠC8CA8B8eAB!. ~4.1!

Using Eqs.~3.12!, ~3.16! andeAB5oAiB2iAoB ~Ref. 1! this may be written

Labc5~ f 11 f̄ 1!l c~ l anb2nal b!1~ f 12 f̄ 1!l c~m̄amb2mam̄b!1 f 2m̄c~ l amb2mal b!

1 f̄ 2mc~ l am̄b2m̄al b!1 f 3l c~ l amb2mal b!1 f̄ 3l c~ l am̄b2m̄al b!, ~4.2!

where

f 15
1

4r
C25

1

4
Mr2, ~4.3a!

f 25
r1 r̄

4r2
C25

1

4
Mr~r1 r̄ !, ~4.3b!

f 35
t82 t̄

4r2
C2 . ~4.3c!

Theorem:The tensorLabc defined by Eqs.~4.2! and ~4.3! is a Lanczos potential in Ker
spacetime.

Proof: To prove this result we need to verify that Eqs.~2.2!, ~2.3!, and ~2.4! are satisfied.
While Eqs.~2.3! and ~2.4! are easy to check, Eq.~2.2! requires a rather lengthy calculation.

Starting with Eq.~2.3! we note thatGCC8AB is symmetric inAB and sinceēA8B8 is antisym-
metric inA8B8 it follows immediately thatLabc as defined by Eq.~4.1! is antisymmetric inab.
Thus Eq.~2.3! holds forLabc .

Next we shall verify that Eq.~2.4! is also true. Using Eq.~4.2! we find that

Labc1Lbca1Lcab56~ f 12 f̄ 12 f 21 f̄ 2!l [cm̄amb] . ~4.4!

Thus, for Eq.~2.4! to hold we have to check that

f 12 f̄ 12 f 21 f̄ 250. ~4.5!

By Eqs.~4.3a! and ~4.3b! we have

f 12 f̄ 12 f 21 f̄ 25
1
4M ~r22 r̄22r~r1 r̄ !1 r̄~r1 r̄ !!50 ~4.6!

and hence Eq.~2.4! is satisfied byLabc .
To check that Eq.~2.2! is also satisfied, we need to calculate the ten independent compo

of Eq. ~2.2! and show that these in fact equal the ten independent components of the Weyl t
This can be done by calculating the five complex components,
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X05 l ambl cmdCabcd, ~4.7a!

X15 l ambl cndCabcd, ~4.7b!

X25 l ambm̄cndCabcd, ~4.7c!

X35 l anbm̄cndCabcd, ~4.7d!

X45m̄anbm̄cndCabcd, ~4.7e!

in the same way as in the spin coefficient formalism.1 We must show that

X05X15X35X450, X25C2 , ~4.8!

whereC2 is given by Eq.~3.12!.
We first show that the last term on the right-hand side of Eq.~2.2! vanishes. By Eq.~4.2! we

have

Lefe5~ f 21 f̄ 22 f 12 f̄ 1!l f . ~4.9!

Therefore

¹ fLefe5~ l fI81nfI2mfZ82m̄fZ!~~ f 21 f̄ 22 f 12 f̄ 1!l f !

5I~ f 21 f̄ 22 f 12 f̄ 1!2~r1 r̄ !~ f 21 f̄ 22 f 12 f̄ 1!, ~4.10!

where Eq.~3.13! and the definition ofr have been used.1 Equations~4.3a! and ~4.3b! imply that

f 21 f̄ 22 f 12 f̄ 15
1
2Mrr̄, ~4.11!

so by Eq.~3.2b! and the fact thatM is constant we get

I~ f 21 f̄ 22 f 12 f̄ 1!5 1
2MI~rr̄ !5 1

2Mrr̄~r1 r̄ !. ~4.12!

Substituting Eqs.~4.11! and ~4.12! into Eq. ~4.10! we see that

¹ fLefe50, ~4.13!

and therefore the last term in Eq.~2.2! vanishes.
Using Eq. ~4.13! and the normalization relations for the tetrad@l al a5 l ama5 l am̄a5nana

5nama5nam̄a5mama5m̄am̄a50, l ana52mam̄a51 ~Ref. 1!#, we can rewrite Eqs.~4.7! as

X05 l ambl cmd~2Lab@c;d#12Lcd@a;b#!, ~4.14a!

X15 l ambl cnd~2Lab@c;d#12Lcd@a;b#!1 1
2m

bl c~ I bc1I cb!, ~4.14b!

X25 l ambm̄cnd~2Lab@c;d#12Lcd@a;b#!1 1
2m

bm̄c~ I bc1I cb!2 1
2l
and~ I ad1I da!, ~4.14c!

X35 l anbm̄
cnd~2Lab@c;d#12Lcd@a;b#!1 1

2m
bm̄c~ I bc1I cb!, ~4.14d!

X45m̄anbm̄cnd~2Lab@c;d#12Lcd@a;b#!. ~4.14e!

Using Eqs.~2.5!, ~4.9! andLb
e
e52Lebe , the last term of Eq.~4.14b! is
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1
2m

bl c~ I bc1I cb!5 1
2~m

bl c1 l bmc!I bc

5 1
2~m

bl c1 l bmc!~¹eLbec2¹cLb
e
e!

5 1
2~m

bl c1 l bmc!~~ l eI81neI2meZ82m̄eZ!Lbec2¹c~~ f 11 f̄ 12 f 22 f̄ 2!l b!!.

~4.15!

Using Eq.~4.2! one finds that all terms from theLbec part of Eq.~4.15! immediately vanish. The
other part has only one term which is not immediately zero, namely

2 1
2m

bl c¹c~~ f 11 f̄ 12 f 22 f̄ 2!l b!52 1
2~ f 11 f̄ 12 f 22 f̄ 2!~m

b
Il b!52 1

2~ f 11 f̄ 12 f 22 f̄ 2!k,
~4.16!

but k50 by Eq.~3.1! and hence

1
2m

bl c~ I bc1I cb!50. ~4.17!

Using the definition~2.5! of I ab , the last two terms of Eq.~4.14c! can be written

1
2I ab~m

am̄b1m̄amb2 l anb2nal b!52 1
2I abg

ab52 1
2I a

a52 1
2¹eLa

ea1 1
2¹

aLa
e
e

52 1
2¹

eLaea2
1
2¹

aLeae52¹eLaea50, ~4.18!

where in the last step we have used Eq.~4.13!.
Next we study the last term of Eq.~4.14d!, which is

1
2n

bm̄c~ I bc1I cb!5 1
2~n

bm̄c1m̄bnc!I bc

5 1
2~n

bm̄c1m̄bnc!~~ l eI81neI2meZ82m̄eZ!Lbec2¹c~~ f 11 f̄ 12 f 22 f̄ 2!l b!!

5 1
2~22Z8 f̄ 11Z8 f 21If 322t8 f 112t̄ f̄ 11~ t̄2t8! f 212t̄ f 21~ r̄2r! f 3

12s̄ f̄ 3!, ~4.19!

where in the last step we used Eq.~4.2! and the definition of spin coefficients. By Eqs.~3.2a!,
~3.3c!, and~4.3a! we have

Z8 f̄ 15
C̄2t̄

4r̄2
~r12r̄ !, ~4.20!

and by Eqs.~3.2a!, ~3.3b!, ~3.11c!, and~4.3b!,

Z8 f 25
C2

4r2
~r2 r̄ !~t82 t̄ !. ~4.21!

Using Eqs.~3.2b!, ~3.2c!, ~3.3a!, ~3.11c!, and~4.3c! we obtain

If 35
C2

4r2
~3rt82rt̄1 r̄t82 r̄ t̄ !. ~4.22!

Substituting Eqs.~4.3!, ~4.20!, ~4.21!, and ~4.22! into Eq. ~4.19!, a straightforward calculation
yields

1
2n

bm̄c~ I bc1I cb!50. ~4.23!

By Eq. ~4.14a! we now have
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X05 l ambl cmd~¹dLabc2¹cLabd1¹bLcda2¹aLcdb!

5~ l ambl cmd2 l ambmcl d1 l ambl cmd2 l ambmcl d!¹dLabc

52l amb~ l cZ2mc
I!Labc . ~4.24!

Substituting Eq.~4.2! into Eq. ~4.24! and using the normalization relations for the tetrad, we fi
that there are no nonvanishing terms. Hence

X050. ~4.25!

In the same way, by Eqs.~4.2!, ~4.14b!, and~4.17!, we get

X15~ l ambl cnd2 l ambncl d1 l anbl cmd2 l anbmcl d!¹dLabc

52~ f 11 f̄ 1!~m
a
Il a!2~ f 12 f̄ 1!~ l

a
Ima!2 f 2~ l

a
Ima!. ~4.26!

By the definition ofk, k5ma
Il a52 l aIma , we have

X15k~3 f 11 f̄ 11 f 2!. ~4.27!

Sincek50 by Eq.~3.1! we obtain

X150. ~4.28!

Next we calculateX2 . By Eqs.~4.2!, ~4.14c!, and~4.18!,

X25~ l ambm̄cnd2 l ambncm̄d1m̄anbl cmd2m̄anbmcl d!¹dLabc

5~ f 11 f̄ 1!~m
aZ8l a!2~ f 12 f̄ 1!~ l

aZ8ma!1If 2

2 f 2~ l
aZm̄a1m̄a

Ima1ma
Im̄a2naIl a!2 f 3~m

a
Il a!. ~4.29!

Using r5maZ8l a , naIl a50, m̄a
Ima1ma

Im̄a5I(m̄ama)5I(21)50 and k as above, Eq.
~4.29! becomes

X252r f 11If 22 r̄ f 21k f 3 . ~4.30!

By Eqs.~3.2b! and ~4.3b! we get

If 25
1
4M ~r2~r1 r̄ !1r~r21 r̄2!!5 1

4Mr~2r21rr̄1 r̄2!, ~4.31!

which together with Eq.~4.3a! andk50 implies

X25
1
2 Mr31 1

4 Mr~2r21rr̄1 r̄2!2 1
4 Mrr̄~r1 r̄ !5Mr3. ~4.32!

By Eq. ~3.12! we therefore have

X25C2 , ~4.33!

as it should become according to Eq.~4.8!.
Again, with the same type of calculations and using Eqs.~4.14d!, ~4.23!, and the definitions of

the spin coefficients, we find

X35~ l anbm̄cnd2 l anbncm̄d1m̄anbl cnd2m̄anbncl d!¹dLabc

5Z8 f 11Z8 f̄ 11~2t82 t̄ ! f 12 t̄ f̄ 11~t82 t̄ ! f 22 t̄ f̄ 22If 32r f 32s̄ f̄ 3 . ~4.34!
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By Eqs.~3.3b!, ~3.11c!, and~4.3a! we have

Z8 f 15
C2t8

4r
. ~4.35!

Substituting Eqs.~4.3!, ~4.20!, ~4.22!, and~4.35! into Eq. ~4.34! one obtains

X350. ~4.36!

Finally, by Eq.~4.14e!,

X45~m̄anbm̄cnd2m̄anbncm̄d1m̄anbm̄cnd2m̄anbncm̄d!¹dLabc

52m̄anb~m̄c
I82ncZ8!Labc

54s8 f 112s8 f 222Z8 f 312t̄ f 3 . ~4.37!

By Eqs.~3.2d!, ~3.2e!, ~3.3b!, ~3.11c!, and~4.3c! we have

Z8 f 35
C2t̄

4r2
~t82 t̄ !. ~4.38!

Substituting Eqs.~3.1!, ~4.3!, and~4.38! into Eq. ~4.37! we find

X450. ~4.39!

Thus, by Eqs.~4.25!, ~4.28!, ~4.33!, ~4.36!, and~4.39! we have shown that Eq.~4.8! is satisfied,
i.e., Eq. ~2.2! is satisfied byLabc . Above we have shown that Eqs.~2.3! and ~2.4! are also
satisfied, and therefore we have proved thatLabc is a Lanczos potential in Kerr spacetime.

This concludes the proof of the theorem.

V. THE LANCZOS POTENTIAL AND MASS

Following the ideas of the proof of positive energy theorem,1,16,17the total energy or mass o
an asymptotically flat spacetime can be expressed in terms of the two-form,

Fab5 i ~lA¹bl̄A82lB¹al̄B8!. ~5.1!

If lA is asymptotically constant, then

lim
Sa→S

E
Sa

Fab58pPal̃
Al̄̃A8, ~5.2!

wherePa is the ADM momentum or Bondi momentum,l̃A is the asymptotic limit oflA, and
Sa is a family of two-surfaces approaching spacelike infinity or the cross sectionS of null infinity.
In Refs. 12 and 13 the following was shown:

Theorem:The two-formFab is closed in Kerr spacetime if¹̂alB50.
With the index notation this is written

¹ [aFbc]50. ~5.3!

Therefore one can define a conserved quantityPa(S), the ~quasilocal! momentum contained
within a spacelike two-surfaceS, by
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PAA8~S!l̂AlRA85
1

8p E
S
Fab . ~5.4!

HerePAA8(S) belongs to the real part of the dual ofS^ S̄ whereS is the solution space of two
complex dimensions to¹̂alB50 onS and l̂A represents one such solution. SinceFab is closed,
the mass contained withinS calculated fromPAA8(S) as in Ref. 14, will be either 0 ifS does not
enclose the singularity of Kerr spacetime, or equal toM ~the mass parameter! if it does.

We can now express these results in terms of the Lanczos potential. Ifua5lAl̄A8 is a null
vector and¹̂alB50 then¹̂aub50 which can be written

¹̂aub5¹̂a~lBl̄B8!5l̄B8¹̂alB1lB¹̂al̄B85l̄B8~¹alB1GAA8B
ClC!1lB~¹al̄B81ḠA8AB8

C8l̄C8!

5¹aub1 ēB8
C8l̄C8GAA8B

ClC1eB
ClCḠA8AB8

C8l̄C85¹aub22Lbcau
c, ~5.5!

where in the last step we have used Eq.~4.1!. Extending by linear combinations to any vect
va we see that

¹̂avb5¹avb22Lbcav
c ~5.6!

defines a flat connection which now is expressed in terms of the Lanczos potential. Furthe
if ¹̂alB50 the two-formFab can be written

Fab5 i ~lA(2ḠB8BA8
C8l̄C8)2lB(2ḠA8AB8

C8l̄C8))5 i (2eA
CḠB8BA8

C81eB
CḠA8AB8

C8)lCl̄C8 .
~5.7!

The dual of a real two-formAab5aABēA8B81āA8B8eAB , ~aAB symmetric! is the two-form1

*Aab52 i ~aABēA8B82āA8B8eAB!. ~5.8!

Therefore the real part ofFab is

1
2~Fab1F̄ab!5 1

2i ~2eA
CḠB8BA8

C81eB
CḠA8AB8

C8!uc1
1
2i ~ ēA8

C8GBB8A
C2 ēB8

C8GAA8B
C!uc

5 1
2 i ~ ēA8

C8GBB8A
C2eA

CḠB8BA8
C8!uc1

1
2i ~eB

CḠA8AB8
C82 ēB8

C8GAA8B
C!uc

52* Lab
c uc1* Lba

c uc5~* Lcab1* Lbca!u
c, ~5.9!

where* Labc is the dual ofLabc with respect to the first two indices. Now, the imaginary part
Fab is an exact two-form1 so if S is a closed two-surface we get

E
S
Fab5E

S
Re~Fab!5E

S
~* Lbca1* Lcab!u

c. ~5.10!

Hence, the momentum~5.4! can be written

PAA8~S!ûa5
1

8p E
S
~* Lbca1* Lcab!u

c, ~5.11!

whereua is a solution to¹̂aub50, i.e.,

¹aub52Lbcau
c ~5.12!
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andûa represents one such solution. By taking linear combinations we getPa(S) with respect to
any non-null vector.

Thus, we see that the Lanczos potentialLabc ~4.2! defines a flat connection by Eq.~5.6! which
means that we have solutions to Eq.~5.12!. These can then be used to calculate the mas
momentum in Kerr spacetime according to Eq.~5.10!. Note that no spinors are needed in any
these equations, only tensors.

We also remark that for any flat connection~consistent with asymptotic constancy!, defined as
in Eq. ~5.6!, in any asymptotically flat spacetime, the momentum can always be expressed in
of the connection if we use Eq.~5.7!. Thus, if a Lanczos potential defines a flat connection, we
always write

Paû
a5

1

8p
lim
Sa→S

E
Sa

~* Lbca1* Lcab!u
c, ~5.13!

where Pa is the Bondi or ADM momentum andua satisfies Eq.~5.12! and approaches th
asymptotic translationûa ~BMS translation!.

VI. REMARKS ON THE SPINOR VERSION

The definition of a Lanczos potential can be expressed in terms of spinors. The eq
corresponding to Eq.~2.2! will then look much simpler. The calculation we did in Sec. IV wou
look a bit easier but one still has to do essentially the same calculations. We chose to
calculations in Secs. IV and V in terms of tensors because of a lack of standard in the defi
of a Lanczos spinor potential as we shall now explain.

Assume we have a spinorLABCC8 and we define a tensorLabc by

Labc5LABCC8ēA8B81L̄A8B8C8CeAB . ~6.1!

One may then check what Eqs.~2.3! and ~2.4! imply for LABCC8 . It is trivial to see thatLabc
satisfying Eq.~2.3! is equivalent to

LABCC85LBACC8 . ~6.2!

Furthermore, it is straightforward to check that Eq.~2.4! for Labc is equivalent to

LAB
B
A82L̄A8B8

B8
A50. ~6.3!

Therefore Eqs.~6.2! and ~6.3! ought to be the only symmetry conditions on a Lanczos spi
potentialLABCC8 . Equation~2.2! for Labc can be shown to have the simple form

CABCD52¹ (A
A8LBCD)A8 ~6.4!

for spinors.3,6 HereCABCD is the Weyl spinor~or it could be any totally symmetric spinor!. This
form was used by Illge6 when proving the general existence theorem of Lanczos potentials.

It has however become common to assume that the Lanczos spinor potential should b
metric in all its three unprimed indices. This means that the Lanczos algebraic gauge~2.6! Lab

b

50 is assumed to hold on the tensor side. This gauge condition forLabc is easily seen to be
equivalent to

LAB
B
A81L̄A8B8

B8
A50 ~6.5!

for the spinor potential. Combining Eqs.~6.3! and ~6.5! we have
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LAB
B
A850 ~6.6!

which means that

LABCA85LACBA8 ~6.7!

which together with Eq.~6.2! implies that

LABCA85L~ABC!A8 . ~6.8!

As mentioned above, Eq.~6.8! is often assumed to be part of the definition of the spinor poten
~e.g., by Illge6!.

Rather, we prefer to use our spinorGAA8BC defined by Eq.~3.16! and define

LABCA852 1
2GCA8AB ~6.9!

in a similar way as in Eq.~4.1!. ThenLABCA8 will satisfy Eqs.~6.2!, ~6.3!, and~6.4! and should
therefore be called a Lanczos spinor potential.LABCA8 will also define a flat connection¹̂a by

¹̂AA8lB5¹AA8lB22LB
C
AA8lC , ~6.10!

as in Eq.~3.17!. Finally, Eq.~5.7! can be used to express the momentum in terms ofLABCA8 . The
symmetric part of Eq.~6.9!,

L̃ABCA852 1
2G~CAB!A8 , ~6.11!

will also satisfy Eq.~6.4! @only the symmetric part enters into Eq.~6.4!#. Therefore, by definition,
L̃ABCA8 satisfies Eq.~6.8! which implies that Eqs.~6.2! and ~6.3! are satisfied. However, usin
L̃ABCA8 we lose the relation to the flat connection and to mass and momentum. The
L̃ABCA8 as defined by Eq.~6.11! is a less interesting quantity thanLABCA8 as defined by Eq.~6.9!.
For future work, we propose that only Eqs.~6.2!, ~6.3!, and ~6.4! should be required in the
definition of a Lanczos spinor potential, this would be equivalent to the tensor Eqs.~2.2!, ~2.3!,
and ~2.4!.

VII. DISCUSSION

Although the existence of Lanczos potentials has been previously established and e
formulas have been given in several cases~including Kerr spacetime!, possible applications hav
not been much studied. Here we have seen that in Kerr spacetime, which certainly is a spa
of great physical importance, one can find an explicit expression for a Lanczos potential whi
physical applications. The potential can be used to calculate the mass and momentum. Usi
~3.19!–~3.22! one can in the way described in Ref. 12 also relate the potential to the an
momentum.

It is not clear if these results can be generalized to more general spacetimes for whic
cannot, of course, expect to find explicit forms of the Lanczos potential. This will require a fu
study. One can also verify that the potential described in this paper is not a potential for a
D vacuum spacetimes.

We remark that the approaches used in Refs. 7–10 to find explicit expressions for La
potentials are more direct than the approach used in this paper. In algebraically special spa
the algebraic symmetries of the Weyl spinor expressed in the spin coefficient formalism wer
to integrate the equations defining the potential. The potential for Kerr spacetime given in R
differs from the one given here as it also satisfies Eq.~2.6!, and therefore the spinor versio
satisfies Eq.~6.8!, and it does not define a flat connection.
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It may be interesting to note that the tensorHab defined by Eq.~3.14! is in some sense a
potential to the Lanczos potential by Eqs.~3.15! and~4.1!. This however is probably not a type o
result expected in more general cases~but see Ref. 9!.

To conclude, we think that it should be of interest to study if there are some more ge
relations between Lanczos potentials and mathematical concepts such as flat connectio
Kerr–Schild metrics, and between Lanczos potentials and physical quantities such as e
mass, momentum, and angular momentum.
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The double-complex function method suggested in previous papers is extended and
the extended method is used to establish two mutually dual extended double
Hauser–Ernst equations and related Riemann–Hilbert problems, then quadruple
representations of the semidirect product of the Kac–Moody and Virasoro groups
are given. These show that, for the stationary axisymmetric vacuum space–times,
there are more and richer symmetry structures than previously expected. The mul-
tiple forms of some well-known transformations can be obtained as some special
cases. ©1997 American Institute of Physics.@S0022-2488~97!03105-8#

I. INTRODUCTION

The stationary axisymmetric vacuum~SAV! Einstein equations, owing to their importance
mathematics and physics, have attracted much attention in these last years. Many techniqu
been devised to study the equations. A powerful method is to explore the invariance gro
generate new solutions from old ones. The Geroch group1 is a well-known example. Hauser an
Ernst ~HE!2 pointed out that the Riemann–Hilbert~RH! transformation was associated with th
infinite-dimensional loop group and was able to give the explicit action of the Geroch group w
has been shown by Wu and Ge3 to be isomorphic to an affine Kac–Moody group. The work
Hauser and Ernst2 developed the result of Kinnersley and Chitre,4 who give an infinite set of
generators of the Geroch group. Recently, Li and Hou5 extended the HE method to a more gene
case, which give rise to the construction of an infinite-dimensional invariance group for the
field equations as a semidirect product of the Kac–Moody and Virasoro groups. However
the ordinary complex functions are used in the above schemes, hence the results are restr
Ref. 6, the author~Zhong! suggested a double-complex function method, which was used to s
the SAV field equations and a series of results have been obtained~see, e.g., Refs. 7–10!. In the
present paper we further generalize the methods of Ref. 6 and use the generalized met
extend the Hauser–Ernst–Li–Hou’s scheme.2,5 We find that the SAV field equations have mo
and richer symmetry structures than previously expected, the results of Ref. 5 are a part o
we obtain here.

In Sec. II, we establish a so-called extended double-complex function method, which g
alizes the original one in Ref. 6. Sections III–VII are some applications of the extended do
complex function method to the SAV fields. In Sec. III, we give double-matrix SAV field eq

a!Address for correspondence.
0022-2488/97/38(6)/3155/11/$10.00
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tions in the general stationary axisymmetric coordinate system.11,2These extend the expressions
Refs. 6–10, where the double formulas were given only in the special coordinate s
(t,f,r,z). The generality of the coordinates is important for obtaining more multiple symme
of the SAV field equations~cf. Sec. V!. Then we introduce a double-matrix Ernst potential and
corresponding double HE equation. Section IV gives a extended double linear system ass
with the double HE equation. In Sec. V, two mutually dual extended double RH problems
related multiple RH transformations are established. In Sec. VI we obtain a quadruple in
equation and expound the quadruple group structures of the multiple RH transformation,
show that the RH transformation gives four representations of the invariance Kac–Mo
Virasoro group simultaneously. Finally, in Sec. VII, some discussions are given and quad
forms of some well-known transformations are obtained as special cases of the quadrup
transformations.

II. EXTENDED DOUBLE-COMPLEX FUNCTION METHOD

The double-complex number ringDC introduced in Ref. 6 can be regarded as an analytic
organic combination of the Clifford algebrasC(V(0)

1 ) andC(V(1)
1 )12 over the real number field

R. Thus any element ofC(V(0)
1 ) @respectively,C(V(1)

1 )# is of the forma11 jb1 , j
2521, a1 ,

b1PR ~respectively,a21eb2 , e2511, a2 , b2PR!. It should be noted that herej ~respectively,
e! is a generating element of the algebraC(V(0)

1 ) @respectively,C(V(1)
1 )# and generally is not

necessarily equated with6 i ~respectively,61!. Now, if the underlying fieldR is extended to the
ordinary complex number fieldC, thenDC is extended to a larger ring~denoted byEDC!.
EvidentlyEDC.DC. More explicitly, we give the following definitions.~Since many concepts
in EDC are parallel to the ones inDC,6 here we only give some main definitions and notation!

Let i denote the ordinary imaginary unit andJ the so-called extended double~ED!-imaginary
unit, i.e.,J5 j ( j 2521, jÞ6 i ) or J5e(e2511,eÞ61). If a series(n50

` uanu, an P C, is con-
vergent, thena(J)5(n50

` anJ
2n is called a double ordinary complex~DOC! number, which cor-

responds to a pair (aC ,aH) of ordinary complex numbers, whereaC5a(J5 j )5(n50
` an

3(21)n, aH 5 a(J 5 e) 5 (n50
` an . A similar concept of DOC numbers was introduced in Ref

here we give it a more precise definition. Whena(J) andb(J) both are DOC numbers, then

c~J!5a~J!1Jb~J! ~2.1!

is called an ED-complex number, it corresponds to a pair (cC ,cH), where

cC5c~J5 j !5aC1 jbC , cH5c~J5e!5aH1ebH ~2.2!

andcC andcH are called to be dual to each other. Similar to the case ofDC,6 under the common
addition and multiplication the set of all ED-complex numbers constitute a commutative ring
is just the above-mentioned ringEDC.

The ringEDC involves two imaginary unitsi andJ, so we have two complex conjugatio
operations ‘‘2’’ and ‘‘ ;’’ which act on i and J, respectively, i.e., we define, respectively, t

ordinary complex conjugationc(J) and ED-complex conjugationc(J)̃ of a ED-complex number
C(J) as follows:

c~J!:5a~J!1Jb~J!, c~J!̃:5a~J!2Jb~J!, ~2.3!

wherea(J) andb(J) are ordinary complex conjugations ofa(J) andb(J). Note that, by defini-
tion, the operations ‘‘2’’ and ‘‘ ;’’ have nothing to do with each other.

Let U,Cn be a region. Similar to Ref. 6, we can consider ED-complex number evalu
functions onU.

Definition 1: A mappingw:U→EDC such that
J. Math. Phys., Vol. 38, No. 6, June 1997
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w~z1 ,...,zn ;J!5h~z1 ,...,zn ;J!1Jg~z1 ,...,zn ;J!. $z1, ...,zn%PU ~2.4!

is called an ED-complex function onU. Whereh(z1 ,...,zn ;J) andg(z1 ,...,zn ;J) both are DOC
functions of ordinary complex variablesz1 ,...,zn . In addition, the ED-imaginary unitJ plays an
analytical link role as explained in Ref. 6.

Since in Definition 1 the functionsh andg are both DOC, the continuity and analyticity o
them can be defined as usual. And we give

Definition 2: We say the ED-complex functionw(z1 ,...,zn ;J) in Eq. ~2.4! to be continuous,
analytical, etc. iffh(z1 ,...,zn ;J) andg(z1 ,...,zn ;J) have the same properties.

It is obvious that if the values ofa(J), b(J) in Eq. ~2.1! and z1 ,...,zn , h(z1 ,...,zn ;J),
g(z1 ,...,zn ;J) in Eq. ~2.4! are all restricted withinR, the result above is reduced to the one
Ref. 6. In this case, following Ref. 6, we shall still callC(J) and w(z1 ,...,zn ;J) a double-
complex number and a double-complex function, respectively.

III. DOUBLE MATRIX FORM OF THE SAV FIELD EQUATIONS

In this and the following sections, we shall use the ED-complex function theory introduc
the last section to study the SAV field equations. The line element of the stationary axisym
space–times can be chosen as11

ds25MABdx
AdxB2hNPdx

NdxP ~A,B51,2, N,P53,4!, ~3.1!

where hNP is determined byMAB , andMAB depends only onx3, x4, which will be simply
denoted byx,y in the following. Thus, the Einstein equations aboutM5$MAB% can be written
as11,13

]x~rM21]xM !1]y~rM21]yM !50, ~3.2!

where r2[2detM and Einstein equations demandr to be a harmonic field in (x,y) space.
Sometimes we also use a particular parametrization forMAB as

14

M115 f , M125M2152 fv, M225 fv22r2f21. ~3.3!

However, the SAV space–times have more symmetries so that we can extend Eq.~3.2! to a double
form. In the spirit of Ref. 6, we introduce a double-real 232 matrix function M (J):
5$MAB(x, y; J)% and consider the following double equations:

]x@rM21~J!]xM ~J!#1]y@rM21~J!]yM ~J!#50, ~3.4a!

detM ~J!5J2r2, MT~J!5M ~J!, ~3.4b!

where ‘‘T’’ stands for the transposition. WhenJ5 j , Eqs.~3.4! go back to Eq.~3.2!, if J5e, we
obtain the dual partner of Eq.~3.2!. It can be verified directly that ifM (J) is a solution of Eqs.
~3.4!, then through Eq.~3.3!, we can obtain a pair of dual solutions of the SAV fields as

~ f ,v!5SM11C ,
M12C

M11C
D , ~3.5a!

~ f̂ ,v̂ !5S T~M11H!, VT~M11H!SM12H

M11H
D D , ~3.5b!

where, for a function pair (F,V), the NK transformationsT,V are defined as follows:
J. Math. Phys., Vol. 38, No. 6, June 1997
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T:F→T~F !5
r

F
,

~3.6!

V:F,V→VF~V!5E r

F2 @~]yV!dx2~]xV!dy#,

and the existence ofv̂ in Eq. ~3.5b! is ensured by Eqs.~3.4!.
For convenience, we adopt the notations of differential form2,3,5 in the following. Defining

two-dimensional dual operation ‘‘* ’’ as

* dx5dy, * dy52dx ~3.7!

and considering Eq.~3.4b!, then Eq.~3.4a! can be written as

d@r21M ~J!s* dM~J!#50, s:5S 0 1

21 0D . ~3.8!

Equation~3.8! implies that there exists a double-real matrix twist potentialF(J)5$FAB(x, y;
J)%, such that

dF~J!52r21M ~J!s* dM~J!. ~3.9!

And with Eq. ~3.4b!, we obtain

dM~J!52J2r21M ~J!s* dF~J!. ~3.10!

Further, if we introduce a double-complex matrix Ernst potentialH(J) as

H~J!:5M ~J!1JF~J!, ~3.11!

Eqs.~3.9! and ~3.10! may be combined into a single double-complex equation

* dH~J!5Jr21M ~J!sdH~J!. ~3.12!

From Eqs.~3.11! and ~3.4b! we can introduce another real functionz5z(x, y), which satisfies

Tr@H~J!Js#52z. ~3.13!

Then we obtain a double HE equation@which is equivalent to Eq.~3.8!#

2~z1r* !dH~J!5@H~J!1H†~J!#JsdH~J!, ~3.14!

where the dagger stands for the ED-Hermitian conjugation, i.e.,H†(J)5H̃ T(J). WhenJ5 j , Eq.
~3.14! is equivalent to the original HE equation in Ref. 2, whileJ5e gives its dual partner.

From Eqs.~3.4b!, ~3.9!, and~3.13!, we have

dr5* dz, ~3.15!

therefore,r(x,y) andz(x,y) are conjugate harmonic functions in (x,y) space. Moreover, simila
to Ref. 2, it is not difficult to show that the double-complex potentialH(J) satisfies

dH†~J!~Js!∧dH~J!5dH†~J!~Js!∧* dH~J!50, ~3.16!

where ‘‘∧’’ denotes the exterior product of forms.
J. Math. Phys., Vol. 38, No. 6, June 1997
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IV. ED-COMPLEX LINEAR SYSTEM

In order to obtain a linear system associated with Eq.~3.14!, we introduce an ordinary com
plex parametert, and rewrite Eq.~3.14! as

tdH~J!5A~ t;J!G~ t;J!, ~4.1!

where

A~ t;J!:512t@H~J!1H†~J!#~Js!,
~4.2!

G~ t;J!:5t@122t~z1r* !#21dH~J!,

both are ED-complex matrix functions ofx, y, andt.
Taking the exterior derivative of Eq.~4.1!, we have

dA~ t;J!∧G~ t;J!1A~ t;J!dG~ t;J!50. ~4.3!

Thus, from Eqs.~3.16! and ~4.1! we obtain

dG~ t;J!5G~ t;J!~Js!∧G~ t;J!, ~4.4!

It is obvious that this equation is just the integrability condition for the following ED-comp
linear differential system:

dC~ t;J!5G~ t;J!~Js!C~ t;J!, ~4.5!

whereC(t;J):5C(x,y,t;J) is a 232 nonsingular ED-complex matrix function ofx, y, and t.
Due to x,yPR, and tPC, we haveG(t;J)5G( t̄;J). Therefore, ifC(t;J) is a solution of Eq.
~4.5!, then so isC( t̄;J). Thus for our purpose we compatibly selectC(t;J) satisfying:

~a! C~ t̄;J!5C~ t;J!, ~4.6a!

~b! C~ t;J! is analytic with respect tot in a neighborhood oft50. ~4.6b!

Definition 3: An ED-complex function satisfying the conditions~4.6! will be called a special
ED analytical function. The definition of a special ED holomorphic function can also be g
similarly.

Equations~4.5! and~4.6! do not defineC(t;J) uniquely, from Eqs.~4.4!, ~3.13!, and~4.1!, we
find that we can suppress some subsidiary conditions consistent with Eqs.~4.5! and ~4.6! as
follows:2,5

C~ t50;J!5I , ~4.7!

Ċ~ t50;J!5H~J!~Js!, ~4.8!

detC~ t;J!5l21~ t !, ~4.9!

C†~ t;J!~Js!A~ t;J!C~ t;J!5Js, ~4.10!

whereĊ(t;J):5(]/]t)C(t;J), andl(t):5@(122zt)21(2rt)2#1/2. Equations~4.5!–~4.10! are a
generalization of the HE linearization system in Refs. 2 and 5. WhenJ5 j , the former is equiva-
lent to the latter. To see this, recall that the HE linearization system in Ref. 5 is

dF~ t !5t@122t~z1r* !#21dE~ is!F~ t !, ~4.11!
J. Math. Phys., Vol. 38, No. 6, June 1997
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subject to

F~0!5I , Ḟ~0!5E~ is!, detF~ t !5l21~ t !,
~4.12!

F~ t !x~ is!@ I2t~E1Ē T!~ is!#F~ t !5 is,

whereE is the ordinary complex matrix Ernst potential and

F~ t !x5FT~ t̄ !. ~4.13!

The key to the question is to show thatF(t) has the same structure asC(t;J) whenJ5 j . On one
hand, Eqs.~4.6! require thatC(t;J) have the form

C~ t;J!5C1~ t;J!1JC2~ t;J!, ~4.14!

whereC1(t;J) and C2(t;J) both are DOC analytical matrix functions oft in the mentioned
region. On the other hand, the last one of Eqs.~4.12! and Eq.~4.13! imply thatF( t̄) is analytic
whereverF(t) is, henceF(t) has the form

F~ t !5 f 1~ t !1 i f 2~ t !, ~4.15!

where f 1(t) and f 2(t) are analytical matrix functions oft and both are real functions whent
PR. Equations~4.15! and ~4.14! make the equivalency of the system~4.11!–~4.13! and the
system~4.5!–~4.10! evident. So we call the latter ED HE system.

V. ED RH PROBLEM AND MULTIPLE RH TRANSFORMATIONS

At first, we extend the ordinary RH problem into an ED form. LetL be a contour surrounding
the origin in thet plane, the interior and exterior regions ofL are, respectively, denoted byL1 and
L2 . If a given matrix functionK(t;J) is special ED analytic onL, then there exist a pair o
functionsX1(t;J) andX2(t;J) which are special ED holomorphic inL1 andL2 , respectively,
and both are continuous onL such that they satisfy

X2~ t;J!5X1~ t;J!K~ t;J!, tPL, ~5.1!

and the ED solutionsX6(t;J) to Eq.~5.1! are unique~up to a constant factor!: We call this an ED
RH problem. Similar to Refs. 2 and 5, the ED RH problem can be used to construct new d
solutions of Eq.~3.14! from old ones. Moreover, following Hauser and Ernst,2 we always choose
the gauge such that for fixed (x,y), C(t;J) is special ED holomorphic on the wholet plane except
for the zeros ofl(t).

In order to give the multiple RH transformations, we define an invertible scalar func
v(t) which5 is independent of (x,y) and is holomorphic onLøL2 except at infinity, where
v(t) tends to linear divergence and such that it is a linear function or has singularities inL1 , and
v(t) is real whent is real. Furthermore, we introduce two new real functionsr85r8(x,y), z8
5z8(x,y) such that l(v(t))5@(122zv(t))21(2rv(t))2#1/2 and l8(t):5@(122z8t)2

1(2r8t)2#1/2 have the same zeros int, i.e., for fixed (x,y)

l~v~ t !!50⇔l8~ t !50. ~5.2!

From Eq.~5.2! and the invertibility ofv(t) it is easy to verify thatr8(x,y), z8(x,y) satisfy

1

2~z81 ir8!
5v21S 1

2~z1 ir! D , 1

2~z82 ir8!
5v21S 1

2~z2 ir! D , ~5.3!
J. Math. Phys., Vol. 38, No. 6, June 1997
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and

dr85* dz8. ~5.4!

Equations~5.3! can be interpreted as some variable transformation under which Eqs.~4.5!–~4.10!
and their ED solutions are changed. For a givenC0(t;J) we denote the changed ED wav
function byC08(t;J) which satisfies the equations which are obtained by replacingr andz with,
respectively,r8 andz8 in Eqs.~4.5!–~4.10!. And then we have the changed double-matrix Er
potential

H0852Ċ8~ t50;J!~J3s!. ~5.5!

Now we select an ED kernel for Eq.~5.1! as

K~ t;J!5C08~ t;J!u~ t;J!C0
21~v~ t !;J!, tPL, ~5.6!

whereu(t;J) depends only ont and is holomorphic in a neighborhood oft50 and satisfies

u~ t;J!†~Js!u~ t;J!5Js, detu~ t;J!51. ~5.7!

Equations~5.7! imply thatu(t;J)PSL(2,R) when tPR, hence we shall takeu(t;J)5u(t) in the
following. Thus the ED kernelK(t;J) in Eq. ~5.6! is indeed special ED analytic as desire
Consequently, in our case the ED RH problem has the form:

X2~ t;J!5X1~ t;J!C08~ t;J!u~ t !C0
21~v~ t !;J!, tPL ~5.8!

with the boundary condition

X1~ t50;J!5I . ~5.9!

Now we construct a new ED-complex matrix functionC(t;J) by

C~ t;J!5X1~ t;J!C08~ t;J!, tPL1øL

5X2~ t;J!C0~v~ t !;J!u21, tPL2øL. ~5.10!

Since Eq.~5.10! is closely related to the ED RH problem, we call it an ED RH transformation
proof parallel to that in Ref. 5 will verify that theC(t;J) in Eq. ~5.10! satisfies Eqs.~4.5!–~4.10!
provided in those equations we identify that

G~ t;J!5t@122t~z81r8* !#21dH~J!, ~5.11!

H~J!5H08~J!2Ẋ1~ t50;J!~J3s!, ~5.12!

A~ t;J!5I2t@H~J!1H†~J!#~Js!, ~5.13!

l~ t !5@~122z8t !1~2r8t !2#1/2. ~5.14!

Moreover, theH(J) in Eq. ~5.12! is a new double-complex matrix Ernst potential, i.e., it satisfi
Eq. ~3.9! asH0(J) does.

It is notable that the transformations~5.10! and~5.12! both are of ED form, this is due to th
double symmetry of the SAV field equations. However, we find that the field equations have
more symmetries, which enable us to establish another ED HE linear system and RH trans
tion which are ED dual to Eqs.~4.5!, ~5.10!, and~5.12!, respectively. To do so, we define an E
duality mappingD(J) as follows:
J. Math. Phys., Vol. 38, No. 6, June 1997
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D~J!:M ~J!5$MAB~J!%→M̂ ~J!5$M̂AB~J!%,

M̂11~J!5T~M11~ J̊!!, M̂12~J!5 J̊2M̂11~J!•VM̂11~J!SM12~ J̊!

M11~ J̊!
D , ~5.15!

M̂T~J!5M̂ ~J!, det M̂ ~J!5J2r2.

Where the transformationsT, V are defined by Eqs.~2.6!, while the overcircle ‘‘+’’ denotes the
commutation operation of the ED imaginary unit,8 i.e.,

+:J→ J̊, j̊5e, e̊5 j . ~5.16!

It can be verified that ifM (J) satisfies Eqs.~3.2!, so doesM̂ (J). Thus from Eqs.~3.4!, ~3.6!, ~4.1!,
and ~4.2! we have correspondingĤ(J) and Ĝ(t;J) and another ED HE linear system

dĈ~ t;J!5Ĝ~ t;J!~Js!Ĉ~ t;J!. ~5.17!

It should be pointed out thatM̂ (J) andM (J) give the same SAV gravitational field solutions, b
M̂ (J)ÞM (J), soĤ(J)ÞH(J), Ĝ(t;J)ÞG(t;J) which leads to an important result that the line
systems~5.17! and ~4.5! are different, i.e.,Ĉ(t;J) andC(t;J) satisfy different equations.8 Thus
by the formal substitution of$Ĉ0(t;J), X̂6(t;J)% for $C0(t;J),X6(t;J)% in Eqs. ~5.6!, ~5.8!–
~5.10!, and~5.12!, we obtain another ED HR transformation

Ĉ~ t;J!5X̂1~ t;J!Ĉ08~ t;J!, tPL1øL

5X̂2~ t;J!Ĉ0~v~ t !;J!u21~ t !, tPL2øL ~5.18!

and another new double-complex matrix Ernst potential

Ĥ~J!5Ĥ08~J!2X̂
˙

1~ t50;J!~J3s!. ~5.19!

In this manner we have established two ED HR transformations which are dual to each
In the next section, we shall see that these give a quadruple representation of the sem
product of the Kac–Moody and Virasoro groups.

VI. MULTIPLE INTEGRAL EQUATION AND GROUP PROPERTIES OF THE ABOVE RH
TRANSFORMATIONS

In last section we have, in fact, obtained four related RH transformations@Eqs. ~5.10! and
~5.18!#, one of which@taking J5 j in Eq. ~5.10!# gives the result of Ref. 5. In the following, w
denote the dual pair of the ED wave functions$C(t;J),Ĉ(t;J)% by a single symbolhC(t;J),
whereh51,2, 1C(t;J):5C(t;J), 2C(t;J):5Ĉ(t;J), and similarlyhX6(t;J),

hH(J), etc. We
shall call hC(t;J) a multiple wave function. SincehX2(t;J) is special ED analytic inL2øL,
similar to Ref. 5, we may conclude that the multiple RH transformations$(5.10),(5.18)% are
equivalent to the following multiple integral equation of the Cauchy type:

1

2p i EL0, t
hC~s;J!u~s!hC0

21~v~s!;J!

s~s2t !
ds50 ~6.1a!

subject to the conditions

hC~ t50;J!5I , hĊ~ t50;J!5hH~J!~Js!. ~6.1b!

WhereL0,t represents a contour around the origin andt in the ordinary complexs plane.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In order to show the group structure of the multiple transformation given by Eqs.~6.1!, we
definej(t):5v21(t) and a operation (u,j) on any ED analytic functionF(t;J) as

~u,j!F~ t;J!:5u~ t !F~j21~ t !;J!5u~ t !F~v~ t !;J!. ~6.2!

Then Eq.~6.1a! can be rewritten as

1

2p i EL0, t
hC~s;J!~u,j!hC0

21~s;J!

s~s2t !
ds50. ~6.1a8!

As pointed out in Ref. 5, the sets$u% and $j% provide representations of the Kac–Moody a
Virasoro group, respectively. If we carry out transformation~6.1! two times successively an
denote

~u0 ,j0!:
hC0~ t;J!→hC1~ t;J!, ~u1 ,j1!:

hC1~ t;J!→hC2~ t;J!, ~6.3!

then from Eq.~6.1a! we have

1

2p i EL0,t
hC2~s;J!@~u1 ,j1!~u0 ,j0!#

hC0
21~s;J!

s~s2t !
ds

5
1

2p i EL0,t
hC2~s;J!@u1~s!u0~v1~s!!#hC0

21~v0~v1~s!!;J!

s~s2t !
ds

5
1

2p i EL0,t
hC2~s;J!~u1ge1

~u0!,j1j0!
hC0

21~s;J!

s~s2t !
ds50, ~6.4!

where we have used the homomorphism from$j% to Aut$u% defined by

g:j→gj , gj :u~ t !→gj~u!~ t !5u~j21~ t !!. ~6.5!

Thus we have a transformation (u2 ,j2):
hC0(t;J)→hC2(t;J) such that

~u2 ,j2!5~u1 ,j1!~u0 ,j0!5~u1gj1
~u0!,j1j0!. ~6.6!

According to Ref. 15 and Eq.~6.6!, the above multiple RH transformations provide a quadru
representation of the semidirect product of the Kac–Moody and Virasoro groups. If we con
infinitesimal multiple RH transformationsd ’s and expand them in power oft, similar to Refs. 15,
3, 5, and 16, we obtain the following commutation relations:

@d~k!,d~ l !#hC0~ t;J!5~k2 l !d~k1 l !hC0~ t;J!, ~6.7a!

@d~k!,da
~ l !#hC0~ t;J!52 lda

~k1 l !hC0~ t;J!, ~6.7b!

@da
~k! ,db

~ l !#hC0~ t,J!5Cab
c dc

~k1 l !hC0~ t;J!, ~6.7c!

whereCab
c ’s are structure constants of the Lie algebrasl(2, R). Equation~6.7! give a quadruple

representation of the semidirect product of the Kac–Moody and Virasoro algebras. As subal
of these representations, the quadruple Kac–Moody algebra~6.7c! have been given by Zhong8

with a different formalism.
J. Math. Phys., Vol. 38, No. 6, June 1997
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VII. DISCUSSIONS AND APPLICATIONS

According to the previous discussions, by using a single multiple RH transformation w
obtain four representations of the semidirect product of the Kac–Moody and Virasoro g
simultaneously. The result of Ref. 5 is a part of these four group structures~corresponding to the
caseh51, J5 j !. The existence of the new representations reveal the fact that the SAV
equations have more symmetries than previously expected. Furthermore, the multiple RH p
method gives directly multiplefinite transformations, so our work presents new approaches
generating solutions of the SAV field equations. In the following, we give some important sp
cases of the multiple transformations.

~i! If v(t)5t, i.e.,j is identity, then Eqs.~6.1!–~6.6! will give a multiple representation of the
Kac–Moody group. The case ofh51, J5 j will reduce to the result of Hauser and Ernst.2

~ii ! If u(t)5I , the Eq.~6.2! reads (I ,j)F(t;J)5F(v(t);J). So Eqs.~6.1!–~6.6! will give a
multiple representation of the Virasoro group. The caseh51, J5 j has been given in Ref. 5.

~iii ! If u(t)5B ~is independent oft! andv(t)5at1b, wherea andb are parameters. From
Eqs.~6.1!–~6.6! we have

hC~ t;J!5B hC0
21~b;J!hC0~at1b;J!B21, ~7.1!

whenh51, J5 j , it is, in fact, the Neugebauer–Backlund transformation.17

~iv! If we setB5I in ~iii !, we have

hC~ t;J!5hC0
21~b;J!hC0~at1b;J!. ~7.2!

The caseh51, J5 j is the combination of theR and Q̃ transformations given by Maison an
Cosgrove.17

However, in Eqs.~7.1! and~7.2!, we obtain quadruple forms of the Neugebauer and Maiso
Cosgrove transformations, respectively.

Finally, we would like to point out that the method introduced in this paper can als
applied to discuss the cylindrically symmetric vacuum fields and the self-dual Yang–Mills fi
The application of the method to the stationary axisymmetric electrovac case, particularly
Cosgrove transformation,18 is under consideration.
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Higher-dimensional models in gravitational theories
of quartic Lagrangians

K. Kleidis, A. Kuiroukidis, D. B. Papadopoulos, and H. Varvoglis
Department of Physics, Section of Astrophysics, Astronomy and Mechanics,
Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
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Ten-dimensional models, arising from a gravitational action which includes terms
up to the fourth order in curvature tensor, are discussed. The space–time consists of
one time direction and two maximally symmetric subspaces, filled with matter in
the form of an anisotropic fluid. Numerical integration of the cosmological field
equations indicates that exponential, as well as power law, solutions are possible.
We carry out a dynamical study of the results in theHext2H int plane and confirm
the existence ofattractors in the evolution of the Universe. Those attracting points
correspond to ‘‘extended’’ De Sitterspace–times in which the external space ex-
hibits inflationary expansion, while the internal one contracts. ©1997 American
Institute of Physics.@S0022-2488~97!01606-X#

I. INTRODUCTION

The mathematical background for a nonlinear Lagrangian theory of gravity was first fo
lated by Lovelock,1 who proposed that the most general gravitational Lagrangian is

L5A2g(
m50

n/2

l~m!L~m! , ~1.1!

wherel (m) are coupling constants.n denotes the manifold’s dimensions.g is the determinant of
the metric tensor, andL (m) are functions of the Riemann curvature tensor of the form

L~m!5
1

2m
da1•••a2m

31•••b2mRb1b2

a1a2•••Rb2m21b2m

a2m21a2m , ~1.2!

wheredb
a is the Kronecker symbol.L (0) is the volumen-form which gives rise to the cosmolog

cal constant,L (1)5
1
2R is the Einstein–Hilbert~EH! Lagrangian, andL (2) is the quadratic

Gauss–Bonnett~GB! combination.2 Euler variation of the gravitational action corresponding
Eq. ~1.1! yields the most general symmetric and divergenceless tensor, which describes the
gation of the gravitational field and depends only on the metric and its first- and second
derivatives.1

While quadratic Lagrangians have been widely studied~e.g., see Refs. 3 and 4 and referenc
therein!, cubic and/or quartic Lagrangians only recently have been introduced in the discuss
cosmological models in the framework of superstring theories.5–10 The reason is that it is very
hard to derive and~even harder! to solve the corresponding field equations. In this case solut
may be obtained only through certain numerical techniques,11,12 where the idea of ‘‘attractor’’
plays a central role:13 If some special space–time is the attractor for a wide range of in
conditions, such a space–time is naturally realized asymptotically. Since the ten-dimen
superstring theory is a candidate for a realistic unified theory, it is very important to inves
whether a similar attractor exists in this theory.

In the present paper we integrate numerically the field equations, resulting from a q
gravitational Lagrangian, to obtain anisotropic, ten-dimensional cosmological models. The s
time consists of one time direction and two maximally symmetric subspaces, FRW^FRW: the
0022-2488/97/38(6)/3166/23/$10.00
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external space, representing the ordinary Universe and theinternal one, constituted by the extr
dimensions. The internal space is a compact manifold of very small ‘‘physical size’’ with respect
to that of the ‘‘visible’’ space at the present epoch.14,15Since, on the other hand, at the origin th
two subspaces were of comparable physical size, the internal one must have someho
contracted towards a static value of the order of Planck length,lPl;10233 cm, to achieve ‘‘spon-
taneous compactification.’’ 16 Compactification is a topological process of quantum origin, wh
leads to the separation of the extra dimensions from the ordinary ones.17 In what follows we
consider models of an already compactified internal space, i.e., we study only its contracti

In Sec. II we derive the explicit form of the field equations for a quartic theory in
dimensions, in which both subspaces are filled with an anisotropic fluid. In Sec. III we
numerically the field equations, for a wide range of initial conditions and for several values o
‘‘ free’’ parameters involved, as regards~1! vacuum models of flat subspaces and~2! perfect fluid
models of positively curved subspaces. Next, we carry out a dynamical study in theHext–H int

plane, where eachHj represents the Hubble parameter of the corresponding subspace. Ac
ingly, we confirm the existence of attracting points and investigate their evolution with resp
the variation of the coupling constantsl (m) . The explicit time dependence of the unknown sc
functions may be subsequently determined by solving the linearized field equations around
attracting points. The corresponding analysis is presented in Sec. IV.

II. THE FIELD EQUATIONS IN A QUARTIC GRAVITY THEORY

We consider a ten-dimensional line element, representing cosmological models which c
of two homogeneous and isotropic factor spaces, of the form

ds252dt25R2~ t !
( i51
3 ~dxi !2

11 1
4 kext( i51

3 ~xi !2
1S2~ t !

( j54
9 ~dxj !2

11 1
4kint( j54

9 ~xj !2
, ~2.1!

where\515c, R(t) andS(t) are the cosmic scale functions of the external and the inte
space, respectively,kext521,0,11 is the curvature parameter of the ‘‘ordinary’’ space, and
kint50,11 is the corresponding parameter of the internal one. Therefore, the extra dimen
may be compactified either in a six-dimensional sphere, forkint511, or in a six-dimensional
torus, forkint50. The spatial section of the metric~2.1! can be viewed as the direct product of tw
FRW models with three and six dimensions, respectively.6 These models may be obtained throu
Hamilton’s principle, from a ten-dimensional action in which the gravitational part is of the f

I5
1

Vint
E A2g@l~0!L~0!1l~1!L~1!1l~2!L~2!1l~3!L~3!1l~4!L~4!#d

10x, ~2.2!

where each ofL (m) is given by Eq.~1.2!. l (m) are the corresponding coupling constants, a
Vint is a normalization constant,18 corresponding to the ‘‘physical size volume’’ of the internal
space, once it may be considered static.3 The field equations read

Lmn528pG10Tmn , ~2.3!

whereLmn is the Lovelock tensor up to the fourth order in curvature~Greek indices refer to the
ten-dimensional space–time!1 and G105GVint is the ten-dimensional gravitational constant19

Tmn is the energy-momentum tensor of an anisotropic perfect fluid source, of the formTmn

5diag(r,2pext,...,2pint ,...), wherer is the total mass-energy density, whilepext andpint are the
pressures associated to each factor space, separately. For the metric~2.1!, Eq. ~2.3! is decomposed
into three independent equations of the form~cf. Ref. 9!
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



3168 Kleidis et al.: Higher-dimensional models of quadratic Lagrangians

¬¬¬¬¬¬¬¬¬¬
16pG10r5l~0!16l~1!FP15Q16S ṘRD S ṠSD G172l~2!F5Q215PQ110S ṘRD 2S ṠSD
2

12PS ṘRD S ṠSD
120QS ṘRD S ṠSD G1720l~3!FQ318S ṘRD 3S ṠSD

3

19PQ2118Q2S ṘRD S ṠSD
112PQS ṘRD S ṠSD 136QS ṘRD 2S ṠSD

2G117280l~4!FPQ316Q2S ṘRD 2S ṠSD
2

16PQ2S ṘRD S ṠSD 18QS ṘRD 3S ṠSD
3G , ~2.4a!

216pG10pext5l~0!12l~1!FP115Q112S ṘRD S ṠSD 12S R̈RD 16S S̈SD G124l~2!F15Q2

110S ṘRD 2S ṠSD
2

15PQ140QS ṘRD S ṠSD 120QS S̈SD 12PS S̈SD 110QS R̈RD 120S S̈SD
3S ṘRD S ṠSD 14S R̈RD S ṘRD S ṠSD G1720l~3!FQ313Q2P112Q2S ṘRD S ṠSD 16Q2S S̈SD
16Q2S R̈RD 112QS ṘRD 2S ṠSD 14PQS S̈SD 18S S̈SD S ṘRD 2S ṠSD

2

124QS S̈SD S ṘRD S ṠSD
18QS R̈RD S ṘRD S ṠSD G15760l~4!F2Q3S R̈RD 112Q2S S̈SD S ṘRD S ṠSD 112Q2S R̈RD S ṘRD
3S ṠSD 16PQ2S S̈SD 124QS S̈SD S ṘRD 2S ṠSD

2

1PQ316Q2S ṘRD 2S ṠSD
2G , ~2.4b!

216pG10pint5l~0!12l~1!F3P110Q115S ṘRD S ṠSD 13S R̈RD 15S S̈SD G124l~2!F5Q2

120S ṘRD 2S ṠSD
2

110PQ15PS ṘRD S ṠSD 1PS R̈RD 130QS ṘRD S ṠSD 110QS R̈RD
15PS S̈SD 110QS S̈SD 110S R̈RD S ṘRD S ṠSD 120S S̈SD S ṘRD S ṠSD G1720l~3!F4S ṘRD 3S ṠSD

3

13PQ213Q2S ṘRD S ṠSD 13Q2S R̈RD 12Q2S S̈SD 16PQS ṘRD S ṠSD 112QS ṘRD 2S ṠSD
2

12PQS R̈RD 16PQS S̈SD 14S R̈RD S ṘRD 2S ṠSD
2

112S S̈SD S ṘRD 2S ṠSD
2

14PS S̈SD S ṘRD S ṠSD
112QS R̈RD S ṘRD S ṠSD 112QS S̈SD S ṘRD S ṠSD G15760l~4!F6Q2S R̈RD S ṘRD S ṠSD
13PQ2S S̈SD 112QS S̈SD S ṘRD 2S ṠSD

2

112PQS S̈SD S ṘRD S ṠSD 13PQ2S ṘRD S ṠSD
14QS ṘRD 3S ṠSD

3

13PQ2S R̈RD 112QS R̈RD S ṘRD 2S ṠSD
2

18S S̈SD S ṘRD 3S ṠSD
3G , ~2.4c!
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where an overdot denotes derivative with respect to time and we have set

P5S ṘRD 21 kext
R2 , Q5S ṠSD

2

1
kint
S2

. ~2.5!

Since the Lovelock tensor is divergenceless,Ln
mn50, we obtain the conservation lawTn

mn50,
which gives

ṙ13~r1pext!
Ṙ

R
16~r1pint!

Ṡ

S
50. ~2.6!

Further inspection of the system of equations~2.4! and ~2.6! shows that only three of them ar
truly independent. Thus, the problem is completely determined by those, plus the two equat
state for the matter content, one for each subspace.17 In the present article we consider two cas
with regard to the energy-momentum tensor:~a! vacuum models,r50, in connection to flat
spatial sections (kext505kint) and ~b! models of an heterotic superstring gas,20 rext5

1
3r and

pint50, in connection to positively curved spatial sections (kext515kint). In the later case, the
conservation law~2.6! gives

r5
M

R4S6
, ~2.7!

whereM is an integration constant. Thus, the external space is radiation dominated.9,11,20

In principle, we may integrate the system of equations~2.4! and~2.6! to obtain the form of the
unknown scale functions. However, this is not an easy task even in the most simple and sym
cases.9 Nevertheless, we may get a good estimation of their dynamic behavior through num
integration.11

Once the two equations of state are determined, Eq.~2.6! may be readily solved to give th
unknown energy density and pressures as functions ofR(t) and S(t). These expressions ar
subsequently introduced on the rhs of Eqs.~2.4!. Now, only two of these equations are tru
independent. The third one corresponds to aconstraint, to be satisfied by the solutions of th
system. As such, we choose Eq.~2.4a!. The remaining independent field equations~2.4b! and
~2.4c! may be recast in the form of a first-order system~see also Ref. 11! as follows:

Ḣext5G1~Hext,H int ,X,Y!, ~2.8a!

Ḣ int5G2~Hext,H int ,X,Y!, ~2.8b!

Ẋ52XHext, ~2.8c!

Ẏ52YHint , ~2.8d!

where we have set

Hext5
Ṙ

R
, H int5

Ṡ

S
, X25

kext
R2 , Y25

kint
S2

, ~2.9!

and the explicit forms of the functionsG1 andG2 are given in Appendix A.
Finally, it is convenient to make a parameter rescaling in the field equations of the form

km5
l~m!

l~1!
, m50,1,2,3,4, ~2.10!
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



o

f the
to
e
r
eless,
is.

to the

he

to a

ts in

as

f the

the

ituation

ng as

cts
at cor-
linear
ion is

e

3170 Kleidis et al.: Higher-dimensional models of quadratic Lagrangians

¬¬¬¬¬¬¬¬¬¬
wherel (1)5(16pG)21 is the coupling constant in the four-dimensional general relativity~GR!.
The value of the normalized coupling constants,km (km<1), is directly proportional to the
contribution in the field equations of the correspondingmth-order nonlinear term, with respect t
the results obtained in the EH cosmology. Clearly,k151.

III. NUMERICAL RESULTS

We integrate numerically the system of Eqs.~2.8!. The constraint~2.4a! is checked to be
satisfied with an accuracy of 10210 along integration. The initial conditionsH0

ext, H0
int , X0 , and

Y0 are chosen so that:~a! X05Y0 , i.e., at the origin, the two factor spaces are separated, but o
same ‘‘physical size.’’16 ~b! H0

ext.0, i.e., initially the ordinary space expands, in accordance
what we observe at the present epoch.12,21 ~c! H0

int,0, i.e., at the origin, the internal spac
contracts, in correspondance to ‘‘spontaneous compactification.’’12,16,17,21The cases where eithe
H0
ext,0 or H0

int.0 are not permitted, since the constraint equation is not satisfied. Neverth
the case where both conditionsH0

ext,0 andH0
int.0 are valid is acceptable by numerical analys

Actually, it corresponds to the time-reversed solution of the system~2.8!.
The time coordinate is measured in dimensionless units, being normalized with respect

Planck time,t5t/tPl(tPl5AG;10243 s). The limits of numerical integration range fromt50 to
t5105. The upper limit coincides with the origin of the GUT epoch,21 tGUT5105tPl , correspond-
ing to the end of the string regime.22 However, we have to point out that, although the origin of t
time coordinate is set att50, the equations~2.8! may not be valid in the region 0,t<1 since,
in the absence of a quantum gravity theory, there is always a region of ambiguity aroundt50 of
the order of Planck time.23–25

The solution of the system~2.8! may be represented as curves in theHext–H int plane. Any
point located on these curves always satisfies the constraint condition~2.4a!. Thus, the curves
actually represent ‘‘orbits’’ of the dynamical system under study. Each curve, corresponding
different set of initial conditions, is bounded by fixed points~or infinities! and represents a
different type of evolution for the Universe.

In what follows, we focus attention on the existence and the evolution of attracting poin
theHext–H int plane. The reason rests in the physical meaning of theattractor: No matter what the
behavior of a cosmological model at the origin might be, it will always end up evolving
indicated by the location of the attracting point in theHext–H int plane.

A. Vacuum models with spatially flat subspaces

We study the evolution of vacuum ten-dimensional cosmological models, with metric o
form ~2.1!, in which both subspaces are spatially flat, i.e.,kext505kint . Thus, X505Y.

The first case to study are the GB models~see also Refs. 11 and 12!. In this case,k251 and
k0505k35k4 . The nonlinear curvature contributions to the field equations come out from
quadratic terms alone. The time evolution of the Hubble parameters is presented in Fig. 1~a!. We
see that both parameters evolve to approach constant values in the later stages. This s
verifies the existence of attracting points in theHext–H int plane during the evolution of the
Universe. Therefore, for a wide range of initial conditions, both subspaces will end up evolvi
De Sitter spaces, in complete correspondence to the results of Ishihara.12

We also observe thatHext.0 and H int,0. Therefore, while the internal space contra
exponentially to achieve spontaneous compactification, the external one expands, a fact th
responds to an inflationary phase. This result indicates that the introduction of the non
curvature terms into the gravitational action may play an important role as far as the inflat
concerned.26–30 The explicit location of the attracting point is shown in Fig. 1~b!. The attractor
corresponds to the fixed pointD2 recognized by Ishihara12 in the evolution of the extended D
Sitter models in GB theory.
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 1. ~a! The evolution of the Hubble parameters in the GB theory (k251), for three different sets of initial conditions
(H0

ext ,H0
int): (0.75,20.25) ~solid line!, (0.85,20.15) ~dashed line!, and (0.95,20.05) ~squares!. The time coordinate is

measured in units of 104tPl . ~b! The orbits~in theHext–H int plane! of the dynamical system determined by the cosm
logical field equations for a model with flat subspaces, for three different sets of initial conditions. All orbits end
attracting pointD2 (0.8866,20.1375).
J. Math. Phys., Vol. 38, No. 6, June 1997
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The next step is to introduce into the problem a ‘‘bare’’ cosmological constant,L, corre-
sponding to the expectation value of the vacuum energy density.25 Now, in addition tok2 , we also
havek0Þ0, whilek3505k4 . Whenk0P@0, 1# the value of the cosmological constant in phy
cal units isL52k0310248 cm22, which is quite small.

The behavior of the model is qualitatively similar to the previous case. Again we verify
existence of an ‘‘attractor.’’ Both subspaces correspond to De Sitter models. The external
exhibits inflationary expansion, while the internal one contracts. However, in this case, the
tion of the attracting pointD2 has changed to higher absolute values in the evolution ofHext and
H int @Fig. 2~a!#. We may determine explicitly the law of the attractor’s displacement in
Hext–H int plane, caused by variations of the cosmological constant.

In general, to determine the exact location of the attracting points in anHext–H int plane
requires us to set

G1~Hext,H int ,X,Y!50, ~3.1a!

G2~Hext,H int ,X,Y!50. ~3.1b!

In the case of flat and vacuum subspaces (X5Y5pext5pint50), Eqs.~3.1! read

f 1~Hext,H int ,km!5@G12G202G22G10#X5Y5050, ~3.2a!

f 2~Hext,H int ,km!5@G21G102G11G20#X5Y5050, ~3.2b!

wherem50,2,3,4 and the quantitiesGi j are presented in Appendix A. We differentiate the fun
tions f 1 and f 2 with respect toHext, H int , andkm , to obtain a system of first-order differentia
equations~‘‘ variational equations’’ !:

d f15S ] f 1
]Hext

D p dHext1S ] f 1
]H int

D p dHint1(
j

S ] f 1
]km

D p dkm50, ~3.3a!

d f25S ] f 2
]Hext

D p dHext1S ] f 2
]H int

D p dHint1(
j

S ] f 2
]km

D p dkm50. ~3.3b!

The system~3.3! may be used to determine the evolution of the attracting pointD2 (Hext,H int),
under the variation of the normalized coupling constantskm . Fork251, in the case of vanishing
k3 and k4 , the evolution of the attractorD2 (Hext,H int) with respect to the variation of the
cosmological constantk0 is given by

S dHext

dk0
D5SQQ1

PP D , ~3.4a!

S dHint

dk0
D5SQQ2

PP D , ~3.4b!

where the functionsPP, QQ1 , andQQ2 are given in Appendix B. Subsequently, the system~3.4!
is evaluated by numerical integration. The corresponding results are shown in Fig. 2~b!. Using
least square fitting, we see that the displacement ofD2 takes place along the straight line

H int520.075Hext20.071. ~3.5!

The investigation of the behavior of the models under consideration by including a third-
J. Math. Phys., Vol. 38, No. 6, June 1997
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curvature term corresponds to studying them at earlier epochs in the history of the Uni
Indeed, if we are interested in the behavior of the model very close to the initial singularity
leading terms to consider in the field equations are those with the highest power in (1/t), i.e., those
obtained from the highest-order terms in the gravitational action.9

FIG. 2. ~a! The change in the location of the attractorD2 when a nonzero cosmological constant is included, fork0

50.5. ~b! The displacement of the attractor on theHext–H int plane for a wide range of values of the cosmological const
~squares!. Notice the very good agreement with the least-square fitting resultH int520.075Hext20.071.
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ges it
ly. The

-
as

l

to
ince
e see
ry. Then
ternal

nsid-
s case
there

e ‘‘
o an

re
ace,

f

lution

acuum
e.,
d-

3174 Kleidis et al.: Higher-dimensional models of quadratic Lagrangians

¬¬¬¬¬¬¬¬¬¬
The time evolution of the model is quite similar to the previous cases. In the later sta
corresponds to an extended De Sitter model, in which both subspaces evolve exponential
external space expands, while the internal one contracts@Fig. 3~a!#.

Again, we verify the existence of an attracting pointP in the evolution of the Hubble param
eters and we investigate its behavior ask3 increases, from 0 to 1, i.e., until it becomes
important as the quadratic term. The evolution of the attractor in theL(3) theory, with respect to
the variation ofk3 , may be obtained in a similar way as in thek0 case. We differentiate the
functionsf 1 and f 2 with respect toHext, H int , andk3 to obtain a first-order system of differentia
equations which, fork251 and for vanishingk0 andk4 , will determine the displacement ofP in
theHext–H int plane, under the variation ofk3 .

The corresponding results are presented in Fig. 3~b!. We observe that the attractor moves
higher absolute values ofH int as k3 increases. This result has a clear physical meaning. S
increasingk3 corresponds to studying the earlier stages in the evolution of the Universe, w
that at these epochs the internal space contracts at higher rates than those of the GB theo
Fig. 3~b! verifies that at the late stages, where the GB theory holds alone, the value of the in
Hubble parameter decreases in order to achieve stabilization.

Again, the law of displacement ofP in theHext–H int plane may be estimated usingbest-fit
methods. In this context, we find that it may be represented by a sixth-order polynomialHext

5p6(H int), with coefficients a050.7373, a15225.594, a252457.324, a3523323.9, a4
5212 156.9,a55222 135.2, anda65215 905.6.

Finally, to solve the cosmological field equations when all terms in the action~2.2! are
included~i.e.,k4Þ0! corresponds to studying the dynamic behaviour of the model under co
eration at even earlier epochs. The results are slightly different from those of the previou
@Fig. 4~a!#. Again, in the later stages, the model consists of two De Sitter subspaces and
exists an attracting point. The attractor’s displacement in theHext–H int plane is obtained in a way
similar to the k0 and k3 cases and may be represented by a third-order polynomial,H int

5p3(Hext), with coefficientsb057.47, b15234.27, b2551.33, andb35225.74. The corre-
sponding result is shown in Fig. 4~b!.

Hence, we may conclude that in every case where nonlinear terms are included, thex-
tended’’ De Sitter solution ~i.e., an exponentially expanding external space in connection t
exponentially contracting internal one! corresponds to an ‘‘attractor’’ of the dynamical system
under consideration. Accordingly~in our model!, no matter how the Universe may originate, the
is at least one period during its time evolution in which it exhibits inflation of the ordinary sp
accompanied by spontaneous compactification of the internal one.12,30

B. Perfect fluid models of curved subspaces

We consider a ten-dimensional metric of the form~2.1!, which now represents a class o
cosmological models with positively curved subspaces (kext515kint). Then,X5R21(t) andY
5S21(t) and we study the time evolution of the cosmological models as results from the so
of the system~2.8!.

The numerical analysis is carried out in the same fashion as in the previous case of v
models. We consider that at the origin both subspaces are of the same ‘‘physical size,’’ i.X0

5Y0 , but they have different expansion rates,H0
ext andH0

int . As such we choose the correspon
ing range used in the vacuum case. We normalize both scale functionsR(t) andS(t) to unity, with
respect to their value at the Planck epoch. That is,

R~ t !→
R~ t !

RPl
, S~ t !→

S~ t !

SPl
, ~3.6!

whereRPl5SPl . As initial conditions we chooseR051005S0 .
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 3. ~a! The evolution of the Hubble parameters in theL (3) theory, fork350.15 and for three different sets of initia
conditions (H0

ext ,H0
int): (0.75,20.25) ~solid line!, (0.85,20.15) ~dashed line!, and (0.95,20.05) ~squares!. The time

coordinate is measured in units of 104tPl . ~b! The displacement of the attractor on theHext–H int plane for a wide range of
values of the coupling constantk3 ~squares!. There is a very good agreement with the plot of a sixth-order polynomia
the formHext5p6(H int).
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 4. ~a! The evolution of the external Hubble parameter forH0
ext50.85, when several combinations of the nonline

terms are gradually included in the field equations. The time coordinate is measured in units of 104tPl . ~b! The displace-
ment of the attractor on theHext2H int plane for a wide range of values of the coupling constantk4 ~squares!. Notice the
very good agreement with the plot of a third-order polynomial~solid line! of the formH int5p3(Hext).
J. Math. Phys., Vol. 38, No. 6, June 1997
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We represent the matter filling the Universe by a closed or heterotic superstring perfec
with the following equation of state, deduced by Matsuo:20

pext5
1
3p, pint50. ~3.7!

Thus, the external space is radiation dominated, while the internal one is pressureless. It h
recently shown that, in this case, the two subspaces are completely disjoint.4,31The time evolution
of the total mass-energy densityr is accordingly given by Eq.~2.7!.

As regards the GB models (k3505k4), we have performed a number of computational ru
varying the initial values of the Hubble parameters and the coupling constantk2 as well, from
k250.1 to k251. Numerical results in this case indicate that there is a considerable diffe
with respect to the vacuum-flat models. It rests in the fact that the range of values of the co
constantk2 may be split into two parts. Each one of these parts leads to a different time evo
of both the external and the internal scale functions.

The first part consists of values ofk2 in the interval 0.1<k2<0.65, i.e., when the contribution
of the quadratic curvature terms is relatively small. In this case we expect that the time evo
of the Universe will be only slightly different from the corresponding EH one. Indeed, the
merical results indicate that the system~2.8! admits solutions with a power law dependence of
scale functions upon time of the form

R~ t !}tm1, ~3.8a!

S~ t !}t2m2, ~3.8b!

where the values of the indicesm1 andm2 are continuously increasing in the ranges 0.25<m1

<0.55 and 0.01<m2<0.11, ask2 increases from 0.1 to 0.65. In this case, there are no attrac
points in the evolution of the Universe. The last values in those ranges~0.55 and 0.11, respec
tively!, both corresponding to the valuek250.65, represent a Kasner-type regime12,32–34of the
GB models. Indeed, the analytic approach in this case suggests that the two subspaces e

R~ t !;t p1, S~ t !;t2p2, ~3.9!

where bothp1 andp2 are positive and in a ten-dimensional space–time they satisfy the cond

3p126p251, ~3.10a!

3p1
216p2

251. ~3.10b!

The only physically acceptable solution of the system~3.10!, compatible with the condition
p1 , p2.0, is

p15
5
950.555, p25

1
950.111.

Therefore, whenk250.65, although the spatial sections are curved, the time evolution o
Universe admits a Kasner-type solution. This solution actually lies on the interface betwee
different types of cosmological behavior@Figs. 5~a! and 5~b!#.

The second type of time evolution arises when 0.65,k2<1. Then the Universe behave
again, as anextendedDe Sitter space–time~where the external space expands while the inter
one contracts, both exponentially!. In this case there exists an attracting point as in the vacuum
models@Fig. 6~a!#.

In conclusion, for a curved ten-dimensional GB cosmological model, filled with matter in
form of a superstring perfect gas, we may obtain three different types of cosmological beh
depending on the exact value of the normalized coupling constantk2 :
J. Math. Phys., Vol. 38, No. 6, June 1997
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~a! power-law solutions, with no attracting points, when 0.1<k2,0.65;
~b! A Kasner-type model, whenk250.65; and

FIG. 5. ~a! The time-evolution of the positively curved external space, for several values of the normalized co
constantk2 . ~b! The corresponding evolution of the positively curved internal space. In both figures the time coordin
measured in units of 104tPl . Notice the change in the cosmological behavior of both subspaces whenk2,0.65 and when
k2.0.65.
J. Math. Phys., Vol. 38, No. 6, June 1997
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FIG. 6. ~a! The orbits~in theHext–H int plane! of the dynamical system-determined by the cosmological field equation
a model with positively curved subspaces, for three different sets of initial conditions whenk2.0.65. All orbits end at the
attracting pointP. ~b! The time evolution of the Kasner solutionR(t);t0.55 for the external space, for several values of t
normalized coupling constantk3 . Again, the time coordinate is measured in units of 10

4tPl . Notice the slight modulation
in the time evolution when 0<k3<0.75.
J. Math. Phys., Vol. 38, No. 6, June 1997
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~c! extended De Sitter models, with an attracting point, when 0.65,k2<1.

In all cases, the external space expands, while the internal one contracts. The inclusion
contribution of the third- and/or the fourth-order terms in the field equations simply amounts
modulation of those results@Fig. 6~b!#.

IV. ANALYTIC RESULTS

Analytic expressions, for the time evolution of the model Universe considered, may b
tained by solving the cosmological field equations~2.8! around the attracting points. Accordingly
we investigate the cosmological behavior of a vacuum, ten-dimensional model with spatial
subspaces (X505Y) within the context of the quartic Lagrangian theory under considerat
Clearly, setting some of the coupling constantsl (m) equal to zero corresponds to reducing t
general theory to its lower case counterparts~EH cosmology, GB theory, etc.!.

Since we are interested in the behavior of the model around the attracting points, we co
the linearized equations

Hext5A11H1~ t !, ~4.1a!

H int5A21H2~ t !, ~4.1b!

whereA1 and A2 are the coordinates of the attractor, whileH1(t) andH2(t) represent small
perturbations around those values (uH1u,uH2u!1). Therefore, to obtain the time evolution o
Hext andH int , we only have to solve the system~2.8! linearized with respect toH1 andH2 .

The system of the cosmological field equations~2.8!, linearized with respect toH1 andH2 ,
may be written in the form

Ḣ1~ t !5
b1H11b2H21b3

a1H11a2H21a3
, ~4.2a!

Ḣ2~ t !5
g1H11g2H21g3

a1H11a2H21a3
, ~4.2b!

wherea j , b j , andg j ( j51,2,3) are constants, calculated directly from the linearization of
original equations, which depend onA1 , A2 , andl (m) (m50,1,2,3,4). From Eqs.~4.2! we obtain

dH1

dH2
5

b1H11b2H21b3

g1H11g2H21g3
. ~4.3!

The solution of Eq.~4.3!, in connection to Eqs.~4.1!, will give, in the linear approximation, the
analytic expression ofHext in terms ofH int . To solve Eq.~4.3!, we need to have the solutio
(h1 ,h2) of the algebraic system

b1H11b2H21b350, ~4.4a!

g1H11g2H21g350. ~4.4b!

We choose

g1Þ0, b2g12b1g2Þ0, ~4.5!

and, furthermore, we set

w5H12h1 , ~4.6a!
J. Math. Phys., Vol. 38, No. 6, June 1997
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z5H22h2 . ~4.6b!

We verify that the solution of Eq.~4.3! depends on several algebraic combinations of the const
a j , b j , and g j , something that leads to several conditions between the coupling cons
l (m) . Therefore, we consider the following cases:

~a! b11g2Þ0: This combination corresponds to the most general case. Setting

D52@4b2g11~b12g2!
2#, ~4.7!

the solution of Eq.~4.3! reads35

ln
1

c
@b2z

21~b12g2!zw2g1w
2#5

{
b11g2

A2D
ln

b12g22A2D22g1

w

z

b12g21A2D22g1

w

z

for D,0,

2
2~b11g2!

~b12g2!22g1

w

z

for D50,

2
b11g2

AD
arctan

~b12g2!22g1

w

z

AD
for D.0,

~4.8!

wherec is an arbitrary integration constant.
~b! b11g250 andD50 with b2g1,0: In this case we may proceed to derive the expl

time dependence of the Hubble parameters and the corresponding scale functions for bo
spaces. From Eq.~4.8! we obtain

H25c1H11c2 , ~4.9!

where

c15AUg1

b2
U, c2511h22c1h1 . ~4.10!

Now, Eq. ~4.9! is inserted into Eq.~4.2a! to give

Ḣ15
dH11e

zH11h
, ~4.11!

where the constantsd, e, z, andh stand for the combinations

d5b1c11b2 , e5b31b1c2 , z5a1c11a2 , h5a31a1c2 . ~4.12!

We consider the following cases:
~i! d,zÞ0: In this case, Eq.~4.11! results in

z

d
H11

z

d S h

z
2

e

d D lnSH11
e

d D5t2t0 , ~4.13!

wheret0 is an integration constant. Now, Eq.~4.1a! in connection with Eq.~4.13!, may be easily
integrated to give the form ofR(t), when the condition
J. Math. Phys., Vol. 38, No. 6, June 1997
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h

z
2

e

d
50 ~4.14!

holds. Then, we obtain

ln R~ t !;A1~ t2t0!1
d

2z
~ t2t0!

2, ~4.15!

which introduces a quadratic correction to the expected De Sitter solution.
~ii ! d,hÞ0 andz50: In this case we rediscover the solutions of Ishihara,12 obtained in the

GB theory, as a particular case of the general solution. Indeed, from Eq.~4.11! we obtain

H15Ce~d/h!t2
e

d
, ~4.16!

whereC is an arbitrary integration constant. Therefore the corresponding external scale func
of the form

ln R~ t !;SA12
e

d D ~ t2t0!1C
h

d
e~d/h!~ t2t0!. ~4.17!

Since the external space expands, we must haveA1.e/d. ForC50, Eq. ~4.17! reads

R~ t !;e~A12e/d!~ t2t0!, ~4.18a!

corresponding again to a De Sitter phase, while forhC/d!1 it yields

R~ t !;e~A12e/d!~ t2t0!X11CS h

d D 2e~d/h!~ t2t0!C. ~4.18b!

For e50 Eq. ~4.18b! corresponds to the solution of Ishihara@Eq. ~15! of Ref. 12# obtained in the
framework of the GB theory.

~iii ! d50, zÞ0: Finally, in this case, Eqs.~4.1a! and ~4.11! result in

ln R~ t !;SA12
h

z D ~ t2t0!6
1

2ez2
@h212ez~ t2t0!#

3/2, ~4.19!

where, in connection with the numerical results, we must haveA1.h/z.
In concluding, we see that the coupling constantsl (m) may not be arbitrary. In every case

they should satisfy certain algebraic relations, depending on the form of the corresponding
tion around the attracting points.

Since both Eqs.~4.2a! and ~4.2b!, are almost of the same functional form, in all of th
preceding cases, similar functional results may be obtained for the internal space, throu
solution of Eq.~4.2b!. In this case, however, we must take into account the fact that the nume
results indicate that the extra dimensions contract (A2,0). This argument may lead to addition
constraints on the coupling constantsl (m) .

V. DISCUSSION AND CONCLUSIONS

In the present paper we have studied the time evolution of anisotropic, ten-dimensiona
mological models in the framework of a quartic Lovelock–Lagrangian theory of gravity.1,9–11The
cosmological models under consideration consist of one time direction and two homogeneo
isotropic subspaces: a three-dimensionalexternalspace, which represents the ordinary Univer
J. Math. Phys., Vol. 38, No. 6, June 1997
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and a compactinternal space, which is constituted by the extra dimensions. The evolution o
Universe depends on four free parameters. These are the coefficientsl (m) which introduce the
extra curvature terms in the gravitational Lagrangian (m50,2,3,4). They are to be regarded as t
coupling constants.3,9 Since we have considered models of an already compactified inte
space,17 we accordingly examine the process of its contraction.15–17,19

The Universe is filled with matter in the form of an anisotropic perfect fluid. Given
equation of state for the matter content of each subspace, the time evolution of the Univ
completely determined by a system of three second-order, nonlinear differential equations
sisting of the field equations~2.4b! and~2.4c! together with the conservation law~2.6!. The initial
value field equation~2.4a! corresponds to aconstraintwhich should be satisfied by the cosm
logical solutions. As regards the energy momentum tensor, we have considered two cas~a!
vacuum models,r50, in connection with spatially flat subspaces and~b! models of an heterotic
superstring gas, withpext5

1
3r andpint50, in connection with positively curved subspaces.

The three independent equations may be subsequently expressed in the form of a firs
system, Eqs.~2.8!, involving the Hubble parametersHext, H int , and the corresponding sca
functionsR(t) andS(t) of the two factor spaces. This system is evaluated numerically, for a w
range of initial conditions of the formH0

ext.0 andH0
int.0. Its solutions may be represented b

curves in theHext–H int plane. Those curves correspond to the ‘‘orbits’’ of the dynamical system
under study and each one of them, associated with a different set of initial conditions, repr
a different type of evolution for the Universe.

In the case of vacuum models with flat subspaces (kext505kint), the numerical results indi-
cate that for all values of the coupling constants involved and also for a wide range of
conditions, the Universe will always end up to evolve according to anextended De Sitter solution,
i.e., an exponentially expanding external space, accompanied by an exponentially cont
internal one. Indeed, in this case the Hubble parameters of both subspaces approach c
values in the later stages. We have confirmed that those values actually represent theattracting
points of the dynamical system under consideration.11–13 The appearance ofattractors in the
solution of the cosmological field equations is very important, since, if a space-time is anattractor
for a wide range of initial conditions, then it may be realized asymptotically in the later stage11,13

Those results indicate that the existence of the nonlinear curvature terms in the gravitationa
may lead to inflation without the use of any phase transition.19,27–30,36

Furthermore, we have investigated the evolution of the attractors under the variation
normalized coupling constantskm5l (m) /l (1) (m50,3,4). In all cases, the attracting points a
displaced at higher absolute values ofH int askm increases from 0 to 1. As regards the variation
k3 andk4 , this result has a clear physical meaning.

In determining the cosmological behavior of the model very close to the initial singularity
leading terms to consider are those with the highest power in (1/t), i.e., those obtained from th
highest-order terms in the gravitational action.5,6 Therefore, the increase ofkm (m53,4) corre-
sponds to a more accurate study of the earlier stages in the evolution of the Universe.9 Then, from
Figs. 3~b! and 4~b!, we see that at those epochs the internal space contracts at higher rate
those of the GB theory. This means that in the later stages of the time evolution, where th
theory holds alone, the absolute value of the internal Hubble parameter decreases, in order
extra space to achieve stabilization at a small physical size.15–17,19,32

In the vacuum case it is possible to derive the analytic dependence of the scale function
time by linearizing the field equations around the values ofHext andH int at the attracting points
The corresponding results indicate that the functional form of the analytic solution depen
several algebraic conditions between the coupling constantsl (m) . Therefore, in a Lovelock–
Lagrangian theory of gravity, the coupling constants may play an important role in determ
the cosmological behavior of the model Universe. Nevertheless, the coefficients of each t
the Lagrangian either should be determined experimentally or they should be given by
underlying fundamental theory.3 In this context, we have rediscovered the solutions of Ishihar12
J. Math. Phys., Vol. 38, No. 6, June 1997
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obtained in the framework of the GB theory, as particular solutions of the general quartic c
The cosmological models with matter in the form of a superstring perfect gas, in which

subspaces are possitively curved (kext515kint), can be treated only numerically. In this case, t
evolution of the GB models depends additionally on the exact value of the normalized cou
constantk2 . We have obtained three different types of cosmological behavior:

~a! power-law solutions, with no attracting points, when 0.1<k2,0.65;
~b! a Kasner-type model, whenk250.65; and
~c! extended De Sitter models, with an attracting point, when 0.65,k2<1.

In all cases, the external space expands, while the internal one contracts. The inclusion
contributions of the third- and/or the fourth-order terms in the field equations simply amount
modulation of the above results@e.g., see Fig. 6~b!#.
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APPENDIX A

The cosmological field equations~2.4b! and ~2.4c! may be recast in the form of a first-orde
system as follows:

Ḣext5G1~Hext,H int ,X,Y!, ~A1a!

Ḣ int5G2~Hext,H int ,X,Y!, ~A1b!

X52XHext, ~A1c!

Ẏ52YHint , ~A1d!

where

X25
kext
R2 , Y25

kint
S2

. ~A2!

The functionsG1 andG2 are given by the expressions

G15
@G12~16ppint1G20!2G22~16ppext1G10!#

@G11G222G12G21#
, ~A3a!

G25
@G21~16ppext1G10!2G11~16ppint1G20!#

@G11G222G12G21#
, ~A3b!

where we have set

G105l012l1B10124l2B201720l3B3015760l4B40, ~A4a!

G1154l1124l2B211720l3B3115760l4B41, ~A4b!

G12512l1124l2B221720l3B3215760l4B42, ~A4c!
J. Math. Phys., Vol. 38, No. 6, June 1997
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G205l012l1C10124l2C201720l3C3015760l4C40, ~A4d!

G2156l1124l2C211720l3C3115760l4C41, ~A4e!

G22510l1124l2C221720l3C3215760l4C42, ~A4f!

and the quantitiesBi j andCi j are given by

B1053Hext
2 121H int

2 112HextH int1X2115Y2, ~A5a!

B20535H int
4 127Hext

2 H int
2 160HextH int

3 14Hext
3 H int17H int

2 X2

15Y2~3Y21X2!1Y2~50H int
2 115Hext

2 140HextH int!, ~A5b!

B3057H int
6 133Hext

2 H int
4 18Hext

3 H int
3 136HextH int

5 19Y4~Hext
2 1H int

2 !13X2Y41Y61Y2~15H int
4

134Hext
2 H int

2 148HextH int
3 18Hext

3 H int!110H int
2 X2Y217H int

4 X2112HextH intY
4, ~A5c!

B40539Hext
2 H int

6 112HextH int
7 112Hext

3 H int
5 13Hext

2 Y61X2Y61Y4~21Hext
2 H int

2 112HextH int
3

112Hext
3 H int!1Y2~57Hext

2 H int
4 124HextH int

5 124Hext
3 H int

3 !

19H int
2 X2Y4115H int

4 X2Y217H int
6 X2, ~A5d!

B21510H int
2 14HextH int110Y2, ~A5e!

B3156H int
4 18HextH int

3 16Y41Y2~12H int
2 18HextH int!, ~A5f!

B4152H int
6 112HextH int

5 1Y4~6H int
2 112HextH int!1Y2~6H int

4 124HextH int
3 !12Y6, ~A5g!

B22520H int
2 12Hext

2 120HextH int12X2120Y2, ~A5h!

B3256H int
4 112Hext

2 H int
2 124HextH int

3 14Y2~3H int
2 1Hext

2 16HextH int!14H int
2 X21~6Y414X2Y2!,

~A5i!

B42512HextH int
5 130Hext

2 H int
4 1Y4~12HextH int16Hext

4 !112Y2~2HextH int
3 13Hext

2 H int
2 !

112H int
2 X2Y216H int

4 X216X2Y4, ~A5j!

C1056Hext
2 115H int

2 115HextH int13X2110Y2, ~A6a!

C20515H int
4 145Hext

2 115Hext
3 H int150HextH int

3 1Hext
4 110Y2~2H int

2 12Hext
2 13HextH int!

1X2~15H int
2 15HextH int1Hext

2 !15Y4110X2Y2, ~A6b!

C30526Hext
3 H int

3 136Hext
2 H int

4 115HextH int
5 16Hext

4 H int
2 1Y4~6Hext

2 13HextH int12H int
2 !

12Y2~15Hext
2 H int

2 19HextH int
3 12H int

4 19Hext
3 H int1Hext

4 !12X2Y2~6H int
2 13HextH int1Hext

2 !

1X2~9H int
4 110HextH int

3 12Hext
2 H int

2 !13X2Y4, ~A6c!
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C40533Hext
3 H int

5 115Hext
2 H int

6 115Hext
4 H int

4 13Y4~3Hext
3 H int1Hext

2 H int
2 1Hext

4 !1Y2~34Hext
3 H int

3

118Hext
2 H int

4 118Hext
4 H int

2 !13X2Y4~H int
2 1Hext

2 1HextH int!16X2Y2~Hext
2 H int

2 13HextH int
3

1Hext
4 !13X2~H int

6 15HextH int
5 1Hext

2 H int
4 !, ~A6d!

C215Hext
2 110H int

2 110HextH int1X2110Y2, ~A6e!

C3153H int
4 16Hext

2 H int
2 112HextH int

3 12Y2~3H int
2 1Hext

2 16HextH int!12X2H int
2 1~3Y412X2Y2!,

~A6f!

C4156HextH int
5 115Hext

2 H int
4 13Y4~2HextH int1Hext

2 !16Y2

3~2HextH int
3 13Hext

2 H int
2 !16H int

2 X2Y213H int
4 X213X2Y4, ~A6g!

C2255Hext
2 110H int

2 120HextH int15X2110Y2, ~A6h!

C3252H int
4 118Hext

2 H int
2 14Hext

3 H int112HextH int
3 12Y2~2H int

2 13Hext
2 16HextH int!

12X2~3H int
2 12HextH int!12Y416X2Y2, ~A6i!

C42515Hext
2 H int

4 120Hext
3 H int

3 13Hext
2 Y416Y2~3Hext

2 H int
2 12Hext

3 H int!

313X2~H int
4 14HextH int

3 !16H int
2 X2Y2112HextH intX

2Y213X2Y4. ~A6j!

APPENDIX B

For k251, in the case of vanishingk3 andk4 , the evolution of the attracting pointD2 , with
respect to the variation of the cosmological constantk0 , is given by

S dHext

dk0
D5SQQ1

PP D , ~B1a!

S dHint

dk0
D5SQQ2

PP D . ~B1b!

The functionsPP, QQ1 , andQQ2 are given by the expressions

PP5F11F222F12F21, ~B2a!

QQ15F1F222F2F12, ~B2b!

QQ25F11F22F1F21, ~B2c!

where we have set

F152@2124~10H int
2 23Hext

2 !#, ~B3a!

F252@2124~Hext
2 16HextH int!#, ~B3b!

F115G121G201G12G2012G221G102G22G101, ~B3c!

F125G122G201G12G2022G222G102G22G102, ~B3d!
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F215G211G101G21G1012G111G202G11G201, ~B3e!

F225G212G101G21G1022G112G202G11G202. ~B3f!

Now, the quantitiesGi j are given by

G1154124~B21!X5Y50 , ~B4a!

G12512124~B22!X5Y50 , ~B4b!

G105k012~B10!X5Y50124~B20!X5Y50 , ~B4c!

G2156124~C21!X5Y50 , ~B4d!

G22510124~C22!X5Y50 , ~B4e!

G205k012~C10!X5Y50124~C20!X5Y50 , ~B4f!

where (Bi j )X5Y50 and (Ci j )X5Y50 denote the form of the corresponding quantities forX50
5Y and the symbolsGi jk stand for

Gi jk5S ]Gi j

]Hk
D
X5Y50

, ~B5!

in which k51 for Hext andk52 for H int .
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Cosmological solutions in Kaluza–Klein theories
of quadratic Lagrangians

K. Kleidis and D. B. Papadopoulos
Department of Physics, Section of Astrophysics, Astronomy and Mechanics,
Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece

~Received 18 October 1995; accepted for publication 23 December 1996!

We present a new class of solutions in a five-dimensional Gauss–Bonnet cosmol-
ogy. The space-time consists of one time-like direction and two maximally sym-
metric space-like subspaces, the external space and the internal one. The universe is
filled with matter in the form of a one-component perfect fluid and the analysis is
carried out for various equations of state. The solutions to the field equations are
based on a new approximation technique that determines the scales of the ordinary
universe, in terms of the cosmological redshift parameter, at which the error be-
tween the exact and the approximate description becomes minimum, at each order
of approximation. In this case, the four-dimensional Friedmann models of General
Relativity result as external space solutions in the first-order approximation of the
quadratic theory. Conditions for the existence of the resulting five-dimensional
models are derived and discussed, together with their cosmological behavior. In
this context, it is shown that under certain conditions, some of the models may be
geodesically complete. ©1997 American Institute of Physics.
@S0022-2488~97!02206-8#

I. INTRODUCTION

Recent work on theoretical cosmology is characterized by extending the four-dimen
cosmological models of General Relativity~GR!, in two directions:~i! Kaluza–Klein~KK ! models
with more than four dimensions.1 ~ii ! Models obtained from gravitational Lagrangians contain
nonlinear terms in the curvature tensor.2 If, in particular, the quadratic Gauss–Bonnett~GB!
combination of the nonlinear terms is used, the resulting theory differs from GR only if
space-time has more than four dimensions. In this sense, a combination of these theories p
yields a natural generalization of GR in higher-dimensional space-times.

The idea that the space-time may have more than four dimensions was introduced by K3

and Klein4 in an effort to unify gravity and electromagnetism, an idea that was recently ren
by Schmu¨tzer,5 without much success.6 Higher-dimensional theories have been studied as
attractive way to unify all gauge interactions with gravity, in asupergravityscenario7–9 and
established as unavoidable insuperstring theories.10 There is now an extensive literature o
different aspects of higher-dimensional cosmologies.11–22 In any realistic theory theextra or
internal spaceis assumed to be, at present, a compact manifold of very small size compa
that of the visible space.11–14 This size is directly related to the fundamental constants and
sequently must be stable,13,14something that leads to the problem ofcompactificationof the extra
dimensions.14 In this context, it has been suggested that compactification of the extra space m
achieved in a natural way by adding a square curvature term,RmnklR

mnkl, in the action for the
gravitational field.23,24

Gravitational Lagrangians containing nonlinear terms, were first considered in conne
with Weyl’s scale invariant theory of gravity.25 Quadratic Lagrangians, in particular, have be
studied classically in the search of solutions free from cosmological singularities,26–33 but they
attracted the interest of cosmologists only after it became clear that they could lead to in
without phase transitions.34,35

It has been also proposed that quadratic gravitational Lagrangians are capable of y
0022-2488/97/38(6)/3189/20/$10.00
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renormalizable theories of gravity coupled to quantum fields.36 In fact, renormalization of the
energy–momentum tensor suggests that the presence of quadratic terms isa priori expected.37,38

However, the need of quadratic Lagrangians is properly stated only through superstrings, w
has been shown that if gravity is to be extracted by the low-energy approximation of supers
an additionalRmnklR

mnkl term should arise in the gravitational action.39,40 This term leads to
instabilities in the FRW cosmology,41 which can be removed42 if the most general quadrati
combinationR(2)5aR21bRmnR

mn1gRmnklR
mnkl ~with a, b, g arbitrary constants! is used.

Nevertheless, every quadratic Lagrangian is not physically accepted, because the introduc
R(2) into the gravitational action leads to differential equations of the fourth order with respe
the metric.43 Higher derivative terms are connected with poles associated toghostparticles.44,45 If
the theory is to beghost-free, one should eliminate the metric derivatives of order higher than
second. The mathematical background for a ghost-free, nonlinear Lagrangian theory was
lated by Lovelock,46 who proposed that the most general gravitational Lagrangian is

L5A2g(
m50

n/2

l~m!L~m! , ~1.1!

wherel (m) are arbitrary constants,n denotes the manifold’s dimensions,g is the determinant of
the metric tensor, andL (m) are functions of the Riemman curvature tensor, of the form

L~m!522mda1•••a2m

b1•••b2mRb1b2

a1a2•••Rb2m21b2m

a2m21a2m, ~1.2!

whereda
b is the Kronecker symbol,L(1)5R, the Einstein–Hilbert~EH! Lagrangian, andL(2) a

particular combination of quadratic terms that yields second-order differential equations.L(2) is
referred to as the GB combination, since in four dimensions it satisfies the relation

d

dgmn
E ~R224RmnR

mn1RmnklR
mnkl!A2gd4x50, ~1.3!

corresponding to the GB theorem.47 Equation~1.3! implies that the addition of the GB combina
tion to the EH Lagrangian will not affect the four-dimensional field equations. On the other h
the fact that Eq.~1.3! does not hold in more than four dimensions, allows string theory to e
without introducing third and fourth derivatives of the metric.45,48Consequently, the presence
the GB combination in connection with KK theories may be of great use, both in the supers
quantum domain and in the classical extension of GR. In this context, a large number of c
logical models has been obtained.30,43,49–64

In the present paper we solve the cosmological field equations, arising from an actio
includes the GB combination of the quadratic terms, to obtain anisotropic five-dimensiona
mological models. In Sec. II A we derive the explicit form of the field equations for a quad
theory in five dimensions, for various equations of state of the matter content. Their solut
carried out in Sec. II B, through a new approximation technique that determines the cosmo
scales of the ordinary universe, with respect to the present epoch, at which the error betw
approximate description and the exact one becomes minimum, at each order of approxim
The new class of cosmological solutions is presented in Sec. III, for various types of m
content, and some of their properties are discussed in Sec. IV, where certain conditions fo
existence and geodesic completeness are derived, in connection to their cosmological beh
J. Math. Phys., Vol. 38, No. 6, June 1997
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II. QUADRATIC EXTENSION OF GENERAL RELATIVITY

A. Five-dimensional GB cosmologies

We consider a five-dimensional line element, representing KK-type models with hom
neous and isotropic, three-dimensional external space and bounded one-dimensional
space, of the form

ds252dt21R2~ t !F dr2

12kr2
1r 2~du21sin2 u df2!G1S2~ t !~dx5!2, ~2.1.1!

where\515c, R(t) andS(t) are the cosmic scale functions of the external and the inte
spaces, respectively, andk521,0,11 is the curvature parameter of the external space. Th
models can be obtained from a five-dimensional action in which the gravitational part is o
form

I5
1

L5
E A2gF 12k

R1a~R224RmnR
mn1RmnklR

mnkl!Gd5x, ~2.1.2!

where k58pG, a is a dimensionless constant, andL552pR5 is a normalization constant,22

corresponding to thephysical sizeof the internal space, once it can be considered static.43 The
field equations read as

Lmn52kL5Tmn⇒Rmn2 1
2 gmnR1 1

2h~2RRmn1RmklrRn
klr24RkmlnR

kl24RmkRn
k!

1 1
2hgmn~4RklR

kl2R22RklrsR
klrs!528pG5Tmn , ~2.1.3!

whereLmn represents the Lovelock tensor~Greek indices refer to the five-dimensional spac
time!, h516pGa is a constant of dimensionsT2, andG55GL5 is the five-dimensional gravita
tional constant.21 Tmn is the energy–momentum tensor of an anisotropic perfect fluid source o
form Tmn5diag(%,2p,2p,2p,2p5), wherep,p5 are the pressures of the fluid for the external a
the internal space, respectively, and% is the total mass energy density. Equation~2.1.3! is decom-
posed into three equations involvingR(t),S(t),%,p, andp5 ,

3
Ṙ

R

Ṡ

S
13F S ṘRD 21 k

R2G112hF S ṘRD 21 k

R2G ṘR Ṡ

S
58pG5%, ~2.1.4a!

3
R̈

R
13F S ṘRD 21 k

R2G112hF S ṘRD 21 k

R2G R̈R528pG5r5 , ~2.1.4b!

2
R̈

R
1
S̈

S
1F S ṘRD 21 k

R2G12
Ṙ

R

Ṡ

S
14hF S S ṘRD 21 k

R2D S̈

S
12

R̈

R

Ṙ

R

Ṡ

SG528pG5p, ~2.1.4c!

where an overdot denotes the derivative with respect to time. Since the Lovelock tensor is
genceless,L ;n

mn50, we obtain the conservation lawT;n
mn50, which gives

d%

dt
13

Ṙ

R
p1

Ṡ

S
p51S 3 ṘR1

Ṡ

SD%50. ~2.1.5!

Further inspection of the system~2.1.4! and~2.1.5! shows that only~2.1.4a!, ~2.1.4b!, and~2.1.5!
are truly independent. Thus, the problem is completely determined by them and the two equ
J. Math. Phys., Vol. 38, No. 6, June 1997
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of state for the matter content, one for each subspace.65 It corresponds to a Cauchy problem th
has a solution only ifRÞ0 andSÞ0,;t. Cauchy’s criterion66 implies that this solution is unique
only when

114hWÞ0, ~2.1.6!

whereW stands for the combination

W5S ṘRD 21 k

R2 . ~2.1.7!

As regards the equation of state in the internal space,50,67we choosep550. In this case, the
field equations decouple. Equation~2.1.4b! is written in the form

F S ṘRD 21 k

R2G12hF S ṘRD 21 k

R2G25 C
R4 , ~2.1.8!

whereC is an integration constant, of dimensionsT22, related to the initial value ofṘ2. The
corresponding equation forS(t) can be found from the combination of Eqs.~2.1.4a!, ~2.1.4b!, and
~2.1.5!. Its solution will giveS(t) as a function ofR(t), with a functional form depending on th
equation of state in the external space. We obtain the following results.

(i) Models with static internal space: Any solution of Eq.~2.1.8! will be an external space
solution of the five-dimensional model, if and only if it also satisfies the second indepe
equation forR(t), resulting from the combination of Eqs.~2.1.4a! and ~2.1.5! for S5const,

(ii) Vacuum models(%50):

S~ t !5S1Ṙ~ t !. ~2.1.9!

(iii) Matter-dominated models(p50):

S~ t !5S1Ṙ1S2ṘE dt

R2Ṙ2~114hW!
. ~2.1.10!

(iv) Radiation-dominated models(p5%/3):

S~ t !5S1Ṙ1S2ṘE dt

R3Ṙ2~114hW!
. ~2.1.11!

In any of the equations~2.1.9!, ~2.1.10!, and~2.1.11!, S1 , S2 are integration constants of dimen
sionsT andT22, respectively.

B. An approximate description in terms of the cosmological redshift

For each type of matter content, Eq.~2.1.8!, together with the corresponding one of th
equations~2.1.9!, ~2.1.10!, and~2.1.11!, will determine completely the evolution of the model an
their solution will give us the forms of the unknown scale functions. At first we solve Eq.~2.1.8!
to obtain the external scale function,R(t). It is expressed in the form

W12hW25
C
R4 , ~2.2.1!
J. Math. Phys., Vol. 38, No. 6, June 1997
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i.e., an algebraic equation quadratic inW, which has real solutions if its discriminant,D, is always
non-negative. However,D50 leads to violation of the uniqueness condition~2.1.6! and therefore
is not allowed. The caseD.0 gives

118h
C
R4.0. ~2.2.2!

We are interested in theories for whichhC,0. In this case, Eq.~2.2.2! gives

U8hC
R4 U,1, ~2.2.3!

for any t. According to Eq.~2.2.3! the quadratic theory under consideration is valid only in epo
where

R~ t !.Rmin5~8uhCu!1/4. ~2.2.4!

Thus,Rmin can be used as a reference condition or even as an appropriate initial one forR(t).
Now, Eq. ~2.2.1! gives

W5S ṘRD 21 k

R2 52
1

4h F17A12SRmin

R D 4G . ~2.2.5!

Since both signs on the rhs of Eq.~2.2.6! are, in principle, physically accepted, its general solut
consists of two distinct families of solutions, one for each sign.

Once the initial conditions are determined, integration of Eq.~2.2.5! will give us the unknown
scale function of the external space. However, Eq.~2.2.5! cannot be integrated with respect
R(t) in this form. In the present paper, we integrate Eq.~2.2.5! by expanding the square root o
its rhs in an infinite series,

S ṘRD 21 k

R2 1
1

4h
56

1

4h F11(
l51

` S l2 3
2

l
D SRmin

R D 4l G . ~2.2.6!

Because of the condition~2.2.3! the series on the rhs of Eq.~2.2.6! satisfies the Weierstras
criterion68,69and converges absolutely and uniformly. Therefore, it can be terminated at a c
order, depending on the approximation under consideration. To keep terms up to thel th order in
(Rmin /R) in the series expansion, corresponds to anl th-order approximation.

On cosmological considerations, we expect that anl th-order approximation will describe
successfully the dynamic behavior of the visible universe at some scales with respect toRmin , but
it will fail at some others. Indeed, if we are interested in the behavior of the model very clo
Rmin , the leading terms to consider in the field equation~2.2.6! are those with the highest powe
in (Rmin /R). On the contrary, these terms will be negligible at the present epoch, sincR0

.Rmin . We believe that there exists a relation determining the smallest cosmological scale
Rl at which eachl th-order approximation is valid. To derive the functional form of this relati
we note that when we truncate an infinite series expansion of a function at a certain o
‘‘maximum absolute error’’ arises,El( f )5maxuf(x)2pl(x)u, between the exact expression and t
approximate one.70,71 We state that anl th-order approximation is valid at thoseRl for which
El( f ) becomes minimum. The functional form of the relation betweenl andRl is accordingly
obtained by minimizingEl( f ) with respect to these variables. The corresponding analys
presented in detail in Appendix A. We verify that anl th-order approximation (l51,2,...) isvalid
at scales for which
J. Math. Phys., Vol. 38, No. 6, June 1997
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R0

Rl
511zl'1000A4 l , ~2.2.7!

wherezl denotes the cosmological redshift parameter corresponding toRl . Equation~2.2.7! indi-
cates that already at redshiftsz2.1189 we have to include and the second order term in the se
expansion~2.2.6! to guarantee that the error between the exact expression~2.2.5! and the resulting
approximate one becomes minimum.

However, these considerations hold only forl>1 ~see Appendix A! and therefore we canno
determine the scales at which the zeroth-order approximation (l50) is valid. This approximation
corresponds to the case whereC50 ~and thereforeRmin50! and needs to be examined, but i
physical interpretation is yet undetermined.

III. COSMOLOGICAL SOLUTIONS

A. Zeroth-order approximation ( l50)

We are interested only in five-dimensional solutions with radiation-dominated external s
since the corresponding vacuum or matter-dominated models have already been obtained60,61and
there are no solutions with static internal space. Equation~2.2.6! is now written in the form

S ṘRD 21 k

R2 1
1

4h
56

1

4h
. ~3.1.1!

Its general solution consists of two distinct families. In the first family, there are no models
k511, while there is only one possible solution fork50, in which both subspaces are static. Th
solution exists for%50. Fork521,R(t);t, corresponding to the asymptotic Milne phase of t
open FRW models. The corresponding internal scale function is

S~ t !5
S1
tch

2
tch
2

2
S2S tcht D 2, ~3.1.2!

wheretch is the characteristic time scale of the theory~e.g., the Planck time!. For S1.0 andS2
,0 the internal space contracts, reaching at the constant valueSF5S1 /tch, for t→`. The second
family of solutions satisfy the equation

S ṘRD 21 k

R2 52
1

2h
. ~3.1.3!

We consider the following cases.
(i) For k50: In this case, real solutions of Eq.~3.1.3! are obtained only whenh,0. They are

of the form

R~ t !5C0 exp~at!, ~3.1.4!

whereC0.0 is an integration constant anda5(22h)21/2. The visible universe corresponds to
de Sitter model, i.e., an inflationary phase. The scale function of the internal space is of the

S~ t !5S1C0a exp~at!2
2

5
uhu

S2
C0
4 exp~24at!. ~3.1.5!

In order to decide on whether the internal space contracts or not, we have to determi
conditions under which the quantityS(t)Ṡ(t) becomes negative at large times, since it isS2(t)
that governs the behavior of the extra dimension.72 Accordingly, demandingSṠ,0, we obtain
J. Math. Phys., Vol. 38, No. 6, June 1997
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16

25
uhu2

S2
2

C0
8 e

210at2
6

5
uhu

S1S2
C0
3 ae25at.S1

2C0
2a2. ~3.1.6!

Unfortunately, thecontraction condition~3.1.6! is not satisfied at all times. Indeed, for large time
the lhs of Eq.~3.1.6! becomes arbitrarily close to zero. Since, on the other hand, its rhs is pos
there must exist a time beyond which the inequality~3.1.6! fails. Therefore, ultimately the interna
dimension will expand.

(ii) For k521: In this case, real solutions for the scale function of the external space m
obtained either forh,0 of for h.0. They can be cast in the general form

R~ t !5C1 sinh~at!, ~3.1.7!

whereC15(2hk)1/2. Forh,0, Eq.~3.1.7! corresponds to a Big Bang model, while forh.0, to
an oscillating one. The scale function of the internal space is of the form

S~ t !5S1 cosh~at!2
S2
4h F3 cosh~at!lnS tanhS at2 D D1coth2~at!G . ~3.1.8!

(iii) For k511: Again, real solutions of Eq.~3.1.3! are obtained only forh,0. They are of
the form

R~ t !5C2 cosh~at!, ~3.1.9!

whereC2.0 is an integration constant. The visible space corresponds to an inflationary p
The corresponding internal scale function is

S~ t !5aS1C2 sinh~at!1S2
uhu
C2
4 @3 sinh~at!tan21

„sinh~at!…1tanh2~at!#. ~3.1.10!

For the same reasons as the case~i!, the internal dimension corresponding to both Eqs.~3.1.8! and
~3.1.10!, does not contract at all times.

B. First-order approximation ( l51)

In this approximation we rediscover some of the classical GR cosmologies as solutions
quadratic theory. Equation~2.2.6! is written in the form

S ṘRD 21 k

R2 1
1

4h
56

1

4h F12
1

2 SRmin

R D 4G . ~3.2.1!

Its general solution consists of two distinct families. The first family satisfies the equation

S ṘRD 21 k

R2 5e
uCu
R4 , ~3.2.2!

wheree561 in accordance toh,0 or h.0, respectively. Fore521 accepted solutions ar
only those withk521. The family of solutions associated to Eq.~3.2.2! is

R~ t !5~A1Bt2kt2!1/2, ~3.2.3!

whereA is a dimensionless integration constant andB254(euCu2kA).0 is a constant of dimen
sionsT22. The corresponding solutions ofS(t) are the following.
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(i) Models with static internal space:Equation~3.2.3! corresponds to an external space so
tion of a five-dimensional model with a static internal one in the case where the external sp
radiation dominated. Therefore, the four-dimensional Friedmann radiation cosmologies of G
obtained in the first-order approximation of the quadratic theory.

(ii) Vacuum models:Equation~2.1.9! gives

S~ t !5
S1
2

B22kt

~A1Bt2kt2!1/2
. ~3.2.4a!

In this case, the internal space contracts, providedeS1,0.
(iii) Matter-dominated models:From Eq.~2.1.10! we obtain

S~ t !5
S1
2

B22kt

AA1Bt2kt2
12S2

B22kt

AA1Bt2kt2
@DI 11EI21FI 3#, ~3.2.4b!

whereD, E, F are constants andI 1 , I 2 , I 3 are functions of time. Their explicit forms are give
in Appendix B.

(iv) Radiation-dominated models:Equation~2.1.11! gives

S~ t !5
S1
2

B22kt

AA1Bt2kt2
12S2

B22kt

AA1Bt2kt2
@DI 41EI51FI 6#, ~3.2.4c!

whereI 4 , I 5 , andI 6 are also functions of time~see Appendix B!.
The second equation obtained by Eq.~3.2.1! is

S ṘRD 21 k

R2 5
e

2uhu
2e

uCu
R4 . ~3.2.5!

The family of solutions associated with it is

R~ t !5„P cos~bt!1ekuhu…1/2, ~3.2.6!

where

P5Ak2h212uhCu, b5A22
e

uhu
. ~3.2.7!

For e521 spatially flat solutions are not possible, since they predictR(t),Rmin , ;t. Equation
~3.2.6! does not represent an external space solution of a five-dimensional model with
internal space. For a nonstatic internal space, the corresponding solutions ofS(t) are the follow-
ing.

(ii) Vacuum models:

S~ t !52S1
bP

2

sin~bt!

„P cos~bt!1ekuhu…1/2
. ~3.2.8a!

Contraction of the internal space is possible only ifeS1,0.
(iii) Matter-dominated models:
J. Math. Phys., Vol. 38, No. 6, June 1997
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S~ t !52S1
bP

2

sin~bt!

„P cos~bt!1ekuhu)1/2
2S2

euhu
P3/2

sin~bt!

„P cos~bt!1ekuhu…1/2

3FG cot
bt

2
1H tan

bt

2
1JI71KI 8G , ~3.2.8b!

whereG, H, J, K are constants andI 7 , I 8 are functions of time~see Appendix B!.
(iv) Radiation-dominated models:

S~ t !52S1
bP

2

sin~bt!

R~ t !
2S2

euhu
P3/2

sin~bt!

R~ t ! F G

A12d
S cotS bt2 DA12r 2 sin2S bt2 D1ES bt2 ,r D

2FS bt2 ,r D D 1
H

&

PS q, 1r 2 , 1r D1J
&

12z
PS q, 12d

12z
,
1

r D1K
&

12u
PS q, 12d

12u
,
1

r D G ,
~3.2.8c!

whereF(x,y), E(x,y), andP(x,y,z) are the elliptic integrals of the first, second, and third kin
respectively, in which we have set

q5sin21A12cos~bt!

12d
, r5A 2

12d
~3.2.9!

while d, z, andu stand for the combinations

d52e
kuhu
P

, z5
2ekuhu12AuhCu

P
, u5

2ekuhu22AuhCu
P

. ~3.2.10!

C. Second-order approximation ( l52)

According to Eq.~2.2.11!, it is valid at epochs wherez>1189. Now, Eq.~2.2.6! becomes

S ṘRD 21 k

R2 1
1

4h
56

1

4h F124
uhCu
R4 28h2

C2

R8G . ~3.3.1!

The first equation obtained by Eq.~3.3.1! is

S ṘRD 21 k

R2 5e
uCu
R4 12euhu

C2

R8 . ~3.3.2!

The family of solutions, associated with it, is

62~ t2t i !5E u du

A2euhuC21euCuu22ku3
, ~3.3.3!

whereu5R2(t). The integration constant,t i , is of no physical importance, since by Eq.~3.3.2!,
we see that the form ofR(t) remains invariant under time displacements. As we show in App
dix C, for kÞ0, Eq.~3.3.3! may be evaluated in terms of elliptic integrals. Fork50, real solutions
are possible only fore511(h,0). In this case, Eq.~3.3.3! takes the much simpler form

R~ t !5~4uCut222uhCu!1/4. ~3.3.4!
J. Math. Phys., Vol. 38, No. 6, June 1997
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At large times, Eq.~3.3.4! reduces to the corresponding solution of the first-order approxima
thus yielding a generalization of the GR radiation solution, at earlier epochs than those
linear EH cosmology.

For a nonstatic internal space, the functional form ofS(t) can be found explicitly only in the
vacuum case. Then, Eq.~2.1.9! gives

S~ t !52uCuS1
t

~4uCut222uhCu!3/4
. ~3.3.5!

Contraction of the internal space is possible as long asS1.0.
The second equation obtained by Eq.~3.3.1! is

S ṘRD 21 k

R2 1
1

2h
5
1

h

uhCu
R4 1

8

h

uhCu2

R8 . ~3.3.6!

The family of solutions associated with it is

6A2
e

uhu ~ t2t i !5E u du

Au422ekuhuu322uhCuu224h2C2
. ~3.3.7!

Notice that neither Eq.~3.3.7! nor Eq.~3.3.3! represent solutions of a five-dimensional model w
static internal space. As we show in Appendix C, forkÞ0, evaluation of Eqs.~3.3.7! is possible
only in terms of elliptic integrals. However, fork50, it takes the much simpler form

R~ t !5~A5uhCucos~2bt!1euhCu!1/4. ~3.3.8!

In this case, expanding solutions (e511) are possible, while oscillating ones (e521) are not,
since they predict thatR(t),Rmin ,;t.

In the case where the internal space is nonstatic, the functional form ofS(t) can be found
explicitly only for a vacuum model. From Eq.~2.1.9! we obtain

S~ t !52
A5
2

buhCuS1
sin~2bt!

~A5uhCucos~2bt!1euhCu!3/4
. ~3.3.9!

The internal space contracts, providedeS1,0.

IV. SOME PROPERTIES OF THE GB COSMOLOGIES

A. Cosmological behavior of the external space

In the first-order approximation Eq.~3.2.3! corresponds to the first family of solutions. F
kÞ0, accepted models are those withA1Bt2kt2.0. When e511, the discriminantD
54euCu is positive. Therefore, there are two moments of time at whichR(t) may become zero
ts and t l with ts,t l . At these moments the present analysis is not valid. Fork511, accepted
solutions lie within the time intervalts,t,t l , of total measureDt52uCu1/2. Right in the middle
of this time interval, there is a critical pointtc5B/2k, at whichR8(tc)50 while R9(tc)521
,0. Then, the radius of the external space reaches at an absolute maximum value,Rmax5uCu1/2,
and the visible universe alters its dynamic behavior, from expansion, forts,t,tc , to contraction,
for tc,t,t l . For k521, real solutions exist whent,ts andt.t l . In this case, the critical poin
tc lies within the time interval where no solutions are possible, and therefore the model pos
no critical points. The external space either follows the decreasing branch, starting at
J. Math. Phys., Vol. 38, No. 6, June 1997
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infinity, and end its life att5ts , or follows the ever-expanding branch, starting att5t l . For k
50, solutions are obtained whent.A/2uCu1/2. The external space expands, yielding a Friedma
radiation solution,R;t1/2, when t→`.

For e521 the discriminant is negative, i.e., there are no real times to makeR(t) zero. The
quadratic polynomial has the same sign as the coefficient oft2 and hence, is positive@R(t) is real#,
whenk521 and negative@R(t) is imaginary#, whenk511. In the first-order approximation o
the quadratic theory, physically accepted solutions;t for the external space, are only the op
Friedmann models withh.0.

Equation~3.2.6! corresponds to the second family of solutions. Fore521 it is a physically
accepted model,;t. In this case, the visible universe is bounded, undergoing oscillations
which the periods of expansion are followed by subsequent periods of contraction. The
several critical points during its time evolution, each of them located attc5(N11)p, whereN is
a natural number. Fore511, Eq. ~3.2.6! is valid only at timest.t i5(uhu/2)1/2. The external
space expands, yielding an asymptotic de Sitter phase whent→`.

In the second-order approximation, the solution~3.3.4! exists whent.t i5(uhu/2)1/2. The
visible universe expands, approaching the Friedmann radiation solutionR(t);t1/2 at large times,
with a rate that tends to zero ast→`. The second family of solutions, given by Eq.~3.3.8!, exists
only for e511. Again, the external space expands but its rate of expansion tends to zer
t→`.

B. Conditions on the geodesic completeness of the GB cosmologies

Quadratic Lagrangian theories have been extensively studied as an attractive way of y
solutions free from cosmological singularities.26–32 In this context we examine the possible im
plications of the singularity theorems73,74 on the five-dimensional models with static intern
space, as well as on the vacuum models, obtained in the present paper.

Non-space-like geodesics are complete74 if Rmnu
mun,0, whereRmn are the components o

the Ricci tensor andum are the vectors tangent to the geodesics. For the time-like geodesicum

5d0
m , and the last condition reads asR00,0.
There is only one model with static internal space, obtained in the first-order approxim

This model is also a solution of the linear EH theory, in the context of which it possesses sin
points in its time evolution. Nevertheless, its presence in a quadratic theory too, may attrib
it new properties affecting its geodesic completeness. For the model~3.2.3! when the internal
space is static andkÞ0, we obtain

R005
3euCu

~A1Bt6kt2!2
,0. ~4.2.1!

Equation~4.2.1! is true whene521(h.0), and hence the corresponding model is geodesic
complete.

In the zeroth-order approximation, the vacuum models obtained from the combination o
~2.1.9! with Eqs. ~3.1.4!, ~3.1.7!, and ~3.1.9! are geodesically complete, providedh,0, since in
this caseR0052/h. This is not true for the oscillating solution obtained from Eq.~3.1.7! when
h.0.

In the first-order approximation, the vacuum model determined by Eqs.~3.2.3! and~3.2.4a! is
not geodesically complete sinceR0050, although the corresponding one with static internal sp
might be. Thus, the existence of a nonstatic internal space may affect considerably the ge
of the five-dimensional space. For the corresponding model determined by Eqs.~3.2.6! and
~3.2.8a! of the second family of solutions, we have

R0052e
2~k2uhu12uCu!

R4~ t ! S cos~bt!1e
kuhu
P D 2, ~4.2.2!
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and hence, fore511, it is geodesically complete.
Finally, in the second-order approximation, neither the vacuum model determined by

~3.3.4! and~3.3.5! nor the corresponding one determined by Eqs.~3.3.8! and~3.3.9! are geodesi-
cally complete.

V. DISCUSSION AND CONCLUSIONS

In the present paper we have solved the field equations, arising from an action that in
the GB combination of quadratic terms, to obtain anisotropic five-dimensional cosmological
els with homogeneous and isotropic external space and a bounded one-dimensional interna
The problem depends on three free parameters:k, the curvature parameter of the external spa
h, related to the coefficient of the GB combination, andC, connected to the initial value ofṘ2.

As regards the energy–momentum tensor we have consideredp550, in connection to cos-
mological models of an already compactified internal space.50,65,67Compactification is a topologi-
cal process of quantum origin, which leads to the separation of the extra dimensions fro
ordinary ones.65 Therefore we have studied only the process of contraction of the internal s
which may be understood by the classical equations of motion and starts immediately afte
pactification. In this case, the two subspaces are completely disjoint and the field equatio
couple. It has also been proved that once the external scale function,R(t), is found through the
solution of Eq.~2.1.8!, the corresponding internal one,S(t), is determined, through one of th
equations~2.1.9!, ~2.1.10!, or ~2.1.11!, depending on the equation of state under consideratio
first integration of Eq.~2.1.8! is possible and introduces the constantC. WhenC50, the problem
is reduced to the one considered in Refs. 60 and 61, for the case of a matter-dominated u
However, this case does not imply any natural contributions of the quadratic terms to the
equations and therefore its physical interpretation is yet undetermined.

For CÞ0 the quadratic theory under consideration yields a generalization of the linea
one. We impose the conditionhC,0 to guarantee the existence of physically accepted soluti
Then the analysis is restricted in epochs whereR(t) is always larger than a constant minimu
valueRmin and therefore we cannot have any information about the era at whichR(t)<Rmin .
Accordingly,Rmin is used as a natural reference condition forR(t) or even as an appropriate initia
one. Equation~2.1.8! is now expressed in the form of an infinite series in (Rmin /R), which
converges absolutely and uniformly. The order at which we terminate this series depends o
close toRmin we want to describe the evolution of the external space, that is on the approxim
under consideration. In this sense, we have determined the scales of the ordinary universe,
of the cosmological redshift parameter, at which, for each orderl.0 in the series expansion, th
best approximation to the exact solution is achieved.

The zeroth-order approximation actually corresponds to the caseC50. We see that the generi
CÞ0 theory includes the particularC50 one. Inflationary and oscillating solutions are possible
the external space. Some of these solutions are also known from the linear theory, but the
existence is crucially dependent on a nonvanishing cosmological constant. Here, on the co
L50. The five-dimensional models, obtained in this approximation, result in a generalizati
the corresponding solutions of Wheeler,52 as well as those of Deruelle and Farina-Busto,64 which
do not distinguish between ordinary and internal spaces. They also generalize the corresp
models of Lorenz-Petzold,60,61in the case where the external space is radiation dominated. Fin
it is worth noting that the vacuum models in this approximation are geodesically complete
videdh,0.

In the first-order approximation, we have emphasized in rediscovering the radia
dominated Friedmann solutions of the linear theory as one of the two families of solutions f
four-dimensional external space. To obtain these models as external space solutions is v
portant since they are not only exact solutions of GR, but they also give a good fit to cosmol
observations. Therefore, every generalized theory of gravity should include them, at le
J. Math. Phys., Vol. 38, No. 6, June 1997
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approximate ones.30,43However, it is doubtful whether they should be present as exact solut
since after all they do not fit exactly the observations: clearly, the four-dimensional universe
completely homogeneous.

The initial conditions will fix the integration constants, but they cannot determine whethe
external space will evolve according to one or the other family of solutions. This is a conseq
of the high nonlinearity of the original equations~2.1.3! and we need to have some extra info
mation. For a nonstatic internal space, both families of solutions are equally possible and re
a generalization of the corresponding cases considered in Refs. 30, 42, 43, 50, 56, and 75
case of a static internal space, every solution of Eq.~3.2.1! corresponds in an external spa
solution of the five-dimensional model, if and only if it also satisfies the second indepe
equation forR(t), resulting from the combination of Eqs.~2.1.4a! and~2.1.5! for S5const. This
equation may always provide us with the extra information we need. Indeed, in this appro
tion, this is true only for the Friedmann-like radiation solution. Therefore, when after a perio
contraction the internal space becomes static, the only natural choice in the evolution of the
space is through the Friedmann radiation solution. Then, the present analysis is reduced
corresponding one of Farina-Busto.43

We have also found that the presence of the nonlinear terms in the gravitational actio
impose severe implications on the singularity theorems of the classical GR solutions.32 Indeed, the
cosmological solution with radiation-dominated FRW external space and a static internal
geodesically complete forh.0. It is therefore probable that the four-dimensional radiation so
tion of GR, may not have singular points during its time evolution, within the context
higher-dimensional quadratic theory. On the contrary, the corresponding vacuum mode
nonstatic internal space is not geodesically complete. Therefore, it is also probable that th
ence of a nonstatic extra dimension, in connection to the absence of matter, may affect co
ably the geometry of the space-time. Nevertheless, this is not true for the vacuum model
second family of solutions, which, forh,0, is geodesically complete. An extensive study of the
results may be necessary and it will be the scope of a future work.

In the second-order approximation, the first family of solutions withk50 corresponds to a
natural extension of the FRW radiation models, at earlier epochs than those of the EH cosm
At large times, it approaches the GR solutionR(t);t1/2, with a rate that tends to zero ast→`.
None of the two families of solutions in this case represent external scale functions of a
dimensional model with a static extra dimension. This result may have a clear physical me
Already from the second order of approximation, i.e., at redshifts wherez'1189, the internal
space cannot be considered static.

To allow for the presence of a fifth dimension is the least we can do in order for the qua
theory under consideration to exist.46 As we have seen, the extra dimension may affect consi
ably, not only the geometry of the five-dimensional space–time, as in the case of the sing
theorems, but also the evolution of the visible universe, at least as regards some particula
tions. A generalization of these results in space–times of arbitrary inner dimensions may
more interesting phenomena and will be the scope of a future work.

Finally, we have to point out that, in a corresponding work considered in Ref. 76, there
several errors due to the fact that the authors have used the Ricci tensor instead of the Eins
on the left-hand side of the field equations@Eq. ~4! in Ref. 76#. Actually, Eq.~2.1.3! of our paper
should be used in Ref. 76, in the place of their own Eq.~4!.
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APPENDIX A: DETERMINATION OF THE SCALES AT WHICH AN l TH-ORDER
APPROXIMATION IS VALID

In the present paper we want to approximate the function on the rms of Eq.~2.2.5!,

f ~x!5~12x!1/2, x5SRmin

R D 4, ~A1!

with the aid of anl th-order polynomial,pl(x), by truncating its convergent infinite series expa
sion @Eq. ~2.2.6!# at a certain order,l . In this case, a maximum absolute error arises between
exact expression and the approximate one, of the form70,71

El~ f !5maxu f ~x!2pl~x!u. ~A2!

On cosmological considerations we impose that there is a ‘‘constraint’’ between l andR, which
may determine the smallest scales (Rl.Rmin) with respect to the present epoch, at which
l th-order approximation is valid. Therefore, for eachl>1 the external scale factor is defined in th
interval Rl<R<R0 , whereR0 corresponds to the present epoch. Then, according to Eq.~A1!,
x is defined in the intervalx0<x<xl .

We state that anl th-order approximation is valid whenEl( f ) becomes minimum. Accord
ingly, the functional form of the constraintF( l ,Rl)50 may be obtained by minimizingEl( f ).

To determine the form ofEl( f ) we use Jackson’s Theorem of the ‘‘Theory of Approximations
of Functions.’’ 70,71 According to it, the maximum absolute error arising in the approximation
the functionf (x), defined in the interval@x0 ,xl #, by an l th-order polynomial (l>1), is

El~ f !<6VS xl2x0
2l D , ~A3!

whereV~d! is the ‘‘modulus of continuity’’ of f (x) on @x0 ,xl #, which, for d.0, is defined as
follows:71 If x1 ,x2P@x0 ,xl #, then for ux22x1u,d,

V~d!5supu f ~x1!2 f ~x2!u. ~A4!

Therefore, in our case, the maximum absolute error reads as

El~ f !<
6

A2l
SRmin

R0
D 2F SR0

Rl
D 421G1/2. ~A5!

To minimizeEl( f ) with respect to bothl andRl when the constraintF( l ,Rl)50 holds between
them, we use the method of ‘‘Lagrange multipliers’’ of the ‘‘ Theory of Functions of Severa
Variables.’’ 77 According to it, the minima ofEl( f ) are determined by the relations

]El

]Rl
1L0

]F

]Rl
50,

]El

] l
1L0

]F

] l
50, F~ l ,Rl !50, ~A6!

whereL0 is an arbitrary constant, the Lagrange multiplier. Equations~A6! are subsequently use
to derive the functional form of the constraint determining the scales where anl th-order approxi-
mation is valid. We obtain

R0

Rl
5zl115S 11

L0
2C2

18x0
l D 1/4, ~A7!
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whereC is an arbitrary integration constant,x05(Rmin /R0)
4, andzl is the cosmological redshif

parameter for the ordinary space, corresponding toRl . To estimate the arbitrary constants i
volved, we consider the first-order approximation (l51). As we see in Sec. III B, in this approxi
mation we rediscover the Friedmann radiation cosmologies of GR as solutions for the
function of the external space. These solutions are valid atz51000.78 Therefore, in Eq.~A7!, for
l51 we setz151000, to obtain

AL0C'2060
Rmin

R0
, ~A8!

and accordingly, Eq.~A7! is finally written in the form

R0

Rl
5zl11'1000A4 l . ~A9!

Equation~A9! determines the scales of the visible universeRl , with respect to the present epoc
R0 , at which, for each order of approximationl , the error between the exact expressionf (x) and
the approximate onepl(x) becomes minimum.

APPENDIX B: INTERNAL SCALE FUNCTION SOLUTIONS IN THE FIRST-ORDER
APPROXIMATION

1. First family of solutions

The scale function of the external space is given by Eq.~3.3.2!. For a matter-dominated
model,S(t) is given by Eq.~2.1.10!, which is decomposed to

S~ t !5S1Ṙ14S2ṘF E D dt

~B22kt!2
1E E dt

A81Bt2kt2
1E F dt

A91Bt2kt2G , ~B1.1!

where

A85A22AuhCu, A95A12AuhCu, ~B1.2!

and

D5
uCu

uCu24k2uhu
, E5

2kuhu1eAuhCu
4~ uCu24k2uhu!

, F5
2kuhu2eAuhCu
4~ uCu24k2uhu!

. ~B1.3!

The integralsI 1 , I 2 , andI 3 , respectively, on the rhs of Eq.~B1.1!, are evaluated as follows:

I 15E dt

~B22kt!2
5H 1

B2 t, for k50

1

2k

1

B22kt
, for kÞ0,

~B1.4!

I 25E dt

A81Bt2kt2
55 2

2

A2D1

tanh21S B22kt

A2D1
D , for D1,0,

2

AD1

tan21S B22kt

AD1
D , for D1.0,

~B1.5!

where
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D158kAuhCu24euCu. ~B1.6!

The form of I 3 is the same as~B1.5! if we put D2 everywhere in place ofD1 , where

D2528kAuhCu24euCu. ~B1.7!

For a radiation-dominated model, Eq.~2.1.11! reads as

S~ t !5S1Ṙ14S2ṘF E D dt

~B22kt!2R~ t !
1E E dt

~A81Bt2kt2!R~ t !
1E F dt

~A91Bt2kt2!R~ t !G .
~B1.8!

The integralsI 4 , I 5 , andI 6 , respectively, in Eq.~B1.8! are evaluated as follows:

I 45E dt

~B22kt!2R~ t !
5H 1

B2 AA1Bt, for k50,

1

2euCu
R~ t !

B22kt
, for kÞ0,

~B1.9!

I 55E dt

~A81Bt2kt2!R~ t !
55

1

A22gAuhCu
tan21S G1

B22kt

R~ t ! D , for g,0,

2
1

A2gAuhCu
tanh21S G2

B22kt

R~ t ! D , for g.0,

~B1.10!

where

g5euCu22kAuhCu, G15A2
2

g
AuhCu, G25A2

g
AuhCu. ~B1.11!

The form of I 6 is the same as~B1.10! if we put everywhere2g in place ofg.

2. Second family of solutions

The scale function of the external space is now given by Eq.~3.2.6!. For a matter-dominated
universe, the corresponding internal one is written in the form

S~ t !5S1Ṙ22S2
euhu
bP5/2

ṘFGE dx

cosx21
1HE dx

cosx11
1JE dx

cosx2z
1KE dx

cosx2uG ,
~B2.1!

wherex5bt, z, andu are given by Eq.~3.2.10!, and we have set

G5
1

2 FAuhCu
P S 2

u221
2

2

z221
2

1

z11
2

1

u11D21G ,
H5

1

2 FAuhCu
P S 1

z11
2

1

u11D21G , ~B2.2!

J5
AuhCu
P

1

z221
, K52

AuhCu
P

1

u221
.
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The last two integrals of Eq.~B2.1!, I 7 and I 8 , respectively, are evaluated as follows;

I 75E dx

cosx2z
55 2

2

Az221
tan21SAz11

z21
tan

x

2D , for z2.1,

2

A12z2
tanh21SA11z

12z
tan

x

2D , for z2,1.

~B2.3!

The corresponding form ofI 8 is the same as~B2.3! if we put everywhereu in place ofz.

APPENDIX C: EXTERNAL SCALE FUNCTION SOLUTIONS, FOR kÞ0, IN THE SECOND-
ORDER APPROXIMATION

1. First family of solutions

They are obtained from Eq.~3.3.3!, where we have setu5R2(t). To evaluate the integral on
its rhs forkÞ0, at first we have to find the roots of the cubic equation,

u32
e

k
uCuu222

e

k
uhuC250. ~C1.1!

Performing the substitution

u5y1e
uCu
3k

. ~C1.2!

Equation~C1.1! is reduced to

y31p1y1q150, ~C1.3!

where

p152
C2

3
and q15

2

27 S e

k
uCu D 322

e

k
uhuC2. ~C1.4!

The solution of Eq.~C1.3! is given in the form

y15A11B1 , y2,352
A11B1

2
6 i

A12B1

2
), ~C1.5!

where

A15A3 2
q1
2

1AQ1, B15A3 2
q1
2

2AQ1,

Q15S p13 D 31S q12 D 2. ~C1.6!

For uCu.27uhu/2⇒Q1,0. Then, the rootsyi( i51,2,3) are real and different to each other and E
~3.3.3! is written in the form

62~ t2t i !5E @y1e~ uCu/3k!#dy

A2k~y2y1!~y2y2!~y2y3!
, ~C1.7!
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which is evaluated in terms of elliptic integrals.68 ~i! For k521:

62~ t2t i !5
2

y2Ay12y3
„y1~y12y2!P~m,1,m!1y2

2F~m,m!…2
2

3
euCu

1

Ay12y3
F~m,m!,

~C1.8!

where

m5sin21Ay2y1
y2y2

and m5Ay22y3
y12y3

. ~C1.9!

~ii ! For k511:

62~ t2t i !5
2

Ay12y3
@~y22y3!P~v,n2,n!1y3F~v,n!#1

2

3
euCu

1

Ay12y3
F~v,n!,

~C1.10!

where

v5sin21AS y12y3
y12y2

D y2y2
y2y3

and n5Ay12y2
y12y3

. ~C1.11!

2. Second family of solutions

They are obtained from Eq.~3.3.7!. To find the roots of the quartic equation,

u422ekuhuu322uhCuu224uhCu250, ~C2.1!

we first perform the substitution

u5v1e
kuhu
2

, ~C2.2!

which reduces Eq.~C2.1! to

v41p2v
21q2v1r 250, ~C2.3!

where

p252 3
2 ~h212uhCu!, q252keh2~ uhu12uCu!,

~C2.4!

r 252h2~ 3
16 h21 1

2 uhCu14C2!.

The roots of Eq.~C2.3! are the four sums

v1,2,3,456Af16Af26Af3, ~C2.5!

wheref i( i51,2,3) are the roots of the cubic equation

f31
p2
2

f21
p2
224r 2
16

f2
q2
2

64
50, ~C2.6!

and the signs were chosen so that
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Af1Af2Af352
q2
8

5ke
h2

8
~ uhu12uCu!. ~C2.7!

Through the substitution

f5w2p2/6, ~C2.8!

Eq. ~C2.6! is transformed to

w31p3w1q350, ~C2.9!

i.e. of a form similar to Eq.~C1.3!, and hence its solution can be found in the same fash
Therefore, Eq.~3.3.7! becomes

6A2
e

uhu ~ t2t i !5E @v1ek~ uhu/2!#dv

A~v2v1!~v2v2!~v2v3!~v2v4!
, ~C2.10!

whose solution can be found in terms of elliptic integrals,68 in the form

6A2
e

uhu ~ t2t i !5
1

A~v12v3!~v22v4!
F2~v12v2!PS s,

v12v4

v22v4
,sD

1~ekuhu1v2!F~s,s!G , ~C2.11!

where

s5sin21AS v22v4

v12v4
D v2v1

v2v2
and s5A~v22v3!~v12v4!

~v12v3!~v22v4!
. ~C2.12!
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A unified treatment of the characters of SU(2) and SU(1,1)
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The character problems of SU~2! and SU~1,1! are re-examined from the standpoint
of a physicist by employing the Hilbert space method which is shown to yield a
completely unified treatment for SU~2! and the discrete series of representations of
SU~1,1!. For both the groups the problem is reduced to the evaluation of an integral
which is invariant under rotation for SU~2! and Lorentz transformation for SU~1,1!.
The integrals are accordingly evaluated by applying a rotation to a unit position
vector in SU~2! and a Lorentz transformation to a unit SO~2,1! vector which is
time-like for the elliptic elements and space-like for the hyperbolic elements in
SU~1,1!. The details of the procedure for the principal series of representations of
SU~1,1! differ substantially from those of the discrete series. ©1997 American
Institute of Physics.@S0022-2488~97!02705-9#

I. INTRODUCTION

A major tool in group representation theory is the theory of character. The importance
concept of character of a representation stems from the fact that for a semisimple Lie group
unitary irreducible representation is uniquely determined by its character. The simplificatio
fected by such an emphasis is obvious; in particular the formal processes of direct sum and
product as applied to representations are reflected in ordinary sum and multiplication of char

For finite dimensional representations character is traditionally defined as the sum
eigenvalues of the representation matrix. It should be pointed out that the unitary operators
infinite dimensional Hilbert space do not have character in this sense since the infinite
consists of numbers of unit modulus. For example forg5e one hasD(e)5I and the sum of the
diagonal elements of the infinite dimensional unit matrix is`. We now briefly give the
Gel’fand–Naimark1 definition of character which introduces the concept through the group rin
a generalized function on the group manifold.

We denote byX the set of infinitely differentiable functionsx(g) on the group, which are
equal to zero outside a bounded set. Ifg→Tg is a representation of the groupG we set

Tx5E x~g!Tgdm~g!, ~1!

wheredm(g) is the left and right invariant measure~assumed coincident! onG and the integration
extends over the entire group manifold.

The productTx1Tx2 can be written in the form

Tx1Tx25E x~g!Tgdm~g!,

where
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0022-2488/97/38(6)/3209/21/$10.00
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x~g!5E x1~g1!x2~g1
21g!dm~g1!. ~2!

The functionx(g) defined by equation~ 2! will be called the product of the functionsx1, x2 and
denoted byx1x2(g).

Let us suppose thatg→Tg is a unitary representation of the groupG realized in the Hilbert
spaceH of the functionsf (z) with the scalar product

~ f ,g!5E f ~z!g~z!dl~z!,

wheredl(z) is the measure inH.
Then the operatorTx is an integral operator with a kernel:

Txf ~z!5E K~z,z1! f ~z1!dl~z1!.

It then follows thatK(z,z1) is a positive definite Hilbert–Schmidt kernel, satisfying

E uK~z,z1!u2dl~z!dl~z1!,`.

Such a kernel has a traceTr(Tx) where

Tr~Tx!5E K~z,z!dl~z!.

Using the definition in equation~1! one can prove that Tr(Tx) can be written in the form

Tr~Tx!5E x~g!p~g!dm~g!. ~3!

The functionp(g) is the character of the representationg→Tg . It should be noted that in this
definition the matrix representation of the group does not appear and, as will be shown be
makes a complete synthesis of the finite and infinite dimensional irreducible unitary repre
tions.

The character of the complex and real unimodular groups was evaluated by Gel’fan
co-workers.2,3 The real group SL~2,R! turns out to be more involved than the complex gro
particularly because of the presence of the discrete series of unitary irreducible represen
~unirreps!. The main problem in the Gel’fand–Naimark theory of character is the constructio
the integral kernelK(z,z1) which requires a judicious choice of the carrier space of the repre
tation. The representations of the positive discrete seriesDk

1 were realized by Gel’fand and
co-workers3 in the space of the functions on the half-lineR1 and those of the negative discre
seriesDk

2 on the half-lineR2. The integral kernel of the group ring was determined by th
essentially for the reducible representationDk

1
%Dk

2 which considerably complicates the subs
quent computation of the character of a single irreducible representation. It is the object o
paper to re-examine the character problem of SU~1,1! @or SL~2,R!# from a physicist’s standpoin
by using the Hilbert space method developed by Bargmann4 and Segal5 in which computations can
be carried out within a single unirrep of the positive or negative discrete series. This metho
only simplifies the crucial problem of construction of the integral kernel of the group ring
serves as the key to the synthesis of the finite and infinite dimensional representations me
J. Math. Phys., Vol. 38, No. 6, June 1997
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above. The Hilbert space method as applied to the evaluation of the characters of SU~2! and
SU~1,1! proceeds along entirely parallel lines. For SU~2! the problem essentially reduces to th
evaluation of an integral of the form

E
0

p

du sinuE
0

2p

dfS cosu02 2 i sin
u0
2
n̂• r̂ D 2 j , ~4!

wheren̂ andr̂ are unit position vectors,n̂ being fixed andr̂ (u,f) being the variable of integration
This integral is easily evaluated by rotating the co-ordinate axes such that the 3-axis~Z-axis!
coincides withn̂.

The character of the elliptic elements of SU~1,1! is given by an integral closely resembling th
above:

E
t50

`

dt sinh tE
0

2p

dfFcosu02 2 i sin
u0
2
n̂• r̂ G22k

, ~5!

where n̂ and r̂ are a pair of unit time-like SO~2,1! vectors,n̂, as before, being fixed andr̂ the
variable of integration. This integral is evaluated by an appropriate Lorentz transformation
that the time axis points along the fixed time-like SO~2,1! vectorn̂. For the hyperbolic elements o
SU~1,1! the above integral is replaced by

E
0

`

dt sinhtE dfFe cosh
s

2
2 i sinh

s

2
n̂• r̂ G22k

,

wheree561, n̂ is a unit space-like andr̂ is a unit time-like SO~2,1! vector. This integral is once
again evaluated by a Lorentz transformation such that the first space axis~X-axis! coincides with
the fixed space-like vectorn̂. The explicit evaluation is, however, a little lengthier than that for
elliptic elements.

For the principal series of representations the carrier space is chosen to be the trad
Hilbert space6 of functions defined on the unit circle. Although the broad outlines of the proce
is the same as above the details differ substantially from those of the discrete series. An im
feature of the principal series of representations is that the elliptic elements of SU~1,1! do not
contribute to its character.

II. THE GROUP SU(2) AND THE DISCRETE SERIES OF REPRESENTATIONS OF
SU(1,1)

To make this paper self-contained we describe the basic properties of the Hilbert spa
analytic functions for SU~2! and SU~1,1!.

A. The group SU(2)

The group SU~2! consists of 232 unitary, unimodular matrices,

u5S a b

2b̄ ā D , uau21ubu251. ~6!

We know that every unitary, unimodular matrixu can be diagonalized by a unitary unimo
dular matrixv so that

u5ve~u0!v
21, ~7!

wheree(u0) is the diagonal form ofu:
J. Math. Phys., Vol. 38, No. 6, June 1997
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e~u0!5S eiu02 0

0 e2
iu0
2
D .

Sincev is also an SU~2! matrix it can be factorized in terms of Euler angles as

v5e~h!a~t!e~x!, ~8!

where

a~t!5S cos
t

2
sin

t

2

2sin
t

2
cos

t

2

D .

We therefore obtain the following parametrization ofu:

u5e~h!a~t!e~u0!a
21~t!e21~h!. ~9!

The parametrization~9! yields

a5cos
u0
2

1 i sin
u0
2
cost, ~10!

b52 ieihsin
u0
2
sin t. ~11!

The representations of SU~2! will be realized in the Bargmann–Segal spaceB(C2) which
consists of entire analytic functionsf(z1 ,z2) wherez1 andz2 are spinors transforming accordin
to the fundamental representation of SU~2!:

~z18 ,z28!5~z1 ,z2!u. ~12!

The action of the finite element of the group inB(C2) is given by

Tuf~z1 ,z2!5f~az12b̄z2 ,bz11āz2!.

To decomposeB(C2) into the direct sum of the subspacesBj (C) invariant under SU~2! we
introduce Schwinger’s angular momentum operators inB(C2),

J15
1

2 S z1 ]

]z2
1z2

]

]z1
D ,

J252
i

2 S z1 ]

]z2
2z2

]

]z1
D ,

J35
1

2 S z1 ]

]z1
2z2

]

]z2
D .

Explicit calculation yields
J. Math. Phys., Vol. 38, No. 6, June 1997
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JW25J1
21J2

21J3
25

K

2 SK2 11D ,
whereK stands for the operator

K5S z1 ]

]z1
1z2

]

]z2
D .

SinceK commutes with all the components of the angular momentum in an irreducible repr
tation it can be replaced by 2j , j 5 0, 1

2, 1,
3
2, 2, ... . The subspaceBj (C) is, therefore, the spac

of homogeneous polynomials of degree 2j in z1, z2:

f~z1 ,z2!5@~2 j !! #21/2z2
2 j f ~z!,z5

z1
z2
, ~13!

where the numerical factor@(2 j )! #21/2 is introduced for convenience. If we restrict ourselves
functions of the form~13! the finite element of the group is given by

Tuf ~z!5~bz1ā !2 j f S az2b̄

bz1ā
D . ~14!

This representation is unitary with respect to the scalar product

~ f ,g!5E f ~z!g~z!dl~z!, ~15!

where

dl~z!5
~2 j11!

p
~11uzu2!22 j22d2z, ~16!

d2z5dxdy, z5x1 iy

The principal vector in this space is given by

ez~z1!5~11 z̄z1!
2 j , ~17!

so that

f ~z!5E ~11zz̄1!
2 j f ~z1!dl~z1!. ~18!

We now construct the group ring which consists of the operators

Tx5E x~u!Tudm~u!,

wheredm(u) is the invariant measure on SU~2! andx(u) is an arbitrary test function on the group
which vanishes outside a bounded set. The action of the group ring is then given by

Txf ~z!5E x~u!~bz1ā !2 j f S az2b̄

bz1ā
D dm~u!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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We now use the reproducing kernel as given by~18! to write

f S az2b̄

bz1ā
D 5E F11

~az2b̄ !z̄1

~bz1ā !
G 2 j f ~z1!dl~z1!.

Thus

Txf ~z!5E K~z,z1! f ~z1!dl~z1!,

where the kernelK(z,z1) is given by

K~z,z1!5E x~u!~bz1ā !2 jF11
~az2b̄ !z̄1

~bz1ā !
G 2 jdm~u!. ~19!

Since the kernelK(z,z1) is of the Hilbert–Schmidt type we have

Tr~Tx!5E K~z,z!dl~z!.

Using the definition~19! of the kernel we have

Tr~Tx!5E x~u!p~u!dm~u!,

where

p~u!5E ~bz1ā !2 jF11
~az2b̄ !z̄

~bz1ā !
G 2 jdl~z!. ~20!

Setting

z5tan
u

2
eif, 0<u,p, 0<f<2p,

and using the parametrization~10!, ~11!, we obtain after some calculations,

p~u!5
2 j11

4p E
u50

p

du sin uE
0

2p

dfFcosu02 2 i sin
u0
2

~cost cosu1sin t sin u cosf!G2 j .
~21!

If we now introduce the unit vectorsn̂ and r̂ as

n̂5~sin t, 0, cost!, r̂5~sin u cosf, sin u sin f, cosu!,

equation~21! can be written as

p~u!5
2 j11

4p E
u50

p

du sinuE
0

2p

dfFcosu02 2 i sin
u0
2
n̂• r̂ G2 j . ~22!

We now rotate the coordinate system such that the 3-axis~Z-axis! coincides with the fixed vecto
n̂. Thus
J. Math. Phys., Vol. 38, No. 6, June 1997
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p~u!5
2 j11

2 E
u50

p Fcos u0
2

2 i sin
u0
2
cosuG2 jsin udu.

The above integral is quite elementary and yields

p~u!5
sin~ j1 1

2!u0
sin~u0/2!

.

B. The group SU(1,1)

The group SU~1,1! consists of pseudo-unitary, unimodular matrices,

u5S a b

b̄ ā D , det~u!5uau22ubu251, ~23!

and is isomorphic to the group SL~2,R! of real unimodular matrices,

g5S a b

c dD , det~g!5ad2bc51. ~24!

A particular choice of the isomorphism kernel is

h5
1

A2
S 1 i

i 1D , ~25!

so that

u5hgh21,

a5 1
2@~a1d!2 i ~b2c!#, b5 1

2@~b1c!2 i ~a2d!#. ~26!

The elements of the group SU~1,1! may be divided into three subsets:~a! elliptic, ~b! hyperbolic
and ~c! parabolic. We define them as follows. Leta5a11 ia2 andb5b11 ib2 so that

a1
21a2

22b1
22b2

251.

The elliptic elements are those for which

a2
22b1

22b2
2.0.

Hence if we set

a285Aa2
22b1

22b2
2,

we have

a1
21a28

2
51,

so that21,a1,1.
On the other hand the hyperbolic elements of SU~1,1! are those for which

a2
22b1

22b2
2,0.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Hence if we write

a285Ab1
21b2

22a2
2,

we have

a1
22a28

2
51, ~27!

so thatua1u.1.
We exclude the parabolic class corresponding to

a25Ab1
21b2

2,

as this is a submanifold of lower dimensions.
If we diagonalize the SU~1,1! matrix ~23!, the eigenvalues are given by

l5a16Aa1
221.

We shall consider the elliptic case21,a1,1 first. Thus, settinga15cos(u0/2),0,u0,2p we
havel5exp@ 6 i(u0/2)#. We shall now show that every elliptic element of SU~1,1! can be diago-
nalized by a pseudounitary transformation, i.e.

v21uv5e~u0!, e~u0!5S d1 0

0 d2
D , d15 d̄25ei ~u0/2!, ~28!

wherev P SU~1,1!
To prove this we first note that equation~28! can be written as

uv15d1v1 , uv25d2v2 , ~29!

where

v15S v11v21
D , v25S v12v22

D .
Thus v1 and v2 are the eigenvectors of the matrixu belonging to the eigenvaluesd1 and d2,
respectively. Hencev1 and v2 are linearly independent so that det(v)Þ0. We normalize the
matrix v such that

det~v !5v11v222v12v2151.

We now show that the eigenvectorsv1 andv2 are pseudo-orthogonal, i.e. orthogonal with resp
to the metric

s35S 1 0

0 21D .
In fact from equation~29! we easily obtain

d1
2v2

†s3v15v2
†u†s3uv1 .

Using the pseudounitarity of the matrixu P SU(1,1) we immediately obtain
J. Math. Phys., Vol. 38, No. 6, June 1997
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~v2
†s3v1!50.

If we further normalize

v1
†s3v151,

we easily deduce

v215 v̄12, v225 v̄11.

Thus for the elliptic elements of SU~1,1! the transformation matrixv defined by~28! is also an
SU~1,1! matrix. Since every matrixv P SU~1,1! can be written as

v5e~h!a~s!e~u!,

where

a~s!5S cosh
s

2
sinh

s

2

sinh
s

2
cosh

s

2

D , ~30!

we immediately obtain

u5e~h!a~s!e~u0!a
21~s!e21~h!.

The above parametrization yields

a5cos
u0
2

1 i sin
u0
2
coshs, ~31!

b52 ieihsin
u0
2
sinhs. ~32!

We now consider the hyperbolic elements of SU~1,1! satisfying equation~27!. Since now
ua1u.1, settinga15e cosh(s/2), e5sgn l, we obtain the eigenvalues asee6e(s/2). Since the
diagonal matrix,

e~s!5S sgn lesgn l~s/2! 0

0 sgn le2sgn l~s/2!D , ~33!

belongs to SL~2,R!, it can be regarded as the diagonal form of the matrixg given by equations
~24! and ~26! with ua1u5ua1du/2.1. Henceforth we shall take sgnl51. The other case
sgnl521, can be developed in an identical manner.

An analysis parallel to the one for the elliptic elements shows that for (a1d).2 every matrix
gPSL~2,R! can be diagonalized also by a matrixvPSL~2,R!. Thus

g5ve~s!v21.

Since every matrixv P SL~2,R! can be decomposed as

v5e~u!a~r!e~a!,
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e

he

he

3218 Bal, Shajesh, and Basu: Characters of SU(2) and SU(1,1)

¬¬¬¬¬¬¬¬¬¬
where

e~u!5S cos
u

2
sin

u

2

2sin
u

2
cos

u

2

D ,

anda(r) and e(a) are given by equations~30! and ~33!, respectively. We therefore obtain th
following parametrization of the hyperbolic elements ofg P SL~2,R!:

g5e~u!a~r!e~s!a21~r!e21~u!.

The use of the isomorphism kernel in equation~25! then yields

a5cosh
s

2
1 i sinh

s

2
sinh r, ~34!

b52 ie2 iusinh
s

2
coshr. ~35!

In Bargmann’s theory7 the carrier space for the discrete series of representations of SU~1,1!
was taken to be the functionsf(z1 ,z2) wherez1 ,z2 are the spinors transforming according to t
fundamental representation of SU~1,1!:

~z18 ,z28!5~z1 ,z2!u.

Since the fundamental representation of SU~1,1! and its complex conjugate are equivalent t
functionsf(z1 ,z2) are required to satisfy

]

] z̄1
f~z1 ,z2!5

]

] z̄2
f~z1 ,z2!50,

so thatf(z1 ,z2) is an analytic function ofz1 andz2. The generators of SU~1,1! in this realization
are given by

J15
i

2 S z1 ]

]z2
1z2

]

]z1
D ,

J25
1

2 S z1 ]

]z2
2z2

]

]z1
D ,

J35
1

2 S z1 ]

]z1
2z2

]

]z2
D ,

whereJ3 is the space rotation, and,J1 andJ2 are pure Lorentz boosts.
Explicit calculation yields

J1
21J2

22J3
25K~12K !,

where
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K52
1

2 S z1 ]

]z1
1z2

]

]z2
D .

SinceK commutes withJ1 , J2 andJ3 it follows that in an irreducible representationf(z1 ,z2) is
a homogeneous function of degree22k,

f~z1 ,z2!5z2
22kf ~z!, z5

z1
z2
,

where f (z) is an analytic function ofz. It should be pointed out that under the action of SU~1,1!
the complexz-plane is foliated into three orbits:~a! uzu,1, ~b! uzu.1 and ~c! uzu51 and the

positive discrete seriesDk
1 (k5 1

2,1,
3
2, . . . ) isdescribed by the first orbituzu,1, the open unit disc.

Thus in Bargmann’s construction the subspaceBk(C) for Dk
1 consists of functionsf (z) analytic

within the unit disc.
The finite element of the group in this realization can be easily obtained and is given b

Tuf ~z!5~bz1ā !22kf S az1b̄

bz1ā
D . ~36!

These representations are unitary under the scalar product

~ f ,g!5E
uzu,1

f ~z!g~z!dl~z!, ~37!

where

dl~z!5
~2k21!

p
~12uzu2!2k22d2z, ~38!

z5x1 iy , d2z5dxdy.

The principal vector inBk(C) is given by

ez~z1!5~12 z̄z1!
22k, ~39!

so that

f ~z!5E
uz1u,1

~12zz̄1!
22kf ~z1!dl~z1!. ~40!

The action of the group ring,

Tx5E x~u!Tudm~u!,

wheredm(u) is the invariant measure on SU~1,1! is given by

Txf ~z!5E x~u!~bz1ā !22kf S az1b̄

bz1ā
D dm~u!. ~41!

Now, as before, using the basic property of the principal vector, i.e.~40! we have
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f S az1b̄

bz1ā
D 5E

uz1u,1
F12

~az1b̄ !z̄1

~bz1ā !
G22k

f ~z1!dl~z1!. ~42!

Substituting Eq.~42! in Eq. ~41! we immediately obtain

Txf ~z!5E
uz1u,1

K~z,z1! f ~z1!dl~z1!,

where

K~z,z1!5E x~u!~bz1ā !22kF12
~az1b̄ !z̄1

~bz1ā !
G22k

dm~u!. ~43!

Since the kernel, once again, is of the Hilbert–Schmidt type we have

Tr~Tx!5E
uzu,1

K~z,z!dl~z!.

Using Eq.~43!, the definition of the integral kernel, the above equation can be written in the

Tr~Tx!5E x~u!p~u!dm~u!,

where the characterp(u) is given by

p~u!5E
uzu,1

~bz1ā !22kF12
~az1b̄ !z̄

~bz1ā !
G22k

dl~z!. ~44!

We first consider the above integral for the elliptic elements of SU~1,1!. Setting

z5tanh
t

2
eiu, 0<t,`, 0<u<2p ~45!

and using the parametrization~31!, ~32! for the elliptic elements we obtain after some calculatio

p~u!5
2k21

4p E
t50

`

dt sinh tE
0

2p

dfFcosu0
2

2 i sin
u0
2

~coshs cosht

1sinhs sinh t cosf!G22k

, ~46!

wheref5h1u. We now introduce the time-like SO~2,1! unit vectors,

n̂5~2sinhs, 0, coshs!, r̂5~sinh t cosf, sinh t sin f, cosht!.

Then Eq.~46! can be written as

p~u!5
2k21

4p E
t50

`

dt sinh tE
0

2p

dfFcosu0
2

2 i sin
u0
2
n̂• r̂ G22k

, ~47!

wheren̂ • r̂ stands for the Lorentz invariant form
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n̂• r̂5n̂3r̂ 32n̂2r̂ 22n̂1r̂ 1 .

Let us now perform a Lorentz transformation such that the time axis coincides with the
time-like SO~2,1! vector n̂. Thus

n̂• r̂5cosht,

and we have

p~u!5
2k21

2 E
t50

` Fcosu0
2

2 i sin
u0
2
coshtG22k

sinh tdt.

The above integration is quite elementary and it leads to the Gel’fand and co-workers formu
the character of the elliptic elements of SU~1,1!,

p~u!5
e~ i /2!u0~2k21!

e2 i ~u0/2!2ei ~u0/2! .

For the hyperbolic elements of SU~1,1! we substitute the parametrization~34!, ~35! in Eq. ~44!
and use the transformation~45!. Thus

p~u!5
2k21

4p E
t50

`

dt sinh tE
0

2p

duFcoshs

2
2 i n̂• r̂ sinh

s

2G22k

, ~48!

where

n̂5~2coshr cosh,2coshr sin h, sinhr!

is a fixed space-like unit SO~2,1! vector and

r̂5~sinh t cosu, sinh t sin u, cosht!

is a time-like unit SO~2,1! vector. If we now perform a Lorentz transformation such that the fi
space axis~X-axis! coincides with the fixed space-like SO~2,1! vector n̂ then

n̂• r̂5sinh t cosu,

so that

p~u!5
2k21

4p E
t50

`

dt sinh tE
u50

2p

duFcoshs

2
2 i sinh t cosu sinh

s

2G22k

. ~49!

The evaluation of this integral is a little lengthy and is relegated to the Appendix. Its value is
by

p~u!5
e2~1/2!s~2k21!

es/22e2s/2 .

III. THE PRINCIPAL SERIES OF REPRESENTATIONS

For the representations of the principal series we shall realize the representations in the
space of functions6 defined on the unit circle. For the representations of the integral class,
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Tuf ~e
iu!5ubeiu1āu22kf S aeiu1b̄

beiu1ā
D .

For the representations of the half-integral class,

Tuf ~e
iu!5ubeiu1āu22k21~beiu1ā ! f S aeiu1b̄

beiu1ā
D .

In both the cases

k5 1
2 2 is, 2`,s,`.

In what follows we shall consider the integral class first. For later convenience we replaceeiu by
exp@i(u2p/2)#52 ieiu. Thus

Tuf ~2 ieiu!5u2 ibeiu1āu22kf S 2 iaeiu1b̄

2 ibeiu1ā
D .

We now construct the group ring,

Tx5E x~u!Tudm~u!,

so that

Txf ~2 ieiu!5E x~u!u2 ibeiu1āu22kf S 2 iaeiu1b̄

2 ibeiu1ā
D dm~u!.

We now make a left translation,

u→u21u,

where

u5S eiu/2 0

0 e2 iu/2D ,
so that

a→ae2 iu/2, b→be2 iu/2.

We therefore obtain

Txf ~2 ieiu!5E x~u21u!u2 ib1āu22kf S 2 ia1b̄

2 ib1ā
D dm~u!.

We now map the SU(1,1) matrixu onto the SL(2,R) matrix g by using the isomorphism kerne
h given by Eqs.~25! and ~26! and perform the Iwasawa decomposition

g5ku1 , ~50!

where
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k5S k11 k12

0 k22
D , k11k2251 ~51!

belongs to the subgroupK of real triangular matrices of determinant unity andu1 P Q whereQ is
the subgroup of pure rotation matrices:

u15S cos~u1/2! 2sin~u1/2!

sin~u1/2! cos~u1/2!
D . ~52!

We now introduce the following convention. The letters without a bar below it will indicate
SL(2,R) matrices or its subgroups and those with a bar below it will indicate their SU(1,1) im
For instance,

k5hkh215
1

2 S k111k222 ik12 k122 i ~k112k22!

k121 i ~k112k22! k111k221 ik12
D ,

u15S eiu1/2 0

0 e2 iu1/2D .
The decomposition~50! can also be written as

u5k u1 , ~53!

which yields

2 ia1b̄52 ik22e
iu1/2, 2 ib1ā5k22e

2 iu1/2.

Hence settingf (2 ieiu)5g(u) we obtain

Txg~u!5E x~u21k u1!uk22u22kg~u1!dm~u!. ~54!

It can be shown that under the decomposition~50!, ~51!, ~52! or equivalently~53! the invariant
measure decomposes as

dm~u!5 1
2dm l~g!5 1

2dm r~g!5 1
4dm l~k!du1 . ~55!

Substituting the decomposition~55! in eq. ~54! we have

Txg~u!5E
Q
K~u,u1!g~u1!du1 ,

where

K~u,u1!5
1

4EKx~u21k u1!uk22u22kdm l~k!. ~56!

Since the kernelK(u,u1) is of the Hilbert–Schmidt type it has the trace

Tr~Tx!5E
Q
K~u,u!du.
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Using the definition of the kernel as given by eq.~56! we have

Tr~Tx!5
1

4EQ,K
x~u21k u!uk22u22kdudm l~k!. ~57!

Before proceeding any farther we note thatu21k u represents a hyperbolic element ofSU(1,1):

u5u21k u.

Calculating the trace of both sides we have

k2211/k2252a1 . ~58!

In the previous section we have seen that for the elliptic elements ofSU(1,1)
a15cos(u0/2),1. The eq.~58!, therefore, for the elliptic case yields

k22
2 22k22cos~u0/2!1150,

which has no real solution. Thus the elliptic elements ofSU(1,1) do not contribute to the charact
of the principal series of representations. We, therefore, assert that for this particular cl
unirreps the trace is concentrated on the hyperbolic elements.

We shall now show that every hyperbolic element ofSU(1,1) @i.e., those with
ua1u5u(a1d)u/2.1] can be represented as

u5u21k u, ~59!

or equivalently as

g5u21ku. ~60!

Herek115l21, k225l are the eigenvalues of the matrixg taken in any order.
We recall that everygPSL(2,R) for the hyperbolic case can be diagonalized as

v8gv8215d,

where

d5S d1 0

0 d2
D , d1d251; d1 ,d2 , real,

belongs to the subgroupD of real diagonal matrices of determinant unity andv8PSL(2,R). If we
write the Iwasawa decomposition forv8,

v85k8u,

then

g5u21k821dk8u.

Now k821dk8 P K so that writingk5k821dk8 we have the decomposition~60! in which

k115d15l21, k225d25l.

If these eigenvalues are distinct then for a given ordering of them the matricesk, u are
determined uniquely by the matrixg. In fact we have
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k125b2c, tanu5
~a2d!~b2c!1~l2l21!~b1c!

~b2c!~b1c!1~l2l21!~a2d!
.

It follows that for a given choice ofl the parametersu andk12 are uniquely determined. We not
that there are exactly two representations of the matrixg by means of formula~60! corresponding
to two distinct possibilities:

k115sgnlulu215sgnles/2, k225sgnlulu5sgnle2s/2,

k115sgnlulu215sgnle2s/2, k225sgnlulu5sgnles/2.

Let us now remove fromK the elements withk115k2251. This operation cuts the groupK into
two connected disjoint components. Neither of these components contain two matrices
differ only by permutation of the two diagonal elements. In correspondence with this partitio
integral in the r.h.s. of eq.~57! is represented in the form of a sum of two integrals,

Tr~Tx!5
1

4EQ
duE

K1

dm l~k!uk22u22kx~u21k u!1
1

4EQ
duE

K2

dm l~k!uk22u22kx~u21k u!.

~61!

As u runs over the subgroupQ and k runs over the componentsK1 or K2 the matrix
g5u21ku runs over the hyperbolic elements of the group SL(2,R) or equivalentlyu5u21k u
runs over the hyperbolic elements of SU(1,1). We shall now prove that inK1 or K2,

dm l~k!du5
4uk22u

uk222k11u
dm~u!. ~62!

To prove this we start from the left invariant differential element,

dw5g21dg,

whereg P SL(2,R) anddg is the matrix of the differentialsgpq , i.e. following the notation of eq.
~24!,

dg5S da db

dc ddD .
The elementsdw are invariant under the left translationg→g0g. Hence choosing a basis in the s
of all dg we immediately obtain a differential left invariant measure. For instance choo
dw12, dw21, dw22 as the independent invariant differentials we arrive at the left invariant mea
on SL(2,R),

dm l~g!5dw12dw21dw22. ~63!

In a similar fashion we can define the right invariant differentials,

dw85dgg21,

which is invariant under the right translationg→gg0.
To prove the formula~62! we write the decomposition~60! as

ug5ku,

so that
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dug1udg5dku1kdu. ~64!

From eq.~64! it easily follows that

dw5g21dg5u21dmu, ~65!

where

dm5k21dk1duu212k21duu21k. ~66!

In accordance with the choice of the independent elements ofdw as mentioned above we choos
the independent elements ofdm asdm12, dm21, dm22. Equation~65! then leads to

dw111dw225dm111dm22, ~67!

dw11dw222dw12dw215dm11dm222dm12dm21. ~68!

Further since Tr(dm)5Tr(dw)50 we immediately obtain from equations~67!, ~68!

dw22
2 1dw12dw215dm22

2 1dm12dm21,

which can be written in the form

dh1
21dh2

22dh3
25dh81

21dh82
22dh83

2, ~69!

where

dh15~dw121dw21!/2, dh185~dm121dm21!/2,

dh25dw22, dh285dm22,

dh35~dw122dw21!/2, dh385~dm122dm21!/2.

Equation~69! implies that the setdh and the setdh8 are connected by a Lorentz transformatio
Since the volume elementdh1dh2dh3 is invariant under such a transformation we have,

dh1dh2dh35dh18dh28dh38 . ~70!

But the l.h.s. of eq.~70! is dw12dw21dw22/2 and r.h.s. isdm12dm21dm22/2. Hence using eq.~63!
we easily obtain

dm l~g!5dm12dm21dm22.

We now write eq.~66! in the form

dm5du1dv, ~71!

wheredu5k21dk is the left invariant differential element onK and

dv5duu212k21duu21k. ~72!

In eq. ~71! du is a triangular matrix whose independent nonvanishing elements are chosen
du12, du22 so that

dm l~k!5du12du22.
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On the other handdv is a 232 matrix having one independent element which is chosen to
dv21. Since the Jacobian connectingdm12dm21dm22 anddu12du22dv21 is a triangular determinan
having 1 along the main diagonal we obtain

dm l~g!5dm l~k!dv21. ~73!

It can now be easily verified that each elementk P K with distinct diagonal elements~which is
indeed the case forK1 or K2) can be represented uniquely in the form

k5z21dz, ~74!

whered belongs to the subgroup of real diagonal matrices with unit determinant andz P Z, where
Z is a subgroup ofK consisting of real matrices of the form

z5S 1 z12

0 1 D .
Writing eq. ~74! in the formzk5dz we obtain

kpp5dp , z125k12/~d12d2!. ~75!

Using the decomposition~74! we can now write eq.~72! in the form

dv5z21dpz,

where

dp5dl2d21dld,

dl5zdsz21, ds5duu21.

From the above equations it now easily follows that

dv215
ud22d1u

ud2u
du

2
. ~76!

Substituting eq.~76! in eq. ~73! and using eqs.~55! and ~75! we immediately obtain eq.~62!.
Now recalling that inK1, uk22u5e2s/2 and inK2, uk22u5es/2 eq.~61! in conjunction with~62!

yields

Tr~Tx!5E x~u!p~u!dm~u!,

where the characterp(u) is given by

p~u!5
e~2k21!s/21e2~2k21!s/2

ues/22e2s/2u
.

For the principal series of representations belonging to the half-integral class a parallel calc
yields

p~u!5
e~2k21!s/21e2~2k21!s/2

ues/22e2s/2u
sgnl.
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APPENDIX: EVALUATION OF THE INTEGRAL (49)

By a simple change of variable eq.~49! can be written in the form

p~u!5F ~2k21!

2p G E
0

`

sinh tdtE
0

p

duFcoshS s

2 D2 i sinhS s

2 D cosu sinh tG22k

.

To carry out theu integration we set

x5 1
2 ~12cosu!, 0<x<1,

and use the formula8

F~a,b;c;z!5
G~c!

G~b!G~c2b!
E
0

1

xb21~12x!c2b21~12zx!2adx, Re~c!.Re~b!.0,

so that

p~u!5F ~2k21!

2 G E
0

`

sinh tdtFcoshS s

2 D2 i sinhS s

2 D sinh tG22k

3FS 2k, 12,1; 22i sinh~s/2!sinh t

@cosh~s/2!2 i sinh~s/2!sinh t# D .
To evaluate the above integral we use the quadratic transformation9

F~a,b;2b;z!5S 12
z

2D
2a

FS a2 , 121
a

2
;b1

1

2
;F z

22zG
2D .

Thus

p~u!5F ~2k21!

2 G E FcoshS s

2 D G22k

FS k, 121k;1;2tanh2S s

2 D sinh2t D sinh tdt.

For integralk we now extract the branch point of the hypergeometric function by using10

F~a,b;c;z!5~12z!2bFS c2a,b;c;
z

z21D .
Using the above formula we obtain after some calculations

p~u!5F ~2k21!

2 GFcoshS s

2 D G22kF S sech2S s

2 D G21/22k

(
n50

k21 ~12k!n~
1
2 1k!n

~1!nn!
Fsinh2S s

2 D Gn

3E
0

`F11sinh2S s

2 D cosh2tG2 1/22k2n

~cosh2t21!nsinh tdt.

Setting cosht5t21/2 we obtain after some calculations,
J. Math. Phys., Vol. 38, No. 6, June 1997
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p~u!5F ~2k21!

4 GFcoshS s

2 D GFsinh2S s

2 D G2 1/22k

G~k! (
n50

k21 ~12k!n~
1
2 1k!n

n!G~n1k11!

3FS 121k1n,k;n1k11;2cosech2S s

2 D D . ~A1!

The summation overn can be carried out by expanding the hypergeometric function appeari
Eq. ~A1! in a power series. Thus,

p~u!5F ~2k21!

4 GFcoshS s

2 D GFsinh2S s

2 D G21/22k G~k!

G~ 1
2 1k!

(
n50

` ~k!n~
1
2 1k1n!

n!G~n1k11!

3F2cosech2S s

2 D GnFS 12k,
1

2
1k1n;n1k11;1D .

The hypergeometric function of unit argument can be summed by Gauss’ formula11 and we obtain
after some calculations,

p~u!5coshS s

2 D F S sinh2S s

2 D G2 1/22k

~2!22kFS k,k1
1

2
;2k;2cosech2S s

2 D D .
We now use the formula12

F~k,k1 1
2 ;2k;z!5~12z!2 1/2@ 1

2 ~11A12z!#~122k!,

which immediately yields

p~u!5
e2~1/2!s~2k21!

es/22e2s/2 ,

for half-integralk a parallel calculation yields the same result.

1I. M. Gel’fand and M. A. Naimark,I.M.Gel’fand—Collected Papers~Springer-Verlag, Berlin, 1988!, Vol. II, pp. 41, 182.
2See Ref. 1, p. 41.
3I. M. Gel’fand, M. I. Graev, and I. I. Pyatetskii–Shapiro,Representation Theory and Automorphic Functions~Saunders,
Philadelphia, 1969!, Chap. 2, pp. 199, 202.

4V. Bargmann, Commun. Pure Appl. Math.14, 187 ~1961!; 20, 1 ~1967!; in Analytic Methods in Mathematical Physics,
edited by P. Gilbert and R. G. Newton~Gordon and Breach, New York, 1970!.

5I. E. Segal, III, J. Math.6, 500 ~1962!.
6N. Ja. Vilenkin and A. U. Klymik,Representations of Lie Groups and Special Functions~Kluwer Academic, Boston,
1991!, Vol. 1, Chap. 6, p. 298.

7V. Bargmann, Ann. Math.48, 568 ~1947!.
8A. Erdelyi, inHigher Transcendental Functions, Bateman Manuscript Project~McGraw Hill, New York, 1953!, Vol. 1,
p. 114.

9See Ref. 8, p. 111.
10See Ref. 8, p. 109.
11See Ref. 8, p. 104.
12See Ref. 8, p. 101.
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On representations of Uqosp(1 z2) when q is a root
of unity

W.-S. Chunga)
Theory Group, Department of Physics, College of Natural Sciences, Gyeongsang National
University, Jinju 660-701, Korea

Takashi Suzukib)
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

~Received 20 May 1996; accepted for publication 10 February 1997!

The infinite dimensional highest weight representations ofUqosp(1u2) for the de-
formation parameterq being a root of unity are investigated. As in the cases of
q-deformed nongraded Lie algebras, we find that every irreducible representation is
isomorphic to the tensor product of a highest weight representation of sl2(R) and a
finite dimensional one ofUqosp(1u2). The structure is investigated in detail.
© 1997 American Institute of Physics.@S0022-2488~97!03605-0#

I. INTRODUCTION

After Jimbo1 and Drinfeld,2 quantum groups or quantum deformations are widely investiga
by a lot of theoretical physicists and mathematicians. The first and the simplest exampl
Uqsu(2), theq-deformation of the universal enveloping algebra of su~2!, and its method of
deformation has been applied to other Lie algebras and graded Lie algebras~superalgebras! as
well. In some of these works, the deformation parameters are taken to be real and some
ematical structures have been investigated. Further, some authors have constructed toy
possessing quantum group structure for realq. In spite of these published works in this directio
however, it seems to us that they are of purely mathematical interest and fail to give new fe
to the physical world.

In contrast, it has been shown that quantum groups withq a root of unity are related to som
interesting physical models, especially two dimensional physics.3 In these models, finite dimen
sional representations ofUqsl2(C) orUqsl2 play an important but implicit role. Recently one of th
authors~T.S.!4 has constructed infinite dimensional highest weight representations ofUqsl2(C),
i.e.,Uqsu(1,1) whenq is a root of unity. A remarkable feature is that, on representation spa
they necessarily have the structure

Uqsu~1,1!5Usl2~R! ^Uqsu~2!, ~1!

and, thanks to the decomposition, it is shown thatUqsu(1,1) at the second root of unity i
isomorphic to the superalgebra osp~1u2!. He further applied the result to quantum Liouville theor5

and showed that the decomposition worked well in a geometrical sense.
With keeping these facts in mind, we will study highest weight representation

Uqosp(1u2) in the case whenq is a root of unity. This is another simple and worth-studyi
example ofq-deformations of superalgebra. Historically,Uqosp(1u2) was first obtained by
Kulish6 in relation with the graded Yang-Baxter equation.7 Then, Saleur8 usedUqosp(1u2) alge-
bra to build the vertex-model-solution of the graded Yang-Baxter equation and the asso
interacting round a face model. He also found a hiddenUqosp(1u2) symmetry in some model

a!Electronic mail: wschung@nongae.gsnu.ac.kr
b!Electronic mail: stakashi@yukawa.kyouto-u.ac.jp
0022-2488/97/38(6)/3230/8/$10.00
3230 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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whose continuum limit belongs to theN51 superconformal series. In this letter, infinite dime
sional representations ofUqosp(1u2) are investigated withqp51. It is interesting for us to find a
similar decomposition formula~1! in theUqosp(1u2) case.

The organization of this paper is as follows: In Sec. II, a brief review ofUqosp(1u2) algebra
is exhibited and its highest weight representations with genericq are summarized as well. Irre
ducible highest weight representations at a root of unity are constructed in Sec. III. In Sec. I
investigate the irreducible representations and find the tensor product structures fo
Uqosp(1u2) algebra.

Finally, it is convenient to list here some notations we will make use of. For a numbx
PR , theq-number@x# is defined by@x#5(qx2q2x)/(q 2 q21) as usual. In the graded cas
another type ofq-numbervxb defined by

vxb5
qx2~2 !2xq2x

q1/21q21/2 , ~2!

is needed. This should be calledq-fermionic number hereafter. Notice thatq-fermionic number
vxb can be defined only forxPN/2. In the classical limitq→1, vxb goes to 1 when 2x is odd or
0 when 2x is even. Moreover, two types ofq-deformed binomial coefficients are introduced,

Fnr G5 @n#!

@n2r #! @r #!
, V n1 1

2

r1 1
2
B5

v1 1
2b !

vn2r2 1
2b ! vr1 1

2b !
, ~3!

where vn1 1
2b !5vn1 1

2bvn2 1
2b•••v 1

2b .

II. GENERAL DISCUSSIONS OF Uqosp(1/2)

This section presents a brief summary of theq-deformed universal enveloping algeb
Uqosp(1u2) of the superalgebra osp~1u2! together with the discussion of its highest weight rep
sentations with genericq.

Let us first define theq-deformed universal enveloping algebraUqosp(1u2). It is generated by
G1 , G2 , H satisfying the following relations:

$G1 ,G2%52@2H#, @H,G6#56 1
2G6 , ~4!

where$ • , • % is the ordinary anticommutator. The Hermitian conjugation properties of these
erators are given as

G1
† 52G2 , G2

† 52G1 , H†5H. ~5!

Let us turn our attention to constructing representations ofUqosp(1u2). We will restrict our
concern only to the highest weight representations, since they are important for physical a
tions. There are two types of highest weight representations, one is of finite dimension a
other is of infinite dimension. Which type of representation appears depends on the represe
of the superalgebraUqsl2(C) of Uqosp(1u2). That is, if a finite~resp. infinite! dimensional rep-
resentation of theUqsl2(C) part is chosen, then, as the result, one gets a finite~resp. infinite!
dimensional representation ofUqosp(1u2). In the following, we will restrict our discussions to th
infinite dimensional representations.

The infinite dimensional highest weight moduleVh with highest weighth is built on the
highest weight vectoruh;0& satisfyingG2uh;0&50, Huh;0&5huh;0&, and is given as the direc
sum ofeven-module Vh

evenandodd-module Vh
odd as follows:

Vh5Vh
even

%Vh
odd, ~6!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Vh
even:5$uh;2n&unPZ>0%, Vh

odd:5$uh;2n11&unPZ>0%. ~7!

To representUqosp(1u2) in more detail, we first define the even-vectoruh;2n&PVh
even and the

odd-vectoruh;2n1 1& PVh
oddas,

uh;2n&5
~2 !n

@n#! vn2 1
2b !
G1
2nuh;0&, uh;2n11&5

~2 !n11

@n#! vn1 1
2b !
G1
2n11uh;0&. ~8!

Once these vectors are defined in terms ofG1 , one can calculate the actions of the generato
G1 , G2 , andH on the spacesVh

even, Vh
odd and they are

G1uh;2n&52vn1 1
2buh;2n11&, G1uh;2n11&5@n11#uh;2n12&, ~9!

G2uh;2n&52v2h1n2 1
2buh;2n21&, G2uh;2n11&5@2h1n#uh;2n&, ~10!

Huh;2n&5~n1h!uh;2n&, Huh;2n11&5~h1n1 1
2!uh;2n11&. ~11!

It should be emphasized that the above actions~9!–~11! are consistent with the relation~4! only
when the highest weighth is half-integral. It is also noticed that these actions have the cor
classical limit for such values ofh, otherwise the action ofG2 on Vh

evenvanishes in the classica
limit. Upon Eqs.~9!, ~10! and Hermitian conjugation~5!, the norms of these vectors are calculat
as

iuh;2n&i25F2h1n21
n G V 2h1n2 1

2

n2 1
2

B , ~12!

iuh;2n11&i25
@2h1n#

vn1 1
2b

iuh;2n&i2, ~13!

where the normalizationiuh;0&i251 is made use of.
Whenq is real, there is no problem and every moduleVh is unitary and irreducible by itself

Indeed,Vh is isomorphic to the moduleVh
cl of the classical algebra osp~1u2!. However, as we will

see in the next section, we have some problems in constructing irreducible modules whenq is a
root of unity, and owing to these problems the resulting irreducible highest weight module
quite different fromVh .

III. IRREDUCIBLE HIGHEST WEIGHT REPRESENTATIONS AT A ROOT OF UNITY

Let us proceed to infinite dimensional representations ofUqosp(1u2) whenq is a root of
unity. From now on we chooseq as the primitivepth root of unity, i.e.,

q5e2p i ~1/p!~p>3!. ~14!

As in the case ofUqsl2(C), in the constructions of irreducible highest weight modules,
come across some problems originated from the facts that@x#50 andvyb50 for some numbers
x andy. Therefore, before going to the construction, it is important to estimate what values
@x#50 andvyb50. It is easy to find the answer for@x#;sin(2p/p)x. On the other hand, we shoul
consider theq-fermionic numbervyb case by case inp. The answer is the following:
J. Math. Phys., Vol. 38, No. 6, June 1997
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@x#50, for x5
p

2
N,

~15!

vyb50, for y55
pN when p5odd
p

2
N when p54m~mPN!

p

4
N when p54m12~mPN!.

We then construct irreducible highest weight modules by the following steps:
Step 1:Determination of highest weighth.
In order to obtain well-defined highest weight modules, the values of the highest weih

should be parameterized by two integersm andn as

~i! when p5odd hmn5 1
2~pn2m11! 1<m<p, ~16!

~ii ! when p54m hmn5
1

2 S p2 n2m11D 1<m<2m, ~17!

~iii ! when p54m12 hmn5H 1

2 S p2 n2m11D , 1<m<m11

1

2 S p4 ~2n21!2m1
1

2D , 1<m<m
. ~18!

In all cases, the parametern runsN.
Proof: The first problem we encounter in the construction of the highest weight module is

vectors having infinite norms, being called singular vectors, appear. Let us start with case~i!. The
first singular vector is the vectoruh;2p&. The divergence comes from the factor@p# in the
denominator of the norm~12!. Thus, a highest weight module is not necessarily well-defined in
sense that vectorsuh;r &, r>2p are singular. In order to avoid these singular vectors, we hav
require that the weighth should satisfy the condition@2h 1 m 2 1# 5 0 with some integerm,
1<m<p, so that it cancels the factor@p# in the denominator. Upon Eq.~15!, this condition is just
Eq. ~16!. Case~ii ! is the same as case~i! except that the first singular vector isuh;p& instead of
uh;2p&. Therefore the integerm is bounded as 1<m<p/252m. Note here that, in cases~i! and
~ii !, no factorv • b in the norms vanishes as we can easily see from Eq.~15! together with the fact
2h is now an integer. For case~iii !, however, the situation is different. Some factorv • b can be
zero. The first singular vector appears at the level 2m11 because of the factorvm1 1

2b in the
denominator ofiuh;2m 1 1&i2. There are two choices to cancel the factor, namely, the on
@2h1m21#50 and the other isv2h1m2 1

2b50 providing, respectively, the first and the seco
equations in~18!.

Step 2:Highest weight modules
With the values given in Eqs.~16!–~18!, we have no more singular vectors but, at the expe

of this, some zero-norm vectors appear. The highest weight modules are depicted by the fol
diagrams:
~i! The case whenp 5 odd

•
0

•

1

•••
 •

2m22
⇀ +

2m21

•••
 +

2p21
↼

~19!

↼ •
2p

•••
•⇀ +

2~p1m!21


•••
J. Math. Phys., Vol. 38, No. 6, June 1997
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~ii ! The case whenp54m

•
0

•

1

•••


2m22
⇀ •

2m21

•••
 +

p21
↼

~20!

↼•
p

•••
•⇀ +

p12m21

•••

~iiia! The case whenp54m12 andhmn5 1
2((2m11)n2m11)

•
0

•••
 •

2m22
⇀ +

2m21

 +

2m

•••
 +

2m
↼ •

2m11

•••

~21!


•⇀ +
2~m1m!


+
•••
 +
p21

↼•
p

•••

~iiib ! The case whenp54m12 andhmn51/2(@(2m11)/2#(2n21)2m1 1
2)

•
0

•••
 •

2m22

 •

2m21
⇀ +

2m

•••
 +

2m
↼ •

2m11

•••

~22!


•
 •
2~m1m!

⇀+
•••
 +
p21

↼•
p

••• .

Here • and+ stand for a vector with nonzero norm and a vector with zero-norm, respectively
arrow⇀ corresponds to the action ofG1 and↼ does toG2 . Note that the highest weight module
for case~iiia! and ~iiib ! are different from each other. The vectors at the levels 2(kp1m)21,
k50,1,... incase~iiia! are of zero-norm but, on the contrary, they are of finite norms in case~iiib !.
The essential feature of the modules is that, as one can see from the above diagrams, the
longer irreducible. For example, the vector at the level 2m21 in diagram~19! is not only the
zero-norm vector but also the highest weight vector, because the action ofG2 on the vector
disappears. Let us call such a vector null vector. On a null vector, a submodule is construc
order to obtain an irreducible module, we have to obtain all submodules and subtract all o
correctly. This is the next step.

Step 3:Irreducible highest weight modules
Let Vm,n be the highest weight module with highest weighthmn , andVm,n be the irreducible

module obtained fromVm,n . The irreducible module for each case is depicted in the follow
diagrams:

~i! Vm,n5 %

k50

`

Dk , where Dk : •
2kp

 •

2kp11

•••
 •

2~kp1m!22

~23!

~ii ! Vm,n5 %

k50

`

Dk , where Dk : •
kp

 •

kp11

•••
 •

kp12m22
~24!

~iiia! Vm,n5 %

k50

`

Dk , where Dk : •
~p/2! k


 •
~p/2! k11


•••
 •
~p/2! k12m22

~25!

~iiib ! Vmn5 %

k50

`

Dk , where Dk : •
~p/2! k


 •
~p/2! k11


•••
 •
~p/2! k12m21

. ~26!

Proof: To obtain the irreducible highest weight modulesVm,n , we have to estimate all sub
modules appearing in the highest weight moduleVm,n . Let us study case~i! as an example. As we
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



in

that all
weight

e
clear.

ebra

s
locks
, one

ments
rs
meter

3235W.-S. Chung and T. Suzuki: Representations of Uqosp(1u2)

¬¬¬¬¬¬¬¬¬¬
have already discussed, a submodule appears on the first null vectoruhmn ;2m21&. Because the
weight of the vector is 1

2(pn1m), the submodule can be written asV12m,n , that is,
Vm,n.V12m,n . It is not, however, the end of the story. The submoduleV12m,n again includes a
submoduleVm,n12 , since the vectoruh12mn ;2p 2 2m 1 1&PV12m,n is the first null vector having
the weight12@p(n 1 2)2m11#, i.e.,Vm,n.V12m,n.Vm,n12 . Repeating this procedure, we obta
the following infinite series of submodules:

Vm,n.V12m,n.Vm,n12.•••.Vm,n12k.V12m,n12k.Vm,n12~k11!.••• . ~27!

Therefore, by subtracting all of them, we finally obtain the irreducible module~23!. Similarly, one
obtains irreducible highest weight modules for the other cases. It should be emphasized
zero-norm vectors have disappeared by the subtraction. In other words, irreducible highest
modules consist of finite-norm vectors only.

IV. STRUCTURE THEOREM

Now we have obtained irreducible highest weight modules ofUqosp(1u2) at a root of unity.
A remarkable point is that every irreducible module is parametrized by two integersm andn and
it has the block-wise structure as shown in Eqs.~23!–~26!. The final task is to investigate th
irreducible modules in more detail, especially it is quite important to make the structures
Recall that, in the case of infinite dimensional representationsUqsl2(C) at a root of unity, such a
blockwise structure parametrized by two-integers brought us to the decomposition~1!. For our
graded Lie algebraUqosp(1u2) case, the following structure theorem holds:

Theorem:On the irreducible highest weight moduleVm,n , the algebraUqosp(1u2) at a root of
unity has the following tensor-product structure:

Uqosp~1u2!>Usl2~R! ^Uqosp~1u2!. ~28!

Equivalently, each irreducible module is decomposed into two irreducible modules as

Vm,n>Vz
cl

^ Dj , ~29!

where Vz
cl and DJ are, respectively, the highest weight module of the classical Lie alg

sl2(R) with the highest weightz and the finite dimensional module ofUqosp(1u2) with spinJ,
i.e.,

Vz
cl :5$uz;k&uk50,1,...%,

DJ :5$uJ:2J&,uJ:2J1 1
2&,...,uJ:J&%.

The valuesz andJ are given by the parametersm,n as follows: for cases~i!, ~ii !, z 5 (n/2), J
5 1

2(m21), for case~iiia!, z5n, J5 1
2(m21), and for case~iiib !, z5n2 1

2, J5 1
2(m2 1

2).
Proof: Proof of this theorem consists of the following observations:
Observation 1:As we can see in Eqs.~23!–~26!, the irreducible highest weight module

Vm,n have the blockwise structures, namely, they are composed of an infinite number of b
Dk , k 5 0,1,...which consist of a finite number of vectors indicated by •. Because of this fact
can expect to find tensor product structure in each irreducible moduleVm,n as in the case of
Uqsl2(C).

Observation 2:Notice that the arrows connecting the final vector inDk and the first vector in
the next blockDk11 are missing. We should, therefore, ask what generators cause the move
from Dk to Dk11 and back. The answer is that they are an analog of the Lusztig operato9 in
Uqsl(2,C). In our case, they are introduced according to the value of the deformation para
p,
J. Math. Phys., Vol. 38, No. 6, June 1997
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Needless to say that the above generators make sense only on irreducible modules. Then,
case, we need six generators to defineUqosp(1u2) at a root of unity. The next observation is th
heart in the proof of this theorem.

Observation 3:Taking into account the structures ofVm,n as shown in Eqs.~23!–~26! together
with the fact that each finite dimensional spaceD is mapped to each other by the above n
generatorsE6 , E0 , one expects that every highest weight moduleVm,n has a tensor produc
structure. To find the structure, it is essential to know the relations amongE6 andE0 . Upon
Vm,n one can easily show that, up to some constant and sign factors, they provide the class
algebra sl2(R) in every case, i.e.,@E1 ,E2#52E0 , @E0 ,E6#56E6 .

Thus we find thatV is the tensor product ofVcl, a representation of the sl2(R) andD, a finite
dimensional representation ofUqosp(1u2). More precisely, there exist isomorphismsr:V→Vcl

^ D, such that

r~ uhmn ;kp̄1s&)5uz;k& ^ uJ;M̄ &, k50,1,2,..., ~34!

wherep̄ 5 (i) 2p, ~ii ! p and~iii ! p/2, andM̄52J 1 (s/2), s50,1,...,2m21 for case~iiib ! and
s50,1,...,2m22 for the others. We further have other isomorphismsr̂ induced by r as
r(O u • &)5 r̂(O )r(u • &), whereOPUqosp(1u2). After some calculations one easily sees thar̂
mapsUqosp(1u2) intoUsl2(R) ^ Uqosp(1u2) such as

r̂~E6!56L71^1, r̂~E0!5L0^1,
~35!

r̂~G6!51^ 6G61/2, r̂~qH!51^K .

Let us first examine the sl2(R) sector. The actions ofL61,0 on the spaceVz
cl are straightfor-

wardly calculated as,

L1uz;k&5~2z1k21!uz;k21&, L21uz;k&5~k11!uz;k11&,
~36!

L0uz;k&5~z1k!uz;k&.

It is easy to check that these generatorsL61 ,L0 satisfy the relations of algebra sl2(R),
J. Math. Phys., Vol. 38, No. 6, June 1997
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@Ln ,Lm#5~n2m!Ln1m , n50,61. ~37!

We next study theUqosp(1u2) sector, the finite dimensional representation. From the act
~9!–~11! together with the isomorphism~34!, it is easy to obtain, for all the cases,

G61/2uJ;M &57vJ6M1 1
2buJ;M6 1

2&, K uJ;M &5qMuJ;M &,

G61/2uJ;M6 1
2&5@J6M11#uJ;M61&, K uJ;M1 1

2&5qM11/2uJ;M1 1
2&.

Here the numberM̄ which takes the values in half-integer is decomposed intoM̄5(M ,M1 1
2)

with M taking integer values. It is also easy to check that the above actions satisf
Uqosp(1u2) relations~4!. We have now reached the theorem. h

V. SUMMARY

In summary, we studied infinite dimensional highest weight representations ofUqosp(1u2)
whenq is the primitivepth root of unity. As in the nongraded Lie algebraUqsl2(C), we have
shown that each infinite dimensional representation is isomorphic to the tensor product o
representations, an infinite dimensional representation of sl2(R) and a finite dimensional one o
Uqosp(1u2). It is interesting to stress that, in ourUqosp(1u2) case, the classical sector appear
on irreducible representations is not the graded algebra osp(1u2) but the nongraded sl2(R). Thus
not only the effects ofq-deformation but also graded structures entirely come from the fi
dimensional sector. Case~iii !, i.e., whenq5exppi/(2m11) is notable. In this case, there are tw
possible highest weights~18! which yield two distinct irreducible highest weight modules. Both
them have the above-mentioned tensor product structures but the finite dimensional sector
is different from the other. Although the dimensions ofDJ for both cases can be written as dim
DJ54J11, the number of vectors inDJ , in case~iiia! is odd, whereas, it is even in case~iiib !.
Notice here that the spinJ in case~iiib ! is not a half-integral but (2N11)/4.

In this letter, only algebraic structures ofUqosp(1u2) are concerned. It is, however, importa
to consider our result from the physical viewpoints. This is the next job and will appear elsew
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We consider* -representations of the unital complex*-algebra generated by the
identity and two elements,a andn, with n5n* and one relation,an2na5a, the
ultra-commutation relations~ucr!. In general, we do not impose any commutation
relation betweena anda* . This is a very general scheme, encompassing many
important physical examples,inter alia: the ccr, car,q-deformed bosons and fer-
mions. The representations of interest in physics have a diagonal number operator
p~n! whose spectrum is contained in the positive integers~together with some other
technical conditions!. Our principal result is that every* -representation in this class
is completely determined, up to unitary equivalence, by the sequence of numbers
@n11#5u^Vn11 ,p(a

1)Vn&u2 for n>0, with @0#50. HereVn is the normalized

eigenvector ofp(n) corresponding to the eigenvaluen if the dimension of that
eigenspace is 1. If the carrier Hilbert space is infinite dimensional, this representa-
tion is irreducible if and only if@n#.0 for n>1. Finally, we consider spatial
representations of some of these representations by kernels and differential opera-
tors. © 1997 American Institute of Physics.@S0022-2488~97!00506-9#

I. INTRODUCTION

It could be argued that much of conventional quantum mechanics, andinter alia most of
quantum optics, is a consequence of the canonical commutation relation~ccr!, which, for one
degree of freedom, may be written as

aa12a1a5I , ~1.1!

in terms of raising and lowering operators for bosons. As well as bosonic systems, the
fermionic systems, described through the analogous operator equation, the canonical antic
tation relation~car!,

aa11a1a5I . ~1.2!

This apparently innocent change of sign is anything but: while representations of the ccr r
infinite-dimensional Hilbert spaces, those of the car can be reduced to a sum of two-dimen
representations.

Deformations1 of the Heisenberg algebra constructed by deforming the ccr equation~1.1!
were known to Heisenberg.2 More recently, the advent of supersymmetry in field theory led to
consideration of systems involving both the ccr and car simultaneously~for infinitely many de-
grees of freedom!.3 An early study of what we would now call aq-deformation of the ccr was
made by Arik and Coon.4 Serious interest in deforming the ccr and car was stimulated by stud
0022-2488/97/38(6)/3238/25/$10.00
3238 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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quantum groups in the 1980s, when it was shown that a certainq-deformation of the ccr resulted
in a realization of the quantum group SUq(2).

5,6 It is now considered perfectly reasonable for
physicist to study such systems as theq-deformed harmonic oscillator or theq-deformed parafer-
mionic oscillator, and such schemes may indeed be used to model the essential features
systems; see, for example, the nuclear models due to Bonatsos and co-workers7 and the real laser
model of Katriel and Solomon.8

Even a cursory glance at the literature will reveal a bewildering array of different systems
the amount of material which is repeated is very high. While some work has been done to
at least some of them in a coherent fashion,9 there is no proper mathematical classification sche
available. This taxonomy problem is magnified by the possibility that the same system may
two realizations which are unitarily equivalent but appear to be entirely unrelated,10 a problem
which has occurred more than once, unfortunately.

The problem of unitary equivalence was resolved for the ccr by Stone and Von Neuman
for the car by Jordan and Wigner.11 What is needed is an analogous solution in the general c
For theq-oscillator algebras, this has been done for a certain class of representations by Ch
and co-workers,12,13 and in connection with the twisted ccr by Pusz and Woronowicz14 and
Schmüdgen;15 we shall discuss the relation of this work to ours in Sec. V.

Seeking at least a partial remedy to this situation, we have considered a certain a
*-algebra,A, generated by the identitye, an elementa ~and its adjointa1! and a self-adjoint
elementn5n1. The generators satisfy what we have called the ultra-commutation relation~ucr!,

an2na5a. ~1.3!

We callA the abstract ucr algebra. In a representationp, p~n! is to be interpreted as a numbe
operator, and in the classes of representation we consider,p(a1) admits an interpretation as
raising operator andp~a! as a lowering operator. We must emphasize that because we d
supposea1a to ben, the raising and lowering operators are not creation and annihilation op
tors for the ‘‘particles’’ counted byn, in general. This is not new, as it is true for th
q-deformed systems. What is new is our taking this observation as the basis of a theory, an
representations ofA include representations of the deformed systems as special cases.

As with any *-algebra, analysis ofA must begin by analyzing its simplest representatio
For groups, recall, these are the irreducible unitary representations. For topological* -algebras
things are more complicated. Their representations require unbounded operators in gene
the technical problems that result are formidable. However, the situation is not hopeless.
first place, if we are to describe particles we had better have a number operator whose spec
a subset of the positive integers, and this simplifies things considerably. Possible degenerac
be eliminated by considering irreducible representations. These remarks must be realize
technically sound manner, together with other mathematical niceties, such as the distincti
tween commuting and strongly commuting unbounded operators. By proceeding in steps
creasing specialization along these lines, we have isolated what we feel to be the basic c
representations to begin our classification study with.

We call this classintegrable particle representations; the terminology is an extension of tha
used for certain representations of the enveloping algebra of a Lie algebra,16 and is patterned afte
the standard representations of Powers.17 Our principal result is that to every integrable partic
representation we may associate a certain sequence of complex numbers, (mn)n>0 , and two
integrable particle representations are unitarily equivalent if and only ifumnu5umn8u for all n.

Eachmn is determined by the action of the raising and lowering operators on the eigen
tions of the number operator.~That there exists such an eigenfunction basis, unique up to i
sential phase factors, is an assumption of the class of representations we consider. Other
certainly exist.! For a concrete representation, these numbers can be calculated explicitly, a
do so for several systems, so as to illustrate our theory. This provides a practical proced
determine whether a proposed commutation relation describes a new physical system or n
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



nded

plex

The
to our

rator is
-
any
t are of
t finite

t from
s of

future

l

ightly.)

3240 Dubin, Hennings, and Solomon: Representations of the ucr

¬¬¬¬¬¬¬¬¬¬
In the material that follows, we shall be using standard results in the theory of unbou
operator algebras, all of which may be found in the book of Schmu¨dgen,16 which we shall refer to
as SCH.

II. THE UCR ALGEBRA

Definition 2.1: The ucr polynomial algebra for one degree of freedom is the unital com
* -algebraA of all polynomials in two indeterminatesa and n with n5n1 and subject to the
relation

an2na5a, ~2.1!

which we call the ultra-commutation relations (abbreviated to ucr).
The following is immediate from the ucr.
Proposition 2.1: The algebra elementss5a1a and t5aa1 commute withn.
The ucr algebraA has far too many representations for all to be of interest in physics.

complexity of possibilities is greater than for the usual ccr, say, and so we shall proceed
final choice of representation class in stages.

For physical reasons one is interested only in representations for which the number ope
diagonal, with a discrete spectrum which is a subset ofNø$0%. These are ‘‘particle’’ representa
tions, then, which are appropriate for one degree of freedom. Recall that for infinitely m
degrees of freedom, the ccr have representations which have no number operator at all, ye
physical interest. For example, the representation associated with the ideal Bose gas a
temperature above absolute zero and with a nonzero density is of this form.

It might seem as though considering only particle representations is a severe constrain
the mathematical point of view. Perhaps surprisingly, this is not so when the representatives
andt are functions of the representative ofn in the sense of equations~2.2b! and ~2.2c! below.
This will be assumed in this paper; we leave the study of more general representations for
work.

Definition 2.2: By a diagonalizable representation of the ucr we mean a* -representation of
the ucr algebra, p:A→L1(D), for which

(1) The operatorp~n! is positive and essentially self-adjoint onD . Thus there is a spectra
representation of its closure having the form

p~n!5E
R1

ldE~l!. ~2.2a!

(2) The domainD is stable under the spectral projections ofp(n), that is, E(D)D,D for all
Borel subsetsD of ~0,̀ !.

(3) We assume that the operatorsp~s! andp~t! are of the form

p~s!5E
R1
s~l!dE~l!, ~2.2b!

and

p~t!5E
R1
t~l!dE~l!, ~2.2c!

for appropriate positive nonzero Borel functions s and t which are defined E-almost everywhere
and locally essentially bounded. (The boundedness conditions on s and t can be relaxed sl

Note that there are no assumptions placed onp~a! and p(a1) other than those for any
*-representation: diagonalization refers only ton, s, andt.
J. Math. Phys., Vol. 38, No. 6, June 1997
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As all representations we consider are*-representations, we have omitted the asterisk in
terminology. For consistency, this will be so for the other classes of representations in this a

We shall be employing the standard notationL1(D) to mean the set of all operatorsB onH
with domainD for whichBD,D , D,D(B* ), andB*D,D . Here and below we writeH for
the Hilbert space completion ofD .

It is a part of the definition of a representation of an algebra that relations in the algebra
in the representation, so the ucr hold onD in the sense that

p~a!p~n! f2p~n!p~a! f5p~a! f , fPD , ~2.3a!

and

p~a!1p~n! f2p~n!p~a!1 f52p~a!1 f , fPD . ~2.3b!

It is also part of the definition of a*-representation thatp(x1) should be the same asp(x)1 for
all xPA, so the second of the above two equations is consistent with the other relations oA.
@We use the standard notation:p(x)1 is the adjointp(x)* restricted toD .#

When it is clear which representation is being considered, it is convenient to use the no

A5p~a! and A15p~a1!, ~2.4!

together with the notation

N5p~n!, S5p~s!, T5p~t!. ~2.5!

Note thatA andA1 are closable, but not closed in general. In this notation it follows that we
write

ANf2NAf5Af , A1Nf2NA1 f52A1 f , fPD . ~2.6!

All representations considered in this paper are diagonalizable unless an exception is
explicitly. In the remainder of this section we assume that we are considering some fixe
arbitrary diagonalizable representation.

If we were considering the ccr algebra, then the equalityS5N would hold and require that the
spectrum ofN̄ be discrete and equal toNø$0%, whether or not the representation was irreducib
In the case of the ucr algebra, this is no longer the case, as the following example of a dia
izable representation shows.

LetH be the Hilbert spaceL2(0,̀ ), and letD be the dense linear subspace ofH consisting
of all elements ofL2(0,̀ ) of rapid decrease. That is,fPL2(0,̀ ) is a member ofD if
p(x) f (x) belongs toL2(0,̀ ) for all polynomial functionsp(x). We define a*-representation of
A by

~Af !~x!5 f ~x11!, ~2.7a!

~A1 f !~x!5 H f ~x21! if x.1,
0 if 0,x,1, ~2.7b!

~Nf !~x!5x f~x!. ~2.7c!

Thus the spectrum ofN̄ is absolutely continuous and equal to@0,̀ !. Furthermore,S̄ and T̄ are
diagonalizable, with associated functionss and t given by

s~x!5 H1 if x.1,
0 if 0,x,1, ~2.8a!
J. Math. Phys., Vol. 38, No. 6, June 1997
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t~x!51. ~2.8b!

More general representations of the ucr can be obtained by comparatively simple modificat
this example.

For the purposes of this paper, we are interested in those representations of the ucr for
the spectrum ofN̄ is discrete. We therefore make the following definition.

Definition 2.2: A discrete diagonalizable* -representation of the ucr is a diagonalizab
representation of the ucr algebra for which the spectrum of N5̄p(n) is discrete.

Thus if ~p,D! is a discrete representation of the ucr algebraA, then there exists a countab
subsetL of @0,̀ ! which is the spectrum ofN̄, and each point ofL is isolated. For anylPL there
exists an orthogonal projectionPl onH with finite-dimensional range and such that

PlPm50 ~2.9a!

for any l, mPL with lÞm, and

(
lPL

Pl5I , ~2.9b!

so that the closure ofN has the form

N̄5 (
lPL

lPl . ~2.10!

Moreover there exist functionss, t:L→@0,̀ ) such that the closure ofS andT have the forms

S̄5 (
lPL

s~l!Pl , ~2.11a!

T̄5 (
lPL

t~l!Pl . ~2.11b!

Proposition 2.2: Let~p,D! be a discrete diagonalizable representation of the ucr algebraA.
There exists a family(pm ,Dm)0<m,1 of discrete diagonalizable subrepresentations of~p,D! with
the following properties: for eachm, the spectrum ofpm(N̄2mI ) is a subset ofNø$0%; the
Hilbert space closureHm ofDm is equal to$0% for all but a countable subset of@0,1! at most; and
~p,D! is the direct sum of the(pm ,Dm)0<m,1 .

Proof: For eachmP@0,1) define

Lm5$m1n:nPNø$0%%. ~2.12!

Then

Qm5 (
n50

`

Pm1n ~2.13!

is an orthogonal projection, where we are settingPl50 if l¹L. WriteHm5QmH for the image
of Qm . ThenHm is invariant under the given representation of the ucr, and so

Dm5QmD , pm~x!5Qmp~x!Qm , xPA, ~2.14!
J. Math. Phys., Vol. 38, No. 6, June 1997
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is a discrete diagonalizable subrepresentation of~p,D!, and it is evident that~p,D! is a direct sum
of the (pm ,Dm) for all m. As the spectrum ofN̄ is discrete, there can only be a countab
subfamily of the (pm ,Dm)0<m,1 which are nontrivial. Finally, it is clear that

Qmp~N̄!Qm5 (
n50

`

~m1n!Pm1n5mIm1 (
n50

`

nPm1n , ~2.15!

whereIm is the identity operator onHm . j

We note in passing that the requirement that the spectrum ofp(N̄) be discrete has furthe
implications. LetG be the collection of all pointsmP@0,1) for whichDmÞ$0%, so that~p,D! is
the direct sum of the (pm ,Dm) for all mPG. It should observed thatm is not necessarily the leas
element of the spectrums@pm(N̄)# of pm(N̄).

GivenmPG, the spectrums@pm(N̄)# is a nonempty subset of

$m1n:n50,1,2,...%. ~2.16!

Let l (m) be the least integerm such thatm1m belongs to this set. The fact thatp(N̄) is discrete
requires that each set

$mPG: l ~m!<k% ~2.17!

be finite for each integerk>0, butG itself is not required to be. For example, a system could
considered with

G5 H 1

2n
:nPNJ and l S 1

2nD5n, nPN. ~2.18!

As shifting eachpm(N̄) by a constant multiple of the identity is of no physical relevance,
may restrict our attention to to representations of the following type:

Definition 2.4: A discrete particle diagonalizable representation of the ucr is a diagonaliz
representation of the ucr algebra for which the spectrum of N5̄p(n) is equal toNø$0%.

III. MINIMAL UCR REPRESENTATIONS

Using the ccr as a model we recall that the basic representation is that of Schro¨dinger. In this
case the number operator is nondegenerate, and thenth Hermite–Gaussian functionhn is a nor-
malized eigenvector for the eigenvaluen of the number operator. So we shall start by assum
that the number operator is nondegenerate, as the simplest class of infinite particle represen
But a surprise awaits us. For the ccr the condition that the number operator is nondege
guarantees that the representation is irreducible, and that is not the case for the ucr. Disc
what separates the reducible and irreducible representations when the number operator is
generate will give us some insight into the nature of some of the physical systems the u
describe.

To begin with, we shall consider representations which are in some sense the ‘‘pure’’ in
dimensional case: this comes from the condition dimPn51 for all n>0 that we impose. This will
exclude the car, for example, which will be considered with other finite-dimensional repres
tions further on.

Due to the possible technical difficulties we begin by considering representations whic
‘‘small’’ enough so that convergence problems do not arise. These are then dealt with by e
ing our small representations.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Definition 3.1: By a nondegenerate discrete particle diagonalizable representation of th
we mean a discrete particle diagonalizable representationp:A→L1(D) such that the spectrum
Nø$0% of N̄ is nondegenerate, so thatdim Pn51 for all n>0.

For anyn>0 find a unit vectorVn which spans the one-dimensional subspace ImPn of H.
Clearly $Vn :n>0% is an orthonormal basis forH.

Definition 3.2: A nondegenerate discrete particle diagonalizable representation~p,D! of the
ucr is said to be minimal if, whenever~r,E! is a nondegenerate discrete particle diagonalizab
representation of the ucr for which the completion ofE is identical to the completion ofD and
r(n)5p(n), then

~p,D !,~r,E !. ~3.1!

The important point is that any nondegenerate discrete particle diagonalizable representatio
ucr contains a minimal subrepresentation, and many domain problems and convergence qu
can readily be handled for minimal representations.

Lemma 3.1: Let~r,E! be a nondegenerate discrete particle diagonalizable representatio
the ucr. LetD be the linear span of the vectors$Vn :n>0%, and letp be the restriction ofr toD ,
so that

p~x!5r~x!uD , xPA. ~3.2!

Then~p,D! is a minimal nondegenerate discrete particle diagonalizable* -representation ofA.
Proof: That ~p,D! is a nondegenerate discrete particle diagonalizable* -representation of the

ucr is clear. From the definition, it is evident thatVnPE for all n>0 for any nondegenerat
discrete particle diagonalizable* -representation~r,E! of the ucr which satisfies the conditions o
the Definition, and hence it follows that (p,D)#(r,E) as required. j

Let us now consider the form such representations can take:
Proposition 3.1: Let~p,D! be a minimal nondegenerate discrete particle diagonaliza

representation ofA. Then there exists a complex sequence(mn)n>0 such that

A1Vn5mn11Vn11 , n>0, ~3.3a!

AVn5mnVn21 , n>1, ~3.3b!

A1V050, ~3.3c!

which we call the ladder operations. We refer to A as a lowering operator and A1 as a raising
operator. It follows that

S̄5 (
n51

`

umnu2Pn , ~3.4a!

T̄5 (
n50

`

umn11u2Pn . ~3.4b!

Proof: Elementary, since dimPn51 for all n>0. j

Although the constantm0 is not specified in the above definition or by the above calculatio
we shall suppose that in all cases we havem050. Note that there is no requirement that t
constantsmn be nonzero, as is true for the ccr. This new possibility will be seen to have intere
physical consequences.

It turns out that the sequence (umnu)n>0 determines the representation to within unita
equivalence—the phases of the constantsmn are not important.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Theorem 3.1:Two minimal nondegenerate discrete particle diagonalizable representatio
the ucr are unitarily equivalent if and only if their respective sequences(umnu)n>0 are identical.

Proof: Suppose that (p (1),D (1)) and (p (2),D (2)) are two minimal nondegenerate discre
particle diagonalizable* -representations of the ucr for which

umn
~1!u5umn

~2!u, n>0.

For anyn>0, choose a numberjn of unit modulus such that

mn
~2!5jnmn

~1! ,

and defineznPT for n>0 by setting

zn5 H 1, if n50,
P r51

n j r , if nPN.

Thus we have a linear isomorphismW:D (1)→D (2) given by

WVn
~1!5znVn

~2! , n>0.

Clearly this extends to a unitary map fromH (1) toH(2), and

W@A~1!#1Vn
~1!5zn11mn11

~1! Vn11
~2! 5znmn11

~2! Vn11
~2! 5@A~2!#1WVn

~1! ,

WA~1!Vn
~1!5~12dn0!zn21mn

~1!Vn21
~2! 5~12dn0!znmn

~2!Vn21
~2! 5A~2!WVn

~1! ,

WN~1!Vn
~1!5nznVn

~2!5N~2!WVn
~1! ,

for all n>0, where we have introduced the convenient conventionV2150. ConsequentlyW
intertwines the two representations ofA, and sop (1)>p (2).

Conversely, suppose (p (1),D (1)) and (p (2),D (2)) are unitarily equivalent minimal nondegen
erate discrete particle diagonalizable* -representations of the ucr, and letV be an intertwining
operator fromH (1) toH(2). SinceV:H (1)→H(2) is unitary, mapsD (1) toD (2), and intertwines
the mapsN(1) andN(2), it follows that

VVn
~1!5hnVn

~2! , n>0,

wherehn is of unit modulus for alln>0. But then

hnmn11
~2! Vn11

~2! 5@A~2!#1VVn
~1!5V@A~1!#1Vn

~1!5hn11mn11
~1! Vn11

~2!

for all n>0. Thenhnmn11
(2) 5hn11mn11

(1) for all n>0, and henceumn
(1)u5umn

(2)u for all n>1, as
required. j

We recall a notation originally introduced by Jackson17 and now standard in theq-calculus
and in quantum group theory. Our use of this notation slightly extends its previous usa
(mn)n>0 is the sequence of constants associated with a minimal nondegenerate discrete
diagonalizable* -representation of the ucr, we write

@n#5umnu2, n>0, ~3.5!

where the symbol@n# is to be read as ‘‘box-n. ’’ For illustration, in theq-‘‘maths’’ boson and
fermion models~which we consider further on! we have the box coefficients
J. Math. Phys., Vol. 38, No. 6, June 1997
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@n#q5
12qn

12q
, n>0, uqu,1. ~3.6!

We summarize our work by saying that two minimal nondegenerate discrete particle diago
able * -representations are unitarily equivalent if and only if their box sequences (@n#)n>0 are
identical. We shall now proceed to revise this theorem to take into account continuity and d
problems which occur when considering extensions of minimal representations.

IV. EXTENSIONS OF MINIMAL UCR REPRESENTATIONS

The minimal representations are not very natural from the point of view of represent
theory. What we would like is a largest representation which, as nearly as possible, has
symmetric operators self-adjoint. The natural candidate is the so-called adjoint represen
While, for a general* -representation of a general* -algebra, the adjoint representation is not
* -representation, it is so in the case of our algebraA, and so the pathologies usually present
not occur in our case.

For the convenience of the reader we recall that the adjoint representation (p* ,D* ) of a
* -representation~p,D! of a *-algebraA is defined as follows. For the domain we take

D*5ù$D„p~x!* …:xPA%; ~4.1!

and for the operators we take

p* ~x!5p~x* !* uD* . ~4.2!

As we are using only standard terminology and notation fromO* -algebra theory, we refer the
reader to Schmu¨dgen16 for background.

Proposition 4.1: Given a minimal nondegenerate discrete particle diagonalizable repres
tion ~p,D! ofA, its adjoint representation(p* ,D* ) is a commutatively dominated self-adjoi
* -representation ofA, and D* is a Fréchet space when equipped with the graph topolo
t@p* (A)#.

Proof: Since direct calculations show us that

p~a1!*5p~a!, p~a!*5p~a1!, ~4.3!

it follows @SCH16 8.1.12(v)# thatp* is a self-adjoint* -representation.
Every element ofA can be written as a finite linear combination of elements of the fo

xn r , wherex is a monomial ina anda1, andrPNø$0%. Since there are only countably man
such elements, it follows that the graph topologyt@p* (A)# is defined by a countable number o
seminorms, and so is metrizable. Since the adjoint of any*-representation is closed~SCH16 8.1.3!,
„D* ,t@p* (A)#… is closed~SCH16 2.2.8! and hence is Fre´chet.

Let N be the set of operators inL~H! ~the set of all bounded operators onH! of the form

Bc5 (
n50

`

cnPn , cP l`. ~4.4!

This is clearly an Abelian*-subalgebra ofL~H!. It is evident that the commutantN 85N and
soN is an AbelianW* -algebra.

Let C be the set of all elements ofA of the form xn r , wherex is a monomial ina and
a1, andrPNø$0%. Consider the following subset of the positive algebraic coneP ~A! of A:

P5$11y1
1y11•••1ym

1ym :mPN,y1 ,...,ymPC %. ~4.5!
J. Math. Phys., Vol. 38, No. 6, June 1997
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For anyyPC it is clear that

p~y1y!Vn5Kn~y!Vn , n>0, ~4.6!

where

Kn~y!5ip~y!Vni2>0. ~4.7!

Thus

ip~11y1
1y11•••1ym

1ym!ci25 (
n50

`

@11Kn~y1!1•••1Kn~ym!#2u^Vn ,c&u2

for y1 ,...,ymPC andcPD . It follows from this that

D~@p~11y1
1y11•••1ym

1ym!#* !5H cPH:(
n50

`

@11Kn~y1!1•••1Kn~ym!#2u^Vn ,c&u2,`J ,
and hence that

ip* ~11y1
1y11•••1ym

1ym!ci25 (
n50

`

@11Kn~y1!1•••1Kn~ym!#2u^Vn ,c&u2

for y1 ,...,ymPC andcPD* . This implies the bounds

ip* ~11y1
1y11•••1ym

1ym!ci<ip* ~11y1
1y11•••1ym

1ym1z1
1z11•••1zn

1zn!ci ,

ip* ~11z1
1z11•••1zn

1zn!ci<ip* ~11y1
1y11•••1ym

1ym1z1
1z11•••1zn

1zn!ci

for y1 ,...,ym , z1 ,...,znPC and cPD* . Hencet@p* (P )# is a directed family. Also~SCH16

2.2.6! t@p* (P )# and t@p* (A)# coincide. In view of the structure of the operatorsp* (y) for y
PC , it is clear thatp* (y) is affiliated withN for everyyPP . Hence (p* ,D* ) is commuta-
tively dominated~SCH16 2.2.14!. j

We note that by a standard result, it now follows that there exists a self-adjoint operatorA on
H and a sequence (hn)n>1 of real measurable functions onR which are finite almost everywher
and such that

h1~ t !>1, ~4.8a!

hn~ t !
2<hn11~ t !, n>0, ~4.8b!

D*5 ù
n>1

D„hn~A!…. ~4.8c!

Corollary 4.1: The algebrap* (A) is strictly self-adjoint.
Proof: SCH16 7.3.5 and Remark 3. j

Thus the adjoint representation has sufficiently good properties to be used in the repre
tion theory of the ucr. We note further that (p* ,D * ) is the largest* -representation~r,E ! ex-
tending the minimal representation~p,D! for which

^c,p~x!w&5^r~x1!c,w&, xPA,wPD ,cPE . ~4.9!

Consequently we see that the following is a useful definition:
J. Math. Phys., Vol. 38, No. 6, June 1997
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Definition 4.1: By an integrable particle representation of the ucr we mean the adjoint
resentation(p* ,D * ) associated to some minimal nondegenerate discrete particle diagonaliz
representation~p,D! of the ucr algebraA.

The name has been chosen by loose analogy with Schmu¨dgen’s16 use of the term for what
Powers17 had called standard representations of commutative*-algebras. It is not a simple gene
alization of that usage, however. Integrable here applies only to the ucr algebraA and requires
that the number operator have a special form, and that the representation be the particul
adjoint one just discussed. There is no implication that an integrable representation ne
irreducible; in fact it need not be, as we shall see shortly.

Later on we shall discuss finite-dimensional representation of the ucr. In that case we a
affected by the various domain problems with which we are currently concerned. Conseq
the results to be established below will also hold in the finite-dimensional case, but can be p
much more simply.

Theorem 4.1:Two integrable particle representations of the ucr are unitarily equivalen
and only if their box sequences are identical.

Proof: If (p* ,D * ) is an integrable particle representation of the ucr, then since

p* ~x!Vn5p~x!Vn , xPA,n>0,

it follows that (mn)n>0 , and hence the box sequence (@n#)n>0 for (p* ,D * ) is the same as tha
for the minimal representation~p,D!, which saves some confusion.

In view of the fact that the graph topologiest@p* (P )# and t@p* (A)# coincide onD * , we
deduce thatcPH belongs toD* if and only if

(
n50

`

@11Kn~y1!1•••1Kn~ym!#2u^Vn ,c&u2,`

for all mPN andy1 ,...,ymPC . Thus, if we consider the sequence space

J5$xP l 2:~@11Kn~y1!1•••1Kn~ym!#xn!n>0P l 2,mPN;y1 ,...,ymPC %

5$xP l 2:~Kn~y!xn!n>0P l 2,yPC %,

then the map

c°~^Vn ,c&!n>0

defines a linear bijection fromD * to J. There is clearly a natural sequence space topologyt on
J which turns this linear bijection into a topological isomorphism from„D * ,t@p* (A)#… to ~J,t!.

The key relationship betweenJ and the representation (p* ,D * ) resides in the constant
Kn(y) for yPC , n>0. If yPC is of the formxn r , wherex is a monomial ina anda1 involving
s terms, withr>0, thenKn(y) is equal ton

2r multiplied by a product ofs box symbols; precisely
which box symbols appear depends only upon the order in which the termsa anda1 appear in
x. For example, ify5a(a1)2n2, then

Kn~y!5@n11#@n12#2n4

for n>0.
Thus, if we have two integrable particle* -representations, (p1* ,D 1* ) and (p2* ,D 2* ), of the

ucr which share the same box sequence, then bothD 1* andD 2* are associated with the sam
sequence spaceJ. This means that we can construct a commutative diagram of topolo
isomorphisms
J. Math. Phys., Vol. 38, No. 6, June 1997
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D 1* → D 2*

↘ ↗
J

Moreover, the map fromD 1* to D 2* extends to a unitary map fromH 1* to H 2* , and it
intertwines the actions ofA onD 1* andD 2* . Hence the representations are unitarily equivale

Conversely, if (p1* ,D 1* ) and (p2* ,D 2* ) are unitarily equivalent integrable particl
* -representations, then the underlying minimal representations, (p1 ,D1) and (p2 ,D2), are also
unitarily equivalent, and so the box sequences are identical. j

We have shown in this proof that the sequence spaceJ introduced there gives us a chara
terization ofD * in terms of theVn : a vector(n50

` cnVn belongs toD * if and only if the
sequence (cn) belongs toJ. Although we have, in principle, a full characterization ofJ, and
hence ofD * , our characterization is not particularly transparent. The following representatio
J is an improvement in this regard.

Theorem 4.2: For each kPN, let Ek be the set of all sequences of numbers(« j )1< j<k

satisfying the following three conditions.
~1! « j50 or 61 for each j.1, and «150 or 1.
~2! If

« j215« j225•••5« j2 l1150Þ« j2 l

for j. l.0 (this means« j21Þ0 when l51), then« j50 or (21)l21« j2 l .
~3! If

« j215« j225•••5«150,

then« j50 or (21) j21 for j.1.
For «5(«1 ,...,«k)PEk we define

nk5«11•••1«k

and

u~«!n5 H @n1n1#•••@n1nk#
0 otherwise.

if n1n1 ,...,n1nk>0,

With these definitions,

J5H ~cn!n>0 :(
n50

`

u~«!nn
r ucnu2,`,r>0,«PEk ,k>0J . ~4.10!

Proof: ConsideryPC of the formy5ak•••a1n
r with eacha j eithera or a1. Set

«15 H 11 if a15a1,
21 if a15a.

For j.1, set

« j5H 11 if a j5a j215a1,
21 if a j5a j215a,
0 if a jÞa j21.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Calculation shows that

ip~y!Vni25u~«!nn
r ,

from which the result is immediate. j

Moving on to consider the question of irreducibility of these representations, the nature
algebra and the class of representations we are considering makes this problem tractable
general* -representation of a*-algebra, there are many different commutants and therefore m
different notions of irreducibility. However, for a strictly self-adjoint* -representation, the princi
pal bounded commutants all coincide~SCH16 7.3.6!, and we write, simply,p* (A)w8 for the
resultingW* -algebra. Hence the notions of irreducibility associated with the various commu
coincide. Thus we note that our representation (p* ,D * ) is irreducible~in any sense! if and only
if the only reducing subspaces ofD * are $0% andD * itself; or, equivalently, that there is n
nontrivial decomposition ofp* as a direct sum of integrable particle* -representations of the ucr

The box sequence also proves to be the key to identifying irreducible integrable pa
*-representations of the ucr.

Proposition 4.2: An integrable particle representation of the ucr is irreducible if and on
@n#Þ0 for all nPN.

Proof:We shall show that the weak commutant is trivial~SCH16 7.2.7!. If BPL(H) belongs
to the weak commutant ofp* (A), it is easy to show thatB belongs to the maximal abelia
W* -algebraN 85N mentioned above, so thatB5Bc for somecP l`. But since

cnmn115^p* ~a!Vn11 ,BVn&5^Vn11 ,Bp* ~a1!Vn&5cn11mn11

for all n>0, it follows that all the coefficientscn must be equal, makingB5Bc a multiple of the
identity, unless at least one of the constantsmn vanishes. j

This result tells us that the condition dimPn51 for all n>0 does not imply that@n#Þ0 for
all n>1 in general, and so there are both reducible and irreducible integrable particle rep
tations of the ucr. This makes the ccr quite special, for it has only one integrable represen
namely the Schro¨dinger representation, which is irreducible.

We now have the most important practicable results of the mathematical theory: giv
integrable particle* -representation of the ucr, in however unusual a form, by calculating the
sequence we can immediately learn what type of system is being described and read
irreducible subrepresentations.

V. EXAMPLES OF INTEGRABLE REPRESENTATIONS

In this section we shall discuss a few examples of integrable particle ucr representa
Some of these are generally well known, others less so. Our aim is to place these models
setting of the analysis above. The discussion that follows, therefore, is essentially limit
describing (p* ,D * ) and @n# rather than any applications.

Example 5.1 (the ccr):Our first example is the Schro¨dinger representation of the usual cc
with H equal toL2(R). ThenVn is thenth Hermite–Gaussian function, and it is usual to wr
p* (a) asa, p* (a1) asa1, andp* (n) asN. We havemn5An and so@n#5n. In this case
J5s is the space of rapidly decreasing sequences,

s5H ~cn!n>0 :(
n50

`

~n11!r ucnu2,`,r>0J . ~5.1!

The function space realization is thatD * is equal toS ~R!, Schwartz’s space of rapidly decreasin
test functions. We may take the functionshr(t) to be (t11)r , and hence
J. Math. Phys., Vol. 38, No. 6, June 1997
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D *5 ù
r>0

D~Nr !, ~5.2!

which is sometimes written asC `(N̄).
There is only one integrable representation, which is irreducible~which is part of the theorem

of Stone and Von Neumann11!. Since this structure is so well known we shall not discuss
further. j

Example 5.2 (bounded operators):Suppose the sequence (mn)n>0 is bounded, but not neces
sarily either monotonic or strictly positive. Then the operatorsp* (s), p* (t), p* (a), and
p* (a1) are bounded, although the number operator is not. If we define a boundedness par
b by

0,sup
n>0

umnu25sup
n>0

@n#5b,`, ~5.3a!

then

ip* ~a!i5b1/2, ip* ~a1!i5b1/2, ~5.3b!

and

ip* ~s!i5b, ip* ~t!i5b. ~5.3c!

As the only basic unbounded operator in the theory isp* (n)5N for such systems, the domain

D *5C `~N̄!5 ù
r>0

D~Nr !, ~5.4!

whereN̄ is the self-adjoint operator

p* ~n!5N̄5 (
n50

`

nPn ~5.5!

on its maximal domain. Hence the sequence spaceJ is equal to the spaces of rapidly decreasing
sequences, just as for the ccr. We can still choose the vectorsVn to be the Hermite–Gaussia
functions, so thatD * is Schwartz spaceS ~R!, but in this case the raising and lowering operato
p* (a1) andp* (a) are no longer the standard ones found in the ccr. j

This is a more or less unexpected possibility, for experience with the ccr has condition
to expect unbounded operators forp* (a) andp* (a1) whenH is infinite dimensional. However
this is a result of Wintner’s theorem,11 and that theorem does not apply here.

We assume that the reader knows that the unique integrable representation of the
two-dimensional~we shall discuss it later!. It turns out that if we deform the car, we can obta
integrable particle representations with bounded operators. Similarly, we can deform the
obtain integrable particle representations with bounded operators.

Example 5.3~q-deformed maths bosons and fermions):The integrable particle representatio
that we now consider are systems that satisfy the commutation relation

p* ~a!p* ~a1!2qp* ~a1!p* ~a!5I ~5.6!

in addition to the ucr, where21,q,1. For negativeq we have the system known a
q-deformed maths fermions, while for positiveq we have aq-deformed maths boson system; th
valueq50 is special. This relation has been considered by many writers, cf. Arik and Coon4 and
Chaichian and co-workers.12,13
J. Math. Phys., Vol. 38, No. 6, June 1997
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The inclusion of the proviso ‘‘maths’’ is to distinguish these systems from ano
q-deformed family of ‘‘physics’’ bosons and fermions. The choice of the term ‘‘maths’’ was m
because the associatedq-functions have been considered earlier by mathematicians, with no
nection toq-deformed systems.

Assume therefore thatuqu,1. Our results require the polynomials associated with the g
metric series:

`n~x!511x1x21•••1xn215
12xn

12x
~5.7!

for xPC\$1%. Together with the ucr, the additional commutation relation leads to the ident

@n11#2q~12dn0!@n#51, n>0. ~5.8a!

By convention@0#50, and forn>1 the solution to the above equation is

@n#5`n~q!5
12qn

12q
, n>1. ~5.8b!

Thus we see that we do have a representation of the ucr using bounded operators, with

b5 H1 if21,q,0,
~12q!21 if 0<q,1, ~5.9!

and so the spacesD * andJ are as described above. These representations are irreducible
We note thatq50 yields @n#51 for all n>1, so thatp* (a1) is the unilateral right shift,

while p* (a) is the unilateral left shift.
When q521 it follows that @2#50, and so the representation is reducible—we shall

below how to interpret this case in terms of finite-dimensional representations of the ucr~in fact,
the car in this case!. Choosingq51 we obtain@n#5n for all nPN, and we have the standar
representation of the ccr, looked at as a representation of the ucr by unbounded operators

A variant of these examples comes from replacing the new commutation relation b
following one:

p* ~a!p* ~a1!2qp* ~a1!p* ~a!5cI ~5.10!

for some positive constantc, which yields the new solution

@n#5c`n~q!, nPN ~5.11!

for uqu,1. These systems are sometimes known as quantum hyperboloids, withp* (a) and
p* (a1) playing the roles of noncommuting coordinates.

We would like to remark on the work of Chaichian and co-workers12,13 in the light of this
example. They describe ‘‘non-Fock’’ representations, where the lowering operator does no
hilate the ground state, and we seemingly have no such representations. In fact, we do. To
these representations are present in our theory, consider an irreducible discrete diagon
representation in which the spectrum ofN is $m1n:n>0% with dim Pn51 for all n, andm
P(0,1). That is, we have not made them-shift yet.

Now the operator

V5e2p i S̄ ~5.12!

is a unitary element of the weak commutant of the representation. HenceV must be of the form
J. Math. Phys., Vol. 38, No. 6, June 1997
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V5e2p ig ~5.13!

for somegP@0,1), because every element of the weak commutant is a constant multiplyin
unit operator. That is,

(
n50

`

~e2p ism1n2e2p ig!Pm1n50. ~5.14!

It follows that

sm1n5g1Nn , NnPZ. ~5.15!

Consequently,sm does not vanish, and sop* (a) does not annihilate the ground state. Hence
non-Fock representations reappear when wem-shift back from the integrable representations.

We end our discussion of this example by remarking that, as is well known, the twiste
with 1 degree of freedom is defined by Eq.~5.6!, so there is overlap between that theory and t
of the ucr algebra. We note that the irreducible unitary representations of the twisted ccr hav
found by Pusz and Woronowicz14 for q.0 and by Schmu¨dgen15 for uqu51. Their work is based
on differential calculus on quantum spaces. j

Example 5.4 (q-deformed physics bosons):Now consider the possibility of an integrab
particle* -representation satisfying the additional commutation relation

p* ~a!p* ~a1!2qp* ~a1!p* ~a!5q2N, ~5.16!

where 0,uqu,1. For 0,q,1 such systems are known asq-deformed boson systems, whil
systems with21,q,0 areq-deformed fermion systems. This additional commutation relat
leads to the identity

@n11#2q~12dn0!@n#5q2n, n>0, ~5.17a!

Again we take@0#50, and deduce that

@n#5
1

qn21 `n~q
2!5

qn2q2n

q2q21 , n>1. ~5.17b!

Thus we have no representations forq-deformed fermions since, in this case,@2#5q211q,0.
However, we do obtain solutions forq-deformed boson systems which are infinite-dimensio
and irreducible. They involve unbounded operators, since@n#→` asn→` for any 0,q,1. j

VI. INTEGRABLE FINITE PARTICLE UCR REPRESENTATIONS

We know that there must be finite-dimensional diagonalizable representations of th
algebra. For one thing, the car is of this type. To accommodate these representations w
extend our definition of an integrable representation to the finite-dimensional case.~Above, we
have defined integrable representations to have dimPn51 for all nPN.! It turns out that the
theory of these representations is particularly simple, since there are no problems of doma
extensions of operators.

To see what type of finite-dimensional representations might be of interest, it is worth
seeing what subrepresentations a reducible infinite-dimensional integrable particle represe
may have. So let (p* ,D * ) be an integrable particle representation of the ucr which is reduc
Then the set

L~p* !5$nPN:@n#50% ~6.1!
J. Math. Phys., Vol. 38, No. 6, June 1997
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is nonempty. There are various cases to consider:
~1! If r5min@L(p* )#, then the linear span,H r5^V0 ,V1 ,...,V r21&, is an r -dimensional

subspace ofD#H which is invariant under the action of the algebraA, and

p* ~n!uHr
5(

j50

r21

jP j , (
j50

r21

Pj5IHr
.

~2! If the number of elements ofL(p* ) is at least two, and if 1<a,b are successive
elements ofL(p* ), thenHab5^V j :a< j<b21& is a linear subspace ofD#H which is invari-
ant under the action ofA, and

p* ~n!uHab5 (
j5a

b21

jP j5aIHab
1 (

j50

b2a21

jP j1a ,

(
j50

b2a21

Pj1a5IHab
.

~3! If L(p* ) is bounded above, then sets5max@L(p* )#. It follows that D̂s5^V j : j>s& is a
linear subspace ofD * which is invariant under the action ofA. Let D̂s be the closure ofD̂s in
H. Then (puD̂s

,D̂s) is a subrepresentation of~p,D! with an adjoint which is a subrepresentatio
of (p* ,D * ), and

puD̂s
* ~n!5(

j>s
jP j5sIĤs

1(
j50

`

jPs1 j , (
j50

`

Ps1 j5I Ĥs
.

We notice, moreover, that (p* ,D * ) can be written as a direct sum of various subrepresentati
each of which will be of one of the above forms. Now subrepresentations of type~2! are essen-
tially the same as those of type~1!, differing only in that an integer multiple of the identit
operator has been added to the number operator. Subrepresentations of type~3! differ from inte-
grable particle representations only in that an integer multiple of the identity operator has
added to the number operator. Consequently, the representations of type~2! and ~3! may be
regarded as simple variations on themes provided by representations of type~1! and the infinite
dimensional integrable representations already considered. Thus we shall restrict our atten
the finite dimensional representations of type~1!.

Definition 6.1: We define a finite-dimensional integrable particle representation of the u
be a* -representationp:A→L(H) as bounded operators on a finite-dimensional Hilbert spa
H of dimension r, where we have one-dimensional spectral projections Pn , 0<n<r21, with

N5p~n!5 (
n50

r21

nPn , ~6.2a!

(
n50

r21

Pn5IH . ~6.2b!

For definiteness we choose a unit vectorVn in the image ofPn for all n.0. Clearly, the set
$Vn :0<n<r21% is an orthonormal basis forH. There is an obvious isomorphism betweenH
and Cr , and soA is isomorphic to a*-subalgebra ofMr(C). None of the technical problem
concerning domains and extensions of operators occur in this case, and so it is straightforw
obtain the following results:
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition 6.1: Let~p,H! be a finite-dimensional integrable particle representation of
ucr of dimension r. Then the following hold.

(a) There exists a finite sequence(m050,m1 ,...,m r21) of complex numbers such that

A1Vn5 Hmn11Vn11 if 0<n<r22,
0 if n5r21 ~6.3a!

AVn5 H 0 if n50,
mnVn21 if 1<n<r21. ~6.3b!

As before, we refer to A as the lowering operator and A1 as the raising operator.
(b) If we write

@n#5umnu2, 0<n<r21, ~6.4!

then two finite-dimensional integrable particle representations of the ucr are unitarily equiv
if and only if their box sequences are identical (which of course requires that they be of the
dimension).

(c) A finite-dimensional integrable particle representation of the ucr is irreducible if and o
if @n#Þ0 for 1<n<r21.

It is clear that any finite-dimensional integrable particle representation of the ucr is of the

A5S 0 m1 0 0 ... 0

0 0 m2 0 ... 0

A A A A ... A

0 0 0 0 ... m r21

0 0 0 0 ... 0

D , ~6.5a!

A15S 0 0 0 0 ... 0

m1 0 0 0 ... 0

0 m2 0 0 ... 0

A A A A ... A

0 0 0 0 ... m r21

D ~5A†!, ~6.5b!

N5S 0 0 0 0 ... 0

0 1 0 0 ... 0

0 0 2 0 ... 0

A A A A ... A

0 0 0 0 ... r21

D . ~6.5c!

Any extra commutation relation betweenA andA* is a consequence of the exact form of the
matrices.

We remark in passing that there are no finite-dimensional integrable particle representat
the ucr associated with theq-deformed ‘‘maths’’ systems in general, nor are there such repre
tations forq-deformed ‘‘physics’’ systems. However, as was noted above, in the extreme ca
the car there are finite dimensional representations. We shall now discuss this case, and c
two-dimensional representations of the car.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In the caser52, the only freedom we have is the choice of the constantm1 . Thus every
two-dimensional integrable particle representation of the ucr is of the form

A5S 0 m1

0 0
D , A15S 0 0

m1 0D , N5S 0 0

0 1D , ~6.6!

using the standard representation ofp~A! in terms of 232 matrices. Clearly,

AA*1A*A5@1#I . ~6.7!

When @1#5\ this representation is the irreducible integrable representation of the car firs
covered by Jordan and Wigner in 1928.11

However, these matrices satisfy other commutation relations as well. For example,
define the operator

B5uP01vP15S u 0

0 v D ~6.8!

for any complex numbersu, v, then clearly

uAA*1vA*A5@1#B. ~6.9!

Thus an infinity of apparently more general commutation relations can be constructed. Were
start from any of these commutation relations as operators on an arbitrary~separable! Hilbert
space, we might suppose that we were considering a new system distinct from the ca
calculation of the box sequence for this representation would show us that we were discuss
usual car in disguise.

An example where exactly this happened has been discussed by McDermott and Solo10

~who use a more direct approach not connected to the theory discussed here!. It had been claimed
elsewhere19 that strong coupling superconductivity could be described by a Hamiltonian
structed from fermionic operators which satisfied

AA*1qA*A5qN, ~6.10!

which operators were supposed different from the usual fermion operators of the car. This
the case, however, as can be seen by calculating the box sequence. For

qN5 (
n50

`

qnPn , ~6.11!

in accordance with standard spectral theory, and so we are led to the equations

@n11#1q~12dn0!@n#5qn ~6.12!

for n>0, so that@1#51 and@2#50. Thus, since the representation was meant to be irreduc
it must follow that the system is two-dimensional, and so we are looking at the car in unfam
form. It should be noted that the car matrices do indeed satisfy this new commutation re
since

qN5P01qP1 . ~6.13!

The above new commutation relation is simply one of the many relations which the car sa
J. Math. Phys., Vol. 38, No. 6, June 1997
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VII. SPATIAL REALIZATIONS OF THE UCR ALGEBRA

When considering a mathematical structure, the basic questions are those of existen
equivalence. We have answered these above, but our treatment has not been entirely sa
since we have restricted our realizations of representations of the ucr to sequence spaces.
words, we have restricted our attention to the the Hilbert spacel 2 as the carrier space. Howeve
any one separable Hilbert space is as good as another, and in certain cases an appropria
of Hilbert space may make it easier to represent some of the operators we are considering,
present particular questions of interest. In this section we will look at some representatio
function spaces. This material is of a preliminary nature, a systematic analysis remaining
much an open question. Undoubtedly, many interesting examples will be discovered thereb
note that interesting spatial representations for theq-deformed systems may be found in th
various references we have given.

For simplicity we shall consider only infinite-dimensional integrable particle representa
(p* ,D * ) of the ucr which are irreducible. Hence the sequence (mn)n>0 consists of nonzero
constants forn>1.

Example 7.1 (kernel representations):By a kernel representation of (p* ,D * ) we mean that
we can find ‘‘generalized functions’’ so that

@p* ~x! f #~s!5E L~s2t ! f ~ t !dm~ t !

for eachxPA. We have been purposely vague in our notation at this point: the Hilbert spacH

is to be of the formL2(X,dm) for some measure spaceX and measurem. We will be more
definite below. As a preliminary step we want to consider the properties of the quantities giv
~the continuous linear extensions of!

Ln@Vn#5n, ~7.1a!

La@Vn#5mn, ~7.1b!

La1@Vn#5mn11 . ~7.1c!

We find that they are well behaved.
Proposition 7.1: Let(p* ,D * ) be an infinite-dimensional integrable particle representati

of the ucr which is irreducible, with associated sequence(mn)n>0 . Then the formulas

LnF (
n50

`

bnVnG5 (
n50

`

nbn , ~7.2a!

LaF (
n50

`

bnVnG5 (
n50

`

mnbn , ~7.2b!

La1F (
n50

`

bnVnG5 (
n50

`

mn11bn , ~7.2c!

all (yn50
` bnVn in D * , define continuous linear functionals onD * equipped with its graph

topology. That is, they are elements of(D * )8.
Proof: Let (bn) to be an arbitrary member ofJ. Consider the first case. Noting that

~11n!2<2~11n2!52@11Kn~n!#,
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t

rm a

eir
ealiza-

3258 Dubin, Hennings, and Solomon: Representations of the ucr

¬¬¬¬¬¬¬¬¬¬
we see that

U(
n50

`

nbnU< (
n50

`

~n11!2ubnu/~n11!

<Ap2

6 F (
n50

`

~n11!4ubnu2G1/2
<Ap2

3 F (
n50

`

@11Kn~n!#2ubnu2G1/2.
The right-hand side is one of the seminorms defining the graph topology onJ, hence onD * ,
multiplied by a positive constant. This proves the continuity ofLn .

Consider the second case. Suppose first thatumnu<1. Thenumnu<n for n>1, so

~11n!~11umnu!<11n212n<2~11n2!52@11Kn~n!#.

If umnu>1, thenumnu<umnu2 for n>1, so

~11n!~11umnu!<11n212n2mn
2<2@11Kn~n!1Kn~an!#.

In all cases, then,

~11n!~11umnu!<2@11Kn~n!1Kn~an!#.

Hence

U(
n50

`

mnbnU< (
n50

`

~n11!~11umnu!ubnu/~n11!<Ap2

3 F (
n50

`

@11Kn~n!1Kn~an!#2ubnu2G1/2.
As above, the right-hand side is one of the seminorms defining the graph topology onJ, hence on
D * , multiplied by a positive constant. This proves the continuity ofLa . The continuity ofLa1 is
shown in the same way, completing the proof. j

The triple of spaces

D *,H,~D * !8, ~7.3!

whereD * has the graph topologyt@p* (A)#, the Hilbert spaceH has its usual inner produc
topology, and (D * )8 has the strong dual topology, have the property thatD * is dense inH,H
is dense in (D * )8, and the embeddings are continuous. In the usual terminology, they fo
rigged triple, or rigged Hilbert space. WhenD * is Schwartz spaceS ~R!, say, elements of
(D * )8 are tempered distributions. We must expect, therefore, thatLn , La , and La1 will be
generalized functions in some sense.

Now that the legitimacy ofLn , La , and La1 has been established, we want to use th
defining formulas to obtain a kernel representation. We are able to do so by considering r
tions of representations of the ucr on the Hilbert spaceH2(T) of Hardy functions on the unit circle
and choosing the vectorsVn to be the natural basis:

Vn~e
iu!5einu. ~7.4a!

The operators generating the representation are then

@p* ~n! f #~eiu!5Ln@ f u#, ~7.4b!
J. Math. Phys., Vol. 38, No. 6, June 1997
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@p* ~a! f #~eiu!5e2 iuLa@ f u#, ~7.4c!

@p* ~a1! f #~eiu!5eiuLa1@ f u# ~7.4d!

for any fPD * , where we have written

f u~eib!5 f ~ei ~u1b!!. ~7.5!

The kernel form now follows:

@p* ~n! f #~eiu!5
1

2p E
0

2p

Ln~b! f ~ei ~u1b!!db5
1

2p E
0

2p

Ln~b2u! f ~eib!db, ~7.6a!

@p* ~a! f #~eiu!5
e2 iu

2p E
0

2p

La~b! f ~ei ~u1b!!db5
e2 iu

2p E
0

2p

La~b2u! f ~eib!db, ~7.6b!

@p* ~a1! f #~eiu!5
eiu

2p E
0

2p

La1~b! f ~ei ~u1b!!db5
eiu

2p E
0

2p

La1~b2u! f ~eib!db ~7.6c!

for all fPD * .
It is clear that, in all cases, the kernel for the number operator is given by

Ln5 id8, ~7.7!

the derivative of the delta function.
It will depend on the exact nature of the sequence (mn)n>0 whether or not we can obtain a

explicit form for the integral kernelsLa andLa1. In the case of theq-deformed ‘‘maths’’ system
for q50, we havemn51 for all n>1, and it is easy to check thatLa5d21. Certain other
sequences can be shown to provide closed forms for these kernels, but we shall not purs
matter further. j

When working with the Hilbert spaceH2(T), it is natural to consider when operators have
integral kernel representation, as we have done above. In other Hilbert spaces, other fo
operators might be considered more natural. If, for example, we work with the Hilbert s
L2(R), it would be natural to ask under what conditions the raising and lowering operators o
ucr representation take the form of differential operators. As a first question, we consider th
of first-order differential operators.

Example 7.2 (first-order differential operators):We take our Hilbert space to beL2(R),
which is not the most general case to consider, but will suffice for our purposes. In this ca
need to find a differentiable real-valued functionb such that we have

A5
1

&

S b~x!1
d

dxD , ~7.8a!

A15
1

&

S b~x!2
d

dxD . ~7.8b!

In this case direct calculations show that

AA12A1A5b8~x!, ~7.9a!

so we would need to have
J. Math. Phys., Vol. 38, No. 6, June 1997
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@n11#2@n#5b8~x! ~7.9b!

for all n>0. The solution takes the form

@n#5n@1#, ~7.9c!

b~x!5~x2j!@1#, ~7.9d!

for some real constantj.
Letting the subscript ccr denote the operators for the standard irreducible representation

ccr, our result is that

A5A@1#Accr, ~7.10a!

A15A@1#Accr
1 , ~7.10b!

N5Nccr, ~7.10c!

and

Vn~x!5A@1#hn~A@1#@x2j#!, n>0. ~7.10d!

Thus, if we insist on first-order differential operators onL2(R), we obtain only scaled and trans
lated representations of the ccr. j

If we want ucr representations which are not scaled versions of the ccr we must em
second- or higher-order differential operators. As a general problem this is of considerable
lational complexity and difficulty. This can be understood as follows. IfA is a formal differential
operator of orderr , thenS andT are differential operators of order 2r whose spectral decompo
sitions are restricted by Eq.~3.4a!. Moreover, we have complete freedom to choose the Hilb
space of functions. Between the freedom of choice of function space and restriction th
spectra, it is not at all obvious what the details ofA andA1 are. It is not even obvious under wha
circumstances a pairA and A1 exist, nor whether every integrable representation has su
realization. However, some solutions do exist, and we show this by way of an example
A andA1 are second order.

Example 7.3 (a second-order differential operator solution):We have considered a speci
case which can be solved more or less explicitly. Our Hilbert space isL2(R), and we choose

A5k@Accr
1 #21 l @Accr#

2, ~7.11a!

A15 l @Accr
1 #21k@Accr#

2, ~7.11b!

on some suitable domain, wherek andl are real. These are second-order differential operators
S andT are fourth-order operators. However, if

4~k22 l 2!51, ~7.12!

then

A1A2AA15Accr
1 Accr1

1
25Nccr1

1
2. ~7.13!

That is,

T2S5Nccr1
1
2. ~7.14!
J. Math. Phys., Vol. 38, No. 6, June 1997
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However, we know that the spectrum of this operator is

s~Nccr1
1
2!5$n1 1

2:n50,1,2,...%; ~7.15!

and each eigenvalue is of multiplicity one, and we may take the Hermite–Gaussian functionhn as
thenth eigenvector. This enables us to determine the box sequence:

@n#5
n2

2
, n>0. ~7.16!

We notice from this that for any real numberl there exist two values ofk, namely,

k56 1
2A114l 2,

such that the corresponding ucr representation has the box sequence (n2/2). This means that they
are all unitarily equivalent.

VIII. CONCLUSION

Due to the plethora of possible deformations of the ccr and car that are possible to co
and indeed have recently been considered, we have adopted a minimal approach to the su
an attempt at a partial unification. Our method has been to consider certain* -representations of the
algebra we have called the ucr algebraA. These representations involve raising and lower
operatorsA1 andA, and a number operatorN. The only commutation relation that we impose
that betweenA and N, and we do not assume any further relation betweenA and A1. Our
objective has been to specify when two such deformations, satisfying certain additional con
involving the spectra ofN, A1A, andAA1, are unitarily equivalent; and when such a repres
tation is irreducible.

Among the models that are included in this theory are the ‘‘physics’’ and ‘‘mat
q-deformations. We have restricted ourselves to the single-mode case, and it will be of inte
consider how to generalize our theory to the multi-mode case.

Some of the preliminary details of our arguments are rather technical, but not unnece
so, for the possible representations ofA can be mathematically quite pathological. It was
isolate the basic class of interest to physics that required the technicalities. The results w
obtained are not only of considerable generality, but also very practical.

Summarizing our results, under the conditions stated in the theorems, the sequen@n#
5umnu2 obtained from the matrix elements ofA with respect to the eigenfunctionsVn of the
number operator completely determines the representation up to unitary equivalence. This
alizes previous results on particularq-deformed systems~where it has not always been state
explicitly in these terms! and in the context of quantum optics, where it was shown20 that the
characteristic functional

s~n!5
@n11#/@n#

~n11!/n
, n>1, ~8.1!

determines the squeezing and certain other properties of the system, ands(n) is determined, in
turn, by @n#.

There is a great deal more analysis possible for this algebraic system. Even within th
ducible integrable class there remains the task of elucidating the various systems it describ
a systematic study of the corresponding spatial representations. The generalization to
degrees of freedom is an open question and with it any possible connections to quantum
J. Math. Phys., Vol. 38, No. 6, June 1997
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However, a positive consequence of what has been done is that it never need be the case t
after publication is it discovered that a proposed new oscillator deformation is no more t
well-known system in ‘‘unitary disguise.’’
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On the noncommutative Riemannian geometry of GL q(n )
Y. Georgelin
Division de Physique The´orique,a) Institut de Physique Nucle´aire,
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A recently proposed definition of a linear connection in noncommutative geometry,
based on a generalized permutation, is used to construct linear connections on
GLq(n). Restrictions on the generalized permutation arising from the stability of
linear connections under involution are discussed. Candidates for generalized per-
mutations on GLq(n) are found. It is shown that, for a given generalized permuta-
tion, there exists one and only one associated linear connection. Properties of the
linear connection are discussed, in particular its bicovariance, torsion, and commu-
tative limit. © 1997 American Institute of Physics.@S0022-2488~97!02506-1#

I. INTRODUCTION

Shortly after their discovery in the context of integrable models,1–4 quantum groups were
identified as interesting noncommutative generalizations of the algebra of functions on a Lie
manifold.5–7 Noncommutative differential calculi8 have been proposed where the main constra
is the bicovariance of the differential algebra.9 In addition theR-matrix formulation7 played a key
role in further developments.10–15

The aim of this paper is to define linear connections and metrics on quantum groups. Fro
mathematical point of view, this is a step towards the understanding of which classical co
can have a noncommutative generalization. From the physical point of view, it could be a firs
towards the formulation of gravitational theories on quantum groups. Noncommutative man
in fact could represent a solution to the problem of short distance divergences of usual qu
field theories~see, e.g., Refs. 16 and 17! and could also offer a more satisfactory description
space–time. In this respect, quantum groups are an interesting toy model where qualitati
ferences between the noncommutative (qÞ1) and the nondeformed (q51) cases can be ob
served. In the context of the Dirac-operator-based differential calculus of Connes, an appro
the construction of such theories has been proposed using the Wodzicki residue of the
operator.18,19 However, many interesting differential calculi, such as those on quantum gro9

and spaces,20 are not defined by a Dirac operator. Here, as was proposed in Refs. 21–2
follow the idea, which is suitable for all differential calculi, of a generalization to the nonc
mutative context of the usual commutative metrics and linear connections.

A general definition of linear connections, in the context of noncommutative geometry
been recently proposed for the derivation-based differential calculus24,25 and other differential
calculi24 in which case the construction relies on a generalized permutation. In Sec. II we fi
notation concerning quantum groups. In Sec. III we briefly review the construction of Ref. 2

a!Unité de recherche des universite´s Paris XI et Paris VI associe´e au CNRS.
b!Laboratoire associe´ au CNRS URA D0063.
c!Electronic mail: mourad@paris.u-cergy.fr
0022-2488/97/38(6)/3263/15/$10.00
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add some restrictions on the generalized permutations which arise from the requirement t
set of covariant derivatives be stable under complex conjugation. Section IV is devoted
search for generalized permutations on GLq(n) which are restricted by the bicovariance conditio
We find a two-parameter family of generalized permutations. In Sec. V we prove that for a
generalized permutation there exists only one linear connection. Properties of this linear c
tion are studied, in particular its bicovariance, torsion, and curvature. Finally, we examin
commutative limit of our linear connections. We show that the limit of one class of these
q→1 corresponds to left- and right-invariant linear connections on GL(n). We collect our con-
clusions in Sec. VI.

II. QUANTUM GROUPS AND THEIR BICOVARIANT DIFFERENTIAL CALCULI

The quantum group Fun„GLq(n)… is a Hopf algebra~A,D,e,k! generated, as an algebra, by t
identity andTi

j , i , j51,...n. An exchange of the order of the generators, while maintaining
classical Poincare´ series, is obtained by the RTT relation7:

RT1T25T1T2R. ~II.1!

Here,R is theRmatrix, which is an element ofMn(C)^Mn(C) obeying the Yang–Baxter relatio

~1^R!~R^1!~1^R!5~R^1!~1^R!~R^1!. ~II.2!

TheR matrix of GLq(n) is given by4

R5q(
i
Eii ^Eii1(

iÞ j
Ei j ^Eji1l(

i, j
Eii ^Ej j , ~II.3!

wherel5q2q21. It satisfies the Hecke condition

~R2q!~R11/q!50. ~II.4!

The differential calculus on the quantum group is considerably restricted by the bicovar
condition.9 This means that there exist a right and left coaction ofA on V1, the space of
one-forms, such that

DL~adb!5D~a!~1^d!D~b!, ~II.5!

DR~adb!5D~a!~d^1!D~b!, ~II.6!

~1^ DR!DL5~DL^1!DR . ~II.7!

Under some restrictions onq and the assumption thatV1 be generated as a left-module b
dT j

i , bicovariant differential calculi have been classified26 and shown to be obtained by th
constructive method of Jurco.12.

For such differential calculiV1 is generated as a left~or right! module by left-invariant
one-formsv j

i @DL(v j
i )51^ v j

i #:

v j
i5k~Tk

i !dTj
k . ~II.8!

The differential algebra is entirely characterized by the commutation relations

v j
i a5~1^ f j l

ik!D~a!vk
l , ~II.9!

where f j l
ik are linear functionnals representing the algebraA:
J. Math. Phys., Vol. 38, No. 6, June 1997
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f j l
ik~1!5d l

id j
k , f j l

ik~ab!5 f jn
im~a! f ml

nk~b!.

They can be explicitly determined in terms of theR-matrix and some parameters.26 Here we
shall make the choice

f i l
jk~Tn

m!5~R21! in
sk~R21!sl

jm ~II.10!

for the differential calculus. In the limitq→1, this differential calculus reduces to the usual one
GL(n). It has been considered in Refs. 11, 15, 14, 27, 28, and 13. In this case, the comm
relations are often written in the form

T1dT25RdT1T2R. ~II.11!

The space of two-forms is constructed as the image ofV1
^AV1 under the ‘‘multiplication’’

mapp:

p:V1
^AV1→V1

^AV1, ~II.12!

p512L, ~II.13!

whereL is a bimodule automorphism, obeying the Yang–Baxter equation, which generalize
permutation map of the commutative case. Leth j

i be right-invariant one-forms:

h j
i5Tl

ivk
l k~Tj

k!. ~II.14!

ThenL is determined by9

L~v j
i
^ h l

k!5h l
k

^ v j
i . ~II.15!

When applied tov j
i
^ v l

k , one can show that

L~v j
i
^ v l

k!5L j l mq
ik npvn

m
^ vp

q , ~II.16!

L j l mq
ik np5 f jq

ip
„k~Tm

k !Tl
n
…. ~II.17!

When applied todT1^dT2 , the mapL yields

L~dT1^dT2!5RdT1^dT2R
21. ~II.18!

The Hecke relation for theR matrix ~II.4!, combined with the previous equation, yields t
following characteristic equation forL:

~L21!~L1q2!~L1q22!50. ~II.19!

Higher-order forms can be constructed in a similar way using the mapL.9 The bicovariant
bimoduleV is the direct sum of the space ofn forms:

V5 % nV
n. ~II.20!

It is equipped with an exterior derivative which is defined with the help of the right- and
invariant one-formu,

u52
q2n11

l (
i
q22iv i

i , ~II.21!
J. Math. Phys., Vol. 38, No. 6, June 1997
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by

dv5@u, v#, ~II.22!

where@,# is the graded commutator and the product is inV.
For real values ofq or for uqu51, an involution may be defined on GLq(n) reducing it

respectively to Uq(n) or to GLq(n,R). Setting theq-determinant equal to one gives rise
SUq(n) and SLq(n,R).

7 The bicovariant differential calculus on these reductions is character
either by a larger set of one-forms than the classical case29 or by a modified Leibniz rule.30

III. LINEAR CONNECTIONS IN NONCOMMUTATIVE GEOMETRY

In this section we collect the main definitions and results concerning the general constr
of linear connections as proposed in Ref. 24. We add some new restrictions on the gene
permutation by imposing the stability of the set of covariant derivatives under complex con
tion. In the followingA is a unital associative algebra overC equipped with the differentia
calculus (V,d).

Definition 3.1: Letp be the multiplication inV. A generalized permutation, s, is a bimodule
automorphism ofV1

^AV1 satisfying

p+s52p. ~III.1!

A generalized flip, t, is defined as a generalized permutation satisfyingt251.
Remarks:
~1! Note thats521 is a generalized flip.
~2! When the algebraA is the algebra ofC` functions on a manifoldM , the permutation

t~v ^ v8!5v8^ v ~III.2!

is a generalized flip.
~3! When V2 is realized as a subspace ofV1

^ V1 with an imbeddingi verifying p+ i
5 lV2, then

122i +p ~III.3!

is a generalized flip. The generalized flip of the derivation-based differential calculus propo
Refs. 25 and 24 is of this form, as are the generalized flips of Refs. 31 and 23.

~4! If s is a generalized permutation, then so iss21 as well ass2n11 for an arbitrary integer
n.

~5! If s ands8 are two generalized permutations, then so ism(s11)1m8(s811)21 for all
m andm8 in C. Thes11 form a linear space.

Definitions 3.2: A linear connection associated to a generalized permutations, is a linear
map, “s, from V1 to V1

^AV1 satisfying the two Leibniz rules

“

s~av!5da^ v1a“sv, ~III.4!

“

s~va!5s~v ^da!1“

sva, ~III.5!

for any aPA and anyvPV1.
Remarks:
~1! When the algebraA is the commutative algebra of smooth functions on a manifold

only possible linear connections are those associated to the permutation~III.2!.
~2! If s ands8 are two generalized permutations, then“s2“

s8 is a left-module homomor-
phism.
J. Math. Phys., Vol. 38, No. 6, June 1997
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~3! If “ and“8 are two linear connections associated to the same generalized permu
then their difference is a bimodule homomorphism.

The preceding definition of the linear connection has the advantage of allowing an exte
to the tensor product overA of several copies ofV1. This is formulated in the following

Proof: The proof can be carried out by induction. Fors52 an identification of“s(v f
^ v8) with “

s(v ^ fv8), where f is an arbitrary element ofA andv andv8 are one-forms,
givess25s ^1; so the proposition is true fors52. Suppose it is true to orders21 and letv8 be
an element of the tensor product ofs21 copies ofV1. Then, by the induction hypothesis,

“

s fv85d f^ v81 f“sv8. ~III.8!

The identification of“s(v ^ fv8) with “s(v f ^ v8) wherev is an element ofV1 completes the
Proof. d

Suppose thatA is an algebra overC equipped with an involution* . ThenV1 carries a natural
involution defined by (bda)*5(da* )b* . The involution onV1

^AV1 is nota priori determined.
In fact, if we define the antihomomorphisma by

a~v ^ v8!5v8* ^ v* , ~III.9!

and if f is an automorphism ofV1
^AV1 such that (f+a)251, thenf +a defines an involution

on V1
^AV1. We would like to define an involution onV1

^AV1 which in the commutative
limit reduces to (v ^ v8)*5t(v8* ^ v* ), wheret is the usual permutation operator, and whi
allows us to define the complex conjugate of a linear connection, as in the commutative ca

“̄

sv5„“

s~v* !…* . ~III.10!

The requirement that“̄s be a linear connection imposes constraints on the involution onV1

^AV1 and on the generalized permutation,s:
Proposition 3.4: Suppose thatA is equipped with an involution* . Then the following asser

tions are equivalent:
~1! The map“̄s defined in (III.10) is a linear connection.
~2! The generalized permutation, s, verifies
J. Math. Phys., Vol. 38, No. 6, June 1997
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~s+a!251 ~III.11!

and the involution onV1
^AV1 is given by

~v ^ v8!*5s~v8* ^ v* !. ~III.12!

Proof: 2⇒1 is a direct calculation. We prove 1⇒2. Calculate, with the aid of Eq.~III.10!,
“̄

s(va):

“̄

s~va!5„“

s~a*v* !…*5~da* ^ v* !*1~“sv* !* a5~da* ^ v* !*1~“̄sv!a.
~III.13!

If the map“̄s is a covariant derivative, then there exists a generalized permutation,f, such that

“̄

s~va!5f~v ^da!1“̄va. ~III.14!

Comparing the two equations~III.13! and ~III.14! we obtain

~da* ^ v* !*5f~v ^da!. ~III.15!

This equation is valid for arbitrarya andv so the involution inV1
^AV1 verifies:

~v8^ v!*5f~v* ^ v8* !. ~III.16!

The involution property,** 51, gives (f+a)251. It remains to prove thatf5s. In order to do
this, calculate, using Eq.~III.10!, “̄s(av):

“̄

s~av!5a„“s~v* !…*1„s~v* ^da* !…* . ~III.17!

Since“̄s is a linear connection we have

“̄

s~av!5a“̄sv1da^ v. ~III.18!

Comparing Eq.~III.17! and ~III.8! we get

da^ v5„s~v* ^da* !…* . ~III.19!

This equation is valid for arbitrarya andv, so we have

v8^ v5„s~v* ^ v8* !…* . ~III.20!

Comparing Eqs.~III.16! and ~III.20! leads to the quality off ands. d

Definition 3.5: For a given involution* onV1
^AV1, a generalized permutations is defined

to be real if it satisfies the following property:

s+*5* +s ~III.21!

on V1
^AV1.

Now, if one wants to find an involution* onV1
^AV1 such that“̄s is a linear connection,

then one should take, according to Proposition 3.4,~III.12! as a definition of* . The condition for
this to be possible is (s+a)251. If one further demands thats be real, then one has to use th
following:

Proposition 3.6: Suppose that the generalized permutation, s, verifies Eq. (III.11) and that the
involution onV1

^AV1 is given bys +a. Thens is real iff it is a generalized flip.
Proof: The reality condition reads
J. Math. Phys., Vol. 38, No. 6, June 1997
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s+s+a5s+a+s. ~III.22!

Sinces is an automorphism, this equation leads to

s+a5a+s. ~III.23!

The relation in (s+a)251 givess251. d

The definition of the complex conjugate of a linear connection allows the following:
Definition 3.7: A real linear connection associated to a generalized permutations is defined by
“̄

s5“

s.
Remark: The involution onV1

^AV1 defined above induces an involution onV2 by
(v∧v8)*5p„(v ^ v8)* …52v8*∧v* . This is due to the property~III.1!.

Definition 3.8: The torsion T of a linear connection“s is defined as the linear map from
V1 to V2 given by

T5d2p+“s. ~III.24!

Proposition 3.9: The torsion map is a bimodule homomorphism.
Proof: It is an immediate consequence of the condition~III.1!. d

Definition 3.10: The curvatureR of a linear connection“s is defined as the linear map from
V1 to V2

^AV1 given by

R5„~T^1!1~p ^1!“s
…“

s. ~III.25!

Proposition 3.11: The curvature is a left-module homomorphism.
Proof: A straightforward calculation. d

Definition 3.12: A metric g is defined as an element ofV1
^AV1 satisfying

p~g!50. ~III.26!

If V1
^AV1 is equipped with an involution, a real metric is defined by g*5g.
The definition of a nondegenerate metric requires some more structure on the algebraA. This

structure must guarantee that the dimension ofV1 as a left module be well defined. For examp
if A is a Hopf algebra, then it is well known that this is so~see, e.g., Ref. 9!. If it exists, let
va, a51,...,N, be a free basis ofV1 as a left module. Then a metric can be written uniquely
the form

g5gabv
a

^ vb, ~III.27!

with gabPA. We will call a metric nondegenerate if the matrix whose elements aregab is
invertible.

Definition 3.13: A metric g and a linear connection“s are said to be compatible if the
condition“sg50 is satisfied.

IV. DETERMINATION OF s ON GLQ(N)

In addition to the previous requirements ons, it is natural, in the context of quantum group
to add the requirement of bicovariance:

Definition 4.1: A generalized permutation, s, is called bicovariant iff

~1^ s!DL5DLs, ~s ^1!DR5DRs. ~IV.1!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Following theR-matrix technique, that is the determination of all unknown maps from
R-matrix andq, we will determine the candidates for the maps in terms ofR. We recall from
~II.13! and ~III.1! that the generalized permutations is an automorphism ofV1

^AV1 verifying

~12L!+~s11!50, ~IV.2!

the bicovariance requirements~IV.1!, and whenA is equipped with an involution, that is for rea
q and for uqu51, the involution property~III.11!.

In order to find candidates fors, we shall prove the following Proposition, which, in its fir
part, is a generalization of Proposition 3.1 of Ref. 9:

Proposition 4.2: Leta i j , i , j50,1, be complex numbers.
~1! There exists a unique bimodule homomorphism, F, of V1

^AV1 such that

F~dT1^dT2!5(
i , j

a i j R
idT1^dT2R

j . ~IV.3!

Moreover,
~2! The mapF is bicovariant.
~3! The mapF is a generalized permutation iff

a012a1050, a001la102a11521, ~IV.4!

where, we recall, l5q2q21.
In this case, F obeys the characteristic equation

~F11!~F2l1!~F2l2!50, ~IV.5!

l15211a10~q1q21!1a11~11q2!, ~IV.6!

l25212a10~q1q21!1a11~11q22!. ~IV.7!

Proof: An elementn of V1
^AV1 can be written in a unique way as

n5( akl
i j dTi

k
^dTj

l5Tr„a~dT1^dT2!…, ~IV.8!

whereaPMn(A)^Mn(A). This is a consequence of the fact that thedT generateV1 as a left
module. The action ofF on n is defined by

F~n!5Tr~aa i j R
idT1^dT2R

j !. ~IV.9!

It clearly satisfies~IV.3!. It remains to check thatF defined in this way is a bimodule homomo
phism. The left-module homomorphism property is assured by construction. To check the
module homomorphism property it suffices to verify that

F~dT1^dT2T3!5F~dT1^dT2!T3 . ~IV.10!

This is so because theT generate the algebra. The left-hand side of Eq.~IV.10! can be written,
after successive use of Eq.~II.11!, as

F~dT1^R23
21T2dT3R23

21!5R23
21R12

21F~T1dT2^dT3!R12
21R23

21. ~IV.11!

Here the subscripts of theR-matrix denote the two spaces on which it acts. Next, we use
left-module property to write the right-hand side of Eq.~IV.11! as
J. Math. Phys., Vol. 38, No. 6, June 1997
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R23
21R12

21T1F~dT2^dT3!R12
21R23

215a i j R23
21R12

21R23
i T1dT2^dT3R23

j R12
21R23

21. ~IV.12!

The right-hand side of Eq.~IV.10! can be written as

a i j R12
i dT1^dT2R12

j T35a i j R12
i dT1^dT2T3R12

j . ~IV.13!

The commutation relations~II.11! allow us to write this term as

a i j R12
i dT1^R23

21T2dT3R23
21R12

j 5a i j R12
i R23

21R12
21T1dT2^dT3R12

21R23
21R12

j . ~IV.14!

As a consequence of the Yang–Baxter equation we have

R12
i R23

21R12
215R23

21R12
21R23

i ,
~IV.15!

R23
i R12

21R23
215R12

21R23
21R12

i .

The right hand sides of Eqs.~IV.12! and~IV.14! are thus equal. This proves the first point of t
Proposition.

In order to prove the bicovariance ofF, it suffices to prove that

DLF~dT1^dT2!5~1^ F!DL~dT1^dT2!, ~IV.16!

DRF~dT1^dT2!5~F ^1!DR~dT1^dT2!. ~IV.17!

This is due to the fact thatdT1^dT2 generateV
1

^AV1 as a left module. Using Eq.~IV.3! and

DL~dT1^dT2!5T1T2^dT1^dT2 , ~IV.18!

DR~dT1^dT2!5dT1^dT2^T1T2 , ~IV.19!

Eqs.~IV.16! and ~IV.17! can be written as

a i j R
iT1T2^dT1^dT2R

j5a i j T1T2^RidT1^dT2R
j , ~IV.20!

a i j R
idT1^dT2^T1T2R

j5a i j R
idT1^dT2R

j
^T1T2 . ~IV.21!

These equations are true due to the commutation relations~II.1!. This proves point 2 of the
Proposition.

Point 3 is a straightforward calculation using Eqs.~II.18! and the Hecke condition~II.4!. d

Proposition 4.2 gives us a two-parameter family of bicovariant generalized permutation
turn to examine some of their properties. First, note that the mapsF have the same eigenspac
even though their eigenvalues might be different. In fact, if we introduce the projectors

P1~dT1^dT2!5 P̂qdT1^dT2P̂q ,

P2~dT1^dT2!5 P̂2q21dT1^dT2P̂2q21,
~IV.22!

P3~dT1^dT2!5 P̂2q21dT1^dT2P̂q ,

P4~dT1^dT2!5 P̂qdT1^dT2P̂2q21,

with
J. Math. Phys., Vol. 38, No. 6, June 1997
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P̂q5
R1q21

q1q21 , P̂2q215
q2R

q1q21 , ~IV.23!

then the generalized permutationF can be written as

sl1 ,l2
5l1P11l2P22P32P4 , ~IV.24!

and the expression forL is

L5P11P22q2P32q22P4 . ~IV.25!

In the commutative limitP11P2 tends to the projector onto symmetric elements ofV1

^AV1 andP31P4 to the projector onto antisymmetric elements. The multiplication mapp may
be expressed in terms of these projections as

p5~11q2!P31~11q22!P4 . ~IV.26!

SoV2 can be identified with the projection ofV1
^AV1:

V25~P31P4!V
1

^AV1. ~IV.27!

An imbeddingi of V2 in V1
^AV1 verifying p+ i51V2, exists and is given by

i5
1

11q2
P31

1

11q22 P4 . ~IV.28!

With the aid of this imbedding we obtain the expression~III.3! for s :

sL5122i +p52112~P11P2!. ~IV.29!

Note that thiss verifiess251; it is equal to21 onV2 and to11 on (P11P2)(V
1

^AV1). It
corresponds tol15l251 in Eq. ~IV.24!.

Another simple solution to Eqs.~IV.4!, which in addition obeys the Yang–Baxter equation,
given bysq22,q2,

sR~dT1^dT2!5R21dT1^dT2R
21. ~IV.30!

This s is to be compared with thes found in Ref. 32 for the quantum plane. Indeed, it could
obtained in the same way from the differential calculus~see Lemma 5.13!.

We turn now to consider involutions foruqu51. Then one can consider the involutio
(Tj

i )*5Tj
i on GLq(n). This involution is compatible with the relations on the algebra because

uqu51 andR given by ~II.3!, one has

R̄kl
i 5~R21! lk

j i ~IV.31!

whereR̄ is the complex conjugate ofR. In this case, the quantum group is GLq(n,R).
Proposition 4.3: Letuqu51. A generalized permutation, sl1 ,l2

, defines an involution iff

ul1u5ul2u51. ~IV.32!

Proof: For uqu51 relations~IV.31! imply that

a+P i+a5P i , i51,2,3,4. ~IV.33!
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So, the condition~III.11! reads

ul1u2P11ul2u2P21P31P451, ~IV.34!

which completes the Proof. d

Remark:The previously definedsL andsR satisfy Eqs.~III.11!.

V. LINEAR CONNECTIONS ON GLQ(N)

In this section we determine linear connections on the quantum group GLq(n) and study their
properties.

Proposition 5.1: Lets be any generalized permutation. The map“0
s defined by

“0
s :V1→V1

^AV1,
~V.1!

“0
s~v!5u ^ v2s~v ^ u!.

is a linear connection associated tos.
Proof: Calculate first

“0
s~av!5~@u,a#1au! ^ v2s~av ^ u! ~V.2!

and then use the expression of the exterior derivative and the bimodule property to obtain

“0
s~av!5da^ v1a“0

sv. ~V.3!

Similarly, calculate

“0
s~va!5u ^ va1s„v ^ ~@u, a#2ua!…,

5s~v ^da!1~¹0
sv!a. ~V.4!

This completes the Proof. d

Remarks:
~1! The linear connection“0

s can be defined on any differential calculus where the exte
derivative is a graded commutator. See Ref. 31 for another example.

~2! For s521 the resulting covariant derivative“0
s is i +d, where i is the embedding of

V2 into V1
^AV1, by Eq. ~II.21!.

Proposition 5.2: The extension of“0
s to the tensor product of s copies ofV1 is given by

“0
sn5u ^ n1ss~n ^ u!, ;nPV1

^A•••V1. ~V.5!

Proof: A direct application of Proposition 3.3. d

Proposition 5.3: There are no nonvanishing bimodule homomorphisms fromV1 to V1

^AV1.
Proof:We will use the following Lemma proved in Refs. 7, 13, and 27.
Lemma 5.4: Let c be the q-determinant of T,

c5detq T5(
p

~2q! l ~p!Tp~1!
1 Tp~2!

2 •••Tp~n!
n , ~V.6!

where the sum is over all permutations on n elements and l(p) is the number of transpositions i
the permutation p. Then c is in the center ofA and verifiesvc5q22cv for all v in V1.

An immediate consequence of the preceding Lemma is the following.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Corollary 5.5: nc5q24cn, ;nPV1
^AV1.

We are now in position to prove the Proposition. Letf be a bimodule homomorphism from
V1 to V1

^AV1 and letvPV1. By the homomorphism property and Lemma 5.4, we get

f~v!c5q22cf~v!. ~V.7!

On the other hand, sincef(v)PV1
^AV1, by Corollary 5.5 we obtain

f~v!c5q24cf~v!. ~V.8!

Comparing these two equations we prove the Proposition. d

As a direct consequence of the preceding and of the third remark following Definition 3.
obtain the following

Theorem 5.6:For any generalized permutations onGLq(n), there exists one and only on
associated linear connection, given by (V.1).

We now turn to the study of some of the properties of the linear connection“0
s .

Proposition 5.7: For any generalized permutations, the linear connection“0
s has vanishing

torsion.
Proof: Calculatep+“0

s

p+“0
sv5u∧v1v∧u5dv, ~V.9!

where we have used the property~III.1!. The proof of the Proposition follows from~III.24!. d

Proposition 5.8: For any generalized permutations, the linear connection“0
s has the ex-

pression

“0
sva5~L2s!va

^ u5„~l121!P11~l221!P21~q221!P31~q2221!P4…v
a

^ u
~V.10!

on the left invariant one-formsva, and

“0
sha5~L212s!ha

^ u5„~l121!P11~l221!P21~q2221!P31~q221!P4…h
a

^ u
~V.11!

on the right-invariant one-formsha

Proof: This is an immediate consequence of the definition ofL, the right invariance ofu, and
Eq. ~IV.24!. •

Definition 5.9: A bicovariant linear connection, “, is defined by the properties

~1^“ !DL5DL“ ~ left covariance!, ~V.12!

~“^1!DR5DR“ ~right covariance!. ~V.13!

Proposition 5.10: The linear connections associated to the generalized permutationssl1 ,l2
of

formula (IV.24) are bicovariant.
Proof: First, one sees thatL andsl1 ,l2

are bicovariant. Then, using formula~V.10! and the
left invariance ofva one sees that formula~V.12! is true when applied tova. Now, the one-forms
va form a basis of the left moduleV1. Then, formula~III.4! and the previous result show that th
associated linear connection is left invariant.

For the right invariance, one has to consider the right-invariant one-formsha, which consti-
tute a basis ofV1 as a right module and formulas~V.11! and ~III.5!. •

The following Proposition allows one to calculate explicitly the covariant derivative ass
ated to a generalized permutation given by Eq.~IV.24!:
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition 5.11: Definen, g, andb by

n5q1q21, g5
l12l2

q222q2
, b5

l1q
22l2q

22

q222q2
; ~V.14!

the linear connection associated to the generalized permutation, sl1 ,l2
, acts on left-invariant

one-forms as follows:

“

0

sl1 ,l2v j
i52

1

n2
~12g2b!vk

i ∧v j
k2gvk

i
^ v j

k1
1

2
~12g1b!~v j

i
^ u1u ^ v j

i !

1
l2

2n2
~12g2b!~v j

i
^ u2u ^ v j

i !. ~V.15!

Proof: First we note thatsl1 ,l2
of ~IV.24! can be written as

sl1 ,l2
5~l111!P11~l211!P221, ~V.16!

so that“v j
i can be expressed as

“v j
i5u ^ v j

i1v j
i
^ u2@~l111!P11~l211!P2#v j

i
^ u. ~V.17!

It remains to calculate the term in the brackets of~V.17!. We will do so by calculating it for two
different values of the couple (l1 ,l2) with the aid of the following two Lemmata.

Lemma 5.12: The covariant derivative associated tosL acts on left-invariant one-forms a
follows:

“0
sLv j

i52
2

n2
vk
i ∧v j

k2
l2

n2
~u ^ v j

i2v j
i
^ u!. ~V.18!

Proof: The Proof is a straightforward calculation exploiting the fact thatsL can be expressed
in terms ofL as

sL52112
~L1q2!~L1q22!

n2
, ~V.19!

as well as the equation

dv j
i5~12L!u ^ v j

i52vk
i ∧v j

k , ~V.20!

which allows us to eliminateL(u ^ v j
i ) in “sLv j

i . d

Lemma 5.13: The covariant derivative associated tosR is determined by

“

sRdTj
i50. ~V.21!

Proof: Calculate the covariant derivative associated tosR of the two sides of Eq.~II.11!. d

The Proof of the Proposition is completed after expressing“

sl1 ,l2v j
i in terms of“s∧v j

i and
“

sRv j
i as

“

sl1 ,l2v j
i5 1

2~12g1b!~u ^ v j
i1v j

i
^ u!1 1

2~12g2b!“s∧v j
i1g“sRv j

i . ~V.22!

This equation is obtained after the evaluation ofPkv j
i
^ u, k51,2, in terms of“s∧v j

i and
“

sRv j
i . d
J. Math. Phys., Vol. 38, No. 6, June 1997
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Finally, we consider the limit of the linear connections determined above whenq→1. In this
limit the differential calculus tends to the usual commutative differential calculus. The one-fou
has a singular limit butlu tends to the right- and left-invariant one-forma on GL(n). First of all,
a necessary condition for the limit to be nonsingular is that the generalized permutation tend
flip operator that isl1→1 andl2→1. A more precise statement, giving a necessary and suffic
condition for the limit to be nonsingular, is the following:

Proposition 5.14: Let

m i5
l i21

l
, i51,2, ~V.23!

the linear connection associated tosl1 ,l2
admits a nonsingular limit iffm1 and m2 have finite

limits m i uq51 when q tends to1. The linear connection, in the limit, is determined by

“v j
i52

1

2
~12g0!vk

i ∧v j
k2g0vk

i
^ v j

k2
m0

2
~a ^ v j

i1v j
i
^ a!, ~V.24!

where

g05
m2uq512m1uq51

2
, m05

m2uq511m1uq51

2
. ~V.25!

Proof: A direct application of Proposition 5.11. d

Remark:Whenm1 andm2 tend to 0, which is the case ofs∧ , g0 andm0 vanish and the
limiting linear connection is given by

“v j
i52 1

2vk
i ∧v j

k . ~V.26!

VI. CONCLUSION

The main result of this paper is the existence and uniqueness, for genericq, of the linear
connection associated to a given generalized permutation. This connection is bicovaria
torsion-free. This is in contrast to the commutative case (q51) where there are an infinite numbe
of linear connections not necessarily bicovariant and torsion-free and where the generalize
mutation is constrained to be the flip operator. It is also in contrast to the cases withq a root of
unity where Proposition 5.3 is not in general valid. The arbitrariness in the deformed cas
merely in the generalized permutation for which we have found a two-parameter family@Eq.
~IV.24!#. These parameters may be arbitrary functions ofq and are constrained by the involutio
property ~Proposition 4.3!. The commutative limit is nonsingular for a class of such functio
which tend to the identity whenq→1. The commutative limit of the linear connection is a sub
of right- and left-invariant linear connections on GL(n).

We have used the differential calculus~II.10! to obtain our results. Had we used anoth
differential calculus with the usual commutative limit the qualitative aspects of our conclusio
particular the uniqueness of the linear connection associated to a given generalized perm
are expected to remain the same.
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We review some basic notions and results of white noise analysis that are used in
the construction of the Feynman integrand as a generalized white noise functional.
We show that the Feynman integrand for the time-dependent harmonic oscillator in
an external potential is a Hida distribution. ©1997 American Institute of Physics.
@S0022-2488~97!04905-0#

I. INTRODUCTION

Path integrals are a useful tool in many branches of theoretical physics including qua
mechanics, quantum field theory, and polymer physics. We are interested in a rigorous tre
of such path integrals. As our basic example we think of a quantum mechanical particle.

On one hand it is possible to represent solutions of the heat equation by a path in
representation, based on the Wiener measure in a mathematically rigorous way. This is st
the famous Feynman–Kac formula. On the other hand there have been a lot of attempts t
solutions of the Schro¨dinger equation as a Feynman~path! integral in a useful mathematical sens
The methods are always more involved and less direct than in the Euclidean~i.e., Feynman–Kac!
case. Among them are analytic continuation, limits of finite dimensional approximations
Fourier transform. Instead of enumerating a comprehensive list of publications on theorie
cerned with Feynman integrals we refer to the method proposed in Ref. 1. An illustrative t
has been developed there by using Fresnel integrals, and, additionally, they provide a recom
able list of supplementary references. Here we have chosen a white noise approach.

White noise analysis is a mathematical framework which offers various generalizatio
concepts known from finite dimensional analysis, among which are differential operator
Fourier transform. Although we will give a brief introduction to white noise calculus in Sec. II,
reader unfamiliar with this topic is recommended to the monographs2–5 and the introductory
articles.6–9

The idea of realizing Feynman integrals within the white noise framework goes back to
10. The ‘‘average over all paths’’ is performed with a Hida distribution as the weight~instead of
a measure!. The existence of such Hida distributions corresponding to Feynman integrand
been established in Ref. 11. In Ref. 12, Khandekar and Streit moved beyond the existence t
by giving an explicit construction for a large class of potentials, including singular ones. Bas
they constructed a strong Dyson series for the Feynman integrand in the space of Hida d
tions. This approach only works for one space dimension. Their construction was generali
~one-dimensional! time-dependent potentials of noncompact support in Ref. 13.

In Ref. 14, the ideas were carried over to perturbations of the harmonic oscillator. H
instead of constructing a Dyson series around the free particle Feynman integrand, they
0022-2488/97/38(6)/3278/22/$10.00
3278 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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around the Feynman integrand of the harmonic oscillator as obtained in Ref. 11. The ex
potentials to which the oscillator is submitted correspond to the wide class of time-depe
singular potentials treated in Ref. 13.

Here we expand the considerations of Ref. 14 to oscillators with time-dependent mas
frequency. Starting from the associated Lagrangians we use the formulas derived in Ref
order to calculate the corresponding Feynman propagators. There the polygonal approach h
applied in order to integrate over all paths. Then we integrate this propagator into the fra
white noise analysis and in Theorem 8 we show that the associated Feynman integrand is
distribution. As a final result, we proved in Theorem 11 that the Feynman integrand fo
time-dependent harmonic oscillator which is submitted to the same class of potentials as in R
exists again as a Hida distribution.

For example, the associated propagators enable us to study quantum mechanics of
oscillators in a particular form of the time-dependent mass and frequency. This is treated in
in Example 7.

In Ref. 1 the path integral of the harmonic oscillator is defined within the theory of Fre
integrals. Compared to our ansatz this procedure has the advantage of being manifestly in
dent of the space dimension. Despite the lack of a generalization to higher dimensional qu
systems our construction has some interesting features:

~1! The admissible potentials may be very singular.
~2! We are not restricted to smooth initial wave functions and may thus study the propa

directly.
~3! Instead of giving a meaning to the Feynmanintegral we define the Feynmanintegrandas a

Hida distribution. By taking expectations we get the propagator. On the other hand one
now use the toolbox of white noise analysis and apply differential operators to derive v
tional relations or Ehrenfest’s theorem, see Refs. 3 and 16.

II. WHITE NOISE ANALYSIS

In this section we do not give an account of white noise analysis. Our aim is to introduc
tools we need in this work and we refer throughout to Refs. 2, 3, and 17 for details and pr

A. The triple ( S);L2(m);(S)8

We start with the fundamental real Gel’fand triple,

S~R!,L2~R!,S8~R!,

whereS(R) andS8(R) denote the space of rapidly decreasing, smooth functions and tem
distributions, respectively. Via Minlos’s theorem we construct a measure space (S8(R),B,m)
called thewhite noise spaceby fixing the characteristic functional in the following way:

C~ f !5E
S8~R!

exp~ i ^w, f &!dm~w!5exp~2~1/2!u f u0
2!, fPS~R!.

Here the dual pairinĝ•,•& of S8(R) andS(R) is realized as an extension of the inner product
L2(R), ^h, f &:5(h, f )0 , hPL2(R), fPS(R), and u•u0 denotes the norm inL2(R).

Within this formalism a version of Wiener’s Brownian motion is given by

x~ t !:5^w,1@0,t !&5E
0

t

w~s!ds.
J. Math. Phys., Vol. 38, No. 6, June 1997
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We now consider the spaceL2(m), which is defined to be the complex Hilbert spa
L2(S8(R),B,m). For applications the spaceL2(m) is often too small. A convenient way to solv
this problem is to introduce a space of test functionals inL2(m) and to use its larger dual spac

Take a system of Hilbert norms$u•up% topologizingS(R) which grows sufficiently fast. Then
S(R) is realized as a projective limit of Hilbert spacesSp(R),

S~R!5 ù
p>0

Sp~R!,

whereSp(R) denotes the completion ofS(R) with respect tou•up . Then the space of tempere
distributions is

S8~R!5 ø
p>0

S2p~R!,

where the dual normu•u2p topologizes the Hilbert spaceS2p(R).
One convenient choice is

u f up :5uApf u0 , fPS~R!,

where

Af~ t !52 f 9~ t !1~ t211! f ~ t !

is the Hamiltonian of a harmonic oscillator with ground state eigenvalue 2. SinceL2(m) is Segal
isomorphic to the symmetric Fock spaceG(L2(R)) of LC

2 (R):5L2(R)% iL 2(R), we can identify
the Fock spaceG(Sp) with a subspace (S)p of L

2(m) and define the nuclear space

~S!5 ù
p>0

~S!p .

Thus we arrived at the Gel’fand triple,

~S!,L2~m!,~S!8.

Elements of the space (S)8 are calledHida distributions~or generalized Brownian functionals!. It
is possible to characterize the spaces (S) and (S)8 by theirS- or T-transforms. ForFP(S)8 and
fPS(R) these transforms are defined as

TF~ f !:5^^F,exp~ i ^•, f &!&&5E
S8~R!

exp~ i ^w, f &!F~w!dm~w!,

SF~ f !:5^^F,:exp̂ •, f &:&&.

Here ^^•,•&& denotes the bilinear dual pairing between (S) and (S)8 and we have used th
traditional notation

:exp~^•, f &!: :5exp~^•, f &2~1/2!u f u0
2!, fPS~R!.

We denote byE(F):5^^F,1&& the expectation of a Hida distributionF. S- andT-transform have
extensions to the complex spaceSC(R) and are related by the following formula:

TF~ f !5C~ f !SF~ i f !, fPSC~R!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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B. U-Functionals and the characterization theorem

Here we give the characterization theorem, which is due to Potthoff and Streit18 and has been
generalized in various ways, see, e.g., Refs. 19–21. For a full proof of a generalized versi
Ref. 17.

Theorem 1: The following statements are equivalent:
1. F:S(R)→C has

~a! ‘‘ray-analyticity’’: for all f , gPS(R) the mappingC{z°F(z f1g) is entire, and
~b! ‘‘bound’’ : F is uniformly of order two, i.e., there exist constants K1 , K2.0 and p

PN0 such that for all zPC, fPS(R),

uF~z f !u<K1 exp~K2uzu2u f up
2!.

2. F is the S-transform of a unique Hida distributionFP(S)8.
3. F is the T-transform of a unique Hida distributionF̂P(S)8.
A functional satisfying 1 is usually called aU-functional.
As an application of this theorem we give the following example.
Example 2 (Donsker’s delta function): Consider the compositionda+x(t) of the Dirac distri-

bution da at aPR with Brownian motion x(t), t.0,

F5d~x~ t !2a!5d~^•,1@0,t !&2a!, aPR.

The S-transform ofF is calculated to be3

SF~ f !5~2pt !21/2 expS 2
1

2t S E
0

t

f ~s!ds2aD 2D
and Theorem 1 gives immediately thatF is well defined element in(S)8.

Theorem 1 enables us to discuss convergence of a sequence of generalized functionals
proof of the following theorem we refer to Refs. 3, 17, and 18.

Theorem 3: Let (Fn)nPN denote a sequence of U-functionals with the following properties
1. for all fPS(R), (Fn( f ))nPN is a Cauchy sequence, and
2. there exist K1 , K2.0 and pPN0 such that the bound

uFn~z f !u<K1 exp~K2uzu2u f up
2!, fPS~R!, zPC,

holds for almost all nPN.
Then there is a uniqueFP(S)8 such that T21Fn converges strongly toF.

This theorem is also valid forS-transform.
As a second application we consider a theorem which concerns the integration of a fam

generalized functionals.
Theorem 4:Let (V,B,n) denote a measure space andl°Fl a mapping fromV to (S)8. We

assume that the T-transform Fl5TFl satisfies the following conditions for alllPV:
1. for every fPS(R) the mappingl°Fl( f ) is measurable, and
2. there exists pPN0 such that

uFl~z f !u<K1~l!exp~K2~l!uzu2u f up
2!, fPS~R!, zPC,

with K1PL1(n) and K2PL`(n).
ThenF is Bochner integrable in some(S)2q and thus
J. Math. Phys., Vol. 38, No. 6, June 1997
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E
V

Fldn~l!P~S!8

and the T-transform and integration commute,

TS E
V

Fldn~l! D ~ f !5E
V
TFl~ f !dn~l!, fPS~R!.

Again the same theorem holds for theS-transform.
Example 5: The Donsker’s delta function from Example 2 is given by

d~x~ t !2a!5
1

2p E
R
exp~ il~x~ t !2a!!dl

in the sense of Bochner integration, see, e.g., Ref. 3.
Remark 1: For later use we have to define pointwise products of a Hida distributionF with

a Donsker delta functiond(^w,g&2a), i.e.,

F•d~^w,g&2a!. ~1!

If the mappingl°TF( f 1 lg) is integrable onR the following formula may be used to define t
product in (1) as

T~F•d~^w,g&2a!!~ f !5
1

2p E
R
exp~2 ila!TF~ f1lg!dl ~2!

in the case that the right hand integral is indeed a U-functional.
Before we close this section we would like to give one more example of a Hida distrib

which is a first approximation of the Feynman integrand that we will introduce in the next se
Example 6: Let us consider the following formal expression for complex cÞ1/2:

expS cE
a

b

w2~s!dsD .
Calculation of its S-transform produces a U-functional ‘‘up to an infinite constant’’~for details
see Ref. 3!. So, as a renormalization, we omit this factor and get a well-defined U-functional,

F~ f !5expS c

122c Ea
b

f 2~s!dsD , fPS~R!.

Hence, we may define

N expS cE
a

b

w2~s!dsD :5S21F,

or, formally,

N expS cE
a

b

w2~s!dsD 5
exp~c*a

bw2~s!ds!

E~exp~c*a
bw2~s!ds!!

.

J. Math. Phys., Vol. 38, No. 6, June 1997
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III. REALIZATION OF FEYNMAN PATH INTEGRALS IN WHITE NOISE ANALYSIS

A. The Feynman integrand for the free particle propagator

We follow Refs. 10 and 11 in regarding the Feynman integral as a weighted average
Brownian paths. These paths are modeled within the white noise framework according to

x~ t !5x01S \

mD 1/2E
t0

t

w~t!dt, wPS8~R!,

in the sequel we set\51 and in this section we also setm51. In Ref. 11 the~distribution-valued!
weight for the free quantum mechanical propagator fromx(t0)5x0 to x(t)5x,t>t0 ,x0 ,x,t0 ,t
PR, is constructed from a kinetic energy factor exp(i/2* t0

t w2(t)dt) and a Donsker delta function

d(x(t)2x) to fix the end point. Furthermore a factor exp((1/2)* t0
t w2(t)dt) is introduced to

compensate the Gaussian fall-off of the white noise measure in order to mimic Feynman’
existing ‘‘flat’’ measureD`x. Thus in Ref. 11 the Feynman integrand for the free motion re

I 05N expS i11

2 E
t0

t

w2~t!dt D •d~x~ t !2x!,

whereN is the normalizing prefactor introduced in Example 6. ThereI 0 is a Hida distribution,
with T-transform given by

TI0~ f !5S 1

2p i uDu D
1/2

expS 2
i

2
u f Du22

1

2
u f DCu21

i

2uDu S E
t0

t

f ~t!dt1x2x0D 2D ,
whereD:5@ t0 ,t# and f D :5 f �D, fDC:5 f �DC denote the restrictions offPS(R) to D and its
complementDC, respectively. Furthermore the Feynman integralE(I 0)5TI0(0) is indeed the free
particle propagator

S 1

2p i uDu D
1/2

expS i

2uDu ~x2x0!
2D .

Not only the expectation but also theT-transform has a physical meaning. Integrating formally
parts we find, see Refs. 3 and 11,

TI0~ f !5exp~2 1
2 u f DCu2!exp~ ix f ~ t !2 ix0f ~ t0!!ES I 0 expS 2 i E

t0

t

x~t! ḟ ~t!dt D D . ~3!

The term

expS 2 i E
t0

t

x~t! ḟ ~t!dt D
would thus correspond to a time-dependent potentialW(x,t)5 ḟ (t)x. And indeed it is straight-
forward to verify that

TI0~ f !5exp~2 1
2u f DCu2!exp~ ix f ~ t !2 ix0f ~ t0!!K0

~ ḟ !~x0,t0ux,t !, ~4!

where
J. Math. Phys., Vol. 38, No. 6, June 1997
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K0
~ ḟ !~x0,t0ux,t !5S 1

2p i uDu D
1/2

exp~ ix0f ~ t0!2 ix f ~ t !!

3expS 2
i

2
u f Du21

i

2uDu S E
t0

t

f ~t!dt1x2x0D 2D
is the Green’s function corresponding to the potentialW, i.e.,K0

( ḟ ) obeys the Schro¨dinger equation

~ i ] t1
1
2]x

22 ḟ ~ t !x!K0
~ ḟ !~x0,t0ux,t !5 id~ t2t0!d~x2x0!,

see Refs. 3 and 13. More generally one calculates

TS I 0)
j51

n

d~x~ t j !2xj !D ~ f !5expS 2
1

2
u f DCu2Dexp~ ix f ~ t !2 ix0f ~ t0!!

3 )
j51

n11

K0
~ ḟ !~xj21 ,t j21uxj ,t j !, ~5!

see Refs. 3 and 12. Heret0,t1,•••,tn,tn11 :5t andxn11 :5x. In Proposition 9 we will give
a generalization of this result.

Remark 2: Formula (5) is a version of the composition property of Feynman propag
which is well-known in quantum physics. In Sec. III C we prove this property for the t
dependent harmonic oscillator.

B. The perturbed Feynman integrand

In order to pass from a given Feynman integrandI to more general situations one has to gi
a rigorous definition of the formal expression

I V5I expS 2 i E
t0

t

V~x~t!!dt D .
In Ref. 12 Khandekar and Streit accomplished this by perturbative methods in caseV is a

finite signed Borel measure with compact support andI5I 0 . This construction was generalized
Ref. 13 to a wider class of potentials by allowing time-dependent potentials and a Gaussian
instead of a bounded support.

The starting point is a power series expansion of

expS 2 i E
t0

t

V~x~t!,t!dt D
using

V~x~t!,t!5E
2`

1`

V~x,t!d~x~t!2x!dx.

Thus we have

expS 2 i E
t0

t

V~x~t!,t!dt D 5 (
n50

`

~2 i !nE
Rn
E

Ln
)
j51

n

V~xj ,t j !d~x~ t j !2xj !dtjdxj ,

whereLn5$(t1 ,...,tn)ut0,t1,•••,tn,t%.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In order to consider singular potentialsV is no longer taken to be a functionV but a measure
n. Under suitable conditions onn and I5I 0 it is proven in Refs. 12 and 13 that

I V5I1 (
n51

`

~2 i !nE
Rn
E

Ln
S I •)

j51

n

d~x~ t j !2xj !D )
j51

n

n~dtj ,dxj !

exists as a well-defined element of (S)8 using Theorems 1 and 3. Furthermore in Ref. 14 th
obtain the same result forI5I h , whereI h is the Feynman integrand for the harmonic oscilla
with constant mass and frequency.

In this work we generalize this result for time-dependent mass and frequency.

IV. THE FEYNMAN PROPAGATOR FOR THE TIME-DEPENDENT HARMONIC
OSCILLATOR

A. Calculation of the Feynman propagator

In this section we calculate the Feynman propagator corresponding to the Lagrangian

L~x~ t !,ẋ~ t !,t !5 1
2~m~ t !ẋ2~ t !2k2~ t !x2~ t !!)2 ḟ ~ t !x~ t !, ~6!

wherekPC(R), fPC`(R), mPC2(R), and m.0. Physically, the Lagrangian corresponds
the motion of an oscillator with a variable massm, frequencyk, and a force2ṁẋ linear in the
velocity. Furthermore, the oscillator is forced by2 ḟ . For us the importance of this extra forc
term lies in the fact that the corresponding propagator immediately gives us theT-transform of the
Feynman integrand as explained in formula~4!.

In order to calculate the associated Feynman propagator we use the formulas derived i
15 and 22. There the polygonal approach has been applied in order to integrate over all pa
the following expression has been found for the Feynman propagator:

KTD
~ ḟ !~x0 ,t0ux,t !5DTD exp~ iScl~x0 ,t0ux,t !!,

whereDTD is a prefactor which will be discussed later.Scl(x0 ,t0ux,t) is the action evaluated alon
the classical path,

Scl~x0 ,t0ux,t !5
1

2 Sm~ t !xu̇~ t !2m~ t0!x0u̇~ t0!2E
t0

t

u~s! ḟ ~s!dsD ,
whereu is the solution of the associated classical equation of motion,

d

ds
~m~s!u̇~s!!1k2~s!u~s!52 ḟ ~s!, ~7!

and satisfies the boundary conditions

u~ t0!5x0 , u~ t !5x. ~8!

By means of a substitutionv5m1/2u, Eq. ~7! can be cast into the simpler form

v̈~s!1V2~s!v~s!52
ḟ ~s!

m~s!1/2
, ~9!

with the boundary conditions~8! as

v~ t0!5m~ t0!
1/2x0 , v~ t !5m~ t !1/2x, ~10!
J. Math. Phys., Vol. 38, No. 6, June 1997
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and

V25
ṁ2

4m22
m̈

2m
1
k2

m
.

SinceV2 is a continuous function onR we can conclude that there exist two linear independ
solutionsṽ1 and ṽ2 on R of the homogeneous differential equation

v̈~s!1V2~s!v~s!50 ~11!

corresponding to Eq.~9! by using the general theory of linear differential equations. If the de
minant

RTD~ t0 ,t !5Uṽ1~ t0! ṽ2~ t0!

ṽ1~ t ! ṽ2~ t !
UÞ0

we can conclude from the theory of Green’s functions that there exist two linear indepe
solutionsv1 andv2 of the homogeneous differential equation~11! satisfying the initial conditions

v1~ t0!50, v1~ t !5RTD , v2~ t0!5RTD , v2~ t !50. ~12!

Then the Green’s function of the boundary problem~9!, ~10! is given by

G~s,r !5H v1~s!v2~r !

Q
for s<r

v1~r !v2~s!

Q
for s>r

,

Q5v1~ t !v̇2~ t !,

see, e.g., Ref. 23. Hence the solution of Eq.~9! satisfying the conditions~10! is

v~s!5
m~ t0!

1/2x0v2~s!

v2~ t0!
1
m~ t !1/2xv1~s!

v1~ t !
2E

t0

t G~s,r ! ḟ ~r !

m~r !1/2
dr. ~13!

Now we analyze the determinantRTD . Consider

RTD~ t0 ,t !5ṽ1~ t0!ṽ2~ t !2ṽ1~ t !ṽ2~ t0!

for fixed t0PR. ThenRTD,t0
(t):5RTD(t0 ,t) as a function oftPR is a nontrivial solution of the

homogeneous differential equation~11! with RTD,t0
(t0)50. The solutions of Eq.~11! have iso-

lated zeros, see, e.g., Ref. 24. Hence there existsdt0.0 such thatRTD,t0
(t)Þ0 for all t.t0 with

0,t2t0,dt0. Thus the two independent solutionsv1 andv2 of the homogeneous differentia
equation~11! exist and in Ref. 24 it has been proved thatv1 andv2 can be written in the form

v1~s!5r~s!sin f~s,t0!,
~14!

v2~s!5r~s!sin f~ t,s!, sP@ t0 ,t#,

wherer is strictly positive onR and satisfies an auxiliary equation known as Pinney’s equa
see Ref. 25,

r̈1V2r2r2350.
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f is defined as

f~s,r !5n~s!2n~r !5E
r

s

r22~y!dy.

Note thatr andn may be interpreted as the amplitude and phase of the time-dependent osc
of Eq. ~11!.

The prefactorDTD is calculated to be

DTD5
v̇1~ t0!

1/2~m~ t0!m~ t !!1/4

~2p iv1~ t !!1/2
,

see Refs. 15 and 22. Using formula~14! DTD turns out to be

DTD5
~m~ t0!m~ t !!1/4

~2p ir~ t0!r~ t !sin f~ t,t0!!1/2
.

From Eqs.~12! and ~14! we obtain

RTD~ t0 ,t !5r~ t !sin f~ t,t0!.

Therefore,RTD(t0 ,t) does not vanish for 0,f(t,t0),p. Hence for sucht0 , t the propagator
exists and the denominator ofDTD is different from zero@note thatf(t0 ,t0)50 andf(t,t0) is
monotone increasing int#.

The entire propagator now can be written as

KTD
~ ḟ !~x0 ,t0ux,t !5

~m~ t0!m~ t !!1/4

~2p ir~ t0!r~ t !sin f~ t,t0!!1/2

3expS 2
i

4
~ṁ~ t !x22ṁ~ t0!x0

2!1
i

2 S ṙ~ t !m~ t !x2

r~ t !
2

ṙ~ t0!m~ t0!x0
2

r~ t0!
D

1
i

2 sinf~ t,t0!
S Sm~ t !x2

r2~ t !
1
m~ t0!x0

2

r2~ t0!
D cosf~ t,t0!2

~m~ t0!m~ t !!1/22x0x

r~ t0!r~ t !

2
m~ t !1/22x

r~ t ! E
t0

t

ḟ ~s!
r~s!sin f~s,t0!

m~s!1/2
ds

2
m~ t0!

1/22x0
r~ t0!

E
t0

t

ḟ ~s!
r~s!sin f~ t,s!

m~s!1/2
ds

22E
t0

t E
t0

r

ḟ ~r ! ḟ ~s!
r~r !r~s!sin f~ t,r !sin f~s,t0!

~m~r !m~s!!1/2
dsdrD D . ~15!

In the following subsections we also need an expression of the propagator~15! as a function
of f instead ofḟ , hence we use the formula of integration by parts and obtain

KTD
~ ḟ !~x0 ,t0ux,t !5

~m~ t0!m~ t !!1/4

~2p ir~ t0!r~ t !sin~f~ t,t0!!!1/2
expS 2

i

2 E
t0

t f 2~s!

m~s!1/2
ds2 ix f ~ t !1x0f ~ t0!

2
i

4
~ṁ~ t !x22ṁ~ t0!x0

2!1
i

2 S ṙ~ t !m~ t !x2

r~ t !
2

ṙ~ t0!m~ t0!x0
2

r~ t0!
D
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1
i

2 sinf~ t,t0!
S Sm~ t !x2

r2~ t !
1
m~ t0!x0

2

r2~ t0!
D cosf~ t,t0!2

~m~ t0!m~ t !!1/22x0x

r~ t0!r~ t !

1
m~ t !1/22x

r~ t ! E
t0

t

f ~s!
ṙ~s!sin f~s,t0!1r21~s!cosf~s,t0!

m~s!1/2
ds

1
m~ t0!

1/22x0
r~ t0!

E
t0

t

f ~s!
ṙ~s!sin f~ t,s!2r21~s!cosf~ t,s!

m~s!1/2
ds

2
m~ t !1/2x

r~ t ! E
t0

t

f ~s!
r~s!sin f~s,t0!ṁ~s!

m~s!1/2
ds

2
m~ t0!

1/2x0
r~ t0!

E
t0

t

f ~s!
r~s!sin f~ t,s!ṁ~s!

m~s!1/2
ds

22E
t0

t E
t0

r

f ~r ! f ~s!
~ ṙ~r !sin f~ t,r !2r21~r !cosf~ t,r !!

~m~r !m~s!!1/2
~ ṙ~s!sin f~s,t0!

1r21~s!cosf~s,t0!!dsdr1E
t0

t E
t0

r

f ~r ! f ~s!
r~s!sin f~s,t0!ṁ~s!

~m~r !m3~s!!1/2

3~ ṙ~r !sin f~ t,r !2r21~r !cosf~ t,r !!dsdr

1E
t0

t E
t0

r

f ~r ! f ~s!
r~r !sin f~ t,r !ṁ~r !

~m3~r !m~s!!1/2
~ ṙ~s!sin f~s,t0!

1r21~s!cosf~s,t0!!dsdr2
1

2 E
t0

t E
t0

r

f ~r ! f ~s!

3
r~r !sin f~ t,r !r~s!sin f~s,t0!ṁ~r !ṁ~s!

~m~r !ṁ~s!!3/2
dsdrD D . ~16!

In the sequel we choose fixedt0 , tPR such that 0,f(t,t0),p, hence we know that the

corresponding propagatorKTD
( ḟ )(x0 ,t0ux,t) exists and is well-defined. In addition, we are interes

in the propagatorsKTD
( ḟ )(x1 ,t1ux2 ,t2), wheret0,t1,t2,t. Now we show that we again can us

the formula~15! for KTD
( ḟ )(x1 ,t1ux2 ,t2), we just have to substitutet0 , t, x0 , and x by t1 , t2 ,

x1 , andx2 , respectively~this is not obvious because in generalv1 andv2 depend on the end
points!. We define

v̂1~s!:5r~s!sin f~s,t1!,
~17!

v̂2~s!:5r~s!sin f~ t2 ,s!, sP@ t1 ,t2#,

and it is easy to see thatv̂1 and v̂2 are linear independent solutions of Eq.~11! with

v̂1~ t1!50, v̂2~ t2!50.

From Eq.~17!, r.0, and the fact thatt22t1,t2t0 we can derive that

v̂1~ t2!.0, v̂2~ t1!.0.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Thus, we can use the linear independent solutionsv̂1 andv̂2 in order to calculate the propagato

KTD
( ḟ )(x1 ,t1ux2 ,t2) the same way as we usedv1 and v2 to calculate the propagatorKTD

( ḟ )

(x0 ,t0ux,t), see Ref. 23~note that the Green’s function and the propagator do not vary if
multiply v̂1 or v̂2 by a constant different from zero!. Therefore, we found the expression f

KTD
( ḟ )(x1 ,t1ux2 ,t2) as described above.
Example 7: We consider the Lagrangian (6) in the particular form m(t)5exp(gt), k2(t)

5n2 exp(gt), f (t)50, t, nPR, g.0,

L~x~ t !,ẋ~ t !,t !5 1
2~exp~gt !ẋ2~ t !2n2 exp~gt !x2~ t !!. ~18!

Then an application of the Euler–Lagrange differential equation to the Lagrangian (18) gives
the corresponding classical equation of motion

ẍ~ t !52n2x~ t !2g ẋ~ t ! ~19!

via the Hamilton principle. Equation (19) is the equation of motion for damped harmonic o
lators. Caldirola26 and subsequently Kanai27 first proposed the Lagrangian (18) in order to stud
the quantum mechanics of damped harmonic oscillators. Therefore it is known as Caldi–
Kanai Lagrangian. The question whether the Lagrangian (18) correctly describes the qua
mechanics of damped harmonic oscillators has been discussed contradictorily, see Refs.–32.
However, it is generally accepted now that the damping in quantum mechanics can be adeq
described by a time-varying mass, see Refs. 33 and 34.

B. The Feynman propagator in the frame of white noise analysis

In this section we put the Feynman propagator of the time-dependent harmonic oscillato
the frame of white noise analysis. Fort0 , t such that 0,f(t,t0),p we consider the propagato

KTD
( ḟ )(x0 ,t0ux,t) in the representation~16! as a function off . For fPS(R) it is easy to verify that

the propagator is aU-functional and therefore we know by Theorem 1 that there exists a H
distribution which is the inverseT-transform of the propagator. But we are searching for
Feynman integrandI TD of the time-dependent harmonic oscillator as discussed in Sec. II
reasonable choice is to define itsT-transform as

TITD~ f !:5exp~2 1
2u f DCu21 ix f ~ t !2 ix0f ~ t0!!KTD

~ ḟ !~x0 ,t0ux,t !, ~20!

for fPS(R). But why is this choice reasonable? IsI TD given by the formal expression

I TD5N expS i2 E
t0

t

m~t!v2~t!dt1
1

2 E
t0

t

v2~t!dt D d~x~ t !2x!

3expS 2 i E
t0

t

U~t,x~t!!dt D , U~x,t !5
1

2
k2~ t !x2, ~21!

in the sense of Hida distributions? How is the pointwise multiplication with the interaction
defined? In Ref. 11 this product has been justified and theT-transform of Eq.~21! has been

calculated to be the same as in Eq.~20! for m andk constant. Furthermore, we know thatKTD
( ḟ )

(x0 ,t0ux,t) is the propagator corresponding to Lagrangian~6! and the formal integration by part
in Eq. ~3! shows that the additional factor in Eq.~20! is independent of the potential to which th
particle is submitted. So, Eq.~20! is a reasonable definition ofI TD .

As a result of this section we have the following theorem.
Theorem 8: For t0 ,t such that0,f(t,t0),p the Feynman integrand ITD of the time-

dependent harmonic oscillator exists as a Hida distribution, i.e., I TDP(S)8.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proof: From Eqs.~20! and ~16! we obtain thatTITD( f ), fPS(R), containsf only in the
exponent up to second order. HenceTITD is a U-functional and thus, by characterization,I TD
P(S)8. j

C. The composition property of the Feynman propagator

Proceeding exactly as in the case of free motion, see Refs. 12 and 13 we first have to
the pointwise product

I TD•)
j51

n

d~x~ t j !2xj ! ~22!

in (S)8. The expectation of this object can be interpreted as the propagator of a particle
harmonic time-dependent potential, where the paths are ‘‘pinned’’ such thatx(t j )5xj ,1< j<n.
Following the ideas of Remark 1 we have to apply Eq.~2! repeatedly. But due to the form o
TITD( f ) in Eq. ~16!, which containsf only in the exponent up to second order, all these integ
are expected to be Gaussian. Using this we arrive at the following proposition.

Proposition 9: For x0,xj,x, 1< j<n, xn11 :5x, t0,t j,t j11,t, 1< j<n21, tn11 :
5t, I TD•P j51

n d(x(t j )2xj ) is a Hida distribution and its T-transform is given by

TS I TD•)
j51

n

d~x~ t j !2xj !D ~ f !5expS 2
1

2
u f DCu21 ix f ~ t !2 ix0f ~ t0! D )

j51

n11

KTD
~ ḟ !~xj21 ,t j21uxj ,t j !.

Proof: For n51 we check this assertion by direct computation using formula~2!. In Ref. 14 this
computation has already been done for the case of constant mass and frequency. There th
used expression~16! to obtain the T-transform ofI TD . But in the time-dependent case this e
pression is much too complex to handle. So, we use expression~15! in the computation of the
integral in formula~2!. This expression is simpler but, unfavorably, it is a function ofḟ and
therefore we have to define the derivative of an indicator function. In order to do this we e
the formula of integration by parts and find the following rules:

E
t0

t d

ds
~ f1l1@ t0 ,t1!!~s!g~s!ds5E

t0

t

ḟ ~s!g~s!ds2lg~ t1!

and

E
t0

t1E
t0

r d

dr
~ f1l1@ t0 ,t1!!~r !

d

ds
~ f1l1@ t0 ,t1!!~s!g1~s!g2~r !dsdr

5E
t0

t1E
t0

r

ḟ ~r ! ḟ ~s!g1~s!g2~r !dsdr2lg2~ t1!

3E
t0

t1
ḟ ~s!g1~s!ds2lg1~ t1!E

t1

t

ḟ ~r !g2~r !dr1
l2

2
g1~ t1!g2~ t1!,

whereg, g1 , andg2 are continuous differentiable functions. Using these rules the integral in
~2! turns out to be a Gaussian integral, which can be computed with the following formula:

E
2`

`

expS 2
i

2
al22 ibl Ddl5S 2p

ia D 1/2 expS ib22a D , a.0.

Then we can find the assertion forn51 by reordering the obtained terms.
J. Math. Phys., Vol. 38, No. 6, June 1997
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To perform the induction we need the following:
Lemma 10: Let t0,t1,t2,t then

K
TD

~ f1l1@ t2 ,t !
! ˙

~x0 ,t0ux1 ,t1!5KTD
~ ḟ !~x0 ,t0ux1 ,t1!, ;lPR,

and for t0,t1,t we have

K
TD

~ f1l1@ t1 ,t !
! ˙

~x0 ,t0ux1 ,t1!5KTD
~ ḟ !~x0 ,t0ux1 ,t1!exp~2 ix1l!, ;lPR.

Proof of Lemma 10:To proof this lemma we use expression~15! for the propagator. Then we
substitutef by ( f1l1@ t2 ,t)

) and (f1l1@ t1 ,t)
) respectively, and obtain the desired result. j

j

V. THE FEYNMAN INTEGRAND FOR THE TIME-DEPENDENT HARMONIC OSCILLATOR
IN AN EXTERNAL POTENTIAL

In this section we construct the Feynman integrand for the time-dependent harmonic osc
in an external potentialV(x,t). Thus we have to define

I TD,V5I TD•expS 2 i E
t0

t

V~x~t!,t!dt D .
As described in Sec. III B we introduce the perturbationV via the series expansion of the exp
nential. Hence we have to find conditions for the measuren corresponding to the potentialV such
that

I TD,V5I TD1 (
n51

`

~2 i !nE
Rn
E

Ln

~ I TD•d~x~ t j !2xj !!)
j51

n

n~dtj ,dxj !

exists in (S)8.
Since we want to study singular time-dependent potentials, we considern a finite signed Borel

measure onR3D. Let nx denote the marginal measure

nx~APB~R!!:5n~A3D!

and similarly

n t~BPB~D!!:5n~R3B!.

The following theorem contains conditions under which the Feynman integrandI TD,V exists as a
Hida distribution.

Theorem 11: Let n5n12n2 be a finite signed Borel measure onR3D, 0,f(t,t0),p.
Further, we assume that the marginal measuresunux :5(n11n2)x and unu t satisfy:

1. there exist R,b.0 such that

unux~$x:uxu.r %!,exp~2br 2!

for all r.R, and
2. unu t has a L` density.
Then

I TD,V5I TD1 (
n51

`

~21!nE
Rn
E

Dn
S I TD•)

j51

n

d~x~ t j !2xj !D )
j51

n

n~dtj ,dxj ! ~23!
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is a Hida distribution.
Remark 3: Condition 1 is satisfied for very singular potentials, e.g.,

V~x!5 (
n51

`

e2n2dn~x!, xPR.

For cutoff interaction, i.e., compactly supportednx , condition 1 is of course valid. Furthermor
all potentials V for which there exists R8.0 such that

uV~x!u<Aux2Cue2B~x2C!2, A,B.0, CPR,

for all uxu>R8 are in the class of admissible potentials.
Note also thatn is not supposed to be a product measure, hence the time-dependence

more intricate than simple multiplication by a function of time.
Remark 4: In Ref. 14 this theorem has already been proved for the special case of co

mass and frequency.
Proof: 1. part.In the first part of the proof we establish the central estimate~25!. We have to

use a very careful procedure to achieve that Eq.~25! survivesn-fold integration and summation in
the second part of the proof.

Here we need an expression for theT-transform as a function off , so we have to use formula
~16! for the Feynman propagator. Then from Proposition 9 we find

TS I TD•)
j51

n

d~x~ t j !2xj !D ~z f !

5expS 2
z2

2
u f DCu2D )

j51

n11
~m~ t j2 i !m~ t j !!1/4

~2ipr~ t j21!r~ t j !sin f~ t j ,t j21!!1/2

3expS 2
iz2

2 E
D j

f 2~s!

m~s!1/2
ds2

i

4
~ṁ~ t j !xj

22ṁ~ t j21!xj21
2 !

1
i

2 Sm~ t j !xj
2S ṙ~ t j !

r~ t j !
1

cosf~ t j ,t j21!

r2~ t j !sin f~ t j ,t j21!
D2m~ t j21!xj21

2 S ṙ~ t j21!

r~ t j21!

2
cosf~ t j ,t j21!

r2~ t j21!sin f~ t j ,t j21!
D2

2~m~ t j !m~ t j21!!1/2xjxj21

r~ t j21!r~ t j !sin f~ t j ,t j21!
D

1
i

2 S 2zm~ t j !
1/2xj

r~ t j !sin f~ t j ,t j21!
E

D j

f ~ t !~ ṙ~ t !sin f~ t,t j21!1r21~ t !cosf~ t,t j21!!

m~ t !1/2
dt

12
zm~ t j21!

1/2xj21

r~ t j21!sin f~ t j ,t j21!
E

D j

f ~ t !~ ṙ~ t !sin f~ t j ,t !2r21~ t !cosf~ t j ,t !!

m~ t !1/2
dt

2
zm~ t j !

1/2xj
r~ t j !sin f~ t j ,t j21!

E
D j

f ~ t !r~ t !sin f~ t,t j21!ṁ~ t !

m~ t !3/2
dt

2
zm~ t j21!

1/2xj21

r~ t j21!sin f~ t j ,t j21!
E

D j

f ~ t !r~ t !sin f~ t j ,t !ṁ~ t !

m~ t !3/2
dt

22z2E
D j

E
t j21

s f ~s! f ~ t !~ ṙ~ t !sin f~ t,t j21!1r21~ t !cosf~ t,t j21!!

sin f~ t j ,t j21!~m~s!m~ t !!1/2
~ ṙ~s!sin f~ t j ,s!
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2r21~s!cosf~ t j ,s!!dtds1z2E
D j

E
t j21

s f ~s! f ~ t !ṁ~ t !r~ t !sin f~ t,t j21!

sin f~ t j ,t j21!m~s!1/2m~ t !3/2

3~ ṙ~s!sin f~ t j ,s! 2r21~s!cosf~ t j ,s!!dtds

1z2E
D j

E
t j21

s f ~s! f ~ t !ṁ~s!r~s!sin f~ t j ,s!

sin f~ t j ,t j21!m~s!3/2m~ t !1/2
~ ṙ~ t !sin f~ t,t j21!

1r21~ t !cosf~ t,t j21!!dtds

2
z2

2 E
D j

E
t j21

s f ~s! f ~ t !ṁ~s!ṁ~ t !r~ t !sin f~ t,t j21!r~s!sin f~ t j ,s!

sin f~ t j ,t j21!~m~s!m~ t !!3/2
dtdsD D ~24!

with D j :5@ t j21 ,t j #.
After a straightforward but very lengthy calculation we obtain the following estimate of

~24! for somepPN0 and for allg.0,

UTS I TD•)
j51

n

d~x~ t j !2xj !D ~z f !U<S )
j51

n11 S C1

uD j u
D 1/2D exp~X2g!expS SC21

C3
2

4g D uzu2u f up
2D ,

~25!

whereC1 , C2 , andC3 are constants. For the clarity of the presentation we moved the crucial
of the estimation to the Appendix.

2. part: In this final step we use the method developed in Ref. 13 to control the converg
of Eq. ~23!. Although the slight modification to our case is easy we give the basic steps fo
convenience of the reader.

In order to apply Theorem 4, to perform the integration, we need to show that

S )
j51

n11 S C1

uD j u
D 1/2D exp~X2g!

is integrable with respect ton. To this end we chooseq.2 and 0,g,b/q. With this choice of
g the property 1 ofn yields that exp(gX2)PLq(Rn3Ln ,unu) and with

Q:5S E
R
E

D
exp~gqx2!unu~dt,dx! D 1/q

we have

S E
Rn
E

Ln

exp~gqX2!)
j51

n

unu~dtj ,dxj !D 1/q<exp~g~x0
21x2!!Qn,`.

Now we choosep such that 1/p11/q51. Using the property 2 ofn and the formula

E
Ln

)
j51

n11 SC1

D j
D a

dnt5~C1
aG~12a!!n11

uDun~12a!2a

G~~n11!~12a!!
, a,1,

we obtain the following bound:
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S E
Rn
E

Ln
)
j51

n11 SC1

D j
D p/2)

j51

n

unu~dtj ,dxj !D 1/p<unu t`
n/p

C1
~n11!/2GS 22p

2 D ~n11!/p

uDun/p2~n11!/2

GS ~n11!
22p

2 D 1/p ,`,

unu t` is shorthand notation for the essential supremum of theL`-density ofunu t which exists due
to property 2 ofn.

Finally an application of Ho¨lder’s inequality gives

US )
j51

n11 SC1

D j
D 1/2D exp~gX2!U

1

<exp~gx0
21gx2!Qnunu t`

n/p

C1
~n11!/2GS 22p

2 D ~n11!/p

uDun/p2~n11!/2

GS ~n11!
22p

2 D 1/p
5:Bn,`.

Hence Theorem 4 yields

I n :5~2 i !nE
Rn
E

Ln
S I TD•)

j51

n

d~x~ t j !2xj !D )
j51

n

n~dtj ,dxj !P~S!8.

As theBn are rapidly decreasing inn the hypothesis of Theorem 3 are fulfilled and hence

I TD,V5 (
n50

`

I nP~S!8. ~26!

In the Appendix we restrictedD to 0,f(t,t0)#p2e. Since the proof works for alle.0 we
proved Eq.~26! for all D such that 0,f(t,t0),p. j
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APPENDIX: THE ESTIMATION OF THE T-TRANSFORM

We used the following properties of the functions inside of the expression~24! in order to
estimate it. We assumed thatmPC2(R) andm.0. Furthermore, in Sec. IV A we have shown th
rPC2(R) andr.0. So we can conclude that there existe1 ,e2.0 andK1 ,K2 ,K3 ,K4PR such
that

0,e1<m~s!<K1 , ṁ~s!<K2 ,

0,e3<r~s!<K3 , ṙ~s!<K4 , ;sP@ t0 ,t#.

Further, it is easy to see that for alle.0 there existsCe.0 such that

sin s<s, sin s>Ces, sP@0,p2e#,

and

f~ t j21 ,t j !5E
D j

r22~u!du<uD j ue3
22,
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f~ t j21 ,t j !5E
D j

r22~u!du>uD j uK3
22.

Therefore we have forD j such that 0,f(t j ,t j21)<p2e,

sin f~ t j ,t j21!<uD j ue3
22, ~A1!

sin f~ t j ,t j21!>CuD j uK3
22. ~A2!

Since we use inequalities~A1! and~A2! very often in the following estimates we restrictD such
that 0,f(t,t0)#p2e in order to be sure that these inequalities are valid.

In addition we need the following definitions:

X:5 max
0< j<n11

uxj u

and

i f i :5sup
D

u f u1sup
D

u ḟ u1u f u0 , fPS~R!.

Clearly there existspPN0 such thatu•up estimatesi•i on S(R).
Using the properties derived above the following estimates can easily be found:

UexpS 2
z2

2
u f DCu2D )

j51

n11
~m~ t j2 i !m~ t j !!1/4

~2ipr~ t j21!r~ t j !sin f~ t j ,t j21!!1/2
expS 2

iz2

2 E
D j

f 2~s!

m~s!1/2
ds

2
i

4
~ṁ~ t j !xj

22ṁ~ t j21!xj21
2 !1

i

2 Sm~ t j !xj
2S ṙ~ t j !

r~ t j !
1

cosf~ t j ,t j21!

r2~ t j !sin f~ t j ,t j21!
D

2m~ t j21!xj21
2 S ṙ~ t j21!

r~ t j21!
2

cosf~ t j ,t j21!

r2~ t j21!sin f~ t j ,t j21!
D2

2~m~ t j !m~ t j21!!1/2xjxj21

r~ t j21!r~ t j !sin f~ t j ,t j21!
D

1
i

2 S 2
zm~ t j !

1/2xj
r~ t j !sin f~ t j ,t j21!

E
D j

f ~ t !r~ t !sin f~ t,t j21!ṁ~ t !

m~ t !1/2
dt

2
zm~ t j21!

1/2xj21

r~ t j21!sin f~ t j ,t j21!
E

D j

f ~ t !r~ t !sin f~ t j ,t !ṁ~ t !

m~ t !1/2
dt

22z2E
D j

E
t j21

s f ~s! f ~ t !~ ṙ~ t !sin f~ t,t j21!1r21~ t !cosf~ t,t j21!!

sin f~ t j ,t j21!~m~s!m~ t !!1/2
~ ṙ~s!sin f~ t j ,s!

2r21~s!cosf~ t j ,s!!dtds1z2E
D j

E
t j21

s f ~s! f ~ t !ṁ~ t !r~ t !sin f~ t,t j21!

sin f~ t j ,t j21!m~s!1/2m~ t !3/2
~ ṙ~s!sin f~ t j ,s!

2r21~s!cosf~ t j ,s!!dtds1z2E
D j

E
t j21

s f ~s! f ~ t !ṁ~s!r~s!sin f~ t j ,s!

sin f~ t j ,t j21!m~s!3/2m~ t !1/2

3~ ṙ~ t !sin f~ t,t j21!1r21~ t !cosf~ t,t j21!!dtds

2
z2

2 E
D j

E
t j21

s f ~s! f ~ t !ṁ~s!ṁ~ t !r~ t !sin f~ t,t j21!r~s!sin f~ t j ,s!

sin f~ t j ,t j21!~m~s!m~ t !!3/2
dtdsD DU
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<S )
j51

n11 S C1

uD j u
D 1/2D exp~L1Xuzui f i1L2uz2ui f i2!,

whereL1 andL2 are constants.
The estimation of the remaining factor is much more complicated. In the following we ex

the basic ideas. Using the same considerations as above we find

U)
j51

n11

expS izm~ t j !
1/2xj

r~ t j !sin f~ t j ,t j21!
E

D j

f ~ t !~ ṙ~ t !sin f~ t,t j21!1r21~ t !cosf~ t,t j21!!

m~ t !1/2
dt

1
izm~ t j21!

1/2xj21

r~ t j21!sin f~ t j ,t j21!
E

D j

f ~ t !( ṙ~ t !sin f~ t j ,t !2r21~ t !cosf~ t j ,t !)

m~ t !1/2
dtDU

<exp~L3Xuzui f i !expS uzuU(
j51

n
m~ t j !

1/2xj
r~ t j !

S E
D j

f ~ t !ṙ~ t !sin f~ t,t j21!

sin f~ t j ,t j21!m~ t !1/2
dt

1E
D j11

f ~ t !ṙ~ t !sin f~ t j11 ,t !

sin f~ t j11 ,t j !m~ t !1/2
dtDU D ~A3!

3expS uzuU(
j51

n
m~ t j !

1/2xj
r~ t j !

S E
D j

f ~ t !r21~ t !cosf~ t,t j21!

sin f~ t j ,t j21!m~ t !1/2
dt

2E
D j11

f ~ t !r21~ t !cosf~ t j11 ,t !

sin f~ t j11 ,t j !m~ t !1/2
dtDU D , ~A4!

whereL3 is a constant. Now we at first estimate factor~A3!,

expS uzuU(
j51

n
m~ t j !

1/2xj
r~ t j !

S E
D j

f ~ t !ṙ~ t !sin f~ t,t j21!

sin f~ t j ,t j21!m~ t !1/2
dt1E

D j11

f ~ t !ṙ~ t !sin f~ t j11 ,t !

sin f~ t j11 ,t j !m~ t !1/2
dtDU D

<expS uzuXK4K1
1/2

e3e1
1/2 (

j51

n S E
D j

u f ~ t !udt1E
D j11

u f ~ t !udtD D
<exp~L4Xuzui f i !,

whereL4 is a constant. To estimate the factor~A4! we add and subtract a term in the exponen
and divide the result into the factors~A5! and ~A6!. Factor ~A5! is easy to estimate but th
estimation of factor~A6! will be the most difficult one. For factor~A5! we have

expS uzuU(
j51

n
m~ t j !

1/2xj
r~ t j !

S E
D j11

f ~ t !r21~ t !cosf~ t,t j !

sin f~ t j11 ,t j !m~ t !1/2
dt

2E
D j11

f ~ t !r21~ t !cosf~ t,t j11!

sin f~ t j11 ,t j !m~ t !1/2
dtDU D

<expS uzuU(
j51

n
m~ t j !

1/2xj
r~ t j !

S E
D j11

f ~ t !r21~ t !

sin f~ t j11 ,t j !m~ t !1/2 ED j11

r22~t!sin f~ t,t!dtdtDU D
~A5!
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<expS uzuX(
j51

n K1
1/2

e3
3e1

1/2 E
D j11

u f ~ t !u
sin f~ t j11 ,t j !

E
D j11

sin f~ t,t!dtdtD<exp~L5Xuzui f i !,

whereL5 is a constant.
And now we estimate the factor~A6!,

expS uzuU(
j51

n
m~ t j !

1/2xj
r~ t j !

S E
D j

f ~ t !r21~ t !cosf~ t,t j21!

sin f~ t j ,t j21!m~ t !1/2
dt2E

D j11

f ~ t !r21~ t !cosf~ t,t j !

sin f~ t j11 ,t j !m~ t !1/2
dtDU D .

~A6!

To do this we expand

F~ t j21!5E
D j

f ~ t !r2~ t !cosf~ t,t j21!

m~ t !1/2
dt

and

G~ t j11!5E
D j11

f ~ t !r21~ t !cosf~ t j ,t !

m~ t !1/2
dt

aroundt j . This yields withh jPD j andh j11PD j11 the following bound for factor~A6!:

<expS uzuXU(
j51

n
f ~ t j !r

21~ t j !

m~ t j !
1/2 S uD j u

sin f~ t j ,t j21!
2

uD j11u
sin f~ t j11 ,t j !

DU D ~A7!

3expS uzuXU(
j51

n uD j21u2

2 sinf~ t j ,t j21!
F̈~h j !2

uD j11u2

2 sinf~ t j11 ,t j !
G̈~h j11!U D

~A8!

To bound the first factor we look at the function

r ~y!5
d

dy S y

sin f~y,0! D5
sin f~y,0!2y cosf~y,0!r22~y!

sin2 f~y,0!
, 0,y<uDu

because

uD j u
sin f~ t j ,t j21!

2
uD j11u

sin f~ t j11 ,t j !
5E

uD j11u

uD j u
r ~y!dy.

If we can show that

ur ~y!u<M , ;yP~0,uDu# ~A9!

then we can bound the factor~A7! by

<exp~2Me3
21e1

21/2XuDuuzui f i !5exp~L6Xuzui f i !,

whereL6 is a constant. If there existsy0P(0,uDu# such thatur (y)u<ur (y0)u for all yP(0,uDu# we
are done. Hence, we only have to take care in the limity→0 in order to show Eq.~A9!. Applying
the rule of de L’Hôspital twice we find that
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lim
y→0

ur ~y!u5
K4

2e3
2

and so we know that the constant required in Eq.~A9! exists.
For the second factor~A8! a lengthy but straightforward calculation gives us the followi

bound:

expS uzuXe3
2

2Ce
S (
j51

n

D j uF̈~h j !u1(
j51

n

D j11uG̈~h j11!u D D
<expS Xe3

2

2Ce
S S 2K4

e3
4e1

1/21
1

e3
5e1

1/2D (
j51

n

D j
2

1
K1
1/2~e3

211e3
22K41e3

23!1K2~2e1
1/2e3!

21

e1
(
j51

n

uD j11u D uzui f i D
<exp~L7Xuzui f i !,

whereL7 is a constant.
Hence we arrive at the following estimate for Eq.~A4!:

exp~~L41L51L61L7!Xuzui f i !.

Putting all of this together we finally obtain

UTS I TD•)
j51

n

d~x~ t j !2xj !D ~z f !U<S )
j51

n11 S C1

uD j u
D 1/2D exp~L2uzu2i f i2

1~L31L41L51L61L7!Xuzui f i !

<S )
j51

n11 S C1

uD j u
D 1/2D exp~C2Xuzuu f up1C3uzu2u f up!,

whereC1 , C2 , andC3 are constants. For a more detailed consideration we refer to Ref. 35
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Eigenvalue distribution of large dilute random matrices
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We study the eigenvalue distribution of diluteN3N random matricesHN that in
the pure~undiluted! case describe the Hopfield model. We prove that for the fixed
dilution parametera the normalized counting function~NCF! of HN converges as
N→` to a uniquesa(l). We find the moments of this distribution explicitly,
analyze the 1/a correction, and study the asymptotic properties ofsa(l) for large
ulu. We prove thatsa(l) converges as a→` to the Wigner semicircle distribution
~SCD!. We show that the SCD is the limit of the NCF of other ensembles of dilute
random matrices. This could be regarded as evidence of stability of the SCD to
dilution, or more generally, to random modulations of large random matrices.
© 1997 American Institute of Physics.@S0022-2488~97!03106-X#

I. INTRODUCTION

Large random (N3N) matrices are currently of considerable interest, mainly because of
applications in a number of different branches of theoretical physics. By having all entries
same order, they represent an approximation to real systems and lead to exactly solvable
in the limit N→`. Dilute random matrices, with an average ofp nonzero elements per row
frequently provide an improved physical description of a real system and are often tractable
limit of large dimension.

In this paper we study the eigenvalue distribution of dilute random matrices, which in
pure, undiluted case can be written as

AN~x,y!5
1

N (
m51

m

jm~x!jm~y!, x,y51,N, ~1.1!

wherejm(x), m51,m, x51,N are real independent identically distributed~i.i.d.! random vari-
ables with zero average and variancev2.

The matrixAN(x,y) was used in the statistical mechanics of disordered systems, where
suggested as an interaction matrix of a simplified mean field model of a random spin sy1

Later it was reintroduced in the neural network theory of autoassociative memory,2 where the
randomN-dimensional vectorsjWm(x)5jm(x)/N1/2 are interpreted as patterns to be memorized
the system and where the model is known as the Hopfield model.

This new field of applications created by the neural network theory has motivated a num
studies of matrices like~1! and their modifications~see, e.g., the monographs, Refs. 3–5, a
references therein!. Of special interest are randomly diluted versions of~1.1!, which can be
defined as

ÂN~x,y!5 (
m51

m

jm~x!jm~y!dN~m;x,y!, ~1.2!
0022-2488/97/38(6)/3300/21/$10.00
3300 J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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wheredN are independent random variables~also independent from$jm(x)%! and take the nonzero
values with probabilitypN vanishing asN→`.

Such ensembles are well known in statistical mechanics and a number of results hav
obtained for disordered spin systems with~1.2! as the matrix of interactions in the Hamiltonia
see, e.g., Ref. 6. Several important particular cases of~1.2! have also been studied in neur
network theory.7–10

However, the spectral characteristics of~1.2! are poorly understood. Even the simplest qua
tity in spectral theory of random matrices, the normalized eigenvalue counting function~NCF!,
has not been studied for the dilute ensemble~1.2!.

For anN3N symmetric matrixAN , the NCF can be defined as

s~l;AN![#$l i
~N!<l%N21, ~1.3!

wherel i
(N) are the eigenvalues ofAN . The limit N→` of the NCF, if it exists, is called the

integrated density of states~IDS! of matrix ensemble$AN%.
The IDS of ensemble~1.1! was first studied by Marchenko and Pastur.11 It follows from the

results of Ref. 11 that the NCF ofAN ~1! with i.i.d. jm(x) having zero mean and variancev2,
converges in probability asN, m→`, m/N→c.0 to a nonrandom functions~l! of the form

s~l!5@12c#1u~l!1E
2`

l @4cv42„x2~c11!v2…2#1
1/2

2pv2x
dx, ~1.4!

where@x#15max(0,x). In the case ofm5N the ensemble~1.1! represents the square of the mo
widely known Wigner ensemble of random symmetric matrices~see, e.g., Refs. 12, 13!,

WN~x,y!5
1

AN
w~x,y!, x,y51,N, ~1.5!

with independent~apart from a symmetry condition! identically distributed random variables wit
properties

Ew~x,y!50, E@w~x,y!#25u2. ~1.6!

Thus, the results of Ref. 11 can be regarded as a generalization of the famous semicir~or
Wigner! law;14

lim
N→`

s~l,WN!5ssc~l!, ~1.7!

where

ssc8 ~l!5H 1

2pu2
A4u22l2, ulu<2u,

0, ulu.2u.

~1.8!

Spectral properties of the dilute Wigner ensembleŴN with entries

ŴN~x,y!5w~x,y!dN~x,y!, dN~x,y!5dN~y,x!, ~1.9!

where dN(x,y) x<y are independent random variables taking nonzero values with vanis
probability asN→`, are well understood.15–18In particular, it follows from the results of Refs. 1
and 18, obtained using the replica trick17 and supersymmetric methods,18 that ifw(x,y)561 with
equal probability and
J. Math. Phys., Vol. 38, No. 6, June 1997
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dN~x,y!5H 1/Ap, with probability p/N,

0, with probability 12p/N,
~1.10!

then

lim
N→`

E$s~l;ŴN!%5sp~l!, ~1.11!

such that

lim
p→`

sp~l!5ssc~l!. ~1.12!

with ssc(l) given by~1.8! with u251. In addition, both the 1/p correction to the density of state
sp8(l) and an asymptotic estimate of the density of states for largeulu were found. In Ref. 16 the
weak convergence ofE$s(l;ŴN)% to ssc(l) is proved rigorously for the ensemble~1.9!, ~1.10!
with i.i.d. w(x,y) satisfying~1.6! and having the third moment finite.

Starting from the square of the diluted matrix~1.9!, we arrive at the ensemble~1.2! with

dN~m,x,y!5dN
m~x!dN

m~y!. ~1.13!

The IDS of this ensemble can be studied by the replica trick as in Ref. 17 or by the res
approach used in Ref. 16. This ensemble is discussed further in Sec. IV. However, more in
ing for applications in dilution phenomena is the ensemble

HN~x,y!5 (
m51

m

jm~x!jm~y!aN~x,y!, aN~x,y!5aN~y,x!, ~1.14!

which cannot be related to the square of the Wigner ensemble and does not admit the direc
the methods in Refs. 16–18.

In the present paper we study the NCFs(l;HN) of ensemble~1.14! with jointly independent
$jm(x)% and $aN(x,y)%. We refer to this ensemble as the dilute MPH~Marchenko–Pastur–
Hopfield! ensemble. We assumejm(x) has zero average and finite variancev2 and define the
dilution matrixaN(x,y), in analogy with~1.10!, as

aN~x,y!5
1

NnAa
H1,0, with probability aN2a,

with probability 12aN2a, ~1.15!

with somea, n, such thata>0 and 0<n<1. We show that if

a12n52, 1
2<n,1, ~1.16!

and

aN~x,x![0, x51,N, ~1.17!

then s(l;HN) converges in probability to the semicircle distribution~1.8! ~a! in the limit of
infinite m and N when 1

2,n,1, and ~b! in the limit of infinite m, N and infinitea when n
51/2.

We prove these statements by studying the moments
J. Math. Phys., Vol. 38, No. 6, June 1997
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M2k
~N!5E l2k ds~l;HN!5

1

N (
x51

N

~H2k!~x,x!, ~1.18!

in the asymptotic limit of largem andN ~anda for n5 1
2!. Using the independence of matrice

aN(x,y) and(m jm(x)jm(y), we compute the mathematical expectation ofM2k
(N) . To do this, we

combine Wigner’s original approach to the matricesaN(x,y) with a diagrammatic technique
developed for dealing with matrices with the structure of(m jm (x)jm (y).

Our results show that the dilutiondN(m;x,y)5aN(x,y) of the MPH ensemble~1.2! makes
those properties of matrices~1.1! that differ from the Wigner matrices~1.5! irrelevant. We inves-
tigate the role of the dilution parametera in this property of the MPH ensemble. The technique
use allows us to study the NCF of~1.14! for finite a. We prove that for each fixeda.1 there
existssa(l), which is the weak limit ofE$s(l;HN)% whenm, N→`. We study the support
asymptotics for largeulu and 1/a correction ofsa(l) and compare the results with those deriv
in Ref. 17 forsp(l) ~1.11! for the dilute Wigner ensemble. We show that the difference betw
the dilute MPH ensemble and the dilute Wigner ensemble vanishes in the limitN→`.

This paper is organized as follows. The remainder of this section is devoted to an expla
of conditions~1.16! and~1.17!. In Sec. II we prove our main result concerning the convergenc
the NCF to the semicircle distribution. In Sec. III we are concerned with the case ofn5 1

2, with
finite dilution parametera. In Sec. IV we describe different diluted random matrix ensembles
their possible generalizations. Section V is devoted to a discussion of the origin of the sem
distribution in the ensemble~1.13!.

Now let us turn to conditions~1.16! and ~1.17!. We can show that these conditions a
necessary by consideringE HN

2 and E HN
4 , where E(•••)5^^•••&j&a . For the case of i.i.d.

jm(x), we have

E HN
25(

s51

N

(
m1 ,m251

m

^jm1~x!jm1~s!jm2~x!jm2~s!&j^aN~x,s!aN~s,x!&a

5
~N21!m

N2n1a v41
m~m21!

N2n1a v41
m

N2n1a ^@jm~x!#4&j , ~1.19!

wherev25^j2&j . Thus, the first nontrivial moment,

EE l2 dsN~l!5
1

N (
x51

N

E HN
2 ~x,x!, ~1.20!

is finite and nonzero if and only ifa12n52. The fourth momentE H4(x,x) includes averages

(
m j51

m

(
s51

N

^jm1~x!jm1~s!jm2~s!jm2~x!jm3~x!jm3~s!jm4~s!jm4~x!&j^aN~x,s!aN~s,x!aN~x,s!

3aN~s,x!&a>m~m21!~v2!4N^@aN~x,s!#4&a5
m~m21!Nv8

N212na
, ~1.21!

and we arrive at the conclusion thatn> 1
2. On the other hand, when the term

E@HN~x,x!#2>m~m21!~m22!~m23!v8^@aN~x,x!#4&a . ~1.22!

is finite, eithern>1 or aN(x,x)50. The first possibility contradicts~1.16! and so we have shown
that ~1.17! holds.
J. Math. Phys., Vol. 38, No. 6, June 1997
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II. MAIN RESULT AND PROOF

Let us consider the ensemble of random matrices with entries,

HN~x,y!5 (
m51

m

jN
m~x!jN

m~y!aN~x,y!, x,y51,N, ~2.1!

where jN
m(x) and aN(x,y)5aN(y,x), m51,m, x51,N are jointly independent random var

ables. For each fixedN we denote the average over the measure generated by$jN
m(x)% as

^•••&j and the average over the measure generated by$aN(x,y)% as ^•••&a . Let us assume

^jN
m~x!&j50, ^@jN

m~x!#2&j5v2, ~2.2!

and

aN~x,y!5
12dxy

NnAa
H 1,0, with probability aN22~12n!,

with probability 12aN22~12n!,
~2.3!

where 1.n> 1
2and

dxy5H 1 x5y,

0 xÞy.

We study the NCFs(l;HN) in the limit m, N→`, m/N→c.0.
Theorem 2.1:Let each of the random variables$jN

m(x)% have a symmetric distribution an
let, for any fixedt.0,

lim
N,m→`

1

Nm (
x51

N

(
m51

m E
utu.tA4N

utu21bdPm,x
~N!~ t !50, ~2.4!

whereb54(2n21) and P(N)m,x(t)5Prob$jN
m(x)<t%. Then

p2Lim s~l;HN!5ssc~l!, ~2.5!

where Lim denotes the limiting transitions

m,N→`, m/N→c.0 and fixed a when n. 1
2, ~2.6a!

and

m,N,a→`, m/N→c.0 and a,N when n5 1
2, ~2.6b!

andssc(l) is given by Eq. (1.8) with u25cv4.
From now on we use ‘‘Lim’’ to denote this limit~2.6! and ‘‘lim’’ to denote other limits that

are defined as required.
Remarks:

~1! By p-Lim in ~2.5! we mean weak convergence in probability of measures associated
s(l;HN). In other words,~2.5! means that for any smoothc(l) with finite support,

p2Lim E c~l!ds~l;HN!5E c~l!dssc~l!. ~2.7!
J. Math. Phys., Vol. 38, No. 6, June 1997
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~2! Condition ~2.4! is the analog of the well-known Lindberg condition from probabil
theory. In random matrix theory this condition has been proved to be sufficient19 and necessary12

for the semicircle law~1.7!–~1.8! to be the IDS of the Wigner ensemble~1.5!.
Let us stress that if$jN

m(x)% are identically distributed and̂uj11(1)u21b&,`, then ~2.4!
holds. It should also be noted thatb is always less that 4, so in the case of i.i.d.$jN

m(x)%,
^uj11(1)u6&,` is sufficient for Theorem 2.1 to be true for alln> 1

2. On the other hand, ifn5 1
2

thenb50 and~2.4! takes the form closest to the Lindberg condition. The only difference is
the latter hastN1/2 instead oftN1/4 in ~2.4!. This difference is due to the quadratic character of
$jN

m(x)% terms inHN(x,y).
Proof: Let us introduce truncated random variables,

j̄N
m~x!5H jN

m~x!, if ujN
m~x!u<tA4 N,

0, if ujN
m~x!u.tA4 N,

~2.8!

with t,1 and consider the ensembleH̄N given by ~2.1! with jN
m(x)jN

m(y) replaced by
j̄N

m(x) j̄N
m(y). In Lemmas 1 and 2~at the end of this section! we prove that for any smooth functio

c(l) with finite support,

p2LimF E c~l!ds~l;HN!2E c~l!dssc~l!G50. ~2.9!

Consequently, our main goal is to prove that

p2Lim s~l;H̄N!5ssc~l!. ~2.10!

To achieve this we start with the moments ofH̄N and show that for any fixedp,

lim
t→0

Lim EH̄N
p ~0,0!5H ~2k!!

k! ~k11!!
@cv4#k, if p5k,

0, if p52k11,
, ~2.11!

and

lim
t→0

Lim EH̄N
p ~0,0!H̄N

p ~0,0!2@EH̄N
p ~0,0!#250. ~2.12!

Then in Lemma 3 we prove that~2.11! and ~2.12! imply ~2.10!.
Our study of the average,

E$HN
p ~0,0!%5(

$si %
(
$m j %

^Xp&j^Yp&a, ~2.13!

where

^Xp&j5^jm1~0!jm1~s2!j
m2~s2!•••j

mp21~sp!j
mp~sp!j

mp~0!&j ~2.14!

and

^Yp&a[^aN~0,s2!aN~s2 ,s3!•••aN~sp21 ,sp!aN~sp,0!&a , ~2.15!

is based on the separation of those sets ofSp5(0,s2 ,s3 ,...,sp) andMp5(m1 ,...,mp), which give
a nonzero contribution in the limit of infinitem,N ~anda for n5 1

2!.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Our main observation is that condition~1.17!, aN(x,x)50, together with the independence
$jm(x)% and the property

^@ j̄N
m~x!#2k11&j50, ~2.16!

reduces the number of independently changingm variables in the sum~2.12! while the properties
of $aN(x,y)% ~2.3! allow us to restrict the number of setsSp . As we shall see,̂Yp&a plays the
same role in the selection ofSp as that played by the averageE$W(0,s2)•••W(sp,0)% in the
original Wigner proof of the semicircle law.14 This observation is crucial for counting the numb
of appropriate setsSp .

When separatingSp andMp and counting the number of nonzero contributions, we use
fact that all the moments ofj̄ N

m are finite for fixedp and N. Then, calculating the average
^Xp&j we show that, due to the independence of$jm(x)%, the leading contribution includes onl
powers^@ j̄N

m#2& while higher moments ofj come with factors of 1/N. This allows us to estimate
terms includinĝ j21t&, wheret is an integer, bycpt, wherecp does not depend onN.

The role of the independence of$jm(x)% becomes clearer if we introduce a diagram for a fix
Sp andMp , where each random variable$jm(x)% is given by a vertical interval. This interva
consists of two parts; the upper part is of lengths and the lower of lengthm. Then the average
~2.14! can be presented in the form of Fig. 1. Due to the independence of the$jm(x)% and the
condition~2.16!, the average ofXp is nonzero only when the corresponding diagram has an e
number of each interval present.

For example, if we consider a fixedSp where all numbers 0,s2 ,s3 ,...,sp are different, then the
averagê Xp& is nonzero only when all$m j% are equal. Hence, such a sequence of$si% produces
m nonzero terms. It is clear that if one considers general sequencesSp , the more coincident points
$si%, the more$m j% are allowed to vary independently, and vice versa.

Let us now consider the case ofp52k. Due to ~1.17!, the maximal number of coinciden
points si is k and the only set that achieves this is given byS2k* 5(0,s,0,s,...,0,s). The corre-
sponding diagram contains 2k vertical intervals with upper pointss, and these need to be paire
Thus, among the$m j% only k variables are allowed to change independently and the numb
nonzero terms in average~2.14! for S2k* is c2k* m(m21)...(m2k11)5c2k* m

k1o(mk). Any
change inS2k* can only diminish the number of independentm variables. Thus, we come to th
conclusion that any fixedS2k producesc2km

k1o(mk) terms.

FIG. 1. Diagrammatic representation of a general^Xp&.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now let us turn to the casep52k11. Here theS2k11* with a maximal number of coinciden
s variables are of the form (0,t,s,0,s,...,0,s,0). SincetÞs, only sums over$m j% with m15m2

provide a nonzero average. Thus, the points25t can be omitted and we apply the rest of t
arguments in the previous paragraph.

So, we have proved the following.
Proposition 1: Each fixed Sp produces cpm

@p/2#1o(m@p/2#) nonzero terms, where@x# equals a
maximal integer not greater than x and cp is some constant independent of m.

Let us now prove the following.
Proposition 2: The number, Lp , of nonzero terms in~2.13! is of order N2@p/2#.
Proof: Let us consider the sum over thoseSp in ~2.2! that haved pointssi (t) , t51,d that are

unpaired, i.e., such thatsi (t)Þsj for all t and jÞ i (t). There are no more thanNd1@(p212d)/2# such
Sp .

Since $jm(x)% are independent with zero mean, we have a nonzero average in~2.15! only
when m i (1)5m i (1)11 ,..., m i (d)5m i (d)11 . If the neighbors ofsi (t) do not coincide,si (t)21 ,
Þsi (t)11 , we have the diagram as given in Fig. 1. This diagram can be regarded as onep
2d points (0,s2 ,..., si (1)21 , si (1)11 ,..., si (d)21 ,si (d)11 ,...,sp), which due to Proposition 1 pro
duces no more thanm@(p2d)/2# terms. Thus the total number of terms in this case is no more
Nd1@(p212d)/2#m@(p2d)/2#, which is of orderNp.

If somesi (t) has equal neighbors,si (t)215si (t)11 , then we cannot apply Proposition 1. How
ever, such a diagram can be reduced to a new diagram corresponding to setsSp8 , wherep85p
22 with si (t) omitted and thenLp5NmLp8 . Consequently, Proposition 2 is proved.

Let us now studŷY2k& for the case of evenp. We consider the average~2.14! with p52k
and show that the leading contribution to~2.13! comes from sums over thoseS2k

1 , where each step
(s,s8) is paired with its inverse (s8,s) and the pairs obtained have no coincidence between th
This picture is exactly the same as the Wigner ensemble~5! and the number of suchS2k

1 is14

n2k5
~2k!!

k! ~k11!!
. ~2.17!

There are three ways in which general setsS2k can differ fromS2k
1 .

~I! There can be steps (s,s8) having no inversion (s8,s) or repetition (s,s8).
~II ! There exist steps (s,s8) having repetition (s,s8).
~III ! There can be a coincidence between pairs of steps.
We consider these three possibilities separately because the general case can be

subdivided into these three scenarios.
First consider the simplest case~I! whenS2k containsk1d different steps. Then at least 2d

steps have no inverse and the other 2(k2d) steps are paired. Then

^Y2k&5^aN
2 &k2d^aN&2d5

1

N2~k2d! F Aa
NN12nG2d5 1

N2k F Aa
N12nG2d.

Due to Proposition 2, all such terms give vanishing contributions to~2.13! asN→`.
Before considering cases~II ! and ~III ! let us first compute the contribution of setsS2k

1 . The
sum over each particular set can be obtained as follows: we first identify the steps (si ,si11) that
are paired, and then allowsi to run from 1 toN, but conserving this pairing. This pairing of 2k
intervals (0,s2),(s2 ,s3),...,(s2k,0) splits the set of 2k11 points (05s1 ,s2 ,...,s2k ,s2k1150)
into r groups; all equal points are put in the same group. Such a partition givesN(N21)•••(N
2r12)5Nr211o(Nr21) terms. Taking into account Proposition 1 and the equality^Y2k&
5N22k, we conclude that nonvanishing contributions come from partitions into not less thk
11 groups (r>k11). In this case at least one group consists of one point that we cal
J. Math. Phys., Vol. 38, No. 6, June 1997
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‘‘peak’’ point. Thus, for each particularS2k
1 there exists at least one peak pointsi (t) such that

si (t)215si (t)11 . One can then reduceS2k
1 to S2k8

1 , 2k852k22 by removing pointsi (t) and
consideringsi (t)215si (t)11 as a new point inS2k8

1 .
We repeat this reducing procedure until we are left with the two points at~0,0!. There arek

steps in the reduction ofS2k
1 to ~0,0!, in which k peak points removed. Due to Propositions 1 a

2, nonvanishing contributions to~2.13! come fromS2k
1 , where all these peak points vary ind

pendently, are nonzero and take different values.
Turning to the diagram forX2k ~Fig. 2!, we see that in this sum over particularS2k

1 two
vertical cuts drawn down from the peak pointsi (t) are independent from all other random variab
for anyM2k . Then them variables corresponding to theses variables must be paired;m i (t)21

5m i (t)5m8. If in the sum consideredm8 is not equal to the otherm variables, then the random
variablesjm8(si (t)21)5jm8(si (t)11) and jm8(si (t)) are independent from the others, and the d
gram forX2k can also be reduced by removing four vertical cuts belonging tom i (t)21 andm i (t) and
multiplying the average in~2.13! by

(
m8,i ~ t !

^@ j̄N
m8~si ~ t !21!#

2&
1

N2 ^@ j̄N
m8~si ~ t !!#

2&.

Thus we have reduced the whole average^X2k&^Y2k& to ^X2k22&^Y2k22&. Repeating this proce
dure k times, and taking into account~2.4!, we come to the conclusion that the sum over ea
particularS2k

1 with noncoincident pairs ofm variables gives a contribution to~2.13! of (cv4)k

„11o(1)…, in the limit m, N→`. Terms that come from coincident pairs ofm variables are of
ordert and will be considered later.

Let us consider case~II ! when each step inS2k has its repetition or inverse and at least o
step (si ,si11) has its repetition (sj ,sj11), i.e. si5sj , si115sj11 . In this case 2k11 points
(0,s2 ,s3 ,....,s2k,0) are split intor groups. If r,k then such splitting gives a vanishing contr
bution. If r>k11, there is at least one peak point inS2k and we reduce it as was done fo
S2k

1 .
Repeating this reducing procedure, we come to the position where the peak point has

si , si11 , sj or sj11 as a neighbor. Supposing that this neighbor issjÞ0, we obtainsj225sj
5si . Thus, in the partition of the points ofS2k8 one group of equal points consists of three
more elements. This implies that the contribution from these sets is vanishingly small in the
N→`.

Now it remains to consider case~III ! and show that sums over setsS2k with paired steps and
coincidences between pairs provide contributions vanishing in the limitm, N→`.

FIG. 2. Pairing ofm variables in a general diagram for^X2k&.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In each sum over a particular setS2k
1 a nonvanishing contribution is given byk peak points

moving independently. To make a pair of steps coincident with another pair, one has to m
least one peak point equal to another one. It is easy to see that the contribution of such s

ck
~2!Nk21mk^a2&k22^a4&„11o~1!…5OS 1

aN~2n21!D ,
whereck

(2) counts the number of ways to make peak points coincident ando(1) comes from the
sums where more than two peaks are equal.

Sums overS2k having exactlyd pairs coincident give a contribution,

ck
~d!Nk2d11mk^a2&k2d^a2d&„11o~1!…5OS 1

ad21N~2n21!~d21!D ,
which is also vanishing. Situations with more complex coincidences between pairs can b
lyzed by generalization of the above arguments.

Let us turn now to the odd momentsE H2k11 (0,0). In this caseS2k11 has at least one ste
(si ,si11) that is unpaired. In fact, due to condition~1.17!, there are at least three unpaired ste
If the remaining 2k22 steps make a setS2k22

1 , then for such a set,

^Y2k11&5^aN&3^aN
2 &k215

aAa
N3~12n!N3

1

N2k22 .

But according to Proposition 2, there are no more thanN2k11 terms in the sum~2.13! and we
obtain a contribution of orderO(a3/2N3(n21)) from the sum over the sets described. If thek
22 steps do not form a setS2k22

1 , then the contribution is even smaller.
Stopping at this point, we see that in fact we have derived~2.11! for H̄N with bounded random

variablesuju,T. Now we are going to prove that~2.11! holds for truncated random variable
j̄ N

m(x) ~2.7!. Indeed, it is easy to understand that higher powers ofj can only be obtained by
coincidence between pairs ofm variables combined with the coincidence between pairs os
variables. Both of these conditions lead to extra factorsm21 orN21 in the contributions from such
sums.

We start with the sum over setsS2k
1 having all steps paired with noncoincident pairs. Fir

consider the sums where all peak pointssi (t) take different values. Then increased powers ofj can
be obtained just by making all them variables equal. The only case of interest is when around p
point i 8, m i 8225m i 8215m i 85m i 811 . Then we obtain̂ j4& with a factorm21, which means that
the contribution of these sums isO(t2m21/2).

If we consider sums overS2k
1 with coincident peak points, then the increase in powers ofj is

followed, apart from the coincidence of pairs ofm variables, by extra powers ofN21, which
makes contributions from such terms even smaller than in the previous case.

Now consider sums overS2k having all steps paired withd coincident pairs. In this case th
maximal power ofj is 2d and these sums give a contribution of order

Nk2d11mk2d11^aN
2 &k2d^aN

2d&^j2d&^j2d&5
1

ad21

1

N~d21!~2n21! K j2
j2~d21!

N~d21!/2L 2
5OS t

ad21N~d21!~2n21!D .
It is obvious that the presence of unpaired steps does not lead to an increase in powers oj.

To complete the proof of~2.11!, we just note that higher moments ofj in odd moments
E H2k11 (0,0) arise by the same mechanism and need not be studied separately.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now let us describe the proof of~2.12!. We rewrite the average in~2.12! for p52k as

(
s,m

(
s8,m8

@^X2kX2k8 &^Y2kY2k8 &2^X2k&^X2k8 &^Y2k&^Y2k8 &#, ~2.18!

and note that the difference is nonzero only in the case whenX2k contains random variable
common withX2k8 or when^Y2kY2k8 &Þ^Y2k&^Y2k8 &.

We consider these two possibilities separately. The latter inequality is possible if som
from S2k has its inverse only inS2k8 and if pairs fromS2k coincide with pairs fromS2k8 . In the first
case the set~05s1 ,s2 ,s3 ,...,s2k , 05s18 ,s28 ,s38 ,...,s2k8 ! can be regarded as a new setS4k . Reduc-
ing this set by eliminating peak points, we easily come to the conclusion that the central
s1850, is a peak point. Since it is fixed, then this sum is of order 1/N. Averages^Y2k&^Y2k8 &,
apparently having unpaired steps, give a vanishing contribution asN→`.

Let us consider the case when pairsS2k coincide with a pair fromS2k8 . Then the sum

(
s,m

* (
s8,m8

* ^X2k&^X2k8 &^Y2k&^Y2k8 & ~2.19!

over such sets is of order 1/N because it corresponds to the case when some of the peak poin
fixed. On the other hand, the sum over sets,

(
s,m

* (
s8,m8

* ^X2kX2k8 &^Y2kY2k8 &, ~2.20!

can be regarded as a sum for^X4k&^Y4k&, where the correspondingS4k has coincident pairs o
steps. Thus, according to arguments presented above,~2.20! contributes to~2.18! as a variable of
order „11O(t)…/aN2n21. It remains to check the sums where^Y2kY2k8 &5^Y2k&^Y2k8 & but

^X2kX2k8 &Þ^X2k&^X2k8 &. ~2.21!

Obviously, it is sufficient to study sums overS2k
1 and (S8)2k

1 such that there is no coincidenc
between pairs. The one way to obtain~2.21! is to make peak points inS2k

1 equal to some peak
points in (S8)2k

1 and to make corresponding pairs ofm variables coincident. Another way is t
make equal pairs ofm variables that correspond to bottom points ofS2k

1 and (S8)2k
1 . It is easy to

see that these ways lead to terms with contributionO(N21/2).
Similar reasoning shows that~2.13! holds for odd momentsp52k11. Thus~2.11! and~2.12!

are proved.
Lemma 1: Let$sN(l;v)% be a sequence of random nondecreasing non-negative bou

functions, and let$ f N(l;v)% be the sequence of their Stieltjes transforms,

f N~l!5E ~l2z!21dsN~l!,

wherev is a point (realization) of the corresponding probability spaceVN . Suppose that there
exists a nonrandom function f(z) that is analytic forIm zÞ0 satisfying inequalities

suph.0h f ~h!<1, Im f ~z!Im z.0,

and that

Lim supzPU0
Eu f N~z!2 f ~z!u250, ~2.22!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where U05$zPC,uIm zu>h0% andh0.0. If s(l),s(2`)50 is the nondecreasing function tha
corresponds to f(z), then at each continuity point ofs~l! we have

p2Lim sN~l!5s~l!, ~2.23!

or, in other words, the measuressN(dl;v) weakly converge in probability tos(dl) [cf. (2.7)].
The proof of this lemma can be found, for example, in Ref. 20. The key point is tha

family f N(z,v)2 f (z) is analytic and uniformly bounded on any compact setT belonging to
U0 .

21 This allows one to derive from~2.22! the relation

Lim E supzPTu f N~z!2 f ~z!u250,

which together with the compactness of the familysN(dl;v)2s(dl)21 implies ~2.23!.
Let us define

ḠN5
1

H̄N2z
and GN5

1

HN2z
,

whereHN is given by~2.1!–~2.4! andH̄N is obtained fromHN by truncation~2.8!. Then according
to the definition ofs~l! ~1.3!,

1

N
Tr ḠN5E ~l2z!21ds~l;H̄N!

and

1

N
Tr GN5E ~l2z!21ds~l;HN!.

Lemma 2: For zPU0 ,

p2 limm,N→`U1N Tr GN~z!2
1

N
Tr ḠN~z!U50.

Proof: Let us consider the resolvent identityG82G52G8(H82H)G, where G5(H
2z)21 andG85(H82z)21, uIm zu.0 andH, H8 are symmetric matrices of the same dimensio
Then

DN~z!5
1

N
Tr„GN~z!2ḠN~z!…5

1

N (
s,t

~ḠNGN!~s,t !(
m

@ĵN
m~s!jN

m~ t !1 ĵN
m~ t !j̄N

m~s!#aN~s,t !,

~2.24!

where ĵ5j2 j̄.
We denote (mĵN

m(s)jN
m(t) by gN(s,t) and, using the inequalityiGNi,uIm zu21 and

uG(s,t)u,iGNi , derive from~2.24! the relation

E$uDN~z!u%<
2

NuImZu2 (
s,t

^ugN~s,t !u&^aN~s,t !&<
1

N2

Aa
N12n (

sÞt
^„gN~s,t !…2&1/2. ~2.25!

It is easy to see that ifsÞt then
J. Math. Phys., Vol. 38, No. 6, June 1997
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^„gN~s,t !…2&5K (
m,l

ĵm~s!jm~ t !ĵl~s!jl~ t !L 5v2K (
m

@ĵm~s!#2L .
Then we derive from~2.25! that

E$uDN~z!u%<
vAa
NN12n (

s
K (

m
u ĵN

m~s!u2L 1/2
<
mvAa
N F 1

mN (
s,m

1

N122n ^u ĵN
msu2&G1/2

<
mvAa
N F 1

mN (
s,m

E
utu.tA4N

utu214~2n21!
N2n21

utu4~2n21! dPm,s
~N!~s!G1/2.

Using ~2.4!, we complete the proof of Lemma 2.
Lemma 3: Relations (2.10) and (2.11) imply that for zPU0 , with h05(2cv412)2 and

uRezu,1,

Lim EH U1N Tr ḠN~z!2 f ~z!U2J 50, ~2.26!

where

f ~z!5E ~l2z!21dssc~l!,

with ssc(l) given by (1.8) with u25cv4.
Proof:We prove~2.26! by showing that

Lim E$gN~z!%5 f ~z!, ~2.27!

wheregN(z)5N21 Tr ḠN(z), and that

Lim E$gN~z!gN~z!%2E$gN~z!%E$gN~z!%50. ~2.28!

For givene.0, we choose 2q such that

1

~2cv412!2q
,

e

4
,

and expandgN(z) into the series

gN~z!52
1

N (
p50

2q
Hp~x,x!

zp11 2
1

z2q11 RN
~q!~z!,

where

RN
~q!~z!5

1

N
Tr HN

2q11GN .

Let us note that

uRN
~q!~z!u5U E

2`

` l2q11

l2z
ds~l;H̄N!U<U E

2`

`

l2q
l2Re z1 i Im z

~l2Re z!21~ Im z!2
ds~l;H̄N!U< 2

N
Tr HN

2q .

Then we expandf (z) into the series
J. Math. Phys., Vol. 38, No. 6, June 1997
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f ~z!52 (
p50

2q
Mp

zp112
r q~z!

z2q11 ,

whereMp are given by the right-hand side of~2.11! and r q(z)<2M2q .
Then taking into account thatEHp

N(x,x)5EHp
N(0,0), we can write the inequality

uEgN~z!2 f ~z!u< (
p50

2q uEHN
p ~0,0!2Mpu

4p
1

1

~2cv412!2q
4M2q12uEHN

2q~0,0!2M2qu
~2cv412!2q12 .

The trivial inequalityM2q<(cv4)2q together with~2.11! implies~2.27!. The relation~2.28! can be
derived from~2.12! using the same procedure. Theorem 2.1 is proved.

III. FINITE DILUTION PARAMETER

In this section we study the moments

E lp ds~l;HN!

of the ensemble~2.1!–~2.3! in the casen51/2 and finitea>1. We prove that there exist numbe
h(a)p such that

lim E$HN
p ~0,0!%5hp

~a! , pPNø$0%. ~3.1!

We derive estimates forh(a)p , which imply that

(
k50

`

@h2k
~a!#21/2k5`. ~3.2!

This Carleman’s condition provides existence22 and uniqueness23 of a non-negative nondecreasin
functionsa(l) satisfying the relation

hp
~a!5E

2`

`

lp dsa~l!.

We prove that the support of the measuredsa(l) is unbounded and study the asymptotic behav
of sa(l) for large ulu.

Finally, we show that if a functions (1)(l) exists, such that

sa~l!5ssc~l!1
1

a
s~1!~l!1OS 1a2D , ~3.3!

thens (1)(l) can be written in the form

s~1!~l!53u~l!1
3

2pu2 E22u

l S t2

u2
22DA4u22t2dt, ~3.4!

where

u~l!5 H1,0, l>0,
l,0,
J. Math. Phys., Vol. 38, No. 6, June 1997
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andu25cv4. This can be compared with the results of Ref. 17, where the 1/p correction for the
diluted Wigner ensemble~1.9! was calculated. The corrections are slightly different but have
same structure of the semicircle distribution multiplied by a quadratic function ofl. The u~l!
term, which does appear in the results of Ref. 17, probably arises in our problem from
condition of zero diagonal~1.17!.

Let us first note that it follows from the proof of Theorem 2.1 thath2k11
(a) 50 andh0

(a)51. The
next observation is that in the average

E$HN
2k~0,0!%5(

$si %
(
$m j %

^X2k&^Y2k&,

the nonvanishing contribution in the limitN→` comes from sums over those setsS2k
5(0,s2 ,s3 ,...,s2k), where each step (si ,si11) has an inverse (si11 ,si). Sincen51/2 anda is
finite, sums overS2k that have coincident pairs of steps, as well as overS2k

1 with no coincident
pairs, give a nonvanishing contribution to~3.5!.

Let us consider sums overS2k
(d) with exactlyd equal pairs. The remaining 2(k2d) steps are

paired and$si% run from one toN such that these pairs are not equal. Let us calculate the nu
L2k
(d) sequencesS2k of this type. Having marked 2d steps, we obtain 2d intervals between them o

lengthsq1 ,...,q2d , qj>0. Note that the last intervalq2d consists of two parts because we consid
two edge points 0 as one~see Fig. 3!.

Let us consider a particular interval numberj with left endu and right endv. Due to the
independence of pairs given bySqj

1 from other pairs we can sum overSqj
1 and the corresponding

m variables and obtain~to leading order! the factorE$HN
qj(Su ,Sv)% in ~3.1!. Thus, we conclude

that each interval is of even lengthqj52pj , pj>0 andsu5sv .
The latter is because we can considersu andsv fixed ~we sum over them at the last stage!, and

use the fact that for each fixedt,

EHn
2k~0,t !5O~1/N1t!.

This can easily be proved from the observations that

EHN
2k~0,t !<@EHN

2k~0,t !HN
2k~ t,0!#1/2

and that in the last average there is one fixed peak point.

FIG. 3. Division into intervals for the case ofd coincident pairs.
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So, the leading contribution comes from the diagrams of the type in Fig. 3, where
(st ,su) are separated by steps (su ,st). It is easy to see that the number of different setsS2k

(d) is
given by the formula

L2k
~d!5 (

pi>0
(pi5k2d

np1np2•••np2d, ~3.6!

wherenp is defined by~2.17!.
Now let us compute the contributions of sums overS2k

(d) . The sums overSq1
1 ,...,Sq2k

1 give the

leading terms asN→`, t→0,

~cv4!k2dNk2dmk2d^a2&k2d~1/N!, ~3.7!

where the factor 1/N comes from the fixed peak point 0 in the intervalq2d .
We now compute averages over random variables belonging to coincident pairs. The

d upper points andd lower points and, hence, variablesm18 ,....,m2d8 should be paired to obtain
nonzero average in the limitN→`, t→0. Then we obtain for the sum expression,

T2dN
2mda2dv2dv2d„11O~t!…, ~3.8!

whereO(t) comes from the sums where more than twom variables are equal andT2d is the
number of ways of splitting 2d points, (i 1 ,....i 2d), into pairs.T2d has the property thatT2d12

5(2d11)T2d , becausei 2d12 can make a pair with 2d11 points and the remaining 2d points
produceT2d possibilities. ThusT2d5(2d21)!!

Collecting ~3.6!, ~3.7!, and~3.8!, we find thatS2k
(d) gives a contribution,

~1/ad21!L2k
~d!~cv4!k~2d21!!!, ~3.9!

to ~3.1!. Let us stress thatS2k
(d) are the only sources of terms of order 1/ad21. It should be noted

that ~3.6! with d51 results in the recurrence relation

nk5 (
p,k2p21>0

npnk2p21 , n051. ~3.10!

This relation, leading to the exact form ofn2k ~2.17!, was first derived by Wigner.14

It follows from ~3.10! that the momentsMk of the semicircle distribution given by~8! satisfy
recurrence relation

Mk5u2 (
p,k2p21>0

MpMk2p21 . ~3.11!

Taking into account previous considerations, we obtain finally forh2k
(a) ,

h2k
~a!5 (

d51

k
~2d21!!!

ad21 u2d(
k2d

*Mp1
Mp2

•••Mp2d
, h2k11

~a! 50 ~3.12!

where a summation(K* denotes a sum over$pi% such thatpi>0 for all i and(pi5K.
Now let us show that~3.2! holds. SinceMk5u2knk , we derive from~2.17! the trivial esti-

mate,
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Mk<~2u!2k, kPN.

Then each term in the sum overpi in ~3.12! is less than (2u)2k22d and the number of terms in thi
sum is

S 2k2dD5
~2k!!

~2d!! ~2k22d!!
.

The latter fact can easily be understood if one remembers that~3.6! was obtained by choosing
2d from 2k steps. Thus we derive from~3.12! that

h2k
~a!<a~2u!2k(

d51

k S 2k2dD ~2d21!!!

~2Aa!2d
5a

~2u!2k

A2p
E

2`

` S F x

2Aa
11G 2k21D expH 2x2

2 J dx.
~3.13!

Integrating by parts, we obtain the recurrence relation

bp5bp211
p21

4a
bp22 , b051, b151,

for the moments

bp5K S 11
g

2AaD
pL

g

,

whereg is a Gaussian distributed random variable with 0 mean and variance 1. This re
provides the elementary estimate fora.1,

h2k
~a!<2aF2uS 11

1

4aD G
2k

~2k21!!!; ~3.14!

then ~3.2! is shown to be true.
Now it is easy to see thatsa(l) cannot have a bounded support. In the latter case

momentsh2k
(a) admit an exponential estimate for allk, but it follows from ~3.12! that

h2k
~a!.

~2k21!!!

ak21 u2k.

Inequality ~3.14! provides that

1

k! E S l

TD 2kdsa~l!<
a

2k21 ,

is true for allkPN, where

T54uS 11
1

4aD .
Then

E
2`

`

expH l2

T2J dsa~l!<4a
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and

E
ulu.xT

dsa~l!<4a exp$2x2%. ~3.15!

This gives the estimate for the asymptotic behavior ofsa(l) for large ulu.
Now let us derive~3.4!. Considering the termd52 in ~3.12! and applying~3.11! twice, we

obtain that

M2k
~1!53u4 (

2k24

*Mp1
Mp2

Mp3
Mp4

53 (
q,2k242q>0

Mq12M2k222q5
3

u2
@M2k1222u2M2k#.

~3.16!

Thus, if expression~3.3! holds, we have to find a functions (1)(l) such that

E l2k11 ds~1!~l!50

and

M0
~1!5E ds~1!~l!50, M2

~1!5E l2 ds~1!~l!50, ~3.17!

and

M2k
~1!5E l2k ds~1!~l!53E Fl2

u2
22Gl2k dssc~l!.

It is a simple matter to check that~3.4! satisfies these conditions. Let us note that all terms w
higher powers of 1/a from ~3.12! can be treated by the same technique and subsequena
correctionss (k)(l), k52,3,..., to thefunction sa(l) can be found. However, one needs som
additional arguments to prove the existence of these corrections. This is because all fu
s (k)(l) cannot be nondecreasing due to the condition*ds (k)(l)50 @c.f. ~3.17!#. Hence, classica
moment problem theory cannot be applied to prove the existence and uniqueness of corr
s (k)(l).

IV. OTHER ENSEMBLES OF DILUTE RANDOM MATRICES

In the two previous sections we studied the dilution of the Marchenko–Pastur–Hop
~MPH! matrices~1.1! with

dN~m,x,y!5aN~x,y!. ~4.1!

This dilution is known as a ‘‘spatial’’ dilution in neural network theory. We observe tha
changes the IDS of the MPH ensemble and leads to the semicircle distribution. This c
interpreted as the spatial dilution~4.1! destroying the dependence between the entries in the M
ensemble.

If one were to introduce a dilution of the form~1.13!, then the matrix obtained,
J. Math. Phys., Vol. 38, No. 6, June 1997
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ÂN~x,y!5 (
m51

m

jN
m~x!jN

m~y!dN
m~x!dN

m~y!, ~4.2!

is more closely related to the structure of the pure, undiluted MPH ensemble~1.1! than the dilute
ensemble we considered. This observation is supported by the following theorem.

Theorem 4.1:Let independent random variables$jm(x)% satisfy the conditions of Theorem
2.1. If random variables aN

m(x) are jointly independent and independent from$jm(x)% and

dN
m~x,y!5H 1

NaAa
, with probability

a

N122a

0, with probability 12
a

N122a ,

~4.3!

with 0<a<1/2, then

p2Lim s~l;ÂN!5s~l!, ~4.4!

wheres~l! is given by (1.4).
Under Lim in ~4.4! we mean the limiting transitions@c.f. ~2.6!#
~a! m, N→`, m/N→c.0 whena.0 and
~b! m,N,a→`, m/N→c.0 anda,N whena50.
One can prove this theorem by using, for example, some modification of the resolvent

nique developed in Ref. 16.
We see that the Marchenko–Pastur distribution can also be a limiting distribution for ce

dilute random matrix ensembles. However, the following results show that this situation is
unusual. Namely, applying the technique used in Sec. II, we prove the following.

Theorem 4.2: Let i.i.d. random variables w(x,y), x,y have zero average and varianc
w2 [c.f. (1.6)] and let w(x,x)50. Then the NCF of the random matrices,

W̃N~x,y!5w~x,y! (
m51

m

dN
m~x!dN

m~y!, x,y51,N, ~4.5!

where dN
m(x) are defined by (4.3) and0<a<1/4, converge in probability to the semicircl

distribution (1.8) withv25cw2 in the limit described in Theorem 4.1.
Remark:As we noted earlier, the technique of eliminating diagrams with vanishing cont

tions used in Sec. II is appropriate here. However, for the case of a finite dilution parame~a
fixed anda50!, the diagrams giving nonzero contributions to the IDS of~4.5! are different from
those of the spatially dilute MPH ensemble~2.1!. This results in different 1/a corrections to the
semicircle distribution. We plan to study this problem in a separate publication.

Taking into account that the semicircle distribution is the IDS of a spatially diluted Wig
ensemble, we can conclude that it is the more natural eigenvalue distribution for dilute ra
matrices than the Marcheno–Pastur distribution.

The dilution could be regarded as a particular case of a more general problem in the ra
modulation of matrices,

ĤN~x,y!5AN~x,y!DN~x,y!.

One could, for instance, ask about the stability of the semicircle distribution under modulat
the Wigner random matricesWN(5AN) by some random perturbationDN .

As a particular answer to this question we can present the result about the IDS of the c
ensemble of random matrices,
J. Math. Phys., Vol. 38, No. 6, June 1997
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ĤN~x,y!5
1

AN
w~x,y!

1

AN (
m51

m

jN
m~x!jN

m~y!, ~4.5!

which can also be regarded as the modulation of MPH random matrices~1.1! by independent
random variablesw(x,y), x<y, w(x,y)5w(y,x) satisfying~1.6!.

By slightly changing the reasoning presented in Sec. II, we can prove that the IDS ofĤN is
also the semicircle distribution.

V. DISCUSSION

We have considered the IDS of an ensemble of dilute random matricesHN in the limit
N→`. Our main tool was the momentsE$HN

K%, kPN. To study their asymptotic behavior a
N→`, we modified the original technique used by Wigner to prove the semicircle law. Using
technique we obtained an exact expression for the moments in the limitN→`, for both infinite
and finite dilution parametera.

Our main result, Theorem 2.1, is that the spatial dilution of the Marchenko–Pastur–Ho
~MPH! ensemble leads to the semicircle distribution, and not an analog of the distribution fo
pure, undiluted, MPH ensemble. In Secs. III and IV we showed that the IDS of the dilute
ensemble is similar to the IDS of the dilute Wigner ensemble, even for finite dilution param
a, and that the semicircle distribution is stable with respect to several other types of dilutio

The nature of the similarity between the dilute MPH and dilute Wigner ensembles for
a becomes especially clear in the case ofn51/2. Then~2.1! can be redefined as anN3N matrix
with entriesgN(x,y)cN(x,y), where

gN~x,y!5
1

AN (
m51

m

jN
m~x!jN

m~y!, xÞy,

andcN(x,y) is 1 with probabilitya/N and 0 with probability 12a/N. In this caseHN for each
N contains approximatelya2/2 nonzero entries and they converge whenN→` to jointly indepen-
dent random variables. This explains the convergence of the dilute MPH and Wigner ense

The difference between the MPH and Wigner ensembles is that the entries in the
matrices are slightly dependent on one another. However, this dependence is enough to s
IDS of the pure MPH ensemble from the semicircle distribution. The spatial dilution eliminate
the limit N→`, the dependence between entries in the MPH ensemble.

This conclusion suggests that it would be interesting to study the spatial dilution of ran
matrices with more strongly dependent entries. For example, one could consider~1.1! with Gauss-
ian jm(x), such that24

^jm~x!jt~y!&5Vm2t~x2y!.

We assume that the spatial dilution will break this dependence between entries in the
N→`.

The same phenomenon of breaking the dependence between the matrix elements with
dilution was observed in studies of the dilute MPH ensemble in neural network theory.4,8 These
studies considered the case of strong dilution that corresponds to our problem whenn51/2. Note
that these works treated the case of an infinite dilution parameter (a→`), while we observe
breaking for finite values ofa.

Another type of dilution, called weak dilution in the literature on neural network theor3,5

corresponds to the casen51 in definition~2.3!. Using this terminology, we have studied the ID
of the MPH ensemble with moderate and strong dilution.
J. Math. Phys., Vol. 38, No. 6, June 1997
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It seems to be difficult to use our technique to study the weak dilution case directly. T
because the ensemble~2.1!–~2.3! with n51 differs essentially from those with 1/2<n,1. Pre-
liminary studies show that the IDS of the weak dilution MPH ensemble cannot be equal
semicircle or the Marchenko–Pastur distribution. We plan to study this ensemble separate

Another of our observations concerns random matrices,

ĤN~x,y!5w~x,y!DN~x,y!,

wherew(x,y) are as in Wigner random matrices andDN(x,y) represents dilution independen
from w(x,y) or, more generally, a random modulation of the Wigner ensemble.

In Sec. IV we showed that ifDN(x,y) is the proper dilution of the MPH ensemble and ev
if DN(x,y) are entries of MPH matrices by themselves, then the IDS ofĤN is again a semicircle
distribution.

These facts, together with our main conclusion, suggest that the semicircle law is quite
to dilution ~or modulation!. It would be interesting to develop a more precise formulation of
observation.
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Dirichlet operators on loop spaces: Essential self-
adjointness and log-Sobolev inequality

Yong Moon Parka)
Department of Mathematics and Institute for Mathematical Sciences, Yonsei University,
Seoul 120-749, Korea

Hyun Jae Yoob)
Institute for Mathematical Sciences, Yonsei University, Seoul 120-749, Korea and Institut
für Mathematik, Ruhr-Universita¨t-Bochum, D-44780 Bochum, Germany

~Received 24 June 1996; accepted 7 February 1997!

For eachgP@0,1# and potential functionV:Rd→R, we consider the Dirichlet form
E m

(g) and the associated Dirichlet operatorHm
(g) for the Gibbs measurem on the

loop spaceE5$vPC(@0,1#;Rd):v(0)5v(1)%. The Gibbs measurem is related to
the Gibbs state of the quantum anharmonic oscillator with the potentialV via the
Feynman–Kac formula. We formulate Dirichlet forms in the framework of rigged
Hilbert spaces which are related to the loop spaceE. We then give an approximate
criterion for the essential self-adjointness of Dirichlet operators associated with
Dirichlet forms given by probability measures on Hilbert spaces. Under appropriate
conditions on the potential, we apply the approximate criterion to show that the
Dirichlet operatorHm

(g) is essentially self-adjoint on the domain of smooth cylinder
functions. In addition, if the potential satisfies a uniform convexity condition, we
prove that the Dirichlet operatorHm

(g) has a gap at the lower end of spectrum. We
also show that the Gibbs measurem satisfies the log-Sobolev inequality. We use
the approximation method developed by Albeverio, Kondratiev, and Ro¨ckner with
necessary modifications. ©1997 American Institute of Physics.
@S0022-2488~97!03306-9#

I. INTRODUCTION

In this paper we consider one parameter family of Dirichlet forms and the associated Dir
operators for Gibbs measures on the loop spaceE5$vPC(@0,1#;Rd):v(0)5v(1)%. For each
gP@0,1# and potentialV:Rd→R, we define the Dirichlet formEm

(g) and the associated Dirichle
operatorHm

(g) for the Gibbs measurem in the framework of rigged Hilbert spaces. The Gib
measurem for the potentialV is related to the Gibbs state of the quantum anharmonic oscill
with the potentialV via the Feynman–Kac formula.1 If the potential is three times differentiabl
and if the potential and its Hessian are bounded below and satisfy an appropriate growth con
we show that the Dirichlet operatorHm

(g) is essentially self-adjoint on the domain of smoo
cylinder functions. Furthermore, if the potential satisfies a uniform convexity condition, we p
that the Dirichlet operatorHm

(g) has a gap at the lower end of spectrum. We also show tha
Gibbs measurem satisfies the log-Sobolev inequality.2 The main ingredient we use is the approx
mation method developed in Refs. 3–5 with necessary modifications.

Dirichlet forms and the associated diffusion processes have been intensively investiga
connection with their important applications to mathematical physics and theory of random
cesses~see Refs. 6–10 and references therein!. The theory of Dirichlet forms on finite dimensiona
spaces is a well-known modern tool in the potential theory8,11 and quantum mechanics.12,13There
have been many efforts to extend the general theory to the case where the state space
infinite dimensional~e.g., Refs. 3–7, 9, 14–19, and references therein!. In all cases the forms are

a!Electronic-mail: ympark@bubble.yonsei.ac.kr
b!Electronic-mail: yoohj@phya.yonsei.ac.kr and hyun.j.yoo@rz.ruhr-uni-bochum.de
0022-2488/97/38(6)/3321/26/$10.00
3321J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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given first on some minimal domains of smooth functions with compact support or cylinder
Most of results then touch upon the problems of the closability of the forms and the constru
of corresponding diffusion processes. The uniqueness problem of determining whether a
closable form possessing the contraction property has a unique closed extension has al
discussed in recent years. There are two kinds of uniqueness problems.

~i! ~Markov uniqueness!: Is there exactly one positive definite operatorHm
(g )̃ that extends

(Hm
(g) ,D(Hm

(g)))? @i.e., D(Hm
(g )̃).D(Hm

(g)) and Hm
(g )̃u5Hm

(g)u on D(Hm
(g)) and exp(2tHm

(g)̃) is
sub-Markovian#.

~ii ! ~Essential self-adjointness!: Is Hm
(g) essentially self-adjoint inL2(dm) with a core of

minimum definition?
Obviously,~ii ! implies ~i!. For Markov uniqueness problem there is a good deal of work

finite and infinite dimensional spaces.13,20–26The results have been applied in the examples
cluding the Dirichlet forms associated with models of space–time quantum fields~resp., time zero
quantum fields! with space–time~resp. space! cut-off interaction.

For the essential self-adjointness problem, when a given measure has a smooth loga
derivative, the essential self-adjointness is proved in Ref. 27 extending a Kato inequali
applications, including the case of this paper, the condition of having a smooth logarithm
rivative is hard to fulfill. On the other hand, in Refs. 3–5, there has been developed a criteri
essential self-adjointness of Dirichlet operators and a criterion for log-Sobolev inequalitie
measures. The method is, on its base, an application of Berezansky’s abstract parabolic crit
essential self-adjointness.28 It is to approximate the logarithmic derivative of a given measure
a sequence of mappings with nice behavior.

In applications, the presence of log-Sobolev inequality for the Gibbs measures is esse
prove theL2-ergodicity of the semi groupTt :5exp(2Hm

(g)t), t>0, and it has a wide range o
applications.29 The log-Sobolev inequality was first proven by Gross for the Gaussian measur
Rn,2 and then extended in many directions.5,29–34

Let us describe briefly the results and main ideas in this paper. Denote by (•,•) the inner
product inL2(@0,1#):5L2(@0,1#;Rd,dt). Let Dp be the Laplacian operator onL2(@0,1#) with
periodic boundary conditions. Let us define

A:5~2Dp11!.

Let m0 be the Gaussian measure on the spaceL2(@0,1#) with mean zero and covariance operat
A21, i.e.,

E exp@ i ~h,v!#dm0~v!5expF2
1

2
~h,A21h!G , hPL2~@0,1# !.

We notice thatm0 is supported on the loop spaceE. For any potentialVPC3(Rd;R) which is
bounded below, the Gibbs measurem on E is given by

dm~v!5
1

Z
expH 2E

0

1

Ṽ~v~t!!dtJ dm0~v!, ~1.1!

whereZ is the normalization factor~partition function!, andṼ(x):5V(x)2 1
2uxu2. We notice that

m(E)51.
For eachgP@0,1# we introduce real separable Hilbert spaces,H1

(g) , H (g), andH2
(g) with

scalar productŝ•,•&1
(g) , ^•,•& (g), and^•,•&2

(g) , respectively, such thatE,H2
(g) and

H1
~g!,H~g!,H2

~g! ~1.2!
J. Math. Phys., Vol. 38, No. 6, June 1997
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is a rigging ofH (g) by H1
(g) andH2

(g) .3–5,28 See~2.12! and ~2.13! in Section II. The duality
betweenH1

(g) andH2
(g) is given by the scalar product inH (g) and is denoted bŷ•,•& (g). Denote

by F Cb
`(H2

(g)) the set of all smooth cylinder functions onH2
(g) with all derivatives bounded.5

Define the bilinear form~pre-Dirichlet form! by

D~Em
~g!!5F Cb

`~H2
~g!!,

~1.3!

Em
~g!~u,v !5

1

2EH2
~g!

^¹ū,¹v&~g!dm, u,vPF Cb
`~H2

~g!!.

We define the Dirichlet operatorHm
(g) associated toEm

(g) by

Hm
~g!v~v!52 1

2 Dv~v!2 1
2 ^b~g!~v!,¹v~v!&~g!, vPF Cb

`~H2
~g!!, ~1.4!

where

b~g!v~t!52Agv~t!2A2~12g!]Ṽ~v~t!!, ~1.5!

where]Ṽ denotes the gradient ofṼ. See Section II for the notation. It can be shown thatubu2
(g)

PL2(H2
(g) ,dm) ~Lemma 4.1!. Thus,Hm

(g) is a well defined symmetric operator. Due to t
integration by parts formula, the relation

Em
~g!~u,v !5~u,Hm

~g!v !L2~m! , u,vPF Cb
`~H2

~g!!,

holds. Thus, the pre-Dirichlet form (Em
(g) ,F Cb

`(H2
(g))) is closable and it also can be shown th

it is Markovian and quasi-regular in the sense of Ref. 9. Therefore, the closure is a Dirichlet
and there exists an associated diffusion process.9

In order to show the essential self-adjointness ofHm
(g) onF Cb

`(H2
(g)), we use an approximate

criterion~Theorem 3.1! which is a modification of Theorem 1 of Ref. 5. As in Ref. 5, we introdu
a sequence$bn :nPN%, bn :H2

(g)→H2
(g) , which approximates the logarithmic derivativeb (g) of

the Gibbs measurem. The condition~iv! of Theorem 1 of Ref. 5 is that there exists a const
c>0 such that the bounds

^bn8~v!h,h&2<cuhu2
2 , hPH2 ,

hold uniformly innPN andvPH2 , wherebn8 is the derivative ofbn in the sense of Fre´chet. In
our case, the above bound does not hold in general. Instead, under Assumption 2.1 ford51 ~with
an additional assumption ford>2), it can be shown that the bounds

^bn8~v!h,h&~g!<c~ uhu~g!!2, hPH~g! ~1.6!

hold uniformly in nPN andvPH2
(g) . Thus, we need to develop an approximate criterion

essential self-adjointness of Dirichlet operators which is applicable to our situation. See Sec
and Section IV for the details. We plan to apply the criterion to prove the essential self-adjoin
of Dirichlet operators for quantum unbounded spin systems in a forthcoming paper.35

If the potentialV satisfies the uniform convexity condition~Assumption 5.1! the Gibbs mea-
surem satisfies the uniform log-concavity condition,5 and so the existence of a gap at the low
end of the spectrum ofHm

(g) follows, and, furthermore, the measurem satisfies the log-Sobolev
inequality.2

We organize the paper as follows: In order to fix the notation, we recall the definitio
Dirichlet operators associated with Dirichlet forms in the framework of rigged Hilb
spaces3–7,27,30in Section II. For given potentialV:Rd→R, we then introduce the Gibbs measu
J. Math. Phys., Vol. 38, No. 6, June 1997
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m on the loop space, and list basic assumptions on the potential~Assumption 2.1!. For giveng
P@0,1# and the potential, we define the pre-Dirichlet formEm

(g) and the associated Dirichle
operatorHm

(g) . In Section III, we give an approximate criterion~Theorem 3.1! for essential self-
adjointness of the Dirichlet operator which is a modification of Theorem 1 of Ref. 5. We
produce the proof of the theorem by using a method similar to that employed in Ref. 5. In S
IV, we apply the approximate criterion to show that for eachgP@0,1# the Dirichlet operator
Hm
(g) is essentially self-adjoint on the smooth cylinder functions. For the proof we introdu

sequence$bn :nPN% which approximates the logarithmic derivativeb (g) of the Gibbs measure
m and show that the conditions in Theorem 3.1 are satisfied. In Section V, under the un
convexity condition on the potential, we show thatHm

(g) has a gap at the lower end of the spectru
~Theorem 5.1!. We also show that the Gibbs measure satisfies the log-Sobolev inequality~Theo-
rem 5.2!.

II. DIRICHLET FORMS AND DIRICHLET OPERATORS FOR GIBBS MEASURES ON
LOOP SPACE

In this section we introduce one parameter family of Dirichlet forms and the assoc
Dirichlet operators for a given Gibbs measure on the loop space,

E5$vPC~@0,1#;Rd!:v~0!5v~1!%.

The Gibbs measures we are dealing with are related to the Gibbs states of quantum anha
oscillators via the Feynman–Kac formula.1

In order to fix the notation we review briefly the general formalism of Dirichlet forms
Dirichlet operators in the framework of a rigged Hilbert space.3–7,27,30LetH be a separable rea
Hilbert space with scalar product^•,•& and normu•u, and let

H1,H,H2 ~2.1!

be a rigging ofH by the Hilbert spacesH1 andH2 with scalar products and norms^•,•&1 ,
u•u1 , resp.,^•,•&2 , u•u2 . We suppose that the embeddings in~2.1! are everywhere dense an
belong to the Hilbert–Schmidt class. We also suppose thatu•u2<u•u<u•u1 . Otherwise it is
sufficient to renormH1 . The duality betweenH1 andH2 is given by the inner product in
H and will also be denoted bŷ•,•&. We also use the usual complexifications of the rigging~2.1!.
The complexification of a real Hilbert spaceH will be denoted byHC” .

Denote byCk(H2 ,B) the set of all mappings fromH2 into a Banach spaceB that are
k-times continuously differentiable in the sense of Fre´chet. DefineCb

k(H2 ,B) as the subset o
Ck(H2 ,B) which are characterized by the condition of global boundedness in the usual op
norms of derivatives

f ~ l !:H2→L~H2 ,L~H2 , . . . ,L~H2 ,B!••• !!, l50,1, . . . ,k.

For f :H2→C” identify f 8(•)PL(H2 ,C” ) with the vector f̂ 8(•)PH1,C” and f̂ 9(•)
PL(H2 ,L(H2 ,C” )) with the operatorf̂ 9(•)PL(H2 ,H1,C” ) by the formula

f 8~x!h5^ f̂ 8~x!,h&, ~ f 9~x!h!g5^ f̂ 9~x!h,g& ~h,gPH2!. ~2.2!

For the function fPC2(H2):5C2(H2 ,C” ) we make the convention that the symbo
¹ f :5 f 85 f̂ 8 and f 95 f̂ 9 denote the realization of their first and second derivatives, respecti
in terms of the scalar product inH in the sense of~2.2!. In the spaceCb

2(H2),C2(H2) we
introduce the norm
J. Math. Phys., Vol. 38, No. 6, June 1997
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i f iC
b
25 sup

xPH2

$u f ~x!u1u f 8~x!u11i f 9~x!iL~H2 ,H1,C” !%. ~2.3!

For fPCb
2(H2) we denote byD f5TrH( f 9) the trace inH of the operatorf 9 and it is finite due

to the inclusionf 9PL(H2 ,H1,C” ).
We denote byF Cb

`(H2) the set of all smooth cylinder functions onH2 with all derivatives
bounded. That is, if fPF Cb

`(H2), there exist NPN, f1 ,f2 , . . . ,fN,H1 and f N
PCb

`(RN) such that

f ~x!5 f N~^x,f1&, . . . ,̂ x,fN&!, xPH2 . ~2.4!

Introduce also the setCpol
k (H2 ,B),Ck(H2 ,B) of all polynomially bounded mappings, i.e., an

fPCpol
k (H2 ,B), satisfies

uu f ~ l !~x!uu<c~11uxu2!p, xPH2 ,

for some c.0 and pPN in the corresponding operator norms of the derivativ
f ( l ),l50, . . . ,k.5 For example, for anyfPCpol

2 (H2 ,C” ), there existc.0 andpPN such that

u f ~x!u1u f 8~x!u11i f 9~x!iL~H2 ,H1,C” !<c~11uxu2!p, xPH2 .

Let m be a probability measure on the Borels-algebraB(H2) with suppm5H2 , i.e.,
m(U).0 for every non-empty open setU. It can be shown thatF Cb

`(H2) is dense in
L2(H2 ,m).9 Define the bilinear form~pre-Dirichlet form!

D~Em!5F Cb
`~H2!,

~2.5!

Em~u,v !5
1

2EH2

^¹ū~x!,¹v~x!&dm~x!.

Then (Em ,F Cb
`) is a densely defined positive definite symmetric bilinear form onL2(H2 ,m).

Let m be quasi-invariant under translations by vectors inH1 . That is, for eachfPH1 the
measuredm(x) anddmf(x) are mutually absolutely continuous and the Radon–Nikodym der
tive,

rf~x!5
dmf~x!

dm~x!
PL1~H2 ,m!

is defined, wheredmf(•):5dm(•1f). We suppose that there exists the logarithmic derivat
bf of the measurem in all directionsfPH1 in the sense of the equality

lim
l→0

E
H2

f ~x!$rlf~x!21%dm~x!5E
H2

f ~x!bf~x!dm~x!, fPCb
2~H2!, ~2.6!

wherebf can be represented as

bf~x!5^b~x!,f& m2a.e.xPH2 ,fPH1 , ~2.7!

for some measurable mappingb:H2→H2 . We callb the logarithmic derivative of the measur
m.

Let us introduce a differential operatorHm on the domainD(Hm)5F Cb
`(H2) by the for-

mula
J. Math. Phys., Vol. 38, No. 6, June 1997
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~Hmv !~x!52 1
2 Dv~x!2 1

2 ^b~x!,¹v~x!&, vPF Cb
`~H2!, xPH2 . ~2.8!

By the definition ofb, a direct computation yields

Em~u,v !5~u,Hmv !L2~m! , u,vPF Cb
`~H2!. ~2.9!

The operatorHm is called the Dirichlet operator associated to the pre-Dirichlet fo
(Em ,F Cb

`(H2)). Notice thatHm is a symmetric operator onL2(m).
We now introduce Dirichlet forms associated to Gibbs measures on the loop space

E5$vPC~@0,1#;Rd!:v~0!5v~1!%, ~2.10!

equipped with the uniform normuvuu :5suptP[0,1]$uv(t)u%. If one considers Gibbs measures
the temperatureT, one has to replaceE by $vPC(@0,1/T#;Rd):v(0)5v(1/T)%. In order to
avoid unnecessary notational complications we setT51 throughout this paper. Denote byDp the
Laplacian operator onL2(@0,1#;Rd,dt) with periodic boundary conditions. Put

A:52Dp11. ~2.11!

For anygP@0,1#, letH1
(g) , H (g), andH2

(g) be the real Hilbert spaces obtained by completio
of C`(@0,1#;Rd) with normsu•u1

(g) , u•u(g), andu•u2
(g) induced by

^h,g&1
~g!5~Ah,Ag!L2,

^h,g&~g!5~A~12g!/2h,A~12g!/2g!L2, ~2.12!

^h,g&2
~g!5~A2gh,A2gg!L2,

where we have used the abbreviated notationL2:5L2(@0,1#;Rd,dt). Notice that for anyg
P@0,1#, A2(11g)/2 belongs to the Hilbert–Schmidt class and so

H1
~g!,H~g!,H2

~g! ~2.13!

is a rigging ofH (g) byH1
(g) andH2

(g) and the embeddings belong to the Hilbert–Schmidt cla
Let m0 be the Gaussian measure on (E,B(E)) for which its characteristic functional is give

by

E
E
exp$ i ~v,h!L2%dm0~v!5expH 2

1

2
~h,A21h!L2J , hPL2. ~2.14!

The above Gaussian measure can be expressed as a measure onH2
(g) . For any givengP@0,1# let

(H2
(g) ,B(H2

(g)),m0) be the Gaussian measure space for which its characteristic function
given by

E
H2

~g!
exp$ i ^v,h&~g!%dm0~v!5expH 2

1

2
^h,A2gh&~g!J , hPH1

~g! . ~2.15!

We remark thatm0(E)51 and~2.15! reduces to~2.14! on E.
Next we consider the potentialV:Rd→R and the corresponding Gibbs measure. F

x5(x1,x2, . . . ,xd)PRd let uxu be the Euclidean norm ofx. For fPC1(Rd,R) denote by] i f ,
i51,2, . . . ,d, the partial derivatives off .

Assumption 2.1: The potential V:Rd→R is a three times continuously differentiable functio
satisfying the following conditions.
J. Math. Phys., Vol. 38, No. 6, June 1997
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(a) There exist positive constants a and b such that for somea>2 the bound

V~x!>auxua2b

holds.
(b) For any positive real numberd.0, there exists positive constant D(d).0 such that the

bound

uV~x!u1(
i51

d

u] iV~x!u1 (
i , j51

d

u] i] jV~x!u<D~d!exp~duxu2!

holds.
(c) There exists a constant MPR such that

Hess.V~x!>M1,

uniformly in xPRd, whereHess.V is the Hessian of V, i.e., the d3d matrix for which its i- j
element, i, j51,2, . . . ,d, is given by] i] jV(x).

For given potentialV we write

Ṽ~x!5V~x!2 1
2 uxu2. ~2.16!

We define the Gibbs measurem on (H2
(g) ,B(H2

(g))) associated to the potentialV by

dm~v!5
1

Z
expH 2E

0

1

Ṽ~v~t!!dtJ dm0~v!, ~2.17!

whereZ is the normalization factor~the partition function! given by

Z5E
H2

~g!
expH 2E

0

1

Ṽ~v~t!!dtJ dm0~v!.

We remark that the functional*0
1Ṽ(v(t))dt is defined onE and so it is defined onH2

(g) m —a.e.
By a of Assumption 2.1 and~2.16! the partition functionZ is finite.

As in ~2.5!, we define for eachgP@0,1# a pre-Dirichlet form,

D~Em
~g!!5F Cb

`~H2
~g!!,

~2.18!

Em
~g!~u,v !5

1

2EH2
~g!

^¹ū~x!,¹v~x!&~g!dm~x!.

We next derive the Dirichlet operator associated toEm
(g) . By the definition of the Gibbs measur

m in ~2.14! and ~2.17!, the logarithmic derivativebf
(g) of the measurem in the directionf

PH1
(g) is given by

bf
~g!~v!52~v,Af!L22~]Ṽ~v!,f!L25^Agv,f&~g!2^A2~12g!]Ṽ~v!,f&~g!, m2a.e.,

where]Ṽ(x) is the gradient ofṼ(x), xPRd, and forvPE, ]Ṽ(v)PE is defined by

]Ṽ~v!~t!:5]Ṽ~v~t!!, tP@0,1#.
J. Math. Phys., Vol. 38, No. 6, June 1997
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In this paper we use the notation]g, instead of¹g, for the gradiant ofgPC1(Rd,R) to avoid
unnecessary confusion with¹u for uPC1(H2). Thus, the logarithmic derivative ofm is given
by

b~g!~v!52Agv2A2~12g!]Ṽ~v!. ~2.19!

We considerb (g) as a mapping fromE(,H2
(g)) to H2

(g) . Thus,b (g) is definedm2a.e. As in
~2.8! we define the Dirichlet operatorHm

(g) associated toEm
(g) by

~Hm
~g!v !~v!52 1

2 Dv~v!2 1
2 ^b~g!~v!,¹v~v!&~g!, vPF Cb

`~H2
~g!!, vPE. ~2.20!

We remark thatDv and¹v depend also ong which we suppressed in the notation. In Section I
we will show that ubu2

(g)PL2(m). Thus, Hm
(g) is a densely defined symmetric operator

L2(m), and the relation

Em
~g!~u,v !5~u,Hm

~g!v !L2~m! , u,vPF Cb
`~H2

~g!!

holds.
Remark 2.1: The most interesting Dirichlet operators would be Hm

(0) and Hm
(1) which corre-

spond tog50 and g51, respectively. These Dirichlet operators and corresponding Dirich
forms have been considered in Ref. 36 and Ref. 37, respectively, for one site (one particle)

III. AN APPROXIMATE CRITERION OF ESSENTIAL SELF-ADJOINTNESS

In this section, we give a modified version of the approximate criterion given by Albev
Kondratiev, and Ro¨ckner3–5 for essential self-adjointness of Dirichlet operators associated
Dirichlet forms given by probability measures.

We return to the general formalism of Dirichlet forms and Dirichlet operators in the fra
work of rigged Hilbert spaces. LetEm andHm be the Dirichlet form and the associated Dirichl
operator given by a probability measurem on H2 , respectively. See~2.5! and ~2.8! for the
definitions. As in Ref. 5, we assume that for anypPN,

E
H2

uxu2
p dm~x!,` ~3.1!

and

E
H2

ub~x!u2
2 uxu2

p dm~x!,`. ~3.2!

The condition~3.1! gives the embeddings

Cb
2~H2!,Cpol

2 ~H2!,L2~m!:5L2~H2 ,B~H2!,m!.

Under the condition~3.1!, due to the Ho¨lder’s inequality a sufficient condition for~3.2! is that
there existsd.0 such that

E
H2

ub~x!u2
21ddm~x!,`. ~3.3!

By ~3.2! the Dirichlet operatorHm is defined onCpol
2 (H2).

The following result is a modified version of Theorem 1 of Ref. 5:
J. Math. Phys., Vol. 38, No. 6, June 1997
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Theorem 3.1:Letm be a probability measure onB(H2) which satisfies the conditions (3.1
and (3.2). Letb be written asb5b11b2 . Suppose that there exists a sequence$bn :nPN%,
bn :H2→H2 , bn5b1,n1b2,n , nPN, such that the following properties hold:

(i) For any nPN, bnPCpol
2 (H2 ,H2).

(ii) For any nPN, there exists a constant c(n)>0 such that the following bound holds:

^bn~x!,x&2<c~n!~11uxu2
2 !, xPH2 .

(iii) For any nPN, there exists a constant M(n)>0 such that the bound

ibn8~x!iL~H2 ,H!<M ~n!

holds uniformly in xPH2 .
(iv) For any nPN, there exists a constant c1(n) depending on nPN such that for any h

PH2 the bound

^h,bn8~x!h&2<c1~n!uhu2
2

holds uniformly in xPH2 .
(v) There exists a constant c2>0 andN0PN, such that for any n>N0 and hPH the bound

^h,b2,n8 ~x!h&<c2uhu2

holds uniformly in xPH2 and n>N0 .
(vi) There exists a sequence$an :nPN% of positive real numbers such that for the consta

c1(n), nPN, appeared in (iv),

an exp~c1~n!/2!→0, as n→`,

and such that for any nPN,

iub1,n2b1,nu2iL2~m!<an .

(vii) iub2,n2b2,nuiL2(m)→0 as n→`.
Then, the Dirichlet operator Hm is essentially self-adjoint on Cb

2(H2).
If one compares the conditions in the above theorem to those in Theorem 1 of Ref. 5, it

very complicated. Thus, a few comments are in order.
Remark 3.1: (a) Suppose that one can choose the constants c1(n), nPN, in the condition (iv)

independently of nPN, i.e., there exists a constant c such that for any nPN and hPH2 the
bound

^h,bn8~x!h&2<cuhu2
2 ~3.4!

holds uniformly in nPN and xPH2 . In this case, we do not need to split bn5b1,n1b2,n . The
condition (iii) which will be used typically for the ‘‘quantum’’ cases (e.g., for loop spaces in
paper or for quantum spin systems with a slightly different form35 [cf. (iii) 8 of Theorem 3.2)] is not
needed. See (3.10) and Lemma 3.1 below. The condition (vi) is then reduced to

iub2bnu2iL2→0, as n→`. ~3.5!

The case of classical spin systems is an example.5,38The conditions (i), (ii), (3.4), and (3.5) are th
conditions in Theorem 1 of Ref. 5. Thus, Theorem 3.1 can be considered as an exten
Theorem 1 of Ref. 5.
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(b) Consider the case in whichb150 and b25b. Choose b1,n50 and b2,n5bn for any n
PN. Then, the condition (iv) and (vi) are not needed for Theorem 3.1 to hold. See the pro
Theorem 3.1 below. The study for classcical spin systems belong to this case again.

(c) In the application in Section IV, we shall take the first term and the second term i
right hand side in (2.19) forb1 andb2 , respectively.

Proof of Theorem 3.1: We shall follow the method used in the proof of Theorem 1 of Re
with suitable modifications. For anynPN, we define a differential operatorHn on the domain
Cpol
2 (H2) by the formula

Hnu52 1
2 Du2 1

2 ^bn ,¹u&. ~3.6!

We shall use the following general parabolic criterion of essential self-adjointness~see Ref. 28,
Chap. 5, Theorem 1.10!: Let us consider the Cauchy problems

d

dt
un~ t !1Hnun50, un~0!5 f ,tP@0,1#, ~3.7!

where fPCb
2(H2) is arbitrary. If one can prove the existence of strong solutions

un :@0,1#→L2~m!,

for ~3.7! such that

un~ t !PD~Hn!, for any tP@0,1# and nPN ~3.8!

and

E
0

1
i~Hm2Hn!un~ t !iL2~m!dt→0, n→`, ~3.9!

thenHm is essentially self-adjoint onCb
2(H2).

The existence and the differentiability of a strong solution of~3.7! satisfying~3.8! are guar-
anteed by the fact thatbnPCpol

2 (H2 ,H2), nPN. See Ref. 5 and the references therein. Th
we only need to show~3.9!. It follows from ~2.8! and ~3.6! that

E
0

1
i~Hm2Hn!un~ t !iL2~m!dt5E

0

1
i^b2bn ,¹un~ t !&iL2~m!dt

<E
0

1
i^b12b1,n ,¹un~ t !&iL2~m!dt1E

0

1
i^b22b2,n ,¹un~ t !&iL2~m!dt

<E
0

1
i~ ub12b1,nu2!~ u¹un~ t !u1!iL2~m!dt

1E
0

1
i~ ub22b2,nu!~ u¹un~ t !u!iL2~m!dt. ~3.10!

Under the assumptions in Theorem 3.1, we shall show that asn goes to infinity, each term in the
right hand side of~3.10! converges to zero.

In order to control¹un(t) in ~3.10!, we use the method similar to that in Ref. 5. As in Re
3–5, let us consider the stochastic differential equation,

djn,x~ t !5 1
2bn~jn,x~ t !!dt1dw~ t !. ~3.11!
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



n

3331Y. M. Park and H. J. Yoo: Dirichlet operators for Gibbs measures on loop spaces

¬¬¬¬¬¬¬¬¬¬
Here,w:@0,̀ )→H2 is a standard Wiener process which corresponds to the Hilbert spaceH.
That is, there is given a probability space (V,S,P) and a Gaussian processR13V
{(t,v)°w(t,v)PH2 such that for anywPH1 and t,sPR1

E~^w~ t !,w&!50, E~^w~t!2w~s!,w&2!5ut2suuwu2,

whereE(•) denotes the expectation with respect to the measureP. Notice that the rigorous form
of ~3.11! gives the integral equation

jn,x~ t !5x1
1

2E0
t

bn~jn,x~t!!dt1w~ t !. ~3.12!

For the existence and various differentiability properties of the solution of~3.12!, we refer to Ref.
5 and the references therein. For anyhPH2 , let hh(t) be the directional derivative ofjn,x(t) in
the directionh:

hh~ t !:5jn,x8 ~ t !h.

From ~3.12! one has

hh~ t !5h1
1

2E0
t

b
n8

~jn,x~t!!hh~t!dt. ~3.13!

See also the equation~18! of Ref. 5. For givenfPCb
2(H2) andnPN, we introduce the function

un~ t,x!5E$ f ~jn,x~ t !!%, xPH2 ,tPR1 . ~3.14!

By Lemma 5 of Ref. 5,un(t) is continuously differentiable inL2(m) and is a solution of~3.6!.
Lemma 3.1: (a) For any nPN and fPCb

2(H2), the bound

u¹un~ t !u1<i f iC
b
2ec1~n!t/2

holds, where c1(n), nPN, are the constants in the condition (iv) of Theorem 3.1.
(b) For any fPCb

2(H2), the bound

u¹un~ t !u<i f iC
b
2ec2t/2

holds uniformly in n>N0 , where N0PN and c2>0 are the constants appeared in the conditio
(v) of Theorem 3.1.

Proof: ~a! This follows from the condition~iv! of Theorem 3.1 and the bound in~25! of Ref.
5.

~b! Using ~3.13! and the condition~iii ! in Theorem 3.1, we obtain that forhPH,

uhh~ t !u<uhu1
1

2
M ~n!E

0

t

uhh~t!u2dt, P2a.s.

We use the condition~iv! in Theorem 3.1. Then, by Lemma 2 of Ref. 5 it follows that

uhh~t!u2<uhu2exp~c1~n!t/2!, P2a.s.

Sinceu•u2<u•u<u•u1 , we see that for anyhPH, hh(t)PH, P2a.s. It follows from~3.14! that
for any hPH andxPH2 ,
J. Math. Phys., Vol. 38, No. 6, June 1997
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^¹un~ t,x!,h&5un8~ t,x!h5E$^ f 8~jn,x~ t !!,hh~ t !&%

<$supxPH2
u f 8~x!u%E~ uhh~ t !u!<i f iC

b
2E~ uhh~ t !u!. ~3.15!

Here we have used the fact thatu f 8(x)u<u f 8(x)u1 to get the last inequality. Using the conditio
~v! in Theorem 3.1 and~3.13!, we conclude that forn>N0,

uhh~ t !u22uhu25E
0

t d

dt
uhh~t!u2dt5E

0

t

^hh~t!,bn8~jn,x~t!!hh~t!&t<c2E
0

t

uhh~t!u2dt.

By the Gronwall’s inequality we obtain from the above bound that forn>N0 ,

uhh~ t !u2<uhu2ec2t. ~3.16!

Since

u¹un~ t,x!u5 sup
hPH:uhu51

u^¹un~ t,x!,h&u,

the part~b! of the lemma follows from~3.15! and the above bound. j

Let us return to the proof of Theorem 3.1. We use~3.10!, Lemma 3.1, and the conditions~v!
– ~vii ! in Theorem 3.1 to conclude that

E
0

1
i~Hm2Hn!un~ t !iL2~m!dt<iub12b1,nu2iL2~m!$i f iC

b
2ec1~n!/2%1iub22b2,nuiL2~m!$i f iC

b
2ec2/2%

→0, as n→`.

This completes the proof of Theorem 3.1. j

Let us generalize Theorem 3.1 so that the result turns out to be useful in the study of the
subjects.35 Let K1 andK2 be real separable Hilbert spaces with scalar products and n
^•,•&K1

, u•uK1
, resp.,^•,•&K2

, u•uK2
. Suppose that the inclusions

H1,K1,H,K2,H2 ~3.17!

hold and suppose that the duality betweenK1 andK2 is given by the scalar product inH. We
do not assume that the embeddingsK1,H andH,K2 belong to the Hilbert–Schmidt class
The following is a generalization of Theorem 3.1.

Theorem 3.2: Suppose that all the conditions except the conditions (iii), (v), and (vii
Theorem 3.1 are satisfied. Suppose that the following properties hold:

(iii) 8 For any nPN, there exists a constant M(n)>0 such that the bound

ibn8~x!iL~H2 ,K2!<M ~n!

holds uniformly in xPH2 .
(v)8 There exists a constant c2>0 and N0PN such that for any n>N0 , xPH2 , and h

PK2 the bound

^h,bn8~x!h&K2
<c2uhuK2

2

holds uniformly in xPH2 .
(vii)8 iub22b2,nuK2

iL2(m)→0, asn→`.

Then, the Dirichlet operator Hm is essentially self-adjoint on Cb
2(H2).
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proof. We first assert that for anyfPCb
2(H2) the bound

u¹un~ t !uK1
<i f iC

b
2ec2t/2 ~3.18!

holds uniformly inn>N0 . To prove the above bound, we use the methods similar to that
ployed in the proof of Lemma 3.1~b!. Notice that the condition~iii !8 implieshh(t)PK2 for any
hPK2 . Using the duality betweenK1 andK2 ~with respect to the scalar product^•,•& in
H), and the method similar to that used to obtain~3.16!, we prove the assertion.

As in ~3.10!, we have

E
0

1
i~Hm2Hn!un~ t !iL2~m!dt<E

0

1
i~ ub12b1,nu2!~ u¹un~ t !u1!iL2~m!dt1E

0

1
i~ ub22b2,nuK2

!

3~ u¹un~ t !uK1
!iL2~m!dt.

We note that the conditions~iii !, ~v!, and ~vii ! in Theorem 3.1 were not used in the proof
Lemma 3.1~a!. Using the condition~vi! in Theorem 3.1, the condition~vii !8, Lemma 3.1~a!, and
the bound~3.18! to the above, we complete the proof of the theorem. j

The following result, which can be proven using Theorem 3.1, is Lemma 6 of Ref. 5 fo
spaceF there being replaced byH1 .

Lemma 3.2 (Ref. 5, Lemma 6): Assume thatubu2PL2(m), so that Hm is well-defined on the
domain Cb

2(H2). Then, the closure of(Hm ,F Cb
`(H2)) coincides with the closure o

(Hm ,Cb
2(H2)).

We will apply the above lemma to show that for eachgP@0,1#, the Dirichlet operatorHm
(g) is

essentially self-adjoint onF Cb
`(H2

(g)).

IV. ESSENTIAL SELF-ADJOINTNESS OF DIRICHLET OPERATORS

For anygP@0,1# we will prove thatHm
(g) defined in~2.19! and ~2.20! is essentially self-

adjoint onCb
2(H2

(g)) @and also onF Cb
`(H2

(g))] by showing that all the conditions in Theorem 3
hold. In the case ford51, Assumption 2.1 is sufficient. Ford>2, we impose the spherica
symmetricity to the potentialV.

Assumption 4.1: Consider the case d>2.The potential V:Rd→R is a three times continuousl
differentiable function satisfying the following condition: There exists a function Q:R→R such
that V(x)5Q(uxu) for any xPRd. That is, V is spherically symmetric.

Remark 4.1: The spherical symmetricity of the potential V for d>2 is introduced for technical
reasons. We believe that the restriction is unnecessary. At the beginning of Section VI, w
give a possible relaxation of the spherical symmetricity such that Theorem 4.1 and Theore
still hold.

The following is the main result in this section.
Theorem 4.1: Let the potential V satisfy the conditions in Assumption 2.1. For d>2, we

further assume that V also satisfies the condition in Assumption 4.1. Then, for eachgP@0,1#, the
Dirichlet operator Hm

(g) is essentially self-adjoint on Cb
2(H2

(g)). Here F Cb
`(H2

(g)) is also a
domain of essential self-adjointness of Hm

(g) .
In the rest of this section we produce the proof of Theorem 4.1 by showing that a

conditions in Theorem 3.1 are satisfied. In order to avoid the unnecessary notational com
tions, we suppress the parametergP@0,1# in the notations if there is no confusion involved. Thu
in the rest of this sectiongP@0,1# is given ~fixed!, and we use the notationH2 :5H2

(g) ,
^•,•&2 :5^•,•&2

(g) , u•u2 :5u•u2
(g) , etc. The following lemma implies that the conditions in~3.1!

and ~3.2! are satisfied and also thatHm is well defined onCb
2(H2).

Lemma 4.1: Under Assumption 2.1, the following results hold:
(a) For any pPN,
J. Math. Phys., Vol. 38, No. 6, June 1997
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E
H2

uvu2
p dm~v!,`;

~b!

E
H2

~ ub~v!u2!4dm~v!,`,

whereb(:5b (g)) is the logarithmic derivative ofm given in (2.19).
Proof: ~a! We recall that any Gibbs measurem is supported onE, i.e.,m(E)51. We notice

that (m0 ,H
(0),E) is an abstract Wiener space.39 By Fernique’s theorem~see e.g., Ref. 39, Chap

III, Theorem 3.1! we see that there exists a constanta.0 such that

E
E
eauvuu

2
dm0~v!,`, ~4.1!

whereu•uu is the uniform norm inE. Part~a! follows from ~4.1! and the fact thatuvu2<uvuu .
~b! From ~2.12! and the definition ofb in ~2.19!, it follows that

ubu2<uvuu1u]Ṽ~v!uL2. ~4.2!

By Assumption 2.1~a! and ~b!, we see that for sufficiently smalld.0,

E
E
u]Ṽ~v!uL2

4 dm~v!<D~d!4E
E
H E

0

1

exp~4duv~t!u2!dtJ dm~v!<ME
E
exp~4duvuu

2!dm0~v!

,`,

where we have used~4.1! in the last inequality. j

In order to apply Theorem 3.1, we need to introduce a sequence$bn :nPN% which satisfies the
conditions in Theorem 3.1. We first note that forg.0 the Hilbert spaceH25H2

(g) introduced in
~2.12! consists of generalized functions and so*0

1V(v(t))dt, vPH2 , is not defined in general
Thus, we introduce a regularization. Let$el :el(t)5exp(2pilt),tP@0,1#,lPZ% be the orthonormal
basis for L2(@0,1#;C” ,dt) of eigenvectors of A52Dp11. For v5(v1,v2, . . . ,vd)
PH,L2(@0,1#;Rd,dt), define a partial sum operatorSk , kPN, by

Sk~v!5S (
l152k

k

~el1,v
1!el1, . . . , (

l d52k

k

~eld,v
d!eldD . ~4.3!

We define the mean operatorMn , nPN, by

Mn~v!5
1

n11(k50

n

Sk~v!, vPH. ~4.4!

Notice thatMnPL(H,H1). See Ref. 40, Chap. 8, for the detailed properties ofMn .
Let g:R→R be aC`-function satisfying the following properties:38

~a! g~2t !52g~ t !;

~b! g~ t !5t for tP~21,1!;
~4.5!

~c! g is monotonic increasing, i.e.,g8~ t !.0 and g8~ t !<1 for tPR;
J. Math. Phys., Vol. 38, No. 6, June 1997
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~d! g~ t !→2 as t→`.

For nPN and tPR we put

gn~ t !5ng~ t/n!. ~4.6!

We are ready to introduce a sequence$bn :nPN% of mappings which approximates the logarit
mic derivativeb of the Gibbs measurem. Recall the definition ofb(5b (g)) in ~2.19!. We write

b~v!5b1~v!1b2~v!, b1~v!52Agv, b2~v!52A2~12g!]Ṽ~v!. ~4.7!

For eachnPN, define a~bounded! linear operatorGn :H2→H1 by

Gnv5AMnA
21v5~AMnA

21v1, . . . ,AMnA
21vd!, v5~v1, . . . ,vd!PH2 . ~4.8!

Let $an :an.0,nPN% be a sequence of positive real numbers which satisfies the condition th
anyaPR1 ,

anexp$e
an2%→0, as n→`. ~4.9!

Recall that ford>2, V(x)5Q(uxu) for xPRd. See Assumption 4.1. We write

Q̃~ uxu!5Q~ uxu!2 1
2 uxu2.

For given«P(0,1/4) and$an :nPN% as above, we define a sequence of mappings$bn :nPN%,
bn :H2→H2 , by

bn~v!5b1,n~v!1b2,n~v!,

b1,n~v!52Ag~exp~2anA
«!!v, ~4.10!

b2,n~v!5H 2A2~12g!GnṼ8~gn~Gnv!!, d51,

2A2~12g!Gn$Q̃8~gn~ uGnvu!!~Gnv/uGnvu!%, d>2.

Due to the definitions ofgn andGn in ~4.6! and~4.8!, respectively,bn is well-defined onH2 for
eachnPN. Also notice thatbnPCpol

2 (H2 ,H2), nPN.
We collect useful properties of the mean operatorMn , nPN, from Ref. 40, Chap. 8.
Lemma 4.2: Let Mn , nPN, be the mean operator defined in (4.4). Then, the follow

properties hold:
(a) For vPC(@0,1#;Rd), uMnv2vuu→0 as n→`.
(b) iMniL(L2,L2)<1 for any nPN.
~c! iAMniL(L2,L2)<an , wherean511(2pn)2.
~d! uMnvuu<Aduvuu for anyvPC(@0,1#;Rd).
~e! Gnv5Mnv for vPL2.
In the above we have used the abbreviated notation L2:5L2(@0,1#;Rd,dt).
Proof: ~a! This is the content of Theorem 8.15 of Ref. 40.~b!, ~c!, and~e! are obvious from

the definition ofMn . For ~d!, let Kn(t) be the Feje´r’s kernel for the operatorMn , i.e.,

Kn~t!:5
1

n11(k50

n S (
l52k

k

e2 i2p l tD , tP@0,1#. ~4.11!

Then, it is easily seen that
J. Math. Phys., Vol. 38, No. 6, June 1997
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Kn~t!>0, E
0

1

Kn~t!dt51. ~4.12!

Since

~Mnv!k~ t !5E
0

1

vk~ t2t!Kn~t!dt, k51, . . . ,d;

~d! follows from ~4.12! and the above relation. j

We next compute the derivative ofbn which will be used later. For anyf,cPH2 ,

^bn8~v!f,c&5 lim
t→`

1

t
$^bn~v1tf!,c&2^bn~v!,c&%.

Consider the case ford51. It follows from ~4.10! that

bn8~v!5b1,n8 ~v!1b2,n8 ~v!, b1,n8 ~v!52Ag exp~2anA
«!,

~4.13!

b2,n8 ~v!52A2~12g!GnṼ9~gn~Gnv!!g8~Gnv!Gn .

Next we consider the case ford>2. For anyx5(x1, . . . ,xd)PRd, denote byxWxW thed3d matrix
whosei - j th element is given by (xWxW ) i j5xixj , i , j51,2, . . . ,d. A direct computation yields

]]Ṽ~x!5Q̃9~ uxu!xWxW /uxu21Q̃8~ uxu!S 12
xWxW

uxu2D /uxu, ~4.14!

whereV(x)5Q(uxu) andQ̃(x)5Q(x)2 1
2uxu2. For eachnPN, put

R̃n~x!5Q̃9~gn~ uxu!!gn8~ uxu! S xWxWuxu2D 1Q̃8~gn~ uxu!!S 12
xWxW

uxu2D /uxu. ~4.15!

By the continuity ofHess.V ~Assumption 2.1!, ~4.14! and ~4.15! are defined atx50. Recall the
definitionb2,n(v) for d>2 in ~4.10!. A direct computation gives that ford>2,

bn8~v!5b1,n8 ~v!1b2,n8 ~v!, b1,n8 ~v!52Agexp~2anA
«!,

~4.16!

b2,n8 ~v!52A2~12g!GnR̃n~Gnv!Gn .

From ~4.13! and ~4.16! we have the following results.
Lemma 4.3: (a) For any nPN there exists positive constanta.0 such that the bound

ib2,n8 ~v!iL~H2 ,H2!<exp~an2!

holds uniformly invPH2 .
(b) For any nPN, there exists a constant M(n) such that the bound

ibn8~v!iL~H2 ,H!<M ~n!

holds uniformly invPH2 .
Proof: ~a! It follows from ~2.12! that for anyv,hPH2 ,
J. Math. Phys., Vol. 38, No. 6, June 1997
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ub2,n8 ~v!hu25uA2gb2,n8 ~v!huL2<iA2gb2,n8 ~v!AgiL~L2,L2!uhu2 . ~4.17!

The following bounds can be obtained easily from Lemma 4.2 and the definition ofMn andgn in
~4.4! and ~4.6!, respectively:

iApGniL~L2,L2!<a~n!p, an511~2pn!2, pPN,

ugn~ uGnvu!uu<2n, ugn8~ uGnvu!uuu<1, ~4.18!

uṼ8~gn~ uGnu!!uu1uṼ9~gn~ uGnu!!uu<exp~cn2!.

For the last inequality we have used Assumption 2.1~b!. Ford51, the lemma follows from~4.13!,
~4.17!, and~4.18!.

Consider the case ford>2. By ~4.16!, ~4.17!, and the first bound in~4.18!, it is sufficient to
show that there exists a constantc1.0 such that the bound

sup
vPH2

sup
tP@0,1#

iR̃n~~Gnv!~t!!iL~Rd,Rd!<exp~c1n
2! ~4.19!

holds. Recall the definition ofR̃n in ~4.15!. Sincegn(x)5x if uxu,n, it follows from ~4.14! and
~4.15! that

R̃n~x!5Hess.Ṽ~x!, uxu,n. ~4.20!

Let vPH2 andtP@0,1# be given. By the continuity ofHess.Ṽ, there exists a constantM1.0
such that

iR̃n~~Gnv!~t!!i<M1 , if u~Gnv!~t!u,1. ~4.21!

On the other hand,ixWxW /uxu2i and uxu21 are bounded uniformly foruxu>1. Thus, we use~4.18! to
conclude that

iR̃n~~Gnv!~t!!i<exp~c1n
2!, if u~Gnv!~t!u>1, ~4.22!

for some constantc1.0. Thus,~4.19! follows from ~4.21! and~4.22!. This completes the proof o
the part~a! of the lemma.

~b! Notice that for anyv,hPH2 ,

ubn8~v!hu5uA~12g!/2bn8~v!huL2<uA~12g!/2bn8~v!AguL~L2,L2!uhu2 . ~4.23!

By the factor exp(2anA
«) in b1,n8 , it follows from ~4.13! and ~4.16! that

uA~12g!/2b1,n8 ~v!AguL~L2,L2!<M1~n!,

for some constantM1(n) depending onnPN. On the other hand the method used in the proof
the part~a! of the lemma gives the bound

uA~12g!/2b2,n8 ~v!AguL~L2,L2!<M2~n!,

for some constantM2(n). Thus, the part~b! of the lemma follows from~4.23! and the above
bounds. j

Lemma 4.4: There exists a constant c and N0PN such that for anyfPH, the bound

^f,bn8~v!f&<cufu2
J. Math. Phys., Vol. 38, No. 6, June 1997
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holds uniformly invPH2 and n>N0 .
Proof:We first consider the case ford51. It follows from ~2.12! and ~4.13! that

^f,bn8~v!f&5^f,b1,n8 ~v!f&1^f,b2,n8 ~v!f&,

where

^f,b1,n8 f&52^f,Ag exp~2anA
«!f&<0, ~4.24!

and

^f,b2,n8 ~v!f&52E
0

1

~Gnf!~t!Ṽ9~gn~~Gnv!~t!!!gn8~~Gnv!~t!!~Gnf!~t!dt.

Notice that 0<gn8(x)<1 for any xPR. Assumption 2.1~c! implies that2Ṽ9(x)<c for any x
PR for some constantc.0. Therefore, we have that

^f,b2,n8 ~v!f&<cuGnfuL2
2 .

SincefPH,L2, we use Lemma 4.2~e! and ~b! and the fact thatu•uL2<u•u in that order to
conclude the proof ford51. Consider the cased>2. It follows from ~4.16! that for d>2
@(•,•):5Rd—inner product#,

^f,b2,n8 ~v!f&52E
0

1

~~Gnf!~t!,R̃n~~Gnv!~t!!~Gnf!~t!!dt. ~4.25!

Let us put the functionQ(uxu) by

Q~ uxu!:5 1
2M «uxu21Q̂~x!, ~4.26!

whereM « :5M2«, «.0, andM is given in Assumption 2.1~c!. SinceHess.V>M1, we see
thatHess.Q̂(uxu)>«1. Thus, we may assume that there existsR.0 such that

Q̂8~ uxu!>0, Q̂9~uxu!>0, if uxu>R. ~4.27!

Suppose thatn is sufficiently large so thatn>R. Then, we notice that for anyx,yPRd,

~y,R̃n~x!y!5S y,H ~Q̂9~gn~ uxu!!1~M «21!!gn8~ uxu!
xWxW

uxu2
yJ D

1S y,H Q̂8~gn~ uxu!!1~M «21!gn~ uxu!
uxu S 12

xWxW

uxu2D yJ D ,
and so

~y,R̃n~x!y!>~M «21!uyu2, if uxu<R,
~4.28!

~y,R̃n~x!y!>~M «21!S y,H gn8~ uxu!
xWxW

uxu2
y1

gn~ uxu!
uxu S 12

xWxW

uxu2D yJ D
>min$0,M «21%uyu2, if uxu.R.
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In the above we have used the fact thatgn(uxu)5uxu, if uxu<R(<n) ~and hence the left hand sid
of ~4.28! is just (y,Hess.Ṽ(x)y)>(M «21)uyu2) andgn(uxu)>R if uxu.R. We use the inequality
in ~4.28! to ~4.25! to obtain that~using u•uL2<u•u)

^f,b2,n8 ~v!f&<~ uM u11!ufuL2
2 <~ uM u11!ufu2, n sufficiently large. ~4.29!

The proof of the lemma is now completed. j

The following result implies that the conditions~vi!–~vii ! are satisfied.
Lemma 4.5: Under the assumptions in Theorem 4.1 we have the following results:
(a) There exists a constant c.0 such that for each nPN the bound

iub12b1,nu2iL2~m!<can

holds, where$an :nPN% is the sequence introduced in the definition of b1,n .
(b)

iub22b2,nuiL2~m!→0, as n→`.

Proof: ~a! Due to the definitions ofb1 andb1,n in ~4.7! and ~4.10!, and the definition ofu•u2 in
~2.12!, we have that forvPE,

ub1~v!2b1,n~v!u2
2 5~v,~12exp~2anA

«!!2v!L2,<an
2~v,A2«v!L2,

where (•,•)L2 is the inner product ofL2(@0,1#;Rd,dt). Here, we have used the fact th
12exp(2x)<x for x>0. Notice that for any«P(0,1/4), the operatorA2«21 is of the trace class
By Theorem 3.11 of Ref. 1 or Exercise 20 of Ref. 39, Chap. I, Sect. 4, we conclude that for
«P(0,1/4),

E
E
~v,A2«v!L2dm<constE

E
~v,A2«v!L2dm05constE

E
^v,A2«21v&H~0!dm0

5const TrH~0!~A2«21!,`.

This proves the part~a! of the lemma.
~b! We first consider the case ford51. It follows from ~2.12! and the definitions ofb2 and

b2,n in ~4.7! and ~4.10! that for anyvPE

ub2~v!2b2,n~v!u25E
0

1

$A~12g!/2~b2~v~t!!2b2,n~v~t!!!%2dt

<E
0

1

$Ṽ~v~t!!2GnṼ8~gn~~Gnv!~t!!!%2dt. ~4.30!

By Lemma 4.2~d!–~e! and Assumption 2.1~b!, we obtain that for anyd.0,

ub2~v!2b2,n~v!u2<4D~d!exp~Adduvuu
2!. ~4.31!

By ~4.1! we see that for sufficiently smalld.0,

E
E
exp~Adduvuu

2!dm~v!<constE
E
exp~Adduvuu

2!dm0~v!,`. ~4.32!
J. Math. Phys., Vol. 38, No. 6, June 1997
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The part~b! of the lemma follows from the dominated convergence theorem,~4.30!, and Lemma
4.2 ~a!. Ford>2, it is easy to check that the bound~4.31! also holds, and so the lemma holds f
d>2. This completes the proof of the lemma. j

Using Lemma 4.1–Lemma 4.5, we now prove the essential self-adjointness of the Dir
operator.

Proof of Theorem 4.1:Lemma 4.1 implies~3.1! and~3.2!. Recall the definition ofbn in ~4.10!.
Sinceb2,nPCb

2(H2 ,H2), the conditions~i! and ~ii ! in Theorem 3.1 are satisfied. Lemma 4
implies the conditions~iii ! and ~iv!. Obviously, Lemma 4.4 and Lemma 4.5 prove that the c
ditions ~v!–~vii ! are satisfied. Thus, Theorem 4.1 follows from Theorem 3.1 and Lemma 3.2j

V. MASS GAP AND LOG-SOBOLEV INEQUALITY

Consider the case in which the potentialV(x) is strictly convex. In this case we will demon
strate that for eachgP@0,1#, the Dirichlet operatorHm

(g) has a mass gap, i.e., there exists a gap
the lower end of the spectrum ofHm

(g) . We shall also show that the log-Sobolev inequality hol
Throughout this section we will also omit the superscript (g) in the notations and every

formulas are understood as being formulated with a fixedgP@0,1# if there is no special remark
We assume that the potentialVPC3(Rd;R) satisfies the strict convexity condition:

Assumption 5.1: The uniform convexity constant M in Assumption 2.1 (c) is strictly pos
i.e.,

Hess.V~x!>M1, M.0,

holds.
We note that under Assumption 5.1,

V~x!>V~0!1~]V~0!,x!1
M

2
uxu2,

and so Assumption 2.1~a! holds.
Let us define the spaceW2

1(m) as the closure ofCb
2(H2) with respect to the norm

iuiW
2
1~m!

2
:5E

H2

$uu~v!u21uu8~v!u1
2 %dm~v!.

We can easily show that form-a.a. vPH2 ~e.g., ;vPE), there exists a linear operato
b8(v):H1→H2 such that;f,hPH1 ,

L2~m!2 lim
t→0

1

t
$^b~v1tf!,h&2^b~v!,h&%5^b8~v!f,h&.

Let us putRm(v):52b8(v). We say that a measurem is unformly log-concave~ULC! if there
exists al.0 such that for allfPH1

^Rm~v!f,f&>lufu2, m2a.e. ~5.1!

Under Assumption 5.1, we have the following result~cf. Ref. 5, Theorem 2!.
Theorem 5.1:Assume that the potential V satisfies the conditions in Assumption 2.1 (b

Assumption 5.1. For d>2, we also assume that V satisfies the conditions in Theorem 4.1.
eachgP@0,1#, denote again by Hm

(g) the self-adjoint extension of the Dirichlet operator Hm
(g) .

Then, the following results hold:
(a) The point0PR is a simple eingenvalue of Hm

(g) .
J. Math. Phys., Vol. 38, No. 6, June 1997
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(b) There is a gap at the lower end of the spectrum of Hm
(g) . Moreover, Hm

(g)>l/4 on the
orthogonal complement to the constant functions in L2(m), wherel:5min$M ,Mg%.0.

Proof:We will omit the superscript (g) in the notation. We first assert that the Gibbs meas
m corresponding to the potentialV isH1-ergodic, i.e., the only measurable subsets ofH2 which
areH1-invariant havem-measure zero or one. Here, theH1-invariantness of am-measurable se
A,H2 is defined by5 ;fPH1 ,

m~~A\Af!ø~Af\A!!50,

Af5A1f5$v1f:vPA%.

Since m0 is H1-ergodic andm!m0 with a strict positive Radon–Nikodym derivative
H1-ergodicity ofm also follows.

We next show thatm is ~ULC! in the sense of~5.1!. From~2.19! and~2.12!, it follows that for
anyfPH1 andvPE,

^Rm~v!f,f&52^b8~v!f,f&5E
0

1

~f~t!,$A1Hess.Ṽ~v~t!!%f~t!!dt

>~f,~2Dp1M !f!L2

>min$M ,Mg%ufu2. ~5.2!

Here we have used the fact that forgP@0,1#,

~2Dp1M !A2~12g!>min$M ,Mg%1.

Now, the theorem follows from the exactly same method used in Theorem 2 of Ref. 5. Se
Ref. 30. j

We recall that a probability measurem on (H2 ,B(H2)) satisfies alog-Sobolev inequality
~LS! if and only if there exists some constantcm.0 such that for anyfPW2

1(m) the inequality

E
H2

u f ~v!u2 logu f ~v!udm~v!<cmE
H2

u¹ f ~v!u2dm~v!1i f iL2~m!
2 logi f iL2~m! ~5.3!

holds. The constantcm is called theSobolev coefficient.
Theorem 5.2:Assume that the conditions listed in Theorem 5.1 hold. Then, the measum

satisfies the log-Sobolev inequality (5.3) with a Sobolev coefficient cm51/l̃, l̃5min$1,M %.0.
At first we notice that the integrand of the first integration in the right hand side of~5.3!

depends on the parametergP@0,1#, that isu¹ f (v)u25(u¹ (g) f (v)u(g))2, where¹ (g) is the gradi-
ent operator in the riggingH1

(g),H (g),H2
(g) . Let $en%nPN be an orthonormal basis ofH (0)

consisting of eigenvectors of A, i.e., Aen5anen ,nPN,an>1. Note that
$en

(g)%nPN ,en
(g) :5Ag/2en , is an orthonormal basis ofH (g). For uPF Cb

`(H2
(g)) it holds that9

Em
~g!~u,u!5

1

2(
nPN

E U ]

]en
~g! u~w!U2dm~w!,

where (]/]en
(g)) u is the directional derivative ofu in the direction ofen

(g) . Using the definition of
directional derivatives9 and the fact thata>1 for anynPN, it is not hard to show that

Em
~0!~u,u!<Em

~g!~u,u!, gP@0,1#.

Therefore, it is sufficient to show~LS! ~5.3! only for g50. From now on, we fixg50.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Before proving the theorem we give the main idea of the proof. It follows from~2.19! that for
g50,

b~v!5b1~v!1b2~v!, b1~v!52v, b2~v!52A21]Ṽ~v!. ~5.4!

Let «.0 be an arbitrary number such thatM « :5M2«.0. We put the potential functionV as
@cf. ~4.26!#

V~x!:5 1
2M «uxu21V̂~x!

~V̂~x!5Q̂~ uxu! for some Q̂:R→R if d>2!. ~5.5!

Let us define for eachnPN,

Vn~x!:55 V~0!1
1

2
M «uxu21E

0

x

V̂8~gn~y!!dy, d51,

V~0!1
1

2
M «uxu21E

0

uxu
Q̂8~gn~r !!dr, d>2.

~5.6!

For eachnPN, we also writeṼn(x):5Vn(x)2
1
2uxu2 and define a probability measuremn onE by

dmn~v!5
1

Zn
expH 2E

0

1

Ṽn~v~t!!dtJ dm0~v!. ~5.7!

By a direct calculation we see that the logarithmic derivativebn of mn , nPN, is given by

bn~v!:5b1,n~v!1b2,n~v!, b1,n~v!52v, ~5.8!

b2,n~v!5H 2A21~~M «21!v1V̂8~gn~v!!!, d51,

2A21S ~M «21!v1Q̂8~gn~ uvu!!
v

uvu D , d>2.

We will show that the sequence of measures$mn%nPN converges tom and that each measur
mn , nPN, satisfies the log-Sobolev inequality for a uniform Sobolev coefficient. Let us deno
Hmn

the Dirichlet operator for the measuremn @with respect to the rigging~2.13! for g50]. We
have the following results.

Lemma 5.1: Let the assumptions in Theorem 5.1 be satisfied. For each nPN, the following
results hold:

(a) Hmn
is essentially self-adjoint onF Cb

`(H2).

(b) Let Tt
(n)5exp(2tHmn

) be the corresponding semigroup in L2(mn). Then, Tt
(n) , tPR1 ,

forms a positive preserving semigroup from Cpol
2 (H2) into itself.

(c) For any «.0 with 0,«,M , there exists N(«)PN such that the measuremn ,
n>N(«), satisfies the log-Sobolev inequality (5.3) with Sobolev coefficient cm(«)51/l̃(«),
l̃(«)5min$1,M «%.0, uniformly in n>N(«), where M« :5M2«.

~d! *H2
f dmn→*H2

f dm as n→`, for any fPF Cb
`(H2).

Proof: ~a! We notice that sinceHess.V>M1, Hess.V̂>«1. From this and~5.6! we see that
there exist positive constantsa1.0 andb1.0, not depending onnPN, such that

Vn~x!> 1
2M «uxu22a1uxu2b1 . ~5.9!
J. Math. Phys., Vol. 38, No. 6, June 1997
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By using the methd similar to that used in the proof of Lemma 4.1, it is easy to show tha
conditions~3.1! and ~3.2! are satisfied. Sinceb2,nPCb

2(H2 ,H2), it is obvious that the condi-
tions ~i! and ~ii ! in Theorem 3.1 are satisfied. Using the method similar to that employed in
proof of Lemma 4.3~a! and the definition ofbn in ~5.8!, one can check that the condition~iv! is
also satisfied. By Theorem 1 of Ref. 5@see Remark 3.1~a!#, the above results are sufficient t
show thatHmn

is essentially self-adjoint onCb
2(H2). This fact and Lemma 3.2 imply the part~a!

of the lemma.
~b! This follows from Lemma 4 of Ref. 5@cf. ~26! of Ref. 5#.
~c! Notice that for anyfPH1 ,

2^f,b1,n8 f&52^f,b18f&5ufu2. ~5.10!

For the part2^f,b2,n8 f&, we separately consider ford51 andd>2. Ford51,

2^f,b2,n8 f&5~f,~M «21!f!L21~f,V̂9~gn~v!!gn8~v!f!L2>~M «21!ufuL2, d51,
~5.11!

where we have used the fact thatV̂9>0 andgn8>0. Ford>2, we use the argument used in Lemm
4.4. We see that ford>2,

2^f,b2,n8 ~v!f&5~M «21!ufuL2
2

1~f,R̂n~v!f!L2, ~5.12!

whereR̂n(x), xPRd, is defined by@cf. ~4.15!#

R̂n~x!5Q̂9~gn~ uxu!!gn8~ uxu!
xWxW

uxu2
1
Q̂8~gn~ uxu!!

uxu S 12
xWxW

uxu2D .
We can check by the same argument used in~4.28! that

~y,R̂n~x!y!Rd>0, ;x,yPRd, n sufficiently large. ~5.13!

We use the inequality~5.13! to ~5.12! and see that

2^f,b2,n8 ~v!f&>~M «21!ufuL2
2 , n sufficiently large. ~5.14!

From ~5.10! – ~5.14! we see using the factufuL2<ufu that

^f,Rmn
~v!~f!&>ufu21min$0,M «21%ufuL2

2 >min$1,M «%ufu2, n sufficiently large.
~5.15!

Using~5.15! and the method employed in the proof of Theorem 3 of Ref. 5, we complete the
of the part~c!.

~d! Using the inequality~5.9! and the fact thatṼn(x)5Vn(x)2
1
2uxu2, we obtain that there exis

positive constantsm.0 andc.0 such that for anynPN andvPE,

E
0

1

Ṽn~v~t!!dt>
1

2
~m21!uvuL2

2
2c,

wherem can be chosen such that 0,m,M « . Thus it follows from the above bound that

expH 2E
0

1

Ṽn~v~t!!dtJ <expH 2
1

2
~m21!uvuL2

2
1cJ , ~5.16!
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uniformly in nPN. Sincem.0, the right hand side of~5.16! is integrable with respect to
dm0(v).

1,39 Sincegn(x)→x asn→`,

E
0

1

Ṽn~v~t!!dt→E
0

1

Ṽ~v~t!!dt, as n→`. ~5.17!

Thus we use the Lebesgue dominated convergence therem and~5.17! to conclude that for anyf
PF Cb

`(H2),

E
E
f ~v!expH 2E

0

1

Ṽn~v~t!!dtJ dm0~v!→E
E
f ~v!expH 2E

0

1

Ṽ~v~t!!dtJ dm0~v!, as n→`.

Due to the definitions ofm andmn in ~2.7! and~5.7! respectively, the above result implies the pa
~d! of the lemma. This completes the proof of Lemma 5.1. j

Now, we turn to the proof of Theorem 5.2. It is really a consequence of Lemma 5.1.
Proof of Theorem 5.2. For a given«.0 with 0,«,M , we use Lemma 5.1~c! and ~d! and

take a limit asn→`. We then obtain that the log-Sobolev inequality~5.3! holds with a Sobolev
coefficientcm(«)51/l̃(«), l̃(«)5min$1,M «%.0, onF Cb

`(H2). Since«.0 is arbitrary, we see
that the log-Sobolev inequality holds with a Sobolev coefficientcm51/l̃, l̃5min$1,M %.0. Now,
sinceF Cb

`(H2) is dense inW2
1(m), we complete the proof of Theorem 5.2. j

VI. CONCLUDING REMARKS

1. We give a possible relaxation of the spherical symmetricity of the potentialV for d>2
~Assumption 4.1!. For d>2, the potentialVPC3(Rd;R) can be written as

V~x!5Q~ uxu!1W~x!, xPRd, ~6.1!

whereW is aC3-function satisfying the following bounds: there exists a constantK.0 such that
for any xPRd,

u]W~x!u<K~11uxu!,
~6.2!

uuHess.W~x!uuL~Rd,Rd!<K.

We also assume thatW(3)(x) is bounded~in the operator norm! uniformly in xPRd, where
W(3) is the third order derivative ofW. Let us replaceb2,n in ~4.10! by

b2,n~v!52A2~12g!Gn$Q̃8~gn~ uGn~v!u!!~Gn~v!/uGn~v!u!%2A2~12g!Gn]W~Gn~v!!.

Due to the bounds in~6.1!, it is easy to check that the results corresponding to Lemma 4
Lemma 4.6 hold. Thus Theorem 4.1 and Theorem 5.1 hold for the potentialV satisfying~6.1! and
~6.2!. We leave the details to the reader.

2. When we have finished the first version of this paper, we have come to know that
same time the log-Sobolev inequality for Gibbs measures on loop spaces was also shown
37. In Ref. 37, however, a different method~a finite dimensional approximation to the give
measure! was used. It may be worthwhile to compare the results. We emphasize that we
presented the log-Sobolev inequality in~5.3! uniformly for any gP@0,1#, i.e., the gradient
u¹ f (v)u2 in the integrand of the right hand side of~5.3! depends on gP@0,1#:
u¹ f (v)u25(u¹ (g) f (v)u(g))2. However, in Ref. 37, it was presented forg51 ~Ref. 37, Theorem
5.1!. Their result can be written down~in our notation! as
J. Math. Phys., Vol. 38, No. 6, June 1997
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E u f ~v!u2logu f ~v!udm~v!<
1

a2E ~ u¹~1! f ~v!u~1!!2dm~v!1i f iL2~m!
2 logi f iL2~m! , ~6.3!

wheneverV(x)5 1
2a

2x21V0(x) with V09(x)>0. ~They dealt with only the cased51. We have put
W50 in Ref. 37. The case of bounded perturbationWÞ0 can be dealt with a perturbatio
theorem for the log-Sobolev constant in Ref. 31 as mentioned in Ref. 37.! In order to compare the
result, we take the operator

A:52Dp1a21 ~6.4!

in ~2.11! and make the rigged Hilbert spacesH1
(g),H (g),H2

(g) through the inner products in
~2.12! with the new operatorA. We take, of course, the notationsṼ(x):5V(x)2 1

2a
2x2, e.g. in

~2.16!. Then, as readily seen in~5.2!, we have that for anyfPH1 andvPE,

^Rm~v!f,f&>~f,~2Dp1a2!f!>a2gufu2.

Thus, forg50 we get a~ULC! constantl51 and the exact method used in the proof of Theor
5.2 provides that we have~LS! with cm51:

E u f ~v!u2logu f ~v!udm~v!<E ~ u¹~0! f ~v!u~0!!2dm~v!1i f iL2~m!
2 logi f iL2~m! . ~6.5!

SinceA>a21, it is readily seen that~see the arguments below the statement of Theorem 5.2!

~ u¹~0! f ~v!u~0!!2<
1

a2
~ u¹~1! f ~v!u~1!!2. ~6.6!

We use the inequality~6.6! to ~6.5!. Then, the result is exactly the one in~6.3!.
3. In Ref. 37, using~LS!, a uniqueness theorem for Gibbs measures of certain clas

potentials for spin systems was also proven. The method and the results in Ref. 37 can be e
to a class of superstable and regular interactions.

4. For historical backgrounds of this study and for wide ranged applications we refer to
14.
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A local variational theory for the Schmidt metric
Fredrik Ståhla)
Department of Mathematics, University of Umea˚, Umeå, Sweden

~Received 9 December 1996; accepted for publication 3 March 1997!

We study local variations of causal curves in a space-time with respect to b-length
~or generalized affine parameter length!. In a convex normal neighbourhood, causal
curves of maximal metric length are geodesics. Using variational arguments, we
show that causal curves of minimal b-length in sufficiently small globally hyper-
bolic sets are geodesics. As an application we obtain a generalization of a theorem
by Schmidt, showing that the cluster curve of a partially future imprisoned, future
inextendible and future b-incomplete curve must be a null geodesic. We give ex-
amples which illustrate that the cluster curve does not have to be closed or incom-
plete. The theory of variations developed in this work provides a starting point for
a Morse theory of b-length. ©1997 American Institute of Physics.
@S0022-2488~97!01506-5#

I. INTRODUCTION

The classical singularity theorems by Hawking and Penrose1,2 predict that in a physically
reasonable model of space-time, singularities will inevitably occur in the form of incomp
inextendible causal geodesics. Unfortunately the nature of these singularities is still not
understood. From a physical viewpoint one would expect some sort of divergence of the cur
when approaching a singularity. More precisely, we might expect divergence of some
polynomial in the Riemann tensor and the metric along an incomplete curve ending at the
larity, or equivalently that the Riemann tensor components are unbounded inall frames along the
curve.

There are, however, singular space-times where the scalar polynomials are bounded, i.e
exists some frame where the Riemann tensor components are bounded, along an inc
inextendible causal curve. In this paper we concentrate on space-times containing b-inco
causal curves partially imprisoned in a compact set. The existence of imprisoned curves is e
lent to the existence of a cluster point to some causal curve, and thus implies a non-Hau
behavior of the b-completion.1,3,4

A well-known example of totally imprisoned inextendible incomplete curves can be foun
the Taub-NUT space-time. Instead of analysing the Taub-NUT space-time directly, we will
sider a two-dimensional space-time with similar properties given by Misner.5 We will refer to this
space-time as the Misner space-time. The manifold isS13 R with the metric

ds252 dtdc1tdc2 for tPR and cP@0,2p!.

The vertical linest5u, c5const. are complete null geodesics. In addition there are familie
null geodesics with affine parameteru which follow infinite spirals as they approacht50, of the
type t5Cu, c52 ln u2 whereC is a non-zero constant~Fig. 1!. The affine parameter is bounde
on these inextendible geodesics as they approacht50, so they are in fact incomplete. The clos
null geodesic given byt50, c52 ln u2 is incomplete, and there are no curvature singularitie

If we endow a neighborhood oft50 with a continuous frame field we find that the tange
vector to one of the spiralling incomplete curves is boosted by an unbounded amount rela
the frame field as the curve approachest50. The reason that the Riemann components rem

a!E-mail address: fredriks@abel.math.umu.se
0022-2488/97/38(6)/3347/11/$10.00
3347J. Math. Phys. 38 (6), June 1997 © 1997 American Institute of Physics
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bounded along the curve is that the Riemann tensor is highly specialized in this case, an
likely that the situation is unstable because of the back reaction of test particle travelling alo
curve.6

Indeed one can show that a b-boundary pointp corresponding to an inextendible incomple
causal curvel must be a parallelly propagated singularity, i.e., the Riemann tensor compo
diverge in any parallelly propagated frame along the curve, if either(i) space-time is globally
hyperbolic with the Riemann tensor non-specialized atp7–9 or (ii) l has a cluster point where th
Riemann tensor is non-specialized.1

Schmidt4 has found the following result concerning totally imprisoned curves:
Theorem 1: If a future inextendible, future b-incomplete causal curve is totally future imp

oned in a compact setN , then there is a future inextendible null geodesic totally imprisoned
N .

Our aim is now to develop a local theory of variations for b-length, and to use this to p
a similar theorem for partially imprisoned curves. Note that partial imprisonment is a we
concept than total imprisonment, since a totally imprisoned curve is also partially imprisone
small compact neighborhood of one of its cluster points.

The plan of the paper is as follows. In Sec. II we discuss the appropriate definitions an
III contains the variational arguments. The generalization of Theorem 1 is provided in Sec. I
Sec. V is devoted to discussions and examples.

II. DEFINITIONS

Similar to the terminology in Ref. 1, (M,g) is a space-time consisting of a connect
four-dimensional HausdorffC` manifoldM and a Lorentz metricg of signature~2111!.
Throughout the rest of this paper, ‘‘incomplete’’ will mean ‘‘future incomplete,’’ ‘‘inextendible
is ‘‘future inextendible’’ and so on. This is for convenience only, since all results hold equ
well for past incomplete, past inextendible and past imprisoned curves.

Let l(t) be a causal curve inM from p5l(tp) to q5l(tq) with tangent vectorV. The
metric lengthof l is given by

FIG. 1. Misner’s two-dimensional space-time. In region A causality is preserved, but in region B there are closed t
curves through every point. The horizon is generated by the closed incomplete null geodesic att50.
J. Math. Phys., Vol. 38, No. 6, June 1997
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L~l!:5E
tp

tq
@2g~V,V!#1/2dt. ~1!

The generalized affine parameter length, orbundle length, of l with respect to a given orthonor
mal basisEk is

l ~l,Ek!:5E
tp

tqF (
k50

3

~Vk!2G1/2dt, ~2!

whereVk are the components of the tangent vectorV in the basisEk .
1 Note that the b-length

coincides with affine parameter length for geodesics and that for causal curves, the b-le
always greater than the metric length, i.e.,

l ~l,Ek!>L~l!.

Let f: A5(2e,e)3@ tp ,tq#→M be a one-parameter causal variation ofl in M, i.e., f
satisfies the conditions

~1! f(0,t)5l(t),
~2! f is C 3 except at a finite number of points,
~3! f(u,tp)5p andf(u,tq)5q for all uP(2e,e),
~4! f(u0 ,t) is a causal curve for eachu0P(2e,e).

Starting with an orthonormal basisEk at p with E0 timelike, we parallelly propagateEk along
f(u0 ,t) for each constantu0, obtaining functions A→Tf(u,t) M, (u,t)°Ek(u,t) for
k50,1,2,3. We denote the tangent vectors inT(u,t) A with respect tou and t by ]/]u and]/]t
and their corresponding vectors inTf(u,t) M by X:5f* (]/]u) andV:5f* (]/]t) respectively.

The mapf is not necessarily injective, which means that the vectorsV, X andE0 do not in
general constitute vector fields inM. This could prove to be a problem when we try to study
variation of l (l,Ek). The problem can be avoided however if wedefinethe covariant derivatives
needed as10

S D]t E0D a:5 d

dt
E0

a1Gbc
a E0

bVc, ~3a!

S D]uE0D a:5 d

du
E0

a1Gbc
a E0

bXc, ~3b!

~¹E0
X!a:5Xa

,bE0
b1Gbc

a XbE0
c. ~3c!

It is then possible to do the usual calculations, in particular

D

]t

D

]u
E05R~V,X!E01

D

]u

D

]t
E01¹ [V,X]E05R~V,X!E0 ~4!

since@V,X#50 and (D/]t) E050.
For V,WPTf(u,t) M let

h~u,t !~V,W!:5g~V,W!12g~V,E0~u,t !!g~W,E0~u,t !!. ~5!

We may then rewrite~2! as
J. Math. Phys., Vol. 38, No. 6, June 1997
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l ~l,Ek!:5E
tp

tq
@h~u,t !~V,V!#1/2dtU

u50

. ~6!

Again, h(u,t) might not be a tensor field sinceE0(u,t) might have different values at the sam
point inM. From now on we will writeh for h(u,t) andE0 for E0(u,t), the dependence ofu and
t being understood. We will refer toh as theSchmidt metric.

Given two timelike separated pointsp andq inM we denote the space of continuous cau
curves fromp to q by C(p,q), and the subset ofC(p,q) consisting of timelikeC1 curves by
C8(p,q). On these spaces we will use theC0 topology where a neighborhood ofgPC(p,q) is
defined by all curves inC(p,q) which lie in a neighborhood of the image ofg inM.1 Note that
this topology is non-Hausdorff if strong causality is violated, since it does not distinguish
many times a closed curve is traversed. For the discussion at hand this problem is avoide
we are only interested in the structure on some small globally hyperbolic neighborhood, an
a set can always be found around any point. In this context,C8(p,q) is dense inC(p,q). ~Re-
member that a globally hyperbolic set is a strongly causal setU whereC(p,q) is compact for all
pointsp,qPU.1!

III. VARIATIONAL THEORY

In this section we develop a theory of variations for b-length by adapting the usual proc
for metric length.1 We will be concerned with the properties of curves in a small globally hyp
bolic set, and we will also need to restrict the set further to put bounds on the additional
introduced by the parallelly propagated basis used in the b-length definition. We start by co
ing the first variation of~6!.

Lemma 1: The first variation of l(l,Ek) is

d

du
l ~l,Ek!52E

tp

tq
f21hS D]t V,PV'

h XDdt12E
tp

tq
f21g~V,E0!gSV, D]uE0Ddt, ~7!

where f:5@h(V,V)#1/2 and PV'
h is the projection with respect to h onto the space of tang

vectors orthogonal to V.
Proof: First note that from~5! andLXV50 we have

]

]u
@h~V,V!#54g~V,E0!gSV, D]uE0D12hS D]t X,VD . ~8!

We use this to rewrite (d/du) l (l,Ek) as

d

du
l ~l,Ek!5E

tp

tq ]

]u~ @h~V,V!#1/2!dt5E
tp

tq
f21hS D]t X,VDdt12E

tp

tq
f21g~V,E0!gSV, D]uE0Ddt.

The first term can now be reformulated as a sum involving a totalt derivative which vanishes
because of the fixed endpoints of the variation:

E
tp

tq
f21hS D]t X,VDdt5E

tp

tq ]

]t
@ f21h~X,V!#dt2E

tp

tq
f21hS D]t V,X2 f22h~X,V!VDdt.

Defining the projection with respect to the Schmidt metrich asPV'
h

5X2 f22h(X,V)V we get~7!.
h

The first term in Lemma 1 is similar to the expression occurring in the metric case~cf. Ref. 1!.
The additional second term corresponds to the variation of the basis vectorE0 when parallelly
J. Math. Phys., Vol. 38, No. 6, June 1997
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transportingE0 along different curves. The change inE0 is determined by the Riemann tensor a
one would expect it to be small for short curves. Indeed, we have the following.

Lemma 2:

g~V,E0!gSV, D]uE0D U
t

5K~ t ! sup
@ tp ,tq#

$h~X,X!1/2%, ~9!

where K(t)5O(t2tp).
Proof: We start by rewriting the second factor on the left side as

gSV, D]uE0D5gâb̂V
âE0

b̂
; ĉX

ĉ,

where hatted indices denotes components with respect to the basisEk . Now let

r :5 sup
@ tp ,tq#

$iRĉ
0̂âb̂A

âBb̂i ;A,BP R4,iAi5iBi51%,

g:5 sup
@ tp ,tq#

$ugâb̂AâBb̂u;A,BP R4,iAi5iBi51%,

wherei•i is the usual Euclidian norm inR4. Then

E0
b̂
; ĉX

ĉu t5E
tp

t

~E0
b̂
; ĉX

ĉ! ;d̂V
d̂dt5E

tp

t

Rb̂
0̂ĉd̂X

ĉVd̂dt

by ~4!, and

I E
tp

t

Rb̂
0̂ĉd̂X

ĉVd̂dtI<r ~ t2tp!iViliXil ,

wherei•il :5sup[ tp ,tq]$h(•,•)
1/2%. It follows immediately that

Ug~V,E0!gSV, D]uE0D U<rg2iVil
3~ t2tp!iXil .

h

In the metric case, timelike geodesics are curves of extremal metric length provided there
conjugate points along the geodesic. In order to prove a similar result for the b-length, we n
construct a variation of any non-geodesic causal curve which results in a shorter curve. T
done in the following somewhat lengthy lemma.

Lemma 3: letl be a non-geodesic causal curve from p to q. Then there is a variationl
giving a causal curve from p to q with smaller b-length thanl.

Proof: We want to construct a causal variation ofl with variation vectorX such that
(]/]u) @h(V,V)#,0. We proceed by the following steps:

~1! ChooseX such that the second term in~8! is everywhere non-positive, and strictly negati
somewhere, i.e.,

hS D]t X,VD<0 ~10!

with strict inequality on some part ofl.
J. Math. Phys., Vol. 38, No. 6, June 1997
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~2! Check that the variation is causal.
~3! Show that by a suitably small variation alongX and by restricting the variation to

sufficiently small portion ofl, the second term in~8! dominates the first, i.e.,

g~V,E0!gSV, D]uE0D,
1

2UhS D]t X,VD U. ~11!

Case 1:We start with the case when the tangent vectorV is continuous. Letl be parametrized
by b-length. Thenh(V,V)51 and

05
]

]t
@h~V,V!#52hSV, D]t VD , ~12!

so (D/]t) V is orthogonal toV with respect toh whenever (D/]t) V is non-zero, which has to be
the case somewhere alongl sincel is non-geodesic.

Let the variation vector be

X:5xV1y
D

]t
V, ~13!

wherex andy are functions vanishing outside some interval@a,b#,@ tp ,tq# such that (D/]t) V
Þ 0 on@a,b#.

Step 1:We restrict our attention to the interval@a,b#. On this interval,~12! and ~13! imply

hS D]t X,VD5
]

]t
@h~X,V!#2hSX, D]t VD5

dx

dt
2ay

wherea:5h((D/]t) V, (D/]t) V). Choosex as

x~ t !:5E
a

t

~ay21!dt.

Then

hS D]t X,VD521

for any functiony on @a,b# with

y~a!5y~b!5E
a

b

~ay21!dt50.

We may choosey to be positive.
Step 2:If l has a timelike segment, a sufficiently small variation of that segment will giv

timelike curve. Ifl is null, g(V,V)50 gives

15h~V,V!52g~V,E0!
2, ~14!

sog(V,E0)
25 1

2. UsingLXV50 and the definition ofh @Eq. ~5!# we then get
J. Math. Phys., Vol. 38, No. 6, June 1997
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]

]u
@g~V,V!#52

]

]t
@g~X,V!#22gSX, D]t VD

52
]

]t
@h~X,V!#22hSX, D]t VD24S ]

]t
@g~X,E0!g~V,E0!#2g~X,E0!gS D]t V,E0D D

52224
]

]t
@g~X,E0!#g~V,E0!,

where we have usedh„(D/]t) X,V…521 to obtain the last equality. Finally,~14! implies
g„(D/]t) V,E0…50 so

]

]u
@g~V,V!#52224

dx

dt
g~V,E0!

2522ay,0

since botha andy are positive on@a,b#, and hence the curve will remain causal under a sm
variation alongX.

Step 3: We restrict y such that ay<2 and @a,b# such that b2a<1 and K
, 1

6inf[a,b]$1,Aa% in ~9! applied tolu [a,b] . Then Lemma 2 gives

g~V,E0!gSV, D]uE0D<K sup
@a,b#

$h~X,X!1/2%

<K sup
@a,b#

$uxu1Aay%

<K sup
@a,b#

$uay21u%~b2a!1K sup
@a,b#

$Aay%

, 1
6 1 1

6 sup
@a,b#

$ay%< 1
2 .

Thus (]/]u) @h(V,V)#,0 and the lemma is true for curves with a continuous tangent vecto
Case 2:Suppose now thatl is made up of a finite number of geodesic segments. Letl be

parameterised by b-length which is equivalent to affine parameterisations of the geodes
ments. It is sufficient to study the case whenV is discontinuous at one pointl(t0). LetW be the
discontinuity atl(t0), i.e.,

W:5V12V2 ,

where

V1 :5 lim
t→t0

1

V and V2 :5 lim
t→t0

2

Vl~ t ! .

Parallelly propagateW alongl. Then

]

]t
@h~W,V!#5hS D]t W,VD1hSW,

D

]t
VD50

on each geodesic section ofl. We know that

h~W,V!ul~ t !5h~W,V2!ul~ t0!5h~V1 ,V2!21

if tP@ tp ,t0) and
J. Math. Phys., Vol. 38, No. 6, June 1997
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h~W,V!ul~ t !5h~W,V1!ul~ t0!512h~V1 ,V2!

if tP(t0 ,tq#, i.e.,h(W,V) is negative on@ tp ,t0) and positive on (t0 ,tq#. Let the variation vector
beX:5xW where

x~ t !:5H 2h~W,V!21~b2t0!~ t2a! when tP@a,t0!,

h~W,V!21~b2t !~ t02a! when tP~ t0 ,b#,
~15!

on some interval@a,b#,@ tp ,tq# to be chosen below, and zero otherwise.
Step 1:On the interval@a,b#,

hS D]t X,VD5
d

dt
@xh~W,V!#5H 2~b2t0! when tP@a,t0!,

2~ t02a! when tP~ t0 ,b#,

which is negative.
Step 2:If one of the geodesic segments is null, we must ensure that the varied curve re

causal. SinceLXV, (D/]t) V and (D/]t)W all vanish we have

]

]u
@g~V,V!#5

d

dt
@xg~W,V!#5g~W,V!

dx

dt
.

Suppose thatV2 is null. On @a,t0#,

g~W,V!5g~V1 ,V2!2g~V2 ,V2!5g~V1 ,V2!<0

sinceV1 andV2 are causal vectors. But on this interval

dx

dt
52h~W,V!21~b2t0!>0,

so (]/]u) @g(V,V)#<0. The case whenV1 is null is similar.
Step 3:We choose@a,b# such thatb2a<1 and

K,
1

2A2
~12h~V1 ,V2!!1/2

in ~9!. Lemma 2 gives

g~V,E0!gSV, D]uE0D<K sup
@a,b#

$h~X,X!1/2%5K sup
@a,b#

uxu~222h~V1 ,V2!!1/2. ~16!

Now we can use the definition ofx @Eq. ~15!# to get an estimate:

uxu<uh~V,W!u21~b2t0!~ t02a!<K sup
@a,b#

$~12h~V1 ,V2!!21~222h~V1 ,V2!!1/2%

3~b2t0!~ t02a!.

Substituting this into~16! gives

g~V,E0!gSV, D]uE0D,
1

2
~b2t0!~ t02a!
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



desic.
ult on

.

ld be
f

here
esic.
re of
a
e,

al

ne

e
d
urves
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so again (]/]u) @h(V,V)#,0. h

We have now established that if a causal curve has minimal b-length, it must be a geo
It remains to prove the existence of causal curves with minimal b-length. First we need a res
the continuity properties of the b-length.

Lemma 4: Suppose that all the curves in C8(p,q) are contained in a strongly causal region
Then the b-length l is lower semi-continuous in the C0-topology on C8(p,q).

Proof: Let l P C8(p,q) be a timelike curve fromp to q, parametrized by b-lengtht such that
the mapt°l(t) is injective. This has to be possible since otherwise strong causality wou
violated. Let f be a function in a neighborhoodU of l such thatf ul5t and the surfaces o
constantf are spacelike and orthogonal to the tangentV of l with respect toh. Any curve
mPC8(p,q)ùU can be parametrized byf , and the tangent vector ofm may be expressed as

]

] f U
m

5Z1W,

whereZa5gabf ;b andh(Z,W)50. Then

hS ]

] fU
m

,
]

] fU
m
D 5h~Z,Z!1h~W,W!>h~Z,Z!.

But Zul5V andl is parametrized by b-length, soh(Zul ,Zul)51. Givene.0 we can choose a
neighborhoodU8,U of l such thath(Z,Z).12e onU8. Then for all curvesm in U8,

l ~m,Ek!>E
tp

tq
h~Zum ,Zum!1/2dt.A12eE

tp

tq
dt5A12e l ~l,Ek!.

h

We summarize the results of this section in a theorem.
Theorem 2: If p and q are causally separated and belong to a globally hyperbolic set, t

exists a causal curve from p to q with minimal b-length. Moreover, any such curve is geod
Proof: l is lower semi-continuous by Lemma 4 and bounded below by 0 on the closu

C8(p,q), which is compact sincep and q belong to a globally hyperbolic set. Thus there is
curveg in the closure ofC8(p,q) with minimal b-length.g must be geodesic since if otherwis
g can be varied to give a shorter curve by Lemma 3. h

IV. IMPRISONED CURVES

We can now use Theorem 2 to generalize Schmidt’s theorem~Theorem 1! to partially impris-
oned curves.

Theorem 3: Every cluster curveg of a partially imprisoned incomplete inextendible caus
curvel is a null geodesic.

Proof: The intuitive picture is that the tangent ofl must become more and more null as o
follows l to the future. We will prove this by contradiction; ifg is timelike somewhere, the
b-length ofl must be infinite.

If g is not a null geodesic, we can find a small portiong8 of g contained in a globally
hyperbolic, convex normal neighborhoodN such that the endpointsp andq of g8 are timelike
separated. We can also find portionsl i of l contained inN such thatg8 is the limit curve of the
l i .

Let p be the b-shortest causal curve betweenp andq and letp i be the b-shortest causal curv
between the endpoints ofl i . Then p and p i are geodesics by Theorem 2 an
l (l i)> l (p i)>L(p i). In a convex normal neighborhood, geodesics are uniquely defined as c
with maximal metric length between two points, soL(p i)→L(p) as i→`.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Now l (l)>( i l (l i) and l (l) is finite sincel is incomplete. Butp andq are timelike sepa-
rated so

l ~l i !>L~p i !→L~p!.0 asi→`,

which is a contradiction. h

In the Misner space-time~cf. Sec. I and Fig. 1! the statement of Theorem 3 is not surprisi
since the closed null geodesic att50 is a cluster curve of totally imprisoned null geodesics. In t
particular case the cluster curve is inextendible and incomplete, but that is not always true
following example shows.

Example:Consider the manifoldS13 R with the metric

ds252dtdc1t2dc2.

This space-time exhibits a similar behavior as the Misner space-time. There are complete v
null geodesics given byt5u, c5const. and incomplete, inextendible spiralling geodesics
proaching the cluster curve att50 of the typet5u, c52u21. However, in this case the close
null geodesic is complete; it is given byt50, c5u ~Fig. 2!.

Another property of the cluster curve in the Misner space-time is that it is imprisoned
compact set. An example where this is not the case can be found by simply removing a po
t50 in the Misner space-time~Fig. 1!.

Note that closed timelike curves are partially imprisoned and that closed non-geodesic
curves can be varied to give closed timelike curves.1 Thus Theorem 3 implies that a non-geode
or timelike closed causal curve must be complete. This is intuitively clear since a closed tim
curve l must be metrically complete. Indeed, when parallelly propagating an orthogonal
alongl we get an infinite sequence of orthogonal bases along the image ofl, each corresponding
to one ‘‘circulation’’ of l. In each of these bases,h(V,V)>g(V,V) whereV is the tangent of
l, with equality if and only ifV is orthogonal to the timelike basis vectorE0 with respect tog.
Then the b-length has to be greater than or equal to the metric length which is infinite, sol must
be complete.

FIG. 2. A two-dimensional space-time with a complete cluster curve att50. Causality is preserved in both regions A an
B, but violated by the closed complete null geodesic att50.
J. Math. Phys., Vol. 38, No. 6, June 1997
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V. CONCLUDING REMARKS

The variational arguments used in this article are of a very local nature, and we have fo
on the extremal properties of geodesics in small neighborhoods. The techniques are ba
variations in a globally hyperbolic neighborhood small enough to constrain the second term
first variation of the b-length~7!. The next logical step is to shift attention to the global connect
between geodesic behavior and the b-length, i.e., to construct a Morse theory11 for the Schmidt
metric similar to the Morse theory for metric length.12–15 The relation of conjugate points t
extrema of the b-length is of particular interest. This calls for some modifications of the techn
used in this article. For example, causality might not hold inM, which has the consequence th
the topology onC(p,q) is no longer Hausdorff. A bigger problem is that, in general, we exp
that the curvature will have a severe impact on variations on a larger scale, since the p
propagation of the basis used in the definition of b-length might give a large difference in b-l
even for small variations. This is subject to further study.
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Noncommutative geometry with graded differential Lie
algebras
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Starting with a Hilbert space endowed with a representation of a unitary Lie algebra
and an action of a generalized Dirac operator, we develop a mathematical concept
towards gauge field theories. This concept shares common features with the
Connes–Lott prescription of noncommutative geometry, differs from that, how-
ever, by the implementation of unitary Lie algebras instead of associative
* -algebras. The general scheme is presented in detail and is applied to functions^

matrices. ©1997 American Institute of Physics.@S0022-2488~97!01805-7#

I. INTRODUCTION

We present a framework towards a construction~of the classical action! of gauge field theories
out of the following input data:

~1! The ~Lie! group of local gauge transformationsG .
~2! Chiral fermionsc transforming under a representationp̃ of G .
~3! The fermionic mass matrixM̃, i.e., fermion masses plus generalized Kobayashi–Mask

matrices.
~4! Possibly the spontaneous symmetry breaking pattern ofG .

At first sight, this setting seems to be adapted to the Connes–Lott prescription1 of noncom-
mutative geometry~NCG!. However, it was proved in Ref. 2 that only the standard model can
constructed within that scheme—out of aK-cycle1,3 ~nowadays called spectral triple! with real
structure.4 For details of this construction see Refs. 5 and 6. It is certainly too early to judge
experimental results whether the standard model is correct or not. At least there exist
reasons7 why one could be interested in Grand Unified Theories~GUT’s!. It is clear from Ref. 2
that the discussion of such models within NCG requires additional structures or different me
The perhaps most successful NCG approach towards Grand Unification was proposed in
8–10, where theK-cycle plays an auxiliary role.

The author of this paper has sketched in Ref. 11 a concept towards gauge field theories
upon unitary Lie algebras instead of unital associative*-algebras. Our concept requires the sa
amount of structures as the Connes–Lott prescription and is physically motivated. Starting
the above physical data~1!–~4! one obtains aK-cycle by enlarging the gauge groupG to a unital
associative*-algebraA, provided that it is possible to extend the representationp̃ to a represen-
tation ofA. We shall go the opposite way: We restrict the gauge group to its infinites
elements, giving the Lie algebra ofG . In our case there are no obstructions for the representa
and—in principle—any physical model based upon~1!–~4! can be constructed. In this paper w
present the mathematical footing of that line. We shall develop techniques adapted to this ca
differ from those of Connes and Lott.

The paper is organized as follows. Section II contains the general construction, withou
reference to a physical model. We start in Sec. II A with basic definitions concerningL-cycles, the
basic geometric object in our approach. In Sec. II B we construct the universal graded diffe
Lie algebraV*g and derive properties of its elements. Using the data specified in theL-cycle we

a!Electronic mail: raimar.wulkenhaar@itp.uni-leipzig.de
0022-2488/97/38(6)/3358/33/$10.00
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define in Sec. II C a Lie algebra representationp of V*g in B(h). Factorization ofp~V*g! with
respect to the differential idealp~I *g! yields the graded differential Lie algebraVD* g. In Sec. II D
we introduce the important maps, which enables us to give a convenient form to the id
p~I *g!. Using the language of graded Lie homomorphisms introduced in Sec. II E we defi
Sec. II F the fundamental objects of gauge field theories: connections, curvatures, gauge tr
mations, bosonic and fermionic actions.

In Sec. III we apply the general scheme toL-cycles over functionŝ matrices. That class o
L-cycles, which has a direct relation to physical models, is defined in Sec. III A. For the s
time part it is convenient to redefine the exterior differential algebraL* , see Sec. III B. This
enables us to decompose in Sec. III C the graded Lie algebrap~V*g! and in Sec. III D the ideal
p~I *g! into space-time part and matrix part. The decomposition of the formulae for the d
ential and the commutator is given in Sec. III E. Finally, we consider in Sec. III F local con
tions.

II. L -CYCLES AND GRADED DIFFERENTIAL LIE ALGEBRAS

A. The L -cycle

The basic geometric object in our NCG prescription is anL-cycle, which differs from a
K-cycle1,3 used in the Connes–Lott prescription by the implementation of unitary Lie alge
instead of unital associative* -algebras:

Definition 1:An L-cycle (g,h,D,p,G) over a unitary Lie algebrag is given by

~i! an involutive representationp of g in the Lie algebraB(h) of bounded operators on
Hilbert spaceh, i.e., (p(a))*5p(a* )[2p(a), for anyaPg,

~ii ! a ~possibly unbounded! selfadjoint operatorD on h such that (idh1D2)21 is compact and
for all aPg there is@D,p(a)#PB(h), where idh denotes the identity onh,

~iii ! a self-adjoint operatorG on h, fulfilling G25 idh, GD1DG50 andGp(a)2p(a)G50,
for all aPg.

Any Lie algebrag can be embedded into its universal enveloping algebraU~g!, and the represen
tation p:g→B(h) extends to a representationp:U(g)→B(h) ~Poincare´–Birkhoff–Witt
theorem12!. In this sense, anyL-cycle can be embedded into its ‘‘envelopingK-cycle.’’ However,
the gauge field theory obtained by the Connes–Lott prescription1,3 from this envelopingK-cycle
differs from the gauge field theory we are going to develop for theL-cycle. Our construction
follows the ideas of Connes and Lott, but the methods and results are different.

Although we do not need it, let us translate properties of aK-cycle into definitions for the
L-cycle. We use the definition of the distance on aK-cycle1,3 to define the distance between line
functionalsx1,x2:g→C of the Lie algebra:

Definition 2:Let X be the space of linear functionals ofg. The distance dist(x1,x2) between
x1,x2PX is given by

dist~x1,x2!:5sup
aPg

$ux1~a!2x2~a!u: i@D,p~a!#i<1%.

This definition makes (X,dist) to a metric space, and there is no need forp being an algebra
homomorphism.

Next, we can take the definition of integration on aK-cycle1,3 to define the notion of integra
tion on anL-cycle:

Definition 3: Let dP@1,`) be a real number. AnL-cycle (g,h,D,p,G) is called d1-
summable if the eigenvaluesEn of D—arranged in increasing order—satisfy
J. Math. Phys., Vol. 38, No. 6, June 1997
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We define the integration

E
X
uau2dm:5const~d!Trv~~p~a!!2uDu2d!, aPa,

where Trv is the Dixmier trace,dm is the ‘‘volume measure’’ onX and const(d) refers to a
constant depending ond.

B. The universal graded differential Lie algebra V*g

To construct differential algebras over aK-cycle (A,h,D) one starts from the universa
differential algebraV*A overA and factorizes this differential algebra with respect to a diff
ential ideal determined by the representationp of V*A in B(h). In analogy to this procedure w
first define a universal differential Lie algebraV*g over the Lie algebrag of theL-cycle. Then we
define a representationp of V*g in B(h). Finally, we perform the factorization with respect
the differential ideal.

Let g be a Lie algebra overR with involution given bya*52a, for aPg. The construction
of the universal graded differential Lie algebraV*g over the Lie algebrag goes as follows: First,
let dg be another copy ofg. LetV(g) be the free vector space generated byg and letV(dg) be the
free vector space generated bydg,

V~g!:5 %

aPg

Va, Va5R;aPg,

~2.1!

V~dg!:5 %

daPdg

Vda, Vda5R;daPdg.

For a vector spaceX we denote bydx the function onX, which takes the value 1 at the pointx
PX and the value 0 at all pointsyÞx. Then,

V~g!5$Saladaa
, aaPg, laPR%,

~2.2!

V~dg!5$Saladdaa
, aaPg, laPR%,

where the sums are finite. LetT(g) be the tensor algebra ofV(g)%V(dg), which carries a natura
N-grading structure. We define deg(v)50 for vPV(g) and deg(v)51 for vPV(dg). For tensor
products v1^v2^ ...^vnPT(g), where eachv i , i51,...,n, belongs either toV(g) or to
V(dg), we define

deg~v1^v2^ ...^vn!:5S i51
n deg~v i !. ~2.3!

Now we have

T~g!5 %

nPN
Tn~g!, Tn~g!:5$tPT~g!, deg~ t !5n%. ~2.4!

In particular, we haveTk(g)^Tl(g),Tk1 l(g).
Next, we regardT(g) as a graded Lie algebra with graded commutator given by

@ tk, t̃ l #:5tk^ t̃ l2~21!klt̃ l
^ tk, tkPTk~g!, t̃ lPTl~g!. ~2.5!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Obviously, one has

~1! @ tk, t̃ l #52~21!kl@ t̃ l ,tk#,

~2! @ tk,l t̃ l1l̃t5 l #5l@ tk, t̃ l #1l̃@ tk,t5 l #,

~3! ~21!km@ tk,@ t̃ l ,t5m##1~21! lk@ t̃ l ,@ t5m,tk##1~21!ml@ t5m,@ tk, t̃ l ##50,

~2.6!

for tkPTk(g), t̃ l ,t5 lPTl(g), t5mPTm(g) andl,l̃PR.
Let Ṽ* g5 % nPNṼng be theN-graded Lie subalgebra ofT(g) given by the set of all repeate

commutators@in the sense of~2.5!# of elements ofV(g) and V(dg). Let I 8(g) be the vector
subspace ofṼ* g of elements of the following type:

lda2dla, ldda2dd~la!,

da1d ã 2da1 ã, dda1dd ã 2dd~a1 ã !,

@da,d ã#2d@a, ã#, @dda,d ã#1@da,dd ã#2dd@a, ã#,

~2.7!

for a,ãPg andlPR. Obviously,

I ~g!:5I 8~g!1@V~g! %V~dg!,I 8~g!#1@V~g! %V~dg!,@V~g! %V~dg!,I 8~g!##1... ~2.8!

is anN-graded ideal ofṼ* g, I (g)5 % nPN I
n(g). Then,

V* g:5 %

nPN
Vng, Vng:5Ṽng /I n~g!, ~2.9!

is anN-graded Lie algebra, with commutator given by

@Ã1I ~g!,Ã̃1I ~g!#:5@Ã,Ã̃#1I ~g!, Ã,Ã̃PṼ* g. ~2.10!

OnT(g) we define recursively a graded differential as anR-linear mapd:Tn(g)→Tn11(g) by

d~lda!:5ldda, d~ldda!:50,
~2.11!

d~lda^ t !:5lddat1ldadt, d~ldda^ t !:52ldda^dt,

for aPg, tPT(g) andlPR. From this definition we get

d2~lda!5d~ldda!50, d2~ldda!50,

d2~lda^ t !5d~ldda^ t !1d~lda^dt!52ldda^dt1ldda^dt1lda^d2t5lda^d2t,
~2.12!

d2~ldda^ t !5ldda^d2t,

therefore, by induction,d250 onT(g). In order to show thatd is a graded differential we use th
following equivalent characterization of~2.11!:

d~v1^ ...^vn![(
i51

n

~21!( j51
i21 deg~v j !v1^ ...^v i21^dv i ^v i11^ ...^vn. ~2.13!

For tk5v1^ ...^vnPTk(g), k5( i51
n deg(v i), and t̃

lPTl(g) we get from~2.13!
J. Math. Phys., Vol. 38, No. 6, June 1997
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d~ tk^ t̃ l !5d~ tk! ^ t̃ l1~21!ktk^dt̃ l . ~2.14!

Thus,d defined by~2.11! is a graded differential of the tensor algebraT(g). Moreover,d is also
a graded differential of the graded Lie algebraT(g):

d@ tk, t̃ l #5d~ tk^ t̃ l2~21!klt̃ l
^ tk!

5~d~ tk! ^ t̃ l2~21!~k11!l t̃ l
^dtk!1~21!k~ tk^dt̃ l2~21!k~ l11!d~ t̃ l ! ^ tk!

5@dtk, t̃ l #1~21!k@ tk,dt̃ l #.

Now, fromd(V(g)%V(dg)),V(g)%V(dg) we conclude thatd is also a graded differential of th

graded Lie subalgebraṼ* g,T(g).
Next, we show thatdI8(g),I 8(g):

d~lda2dla!5ldda2dd~la!, d~ldda2dd~la!!50,

d~da1d ã 2da1 ã!5dda1dd ã 2dd~a1 ã !, d~dda1dd ã 2dd~a1 ã !!50,
~2.15!

d~@da,d ã#2d@a, ã#!5@dda,d ã#1@da,dd ã#2dd@a, ã#,

d~@dda,d ã#1@da,dd ã#2dd@a, ã#!52@dda,dd ã#1@dda,dd ã#50.

Sinced(V(g)%V(dg)),V(g)%V(dg), we get from~2.8!

dI~g!,I ~g!. ~2.16!

Therefore, the graded differentiald on Ṽ* g induces a graded differential onV* g denoted by the
same symbol:

d~Ã1I ~g!!:5dÃ1I ~g!, ÃPṼ* g. ~2.17!

Hence, (V* g,@ ,#,d) is a graded differential Lie algebra.
We extend the involution* :a°2a on g to an involution of the free vector spacesV(g) and

V(dg) by

~lda!* :52lda, ~ldda!* :52ldda. ~2.18!

We obtain an involution ofT(g) by

~v1^v2...^vn!* :5vn* ^ ...^v2* ^v1* , ~2.19!

fulfilling

~ t^ t̃ !*5 t̃* ^ t* . ~2.20!

Formula~2.20! induces the following property of the Lie bracket~2.5!:

@ tk, t̃ l #*52~21!kl@ tk* , t̃ l* #. ~2.21!

Because of (V(g)%V(dg))*5V(g)%V(dg) we get an involution onṼ* g by restricting the

involution onT(V) to its graded Lie subalgebraṼ* g. Obviously, we haveI 8(g)*5I 8(g), giving
I (g)*5I (g). Therefore, we obtain an involution onV* g by
J. Math. Phys., Vol. 38, No. 6, June 1997
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~Ã1I ~g!!* :5Ã* a1I ~g!, ÃPṼ* g. ~2.22!

The graded differential Lie algebraV*g is universal in the following sense:
Proposition 4: Let L* g5 % nPNLng be anN-graded Lie algebra with graded differenti

d:Lng→Ln11g such that

~i! L0g5p(g) for a surjective homomorphismp:g→p(g) of Lie algebras,
~ii ! L*g is generated byp~g! anddp(g) as the set of repeated commutators.

Then there exists a differential idealIL,V* g such thatL* g>V* g/IL.
Proof:We define a surjective mappingp̃:Ṽ* g→L* g by

p̃~lda!:5p~la!,

p̃~dÃ!:5d~ p̃~Ã!!,

p̃~@Ã,Ã̃#!:5@ p̃~Ã!,p̃~Ã̃!#,

for aPg, Ã,Ã̃PṼ* g andlPR. Obviously,p̃(I (g))50. Therefore, by factorization with respe

to I (g) we get a subjectionp:V* g→L* g by p(Ã1I (g)):5 p̃(Ã), for ÃPṼ* g. We have
p(d ker p)50, therefore,IL5ker p is the desired differential ideal ofV* g:

L* g>V* g/kerp.
h

Proposition 4 tells us that each graded differential Lie algebra generated byp~g! and its differen-
tial is obtained by factorizingV* g with respect to a differential ideal. For the setting described
anL-cycle, such a differential ideal is canonically given. This leads to a canonical graded d
ential Lie algebra, see Sec. II C.

To summarize: We have defined a universal graded differential Lie algebraV* g

5 % n50
` Vng over a Lie algebrag, with:

~i! graded commutator@ ,#:Vkg3V lg→Vk1 lg,
~ii ! universal differentiald:Vkg→Vk11g, which is linear, nilpotent and obeys the grad

Leibniz rule,
~iii ! involution * :Vkg→Vkg.

Explicitly, we have the following properties:

~1! @vk,ṽ l #52~21!kl@ṽ l ,vk#, ~2.23a!

~2! @vk,lṽ l1l̃v5 l #5l@vk,ṽ l #1l̃@vk,v5 l #, ~2.23b!

~3! ~21!km@vk,@ṽ l ,v5 m##1~21! lk@ṽ l ,@v5 m,vk##1~21!ml@v5 m,@vk,ṽ l ##50, ~2.23c!

~4! d@vk,ṽ l #5@dvk,ṽ l #1~21!k@vk,dṽ l #, ~2.23d!

~5! d2vk50, ~2.23e!

~6! @vk,ṽ l #*52~21!kl@vk* ,ṽ l* #, ~2.23f!

for vkPVkg, ṽ l , v5 lPV lg, v5 mPVmg andl,l̃PR.
It is convenient to fix a canonical ordering in elements ofVkg, k>1. First, let

i~a!:5da1I ~g!, i~da!:5dda1I ~g!, ~2.24!
J. Math. Phys., Vol. 38, No. 6, June 1997
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for aPg. The first equation establishes an isomorphismV0g>g. We shall represent elemen
v1PV1g as

v15i~dã !1 (
a,z>1

@i~aa
z !,@ ...@i~aa

2 !,@i~aa
1 !,i~daa

0 !##...##

[ (
a,z>0

@i~aa
z !,@ ...@i~aa

2 !,@i~aa
1 !,i~daa

0 !##...##,
~2.25!

where ã,aa
i Pg and the sums are finite. To avoid possible misunderstandings concerning

notation we fix throughout this paper the following convention: Beginning withz51, the indexa
first runs from 1 toa1.0 and labels the terms

@i~a1
1!,i~da1

0!#,...,@i~aa1
1 !,i~daa1

0 !#

in ~2.25!. Then, forz52, the indexa runs froma111 to a2.a1 and labels the commutators

@i~aa111
2 !,@i~aa111

1 !,i~daa111
0 !##,...,@i~aa2

2 !,@i~aa2
1 !,i~daa2

0 !##

in ~2.25!, and so on. Therefore, the pair (i ,b) of indices labelling an elementab
i Pg does never

occur more than once in the sum~2.25!. Moreover, we identify the term belonging to the pa
~a50, z50! of indices withi(dã), as already indicated in~2.25!.

Now, we write down elementsvkPVkg, k>2, recursively as

vk5(
a

@va
1,ṽa

k21#, va
1PV1g, ṽa

k21PVk21g, finite sum. ~2.26!

There are two things to check concerning~2.26!. First, for ṽn[(a@ṽa
1,v5 a

n21#PVng, with ṽa
1

P V1g andv5 a
n21PVn21g, we must show that also@v0,ṽn#PVng can be represented in th

standard form~2.26!, for anyv0PV0g. But this follows from the graded Jacobi identity~2.23c!:

@v0,ṽ n#5Fv0,(
a

@ṽa
1,v5 a

n21#G
52(

a
@ṽa

1,@v5 a
n21,v0##2~21!n21(

a
@v5 a

n21,@v0,ṽa
1 ##

5(
a

~@ṽa
1,@v0,v5 a

n21##1@@v0,ṽa
1 #,v5 a

n21# !.

Second, we must show that the commutator@vk,ṽ l #PVk1 lg, for 2<k< l , can be represented i
the standard form~2.26! of an element ofVk1 lg, provided that bothvkPVkg andṽ lPV lg are
written down recursively in the form~2.26!. Using again~2.23b! and ~2.23c! we get forvk

5(a@va
1,v5 a

k21#

@vk,ṽ l #52~21! lk(
a

@ṽ l ,@va
1,v5 a

k21##5(
a

~@va
1,@v5 a

k21,ṽ l ##1~21!k@v5 a
k21,@va

1,ṽ l ## !.

Repeating this calculation for the commutators@v5 a
k21,ṽ l # and @v5 a

k21,@va
1,ṽ l ##, we can recur-

sively decrease the degreek until we arrive at degree 1.
Now we can easily prove

~vk!*52~21!k~k21!/2vk, vkPVkg. ~2.27!
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



fini-

e

the

3365Raimar Wulkenhaar: Graded differential Lie algebras

¬¬¬¬¬¬¬¬¬¬
By definition, ~2.27! holds fork50. From~2.25! and ~2.23f! we get forv1PV1g

v1*5 (
a,z>0

@i~aa
z !,@ ...,@i~aa

1 !,i~daa
0 !#...##*

5 (
a,z>0

@i~aa
z !,~@ ...,@i~aa

1 !,i~daa
0 !#...# !* #

5...5 (
a,z>0

@i~aa
z !,@ ...,@i~aa

1 !,~i~daa
0 !!* #...##52v1.

In the same way we get from~2.26! and ~2.23f! for vkPVkg

vk*5(
a

@va
1,ṽa

k21#*5~21!k21(
a

@va
1,~ṽa

k21!* #5~21!~( i52
k21i !vk52~21!k~k21!/2vk.

C. The graded differential Lie algebra VD* g

Following the procedure forK-cycles we define an involutive representationp of the univer-
sal differential Lie algebraV* g introduced in Sec. II B in the graded Lie algebraB(h) of
bounded operators onh, whereh is the Hilbert space of theL-cycle given in Definition 1. We
underline thatp will not be a representation of graded Lie algebras with differential. The de
tion of p uses almost the whole input contained in theL-cycle. First, using the grading operatorG,
we define aZ2-grading structure on the vector spaceO (h) of linear operators on the Hilbert spac
h, O (h)5O 0(h)%O 1(h), by

O 0~h!G5GO 0~h!, O 1~h!G52GO 1~h!. ~2.28!

This enables us to introduce the graded commutator forZ2-graded linear operators onh: For Ai

PO i(h) andBjPO j (h)ùB(h), where bothAi ,Bj are selfadjoint or skew-adjoint onh, we define

@Ai ,Bj #g:5Ai+Bj2~21! i j Bj +Ai[2~21! i j @Bj ,Ai #g ~2.29!

on the subseth85domain(Ai)ù$cPh, BjcP domain(Ai)% of h. In certain cases it may be
possible to extendh8. One hasAjPB(h) iff h85h.

Let us define a linear mappingp̃:Ṽ* g→B(h) by

p̃~lda!:5p~la!, ~2.30a!

p̃~ldda!:5@2 iD,p~la!#g[@2 iD,p~la!#, ~2.30b!

p̃~@Ãk,Ã̃ l # !:5@p̃~Ãk!,p̃~Ã̃ l !#g, ~2.30c!

for aPg, ÃkPṼkg, Ã̃ lPṼ lg and lPR. Note thatp(a) and @D,p(a)# are bounded due to
Definition 1 so that the right hand side of Eqs.~2.30a! and~2.30b! belong toB(h). Now, due to
p(g),O 0(h) andDPO 1(h), we get from~2.30!

p̃~Ṽ2kg!,O 0~h!, p̃~Ṽ2k11g!,O 1~h!. ~2.31!

Next, we show thatp̃:Ṽ* g→B(h) is an involutive representation, where we recall that
involution inB(h) is defined as usual by means of the scalar product^,&h on h:

^c,t* c̃&h:5^tc,c̃&h, ;c,c̃Ph, tPB~h!. ~2.32!
J. Math. Phys., Vol. 38, No. 6, June 1997
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First, from ~2.18!, ~2.30a! and the fact thatp:g→B(h) is an involutive representation we get

p̃~~lda!* !52p̃~lda!52p~la!5~p~la!!*5~p̃~lda!!* .

Second, from~2.18!, ~2.30b! and the selfadjointness ofD we obtain

p~~ldda!* !52p~ldda!5 i~D+p~la!2p~la!+D !

52~2 i!* ~D* +~p~la!!*2~p~la!!* +D* !

52$2 i~p~la!+D2D+p~la!!%*5~p~ldda!!* .

Now we get by induction thatp̃ is an involutive representation onṼ* g.
Observe that

p̃~ I ~g!![0. ~2.33!

Therefore, the involutive representationp̃:Ṽ* g→B(h) induces an involutive representatio
p:V* g→B(h) by ~the symbolp is already used but there is no danger of confusion!

p~Ã1I ~g!!:5p̃~Ã!, ÃPṼ* g. ~2.34!

In the same way as forK-cycles there may existvPV* g, fulfilling p(v)50 but not
p(dv)50. Therefore,p(V* g) is not a differential Lie algebra. But there is a canonical co
struction towards such an object. Let us define

I * g5ker p1d ker p5 %

k50

`

I kg, I kg5I * gùVkg. ~2.35!

To obtain a differential Lie algebra we first prove:
Lemma 5:I * g is a graded differential ideal of the graded Lie algebraV* g.
Proof: It is clear that kerp is an ideal ofV* g. Then, for j kPker pùVkg andvPV* g we

have, see~2.23d!,

@d jk,v#5d~@ j k,v#!2~21!k@ j k,dv#.

Because of@ j k,dv#Pker p andd(@ j k,v#)Pd ker p, I * g is an ideal ofV* g. Moreover, it is
obviously a differential ideal:dI * g,I * g, due tod250. h

By virtue of Proposition 4, the canonical differential ideal~2.35! gives rise to a graded differentia
Lie algebraVD* g:

VD* g5 %

k50

`

VD
k
g, VD

k
g:5Vkg/I kg. ~2.36a!

There is a canonical isomorphism

Vkg

I kg
>

Vkg/~ker pùVkg!

I kg/~ker pùVkg!
, ~2.36b!

establishing the isomorphism

VD
k
g>p~Vkg!/p~I kg!. ~2.36c!

In particular, one has
J. Math. Phys., Vol. 38, No. 6, June 1997
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VD
0
g>p~V0g![p~g!, VD

1
g>p~V1g!. ~2.36d!

Let § denote the projection onto equivalence classes,§:p(Vkg)→VD
k
g. In this notation, the

commutator and the differential onVD* g are defined as

@§+p~vk!,§+p~ṽ l !#g:5§~@p~vk!,p~ṽ l !#g!, ~2.37a!

d~§+p~vk!!:5§+p~dvk!, ~2.37b!

for vkPVkg and ṽ lPV lg. From ~2.37a! it follows thatVD* g is a graded Lie algebra, and th

bracket@ ,#g:VD* g3VD* g→VD* g has properties analogous to~2.23!. For %k5§+p(vk) and %̃ l

5 § + p(ṽ l) we have with~2.37a! and~2.37b!

d@%k,%̃ l #g5§+p~d@vk,ṽ l # !5§+p~@dvk,ṽ l #1~21!k@vk,dṽ l # !

5@d%k,%̃ l #g1~21!k@%k,d%̃ l #g. ~2.37c!

Obviously,d2[0 onVD* g. This means thatd is a graded differential onVDg. Moreover, we have

~§+p~vk!!*5§+p~~vk!* !, vkPVD
k
g, ~2.38!

becausep is an involutive representation andp(I * g) is invariant under the involution. From
~2.27! we get

%n*52~21!n~n21!/2%n, %nPVD
n
g. ~2.39!

D. Towards the analysis of the differential ideal

Our goal is the analysis of the idealp(I * g). For this purpose we define

sS (
a,z>0

@i~aa
z !,@ ...@i~aa

1 !,i~daa
0 !#...## D :5 (

a,z>0
@p~aa

z !,@ ...@p~aa
1 !,@D2,p~aa

0 !##...##,

~2.40!

whereaa
i Pg. In particular, from~2.40! we get

s~i~da!!5@D2,p~a!#, s~@i~a!,v1# !5@p~a!,s~v1!#, ~2.41!

for aPg andv1PV1g. We extends to V* g, puttings(V0g)[0 and

sS (
a

@va
k ,ṽa

l # D :5(
a

~@s~va
k !,p~ṽa

l !#g1~21!k@p~va
k !,s~ṽa

l !#g!, ~2.42!

for va
kPVkg andṽa

lPV lg. Note thats(vk)PO zk11
(h) if p(vk)PO zk

(h), wherezn5n mod 2.
We do not necessarily haves(vk)PB(h). Now we prove:

Proposition 6:We havep(dvk)5@2 iD,p(vk)#g1s(vk), for vkPVkg.
Proof: The Proposition is clearly true fork50. To prove the Proposition fork51 we first

consider the casev15i(da)PV1g. Then we have

@2 iD,p~v1!#g5@2 iD,@2 iD,p~a!#g#g5@~2 iD !2,p~a!#52s~i~da!!
J. Math. Phys., Vol. 38, No. 6, June 1997
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so thatp(dv1)50. But this is consistent withdv15d2(i(a))50. Now we prove the Proposition
for k51 by induction. Because of~2.41!, the linearity ofp and the structure of elements o
V1g, see~2.25!, it suffices to assume that the Proposition is true for allv1PV1g and to show that
from this assumption there follows

p~d@i~a!,v1# !5@2 iD,p~@i~a!,v1# !#g1s~@i~a!,v1# !,

for all aPg. We calculate

p~d@i~a!,v1# !5@p~i~da!!,p~v1!#g1@p~i~a!!,p~dv1!#g

5@@2 iD,p~a!#g,p~v1!#g1@p~a!,@2 iD,p~v1!#g1s~v1!#g

5@2 iD,@p~a!,p~v1!#g#g1s~@i~a!,v1# !

5@2 iD,p~@i~a!,v1# !#g1s~@i~a!,v1# !.

Finally, we extend the proof to anyk by induction. For that purpose let us assume that
Proposition holds fork21. Due to linearity we can restrict ourselves to elementsvk

5 @v1,ṽk21# P Vkg. Using~2.42! and the graded Jacobi identity we calculate

p~d@v1,ṽk21# !5@p~dv1!,p~ṽk21!#g2@p~v1!,p~dṽk21!#g

5@@2 iD,p~v1!#g1s~v1!,p~ṽk21!#g

2@p~v1!,@2 iD,p~ṽk21!#g1s~ṽk21!#g

52@p~ṽk21!,@2 iD,p~v1!#g#g

2~21!k@p~v1!,@p~ṽk21!,2 iD#g#g1s~@v1,ṽk21# !

5@2 iD,@p~v1!,p~ṽk21!#g#g1s~@v1,ṽk21# !.
h

We recall that

p~I kg!5$p~dvk21!, vk21PVk21gùker p%. ~2.43!

From Proposition 6 we get the following equivalent characterization:

p~I kg!5$s~vk21!, vk21PVk21gùker p%. ~2.44!

Obviously,s(vk21) is bounded ifp(vk21)50. Of course,~2.44! is only a rewriting of~2.43!,
but it is a convenient starting point for the analysis ofp(I * g).

E. Graded Lie homomorphisms

In this subsection we provide the framework for the formulation of connections and g
transformations. Let

H ng:5$hnPO zn
~h!, zn5n mod 2, hn*52~21!n~n21!/2hn,

@hn,p~Vkg!#g,p~Vk1ng!, @hn,p~I kg!#g,p~I k1ng!% ~2.45!

be the set of graded Lie homomorphisms ofp(V* g) of nth degree. Note thatHng may contain
unbounded operatorsh on h, but such that

h85domain~h!ù$cPh, p~V* g!c,domain~h!%
J. Math. Phys., Vol. 38, No. 6, June 1997
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is dense inh. This is necessary to ensure that the sequence$@h,p(v)#gcn%n of elements ofh, for
cnPh8 and anyvPV* g, converges top(ṽ)c if cn tends tocPh, wherep(ṽ)Pp(V* g) is
independent ofcn. Let

c̃ ng:5$ j nPH ng, @ j n,p~V* g!#g50% ~2.46!

be the graded centre ofp(V* g) of nth degree. Then, the factor space

H̃* g:5 %

nPN0

H̃ ng, H̃ ng:5H ng/ c̃ ng, ~2.47a!

is a graded Lie algebra, with the graded commutator given by

@@hk1 c̃ kg,h̃ l1 c̃ lg#g,p~vn!#g:5@hk,@h̃ l ,p~vn!#g#g2~21!kl@h̃ l ,@hk,p~vn!#g#g,
~2.47b!

for hkPH kg, h̃ lPH lg andvnPVng. It is clear that this equation is well-defined. Obvious
p(V* g) is a graded Lie subalgebra ofH̃* g.

It is clear that the graded idealp(I * g) of p(V* g) yields a graded idealp(I * g)1 c̃* g of
H * g, see~2.45!. Therefore,

Ĥ* g:5 %

nPN0

Ĥ ng, Ĥ ng5H ng/Jng, Jng5 ĉng1p~I ng!, ~2.48a!

is a graded Lie algebra. Moreover, it is a graded differential Lie algebra, too, where the g
differential is defined by

@d~hk1p~I kg!1 c̃kg!,p~vn!1p~I ng!#g:

5p+d+p21~@hk,p~vn!#g!2~21!k@hk,p~dvn!#g1p~I k1n11g!, ~2.48b!

for hkPH kg andvnPVng. It is obvious that this equation is well-defined and thatVD* g is a
graded Lie subalgebra ofĤ* g.

Let

u~g!:5$h0PH0gùB~h!,

s+p21~@h0,p~vk!#g!2@h0,s~vk!#gPp~I k11g!, ;vkPVkg%. ~2.49!

Obviously,p(g),u(g). LetO0,u(g) be an open neighbourhood of the zero element ofu(g) and
O1,B(h) be an open neighbourhood of1B(h). For an appropriate choice ofO0 andO1 we define
the exponential mapping

exp:O0→O1, exp~h!:51B~h!1 (
k51

`
1

k!
~h!k, hPO0. ~2.50!

The Baker–Campbell–Hausdorff formula forha,hbPO0,

exp~ha!exp~hb!5exp~hg!,

hg5ha1hb1
1

2
@ha,hb#1

1

12
~@ha,@ha,hb##2@hb,@ha,hb##!1•••Pu~g!, ~2.51!

implies that we have a multiplication in exp(O0). In particular, forhb proportional toha we get
J. Math. Phys., Vol. 38, No. 6, June 1997
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exp~l1h!exp~l2h!5exp~~l11l2!h!5exp~l2h!exp~l1h!, ~2.52!

for l1,l2PR andhPO0. Thus, exp(h) is invertible inB(h) for eachhPO0, and the inverse is
given by

~exp~h!!215exp~2h!5exp~h* !5~exp~h!!* . ~2.53!

Therefore, all elements exp(h) are unitary. SinceB(h) is aC* algebra we conclude that for a
hPu(g) we have

iexp~h!i5iexp~h!* exp~h!i1/25i1B~h!i1/251. ~2.54!

Hence, our construction leads to the subgroup

exp~u~g!!:5$Pa51
N exp~ha!, haPO0, N finite% ~2.55!

of the group of unitary elements ofB(h).
For A being a linear operator onh andhPO0 we have

~2.56!

For A5p(a)Pp(g) and exp(h)5uPO1 we get up(a)u*Pp(g). For A52 iD we get
u@2 iD,u* #52(uDu*2D)[ud(u* )PĤ1g, because with~2.49! and ~2.48b! we have

@@2 iD,h#,p~vk!#g1p~I k11g!5@2 iD,@h,p~vk!##g2@h,@2 iD,p~vk!#g#1p~I k11g!

5p+d+p21~@h,p~vk!# !2s+p21~@h,p~vk!# !2@h,p~dvk!#

1@h,s~vk!#1p~I k11g!5@dh,p~vk!#g1p~I k11g!.

If p(vk)Pp(I kg) then @@2 iD,h#,p(vk)#gPp(I k11g). Therefore, there is a natural degre
preserving representation Ad of exp(u(g)) in VD* g defined by

Adup~a!:5up~a!u* ,

Adu@2 iD,p~a!#:5@2 iD,Adup~a!#1@u@2 iD,u* #,Adup~a!#,

Adu~p~vk!1p~I kg!!:5~Adup~vk!!1p~I kg!,

Adu@%,%̃#g:5@Adu%,Adu%̃#g, ~2.57!

for uPexp(u(g)), aPg, vkPVkg and %,%̃PVD* g. Note that due to ~2.56! we have
Adup(I

kg),p(I kg).

F. Connections and gauge transformations

In this subsection we define the notion of a connection, of its curvature, of gauge transf
tions and of bosonic and fermionic actions.

Definition 7:A connection on anL-cycle is a pair (¹,¹h), where

~i! ¹h:h→h is linear, odd and skew-adjoint,

¹hPO 1~h!, ^c,¹hc̃&h52^¹hc,c̃&h, ;c,c̃Ph,
~ii ! ¹:VD

n
g→VD

n11
g is linear,
J. Math. Phys., Vol. 38, No. 6, June 1997
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~iii ! ¹(p(vn)1p(I ng))5@¹h,p(v
n)#g1s(vn)1p(I n11g), vnPVng.

The operator¹2:VDng→VDn12g is called the curvature of the connection.

As a consequence of~iii ! we get with~2.42!

¹~@%k,%̃ l #g!5@¹~%k!,%̃ l #g1~21!k@%k,¹~ %̃ l !#, %kPVD
k
g, %̃ lPVD

l
g. ~2.58!

Proposition 8:Any connection has the form~¹5d1@ r̃,.#g, ¹h52 iD1r!, for rPH1g and
r̃:5r1 c̃1gPĤ 1g. Its curvature is¹25@u,.#, with u5dr̃11/2@ r̃,r̃ #gPĤ 2g.

Proof: There is a canonical connection given by~¹5d, ¹h52 iD!. Items ~i! and ~ii ! of
Definition 7 are obvious. For~iii ! we find with Proposition 6

@2 iD,p~vk!#g1s~vk!5p~dvk!. ~2.59!

Takingv P kerp we see that~iii ! is well-defined. Let (¹ (1),¹h
(1)) and (¹ (2),¹h

(2)) be two con-
nections. Then we get from~iii ! of Definition 7

~¹~1!2¹~2!!~p~vk!1p~I kg!!5@¹h
~1!2¹h

~2!,p~vk!#g1p~I k11g!, ~2.60!

for vkPVkg. Now, item ~ii ! yields r:5¹h
(1)2¹h

(2)PH1g. Since a modification ofr by an
element ofc̃1g[J1g does not change formula~2.60!, we get¹ (1)2¹ (2)5@ r̃,.#, where r̃:5r
1 c̃1gPĤ1g. Taking (¹ (2),¹h

(2))5(d,2 iD) we obtain (¹ (1),¹h
(1))5(d1@ r̃,.#g,2 iD1r).

Note that if s(vk),p(I k11g) for all vkPp(Vkg) then there is2 iDPH1g. Thus, the
assertion remains true although the connection~¹5d, ¹h52 iD! is not distinguished in this case

Finally, we compute the curvature¹2. ForvkPVkg we have with~2.47!

¹2~p~vk!1p~I kg!!5¹~p~dvk!1@ r̃,p~vk!#g1p~I k11g!!

5@ r̃,p~dvk!#g1p+d+p21~@ r̃,p~vk!#g!1@ r̃,@ r̃,p~vk!#g#g1p~I k12g!

[Fdr̃1
1

2
@ r̃,r̃ #g,p~vk!1p~I kg!G

g

5:@u,p~vk!1p~I kg!#. h

Note that the relation betweenrPH1g andr8PH1g in ~2.60!,

@r,p~vk!#g1p~I k11g!5@r8,p~vk!#g1p~I k11g!,

may have more solutions thanr85r1 c̃1g. However, we shall regardr and r8 as different
connection forms ifr2r8¹ c̃1g. Analogously, the determining equation foru8PĤ2g,

@u8,%#g5@u,%#g for all %PVD* g,

may have more solutions thanu85u. However, we shall select always the canonical represe
tive u5dr̃11/2@ r̃,r̃ #g in the curvature form of the connection¹2. Often we shall denoteu
PĤ2g itself instead of¹2 the curvature of the connection (¹,¹h).

Definition 9: The gauge group of theL-cycle is the groupU(g):5exp(u(g)) defined in
~2.55!. Gauge transformations of the connection are given by

~¹,¹h!°~¹8,¹h8!:5~Adu¹Adu* ,u¹hu* !, uPU~g!.

We must check that the definition of gauge transformations of a connection is compatible
Definition 7:
J. Math. Phys., Vol. 38, No. 6, June 1997
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@¹h8,p~vn!#g1p~I n11g!5u@¹h,u*p~vn!u#gu*1p~I n11g!

5Adu~¹~Adu* ~p~vn!1p~I ng!!!2s~p21+Adu* +p~vn!!

1p~I n11g!!

5¹8~p~vn!1p~I ng!!2Adu~s~p21+Adu* +p~vn!!!1p~I n11g!.

Thus, the definition is consistent iffs(p21+Adu+p(vn))1p(I n11g)5Adu(s(v
n))

1 p(I n11g). But this equation is satisfied due to~2.49!.
The gauge transformation of the connection formr occurring in the connection¹h52 iD

1r is defined by

¹h85:2 iD1gu~r!. ~2.61!

From ¹h8c5u(2 iD1r)u*c5(2 iD1u@2 iD,u* #1uru* )c one finds

gu~r!5udu*1uru* . ~2.62!

The gauge transformation of the curvature is due to

~Adu¹Adu* !2~%k!5Adu¹
2Adu*%

k5u@u,u*%ku#u*

given by

gu~u!5Aduu5uuu* . ~2.63!

The Dixmier trace1 provides a canonical scalar product^,& on B(h). If the L-cycle is
d1-summable~see Definition 3! we define fort,t̃PB(h)

^t,t̃ &:5Trv~t* t̃ uDu2d!. ~2.64!

We assume that in some sense there exists an extension of this formula to linear operatoh
belonging toH2g ~recall thatH2g is bounded on a dense subset ofh!.

Definition 10:The bosonic actionSB and the fermionic actionSF of the connection (¹,¹h)
are given by

SB~¹!5^u,u&Ĥ2g:5 min
j 2PJ2g

Trv~~u01 j 2!2uDu2d!, ~2.65a!

SF~c,¹h!:5^c, i¹hc&h, cPh, ~2.65b!

where Trv is the Dixmier trace,̂ ,&h the scalar product onh andu0PH2g any representative o
the curvature of¹.

Since botĥ ,&Ĥ2g and^,&h are invariant
1 under unitary transformations we get from~2.63! and

Definition 9 that the action~2.65! is invariant under gauge transformations

~¹,¹h!°~Adu¹Adu* ,u¹hu* !, c °uc, uPU~g!. ~2.66!

There is an equivalent formulation of~2.65a!. Let e(u01 j 2)PH2g be those representative o
uPĤ2g, for which the minimum in~2.65a! is attained. Letj 25(ala j a

2, for laPR, be a pa-
rameterization ofj 2PJ2g. Then,

05
d

dla
Trv~~u01 j 2!2uDu2d!52 Trv~~u01 j 2! j a

2 !uDu2d).
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Thus, e(u01 j 2)[e(u) is those representative ofu, which is orthogonal to the idealJ2g with
respect tô ,&Ĥ2g:

SB5Trv~~e~u!!2uDu2d!, Trv~e~u!J2guDu2d![0. ~2.67!

The representativee(u) is unique, because Trv(•uDu2d) is positive definite:1

Trv~~e~u!1 j 2!2uDu2d!5Trv~~e~u!!2uDu2d!1Trv~~ j 2!2uDu2d!.Trv~~e~u!!2uDu2d!, ; j 2Þ0.

III. L -CYCLES OVER FUNCTIONS ^ MATRIX LIE ALGEBRA

A. A class of L -cycles relevant to physics

Let (a,CF,M,p̂,Ĝ) be anL-cycle over a matrix Lie algebraa. In particular, we have a
representationp̂ of a in the Lie algebraMFC of endomorphisms of the Hilbert spaceCF. More-
over, the grading operatorĜ anticommutes with the generalized Dirac operatorM and commutes
with p̂(a). BothM and Ĝ belong toMFC.

Let X be a compact even dimensional Riemannian spin manifold, dim(X)5N>4, and let
C`(X) be the algebra of real-valued smooth functions onX. SinceC`(X) is a commutative
algebra, the tensor product

g:5C`~X! ^ a ~3.1a!

overR is in a natural way a Lie algebra, where the commutator is given by

@ f 1^a1, f 2^a2#[ f 1f 2^ @a1,a2#, f 1, f 2PC`~X!, a1,a2Pa. ~3.1b!

We introduce the Hilbert space

h:5L2~X,S! ^CF, ~3.2!

whereL2(X,S) denotes the Hilbert space of square integrable sections of the spinor bundle
X. The representationp̂:a→End(CF) and theC`(X)-module structure ofL2(X,S) induce a
natural representationp of g in B(h):

p~ f ^a!~s^ w!:5 f s^ p̂~a!w, ~3.3!

for fPC`(X), aPa, sPL2(X,S) andwPCF. We denote byg the grading operator and byD the
classical Dirac operator on the Hilbert spaceL2(X,S), see Sec. III B for more details. Then we p

D:5D^ 1F1g ^M, ~3.4!

G:5g ^ Ĝ. ~3.5!

The operator@D,p( f ^a)# is bounded onh for all f ^aPg. Moreover,D is selfadjoint onh,
becauseD and g are selfadjoint onL2(X,S) andM is symmetrical. Next,G commutes with
p(g) and anticommutes withD. Finally, (idh1D2)21 is compact:13 The operator (idh1D2)21 is
a pseudo-differential operator of order22 with compact support and has, therefore, an extens
to a continuous operator fromHs toHs12 on the Sobolev scale$Hs%. Due to Rellich’s lemma, the
embeddinge:Ht�Hs is compact fort.s. Thus, (idh1D2)21 considered as

e+~ idh1D2!21:Hs→Hs.

is compact, and (g,h,D,p,G) forms anL-cycle.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Finally, we briefly sketch how the physical data specified in the Introduction fit into
scheme. First, one constructs a Euclidian version of the gauge field theory. Now,X is the one-
point compactification of the Euclidian space-time manifold. The completion of the spac
fermionsc yields the Hilbert spaceh of theL-cycle. In some cases, it may be necessary to w
with several copies of the fermions. Given the~Lie! group of local gauge transformationsG , we
takeg as the Lie as the Lie algebra ofG . The representationp:g→B(h) is just the differential
p̃* of the group representationp̃. The matrixM occurring in the generalized Dirac operator~3.4!
contains the fermionic mass parameters and possibly contributions required by the desire
metry breaking scheme. However, it is necessary thatg ^M coincides with the fermionic mas
matrix M̃ on chiral fermions. The grading operatorG represents the chirality properties of th
fermions. We haveg5g5 in four dimensions. After the Wick rotation to Minkowski space we u
G to impose a chirality condition onh.

B. Notations and techniques

This subsection is devoted to definitions and techniques related to sections of the C
bundle. We denote byG`(C) the set of smooth sections of the Clifford bundleC overX and by
Ck,G`(C) the set of those sections ofC, whose values at each pointxPX belong to the
subspace spanned by products of less than or equalk elements ofTx*X of the same parity. In
particular, we identifyC`(X)[C0.

We recall14 that there is an isomorphism of vector spaces

c:L* ~G`~T*X!!→G`~C! ~3.6!

betweenG`(C) and the exterior differential algebraL* (G`(T*X)) of antisymmetrized tenso
products of the vector space of smooth sections of the cotangent bundle overX. In particular, the
restriction to the first degree yields a vector space isomorphismc:G`(T*X)→C1. Therefore,
elementsc1PC1 have the formc15c(v1), for v1PG`(T*X). We use the following sign con
vention for the defining relation of the Clifford action:

1
2~c~v1!c~ṽ1!1c~ṽ1!c~v1!![ 1

2$c~v1!,c~ṽ1!%5g21~v1,ṽ1!1PC0, ~3.7!

whereg21:G`(T*X)3G`(T*X)→C`(X) is the inverse of the metricg:G`(T*X)3G`(T*X)→C`(X).
Let us define the notion of the exterior product∧:

c1
1∧c2

1∧...∧cn
1:5

1

n! (
pPPn

~21!sign~p!cp~1!
1 cp~2!

1 ...cp~n!
1 , ci

1PC1, ~3.8!

where the sum runs over all permutations of the numbers1,...,n and the product on the rhs i
pointwise the product in the Clifford algebra. Observe that∧ is associative and that the antisym
metrization~3.8! yields zero forn.N5dim(X).

Definition 11:Ln,Cn is the vector subspace generated by elements of the form~3.8!, with
L0[C0, L1[C1 andLn[$0% for n,0 and n.dim(X).

We define the interior product4:L13Ln→Ln21 by

c0
1
4~c1

1∧c2
1∧...∧cn

1!:5(
j51

n

~21! j11
1
2 $c0

1,cj
1%~c1

1∧...

j
∨

∧cn
1!, ~3.9a!

c1
1∧...

j
∨

∧cn
1:5c1

1∧c2
1∧...∧cj21

1 ∧cj11
1 ∧...∧cn

1. ~3.9b!
J. Math. Phys., Vol. 38, No. 6, June 1997
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The interior product~3.9a! is extended to4:Lk3Ln→Ln2k by

~ c̃1
1∧ c̃2

1∧...∧ c̃k
1!4~c1

1∧c2
1∧...∧cn

1!:5 c̃1
1
4~ ...4~ c̃k21

1
4~ c̃k

1
4~c1

1∧c2
1∧...∧cn

1!!!...!.
~3.10!

Lemma 12:For ci
1PC1 we have

1
2~c0

1~c1
1∧•••∧cn

1!1~21!n~c1
1∧•••∧cn

1!c0
1!5c0

1∧c1
1∧c2

1∧•••∧cn
1, ~3.11a!

1
2~c0

1~c1
1∧•••∧cn

1!2~21!n~c1
1∧•••∧cn

1!c0
1!5c0

1
4~c1

1∧c2
1∧•••∧cn

1!. ~3.11b!

Proof: The assertion is clear for orthogonal bases. h

Let $ej% j51
N be an arbitrary selfadjoint basis ofG`(T*X) and $ej% j51

N its dual basis of
G`(T*X). Duality of $ej% j51

N and$ej% j51
N is understood in the sense

ej~ei ![^ej ,ei&5d i
j ~3.12!

and selfadjointness meansc(ej )5c(ej )* . Let ¹v be the Levi-Civita covariant derivative with
respect to the vector fieldvPG`(T*X). Then we define the exterior differentiald:L

k→Lk11 on
L* by

dck:5(
j51

N

c~ej !∧¹ej
~ck!, ckPLk. ~3.13!

The proof thatd is indeed a graded differential uses the fact that the Levi-Civita connection
vanishing torsion, see~with different sign conventions! Ref. 14. There is a natural scalar produ
^,&L* on L* :

^ck,c̃l&L* :5E
X
vg trc~c

k* c̃l !, ckPLk, c̃lPL l , ~3.14!

where trc:G
`(C)→C`(X) is pointwise the trace in the Clifford algebra and vg the canonical

volume form onX. The scalar product~3.14! vanishes forkÞ l . Via this scalar product we defin
the codifferentiald* :Lk→Lk21 on L* as the operator dual to the exterior differentiald:

^dck,c̃k11&L*5:^ck,d* c̃k11&L* , ;ckPLk, ck11PLk11. ~3.15!

Lemma 13:Within our conventions one has the representation

d* ck52(
j51

N

c~ej !4¹ej
~ck!. ~3.16!

Proof: The proof is straightforward. One has to use Lemma 12, the invariance of the trace
cyclic permutations, the Leibniz rule for¹v and the identity¹v(vg)[0 for the Levi-Civita
connection. h

Note that—in contrast to what its name suggests—d* is not a derivation. Using~3.16! one
easily derives forci

1PC15L1 the formula
J. Math. Phys., Vol. 38, No. 6, June 1997
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d* ~c1
1∧c2

1∧•••∧cn
1!5(

j51

N

~2~21!k11¹g21~c21~ck
1!!~c1

1∧...

k
∨

∧cn
11~21!k11d* ~ck

1!~c1
1∧...

k
∨

∧cn
1!,

~3.17!

whereg21 is treated as an isomorphism fromG`(T*X) to G`(T*X).
In terms of the above introduced selfadjoint bases$ej% j51

N of G`(T*X) and $ej% j51
N of

G`(T*X), the classical Dirac operator is given by14

D5(
j51

N

ic~ej !¹ej
S . ~3.18!

Here,¹v
S is the Clifford covariant derivative onL2(X,S) with respect to the vector fieldv. It has

the property

@¹n
S,c~v!#5c~¹vv![¹vc~v!, ~3.19!

for any differential formv. With ~3.13! this gives immediately

@D, f #5(
j51

N

ic~ej !@¹ej
S , f #[ idf[ ic~df !, fPC`~X!, ~3.20!

whered is the usual exterior differential on the exterior differential algebra. The grading ope
on L2(X,S) is g52 iN/2c(vg), fulfilling

Dg1gD5 i211N/2(
j51

N

~c~ej !@¹ej
S ,c~vg!#1~c~ej !c~vg!1c~vg!c~ej !!¹ej

S !

5 i211N/2(
j51

N

~c~ej !c~¹ej~vg!!12c~ej !∧c~vg!¹ej
S ![0, ~3.21!

because of the properties¹v(vg)[0 andc(ej )∧c(vg)PLN11[0. Therefore, the Dirac operato
D is an odd first order differential operator. One hasg25(21)N/2c(vg)c(vg)5detg21. If we
restrict ourselves to an orthogonal metric, which we do for the rest of this work, then we
g251.

Next, using~3.13!, ~3.16! and Lemma 12 we have forckPLk

~2 iD!ck2~21!kck~2 iD!5(
j51

N

~c~ej !@¹ej
S ,ck#1~c~ej !ck2~21!kckc~ej !!¹ej

S !

5dck2d* ck12(
j51

N

c~ej !4ck¹ej
S

5dck2d* ck12(
j51

k

~21! i11c1
1∧...

i
∨

∧ck
1¹

g21~c21~ci
1
!!

S
, ~3.22!

if ck5c1
1∧c2

1∧...ck
1,ci

1PL1. The last identity in~3.22! is due to
J. Math. Phys., Vol. 38, No. 6, June 1997
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2(
j51

N

c~ej !4ck¹ej
S

5(
j51

N

(
j51

k

~21! i11$c~ej !,ci
1%c1

1...

i
∨

∧ck
1¹ej

S

52(
j51

N

(
j51

k

~21! i11g21~ej ,c2 i~ci
1!!c1

1∧...

i
∨

∧ck
1¹ej

S

52(
j51

k

~21! i11c1
1∧...

i
∨

∧ck
1¹

g21~c21~ci
1
!!

S
.

In particular,

@D2, f #5D f22¹grad f
S , fPC`~X!, ~3.23!

where gradf:5g21(df ) is the vector field dual todf andD the scalar Laplacian,

D f[d* df52(
j51

N

g21~ei ,ej !~¹ei
¹ej

2¹¹ei
ej

!~ f !. ~3.24!

C. The representation of V* g on the Hilbert space

For physical applications we are interested in the case that the matrix Lie algebraa decom-
poses into

a5a8% a9. ~3.25!

Here,a8 is unitary and semisimple, i.e. a direct sum of simple unitary Lie algebras, anda9 is a
direct sum of copies of the Abelian Lie algebrau(1), each of them represented in the for
u(1)( i )5Rb( i ). In particular, direct sum means that elements of different direct sum subsp
always commute. For each copy ofu(1), therepresentationp̂(b) shall have the following prop-
erty: There existlzPR such that

~3.26!

For simplicity, we restrict ourselves to the casea95u(1), where~3.26! is given by

@p̂~b!,@p̂~b!,@p̂~b!,M###5@p̂~b!,M#

or

@p̂~b!,@p̂~b!,@p̂~b!,M###52@p̂~b!,M#. ~3.27!

The extension to the general case is obvious.
Our goal is to construct the graded differential Lie algebraVD* g associated to theL-cycle

(g,h,D,p,G), see Sec. II C. For this purpose we first have to construct the graded Lie al
p(V* g) associated to thisL-cycle. We denote byp̂(V* a) the corresponding graded Lie algeb
associated to theL-cycle (a,CF,M,p̂,Ĝ). From ~3.20! we get

@D,p~ f ^a!#5 idf ^ p̂~a!1 fg ^ @M,p̂~a!#, aPa, fPC`~X!, ~3.28!
J. Math. Phys., Vol. 38, No. 6, June 1997
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whered is the exterior differential~3.13!. Using thatC0 is an Abelian algebra, that elements
C0 commute with elements ofC1 and thatp̂ is a representation we obtain for elements
p(V1g), see~2.25! and ~2.30!,

pS (
a,z>0

@i~ f a
z

^aa
z !,@ ...@i~ f a

1
^aa

1 !,i~d~ f a
0

^aa
0 !!#...## D

5 (
a,z>0

@p~ f a
z

^aa
z !,@ ...@p~ f a

1
^aa

1 !,@2 iD,p~ f a
0

^aa
0 !##...##

5 (
a,z>0

f a
z ••• f a

1df a
0

^ p̂~@aa
z ,@ ...@aa

1,aa
0 #...## ! ~3.29a!

1 (
a,z>0

f a
z ••• f a

1 f a
0g ^ p̂~@i~aa

z !,@ ...@i~aa
1 !,i~daa

0 !#...## !. ~3.29b!

Here we havef a
j PC0, aa

j Pa, and d denotes the universal differential on both the univer
differential Lie algebras overg anda; it is clear from the context on which of them. The sam
notational simplification was used for the factorization mappingsi. There are two different con
tributions in this formula,~3.29a! belongs toC1

^ p̂(V0a) and~3.29b! toC0g ^ p̂(V1a). If it was
possible to put allf a

0 equal to constants without changing the range of~3.29b! then the lines
~3.29a! and~3.29b! would be independent. This is possible iff for allf 0

0PC`(X) anda0
0Pa there

exists a solution of the equation

f 0
0

^ p̂~i~da0
0!!5 (

a,z>1
f a
z ••• f a

1 f a
0g ^ p̂~@i~aa

z !,@ ...@i~aa
1 !,i~daa

0 !#...## !.

But this is indeed the case, due to~3.26! for a0
0Pa9 and the fact thata8 is semisimple. Namely, for

a semisimple Lie algebraa8 we have12 @a8,a8#5a8. This means that

;a8Pa 'aa8,ãa8Pa8: a85(a@aa8 ,ãa8#. ~3.30!

Then, i(da8)5(a(@i(aa8 ),i(dãa8)#2@i(ãa8),i(daa8 )#). Here we see the importance of the r
strictions imposed toa, we will meet further examples in the sequel.

Now, from the definition~2.25! of V1a there follows that~3.29b! can attain any element o
C0g ^ p̂(V1a). We split elementsaa

j Pa according to~3.25!. Since commutators containing ele
ments of the Abelian part vanish, there is a non-vanishing contribution of elements ofa9 to ~3.29a!
only from the termd f̃ 0

0
^ p̂(a0

0), for a0
0Pa9. Therefore, the coefficient of elements ofp̂(a9) is

the Clifford action of a total differential. We denote the spacedC0,C1 by B1 ~‘‘ @co# boundary’’!.
In the case of the semisimple Lie algebraa8 the line ~3.29a! attains any element ofC1

^ p̂(a8),
due to~3.30!. Thus, we get the final result

p~V1g!5~L1
^ p̂~a8!! % ~B1

^ p̂~a9!! % ~L0g ^ p̂~V1a!!. ~3.31!

This means that elementst1Pp(V1g) are of the form

t15(
a

~ca
1

^ p̂~aa8 !1ba
1

^ p̂~aa9 !1 f ag ^ p̂~va
1 !!, ~3.32!

whereca
1PC1, ba

1PB1, f aPC0, aa8Pa8, aa9Pa9 andva
1PV1a.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Proposition 14:

p~Vng!5~Ln
^ p̂~a8!! % ~ %

j51

n

Ln2 jg j
^ ~p̂~V ja!1p̂~Tn

j22
a!!!, ~3.33!

for n>2. Here,p̂(Tn
j
a) is zero for j,0, n, j12 or n.N1 j12. For j>0 and j12<n<N

1 j12 it is recursively defined by

p̂~T2
0
a!:5$p̂~a!,p̂~a!%, p̂~TN12

0
a!:5@p̂~a!,$p̂~a!,p̂~a8!%#,

p̂~Tn
0
a!:5$p̂~a!,p̂~a8!%, 3<n<N11, ~3.34a!

p̂~Tn
j
a!:5$p̂~a!,p̂~V ja!1p̂~Tj11

j22
a!%1@p̂~V1a!,p̂~Tj11

j21
a!#g,

21 j<n<N1 j11, j.0,

p̂~TN1 j12
j

a!:5@p̂~a!,p̂~Tj12
j

a!#1@p̂~V1a!,p̂~TN1 j11
j21

a!#g, j.0. ~3.34b!

Proof: The proposition is proved by induction. We need the following two identities:

~ c̃1^ p̂~ ã!!~cn2 jg j
^Aj !2~21!n~cn2 jg j

^Aj !~ c̃1^ p̂~ ã!!

5 1
2~ c̃

1cn2 j1~21!n2 j cn2 j c̃1!g j
^ ~p̂~ ã!Aj2Aj p̂~ ã!!

1 1
2~ c̃

1cn2 j2~21!n2 j cn2 j c̃1!g j
^ ~p̂~ ã!Aj1Aj p̂~ ã!!, ~3.35a!

~ f̃g ^ p̂~ṽ1!!~cn2 jg j
^Aj !2~21!n~cn2 jg j

^Aj !~ f̃g ^ p̂~ṽ1!!

5~21!n2 j f̃ cn2 jg j11
^ ~p̂~ṽ1!Aj2~21! jAj p̂~ṽ1!!, ~3.35b!

for c̃1PL1, cnPLn, f̃PL0, ãPa, ṽ1PV1a and anyAjPMFC. We shall write~3.32! in the
form

t15(
a

~ca
1

^ p̂~aa!1 f ag ^ p̂~va!!,

where

(
a

ca
1

^ p̂~aa![(
a

~ca
18^ p̂~aa8 !1ca

19^ p̂~aa9 !!.

Using ~3.35a!, ~3.35b! and Lemma 12 we obtain from~2.26! the following form of elements
t2Pp(V2g):

t25(
a

~ta
1 t̃a

11 t̃a
1ta

1 !5 (
a,b,g

~cab
1 ∧ c̃ag

1
^ @p̂~aab!,p̂~ ãag!#1 f ab f̃ ag ^ @p̂~vab

1 !,p̂~ṽag
1 !#g

1 f̃ agcab
1 g ^ @p̂~aab!,p̂~ṽag

1 !#1 f abc̃ag
1 g ^ @p̂~ ãag!,p̂~vab

1 !# !1k0,

~3.36a!

k05 (
a,b,g

cab
1
4 c̃ag

1
^ $p̂~aab!,p̂~ ãag!%. ~3.36b!
J. Math. Phys., Vol. 38, No. 6, June 1997
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All five occurring different types of tensor products are independent. This is due to the fact th
non-vanishingc̃1PL1 andcnPLn the equalityc̃1∧cn50 implies c̃14cnÞ0 and c̃14cn50 im-
plies c̃1∧cnÞ0, see Lemma 12. First,k0 attains each element ofL0

^ $p̂(a),p̂(a)%. Moreover,
Sa f f̃ ^ @p̂(va

1),p̂(ṽa
1)#g gives an arbitrary element ofL0

^ p̂(V2a) and each term in~3.36a!
containingg an arbitrary element ofL1g ^ p̂(V1a). The only not obvious elements are those
the form@M,p̂(a)#. However, they can be represented by~3.27! for a5a9 and fora5a8 due to
~3.30! by

FM,p̂S (
a

@aa8 ,ãa8 # D G5(
a

~@@M,p̂~aa8 !#,p̂~ ãa8 !#1@p̂~aa8 !,@M,p̂~ ãa8 !## !. ~3.37!

Finally, Sa,b,gcab
1 ∧ c̃ag

1
^ @p̂(aab8 ),p̂(ãag8 )# represents an arbitrary element ofL2

^ p̂(a8), be-
cause possible contributions froma9 are canceled by the commutator. Collecting these results
arrive at~3.33!, for n52. Forn.2 one proceeds by induction, see Ref. 15.

Thus, the computation ofp(Vng) is reduced to an iterative multiplication of matrices onl

D. Main theorem

To derive the structure ofVD* g we first define in analogy to~2.40!

ŝS (
a,z>0

@i~aa
z !,@ ...@i~aa

1 !,i~daa
0 !#...## D :5 (

a,z>0
@p̂~aa

z !,@ ...@p̂~aa
1 !,@M2,p̂~aa

0 !##...##,

~3.38!

for aa
i Pa. We extendŝ to a linear mapŝg:V* g→G`(C)^MFC by

ŝg~i~ f ^a!!:50, ŝg~i~d~ f ^a!!!:5 f ^ ŝ~ i~da!!,

ŝg~@vk,ṽ l # !:5@ŝg~vk!,p~ṽ l !#g1~21!k@p~vk!,ŝg~ṽ l !#g, ~3.39!

for fPC`(X), aPa, vkPVkg and ṽ lPV lg.
Theorem 15:For $p̂(a9),p̂(a9)%ùp̂(V2a)50 we have

p~I ng!5 %

j52

n

Ln2 jg j
^ ~p̂~I ja!1K̃n

j22a!1BNgn
^ ~$p̂~a!,p̂~Vn2N22a!

1p̂~Tn22
n2N24

a!%ùp̂~Vn2Na!!, ~3.40!

whereBN5dLN21, K̃n
0
a[p̂(Tn

0
a) and

K̃n
j
a5$p̂~a!,p̂~V ja!1K̃n21

j22
a%1@p̂~V1a!,K̂n21

j21
a#g1ŝ~ p̂21~p̂~Tj11

j21
a!ùp̂~V j11a!!!,

21 j<n<N1 j11, j.0, ~3.41a!

K̃N1 j12
j

a5@p̂~a!,K̃N1 j11
j

a#1@p̂~V1a!,K̃N1 j11
j21

a#g1ŝ~ p̂21~p̂~TN1 j11
j21

a!ùp̂~V j11a!!!,

j.0. ~3.41b!

If $p̂(a9),p̂(a9)%ùp̂(V2a)Þ0 thenp(I 3g) must be replaced by

p~I 3g!5p~I 3g!� ~3.40!1B1
^ ~$p̂~a9!,p̂~a9!%ùp̂~V2a!!.
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Proof: The proof consists in deriving a formula fors(vk) for a givenvkPVkg. Taking vk

P Vkgùker p, we can derive the structure ofp(I k11g), see~2.40!. We start withk51 and
proceed for higher degrees by induction.

Before, we provide a property ofp̂(V1a) which we need in the proof. We consider th
splitting

v̂15d~i~a8!1i~a9!!1 (
a,z>1

@i~aa
z !,@ ...,@i~aa

2 !,@i~aa
1 !,i~daa

0 !##...##PV1a,

for a85Sb@ab8 ,ãb8 #Pa8 and a9Pa9. Due to ~3.27! and ~3.30! we can replacev0
1:5i(d(a8

1a9)) by

v̂0
156

5

4
@i~b!,@i~b!,i~da9!##2

1

4
@i~b!,@i~b!,@i~b!,@i~b!,i~da9!####1(

b
~@i~ab8 !,i~dãb8 !#

2@i~ ãb8 !,i~dab8 !# !.

Here, in the first term the plus sign~minus sign! stands if in~3.27! the equation with the plus sign
~minus sign! is realized. Indeed, we have

p̂~v̂0
1![p̂~v0

1!, ŝ~ v̂0
1![ŝ~v0

1!. ~3.42!

The first formula is due to~3.27! for a9 and due to the Jacobi identity fora8. Thea8-part of the
second formula in~3.42! follows immediately from the Jacobi identity. The proof for thea9 part
consists of algebraic manipulations of~3.27!, which are not difficult but rather lengthy so that the
are not listed in this work. The importance of the identities~3.42! is that already elements o
V1a, which do not contain terms labeled byz50, are sufficient for the construction o
p̂(V1a) and ŝ(V1a).

Using ~3.29! we can represent elementsv1PV1g as

v15 (
a,z>0

@i~ f a
z

^aa
z !,@ ...@i~ f a

1
^aa

1 !,i~d~ f a
0

^aa
0 !!#...##, ~3.43a!

⇒p~v1!5 (
a,z>0

~ ĉa
1,z

^ p̂~ âa
z !1 f̂ a

zg ^ p̂~v̂a
1,z!!,

f̂ a
z5 f a

z ••• f a
1 f a

0PL0, ĉa
1,z5 f a

z ••• f a
1df a

0PL1,

âa
z5@aa

z ,@ ...@aa
1,aa

0 #...##Pa, v̂a
1,z5@i~aa

z !,@ ...@i~aa
1 !,i~daa

0 !#...##PV1a, ~3.43b!

whereaa
i Pa and f a

i PL0. Applying the maps to v1 in ~3.43a! we get—using~3.23! andD2

[D2
^ 1F11^ M2, see~3.4!

s~v1!5 (
a,z>0

@ f a
z

^ p̂~aa
z !,@ ...@ f a

1
^ p̂~aa

1 !,@D2, f a
0

^ p̂~aa
0 !##...##[(

j50

3

sj ,

s05ŝg~v1!5 (
a,z>0

f a
z ••• f a

1 f a
0

^ @p̂~aa
z !,@ ...@p̂~aa

1 !,@M2,p̂~aa
0 !##...##, ~3.44a!

s15 (
a,z>0

f a
z ••• f a

1~D f a
0 ! ^ p̂~@aa

z ,@ ...@aa
1,aa

0 #...## !, ~3.44b!
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s2522 (
a,z>0

f a
z ••• f a

1¹grad f
a
0

S
^ p̂~@aa

z ,@ ...@aa
1,aa

0 #...## !, ~3.44c!

s352 (
a,z>1

~ f a
z ••• f a

2¹grad f
a
0~ f a

1 ! ^ @p̂~aa
z !,@ ...@p̂~aa

2 !,p̂~aa
0 !p̂~aa

1 !#...##

1 f a
z ••• f a

3¹grad f
a
0~ f a

2 ! f a
1

^ @p̂~aa
z !,@ ...@p̂~aa

3 !,p̂~@aa
1,aa

0 # !p̂~aa
2 !#...##

1•••1¹grad f
a
0~ f a

z ! f a
z21••• f a

1
^ p̂~@aa

z21,@ ...@aa
1,aa

0 #...## !p̂~aa
z !!. ~3.44d!

From properties of covariant derivatives we find

f a
z ••• f a

1¹gradf
a
0

S
5¹

f
a
z ••• f

a
1g21~dfa

0
!

S
5¹

g21~ fa
z ••• fa

1dfa
0

!

S
.

Next, using~3.13! and ~3.16! one easily shows

f a
z ••• f a

1~D f a
0 !5d* ~ f a

z ••• f a
1df a

0 !1¹grad f
a
0~ f a

z ••• f a
1 !. ~3.45!

Then, the sum ofs3 and the part ofs1 corresponding to the second term on the rhs of~3.45! will
be denoted byŝ(v1):

ŝ~v1!5s31 (
a,z>1

¹grad f
a
0~ f a

z ••• f a
1 ! ^ p̂~ âa

z !

5 (
a,z>1

~ f a
z ••• f a

2¹grad f
a
0~ f a

1 ! ^ @p̂~aa
z !,@ ...@p̂~aa

2 !,$p̂~aa
0 !,p̂~aa

1 !%#...##

1 f a
z ••• f a

3¹grad f
a
0~ f a

2 ! f a
1

^ @p̂~aa
z !,@ ...@p̂~aa

3 !,$p̂~@aa
1,aa

0 # !,p̂~aa
2 !%#...##1•••

1¹grad f
a
0~ f a

z ! f a
z21••• f a

1
^ $p̂~@aa

z21,@ ...@aa
1,aa

0 #...## !,p̂~aa
z !%!PL0

^ $p̂~a!,p̂~a!%.

~3.46!

Observe that the terms labeled byz50 do not occur in~3.46!. Collecting the results we find

s~v1!5 ŝ~v1!1ŝg~v1!1 (
a,z>0

~22¹
g21+c21~ ĉa

1,z
!

S
^ p̂~ âa

z !1d* ~ ĉa
1,z! ^ p̂~ âa

z !!. ~3.47!

Next, we discuss the relation betweenp(v1) and s(v1). It is clear that ŝ(v1)PL0

^ $p̂(a),p̂(a)% andŝg(v
1)PL0

^ ŝ(V1a), the question is to which amount they are determin
by p(v1). To answer this question we first consider

v15(
a

(
A51

3

@i~ f̃aA^ ãa!,i~d~ faA^aa!!#, aa,ãaPa, ~3.48!

where

f̃a15 f a, f̃a252
1

2
, f̃a352

1

2
~ f a!2,

fa15 f a f̃ a, fa25~ f a!2 f̃ a, fa35 f̃ a,

for f a, f̃ aPC`(X). These functions have the properties
J. Math. Phys., Vol. 38, No. 6, June 1997
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(
A51

3

f̃aAfaA50, (
A51

3

f̃aAd~ faA!50, (
A51

3

d~ f̃aA!faA50, ~3.49a!

(
A51

3

¹grad~ f̃ aA!~ faA!5 f̃ a¹grad~ fa!~ f a!5 f̃ ag
21~df a,df a!. ~3.49b!

Due to ~3.49a! we havep(v1)50 andŝg(v
1)50, but for ~3.46! we get

ŝ~v1![(
a

(
A51

3

¹grad f̃aA
~ faA! ^ $p̂~ ãa!,p̂~aa!%5(

a
f̃ a¹grad fa

~ f a! ^ $p̂~ ãa!,p̂~aa!%.

Thus, ŝ(v1) is independent ofp(v1). Since ~3.49b!—for an appropriate choice o
f a, f̃ a—attains each given function onX ~using a partition of unity if necessary!, ŝ(v1) attains
each element ofL0

^ $p̂(a),p̂(a)%[L0
^ p̂(T2

0
a). Now we prove

Lemma 16:ŝg(kerpùV1g)5L0
^ ŝ(kerp̂ùV1a)[L0

^ p̂(I 2a).
Proof of Lemma 16:We introduce a linear mapp̂g:V* g→B(h) by

p̂g~i~ f ^a!!:5 f ^ p̂~a!, p̂g~i~d~ f ^a!!!:5 fg ^ @2 iM,p̂~a!#,

p̂g~@v,ṽ# !:5@p̂g~v!,p̂g~ṽ !#g,

for fPC`(X), a Pa, v,ṽPV* g. Forv1PV1g given by ~3.43a! we have

p~v1!5 (
a,z>0

~ ĉa
1,z

^ p̂~ âa
z !1 f̂ a

zg ^ p̂~v̂a
1,z!!,

p̂g~v1!5 (
a,z>0

f̂ a
zg ^ p̂~v̂a

1,z!,

ŝg~v1!5 (
a,z>0

f̂ a
z

^ ŝ~ v̂a
1,z!. ~3.50!

For v1Pker p we have(a,z>0ĉa
1,z

^ p̂(âa
z )50 and(a,z>0 f̂ a

zg ^ p̂(v̂a
1,z)50, becauseL1 and

L0 are independent. But this means

~ker pùV1g!,~ker p̂gùV1g!⇒ŝg~ker pùV1g!,ŝg~ker p̂gùV1g!. ~3.51!

It is intuitively clear from~3.50! that

ŝg~ker p̂gùV1g!5L0
^ ŝ~ker p̂ùV1a![L0

^ p̂~I 2a!, ~3.52!

see~2.44!. The justification for~3.52! gives the formalism of skew-tensor products, see Ref. 16
the general scheme and Ref. 15 for the application to our case. Now, by virtue of~3.42! it suffices
to take

v15(
a

(
b,z>1

@i~1^aab
z !,@ ...,@i~1^aab

2 !,@i~ f a ^aab
1 !,i~d~1^aab

0 !!##...##,

with
J. Math. Phys., Vol. 38, No. 6, June 1997
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v̂a
1:5 (

b,z>1
@i~aab

z !,@ ...,@i~aab
2 !,@i~aab

1 !,i~daab
0 !##...##Pker p̂ùV1a, ;a,

where f aPL0 and aab
i Pa. It is obvious thatp(v1)[0 and thats(v1)5ŝg(v

1)5(a f a

^ ŝ(v̂a
1) attains each element ofL0

^ p̂(I 2a). h

We define a linear map¹V from p(V* g) to ~unbounded! operators onh,

¹V~cn2 jg j
^Aj !:5¹cn2 j

S g j
^Aj , n2 j.0,

¹V~ fgn
^An!:50, fPC`~X!, ~3.53!

wherecn2 jPLn2 j andAjPMFC. Here and in the sequel a covariant derivative with respec
elements ofLn is understood in the sense

¹c
1
1∧c

2
1...∧c

n
1:5(

l51

k

~21! l11c1
1∧...

l
∨

∧cn
1¹g21+c21~cl

1!, ci
1PL1, ~3.54!

wherec21:L1→G`(T*X) andg21:G`(T*X)→G`(T*X) are isomorphisms.
Now we can express~3.47! in terms ofp(v1). For givent1Pp(V1g) let p21(t1)PV1g be

an arbitrary but fixed representative andv1PV1g be any representative. Then, the set$s(v1)% of
all elementss(v1) fulfilling the just introduced conditions is

$s~v1!%5L0
^ ~p̂~T2

0
a!1p̂~I 2a!!1ŝg~p21~t1!!22¹V~t1!1d* t1. ~3.55!

Putting t150, i.e.v1PkerpùV1g, we obtain immediately the assertion of the theorem fon
52.

Formula~3.55! is the starting point for the construction ofs(Vng), n>2, out of ~2.42!. The
result is:

Lemma 17:For giventnPp(Vng) let p21(tn)PVng be an arbitrary but fixed representativ
andvnPVng be any representative. Then we have forn52

$s~v2!%5L1
^ ~p̂~T3

0
a!1p̂~I 2a!!1L0g ^ ~K̃3

1
a1p̂~I 3a!!1ŝg~p21~t2!!22¹V~t2!1d* t2

2d~t2�L0^ $p̂~a9!,p̂~a9!%! ~3.56!

and forn>3

$s~vn!%5ŝg~p21~tn!!22¹V~tn!1d* tn1 (
j52

n11

Ln112 jg j
^ ~K̃n11

j22
a1p̂~I ja!!

2d~tn�LN21gn11^ $p̂~a!,p̂~Vn2N21a!1p̂~Tn21
n2N23

a!%!. ~3.57!

Remarks on the proof of Lemma 17:The Lemma is proved by induction exploiting formula~2.42!.
The proof is very technical and too long to display in this work. For the details see Ref. 15
clear that the proof of Lemma 17 finishes the proof of Theorem 15. Here, forn52, one has to take
into account that for$p̂(a9),p̂(a9)%ùp̂(V2a)50 and t250 we haved(t2�L0^ $p̂ (a9),p̂ (a9)%)
50. If $p̂(a9),p̂(a9)%ùp̂(V2a)Þ0 then a nonvanishingL0

^ $p̂(a9),p̂(a9)%—part of t250
can be compensated byL0

^ p̂(V2a), giving the contributionB1
^ ($p̂(a9),p̂(a9)%ùp̂(V2a)) to

the idealp(I 3g). The same argumentation yields the boundary terms in the second lin
~3.40!. h
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E. The structure of VD* g, commutator and differential

As an immediate consequence of Theorem 15 we find
Corollary 18. If $p̂(a9),p̂(a9)%ùp̂(V2a)50 we have forn>2

VD
n
g5~Ln

^ p̂~a8!! % ~Ln21g ^ p̂~V1a!! % %

j52

n

~Ln2 jg j
^ ~~p̂~V ja!1p̂~Tn

j22
a!! mod~p̂~I ja!

1K̃n
j22

a!!mod dn2N
j BNgn

^ ~$p̂~a!,p̂~Vn2N22a!1p̂~Tn21
n2N24

a!%ùp̂~Vn2Na!!!. ~3.58!

If $p̂(a9),p̂(a9)%ùp̂(V2a)Þ0 thenVD
3
g must be replaced by

VD
3
g5VD

3
g� ~3.58! modB1

^ ~$p̂~a9!,p̂~a9!%ùp̂~V2a!!.
h

Therefore, the construction ofVD
n
g is reduced to the problem of finding the factor spa

(p̂(V ja)1p̂(Tn
j22

a))/(p̂(I ja)1K̃n
j22

a). Here, only the matrix Lie algebraa plays a role. The
influence of theL* -part toVD

n
g is almost trivial.

Next, we derive explicit formulas for the commutator and the differential of element
VD* g. For the sake of an easier notation we restrict ourselves to the
$p̂(a9),p̂(a9)%ùp̂(V2a)50 and ($p̂(a),p̂(Vn2N22a)1p̂(Tn21

n2N24
a)%ùp̂(Vn2Na))50. If

these conditions are not fulfilled then there are obvious modifications toVD
3
g andVD

n
g, n>N

12, see Corollary 18.
Due to Corollary 18 and~3.32! we represent elements%nPVD

n
g as

%n5(
a

(
j50

n

ca
n2 jg j

^ ~p̂~va
j !1Ĩ n

j
a!, ~3.59a!

Ĩ n
j
a:5p̂~I ja!1K̃n

j22
a, Ĩ n

0
a[0, Ĩ n

1
a[0, ~3.59b!

n>2: ca
n2 jPLn2 j , p̂~va

0 !Pp̂~a8!, p̂~va
j !Pp̂~V ja! for j.0,

n51: ca
1PL1 if p̂~va

0 !Pp̂~a8!, ca
1PB1 if p̂~va

0 !Pp̂~a9!, ca
0PL0, p̂~va

1 !

Pp̂~V1a!,

n50: ca
0PL0, p̂~va

0 !Pp̂~a!. ~3.59c!

The formula for the graded commutator of elements ofVD* g is very simple,

F(
a

(
i50

k

ca
k2 ig i

^ ~p̂~va
i !1Ĩ k

i
a!,(

b
(
j50

l

c̃b
l2 jg j

^ ~p̂~ṽb
j !1Ĩ l

j
a!G

g

5(
a,b

(
i50

k

(
j50

l

~21! i ~ l2 j !ca
k21∧ c̃b

l2 jg i1 j
^ ~@p̂~va

i !,p̂~ṽa
j !#g1Ĩ k1 l

i1 j
a!, ~3.60!

because if the product betweenca
k2 i and c̃b

l2 j is not completely antisymmetrized then we get
combination of graded anticommutators of elements ofp̂(V* a) in the second component of th
tensor product, which contributes to the idealp(I * g). Thus, the graded commutator of elemen
of VD* g is given by the combination of the exterior product of theL* parts and the graded
commutator of thep̂(V* a) parts modulop(I * g), where a graded sign due to the exchange w
g must be added.

Due to ~3.22! and ~3.54! we have forckPLk
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~2 iD!ck2~21!kck~2 iD!5dck2d* ck12¹ck
S . ~3.61!

We apply Proposition 6 and Lemma 17 to~3.59a!, using ~3.53! and ~3.39! and introducing
tn:5(a( j50

n ca
n2 jg j

^ p̂(va
j )Pp(Vng). This gives

d%n[p~dp21~tn!!1p~I n11g!

5(
a

(
j50

n

~~~2 iD!ca
n2 j2~21!n2 j ca

n2 j~2 iD!!g j
^ p̂~va

j !1~21!n2 j ca
n2 jg j11

^ ~~2 iM!p̂~va
j !2~21! j p̂~va

j !~2 iM!!!1d* tn22¹V~tn!1ŝg~p21~tn!!

1p~I n11g!

5(
a

(
j50

n

~dca
n2 jg j

^ ~p̂~va
j !1Ĩ n11

j
a!1ca

n2 jg j11

^ ~~21!n2 j@2 iM,p̂~va
j !#g1ŝ~va

j !1Ĩ n11
j11

a!!. ~3.62!

Let us say some words on the terms in~3.56! and~3.57! containing total differentials. In genera
for

tk:5ck2 jg j
^ p̂~ k̂k

j22!PLk2 jg j
^ p̂~Tk

j22
a!,p~I kg!

we havedtkPp(I k11g). This is no longer true fork52 and p̂(K̂2
0)5$p̂(a9),p̂(ã9)%, with

a9,ã9Pa9. However, in this case the differentialdt2 is eliminated by the counterterm
2d(t2�L0^ $p̂(a9),p̂(a9)%) in ~3.56!. An analogous property holds fork2 j5N21, where the terms
dtk are canceled by the differentials in~3.57!. Therefore, in the following formula for the differ
entiation rule onVD* g one must omit these boundary terms. Then we obtain a simple formu

d%n5~~d^ 1F!~tn!1@g ^ 2 iM,tn#g1~1^ ŝ+p̂21!+tn+~g ^1F!! mod p~I n11g!,
~3.63!

wheretnPp(Vng) is an arbitrary representative of%nPVD
n
g. Here, the differentiald ignores the

grading operatorg, i.e.,d(ckg):5(dck)g. The nontrivial part in this formula is to find the spac
Ĩ n11

j
a constituting the idealp(I n11g). The differentialdtn, the graded commutator withg ^

2 iM and even the computation of (1̂ŝ+p̂21)(tn) are not difficult for a concrete example.

F. Local connections

In the case under consideration, anL-cycle over the tensor product of the algebra of functio
and a matrix Lie algebra, there exists the notion of locality. Our goal is to define a multiplic

∧̃:Lk3VD
n
g→VD

k1n
g,

c̃ k∧̃S (
a

(
j50

n

ca
n2 jg j

^ ~p̂~va
j !1Ĩ n

j
a!D :5(

a
(
j50

n

~ c̃ k∧ca
n2 j !g j

^ ~p̂~va
j !1Ĩ k1n

j
a!,

~3.64!

see~3.59!. However, we clearly have problems to do this on the whole differential Lie alg
VD* g due to the existence of the boundary spacesL0

^ p̂(a9) in VD
0
g[p(g) andB1

^ p̂(a9) in
VD

1
g[p(V1g). These boundary spaces in general do not yield elements ofVD* g when we mul-

tiply them by elements ofL* . Moreover, there are problems if the boundary termsdn2N
j BNg n

^ ($p̂(a),p̂(Vn2N22a)1p̂(Tn21
n2N24

a)%ùp̂(Vn2Na)) and B1
^ ($p̂(a9),p̂(a9)%ùp̂(V2a)) in
J. Math. Phys., Vol. 38, No. 6, June 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



the
ysical

ial

3387Raimar Wulkenhaar: Graded differential Lie algebras

¬¬¬¬¬¬¬¬¬¬
Corollary 18 are present. Therefore, formula~3.64! is understood to hold on subspaces ofVD* g,
where no collision with boundary terms occurs. Then, the multiplication~3.64! is associative,

~ck∧ c̃l !∧̃%n5ck∧̃~ c̃l ∧̃%n!, ~3.65!

for c̃kPLk, c5 lPL l and%nPVD
n
g ~different from boundary spaces!. In particular,VD

n
g carries a

naturalC`(X)-module structure, where we omit the multiplication symbol∧̃ for simplicity:

f S (
a

(
j50

n

ca
n2 jg j

^ ~p̂~va
j !1Ĩ n

j
a!D :5(

a
(
j50

n

~ f ca
n2 j !g j

^ ~p̂~va
j !1Ĩ n

j
a!, ~3.66!

for fPC`(X). Moreover, the Hilbert spaceh5L2(X,S)^CF carries a naturalG`(C)-module
structure induced by theG`(C)-module structure ofL2(X,S):

scS (
a

sa ^ waD :5(
a

scsa ^ wa, ~3.67!

for scPG`(C), saPL2(X,S) andwaPCF. The structures just introduced enable us to restrict
set of connections according to Definition 7 to the subset of local connections relevant for ph
applications.

Definition 19:A connection (¹,¹h) is called local connection iff for allfPC`(X), cPh and
%nPVD

n
g different from boundary spaces one has

¹h~ fc!5 f¹h~c!1df ~c!, ~3.68a!

¹~ f%n!5 f¹~%n!1~df !∧̃%n. ~3.68b!

The group of local gauge transformations is the group

U0~g!:5$uPU~g!,B~h!, f uc5u fc, ; fPC`~X!, ;cPh,

~Adu¹Adu* ,u¹hu* ! is a local connection if~¹,¹h! is%. ~3.68c!

We recall that a connection has the form (¹5d1@ r̃,.#g, ¹h52 iD1r), whererPH1g and
r̃:5r1 c̃1gPĤ1g, see Proposition 8. The insertion into Definition 19 yields

r+ f5 f +r, ; fPC`~X!. ~3.69!

Therefore,rPG(C)^MFC. SincerPH1g, there can only occur classical smooth different
forms up to first degree in theG(C) component ofr. This means that

rP~L1
^ r0a! % ~L0g ^ r1a!,

r0a52~r0a!*5Ĝ~r0a!Ĝ,MFC, r1a52~r1a!*52Ĝ~r1a!Ĝ,MFC. ~3.70!

If we compute graded commutators withp(V* g) we get

@r0a,p̂~a!#,p̂~a8!, @r0a,p̂~V1a!#,p̂~V1a!,

$r0a,p̂~a!%,$p̂~a!,p̂~a!%1p̂~V2a!, $r0a,p̂~V1a!%,$p̂~a!,p̂~V1a!%1p̂~V2a!,

@r1a,p̂~a!#,p̂~V1a!, $r1a,p̂~V1a!%,p̂~V2a!1$p̂~a!,p̂~a!%. ~3.71!
J. Math. Phys., Vol. 38, No. 6, June 1997
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Moreover, one has to check that@r,p(I ng)#g,p(I n11g). The same analysis for the group o
local gauge transformations~3.68c! yields

U0~g!5exp~L0
^u0~a!!,

where

u0~a!5$u0Pr0a,ŝ+p̂21~u0!,c1a%, ~3.72!

see~2.49! and ~2.55! for the notation.
From ~3.68b! one easily finds for the curvature of a local connection¹2f5 f¹2, for f

PC`(X). Thus,

fu f5u f5 f S p+d+p21~r!1
1

2
@r,r#g1p~I 2g!1 c̃2gD

5S p+d+p21~r!1
1

2
@r,r#g1p~I 2g!1 c̃2gD f . ~3.73!

Here,p+d+p21(r)1p(I 2g)1 c̃ 2g is understood in the sense~2.48b!. Hence, we must searc
for the subspace ofc̃2g commuting with functions. This space has the structure

c̃ 2g5~L2
^ c0a! % ~L1g ^ c1a! % ~L0

^ c2a!, cia,MFC, ~3.74!

because possibleL* contributions of higher degree are already orthogonal to any representat
u, see~2.67!. The spacescia have elementwise the following involution andZ2-grading properties:

c0a52~c0a!*5Ĝ~c0a!Ĝ, c1a52~c1a!*52Ĝ~c1a!Ĝ,

c2a5~c2a!*5Ĝ~c2a!Ĝ. ~3.75!

From ~2.46! one finds after a decomposition intoL* -components the equations

c0a•p̂~a8!50, c0a•p̂~V1a!50,

c1a•p̂~a8!50, c1a•p̂~V1a!50,

@c2a,p̂~a8!#50, @c2a,p̂~V1a!#50. ~3.76a!

The restriction top̂(a8) is due to possible problems with the boundary spaces. Due to~3.73! it is
convenient to define

j0a:5c0a, j1a:5c1a, j2a:5c2a1p̂~I 2a!1$p̂~a!,p̂~a!%. ~3.76b!

We recall that the commutator and the differential in the curvatureu5dr11/2@r,r#g1J2g
are indirectly defined via the graded Jacobi identity and the graded Leibniz rule~2.48b!. The
commutator and differential inp(V* g) modp(I * g) are given by~3.60! and~3.63!. It is obvious
that these formulae extend to local elements ofĤ* g. Only the mapŝ+p̂21 has to be extended to
r* a via the graded Leibniz rule:

@ŝ+p21~hk!1p̂~I k11a!,p̂~v l !1p̂~I la!#g:5ŝ+p21~@hk,p̂~v l !#g!2~21!k@hk,ŝ~v l !#g

1p̂~I k1 l11a!, ~3.77!

for hkPrka andv lPV la. Then we find for the curvature
J. Math. Phys., Vol. 38, No. 6, June 1997
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¬¬¬¬¬¬¬¬¬¬
u5S ~d^ 1F!~r!1$g ^ 2 iM,r%1
1

2
$r,r%1~1^ ŝ+p21!+r+~g ^ 1F! Dmod J2g, ~3.78!

where we recall thatJ2g5L0
^ (p̂(I 2a)1$p̂(a),p̂(a)%)1 c̃2g.

In our case—h5L2(X,S)^CF—we haveB(h)5B(L2(X,S))^MFC. Then, the paramete
d in ~2.64! is equal to the dimensionN of the manifoldX, see Ref. 1. Moreover, the trac
theorem1 of Alain Connes says that in this case we have

Trv~~sc^m!uDu2N!5
1

~N/2! ! ~4p!N/2
E
X
vg trc~s

c!tr~m!, ~3.79!

where we recall that vg denotes the canonical volume form onX, trc denotes the trace in th
Clifford algebra CliffC(R

N), normalized by trc(1)52N/2, and tr~m! is the matrix-trace of
mPMFC. We use the trace theorem~3.79! for the construction ofe~u!, see~2.67!. For the curva-
ture u of a local connection we have according to the above considerations a decompositio

u5(
a

~ca
2

^ ~ta
01j0a!1ca

1g ^ ~ta
11j1a!1ca

0
^ ~ta

21j2a!!, ~3.80!

whereciPL i andt iPMFC. SinceL*5 % k50
N Lk is an orthogonal decomposition with respect

the scalar product~3.14! given by trc, we see that~2.67! is equivalent to finding foriP$0,1,2%
and eacha the elementsj a

i Pjia satisfying

tr~ j̃ i~ta
i 1 j a

i !!50, for all j̃ iPjia. ~3.81a!

These equations must be solved for the concreteL-cycle (a,CF,M,p̂,Ĝ) and the concrete elemen
ta
i , giving in the notation of~3.80!

e~u!5(
a

~ca
2

^ ~ta
01 j a

0 !1ca
1g ^ ~ta

11 j a
1 !1ca

0
^ ~ta

21 j a
2 !!. ~3.81b!

Now, formula~2.65a! for the bosonic action takes the form~up to a constant!

SB~¹!5E
X
vg trc~e~u!2!. ~3.82a!

Here, trc contains both the traces in CliffC(R
N) and MFC. For the fermionic action we obtain

SF~c,¹!5^c,~D1 ir!c&h5E
X
vgc* ~D1 ir!c. ~3.82b!

This finishes our prescription towards gauge field theories. Let us recall what the ess
steps are. One starts to select theL-cycle from the physical data or assumptions. We have lear
that the matrix part of theL-cycle contains the essential information. Hence, we must construc
spacesp̂(Vna) and the idealp̂(I na) up to second~in some cases up to third! order. This is
necessary to compute the spacesr0a,r1a andj0a,j1a,j2a constituting the connection formr and the
ideal J2g. Then we have to compute the curvatureu of the connection and to select its represe
tative e~u! orthogonal toJ2g. Finally, we write down the bosonic and fermionic actions. Th
scheme can be applied to a large class of physical models. Among them ar
SU~3!3SU~2!3U~1!-standard model17 and the SU~5!3U~1!-Grand Unification model.18 The
SU~5!-GUT can be obtained as a special case of the latter.
J. Math. Phys., Vol. 38, No. 6, June 1997
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Comment on: On the evanescent fields and the causality
of the focus wave modes

P. L. Overfelt
Physics Branch, Research and Technology Group, Naval Air Warfare Center Weapons
Division, China Lake, California 93555-6100

~Received 21 January 1997; accepted for publication 4 March 1997!

@S0022-2488~97!02106-3#

In Ref. 1, an analysis of the angular spectral content of the source-free fundamental Ga
focus wave mode~FWM! demonstrated that its causal~acausal! components are dominant und
the condition thatba1!1 (ba1@1). An asymptotic estimate for the relative strength ratio of
forward- to backward-propagating components of the source-free FWM was derived under t
extreme conditions above. While this asymptotic estimate was necessary to show that the fo
propagating component~FPC! in the Whittaker representation dominated over the backwa
propagating component~BPC! for the caseba1!1, it is also of interest to consider an exa
analysis of these forward- and backward-propagating components. Assuming initially thb,
a1 , r, z, t, etc., are allowed to take on any values, we define the FPC and the BPC o
source-free FWM as in Ref. 1, Eqs.~2.8!, i.e.,

c1~r ,t !5E
1

`

I ~l!dl; c2~r ,t !5E
0

1

I ~l!dl ~1!

with the source-free FWM given by

csf
FWM~r ,t !5c1~r ,t !1c2~r ,t !5E

0

`

I ~l!dl, ~2!

where the integrand of each of the above is

I ~l!5
ba1
2p

lJ0~2brl!e2b~a11 i z!l2eibh ~3!

assuming thatz5z2ct andh5z1ct.
Upon integration of~1!, we find that there are two separate space–time regions in which

FPC and the BPC must be represented to ensure solution convergence. The FPC of the sou
FWM is

c1~r,z!5H a1
4p~a11iz!

e2ba1ei2bct@V0~w,s!2iV1~w,s!#; U r

a11izU<1,

a1
4p~a11 i z!

ei2bct$e2br2/~a11 i z!eibz2e2ba1@ iU 1~w,s!2U2~w,s!#%; U r

a11 i zU>1.

~4!

The BPC of the source-free FWM is
J. Math. Phys. 38 (6), June 1997 3391
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¬¬¬¬¬¬¬¬¬¬
c2~r,z!5H a1
4p~a11 i z!

ei2bct$e2br2/~a11 i z!eibz2e2ba1@V0~w,s!2 iV1~w,s!#%;U r

a11 i zU<1,

a1
4p~a11 i z!

e2ba1ei2bct@ iU 1~w,s!2U2~w,s!#; U r

a11 i zU>1,

~5!

where

s52br and w52 i2b~a11 i z!, ~6!

and theV0,1(w,s) and theU1,2(w,s) in ~4! and~5! are Lommel’s functions of two variables. Eac
of these particular combinations of Lommel’s functions can be written in series form as

V0~w,s!2 iV1~w,s!5 (
l 50

`

~21! l S r

a11 i z D l Jl ~2br!, U r

a11 i zU<1, ~7!

and

iU 1~w,s!2U2~w,s!5 (
l 5 l

` S a11 i z

r D l Jl ~2br!, U r

a11 i zU>1. ~8!

At z50 (z5ct), the exact amplitude ratio of the forward- to backward-propagating com
nents is

c1

c2 ~r,z50!5
1

@e2br2/a1/e2ba1( l 50
` ~21! l ~r/a1!

l Jl ~2br!#21
~9a!

for ba1>br and

c1

c2 ~r,z50!5
e2br2/a1

e2ba1( l 51
` ~a1 /r! l Jl ~2br!

21 ~9b!

for ba1<br. Equations~9a! and ~9b! each have two limits in terms of the extremes
ba1—one forba1@1 and one forba1!1.

Considering~9a!, whenba1@1 andbr/ba1!1, assuming that the first term of the series
adequate, the exact amplitude ratio can be approximated as

c1

c2 ~r,z50!'
e2ba1J0~2br!

e2br2/a1
, ~10!

which is just Eq.~3.8! in Ref. 1. Under the constraint thatbr is close to zero,c1/c2is further
approximated toe2ba1 just as in Ref. 1.

Considering~9a!, whenba1!1andbr/ba1!1 still ~so thatbr must be extremely close to
zero!,

c1

c2 ~r,z50!'
~12ba1!J0~2br!

@~12~br!2/ba1!2~12ba1!J0~2br!#
, ~11!
J. Math. Phys., Vol. 38, No. 6, June 1997
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where, of course,J0(2br)'1, and we have used the first two terms of the power series form
the exponentials in~9a!. Thus

c1

c2 ~r,z50!'
1

ba1
21 ~12!

and the 1 on the right-hand side can be ignored forba1!1. The result, 1/ba1 , is the asymptotic
solution found in Ref. 1 forba1!1, whenbr is very close to zero.

Considering~9b! there are two limiting cases also. Forba1@1, br must be very far away
from zero and thus from the pulse peak. So ifbr@1, andba1@1 also and yetbr.ba1 so that

c1

c2 ~r,z50!'
e2~br!2/ba12e2ba1~ba1 /br!J1~2br!

e2ba1~ba1 /br!J1~2br!
, ~13!

we find that (br)2@ba1 and thus the first exponential in the numerator of~13! goes to zero. Thus

c1

c2 ~r,z50!'21 for br@1, ba1@1, br.ba1 . ~14!

Whenba1!1 andba1,br, ~9b! becomes

c1

c2 ~r,z50!'
e2~br!2/ba1

~ba1 /br!J1~2br!
21. ~15!

For br small,J1(2br)'br, ande2(br)2/ba1→1 for ba1,br!Aba1, thus~15! becomes

c1

c2 ~r,z50!'
1

ba1
21 ~16!

or becomes 1/ba1 , for ba1!1. Equation~15! is just Eq.~3.12! in Ref. 1.
In Fig. 1, the exact amplitude ratio atz50 given by Eq.~9a! is plotted versusba1 for a given

value ofbr. The relationship of this exact amplitude ratio to the asymptotic solutions,e2ba1 for
ba1@1 and 1/ba1 for ba1!1, is shown forbr50.01 andba1.br. Figure 1 illustrates the
approximations given in~10! and ~12! and compares them to the exact solution.

Figure 2 is a plot of the exact forward to backward component amplitude ratio atz50 given
in Eq. ~9b! versusba1 for br50.01 andba1,br. This exact amplitude ratio is compared to th
asymptotic solution, 1/ba1 , given in Ref. 1. In this caseba1 will take on values that are smalle
than 0.01. Asba1 increases towardba15br50.01, the two solutions are graphically indistin
guishable. However, asba1 approaches zero, there is a discrepancy between the exac
asymptotic solutions. For example, atba150.001 ~meaning thatba1 is an order of magnitude
smaller thanbr!, the exact value ofc1/c2(z50,br 5 0.01) is 900, implying that the FPC is 90
times larger than the BPC for this particular set of parameter values. The asymptoticc1/c2 given
by 1/ba1 implies that the FPC is 1000 times larger than the BPC. This discrepancy betwee
exact ratio and the asymptotic solution for the smaller values ofba1 in Fig. 2 results from the fact
that as mentioned above, forba1,br!Aba1 and atba150.001, for example,Aba1;0.032,
and at this valuebr is not enough smaller thanAba1 for ~16! to be applicable. In fact asba1
approaches zero, the exponential term,e2(br)2/ba1, will approach zero and does this exponentia
as opposed to the denominator of the first term in~15! which approaches zero algebraicall
However, physical considerations requireba1 to remain finite.

There is an essential difference between the two equations in~9!. Rewriting each exact
amplitude in the two regions to have a common denominator, it is apparent that the denom
J. Math. Phys., Vol. 38, No. 6, June 1997
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of ~9a! will always be finite for finite values ofba1 andbr. However, this is not true for~9b!
since the series of Bessel functions ends up in the denominator and thus, for particular va
ba1 andbr, that series will have zeroes. Thus the zeroes of the Bessel function series can
discontinuities inc1/c2 in the region wherebr.ba1 .

FIG. 1. Comparison of exact and asymptotic amplitude ratios plotted versusba1 for z50 andbr50.01 withba1.br.

FIG. 2. Comparison of exact and asymptotic amplitude ratios plotted versusba1 for z50 andbr50.01 withba1,br.
J. Math. Phys., Vol. 38, No. 6, June 1997
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The same method of integration used to obtain the FPC in Eq.~4! and the BPC in Eq.~5! can
be employed to explicitly write out thecar(r ,t) solutions in Ref. 1, Eq.~4.9!.

Setting

car~r ,t !5c1~r ,t !1c2~r ,t !, ~17!

where

c1~r ,t !5c1~r ,t ! ~18!

from ~1! and ~3! previously, we have

c2~r ,t !5
ba1
2p

e2 ibzE
0

1

dllJ0~2brl!e2b~a12 ih!l2, ~19!

where the roles ofh andz have been interchanged. Thusc1(r ,t) is given by Eqs.~4!, ~7!, and~8!,
while c2(r ,t) is given by

c2~r ,t !55
a1

4p~a12 ih!
ei2bctH e2br2/~a12 ih!e2 ibh2e2ba1(

l 50

`

~21! l S r

a12 ih D l Jl ~2br!J ,
U r

a12 ihU<1,

a1
4p~a12 ih!

e2ba1ei2bct(
l 51

` S a12 ih

r D l Jl ~2br!, U r

a12 ihU>1. ~20!

1A. M. Shaarawi, R. W. Ziolkowski, and I. M. Besieris, ‘‘On the evanescent fields and the causality of the focus
modes,’’ J. Math. Phys.36, 5565–5587~1995!.
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Novel generalization of three-dimensional Yang–Mills
theory

Stephen C. Ancoa)
Department of Mathematics, University of British Columbia,
Vancouver, British Columbia, V6T 1Z2, Canada
and Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 3 February 1997; accepted for publication 19 March 1997!

A class of new non-Abelian gauge theories for vector fields on three manifolds is
presented. The theories describe a generalization of three-dimensional Yang–Mills
theory featuring a novel nonlinear gauge symmetry and field equations for Lie-
algebra-valued vector potential fields. The nonlinear form of the gauge symmetry
and field equations relies on the vector cross-product and vector curl operator
available only in three dimensions, and makes use of an auxiliary Lie bracket
together with the Lie bracket used in Yang–Mills theory. A gauge covariant for-
mulation of the new theories is given which utilizes the covariant derivative and
curvature from the geometrical formulation of Yang–Mills theory. Further features
of the new theories are discussed. ©1997 American Institute of Physics.
@S0022-2488~97!02207-X#

I. INTRODUCTION

The wide ranging importance of gauge theories of vector fields in mathematics and p
raises interest in finding new types of these theories, especially generalizations of Yang
theory. Recently, a new gauge theory1 of this type has been constructed for vector fields
three-dimensional spacetimes. The theory can be understood to describe a nonlinear gener
of Abelian Yang–Mills theory with the novel feature of a nonlinear gauge symmetry for Abe
vector potential fields. The form of the gauge symmetry and field equations relies on v
cross-product and curl operations, limiting the generalization as a gauge theory of vector fie
work in three dimensions only.

This generalization is closely analogous in structure to the Freedman–Townsend2 nonlinear
generalization of Abelian gauge theory for antisymmetric tensor fields on four-dimensional s
times. In particular, under the replacement of three-dimensional vector fields byd-dimensional
antisymmetric tensor fields of rankd22, the generalization of Abelian Yang–Mills theory can
extended naturally as a gauge theory of antisymmetric tensor fields from three dimensiond
dimensions, where the four-dimensional theory is equivalent to the theory constructed by
man and Townsend. The structure of these theories as Yang–Mills theory generalizations s
some extensions that can be pursued to give additional gauge theories of vector fields an
symmetric tensor fields.

This paper is addressed to extending the Yang–Mills theory generalization in three d
sions from the Abelian case to the non-Abelian case, giving a class of new non-Abelian
theories of vector fields on three-dimensional spacetimes, which was announced in Ref.
SU~2! case of this generalization is worked out in Sec. II and results in a novel SU~2! theory
featuring a new form of nonlinear gauge symmetry and field equations. The construction
theory relies on vector cross-product and curl operations available in three dimensions, an
uses the SU~2! Lie algebra along with a related auxiliary Lie algebra. In contrast to the Abe
case, where the analogous auxiliary Lie algebra is allowed to be arbitrary, the auxiliary Lie a
in the SU~2! case is fixed through an algebraic condition required by invariance of the a

a!Electronic mail: anco@math.ubc.ca
0022-2488/97/38(7)/3399/15/$10.00
3399J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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principle for the field equations under the gauge symmetry. As a consequence, in the SU~2! case,
the nonlinear structure of the generalization is unique.

Extension of the SU~2! case to the general non-Abelian case of the generalization is co
ered in Sec. III, which leads to a general class of non-Abelian theories with features similar
SU~2! theory. In Sec. IV some additional features and extensions of the generalization ar
cussed.

II. NEW SU(2) GAUGE THEORY

A. Formulation

We start from the vector potential and field strength of SU~2! Yang–Mills theory on a three-
dimensional manifold. The structure we require on the manifold3 is a metrichmn and a volume
form emns normalized with respect to the metric, along with a compatible derivative ope
]m determined by the metric. We also use the structure of the Lie algebra of SU~2! in an arbitrary
fixed basis $ea%a51,2,3, with Lie algebra multiplication@ea ,eb#5eab

cec and Killing metric
(ea ,eb)5dab . We fix the Killing metric componentsdab in terms of the multiplication structure
constantseab

c by ead
eebe

d522dab , and we denote the components of the inverse of the Kill
metric bydab, with dabd

bc5da
c denoting the components of the identity operator in the SU~2! Lie

algebra. In addition, we denote the inverse ofhmn by hmn, wherehmnhns5dm
s is the identity

tensor on the manifold.~Throughout, Latin letters are used for internal Lie algebra indices,
Greek letters are used for manifold coordinate indices, with all indices running from 1 to 3!

We represent the vector potential in the SU~2! basis by a set of cotangent vector fiel
$Am

a %a51,2,3 and similarly represent the field strength of the vector potential by a set of anti
metric tensor fields$Fmn

a %a51,2,3. The field strength tensorsFmn
a are given in terms of the fields

Am
a by

Fmn
a 5] [mAn]

a 1 1
2ebc

aAm
bAn

c . ~2.1!

The dual of these tensors are vectorsFs
a5es

mnFmn
a , which are constructable entirely by curl an

cross-product operations along with SU~2! multiplication,

Fs
a5es

mn ]mAn
a1 1

2ebc
aes

mnAm
bAn

c , ~2.2!

wherees
mn5esabhmahnb is the cross-product tensor andes

mn]m is the curl operator.
To proceed with the construction of the new SU~2! gauge theory, we introduce structu

constantsBab
c defining an additional Lie algebra multiplication of the SU~2! basis vectorsea .

This multiplication will later be fixed through an algebraic condition imposed by gauge invaria
Using the structure constants, we now construct the field tensors

Ytb
dn5dt

ndb
d2et

nsBd
beAs

e , ~2.3!

linearly in terms ofAs
e , where

Bd
be5ddadceBab

c. ~2.4!

The tensorsYtb
dn represent components of a linear mapY on Lie-algebra-valued cotangent vector

We define tensorsY21
md
at to represent components of the inverse linear mapY21, such that

Y21
md
at Ytb

dn5db
adm

n5Ymd
at Y21

tb
dn , ~2.5!

with As
e restricted by the condition det(Y)Þ0 necessary for the invertibility ofY. We also define

the associated tensors
J. Math. Phys., Vol. 38, No. 7, July 1997
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Yab
mn5dadh

mtYtb
dn5dabh

mn2es
mnBab

cdceAs
e , ~2.6!

Y21
cd
st5dcah

smY21
md
at , ~2.7!

which represent components of nondegenerate bilinear forms on Lie-algebra-valued cot
vectors. The bilinear forms are symmetric,Yab

mn5Yba
nm andY21

cd
st5Y21

dc
ts , due to the antisymme

try es
mn5es

@mn# andBab
c5B@ab#

c.
From the previous structure the theory is constructed as follows. Field strength vectors

theory are defined by

Km
a5Y21

mb
anFn

b . ~2.8!

In terms of these field strengths the Lagrangian of the theory is given quadratically by

L5Y21
cd
stFs

cFt
d5Yab

mnKm
aKn

b . ~2.9!

The gauge symmetry of the theory is given by the infinitesimal transformations

dAm
a5]mja1~ebc

aAm
b1Ba

dcKm
d !jc, ~2.10!

involving a set of arbitrary functionsja.
Gauge invariance of the theory requiresL to vary into a complete divergence]nS

n under an
arbitrary gauge transformationdAm

a , whereSn is some local function ofAm
a , ja, and their de-

rivatives. This requirement now leads to the algebraic condition fixing the structure con
Bab

c.
Consider an arbitrary infinitesimal variation ofL,

dL5d~Y21
ab
mnFm

aFn
b!. ~2.11!

Varying Fm
a contributes the terms

2Y21
ab
mn dFm

a Fn
b52hsm dcaKs

c dFm
a52Ks

c esntdca~]n dAt
a1ede

aAn
d dAt

e!, ~2.12!

and varyingY ab
21mn contributes the terms

dY21
ab
mn Fm

aFn
b52Fm

aFn
bY21

sa
cmY21

tb
dn dYcd

st5Ks
cKt

d~estnBcde dAn
e!, ~2.13!

through use of Eqs.~2.5!–~2.7!, with estn5hsmem
tn andBcde5Bcd

bdbe . We now substitute the
gauge symmetry~2.10! for the variationsdAa

m and group the terms into a quadratic expression
powers ofBab

c andeab
c.

The linear part involvingBab
c in dL consists of the terms

2enstBbdeKn
b]s~Kt

dje!1entsBbdeKn
bKt

d ]sje5enstBbde]s~jeKn
bKt

d! ~2.14!

which combine to yield a complete divergence, using the antisymmetry property of Lie al
multiplication,Bbd

a5B@bd#
a. The quadratic part involvingBab

c in dL is given by one term,

Bbc
eBednj

nenstKn
bKs

cKt
d . ~2.15!

The antisymmetryenst5e@nst# implies the productBbc
eBedn is antisymmetric in its indices

bcd and thus vanishes by the Jacobi property of Lie algebra multiplication,B[bc
eBueud]

a50.
Consequently, the term~2.15! vanishes. Next, turning to the terms from the linear and quadr
parts involvingeab

c in dL yields
J. Math. Phys., Vol. 38, No. 7, July 1997
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2enstKn
c
„edec]s~At

dje!1edecAt
e ]sjd1edecemn

dAt
eAs

mjn…

52enstKn
c~edec ]sAt

d je1 1
2ednceem

dAt
eAs

mjn!52edech
nmKn

cFm
d je, ~2.16!

after we have rearranged 2ed[eucuem]n
d5ednceem

d by the Jacobi property of SU~2! multiplication,
whereedec5ede

bdbc . Using the relations~2.3! and ~2.8!, we express

Fm
d5Yma

dsKs
a5Km

d2em
stBd

amKs
aAt

m ~2.17!

in the term~2.16!, which leads to

2edech
nmKn

cFm
d je52ecdeh

nmKn
cKm

d je22eec
dBdamenstKn

cKs
aAt

mje, ~2.18!

by the SU~2! multiplication relationedec5ecde5eecd. The antisymmetryecde5e@cd#e implies the
term involving 2ecdeh

nmKn
cKm

d in Eq. ~2.18! vanishes. Finally, the other term from Eq.~2.18! can
be combined with all the terms indL from the remaining quadratic parts,

22enstBdameec
dKn

cKs
aAt

mje12enstBdmneeb
dKn

bKs
mAt

ejn1enstBbceemn
eKn

bKs
cAt

mjn

5enstKn
bKs

cAt
ajdHbcad, ~2.19!

where we have defined

Hbcad52ea[b
eBueuc]d22ed[b

eBueuc]a1ead
eBbce. ~2.20!

Assembling the previous terms in the gauge symmetry variationdL now yields

dL5]s~estnBbdeKn
bKt

dje!1enstKn
bKs

cAt
ajdHbcad, ~2.21!

which is required to equal a complete divergence. Because the second term involves no der
of jd, it is not a divergence and therefore must vanish. This implies

05Hbcad, ~2.22!

constituting an algebraic condition on the structure constantsBab
c.

We now solve Eq.~2.22! to determineBab
c subject to the structure constant properties

Bab
c5B@ab#

c,B[ab
dBc]d

e50. ~2.23!

We contract Eq.~2.22! with en
ad and use the SU~2! identities,

ead
een

ad52dn
e, ~2.24!

eab
een

ad5db
ddn

e2dbnd
de, ~2.25!

where en
ad is the transpose ofead

n in the SU~2! metric. This yields, using the propertyBab
c

5B@ab#
c,

05en
adHbcad54dn[bBc]add

ad12Bncb22Bnbc12Bbcn . ~2.26!

Permuting the free indices in Eq.~2.26! and adding the resulting equations now leads to

05dn[bBc]add
ad1Bbcn . ~2.27!

This algebraic relation implies
J. Math. Phys., Vol. 38, No. 7, July 1997
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Bbcn5dnbvc2dncvb ~2.28!

for some arbitrary constantsvc . The expression~2.28! is easily checked to satisfy Eq.~2.22! as
well as the required properties

Bbcn52dn[bvc]5B@bc#n , ~2.29!

B[bc
nBd]n

a52d [b
nvcdd]

avn22d [b
nvcvd]dn

a54v [bvcdd]
a50. ~2.30!

Thus, from gauge invariance, the algebraic condition~2.22! fixes the auxiliary structure con
stants~2.28! that appear in the field strength~2.8!, the Lagrangian~2.9!, and the gauge symmetr
~2.10! of the theory.

These structure constants define an auxiliary Lie algebra multiplication,

@ea ,eb#B5Bab
cec52v [bea] ~2.31!

in terms of the SU~2! basis vectorsea . The auxiliary multiplication is related to SU~2! multipli-
cation,

@ea ,eb#B5†@ea ,eb#,v‡, ~2.32!

using the Lie-algebra vectorv5vb dbaea determined by the constantsvb . This relationship~2.32!
directly follows from expressing the auxiliary structure constants in terms of the SU~2! structure
constants,

eab
eeed

c ddnvn52d [a
ndb]

cvn52v [adb]
c5Bab

c, ~2.33!

with the use of the SU~2! identity ~2.25! and some index rearrangements.
The structure of the auxiliary multiplication can be understood as follows. Fix two line

independent Lie-algebra vectorsw15w1
aea and w25w2

aea such thatw1
ava505w2

ava , so the
vectors$w1 ,w2 ,v% provide a Lie algebra basis withv orthogonal tow1 andw2 in the SU~2!
Killing metric. From Eq.~2.31! the auxiliary multiplication of this basis is given by

@w1 ,w2#B52w1
aw2

bv [bea]50, ~2.34!

@w1 ,v#B52w1
a dcbvc v [bea]5w1uvu2, ~2.35!

@w2 ,v#B52w2
a dcbvc v [bea]5w2uvu2, ~2.36!

where uvu25dabvavb is the SU~2! norm squared ofv. This multiplication structure represents
three-dimensional nilpotent Lie algebra4 that is the semidirect product of the one-dimensional
algebra spanned byv with the two-dimensional Abelian Lie algebra spanned byw1 andw2 , where
(1/uvu2)v acts by multiplication as an identity element onw1 andw2 .

B. Features

The variation of the Lagrangian~2.9! as assembled from Eqs.~2.11! to ~2.13! yields the field
equations forAm

a ,

Em
a52em

sn~]sKn
a1ebc

aAs
bKn

c1 1
2Bbc

aKs
bKn

c!50. ~2.37!

The fieldsAm
a appear inEm

a nonpolynomially through the field strengthsKm
a , producing a novel

form of nonlinear coupling of the fields, which is controlled by the auxiliary structure cons
Bbc

a together with the SU~2! structure constantsebc
a.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The field strengths have two basic properties. First, the SU~2! Bianchi identity 05]mFm
a

1ebc
aAm

bFn
chmn leads to the differential identity onKm

a ,

]mKm
a1~ebc

aAm
bKn

c1Ba
dcKm

dKn
c!hmn5 1

2B
a
dcEm

dAn
chmn, ~2.38!

where ]m5hmn]n . Consequently, for solutions of the field equations,Km
a satisfies SU~2! field

equations of the form

hmn~]mKn
a1ebc

aAm
bKn

c!52Ba
dcKm

dKn
chmn, ~2.39!

em
sn~]sKn

a1ebc
aAs

bKn
c!52 1

2Bbc
aKs

bKn
cem

sn ~2.40!

involving scalar and vector source terms generated quadratically fromKm
a . Second, under the

gauge symmetry~2.10! on Am
a , the field strengthsKm

a have the transformation

dKm
a5ebc

aKm
b jc1 1

2~Y
21E!em

a je, ~2.41!

where (Y21E)em
a 5Y mb

21anEn
cBb

ce . For solutions of the field equations, the form of Eq.~2.41!
represents an infinitesimal rotation ofKm

a as an SU~2! vector, and so SU~2! invariants constructed
from Km

a yield gauge symmetry invariants in the theory.
The gauge symmetry of the theory has a closed commutator structure on solutions of th

equations. From Eqs.~2.10! and ~2.41!, calculating the commutator of two infinitesimal gaug
transformationsd1Am

a andd2Am
a involving sets of arbitrary functionsj1

a andj2
a yields

@d1 ,d2#Am
a5d3Am

a1Ba
c[d~Y

21E!e]m
c j2

ej1
d , ~2.42!

where the infinitesimal gauge transformationd3Am
a involves the set of functionsj3

c5eed
cj2

ej1
d .

Since@d1 ,d2#Am
a5d3Am

a on solutions of the field equations, the commutator structure is give
structure constants of the Lie algebra SU~2!. Hence, the gauge symmetry generates a closed g
of finite gauge transformations on solutionsAm

a .
Associated to the gauge symmetry group are conserved currents]mJm

a50, given by

Jm
a5em

sn ]sKn
a , ~2.43!

in terms of the field strengthsKm
a for solutions of the field equations. If we consider tw

dimensional hypersurfacesS of the underlying three-dimensional manifold on which the fie
Am
a are defined, the flux of the currentsJm

a on a givenS defines internal charges carried by th
fields onS. We can evaluate these charges by the surface integral

Qa5E
S
tmJm

a , ~2.44!

wheretm is a unit normal toS and the integral is understood to use the induced volume elem
tmemst on S. If S has topologyR2, then we can expressQa by a line integral,

Qa5E
S
tmJm

a5 R
C
smKm

a , ~2.45!

whereC is the boundary at infinity onS andsm is the unit tangent toC, in a clockwise orienta-
tion. When there is no current flow acrossC, the charges defined byQa are conserved,
tm ]mQ

a50.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



arges

ce

try

r-
ergy–

d

n

3405Stephen C. Anco: Novel generalization of Yang–Mills theory

¬¬¬¬¬¬¬¬¬¬
The chargesQa transform as SU~2! vectors,

dQa5ebc
aQbjc, ~2.46!

under the gauge symmetry~2.10! and ~2.41! if the functionsjc are constant onC. Applying
Noether’s theorem to this restricted gauge symmetry yields a direct derivation of the ch
Qa from the Lagrangian~2.9! of the theory.

A conserved, gauge-invariant energy–momentum tensor]mTmn50 can be derived from the
Lagrangian by varying the inverse metrichmn in Lesba as follows:

Tmn5esbad~Lesba!/dhmn5dab~Km
aKn

b2 1
2hmnhstKs

aKt
b!, ~2.47!

after some cancellations of terms. Conservation ofTmn can then be shown from the covarian
property of the Lagrangian,dL5LzL under simultaneous variations of the inverse metricdhmn

5Lzh
mn and the volume formdesba5Lzesba as well as the fieldsdAm

a5LzAm
a , whereLz is the

Lie derivative generated by an arbitrary vector fieldzs. Gauge invariance ofTmn follows directly
from the transformation propertydKm

a5ebc
aKm

b jc of the field strengths under the gauge symme
~2.10! and ~2.41! on solutions of the field equations.

Conserved currents are obtained fromTmn by contracting with a Killing vector fieldz
n of the

metric, yielding the currentTmnzn, where] (mzn)50. If we consider two-dimensional hypersu
faces S as above, these conserved currents then define gauge-invariant fluxes of en
momentum and stress carried by the fieldsAm

a on a givenS, with zn being, respectively, a time
translation isometry and a space translation isometry.~Fluxes of angular momentum are define
with zn being a rotation or boost isometry.! The fluxes are given by the surface integral

Qz5E
S
tmTmnzn, ~2.48!

wheretm is a unit normal toS and the integral uses the induced volume elementtmemst on S.

C. Gauge covariant formulation

The theory has a natural formulation using a field variableAm5Am
aea , which is an SU~2!

Lie-algebra-valued vector field. The SU~2! covariant derivative and curvature associated toAm as
a connection geometrically in SU~2! Yang–Mills theory enter directly into the formulation.

We start from the SU~2! Lie bracket defined by

@f,c#5ebc
afbccea , ~2.49!

wheref5fbeb and c5cbeb are arbitrary SU~2! Lie-algebra-valued fields. From the relatio
~2.33! for the auxiliary structure constantsBab

c expressed in terms of the SU~2! structure con-
stantseab

c, we then have

Bab
cfacbec5†@f,c#,v‡, ~2.50!

Ba
dcf

dccec52†f,@c,v#‡, ~2.51!

which allows all the structures in the theory involvingBab
c andBa

bc to be formulated using the
SU~2! Lie bracket@ , # and the SU~2! vectorv5vb dbaea .

Next we utilizeAm to define the SU~2! covariant derivative,

Dmf5]mf1@Am ,f#5]mfa ea1ebc
aAm

bfcea . ~2.52!

The curvature of the covariant derivative is defined through the relation
J. Math. Phys., Vol. 38, No. 7, July 1997
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D [mDn]f5@Fmn ,f#5ebc
aFmn

b fcea . ~2.53!

To now proceed with the formulation, we introduce the field strengthKm5Km
aea for the

theory by the algebraic relation

Km1em
ns
†K n ,@As ,v#‡5Fm , ~2.54!

where Fm5em
nsFns is the dual of the SU~2! curvature tensor. In terms ofKm and Am , the

Lagrangian is given by

L5hmn~Km ,K n!1estn~@Ks ,K t#,@An ,v# !, ~2.55!

where~ , ! is the SU~2! Killing metric.
The field equations derived fromL by varyingAm are given by

2em
st~DsK t1 1

2†@Ks ,K t#,v‡!50, ~2.56!

and the differential identity satisfied byKm for solutions of the field equations is given by

hst~DsK t2†Ks ,@K t ,v#‡!50. ~2.57!

The gauge symmetry on solutions of the field equations is given by the infinitesimal tran
mations,

dAm5Dmj1†Km ,@v,j#‡, ~2.58!

dKm5@Km ,j#, ~2.59!

wherej is an SU~2! Lie-algebra-valued arbitrary function.
Exponentiating the transformations~2.58! and ~2.59! generates finite gauge symmetry tran

formations in the theory as follows. First, we express commutators involvingj by the linear
operator adj5@•,j# which acts on SU~2! vectors. We also use the linear operatorP'j

5 (1/uju2)(adj)2 which acts as the projection onto SU~2! vectors orthogonal toj in the SU~2!
Killing metric, where (j,j)5uju2. Then, calculating exp~d! with the operatord given by the
infinitesimal transformations~2.58! and ~2.59! on Am andKm leads to the finite transformations

Am→RjAm1Rj8 ]mj1~Rj8Km ,v!j2~Km ,j!Rj8v, ~2.60!

Km→RjKm , ~2.61!

where Rj5exp(adj) is a rotation generated byj on SU~2! vectors, andRj8512P'j

2(1/uju2)adj(Rj21) is a related transformation on SU~2! vectors. Explicitly,

Rj511~sinuju!adĵ2~12cosuju!P' ĵ , ~2.62!

Rj8511
1

uju ~12cosuju!adĵ2S 12
1

uju
sinuju DP' ĵ , ~2.63!

in terms of the unit vectorĵ5(1/uju)j. ~The relation betweenRj andRj8 is expressed by5 the
composition formula of rotationsRj1

Rj2
5Rj3

, wherej35j11Rj18
21j2 .!

The transformations~2.60! and ~2.61! represent a closed group of finite gauge symmet
with the novel feature that the group acts nonlinearly onAm but linearly onKm , whereKm is a
J. Math. Phys., Vol. 38, No. 7, July 1997
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nonpolynomial algebraic expression in terms ofAm determined by Eq.~2.54!. Algebraically, the
group structure of the finite gauge symmetries is isomorphic to the exponential of the SU~2! Lie
algebra structure~2.42! of the infinitesimal gauge symmetries~2.10!.

The appearance ofv in the field equations and gauge symmetry of the theory define
preferred vector in the SU~2! Lie algebra of the gauge group. Consequently, the theory la
symmetry invariance under rigid SU~2! rotations on the field variable,

Am→RAm , ~2.64!

whereR5exp(adj) is a constant transformation generated by an arbitrary SU~2! vector j, with
]mj50.

The effect of a transformation~2.64! in the theory is to rotate the preferred SU~2! vector,

v→Rv. ~2.65!

Thus, the direction ofv can be changed arbitrarily under field redefinitions given by the trans
mations~2.64!.

Whenv50, the SU~2! symmetry invariance~2.64! is restored, and the theory then reduces
SU~2! Yang–Mills theory.

III. EXTENSION TO OTHER GAUGE GROUPS

We now carry out the extension from an SU~2! gauge group to a general non-Abelian gau
group for the Yang–Mills theory generalization in Sec. II. Since the most general gauge gro
Yang–Mills theory is required to be semisimple,5 we only need to consider semisimple gau
groups for the generalization. The structure of these groups is characterized by the Lie alg
the group being a product of Abelian Lie algebras and non-Abelian simple Lie algebras.6

We start with an arbitrary simple Lie algebra for the gauge group Lie algebra, with mul
cation structure constantsCbc

a and Killing metric componentskab52 1
2Cad

eCbe
d in a fixed Lie

algebra basis. We introduce structure constantsBbc
a defining an auxiliary Lie algebra multiplica

tion that is related to the gauge group Lie algebra multiplication later through an algebraic
dition imposed by gauge invariance. Now, setting the number of fieldsAm

a to match the dimension
of the gauge group Lie algebra, we useCbc

a and kab to replace the SU~2! structure constants
ebc

a and Killing metric componentsdab in the form of the field strengthsKm
a , the Lagrangian

L, and the gauge symmetrydAm
a of the SU~2! theory given in Eqs.~2.8!–~2.10!.

Gauge invariance requires that the LagrangianL vary into a complete divergence under th
gauge symmetrydAm

a . By the same calculations as followed in the SU~2! case, after using the
antisymmetry propertyBbc

e5B@bc#
e and Jacobi propertyB[bc

eBd]en50 of the auxiliary structure
constants, in addition to the Jacobi propertyC[bc

eCd]en50 and antisymmetry property
C[bc

ekd]e5Cbc
ekde of the gauge group structure constants, we finddL is a complete divergence

up to the termenstKn
bKs

cAt
ajdHbcad, where

Hbcad52Ca[b
eBueuc]d22Cd[b

eBueuc]a1Cad
eBbce, ~3.1!

with Bbce5Bbc
akae . Thus, similarly to the SU~2! case, we must have

05Hbcad, ~3.2!

which is an algebraic condition relating the structure constantsCbc
a andBbc

a.
Condition ~3.2! can be solved, as shown in Appendix A, yielding

Bbca52Ve[bCc]a
e, ~3.3!
J. Math. Phys., Vol. 38, No. 7, July 1997
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whereVeb5V@eb# represent arbitrary constants. This expression forBbca does not automatically
satisfy the Jacobi propertyB[bc

nBd]n
a50 except in the SU~2! case as follows. By the SU~2!

identities ~2.24! and ~2.25!, Veb can be expressed equivalently aseeb
dvd in terms of

vd5
1
2ed

ebVeb , so the expressionBbca52Ve[bec]a
e has the form

Bbca52ee[b
dec]a

evd5ebc
eeae

dvd . ~3.4!

The Jacobi property forBbca then becomes a consequence of the SU~2! identities, after some
manipulations shown by Eqs.~2.30! and ~2.33!.

Other than in the SU~2! case, the Jacobi property forBbca must be imposed as an extr
condition

05B[bc
nBd]na5

4
3k

mn~Ve[bCc]n
eVp[dCm]a

p1Ve[dCb]n
eVp[cCm]a

p1Ve[cCd]n
eVp[bCm]a

p!,
~3.5!

which constitutes an algebraic equation onVeb . The solutions of this equation determine the fo
for Bbca necessary for gauge invariance of the Yang–Mills theory generalization with a ge
non-Abelian simple gauge group.

SinceVeb enters Eq.~3.5! quadratically, finding the complete solution is a difficult algebra
problem. A natural possibility is to consider the expressionVeb5Ceb

dvd of the same form as
works in the SU~2! case, leading toBbca5Cbc

eCae
dvd similarly to Eq.~3.4!. We find the follow-

ing results for the cases of SU(n) and SO(n) gauge groups. Because of the Lie algebra isom
phism SU(2).SO(3), the SO~3! case is the same as the SU~2! case. When the expression fo
Bbca is extended from the SU~2! case to the SO(n) case, condition~3.5! is satisfied forn54 as a
consequence of the Lie algebra isomorphism between SO~4! and a real form of the complexified
product SU(2)3SU(2). However, condition~3.5! fails to be satisfied in any other SO(n) case.
The condition also fails to be satisfied when the expression forBbca is extended to the SU(n) case
for any n>3. Hence, among the SU(n) and SO(n) cases, when a relation of the same for
between the gauge group structure constants and auxiliary structure constants as holds
SU~2! case is used, the Yang–Mills theory generalization works only in the case of an S~4!
gauge group.

We now return to the general case of a non-Abelian simple gauge group. The sim
alternative possibility to consider is the elementary expressionVeb52u[evb] for some constants
ue andvb . As shown in Appendix A, the condition~3.5! on Veb is satisfied by having

Cdc
audvc50, ~3.6!

whereud5kdeue andv
c5kceve determine Lie algebra vectors that commute in the gauge gr

Lie algebra. Algebraically, this requires the gauge group Lie algebra to have a commu
subalgebra of dimension of at least two, as met by any simple Lie algebra other than S~2!.
Hence, for these simple Lie algebras, the expression

Bbca52v [bCc]a
eue22u[bCc]a

eve ~3.7!

determined by Eqs.~3.3! and ~3.6! satisfies the Jacobi property~3.5!. With the relation~3.7!
between the gauge group structure constants and auxiliary structure constants, the Yang
theory generalization works for all non-Abelian simple gauge groups other than SU~2!.

The Yang–Mills theory generalization also works if the relation~3.7! is generalized to a sum
of similar expressions using pairs of Lie algebra vectors that all commute in the simple g
group Lie algebra.@In particular, for the case of SU(n), the number of linearly independen
commuting vectors isn21, and for the case of SO(n), the number is12n if n is even and
J. Math. Phys., Vol. 38, No. 7, July 1997
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1
2(n21) if n is odd.# The same relation can used more generally with semisimple gauge gr
where the Lie algebra vectors lie in different simple subalgebras of the semisimple gauge
Lie algebra.

A. Gauge covariant formulation of the extension

Relation~3.7! between the gauge group structure constantsCbc
a and the auxiliary structure

constantsBbc
a differs from the SU~2! case, giving a somewhat different gauge covariant struc

for the resulting Yang–Mills theory generalization. We now outline this structure.
We fix Lie algebra basis vectorsea associated to the gauge group structure constants,

@ea ,eb#5Cab
cec , ~3.8!

and introduce Lie algebra vectorsu5uaea and v5vbeb defined from the constantsua5dacuc ,
vb5dbdvd . Using these vectors we define the linear map

V~f!5„u,f)v2~v,f!u ~3.9!

on Lie-algebra vectorsf5faea . All structures involving the auxiliary structure constants c
now be expressed completely in terms of the map~3.9! and the Lie bracket~3.8!.

We introduceAm5Am
aea as the field variable for the gauge covariant formulation of

theory. We also use the covariant derivative defined in terms ofAm by

Dm5]m1@Am ,•#, ~3.10!

along with the dual of the curvature tensor of this derivative operator, defined as

Fs5es
mn~]mAn1 1

2@Am ,An#!. ~3.11!

The formulation of the field strengthsKm5Km
aea in the theory is given by the algebrai

relation

Km2em
ns
„V~@K n ,As#!1@V~K n!,As#…5Fm . ~3.12!

The Lagrangian of the theory has the formulation

L5hst~Ks ,K t!12emnt
„@V~Km!,K n#,At…, ~3.13!

where ~ , ! is the Killing metric in terms of the gauge group structure constants, such
(ea ,eb)5kab . The field equations forAm from varyingL have the formulation

052em
st
„DsK t2@V~Ks!,K t#…, ~3.14!

and the differential identity satisfied by the field strength for solutions of the field equation
the formulation

05hst
„DsK t1V~@Ks ,K t# !2@V~Ks!,K t#…. ~3.15!

The gauge symmetry on solutions of the field equations in the theory is given by infinite
transformations with the formulation

dAm5Dmj1V~@Km ,j#!2@V~Km!,j#, ~3.16!
J. Math. Phys., Vol. 38, No. 7, July 1997
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dKm5@Km ,j#, ~3.17!

wherej is a Lie-algebra-valued arbitrary function. These transformations have a closed co
tator structure,

@d1Am ,d2Am#5d3Am , ~3.18!

@d1Km ,d2Km#5d3Km , ~3.19!

which is the same as the gauge group Lie algebra, withj35@j1 ,j2#. Thus, Lie algebra invariants
constructed fromKm yield gauge symmetry invariants in the theory.

IV. DISCUSSION

In this paper a class of new non-Abelian gauge theories has been constructed for vecto
on three-dimensional manifolds. These theories described a generalization of non-Abelian
Mills theory with a novel nonlinear gauge symmetry and field equations for three-dimens
vector potential fields.

The new theories can be derived by a systematic generalization process starting fro
linear gauge theory of vector potential fields given by Abelian~linearized! Yang–Mills theory.
The process consists of adding linear- and higher-order terms to the form of the Abelian
symmetry while also adding quadratic- and higher-order terms to the form of the Abelian
equations so as to maintain a gauge-invariant action principle, with the condition of gauge i
ance used as an equation to determine the allowed form of terms added order by order.1,7 The
linear-order terms starting the process are provided by rigid symmetries special to Abelian Y
Mills fields Am

a in three dimensions,

dAm
a5~Cbc

aAm
b1Bab

ckbdem
snFsn

d !jc, ~4.1!

which uses arbitrary constantsBab
c5B@ab#

c , along with the structure constantsCbc
e of the Lie

algebra of any non-Abelian Yang–Mills gauge group, the Killing metrickbd of this Lie algebra,
the cross-product operatorem

sn on three-dimensional vectors, and an arbitrary rigid parame
]mjc50. For solutionsAm

a of the Abelian field equations, whereFsn
d is the curl ofAm

a , the
symmetries have a closed commutator structure@d1Am

a ,d2Am
a #5d3Am

a , which involves j c,
Cbc

a andBab
c . The existence of these symmetries is limited to three dimensions because

dependence on the cross-product operator. Completing the generalization process with th
terms given by Eq.~4.1! leads to successively higher-order terms, and fixesBab

c in terms of
structure constants of an auxiliary Lie algebra related to the Lie algebra of the Yang–Mills g
group, producing the striking nonlinearity in the form for the gauge symmetry and field equa

The generalization process can be carried out more broadly in three dimensions startin
the most general form for linear-order terms and requiring the minimum number of derivativ
the form for higher-order terms in the gauge symmetry and field equations. The outcome
process leads directly to the new theories, as can be shown following methods developed
8. This establishes a strong uniqueness result for the theories as nonlinear generalizat
Abelian Yang–Mills theory in three dimensions.

Is there a simple underlying geometrical structure to the theories? Yang–Mills theory
geometrical structure that is understood in terms of the vector potential as a connection on
bundle. In the new theories, the vector potential appears to have a different geometrical rol
general than a connection on a fiber bundle, which is somehow tied to the auxiliary Lie al
related to the gauge group Lie algebra underlying the structure of the theories. Understand
structure geometrically would be highly worthwhile.

Can the theories be extended to higher dimensions? The rigid symmetries~4.1! needed for the
generalization of Abelian Yang–Mills theory in three dimensions cannot be extended to Ab
J. Math. Phys., Vol. 38, No. 7, July 1997
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Yang–Mills fields in other dimensions. However, there are closely analogous symmetries
linear gauge theory of Abelian Yang–Mills fields and antisymmetric tensor fields in four~and
higher! dimensions, which can be used to start the generalization process. The outcome
process leads to a novel nonlinear generalization of four-dimensional Yang–Mills theory
antisymmetric tensor fields. A full discussion of this new gauge theory is given in a forthco
paper.8

Investigation of these new gauge theories in three and four dimensions could well
significant interest for many areas of physics and mathematics.

APPENDIX A: RELATION BETWEEN THE AUXILIARY LIE ALGEBRA AND THE GAUGE
GROUP LIE ALGEBRA

We begin by solving condition~3.2! to obtain the relation~3.3! for Bbc
a in terms ofCbc

a for
any semisimple gauge group Lie algebra. Throughout we raise and lower indices onBbc

a and
Cbc

a by kmn and its inversekmn, and we freely use the antisymmetryBbca5B@bc#a and the
complete antisymmetryCbca5C@bca# which follows sincekmn is the Killing metric with respect to
Cbca .

To proceed, we contractkcd ontoHbcad50, yielding

Cb
dcBdca5Cab

dBdc
c. ~A1!

We next contractCad
n ontoHbcad50. After some rearrangements of indices and use of the Ja

property ofCbca , we obtain

052Bncd1BcbaCe
baCnd

e1BebaCn
baCcd

e2 1
2B

be
dCbe

aCanc . ~A2!

Antisymmetrizing on the indicesn, c leads to

Bncd5
1
2B@nubaCe

baCuc]d
e2 1

2BebaC[n
baCc]d

e1 1
4CncaCbe

aBbe
d . ~A3!

We now rearrange the last term into the form2 1
2Bab

bC@nue
aCuc]d

e using the Jacobi property o
Cbca and the relation~A1!. Finally, combining this term with the other terms in Eq.~A3! yields

Bncd5
1
2~B@nubaCe

ba2BebaC[n
ba2 1

2C@nue
aBab

b!Cuc]d
e. ~A4!

This relation indicatesBncd has the form 2Ve[nCc]d
e, where 4Ven is identified with the expression

in parentheses.
To complete the solution, we show thatHbcad50 is satisfied byBncd52Ve[nCc]d

e with
Ven5V@en# taken to be arbitrary. SubstitutingBncd into Hbcad yields

Hbcad54C@au@b
eVc]nCud]e

n14C@au[b
eCc] ud]

nVne12Cad
eVn[cCb]e

n. ~A5!

In Eq. ~A5! the middle term vanishes sinceC@au[b
eCc] ud]

n is symmetric in the indicese,n while
Vne is antisymmetric. The first term in Eq.~A5! can be rearranged using the Jacobi property
Cab

e to yield 22Cad
eVn[cCb]e

n, which cancels the last term in Eq.~A5!. This demonstrates
Hbcad50.

We now show that the Jacobi property~3.5! on Bbcd52Ve[bCc]d
e is satisfied byVeb

52u[evb] , whereue and vb commute in the gauge group Lie algebra,Cebnuevb50. First, we
rearrange Eq.~3.5! into the form

B[bc
nBd]na52Cna

pC[c
neVbueuVd]p12Ca[d

pCc
neVb]eVnp . ~A6!

SubstitutingVeb52u[bve] leads to
J. Math. Phys., Vol. 38, No. 7, July 1997
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B[bc
nBd]na54Cna

pC[c
neubvd]u[evp]12Ca[d

pCc
neub]unvevp22Ca[d

pCc
nevb]unveup .

~A7!

The last two terms directly vanish sinceCc
neunve50. The first term can be rearranged by t

Jacobi property 2Cc
n[eCna

p]5Cn
peCac

n, yielding 2Cn
epCa[c

nubvd]uevp , which vanishes since
Cn

epuevp50. This demonstrates the Jacobi property 05B[bc
nBd]na . More generally, the same

property can be shown to hold ifVeb has the form 2u[evb]12x[eyb]1••• such thatue , vb , xe ,
yb ,..., all commute in the gauge group Lie algebra.

Finally, for Veb52u[evb] , we show that if the commutator ofue andvb in the gauge group
Lie algebra is nonvanishing,CebnuevbÞ0, the Jacobi property~3.5! onBbcd52Ve[bCc]d

e implies
ue and vb belong to an invariant SU~2! subalgebra. Hence, in satisfying the Jacobi property
vanishing commutator ofue andvb is a necessary as well as sufficient requirement in any sim
gauge group Lie algebra other than SU~2!.

To proceed, we supposexn5Cebnuevb is nonvanishing andk
ebuevb 5 0. The Jacobi property

~3.5! then leads to

05xeCe[c
dubva]1C[a

pdvbxc]up1C[a
pdubxc]vp . ~A8!

First, we contract this expression byvaubyc with an arbitraryyc satisfyinguay
a505vay

a. This
yields 05xeycCec

d, which impliesxeCecd is proportional tou[cvd] . As a result, we have

xeCecd52u[cvd] . ~A9!

The expression~A8! now simplifies to 05x[c(Ca
pdvb]up1Ca

pdub]vp). Contracting byx
cub and

then using the relation~A9! leads to

u2vpCad
p52x[aud] , ~A10!

whereu2 5 kebueub . Similarly,

v2upCad
p522x[avd] . ~A11!

Taken together, the relations~A9!, ~A10!, and ~A11! imply $ua,vb,xc% span an invariant SU~2!
subalgebra in the gauge group Lie algebra.

APPENDIX B: STRUCTURE OF THE AUXILIARY LIE ALGEBRA

The form ~3.7! for the structure constantsBbc
a in the general case of a semisimple gau

group Lie algebra yields an auxiliary Lie algebra multiplication that differs in several feat
compared to the SU~2! case. In terms of a Lie algebra basisea associated to the structure constan
Cbc

a, with multiplication @eb ,ec#5Cbc
aea and Killing metric (eb ,ec)5kbc , the auxiliary multi-

plication is given by

@eb ,ec#B52~u,e[b!@ec] ,v#22~v,e[b!@ec] ,u#, ~B1!

whereu5dbaubea andv5dbavbea are Lie algebra vectors associated toub andvb , which satisfy
@u,v#50. We can understand the structure of this multiplication in terms ofu andv as follows.

First, we note the commutator expression~B1! depends onu andv antisymmetrically, so it
remains invariant underu→au1bv, v→cv1du, such thatac2bd51. Using this invariance we
set (u,v)50 for convenience. Next, we letH define the subspace in the gauge group Lie alge
such that

~u,H!505~v,H!, ~B2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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@u,H#505@v,H#. ~B3!

Thus, vectors inH are orthogonal to and commute withu and v. We then letH' define the
subspace orthogonal tou, v, H in the gauge group Lie algebra,

~u,H'!505~v,H'!, ~B4!

~H,H'!50. ~B5!

The spacesH,H' , and vectorsu, v together span the gauge group Lie algebra. The property
the gauge group Lie algebra is semisimple implies

@u,H'##H' ,@v,H'##H' . ~B6!

Now, from the basis multiplication~B1!, we have the following auxiliary Lie algebra mult
plication. For vectorsh, g in H and vectorsx, y in H' ,

@u,h#B50,@v,h#B50,@h,g#B50, ~B7!

using the orthogonality~B2! and commutativity~B3!, while

@u,x#B52uuu2@v,x#,@v,x#B5uvu2@u,x#, ~B8!

@x,y#B50,@x,h#B50, ~B9!

using the orthogonality~B4! and ~B5!, whereuuu25(u,u) and uvu25(v,v). In addition,

@u,v#B50. ~B10!

Algebraically, these commutators show thatu, v together define an Abelian Lie subalgebraA,
while H andH' also define Abelian Lie subalgebras, such thatA commutes withH and acts
invariantly onH' , and the subalgebrasH, H' commute. Hence, the span ofA, H, H' defines an
auxiliary Lie algebra, which is the product ofH with the semidirect product ofA andH' , where
(1/uuu2)u acts onH' by multiplication by2v, while (1/uvu2)v acts onH' by multiplication byu.

1S. C. Anco, J. Math. Phys.36, 6553–6565~1995!.
2D. Z. Freedman and P. K. Townsend, Nucl. Phys. B177, 282–296~1981!.
3As additional structure, an SU~2! bundle over the manifold, is needed. This bundle is assumed to be globally trivia
simplicity.

4Curiously, this auxiliary Lie algebra is isomorphic to the Lie algebra of translations and dilations in EuclideanR3 space,
with w1 andw2 identified as the generators of translations, and (1/uvu2)v identified as the generator of dilations.

5Y. Choquet-Bruhat and C. DeWitt-Morrette,Analysis, Manifolds, and Physics~North-Holland, Amsterdam!.
6A Lie algebra is simple if and only if it has no proper invariant subalgebras.
7S. C. Anco, Contemp. Math.132, 27–50~1992!.
8In preparation.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



that the
-

certain

s hy-

s. This
ion of

ns or
form

rticle.

less.

vation

ember
.

is is
algebra
con-

cation

ar

high,
his is

¬¬¬¬¬¬¬¬¬¬
Symmetries of preon interactions modeled as a finite
group

James N. Bellinger
University of Wisconsin at Madison, Madison, Wisconsin 53706

~Received 30 September 1996; accepted for publication 18 March 1997!

I model preon interactions as a finite group. Treating the elements of the group as
the bases of a vector space, I examine those linear mappings under which the
transformed bases may be treated as members of a group isomorphic to the original.
In some cases these mappings are continuous Lie groups. ©1997 American In-
stitute of Physics.@S0022-2488~97!01907-5#

I. INTRODUCTION AND PHYSICS MOTIVATION

Particles such as theKL we describe as a combination ofK
0 and anti-K0. Particles such as the

p0 are regarded as linear combinations of quarks and anti-quarks. It has been proposed
particles we know or infer~leptons and quarks! are similarly composed of combinations of ‘‘pre
ons.’’

I examine in this paper some consequences of a simple preon model, and show that
continuous symmetries result.

The model I use has seven basic assumptions.
• First, suppose that all preon interactions are 3-body interactions. A 4-gluon vertex i

pothesised, but not directly observed.
• Second, suppose that all particles are created from combinations of these preon

condition is not required for the mathematics of the model, but for any possible interpretat
it.

• Third, suppose that we are not for the moment concerned with the particle positio
momenta, but only with particle type. We treat all particle interactions as being of the
A(B→C.

• Fourth, suppose that every particle may interact with every other to make a new pa
This requires that the particles in the model not have any net charge@as in (e11e2)/& and
(e12e2)/&#. I include no mechanism for giving the particles mass: all are assumed mass

• Fifth, suppose that the interaction we have defined so far is associative:A((B
(C)5(A(B)(C. We can argue that associativity is a consequence of some of the conser
laws, though tighter conditions could be applied. This condition is deliberately loose.

• Sixth, suppose that we have some particleQ which has the property thatQ(A→A. We do
in fact observe interactions with this property, such as an electron absorbing a photon. Rem
that by assumption 3 we are dealing only with particle character or identity, not momentum

• Seventh, suppose that for each particleA there is an ‘‘anti-particle’’A21 for which
A(A21→Q. We have defined a group structure, which we may take to be finite.

Now I ask the following: What continuous symmetries exist in this model? This analys
something of a reversal of the standard approach which examines representations of a Lie
to find particles. I look at a finite group representing preon interactions and search for the
tinuous symmetry. Eigenvectors of such a transformation could be candidates for identifi
with observed particles.

Can the observed symmetries@SU~2!, SU~3!, etc.# be generated in a natural way from line
transformations over finite groups, where the structure of the finite group is maintained?

The answer is the following: Yes, some of them can be generated. The price is
however—the finite groups which represent particle interactions must be non-Abelian. T
0022-2488/97/38(7)/3414/13/$10.00
3414 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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contrary to observation and intuition, but in one case explored in detail the eigenvectors
transformation which have constant elements do in fact commute, and only those eigenv
whose elements are functions of the parameters fail to commute. If true then one might su
that the constant eigenvectors correspond to observable particles, and the variable eigenve
unobservable constructs.

A second, as yet unanswered, question is this: Can one predict which symmetries c
generated? There is a hint that by examining the group characters one can determine the
continuous symmetries, but this has not been fully explored yet.

II. FOUNDATIONS

The method is to consider the elements of a finite group as the basis of a vector space
study those transformations of the basis elements for which the new bases, considered as e
of a new finite group themselves, form a group isomorphic to the original. Each of the new
is a linear combination of the original basis elements~elements of the original group!.

Consider a finite groupG with elementsci . Number them in some arbitrary order, from 0
N21, where 0 is the label for the identity element andN is the order of the group. Display th
group operation byci(cj→ck .

In what follows I will denote the identity by 0, for simplicity and clarity. The top element
a column vector will correspond to this 0-element. In what follows, if an object has more tha
subscript, these will be separated by commas. If several terms are concatenated in a s
without commas, assume group addition of the specified elements.

I work with a space in which the elementsP are defined as( i pici , wherepi is a complex
number ~it could be some other field, but I have not addressed that question!, and ci are the
elements of the original finite group. Multiplication by a complex number is naturally define
bP[( i(bpi)ci , and the sum of two elementsP andQ is ( i(pi1qi)ci . There is also a natura
operation between the elements of this space given in terms of the group operati
P^Q[( i( j piqj (ci(cj ).

In this space consider a non-singular linear transformation. It maps the original group
mentsci into a new set of elementsci8 which we will require to be elements of a a new group
G8 isomorphic to the original groupG, with ci8^cj8→ck8 . Let the arrayU be defined by
ci85Ui ,rcr so we can write

Ui ,rcr ^Uj ,scs→fkUk,tct , ~2.1!

Ui ,ts21cts21^Uj ,scs→f i j Ui j ,tct , ~2.2!

Ui ,ts21Uj ,s5f i j Ui j ,t5Ui ,rU j ,r21t . ~2.3!

One could restrictU to be real, or use some other field entirely, but I will take the comp
case. It turns out that thef i j are all identical, and can be divided out as a completely indepen
phase, which I will divide out, for convenience. LetU5Vf. The new equations governing th
transformation are

Vi ,rVj ,r21t5Vi j ,t , ~2.4!

and it can be shown~Appendix A! that

(
i
Vi , j5(

j
Vi , j51. ~2.5!
J. Math. Phys., Vol. 38, No. 7, July 1997
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A. Infinitesimal transformations

Now consider infinitesimal transformations away from the identity. Heres5r21t,

Vi ,ts21Vj ,s5Vi j ,t , Va,b⇒da,b1dVa,b , ~2.6!

~d i ,ts211dVi ,ts21!~d j ,s1dVj ,s!5d i j ,t1dVi j ,td i ,ts21d j ,s1d j ,sdVi ,ts211d i ,ts21dVj ,s1O~d2!

⇒d i j ,t1dVi ,t j211dVj ,i21t5d i j ,t1dVi j ,t ,

resulting in

dVi ,t j211dVj ,i21t5dVi j ,t , (
i

dVi , j5(
j

dVi , j50. ~2.7!

The above are the fundamental equations governing the transformations of the arra
i5 j50. Then the fundamental equation reduces to 2dV0,t5dV0,t , so

dV0,t50. ~2.8!

Let t5 j . Then the fundamental equation becomes

dVi ,01dVj ,i21 j5dVi j , j . ~2.9!

Now for any iÞ0 we know that there exists someN>2 such thati N50, where 0 is the identity.
Thus we make the following substitutions:

j5 i⇒2dVi ,05dVi2,i

j5 i 2⇒dVi ,01dVi2,i5dVi3,i253dVi ,0 ,

j5 i N⇒NdVi ,05dViN,i N215dV0,i N21.

But sincedV0,x50, we must have

dVi ,050; i . ~2.10!

The column vector indV corresponding to this is all zeros@d150 for the~0,0! position#, and the
top row is also all zeros. The identity element is in the first position. We formally expressV as
exp((cxdVx) where thedVx are independent infinitesimal transformations away from the in
value. Clearly allV’s haveV0,051, andVx,05V0,x50,

V5S 1 0 . . . 0

0

A V8

0

D . ~2.11!

The identity element does not mix with anything else.
From the fundamental rule governing the continuous transformations,

dVi ,t j211dVj ,i21t5dVi j ,t ,

if we let t50 we have
J. Math. Phys., Vol. 38, No. 7, July 1997
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dVi , j211dVj ,i2150,

or

dVi ,q52dVq21,i21; i ,q. ~2.12!

Now restate the first fundamental equation, substitutingt5 jq,

dVi , jq j211dVj ,i21 jq5dVi j , jq .

1. If j commutes with all i

If j commutes with all other elements of the group, thenjq j215q, and i j5 j i , so

dVi ,q1dVj , j i21q5dVji , jq .

Now consider the sequence of equations generated by substituting fori5 j I andq5 jQ,

dVj 2I , j 2Q5dVj , j i21q1dVjI , jQ5dVj , j i21q1dVI ,Q1dVj , j i21q52dVj , j i21q1dVI ,Q ,

dVj 3I , j 3Q53dVj , j i21q1dVI ,Q ,

and so on. For someN, j N50, and we get

dVjNI , j NQ5NdVj , j i21q1dVI ,Q5dVI ,Q ,

from which we getdVj , j i21q50. Since this is true for arbitraryi and q, we see thatdVj ,x50
;x. Now since j21 will also commute, the same reasoning applied to it, and we h
dVj21,x50 ;x, which impliesdVx21, j50 ;x by ~2.12!. Thus if j commutes with all other
elements of the group, j is not transformed.

In an Abelian group, anyj commutes with all other elements, so the above is true for allj in
the group. ThusAbelian groups are not continuously transformable. One may further state tha
Abelian subgroups do not ‘‘internally’’ transform: the matrix elements of thedV array which
connect one element in an Abelian subgroup with another element in the subgroup are 0.
trivial for a subgroup of order 2.

Clearly if this model does correspond to a physical system, it is not an immediately intu
one.

B. Further simplifications

Now let us look at diagonal elements. In the fundamental equation of transformation~2.9!,
substitute j5 i and t5 i 2. We then get 2dVi ,i5dVi2,i2. If j5 i 2, then we find
dVi ,i12dVi2,i25dVi3,i3, and so on. This givesNdVi ,i5dViN,i N, but since for someN, i

N50, we
must have

dVi ,i50 ; i . ~2.13!

In another look at the fundamental equation, sett5 j . This results in

dVi j , j5dVj ,i21 j . ~2.14!

Alternatively, if we seti j[q, then we have

dVi ,tq21i1dVi21q,i21t5dVq,t . ~2.15!

If t5 i , then
J. Math. Phys., Vol. 38, No. 7, July 1997
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dVi ,iq21i5dVq,i . ~2.16!

Instead of reducing, we can use the inversion derived earlier (dVj ,r52dVj21,r21), and find that
2dVi21qt21,i211dVi21q,i21t5dVq,t . Sincei is arbitrary, substitutej for i

21 to find

dVjq, j t2dVjqt21, j5dVq,t ; j . ~2.17!

This equation is a powerful tool, since it says that for anyq andt one hasN21 combinations of
matrix elements all equal to the single matrix elementdVq,t .

If we collect all the equations governing differential transformations together:

(
i

dVi , j5(
j

dVi , j50, ~2.18!

dV0,t5dVt,050, ~2.19!

dVi ,q52dVq21,i21 ; i ,q, ~2.20!

dVi ,i50, ~2.21!

dVi , j5dVj ,i50, if i j5 j i ; i , ~2.22!

dVjq, j t2dVjqt21, j5dVq,t ; j . ~2.23!

C. Conjugacy classes and eigenvectors

Each elementf in the group is a member of some conjugacy class, which is the setF of all
elements in the group such that ifr is in F, then there exists someg in the group for which
grg215 f . One interesting question~motivated by looking at a few examples! is ‘‘How does the
sum of members of a conjugacy class transform?’’ The answer, as is shown below, is that
sum does remains the same under the differential transformation used so far.

The fundamental equation is

dVi ,t j211dVj ,i21t5dVi j ,t .

Substitute fort the quantityj 2s j21, and sum thes over all members of its particular conjugac
class, which I will callS. The result is

(
sPS

dVi , j 2s j221(
sPS

dVj ,i21 j 2s j215(
sPS

dVi j , j 2s j21.

Since we are summing over all members of a conjugacy class, we can replacej 2s j22 in the first
term withs, i21 j 2s j21 in the second term withi21 js, and j 2s j21 on the right side withjs. This
results in the much simpler

(
sPS

dVi ,s1(
sPS

dVj ,i21 js5(
sPS

dVi j , js .

Now if we set j5 i , we find

2(
sPS

dVi ,s5(
sPS

dVi2,is .
J. Math. Phys., Vol. 38, No. 7, July 1997
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For j5 i 2, we get

(
sPS

dVi ,s1(
sPS

dVi2,is5(
sPS

dVi3,i2s53(
sPS

dVi ,s .

If n.0, we have by induction forj5 i n,

(
sPS

dVin11,i ns5~n11!(
sPS

dVi ,s .

For somem, i m50, so forn5m21,

(
sPS

dVim,im21s5m(
sPS

dVi ,s .

But sincedV0,x50, the left side is 0, and thus

(
sPS

dVi ,s50.

These sums of elements in a conjugacy class are thus eigenvectors of the transformaV,
with constant eigenvalue 1. Such sums of elements not only do not transform underV, but they
commute with any other linear combination of elements of the group.

D. Discrete transforms: Permutations

We can have transformations which are simply permutations of the group elements, as
permutations with a sign. So long as these preserve the group structure they are legitimate
of study here. Some of these permutations may arise naturally from continuous transform
from the identity, but some do not. Those permutations which do not arise from contin
transformations from the identity form a finite group themselves, and each member of this
group-preserving permutations may serve as the basis for a family of continuous transform
over the original group.

Clearly elements of a conjugacy class must either map into each other or into elemen
conjugacy class of the same size. This helps restrict the number of cases to examine.

Let us return to our physical model: preons with no well-defined quantum numbers w
combine to form objects which DO have well-defined quantum numbers. Presumably the co
eigenvectors of the transformation correspond to real particles, or things from which real pa
could be generated. Since most of the constant eigenvectors are sums of elements~‘‘preons’’!
from the same ‘‘conjugacy class,’’ it is not clear that we have a natural way to find anti-par
from preons without the use of ‘‘signed permutation transforms.’’

The model is becoming somewhat unwieldy. A4 is currently under study as a possible ba
the SU~3! color group, and the study of one of the order 16 groups is still incomplete, but if ne
pans out a preon model with more preons than particles is unaesthetic, not to mention du

III. SIMPLE EXAMPLES

Examples are very useful for suggesting or checking hypotheses.
Consider the group of the symmetries of an equilateral triangle, with 6 elements.O3 ~ozone!

is one such naturally occurring triangle.
We may designate the elements of the group by0, 1, 2, 3, 4, and5, where0 is the identity,

a[4, b[1, b2[2, and so on. We may define a product~Cayley! table for this group in the
following way:
J. Math. Phys., Vol. 38, No. 7, July 1997
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( 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 4 3 2 1 0

. ~3.1!

I will dispense with the labels above and to the left, since the group operation with0 easily
identifies which element is which.

It may be shown, via fairly tedious and trivial algebra, that all elements ofdV are zero except
a few which are all simply related to each other. If there are some tiny changesa, b, andg; then

dV5S 0 0 0 0 0 0

0 0 0 a 2b 2a1b

0 0 0 2a b a2b

0 a 2a 0 g 2g

0 2b b 2g 0 g

0 2a1b a2b g 2g 0

D , ~3.2!

dV[Aa1Bb1Cg. ~3.3!

The eigenvectors corresponding to eigenvalue 0 ofdV are

S 1
0
0
0
0
0

D S 0
1
1
0
0
0

D S 0
0
0
1
1
1

D S 0
g

2g
a2b
b2a
a1b

D .

Notice that these eigenvectors commute under the defined field. The first three are sums
elements in the conjugacy classes, and we expect them to commute.

The arraysA, B, andC serve as generators of this space, and their commutation relation

@A,B#522C@ ,# @B,C#52A1B, @A,C#52A22B.

If we set

X[
1

2
~A1B!, Y[

1

)

C, Z[
1

2)
~A2B!,

a852~a1b!, b85)/2g, g852/)~a2b!.

Then we find

@X,Y#5Z, @Y,Z#5X, @X,Z#5Y.

To find V, we useV5edV.
The eigenvalues of the arraydV are given by
J. Math. Phys., Vol. 38, No. 7, July 1997
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05X4~X224~a821b822g82!!. ~3.4!

The eigenvalues of exp(dV) thus have four 18s, and two others which may be real or imag
nary depending ona, b, andg.

There can be transformations which consist of simple permutations of the elements,
permutations with a sign. For this group there are six unsigned permutations, which may o
not be special cases of the above continuous transform. For those which arenot special cases, the
continuous transform may be simply applied to these permutations to get new families of
formations.

The first set of permutations is given by the mapping0→0, 1→1, 2→2, and the following 3
cases: The identity~3→3, 4→4, and5→5!, a left rotation~3→4, 4→5, and5→3!, and a right
rotation ~3→5, 4→3, and 5→4!. These can possibly be derived from transformations from
identity.

The second set of permutations, which are clearly not transformations from the ident
given by mapping0→0, 1→2, and2→1, together with the following 3 cases:~3→3, 4→5, and
5→4!, ~3→4, 4→3, and5→5!, and~3→5, 4→4, and5→3!.

In addition there are permutations possible with a sign. We can consistently map elem3,
4, and5 to 23, 24, and25, respectively, giving a total of 12 basis permutations.

Consider the group of the symmetries of a square. It has 8 elements, and may be defi
the following equations:

x2→0, y4→0, yx→xy3. ~3.5!

The dV resulting also depends on 3 variables,a, b, andg;

dV51
0 0 0 0 0 0 0 0

0 0 0 0 a b 2a 2b

0 0 0 0 0 0 0 0

0 0 0 0 2a 2b a b

0 a 0 2a 0 g 0 2g

0 b 0 2b 2g 0 g 0

0 2a 0 a 0 2g 0 g

0 2b 0 b g 0 2g 0

2 , ~3.6!

dV[X2a1Z2b1Y2g, dV354~a21b22g2!dV. ~3.7!

Notice that

@X,Y#5Z, @Y,Z#5X, @X,Z#5Y,

and this has exactly the same algebra as the ‘‘triangle group.’’
To find V, we useV5edV.
The eigenvalues of thedV array are given by

05X6~X224~a21b22g2!!. ~3.8!

The eigenvalues of exp(dV) have then six 1’s and two complex values. The eigenvec
corresponding to eigenvalue 1 are
J. Math. Phys., Vol. 38, No. 7, July 1997
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S 1
0
0
0
0
0
0
0

D S 0
0
1
0
0
0
0
0

D S 0
1
0
1
0
0
0
0

D S 0
0
0
0
1
0
1
0

D S 0
0
0
0
0
1
0
1

D S 0
g
0

2g
b

2a
2b
a

D .

IV. AN EXAMPLE WITH THE QUATERNION GROUP

Consider the quaternion group. It has 8 elements, and may be defined by the foll
equations:

a4→0, b2→a2, ba→a3b. ~4.1!

We may designate the elements of the group by0, 1, 2, 3, 4, 5, 6, and7, where0 is the
identity, a2[1, a[2, a3[3, b[4, a2b[5, ab[6, anda3b[7. We may define a product~Cay-
ley! table for this group in the following way:

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 1 0 6 7 5 4

3 2 0 1 7 6 4 5

4 5 7 6 1 0 2 3

5 4 6 7 0 1 3 2

6 7 4 5 3 2 1 0

7 6 5 4 2 3 0 1

. ~4.2!

Grinding through the algebra will show that all elements ofdV are zero except a few which
are described by three independent tiny changesa, b, andg.

dV51
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 a 2a b 2b

0 0 0 0 2a a 2b b

0 0 2a a 0 0 g 2g

0 0 a 2a 0 0 2g g

0 0 2b b 2g g 0 0

0 0 b 2b g 2g 0 0

2 . ~4.3!

Call this

dV[aA1bB1gC,

where

AB2BA52C, AC2CA5B, BC2CB52A.
J. Math. Phys., Vol. 38, No. 7, July 1997
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If we let

T1[B, T2[A, T3[C,

we see that

@Ti ,Tj #5e i jkTk ,

which describes the generators for the groups O~3! and SU~2!. At this point it is not obvious which
is generated here. I cannot use real coefficients to get this into Kac–Moody form, though I c
it with complex ones~h52iB, e5 iA1C, and f5 iA2C!.

To generate a transformation one may use the following method:

V5eaA1bB1gC,

aA1bB1gC5S 0 0 0 0

0 0 a b

0 2a 0 g

0 2b 2g 0

D [Q,

Q25S 0 0 0 0

0 2~a21b2! 2bg ag

0 2bg 2~a21g2! 2ab

0 ag 2ab 2~b21g2!

D ,
Q352Q~a21b21g2!.

In the above, every non-zero matrix element is understood to be multiplied bya, wherea is

a5S 1 21

21 1 D ,
V~a,b,g!5I1

Q

r
sin r1

Q2

r 2
~12cos r !, ~4.4!

where

r[Aa21b21g2. ~4.5!

Definee[(12cosr), andd[sin r. In its full glory, the array expands to the following:
J. Math. Phys., Vol. 38, No. 7, July 1997
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1
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 12
a21b2

2r 2
e

a21b2

2r 2
e

a

2r
d2

bg

2r 2
e 2

a

2r
d1

bg

2r 2
e

b

2r
d1

ag

2r 2
e 2

b

2r
d2

ag

2r 2
e

0 0
a21b2

2r 2
e 12

a21b2

2r 2
e 2

a

2r
d1

bg

2r 2
e

a

2r
d2

bg

2r 2
e 2

b

2r
d2

ag

2r 2
e

b

2r
d1

ag

2r 2
e

0 0 2
a

2r
d2

bg

2r 2
e

a

2r
d1

bg

2r 2
e 12

a21g2

2r 2
e

a21g2

2r 2
e

g

2r
d2

ab

2r 2
e 2

g

2r
d1

ab

2r 2
e

0 0
a

2r
d1

bg

2r 2
e 2

a

2r
d2

bg

2r 2
e

a21g2

2r 2
e 12

a21g2

2r 2
e 2

g

2r
d1

ab

2r 2
e

g

2r
d2

ab

2r 2
e

0 0 2
b

2r
d1

ag

2r 2
e

b

2r
d2

ag

2r 2
e 2

g

2r
d2

ab

2r 2
e

g

2r
d1

ab

2r 2
e 12

b21g2

2r 2
e

b21g2

2r 2
e

0 0
b

2r
d2

ag

2r 2
e 2

b

2r
d1

ag

2r 2
e

g

2r
d1

ab

2r 2
e 2

g

2r
d2

ab

2r 2
e

b21g2

2r 2
e 12

b21g2

2r 2
e

2 .

There are 5 eigenvalues of value 1, with constant eigenvectors. They are all sums of the me
of the 5 distinct conjugacy classes. There is one additional eigenvalue of value 1, with a va
eigenvector. The other two eigenvalues arel5eir ,

e0
1

e1
1

e2
1

e3
1

e4
1

e5
1

S 1
0
0
0
0
0
0
0

D S 0
1
0
0
0
0
0
0

D S 0
0
1
1
0
0
0
0

D S 0
0
0
0
1
1
0
0

D S 0
0
0
0
0
0
1
1

D S 0
0
g

2g
2b
b
a

2a

D , ~4.6!

e6
eir

e27
e2 ir

S 0
0

a21b2

2~a21b2!

~bg1 iar !

2~bg1 iar !

~2ag1 ibr !

2~2ag1 ibr !

D S 0
0

a21b2

2~a21b2!

~bg2 iar !

2~bg2 iar !

~2ag2 ibr !

2~2ag2 ibr !

D . ~4.7!

Denote the eigenvectors in the order above byei . The first 5 are sums of members of the 5 distin
conjugacy classes, and commute with all the rest. The only non-commuting pairs
@e5 ,e6#524ire6 , @e5 ,e6#524ire7 , and@e6 ,e7#528ir (a21b2)e5 .

Permutations over the group elements are possible here also. For unsigned permutation
are 3 cases which turn out to be special cases of the above continuous transform:~2→3 and
J. Math. Phys., Vol. 38, No. 7, July 1997
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4→5!, ~2→3 and6→7!, and~4→5 and6→7!. There are two additional cases which arenot cases
of the original transformation from the identity–and thus may serve as bases for famili
transformations themselves. These are~2→4, 4→6, 6→2, with ~3→5, 5→7, 7→3!, and ~2→6,
6→4, 4→2, with ~3→7, 7→5, 5→3!. There are thus 3 families of transformations based
unsigned permutations of the group elements.

In addition we can consistently map2 and3 to 22 and23, provided we do the same with
either the pair4 and5 or 6 and7. Likewise4 and5 can be mapped to their negatives if we do t
same with6 and 7, giving us 4 possible sign mappings: the identity and 3 with 4 eleme
swapping signs. We have 12 families of transformations.

V. CONCLUSIONS

A preon model which represents interactions among preons by group operations show
unexpected continuous symmetries. Unfortunately it is very difficult to visualize non-Ab
physical interactions of point particles. One could use a model which hides this questi
interaction order by postulating an unobserved dimension which curls up, as others have do
superstrings; though this postulate seemsad hochere. If observable particles correspond to t
constant eigenvectors, they behave properly.

These symmetries are interesting in their own right, and merit further study.

APPENDIX A: PHASE; AND SUMS OVER ROWS OR COLUMNS

First let me demonstrate that thefx are identical. ClearlyU must not be singular, or the
resulting transformed group would be smaller than the original.

Define f i5(xUi ,x . Then since

(
r
Ui ,rU j ,r21t5Ui j ,tf i j ,

(
r ,t

Ui ,rU j ,r21t5 f i f j5(
t
Ui j ,tf i j5f i j f i j .

When i50, we getf 0f j5f j f j . If any f k were 0, all would be, and thusU would be singular.
SinceU is non-singular,f jÞ0, so f 05f j ; j , and all thef j are the same non-zerof.

To continue, restate the equation off ’s as f i f j5 f i jf. Then f i25 f i
2/f. This extends to

f i n5 f i
n(1/f)n21. Now we know that for eachi an element in the group there exists someN such

that i N50 ~the identity!, since this is a finite group. Thenf iN5 f 05f5 f i
N(1/f)N21, or

f i
N5fN. Thus

f i5fe2ip ~ni /N!, 0<ni<N.

But notice that theni are discrete, and this is a continuous transformation. The identity is o
ously a member of the set of transformations starting from the identity, and for the identity
f i is 1. If we parameterize starting from the identity transform, then eachni must be 0. Therefore

(
x
Ui ,x5 f i5f ; i .

Let gi5(xUx,i . Then

(
i ,r

Ui ,rU j ,r21t5(
t
Ui j ,tf5(

r
grU j ,r21t5gtf,
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(
s
U j ,sgs215g0f ; j .

Let Gs5$gs21%, a column vector. If1 is defined as a column vector of ones, then we m
write UG5g0f1, which may be solved withG5g0fU

211. Note thatU21 is also a transforma-
tion, and the sum of elements in a row in it is equal to some otherf8, which may be readily seen
to bef* . Thus,G5g0ff* 1, or G5g01. Thusgi5g0 ; i ,

Ng05(
i
gi5(

i ,x
Ux,i5(

x,i
Ux,i5(

x
f x5Nf⇒g05f.
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Linear canonical transformations in quantum mechanics
Andrew J. Bordnera)
Department of Physics, Faculty of Science, Kyoto University, Kyoto 606-01, Japan

~Received 18 October 1996; accepted for publication 3 March 1997!

We find explicit unitary operators that implement linear canonical transformations
of the quantum mechanical operators for a system withN degrees of freedom. We
then relate the operators effecting this transformation to the previous formulation of
quantum canonical transformations in terms of an effective generating function
introduced by Ghandour. ©1997 American Institute of Physics.
@S0022-2488~97!03807-3#

I. INTRODUCTION

Canonical transformations are an important symmetry in the Hamiltonian formulatio
classical mechanics and led to, for instance, the development of Hamilton–Jacobi theory.
gous transformations, which we will call quantum canonical transformations, were consi
early in the development of the theory of quantum mechanics.1 Similar to the canonical transfor
mations of classical Hamiltonian dynamics which preserve the Poisson bracket, quantum c
cal transformations were defined as those transformations of the momentum and position op
which preserve the canonical commutation relations. The transformation of the ope
(q̂1 , . . . ,q̂N ,p̂1 , . . . ,p̂N)→(q̂18 , . . . ,q̂N8 ,p̂18 , . . . ,p̂N8 ) may be implemented by an operatorM̂ as

q̂i85M̂ q̂i M̂
21, ~1!

p̂i85M̂ p̂i M̂
21. ~2!

Transformations of this type were considered more recently in Ref. 2, where it was emph
that they need to be only isometric, i.e., a linear mapping between two different Hilbert s
which preserves the norm, and not necessarily unitary. However, in this paper we will co
only unitary operatorsM̂ .

Linear quantum canonical transformations form a finite dimensional subgroup of all tran
mations in Eq.~1!. These have found many applications recently. Linear canonical transforma
for coherent states were considered in Refs. 3 and 4. Another interesting application is th
eralization of linear canonical transformations to field theories. Transformations of this typ
pear in both proofs of T-duality5 and S-duality;6 however, a rigorous theory of canonical tran
formations in quantum field theory has not yet been developed. In previous papers the qu
canonical transformations were discussed in terms of matrix elements in the position ba
equivalently, in terms of wave functions.7,4We explicitly construct operatorsM̂ which implement
linear canonical transformations. This is advantageous since one may understand how
quantum mechanical transformations appear as a subgroup of all transformations of the type
~1!. More important, one would like to generalize such transformations to quantum field the
In this case, an implementation of quantum canonical transformations in terms of explicit o
tors is desired. This is because expressions for quantum canonical transformations in te
wave functions for quantum mechanics with a finite number of degrees of freedom, when
alized to quantum field theories, give transformations for wave functionals, which are ill-de

a!Electronic mail: bordner@gauge.scphys.kyoto-u.ac.jp
0022-2488/97/38(7)/3427/8/$10.00
3427J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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In Sec. II, we construct explicit operators which implement these linear quantum cano
transformations. In the next section, we relate these results to the formulation of quantum c
cal transformations in terms of an effective generating function as presented in Ref. 7
correspondence between the generating function and operator formulation of linear can
transformations is derived in the Appendix.

II. LINEAR CANONICAL TRANSFORMATIONS IN QUANTUM MECHANICS

We first consider classical Hamiltonian dynamics with a 2N dimensional phase space

hW 5~q1 , . . . ,qN ,p1 , . . . ,pN!T. ~3!

Canonical transformations in classical mechanics may be defined as those transformation
phase space variableshW→hW 8 that leave invariant the fundamental Poisson brackets

$h i ,h j%5Ji j , ~4!

with

J[S 0 d

2d 0 D , ~5!

andd theN3N unit operator. This implies that the Jacobian matrix for the canonical transfo
tion T i j[ ]h i8/]h j satisfiesTTJT5J or T P Sp(2N,R). Also with the Poisson bracket of two
functions of phase space variables defined as

$ f ,g%5 (
i , j51

N
] f

]h i
Ji j

]g

]h j
, ~6!

then Eq.~4! implies that$ f (hW ),g(hW )%5$ f (h8W ),g(h8W )%.
For the quantum mechanical description of a physical system the configuration variable

the momentum variables are replaced by Hermitian operators on a Hilbert space d

$q̂i ,i51, . . . ,N% and $ p̂i ,i51, . . . ,N% respectively. We will assume that operators represen
observables, such as the Hamiltonian, may be expanded as a sum of finite products of posit
momentum operators. In Ref. 2 general quantum canonical transformations were invest
These transformations in general required formal inverses of operators, e.g.,q̂21, which may be
represented by pseudodifferential operators. However, we will consider only non-negative in
powers of operators.

There are two sources of ambiguity in the definition of a quantum mechanical Hamilto
operator from its classical counterpart. First, there is an ordering ambiguity for terms conta
non-commuting operators. Second, there is an ambiguity in which choice of phase space va
to promote to quantum operators. A new set of phase space variables and Hamiltonian re
the original variables and Hamiltonian by a canonical transformation are equally valid descri
of the classical system but lead to inequivalent quantum mechanical theories in general. W
find transformations of the quantum operators which result in equivalent theories.

We first consider the set of normal-ordered products of a finite number of position
momentum operators such that the momentum operators are to the right of all position ope
The unit operator 1ˆ is also included in this set. It is often convenient to set\51 in quantum
mechanical calculations and then restore these factors in the final result based on dime
analysis. However, we retain all factors of\ in this discussion since we will initially consider th
J. Math. Phys., Vol. 38, No. 7, July 1997
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quantum operator algebra independent of any particular physical system. We also conside
tical products of operators with different powers of\ as not equal to each other. With this in min
we denote these operators as

Oj 1 ,b1 ; . . . ;j n ,bn

i1 ,a1 ; . . . ;im ,am[
ı

\
q̂i1

a1•••q̂im
amp̂j 1

b1••• p̂i n
bn. ~7!

The commutators of these operators for the case of one degree of freedom are

@Ok
j ,On

m#5 (
l50

min~n, j ! S nl D j !

~ j2 l !!
ı l\ l22Ok1n2 l

j1m2 l2 (
l50

min~k,m! S kl D m!

~m2 l !!
ı l\ l22Ok1n2 l

j1m2 l . ~8!

As expected, these reduce to the classical result

$xjpk,xmpn%5~ jn2km!xj1m21pk1n21 ~9!

in the limit h→0. These are the commutation relations for a quantumW` algebra and its classica
limit, respectively.8

We now return to the general case ofN degrees of freedom. One may find the commutat
in this case, although the expression is quite complicated. Instead we examine the degree
operators appearing in the commutator. We define the degree of the operators of Eq.~7! by the
sum of the powers of momentum and position operators, i.e., deg(O)5( i51

m a i1( i51
n b i . The

highest degree operator appearing in the commutator of two normal-ordered operators o
d1 andd2 is d11d222. Lower degree operators appear in the commutator as increasing p
of \. For the case of the commutator of two operators of degree two, only operators of degre
and the degree zero operator 1ˆ appear. Therefore the degree two operators are a representat
a finite dimensional Lie subalgebra of the total Lie algebra represented by the commuta
operators in Eq.~7!.

If we consider real coefficients multiplying the operatorsO, then this Lie subalgebra of degre
two operators issp(2N,R). For concreteness we consider a particular representatio
sp(2N,R) in terms of 2N32N matrices and give the corresponding degree two operators in
representation of the Lie product by the commutator. We choose the basis9

Ui j5SX i j 0

0 2X j1N,i1N
D ,

V i j5S 0 X i , j1N1X j ,i1N

0 0 D , ~10!

W i j5S 0 0

X i1N, j1X j1N,i 0D ,
with the matrix elements ofX i j as (X i j )mn5d imd jn .

The representation of the corresponding elements in terms of degree two operators is

R~Ui j !5
ı

\
q̂i p̂ j1d i j 1̂

5
ı

2\
~ q̂i p̂ j1 p̂ j q̂i !,
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R~V i j !5
2ı

\
q̂i q̂ j , R~W i j !5

2ı

\
p̂i p̂ j . ~11!

This choice of representation leads to the commutation relations

@R~Ui j !,R~Ukl!#5d i j R~Ui l !2d i l R~Uk j!,

@R~Ui j !,R~Vkl!#5d jkR~V i l !1d j l R~V ik!,
~12!

@R~Ui j !,R~Wkl!#5d ikR~W j l !1d i l R~W jk!,

@R~V i j !,R~Wkl!#5d ikR~Uj l !1d i l R~Ujk!1d jkR~Ui l !1d j l R~Uik!.

We now consider a Hilbert space upon which these operators act.q̂i and p̂i are Hermitian opera-
tors and hence the operators in Eq.~11! are anti-Hermitian. Therefore the operators

M̂ ~a,b,g![exp~a i j R~Ui j !1b i j R~V i j !1g i j R~W i j !!, ~13!

with summation over indices implied, form a unitary representation ofSp(2N,R). In general,
representations of groups in terms of unitary operators in quantum mechanics are pro
representations, i.e., forM̂ (g1) andM̂ (g2) the operators corresponding tog1 andg2, respectively,

M̂ ~g1!M̂ ~g2!5v~g1 ,g2!M̂ ~g1g2! ~14!

with uv(g1 ,g2)u51.10 Nontrivial projective representations of Lie groups lead to terms prop
tional to the unit operator 1ˆ in the commutator equations for the Lie algebra operators. Such t
are absent in Eq.~12! and hence the operators in Eq.~13! form a vector representation o
Sp(2N,R), i.e.,v(g1 ,g2)51 in Eq. 14. This is a nontrivial result since the existence of suc
unitary vector representation of a Lie group is only guaranteed for a finite dimensional rep
tation of a simply connected group.10 In fact the unitary representation ofSp(2N,R) presented in
Ref. 4 is inequivalent to a vector representation.

We next define a vector of operators similar to the vector of phase space coordinates in~3!
as

ĥW 5~ q̂1 , . . . ,q̂N ,p̂1 , . . . ,p̂N!T ~15!

and investigate the adjoint action of the operators defined in Eq.~13! on ĥ. First, the canonical
commutation relations give

@R~Ui j !,ĥk#5~Ui j !klh l ~16!

and likewise for operatorsR(V i j ) and R(W i j ). The adjoint action ofM̂ , defined in Eq.~13!
transforms the operatorsĥ into ĥ8 as

ĥ85M̂ ~a,b,g!ĥM̂ ~a,b,g!21. ~17!

The identities

eABe2A5B1@A,B#1
1

2!
@A,@A,B##1

1

3!
@A,@A,@A,B###1 . . . ~18!

and
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~19!

imply that ĥ8 in Eq. ~17! is

ĥ85exp~a i jUi j1b i jV i j1g i jW i j !ĥ. ~20!

III. RELATION TO THE FORMULATION IN TERMS OF AN EFFECTIVE GENERATING
FUNCTION

We next compare the implementation of linear quantum canonical transformations deve
in the last section to the formulation of Ref. 7. We first review this approach to quantum cano
transformations. Consider the case ofN degrees of freedom where the transformation is fro
phase space variables (qW ,pW ) to (QW ,PW ). The eigenfunctions of the Hamiltonianh(qW ,pW ) with energy
Ek are denoted byfk(qW ) and those of the transformed HamiltonianH(QW ,PW ) with the same energy
are denoted byfk(QW ). The quantum canonical transformation is specified by a funct
F(qW ,QW ) where the transformation between the wave functions is

fk~qW !5N~k!E dNQ expS ı\ F~qW ,QW ! Dfk~QW !. ~21!

Following Ref. 7 we will refer toF(qW ,QW ) as the effective generating function.F(qW ,QW ) must
satisfy

hS qW ,2ı\
]W

]q
D expS ı\ F~qW ,QW ! D5HSQW ,2ı\

]W

]Q
D expS ı\ F~qW ,QW ! D . ~22!

The energy dependent factorN(k) in Eq. ~21! is included to allow for non-unitary transformations
It is defined so as to maintain the normalization of the wave functions

E dNqfk* ~qW !fk~qW !51 ~23!

and likewise forck(QW ). The linear canonical transformations result from an effective genera
functionF(qW ,QW ), which is a quadratic form.

We next consider the relation between the formulation of linear canonical transformatio
terms of wave functions and the implementation by unitary operators. We define two bases f
Hilbert space, one in which the original position operatorqŴ is diagonal and one in which the new
position operatorqŴ 8 is diagonal

q^rWuq̂i usW&q5r id~rW2sW !, ~24!

q8^r
Wuq̂i8usW&q85r id~rW2sW !. ~25!

The eigenfunctionufk& of h(qŴ ,pŴ ) is h(qŴ ,pŴ )ufk&5Ekufk& The wave functions are then

fk~qW ![^fkuqW &q , ~26!

ck~QW ![^ckuQW &q8. ~27!
J. Math. Phys., Vol. 38, No. 7, July 1997
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The transformation between the original operators (qŴ ,pŴ ) and the new operators (qŴ 8,pŴ 8) is imple-
mented by a unitary operatorM̂ according to Eq.~17!. The position eigenstates defined in Eq.~24!
are then related byurW&q85M̂ urW&q and Eq.~21! may be expressed as

q^qW uc&5E dNQ q^qW uM̂ uQW &q q8^Q
W uc&, ~28!

i.e.,

expS ı\ F~qW ,QW ! D5q^qW uM̂ uQW &q . ~29!

In fact, the preceding equation relates the implementation of a general, not necessarily
quantum canonical transformation using Eq.~21! with effective generating functionF(qW ,QW ) and
its implementation using Eq.~1! with operatorM̂ .

The solution to Eq.~29! for a linear quantum canonical transformation is described in
Appendix. Given an effective generating functionF(qW ,QW ) parametrized by Eq.~A3!, the corre-
sponding operatorM̂ implementing this transformation is given by Eq.~13! with ~a,b,g! the
solution to the equation

exp~a i jUi j1b i jV i j1g i jW i j !5S 2FA
T~FB

21!T 2FB1FA~FB
21!TFC

~FB
21!T 2~FB

21!TFC
D , ~30!

with U, V, W defined by Eq.~10!.

IV. DISCUSSION

We have shown that one may implement linear quantum canonical transformations
unitary operators constructed from quadratic products of position and momentum operators
quadratic operators form a closed set under the commutation algebra. We also find the r
between the operator effecting a particular linear quantum canonical transformation an
equivalent effective generating functionF(qW ,QW ). The transformation matrix for the position an
momentum operators shown in Eq.~A13! is equal to the transformation matrix for classic
operators resulting from the same generating function. This may be understood by the fact t
commutator algebra for the degree two operators in Eq.~11! is the same as the correspondin
classical algebra in terms of Poisson brackets, or equivalently, the commutator algebr
\→0. This is not true in general for the higher degree operators where terms with higher p
of \ appear in the commutator but not in the Poisson bracket algebra.

Finally, we would like to comment on possible applications of linear canonical transfo
tions in field theory. Such transformations are useful in quantum mechanics primarily wh
Hamiltonian operator is transformed into a new operator whose eigenfunctions are known
ever other applications are possible in field theory. One important class of linear quantum c
cal transformations in field theory are global and local symmetry transformations. Thes
generated infinitesimally by a quadratic functional of field operators and their correspo
momentum operators and hence correspond to the operators of typeR(Ui j ), defined in Eq.~11!, in
quantum mechanics. The symmetry group is expressed as a subgroup ofO(N), which is repre-
sented by the operatorsR(Ui j ). These operators commute with the Hamiltonian and thus lea
as well as the physical states unchanged. One may also, as in the case of Abelian S-Dual
quantum canonical transformations that transform the Hamiltonian operator into one of the
form but with different couplings. Quantum canonical transformations thus may allow on
prove the equivalence of two apparently different quantum field theories.
J. Math. Phys., Vol. 38, No. 7, July 1997
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APPENDIX: EFFECTIVE GENERATING FUNCTION FOR LINEAR CANONICAL
TRANSFORMATION

We begin with a brief description of linear canonical transformations in classical mechan
terms of a generating functionF(qW ,QW ). In this case the transformation from canonical variab
(qW ,pW ) to (QW ,PW ) is

pi5
]F~qW ,QW !

]qi
, ~A1!

Pi52
]F~qW ,QW !

]Qi
. ~A2!

Linear canonical transformations result from a generating function which is the bilinear for

F~qW ,QW !5
1

2~qW QW ! S FA FB
FB

T FC
D S qW

QW
D ~A3!

with FA andFC symmetricN3N matrices andFB a nonsingularN3N matrix. The linear canoni-
cal transformation is then

SQW
PW
D 5S 2FB

21FA FB
21

2FB
T1FCFB

21FA 2FCFB
21D S qW

pW
D . ~A4!

Canonical transformations with the matrixFB
21 singular may be generated by a series of t

transformations like Eq.~A3! both of which have nonsingularFB
21.4 It also may be shown tha

the transformation matrix in Eq.~A4! is a general parametrization of anSp(2N,R) matrix in the
case where the sub-matrixFB

21 is nonsingular. Therefore any linear canonical transformation m
be obtained by at most two transformations using the generating function in Eq.~A3!.

We rewrite Eq.~17! as

S q̂8

p̂8
D 5M̂ S q̂

p̂
D M̂215S TA TB

TC TD
D S q̂

p̂
D , ~A5!

which implies

M̂21S q̂
p̂
D M̂5SUA UB

UC UD
D S q̂

p̂
D . ~A6!

TA , . . . ,TD label the N3N blocks of the matrixT and likewise for the matrixU with
U5T21. We next examine the matrix elementq^qW uM̂ uQW &q with the momentum operatorp̂i in-
serted to the left and right ofM̂ . If we do not permutep̂i with M̂ we obtain

q^qW u p̂i M̂ uQW &q52ı\
]

]qi
q^qW uM̂ uQW &q , ~A7!
J. Math. Phys., Vol. 38, No. 7, July 1997
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q^qW uM̂ p̂i uQW &q5ı\
]

]Qi
q^qW uM̂ uQW &q . ~A8!

We may also use relations~A5! and ~A6! to permutep̂i with M̂ to obtain

q^qW u p̂i M̂ uQW &q5q^qW uM̂ @~UB! j i q̂ j1~UD! j i p̂ j #uQW &q ~A9!

5F ~UB! j iQj1~UD! j i S ı\ ]

]Qi
D G

q

^qW uM̂ uQW &q ~A10!

and

q^qW uM̂ p̂i uQW &q5q^qW u@~TB! j i q̂ j1~TD! j i p̂ j #M̂ uQW &q ~A11!

5F ~TB! j i qj1~TD! j i S 2ı\
]

]qi
D G

q

^qW uM̂ uQW &q . ~A12!

Combining Eqs.~A7! and ~A8! with Eqs. ~A9! and ~A11! gives a first-order linear differentia
equation for the matrix elementq^qW uM̂ uQW &q with boundary valueq^0W uM̂ u0W &q51. The solution to
this equation may be parametrized by Eq.~29! with F(qW ,QW ) the classical generating function fo
the linear canonical transformation of Eq.~A3!. We then find that the operator transformati
matrix T in Eq. ~A5! may be expressed in terms of the matrixF appearing in the effective
generating function of Eq.~A3! as

T5S 2FB
21FA FB

21

2FB
T1FCFB

21FA 2FCFB
21D . ~A13!

This is just the transformation matrix for a linear canonical transformation in classical mech
as shown in Eq.~A4!.
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Algebraic proof of a sum rule occurring
in Stark broadening of hydrogen lines

Roberto Casini
High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, Colorado 80307-3000

~Received 3 February 1997; accepted for publication 20 February 1997!

We present the algebraic proof of a sum rule that is relevant in the theory of Stark
broadening of hydrogen and hydrogenic lines. This is accomplished by applying
Gauss’ recursion formulas for the hypergeometric function to the analytical expres-
sion of the dipole matrix elements involved in the summation. ©1997 American
Institute of Physics.@S0022-2488~97!01607-1#

I. INTRODUCTION

In the investigation of Stark broadening of hydrogen and hydrogenic lines, it is found tha
linewidth is a function of a coefficient that turns out to be a simple rational function of
principal quantum numbers of the line.1–6 In the literature, the same coefficient has been indica
with different notations. Casini and Landi Degl’Innocenti2 gave the expression of the linewidth i
terms of the symbolA0(n,m), n andm being the two principal quantum numbers of the li
transition. Stehle´4 used instead the symbolknm . In the present paper we adhere to the notation
Casini and Landi Degl’Innocenti.2

Although the coefficientA0(n,m) is a very simple function ofn andm, expressed by@Ref. 3,
Eq. ~4!#

A0~n,m!5 3
4 @~n22m2!22~n21m2!#, ~1!

it is originally given as a rather complicated sum of products of dipole matrix elements@cf. Eq.~2!
in this paper; also Ref. 4, Eq.~21!#, whose complexity totally masks the simplicity of the corr
sponding closed algebraic form, Eq.~1!. Such an algebraic form was first obtained by trial, a
then formally demonstrated, by the author.3 However, the proof of that result was not publish
because of its length. Stehle´4 gave the same expression, besides a line-independent multiplic
factor, derived instead through a polynomial interpolation of the results of numerical calcula
of the original sum for many different values ofn andm.

Since its first appearance, Eq.~1! proved to be of rather general interest in the investigation
electric field interaction with hydrogen and hydrogen-like atoms. In fact, the coeffic
A0(n,m) ~or knm! not only is involved in the Stark broadening of hydrogen lines from station
directed electric fields,2 but it actually plays an important role in the description of press
broadening~by charged perturbers! of hydrogen and hydrogenic lines.4,6 For this reason, we have
decided to present the algebraic proof of Eq.~1! in its entirety.

We must note that Stehle´ et al.1 had already demonstrated Eq.~1! in the particular case o
Lyman and Balmer series of hydrogen~n51,2; m.n!. That result can be accomplished b
explicitly considering the algebraic expressions of the dipole matrix elements in terms of the
level of the series,m, which are available in the literature@see Ref. 7, Eqs.~63.4!#. This approach,
instead, cannot be followed in the most general case when the lower level of the transitionn, is
also arbitrary. Yet, we still can rely on the analytical expression of the dipole matrix elem
provided by Gordon’s well-known formula.7 As briefly sketched in Ref. 3, we then have to u
Gauss’ recursion formulas for the hypergeometric function,8 in order to successfully arrive at th
result expressed by Eq.~1!. The main difficulty is found to be a suitable choice of Gau
recursion formulas, which can lead to the result in the smallest number of steps possible.
0022-2488/97/38(7)/3435/11/$10.00
3435J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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We now come to the demonstration of Eq.~1!.

II. PROOF

Let us consider the expression of the coefficientsAK(n,m), introduced by Casini and Land
Degl’Innocenti@cf. Ref. 2, Eq.~14!#,

AK~n,m![N a0
22(

l l 8
P l l 8

2 ^nlur uml8&S l 1 l 8

0 0 0D H (
l 9 l-

P l 9 l-
2 ^ml8ur unl9&^nl9ur unl-&^nl-ur unl&

3S l 8 1 l 9

0 0 0D S l 9 1 l-

0 0 0 D S l- 1 l

0 0 0D H l l 9 K

1 1 l 8J H l l 9 K

1 1 l-J
1(

l 9 l-
P l 9 l-

2 ^ml8ur uml-&^ml-ur uml9&^ml9ur unl&

3S l 8 1 l-

0 0 0 D S l- 1 l 9

0 0 0D S l 9 1 l

0 0 0D H l 8 l 9 K

1 1 l J H l 8 l 9 K

1 1 l-J
22(

l 9 l-
P l 9 l-

2 ^ml8ur uml-&^ml-ur unl9&^nl9ur unl&

3S l 8 1 l-

0 0 0 D S l- 1 l 9

0 0 0D S l 9 1 l

0 0 0D H 1 1 K

l l 9 1

l 8 l- 1
J J , ~2!

wherea0 is the radius of Bohr’s first orbit, and

N 5H (
l l 8

P l l 8
2 ^nlur uml8&2S l 1 l 8

0 0 0D
2J 21

. ~3!

In Eq. ~2! and ~3!, we used the notation

Pab•••5@~2a11!~2b11!•••#1/2.

The summations are over all possible values of the azimuthal quantum numbers, compatib
the principal quantum numbersn andm.

The expression forA0(n,m) is simply recovered from Eq.~2! by letting K50. ~Another
relevant coefficient, related to line polarization induced by the Stark effect, is obtaine
K52; see Ref. 2.! In this case, Eq.~2! can be greatly simplified, due to the formulas~e.g., Ref. 9,
Appendices II and III!

H a b 0

d e fJ 5~21!a1e1 fdabddePae
21,

H a b 0

d e f

g h i
J 5~21!a1e1 f1gdabd f iPa f

21H d e f

h g aJ .
If we account for the selection rules on thel ’s, implied by the 3j symbols in Eq.~2!, the latter can
then be rewritten as
J. Math. Phys., Vol. 38, No. 7, July 1997
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A0~n,m!5N (
l l 8

P l l 8
2 ^nlur uml8&2S l 1 l 8

0 0 0D
2

f ~nl;ml8!, ~4!

where we introduced, after a convenient reordering of the summation indexes, the dimens
quantity

f ~nl;ml8!5
1

3
a0

22(
l 9

P l 9
2 ^nlur unl9&2S l 1 l 9

0 0 0D
2

1
1

3
a0

22(
l 9

P l 9
2 ^ml8ur uml9&2S l 8 1 l 9

0 0 0D
2

2
2

3
a0

22(
l 9 l-

P l 9 l-
2 ^nlur uml8&21^nlur unl9&^nl9ur uml-&^ml-ur uml8&S

3
l 1 l 8

0 0 0D
21S l 1 l 9

0 0 0D S l 9 1 l-

0 0 0 D S l- 1 l 8

0 0 0D H l l 9 1

l- l 8 1J
[ f 1~nl !1 f 2~ml8!1 f 3~nl;ml8!. ~5!

The first two summations in Eq.~5! are easily evaluated, since they do not involve dip
matrix elements between different principal quantum numbers. Let us consider, for instanc
first summation,f 1(nl). First of all, we observe that, forl 85 l61, we have@e.g., Ref. 9, Appendix
I, and Ref. 7, Eq.~63.5!, respectively#

S l 1 l 8

0 0 0D 5~21!lF l

~2l11!~2l21!G
1/2

, ~6a!

^nlur unl8&5 3
2 a0n~n22l2!1/2, ~6b!

wherel5max(l,l8). Then we distinguish among the three cases,

l50⇒ l 951, l5n21⇒l95n22, 0,l,n21⇒l95l61.

Use of Eqs.~6! yields, after some simple algebra,

f 1~nl !5H 3
4 n

2~n221!, for l50,

3
4 n

2~n21!, for l5n51,

3
4 n

2@n2212 l ~ l11!#, for 0, l,n21.

We then see that the last of the above equations also includes the other two as limit ca
completely analogous result manifestly holds for the second summation in Eq.~5! as well. So we
can write,in general,

f 1~nl !5 3
4 n

2@n2212 l ~ l11!#, ~7a!

f 2~ml8!5 3
4 m

2@m2212 l 8~ l 811!#. ~7b!

In evaluating the third summation in Eq.~5!, we also must distinguish among different cas
according to the values ofl andl 8, which limit the possible ranges ofl 9 andl- in the summation.
Here we only consider the evaluation off 3(nl;ml8) in the general case, when all possible valu
l 95 l61 andl-5 l 861 are taken into account. As in the derivation of Eqs.~7!, it might be shown
that any possible limit case is also accounted for.
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From the selection rules implied by the 3j symbols, the possible pair (l 9,l-) of summation
indexes are determined according to the following scheme:

~ l 9,l-![~ l21,l 821!⇒ l 85 l61, ~ l 9,l-![~ l11,l 811!⇒ l 85 l61,

~ l 9,l-![~ l21,l 811!⇒ l 85 l21, ~ l 9,l-![~ l11,l 821!⇒ l 85 l11,

where the ‘‘implication’’ sign, ‘‘⇒’’, means that for any such choice of the index pair (l 9,l-),
those corresponding values ofl 8 are possible. We then see that, in general, the sum of
following terms must be evaluated:

T1~ l ,l 85 l61!5P l21,l 821
2 ^nlur uml8&21^nlur un,l21&^n,l21ur um,l 821&^m,l 821ur uml8&

3S l 1 l 8

0 0 0D
21S l 1 l21

0 0 0 D S l21 1 l 821

0 0 0 D S l 821 1 l 8

0 0 0D
3H l l21 1

l 821 l 8 1J ,
T2~ l ,l 85 l61!5P l11,l 811

2 ^nlur uml8&21^nlur un,l11&^n,l11ur um,l 811&^m,l 811ur uml8&

3S l 1 l 8

0 0 0D
21S l 1 l11

0 0 0 D S l11 1 l 811

0 0 0 D S l 811 1 l 8

0 0 0D
3H l l11 1

l 811 l 8 1J ,
T3~ l ,l 85 l21!5P l21,l 811

2 ^nlur uml8&21^nlur un,l21&^n,l21ur um,l 811&^m,l 811ur uml8&

3S l 1 l 8

0 0 0D
21S l 1 l21

0 0 0 D S l21 1 l 811

0 0 0 D S l 811 1 l 8

0 0 0D
3H l l21 1

l 811 l 8 1J ,
T4~ l ,l 85 l11!5P l11,l 821

2 ^nlur uml8&21^nlur un,l11&^n,l11ur um,l 821&^m,l 821ur uml8&

3S l 1 l 8

0 0 0D
21S l 1 l11

0 0 0 D S l11 1 l 821

0 0 0 D S l 821 1 l 8

0 0 0D
3H l l11 1

l 821 l 8 1J .
We note that only of these terms are involved for either choice ofl 85 l21 or l 85 l11. We also
note that the 3j symbol at the denominator always cancels with one of the 3j symbols at the
numerator, while the two remaining 3j symbols are equal.

We will work out explicitly only the casel 85 l21, so we can limit ourselves to considerin
only the termsT1 , T2 , and T3 . @The procedure to follow for evaluatingf 3(nl;ml8) when
l 85 l11 would in fact be completely analogous, and it would lead to exactly the same res#

Use of Eqs.~6! yields, after some algebraic manipulation,
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T1~ l ,l21!5 9
4 a0

2^nlur um,l21&21^n,l21ur um,l22&n~n22 l 2!1/2m@m22~ l21!2#1/2~ l21!

3H l l21 1

l22 l21 1J ,
T2~ l ,l21!5 9

4 a0
2^nlur um,l21&21^n,l11ur uml&n@n22~ l11!2#1/2m~m22 l 2!1/2~ l11!

3H l l11 1

l l21 1J ,
T3~ l ,l21!5 9

4 a0
2^nlur um,l21&21^n,l21ur uml&n~n22 l 2!1/2m~m22 l 2!1/2l H l l21 1

l l21 1J .
Evaluation of the 6j symbols in the above equations yields~e.g., Ref. 9, Table 4!

H l l21 1

l22 l21 1J 5~2l21!21, H l l11 1

l l21 1J 5~2l11!21,

H l l21 1

l l21 1J 5@ l ~2l21!~2l11!#21.

Addition of the three termsT1 , T2 , andT3 , finally gives

f 3~nl;m,l21!52
3

2
nm^nlur um,l21&21H ^n,l21ur um,l22&

l21

2l21
$~n22 l 2!@m22~ l21!2#%1/2

1^n,l11ur uml&
l11

2l11
$@n22~ l11!2#~m22 l 2!%1/2

1^n,l21ur uml&
@~n22 l 2!~m22 l 2!#1/2

~2l21!~2l11! J . ~8!

No further simple manipulation can be made at this point to simplify the above equation
then must explicitly use the analytical expression of the dipole matrix elements, which is giv
Gordon’s formula@e.g., Ref. 7, Eq.~63.2!#,

^nlur um,l11&5
~21!m2 l21

4~2l11!! S n2m

n1mD n1m

~2x! l12F ~n1 l !! ~m1 l11!!

~n2 l21!! ~m2 l22!! G
1/2

3HF~2n1 l11,2m1 l12;2l12;x!

2S n2m

n1mD 2F~2n1 l11,2m1 l ;2l12;x!J ,
F(a,b;g;x) being the hypergeometric function, and having putx524nm/(n2m)2.

Using the symmetry property of the hypergeometric function with respect to exchange
first two arguments,10 we then see that the different dipole matrix elements involved in Eq.~8! can
be written, with shorthand notation, as
J. Math. Phys., Vol. 38, No. 7, July 1997
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^nlur um,l21&5K0~n,m,l !FF~2n1 l11,2m1 l ;2l ;x!2
1

12x
F~2n1 l21,2m1 l ;2l ;x!G

[K0 DF0 ,

^n,l21ur um,l22&

5K1~n,m,l !FF~2n1 l ,2m1 l21;2l22;x!2
1

12x
F~2n1 l22,2m1 l21;2l22;x!G

[K1 DF1 ,

^n,l11ur uml&

5K2~n,m,l !FF~2n1 l12,2m1 l11;2l12;x!2
1

12x
F~2n1 l ,2m1 l11;2l12;x!G

[K2 DF2 ,

^n,l21ur uml&5K3~n,m,l !FF~2n1 l ,2m1 l11;2l ;x!2
1

12x
F~2n1 l ,2m1 l21;2l ;x!G

[K3 DF3 ,

with a proper choice of the coefficientsKi[Ki(n,m,l ). Equation~8! can then be rewritten in the
form

f 3~nl;m,l21!52
3

2
nm~DF0!

21HK1

K0
C1 DF11

K2

K0
C2 DF21

K3

K0
C3 DF3J , ~9!

where

K1

K0
5

~2l21!~2l22!

x
$~n22 l 2!@m22~ l21!2#%21/2,

K2

K0
5

x

2l ~2l11!
$@n22~ l11!2#~m22 l 2!%1/2,

K3

K0
5Sm22 l 2

n22 l 2 D
1/2

,

and

C15
l21

2l21
$~n22 l 2!@m22~ l21!2#%1/2,

C25
l11

2l11
$@n22~ l11!2#~m22 l 2!%1/2,

C35
@~n22 l 2!~m22 l 2!#1/2

~2l21!~2l11!
.
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Introducing the quantitiesQi5(Ki /K0)Ci , i51,2,3, Eq.~9! then becomes

f 3~nl;m,l21!52
3

2
nm~DF0!

21(
i51

3

Qi DFi , ~98!

with

Q15
2~ l21!2

x
,

Q25
x~ l11!

2l ~2l11!2
@n22~ l11!2#~m22 l 2!,

Q35
m22 l 2

~2l21!~2l11!
.

Our aim is now to recover a factorDF0 from the quantitiesDFi , i51,2,3, and then eliminate
it from the denominator of Eq.~9! or Eq. ~98!. To this purpose, it proves useful to simplify th
notation by introducing the coefficients

a52m1 l , b52n1 l , g52l .

We then find, using again the symmetry property ofF(a,b;g;x),

DF05F~a,b11;g;x!2
1

12x
F~a,b21;g;x!, ~10a!

DF15F~a21,b;g22;x!2
1

12x
F~a21,b22;g22;x!, ~10b!

DF25F~a11,b12;g12;x!2
1

12x
F~a11,b;g12;x!, ~10c!

DF35F~a11,b;g;x!2
1

12x
F~a21,b;g;x!, ~10d!

and

Q15
~g22!2

2x
,

Q25
x~g12!

2g~g11!2
a~g2a!~b11!~g2b11!,

Q352
a~g2a!

~g21!~g11!
.

To solve our problem, we need Gauss’ recursion formulas for the hypergeometric func8

The task is that of transforming all of the hypergeometric functions in Eqs.~10b!–~10d! to the
J. Math. Phys., Vol. 38, No. 7, July 1997
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form F(a,b61;g;x), and then try to recover a factorDF0 common to all of theDFi ,
i51,2,3. The needed formulas are listed in the Appendix. In the following, for convenience
put

F0[F~a,b;g;x!, F6[F~a,b61;g;x!.

Transformation ofDF1—The first hypergeometric function inDF1 is transformed by application
of Eqs. ~A7! and ~A8! in that order. The second hypergeometric function is transformed
application of Eqs.~A6! and ~A8! in that order. We find

F~a21,b;g22;x!5
g2b21

g21
F01

b

g21 S 12
g2a21

g22
xDF1,

F~a21,b22;g22;x!5
b21

g21
~12x!F01

g2b

g21 S 12
a21

g22
xDF2,

so that

DF15
1

g21 F ~g22b!F01bF12
g2b

12x
F2G2

b~g2a21!

~g21!~g22!
xF11

~g2b!~a21!

~g21!~g22!

x

12x
F2.

Use of Eq.~A1! then yields

DF15
a1b2g

g21

x

12x
F02

b~g2a21!

~g21!~g22!
xF11

~g2b!~a21!

~g21!~g22!

x

12x
F2. ~11!

Transformation ofDF2—The first hypergeometric function inDF2 is transformed by application
of Eqs. ~A78! and ~A4! in that order. The second hypergeometric function is transformed
application of Eqs.~A2! and ~A5! in that order. We find

F~a11,b12;g12;x!5
g~g11!

~g2a!~b11!x F S g

ax
21DF12

g

ax
F0G ,

F~a11,b;g12;x!5
g~g11!

a~g2b11!x H F g

~g2a!x
21GF22~12x!

g

~g2a!x
F0J ,

from which we obtain, using Eq.~A1!,

DF25
g~g11!

a~g2a!~b11!~g2b11!x Fg~g11!

x
F12

g~g11!

~12x!x
F22a~g2b11!F1

1
~g2a!~b11!

12x
F22

g~a1b2g!

12x
F0G . ~12!

Transformation ofDF3—Equations~A9! and ~A10! give directly

F~a11,b;g;x!5
b

a
F11

a2b

a
F0,

F~a21,b;g;x!5
g2b

g2a
F22

a2b

g2a
~12x!F0,

so that
J. Math. Phys., Vol. 38, No. 7, July 1997
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DF35
b

a
F12

g2b

~g2a!~12x!
F21

g~a2b!

a~g2a!
F0. ~13!

Substitution of Eqs.~11!–~13! into the summation of Eq.~98! gives, after some tediou
algebra,

(
i51

3

Qi DFi5
g~g12!

2x
DF01

a1b2g

12x S g

g221
22D F02

g~a2b!

g221
F0

2
1

2
@g~a1b!12~a2b!22ab#F12

gb

g221
F1

1
1

2

g~a1b!22~a2b!22ab

12x
F21

g~g2b!

~g221!~12x!
F2. ~14!

Use of Eq.~A1! then shows that

g

g221

a1b2g2~a2b!~12x!

12x
F02

g

g221 S bF12
g2b

12x
F2D50,

so Eq.~14! reduces to

(
i51

3

Qi DFi5
1

2 Fg~g12!

x
2g~a1b!12ab GDF022

a1b2g

12x
F02~a2b!S F11

1

12x
F2D .

Finally, using again Eq.~A1! to eliminateF0, and considering that

x5
2g~a1b!2g224ab

~a2b!2
,

after some algebra we obtain

(
i51

3

Qi DFi5
1

2 Fg~g12!

x
2g~a1b!12ab2

2g~a1b2g!

2b2g1~a2b!xGDF0 .

If we now restore the values ofa, b, g, andx in terms ofn, m, and l , we find, after some
algebraic manipulation,

(
i51

3

Qi DFi5F2
l ~ l11!~n2m!2

2nm
1 l ~m1n22l !1~n2 l !~m2 l !2

l ~n2m!

n GDF0

52
1

2nm
@n2l ~ l11!1m2~ l21!l22n2m2#DF0 .

Since we consideredl 85 l21, the above equation can be rewritten as

(
i51

3

Qi DFi52
1

2nm
@n2l ~ l11!1m2l 8~ l 811!22n2m2#DF0 ,

so that
J. Math. Phys., Vol. 38, No. 7, July 1997
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f 3~nl;ml8!5 3
4 @n2l ~ l11!1m2l 8~ l 811!22n2m2#. ~15!

As we already noticed, this result is general, since it would have been obtained even if w
consideredl 85 l11 instead ofl 85 l21.

Substituting Eqs.~7! and Eq.~15! into Eq. ~5!, we see that any dependence off (nl;ml8) on
the azimuthal quantum numbers,l and l 8, vanishes. So the summation in Eq.~4! cancels with the
normalization factor,N @cf. Eq. ~3!#, and we immediately obtain the result expressed by Eq.~1!.

APPENDIX: SOME USEFUL FORMULAS

We give here the Gauss recursion formulas that are needed in the proof of Eq.~1!:

@2b2g1~a2b!x#F~a,b;g;x!1~g2b!F~a,b21;g;x!2b~12x!F~a,b11;g;x!50,
~A1!

g~g11!F~a,b21;g;x!2g~g11!F~a,b21;g11;x!2a~b21!xF~a11,b;g12;x!50,
~A2!

~g21!F~a21,b21;g21;x!1~b2g!F~a,b21;g;x!2~b21!~12x!F~a,b;g;x!50,
~A3!

gF~a,b;g;x!2gF~a,b11;g;x!1axF~a11,b11;g11;x!50, ~A4!

g@b212~g2a!x#F~a,b21;g;x!2~b21!g~12x!F~a,b;g;x!

1~g2a!~g2b11!xF~a,b21;g11;x!50, ~A5!

~g22!~g21!F~a21,b22;g22;x!2~g22!~g21!F~a21,b21;g21;x!

1~a21!~g2b!xF~a,b21;g;x!50, ~A6!

~g22!~g21!F~a21,b;g22;x!2~g22!~g21!F~a,b;g21;x!

1b~g2a21!xF~a,b11;g;x!50, ~A7!

g~g11!F~a,b11;g;x!2g~g11!F~a11,b11;g11;x!

1~b11!~g2a!xF~a11,b12;g12;x!50, ~A78!

~g21!F~a,b;g21;x!2~g2b21!F~a,b;g;x!2bF~a,b11;g;x!50, ~A8!

~a2b!F~a,b;g;x!2aF~a11,b;g;x!1bF~a,b11;g;x!50, ~A9!

~a2b!~12x!F~a,b;g;x!1~g2a!F~a21,b;g;x!2~g2b!F~a,b21;g;x!50. ~A10!

Equations~A1!–~A7! and Eq.~A8! are directly derived, respectively, from the recursion formu
~3!, ~6!, ~8!, ~11!, ~14!–~17! in Ref. 8 ~Sec. 9.137!. Equation~A78! is also derived from the
recursion formula~16! in Ref. 8. Equations~A9! and~A10! are instead Eqs.~9.2.10! and~9.2.11!
in Ref. 10. However, one can easily show that these last equations can also be obtained by
of proper linear combinations of the recursion formulas as given in Ref. 8.
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Properties of eigenstates of the six-vertex model
with twisted and open boundary conditions
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We use the method proposed by Izergin and Korepin to discuss the Bethe ansatz
equations of the six-vertex model with twisted and open boundary conditions. Let
two parameters of the Bethe wave functions be equal, then an additional Bethe
ansatz equation arises. For the open boundary condition case, we also have dis-
cussed the dual pseudovacuum state and have written out the simplest scalar prod-
ucts of the Bethe wave function. ©1997 American Institute of Physics.
@S0022-2488~97!02706-0#

I. INTRODUCTION

One of the most important goals of exactly solvable lattice models is to find the eigenv
and eigenvectors of the transfer matrix of a system. Bethe, Yang and Yang, and Baxte
solved theXXX, XXZ, XYZ models, respectively.1–3 Faddeev and Takhtajan simplified all o
these works and proposed the quantum inverse scattering method~QISM! or algebraic Bethe
ansatz to solve the six- and eight-vertex models whose spin chain equivalent are theXXZ and
XYZmodels, respectively.4 In the framework of QISM, many exactly solvable lattice models ha
been solved.

Traditionally, the two-dimensional exactly solvable lattice models are solved by impo
periodic boundary conditions, which means that the Yang–Baxter equation is sufficient to
the integrablility of the models. Recently there has been interest in studying integrable sy
with open boundary conditions.5 Sklyanin proposed a systematic approach to handle the o
boundary condition problems whose Hamiltonian include nontrivial boundary terms. Skly
solved the six-vertex model with open boundary conditions by a generalized algebraic
ansatz method.6 After Sklyanin’s work, there has been increasing interest in exploring t
dimensional lattice models or integrable quantum chains with open boundary conditions.7–24

In the procedure of the algebraic Bethe ansatz method, the eigenvectors of the transfer
are constructed asP i51

M B(v i)u0&, wherev i satisfy the Bethe ansatz equations. We usually ass
thatv i are different from each other. Izergin and Korepin have discussed the case when twov i are
equal for a nonlinear Schro¨dinger equation,25 and an additional Bethe ansatz equation is found
which theR-matrix is associated with theXXX model. In this article, we apply the metho
proposed by Izergin and Korepin to the six-vertex model case, which is associated w
XXZ spin chain with twisted and open boundary conditions. An additional Bethe ansatz eq
is also found for the twisted and open boundary condition cases, respectively. Though some
calculations seems complicated, the final results are very simple, the Bethe ansatz eq
ensure that the eigenvalues of the transfer matrices are entire functions. In Sec. IV we will p
some results of the dual pseudovacuum state for the six-vertex model with open boundary
tions.
0022-2488/97/38(7)/3446/11/$10.00
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II. SIX-VERTEX MODEL WITH TWISTED BOUNDARY CONDITIONS

We start from theR-matrix of the six-vertex model, which reads as

R~u!5S a~u! 0 0 0

0 b~u! c~u! 0

0 c~u! b~u! 0

0 0 0 a~u!

D
~1!

a~u!5sin~u12h!, b~u!5sin~u!, c~u!5sin~2h!.

This R-matrix satisfies the Yang–Baxter equation. The monodromy matrix is defined as

T~u!5R12~u!R13~u!•••R1N~u!5S A~u! B~u!

C~u! D~u!
D , ~2!

which is standard for QISM. The elements of the monodromy matrix are quantum operators
well known, we also have the following Yang–Baxter equation:

R12~u2v !T1~u!T2~v !5T2~v !T1~u!R12~u2v !. ~3!

The transfer matrix with twisted boundary conditions is defined as

t~u!5elA~u!1e2lD~u!, ~4!

and it forms a commuting family which ensures the integrability of this model, wherel is an
arbitrary parameter. It is easy to find the pseudovacuum state

u0&5)
i51

M

^ S 10D , ~5!

and the following relations are satisfied:

A~u!u0&5a~u!u0&, D~u!u0&5d~u!u0&, C~u!u0&50, ~6!

wherea(u) 5 sinN(u 1 2h), d(u) 5 sinN(u) arec number functions. By using the Yang–Baxt
equation, we can find the following commutation relations:

A~u!B~v !5
sin~u2v22h!

sin~u2v !
B~v !A~u!1

sin~2h!

sin~u2v !
B~u!A~v !,

D~u!B~v !5
sin~u2v12h!

sin~u2v !
B~v !D~u!2

sin~2h!

sin~u2v !
B~u!D~v !, ~7!

B~u!B~v !5B~v !B~u!.

We construct the eigenstate asP i51
M B(v i)u0&, and can find the eigenvalues of the transfer mat

wherev i satisfy the Bethe ansatz equations. Generally, the condition thatv i are different from
each other is assumed. Izergin and Korepin have discussed the case when twov i are equal and find
that an additional equation should be satisfied. Usually the original Bethe ansatz equations
additional one have no solution.

Next we use the method proposed by Izergin and Korepin to the six-vertex model cas
using the commutation relations, we find
J. Math. Phys., Vol. 38, No. 7, July 1997
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A~u!B2~v !5B2~v !A~u!
sin2~u2v22h!

sin2~u2v !
1B~u!B~v !

sin~2h!

sin~u2v ! F S sin~u2v22h!

sin~u2v !

1cos~2h! DA~v !2sin~2h!A8~v !G1B~u!B8~v !A~v !
sin2~2h!

sin~u2v !
,

~8!

D~u!B2~v !5B2~v !D~u!
sin2~u2v12h!

sin2~u2v !
2B~u!B~v !

sin~2h!

sin~u2v ! F S sin~u2v12h!

sin~u2v !

1cos~2h! DD~v !1sin~2h!D8~v !G1B~u!B8~v !D~v !
sin2~2h!

sin~u2v !
,

where B8(v) 5 (d/du)B(u)uu5v . We assume there is an eigenstate that reads
B2(v1)P i52

M B(v i)u0&. By using the algebraic Bethe ansatz method, we should have the follo
relation:

A~u!)
i52

M

B~v i !B
2~v1!u0&5S )

i52

M
sin~u2v i22h!

sin~u2v i !
D)
i52

M

B~v i !A~u!B2~v1!u0&

1(
j52

M S sin~2h!

sin~u2v j !
)

i52,Þ j

M
sin~v j2v i22h!

sin~v j2v i !
D

3B~u! )
i52,Þ j

M

B~v i !A~v j !B
2~v1!u0&. ~9!

We then use the relations~8! and find complicated results; these results can be simplified using
relation

)
i52

M
sin~u2v i22h!

sin~u2v i !
1(

j52

M
sin~2h!sin~u2v1!

sin~u2v j !sin~v j2v1!
)

i52,Þ j

M
sin~v j2v i22h!

sin~v j2v i !

5)
i52

M
sin~v12v i22h!

sin~v12v i !
. ~10!

The final results are as follows:

A~u!)
i52

M

B~v i !B
2~v1!u0&5S )

i52

M
sin~u2v i22h!

sin~u2v i !
D sin2~u2v122h!

sin2~u2v1!
a~u!)

i52

M

B~v i !B
2~v1!u0&

1(
j52

M S sin~2h!sin~v j2v122h!

sin~u2v j !sin~v j2v1!
)

i51,Þ j

M
sin~v j2v i22h!

sin~v j2v i !
D

3a~v j !B~u! )
i52,Þ j

M

B~v i !B
2~v1!u0&

1
sin2~2h!

sin~u2v1!
a~v1!)

i52

M
sin~v12v i22h!

sin~v12v i !
B~u!)

i52

M

B~v i !B8~v1!u0&
J. Math. Phys., Vol. 38, No. 7, July 1997
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1H sin~2h!

sin~u2v1!
a~v1!S cos~2h!1

sin~u2v122h!

sin~u2v1!
D

3)
i52

M
sin~v12v i22h!

sin~v12v i !
2

sin2~2h!

sin~u2v1!
d

dv1

3S a~v1!)
i52

M
sin~v12v i22h!

sin~v12v i !
DB~u!)

i52

M

B~v i !B~v1!u0&. ~11!

The same calculations can also be performed forD(u). The final results are presented as

D~u!)
i52

M

B~v i !B
2~v1!u0&5

sin2~u2v112h!

sin2~u2v1!
)
i52

M
sin~u2v i12h!

sin~u2v i !
d~u!)

i52

M

B~v i !B
2~v1!u0&

2(
j52

M
sin~2h!sin~v j2v112h!

sin~u2v j !sin~v j2v1!
)

i52,Þ j

M
sin~v j2v i12h!

sin~v j2v i !

3d~v j !B~u! )
i52,Þ j

M

B~v i !B
2~v1!u0&

1
sin2~2h!

sin~u2v1!
d~v1!)

i52

M
sin~v12v i12h!

sin~v12v i !
B~u!)

i52

M

B~v i !B8~v1!u0&

2H sin~2h!

sin~u2v1!
d~v1!S cos~2h!1

sin~u2v112h!

sin~u2v1!
D

3)
i52

M
sin~v12v i12h!

sin~v12v i !
1

sin2~2h!

sin~u2v1!
d

dv1

3S d~v1!)
i52

M
sin~v12v i12h!

sin~v12v i !
D J B~u!)

i52

M

B~v i !B~v1!u0&. ~12!

If we demand thatP i52
M B(v i)B

2(v1)u0& be an eigenstate of the transfer matrixt(u) 5 elA(u)
1 e2lB(u), the unwanted terms should be canceled. Then we can obtain the Bethe ansat
tions. When termsB(u)P i52,Þ j

M B(v i)B
2(v1) vanish, the following relations should be satisfie

e2l
sin2~v j2v122h!

sin2~v j2v112h! )
i52,Þ j

M
sin~v j2v i22h!

sin~v j2v i12h!
5

d~v j !
a~v j !

, j52,...,M . ~13!

When the termB(u)P i52
M B(v i)B8(v1)u0& vanishes, we have

2)
i52

M
sin~v12v i12h!

sin~v12v i22h!
5e2l

a~v1!
d~v1!

. ~14!

Using this equation, and lettingB(u)P i52
M B(v i)B(v1)u0& vanish, we can obtain an addition

Bethe ansatz equation with the help of Eq.~14!. We should notice that in the calculations w
should not use Eq.~14! at first when it is in the derivation. The results can be written as follo
J. Math. Phys., Vol. 38, No. 7, July 1997
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d

du Fela~u!sin2~u2v122h!)
i52

M

sin~u2v i22h!1e2ld~u!sin2~u2v112h!

3)
i52

M

sin~u2v i12h!GU
u5v1

50. ~15!

III. SIX-VERTEX MODEL WITH OPEN BOUNDARY CONDITIONS AND DISCUSSIONS

In the following, we use the same method for the six-vertex model with the open boun
condition case. It is known that besides the Yang–Baxter equation, we also need the refl
equation~RE! to prove the integrability of the model with open boundary conditions. The RE
the dual RE read as6,23

R12~u2v !K1~u!R21~u1v !K2~v !5K2~v !R12~u1v !K1~u!R21~u2v !,
~16!

R12~v2u!K1
1~u!R21~2u2v24h!K2

1~v !5K2
1~v !R12~2u2v24h!K1

1~u!R21~v2u!.

One can find a diagonal solution of RE, it takes the form

K~u!5diagS 1,sin~j22u!

sin~j21u! D . ~17!

The dual RE has a solutionK1(u) 5 diag(sin(j1 2 u2 2h),sin(j1 1 u1 2h)). Here,j6 are free
boundary parameters. Note that we have modified the original dual RE,6 so the isomorphism
betweenK andK1 do not have a transposition. For diagonal solution of RE, this will not cha
any results.

The double-row monodromy matrix is defined as

T ~u!5T~u!K~u!T21~2u!5SA~u! B~u!

C ~u! D~u!
D . ~18!

By using the RE and Yang–Baxter equation~2!, one can prove that the double-row monodrom
matrix also satisfy the RE,

R12~u2v !T 1~u!R21~u1v !T 2~v !5T 2~v !R12~u1v !T 1~u!R21~u2v !. ~19!

Then, we can define the transfer matrix with open boundary conditions as

t~u!5trK1~u!T ~u!5sin~j12u22h!A~u!1sin~j11u12h!D~u!

5
sin~2u14h!

sin~2u12h!
sin~j12u!A~u!1sin~j11u12h!D̃~u!, ~20!

where

D~u!5D̃1
sin~2h!

sin~2u12h!
A~u!.

Hereafter,t(u) represents the transfer matrix defined by Eq.~20!. Using RE~17!, we can find the
commutation relations as
J. Math. Phys., Vol. 38, No. 7, July 1997
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A~u!B~v !5B~v !A~u!
sin~u2v22h!sin~u1v !

sin~u1v12h!sin~u2v !
1B~u!A~v !

sin~2v !sin~2h!

sin~2v12h!sin~u2v !

2B~u!D̃~v !
sin~2h!

sin~u1v12h!
, ~21!

D̃~u!B~v !5B~v !D̃~u!
sin~u2v12h!sin~u1v14h!

sin~u2v !sin~u1v12h!
2B~u!D̃~v !

sin~2h!sin~2u14h!

sin~u2v !sin~2u12h!

1B~u!A~v !
sin~2h!sin~2v !sin~2u14h!

sin~2u12h!sin~2v12h!sin~u1v12h!
, ~22!

B~u!B~v !5B~v !B~u!. ~23!

As in the twisted boundary condition, we construct the eigenstate asB2(v1)P i52
M

B(v i)u0&, and
we know that

A~u!u0&5a~u!u0&, D̃~u!u0&5d~u!u0&, C ~u!u0&50, ~24!

where

a~u!5sin2N~u12h!, d~u!5
sin~2u!sin~j22u22h!

sin~2u12h!sin~j21u!
sin2N~u!. ~25!

Using commutation relations~21! and ~22!, we have

A~v !B~v !5B~v !A~v !
sin~2v22h!

sin~2v12h!
2B~v !A8~v !

sin~2v !sin~2h!

sin~2v12h!

1B8~v !A~v !
sin~2v !sin~2h!

sin~2v12h!
2B~v !D̃~v !

sin~2h!

sin~2v12h!
, ~26!

D̃~v !B~v !5B~v !D̃8~v !
sin~2h!sin~2v14h!

sin~2v12h!
1B~v !D̃~v !

2B8~v !D̃~v !
sin~2v14h!sin~2h!

sin~2v12h!
B8~v !D̃~v !

1B~v !A~v !
sin~2h!sin~2v !sin~2v14h!

sin3~2v12h!
. ~27!

Using all these commutation relations obtained above, we can find the results ofA(u) and
D(u) acting inB2(v)u0&. Suppose that we have an eigenstateP i52

M
B(v i)B

2(v1)u0& of transfer
matrix ~20! with open boundary conditions. Applying the transfer matrix~20! in this eigenstate,
we obtain
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t~u!)
i52

M

B~v i !B
2~v1!u0&5S )

i52

M

B~v i !D)
i52

M H sin~u2v i22h!sin~u1v i !
sin~u1v i12h!sin~u2v i !

sin~2u14h!

sin~2u12h!

3sin~j12u!A~u!1)
i52

M
sin~u2v i12h!sin~u1v i14h!

sin~u2v i !sin~u1v i12h!
sin~j11u12h!

3D̃~u!JB2~v1!u0&1(
j52

M
sin~2u14h!sin~2h!

sin~u2v j !sin~u1v j12h!

sin~2v j !sin~j12v j !
sin~2v j12h!

3 )
i52,Þ j

M
sin~v j2v i22h!sin~v j1v i !
sin~v j1v i12h!sin~v j2v i !

B~u!S )
i52,Þ j

M

B~v i !DA~v j !B
2~v1!u0&

2(
j52

M
sin~2u14h!sin~2h!sin~j11v j12h!

sin~u2v j !sin~u1v j12h! )
i52,Þ j

M
sin~v j2v i12h!sin~v j1v i14h!

sin~v j2v i !sin~v j1v i12h!

3B~u!S )
i52,Þ j

M

B~v i !D D̃~v j !B
2~v1!u0&. ~28!

We then use the commutation relations again untilA andD̃ reach the pseudovacuum state, whi
is standard for the algebraic Bethe ansatz method. There should be several terms: a want
and unwanted terms. The coefficient of the wanted term is the eigenvalue of the transfer
which can be written as

L~u!5)
i52

M
sin~u2v i22h!sin~u1v i !
sin~u1v i12h!sin~u2v i !

3
sin2~u2v122h!sin2~u1v1!
sin2~u1v112h!sin2~u2v1!

sin~2u14h!sin~j12u!

sin~2u12h!
a~u!

1)
i52

M
sin~u2v i12h!sin~u1v i14h!

sin~u2v i !sin~u1v i12h!

sin2~u2v112h!sin2~u1v114h!

sin2~u2v1!sin
2~u1v112h!

3sin~j11u12h!d~u!. ~29!

The unwanted terms should be canceled, so we can obtain the so-called Bethe ansatz eq
The unwanted terms are presented as

B~u! )
i52,Þ j

B~v i !B
2~v1!u0&, j52,...,M ,

~30!

B~u!)
i52

M

B~v i !B8~v1!u0&, B~u!)
i52

M

B~v i !B~v1!u0&.

These terms are linear independent, so their coefficients should be equal to zero. The calc
are tedious and complicated, here we do not present detailed calculations. With the help o
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)
i52

M
sin~u2v i22h!sin~u1v i !
sin~u1v i12h!sin~u2v i !

sin~j12u!sin~u1v112h!

sin~2u12h!

1)
i52

M
sin~u2v i12h!sin~u1v i14h!

sin~u2v i !sin~u1v i12h!

sin~j11u12h!sin~u2v1!
sin~2u12h!

1(
j52

M
sin~2h!sin~2v j !sin~j12v j !sin~u2v1!sin~u1v112h!

sin~u1v j12h!sin~2v j12h!sin~v j2v1!sin~u2v j !

3 )
i52,Þ j

M
sin~v j2v i22h!sin~v j1v i !
sin~v j1v i12h!sin~v j2v i !

2(
j52

M
sin~2h!sin~j11v j12h!sin~2v j14h!sin~u2v1!sin~u1v112h!

sin~u2v j !sin~u1v j12h!sin~2v j12h!sin~v j1v112h!

3 )
i52,Þ j

M
sin~v j2v i12h!sin~v j1v i14h!

sin~v j2v i !sin~v j1v i12h!

5)
i52

M
sin~v12v i22h!sin~v11v i !
sin~v11v i12h!sin~v12v i !

sin~j12v1!. ~31!

We can obtain the Bethe ansatz equations as

sin~2v j !sin~j12v j !a~v j !
sin~2v j12h!sin~j11v j12h!d~v j !

5 )
i52,Þ j

sin~v j2v i12h!sin~v j1v i14h!sin2~v j2v112h!sin2~v j1v114h!

sin~v j2v i22h!sin~v j1v i !sin
2~v j2v122h!sin2~v j1v1!

,

~32!

2
sin2~2v1!sin~j12v1!a~v1!

sin~2v114h!sin~2v112h!sin~j11v112h!d~v1!

5)
i51

M
sin~v11v i14h!sin~v12v i12h!

sin~v12v i22h!sin~v11v i !
. ~33!

The additional Bethe ansatz equation can be written as

d

du F)
i52

M

sin~u2v i22h!sin~u1v i !3sin2~u2v122h!sin2~u1v1!sin~2u14h!sin~j12u!a~u!

1)
i52

M

sin~u2v i12h!sin~u1v i14h!3sin2~u2v112h!sin2~u1v114h!sin~2u12h!

3sin~j11u12h!d~u!GU
u5v1

50. ~34!

In the above, we use the algebraic Bethe ansatz method and have discussed the case w
parameters in the Bethe wave functions are equal, and find that an additional Bethe ansat
tion should be satisfied for the case of the six-vertex model with twisted and open bou
conditions. Since the number of equations exceeds the number ofv i , the solution does no
generally exist. Actually, by using the argument of the functional Bethe ansatz method3 we
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assume that the eigenvalue of the transfer matrix is an entire function, the poles and zeros
be canceled with each other, and all of the Bethe ansatz equations listed above follow imme
from this argument. It seems there is no difficulty to generalize this case to more than two
v i in the Bethe wave function.

Izergin and Korepin have proved that for the repulsive bose-gas, the Bethe ansatz eq
have no solution for the case of two equalv i in the Bethe wave functions. However, for som
special cases, the Bethe ansatz may have equal parameters in the Bethe wave functio
known that the transfer matrix with a particular choice of the boundary conditions is qua
group SUq(2) invariant wherej6 take special values.26 By using the coordinate Bethe ansatz, t
eigenvalue of the SUq(2) invariant transfer matrix with open boundary conditions is also obtai
in Ref. 27. It has been proved that forq being a root of unity, hereq 5 ei2h, we may have some
identical parameters in the Bethe wave functions which are related to the null sta
SUq(2).

27 Let the transfer matrix be quantum group invariant, which means that the boundar
parameter takes special valuej2 5 p/2 corresponding to the identity reflectingK matrix. The dual
reflectingK1 matrix changes correspondingly. It has been proved that one can construct
wave functions withm identical parameters andn distinct parameters whenq is a root of unity.27

One solution takes the forme j 5 e exp(i2pj/m), wheree j is related tov j in this paper. However,
there are other properties that should be further discussed such as ‘‘good’’ and ‘‘bad’’ eigen
and the ‘‘missing’’ Bethe states, etc., see Refs. 27, 28, and 29 for details.

IV. DUAL PSEUDOVACUUM STATE

It is known that in periodic and twisted boundary condition cases, a dual pseudovacuum
^0u and some complete analogous relations can be found, see Ref. 30 and the references
By using the state and its dualityP i51

M B(v i
B)u0&, ^0uP i51

M C(v i
C), one can compute the corre

lation functions.30–32 In this section, we will study the case of the six-vertex model with op
boundary conditions.

Besides commutation relations~21!–~23!, we can also obtain some analogous relations fr
RE ~19!,

C ~u!C ~v !5C ~v !C ~u!,

C ~v !A~u!5A~u!C ~v !
sin~u2v22h!sin~u1v !

sin~u1v12h!sin~u2v !
1A~v !C ~u!

sin~2v !sin~2h!

sin~2v12h!sin~u2v !

2D̃~v !C ~u!
sin~2h!

sin~u1v12h!
, ~35!

C ~v !D̃~u!5D̃~u!C ~v !
sin~u2v12h!sin~u1v14h!

sin~u2v !sin~u1v12h!
2D̃~v !C ~u!

sin~2h!sin~2u14h!

sin~u2v !sin~2u12h!

1A~v !C ~u!
sin~2h!sin~2v !sin~2u14h!

sin~2u12h!sin~2v12h!sin~u1v12h!
.

The dual pseudovacuum state is constructed as

^0u5)
i51

N

^ ~1,0!. ~36!

One can see easilŷ0u0&51. The action of operatorsA,B, C , D̃ on this dual pseudovacuum sta
is listed as
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^0uA~u!5a~u!^0u, ^0uD̃5d~u!^0u, ^0uB~u!50, ^0uC ~u!Þ0. ~37!

The Bethe wave functions can be constructed as^0uP i51
M C(v i). It is clear that we can also us

these equations to obtain the eigenvalues and Bethe ansatz equations for the six-vertex mo
open boundary conditions. The results will not change.

As in the periodic and twisted boundary conditions, the eigenstates^0uP i51
M

C (v i
C) and

P i51
M

B(v i
B)u0& are orthogonal if$v i

C% and $v i
B% satisfy the Bethe ansatz equations and$v i

C%
Þ $v i

B%. Consider the transfer matrixt(u), we have

^0u)
i51

M

C ~v i
C!t~u!)

i51

M

B~v i
B!u0&5L~u,$v i

B%!^0u)
i51

M

C ~v i
C!)

i51

M

B~v i
B!u0&

5L~u,$v i
C%!^0u)

i51

M

C ~v i
C!)

i51

M

B~v i
B!u0&. ~38!

Recall that$v i
C% Þ $v i

B%, one can obtain easily that

^0u)
i51

M

C ~v i
V!)

i51

M

B~v i
B!u0&50. ~39!

To end this paper, we write the simplest scalar products of the Bethe wave functionM
5 1). From RE~19!, we can obtain the commutation relation betweenC andB, it takes the form,

@C ~u!,B~v !#5D̃~u!A~v !
sin~2h!sin~2v !

sin~2v12h!sin~u2v !
2D̃~u!D̃~v !

sin~2h!

sin~u1v12h!

2A~u!D̃~v !
sin2~2h!

sin~u1v12h!sin~2u12h!

2D̃~v !A~u!
sin~u1v !sin~2h!

sin~u1v12h!sin~u2v !

1A~u!A~v !
sin2~2h!sin~2v !

sin~2v12h!sin~u2v !sin~2u12h!

1A~v !A~u!
sin~2h!sin~2v !sin~u2v22h!

sin~u1v12h!sin~2v12h!sin~u2v !
. ~40!

So, one can write the simplest scalar products of^0uC (u)B(v)u0& as

^0uC ~u!B~v !u0&5a~u!a~v !
sin~2h!sin~2u!sin~2v !

sin~2u12h!sin~2v12h!sin~u1v12h!

2a~u!d~v !
sin~2h!sin~2u!

sin~2u12h!sin~u2v !
1a~v !d~u!

sin~2h!sin~2v !

sin~2v12h!sin~u2v !

2d~u!d~v !
sin~2h!

sin~u1v12h!
. ~41!

We know that an important factor in using the algebraic Bethe ansatz method is determ
representations for the correlation functions of the six-vertex model with periodic and tw
boundary conditions.30–32 For open boundary conditions, we can also use the same meth
J. Math. Phys., Vol. 38, No. 7, July 1997
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compute the correlation functions. One must first compute the action ofC (u) on
P i51

N
B(v i)u0& or B(u) on ^0uP i51

N
C (v i). Then one can find the scalar products of the Be

wave functions and the correlation functions.
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28G. Jüttner and M. Karowski, Nucl. Phys.430, 615 ~1994!.
29N. Reshetikhin and F. Smirnov, Commun. Math. Phys.131, 157 ~1990!.
30V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,QISM and Correlation Function~Cambridge University Press
Cambridge, 1993!.

31F. H. L. Essler, H. Frahm, A. G. Izergin, and V. E. Korepin, Commun. Math. Phys.174, 191 ~1996!.
32H. Frahm, A. R. Its, and V. E. Korepin, Nucl. Phys. B428, 694 ~1994!.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ivistic
berg
the

k,

berg
oor-
ent of

rticle
o
–
tations.
ntly the

m
-
er

-

¬¬¬¬¬¬¬¬¬¬
A new Hamilton operator for a massive relativistic
particle with spin one in a generalized
Heisenberg/Schro¨dinger picture

Rudolf A. Fricka)
Institute of Theoretical Physics, University of Cologne, D-50923 Cologne, Germany

~Received 21 May 1996; accepted for publication 28 February 1997!

We consider a particular four-dimensional generalization of the transition from the
Heisenberg to the Schro¨dinger picture. The space–time independent expansion
with respect to the unitary irreducible representations of the Lorentz group is ap-
plied, as Fourier transformation in the Heisenberg picture, to the states of a massive
relativistic particle. A new Hamilton operator has been found for such a particle
with spin one. ©1997 American Institute of Physics.@S0022-2488~97!03007-7#

I. INTRODUCTION

In this paper we present a new mathematical formalism for describing a massive relat
particle with spin one. In this formalism, we use a four-dimensional transition from the Heisen
to the Schro¨dinger picture. In quantum mechanics, the transition from the Heisenberg to
Schrödinger picture is carried out by the unitary transformationS(t)5exp(2itH), whereH is the
Hamilton operator of the particle~we choose here a system of units such that\51 andc51!. The
state of a particle in the Heisenberg picture and the particle operators in the Schro¨dinger picture
are defined as time-independent functions and operators, respectively. In our earlier wor1 we
generalized this transition to the transformation

S~ t,x!5exp@2 i ~ tH2x–P!#, ~1.1!

whereP is the momentum operator of the particle. In this context, the functions in the Heisen
picture and the operators in the Schro¨dinger picture are independent of the time and space c
dinatest, x. The Fourier transform of the state in the Heisenberg picture must be independ
the space–time coordinates. That is why the plane waves;exp(ix–p) cannot be applied in this
Fourier transformation. Accordingly, the momentum and the Hamilton operator of the pa
cannot be expressed in terms of the spatial derivative2 i“x . Under these premises, there is n
x-representation. As a result, the plane waves in the new Schro¨dinger picture and also the space
time coordinates in the operators of the new Heisenberg picture appear in different represen
In the Heisenberg picture at first one can use the momentum representation and subseque
representation which is defined via a space–time-independent Fourier transformation.

Let the functionC (s)(p) be a relativistic wave function of a particle in the momentu
representation~p5momentum,m5mass,p0 :5Am21p2, s5spin!. In the context of the gener
alizationS(t)⇒S(t,x), the functionC (s)(p) is a wave function in the Heisenberg picture. Und
the Lorentz transformationg with boost and rotation generators2–5

N~p,s!:5 ip0“p2
s3p

p01m
, J~p,s!:52 ip3“p1s:5L ~p!1s, ~1.2!

and parametersu, u0 , with u
22u0

251, the functionCm
(s)(p) transforms by the unitary represen

tation (m5spin projection)

a!Electronic-mail address: rf@thp.uni-koeln.de
0022-2488/97/38(7)/3457/9/$10.00
3457J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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TgCm
~s!~p!5 (

m852s

s

Wmm8
~s!

~p,u!Cm8
~s!

~g21p!, ~1.3!

whereWmm8
(s) (p,u) are the Wigner functions~s are the Pauli matrices!

W~1/2!~p,u!5
~p01m!~u011!2u–p1 is~p3u!

A2~u011!~p01m!~p0u02p–u1m!
, W~1/2!~p,u!W†~1/2!~p,u!51. ~1.4!

Such a wave function has positive definite norm

E dp

p0
(

m52s

s

uCm
~s!~p!u5E dp

p0
(

m52s

s

uCm
~s!~p,t,x!u,`, ~1.5!

and can be expanded with respect to irreducible unitary representations of the Lorentz grou
function is covariant only with respect to the set of spin and momentum variables, and no
respect to each of them separately. In~1.5!, the functionC (s)(p,t,x):5S(t,x)C (s)(p) is the wave
function in the new Schro¨dinger picture in momentum representation. The relativistic spin
transforming by nonunitary finite representations of the Lorentz group, have not definite norm
this case these spinors are not useful.

The unitary representations correspond to the eigenvalues 11a22l2 of the first C1(p):
5N22J2 and the eigenvaluesal of the second Casimir operatorC2(p)5N–J ~0<a,`,
l52s,...,s!. The range ofa defines the fundamental series of the unitary representations.
formalism of harmonic analysis on the Lorentz group has been used by many authors~a detailed
list of references can be found in Refs. 6–11!. The four-dimensional generalization of th
Heisenberg/Schro¨dinger picture introduces new features into the nature of the description of
ticle states. It is necessary to develop a mathematical formalism in the framework of this app
for describing the relativistic particles. In Refs. 1 and 12, the space–time independent exp
with respect to the unitary irreducible representation of the Lorentz group has been app
Fourier transformation in the Heisenberg picture to relativistic particles with spin 0 and
1/2. This procedure will be applied here for such a practically important example as the m
particle with spin 1. Since the operators2 i“x are not momentum operators, a new Hamiltoni
operator for a spin 1 particle is expressed in terms of the group parametera. At first we will give
a short review for the description of particles with spin 0 in the context of the application of~1.1!.

II. SPIN 0 PARTICLE

In this case, the operatorC1(p) has the eigenfunctions

j~0!~p,a,n!:5@~p0n02p–n!/m#211 ia, ~2.1!

where 0<a,` and ~n0 , n! is a null vectorn0
22n250.

The Fourier transforms for the states of the relativistic particle with spin 0 in terms the
functions~2.1! @n5(sinu cosw, sinu sinw, cosu), n251, dvn5sinu du dw# have the form13

C~0!~p!5
1

~2p!3/2
E a2 dadvnC

~0!~a,n!j~0!~p,a,n!, ~2.2!

C~0!~a,n!5
1

~2p!3/2
E dp

p0
C~0!~p!j* ~0!~p,a,n!. ~2.3!
J. Math. Phys., Vol. 38, No. 7, July 1997
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The functionsC (0)(p) and C (0)(a,n) are the state functions of the particle inp- and in the
~a,n!-representation. The completeness and orthogonality relations for the functionsj (0)(p,a,n)
andj* (0)(p,a,n) are given in the Appendix. In the~a,n!-representation the free Hamilton oper
tor and the momentum operators for a particle with spin 0 have the form11 @L :5L (u,w)#

H ~0!~a,n!5mFcoshS i ]

]a D1
i

a
sinhS i ]

]a D1
L2

2a2 expS i ]

]a D G , ~2.4!

P~0!~a,n!5nFH ~0!~a,n!2m expS i ]

]a D G2m
n3L

a
expS i ]

]a D . ~2.5!

The eigenfunction of this operators, defined asjp
(0)(a,n):5j* (0)(p,a,n), are determined by

H ~0!~a,n!jp
~0!~a,n!5p0jp

~0!~a,n!, P~0!~a,n!jp
~0!~a,n!5pjp

~0!~a,n!. ~2.6!

The operators in~2.4!–~2.6! are used for the relativistic description of the two-bo
problem.11,14–17In this case the vectorq5an/m is applied. In the nonrelativistic limit

C1
~0!~p!→2m2¹p

2, j~0!~p,a,n!→exp~2 ian–p/m!, ~2.7!

H ~0!~q,n!2m→2
1

2mq2
]

]q
q2

]

]q
1

L2

2mq2
, P~0!~q,n!→2 i“q . ~2.8!

The functions exp(ian–p/m) realize the unitary irreducible representations of the Galileo gro

C~an!5
1

~2p!3/2
E dp C~p!exp~ ian–p/m!. ~2.9!

Since Wigner, particles are associated with unitary representation of the Poincare´ group. If one
introduces the generators of the Lorentz algebraN~a,n! for the particle with spin 0,

N~0!~a,n!:5an1~n3L1L3n!/2, ~2.10!

then,1 instead of the vectoran, the ~a,n!-representation can be recognized as a representatio
the Poincare´ group. The operatorsH (0)(a,n), P(0)(a,n), N(0)(a,n), andL satisfy the commuta-
tion relations of the Poincare´ algebra.

The Casimir operatorC1(p) and the functionsj
(0)(p,a,n) do not depend on the space–tim

coordinatesx, t. That is why the functions in the expansions~2.2! and~2.3! and the operators in
~2.4!–~2.6! are independent of the space–time coordinates likewise. In the framework o
four-dimensional generalization of the Heisenberg to the Schro¨dinger pictureS(t)⇒S(t,x), the
functions in~2.2! and ~2.3! and the operators in the~2.4!–~2.6! must be seen as functions in th
Heisenberg picture and, accordingly, as operators in the Schro¨dinger picture for the particles with
spin 0. If the transformation~1.1! is not applied, then we have no possibility to introduce the pl
wave;exp(ix–p) into the relativistic state functions~2.2! and ~2.3!. In the nonrelativistic limit
there is such a possibility. The function exp(ian–p/m) in ~2.9! has the form of the plane wav
exp(ix–p). Thus, if the generalization~1.1! is not applied, the function exp(ian–p/m) can be
replaced by exp(ix–p). In such a form, the plane waves can be introduced in the Schro¨dinger
picture through the Fourier transformation, and then anx-representation can be introduced. In t
relativistic expansion ~2.3! this method cannot be used. The functions exp(ix–p) and
j* (0)(p,a,n) have different forms.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The application of the transformation~1.1! gives the state of the particle in the Schro¨dinger
picture in p- and ~a,n!-representation:C (0)(p,t,x)5S(t,x)C (0)(p), C (0)(a,n,t,x)5S(t,x)
C (0)(a,n).

The Fourier expansion$exp@2i(p•x)#:5exp@2i(tp02x–p)#%

C~0!~a,n,t,x!5
1

~2p!3/2
E dp

p0
C~0!~p!jp

~0!~a,n!exp@2 i ~p•x!#, ~2.11!

in contrast to the usual expansion

C~0!~ t,x!5
1

~2p!3/2
E dp

p0
C~0!~p!exp@2 i ~p•x!#, ~2.12!

contains the matrix elementsjp
(0)(a,n) of the unitary representation of the Lorentz group.

In the expansion~2.12!, the plane waves in the form;exp@2i(p•x)# appear as the wave
functions of the particle with the definite momentump and spin 0. Similar expansion for th
particle with spin 1/2 or spin 1 contain the Dirac bispinor~spin 1/2! or the unit polarization
four-vector~spin 1!, respectively. An important difference between~2.11! and ~2.12! is that the
plane waves without the wave functions in the Heisenberg picture, and in accordance w
transformation~1.1!, cannot express the wave functions of the particle.

The wave functions with definite momentum in the Schro¨dinger picture in ~a,n!-
representation are the functions

jp
~0!~a,n,t,x!5jp

~0!~a,n!exp@2 i ~p•x!# ~2.13!

in ~2.11!. The expression~2.12! is not a transformation from one representation to another o.
In the nonrelativistic limit for the Fourier expansion in the Schro¨dinger picture we have

C~an,t,x!5
1

~2p!3/2
E dp C~p!exp~ ian–p/m!exp@2 i ~ tp2/2m2x–p!#. ~2.14!

III. SPIN 1 PARTICLE

The expansions~2.2! and ~2.3! are generalized in Refs. 18 and 19 for the particle with sp
They can be expressed in the form

Cm
~s!~p!5

1

~2p!3/2 (
m852s

s E ~m821a2!da dvn Dmm8
~s!

~Rw!j~0!~p,a,n!Cm8
~s!

~a,n!, ~3.1!

Cm
~s!~a,n!5

1

~2p!3/2 (
m852s

s E dp

p0
Dmm8
†~s!

~Rw!j* ~0!~p,a,n!Cm8
~s!

~p!, ~3.2!

whereCm
(s)(a,n) is the wave function in~a,n!-representation and the matrixD (s)(Rw) must have

the qualities of the Wigner rotation in~1.3! and ~1.4!.
In Ref. 12 this matrix (spin51/2) has been found by means of the solutions of the eigenv

equations of the operatorC1(p):

D ~1/2!~Rw!:5D ~1/2!~p,n!5
p02p–n1m2 is•~p3n!

A2~p01m!~p02p–n!
, D ~1/2!~p,n!D†~1/2!~p,n!51. ~3.3!

In the ~a,n!-representation, the functions
J. Math. Phys., Vol. 38, No. 7, July 1997
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jp
~1/2!~a,n!:5D†~1/2!~p,n!jp

~0!~a,n! ~3.4!

were determined as the eigenfunctions of the Hamilton and the momentum operators f
particle with spin 1/2. In this case

J:5L1s, N:5an1~n3J1J3n!/2, ~3.5!

andC1(a,n)511a22(s–n)2 andC2(a,n)5as–n.
For the particle with spin one, we use the eigenfunctionsj (1)(p,a,n) of both Casimir opera-

torsC1(p) andC2(p):

j~1!~p,a,n!5D ~1!~p,n!D~n!j~0!~p,a,n!. ~3.6!

The matrixD (1)(p,n) can be obtained from the matrix~3.3! and the Clebsch–Gordan coefficien
The matrixD†(n) @D(n)D†(n)51# contains the eigenfunctions of the operators–n, with the
eigenvaluesl521,0,1.

In order to define the Hamilton and the momentum operators, we consider the function

jp
~1!~a,n!:5D†~n!D†~1!~p,n!jp

~0!~a,n! ~3.7!

as states of the free particle with spin 1 with a definite momentum in the Heisenberg pict
~a,n!-representation

H ~1!~a,n!jp
~1!~a,n!5p0jp

~1!~a,n!. ~3.8!

The operators in~3.5! must be transformed according to the ruleD†(n)JD(n)5 J̃.
Applying ~2.4! and ~2.5!, we can express the functionsjp

(1)(a,n) by means of the operators

A~a,n!:5F12
i

a
t2

11 ia1t

a~a2 i !
2s–L1

i t1a

a2~a2 i !
L22

2

a~a2 i !
~s–L !2GexpS i ]

]a D
1F11

i

a
tGexpS 2 i

]

]a D122
2i

a2 i
s–L , ~3.9!

jp
~1!~a,n!5D†~n!A~a,n!

m

2

jp
~0!~a,n!

p01m
, ~3.10!

wheret:512(s–n)2. Using the equation

H ~1!~a,n!D†~n!A~a,n!5D†~n!A~a,n!H ~0!~a,n!, ~3.11!

we have

H ~1!~a,n!5mFcoshS i ]

]a D1
ia1 t̃

a~a2 i !
sinhS i ]

]a D1
t̃

a2 expS 2 i
]

]a D1
~a21 t̃ !J̃2

2a2~a211!

3expS i ]

]a D2
~ s̃–L̃12!t̃

a211
2

t̃~ s̃–L̃12!

a2 G . ~3.12!

In the nonrelativistic limit, with the notationq5a/m, we have

H ~1!~q,n!2m→2
1

2mq2
]

]q
q2

]

]q
1
J̃ 212@ t̃2~ s̃–J̃!t̃2 t̃~ s̃–J̃!#

2mq2
. ~3.13!
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One can determine the momentum operator either by means of the commutation relations
Poincare´ algebra@Ñ,H (1)(a,n)#52 iP(1)(a,n), or by the equations

P~1!~a,n!D†~n!A~a,n!5D†~n!A~a,n!P~0!~a,n!, ~3.14!

P3
~1!~a,n!5n3H

~1!~a,n!2mF S a~12 t̃ !

~a211!
1

t̃

a DexpS i ]

]a DN31
12 t̃1s3L3

a211
expS i ]

]a D
1

~ s̃3n!3
a S 12

t̃

a1 i D G . ~3.15!

The operatorsH (1)(a,n) andP(1(a,n) can be identified as operators of the massive rela
istic spin 1 particle in the Schro¨dinger picture in~a,n!-representation. The state functions in t
Schrödinger picture can be found by means of the Fourier expansion in the Heisenberg p
~3.2! and the transformation~1.1!:

Cm
~1!~a,n,t,x!5

1

~2p!3/2 (
m8521

1 E dp

p0
jpmm8

~1!
~a,n!exp@2 i ~p•x!#Cm8

~1!
~p!. ~3.16!

In this case the Schro¨dinger equation is valid,

i
]

]t
C~1!~a,n,t,x!5H ~1!~a,n!C~1!~a,n,t,x!, ~3.17!

as well the equation in the spatial derivatives,

2 i“xC
~1!~a,n,t,x!5P~1!~a,n!C~1!~a,n,t,x!. ~3.18!

IV. PARTIAL-WAVE EQUATIONS

To determine the partial-wave equations in the (a,n)-representation in Heisenberg picture, w
first use the spherical spinorsV l m(np), V l m(n) being the eigenfunctions of the operato
s–L (p) ands–L , respectively. They have the same form as in the nonrelativistic formalism.
equation~3.8! permits factorization by introducing the spinorsṼll m(n):5D†(n)V l m(n). If we
introduceD11

† (n)5(11n3)/2, D10
† (n)52n2 /&, D121

† (n)5n2
2 /2(11n3), and (s3)1151, then

J̃3
~1!5L31s3 , J̃2

~1!5L21s3n2 /~11n3!, J̃1
~1!5L11s3n1 /~11n3!, ~4.1!

with s–L̃Ṽll m(n)5bṼll m(n) andb5@(11)2l (l 11)22#/2.
Let us integrate the expression

jp
~1!~a,n!V l m~np!5D†~1!~n!A~a,n!

m

2

jp
~0!~a,n!

p01m
V l m~np!, ~4.2!

over the angular variables of thenp vectors. The matrix elements obtained in this way can
written in the form

Ã~a,n!
m

2

P l
~0!~coshx,a!

p01m
4p i lṼll m~n!. ~4.3!
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We define the partial functions for the particles with spin 1,P ll
(1) (coshx,a), as coefficients that

stand in front of 4p i lṼll m(n) in the expression~4.3!. These can be expressed in terms of t
functionsP l

(0)(coshx,a) ~see Appendix! andb(x):51/2(coshx11):
~1! for 5l 11,

P ll
~1! ~coshx,a!5b~x!F ~a2 i l !~a2 i l2 i !

a~a2 i ulu!
expS i ]

]a D1
2~a2 i l2 i !

a2 i
1

a1 i2ulu
a

3expS 2 i
]

]a D GP l
~0!~coshx,a!; ~4.4!

~2! for 5l 21,

P ll
~1! ~cosx,a!5b~x!F ~a1 i l !~a1 i l1 i !

a~a2 i ulu!
expS i ]

]a D1
2~a1 i l !

a2 i
1

a1 i2ulu
a

3expS 2 i
]

]a D GP l
~0!~coshx,a!; ~4.5!

~3! for 5l and ulu51,

P ll
~1! ~coshx,a!5b~x!Fa~a1 i !2~11!

a~a2 i !
expS i ]

]a D1
2a

a2 i

1expS 2 i
]

]a D GP l
~0!~coshx,a!; ~4.6!

~4! for 5l andl50, Ṽll m(n)50, P ll
(1) (coshx,a)50.

For the functionsP ll
(1) (coshx,a) we have

H ~1!~a,,l!P ll
~1! ~coshx,a!5p0P ll

~1! ~coshx,a!, ~4.7!

where

H ~1!~a,,l!:5mF a

2~a2 i !
1

t̃

2~a2 i !
1

~11!

2~a211! S 11
t̃

a2D GexpS i ]

]a D

1mF a22i

2~a2 i ! S 11
t̃

a2D GexpS 2 i
]

]a D1mS 0 2
b11

a211
0

2
b12

2a2 0 2
b12

2a2

0 2
b11

a211
0

D .

~4.8!

V. CONCLUSION

In the framework of the four-dimensional generalization of the Heisenberg to the Schro¨dinger
pictureS(t)⇒S(t,x) the plane wave;exp@2i(p•x)# in their original sense as the stationary sta
of a particle cannot appear in the mathematical formalism of the quantum theory. The con
J. Math. Phys., Vol. 38, No. 7, July 1997
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determination of the wave functions of a particle in the new Schro¨dinger picture requires the us
of the wave functions in the momentum representation or of the matrix elements of the f
mental series of unitary representations of the Lorentz group.

The found Hamilton operator for spin 1 particle is a differential operator. The syste
eigenfunctions is expressed in terms of the eigenfunction of the particle with spin zero.

We hope that the formalism that has been developed here will be employed for so
problems in relativistic quantum physics.

ACKNOWLEDGMENTS

The author would like to thank the Otto Benecke Foundation for financial support and
fessor Friedrich W. Hehl for very helpful discussions and comments.

APPENDIX: ORTHOGONALITY AND COMPLETENESS

The partial expansion for the functionj (0)(p,a,n) has the form~p0 /m:5coshx, np :
5p/upu, np :5(sinup coswp ,sinup sinwp ,coswp), upu/m5sinhx!,

j~0!~p,a,n!5(
l50

`

~2l11!i lP l
~0!~coshx,a!Pl~np•n!, ~A1!

with the functions

P l
~0!~coshx,a!5~2 i ! lA p

2 sinhx

G~ ia1 l11!

G~ ia11!
P 21/21 ia

21/22 l ~coshx!, ~A2!

P l
~0!~coshx,a!5 i l

G~ ia11!

G~2 ia1 l11!
~sinhx! l S d

d sinhx D lP ~0!
~0!~coshx,a!, ~A3!

P ~0!
~0!~coshx,a!5

sin~ax!

a sinhx
. ~A4!

The orthogonality and completeness conditions for the functionsj (s)(p,a,n) have the form

1

~2p!3 (
n52s

s E ~n21a2!dadvnjmn
†~s!~p,a,n!jnm8

~s!
~p1 ,a,n!5dmm8d

~3!~p2p1!A11p2/m2,

~A5!

1

~2p!3 (
n52s

s E dp

p0
jmn

~s!~p,a,n!jnm8
†~s!

~p,a1 ,n1!5dmm8

a2

m21a2 d~3!~n2n1!d~a2a1!.

~A6!
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Effective action of composite fields for general gauge
theories in Batalin, Lavrov, and Tyutin covariant formalism
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The gauge dependence of the effective action of composite fields for general gauge
theories in the framework of the quantization method by Batalin, Lavrov and Tyu-
tin is studied. The corresponding Ward identities are obtained. The variation of
composite fields effective action is found in terms of new set of generators depend-
ing on composite field. The theorem of the on-shell gauge fixing independence for
the effective action of composite fields in such formalism is proven. A brief dis-
cussion of gravitational-vector induced interaction for Maxwell theory with com-
posite fields is given. ©1997 American Institute of Physics.
@S0022-2488~97!02405-5#

I. INTRODUCTION

The advanced methods of covariant quantization for general gauge theories are based e
the BRST symmetry principle realized in the well-known quantization scheme by Batalin
Vilkovisky1 or on the extended BRST symmetry principle recently realized within the quan
tion method by Batalin, Lavrov and Tyutin~BLT!.2 The various aspects and properties of t
gauge field theory within the BV quantization have been under study for quite a long time
may be considered well known~see, for example, reviews3,4!. On the same time the study o
properties as well as various possibilities of interpretation and generalizations of gauge theo
the BLT quantization2 has been started quite recently.5–16 Following the line of the research o
Refs. 5–16 the present paper is devoted to the study of one of the central problems ari
quantum gauge field theory within the Lagrangian formalism, i.e., gauge dependence of gen
functionals of Green’s functions in general gauge theories with composite fields.

Our interest in consideration of composite fields within the BLT formalism is for a numbe
reasons. First of all, since the work17 ~for a review, see Ref. 18! where the formalism to study th
effective action~EA! for composite fields has been introduced such EA is often used to discus
dynamical chiral symmetry breaking phenomenon in different models using, for exam
Schwinger–Dyson equations. Second, in four-fermion models19 the fermions form the composit
bound states which may play the role of Higgs field for discussion of dynamical symm
breaking in the Standard Model~see Ref. 20 and references therein!. Third, in the models of
inflationary Universe the composite bound state may play the role of the inflaton. Finally
Wilson effective action for composite fields may be extremely important in recent studies o
exact results in SUSY theories~for a review, see Ref. 21!.

The paper is organized as follows. In Sec. II we give a short review of the BLT formalism
Sec. III we derive the Ward identities for effective action of composite fields in general g
theories in the framework of the quantization method by Batalin, Lavrov, and Tyutin. Sec.

a!Electronic mail: lavrov@tspi.tomsk.su
b!Electronic mail: sergei@ecm.ub.es
c!Electronic mail: reshet@phys.tsu.tomsk.su
0022-2488/97/38(7)/3466/12/$10.00
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devoted to the study of gauge dependence structure for composite fields EA. In Sec.
example of this effective action is considered. Concluding remarks are given in Sec. VI. I
paper we use the notations of Ref. 2.

II. BATALIN–LAVROV–TYUTIN QUANTIZATION

In this section we give a short review of the main features of the BLT quantization metho
general gauge theories. In order to do this we start from the definition of general gauge th

Let us consider the theory of fieldsAi( i51,2, . . . ,n,«(Ai)5« i) for which the initial classical
actionS (A) is invariant under the gauge transformationsdAi5Ra

i (A)ja:

S ,i~A!Ra
i ~A!50,

a51,2, . . . ,m, 0,m,n, «~ja!5«~a!, ~1!

where«(ja) are arbitrary functions, and theRa
i (A) are generators of gauge transformations. W

suppose the setRa
i (A) is a complete one. One can say that as a consequence of the condit

completeness the algebra of generators has the following general form:

Ra, j
i ~A!Rb

j ~A!2~21!«a«bRb, j
i ~A!Ra

j ~A!52Rg
i ~A!Fab

g ~A!2S ,i~A!Mab
i j ~A!, ~2!

where the structural functionsFab
g andMab

i j satisfy the conditions

Fab
g 52~21!«a«bFba

g ,

Mab
i j 52~21!« i« jMab

j i 52~21!«a«bMba
i j .

The gauge theories whose generators satisfy Eq.~2! are called general gauge theories. As it h
already been mentioned, covariant quantization of such theories in the framework of a st
BRST symmetry in modern form has been proposed by Batalin and Vilkovisky.1

To construct the BLT–quantization scheme it is necessary to introduce the total configu
spacefA. For irreducible theories the total configuration spacefA has the following form:

fA5~Ai ,Ba,Caa!, «~fA!5«A .

HereCaa is Sp~2!– doublet of ghost (a51) and antighost (a52) fields~Faddeev–Popov fields!,
Ba are auxiliary fields

«~Ba!5«a , «~Caa!5«a11.

For reducible theories the complete set of field variablesfA also includes pyramids of the ghost
the antighosts and the Lagrange multipliers which are combined into irreducible representat
the Sp~2! group ~for more detailed discussion, see Ref. 2!.

For each fieldfA of the total configuration space one introduces three kinds of antifi
fAa* ,«(fAa* )5«A11 andf̄A ,«(f̄A)5«A . The antifieldsfAa* may be treated as sources of BRS
and antiBRST transformations, whilef̄A corresponds to the source of their combined transform
tion.

On the space of fieldsfA and antifieldsfAa* one defines odd symplectic structures (,)a called
the extended antibrackets

~F,G!a[
dF

dfA

dG

dfAa*
2~F↔G!~21!~«~F !11!~«~G!11!. ~3!
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The derivatives with respect to fields are understood as right and those with respect to antifi
left.

The extended antibrackets have the following properties:

«~~F,G!a!5«~F !1«~G!11 ,

~F,G!a52~G,F !a~21!~«~F !11!~«~G!11!,
~4!

~F,GH!a5~F,G!aH1~F,H !aG~21!«~G!«~H !,

~~F,G!$a,H !b%~21!~«~F !11!~«~H !11!1cycl.perm.~F,G,H ![0 ,

where curly brackets denote symmetrization with respect to the indicesa,b of the Sp~2! group.
The last relations are the Jacobi identities for the extended antibrackets. In particular, fo
boson functionalK,«(K)50, one can establish that

~~K,K !$a,K !b%[0 .

The operatorsVa,Da are introduced as follows:

Va5«abfAb*
d

df̄A

, «ab52«ba, «1251, ~5!

Da5~21!«A
d l

dfA

d

dfAa*
, ~6!

where the subscriptl denotes the left derivative with respect to the field. It may be shown tha
algebra of operators~5!, ~6! has the form

V$aVb%50, D$aDb%50, D$aVb%1V$aDb%50. ~7!

The action of the operatorsVa ~5! upon the extended antibrackets is given by the relations

V$a~F,G!b%5~V$aF,G!b%2~21!«~F !~F,V$aG!b%. ~8!

The basic object of the BLT scheme is a boson functionalS5S(f,fa* ,f̄), satisfying the
following generating equations:

1
2 ~S,S!a1VaS5 i\DaS ~9!

with the boundary condition

Suf
a*5f̄5\505S ~A!. ~10!

It should be noted that Eq.~9! is compatible. The simplest way to establish this fact is to rew
Eq. ~9! in an equivalent form of linear differential equations

D̄aexpH i

\
SJ 50, ~11!

where operatorsD̄a are defined by the relations
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



T

that

-

3469Lavrov, Odintsov, and Reshetnyak: Effective action of composite fields

¬¬¬¬¬¬¬¬¬¬
D̄a5Da1
i

\
Va.

From ~7! it follows that the operatorsD̄a in ~11! possess the properties

D̄$aD̄b%50, ~12!

and therefore Eq.~9! is compatible.
The quantum actionSext5Sext(f,fa* ,f̄) for constructing of Feynman rules in the BL

scheme is introduced as

expH i

\
SextJ 5exp$2 i\T̂~F !%expH i

\
SJ , ~13!

where the operatorT̂ has the form

T̂~F !5 1
2 «ab@D̄b,@D̄a,F#2#1 . ~14!

F5F(f,fa* ,f̄) is the boson functional fixing a concrete choice of admissible gauge. Note
the operatorT̂ commutes withD̄a for arbitraryF

@ T̂,D̄a#250 , ~15!

and henceSext satisfies Eq.~9!

D̄aexpH i

\
SextJ 50. ~16!

The generating functional of the Green’s functionsZ(J) is defined as

Z~J!5Z~J,fa* ,f̄ !uf
a*5f̄50 , ~17!

where the extended generating functionalZ(J,fa* ,f̄) has the form

Z~J,fa* ,f̄ !5E df expH i

\
@Sext~f,fa* ,f̄ !1JAfA#J . ~18!

It is not difficult to show that the integrand in Eq.~18! for J50 is invariant under the following
global transformations:

dfA5
dSext
dfAa*

ma , dfAa* 50, df̄A52ma«
abfAb* , ~19!

wherema is the Sp~2!–doublet of constant Grassmann parameters («(ma)51). These transfor-
mations are nothing but the extended BRST ones in the BLT quantization.

Note that from definitions~17!, ~18! and Eq.~19! it follows that the extended BRST trans
formations for the generating functionalZ(J) have the form

dfA5
dSext
dfAa*

U
f*5f̄50

ma . ~20!
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The symmetry of the vacuum functionalZ(0) under transformations~20! shows the independenc
of theSmatrix from the choice of a gauge~within the BLT formalism2!.

As a consequence of the fact thatSext satisfies the generating equation~16! one can write the
Ward identities within the BLT formalism. For the extended generating functio
Z5Z(J,fa* ,f̄) ~18! these identities have the form

S JA d

dfAa*
2«abfAb*

d

df̄A
DZ50. ~21!

Introducing in a standard manner the generating functional of the vertex functionsG,

G~f,fa* ,f̄ !5
\

i
ln Z~J,fa* ,f̄ !2JAfA, ~22!

fA5
\

i

d ln Z~J,fa* ,f̄ !

dJA
,

we obtain the Ward identities

1
2 ~G,G!a1VaG50. ~23!

These Ward identities will be used in the study of the gauge dependence of EA.

III. WARD IDENTITIES

In this section we derive the Ward identities for general gauge theories with composite
in the framework of BLT covariant quantization.

Let us introduce the composite fields

sm~f!5 (
n52

1

n!
LA1 . . . An
m fA1 . . .fAn, «~sm![«m . ~24!

Using the quantum actionSext5Sext(f,fa* ,f̄) ~13! we define the generating functiona
Z(J,fa* ,f̄,L) for the composite fieldssm(f) as follows:

Z~J,fa* ,f̄,L !5E df expH i

\
@Sext~f,fa* ,f̄ !1JAfA1Lmsm~f!#J 5expH i

\
W~J,fa* ,f̄,L !J ,

~25!

whereW(J,fa* ,f̄,L) is the generating functional of the connected correlation functions for c
posite fields, andLm are sources forsm.

The Ward identities for general gauge theories with composite fields are obtained as
sequence of the fact thatSextsatisfies the generating equation~16!. To do this one can multiply Eq
~16! on functional

expH i

\
@JAfA1Lmsm~f!#J

and integrate over fieldsfA. Then we have the identities

E df expH i

\
@JAfA1Lmsm~f!#J D̄a expH i

\
Sext~f,fa* ,f̄ !J 50. ~26!
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Carrying out integration by parts in~26! one derives the Ward identities for function
Z(J,fa* ,f̄,L)

H S JA1Lms ,A
m S \

i

d

dJD D d

dfAa*
2VaJ Z~J,fa* ,f̄,L !50. ~27!

For the functionalW(f,fa* ,f̄,L) the identities~27! are

H S JA1Lms ,A
a S dW

dJ
1

\

i

d

dJD D d

dfAa*
2VaJW~J,fa* ,f̄,L !50. ~28!

Here we have used the notations

s ,A
m ~f![

dsm~f!

dfA .

Let us introduce the generating functional of vertex functions~effective action! for composite
fieldsG5G(f,fa* ,f̄,S) by the rule

G~f,fa* ,f̄,S!5W~J,fa* ,f̄,L !2JAfA2Lm~Sm1sm~f!!, ~29!

where

fA5
dW~J,fa* ,f̄,L !

dJA
, Sm5

dW~J,fa* ,f̄,L !

dLm
2smS dW

dJ D . ~30!

From definitions~29!, ~30! it follows that

dG

dfA 52JA2Lms ,A
m S dW

dJ D , dG

dSm52Lm . ~31!

Using expression~28! and definition~29! one can obtain the Ward identities forG(f,fa* ,f̄,S) in
the form

1

2
~G,G!a1VaG1

dG

dSm ~s ,A
m ~f̂ !2s ,A

m ~f!!
dG

dfAa*
50, ~32!

where

f̂A5fA1 i\~G921!Aa
d l

dFa , ~33!

Fa5~fA,Sm!, Gab9 5
d lEb

dFa , ~34!

Ea5S dG

dfA 2
dG

dSms ,A
m ~f!,

dG

dSmD . ~35!

These identities are useful in various aspects, in particular, in the study of the gauge depen
They generalize the corresponding Ward identities of Sec. II for the case of composite fiel
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IV. GAUGE DEPENDENCE

In this section we discuss the gauge dependence of generating functionalsZ,W,G for general
gauge theories with composite fields. The derivation of this dependence is based on the fa
any variation of gauge functionalF→F1dF leads to variation of actionSext ~13! and functional
Z ~25!. One can easily check that the variation of action can be expressed in the form

dS expH i

\
SextJ D52 i\T̂~dX̂!expH i

\
SextJ ~36!

with some operatordX̂ of first order with respect todF. For our purposes it is not important t
know the explicit expression of operatordX̂ throughdF. Note only that one can always prese
the operatordX̂ in the following way:

dX̂S f,fa* ,f̄;
d

df
,

d

dfa*
,

d

df̄
,D 5 (

n,m,l50 S dXB1b1 . . . BmbmC1 . . .Cl

A1 . . . An ~f,fa* ,f̄ !

3
d

dfA1
. . .

d

dfAn

d

dfB1b1
*

. . .
d

dfBmbm
*

d

df̄C1

. . .
d

df̄Cl
D .

~37!

From Eqs.~14!, ~16!, and~36! it follows that variation of functionalZ can be written as

dZ~J,fa* ,f̄,L !5E df expH i

\
@JAfA1Lmsm~f!#J ~2 i\T̂~dX̂!!expH i

\
Sext~f,fa* ,f̄ !J

52
i\

2
«abE df expH i

\
@JAfA1Lmsm~f!#J D̄bD̄adX̂ expH i

\
Sext~f,fa* ,f̄ !J .

~38!

Carrying out integration by parts in the functional integral~38! one can rewrite the variation o
Z in the form

dZ~J,fa* ,f̄,L !5
i

2\
«abq̂

bq̂adX̂S \

i

d

dJ
,fa* ,f̄;

1

i\ S J1Ls ,S \d

idJD D , d

dfa*
,

d

df̄ DZ~J,fa* ,f̄,L !,

~39!

whereq̂a stands for an operatorial Sp~2! doublet

q̂a52FJA1Lms ,A
m S \

i

d

dJD G d

dfAa*
1Va, ~40!

which is directly verified to satisfy the relations

q̂$aq̂b%50 . ~41!

From relations~39! and~40! taking into account of the Ward identities~27! for Z and the fact
that

dZ5
i

\
dWZ,
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it follows the expression for the variation of functionalW(J,fa* ,f̄,L):

dW~J,fa* ,f̄,L !5 1
2 «abQ̂

bQ̂a^dX̂&, ~42!

where the operatorsQ̂a are related toq̂a through a unitary transformation

Q̂a5expH 2
i

\
WJ q̂aexpH i

\
WJ

and have the form

Q̂a52FJA1Lms ,A
m S dW

dJ
1

\

i

d

dJD G d

dfAa*
1Va. ~43!

As a consequence of Eq.~41! Q̂a possess the following properties:

Q̂$aQ̂b%50 . ~44!

In ~42!, the notation̂ dX̂& is used for the vacuum expectation value of the operatordX̂

^dX̂&5dX̂S dW

dJ
1

\d

idJ
,fa* ,f̄;

1

i\ S J1Ls ,S dW

dJ
1

\d

idJD D , d

dfa*
1

i

\

dW

dfa*
,

d

df̄
1

i

\

dW

df̄ D .
Let us find the expression fordG(f,fa* ,f̄,S). To this end, we must study some differenti

consequences from the Ward identities forZ, W and use the following observations that are
consequence of definitions~29!–~31!. Namely,

dW5dG,

d

dfauJ,L*
5

d

dfauf,S*
1

df

dfa*
d l

df uf
a,S*

1
dS

dfa*
d l

dS uf,f
a*
,

VuJ,L
a 5Vuf,S

a 1Vaf
d l

df uf̄,S
1VaS

d l
dS uf,f̄

. ~45!

Next, differentiating the Ward identities forZ ~27! with respect to the sourcesJ and L, then
rewriting these relations for the functionalW and transforming the latter with allowance for Eq
~29!–~31! we obtain the final representation for the variation of the effective action with com
ite fields

dG~f,fa* ,f̄,S!5 1
2 «abŝ

bŝa^^dX̂&&, ~46!

where we have introduced the notations

ŝa5~G,!a1Va1~21!«mS ~s ,A
m ~f̂ !2s ,A

m ~f!!
dG

dfAa*
D d l

dSm1
dG

dSm ~s ,A
m ~f̂ !2s ,A

m ~f!!
d

dfAa*

2
i

\ F dG

dSm S s ,B
m ~f̂ !

dG

dfBa*
FaD 2~21!«aFa

dG

dSm S s ,B
m ~f̂ !

dG

dfBa*
D G d l

dFa
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2
i

\ F dG

dSm S s ,B
m ~f̂ !

dG

dfBa*
sn~f! D 2~21!«nsn~f!

dG

dSm S s ,B
m ~f̂ !

dG

dfBa*
D G d l

dSn

1
i

\
~21!«ns ,C

n ~f!F dG

dSm S s ,B
m ~f̂ !

dG

dfBa*
fCD ~21!«C2fC

dG

dSm S s ,B
m ~f̂ !

dG

dfBa*
D G d l

dSn

1~21!«mFs ,C
m ~f!

dG

dSn S s ,A
n ~f̂ !~G921!Ca

d l
dFa

dG

dfAa*
D ~21!«C«A

2~21!«m«A
dG

dSn S s ,A
n ~f̂ !s ,C

m ~f!~G921!Ca
d l

dFa

dG

dfAa*
D G d l

dSm , ~47!

^^dX̂&&[dX̂S f̂,fa* ,f̄;
1

i\
~2G ,1G ,m@s ,

m~f!2s ,
m~f̂ !# !,

d

dfa*
1

idG

\dfa*
,

d

df̄
1

idG

\df̄ D ,
~48!

while the action of the operators@(G,)a1Va# on an arbitrary functionalG5G(f,fa* ,f̄,S), is
understood as follows:

@~G,!a1Va#G[~G,G!a1VaG[ ŝ0
aG. ~49!

The operatorsŝ0
a are said to be the generators of the quantum extended BRST transform

without composite fields in the BLT method for general gauge theories, while the operatorsŝa can
be considered as a deformation of generatorsŝ0

a related to the presence of the composite fields
the theory.

Since the valuesŝa are obtained through a change of variables, i.e., the Legendre transfo
tion, from the operatorial Sp~2! doubletQ̂a satisfying Eq.~44!, the operatorsŝa must possess the
following algebra:

ŝaŝb50 . ~50!

This is the standard algebra for the extended BRST symmetry. It is surprising that this a
remains the same in case of an arbitrary composite field. Note, however, that the above op
are defined with the help of composite fields EA which satisfy the Ward identities.

The corresponding algebra of the operatorsŝ0
a has the standard form as forŝa

ŝ0
$aŝ0

b%50 , ~51!

which are the consequences of the algebra of operatorsVa in ~7!, of Jacobi identities for the
extended antibrackets~4!, of the Leibnitz rule of the action of theVa on the extended antibracke
~8! and of the Ward identities forG(f,fa* ,f̄) ~23!.

It should be noted that the expression fordG ~46! has very simple and remarkable form. It
defined through the commutator of the operatorsŝa. We expect that the gauge dependence
general gauge theories can be understood also in geometrical terms using, for example, th
BRST cogomology in the same style as in Ref. 22.

Note that the expression fordG can be rewritten in the following equivalent form~cf. Ref. 5!
with the help of systematic use of Ward identities forG ~32! and their differential consequence

dG~f,fa* ,f̄,S!5
dG

dFa W
a1fAa* DAa ~52!
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e on its

vertex
vesti-
pos-
ase.
uge
neral

eep’’
ir dif-
enerat-

in the
the

in this

iverse.
with

er the

the
do not

s.
or-
ctor is

3475Lavrov, Odintsov, and Reshetnyak: Effective action of composite fields

¬¬¬¬¬¬¬¬¬¬
with the fully definite functionalsWa andDAa depending on all the variablesf,fa* ,f̄,S.
From Eq.~52! we get the following Theorem:
Theorem: The generating functional of vertex functionsG(f,fa* ,f̄,S) in the BLT quanti-

zation method of general gauge theories with composite fields does not depend on the gaug
extremals which are defined as

dG

dFa 50 ~53!

and the hypersurface defined by conditions

fAa* 50. ~54!

It is useful to compare this result with the gauge dependence of generating functional of
functions with composite fields in the BV–quantization method. This problem has been in
gated in Ref. 23 with the following result: generating functional of vertex functions with com
ite fields is gauge independent only on its extremals. Here we have a more complicated c

With the help of Eq.~46! one can develop another point of view on the problem of ga
dependence. Namely, the variation of effective action in the BLT quantization method for ge
gauge theories with composite fields is proportional to the commutator of the operatorsŝa which
act on the corresponding variation^^dX̂&&.

Notice that an essential feature of the our proof is the assumption of existence of ‘‘d
gauge invariant regularization preserving the Ward identities and permitting us to use the
ferential consequences. Then we expect that the corresponding completely renormalized g
ing functionals satisfy the same properties as the nonrenormalizable ones.

V. APPLICATIONS: INDUCED GRAVITATIONAL—VECTOR INTERACTION

Let us discuss some cosmological application of the composite fields effective action
external gravitational field. Note that the BLT formalism still has not been generalized to
problems with external fields, so this section lies outside of the general study developed
paper.

There were some discussions recently on the presence of magnetic field in the early Un
It could be of a primordial origin, and be produced in the inflationary Universe. However
usual Maxwell-type Lagrangian it seems to be impossible to produce such a magnetic field.24 One
can consider magnetic field in string cosmology,25 or by addition the terms of formRAmA

m to
Maxwell Lagrangian. However, such terms break gauge invariance.

The way out may be found by using the composite fields effective action. Let us consid
generating functionalW for Maxwell theory (\51):

exp$ iW@J,K#%5E DAm
aexpH i FS1E d4xA2g~JmA

m1KAmA
m!G J , ~55!

whereS52 1
4*d

4xA2gFmnF
mn, the Landau gauge which is an effective gauge is chosen,

presence of the corresponding gauge breaking term and ghost action is supposed. We
discuss the renormalization of the vacuum sector~action for external gravitational field! which has
been studied in detail in Ref. 26.

Study of the generating functional~55! shows that its renormalization induces few term
Among of them there is term of the formKR.27 Using the correspondent nonhomogeneous ren
malization group equation and explicit one-loop calculations one can show that Maxwell se
modifying as
J. Math. Phys., Vol. 38, No. 7, July 1997
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W@0,K#52
1

4E d4xA2gHFmnF
mn2

1

~4p!2
KR ln

uR1Ku
m2 2

12K2

~4p!2
1•••J . ~56!

Hence, the gravitational-vector interaction is induced on quantum level. Such a term m
relevant to produce the strong enough magnetic field in the early Universe in a consisten
~without breaking of gauge invariance on classical level!. Hence, the development of quantizatio
schemes for theories in the external fields is becoming quite important.

VI. DISCUSSION

In summary, composite fields EA for general gauge theories are investigated in fram
BLT-quantization method~Sp~2! formalism!. The new set of operators which depend on comp
ite fields is introduced. Their algebra coincides with the algebra of extended BRST transf
tions. The variation of composite fields EA is found in a very simple form, using this new s
operators and Ward identities. The proof of on-shell gauge fixing independence of the com
fields EA is given. Some properties of EA for composite vector fields are briefly discussed

The importance of the composite fields EA in external background has been mention
cently ~see, for example, Ref. 28! in connection with the study of the exact potential in supersy
metric YM theories. Hence, it is also necessary to generalize the quantization methods a
existing for composite fields EA in an external background. From another side, the conn
study of the structure and properties of gauge theories in the presence of external fields is c
interest due to possible applications. Such an investigation may be quite nontrivial following
the results of Ref. 29 where Ward identities for gauge theories have been obtained with
quantization1 in the presence of external fields. Hence, it is very interesting to generalize
results of this work~Ward identities, Theorem! for the case of external gauge and~or! gravita-
tional background.

Another interesting line of research is in relation to the study of BRST cohomologies22 in BLT
formalism. Recently, using the results of Ref. 22 it has been shown that nonrenormalizable
ries may be renormalizable in a modern sense30 ~taking into account the infinite number o
counterterms!. Then it would be of interest to formulate the proof of Ref. 30 within BLT form
ism ~even taking into account composite fields!.
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APPENDIX

In this appendix we will give a few remarks on Wilson action for composite fermion fie
We consider the theory containing spinorsc and gauge fieldsAm

a .
The generating functionalW ~Euclidean notations are used! is defined as

exp~2W@J# !5E Df exp$2SL~c,c̄,Am!2Jc̄c%, ~A1!

where f is the set of all fields~including ghost! and ghost term and gauge-fixing term a
supposed to be present in~A1!. The Wilson effective action is defined through the introduction
the infrared cut-offL, and background field propagators in~A1! are modified~compare with
standard! as
J. Math. Phys., Vol. 38, No. 7, July 1997
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KL
215E

0

L

dt exp~2tK ! ~A2!

in the actionSL ~for L→` it becomes the standard propagator!. The corresponding flow equatio
for W may be written.

The Wilson effective action is defined via the Legendre transform

GL~^c̄c&!5W@J#2J^c̄c&. ~A3!

Such Wilson effective action for composite fields may be easily applied to study the exact r
in SUSY theories~for more details, see Ref. 28!. It would be extremely interesting to combin
BLT formalism with Wilson effective action formalism. That would definitely enrich both
proaches, but requires very hard work.
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SU(1,1) coherent states and associated Wick symbol
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We display the relationship of Perelomov and Barut–Girardello coherent states
associated with the discrete series of SU~1,1! by establishing the interwining op-
erators. Both Perelomov and Barut–Girardello coherent states are deformations of
Glauber coherent states of Heisenberg–Weyl group, but they approximate the latter
from different sides and exhibit a certain duality. We also develop a symbol cal-
culus of SU~1,1! algebra in terms of Barut–Girardello coherent states~Perelomov
coherent states are not suitable for this purpose! and rederive the disentanglement
~Baker–Campbell–Hausdorff! formula for SU~1,1! generators by the symbol cal-
culus and parameter differentiation technique. ©1997 American Institute of
Physics.@S0022-2488~97!04407-1#

I. INTRODUCTION

The symbol calculus of boson annihilation and creation operatora2,a1 based on Wick
ordering~5normal ordering! is rather popular in quantum physics.1,2 It is of particular advantage
in evaluating matrix elements of quantum mechanical Hamiltonians. The Glauber coherent
play a crucial role in such an algorithm. In Fock–Bargmann representation, the Hilbert spa
quantum states is3

H5H f :C→C,holomorphic,̂ f , f &:5E
C
f ~z! f ~z!dm~z!,`J ,

wheredm(z)5(1/p)e2 z̄z dz̄ dz is the Gaussian measure onC. The spaceH has an orthonorma
base$hn(z)5(zn/An!): n50,1•••% and reproducing kernelew z̄.

The Heisenberg commutation relation@a2,a1#5I can be implemented via the Weyl operat
~displacement operator!

W~u! f ~z!5e2uuu2/22 ūzf ~u1z!, uPC, fPH

which satisfies

WuWv5ei Im ūvWu1v , u,vPC.

For anyuPC, $W(tu):tPR% is a one parameter unitary group with self-adjoint generator

v~u!5
1

i

d

dt
W~ tu!u t505 i ~ ūa12ua2!,

wherea1 anda2 are the creation operator and annihilation operator respectively represent

a1 f ~z!5z f~z!, a2 f ~z!5
]

]z
f ~z!.
0022-2488/97/38(7)/3478/11/$10.00
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In this picture,q:5v( i )5a11a2 and p:5v(1)5 i (a12a2) are the position observable an
momentum observable, respectively.

For anyuPC, the stateeu(z)5eūz is referred to as Glauber coherent state.4 These coheren
states are associated with Heisenberg–Weyl group and have three equivalent forms:4,5 ~1! as the
eigenstate of the annihilation operatora2, in fact, a2eu(z)5ūeu(z); ~2! as the image of a
‘‘displacement operator’’~Weyl operator! acting on the vacuum;~3! as the minimum-uncertainty
state, that is, saturates the Heisenberg uncertainty principle (Dp)2(Dq)2>1 ~note here@p,q#5
22i !. Accordingly, there are three possible ways to generalize the notion of coherent state

By virtue of coherent states, the manipulation of operators can be converted to that of
tions, this is the idea of symbol calculus. In mathematics, this is extensively studied by Ber6

Krée and Rac¸zka1 and many others.2,7 In physics, the method is widely used under the name
Wick ordering.2,8 Recall that a product ofa1’s anda2’s is said to be in Wick ordering, if it is of
the forma1ma2n, that is, if the creation operatora1 always occurs to the left of the annihilatio
operatora2. The Wick symbol calculus of operators onH depends crucially on

~i! a2 anda1 are mutually adjoint,
~ii ! coherent states are eigenstates ofa2, i.e.,a2eu(z)5ūeu(z), moreover, they are overcom

plete.
The fundamental ingredient of the symbol calculus is
~1! for operatorT on H, its symbol is defined as

T̂~j,h!5e2jh̄^ej ,Teh&, j,hPC.

T is uniquely determined byT̂(j,h) which is holomorphic inj and antiholomorphic inh. Clearly,
we have form,n being integers,

a1m̂~j,h!5jm, a2n̂~j,h!5h̄ n, a1m̂a2n~j,h!5jmh̄ n;

~2! for operatorsT andS, their Wick productT:S is defined by

T:Ŝ~j,h!5T̂~j,h!Ŝ~j,h!.

This product characterizes the Wick ordering analytically and algebraically. Clearly Wick pro
is commutative anda1:T5a1T, a2:T5Ta2.

The coherent states have been generalized to Lie groups by Perelomov4,9 and Gilmore.4 The
simplest generalization of Heisenberg–Weyl group is SU~1,1!, the unitary representation of whic
consists three series:9,10 discrete, principal and complementary. There are two different kind
coherent states associated with discrete series of SU~1,1!: one is Perelomov’s ‘‘generalized’
coherent states,9 which are constructed via the displacement operator; the other is Ba
Girardello’s ‘‘new’’ coherent states,11 which arise as the eigenstates of a lowering operator.

The present paper is arranged as follows. In Sec. II, we clarify the relationship of the tw
SU~1,1! coherent states, we observe that they are in some sense dual to each other. In S
following the general method of Berezin, we develop the Wick symbol calculus for SU~1,1!
algebra in terms of Barut–Girardello coherent states and investigate some fundamental pro
of the SU~1,1! operator algebra. As an application, we evaluate in Sec. IV the matrix eleme
some SU~1,1! observable and rederive the well known~but incomplete! disentanglement formula
for SU~1,1! generators by means of parameter differentiation technique.
J. Math. Phys., Vol. 38, No. 7, July 1997
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II. SU(1,1) COHERENT STATES

The most important noncompact non-Abelian group is the pseudounitary group SU~1,1!.
Recall

SU~1,1!5H g5S a b

b̄ ā D :uau22ubu251J ,
and it is locally isomorphic to SO~1, 2!, SP(2,R) and SL(2,R). SU~1,1! also arises as the sym
metric group of the Poincare´ diskD5$zPC:uzu,1%. The action is via Mo¨bius ~fractional linear!
transformation

S a b

b̄ ā
D z5

az1b

b̄z1ā
, zPD.

For l. 1
2, 2l being an integer, letdml(z)5(2l21)/p(12 z̄ z)2l22 dz̄ dz be the~weighted!

Bergman probability measure onD. The discrete series of SU~1,1! can be realized on the Hilber
space9

Hl~D !5H f :D→C,holomorphic,̂ f , f &5E
D
f ~z! f ~z!dml~z!,`J

via

@Tl~g! f #~z!5~2b̄z1a!22l f ~g21z!, g5S a

b̄

b
ā DPSU~1,1!, fPHl~D !.

Hl(D) has an orthonormal base

H un~z!5AG~n12l!

n!G~2l!
zn:n50,1,...J

and reproducing kernelkl(w,z)5(12wz̄)22l, i.e.,

f ~z!5E
D
kl~w,z! f ~w!dml~w!5^kl~•,z!, f &, ; fPHl~D !.

For anywPD, the stateew(z)5(12w̄z)22l is the so-called Perelomov coherent state.9

The ~real! Lie algebra of SU~1,1! has the base

X25S 01 1
0D , X05S i0 0

2 i D , X15S 0 i

2 i 0D
which are conjugate to Pauli matrices. They are exponentiated to one parameter subgro
SU~1,1! as follows:

etX25S cosht sinh t

sinh t cosht D , etX05S eit 0

0 e2 i t D , etX15S cosht i sinh t

2 i sinh t cosht D .
The derived representation of the Lie algebra induced by the discrete series is

dTl~X2!5
d

dt
Tl~etX2!u t5052lz1z2

]

]z
2

]

]z
,

J. Math. Phys., Vol. 38, No. 7, July 1997
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dTl~X0!5
d

dt
Tl~etX0!u t5052 i S 2z ]

]z
12l D ,

dTl~X1!5
d

dt
Tl~etX1!u t5052 i S 2lz1z2

]

]z
1

]

]zD .
Let

K15
1

2
~ idTl~X1!1dTl~X2!!52lz1z2

]

]z
,

K25
1

2
~ idTl~X1!2dTl~X2!!5

]

]z
,

K05
i

2
dTl~X0!5z

]

]z
1l.

Then they satisfy

@K2 ,K1#52K0 , @K0 ,K1#5K1 , @K0 ,K2#52K2 . ~1!

The Perelomov coherent state results from the action of the displacement operatorejK12 j̄K2 on
the vacuum 1, see Ref. 9.

Barut and Girardello have introduced another realization of SU~1,1! Lie algebra.11 The carrier
Hilbert space is

F l5H c :C→C, holomorphic,̂c,c&5E
C
c~z!c~z!dsl~z!,`J ,

where dsl(z)5(2/pG(2l))K2l21(2uzu)uzu2l21 dz dz̄, Kv is the vth order modified Besse
function of the second kind. Using the foumula~cf. Ref. 12, formula 11.4.22!

E
0

`

taKv~ t !dt52a21GS a1v11

2 DGS a2v11

2 D , Re~a6v !.21,

we conclude thatF l has an orthonormal base

H vn~z!5A G~2l!

n!G~n12l!
zn:n50,1, . . .J

and reproducing kernel

fl~w,z!5 (
n50

`

cn~wz̄!
n, cn5

G~2l!

n!G~n12l!
.

The derived Lie algebra of SU~1,1! is realized as

J15z, J25z
]2

]z2
12l

]

]z
, J05z

]

]z
1l.

Note J1 andJ2 are mutually adjoint and the commutation relations are
J. Math. Phys., Vol. 38, No. 7, July 1997
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@J2 ,J1#52J0 , @J0 ,J1#5J1 , @J0 ,J2#52J2 . ~2!

For anywPC, the statefw(z)5fl(z,w) is termed ‘‘new’’ coherent state by Barut and G
rardello. The remarkable point isJ2fw(z)5w̄fw(z).

We have a rigging of Hilbert spaces

F l,H,Hl~D !. ~3!

The dual paring betweenF l andHl(D) consistent with the inner product onH is

^ f ,c&5 (
n50

`

ānbn , f ~z!5 (
n50

`

anvn~z!PF l , c~z!5 (
n50

`

bnun~z!PHl~D !.

Let’s define the integral transformL:Hl(D)→F l by

L f ~z!5E
D
ezw̄f ~w!dml~w!.

Proposition 1: L is a unitary map fromHl(D) onto F l . Ke and Je are interwined by
L, i.e., LKeL

215Je , e51, 2, 0.Moreover, L2eu5fu , ;uPD.
Proof: For the first assertion, it suffices to check thatL sends the orthonormal base$un% of

Hl(D) to the orthonormal base$vn% of F l . In fact,

~Lun!~z!5E
D
ezw̄un~w!dml~w!

5E
D
ezw̄AG~n12l!

n!G~2l!
wn

2l21

p
~12w̄w!2l22 dw̄ dw

5E
D
(
l50

`
zl

l !
AG~n12l!

n!G~2l!
w̄lwn

2l21

p
~12w̄w!2l22 dw̄ dw

5E
0

1 zn

n!
AG~n12l!

n!G~2l!
~2l21!r 2n~12r 2!2l22dr25A G~2l!

n!G~n12l!
zn5vn~z!.

The second statement follows readily from the above relation. Now by direct calculation, we

L2eu~z!5E
D
ezw̄S E

D
ew j̄ eu~j!dml~j! D dml~w!

5E
D
ezw̄ew ū dml~w!

5E
D
(
m50

`
~zw̄!m

m! (
n50

`
~wū!n

n!
dml~w!

5 (
m50

` E
D

~ ūz!m

~m! !2
~w̄w!m dml~w!

5 (
m50

`
~ ūz!m

~m! !2 E0
1

r 2m~2l21!~12r 2!2l22dr25fu~z!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Note thatF l is a dense subspace ofH and the transformL can also be interpreted as
transform fromHl(D) into H, whenL is interpreted in this sense, we shall denote it byLH .
Identify H with H* , thenHl* (D) is identified withF l and from the rigging~3! we know that
LH* is a map fromH* toHl* (D). Thus we have the diagram

Hl~D !→
LH

H.H*→
LH*

Hl* ~D !.F l .

Proposition 2: LH sends Perelomov coherent states to Glauber coherent states anH*
sends Glauber coherent states to Barut–Girardello coherent states, that is,

LHeu~z!5eu~z!, LH* eu~z!5fu~z!, uPD.

Proof: By the definition ofLH and the reproducing property,

LHeu~z!5E
D
ew̄zeu~w!dml~w!5eūz5eu~z!.

Now the mapLH* : H→F l is determined by

^LH* eu ,ew&5^eu ,LHew&5^eu ,ew&5euw̄, euPH, ewPHl~D !.

But obviously,^fu ,ew&5euw̄. HenceLH* eu(z)5fu(z).
Remark:~1! It is well known that SU~1,1! admits the Heisenberg–Weyl group as a contract

limit. In this procedure, both Perelomov and Barut–Girardello coherent states approx
Glauber coherent states. It is clear from Proposition 2 that they approximate the latter
different sides.~2! LH sends Perelomov coherent states to a subset of Glauber coherent sta

III. WICK SYMBOL CALCULUS

Following the general method of Berezin,6 we develop in this section the Wick symbo
calculus of SU~1,1! in terms of Barut–Girardello coherent states. The reason for working with
representation rather than that of Perelomov’s is that Barut–Girardello coherent states a
eigenstates of the lowering operatorJ2 , this will be more effective in converting the manipulatio
of operators to that of their symbols.

For any closed linear operatorT onF l whose domain contains the Barut–Girardello coher
states$fj :jPC% ~these states are complete inF l!, let’s define its symbol as

T̂~j,h!5fl
21~j,h!^fj ,Tfh&, j,hPC.

T is uniquely determined byT̂(j,h) which is holomorphic inj and antiholomorphic inh. For
example, we have

Î ~j,h!51, J1̂~j,h!5j, J2̂~j,h!5h̄

and more generally,J1
mJ2

n̂ (j,h)5jmh̄ n.
For operatorsT andS on F l , their Wick productT:S is defined by

T:Ŝ~j,h!5T̂~j,h!Ŝ~j,h!, j,hPC.

The following simple fact will play fundamental role in the sequel.
Lemma 3: Let T be an operator onF l , then
~1! TJ2̂(j,h)5h̄T̂(j,h), J2T̂(j,h)5fl

21(j,h)J2,j@fl(j,h)T̂(j,h)#,
J. Math. Phys., Vol. 38, No. 7, July 1997
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~2! J1T̂(j,h)5jT̂(j,h), TJ1̂(j,h)5fl
21(j,h)J2,h̄@fl(j,h)T̂(j,h)#,

where J2,j5j(]2/]j2)12l(]/]j), J2,h̄5h̄(]2/]h̄2)12l(]/]h̄).
~3! J2,j( f g)5(J2,j f )g12j((]/]j) f )((]/]j)g)1 f J2,jg.
Proof: ~1! By definition andJ2fh5h̄fh , J1fj5J2, j̄ fj ,

TJ2̂~j,h!5fl
21~j,h!^fj ,TJ2fh&5h̄fl

21~j,h!^fj ,Tfh&5h̄T̂~j,h!.

J2T̂~j,h!5fl
21~j,h!^fj ,J2Tfh&5fl

21~j,h!^J1fj ,Tfh&5fl
21~j,h!^J2, j̄ fj ,Tfh&

5fl
21~j,h!J2,j^fj ,Tfh&5fl

21~j,h!J2,j@fl~j,h!T̂~j,h!#.

~2! is proved similarly or just by taking adjoint.
~3! is obvious.
The operators generated byJ1 are characterized by
Proposition 4: Let T be a bounded operator onF l , then the following conditions are

equivalent:
~1! TJ15J1T,
~2! T̂(j,h)5T̂(j,0), ;j, hPC,
~3! T:S5TS, for any operator S onF l .
Proof: (1)⇒(2). By Lemma 3,

J1T̂~j,h!5jT̂~j,h!,

TJ1̂~j,h!5fl
21~j,h!J2,h̄@fl~j,h!T̂~j,h!#

5fl
21~j,h!H jfl~j,h!T̂~j,h!

12h̄S ]

]h̄
fl~j,h! D S ]

]h̄
T̂~j,h! D1fl~j,h!J2,h̄T̂~j,h!J

5jT̂~j,h!1fl
21~j,h!S 2h̄

]

]h̄
fl~j,h!1fl~j,h!h̄

]

]h̄
12lfl~j,h! D

3S ]

]h̄
T̂~j,h! D .

But TJ15J1T impliesTJ1̂5J1T̂, hence

S 2h̄
]

]h̄
fl~j,h!1h̄fl~j,h!

]

]h̄
12lfl~j,h! D S ]

]h̄
T̂~j,h! D50.

If we can show that the operator

P:52h̄
]

]h̄
fl1h̄fl

]

]h̄
12lfl

is injective, then we have (]/]h̄)T̂(j,h)50, henceT̂(j,h) is independent ofh̄ and T̂(j,h)
5T̂(j,0). In fact, letf (h)5(n50

` anh̄
n andPf50, note thatfl(j,h)5(m50

` cm(jh̄)m, we have

(
m,n50

`

cman~2m1n12l!jmh̄m1n50, ;j,hPC.
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This impliesan50, n50,1,••• . Consequently,f50.
(2)⇒(3). Since

T̂~j,h!5fl
21~j,h!^fj ,Tfh&5fl

21~j,h!~Tfh!~j!

~reproducing property!5fh
21~j!~Tfh!~j!.

We have

~Tfh!~j!5T̂~j,h!fh~j!5T̂~j,0!fh~j!.

By linearity, T is the multiplicative operator

T f~j!5T̂~j,0! f ~j!.

Consequently,

TŜ~j,h!5fl
21~j,h!^fj ,TSfh&5fl

21~j,h!T̂~j,0!~Sfh!~j!

~reproducing property!5T̂~j,0!Ŝ~j,h!,

i.e., T:S5TS.
(3)⇒(1). PutS5J1 and note thatT:J15J1T.
In a dual fashion, the operators generated byJ2 are characterized by
Proposition 5: Let T be a bounded operator onF l , then the following conditions are

equivalent:
~1! TJ25J2T,
~2! T̂(j,h)5T̂(0,h), ;j, hPC.
~3! T:S5ST, for any operator S onF l .
Combining the above two Propositions, we obtain the irreducibility of$J1 ,J2%.
Corollary 6: If TJ15J1T, TJ25J2T, then T is a multiple of the identity operator.

IV. DISENTANGLEMENT OF eaJ11bJ01gJ2

Consider the operator

Q:5aJ11bJ01gJ2 , a,b,gPC.

The disentanglement ofeaJ11bJ01gJ2 is well known.13 But the method to derive it is a posterio
verification and rather indirect. Moreover, a factor 2 is missing in the formula~2.20! in Ref. 13,
and whenF250, the formulas there should be understood in a limit sense. We present he
alternative and direct approach to this problem by means of Wick symbol calculus and para
differentiation technique.8 The methodology is rather general and may be applied to other p
lems.

In light of the commutation relation~2! or by the Gaussian decomposition of group elemen
SL(2,C), the complexification of SU~1,1! ~note Gaussian decomposition can not be realized
SU~1,1! itself!, etQ ~t being a parameter! can be put into the Wick ordered form

etQ5ea~ t !J1eb~ t !J0ec~ t !J2,

wherea, b andc are smooth functions oft.
By Lemma 3,
J. Math. Phys., Vol. 38, No. 7, July 1997
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Mt~j,h!:5^fj ,e
tQfh&5ea~ t !j1c~ t !h̄^fj ,e

b~ t !J0fh&5 (
n50

`

cne
a~ t !j1c~ t !h̄1b~ t !~n1l!~jh̄ !n.

Differentiating both sides with respect tot yields

^fj ,Qe
tQfh&5 (

n50

`

cn@a8~ t !j1c8~ t !h̄1b8~ t !~n1l!#ea~ t !j1c~ t !h̄1b~ t !~n1l!~jh̄ !n. ~4!

On the other hand, by Lemma 3 and 2J05@J2 ,J1#,

^fj ,Qe
tQfh&5 K fj ,S aJ11gJ21

b

2
~J2J12J1J2! DetQfhL

5ajMt1gJ2,jMt1
b

2
J2,j~jMt!2

b

2
jJ2,jMt .

Now

J2,j~jMt!52lMt12j
]

]j
Mt1jJ2,jMt .

Thus

^fj ,Qe
tQfh&5~aj1bl!Mt1gJ2,jMt1bj

]

]j
Mt . ~5!

But by Lemma 3~3!,

J2,jMt5J2,jH ~ea~ t !j1c~ t !h̄ !S (
n50

`

cne
b~ t !~n1l!~jh̄ !nD J

5~ja2~ t !12la~ t !!Mt12ja~ t !ea~ t !j1c~ t !h̄
]

]j S (
n50

`

cne
b~ t !~n1l!~jh̄ !nD 1eb~ t !h̄Mt ,

]

]j
Mt5a~ t !Mt1ea~ t !1c~ t !h̄ (

n50

`

cne
b~ t !~n1l!njn21h̄n.

Insert the above to Eq.~5!, we have

^fj ,Qe
tQfh&5 (

n50

`

~aj1ga2~ t !j1ba~ t !j1geb~ t !h̄1bl12lga~ t !

1~2ga~ t !1b!n!ea~ t !j1c~ t !h̄1b~ t !~n1l!cn~jh̄ !n. ~6!

Comparing the coefficients of Eqs.~4! and ~6!, we have

a8~ t !5a1ga2~ t !1ba~ t !, a~0!50, ~7!

b8~ t !5b12ga~ t !, b~0!50, ~8!

c8~ t !5geb~ t ! c~0!50, ~9!
J. Math. Phys., Vol. 38, No. 7, July 1997
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The differential equation~7! is of Riccati type with constant coefficients, a special solut
~without initial condition! is

a0~ t !5
2b2Ab224ag

2g
5

2b2d

2g
, d25b224ag.

Put a(t)5 f (t)1a0(t), then f (t) satisfies the Bernoulli equation

f 8~ t !1d f ~ t !5g f 2~ t !. ~10!

In order to solve Eq.~10!, the casesdÞ0 andd50 should be considered separatively.
~i! Whend50, the solution of Eq.~10! is f (t)5(a12gt)21, a1 being a constant. Hence

a~ t !5
1

a12gt
2

b

2g
.

But a(0)50 impliesa15(2g/b). Hence the solution of Eq.~7! is

a~ t !5
b

2g S 1

12bt/2
21D . ~11!

Now the solutions of Eqs.~8! and ~9! are given, respectively, by

b~ t !522 lnS 12
bt

2 D , ~12!

c~ t !5
2g

b S 1

12bt/2
21D . ~13!

~ii ! WhendÞ0, the solution of Eq.~10! is

f ~ t !5S a2edt1
g

d D 21

, a2 being a constant ~14!

but a(t)5 f (t)2@(b1d)/2g# anda(0)50 imply

a25
g

d
•

d2b

d1b
.

Finally, we obtain

a~ t !5
d

g S d2b

d1b
edt11D 21

2
d1b

2g
. ~15!

Now Eqs.~8! and ~9! are easily solved,

b~ t !5dt22 lnS d1b

2d S d2b

d1b
edt11D D , ~16!

c~ t !5
d

a S d2b

d1b
edt11D 21

1
2g

d2b
. ~17!

In summary, we have proved
J. Math. Phys., Vol. 38, No. 7, July 1997
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Theorem 7: The following disentanglement property holds,

et~aJ11bJ01gJ2!5ea~ t !J1eb~ t !J0ec~ t !J2,

where a(t), b(t) and c(t) are given by Eqs.~11!, ~12!, and ~13!, respectively~whenb224ag
50! and by Eqs.~15!, ~16!, and ~17!, respectively, whenb224agÞ0.

Remark:~1! Due to Proposition 1 or the commutation relation~1!, the above formula holds
with Ke replacingJe , e51,2,0. ~2! WhendÞ0, formulas~15!, ~16!, and~17! can be rewritten
as

a~ t !5

2a sinh
dt

2

d cosh
dt

2
2b sinh

dt

2

, b~ t !522 lnS coshdt

2
2

b

d
sinh

dt

2 D .

c~ t !5

2g sinh
dt

2

d cosh
dt

2
2b sinh

dt

2

.

Hence consistent with that given by~2.19! and ~2.20! in Ref. 13 @note a factor 2 is missing in
~2.20! there#. ~3! The cased50 may be obtained by lettingd→0 in dÞ0 case.~4! Once we
obtain the disentanglement formula, we can easily verify it by taking matrix representation

J1→S 0 1

0 0D , J2→S 0 0

21 0D , J0→
1

2 S 1 0

0 21D
as advertised by Gilmore.14 ~5! Since the SU~1,1! generators can be realized by two-mode Bo
creation and annihilation operators due to Schwinger~see Ref. 9!, the above symbol calculus ca
be related with that based on Glauber coherent states.
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Quantum canonical transformations and exact solution
of the Schro¨dinger equation
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Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada

~Received 4 December 1996; accepted for publication 25 February 1997!

Time-dependent unitary transformations are used to study the Schro¨dinger equation
for explicitly time-dependent Hamiltonians of the formH(t)5R(t)–J, whereR is
an arbitrary real vector-valued function of time andJ is the angular momentum
operator. The solution of the Schro¨dinger equation for the most general Hamil-
tonian of this form is shown to be equivalent to the special caseR5(1,0,n(t)).
This corresponds to the problem of a driven two-level atom for the spin half
representation ofJ. It is also shown that by requiring the magnitude ofR to depend
on its direction in a particular way, one can solve the Schro¨dinger equation exactly.
In particular, it is shown that for every Hamiltonian of the formH(t)5R(t)–J
there is another Hamiltonian with the same eigenstates for which the Schro¨dinger
equation is exactly solved. The application of the results to the exact solution of the
parallel transport equation and exact holomony calculation for SU~2! principal
bundles~Yang–Mills gauge theory! is also pointed out. ©1997 American Insti-
tute of Physics.@S0022-2488~97!01107-9#

I. INTRODUCTION

In nonrelativistic quantum mechanics the dynamics of pure states is determined by the¨-
dinger equation,

Hc5 i ċ, ~1!

whereH is the Hamiltonian,c is the state vector representing the state, the dot denotes a
derivative, and\ is set to unity. In general the Hamiltonian may be explicitly time-dependen
which case the exact solution of the Schro¨dinger equation is in general not known. In terms of t
time-evolution operatorU5U(t) defined byU(t)c(0):5c(t), the Schro¨dinger equation~1! is
written as

H~ t !U~ t !5 iU ~ t !, U~0!51. ~2!

An alternative expression for this equation isU(t)5T exp@2i*0
t H(t8)dt8], whereT denotes the

time-ordering operator. The purpose of this article is to derive some general sufficiency cond
to obtain the exact solution of Eq.~2! for the dipole Hamiltonians as follows:

H~ t !5 (
a51

3

Ra~ t !Ja5R–J, ~3!

whereRa are real functions of time which do not simultaneously vanish, andJa are generators o
the group SU~2! in some irreducible representation.

Following the same line of reasoning as in the Hamilton–Jacobi theory of classical mech
one can view the inverseU21(t)5U†(t) of the evolution operatorU(t) as a time-dependen
quantum canonical transformation which sets the Hamiltonian to zero. In order to see this

a!Electronic mail: alimos@phys.ualberta.ca
0022-2488/97/38(7)/3489/8/$10.00
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clearly, let us first recall that in quantum mechanics the role of canonical transformations is p
by unitary transformations of the Hilbert space. Now consider an arbitrary time-dependent u
transformationc(t)→c8(t)5U(t)c(t). Requiring this transformation to preserve the form
the Schro¨dinger equation~1!, one has

H~ t !→H8~ t !5U~ t !H~ t !U†~ t !2 iU~ t !U̇†~ t !, ~4!

U~ t !→U8~ t !5U~ t !U~ t !U†~0!. ~5!

Hence,U†(t) induces a particular quantum canonical transformation which renders the t
formed Hamiltonian zero. In other words, if one views the effect of a quantum canonical t
formation as a change of frame in the Hilbert space, then the transformation induced byU†(t)
takes one to a moving frame in which the state vector is stationary, i.e.,c8(t)5c8(0).

As it is manifestly seen from Eq.~4!, quantum canonical transformations also resemble
non-Abelian gauge transformations of particle physics. Therefore, in a sense solving the¨-
dinger equation~2! is equivalent to finding an appropriate gauge in which the state vecto
stationary.@Note however that here there does not exist an analog of a non-Abelian gauge
metry unless one deals with peculiar constraint systems such as those encountered in q
cosmology.#

In this paper I shall try to demonstrate the utility of this simple observation in solving
Schrödinger equation for a large class of Hamiltonians of the form~3!. The basic idea pursued i
this paper is to find a series of unitary~gauge! transformations which simplify the form of th
Hamiltonian and yield previously unknown exactly solvable cases. Of coursea priori there is no
systematic method of choosing appropriate gauge transformations. However, it turns out
least for the systems considered here, one is guided by basic group theoretical prope
angular momentum operators and methods of quantum adiabatic approximation. Proba
most notable feature of this method which makes it so effective is its nonperturbative natu

II. DIPOLE HAMILTONIAN AND PARALLEL TRANSPORTATION IN SU(2) BUNDLES

Consider the Dipole Hamiltonian~3!,

H5H@R#5R–J5r ~sin u coswJ11sin u sin wJ21cosuJ3!5rW~u,w!J3W
†~u,w!, ~6!

which describes the dynamics of a magnetic dipole in a changing magnetic field. HeR:
5(R1,R2,R3)5(r ,u,w) corresponds to the magnetic field vector expressed in units in which
Larmor frequency is set to unity, (r ,u,w) are spherical coordinates, and

W~u,w!:5e2wJ3e2 iuJ2eiwJ3. ~7!

Then an arbitrarily changing magnetic field corresponds to a curveC:@0,T#→R3, R5R(t)
5C(t).

An application of the dipole Hamiltonian~6! is in the parallel transportation in SU~2! principal
fiber bundles~Yang–Mills theory!. This is easily seen by recalling that parallel transportation1 is
defined in terms of a Lie algebra-valued one-form~gauge potential! A5Am

a Jadx
m according to

g@C #5P expS 2 i E
C

AD 5P expS 2 i E
C ~0!

C ~T !

Am
a Jadx

mD 5T expH 2 i E
0

T

ẋm~ t !Am
a @x~ t !#JaJ ,

~8!

whereC :@0,T#→M is a curve in the base manifoldM of the bundle~space–time in Yang–Mills
theory!, andt is an arbitrarily chosen parameter of the curveC . It is very easy to recognize the las
expression on the right-hand side of Eq.~8! as the time-evolution operatorU(T) for a Hamiltonian
J. Math. Phys., Vol. 38, No. 7, July 1997
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of the form~6! with Ra5 ẋm(t)Am
a @x(t)#. Thus an exact solution of the Schro¨dinger equation for

Eq. ~6! yields as a special case the solution for the problem of parallel transportation a
particular the calculation of the holonomy elements and Wilson loop integrals in Yang–
theory.

Let us next recall the basic properties of the most general Hamiltonians of the form~6!.2 It is
not difficult to see that the eigenvaluesEn@R# and eigenvectorsun;R& of H@R# are given by

En@R#5En~r ,u,w!5En~r ,0,0!5nr with n52 j ,2 j11,...,j , ~9!

un;R&5un;~r ,u,w!&5un;~r 0 ,u,w!&5W~u,w!un;~r 0,0,0!&, uP@0,p!, wP@0,2p!, ~10!

where j corresponds to the spinj -representation of SU~2! and determines the Hilbert space, a
(r 0 ,u0 ,w0):5(r (0)),u(0),w(0)). Hence, the HamiltonianH is nondegenerate forrÞ0. In order
to avoid the complications caused by the sudden collapse of all the energy eigenvalues
occurs atr50, I shall only consider the case where the curveC does not pass through the origin
i.e., C(t)5R(t)PR32$0%.

Note that$un;(t,u,w)&% forms a single-valued orthonormal basis of the Hilbert space for
wP@0,2p) anduP@0,p) and thatun;(r ,0,0)& are the eigenvectors ofH(r ,u50,w50)5rJ3 , i.e.,
J3un;(r ,0,0)&5nun;(r ,0,0)&. For u5p,un;(t,u,w)& are not single-valued. This is due to the fa
that the spectral bundle overR32$0%,3 which yieldsun;(t,u,w)& as its local basis sections is no
trivial. In the parametrization ofR32$0% used here the negativez-axis (u5p) is not included in
the patch over whichun;(t,u,w)& are well-defined. To treat the negativez-axis, one must switch
to new coordinatesR8:5(r 85r ,u85p2u,w85w). The eigenvectorsun;R8& will then be single-
valued everywhere except on the positivez-axis. In the following, I shall assume for simplicity bu
without loss of generality that the curveC does not intersect the negativez-axis. In the general
case whereC intersects the negativez-axis, one must make appropriateU(1) gauge transforma
tions which relateun;R& and un;R8&.2

I shall also assume thatun;(0,0)& and thereforeun;R& are eigenvectors of the total angul
momentum operator, i.e., the Casimir operatoruJu25(a51

3 Ja
2. This is always possible unles

Ra are also quantized.2 The latter case will not be considered in the present paper.

III. ADIABATIC APPROXIMATION AND REDUCTION TO TWO-DIMENSIONS

In order to implement the idea of successive quantum canonical transformations, I shall
using the results of the adiabatic approximation. One knows from the standard arguments o
and Fock4 and Kato,5 that if the time-dependence of the Hamiltonian is adiabatic, then in time
eigenstates of the initial HamiltonianH@R(0)# evolve into the eigenstates of the Hamiltonia
H@R(t)#. This is actually very easy to see if one differentiates both sides of the eigen
equation

H~ t !un;t&5En~ t !un,t&, ~11!

and computes the inner product of both sides of the resulting equation withum;t& for somem
Þn. This yields

Amn :5^m;tu
d

dt
un;t&5

^m;tuḢ~ t !un;t&
En~ t !2Em~ t !

, mÞn. ~12!

In Eqs.~11! and ~12!, H(t):5H@R(t)#, un;t&:5un;R(t)&, andEn(t):5En@R(t)#. The adiabatic
approximation is valid if and only if the right-hand side of Eq.~12! is negligible. Now let us
choosec(0)5un;0&, then in view of Eq.~12!, it is easy to show thatc(t)5eian(t)un;t& does solve
the Schro¨dinger equation provided that
J. Math. Phys., Vol. 38, No. 7, July 1997
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an~ t !:5dn~ t !1gn~ t !, dn~ t !:52E
0

t

En~ t8!dt8, gn~ t !:5 i E
0

t

Ann~ t8!dt8. ~13!

The phase anglesan(T), dn(T), andgn(T) for a closed curveC are known as the total, dynam
cal, and adiabatic geometrical~Berry! phase angles.6

The adiabatic approximation which also includes the geometric phase effects correspo
approximating the time-evolution operatorU(t) with

U0~ t !:5(
n

eianun;t&^n;0u. ~14!

In general the approximationU'U0 is not valid. However, one can computeU0 in terms of the
eigenvalues and eigenvectors of the Hamiltonian and useU0

† to perform a quantum canonica
transformation. In the remainder of this section, I shall show that indeed this canonical tra
mation simplifies the form of the Hamiltonian considerably.

In order to do this one must first calculate the matrix elementsAmnwhich enter the calculation
of an and especially the termUU̇

† in Eq. ~4! with U5U0
† . This rather lengthy calculation lead

to

Amn5 i @m~12cosu!dmn1
1
2 sin u~eiwCmdmn211e2 iwCndm21n!#ẇ

1 1
2~e

iwCmdmn212e2 iwCndm21n!u̇, ~15!

whereCm :5A( j2m)( j1m11)5C2m21 , and extensive use is made of the properties ofJa and
J6 :5J16 iJ2 , particularly

e2 ibJaJbe
ibJa5cosbJb1eabc sin bJc , aÞb,

J6um;~r ,0,0!&5\C6mum61;~r ,0,0!&,

whereeabc are components of the totally antisymmetric Levi-Civita symbol, withe12351. Fur-
thermore, one can easily show thatan5na, dn5nd, gn5ng, wherea5d1g, and

d52E
0

t

r ~ t8!dt8, g52E
0

t

@12cosu~ t8!#ẇ~ t8!dt8. ~16!

These relations are then used to write down the expression forU0 , namely,

U0~ t !5W~u~ t !,w~ t !!eia~ t !J3W†~u0 ,w0!, ~17!

whereW is defined in Eq.~7!.
Next let us setU5U0

† in Eq. ~4!. Then using Eq.~15!, one finds the expression for th
transformed Hamiltonian

H0~ t !5 1
2W~u0 ,w0!@V~ t !J11V* ~ t !J2#W†~u0 ,w0!, ~18!

where

V~ t !:5e2 i @a~ t !1w~ t !#@sin u~ t !ẇ~ t !1 i u̇~ t !#. ~19!

One can easily see that ifu05w050, thenW(u0 ,w0)51 and the expression~18! for the
transformed Hamiltonian simplifies considerably. Hence, it is convenient to choose the coor
J. Math. Phys., Vol. 38, No. 7, July 1997
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system in such a way thatu05w050, i.e.,R(0)5(0,0,r 0), or alternatively make a further con
stant unitary transformation usingU5W†(u0 ,w0) which leads to the Hamiltonian

H1~ t !5v~ t !@coss~ t !J12sin s~ t !J2#, ~20!

whereV5:veis, i.e.,

v~ t !:5Au̇21sin2 uẇ2, s~ t !:52a2w1j mod 2p,

cosj:5
sin uẇ

v
, sin j:5

u̇

v
.

One can also combine the two unitary transformations by transformingH by U5U1
†(t) with

U1(t):5U0(t)W(u0 ,w0).
The Hamiltonian~20! describes the dynamics of a magnetic dipole in a time-dependent

netic field which is confined to thex–y plane, i.e., a Hamiltonian of the form~6! corresponding
to a planar curveC1 :@0,T#→R22$0%. Hence, the canonical transformation induced byU1 re-
duces the three-dimensional problem to a two-dimensional one.

IV. EXACTLY SOLVABLE CASES

Consider the Schro¨dinger equation for the HamiltonianH1 . If the angular variables happens
to be constant, then this equation can be easily integrated. This is simply because in th
H1 at different times commute and the transformed evolution operator is obtained by its exp
tiation, i.e.,

U8~ t !5e2 i l ~ t !@coss0J12sin s0J2#, ~21!

where l (t):5*0
t v(t8)dt8,

s0 :5s~0!52w01j~0!52w01tan21F u̇~0!

sin u~0!ẇ~0!
G52w01tan21F u8~w0!

sin u~w0!
G , ~22!

andu8:5du/dw.
Having found the evolution operatorU8 for H1 , one can use Eq.~5! to write down the

solution of the original Schro¨dinger equation~2!. This yields

U~ t !5U1~ t !U8~ t !U1
†~0!5U0~ t !W~u0 ,w0!U8~ t !W†~u0 ,w0! for s~ t !5s0 . ~23!

Note that the parameterss0 and l which enter the expression forU(t) are geometric quantities
associated with the projectionC8 of the curveC onto the unit sphere centered at the origin.
particular,l is the length ofC8. Furthermore for those portions of the curveC which project to a
single point for an extended period of time,v and consequentlyH1 vanish. This is reminiscent o
the known fact that the adiabatic approximation is exact when the eigenvectors of the Hamil
are stationary.

Another way of arriving at the same conclusion is by performing another quantum cano
transformation withU5U2

† :5e2 is(t)J3. This leads to the transformed Hamiltonian

H25v~ t !J11ṡ~ t !J3 . ~24!

Clearly for s5const the Schro¨dinger equation forH2 is exactly solvable. Making a furthe
canonical transformation withU5U3

† :5eil (t)J1, one obtains
J. Math. Phys., Vol. 38, No. 7, July 1997
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H35ṡ@cos l ~ t !J31sin l ~ t !J2# ~25!

which vanishes identically fors5const. Therefore, as expected the combined transformatioU

5(U1U2U3)
† leads to a frame in which the Hamiltonian vanishes and the state vector is st

ary. Hence, the original time-evolution operator is given byU5U1U2U3 .
Let us next re-express the conditions5const. in terms of the original variables. Requirin

ṡ50, one finds the equivalent condition:r (t)5r * (t), where

r * ~ t !:5cosuẇ2
d

dt S u̇

sin uẇ
D /S 11S u̇

sin uẇ
D 2D 5Fcosu2

d

dw S u8

sin u D /S 11S u8

sin u D 2D G ẇ.
~26!

Therefore, one has:
Lemma 1: The exact solution of the Schro¨dinger equation (2) is given by Eq. (23) provide

that the magnitude of the magnetic field depends on its direction according to r(t)5r * (t).
This is quite remarkable, for it indicates that for every Hamiltonian of the form~6! for which

r * does not vanish for extended periods of time, there exists another Hamiltonian with the
eigenvectors@note that the eigenvectors only depend on the direction of the magnetic field# whose
Schrödinger equation is exactly solvable. Note that for time intervals during whichr *,0, one can
consider the time-reversed system wherer *.0. The evolution operator obtained for the tim
reversed system yields the original time-evolution operator upon inversion. This leaves on
cases wherer * vanishes, i.e., eitherẇ50 or u85sinu tan@sinu1c# for some constantc. A
simple case where the latter equation is satisfied isu5p/2 andc521. This means that for the
planar curves withu5p/2 such asC1 , one cannot enforce the conditionr5r * and the exact
solution cannot be obtained in this way. Therefore a direct repetition of the same procedure
HamiltonianH1 will not lead to the exact solution. In the remainder of this section I s
demonstrate, however, that by a straightforward redefinition of the time one can gene
Lemma 1 further.

Let us first note that for the case wherev50 the exact solution is given by the adiaba
approximation. Hence, without loss of generality one can restrict to the casevÞ0. In this case the
length l of the projectionC8 of the curveC is a monotonically increasing function of timet.
Therefore it can be used to parametrize the evolution of the system, i.e., replacet. Changing
variables fromt to l in the Schro¨dinger equation for the HamiltonianH1 and making use ofv
Þ0, one has

H̄1~ l !Ū1~ l !5 i
d

dl
Ū1~ l !, ~27!

where

H̄1~ l !:5coss~ l !J12sin s~ l !J25eis~ l !J3J1e
2 is~ l !J3. ~28!

This reduces the problem to the case of a magnetic field which traces a circular path in thx–y
plane with an angular frequency,n:5ds/dl5(r2r * )/v. Note that the presence ofv(t) on the
right-hand side of Eq.~20! is quite essential in the redefinition of time.

Let us next transform to the rotating frame defined byU5Ū2
†( l ):5e2 is( l )J3. In view of Eq.

~4!, this leads to the transformed Hamiltonian

H̄2~ l !5J11n~ l !J3 , ~29!
J. Math. Phys., Vol. 38, No. 7, July 1997
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which describes a magnetic field with a constantx-component and a variablez-component. Such
systems are widely encountered in the study of nuclear and optical magnetic resonance
recent study of an iterative solution of the Schro¨dinger equation for this Hamiltonian see Refs.
and 8.

Note that forn5n05const.,H̄2 is constant. Hence, the transformed time-evolution operato
given by Ū3( l ):5exp@2il (J11n0 J3)#, and one has

U~ t !5U1~ t !Ū2~ l ~ t !!Ū3~ l ~ t !!Ū2
†~0!U1

†~0!

5U0~ t !W~u0 ,w0!Ū2~ l ~ t !!Ū3~ l ~ t !!Ū2
†~0!W†~u0 ,w0!. ~30!

This concludes the derivation of the exact solution of the Schro¨dinger equation for the case whe
s( l )5s01n0l , alternatively,r (t)5r * (t)1n0v(t). This is a generalization of Lemma 1. It stat
that even for the time periods during whichr *50, the above procedure still leads to exac
solvable Schro¨dinger equations. More precisely, the following lemma holds.

Lemma 2: The exact solution of the Schro¨dinger equation (2) is given by Eq. (30), provide
that the magnitude of the magnetic field depends on its direction according to r(t)5r * (t)
1n0v(t), for some constantn0 .

A direct consequence of this result is
Corollary: For every Hamiltonian of the form (6), there exists another Hamiltonian with

same eigenvectors for which the Schro¨dinger equation is exactly solvable.

V. CONCLUSION

In this paper, I have used a variety of time-dependent unitary transformations of the H
space to obtain the exact solution of the Schro¨dinger equation for a large class of explicit
time-dependent dipole Hamiltonians. This involved redefinition of the time variable which w
consequence of transforming to a moving frame via the inverse of the adiabatically approx
time-evolution operator. In this frame the natural choice for the evolution parameter turned
be the length of the projection of the curveC traced by the tip of the magnetic field onto the un
sphere centered at the origin.

The reduction of the general problem to that of the HamiltonianH̄25J11n( l )J3 may also be
used to set up an approximation scheme for largev. This is due to the fact thatn5(r2r * )/v may
be neglected for largev, in which case Lemma 2 provides the solution.

This is particularly effective for the dipole Hamiltonians which correspond to a planar c
C, for which r *50, e.g.,H̄1 . For these Hamiltonians, the approximation is valid if the param
r (t)/v(t) is negligible. Note also that for such Hamiltonians ifr (t) andv(t) are proportional,
then Lemma 2 yields the exact solution to the Schro¨dinger equation.

Moreover, by successive application of the method used in this reduction, i.e., by rep
the original HamiltonianH by H̄1 and repeating the same analysis, one obtains an itera
solution of the Schro¨dinger equation which yields a product expansion of the time-evolu
operator. The condition of the termination of this expansion after a finite number of iterations
seem to lead to~possibly! more general exactly solvable cases. It turns out that this is in fac
the case. This is because enforcing the condition that the above expansion be terminated a
second iteration leads tov5const., which is certainly not more general than the conditions
Lemma 1 and Lemma 2. This marks a unique property of the Hamiltonians of typeH(t)5J1
1R3(t)J3 .

The results of this paper have direct applications in the computation of the holonomy ele
and Wilson loop integrals in Yang–Mills theory where the gauge group is SU~2!. @Clearly the
U~2! case can also be handled similarly.# In this case the original parametersRa of the Hamil-
tonian ~6! are identified withẋmAm

a , where (Am
a ) corresponds to the local connection one-fo

~gauge potential! and the gauge transformations correspond to quantum canonical transform
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



in the
the

ns to
nonical
icular,

owl-

3496 Ali Mostafazadeh: Exact solution of the Schrödinger equation

¬¬¬¬¬¬¬¬¬¬
of the associated Hamiltonian. Another area of application of the results of this paper is
calculation of non-Abelian U~2! geometric phases9 such as those encountered in the study of
three-level systems.10

Note added.In Ref. 11, Berry has introduced an iterative procedure to compute correctio
the adiabatic geometric phase. Although this procedure also makes use of quantum ca
transformations, unlike the method described in this paper it is perturbative in nature. In part
it cannot be used to yield exact solutions of the Schro¨dinger equation.
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Recovery of singularities from amplitude information
Paul E. Sacks
Department of Mathematics, Iowa State University, Ames, Iowa 50011

~Received 21 December 1996; accepted for publication 18 March 1997!

Let V(x) denote a potential in the one-dimensional Schro¨dinger equation, without
bound states, for which~1! V(x)50 for x,0 and~2! V(x) is piecewise continuous
with adequate decay asx goes to infinity. We are interested in the problem of
determiningV given the reflectivityr (k)5 uR(k)u, whereR is the usual left-hand
reflection coefficient. For very special classes of potentials it is known thatr de-
terminesV uniquely. Here we show that under much more general~although still
restrictive! assumptions, the location and magnitude of discontinuities ofV can be
determined fromr . The nature of the restrictions is related to the behavior of
R(k) for k in the upper half of the complex plane. ©1997 American Institute of
Physics.@S0022-2488~97!01007-4#

I. INTRODUCTION AND MAIN RESULT

In the standard inverse scattering problem for the Schro¨dinger equation one seeks to recov
a potentialV(x) using as data the reflection coefficientR(k) which is a complex valued function
In many interesting applications, however, the phase information inR(k) cannot be measured an
so it is natural to ask what, if any, information about the potential can still be extracted from
amplitude uR(k)u of the reflection coefficient. Some recent papers~e.g., Refs. 1 and 2! have
examined this question, and have identified circumstances under which the potential
uniquely determined. The very extensive literature on phase determination problems~e.g., Refs. 3
and 4 and references therein! may also be consulted for results of this type. In this note we tak
somewhat different point of view and ask whether certain features of the potential can be
biguously determined even if the missing phase data prevents unique recovery ofV. The principal
result is that under certain circumstancesthe singularities of V are uniquely determined b
uR(k)u. We proceed to explain this more precisely.

Consider real valued potentialsV(x) defined forxPR satisfying the following hypotheses
~H1! V(x)50 for x , 0.
~H2! V has no bound states or zero-energy bound states.
~H3! There exist points0<x0,x1,•••,xn,xn115` such that V is continuously differen

tiable on each interval@xj ,xj11#, j50,...,n21 and on[xn ,`) such that

(
j50

n E
xj

xj11
~ uV~x!u~11x2!1uV8~x!u!dx,`. ~1.1!

See Ref. 5, p. 332 for a discussion of zero-energy bound states~also known as half-bound
states!. Potentials are sometimes referred to as exceptional or generic according to wheth
energy bound states do or do not exist, thus we are assuming thatV is generic, which always
holds, for example, ifV is non-negative.

Denote byc5c(x,k) the solution of the Schro¨dinger equation

c91~k22V~x!!c50, xPR ~1.2!

having the form
0022-2488/97/38(7)/3497/11/$10.00
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c~x,k!H 5eikx1R~k!e2 ikx, x,0

;T~k!eikx, x→1`
~1.3!

for all xPR, kPR. The complex valued functionsR and T are the classical reflection an
transmission coefficients, corresponding to an impulsive wave incident from the vacuum r
$x,0%. Under the stated conditions it is well known thatV is uniquely determined byR(k),
k.0 ~e.g., Refs. 5 and 6!.

Now we denote byr (k)5uR(k)u, the reflectivity of the potential and seek to extract inform
tion about the potential fromr only. To describe the main result we must take account of the
thatR has an analytic extension toU, the upper-half of the complex plane, which is furthermo
continuous for Imk>0. In particular the set of roots ofR in U is at most countable. We denote th
set of points$aj% j51

M in whichM<`.
Theorem 1: Assume (H1)–(H3) hold. If M,` and also R(k)Þ0 for kPR then the magni-

tudes and relative locations of all jump discontinuities of V are uniquely determined by
reflectivity r.

By relative location, we mean that if we fix the location of one jump, then the location of
other jump is determined. There is an overall translation invariance corresponding to the
plication ofR by the pure phase factoreikL for someL>0. Aside from the magnitude of eac
jump being determined, the sign of all jumps is also determined once any one of them is spe
If we think of decomposing the potential into a sum of two functions,V(x)5Vpc(x)1Vcont(x) in
whichVpc is piecewise constant andVcont is continuous, then Theorem 1 states that the ‘‘singu
part’’ Vpc is uniquely determined, up to a translation and an overall factor of61 , by the reflection
amplituder under the stated assumptions. In particular, ifV is known to be a piecewise consta
function, then it is uniquely determined byr and the location and sign of its first jump. In man
cases the sign ambiguity may be resolved by reference to the physics of the situation.

Theorem 1 has no content if the potentialV is continuous, but an analogous result could
formulated and proved stating that ifV has continuous derivatives up through orderk21 and
jumps in thekth derivative, thenr determinesV up to a function which isk times continuously
differentiable. Some other variations of Theorem 1 and discussion of the necessity of the h
eses are given in Sec. V.

II. IDEA OF THE PROOF AND PRELIMINARY RESULTS

The main idea in the proof of Theorem 1 is to infer fromr the high frequency behavior of th
Fourier transform

V̂~k!5E
2`

`

V~x!eikx dx. ~2.1!

Specifically, we will produce a functionh(x) using knowledge ofr only, so that

V̂~k!5~21!MeikLĥ~k!1 û~k! ~2.2!

for some constantL>0 and functionu(x) satisfying

uû~k!u<
C

11k2
, kPR ~2.3!

for some constantC. It follows that

V~x!5~21!Mh~x2L !1u~x! ~2.4!
J. Math. Phys., Vol. 38, No. 7, July 1997
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andu(x) is a continuous function ofx ~sinceû is integrable! so that the location and magnitud
of any jump inV must be the same as that for (21)Mh(x2L), which is known up to translation
and sign. We will actually produce two such different choices forh having these properties. On
of these is slightly easier to compute, while the other tends to produce a potential which is
accurate in other respects. We will make no specific claims along these lines, but just illustra
typical difference with a numerical example in Sec. IV.

For the proof we need the functions

f~k!5 lim
z↓0

1

p E
2`

` k2s

~k2s!21z2
log~r ~s!!ds ~2.5!

and

R̃~k!52r ~k!eif~k!. ~2.6!

The functionu, and henceR̃, is well defined, according to the results in Ref. 7. Formally
states that the phase functionf is the Hilbert transform of logr, the result one expects if logR
5log r1i argR is analytic in the upper-half of the complex plane, with suitable behavior a`.
Various ‘‘modified Hilbert transforms’’ have appeared in the literature, and may be more co
nient for computational purposes, see Sec. IV.

The reflection coefficientR of a potential satisfying~H2! always has the property thatR(0)
521 ~see, e.g., Refs. 5 and 6! and R( k̄)5R(2k), so thatr is an even function onR and
R̃(0)521. Thus we haveuR(k)u[uR̃(k)u and below we will claim thatR̃ is a bona fide reflection
coefficient, i.e., there exists a~unique! potential having the reflection coefficientR̃.

We need three lemmas whose proofs will be given following the proof of Theorem 1.
Lemma 2: We have

V̂~2k!52ikR~k!1OS 1k2D , uku→`, kPR. ~2.7!

Lemma 3: We have

R~k!5~21!Me2ikLR̃~k!1OS 1k3D , uku→`, kPR ~2.8!

for some L>0.
Lemma 4: There exists a unique potential V˜ satisfying (H1)–(H3) for which R̃is the left-hand

reflection coefficient.

III. PROOFS

Proof of Theorem 1:Define

h1~x!5
2i

p E
2`

`

kR̃~k!e22ikx dk ~3.1!

so thatĥ1(k)5 ikR̃(k/2), and leth2 be the unique solution of the inverse scattering problem
the reflection coefficientR̃(k) as in Lemma 4. We claim that

uV̂~k!2~21!MeikLĥj~k!u<
C

k211
, kPR ~3.2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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for someL>0, C,`, and j51, 2. We then have

V̂~k!5~21!MeikLĥj~k!1 û j~k!, ~3.3!

where

uû j~k!u<
C

k211
~3.4!

for j51,2. Thus

V~x!5~21!Mhj~x2L !1u j~x!, ~3.5!

where u j is the inverse Fourier transform ofû j . Since*2`
` uû j (k)udk,`, u j is a continuous

function, and the conclusion follows.
To verify the claim forj51, we have

V̂~2k!52ikR~k!1OS 1k2D ~Lemma 2!

52ikS ~21!Me2ikLR̃~k!1OS 1k3D D1OS 1k2D ~Lemma 3!

5~21!Me2ikLĥ1~2k!1OS 1k2D ~definition of h1!. ~3.6!

SinceV̂ and ĥ1 are bounded on any finite set we obtain Eq.~3.2!.
In the casej52 we have as above

V̂~2k!5~21!Me2ikL2ikR̃~k!1OS 1k2D ~3.7!

and from Lemma 2 once again and the definition ofh2

ĥ2~2k!52ikR̃~2k!1OS 1k2D ~3.8!

and Eq.~3.2! follows again. h

We remark thath1(x) is precisely the Born approximation to the potentialh2(x). In Ref. 8
one can find some more refined results about the approximation ofh2 by h1 and functions closely
related toh1 .

Proof of Lemma 2:From standard inverse scattering theory~Ref. 5 or 6! we have the identity

2ik
R~k!

T~k!
5E

2`

`

V~x!eikxf1~k,x!dx ~3.9!

in which f1 denotes the unique solution of the Schro¨dinger equation~1.2! satisfying

lim
x→1`

e2 ikxf1~k,x!51. ~3.10!

According to Ref. 6 the following inequalities hold forF1(k,x)5e2 ikxf1(k,x):
J. Math. Phys., Vol. 38, No. 7, July 1997
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uF1~k,x!21u<
C

11uku
, kPR, x>0, ~3.11!

uF18 ~k,x!u<
C

11uku
, kPR, xPR, ~3.12!

whereC depends only onV. @The estimate stated in Ref. 6 corresponding to Eq.~3.12! seems to
be untrue in general, but the proof given there is clearly correct ifV(x) satisfies the assumptio
~H3!.#

Let 05x0,x1,•••xn,xn115` be chosen so thatV is continuously differentiable on eac
subinterval@xj ,xj11#, j50,...,n21 and on@xn ,`). From Eq.~3.9! there follows

2ik
R~k!

T~k!
2V̂~2k!5E

2`

`

V~x!e2ikx~F1~k,x!21!dx

5(
j50

n E
xj

xj11
V~x!e2ikx~F1~k,x!21!dx

5(
j50

n
e2ikxV~x!~F1~k,x!21!

2ik U
x5xj

x5xj11

1(
j50

n
1

2ik E
xj

xj11
e2ikx~V8~x!~F1~k,x!21!1V~x!F18 ~k,x!!dx.

~3.13!

From the estimates~3.11!–~3.12! and the assumptions onV we see immediately that

UV̂~2k!22ik
R~k!

T~k!
U< C

k2
, uku→`. ~3.14!

By straightforward calculation one sees thatV̂(k)5O(1/k) as uku→` so thatR(k)/T(k)
5O (1/k2). Another standard estimate from scattering theory~e.g., Ref. 5! states that

T~k!511OS 1kD ~3.15!

so that

R~k!2
R~k!

T~k!
5
R~k!

T~k!
~T~k!21!5OS 1k3D ~3.16!

and Eq.~2.7! follows. h

Proof of Lemma 3:It is known ~e.g., Ref. 9!, thatR(k)5ĝ(k) for a functiong(t) satisfying
g(t)50 for t,0, and*2`

` uR(k)u2dk,`. ThusR belongs to the Hardy spaceH2 of the upper-
half plane10,7 and one has the canonical factorization

R~k!5Ce2ikLB~k!S~k!P~k! ~3.17!

in which uCu51, L>0 are constants,B is a Blaschke product for the upper half plane, that is

B~k!5)
j

k2aj
k2ā j

~3.18!

@aj ’s are the roots ofR(k) in U as discussed earlier#
J. Math. Phys., Vol. 38, No. 7, July 1997
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S~k!5expS i E
2`

` 11sk

s2k
dn~s! D ~3.19!

for some nondecreasing functionn~s! of bounded variation onR, n8(s)50 almost everywhere
and

P~k!5expS 1ip E
2`

` ~11sk!log r ~s!

~s2k!~11s2!
ds D . ~3.20!

In Ref. 10 or 7 one will find the more general expression

S k2 i

k11D
m

)
j

uaj
211u
aj
211

k2aj
k2ā j

for the Blaschke product, but since we have assumed the number of zeros to be finite the
expression is equivalent aside from a constant factor of magnitude 1 which we incorpora
C. The formula ~3.20! definesP(k) unambiguously for Imk.0 and is understood to mea
lim
z↓0

P~k1 i z! for kPR.

We claim now that the singular partS(k)[1 and thatP(k)52R̃(k). SinceR(0)521 and
P(0)51 we see thatC521/B(0)5(21)M11 and so

R~k!2~21!Me2ikLR̃~k!5~21!Me2ikLR̃~k!~B~k!21!. ~3.21!

Since the number of terms inB(k) is finite we haveB(k)215O(1/k). Also uR̃(k)u5uR(k)u
5O(1/k2) as above so that the statement of Lemma 3 follows.

To see thatS(k)[1 first note that loguP(k)u is the Poisson integral of logr(k) which is
continuous onR by the assumptions we have made. Thus loguPu and consequentlyuPu itself is
continuous onŪ. The factorization above includes the fact thatP(k) does not vanish inU and by
our assumptionsuPu5rÞ0 on R. ThusS(k) is itself continuous onŪ. However, the singular
functionS cannot have any continuous extension to the support ofn, see, e.g., p. 68 of Ref. 11~the
same conclusion also follows from Exercise 6, p. 55 of Ref. 7! so thatn50.

Finally, the assertion thatP(k) 5 2R̃(k) is equivalent to

f~k!5ImS 1ip E
2`

` ~11sk!log r ~s!

~s2k!~11s2!
ds D ~3.22!

since from Eq.~3.17! we already knowuP(k)u5uR(k)u5r (k). Replacingk by k1 i z in Eq. ~3.22!,
the right side becomes, after straightforward manipulations

2
1

p E
2`

` s2k

~s2k!21z2
log r ~s!ds1

1

p E
2`

` s log r ~s!

11s2 ds. ~3.23!

Sincer is even, the second integral vanishes, and we getf(k) upon lettingz→0. h

Proof of Lemma 4:SinceR( k̄)5R(2k) it follows that if the real part of someaj is nonzero,
then the point2 ā j must also be one of the zeros in the Blaschke productB, and so from the proof
of Proposition 3 we obtain

R̃~k!5e22ikLR~k!)
j51

M
k1aj
k2aj

. ~3.24!
J. Math. Phys., Vol. 38, No. 7, July 1997
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The terme22ikLR(k) is a bona fide reflection coefficient, corresponding toV(x1L). According to
the discussion on pp. 346–347 of Ref. 5 the effect of multiplying by one factor (a1k)/(a2k) is
to create the reflection coefficient for the Darboux transformed potential

V1~x!5V~x1L !22
d2

dx2
log C~x,a!, ~3.25!

whereC(x,a) denotes the solution of

c91~a22V~x1L !!c50 ~3.26!

which satisfiesc(x,a)5e2 iax for x,2L, i.e., it is also a bona fide reflection coefficient. It can
checked thatC(x,a)Þ0 onR so thatV1 is as smooth asV is. Note also thatV1 will have the
same support asV(x1L). If the real part ofa is nonzero then this procedure actually leads t
complex potentialV1 but if we include next the transformation due to the term (2ā1k)/(2ā
2k) the result will be real again. Since there are a finite number of terms inB, we arrive at the
required result. h

We remark that the proof of Lemma 4 could also have been based on the character
Theorem 3, p. 212 of Ref. 6.

IV. NUMERICAL EXAMPLES

The proof of Theorem 1 gives two different explicit choices of functionh(x) having the same
discontinuities asV. In this section we give one example of a potentialV and the corresponding
functions h1 and h2 . Recall thath1(x) is defined by formula~3.1! or equivalentlyh1(x)
524g̃ 8(2x) whereg̃ is the inverse Fourier transform ofR̃. It is convenient to state it this wa
because in computingh2(x), the solution of the inverse scattering problem with reflection co
ficientR1 almost any numerical method, including the one we are using, begins with a com
tion of g̃.

In these computations the scattering dataR(k) for 0,k,kmax was generated by the progra
AMPCAL12 which is based on certain exact solution formulas which may be found in the litera
A high valuekmax5400 was used in order that band limitation effects~i.e., Gibb’s phenomena! be
negligible in the numerically computed solutions. To obtainR̃(k) it is necessary to compute it
phase functionf in Eq. ~2.5! which we have done by means of a numerical method describe
Sec. V of Ref. 13. It is just a matter of using a formula equivalent to Eq.~2.5! which is convenient
for numerical integration. The functionh1 is now obtained directly by Fourier transformation
just mentioned. Computation ofh2(x) requires in addition a numerical solution of the inver
scattering problem with dataR̃, and this was done by the method described in Ref. 9. That me
was also used to solve the inverse scattering problem with the original dataR(x) for comparison
purposes.

In Fig. 1 we show the true potentialV(x) along with h1(x) and the differenceV(x)
2h1(x), and Fig. 2 is the same withh1 replaced byh2 . In this exampleM58, see, e.g., Ref. 14
for an indication of how the value ofM may be determined. The essence of Theorem 1 is s
most clearly in the graphs of the differencesV(x)2hj (x) which should be continuous function
according to the proof of the theorem.

A careful examination of the reconstructions reveals an apparent tendency for the mag
of a jump inh1 or h2 to be consistently less than the corresponding jump inV. This is an effect
of discretization error, and can be remedied by using a finer grid~the grid spacing is 0.05 in thes
figures!, or grid size extrapolation. Another possibility would be to do a careful extrapolatio
the two one-sided limits at each jump point. In Table I we show the exact jump magnitude
jumps estimated fromh2(x) as follows. On each side of a jump we fit a quadratic toh2 at the three
nearest grid points, avoiding the grid point which is nearest to the discontinuity. Evaluatin
J. Math. Phys., Vol. 38, No. 7, July 1997
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interpolating polynomial at the jump point we get estimates of the one-sided limits ofh2 at the
point, and by subtraction we obtain an approximation to the jump inV(x).

In the graph ofu15V2h1 one can see small oscillations occurring at the jump locations.
is again an artifact of discretization, numerical differentiation ofg̃, and the fact thatV andh1 are
not originally computed on the same grid. It does not represent any kind of singularity ac
present inu1 .

The main distinction betweenh1 andh2 , namely thath2 captures accurately the behavior
the potential at the right edge of its support whileh1 does not, is due to the previously noted fa
that a Darboux transformation, as in the proof of Lemma 4, does not widen the support
feature may be viewed as a good reason to take the extra trouble of solving the inverse sc
problem with dataR̃, instead of using the simpler functionh1 .

V. DISCUSSION OF THE HYPOTHESES

Let us finally discuss the significance and necessity of the assumptions that appear in
rem 1.

The hypothesis~H1! seems to be quite essential, since otherwise one cannot expect thatR will
be defined, much less analytic in the upper half plane. The proof relies on the analyticity in s
ways, and indeed the whole statement of the Theorem does not make sense if we cannot
that the zeros$aj% exist. From another point of view, it is exactly the analyticity ofR in U which
makes it possible for there to be some information about the phase ofR inherent in the amplitude
of R. Physically, the assumption~H1! is very natural in certain interesting situations such
neutron or x-ray reflectivity studies15,16 in which V corresponds to a scattering length density
a particle beam incident from a vacuum region, in which no scattering takes place.

The hypothesis~H3! is more technical in nature, and is really a way of saying that
potential is not too complicated and decays sufficiently rapidly asx→1`. It holds, for example,
in the interesting special case of a piecewise constant potential, as long asV(x)50 for large

FIG. 1. The exact potentialV(x) and the functionh1(x) from the proof of Theorem 1 differenceV(x)2h1(x) is also
shown.
J. Math. Phys., Vol. 38, No. 7, July 1997
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enoughx. The condition can certainly be weakened somewhat, and in particular almost o
elements of the proof are correct for potentials which do not decay at all, name
limx→1` V(x)5V`.0, a natural assumption in the neutron or x-ray scattering application.
believe that Theorem 1 remains valid for potentials with this kind of asymptotic behavior.
numerical procedures discussed in the last section may be applied with minimal changes
situation and yield comparable results.

Assumption~H2! is also a technical convenience, and can most likely be weakened.
would need to work with the ratioR/T instead ofR itself. In the applications which motivate thi
work one usually hasV(x)>0 which implies that~H2! holds.

The most significant restriction in the theorem is the requirement thatM , the number of zeros
of R in the upper half plane, be finite. This is, in addition, an uncheckable condition in some s
since it represents precisely the information about the potential which isnot implicit in the given
amplitude information. On the other hand it can be shown to hold under certain assumptions
the potential which may be reasonable to make. Roughly the idea is this: Conditions which
that V̂ has only a finite number of zeros in the upper half plane also imply the same aboutR. Here
is an example.

Proposition 5: Suppose that V satisfies (H1)–(H3) and can be expressed in the form

FIG. 2. The exact potentialV(x) and the functionh2(x) from the proof of Theorem 1 differenceV(x)2h2(x) is also
shown.

TABLE I. Estimates of the jumps inV(x) using an extrapolation procedure.

Location Actual jump Estimated jump

0.0 1.3 1.2933
0.2 0.22 0.2377
0.35 0.33 0.3422
0.75 0.6 0.6159
J. Math. Phys., Vol. 38, No. 7, July 1997
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V~x!5(
j51

n

cjH~x2xj !1V0~x!, ~5.1!

where 05x1,x2,•••xn , H denotes the Heaviside~unit step! function, and V0 is absolutely
continuous with*0

`uV08(x)udx,`. If c1.0 and( j52
n ucj u,c1 then M,`.

Proof:We have

V̂~k!5
i

k S (
j51

n

cje
ikxj D 1V̂0~k!. ~5.2!

The hypotheses imply thatV̂0(k)5o(1/k) ask→` in the closed upper half planeŪ. The state-
ment of Lemma 2 also remains valid fork→` in Ū, hence

24k2R~k!5c11(
j52

n

cje
2ikxj1o~1!, k→`, kPŪ. ~5.3!

If M5` then there is a sequencekl→` in U along whichR(kl)50 so that Eq.~5.3! implies

uc1u<(
j52

n

ucj u

sinceue2ikl xj u,1 for klPU andxj.0. This contradicts the hypothesis. h

Thus the conditionM,` will hold if the potential has a ‘‘dominant singularity’’ at its leadin
edge. This will always hold, for example, ifV(x) is positive and decreasing forx.0. We remark
also that the conditionM,` is sufficient, but probably not necessary for the conclusion
Theorem 1. We have, in fact, found that the numerical procedure described above does yi
correct singularities ofV even in some cases whereM5`. A more refined result along the line
of Theorem 1 might allowM5` but require that the zeros$aj% approach the real axis sufficientl
rapidly asj→`.

On the other hand it is clear that the conclusion of Theorem 1 cannot hold without
restriction onV ~or R! because specification ofuRu also amounts to specification ofuR1u the
right-hand reflection coefficient, due to the well-known identitiesuRu21uTu2515uR1u21uTu2.
Thus, ifV is zero outside of some interval@0,X# the conditions~H1!–~H3! would be satisfied by
V(X2x) whereasuRu5uR1u cannot simultaneously determine the jumps ofV(x) andV(X2x).
If, in fact, R has only a finite number of zeros in the lower half of the complex plane~under these
circumstancesR has a meromorphic extension to the lower half of the complex plane!, then one
can recover the singularities of the reflected potentialV(X2x). It may then be possible on som
physical grounds to distinguish between the correct potential and its reflection.

Finally the condition thatR have no zeros on the real axis is certainly more restrictive t
necessary, although we do not see how to dispense completely with some condition of this
It could be replaced, for example, by the requirement that any real zeros ofR be of finite order
~not an easily checkable condition, unfortunately! and this is in turn automatically satisfied
V(x)50 for sufficiently large positivex.
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Nonlocal symmetries and nonlocal conservation laws
of Maxwell’s equations
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Nonlocal symmetries are obtained for Maxwell’s equations in three space–time
dimensions through the use of two potential systems involving scalar and vector
potentials for the electromagnetic field. Corresponding nonlocal conservation laws
are derived from these symmetries. The conservation laws yield nine functionally
independent constants of motion which cannot be expressed in terms of the con-
stants of motion arising from local conservation laws for space–time symmetries.
These nine constants of motion represent additional conserved quantities for the
electromagnetic field in three space–time dimensions. ©1997 American Institute
of Physics.@S0022-2488~97!00706-8#

I. INTRODUCTION

Conservation laws are important in the study of evolutionary partial differential equa
~PDEs! since they lead to constants of motion for the time evolution of field variables.
familiar conservation laws such as energy, momentum, and angular momentum all involve
expressions in terms of given field variables. Conservation laws given by nonlocal expressio
yield additional constants of motion not obtainable from local conservation laws. As an exam1

we have recently derived nonlocal conservation laws arising through nonlocal symmetries
scalar wave equation in two space–time dimensions with a spatially variable wave spee
physically interesting wave speeds these conservation laws yield new constants of motion
cannot be linearly expressed in terms of the constants of motion yielded by local conser
laws arising through any local symmetries.

The nonlocal conservation laws for the two-dimensional wave equation were obtained th
a general identity1 which generates conservation laws from symmetries, local or nonlocal, ad
ted by any given self-adjoint system of PDEs. For local symmetries, the identity yields the
conservation laws as those generated through Noether’s theorem, whereas for nonlocal s
tries, the identity yields additional conservation laws.

The nonlocal symmetries for the two-dimensional wave equation arise by a systematic m
which uses potentials as a starting point.2–4 The method can be extended toanyPDEs in two or
more dimensions to find nonlocal symmetries systematically in terms of local symmetri
associated potential systems. In three and higher dimensions the potentials have a natura
arbitrariness. To obtain nonlocal symmetries in this case, we show that the associated p
systems must be augmented by gauge constraints.

In this paper we focus on Maxwell’s equations in three space–time dimensions. Throug
use of two self-adjoint potential systems, we obtain gauge-dependent nonlocal symmet
Maxwell’s equations and derive corresponding nonlocal conservation laws which lead to si
constants of motion. One system is given by the wave equation for a scalar potential, and th
system involves an equivalent vector wave equation for scalar and vector potentials togeth
a Lorentz gauge. In terms of these potentials the conservation laws have an essential n

a!Electronic mail: anco@math.ubc.ca
b!Electronic mail: bluman@math.ubc.ca
0022-2488/97/38(7)/3508/25/$10.00
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dependence on the electromagnetic field. The new constants of motion arising from these
vation laws are shown to be functionally independent of the seven constants of motion a
from the local conservation laws for space–time symmetries of Maxwell’s equations.

In Sec. II we present the basic formulation for obtaining nonlocal symmetries for system
PDEs by use of potential systems. Nonlocal symmetries are then found for Maxwell’s equa
Corresponding nonlocal conservation laws are derived in Sec. III. The functional independe
the associated constants of motion is discussed in Sec. IV. In Sec. V we summarize the
results of the paper, with three tables presenting the symmetries, conservation laws, and co
of motion for Maxwell’s equations. Some concluding remarks expanding on the results are
in Sec. VI.

II. BASIC FORMULATION

Consider a system of PDEs given by divergence expressions

Gs~x,u,u
1
,...,u

K
!5DiHs

i ~x,u,u
1
,..., u

K21
!50, s51,...,M , ~2.1!

for N field variablesu5(u1,...,uN) on a space of three independent variablesx5(x0,x1,x2).
Hereu

J
denotes allJth-order derivatives ofu with respect tox, andDi denotes total differentiation

with respect toxi , wherei50,1,2. We use the index notationui1••• i j
t 5Di1

•••Di j
ut for differen-

tiations of ut, where t51,...,N, i J50,1,2, andJ51,2,... . Wealso use the convention tha
summation is assumed over any repeated index in all expressions. All lower case latin indic
over 0,1,2 unless otherwise stated.

It is important to note that any given linear system of PDEs can be transformed to the
~2.1!.4

Definition 2.1: The Fre´chet derivative associated with system (2.1) is the matrix linear
erator

F sr5
]Gs

]ur 1
]Gs

]ui
r Di1•••1

]Gs

]ui1••• i K
r Di1

•••DiK
. ~2.2!

Definition 2.2: A symmetry admitted by system (2.1) is characterized by an infinite
generator

X5hm]/]um, ~2.3!

wherehm satisfies

F srhr50 ~2.4!

for every solution u(x) of system (2.1).
Definition 2.3: A local symmetry admitted by system (2.1) is a symmetry with an infinite

generator of the form

X5hm~x,u,u
1
,...,u

P
!]/]um, ~2.5!

such that, for each value of x, hm depends on u,u
1
,...,u

P
only through u(x),u

1
(x),...,u

P
(x) evalu-

ated at x.
Definition 2.4: A point symmetry admitted by system (2.1) is a local symmetry with an i

tesimal generator of the form
J. Math. Phys., Vol. 38, No. 7, July 1997
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X5„am~x,u!2j i~x,u!ui
m
…]/]um, ~2.6!

wheream and j i depend only on x and u.
Definition 2.5: A nonlocal symmetry admitted by system (2.1) is a symmetry with an i

tesimal generatorX5hm]/]um not of the form (2.5), i.e.,hm has other than just a local depen
dence on u(x) and derivatives of u(x) to some finite order.

All local symmetries of system~2.1! can be determined by Lie’s algorithm.3,5 No correspond-
ing algorithm exists to findall nonlocal symmetries of system~2.1!.

We now present a general method to find special classes of nonlocal symmetries,
potential symmetries, of system~2.1!.

Through Eq.~2.1! we introduce 3M auxiliary potential variablesv5(v i
1,...,v i

M) and form a
potential system given by PDEs

Hs
i 5e i jkD jvk

s , s51,...,M , ~2.7!

where e i jk is the antisymmetric symbol withe01251. The solution space of system~2.1! is
embedded in the solution space of the potential system~2.7!. In particular, if„u(x),v(x)… satisfies
system~2.7!, thenu(x) satisfies system~2.1!; if u(x) satisfies system~2.1!, then there exists som
nonuniquev(x) such that„u(x),v(x)… satisfies system~2.7!. This nonuniqueness is represented
the invariance of system~2.7! under the transformations

vk
s→vk

s1Dkf
s ~2.8!

for arbitrary functionsfs(x), s51,...,M .
Definition 2.6: A potential symmetry admitted by system (2.1) through potential system

is a local symmetry of system (2.7) that does not project onto a local symmetry of system
From this definition it immediately follows that a potential symmetry of system~2.1! is a

nonlocal symmetry. In particular, suppose

X5hm~x,u,u
1
,...,u

P
,v,v

1
,...,v

Q
!]/]um1z i

m~x,u,u
1
,...,u

P
,v,v

1
,...,v

Q
!]/]v i

m , ~2.9!

is a local symmetry of potential system~2.7!. Through Eq.~2.7!, hm and z i
m depend onv only

through its symmetrized derivatives, since all antisymmetrized derivatives ofv and their differ-
ential consequences can be eliminated in terms ofu and its derivatives. Consequently, asv is
determined nonlocally in terms ofu from Eq. ~2.7!, the symmetry~2.9! defines a potential sym
metry of system~2.1! if and only if at least one component ofhm depends essentially onv or
symmetrized derivatives ofv.

For the sequel we now assume that the given system~2.1! is determinedin the sense that it
does not admit any symmetries that involve an arbitrary function ofall the independent variable
x. We see immediately that the potential system~2.7! is, in contrast, not determined since it adm
gauge symmetries

Xf5„Dif
s~x!…]/]v i

s , ~2.10!

arising from the natural gauge freedom~2.8!.
The following theorem now shows that unless gauge constraints are introduced, the po

system~2.7! cannot yield potential symmetries of the given system~2.1!.
Theorem 2.7: Every local symmetry admitted by the nondetermined potential system

projects onto a local symmetry of the determined system (2.1).
Proof: Suppose system~2.7! admits a symmetry~2.9!. Then the system must also admit th

commutator symmetry@Xf ,X# which projects to the symmetry
J. Math. Phys., Vol. 38, No. 7, July 1997
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X85S ]hm

]v i
s Dif

s~x!1
]hm

]v ~ ik !
s DkDif

s~x!1•••1
]hm

]v ~ ik1•••kQ!
s DkQ

•••Dk1
Dif

s~x!D ]/]um

~2.11!

admitted by system~2.1!, wherev ik1•••kJ
s 5Dk1

•••DkJ
v i

s denotes differentiations ofv i
s, with s

51,...,M , andJ51,2,..., andround brackets denote symmetrization of the enclosed indices
Since system~2.1! is assumed to be determined, the symmetryX8 cannot depend on

fs(x). Hence

]hm

]v i
s 5

]hm

]v ~ ik !
s 5•••

]hm

]v ~ ik1•••kQ!
s 50 ~2.12!

and thushm has no dependence onv and its symmetrized derivatives. Consequently, the sym
try ~2.9! projects onto to a local symmetry~2.5! admitted by system~2.1!. h

From Theorem 2.7 it follows that in order to use potential system~2.7! as a means to obtain
potential symmetries of system~2.1! we must augment system~2.7! with auxiliary constraint
equations relating the potentials without destroying the embedding of the solution space of s
~2.1! in the solution space of the augmented system. There is considerable freedom in ch
suchgauge constraints.

Gauge constraints to consider include:
~1! algebraic constraints, such as thetemporal gauge

v0
s50, s51,...,M ~2.13!

or axial gauges

niv i
s50, s51,...,M ~2.14!

wheren1 andn2 are components of a fixed spatial vector andn050, and
~2! differential constraints, such as thedivergence gauge

D1v1
s1D2v2

s50, s51,...,M ~2.15!

or theLorentz gauge

2D0v0
s1D1v1

s1D2v2
s50, s51,...,M ~2.16!

The gauges~2.13!–~2.16! preserve the embedding property of the solution space of sys
~2.1! in the solution space of the potential system~2.7! augmented by any one of these gau
constraints.

For any such augmented system there are equivalent subsystems involving a subse
(u,v) variables whose solution spaces each yield the complete solution space of system~2.1!.
Examples of such equivalent subsystems naturally include the given system~2.1! and augmented
systems arising from algebraic constraints, and also include any systems only involving po
variables arising in algebraic and differential consequences of a given augmented system.
tion 2.6 extends as follows to such equivalent subsystems: A potential symmetry admitt
system~2.1! through an equivalent subsystem is a local symmetry of the equivalent subsyste
does not project onto a local symmetry of system~2.1!.

Most importantly, equivalent subsystems are useful since:

~1! The solution space of any equivalent subsystem yields the complete solution space of
~2.1! and thereby inherits all symmetries of system~2.1!;
J. Math. Phys., Vol. 38, No. 7, July 1997
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~2! Each equivalent subsystem provides a means of determining nonlocal symmetries of
~2.1! in terms of local symmetries, which can be found by Lie’s algorithm.

A. Scalar wave equation

For later use, we first consider the scalar wave equation

gi jDiD ju50 ~2.17!

in three space–time dimensions, wheregi j5gi j5diag(21,1,1) is a diagonal Lorentz metric on th
space of independent variablesx5(x0,x1,x2). Here Eq.~2.17! is already of the form~2.1! with

H1
i 5gi jD ju. ~2.18!

The corresponding potential system~2.7! of three PDEs involving the potentialsv5(v0 ,v1 ,v2) is
given by

gi jD ju5e i jkD jvk . ~2.19!

To obtain potential symmetries of the wave equation~2.17! we consider augmented system
arising from Eq.~2.19! through specific gauge constraints. No potential symmetries are yielde
point symmetries of the augmented system arising through algebraic gauges of the form

niv i50 ~2.20!

for any componentsni(x).6 In contrast, the augmented system arising through the Lorentz g

gi jDiv j50 ~2.21!

does yield potential symmetries.6 In particular, the augmented system consisting of Eqs.~2.19! and
~2.21! admits the following six point symmetries:

X5„a~x,u,v !2j j~x!Dju…]/]u1„b i~x,u,v !2j j~x!Djv i…]/]v i . ~2.22!

Class I ~three of conformal type!:

j j5l jgklx
kxl22lkgklx

jxl , ~2.23a!

a52 1
3~Dkj

k!u1 1
4e

klm~Dljm!vk , ~2.23b!

b i52 1
2~Dkj

k!v i1
1
2g

kl~Dlj i !vk1
1
4gike

klm~Dljm!u, ~2.23c!

where$l i% i50,1,2 are arbitrary constants, andjk5gklj
l .

Class II ~three of duality type!:

z j50,

a5lkg
klv l , ~2.24!

b i5l iu1l lgike
klmvm ,

where$l i% i50,1,2 are arbitrary constants.
These two classes of point symmetries yield six potential symmetries of the wave eq

~2.17! sincea(x,u,v) depends explicitly on the potentialsv. In Class I we call the symmetrie
J. Math. Phys., Vol. 38, No. 7, July 1997
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conformal typesince they project to conformal transformations in the space of independent
ablesx5(x0,x1,x2). In Class II we call the symmetriesduality typesince they represent rotation
on the space of (u,v i) variables.

All other nontrivial point symmetries admitted by the augmented system~2.19! and ~2.21!
project onto point symmetries of the wave equation. For later reference we now list a
nontrivial point symmetries admitted by the wave equation:

(i) three translations

X5~2l iDiu!]/]u ~2.25!

for arbitrary constants$l i% i50,1,2.
(ii) one rotation and two boosts

X5~2l jgkle
i jkxlDiu!]/]u ~2.26!

for arbitrary constants$l j% i50,1,2.
(iii) one dilation

X5~2xiDiu!]/]u. ~2.27!

(iv) three conformal transformations

X5~2 1
6 uDkj

k2j jD ju!]/]u, ~2.28!

wherejk is given by Eq.~2.23a!.

B. Maxwell’s equations

We now consider the source-free Maxwell’s equations in three space–time dimensions

D0E
15D2B, ~2.29a!

D0E
252D1B, ~2.29b!

D0B5D2E
12D1E

2, ~2.29c!

D1E
11D2E

250, ~2.29d!

whereE1 andE2 are the components of the electric vector field andB is the magnetic scalar field
These field equations represent the components of the tensorial equations

DiF
i j50,

~2.30!

D [kFi j ]50,

for the antisymmetric electromagnetic field tensorFi j52F ji andFi j5gikgjl F
kl, with

E15F01, E25F02, B5F12, ~2.31!

wheregi j5gi j is the Lorentz metric on the space of independent variablesx5(x0,x1,x2), and
square brackets denote antisymmetrization of the enclosed indices.

Here the field equations~2.30! are of the form~2.1! with
J. Math. Phys., Vol. 38, No. 7, July 1997
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H1
i 5Fi0,H2

i 5Fi1,H3
i 5Fi2,

~2.32!

H4
i 52g0iF121g1iF022g2iF015 1

2e
i jkF jk ,

for u15E1, u25E2, andu35B. The corresponding potential system~2.7! of 12 PDEs is given by

Fi j5e iklDkwl
j ,

~2.33!

e i jkF jk5e i jkD jwk ,

involving the 12 potentials

v l
15wl

0, v l
25wl

1, v l
35wl

2, v l
45wl . ~2.34!

In terms of the potentials~2.34! the potential system~2.33! admits the gauge symmetries

Xf5„Dlf
j~x!…]/]wl

j1„Dlf~x!…]/]wl ~2.35!

for arbitrary functions$f0(x),f1(x),f2(x),f(x)%. Since Maxwell’s equations~2.30! are a de-
termined system, Theorem 2.7 shows that in order to obtain potential symmetries of Max
equations we must augment the potential system by choosing gauge constraints.

We now impose a Lorentz gauge onwj and an algebraic gauge onwl
j as follows:

gi jDiwj50, ~2.36!

wl
j2 1

3wk
kd l

j50. ~2.37!

From Eq. ~2.37! it follows that the nine potentialswl
j can be expressed in terms of a sing

potentialw through

wl
j5 1

2d l
jw, ~2.38!

whered l
j is the Kronecker symbol. As a result, from the augmented system given by Eqs.~2.33!,

~2.36!, and~2.38!, we arrive at the following equivalent system of seven PDEs:

Fi j52 1
2 e i jkDkw, ~2.39a!

e i jkF jk5e i jkD jwk , ~2.39b!

gi jDiwj50, ~2.39c!

in terms of the electric and magnetic fields$E1,E2,B% and the potentials$w,w0 ,w1 ,w2%. The
residual gauge freedom in this system is given by

w→w1const, ~2.40a!

wk→wk1Dkf, ~2.40b!

wheref is an arbitrary solution of the wave equationgi jDiD jf50.
With the imposed gauge constraints, one can show that the system~2.39! is determined. Most

importantly, the solution space of this system yields the complete solution space of Max
equations~2.30!, as shown by the following more transparent way of arriving at system~2.39!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Since we are in three space–time dimensions, the antisymmetry of the electromagnet
tensor allows it to be expressed as

Fi j5e i jk F̃k ~2.41!

in terms of a dual field vectorF̃k , with

F̃05B, F̃152E2, F̃25E1 ~2.42!

Then Maxwell’s equations~2.30! respectively become

e i jkD j F̃k50, ~2.43a!

gjkD j F̃k50, ~2.43b!

for the dual electromagnetic fieldF̃k . Hence from the curl form of Eq.~2.43a! it directly follows
that the dual electromagnetic field is the gradient of a scalar, which leads to the three
~2.39a!. Similarly, the divergence form of Eq.~2.43b! means that the dual electromagnetic field
the curl of a vector, which directly gives the three PDEs~2.39b!.

Rather than continue to consider system~2.39! we now algebraically eliminate the electro
magnetic field tensor from Eqs.~2.39a! and ~2.39b! and obtain the equivalent subsystem of fo
PDEs

gilDlw5e i jkD jwk , ~2.44a!

gi jDiwj50, ~2.44b!

in terms of the four potentials$w,w0 ,w1 ,w2% alone. From the differential consequences of E
~2.44a! we note thatw satisfies the wave equation

gi jDiD jw50. ~2.45!

System~2.44! is identical to the augmented potential system given by Eqs.~2.19! and~2.21!
for the wave equation~2.17!, under the correspondenceu→w andv i→wi . Through this corre-
spondence we now obtain point symmetries of system~2.44! corresponding to the six poin
symmetries~2.22!–~2.24! admitted by system~2.19! and ~2.21!. We show that these point sym
metries yield six potential symmetries of Maxwell’s equations~2.30!.

The induced symmetries of Eq.~2.30! arising from point symmetries of Eq.~2.44! have the
form

X5h̃ i~x,F̃0 ,F̃1 ,F̃2 ,w,w0 ,w1 ,w2!]/]F̃ i ~2.46!

in terms of the dual electromagnetic fieldF̃k , where all derivatives ofw and antisymmetrized
derivatives ofwk are expressed in terms ofF̃k through Eqs.~2.39a!, ~2.39b!, and~2.41!. From the
point symmetries~2.22!–~2.24!, we obtain two corresponding classes of induced symme
~2.46!:

Class I:

h̃ i52 2
3~Dkj

k!F̃ i2
5
4g

kl~D [ ijk] !F̃ l2jkDkF̃ i2
1
8e

klm~DiDljm!wk

1 1
6~DiDkj

k!w2 1
8e

jkl~Dkj l !D ( iwj ) , ~2.47!

wherejk is given by Eq.~2.23a!, andjk5gklj
l .
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Class II:

h̃ i52 1
2lk~gi j e

jkl F̃ l1gjkD ( iwj )!, ~2.48!

where$l j% j50,1,2 are arbitrary constants.
In both of these classes the components ofh̃ i have an essential dependence on the poten

w andwi . Since these potentials are determined nonlocally in terms of the electromagneti
from Eqs.~2.39a!, ~2.39b!, and ~2.41!, we see that each of the six induced symmetries~2.46!–
~2.48! is a potential symmetry of Maxwell’s equations~2.30!.

One can show that no other point symmetries of system~2.44! yield potential symmetries o
Maxwell’s equations~2.30!.

III. NONLOCAL CONSERVATION LAWS

In Ref. 1 we derived an identity which generates conservation laws from symmetries ad
by any given self-adjoint system of PDEs. Given a linear homogeneous self-adjoint syst
PDEs for field variablesu5(u1,...,uN),

Gs~x,u,u
1
,...,u

K
!5Gsr~x!ur1Gsr

i ~x!ui
r1•••1Gsr

i1••• i K~x!ui1••• i K
r 50, s51,...,N, ~3.1!

then for any nontrivial local or nonlocal symmetry~2.3! admitted by system~3.1! we have a
corresponding conservation law on solutionsu(x),

DiF
i@u,h#50, ~3.2!

where

F i@u,h#52 1
2$u

sGrs
i hr1~uj

s2usDj !~Grs
j i hr!1•••1~ui1••• i K21

s 1•••

1~21!K21usDi1
•••DiK21

!~Grs
i1••• i K21ihr!%1 1

2$h
sGrs

i ur1~Djh
s2hsDj !~Grs

j i ur!

1•••1~Di1
•••DiK21

hs1•••1~21!K21hsDi1
•••DiK21

!~Grs
i1••• i K21iur!%. ~3.3!

For each symmetry admitted by system~3.1! we can obtain additional conservation laws throu
any self-adjoint equivalent system related to system~3.1!, with expression~3.3! applied to the
corresponding induced symmetry of the equivalent system.

In particular, for symmetries of the wave equation~2.17!, we can obtain conservation law
from the wave equation itself as well as from its equivalent potential system given by Eqs.~2.19!
and~2.21!, since both Eq.~2.17! and Eqs.~2.19! and~2.21! are self-adjoint systems of PDEs. Th
leads to two conservation laws for any admitted symmetryX5h]/]u of the wave equation~2.17!.
We obtain

F i@u,h#5gi j ~uDjh2hDju! ~3.4!

directly through Eq.~2.17!, and using the induced symmetryX5h]/]u1h i]/]v i of Eqs.~2.19!
and ~2.21! we obtain

F i@u,h#5gi j ~uh j2v jh!2e i jkv jhk. ~3.5!

Now suppose we are given a linear homogeneous system~3.1! that is not self-adjoint. If there
exists an equivalent system that is self-adjoint, then any of its admitted symmetries yield c
vation laws for the given system~3.1!. Thus, since every such equivalent system inherits
symmetries of the given system, we can obtain corresponding conservation laws for any sym
of the given system~3.1!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Maxwell’s equations~2.30! and its potential system~2.33! are not self-adjoint. However, th
two equivalent systems~2.44! and ~2.45! are self-adjoint. Hence we can use both systems~2.44!
and ~2.45! to obtain conservation laws for any symmetry, local or nonlocal, admitted by M
well’s equations.

Most importantly, since the equivalent systems~2.45! and ~2.44! for Maxwell’s equations
correspond respectively to the wave equation~2.17! and its augmented potential system consist
of Eqs. ~2.19! and ~2.21!, all conservation laws~3.4! and ~3.5! obtained for symmetries of the
wave equation yield conservation laws for the induced symmetries of Maxwell’s equa
through this correspondence.

Definition 3.1: A conservation law of system (3.1) is a local conservation law if and only i
solutions of system (3.1) it has the form DiF

i(x,u,u
1
,...,u

L
)50 such that for each value of x,

F i depends on u only through u(x), u
1
(x),...,u

L
(x) evaluated at x. Otherwise a conservation law

of system (3.1) is a nonlocal conservation law.

A. Nonlocal conservation laws for the wave equation

We now obtain conservation laws for the wave equation~2.17! from the two classes o
nonlocal symmetries~2.22!–~2.24!. Each nonlocal symmetry yields two conservation laws~3.4!
and~3.5! derived from the wave equation and its augmented potential system. These conse
laws are nonlocal as shown by their explicit dependence on the potentialsv i .

1. Conservation laws derived from the wave equation

Class I:The nonlocal symmetries of conformal type~2.23! and the conformal point symme
tries ~2.28! both project to the same conformal transformations on the space of indepe
variablesx. To obtain conservation laws~3.4!, we use symmetries given by subtracting the po
symmetries~2.28! from the nonlocal symmetries~2.23!. This leads to

F i@u,h#52gi j u„16~DjDkj
k!u2 1

4e
klm
„~DjDljm!vk1~Dljm!D ( jvk)…2

1
4g

kl~D [kj j ] !Dlu…

1gi jD ju„j
kDku2 1

4e
klm~Dljm!vk…, ~3.6!

wherej j5gjkj
k, jk is given by Eq.~2.23a!, and (u,v i) is any solution of Eqs.~2.19! and~2.21!.

Class II: Here we directly use the nonlocal symmetries of duality type~2.24! to obtain
conservation laws~3.4!. This yields

F i@u,h#5l lg
klgi j ~uD( jvk)2vkD ju!2 1

2l je
i jkuDku, ~3.7!

wherel j is an arbitrary constant and (u,v i) is any solution of Eqs.~2.19! and ~2.21!.

2. Conservation laws derived from the augmented potential system

Here we use the nonlocal symmetries~2.23! and ~2.24! directly to obtain conservation law
~3.5!.

Class I:

F i@u,h#52~gi j u1e i jkvk!„j
lD ( lv j )1

1
2gjl e

lmnjmDnu2 1
2g

lm~D [mj j ] !v l2
1
4gjl e

lmn~Dmjn!u…

1gi jv j„j
kDku2 1

4e
klm~Dljm!vk…, ~3.8!

wherej j5gjkj
k, jk is given by Eq.~2.23a!, and (u,v i) is any solution of Eqs.~2.19! and~2.21!.

Class II:

F i@u,h#5gi jl j~u
21gklvkv l !12e i jkl jvku22gi j gkllkv jv l , ~3.9!

wherel j is an arbitrary constant and (u,v i) is any solution of Eqs.~2.19! and ~2.21!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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B. Nonlocal conservation laws for Maxwell’s equations

For Maxwell’s equations~2.30!, we now derive corresponding conservation laws from the
classes of nonlocal symmetries~2.46!–~2.48!. The conservation laws are obtained directly throu
the conservation laws~3.6!–~3.9! for the wave equation~2.17! by using the correspondenc
(u,v i)→(w,wi) and eliminating all derivatives ofw as well as antisymmetrized derivatives
wk in terms of the dual electromagnetic fieldF̃k through use of expressions~2.39a! and ~2.39b!.
This leads to conservation laws which are nonlocal as shown by their essential depende
w andwi .

1. Conservation laws derived from the corresponding the wave equation for w

Class I:

F i@ F̃,h̃#52gi jw„ 12g
kl~D [kj j ] !F̃ l2

1
4e

klm~DjDljm!wk1
1
6~DjDkj

k!w2 1
4e

klm~Dljm!D ( jwk)…

1gi j F̃ j„4jkF̃k1
1
2e

klm~Dljm!wk…, ~3.10!

wherej j5gjkj
k, jk is given by Eq.~2.23a! and (F̃k ,w,wj ) is any solution of system~2.39!.

Class II:

F i@ F̃,h̃#5l lg
klgi j ~2wkF̃ j1wD( jwk)!1l je

i jkwF̃k , ~3.11!

wherel j is an arbitrary constant and (F̃k ,w,wj ) is any solution of system~2.39!.

2. Conservation laws derived from the corresponding equivalent system for (w ,w i)

Class I:

F i@ F̃,h̃#5~e i jkwk1gi jw!„gjl e
lmnjmF̃n1

1
2g

lm~D [mj j ] !wl

1 1
4gjl e

lmn~Dmjn!w2j lD ( lwj )…2gi jwj„2jkF̃k1
1
4e

klm~Dljm!wk…, ~3.12!

wherej j5gjkj
k, jk is given by Eq.~2.23a!, and (F̃k ,w,wj ) is any solution of system~2.39!.

Class II:

F i@ F̃,h̃#5gi jl j~w
21gklwkwl !12e i jkl jwkw22gi j gkllkwjwl , ~3.13!

wherel j is an arbitrary constant and (F̃k ,w,wj ) is any solution of system~2.39!.

IV. NEW CONSTANTS OF MOTION

For the sequel we use the notationx05t, x15x, andx25y to denote time and space var
ables, respectively.

Given a conservation law~3.2! for a linear system~3.1!, we let

C@h#5E
R2

F0@u,h#dxdy ~4.1!

evaluated for solutionsu5(u1,...,uN) of the system. Ifu1(x,y,t),...,uN(x,y,t) have appropriate
asymptotic properties in terms of polar variablesr5Ax21y2 andu5arctany/x as r→`, then

dC@h#

dt
52 lim

r→`
E
0

2p

~F1@u,h# cosu1F2@u,h#sinu!du50, ~4.2!

from which it follows thatC@h# defines a constant of motion for system~3.1!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Definition 4.1: A simple conservation law on solutions u of a linear system (3.1) is a
conservation law DiF

i(x,y,t,u,u
1
,...,u

L
)50 such thatF i depends linearly on u and its deriva

tives.
If a given linear system~3.1! is self-adjoint, then all of its simple conservation laws arise fr

expression~3.3! applied to the trivial symmetriesX5hm]/]um where hm is any solution
(u1,...,uN)5(h1,...,hN) of the system. For a linear system~3.1! that is not self-adjoint, we can
obtain its simple conservation laws by finding all factors for the system as well as for differe
consequences of the system, where the factors satisfy the adjoint of the system or diffe
consequences of the system.4,7

Remark 4.2: Since every linear system admits the scaling symmetryX5um]/]um, then with-
out loss of generality all nonsimple conservation laws DiF

i(x,y,t,u,u
1
,...,u

L
)50 for a linear

system can be assumed to haveF i given by a homogeneous expression in u,u
1
,...,u

L
with scaling

degree of at least two.1

In general, for a given linear system~3.1!, one is interested in finding nonsimple conservati
laws yielding constants of motion whose forms do not involve explicit solutions of the sys
Such constants of motion, e.g., energy, momentum, and angular momentum, are useful sin
give a priori constraints on all solutions.

Definition 4.3: A constant of motion of a linear system (3.1) is elementary if and only if it
be expressed in terms of a finite number of constants of motion arising from simple conser
laws for the system. Otherwise a constant of motion of a linear system (3.1) is nonelemen

Let C@h1#,...,C@hK# defineK constants of motion~4.1! arising for a linear system~3.1!.
Then any function ofC@h1#,...,C@hK# also defines a constant of motion of the system.

Definition 4.4: Suppose C@h1#,...,C@hK# are nonelementary constants of motion. Th
C@h1#,...,C@hK# are functionally independent if and only if each one of the K constants of mo
cannot be expressed in terms of the other K21 constants of motion together with any fini
number of elementary constants of motion.

We now obtain the constants of motion arising from the 12 nonlocal conservation
derived in Sec. III for potential symmetries of the wave equation and Maxwell’s equations
proceed to show that six of these constants of motion represent new nonelementary funct
independent constants of motion of the wave equation and Maxwell’s equations.

A. Constants of motion for the wave equation

Consider smooth compact support initial data

u~x,y,t0!5w~x,y!, D0u~x,y,t0!5c~x,y!, ~4.3!

for the wave equation~2.17!. This data determines corresponding initial datav i(x,y,t0) for the
augmented potential system of the wave equation as follows.

The augmented potential system consisting of PDEs~2.19! and ~2.21! has a residual gaug
freedom given by

v i→v i1Dif ~4.4!

for an arbitraryf(x,y,t) satisfying the wave equationgi jDiD jf50. This freedom allows one to
set

v0~x,y,t0!50, D0v0~x,y,t0!50, ~4.5!

by fixing appropriate initial data forf. Then the PDEs~2.19! and~2.21! evaluated att5t0 lead to

D1v11D2v25D0v050, ~4.6a!
J. Math. Phys., Vol. 38, No. 7, July 1997
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D2v12D1v25D0u5c, ~4.6b!

D0v15D1v01D2u5D2w, ~4.6c!

D0v25D2v02D1u52D1w. ~4.6d!

From Eq.~4.6a! we see that

v1~x,y,t0!5D2r~x,y!, v2~x,y,t0!52D1r~x,y!, ~4.7!

for somer(x,y). Then Eq.~4.6b! leads to

c5Dr, ~4.8!

whereD5(D1)
21(D2)

2 is the Laplace operator. Hence, from Eqs.~4.7! and ~4.8!, we have the
initial data

v1~x,y,t0!5D2D
21c~x,y!,

~4.9!

v2~x,y,t0!52D1D
21c~x,y!,

whereD21 is the inverse Laplace operator.
From the differential consequences of PDEs~2.19! and ~2.21! it follows that bothu(x,y,t)

andv i(x,y,t) satisfy the wave equation. One can then show that the initial data~4.5! and~4.9! for
v i along with the initial data~4.3! for u can be evolved by the wave equation to obtain a solut
„u(x,y,t),v i(x,y,t)… of PDEs~2.19! and ~2.21! given by

v0~x,y,t !50,

v1~x,y,t !5D2D
21D0u~x,y,t !, ~4.10!

v2~x,y,t !52D1D
21D0u~x,y,t !.

Expressions~4.10! determinev i in terms of an arbitrary solutionu of the wave equation~2.17!
with compact support initial data. Hence we have an explicit embedding of the solution spa
the wave equation~2.17! into the solution space of the augmented potential system PDEs~2.19!
and~2.21!. It is useful to note that the time derivatives ofv i are expressed in terms ofu from Eq.
~4.10! by

D0v0~x,y,t !50,

D0v1~x,y,t !5D2u~x,y,t !, ~4.11!

D0v2~x,y,t !52D1u~x,y,t !.

We can now evaluate, on solutionsu of the wave equation~2.17!, the constants of motion
arising from the nonlocal conservation laws~3.6!–~3.9! derived through the wave equation~2.17!
and the augmented potential system given by PDEs~2.19! and ~2.21!. In order to simplify the
resulting expressions~4.1! for the constants of motion it is convenient to isolate divergen
D1S

11D2S
2 appearing inF0@u,h#, where the expressionsS1 and S2 involve u, D0u,

D21D0u, and their spatial derivatives. The contribution of such divergences to the expres
~4.1! consists of flux integrals

lim
r→`

E
0

2p

~S1 cosu1S2 sinu!du, ~4.12!
J. Math. Phys., Vol. 38, No. 7, July 1997
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which can be simplified using the compact spatial support ofu andD0u, and the asymptotic
expansion ofD21D0u asr→`.

8 The flux integral appearing in condition~4.2! can be simplified
similarly.

1. Constants of motion derived through the wave equation

We use tildes to indicate constants of motion derived through the wave equation~2.17!.
Class I: From Eq.~3.6! the three conservation laws corresponding to$l i% i50,1,2 lead to

C̃1
I 5E

R2
„D0u~xD11yD2!D

21D0u…dxdy, ~4.13a!

C̃2
I 52E

R2
~uD1D

21D0u!dxdy1tE
R2

~D0uD1D
21D0u!dxdy, ~4.13b!

C̃3
I 52E

R2
~uD2D

21D0u!dxdy1tE
R2

~D0uD2D
21D0u!dxdy. ~4.13c!

In Eq. ~4.13a!, the expression forF0@u,h# can be manipulated into the form of a comple
divergence, yielding a flux integral. Simplifying the integral then leads to

C̃1
I 5

1

4p S E
R2
D0u dxdyD 2, ~4.14!

which is a constant of motion functionally depending on the well-known elementary consta
motion *R2D0u dxdy.

Through similar manipulations, the second terms in Eqs.~4.13b! and~4.13c! can be simplified
to flux integrals which are found to vanish when evaluated using the asymptotic expans
D21D0u. Hence

C̃2
I 52E

R2
~uD1D

21D0u!dxdy, ~4.15!

C̃3
I 52E

R2
~uD2D

21D0u!dxdy. ~4.16!

The expressions forF1@u,h# and F2@u,h# corresponding to the simplified expressions f
F0@u, h# in Eqs. ~4.15! and ~4.16! lead to vanishing flux integrals in condition~4.2! when
evaluated using the asymptotic expansion ofD21D0u. Consequently,C̃2

I andC̃3
I define constants

of motion for the wave equation. Moreover, due to the compact spatial support ofu and the
smoothness of bothu andD21 in the simplified expressions forF0@u,h#, it immediately follows
that bothC̃2

I and C̃3
I arefinite.

Class II: From Eq.~3.7! the conservation law corresponding tol0 hasF
0@u,h#50, and hence

yields an identically zero constant of motion. The conservation laws corresponding tol1 and
l2 lead to expressions forF0@u,h# identical to the expressions given by the second integral
Eqs.~4.13b! and~4.13c!, which each vanish. Hence we obtain two more identically zero const
of motion.

2. Constants of motion derived through the augmented potential system

We use hats to indicate constants of motion derived through PDEs~2.19! and ~2.21!.
Class I:From Eq.~3.8! the three conservation laws corresponding to$l i% i50,1,2 lead to
J. Math. Phys., Vol. 38, No. 7, July 1997
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Ĉ1
I 52E

R2
„u~yD12xD2!D

21D0u…dxdy, ~4.17!

Ĉ2
I 5E

R2
y~D0uD21D0u2u2!dxdy22tE

R2
~uD2D

21D0u!dxdy, ~4.18!

Ĉ3
I 52E

R2
x~D0uD21D0u2u2!dxdy12tE

R2
~uD1D

21D0u!dxdy. ~4.19!

To arrive at these expressions we manipulatedF0@u,h# to isolate divergence terms and used t
asymptotic expansion ofD21D0u to find that the integrals contributed by these terms all van

The expressions forF1@u,h# andF2@u,h# corresponding toF0@u,h# in Eq. ~4.17! lead to
flux integrals satisfying the condition~4.2! similar to the ones arising fromC̃2

I and C̃3
I . For

F0@u,h# in Eqs.~4.18! and~4.19! the corresponding expressions forF1@u,h# andF2@u,h# have
an explicit dependence onu andD0u, leading directly to flux integrals satisfying the conditio
~4.2!. HenceĈ1

I , Ĉ2
I , and Ĉ3

I all define constants of motion for the wave equation. Moreov
from the compact spatial support ofu and the smoothness ofu andD21 in these expressions fo
F0@u,h#, it immediately follows thatĈ1

I , Ĉ2
I , andĈ3

I arefinite.
Class II:Here the conservation laws from Eq.~3.9! corresponding tol1 andl2 respectively

yield

Ĉ1
II52C̃2

I , Ĉ2
II52C̃3

I , ~4.20!

which are constants of motion obtained previously.
The remaining conservation law corresponding tol0 leads to

E
R2

~D0uD21D0u2u2!dxdy1 lim
r→`

C̃1
I ln r ~4.21!

after some manipulations similar to the ones used to simplifyC̃1
I . Since we see that the secon

term in Eq.~4.21! is an infinite constant, we now split it off in order to obtain a finite constan
motion. One can then show that

Ĉ3
II5E

R2
~D0uD21D0u2u2!dxdy ~4.22!

satisfies condition~4.2!, since the expressions forF1@u,h# andF2@u,h# arising from Eq.~4.22!
have compact spatial support through an explicit dependence onu. HenceĈ3

II defines a constan
of motion for the wave equation. Most importantly,Ĉ3

II is finite, due to the compact spatial suppo
of u andD0u together with the smoothness ofu andD21 in Eq. ~4.22!.

B. Constants of motion for Maxwell’s equations

Now consider solutions of Maxwell’s equations~2.29! for B(x,y,t), E1(x,y,t), and
E2(x,y,t) with smooth compact spatial support at any fixedt. Corresponding solutions of th
equivalent system~2.45! given by the wave equation for the potentialw(x,y,t) are determined as
follows.

From the relations given by Eq.~2.39a! it directly follows that

2B52D0w, 2E152D2w, 2E25D1w. ~4.23!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Through Maxwell’s equation~2.29c!, one can then solve Eq.~4.23! for w in terms ofE1 and
E2 at any fixedt, up to a constant which can be set to zero by the residual gauge freedom~2.40a!
in system~2.39!. This leads to

w~x,y,t !52E
g
„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…, ~4.24!

whereg is any smooth curve inR2 from the point (x,y) to any point withr→`. Maxwell’s
equation~2.29d! shows thatw is independent of the choice of curveg. As a result, one can show
thatw has spatial support contained in the union of the spatial supports ofE1 andE2 at any fixed
t.

Thus we have the following explicit correspondence of solutions.
Lemma 4.5: Every solution of Maxwell’s equations (2.29) with compact spatial support y

a corresponding solution of the wave equation (2.45) through expression (4.24). Conversely
solution of the wave equation (2.45) with compact spatial support yields a corresponding so
of Maxwell’s equations (2.29) through expressions (4.23). This correspondence between s
spaces of Maxwell’s equations and the wave equation is one-to-one.

Through Lemma 4.5, it follows that the constants of motion arising from the nonlocal
servation laws~3.10!–~3.13! on solutions (B,E1,E2) of Maxwell’s equations can be obtained fro
the constants of motion~4.14!–~4.19! and ~4.22! arising from the nonlocal conservation law
~3.6!–~3.9! for the wave equation withu→w. This correspondence leads to one element
constant of motion

C̃1
I 5

1

p S E
R2
B dxdyD 2 ~4.25!

and the following six new constants of motion:

C̃2
I 524E

R2
~E2D21B!dxdy,

C̃3
I 54E

R2
~E1D21B!dxdy,

Ĉ1
I 58E

R2
„~yE21xE1!D21B…dxdy,

~4.26!

Ĉ2
I 5E

R2
y~4BD21B2w2!dxdy28tE

R2
~E1D21B!dxdy,

Ĉ3
I 52E

R2
x~4BD21B2w2!dxdy28tE

R2
~E2D21B!dxdy,

Ĉ3
II5E

R2
~4BD21B2w2!dxdy,

wherew is given in terms ofE1 andE2 by Eq. ~4.24!. In obtaining expressions~4.26! we have
used relations~4.23! together with integrations by parts which use the compact spatial suppo
w.
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Since (B,E1,E2) are solutions with compact spatial support andD21B has spatial suppor
almost everywhere, it follows that the constants of motion~4.26! for Maxwell’s equations are
finite and generically nonzero.

C. Independence of the new constants of motion

We now establish that the six constants of motion~4.26! obtained from nonlocal conservatio
laws for Maxwell’s equations are nonelementary, and that each one cannot be expressed i
of the others together with any finite number of constants of motion arising from the
conservation laws for Maxwell’s equations.

In view of the correspondence Lemma 4.5, we first establish corresponding results for t
constants of motion~4.15!–~4.19! and ~4.22! for the wave equation.

Theorem 4.6:For the wave equation (2.17), every constant of motion functionally depen
on at least one of the six constants of motion from nonlocal conservation laws as well as
most any finite number of constants of motion from local conservation laws is nonelement.

Proof: Let ĉk for k51,...,6 denote respectively the constants of motion~4.15!–~4.19! and
~4.22!. Consider a function depending on at least one of the constants of motion$ĉk%k51,...,6 as
well as on a finite numberL1M of constants of motion$c̄k%k51,...,L , $ck%k51,...,M arising respec-
tively from L nonsimple local conservation laws andM simple conservation laws of the wav
equation~2.17!. Suppose this function defines an elementary constant of motion, given
function depending on a finite numberJ of constants of motion$ck%k5M11,...,M1J arising from
J simple conservation laws of the wave equation~2.17!. Then we have

f ~ ĉ1 ,...,ĉ6 ,c̄1 ,...,c̄L ,c1 ,...,cM !5g~cM11 ,...,cM1J! ~4.27!

for some functionsf of 61L1M variables andg of J variables, which we assume to be smoo
where f has an essential dependence on at least one of its first six variables.

Now consider an arbitrary one-parameter family of solutionsu(x,y,t;l) of the wave equation
~2.17! with smooth initial data~4.3! such that supports of

w0~x,y!5u~x,y,t0 ;0!>0, w1~x,y!5
]u

]l
~x,y,t0 ;0!>0,

~4.28!

c0~x,y!5D0u~x,y,t0 ;0!>0, c1~x,y!5
]D0u

]l
~x,y,t0 ;0!>0,

are compact and mutually disjoint. Evaluating Eq.~4.27! for this initial data then leads to

(
k51

6

f̂ k
] ĉk
]l U

l50

5 (
k51

L

f̄ k
] c̄k
]l U

l50

1 (
k51

M1J

f k
]ck
]l U

l50

, ~4.29!

where f̂ k5] f /] ĉkul50 for k51,...,6, and f̄ k52] f /] c̄kul50 for k51,...,L, while f k5
2] f /]ckul50 for k51,...,M , and f k5]g/]ckul50 for k5M11,...,M1J.

Since eachck appearing in Eq.~4.29! arises from a simple conservation law, it can
expressed linearly in terms of the initial data foru(x,y,t;l), and hence we have

]ck
]l U

l50

5E
R2
„Pk~x,y,t0!w0~x,y!1Qk~x,y,t0!c0~x,y!…dxdy ~4.30!

for some fixed functions$Pk(x,y,t),Qk(x,y,t)%k51,...,M1J . Furthermore, from Remark 4.2 it fol
lows that, in terms of the initial data foru(x,y,t;l), eachc̄k appearing in Eq.~4.29! must be given
by a homogeneous expression of scaling degree of at least two. Consequently, we have
J. Math. Phys., Vol. 38, No. 7, July 1997
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] c̄k
]l U

l50

50 ~4.31!

since all the obtained terms are products of initial data and derivatives of initial data with re
to l having disjoint supports when evaluated atl50 as given by Eq.~4.28!.

Through Eq.~4.31! the relation~4.29! simplifies to

(
k51

6

f̂ k
] ĉk
]l U

l50

5 (
k51

M1J

f k
]ck
]l U

l50

. ~4.32!

Now, from Eqs.~4.15!–~4.19! and ~4.22!, we obtain

] ĉ1
]l U

l50

5E
R2

~2w1D1D
21c01c1D

21D1w0!dxdy,

] ĉ2
]l U

l50

5E
R2

~2w1D2D
21c01c1D

21D2w0!dxdy,

] ĉ3
]l U

l50

52E
R2
„w1~yD12xD2!D

21c02c1D
21~yD1w02xD2w0!…dxdy,

~4.33!

] ĉ4
]l U

l50

5E
R2

c1„yD21c01D21~yc0!…dxdy12t0
] ĉ2
]l U

l50

,

] ĉ5
]l U

l50

52E
R2

c1„xD21c01D21~xc0!…dxdy22t0
] ĉ1
]l U

l50

,

] ĉ6
]l U

l50

52E
R2

~c1D
21c0!dxdy,

where, in terms of the initial data~4.28!, we have integrated by parts so thatD21 does not act on
w1 andc1 , using the identity

VD21U5UD21V1“•„~“D21V!D21U2~“D21U!D21V… ~4.34!

together with the asymptotic expansion ofD21 for r→`.
8

Hence, from Eq.~4.33!, we have

(
k51

6

f̂ k
] ĉk
]l U

l50

5E
R2

S c1~D21~bD1w02aD2w01cc0!1dD21c0!

1w1~aD2D
21c01bD1D

21c0! Ddxdy, ~4.35!

where

a~x!52 f̂ 222 f̂ 3x22 f̂ 4t0 ,

b~y!52 f̂ 112 f̂ 3y12 f̂ 5t0 ,
~4.36!

c~x,y!5 f̂ 4y2 f̂ 5x,
J. Math. Phys., Vol. 38, No. 7, July 1997
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d~x,y!5c~x,y!12 f̂ 6 .

From Eq.~4.30! we also have

(
k51

M1J

f k
]ck
]l U

l50

5E
R2

~w1p1c1q!dxdy, ~4.37!

where

p~x,y!5 (
k51

M1J

f kPk~x,y,t0!,

~4.38!

q~x,y!5 (
k51

M1J

f kQk~x,y,t0!,

in terms of the fixed functions$Pk(x,y,t),Qk(x,y,t)%k51,...,M1J .
Sincew1 andc1 are independent data, it follows from Eq.~4.32! that the terms in Eqs.~4.35!

and ~4.37! involving these functions must be separately equal. This immediately leads t
separating equations

E
R2
„w1~aD2D

21c01bD1D
21c02p!…dxdy50,

E
R2

~c1„D
21~bD1w02aD2w01cc0!1dD21c02q!…dxdy50,

with D21c0(x,y) having support almost everywhere, and bothw1(x,y) and c1(x,y) having
arbitrary compact support. Since we can vary each ofw1 and c1 arbitrarily as non-negative
compactly supported functions, it follows that

aD2D
21c01bD1D

21c05p, ~4.39a!

D21~bD1w02aD2w01cc0!1dD21c05q. ~4.39b!

The expressionsa, b, c, d, p, q appearing in Eq.~4.39! have dependence on the initial da
w0 andc0 only throughf k and f̂ k which are functions of the finite number of constants of mot
$ĉk%k51,...,6, $c̄k%k51,...,L , and$ck%k51,...,M1J all evaluated for this initial data. Applying the La
placianD to Eq. ~4.39a! leads to the relation

a~x!D2c0~x,y!1b~y!D1c0~x,y!5Dp~x,y!. ~4.40!

By fixing the values of the constants$ĉk%k51,...,6, $c̄k%k51,...,L , and$ck%k51,...,M1J which comprise
a finite number of integrals involvingc0 , we can varyc0(x,y) as a smooth compactly supporte
function such that the values ofD2c0 andD1c0 at any chosen point (x,y) are arbitrary while
a(x), b(y), andDp(x,y) all remain fixed. Hence, from this arbitrariness,a andb in Eq. ~4.40!
must be identically zero. As a result it follows that

f̂ 15 f̂ 25 f̂ 35 f̂ 45 f̂ 550. ~4.41!

Then Eq.~4.39b! simplifies to

2 f̂ 6D
21c0~x,y!5q~x,y!, ~4.42!
J. Math. Phys., Vol. 38, No. 7, July 1997
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from which one can show that

f̂ 650 ~4.43!

by a similar argument.
Consequently, from Eqs.~4.41! and ~4.43! we have that eachf̂ k vanishes for the initial data

w0 andc0 . Since this data is arbitrary, we thus have

] f

] ĉk
50, ~4.44!

which shows thatf must have no dependence onĉk for k51,...,6. Hence the functional relatio
~4.27! cannot hold. h

From Theorem 4.6 it follows that the six constants of motion obtained from nonlocal co
vation laws for the wave equation are nonelementary, and that each one cannot be expre
terms of the others together with any finite number of constants of motion arising from
conservation laws for the wave equation. Hence, we have the following corollaries from The
4.6.

Corollary 4.7: The six constants of motion (4.15)–(4.19) and (4.22) arising from nonloca
conservation laws for the wave equation are nonelementary and functionally independent.

Corollary 4.8: The six constants of motion (4.15)–(4.19) and (4.22) arising from nonloca
conservation laws for the wave equation are functionally independent of nonelementary con
of motion arising from any finite number of local conservation laws for the wave equation.

Corollaries 4.7 and 4.8 now lead to the following key theorem for the constants of m
~4.26! for Maxwell’s equations.

Theorem 4.9: For Maxwell’s equations (2.29), the six constants of motion (4.26) obta
from nonlocal conservation laws are nonelementary and functionally independent. Further
each of the six constants of motion (4.26) is functionally independent of nonelementary con
of motion arising from any finite number of local conservation laws of Maxwell’s equations.

Proof: From the correspondence Lemma 4.5 and the form of relations~4.23!, it directly
follows that any local conservation law for Maxwell’s equations yields a local conservation
for the wave equation, and in particular any simple conservation law for Maxwell’s equa
yields a simple conservation law for the wave equation. Moreover, since through Lemma 4
six constants of motion~4.26! arising from the nonlocal conservation laws~3.10!–~3.13! for
Maxwell’s equations correspond to the six constants of motion~4.15!–~4.19! and ~4.22! arising
from nonlocal conservation laws~3.6!–~3.9! for the wave equation, the proof of Theorem 4
reduces to the proof of Theorem 4.6. h

V. SUMMARY

We have obtained six potential symmetries~2.46!–~2.48! for Maxwell’s equations~2.29!
through the point symmetries~2.22!–~2.24! admitted by the equivalent system~2.44!. All other
point symmetries of this equivalent system yield only point symmetries of Maxwell’s equation
particular, translations, a rotation and boosts, and a dilation. One can show that Maxwell’s
tions admit no other nontrivial point symmetries in three space–time dimensions. Note th
admitted point symmetries of Maxwell’s equations~2.29! do not include conformal transforma
tions, unlike the case in four spacetime dimensions.

Since the wave equation~2.45! is also an equivalent system for Maxwell’s equations~2.29!,
we can use its point symmetries to obtain symmetries of Maxwell’s equations. From th
nontrivial point symmetries admitted by the wave equation, one can easily show that the
point symmetries given by translations~2.25!, a rotation and boosts~2.26!, and a dilation~2.27!
yield the seven corresponding point symmetries admitted by Maxwell’s equations, where
J. Math. Phys., Vol. 38, No. 7, July 1997
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TABLE I. Symmetries of Maxwell’s equations~2.29!.

Nonlocal symmetries Remarks

X15„j1
i B24tB1

5
2~xE

22yE1!1w2
1
2~yD~1w0)

2xD~2w0)!…]/]B1„j1
i DiE

124tE12
5
2yB

1
1
2~w11yD~2w1)2xD2w2!…]/]E

11„j1
i DiE

224tE2

1
5
2xB1

1
2~w21xD~2w1)2yD1w1!…]/]E

2

X1, X2, X3 are three conformal point symmetries o
potential system~2.44!.
j1
052t22x22y2, j1

1522tx, j1
2522yt

X25„j2
i DiB14xB2

5
2tE

21
1
2~w21tD ~2w0)

1yD0w0!…]/]B1„j2
i DiE

114xE11
5
2yE

2

1
1
2~w01yD~2w0)1tD2w2!…]/]E

11„j2
i DiE

214xE2

2
5
2~ tB1yE1!1w2

1
2~ tD ~1w2)1yD~1w0)!…]/]E

2

j2
052tx, j2

15t21x22y2, j2
252yx

X35„j3
i DiB14yB1

5
2tE

12
1
2~w11tD ~1w0)

1xD0w0!…]/]B1„j3
i DiE

114yE11
5
2~ tB2xE2!2w

2
1
2~ tD ~2w1)1xD~2w0)!…]/]E

11„j3
i DiE

214yE2

1
5
2xE

11
1
2~w01xD~1w0)2tD1w1!…]/]E

2

j3
052yt, j3

152yx, j3
25t22x21y2

X45~
1
2D0w0!]/]B1~

1
2E

21
1
2D ~2w0)!]/]E

1

1~2
1
2E

11
1
2D ~1w0)!]/]E

2

X4, X5, X6 are three duality point symmetries of potentia
system~2.44!.

X55~2
1
2E

12
1
2D ~1w0)!]/]B1~

1
2B2

1
2D ~2w1)!]/]E

1

1~
1
2D1w1!]/]E

2

X65~
1
2E

22
1
2D ~2w0)!]/]B1~2

1
2D2w2!]/]E

1

1~
1
2B1

1
2D ~2w1)!]/]E

2

X75„j1
i DiB23tB12~xE22yE1!1

1
2w…]/]B1~j1

i DiE
1

23tE122yB!]/]E11~j1
i DiE

223tE212xB!]/]E2

X7, X8, X9 are three conformal point symmetries o
potential system~2.45!.
j1
052t22x22y2, j1

1522tx, j1
2522yt

X85~j2
i DiB13xB22tE2!]/]B1~j2

i DiE
113xE1

12yE2!]/]E11„j2
i DiE

213xE222~ tB1yE1!

1
1
2w…]/]E

2

j2
052tx, j2

15t21x22y2, j2
252yx

X95~j3
i DiB13yB12tE1!]/]B1„j3

i DiE
113yE112~ tB

2xE2!2
1
2w…]/]E

11~j3
i DiE

213yE212xE1!]/]E2

j3
052yt, j3

152yx, j3
25t22x21y2

The potentials$w,w0 ,w1 ,w2% are determined nonlocally in terms of the fields$B,E1,E2% from relations~2.44a! and~4.23!
up to the residual gauge freedom~2.40!.

Point symmetries Remarks

X105~D0B!]/]B1~D0E
1!]/]E11~D0E

2!]/]E2 X10, X11, X12 are three translations.

X115~D1B!]/]B1~D1E
1!]/]E11~D1E

2!]/]E2

X125~D2B!]/]B1~D2E
1!]/]E11~D2E

2!]/]E2

X135~yD1B2xD2B!]/]B1~yD1E
12xD2E

12E2!]/]E1

1~yD1E
22xD2E

21E1!]/]E2

X13 is a rotation.

X145~2tD2B2yD0B2E1!]/]B1~2tD2E
12yD0E

1

2B!]/]E11~2tD2E
22yD0E

2!]/]E2

X14, X15 are two boosts.

X155~ tD2B1xD0B1E2!]/]B1~ tD2E
11xD0E

1

1B!]/]E11~ tD2E
21xD0E

2!]/]E2

X165(tD0B1xD1B1yD2B)]/]B1(tD0E
11xD1E

1

1yD2E
1)]/]E11(tD0E

21xD1E
21yD2E

2)]/]E2
X16 is a dilation.
J. Math. Phys., Vol. 38, No. 7, July 1997
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three point symmetries given by conformal transformations~2.28! yield three potential symmetrie
which aredifferentfrom the six potential symmetries~2.46!–~2.48! admitted by Maxwell’s equa-
tions. Consequently, we obtain three additional potential symmetries for Maxwell’s equations
generators of the seven point symmetries and these nine potential symmetries for Max
equations are exhibited in Table I.

Each symmetry of Maxwell’s equations yields two conservation laws derived through
equivalent systems~2.44! and~2.45!. In Sec. III B we have obtained 12 conservation laws aris
for the six potential symmetries~2.46!–~2.48!. We can likewise obtain 20 conservation law
arising for the seven point symmetries and three other potential symmetries discussed abo
interesting to note that for each symmetry the conservation laws obtained from the two sy
~2.44! and ~2.45! are distinct. However, some symmetries yield trivial or duplicate conserva
laws. The conserved densities arising from all 32 conservation laws are exhibited in Tables
Tables III.

Altogether, these conserved densities yield 16 nonelementary functionally independen
stants of motion for Maxwell’s equations: seven constants of motion arising for the seven
symmetries, given by translations, a rotation and boosts, and a dilation, are obtained from
conserved densities through system~2.45!; six constants of motion arising for the six potenti
symmetries~2.46!–~2.48! are obtained from nonlocal conserved densities through system~2.44!;
three constants of motion arising for the three additional potential symmetries above are ob
from nonlocal conserved densities through system~2.45!. The functional independence of these

TABLE II. Conserved densities for Maxwell’s equations~2.29! from conservation laws derived through the potent
system~2.44!.

Symmetry Conserved density Remarks

X1 8„yE2~x,y,t !1xE1~x,y,t !…D21B~x,y,t ! 6 new quantities@see~4.26!# from X1,...,X6;
g is any smooth curve from
(x,y) to r→` at fixed t.

X2 24yB~x,y,t!D21B~x,y,t!

24ySE
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2
18tE1~x,y,t !D21B~x,y,t !

X3 4xB~x,y,t!D21B~x,y,t!

14xSE
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2
28tE2~x,y,t !D21B~x,y,t !

X4 24B~x,y,t!D21B~x,y,t!

1SE
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2
X5 28E2(x,y,t)D21B(x,y,t)
X6 8E1(x,y,t)D21B(x,y,t)
X7 trivial
X8 trivial
X9 trivial
X10 trivial
X11 trivial
X12 8E2(x,y,t)D21B(x,y,t) Duplicate of new quantity fromX5 .
X13 28E1(x,y,t)D21B(x,y,t) Duplicate of new quantity fromX6 .
X14 trivial
X15 trivial
X16 trivial
J. Math. Phys., Vol. 38, No. 7, July 1997
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constants of motion is established by a strengthing of Theorem 4.9, through the use of Lem
and Corollaries 4.7 and 4.8 for the 16 corresponding constants of motion of the wave eq
arising for its ten nontrivial point symmetries~2.25!–~2.28! and six potential symmetries~2.22!–
~2.24!.

For Maxwell’s equations~2.29!, the ten constants of motion arising for the seven po
symmetries and the three additional potential symmetries represent energy, momentum,
momentum, dilation, and conformal quantities for the electromagnetic field. The six consta
motion ~4.26! arising for the potential symmetries~2.46!–~2.48! represent new additional con
served quantities for the electromagnetic field.

VI. CONCLUDING REMARKS

~1! Maxwell’s equations~2.29! in three space–time dimensions arise from Maxwell’s equati
in four space–time dimensions when the electromagnetic field tensorF has no essentia

TABLE III. Conserved densities for Maxwell’s equations~2.29! from conservation laws derived through the potent
system~2.45!.

Symmetry Conserved density Remarks

X12X7 4B(x,y,t)(xD11yD2)D
21B(x,y,t) Not new @see~4.25!#.

X22X8 24E2(x,y,t)D21B(x,y,t)1trivial Duplicate of new quantity.

X32X9 4E1(x,y,t)D21B(x,y,t)1trivial Duplicate of new quantity.
X4 trivial
X5 trivial
X6 trivial
X7 24~t21x21y2!„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

116tB~x,y,t !„xE2~x,y,t !2yE1~x,y,t !…

14tB~x,y,t !S E
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D
1S E

g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2

Three conformal quantities
~see Sec. V! from X7, X8, X9;
g is any smooth curve, from
(x,y) to r→` at fixed t.

X8 8xt„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

28~ t21x22y2!B~x,y,t !E2~x,y,t !116xyB~x,y,t !E1~x,y,t !

24xB~x,y,t !S E
g

~E2~x8,y8,t !dx82E1~x8,y8,t !dy8!D
X9 8yt„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

18~ t22x21y2!B~x,y,t !E1~x,y,t !216xyB~x,y,t !E2~x,y,t !

24yB~x,y,t !S E
g

~E2~x8,y8,t !dx82E1~x8,y8,t !dy8!D
X10 4„B(x,y,t)21E1(x,y,t)21E2(x,y,t)2… energy
X11 24B(x,y,t)E2(x,y,t) spatial momentum
X12 4B(x,y,t)E1(x,y,t) spatial momentum

X13 28B(x,y,t)„xE2(x,y,t)1yE1(x,y,t)… rotation angular momentum
X14 24y„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

28tB~x,y,t !E1~x,y,t !

boost angular momentum

X15 24x„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

18tB~x,y,t !E2~x,y,t !

boost angular momentum

X16 4t„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

28B~x,y,t !„E2~x,y,t !2E1~x,y,t !…

dilation quantity
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dependence on one spatial dimension as follows: Fix spatial directionsx̂,ŷ,ẑ, and letEW

5E1x̂1E2ŷ1E3ẑ andBW 5B1x̂1B2ŷ1B3ẑ represent the electric and magnetic fields. If t
ẑ components ofF, given byE3,B1,B2, are constant, while the other components ofF, given
by E1,E2,B3, have no dependence onz, then Maxwell’s equations forEW andBW reduce to Eq.
~2.29! for E1, E2, andB35B.

~2! Maxwell’s equations in four space–time dimensions admit 15 point symmetries and c
sponding local conservation laws.9–12Through the above dimensional reduction of Maxwel
equations, seven local conservation laws survive in three space–time dimensions. Thes
conservation laws correspond to the three translations, one rotation and two boosts ea
involving the ẑ direction, and one dilation, which are the point symmetries admitted
Maxwell’s equations~2.29! in three space–time dimensions. Interestingly, local conserva
laws corresponding to the four conformal transformations in four space–time dimension
lost since conformal transformations are not admitted as point symmetries by Maxw
equations in three space–time dimensions. Using a scalar potential for the electroma
field, we have obtained a group of nonlocal conformal transformations and three corres
ing nonlocal conservation laws for Maxwell’s equations~2.29!. More importantly, through a
system of scalar and vector potentials for the electromagnetic field, we have found a
group of nonlocal conformal transformations and three further nonlocal conservation law
Maxwell’s equations~2.29!. From the same system of scalar and vector potentials, we
have found three additional nonlocal conservation laws corresponding to a group of no
duality transformations arising as rotations on the potentials. Altogether these nonloca
servation laws yield nine gauge-invariant conserved quantities for the electromagnetic fi
three space–time dimensions.

~3! The results of this paper can be generalized to Maxwell’s equations in three space
dimensions with a curved Lorentz metricgi j . Let g

i j denote the inverse metric,e i jk denote the
totally-skew tensor normalized with respect togi j , andDi denote the derivative operato
determined bygi j . Then, the nonlocal symmetries~2.46!–~2.48! obtained in flat space–time
extend to curved space–time if and only ifl i is a covariantly constant vector,Djl

i50, and
j i is a conformal Killing vector of special type such thatRlk ji j

i50 whereRlk ji is the curva-
ture tensor andgjkDkj

i1gikDkj
j5 2

3g
jiDkj

k. From these nonlocal symmetries, correspond
nonlocal conservation laws and associated constants of motion can be derived by the m
of Secs. III and IV.

~4! In a future paper we will apply our methods to Maxwell’s equations in four space–
dimensions to seek nonlocal symmetries and corresponding nonlocal conservation law
new constants of motion.

~5! It is important to emphasize that the basic formulation presented in Sec. II can be app
any system of PDEs with three or more independent variables.
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Phase flow of an axially symmetrical gyrostat with one
constant rotor
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Grupo de Meca´nica Espacial, Universidad de Zaragoza, 50009 Zaragoza, Spain

V. Lanchares
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We analyze the attitude dynamics of an axially symmetric gyrostat under no exter-
nal forces and one constant internal spin. We introduce coordinates to represent the
orbits of constant angular momentum as a flow on a sphere. With these coordinates,
we realize that the problem belongs to a general class of Hamiltonian systems,
namely the problem here considered is the one parameter Hamiltonian that is a
polynomial of at most degree two in a base of the Lie algebra so~3!. The paramet-
ric bifurcations are found for both cases, when the rotor is spinning about the axis
of symmetry of the gyrostat, and when it is spinning about another axis of inertia.
The general solution for the global general flow is expressed in terms of the Jaco-
bian elliptic functions. ©1997 American Institute of Physics.
@S0022-2488~97!03707-9#

I. INTRODUCTION

A gyrostatG is a mechanical system made of a rigid bodyP called theplatform, and other
bodiesR called therotors, connected to the platform, and in such a way that the motion of
rotors does not modify the distribution of mass of the gyrostatG . Due to this double spinning, th
gyrostat on the one hand and the rotors on the other, the gyrostat is also known with the n
dual-spinbody.

One of the first applications of the gyrostat is found in the work of Volterra1 for modeling the
rotation of the Earth. Later on, some theoretical results have been derived, and the re
addressed to Leimanis’ textbook2 and references therein.

More recently, the model has attracted the attention in Astrodynamics, and presently it is
for instance, for controlling the attitude dynamics of spacecrafts, and for stabilizing
rotations3–8 among other applications~cf. Ref. 9 for further references!.

Even the gyrostat model is used for representing nuclear physics problems10 or optical
problems;11,12for instance, as it is proved by Holm and coworkers,11,12the equations of motion for
the Stokes polarization parameters of a single optical beam in a non linear medium are ana
to the ones of the gyrostat.

The gyrostat with constant internal moments in free rotation is an integrable problem, a
solution may be expressed in terms of Jacobian elliptic functions~see, e.g., Ref. 13!. However,
such as usually happens with integrable problems, this case is of great importance, for it rep
the unperturbed part of more realistic~and complex! models. Bifurcations in the unperturbe
Hamiltonian, or more precisely the unstable points~saddle points!, are the seeds of chaos14 and
some attempts have been done in this direction of finding whether this model under some
bations has chaotic dynamics.15–17Thus, the better our knowledge of the simple case is, the m
our understanding of the perturbed problem will be.

Recently, Chiang18 has reexamined this problem. By integrating the Eulerian equations fo
axially symmetric gyrostat in terms of elliptic functions, he discovers three types of mo
namely, circulations, librations and asymptotic motions. He concludes that the effect on th
0022-2488/97/38(7)/3533/12/$10.00
3533J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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tion of a rotor along an inertial axis of inertia of the platform, is ‘‘the same as the rotation mo
of a torque-free triaxial body.’’ However, this is not the case. Indeed, by representing the
flow on a sphere, the triaxial rigid body rotating freely about a fixed point has six equilibria,19 two
unstable joined by four heteroclinic orbits and two stable. The case considered by Chiang
represented on the sphere, is quite different; when it is not degenerate, it has at most fou
libria, three stable and one unstable in conformity with Poincare´’s Index Theorem for vector fields
on manifolds:the sum of the indices of the fixed points equals the Euler characteristic o
manifold ~see, e.g., Refs. 20, 21!.

In the present paper we aim to clarify what is the phase flow of an axially symmetric gyr
in torque-free motion. In Section II we derive the Poisson structure of the problem, an
integrals, namely, the kinetic energy of the gyrostat considered as a rigid body and the norm
angular momentum. We introduce a set of three pseudo-coordinates~the components of the an
gular momentum in the body frame! that allow us to visualize the flow on the two dimension
sphere. In Section III, we consider the rotor spinning uniformly about the axis of symmetry
effect of the rotor does not break the degeneracy of the axial symmetric rigid body; it simply
the circle of non isolated equilibria along the axis of symmetry. In Section IV, we analyze the
of the rotor spinning about an axis of inertia perpendicular to the axis of symmetry; we foun
the flow is governed by two types of bifurcations: pitchfork and oyster bifurcations.22 Lastly, the
integration in terms of Jacobian elliptic functions is given for the last case.

II. DEFINITION OF THE PROBLEM AND INTEGRALS

Let us suppose that the center of masses of the gyrostatG has a fixed pointO, and centered
on it there are two orthonormal reference frames:

• S , the space frameOs1s2s3, fixed in the space.
• B, the body frameOb1b2b3, fixed in the platform.
The attitude ofB in S results in three rotations by means of the three Euler an

(f,q,c), although a different representation may be used.
The nutation angleq (0<q<p) is defined by the dot product cosq5b3•s3. The vectorl, the

direction of the intersection of the space plane (s1 ,s2) with the body plane (b1 ,b2) is obtained by
l5s33b3 /sinq. This vector is related with the axes (s1 ,s2) by

l5s1 cosf1s2 sin f, 0<f,2p,

where the anglef, usually known as the precession angle, is the longitude of the nodel reckoned
from the space axiss1. By denotingc with 0<c,2p the longitude of the body vectorb1
reckoned from the nodel, this vector is expressed as the combination

l5b1 cosc2b2 sin c.

By means of the composite rotationR5R(f,s3)sR(q,l)sR(c,b3), the space frameS is
mapped onto the body frameB.

A. Angular velocity

By using the differential ofR,

dR5s3df1 ldq1b3dc, ~1!

we will obtain the angular velocity. Indeed, letv be the angular velocity vector of the frameB
with respect to theS . From Eq.~1!, this vector is

v5ḟs31q̇ l1ċb3 ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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while in the body frame its expression is

v5v1b11v2b21v3b3 .

By writing the vectorsbi in terms of the nonorthogonal basiss3 ,l,b3, one gets easily that

v15ḟ sin q sin c1q̇ cosc, v25ḟ sin q cosc2q̇ sin c, v35ḟ cosq1ċ. ~2!

B. Poisson structure

The conjugate moments (F,Q,C) of the Euler angles satisfy the Cartan 1-form~see Ref. 19
for details!

G•dR5Fdf1Qdq1Cdc.

Taking into account~1!, there results that the moments are the projections of the total an
vectorG onto the nonorthonormal basiss3 ,l,b3, that is,

F5G•s3 , Q5G• l, C5G•b3 .

Hence, by inversion, there results

g15S F2C cosq

sin u D sin c1Q cosc, g25S F2C cosq

sin u D cosc2Q sin c, g35C,

~3!

for the components in the body frame, and

G15Q cosf1S C2F cosq

sin u D sin f, G25Q sin f2S C2F cosq

sin u D cosf, G35F,

~4!

for the components in the space frame.
It is just a matter of computing partial derivatives to check that the Poisson brackets satis

identities

~g1 ;g2!52g3 , ~g2 ;g3!52g1 , ~g3 ;g1!52g2 ,
~5!

~G1 ;G2!5G3 , ~G2 ;G3!5G1 , ~G3 ;G1!5G2 .

This Poisson structure onR3 is what Marsden23 calls therigid body structure.

C. Angular momentum

Since the motion of the rotors does not alter the distribution of masses of the gyrostat
is a constant inertia tensor~I! associated toG . Besides, we shall assume that the body frameB

coincides with the principal axes of inertia of the gyrostatG .
Let x5x1b11x2b21x3b3 be the position vector of a particleP of the gyrostat with mass

dm; its absolute velocity isdx/dt5v1v3x, wherev5 ẋ1b11 ẋ2b21 ẋ3b3. Note that if the par-
ticle belongs to the platform~recall that it is a rigid body!, thenv50. With this and taking into
account thatG5PøR, we compute the angular momentum vector of the gyrostat as the vo
quadrature,
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ction

rang-
of the
re

3536 A. Elipe and V. Lanchares: Phase flow of a gyrostat

¬¬¬¬¬¬¬¬¬¬
G5g1b11g2b21g3b35E
G
S x3

dx

dt Ddm
5E

G

~x3~v1v3x!!dm

5E
P

~x3~v3x!!dm1E
R

~x3~v1v3x!!dm

5E
P

~x3~v3x!!dm1E
R

~x3~v3x!!dm1E
R

~x3v!dm

5E
G

~x3~v3x!!dm1E
R

~x3v!dm5Iv1f, ~6!

where

I5E
G

~x2v2~x•v!x!dm

is the diagonal tensor of inertia of the gyrostatG , and

f5 f 1b11 f 2b21 f 3b35E
R

~x3v!dm

is the angular momentum of the rotors, that from here on we will assume constant.

D. Kinetic energy and Hamiltonian

In an analogous way we obtain the kinetic energy of the gyrostat

T5
1

2EG ~v1v3x!2dm

5
1

2EG ~v3x!2dm1v•E
R

~x3v!dm1
1

2ERv2dm
5
1

2
v•Iv1v•f1TR , ~7!

whereTR is the kinetic energy of the rotors in its relative motion that is supposed to be a fun
of the time.

The Hamiltonian is the Legendre transformation with respect to the velocities of the Lag
ian function. Since we are considering the case of no external forces, the Lagrangian
problem is precisely the kinetic energy~7!. This expression is made of the addition of a pu
quadratic term in the velocities,12v•Iv, plus a linear part in the derivatives,v•f ~for f does not
depend on the Euler angles!, plus a function of the time,TR(t). By virtue of the Euler theorem for
homogeneous functions, and for any set of (q,q̇) in the tangent bundleTSO(3), theLegendre
transformation of the Lagrangian is

L~L !5¹q̇L•q̇2L5¹q̇S 12v•IvD •q̇1¹q̇~v•f!•q̇2
1

2
v•Iv2v•f2TR
J. Math. Phys., Vol. 38, No. 7, July 1997
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5
1

2
v•Iv2TR ,

and since the relative kinetic energy (TR) is a function depending only ont, the Hamiltonian is

H5
1

2
v•Iv. ~8!

Taking into account Eq.~2!, we note that the Hamiltonian~8! is autonomous, and consequently,
is an integral. Thus, the effect of the rotors makes that the total energy~7! is not preserved along
the motion, but the energy of the gyrostat considered as a rigid body is constant.2,13

Rather than expressing the Hamiltonian in a set of canonical coordinates and momen
shall express the Hamiltonian in terms of the components of the angular momentumgi , because
later on we will focus on the analysis of the time evolution of these components.

When expressed in terms of the components of the angular momentum, the Hamiltoni~8!
takes the form

H5
1

2
~a1g1

21a2g2
21a3g3

2!2~a1f 1g11a2f 2g21a3f 3g3!, ~9!

where we denoted byaj the inverse of the principal moment of inertiaI j , that is aj51/I j ,
(1< j<3) and the constant terms ((ai f i

2) have been removed.
~N.B.Although the Hamiltonian has been derived in the absence of external forces, th

followed still is valid when there are conservative forces; the Hamiltonian would beH5 1
2

v•Iv1V, with V the potential function.!

E. Motion of the angular momentum

By applying the formula of the derivation with respect to a moving frame to the ang
momentum~6!, there result the Euler equations

Ġ5Iv̇1 ḟ1v3Iv1v3f5M, ~10!

whereM stands for the resulting moment of the external forces. If there is no external torqu
right hand side of this equation vanishes, which means that the absolute derivative of the a
momentum vector is zero, that is to say, this vector is constant in the space frameS and therefore,
its norm is also constant. But the norm of a vector is invariant under the action of theSO(3)
group,

iGi25g1
21g2

21g3
25G25const. ~11!

The same result may be derived by computing the time derivatives of the components in the
frame of the angular momentum. Indeed, by using the structural identities~5!, there follows that

Ġi5~Gi ;H!5 (
1< j<3

ajgj~Gi ;gj !2 (
1< j<3

aj f j~Gi ;gj !50,

and hence, the vectorG is an integral.
The Poisson structure~5! gives rise to the equations of motion,

ġ15~g1 ;H!5~a32a2!g2g31a2f 2g32a3f 3g2 ,
~12!

ġ25~g2 ;H!5~a12a3!g1g31a3f 3g12a1f 1g3 ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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ġ35~g3 ;H!5~a22a1!g1g21a1f 1g22a2f 2g1 .

They admit two integrals, the Hamiltonian~9! and the norm of the total angular momentum~11!.
The problem is reduced to just one degree of freedom and therefore it is integrable. The
space of~12! may be regarded as a foliation of invariant manifolds,

S2~G!5$~g1 ,g2 ,g3!ug1
21g2

21g3
25G2%.

By using the angular momentumG instead of the angular velocityv, the geometric mode
depicting the rotations ofG is a sphere with constant radius. Most importantly, unlike Poins
ellipsoids, the underlying model is independent of the ellipsoid of inertia.

III. ROTOR SPINNING ABOUT THE AXIS OF SYMMETRY

The differential system~12! belongs to a general class of Hamiltonian systems that has
considered recently by the authors.24–28

In this paper, from here on, we will deal with the case of a symmetric gyrostat~for that
without loss of generality we will assumea15a2.a3) with only one rotor spinning about one o
the body frame axes.

It is well known ~see, e.g., Ref. 19! that in the case of an axially symmetric rigid body in fre
rotation~see Figure 1!, the phase flow is made of pure rotations about the axis of symmetry,
that on the moment sphere~11! there are two isolated equilibria (g356G) and a dense set o
equilibria ~the equatorg350). Let us see how the effect of the rotor in the gyrostat modifies
phase flow.

In the case of a gyrostat with internal spin about the axis of symmetry, the Hamiltonian~9! is
converted into

H5
1

2
a1~g1

21g2
2!1

1

2
a3g3

22a3f 3g3 . ~13!

Before proceeding to compute the equations of motion, let us make some scaling. Excludi
caseG50, we may divide by the non zero quantityG2 and introduce the dimensionless variabl

~j1 ,j2 ,j3!5
1

G
~g1 ,g2 ,g3!, ~w1 ,w2 ,w3!5

1

G
~ f 1 , f 2 , f 3!.

In these variables, and after a time scalingt5Gt, the Hamiltonian~13! becomes

FIG. 1. Phase flow on the sphere when the rotor is spinning about the axis of symmetry. Thick lines stand for non
equilibria. Left figure corresponds to an axial symmetric rigid body. Right figure corresponds to an axial sym
gyrostat. Because of the internal rotor, the circle of degeneracy has moved along the axis of symmetryj3.
J. Math. Phys., Vol. 38, No. 7, July 1997
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K5
1

2
a1~j1

21j2
2!1

1

2
a3j3

22a3w3j3 , ~14!

and the variables (j1 ,j2 ,j3) lie on the unit two dimensional sphereS 2,

j1
21j2

21j3
251. ~15!

The equations of motion for the new variablesj j are

j̇15~a32a1!j2j32a3w3j25@~a32a1!j32a3w3#j2 ,

j̇25~a12a3!j1j31a3w3j15@~a12a3!j31a3w3#j1 , ~16!

j̇350.

@We still maintain the notation (˙ )5d/dt, for there is no confusion.#
The solution of these equations lies on the sphere~15!, and also, they satisfy the constrai

~14!. Thus, the trajectories of equations~16! are the level contours of the quadric~14! on the
sphere~15!.

These equations~16! have two isolated equilibria, the north and south poles (0,0,61), and the
small circle j352a3w3 /(a12a3) is made of nonisolated equilibria. That is to say, there i
degeneracy. Hence, we conclude that the effect of the rotor consists in shifting the cir
degeneracy~the equator in the rigid body problem! along the axis of symmetry.

IV. THE ROTOR SPINNING ABOUT A BODY AXIS, DISTINCT OF THE AXIS OF
SYMMETRY

Let us assume now that the rotor is spinning aboutb2. In the case of spin aboutb1, the analysis
is completely analogous. This is precisely the case analyzed by Chiang.18

The Hamiltonian in the above defined notations is now

K5
1

2
a1~j1

21j2
2!1

1

2
a3j3

22a2w2j2 .

By making use of the constraint~15!, this Hamiltonian may be converted into

K5~a12a3!F12 ~j1
21j2

2!1Qj2G ,
whereQ is Q52a2w2 /(a12a3) and is a parameter~see Fig. 2!.

We can get rid of the constant factor (a12a3) by means of a simple time transformation, a
eventually, the Hamiltonian is reduced to

H5
1

2
~j1

21j2
2!1Qj2 , ~17!

and the equations of the motion are

j̇152~j21Q!j3 , j̇25j1j3 , j̇35Qj1 . ~18!

This system admits the following symmetries:

~j1 ,j2 ,j3 ,t !→~2j1 ,j2 ,j3 ,2t !,
J. Math. Phys., Vol. 38, No. 7, July 1997
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~j1 ,j2 ,j3 ,t !→~j1 ,j2 ,2j3 ,2t !,

~j1 ,j2 ,j3 ,Q,t !→~j1 ,2j2 ,j3 ,2Q,2t !.

The two first space–time reflections means that the equilibria, if any, must lie on the p
j150 andj350. The third symmetry means that it is sufficient to analyze the caseQ.0, since
any orbit (j1 ,j2 ,j3) on the sphereS 2 for a positive value of the parameterQ, duplicates into
another orbit (j1 ,2j2 ,j3), but travels in the opposite sense forQ,0.

The equilibria of the system~18! on theS 2 sphere~15! are~assumingQ.0) the following:

E15(0,11,0), E25(0,21,0) that exist everywhere, andE5,65(0,2Q,6A12Q2), that exist
only when 0,Q,1. For Q→0, E5,6→(0,0,61); for Q→1, E5,6→E2 and for Q→21,
E5,6→E1.

By linearizing the equations of motions, we find the characteristic equation

l@l21Q~j21Q!1j3
2#1Qj1j350.

Since the first component in every equilibria found isj150, the characteristic equation is reduc
to

l@l21Q~j21Q!1j3
2#50. ~19!

The eigenvaluel50 is a consequence of the fact that the motion takes place on the sphere.26With
this, the regions of stability–instability for the equilibria are those given in Table I.

Let us now analyze the evolution of the phase flow~see Figure 3!. ForQ,21, there are only
two stable equilibria,E1 and E2. Just forQ521, a pitchfork bifurcation occurs atE1, that
becomes unstable, and two new stable equilibria (E5,6) appear. FromE1 emanate two homoclinics
encircling the stable pointsE5,6. WhenQ increases, the pointsE5,6 move towards the north an

FIG. 2. Evolution of the energy at the equilibria. Dashed line stands for instability and continuous lines mean st
There is a pitchfork bifurcation atQ51.

TABLE I. Equilibria and their stability.

Equilibria Existence Characteristic Unstable if

E15(0,1,0) everywhere l21Q(Q11)50 21,Q,0
E25(0,21,0) everywhere l21Q(Q21)50 0,Q,1
E5,65~0,2Q,

612Q2) uQu,1 l2112Q250 never
Equatorj350 Q50
J. Math. Phys., Vol. 38, No. 7, July 1997
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south pole, respectively, along the meridianj250, and the eight-shape figure increases its size
such a way that forQ50 the two homoclinics coincide with the equatorj350, that precisely for
this value (Q50), is made of equilibria. This is the so calledoyster bifurcation;22 we may
consider the two homoclinics as valves hinging onE1, with the oyster closing its valves asQ
tends to zero~see Ref. 22 for details!. ForQ.0, the situation is just the opposite because of
symmetry (j1 ,j2 ,j3 ,Q,t)→(j1 ,2j2 ,j3 ,2Q,2t); the oyster opens its shells, but hinging no
on the pointE2 that now is unstable; the pointE1 is now stable. When the parameterQ tends to
1, the two stable pointsE5,6 tend to collapse intoE2. They merge intoE2 atQ51, and after this
pitchfork bifurcation, only two equilibria (E1 andE2) remain, and both are stable.

V. INTEGRATION OF THE EQUATIONS OF MOTION

We use the integrals of the energy~9! and of the angular moment~15! to eliminatej1 and
j3. From the second equation in~18! we find that the projection of the unit vectorG/G onto the
axisb2 is a solution of the transcendental differential equation

j̇2
25~2h22Qj22j2

2!~122h12Qj2!, ~20!

whereas its projections on the other two axes are

FIG. 3. Phase flow evolution. Upper row of spheres are viewed from the pointE15(0,1,0); the lower row is the view from
the pointE25(0,21,0). In the stability diagram, dashed lines stand for unstable points; continued lines stand for
points; the vertical thick line represents the degeneracy atQ50. ForQ521 a pitchfork bifurcation occurs atE1; for
Q50 an oyster bifurcation takes place, the two homoclinics merges into the equator that now is made of eq
~degeneracy!; the oyster bifurcation occurs atE2 for positive values ofQ and lastly, a pitchfork bifurcation occurs fo
Q51.
J. Math. Phys., Vol. 38, No. 7, July 1997
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j1
252h22Qj22j2

2 ,

j3
25122h12Qj2 ,

~21!

whereh stands for the value of the energy~9! along a trajectory. The solution of equation~20!
depends on the roots of its right hand member,

r 152Q1AQ212h, r 252Q2AQ212h, r 35~2h21!/~2Q!, ~22!

and these roots fall into several categories, depending on the initial conditions.
Let h1, h2 andh5 be the energy at the equilibria points, that is to say,

h15HuE15
1
2 ~112Q!,h25HuE25

1
2 ~122Q!,h55HuE5,652 1

2Q
2.

We find the following cases:
Case A: 0,Q,1
~A.a! whenh5,h,h2,h1, thenr 3,r 2,r 1
~A.b! whenh5,h25h,h1, thenr 35215r 2,r 1
~A.c! whenh5,h2,h,h1, thenr 2,r 3,r 1
Case B:Q.1
sinceh2,h,h1, thenr 2,r 3,r 1 .
Thus,h serves as a separatrix parameter, whose value qualitatively indicates libration

b2 ~Case A.a!, motion on the homoclinic~Case A.b! and circulation aroundb2 ~Cases A.c and B!.
These cases are now considered in detail.

A. Case A.a: Motion inside the homoclinic

In this case, 0,Q,1 andh5,h,h2,h1, the motion takes place inside the loops of t
homoclinics encircling the stable pointsE5,6. The quadrature~20! is an elliptic integral that may
be reduced to its Legendre normal form. Since the three roots of the cubic are in the
r 3,r 2,r 1, by defining the modulusk as

k25
r 12r 2
r 12r 3

.0, ~23!

the change of variable

j25r 31~r 12r 3!~12k2 sin 2w!,

gives

w5am~Ar 12r 3Qt,k!, ~24!

and thus,

j25r 31~r 12r 3!dn
2~Ar 12r 3Qt,k!,

j1
25~r 12j2!~j22r 2!, ~25!

j3
252Q~j22r 3!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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B. Case A.b: Motion along the homoclinic

When 0,Q,1 andh5,h25h,h1, thenr 35215r 2,r 1. The modulusk in equation~23!
is equal to 1. By virtue of the relations

sn~u,1!5tanhu, cn~u,1!5dn~u,1!5sech~u!,

the solution~25! takes the form

j25r 31~r 12r 3!sech
2~Ar 12r 3Qt!,

j1
25~r 12j2!~j22r 2!, ~26!

j3
252Q~j22r 3!.

C. Case A.c: Motion outside the homoclinic

The energy in this region is such thath5,h2,h,h1, and in this case the roots~22! of the
cubic are in the orderr 2,r 3,r 1. Instead of repeating the calculations done for the case (A.a), we
will show that the motion in this region derives from the motion inside the homoclinic by
application of rules for transforming elliptic functions.

Now, sincer 2,r 3,r 1, the modulusk ~23! of the elliptic function above found is greater tha
1. But we can use the transformation above found and still have elliptic functions with mo
less than 1 by applying the so called Reciprocal Modulus Transformation. Indeed, the rule

sn~u,k!5
1

k
snS ku, 1kD , cn~u,k!5dnS ku, 1kD , dn~u,k!5cnS ku, 1kD ,

convert elliptic functions of modulus greater than 1 into elliptic functions of modulus less th
After applying the Reciprocal Modulus Transformation to the solutions~25!, we obtain

j25r 31~r 12r 3!cn
2~Ar 12r 2Qt,1/k!,

j1
25~r 12j2!~j22r 2!, ~27!

j3
252Q~j22r 3!.

D. Case B: Circulation around the two stable equilibria

In this case (Q.1) there are only two equilibriaE1 andE2, and both are stable. The energ
is within the intervalh2,h,h1, and the three roots of the cubic arer 2,r 3,r 1. Consequently, we
obtain the solution of the differential equations~20! for this case by applying~as in the previous
subsection! the Recripocal Modulus Transformation to the solution~25!. The resulting solution is

j25r 31~r 12r 3!cn
2~Ar 12r 2Qt,1/k!,

j1
25~r 12j2!~j22r 2!, ~28!

j3
252Q~j22r 3!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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VI. CONCLUSIONS

By representing the orbits of constant angular momentum as a flow on a sphere, we obt
equilibria, the homoclinic orbits and the bifurcations for the problem considered. This visua
tion allows us at one glance to know the qualitative motion for any set of initial conditions.
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Nonconducting electromagnetic media with rotational
invariance: Transition operators and Green’s functions

A. Tipa)
FOM-Instituut voor Atoom- en Molecuulfysica, Kruislaan 407,
Amsterdam, The Netherlands

~Received 17 July 1996; accepted for publication 10 January 1997!

For an accurate description of multiple scattering of electromagnetic waves, such as
in random dielectrics or dielectric lattices, the full off-shell single scatterer transi-
tion ~T-! operator is required. Here we study this quantity for the case of a non-
conducting medium with rotational invariant permeabilities. We start with the scat-
tering problem where rotational invariance is not yet assumed and find a class of
mutually different T-operators which all have the same on-shell restriction. Next
we extend the usual method of expressing scattered fields for rotational invariant
systems in terms of the solutions of two scalar wave equations to the resolvent
~Green’s function! associated with the vector wave equation. We find that it can be
expressed in terms of the resolvents of two scalar operators. Finally we turn to the
Mie case~a dielectric sphere in vacuum! for which we obtain explicit expressions
for the corresponding Green’s functions and the general off-shell T-matrix ele-
ments. ©1997 American Institute of Physics.@S0022-2488~97!02306-2#

I. INTRODUCTION

A. Background

The scattering of electromagnetic~em! waves from an object placed in a homogeneous m
dium can be treated successfully by direct computation of the fields involved, in particular
presence of rotational symmetry.1–3 Another way of obtaining scattering quantities is by means
the transition~T-! operatorT, which involves the calculation of the appropriate resolventR ~with
associated Green’s functionG). This method, which is fairly standard in quantum mechanics
seldom used in the em case and in the literature only partial information aboutG can be found.2

The first method suffices for the description of scattering from a single object but the situ
changes if multiple scattering is considered. Whereas in the scattering case the scattered w
reached its asymptotic form when it arrives at the detector site, this is now no longer the ca
fact a wave scattered from one scatterer will not yet be asymptotic at the moment it encount
next one. The situation is similar to the Schro¨dinger multiple scattering case where also off-sh
~in energy and momentum! single scatterer T-matrix elements make their appearance. A se
complication is the fact that non-propagating field modes~the longitudinal modes in the free fiel
case! also come into play at high scatterer densities. Thus the full T-operator is needed. Giv
scattered fields originating from an incoming plane wave~not only their asymptotic form for large
x and/or t) for every wave number and polarization the part of the resolvent associated
propagating fields can be reconstructed. However, the non-propagating part cannot be obta
this way.

At present two special cases are intensively studied:
~i! The propagation of em waves through random media consisting of randomly placed

vidual scatterers. The situation is usually described by means of a transport equation, featur
T-operator.4–6Here an important topic is the possible existence of strong~Anderson! localization.7

Second, even in the diffusive regime, at relatively low densities of the scatterers, surprising

a!Electronic mail: tip@amolf.nl
0022-2488/97/38(7)/3545/26/$10.00
3545J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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happen. Thus, if the frequency of the wave equals a resonance frequency of an individual sc
an appreciable retardation effect takes place; the propagation velocity of the wave can d
almost an order of magnitude.8–10

~ii ! Photonic crystals and associated photonic band gap calculations. A main issue here
change in radiative decay properties of atoms placed in such systems relative to the vacuu
For this the classical field density of states11–13is required and this object once more is tied in w
the T-operator.

In both cases existing theories often involve expansions in terms of the full single sca
T-operators and this state of affairs motivated us to reconsider the resolventR associated with the
Helmholtz equation~here a 333 matrix with operator entries! for non-conducting systems with
spherical symmetry.

Writing Maxwell’s equations for a smooth, non-conducting, medium as

] tD5]x3H, ]x•D50, D5«E,

] tB52]x3E, ]x•B50, H5m21B,
~1.1!

with «(x) andm(x) ‘‘nice,’’ i.e., real, smooth, bounded~elements of C2 (R)!, scalar functions of
x, bounded from below and above by positive constants~hence invertible with bounded inverse!,
the associated electric Helmholtz equation reads (p52 i ]x , ]k5]xk)

] t
2D5~e•p…–m21~e•p!•«21D,

~1.2!

@~e•p…–m21~e•p!«21#kl5dkl]x•m
21]x«

212] lm
21]k«

21,

wheree is the Levi-Civita pseudo-tensore12351 ande is antisymmetric in all three subscripts, s
]x3M52 i (e•p…–M). Laplace transforming~1.2! the Helmholtz operatorR5R(z), mentioned
above,

R~z!5«1/2@z22H#21«21/25@z21~e•p!m21~e•p!«21#21,
~1.3!

H52«21/2~e•p!m21~e•p!«21/2,

makes its appearance. Its study is our main concern, initially for smooth electric and ma
permeabilities«(x) andm(x),x5uxu. Later on we specialize to the limiting case of Mie spher
where the permeabilities jump from one constant value to another across the surface of the
giving rise to additional boundary conditions.

Remark: Mie spheres are special cases of rotational invariant systems for which ex
expressions can be generated. They play a role in electromagnetism comparable to th
sphere in particle systems. However, contrary to that case, they are not only important as a
system. In fact a class of experimentally studied random systems consists of dielectric s
submerged in a uniform background fluid.14Obviously Mie spheres are an excellent model for
description of this situation

B. The method

We obtain our final results in a number of steps.
Section II deals with em scattering theory. In our setup we study the time evolutio

6-dimensional vector fields, obtained by combining electric and magnetic fields in a single o
Energy conservation causes the generatorK to be self-adjoint in an appropriate Hilbert spac
Mo” ller wave operators are then defined in terms ofK and K0 , the corresponding free
(«5m51) generator. Using different representations for the former we obtain a family of m
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



cide
ed

ec-

h

e. Not
ith an

sions

and

ry,

ture

t,
in
osing

gnetic

e can
ection

vector

e

3547A. Tip: T-operators for rotation invariant dielectrics

¬¬¬¬¬¬¬¬¬¬
ally different T-operatorsT, which all give rise to the same scattering operator, i.e. they coin
on the energy shell. SinceK has the structureK5(Q*

0
0
Q), where the entries are operator-valu

333 matrices,K25(0
QQ*

Q*Q
0 ), which reduces the problem to one featuring 3-dimensional v

tors. The mathematical properties of such structures have been studied by Gesztesy.15 In essence
we switch to an abstract form of the two vector~Helmholtz! wave equations. On this level eac
T leads to a new T-operatort, defined in terms of some HelmholtzR, where the differentR’s are
related through some simple transformation, similarity transformations being a special cas
every t has a proper limit in the Mie case but we can find ones that do. The section ends w
expression for the amplitude for the scattering of em energy in terms oft.

In section III the rotational invariance of the permeabilities is exploited, leading to expres
for x–R, p–R, and l–R, with R given by ~1.3! in terms of two scalar resolventsRa andRb ~here
p52 ix and l5x3p are the generators of translations and rotations, i.e., the momentum
angular momentum operators of quantum mechanics!.

In section IV we reconstructR. It is well known that, in the presence of rotational symmet
scatteredfieldscan be expressed in terms of the solutions of two scalar wave equations.1,2 Again
by rotational invariance we expect thatR can be expressed in terms of three scalar resolvents~i.e.,
resolvents of scalar operators!. One of the three turns out to be trivial due to the special struc
of Maxwell’s equations. Our strategy is the following:

As shown in Appendix B, the operator~a dyadic with vector operator entries!

M5xx1pp1 ll , ~1.4!

acting inH 35L2(R3;C3), has an inverse which can be obtained explicitly. Since

M–R5xx–R1pp–R1 ll–R, ~1.5!

we can obtainR itself by acting withM21 from the left. We shall give a number of differen
equivalent expressions forR in the case of smooth« andm. Not all of our representations rema
valid in the Mie case, but, after a proper redefinition of the scalar resolvents involving imp
the appropriate boundary conditions, some do.

Section V deals with the representation of the amplitudes for the scattering of electroma
energy in terms of the scalar T-operators associated with the scalar resolvents.

In sections VI and VII explicit results for Mie spheres are derived. The results given her
directly be used in a numerical evaluation of the quantity of interest. In the discussion, s
VIII, various related subjects are discussed.

Computational details are given in the appendices.
Our approach makes use of operator techniques and completely avoids expansions in

spherical harmonics.

C. Results

One of our main results is the expression ofR(z) in terms of the scalar resolvents for th
rotational invariant case. Rather thanR itself the more symmetric quantity
R(z)«5«1/2@z22H#21«1/2 is given (l225( l2)21):

R~z!«52z22p3 ll22Ra« l3p1 l22l«Rb«m l1«z22~U2 l22ll !. ~1.6!

The two scalar resolventsRa andRb are given by (c25(«m)21 is the velocity of light in the
medium and primes indicate differentiation with respect tox)
J. Math. Phys., Vol. 38, No. 7, July 1997
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Ra~z!5F z2c2 2HaG21

, Ha5p21
«8

«x
]xx,

~1.7!

Rb~z!5F z2c2 2HbG21

, Hb5p21
m8

mx
]xx.

These operators can be decomposed further into their components acting in subspaces
angular momentum. In sections VI and VII we have done so for Mie spheres. There ex
expressions for the associated scalar T-operators in terms of spherical Bessel functions
tained.

Remark: In the free case,«5m51, and in scattering situations (see section II) Ra and Rb are
associated with propagating modes. In the specific situation that«(x) and m(x) are a given
realization of a random variable, it is not obvious that this is still the case. Indeed, after
reduction to fixed angular momentum subspaces we are dealing with one-dimensional ra
systems and the latter can have strong (Anderson) localization properties.

Finally a word on notation. In the following we shall often refer to an object of the t
@Az22B#21, whereA and B are operators andz a complex number, as a resolvent. Stric
speaking it is a generalized resolvent in Kato’s sense.16 We only encounter special cases whe
A is a real multiplication operator built up from«(x) and m(x). Our definitions of Legendre
polynomials, spherical harmonics and spherical Bessel functions are as in Ref. 17, Appen

II. SCATTERING

In this section we introduce wave and scattering operators relevant for electromagneti
tering from a finite number of scattering centers. Thus the permeabilities are kept general
for the condition that the wave operators exist. The results lead to a class of T-operators a
express scattering amplitudes and differential cross-sections in terms of the latter.

A. Time evolution

Starting point is the set of Maxwell’s equations for a smooth, non-conducting, materia
dium given by eq.~1.1!. Later on we shall specialize to the case of spherical symmetry, i.e.,« and
m are functions ofx5uxu only. Due to energy conservation, the 6-dimensional vector field

F~x,t !5S «1/2E~x,t !

m21/2B~x,t ! D ~2.1!

has the unitary time evolution

F~ t !5exp@2 iKt #F,F5F~ t50! ~2.2!

in the Hilbert spaceH 6 5L2(R3,dx;C6) of square integrable functions with value inC6. Here

K5S 0 Q

Q* 0D 5S 0 «21/2e–pm21/2

2m21/2e•p«21/2 0D 5AK0A,

~2.3!

K05S 0 Q0

Q0* 0D 5S 0 e–p

2ep 0 D , A5S «21/2 0

0 m21/2D 5S a1 0

0 a2
D ,

where the matrix entries are operator-valued 333 blocks. Thusaj5ajU, whereU is the 333 unit
matrix, and, as before,e is the Levi-Civita pseudo-tensor. Full details are given in a paper
J. Math. Phys., Vol. 38, No. 7, July 1997
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Dorren and Tip~DT!.18 In the following we shall say that a 3-dimensional vector fieldf is
transverse (') if p–f52 ix–f50 and longitudinal (i) if f is alongp in Fourier ~momentum!
space. The associated projectors are

P'5U2epep5Dp , Pi5epep , ea5a/a,a5uau. ~2.4!

A 6-dimensional vector field is transverse~longitudinal! if both 3-dimensional components hav
this property. The associated projectors are

P
'

5SP' 0

0 P'D , P i5SPi 0

0 Pi D . ~2.5!

Remark: Note that in the free(«5m51) case the non-propagating fields (i.e., fields in t
eigenspace of K0 at the eigenvalue0) are precisely the longitudinal ones. In general, howev
this is no longer true. Thus we have to distinguish between longitudinal and non-propag
fields (and also between transverse and propagating ones).This is not the case if we had
ered the time evolution of(B

D). Then, however, the time evolution is not unitary unless the in
product is changed (and K0 no longer selfadjoint). This is satisfactory in the present situation
in random systems the inner product itself becomes random (through the random permeab
giving rise to further complications.

B. Wave and scattering operators

Since longitudinalfree fields do not propagate in time, we have to project them out in
definition of the wave operatorsV6 describing a scattering situation~s-lim stands for strong limit!

V6F5V6~C!F5s2 limt→6` exp@ iKt #Cexp@2 iK 0t#P
'F

5P'F1 i E
0

6`

dt exp@ iKt #~KC2CK0!exp@2 iK 0t#P
'F. ~2.6!

Usually C is set equal to 1, in which caseV6 exist for sufficiently rapidly decaying~to their
vacuum value, i.e., 1! « andm, in particular if they equal their vacuum value outside a boun
region. A proof can be patterned after the Schro¨dinger case16 by showing that
i(K2K0)exp@2iK0t#P

'Fi is integrable int for a suitable fundamental~or total, i.e., with dense
linear span! set ofF’s. For a further discussion of the existence and asymptotic completene
wave operators for classical wave equations, see Ref. 19 and references quoted there. In
V6 are weakly complete~i.e., have the same range!. Thus the scattering operatorS5V1* V2 is
unitary on the transverse Hilbert spaceP'H 6.

However, forC taken from the classC of bounded operators onH 6 with the property

s2 limt→6` exp@ iK 0t#C exp@2 iK 0t#P
'5P', CPC, ~2.7!

the same wave operators result. Examples are powers of the operatorA and any other
C5C(x), tending to the unit operator sufficiently fast asx→`. For givenC a proof can be
obtained by showing thati(C21)exp@2iK0t#P

'Fi tends to zero for a fundamental set ofF’s.
Clearly, if C21 exists as a bounded operator, then alsoC21 P C. C* , however, need not be in
C. Using the intertwining propertyV1* exp@iKt#5exp@iK0t#V1* , we obtain for the scattering op
eratorS
J. Math. Phys., Vol. 38, No. 7, July 1997
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S5V1* V12V1* ~V12V2!5P'2 iV1* E
2`

1`

dt exp@ iKt #~KC2CK0!exp@2 iK 0t#P
'

5P'2 i E
2`

1`

dt exp@ iK 0t#V1* ~KC2CK0!exp@2 iK 0t#P
'

5P'22p i T̄ . ~2.8!

C. Scattering amplitudes and differential cross sections

In the em case the role of the familiar plane wave states of quantum mechanics is take
by the ~continuum! eigenstates ofK0 at the eigenvaluek:

^xuwh~k!&5~2p!23/2S gh exp@ ik–x#

ek3gh exp@ ik–x#
D , h5 i , j , ~2.9!

andgi5gi(k),gj5gj (k… andek are mutually orthonormal~the g’s are the two polarization vec
tors!. Then

^wi~k!uT̄ uwj~k8!&5d~k2k8!^wi~k!uV1* ~KC2CK0!wj~k8!&,

and, withB* P C ,

^wj~k8!uV1* 5^wj~k8!u H P'B2 i lim
«↓0

E
0

`

dt exp@2«t#exp@ iK 0t#~BK2K0B!exp@2 iKt #J
5^wj~k8!u$B1~BK2K0B!@k81 i02K#21%

5^wj~k8!u$B1B~K2k8!!@k81 i02K#21%.

Thus we obtain

^wj~k8!uT̄ uwi~k!&5d~k2k8!^wj~k8!u$B1B~K2k8!!@z2K#21%~K2k!Cuwi~k!&

5d~k2k8!^wj~k8!u$@z2K0#~12BC!1@z2K0#

3$B@z2K#21C2@z2K0%@z2K0#%uwi~k!&

5d~k2k8!^wj~k8!u@z2K0#$B@z2K#21C2@z2K0#
21%@z2K0#%uwi~k!&

5d~k2k8!^wj~k8!uT~B,C!uwi~k!&5d~k2k8!f~k,gi→k8,gj !, ~2.10!

whereuk8u5k andz5k1 i0. Here

T~B,C!5@z2K0#$B@z2K#21C2@z2K0#
21%@z2K0# ~2.11!

and f(k,gi→k8, gj ) is the scattering amplitude for the scattering of em energy from the s
k,i into the statek8, j with associated differential cross section

s~k,gi→k8,gj !5~2p!4k2uf~k,gi→k8,gj !u2. ~2.12!

That this is indeed the case can be shown in essentially the same way as done in the Schr¨dinger
situation.20 Assuming thatC21PC along withC we have in the special caseB5C21
J. Math. Phys., Vol. 38, No. 7, July 1997
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f~k,gi→k8,gj !5^wj~k8!uTCuwi~k!&,

TC~z!5@z2K0#$@z2KC#212@z2K0#
21%@z2K0#5VC1VC@z2KC#21VC , ~2.13!

KC5C21KC, VC5KC2K0 ,

and we conclude that for each member of the family$KCuCPC,C21PC% we obtain the same
scattering amplitude. Thus, although the transition operatorsTC(z) are different, they have the
same ‘‘on-shell restriction.’’ ChoosingC appropriately,KC can be the generator of the tim
evolution of (B

E), (H
D), etc. This can be understood intuitively by realizing that outside the sca

ing region the former coincide withF.
Remark: The advantage of introducing the B and C operators is in the painless generat

a whole class of transition operators with the same on-shell restriction. Some of these gen
easily to the case of discontinuous permeabilities, whereas others do not. Thus in the se
particular operatort2(z) (see eq.~2.19! below) is studied.

The expression for f can be reduced to one in terms of operators actin
H 35L2(R3;C3). Starting point is to introduce the relation18

@z2K#215z21S 0 0

0 1D 1zS 1 0

z21Q* 0D @z22QQ* #21S 1 z21Q

0 0D , ~2.14!

~where @z22QQ* #21and @z22Q*Q#21 with Q andQ* given in ~2.3! act inH 3) into the
expression for f. We shall do so for the special case

B5S b1 0

0 b2
D , C5S c1 0

0 c2
D , b2c251. ~2.15!

After some lengthy calculations we then end up with~againz5k1 i0)

f5k21^k8ugj~k8!•$b1Hc12b1c1H01~b1H2H0b1!@z
22H#21~Hc12c1H0!%•gi~k!uk&

5k21^k8ugj~k8!•@z22H0#$b1@z
22H#21c12@z22H0#%@z

22H0#•gi~k!uk&

5k21^k8ugj~k8!•$F1F@z2c1
21b1

212c1
21Hb1

21#21F%•gi~k!uk&

5k21^k8ugj~k8!•t~z!•gi~k!uk&, ~2.16!

whereuk&and ^k8u are ordinary plane wave states (^xuk&5(2p)23/2 exp@ik–x#),

t~z!5F1F@z2c1
21b1

212c1
21Hb1

21#21F,

H052~e•p!25p2Dp , H5QQ*52«21/2~e•p!•m21~e•p!«21/2, ~2.17!

F5z22H01c1
21@H2z2#b1

21 .

Two cases are of special interest:
~i! In the special casem51, b15c15«21/2 we have

t~z!5t1~z!5z2w1z2w@z2«2H0#
21z2w, w512«, ~2.18!

featuring the ‘‘energy dependent’’ potentialz2w. This expression is often encountered in t
transport case, as is its counterpart for scalar classical waves.7,8 The operatort1(z) has the usual
J. Math. Phys., Vol. 38, No. 7, July 1997
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structure of a transition operator. It is important to note that, although it is taken between
verse states, we still need the full resolvent@z2«2H0#

21, due to its sandwiching between th
w8’s.

~ii ! Choosingb15c15«1/2 we have

t~z!5t2~z!5@z22H0#$@z
2«212«21/2H«21/2#212@z22H0#

21%@z22H0#

5@z22H0#$R~z!«2@z22H0#
21%@z22H0#, ~2.19!

As discussed in section V, the use oft2(z) is to be preferred if« and/orm have discontinuities. For
m51 the relation between both operators is given in section VIII.

In the following sections we shall study

R~z!5«1/2@z22H#21«21/25@z21~e•p!m21~e•p!«21#21 ~2.20!

for the rotational invariant case. In closing this section we make some final remarks:
Remarks: We discussed the scattering of em energy. In the literature it is usual to consid

scattered fields, sayE andB. But, due to the wave operator equivalence discussed above,
cases lead to the same scattering amplitude.

The Laplace transform ofD(t) is related toD(t50) throughR(z) leading to t2(z) in a
natural way. t1(z), on the other hand, turns up in the Laplace transform ofE(t) expressed in
terms ofD(t50).

III. THE SCALAR RESOLVENTS

Assuming that« and m are nice~see section I! and rotational invariant, we now expres
x•R(z), p•R(z) and l•R(z), with R(z)5R given by ~2.20!, in terms of the resolvents of two
scalar operators~i.e., acting inH5L2(R3)). Now « andm, considered as multiplication opera
tors, commute withl and it is this property that allows us to obtain the announced result. Thu
f P H 3 be arbitrary and letg5R•f. Then

f5R21
•g5@z21~e•p!•m21~e•p!«21#•g ~3.1!

and some straightforward calculations, given in detail in Appendix C, give the following res

x•f5c2H F z2c2 2p22a~x–p2 i !Gx–g2@2i2x–p2ax2#p–gJ, ~3.2!

p–f5z2p–g, ~3.3!

l–f5m21F z2c2 2p22b~x–p2 i !G«21l–g, ~3.4!

wherea5 i («8/x«), b5 i (m8/xm) and primes indicate derivatives with respect tox. Now

p–g5z22p–f. ~3.5!

~It is this simple relation that motivated us to considerR rather than some other resolvent.! Let
further
J. Math. Phys., Vol. 38, No. 7, July 1997
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Ra~z!5F z2c2 2p22a~x–p2 i !G21

5F z2c2 2HaG21

, Ha5p21a~x–p2 i !5p21
«8

«x
]xx,

~3.6!

Rb~z!5F z2c2 2p22b~x–p2 i !G21

5F z2c2 2HbG21

, Hb5p21b~x–p2 i !5p21
m8

mx
]xx.

Both are operators onH5L2(R3,dx…. Now x–f5c2$Ra
21x–g2(2i2x–p2ax2)p–g% or

x–g5Ra$(2i2x–p2ax2)p–g1c22x–f% and, using~3.5!,

x•g5Ra$z
22~2i2x–p2ax2!p1c22x%–f.

Also l–g5«Rbm l–f. Sincef is arbitrary,

x–R5Ra$c
22x1z22~2i2x–p2ax2!p%, p–R5z22p, l–R5«Rbm l, ~3.7!

and we have indeed expressed our quantities in terms of the two scalar resolvents~3.6!. The
expression forx•R, although correct for smooth«, does not make sense for discontinuous« since
a is undefined at the discontinuities. This problem does not occur withRa andRb , since, as will
be discussed later, they have limits as« and/orm converge to discontinuous functions. Howeve
as shown in Appendix C, we can eliminatea from x–R with the result

x–R5Ram1z22x2~p–x!21p, m5c22$x2x2~p–x!21p%1
l2

z2
~p–x!21p, ~3.8!

and nowa only appears inRa , whereas discontinuities inc
22 are harmless sincec22 is to the left

of the differential operatorp. We can also eliminatec22 from x–R ~see again Appendix C!,
resulting in

x–R5z22x2z22Ral3~p1ax!. ~3.9!

IV. THE CONSTRUCTION OF R

In this section we give expressions for the operatorsR andR« in terms of the scalar resol
ventsRa,b .

A. General expressions

In Appendix B it is shown that the operatorM5xx1pp1 ll , introduced in~1.4!, has the
inverseM21 and that

M21
•x5h0

21xP01p3 ll22Q0 ,

M21
•p5h0

21pP02x3 ll22Q0 , ~4.1!

M21
• l5 l22l,

whereh05x21p2, Q0512P0 with P0 the projector upon the zero angular momentum (l 50)
subspace (f , below, can be a scalar function, a vector component, etc.!
J. Math. Phys., Vol. 38, No. 7, July 1997
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~P0f !~x!5~4p!21E dex f ~x!,

where the integration is over all solid angles. From~3.9! and the last two eqs.~3.7! we have

M•R52z22xRal3~p1ax!1z22~xx1pp!1 l«Rbm l

52z22xRal3~p1ax!1 l«Rbm l1z22~M2 ll !. ~4.2!

Multiplying ~4.2! from the left withM21 and using~4.1!, we obtain the representation

R52z22p3 ll22Ral3~p1ax!1 l22l«Rbm l1z22~U2 l22ll !, ~4.3!

so, using«p5(p1ax)«,

R«52z22p3 ll22Ra« l3p1 l22l«Rb«m l1«z22~U2 l22ll !. ~4.4!

Since the ranges ofl3p, l 3 ax andl are inQ0H
3, the components ofRa,b in the zero angular

momentum subspace drop out~the well known absence of s-wave scattering in the em case! and
l22 in the above equations is well defined~as the inverse ofl2 in Q0H

3). Equation~4.4! is
universally valid, also in cases where« and/orm have discontinuities, provided the appropria
Ra,b are used. The more symmetric form ofR« can be understood by noting that the resolvent
a self adjoint operator is involved~cf. eq. ~1.3!!.

B. Explicit expression for the non-propagating part

A different expression forR is obtained by observing that (p225(p2)21)

x~p–x!21p5epep1p3 lp22~p–x!21p, z22Ra5Rac
22Ha

212z22Ha
21 .

Using some of the identities of Appendix A we then find

R52p3 lRac
22$ l22l3pp221@p222Ha

21#3~p–x…21p%1 l22l«Rbm l1z22

3$epep1p3 l@p222Ha
21#~p–x!21p%. ~4.5!

This result is interesting in that the second order pole contribution, associated with the
propagating field modes, is made explicit in the last term on the right hand side.

C. Connection with expressions from the literature

Finally we presentR in a form that is close to one that can be found in the literature.2,18 Thus
let

Ll5
z2

c2
x2pp–x22ip, La

l 5Ll2ax~x–p2 i !5xRa
211p3 l,

~4.6!

Lr5
z2

c2
x2x–pp12ip, La

r 5Lr2ax2p5Ra
21x2 l3~p1ax!.

Then, expressingp3 l and l3(p1ax) in ~4.6! in terms of theL’s we obtain

R5z22La
l l22Q0RaLa

r 1 l22l«Rbm l2c22xl22Q0x1z22~p1ax!x2l22Q0p1z22S,
J. Math. Phys., Vol. 38, No. 7, July 1997
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whereS5x3 ll22Q0p2p3 ll22Q0x1U2 l22ll . Now M–S5xP0x1pP0p and multiplying with
M21 we findS5h0

21(xP0x1pP0p) . Thus

R5z22La
l l22Q0RaLa

r 1 l22l«Rbm l2c22xl22Q0x1z22~p1ax!x2l22Q0p

1z22h0
21~xP0x1pP0p!. ~4.7!

In the literature the corresponding Green’s functionG(x,y,z)5^xuR(z)uy& is given in pointsx,
y, wherea vanishes. ThenLa can be replaced byL and, if «51 in some region~the region
x.d in the Mie case considered in the next section!, only the first two terms in~4.7! give a
contribution to the Green’s function that differs from the corresponding free
G0(x,y,z)5^xu†z22H0#

21uy& and drops out in their differenceDG5G2G0 . This expression
was the starting point for the construction of generalized point interactions in DT.

V. SCATTERING AMPLITUDES FOR THE ROTATIONAL INVARIANT CASE

In section II we expressed the scattering amplitude in terms of T-operators related
Helmholtz resolvents. Using the results of section IV we can simplify these expressions fu
Thus the amplitude can be given in terms of reduced matrix elements~in the irreducible tensor
sense! of scalar T-operators defined relative to the scalar resolvents.

Remark: In casem51, t1(z), as given by~2.18!, is a convenient choice for smooth«. If there
are discontinuities the situation changes. Using~4.4! for R(z)« in @z2«2H0#

215«21R(z)
« •«21 we encounter terms of the typel3p(w/«)•gi(k)uk&5(w/«) l3p•gi(k)uk&
2 i l3]x(w/«)•gi(k)uk& giving rise tod -functions, concentrated on the discontinuity surfac
This can be handled but the use oft2(z) avoids this complication completely, so we shall st
from the latter.

Introducing scalar T-operators ta,b(z) through

Ra~z!«5R0~z!1R0~z!ta~z!R0~z!, «Rb~z!«m5R0~z!1R0~z!tb~z!R0~z!,
~5.1!

R0~z!5@z22p2#21,

we obtain

R~z!«2@z22H0#
215@z22H0#

21$2z22p3 ll22ta~z!l3p1 ll22tb~z!l%@z22H0#
21

1~«21!z22~U2 l22ll !, ~5.2!

and, comparing this with~2.19!,

t2~z!52z22p3 ll22ta~z!l3p1 ll22tb~z!l1z22@z22H0#~«21!~U2 l22ll !@z22H0#. ~5.3!

Noting that the contribution of the last term vanishes on the energy shell, insertion in~2.16! results
in

f~k,gi→k8,gj !5k21^k8ugj~k8!•$2z22p3 ll22tal3p1 ll22tbl%•gi~k!uk&

5k^k8ugj~k8!•xl22tax–gi~k!uk&1k21^k8ugj~k8!• ll22tbl•gi~k!uk&

5fa~k,gi→k8,gj !1fb~k,gi→k8,gj !. ~5.4!

It is standard practice to choose the polarization vectors frome15u1 /u1 , e25u2 /u2 ,
e35u3 /u3 , whereu15k3(k3k8), u25k83(k3k8), u35k3k8. Then, as shown in Appendix
C,
J. Math. Phys., Vol. 38, No. 7, July 1997
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fa~k,e3→k8,e3!5k21(
l 51

`
2l 11

4pl ~ l 11!
Pl8 ~cosu!^kl uuta~z!uukl &,

fa~k,e1→k8,e2!5k21(
l 51

`
2l 11

4pl ~ l 11!
$l ~ l 11!Pl ~cosu!2cosuPl8 ~cosu!%^kl uuta~z!uukl &,

~5.5!

fb~k,e3→k8,e3!5k21(
l 51

`
2l 11

4pl ~ l 11!
$l ~ l 11!Pl ~cosu!2cosuPl8 ~cosu!%^kl uutb~z!uukl &,

fb~k,e1→k8,e2!5k21(
l 51

`
2l 11

4pl ~ l 11!
Pl8 ~cosu!^kl uutb~z!uukl &,

and the remaining amplitudes, such as fa(k,u1→k8,u3), where one of thee-vectors is in the
(k,k8)-plane and the othere3 , vanish. Herê kl uuta,b(z)uukl & are reduced matrix elements in th
irreducible tensor sense,u is the angle betweenk andk8 andPl8 is the derivative of the Legendr
polynomialPl . Thus we recover the expressions given by van de Hulst

1 ~section 9.3, p. 124!. He
considered the scattering from Mie spheres, whereas here the reduced T-matrix elements
general.

VI. DISCONTINUITIES IN « AND m, MIE SPHERES

For Mie spheres explicit expressions can be generated for the various quantities of in
Expressions for scattering amplitudes can be found in the literature. Here and in the next s
we extend these results to general T-operator matrix elements.

A. Discontinuities and boundary conditions

As we have seen in the smooth case,Ra,b are the inverses of operators of the type

Lg5
z2

c2
2p21 ig~x!]xx, g5a,b, ~6.1!

which have domainD(p2). The situation becomes different if« and/orm have discontinuities.
For instance, consider the case (u(x) is the Heaviside step function!

«~x!5«1~x!u~d2x!1«2~x!u~x2d!, ~6.2!

with smooth « j (x), j51,2 ~constant for Mie spheres!, and «1(d) Þ «2(d). Now a(x);
«8(x)/«(x) is singular inx5d and not even ofd-function type. ButLa does make sense whe
acting on functionsf (x) satisfying the boundary condition

«21~x!]x$x f~x!% smooth inx5d. ~6.3!

This can be seen by considering its restriction to a fixed angular momentum reducing sub
Due to rotational symmetry the projectors upon constant angular momentum subspaces
La and for itsl th component we have
J. Math. Phys., Vol. 38, No. 7, July 1997
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Lal f5F]x21 2

x
]xG f2x21~«22«1!d~x2d!«21]xx f1

z2

c2
f2

l ~ l 11!

x2
f

5x21@]x««21]xx f2~«22«1!d~x2d!«21]xx f#1
z2

c2
f2

l ~ l 11!

x2
f

5x21«]x«
21]xx f1

z2

c2
f2

l ~ l 11!

x2
f ,

i.e., the term containing ad-function is canceled.
A more precise procedure starts fromRa«5@mz22«21Ha#

21. LetH l be thel th component
of «21Ha (l P N), acting inL2(R1,x2dx). Then

H l 52«21S ]x
21

2

x
]xD1

l ~ l 11!

«x2
1

«8

«2x
]xx, ~6.4!

which is unitarily equivalent to

hl 5hl ~«!52«21]x
21

«8

«2
]x1

l ~ l 11!

«x2
52]x«

21]x1
l ~ l 11!

«x2
, ~6.5!

acting inL2(R1,dx), where the functions in its domain vanish inx50. The associated quadrat
form is

Ql ~ f ,g!5~«~x!21]xf ,]xg!1l ~ l 11!~«~x!21x21f ,x21g!, ~6.6!

with domain consisting of the absolutely continuous, square integrable functions with s
integrable derivative and vanishing inx50. Forl 50 ~the s-wave case! the boundary condition in
x50 can be modified, leading to a Fermi potential perturbation in the origin. In the Schro¨dinger
case this makes a real difference but on electromagnetic quantities such modifications
l 50 subspace have no effect. Next we note thatQl is well defined with the same domain in ca
« has discontinuities. The associated newhl is then found from the relation16

~hl f ,g!5Ql ~ f ,g!, fPD~hl !, ;gPD~F l !. ~6.7!

This leads to

~hl ~«! f !~x!52«~x!21]x
2f ~x!1

l ~ l 11!

«~x!x2
f ~x!,xÞd, f ~x! and«~x!21]xf ~x! continuous ind.

~6.8!

We conclude that nowHa andRa« are again properly defined. Discontinuities inm cause no
further problems inRa« but if they occur we have to redefineRbm5@«z22m21Hb#

21 in the same
way as done forRa«.

Remark: The discontinuous case can be obtained as the limit of a family of smooth ones
following way: Letm51 and let «(x) be discontinuous in x5d. Then there exists a family
$«n(x)un P N% such that«n(x) is smooth and coincides with«(x) outside a fixed neighborhood o
x5d. Also «n(x)«(x) for xÞd. Then i@«n(x)2«(x)#/«n(x)i` →

n→` 0 (ii` is the L`(R1,dx)
-norm) and hl n5hl («n) converges in strong resolvent sense to hl 5hl («) (Ref. 16, chapter VI,
§ 3, theorem 3.6). More about such limits can be found in DT.
J. Math. Phys., Vol. 38, No. 7, July 1997
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B. Explicit expressions in terms of Ricatti-Bessel functions

For

«~x!5«1 , m~x!5m1 , x,d,
~6.9!

«~x!5«2 , m~x!5m2 , x.d,

the determination of the Green’s functions

gl ~x,y,z,«,m!5^xu@mz22hl ~«!#21uy&, ~6.10!

associated withRa« is a straightforward matter. In terms of the Ricatti-Bessel functions (j l ,
nl andhl

1 are the spherical Bessel, Neumann and Hankel functions, respectively!

Fll ~u!5lu j l ~lu!, Cll ~u!5lunl ~lu!, Qll ~u!5luhl
1~lu!,

F̂ll ~u!5]lulu j l ~lu!, Ĉll ~u!5]lulunl ~lu!, Q̂ll ~u!5]luluhl
1~lu!,

~6.11!

we have, with

x,5min$x,y%, x.5max$x,y%, l j5A« jm j z, k5A«1m2

«2m1
, ~6.12!

gl ~x,y,z,«,m!5H Fl1l
~x,!@al Fl1l

~x.!1bl Cl1l
~x.!#, x, ,x.<d,

cl Fl1l
~x,!Ql2l

~x.!, x,<d<x.,

@dl Fl2l
~x,!1el Cl2l ~x,!#Ql2l

~x.!, d<x,<x. .

~6.13!

The various coefficients are given by

al 5
1

z
A«1

m1

Ĉl1l
~d!Ql2l

~d!2kCl1l
~d!Q̂l2l

~d!

F̂l1l
~d!Ql2l

~d!2kFl1l
~d!Q̂l2l

~d!
,

bl 52
1

z
A«1

m1
,

cl 52
1

z
A«1

m1

1

F̂l1l
~d!Ql2l

~d!2kFl1l
~d!Q̂l2l

~d!
, ~6.14!

dl 52
1

z
A«2

m2

F̂l1l
~d!Cl2l

~d!2kFl1l
~d!Ĉl2l

~d!

F̂l1l
~d!Ql2l

~d!2kFl1l
~d!Q̂l2l

~d!
,

el 5
1

z
A«2

m2

F̂l1l
~d!Fl2l

~d!2kFl1l
~d!F̂l2l

~d!

F̂l1l
~d!Ql2l

~d!2kFl1l
~d!Q̂l2l

~d!
.

The Green’s functions associated withRbm are again given by~6.13! except that now in the
coefficientsal , etc.,« j andm j have to be interchanged. For the expressions^kl uuta,b(z)uukl & in
the previous section we now obtain
J. Math. Phys., Vol. 38, No. 7, July 1997
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^kl uuta~z!uukl &5
2

pk

F̂kA«~d!Fk~d!2A«FkA«~d!F̂k~d!

F̂kA«~d!Qk~d!2A«FkA«~d!Q̂k~d!
,

~6.15!

^kl uutb~z!uukl &5
2

pk

A«F̂kA«~d!Fk~d!2FkA«~d!F̂k~d!

A«F̂kA«~d!Qk~d!2FkA«~d!Q̂k~d!
.

VII. OFF-SHELL T-MATRIX ELEMENTS FOR THE MIE CASE

In the scattering amplitude we encountered the objects^kl uuta,b(z)uuk8l &
5 ^kl muta,b(z)uk8l m&, taken ink5k85Re z ~for the statesukl m& see Appendix C!. In multiple
scattering from spherical objects~i.e., more than one spherical object is present! the results of
section II are still relevant but now the T-operators are complicated quantities. In principle
can be expressed in terms of single scatterer T-operators but here their on-shell matrix elem
not suffice. This is also true for diffusion of light through random systems. To leading order i
scatterer density only the on-shell single scatterer T-operator is present but already in secon
the full two-scatterer T-operator is needed.

Here we consider the off-shell case, wherek, k8 and Rez need not be equal. For the evalu
ation of ^kl mutb(z)uk8l m& it is convenient to introduce tc(z) by

Rb~z!m5R0~z!1R0~z!tc~z!R0~z!. ~7.1!

Then, withR(z,«,m)5@mz22«21p21x21(«21)8]xx#21 and defining t(z,«,m) through

R~z,«,m!5R0~z!1R0~z!t~z,«,m!R0~z!, ~7.2!

we have ta(z)5t(z,«,m) and tc(z)5t(z,m,«).
Let $tl (z,«,m)ul P N% be the components of t(z)5 t(z,«,m) on the constant angular mo

mentum subspaces. Then

t̂l ~z!5xtl ~z!x215@z22h0l #$@mz22hl ~«!#212@z22h0l #21%@z22h0l #

5v l 1v l @mz22hl ~«!#21v l , ~7.3!

where hl («) is given by ~6.5!, h0l 52]x
21 l (l 11)/x2 and v l («,m)5hl («)2h0l

1(12m) z2. Then

^kl mut~z!uk8l m&5
2

p
~kk8!21^Fkl u t̂l ~z!uFk8l &, ~7.4!

whereFkl was defined in the previous section. Here the inner product is that ofL2(R1,dx) ~we
absorbed thex2-weight in dx in the Fkl ’s!. From now on we consider the Mie case wi
«25m251. In Appendix D we have calculated the corresponding^Fkl u t̂l (z)uFk8l &. For m51
and w512«, tb(z,«,m)52z22@z22H0#w@z22H0#1z24H0tc(z,«,m)H0 and relating tb and
t̂bl through~7.4! we have

^Fkl u t̂bl ~z!uFk8l &52z22@z22k2#@z22~k8!2#^Fkl uwuFk8l &1z24k2~k8!2^Fkl u t̂cl ~z!uFk8l &.
~7.5!

From ~D6! we obtain for«25m51
J. Math. Phys., Vol. 38, No. 7, July 1997
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^Fkl u t̂al ~z,«,1!uFk8l &5a l ~k,k8,z!Fkl F̂k8l 1a l ~k8,k,z!F̂kl Fk8l 1b l ~k,k8,z!Fkl Fk8l

1g l ~k,k8,z!F̂kl F̂k8l ,

a l ~k,k8,z!5
clw1k

2k8z

k22~k8!2 H z22~k8!2

«1z
22~k8!2

FzA«1l
Q̂zl 2

z22k2

«1z
22k2

1

A«1
F̂zA«1l

Qzl J ,
~7.6!

b l ~k,k8,z!5
clw1

2k2~k8!2z2

A«1@«1z
22k2#@«1z

22~k8!2#
F̂zA«1l

Q̂zl ,

g l ~k,k8,z!5
clw1

2kk8z4

@«1z
22k2#@«1z

22~k8!2#
FzA«1l

Qzl ,

which is symmetric ink andk8 as it should be. Herecl5cl(«1,1) with cl(«1 ,m1) as in ~6.14!,
w1512«1 , and FzA«1l

, etc., are all taken in x5d. The matrix element

^Fkl u t̂cl (z,«,1)uFk8l & is again given by~7.6! but now ~note that herecl5cl(1,«1))

a l ~k,k8,z!5
clw1z

3k8

k22~k8!2H z22~k8!2

«1z
22~k8!2

FzA«1l
zQ̂zl 2

z22k2

«1z
22k2

A«1F̂zA«1l
Qzl J ,

b l ~k,k8,z!5
clw1

2z6A«

@«1z
22k2#@«1z

22~k8!2#
F̂zA«1l

Q̂zl , ~7.7!

g l ~k,k8,z!5
clw1

2kk8z4

@«1z
22k2#@«1z

22~k8!2#
FzA«1l

Qzl .

Application of ~7.5! then giveŝ Fkl u t̂bl (z,«,1)uFk8l &.
In the on-shell case simplifications occur by using some Wronskian relations. In this situ

a much simpler calculation suffices: Using@z2hl #21v l 5@z2h0l #21t̂al (z), v l @z2hl #21

5 t̂al (z)@z2h0l #21, ~6.13! and the corresponding relation for the free case~for which
cl 52z21), we have, forx.d, cl (z)^xuQzl &^FzA«l uv l uC&52z21^xuQzl &^Fzl u t̂al (z)uC&
and similar for the second expression acting onux&. Hence

^Fkl u t̂al ~k1 i0!uFk8l &52kcl ~k!^FkA«l uv l uFk8l &,
~7.8!

^Fkl u t̂al ~k81 i0!uFk8l &52kcl ~k!^Fkl uv l uFk8A«l &.

In this way semi-off-shell matrix elements are found but not the completely off-shell ones.
J. Math. Phys., Vol. 38, No. 7, July 1997
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VIII. DISCUSSION

A. Related work

The traditional approach1,2 towards scattering from Mie spheres is based upon the observ
that in open regions in space on which the permeabilities are constant the solution of a
wave equation can be expressed in terms of the solutionsU andV, of two scalar ones. Thus, fo
m51 in each of the two regions1

E5]x3xU1 i ~A«k!21]x3~]x3xV!, ]x
2SUV D1«k2SUV D50,

which can be rewritten as

E52 i lU1 ip3lV,

i.e., a structure similar toR–f with R as in~4.3!. The fact that two scalar equations or two sca
resolvents are required and not three, as we would expect in a 3-dimensional rotational in
case, is only apparent. In the second of the equations~3.7! we encounter the third one. Due to th
special properties of Maxwell’s equations it simplifies intoz22, the resolvent for the non
propagating modes. Use of rotational symmetry is also made by Moses,21 who starts off from the
eigenfunctions of the curl operator. He also gives applications to fluid mechanics.

The present set-up, combining the electric and magnetic field in a 6-vector, was initia
DT, where the emphasis was on the time evolution in the presence of fractal-shaped and p
objects. There we also discussed the case of discontinuous permeabilities as limits of smoo
In this way the usual boundary conditions involving continuity requirements of longitudinal
transverse field components were recovered. T-operators for electromagnetic scattering fr
penetrable objects~not considered here! are discussed by Hahne.22. He also used a 6-vecto
formalism. A determination ofthe scattering partof a Helmholtz T-operator by means of vect
spherical harmonics methods is given by Tsang and Kong23 in a paper about multiple scatterin
from random distributions of discrete scatterers. Their starting point is a diagrammatic expa
of the corresponding resolvent.

B. Wave operator representations, equivalent T-operators

In section II we used special representations for the Mo” ller operators for the generation of
family of T-operators with a common on-shell restriction. Since complexB andC are allowed, we
may here have a starting point for analytic continuation in« andm. The same trick can be applie
in the Schro¨dinger case. Then, inH5L2(R3,dx), H5p21V(x)5H01V(x) and
V65s2 limt→6` exp@iHt#c6(x)exp@2iH0t#, wheres2 limt→6` exp@iH0t#c6(x)exp@2iH0t#51. It
is not evident that here the casec6(x) Þ 1 leads to useful results.

We have seen that not all possible Helmholtz T-operators are equally convenient in th
case. Given one such operator, it is possible, in a direct way, to derive the equivalence
on-shell restriction to that of another one. On the other hand, the present approach throu
wave operators clearly shows where the equivalence originates.

C. Off-shell T-matrix elements

In work on random scattering, objects such as the deriva
]E^k8ugj•t„E1 i0)•gi uk&uE5k5k8, with t a specific Helmholtz T-operator, make their appearan
In order to evaluate this quantity further we do not need the full off-shell machinery. Instead
~7.8! suffice. Indeed we have~we drop the subscriptl for brevity!
J. Math. Phys., Vol. 38, No. 7, July 1997
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]z^Fku t̂a~z!uFk&uz5k1 i05]z^Fzu t̂a~z!uFk&uz5k1 i02]z^Fzu t̂a~k!uFk&uz5k1 i0

5kc~k!^]zFzuvuFkA«&uz5k1 i02]z$zc~z!^FzA«uvuFk&%uz5k1 i0 ,

~8.1!

and similar for]z^Fku t̂c(z)uFk&uz5k1 i0 . More general situations, featuringt1(z), can be handled
by means of the following relations betweent1(z) and t2(z):

t1~z!5t2~z!1$11t2~z!@z22H0#
21%

w~x!

«~x!
@z22H0#1@z22H0#

w~x!

«~x!
$11@z22H0#

21t2~z!%

1@z22H0#
w~x!

«~x!
R~z!«~x!

w~x!

«~x!
@z22H0#, ~8.2!

t2~z!5z24H0t1~z!H02z22@z22H0#w~x!@z22H0#. ~8.3!

In the first R(z)«(x) can also be expressed in terms oft2 if so desired. Sincet2(z)
3@z22H0#

21w(x)/«(x), @w(x)/«(x)#@z22H0#
21t2(z) and @w(x)/«(x)# R(z)«(x)w(x)/«(x)

all have limits as Imz↓0, RezÞ 0,

t1~z!uwj~k!&uz5k1 i05F t2~z!1@z22H0#
w~x!

«~x!
$11@z22H0#

21t2~z!%G uwj~k!&uz5k1 i0 , ~8.4!

and

t2~k1 i0!uwj~k!&5k22H0t1~k1 i0!uwj~k!&. ~8.5!

Thus

k2
2^wj~k1!ut2~k21 i0!uwh~k2!&5k1

2^wj~k1!ut1~k21 i0!uwh~k2!& ~8.6!

for the associated partly off-shell amplitudes.

D. Generalized point interactions

Calculations involving many scatterers simplify significantly if the individual interactions
separable~finite rank operators!. If, in addition, they are also required to remain local in coordin
space~i.e., when acting upon a vector the support of the result is in the support of the vector!, then
they are concentrated in single points. Examples are in the Schro¨dinger case thed-interaction in
one dimension and the Fermi potential in three. Alternatively such interactions can be defi
free Hamiltonians, altered by boundary conditions in single points. In the em case this
possible due to the essential self-adjointness ofK0 restricted to a domain where such single poin
are omitted. Results by Wu24 indicate that nevertheless a Fermi-like potential does make sen
an electromagnetic problem. In DT we showed, using earlier results by van Diejen an
author,25 that ‘‘generalized point interactions’’~GPI! can be introduced that do the trick. The pric
paid is that the original Hilbert space has to be enlarged to a Pontryagin space. The ass
S-operator, however, still acts in the original Hilbert space. The present work suggests a s
approach than that of DT. The idea is to simply replace the scalar operators ta and tb by GPI-ones.
Scalar operators are easier to deal with and the methods from Ref. 25 directly apply.
J. Math. Phys., Vol. 38, No. 7, July 1997
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APPENDIX A: A LIST OF USEFUL IDENTITIES

The following list of identities, used throughout this work, is obtained by means of
elementary relations

@xk ,pl #5 idkl , (
m

eklmemrs5dkrd ls2dksd lr . ~A1!

The first is nothing but the canonical commutation relations whereas the second corres
to the vector identity ((a3b)3c)k5( l$albkcl2akblcl%. In the seconda,b, andcmay be opera-
tors that need not commute. Recall thata2Da5a2U 2 aa. We have

l3x5p–x2Dx5x2p2~x–p2 i !x, l–x3 l50, l–x50

x3 l52x2Dx•p52ix2 l3x, x3 l–l50, x–l50

l3p52x–p2Dp52p2x1~x–p22i !p, l–p3 l50, l–p50

p3 l5p2Dp•x52 l3p12ip, p3 l–l50, p–l50

~A2!

and

l3 l5 i l, l3f5 i f1p~x–f!2x~p–f!, l3„l3f)5 i l3f1 l~ l–f!2 l2f. ~A3!

Also

@x,l#5 ie•x, @x,l2#52~x1 i l3x!,

@p,l#5 ie•p, @p,l2#52~p1 i l3p!,

l25p–x2Dx•p5x–p2Dp•x, @ l,l2#50,

p2Dp•x3 l 5p3 l~x–p22i !, @x3 l,l2# 52ixl224x3 l,

l3x–p2Dp5~x–p2 i !l3p, @xx1pp,x21p2#50,

l3pp225@x–p2 i #21~ l3x2 l2p22p….
~A4!

APPENDIX B: THE OPERATOR M

We define inH 3 the symmetric operatorM by

M•f5~xx1pp1 ll !•f ~B1!

for an appropriate dense set off’s. ObviouslyM>0 andM has a self adjoint Friedrichs extensio
again denoted byM . Below l22p is the operator@( l2)p#21,p51,2, . . . , on an appropriate do
main.

Proposition 1:M is invertible.
Proof: Suppose that forf P D(M ), the domain ofM ,

M•f50. ~B2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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~a! Sincel•x5 l–p50 we havel–M•f5 l2l–f50. It follows thatl–f is an eigenfunction ofl2 at
the eigenvalue zero and hence must be a scalar function: (l–f…(x)5l(x). Note thata priori l–f
may not be in the domain ofl2. However, we can remedy this by multiplyingl–M•f from the left
by @11 l2#21, so that now@11 l2#21l2l–f50, where@11 l2#21l2 is a bounded operator, withou
altering the result. Similar considerations apply at various places below.

~b! Since nowll•f50, it remains to consider the set

N•f5~xx1pp!•f50, ~B3!

l–f5l~x!. ~B4!

Note that N is not invertible (N•g50 for g5x3h(x)) so ~B4! is crucial. Now
x3(N•f)5 l(p–f)50 and hencep–f5(p–f)(x), i.e., a scalar function of the scalarx. Similarly,
taking the vector product withp, we find the same result forx–f. Thus

x–f5j~x!, p–f5p~x!, ~B5!

and substitution into~B3! gives

x2j~x!52x–pp~x!5 ix]xp~x!. ~B6!

~c! From ~A2! we have

l3f5 i f1p~x–f!2x~p–f!5 i f1pj2xp5 i f1r~x!x,

l3~ l3f!5 i l3f1 l~ l–f!2 l2f5 i l3f1 ll2 l2f5 i l3f2 l2f.

On the other hand, from the most right of the first of these equations

l3~ l3f!5 i l3f1l3rx5 i l3f12irx,

and, comparing the two,l2f522ir(x)x. The right hand side is in thel 51 angular momentum
subspace in whichl2 is invertible. Thus

f5f0~x!22ir l22x, ~B7!

where f0(x), a vector-valued function of the scalarx, is a general element of the null-space
l2.

~d! From ~B7! we obtain

j~x!5x•f0~x!22irx–l22x,

and, j being a scalar function,f0(x) must vanish. Hencef(x)522ir l22x5x22j(x)x and
p(x)5p–f52 i (x22j1x21]xj). Next, from ~B6!, after some rearrangement
(x22]x

212x22)j50 or, with t5x21j5ex•f P H=L2(R3), (h012x22)t50, h05x21p2. But
h0 , the harmonic oscillator Hamiltonian acting inH, has strictly positive spectrum, wherea
2x22 is a positive perturbation. Hencet must vanish, implying thatj and f also vanish. Thus
M is invertible. j

We now turn toM21. Recall thatP0512Q0 is the projector upon the zero angular mome
tum (l 50) subspace: (P0f )(x)5(4p)21*dex f (x). Then we have the following.

Proposition 2:

M215h0
22$xP0x1pP0p%2xl22Q0x2pl22Q0p2h0$xl

24Q0l3p2pl24Q0l3x%1 l24llQ0 .
~B8!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Corollary 3:

M21
•x5h0

21xP01p3 ll22Q0 ,

M21
•p5h0

21pP02x3 ll22Q0 , ~B9!

M21
• l5 l22l.

Proof: From ~B8! we obtain

M21
•x5h0

22$xP0x
21pP0p–x%2xl22Q0x

22pl22Q0p–x2h0$xl
24Q0~ l3p!•x2pl24Q0l3x•x%

1 l24llQ0•x

5h0
22$xx21pp–x%P02$xl22x21pl22p–x%Q01h0xl

24Q01 l24lQ0l–x5h0
22$xx2

1pp–x%P01$h0x2xx22pp–x% l22Q0

5h0
22$~x21p2!x2p2x1pp–x%%P01$p2x2pp–x% l22Q0

5h0
21xP02h0

22p3 lP01p3 ll22Q05h0
21xP01p3 ll22Q0 .

Here we used various identities tabulated in Appendix A. The second relation~B9! follows in a
similar way and the final one is nearly trivial. j

Proof of proposition 2:Equations~B9! lead to

M21
•M5h0

21~xP0x1pP0p!1p3 ll22Q0x2x3 ll22Q0p1 l22ll .

Let Z be the right hand side. Then

Z•x5h0
21~x2x1pp–x!P01$p3 ll22x22x3 ll22p–x%Q0

5h0
21~h0x2p2x1pp–x!P01$p2xx21x2pp–x2xx–pp–x% l22Q0

5h0
21~h0x2p3 l!P01$p2xx22pp–xx21x2pp–x2xx–p2x1xl2% l22Q05xP01xl2l22Q05x

and similarlyZ•p5p, Z• l5 l. HenceZ•M5M and, sinceM is invertible and has dense rang
Z is the identity and the proposition is proven. j

Remark: The present approach postulates an expression forM21 and shows that it is the
correct one. Originally we constructed it in a quite different, more complicated, way. That
cedure did, however, lead to the eigenfunctions and associated eigenvalues ofM in explicit form.

APPENDIX C: SOME CALCULATIONS PERTAINING TO THE MAIN TEXT

1. Expressions for x –f, p–f and l –f

Dotting f5R21
•g5@z21(e•p)•m21(e•p)«21#•g from the left withx we obtain

x–f5z2x–g1x–~e•p…–m21
„e–p!«21

•g5z2x–g2l–m21
„e–p)«21

•g5z2x–g2m21l–„e–p)«21
•g

5z2x–g1m21l3p«21
•g5z2x–g1c2@ l3~p1ax…‡•g5z2x–g1c2@2p2x1~x–p22i !p#•g

1ac2@x2p2~x–p2 i !x#•g, ~C1!

which is ~3.2!. Equation~3.3! follows trivially and finally
J. Math. Phys., Vol. 38, No. 7, July 1997
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l–f5z2l–g1 l–„e–p)•m21
„e–p)«21

•g5z2l–g2 l3p–m21
„e•p)«21

•g

5z2l–g2m21l3~p1bx!–„e–p)«21
•g5z2l–g1m21~x–p2Dp2bp–x2Dx!•„e–p)«

21
•g

5z2l–g1m21x–p2„e•p)«21
•g2m21b~px22p–xx!–„e•p)«21

•g

5z2l–g2m21p2l–«21g2m21b~22ix2p–xx!–„e•p)•«21g

5z2l–g2m21p2l–«21g2m21b~2i1p–x!l–«21g5m21F z2c2 2p22b~x–p2 i !G«21l–g.

~C2!

2. The elimination of a and c22 from x –R

From a5a(x–p2 i )(x–p2 i )2152Ra
21(x–p2 i )211(z2/c22p2)(x–p2 i )21 we obtain

ax252Ra
21x2(p–x)211(z2/c22p2)x2(p–x)21 and

Ra$c
22x1z22~2i2x–p2ax2!p%

5RaH c22x1z22~2i2x–p!p2z22F2Ra
21x2~p–x!211S z2c2 2p2D x2~p–x!21pG J

5RaH c22S x2x2~p–x!21p1
l2

z2
~p–x!21pJ 1z22x2~p–x!21p

5Ram1z22x2~p–x!21p. ~C3!

As

Rac
225Ra

z2

c2
z225Ra$Ra

211p21a~x–p2 i !%z225z221z22Ra$p
21a~x–p2 i !%,

we have, using some identities from Appendix A,

x–R5Ra$c
22x1z22~2i2x–p2ax2!p%

5z22x1z22Ra$p
21a~x–p2 i !x1~2i2x–p2ax2!p%5z22x2z22Ral3~p1ax!.

~C4!

3. The evaluation of the scattering amplitudes

We have, usingp–l5l–p50,

fa~k,u3→k8,u3!5k^k8uk3k8•xl22tax–k3k8uk&

52k^k8uk–ll22tal–k8uk&

52k^k8u$ l–k8k–l1@k–l,l–k8#% l22tauk&

52k^k8u$p–ll22tal–puk&2k^k8u ik3k8• ll22tauk&

52 ik^k8uk3k8• ll22tauk&. ~C5!

In the same way
J. Math. Phys., Vol. 38, No. 7, July 1997
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fa~k,u1→k8,u2!5k^k8uk83~k3k8!•xl22tax–k3~k3k8!uk&5k^k8u~k3k8• l!2l22tauk&,

fb~k,u3→k8,u3!5k21^k8u~k3k8• l!2l22tbuk&,
~C6!

fb~k,u1→k8,u2!52 ik3^k8uk3k8• ll22tbuk&,

fa~k,u3→k8,u2!5fa~k,u1→k8,u3!5fb~k,u3→k8,u2!5fb~k,u1→k8,u3!50.

Next we reduce these expressions using the scalar nature of ta and tb . This can be done in an
abstract setting but for the further evaluation of the reduced ta,b matrix elements it is convenien
to introduce an explicit basis. Thus let^l mue&5Yl

m(e…, the spherical harmonic of the angle
of the unit vector e, relative to some Cartesian frame (X1 ,X2 ,X3). Let further
^xukl m&5 i l A2/p j l (kx)^exul m&. Then we have~the first is the resolution of the identity!

(
l ,m

E
0

`

dkk2ukl m&^kl mu51, ^xuk&5(
l m

^xukl m&^l muek&,

^k8ukl m&5k22d~k2k8!^ek8ul m&. ~C7!

Taking k3k8 along the X3-axis we then obtain

fa~k,u3→k8,u3!52 ikuk3k8u^k8u l3l22tauk&

52 ikuk3k8u (
l 51

`

(
m52l

l

m^ek8ul m&^l muek&
1

l ~ l 11!
^kl mutaukl m&

52 ikuk3k8u (
l 51

`

(
m52l

l

m^ek8ul m&^l muek&
1

l ~ l 11!
^kl uutauukl &. ~C8!

Here ^kl uutauukl &5^kl muta(k1 i0)ukl m& is the m-independent reduced ta-matrix element.
Since(m52l

l m^ek8ul m&^l muek&52 i @(2l 11)/4p# Pl8 (cosu)ek3ek8 (u is the angle between
k andk8) we obtain, after normalizing theu-vectors, the first of eqs.~5.5!. The second goes in th
same way, except that now we have the sum(m52l

l m2^ek8ul m&^l muek&, which equals
@(2l 11)/4p# $l (l 11)Pl (cosu)2cosuPl8 (cosu)%, and similar for the rest.

APPENDIX D: THE CALCULATION OF OFF-SHELL T-MATRIX ELEMENTS

For the calculation of off-shell t-matrix elements^Fkl u t̂l (z,«,m)uFk8l & it is convenient to
introduceP,5x [0,d] (x), P.5x (d,`] (x), wherexA(x)51 for x P A and vanishes otherwise
Then, from~6.13!,

^xu@z22hl #21uy&5cl ^xuQzl &^FzA«l uy&,x>d>y,
~D1!

P.@z22hl #21P,5cl P.uQzl &^FzA«l uP,

~in states such asuQzl & z stands for its real part Rez). For j,q P $F,C,Q%, dropping the
subscript l from now on for brevity, using]xFk(x)5kF̂k(x) and similar for ]xCk(x) and
]xQk(x),
J. Math. Phys., Vol. 38, No. 7, July 1997
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^jkuP,uqk8&5@k22~k8!2#21^jkuh0x [0,d]2x [0,d]h0uqk8&

5@k22~k8!2#21^jku2]x
2x [0,d]~x!1x [0,d]~x!]x

2uqk8&

5@k22~k8!2#21^jku]xd~x2d!1d~x2d!]xuqk8&

5@k22~k8!2#21$jk~d!k8q̂k8~d!2kĵk~d!qk8~d!%. ~D2!

Also, fork Þ k8, due to the orthogonality ofjk andqk8, ^jkuP.uqk8&52^jkuP,uqk8&. In the Mie
case~6.9! with «25m251 andw(x)512«(x), g5 w1 /«1 , w1512«1 , we have

v~«,m!5h~«!2h01~12m!z2

52]x«
21]x1

l ~ l 11!

«x2
1]x

22
l ~ l 11!

x2
1~12m!z25

w

«
h01gd~x2d!]x1~12m!z2

5h0
w

«
2g]xd~x2d!1~12m!z25

w

«
h01gud&^du]x1~12m!z2

5h0
w

«
2g]xud&^du1~12m!z25P,$gh01~12m1!z

2%1gud&^du]x

5$gh01~12m1!z
2%P,2g]xud&^du5P,v5vP, , ~D3!

and

^jkuv~«,1!uqk8&5@k22~k8!2#21@g$k2jk~d!k8q̂k8~d!2kĵk~d!~k8!2qk8~d!%

1~12m1!z
2$k8jk~d!q̂k8~d!2kĵk~d!qk8~d!%#. ~D4!

With these preliminaries out of the way we now start with the actual calculation. We show

t̂~z,«,m!5
«1~z

22h0!

«1m1z
22h0

$v~«,m!1cv~«,m!uQz&^Fl1
uv~«,m!%,l15zA«1

m1
, ~D5!

wherec5cl(«1 ,m1) is as in~6.14!. We have

t̂5@z22h0#@mz22h~«!#21v

5@z22h0#P,@mz22h~«!#21v1@z22h0#P.@mz22h~«!#21v

5@z22h0#P,@mz22h~«!#21v1c@z22h0#P.uQz&^Fl1
uv

5@z22h0#P,@mz22h~«!#21v2c@z22h0#P,uQz&^Fl1
uv1c@z22h0#uQz&^Fl1

uv

5@z22h0#P,@mz22h~«!#21v2c@z22h0#P,uQz&^Fl1
uv,

since@z22h0#uQz&50. Next we substituteP,5@gh01(12m1)z
2#21$v1g]xud&^du% in the first

term on the right and use the last of the relations~7.3!,
J. Math. Phys., Vol. 38, No. 7, July 1997
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t̂5@z22h0#@gh01~12m1!z
2#21$v1g]xud&^du%@z22h#21v2c@z22h0#P,uQz&^Fl1

uv

5@z22h0#@gh01~12m1!z
2#21$ t̂2v1g]xud&^du@z22h#21v%2c@z22h0#P,uQz&^Fl1

uv

5@z22h0#@gh01~12m1!z
2#21$ t̂2v1cg]xud&^duQz&^Fl1

uv%2c@z22h0#P,uQz&^Fl1
uv

5@z22h0#@gh01~12m1!z
2#213$ t̂2v1cg]xud&^duQz&^FzA«uv2c@gh0

1~12m1!z
2#P,uQz&^Fl1

uv%

5@z22h0#@gh01~12m1!z
2#21$ t̂2v2cvuQz&^Fl1

uv%,

from which ~D5! follows. Insertion of~D5! into ~7.4! and using~D4! then gives

^Fkl u t̂~z,«,m!uFk8l &5a l ~k,k8,z!Fkl F̂k8l 1a l ~k8,k,z!F̂kl Fk8l 1b l ~k,k8,z!Fkl Fk8l

1g l ~k,k8,z!F̂kl F̂k8l ,

a l ~k,k8,z!5
clk8z@«1~z

22k2!2~«1m1z
22~k8!2!#

k22~k8!2

3H z22~k8!2

«1m1z
22~k8!2

FzA«1l
Q̂zl 2

z22k2

«1m1z
22k2

Am1

«1
F̂zA«1l

Qzl J ,
~D6!

b l ~k,k8,z!5

clz
2Am1

«1
@«1m1z

22k2#@«1m1z
22~k8!2#

@«1~z
22k2!2~«1m1z

22k2!#3@«1~z
22~k8!2!

2~«1m1z
22~k8!2!#F̂zA«1l

Q̂zl ,

g l ~k,k8,z!5
clkk8z

4~12«1m1!
2

@«1m1z
22k2#@«1m1z

22~k8!2#
FzA«1l

Qzl .
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Euler and Navier–Stokes limits of the Uehling–Uhlenbeck
quantum kinetic equations

Luisa Arlotti
Department of Civil Engineering, University of Udine, Italy

Miroslaw Lachowicz
Department of Mathematics, Warsaw University, Poland

~Received 4 November 1996; accepted for publication 31 March 1997!

The Uehling–Uhlenbeck evolution equations for gases of identical quantum par-
ticles either fermions or bosons, in the case in which the collision kernel does not
depend on the distribution function, are considered. The existence of solutions and
their asymptotic relations with solutions of the hydrodynamic equations both at the
level of the Euler system and at the level of the Navier–Stokes system are proved.
© 1997 American Institute of Physics.@S0022-2488~97!01707-6#

I. QUANTUM KINETIC EQUATIONS

Kinetic equations describe the evolution of the one-particle distribution functiof
5 f (t,x,v), wheret, x, andv are, respectively, the time, the space, and the velocity variab
Throughout this paper, functions on a three-dimensional torusT3, with respect to the spac
variablex, are considered;t>0 andvPR3.

The kinetic equations describing the evolution of a gas of quantum particles are the so-
Uehling–Uhlenbeck equations~see Refs. 1–3!. In the case in which the collision kernel does n
depend on the distribution function, they read as

Df5Qa~ f !; ~1.1!

D is the free-streaming operatorD5]/]t1v•]/]x andQa is the collision operator,

Qa~ f !5J~ f , f !1aA~ f , f , f !,

J is the classical Boltzmann collision operator,

J~ f ,g!~v !5
1

2 E
R33S1

2
B~w2v,n!$ f ~v8!g~w8!1 f ~w8!g~v8!2 f ~v !g~w!2 f ~w!g~v !%dn dw;

v8 andw8 are the velocities of a pair of particles~the test one and the mass one! after a collision,
which are related to the velocitiesv andw, before the collision, by

v85v1n„n•~w2v !…, ~1.2a!

w85w2n„n•~w2v !…; ~1.2b!

nPS1
2 5$nPR3:unu51,(w2v)•n>0% is a collision parameter;B is the collision kernel that

characterizes the scattering of the gas particles due to an interaction potential~Refs. 3–5!; a is a
parameter~proportional to\3, where\ is Planck’s constant!, that is positive for fermions and
negative for bosons;A is the following operator:

A~ f ,g,h!~v !5
1

6 E
R33S1

2
B~w2v,n!$ f ~v !g~w!h~v8!1 f ~w!g~v !h~v8!1 f ~v8!g~w!h~v !
0022-2488/97/38(7)/3571/18/$10.00
3571J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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1 f ~v8!g~v !h~w!1 f ~v !g~v8!h~w!1 f ~w!g~v8!h~v !1 f ~v !g~w!h~w8!

1 f ~w!g~v !h~w8!1 f ~w8!g~w!h~v !1 f ~w8!g~v !h~w!1 f ~v !g~w8!h~w!

1 f ~w!g~w8!h~v !2 f ~v8!g~w8!h~v !2 f ~w8!g~v8!h~v !2 f ~v !g~w8!h~v8!

2 f ~v !g~v8!h~w8!2 f ~v8!g~v !h~w8!2 f ~w8!g~v !h~v8!2 f ~v8!g~w8!h~w!

2 f ~w8!g~v8!h~w!2 f ~w!g~w8!h~v8!2 f ~w!g~v8!h~w8!2 f ~v8!g~w!h~w8!

2 f ~w8!g~w!h~v8!%dn dw.

The existence and uniqueness of the solution to the Cauchy problem for Eq.~1.1! were proved
by Suslin6 ~for a561! and Dolbeault7 ~for 0,a,1!, under rather restrictive assumptions on t
collision kernelB. Moreover, Dolbeault7 proved that asa tends to 0, up to the extraction of
subsequence, a sequence of solutions of Eq.~1.1! tends ~weakly! to a renormalized Di
Perna–Lions8 solution of the classical Boltzmann equation. A general existence~without unique-
ness! theorem was proved~for 0,a,1! by Lions.9 The case in which the collision kernelB
depends on the distribution functionf was studied by Polytyukov.10 The discrete models o
quantum kinetic equations were investigated by Piecho´r11 and Vedenyapinet al.12

In this paper, the singularly perturbed problem associated with Eq.~1.1! is dealt with,

Df5
1

e S J~ f , f !1
a

e
A~ f , f , f ! D , ~1.3a!

f u t505 f 0 , ~1.3b!

in the limit e→0 anda→0.
This problem arises in the dimensionless analysis of Eq.~1.1! and corresponds to transition t

the classical continuum matter theory~the classical hydrodynamic limit!.
The case

uau!e ~1.4!

~i.e., uau;ep for p.1!, can be treated in the same way as the corresponding problem fo
classical Boltzmann equation~see Refs. 13 and 14!. The resulting hydrodynamic equations a
then exactly the same as those resulting from the Boltzmann equation.

On the other hand, the case

uau@e ~1.5!

~i.e., uau;ep for p,1!, is not physically consistent. One should expect in this case that the
solution is only a trivial one. However, this is an open problem.

A natural question to ask is what could be a hydrodynamic limit of Eq.~1.3! for

uau;e. ~1.6!

In the present paper we attempt to solve this problem with a simplified assumption,

uau5e. ~1.7!

We consider both fermions (a5e) and bosons (a52e); in the latter case we assume that t
regime, in which the Bose–Einstein condensation effects can appear, is ruled out~cf. Remark 2.1!.

In the next section some properties of the collision operators are stated and some
notations are introduced. In Sec. III different macroscopic parameters and relations betwee
J. Math. Phys., Vol. 38, No. 7, July 1997
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are discussed; furthermore, it is shown that some solutions of the hydrodynamic equations
be admissible. In Sec. IV the zeroth-order approximation is studied. It is proved that the res
hydrodynamic system is the same as in the classical case, i.e., the classical Euler syste
result was announced without a proof in the paper.15 In Sec. V the first-order approximation i
taken into account. It is found that the resulting Navier–Stokes system has a different natur
the classical one.

II. PROPERTIES OF THE COLLISION OPERATORS

Throughout the paper, the collision kernelsB corresponding only to Grad’s cutoff hard po
tentials are considered:

Assumptions 2.1: Bis a non-negative continuous function onS1
2 3R3, such that

B~n,v !<const
uv•nu
uvu ~11uvul!, ~2.1!

wherelP@0,1#, and

uvu
11uvu

<constE
S1
2
B~n,v !dn. ~2.2!

By standard methods~Refs. 3–5! one has

E
R3

C i~v !J~ f ,g!~v !dv50 ~2.3a!

and

E
R3

C i~v !A~ f ,g,h!~v !dv50, ~2.3b!

for i50,...,4 andf ,g,h, such that the integrals make sense, where

C0[1, C i~v !5v i , ~ i51,2,3!, C4~v !5uvu2 ~2.4!

are the so-called collision invariants andv i is the i th component of the vectorv.
The following moments of the distribution functionf correspond with~classical! fluid dynam-

ics:

% f~ t,x!5E
R3
f ~ t,x,v !dv, ~2.5a!

uf~ t,x!5
1

% f~ t,x!
E
R3
v f ~ t,x,v !dv, ~2.5b!

ef~ t,x!5
1

2% f~ t,x! S E
R3

uvu2f ~ t,x,v !dv2% f~ t,x!uuf~ t,x!u2D , ~2.5c!

which represent the mass density, the macroscopic velocity vector, and the internal ener
spectively.

As is known~Ref. 5! the unique positive solutions of the equation

J~ f , f !50 ~2.6!
J. Math. Phys., Vol. 38, No. 7, July 1997
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are the Maxwellian distributions, which are denoted byM :

M ~ t,x,v !5g~ t,x!expS 2
uv2u~ t,x!u2

2t~ t,x! D . ~2.7!

On the other hand, the unique positive solutions of the equations,

J~ f , f !6A~ f , f , f !50 ~2.8!

are given by the distribution functionsF6 :

F6~ t,x,v !5
M ~ t,x,v !

16M ~ t,x,v !
, ~2.9!

whereM is a Maxwellian.F1 is called the Fermi–Dirac distribution, whereasF2—the Bose–
Einstein distribution.

One can note that the fluid dynamic parameters~2.5!, corresponding to the distribution func
tionsF6 are related to the parametersg6 , u6 , andt6 of the corresponding Maxwellians~2.7! as
follows:

%F6
525/2pt6

3/2g6s6
~1!~g6!, ~2.10a!

uF6
5u6 , ~2.10b!

2%F6
eF6

527/2pt6
5/2g6s6

~2!~g6!, ~2.10c!

where

s6
~p!~g!5E

0

`

yp21/2
„exp~y!6g…21 dy, for p.2

1

2
. ~2.10d!

The relations~2.10a! and~2.10c! for g6,1 can also be expressed in the form of power se
@see~9! and ~10! in Ref. 15#.

The correspondence between%F6
, eF6

andg6 , t6 will be discussed in detail in the nex
section.

We need the following assumption.
Assumption 2.2:Let g6 , u6 , andt6 be smooth functions,

g6 :@0,t0#3T3→R1,

u6 :@0,t0#3T3→R3,

t6 :@0,t0#3T3→R1,

for somet0P]0,1`@ , such that

g6~ t,x!.c1.0, t6~ t,x!.c2.0, ;tP@0,t0#, ;xPT3, ~2.11!

wherec1 andc2 are constants. Moreover, let

g2~ t,x!<d,1, ;tP@0,t0#, ;xPT3. ~2.12!

Remark 2.1:Condition ~2.12! rules out a possibility of condensation effects for bosons.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Now consider the Maxwellians~2.7! with parametersg6 , u6 , t6 such as in Assumption 2.2
Then letF6 be the distribution functions defined by Eq.~2.9!.

A simple consequence of Assumption 2.2 is the existence, for eachaPR1, of positive con-
stantsc6

(1) , c6
(2) , t6

(1) , t6
(2) @which depend ona and those indexed by ‘‘2’’—on d—cf. ~2.12!#,

such that

c6
~1! expS 2

uvu2

t6
~1! D<~11uvu2!a/2F6~ t,x,v !<c6

~2! expS 2
uvu2

t6
~2! D ~2.13!

;tP@0,t0#, ;xPT3, ;vPR3.
Let L2(R

3) be the Lebesgue space of measurable, real-valued functions whose second
is integrable onR3. The norm is denoted byi•;L2(R3)i and the inner product by (•,•)L2(R3) .

In the spaceL2(R
3) consider thelinearizationof the collision operatorJ6A:

L652J~F6 ,• !63A~F6 ,F6 ,• !.

One can easily see that

L6~F6 f !~v !5E
R33S1

2

B~n,w2v !M ~v !M ~w!

„16M ~v !…„16M ~w!…„16M ~v8!…„16M ~w8!…
$„16M ~v8!…f ~v8!

1„16M ~w8!…f ~w8!2„16M ~v !…f ~v !2„16M ~w!…f ~w!%dn dw,

whereF6 andM are related by~2.9!. By standard methods~see Ref. 4!, one can show that

S MF6
f ,L6~F6g! D

L2~R3!

5
1

4 E
R33R33S1

2

B~n,w2v !M ~v !M ~w!

„16M ~v !…„16M ~w!…„16M ~v8!…„16M ~w8!…

3$„16M ~v8!…g~v8!1„16M ~w8!…g~w8!2„16M ~v !…g~v !

2„16M ~w!…g~w!%$„16M ~v !…f ~v !1„16M ~w!…f ~w!

2„16M ~v8!…f ~v8!2„16M ~w8!…f ~w8!%dn dw dv. ~2.14!

Therefore

S MF6
f ,L6~F6 f ! D

L2~R3!

<0 ~2.15!

and

S MF6
f ,L6~F6g! D

L2~R3!

5S MF6
g,L6~F6 f ! D

L2~R3!

, ~2.16!

for all functionsg and f , for which the integrals make sense. Moreover,

S MF6
f ,L6~F6 f ! D

L2~R3!

50, ~2.17a!

if and only if
J. Math. Phys., Vol. 38, No. 7, July 1997
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M

F6
fP lin$C i : i50,...,4%, ~2.17b!

whereC i are given by~2.4!.
Consider now, for fixedtP@0,t0# andxPT3, the spacesL2

(6)(R3) equipped with the norms

i f ;L2
~6 !~R3!i5 I f • M1/2

F6
;L2~R

3!I ,
and with the inner products,

~ f ,g!L
2
~6 !~R3!5S MF6

2 f ,gD
L2~R3!

Similarly as in the classical Boltzmann case~Ref. 16! the operatorsL6 can be split into
‘‘regular’’ and ‘‘singular’’ parts:

L6 f5K6 f2n6• f , ~2.18!

whereK6 are compact integral operators inL2
(6)(R3) and

n6~v !5E
R33S1

2

B~n,w2v !M ~w!„16M ~v !…

„16M ~w!…„16M ~v8!…„16M ~w8!…
dn dw

satisfy the estimates

c6
~1!~11uvu2!l/2<n6~v !<c6

~2!~11uvu2!l/2, ~2.19!

wherec2 andc1 are positive constants that for the case ‘‘2’’ can depend ond @see~2.12!#; l is
as in ~2.1!.

Consider now the ‘‘hydrodynamic’’ and ‘‘nonhydrodynamic’’ subsets inL2
(6)(R3):

N ~6 !5kerL65kerL6* 5 linHF6
2

M
C i : i50,...,4J

and

R~6 !5N ~6 !'5H fPL2
~6 !~R3!:S f , F6

2

M
C i D

L
2
~6 !~R3!

50, i50,...,4J ,
whereC0 ,...,C4 are the collision invariants~2.4!.

Define in L2
(6)(R3) the projection operatorsP (6) and P (6)'512P (6) onto N (6) and

R(6), respectively.
The orthonormal bases inN (6) are

H c̃6 i

Aa6 i

F6
2

M
: i50,...,4J ,

where
J. Math. Phys., Vol. 38, No. 7, July 1997
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c̃60[1; c̃6 i5v i2ui , i51,2,3; c̃645uv2u6u226t6

s6
~1!~g!

s6
~0!~g!

; ~2.20!

a605E
R3

F6
2

M
dv523/2pt6

3/2g6s6
~0!~g!; ~2.21a!

a6 i5E
R3

F6
2

M
„c̃6 i~v !…2 dv525/2pt6

5/2g6s6
~1!~g!, i51,2,3; ~2.21b!

a645E
R3

F6
2

M
„c̃64~v !…2 dv527/2pt6

7/2g6W „s6
~0!~g!,s6

~1!~g!,s6
~2!~g!…; ~2.21c!

s6
(p) were defined in~2.10d! and

W ~s0 ,s1 ,s2!5
1

s0
~5s0s229s1

2!. ~2.21d!

III. MACROSCOPIC PARAMETERS

In Sec. II we have seen that the fluid dynamic parameters corresponding to the distri
functionsF6 are related to the parametersg6 , u6 , andt6 of the corresponding Maxwellian
according to formulas~2.10!.

Now we show that, by virtue of~2.10a! and ~2.10c!, the couples (%F6
,eF6

), for fixed t>0
and xPT3, cannot take arbitrary values in ]0,`@2. Nevertheless,~2.10a! and ~2.10c! give a
one-to-one correspondence between theadmissiblecouples (g6 ,t6) and (%F6

,eF6
).

To show this property, putI25]0,1@ and I15]0,`@ . Moreover, putV65I63]0,`@ .
Clearly (g6 ,t6) is admissible if and only if it belongs toV6 . The admissible couples
(%F6

,eF6
) are characterized by the following proposition.

Proposition 3.1:Let t>0 andxPT3 be fixed.If %F6
andeF6

are given by~2.10a! and~2.10c!

with (g6 ,t6)PV6 , then there exist two real positive numbersl6 such thateF6
. l6%F6

2/3 , i.e.,

~%F6
,eF6

!PL6 :5$~%,e!P#0,̀ @2: e. l6%2/3%.

Moreover, the correspondence betweenV6 andL6 , given by~2.10a! and~2.10c! is one to one.
Proof: From ~2.10a! and ~2.10c!, one has

eF6

3

%F6

2 5F 6~g6!, ~3.1a!

where

F 6~g!5
1

23~2p!2
„gs6

~2!~g!…3

„gs6
~1!~g!…5

. ~3.1b!

Because forp>1 the functionss̃6
(p)(g)5gs6

(p)(g) are continuously differentiable onI6 , with

~ s̃6
~p!!85~p2 1

2!s6
~p21! , ~3.2!

functionF 6 is continuously differentiable too, and
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F 68 ~g!52
1

43p2

„gs6
~2!~g!…2

„gs6
~1!~g!…6

gs6
~0!~g!W „s6

~0!~g!,s6
~1!~g!,s6

~2!~g!…, ~3.3!

whereW is given by~2.21d!. Therefore, by~2.21c!, one can conclude that

F 68 ~g!,0 ;gPI6 , ~3.4!

and the functionsF 6 are strictly decreasing onI6 . Because

lim
g↑0

F 6~g!51`, ~3.5!

one can see thatF 2 takes any value greater than

F 2~1!5
1

23~2p!2
„G~ 5

2!z~ 5
2!…

3

„G~ 3
2!z~ 3

2!…
5
.0,

while F 1 takes any value greater than

F ` :5 lim
g→1`

F 1~g!.

One can easily show that;p>1 there exist two real positive constantscp,Cp such that

cp
logp11/2 g1 logp21/2 g

g
<s1

~p!~g!<Cp

logp11/2 g1 logp21/2 g11

g
, ;g>e. ~3.6!

This shows that constantsc andC, where 0,c,C, exist such that

c
~ log5/2 g1 log3/2 g!3

~ log3/2 g1 log1/2 g11!5
<F 1~g!<C

~ log5/2 g1 log3/2 g11!3

~ log3/2 g1 log1/2 g!5
, ;g>e. ~3.7!

Now ~3.7! implies

c<F `<C. ~3.8!

Putting l2 :5„F 2(1)…
1/3 and l1 :5(F `)

1/3 the statement of Proposition 3.1 yields. j

Remark 3.1:Note thatl1>9/40(1/6p)1/3.
Proposition 3.1 shows that the couples (%F6

,e6), for fixed t>0 andxPT3 areadmissibleif
and only if they belong to the setsL6 .

Definition 3.1:We say that the triple (%F6
,uF6

,eF6
) is admissible~on @0,t0#3T3!, if

~%F6
,eF6

!PL6 , ;~ t,x!P@0,t0#3T3. ~3.9!

Remark 3.2:The maps defined by~2.10a! and ~2.10c! can be inverted and the inverse ma
are the following:

g65F 6
21S eF6

3

%F6

2 D , ~3.10a!
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t65eF6

s6
~1!+F 6

21~eF6

3 /%F6

2 !

s6
~2!+F 6

21~eF6

3 /%F6

2 !
, ~3.10b!

whereF 6 is given by~3.1b!.

IV. EULER LIMIT

The solution of problem~1.3! can be sought as a sum of a truncated Hilbert expansion a
remainder~cf. Refs. 17, 13, and 14!,

f ~ t !5(
j50

n

e j f ~ j !~ t !1e l r ~ t !, ~4.1!

wheren and l are integers. Therefore problem~1.3! can be substituted by the Hilbert procedu
equations and a weakly nonlinear equation for the remainder.

The Hilbert procedure equations read as

J~ f ~0!, f ~0!!6A~ f ~0!, f ~0!, f ~0!!50, ~4.2a!

2J~ f ~0!, f ~1!!63A~ f ~0!, f ~0!, f ~1!!5Df ~0!, ~4.2b!

2J~ f ~0!, f ~ j !!63A~ f ~0!, f ~0!, f ~ j !!5Df ~ j21!2(
i51

j21

J~ f ~ i !, f ~ j2 i !!2 (
i ,k50

0, i1k, j

j21

A~ f ~ i !, f ~k!, f ~ j2 i2k!!,

~4.2c!

for j52,3,...,n.
From ~4.2a!, one has thatf (0) is either a Fermi–Dirac or a Bose–Einstein distribution~2.9!,

i.e.,

f ~0!5F6 . ~4.3!

Assume that the parametersg6 , u6 , t6 of F6 are known and satisfy Assumption 2.2. B
Grad’s theory~Ref. 16!, Eq. ~4.2b! leads to a linear integral equation for functionf (1). Analo-
gously, for given functionsf (0),...,f ( j21), j>2, the right-hand side of~4.2c! is a known function
and Eq.~4.2c! leads to a linear integral equation forf ( j ). Therefore, in order to determine th
Hilbert expansion termsf ( j ) ( j51,2,...), one has tosolve an iterative system of linear integr
equations. Thanks to Fredholm’s theory, these equations can be solved, provided that th
hand sides are orthogonal toN (6) in L2

(6)(R3)—see Ref. 16. The solvability condition for~4.2b!
is

P ~6 !DF ~6 !50. ~4.4!

In terms of the fluid-dynamic parameters%F6
, uF6

, eF6
@cf. ~2.5!#, Eq. ~4.4! can be recog-

nized as the Euler system of the theory of compressible fluids,

]

]t
%1(

i51

3
]

]xi
~%ui !50, ~4.5a!

%
]

]t
uj1%(

i51

3

ui
]

]xi
uj1

2

3

]

]xj
~%e!50, j51,2,3, ~4.5b!
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]

]t
e1(

i51

3

ui
]

]xi
e1

2

3
e(
i51

3
]

]xi
ui50, ~4.5c!

~whereui is the i th component of the vectoru, i51,2,3!.
In fact we have the following lemma.
Lemma 4.1:Let f5 f (t,x,v) be a function such that the corresponding fluid-dynamic par

eters% f ,uf ,ef , defined by~2.5!, exist and are smooth. Moreover, let

f „t,x,v1uf~ t,x!…5 f „t,x,uf~ t,x!2v…, ~4.6a!

for all tP@0,t0#, xPT3 and a.a.vPR3 and

E v i
2f „t,x,v1uf~ t,x!…dv5

1

3 E uvu2f „t,x,v1uf~ t,x!…dv, ~4.6b!

for eachi51,2,3 and alltP@0,t0#, xPT3.
Then

P ~6 !Df50 ~4.7!

is the Euler system~4.5! for (%,u,e)5(% f ,uf ,ef).
Proof: The proof follows by simple calculations. j

In terms of the parametersg6 , u6 , t6 of F6 , the left-hand sides of Eqs.~4.5! read as

]%

]t
1(

i51

3
]

]xi
~%ui !523/2pt1/2s6

~0!~g!H t
]g

]t
1t(

i51

3

ui
]g

]xi
1g

s6
~1!~g!

s6
~0!~g!

3S 3 ]t

]t
13(

i51

3

ui
]t

]xi
12t(

i51

3
]ui
]xi

D J ; ~4.8a!

%
]uj
]t

1%(
i51

3

ui
]uj
]xi

1
2

3

]

]xj
~%e!525/2pt3/2s6

~1!~g!H g
]uj
]t

1g(
i51

3

ui
]uj
]xi

1t
]g

]xj

1
5

3
g

s6
~2!~g!

s6
~1!~g!

]t

]xj
J , j51,2,3; ~4.8b!

]e

]t
1(

i51

3

ui
]e

]xi
1
2

3
e(
i51

3
]ui
]xi

5
s6

~2!~g!

s6
~1!~g!

S ]t

]t
1(

i51

3

ui
]t

]xi
1
2

3
t(
i51

3
]ui
]xi

D
1
3t

2g

„s6
~1!~g!…22 1

3s6
~0!~g!s6

~2!~g!

„s6
~1!~g!…2

S ]g

]t
1(

i51

3

ui
]g

]xi
D ;
~4.8c!

wheres6
(p) are given by~2.10d! and the triplets (g,u,t) and (%,u,e) stand for (g6 ,u6 ,t6) and

(%F6
,uF6

,eF6
), respectively.

Note that if Eq.~4.5a! is satisfied then the right-hand side of Eq.~4.8a! is equal to 0, and
therefore Eq.~4.8c! reads as
J. Math. Phys., Vol. 38, No. 7, July 1997
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]e

]t
1(

i51

3

ui
]e

]xi
1
2

3
e(
i51

3
]ui
]xi

5
W „s6

~0!~g!,s6
~1!~g!,s6

~2!~g!…

2s6
~1!~g!

S ]t

]t
1(

i51

3

ui
]t

]xi
1
2

3
t(
i51

3
]ui
]xi

D ;
~4.8c8!

with W given by ~2.21d!.
Assume now that on the time interval@0,t0#, for somet0.0, Eq.~4.4! is satisfied and that the

correspondingg6 ,u6 ,t6 satisfy Assumption 2.2. Then split everyf ( j ) ( j51,...,n) into two
parts:

f ~ j !5g~ j !1h~ j !, ~4.9!

where

g~ j !PR~6 !, h~ j !PN ~6 !.

From ~4.2b! one has

g~1!5L6
21 DF6 . ~4.10a!

Then the solvability condition for Eq.~4.2c! with j52 is

P ~6 !Dh~1!52P ~6 ! Dg~1!. ~4.11a!

Analogously,

g~ j !5L6
21S P ~6 !' Df ~ j21!2(

i51

j21

J~ f ~ i !, f ~ j2 i !!2 (
i ,k50

0, i1k, j

j21

A~ f ~ i !, f ~k!, f ~ j2 i2k!!D , ~4.10b!

and

P ~6 ! Dh~ j !52P ~6 ! Dg~ j !, ~4.11b!

for j52,3,...,n.
Systems~4.11! are linear nonhomogeneous symmetric hyperbolic systems—the linea

Euler systems—linearized around the solution of the Euler~nonlinear! system given by~4.4! ~cf.
Refs. 13 and 18!. Then exactly like in Ref. 13 one can see that the Hilbert expansion te
f (0), f (1),...,f (n) exist and are smooth with respect to both variablestP@0,t0# andxPT3.

The equation for the remainder reads as

Dr5
1

e
L6r12(

j51

n

e j21J~ f ~ j !,r !1e l21J~r ,r !63(
j51

n

e j21A~F6 , f ~ j !,r !

63(
j51
k51

n

e j1k21A~ f ~ j !, f ~k!,r !63e l21A~F6 ,r ,r !63e l21(
j51

n

e jA~ f ~ j !,r ,r !

6e2l21A~r ,r ,r !

1en2 lU, ~4.12a!

r u t5050, ~4.12b!

whereU is a term depending onF6 , f (1),...,f (n), which is characterized by a regular behav
with respect toe ase→0.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The nonlinear and the nonhomogeneous terms are multiplied by numberse l21, e2l21, and
en21. Therefore, for properly chosenn and l , Eq. ~4.12! is weakly nonlinear. Its classical ap
proach~Refs. 17, 13, and 14! is based on the decomposition of the remainderr into the ‘‘small-’’
and ‘‘high-’’ velocity part components:

r ~ t,x,v !5
F6~ t,x,v !

M1/2~ t,x,v !
r 0~ t,x,v !1expS 2

uvu2

t6
~2! D r 1~ t,x,v !, ~4.13!

wheret6
(2) are the constants appearing in~2.13!.

Now, by ~2.13!, Grad-type estimations~as those of Ref. 13! can be repeated. Therefor
similarly to Refs. 17 and 13~actually Ref. 17 deals with the one-dimensional case, whereas
13 deals with the multi-dimensional case, with respect to the space variablex!, one can show tha
for sufficiently smalle, problem~4.12! has a unique solution in the form~4.13! and

r 0 ,r 1PL`~0,t0 ;X
a,k!ùC0~@0,t0#;X

a21,k21!ùC1~ #0,t0@ ;X
a22,k22!,

for some integersa andk;
Xa,k is the space equipped with the norm

i•ia,k5i~ i•;H2
k~T3!i !;Bai ,

where

i f ;Bai5 sup
vPR3

u~11uvu2!a/2f ~v !u,

and i•;H2
k(T3)i is the usual norm in the Sobolev space. The integerk, which is related to the

smoothness of the solution of the Euler system~4.5!, can be chosen as large as we want~if the
Euler system solution is smooth enough—cf. Ref. 13!. Therefore the result can be reformulated
the spaceYa,k equipped with the norm

i f ia,k5 sup
0<ugu<k
xPT3

vPR3

U~11uvu2!a/2 expS 2
uvu2

t6
~2! D ] ugu

]xg f ~x,v !U,

as it was stated~without proof! in Ref. 15. On the other hand, the analysis can be carried
directly in the normi•ia,k by using the methods of Ref. 19—in this case less restrictive assu
tions on the solution of the Euler system are necessary. Then we summarize the following

Theorem 4.1: Let t0P]0,1`@ be chosen such that on the time interval@0,t0# the Euler
system~4.5! has a solution (%F6

,uF6
,eF6

) that is admissible@in the sense of~3.9!# and corre-
sponds to parametersg6 ,u6 ,t6 satisfying Assumption 2.2. Furthermore, let the initial dataf 0 be
either of the functions ~2.9! with parameters g6u t50 ,u6u t50 ,t6u t50 corresponding to
(%F6

u t50 ,uF6
u t50 ,eF6

u t50). Then in case~1.7!, if 0,e<e0 , wheree05e0(t0) is a critical value,
problem~1.3! has a solutionf in Ya,k ; for somea.0, k.0; and

fPC0~@0,t0#;Ya,k21!ùC1~ #0,t0@ ;Ya,k22! ~ if k>2!;

sup
@0,t0#

i f2F6ia,k<ct0e, ~4.14!

whereF6 is defined by parametersg6 ,u6 ,t6 corresponding to%F6
, uF6

, eF6
, and ct0 is a

constant~depending ont0!. j
J. Math. Phys., Vol. 38, No. 7, July 1997
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Theorem 4.1 states that for initial data in a ‘‘hydrodynamic’’ form there exists a solutio
the singularly perturbed problems~1.3! both for fermions~1! and for bosons~2!. The solution
exists macroscopically as long as a smooth admissible solution of the Euler system does,
asymptotic relation~4.14! holds. The solution of problem~1.3! is unique provided that the Eule
solution is unique.

Remark 4.1:An analogous theorem can be obtained for more general data if one include
initial layer ~see Refs. 13 and 14!.

V. NAVIER–STOKES LIMIT

It is well known that, in order to obtain the Navier–Stokes system, one cannot use the H
procedure, but one can formally use the Chapman–Enskog one, which yields at the Euler
~4.5! at the leading order~the zeroth order! and at the Navier–Stokes system at the next order~the
first order!—see Refs. 3–5. But until now, unlike the Hilbert procedure, the Chapman–En
one, in the nonlinear case, has no adequate rigorous mathematical foundation, except
Carleman model of the Boltzmann equation.20 On the other hand, Caflisch18 proposed a modified
Hilbert procedure that is intermediate between the previous ones and that is rigorous~see Refs. 14
and 19!. It is obtained from the Hilbert procedure by rearranging terms and the resulting syst
first the Navier–Stokes one and thereafter the linearized Navier–Stokes systems.

Similarly to Sec. IV, the solution of the problem~1.3! can be sought in the form~4.1!, but now
the termsf ( j ) are not assumed to bee independent.

Naturally, f (0) has to satisfy Eq.~4.2a! and therefore~4.3! holds with some parameter
g6 ,u6 ,t6 .

Assume that (g6 ,u6 ,t6) are known and satisfy Assumption 2.2.
Decomposing eachf ( j ) in the same way as in~4.9! and the termg(1) into

g~1!5g81g9,

one obtain the following set of equations:

L6g85P ~6 !' DF6 , ~5.1a!

P ~6 ! DF652eP ~6 ! Dg8, ~5.2a!

L6g95eP ~6 !' Dh~1!, ~5.1b!

P ~6 ! Dh~1!52P ~6 ! Dg9, ~5.2b!

and

L6g
~ j !5eP ~6 !' Dh~ j !1P ~6 !' Dg~ j21!2(

i51

j21

J~ f ~ i !, f ~ j2 i !!2 (
i ,k50

0, i1k, j

j21

A~ f ~ i !, f ~k!, f ~ j2 i2k!!,

~5.1c!

P6 Dh~ j !52P6 Dg~ j ! ~5.2c!

for j52,3,... .
In virtue of the Fredholm theory the equations~5.1! can be solved inL2

(6)(R3):

g85L6
21~P ~6 !' DF6!, ~5.3a!

g95L6
21~eP ~6 !' Dh~1!!, ~5.3b!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and

g~ j !5L 6
21S eP ~6 !' Dh~ j !1P ~6 !' Dg~ j21!2(

i51

j21

J~ f ~ i !, f ~ j2 i !!

2 (
i ,k50

0, i1k, j

j21

A~ f ~ i !, f ~k!, f ~ j2 i2k!!D , ~5.3c!

for j52,3,... .
Now ~5.2a! and ~5.3a! lead to the equation

P ~6 ! DF652eP ~6 ! DL 6
21

P ~6 !' DF6 . ~5.4!

Eq. ~5.4! is the Navier–Stokes system resulting from Eq.~1.3a!. In order to find its explicit
version, note that

P ~6 !' DF65
F6
2

M (
i , j51

3 H ~v i2u6 i !~v j2u6 j !2
1

3
uv2u6u2d i j J 1

t6

]u6 j

]xi

1
F6
2

M H uv2u6u22
10t6s6

~2!~g6!

3s6
~1!~g6! J (

i51

3

~v i2u6 i !
1

2t6
2

]t6

]xi
. ~5.5!

Just as in the classical case, the orthogonal invariance~cf. Ref. 5—p. 101! of the collision
operatorsJ andA can be proved. This property allows us to apply the classical methods~see Ref.
5—pp. 456–457 and Ref. 21! in order to see

2P ~6 ! DL 6
21
P ~6 !' DF65

F6
2

M S (
k51

3
c̃6k

a6k
S (
i51

3
]

]xi
S m̃6~g,t!S ]uk

]xi
1

]ui
]xk

D D
2
2

3

]

]xk
S m̃6~g,t!(

i51

3
]ui
]xi

D D 12
c̃64

a64
S (
i51

3
]

]xi
S m̃6

H ~g,t!
]t

]xi
D

2
2

3
m̃6~g,t!S (

i51

3
]ui
]xi

D 21m̃6~g,t! (
i ,k51

3
]uk
]xi

S ]uk
]xi

1
]ui
]xk

D D D ,
~5.6!

where

m̃6~g,t!52
1

t E
R3

j1j2L 6
~21!S F6

2

M
j1j2Ddj,

m̃6
H ~g,t!52

1

4t2 ER3uju2j1L 6
~21!S F6

2

M S uju22
10t

3

s6
~2!~g!

s6
~1!~g!

D j1D dj;

and (g,u,t) stands for (g6 ,u6 ,t6).
Therefore Eq.~5.4!—the Navier–Stokes system in terms ofg6 ,u6 ,t6 ~we still simplify the

notations puttingg, u, t! reads as

t
]g

]t
1t(

i51

3

ui
]g

]xi
1g

s6
~1!~g!

s6
~0!~g!

S 3 ]t

]t
13(

i51

3

ui
]t

]xi
12t(

i51

3
]ui
]xi

D 50; ~5.7a!
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g
]uj
]t

1g(
i51

3

ui
]uj
]xi

1t
]g

]xj
1
5

3
g

s6
~2!~g!

s6
~1!~g!

]t

]xj

5
e

25/2pt3/2s6
~1!~g!

H (
i51

3
]

]xi
S m̃6~g,t!S ]uj

]xi
1

]ui
]xj

D D2
2

3

]

]xj
S m̃6~g,t!(

i51

3
]ui
]xi

D J ,
j51,2,3; ~5.7b!

]t

]t
1(

i51

3

ui
]t

]xi
1
2

3
t(
i51

3
]ui
]xi

5
e

~2t!3/2pgW „s6
~0!~g!,s6

~1!~g!,s6
~2!~g!…

3S (
i51

3
]

]xi
S m̃6

H ~g,t!
]t

]xi
D1m̃6~g,t! (

i ,k51

3
]uk
]xi

S ]uk
]xi

1
]ui
]xk

D
2
2

3
m̃6~g,t!S (

i51

3
]ui
]xi

D 2D . ~5.7c!

In terms of the fluid dynamic parameters%F6
,uF6

,eF6
~we write%, u,e! Eq. ~5.4! reads as

]

]t
%1(

i51

3
]

]xi
~%ui !50; ~5.8a!

%
]uj
]t

1%(
i51

3

ui
]uj
]xi

1
2

3

]

]xj
~%e!5eS (

i51

3
]

]xi
S m6~%,e!S ]uj

]xi
1

]ui
]xj

D D
2
2

3

]

]xj
S m6~%,e!(

i51

3
]ui
]xi

D D , j51,2,3; ~5.8b!

]e

]t
1(

i51

3

ui
]e

]xi
1
2

3
e(
i51

3
]ui
]xi

5
e

G 6~%,e! S (
i51

3
]

]xi
S m6

~1!~%,e!
]e

]xi
1m6

~2!~%,e!
]%

]xi
D

1m6~%,e! (
i ,k51

3
]uk
]xi

S ]uk
]xi

1
]ui
]xk

D2
2

3
m6~%,e!S (

i51

3
]ui
]xi

D 2D ;
~5.8c!

where

m6~%,e!5m̃6~g6 ,t6!, G 6~%,e!525/2pt6
3/2g6s6

~1!~g6!,

m6
~1!~%,e!5m̃6

H ~g6 ,t6!
]

]e
t6 , m6

~2!~%,e!5m̃6
H ~g6 ,t6!

]

]%
t6 ,

and ~3.10! has been taken into consideration.
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System~5.8! differs from the Navier–Stokes system resulting from the classical Boltzm
equation~cf. Refs. 3–5, 14 and 21!. First of all, one cannot state that the viscosity coefficie
m6 and the heat conduction coefficientm6

(1) depend uponeF6
only. In general, they may depen

upon both%F6
andeF6

. For a discussion of the dependence of both coefficients on the nu
density and the internal energy, the reader is referred to Ref. 5. The problem of whether t
a particular collision kernelB of Eq. ~1.3!, for which the coefficients depend only uponeF6

, like
in the classical case, remains open. Furthermore, unlike the classical case the second deriv
the number density%F6

appears in the energy equation~5.8c!.
Equations~5.2b! and ~5.2c! lead to

P ~6 ! Dh~1!52eP ~6 ! DL6
21

P ~6 !' Dh~1!, ~5.9b!

and

P ~6 ! Dh~ j !52eP ~6 ! DL 6
21

P ~6 !' Dh~ j !2P ~6 ! DL 6
21

P ~6 !' Dg~ j21!

1P ~6 ! DL 6
21S (

i51

j21

J~ f ~ i !, f ~ j2 i !!2 (
i ,k50

0, i1k, j

j21

A~ f ~ i !, f ~k!, f ~ j2 i2k!!D , ~5.9c!

for j52,3,...,n, which are linearized Navier–Stokes systems.
The present procedure needs more caution~Ref. 22! than the Hilbert one because the term

f ( j ) now depend one. However, if the Navier–Stokes system~5.8! has a solution such that th
correspondingg6 ,u6 ,t6 are uniformly bounded with respect toe and satisfy Assumption 2.2
with constantsc1 ,c2 , d—independent ofe, then one can repeat the proof22 step by step and stat
the following.

Theorem 5.1:Let t0P]0,1`@ be chosen independent ofe and such that on the time interva
@0,t0# the Navier–Stokes system~5.8! has a solution (%F6

,uF6
,eF6

) that is admissible@in the
sense of~3.9!# and corresponds to parametersg6 ,u6 ,t6 satisfying both Assumption 2.2 with
constantsc1 ,c2 , d—independent ofe and the condition of uniformly boundedness with respec
e ~ase→0! of the quantities

sup
@0,t0#3T3

g6 , sup
@0,t0#3T3

uu6u, sup
@0,t0#3T3

t6 .

Furthermore, let the initial dataf 0 be either of the functions~2.9! with parameters
g6u t50 ,u6u t50 ,t6u t50 corresponding to (%F6

u t50 ,uF6
u t50 ,eF6

u t50). Then, in the case~1.7!, if
0,e<e0 , wheree05e0(t0) is a critical value, problem~1.3! has a solutionf in Ya,k ; for some
a.0, k.0; and

fPC0~@0,t0#;Ya,k21!ùC1~ #0,t0@ ;Ya,k22! ~ if k>2!;

sup
@0,t0#

i f2F6ia,k<ct0e, ~5.10!

whereF6 is defined by parametersg6 ,u6 ,t6 corresponding to%F6
, uF6

, eF6
and ct0 is a

constant~depending ont0!. j

Theorem 5.1 states that for initial data in a ‘‘hydrodynamic’’ form there exists a solutio
the singularly perturbed problems~1.3! both for fermions~1! and for bosons~2!. The solution
exists macroscopically as long as a smooth admissible solution of the Navier–Stokes system
and the asymptotic relation~5.10! holds. The solution of problem~1.3! is unique provided that the
Navier–Stokes solution is unique.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Remark 5.1:Exactly as in the Euler case~see Remark 4.1!, an analogous theorem can b
obtained for more general data if one includes the initial layer~see Refs. 14 and 22!.

Remark 5.2:It is well known ~Refs. 23 and 24; also see Ref. 14! that the classical Boltzmann
equation corresponding to the Mach number of the order ofe results in the Navier–Stokes equ
tion of the theory of incompressible fluids. This kind of limit can be studied also for the Uehl
Uhlenbeck equations. One can expect that the resulting Navier–Stokes equation has an an
form as in the classical case, but with a different expression of the coefficient of kine
viscosity. The limit can be studied both at the level of local smooth solutions of the Navier–S
equation~like in Ref. 23! and at the level of global weak solutions~like in Ref. 24!. However, in
the latter case, one can expect similar difficulties, as in the classical case, because some pr
of the solutions of the kinetic equations, which are not verified yet~Ref. 24!, are necessary. Eve
if some progress has been made~Refs. 7 and 9!, this problem has to be considered open.
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On the moment methods and irreversible thermodynamics
M. Chen
Vanier College, 821 Ste. Croix Avenue, St. Laurent, Quebec, H4L 3X9, Canada

~Received 5 August 1996; accepted for publication 21 March 1997!

In this paper we investigate the kinetic foundation of irreversible thermodynamics
by means of the moment methods proposed by Grad and by Eu, respectively. First
we show that the moment methods yield a weak solution of the Boltzmann equa-
tion. On the other hand, the entropy balance equation can be satisfied only by the
strong solution of the Boltzmann equation. Second, we reformulate the energy
balance equation in an alternative form where dissipative energy as well as a
generalized work 1-form are included in this new equation. Assume that the dissi-
pative energy is semi-positive definite. The local form of the second law of ther-
modynamics is then formulated in terms of the inaccessibility condition of Carath-
eodory. We then show that our new formulation of the second law is equivalent to
Kelvin’s principle and Clausius’ principle. Finally we obtain a calotropy balance
equation where the calotropy density function is a state function in the thermody-
namic space. ©1997 American Institute of Physics.@S0022-2488~97!02707-2#

I. INTRODUCTION

It is well recognized that linear irreversible thermodynamics can be rigorously derived
the first-order solution of the Chapman–Enskog method1 for the Boltzmann equation in conjunc
tion with the local equilibrium assumption.2 However, a complete theory of nonlinear irreversib
thermodynamics based on kinetic theory is still lacking in the literature. Several different the
had been proposed in the past, particularly, the extended irreversible thermodynamics~EIT!3 and
the modified moment method.4 The molecular foundation of EIT is based on Grad’s mom
method,5 where the one-particle distribution functionf is expanded as a generalized Fourier ser
in terms of tensor Hermite polynomials. Unfortunately, only the linear expansion of lnf yields
meaningful results in irreversible thermodynamics. Furthermore, the entropy densityS is assumed,
a priori, to be a differentiable function of the relevant thermodynamic variables such thatdS is an
exact one-form. This assumption is questionable since there is always an energy diss
accompanying any irreversible process thatdSmay not be an exact one-form. This viewpoint w
be further elucidated in the subsequent discussions.

The modified moment method is also closely related to Grad’s moment method, whe
series expansion off in powers of tensor Hermite polynomials is expressed in exponential fo
This has a great advantage as well as a disadvantage. The entropy productions can be easily
proved to be a semipositive definite quantity, regardless of the approximation made forf . How-
ever, the entropy balance equation is not satisfied.

The main objective of this paper is to investigate the kinetic foundation of irreversible
modynamics by means of the moment method proposed by Grad and by Eu, respectively. F
show that the moment methods yield a weak solution of the Boltzmann equation, where
entropy balance equation is satisfied only by the strong solution of the Boltzmann equation
is discussed in detail in Sec. II. Second, we consider an equivalent formulation of the e
balance equation in local form given byde2dqd5dqc1wr , wheredqd is a dissipative energy
associated with the irreversible process of viscous flows, heat conduction, diffusion, etcdqc
represents the heat compensation between the local system and its surroundings, andwr represents
the generalized work one-form. This equation can be obtained from the evolution equations
thermodynamic variables governing the spatial and temporal development of the thermody
state. Suppose the dissipative energy is semipositive definite. We then look for an integ
0022-2488/97/38(7)/3589/14/$10.00
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factor of j5de2wr . The local formulation of the second law can be expressed in terms o
integrability condition ofj and the semipositive definite property of the dissipative energy.
nally, we show that this new formulation of the first law and the second law is consistent
Kelvin’s principle and the principle of Clausius. This is discussed in Sec. III.

Consider a system of dilute gas molecules inr components contained in a regionV,R3 with
volumeV, where chemical reactions do not take place. Letf a be the one-particle distribution
function of molecular speciesa at space–time (r ,t) with molecular velocityva . The Boltzmann
equation can be written as

] t f a1va–“ f a5(
b

C~ f a , f b!, ~1!

where] t5]/]t andC( f a , f b) is the Boltzmann collision integral.6

Let A be a function of (va,r ,t). For convenience we introduce the notation

^A&5E A dva.

Traditionally, the entropy densityS, entropy currentJs , and the entropy productions, respec-
tively, are defined by

rS~r ,t !52(
a

^ f a~ ln f a21!&, ~2!

Js~r ,t !52(
a

^caf a~ ln f a21!&, ~3!

s~r ,t !52(
a,b

^C~ f a , f b!ln f b&, ~4!

where we have set the Boltzmann constantk51. In ~2!–~4!, r5(ara , ra is the number density
of speciesa, ca5va2u is the peculiar velocity, andu is the hydrodynamic velocity.

By ~1!–~4! we can easily obtain the following entropy balance equation:

r dtS1“–Js2s50, ~5a!

dt5] t1u–“. ~5b!

Furthermore, it can be proved thats>0 with s50 only at thermodynamic equilibrium. Th
semipositive definite property ofs is closely related to the Boltzmann H theorem.

So far,S, Js , ands are functions of (r ,t) in R33R1. In order to study irreversible thermo
dynamics,f a must be expressed as a functional that depends on (r ,t) in terms of the thermody-
namic variablesx and possibly as well as“mx,m>1. Thus we consider the moment methods
the following section.

II. MOMENT METHODS

In this section we reexamine the moment methods by Grad and by Eu, respectivel
simplicity we first consider a system of molecules in a single component. Let

w~v!5~2p!23/2 exp~2 1
2 n2! ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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¬¬¬¬¬¬¬¬¬¬
so thatw is normalized,̂ w&5*w(v)dv51. By means ofw, tensor Hermite polynomials of orde
n is then defined by Ref. 7:

H ~n!~v!5Hi
~n!~v!5~21!n “nw,

where i5( i 1 ,i 2 ,...,i n), 1< i k<3, and“n5]n/]n i1•••]n i n. ThusH
(n) is a tensor of ordern as

well as a polynomial of degreen. For example,

H ~0!51, Hi
~1!5n i , Hi , j

~2!5n in j2d i , j ,

Hi jk
~3!5n in jnk2~n id jk1n jdki1nkd i j !, etc.

In general,Hi
(n) is symmetric with respect to the subscriptsi5( i 1 ,...,i n). Furthermore,Hi

(n) and
Hj
(m) are orthogonal with weight functionw:

^wHi
~n! ,Hj

~m!&5E wHi
~n!Hj

~m! dv5 H 0,d i j
n ,

if nÞm,
if n5m. ~6!

Hered i j
n is a sum ofnd ’s, eachd having one subscript from the seti5( i 1 ,...,i n) and one from

the setj5( j 1 ,...,j n), such thatd i j
n is zero unless the subscripts ini are a permutation of thej .

Therefore not only polynomials of different degrees are orthogonal, polynomials of the
degree but with different subscripts are also orthogonal. The tensor Hermite func
$w1/2H (n)% can be made into an orthonormal set.

In Grad’s moment method the one-particle distribution functionf is expanded as a generalize
Fourier Series~G.F.S.! in terms of the Hermite polynomialsHi

(n) :

f5 f 0(
n50

`

(
i

1

n!
Ai

~n!~r ,t !Hi
~n!~v!, ~7!

wheref 0 is the Maxwellian distribution~in local equilibrium! and( i5( i151
3 •••( i n51

3 . Due to the

orthogonality condition~6!, the tensor coefficient functionsAi
(n) can be obtained from the inver

sion formula

Ai
~n!5r^ f ,Hi

~n!&. ~8!

Similar toHi
(n) ,Ai

(n) are also symmetric with respect to the subscripts ini . Furthermore,Ai
(n) are

related to the molecular velocity moments off . For example,

A~0!51, Ai
~1!50, Ai j

~2!5p i j
~2!/p, ~p5p~2!!

Ai jk
~3!5Si jk /pART, Aikk

~3!5Qi /pART, etc.

Herep (2) is the traceless symmetric part of the pressure tensorP5P(2) with Pi j
(2)5^cicj f &, p

5 1
3Pii

(2) is the hydrostatic pressure, andSi jk5^cicjckf &, Qi5Sikk , Q5(Q1 ,Q2 ,Q3) is the heat
flux vector. Notice that we have adopted the Einstein summation convention for repeated in

By substituting~7! into the Boltzmann equation~1! we can obtain an infinite hierarchy o
equations forAi

(n) . To the order ofn, this system of equations can be truncated to form
determined system by settingAi

(n)50 for m.n. In the following we present an alternativ
formulation of the moment method.

LetWN be the linear space spanned by$Hi
(n)%, 0<n<N, and set
J. Math. Phys., Vol. 38, No. 7, July 1997
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f N5 f 0(
n50

N

(
i

1

n!
Ai

~n!~r ,t !Hi
~n!~v!, ~9!

uN5] t f
N1v–“ f N2C~ f N, f N!. ~10!

Now the coefficient functionsAi
(n) are determined by the following Galerkin scheme:8

H ^Hi
~n! ,uN&50, Hi

~n!PWN ,

Ai
~m!50, if m.N

. ~11!

Equation ~11! represents a determined system of PDEs forAi
(n) , which is equivalent to the

nth-order truncation in Grad’s method. In general, it is very difficult to solve~11!. However, from
a physical point of view,Ai

(n) have very short relaxation times and thus tend to zero rapidly
n increases. Henceforth we assume thatiAi

(n)i5@*Ai
(n)Ai

(n) dr #1/2 is bounded for alln and
iAi

(n)i→0 sufficiently rapidly asn increases.
By the Parseval relation,

i f i25E E f 2 dr dv5 (
n50

`

(
i

iAi
~n!i2, ~12!

$ f N% is convergent if and only if the series on the right-hand side of~12! is convergent.
Let u5 lim uN and f5 lim f N. By taking the limitN→` in ~11! we have

^Hi
~n! ,u&50, for all n>0. ~13!

Henceu50 andf is a solution of the Boltzmann equation. It should be emphasized that the G
expansion off given by ~7!, whereAi

(n) are determined by~11!, does not satisfy the Boltzman
equation by direct substitution. Instead, it is a solution in the weaker sense via condition~13!. We
call f obtained in~13! a weak solution. Summarizing our results we have the following.

Proposition 1:Suppose the coefficientsAi
(n) obtained from the Galerkin scheme~11! form a

Cauchy sequence in norm. Thenf5 lim f N is a weak solution of the Boltzmann equation.
In view of the definitions ofS, Js , ands, by ~2!–~4! we can obtain the following equation

r dtS1“–Js2s52^@] t f1v–“ f2C~ f , f !# ln f &. ~14!

It is evident that the entropy balance equation is satisfied only iff solves the Boltzmann equatio
directly ~f is a strong solution!.

Next, we reexamine the modified moment method proposed by Eu. Consider a system o
gas molecules inr components and use the subscript ‘‘a’’ to specify molecules of speciesa. To
this end, lete be the internal energy density,n5r21 the specific volume,ca5rar

21 the molar
fraction of speciesa, p5(apa the shear stress tensor,Q5(aQa the heat flux,J5(aJa the mass
flux, etc.

In Grad’s method$Aa
(n)% is a fundamental set of variables. By~8!, Aa

(n) can be expressed as
linear combination of the velocity moments off a of orderm<n. It is more convenient to conside
the set of velocity moments such as,e, n, ca , p, Q, J, etc., as a fundamental set of variables. T
amounts to adopting a new set of tensor Hermite polynomialsha,i

(n) , whereha,i
(n) is a linear com-

bination ofHa,i
(m) ,m<n. For simplicity we omit the indicesi . Thus,

ha
~0!51, ha

~1!5~maT!1/2Ha
~1!5maca ,

ha
~2!5T@Ha

~2!2 1
3 ITr~Ha

~2!!#5macaca2
1
3ITr~caca!,
J. Math. Phys., Vol. 38, No. 7, July 1997
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ha
~3!5

1

2
TS Tma

D 1/2Ha
~3! , etc., I : unit second-order tensor.

The set$ha
(n)% also forms an orthonormal set with weight functionswa analogous to the se

$Ha
(n)%.
In terms ofha

(n) we define the nonconserved variablesfa
(n) by

fa
~n!5rf̂a

~n!5E dca f aha
~n!5^ f aha

~n!&, n>1. ~15!

Thus Ja5fa
(1) is the mass flux,pa5fa

(2) is the stress tensor,Qa5^ f a
1
2ma@caca25T#ca& is the

heat flux that is obtained from taking the contraction of the third-order tensorfa
(3) . In general, we

call fa
(n) the generalized flux of speciesa. By Boltzmann equation~1! the evolution equation for

f̂a
(n) can be expressed as

r dtf̂a
~n!5Za

~n!1La
~n! , ~16!

where

Za
~n!52“–^ f acaha

~n!&1^ f a~dt1ca–“ !ha
~n!&52“–Ca

~n!1^ f a~dt1ca–“ !ha
~n!&,

La
~n!5(

b
^C~ f a , f b!ha

~n!&.

In the modified moment method the variablesx5$e,y,ca ,f̂a
(n) ;1<a<r ,n>1% are considered as

a fundamental set of thermodynamic variables. The evolution equations ofx consist of the balance
equations for the conserved variable$e,n,ca% as well as Eq.~16! for the nonconserved variable
f̂a
(n) . For future reference, these equations are given below:

dtr52r“–u, ~17a!

r dtca52“–Ja , ~17b!

r dtu52“–P, P5(
a

pa1pI , ~17c!

r dte52“–Q2p:@“u#~2!2p“–u, ~17d!

r dt,f̂a
~n!5Za

~n!1La
~n! , ~17e!

where@“u# (2) in ~17d! is the traceless symmetric part of the second order tensor“u.
By examining the definitions ofS, Js, s, f̂a

(n) , andL̂a
(n) given, respectively, by~2!–~4!, ~15!,

and ~16!, these quantities can be expressed as functions of the thermodynamic variablex if
ln fa can be expanded as a series in$ha

(n)%. Hence we consider
J. Math. Phys., Vol. 38, No. 7, July 1997
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ga
N5expH 2T21F12 maca–ca1 (

n50

N

(
i
Xa

~n!ha
~n!2maG2e~ca–ca!

NJ
5 f a

0 expH 2T21(
n50

N

(
i
Xa

~n!ha
~n!1T21 Dm̂a2e~ca–ca!

NJ , ~18!

whereDm̂a5ma(ma2ma
0), ma is the chemical potential of speciesa, T is the local thermody-

namic temperature, ande is an infinitesimal positive real number. Notice the term2e(ca
2)N is

included in~18! to ensure thatga
N is integrable, otherwise this term has no physical significanc

the subsequent discussions.
In the 13-moment method Grad had estimated the upper bound ofiAi

(3)i and concluded tha
it provided only a small contribution in~7!, except for the case of shock waves. Recently Vela
and Garcia-Colin9 further extended the 13 moments to 26 moments in~7! in their investigation in
extended irreversible thermodynamics~EIT!. It is found thatiAi

(n)i→0 rapidly asn increases. It
is therefore reasonable to assume that$iAi

(n)i% converges in norm. In that case we can rearra
the terms in~7! and sum them in exponential form. In other words, we approximatef a by ga

N :

f a5 f a
0(

n
(
i

1

n!
Aa

~n!Ha
~n!'ga

N . ~19!

If exp$2T21(n(iXa
(n)ha

(n)% is expanded in powers ofXa
(n)ha

(n) , and the addition theorem of Hermit
polynomials is employed by~19!, Xa

(n) can be solved in terms ofAa
(m) , m<n. Alternatively, we

can set

ua
N5] tga

N1va–“ga
N2(

b
C~ga

N ,gb
N!.

ThenXa
(n) can be determined by the system of equations

^ha
~n! ,ua

N&50, 0<n<N,

Xa
~m!50, m.N. ~20!

It is interesting to note that~20! yields ua5 lim ua
N50. In principle, an approximate solution o

Xa
(n) can be obtained either from~18! and~19! or from ~20!. Since the detail solution ofXa

(n) is not
required in the subsequent discussions, we will not pursue this problem in this paper.

If we considerf a as the probability density function, then in analogy with~2!–~4!, we define
rcN , JN , andsN , respectively, as follows:

rcN52(
a

^ f a@ ln ga
N21#&, ~21a!

JN52(
a

^ f aca@ ln ga
N21#&, ~21b!

sN52(
a,b

^C~ga
N ,gb

N!ln ga
N&. ~21c!

According to~18!, we have
J. Math. Phys., Vol. 38, No. 7, July 1997
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rcN5T21H e1pn2(
a

m̂aca1(
a,n

Xa
~n!f̃a

~n!J 1O~e!, ~22!

JN5T21(
a

HQa2m̂aJa1(
n

Xa
~n!Ca

~n!J 1O~e!, ~23!

sN5T21(
a,n

Xa
~n!La

~n!1O~e!. ~24!

Sincee can be taken arbitrarily small, without loss of generality we can drop the termO(e) in
~22!–~24!. Furthermore, by the definition ofsN , it is evident thatsN is semipositive definite. We
therefore identifysN with the thermodynamic entropy productions th . The significance ofcN and
JN will be elucidated in the next section in connection with irreversible thermodynamics. Fin
we remark that Roldughin has recently investigated the implications of Grad’s moment meth
irreversible thermodynamics.10 However, his approach is different from the one pursued in
following discussions.

III. IRREVERSIBLE THERMODYNAMICS

Let u be an empirical temperature in a fixed scale@a,b#, which can be used to measure th
hottness or the coldness of a nonequilibrium system. In order to simplify the notation so th
one-forms discussed in this section can be recast in canonical form, hereafter we ado
notationXi

a andf̂ i
a for Xa

(n) andha
(n) , respectively. The thermodynamic state of a nonequilibri

system can be described by the set of variables (e,n,$ci%,$f̂ i
a%,u), 1< i<r , 1<a<N. Let n

5rN1r12. We arrange the set of variables as (e,n,c1 ,...,cr ,f̂1
1,...,f̂ r

N) and denote the set b
the variablesx5(x1,...,xn)PRn. Thus, the thermodynamic space is ann-dimensional vector
space. The variablesxi are functions of (r ,t) and obey the evolution equations given by~17a!–
~17e!.

In equilibrium thermodynamics, the static pressure is considered as a force for the v
change, and the chemical potentialsm̂ i as generalized forces for the change of matter. In
absence of external forces, the work one-formW is written asW52p dn1( im̂ i dci . We now
extend this concept to a nonequilibrium system. We considerXi

a as the generalized potentia
conjugate to the generalized fluxesf̂ i

a . The generalized work one-form in local formulation c
be expressed as

wr52p dn1(
i

m̂ i dci1(
i ,a

Xi
a df̂ i

a , ~25!

wheredn, dci , and df̂ i
a are the substantial differentials,dxi5(“xi)–dr1(] tx

i)dt. Denotex̂
5(x2,...,xn). The intensive variables (p,$m̂ i

a%,$Xi
a%) are assumed as classC1 functions of

( x̂,u) in an open convex region ofRn. For convenience, we also rearrange (p,$2m̂ i
a%,$Xi

a%) and
denote it by (p,$2m̂ i

a%,$Xi
a%)5(w2 ,w3 ,...,wn). Thus the work one-form can be written aswr

52( j52wj ( x̂,u)dx
j . Hereafter we adopt the usual convention that the infinitesimal workwr that

occurs as a consequence of the displacementdxj is positive when the generalized forceswj do
work on the system.

Consider the balance equation for the internal energy given by~17d!. The first term2“–Q
represents the energy outflow due to heat flux across the surface enclosing the system, t
2p“–u gives rise to the pressure–volume work, while the term2p:@“u# (2) represents an inter
nal work due to shearing of the substance by shear stress. Grad called the work2p:@“u# (2) a
dissipative work. It is well known that2@“u# (2), 2“m̂ i , and2“ ln T, respectively, are the
generalized forces attributable to the viscous flow, diffusion, and heat conduction. In analo
J. Math. Phys., Vol. 38, No. 7, July 1997
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mechanics,2$@“u# (2):p1( i(“m̂ i)–Ji2( i ,a(“–Xi
a)C i

a1(“ ln T)–Q% can be considered as a
internal work since every term is a product of force and displacement. However, the e
associated with the internal work is a dissipative energy that cannot be converted to other ty
work for the system. Thus,~17d! must be modified to include work given by( im̂ dci as well as
the internal work. To this end we multiply~17a! by p, ~17b! by m̂ i , and~17e! by Xi

a . Then sum
over i in ~17b! and sum overi anda in ~17e!. Adding these results to~17d! yields

rH dte1p dtn2(
i

m̂ i dtci1(
i ,a

Xi
a dtf̂ i

aJ
52“–Qc2H p:@“u#~2!1(

i
Ji–“m̂ i2(

i ,a
C i

a
“–Xi

aJ 1(
i ,a

Xi
a~Zi

a1“–C i1L i !,

~26!

where

Qc5Q2(
i

m̂ iJi1(
i ,a

Xi
aC i

a . ~27!

It is evident that~17d! and ~26! are equivalent, where the second term and the third term on
right-hand side of~26! represent dissipative energy. Since diffusion flow and higher-order te
rial flowsC i

a ~the flux of f̂ i
a! can also contribute to the heat flowQc given by~27! is the net heat

flux across the surface enclosing a local system with centerr and volume elementdr at any instant
of time. We define the local change of heat per unit volume by

r
dqc
dt

52“–Qc . ~28!

By ~26! and ~28! we have

de1p dn2(
i

m̂ i dci1(
i ,a

Xi
a df̂ i

a5dqc1dqd , ~29!

where

r dqd5F 2H p:@“u#~2!1(
i
Ji–“m̂ i2(

i ,a
C i

a
“–Xi

aJ
1(

i ,a
Xi

a~Zi
a1“–C i1L i !

G dt. ~30!

Notice that~30! cannot be expressed as a one-form in terms of thermodynamic variablesx. Thus
we consider the one-formj defined by

j5de1p dn2(
i

m̂ i dci1(
i ,a

Xi
a df̂ i

a5dx11(
j52

wj~ x̂,u!dxj . ~31!

In the following discussions we investigate the integrability condition of~31!.
Let D be an open subset ofRn11 with coordinates (x,u). Let Lk(D) be the space of

k-forms with domainD. Consider the hypersurfaceu5const inD. Supposedj50 for j50 on
this hypersurface. Then
J. Math. Phys., Vol. 38, No. 7, July 1997
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] jwk5]kwj , j ,k>2,u5const. ~32!

Condition ~32! is identical to the Maxwell’s relations in equilibrium thermodynamics at cons
temperature. We generalize~32! to a nonequilibrium system by assuming

] jwk5]kwj , for all uP@a,b# and j ,k>2. ~33!

Then there exists a scalar functionV( x̂,u) such that

wj~ x̂,u!52] jV~ x̂,u!. ~34!

Thus

dV5wr2u du; u52]uV. ~35!

Equations~31! and ~35! then yield

j5dx12wr5d~x12V!2u~ x̂,u!du

and

dj52du∧du,

where ‘‘∧’’ denotes the exterior product of differential forms. On the other hand, it can be sh
that condition~33! is equivalent to

dj50, for j50; uP@a,b#, ~36a!

which in turn is equivalent to

j∧dj50. ~36b!

Hence

j∧dj52d~x12V!∧du∧du50.

Consequently, there exists a continuously differentiable functionh(u( x̂,u),u) such that

x12V5h„u~ x̂,u!,u…,

and thus

j5dh~u,u!2u du. ~37!

Now we prove the existence of a local thermodynamic temperatureT such thatT21 is an inte-
grating factor forj.11 The local temperature can be measured by inserting a thermodynamic
into a portion of the system in a manner described by Muschik as the contact temperature12 Let
U be a neighborhood of an arbitrary local point (r ,t) of the system. LetuP@a,b# be the empirical
temperature inU. Consider two subsystems in contact with each other. Each subsystem
scribed by (x̂i ,u i), i51,2 and satisfies~37!, respectively. Within a short period of time, bot
subsystems and the combined system have the same temperatureu. The combined system is the
described by (x̂1 ,x̂2 ,u) and also satisfies~37!. Suppose there is no interaction between the t
subsystems. Thenj5j11j2 . Hence,

dh~u,u!2u du5d@h~u1 ,u!1h~u2 ,u!#2~u11u2!du. ~38!
J. Math. Phys., Vol. 38, No. 7, July 1997
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This equation can be solved by setting

u5u11u2 , and h~u11u2 ,u!5h~u1 ,u!1h~u2 ,u!. ~39!

Consequently,

h~u,u!5z~u!u, ~40!

wherez is an arbitrary function ofu on @a,b#. We can choosez such thatz(u).0. Thus

j5d~zu!2u du. ~41!

The Pfaffian equationj50 has an integral curve given by

u5cz21 expS E z21 du D5cg~u!, ~42!

where c is a constant. In order to find the integral surfaces of~41! we considerc as a new
independent variable and denote it byc. Thenu5cg and

j5~zg!dc5Fexp E z21 du Gdc. ~43!

Since we have chosenz(u).0 for uP@a,b#, we can identify

T5zg5expS E z21 du D ,
as the local thermodynamic temperature. ThenT is a positive, differentiable, and monotonical
increasing function ofu. Equation~43! then reduces to

j5T dc5de1p dn2(
i

m̂ i dci1(
i ,a

Xi
a df̂ i

a . ~44!

This shows thatT21 is an integrating factor forj and c5const is an integral surface of th
Pfaffian equationj50. The functionc is called the compensation function or calotropy that
additive under composition of subsystems by~38!.

Proposition 2: Let j5de2wr . Suppose] jwk5]kwj , for j ,k>2, and for alluP@a,b#.
There exist a local thermodynamic temperatureT and a scalar-valued functionc such thatj
5T dc.

Combining~26! and ~44! we obtain

rT dtc52“–Qc2H p:@“u#~2!1(
i
Ji–“m̂ i2(

i ,a
C i

a
“–Xi

aJ 1(
i ,a

Xi
a~Zi

a1“–C i
a1L i

a!,

which can be rewritten as

r dtc1“–~T21Qc!5rSc , ~45!

with
J. Math. Phys., Vol. 38, No. 7, July 1997
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rSc52T21HQc–“ ln T1p:@“u#~2!1(
i
Ji–“m̂ i2(

i ,a
C i

a
“–Xi

aJ
1T21(

i ,a
Xi

a~Zi
a1“–C i

a1L i
a!. ~46!

Corollary: Under the assumption of Proposition 2, the calotropy functionc satisfies the
balance equation~45!.

Based on the Carnot theorem and Clausius’ inequality recently Eu has obtained the ca
balance equation~45! by consideringrSc as the local rate of uncompensated heat, whererSc is
semipositive definite as required by the second law of thermodynamics. In view of this discu
the local formulation of the second law can be written as

j∧dj50, ~47a!

Sc52H p:@“u#~2!1(
i
Ji–“m̂ i2(

i ,a
C i

a
“–Xi

aJ 1(
i ,a

Xi
a~Zi

a1L i
a1“–C i

a!>0. ~47b!

In global form the second law is usually stated in terms of Kelvin’s principle or equivale
as Clausius’ principle as follows.14

~i! Kelvin’s principle: In a cycle of processes, it is impossible to transfer heat from a
reservoir and convert it all into work, without at the same time transferring a certain amou
heat from a hotter to a colder body.

~ii ! Clausius’ principle: It is impossible that at the end of a cycle of processes, heat has
transferred from a colder to a hotter body without at the same time converting a certain amo
work into heat.

It is well known that both the Kelvin’s principle and Clausius’ principle are equivalent to
Caratheodory’s principle,15 which states that from an arbitrary initial state~point! in the thermo-
dynamic space, there is a finite region~set of states of finite measure! that cannot be reached by a
adiabatic process, reversible or irreversible. This region may be taken arbitrarily close to the
state.

In the following discussions we first formulate Caratheodory’s principle in local form in te
of the inaccessibility condition~integrability condition! as ~47a!. We then prove that~47a! and
~47b! are equivalent to both the Kelvin’s principle and Clausius’ principle in local form. For
purpose we thus divide the material system into a sufficiently large number of subsystems
sider an arbitrary local system with centerr and volume elementdr . The thermodynamic state o
the local system can be described by the thermodynamic state variablesx.

~i! Let Ti5const, i51,2, be two hypersurfaces of constant temperatures,T1.T2 , in the
thermodynamic spaceEn with coordinatesx. Let g i be a reversible isotherm on theTi5const
surface. We assume that heat absorbed or liberated by the local system along the iso
~outside of the phase transition region! is a continuous function ofx. Consider an initial state
x1 on g1 . Let statesx18 andx19 be farther to the left ofx1 on g1 , such that the heat absorbed b
the local system fromx19 to x18 , and fromx18 to x1 , respectively, are positive. Through statesx18
andx19 we draw reversible adiabatic paths that intersect isothermg2 at x28 andx29 , respectively.
We now prove that no points along the adiabatic pathsx182x28 ,x192x29 are accessible from stat
x1 by an adiabatic path, reversible or irreversible. The proof given here is the local version
one given in Ref. 14.

Suppose an adiabatic path exists betweenx1 andx28 . Consider the cyclex12x282x182x1 . The
net heat absorbed by the local system in this cycle isDq18152Dq118.0, where we have used th
abbreviationDq181 to denote the heat absorbed from statex1 to x18 . By ~29! we have 05De
5Dq1811Dqd1Dwr , with Dqd>0 representing the dissipative energy along the adiabatic
x12x28 if it is an irreversible path. Hence,2Dwr5Dq1811Dqd>Dq181>0, or 2Dwr<0.
J. Math. Phys., Vol. 38, No. 7, July 1997
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This is impossible since the net work done by the system in the cycle would be greater th
equal to the net heat absorbed by the cycle. Thus the adiabatic pathx12x28 cannot be an irrevers
ible path. On the other hand, it cannot be a reversible path either, for2Dwr5Dq181 implies that
the net heat absorbed would be converted completely into work done by the local system.
same reasoning we observe thatx28Þx29 . Since the surfaceT25const can be taken arbitrarily, b
changingT25const, we can generate a region of finite volume that is inaccessible from statex1 by
an adiabatic path, reversible or irreversible. Therefore we have proved that~47! is equivalent to
the local version of Kelvin’s principle.

~ii ! Let Ti5const,i51,2,3, be hypersurfaces of constant temperatures in the thermodyn
space withT1.T2.T3 . Let g i , i51,2,3, be reversible isotherms onTi5const hypersurface
Consider an initial statex1 on g1 . Let statesx18 andx19 be located farther to the right ofx1 such
that the heatDq118 absorbed by the local system alongg1 from x1 to x18 is positive. Similarly,
Dq1819 is also positive. Throughx18 andx19 we draw reversible adiabatic paths that intersectg2 at
x28 andx29 , respectively, and intersectg3 at x38 andx39 , respectively. Locate pointsx3 and x̄3 on
g3 such thatDq3385Dq118 andDq 3̄395Dq119 . We now prove the assertion that no adiaba
path, reversible or irreversible, connects statesx1 andx3 . Furthermore,x3Þ x̄3 .

Suppose there exists an adiabatic path connectingx1 and x3 . Consider the cyclex12x3
2x382x182x1 . As before, we assume that heat absorbed by the local system along any isoth
a continuous function ofx ~outside the phase transition region!. The net heat absorbed in the cyc
is Dq5Dq3381Dq1815Dq3382Dq11850. On the other hand, by~29!, we have2Dwr5Dq
1Dqd5Dqd.0. Hence the net work done by the system is provided by the dissipative en
This is impossible since dissipative energy cannot be converted into useful work. ThusDwr

5Dqd50. This implies that the adiabatic pathx12x3 is a reversible path. But this is impossib
either, forDwr50 implies that the net result of the cycle is to transfer heatDq338 at T3 to heat
Dq118 at T1.T3 without converting a certain amount of work into heat at the same time. Th
against Clausius’ principle. By the same reasoning we can show thatDq1819ÞDq3839 . Since
Dq 3̄392Dq3395Dq1192Dq3395(Dq1181Dq1819)2(Dq3381Dq3839)5Dq18192Dq3839Þ0, thus
x3Þ x̄3 . Therefore, any point alongg3 betweenx3 and x̄3 is inaccessible fromx1 by an adiabatic
path. Next we locatex2 and x̄2 on g2 such thatDq2285Dq118 andDq 2̄295Dq119 . Similarly, any
point alongg2 betweenx2 and x̄2 is inaccessible fromx1 by adiabatic paths. In fact, letT
5const be an arbitrary constant temperature hypersurface betweenT15const andT35const. Let
g be an isotherm on theT5const hypersurface, which intersects the reversible adiabatic
betweenx18 andx38 at xc , and intersects the reversible adiabatic path betweenx19 andx39 at xd .
Locatexa andxb on g by the conditionDqac5Dq118 andDqbd5Dq119 . Then any point alongg
betweenxa andxb is adiabatically inaccessible fromx1 . Indeed, a region generated in this mann
cannot be connected fromx1 by adiabatic paths, reversible or irreversible. Again we have pro
the equivalence of~47! and the local version of Clausius’ principle.

Proposition 3:The local formulation of the second law of thermodynamics given by~47a! and
~47b! are equivalent to the local versions of Kelvin’s principle and Clausius’ principle, res
tively.

Next, we consider the global form of~29! by integrating over the volume of the system:

dE

dt
5
dQc

dt
1
dQd

dt
1
dWr

dt
, ~48!

where

dE

dt
5E r

de

dt
,

dQc

dt
52E “–Qc dr ,

dQd

dt
5E r

dqd
dt

,
dWr

dt
5E r

dwr

dt
.
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Equation~48! can be rewritten in differential form as

dE5dQc1dWr1dQd . ~49!

Suppose the dissipative energyQd is semipositive definite for allt. LetVc5dE2dWr . Then the
inaccessibility condition in global form can be expressed asVc∧dVc50. Following the argu-
ments as presented above, we can show that the conditionQd>0 in conjunction withVc∧dVc

50 is equivalent to Kelvin’s principle as well as Clausius’ principle. Hence there exist a the
dynamic temperatureT(t) in an absolute temperature scale and a global calotropy func
C(t) such that

dC5
1

T
~dE2dWr !5

1

T
dQc1

1

T
dQd . ~50!

Since dQd50 for a reversible process, the entropy differentialdS is identical to (dC)rev
5(T21 dQc)rev. Thus, if statesA and B are connected by an irreversible path, thenDSAB
>*A

BT21 dQc .
Finally, we show that the integral manifold of the generalized Gibbs relation~44! is given by

~22!. To this end, we consider the thermodynamic state spaceRn with coordinatesx
5(x1,x2,...,xn). Let K5Rn3R3Rn be the thermodynamic phase space with coordina
(x1,...,xn,x0,y1 ,...,yn) equipped with a contact one-formv defined by

v5dx02yi dx
i , ~51!

such thatv∧(dv)nÞ0 andv∧(dv)n1150. The spaceK is called a contact manifold. Letf be a
C1 function defined onK. To every f on K there is a unique isovector fieldXf on the tangent
spaceT(K) of K such thatL(Xf)C,C, whereL(Xf) is the Lie derivative associated withXf and
C is the contact ideal generated by the contact one-formv.16 This isovector fieldXf is given by

Xf5~ f2yi ] i f !]02~] i f !] i1@~]0f !yi1] i f #]
i5 f 0]01 f i] i1 f i]

i . ~52!

Here]05]/]x0, ] i5]/]xi , ] i5]/]yi , i51,2,...,n, and f 05 f1yi f
i .

Denote $T21, pT21, 2m̂ iT
21, Xi

aT21, i51,...,r , a51,...,N% as y5(y1 ,y2 ,...,yn). Let
x05c(x) and let the one-formv be given by

v5dc2FT21 de1~pT21!dn2(
i

~m̂ iT
21!dci1(

i ,a
~Xi

aT21!df̂ i
aG5dx02yi dx

i . ~53!

Then (x,x0,y) are the canonical coordinates of the thermodynamic phase spaceK equipped with
the one-formv. The graph space,

G5$~x,x0,y!PKux05c~x!,yi5] ic%,

is a Legendre submanifold ofK.
Supposef 0 and f i are functions of (x,x0). If the flows ofXf preserve the Legendre subman

fold, then these flows lie onG andXf is tangent toG. By the orbital equations ofXf we have
(dx0/dt)/(dxi /dt)5 f 0/ f i5yi . Sincev50 on G, dx0/dt5yi(dx

i /dt) on G. Thus f5 f 02yi f
i

50 onG. Hence we construct the vector fieldXf5x0]01xi] i . It is evident thatXf is tangent to
G. The corresponding functionf can be written asf5x02yix

i . Indeed, by~52! we can verify the
expression forXf . Since the flows ofXf preserveG, f uG50, which yieldsx05yix

i on G.
Furthermore,
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xi dyi uG5e dT211nd~pT21!2(
i
cid~m̂ iT

21!1(
i ,a

f̂ i
ad~Xi

aT21!50. ~54!

Proposition 4:The calotropy functionc given by~21! defines a Legendre submanifoldG of
the thermodynamic phase spaceK, where the generalized Gibbs–Duhem relation~54! is satisfied.

In view of ~23!, ~27!, ~45!, and Proposition 4,JN5T21Qc is the calotropy current. On the
other hand, the entropy balance equation should be replaced by the calotropy balance e
wherec is a thermodynamic state function, whereas the entropy density cannot be shown t
state function.

IV. CONCLUSION

In this paper we investigate the relationship between the moment methods and the e
balance equation. We prove that the moment methods yield a weak solution of the Boltz
equation, while the entropy balance equation can be satisfied only by the strong solution
Boltzmann equation. We then reformulate the balance equation for the energy density~17d! as
~26!, which includes the dissipative energy given by~30! as well as the generalized workwr given
by ~25!. On the other hand, the local formulation of the second law is given by~47!. We show that
~47! is equivalent to Caratheodory’s inaccessibility condition, which in turn is equivalen
Kelvin’s principle and Clausius’ principle. Based on~26! and ~47! we can derive the calotropy
balance equation~45!. The calotropy function is a state function whose differential gives rise
the generalized Gibbs relation. The kinetic foundation of the calotropy functions is given by~21a!,
which defines a Legendre submanifold of the thermodynamic phase space.
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The eight tetrahedron equations
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In this paper we derive from arguments of string scattering a set of eight tetrahe-
dron equations, with different index orderings. It is argued that this system of
equations is the proper system that represents integrable structures in three dimen-
sions generalizing the Yang–Baxter equation. Under additional restrictions this
system reduces to the usual tetrahedron equation in the vertex form. Most known
solutions fall under this class, but it is by no means necessary. Comparison is made
with the work on braided monoidal 2-categories also leading to eight tetrahedron
equations. ©1997 American Institute of Physics.@S0022-2488~97!02607-8#

I. INTRODUCTION

An important current problem in the study of integrable systems is to make an extens
higher dimensions. For 111 dimensions there are several well established approaches to int
bility and many beautiful results have been obtained; much less is known about integrabi
three dimensional systems. One of the most important approaches to 111 dimensional integra-
bility is based on the Yang–Baxter equations,1 the corresponding 211 dimensional ‘‘tetrahe-
dron’’ equations were introduced by Zamolodchikov already in the 1980s.2–4 These equations
have been under intense study during the last few years,5–14 but many fundamental questions st
remain open.

One difference between 111 and 211 dimensional integrability stems from the fact th
there is no natural ordering in the two dimensional space. The Yang–Baxter equation c
derived, e.g., from the condition of factorizable scattering of point particles on a line1 and since
one can introduce a good ordering on a line there is no ambiguity in writing down the Y
Baxter equations. Zamolodchikov’s tetrahedron equations can be derived from the conditi
factorizable scattering of straight strings2,12 ~or particles at the intersections of strings12! on a
plane. In the particle interpretation the scattering matrix depends on three incoming and
outgoing particles, but since there is no obvious way of defining an order in two dimensions,
is no single ordering in which the indices of the corresponding scattering matrix should be w

Let first recall how the tetrahedron equation arises when we consider the scattering of s
strings. The basic scattering process is that of three straight strings, and if we are only inte
in the particles at the intersection of the strings~the ‘‘vertex’’ formulation! the scattering matrix is
written asSj 1 j 2 j 3

k1k2k3 where thej ’s give the states of incoming particles and thek’s the states of the

outgoing ones. The tetrahedron equations arise when we consider the scattering of four stri2,12

which generically have six intersections; see Figure 1. The initial configuration looks lik
arrow, and if we go to the frame where the arrowhead~particle 4! is stationary, the dynamics i
described fully by the way the intersection point 3 moves. Depending on the relative i
positions of the two strings at the bottom of the figure, particle 3 will pass particle 4 on the le
on the right. In each alternative there will be four basic scattering processes, in each of w

a!Electronic mail: hietarin@newton.tfy.utu.fi
b!Electronic mail: frank@amsta.leeds.ac.uk
0022-2488/97/38(7)/3603/13/$10.00
3603J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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triangle will be turned over. These two alternatives should give the same result, and this con
yields the tetrahedron equations:

Sj 1 j 2 j 3
k1k2k3Sk1 j 4 j 5

l1k4k5Sk2k4 j 6
l2l4k6Sk3k5k6

l3l5l6 5Sj 3 j 5 j 6
k3k5k6Sj 2 j 4k6

k2k4l6Sj 1k4k5
k2l4l5Sk1k2k3

l1l2l3 . ~1!

Here we have used Einstein summation convention for the repeatedk indices.
In writing down the above equation we have used a particular convention for the i

ordering: for each triangle that turns over we have taken the indices from left to right. Sinc
four string configuration of Fig. 1 is not rotationally invariant ‘‘left’’ can always be defined,
any such ordering gives problems already when one considers the scattering of five string

A typical starting configuration of a five string scattering is given in Figure 2. Let us ass
that in the next scattering process the triangle 123 will be turned over. In which order shou
now write the indices of the corresponding scattering matrix? If we consider the triangle 12
part of arrow 1463 we should useS123, according to the above convention, but if we consid

FIG. 1. The starting configuration for four string~six particle! scattering. The resulting total scattering matrix should be
same for the two alternatives that differ only in the relative position of the two strings at the bottom.

FIG. 2. A typical situation with five string scattering. The first triangle to turn over is 123 of the arrow 1463, but if
considered as part of the arrow 3702 then the corresponding scattering matrix should be labeled as 312.
J. Math. Phys., Vol. 38, No. 7, July 1997
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arrow 3702 and look at the picture from the right, we should useS312. This problem was recog
nized in Ref. 2 and was taken care of by requiring that theS-matrix is invariant under cyclic index
permutation; see. Eq.~3.5! of Ref. 2.

In this paper we show that this ordering ambiguity means that there are, in fact, eight
hedron equations~obtained from the standard one by certain index permutations! that must be
satisfied simultaneously by the tetrahedronS-matrix. In Sec. II we give an algebraic derivation
these equations using the ‘‘obstruction’’ method; cf. Refs. 6, 7, 10, and 14. In Sec. III we
several interpretations to these equations and discuss the conditions under which these e
collapse into one. In Sec. IV we will make a connection with the notion of higher Bruhat or
introduced by Manin and Schechtman in Refs. 15 and 16. Another formulation of the tetrah
equations is in terms of braided monoidal bicategories,~cf. Refs. 17 and 18, and provides a
alternative way of obtaining the system of eight tetrahedron equations.19 However, we believe our
derivation is closer to the physical interpretation in terms of string scattering, furthermore w
not need to use the language of bicategories. Since our derivation relies on the obst
mechanism,6,7 we hope that eventually this point of view leads to the derivation~in the spirit of
Refs. 10 and 11! of explicit solutions of the system in the cases when it does not collapse
single tetrahedron equation.

II. DERIVATION

A. Derivation of the Yang–Baxter equation

We will start by recalling the algebraic derivation of the YBE. Let us assume that we ha
set ofd n3n matrices which also depend on a continuous ‘‘spectral’’~or ‘‘color’’ ! parameters:
M5$ iM (l)PEnd(V0)u i51, . . . ,d,lPCP%, using the convention that the matrix indices a
written on the right and the other indices on the left. For later purposes it is useful to think o
spectral parameterl as being some projective vector overC. Let us now assume that the matric
of M do not quite commute but that their commutation is ‘‘obstructed’’ by some nume
coefficientsR:

j 1
M ~l1!a

b
j 2
M ~l2!b

g5R~l1 ,l2! j 1 j 2
k1k2

k2
M ~l2!a

b
k1
M ~l1!b

g . ~2!

The obstruction coefficientsR can be put into ad23d2 matrix and we can say that it operates
the product of vector spacesV1^V2 , whose basis is given by the matricesiM , themselves
operating on some other vector spaceV0 . ~This hierarchical structure will be taken one st
further in the next section.! We can now use a shorthand notation and write down only the na
of the vector spaces where the operation takes place,

1M0•2M05R12 2M0•1M0 . ~3!

It should be remembered thatwith each vector space comes its own spectral parameter~the
parameter associated withVB is global!.

@There is an alternative way of obstructing commutativity by

Rik
pq~l,m!p

mT~l!•q
nT~m!5k

rT~m!• i
sT~l!Rrs

mn~m,l!,

where thei
jT’s are some non-commuting quantities, each of which can be represented by a

acting on some vector space. Multiplying byR21 from the left we can write this in the form~2!,
but with double indices.#

If the reversal~2! is done twice we get
J. Math. Phys., Vol. 38, No. 7, July 1997
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@d1d22R12R21#1M0•2M050,

which is usually taken in the strong form as the ‘‘unitarity’’ condition,

R12R215d1d2 . ~4!

Taking into account the associativity of the matrix product we see that the obstruction to co
tativity ~3! leads to two different ways of inverting the tripleABC, namely on the one hand
(AB)C→B(AC)→(BC)A→CBA, and on the other handA(BC)→(AC)B→C(AB)→CBA.
Equating the two expressions obtained by elaborating these two ways, namely

1M0•2M0•3M05R12 2M0•1M0•3M05R12R13 2M0•3M0•1M0

5R12R13R23 3M0•2M0•1M0 ,

and

1M0•2M0•3M05R23 1M0•3M0•2M05R23R13 3M0•1M0•2M0

5R23R13R12 3M0•2M0•1M0 ,

we obtain in the strong sense the quantum Yang–Baxter equation as a condition onR:

R12R13R235R23R13R12, ~5!

which is shorthand for

R~l1 ,l2! j 1 j 2
k1k2R~l1 ,l3!k1 j 3

l1k3R~l2 ,l3!k2k3
l2l3 5R~l2 ,l3! j 2 j 3

k2k3R~l1 ,l3! j 1k3
k1l3R~l1 ,l2!k1k2

l1l2 . ~6!

B. Derivation of the tetrahedron equation

We will next derive in a similar way the tetrahedron equation.4,5We start with an indexed se
of matrices R operating on a product of two vector spaces, i.e.,R5$a i j

Ri j (l i ,l j )
PEnd(Vi ,Vj )u i , j51, . . . ,n,a i j51, . . . ,m,l iPCP2%, where the spectral parameter is now a p
jective three dimensional vector. As an extension of the previous case, we assume that theR’s do
not quite satisfy the Yang–Baxter equation, but rather obey

a12
R12~l1 ,l2!•a13

R13~l1 ,l3!•a23
R23~l2 ,l3!

5S~l1 ,l2 ,l3!a12a13a23

b12b13b23
b23
R23~l2 ,l3!•b13

R13~l1 ,l3!•b12
R12~l1 ,l2!, ~7!

which defines the obstruction matrixS, operating on the product of three vector spac
V(12)^V(13)^V(23) , labeled now bypairs of integers. In~7! the internal indices of theR’s have
been indicated only by the vector spaces on which they act, and there is a distributed
product just like in the Yang–Baxter equation over them. The external indicesa i j ,b i j are written
out explicitly, and there is a summation over theb i j ’s.

Korepanov has successfully used~7! in constructing solutions to the tetrahedron equation,10,11

by choosing suitably deformed solutions of the Yang–Baxter equation; see also Ref. 14.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



al
the
the
aution.
ls.
gesting

a triple

rmore,

ile
n-

of
-
ects:

3607J. Hietarinta and F. Nijhoff: The eight tetrahedron equations

¬¬¬¬¬¬¬¬¬¬
Since the left and right hand sides of~6! and~7! have different index distributions~observe the
positions of the repeated indices in theR’s! we will also need another reversal,

a23
R23~l2 ,l3!•a13

R13~l1 ,l3!•a12
R12~l1 ,l2!

5S̃~l3 ,l2 ,l1!a23a13a12

b23b13b12
b12
R12~l1 ,l2!•b13

R13~l1 ,l3!•b23
R23~l2 ,l3!. ~8!

To simplify the notation we will only write down the indices of the various spaces,

R[12]•R[13]•R[23]5S~12!~13!~23!R[23]•R[13]•R[12] , ~9!

R[23]•R[13]•R[12]5S̃~23!~13!~12!R[12]•R[13]•R[23] . ~10!

Here the square brackets around the subscripts ofR are to remind us that there are both extern
indices labeling the differentR matrices and internal indices of the Yang–Baxter type, while
brackets around the indices ofS and S̃ indicate that they are only external indices. Note that
order inside each bracketed pair is also important, and relabelings should be made with c

So far we have no relation betweenS and S̃, because they arose from different reversa
However, an application of these two reversals in succession yields the starting order, sug
that the unitarity condition,

S̃~23!~13!~12!S~12!~13!~23!5d~12!d~13!d~23! , ~11!

should be satisfied, but again this is necessary only in the weak sense, i.e., when acting on
of matricesR.

In addition to the above we have to give a rule for exchangingR’s with disjoint indices. In
general we could introduce a permutation operatorQ by20

R[12]R[34]5Q~12!~34!R[34]R[12] . ~12!

Since the internal~matrix! indices are disjoint it would be natural to chooseQ5dd, but even if we
later may take this conventional choice it is useful to carry along the operatorQ, since it will turn
out to be a good place-marker in the otherwise monotonous tetrahedron equation. Furthe
Lawrence has proposed in Ref. 20 a variant of the tetrahedron equation where thisQ operator is
taken into account.@Among other things this allows for some additional~reductive! solutions of
the form Q(12)(34) a solution of the quantum Yang–Baxter equation, wh
S(12)(13)(23)5Q(12)(13)Q(12)(23)Q(13)(23).# In this paper we will only use the commutation and i
version properties:

Q~12!~34!Q~13!~24!5Q~13!~24!Q~12!~34! , ~13!

Q~12!~34!Q~34!~12!5d~12!d~34! ; ~14!

S andQ were defined by reversals of three and twoR’s, respectively. When we consider ways
reversing more than three objects we get conditions forS ~andQ!. In fact, because of the depen
dence onpairs of indices we need to consider next the reversal of a product of six obj
J. Math. Phys., Vol. 38, No. 7, July 1997
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R[ i j ] whereiÞ jP$1,2,3,4%. One particular case is the following:

Here the under-brace indicates which triple is reversed by theS and the underline means the term
are commuted usingQ. At each step the multiplying obstruction matrix is written at the Do
narrow, and they compose as

S~12!~13!~23!S~12!~14!~24!Q~13!~24!Q~12!~34!S~13!~14!~34!S~23!~24!~34!Q~23!~14! .

There is precisely one other way to reverse the previous starting point:

and for the last line the multiplier will be

Q~23!~14!S~23!~24!~34!S~13!~14!~34!Q~12!~34!Q~13!~24!S~12!~14!~24!S~12!~13!~23! .
J. Math. Phys., Vol. 38, No. 7, July 1997
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The equality of the above two expressions yields the tetrahedron equation

S~12!~13!~23!S~12!~14!~24!Q~13!~24!Q~12!~34!S~13!~14!~34!S~23!~24!~34!Q~23!~14!

5Q~23!~14!S~23!~24!~34!S~13!~14!~34!Q~12!~34!Q~13!~24!S~12!~14!~24!S~12!~13!~23! . ~15!

If Q5dd and we use the translation table 1512, 2513, 3523, 4514, 5524, 6534, we get the
tetrahedron equation in the usual notation

S123S145S246S3565S356S246S145S123. ~16!

We note that the double index notation of~15! is more natural, because it identifies the points
the intersections of the two strings.

Let us finish this section by a comment on the spectral parameters. Each matrixS depends on
three spectral parameters attached to each of the labels it carries. The derivation of this
gives a natural distribution of these parameters through the equation, as it does in the
Baxter case. However, since we take the spectral parameter to be a projective vector in
three dimensional complex space there is nonetheless a condition arising from the fact th
vectors in a three dimensional space are necessarily dependent. This leads to the dete
condition given in Ref. 5 which, when expressed in terms of spherical angles associated wit
of these vectors, is exactly the condition between the spectral parameters used in Zamolodc
construction of his solution; cf. Ref. 3. An interesting question is whether this parametriz
would correspond to the one that one would expect from the Baxterization procedure v
generalization of Coxeter groups underlying the tetrahedron equations, as proposed in Re
22, and 23.

C. The other tetrahedron equations

The main observation of this paper is that the above picture is incomplete in view of th
that there are other starting points for the reversal of sixR-matrices which will lead to tetrahedro
equations which in general are not equivalent to~15! or ~16!. In fact, we should investigate a
possible starting configurations of matricesR and thus obtain a set of equations involvingS as
well as S̃.

It is not hard to find those starting configurations for which at least two triple reversals c
done. Without any loss of generality we may renumber the vector spaces and indices so t
first reversal is on••••R[12]•R[13]•R[23]••• resulting with•••R[23]•R[13]•R[12]••• or in the reverse
order: •••R[23]•R[13]•R[12]••• resulting with•••R[12]•R[13]•R[23]••• . The next reversal must in
volve R[12] , R[23] , or R[13] . In the first case the two otherR’s that go withR[12] must be on its
right hand side, and can be numbered asR[14]•R[24] or R[42]•R[41] @note the order of indices; cf
~9! and~10!#, and the remaining termR[ $34%] ~we do not yet know which index order works; th
is reminded by the braces! can then be put in three different places resulting with six star
configurations:

1 R[12]•R[13]•R[23]•R[14]•R[24]•R[ $34%]

18 R[12]•R[13]•R[23]•R[42]•R[41]•R[ $34%]

28 R[12]•R[13]•R[23]•R[ $34%]•R[14]•R[24]

2 R[12]•R[13]•R[23]•R[ $34%]•R[42]•R[41]

3 R[ $34%]•R[12]•R[13]•R[23]•R[14]•R[24]

38 R[ $34%]•R[12]•R[13]•R[23]•R[42]•R[41]

.

J. Math. Phys., Vol. 38, No. 7, July 1997
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If the second reversal involvesR[23] , its ~left hand side! companions can be numbered
R[42]•R[43] or R[34]•R[24] , and the remaining termR[ $14%] can again be distributed among th
terms in three ways. This results with the following six possible starting configurations:

4 R[42]•R[43]•R[12]•R[13]•R[23]•R[ $14%]

48 R[34]•R[24]•R[12]•R[13]•R[23]•R[ $14%]

58 R[42]•R[43]•R[ $14%]•R[12]•R[13]•R[23]

5 R[34]•R[24]•R[ $14%]•R[12]•R[13]•R[23]

6 R[ $14%]•R[42]•R[43]•R[12]•R[13]•R[23]

68 R[ $14%]•R[34]•R[24]•R[12]•R[13]•R[23]

.

Finally, if the second reversal usesR[13] we must putR[14] on its left hand side andR[43] of the
right andR[ $24%] on either end, so that we can start with

7 R[ $24%]•R[14]•R[12]•R[13]•R[23]•R[43]

8 R[14]•R[12]•R[13]•R[23]•R[43]•R[ $24%]
.

These starting points are then guaranteed to allow at least two triple reversals, but
complete order reversal we have to do four triple reversals. It turns out that a third reversal
be done in all cases; these bad cases are marked above with a prime. For each of the re
eight starting points the first reversal can be done in precisely two ways; one of them
S(12)(13)(23), the other one varying from case to case; these two alternatives give the two si
the tetrahedron equations. We will not give the details here, the derivation follows the one
before and is easy to do since at each step there are no alternatives in applying the triple re

The above classification can be repeated for starting points for which the first reversa
•••R[23]•R[13]•R[12]••• resulting with •••R[12]•R[13]•R[23]••• . However, it turns out that thes
reversed starting points can be relabeled so that they give the same as the unreversed one
for cases 1 and 6. Thus we obtain, finally, eight different tetrahedron equations:

1,6 S~12!~13!~23!S~12!~14!~24!Q~13!~24!Q~12!~34!S~13!~14!~34!S~23!~24!~34!Q~23!~14!

5Q~23!~14!S~23!~24!~34!S~13!~14!~34!Q~12!~34!Q~13!~24!S~12!~14!~24!S~12!~13!~23! ,

2,8r S~12!~13!~23!Q~12!~43!S̃~12!~42!~41!S̃~13!~43!~41!Q~23!~41!Q~13!~42!S̃~23!~43!~42!

5S̃~23!~43!~42!Q~13!~42!Q~23!~41!S̃~13!~43!~41!S̃~12!~42!~41!Q~12!~43!S~12!~13!~23! ,

3,4r S~12!~13!~23!S~12!~14!~24!Q~13!~24!S̃~43!~23!~24!S̃~43!~13!~14!Q~23!~14!Q~43!~12!

5Q~43!~12!Q~23!~14!S̃~43!~13!~14!S̃~43!~23!~24!Q~13!~24!S~12!~14!~24!S~12!~13!~23! ,

4,3r S~12!~13!~23!S~42!~43!~23!Q~42!~13!S̃~42!~12!~14!S̃~43!~13!~14!Q~23!~14!Q~43!~12!

5Q~43!~12!Q~23!~14!S̃~43!~13!~14!S̃~42!~12!~14!Q~42!~13!S~42!~43!~23!S~12!~13!~23! ,

~17!
5,7r S~12!~13!~23!Q~14!~23!S̃~34!~24!~23!S̃~34!~14!~13!Q~24!~13!Q~34!~12!S̃~24!~14!~12!

5S̃~24!~14!~12!Q~34!~12!Q~24!~13!S̃~34!~14!~13!S̃~34!~24!~23!Q~14!~23!S~12!~13!~23! ,

1r ,6r S̃~23!~13!~12!S̃~24!~14!~12!Q~24!~13!Q~34!~12!S̃~34!~14!~13!S̃~34!~24!~23!Q~14!~23!
J. Math. Phys., Vol. 38, No. 7, July 1997
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5Q~14!~23!S̃~34!~24!~23!S̃~34!~14!~13!Q~34!~12!Q~24!~13!S̃~24!~14!~12!S̃~23!~13!~12! ,

7,5r S~12!~13!~23!Q~14!~23!Q~12!~43!S~14!~13!~43!S~24!~23!~43!Q~24!~13!S̃~24!~14!~12!

5S̃~24!~14!~12!Q~24!~13!S~24!~23!~43!S~14!~13!~43!Q~12!~43!Q~14!~23!S~12!~13!~23! ,

8,2r S~12!~13!~23!Q~14!~23!Q~12!~43!S~14!~13!~43!S~14!~12!~42!Q~13!~42!S̃~23!~43!~42!

5S̃~23!~43!~42!Q~13!~42!S~14!~12!~42!S~14!~13!~43!Q~12!~43!Q~14!~23!S~12!~13!~23! .

III. INTERPRETATION

To get a better understanding of the equations~17!, let us look at the simplified case where th
matricesQ are all taken equal to one, and investigate the geometric meaning of the s
equations we have obtained.

A. Reduction under unitarity

Let us first renumber the indices in~17! so that inside each bracket (i j ) we havei, j . This is
accomplished by the following cyclic renumberings: 1 none, 2~1234!, 3 ~34!, 4 ~234!, 5 none,
1r none, 7~34!, 8 ~234!. After this it turns out that in eachS the indices areS( i j )( ik)( jk) with
i, j,k, and if i , j ,k,l is a permutation of$1,2,3,4% we can use the shorthand notatio
Sl :5S( i j )( ik)( jk) , similarly S̃l :5S̃( jk)( ik)( i j ) . For Q’s we useQi :5Q(1i )( jk) , where j,k and
i , j ,k is a permutation of$2,3,4% @recall also Eq.~14!#. After multiplying each line from left and
right by suitableS̃21 andQ to eliminate allS̃’s andQ21’s, exchanging left and right hand side
in equations~3!, ~5!, and~8!, and writing the whole set in a different order yields

1,6 Q4S4 S3 Q3Q2S2 S1 5 S1 S2 Q2Q3S3 S4 Q4 ,

7,5r Q4S̃4
21S3 Q3Q2S2 S1 5 S1 S2 Q2Q3S3 S̃4

21Q4 ,

4,3r Q4S̃4
21S̃3

21Q3Q2S2 S1 5 S1 S2 Q2Q3S̃3
21S̃4

21Q4 ,

2,8r Q4S̃4
21S̃3

21Q3Q2S̃2
21S1 5 S1 S̃2

21Q2Q3S̃3
21S̃4

21Q4 ,

1r ,6r Q4S̃4
21S̃3

21Q3Q2S̃2
21S̃1

21 5 S̃1
21S̃2

21Q2Q3S̃3
21S̃4

21Q4 ,

5,7r Q4S4 S̃3
21Q3Q2S̃2

21S̃1
21 5 S̃1

21S̃2
21Q2Q3S̃3

21S4 Q4 ,

3,4r Q4S4 S3 Q3Q2S̃2
21S̃1

21 5 S̃1
21S̃2

21Q2Q3S3 S4 Q4 ,

8,2r Q4S4 S3 Q3Q2S2 S̃1
21 5 S̃1

21S2 Q2Q3S3 S4 Q4 . ~18!

This is the final form of the equations, when considered from the algebraic point of view. Cle
if the unitarity condition~11! holds we haveS̃i

215Si and all equations are identical.
Equations of exactly the same form but withQ 5dd were presented in Ref. 18 where the

were derived in quite a different context: The study in Ref. 18 was based on bicategories a
equations were presented as a theorem stating that certain bicategories will satisfy this se

B. Geometric interpretation

Above we have given an algebraic derivation, but the tetrahedron equations can a
derived by other approaches, for example by the geometric approach of straight string sca
which we will consider next. In this approach the unitarity condition does not arise, and we
have the ordering problem discussed in the Introduction.~In the following we will drop the
Q-matrices.!
J. Math. Phys., Vol. 38, No. 7, July 1997
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In order to have a geometric interpretation of~17! we renumber the indices so that in ea
equation the indices of anS-matrix contain the same set of numbers as in Case 1. The req
renumberings are: 1,6 none, 2,8r none, 3,4r ~1324! and exchange of left and right hand side
4,3r ~132!, 5,7r ~1234! and exchange, 1r ,6r none, 7,5r ~123!, 8,2r ~14! and exchange, this yield

1,6 S~12!~13!~23!S~12!~14!~24!S~13!~14!~34!S~23!~24!~34!5S~23!~24!~34!S~13!~14!~34!S~12!~14!~24!S~12!~13!~23!

2,8r S~12!~13!~23!S̃~12!~42!~41!S̃~13!~43!~41!S̃~23!~43!~42!5S̃~23!~43!~42!S̃~13!~43!~41!S̃~12!~42!~41!S~12!~13!~23!

3,4r S̃~12!~32!~31!S̃~12!~42!~41!S~34!~31!~41!S~34!~32!~42!5S~34!~32!~42!S~34!~31!~41!S̃~12!~42!~41!S̃~12!~32!~31!

4,3r S~31!~32!~12!S~41!~42!~12!S̃~41!~31!~34!S̃~42!~32!~34!5S̃~42!~32!~34!S̃~41!~31!~34!S~41!~42!~12!S~31!~32!~12!

5,7r S̃~31!~21!~23!S̃~41!~21!~24!S̃~41!~31!~34!S~23!~24!~34!5S~23!~24!~34!S̃~41!~31!~34!S̃~41!~21!~24!S̃~31!~21!~23!
.

1r ,6r S̃~23!~13!~12!S̃~24!~14!~12!S̃~34!~14!~13!S̃~34!~24!~23!5S̃~34!~24!~23!S̃~34!~14!~13!S̃~24!~14!~12!S̃~23!~13!~12!

7,5r S~23!~21!~31!S~24!~21!~41!S~34!~31!~41!S̃~34!~24!~23!5S̃~34!~24!~23!S~34!~31!~41!S~24!~21!~41!S~23!~21!~31!

8,2r S̃~23!~13!~12!S~41!~42!~12!S~41!~43!~13!S~42!~43!~23!5S~42!~43!~23!S~41!~43!~13!S~41!~42!~12!S̃~23!~13!~12!

~19!

These orderings were derived algebraically but one can give a geometric rule that produc
same.

Geometric rule for label ordering:Draw a line on the plane, outside the region of stri
intersections. When the line moves, without changing its direction, it will sweep across the
section region.For each scattering matrix write the indices of the corresponding triangle corn
in the order the line hits them.If the order is counterclockwise, useS̃.

In Figure 3 we have redrawn Figure 1 with 8 approaching lines. These sweeping lines
exactly the orderings that were obtained by the algebraic method after relabeling~19!.

FIG. 3. How the possible algebraic orderings can be derived geometrically. The vertices are ordered according to t
in which the moving~double! lines hit them. The complementary numbering given in parentheses is used with the B
ordering of Sec. III C.
J. Math. Phys., Vol. 38, No. 7, July 1997
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C. Connection with Bruhat order B (4,2)

The above concrete geometrical approach can be made more precise using the no
higher Bruhat orders, introduced by Manin and Shechtman in Refs. 15 and 16. This provid
proper algebraic setting for the description of the generald-simplex equations, viewed as highe
order intertwining or braiding objects. The setting is that of moves of hyper-planes embedd
a higher dimensional space. Realizations can be constructed in terms of generators of the
mental group of configuration spaces formed by the complements of such configurations24 An
explicit realization was constructed by Lawrence in Ref. 25.

To make our account self-contained, we will briefly describe the Manin–Shechtman con
tion; cf. Refs. 15 and 16.~An alternative description was given recently in Ref. 26.! First, for any
pair of integers,n,k, with n>k>1, they introduce the set ofk-element subsetsC(n,k) of the set
nI 5$1,2, . . . ,n%, whose elements will be denoted by (i 1i 2 . . . i k) in increasing order,
i 1, i 2, . . ., i k . For any given elementcPC(n,k), we denote by ĉ j the element of
C(n,k21) obtained by removing thej th elementi j (1< j<k), from the tuplec.

Next, we consider the set of total orders on the setC(n,k). For this purpose we need to sele
from C(n,k) only those orderings that descend fromC(n,k11), i.e. the elementsd̂ jPC(n,k),
( j51, . . . ,k11), coming fromeach dPC(n,k11) by applying thê -operation described above
They are ordered in either ascending or in descending order,

d̂1,d̂2, . . .,d̂k11 or d̂1.d̂2. . . ..d̂k11 . ~20!

The set of all such total orderings is calledA(n,k), and its elements can be written as cha
a5c1c2 . . .cn , ciPC(n,k), with c1,c2, . . .cn in the given ordering bya.

Example:Consider the setA(4,2) which are constructed according to the scheme above.
we need the setsC(4,2) having six elements:

C~4,2!5$~12!,~13!,~14!,~23!,~24!,~34!%5:$c1 ,c2 ,c3 ,c4 ,c5 ,c6%,

andC(4,3) having four elements:

C~4,3!5$~123!,~124!,~134!,~234!%.

From the latter set we can construct the elementsd̂ j for eachdPC(4,3), leading to the following
list of conditions on the orderings:

~23!,~13!,~12! or ~23!.~13!.~12!,

~24!,~14!,~12! or ~24!.~14!.~12!,

~34!,~14!,~13! or ~34!.~14!.~13!,

~34!,~24!,~23! or ~34!.~24!.~23!.

A geometric picture is very useful to find out which orderings onC(4,2) ~i.e., which combinations
of the above list! are actually allowed. It turns out that the allowed orderings are exactly those
can be obtained from figure 3, by looking at it from various directions. At this point we sh
keep also those orderings that differ only by an exchange of elements not directly connecte
by a small tilt on direction 3 we can havec4c2c5 . . . andc4c5c2 . . . . In this way we obtain the
setA(4,2), containing, e.g.,

A~4,2!5$c1c2c3c4c5c6 ,c4c2c5c3c1c6 ,c6c1c3c5c2c4 , . . . %.
J. Math. Phys., Vol. 38, No. 7, July 1997
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To obtain the Bruhat ordersB(n,k), we need to consider the setA(n,k) up to an inversion,
i.e. selecting only one of each possibility in~20!. So, the set Inv(a) of inversions on an elemen
aPA(n,k) is a subsetdPC(n,k11) such thatd̂1,d̂2, . . .,d̂k11 . Furthermore, we need to
introduce an equivalence under adjacency. Two elements inA(n,k) will be called equivalent,
a;a8, provideda8 is obtained froma5c1c2 . . .cn by the permutation of two adjacent subse
cj and cj11 , containing in the union at leastk12 elements. The Bruhat orders are then t
equivalence classes inA(n,k) under this equivalence relation, i.e. they are contained in the
B(n,k)5A(n,k)/;.

Let us now see what this amounts to in the case ofA(4,2). The adjacent elements i
C(4,2) are exactly the ones that have no entries in common. In this way they correspond
orderings up to interchanging the subsets~12! and ~34!, ~13! and ~24!, and ~14! and ~23!. Thus,
with the above identification of orders, we get forB(n,k),

B~4,2!5$@c1c2c3c4c5c6#,@c6c5c4c3c2c1#,@c4c2c1c3c5c6#,@c1c2c3c6c5c4#,

3@c4c5c6c3c2c1#,@c6c5c3c1c2c4#,@c6c1c3c2c5c4#,@c4c5c2c3c1c6#%, ~21!

corresponding to directions 1r , 1, 2r , 5r , 5, 2, 3, 3r in Fig. 3.
It is easily noted that this partial ordering when imposed onB(4,2) corresponds exactly to th

configurations in the obstruction derivation of the eight tetrahedron equations. At this point w
note the connection with the work on braided monoidal 2-categories, cf. Ref. 19, that also le
the set of eight tetrahedron equations, albeit from quite a different point of view.

IV. CONCLUSIONS

The statement of this paper is the following: what is usually referred to as the tetrah
equation is actually one of a system of eight coupled equations that can be derived system
from the collection of all consistency conditions that arise from the underlying set of trili
equations~9! and~10!. We have shown also that the various classes of starting configuration
lead to these different equations are labeled by a new algebraic object, which is the higher
orderB(4,2) introduced by Manin and Shechtman. It is obvious that these considerations c
principle, be extended to any dimension, i.e., to obtain systems ofD-simplex equations for any
D52,3, . . . .

Of course, our derivation comes down to the same type of combinatorics that is behin
description in terms of 2-category theory,19 but ours is closer to the physical interpretation. F
thermore, we hope that the obstruction derivation might eventually lead to the derivati
solutions to the system of eight equations~in the cases that the set cannot be reduced to one s
equation! along the same lines as the derivation of solutions in the papers by Korepanov.10,11We
have investigated the known solutions of the tetrahedron equations in Refs. 10 and 12, but
tunately these all fall into the class of unitary solutions for which the system collapses@that is, the
second equation of~18! did not have other solutions than those withS̃4

215S4 .# However, it
cannot be ruled out that non-trivial solutions of the full non-degenerate system~18! exist even
though it might not be so easy to find such solutions.
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In this work, we give a classification of coupled Korteweg–de Vries equations. We
found new systems of equations that are completely integrable in the sense of
Painlevé. © 1997 American Institute of Physics.@S0022-2488~97!01407-2#

I. INTRODUCTION

The coupled Korteweg–de Vries~KdV! type equations have been the most important clas
nonlinear evolution equations and are extensively studied by many authors.1–8 Recently,
Svinolupov9,10 has introduced a class of integrable multicomponent KdV equations assoc
with Jordan algebras. We have shown that the Jordan–KdV systems have a Painleve´ property.11

Very recently,12 Svinolupov’s work was extended on KdV systems to a more general form,

qt
i5bj

i qxxx
j 1sjk

i qjqx
k , ~1!

wherei , j ,k51,2,...,N, qi depend on the variablesx,t, andsjk
i ,bj

i are constants. It is shown tha
there are infinitely many integrable subclasses of~1! having recursion operators,

Rj
i5bj

iD21ajk
i qk1cjk

i qx
kD211Flk j

i qlD21qkD21, ~2!

whereajk
i , cjk

i andFlk j
i are constants with

sjk
i 5ak j

i 1cjk
i , Flk j

i 52Fl jk
i . ~3!

In this work we applied the Painleve´ test for PDE introduced by Weisset al.13 to find the inte-
grable subclasses of~1! whenN52. We consider a system of coupled KdV equations in the fo

ut5h1uxxx1h2vxxx1c1uux1c2uvx1c4vux1c3vvx ,
~4!

v t5m1vxxx1m2uxxx1d1uux1d2uvx1d4vux1d3vvx ,

where

u5q1, v5q2, h15b1
1, h25b2

1, m25b1
2, m15b2

2, c15s11
1 ,

c25s12
1 , c45s21

1 , c35s22
1 , d15s11

2 , d25s12
2 , d45s21

2 , d35s22
2 .

The main problem is to find the conditions satisfied byh l , m l , cn , dn , ~l51,2; n51,2,3,4! in
order to haveP type-subclasses of~4!.

II. PAINLEVÉ ANALYSIS

Let f50 be the singularity manifold of~4!. By settingu'u0f
a1, v'v0f

a2 into the leading
terms of~4!, we havea15a2522 and the equations foru0 andv0 ,

u0
2c11u0v0~c21c4!1v0

2c3112fx
2~u0h11v0h2!50, ~5!
0022-2488/97/38(7)/3616/7/$10.00
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u0
2d11u0v0~d21d4!1v0

2d3112fx
2~u0m11v0m2!50. ~6!

To determine the resonances we setu'u0f
221b1f

t22, v'v0f
221b2f

t22 into the leading
terms of~4! and obtain a sixth-order polynomial equation inr . One root of this polynomial mus
be21. Substitutingr521 into the polynomial, we have the condition

12fx
2$u0~h2d12m1c1!1v0@h2~d21d4!2h1d31c3m22m1~c21c4!#%

1v0@u0~c3d12c1d3!2v0d3~c21c4!1v0c3~d21d4!#2144fx
4~h1m12h2m2!50.

~7!

Together with~5!, ~6!, ~7! the equation for resonances becomes

~r11!~r24!~r26!$~h1m12h2m2!~r
329r 2!fx

21r @38~h1m12h2m2!fx
2

1u0~h1d22h2d11m1c12m2c2!1v0~h1d32h2d41m1c42m2c3!#

12†236~h1m12h2m2!fx
22u0@h1~d21d4!22~h2d12m1c1!2m2~c21c4!#

1v0@2~c3m22d3h1!1h2~d21d4!2m1~c21c4!#‡%50. ~8!

The three of the roots are21,4,6. The others, sayr 1 ,r 2 ,r 3 , must be integers. This is possible

~h1m12h2m2!fx
2~r 1r 2r 3272!22u0@h1~d21d4!22~h2d12m1c1!2m2~c21c4!#

12v0@2~c3m22d3h1!1h2~d21d4!2m1~c21c4!#50, ~9!

~h1m12h2m2!fx
2~r 1r 21r 2r 31r 1r 3238!2u0~h1d22h2d11m1c12m2c2!

2v0~h1d32h2d41m1c42m2c3!50, ~10!

~h1m12h2m2!~r 11r 21r 329!50. ~11!

At this point we have to divide the systems in~4! into two parts.12 These are thenondegenerate
systemswhere (h1m12h2m2)Þ0 and thedegenerate systemswhere (h1m12h2m2)50, that is,
they reduce to lower-dimensional systems.

For thenondegenerate systems, the equation~11! implies that we have to haver 11r 21r 3
59, which leads the following.

Case (1): r150, r 250, r 359. In this caseu0 andv0 must be arbitrary. But~9! and~10! imply
that this is impossible unless (h1m12h2m2)50. Thus, test fails.

Case (2): r150, r 2 may take one of the values~1,2,3,4!, r 3592r 2 . In these cases one of th
functionsu0 or v0 must be arbitrary. We assume thatu0 is arbitrary andv05afx

21b, wherea
andb are independent fromfx . Then the equations~5!, ~6!, ~7!, and~9! are satisfied if

c350, h250, a52
12m1

d3
, b5

u0c1
~c21c4!

, h15
~c21c4!

d3
,

m25m1@~c21c4!~d21d4!2c1d3#/d3~c21c4!, ~12!

d15c1@~c21c4!~d21d4!2c1d3#/~c21c4!
2, where d3Þ0, c21c4Þ0, m1Þ0.

These are the only exceptable solutions; all others violate the condition (h1m12h2m2)Þ0. For
the above values of parameters we obtain the solutions of Eq.~10!, which depends onr 2 . Thus,
we have four subcases with resonances (0,r 2,92r 2 ,21,4,6). To discuss the arbitrariness of th
J. Math. Phys., Vol. 38, No. 7, July 1997
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functions corresponding to resonances, we substituteu5( j50
8 ujf

j22, v5( j50
8 v jf

j22 into ~4!,
for each case separately, and obtain the recursion relations foruj and v j . By solving these
relations we have the following results.

Case (2a): r50,1,8,21,4,6, c4523c2 , c152c2(3d21d4)/(2d3). This test fails, because
the functions corresponding to resonances 0, 1, 6 are arbitrary without additional condition
u4 or v4 is arbitrary if d35c2(3d21d4)/(d42d2) and u8 or v8 is arbitrary if d25d4 , which
implies (h1m12h2m2)50.

Case (2b): r50,2,7,21,4,6, c250, c15c4d2 /d3 . The equations pass the test ifc45d3 ,
d450. Thus the system,

ut5m1uxxx1d2ux u1d3ux v,
~13!

v t5m1vxxx1d2vx u1d3vx v,

is of theP type, whereu0 ,v2 ,u4 ,v6 ,u7 are arbitrary functions of the solutions.
Case (2c): r50,3,6,21,4,6, c452c2 , c153c2(2d22d4)/d3 . The test fails, since the equa

tions under investigation would be of theP type if m150 or d350, which violates the condition
(h1m12h2m2)Þ0.

Case (2d): r50,4,5,21,4,6, c25c4 , d25d4 . In this case we obtained two subclasses
equations that are of theP type. For the first, we haved352c4 andc152d4 ,

ut5m1uxxx12 d4uxu1c4~uxv1uvx!,
~14!

v t5m1vxxx1d4~uxv1uvx!12c4vxv,

which is the Jordan KdV system given by Svinolupov.9,10 For the second, we haved352c4 and
c152d4 ,

ut522m1uxxx2d4uxu1c4~uxv1uvx!,
~15!

v t52
3d4
2c4

uxxx1m1vxxx2
3d4

2

4c4
uxu1d4~uxv1uvx!2c4vxv.

For both of subclassesu0 ,u4 ,v4 ,u5 ,v6 are arbitrary functions of the solutions.
Case (3) r151, r 2 may take one of the values (1,2,3,4), r3582r 2 .

In these and the following cases, Eqs.~9! and ~10! imply thatu0 andv0 must be in the formu0
5dfx

2, v05afx
2, wherea andd are constants. Using these in Eqs.~5!, ~6!, ~7!, ~9!, ~10!, we find

the conditions satisfied byh l ,m l ,cn ,dn ,a,d for different values ofr 2 andr 3 . Thus we have four
subcases.

Case (3a): r51,1,7,21,4,6. Substitutingu5( j50
7 ujf

j22, v5( j50
7 v jf

j22 into ~4!, we find
that u1 and v1 are arbitrary functions ifdh11ah250, dm21am150. The solutions of these
equations violate the condition (h1m12h2m2)Þ0, and the test fails.

Case (3b): r51,2,6,21,4,6. Substitutingu5( j50
6 ujf

j22, v5( j50
6 v jf

j22 into ~4! and
requiring that Eqs.~5!, ~6!, ~7!, ~9!, and~10! have to satisfy, we observe that two subclasses of~4!
pass the Painleve´ test. The first subclass is

ut5h1uxxx2
12h1

d
uxu12c2uxv1c2vxu2

dc2
2

6h1
vxv,

~16!

v t5h1vxxx2
6h1

d
vxu1c2vxv,
J. Math. Phys., Vol. 38, No. 7, July 1997
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3619Ayşe (Kalkanli) Karasu: Painlevé classification of coupled KdV systems

¬¬¬¬¬¬¬¬¬¬
and the second subclass is

ut5h1uxxx2
dc4
4

vxxx2
12h1

d
uxu1c4uxv12c4vxu1c3vxv,

~17!

v t522h1vxxx1
12h1

d
vxu2c4vxv,

where, in both cases,a50, dÞ0 andv1 ,v2 ,u4 ,u6 ,v6 are arbitrary functions. We observe that th
second subclass reduces to the equations given by Hirota–Satsuma1,2,14 if c450, d522,

ut5h1~uxxx16uxu!1c3vxv,
~18!

v t522h1~vxxx13vxu!, where h15a5 1
2, c352b.

Case (3c): r51,3,5,21,4,6. In this case we obtain the system of equations passing theP test,

ut52
dc1
12

uxxx1
3dc1

2

4d1
vxxx1c1uxu2

3c1
2

d1
uxv2

6c1
2

d1
vxu,

~19!

v t52
dd1
12

uxxx2
7dc1
12

vxxx1d1uxu2c1uxv22c1vxu2
6c1

2

d1
vxv,

wherea50, dÞ0 andv1 ,v3 ,u4 ,u5 ,u6 are arbitrary functions of the solutions.
Case (3d): r51,4,4,21,4,6. This test fails since the number of arbitrary functions is less t

the number of resonances.
Case (4): r152, r 2 may take one of the values (2,3), r 3572r 2 . For these values of reso

nances we have two subcases.
Case (4a): r52,2,5,21,4,6. In order to have arbitrary functions atr52, which areu2 and

v2 , the conditionsdh11ah250, dm21am150 must hold. But the solutions of these violate t
condition (h1m12h2m2)Þ0. The test fails.

Case (4b): r52,3,4,21,4,6. In this case we have two subclasses of~4! passing theP test: The
first subclass is

ut5h1uxxx1h2vxxx2
1

d2
@12~dh11ah2!1a~2dc21ac3!#uxu1c2~uxv1uvx!1c3vxv,

v t5
G

D
h2uxxx1m1vxxx1

G

D
@c2uxu1c3~uxv1vxu!#

~20!

1$c21
2dc3

D
@6~dm11ah2!1a~dc21ac3!#%vxv,

where

G52a@a~dc21ac3!112dm1#, D5d2~dc21ac3112h2!

and

~dc21ac3!@d~h12m1!12h2a#112h2~dh11ah2!50.

The second subclass is
J. Math. Phys., Vol. 38, No. 7, July 1997
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ut5h1uxxx1h2vxxx2
1

d2
@12~dh11ah2!1dc2a#uxu1c2~uxv1uvx!2

dc2
a

vxv,

v t5
a

d
@d~h12m1!1h2a#uxxx1m1vxxx2

a

d3h2
@12h2~dh11ah2!1d2c2m1#uxu ~21!

1
c2m1

h2
~uxv1vxu!2

d

h2a
c2vxv,

where, in both casesu2 , u3 , u4 , v4 , u6 are arbitrary functions. If we substitutec25a1 , c3
52a0 , h251, m15h150, d5(a0a26)/a1 , a56/(a06 ia1) the first subclass reduces to th
system given in Ref. 12,

ut5vxxx1~a0u1a1v !ux1~a1u2a0v !vx ,
~22!

v t5uxxx1~a0u1a1v !vx1~a0v2a1u!ux .

Case (5): r153, r 253, r 353. In this case test fails, since the number of resonancesr
53 is higher than the number of arbitrary functions, which areu3 andv3 .

In order to discuss thedegenerate systems, let us assume thatm25m150; then from~8! we
have the relationv05lu0 .

We know that the roots of~8! must be integers and three of the roots are21, 4, 6. Let the
fourth root bes. WhensÞ0, we can chooseu05gfx

2. Substitutingu0 andv0 into Eqs.~5! and
~6!, we have

d152~d21d41d3l!l,
~23!

h152@12h2l1c1g1~c21c4!gl1c3gl2#/12.

Together with these equations, the fourth root of~8! is

s52~d21d412d3l!/~d21d3l!, ~24!

which can be solved forl,

l5@~22s!d212d4#/~s24!d3 , ~25!

where d3Þ0, sÞ4. In this work we discuss the cases whens51,2,3,4,5,6 and obtained th
following.

Case (d1): r51, 21,4,6.

ut52c1guxxx112h2vxxx112~c1u1c4v !ux112~c2u1c3v !vx ,
~26!

v t5d4uxv2~2 d4u2d3v !vx ,

where h252g(c212c4)/36, c15(c212c4)d4 /(c22c4), c35(c212c423d3)(c22c4)/9d4 ,
d2522d4 , andv1 , u4 , u6 are arbitrary.

Case (d2): r52, 21,4,6.

ut52
c1g

12
uxxx1h2vxxx1~c1u1c4v !ux1~c2u1c3v !vx ,

~27!

v t5~d2u1d3v !vx ,
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whered450 andu2 , u4 , u6 are the arbitrary functions.
Case (d3): r53, 21,4,6.

ut52
c1g

12
uxxx1h2vxxx1~c1u1c4v !ux1~c2u1c3v !vx ,

~28!

v t5d4ux v1~2 d4u1d3v !vx ,

where d252d4 , 12h2c11g@c1(2c22c4)23d4(c222c4)#50, d4@212h2(c222c4)1g(c1c3
2c2d312c4d3)#50, andv3 , u4 , u6 are arbitrary.

Case (d4): r54, 21,4,6,d45d2 .

ut5h1uxxx1h2vxxx1c1uxu1c2~uxv1vxu!1c3vxv,
~29!

v t5d1ux u1d2~uxv1vxu!1d3vx v,

where
c45c2 , d152(2d21d3l)l, h152@12h2l1c1g12c2gl1c3gl2#/12, and g

512h2$d2(d22c1)1d2l(2d323c2)2l2@d3(c22d3)12c3d2#2c3d3l
3%/$c1c2d2

12d2l(c1c31c2
2)1c3l

2(c1d315c2d2)12c3l
3(c2d31c3d2)1c3

2d3l
4%, u4 , v4 , u6 are arbi-

trary.
As a special case, ifl50, c25d350, d25c352, c156, h250, g522, the set of equations

~30! reduces to the one given by Ito,3

ut5uxxx16uxu12vxv,
~30!

v t52~uv !x .

Case (d5): r55,21,4,6. In this case we have two subclasses passing theP test: The first one
is

ut52
c1g

12
uxxx1h2vxxx1~c1u1c4v !ux1~c2u1c3v !vx ,

~31!

v t5d4ux v1~d2u1d3v !vx ,

whered453d2/2, l50, and the second one is

ut5
1

12d3
2 @~12h21c4g!~3d222d4!d32~3d222d4!

2c3g23d3
2g~d22d4!#uxxx1h2vxxx

1
1

d3
$@~3d222d4!c213d3~d22d4!#u1c4d3v%ux1~c2u1c3v !vx , ~32!

v t52
1

d3
@~3d222d4!~2d223d4!u2d4d3v#ux1~d2u1d3v !vx ,

where, in both cases,u4 , u5 , u6 are arbitrary.
Case (d6): r56, 21,4,6.

ut52
g

12d3
@c1d31~c222c4!~2d22d4!#uxxx1

g

12d3
@~c422c2!d31~2d22d4!c3#vxxx

1~c1u1c4v !ux1~c2u1c3v !vx , ~33!
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



may be
onsid-
he
ot

us-
c and

. A

r. Phys.

ca
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v t52
1

d3
@~2d22d4!~d222d4!u2d4 d3v#ux1~d2u1d3v !vx ,

wherev4 , u6 , v6 are arbitrary.

III. SUMMARY

We found new coupled system of equations having the Painleve´ property. Some of them
reduce to the known equations by special choice of parameters. Some of these systems
related by simple transformations. Furthermore, the problem studied in this work may be c
ered in the framework of the perturbative Painleve´ approach given in Ref. 15. In most cases t
recursion relations and the expressions foruj and v j are very extensive, and therefore are n
given in this work.
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The structure of spherically symmetric su( n ) Yang–Mills
fields

Robert Bartnik
School of Mathematics and Statistics, University of Canberra, ACT 2616, Australia
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We summarize the algebraic structure of spherically symmetric Yang–Mills poten-
tials for a general compact gauge group, and investigate the particular case of gauge
groups with Lie algebra su(n) in detail. We develop techniques that lead to a
complete classification of the possible spherical symmetry ansa¨tze, including de-
scriptions of the reduced gauge groupZ, the space of magnetic potentialsH, and
for those ansa¨tze that admit extensions across the symmetry axis, a description of
the space of vacuum potentialsH0 and its little groupZ0 . These results are
illustrated by listing all irreducible models for su(n), n<6. © 1997 American
Institute of Physics.@S0022-2488~97!02906-X#

I. INTRODUCTION

Investigations in recent years1–6 have shown the possibility of surprising behavior arisi
from the interaction of non-Abelian Yang–Mills fields and gravity. The Birkhoff uniquen
theorems for spherically symmetric vacuum and Einstein–Maxwell space–times do not gen
from the Abelian Maxwell gauge groupU~1! to the non-AbelianS U~2! EinsteinYM system,1

and a detailed examination of the time-dependent EYM system shows clearly that the solutio
determined by the underlyinghyperbolic equation satisfied by the non-Abelian ‘‘magnetic
potential.7 The remaining parameters in the metric and the residual ‘‘electric’’ potential sa
gradient-type equations with sources determined by the magnetic potential. From this view
the failure of Birkhoff’s theorem in the non-Abelian case is very natural.

Most work has concentrated on the properties of the simplest nontrivial case, whe
space–time andYM sources are spherically symmetric, and theYM gauge group isG
5S U(2). Onemight then ask whether further surprises are in store in more general situa
such as axially symmetric~or even less symmetric! configurations, or with other types of nonline
matter fields. Given the complexities of the analytical properties of just the simplest case, n
the static spherically symmetricS U~2! Yang–Mills equations coupled with gravity,5,6 these
generalizations might be expected to lead to problems that we are not yet prepared to c
analytically or numerically. This applies in particular to relaxing of the spherical symm
condition—for example, the stationary axially symmetric EinsteinYM equations provide an
important challenge that is yet to be addressed.

Various generalizations of the matter model within the spherically symmetric class have
considered, in both time-dependent and static cases. Examples include the real massles
field,8 real massive scalar field9 ~both time dependent!, complex massive scalar field.10

YM–Higgs,11,12 sigma model~texture!,13 and many perfect fluid models.
In this paper we consider a general class ofYM fields, with gauge groups other thanS U~2!.

The general structure of spherically symmetricYM fields with a general compact gauge gro
has been investigated by many authors,14–16particularly in connection with magnetic monopole
and Kaluza–Klein theories. In Refs. 7, 17, and 18 the classification problem was place
Lie-algebraic setting and some progress was made toward providing a general description
structure of the symmetry action and compatibleYM connections, particularly in the case of
‘‘generic’’ isotropy generator.17,18

Here we provide a rather complete description of the structure of all spherically symm
0022-2488/97/38(7)/3623/16/$10.00
3623J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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Yang–Mills fields for gauge groupS U(n) and its finite quotients, by exploiting the concre
matrix representation of su(n) along the lines suggested in Ref. 17. We are able to describ
possible isotropy generators for the su(n) gauge algebras, including those for which the resid
symmetry groupZ ~see Sec. II! is not Abelian. The ‘‘generic’’ case considered, for example,
Ref. 18 corresponds to Abelian residual symmetry groupZ, and we will show that the non
Abelian models have a considerably more intricate structure in the space of magnetic pot
and its residual gauge group.

These results generalize and extend the classification of monopoleS U(n) models admitting
a global gauge,19 in that the spherical symmetry ansatz used here does not require that the
nection be extendable across the center of symmetryr50—if the connection admits such a
extension, then we say the model isregular. Consequently, our symmetry models are mo
general than those constructed from Lie algebra embeddings su(2)→su(n). However, the non-
regular models, which cannot arise in the ansa¨tze considered in works such as Refs. 19 and 20,
quite viable as models for the Einstein Yang–Mills equations, since the topological magneti
can be sourced by a charged black hole. By contrast, the subject of interest in papers such
19 and 20 was more the ability of GUT magnetic monopoles to regularize topological mag
charge, and the structure of the symmetry reductions associated with a Higgs field in the o
YM model.

There is a Higgs field in the models described here, arising from the spherical sym
assumption and the consequent reduction of theYM fields to potentials, both Higgs andYM,
on a two-dimensional base space. Motivated by GUTs and Kaluza–Klein theories, the struc
the generalized Einstein–Hilbert action and the residual symmetry groups for symmetry acti
higher-dimensional space-times has also been extensively investigated—see, for exampl
21 and 22. The considerations here may be regarded as a much more detailed dissectio
structures described in Ref. 21, in the special case where the symmetry action is eitherS U~2! or
SO(3), and thetotal space is the total space of aYM principal bundle over four-dimensiona
space-time.

With the exception of Ku¨nzle’s description of globally regular numerical solutions of t
static purely magnetic genericS U~3! model,23 there has been little investigation of the detail
structure of the residual potentials and solutions of the EinsteinYM equations for more genera
gauge groups, and it is hoped that this work will provide a starting point for such studies.

The main objects in our discussion are theisotropy generator LP ig, which classifies the
spherical symmetry model; the linear subspaceH,gC , which describes the space of spherica
symmetricYM potentials; theresidualsymmetry groupZ,G , which gives gauge changes th
preserve the class of spherically symmetricYM potentials;H0,H, the space of allowable
central boundary conditions~this is empty unless the model is regular!; and thelittle groupZ0

,Z, which fixesH0 and describes the symmetry group of the vacuum configurations of a re
model.

These and further definitions are reviewed in Sec. II, with the simplest caseg5su(2) worked
out in detail in Sec. III. In Sec. IV we present the basic classification result, which is deve
further for regular models in Sec. V. Finally, in Sec. VI we use the preceding results to g
complete classification of all spherical symmetry models for su(n) with n<6.

II. GENERAL STRUCTURE AND NOTATION

We recall the results and notations of Ref. 7 on the Lie-algebraic structure of general s
cally symmetric principal bundles and Yang–Mills connections, and establish our notations.
lar analyses may be found in Refs. 24, 17, and 18.

Let (P,p,M ,G ) be a principal bundle with compact gauge groupG and base manifoldM .
We say that the bundle is spherically symmetric if the total spaceP admits an action of the
symmetry groupS .S U(2) by bundle automorphisms~i.e., the actions ofS andG commute!,
such that the induced action onM has principal orbit typeS25S U(2)/U(1). Let $g1 ,g2 ,g3% be
J. Math. Phys., Vol. 38, No. 7, July 1997
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a basis for the Lie algebras of S , normalized by@g i ,g j #5e i jkgk , and setS 05$exp(ag3), a
PR%. If xPM is a fixed point ofS 0 , sx5x, ;sPS 0 , and if pPp21(x),P, then the isotropy
homomorphismlp :S 0→G is defined by

sp5plp~s!, sPS 0 . ~1!

We shall assume that the class of principalS orbitsU is simply connected, so thatU may be
identified with a connected subset~the north poles! of the subspace of fixed points of theS 0

action on the principal orbit domain. We also assume that the boundary set]U of subprincipal
orbits ~which will be fixed points of the fullS action! is connected. This will be satisfied ifM
.R3,1 or R3 or M.S23R2 with the standard su(2) symmetry actions. In these cases there
special sectionh:U→P for which the isotropy homomorphism,lh(u) :S 0→G , sh(u)5h(u), is
constant,lh(u)5l, ;uPU. ~This will not be generally valid if the set of subprincipal orbits is n
connected, for example, ifM.S3 or S33R, since in such cases it is not generally true that
special sectionh will extend continuously to the subprincipal orbits; see Ref. 25.! The isotropy
generator LPgC is defined by

L5 il* ~g3!, ~2!

and because expS (4pg3)51 it follows thatL must satisfy the integrality condition

expG ~4p iL !51. ~3!

If 1
2L also satisfies~3!, so expG (2p iL)51, then the effective symmetry group is SO(3)5S /Z2

rather thanS U~2!.
When the effective symmetry group isS U~2!, then expG (2p iL) projects to the identity

transformation on theS2 base space orbits. Thus theS lift of a 2p rotation of the base spac
corresponds to a gauge change on the bundle, valued in the center of the gauge groupG . Such a
gauge change affects only the section ofP and not the values of the projected connection
curvature forms.

We may assumeL lies in a Cartan subalgebraz, ig,gC . The residual symmetry group24,7

Z,G is defined by

Z5$gPG :Adg L5L%, ~4!

and has the Lie algebra

z5$ZPg :@Z,L#50%. ~5!

Note that ifL lies in the interior of a Weyl chamber ofg, thenZ is a maximal torus inG and is
necessarily Abelian; this is the ‘‘generic’’ case considered in Ref. 18.

The setH,gC defined by

H5$XP ig:adL
2 X5†L,@L,X#‡5X%, ~6!

forms the parameter space forS -invariant connections onP; that is,YM connectionsv satis-
fying s*v5v, ;sPS . Specifically, a gauges:S2\$poles%3U→M can be constructed in which
the generalS -invariantYM connectionv pulls down to the 1-form,

A5 i ~X2L cot q!sin q dw2@L,X#dq1F, ~7!

where ~q,w! are standard polar coordinates onS2, X5X(u)PH, ;uPU andF is a z-valued
1-form onU, so
J. Math. Phys., Vol. 38, No. 7, July 1997
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F5ak du
k, ak :U→z, ;k, ~8!

whereu5(uk) are coordinates onU. In the physically interesting caseU5R2, with (r ,t) coor-
dinates onU, we parameterizeF by

F5a dt1b dr, a:U→z, b:U→z. ~9!

Let r denote the function describing the area of theS orbits inM , and suppose for simplicity
thatr forms a coordinate inM . Only simple modifications are needed to consider the more gen
case wherer is not monotone. The symmetry axis of subprincipal orbits$xPM ,Sx5x% is the zero
set of r ; the connection~6! can extend smoothly across$xPM ur (x)50% only if the setH0 of
regular potentials,

H05$X0PH uadX0
2 L5L%, ~10!

is nonempty, andX→X0PH0 as r→0 at some suitable rate. A detailed study of the neces
decay conditions nearr50 is given in Ref. 26. Note thatH0ÞB if and only if there is a Lie
algebra homomorphism su(2)→g with g3° iL.

Introducing the notation

z~X!5 iX sin q dw2@L,X#dq, ~11!

the connection~7! may be written as

A5z~X!2 iL cosq dw1F. ~12!

TheYM curvatureF5dA1A∧A is then

F5DFdt∧dr1~ I2adX
2 !iL sin qdq∧dw1dt∧z~DtX!1dr∧z~DrX!, ~13!

where~recallF5a dt1b dr!

DF5
]b

]t
2

]a

]r
1@a,b#, ~14!

DtX5
]X

]t
1@a,X#, Dr X5

]X

]r
1@b,X#. ~15!

TheYM equations with an appropriate space–time metric may now be easily deduced.7,17 We
note that the form of the connection~12! is invariant under aZ-valued gauge chang
g:U→Z, which transforms the potentials by

X→g21Xg5adg21X,

F→g21Fg1g21dg. ~16!

Motivated by~16! and~13!, we refer toH as the space of Higgs, or magnetic, potentials, a
we callF the Maxwell, or electric, connection form.

SupposeH0ÞB and fix an elementX0PH0 . Since (2 iX0 ,2@L,X0#,2 iL).su(2), and
since all su(2) subalgebras containing a fixed vector are conjugate,27 it follows that

H05$AdgX0 :gPZ%.Z/Z0 ~17!

whereZ0 is the isotropy subgroup ofX0 ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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Z05$gPZ:AdgX05X0%, ~18!

since the conjugacy~adjoint! action ofZ preservesH0 . Another way of understandingH0 is as
the zero set of the ‘‘Higgs potential’’ term in theYM Lagrangian@see~13!#,

V~X!5
1

r 4
i~ I2adX

2 !iLi2, ~19!

where the norm is defined by some choice of positive definite bi-invariant inner product ong ~if
g is simple then this inner product is a negative multiple of the Killing form!. Requiring that the
term ~19! be integrable atr50 imposes the boundary conditionX(r50)PH0 , showing that
H0 is the set of permissible symmetry-axis boundary conditions. Finally, if we setF50 in
~12!,~13!, then the connectionA is flat ~i.e.,F50! if and only if XPH0 andX is constant. More
generally from~13!, F50 if DF50, X(r ,t)PH0 andDtX505DrX, soX is gauge equivalen
to a constant. ThusH0 represents the set of ‘‘ground states’’ of theYM field—this may be made
more explicit by usingX0PH0 to define a canonical transformation from the Abelian gauge~12!
to the globally regular canonical gauge.7

III. EXAMPLE: G5S U(2)

Before proceeding to examineS U(n) in general, it may be helpful to describe the ca
G5S U(2) in detail, following Refs. 1, 7, and many others.

Let $t1 ,t2 ,t3% be a basis for su(2) satisfying@t i ,t j #5e i jktk . In the usual matrix represen
tation we may taket i52 1

2is i , i51,...,3wheres i are the usual Pauli matrices,

s15F0 1

1 0G , s25F0 2i

i 0 G , s35F1 0

0 21G . ~20!

Choosing

L5 it35
1

2 F1 0

0 21G ,
we find that

H5H i~w1t12w2t2!5
1

2 F 0 w

w̄ 0 G , w1 ,w2PR, w5w11 iw2PCJ . ~21!

Since expG (4p iL)5I but expG (2p iL)5IÞI , we see that the effective symmetry group will b
S 5S U(2). However, if we were to useĜ5S U(2)/Z2.SO(3), then we would have
expĜ (2p iL)5I Ĝ and the effective symmetry group would be SO(3). It is also easily seen that th
residual gauge algebraz and residual symmetry groupZ are

z5span~t3!5H 2
i

2 Fq 0

0 2q
G , qPRJ ,

Z5expG ~z!5H Fe2 iq/2 0

0 eiq/2G , qP@0,4p!J ,
and that
J. Math. Phys., Vol. 38, No. 7, July 1997
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H05H 12 F 0 w

w̄ 0 G , uwu51, wPCJ .
Since the adjoint action ofZ onH is

AdgX5gXg215Fe2~1/2!iq 0

0 e~1/2!iqGF 1
2w

1
2w̄

G Fe~1/2!iq 0

0 e2~1/2!iqG5
1

2 F 0 e2 iqw

eiqw̄ 0 G ,
sow°e2 iqw, it is clear that the isotropy subgroupZ051 for anyXPH0 andH0.Z.S1.

IV. ISOTROPY GENERATORS IN S U(n )

The utility of the matrix representation ofS U(n), n>2, was pointed out by Ku¨nzle.17 In this
section we exploit this representation to classify the possible isotropy generatorsL for all gauge
groups having Lie algebra su(n), according to the structure of the setH of Higgs fields supported
by L. The principal distinctions we draw are between reducible and irreducible models, wheH

decomposes or does not decompose into noninteracting blocks, and between regular and i
models, as the setH0 of regular boundary values is nonempty or empty, respectively.

Groups with Lie algebra su(n) are of the formS U(n)/Zk , wherek dividesn ~i.e., kun!, so
that Zk5$1,§,...,§k21;§PC,§k51% is a subgroup of the centerZn of S U(n), generated by
§I n , §n51, §PC. We choose as the Cartan subalgebra the set of diagonal, purely imaginar
traceless matrices; we may then choose~the closure of! the fundamental Weyl chamber to be tho
matrices in the Cartan subalgebra whose diagonal entries have imaginary components
nonincreasing down the diagonal. The isotropy generators satisfying the integrality conditi~3!
for some Lie group with Lie algebra su(n) may be assumed to have the form

L5L~k!5 1
2 diag~k1 ,...,kn!, ~22!

wherek5(k1 ,...,kn) satisfies

k1>k2>...>kn , (
1

n

ki50, and kiP
1

n
Z, i51,...,n. ~23!

The eigenspacesH and z of adL may be easily characterized~whereC* denotes the Hermitian
conjugate of a matrixC!.

Proposition 1 (cf. Ref. 17): For L of the form L5L(k)P i su(n), the space of magnetic
potentialsH and the residual gauge algebraz are

H5$X5C1C* , Ci j50, f or i> j , Ci jÞ0, only i f ki2kj52%, ~24!

z5$ iZ5D2D* , Di j50, f or i. j , Im„tr~D !…50,

Di jÞ0 only i f ki2kj50%. ~25!

Proof: For C upper triangular we have the basic identity

@L,C# i j5
1
2 ~ki2kj !Ci j . ~26!

Thus if X5C1C* , the relation adL
2 X5X implies (adL

2 C) i j5
1
4(ki2kj )

2Ci j5Ci j and ~24! fol-
lows sinceC is ~strictly! upper triangular, andk is nonincreasing. The proof of~25! is similar.j

It will be useful to denote
J. Math. Phys., Vol. 38, No. 7, July 1997
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C5C ~k!5$CPM ~n,C!:Ci j50, for i> j , Ci jÞ0, only if ki2kj52%. ~27!

Definition 2: TheK graph of k is defined as the labeled graph on n vertices, with lab
k1 ,...,kn , and with an edge joining vertices i, j if and only if uki2kj u52.

By Proposition 1, the number of edges of theH graph equals dimC H. TheH graph
provides a very simple and convenient visualization for the structure ofL andH. For example,
the classification in Ref. 7 of all su(3) spherical symmetry models withHÞ0 may be summa-
rized by the followingH graphs@with the labels~i!–~v! corresponding to those in Ref. 7#. ~See
Table I.!

Definition 3: Thesu(n) model with isotropy generator L5L(k) is irreducible iff theH graph
of L is connected. The distribution vectord5(d1 ,...,dn) of an irreducible model L5L(k) de-
scribes the number of repeats ink,

~28!

Thesu(n) model isregulariff there is X0PH, such that

adX0
2 L5†X0 ,@X0 ,L#‡5L. ~29!

If k is irreducible and decreasing, it follows that

ki118 5ki822, i51,...,N21. ~30!

The basic relations betweenH, z, k, andd are summarized in the following proposition.
Proposition 4: (i) J5 i adL defines a complex structure onH. If X5C1C* , CPC , then

JX5 i(C2C* )5 iC1(iC)* . dimC H5 the number of edges in theH graph of L.
(ii) If L 5L(k) is irreducible with distribution vectord, then

dimC H5 (
i51

N21

didi11 , ~31!

z.„u~d1!3•••3u~dN!…/u~1!, ~32!

TABLE I. H graphs for all nontrivial su(3) models.
J. Math. Phys., Vol. 38, No. 7, July 1997
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dimRz5(
i51

N

di
221. ~33!

Moreover, the distribution vector satisfies

diPN, i51,...,N, and (
1

N

di5n. ~34!

(iii) If L is reducible, with theH graph having B>2 connected components (blocks or su
graphs), letk(1),...,k(B) andd(1),...,d(B) denote the eigenvalue and distribution vectors, resp
tively, of the blocks. Then

dimC H5 (
b51

B

(
i51

Nb21

di
~b!di11

~b! , ~35!

z.„u~d1
~1!!3u~d2

~1!!3•••3u~dNB
~B!!…/u~1!. ~36!

If ki , kj belong to distinct components, thenuki2kj uÞ2,Xi j50 for all XPH, and Zi j50 for
all ZPz.

Proof: These properties all follow immediately from the definitions. j

The property~34! says that an irreducibled is an ordered partition ofn into positive integers.
Using this fact it is straightforward to list the irreduciblek, at least for smalln. For example, if
n53 then the possible irreducible distribution vectorsd are ~1,1,1!, ~1,2!, ~2,1!, ~3!. Of thesed
5(3) leads toL50 by the trace condition(1

nki50, and~1,2! and~2,1! are equivalent under the
complex conjugate outer automorphism of su(3)~see below!. The modelsd5(1,1,1) and~1,2!
correspond to the cases~ii !, ~iii ! above, respectively.

V. REGULAR MODELS

For simplicity we suppose now that the modelk is irreducible—the case of reduciblek can be
easily deduced from the following. WritingX05

1
2(C01C0* ) we see from~29! thatk is regular if

and only if there isC0PC , such that

@C0 ,C0* #5diag~k!52L. ~37!

Theorem 5: The irreducible modelk is regular if and only if the distribution vectork is
symmetricandmonotone:

symmetric: dj5dN112 j , j51,...,J5@N/2#, ~38!

monotone: d1<d2<...<dJ , ~39!

where@N/2# denotes the integer part of N/2.
Proof: If k is regular, then there isC0 satisfying

@L,C0#5C0 , @C0 ,C0* #52L, ~40!

which impliesC0 , C0* , L generate ansl(2) subalgebra of ig. Equivalently, the basis elemen
$2 iX0 ,2@L,X0#,2 iL% determine a Lie algebra embedding of su(2) intog. The representation o
g on Cn restricts to this subalgebra and gives a decomposition ofCn into irreducible subspaces,

Cn5Wm1
% ••• %WmM

, m1>m2>•••>mM>0, ~41!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where dimWm5m11, miPZ1, and where 2L acts onWmi
by

Fmi

mi22

�

2mi

G . ~42!

This shows that the eigenvalues~diagonal elements! of 2L are all integral, thatl and2l occur as
eigenvalues with equal multiplicity, and that ifl>2 occurs as an eigenvalue, thenl22 occurs
also, with multiplicity greater than or equal to the multiplicity ofl. Sincek is irreducible, the
eigenvalues of 2L are either all even or all odd, and the distribution vectork of the eigenvalues of
L is therefore monotone and symmetric as required.

Conversely, ifk is symmetric and monotone, thenL can be decomposed into blocks of th
form ~42!, with a corresponding decomposition~41! of Cn. On a typical blockWm , we choose

C5F 0 cm,1

0 �

� cm,m

0

G ,
wherecm,l5Al (m112 l ), 1< l<m. It follows easily that this choice ofC satisfies~40! restricted
to Wm , hence there is a choice ofC0 satisfying~40! on Cn and hencek is regular, as required
ClearlyC0 is not unique: ifgPZ, then Adg C0 andL also generate ansl(2) subalgebra. j

If k is regular then general Lie-theoretic results show that all su(2) subalgebras ofg that
contain iL are conjugate, which implies that the adjoint action ofZ onH0 is transitive and thus
H05Z/Z0 for an isotropy subgroupZ0 . This representation ofH0 is explicitly verified, and
the structure ofZ0 classified, in the following result.

Theorem 6: Let k5(k1 ,...,kn) be a regular irreducible model with distribution vectord
5(d1 ,...,dN), and suppose XPH0 . Assume first thatG5S U(n). Then there is gPZ such that
gXg215X05

1
2(C01C0* ), where

C05F 0 A1
0

0 �

�

0 AN21
0

0

G , ~43!

where the Aj
0:Cdj11→Cdj , j51,...,N21, are defined by

~44!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where J:5@N/2#, we use the notation j* :5min$j,N2j%, and

~45!

aj ,l5A~ j2 l11!~N112 j2 l !5aj* ,l , l51,...,j * . ~46!

[Note that dj*5dj11 for j.J by the symmetric condition~38! of Theorem 5.] The isotropy
subgroupZ0,Z of C0 is

Z05$gPZ:g21C0g5C0%.„U~d1!3U~d22d1!3•••3U~dJ112dJ!…/U~1!. ~47!

If G5S U(n)/Zq where qun, qÞ1, then this representation ofZ0 is taken moduloZq .
Proof: Let X51/2(C1C* ), C upper triangular, be any element ofH. There are matrices

Aj , j51,...,N21 of sizedj113dj , such that

C5F 0 A1

0 �

� AN21

0

G %d1

%dN21

%dN

, ~48!

where the basis ofCn has been ordered such that 2L5diag(k18 ,...,kN8 ), with k18.....kN8 ,
~k18 ,...,kN8 are the distinct eigenvalues of 2L,kj85kj218 22!. The conditionXPH0 is equivalent to
@C,C* #5diag(k) and translates to

A1A1*5k18I 1 ,

AjAj*2Aj21* Aj215kj8I j , j52,...,N21

2AN21* AN215kN8 I N , ~49!

where I j is the dj3dj identity matrix andkj85N1122 j since k is regular. NowZ5$g
PS U(n):gLg215L%, so anygPZ is of the form

g5FU1

�

UN

G ,
whereUjPU(dj ) andP1

N detUj51. Since (§g)X(§g)215gXg21 for all §PC, u§u51, it will
suffice in fact to considergPU(n). TheZ action of g sendsC→C̃5gCg21, where C̃ is
described byÃj with

Ãj5UjAjU j11
21 , j51,...,N21. ~50!

TheH0 equations~49! are easily seen to be invariant under the transformations~50!, verifying
thatH0 is invariant underZ conjugacy. ChoosingUj , j52,...,N21 such that

Ãj* Ãj5Uj11Aj*AjU j11
21 5Dj , j51,...,N22, ~51!
J. Math. Phys., Vol. 38, No. 7, July 1997
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whereDj>0 is a diagonal matrix with non-negative eigenvalues in decreasing order, theH0

equation~49! gives

Ã1Ã1*5~N21!I 1 ,

Ãj Ãj*5~N1122 j !I j1Dj21 , j52,...,N21,

ÃN21* ÃN215~N21!I N . ~52!

Defining

Dj85Ãj Ãj* :C
dj→Cdj , j51, ...,N21, ~53!

we may rewrite~52! as

D185~N21!I 1

Dj85~N1122 j !I j1Dj21 , j52, ...,N21,

DN215~N21!I N , ~54!

which shows thatDj8 is diagonal, with diagonal elements in decreasing order. Note that the se
strictly positive eigenvalues ofAjAj* andAj*Aj , respectively, are the same, including multiplic
ties. Thus, sinceDj ,Dj8 have the same nonzero eigenvalues they are equal, up to possible
blocks in the bottom corner, and~54! can be solved inductively, yielding nonzero eigenvalues
the positive terms in

D j ,l5~N1122 j !1•••1~N1122l !5~ j2 l11!~N112 j2 l !5~aj ,l !
2, l51,...,j * ,

with multiplicity (dl2dl21) ~as always,d050!. Note thatD j ,l5DN2 j ,l . Hence

Dj5H ~Âj
0!2, j51, ...,J

F ~ÂN2 j
0 !2 0

0 0
G %dj11

%dj2dj11
, j5J11, ...,N21,

whereÂj
0 is defined by~45!. Since kerÃj5ker Dj , and kerÃj*5ker Dj8 , we have

Ãj5H @Âj 0#, j51, ...,J,

F Âj

0 G , , j5J11, ...,N21,

whereÂj , j51, ...,N21 is an invertible matrix of sizedj*3dj* , such that

Âj* Âj5Âj Âj*5~Âj*
0

!2

Hence there isÛ jPU(dj* ) such that

H Âj5Û j Âj*
0

Û j Âj*
0 Û j

215Âj*
0 j51,...,N21,

and since the valuesD j ,l , l51, ...,j * are distinct,Û j has the block decomposition
J. Math. Phys., Vol. 38, No. 7, July 1997
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Û j5Û j ,1% ••• % Û j , j* ,

whereÛ j ,lPU(dl2dl21), l51, ...,j * . Now, definingUj ,lPU(dl), l51, ...,J, j51, ...,N21 by

Uj ,l5H Û j ,1% ••• % Û j ,l ,

Û j ,1% ••• % Û j , j* % I dl2dj*
,

if l< j * ,
if l. j * ,

we have@whereAj
0 is defined by~44!#

Uj ,lAl
05Al

0Uj ,l11 , l51,...,J, j51,...,N21,

and thus

Aj5Uj
21ÃjU j115Uj

21Uj , j*Aj
0Uj115Uj

21Aj
0Uj , j*11Uj11 .

In particular, definingg5g1% ••• %gNPZ, giPU(dj ), by

g15U1 ,

g25U1,2U2 ,

A

gN215U1,~N21!* •••U ~N22!,~N21!*UN21 ,

gN5U1,~N21!*11•••U ~N21!,~N21!*11UN ,

we haveC5g21C0g, which shows that theZ action onH0 is transitive, as claimed. To dete
mine the isotropy subgroupZ0 of C0 , supposeg5U1% ••• %UNPZ0 , so

Aj
05Uj

21Aj
0Uj11 . ~55!

It follows thatUj has a decomposition,

Uj5Ũ j %Uj , j , for j51, ...,J11,

whereŨ jPU(dj21), Uj , jPU(dj2dj21), and hence, solving~55! inductively,

Uj5U1,1% ••• %Uj , j , j51, ...,J11.

Similarly, for j>J11 we have

Uj5U1,1% ••• %Uj*11, j*11,

and thusU1,1PU(d1),...,UJ11,J11PU(dJ112dJ) determinegPZ0 . @NotedJ112dJ50 if N is
even and (dj2dj21) is the multiplicity of thesl(2) representation of dimensionN1222 j , j
51, ...,J11.# Concretely, we have

Z5$g5U1% ••• %UN ,UjPU~dj !,detU1•••detUN51%

and

Z05 HgPZ,Uj5FU1,1% ••• %Uj , j , j51, ...,J11
U1,1% ••• %Uj*11,j*11 , j5J11, ...,N,

where Uj , jPU~dj2dj21!, j51, ...,J11J . ~56!

j
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Corollary 7: For a regular irreducible model L5L(k) with distribution vectord, we have

dimR H05dimC H5 (
j51

N21

djdj11 . ~57!

Proof: SinceH0.Z/Z0 , from ~33!, ~38!, and~47!, we find that

dimR H05dimR Z2dimR Z05 H 2~d1d21•••1dJdJ11!2dJ11
2 ,

2~d1d21•••1dJdJ11!,
N52J,
N52J11.

Likewise, we find from~31! that

TABLE II. All irreducible su(n) models, 3<n<5.
J. Math. Phys., Vol. 38, No. 7, July 1997
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dimC H5 (
j51

N21

djdj115 H2~d1d21•••1dJdJ11!2dJdJ11 ,
2~d1d21•••1dJdJ11!,

N52J,
N52J11,

and the result follows, sincedJ5dJ11 if N52J. j

Note that the structure ofH0 may be derived directly from the representations in Theorem 6.
Before listing all irreducible models forn<6, we note one final simplification, arising from

the conjugation automorphism of su(n). The complex conjugation mapc:su(n)→su(n),
A°Ā, is a Lie algebra automorphism that cannot be realized by an~inner! conjugation

TABLE III. All irreducible su(6) models.
J. Math. Phys., Vol. 38, No. 7, July 1997
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A°gAg21, gPS U(n), since conjugation isC linear. Thusc is the outer automorphism o

su(n), andc„iL (k)…52 iL sendsk°
c

2k5(2k1 ,...,2kn), since by inner automorphisms~Weyl

group! we may assumek is always decreasing, and thusd5(d1 ,...,dN)°
c
(dN ,...,d1). Although

models related byc may in some circumstances be considered physically inequivalent~since the
equivalence cannot be realized by an inner automorphism, i.e. gauge change!, for the algebraic
structure this has no effect, and thus in Tables II and III we do not distinguish models relat
conjugation.

VI. IRREDUCIBLE MODELS FOR 3 <n<6

Remarks:
~1! The regular irreducible models are~3.1!, ~4.1!, ~4.3!, ~4.4!, ~5.1!, ~5.7!, ~6.1!, ~6.4!, ~6.7!,

~6.9!, ~6.15!, and~6.17!. The ‘‘generic’’ models considered in Refs. 17 and 18 are those for wh
N51; namely,~3.1!, ~4.1!, ~5.1!, and~6.1! in this list. As noted previously, in the ‘‘generic’’ cas
the residual gauge groupZ is Abelian. It is an interesting problem to consider the behavior of
YM equations for the more general, ‘‘nongeneric’’ models listed here.

~2! Although dimC H5dimR H0 , the plausible conjecture that for a regular model, ev
XPH/$0% is proportional to someX05lXPH0 , lPC, is not true—in the model~4.4! ~con-
sidered briefly in Ref. 17!, the term i(I2adX

2) iL i2 takes the form tr„(I 22GG* )2…, whereG
Pgl(2,C) parametrizesC and henceH. If G is not of rank 2, then this term cannot vanish, a
the rank is unchanged by multiplication by a scalarG°lG, lPC.

~3! The models withk nonintegral correspond to gauge groupsG5S U(n)/Zq , qÞ1, qun.
These are all nonregular.

~4! The models of potential physical interest are those where either the residual gauge a
z or little algebraz0 are ‘‘physical,’’ i.e.,u(1), su(2)3u(1) or su(3)3su(2)3u(1). This sug-
gests that it may be interesting to further investigate solutions of the Einstein–YM equations for
models~3.2!, ~4.3!, ~5.7!, and ~5.9!. Of these, the models~3.2! and ~5.9! with residual algebras
su(2)3u(1) and su(3)3su(2)3u(1), respectively, are not regular and would require a bla
hole interior boundary condition.
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Classification of spherically symmetric static space–times
by their curvature collineations
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A complete classification of all spherically symmetric static space–times according
to their curvature collineations is presented and compared with Ricci collineations
of corresponding space–times. ©1997 American Institute of Physics.
@S0022-2488~97!01507-7#

I. INTRODUCTION

The general theory of Relativity, which is a field theory of gravitation and is describe
terms of geometry, is highly nonlinear theory.1 Because of this nonlinearity it becomes ve
difficult to solve the gravitational field equations unless certain symmetry restrictions are im
on the space–time metric. These symmetry restrictions are expressed in terms of isometri
sessed by the space–times. These isometries, which are also called Killing vectors~KVs!, give rise
to conservation laws.1,2 Much work has already been done on these symmetries and a com
classification of all static/nonstatic spherically symmetric space–times according to their is
tries is by now available in the literature.2–4

Other than isometries, symmetries of the Ricci tensor provide conservation laws on m
fields. These symmetries are called Ricci collineations~RCs!. The interesting fact about the RC
is that whereas KVs are always definite~because the determinant of the metric tensor is nonz
or noninfinite!, the RCs, whose determinant can be zero or infinite, can be both defini
arbitrary.5 Also, in the case that the space–time becomes an Einstein space~space–time is an
Einstein space if its Ricci tensor is proportional to the metric tensor!, the KVs and the RCs becom
similar; otherwise they may be different, in general.6,7 It is shown, through a comparison betwe
KVs and the RCs of static/nonstatic spherically symmetric space–times, that the RCs p
some extra information that was not provided previously by the KVs.8

Katzin et al.9,10 argue~keeping in mind the fact that the Ricci tensor is the trace of the
Riemann Christoffel curvature tensor! that the symmetries of the full Riemann Christoffel curv
ture tensor may also provide some extra understanding of the subject that was not pr
previously by both KVs and RCs. Though they give a theorem on connection between RC
~curvature collineations! CCs namely, all CCs will be RCs but the converse may not be true
general; no explicit attempt to classify space–times according to their CCs has been given.
fore it still remains an open question to understand what extra information the CCs would pr
that is not given by KVs and RCs. Keeping this point in mind, we recently initiated such in
tigations by finding CCs of some specific spherically symmetric static space–times.11 It was
observed that in Einstein/anti-Einstein and Bertotti–Robinson~flat! space–times, the CCs differe
from RCs of the corresponding space–times in their functional dependence giving inter
results. In the present work we extend our investigations further to obtain a complete classifi
of more general spherically symmetric static space–times according to their CCs.

a!Present Address: International Centre for Theoretical Physics, Trieste, Italy.
b!Also at the Faculty of Mathematical Sciences, University of Petroleum and Minerals Dhahran, Saudi Arabia.
0022-2488/97/38(7)/3639/11/$10.00
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II. CLASSIFICATION OF CCs- I

A CC is the one along that the Lie derivative of the Riemann Christoffel tensor is z
Mathematicallyj is called a CC if

L
j

Ra
bcd50, ~1!

whereL represents a Lie derivative. This equation in a torsion-free space, in a coordinate
becomes11

Ra
bcd, fj

f1Ra
fcdj

f
,b1Ra

bfdj
f
,c1Ra

bc fj
f
,d2Rf

bcdj
a
, f50 ~2!

and can be generally written as a set of 15 coupled partial differential equations.11

Now to classify the CCs for spherically symmetric static space–times we write the
general metric of such space–times given by3

ds25en~r ! dt22el~r ! dr22er~r !~dq21sin2 q dw2!, ~3!

whereer(r ) can either be ‘‘r 2’’ or ‘‘ a2’’ only. We discuss CCs in the first case in this sectio
whereas CCs in the second case will be discussed in Sec. III. For the space–time metric g
Eq. ~3!, only six independent nonzero Riemann tensor components~three Rai0i , i51,...,3, two
R1

j1 j , j52,3, andone R2323! survive.
In order to classify CCs, we first consider the CC equations,11

~R1
i1i2R3

i3i!j
3
,i50 ~ i50,2!. ~4!

Substituting the values of the relevant Riemann curvature tensor components into these eq
the following four possibilities arise:

~A! @11 1
4~2r92r8l8!er2l#50, ~n8r822n91n8l82n82!en2l50, j ,i

350,

~B! @11 1
4~2r92r8l8!er2l#Þ0, ~n8r822n91n8l82n82!en2lÞ0, j ,i

350,

~C! @11 1
4~2r92r8l8!er2l#Þ0, ~n8r822n91n8l82n82!en2l50, j ,i

350,

~D! @11 1
4~2r92r8l8!er2l#50, ~n8r822n91n8l82n82!en2lÞ0, j ,i

350.

We derive and classify CCs in case~A! completely, whereas only results are presented in
remaining cases.

Case (A):Simplifying and integrating over ‘‘r , ’’ the first equation given by

@11 1
4~2r92r8l8!er2l#50,

one can easily solve it for the ‘‘grr ’’ component of the space–time metric to get

e2l~r !512ar2/2, ~5!

where ‘‘a’’ is an integration constant. Following a similar procedure, the second equation,

~n8r822n91n8l82n82!en2l50,

gives the ‘‘g00’’ component of the space–time metric,
J. Math. Phys., Vol. 38, No. 7, July 1997
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en~r !/25
a

2 E e~r1l!/2 dr1b, ~6!

where ‘‘a’’ and ‘‘ b’’ are some integration constants. Equation~6! gives rise to two more possi
bilities: ~i! a50, and~ii ! aÞ0.

(Ai): In this case some of the CC equations become zero identically, whereas the foll
CC equations:11

~Rj0 j
0 Rja j

a !j ,a
0 50, ~ j ,a!5~2,1!,~3,1!,~1,2!,~3,2!,~1,3!~2,3!,

~Rj0 j
0 2Rj5 j

a !j ,0
a50 , ~ j ,a!5~1,3!,~2,3!,~1,2!,~3,2!,~2,1!,~3,1!, ~7!

respectively, become

aj , f
0 50, i51,2,3, aj ,0

f 50, i51,2,3. ~8!

The above equations give two possibilities:

~* ! a50, j , j
0Þ0Þj ,0

i , ~@! aÞ0, j , j
0505j ,0

i .

(Ai* ): The metric in this case is the Minkowski metric given by

el51, en/25b. ~9!

Substituting these values into the CC equations, it is easy to see that they get identically sa
implying that every arbitraryja ~functions of all the space–time coordinates! is a CC there.11

(Ai@): In this case the metric becomes

el5S 12
ar2

2 D 21/2

, en/25b. ~10!

Substituting these metric values the nonzero CC equations become

j11r cot uj21r j ,3
350, ~11!

j11r j ,2
250, ~12!

r j11
2

a S 12
ar2

2 D j ,1
150, ~13!

j ,3
21sin2 uj ,2

350, ~14!

j ,3
11r 2S 12

ar2

2 D sin2 uj ,1
350, ~15!

j ,2
11r 2S 12

ar2

2 D j ,1
250. ~16!

To solve this system of equations, we first integrate Eq.~13! to get

j15A~u,f!S 12
ar2

2 D 1/2, ~17!
J. Math. Phys., Vol. 38, No. 7, July 1997
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whereA(u,F) is a function of integration. Substituting this value ofj1 into Eq. ~16! and inte-
grating the resulting equation gives

j25
1

r S 12
ar2

2 D 1/2Au~u,f!1B~u,f!, ~18!

whereB(u,f) is an integration function andAu represents partial differentiation with respect
the ‘‘u’’ coordinate. To check the consistency we insert the values ofj1 andj2 into Eq.~12! to get

1

r S 12
ar2

2 D 1/2@A~u,f!uu1A~u,f!#1Bu~u,f!50, ~19!

which is satisfied only when the coefficients ofr andBu are zero separately and can be eas
solved to give

A5A1~f!cosu1A2~f!sin u, B5B1~f!, ~20!

whereA1(f), A2(f), andB1(f) are some integration functions. At this stage we use the ab
results into Eq.~15!, which on integration yields

j35
1

r sin2 u S 12
ar2

2 D 1/2@A1~f!f cosu1A2~f!f sin u#1D~u,f!, ~21!

whereD(u,f) is some function of integration. In the light of above values ofj2, andj3, it is easy
to notice that Eq.~14! is satisfied when

A1~f!f505
B1~f!f

sin2 u
1D~u,f!f , ~22!

which is solved to give

A15a, D~u,f!5cot uB1~f!f1E~f!, ~23!

whereE(f) is again some integration function. Using above results into Eq.~11! and requiring
consistency, we obtain

A2~f!ff1A2~f!50, B1~f!ff1B1~f!505E~f!f , ~24!

which on integration yield

A25a2 cosf1a3 sin f, B15a4 cosf1a5 sin f, E5a6 . ~25!

Inserting the above values into Eqs.~17!, ~18!, and~21!, we get the spatial six CCs given by

j15S 12
ar2

2 D @a1 cosu1~a2 cosf1a3 sin f!sin u#,

j25
~12ar2/2!1/2

r
@2a1 sin u1~a2 cosf1a3 sin f!cosu#1~a4 cosf1a1 sin f!,

~26!

j35S 12
ar2

2 D 1/2@2a2 sin f1a3 cosf#1cot u~2a4 sin f1a5 cosf!1a6 .
J. Math. Phys., Vol. 38, No. 7, July 1997
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In this case since all the Riemann tensor components involving the time component are ze
temporal CC becomes

j05j0~ t !,

as expected.12 From the above CCs and the metric, it is easy to notice that replacinga/2 by
1/R2 and21/R2 there, respectively, this case corresponds to the Einstein/anti-Einstein m
admitting the above CCs.11

(Aii): In this case the metric is generally given by Eqs.~5! and~6!. Substituting these value
into some of the CC equations,12 we get

$12 1
4r8@~r82n8!er2l#%j0,i50,

~27!

$12 1
4r8@~r82n8!er2l#%j i ,050.

The above equations give two possibilities:

~P! @12 1
4r8~r82n8!er2l#50, j0,iÞ0Þj i ,0 ,

~ ^ ! @12 1
4r8$~r82n8!er2l%#Þ0, j0,i505j i ,0 .

(AiiP): After some easy computations it can be noticed that Eqs.~5!–~6! reduce to

en5k~12ar2/2!, el5ke2n, ~28!

wherek5a2/a2. Replacinga/2 by 1/R2 and21/R2, respectively, the metric becomes that of D
Sitter/anti-De Sitter space–times, which admits ten CCs.11

The case~Aii ^! gives an inconsistency between its metric and constraints. Thus it is
included in the classification scheme.12

CASE (B):In this case the metric is subject to the constraints

@11 1
4~2r92r8l8!er2l#Þ0, ~n8r822n91n8l82n82!en2lÞ0, and j3,150.

To derive CCs here, we first consider the CC equations,

~R0
i0i2R3

i3i !j
3
,050, i51,2, ~29!

which are satisfied for the following four possibilities:

~1! r8l812n92n8l81n8250, 12 1
4r8~r82n8!er2l50, j3,0Þ0.

~2! r8l812n92n8l81n82Þ0, 12 1
4r8~r82n8!er2lÞ0, j3,050.

~3! r8l812n92n8l81n82Þ0, 12 1
4r8~r82n8!er2l50, j3,050.

~4! r8l812n92n8l81n8250, 12 1
4r8~r82n8!er2lÞ0, j3,050.

(B1):We consider the CC equations given by

~R0
i0i2R1

i1i !j
0
,150, i52,3,

~R0
i0i2R1

i1i !j
1
,050, i52,3. ~30!

Inserting the values of Riemann tensor components~and requiring consistency between co
straints!, Eqs.~30! give rise to only one possibility, namely,
J. Math. Phys., Vol. 38, No. 7, July 1997
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n81l8Þ0, j1,0505j0,1.

Now, considering the CC equations11

Ri
3i3,fj

f12Ri
3i3j

3
,350, i50,1,2 ~no summation overi !, ~31!

and subtracting two of them~i50 andi51! give

Fn9

n8
2

l9

l8Gj150. ~32!

The above equation gives two possibilities:

~ù !Fn9

n8
2

l9

l8G50, j150,

~, !Fn9

n8
2

l9

l8GÞ0, j150.

(B1ù): In this case, the CC equations take the form

cot uj21j ,3
350, ~33!

sin2 uj ,2
31j ,3

250, ~34!

sin2 uer2lj ,0
32en2lj ,3

050, ~35!

er2lj ,0
22en2lj ,2

050, ~36!

j ,1
0505j ,0

05j ,1
25j ,2

2 . ~37!

First, differentiating Eq.~36! with respect to the ‘‘t ’’ coordinate and then integrating, while usin
Eq. ~34!, gives

j25A1~f!1A2~f!t. ~38!

Also, from Eqs.~33! and ~34! we get

j21j ,ff
2 50.

From the above equation, keeping in mind Eq.~38!, we get

A1~f!1A1ff~f!505A2~f!1A2ff~f!,

which can be easily solved to obtain

A15c1 cosf1c2 sin f,
~39!

A25c3 cosf1c4 sin f.

Using these results with the previous equations and performing some integrations, we obt

j05e2nr 2~c3 cosf1c4 sin f!u1A5~f!, ~40!
J. Math. Phys., Vol. 38, No. 7, July 1997
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j25~c1 cosf1c2 sin f!1~c3 cosf1c4 sin f!t. ~41!

Now, using the fact thatj ,1
050 into Eq.~40!, we get

~22n8r !e2n~c3 cosf1c4 sin f!u50. ~42!

From this equation two more possibilities arise:

~$! ~22n8r !e2n50,

~& ! ~c3 cosf1c4 sin f!50.

(B1ù$): Solving (22n8r )e2v50 gives

en5r 2p, ~43!

wherep is a constant of integration. From Eq.~36! one can instantly see that for consistencyp
51. Following the same procedure it is straightforward to check that this case admits fou
given by

j05c0 ,

j150,

j25~c1 cosf1c2 sin f!,

j352cot u~c1 sin f2c2 cosf!1c3 . ~44!

(B1ù&): This is a special case of (B1ù$) and we therefore exclude it from the classificati
scheme.

(B1,): In this case the metric is an arbitrary function of the ‘‘r ’’ coordinate such that
v8Þcl8, and admits four CCs given by Eq.~44!.

(B2): Considering the CC equations,11

Ri
2i2,fj

f12Ri
2i2j

2
,250, i50,1,3, ~45!

and subtracting two of them~for i50 andi51! and rearranging terms there, we get

F ~rl8e2l!8

~rl8e2l!
2

l8e2l

12e2lGj150. ~46!

Using consistency between constraints, it is easy to check that the above equation gives rise
possibilities only:

~; ! e2lÞ12b1r
b0, j150,

~47!

~¹ ! e2l512b1r
b0, j150.

Following the similar procedure, it is easy to check that cases~;! and ~¹! admit only four CCs
given by Eq.~44!.

Cases~B3! and~B4! give same results as in case~B1!, and therefore we do not discuss the
Following a similar procedure it can be checked that cases~C! and~D! admit four CCs, given

by Eqs.~44!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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III. CLASSIFICATION OF CCs- II

In this section we consider the case in whicher(r )5a2 in the line element given by Eq.~3!.
Using the surviving Riemann tensor components,

R101
0 52 1

2n91 1
4n8l82 1

4n825A~r !,
~1!

R323
2 5sin2 u,

into the CC equations, we get

j05j0~ t,r !, j15j1~ t,r !, j25j2~u!, and j35j3~u,f!, ~2!

A~r !~j1,01en2lj0,1!50, ~3!

~Aen2l!8j112~Aen21!j0,050, ~4!

A8j112Aj ,1
150, ~5!

sin2 uj ,2
31j ,3

250, ~6!

cot uj21j ,3
350. ~7!

To classify the CCs we first solve Eqs.~6! and ~7! to get

j25c1 cosf1c2 sin f,
~8!

j352cot u~c1 sin f2c2 cosf!1c3 .

To solve the remaining equations, we first consider Eq.~3!, which gives rise to the following three
possibilities:

~V! A~r !50, j ,0
11en2lj ,1

050,

~J! A~r !50, j ,0
11en2lj ,1

0Þ0,

~C! A~r !Þ0, j ,0
11en2lj ,1

050,

which we consider separately.
CASE (V): In this case, all the equations are identically satisfied, giving three spatial and

temporal~arbitrary functions of thet and r coordinates! CCs,

j05j0~ t,r !,

j15j1~ t,r !,
~9!

j25c1 cosf1c2 sin f,

j352cot u~c1 sin f2c2 cosf!1c3 .

CASE (J): In this case the CCs are same as in case~V!,
CASE (C): First, solving Eq.~5! gives
J. Math. Phys., Vol. 38, No. 7, July 1997
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j15
F~ t !

AA
, ~10!

whereF(t) is some integration function. Now, substituting the above value ofj1 into Eq.~4!, and
integrating it over a time coordinate, gives

j052FA81~n82l8!

2A3/2 G E F~ t !dt1G~r !, ~11!

whereG(r ) is a function of integration. Requiring consistency fromj1,01en2lj0,150, we obtain

Ḟ~ t !

AA
52en2lF HA81~n82l8!

2A3/2 J 8G E F~ t !dt1G8~r !, ~12!

where an overdot represents a derivative with respect to the time coordinate. Integrating the
equation with respect to the time coordinate, and then separating variables in these coord
gives

F̈~ t !

F~ t !
5AAen2lFA81~n82l8!

2A3/2 G85a, ~13!

wherea is a separation constant. Solving this equation, and requiring consistency, it is easy
that

F~ t !5~c4 coshAat1c5 sinhAat !,

FA81~n82l8!

2A3/2 G85
a

AAen2l
, ~14!

G~r !5c6 .

Substituting these results into Eqs.~10! and~11!, it turns out that the metrics in this case adm
six CCs that are given by

j05
2@A81~n82l8!#

2AaA3/2
~c4 sinhAat1c5 coshAat !1c6 ,

j15
~c4 coshAat1c5 sinhAat !

AA
,

~15!

j25~c1 cosf1c2 sin f!,

j352cot u~c1 sin f2c2 cosf!1c3 .

The requirement of closure of algebra of the CCs restricts the metrics to satisfy (Aa f 2

1 f 8/AA)5b, whereb is some constant, andf5@A81(n82l8)#/2AaA3/2.

IV. SUMMARY AND DISCUSSION

Although CCs have been studied in the context of understanding the general theory of
tivity in literature for quite some time, there has been little attempt to classify space–
J. Math. Phys., Vol. 38, No. 7, July 1997
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completely according to their CCs.9,10 In an earlier paper, Bokhariet al.11 argued that a systemati
complete classification may provide understanding of the subject of Relativity, which is
available through KVs and RCs. Following this spirit, we have addressed this problem of c
fying space–times according to their CCs for spherically symmetric static space–times. I
classification we recover Minkowski, DeSitter/anti De-Sitter, Einstein/anti-Einstein, and Be
Robinson-like metrics, apart from a class of space–time metrics admitting four CCs only.

Case (IIAi* ) gives rise to a Minkowski metric, which admits maximal symmetry~10 KVs!.
Since this metric is Riemann flat~all the Riemann tensor components are zero!, the CC equations
are identically satisfied. Thus, everyja(xb) is a CC there. Also, since it is a Ricci flat metric, th
RCs are also arbitrary, and identically similar to the CCs.11

Case~IIAi@ ! gives rise to a class of space–time metrics admitting six spatial and one
trary temporal~a function of the time coordinate only! CCs. These space–time metrics and th
CCs reduce to Einstein/anti-Einstein space–time metrics when we replacea by 1/R2 or 21/R2,
respectively. One can easily note the fundamental difference between KVs, RCs, and CCs
case. Whereas, KVs are all definite~six spatial and one temporal!, the RCs and CCs are onl
spatially definite~and equal to spatial KVs!, but their temporal component is arbitrary. Betwe
the CCs and RCs, it is easy to notice that whereas the temporal CC is a function only of th
coordinate, the RC can arbitrarily depend on all the space–time coordinates.5

Replacinga/2 by 1/R2 and21/R2 in case~IIAii P!, respectively, gives De Sitter and anti-D
Sitter space–times admitting ten CCs, which are the same as ten KVs and ten RCs admi
them.5

In the remaining cases where there are some specific or arbitrary space–times, they a
four CCs, which are the same as the minimal symmetry admitted by the class of metr
spherically symmetric static space–times.2,3

In the case~IIIV! there arise three spatial and two arbitrary~one radial and one tempora
function of thet and r coordinates! CCs. There is a fundamental difference between the K
RCs, and CCs admitted by these space–times. Whereas their KVs are six~three spatial and three
temporal!, their RCs and CCs are arbitrary.8 Also, to note is that whereas the arbitrary CCs depe
on only the time coordinate, the arbitrary RCs can depend on both temporal as well as
coordinates.8,11

The last case~IIIC! admits six CCs for the space–time satisfying some differential c
straints.

Following these techniques to classify space–times according to their CCs, we are
process of classifying space–times admitting nonspherical symmetries also. We hope th
would provide a comprehensive information on CCs admitted by these space–times.
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Self-gravitating nonlinear scalar fields
Edward Malec
Jagellonian University, Institute of Physics, 30-59 Krako´w, Reymonta 4, 30-059 Krakow,
Poland
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We investigate the Cauchy problem for the Einstein - scalar field equations in
asymptotically flat spherically symmetric spacetimes, in the standard 113 formu-
lation. We prove the local existence and uniqueness of solutions for initial data
given on a space-like hypersurface in the SobolevH1ùH1,4 space. Solutions exist
globally if a central~integral! singularity does not form and/or outside an outgoing
null hypersurface. An explicit example demonstrates that there exists a local evo-
lution with a naked initial curvature singularity at the symmetry centre. ©1997
American Institute of Physics.@S0022-2488~97!01207-3#

I. INTRODUCTION

The local Cauchy problem in General Relativity has been solved long ago by Choquet-B1

in the so-called harmonic gauge but the global Cauchy problem still remains unsolved, d
progress made in recent years. The list of known results concerning evolution in asympto
flat spacetimes includes the global existence of almost Minkowskian geometries2 and two special
cases of spherically symmetric systems — massless scalar fields with characteristic initia3

and the Vlasov–Einstein equations.4 On the other hand, the validity of the main open question
gravitational physics, the cosmic censorship hypothesis,5 would demand the existence of glob
Cauchy solutions. More radically, the cosmic censorship question can be identified with the
Cauchy problem.6

In this paper we consider the Cauchy problem for Einstein equations coupled to a cl
nonlinear scalar fields. We specialize to spherically symmetric and asymptotically flat sys
with initial data prescribed on a space-like hypersurface. Our interest is in finding the we
possible solutions; that is motivated by the existence of anL2 a priori estimate induced~in the
absence of black holes! by the conservation of the asymptotic mass in asymptotically flat sp
times. An ultimate reduction to theL2 class would mean that the global evolution exists in
absence of black holes. We did not achieve that aim although the differentiability of solu
considered here isH1ùH1,4, i.e., weaker than that of classicalC

1 solutions. We show elsewhere7

that the breakdown of the evolution, i.e., the lapse collapse at the symmetry center, m
associated with the infinite value of theH1 norm of a solution and with the conical singularity

The plan of this paper is the following. In Section II we present the Einstein-scalar
equations. They can be reduced to a system of two first order characteristic equatio
@0,̀ )3@0,T#. Further analysis of metric coefficients of the equations allows one to reduce th
a single ‘‘symmetrized’’ equation on (2`,`)3@0,T#. Section III comprises a number of est
mates that will be used in further sections. Section IV consists of the main local result, The
6. The local existence is proved in a standard way by a combination of the ‘‘viscosity’’
compactness methods. The global uniqueness is shown in Section V. In Section VI we pre
proof of a related global Stefan problem, i.e., that a global Cauchy evolution exists outsi
event horizon and, in particular, the Schwarzschild radiusR52 m. In Section VII we show the
global existence, assuming that a ‘‘central integral singularity’’ does not exist. In Section VII
present an example of initial configuration for the scalar field with a singularity at the symm
center that can be seen by external observers, i.e., it is naked. That demonstrates, in our
that the concept ofpointwise singularitiesshall be replaced by a smaller class ofquasilocal
(integral) singularitiesand that the concept of the cosmic censorship shall be accordingly r
mulated.
0022-2488/97/38(7)/3650/19/$10.00
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II. EQUATIONS

In spherically symmetric spacetimes one can always choose a diagonal line element,

ds252N2~r ,t !dt21a~r ,t !dr21R2~r ,t !dV2, ~1!

where t is a time coordinate, r—a radial coordinate, R—an areal radius and
dV25du21sin2 udf2 — the line element on the unit sphere, 0<f,2p and 0<u<p. At spatial
infinity N51 anda51, for asymptotically flat spacetimes. Below we adopt the standard con
tion that Greek letters change from 0 to 3 while Latin indices range from 1 to 3.

Einstein equationsRmn2 (gmn/2)R58pTmn can be written as a 113 system of initial con-
straints and evolution equations.8 Let S t be a foliation of Cauchy hypersurfaces, withgi j the
intrinsic metric andKi j the extrinsic curvature. We adopt the convention of Wald8 so that the
metric signature is (2111), Ki j5 ] tgi j /2N and trK5gi j Ki j . Let Tmn be the energy–
momentum tensor of a matter field. The matter energy density isr52T0

0 and the matter curren
density reads asj i5NTi

0 .
Then the Einstein constraints read as

~3!R2Ki jK
i j1~ trK !2516pr, ~2!

¹ iK
i j2¹ j trK528p j j . ~3!

Above(3)R is the scalar curvature of the intrinsic metric ofS t . It is useful to express the Einstei
equations in terms of the mean curvature of a two-dimensional sphere centered around th
metry center ofS t , p5 2] rR/AaR, and the following components of the extrinsic curvature:

trK2K52Ku
u52Kf

f , K5Kr
r . ~4!

The constraints in terms ofK andp read as

] r~pR!

Aa
528pRr2

3R

4
~K !21

R

4
~ trK !21

R

2
KtrK2

Rp2

4
1
1

R
, ~5!

] r~R
3~K2trK !!

Aa
528pR3

j r

Aa
2ptrKR3. ~6!

The two remaining equations are the evolution Einstein equation:

]0~K2trK !5
3N

2
~K !21

N

2
~ trK !222NKtrK2

p2R

Aa
] r

N

pR
18pN~Tr

r1r!, ~7!

and the lapse equation:

¹ i]
iN5NS 32 ~K !21

~ trK !2

2
2KtrK14p~r1Ti

i ! D1]0trK. ~8!

The above equations yield~via the Bianchi identity! the energy–momentum conservation equ
tions:

]0
j r

Aa
1N~ trK1K !

j r

Aa
1

N

Aa
] rTr

r1
] rN

Aa
~Tr

r1r!1Np~Tr
r2Tf

f!50, ~9!
J. Math. Phys., Vol. 38, No. 7, July 1997
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2]0r2
Np

Aa
j r2

N

Aa
] rS j r

AaD 2
2] rN

a
j r2NK~Tr

r2Tf
f!2NtrK~r1Tf

f!50. ~10!

The above equations can be converted to a system of nonlinear integral equations. Th
particularly simple in the so-called polar gauge trK5K. By solving the Hamiltonian constrain
one obtains

pR52A12
2m

R
1
2m~R!

R
, ~11!

wherem is the asymptotic mass andm(R)54p*R
`drr 2r and from the evolution equation,

N5
pR

2
b~R!, ~12!

b~r !5expS 16pE
r

`

~2Tr
r2r!

1

p2s
dsD . ~13!

The line element reads as

ds252dt2N21
4

~pR!2
dR21R2dV2. ~14!

The above equations mean that metric functions can be expressed as some integrals o
fields and that spherically symmetric Einstein equations do not exhibit any dynamical me
The whole dynamics of a self-gravitating spherical system is contained in the evolution o
material field.

The nonlinear scalar field equation is given by the second order equation,

¹m¹mf2W8~f!50, ~15!

whereW(f) is the scalar field potential andW8(x)5 (d/dx)W(x). They can be written in the
characteristic form, as a system of two first order equations,

S ]01
NpR

2
]RDV5

8pN

p
V~ j2T!2

Np

4
V2

NUp

2
2

NV

pR2
1NW8, ~16!

and

S ]02
NpR

2
]RDU5

8pN

p
U~ j1T!1

Np

4
U1

NVp

2
1
NU

pR2
2NW8; ~17!

above

V5Df, U5Df, j5N
Tr
0

Aa
5
1

4
~V22U2!,

~18!

T5Tr
r5 1

4 ~V21U2!2W~f!, r5 1
4 ~V21U2!1W~f!,

where
J. Math. Phys., Vol. 38, No. 7, July 1997
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D5
21

N
]01

pR

2
]R , D5

1

N
]01

pR

2
]R . ~19!

Equations~17! and ~18! are hyperbolic in a ‘‘strict sense’’ ifNpR.0, i.e.,p.0.
Define

f5
f̃

R
, h15

Df̃

pR
, h25

Df̃

pR
, ~20!

ĥ5
1

2RE0
R

dr~h11h2!.

Notice thatf̃5*0
Rdr(h11h2), since by continuity one has to imposef̃(0)50.

Define also

d~R!5
NpR

2
. ~21!

Differentiation of ~21! gives, with the help of the Hamiltonian constraint~5!, the relation
]Rd5(b2d/R)28pWRb. That allows one to expressd in the following useful form:

d~R!5
1

RE0
R

bdr2
8p

R E
0

R

drr 2bW~ ĥ!. ~22!

One can show, after some calculations, that

b~R!5expS 28pE
R

`dr

r
~~h12ĥ!21~h22ĥ!2! D . ~23!

Remark:One can easily show, by analyzing the Einstein constraints, that if a collap
system possesses apparent horizons, then at least one of them~the innermost apparent horizon!
must be immersed inside matter. In the polar gauge apparent horizons coincide with m
surfaces, i.e., surfaces at which the tracep of the second fundamental form vanishes. Formu
~22! and ~23! imply now that derivatives of metric functionsb,g andd must be singular at the
location of the innermost minimal surface. That means that smooth solutions can exist o
minimal surfaces are absent, that is, the system of equations is strictly hyperbolic.

The scalar field equations reduce now to two first order equations,

~]01d]R!h15~h12ĥ!S 8pbRW1
g

RD1
bR

2
W8,

~24!

~]02d]R!h252~h22ĥ!S 8pbRW1
g

RD2
bR

2
W8,

where g(R)5d(R)2b(R). Let us define a functionh by h(R)5h1(R) for R.0 and
h(R)5h2(2R) for R<0. Then one can write down functionsĥ andb as follows:

ĥ5
1

2RE2R

R

drh~r !,

~25!
J. Math. Phys., Vol. 38, No. 7, July 1997
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b~R!5expS 28pS E
R

`

1E
2R

2` D drr ~h2ĥ!2D .
From that followsĥ(R)5ĥ(2R), b(R)5b(2R) andW(R)5W(2R). From~22! one infers that
d(R)5d(2R) and that impliesg(R)5g(2R). Therefore the system of two first order equatio
~24! can be written as a single first order equation on a ‘‘symmetrized’’ domain2`<R<`,

~]01d]R!h5~h2ĥ!S 8pbRW1
g

RD1
bR

2
W8. ~26!

That is the central equation of this paper; together with definitions ofh, ĥ, b, d andg it encodes
the all information carried by Einstein equations coupled to the scalar field. Notice
*2`

` drh(r )5*0
`dr(h(r )1h(2r ))5*0

`dr] rf̃50; therefore initial datah0 of compact support
must satisfy the condition

E
2`

`

drh050. ~27!

One can easily show, using relations between metric functions and their symmetry propertie
if ~27! holds true then*2`

` drh(r ,t)50 in the existence interval of a solution.
In Theorem 6 of Section IV we formulate and then prove the local existence of solutio

~26!. Its uniqueness is shown in Theorem 8. Let us point out that the above equation incorp
some of the sigma models~but let us point out that the local existence result of Theorem 6 d
not apply to them!. The description of self-gravitating Yang–Mills SU~2! potentials reduces als
to a single equation of a similar form.

III. ESTIMATES OF METRIC FUNCTIONS AND OF ĥ (R)

We define Sobolev spaceH1(V)—as a completion ofC1-functions in the norm
i f iH1(2`,`)5(*2`

` dR(]Rf )
2)1/2. This section contains a number of estimates that will be u

later in order to prove the local existence and uniqueness of solutions.
Define

ĥ~R!5
1

2RE2R

R

h~r !dr. ~28!

Lemma 1: Let h(R)eH1(2`,`), h(r ) be of compact support withh(r )50 for any
ur u.R0 and let 1.d.0. Thenuhû<CihiH1(2`,`) , ĥ(R)eL2(0,̀ ) and

ir d] r ĥiL2~2`,`!<
2R0

d

d
ihiH1~2`,`! .

Proof:
Step 1:

uh~R!2h~0!u<ihiH1~2`,`!

R1/2

A2
,

uh~0!u<ihiH1~2`,`!

R0
1/2

A2
.
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Proof of Step 1: h(r ) is of classH1(2`,`), that isheC1/2. Now we have

uh~R!2h~0!u5U E
2R

R

dr] rh~r !U<i] rhiL2~2`,`!

R1/2

A2
<ihiH1~2`,`!R

1/2,

where the first inequality follows from the Schwartz inequality. For a functionh vanishing outside
a regionuRu<R0 one obtainsh(0)<ihiH1(2`,`) (R0

1/2/A2. That proves Step 1.

Step 2: uĥ(R)2h(0)u<R1/2ihH1
(2`,`) .

Proof of Step 2:
Notice the identity

uĥ~R!2h~0!u5U 12RE2R

R

~h~r !2h~0!!drU,
and use the estimation of Step 1. That immediately yieldsuĥ(R)2h(0)u< (R1/2/3A2)
3ihiH1(2`,`) .

Step 3:

u]Rĥ~R!u<2R21/2ihiH1~2`,`! .

Proof of Step 3:From ~28! one gets

]Rĥ~R!5
21

2R2E
2R

R

dr~h~r !2h~0!!1
1

2R
~h~R!1h~2R!22h~0!!.

Using Step 1 and performing simple integrations, one arrives at

u]Rĥ~R!u<
2

AR
ihiH1~2`,`! .

Proof of Lemma 1: Estimations follow directly from definitions of corresponding norms a
from Steps 1–3. One has to use the assumption that a support ofh(R) is finite, which gives

ĥ(R)5 C/R outside the support ofh; that ensures theL2 integrability of ĥ.
Define

^h&5h2ĥ. ~29!

Lemma 2:Let h satisfy conditions of Lemma 1 and 1.h.0. Then

u^h&u<CR1/2ihiH1~2`,`! ,
~30!

iRh]R^h&iL2~2`,`!<CihiH1~2`,`! .

Proof of Lemma 2:Notice that ^h&(R)5h(R)2h(0)2 (1/2R) *2R
R dr(h(r )2h(0)) where

uh(r )2h(0)u is bounded by Step 1. That gives the first estimate of Lemma 2.
The second, integral, bound on

]R^h&5]Rh2]Rĥ,

follows immediately from Lemma 1.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Define

b~R!5expS 28pS E
R

`

1E
2R

2` D dr 1r ^h&2D .
Lemma 3:Let h satisfy conditions of Lemma 1. Then

~i! e2CihiH1(2`,`)
2

<b(R)<1,
~ii ! u]Rb(R)u<CihiH1(2`,`

2 and]Rb(R)uR5050,

with C’s being some constants depending on the support ofh(R).
Proof of Lemma 3:
~i! Obviouslyb(R)<1. The lower bound of~i! follows from the first estimate of Lemma 2 o

^h&. Invoking to the finiteness of the support ofh(r ) andĥ(r ), one arrives at the sought inequa
ity.

~ii ! Direct differentiation ofb with respectR yields

d

dR
b~R!5

8p

R
~^h&2~R!1^h&2~2R!!b~R!.

The first estimate of Lemma 2 yieldsu]Rb(R)u<CihiH1(2`,`)
2 . From Lemma 2 we have

u^h(R)&u<R1/2ihiH1(2`,`) ; ]Rb(R) is continuous forRÞ0 and, being an antisymmetric functio
of R, must vanish at the origin. That gives~ii !.

Define

g~R!5
1

RE0
R

bdr2b~R!2
8p

R E
0

R

drr 2bW~ ĥ!. ~31!

Lemma 4:Let h satisfy conditions of Lemma 1. Assume thatuW(x)u can be bounded from
above by a polynomial ofk-th order inx with constant coefficients, andW(x)>0. Then

~i! ug(R)u<CR(ihiH1(2`,`
2 1ihiH1(2`,`

k ),

~ii ! u]Rg(R)u<C(ihiH1(2`,`
2 1ihiH1(2`,`

2k ),

whereC changes from a line to line, but it depends only onR0 and coefficients ofW.
Morever,]Rg(0)50.

Proof of Lemma 4:is straightforward and consists of applying hitherto proven estimate
order to bound the derivatives ofg in question.

~i! Notice that

ug~R!u5U 1RE0R~b~r !2b~0!!dr2b~r !1b~0!2
8p

R E
0

R

drr 2bW~ ĥ!U5U 1RE0RdrE0r ds]sb~s!

2E
0

R

ds]sb~s!2
8p

R E
0

R

drr 2bW~ ĥ!U<CR~ ihiH1~2`,`!
2 1ihiH1~2`,`

k !, ~32!

where in the last line we used the estimation~ii ! of Lemma 3.
Using the mean value theorem, one can write the second line of the preceding equatio

2E
uR

R

] rbdr2
8p

R E
0

R

drr 2bW~ ĥ!, ~33!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where 1.u.0. From that and from the estimation~ii ! of Lemma 3 one arrives at the secon
estimate of Lemma 4. By antisymmetry and continuity of]Rb we have also]Rg(0)50. That
accomplishes the proof of Lemma 4.

Define

d~R!5g~R!1b~R!;

estimates of derivatives ofd up to first order follow immediately from those ofg andb. Thus we
see the following.

Lemma 5:Let h satisfy conditions of Lemma 1. Assume thatuW(x)u is bounded by a poly-
nomial of kth order inx, andW(x)>0. Then

~i! d(R)<CR(ihiH1(2`,`
2 1ihiH1(2`,`

k ),

~ii ! u]Rd(R)u<C(ihiH1(2`,`
2 1ihiH1(2`,`

2k ),

and ]RduR5050. Above C changes from a line to line, but it depends only onR0 and
coefficients ofW.

IV. THE EXISTENCE OF LOCAL CAUCHY SOLUTIONS

Definition: We defineH1,4(a,b) as a completion of classicalC1 functions f of compact
support in thei] r f iL4(a,b) norm.
In the case ofa,b,` we have the inclusionH1,4(a,b),H1(a,b).
We will frequently use the following technical result.

Proposition A:Let f be a continuous function of a compact supportV5@2R0 ,R0#3(0,T)
and A, B some constants~depending onR0 andT) such that for all 0<t<T,

~i! i f iH1([2R0 ,R0])
,A.

~ii ! i]0f iL2([2R0 ,R0])
,B.

Then there exists a constantC depending only onR0 andT such that

u f ~R1 ,t1!2 f ~R2 ,t2!u<C~ uR12R2u1/21ut12t2u1/2!.

For the proof see Ref. 9. Below we shall outline its main points. A part of the above stateme
‘‘equal time inequality,’’ can be proven in a way similar to that employed in Step 1. Similarl
before one shows thatu f (R1 ,t)2 f (R2 ,t)u<i f iH1

AuR12R2u. The compactness of the support

f yields then supu f u<i f iH1
Au2R0u<AAu2R0u. Now notice that for any2R0<R1<R2<R0 and

0,t1,t2,T,

E
R1

R2

dru f ~r ,t1!2 f ~r ,t2!u<E
t1

t2E
R1

R2

dru] t f u<B~ t22t1!A~R22R1!; ~34!

we use the Schwartz inequality and the assumption~ii !.
By continuity of f there exists a pointR3 lying between R1 and R2 such that

u f (R3 ,t1)2 f (R3 ,t2)u<B(t22t1)A1/(R22R1). Notice that u f (R1 ,t1)2 f (R1 ,t2)u<u f (R1 ,t1)
2 f (R3 ,t1)u1u f (R3 ,t2)2 f (R1 ,t2)u1u f (R3 ,t1)2 f (R3 ,t2)u; employing the ‘‘equal time’’ in-
equality for the functionf at fixed timest1 and t2 and choosing (t22t1)/T5(R22R1)/2R0 one
arrives at u f (R,t1)2 f (R,t2)u<CAt22t1 for any Re(R1 ,R2) . Combining that result with the
‘‘equal time’’ inequality one accomplishes the proof of Proposition A.

Theorem 6: Let the initial data of equation~26! on an initial sliceS0 be of compact support
infS0

d.0 and
~i! h0eH1,4(2`,`); assume also that
~ii ! *2`

` drh0(R,t)50. Let 0<W(x) and uW8(x)u be bounded by a polynomial with consta
coefficients of orderk. Then there exists a local Cauchy solution of~26!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Remark:Theorem 6 implies the existence of a foliationS t for someT(0<t,T), with
h1 ,h2eH1(0,̀ ), and with no minimal surfaces on any leafS t . Indeed, havingh(R,t), one
determines all metric functions and the scalar field itself—see Section II for correspondin
mulae. That minimal surfaces are absent in a local evolution follows from the proof, wher
positivity of d is proven. The existence of a local evolution of~26! can be proven without the
assumption~ii !; the latter is needed to make the identification with the Einstein-scalar field e
tions ~see a remark at the end of Section II!.

Proof: Let us notice that Eq.~26! is nonlocal and integro-differential. We prove its solvabili
from first principles.

In the part A of the proof we consider a regularized equation inH1. The existence of a loca
in time solution is proven in a standard way, using a method of successive approximation
then the standard compactness method.

In the part B we show that if initial data are inH1,4, then the regularization can be remove
Once again the compactness method ensures the existence of a weakly convergent subs
whose limit is the sought~local in time! solution of the reduced equations~26!.

Part A: Let us define a regularized equation,

~]01d]R!h5^h&S 8pbRW1
guRue

R D1
bR

2
W8, ~35!

where all coefficients are defined as in Section II.~The introduction of the parametere is remi-
niscent of the viscosity method known in the Navier–Stokes equation.! Denote a solution of~35!
by he . Define a sequence of functionshne(t,R) as follows:

h0e~ t,R!5h~ t50, R!

andhne is a solution of

~]01dn21]R!hne5^hn21&S 8pbn21RWn211
gn21uRue

R D1
bn21R

2
Wn218 , ~36!

where

bn~R!5expS 28pS E
R

`

1E
2R

2` D drr ^hn&
2D ,

dn~R!5
1

RE0
R

bndr2
8p

R E
0

R

drr 2bnWn~ ĥne!,

gn~R!5dn~R!2bn~R!, ~37!

ĥn5
1

2RE0
R

dr~hne~r !1hne~2r !!,

^hn&5hne2ĥn .

We use the method of induction to show the existence of a sequence of functions for a sm
nonzero interval of time, such that

ihneiH1~2`,`!<
1

~C*2~4k821!C̃t !1/4k821
, ~38!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where C̃ is the same constant that appears in Eq.~42!, k85sup(1,k) and (C* )21/(4k821)

5ih(t50)iH1(2`,`) . Thus,C̃ andC* are some constants that depend only on initial data,k and
coefficients of the polynomialW.

~i! Stepn50 is trivial. h0 is at leastC
1/2 as a function ofR andt and it obviously satisfies the

bound. Coefficients of~36! areC3/2; then there exists a solutionh1eeC
1/2, by a standard result fo

linear equations10 and Proposition A.
~ii ! Let there exist a solutionhneeH1(2`,`) for somen. One easily infers thathne satisfies

the conditions of the preceding proposition, so thathn is C
1/2 as a function ofR andt. Notice that

dn(t,R)<1. That means that the support ofhn at a time t must be placed within
2R02t,R01t, that is, it remains bounded.

There exists also a short interval of time such thatdn(t,R) is positive, since initially
dn(0,R)5d(0,R).0. We prove that using the induction hypothesis. By direct computation
shows that

]0dn5
28p

R E
0

R

drr 2@Wn]0bn1bnWn8]0ĥn#1
1

RE0
R

dr]0bn ,

and, from the definition ofbn andWn and the approximating equation~36!,

]0bn5216pbnS E
R

`

1E
2R

2` D drr ^hn&FAn~r !2
1

2r E2r

r

d r̃ An~ r̃ !G ,
where

An52dn21]Rhn1^hn&S 8pbn21RWn211
uRuegn21

R D1
bn21RWn218

2
.

One can boundÂn by CR
1/2ihneiH1

x and u]0bn(R)u and u]0dnu by CihneiH1

x , using the estimates

of Lemmae 1–5. (C is a constant that depends only on initial data and may change from lin
line andx is a number depending only onWn .) That shows, using the induction hypothesis on
behaviour of Sobolev norms ofhne , thatbn anddn are nonzero and finite for a sufficiently sma
time t, if their initial values are nonzero.

Then various differentiability properties of^hne&, ĥne ,bn , gn and dn follow immediately
from Lemmae 1–5 and Steps 1–3 of Lemma 1. In particular, the coefficientdn(t,R) is easily
shown to beC3/2 while the right hand side of the approximating equation is certainly at l
C0; that guarantees the existence ofhn11e , thanks to a standard existence theorem for lin
equations as formulated by, for instance, Petrovsky. The boundedness ofW8(ĥne) is controlled
due to estimates ofĥne and the assumption thatW8(x) is bounded by a polynomial inx with
bounded coefficients. We shall show that theH1 norm of hn11,e is bounded by a number tha
depends only on initial data andW; that would mean also that the interval of the existence
hne is bounded from below by a number that does not depend on the indexn. In order to do so,
let us differentiate the equation~35! with respect toR. That gives an equation of the form

~]01dn]R!]Rhn11,e5
d

dRF ^hne&S 8pbnRWn1
gnuRue

R D1
bnR

2
Wn8G2~]Rhn11e!

d

dR
dn . ~39!

Multiplying that equation by (d/dR) hn11e , integrating over the whole real line and integrating
parts, one arrives at
J. Math. Phys., Vol. 38, No. 7, July 1997
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]0
1

2
i]Rhn11eiL2~2`,`!

2 5E
2`

` d

dR
hn11,edRF S d

dR
^hne& D S 8pbnRWn1

gnuRue

R D1
d

dRS bnR

2
Wn8D

1^hne&
d

dRS 8pbnRWn1
gnuRue

R D2
1

2
~]Rhn11e!

d

dR
dnG . ~40!

One can use the estimates of Lemmae 1–5 and Steps 1–3 and eventually arrive at the in

d

dt
ihn11eiH1~2`,`!

2 <Cihn11,eiH1~2`,`!~ ihniH1~2`,`!
4k 1ihneiH1~2`,`!

4 ,!, ~41!

whereC depends only onk and initial data. Introducing a new constantC̃ andk85sup(4k,4),,
one gets the following inequality:

d

dt
ihn11,eiH1~2`,`!<C̃uihneiH1~2`,`!

4k8 . ~42!

Using the induction hypothesis and integrating~42!, one arrives at

ihn11eiH1~2`,`!<
1

~C*2~4k821!C̃t !~1/4k821!
, ~43!

which concludes the proof of the induction hypothesis.~43! shows that the Sobolev norm of eac
function hne is bounded byn-independent number and, that the intervalT of the existence of
solutions of all approximating equations is bounded away from zero by a number th
n-independent, 0,T,C* /C̃(4k821). From the approximating equation and~43! one deduces
that *2`

` dr(]0hn(r ,t))
2<C, whereC is t- andn-independent. Thereforehne satisfies conditions

of Proposition A, which implies that the sequencehne is equicontinuous and equibounded.
Obviously, also*0

Tdt*2`
` drihnei21*0

Tdt*2`
` dru] thneu2<C for someC. Now, the standard

compactness argument shows the existence of a subsequencehnie weakly convergent tohe in
H1(@0,T#3R). hnie is equicontinuous and equibounded, therefore by the Arzela–Ascoli the
it contains a subsequence convergent pointwise to a limithe . he in turn, being a limit of functions
satisfying conditions of Proposition A, must be of classC1/2. The pointwise convergence tohe and
C1/2 continuity of he implies the pointwise convergence ofdn , gn , bn and ĥn to functionals
depending on the limiting solutionhe . Thus the right hand side of~36! tends pointwise to an
expression depending on the weak limithe . We can conclude thathnie tends to a weak~distribu-
tional! solutionhe of the equation~35!.

The norm ofhe is bounded by a constant that depends on 1/e, so it would become infinite
when removing regularization, that is ife→0. We will show, however, that there exists a sub
of initial data which gives rise to an evolution that survives the removal of regularization.

Part B: Let initial data be of of compact support and]RheL4(2`,`); that implies also that
heH1(2`,`). Thus, by the result proven in Part A, there exists a local evolution. Now one
show that]RheeL4(2`,`) for some time 0,t,T.

One easily shows that in such a case all estimates of Lemmae 1–5 improve by a
R1/4. We have, in particular,

u]R^he&u<C
i] rh0iL4~2`,`!

R1/4 , ~44!

for any t,T and withC being ~possibly! e-dependent.
J. Math. Phys., Vol. 38, No. 7, July 1997
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In such a case we can improve, however, the statement of Lemma 2, to get the follow
Lemma 7:Let ] rheeL4(2`,`). Then a solution of the regularized equation satisfies

following estimates:

u^he~ t !&u<CR3/4i] rhe~ t !iL4~2`,`! ,
~45!

iRh21/2]R^he~ t !&iL2~2`,`<CiheiH1~2`,`! ,

whereC is e-independent.
With this new estimate one can show thatH1,4 andH1 norms ofhe remain uniformly bounded

for e→0. Take a sequence ofe i tending to 0 asi→`; there exists a subsequence ofhe i
that is

weakly convergent inH1 to a limit h; that is the sought solution of the equation~35!, as can be
shown by repeating arguments used in the final part of Part A. Also,i]RhiL4,C. That accom-
plishes the proof of Theorem 6.

V. UNIQUENESS OF SOLUTIONS

Theorem 8: Under conditions of Theorem 6, ifW andW8 are Lipschitz continuous, ther
exists a unique Cauchy solution of the reduced equation~26!.

Proof: Let h1 andh2 be two solutions satisfying given initial data of classH1ùH1,4. We have
h1(t50,R)5h2(t50,R).

The suffix ‘‘1’’ or ‘‘2’’ means that a function in questionb, g, d, ĥ, ^h& depends onh1 or
h2 , respectively. Notice that̂f &1^g&5^ f1g&. We have

b1~R,t !5expS 28pS E
R

`

1E
2R

2` D ^h1&
2

r D 5b2expS 28pS E
R

`

1E
2R

2` D ^h11h2&^2h11h2&
r D .

~46!

We can prove the following.
Lemma 9:Under the conditions of Theorem 8,

US E
R

`

1E
2R

2`

dr
^h11h2&^2h11h2&

r U<Cih12h2iL4~2`,`! . ~47!

Indeed, using several times the Schwarz inequality, the inequality (a2b)2<2a212b2 and the
improved~for hieH1,4) estimate of Lemma 7,

u^h&~R!u<CR3/4i] rhiL4~2`,`!
2 ,

one bounds the integral of~47! by

F E
2`

`

dr
^h11h2&

2

r 2
drG1/2F E

2`

`

dr^h12h2&
2drG1/2

<CF E
2`

`

dRS ~h12h2!
21

1

4R2F E
2R

R

~h12h2!drG2D G1/2<Cih12h2iL4~2`,`! . ~48!

In the above calculation we used the finiteness of the support of initial data; the constC
depends on the support of initial data and onH1,4 norms ofh1 andh2 .

The above lemma yields, for small values ofih12h2iL4(2`,`) , the following estimation:

ub1~R,t !2b2~R,t !u<Cih12h2iL4~2`,`! . ~49!
J. Math. Phys., Vol. 38, No. 7, July 1997
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In a similar way one shows that

u~ ĥ12ĥ2!u<
C

R1/4ih12h2iL4~2`,`! , ~50!

and ~using Lipschitz continuity!

uW~ ĥ1!2W~ ĥ2!u<
C

R1/4ih12h2iL4~2`,`! . ~51!

An analogous relation holds for the differenceuW8(ĥ1)2W8(ĥ2u.
From ~49!, ~22! and theW andW8 estimates, one shows that

ud1~R,t !2d2~R,t !u<Cih12h2iL4~2`,`! . ~52!

Similarly one arrives at

ug1~R,t !2g2~R,t !u<Cih12h2iL4~2`,`! . ~53!

Above and belowC is a certain constant that changes from line to line, independent oft and
R.

Substracting the reduced equations forh2 from that forh1 and using the above estimates o
the right hand side of the substracted equations, one gets~belowDh5h12h2)

~]01d1]R!Dh1~d12d2!]Rh2<CuDhu1~ u^h1&u1uh2u!iDhiL4~2`,`!); ~54!

multiplying ~54! by (Dh)3, once again estimating the differenceud12d2u by iDhiL4(2`,`) and
integrating by parts, one eventually arrives at the inequality

]0iDhiL4~2`,`!
4 <CiDhiL4~2`,`!

4 ; ~55!

that impliesiDhiL4(2`,`)50, since att50, Dh50. The last inequality holds true for sufficientl
small t. h1 and h2 are continuous functions, thereforeh15h2 at least for sufficiently small
intervals of time. Iteration of that reasoning leads to the conclusion that if there exists a so
of the reduced equation, then it is unique in theL` norm.

That means, in turn, that the possible nonuniqueness can be seen on the level of first
tives of h and, even if there exist two solutions with different derivatives, then stillg15g2 ,
ĥ15ĥ2 , d15d2 andg15g2 up to their first derivatives.

Using that one can easily show that also theH1 norm of the differenceDh must vanish. In
fact, letdh5]RDh; from the reduced equation one gets

]0dh52]R~ddh!1dhF, ~56!

whereF denotes terms which do not involvedh. Integrating~56! overR one gets, after employing
various estimates proven in the first part of this paper,

]0idhiL2~2`,`!<CidhiL2~2`,`! ;), ~57!

that yields idhiL2(2`,`)50, from the Gro¨nwall inequality, since at t50 we have
idhiL2(2`,`)50. Combining that with the already proven fact, we conclude that the solutio
the reduced equation is unique in the sense ofH1 . A similar reasoning gives the uniqueness
H1,4. That ends the proof of Theorem 8.
J. Math. Phys., Vol. 38, No. 7, July 1997
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VI. EXTERNAL CAUCHY PROBLEM

It occurs that that there are two main problems in proving the global existence .
One is due to difficulties in estimating needed quantities at the origin. That we om

considering a sort of an external Cauchy evolution; we will investigate whether initial da
Einstein-scalar field equations give rise to an evolution that exists globally outside any out
null hypersurface originating at an initial space-like hypersurface.

The other is the possible emergence of minimal surfaces during an evolution; that would
that equations become singular. We will show that this does not happen; that fact is well k
and it shows that polar gauges are deficient in the sense that they do avoid regions of spa
with minimal surfaces; if initially minimal surfaces are absent, then they cannot develo
Cauchy slices satisfying the condition trK5Kr

r during a finite evolution, assuming that a domina
energy condition is satisfied. The proof of this claim goes as follows.
VR8

out
5@(R,t):uRu>Rin ,dRin /dt5d, Rin(t50)5R8.0] be a patch of hypersurfaces that evol

from an initial sliceSR8
out ~which is free of minimal surfaces! and letSR0t

out be the first slice with a

minimal surface located at an areal radiusRm . Rin(t) describes the location of the free inn
boundary. By the regularity of the evolution, the four-metric is at leastC1 on that piece of the
spacetime; thus there exists a null ingoing geodesic joining the four-point (Rm ,t) with a point
(R8.Rm ,0) lying on the initial slice. Along that geodesic the mean curvaturep decreases from an
initial nonzero valuep0 to 0. The change of the mean curvature along the ingoing null geode
given, however, by one of the Raychaudhuri equations~that can be obtained, in that case,
manipulating the evolution Einstein equation and the Hamiltonian constraint!. We use the geode
sic coordinates with the line elementds252N2dt21dl21R2dV2. One can find, after some
calculations, that

~] t2N] l !~pR!58pNR~ j1r!1
N

4R
~p2R224!; ~58!

using now the energy conditionu j u<r, definition of the lapseN and the fact thatR is lowering
along the ingoing null ray, one gets the inequality

~] t2N] lR!~pR!>2
pRb~R!

2Rm
>2

pR

2Rm
. ~59!

In the last line I used the estimationb(R)<1. Equation~59! yields

pR> inf
S
R80
out

~pR!e2t/2Rm, ~60!

which must be nonzero fort,`. Thus we obtained a contradiction, that enforces us to accept
polar gauge slicings cannot penetrate regions with minimal surfaces. Notice also that~60! gives a
lower bound for the minimal value of mean curvature on subsequent Cauchy slices; that w
used later.

Now we state the main result of this section.
Theorem 10:Take a partSR85@(R,t50):uRu>R8,# ~with R8>0) of the initial hypersurface

S0 . Let initial data of equation~26! on an initial slice be of compact support, infSR8
d.0, the mass

functionm(R8)<m @with h(R8)5h(2R8)50 if m(R8)5m] and
~i! h0eH1,4(SR8); assume also that

~ii ! (*2`
2R81*R8

` )drh0(R,t)50. Let 0<W(x) and uW8(x)u be bounded by a polynomial with
constant coefficients of orderk. Then there exists a global Cauchy solution inVR8

out.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Theorem 10 has been proven in Ref. 11, under stronger differentiability conditions,heH2 .
Below we present a modified proof that bases on the results of preceding sections.

First of all, we have to write down the reduced problem in a modified~but equivalent! form.
While keepingb in the form ~25!, we choose the representation~21! of d, namely,

d~R!5
~pR!2

4
b~R!5S 12

2m

uRu
1
2m~R!

uRu Db~R!, ~61!

wherem is the asymptotic mass and

m~R!54pE
R

`

drr 2r54pS E
R

`

dr2E
2R

2`

dr D S d~r !

b~r !
^h&21

r 2

2
W~ ĥ! D . ~62!

It is convenient to deal withĥ expressed as follows:

ĥ~R!5
21

2RS E
2`

2R

1E
R

` D h~r !dr, ~63!

which is equivalent to the expression~25! used before, if*2`
` drh(r )50. With those forms of

b,d,h andg it is obvious that solutions of the reduced equation~26! outside any given outgoing
null conedR8 do not depend on its interior. We use that fact in proving Theorem 10.

Namely, we smoothly extend initial data acrossR8.0 to vacuum, keeping condition
*2`

` h(r )dr50,m5m(0) andd.0, to geth(r )50 for ur u,R82h for someh.0; it is easy to
see that there exist extensions which do not change significantly the requiredH1 andH1,4 Sobolev
norms. Therefore we may use the local result of Theorem 6 to infer the existence of a
solution; notice that according to the preceding remark, outside an outgoing null conedHR8
~including the cone itself! defined bydR/dt5d,R(t50)5R8, the solution is independent of th
extension.

There is a number of useful local estimates; obviously 0,b<1, 0,d<1, g<2 and
m(R)<m. We need a bound onĥ. That is proven in the following.

Lemma 11:Under conditions of Theorem 6,

uĥ~R!u<
Am

A4pRS infR8>R

d

b D 1/2. ~64!

Proof of Lemma 11:~Assume, for simplicity,R.0.)

We haveĥ(R)52*R
`dr] r ĥdr5(*R

`1*2`
2R)(^h&/r ) dr; using the Schwartz inequality, we ge

uĥ~R!u<F S E
R

`

1E
2`

2RD dr^h&2E
R

`

dr
1

r 2G1/2,
which is bounded by

1

R1/2~ infR8>R ~d/b!!1/2F S ER`dr1E
2`

2RD d~r !

b~r !S ^h&21
1

2
W~ ĥ! D G1/2.

The integral term is bounded from above bym(R)/4p which in turn is not bigger thanm/4p. That
ends the proof of Lemma 11.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Take now the patch of slices of constantt of VR8
out. It is easy to find, manipulating with the

reduced equation~26! that the rate of change of theLp norm ofh ~for any even value ofp) along
the external foliation is bounded,

d

dt
ihiLp~S

R8t
out

!<CihiLp~S
R8t
out

! , ~65!

whereC depends on the above local estimates.C can be infinite if minimal surfaces appear, b
that cannot happen fort,`, as proven at the beginning of this section. Therefore the growt
Lp norm is controlled. A similar reasoning gives a control also ofH1 andH1,4 norms.

The bootstrap argument yields now immediately the global existence. Indeed, letT be the
maximal existence interval of a solution in the exterior region: thus at anyT2h all norms are
finite. By using the above reasoning one shows that relevant norms must be finite att5T, which
leads to contradiction. That ends the proof of Theorem 10.

Remark on smoothness:In the external region one can reduce the smoothness requiremen
h from H1,4 to H1 . Indeed, if initial data vanish on a compact neighborhood of the symm
center on the initial hypersurface, then there exists a compact domain@2R(T),R(T)#3@0,T# with
null data. In such a case the regularization procedure of Section IV is not necessary and o
show the existence of local solutions inH1 . In the globalization part presented above one u
only those local extensions that are null close to the originR50; therefore also the globa
existence extends toH1 . That reasoning allows one to conclude that Theorem 10 holds true
for matter with self-interactionW that is singular at the origin but satisfies the remaining bou
edness conditions. Thus there exists a global evolution in an external region for Yang–Mills~2!
fields @with W5 (12f2)2/2R2] and skyrmionic SU~2! fields @with W5 sin2(f)/2R2].

Remarks on the free boundarydHR8 : It is easy to notice@see~62!# that outside the Schwarzs
child region,R8>2 m, minimal surfaces must be absent (d or pRmust be strictly positive!. In that
case the inner boundarydHR8 of VR8

out escapes to spatial infinity,uRin(t)u increases without bound
Therefore initial data posed outside the Schwarzschild radius always give rise to global ex
solutions.

In the alternative case, with the initial hypersurface entering the interior of the Schwarzs
sphere, we may consider two situations.

~i! A rather trivial case, when the inner boundarydR8 of some of the future Cauchy slice
crosses~at some finitet8) through the sphere located at the areal radius 2 m; in that case we
the global existence, with the conclusion, thatdHR8 escapes to spatial infinity.

~ii ! The inner boundary ‘‘freezes’’ close to a sphere of an areal radiusR,2 m.
We will investigate the second point in more detail. One can easily show that the area

outermost apparent horizon cannot decrease~see, e.g., Ref. 12!; in fact it has to increase wheneve
matter ~satisfying the strong energy condition! crosses through the horizon; that has to mo
acausally outwards. Asymptotically the areal radius of the apparent horizon becomes eq
2mB , wheremB is the Bondi mass of the black hole. Take a partS r0

out of the initial hypersurface
that does not include minimal surfaces. Then data onS r0

out give rise to a local evolution, accordin
to the local Theorem 6. The global evolution prolongs until the free inner boundary freez
some areal radiusR,2 m, close to the~anticipated! minimal surface. In such a case one can ta
a slightly smaller initial open endS r 8

out
,S r

out; that evolves to a spacetime that freezes at a la
time than the previous one. Continuing that proceduread infinitumone finds finally a smalles
open end such that the areadH of a null inner boundarydR8 a corresponding spacetimeH still
stabilizes at a value 4pRB

2 . dR8 is an event horizon and half ofRB is the Bondi mass. Thus ther
exists a solution for that exterior regionSR8t

out whose inner boundary coincides with an eve
horizon that is asymptotic to a minimal surface located somewhere atR<2 m. That solution is
global in the sense that it does exist for arbitrarily larget, but on the other hand it does not cov
a part of the physical spacetime which is hidden behind an apparent horizon.
J. Math. Phys., Vol. 38, No. 7, July 1997
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VII. GLOBAL EXISTENCE AND CENTRAL INTEGRAL SINGULARITIES

Theorem 12: Assume conditions of Theorem 6. Assume that there exists a small cyl
VR05@(R,t):R<R0# such that a contribution toH1ùH1,4 norm of h from a spatial section
t5const,V t

R0 , of VR0 is uniformly bounded,ihiH1,4(V t

R0),C, whereC is t-independent. Then the

Cauchy evolution of the Einstein-scalar field system exists globally.
Proof: In the first part of the proof we will use the global existence of solutions of the rel

Stefan problem. Using Theorem 10, the proof of Theorem 12 proceeds as follows. TakeVR0/2
out ; by

the proof of Theorem 10, the norm ofh in VR0/2
out is bounded by at most exponentially increasi

function of time,ihiH1(VR0/2,t
out ),C0e

ct. Thus, taking into account the uniform bound inV t
R0 , we

haveihiH1(2`,`),` at a timet5R0/2. Now, take a portionS t,R0/2
of the Cauchy slice at a time

t; using the same reasoning as before, we can extend the existence period fromR0/2 into R0 .
Iterating that reasoning we infer the global existence.

If we assume a condition stronger than in Theorem 12, namely, that~keeping the same
notation!

sup
0,R0,2 m

F 1

R0
1/2ihi

H1,4~V
t

R0!

2 G,C,

whereC is small enough then the spacetime is geodesically complete. For definiteness, co
the massless scalar fields; thenC5 1/48p. Indeed, from~61! and ~62! one obtains

d~R!5b~R!S 12
8p

R E
0

R

drS d~r !

b~r !
~^h~R!&21^h~2R!&2! D

>b~R!S 12
1

48R1/2p
ihi

L4~V
t

R0!

2 D
>b~R!S 12

1

48R1/2p
ihi

H1,4~V
t

R0!

2 D.0. ~66!

The first inequality follows from ^h&2<2h212ĥ2, *R
Rdrh2dr<2R1/2ihiL4(2R,R) and

*R
Rdrĥ2dr<R1/2ihiL4(2R,R) . ~66! means that all time-like and null-like geodesics have infin
proper or affine length.

Remark:Theorem 12 essentially states that if there is no central singularity~understood as a
portion of spacetime that gives infinite contribution to theH1,4 norm of h), then there is no
singularity at all. That is an accordance with a corresponding result proven by Rein, Renda
Schaeffer4 in the case of the Vlasov–Einstein system.

That conclusion is consistent with an analogous result in Ref. 13, proven entirely i
framework of initial data formalism, which shows the absence ofL2 singularities on any Cauchy
slice with a regular trace of extrinsic curvature and with~at most! a conical singularity in the
symmetry center.

VIII. NAKED SINGULARITIES

We will give an example of an initial configuration that gives rise toH1,4 evolution and that
is characterized by a pointwise curvature singularity at the symmetry center. That singulari
be seen by external observers placed at spatial infinity. Other examples of naked singular
various material systems can be found in Ref. 14.

As a material model we choose a scalar field with the nonlinear self-interaction potent
J. Math. Phys., Vol. 38, No. 7, July 1997
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W~f!5sin2~f!. ~67!

Assume thath(R)50 outside someuR0u, h(R)5le(R)uRua for uRu,R0 and
3
4,a,1 @where

e(x)51 for x.0 and21 for x,0], with a smooth transition in between. Thenĥ vanishes
identically in the initial hypersurface,b(R,t50)5e2 (8pl2/a) ((R0)

2a2R2a)>e2 (8pl2/a) (R0)
2a
and

d(R)5 1/R*0
Rb(r )dr>e2 (8pl2/a) (R0)

2a
. The energy density r at t50 is equal to

4p (d/R2b) h2 and it is divergent likeR2212a at the origin. The Hamiltonian constraint~2! yields
now that the three-dimensional Ricci scalar(3)R is also divergent likeR2212a.

TheH1,4 norm ofh is finite and it is merely proportional tol/(4a23). Therefore there exists
an evolution in an intervalT. From the local analysis of Section IV one obtains

ihiH1,4~ t !
<

1

~C*2~4k821!lCt!1/~4k821!
, ~68!

wherek8>1, (C* )1/(4k821)51/ihiH1,4(t50) andC is a certain constant. Therefore the smaller
l, the bigger the existence intervalT.

By differentiation of the metric functiond one obtains

]0d5
28p

R E
0

R

drr 2@W]0b1bW8]0ĥ#1
1

RE0
R

dr]0b,

and, from the definition ofb andW and the reduced equation~26!,

]0b5216pbS E
R

`

1E
2R

2` D drr ^h&FA~r !2
1

2r E2r

r

d r̃ A~ r̃ !G ,
where

A52d]Rh1^h&S 8pbRW1
g

RD1
bRW8

2
.

One can boundu]0b(R)u byCRihiH1,4

k8 and then alsou]0du byCihiH1

k8 , using estimates analogou

to those of Lemmae 1–5. Combining that with~68! yields

k[ inf
R

d~R,t !>e2~8pl2/a! ~R0!2a
2C~l!T, ~69!

whereC(l)→0 for l→0 andt<T.
Let l be so small as to have 2m/k,T. Then~sinced is at leastC1) there exists a solution

R(t) of the null geodesic equation,

dR

dt
5d, ~70!

with the initial valueR(0)50 such thatR(T).2m. The exterior of the cylinderR52m is
geodesically complete, therefore the null geodesicR(t) reaches any symptotic observer. Hence
established that the central curvature singularity is naked.

A closer investigation shall reveal that this singularity is not strong in the sense of Tipler~Ref.
15!.

That example suggests that the concept ofpointwise singularitiesshall be replaced by a clas
of quasilocal (integral) singularities. The latter are understood as those local singularities tha
J. Math. Phys., Vol. 38, No. 7, July 1997
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characterized by infinite values of some quasilocal~integral! quantities ~e.g., some Sobolev
norms!. That notion of a singularity seems to be more natural than the idea of strong singula
since quasilocal quantities can be directly related to a quantitative description of the C
evolution. Consequently, the concept of the cosmic censorship shall be accordingly reform

ACKNOWLEDGMENTS

This work is supported by the KBN Grant No. 2PO3B 090 08.
The author is grateful to Konstanty Holly and Jan Stochel from the Institute of Mathem

of Jagellonian University and Alan Rendall from AEI in Potsdam for discussions, advice
useful comments.

1Y. Choquet-Bruhat,Gravitation: An Introduction to Current Research, edited by L. Witten~Wiley, New York, 1962!, p.
130.

2D. Christodoulou and S. Klainermann,The Global Nonlinear Stability of the Minkowski Space~Princeton University
Press, Princeton, 1993!.

3D. Christodoulou, Commun. Math. Phys.105, 337 ~1986!; 106, 587 ~1987!; 109, 613 ~1987!; Ann. Math. 140, 607
~1994!.

4G. Rein, A. D. Rendall and J. Schaeffer, Commun. Math. Phys.168, 467 ~1995!.
5R. Penrose, Riv. Nuovo Cimento1, 252 ~1969!; Seminar on Differential Geometry~Princeton University Press, Princ
eton, 1982!, pp. 631–668.

6V. Moncrief and D. Eardley, Gen. Rel. Grav.13, 887 ~1981!.
7E. Malec, in preparation.
8R. Wald,General Relativity~Chicago University Press, Chicago, 1984!.
9S. K. Godunov,Uravneniya Matematiceskoj Fiziki~Nauka, Moscow, 1979! ~in Russian!.
10I. G. Petrovsky,Lectures on Partial Differential Equations~PWN, Warsaw, 1955! ~that is in Polish; there are also
numerous Russian and English editions!.

11E. Malec, Class. Quantum Grav.13, 1849~1996!.
12E. Malec and N. O´ Murchadha, Phys. Rev. D49, 6931~1994!.
13E. Malec and N. O´ Murchadha, Phys. Rev. D50, R6033~1994!.
14D. Christodoulou, Commun. Math. Phys.93, 171~1984!; R. P. A. C. Newman, Class. Quantum Grav.3, 527~1986!; B.
Waugh and K. Lake, Phys. Rev. D38, 1315~1988!; A. Ori and T. Piran, Phys. Rev. D42, 1068~1990!; I. H. Dvivedi
and P. S. Joshi, Class. Quantum Grav.9, L69 ~1992!; P. S. Joshi and I. H. Dvivedi, Commun. Math. Phys.146, 333
~1992!; K. S. Virbhadra, S. Jhingan and P. S. Joshi, ‘‘Nature of singularity in Einstein-massless scalar theory,’’
preprint, 9512030, 1995.

15F. J. Tipler, C. J. S. Clarke and G. F. R. Ellis,General Relativity and Gravitation, edited by A. Held~Plenum, New York
1980!, p. 97.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



black
e

y, the
as two
rmine
to use
rty of
oulomb
ctions.

wave

ilar to
roidal
n
ctions.
kolsky

esting
rms of
ns up
ven in
ce
can be
wave

¬¬¬¬¬¬¬¬¬¬
Integral equations of fields on a rotating black hole
Takahiro Masudaa) and Hisao Suzukib)
Department of Physics, Hokkaido University Sapporo, Hokkaido 060, Japan

~Received 8 July 1996; accepted for publication 10 January 1997!

It is known that the radial equation of the massless fields with spin around Kerr
black holes cannot be solved by special functions. Recently, the analytic solution
was obtained by use of the expansion in terms of the special functions, and various
astrophysical application have been discussed. It was pointed out that the coeffi-
cients of the expansion by the confluent hypergeometric functions are identical to
those of the expansion by the hypergeometric functions. We explain the reason of
this fact by using the integral equations of the radial equation. It is shown that the
kernel of the equation can be written by the product of confluent hypergeometric
functions. The integral equation transforms the expansion in terms of the confluent
hypergeometric functions to that of the hypergeometric functions and vice versa,
which explains the reason why the expansion coefficients are universal. ©1997
American Institute of Physics.@S0022-2488~97!01806-9#

I. INTRODUCTION

One of the remarkable features of the Kerr black hole, which is known to be a unique
hole solution with no electro-magnetic charge,1,2 is that the gauge invariant perturbation of th
spin 0,3 the 1/2 fields,4 the electromagnetic fields,4 the gravitino5 and the gravity4 can be treated by
separable equations called Teukolsky equations.4 It should be noted that Whiting6 provided an
analytic proof of the stability of the Kerr black holes by using these equations. Unfortunatel
Teukolsky equation cannot be solved by any popular special functions since the equation h
regular singular points at horizons and one irregular singular point at infinity. In order to dete
the physical quantities such as the absorption probabilities of black holes, we usually had
numerical integration of the equation. However, for the purpose of investigating the prope
the scattering data, it seems useful to provide analytic solutions as has been achieved for C
scattering. These may be used as starting points of the perturbation for the quantum corre
One of the physical applications is the absorption coefficients of the black holes.7,8 Recently, the
analytic methods have been getting a powerful tool even in the field of the gravitational
astrophysics.9–12

The technique for analyzing this type of equation is quite old because an equation sim
the Teukolsky equation appeared when we consider the wave function in terms of sphe
coordinates, which is known to be spheroidal wave equation.13,14The solution of the equation ca
be expanded either by the hypergeometric functions or by the confluent hypergeometric fun
Therefore it is natural that similar expansions has been considered even for the Teu
equation.15,7,8

Regarding the structure of the expansion coefficients of the Teukolsky equation, an inter
observation was given in Refs. 7 and 8 which showed that the expansion coefficients in te
the hypergeometric functions are identical to those by the confluent hypergeometric functio
to re-definition of the coefficients. This universality of the expansion coefficients appeared e
the case of the spheroidal wave functions.13,14 The wave function of three dimensional flat spa
is separable in the spheroidal coordinates. The radial equation and the angular equation
identified by some change of variables, which can be identified as a single spheroidal

a!Electronic address: masuda@phys.hokudai.ac.jp
b!Electronic address: hsuzuki@phys.hokudai.ac.jp
0022-2488/97/38(7)/3669/10/$10.00
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equation. The angular equation is usually expanded by Legendre functions whereas the
equation is expanded by Bessel functions. It turns out that the expansion coefficients are id
up to some normalization factor. The reason was explained by use of the fact that the
equation and the radial equation of spheroidal wave equation are connected by an integra
tion, because of which the coefficients are identical up to a normalization factor.13 This fact
indicates that there might be some transformation which connects these expansions even
Teukolsky equation. However, we cannot obtain the integral equation by a simple generali
of the spheroidal functions because the construction of the kernel in the case of spheroida
tions crutially depends on the fact that the original space is just a three dimensional flat sp
the case of the Teukolsky equation, we cannot construct any simple system even if we as
any angle variables. Therefore, the above construction cannot be applied. Instead of conside
analog of such spheroidal wave functions, we treat the equation as an analog of Heun’s equ16

Heun’s equation16 has four definite singular points in the equation and Teukolsky equation ca
considered as a confluent limit of Heun’s equation.17 We will use a principle used for the con
struction of the integral equation of the Heun’s equation.18 By constructing the integral equatio
for the Teukolsky equation, which can be regarded as a confluent analog of the kernel of the
equation, we will show that the expansion coefficients are universal.

In the next section, we review the analytic expansion of the Teukolsky equation. Ther
basically three types of expansions which cannot be connected by the analytic continuatio

In Sec. III, we will construct a integral equation of the Teukolsky equation. It will be sho
that the integral kernel can be written by a product of the confluent hypergeometric functio

In Sec. IV, it will be shown that these expansions can be connected by the integral tra
mation, which implies that the expansion coefficients are universal.

Section V is devoted to discussions.

II. ANALYTIC EXPANSIONS OF THE TEUKOLSKY EQUATION

In the Boyer–Lindquist coordinates and in units such thatc5G51, the Kerr metric is written
as

ds25S 12
2Mr

S Ddt21S 4Marsin2u

S Ddtdf2S S

n
Ddr2

2Sdu22sin2uS r 21a21
2Ma2rsin2u

S Ddf2, ~2.1!

where M is the mass of the black hole,aM its angular momentum,S5r 21a2cos2u, and
n5r 21a222Mr . The Klein–Gordon equation for massless fieldsc in a Kerr black hole back-
ground can be separated by settingc5e2 ivteimfSl

m(u)R(r ), and the radial equation is given b

n2s
d

dr S ns11
dR

dr D1SK222is~r2M !K

n
14isvr2l DR50, ~2.2!

wheres is a parameter called spin weight of the field,l5E22amv1a2v22s(s11), andE is
eigenvalue of spheroidal harmonicsSl

m(u). This equation has two regular singularities
r5r65M6AM22a25M6p and an irregular singularity atr5`. Setting the new variable
z5(r12r )/2p, radial equation becomes4

z2~z21!2
]2R

]z2
1~s11!z~z21!~2z21!

]R

]z
1F K2

4p2
1
isK~2z21!

2p

2z~z21!~8isvpz24isvr11l!]R50, ~2.3!
J. Math. Phys., Vol. 38, No. 7, July 1997
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wheres takes integer or half integer value andK5(4p2z224pr1z12Mr1)v2am. The analytic
solution of this equation is obtained not by any special functions but by expansions in term
special functions such as the hypergeometric functions and the confluent hypergeometric
tions.

If we use the expansion in terms of the hypergeometric functions, we have two indepe
solutions of Eq.~2.3!. Introducing the slightly modified hypergeometric functionP(a,b;c;z),

P~a,b;c;z!5
G~a!G~b!

G~c!
F~a,b;c;z!, ~2.4!

whereF(a,b;c;z) is the hypergeometric function, we can express two solutions aroundz50 in
the form8

R1
n5eisz~2z!r~12z!d (

k52`

`

hk
1nP~ak ,bk ;c;z!,

~2.5!

R2
n5eisz~2z!r112c~12z!d (

k52`

`

hk
2nP~ak2c11,bk2c11;22c;z!,

where

r52s2 ivM2 i t, d5 ivM2 i t, s52pv, ~2.6!

t5(2vM22am)/2p, and

ak5r1d1s2k2n, bk5r1d1s1k1n11, c52r1s11. ~2.7!

By inserting the expression (2.5) into (2.3), we find that the expansion coefficientshk
1n andhk

2n

should satisfy the same recursion relations:

akhk11
n 1bkhk

n1gkhk21
n 50, ~2.8!

ak5
is~s22ivM1k1n11!~22i t1k1n11!~s12ivM1k1n11!

~2k12n13!~k1n11!
,

bk58v2M22a2v22E1~k1n!~k1n11!1
2st~2vM1 is!~2vM2 is!

~k1n!~k1n11!
, ~2.9!

gk5
is~s22ivM2k2n!~22i t2k2n!~s12ivM2k2n!

~2k12n21!~k1n!
.

The parametern can be obtained by the convergence of the recursion relation7,8 or by using the
post-Newtonian principle.8

Note that the solutions aroundz51, which represents the inner horizon, can be obtained
the analytic continuation of the hypergeometric functions. Two independent solutions ar
z51 are

R3
n5eisz~2z!r~12z!d (

k52`

` hk
3n

G~c2ak!G~c2bk!
P~ak ,bk ;ak1bk2c11;12z!,

~2.10!
J. Math. Phys., Vol. 38, No. 7, July 1997
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R4
n5eisz~2z!r~12z!d (

k52`

` hk
4n~12z!c2ak2bk

G~c2ak!G~c2bk!
P~c2ak ,c2bk ;c2ak2bk11;12z!.

Since these expansions are expressed as linear combinations ofR1
n andR2

n due to the analytic
continuation, the recursion relations forhk

3n andhk
4n are identical to those ofhk

1n andhk
2n .

Other types of solutions are given by the expansion in terms of the confluent hypergeo
functions. Introducing the new variabler522vpz, one type of the expansions is given by7,8

R1
n5rd~r12vp!2d2s (

k52`

`

gk
1nGk1n~h,r!,

~2.11!

R2
n5rd~r12vp!2d2s (

k52`

`

gk
2nG2k2n21~h,r!,

whereh52(2vM1 is) andd5 ivM2 i t, andGl(h,r) satisfies the Coulomb type equation

r
]2

]r2
Gl~h,r!12

]

]r
Gl~h,r!1S r22h2

l ~ l11!

r DGl~h,r!50, ~2.12!

which is expressed in terms of Kummer’s confluent hypergeometric functionF(a;b;r) as

Gl~h,r!5
G~ l111 ih!

e
ph
2 G~2l12!

e2 ir~2ir! lF~ l112 ih;2l12;2ir!. ~2.13!

By inserting ~2.11! into the original equation, we find that the expansion coefficientsgk
1n and

g2n should satisfy the following recursion relations:

ak8gk11
n 1bk8gk

n1gk8gk21
n 50, ~2.14!

ak85ak , bk85bk , gk85gk , ~2.15!

which is identical to~2.8!
Moreover, if we setx52vp(12z), which is the expansion in terms of the inner horizo

another expansion can be obtained in the form15

R3
n5xe~x22vp!2s2e (

k52`

` gk
3n

G~c2ak!G~c2bk!
Gk1n~h,x!,

~2.16!

R4
n5xe~x22vp!2s2e (

k52`

` gk
4n

G~c2ak!G~c2bk!
G2k2n21~h,x!,

where e52s2 ivM2 i t. It turns out that the recursion relations forgk
3n and gk

4n are again
identical to those ofgk

1n andgk
2n andhk

n . In this case, we cannot explain the reason for hav
identical recursion relations simply from the analytic continuation contrary to the case of h
geometric functions.

In the above construction, the coefficientsgk
n and hk

n are identical up to the normalizatio
factor as

gk
n;hk

n . ~2.17!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Sincehk
n andgk

n are expansion coefficients in terms of different kinds of special functions, suc
the hypergeometric function and the confluent hypergeometric function, which have diff
analytic properties and different asymptotic behaviors, it is not trivial why the relation~2.17!
holds. Moreover, the identification of the coefficientsgk

1n andgk
3n is also the subject which canno

be explained by any analytic continuation of the special functions. In the next section, w
going to explain the reason by use of the integral equations.

III. INTEGRAL EQUATION

We are going to construct the integral equation in terms ofR(z) which satisfies Eq.~2.3!;

MzR~z![~z21!H ]2R~z!

]z2
1~s11!S 1z1

1

z21D ]R~z!

]z J ~3.1!

1F K2

4p2z~z21!
1
isK~2z21!

2pz~z21!

28isvpz14isvr12l GR~z!50. ~3.2!

The integral transformation which maps one solution to the other solution is given by

R8~x!5E
C

ys~y21!sK~x,y!R~y!dy, ~3.3!

where the functionR8(x) is also a solution of Eq.~2.3! if the kernel satisfies the condition

~Mx2My!K~x,y!50, ~3.4!

and the surface term of the integral

ys11~y21!s11H ]K~x,y!

]y
R~y!2K~x,y!

]R~y!

]y J ~3.5!

vanishes at the end ofC .17 To find the kernel, we set new variables as

j5xy, z5~x21!~y21!. ~3.6!

Then Eq.~3.4! becomes

j
]2K

]j2
1~s11!

]K

]j
1H 4p2v2j28pMv224isvp1

~Mv1t!~Mv1t2 is!

j JK2z
]2K

]z2

2~s11!
]K

]z
2H 4p2v2z1

~Mv2t!~Mv2t2 is!

z JK50. ~3.7!

Therefore we can separate the variables, and we putK(x,y)5P(j)Q(z) so thatP(j) andQ(z)
satisfy the equations

j
]2P~j!

]j2
1~s11!

]P~j!

]j
1H 4p2v2j28pMv224isvp1

~Mv1t!~Mv1t2 is!

j J P~j!

5lP~j!, ~3.8!
J. Math. Phys., Vol. 38, No. 7, July 1997
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z
]2Q~z!

]z2
1~s11!

]Q~z!

]z
1H 4p2v2z1

~Mv2t!~Mv2t2 is!

z JQ~z!5lQ~z!, ~3.9!

wherel is a separation constant. Each equation has two independent solutions and the
expressed by using Kummer’s confluent hypergeometric functions as

P1~j!5eisjjrFS 2r1s11

2
2
E1l

2is
;2r1s11;22isj D ,

~3.10!

P2~j!5eisjj2r2sFS 2
2r1s21

2
2
E1l

2is
;122r2s;22isj D ,

Q1~z!5eiszzdFS 2d1s11

2
2

l

2is
;2d11s11;22isz D ,

~3.11!

Q2~z!5eiszz2d2sFS 2
2d1s21

2
2

l

2is
;122d2s;22isz D ,

where r52s2 iMv2 i t,d5 iMv2 i t,s52pv and E58Mv2p14isvp. We can thus solve
the kernel equation in a general form. Namely, the kernelK(x,y) is expressed as the simp
product of these solutions, or as the product of some linear combinations of these solution
as Whittaker’s function. Sincel is an arbitrary constant, we choosel in such a way that the
kernel becomes a simple form in order to evaluate the integral transformation easily. The in
equation maps a solution of the Teukolsky equation to another solution. Therefore, we can
form a analytic expansion to other expansions by various choices of the kernel. In the next s
we are going to perform the integral transformation of such various expansions of equation~2.3!.

IV. INTEGRAL TRANSFORMATIONS

First of all, we consider the transformation from the hypergeometric expansions~2.5! to
Coulomb expansions~2.11! aroundz50; we takeR1

n(y) in ~2.5! asR(y):

R1
n5eisz~2y!r~12y!d (

k52`

`

hk
1nP~ak ,bk ;c;y!. ~4.1!

A suitable choice of the kernel for this transformation is as follows. We chooseP(j) in the kernel
by using Whittaker’s functionMk,m(z) as

P~j!5j2
s11
2 Mk,m~22isj!, ~4.2!

wherek5(E1l)/2is and m5r1s/2. In order to eliminate the factor (12y) in the integral
equation, we takeQ2(z) in ~3.11! for Q(z). For the convergence of the integral, we ta
l5 is(22d2s11) so thatQ(z) becomes

Q~z!5eiszz2d2s. ~4.3!

Then the integral equation is given by
J. Math. Phys., Vol. 38, No. 7, July 1997
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R18~x!5~const!x2 @~s11!/2#~x21!2d2se2 is~x21!E
C

eisxyy2 @~s11!/2# 1r1sMk,m

3~22isxy! (
k52`

`

hk
1nP~ak ,bk ;c;y!dy. ~4.4!

By taking the region of the integration as the interval from 0 to1` and using the formulae in Ref
19 we can evaluate the integral as

R18~r!5~const!rd~r12vp!2d2s (
k52`

`

hk
1n$C1G~2k12n11!G~22k22n!

3G2k2n21~h,r!1C2G~22k22n21!G~2k12n12!Gk1n~h,r!%, ~4.5!

whereC1 ,C2 are constants which are independent ofk. Note that if we start withR2
n , we obtain

the same result as Eq.~4.5! after the integral transformation by using an appropriate kernel.
Note that the solutionR18(r) consists of two independent solutions which are expande

terms of Coulomb type functions and they are identical to the solution~2.11!. Thus two kinds of
expansions are connected by the integral transformation. Recognizing the coefficie
Gn1k(h,r), G2k2n21(h,r) asgk

1n ,gk
2n respectively, the relation betweenhk

1n andgk
1n ,gk

2n is

gk
1n;G~2k12n11!G~22k22n!hk

1n;hk
1n , ~4.6!

gk
2n;G~22k22n21!G~2k12n12!hk

1n;hk
1n . ~4.7!

Therefore the fact that coefficientshk
n ,gk

n of different kinds of expansions satisfy the same rec
sion relations can be understood quite naturally.

Let us consider the inverse transformation. In this case, we start with a slightly modified
of R1

n(r) in ~2.11! asR(y):

R1
n~r!5rd~r12vp!2d2s (

k52`

`

gk
1nGk1n~h,r!,

5rd~r12vp!2d2s (
k52`

`

gk
1n

G~k1n111 ih!~2i !k1n11

e
ph
2 G~2k12n12!r

Mih,k1n1 1/2~2ir!. ~4.8!

Our choice of the kernel is as follows. In order to eliminate the factor (y21), we takeQ1(z) with
l52 is(2d1s11) so that

Q~z!5e2 iszzd. ~4.9!

For the convergence of the integral, we combineP1(j),P2(j) into the form

P~j!5j2
s11
2 W2k,m~2isj!, ~4.10!

whereW2k,m(z) is Whittaker’s function. Then the integral equation becomes
J. Math. Phys., Vol. 38, No. 7, July 1997
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R18~x!5~const!x2 @~s11!/2#~x21!deis~x21!E
C

ys2 @~s11/2# 1d21e2 is~x21!yW2k,m~2isxy!

3 (
k52`

`

gk
1n

G~k1n111 ih!

G~2k12n12!
~2i !k1n11Mih,k1n1 1/2~22isy!dy. ~4.11!

By taking the region of the integration as the interval 0 to infinity and using the formulas in
20, we can evaluate the integral. The solution is

R18~x!5~const!xr~12x!deisx (
k52`

`

gk
1n$C1P~ak ,bk ;c;x!

1C2x
12cP~ak2c11,bk2c11;22c;x!%. ~4.12!

Thus we could perform the inverse transformation, which completes the relation between th
expansions aroundz50. The relations between expansion coefficients are

hk
1n;hk

2n;gk
1n;gk

2n . ~4.13!

We next consider the relation between expansions aroundz51. As before, we useR3
n(x) in ~2.16!

asR(y) in the modified form

R3
n~x!5xe~x22vp!2e2s (

k52`

` gk
3n

G~c2ak!G~c2bk!
Gk1n~h,x!

5xe21~x22vp!2e2s (
k52`

` gk
3nG~k1n111 ih!~2is!k1n11

G~c2ak!G~c2bk!e
ph/2G~2k12n12!

Mih,k1n1 1/2~2ix!,

~4.14!

wherex52vp(12y) and e52s2 ivM2 i t. In this case, the role ofy and 12y are inter-
changed in the integral equation. In order to eliminate the factory, we takeP(j) as

P~j!5jeeisj, ~4.15!

where we setl5 is(2e1s11)2E. For the convergence of the integral, we takeQ(z) as

Q~z!5z2 @~s11!/2#Wk8,m8~22isz!, ~4.16!

wherek85l/2is andm85d1s/2. Then the integral transformation becomes

R83
n5~const!xe~12x!2 @~s11!/2#eisxE

C

~12y!s2 @~s11!/2# 1e21eisx~y21!Wk8,m8~22is~12x!

3~12y!! (
k52`

` gk
3nG~k1n111 ih!~2is!k1n

G~c2ak!G~c2bk!G~2k12n12!
Mih,k1n1

1
2
~2is~12y!!dy. ~4.17!

By considering the integral region as the interval 0 to infinity, and by using the formulas in
20, we obtain the solution of the equation as
J. Math. Phys., Vol. 38, No. 7, July 1997
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R83
n5~const.!xe~12x!deisx (

k52`

`

gk
3nH C1

G~c2ak!G~c2bk!
P~ak ,bk ;ak1bk2c11;12x!

1
C2~12x!c2ak2bk

G~c2ak!G~c2bk!
P~c2ak ,c2bk ;c2ak2bk11;12x!J . ~4.18!

Note that the same result holds if we start withR4
n(x).

R83
n consists of two independent solutions which are expanded in terms of hypergeom

functions aroundz51. Thus two kinds of expansion aroundz51 are connected by the integra
transformation. The relations between expansion coefficients are

gk
3n;gk

4n;hk
3n;hk

4n . ~4.19!

We thus find that all the coefficients are connected by the analytic continuation of the
function and the integral transformation which maps the solution of the Teukolsky equati
other solutions.

V. CONCLUSION

We have constructed the integral equation in terms of Eq.~2.3!, and solve the kernel in the
general form as the product of special functions. By various choices of the kernel, we
performed the integral transformations which connect various expansions of Eq.~2.3!. In all
regions ofz, we can relate these expansions to one another by the integral transformation,
the analytic continuation of hypergeometric functions. As a consequence, the coefficientsgk

in of
Coulomb type expansions satisfy the same recursion relations of the coefficientshk

in of the hyper-
geometric expansions, and they are identical up to normalization factors.

In any case of integral transformations, the kernel is expressed as the product of the co
hypergeometric functions. It is this property that makes us possible to perform the integral
formation.

Let us consider the case of the spheroidal equation. Equation~3.4! is just the wave equation in
the spheroidal coordinates where the variablex is the radial coordinate andy is the coordinate
representing the angle.13 In other words,x andy can be treated as dual coordinates. It was qu
easy to obtain the integral equation of spheroidal wave functions because we know other ty
separable coordinates in flat space. On the other hand, in the case of the Teukolsky equa
have dealt with dual coordinates of the radial function which are not the spheroidal coordina
Kerr geometry for the construction of integral equation. The existence of other separable va
~3.6! seems to show some kind of symmetry of the space-time in a wider geometry. Further
on this point of view seems interesting.
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On toroidal Green’s functions
Jason W. Bates
Department of Physics and Astronomy, Dartmouth College,
Hanover, New Hampshire 03755-3528

~Received 3 February 1997; accepted for publication 2 April 1997!

Green’s functions are valuable analytical tools for solving a myriad of boundary-
value problems in mathematical physics. Here, Green’s functions of the Laplacian
and biharmonic operators are derived for a three-dimensional toroidal domain. In
some sense, the former result may be regarded as ‘‘standard,’’ but the latter is most
certainly not. It is shown that both functions can be constructed to have zero value
on a specified toroidal surface with a circular cross section. Additionally, the
Green’s function of the biharmonic operator may be chosen to have the property
that its normal derivative also vanishes there. A ‘‘torsional’’ Green’s function is
derived for each operator which is useful in solving some boundary-value problems
involving axisymmetric vector equations. Using this approach, the magnetic vector
potential of a wire loop is computed as a simple example. ©1997 American
Institute of Physics.@S0022-2488~97!01807-0#

I. INTRODUCTION

The typical boundary-value problem in mathematical physics requires the solution of a p
differential equation that is well-behaved in a given spatial regionV, and fulfills certain conditions
of the boundary]V.1 A simple example of such a problem is Laplace’s equation,¹2F50, in
which one seeks a functionF that is harmonic in the regionV, and satisfies either

Fu]V5 f ~P!, ~1!

or

]F

]n U
]V

5 f ~P!, ~2!

where f (P) is a given function of a variable pointP on ]V, and]/]n is the normal derivative a
the surface]V ~directed outward from the volumeV!. Equations~1! and ~2! are known as
Dirichlet and Neumann boundary conditions, respectively.2

One of the special methods for solving elliptic boundary-value problems analytically is b
on the use of Green’s theorem, and so-called Green’s functions.3 The key feature of this theory is
that the solution of a problem like Poisson’s equation,¹2F(x)524pr(x), wherer(x) is a given
function of position and either Dirichlet or Neumann boundary conditions are imposed, c
written in integral form once the appropriate Green’s function has been found. The Gr
function, which does not depend on the functionr(x), or on the boundary data forF, can be
determined by considering an auxiliary boundary-value problem.

The Green’s functionG(xux8) corresponding to a particular differential operatorL is defined
as a solution of the inhomogeneous equation4

L 8G~xux8!524pd~x2x8!, ~3!

which itself satisfies certain boundary conditions. Note that the operatorL 8 acts on the primed
coordinates, and thatd(x2x8) is a delta function in three-dimensional space. In the case
L 85¹82, we can use Eq.~3! to solve Poisson’s equation by employing Green’s theorem,5
0022-2488/97/38(7)/3679/13/$10.00
3679J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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E
V

~f¹2c2c¹2f! d3x5 R
]V

Ff ]c

]n
2c

]f

]n G dA, ~4!

with f5F andc5GL ; here, the subscript ‘‘L’’ stands for ‘‘Laplacian.’’ The result is

F~x!5E
V

r~x8!GL~xux8! d3x81
1

4p R
]V

FGL~xux8!
]F

]n8
2F

]GL~xux8!

]n8 G dA8. ~5!

Of course, to evaluate the integrals on the right-hand side of Eq.~5!, the functional form ofGL

must be known. WithL 85¹82, a particular solution of Eq.~3! is GL51/R[ux2x8u21; in some
situations, that is all that is required to solve the problem. In other cases, we must add solut
the homogeneous equation@obtained by deleting the right-hand side of Eq.~3!# to 1/R so that the
surface integrals in Eq.~5! depend only on the boundary condition prescribed forF. For Dirichlet
boundary conditions onF, this is accomplished by requiring thatGL(xux8)50 wheneverx or
x8 resides on]V, which makes the first surface integral in Eq.~5! vanish. Now, ifF also happens
to satisfy ahomogeneousDirichlet boundary condition, the Green’s function solution of Poisso
equation simplifies even further, and we have

F~x!5E
V

r~x8!GL~xux8! d3x8.

The solution is simply a weighted integral over the source termr(x8) with the Green’s function as
the kernel. A Green’s function for the Laplacian operator may also be constructed to s
Neumann boundary conditions, but we do not consider such cases here. See Jackson,6 though, for
a word of caution regarding this approach.

Green’s function methods are by no means limited to Poisson-type equations. Indeed, G
functions can be constructed for a variety of elliptic differential operators that arise in physic
engineering problems.7 One operator that is fairly ubiquitous in the study of elasticity8 and viscous
incompressible flow,9 and is also amenable to Green’s function methods, is¹4, which occurs in
the biharmonic equation,¹4F524pr. The Green’s function associated with the biharmo
operator is required to satisfy¹84Gb(xux8)524pd(x2x8). A particular solution of this equation
is R/2[ 1

2ux2x8u. As in the case of Poisson’s equation, though, it is usually necessary to in
solutions of the homogeneous equation in the Green’s function so that boundary condition
be satisfied. In this way, the value of the Green’s function for the biharmonic operator,and the
value of its normal derivative, can be made to vanish on a specified boundary. Then, the int
solution to the problem, obtained by using the associated Green’s theorem10

E
V

@f¹4c2c¹4f# d3x5 R
]V

Ff ]~¹2c!

]n
2~¹2c!

]f

]n
1~¹2f!

]c

]n
2c

]~¹2f!

]n G dA ~6!

with f5F andc5Gb(xux8), is greatly simplified and will depend only on the boundary data
F. Since the biharmonic equation involves afourth-order differential operator, the problem i
well-posed by specifyingtwo pieces of boundary information:F and its normal derivative
]F/]n on ]V.

Analytical and numerical solutions of the biharmonic equation have been the subject of
research efforts reported in the literature~for example, see Refs. 11–15!. Most of these investi-
gations, though, have been limited to planar, spherical or cylindrical geometries. In this pap
present an integral method for solving both Poisson’s equation and the inhomogeneous biha
equation in atoroidal domain; this may have useful consequences for some magnetohyd
namic studies in which toroidal geometry is a fundamental aspect of the physical syst
J. Math. Phys., Vol. 38, No. 7, July 1997
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question.~Often, the motion of a two-dimensional, incompressible, viscous fluid can be ch
terized by a velocity stream function that satisfies the biharmonic equation; for toroidal geom
the situation is slightly more complicated, but essentially the same result appears. See,
ample, Montgomery, Bates and Li.16! Our approach is to construct the Green’s functions for
Laplacian and biharmonic operators by expanding in toroidal coordinates the quantities 1/R and
R/2, respectively. Then, appropriate toroidal solutions of Laplace’s equation and the homoge
biharmonic equation are added to these Green’s functions to make them satisfy homog
Dirichlet boundary conditions. For the Laplacian operator, this means that the value of the G
function,GL , goes to zero on a specified toroidal surface; the Green’s function for the biharm
operator,Gb , fulfills the same condition, but has the additional property that its normal deriva
]Gb /]n, also vanishes there. Both of these Green’s functions so constructed obey the re
symmetry property:G(xux8)5G(x8ux).

The remainder of the paper is organized as follows. In Sec. II, we discuss the toroidal
dinate system used in this investigation. In Sec. III, important properties of the so-called to
harmonics are presented, which are the special functions in terms of which toroidal G
functions are expressed. The derivation of the Green’s function for the Laplacian operator a
in Sec. IV, for both an infinite domain, and the bounded region within a torus. The analo
calculations for the biharmonic operator are given in Sec. V—evidently a highly novel re
Additionally, in Secs. IV and V we derive ‘‘torsional’’ versions of the Green’s functions, wh
are useful in solving some boundary-value problems involving axisymmetric vector equation
magnetic vector potential of a filamentary current loop in toroidal coordinates is calculated in
VI as a simple example of this method. Conclusions are given in Sec. VII. Finally, the Appe
contains some expansions of toroidal quantities that are required in our analysis.

II. TOROIDAL COORDINATES

The toroidal coordinate system used in this paper is shown in Fig. 1. The variablej is similar
to a minor radius,h is a poloidal angle, andw is the usual toroidal angle@equivalent to the
azimuthal angle of standard cylindrical coordinates (r ,w,z)#. These coordinates have been d
cussed previously by several authors.4,17,18For convenience, we review some of their more i
portant properties here.

Toroidal coordinates (j,h,w) are defined by

x5
R0A12j2 cosw

12j cosh
, ~7!

y5
R0A12j2 sin w

12j cosh
, ~8!

z52
R0j sin h

12j cosh
, ~9!

wherex, y andz are ordinary Cartesian coordinates,r 25x21y2, andR0[Ar 022a2 is the location
of the poloidal axis. The parametersr 0 anda are the major and minor radii, respectively, of
toroidal system.

The transformation from Cartesian coordinates to toroidal coordinates is given by

j5A12r2, ~10!

tanh52
rz

r2rR0
, ~11!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where r[2rR0 /(R0
21z21r 2). Surfaces of constantj are circular tori with major radii

R0 /A12j2, and minor radiiR0j/A12j2 ~see Fig. 1!. Note that the coordinatej is bounded
between zero and one: 0<j<1.

The toroidal coordinate system is orthogonal with the scale factors

hj5
R0

A12j2~12j cosh!
, hh5

R0j

12j cosh
, hw5

R0A12j2

12j cosh
, ~12!

and a Jacobian

J5
R0
3j

~12j cosh!3
. ~13!

The triad (ĵ,ĥ,ŵ) forms a right-handed, orthonormal basis set:ĵ3ĥ5ŵ, ĥ3ŵ5 ĵ, ŵ3ĵ5ĥ.
Unit vectorsĵ, ĥ andŵ in the directions of increasingj, h andw, respectively, are given in term
of unit vectorsx̂, ŷ, and ẑ in the directions of increasingx, y, andz, respectively, by

r̂ 5 x̂ cosw1 ŷ sin w, ~14!

ŵ 52 x̂ sin w1 ŷ cosw, ~15!

ĵ 5 r̂
cosh2j

12j cosh
2 ẑ

A12j2 sin h

12j cosh
, ~16!

FIG. 1. The toridal coordinate system~j,h,w!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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ĥ 52 r̂
A12j2 sin h

12j cosh
2 ẑ

cosh2j

12j cosh
. ~17!

In terms of toroidal coordinates, Laplace’s equation and the homogeneous biharmonic eq
admit separable solutions. The characteristic functions that arise in these solutions are kn
toroidal harmonics, a subject to which we now turn our attention.

III. TOROIDAL HARMONICS

The Green’s functions derived in this paper are expressed as infinite series of toroida
monics,Tmn(j), andSmn(j). The properties of these functions are discussed below. Toro
harmonics appear in the solution of Laplace’s equation in toroidal geometry. In terms of to
coordinates, Laplace’s equation is separable with periodic, continuous solutions of the form

F~j,h,w!5A12j cosh (
m,n

HTmn~j!

Smn~j! J H cosmh
sinmh J H cosnw

sin nw J , ~18!

where

Tmn~j![j21/2Qm21/2
n ~1/j!, Smn~j![j21/2Pm21/2

n ~1/j!. ~19!

The functionsQn
l(j21) andPn

l(j21) are associated Legendre functions of orderl and degreen ;
they are analytic for 0,j,1. The toroidal harmonicsTmn(j) andSmn(j) are singular atj51 and
j50, respectively.

Using results given in Refs. 19–21, many useful properties of the functionsTmn can be
derived. First, one can show that they satisfy the differential equation

d

dj Fj~12j2!
dTmn

dj G5F3j

4
1
m2

j
1

n2j

12j2GTmn . ~20!

Second, derivatives may be computed from the formula

dTmn

dj
5

~j/22m/j!Tmn2~m1n21/2!Tm21,n

12j2
. ~21!

Third, the following three-term recursion relations hold:

j~m11/22n!Tm11,n22mTmn1j~m21/21n!Tm21,n50, ~22!

~m21/2!Tm02~m21/2!jTm21,02A12j2Tm150, ~23!

Tm,n121
2~n11!

A12j2
Tm,n111~n11/22m!~n11/21m!Tmn50, ~24!

for n50,1,2,... Fourth, there is the symmetry property

T2m,n5Tmn . ~25!

Note that Eqs.~20!–~25! are valid for ‘ ‘T’ ’ replaced by ‘‘S. ’ ’ The Wronskian of the functions
T andS is given by

SmnTmn8 2Smn8 Tmn5
~21!n

j~12j2!

G~m1n11/2!

G~m2n11/2!
, ~26!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where primes denote differentiation. We shall also have occasion to use the addition form
Legendre functions:

Qm21/2~m!5 (
n50

`

«n~21!n
G~m2n11/2!

G~m1n11/2!
Qm21/2
n S 1

j,
DPm21/2

n S 1

j.
D cosn~w2w8!, ~27!

where«n is Neumann’s number~equal to 1 ifn50, and 2 otherwise!, j. (j,) is the greater
~lesser! of j andj8, and

m[
1

jj8
2

A12j2A12j82

jj8
cos~w2w8!. ~28!

For a more complete listing of the various mathematical properties of the Legendre function
reader is referred to Abramowitz and Stegun.22

Solutions of the biharmonic equation in toroidal coordinates are also given in terms of to
harmonics. They can be obtained by observing that ifF solves¹2F50, thenF, xF, yF, zF and
(r 21z2)F are all solutions of¹4x50. In this way, one can show that the general perio
solution of the homogeneous biharmonic equation in toroidal coordinates is

x5
j

A12j cosh
(
n50

`

(
m51

`

@AmnTm11,n1BmnTm21,n1CmnSm11,n1DmnSm21,n#H cosmh
sinmh J

3H cosnw
sin nw J 1

j

A12j cosh
(
n50

` FA0nT1n1
B0n

j
T0n1C0nS1n1

D0n

j
S0nG H cosnw

sin nw J , ~29!

whereAmn , Bmn , Cmn andDmn are arbitrary constants. We shall make use of this result in S
V when we construct the Green’s function for the biharmonic operator.

IV. GREEN’S FUNCTION FOR THE LAPLACIAN OPERATOR

In this section, we derive a Green’s functionGL(xux8) in toroidal geometry that is the solutio
of ¹82GL(xux8)524pd(x2x8). First, we consider the case of an infinite domain, so that
surface]V is at infinity, and it is sufficient to takeGL51/R only. In the second subsection, w
consider a finite toroidal domain, and constructGL so that it vanishes on the torus defined byj
5ja[a/r 0 . Finally, in the third subsection we present a ‘‘torsional’’ version of the Gree
function for the Laplacian, which is useful in solving some axisymmetric vector equation
toroidal geometry.

A. The infinite domain: GL51/R

In toroidal coordinates (j,h,w), the inverse distance between two points in three-dimensi
space is given by23

1

R
[

1

ux2x8u
5

A12j cosh A12j8 cosh8

& R0@12jj8 cos~h2h8!2A12j2A12j82 cos~w2w8!#1/2

5
A12j cosh A12j8 cosh8

& R0Ajj8 @m2cos~h2h8!#1/2
, ~30!

wherem is defined in Eq.~28!. Using Eq. ~A2!, we may express the right-hand side of th
equation as
J. Math. Phys., Vol. 38, No. 7, July 1997
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A12j coshA12j8 cosh8

pR0Ajj8
(
m50

`

«mQm21/2~m!cosm~h2h8!.

Then, employing the addition formula for Legendre functions given in Eq.~27!, we find that the
expansion of 1/R in toroidal coordinates is

1

R
5

1

pR0
A12j coshA12j8 cosh8(

n50

`

(
m50

`

~21!n«n«m
G~m2n11/2!

G~m1n11/2!

3Tmn~j,!Smn~j.!cosm~h2h8!cosn~w2w8!. ~31!

Equation~31! is the Green’s function for the Laplacian in unbounded toroidal domains. This r
has been reported previously by Morse and Feshbach,24 although a typographical error occurs
their formula. In the next subsection, we modify this Green’s function so that it goes to zero
specified toroidal surface. We do this by adding appropriate solutions of Laplace’s equatio
~18!.

B. Bounded toroidal domain with GL zV50

A Green’s function for the Laplacian, which vanishes on the torus defined byj5ja , can be
constructed by using solutions of the homogeneous equation¹82GL50, i.e., Laplace’s equation
One simply needs to subtract from 1/R a harmonic function that is proportional t
Smn(ja)Tmn(j)Tmn(j8)/Tmn(ja). An appropriate choice of coefficients then leads to

GL~j,h,wuj8,h8,w8!5
1

pR0
A12j cosh A12j8 cosh8

3 (
n50

`

(
m50

`

~21!n«n«m
G~m2n11/2!

G~m1n11/2!

Tmn~j,!

Tmn~ja!

3@Tmn~ja!Smn~j.!2Tmn~j.!Smn~ja!#

3cosm~h2h8!cosn~w2w8!. ~32!

It is easily verified that this function is a solution of¹82GL(xux8)524pd(x2x8), and that it
vanishes wheneverj or j8 is equal toja . Hence, Eq.~32! is the Green’s function of the Laplacia
operator that is suitable for solving Dirichlet boundary-value problems within a torus.

C. Axisymmetric ‘‘torsional’’ Green’s function

Boundary-value problems in axisymmetric toroidal geometry sometimes require solutio
vector equations like

¹2@F~j,h!ŵ#524pr~j,h!ŵ, ~33!

where the right hand side is a known function of position. For example, the determination
magnetic vector potential due to an axisymmetric, toroidal current distribution is a problem w
gives rise to an equation having the above form.~We consider an example of this class
problems in Sec. VI.! To solve such an equation, a ‘‘torsional’’ Green’s function may be used
torsional Green’s function is an axisymmetric vector function, which can be derived by con
ing the following.

In terms of general, curvilinear rotational coordinates (j1 ,j2 ,w) defined by x
5r (j1 ,j2)cosw, y5r (j1 ,j2)sinw, andz5z(j1 ,j2) @obviously, toroidal coordinates (j,h,w) are
an example#, one can easily show that¹2@F(j1 ,j2)ŵ#5ŵ (¹221/r 2)F. Consequently, a solu
J. Math. Phys., Vol. 38, No. 7, July 1997
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tion of the vector equation¹2W50, is W5w(j1 ,j2)ŵ, where w(j1 ,j2)cosw @or
w(j1 ,j2)sinw# is a solution of the scalar Laplace equation. For example, in cylindrical coo
nates (r ,w,z), we have

¹2 w~r ,z! cosw5S 1r ]

]r
r

]

]r
1

1

r 2
]2

]w2 1
]2

]z2D w~r ,z! cosw5cosw S ¹2w2
w

r 2D ,
which demonstrates our assertion.

In toroidal coordinates, these results can be used to show that a solution of

¹82G L~j,huj8,h8!ŵ852
4p~12j8 cosh8!3

R0
3j8

d~j2j8!d~h2h8!ŵ8 ~34!

is

G L52
2

R0
A12j cosh A12j8 cosh8 (

m50

`

«m
G~m21/2!

G~m13/2!
Tm1~j,!Sm1~j.! cosm~h2h8!,

~35!

whereG L ŵ8 is the torsional Green’s function for the Laplacian in unbounded space. As be
solutions of the homogeneous equation can be added to this function in order to satisfy bo
conditions. With Eqs.~34! and~35!, the solution of Eq.~33! can be obtained by using thevector
form of Green’s theorem25

E
V

@E•¹2F2F•¹2E# d3x5 R
]V

$@E¹•F2F¹–E#–n̂2@E–~ n̂3¹3F!1¹3E–~ n̂3F!#% dA,

~36!

with E5Fŵ and F5G Lŵ; here, n̂ is a unit vector that points outward from the volumeV.
Incidently, Eq.~36! is the basis of a more general theory in whichdyadicGreen’s functions are
used to satisfy vector boundary conditions. Such a discussion, though, is beyond the scop
present work. For more information on this subject, see Morse and Feshbach.26

We now turn to a derivation of the analogous results for the biharmonic operator.

V. GREEN’S FUNCTION FOR THE BIHARMONIC OPERATOR

Here, we compute the Green’s function for the biharmonic operator,Gb(xux8), which is
required to satisfy the equation¹84Gb(xux8)524pd(x2x8). As in the previous section, we firs
consider an infinite domain, in which case the biharmonic Green’s function is simplyGb5R/2.
For use in solving boundary-value problems in the interior of a torus, this Green’s function c
modified so thatGb and its normal derivative]Gb /]n go to zero on the toroidal surface. Th
vanishing ofGb and]Gb /]n is achieved by adding toR/2 appropriate solutions of the homog
neous biharmonic equation, the general periodic solution of which appears in Eq.~29!. This is the
subject of subsection B. Finally, in the third subsection, we present a torsional version
Green’s function for the biharmonic operator in an infinite domain.

A. The infinite domain: Gb5R/2

Our starting point is to expand the quantityR/2 in toroidal coordinates. From Eq.~30!, we
have

R

2
[
1

2
ux2x8u5

R0 @12jj8 cos~h2h8!2A12j2A12j82 cos~w2w8!#1/2

& A12j cosh A12j8 cosh8
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5
R0Ajj8

& A12j cosh A12j8 cosh8
@m2cos~h2h8!#1/2, ~37!

wherem is defined in Eq.~28!. The recursion relations appearing in Eqs.~22! and~23! can be used
in conjunction with Eq.~A1! to show that

@m2cos~h2h8!#1/25
&

p
@mQ21/2~m!2Q1/2~m!#

1
1

&p
(
m51

`
1

m
@Qm11/2~m!2Qm23/2~m!# cosm~h2h8!. ~38!

It is useful to note that them50 term in Eq.~38! can be incorporated into the series by inserti
a Neumann factor in the summation, adding a factor 1/2 in front, and observing that

]

]m
@Tm11,n~j!2Tm21,n~j!#U

m50

5
2

1/22n F1j T0n~j!2T1n~j!G . ~39!

Then, them50 term is recovered by formally passing to the limitm→0 in the summand~using
L’Hôpital’s rule!. In this subsection, however, we choose to leave them50 term explicit, i.e., as
it is written in Eq.~38!.

The next step is to employ the addition theorem for Legendre functions. Using Eq.~27!, we
find that the expansion ofR/2 in toroidal coordinates is

R

2
5

R0

2p

jj8

A12j coshA12j8 cosh8
(
n50

`

(
m51

`
«n~21!n

m
cosm~h2h8! cosn~w2w8!

3FG~m2n13/2!

G~m1n13/2!
Tm11,n~j,!Sm11,n~j.!2

G~m2n21/2!

G~m1n21/2!
Tm21,n~j,!Sm21,n~j.!G

1
R0

p

1

A12j coshA12j8 cosh8
(
n50

`

«n~21!n cosn~w2w8!

3FG~1/22n!

G~1/21n!
T0n~j,!S0n~j.!2jj8

G~3/22n!

G~3/21n!
T1n~j,!S1n~j.!G

1
R0

2p

A12j2A12j82

A12j coshA12j8 cosh8
(
n50

`

«n~21!n cosn~w2w8!

3FG~1/22n!

G~3/21n!
T0,n11~j,!S0,n11~j.!1

G~3/22n!

G~n21/2!
T0,n21~j,!S0,n21~j.!G . ~40!

In the line above, note thatT0,21524T01, andS0,21524S01. Equation~40! is the Green’s
function for the biharmonic operator in unbounded toroidal domains. Next, we add solutions
homogeneous equation to make the value of the Green’s function, and the value of its n
derivative, vanish on the torusj5ja .

B. Bounded toroidal domain with Gb zV50 and Gb /n zV50

A Green’s function for the biharmonic operator, which along with its normal deriva
vanishes on the torus defined byj5ja , can be constructed by adding solutions of¹84Gb50, i.e.,
the homogeneous biharmonic equation, toR/2. We find
J. Math. Phys., Vol. 38, No. 7, July 1997
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Gb5
R0

4p

jj8

A12j coshA12j8 cosh8
(
n50

`

(
m50

`

~21!n«n«m
G~m2n13/2!

G~m1n13/2!

3gmn~j,j8! cosm~h2h8! cosn~w2w8!, ~41!

where

gmn~j,j8![
gmn~j,j8!

m @Tm11,n~ja!Tm21,n8 ~ja!2Tm21,n~ja!Tm11,n8 ~ja!#
, ~42!

and

gmn~j,j8![Tm11,n~j,!$Sm11,n~j.!@Tm11,n~ja!Tm21,n8 ~ja!2Tm21,n~ja!Tm11,n8 ~ja!#

2Tm11,n~j.!@Sm11,n~ja!Tm21,n8 ~ja!2Sm11,n8 ~ja!Tm21,n~ja!#%

2
G~m2n21/2!G~m1n13/2!

G~m1n21/2!G~m2n13/2!
Tm21,n~j,!$Sm21,n~j.!@Tm11,n~ja!Tm21,n8 ~ja!

2Tm21,n~ja!Tm11,n8 ~ja!#1Tm21,n~j.!@Tm11,n8 ~ja!Sm21,n~ja!

2Tm11,n~ja!Sm21,n8 ~ja!#%1@Tm21,n~j,!Tm11,n~j.!1Tm21,n~j.!Tm11,n~j,!#

3@Tm11,n8 ~ja!Sm11,n~ja!2Tm11,n~ja!Sm11,n8 ~ja!#. ~43!

Here, primes on theT andS functions denote differentiation. To obtain them50 term in the
summation, we must computegmn in the limitm→0. It can be verified that Eq.~41! is a solution
of ¹84Gb(xux8)524pd(x2x8), and thatGb and]Gb /]n go to zero wheneverj or j8 is equal
to ja .

C. Torsional Green’s function

Following the same arguments presented in part C of Sec. IV, it can be shown that a so
of

¹84G b~j,huj8,h8!ŵ852
4p~12j8 cosh8!3

R0
3j8

d~j2j8!d~h2h8!ŵ8 ~44!

is
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G b52R0

jj8

A12j cosh A12j8 cosh8
(
m51

`
1

m
cosm~h2h8!

3FG~m11/2!

G~m15/2!
Tm11,1~j,!Sm11,1~j.!2

G~m23/2!

G~m11/2!
Tm21,1~j,!Sm21,1~j.!G

1
2R0

A12j cosh A12j8 cosh8
H 43 jj8T11~j,!S11~j.!14T01~j,!S01~j.!

1A12j2A12j82 F43 T02~j,!S02~j.!2
1

2
T00~j,!S00~j.!G J , ~45!

whereG b ŵ8 is the torsional Green’s function for the biharmonic operator in unbounded sp
Once again, we are free to add homogeneous solutions to this function so that boundary con
may be satisfied.

In the next section, we demonstrate the use of torsional Green’s functions in so
boundary-value problems involving axisymmetric vector equations by considering a simp
ample.

VI. EXAMPLE: VECTOR POTENTIAL OF WIRE LOOP

As an example of the use of torsional Green’s function techniques, we compute in this s
the magnetic vector potential of an axisymmetric current loop in toroidal coordinates. The
lies on the poloidal axis, has a radiusR0 and carries a steady currentI in the ŵ direction.

The governing equation is Ampe`re’s law:¹3B54p j /c, whereB is the magnetic field,j is
the current density, andc is the speed of light. The magnetic field is solenoidal, and hence ca
written asB5¹3A, whereA is the magnetic vector potential. Since the field generated by
current loop is axisymmetric, the only nonzero component of the vector potential isAw : A
5Aw(j,h)ŵ. Expressing Ampe`re’s law in terms of the vector potential, using the vector iden
¹3¹3A5¹(¹–A)2¹2A, and noting that¹–A50 yields

¹2Awŵ52
4p j w
c

ŵ, ~46!

where j w is the toroidal current density of the loop. In toroidal coordinates,j w is given by

j w~j,h!5
I

2p
d~j!

A12j2~12j cosh!2

R0
2j

. ~47!

Sincej50 corresponds tor5R0 , the delta function restricts the current flow to the poloidal ax
We now wish to solve Eq.~46! for Aw by using the torsional Green’s function for th

Laplacian discussed in part C of Sec. IV. We use Eq.~36! with E5Aw(j8,h8)ŵ8. Since we are
solving this problem in unbounded space, the surface]V is at infinity, and thusF5G Lŵ8, where
G L is given by Eq.~35!, is the appropriate torsional Green’s function to use in this problem.
from the loop, the magnetic vector potential must approach that of a magnetic dipole, a
Aw;1/R2 at large distances. Consequently, the surface integrals in the vector Green’s th
@Eq. ~36!# vanish for ]V at infinity, and hence do not contribute in this calculation. Putt
everything together, we find
J. Math. Phys., Vol. 38, No. 7, July 1997
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Aw~j,h!52
I

pc
A12j cosh (

m50

`

«m
G~m21/2!

G~m13/2! E0
1

dj8E
0

2p

dh8

3d~j8!
A12j82

j8A12j8 cosh8
Tm1~j,!Sm1~j.! cosm~h2h8!. ~48!

BecauseTm1(0)50 for all m exceptm50 ~in which case it has the value2p/2&!, only the
m50 term survives thej8 integration. Thus, we have

Aw~j,h!52
4pI

&c
A12j cosh S01~j!. ~49!

This is the desired result. Expressed in terms of toroidal coordinates, the functional form
magnetic vector potential for a current loop is much simpler than it would have been had we
say, cylindrical coordinates, in which case elliptic integrals involving particular combination
the coordinatesr andz would have appeared in the final answer. Since the geometry of the
loop more closely resembles a toroidal system, this is not too surprising.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have derived Green’s functions for the Laplacian and biharmonic ope
in toroidal geometry. We considered both an infinite spatial domain, and the finite region wi
torus. In the latter case, the Green’s functions were constructed to assume zero value on a s
toroidal surface with a circular cross section. Moreover, it was shown that the Green’s functi
the biharmonic operator can have the additional property that its normal derivative vanishes
same toroidal surface. A key feature in accomplishing this last step was the determination
general periodic solution of the homogeneous biharmonic equation in toroidal coordinate
location of this result elsewhere in the mathematical physics literature is unknown to the p
author. For each operator, we also computed an axisymmetric vector form~a so-called ‘‘tor-
sional’’ version! of the Green’s function. Like their scalar counterparts, torsional Green’s f
tions can be formulated for an infinite domain, or for finite spatial regions in which particular~e.g.,
Dirichlet! boundary conditions apply.

The mathematical results reported here may be useful in solving a variety of elliptic pa
differential equations subject to Dirichlet boundary conditions in toroidal geometry. Area
which such applications may arise include the theory of elasticity, the slow motion of a vis
fluid, and magnetohydrodynamics.
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APPENDIX: USEFUL TOROIDAL EXPANSIONS

The solution of boundary-value problems in toroidal coordinates often requires Fourier
representations for half-integer powers of the quantity (12j cosh). For convenience, we provid
a selected list of such representations below:

~12j cosh!1/2 5
2&

p
~12j2!1/2(

k50

`
«k

4k221
Tk1~j!coskh, ~A1!
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¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



nd
s of

3691Jason W. Bates: On toroidal Green’s functions

¬¬¬¬¬¬¬¬¬¬
~12j cosh!21/2 5
&

p (
k50

`

«kTk0~j!coskh, ~A2!

~12j2!1/4

12j cosh
5 2 iA2

p (
k50

`

«kTk,1/2~j!coskh, ~A3!

~12j2!1/2

~12j cosh!3/2
5 2

2&

p (
k50

`

«kTk1~j!coskh, ~A4!

~12j2!3/4

~12j cosh!2
5 iA2

p (
k50

`

«kTk,3/2~j!coskh, ~A5!

~12j2!

~12j cosh!5/2
5

4&

3p (
k50

`

«kTk2~j!coskh, ~A6!

~12j2!5/4

~12j cosh!3
5 2

i

A2p
(
k50

`

«kTk,5/2~j!coskh, ~A7!

~12j2!3/2

~12j cosh!7/2
5 2

8&

15p (
k50

`

«kTk3~j!coskh. ~A8!

For half-odd-integer (12,
3
2,

5
2,...) degrees, theT functions are purely imaginary. Thus, the right ha

sides of Eqs.~A3!, ~A5! and ~A7! are real. A valuable resource for generating these type
expansions is the book by Oberhettinger.21
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Normalization integrals of orthogonal Heun functions
Peter A. Beckera)
Center for Earth Observing and Space Research, Institute for Computational Sciences
and Informatics, and Department of Physics and Astronomy, George Mason
University, Fairfax, Virginia 22030-4444

~Received 12 November 1996; accepted for publication 12 March 1997!

A formula for evaluating the quadratic normalization integrals of orthogonal Heun
functions over the real interval 0<x<1 is derived using a simple limiting proce-
dure based upon the associated differential equation. The resulting expression gives
the value of the normalization integral explicitly in terms of the local power-series
solutions aboutx50 andx51 and their derivatives. This provides an extremely
efficient alternative to numerical integration for the development of an orthonormal
basis using Heun functions, because all of the required information is available as
a by-product of the search for the eigenvalues of the differential equation. ©1997
American Institute of Physics.@S0022-2488~97!00107-2#

I. INTRODUCTION

Heun’s equation1 is the most general Fuchsian equation of second order with four reg
singular points, and it is therefore of considerable importance in mathematical physics. S
cases of the Heun equation include the hypergeometric, confluent hypergeometric, Lame´, Bessel,
Legendre, and Laguerre equations. As a practical matter, the most important solutions to th
equation are those orthogonal functions satisfying prescribed boundary conditions at two ad
singular points.2 The development of an orthonormal basis using these functions is a two
process. The first step is to search for the eigenvalues, and the second is to evaluate the q
normalization integrals of the associated eigenfunctions, which are orthogonal Heun func
The normalization integrals are usually evaluated numerically, which is not an especially ef
procedure given the nature of the eigenfunctions and the associated series representations.
to provide a useful alternative to numerical integration, in this paper we derive a new formu
directly evaluating the quadratic normalization integrals of orthogonal Heun functions ove
real interval@0, 1#. The formula obtained@Eq. ~29!# utilizes only information available as a by
product of the search for the eigenvalues, and therefore greatly improves both the efficien
the accuracy of numerical procedures involving Heun functions.

II. HEUN FUNCTIONS

We begin by writing Heun’s equation in the standard form first adopted by Erde´lyi et al.,3

d2y

dx2
1S g

x
1

d

x21
1

e

x2aD dy

dx
1

abx2l

x~x21!~x2a!
y50, ~1!

represented by the RiemannP-symbol

PH 0 1 a `

0 0 0 a x

12g 12d 12e b
J , ~2!

a!Electronic-mail: pbecker@gmu.edu
0022-2488/97/38(7)/3692/8/$10.00
3692 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



f

am-

ix, and

ower-
d, in
eigh-
Frobe-

about

g the
es a
r
eneral

h in

upon

rval

n fully
iption

value

3693Peter A. Becker: Normalization integrals of Heun functions

¬¬¬¬¬¬¬¬¬¬
with regular singular points located atx50,1,a,`. The parameterl falls outside the domain o
the usual Riemann classification scheme, and is therefore referred to as an accessory~or auxiliary!
parameter. In many applications,l plays the role of an eigenparameter. The five exponent par
etersa, b, g, d, ande are connected via Riemann’s relation

a1b2g2d2e1150, ~3!

and therefore only four of them are independent. The total number of free parameters is s
this number cannot be reduced by any transformation.

Heun1 used the method of Frobenius to derive local power-series solutions to~1!, generating
a three-term recursion relation for the expansion coefficients. Two linearly independent p
series~Frobenius! solutions exist in the neighborhood of any one of the singular points, an
general, analytic continuation of a single Frobenius solution about one singularity into the n
borhood of a second, adjacent singularity generates a linear combination of the two local
nius solutions about the second singularity.

The most important solutions are those that are simultaneously local Frobenius solutions
two adjacent singular points. These are referred to asHeun functions, and often arise when
physical boundary conditions are applied to solutions of the differential equation. Takin
parametersa, b, g, d, anda to be constants, the problem of finding a Heun function becom
singular Sturm–Liouville eigenvalue problem forl. However, since no formula is available fo
performing the analytic continuation between two adjacent singularities in the case of the g
Heun equation~in contrast to the subcase of the hypergeometric equation!, no general closed-form
expression for the eigenvaluesln exists. Heun functions are infinite series in general, althoug
special cases the series truncates, leaving a Heun polynomial.

There are four classes of Heun functions for a given pair of adjacent singularitiesx5s0 and
x5s1 that are distinguished by the values of the corresponding exponents (s0 ,s1). In this paper,
we sets050 ands151, and classify the Heun functions according to the usual scheme based
the values of the associated exponents: class I~0,0!, class II (12g,0), class III (0,12d), and
class IV (12g,12d). We focus here on the behavior of Heun functions within the real inte
0<x<1, and we assume throughout thata¹@0,1#.

III. DETERMINATION OF THE EIGENVALUES

Let the functiony0(l,x) be a local Frobenius solution of~1! in the neighborhood ofx50, and
let the functiony1(l,x) be a local Frobenius solution in the neighborhood ofx51. The properties
of these solutions, including the recursion relation for the expansion coefficients, have bee
discussed.2 Let us suppose that these functions are normalized according to the prescr
adopted by Heun, so that

lim
x→0

x2s0y0~l,x!5 lim
x→1

~x21!2s1y1~l,x!51. ~4!

It is known from the basic theory of these solutions that in generaly0 converges foruxu
,min(1,uau) and y1 converges forux21u,min(1,ua21u). Hence whena¹@0,1# as assumed
here, there exists a region ofmutual convergence, within which bothy0 and y1 converge. The
region of mutual convergence is contained within the interval@0,1#.

The Wronskian ofy0 andy1 is defined by

W~l,x![y0~l,x!
]y1
]x

~l,x!2y1~l,x!
]y0
]x

~l,x!. ~5!

In order to obtain a Heun function, the Wronskian must vanish, and therefore the eigen
equation forln becomes
J. Math. Phys., Vol. 38, No. 7, July 1997
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W~ln ,x!50. ~6!

When this condition is satisfied,y0(ln ,x) and y1(ln ,x) are linearly dependent functions~al-
though not equal in general!, and the solution to~1! with l5ln is the Heun functionHn(x). We
set the normalization ofHn(x) by stipulating thatHn(x)5y0(ln ,x) in the neighborhood ofx
50. In the neighborhood ofx51, we find thatHn(x)5A(ln)y1(ln ,x), where the value of
A(ln) is determined by requiring thatHn(x) be continuous at an arbitrary point within the regio
of mutual convergence ofy0 andy1 .

We can establish the functional form of the Wronskian by examining the self-adjoint ve
of the Heun equation,

Ly2lv~x!y50, ~7!

where the weight functionv(x) is defined by

v~x![xg21~x21!d21~x2a!e21, ~8!

and the operatorL is defined by

Ly[
d

dx Fxg~x21!d~x2a!e
dy

dxG1abxv~x!y. ~9!

Sincey0 andy1 are each solutions of~1! for the same value ofl, we may write

y0@L2lv~x!#y12y1@L2lv~x!#y050. ~10!

This yields an equation for the Wronskian,

2
1

W

dW

dx
5

g

x
1

d

x21
1

e

x2a
,

with solution

W~l,x!5D~l!x2g~x21!2d~x2a!2e, ~11!

whereD(l) is an unknown function. Note that the Wronskian vanishes forD(ln)50, which is
independent ofx. Hence when we evaluateW(l,x) using~5! in order to calculate the eigenvalue
using ~6!, we are free to pick any convenient value forx that lies within the region of mutua
convergence ofy0 andy1 .

IV. ORTHOGONALITY RELATIONS

LetHn(x) andHm(x) be Heun functions of the same class associated with eigenvaluesln and
lm . Since they are each solutions of~1!, we have, by analogy with~10!,

Hn@L2lmv~x!#Hm2Hm@L2lnv~x!#Hn50. ~12!

After simplifying and integrating over the interval@0, 1#, we obtain

~ln2lm!E
0

1

v~x!Hn~x!Hm~x!dx5p~x!SHm

dHn

dx
2Hn

dHm

dx D U
0

1

, ~13!

where
J. Math. Phys., Vol. 38, No. 7, July 1997
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p~x![xg~x21!d~x2a!e. ~14!

Based upon the asymptotic behavior of the local Frobenius solutionsy0 andy1 , we find that the
right-hand side of~13! vanishes when one of the following sets of class-dependent conditio
satisfied;

class I: Rg.0, Rd.0

class II: Rg,2, Rd.0
~15!

class III: Rg.0, Rd,2

class IV: Rg,2, Rd,2.

We shall refer to~15! as the set ofexistence conditionsfor orthogonal Heun functions on th
interval @0, 1#. When these conditions are met, we obtain the standard orthogonality relatio

~ln2lm!E
0

1

v~x!Hn~x!Hm~x!dx50. ~16!

V. NORMALIZATION INTEGRALS

Naturally, the integral in~16! does not vanish whenn5m, and in this case it is necessary
establish its value in order to develop an orthonormal basis using orthogonal Heun func
Numerical integration is always available as an option, but this is a very inefficient approach
problem. Other procedures have been devised, the most interesting being the method devel
Erdélyi,4 which is based upon expansions of Heun functions as series of degenerate hyperg
ric functions~Jacobi polynomials!. Lambe and Ward5 developed a technique for evaluating no
malization integrals for Heun polynomials, but these results are not applicable to the more g
~and much more common! case of Heun functions. In this section we develop a new formula
the explicit evaluation of these integrals.

We can derive a formula for evaluating the quadratic normalization integral

I n[E
0

1

v~x!@Hn~x!#2dx ~17!

by generalizing the approach taken in the preceding section. Proceeding as before, we n
sincey0(l,x) andy0(ln ,x) are each Frobenius solutions of~1! in the neighborhood ofx50, it
follows by analogy with~12! that

y0~l,x!@L2lnv~x!#y0~ln ,x!2y0~ln ,x!@L2lv~x!#y0~l,x!50, ~18!

whereln is an eigenvalue andl is arbitrary. After simplifying and integrating with respect
x, we now obtain

~l2ln!E
0

x

v~x8!y0~l,x8!y0~ln ,x8!dx85p~x!Fy0~ln ,x!
]y0
]x

~l,x!2y0~l,x!
]y0
]x

~ln ,x!G ,
~19!

where the right-hand side vanishes asx→0 provided the appropriate set of existence conditions
~15! is satisfied.
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Upon examination of~19!, we find that both sides of the equation vanish asl→ln . We can
therefore establish the value of the indefinite integral in the limitl→ln using L’Hôpital’s rule,
which yields

E
0

x

v~x8!@y0~ln ,x8!#2dx85p~x!Fy0~ln ,x!
]2y0
]l]x

~ln ,x!2
]y0
]l

~ln ,x!
]y0
]x

~ln ,x!G . ~20!

To obtain a formula for the desired normalization integralI n , we must letx→1 in ~20!, and this
requires analytic continuation ofy0 into the neighborhood ofx51. For general values ofl, we
write the analytic continuation ofy0 as

y0~l,x!5A~l!y1~l,x!1B~l! ỹ1~l,x!, ~21!

where y1 is the Frobenius solution aboutx51 with exponent zero, andỹ1 is the Frobenius
solution aboutx51 with exponent 12d. At this point we shall restrict our attention to Heu
functions of class I or II, so that the exponent atx51 is zero. This restriction will be remove
later. Note thatB(ln) must vanish so that we obtain a class I or II Heun function whenl
5ln . Substituting into~20!, we obtain after some algebra

I n[E
0

1

v~x!@Hn~x!#2dx5 lim
x→1

FAy1SA ]2y1
]l]x

1
dB

dl

] ỹ1
]x D2A

]y1
]x SA ]y1

]l
1
dB

dl
ỹ1D GpU

l5ln

,

~22!

where we have used the fact that in the neighborhood ofx51, Hn(x) is the analytic continuation
of y0(ln ,x), and in the neighborhood ofx50, Hn(x) is identical toy0(ln ,x).

Based upon asymptotic analysis ofy1 and ỹ1 , we find that in the limitx→1, all of the terms
on the right-hand side of~22! vanish except the second one, so that we are left with

I n5 lim
x→1

p~x!A~ln!
dB

dl
~ln!

] ỹ1
]x

~ln ,x!y1~ln ,x!. ~23!

Hence we need only evaluate (dB/dl)(ln) andA(ln) in terms of known functions in order to
obtain our final result for the normalization integralI n . Evaluation ofA(ln) is a simple matter,
since the continuity ofHn(x) requires that

A~ln!5
y0~ln ,x!

y1~ln ,x!
~24!

for any x within the region of mutual convergence ofy0 andy1 . Evaluation of (dB/dl)(ln) is
slightly more complicated. We begin by differentiating~21! with respect tox to obtain

]y0
]x

~l,x!5A~l!
]y1
]x

~l,x!1B~l!
] ỹ1
]x

~l,x!. ~25!

Solving ~21! and ~25! for B(l) yields

B~l!5S y0 ]y1
]x

2y1
]y0
]x D Y S ỹ1 ]y1

]x
2y1

] ỹ1
]x D . ~26!

Bearing in mind thatB(ln)50, we find upon differentiating~26! with respect tol that
J. Math. Phys., Vol. 38, No. 7, July 1997
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dB

dl
~ln!5

]W

]l Y S ỹ1 ]y1
]x

2y1
] ỹ1
]x D U

l5ln

, ~27!

where the WronskianW(l,x) is defined by~5!. We can use~24! and~27!, respectively, to replace
A(ln) and (dB/dl)(ln) in ~23!, yielding

I n5 lim
x→1

p
y0
y1

F]W]l Y S ỹ1 ]y1
]x

2y1
] ỹ1
]x D G ] ỹ1

]x
y1U

l5ln

. ~28!

The most singular term in the denominator is the one containing] ỹ1 /]x, and therefore in the
limit x→1 our final result for the normalization integral becomes

E
0

1

v~x!@Hn~x!#2dx52p~x!
]W

]l
~ln ,x!

y0~ln ,x!

y1~ln ,x!
. ~29!

In passing to this expression, we have made use of the fact that (]W/]l)(ln ,x)p(x) and
y0(ln ,x)/y1(ln ,x) are both independent ofx. Hence the right-hand side of~29! is actually an
invariant, which may be evaluated at any point within the region of mutual convergence o
local power-series solutionsy0 andy1 .

VI. EXTENSION TO HEUN FUNCTIONS OF CLASSES III AND IV

We have derived our main result~29! under the assumption thatHn(x) is a class I or II Heun
function. In the case of a Heun function of class III or IV, the exponent atx51 is 12d, and the
derivation presented above must be modified slightly. First we note that~20! remains valid be-
cause it is written in terms of the local solutiony0 aboutx50. The analytic continuation ofy0 into
the neighborhood ofx51 is still performed using~21!, except now we interchange the definition
of y1 and ỹ1 , so thaty1 is the local Frobenius solution aboutx51 with exponent 12d and ỹ1 is
the local solution aboutx51 with exponent zero. In this case we again requireB(ln)50, and
following the same procedure as before we regain expression~22!. Due to the fact that the
definitions ofy1 and ỹ1 have been interchanged, in the limitx→1, we find by asymptotic analysi
that only thefinal term in ~22! now contributes, so that in this case we obtain

I n5 lim
x→1

2p~x!A~ln!
dB

dl
~ln!

]y1
]x

~ln ,x! ỹ1~ln ,x!. ~30!

Evaluation ofA(ln) and (dB/dl)(ln) proceeds exactly as before, and we simply regain exp
sions~24! and ~27!. Using these results in~30! now yields

I n5 lim
x→1

2p
y0
y1

F]W]l Y S ỹ1 ]y1
]x

2y1
] ỹ1
]x D G ]y1

]x
ỹ1U

l5ln

. ~31!

This is similar to~28!, except now the most singular term in the denominator is the one conta
]y1 /]x, and therefore in the limitx→1 we obtain

I n52p~x!
]W

]l
~ln ,x!

y0~ln ,x!

y1~ln ,x!
,

which is identical to~29!. We are therefore led to the following general conclusion:Equation (29)
holds for Heun functions of any class, provided the existence conditions (15) are satisfie. We
discuss the significance of this result and its natural role in computational algorithms below
J. Math. Phys., Vol. 38, No. 7, July 1997
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VII. COMPUTATIONAL IMPLICATIONS

Equation~29! has important practical consequences for the design of numerical algor
used to develop orthonormal systems based on Heun functions, which are the solutions of
in many mathematical and physical situations. In such cases the first step towards solution
search for the associated eigenvaluesln . This search must proceed numerically in general, du
the lack of a closed-form expression forln in terms of the parametersa, b, g, d, anda. The
eigenvalues are obtained by isolating the roots of the Wronskian in~6!. The root finding usually
proceeds via Newton’s method or possibly some more sophisticated algorithm. Most of
techniques require the evaluation ofW and]W/]l in order to generate a revised estimate of t
true root ln , and the evaluation of these functions in turn involves the determination of
quantities

y0 ,
]y0
]x

,
]y0
]l

,
]2y0
]l]x

, y1 ,
]y1
]x

,
]y1
]l

,
]2y1
]l]x

at each iteration. The values ofy0 and y1 can be obtained using the well-known power-ser
representations, and the values of the derivatives can be obtained using term-by-term diffe
tion. It is straightforward to demonstrate that the radii of convergence of the series for the d
tives are identical to those for the corresponding fundamental series, which are discussed
II.

Once the eigenvaluesln have been determined to acceptable precision, one generally nee
evaluate the associated quadratic normalization integralsI n in order to develop a set of orthono
mal basis functionshn(x) using

hn~x![
Hn~x!

I n
1/2 , ~32!

with normalization

E
0

1

v~x!@hn~x!#2dx51. ~33!

The conventional approach to the problem of evaluatingI n is to integrate~17! numerically, in
which case thousands of evaluations ofHn(x) would generally be required in order to establish t
value ofI n to reasonable accuracy. However, such an inefficient procedure is no longer nec
with the availability of~29!, because it allows the determination ofI n to high precision using only
the values ofy0 , y1 , and]W/]l obtained in the final iteration of the root-finding stage of t
algorithm. Hence no substantial additional calculation is necessary in order to determineI n . The
computational time required for developing orthonormal systems of Heun functions can the
be reduced by several orders of magnitude by using~29! instead of numerical integration.

We close by making a comparison between the method for evaluatingI n outlined here and
that suggested by Erde´lyi,4 which utilizes Svartholm’s6 expansions of Heun functions as series
degenerate hypergeometric functions, essentially Jacobi polynomials. First of all, it is worth n
that in Erdélyi’s method, the root-finding approach is the same as that outlined above, becau
procedure assumes prior knowledge of the eigenvalues. With the eigenvalues already dete
the calculation of the coefficients for the Jacobi expansion proceeds via a three-term rec
relation similar to that derived by Heun for the coefficients of the power-series expansion.
the familiar result for the quadratic normalization integrals of the Jacobi polynomials, it is a s
matter to determineI n from the coefficients of the Jacobi expansion. While Erde´lyi’s method is
interesting from the point of view of functional analysis, it is obvious that his procedure en
much more computation than the evaluation ofI n using~29!, which we again emphasize require
J. Math. Phys., Vol. 38, No. 7, July 1997
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nothing more than information available as a by-product of the search for the eigenvalu
conclusion, we point out that the application of L’Hoˆpital’s rule used here to evaluate the no
malization integrals of Heun functions can also be used to obtain similar results for more g
Sturm–Liouville problems.
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Continuum limit of lattice approximation schemes
Carl M. Bender
Department of Physics, Washington University, St. Louis, Missouri 63130
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Department of Mathematics, University of Central Florida, Orlando, Florida 32816-1364
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Boundary-layer perturbation theory problems are inherently singular. However, it is
known that discretizing the problem by introducing a lattice may convert such
problems into regular perturbation problems. The singular nature of boundary-layer
problems is then relegated to and hidden in the continuum limit, the subtle limit in
which the lattice spacing tends to zero. If the lattice is introduced cavalierly, then
extrapolating to zero lattice spacing gives a sequence of extrapolants that at first
approaches the correct limit and then veers off, thereby revealing the asymptotic
nature of such problems. However, discretizing the problem following the proce-
dures described here yields lattice approximations that have a smooth and regular
continuum limit. These ideas are illustrated by three nonlinear ordinary differential
equations: the cubic equation that describes instantons, an oscillator equation hav-
ing a quadratic nonlinearity, and the Blasius equation. ©1997 American Institute
of Physics.@S0022-2488~97!02307-4#

I. INTRODUCTION

A powerful nonperturbative approach to the solution of quantum field theory is to discr
the theory by introducing a lattice. The advantage of this approach is that the lattice serve
regulator; divergent quantities in the continuum theory become finite in the corresponding
theory. However, the lattice spacing must be removed at the end of the computation to obt
solution to the original continuum theory. Removing the lattice spacing~taking the continuum
limit of the lattice theory! is a highly nontrivial procedure.

In this paper we examine the problem of reconstructing the original continuum theory fr
discrete lattice approximation in a simpler and more concrete context, namely, boundary
theory. A boundary-layer problem is a differential equation and an associated set of bou
conditions in which the highest derivative in the differential equation equation is multiplied
small parameterd. The solution to a boundary-layer problem consists of two regions: aninner
region, called aboundary layer, in which the solution is rapidly varying, and anouter region in
which the solution is slowly varying. The width of the inner region vanishes asd→0. Boundary-
layer problems aresingularperturbation problems.1 This means that the solution to the bounda
layer problem does not have a convergent Taylor series representation in powers ofd.

When a boundary-layer problem isdiscretizedby introducing a lattice with lattice spacin
a, then the resulting problem often becomes aregular perturbation problem~one whose solution
has the form of a Taylor series in powers ofd 2–4!. This transformation from a singular to a regul
perturbation problem is the differential-equation analog of the lattice regulation that occurs
context of quantum field theory. The singular nature of the problem then resurfaces whe
continuum limit of the discretized problem is taken. This singular limit is nontrivial. One ca
just set the parametera to zero; rather, one must perform the delicate limita→0 using numerical
extrapolation techniques. Extrapolation techniques that have been used in the past have bee
on Pade´ approximation methods.

Unfortunately, the continuum limita→0 is so singular that, not surprisingly, the accuracy
numerical results that have been obtained in the past is not unimpressive. In fact, in ver
0022-2488/97/38(7)/3700/18/$10.00
3700 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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order approximations the numerical extrapolants typically approach the exact answer for a
and then veer off. Thus, there appears to be a maximally obtainable accuracy that can
improved by going to higher order in powers ofd.

In this paper we propose a resolution to this dilemma. We note that there aremanyways to
discretize a differential equation problem. We enumerate several criteria that enable us to
uniquely the optimal discretization scheme for the differential equation. The optimal sc
appears to have the advantage that the extrapolants to the continuum limit approach tha50
valuesmoothly. Thus, as the order of the approximation is increased, the numerical error in
extrapolants continues to decrease.

Our paper is organized very simply. In Sec. II we examine the instanton solution to a
nonlinear differential equation:

d2y9~x!5@y~x!#32y~x!. ~1.1!

The boundary conditionsy(0)50 andy(`)51 give rise to a boundary layer atx50; the objec-
tive is to calculate the value ofy8(0). This problem has the virtue that the exact solution, cal
an instanton, is known analytically. We examine various discretization schemes for this pro
and we formulate a set of criteria for selecting the best of these schemes.

In Sec. III we study an oscillator having a quadratic nonlinearity:

d2y9~x!5@y~x!#222y~x!. ~1.2!

We seek soliton solutions satisfying the boundary conditionsy(6`)52. There are twoeven-
parity solutions to this problem, a trivial constant solutiony[2, and a nontrivial solution. Ou
objective here is to find the value ofy(0) for the nontrivial solution. Again, the exact solution
this problem is known analytically.

Finally, in Sec. IV we look at the very difficult problem of a boundary-layer solution to
Blasius equation,

dy-~x!1y~x!y9~x!50, ~1.3!

wherey(0)50, y8(0)50, andy8(`)51. The goal here is to calculate the value ofy9(0). The
solution to this third problem is not known analytically; it can only be obtained by using nume
methods.

We hope that the success of the lattice techniques discussed in this paper will ins
re-examination of the strong-coupling lattice techniques that have been used in the past to
quantum field theory.5 We feel that these improved discretization schemes will lead to dram
cally improved numerical results in quantum field theory.

II. BOUNDARY-LAYER APPROXIMATION TO AN INSTANTON

In this section we consider the boundary-value problem,

d2y9~x!5@y~x!#32y~x!, y~0!50, y~`!51. ~2.1!

The solution to this equation is called aninstanton. This instanton arises in the context of
semiclassical approximation to the functional integral representing af4 Euclidean quantum field
theory.

The exact closed-form solution to the problem in Eq.~2.1! is known:

y~x!5tanhS x

dA2D . ~2.2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Observe that whend!1 the solution exhibits aboundary layer~a narrow region of rapid varia
tion! at the originx50; asd→0, the solution becomes discontinuous atx50. The solution is
slowly varying elsewhere.

Our objective in this section is to use a lattice approximation to determine the valu
y8(0). Of course, from Eq.~2.2! we already know the exact answer:

y8~0!5
1

dA2
. ~2.3!

There are many ways to discretize the differential equation in Eq.~2.1!. For example, an
apparently natural way to introduce a lattice is to replace this differential equation by the d
ence equation,

e~yn1122yn1yn21!5yn
32yn , ~2.4!

where

e[
d2

a2
. ~2.5!

The underlying reason for introducing the variablee is that it isdimensionless. We emphasize
that the limit of zero lattice spacing does not make sense because one cannot take a dime
quantity such asa to be ‘‘small.’’ This is because one can always redefine the units so tha
dimensional quantity has exactly the same numerical size. One can only take the lattice
relative to another quantityin the theory having the same dimensions asa; this other quantity is
d. Thus, the continuum limit of the theory is achieved by performing the limite→`.

There is another limit in the theory, namely,e→0. We borrow some terminology from
quantum field theory6 and refer to this limit as theultralocal limit. In the ultralocal limit the
kinematic~derivative! terms on the left side of Eq.~2.1! vanish and there is a balance of the loc
terms on the right side. In the language of boundary-layer theory, this limit is called theouter
limit.

The calculational procedure is now to treat the lattice spacinga as beingfixedandd as small,
or equivalently, to treat the parametere as small. Then, at each lattice pointn we expandyn as a
series in powers ofe. Finally, from the power series fory1 andy0, we try to recover the derivative
y8(0).

We do not describe the details of this calculation here because they are given in Refs.
3. However, in brief, we incorporate the boundary conditions by requiring thaty050 and that
y`51. Second, we observe that ate50 ~the ultralocal limit of the lattice problem! there is a
simple solutiony050 andyn51 (n.0). Next, we expand about this unperturbed solution a
obtain a series expansion foryn for each value ofn:

y050,

y1512
1

2
e1

1

8
e220e31

11

28
e41 . . . ,

y2512
1

4
e21

5

16
e32

15

32
e41 . . . ,

y3512
1

8
e31

9

32
e41 . . . ,

y4512
1

16
e41 . . . , ~2.6!

and so on.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The boundary-layer structure at the originx50 is incorporated in this discrete problem in a
interesting fashion: Observe that the first dependence one in the power series foryn occurs at the
en term. Thus, asn increases, thee dependence becomes weaker; this is the lattice version o
outer regionwhere the solution to the boundary-layer problem is a slowly varying function
x. As n tends to`, yn has the degenerate power series 1 and the boundary condition atx5` is
correctly incorporated.

We must now calculatey8(0) in the continuum limit. Since the lattice representation
y8(x) is lima→0(yn112yn)/a, we have from Eq.~2.6!,

y8~0!5 lim
e→`

1

a
~y12y0!5 lim

e→`

1

a S 12
1

2
e1

1

8
e220e31

11

28
e41 . . . D

5
1

d
lim
e→`

AeS 12
1

2
e1

1

8
e220e31

11

28
e41 . . . D . ~2.7!

If we compare this structure with the exact answer in Eq.~2.3!, we see that the factor of 1/d is, of
course, correct. However, it is not at all obvious how to obtain the numerical result,

1

A2
5 lim

e→`

AeS 12
1

2
e1

1

8
e220e31

11

28
e41 . . . D . ~2.8!

We have now encountered a very difficult problem associated with the interchange of l
In principle, we must first obtain the perturbation expansion to all orders in powers ofe and sum
the series. Second, we must take the limite→`. Unfortunately, it is not possible to perform th
limits in this order because one can only obtain afinite number of terms in any perturbatio
expansion for a nontrivial problem. Thus, the question is this: How can one make sense
~2.8! when there are only a limited number of terms known in the series? A number of solu
to this problem have been suggested and studied;7–9 all of the approaches involve the use of Pa´
approximations.

The simplest approach is to treat the perturbation parametere as small (e!1) and to conduct
a sequence of algebraic manipulations whose objective is to change the form of the right s
Eq. ~2.8! to one that has a limit ase→`. With each manipulation we retain the terms of the ser
in Eq. ~2.8! to ordereN, whereN is the number of terms that we have calculated in perturba
theory. First, we square the right side of Eq.~2.8! to eliminate the fractional power ofe. This gives
a structure of the form

e(
k50

N

Ake
k, ~2.9!

where the numbersAk are obtained by squaring the series in Eq.~2.8! term-by-term. We empha
size that consistency demands that we truncate the squared series after theeN term. Next, we
invert theA-series term-by-term and again truncate the resulting series after theeN term:

e

(k50
N Bke

k . ~2.10!

We now raise the expression in Eq.~2.10! to the powerN:

eN

(k50
N Cke

k . ~2.11!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Observe that the continuum limite→` now exists! In this limit the right side of Eq.~2.11!
becomes 1/CN . Finally, we compensate for having raised the right side of Eq.~2.9! to the powers
2 andN by taking the 2Nth root of this limit; wedefinetheNth extrapolant LN by

LN[~CN!1/2N. ~2.12!

Clearly, the hope is that asN→`, the Nth extrapolantLN will tend to the correct limit
1/A250.70711 . . . . However, what we actually observe is that the extrapolants approac
correct limit for a while and then veer away from this limit. Specifically, asN increases from
1, the extrapolantsLN seem to be approaching the correct limit monotonically:L151.0,
L250.84090, L350.78193, L450.75724, L550.74076, L650.73121, L750.72393,
L850.71905,L950.71515,L1050.71231. The extrapolants continue to decrease until theyun-
dershootthe exact value. Eventually, the extrapolants reach a broad, flat minimum in 24th o
L2450.70198. The relative error between this value and the exact answer is less than 1%. T
extrapolants gradually rise; they recross the value 0.70711 at 41st order and continue risin
behavior is strongly reminiscent of the behavior of the sequence of partial sums of an asym
~divergent! series. Apparently, there is no advantage to going to higher order in powers ofe. We
believe that underlying this behavior is the fact that we are solving a boundary-layer pro
which is asingularperturbation problem.

The purpose of this paper is to remedy this serious divergence problem. We will do
using a superior lattice approximation. We begin by using the well-known fact that a la
approximation to a differential equation may be regarded as ahigher order derivative perturbation
of that differential equation. An example of a higher order derivative perturbation of the d
ential equationy9(x)5@y(x)#32y(x) is

e2y99~x!1y9~x!5@y~x!#32y~x!, ~2.13!

wheree is a small parameter.
Introducing a lattice is merely another way to perturb an equation. On a lattice of la

spacinga we make the replacement

y9~x!→D2y~x![a22@y~x1a!22y~x!1y~x2a!#

5y9~x!1
1

12
a2y-8~x!1

1

360
a4y--~x!1 . . . . ~2.14!

Note that either of the above equations is asingular perturbationof y9(x)5@y(x)#32y(x) be-
cause higher derivatives are multiplied by powers of the small parameter. However, we c
the Lie symmetry of the underlying unperturbed nonlinear equationy9(x)5@y(x)#3 to eliminate
small parameter factors multiplying the higher derivatives. This equation is invariant under

x→ax, y~x!→
1

a
y~x!. ~2.15!

Thus, if we choosea5e in Eq. ~2.13! or a5a in D2y(x)5@y(x)#32y(x), we obtain the equa-
tions

y9~x!1y99~x!5@y~x!#32e2y~x! ~2.16!

and
J. Math. Phys., Vol. 38, No. 7, July 1997
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y9~x!1
1

12
y99~x!1

1

360
y--~x!1 . . .5@y~x!#32a2y~x!. ~2.17!

These equations appear to beregular perturbation problems because the higher derivatives ar
longer multiplied by factors of the perturbation parameter. However, this is not really so be
the singular behavior has been shifted to the pointz5`, wherex5ez.

It can be proved10 thatall solutions except the trivial solutiony(x)50 to these equations ar
not regular atz5`. Indeed, in the (y,y8)-phase plane@the two-dimensional projection of the fu
(y,y8,y9,y-, . . . )-phase space# the phase portrait of~2.17! exhibits chaotic behavior.10

Exactly the same arguments can be made if the cubic nonlinear term in Eq.~2.13! or in the
corresponding discretized equation is replaced by the quadratic nonlinear term@y(x)#2. For this
case the nonlinear equationy9(x)5@y(x)#2 is invariant under the Lie symmetry,

x→ax,

y~x!→
1

a2 y~x!. ~2.18!

Again there is no nontrivial regular solution atz5`.@A central-difference discretization of Eq
~1.2! is equivalent to the He´non map that is known to exhibit chaotic behavior.#

A necessary condition for there to be a smooth continuum limit is that atz5` there exist a
nontrivial regular solution~in the form of a Taylor series in powers of 1/z); such a solution would
not exhibit chaotic behavior. It is the rigorously demonstrated nonexistence of such a r
solution atz5` that probably prevents us from extrapolating smoothly to the continuum lim
the lattice approximation in Eq.~2.14!. However, if we could find a discretization scheme th
respects the discrete Lie symmetry, then the Taylor series atz5` would truncate and we would
have a regular solution.~Of course, the mere existence of a solution that is regular atz5` does
not in itself guarantee that the solution we seek will be regular. However, we immediately
all other discretization schemes because they are associated with chaotic behavior.!

We summarize the above remarks in the form of a general criterion.
Criterion 1: One must discretize the nonlinear term in the differential equation so tha

resulting discrete difference equation has the same (singular) scaling solution (that is, the
Lie symmetry) as the original differential equation.

We apply this criterion to Eq.~2.1! as follows: Neglecting the linear term, which in the scal
equation~2.17! is multiplied by the small parametera2, we observe that there is a singular scali
solution tod2y9(x)5@y(x)#3 of the form y(x)5c/x, wherec is a constant. Thus, we seek
discretize the nonlinear term@y(x)#3 so that the difference equation has a solution of the fo
c/n. The choice of difference equation is now unambiguous; there is a unique cubic term
respects the Lie symmetry:

e~yn1122yn1yn21!5
1

2
~yn111yn21!yn

2 . ~2.19!

@As we show in Sec. III for the case of a quadratic nonlinearity, we seek an exact solution
form yn5 c/n(n11).#

The above criterion does not provide any guidance about how to discretize the linear te
the differential equation. Lacking guidance, we might choose

e~yn1122yn1yn21!5
1

2
~yn111yn21!yn

22yn , ~2.20!
J. Math. Phys., Vol. 38, No. 7, July 1997
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which is the simplest scheme. However, this choice is unacceptable as we now show. Cons
ultralocal (e50) equation:

yn111yn21

2
yn
22yn50. ~2.21!

The natural solution to Eq.~2.21! at n50 is

y050, ~2.22!

because it incorporates the boundary conditiony(0)50. Next, we examine Eq.~2.21! at n51;
this equation reads asy2y1

252y1. Let

y15a, ~2.23!

wherea is arbitrary. Then,

y25
2

a
. ~2.24!

Next, we examine Eq.~2.21! at n52; this equation reads as (y31y1)y2
252y2, whence

y350. ~2.25!

If we continue this process, we obtainy45b, whereb is arbitrary,y552/b, y650, y75g, where
g is arbitrary,y852/g, y950, and so on. We reject the discretization in Eq.~2.20! because it
gives a sequence ofyn at e50 that does not have a continuum limit; rather, it has a chop
fluctuating structure.

To determine an acceptable discretization of Eq.~2.1!, we formulate a second criterion.
Criterion 2: The unperturbed ultralocal solution to the difference equation in the outer re

must be smooth so that it will have a continuum limit.
Imposing this criterionuniquelydetermines a discretization for Eq.~2.1!:

e~yn1122yn1yn21!5
1

2
~yn111yn21!yn

22
1

2
~yn111yn21!. ~2.26!

The ultralocal solution to this equation satisfies Criterion 2:

y050, yn51~n.0!. ~2.27!

Although this ultralocal solution is not smooth atn50, this jump discontinuity does not violat
Criterion 2 because this jump is in the boundary-layer~inner! region and not in the outer region

Next, we expandyn for eachn as a series in powers ofe and obtain the analog of Eq.~2.6!:
J. Math. Phys., Vol. 38, No. 7, July 1997
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y050,

y1512e1
3

2
e22

5

2
e31

35

8
e41 . . . ,

y2512
1

2
e21e32

13

8
e41 . . . ,

y3512
1

4
e31

3

4
e41 . . . ,

y4512
1

8
e41 . . . , ~2.28!

and so on. If we now determine the extrapolantsLN from these new series, we obtain a drama
improvement; not only doesLN converge to the exact answer asN→`, but LN equals the exact
answerfor all N:

LN5
1

A2
~all N!. ~2.29!

We are able to verify this result because while it is extremely rare to find an exact solut
a nonlinear equation, we have succeeded in solving the difference equation~2.26! exactly and in
closed formfor all values ofe:

y050, y15
1

A2e11
, y25

A2e11

e11
,

y35
3e12

~e12!A2e11
, y45

~2e12!A2e11

e214e12
,

y55
5e2110e14

~e216e14!A2e11
, y65

~3e218e14!A2e11

e319e2112e14
, ~2.30!

and so on. In general, for alln we have

yn5
~A2e1111!n2~A2e1121!n

~A2e1111!n1~A2e1121!n
, ~2.31!

which is the lattice version of the hyperbolic tangent function in Eq.~2.2!.11

III. OSCILLATOR WITH A QUADRATIC NONLINEARITY

In this section we show how to use the criteria formulated in Sec. II to find the co
discretization of the nonlinear equation,
J. Math. Phys., Vol. 38, No. 7, July 1997
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d2y9~x!5@y~x!#222y~x!, ~3.1!

subject to the boundary conditions

y~6`!52. ~3.2!

Because Eq.~3.1! has a translation symmetry, there is an infinite number of soliton solution
this problem, all parameterized by the location of the center~minimum value! of the wave. To
eliminate this translation ambiguity, we impose the further condition thaty(x) be anevenfunction
of x. There are exactly two solutions that satisfy this additional requirement, a trivial con
solution,

y~x![2, ~3.3!

and a nontrivial solution that can be given exactly in terms of the hyperbolic tangent functi

y~x!52113F tanhS x

dA2D G
2

. ~3.4!

Our objective will be to find the numerical value ofy(0); from the above two equations we kno
that the exact answers arey(0)52 andy(0)521.

Like the boundary-value problem considered in Sec. II, the differential equation in Eq.~3.1! is
a boundary-layer problem. From the exact solution in Eq.~3.4! we know that the boundary laye
occurs at the origin and has thicknessd.

We introduce a lattice according to the principles formulated in Sec. II. First, we observe
the nonlinear differential equationd2y9(x)5@y(x)#2 has a scale invariance~a Lie symmetry! and
admits singular, double-pole solutions of the form

y~x!5
c

x2
, ~3.5!

wherec is a constant. The lattice equivalent of a double pole is the function 1/n(n11) @or, more
generally, 1/(n1a)(n111a)# andnot 1/n2, as one might naively think. In general, the latti
equivalent of the continuum functionx2k is

f k5
1

~n1a!~n111a!~n121a!~n131a! . . . ~n1k211a!
. ~3.6!

To understand this equivalence we observe that the analogy of the continuum equation

d

dx
x2k52kx2k21, ~3.7!

is

Df k52k fk11 , ~3.8!

whereD is the discrete derivative~first difference! operator.
Now we apply Criterion 1 of Sec. II. Since we are looking for a symmetric solution to

~3.1!, we representy9(x) by a symmetricdouble difference:a22(yn1122yn1yn21). When we
take the second difference of the solutionyn5 1/(n1a)(n111a), we obtain
J. Math. Phys., Vol. 38, No. 7, July 1997
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1

~n211a!~n1a!~n111a!~n121a!
, ~3.9!

apart from a multiplicative constant. There are exactlytwo symmetric quadratic lattice structure
that we could use on the right side of the equation to produce the result in Eq.~3.9! from
yn5 1/(n1a)(n111a); the structureyn11yn21 gives

1

~n211a!~n1a!~n111a!~n121a!
, ~3.10!

andyn(yn111yn1yn21) gives

3

~n211a!~n1a!~n111a!~n121a!
. ~3.11!

~Recall that Criterion 1 does not place any requirements on the linear term.! We conclude that the
most general symmetric difference equation satisfying Criterion 1 is

e~yn1122yn1yn21!51Qyn11yn212Ryn111yn212Syn , ~3.12!

where

e5
d2

a2
. ~3.13!

The arbitrary constantsP, Q, R, andS in Eq. ~3.12! obey two constraints: Since the coefficient
the quadratic term in Eq.~3.1! is 1, we have

3P1Q51, ~3.14!

and since the coefficient of the linear term in Eq.~3.1! is 22, we have

2R1S52. ~3.15!

Next we impose Criterion 2~smoothness of the ultralocal solution in the outer region!. Cri-
terion 2 states that outside the boundary layer atx50 (n50 on the lattice! the unperturbed
solution must have a slowly varying continuum limit. We therefore seek an ultralocal (e50)
solution of the form

y05j, yn52~nÞ0!. ~3.16!

For n50 this gives the constraint

05j~41j!P14Q24R2jS, ~3.17!

and forn51 this gives

052~41j!P12jQ2~21j!R22S. ~3.18!

Whenn.1, we obtain the condition 056P12Q22R2S, which is already true by virtue of Eqs
~3.14! and ~3.15!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The equations~3.14!, ~3.15!, ~3.17!, and~3.18! determine uniquely the arbitrary constants
the lattice equation~3.12!:

P5
2

22j
, Q5

j14

j22
,

R5
2j14

j22
, S5

2j112

22j
. ~3.19!

It appears as if all that remains is for us to substitute Eq.~3.19! into Eq. ~3.12! and to expand
yn for eachn as series in powers ofe. However, as we now show, this procedure is not quite
straightforward as in Sec. II because here we encounter a subtlety with regard to the form
regular perturbation expansion. In particular, if we attempt to expandyn as a series in powers o
e, we reach an immediate contradiction! Let

y05j1a0e1O~e2!,

yn521ane1O~e2! ~nÞ0!. ~3.20!

Now, for n50 we obtain

22j1a01a11a2150, ~3.21!

and forn51 we have

j221~j14!a250. ~3.22!

For n.1 we get simply

a250, a350, a450, ~3.23!

and so on. Hence, from Eqs.~3.21!–~3.23! we havej52 and we are forced to conclude that the
is no boundary layerat x50.

There are two ways to avoid this problem. The first is to recognize that because the bou
layer in the continuum differential equation is thick@of sized5O(Ae) and notO(e)#, the bound-
ary layer on the lattice must be made thicker. Thus, we replace Eq.~3.16! by

y05j1 , y615j2 , yn52 ~nÞ0,61!. ~3.24!

We have examined this approach in detail and have verified that it works successfully; in
with the choice in Eq.~3.24! we are able to find all the terms in the perturbation series and to
the perturbation series to all orders in closed form. However, we do not pursue this app
further here because there is a second procedure that is simpler and more natural. Si
thickness of the boundary layer in the continuum is of orderd, we seek an expansion ofyn for
eachn as a series in powers ofz5Ae. Thus, we replace Eq.~3.20! by

y05j1a0z1b0z
21c0z

31O~z4!,

yn521anz1bnz
21cnz

31O~z4! ~nÞ0!. ~3.25!

With this ansatzwe obtain the following series representations in powers ofz5Ae on the lattice:

y05j1a0z1
~j22!~j112!

4
z21

~j22!2~j18!

2a0
z31

~j22!~j14!~j16!

16
z41 . . . ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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y61522
a0
2
z1

~22j!

2
z22

~j22!2~j16!

4a0
z32

~j22!~j16!

8
z41 . . . ,

y62522
a0
4
z31O~z4!, y63521O~z5!,

y64521O~z7!, y65521O~z9!, y66521O~z11!, ~3.26!

and so on, where (a0)
252(j22)2.

We have been able to carry out this analysis toall orders in powers ofz and to sum the serie
in closed form. We are especially interested iny0. For this case the odd terms and the even te
in the series have completely different structures. For even powers inz we have

$y0%even5j1
~j22!~j112!

4
z21

~j22!~j14!~j16!

16
z41

~j22!2~j14!~j16!

64
z6

1
~j22!3~j14!~j16!

256
z81

~j22!4~j14!~j16!

1024
z101 . . . ,

5j1
~j22!~j112!

4
z21

~j22!~j14!~j16!

16
z4(

k50

` F ~j22!z2

4 Gk

5j1
~j22!~j112!

4
z21

~j22!~j14!~j16!z4

1624~j22!z2
. ~3.27!

The odd powers ofz in the series fory0 are somewhat more complicated:

$y0%odd5a0z1a0
~j18!

4
z31a0

j216j

16
z511a0

j314j2212j216

64
z71 . . . ,

5za0(
k50

`

P k~j!S z24 D k, ~3.28!

whereP k is the set of polynomials in the variablej:

P 051,

P 15j18,

P 25j216j,

P 35j314j2212j216,

P 45j412j3220j218j164,

P 55j5224j3148j2148j2192, ~3.29!

and so on.
These polynomials satisfy the simple difference equation

P k115~j22!P k1Tk , ~3.30!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where Tk (k50,1,2,3,4,. . . ) is the sequence of numbers 10, 16,216, 32, 264, 0, 1536,
216896, 146432,21171456,. . . . An exact, closed-form expression forTk is

Tk5
~k25!~28!k

Ap~k11!!
GS k2

1

2D . ~3.31!

Hence, an explicit formula forP k is

P k5~j22!k1 (
j50

k21

Tj~j22!k2 j21. ~3.32!

If we substitute Eq.~3.32! into Eq. ~3.28! and perform the double summation, we obtain

$y0%odd5
2a0z~213z2!A112z2

42~j22!z2
. ~3.33!

Finally, combining the even and odd parts ofy0 and eliminatingz anda0 in favor of e, we have

y05j1
~j22!e

42e~j22!
F12e1j1122~8112e!A11

1

2e G . ~3.34!

Observe that whenj52, we havey052 for anye; thus, we have found the trivial solution to th
problem. On the other hand, whenj Þ 2, in the limit of zero lattice spacing we obtain

y05212
19j158

~8j216!e
1O~e22! ~e→`!. ~3.35!

Thus, in the limit ase→` we recover the nontrivial boundary-layer solution to the problem.
It is startling indeed that we have managed once again to find the exact, closed-form so

to a nonlinear second order difference equation. It is quite remarkable that imposing Criteria
J. Math. Phys., Vol. 38, No. 7, July 1997
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2 on the nonlinear differential equations in Secs. II and III has led us to formulate dis
nonlinear difference equations that can be solved exactly and in closed form; any other di
zations yield difference equations for which there is virtually no hope of finding exact solutio12

IV. BLASIUS EQUATION

The Blasius equation is a nonlinear third order differential equation that arises in the de
tion of a fluid flowing along a flat plate:

dy-~x!1y~x!y9~x!50, ~4.1!

wherey(x) satisfies the boundary conditions

y~0!50, y8~0!50, y8~`!51. ~4.2!

Our goal is to show that

y9~0!50.46960. . . /Ad. ~4.3!

This is an extremely difficult boundary-value problem that not only has no known analy
solution but also is extremely difficult to solve numerically.

In Refs. 2 and 3 this problem was considered but the discretization scheme that was use
gave only moderately good and not excellent results. The discretization was exactly wh
might choose in the absence of the criteria developed in Sec. II:

y~x!→yn ,

y9~x!→~yn1122yn1yn21!/a
2,

y-~x!→~yn1123yn13yn212yn22!/a
3.

Using as boundary conditionsy215y050, a lattice series fory1 in powers of the scaled sma
parameterd was obtained to 38th order. From this series a sequence of lattice extrapolan
obtained. The lattice extrapolantsEN form a monotonically decreasing sequenc
E150.7071/Ad, E250.5945/Ad, E350.5583/Ad, E450.5401/Ad, E550.5292/Ad, and so on.
Although this sequence continues to decrease, it is not obvious whether it approaches the
answer in Eq.~4.3!; indeed it appears to level off at a value that is about 5% too h
E2550.4953/Ad, E2650.4950/Ad, E3750.4928/Ad, E3850.4927/Ad.

In this paper we discretize the Blasius equation following the procedures described in S
and III. First, we make the replacement

y-~x!→~ f n1323 f n1213 f n112 f n!/a
2. ~4.4!

Here, a is the lattice spacing and for convenience we perform a scalingyn5a fn . Next, we
consider the nonlinear term and make the replacement:

y~x!y9~x!→Pfn12f n131~122Q2P! f nf n111~123Q! f nf n1323Qfn11f n12

1~6Q12P22! f nf n121~2Q22P! f n11f n13 , ~4.5!

whereP andQ are arbitrary parameters. This expression is themost generaldiscretization of
y(x)y9(x) using quadratic terms at the lattice pointsn, n11, n12, n13 such that the following
two requirements are satisfied.
J. Math. Phys., Vol. 38, No. 7, July 1997
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~1! Criterion 1: The Blasius equation has the Lie symmetry scaling solutiony5c/x. If we
substitute the lattice equivalentf n51/n into Eq. ~4.5!, we get 2/@n(n11)(n12)(n13)# for all
P andQ. This is the same structure that one gets when one substitutesf n51/n into the right side
of Eq. ~4.4!.

~2! Criterion 2: Forf n5An1B ~any linear function!, the result vanishes; hence, we obtain
smooth ultralocal solution in the outer region~away from the boundary layer atn50).

We now take

e5
d

a2
. ~4.6!

Thus, we have to solve

e~ f n1323 f n1213 f n112 f n!1Pfn12f n131~122Q2P! f nf n111~123Q! f nf n13

23Qfn11f n121~6Q12P22! f nf n121~2Q22P! f n11f n1350, ~4.7!

subject to the three boundary conditionsf 050, f 150, limn→` f n112 f n51, and our objective is
to show that

lim
e→`

Ae f 250.46960. ~4.8!

We begin our analysis by looking at the casen50. This gives the equation

e~ f 323 f 2!1Pf2f 350. ~4.9!

Assuming thatf 2 and f 3 are nonzero whene50, we are compelled to chooseP50. This fixes one
of the two arbitrary parameters. WithP50 we have

e~ f n1323 f n1213 f n112 f n!1~122Q! f nf n111~123Q! f nf n1323Qfn11f n12

1~6Q22! f nf n121~2Q! f n11f n1350. ~4.10!

To determine the parameterQ we note that there is one more symmetry of the Blasius equa
that we have not yet used, namely, reflection symmetry. Equation~4.1! is symmetric under the
discrete symmetry,

x→2x, y→2y.

While reflection symmetry is not a Lie symmetry, it does seem natural to impose this sym
here because it uniquely fixes the value of the remaining arbitrary parameterQ. On the lattice this
symmetry takes the form

f n→2 f n13 , f n11→2 f n12 ,

f n12→2 f n11 , f n13→2 f n .

Requiring that Eq.~4.10! be invariant under this symmetry gives the valueQ51/2.
For this case, let
J. Math. Phys., Vol. 38, No. 7, July 1997
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f n5an1ebn1e2cn1e3dn1 . . . . ~4.11!

In the ultralocal limit (e50), an satisfies

an135an12

3an1122an
2an112an

. ~4.12!

This equation gives the sequence

a050,

a150, a25x, a353x,

a459x/2, a5563x/10, a6563x/8, a7577x/8, ~4.13!

wherex is an arbitrary parameter.
The exact formula foran is

a2n5
2xG~1/4!G~n21/4!G~n11/2!

G~3/4!G~1/2!G~n23/4!G~n!
,

a2n115
2xG~1/4!G~n13/4!G~n11/2!

G~3/4!G~1/2!G~n11/4!G~n!
. ~4.14!

Now we impose the requirement that limn→`an112an51. This fixes the value ofx:

x5
G~3/4!G~1/2!

G~1/4!
50.5990701173677961. ~4.15!

Next, we examine the solution to first order ine. Note thatbn satisfies the equation

05an1323an1213an112an1an11bn131an13bn111anbn121an12bn2
1
2anbn13

2 1
2an13bn2

3
2an11bn122

3
2an12bn11 . ~4.16!

The first few values ofbn are

b050, b150, b25y, b353y, b459y/213/2, b5563y/10189/50,

b6563y/8151/16, b7577y/814697/1296, ~4.17!
J. Math. Phys., Vol. 38, No. 7, July 1997
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wherey is an arbitrary parameter.
The sequencebn consists of two parts. The part multiplyingy is just an ~the homogeneous

solution!. To isolate the second part, we write

bn5
y

x
an1zn . ~4.18!

Now, asn→`, we can show that

bn;
y

x
n1nL, ~4.19!

whereL50.9272586576. Hence,y52x(0.9272586576). Thus, to first order in powers ofe we
have

f 25x~120.9272586576e1 . . . !. ~4.20!

We can now use this result to obtain thefirst extrapolantE1 to the value ofy9(0):

E15
1

Ad
lim
e→`

xAe~120.9272586576e!

5
x

Ad
lim
e→`

Ae

112~0.9272586576!e

5
x

Ad
~0.7343187!5

1

Ad
~0.43990837!. ~4.21!

When we compare this number with 0.46960~exact! we see that our result is 6.3% low. This fir
order result is already comparable in accuracy with that obtained in Refs. 2 and 3 in 38th
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Factorization of complex canonical transformations
B. Bruhn
Institut für Physik, Ernst-Moritz-Arndt Universita¨t, Domstrasse 10a,
D-17489 Greifswald, Germany
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We investigate the Lie series representation of the canonical transformations in a
finite dimensional complex phase space. It is shown that any transformation of this
type can be factorized into a product of three factors associated with a pure imagi-
nary generating function, a holomorphic function, and an element of the cyclic
group C4. The imaginary function can be considered as an observable in the sense
of classical mechanics. Some hints are given which suggest that the holomorphic
function can be connected with the notion of the state of a physical system. More-
over, a special kind of mappings is studied which provides a link between entropy,
action, and state functions. The occurrence of these important physical quantities
shows that the mathematical structure goes beyond a formal analogy to quantum
physics at least in the finite dimensional case. ©1997 American Institute of
Physics.@S0004-6256~97!03407-9#

I. INTRODUCTION

It is well accepted that the transition from Newtonian or Lagrangian to the Hamilto
formulation of classical mechanics does not introduce any newphysical knowledge into the
theory. On the other hand, only the Hamiltonian formulation allows the passage to qua
mechanics by means of the canonical quantization rule. In view of this fact, there seems t
a deep connection between abstract mathematical structures and our quantitative descri
physical systems. Therefore, the study of geometrical structures and transformation prope
the elements of a physical system is a concept of basic importance. The step from Lagran
Hamiltonian formulation is performed by the extension of the configuration space to the
space via the cotangent bundle construction.1 Moreover, the set of allowed automorphisms of t
phase space becomes the canonical transformation group which preserves the Poisson brac
is much larger than the group of point transformations in the configuration space.2 The dynamical
variables in mechanics are the smooth real phase space functions and this set of function
a natural way a Lie-algebraic structure, where the Lie product of two functions is just their Po
bracket.

The representation of the canonical transformations by means of Lie-series3 clearly shows the
second aspect of the phase space functions; that of generators of canonical mappings. T
erator property plays an important role in comparison with quantum mechanics, where the
morphisms are given by the unitary transformations. At least for systems with a finite numb
states, the unitary group can be considered as a special canonical transformation which is
ated by bilinear functions of the momenta and coordinates.4 Therefore, the essential differenc
between quantum and classical mechanics seems to lie in the choice of the class of dyn
variables, which is far more restricted in the quantum than in the classical case. The restric
the set of allowed observables can be realized, for example, by some complementary struc
phase space5 or by additional invariance conditions,6 however, it lies at the root of the quantizatio
problem.7 The aim of this paper is the investigation of the Lie-series representation of cano
transformations acting in a complex phase space. In a recent paper8 we have shown that any o
these canonical mappings can be marked by two different functions. One of these functio
real-valued function which corresponds to an observable in the sense of classical mechani
second one is a complex-valued function with special analytic properties~holomorphic or antiho-
0022-2488/97/38(7)/3718/17/$10.00
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lomorphic!. This structure can be made more transparent by factorization of the mappin
question and, moreover, this procedure leads in a natural way to the idea ofstatesandobservables.

The paper is organized as follows: In Sec. II we start with the definition of our notation
this we have to recall some basic properties of Lie transformations in complex phase spac
results of Sec. III can be summarized as follows: Any Lie transformation generated by a com
valued function describes a canonical mapping if it can be factorized into a product of three
factors. These factors are fixed by a pure imaginary generating function, by a holomorphic
tion, and by an element of the cyclic group C4. Section IV deals with the subgroup which
connected with the identity element and we investigate whether there is a physical interpreta
the two functions which mark these mappings. In particular, two special kinds of mapping
discussed which arise from the composition rule and from the question whether the co
conjugate generating function is also an allowed one. In Sec. V a theorem is proven which
describes a class of real generating functions. This class is completely determined by a
holomorphic function which can be considered as the state function of a physical system
example suggests that this class of mappings is important in physics because a natural con
between entropy and action arises. Finally, we summarize our results and conclusions.

II. COMPLEX LIE-SERIES AND TRANSFORMATIONS

For reasons of being self-contained, a short survey of the properties of complex Lie-se
given and some conclusions are drawn. Denote byzk the set of local coordinates of a finit
dimensional vector space (CN,N,`) and byzk* its complex conjugate. Then the Lie operat
associated with any smooth complex-valued functionf (zk ,zk* ) is introduced by

X̂f5 (
k51

N S ] f

]zk

]

]zk*
2

] f

]zk*
]

]zk
D . ~2.1!

The action of this linear differential operator on a second function defines the Poisson b
operation

$ f ,g%5X̂fg. ~2.2!

We note that it is convenient to introduce an additional imaginary factor2 i into Eqs.~2.1! ~see,
e.g., Ref. 9!, but we use this definition in order to fit to Ref. 8. It is easy to show that the map
f→X̂f is a Lie algebra homomorphism from the Poisson bracket algebra of the underlying
tions to the Lie operator algebra. Consequently,

@X̂f ,X̂g#5X̂$ f ,g% , ~2.3!

where the left-hand side is the usual commutator. Lie-series are infinite operator power
where the definition of the exponential map

exp~X̂f !5 (
n50

`
1

n!
~X̂f !

n, ~X̂f !
051 ~2.4!

is of particular interest. The action of exp(X̂f) on coordinates or functions provides the Lie tran
formation associated with the generating functionf (z,z* ), where we have dropped the coordina
indexk for notational convenience. One of the reasons that Lie transformations are a powerf
for applications is that they have special properties which give much of their computational p
Here we list some of the basic properties, whereb andg are complex numbers:
J. Math. Phys., Vol. 38, No. 7, July 1997
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~eX̂f !* g5~eX̂fg* !*5e2X̂f*g, eX̂f~bg1gh!5beX̂fg1geX̂fh,

eX̂f~gh!5~eX̂fg!~eX̂fh!, eX̂f$g,h%5$eX̂fg,eX̂fh%, ~2.5!

eX̂fg~zk ,zk* !5g~eX̂fzk ,e
X̂fzk* !.

Moreover, the product of two Lie-series is once more a single Lie-series and the BCH the
then shows how one must combine a product of exponentials into an exponential of a sum3,10

eX̂h5eX̂feX̂g5exp~X̂eX̂fg!e
X̂f ~2.6!

with

h5 f1g1 1
2 $ f ,g%1 1

12 $ f2g,$ f ,g%%1••• . ~2.7!

We shall call the phase space functionh(z,z* ) arising from the BCH formula~2.7! a Lie function
formed by f andg. There are two simple cases in which this Lie function has special prope
For instance, letf (z,z* ) be an arbitrary function andg5 f * (z,z* ) its complex conjugate. Then

eX̂h5eX̂feX̂f*⇒h5h* , ~2.8!

i.e., the Lie function is a real one and the proof follows by elementary calculation using
properties~2.5!:

e2X̂h*5~eX̂h!*5~eX̂feX̂f* !*5e2X̂f*e2X̂f5e2X̂h.

It must be underlined that the mappingh→X̂h is not invertible and thereforeh is determined from
the corresponding Lie operator up to a constant only. We choose this additional constant e
zero in many cases, but we note that a shift to suitable nonzero values may be helpful.8

On the other hand, letf5 iA(z,z* ),g5 iB(z,z* ), whereA andB are real phase space fun
tions. Then

eX̂h5eiX̂AeiX̂B, A5A* , B5B*

and with

e2X̂h*5~eX̂h!*5~eiX̂AeiX̂B!*5~eiX̂A!* ~eiX̂B!*5eiX̂AeiX̂B5eX̂h

one obtains

h52h*⇔h5 iC, C5C* , ~2.9!

i.e., the Lie function is a pure imaginary one in this case. Of course, the last statement resul
the fact that the set of imaginary functionsf5 iA is closed under the Poisson bracket operat
~2.2!. This means that$ iA,iB% is a pure imaginary function ifA andB are real. Later on we shal
use a special discrete Lie transformation. Therefore we look at the one-parameter transfor
generated by the real function

Q~a!5
a

2(
k51

N

~zk
21zk*

2!, aPR, Q5Q* . ~2.10!
J. Math. Phys., Vol. 38, No. 7, July 1997
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The infinite sum can be done in closed form and the action of the Lie-series on coordina
given by

eX̂Q~a!S zkzk* D5S cos~a! 2sin~a!

sin~a! cos~a!
D S zkzk* D .

Using the last property of Eq.~2.5! we also know the action of expX̂Q on an arbitrary phase spac
functiong(z,z* ). Since

eX̂Q~a1b!5eX̂Q~a!eX̂Q~b!5eX̂Q~b!eX̂Q~a!,

this is a commutative mapping, where the parameter valuesa anda12np,n51,2, . . . must be
identified. Selecting special values for the parametera one obtains:

eX̂Q~p/2!S zkzk* D5S 0 21

1 0 D S zkzk* D5ŜS zkzk* D ,
eX̂Q~p!S zkzk* D5S 21 0

0 21D S zkzk* D 5R̂S zkzk* D ,
eX̂Q S3p

2 D S zkzk* D 5S 0 1

21 0D S zkzk* D 5Ŝ21S zkzk* D ,
eX̂Q~2p!S zkzk* D 5S 1 0

0 1D S zkzk* D 51̂S zkzk* D .
Obviously, the operatorsŜ,R̂,Ŝ21,1̂ form a realization of the discrete group C4, which is the
cyclic group of order-4 with the generating elementŜ ~or Ŝ21). Of course, there are some oth
generating functions instead ofQ, for example, the imaginary functionip(k51

N zkzk* also gener-
ates a reflection. But the important point is that Eq.~2.10! describes a real-valued function whic
we shall use in our further investigations.

III. FACTORIZATION OF CANONICAL MAPPINGS

In complex phase space Lie transformationszk→wk(z,z* ) exist which are not canonical one
This result is different compared to the standard properties of Lie transformations in a real
space.4 The source of such a feature lies in the fact that expX̂fÞ(expX̂f)*5exp(2X̂f*) for a
general complex-valued functionf (z,z* ). The property of a mapzk→wk to be a canonical one is
determined by the invariance of the fundamental Poisson brackets, i.e., the new coordinawk

must fulfill the conditions

$wj ,wk%50, $wj ,wk* %5d jk . ~3.1!

In Ref. 8 we have investigated two kinds of Lie transformations@type ~i! and type~ii !# given by

~i! wk5exp~2X̂F!zk ,
~3.2!

~ii ! wk5exp~X̂C!zk* ,

whereF(z,z* ) andC(z,z* ) are complex generating functions. We have shown that these m
pings preserve the brackets~3.1! if the following operator relations can be realized:
J. Math. Phys., Vol. 38, No. 7, July 1997
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~i! e2X̂F*e2X̂F5e2X̂F* ~z!e2X̂F~z!,
~3.3!

~ii ! eX̂C*eX̂C5eX̂G~z!R̂eX̂G* ~z!,

whereF(zk),G(zk) are arbitrary holomorphic functions andR̂ is the reflection operator defined b

R̂S zkzk* D 5S 2zk

2zk*
D .

In Ref. 8 we have used a special realization of the reflection operatorR̂ and, moreover, there is a
insignificant change of the notation given byF* (zk* )→F(zk). The form of Eq.~3.3! as operator
relation means that it can be applied to any phase space functiong(z,z* ). Of course, condition
~3.3! is a restriction of the set of allowed generating functionsF,C which can be seen for map
near the identity@at least for the type~i! transformations#. The direct evaluation of Eq.~3.3! is a
complicated matter because both sides represent Lie functions of the BCH-type and th
operators form an infinite dimensional algebra. However, condition~3.3! can be further simplified.
In a first step we look for the type~i! transformations. Then Eq.~3.3! ~i! can be written as@c.f. Eq.
~2.5!#

e2X̂FeX̂F~z!5eX̂F*e2X̂F* ~z!5~e2X̂F!* ~eX̂F~z!!*5~e2X̂FeX̂F~z!!* . ~3.4!

Let g(z,z* ) be the Lie function formed by2F andF(z):

eX̂g5e2X̂FeX̂F~z!, ~3.5!

where we suppose thatg exists as a smooth phase space function. Using Eq.~3.5!, Eq. ~3.4!
becomes

eX̂g5~eX̂g!*5e2X̂g* .

Consequently,

g~z,z* !52g* ~z,z* !⇒g~z,z* !52 iA~z,z* !, A5A* ,

i.e., g(z,z* ) is a pure imaginary function~up to a trivial constant!. Insertingg52 iA into Eq.
~3.5! and multiplying both sides with exp(2X̂F) from the right one obtains

e2X̂F5e2 iX̂Ae2X̂F~z!. ~3.6!

It should be clear that the type~i! @c.f. Eq. ~3.2!# transformations can be market by the tw
functionsA(z,z* ) and F(z). Roughly speaking, Eq.~3.6! provides one root of thequadratic
equation~3.3!. In order to find a second solution we try the ansatz

e2X̂F5e2 iX̂AeX̂ue2X̂F~z!, ~3.7!

whereu(z,z* ) is a free complex function. Inverting the ansatz and forming the conjugate com
relation yields

e2X̂F*5e2X̂F*eX̂u*eiX̂A.

Thus
J. Math. Phys., Vol. 38, No. 7, July 1997
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e2X̂F*e2X̂F5e2X̂F*eX̂u*eX̂ue2X̂F

and the comparison with Eq.~3.3! ~i! leads to

eX̂u*eX̂u5 1̂.

Of course, there is a solutionu5 iB with any real functionB5B* . However, this is a trivial
solution because then the first two factors in Eq.~3.7! can be composed of a Lie series genera
by a new imaginary function@c.f. also Eq.~2.9!# and the resulting mapping is contained in our fi
solution~3.6!. Therefore, a nontrivial solution must have a nonvanishing real part ofu(z,z* ) and,
consequently, we look for a real functionu5u* , i.e., exp(2X̂u)51̂.

Recalling the special mappings of Sec. II and the group table of the cyclic group4 a
nontrivial solution is given by

u~z,z* !5Q~p!5Q* ~p!⇒eX̂u5R̂.

Using this result in the ansatz a second solution of Eq.~3.3! ~i! is determined by

e2X̂F5e2 iX̂AR̂e2X̂F~z!5e2 iX̂Ae2X̂F~2z!R̂. ~3.8!

Now a similar procedure is applied to the second case~3.3! ~ii !. Let

eX̂C5e2 iX̂AeX̂ue2X̂G* ~z!

be the modified ansatz, whereA(z,z* ) and u(z,z* ) are arbitrary real functions. Forming th
product

eX̂C*eX̂C5e2X̂G~z!eX̂ueX̂ue2X̂G* ~z!

and comparing with Eq.~3.3! ~ii ! we obtain

~eX̂u!25e2X̂u5R̂.

Clearly, the group properties of the C4 yield the two solutions

eX̂u5eX̂Q~p/2!5Ŝ, eX̂u5eX̂Q~3p/2!5Ŝ21,

such that the ansatz becomes

eX̂C5e2 iX̂AŜe2X̂G* ~z!5e2 iX̂Ae2X̂G* ~z* !Ŝ, ~3.9!

eX̂C5e2 iX̂AŜ21e2X̂G* ~z!5e2 iX̂Ae2X̂G* ~2z* !Ŝ21. ~3.10!

A comparison of Eqs.~3.6!, ~3.8!–~3.10! shows that in any case the mapping can be separated
a product of three different factors. The first one, associated with a pure imaginary gene
function2 iA(z,z* ), can be considered as the counterpart to canonical mappings in a real
space.3 The second factor associated with a holomorphic function describes a transformat
the gauge type~c.f. Ref. 8! and the last factor is an element of the group C4. We note that in Eq.
~3.6! an additional factor 1ˆ can be multiplied, which is just the unit element of the C4. Therefore
the mappings can be written in the compact form

eX̂Cm5e2 iX̂A~z,z* !e2X̂Fm~z!~Ŝ!m, m51,2,3,4,
J. Math. Phys., Vol. 38, No. 7, July 1997
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where (Cm)5(C,2F,C,2F) and (Fm)5(G* (z* ),F(2z),G* (2z* ),F(z)). Only C4 @i.e.,
Eq. ~3.6!# is connected with the identity and therefore these mappings form a subgroup whi
shall study for the rest of the paper.

IV. COMPOSITION RULE AND RELATED TOPICS

We restrict our considerations to the subgroup which is connected with the identity, i.e

e2X̂F5e2 iX̂Ae2X̂F~z!. ~4.1!

The generating functionF becomes a pure imaginary one for allF(z)50 and the imaginary par
Im(F)5A(z,z* ) can be considered as an observable in the sense of classical mechanic
usual composition law of two such mappings@cf. Eq. ~2.9# is fulfilled and the set of observable
forms an infinite dimensional Lie algebra with respect to the Poisson bracket. The most imp
observable in classical mechanics is the Hamiltonian functionH(z,z* ), which generates the evo
lution in time via the one-parameter family of canonical transformations exp(itX̂H), wheretPR.
Of course, there is no additional restriction with regard to the functional dependence o
observables upon the phase space coordinates. The situation becomes more complicate
caseF(z)Þ0, because this holomorphic function cannot be an observable in the usual sens
observed division of the basic tools of quantum mechanics intoobservablesandstatessuggest that
F(z) can possibly be connected with the notion of the state of a physical system. We will
that there are some hints in this direction. In a first step we look for the composition rule o
mappings of the type~4.1!. Setting

e2X̂F15e2 iX̂A1e2X̂F1, e2X̂F25e2 iX̂A2e2X̂F2

and forming the product

e2X̂F2e2X̂F15e2 iX̂A2e2X̂F2e2 iX̂A1e2X̂F1[e2X̂F35e2 iX̂A3e2X̂F3, ~4.2!

we conclude that exp(2X̂F3
) has the same product form~4.1! if

e2X̂F2e2 iX̂A15e2 iX̂Be2X̂G~z!, ~4.3!

whereB(z,z* ) is an arbitrary real function andG(z) is holomorphic. Substituting this into Eq
~4.2! and taking into consideration the commutativity ofX̂G and X̂F , we obtain

e2X̂F35e2 iX̂A2e2 iX̂Be2X̂F11G[e2 iX̂A3e2X̂F3.

Consequently,

e2 iX̂A35e2 iX̂A2e2 iX̂B, F3~z!5F1~z!1G~z! ~4.4!

and Eqs.~4.3! and~4.4! represent the composition rule in an implicit form because the functio
dependence ofB,G uponA1 ,F2 is not known. In order to find an explicit solution, we form th
complex conjugate of Eq.~4.3! and eliminate the factor exp(2iX̂B) from the resulting expression
One obtains

e2 iX̂A1eX̂G~z!eX̂G* ~z!eiX̂A15eX̂F2~z!eX̂F2* ~z!. ~4.5!

At this point we define the real Lie functionj5j* by

eX̂j~G;G* !5eX̂GeX̂G* , ~4.6!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where the dependence ofj(G;G* ) uponG(z) must be interpreted in terms of the BCH series

j~G;G* !5G1G*1 1
2 $G,G* %1 1

12 $G2G* ,$G,G* %%••• .

Note thatj(G;G* ) has the property@cf. Ref. 11#

j~G;G* !52j~2G* ;2G!5eX̂Gj~G* ;G!.

Using this special function, Eq.~4.5! takes the form

e2 iX̂A1j~G;G* !5j~e2 iX̂A1G;e2 iX̂A1G* !5j~F2 ;F2* !, ~4.7!

where the first equality results from the Poisson bracket preservation property~2.5! of the Lie
transformations and from the general structure of the BCH series. A comparison shows
special solution is given by

e2 iX̂A1G~z!5F2~z!⇔G~z!5eiX̂A1F2~z!. ~4.8!

Moreover, substituting this into Eq.~4.3! one findsB(z,z* )5A1(z,z* ) and therefore the compo
sition rule ~4.4! is fixed. It must be emphasized that Eq.~4.8! is a nontrivial condition because
selects a special class of phase space functions forA1(z,z* ). Of course, a mapping from the set o
holomorphic functions to itself cannot be generated by an arbitrary phase space functio
investigation of Eq.~4.8! near the identity shows thatA1(z,z* ) must be a function containing onl
linear and quadratic terms of the coordinates. In particular, one obtains

A1~zj ,zk* !5 (
k51

N

~akzk1ak* zk* !1 (
k51

N

(
l51

N

bklzk* zl ,

whereak are complex parameters andbkl5b lk* form a Hermitian matrix. Thus we obtain th
generating functions of the unitary transformations in the limitak→0. A similar result is true for
A2(z,z* ) by permutation of the generating functions (1↔2) in the product~4.2! and therefore it
must be true for any functionA(z,z* ). Since we linkA(z,z* ) with a physical observable, al
observables may be expressed as bilinear functions ofzk ,zk* .

4,5 Moreover, the set of holomorphic
functionsF(z) must be connected with the set of physical states. It is remarkable that the
position rule of the mappings~4.1! with F(z)Þ0 selects in a very natural way the automorphis
group of quantum mechanics at least in the finite dimensional case. However, it must be
lined that Eq.~4.8! is not the most general solution of the composition rule. To illustrate this,
multiply ~4.3! by expiX̂A1

from the left to find

eiX̂A1e2X̂F2e2 iX̂A15eiX̂A1e2 iX̂Be2X̂G[eiX̂Ce2X̂G,

whereC(z,z* ) is the real Lie function associated withA1 andB. Using Eqs.~2.6! and ~2.7! we
conclude that

eiX̂A1F2~z!52 iC1G~z!1
i

2
$C,G~z!%1••• ~4.9!

and, of course, the right-hand side will not be a holomorphic function in the general case. Eq
~4.9! reduces to Eq.~4.8! for C50⇔B5A1 and this provides another possibility for selection
the unitary transformations. Taking into account the first formula of Eq.~4.4!, we define the
J. Math. Phys., Vol. 38, No. 7, July 1997
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observables as those functionsA1 ,A2 whose composition rule has the same structure as in
‘‘classical’’ case withF1(z)5F2(z)50. Then we have to replaceB(z,z* ) by A1(z,z* ) in Eq.
~4.4! and Eq.~4.9! provides the desired result.

We now want to discuss a second question of interest which leads to another special k
mappings. LetF be the generating function of the mapping~4.1! with F(z)Þ0. Then the problem
is whether the complex conjugate functionF* also generates a canonical transformation. T
situation is a simple one for mappings withF(z)50. For example, we look for the classic
evolution operator exp(itX̂H), where the transitionF→F* is just described by a time revers
t→2t and, of course, the resulting inverse operator exp(2itX̂H) also describes a canonical tran
formation. We begin the analysis of the caseF(z)Þ0 by forming the complex conjugate of Eq
~4.1! and inverting the resulting expression to obtain

e2X̂F*5e2X̂F* ~z!eiX̂A. ~4.10!

Thus this Lie series does not have the necessary product structure to form a canonical tr
mation. But, from Eq.~4.1! it is easy to see that there must exist some functionsG(z) and
B(z,z* )5B* (z,z* ) so that

e2X̂F* ~z!eiX̂A5e2 iX̂Be2X̂G~z! ~4.11!

in order to secure thatF* is also an allowed generating function. Note thatB(z,z* ) andG(z)
should not be confused with the corresponding symbols in the first part of this section, e.g.,
~4.3!. Taking the complex conjugate of Eq.~4.11!,

eX̂F~z!eiX̂A5e2 iX̂BeX̂G* ~z!, ~4.12!

and eliminating the operator exp(2iX̂B), we find

eiX̂AeX̂GeX̂G*e2 iX̂A5eX̂F*eX̂F

or, by means of Eqs.~4.6! and ~2.6!

eiX̂Aj~G;G* !5j~F* ;F !.

Obviously, a special solution is given by

eiX̂AG~z!5F* ~z!⇔G~z!5e2 iX̂AF* ~z!. ~4.13!

These transformations form a complementary class to Eq.~4.8! because the holomorphic function
are mapped to the set of antiholomorphic functions and vice versa. Moreover, combining
~4.11! and~4.13! one obtainsB(z,z* )52A(z,z* ). It should be noted that Eq.~4.13! is once more
a special solution only. Using a similar treatment as above, it is easy to show that

e2 iX̂AF~z!5 iD1G* ~z!1
i

2
$D,G* %1•••, ~4.14!

whereD(z,z* ) is the Lie function defined by

eiX̂D5e2 iX̂Ae2 iX̂B

and, of course, the special solution~4.13! can be obtained by settingD50, which is the same as
A52B.
J. Math. Phys., Vol. 38, No. 7, July 1997
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We close this section with a few remarks concerning the connection between the dif
types of mappings. LetF andF* , respectively, denote a set of allowed generating functions

e2X̂F5e2 iX̂Ae2X̂F~z!, e2X̂F*5e2 iX̂Be2X̂G~z!.

Clearly, the products are given by@recall Eq.~4.11!#

e2X̂F*e2X̂F5e2X̂F*e2X̂F, e2X̂Fe2X̂F*5e2X̂G*e2X̂G ~4.15!

and taking into considerations the composition rule, there must exist functionsC(z,z* ) and
f (z) such that

e2X̂F*e2X̂F5e2 iX̂Ce2X̂f ~z!. ~4.16!

A similar condition must be true also for the second producte2X̂G*e2X̂G. Equation~4.16! repre-
sents a nontrivial condition because the Lie function on the left-hand side is a real one@cf. Eq.
~2.8!# and this provides a restriction of the allowed functionsC(z,z* ). For example, taking all
functions sufficiently small one finds near the identity

iC~z,z* !1 f ~z!1•••5F~z!1F* ~z!1•••

or by means ofC5C* ,

C~z,z* !5
1

2i
~ f * ~z!2 f ~z!!1•••, f *1 f52~F*1F !. ~4.17!

We therefore expect thatC(z,z* ) cannot be a Hermitian form. Nevertheless, this class of gen
tors is very important, as we shall show in Sec. V. It must be noted that the mentioned cl
mappings is connected with the case of a real generating functionF(z,z* )5F* (z,z* ). In par-
ticular, it is easy to see thatX̂F and X̂F* commute for allF(z)5G(z) @cf. Eq. ~4.15!# and,
moreover, the generating functionF is a real one forF(z)5G(z) andB(z,z* )5A(z,z* ) in Eq.
~4.11!. Finally, we indicate that the transformations with a real generating function are not
tained within the class~4.13!, but they can be obtained by settingD52A andG5F in Eq. ~4.14!.

V. A SPECIAL SET OF MAPPINGS: ACTION AND ENTROPY?

Our starting point is the subgroup with factorization~4.1!. The infinitesimal limit shows that
the generating functionF is a real one forA5 (1/2i ) (F*2F)1••• @cf. also Eq.~4.17!# and now
we shall show that this limiting result can be extended to a class of global transformations v
following theorem.

Theorem: Let A(z,z* )5 (1/2i ) (F* (z)2F(z)) be the real function in Eq.~4.1! and let
F(z) be a holomorphic function which fulfills the commutation relation$F(z),F* (z)%5g(x),
wherex[F1F* andg(x) is a smooth positive real function onx. Then the generating function
F in Eq. ~4.1! is a real one depending uponx only. Moreover,F(x) is given by

F~x!5
1

2E 1

g~x!
~h21~11h~x!!2x!dx, h~x![E

0

x dx8

g~x8!
~5.1!

andh21 denotes the inverse function ofh.
Proof: In the first step we show thatF is a function ofx. InsertingA5 (1/2i ) (F*2F) into

Eq. ~4.1! and using Eq.~2.7! and the Poisson bracket$F,F* %, the first terms of the BCH serie
yield
J. Math. Phys., Vol. 38, No. 7, July 1997
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F5
1

2
x1

1

4
g~x!1

1

12
g~x!

dg~x!

dx
1••• .

Taking into account the structure of an arbitrary term of the BCH series, it is easy to sho
means of complete induction that any term of the series depends uponx only. Therefore
F5F(x) providedg(x) is chosen such that the series converges. In a second step we stu
action of Eq.~4.1! on F(z):

e2X̂F~x!F~z!5e2
1
2X̂~F*2F !e2X̂FF~z!5e2

1
2X̂~F*2F !F~z!. ~5.2!

Evaluating the series on the left-hand side one finds

e2X̂F~x!F~z!5F1 (
n51

`
~21!n

n! S dF

dx D nX̂~F1F* !

n21
$F* ,F%5F~z!1g~x!

dF

dx
,

i.e., the infinite sum breaks off after the second term as a consequence of the functional
dence ofg(x) by X̂(F1F* )g(x)5X̂xg(x)50. The right-hand side of Eq.~5.2! can be written as

e2
1
2X̂~F*2F !F~z!5F~z!1 (

n51

`
1

2nn!
X̂

~F2F* !

n21
g~x!.

Then Eq.~5.2! becomes

2g~x!
dF

dx
5(

j50

`
1

2 j~ j11!!
X̂

~F2F* !

j
g~x!

or by means of Eq.~A1! ~cf. the Appendix!

2g~x!
dF

dx
5(

j50

`
1

~ j11!! S g~x!
d

dxD
j11

x5expS g~x!
d

dxD x2x.

Using Eq.~A2! one finally finds

dF

dx
5

1

2g~x!
~h21~11h~x!!2x!

and the integration with respect tox completes the proof. Of course, the class of mappi
described by the theorem is a special one because the whole information is contained in the
holomorphic functionF(z). On the other hand, Eq.~5.1! is a nontrivial result because it allows a
analytical calculation of the generating function by fixing the basic Poisson bracket$F,F* %. It
must be underlined that this is equivalent to a complete sum of the BCH type. Without a pro
note that the Lie function corresponding to the product expX̂F expX̂F* is the same as in Eq.~5.1!
up to a factor of 2 provided the same basic Poisson bracket is chosen. This directly follows
Eq. ~3.3! ~i! by taking into consideration the propertyF5F* . As an application we consider a
exponential dependence ofg(x) on x,

$F~z!,F* ~z!%5a2 expS 2
x

aD5a2 expS 2
F~z!1F* ~z!

a D , ~5.3!
J. Math. Phys., Vol. 38, No. 7, July 1997
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wherea is an arbitrary real parameter. The functiong(x) is a strict positive real one and fulfills
the assumption of the theorem. The calculations ofh(x) @cf. Eq. ~5.1!# andh21(x) are easy to do.
Inserting these results, the generating function can be written as

F~x!5
1

2aE expS xaD S lnS a1expS xaD D2
x

aDdx.
The integration is easy to perform by means of the substitutiony5exp(x/a) and one obtains

F~y!5
a

2F S 11
y

aD lnS 11
y

aD2
y

a
ln
y

aG . ~5.4!

There is the possibility to add a constant of integration, however, we remind that the
space functions associated with a Lie operator are always determined up to a constant~cf. Ref. 8!.
Therefore we can select a zero. In order to find an appropriate final result, we introduce
holomorphic functionU(z) by the substitutionF(z)5a ln U(z). Then Eq.~5.3! can be rewritten
as

$U~z!,U* ~z!%51, ~5.5!

i.e.,U(z) can be considered as a holomorphic canonical coordinate. Moreover, using the defi
of y, Eq. ~5.4! becomes

F5
a

2F S 11
UU*

a D lnS 11
UU*

a D2
UU*

a
ln
UU*

a G[ 1

2
S ~5.6!

and the real functionA(z,z* ) is determined by

A~z,z* !5
1

2i
~F*2F !5

a

2i
lnSU*U D . ~5.7!

Recall the type of mappings~4.1!,

e2X̂F5e2 iX̂Ae2X̂F~z!, F~z!5a ln U~z!.

It is easy to see that the whole information on this transformation is contained inU(z). The
absolute squareU*U fixes the real generating functionF in Eq. ~5.6! and the phase ofU(z)
determines the real functionA(z,z* ) by Eq. ~5.7!. From the physical point of view, expressio
~5.6! is a very important one because it represents the correct entropy of an ideal Bose gas
precise, a factor of 2 must be taken into account. Moreover, we have shown in Ref. 8 that ev
entropy of an ideal Fermi gas can be obtained by consideration of transformations which a
connected with the identity, i.e., by special mappings of the class~3.3! ~ii !. This seems to be a ver
obscure matter since with respect to our recent knowledge, the canonical mappings are re
classical physics rather than to quantum theory. On the other hand, the treatment of the
group in Sec. IV suggests that the holomorphic function can possibly be connected with the
of a physical state. Now we shall explain how such a connection can possibly be made
transparent. By means of the analytic properties ofU(z) and the definition of the Poisson bracke
Eq. ~5.5! has the explicit form

$U~z!,U* ~z!%51⇒(
k51

N
]U~z!

]zk

]U* ~z!

]zk*
51. ~5.8!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Clearly, this is a nonlinear partial differential equation which fixesU(z) up to an arbitrary
phase factor only. On the other hand, it should be evident from the Cauchy–Riemann equ
that Eq.~5.8! is equivalent to the linear problem of second order

DUU*51, D[ (
k51

N
]2

]zk]zk*
. ~5.9!

A special solution is easy to find by choosing an appropriate ansatz. For example,

U*U5z†r̂z, r̂†5 r̂, Tr r̂51, ~5.10!

wherez denotes the column vector with components (zk), r̂5(rkl) is a HermiteanN3N matrix,
and † indicates the adjoint. Therefore, the absolute square ofU can be considered as an observa
with the associated operatorr̂. Note that this is not the general solution of Eq.~5.9! because an
arbitrary solution of the homogeneous problem must be added, however, it is sufficient fo
purpose. The properties ofr̂ according to Eq.~5.10! suggest that this operator can be conside
as the density matrix of a physical system with a finite number of states. Since probabilit
entropy are linked, such an interpretation is well suited because Eq.~5.6! is determined by the
absolute square ofU. Multiplying Eq. ~5.8! by U*U and inserting the Hermitean form~5.10! one
obtains

(
k51

N
]U*U

]zk

]U*U

]zk*
5U*U⇒ r̂25 r̂, ~5.11!

i.e., r̂ is a projector. Therefore the density operator describes a system in a pure state~cf. Ref. 12!.
In other words, the holomorphic functionU(z) is linear with respect to the complex coordinat
zk ,

U~z!5 (
k51

N

ckzk , (
k51

N

ck* ck51.

Up to now, we have considered the absolute square ofU(z) only and therefore we shall study th
meaning of the phase of this holomorphic function in a next step.

Note that the polar representation is given by

U~z!5AU*U expS 2 i
A

a D , $U*U,iA%5a,

whereA(z,z* ) is defined by Eq.~5.7!. We rewrite the phase functionA in terms of a line integral
along a circle segment withU*U5k, wherek is a fixed constant,

iA~z,z* !5 i E dA5
a

2EU*U5k
~d ln U*2d ln U !5

a

2EU*U5k

1

U*U
~UdU*2U* dU!

5
a

2kEU*U5k
~UdU*2U* dU!

5
a

2k(
k51

N E
G
S ]U*U

]zk*
dzk*2

]U*U
]zk

dzkD .
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HereG is a curve which lies within the submanifoldU*U5k and connects an initial pointz0 with
the variable pointz. Moreover, inserting Eq.~5.10! one finds

iA~z,z* !5
a

2k(
k51

N

(
j51

N

rk jE
G
~zjdzk*2zk* dzj !. ~5.12!

We suppose that all states have the same probability, i.e., the density matrix can be writte

r̂5
1

N
1̂1v̂, Tr v̂50, v̂21S 22N

N D v̂1S 12N

N2 D 1̂50, ~5.13!

where the off-diagonal elementsv̂ describe the interferences between the different states. T
the phase function becomes

iA5
a

2kN(
k51

N E
G
~zkdzk*2zk* dzk!1

a

2k(
k51

N

(
j51

N

vk jE
G
~zjdzk*2zk* dzj !. ~5.14!

Taking into consideration the polar representation of the complex coordinate
zk5AI k exp(ifk), the first integral;(k* I kdfk can be considered as a classical~reduced! action
integral if the following two conditions are valid:

~i! The curveG can be identified with the trajectory of a mechanical system.
~ii ! U*U5z†r̂z5k is a first integral of motion, i.e.$U*U,H%50, whereH is the Hamiltonian

of the system.

The second point is important becauseG is contained in the submanifoldU*U5k, which
clearly is not the complete phase space. In the case thatH(z,z* ) can be represented by th
Hermitian formH5z†ĥz, condition~ii ! can be written as the matrix commutator@ r̂,ĥ#50 and in
the case thatr̂ explicitly depends upon the time parameter, one has to add the correspo
partial derivative. The phase~5.14! reduces to the classical action by neglecting the off- diago
elements (v̂'0), i.e., by neglecting the interferences between all states. However, this
approximation because the resulting density operator is not a projector and this breaks the
tion ~5.11! and therefore also the canonical condition~5.8!. This situation is similar to that arising
from state reduction in quantum theory. On the other hand, there exists an unitary transfor
which diagonalizes the density matrix and the resulting absolute squareU*U becomes that of one
coordinate, e.g.,z1

,* z1
, . In this case, the phase~5.14! is exactly proportional to the classical actio

of the associated degree of freedom and the transformation is of the type discussed in
Recall the structure of a semiclassical state function in quantum theory, there is a strong ind
that the holomorphicU(z) can be connected with the notion of the state of a physical sys
Moreover, accepting such an interpretation there is a very important connection between e
and action. There is a long history in searching for a link between these two basic quanti
physics. For example, one finds thermodynamical considerations13,14but also arguments which ar
based on recent geometric theories.15 These references are far from being complete, but they s
the endeavor to establish a direct proportion between entropy and action. In our case this c
tion is a more indirect one. LetF5F*5 1

2S be a real generating function and letV(z) be an
arbitrary state, i.e., a holomorphic function. Then the action of the transformation~4.1! on this
state is given by

e2X̂FV~z!5e~2
1
2X̂S!V~z!5e2 iX̂Ae2X̂F~z!V~z!5e2 iX̂AV~z!, ~5.15!
J. Math. Phys., Vol. 38, No. 7, July 1997
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i.e., the real function12S and the imaginary functioniA generate the same mapping if they a
applied to states. Consequently, the above discussed functions~5.6! and ~5.14! yield the desired
result. From this point of view, entropy and action cannot be identified, but they form the
sides of the same medal since they generate the same mappings of states. Of cours
statements require further investigations because Eq.~5.6! is a special expression of the entrop
and, moreover, the role of the off-diagonal terms in Eq.~5.14! must be clarified.

VI. CONCLUSIONS

In this paper we have considered the Lie-series representation of the canonical transfor
group in a finite dimensional complex phase space. Compared to the standard results in t
case~cf. Ref. 3! there are some differences due to the complex nature of the generating fun
One finds an additional operator relation of the BCH-type whose analysis shows that the Lie
in question must be factorizable into a product of three factors. These factors are determine
pure imaginary generating function, by a holomorphic function, and by an element of the c
group C4. Beside the discrete transformations, the presence of the holomorphic function se
be a very important outcome since it is attractive to link these functions with physical states
set of all holomorphic functions is closed with respect to the unitary group and this leads
natural way to a special role of this group and their generating functions. Since we have e
sized the generator aspect of observables, the physical quantities must be expressed as
functions of the complex coordinateszk ,zk* . On the other hand, beside the observables, the s
functionsF(z) also serve as generating functions@cf. Eq. ~4.1!# and this aspect is emphasized b
second quantization, where the state functions become field operators. Of course, a gener
tum system has an infinite number of states and further investigations are necessary to cla
limiting caseN→`.

The study of the special kind of mappings in Sec. V shows that beside the generators
unitary group, there are further important physical quantities which arise from the state fun
The occurrence of the entropy indicates that the mathematical structure goes beyond a
analogy to quantum physics. The entropy expression~5.6! depends upon the Hermitian form
U*U5z†r̂z and is therefore an observable. Moreover, this expression suggests thatU*U/a must
be interpreted as the mean occupation number and, consequently, the parametera must be the
number of states, i.e.,a5N. An application of the transformation to the state functionU itself @cf.
Eq. ~5.15!# yields a shift of the modulus byU→AU*U1a exp(2iA/a), i.e., the mean occupatio
number increases by one~see also Ref. 8!. As a matter of principle, these mappings form
complementary class to the unitary transformations. Taking into consideration the form
semiclassical state function, the connection of the phase ofU(z) with the classical action function
seems to support the interpretation ofU(z) as a state function. We expect that the connect
between entropy and action can be made more transparent by consideration of the physical
of measurement since any measurement is connected with the exchange of action and ent
any case, this interesting connection requires further investigations.

APPENDIX: PROOFS OF LEMMATA

In this Appendix we sketch the proof of two formulas used in Sec. V.
g(x)5g(F1F* ) be a smooth function ofx and let$F,F* %5g(x) be the basic Poisson bracke
Then

X̂
~F2F* !

j
g~x!52 j S g~x!

d

dxD
j

g~x! ~A1!

is valid for all natural numbersj . We shall prove this statement by means of induction.
j51 one has
J. Math. Phys., Vol. 38, No. 7, July 1997
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X̂~F2F* !g~x!5
dg~x!

dx
$F2F* ,F1F* %52

dg~x!

dx
$F,F* %52g~x!

dg~x!

dx

and for j11,

X̂
~F2F* !

j11
g~x!5X̂~F2F* !X̂~F2F* !

j
g~x!52 j X̂~F2F* !S g~x!

d

dxD
j

g~x!

52 j$F2F* ,F1F* %
d

dx S g~x!
d

dxDg~x!

52 j11g~x!
d

dx S g~x!
d

dxD
j

g~x!

52 j11S g~x!
d

dxD
j11

g~x!,

which completes the proof. Moreover, we will show that

expS g~x!
d

dxD x5h21~11h~x!!, h[E
0

x dx8

g~x8!
. ~A2!

Therefore, we consider the associated parametrized problem

x~ t !5expS tg~x!
d

dxD x~0!, tPR,

where our original problem corresponds tox(t51). Differentiation with respect to the paramet
provides the autonomous differential equation

dx~ t !

dt
5g~x~ t !!

and consequently, the formal solution is

t1t05E
0

x dx8

g~x8!
[h~x~ t !!,

wheret0 is a constant of integration. Using the initial conditiont05h(x(0)) this becomes

h~x~ t !!5t1h~x~0!!.

Finally, at t51 one finds

h~x~1!!511h~x~0!!⇒x~1!5h21~11h~x~0!!!,

provided the functionh(x) is bijective. Hence

expS g~x!
d

dxD x~0!5h21~11h~x~0!!!

and since this is true for all initial conditionsx(0) we obtain Eq.~A2!. We note that a similar
derivation of Eq.~A2! is given by Deenen.16
J. Math. Phys., Vol. 38, No. 7, July 1997
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The super orZ2-graded Schouten–Nijenhuis bracket is introduced. Using it, new
generalized super-Poisson structures are found which are given in terms of certain
graded-skew-symmetric contravariant tensorsL of even order. The corresponding
super ‘‘Jacobi identities’’ are expressed by stating that these tensors have a zero
super Schouten–Nijenhuis bracket with themselves@L,L#50. As a particular
case, we provide the linear generalized super-Poisson structures which can be con-
structed on the dual spaces of simple superalgebras with a non-degenerate Killing
metric. Thesu(3,1) superalgebra is given as a representative example. ©1997
American Institute of Physics.@S0022-2488~97!02007-0#

I. INTRODUCTION

We devote this paper to the introduction of theZ2-graded~or ‘‘super’’! Schouten–Nijenhuis
bracket and to its application in the definition of super-Poisson brackets and structures, o
new, extending the approach of Ref. 1 to theZ2-graded case. The generalization of the stand
Poisson brackets~PB! and Poisson structures~PS! proposed in Ref. 1 is different from tha
originally given by Nambu2 some twenty years ago, later also considered in Refs. 3 and 4
further extended by Takhtajan.5 It is based on the consideration of the Schouten–Nijenhuis bra
~SNB!6,7 which for the standard PS expresses8,9 the Jacobi condition by requiring zero SNB
@L,L#50, for the ~skew-symmetric! bivector fieldL defining the PS on the manifoldM . The
generalized Poisson structures~GPS! in Ref. 1 are then defined by skew-symmetric contravari
tensors ofevenorder~even multivectors! L (2p). In this way, the skew-symmetry of the generaliz
Poisson bracket~which involves 2p functions! and the Leibniz rule are automatically incorporat
by the properties ofL (2p)P`2p(M ). The generalized Jacobi identity~GJI! is now geometrically
expressed as@L (2p),L (2p)#50, and is different from Takhtajan’s ‘‘fundamental identity’’ whic
expresses the fact that the time derivative~the ‘‘adjoint’’ map! is a derivation of then-bracket.5

Graded Poisson structures have been considered before10,11 ~see also Refs. 12, 13 and refe
ences therein!. In Ref. 14 they were called supercanonical structuresS, where the two-vectorS
was defined as having a vanishing graded Schouten bracket with itself. Poisson superma
~see, e.g., Ref. 15 and references therein! require the replacement of the differentiable manifo
M by a supermanifoldS. By ‘‘supermanifold’’ we understand here a finite-dimensional topolo

a!St. John’s College Overseas Visiting Scholar.
b!On sabbatical~J.A.! leave and on leave of absence~J.C.P.B.! from Departamento de Fı´sica Teo´rica and IFIC, Centro
Mixto Universidad de Valencia-CSIC, E-46100-Burjassot~Valencia! Spain.

c!On leave of absence from the Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia.
address: Facultad de C. Fı´sicas, Departamento de Fı´sica Teo´rica, Univ. Zaragoza, 50009-Zaragoza, Spain.
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cal space which has locally the structure of asuperspace, i.e., a space the coordinates of which a
given by the even and odd elements of a Grassmann algebra. We thus follow the ‘8‘geometric’’
~see Refs. 16 and 17! rather than the ‘‘algebraic’’~see Refs. 18 and 19! approach~see Ref. 20 for
a comparison!. The algebra of functionsF (S) on S, endowed with a suitable Poisson brack
becomes a Poisson superalgebra~see, e.g., Ref. 21!. In order to generalize the (Z2-graded or!
super-Poisson structures~SPS!, it is convenient to introduce them through aZ2-graded skew-
symmetric contravariant tensor field of order two, orsuperbivector, and to express the supe
Jacobi identity as the vanishing of a previously definedZ2-graded SNB forZ2-graded multivectors
or supermultivectors. There are various types of algebras and brackets related to the or
Schouten7 and Nijenhuis constructions for multivector fields and differential forms7,22 ~see Ref. 23
and references therein for a discussion of various algebras!. Here we shall consider only th
mentioned case of the SNB for supermultivectors, and will not discuss other graded constru
as, e.g., those using vector-valued forms24. Thus, we shall start by introducing in Sec. II the sup
SNB for supermultivector fields.

Using the results of Sec. II, an outline of super-Poisson structures is presented in Sec. I
the Z2-graded SNB point of view. Linear super-Poisson structures are introduced at the e
Sec. III; they are defined, as are their standard~bosonic! counterparts, by the structure constan
defining the corresponding Lie superalgebra. Generalized super-Poisson structures~GSPS! are
defined in Sec. IV, and then the linear case is considered in Sec. V. In the standard boson
it is not difficult1 to provide~an infinite number of! examples of~linear! GPS using the cohomol
ogy properties25 ~see also, e.g., Ref. 26! of simple Lie algebras, and in fact, these properties m
be used to classify the linear GPS which may be constructed on them. Simple superalg
however, may have27 a vanishing Killing form. In the nondegenerate case, nevertheless
arguments are similar to those of the standard case, and turn out to be related to cohomo
Lie superalgebras. This is discussed in Sec. V; an example, that ofsu(3,1), is given in Sec. VI,
although its presentation makes it directly applicable to other superalgebras.

II. THE Z2-GRADED SCHOUTEN–NIJENHUIS BRACKET

Before giving the local expression for theZ2-graded SNB, it is convenient to establish th
conventions. Let$xi% be local coordinates on a supermanifoldS and leta( i )[a(xi) be the
Z2-grade or Grassmannparity @0 ~even or ‘‘Bose’’! or 1 ~odd or ‘‘Fermi’’!# of xi . Let
] i[]/]xi anddxi be derivatives and one-forms. Then,

] idx
j5d i

j ,d f5dxi] i f ,~X1^ . . . ^Xp!~v1, . . . ,vp!5~21!Dp~v,X!X1~v1! . . .Xp~vp!,
~2.1!

whered i
j is the usual Kronecker symbol,Xi andv j are one-vectors and one-forms, respective

and17

Dp~v,X!5 (
r ,s51
r,s

p

a~v r !a~Xs!, ~2.2!

wherea(v),a(X) are the grades ofv andX, respectively. For the wedge product we shall u

] i`] j[] i ^ ] j2~21!a~ i !a~ j !] j ^ ] i ~2.3!

~similarly for v i). Equation ~2.3! may be expressed as] i`] j5 ẽ i j
kl]k^ ] l , where

ẽ i j
kl52(21)a(k)a( l ) ẽ i j

lk .
The general ‘‘exterior’’ product may be defined if we now introduce the tilded (Z2-graded!

Levi-Civita symbol ẽ j . . . j
i1 . . . i p . We defineẽ by

1 p
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ẽ j 1 . . . j p

i1 . . . i p5(
s51

p

~21!s21~21!a~ i s![a~ i1!1 . . . 1a~ i s21!]d j 1

i s ẽ j 2 . . . j p

i1 . . . î s . . . i p, ẽ j
i[d j

i , ~2.4!

or, equivalently, by

ẽ j 1 . . . j p

i1 . . . i p5(
s51

p

~21!s21~21!a~ j s![a~ j 1!1 . . . 1a~ j s21!]d j s

i1 ẽ
j 1 . . . j ŝ . . . j p

i2 . . . i p . ~2.5!

Clearly, ẽ reduces to the standarde in the Bose case@a( i )50# for which

e j 1 . . . j p
i1 . . . i p5Ud j 1

i1
•••

d j p

i1

A A

d j 1

i p
•••

d j p

i pU . ~2.6!

Expressions~2.4! and ~2.5! correspond, respectively, to expanding this determinant by colum
rows in such a way that the column (j )/row (i ) indices are written in natural order, and the
adding the sign factors which would be needed to bring the row (i )/ column (j ) indices to the
ordering in which they actually appear. TheZ2-gradedẽ has the graded antisymmetry propert

ẽ j 1 . . . j kj k11 . . . j p

i1 . . . i p 52~21!a~ j k!a~ j k11! ẽ j 1 . . . j k11 j k . . . j p

i1 . . . i p , ~2.7!

and similarly for superscripts. As in the even case, we have

ẽ j 1 . . . j n

i1 . . . i p21l p . . . l n ẽ l p . . . l n

i p . . . i n5~n2p11!! ẽ j 1 . . . j n

i1 . . . i n . ~2.8!

Using ~2.7! we may now write

] i1` . . .`] i p:5 ẽ i1 . . . i p

j 1 . . . j p] j 1^ . . . ^ ] j p. ~2.9!

Then, the exterior product of two general supermultivectorsA andB of paritiesa(A), a(B) and
of orderp andq, respectively, locally expressed by

A5
1

p!
Ai1 . . . i p] i1` . . .`] i p, B5

1

q!
Bj 1 . . . j q] j 1` . . .`] j q , ~2.10!

is given by

A`B[
1

p!q!
~21! [a~ i1!1 . . . 1a~ i p!][ a~ j 1!1 . . . 1a~ j q!1a~B!]

•Ai1 . . . i pBj 1 . . . j q] i1` . . .`] i p`] j 1

. . .`] j q5
1

~p1q!!
~A`B! i1 . . . i pj 1 . . . j q] i1` . . .`] i p`] j 1` . . .`] j q, ~2.11!

where

~A`B! i1 . . . i pj 1 . . . j q5
1

p!q!
~21! [a~k1!1 . . . 1a~kp!][ a~ l1!1 . . . 1a~ l q!1a~B!]

3 ẽ k1 . . . kpl1 . . . l q

i1 . . . i pj 1 . . . j q Ak1 . . . kpBl1 . . . l q. ~2.12!
J. Math. Phys., Vol. 38, No. 7, July 1997
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The contravariant exterior algebra of supermultivectors onS will be denoted bỳ (S); a vector
fieldX belongs tò 1(S) andF (S)5`0(S). Due to theZ2-gradation@see~2.3!#, there may exist
supermultivectors of arbitrary orderp irrespective of the dimension ofS if S is not an ordinary
manifold.

We are now in a position to generalize the Schouten–Nijenhuis bracket to the supersym
case. The way to proceed is the following. On an ordinary manifoldM it is known that the SNB
of X1` . . .`Xp andY1` . . .`Yq , Xi ,YjP`1(M ), is the bilinear local operation given by

@X1` . . .`Xp ,Y1` . . .`Yq#

5 (
s51,t51

p,q

~21! t1sX1` . . . X̂s . . .`Xp`@Xs ,Yt#`Y1` . . . Ŷt . . .`Yq . ~2.13!

This formula is the result of extending the Lie derivative of vector fields onM , LXY5@X,Y#, in
a natural~and unique! way to arbitrary elements of the contravariant exterior algebra`(M ). Now,
substitutingS for M , it is not difficult to see that forXi ,YjP`1(S) ~2.13! is replaced by

@X1` . . .`Xp ,Y1` . . .`Yq#

5 (
s51,t51

p,q

~21! t1s1a~Yt![a~Y1!1 . . .1a~Yt21!]1a~Xs![a~Xs11!1 . . .1a~Xp!]

3X1` . . . X̂s . . .`Xp`@Xs ,Yt#`Y1` . . . Ŷt . . .`Yq ~2.14!

where in the r.h.s@ , # denotes theZ2-graded SNB of two vector fields~which is an anticommu-
tator if both are odd!. Using ~2.14! we may now introduce the SSNB for arbitrary elements
`(S). This leads us to the following local definition.

Definition II.1 ~super Schouten–Nijenhuis bracket):Let AP`p(S) andBP`q(S) be two
supermultivectors on a supermanifoldS given locally by~2.10!. The super Schouten–Nijenhu
bracket ~SSNB! @A,B# is the ~super-!bilinear operation of local type@ ,#:`p(S)3`q(S)
→`p1q21(S) locally defined by

@A,B#5
1

~p21!!q!
~21! [a~ i1!1 . . . 1a~ i p21!][ a~ j 1!1 . . . 1a~ j q!1a~B!]An i1 . . . i p21]n B

j 1 . . . j q

3] i1` . . .`] i p21
`] j 1` . . .`] j q1

~21!p

p! ~q21!!
~21!a~A![a~ j 1!1 . . . 1a~ j q21!1a~B!]

3Bn j 1 . . . j q21]n A
i1 . . . i p] i1` . . .`] i p`] j 1` . . .`] j q21

, ~2.15!

wherea( i k), a( j k) @a(A), a(B)] are the Grassmann parities of the corresponding coordin
~supermultivectorsA, B); a(@A,B#)5a(A)1a(B).

If we write now@A,B#5 @1/(p1q21)!# @A,B# i1 . . . i p1q21] i1` . . .`] i p1q21
, the coordinates

of the SSNB are given by@eq. ~2.12!#
J. Math. Phys., Vol. 38, No. 7, July 1997
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@A,B#k1 . . . kp1q215
1

~p21!!q!
~21! [a~ i1!1 . . . 1a~ i p21!][ a~ j 1!1 . . . 1a~ j q!1a~B!]

3 ẽ i1 . . . i p21 j 1 . . . j q

k1 . . . kp1q21 An i1 . . . i p21]n B
j 1 . . . j q1

~21!p

p! ~q21!!

3~21!a~A![a~ j 1!1 . . . 1a~ j q21!1a~B!] ẽ i1 . . . i pj 1 . . . j q21

k1 . . . kp1q21 Bn j 1 . . . j q21]n A
i1 . . . i p.

~2.16!

Expression~2.15! reproduces the definition of the graded commutator whenA andB are graded
vector fields onS @A,BP`1(S)#. It also reduces to the local expression of the usual Schout
Nijenhuis bracket~see, e.g. Ref. 8! for the bosonic case@a(xi)50,a(A)50,a(B)50# as it
should. It follows from ~2.15! that the SSNB has the following property (AP`p(S),
BP`q~S!!:

@A,B#5~21!pq~21!a~A!a~B!@B,A#. ~2.17!

As a result,@A,A# is identically zero for a Grassmann evenp-multivector if p is odd, and
@A,A#50 is a non-trivial equation ifA is of zero parity andp is even. Also, ifCP` r(S),

~21!a~A!a~C!~21!pr@@A,B#,C#1~21!a~B!a~A!~21!qp@@B,C#,A#

1~21!a~C!a~B!~21!rq@@C,A#,B#50, ~2.18!

@A,B`C#5@A,B#`C1~21!~p21!q~21!a~B!a~A!B`@A,C#,
~2.19!

@A`B,C#5~21!pA`@B,C#1~21!rq~21!a~B!a~C!@A,C#`B.

Notice that ifA is a vector field, the first in~2.19! is just the derivation property,

LA~B`C!5~LAB!`C1~21!a~A!a~B!B`~LAC!, ~2.20!

whereLA is the Lie derivative with respect toA.
The dependence onp,q of eqs.~2.17! and~2.18! indicates that the definition of the SSNB i

eq. ~2.15! does not have the usual properties of a superalgebra bracket with respect to the
mann parity grading. This may be achieved if~2.15! is slightly modified and a new gradingp for
supermultivectorsA is introduced. Thedegreep(A)[a is defined by

p~A!:5a~A!1p21, ~2.21!

where p is the order of the supermultivectorA. It then follows that
p(@A,B#)5a(A)1a(B)1(p1q21)215p(A)1p(B)[a1b. If we now define a new,
primed SSNB by

@A,B#85~21!p11~21!a~A!~q11!@A,B#, ~2.22!

where@A,B# is the old one given by~2.15!, properties~2.17! and ~2.18! now adopt the superal
gebra form~see, e.g., Refs. 28 and 17!,

@A,B#852~21!ab@B,A#8, ~2.23!

~21!ac@@A,B#8,C#81~21!cb@@C,A#8,B#81~21!ba@@B,C#8,A#850, ~2.24!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where eq.~2.24! is the standard super-Jacobi identity;@A,A# is trivially zero fora even. Thus, the
primed SSNB bracket above extends the superalgebra of supervector fieldsX @for which the parity
associated withp is just the Grassmann onep(X)5a(X), eq.~2.21!#, and makes a superalgeb
of the exterior algebra of supermultivectors endowed with the SSNB.

III. SUPER-POISSON STRUCTURES

Let S5S0% S1 be a supermanifold andF (S)5F 0(S)%F 1(S) be the algebra of
Z2-graded smooth functions onS; fPF 0(S) @F 1(S)# is said to be homogeneous of even@odd#
parity.

Definition III.1 ~super-Poisson bracket!: A super-Poisson bracket$•,•% ~SPB! on F (S) is a
bilinear operation assigning to every pair of functionsf ,gPF (S) a new function $ f ,g%
PF (S), such that for homogeneous functions satisfies the following conditions:

~a! grade zero super-Poisson bracket,

a~$ f ,g%![a~ f !1a~g!~ mod2!; ~3.1!

~b! super skew-symmetry,

$ f ,g%52~21!a~ f !a~g!$g, f %; ~3.2!

~c! graded Leibniz rule~derivation property!,

$ f ,gh%5$ f ,g%h1~21!a~ f !a~g!g$ f ,h%5$ f ,g%h1~21!a~g!a~h!$ f ,h%g; ~3.3!

~d! super-Jacobi identity,

1
2 sAlt$ f 1 ,$ f 2 , f 3%%[~21!a~1!a~3!$ f 1 ,$ f 2 , f 3%%1~21!a~2!a~1!$ f 2 ,$ f 3 , f 1%%

1~21!a~3!a~2!$ f 3 ,$ f 1 , f 2%%50 , ~3.4!

wherea( i )[a( f i), i51,2,3 and sAlt means ‘‘super’’ orZ2-graded alternation. Since the iden
ties ~3.2!, ~3.4! are just the axioms of a superalgebra, the spaceF (S) endowed with the SPB
$•,•% becomes an~infinite dimensional! superalgebra, andS is asuper-Poisson space. The first of
the above conditions means that the SPB operation$•,•% itself is Grassmann even. We sha
restrict ourselves here to this case although odd PB~‘‘antibrackets’’! for which
a($ f ,g%)5a( f )1a(g)11 appear in the theory of odd supermechanics10 ~see also Ref. 11 and
the Remark below!.

Remark. Note the way the grading@a# has been defined. Odd structures have also appe
in mathematics in connection with the SNB~see Ref. 29! and in physics, as in the Batalin
Vilkovisky formalism;30–34 see also Ref. 23 and references therein and in Ref. 35.

Let xj be coordinates onS and consider SPB of the form

$ f ~x!,g~x!%:5~21!a~ f !a~k!1a~ j !a~k!v jk~x!] j f ]kg, j ,k51, . . . , dimS, ~3.5!

wherea( i ) is as before and] j5]/]xj is a left derivative. Clearly, it satisfies~3.2!. Note that, in
particular,

$xi ,xj%5v i j , ~3.6!

and that we take herea(v i j )5a(xi)1a(xj ). Since the graded Leibniz rule is automatica
guaranteed by~3.5!, v i j (x) defines a SPB ifv i j (x)52(21)a( i )a( j )v j i (x) and eq.~3.4! is satis-
fied, i.e., if
J. Math. Phys., Vol. 38, No. 7, July 1997
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~21!a~ j !a~m!v jk]kv
lm1~21!a~ l !a~ j !v lk]kv

mj1~21!a~m!a~ l !vmk]kv
j l50 , ~3.7!

which is equivalent@cf. ~3.4!# to s Alt @v jk]kv
lm#:5

1
2

ẽ i1i2i3
j lm v i1k]kv

i2i350.

The requirements~3.1!, ~3.2! and ~3.3! imply that the SPB may be given in terms of
Z2-graded bivector field orsuper-Poisson bivectorLP`2(S) of zero parity. Locally,

L5
1

2
~21!a~ j !a~k!v jk] j`]k52

1

2
vk j] j`]k . ~3.8!

Condition ~3.7! may now be expressed in terms ofL and the SSNB@eq. ~2.15!# as @L,L#50.
Thus, if xj , xk are both odd,a(xj )5a(xk)51, v jk is symmetric rather than antisymmetric.
super bivectorLP`2(S) such that@L,L#50 defines asuper-Poisson structureon S andS
itself becomes asuper-Poisson space. The SPB is then given by

$ f ,g%5L~d f ,dg!, f ,gPF ~S!. ~3.9!

Two SPSL1 ,L2 onS arecompatibleif any linear combination of them is again a SPS. In ter
of the SSNB this means that@L1 ,L2#50.

Given a bosonic functionHPF 0(S), the supervector fieldXH5 i dHL @where
i aL(b):5L(a,b),a,b one-forms#, is called asuper-Hamiltonian vector fieldof H. From the
super-Jacobi identity~3.4! it easily follows that

@Xf ,XH#5X$ f ,H% . ~3.10!

Thus, the super-Hamiltonian vector fields span a sub-superalgebra of the superalgebraX (S) of all
smooth supervector fields onS. In local coordinates,

XH5~21!a~ j !a~k!v jk~x!] jH]k ; XH . f5$H, f %. ~3.11!

A particular case is that of thelinear super-Poisson structures. A real finite–dimensional super
algebraG with Z2-graded Lie bracket@ .,.# defines in a natural way a SPB$.,.%G on the dual space
G * of G . The natural identificationG>(G * )* allows us to think ofG as a subset of the ring o
smooth functionsF (G * ). Choosing a linear basis$ei% i51

r of G , and identifying its components
with linear coordinate functionsxi on the dual spaceG * by means ofxi(x)5^x,ei& for all x
PG * , the fundamental SPB onG * may be defined by

$xi ,xj%G5xkCi j
k , i , j ,k51, . . . ,r5 dimG , ~3.12!

using that@ei ,ej #5Ci j
k ek , whereCi j

k are the structure constants ofG . Since these are of eve
Grassmann parity, assumption~a! in Def. III.1 tells us thata($xi ,xj%)5a(xk), as is indeed the
case. Intrinsically, the SPB$.,.%G on F (G * ) is defined by

$ f ,g%G ~x!5^x,@d f~x!,dg~x!#&, f ,gPF ~G * !,xPG * ; ~3.13!

locally, @d f(x),dg(x)#5(21)a( f )a( j )1a( i )a( j )ekCi j
k (] f /]xi) (]g/]xj ), $ f ,g%G (x)

5(21)a( i )a( j )1a( f )a( j )xkCi j
k (] f /]xi) (]g/]xj ). The above SPB$.,.%G will be called asuper Lie–

Poisson bracket. It is associated to a two-supervector fieldLG on G * locally defined by

LG5~21!a~ i !a~ j !
1

2
xkCi j

k ]

]xi
`

]

]xj
[2

1

2
v j i ]

i`] j ~3.14!
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@cf. ~3.8!#, so that@cf. ~3.9!# LG (d f ,dg)5$ f ,g%G . Sincea(xi)5a(] i), we see that condition~a!
in Def III.1 implies thata(LG )50 and that accordingly the degreep(LG ) of LG reduces to
~order(LG )21)51. We conclude by noting that the non-trivial condition@LG ,LG #50 @cf. ~3.7!#
reproduces the super-Jacobi identity for the superalgebraG written as

1

2
sAlt~Ci1r

s Ci2i3
r !:5

1

2
ẽ i1i2i3

j 1 j 2 j 3Cj 1r
s Cj 2 j 3

r 50. ~3.15!

IV. GENERALIZED SUPER-POISSON STRUCTURES

A rather stringent condition needed to define a SPS on a supermanifold is the super-
identity ~3.4!; it will be fulfilled if the coordinates of the super-Poisson bivector~3.8! satisfy~3.7!.
This is expressed in a geometrical way by the vanishing of the SSNB ofL[L (2) with itself,
@L (2),L (2)#50. So, it seems natural to consider generalizations of the SPS in terms of 2p-ary
operations determined by Grassmann even 2p-supermultivector fieldsL (2p), the casep51 being
the standard one. Note that, if we relax condition~a! in Def. III.1, we may have odd Poisso
brackets and structures, defined in this case by Grassmann oddq-supermultivectors also of odd
order @and hence also of oddp-parity, eq. ~2.21!# for which @L,L#50 @cf. ~2.17!# will be
non-trivial.

Having this in mind, let us introduce first the following.
Definition IV.1 (Generalized super-Poisson bracket):A generalized super-Poisson brack

~GSPB! $•,•, . . . ,•,•% on a supermanifoldS is a mappingF (S)3 . . . 2p3F (S)→F (S) as-
signing a function$ f 1 , f 2 , . . . ,f 2p% to every setf 1 , . . . ,f 2pPF (S) which is linear in all argu-
ments and satisfies the following conditions:

~a! even GSPB,

a~$ f 1 , f 2 , . . . ,f 2p%![a~ f 1!1 . . .1a~ f 2p!~ mod2!; ~4.1!

~b! graded skew-symmetry in allf j ;

~c! graded Leibniz rule:; f i ,g,hPF (S),

$ f 1 , . . . ,f 2p21 ,gh%5$ f 1 , . . . ,f 2p21 ,g%h1~21!a~g!a~h!$ f 1 , . . . ,f 2p21 ,h%g; ~4.2!

~d! generalized super-Jacobi identity:; f iPF (S),

sAlt$ f 1 , f 2 , . . . ,f 2p21 ,$ f 2p , . . . ,f 4p21%%50

5 ẽ 1 . . . 4p21
j 1 . . . j 4p21$ f j 1, f j 2, . . . ,f j 2p21

,$ f j 2p, . . . ,f j 4p21
%%.

~4.3!

The property~a! indicates that we are again restricting ourselves to a Grassmann even G
Conditions~b! and~c! imply that the GSPB is given by a super-skew-symmetric multiderivat
i.e., by a Grassmann even 2p-supermultivector fieldL (2p)P`2p(S). Condition ~4.3! will be
called thegeneralized super-Jacobi identity; for p52 it contains 35 terms (C4p21

2p21 in the general
case!. It may be rewritten as@L (2p),L (2p)#50 whereL (2p) defines a generalized SPS onS. In the
bosonic case, wherea is always zero and sAlt reduces to Alt, these generalized Poisson struc
have been proposed in Ref. 1. Clearly, the above conditions reproduce~3.1!–~3.4! for p51. The
compatibility condition in Sec. III forp51 may be now extended in the following sense: tw
generalized super-Poisson structuresL (2p) andL (2q) on S are calledcompatibleif they ‘‘com-
mute’’ under the SSNB, i.e.,@L (2p),L (2q)#50. For the linear case, our generalized SPS
automatically obtained from constant supermultivectors of order 2p11.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Let xj be local coordinates onU,S. Then the GSPB has the form

$ f 1~x!, f 2~x!, . . . ,f 2p~x!%5~21!D2p~ f , j !~21!D2p~ j , j !v j 1 j 2 . . . j 2p
] j 1f 1]

j 2f 2 . . . ]
j 2pf 2p ,

~4.4!

whereD2p( f , j )5( r,s
2p a( f r)a( j s), D2p( j , j )5( r,s

2p a( j r)a( j s) @cf. ~2.2!# andv j 1 j 2 . . . j 2p
are the

coordinates of a graded skew-symmetric tensor which satisfies

sAlt~v j 1 j 2 . . . j 2p21k
]kv j 2p . . . j 4p21

!50, ~4.5!

as a result of~4.3! ~notice that this would be false for a bracket with an odd number of argume!.
In terms of an even supermultivectior field of order 2p the generalized super-Poisson structure
defined by the 2p-vector,

L~2p!5
1

~2p!!
~21!D2p~ j , j !v j 1 . . . j 2p

] j 1` . . .`] j 2p5
~21!p

~2p!!
v j 2p . . . j 1

] j 1` . . .`] j 2p,

~4.6!

and, using~2.1!,

L~d f1 , . . . ,d f2p!5$ f 1 , . . . ,f 2p%. ~4.7!

Lemma IV.1:The vanishing of the SSNB@L (2p),L (2p)#50 reproduces eq.~4.5!.
Proof: Let L (2p) be the 2p-vector defined in~4.6!. To show this, it suffices to use~2.15! for

the caseA5B5L (2p), a(L (2p))50 since we assumed that the Grassmann parity of the GPB
determined by those of the 2p functions involved in it only. Then

@L~2p!,L~2p!#52
1

~2p21!! ~2p!!
~21! [a~ i1!1 . . . 1a~ i2p21!][ a~ j 1!1 . . . 1a~ j 2p!]v i1 . . . i2p21n

3~21!D2p21~ i ,i !1D2p~ j , j !]nv j 1 . . . j 2p
] i1` . . .`] i2p21`] j 1` . . .`] j 2p

2
1

~2p21!! ~2p!!
v j 1 . . . j 2p21n~21!D2p21~ j , j !1D2p~ i ,i !]nv i1 . . . i2p

3] i1` . . .`] i2p`] j 1` . . .`] j 2p21

52
2

~2p21!! ~2p!!
~21!D4p21~ i ,i !v i1 . . . i2p21n]nv i2p . . . i4p21

] i1` . . .`] i4p21,

~4.8!

which, sinceD4p21( i ,i ) is invariant under reorderings of the indicesi 1 , . . . ,i 4p21, gives condi-
tion ~4.5! if the SSNB is zero. Q.E.D.

V. LINEAR GENERALIZED SUPER-POISSON STRUCTURES ON THE DUALS OF
SIMPLE LIE SUPERALGEBRAS

Given a finite-dimensional Lie superalgebraG , we know from Sec. III that there is a linea
super-Poisson structure defined through the structure constants. IfG admits a non-degenerat
Killing metric ki j , one may, on the other hand, construct the graded skew-symmetric order
tensor,

v~ei ,ej ,ek!:5k~@ei ,ej #,ek!5Ci j
l klk5Ci jk , eiPG ~ i , j ,k51, . . . ,r5 dimG !, ~5.1!
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where theei are elements of a basis ofG . This tensor is invariant, i.e.,

v~@el ,ei #,ej ,ek!1~21!a~ l !a~ i !v~ei ,@el ,ej #,ek!1~21! [a~ i !1a~ j !]a~ l !v~ei ,ej ,@el ,ek# !50.
~5.2!

In general, the invariance~or ad-invariance! of a tensor of componentski1 . . . im may be expressed
as

(
s51

m

~21!a~ j ![a~ i1!1 . . . 1a~ i s21!]Cji s
r ki1 . . . i s21r i s11 . . . im

50, ~5.3!

which for the case of a graded skew-symmetric tensorv can be written as

ẽ i1 . . . im

j 1 . . . j mCk j1
r vr j 2 . . . j m

50. ~5.4!

Since we are assuming thatk is non-degenerate, it can be used to raise indices as well, so sta
from Ci jk as defined in~5.1!, one can recover the structure constants and the correspon
super-Poisson structure. This fact was used in Ref. 1 to obtain linear generalized Poisson
tures from simple Lie algebras by using certain invariant skew-symmetric forms of odd orde~Lie
algebra cohomology cocycles!. These forms were obtained starting fromad-invariant symmetric
polynomials ~Casimirs!, which are completely classified for simple Lie algebras. However
contrast with this case, the ring of Casimir operators for simple superalgebras@the center
Z(U(G )) of the enveloping algebra# is not finitely generated in general@among the classica
superalgebras this is the case only forosp(1,2n) for which Z(U(G )) is generated byn Casimir
operators of order 2,4,. . . ,2n#. At the same time, the study of the invariant polynomials
superalgebras is much more involved than for the ordinary simple Lie algebras case~see in this
respect Refs. 36–38, 18, 39 and references therein!. Also, there is the problem that for simpl
superalgebras the Killing form may be zero since the invariance and simplicity entails thak is
either non-degenerate or identically zero (k is non-degenerate for the following classical sup
algebras: A(m,n),m.n>0@sl(m11,n11)#;B(m,n),m>0 ,n>1@osp(2m11,2n)#;C(n),n
>2@osp(2,2n22)#;D(m,n),m>2 ,n>1 ,mÞn11@osp(2m,2n)#;F(4) and G(3)27; see also
Ref. 17!. We shall assume here that the Killing form is non-degenerate and consider Ca
operators defined byad-invariant supersymmetric polynomials. We shall describe now how
obtain linear super-Poisson structures in this case.

Theorem V.1: (Linear generalized SPS on a simple superalgebra):Let G be a simple
superalgebra, and letki1 . . . im be a primitive non-trivial invariant graded-symmetric polynomial
orderm. Then, the tensorvr l2 . . . l2m22s ,

vr l2 . . . l2m22s :5 ẽ l2 . . . l2m22

j 2 . . . j 2m22ṽr j 2 . . . j 2m22s , ṽr j 2 . . . j 2m22s :5kr i1 . . . im21
Cj 2 j 3

i1 . . .Cj 2m22s
im21 ,

~5.5!

is completely graded skew-symmetric and

L~2m22!5
~21!m21

~2m22!!
xsv

• l1 . . . l2m22

s ] l2m22` . . .`] l1, ~5.6!

defines a linear generalized super-Poisson structure onG by

$xi1, . . . ,xi2m22
%5xsv

• i1 . . . i2m22

s . ~5.7!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Proof: Let us first consider the complete graded skew-symmetry. Sincevr l2 . . . l2m22s is, by (5.5),
graded skew-symmetric under the interchange ofl i , l j i , j52, . . . ,2m22 and under the inter-
change ofs and l i , it suffices to prove the graded skew-symmetry relative to the indicesr and
s. This can be done by using thead-invariance ofk @eq. ~5.3!# to rewrite ~5.5! as

vr l2 . . . l2m22s52~21!a~ j 2m22![a~r!1a~ i1!1 . . . 1a~ im22!] ẽ l2 . . . l2m22

j 2 . . . j 2m22

3F (
s51

m22

~21!a~ j 2m22![a~r!1a~ i1!1 . . . 1a~ i s21!]kr i1 . . . i s21im21i s11 . . . im22s

3Cj 2 j 3

i1 . . .Cj 2m22i s

im21 1kim21i1 . . . im22sCj 2 j 3

i1 . . .Cj 2m22r
im21 G . ~5.8!

By using thata( i )5a( j )1a(k) if i , j ,k are the indices of aCjk
i commutator and the grade

skew-symmetry and symmetry properties ofẽ andk, respectively, it is easily seen that the fir
term is equal to

(
s51

m22

ẽ l2 . . . l2m22

j 2 . . . j 2sj 2s11 j 2m22 j 2s12 . . . j 2m23kr i1 . . . i s21im21i s11 . . . im22s

•Cj 2 j 3

i1 . . .Cj 2sj 2s11

i s Ci sj 2m22

im21 Cj 2s12 j 2s13

i s11 . . .Cj 2m24 j 2m23

im22 , ~5.9!

which is zero due to the ordinary super-Jacobi identity involvingCj 2sj 2s21

i s Ci sj 2m22

im21 . Thus, v

reduces to the second term in~5.8! and reads as

vr l2 . . . l2m22s52~21!a~r!a~s!1[a~r!1a~s!][ a~ j 2!1 . . . 1a~ j 2m22!]

3 ẽ l2 . . . l2m22

j 2 . . . j 2m22ks i1 . . . im21
Cj 2 j 3

i1 . . .Cj 2m22r
im21

52~21!a~r!a~s!1[a~r!1a~s!][ a~ l2!1 . . . 1a~ l2m22!]vs l2 . . . l2m22r , ~5.10!

where the last equality is due to the fact that the presence ofẽ means that
a( j 2)1 . . .1a( j 2m22)5a( l 2)1 . . .1a( l 2m22). Hence,v is graded skew-symmetric.

Due to Lemma IV.1, the second part of the theorem requires checking the generalized
Jacobi identity for$xi1, . . . ,xi2m22

%5xsv
•

s
i1 . . . i2m22

, which means computing

ẽ j 1 . . . j 4m25

i1 . . . i4m25xsv
•

s
i1 . . . i2m23rv

•

r
i2m22 . . . i4m25

5~2m23!! ẽ j 1 . . . j 4m25

i1 . . . i4m25xsk
s
l1 . . . lm21

Ci1i2

l1 . . .Ci2m23r
lm21 vr

i2m22 . . . i4m25

5~2m23!! ~21!a~ lm21! ẽ j 1 , . . . ,j 4m25

i1 , . . . ,i4m25xsk
s
l1 . . . lm22

lm21Ci1i2

l1 . . .

3Clm21i2m23

r vr i2m22 . . . i4m25
, ~5.11!

where we have used~5.5! for one of the twov factors, thatUiVi5(21)a( i )UiV
i ~which follows

from the graded symmetry of the Killing matrix! and eq.~5.1!. It is clear from~5.11! and~5.4! that
the generalized super-Jacobi identity is satisfied ifv is ad-invariant. But this is indeed the cas
due to thead-invariance ofk: substituting~5.5! in the left hand side of~5.4! and then using again
~5.3!,
J. Math. Phys., Vol. 38, No. 7, July 1997
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ẽ i1 . . . i2m21

j 1 . . . j 2m21Ca j 1
k vk j2 . . . j 2m21

5~2m23!! ẽ i1 . . . i2m21

j 1 . . . j 2m21S (
s52

m

~21!a~ j 1![a~ l2!1 . . . 1a~ l s21!]

2kkl2 . . . l s21l1l s11 . . . lm
Cj 1l2

l1 Cj 2 j 3

l2 . . .Cj 2m22 j 2m23

lm D 50, ~5.12!

which is easily seen to vanish by bringing the indexj 1 next to j 2s21, with the corresponding sign
from ẽ , and then using the ordinary super-Jacobi identity. Q.E

In fact, it may be shown that differentL (2m22),L (2m822) tensors also commute with respe
to the SSNB and that they are functionally independent.

In practice, given a matrix representationXi of the superalgebraG , the supertraces~see, e.g.,
Ref. 17! of the graded-symmetric product of several generators define invariant polynomial

ki1 . . . im} ssTr~Xi1
. . .Xim

!, ~5.13!

where ssTr means the graded-symmetric supertrace and of which the Killing formki j5
sTr(adXiadXj ) is the lowest order example. The fact that these tensors are invariant is de
easily from the ‘‘cyclic’’ property of the supertrace, sTr(AB)5(21)a(A)a(B) sTr(BA). Indeed,
using the definition~5.3!,

(
s51

m

~21!a~ j ![a~ i1!1 . . . 1a~ i s21!]Cji s
r ki1 . . . i s21r i s11 . . . im

5 sTrS (
s51

m

~21!a~ j ![a~ i1!1 . . . 1a~ i s21!]Xi1
. . .Xis21

@Xj ,Xis
#Xis11

. . .XimD
5 sTr~@Xj ,Xi1

#Xi2
. . .Xim

1~21!a~ j !a~ i1!Xi1
@Xj ,Xi2

#Xi3
. . .Xim

1 . . .

1~21!a~ j ![a~ i1!1 . . . 1a~ im21!]Xi1
. . .Xim21

@Xj ,Xim
# !

5 sTr~XjXi1
. . .Xim

2~21!a~ j ![a~ i1!1 . . . 1a~ im!]Xi1
. . .Xim

Xj !50. ~5.14!

VI. AN EXAMPLE OF GENERALIZED SUPER-POISSON STRUCTURE

As we have seen, the construction of a linear SPS following the procedure of Sec. V u
graded-symmetric invariant polynomial on a simple superalgebra with a non-degenerate K
form. This does not always exist: for certain simple Lie superalgebrask is identically zero.27 An
example that does not present this problem issu(3,1), the simplest superunitary algebra conta
ing su(3). A simpler example would be the unitary orthosymplectic superalgebrauosp(2,1),
which containssu(2), but it does not have primitive graded-symmetric polynomials of or
higher than two@much in the same waysu(2), being of rank one, has only one primitive Casim
operator# and for it eq.~5.5! reduces to the SPS given by thev in ~3.14!.

Instead of making all the structure constants and commutators/anticommutators of th
three, fifteen-generatorsu(3,1)-superalgebra explicit, we shall proceed in a more basic way w
will allow us to exhibit the essentials of our general procedure. To this aim, consider firs
identity

e1234
i jkl 5e12

i j e34
kl2e13

i j e24
kl1e14

i j e23
kl1e23

i j e14
kl2e24

i j e13
kl1e34

i j e12
kl , ~6.1!

for the standard Levi-Civita tensor. This means that the 24 terms in the four-commu
@X1 ,X2 ,X3 ,X4#, which is defined as the antisymmetrized sum of all products of the four gen
tors, may be expressed as a sum of three terms,
J. Math. Phys., Vol. 38, No. 7, July 1997
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@X1 ,X2 ,X3 ,X4#5$@X1 ,X2#,@X3 ,X4#%1$@X2 ,X3#,@X1 ,X4#%1$@X3 ,X1#,@X2 ,X4#%, ~6.2!

where @ ,# ($,%) means commutator~anticommutator!. We may easily extend this to th
Z2-graded case. If we now use theZ2-graded commutator with

@X,Y#:5XY2~21!a~X!a~Y!YX~52~21!a~X!a~Y!@Y,X# ! ~6.3!

@i.e., the SSNB~2.14! for the elements of a superalgebra which reduces to a commutator or,
odd/odd case, to the anticommutator#, relation~6.2! above becomes in the graded case,

@Xi ,Xj ,Xk ,Xl #5$@Xi ,Xj #,@Xk ,Xl #%1~21!a~ i !a~k!1a~ i !a~ j !$@Xj ,Xk#,@Xi ,Xl #%

1~21!a~ i !a~k!1a~ j !a~k!$@Xk ,Xi #,@Xj ,Xl #%, ~6.4!

where$,% is now theZ2-gradedanticommutatordefined by

$X,Y%:5XY1~21!a~X!a~Y!YX~5~21!a~X!a~Y!$Y,X%!. ~6.5!

Expression~6.4! of course follows from the equivalent to~6.1! for theZ2-graded case i.e.,

ẽ 1234
i jkl 5 ẽ 12

i j ẽ 34
kl2~21!a~2!a~3! ẽ 13

i j ẽ 24
kl1~21!a~4!~a~2!1a~3!! ẽ 14

i j ẽ 23
kl1~21!a~1!~a~2!1a~3!! ẽ 23

i j ẽ 14
kl

2~21!a~1!a~2!1a~4!~a~1!1a~3!! ẽ 24
i j ẽ 13

kl1~21!~a~3!1a~4!!~a~1!1a~2!! ẽ 34
i j ẽ 12

kl . ~6.6!

Let us write the graded commutators among the elements of a basis ofsu(3,1) as
@Xa ,Xb#5Cab

c Xc . For the graded anticommutators~6.5! we have, inthis case, the generic form

$Xa ,Xb%5kab
c Xc1dabI , ~6.7!

whereI represents a central element. This means that the r.h.s. of~6.4! above may be written as

Ci j
mCkl

n ~kmn
p Xp1dmn!1~21!a~ i !a~k!1a~ i !a~ j !Cjk

mCil
n ~kmn

p Xp1dmn!

1~21!a~ i !a~k!1a~ j !a~k!Cki
mCjl

n ~kmn
p Xp1dmn!. ~6.8!

It is easy to see that terms withd cancel by using the graded Jacobi identity~3.15! for the structure
constants. Grouping the terms ink, we may see that

@Xi ,Xj ,Xk ,Xl #5
1

2
ẽ i jk
rstCrs

mCtl
nkmn

p Xp5
1

2
v i jkl
p Xp , ~6.9!

where thev appearing here has, precisely, the structure of~5.5!. Using this result, it is clear tha
$xi1,xi2,xi3,xi4%5xsv i1i2i3i4

s @see~5.7!# defines a linear GSPS onsu(3,1)* . Note that this depends
on the existence of the graded symmetric polynomialkab

c in ~6.7!, which is a specific property o
su(3,1). However, the procedure may be extended to other algebras along similar lines.
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An explicit realization of theU[Uq„sl(3)… Gel’fand–~Weyl!–Zetlin ~GWZ! basis
as polynomial functions in three variables~real or complex! is given. This realiza-
tion is obtained in two complementary ways. First, a known correspondence is used
between the abstract GWZ basis and explicit polynomials in the quantum subgroup
U1 of the raising generators. Then an explicit construction is used of arbitrary
lowest weight~holomorphic! representations ofU in terms of three variables on
which the generators ofU are realized asq-difference operators. The application
of the GWZ corresponding polynomials in this realization of the lowest weight
vector ~the function 1! produces the first realization of this GWZ basis. Another
realization of the GWZ polynomial basis is found by the explicit diagonalization of
the operators of isospinÎ 2, third component of isospinÎ z , and hyperchargeŶ, in
the same realization asq-difference operators. The result is that the eigenvectors
can be written in terms ofq-hypergeometric polynomials in the three variables.
Finally an explicit scalar product is constructed by adapting the Shapovalov form to
this setting. The orthogonality of the GWZ polynomials with respect to this scalar
product is proven using both realizations. This provides a polynomial construction
for the orthonormal GWZ basis. The results here are for genericq, leaving the root
of unity case for a following paper. It seems that the results are new also in the
classical situation (q51). © 1997 American Institute of Physics.
@S0022-2488~97!00606-3#

I. INTRODUCTION

This paper is the natural development of our joint paper with L. C. Biedenharn1 in which we
gave the construction of arbitrary lowest weight~holomorphic! representations of Uq„sl(n)… in
terms of polynomials ofn(n21)/2 ~real or complex! variables, most explicitly forn53, on which
the generators of Uq„sl(n)… act asq-difference operators. As we know such explicit realizatio
are very important for the applications in physics. In this paper and a sequel we extend the
of Ref. 1 to give a polynomial realization of the so-called Gel’fand–~Weyl!–Zetlin ~GWZ! basis
which is also very important for physical applications.~In the literature the basis is called most
the Gel’fand–Zetlin basis, sometimes simply Gel’fand basis, but also Gel’fand–Weyl basi~cf.
Refs. 2 and 3, and references therein!. We shall use the connotationGel’fand–(Weyl)–Zetlin
~GWZ! for the basis, pattern, or state, as may be the case.! The GWZ basis is very useful in
physical applications mainly for providing the explicit matrix elements of the irreps of U(n), cf.,

a!This paper and a sequel are dedicated to L. C. Biedenharn, who died on February 12, 1996. These papers are t
development of our joint paper with Larry@J. Math. Phys.35, 6058~1994!#.

b!Permanent address: Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsa
Chaussee, 1784 Sofia, Bulgaria.
0022-2488/97/38(7)/3750/18/$10.00
3750 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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e.g., Refs. 3–5, and many references therein. In the case of SU~3! it is important that this basis
diagonalizes the operators which~in some applications! are identified as those of isospinÎ 2, third
component of isospinÎ z , and hyperchargeŶ. With the advent of quantum groups,6,7 the GWZ
basis was adapted to the quantum groups Uq„gl(n)… and Uq„sl(n)…, cf. Refs. 2, 3, and 8–12. Th
GWZ basis was extended also to the inhomogeneous unitary group IU(n) ~Ref. 13! and its
q-deformation.14

In spite of much development, until now there was no explicit realization of the GWZ s
as polynomial functions of real or complex variables even in the classical situation (q51). @GWZ
states as polynomial functions of boson creation operators were given in Ref. 4,~see also Ref. 3!,
cf. more explicit comment in Sec. IV below.# This is what we do in the present paper f
Uq„sl(3)… for generic q, though the method works forq a root of 1, and for arbitrary
Uq„sl(n)…, cf. Sec. VI at the end.

To be more precise we do the following. For every GWZ state we give an explicit polyno
in three variables in terms ofq-hypergeometric polynomials. Our starting point is the expli
construction of arbitrary lowest weight~holomorphic! representations of Uq„sl(3)… in terms of
three variables,1 on which the generators of Uq„sl(3)… act asq-difference operators.~The lowest
weight vector is the function 1.! Moreover we use a result of Refs. 9 and 11 for a corresponde
between the abstract GWZ states and monomials in theq-deformed enveloping algebr
Uq(G

2) of the lowering generators which are not in the standard Poincare´–Birkhoff–Witt basis
of Uq(G

2). These monomials produce polynomials in Uq(G
1) by acting on the monomial in

Uq(G
1) which represents the highest weight vector. Finally we substitute in the latter expres

the explicitq-difference realization of the raising generators~from Ref. 1! to produce the GWZ
polynomial basis when acting on 1. Thus our first result is to write the GWZ states in terms
polynomial basis of Ref. 1 in the finite-dimensional case~Theorem 1!.

Another realization of the GWZ polynomial basis is found by the explicit diagonalizatio
the operatorsÎ 2, Î z , andŶ in the same realization asq-difference operators. It turns out that th
eigenvectors can be written in terms ofq-hypergeometric polynomials in our three variable
Finally we construct an explicit scalar product~adapting the Shapovalov form to our setting!.
Using it we prove the orthogonality of our GWZ polynomials for which we use both realizat
~Theorem 2!. This provides a polynomial construction for the orthonormal GWZ basis.

The paper is organized as follows. In Sec II we introduce the quantum group Uq„sl(n)…,
briefly summarize the needed results from Ref. 1, and obtain some consequences from thes
are needed in the paper. In Sec. III we give the first GWZ basis in Theorem 1. In Sec IV we
the diagonalization of the operatorsÎ 2, Î z , andŶ, and write explicitly their eigenvectors in term
of q-hypergeometric polynomials. In Sec. V we construct the scalar product and prove th
thogonality in Theorem 2. In the Appendix we give the diagonalization of the operatorsÎ 2, Î z , and
Ŷ in the caseq51 since it is also interesting.

II. POLYNOMIAL REALIZATION OF U q(sl(3)) REPRESENTATIONS

The quantum algebra Uq„sl(3)… is defined as the associative algebra overC with Chevalley
generatorsXj

6 , Hj , j51,2, and with relations6,7

@Hj ,Hk#50, @Hj ,Xk
6#56ajkXk

6 , @Xj
1 ,Xk

2#5d jk@Hj #q , ~1a!

~Xj
6!2Xk

62@2#qXj
6Xk

6Xj
61Xk

6~Xj
6!250, ~ j ,k!5~1,2!,~2,1!, ~1b!

where @x#q5(qx/22q2x/2)/(q1/22q21/2) is the basicq-number notation and it is used also fo
diagonal operatorsH replacingx, (ajk)5„2(a j ,ak…/(a j ,a j )…, j ,k51,2, is the Cartan matrix o
sl~3!; a j are the simple roots; the nonzero products between the simple roots are: (a j ,a j )52, j
51,2, (a1 ,a2)521. The only nonsimple root isa135a11a2 , and for notation uniformity we
shall use similar notation for the simple roots:a125a1 , a235a2 . The elementsHj span the
J. Math. Phys., Vol. 38, No. 7, July 1997
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Cartan subalgebraH, while the elementsXj
6 generate the subalgebrasG 6. For the positive roots

a jk correspond to the raising Cartan–Weyl generatorsEjk ( j,k), while for the negative roots
2a jk correspond to the lowering Cartan–Weyl generatorsEkj ( j,k). Thus, for the Chevalley
generators we have

Xj
15Ej , j11 , Xj

25Ej11,j ~2!

The remaining Cartan–Weyl generators are defined as7,15

E135E12E232q1/2E23E12, E315E32E212q21/2E21E32. ~3!

We recall the representations of Uq„sl(3)… constructed in Ref. 1. They are given in terms
three ~real or complex! variablesx,y,z. Next we introduce the number~homogeneity! operator
Nt for the coordinatet5x,y,z, so thatNtt

p5ptp, Ntw50, wÞt, and theq-difference operators
Dt , which admit a general definition on a larger domain than polynomials but on polynomia
well defined as follows:

Dt5
1

t
@Nt#q . ~4!

In this construction the representations of Uq„sl(3)… are characterized by two complex paramet
r 1 ,r 2PC.1 The explicit realization of Uq„sl(3)… is

1

G3~E12!5x@r 12Nx#qq
~1/4!~Nz2Ny!1zDyq

~1/4!~r122Nx!, ~5a!

G3~E21!5Dxq
~1/4!~Nz2Ny!1yDzq

~1/4!~r122Nx!, ~5b!

G3~H1!52Nx2r 11Nz2Ny , ~5c!

G3~H2!52Ny2r 21Nz2Nx , ~5d!

G3~E31!5Dzq
~1/4!~r12Nx12Ny!, ~5e!

G3~E32!5Dyq
~1/4!Nx, ~5e8!

G3~E13!5z@r2Nx2Nz2Ny#qq
~1/4!~Nx2r122Ny!2xy@r 12Nx#qq

~1/4!~2r21Nx2Nz23Ny11!, ~5f!

G3~E23!5y@r 21Nx2Nz2Ny#qq
2~1/4!Nx2zDxq

2~1/4!~2r2r11Nx2Nz2Ny11!, ~5f8!

wherer[r 11r 2 . The representation depends only on the parametersr 1 andr 2 , as in the classica
case of holomorphic sl~3! representations. It is straightforward to check@using also~2! and ~3!#
that ~5! satisfies~1!. If we apply ~5! to the function 1 we get

G3~Ejk!150, j.k, ~6a!

G3~Hk!152r k , ~6b!

i.e., we obtain a lowest weight module with lowest weight vector 1 and lowest weightL such that
L(Hk)52r k . All states are given by powers ofx,y,z, i.e., the basis is generated b
xjzkyl-with j ,k,lPZ1 . The action of Uq„sl(3)… is given by1

G3~E12!x
jzkyl5@r 12 j #qq

~1/4!~k2 l !xj11zkyl1@ l #qq
~1/4!~r122 j !xjzk11yl21, ~7a!

G3~E21!x
jzkyl5@ j #qq

~1/4!~k2 l !xj21zkyl1@k#qq
~1/4!~r122 j !xjzk21yl11, ~7b!
J. Math. Phys., Vol. 38, No. 7, July 1997
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¬¬¬¬¬¬¬¬¬¬
G3~H1!x
jzkyl5~2r 112 j2 l1k!xjzkyl , ~7c!

G3~H2!x
jzkyl5~2r 22 j12l1k!xjzkyl , ~7d!

G3~E31!x
jzkyl5@k#qq

~1/4!~r12 j12l !xjzk21yl , ~7e!

G3~E32!x
jzkyl5@ l #qq

~1/4! j xjzkyl21, ~7e8!

G3~E13!x
jzkyl5q~1/4!~ j2r122l !@r2 j2k2 l #qx

jzk11yl2q~1/4!~2r21 j2k23l11!@r 12 j #qx
j11zkyl11,

~7f!

G3~E23!x
jzkyl5q2~1/4! j@r 21 j2k2 l #qx

jzkyl112@ j #qq
2~1/4!~r112r21 j2k2 l11!xj21zk11yl .

~7f8!

In the present paper we discuss the case when the representations’ parameters a
negative integers:r kPZ1 . In Ref. 1 we have shown that@as forq51 ~cf. Ref. 15!# in this case the
representation is reducible. It contains an irreducible subrepresentation which is finite dimen
of dimension

d̂r1 ,r25
1
2~r 111!~r 211!~r12!. ~8!

This recovers the complete list of the finite-dimensional holomorphic irreps of Uq„sl(3)… and
SL~3!, and by default, also the complete list of the finite-dimensional unitary irreps
Uq„su(3)… and SU~3! ~we have assumed thatq is not a nontrivial root of 1!.

Next we recall from Ref. 1 the following formula:

v lk j[G3~E23!
lG3~E13!

kG3~E12!
j1

5(
s50

k

(
n50

l

~21!s2nS ksD
q
S lnD

q

q~1/4!$~ j2r1!k2 l j1~s2n!~r112r22k2 l12!%

3
Gq~r 111!Gq~r2 j2s11!

Gq~r 12 j2s11!Gq~r2 j2k11!

Gq~r 21 j1s2k2n11!

Gq~r 21 j1s2k2 l11!

@ j1s#q!

@ j1s2n#q!

3xj1s2nzk2s1nyl1s2n, ~9!

whereGq is theq-Gamma function, which in the present paper we use only through the follow
properties:Gq(x11)5@x#qGq(x), Gq(x11)5@x#q! for xPN, @0#q!51, 1/Gq(x)50 for x
PZ2 . In particular, note that forr 2PZ the ratio Gq(r 21 j1s2k2n11)/Gq(r 21 j1s2k2 l
11) means just@r 21 j1s2k2n#q@r 21 j1s2k2n21#q•••@r 21 j1s2k2 l11#q .

One of the main results of Ref. 1 is that a basis for the above representation space is g
v lk j iff l1k1 j<r ,0< j<r 1,0< l<r 2 . In the next section we relate this basis to the stand
Gel’fand–Weyl–Zetlin basis.

For later reference we note the special polynomialv0r0 which corresponds to the highe
weight vector~as we shall see later!:

v0r0[G3~E13!
r15q2~1/4!rr 1@r #q!(

s50

r1

~21!sS r 1s D
q

q~1/4!s~r2r112!xszr2sys. ~10!

Also for later reference we note the explicit value ofv lk j for z50 ~given by the terms5k and
n50!:
J. Math. Phys., Vol. 38, No. 7, July 1997
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v lk j uz505~21!kq~1/4!$~ j2r1!k2 l j1k~r112r22k2 l12!%
Gq~r 111!

Gq~r 12 j2k11!

Gq~r 21 j11!

Gq~r 21 j2 l11!
xj1kyl1k.

~11!

Note that the rhs of~11! is equal to zero whenj1k>r 111 @because of theGq(r 12 j2k11) in
the denominator#. In this case one applies (Dz)

j1k2r1 to both sides of~9! and then setsz50.

III. CORRESPONDENCE WITH THE GWZ BASIS

We would like to establish the correspondence between our basis for the finite-dimen
irreducible representations given by the statesv lk j @cf. ~9! and Ref. 1# and the SU~3! Gel’fand–
Weyl–Zetlin basis:

~m!5S m13 m23 0

m12 m22

m11

D ,
~12!

m13>m12>m23,m11>m22>0.

First we need the operators corresponding to isospinÎ 2, third component of isospinÎ z , and
hyperchargeŶ:

Î z5
1
2H1 , ~13a!

Ŷ5 1
3~H112H2!, ~13b!

Î 25E21E121@ 1
2H1#q@

1
2H111#q . ~13c!

Note thatÎ 2 is the Casimir of the Uq„sl(2)… quantum subgroup generated byE21,E12,H1 . It is
easy to see that, like the GWZ states, also thev lk j states are eigenvectors ofÎ z andŶ, but they are
not eigenvectors ofÎ 2. In fact we have

G3~
1
2H1!v lk j5„j1k2 1

2~r 11 l1k!…v lk j , ~14!

G3„
1
3~H112H2!…v lk j5„r 11k1 l2 2

3~r1r 1!…v lk j , ~15!

G3~E21!G3~E12!v lk j5„~ j11!~r 12 j !1 l ~k11!…v lk j1kv l11,k21,j111~r 12 j11!l j v l21,k11,j21 .
~16!

The last formula is given forq51 since it is only to illustrate our point. We shall diagonali
G3(E21)G3(E12) in the next section and find explicit polynomial eigenvectors. In this section
find alternatively an explicit correspondence between~m! and the appropriate linear combinatio
of v lk js.

First, we fix the correspondence between the two representations, namely between the
$m13,m23% and$r ,r 1%, by considering the lowest weight vector. This is the GWZ vector4

S m13 m23 0

m23 0

0
D , ~17!
J. Math. Phys., Vol. 38, No. 7, July 1997
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¬¬¬¬¬¬¬¬¬¬
which hasI52I z5m23/2 andY52 1
3(2m132m23). In our realization the lowest weight vector i

v00051 and thus from~14! and ~15! we get thatI z52r 1/2 andY52 1
3(2r2r 1). Therefore we

find m135r andm235r 1 .
The actual correspondence is proved using well-known techniques of raising, and low

operators developed for classical groups and adapted to quantum groups cf. Refs. 2, 3, 4
and 12. Identifying the lowest weight states one can find explicitly a polynomial in Uq(G

1) which
corresponds to~m!, namely:

Theorem:9,11 Let us denote the unknown polynomial in Uq(G
1) corresponding to~m! by

p(m) . Let us denote by 1ˆ the lowest weight state of any realization of the Uq„sl(3)… finite-
dimensional representation with parametersr 1 and r 2 . Then we have~up to multiplicative nor-
malization constant!

p~m!1̂5~E21!
m122m11C̃r2m12~E32!

r12m22~E13!
r 1̂

5@m121m222r 1#q! (
t50

r2m12

(
uPZ1

~21! tSm122m111t
u D

q

3
q~1/2!~m222t2r1!~m121m222r1!1~u/2!~u22m222m121m111r11t !

@ t#q! @m222t#q! @m122m22111t#q!

3
@m122m2211#q! @ t1r 12m22#q! @m121m222m112u#q!

@m112m122m221r 11u#q! @m121m222r 12u#q!

3~E23!
u~E13!

m121m221r12u~E12!
m112m122m221r11u1̂, ~18b!

C̃[E31@H111#1E21E32q
2~H111!/25E32E21@H111#2E21E32@H1#. ~18c!

TheProof is given in Refs. 9 and 11~note that the Theorem is given in our notation!.
Finally, we get the correspondence we need using the above Theorem:
Theorem 1: A realization of the GWZ basis as polynomials in three variables~real or com-

plex! is given by the formula

f~m!5G3~p~m!!1

5@m121m222r 1#q! (
t50

r2m12

(
uPZ1

Sm122m111t
u D

q
~21! t

3
q~1/2!~m222t2r1!~m121m222r1!1~u/2!~u22m222m121m111r11t !

@ t#q! @m222t#q! @m122m22111t#q!

3
@m122m2211#q! @ t1r 12m22#q! @m121m222m112u#q!

@m112m122m221r 11u#q! @m121m222r 12u#q!

3vu,m121m222r12u,m112m122m221r11u . ~19!

Proof: Straightforward using~18! and our formula forv lk j ~9!.
For later reference we note the explicit value off (m) for z50 @using ~11! and ~34!#:

f~m!uz505
N ~m!

1

Gq~r 12m1111!
xm11ym121m222r1, ~20a!
J. Math. Phys., Vol. 38, No. 7, July 1997
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N ~m!
1 5@r 1#q! @m121m222r 1#q!

3 (
t50

r2m12

(
uPZ1

~21! t1u1m121m221r1

3Sm122m111t
u D

q
~r1m112m122m2211!u

q

3
q~1/2!$~u2m122m221r1!~m122r211t !1~m121m222r1!~m11/22r1!%

@ t#q! @m222t#q! @m122m22111t#q!

3
@m122m2211#q! @ t1r 12m22#q! @m121m222m112u#q!

@m112m122m221r 11u#q! @m121m222r 12u#q!
, ~20b!

which is useful forr 12m1111.0. Otherwise it is zero@due to the singled out factorGq(r 1
2m1111)#, and to obtain a nonzero value one first has to differentiate wrtz m112r times.

We note also the expression for the lowest weight state obtained from~18! and ~19! for
m125r 1 , m115m2250:

plws1̂5~E21!
r1C̃r2r1~E32!

r1~E13!
r 1̂5N lws

1 1̂5~@r 1#q! !
31̂, ~21a!

f lws5G3~plws!15~@r 1#q! !
3, ~21b!

which of course differ from 1ˆ and 1, resp. by a constant—the corresponding value ofN (m)
1 .

IV. q -HYPERGEOMETRIC REALIZATION OF THE GWZ BASIS

In Sec. III we exhibited the relation of the GWZ basis and the polynomial basisv lk j . By
formula ~19! this provides also a polynomial realization of the GWZ basis in the same varia
x,y,z. However,~19! is not very explicit, since it contains a quadruple sum@a double sum in~19!
and a double sum in~9!#. Instead of partially summing~19!, in this section we shall find a
polynomial realization directly~not relying on the correspondence withv lk j ! using the fact that the
GWZ states are eigenvectors of the operatorsÎ z , Ŷ, and Î

2.
We shall proceed as follows. Let us denote@as in ~19!# the unknown polynomial function

corresponding to~m! by

c5c~x,y,z!5c~m!~x,y,z!. ~22!

Naturally,c (m) can differ fromf (m) in ~19! only by a multiplicative constant which we shall fi
later.

In order to use effectively the fact thatc is an eigenfunction ofÎ z , Ŷ, and Î
2 we use their

explicit q-difference realization~5!. We write

Ĩ z[
1
2G3~H1!5 1

2~2Nx2r 11Nz2Ny!, ~23a!

Ỹ[ 1
3G3~H112H2!5Ny1Nz2

1
3~r 112r 2!, ~23b!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Ĩ 2[G3~E21!G3~E12!1@ Ĩ z#q@ Ĩ z11#q

5@Nx11#q@r 12Nx#qq
~1/2!~Nz2Ny!1@Nz11#q@Ny#qq

~1/2!~r122Nx!

1
z

xy
@Nx#q@Ny#qq

~1/4!~r122Nx1Nz2Ny12!

1
xy

z
@Nz#q@r 12Nx#qq

~1/4!~r122Nx1Nz2Ny22!1@ Ĩ z#q@ Ĩ z11#q . ~23c!

The eigenfunction conditions satisfied byc are

Ĩ zc5I zc5„m112
1
2~m121m22!…c, ~24a!

Ỹc5Yc5„m121m222
2
3~r1r 1!…c, ~24b!

Ĩ 2c5@ I #q@ I11#qc5Fm122m22

2 G
q
Fm122m22

2
11G

q

c. ~24c!

Next we consider the operatorsĨ z11/2Ỹ and Ỹ, from which we obtain the following homo
geneity conditions:

~Nx1Nz!c5„Ĩ z1
1
2Ỹ1 1

3~r1r 1!…c5m11c, ~25a!

~Ny1Nz!c5„Ỹ1 1
3~r2r 1!…5kc, k[m121m222r 1 . ~25b!

From these homogeneity conditions and the explicit form of~24c! we are prompted to make
the following change of variables:

x85x, y85y, z5
z

xy
, ~26!

from which follows

Nx5Nx82Nz , Ny5Ny82Nz , Nz5Nz . ~27!

Thus, the homogeneity conditions~25! simplify to

Nx8c5m11c, ~28a!

Ny8c5kc, ~28b!

i.e., our polynomials actually have the form

c5c~m!5x8m11y8kc̃~z!. ~29!

Actually from this expression we can deduce thatc̃ is a polynomial inz of degree at mostn0
[min(m11,k). Indeed, ifc̃ is a polynomial inz of higher degree, thenc would not be a poly-
nomial in x or y or both, contradicting our starting assumption.

Substituting now~29! in ~24c! and taking into account~28! we obtain the following equation
for c̃:
J. Math. Phys., Vol. 38, No. 7, July 1997
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~@m11112Nz#q@r 12m111Nz#qq
Nz2~1/2!k1@11Nz#q@k2Nz#qq

~1/2!r12m111Nz

1z@m112Nz#q@k2Nz#qq
~1/4!~r12k!1~1/2!~12m11!1Nz1z21@Nz#q@r 12m111Nz#q

3q2~1/4!~r12k!2~1/2!~11m11!1Nz1@m112m12#q@m112m2211#q!c̃~z!50. ~30!

The unique~up to nonzero multiple! polynomial solution of~30! is given byq-Jacobi or,
equivalently, byq-hypergeometric polynomials. In particular, ifb5r 12m1111¹Z2 , then such
a solution is

c̃1~z!51F0
q~2m22;q

~1/4!~m222m1222!z ! 2F1
q~2m11,r 12m12;r 12m1111;q~1/4!~r11k!z!,

~31!

where2F1
q is aq-hypergeometric polynomial,

2F1
q~a,b;c;z!5 (

sPZ1

~a!s
q~b!s

q

@s#q! ~c!s
q zs, c¹Z2 . ~32!

1F0
q is a degenerateq-hypergeometric polynomial

1F0
q~a;z!5 (

sPZ1

~a!s
q

@s#q!
zs52F1

q~a,b;b;z!, ~33!

and (n)s
q is theq-Pochhammer symbol,

~n!s
q5@n1s21#q@n1s22#q•••@n#q5

Gq~n1s!

Gq~n!
. ~34!

Note that~34! ensures that~32! and~33! are polynomials of degree min(2a,2b), 2a, resp., when
a,bPZ2 , as is in our case. Note that forq51 ~32! goes into the standard hypergeomet
polynomial, while~33! becomes just the binomial (12z)m22.

If b5r 12m1111PZ2 , then the polynomial solution of~30! is given by

c̃2~z!5zm112r1
1F0

q~2m22;q
~1/4!~m222m1222!z ! 2F1

q~2r 1 ,m112m12;m112r 111;q~1/4!~r11k!z!.
~35!

In order to relate~31! and ~35! it is enough to replace in~31!

2F1
q~2m11,r 12m12;r 12m1111;q~1/4!~r11k!z!

°
1

Gq~r 12m1111! 2F1
q~2m11,r 12m12;r 12m1111;q~1/4!~r11k!z!.

Then this expression is valid for arbitraryr 12m1111, and up to some multiplicative constant
equal to~35! whenr 12m1111PZ2 . Thus, finally we shall write the polynomial solution of~30!
as

c̃~z!5
1

Gq~r 12m1111! 1F0
q~2m22;q

~1/4!~m222m1222!z ! 2F1
q~2m11,r 12m12;r 12m11

11;q~1/4!~r11k!z!. ~36!
J. Math. Phys., Vol. 38, No. 7, July 1997
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For q51 ~36! can be expressed as (12z)m22 times a Jacobi polynomial, cf. the Appendi
This may be compared with the expressions for the GWZ states as polynomial functions of
creation operators were given in Ref. 4, formula~43!:

u~m!&5N~a12!
m22~a13!

r12m22~a1!
m112r1~a2!

m122m11~a3!
r2m12

32F1~m222r 1 ,m112m12,m112r 111;~a1a23/a2a13!!u0&, ~37!

whereN is a normalization constant,a1 , a2 , anda3 are boson creation operators, and the ot
operators are their antisymmetrized products:ai j5aiaj2ajai , (i j )5(12),(23), a123
5e i jkaiajak , e i jk the totally antisymmetric tensor. Clearly, there is no simple connection betw
our ~36! and~37!, since they involve different hypergeometric functions and since there is no
passage from the six boson operator variables to our three number variablesx,y,z, ~cf. also some
partial cases below!.

The normalization of~36! is chosen so that for the lowest weight state~m125r 1 , m115m22

50! we get the function 1.$Note that from~43! of Ref. 4 @~37! above# one gets using also th
explicit formulae for the normalization constantN given in ~44! of Ref. 4: (a3)

r2r1(a23)
r1u0&.%

For the highest weight state~m125m115r , m225r 1! we get

c̃hws~z!5q~1/4!~r22r1
2
!

@r #q! @r2r 1#q!

@r 1#q!
z r2r1

1F0
q~2r 1 ;q

~1/4!~r12r22!z !,
~38!

chws~x,y,z!5q~1/4!~r22r1
2
!

@r #q! @r2r 1#q!

@r 1#q!
xr1yr1zr2r1

1F0
qS 2r 1 ;q

~1/4!~r12r22!
z

xyD
since from 2F1

q survives only the termz r2r15z r2. @Note that from ~37! one gets
(a12)

r1(a1)
r2r1u0&.#

We shall write down the relation between the expressions~19! and ~29! @with ~36!# as

f~m!5N ~m!c~m! . ~39!

For r 12m1111¹Z2 we haveN (m)5N (m)
1 , which we find by comparing

c~m!uz505
1

Gq~r 12m1111!
xm11ym121m222r1

with ~20!. Note that~21! is a partial case of~39!. Whenr 12m1111PZ2 ~i.e.,m112r 1PN), one
has first to differentiatem112r 1 times wrtz bothf (m) andc (m) and then to setz50. In particular,
for the highest weight state we compare~10! since thenfhws5v0r05G3(E13)

r1, and~38!. Re-
writing ~10! as

fhws5~21!r1q~1/4!r1~22r1!@r #q!x
r1yr1zr2r1

1F0
qS 2r 1 ;q

~1/4!~r12r22!
z

xyD , ~40!

we get

fhws5~21!r1q~1/4!~2r12r2!
@r 1#q!

@r2r 1#q!
chws. ~41!

V. EXPLICIT ORTHOGONALITY OF THE GWZ BASIS

For the orthogonality of the GWZ basis we shall use an adaptation of the so-called Sh
alov form.16 This is a bilinearC-valued form on Verma modules. The Verma moduleVL of lowest
J. Math. Phys., Vol. 38, No. 7, July 1997
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weight LPH* is the lowest weight module such thatVL5Uq(G
1)^v0 , whereG

1 is the
subalgebra of the raising generatorsEjk , j,k, andv0 is the lowest vector such that

Ejkv050, j.k,
~42!

Hkv05L~Hk!v0 .

The states in a Verma module correspond to the monomials of the Poincare´–Birkhoff–Witt basis
of Uq(G

1), namely,

ulk j[plk j ^v0 ,
~43!

plk j[~E23!
l~E13!

k~E12!
j , l ,k, jPZ1 ,

i.e., this basis is 1-to-1 with the basisv lk j for generalr k . Further, for simplicity we shall omit the
sign^, i.e., we shall writeulk j5plk jv0 or u5pv0 for short. We need the involutive antiautomo
phism ofUq(G ) such that

v~Hk!5Hk , v~Ejk!5Ekj , v~q!5q21. ~44!

Using the above conjugation the Shapovalov form can be defined as follows:

~u,u8!5~pv0 ,p8v0![„v0 ,v~p!p8v0…5„v~p8!pv0 ,v0…,
~45!

u5pv0 , u85p8v0 , p,p8PUq~G
1!, u,u8PVL,

supplemented by the normalization condition (v0 ,v0)51. More explicitly from~45! we have

~ulk j ,ul 8k8 j 8!5~plk jv0 ,pl 8k8 j 8v0!5„v0 ,v~plk j !pl 8k8 j 8v0…5„v~pl 8k8 j 8!plk jv0 ,v0… ~46a!

5„v0 ,~E21!
j~E31!

k~E32!
l~E23!

l 8~E13!
k8~E12!

j 8v0… ~46b!

5„~E21!
j 8~E31!

k8~E32!
l 8~E23!

l~E13!
k~E12!

jv0 ,v0…. ~46c!

Note that subspaces with different weights are orthogonal wrt to this form:

~ulk j ,ul 8k8 j 8!;dk1 l ,k81 l 8dk1 j ,k81 j 8 . ~47!

To show~47! one uses~46b! whenk1 l.k81 l 8 and/ork1 j.k81 j 8, while ~46c! is used when
k1 l,k81 l 8 and/ork1 j,k81 j 8.

We shall give a realization of the Shapovalov form in our setting in the following way. U
the 1-to-1 correspondence we replaceulk j by v lk j and the lowest weight vectorv0 by the lowest
weight vector 1ˆ of the abstract finite-dimensional irrep and by the function 1 in the polynom
realization. Namely, we shall use instead of~45! the following bilinear form:

~u,u8! f5~p1̂,p81̂! f[~G3„v~p!…G3~p8!1!ux5y5z50 . ~48!

More explicitly, we have

~ulk j ,ul 8k8 j 8! f5~plk j 1̂,pl 8k8 j 81̂! f5~G3„v~plk j !…G3~pl 8k8 j 8!1!ux5y5z505~ p̂lk jv l 8k8 j 8!ux5y5z50 ,

~49!

p̂lk j[G3„v~plk j !…5„G3~E21!…
j
„G3~E31!…

k
„G3~E32!…

l .
J. Math. Phys., Vol. 38, No. 7, July 1997
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Clearly, whenk1 l.k81 l 8 and/ork1 j.k81 j 8 we havep̂lk jv l 8k8 j 850. Whenk1 l,k81 l 8 and
k1 j,k81 j 8, the expressionp̂lk jv l 8k8 j 8 is not zero but a homogeneous polynomial ofx,y,z
which vanishes after the substitutionx5y5z50. Finally, whenk1 l5k81 l 8 and k1 j5k8
1 j 8, the expressionp̂lk jv l 8k8 j 8 is a numerical one coinciding with (ulk j ,ul 8k8 j 8) because of the
automorphism.

We can further simplify~49! if we setx5y5z50 in p̂lk j from the very beginning, namely
we replacep̂lk j by

p̃lk j[„G̃3~E21!…
j
„G̃3~E31!…

k
„G̃3~E32!…

l ,

G̃3~E21![Dxq
~1/4!~Nz2Ny!,

~50!

G̃3~E32![Dyq
~1/4!Nx5G3~E32!,

G̃3~E31![Dzq
~1/4!~r12Nx12Ny!5G3~E31!.

Note that this operation affects onlyG3(E21) and that it is easy to check that

~ulk j ,ul 8k8 j 8! f[~ p̃lk jv l 8k8 j 8!ux5y5z50 . ~51!

Further we note that

p̃lk j5q~1/4!„~ l2k!Nx1~2k2 j !Ny1 jNz1 j l1k~r12 j !…~Dx!
j~Dz!

k~Dy!
l . ~52!

We shall use the above to prove the main result in this section:
Theorem 2: Let ~m! and (m8) be two different GWZ patterns. Then we have

~p~m!1̂,p~m8!1̂! f50. ~53!

Proof: For the calculation we need firstG3„v(p(m))… for which we can use~18! to express it
in terms ofp̂lk j and further, taking into account~50!, in terms ofp̃lk j writing directly ~and using
the notationk5m121m222r 1!

G3„v~ p̃~m!…5@k#q! (
t50

r2m12

(
uPZ1

~21! tSm122m111t
u D

q

3
q~1/2!k~ t1m122k!1~u/2!~2k1r12m122m112t2u!

@ t#q! @m222t#q! ~m122m2212! t
q

3
@ t1m122k#q! @r 11k2m112u#q!

@m112k1u#q! @k2u#q!
p̃u,k2u,m112k1u . ~54!

Further, we needG3(p(m8))15f (m8) for which we shall use its relation~39! with our explicit
solutionc (m8) from ~29! @with ~36!# in terms ofq-hypergeometric polynomial which we use in th
original variablesx,y,z. Thus we have to calculate
J. Math. Phys., Vol. 38, No. 7, July 1997
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~p~m!1̂,p~m8!1̂! f5N ~m8!@k#q! (
t50

r2m12

(
uPZ1

~21! tSm122m111t
u D

q

3
q~1/4!~u~r11k22t22m12!1k~r12k12t12m122m11!…

@ t#q! @m222t#q! ~m122m2212! t
q

3
@ t1m122k#q! @r 11k2m112u#q!

@m112k1u#q! @k2u#q!

3S q~1/4!~~2u2k!Nx1„3~k2u!2m11…Ny1~m112k1u!Nz!

3~Dx!
m112k1u~Dz!

k2u~Dy!
u(
s50

m228

(
nPZ1

~21!sq~1/4!s~m228 2m128 22!Sm228

s D
q

3
~m228 2m118 !n

q~r 12m128 !n
q

@n#q!Gq~r 12m118 111n!
q~1/4!n~r11k8!xm118 2s2nyk82s2nzs1nD U

x5y5z50

.

~55!

In the next step we perform the action of the operatorsNx , Ny , Nz , Dx , Dy , andDz and set
x5y5z50. Obviously nonzero contributions will come only from the terms in which the pow
of Dx , Dy , andDz , resp., coincide with the powers ofx, y, andz, resp. From this follows, first,
that the action of the operatorsNx , Ny , andNz trivializes since the nonzero contributions ha
zero homogeneity, and second, that the rhs of~55! is zero unless

m115m118 , k5k8, u1s1n5k. ~56!

The first two conditions are part of the orthogonality property which we aim to prove. In par
lar, from the second follows thatm121m225m128 1m228 , i.e., ~m! and (m8) already coincide up to
one parameter. The last condition in~56! is fixing one of the summations, say, inu. Taking into
account all this we have

~p~m!1̂,p~m8!1̂! f5dm11 ,m118
dk,k8q

~1/4!k~2r12m11!N ~m8!@k#q! (
t50

r2m12

(
nPZ1

(
s50

m228

~21!s1t

3q~1/2!s~m122r12k1t1m228 21!Sm228

s D
q

@r 12m111n1s#q!

@r 12m112m221t1n1s#q!

3
@ t1m122k#q! @m122m111t#q!

@ t#q! @m222t#q! ~m122m2212! t
q q

~1/2!n~m121t !
~m228 2m11!n

q~r 12m128 !n
q

@n#q!Gq~r 12m11111n!
.

~57!

In the next step we take thes summation using a formula generalizing the classical hypergeo
ric summation formula of Ref. 17,~9.122!:

2F1~a,b;c;1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
. ~58!

Or, equivalently fora52n, nPZ1 ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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(
s50

n

~21!sS n
sD ~b!s

~c!s
5

~c2b!n

~c!n
. ~59!

For qÞ1 there are actually two formulas:

2F1
q~2n,b;c;q6~1/2!~b2c112n!!5(

s50

n

~21!sS n
sD

q

~b!s
q

~c!s
q q

6~1/2!s~b2c112n!5
~c2b!n

q

~c!n
q q6~1/2!bn

~60!

~cf. Ref. 18 for a partial case!. Using ~60! with (n,b,c)5(m228 ,r 12m111n11,r 12m111n11
2m221t) and sign minus we obtain

~p~m!1̂,p~m8!1̂! f5dm11 ,m118
dk,k8N ~m8!@k#q!q

~1/4!k~2r12m11!q~1/2!m228 ~m112r121!

3 (
t50

r2m12

(
nPZ1

~21! t1m228
q~1/2!n~m121t2m228 !

@ t#q! ~m122m2212! t
q

3
@ t1m122k#q! @m122m111t#q!

Gq~m222m228 2t11!

~m228 2m11!n
q~r 12m128 !n

q

@n#q! @r 11m228 2m112m221t1n#q!
,

~61!

where we have used also the easy identity

Gq~ t1m228 2m22!

@m222t#q!Gq~ t2m22!
5

~21!m228

Gq~m222m228 2t11!
. ~62!

In the next step we take then summation using again~60! for sign minus and

~n,b,c!5~m112m228 ,m228 2k,r 11m228 2m112m221t11!,

where we have taken into account thatr 12m128 5m228 2k @cf. ~56!#. Thus we obtain

~p~m!1̂,p~m8!1̂! f5dm11m118
dk,k8N ~m8!@k#q!q

2~1/2!m228 ~m128 11!q~1/4!k~2r11m11!

3 (
t50

r2m12 ~21! t1m228

@ t#q! ~m122m2212! t
q

Gq~m121t112m228 !

Gq~m222m228 2t11!
. ~63!

Now the last sum is zero unlessm222m228 >0 because of theGq(m222m228 2t11) in the denomi-
nator. ~We note also thatm122m228 >0.! With this supposition we take the last summation int
using again~60! for

~n,b,c!5~m222m228 ,m12112m228 ,m122m2212!.

Actually here we have a particular case of~60! becauseb2c112n50. In this case and with
c(c1n).0 ~as is our case! it becomes

2F1
q~2n,c1n21;c;1!5

1

~c!n
qGq~12n!

5dn0 , c~c1n!.0 ~64!

Thus, the sum int is zero unlessn5m222m228 50, i.e., we have obtained the desired orthogon
ity. Thus we obtain@using ~64!#
J. Math. Phys., Vol. 38, No. 7, July 1997
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~p~m!1̂,p~m8!1̂! f5dm11 ,m118
dm12 ,m128

dm22 ,m228
~21!m22q2~1/2!m22~m1211!q~1/4!k~2r11m11!N ~m!

3@k#q! @m122m22#q!. ~65!

This proves the Theorem. j

We can use the forms~46! and~49! to define a scalar product if we consider our conjugat
v as antilinear. Then we actually restrict to the real form Uq„su(3)… andq is restricted to be a
phaseuqu51 @cf. ~44!#. Then we define the scalar product of the functionsf (m)5G3(p(m))1 or
c (m) :

~f~m! ,f~m8!!p[~p~m!1̂,p~m8!1̂! f , ~66a!

~c~m! ,c~m8!![
1

uN ~m!u2
~p~m!1̂,p~m8!1̂! f . ~66b!

We note two partial cases:

~f lws ,f lws!p5~@r 1#q! !
4,

~67a!

~c lws ,c lws!5
1

~@r 1#q! !
2 ,

~fhws,fhws!p5@r #q! @r 1#q!,
~67b!

~chws,chws!5
@r #q! ~@r2r 1#q! !

2

@r 1#q!
.

Using this scalar product we can introduce orthonormal GWZ polynomials by

ĉ~m![
c~m!

u~c~m! ,c~m!!u
~68!

so that

~ ĉ~m! ,ĉ~m8!!5d~m!,~m8! . ~69!

In particular, we have

ĉ lws~x,y,z!5@r 1#q!, ~70a!

ĉhws~x,y,z!5
1

@r2r 1#q!
S @r 1#q!

@r #q!
D 1/2chws~x,y,z!5S @r #q!

@r 1#q!
D 1/2q~1/4!~r22r1

2
!xr1yr1zr2r1

31F0
qS 2r 1 ;q

~1/4!~r12r22!
z

xyD . ~70b!

To obtain the explicit normalizations forĉ (m) for arbitrary ~m! one can simply use that b
Theorem 1 it is produced by the action of the operator:

„G3~E21!…
m122m11

„G3~C̃!…r2m12
„G3~E32!…

r12m22

on the highest weight state.
J. Math. Phys., Vol. 38, No. 7, July 1997
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VI. OUTLOOK

In the present paper our considerations were for genericq since the representation theory
quantum groups is very different forq a root of unity, while our results here seem to be new a
for the classical case withq51. In a follow-up paper19 we give explicitly the GWZ description o
the Uq„sl(3)… irregular irreps at roots of unity.~In Ref. 19 we give also references to related wo
in the roots of unity case which we omitted here.! Those are irreps fixed by the same paramet
r 1 and r 2 as here, yet they have dimensions smaller than the classical one@cf. ~8!#, the reason
being that to obtain an irregular irrep we have to make factorization of an additional submo
Though the dimension of the additional submodule to be factored out is known—it is of an
SU~3! irrep of smaller dimension~cf. Ref. 20!—until now it was not clear which GWZ state
decouple from the irrep~except for a couple of simple examples quoted in Ref. 19!. We give an
explicit answer to this question in Ref. 19, where it is presented in an intuitively clear geom
picture.

Another interesting question is the extension of our approach to Uq„sl(n)… for n.3. We have
the starting tool, namely, the lowest weight representations.1 However, things become much mor
complicated since we have to deal withn(n21)/2 variables. Work in this direction is in progres
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APPENDIX A: SOLVING (30) FOR q51

For q51, ~30! is equivalent~looking for polynomial solutions! to

~z~12z!2]z
21~12z!„~m112k21!z1r 12m1111…]z2km11~12z!1m22~11m12!!c̃~z!50.

~A1!

We make the following substitution in~A1!: c̃(z)5(12z)m22f(z). We thus obtain the
following equation forf:

~z~12z!]z
21„~m111m122m222r 121!z1r 12m1111…]z1~m222m11!~m122r 1!!f~z!50.

~A2!

Further we make the change of variablez5(11h)/2, after which~A2! becomes

~~12h2!]h
21„~m122m221m112r 121!h1m122m222m111r 111…]h

1~m222m11!~m122r 1!!f̃~h!50, f̃~h!5c̃„12~11h!… ~A3!

The unique~up to nonzero multiple! polynomial solution of~A3! is given by Ref. 17,~8.964!:

f̃~h!5Pn
~m222m1221,r12m11!~h!,

n5min~m112m22,m122r 1!PZ1 , ~A4!

wherePn
(a,b)(h) is the Jacobi polynomial of Ref. 17,~8.960!:
J. Math. Phys., Vol. 38, No. 7, July 1997
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Pn
~a,b!~h!5

1

2n (
s50

n
G~n1a11!

s!G~n1a112s!

G~n1b11!

~n2s!!G~s1b11!
~h21!n2s~h11!s. ~A5!

Thus the solution of~30! is

c̃~z!5~12z!m22Pn
~a,b!~2z21!. ~A6!

Whena,bPZ ~as is our case! we have

G~n1a11!

s!G~n1a112s!
55 S n1a

s D for s<n1a,

0 for s.n1a>0,

~21!sS s2n2a21
s D for n1a,0;

~A7a!

G~n1b11!

~n2s!!G~s1b11!
55 S n1b

n2sD for s1b>0,

0 for s1b,0<n1b,

~21!n2sS 2s2b21
n2s D for n1b,0.

~A7b!

The middle terms of~A7! indicate that some terms may be missing in the sums in~A4! and~A5!.
In our casen1a5min(m112m1221,m222r 121),0, n1b5min(r12m22,m122m11)>0, and
thus some terms would be missing only whenb5r 12m11,0, namely, these would be the term
with s,m112r 1 . Taking this into account and the relation between the Jacobi polynomial an
hypergeometric function,

Pn
~a,b!~2z21!5

~21!nG~b111n!

n!G~b11! 2F1~2n,a1b111n,b11;z!, ~A8!

we see that~A6! coincides with ~36! for q51 up to the inessential factor (21)nG(b11
1n)/n!, while the important factor 1/G(b11) was taken into account in~36!.
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It is shown that the construction carried out by Carin˜ena and Ibort@J. Math. Phys.
29, 541–545~1988!# involving nonsymplectic actions of Lie groups gives rise to
‘‘true’’ noncentral extensions of the corresponding Lie algebras. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!02407-2#

I. INTRODUCTION

Central extensions of Lie algebras appeared in Classical Mechanics some years befo
importance in Quantum Field Theory were discovered: the Poisson bracket of the mom
maps associated to a symplectic but non Ad*-equivariant action of a Lie groupG furnish a central
extension ofLie(G) ~see Abraham—Marsden1!.

More recently, Carin˜ena–Ibort,2 and later Inamoto,3 carried out a construction of Lie algebr
extensions by studying descent-equations in a symplectic setting. In this way, non central
sions ~for instance the Faddeev–Shatashvili4–Mickelsson5 extension! are also considered in
classical context: they are related to actions of a groupG that do not keep invariant the symplect
form.

In fact, they proved that under a suitable hypothesis, this method gives rise to a nonc
extension with values in a function space, but up to real-valued cochains.

The aim of this paper is to show that these real-valued cochains can be omitted, i.e., th
has a ‘‘true’’ noncentral extension. This will be done in section III.

For the sake of completeness we include a brief summary of the techniques used by Ca˜ena,
Ibort and Inamoto in section II. We conclude with some remarks about the extensions o
algebras obtained by symplectic techniques.

II. A REVIEW OF THE CARIÑENA–IBORT CONSTRUCTION

In this section we consider a symplectic manifold (M,v) and an actionf:G3M→M of a
Lie group G on M. This action is called symplectic if each one of the maps
fg5f(g,•):M→M preserves the symplectic structure@i.e.,fg* (v)5v#. In terms of the infini-
tesimal action this means thatLX̃av50 for all aPLie(G) whereLX̃av is the Lie derivative of the

symplectic form in the direction of the infinitesimal generator of the actionX̃a given by
X̃a(m)5 (d/dt) f(exp(ta),m)ut50 ,;mPM.

Even though symplectic actions have very interesting properties, they are not general e
to deal with all the examples coming from field theory. For this reason, it is also importa
analyze actions that are not necessarily symplectic.

The action ofG onM induces a natural action on the space of smooth functions onM,
C`(M). This action is given by (g• f )(m)5 f (g21

•m). The derivative of that action produces

a!Current address: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003. E
mail: jfernand@math.umass.edu
0022-2488/97/38(7)/3768/4/$10.00
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nontrivial action ofLie(G) onC`(M) by a• f52LX̃af and under such actionC
`(M) becomes

a Lie(G)-module. In general,Lie(G) acts on all differential forms onM in the same way:
a•a52LX̃aa.

The infinitesimal variation ofv under the action ofLie(G) provides a family of 2-forms
$va%aPLie(G) , where

va5a•v52LX̃av. ~1!

This family is the starting point for the descent equation considered in Ref. 2: givenU open inM
the following double complex is defined

V~Lie~G!,U !5 %

p,q>0
Vp,q~Lie~G!,U !,

where Vp,q(Lie(G),U) is the vector space ofp-cochains of Lie(G) with values in
q-differential forms onU.

The two operators,d:Vp,q(Lie(G),U)→Vp,q11(Lie(G),U), the usual exterior differential
andd:Vp,q(Lie(G),U)→Vp11,q(Lie(G),U), the Lie algebra cohomology operator6 of Lie(G)
with values in theLie(G)-moduleVq(U) restricted top-cochains, satisfy thatdd5dd.

The family of 2-forms$va%aPLie(G) defined by~1! yields an elementvPV1,2(Lie(G),M)
and it is clear thatdv50. If U is a contractible open set ofM the fact thatdva50 for all a
PLie(G) implies that there exists a family of 1-forms$aa%aPLie(G) @i.e., aPV1,1(Lie(G),U)#
such thatdaa5va for all aPLie(G).

Now considerlPV2,1(Lie(G),U) given byl5da. Explicitly, one has

l~a,b!5~da!~a,b!5a•ab2b•aa2a [a,b]52 i X̃avb1 i X̃bva1d~ i X̃baa2 i X̃aab!2a [a,b] .

The 1-formsl(a,b) are closed sincedl5dda5dda5dv50. Hence, they are exact~on U!.
Then there existshPV2,0(Lie(G),U) such thatdh5l.

Now let us assume that the symplectic formv can be written asv5v i1Dv wherev i is a
symplectic form onM such that the action ofG on (M,v i) is symplectic, andDv is a closed
form ~not necessarily nondegenerate!. In this case the variation ofv under the action ofG is the
variation ofDv, LX̃av5LX̃aDv.

Since the action ofG on (M,v i) is symplectic one has a well defined momentum m
J:M→Lie(G)* given by ^J(m),a&5Ja(m) where, for allaPLie(G), Ja :M→R is such that
dJa5 i X̃av i .

Given fPC`(M) its Hamiltonian vector fieldXf satisfies the equalityd f5 i Xfv. So,
C`(M) becomes a Lie algebra with the Lie bracket given by$ f ,g%5v(Xf ,Xg).

Let DXa denote the vector fieldX̃a2XJa
for all aPLie(G).

Under the additional assumptionv(DXa ,DXb)50;a,bPLie(G), which is fulfilled in the
relevant physical examples, Carin˜ena and Ibort2 prove the following theorem.

Theorem: Let ~M,v! be a symplectic manifold andG a Lie group that acts onM.
Assuming all the hypotheses stated above, one has that

d$Ja ,Jb%2dJ[a,b]5l~a,b! ,

wherel is the previously defined 2-cocycle. After integration,

$Ja ,Jb%2J[a,b]5h~a,b!1c~a,b!, ~2!

wherec(a,b) are integration constants that only depend ona andb.
J. Math. Phys., Vol. 38, No. 7, July 1997
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This result will be improved in the next section by showing that theJa’s in ~2! yield an
extension ofLie(G) associated to a canonical 2-cocycle.

III. THE CANONICAL 2-COCYCLE AND ITS ASSOCIATED EXTENSION

The canonical 2-cocycle onLie(G) with values in theLie(G)-moduleC`(M) given by

V~a,b!5v~X̃b ,X̃a),

is naturally obtained from the action ofG on ~M,v!.
Proposition:With the same notations as above, we have

$Ja ,Jb%2J[a,b]5V~a,b!1~dJ!~a,b!.

Proof:

$Ja ,Jb%5v~XJa
,XJb

!5v~X̃a ,X̃b!2v~X̃a ,DXb!2v~DXa ,X̃b)

5v~X̃a ,X̃b!1v~DXb ,X̃a!2v~DXa ,X̃b!

5v~X̃a ,X̃b!1Dv~X̃b ,X̃a!2Dv~X̃a ,X̃b!5v~X̃a ,X̃b!22Dv~X̃a ,X̃b!.

On the other hand,

~dJ!~a,b!5a•Jb2b•Ja2J[a,b]52LX̃aJb1LX̃bJa2J[a,b]52dJb~X̃a!1dJa~X̃b!2J[a,b]

52v i~X̃b ,X̃a!1v i~X̃a ,X̃b!2J[a,b]52v i~X̃a ,X̃b!2J[a,b] .

So,J[a,b]52v i(X̃a ,X̃b)2(dJ)(a,b). Then, we conclude that

$Ja ,Jb%2J[a,b]5v~X̃a ,X̃b!22Dv~X̃a ,X̃b!22v i~X̃a ,X̃b!1~dJ!~a,b!

5V~a,b!1~dJ!~a,b!,

as we wanted. h

From the previous formula we can deduce the following
Proposition:If we takeaa52 iDXav2dJa,;aPLie(G) in the descent equation, then we c

chooseh(a,b)5V(a,b).
Proof:

daa5d~2 iDXav2dJa!52diDXav52diX̃aDv52LX̃aDv52LX̃av5va .

If we takeaa852 iDXav ~as in the last proof! we getd$Ja ,Jb%2dJ[a,b]5(da8)(a,b). Now we
can combine the last expression with the previous proposition:

dV~a,b!1d~dJ!~a,b!5~da8!~a,b!,

so thatdV(a,b)5(da)(a,b) as we wanted. h

It is worth mentioning that for cochains taking values in a function space,J[a,b] is not a
coboundary as it is when the cochains areR-valued.

This general framework encompasses the Mickelsson-Faddeev extension appea
Quantum Field Theory, as it is shown by Inamoto.3 In this case, one can see that the 2-cocy
J. Math. Phys., Vol. 38, No. 7, July 1997
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on Lie(G ) ~where G is the group of gauge transformations! defined by h(a,b)
5 1/24p *S3tr (A@da,db#) ~see Inamoto3 or Pressley and Segal7! with values in a function space
corresponds to the canonical 2-cocycleV(a,b)5v(Xb ,Xa).

Remark:The hypothesisv(DXa ,DXb)50 is trivially satisfied if the action of the Lie group
G is symplectic~just takev5v i!. In this case, the procedure described above gives rise
central extension and it is easy to see that it corresponds to the one defined by the Poisson
of the momentum maps.

So, given an action of a Lie groupG on a symplectic manifold~M,v! satisfying
v(DXa ,DXb)50 as before, the type of the resulting extension is determined by the behav
the symplectic formv under the action ofG.

~1! If v5du ~i.e., the symplectic form is exact! and the action ofG leavesu invariant, then the
extension is trivial.1

~2! If the action ofG leavesv invariant ~but not necessarilyu!, then the extension is central.1

~3! If the action is not symplectic, the extension turns out to be noncentral in general.
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The perturbed Korteweg–de Vries equation considered
anew

E. Mann
Max-Planck-Institut fu¨r Metallforschung, P.O. Box 800665, D-70506 Stuttgart, Germany

~Received 24 June 1996; accepted for publication 14 March 1997!

The perturbed Korteweg–de Vries equation is studied in a new way by a Green’s
function formalism without use of inverse scattering methods. The Green’s func-
tion is determined by employing the Ba¨cklund transformation and Green’s theorem.
After a thorough analysis of the exact first-order solution with regard to secular
terms, a two-time scale expansion leads to the adiabatic approximation and the
first-order correction, in accordance with the results of Karpman and Maslov. Con-
trary to statements in the literature, the term tanh2 z in the expression for the
modified phase of the perturbed soliton arises as a consequence of the systemati-
cally conducted first-order perturbation theory. ©1997 American Institute of
Physics.@S0022-2488~97!00507-0#

I. INTRODUCTION

After the discovery of the Korteweg–de Vries~KdV! equation 100 years ago, it took about 8
years until the effects of weak perturbations on the solutions of the KdV equation were st
This had become possible only after the methods of inverse scattering theory had
established.1 Thus, the pioneering work on the perturbed KdV equation is largely based o
inverse scattering theory.2–5 Though being a strong mathematical tool, the inverse scatte
theory is rather involved and not easily accessible. So other, more familiar or simpler me
would be desirable. A direct perturbation method by Kodama and Ablowitz6 was based on the
assumption of quasistationarity and could not lead to the exact first-order result. Rec
Herman7 proposed a direct approach that is able to give exact results but that also cannot di
with inverse scattering methods.

Here we shall present a direct and simple approach that is free from any inverse sca
methods. Rather, we shall employ~which in a sense is equivalent8! the Bäcklund transformation
for solutions of the KdV equation9 and otherwise use only standard methods. Our approac
based on a Green’s function formulation for the solution of the perturbed KdV equation linea
about the unperturbed solution. For an exact first-order solution the Green’s function is exp
in a set of basis functions that are solutions of the homogeneous linearized equation and t
obtained with the aid of the Ba¨cklund transformation. The expansion coefficients are determ
by a final condition on the Green’s function. This problem may be solved through a p
combination of Ba¨cklund transformations, in correspondence with a former procedure for
turbed one-soliton solutions of the sine-Gordon equation.10 We prefer, however, a novel approac
that consists in utilizing Green’s theorem and that has successfully been applied to multis
solutions of the perturbed sine-Gordon equation11 and seems equally well to be applicable to ma
other perturbed soliton equations.

Our exact first-order result can be improved in the sense that possible secular ter
avoided. This is done by adopting a two-time scale perturbation expansion and demanding
terms to vanish, which leads to the known adiabatic approximation. Moreover, a clear stat
upon the continuous part of the solution can be made that is not to be found in the literatur
most important result of the present systematic procedure will be that it throws a clarifying
on the additional term tanh2 z in the expression for the perturbed soliton velocity, which has b
the object of a long-lasting discussion in the literature.4,7,12–14
0022-2488/97/38(7)/3772/14/$10.00
3772 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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II. THE GREEN’S FUNCTION FORMALISM

We take the unperturbed KdV equation in the form

ut16uux1uxxx50, ~2.1!

and consider the unperturbed one-soliton solution,

u052h2 sech2 z, z5h~x24h2t2x0!, ~2.2!

whereh andx0 denote two parameters. With a perturbation termeF(x,t),ueu!1, the perturbed
KdV equation reads as

ut16uux1uxxx5eF. ~2.3!

We look for a solution in the neighborhood ofu0 , and with the ansatz

u5u01ev, ~2.4!

we get in first order the linear equation

Lv[v t16~u0v !x1vxxx5F, ~2.5!

where we have introduced the linear operatorL.
The inhomogeneous equation~2.5! is formally solved by a Green’s functionG(x,t;x8,t8)

defined by

LG5d~x2x8!d~ t2t8!, ~2.6!

and a particular solution of~2.5! may then be expressed as

v5E
0

`

dt8E
2`

1`

dx8 G~x,t;x8,t8!F~x8,t8!, ~2.7!

which is easily verified by formingLv. Here v and G shall satisfy homogeneous bounda
conditions~v5G50 for x56`!. Because of the causality condition,15 G should be zero fort8
. t. This is achieved by the ansatz

G5G0~x,t;x8,t8!H~ t2t8!, ~2.8!

whereH(t) designates the step function,H(t)51 for t.0, H(t)50 for t,0. With ~2.8! the
solutionv becomes

v5E
0

t

dt8E
2`

`

dx8 G0~x,t;x8,t8!F~x8,t8!. ~2.9!

This solution fulfills the initial conditionv50 for t50. A derivation of ~2.9! employing the
adjoint Green’s function is given in Appendix C. Inserting~2.9! into ~2.5! gives

E
2`

1`

dx8 G0~x,t;x8,t !F~x8,t !1E
0

t

dt8E
2`

1`

dx8 LG0F~x8,t8!5F~x,t !.

This equation is identically satisfied by assuming thatG0 is a solution of the homogeneou
equation
J. Math. Phys., Vol. 38, No. 7, July 1997
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LG0~x,t;x8,t8!50, ~2.10a!

and obeys the final condition

G0~x,t;x8,t8!u t85t5d~x2x8!. ~2.10b!

Equations~2.10! define a final-value problem for the Green’s functionG0.
It should be noted that the above formalism is valid for all linear partial differential equa

with only the first time derivative. Therefore, many other perturbed soliton equations ma
handled along similar lines. As an example with the second time derivative, the perturbed
Gordon equation has been investigated in Ref. 11.

III. DETERMINATION OF THE GREEN’S FUNCTION G0

A. Solution of the homogeneous equation. Ba ¨cklund transformation

In order to solve the final-value problem~2.10! for G0, we have first to find the genera
solution ~satisfying appropriate boundary conditions! of the homogeneous equation

Lw[w t16~u0w!x1wxxx50, ~3.1!

which we write as a linear combination of discrete and continuous basis functions,

w5(
m

Amwm1E
2`

1`

dk A~k!wk . ~3.2!

Since Eq.~3.1! results from the unperturbed KdV equation~2.1! through a variation in the neigh
borhood ofu0 , we may calculate the solution~3.2! by first looking for the general solutionu of
~2.1! in the neighborhood ofu0 and then differentiatingu with respect to the parameters atu
5u0 . The discrete functionswm are obtained at once by differentiatingu0 of ~2.2! with respect to
the parametersx0 andh @the constant factors in~3.3! are chosen for convenience#,

w1522h tanhz sech2 z, w252h@sech2 z2~z28h3t !tanhz sech2 z#. ~3.3!

In order to find the continuous solutionwk , we utilize the Ba¨cklund transformation.9,8 There
is no direct relationship for the solutionsu of the KdV equation~2.1!, but only for the solutions
w of the ‘‘potential’’ KdV ~PKdV! equation16

wt13~wx!
21wxxx50. ~3.4!

This is not a soliton equation by itself, but the functionswx 5 u satisfy the KdV equation, as is
easily seen by differentiating~3.4! with respect tox. For a given solutionw8 of Eq. ~3.4! another
solutionw ~with parameterh! is related by the Ba¨cklund transformation

Sw1w8

2 D
x

5h22Sw2w8

2 D 2. ~3.5!

With the trivial solutionw850 follows from ~3.5! and ~3.4! as a bounded, exact solution,w
5w052h tanhz or u5u05w0x52h2 sech2 z, i.e., the pure solitonu0 , with z as in ~2.2!. If
w8 is nonzero but small,w85O(e),ueu!1, Eq. ~3.4! reduces towt81wxxx8 50, and a bounded
solution is w85C exp@i(kx1k3t)#, with k a real parameter. With the ansatzw5w01w̄,
w̄5O(e), the Bäcklund transformation~3.5! then reduces to
J. Math. Phys., Vol. 38, No. 7, July 1997
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w̄x1w0w̄5w0w82wx8 , ~3.6!

with the particular solution

w̄5C
~2h tanhz2 ik !2

4h21k2
ei ~kx1k3t !, ~3.7!

which also satisfies Eq.~3.4! linearized aboutw5w0 . This means that, foruCu!1, u5u01w̄x is
a solution of ~2.1! in the neighborhood ofu0 , and the continuous function becomeswk

5(]/]C)w̄x5w̄x /C. The general solutionw ~3.2!, bounded in2`,x,1`, may thus be written
as

w5A1w11A2w21
]

]x E2`

1`

dk A~k!
~2h tanhz2 ik !2

4h21k2
ei ~kx1k3t !. ~3.8!

B. Determination of the coefficients

With the homogeneous solution~3.8! we have found a general representation for the Gree
functionG0 satisfying~2.10a!. The coefficients are to be determined through the final condi
~2.10b!. Since for the present there are no orthogonality relations for the basis functions in~3.8! at
our disposal~if we will not borrow from inverse scattering theory!, we have to look for other
methods. We shall present two methods. One of these consists in an appropriate combina
Bäcklund transformations. Denoting Eq.~3.6! by ~* ! and forming (* )xx1w0(* )x , leads to

~]xx14h tanhz ]x14h2!wk5~4h2wx82wxxx8 !C21. ~3.9!

The discrete functionsw1,w2 make the left-hand side of~3.9! vanish. Therefore we may insert th
full expression~3.8! for w and get

wxx14h tanhz wx14h2w5E
2`

1`

dk A~k!ik~4h21k2!ei ~kx1k3t !. ~3.10!

This combination ofw and its derivatives is distinguished by the fact that the right-hand side
function of x arises as a Fourier transform. Here we can apply the final condition~2.10b! by
settingw5G05d(x2x8) for t5t8; then the coefficientA(k) is easily obtained by a Fourie
transformation. With knownA(k), condition ~2.10b! can be applied to Eq.~3.8!, and A1 ,A2

follow from a comparison of coefficients. This procedure corresponds to the one employe
merly to kink and breather solutions of the perturbed sine-Gordon equation.10,17,18

We prefer to disclose an alternative approach in detail that is more concise and gener
the first method. It has recently been applied to perturbed sine-Gordon solitons11 and should
equally well be applicable to other perturbed soliton equations. This approach rests on th
ployment of Green’s theorem in its general form,15

uLv2vL̃u5divergence, ~3.11!

whereu, v are any two functions,L a linear operator, andL̃ its adjoint. Starting from the linea
equation~3.1!, Lw50, the adjoint equation becomes

L̃c[2~c t16u0cx1cxxx!50. ~3.12!
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a

3776 E. Mann: The perturbed KdV equation

¬¬¬¬¬¬¬¬¬¬
Differentiating ~3.12! with respect tox and comparing it with~3.1!, we recognize thatcx5w.
Equation~3.12!, i.e., the adjoint linearized KdV equation, is the same as the PKdV equation~3.4!
linearized aboutw5w0 ~with w0x5u0!. In correspondence with the expression~3.8! the basis
functions ofc then are~with c ix5w i!

c15sech2 z, c25tanhz1~z28h3t !sech2 z, ck5
~2h tanhz2 ik !2

4h21k2
ei ~kx1k3t !.

~3.13!

We now turn to the final-value problem~2.10! for the Green’s functionG0 and represent
G0 through the expansion

G0~x,t;x8,t8!5(
i
Ai~x8,t8!w i~x,t !, ~3.14!

where the indexi designates both discrete (i51,2) and continuous (i5k) states. The condition
~2.10b! then becomes fort5t8

d~x2x8!5(
i
Ai~x8,t8!w i~x,t8!. ~3.15!

Multiplying ~3.15! by c j* (x,t8) and integrating overx yields

c j* ~x8,t8!5(
i
Ai~x8,t8!Mi j ~ t8!, Mi j ~ t !5E

2`

1`

dx w i~x,t !c j* ~x,t !. ~3.16!

Green’s theorem~3.11! for the functionsw i , c j* with Lw i 5 0 andL̃c j 5 0 reads as

05c j* Lw i2w i L̃c j*5
]

]t
~w ic j* !1

]

]x
@6u0w ic j*1w ixxc j*1w ic jxx* 2w ixc jx* #. ~3.17!

Integration overx provides a relationship for the elementsMi j ,

d

dt
M i j ~ t !52@w ixxc j*1w ic jxx* 2w ixc jx* #ux52`

x51` . ~3.18!

By means of the right-hand side expressions the elementsMi j are simply computed~see Appendix
A!. The nonzero elements areM2152M1252, Mk2 , as given in Eq. ~A5!, and Mkk8
52p ikd(k2k8). The system~3.16! for Ai now becomes an algebraic system,

c1* ~x8,t8!52A2 , ~3.19a!

c2* ~x8,t8!522A11E
2`

1`

dk AkMk2 , ~3.19b!

ck* ~x8,t8!5E
2`

1`

dk8 Ak82p ikd~k2k8!52p ikAk . ~3.19c!

SinceAk turns out to be;k21, the integral in~3.19b! may for the present be assumed as
principal-value integral, and thereby vanishes. With the coefficientsAi now determined the
Green’s function can, according to~3.14!, be written as, withz5h(x24h2t2x0),
J. Math. Phys., Vol. 38, No. 7, July 1997
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G0~x,t;x8,t8!52
1

2
w1~x,t !c2* ~x8,t8!1

1

2
w2~x,t !c1* ~x8,t8!1E

2`

1` dk

2p ik
wk~x,t !ck* ~x8,t8!

5h
tanhz

cosh2 z S tanhz81
z828h3t8

cosh2 z8 D1h
12~z28h3t !tanhz

cosh2 z

1

cosh2 z8

1PE
2`

1`

dk
]

]x

~2h tanhz2 ik !2~2h tanhz81 ik !2

2p ik~4h21k2!2
eik~x2x8!1 ik3~ t2t8!, ~3.20!

where the integral is to be understood as a principal-value integral, denoted by the symbolP. As
shown in Appendix C,G0 satisfies homogeneous boundary conditions.

If the integration in~3.20! near the pole atk 5 0 is to be performed in the complex plane abo
or below the pole, the factorP(1/k) is formally to be replaced by~with «.0, u«u→0!

P
1

k
5

1

k6 i«
6 ipd~k!, ~3.21!

whereby as a consequence of thed function the additional term6h tanhzsech2 z tanh2 z8 arises.
On the other hand, if we assume from~3.19c! from the beginningAk;(k6 i«)21, the integral in
~3.19b! becomes, with~A5!,

1

2p i E2`

1`

dk
1

k6 i«
ck* ~x8,t8!Mk257tanh2 z8. ~3.22!

As a result, the same additional term inG0 arises. Thus we conclude that, whatever derivation
choose, the Green’s function may also be written as

G0~x,t;x8,t8!5h
tanhz

cosh2 z S tanhz86tanh2 z81
z828h3t8

cosh2 z8 D1h
12~z28h3t !tanhz

cosh2 z

1

cosh2 z8

1E
2`

1` dk

k6 i«

]

]x

~2h tanhz2 ik !2~2h tanhz81 ik !2

2p i ~4h21k2!2
eik~x2x8!1 ik3~ t2t8!.

~3.23!

This means that the magnitude of the discrete terms depends on how the integration
continuous term near the pole atk50 is performed. The same result is obtained by applying
first method mentioned at the beginning of Sec. III B.

We complete this section with three comments. First, it is easily shown thatG0 may also be
represented as a single contour integral,

G0~x,t;x8,t8!5E
C
dk

]

]x

~2h tanhz2 ik !2~2h tanhz81 ik !2

2p ik~4h21k2!2
eik~x2x8!1 ik3~ t2t8!, ~3.24!

where the contourC extends in the complexk plane fromk52` to k51` either above all
singularities (k 5 0,6 2h i ) or below all singularities.

Second, according to condition~2.10b! and expression~3.20!, the relation

d~x2x8!52
1

2
w1~x,t !c2* ~x8,t !1

1

2
w2~x,t !c1* ~x8,t !1E

2`

1` dk

2p ik
wk~x,t !ck* ~x8,t !

~3.25!
J. Math. Phys., Vol. 38, No. 7, July 1997
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must hold. This is easily verified. The relation~3.25! may be interpreted as a ‘‘closure relation’’,19

showing the completeness of our set of basis functions. Employing the complex integration
~3.24!, the right-hand side of~3.25! can also be written as a single contour integral.

Third, in Appendix C it is shown that the adjoint Green’s functionG̃0 defined in~C2! is
related to the ordinary Green’s functionG0 by G̃0(x,t;x8,t8)5G0(x8,t8;x,t). Analogous to
~2.10! the relations~C2! imply L̃G̃050 andG̃0u t85t5d(x2x8). Therefore we could also hav
expandedG̃05( iBi(x8,t8)c i* (x,t) and proceeded correspondingly as in the present section.
results are, as is to be expected, in accordance with the results given in~3.20!–~3.25!.

IV. MODIFIED PERTURBATION THEORY. ADIABATIC APPROXIMATION

Equation~2.9! with the Green’s function~3.20! or ~3.23! gives the perturbed soliton solutio
in a strict first-order approximation. As is generally known, thet integration may lead to ‘‘secu
lar’’ terms, that is, to unphysical terms growing linearly or even stronger with timet. For per-
turbed soliton equations methods have been developed to avoid such secular terms. We sha
the two-time scale approach, as did others before.20,21,6,7,11This procedure introduces some sort
nonlinearity ine, which most authors have taken into account in advance~adiabatic approxima-
tion!, but our way of first establishing the pure first-order approximation and then admitting
modifications seems to us more transparent and instructive.

Instead of the ‘‘naive’’ ansatz~2.4! for the perturbed soliton solution we now make the mo
physical ansatz,

u5û01e v̂, ~4.1!

with û0 denoting the unperturbed solution~2.2!, where, however, the parametersh and x0 are
allowed to modulate with the slow timet5et. It is convenient, though not necessary, to write t
product with the fast timet, 4h2t, as an integral, so thatz is to be replaced by

ẑ5h~t!@x24T~ t !2x0~t!#, T~ t !5E
0

t

h2~et8!dt8. ~4.2!

The dependences upont will be determined later by proper conditions. The terme v̂ stands for an
additional first-order correction.

Inserting the ansatz~4.1! into the perturbed KdV equation~2.3! and noting thatut5]u/]t
1e ]u/]t, we obtain for the terms linear ine,

v̂ t16~ û0v̂ !x1 v̂xxx5F2F1 , F15
]û0
]t

. ~4.3!

Here a term2F1 arises that may be interpreted as an additional force. The initial conditiou
5u0 for t50 also meansv̂50 for t50. Therefore the solution of~4.3! may, according to~2.9!,
be written as

v̂5E
0

t

dt8E
2`

1`

dx8 Ĝ0~x,t;x8,t8!~F82F18!, ~4.4!

where the primes indicate primed coordinates. Here we have introduced the Green’s fu
Ĝ0 that is formulated in the basis functions with modulating parameters, to be denoted withŵ i and
ĉ i . This is not the exact Green’s function for the equation~4.3! but a correct approximation in th
leading order ofe.

For the Green’s functionG0 we had obtained two equivalent expressions, Eqs.~3.20! and
~3.23!, with different partitions between the discrete part and the continuous part. We may
J. Math. Phys., Vol. 38, No. 7, July 1997
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prise the three possible cases into one expression by writing the additional term in the discre
ass tanh2 z8 and the relevant factor in the continuous part as (k1s i«)21, where«.0, u«u!1.
The three cases are distinguished bys511, 0, or21. WritingG05Gd

01Gc
0, we assume that only

the discrete partGd
0 and not the continuous partGc

0 would lead to secular terms~for arbitraryh
andx0!. This question is examined in Appendix B, with the result that in the neighborhood o
soliton ~which is relevant for the adiabatic approximation! only the integral term withs511 is
free from secular terms. Therefore we have to take the1 sign in ~3.23!.

As a condition for avoiding secular terms we now demand that the discrete part of~4.4! be
zero,

v̂d[E
0

t

dt8E
2`

`

dx8 Ĝd
0~x,t;x8,t8!~F82F18!50. ~4.5!

This condition determines the functionsh~t!, x0(t). SinceĜd
0 is expressed in the discrete bas

functionsŵ i as

Ĝd
052 1

2ŵ1~ ĉ281tanh2 ẑ8!1 1
2ŵ2ĉ18 , ~4.6!

and condition~4.5! should hold for allx,t, we obtain the two conditions

E
2`

1`

dx ĉ1~F2F1!50, E
2`

1`

dx~ ĉ21tanh2 ẑ!~F2F1!50. ~4.7!

The termF1 may be written as

F15
]û0
]t

52~ ŵ218hTŵ1!
dh

dt
22h2ŵ1

dx0
dt

. ~4.8!

Since the relationships for the integralsMi j in Appendix A hold further on, it follows with
tanh2 ẑ512ĉ1,

E
2`

1`

dx tanh2 ẑ F152
dh

dt S E
2`

1`

dx
]

]x
ĉ222D 50. ~4.9!

The relations~4.7! then become

E
2`

1`

dx ĉ1F54
dh

dt
, E

2`

1`

dx~ ĉ21tanh2 ẑ!F54S h2
dx0
dt

28hT
dh

dt D ,
or, with ~3.13! and ~4.2!,

dh

dt
5

1

4h E
2`

1`

dẑ sech2 ẑ F, ~4.10a!

dx0
dt

5
1

4h3 E
2`

1`

dẑ~ ẑ sech2 ẑ1tanh ẑ1tanh2 ẑ!F. ~4.10b!

These relations determine the functionsh~t! andx0(t). It is easily seen that in order to obtain th
sole dependence ont, we have to assume that the perturbationF depends onx,t in the combina-
tion z or ẑ only. If, however,F depends on bothz and t, h andx0 will depend ont in a more
general way, and we have to replacedh/dt by e21 dh/dt anddx0 /dt by e21 dx0 /dt.
J. Math. Phys., Vol. 38, No. 7, July 1997
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After the discrete part ofv̂ has been set equal to zero, there is another term in~4.4! containing
the integral*2`

1`dx8 Ĝc
0F18 . The continuous part ofĜ

0 contains, according to~3.20!, the function
ĉk* (x8,t8), F18 is, after ~4.8!, composed ofŵ18 and ŵ28 . As shown in Appendix A, the matrix
elementsM1k andM2k are zero. Therefore the term withĜc

0F18 vanishes. A corresponding state
ment is missing in some former work~e.g., Refs. 7, 20, and 21!.

The total perturbed soliton solution is then given by

u5û01eE
0

t

dt8E
2`

1`

dx8 Ĝc
0~x,t;x8,t8!F~x8,t8!. ~4.11!

The first term is the unperturbed function~2.2!, wherez is to be replaced byẑ, Eq. ~4.2!, and the
parametersh andx0 are allowed to modulate with time according to Eqs.~4.10!. Writing ẑ as ẑ
5h(x2x1), we may write the results~4.10! also in the form

dh

dt
5

e

4h E
2`

1`

dẑ sech2 ẑ F~ ẑ,t !, ~4.12a!

dx1
dt

54h21
e

4h3 E
2`

1`

dẑ~ ẑ sech2 ẑ1tanh ẑ1tanh2 ẑ!F~ ẑ,t !. ~4.12b!

Here F is allowed to depend also explicitly ont. In a slight generalization to the usua
definition,3,4,13we shall call the termû0 with time-dependent parameters according to~4.12! the
adiabatic approximation, too.

The second term in~4.11! reads with the results of Appendix B in caseF5F(z),

evc5eE
2`

1`

dz8E
2`

1`

dk
]

]z

~2h tanhz2 ik !2~2h tanhz81 ik !2

2pk2~4h21k2!3

3eik~z2z8!/h@12eik~4h21k2!t#F~z8!. ~4.13!

Here thek integration is to be performed in the complex plane above the pole atk50, or,
symbolically,k is to be replaced byk1 i«. Instead ofz,z8, we could also have writtenẑ,ẑ8 in
~4.13! since the Green’s function is exact to leading order ine only.

V. DISCUSSION

Our results~4.11!–~4.13! are in full accordance with the results of Karpman and Masl4

derived by a subtle inverse scattering method. For the first-order termevc this can be seen a
follows. Their result~2.23! consists of an integral term and a term proportional to the step func
Q(k0). The integral contains the factor (p2 id)21, d5k0 /k, udu!1, k.0. Fork0,0 the factor
may be written as (p1 i«)21, «.0, and the second term vanishes. Ifk0.0, we may, correspond
ing to our relation~3.21!, write (p2 id)215(p2 i«)215(p1 i«)2112p id(p). The expression
resulting from the term 2p id(p) just compensates the term proportional toQ(k0). Thus, a unique
integral expression results, independent of the sign ofk0 , that in our notation agrees with ou
result~4.13!. The conclusions from this solution, for example on the shelf behind the soliton
therefore the same as those given by Karpman and Maslov.4

Herman7 has obtained similar results by a direct approach but also using some of the to
inverse scattering theory. He uses an expansion in terms of squared eigenfunctions~F1 , L1 , and
F and their adjoints!. The connection between these and our expansion functionsc i and w i

5]xc i is ~with k52l!
J. Math. Phys., Vol. 38, No. 7, July 1997
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c154e28h3tF1 , c25e28h3t~ ihL1248h3tF1!, ck*5
h2 il

h1 il
e28il3tF,

w154e8h3tF1
A , w25e8h3t~2 ihL1

A248h3tF1
A!, wk5

h2 il

h1 il
e8il

3tFA. ~5.1!

It is seen that the functionc2 is, because of the factor 48h3t, not a linear combination~with
constant coefficients! of the quantitiese28h3tL1 ande

28h3tF1 ~a corresponding statement hold
for w2!. Nevertheless, it can be shown that Herman’s expression~39!, with the functions~44!–
~46!, agrees after at8 integration by parts with our result~4.4! with the Green’s function~3.20!.
Using the connections~5.1!, it is easily shown that our matrix elementsMi j of ~3.16! and Appen-
dix A and those given in Eqs.~36!–~38! of Ref. 7 are in concord. Furthermore, inserting t
expressions~5.1! into our relation~3.25!, provides us with the closure relation19 for the squared
eigenfunctions,

d~x2x8!522h i ~F1
AL181L1

AF18!1E
2`

1` dl

2p il S h2 il

h1 il D 2FAF8, ~5.2!

where the unprimed quantities depend on (x,t), the primed ones on (x8,t). Relation~5.2! is not
stated by Herman,7 but is consistent with his equation~28!, if the 2 sign there is corrected into
1 sign and the eigenfunctions are identified with those given explicitly in~A16!–~A29! of Ref. 7
@obviously, in~29!, c2 /f2 should be replaced byf2 /c2 , in ~34!, second term,f2

2 by c2
2, and in

~A14! and~A15!, l2 by lh2#. There are, however, two essential differences to our results. F
Herman does not consider complex integration paths near the pole atk50 ~or l50!. Second, he
assures that the additional term tanh2 ẑ in ~4.10! results from using higher-order terms in th
perturbation analysis. As we have shown, the complex integration is the key for getting the
tanh2 ẑ in a first-order approximation. In another paper,12 Herman has shown by numerical sim
lations of the damped KdV soliton that, indeed, the termd tanh2 ẑ with d51 ~compared to
d521 andd50! in the adiabatic approximation leads to the best agreement with the num
results.

In comparison with the approaches cited above our procedure seems to be more dire
transparent. We have first established the exact first-order solution of the perturbed KdV eq
This has been done in a Green’s function formulation similar to that suggested by Keene
McLaughlin.22 For an expansion in a complete set of basis functions, however, we did no
squared eigenfunctions but the solutions of the homogeneous linearized KdV equation, and
determination of the Green’s function we simply employed Green’s theorem and eleme
integrations instead of intricate inverse scattering methods. The discrete part of our so
contained already the terms tanh2 z8 in question, but the sign~s511,21, or 0! was open. In the
next step we employed a two-time scale perturbation expansion in order to avoid secular
We had to ascertain that only the discrete part and not the continuous part would give
secular terms. This condition determined the factors to be s511. The construction of the
adiabatic approximation then led to the known results with the term1 tanh2 z in the relation for
the time dependence of the phasex0 or x1 . Our systematic procedure thus has shown that the t
in question, which has been the object of a longstanding controversy, can correctly be obtai
making use of first-order perturbation theory only.
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APPENDIX A: MATRIX ELEMENTS BETWEEN BASIS FUNCTIONS

The elementsMi j (t) defined in~3.16! are to be computed from the relation~3.18!,

Ṁ i j ~ t ![
d

dt
Mi j ~ t !52@w ixxc j*1w ic jxx* 2w ixc jx* #x52`

x51` , ~A1!

with the functions given in~3.3! and~3.13!. As is easily seen,Ṁ i j50 if i51 or 2 or j51. In these
cases we have to consider the original integral forMi j in ~3.16!. It follows at once that

M115M2250; ~A2!

M121M2150, M212M1252hE
2`

1`

dx sech2 z54: M2152M1252. ~A3!

It also holds thatM1k1Mk1* 50. The elementM1k reads withck*5 f (z)g(t),

M1k5E
2`

1`

dx w1~z!ck* ~x,t !5
1

h E
2`

1`

dz w1~z! f ~z!g~ t ![Ig~ t !.

Since Ṁ1k50 and ġÞ0 for arbitrary t, it follows that I50. The same arguments hold fo
M2k . Thus

M1k5Mk15M2k50. ~A4!

ForMk2 [ Mk2 1 M2k* , it results that

Mk25ckc2ux52`
x51`5 lim

R→`

2
exp~ ik3t !

4h21k2
@~4h22k2!coskR14hk sin kR#. ~A5!

This expression equals 2 fork 5 0, but when multiplied with a continuous function ofk and
integrated overk, it makes the integral vanish.

For the elementMkk8 , it results from~A1! that

Ṁ kk85 lim
R→`

~22!
k~k21k821kk8!

~4h21k2!~4h21k82!
ei ~k

32k83!t$@~4h22k2!~4h22k82!142h2kk8#

3sin~k2k8!R24h~k2k8!~4h21kk8!cos~k2k8!R%.

An integration of the time factor yields2 i (k32k83)21 exp@i(k32k83)t#1const. With k32k83

5(k2k8)(k21k821kk8), this leads to

Mkk852p ikd~k2k8!. ~A6!

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE PERTURBED SOLUTION

In the first-order approximation the perturbed solutionv is given by Eq.~2.9! with the Green’s
function ~3.20! or ~3.23!. Assuming that the perturbationF(x,t) depends only on the combinatio
z5h(x24h2t2x0), it is easily seen that the discrete terms ofv become secular~proportional to
t or t2!. We wish to investigate the continuous part,
J. Math. Phys., Vol. 38, No. 7, July 1997
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vc5E
0

t

dt8E
2`

1`

dz8E
2`

1`

dk
]

]z

~2h tanhz2 ik !2~2h tanhz81 ik !2

2p ik~4h21k2!2

3eik~z2z8!/heik~4h21k2!~ t2t8!F~z8!. ~B1!

The time-dependent factor may be integrated at once and leads to

vc5E
2`

1`

dz8E
2`

1`

dk
]

]z

~2h tanhz2 ik !2~2h tanhz81 ik !2

2pk2~4h21k2!3

3@eik~z2z8!/h2eik@4h2t1~z2z8!/h#1 ik3t#F~z8!. ~B2!

The first part of~B2! does not explicitly depend ont. If we are interested in the behavior ofvc in
the neighborhood of the soliton~only this is relevant for the adiabatic approximation!, and if also
F(z8) is restricted to the region nearz850 @as would be the case ifF5F$u0(z)%#, then we can
assumeuz2z8u!4h3t for t→`. For the asymptotic expansion of the second part of~B2!, we
employ the method of steepest descents.23 The exponent has a saddle point at

k05 i S 4h21
z2z8

ht D 1/2321/2' i
2h

)

, ~B3!

with steepest descents in the directions parallel to the real axis.@Strictly speaking, the valleys o
steepest descent extend along the asymptotic linesk5ukueiw, w5p/6, and 5p/6, respectively, to
infinity, but a continuation of the contour onto the real axis at infinity does not contribute to
integral.#

Suppose we consider the Green’s function~3.23! with the1 sign, i.e., a contour of integration
that runs slightly above the pole atk50. This contour may, without changing the value of t
integral, be deformed such that it goes through the saddle pointk0 , since there is no singularity in
between. Writing the second part of~B2! with the obvious abbreviationf (k,z,z8) as

vc
~2!52E

2`

1`

dz8 F~z8!
]

]z
J~z,z8,t !, J5E

C0

dk f~k,z,z8!eik@4h2t1~z2z8!/h#1 ik3t, ~B4!

whereC0 designates the contour throughk0 , the asymptotic expansion of the integralJ becomes

J; f ~k0 ,z,z8!Ap~3uk0ut !21/2 exp~22uk0u3t !. ~B5!

This expression vanishes fort→`.
If we had taken the2 sign in ~3.23!, i.e., a contour slightly below the pole atk50, then this

contour is equivalent to the contourC0 defined above plus a closed contour around the poink
50. The latter contour integration in the full expression~B2! would give the contribution

v̄c5E
2`

1`

dz8 F~z8!
]

]z
tanh2 z tanh2 z8•t, ~B6!

that is, a secular term. Consequently, also the principal-value integral in~3.20! would lead to a
secular term. Therefore, in order to avoid secular terms in the continuous partvc , we have to take
the 1 sign in the Green’s function~3.23!. The same arguments hold in the more general c
F5F(z,t).
J. Math. Phys., Vol. 38, No. 7, July 1997
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APPENDIX C: COMPLEMENTARY REMARKS ON GREEN’S FUNCTIONS G AND G̃

In Sec. II we have introduced the ordinary Green’s functionG satisfying an inhomogeneou
equation and a causality condition,

LG~x,t;x8,t8!5d~x2x8!d~ t2t8!, G5G0~x,t;x8,t8!H~ t2t8!, ~C1!

whereL denotes the linear operator defined in~2.5!, andH(t2t8) designates the step function
The adjoint operatorL̃ as given in~3.12! is time reversed.15 The adjoint Green’s functionG̃ then
is defined as

L̃G̃~x,t;x8,t8!5d~x2x8!d~ t2t8!, G̃5G̃0~x,t;x8,t8!H~ t82t !. ~C2!

With ~2.5! and ~3.12! we may form according to Green’s theorem similarly as in~3.17!

G̃Lv2vL̃G̃5
]

]t
~vG̃!1

]

]x
@6u0vG̃1vxxG̃1vG̃xx2vxG̃x#. ~C3!

By integrating this equation overx from 2` to 1` and overt from 0 to`, the first term on the
right-hand side vanishes because ofG̃(x,`;x8,t8)50 and the initial conditionv(x,0)50. The
second term vanishes since the expression in brackets becomes zero forx→6`, as is shown
below. Thus, as follows from~C3!,

v~x8,t8!5E
0

t8
dtE

2`

1`

dx G̃0~x,t;x8,t8!F~x,t !. ~C4!

A comparison with~2.9! suggests that

G̃0~x,t;x8,t8!5G0~x8,t8;x,t !. ~C5!

This can be verified by formingG̃(x,t;x8,t8)LG(x,t;x9,t9)2GL̃G̃ correspondingly to~C3!, with
v replaced byG, and integrating overx and t. The productGG̃ vanishes at the limits oft since
G(x,0;x9,t9)50 andG̃(x,`;x8,t8)50, 0,(t8,t9),`. The second term on the right-hand si
vanishes again~see below!. Therefore

G̃~x9,t9;x8,t8!5G~x8,t8;x9,t9! or G̃0~x9,t9;x8,t8!5G0~x8,t8;x9,t9!,

which confirms~C5!.
As to the asymptotic behavior ofv, G, andG̃, it suffices, because of the relationship~2.7!, to

considerG and G̃. We investigateG0 as given in~3.20! or ~3.24! in the limit x→6`. For
x→2` the method of the stationary phase23 applied to~3.20! gives two saddle points of the
exponent atk56@(x82x)/3(t2t8)#1/2, t2t8.0, and leads to the asymptotic expansion

x→2`: G0~x,t;x8,t8!;
1

Ap
@3~ t2t8!~x82x!#21/4 sinF23 ~x82x!3/2

31/2~ t2t8!1/2
1

p

4 G . ~C6!

For x→1` it is favorable to start from the expression~3.24! and to employ the method o
steepest descents.23 The exponent has a saddle point atk5 i (x2x8)1/2@3(t2t8)#21/2 with steepest
descents in the directions parallel to the real axis. The contourC above all singularities can b
chosen to go through this saddle point. The asymptotic expansion then is
J. Math. Phys., Vol. 38, No. 7, July 1997
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x→1`: G0~x,t;x8,t8!;
1

2Ap
@3~ t2t8!~x2x8!#21/4 expF2

2

3

~x2x8!3/2

31/2~ t2t8!1/2G . ~C7!

Since the saddle points in both cases lie atuku5ux2x8u1/2@3(t2t8)#21/2@u2hu, it would have
been sufficient to consider in~3.20! the asymptotic form of the integral

E
2`

1` dk

2p
eik~x2x8!1 ik3~ t2t8!5@3~ t2t8!#21/3 Ai H x2x8

@3~ t2t8!#1/3J . ~C8!

With the known asymptotic expansions of the Airy function Ai(y), just the expressions~C6! and
~C7! result.

The asymptotic expansions of the adjoint Green’s functionG̃0 follow from the relation~C5!
and are given by interchangingx,t and x8,t8 in the above expressions. Since nowt82t.0,
however, the exponential decrease in~C7! will hold for x→2` and the oscillatory decrease i
~C6! for x→1`. In the expression under consideration, i.e., the terms in brackets in~C3! with
v replaced byG, products of functions or derivatives ofG and G̃ arise. The derivatives of the
oscillatory functions with respect tox would diverge. But since one factor of the products
always exponentially decaying, the expression in brackets becomes zero forx→6`.
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Nonrelativistic conformal groups
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Departamento de Fı´sica Teo´rica, Universidad de Valladolid, E-47011 Valladolid, Spain

A. Rodrı́guez-Marco
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In this work a systematic study of finite-dimensional nonrelativistic conformal
groups is carried out under two complementary points of view. First, the conformal
Killing equation is solved to obtain a whole family of finite-dimensional conformal
algebras corresponding to each of the Galilei and Newton–Hooke kinematical
groups. Some of their algebraic and geometrical properties are studied in a second
step. Among the groups included in these families one can identify, for example,
the contraction of the Minkowski conformal group, the analog for a nonrelativistic
de Sitter space, or the nonextended Schro¨dinger group. ©1997 American Insti-
tute of Physics.@S0022-2488~97!00807-4#

I. INTRODUCTION

In the context of a theory of relativity, a kinematical group is defined as the set o
space–time transformations that can be interpreted as relating inertial reference systems
servers. Therefore, the basic condition for such transformations is that causality must be pre
Technically it is also assumed that a kinematical group is a Lie group whose elements act
whole manifold of space–time events, including among its automorphisms the space an
inversions. In principle, a kinematical group defines the framework where all the physical law
formulated, imposing, for instance, covariance rules on the equations describing interacti
can be said that by choosing it we have a kinematical geometry defined in the space
manifold where the kinematical group acts as group of motions.1 Characteristic elements of th
geometry are the points~physical events!, the~degenerate or nondegenerate! metric that allows us
to define distance between events, the space of lines~free motions!, angles between lines~relative
velocity between motions!, etc.

Some time ago, these kinds of groups were classified and studied by Bacry
Lévy-Leblond.2 They dealt with an algebraic characterization of the kinematical groups by ma
a few additional physical hypotheses, arriving at a splitting in two families: relative-time gr
~containing the Poincare´ and the two de Sitter groups! and absolute-time groups~with the Galilei
and the two Newton–Hooke groups as the most familiar ones!.

We are going to adopt here a more geometrical point of view concerning the absolute
groups, that are linked to a degenerate metric~as opposed to the relative-time groups!. This will
show very helpful in the studying of conformal groups to be developed in the next sections
final objective is to give a characterization of the conformal groups that can be associated to
nonrelativistic kinematics, that is, to the Galilean or Hookian spaces. As far as we know, this
open problem, contrary to the case of the geometries for the nondegenerate metric, w
complete solution is already known.3

The organization of the paper is as follows. We will introduce the nonrelativistic kinem
in the second section, where as a starting point we will supply a geometrical interpretation
Galilei and Newton–Hooke groups. Section III is devoted to an algebraic treatment of the b
ior of the metrics, which equip these space–time manifolds, under different kinds of confo
transformations. There, a basic definition of conformal algebra is given, which must be take
first step in our study. Next, all the solutions to the previous proposal are found, and in thi
0022-2488/97/38(7)/3786/24/$10.00
3786 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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we arrive at a whole family of conformal Lie algebras corresponding to each of the nonrelati
geometries. The members of any of these conformal families, which are labeled by a half-i
numberl , include some well-known finite-dimensional conformal groups formerly discusse
the literature. The following sections are devoted to investigate the properties hold by
conformal algebras: at an algebraic level~semidirect product structure, contractions, and nontriv
extensions! in Sec. IV, and from a geometrical point of view~behavior of the connection an
curvature forms, transformation of angles and inversions! in Sec. V. Finally, some remarks an
conclusions end the paper. Three appendices have been included for the sake of compreh

II. NONRELATIVISTIC KINEMATICAL GROUPS

In this section we shall review some basic facts concerning the Galilei and Newton–H
groups; next we shall look at them as acting on a manifold endowed with an invariant conne
which will be essential. We will see that these nonrelativistic groups correspond to diff
elementary systems in Quantum Mechanics~QM!, while their geometric properties keep importa
differences as well.

A. Galilei and Newton–Hooke groups

The Galilei group is the invariance group of the Newtonian (311) space–time underlying
~nonrelativistic! Classical and Quantum Mechanics. It is a ten-dimensional~10-D! Lie group
whose action on the space–time points (t,x) reads as

g~ t,x![~b,a,v,R!~ t,x!5~ t1b,Rx1vt1a!. ~2.1!

The real parametersb(a) give the time~space! translations,v inertial transformations, andR
stands for 3-D space rotations; the corresponding infinitesimal generators are denoted byH, P, K ,
and J, respectively. The above action immediately supplies us with a differential realizatio
these generators,

H52] t , P52“, K52t“, J52x∧“. ~2.2!

The nonvanishing commutators are

@J, J#5J, @J, P#5P, @J, K #5K , @K , H#5P. ~2.3!

Note that the brackets@A, B#5C, @A ,B#5C, and@A, B#5C mean@Ai , Bj #5e i jkCk ~e i jk is the
totally skewsymmetric tensor!, @Ai , B#5Ci and @Ai , Bj #5d i j C ( i , j ,k51,2,3), respectively.

It is convenient to define an extended Galilei algebra by adding to the above commuta
new non-null one@P, K #5mI, whereI is the central generator associated to the extension
m a real parameter~about extensions see Appendix A!. The projective~or ‘‘up to a factor’’!
representations of the Galilei group that are used to describe physical systems in QM are o
from ‘‘true’’ ~i.e., linear! representations of the extended algebra just defined.

The irreducible representations are associated to elementary systems, which for zero s
characterized by the Schro¨dinger wave equation (\51),

S i ] t1 1

2m
“

2Dc~ t,x!50, ~2.4!

where the massm of the nonrelativistic particle coincides with the extension parameter introdu
earlier ~for a detailed study of the Galilei group we refer the reader to the works
Lévy-Leblond4!.

The Newton–Hooke~NH! group5 describes the kinematical symmetries of a cosmolog
nonrelativistic universe. This group is related to the de Sitter group in the same way as Ga
J. Math. Phys., Vol. 38, No. 7, July 1997
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to Poincare´ group, that is, through a speed contraction limitc→`.2,5,6 As in the Galilei case, we
are dealing with a ten-parameter Lie group whose elements and generators will be denoted
same manner. The action on the space–time manifold is

g~ t,x![~b,a,v,R!~ t,x!5~ t1b,Rx1t sin~ t/t!v1cos~ t/t!a!, ~2.5!

wheret is a characteristic time of the Hooke universe. The remaining parameters have an
gous interpretation~as translations, etc.! to those of the Galilean group. In fact, this action cor
sponds to the oscillating NH group~or NH2! in contrast to the expanding NH group (NH1),
where the trigonometric functions must be substituted by their hyperbolic counterparts. Th
ferential realization~for the oscillating case! takes the form

H52] t , P52cos~ t/t!“, K52t sin~ t/t!“, J52x∧“. ~2.6!

The nonvanishing commutators are

@J, J#5J, @J, P#5P, @J, K #5K , @K , H#5P, @H, P#56
1

t2
K . ~2.7!

The sign1/2 corresponds to the oscillating/expanding case. We shall henceforth introduc
notationV561/t2, keeping the meaning of the sign convention.

The projective representations describing an elementary system of massm in QM is computed
with the help of an extension similar to that of Galilei:@K , P#5mI. The wave equation~spin
zero! of such a system is5

S i ] t1 1

2m
“

22
1

2
mVx2Dc~ t,x!50, ~2.8!

which corresponds to a particle inside a harmonic oscillator potential1
2mVx2 with frequencyv

5AV for V.0; otherwise, it would be a repulsive quadratic potential leading to an imagi
frequency characteristic of a nonperiodic motion.

We will consider together the Galilei and NH kinematical algebras~2.2! and~2.6! by writing
in a unified way their vector fields as follows:

H52]0 , P52C V~x0!“, K52S V~x0!“, J52x∧“, ~2.9!

where the valueV50 is for the Galilei algebra andV.0 or V,0 for the NH algebras of
oscillating NH2, or expanding universe NH1, respectively. ByC V(x

0) andS V(x
0) we denote

the generalized cosinus and sinus functions defined by7

C V~x!5H eA2Vx1e2A2Vx

2
, VÞ0

1, V50
; S V~x!5H eA2Vx2e2A2Vx

2A2V
, VÞ0,

x, V50.

~2.10!

They verifyC V
2 (x)1VS V

2 (x)51, and their derivatives are

dC V~x!

dx
52VS V~x!,

dS V~x!

dx
5C V~x!. ~2.11!

The generalized tangent function is defined asT V(x):5S V(x)/C V(x). Note that whenV.0,
V50 orV,0 we recover the usual trigonometric~elliptic!, parabolic~Galilean!, and hyperbolic
functions, respectively. Other useful algebraic properties, needed later, are
J. Math. Phys., Vol. 38, No. 7, July 1997
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C V~x6y!5C V~x!C V~y!7VS V~x!S V~y!,
~2.12!

S V~x6y!5S V~x!C V~y!6C V~x!S V~y!.

The nonvanishing Lie commutators closed by the vector fields~2.9! take the form

@H, P#5VK , @H, K #52P, @J, P#5P, @J, K #5K , @J, J#5J, ~2.13!

having ~2.3! and ~2.7! as particular cases. It is immediate to check that given two space–
events (t1 ,x1), (t2 ,x2), the time intervalt22t1 is preserved under any Galilean~2.1! or Hookian
~2.5! transformation, so that the past and future do never depend on the observer. Besides
simultaneous events (t,x1), (t,x2) the Euclidean distanceux22x1u is left invariant under the action
of these two groups, which allows for the existence of rigid bodies. However, in spite of
common features, geometrically these two groups are not equivalent; as we will see in th
lowing, they are tight to different types of connection forms.

B. Geometry of nonrelativistic kinematical groups

Let us summarize the properties that a suitable nonrelativistic space–time must incorpor
order to take into account for the special character of time, the 4-D space–timeM , considered as
a standardC` manifold, is assumed to be equipped with a foliation of codimension 1 given
1-forma, and the equationa50 to be satisfied for the tangent fields to the leaves of the foliat
Every leaf is a Riemannian flat space with metricL̃. Although the whole space–time is no
~pseudo!-Riemannian, it is also supposed that the existence of a torsionless affine connectioG on
M , which is compatible with both the degenerate metricL5a ^ a of M and L̃ on each leaf of
M . At least locally, we can takea integrable~i.e., locally exact! and define the time coordinate b
x0 such thata5dx0; we will also take~xi ; i51,2,3! as the local coordinates for each leaf, so w
can write

L5dx0^dx0, L̃5(
i
dxi ^dxi . ~2.14!

Now, within this framework, the absolute-time kinematical groups can be characteriz
follows. It can be shown, in a constructive and straightforward way, that the Galilei and
groups are the only Lie groupsG smoothly acting onM and fulfilling the following properties.

~i! The action ofG on M is transitive. So,M is diffeomorphic toG/G0 , where the Lie
subgroupG0 of G can be identified to the isotropy group of an arbitrary but fixed po
x0 of M .

~ii ! The action ofG onM is effective. This condition is useful to avoid, for instance, the Sta
group, included in Ref. 2 that gives rise to a product of two independent geometric sp

~iii ! Time inversion and parity are inner automorphisms ofG.
~iv! The metricsL andL̃ areG invariant, the second one in each simultaneity leaf, i.e., the t

interval and the Euclidean distance between simultaneous events are preserved.
~v! There exists onM aG-invariant torsionless affine connection.

Properties~i!–~iii ! fix an irreducible~not reducible to lower dimensions! symmetric space,
while the remaining ones endow the space–time manifold with a geometrical structure desc
the absolute-time character.

In the above defined chart (x0,x), the only nonzero coefficients of the invariant connectionG
are ~see Appendix B!

G00
i 5Vxi , ~2.15!
J. Math. Phys., Vol. 38, No. 7, July 1997
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whereV50 for the Galilei group andV.0 or V,0 for the NH groups of oscillating and
expanding universes, respectively. The Ricci tensor can be expressed in any case byR53VL,
while the curvature takes the formk53V.

It is worthy to remark that the equations of the autoparallel curves, in the chart (x0,x), are

d2

ds2
x0~s!50, ~2.16a!

d2

ds2
xi~s!1G00

i S dx0ds D 250, i51,2,3, ~2.16b!

with s the affine parameter. If the autoparallel is not contained in a simultaneity leaf the ph
meaning of Eqs.~2.16! is very clear. Let us choose the time coordinate as the affine param
x05s from ~2.16a!; then,~2.16b! gives the classical trajectory of a unit mass particle under a fo
F5 1

3kx, sinceG00
i 5 1

3kx
i . Note that forV.0 we have the equation of a harmonic oscillator

frequencyAV, which is consistent with the QM version~2.8!. When the autoparallel is containe
in a simultaneity leaf, we get~for the three cases under consideration! straight lines,

x05b, x5vs1a, ~2.17!

where (b,a) is the initial point. These curves can be seen as the flow of the vector fieldP in the
simultaneity leafx05b, i.e., x(s)5exp(sv–P)xux5a , with a the origin point of the curve.

It is easy to check the compatibility between the metrics and the connection that,
infinitesimal level, is expressed by

DXL5DXL̃50, ;XPXG~M !, ~2.18!

where D denotes the corresponding covariant derivative operator~see Appendix B!, and
XG(M ) the set ofC` vector fields onM generated by the transformation groupG.

We can say that the space–time manifolds considered here are equipped with a Ne
Cartan structure in the sense given by Duval8 or Burdet, Duval, and Perrin.9

III. CONFORMAL GALILEI AND NEWTON–HOOKE GROUPS

Let (M ,L) be a~pseudo!-Riemannian manifold~L designs the metric form! andU an open
subset ofM . A C` mappingf:U→M is called conformal if there is aC`(M ) functionl, such
that f*L5lL. Thus, a vector fieldXPX(M ) ~the set ofC` vector fields onM ! generates a
conformal one-parameter local group of transformations of the metric ifLXL5lL, with l
PC`(M ). It can be shown3 that this kind of vector fields closes a finite Lie subalgebra
X(M ) if the dimension ofM is greater than 2~although they may have a noncomplete charact!.
An equivalent definition of conformal mapping is given by requiring angle preservation~the angle
between tangent vectors defined in a standard way through the metricL!.

A well-known example is the family of motion groupsISO(p,q) that act on the homogeneou
spacesM5ISO(p,q)/SO(p,q) diffeomorphic to the pseudo-Euclidean spaceRp1q with metric
signature (p,q). If p1q>3, all the conformal mappings define a Lie group isomorphic
SO(p11,q11) ~but they are notglobal transformations onM ; thus one should speak mor
properly of a local Lie group!. This conformal group can be generated by means of the ‘‘k
matical’’ subgroupISO(p,q), with the help of an inversionI defined by

I~x!5
x

^x,x&
, ~3.1!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where implicitly M is identified with any of its tangent spaces and the quadratic form^,&
is given by the metric formL, i.e., in local coordinateŝ x,y&5Lmnx

myn, x,yPM , m,n
51,2,...,dimM . Recall that the inhomogeneous groupISO(p,q) has a semidirect group structur
as ISO(p,q)5Rp1qsSO(p,q).

For the Galilei and NH space–times there is not such a precise and simple definition
conformal group due to the degeneration of their corresponding principal ‘‘metric’’ formL. The
most general~and at the same time too wide! definition, from our viewpoint, establishes that
C` mappingf:U,M→M is conformal iff*L5lL andf* L̃5l̃L̃, for somel,l̃PC`(M ). A
definition like this has been used, for instance, by Havas and Plebansky10 with some interesting
but partial results as far as the kinematical groups are concerned. In other words, the p
arises when one tries to distinguish between genuine Galilei or NH conformal transforma
since metrically they are equivalent. In the next section we will add some conditions to solve
difficulties.

A. The general setup

A direct method to study what we will call Galilean or Hookian conformal groups consis
considering a realization of their Lie algebras as vector fields on the 4-D kinematical space
manifoldM , for the coordinate chart (x0,x) of Sec. II. This will allow us to deal just with loca
transformation groups, avoiding the globalization problems at this stage. We begin by introd
a definition that plays a fundamental role in our approach.

Definition 3.1: A conformal algebra for a Galilei or Newton–Hooke space–time manifold (or
conformal enlargement of the corresponding kinematical Lie algebra) is a real Lie alge
verifying:

(a) it is finite dimensional;
(b) the kinematical algebra is included as a subalgebra;
(c) there exists a realization in the class of Lie vector fields X defined on M such thatXL

5lL and LXL̃5l̃L̃, for l,l̃PC`(M ); and
(d) space and time inversions are involutions of the Lie algebra.

Without any doubt, the most restrictive and arguable requirement in Definition 3.1 con
the finite dimension of the conformal algebra, but there are some reasons to justify that as
tion. So, for instance, as it was said before the conformal algebras for~pseudo!-Riemannian
manifolds of dimension greater than 2 are finite dimensional.3 Thus, in principle, we can keep
closer to the usual formulation if we assume this dimensional limitation, in particular, we e
to get some of these algebras by a contraction from the above-mentioned conformal~pseudo!-
Riemannian algebras.

Our plan is to take this set of algebras as a first step, that will be subsequently ques
along the next sections, through its geometrical interpretation paying special attention
conformal features. Furthermore, they may serve as a helpful guide to formulate correc
infinite-dimensional conformal algebras.

On the other hand, ifg is a finite-dimensional Lie algebra realized by vector fields
X(M ), then, following Palais,11 there will exist a general manifoldM* ~locally isomorphic to
M ! such that the fields ofg can be lifted to complete vector fields onM* , giving rise to a Lie
group of global transformations. We shall have the opportunity to build these manifoldsM* in a
forthcoming work12 for some of the finite-dimensional algebras found in this paper.

By using the former definition we can realize a systematic study of all the Galilean
Hookian conformal algebras. This program will be developed through an introductory le
followed by the two classifying propositions for the Galilei and NH cases. Their proofs
straightforward but quite tedious, so they are just sketched for the sake of brevity.13
J. Math. Phys., Vol. 38, No. 7, July 1997
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We remind the reader that the general problem of classifying finite-dimensional Lie alg
of differential operators is a very classical subject~at least in one or two real or complex variabl
it began with the pioneering work of Lie14!. In this respect we shall later confront the results h
obtained with the list of known algebras as can be found, for instance, in Ref. 15.

We shall start with a Lemma that will lead us directly to the possible conformal solutions
sum convention is used for repeated upper and lower indices.

Lemma 3.2: There are only two possible classes of finite-dimensional conformal algeb
(i) In a Galilean space–time those generated by the1313N vector fields,

H,P,K ,J,A,D,Ds ,cn~x
0!“, n51,2,...,N, ~3.2!

where

A52~x0!2]02ax0x–“, D52x0]02dx–“, Ds52x–“, ~3.3!

a and d are constants, while the rest of vector fields are given by (2.2).
(ii) In a Hookian space–time, the ones generated by the1313N vector fields,

H,P,K ,J,A1 ,A2 ,Ds ,ĉn~x
0!“, n51,2,...,N, ~3.4!

where in this case, H, P, K, J were defined in (2.9), while

A152C a~x0!]02âS a~x0!x–“, A252S a~x0!]01âaC a~x0!x–“, ~3.5!

with a.0 for N 2 , a,0 for N 1 and â is a constant.
There is only a finite number of functions cn(x

0) and ĉn(x
0), and in both cases these function

have a well-defined time parity.
Proof: In the chart (x0,x), an arbitrary vector fieldX5Xm(x)]m (m50,1,2,3) verifiesLXL

5lL andLXL̃5l̃L̃ „l,l̃PC`(M )… if and only if it is a solution of the set of equations:

]0X
0~x!5 1

2l~x!, ] iX
0~x!50, i51,2,3,

~3.6!

] iX
i~x!5 1

2l̃~x!, ] iX
j~x!1] jX

i~x!50, i. j51,2,3.

So, it is obvious that a general conformal field is contained in the module

C`~R!@]0 ,“,J,Ds ,E#,

whereE5x(x–“)2 1
2(x–x)“ generates the conformal transformations in the 3-D Euclidean sp

We can arrive at the conclusion that the conformal algebras are in fact within the moduleR@J#
%C`(R)@]0 ,“,Ds# by simple recurrence on the commutators@ f i(x

0)Ji , f j (x
0)Jj # and

@c(x0)] i ,e(x
0)Ej #5d i j c(x

0)e(x0)Ds1e i jkc(x
0)e(x0)Jk .

Now, it is clear that all the fields having a term of the forma(x0)]0 must generate a finite
dimensional Lie subalgebra including the vector fieldH52]0 , which is the infinitesimal genera
tor of the time translations for the Galilei and NH groups. As is well known, there are only
classes, up to a linear equivalence, of such algebras:^]0 ,x

0]0 ,(x
0)2]0& and

^]0 ,e
A2ax0]0 ,e

2A2ax0]0&[^]0 ,C a(x
0)]0 ,S a(x

0)]0&, for someaÞ0, which are both of them
realizations ofsl(2,R).14,15Hence, we can associate these realizations to the Galilean or Ho
conformal algebras, respectively.

The proof of the proposition is completed by using the explicit form of the fieldsP andK ~on
a Galilei or NH space–time! in the Lie brackets, by including time inversion~Q! and spatial parity
~P! as involutions of the algebra, and by imposing the condition of finite-dimensionality. So
instance, the bracket@d(t)Ds ,K #5@d(t)x–“,S a(x

0)“#52d(t)S a(x
0)“, together with the se-
J. Math. Phys., Vol. 38, No. 7, July 1997
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quence of commutators†d(t)Ds ,...,@d(t)Ds ,K #‡, lead us to the conclusion that$„d(t)…n;;n%
must span a finite-dimensional vector space, so that necessarilyd(t)[const. h

Remark that the Galilean fieldscn(x
0)“ ~as well as the generators of the correspond

kinematical algebra! generate transformations that leave invariant the metric formsL andL̃ ~this
kind of fields are contained in the so-called Coriolis algebra8!. When the only nonisometric
generators are linear combinations of spaceDs and timeDt dilatations we get the similitude
algebras. In Appendix C we are devoted to analyzing briefly such a class of conformal alg

B. Conformal algebras

We will properly call conformal algebras to those that have other nonisometries besid
similitudes. So, the following two propositions hold.

Proposition 3.3: For any fixed positive half-integer l( l5 1
2,1,...) the (1016l )-dimensional

Lie algebras,

^H,J,Ds ,D,Al ,Cn , n50,1,...,2l &, ~3.7!

where

H52] t , J52x∧“, Ds52x–“,

D52x0]02 lx–“, Al52~x0!2]022lx0x–“, Cn52~x0!n“, ~3.8!

are the only Galilei conformal algebras. The nonzero Lie brackets are

@J, J#5J, @J, Cn#5Cn , @Cn , H#5nCn21 ,

@D, H#5H, @Al , H#52D, @Al ,D#5Al ,

@Cn , D#5~n2 l !Cn , @Cn , Ds#52Cn , @Cn , Al #5~n22l !Cn11. ~3.9!

Proof: First, notice that all the kinematical generators are included in~3.7! sinceP[C0 and
K[C1 . Taking into account thatA52(x0)2]02ax0x–“ ~3.3!, it is easy to compute the bracke
@A, Cn#5(a2n)Cn11 . The finite-dimensionality hypothesis implies that, for every Galilei co
formal algebra, there is a positive integerN:52l , such that@A, CN ,#5(a2N)Cn1150, hence
a5N is inferred. In the following we will writeAl5A and denote byG l this l -conformal Galilean
algebra. h

Remark that the space and time inversions act on the vector fieldsD andA as

P:$A,D%→$A,D%, Q:$A,D%→$2A,D%. ~3.10!

The next proposition is devoted to the classification of the NH conformal algebras. We
distinguish two different situations according to the values taken by the parameterl , which plays
a similar role to the previous one of the Galilean case.

Proposition 3.4: The NH conformal algebras are classified in two families according to
values of the parameter l.

~i! For any fixed positive integer l, the (1016l )-dimensional Lie algebras,

^H,J,A1 ,A2 ,Ds ,C0 ,Cn
1 ,Cn

2 ; n51,2...,l &, ~3.11!

where
J. Math. Phys., Vol. 38, No. 7, July 1997
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H52] t , J52x∧“
A152C a~x0!]01a lS a~x0!x–“, A252S a~x0!]02 lC a~x0!x–“,
Cn

152C a~nx0!“, Cn
252S a~nx0!“,

C052“, Ds52x–“,

~3.12!

with a5V ~note thatP[C1
1 andK[C1

2!.
(ii) For any fixed positive half-odd number l the(1016l )-dimensional Lie algebras,

^H,J,A1 ,A2 ,Ds ,Cn
1 ,Cn

2 ; n5 1
2,

3
2,...,~2l11!/2&, ~3.13!

where the vector fields are defined as in (3.12), but nowa54V ~remark that hereP[C1/2
1 and

K[C1/2
2 ).

The nonzero brackets for both cases can be written together as

@J, J#5J, @J, Cn
1#5Cn

1 , @J, Cn
2#5Cn

2 ,

@H, A1#5aA2 , @H, A2#52A1 , @A1 , A2#52H, ~3.14!

@H, Cn
1#5~na!Cn

2 ,@H, Cn
2#52nCn

1 , @Ds , Cn
6#5Cn

6 ,

@A1 , Cn
1#5

a

2
~n2 l !Cn11

2 1
a

2
~n1 l !Cn21

2 ,

@A1 , Cn
2#52 1

2 ~n2 l !Cn11
1 2 1

2 ~n1 l !Cn21
1 ,

@A2 , Cn
6#5 1

2 ~ l2n!Cn11
6 1 1

2 ~n1 l !Cn21
6 . ~3.15!

First of all, in relation with the Lie commutators~3.14! and ~3.15!, it must be kept in mind that
Cn

656C(2n)
6 @see~2.10! and ~3.12!#, and also that forn50, C0 :5C0

15“ andC0
250.

Proof: It is enough to consider the commutators of the translation and boost generatP
52C V(x

0)“ and K52S V(x
0)“, with A1 and A2 , and to impose the finite-dimensiona

requirement. Then, the rest of the generators~3.12!, together with the discretized~integer or
half-odd! numberl are straightforwardly obtained, up to linear equivalence. We will denoteN l

~or N l
V! these families of Hookian conformal algebras. h

To complete the discussion, let us mention that the behavior under conjugation by pari
time inversion reads as

P:$A1 ,A2%→$A1 ,A2%, Q:$A1 ,A2%→$2A1 ,A2%. ~3.16!

The bases for the conformal algebras displayed in Propositions 3.3 and 3.4 will be refer
as ‘‘kinematical’’ since they include among their generators those corresponding to the Gal
NH kinematical algebras. Their vector field realization is expressed in terms of kinematical s
time coordinates; so, they are the most appropriate to study the conformal action inside a
matical frame. However, we shall see later that one can find other bases more useful to exh
similarities between Galilean and Hookian conformal algebras having the samel parameter.

We will end this section with some comments on the relation of the algebras given in P
sitions 3.3 and 3.4 with some other algebras also having a ‘‘conformal character’’ that c
found in the literature. Thel5 1

2 Galilean conformal algebra contains as a Lie subalgebra~by
excluding space dilatations! the invariance algebra of the free Schro¨dinger equation, i.e., the
Schrödinger algebrâ H,P,K ,J,D,A&.16 Similarly, the Hookian conformal algebras include t
invariance algebra of the 3-D isotropic harmonic oscillator~in the oscillating case! and the cor-
J. Math. Phys., Vol. 38, No. 7, July 1997
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responding one of the 3-D repulsive potentialV(x)}2x2 ~in the expanding case!
^H,P,K ,J,A1 ,A2& ~see, for instance, Refs. 16 and 17!. It must be noted that in the origina
works,16,17 these subalgebras were obtained together with a central extension byR, in order to
describe nonrelativistic massive systems. Further reference to this fact will be done later.

The l51 Galilean conformal algebra contains the subalgebra generated by th
$H,P,K ,J,D,A,C%, which is the nonrelativistic limit~see Refs. 10 and 18! of the conformal
algebraso(4,2) for the (113) Minkowski space. However, we have not found any referenc
the correspondingl51 Hookian algebra.

The Galilean similitude algebras described in Appendix C include the finite-dimensiona
algebras of some symmetry groups of the Galilean electromagnetisms; these groups are de
in Ref. 19.

We can compare our classes of conformal algebras with those given in Refs. 14 and 15,
the Lie algebras of vector fields in two complex variables are classified in 24 families. In pa
lar, the Galilean conformal algebras can be directly identified with the class

h245^]x ,]y ,x]x1ry]y ,x]y ,y]y ,x
2]x1rxy]y ,x

2]y ,...,x
r]y ;r>1&,

by taking one space variable~and therefore excluding rotations!. Concerning the Hookian confor
mal algebras, we will prove later that they are equivalent to the Galilean ones by mean
similarity transformation. In spite of this isomorphism at the conformal level, we are going to
them separately because in our study we shall mainly use the underlying kinematical s
which are neither geometrically nor physically equivalent.

IV. ALGEBRAIC PROPERTIES OF NONRELATIVISTIC CONFORMAL ALGEBRAS

Our purpose now is to examine some algebraic properties of the conformal algebras ob
in the last section. We shall focus our attention on three points: semidirect product stru
central extensions, and contractions.

A. Semidirect product structure and related isomorphisms

In this section we shall analyze the abstract structure of the nonrelativistic conformal alg
found in Propositions 3.3 and 3.4 and the ways they are related.

First, let us also recall that the Lie subalgebras^Al ,D,H& and^A1 ,A2 ,H& are isomorphic to
sl(2,R) @see~3.9! and ~3.14!#. On the other hand, the generators of the above-mentioned co
mal algebras are SO~3! scalars or SO~3! vectors. Therefore, the general structure for all the
families of conformal algebras is a semidirect sum,

R3~2l11!*@sl~2,R! % so~3! %R#, ~4.1!

where, for the Galilean case,R3(2l11)5^Cn ;n50,1,...,2l & is an Abelian ideal, sl(2,R)
5^A,D,H&, so(3)5^J&, andR5^Ds&. For the Hookian counterpartsl(2,R)5^A1 ,A2 ,H& and
R3(2l11)5^C0,Cn

6 ;n51,...,1& or ^Cn
6 ;n5 1

2,
3
2,...,l &.

More information is obtained by means of the adjoint representation. So, the restriction

ad~Ds!uR3~2l11![1, ad~Ds!usl~2,R! % so~3! %R[0, ad~so~3!!usl~2,R! %R[0,

imply that the semidirect structure is determined, for eachl , by ad„sl(2,R)…uR3(2l11). Since the
subalgebrasH1[^H,A,D& andH2[^H,A1 ,A2& do not mix the components of the SO~3!
vectors, it will be sufficient to study ad„sl(2,R)… restricted to the subalgebra generated by one
the vector components, for instance, the first one:^Cn

1;n50,1,...,2l & for Galilei or ^C0
1,Cn

16 ;n
51,...,l & (^Cn

16 ;n5 1
2,

3
2,...,l &) for NH.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Next we shall prove that all these (2l11)-dimensionalsl(2,R) representations are irreducible
The sl(2,R) Casimirs for the subalgebrasH1 andH2 are CH1

5D22 1
2(AH1HA) and CH2

5A2
2 1(1/a)(A1

2 2H2). The adjoint representations of these Casimirs act as

ad~CH1
!Cn

15†D, @D, Cn
1#‡2 1

2 †A, @H, Cn
1#‡2 1

2†H, @A, Cn
1#‡5 l ~ l11!Cn

1, 0<n<2l ;

ad~CH2
!Cn

165†A2 , @A2 , Cn
16#‡1

1

a
†A1 , @A1 ,Cn

16#‡2
1

a
†H, @H, Cn

16#‡

5 l ~ l11!Cn
16 , n5a,a11,...,l21,l , a50 or 1

2,

with C0
1:5C0

11 andC0
12 :50.

In conclusion, the adjoint action~restricted to the above-mentioned subspaces! for both Ca-
simirs gives the eigenvaluel ( l11) corresponding to a (2l11)-dimensional representation
Hence, ad„sl(2,R)…uR(2l11) is irreducible for both Galilei and NH conformal algebras, and
discrete series of the finite-dimensional irreducible representations ofsl(2,R) are exhausted when
l50,12,1,

3
2,... . This last result suggests the following isomorphisms of Lie algebras.

Proposition 4.1: For each half-integer l.0, the Galilei and NH l-conformal algebras are
isomorphic by means of the following correspondence between generators (in the order
lished) ofG l andN l :

~H,A,D,Ds ,J,Cn!→S 1

A2a
A11A2 ,

1

A2a
A12A2 ,2

1

A2a
H,Ds ,J,2Cn2 l

1 1A2aCn2 l
2 D ,
~4.2!

with n50,1,...,2l , 2 l<(n2 l )< l , andA2a5A2V(2A2V) for the l integer (half-odd).
Recall thatCm

656C2m
6 @see~3.2! and ~3.15!# andC05C0

1 ; C0
250. The proof consists jus

in a direct evaluation of Lie brackets since, obviously, this mapping generates a linear bije
h

Note that due to the parameterA2a can be imaginary, this isomorphism is guaranteed o
for complexified algebras. However, this is not the only way to realize the isomorphism bet
these algebras; in fact, we will see later another one~using only real Lie algebras!, which is better
for other purposes.

We end the section with a last remark. For any half-integerl the change of coordinates,

u05eA2ax0, u5elA2ax0x, ~4.3!

maps the Hookianl -conformal fields into Galilean ones@expressed in the new (u0,u) variables#,
with the same scheme sketched above. In both cases~oscillating or expanding universe! the
formulas ~4.3! define a local diffeomorphism either betweenR4 andU(1)3R3, or betweenR4

andR13R3.

B. Central extensions with physical meaning

The existence of central extensions byU(1) of the ~universal coverings of! NH and Galilei
conformal groups has a strong physical interest, because they allow the possibility that t
tended groups describe nonrelativistic massive particles. On the other hand, the general pro
building the central extensions of a Lie groupG by U(1) is equivalent~at least locally! to the
search for the central extensions byR of its Lie algebrag. When the group is connected an
simply connected, as is the case for the universal covering groups, Extcentral„G,U(1)…
[Extcentral(g,R). As it is well known, the classification of central extensions, either at the grou
algebra level, is a cohomological problem20,21 ~see Appendix A!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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In our case the algebrasG l andN l are isomorphic~they will be henceforth referred bygl!
and, consequently, they will have the same type of extensions. For all that it is enough to d
the Galilean case. We can profit the semidirect structure ofgl[R3(2l11)*@sl(2,R)% so(3)%R# in
order to getH2(gl ,R). The problem is simplified because one can restrict to one-compo
vectors, i.e.,

H2~gl ,R!5H2~R2l11*„sl~2,R! %R…,R!.

Where the Lie algebraR2l11*„sl(2,R)%R… can be realized, for example, as in the previo
section, in terms of the set of generators$H,Al ,D,Ds ,C0

1[P1,C1
1[K1,...,C2l

1 %. The fact that
sl(2,R) is simple implies that the only representatives of the second cohomology g
H2(R2l11*„sl(2,R)%R…,R) could be 2-cocycles having the formCm

1*∧Cn
1* , but @Ds ,Cn

1#
52Cn

1 avoids by means of~C2! any nonzero 2-cocycle. Hence

H2~gl ,R!5$0%, ; l such that 2lPZ1. ~4.4!

However, it is well known that for the (113) Galilei and NH kinematical algebras it hold
H2(g,R)5R, with a representative cocyclem( iPi*∧Ki* , ~mPR* andPi* ,Ki*Pg* !. As it was
discussed in Sec. II, this nontrivial 2-cocycle describes the mass of a nonrelativistic free-pa4

through the new nonvanishing commutators@Pi , Ki #5mI, with I the new central generator of th
extended algebra associated toR. So, it is interesting to evaluate, for any conformal algebra,
maximal subalgebra containing its corresponding kinematical algebra and allowing for, at
the mass as a central extension.

Let us fix our attention in Galileanl -conformal Lie algebra~the same results apply to th
Hookian algebras!. From the above discussion it is again obvious that for our purposes it su
to consider the central extensions of the subalgebraR2l11*sl(2,R)[^H,Al ,D,C0

1

[P1 ,C1
1ÓK1 ,...,C2l

1 &, excludingDs . The 2-cocycles will beCm
1*∧Cn

1* , but taking into account
condition~C2! for H, Cm

1 , andCn
1 one obtains that the only possible 2-cocycles are those such

m1n52l . Considering once more~C2! but now forAl ,Cm21
1 ,Cn

1, if l. 1
2 it is obtained thatm

52l11, which is not possible. So, we arrive at the following result:

H2
„R2l11*sl~2,R!,R…5H R, if l5 1

2,

$0%, if l51,32,2,... .
~4.5!

For l5 1
2, the second cohomology group is generated by a coset with a representative giv

m( i51
3 Pi*∧Ki* , mPR, henceR6*@sl(2,R)% so(3)# is the maximal subalgebra that we are loo

ing for. It was remarked above that this subalgebra is isomorphic to the Schro¨dinger algebra16,17

for the Galilean case, or to the kinematical invariance Lie algebra of a nonrelativistic particl
quadratic potential with spherical symmetry in the Hookian cases.16,17

When l. 1
2 according to~4.5!, the maximal subalgebra searched is just the correspon

kinematical Lie algebra.

C. Contractions of the NH conformal algebras

The NH kinematical Lie algebras can be contracted in the sense of Ino¨nü–Wigner6 ~with the
sectional curvature of the space–time as the contraction parameter! to the Galilei one. As we have
seen before, the Galilei,G l , and NH,N l , l -conformal algebras are isomorphic, so they canno
related by the same type of contraction. However, we can define a sensible contraction pro
between their differential realizations given in Propositions 3.3 and 3.4.
J. Math. Phys., Vol. 38, No. 7, July 1997
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In order to set up clearly the problem, let us introduce the following notation:XG and
XN (V) will design vector fields inG l andN l , respectively, as displayed in Propositions 3.3 a
3.4. The explicitV-dependence of the NH fields is pointed out because this fact will be rele
in the contraction process.

Definition 4.2: We will say that the Galilean l-conformal algebraG l is a contraction of the
Hookian l-conformal algebraN l if there exists a one-parametric family of linear isomorphis
fV of the underlying linear space V (the same for both algebrasG l andN l ), such that (i) The
isomorphismfV is singular ifV50.
(ii)

lim
V→0

X8~V![ lim
V→0

fV„X
N ~V!…5XG ,

when the conformal generators are realized as vector fields.
~iii ! The Hookian generators X8(V) defined by X8(V)5fV„X

N (V)… close the same commuta
tions that their corresponding Galilean generators XG .

The contraction process is developed in two steps. First, we consider the contraction
commonsl(2,R) subalgebraŝH,A,D& and ^H,A1 ,A2& of G l andN l , respectively.

Lemma 4.3: The vector fields H8(V), A8(V), and D8(V), defined by

H8~V!5
1

2
„H1A1~V!…, A8~V!5

2

a
„H2A1~V!…, D8~V!5A2~V!, ~4.6!

with H, A1(V), and A2(V) Hookian vector fields given in Proposition 3.4, verify the sa
commutation rules than the corresponding Galilean fields H, A, and D of Proposition 3.3 with
a5V (a54V) for the l integer (half-odd). After the limitV→0 we get the above-mentione
Galilean vector fields:

lim
V→0

H8~V!5H, lim
V→0

A8~V!5A, lim
V→0

D8~V!5D.

This lemma is easily proved by a direct computation. h

In order to extend this result to the other conformal generators, observe that a unique g
tor ~up to a constant factor that can be conveniently chosen!, C08(V)5(n50

2l (an
1Cn

11an
2Cn

2) is
defined through the commutator

@H8~V!,C08~V!#50. ~4.7!

In the same way fromC08(V), the other fieldsCn8(V) can be defined by the relations

@A8~V!,Cn8~V!#5~2l2n!Cn118 ~V!, n50,1,...,2l21. ~4.8!

Obviously @A8(V),C2l8 (V)#50. Thus, we can state the following proposition.
Proposition 4.4: The Lie algebra spanned by$J,H8(V),A8(V),D8(V),Ds ,Cn8(V); n

5 0,1,...,2l %,whose generators are defined by (3.12) and (4.6)–(4.8), gives rise to a contraction o
theNH to the Galilei l-conformal algebrâJ,H,A,D,Ds ,Cn ; n50,1,...,2l & in the sense of Defi-
nition 4.2.

We can supply with a closed expression for the generatorsCn8 in space–time coordinates:

Cn8522nC a~x0/2!2l2nS a~x0/2!n“, ~4.9!

with a5V or 4V depending on the integer or half-oddl value, respectively.
The bases forG l andN l depicted in Proposition 4.4 satisfy the same commutation ru

making explicit the isomorphism between the conformal algebras corresponding to the sl
J. Math. Phys., Vol. 38, No. 7, July 1997
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parameter. They will be called ‘‘conformal bases,’’ in the sense that the conformal generator
part necessarily in the definition of any of their elements; in other words, we have los
kinematical track in these generators.

To complete our discussion we shall introduce a change of coordinates such that th
conformal fieldsXi8(V) transform into the corresponding GalileanXi

G as established in Propos
tion 4.4. Let us denote (t,x) the Galilean coordinates used for the vector fields~3.8!, while
(u0,u) will be the coordinates for the Hookian vector fields~3.12!. Then, the following property
holds.

Property 4.5: The Hookian vector fields X8(V) defined by (4.6)–(4.8) in terms of the coor-
dinates (u0,u) become directly the corresponding Galilean fields XG expressed by means o
(t,x) if

t52T a~u0/2!, x5„11aT a
2~u0/2!…lu, ~4.10!

whereT V is the generalized tangent function defined according to (2.10).
It must be remarked that this transformation, when considered globally, is not well define

negativeV values. This implies that although locally isomorphic, the global action of these gr
will manifest differences, in particular in relation with the compactification problems.

V. GEOMETRY OF THE GALILEI AND NH SPACE–TIME MANIFOLDS

In this section we will carry out a study of the action of the conformal groups on t
corresponding space–time manifolds. We will center our attention on three geometrical ele
affine connection and curvature, inversions, and the property of angle invariance under con
transformations.

A. Affine connection and curvature under the conformal group

As we said in Sec. II, the space–time manifoldM can be seen as a symmetric homogene
space of its corresponding kinematical groupG ~in our case Galilei or NH! with degenerate metric
L and a Euclidean metricL̃ in each 3-D simultaneity leaf given in expression~2.14!. It is
equipped with aG-invariant torsionless affine connectionG ~see Ref. 3 and Appendix B!, whose
nonzero coefficients in local coordinates (x0,x) areG00

i 5Vxi . The corresponding Riemann tens
is R5V] i ^dx0^dxi∧dx0 if the exterior product is defined without a normalization factor.

As we have seen before the autoparallel curves,g, of this connection accomplishing th
conditionL(Xg ,Xg)Þ0 ~Xg is the tangent field of the curveg! can be used to describe fre
massive classical particles in a vacuum universe with or without a cosmological constan~the
gravitational field equations would beR23VL50!. Moreover, the autoparallel such th
L(Xg ,Xg)50 could be attached to massless particle trajectories.

It is interesting to evaluate the action of the conformal groups over the connection
curvature ofM , in order to understand the physical meaning of these groups.

Let us start by studying the behavior of the connection under infinitesimal transforma
Consider a vector fieldXPX(M ), and the uniparameter group of local flows,f t, spanned by
X. The Lie derivative of the connection is defined by formula~A3!,

LXGmn
s 5Gma

s ]nX
a1Gan

s ]mX
a2Gmn

a ]aX
s1]mn

2 Xs1X~Gmn
s !. ~5.1!

In particular, whenX5a(x0)]01b(x0)xi] i it can be straightforwardly shown that the on
nonzero Lie derivatives correspond to the connection componentsG00

0 , G00
i , G j0

i , andG0 j
i :

LXG00
0 5ä~x0!, LXG00

j 5„b̈~x0!12Vȧ~x0!…xj , LXG0k
j 5LXGk0

j 5d jkḃ~x0!;
J. Math. Phys., Vol. 38, No. 7, July 1997
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the dot means the derivative with respect tox0. When X5b(x0)] i , we obtain thatLXG00
i

5b̈(x0)1Vb(x0) and zero for the remaining Christoffel symbols. For the special confor
vector fields we get the following nonvanishing results.

~i! Galilei l -conformal algebra~for any half-integerl !:

LAG00
0 522, LAG0i

i 5LAG i0
i 522l ; LC

n
i G00

j 52 j ~ j21!~x0! j22.

~ii ! NH l -conformal algebra:

LA1
G00
0 52aC a~x0!, LA1

G00
j 52~2Va1 la2!xjS a~x0!,

LA1
G j0
j 5LA1

L0 j
j 52a lC a~x0!, LA2

G00
0 52a2S a~x0!,

LA2
G00
j 52~2V1 la2!xjC a~x0!, LA2

G0 j
j 5LA2

G j0
j 52a2lS a~x0!,

LC
n
i1G00

i 52~n1V!C a~nx0!, LC
n
i2G00

i 52~n1V!S a~nx0!.

Recall that a~smooth! mapping between two affine manifolds is a projective equivalence
maps autoparallel curves into autoparallel curves. Let us consider the connection form,W, in the
sense of Cartan,22 i.e., Ws5Gmn

s dxm
^dxn. Thus, a local diffeomorphismf is a projective

equivalence if it exists as a 1-formu such that

f*Ws5Ws1u ^dxs1dxs
^ u. ~5.2!

The infinitesimal version, i.e., in terms of Lie derivatives, of this condition~5.2! shows that
the Galilean and Hookianl -conformal Lie algebras generate a~local! group of projective equiva-
lences if and only ifl5 1

2. From this point of view we obtain again some well-known resul9

which lead us to consider these Lie algebras as kinematical invariance algebras of the Gal
NH space–time manifolds, respectively. These facts were known since a long time ago~see also
Ref. 17!, but here are slightly generalized because we have included a spatial dilatation.

In order to complete this brief study, let us evaluate the Lie derivative of the Riemann t
R ~B10!, of the space–time manifolds. LetX5Xm(x)]m be a vector field ofX(M ), the Lie
derivative ofR with respect toX is

LXR52V] iX
m]m ^dx0^dxi∧dx01V]mX

0] i ^dxm
^dxi∧dx0

1V]mX
i] i ^dx0^dxm∧dx01V]mX

0] i ^dx0^dxi∧dxm.

Only whenX5a(x0)]01b(x0)xi] i the Lie derivative nonvanishes, and we getLXR5ä(x0)R.
Moreover, these fields also satisfyLXL5ä(x0)L, hence we can identifiedä(x0) with the infini-
tesimal conformal factorl.

B. Inversions

It was commented on in Sec. III, just as an example, the fact that the conformal gro
(113) Minkowski space can be obtained with the help of an inversion. Thus, given the Poi´
group,P(113), there is an inversion operatorI(p) ~aZ2 realization!, not defined on the light cone
such that the conformal group is generated byPøI(p)P(I(p))21. In the chart (x0,x), this inversion
can be written as

I~p!~x0,x!5S x0

~x0!22x2
,

x

~x0!22x2D . ~5.3!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Remark thatI(p) is a ~Minkowskian! angle-preserving map.
In this section we are interested in the search for inversions with a similar character, but

underlying ‘‘nonrelativistic’’ space–time manifolds. Yaglom1 introduced one for a Galilean plane
which also was Galilean angle preserving. Here, we will make another proposal for a su
Galilean inversion in a (113)-space–time manifold:

Il
~g!~x0,x!:5S x0

~x0!2
,

x

~x0!2l
D , ~5.4!

for any positive half-integerl . It is obvious thatIl
(g)5(Il

(g))21 and that it is not defined in the 3-D
leaf x050.

Now, let us consider the Lie subalgebras,

hl5 H ^J,H,P,K ,C2 ,...,Cl21&,
^J,H,P,K ,C2 ,...,Cl21/2&,

for 2l even,
for 2l odd, ~5.5!

and

hl85 H ^J,Al ,Cl ,...,C2l&, if 2 l is even,
^J,Al ,Cl11/2,...,C2l&, if 2 l is odd. ~5.6!

By using the explicit expression ofIl
(g) ~5.4!, we can prove thatIl

(g)
hlIl

(g)5hl8 , and it is immediate
to see thathløhl8ø^Ds& spans the Galileil -conformal Lie algebra.

The inversion~5.4! corresponding to the valuel51 can be considered as the contraction
the Minkowskian one~5.3!. This agrees with the fact, previously remarked, that except for sp
dilatations the (l51)-conformal Galilei algebra comes from a contraction of the relativistic co
terpart~we will see later that there are more reasons to exclude the space dilatations as ‘‘gen
conformal transformations!.

In order to obtain NH inversions, we will use the change of coordinatesC shown in~4.10!
that transforms thel -conformal NH space–time into the Galilean one, i.e.,

C~u0,u!5„2T a~u0/2!,@11VT a
2~u0/2!# lu…[~ t,x!.

The Hookian inversionsIl
(h) are built in such a way that the following diagram is commutati

whereMg andMh are, respectively, the Galilei and NH space–time manifolds:

So, Il
(h)5C21+Il

(g)+C. After a few computations we get

Il
~h!~u0,u!5S 2 arcT aS 1

4T V~u0/2! D ,F 11aT a
2~u0/2!

4T a
2~u0/2!1a/4G

l

uD . ~5.7!

This Hookian inversion performs the same kind of transformation relating the analogs of~5.5! and
~5.6! for the l -conformal Hookian fields. To appreciate clearly the meaning of the inver
formula ~5.7!, let us fix for thel integer the representative casesa154 anda2524.

~i! a1 . This case correspond to trigonometric functions: 2T a1
(u0/2)5tan(u0); then ~5.7! is

simplified into
J. Math. Phys., Vol. 38, No. 7, July 1997
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Il
~h!~u0,u!5~p2u0,u!.

Thus, the Hookian time coordinateu0 is associated to a trigonometric angle and the inversio
just a reflection.

~ii ! a2 . Here the time coordinateu0 is interpreted as a hyperbolic angle, while the gene
ized tangent function 2T a2

(u0/2)5tanh(u0). However, the inversion cannot be realized in t
same Hookian space–time@cf. the comments after~4.9!, the inversion being a global transform
tion#; these problems are studied in Ref. 12.

C. Angle preservation and conformal transformations

We have seen~Secs. II B and V A! that there are two kind of autoparallels and correspo
ingly two classes of angles between them. As is well known for massive trajectories, the an
identified with the relative velocity between the two free motions~in other words, it is the
parameter of the boost transformation that maps one trajectory onto the other!. On the other hand
the angle of two massless trajectories is just the Euclidean angle between straight lines i
simultaneity leaf, i.e., a 3-D Euclidean space.

In our framework, instead of this group-theoretical approach, it can also be used an equ
geometrical point of view.

Let us consider the space–time manifoldM , X(M ) and the two symmetric 2-formsL and
L̃ defined in~2.1!. Let g i5„t(s),xi(s)…, i51,2, be two massive autoparallels passing throug
point xPM andXg i

, their corresponding tangent vector fields. Note thatt1(s)5t2(s) due to the
absolute character of time in these spaces. The angle determined by them at this point is
by means of the metricsL and L̃:

Qx~g1 ,g2!5@Lx~Xg1
,Xg1

!L̃x~Xg2
,Xg2

!1Lx~Xg2
,Xg2

!L̃x~Xg1
,Xg1

!

22Lx~Xg1
,Xg2

!L̃x~Xg1
,Xg2

!#1/2/Lx~Xg1
,Xg2

!. ~5.8!

The above expression~5.8! is G invariant and also invariant under reparametrization of the af
parameters. Its explicit value at the pointx5(t,x) is

Qx~g1 ,g2!5A@~ ẋ1!2~ ẋ2!#
2. ~5.9!

In particular, for the Galilean case this formula~5.9! can be rewritten in a coordinate system, su
that dt/ds.0 andt>0 as

Qx~g1 ,g2!5Q~g1 ,g2!5A~ t2x12t1x2!
2/t1t2 ,

i.e., since the motion is uniform, the velocity is constant and it can be evaluated at any
(t,x) of the trajectory.

When we consider two massless autoparallels the above defined angle has no sense
the simultaneity leaft5cnt. is the 3-D Euclidean space and, hence, the massless autoparalle
Euclidean straight lines. In this case it looks pertinent to consider the elliptical angleux(g1 ,g2)
between them. Its definition in terms of the 2-formL̃ is as follows:

cos„ux~g1 ,g2!…5L̃x~Xg1
,Xg2

!/„@L̃x~Xg1
,Xg1

!#1/2@L̃x~Xg2
,Xg2

!#1/2…. ~5.10!

It is easy to show thatux(g1 ,g2) is invariant under the Euclidean group. Obviously, the ang
between arbitrary trajectories~not necessarily autoparallels! crossing at a point are defined b
means of~5.8! or ~5.10!. The second kind of~Newtonian and Galilean! anglesu are preserved by
any of the conformal mappings classified above, because all of them reduce to translati
J. Math. Phys., Vol. 38, No. 7, July 1997
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~spatial! dilatations on every simultaneity leaf. Nevertheless, this is not longer true for the
kind of ~Galilean and Hookian! anglesQ. The following theorem characterizes the conform
transformations onM preserving both angles.

Theorem 5.1: A conformal transformation of the space–time manifold M, i.e., a smooth
mappingf: M→M , such thatf*L5lL andf* L̃5l̃L̃, whereL and L̃ are the metrics above
defined in (2.14) andl, l̃PC`(M ) (see Definition 3.1), is angle preserving if and only ifl
5l̃.

Proof: Let us consider a smooth mappingf: M→M , if x85f(x) andXPX(M ); thenX8
5f*XPX(M ), i.e., X8(x8)5(f*X)(x8) and (f* L̃)x(X,Y)5L̃x8(X8,Y8). If, besides,f is a
conformal mapping (f* L̃)x(X,Y)5l̃(x)L̃x(X,Y). So, L̃x8(X8,Y8)5l̃(x)L̃x(X,Y). Hence
cos„ux8(g18 ,g28)…5cos„ux(g18 ,g28)…, whereg i85f(g i). On the other hand,

Qx8~g18 ,g28!5@Lx8~Xg
18 ,Xg18

!L̃x8~Xg
28
,Xg

28
!1Lx8~Xg

28
,Xg

28
!L̃x8~Xg

18
,Xg

18
!

22Lx8~Xg
18
,Xg

28
!L̃x8~Xg

18
,Xg

28
!#1/2/Lx8~Xg

18
,Xg

28
!

5@l~x!l̃~x!Lx~Xg2
,Xg2

!L̃x~Xg1
,Xg1

!1l~x!l̃~x!Lx~Xg1
,Xg1

!L̃x~Xg2
,Xg2

!

22l~x!l̃~x!Lx~Xg1
,Xg2

!L̃x~Xg1
,Xg2

!#1/2/„l~x!Lx~Xg1
,Xg2

!…

5Al̃~x!

l~x!
Qx~g1 ,g2!. ~5.11!

ThenQx8(g18 ,g28)5Qx(g1 ,g2) iff l(x)5l̃(x). h

Aside from some subalgebras of the similitude algebras~those such that space and tim
dilatations appear in the formDs1Dt!, this condition is held only for the Galilei and NH (l
51)-conformal algebra once excluded theDs generator, i.e., compelling space and time dila
tions to act together via the operatorD. This is easy to see by a simple inspection of Eqs.~3.6!.

We could have expected this result in the Galilean case, since, at it was remarked abo
Galilean (l51)-conformal subalgebra onceDs excluded, is a contraction of the Minkowski con
formal algebra~which is angle preserving!. From a very strict geometrical point of view, onl
these Lie algebras should be considered as ‘‘conformal nonrelativistic algebras.’’ Neverth
since our point of view is oriented toward physical applications, we prefer to keep our
general conventions.

VI. CONCLUSIONS

We have studied the extension of the conformal group concept to the Galilean and Ho
space–times, that is, to non-Riemannian spaces. Here, we have restricted ourselves to
dimensional groups. In this way, by using the conformal Killing equation and allowing for a
morphisms under the discrete groupZ2^Z2 of space and time inversions, we have obtaine
family of conformal groups, whose members are labeled by a half-integer numberl , associated to
any of the Galilei or NH6 spaces. The properties of each conformal family show that for a fi
l value these groups are isomorphic. The isomorphism can be realized following a contr
process in a similar way as the NH and the Galilei kinematical groups are linked. This is a
that was to be expected: under a metric point of view these spaces are conformally equiva

Among thel -conformal groups some of them are well known in Physics literature: those
l5 1

2 are the nonextended maximal invariance algebras of the Schro¨dinger or Hooke equations
l51 gives the~Galilean! contraction of the conformal relativistic algebra and the analog for
Hookian space. The importance of our scheme lies in the fact that we have interpreted
groups as the first ones in a series of conformal groups sharing the same general structure.
J. Math. Phys., Vol. 38, No. 7, July 1997
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that inside each family the groups obtained for differentl values cannot be related by any kind
contraction. Moreover, their corresponding Lie algebras can be identified with a natural gen
zation of the classh24 within the Lie program for the classification of Lie algebras realized o
vector fields of two complex variables.15

We have considered the geometrical properties in order to check the conformal chara
these l families. The casel51 seems more adapted to the preservation of the Galilean~or
Hookian! angles. However, we believe that this is not a concluding argument to discard the
cases. If we examine the list of genuine properties that characterize the~pseudo!-Riemannian
conformal mappings, we should include~1! the metric is altered by a factor;~2! ~pseudo!-
Euclidean angles are preserved; and~3! ~pseudo!-circles~the curves of constant curvature! are also
preserved. All these features are equivalent in a~pseudo!-Riemannian space, but this is no mo
true for our degenerate metric spaces. A very strict interpretation is that all the above cond
~1!, ~2!, and ~3!, should also be verified. We prefer weaker assumptions, in particular, we
that the metric plays the main role and only afterward can one add the others, depending
physical situation.

Some interesting questions like the appropriate inversions for these conformal groups a
as the angle-preserving properties have been carefully studied. They can be seen as
prolongation of their relativistic analog. Other properties, such as the integration of the infin
mal action, the projective spaces where a global action is possible, or the applications to
electromagnetic fields will be reported in Ref. 12 for the sake of length.
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APPENDIX A: CENTRAL EXTENSIONS OF LIE ALGEBRAS

We shall briefly review the basic cohomology theory of Lie algebras~see, for instance, Refs
20 and 21! necessary to express our results.

Let us consider a Lie algebrag and ag modulea, i.e., a is the support space of a linea
representationc of g that verifies

c~X!c~Y!2c~Y!c~X!5c~@X, Y# !.

An n cochain is ann-linear alternating mappingvn : g3g3 ...~n times
3 g→ a. The space ofn co-

chains is denoted byCn(g,a), and can be identified withg*∧ ...~n times∧g* , whereg* is the dual
vector space ofg. There exists for everynPN a linear mapdn : C

n(g,a)→Cn11(g,a), defined by

~dnv!~X1 ,...,Xn11!5 (
15 i

n11

~21! i11c~Xi !v~X1 ,...,Xi21 ,X̂i ,Xi11 ,...,Xn11!

1 (
15 i, j5n11

~21! i1 jv~@Xi , Xj #,X1 ,...,X̂i ,...,X̂j ,...,Xn11!, ~A1!

whereX̂ indicates thatX is omitted. From~A1! it is proved thatdn11odn50, ;n. In this way, a
global operatord, called the coboundary operator, can be defined onC(g,a)5 % nC

n(g,a), such
that duCn5dn , and verifyingd250.

In Cn(g,a) we can consider the following subsets:

Bn~g,a!5$vPCnu'jPCn21, such thatv5dj%, Zn~g,a!5$vPCnudv50%.
J. Math. Phys., Vol. 38, No. 7, July 1997
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It is obvious, according to the properties ofd, thatBn,Zn. The elements ofBn andZn are called
n coboundaries andn cocycles, respectively. Then-cohomology groupHn(g,a) is defined by
Hn5Zn/Bn.

The classes of central extensions are described by the second cohomology groupH2(g,R), so
the g module isR and the representationc50 takes into account the central character. The
cocyclesvPg*∧g* are characterized by the property

v~@X1 ,X2#,X3!1v~@X3 ,X1#,X2!1v~@X2 ,X3#,X1!50, ~A2!

and the 2 coboundaries byv(X1 ,X2)5j(@X1 ,X2#), with j a 1 cochain.

APPENDIX B: AFFINE CONNECTIONS

Let us consider a differentiable manifoldM and the set ofC`(M ) vector fieldsX(M ).
We will say thatM allows an affine connection~in Koszul’s sense!22 if there exists an

operatorD:X(M )3X(M )→X(M ), „D(X,Y)[DXY…, verifying the properties

D ~X11X2!Y5DX1
Y1DX2

Y, DX~Y11Y2!5DX~Y1!1DX~Y2!,

DfX~Y!5 fDXY, DXf Y5 f DXY1X~ f !Y,

for all fPC`(M ) andX,Y,ZPX(M ). This operator is called the covariant derivative onM , and
the manifold is said to be affine.

In an affine manifold a vector fieldX is said to be parallel along aC` curve,g, if DYg
X

50, whereYg is the tangent vector field alongg. In particular, a curve is autoparallel~or geodesic
in an abuse of language! if DYg

Yg50.
Defining the coefficients of the affine connection~Christoffel symbols of second class! as

Gmn
s ~x!5dxs~D]m

]n!,

then if X5Xm]m andY5Ym]m are two vector fields ofX(M ), it is easy to prove that

DXY5Xm~]mY
s1Gmn

s Yn!]s .

If f t5etX is a uniparametric local group spanned by the vector fieldX, and f t* is the
differential mapping, the infinitesimal action of this group over the connection~Lie derivative of
X on G, LXG! will be defined in such a way that

Df t*
~]m!

* f t* ~]n![f t* ~D]m
]n!.

So,LXG5 limt→0(f*
t G2G), explicitly we can write

LXGmn
s 5Gma

s ]nX
a1Gan

s ]mX
a2Gmn

a ]aX
s1]mn

2 Xs1Xa ]aGmn
s . ~B1!

The torsion,T0 , and the curvature,R0 , of a connection are also defined as operat
X(M )3X(M )→X(M ) acting as

T0~X,Y!5DXY2DYX2@X, Y#, R0~X,Y!Z5DX DYZ2DY DXZ2D @X, Y#Z.

The torsion and curvature tensors are constructed from these operators in the following w

T5dxs@T0~]m ,]n!#]s ^dxm
^dxn5~Gmn

s 2Gnm
s !]s ^dxm

^dxn, ~B2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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R5dxs@R0~]m ,]n!]r#]s ^dxm
^dxn

^dxr

5~]nGrm
s 2]rGnm

s 1Grm
a Gna

s 2Gnm
a Gra

s !]s ^dxm
^dxn

^dxr. ~B3!

Proposition B.1: Let G be the Galilei group or the Newton–Hooke groups, acting on the
manifold M. There is a G-invariant affine connection,G, on M defined in the local char
(x0,x) by

Gmn
s 5Vxsdm

0dn
0d i

s , ;m,n,s50,1,2,3, i51,2,3, VPR, ~B4!

whereV.0 for the oscillating NH group,V50 for the Galilei group, andV,0 for the expand-
ing NH group.

Proof: The vector fieldsX associated to the action ofG onM can be written in a generalize
way as2]0 , 2x∧“, andB(x0)“. Let us suppose the existence of a torsion-free connectio3 G
onM . The condition ofG-invariant connection is equivalent toLXG50. ConsideringX5]0 , we
get that

LXG5]0Gmn
s 50, m,n,s50,1,2,3.

Hence, all the coefficients ofG are independent ofx0. ForX5B(x0)“ we obtain the following set
of equations (i , j51,2,3):

B~x0!] iG00
0 12

dB

dx0
~x0!G i0

0 50, B~x0!] iG0 j
0 1

dB

dx0
~x0!G i j

050,

B~x0!] iG j0
0 1

dB

dx0
~x0!G j i

050, B~x0!] iG jk
0 50,

B~x0!] iG00
j 12

dB

dx0
~x0!G i0

j 2d i j
dB

dx0
~x0!G00

0 1
d2B

d~x0!2
~x0!d i j50, ~B5!

B~x0!] iG0k
j 1

dB

dx0
~x0!G ik

j 2d i j
dB

dx0
~x0!G0k

0 50,

B~x0!] iGk0
j 1

dB

dx0
~x0!Gki

j 2d i j
dB

dx0
~x0!Gk0

0 50,

B~x0!] iGkl
j 2d i j

dB

dx0
~x0!Gkl

0 50. ~B6!

Finally, for X52x∧“, the nontensor term inLXG ~B1! disappears. Thus, one can group t
connection coefficients as

G05„G00
0 ~x!…, G1

~0!5„G00
i ~x!…, G1

~1!5„G i0
0 ~x!…,

G2
~0!5„G j0

i ~x!…, G2
~1!5„G i j

0 ~x!…, G35„G jk
i ~x!…, i , j ,k51,2,3.

Under the rotations groupSO(3), G0 is a scalar field,G1
(0) andG1

(1) are vector fields,G2
(0) and

G2
(1) 2-tensor fields, andG3 a 3-tensor field. Note that as the connection is torsion-free, its c

ficients are symmetric with respect to the interchange of the two lower indices. These
support, in general, a reducible representation ofSO(3), since the connection is invariant und
J. Math. Phys., Vol. 38, No. 7, July 1997
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rotations the representations ought to be the trivial~irreducible! representationD0 of SO(3).
Equation~B5b! implies thatG2

(1) is constant, and, on the other hand, it supports a 9-D repre
tation ofSO(3), hence the only way that it reduces toD0 is thatG2

(1)50. Similar arguments can
be used for the other fields obtaining thatG05cnt., G350, andG2

(0)50.
Now Eq. ~B6! becomes

B~x0!] iG00
j 2d i j

dB

dx0
G00
0 ~x!1

d2B

d~x0!2
~x0!d i j50, ~B7!

and for iÞ j we getG00
i 5G00

i (xi), i51,2,3. Using Eq.~B5a!, for i5 j , Eq. ~B7! reads as

B~x0!] iG00
i ~xi !2

dB

dx0
~x0!G00

0 1
d2B

d~x0!2
~x0!50. ~B8!

Note that in this case there is not summation over the repeated indices. Taking into consid
that, for instance,X52S V(x

0)“, the above equation~B8! reduces to

] iG00
i ~xi !2

C V~x0!

S V~x0!
G00
0 2V50, ~B9!

except in a discrete set of simultaneity leavesM (xV
0 ), with xV

0 the points whereS V(x
0) vanishes.

SinceG00
0 is a constant andG00

i is independent ofx0, it is obvious from Eq.~B9! thatG00
0 50, and

now the solution of Eq.~B9! is

G00
i ~x!5Vxi1Ci , i51,2,3,

whereCi is a constant. Under a rotationO of SO(3), it transforms to

G1
~0!8~x!5~OG1

~0!!~x!5OG1
~0!~O21x!1OC5G1

~0!~x!1OC,

soG1
(0) is a scalar field if and only ifC50.
A similar result should be obtained usingX52C V(x

0)“. h

Using formula~B3! we compute the curvature tensor for the three homogeneous space

R5V] i ^dx0^dxi∧dx0. ~B10!

The Ricci tensor is

R53V dx0^dx0,

and the curvature,k, for these space–time manifolds is

k53V. ~B11!

APPENDIX C: SIMILITUDE ALGEBRAS

From Lemma 3.2 we see that the whole classification relies on the time-variablesl~2,R!
algebras. The subalgebras including]0 are^]0& and^]0 ,x

0]0& only, which allow us to define the
similitude algebras, i.e., conformal algebras, whose nonisometric generators are only linea
binations of temporalDt52x0]0 and/or spatial dilatationsDs52xi] i . We will classify here the
similitude algebras of the Galilean and Hookian (311)-D space–time manifolds.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Proposition C.1: (A) The similitude Lie algebras of a Galilean(311) space–time manifold
are contained in one of the two families of algebras that follow:
(A1) For every NPN,

^H,P,K ,J,Dt ,Ds ,Cn ; n52,...,N&, ~C1!

where the fields are defined by (3.8) and

Dt52x0]0 . ~C2!

(A2) For any finite set$b1 ,...,bm% of real numbers and for every NPN,

^H,P,K ,J,Ds ,Cn
1~bk!,Cn

2~bk!; n50,1,...,N,l51,...,m&, ~C3!

where the new fields are

Cn
1~b!52~x0!nC b~x

0!“, Cn
2~b!52~x0!nS b~x

0!“. ~C4!

(B) The only(311) NH similitude algebras are included in the family(A2).
Proof: Let us consider the similitude generators appearing in~3.2! and~3.4!. For both cases

since the commutator@]0 , cn(x
0)] i # closes in a finite-dimensional Lie algebra, all the functio

cn(x
0) must verify a system of linear ordinary differential equations. By taking the general

tion and studying the closure of the commutators withDs andDt , we get the desired result.h
For the sake of completeness we display the commutation rules for the two similitude fa

of algebras. We limit ourselves to nonzero brackets and use vector notation. Moreover, w
implicitly taking into account thatC05C0

1(0)[P andC15C1
2(0)[K in the Galilei algebra, or

C0
1(V)[P andC0

2(V)[K for the NH case.
Family (A1):

@J, J#5J, @J, Cn#5Cn , @Dt , Cn#52nCn ,

@Ds , Cn#5Cn , @H, Dt#52H, @H, Cn#52nCn21 , n51,2,...,N. ~C5!

Family (A2):

@J, J#5J, @H,Cn
6~bk!#52nCn21

6 ~bk!6Cn
7~bk!,

@J, Cn
6~bk!#5Cn

6~bk!, @Ds , Cn
6~bk!#51Cn

6~bk!, ~C6!

with n50,1,2,...,N and l51,...,m.
Under spatial parity~P! and time inversion~Q!, the behavior of the basis of vector fields f

both Lie algebra families is

P:$J,P,K ,Cn ,H,Dt ,Ds%→$J,2P,2K ,2Cn ,H,Dt ,Ds%,
~C7!

Q:$J,P,K ,Cn ,H,Dt ,Ds%→$J,P,2K ,~21!nCn ,2H,Dt ,Ds%;

and

P:$Dt ,Ds ,Cn
1~bk!,Cn

2~bk!%→$Dt ,Ds ,2Cn
1~bk!,2Cn

2~bk!%,
~C8!

Q:$Dt ,Ds ,Cn
1~bk!,Cn

2~bk!%→$Dt ,Ds ,~21!nCn
1~bk!,~21!nCn

2~bk!%.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The finite-dimensional conformal groups associated with the Galilei and~oscillat-
ing or expanding! Newton–Hooke space–time manifolds was characterized by the
present authors in a recent work. Three isomorphic group families, one for each
nonrelativistic kinematics, were obtained, whose members are labeled by a half-
integer numberl . Since the action of these groups on their corresponding space–
time manifolds is only local, a linearization is introduced here such that the corre-
sponding action is well defined everywhere. In particular, the (l51)-conformal
cases that can be obtained by contraction from the well-known Minkowskian con-
formal group are treated in more detail. As an application of physical interest, the
conformal invariance of the Galilean electromagnetism is studied. In order to
achieve it, the pertinent local representations of the Galilean conformal algebras are
derived. © 1997 American Institute of Physics.@S0022-2488~97!00707-X#

I. INTRODUCTION

Among the absolute-time kinematical groups, classified by Bacry and Le´vy-Leblond,1 the
Galilei2 and the Newton–Hooke~NH! groups3–5 are the most prominent. The first one, as is w
known, is the invariance group of the Newtonian or classical mechanics. The two NH grou

linked with two cosmological universes: one of them (NH2) oscillates with period 1/AV, V
.0, while the other (NH1) expands with characteristic time 1/AuVu, V,0 ~in this time its radius
doubles!.

Geometrically, the corresponding (311) space–time manifolds~or the physical event spaces!
can be considered as homogeneous spaces of their kinematical groups. Unlike the Minko
case, these manifolds are equipped with a degenerate metricL that provides a foliation, such tha
each leaf@the three-dimensional~3-D! space of simultaneous events# is provided with a Euclidean
metric L̃. In local coordinates (t,x) we can write

L5dt^dt, L̃5(
i
dxi ^dxi . ~1.1!

A characterization of the conformal groups that can be associated with these space–tim
been recently studied by the authors.6 Fixing a kinematical groupG, our approach was addresse
to find the finite-dimensional Lie groups containingG, such that the action of the group elemen
over the metrics~1.1! takes the general formL→lL and L̃→l̃L̃, with l, l̃PC`(M ). Armed
with these hypotheses we obtained, for each kinematical group, a whole family of conform
groups$Gl%, labeled by a positive half-integerl and having dimension (1016l ).

In Ref. 6 we studied the basic properties of these nonrelativistic conformal groups mai
an infinitesimal level, that is, in terms of their associated Lie algebras. Now, our intention
consider the finite point of view, in other words, to investigate some relevant properties at the
of Lie groups. The first difficulty one finds is that the finite action of the conformal groups on
0022-2488/97/38(7)/3810/22/$10.00
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corresponding space–time manifolds is locally defined only. This fact compels us to find a
pactification of the space–time manifold, where the action becomes global. As a previous s
will be supplied with a linearization valid for any of these nonrelativistic conformal algebras
shall examine closely the casel51 ~for Galilei and both NH conformal groups! that can be
derived by contraction from the Minkowskian conformal group.7 This connection will allow us to
extend easily the methods used in the Minkowskian case in order to define a projective sp
the nonrelativistic cases.

Motivated by the invariance of Maxwell equations under the Minkowskian conformal gr
we will investigate whether the Galilean electromagnetism~Gelm! is consistent with the confor
mal Galilean groups, and if so, how must transform these Gelm fields under any conformal
element. By Galilean electromagnetism8 we understand the nonrelativistic limit~i.e., when the
light speed goes to infinity! that carefully can be derived from the Maxwell equations. In orde
carry out this study we shall make use of the infinitesimal version of the so-called local repr
tation theory.9 We will show that the invariance under the whole family of Galilean conform
groups is satisfactorily fulfilled, provided that space and time dilatations appear conven
mixed.

The paper is organized in the following way. In Sec. II we present a short review of R
about the main facts concerning the nonrelativistic conformal groups that will be needed
sequel. Section III is devoted to the general linearization of any Galilean or Hookian confo
algebra. In Sec. IV we study thel51 Galilean conformal group in a detailed manner, in particu
the finite action and the compactification of the space–time. A similar study is made i
following section for the Hookian case. In Sec. VI we present the Galilean electromagne
together with the local representations of the Galilei group consistent with the invariance
field equations. Next, in Sec. VII, the local representations of anyl -Galilean conformal groups ar
derived at an infinitesimal level in order to show the conformal invariance of the Gelm. Final
Sec. VIII we close the paper with some remarks and conclusions.

II. NONRELATIVISTIC CONFORMAL GROUPS

In order to present the paper in a self-contained form, in this section we will give a
review about the nonrelativistic conformal algebras that can be found in Ref. 6. As we
mentioned above, there is not just one conformal group for each of the three nonrelat
space–time manifolds considered by us, but a family of them labeled by a half-integerl .

The Galilean conformal Lie algebraG l has dimension (1016l ), and is generated by$
H,J,Ds ,D,Al ,Cn , n50,1,...,2l %. A differential realization of these generators, obtained from
action on the space–time, is

H52] t , J52x∧“, Ds52x–“,
D52t] t2 lx–“, Al52~ t !2] t22l tx–“, Cn52~ t !n“. ~2.1!

Note that the generators of space translations and Galilean boosts areP[C0 andK[C1 , respec-
tively. The nonzero Lie brackets read as

@J, J#5J, @J, Cn#5Cn , @Cn , H#5nCn21

@D, H#5H, @Al , H#52D, @Al , D#5Al ,
@Cn , D#5~n2 l !Cn , @Cn , Ds#52Cn , @Cn , Al #5~n22l !Cn11 .

~2.2!

The Hookian conformal algebrasN l are also (1016l )-dimensional, but we will use two
types of notation according to the character ofl .

~i! For each positive integerl , N l is spanned by the generatorsH, J, A1 , A2 , Ds , C0 ,
Cn

1 andCn
2 , with n51,2,...,l . HereP[C1

1 andK[C1
2 .
J. Math. Phys., Vol. 38, No. 7, July 1997
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~ii ! For positive half-odd integerl , N l is generated byH, J, A1 , A2 , Ds , Cn
1 , andCn

2 ,
n5 1

2,
3
2,...,(2l11)/2, where nowP[C1/2

1 andK[C1/2
2 .

In both cases a differential realization for the infinitesimal generators is

H52] t , J52x∧“,
A152C a~ t !] t1a lS a~ t !x–“, A252S a~ t !] t2 lC a~ t !x–“,

Cn
152C a~nt!“, Cn

252S a~nt!“, C052“, ~2.3!

where a stands forV or 4V according to the integer or half-oddl values, respectively. By
C a(t) andS a(t) we denote the generalized cosinus and sinus functions10 defined as

C a~x!5H eA2ax1e2A2ax

2
,

1,

aÞ0,

a50,
S a~x!5H eA2ax2e2A2ax

2A2a
x,

aÞ0,

a50.
~2.4!

Both functions verifyC a
2(x)1aS a

2(x)51, and their derivatives are

dC a~x!

dx
52aS a~x!,

dS a~x!

dx
5C a~x!. ~2.5!

In a similar way, it is defined the generalized tangent functionT a(x)5S a(x)/C a(x). Whena
.0, a,0 or a50 we recover the usual trigonometric~elliptic!, hyperbolic, and parabolic~Gal-
ilean! functions, respectively.

The nonzero Lie brackets for both families of NH conformal algebras can be written
unified manner in the form

@J, J#5J, @J, Cn
1#5Cn

1 , @J, Cn
2#5Cn

2 ,

@H, A1#5aA2, @H, A2#52A1 , @A1 , A2#52H,

@H, Cn
1#~na!Cn

- , @H, Cn
2#52nCn

1 , @Ds , Cn
6#5Cn

6 ,

@A1 , Cn
1#5

a

2
~n2 l !Cn11

2 1
a

2
~n1 l !Cn21

2 ,

@A1 , Cn
2#52 1

2 ~n2 l !Cn11
1 2 1

2 ~n1 l !Cn21
1 , ~2.6!

@A2 , Cn
6#5 1

2 ~ l2n!Cn11
6 1 1

2 ~n1 l !Cn21
6 .

Remark thatCn
656C(2n)

6 , and forn50: C0 :5C0
15“, C0

250.
It is interesting to mention that the GalileanG l and HookianN l conformal algebras are

isomorphic for anyl . In Sec. V we will give an explicit realization of this isomorphism for th
casel51. In the space–time realization of thel -conformal algebras, the isomorphism is pe
formed by means of a~local! similarity transformation,

t52T a~u0/2!, x5„11aT a
2~u0/2!…lu, ~2.7!

where (u0,u) and (t,x) are the NH or Galilei space–time coordinates, respectively.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Eachl -conformal group can be obtained by means of a determined subgroup, together
certain inversion transformation acting on the space–time in the same way as it is well kno
happen in the Minkowskian case. The relevant galilean inversion in the (113) space–time is
defined as

Il
g~ t,x!:5S t

~ t !2
,

x

~ t !2l
D , ~2.8!

for eachG l . Remark thatIl
g5(Il

g)21 and that it is not defined in the 3-D leafx050. Moreover, the
inversion forl51 can be considered as the contraction of the Minkowskian one.

The Hookian inversionsIl
h are defined byIl

h5C21+Il
g+C, whereC was defined in~2.7!.

Explicitly, the action ofIl
h on the Hookian coordinates (u0,u) is

Il
h~u0,u!5S 2 arcT aS 1

4T a~u0/2! D ,F 11aT a
2~u0/2!

4T a
2~u0/2!1a/4G

l

uD . ~2.9!

III. LINEARIZATION OF CONFORMAL ALGEBRAS

As it will be explicitly shown in Secs. IV and V for a particular case, the finite action on
space–time of the conformal transformations coming from~2.1! and ~2.3! is not global. Thus, in
parallel to the Minkowskian situation,11 we are interested in building a projective space wher
global conformal action can be defined. Our first step is to obtain a linearization of the ge
Galilean l -conformal algebras. The linearization also remains valid for the Hookianl -conformal
algebras, taking into account the isomorphism relating these types of conformal algebras~see Ref.
6!.

Let us consider the (6l110)-dimensional Galilei conformal algebraG l generated by
$H,A,D,J,Cn ; n50,...,2l ; 2lPZ1%. Note that we have not considered the generatorDs of the
spatial dilatations, since, as we saw in Ref. 6, these transformations do not preserve
furthermore, in Sec. VII we will find more reasons for rejectingDs . We can obtain a natural linea
representation by means of 2(l12)32(l12) matrices in the following way:

H→S 0 0

0 H~ l !
D , A→S 0 0

0 A~ l !
D , D→S 0 0

0 D~ l !
D ,

J→S J~3! 0

0 0D , Cn→S 0 Cn~ l !

0 0 D , ~3.1!

whereJ~3! is the usual 3-D linear representation of thesu~2! algebra. The matricesH( l ), A( l ),
andD( l ) constitute a (2l11)-dimensional irreducible representation ofsu~1, 1! that we shall take
in the form

H~ l !5S 0 0 ... 0

1 0 ... 0

A � A

0 ... 2l 0

D , A~ l !5S 0 22l ... 0

A � A

0 ... 0 21

0 ... 0

D ,
~3.2!

D~ l !5diag~2 l ,2 l11,...,l !.

The remainingCn
i ( l ) are the 33(2l11) matrices,

Cn
i ~ l !5~0,...,ei ,...,0!, i51,2,3,
J. Math. Phys., Vol. 38, No. 7, July 1997
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where0 stands for a three column null vector, andei is a canonical basis vector ofR3 written as
a column vector.

The inversion~2.3! is implemented by the matrix

Il
g→S I3 O

O Ĩ ~ l !
D , ~3.3!

whereI3 is the 333 unit matrix andĨ ( l ) the antidiagonal (2l11)3(2l11) unit matrix:

Ĩ ~ l !5S 0 ... 0 1

0 ... 1 0

A A

1 ... 0

D . ~3.4!

It is easily checked that

Il
g~J!5J, Il

g~H !52A, Il
g~D !52D, Il

g~Cn!5C2l2n . ~3.5!

We remark that, for anyl , the principal submatrices, obtained by restriction to the first fi
rows and columns, give a linearization of the Galilei algebraG5^H,P[C0 ,K[C1 ,J&. Never-
theless, it is necessary to perform a change of order in the basis to obtain the usual represe
as will be seen in the next section. There is some freedom left here, for instance, we can
another inversion in the form

Ĩ ~ l !5S 0 ... 0 g22l

0 ... g22~ l21! 0

A A

g2l ... 0

D . ~3.48!

In that case, we can achieve the involution~3.5! by redefining the representation~3.1! in the form

J̃5J, H̃5gH, D̃5D, Ã5g21A, C̃n5g2nCn ,

which can be interpreted as a change of the time scale.
Whenl is integer it is evident from~3.2! that this representation can be readily obtained fr

a contraction of the simple algebrasso(31 l ,l11) or so(41 l ,l ), but for anl half-odd integer
this is not true anymore. In particular, forl51, G l ~and consequentlyN l! can be derived by a
contraction fromso(4,2), that is, the~relativistic! conformal group.

IV. THE l51 CONFORMAL GALILEI GROUP

In this section we will use the above linearization to examine carefully thel51 conformal
Galilei group. This particular case can be taken as a pattern, with minor changes, for studyi
other l value.

A. Finite action

Let us write down the vector field generators~2.1! for l51,

H52] t , P52“, K52t“, J52x∧“,

D52t] t2x–“, A52t2] t22tx–“, C52t2“. ~4.1!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Their nonvanishing Lie commutators are

@J, P#5P, @J, K #5K , @J, C#5C, @J, J#5J,

@K , H#5P, @D, H#5H, @D, P#5P,
~4.2!

@D, C#52C, @D, A#52A, @A, H#52D,

@A, P#52K , @A, K #5C, @C, H#52K .

The finite action on the space–time of the one-parametric groups coming from these infinite
generators is obtained by integration of their corresponding vector fields. Finally, we ge
following result:

exp$bH%~ t,x!5~ t1b,x!, exp$a–P%~ t,x!5~ t,x1a!,

exp$v–K%~ t,x!5~ t,x1tv!, exp$f–J%~ t,x!5„t,R~f!x),
~4.3!

exp$dD%~ t,x!5~edt,edx!, exp$c–C%~ t,x!5~ t,x1t2c!,

exp$eA%~ t,v!5S t

12et
,

x

~12et !2D .
Note that we have taken into account the Abelian character of the spatial translation group in
to exponenciate together the three spatial translations~the same consideration applies to boo
and special conformal transformations!.

We obtain in this way a local Lie group, not a global one, since the finite action~4.3! is not
well defined in the whole space–time. Our aim now is to build a manifold where the group a
is defined everywhere. This program is carried out, as in the Poincare´-conformal case,7 by means
of a linearization procedure. In this respect we can use the matrix representation~3.1! restricted to
the l51 case. It will also be convenient to perform a reordering of the vector basis:

~u1 ,u2 ,u3 ,u4 ,u5 ,u6!→~u085u5 ,u185u1 ,u285u2 ,u385u3 ,u485u4 ,u585u6!.

Remark that this aesthetic rearrangement of the basis is done in order to have first the coor
related with time (u5) and space (u1 ,u2 ,u3). In this way we obtain the 6-D representation,
J. Math. Phys., Vol. 38, No. 7, July 1997
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H5S 0 0t 1 0

0 O 0 0

0 0t 0 0

2 0t 0 0

D , Pi5S 0 0t 0 0

0 O ei 0

0 0t 0 0

0 0t 0 0

D ,
Ki5S 0 0t 0 0

2ei O 0 0

0 0t 0 0

0 0t 0 0

D , J5S 0 0t 0 0

0 J~3! 0 0

0 0t 0 0

0 0t 0 0

D ,
~4.4!

Ci5S 0 0t 0 0

0 O 0 ei
0 0t 0 0

0 0t 0 0

D , A5S 0 0t 0 21

0 O 0 0

22 0t 0 0

0 0t 0 0

D ,
D5diag~0,0,21,1!, i51,2,3,

where $ei% i51
3 , 0, andJ~3! were defined in the previous section, andO ~or I ! stands for the 3

33 null ~unit! matrix.
By choosing this basis, the 535 principal submatrices give the usual linearization of t

kinematical Galilei algebra,

H5S 0 0t 1

0 O 0

0 0t 0
D , Pi5S 0 0t 0

0 O ei
0 0t 0

D ,
Ki5S 0 0t 0

ei O 0

0 0t 0
D , J5S 0 0t 0

0 J~3! 0

0 0t 0
D . ~4.5!

We can say that in this process we have conferred a kinematical character to the 6-D coor
(t,x,y,z) of the support space. The question that naturally arises is to find the explicit corre
dence of these points with the space–time points (t,x). Observe that the fields associated to t
matrix action~4.4! have the form

H52y]t22t]z , Pi52y]x i, Ki52t]x i, Ji52e i jkx
j]xk,

D5y]y2z]z , Ci52z]x i, A5z]t12t]y , i51,2,3. ~4.6!

The invariant surfaces,f (t,x,y,z)50, under this action are obtained through the equations

Xf~t,x,y,z!50, ~4.7!

whereX are the vector fields~4.6!. We arrive at the 5-D submanifolds,

f r~t,x,y,z![yz2t22r50, ~4.8!

with rPR, which will be henceforth denoted byL r . In particular, we are more interested in th
caseL r50 , i.e.,
J. Math. Phys., Vol. 38, No. 7, July 1997
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yz2t250. ~4.9!

The points of the 5-D manifoldL0 will be related to those of the 4-D space–time just as follow
It is clear that each space–time point (t,x) should be described by a 1-D submanifold ofL0 . Let
us start by the originx0[(t50,x50), whose isotropy group isG05^J,K ,A,C,D&. Therefore, the
1-D G0-invariant submanifold ofL0 will be accordingly associated to the pointx0 . Thus, we get

~0,0!→$l~t50,x50,y51,z50!;lPR* %[@0,0,1,0#, ~4.10!

i.e., a ray in the projective spaceL0 /R* . The explicit correspondence can be obtained for all
others points starting fromx0 by an adequate choice of transformations generated byH andP. So,
we arrive at

~ t,x!PM→$l~ t,x,1,t2!,lPR* %[@ t,x,1,t2#PL0 /R* . ~4.11!

For a fixedx, the rays inL0 /R* that describe the values oft can be represented by the points
a parabola in the (t,z) plane given by the equationz5t2.

The rays ofL0 /R* ,

$l~0,x,0,1!;lPR* %[@0,x,0,1#, ~4.12!

are not images of any point ofM by the correspondence~4.11! and can be considered as the poin
at infinity, as will be seen later on.

B. Galilean inversions

Now we shall discuss the action of the inversion on the manifoldL0 /R* for the linearized
Galilei l51 conformal group; our approach follows the same lines of the~Minkowskian! confor-
mal case.

As we saw before in the space–time realization thel51 Galilean conformal inversion@see
~2.3!# is an involution taking the form

Ig:~ t,x!→~1/t,x/t2!. ~4.13!

The behavior of the Galilean conformal generators underIg is as follows:

Ig~H !52A, Ig~P!5C, Ig~K !5K , Ig~J!5J, Ig~D !52D. ~4.14!

According to~4.14! and~4.2!, we can say that the conformal algebraG l is generated by that of the
Galilei groupG together withIg, i.e.,G l5^GøIgG (Ig)21&. On the other hand, it is clear that th
action of Ig, is not well defined on the points (0,x); this is related to the local character of th
conformal group action involving the generatorA.

A 636 matrix realization of the inversion that implement the action~4.14! for the 6-D
representation~4.4! is

Îg5S 1 0t 0 0

0 I 0 0

0 0t 0 1

0 0t 1 0

D , ~4.15!

in agreement with~3.3! when l51. Therefore, the action ofÎg is well defined on the whole
manifoldL0 /R* , taking the form
J. Math. Phys., Vol. 38, No. 7, July 1997
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Îg:@ t,x,1,t2#→@1/t,x/t2,1,1/t2#, if tÞ0 ~4.16a!

Îg:@0,x,1,0#→@0,x,0,1#, if t50. ~4.16b!

Indeed, the action~4.16b! of Îg on the rays@0,x,1,0# @representing the ‘‘problematic’’ space–tim
points ~0,x!# give the images@0,x,0,1#, which can be identified just with the points at the infini
that are included in the space of raysL0 /R* . Hence, by adding these points the inversion is w
defined everywhere and the finite action of any conformal generator defined by~4.14! is guaran-
teed to be well defined too.

V. THE l51 CONFORMAL NEWTON–HOOKE GROUPS

It is also worth carrying for thel51 conformal NH algebras, a similar study to the one ju
developed for the Galilean case in the previous section, since the results relative to the co
tification can differ significantly. This is due to the local character of the isomorphism~2.9! that
link the respective Lie differential realizations in the space–time so that they can allow
nonequivalent globalizations.

A. Finite action

The NH l51 conformal algebras, once excluded spatial dilatations, are spanned by 15
erators:H, P, K , J, A1 , A2 , andC. Their differential realization on the Hookian space–tim
~2.3! takes the form

H52] t , P52C V~ t !“, K52S V~ t !“, J52x∧“,
~5.1!

C52“, A152C V~ t !] t1VS V~ t !x–“, A252S V~ t !] t2C V~ t !x–“.

Their nonvanishing Lie commutators~2.6! now read as

@J, P#5P, @J, K #5K , @J, C#5C,

@H, P#5VK , @K , H#5P, @H, A1#5VA2 ,

@K , A1#5C, @A2 , P#5C, @H, A2#52A1 ,

@A2 , A1#5H, @A1 , C#52VK , @A2 , C#5P. ~5.2!

In order to integrate the action of the above generators, it is better to change to a
‘‘temporal’’ variable u defined by

u[TV~ t/2!, ~5.3!

whereuP(2`,1`) for V.0 anduP(21,11) if V,0. We want to preserve for the coord
nates~u,x! the meaning of kinematical space–time at any stage. It is also convenient to use
basis realizing the isomorphism between the Galilean and Hookian algebras.6 For l51, we write

H8[ 1
2~H1A1!, Pi8[

1
2~Pi1Ci !, K8[K,

~5.4!
D8[A2 , A8[

2

V
~H2A1!, Ci8[

2

V
~Ci2Pi !.

With the help of~5.1! and ~5.3!, we get
J. Math. Phys., Vol. 38, No. 7, July 1997
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H852
1

2
]u1

Vu

11Vu2
x–“, P852

1

11Vu2
“,

K 852
2u

11Vu2
“, D852u]u2

12Vu2

11Vu2
x–“, ~5.5!

A8522u2]u2
4u

11Vu2
x–“, C852

4u2

11Vu2
“.

The finite action for the NH conformal groups in this new basis, taking into account the
considerations than in~4.3!, is

exp$bH8%~u,x!5S u1
1

2
b,

11Vu2

11V~u1b/2!2
xD ,

exp$a–P8%~u,x!5S u,x1
1

11Vu2
aD ,

exp$v–K 8%~u,x!5S u,x1
2u

11Vu2
vD ,

exp$f–J%~u,x!5„u,R~f!x…, ~5.6!

exp$eA8%~u,x!5S u

122eu
,

11Vu2

~122eu!21Vu2
xD ,

exp$dD8%~u,x!5S edu, 11Vu2

11Ve2du2
edxD ,

exp$c–C8%~u,x!5S u,x1
4u2

11Vu2
cD .

Note that when we specialize to the valueV50 in the expressions for the NH generators~5.5! we
obtain the corresponding Galilean counterparts given in~4.1! (u→t/2). As a consequence, th
integrated NH action~5.6! for the valueV50 comes into the finite Galilean action~4.3!. In this
sense we can consider the formulas~5.5! @or their finite version~5.6!# as the general ones fo
nonrelativistic l51-conformal groups involving at the same time Galilei, expanding NH2, or
oscillating NH1 transformations according to the representative values taken byV: 0, 21, and
11, respectively. This behavior was already characterized in Ref. 6 as the contraction pro
for the field realizations from NH to Galilei conformal algebras.

Another important remark concerns the local character of the action~5.6!. So, for instance, the
integrated action ofH8 on u givesu1b, which is not bounded for NH1, as it should be. In orde
to get a global action we shall linearize the representation carefully. We can take, for examp
6-D matrix representation~4.4! of the Galilean conformal basis$H,P,K ,J,D,A,C% and realize an
equivalence to reach the 6-D matrix representation of the conformal NH b
$H8,P8,K 8,J,D8,A8,C8% through the matrixM ~i.e.,X85M21XM!,
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



on

-

ealiza-

3820 Negro, del Olmo, and Rodrı́guez-Marco: Nonrelativistic conformal groups. II

¬¬¬¬¬¬¬¬¬¬
M5S 1 0t 0 0

0 I 0 0

0 0t 1/2 1/2

0 0t 22/V 2/V

D . ~5.7!

The matrixM represents a6p/4 rotation in the (y,z) plane plus a dilatation. The representati
of the original Hookian basis so obtained reads as

H85S 0 0t 1 0

0 O 0 0

2V 0t 0 0

0 0t 0 0

D , Pi85S 0 0t 0 0

0 O ei 0

0 0t 0 0

0 0t 0 0

D ,
Ki85S 0 0t 0 0

ei O 0 0

0 0t 0 0

0 0t 0 0

D , J85S 0 0t 0 0

0 J~3! 0 0

0 0t 0 0

0 0t 0 0

D ,
~5.8!

A15S 0 0t 0 1

0 O 0 0

0 0t 0 0

V 0t 0 0

D , A28 5S 0 0t 0 0

0 O 0 0

0 0t 0 21

0 0t 21 0

D ,
Ci85S 0 0t 0 0

0 O 0 ei
0 0t 0 0

0 0t 0 0

D , i51,2,3.

The coordinates of the 6-D real support space space will be denoted by (t,x,y,z). The restriction
to the principal 535 submatrices gives the usual linearization of the NH algebra,

H5S 0 0t 1

0 O 0

2V 0t 0
D , P5S 0 0t 0

0 O ei
0 0t 0

D ,
~5.9!

Ki5S 0 0t 0

ei O 0

0 0t 0
D , J5S 0 0t 0

0 J~3! 0

0 0t 0
D ,

which in the limitV→0 reduces to the Galilean case~4.5!. Thus, it is expected that the repre
sentation~5.8! is well adapted to describe the kinematical NH space–time.

The differential representation associated to the linear action generated by the matrix r
tion ~5.8! is
J. Math. Phys., Vol. 38, No. 7, July 1997
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Ki52t]x i, H52y]t1Vt]y , Pi52y]x i, Ji52e i jkx j]jk
,

~5.10!
A152z]t2Vt]z , A25z]y1y]z , Ci52z]x i.

The invariant surfaces under the action of all the generators~5.10! are given by the equations

2Vt22y21z22r50, ~5.11!

wherer is a real parameter. These 5-D manifolds ofR6 will be denotedL r
V . Of course, we will

center our interest on the surfaceL0
V . The correspondence between the NH space–time po

(u5T V(t/2),x) and those of the projective spaceL0
V/R* is carried out in the form

~u,x!→H lS 2u

11Vu2
,x,

12Vu2

11Vu2
,1D , lPR* J [F 2u

11Vu2
,x,

12Vu2

11Vu2
,1G . ~5.12!

Let us discuss the points at infinity, i.e., those ofL0
V/R* that are not images by the correspo

dence~5.12!. We shall handle here by separate the representative casesV561.
(a) The oscillating caseV51. The rays

F 2u

11u2
,x,

11Vu2

11u2
,1G , ~5.13!

with x fixed, can be univocally described by the points of a circlet21y251, with coordinates
@t52u/(11u2),y5(12u2)/(11u2)#. Thus, u is the stereographic projectionu5tan(t/2),
wheret/2 can be identified with a trigonometric angle, as seen in Fig. 1.

The rays inL0
21 that are not images of physical points take the form@0,x,21,1#, and can be

interpreted as the infinite points appearing in a stereographic projection, as Fig. 1 shows.

(b)The expanding caseV521.
Now observe that we really have two possible choices for the rays that describe ph

points:

~ i! ~ t,x!→F 2u

12u2
,x,

11u2

12u2
,1G ,

~ ii ! ~ t,x!→F2
2u

12u2
,2x,2

11u2

12u2
,1G . ~5.14!

FIG. 1. The time compactification for NH1 .
J. Math. Phys., Vol. 38, No. 7, July 1997
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They can be identified with the points corresponding to the two branches of the hyperboy2

2t251, such as it is displayed in Fig. 2. Remark that points in the upper branch repr
different rays to the points laying on the lower one because this hyperbola is obtained as a
by a plane parallel to the axis of the cone~5.11!.

Introducing the parametert such that u5tanh(t/2) we get that @t52u/(12u2),
y5(11u2)/(12u2)]5(sinht,cosht). On the other hand, besides this ambiguity, we have f
types of points at infinity that complete the rays inL0

21/R* : @61,x,1,0# and @61,2x,21,0#,
which are identified in two pairs:

@1,x,1,0#5@21,2x,21,0#, @21,x,1,0#5@1,2x,21,0#. ~5.15!

They are depicted in Fig. 3 as the end points of the horizontal segment in the upper half-pla
are equivalent to those of the corresponding segment in the lower half-plane by means o
metry through the origin of coordinates.

B. Hookian inversions

As seen in Sec. IV B, the Galilean conformal algebra has an appropriate inversion w
matrix representation is given by~4.15!. However, we shall take into account the valueg52 in
~3.48! since our time variable behaves asu→t/2 in the limitV→0. Using the matrixM ~5.7!, we
get the Hookian matrix inversionsÎV

h 5M21IgM. Here we write down the two special cases

FIG. 2. The time compactification for NH2 .

FIG. 3. Inversion for NH1 .
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



der to

is an
ctified

asic
fields.
f the

3823Negro, del Olmo, and Rodrı́guez-Marco: Nonrelativistic conformal groups. II

¬¬¬¬¬¬¬¬¬¬
~a! V51, Î1
h 5diag~1,I ,21,1!,

~b! V521, Î2
h 5diag~1,I ,1,21!. ~5.16!

Let us see explicitly how the action is of each of these inversions onL0
6/R* .

(a) The oscillating caseÎ11
h . We have

Î1
h :F 2u

11u2
,x,

12u2

11u2
,1G→F 2u

11u2
,x,2

12u2

11u2
,1G ; ~5.17!

and

Î1
h ~H !52H, Î1

h ~P!5K , Î1
h ~J!5J,

Î1
h ~A1!5A1 , Î1

h ~A2!52A2 , Î1
h ~C!5C.

Geometrically this action is depicted in Fig. 3.
Restricting the action~5.17! to the coordinates (t,y), we getÎ1

h (t,y)5(t,2y), which means
that on the space–time the inversionÎ11

h acts as

Î1
h :S u5tanS t2D ,xD→S u85tanS p2t

2 D ,xD5S 1u ,xD . ~5.18!

If we consider the action on the ray describing the time origin@0,x,1,1#, we find that
Î1
h (@0,x,1,1#)5@0,x,21,1#, that is, the image are the infinity points.

(b) The expanding caseÎ2
h . Now the inversion acts in the form

Î2
h :F 2u

12u2
,x,

11u2

12u2
,1G→F2

2u

12u2
,2x,2

11u2

12u2
,1G ; ~5.19!

and

Î2
h ~H !5H, Î2

h ~P!5P, Î2
h ~K !5K , Î2

h ~J!5J,

Î2
h ~A1!52A1 , I2

h ~A2!52A2 , I2
h ~C!52C.

Restricting to (t,y) coordinates, we getÎ2
h (t,y)5(2t,2y). The inversion is graphically

described in Fig. 4.
Consequently, it is necessary to take into account the two hyperbola branches in or

realize this inversion. Its action on the infinity points isÎ2
h :(@61,x,1,0#)→@71,2x,21,0#. In

other words,Î2
h leaves invariant this class of points. In this sense, it can be said that there

antipodal identification of both hyperbola branches under the inversion leading to a compa
space diffeomorphic to the circle.

VI. LOCAL REPRESENTATIONS AND GALILEAN ELECTROMAGNETISM

We will start by introducing the equations of the Galilean electromagnetism~Gelm!, which
can be derived by contraction from those of Maxwell. Afterward, we shall develop the b
representation techniques that will permit us to show the Galilean invariance of the Gelm
This study will allow us to undertake in a straightforward way the conformal invariance o
Gelm in the next section.
J. Math. Phys., Vol. 38, No. 7, July 1997
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A. Electric and magnetic limits

There is not just one single nonrelativistic limit of the Maxwell equations whenc→` but two
nonequivalent limits that are consistent with the Galilean kinematics~we refer the reader to the
work of Le Bellac and Le´vy-Leblond;8 also see Ref. 12 for more applications!. The first one is
obtained when the electric effects are assumed to be much stronger than the magnetic onE(e)

@B(e), so that it deserves the name ‘‘electric limit.’’ The field equations are

“–E~e!5r~e!, “∧B~e!2]0E
~e!5 j ~e!, ~6.1a!

“–B~e!50, “∧E~e!50. ~6.1b!

The second type appears when the magnetic fields prevail against the electric ones leading
is called the ‘‘magnetic limit’’ with equations

“–E~m!5r~m!, “∧B~m!5 j ~m!,

“–B~m!50, “∧E~m!1]0B
~m!50. ~6.2!

We shall make use of the standard notation for the elm field (E,B)[F, and currents (r,j )[T .
The fields for these two kinds of limits derive from a four-vector potential~f,A! having an

electric or magnetic character:

E~e!52“f~e!, B~e!5“∧A~e!;

E~m!52“f~m!2]0A
~m!, B~m!5“∧A~m!.

These potentials~and the corresponding four-vector currents! transform according to the two
classes of Galilean four-vectors. Although, in principle, it may appear somewhat strange, the
two types of vectors for the Galilei group~contrary to the Poincare´ situation!, due to the non-
equivalence of the ‘‘vector representation’’ and its corresponding contragredient represen
Indeed, letg0[(v,R) be an element of the homogeneous Galilei groupG0 that is generated by
rotations and inertial transformations. Then, a space–time vector (t,x) is transformed byg0 under
the ‘‘vector representation,’’ i.e., according to the 434 matrix,

S txD→S t8x8 D5S 1 0

v RD S txD .

FIG. 4. Inversion for NH2 .
J. Math. Phys., Vol. 38, No. 7, July 1997
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This is also the case for the electric current (r (e),j (e)), where the electric charge remains invaria
However, the space–time gradient (]0 ,“) @or the magnetic current (r (m),j (m))# transform accord-
ing to the contragredient representation given by

S txD→S t8x8 D5S 1 2vtR

0 R D S txD .
An extensive discussion on the physical consequences of these Gelm limits can be cons
Ref. 8. Here we shall be devoted to studying with some detail the invariance of the Gelm
tions, ~6.1! and~6.2!, under a suitable form of the Galilei group representations. Therefore, l
introduce first the language of local representations that will later be also used in the con
context.

B. Local representations

The local representations of Lie groups9 constitute an adequate framework to handle
symmetries of the Gelm equations. In the following we will briefly summarize the basic points
are essential in subsequent developments.

Let G be a connected Lie group acting transitively on a manifoldM andG0 the isotropy
group of an arbitrary but fixed pointx0PM ; henceM is a homogeneousG space diffeomorphic
toG/G0 . A principal bundleG(M ,G0 ,p) can be built, with baseM , typical fiberG0 , total space
G, and projectionp:G→M . Given a cross sections of the bundle, i.e.,s:M→G, such thatp
+s5 idM , and a finite matrix representationD of G0 on the linear spaceV we can induce a
representation of the wholeG in the following way. LetED(M ,V) be the vector bundle associate
to G(M ,G0 ,p) by means ofD. The set of cross sections ofED is the carrier space of a repre
sentationU of G that can be expressed in any open set,B3V(B,M ), of ED as

@U~g!F#~gx!5D~„s~gx!…21gs~x!!F~x!, gPG, xPM . ~6.3!

When M is interpreted as the physical space–time, the representation~6.3! is called a local
representation~l.r.! of G. This induction method allows us to obtain and classify every l.r.
G, up to gauge equivalence. We have avoided any technical requirement, which are fulfilled
cases under study along this section~for more details see Ref. 9 and references therein!.

For later purposes it will be also useful to write down the version of local representatio
an infinitesimal level. According to the action~6.3! of a l.r. ofG on the spaceED , a Lie generator
X of g ~the Lie algebra ofG! will be represented by a vector field ofX(ED) defined by

U~X! f ~x!5
d

dt
„U~e2tX! f …~x!U

t50

, ~6.4!

which in a local chart of coordinates takes the form

U~X!5D@g~X,x!#1Xm~x!]m , ~6.5!

whereD is the matrix representation ofg spanning the group representationD, and g(X,x)
Pg0 is the infinitesimal generator att50 corresponding to the group eleme
s21

„e2tX(x)…e2tXs(x). The last termXm(x)]m is the vector field coming from the action ofX on
the space–timeM . Obviously, here the fiberV and its tangent space at any point are identifie
J. Math. Phys., Vol. 38, No. 7, July 1997
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C. Local representations of the Galilei group

Henceforth,G will always denote the connected Galilei group andG05^J,K & the homoge-
neous Galilei group, which is the isotropy group of the origin. BothG andG0 can be considered
as contractions~in the nonrelativistic limit! of the Poincare´ groupP (3,1)5ISO0(3,1) and of the
Lorentz groupL1

↑ 5SO0(3,1), respectively.
A generic element ofG will be denoted byg5(b,a,v,R)PG, whereb, a, andv are the~real!

parameters associated with the time or space translations and Galilean boosts, respectiv
R denotes a 3-D spatial rotation. The group low ofG is

g5~b8,a8,v8,R8!~b,a,v,R!5~b81b,R8a1v8b,R8v1v,R8R!.

The action ofG over the space–time manifold in coordinates (x0,x) is gx[g(x0,x)5(x0

1b,Rx1x0v1a).
Since in this case the above-mentioned principal bundleG(M ,G0 ,p) is trivial, we can fix a

global section defined bys(t,x)[(t,x,0,I )5exp(tH1x–P). Now, due to the semidirect structur
of G, one can check that the element ofG0 that enters in~6.3! takes a simple expression:

s~gx!21gs~x!5~0,0,v,R![~v,R!,

so that~6.3! simplifies into

@U~g!F#~gx!5D~v,R!F~x!, gPG, xPM . ~6.6!

The matrix representations ofG0 that are appropriate to describe the Gelm fields are originate
two types of contractions from the 6-D representationD1,1 of L1

↑ that correspond to the above
mentioned two nonrelativistic limits. On the other hand, the transformation of the curren
derived from the~again two classes of! contractions of the 4-D vector representationsD1/2,1/2 of
L1
↑ . Joining up these elements, we arrive at the ‘‘electric’’ and ‘‘magnetic’’ l.r.’s that take

following form;

(i) Electric l.r.,

@Uf
~e!~g!F#~x!5S R O

~v–J!R RDF~g21x!,

@Uc
~e!~g!I #~x!5S 1 0t

v RD I ~g21x!; ~6.7!

(ii) magnetic l.r.,

@Uf
~m!~g!F#~x!5S R 2~v–J!R

O R DF~g21x!,

@Uc
~m!~g!I #~x!5S 1 vtR

0 R D I ~g21x!, ~6.8!

wherex5(x0,x). The fields and currentsF andI are column vectors;R is a 333 Euclidean
rotation of SO(3) and J[(J1 ,J2 ,J3) constitutes an anti-Hermitian basis forso(3), such that
(a–J)b5a∧b. Finally, the subscriptsf andc stand for the representations supported by the fie
and the currents, respectively. Note that in these cases, the vector spaceV is real and it is six
dimensional or four dimensional, depending on whether Gelm fields or currents are invo
respectively.
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If F[(E,B) andI[( j 0,j ) verify the Galilean field equations~6.1! or ~6.2!, so doUf(g)F
and Uc(g)I using the representations~6.7! or ~6.8!, respectively, for anygPG. This is the
precise meaning when we say that the Gelm is Galilean invariant.

In order to consider also the invariance of Gelm’s under parity~P! and time inversion~Q!, we
implement the representation of these discrete transformations in the following way~the same
procedure is valid for both limits!:

Pf5S 2I3 O

O I3
D ^ p, Qf5S I3 O

O 2I3
D ^ u, ~6.9!

Pc5S 1 0t

0 2I3
D ^ p, Qc5S 21 0t

0 I3
D ^ u, ~6.10!

whereI35diag(1,1,1), andp andu are operators acting over the functions defined onM in the
form (p f )(t,x)5 f (t,2x) and (u f )(t,x)5 f (2t,x).

VII. CONFORMAL INVARIANCE OF GALILEAN ELECTROMAGNETISMS

In the previous section we have shown the behavior of Gelm’s under Galilean transform
using the theory of local representations. Now we shall apply the same approach in order
with the Galilean conformal algebras and to prove the conformal invariance of the Gelm.

A. Local representations of the Galilean conformal algebras

Let gl be a Galilean conformal algebra. Recall that we keep fixed the originx0 as well as the
global section used for the Galilei group. In this case the Lie algebra of the isotropy group
origin is gl

05^J,A,D,Ds ,K ,C2 ,...,C2l&. We will also include along this discussion the repres
tation of the discrete symmetries: parityP f (Pc), and time inversionQ f (Qc) for fields ~cur-
rents!.

We proceed according with the following program.

~1! Find a pair of matrix representations ofgl
0, such that restricted tog05^J,K & coincide with

those given by~6.7! and ~6.8! for the Gelm fields and currents.
~2! Classify all of them under matrix equivalence~also including space and time inversions!.
~3! Compute thegl

0 elementsg(X,x) in order to get~6.5!.

It can be shown that the resulting matrix representations consist of a biparametrica,b)
family, (a,b)PR2, that for the shake of shortness are given below only for the electric limit~the
magnetic case presents a similar solution; see Ref. 13!:

(i) Matrix representation for fields,

D f
~e!~Ji !5S 2Ji O

O 2Ji
D , D f

~e!~Ki !5SO O

Ji OD ,
D f

~e!~Ds!5S I3 O

O ~b11!I3
D , D f

~e!~Cn
i !50, ~7.1!

D f
~e!~D !5S ~a1 lb11!I3 O

O ~a1 lb1 l !I3
D , D f

~e!~A!50.

(ii) Matrix representations for currents,
J. Math. Phys., Vol. 38, No. 7, July 1997
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D c
~e!~Ji !5S 0 0T

0 2Ji
D , D c

~e!~Ki !5S 0 0t

ei OD ,
D c

~e!~Ds!5S b 0t,

0 ~b11!I3
D , D c

~e!~Cn
i !50, ~7.2!

D c
~e!~D !5S ~a1 lb11! 0t

0 ~a1 lb1 l !I3
D , D c

~e!~A!50,

with n52,...,2l and i51,2,3 in both cases.
The elementsg(X,x) of gl

0 can be easily evaluated by means of the Baker–Campb
Hausdorff formula. For the Galilean generatorsH, P, andK , as well as the dilatationsD and
Ds , the relationg(X,x)5X is satisfied. The only nontrivial results are the following ones:

g~A,x!5A1tD12lx iKi , g~Cn
i ,x!5 (

k51

n S nkD ~ t !kCn2k
i , ~7.3!

with i51,2,3 andn52,...,2l .
Finally, the realizations,U f

(e) and Uc
(e) , as fundamental fields~6.5! of the Galilean

l -conformal algebras, are the following for the electric limit.
(iii) Field representation,

U f
~e!~H !52] t ,

U f
~e!~Ji !5S 2Ji O

O 2Ji
D 1~x∧“ ! i ,

U f
~e!~Cn

i !5n~ t !n21SO O

Ji OD 2~ t !n] i , n50,...,2l ,

~7.4!

U f
~e!~D !5S ~a1 lb11!I3 O

O ~a1 lb1 l !I3
D 2t] t2 lx i] i ,

U f
~e!~Ds!5S bI3 O

O ~b11!I3
D 2xi] i ,

U f
~e!~A!5S 2~a1 lb11!tI3 O

2lx iJi 2~a1 lb1 l !tI3
D 2~ t !2] t22l tx i] i .

(iv) Current representation,

Uc
~e!~H !52]0 ,

Uc
~e!~Ji !5S 0 0T

0 2Ji
D 1~x∧“ ! i ,

Uc
~e!~Cn

i !5n~ t !n21S 0 0t

ei OD 2~ t !n] i , n50,...,2l ,
~7.5!
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Uc
~e!~D !5S ~a1 lb11! 0T

0 ~a1 lb1 l !I3
D 2t] t2 lx i] i ,

Uc
~e!~D8!5S b 0T

0 ~11b!I3
D 2xi] i ,

Uc
~e!~A!5S 2~a1 lb11!t 0T

2lx 2~a1 lb1 l !tI3
D 2~ t !2] t22l tx i] i ,

where i51,2,3.
We shall introduce at this moment an auxiliary Lie algebra representation equivalent to~7.5!

by means of the matrix realizationQc ~6.10! of the time-inversion operator:

Ûc
~e! :5QcUc

~e!Qc , Ûc
~m! :5QcUc

~m!Qc . ~7.6!

The only generator realizations that undergo a modification are those corresponding toK i , Cn ,
andA. We shall make use of this equivalence in the next section.

B. Conformal invariance of Galilean electromagnetisms

Now we have all the elements to undertake the problem of the conformal invariance
Gelm under the infinitesimal conformal transformations just obtained in~7.4! and ~7.5!.

In general, given a linear equationQ(x,]x)F(x)50 and a local representationU of a Lie
groupG, we will say thatG is an invariance group of this equation if

Q~gx,g* ]x!@U~g!F#~gx!50, ;gPG,

@or, alternatively,Q(x,]x)@U(g)F#(x)50, ;gPG#, whereg* stands for the contragredient a
tion. We can reformulate this condition in the language of fundamental fields as

Q~x,]x!U~X!F~x!50, if Q~x,]x!F~x!50, ;XPg. ~7.7!

A sufficient condition for relation~7.7! to be fulfilled is

Q~x,]x!U~X!5lXU~X!Q~x,]x!, lXPC`~M !. ~7.8!

In order to adapt this general invariance formulation to the Gelm equations, it is conveni
define a pair of auxiliary four-vectorsa andb in terms of expressions~6.1a! and ~6.1b!, respec-
tively, for the electric limit@and for the magnetic limit with obvious modifications from~6.2!#.
Restricting to the electric case,

ae[~a0,a!:5~“–E,“∧B2]0E!,

be[~b0,b!:5~“–B,“∧E!. ~7.9!

Once known the~infinitesimal! transformation rules for the fields, they induce a set of tra
formation properties for these new magnitudes~7.9!. The Gelm equations would be conform
invariant if according to expression~6.1a!, ae supports some of the realizationsUc

(e) for the
currents. However, looking at~6.1b!, be will support a representation that should not be nec
sarily the same, in fact, it is checked to transform underÛc

(e) given by ~7.6! ~similar consider-
ations apply for the magnetic case!.

Our main result is summarized in the following proposition.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Proposition: The Galilean electromagnetic equations for the electric limit, given in (6.1),
invariant under the Galilean conformal transformations if and only if the parameters (a,b) c
acterizing their local representations (7.4) verify the condition11a12l1 lb50. In this case the
currents transform according to the(a,b)-(electric) realization (7.5).

The proof consists of a direct but tedious calculation.13 h

For the magnetic case we obtain that the parametersa andb ought also to verify the same
relationship as that in the electric case. However, whereas the fields support a (a,b)-~magnetic!
local realization the currents transform according to another different labeled by (a,b21).

A glance at expressions~7.4! and~7.5! shows that if condition 11a12l1 lb50 is satisfied,
the fundamental fields of the (a,b) representation do not depend on the explicit value of
parametersa and b, except for the generator of spatial dilatations~a common field for any
l -conformal algebra!. This particular role played byDs gives us one more argument in addition
those already used in Ref. 6 for discarding it from the genuine conformal algebras. The
reasoning and results are also valid in the magnetic limit.

VIII. CONCLUSIONS

In this paper we have added some properties of the nonrelativistic conformal algebras to
already found in Ref. 6. First, we have considered the problem of linearizing the conformal a
leading to global groups of transformations. In this sense a wide discussion for thel51 case has
been supplied. Here, the space–time points were put in correspondence to different sectio
5-D cone. For the Galilean, oscillating, or expanding Hookian kinematics, this section wa
tained by means of a plane parallel to the generatrix, and perpendicular or parallel to the
respectively. They lead to parabolic, elliptic, or hyperbolic curves describing the physical sp
time completed with the infinity points, where the inversions are well defined. In particular, fo
expanding case it was necessary to double the space besides the usual infinity points.

It was also interesting to show the representations of these conformal groups applie
physical problem, as it is the case of the Galilean electromagnetism. The set of the pertinen
representations, obtained in the last section, are labeled by two real parameters (a,b). The con-
formal invariance of the Gelm compels these parameters to be related~only one is left indepen-
dent!. Nevertheless, it is possible to hide these parameters in the representation; this
achieved only at the cost of excluding the generatorDs by asserting that in this context the re
conformal symmetry Lie algebras of the Gelm are those generated
$H,A,D,P,K ,...,C1 ,...,C2l%. A systematic study of Hookian electromagnetism is in prepara
and will be published elsewhere.

Finally, mention that this paper can be considered as part of a program of research in
some years ago trying to use group theoretical methods for studying physical systems inte
with electromagnetic fields. In particular, the use of local representations has proved very su
ful: for instance, the Euclidean symmetry for charged particles in a plane under a constan
netic field perpendicular to the plane lead in a canonical way to the minimal electromag
coupling and the Landau levels;9 the relativistic14 ~or nonrelativistic15! Maxwell group, which is a
noncentral extension of the Poincare´ ~Galilei! group, arise when dealing with elementary syste
interacting with an external elm field. On the other hand, in a recent paper12 it has been computed
and classified as the elm gauge-invariant potentials under the Poincare´ subgroups of dimensions 4
5, and 6, up to conjugation. The elm fields obtained from these potentials agree with those
16, which were mainly derived by symplectic techniques. It is worthy to note that the proce
used in Ref. 12 is based on an earlier work,17 where the invariant connections~or gauge-invariant
elm potentials in a physical language! on an Abelian principal bundle under a group of transf
mations are characterized~a non-Abelian version of this method in the framework of non-Abel
gauge theories was presented in Ref. 18!.
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A new family of solvable self-dual Lie algebras
Oskar Pelca)
Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
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A family of solvable self-dual Lie algebras is presented. There exist a few methods
for the construction of nonreductive self-dual Lie algebras: an orthogonal direct
product, a double extension of an Abelian algebra, and a Wigner contraction. It is
shown that the presented algebras cannot be obtained by these methods. ©1997
American Institute of Physics.@S0022-2488~97!04007-3#

I. INTRODUCTION

A self-dual Lie algebraA is a finite-dimensional Lie algebra that admits aninvariant metric,
i.e. a symmetric nondegenerate bilinear form~•,•! that is invariant under the adjoint action of th
corresponding group:

~gx1g
21,gx2g

21!5~x1 ,x2!, ;xiPA, ~1!

for anyg in the group, or equivalently,

~@y,x1#,x2!52~x1 ,@y,x2# !, ;xiPA, ~2!

for any yPA ~other common names for such algebras are ‘‘orthogonal’’ and ‘‘symmetric-s
dual’’!.

Self-dual Lie algebras are important in physics. In string theory, one needs a~highest weight!
representation of the Virasoro algebra.1 An important source of such representations is the af
Sugawara construction,2 starting from a Kac–Moody algebra.3 Self-dual Lie algebras are precise
the Lie algebras that are needed for such a construction.4,5 From the point of view of two-
dimensional conformal quantum field theories, a self-dual Lie algebra is the mathematical
ture needed for the construction of Wess–Zumino–Novikov–Witten~WZNW! models.6

The best known families of self-dual algebras are the semisimple algebras@where the~essen-
tially unique! invariant metric is the Killing form# and the Abelian algebras~for which every
metric is trivially invariant!. However, these are not the only ones. Any self-dual Lie algebra
be constructed, using semisimple and Abelian algebras, by a sequence of construction ste
of which is either anorthogonal direct sum~i.e., a direct sum equipped with the natural direct s
metric! or a procedure calleddouble extension7 ~see also Ref. 5!. Self-dual algebras that are no
orthogonal direct sums are calledindecomposableand those that are also nonreductive and are
double extensions of anAbelian algebra will be calleddeeper~following Ref. 5!, since their
construction involves more than one step of double extension. Another method to obtain se
algebras is through aWigner contraction,8 as described in Ref. 9. A self-dual algebra obtained
this method is always a double extension of an Abelian algebra and therefore is not a
algebra.

In this paper we present a new~as far as we know! infinite family of indecomposable
nonreductive~in fact, solvable!, self-dual algebras$A3m%. We show that these algebras~except
the first two! aredeeperalgebras, in the sense defined above. Among the known self-dual
bras, deeper algebras are rare~in fact, we do not know any other examples!. The reason for this
may be the absence of a practical method to construct such algebras~as will be explained in Sec

a!Electronic mail: oskar@shum.cc.huji.ac.il
0022-2488/97/38(7)/3832/9/$10.00
3832 J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of the
em.

e
ck
igner
e gap
about

ng.

fy the

3833Oskar Pelc: New solvable self-dual Lie algebras

¬¬¬¬¬¬¬¬¬¬
IV !. Therefore the family presented here may provide a valuable test ground in the study
properties and structure of general self-dual algebras and the physical models based on th10

The algebra

An[sp$Ti%0< i<n

is defined by the Lie bracket

@Ti ,Tj #5H ~ i2 ĵ !Ti1 j , i1 j<n,

0, otherwise,
~3!

whereî [ i mod 3 is chosen to be in$21,0,1%. Whenn̂50, the metric

~Ti ,Tj !5d i1 j2n1bd id j ~4!

is an invariant metric onAn ~for arbitraryb!.
In Sec. II we define the algebrasAn and prove that~for n̂50! these are indeed self-dual Li

algebras. In Sec. III we find all the ideals ofAn . This result is used in Sec. V, where we che
which of these algebras is a double extension of an Abelian algebra or a result of a W
contraction. Before that, in Sec. IV, we describe these two methods briefly, emphasizing th
that the algebras presented here may help to reduce. Finally, in Sec. VI, we comment
possible generalizations.

II. THE ALGEBRA An

Consider a vector space, equipped with the basis$Ti% iPZ and the following ‘‘Lie bracket ’’:

@Ti ,Tj #5~ i2 ĵ !Ti1 j , ~5!

where î[ i mod 3 is chosen to be in$21,0,1%. The mapi→ î is almosta ring homomorphism
Z→Z: it preserves multiplication,

~ i ĵ !5 î ĵ ~6!

and almost preserves addition:

~ i1 ĵ !5~ ı̂1 ̂̂ !, ~2 î !52 î , ~7!

~ i2 ĵ !50⇔ î5 ĵ ~8!

@but note that 1ˆ 1 1̂ Þ (1 1 1̂)11#. These are the properties that will be used in the followi
Particularly useful will be the property

î5 ĵ⇔~ i1 k̂!5~ j1 k̂!, ~9!

which follows from ~8!.
The bracket is manifestly antisymmetric so to obtain a Lie algebra, there remains to veri

Jacobi identity. Since

@@Ti ,Tj #,Tk#5 ĉi jkTi1 j1k , ci jk[~ i2 j !~ i1 j2k!, ~10!

the Jacobi identity takes the form
J. Math. Phys., Vol. 38, No. 7, July 1997
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ĉi jk1 ĉ jki1 ĉki j50. ~11!

This identity holds without the ‘‘hats’’, therefore, by~7!,

ĉi jk1 ĉ jki1 ĉki j50 mod 3, ~12!

so ~11! can be false only when

ĉi jk5 ĉ jki5 ĉki j561. ~13!

ĉi jk 5 1 isequivalent to (i 2 ĵ ) 5 ( i 1 j 2 k̂) 5 61 and, therefore,also to

i5 j61 mod 3, k52 j mod 3,

and this cannot hold simultaneously for all the tree cyclic permutations of$ i jk %. Replacing
i↔ j , one obtains the same result forĉi jk521. Therefore, the Jacobi identity holds and the abo
algebra is indeed a Lie algebra~over the integers!.

Let us consider the subalgebra,

A`[sp$Ti% i>0 .

Dividing by the ideal sp$Ti% i.n ~for some positive integern!, one obtains the finite-dimensiona
Lie algebra,

An[sp$Ti%0< i<n ,

with the Lie bracket

@Ti ,Tj #5H ~ i2 ĵ !Ti1 j , i1 j<n,

0, otherwise.
~14!

From now on we restrict our attention to such an algebra. It is a solvable algebra,T0 being the
only nonnilpotent generator and it possesses aZ grading: deg(Ti) 5 i ~inherited from the original
infinite-dimensional algebra!.

We would like to find an invariant metric~•,•! onAn . Using ~3!, the invariance condition

~@Tk ,Ti #,Tj !1~Ti ,@Tk ,Tj # !50

takes the form

~k2 î !~Tk1 i ,Tj !1~k2 ĵ !~Tk1 j ,Ti !50 ~15!

~hereTi [ 0 for i . 0!, and, in particular, fork 5 0:

„~2 î !1̂~2 ĵ !…~Ti ,Tj !50, ~16!

which, by Eqs.~7! and ~8!, is equivalent to

~ i1 ĵ !~Ti ,Tj !50. ~17!

This means that two out of each three ‘‘reversed’’~right-up-to-left-down! diagonals vanish. Let us
look for a metric with only one nonvanishing diagonal. To obtain a nondegenerate form, this
be the central diagonal, and according to~17!, this is possible only forn̂ 5 0. We, therefore,
concentrate on this case and consider a metric of the form
J. Math. Phys., Vol. 38, No. 7, July 1997
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~Ti ,Tj !5v jd i1 j ,n , vn2 j5v jÞ0. ~18!

For such a metric the invariance condition~15! takes the form

~k2 î !v j1~k2 ĵ !v i50, ; i1 j1k5n, ~19!

and usingn̂50, one obtains

~2i1 ĵ !v j1~2 j1 î !v i50. ~20!

First we takeĵ50, which gives

î ~v i12̂v j !50, ~21!

and this implies~since 2̂Þ 0!

v i5H v i522̂v0 , îÞ0,

v i5v0 , î50 .
~22!

Using this result we takeî , ĵ Þ 0 in ~20! and obtain

2̂•3̂~ i1 ĵ !v050, ~23!

which is satisfied, since 3ˆ50. Also, since22̂51, we havev i5v0 , ; i . To summarize, we proved
the following.

Lemma: A (nondegenerate) invariant metric onAn with only one (reversed) diagonal exis
iff n̂50 and it is proportional to

~Ti ,Tj !5d i1 j2n . ~24!

Note that one can add to the metric a multiple of the Killing form, obtaining

~Ti ,Tj !5d i1 j2n1bd id j ~25!

~with b arbitrary!. The appearance of the second term can also be seen as a result of the~auto-
morphic! change of basis,

T0→T01
1
2bTn .

III. THE IDEALS IN An

In this section we continue to analyze the algebraAn , looking for all its ideals and conclud
ing that, forn̂ 5 0, the only ideals are of the form

Am,n[sp$Ti% i5m
n .

This will be important later, when we will check if these algebras are double extensions of Ab
algebras. The grading onAn @deg(Ti) 5 i # will play a central role in the following and will be
called ‘‘charge’’. The adjoint action ofTi increases the charge byi . Note that there are only
positive charges, so that the adjoint action cannot decrease the charge. This proves thatAm,n ~for
anym! is indeed an ideal.

Let T be an ideal inAn . We choose a basis forT such that each element has adifferent
minimal charge~this can be easily accomplished! and, therefore, can be labeled by it. We, the
fore, have~after an appropriate normalization!
J. Math. Phys., Vol. 38, No. 7, July 1997
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T 5sp$Sa%, Sa2TaPAa11,n . ~26!

Isolating inT themaximalideal of the formAm,n , we obtain

T 5sp$Sa%aPA%Am,n , m21¹A. ~27!

Observe that this implies that for any element inT that is not inAm,n , its minimal charge is in
A.

The choiceA5B ~the empty set! corresponds to the ‘‘trivial’’ solutionT 5Am,n . In the
following we look for other solutions, i.e., withA Þ B. This also implies max(A) , m21. We are
going to explore the restrictions on theSa’s implied by the claim thatT is an ideal inAn . Since
Am,n is an ideal by itself, the only restrictions come from

@Ti ,Sa#PT , ;aPA, i50,...,n. ~28!

T contains all terms with charge of at leastm, therefore, restrictions will arise only in terms in th
commutator with smaller charge. Fori > m2 a there are no such terms. As the chargei decreases,
there will be more nontrivial terms, therefore, we will start from the higher charges.

For i5m2a21 we have~in the following, ‘‘.’’ means ‘‘equality up to an element o
Am,n’’ !:

@Tm2a21 ,Sa#.@Tm2a21 ,Ta#5~m22â21!Tm21 ~29!

~here and in other similar cases the hat should be applied to the whole expression b
parentheses!. Tm21¹T ~otherwiseAm21,n,T !, therefore,

~m22â21!50. ~30!

Using Eqs.~7! and ~8!, this is equivalent to

â52~2â !52~m21̂!, ~31!

and since this is true for allaPA, we also have

â15â2 , ;a1 ,a2PA. ~32!

Next, for i5m2a22 we have@using Eqs.~31! and ~7!#

@Tm2a22 ,Sa#.@Tm2a22 ,Ta1sa
a11Ta11#52Tm221sa

a11Tm21 . ~33!

This implies thatm22 is a minimal charge of an element ofT , therefore,m22PA. Substituting
a 5 m2 2 in ~33!, we obtain

@T0 ,Sm22#.2Tm221sm22
m21Tm21.2Sm2212sm22

m21Tm21 , ~34!

and this impliessm22
m2150, so with no loss of generality, we can choose

Sm225Tm22 . ~35!

Finally, for i5m2a23 and m22.aPA, we have

@Tm2a23 ,Sa#.@Tm2a23 ,Ta1sa
a11Ta111sa

a12Ta12#5Tm231sa
a12Tm21 , ~36!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and as before this should imply thatm23PA ~being the minimal charge of an element ofT !.
However, according to Eq.~32!, this is impossible sincem22PA. Therefore,A contains no
elements other thenm22 andT is of the form

T 5sp$Tm22% %Am,n . ~37!

A straightforward check@or use of Eq.~31!# shows that this is indeed an ideal iffm̂50.
Is this ideal really nontrivial? It turns out that, forn̂Þ1 ~including the case of main interest t

us: n̂50!, it is not! To see this, consider the~nonsingular! linear map defined byTi°Ti8
[2Ti1 î ~note that forn̂51 this is not well defined!. Sincem̂50, this map transformsT to
Am21,n ,

@Ti8 ,Tj8#52~ i2 ĵ !Ti1 j1~ î1 ĵ!52~ i2 ĵ !Ti1 j1~ i1 ĵ !5~ i2 ĵ !Ti1 j8 ~38!

@the second equality follows from the fact that for (i 2 ĵ ) Þ 0, (i 1 ĵ ) 5 î1 ĵ #, therefore, thismap is
an automorphism of Lie algebras, which means thatT 5 sp$Tm22% % Am,n is automorphic to
Am21,n .

IV. CONSTRUCTION METHODS OF SELF-DUAL LIE ALGEBRAS

Our next goal is to show how the self-dual algebras described above~i.e., with n̂ 5 0! fit into
the general family of self-dual algebras, and to clarify their significance. As noted in the I
duction, it has been proved7 that any self-dual Lie algebra can be constructed, using semisim
and Abelian algebras, by a sequence of construction steps, each of which is either anorthogonal
direct sum~i.e., a direct sum equipped with the natural direct sum metric! or a procedure called
double extension.7 This result seems, at first sight, to make all self-dual algebras available t
but practically, this is not so, as we now explain.

Thedouble extension of a self-dual Lie algebraA by another Lie algebraB ~not necessarily
self-dual! can be seen as a two-step process~we will give here only the information that will be
needed later; more details can be found, for example, in Ref. 10!. The first step is to combineA
andB to a semidirect sum,

S 5B *A ~39!

~i.e.,S is a direct sum of the vector spacesB andA, B is a subalgebra, andA is an ideal!, in
such a way that the metric inA will be invariant also under the action ofB. The second step is
the extension ofS by an Abelian algebraB* with dim B*5dim B. The resulting algebraD
has a Lie product of the following general form:

@•,•# B A B*

B B A B*

A A A1B* 0

B* B* 0 0

. ~40!

For the first step one needs, in addition to the algebrasA andB, a representation ofB as
derivations inA. Moreover, it was shown in Ref. 5 that ifB acts throughinner derivations~i.e.,
the action of eachy P B coincides with the adjoint action of an elementŷ P A: y:x→@ ŷ,x#!, the
resulting algebraD is decomposable~i.e., expressible as an orthogonal direct sum!. This means
that for the construction of an indecomposable double extension, one needs knowledge ab
outer ~noninner! derivations inA, and such information is not available in general. Therefor
discovery of unknown~indecomposable! self-dual algebras is indeed significant.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Another method for constructing new self-dual Lie algebras is by performing aWigner
contraction8 ~this was proposed, in the context of string theory, in Ref. 9!. The initial data for this
construction consists of a self-dual Lie algebraS 0 and a subalgebraB0 of S 0 such that the
restriction of the metric onS 0 to B0 is nondegenerate. Unlike in double extensions, the ini
data needed here is very simple and generally available~for example, one can takeS 0 andB0 to
be simple!, therefore, the method can be easily used to find many new nontrivial self-dual
bras. It turns out, however,5 that the resulting algebra is always a double extension of anAbelian
algebra. Actually, whenA ~in the process of double extension! is Abelian, the problem of the
initial data described above does not exist12 and one can indeed construct large families of dou
extensions of such algebras. Therefore the nontrivial task is to find~indecomposable, self-dual!
deeperalgebras~as they were called in Ref. 5!: algebras that their construction out of simple a
one-dimensional algebras involves more than one double extension.13 In the next section we show
that almost all the algebras defined in Sec. II are such algebras.

V. An AS A DEEPER ALGEBRA

In the previous section we described the following inclusion relations among the inde
posable self-dual algebras:

$Indecomposable, Self-Dual Algebras%
ø

$~Single! Double-Extensions of Abelian Algebras%
ø

$Algebras obtainable by a Wigner contraction% .

The results of this section will imply that these arestrict inclusions, i.e., all the three sets a
distinct. Explicitly we will show here that among the algebrasAn with n̂ 5 0 ~which were shown
in Sec. II to be self-dual!,A3 can be obtained by a Wigner contraction,A6 is a double extension
of an Abelian algebra butcannotbe obtained by a Wigner contraction, and the rest are de
algebras, i.e. they arenot double extensions of Abelian algebras and, therefore, in particular,
cannot be obtained by a Wigner contraction.

First, from the list of the ideals found in Sec. III we observe thatAn is indeed
indecomposable.14 Next, we try to identify inAn the structure of a double extension of an Abeli
algebra. The Lie product in an algebraD with such a structure is of the form

@•,•# B A B*

B B A B*

A A B* 0

B* B* 0 0

. ~41!

In this table we recognize two properties ofD .

~1! D is a semidirect sum ofB and the idealT 5A1B* : D5B *T .
~2! @T ,T #,B * , therefore,dim@T ,T # < dim B * 5 dim B.

Consider the first property. The candidates for the idealT were found in the previous section
It was shown thatT 5 Am,n ~possibly after an automorphic change of basis$Ti%!. Following the
same approach, we choose a basis$Ri% i50

m21 for B such thati is the minimal charge ofRi .
@Tm21 ,Tm22# 5 T2m23 and2m2 3, n ~sincedimAn> 2 dimB!, therefore,@Rm21 ,Rm22# Þ 0
and its minimal charge is 2m 2 3.B is closed under the Lie bracket andBùT 5$0%, therefore,
@Rm21 ,Rm22#¹T , which implies that 2m23,m. This leaves us withm51 or 2.15

As for the second property, we have
J. Math. Phys., Vol. 38, No. 7, July 1997
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dim@T ,T #<dim B5m. ~42!

One can easily verify that

@Am,n ,Am,n#5A2m11,n , ~43!

therefore, Eq.~42! implies n<3m. On the other hand,n11>2m ~since dimAn>2 dimB!.
Recalling thatn̂50, we obtain three possibilities:

~m,n!5~1,3!,~2,3!,~2,6!, ~44!

and a direct check confirms that each of them indeed corresponds to a double extensio
Abelian algebraA ~in the second possibilityA is zero dimensional!. Observe that there is mor
than one way to represent an algebra as a double extension. Moreover,A6 can be obtained both
by extending an Abelian algebra~with m52! and by extending a non-Abelian algebra~with
m51!, so the number of double extensions leading to a given Lie algebra is not unique.16

Turning to the search of the structure of a Wigner contraction, the only candidates are
enumerated in~44!. A3 is the Heisenberg algebra, and it is indeed a Wigner contractio
so(2,1)% so(2) @which leads to the first possibility in~44!#. The other candidate isA6 , which
corresponds to the last possibility in~44!. To examine this case, we use the further requirem
that in a Wigner contraction,B must be self-dual.17 Form 5 2,B is the two-dimensional, non
Abelian Lie algebra,

@R0 ,R1#5R1 .

This algebra is not self-dual, therefore, even ifA6 can be obtained by a Wigner contraction, th
procedure will not lead to an invariant metric onA6 .

VI. GENERALIZATIONS OF THE ALGEBRAS An

We conclude with some comments about possible generalizations of the algebras defi
Sec. II, obtained by using the defining relations~5! with adifferentchoice of the map ‘‘̂ . ’’ If one
takes ‘‘ˆ ’’ to be some homomorphism fromZ to some commutative ringF with unity, ~6!–~8!
hold, as well as~11!, and one obtains a Lie algebra overF. For example, one can takeF5Zp
~p a positive integer! with ‘‘ ˆ ’’ being the natural homomorphism. Another example is obtained
taking F5Z and ‘‘ˆ ’’ the identity map, the result being the Virasoro algebra~with zero central
charge!. A different approach would be to keepF5Z and to look for a map ‘‘̂ ’’ ~not necessarily
a homomorphism! with the required properties. A natural candidate would beî5 i mod p ~p a
positive integer!. Takingp52 and ˆ :Z→$0,1%, an analysis similar to thep53 case leads to the
choice (i , j ,k)5(1,0,0), for which the right-hand side of~11! does not vanish~ĉi jk5 ĉki j51,
ĉ jki50!. There seems to be no other choice ofp and range of the map ‘‘ˆ ’’ such that the
multiplication is preserved.

In the previous sections we referred to the specific choiceî5 i mod 3P$21,0,1%, but actually
Sec. II can be easily extended to a general commutative ringF with unity that has no zero divisor
and a general map ‘‘ˆ ’’ satisfying properties~6!–~8! and the Jacobi identity~11!. The result is that
the statement of the lemma is true whenever 3ˆ50, while for 3̂Þ0 ~and, in particular, forî5 i !
there is no invariant metric with only one diagonal@for 2̂50, ~21! fails while for 2̂,3̂Þ0, ~23!
fails#. In most of Sec. III the only additional assumption used is 3ˆ50. Only the automorphism
described at the end of the section assumes the explicit form of ‘‘ˆ ’’.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Nonlinear operators. II
Charles Schwartz
Department of Physics, University of California, Berkeley, California 94720

~Received 20 December 1996; accepted for publication 15 April 1997!

This work extends the previous development of new mathematical machinery for
nonlinear operators acting on a vector space. Starting from the usual concept of
inner product, we find that Hermitian, anti-Hermitian, and unitary nonlinear opera-
tors can be defined without bringing in the ideas of a dual vector space or adjoint
operators. After looking briefly at how these general ideas might be used in clas-
sical mechanics and to extend the linear Schro¨dinger equation of quantum theory,
the topic of Lie groups and Lie algebras is studied. Many, but not all, of the
familiar features of that topic are extended to nonlinear operators. New represen-
tations are found for a few simple cases of interest to physics, and some provoca-
tive implications for elementary particle theory are discussed. ©1997 American
Institute of Physics.@S0022-2488~97!04307-7#

I. INTRODUCTION

This paper continues a programmatic effort to see how far the conventional mathema
quantum theory—which is based upon the application of linear operators in a Hilbert space—
be extended to include rather general nonlinear operators. Previous authors have investigat
happens when one adds nonlinear terms to the Schro¨dinger wave equation. The present study,
contrast, is not limited to any such particular equation, but rather reworks the more ge
mathematical structure of quantum theory: Physical states represented by vectors in an a
Hilbert space and the operators that act upon these vectors, transforming them into other v

A recent paper, titled ‘‘NonLinear Operators and Their Propagators’’1 and hereafter referred
to as I, presented the beginnings of this program. Key to that work was the definition of the ‘
product’’ A/B of two nonlinear operators and the development of an algebra and calculus a
priate for such operators. With the new mathematical tools many of the results familiar i
theory of linear operators could be extended to nonlinear operators: generalizing the expo
of an operator, time-dependent perturbation theory, the Baker–Campbell–Hausdorff theore
other results. The present paper presents still further progress.

These new analytical tools may be of practical use in some areas of classical physics a
For example, in I it was shown how a powerful technique for the numerical computation of
propagation, first developed for linear equations, could be extended to general nonlinea
equations. However, the driving ambition of this work is an attempt to expand the frontie
fundamental physics—the quantum theory. A particular focus here is to follow Wigner’s g
theoretical approach to the construction of elementary particle states and to see what new
of interest to physicists might be found by the consideration of nonlinear symmetry operato
their group representations. Thus most of the present paper works to rebuild the familiar
ematical infrastructure leading up to the theory of Lie groups and Lie algebras, extending
accommodate nonlinear operators as well as the conventional linear ones.

After a review, in Sec. II, of the operator algebra and calculus previously developed, Se
goes into inner products, Hermitian, anti-Hermitian, and unitary operators, and we find that
not need to speak of the adjoint of an operator nor of a dual vector space. Whereas so m
traditional quantum theory is based upon the assumption of superposition—mandating line
erators in a vector space—it is again surprising how much can still be achieved if one aba
that habit.

Sections IV and V give sample applications of these new techniques to classical mec
0022-2488/97/38(7)/3841/22/$10.00
3841J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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and the Schro¨dinger wave equation, respectively. Section VI presents some special catego
nonlinear operators: amplitude invariant, phase invariant, and those that do not make use
operator of complex conjugation.

In Sec. VII we show that the general mathematical structure of Lie groups and Lie alg
can be extended to nonlinear operators: using the generalized exponential function, the
commutator, and the new form for similarity transformations. In Sec. VIII we look at the gen
question of finding representations, paralleling much of the familiar work on linear~matrix!
representations. The problem of building direct product representations is looked at in Sec. I
some simple examples of nonlinear representations are presented in Sec. X. Further pa
studies of Lie group representations—for SL(2,R) and SU~2! in one and two dimensions—ar
given in Secs. XI and XII, where we find some intriguing new representations. The questi
singularities, combined with a unique construction of a composite state is the topic of Sec
where we find a provocative result; and the possible application to the theory of eleme
particle physics is discussed in Sec. XIV.

Appendices A and B present some additional results on power series, carried over fro
previous paper: and Appendices C and D contain further new results concerning nonlinear
tors.

II. REVIEW OF NONLINEAR OPERATOR ALGEBRA

Nonlinear operatorsA,B,C,..., act onvectors in a linear vector space to produce other vec
in that space.

Ac5f. ~1!

Note the convention that operators act to the right.
The operators have the following algebra of addition and multiplication:

A1B5B1A, ~2!

~A1B!C5AC1BC, ~3!

~AB!C5A~BC!, ~4!

and, as with linear operators, multiplication is not commutative. What distinguishes these
linear operators is that

Aa is not equal toaA, ~5!

wherea, b, c,••• are ordinary numbers; and also that

A~B1C! is not equal toAB1AC. ~6!

The central tool of analysis is the following definition:

A~11eB!5A1eA/B1O~e2!, ~7!

whereA/B is an operator called ‘‘the slash product ofA with B. ’’ The following properties were
derived in I.
Linearity:

~A1B!/C5A/C1B/C, ~8!

A/~B1C!5A/B1A/C, ~9!
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~aA!/B5a~A/B!, ~10!

A/~bB!5b~A/B!. ~11!

This last statement under Linearity, Eq.~11!, is strictly true only ifb is a real number—as the
infinitesimale is taken as a real number. In certain cases, which will be detailed later on, this
also be true for complex numbersb.
The first identity:

~AB!/C5~A/C8!B, ~12!

where

C85~B/C!B215CB ~13!

is a new form of similarity transformation.
The second identity:

~A/B!/C2A/~B/C!5~A/C!/B2A/~C/B!. ~14!

A key construct is the generalized exponential function of an operator.

E~A!511A11/2 A/A11/6 ~A/A!/A11/24 ~~A/A!/A!/A1••• . ~15!

The following properties were derived in I:

d

dt
E~ tA!5AE~ tA!5E~ tA!/A; ~16!

E~sA!E~ tA!5E~~s1t !A!; ~17!

BE~A!5~E~A!/B!E~2A!5S1/n!Sn , ~18!

where

S05B and Sn5@A/Sn21# ~19!

and the ‘‘slash commutator’’ is defined as

@X/Y#5X/Y2Y/X. ~20!

In the special case of linear operators, just drop the / symbol~or replace it by a comma in the
commutator! and all these formulas are familiar. The remarkable fact is that so many of the t
commonly done with linear operators can be generalized in this manner to nonlinear ope
and these are not just abstract or formal generalizations but practical computable construc

III. INNER PRODUCTS, HERMITIAN AND UNITARY OPERATORS

In our vector space the general vectorc will be represented by an ordered set of compone
~complex numbers!, $c1 ,c2 ,c3 ,•••%, usually written as the set$ck%; or I may writecuk5ck ,
where the symboluk means ‘‘take thekth component of the resulting vector standing to the lef
The inner product of two vectors will be written, as usual, as

^fuc&5^cuf&*5Skfk*ck , ~21!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where* means complex conjugation.~Some other metric might be introduced but I shall stay w
this simplest one here.!

The result of a general nonlinear operatorA acting on the vectorc will be another vector,
represented as

Ac5$Ak~c,c* !% or Acuk5Ak~c,c* !, ~22!

where the script symbolsA are ordinary functions of their arguments, the set of complex v
ablesck and their complex conjugates.

Now, consider the inner product,

^fuAc&5Skfk*Ak~c,c* !. ~23!

and the complex conjugate of this equation,

^Acuf&5SkfkAk~c,c* !* . ~24!

In the case of linear operators this leads to the definition of an adjoint~Hermitian conjugate!
operatorA† which acts on the vectorf. But in the general study of nonlinear operators this id
of an adjoint operator seems to make no sense. Thus I do not speak of adjoint or dual vecto
of column and row vectors, which are concepts particular to linear operators and their m
representation.

What comes as a surprise, however, is how much can still be achieved if we limit oursel
studying only the ‘‘expectation value’’

^A&5^cuAc& ~25!

of the operatorA in the ‘‘state’’ represented by the vectorc.
Let us first examine the situation in the standard dynamical model, wherec5c(t) varies with

time according to the equation

dtc5
dc

dt
5Ac ~26!

and the operatorA is assumed time independent. What is the time derivative of the inner prod

dt^cuc&5^dtcuc&1^cudtc&5^Acuc&1^cuAc&5Skck*Ak~c,c* !1cc. ~27!

All we can say from this equation is the following: If^A& is imaginary, then̂cuc& will be time
independent. But this is saying a lot.

Definition: A general nonlinear operatorA will be called ‘‘anti-Hermitian’’ if its average
value ^cuAc& is imaginary for all vectorsc; and it will be called ‘‘Hermitian’’ if ^cuAc& is
always real. ~28!

If one takes the special case of linear operators, whereA is represented by a matrix with
matrix elementsAjk , these two definition lead to the familiar conditions

Ajk*52Akj or Ajk*51Akj , ~29!

respectively.
Definition: A general nonlinear operatorU will be called ‘‘unitary’’ if

^UcuUc&5^cuc& ~30!

for all vectorsc.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Again, for the special case of linear operators, this definition leads to the usual equation
unitary matrix:

SkUki*Ukj5d i j . ~31!

We have previously devoted much study to the generalized exponential function of a n
ear operatorE(A). We know that the dynamical equation~26! is solved by

c~ t !5E~ tA!c~0!; ~32!

and thus, ifA is anti-Hermitian, we have already shown that

^c~ t !uc~ t !&5^E~ tA!c~0!uE~ tA!c~0!&5^c~0!uc~0!&. ~33!

ThusE(tA) ~for real t! is unitary as long asA is anti-Hermitian.
Next, we want to calculate the time derivative of^B&5^c(t)uBc(t)&, whereB is some

general~t independent! operator. First, we recall that

dtBc~ t !5~B/A!c~ t !, ~34!

so we need to evaluate the slash product operating in our vector space.
Let us digress to do this in general. First we look at,

~11eB!cuk5ck1eBk~c,c* ! ~35!

then

A~11eB!cuk5Ak~$c j1eB j~c,c* !%,$c j*1eB j~c,c* !* %! ~36!

and finally

A/Bcuk5(
j

@B j~c,c* !] j1B j~c,c* !* ] j* #Ak~c,c* !, ~37!

where

] j5
]

]c j
and ] j*5

]

]c j*
. ~38!

Thus we can write for general operatorsA andB

^cuA/Bc&5(
j ,k

ck* @B j] j1B j* ] j* #Ak , ~39!

where I have dropped the arguments (c,c* ) of A andB for easier reading. And this can b
rewritten neatly as

^cuA/Bc&5D~B!^A&2(
k
Bk*Ak , ~40!

where the differential operatorD(B) is defined as,

D~B!5(
j

@B j] j1B j* ] j* #; ~41!
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and we note thatD(B) is always real. We can now draw the following conclusions:

If A and B are Hermitian operators, so isA/B1B/A, ~42!

If A and B are anti-Hermitian operators, so is@A/B#5A/B2B/A. ~43!

And there is one more result, which looks awkward but will be useful: IfA is anti-Hermitian and
B is Hermitian, then

Rê @A/B#&52D~A!^B&. ~44!

Now we return to the calculation started above.

dt^c~ t !uBc~ t !&5^c~ t !uB/Ac~ t !&1^Ac~ t !uBc~ t !&5D~A!^B&. ~45!

Thus if B is a Hermitian operator~and we haveA as anti-Hermitian!

dt^B&52Rê @A/B#&; ~46!

and if B is anti-Hermitian, then we can write~settingB→ iB!,

dt^B&5 i Rê @A/ iB#&. ~47!

In the case of linear operators, these formulas reduce to the well-known formula of qua
mechanics,

dt^B&5 i ^@H,B#&, ~48!

whereH5 iA is the Hamiltonian~in units h52p!.
Suppose we setA52 iH for the general nonlinear equation of motion.H is a Hermitian

operator and one wonders whether it is ‘‘conserved.’’ That is, Does^H& vary with time? From Eq.
~46! we have,

dt^H&5Rê @ iH /H#&. ~49!

For linear operators this commutator is obviously zero; and for general nonlinear operators w
have@H/H#50. But @ iH /H# is something else in general. Thus we must have a special cons
upon the structure of the nonlinear Hamiltonian in order to get ‘‘conservation of energy’’ in
form. The simplest statement is: IfH, acting on any vector, does not involve the operation
complex conjugation, then@ iH /H#50; but with this restriction it may be difficult to insure tha
H is Hermitian.

Another condition to consider is the following:

Heif5eifH~real f! or equivalently @H/ i #50. ~50!

Another phrase that describes this restriction is: the equation of motion obeys gauge invaria
the first kind. With this condition, we can seek stationary states of the equation of motion

c~ t !5e2 ivtu and Hu5vu. ~51!

With such states, we obviously have^cuc& and ^cuHc& independent of the timet. But this does
not give us energy conservation as a general rule, i.e., for allc(t), unless@ iH /H#50 is also
satisfied. We shall return to this subject shortly. One should also note that the eigenvalue p
associated with such stationary states is entangled with the question of what normalizatio
should choose for the state vector.
J. Math. Phys., Vol. 38, No. 7, July 1997
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In regular quantum theory, unitarity is usually invoked in connection with general scatte
measurement theory. An initial state is prepared; and it then evolves in time according to a
function~state vector! c(t) which may include some interactions of initially separated parts. Th
after the scattering process, we make measurements of the outcome by projecting this
function onto various final states by means of detection apparatus. If any such final s
represented by a vectorun& in the vector space, then the probability that this particular final s
will be detected is said to be calculated as

Pn5u^nuc~ t !&u2 ~52!

and ‘‘unitarity’’ is the requirement that the sum of these probabilities over all possible final s
un& is equal to one. How does this work in our situation with nonlinear operators?

We make the usual assumption that the vectorsun& constitute a complete orthonormal basis
the vector space; and this leads to the result

( Pn5^c~ t !uc~ t !& ~53!

regardless of whether we have linear or nonlinear operators in the equations of motion. But
just the quantity we studied earlier; and we saw that, as long as the dynamical operatoA is
anti-Hermitian, this total probability is independent of the timet. Thus it can be evaluated bac
when the initial state was created, with the usual norm of 1.

IV. REAL VECTOR SPACE

If we restrict ourselves to a vector space and operators which involve only real number
complex numbers, then the results of the previous section become even simpler. If the dyn
operatorA obeys the condition

^cuAc&50 for all vectors c, ~54!

then ^c(t)uc(t)& will be time independent.
Let’s see how this works in a very familiar problem, Newton’s law of motion in one dim

sion.

d2x

dt2
5F~x!. ~55!

Since this is second order in the time derivative, we introduce a new variableu and construct a
two-component vectorc5$x,u% to satisfy the first order equation of motiondc/dt5Ac. These
are all time-dependent variables. We now construct the dynamical operatorA so as to guarantee
the condition^cuAc&50

Ac5$uW~x,u!,2xW~x,u!%. ~56!

In order to find the unknown functionW, we look at the equations of motion,

dx

dt
5uW, ~57!

du

dt
52xW, ~58!
J. Math. Phys., Vol. 38, No. 7, July 1997
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take another time derivative ofdx/dt and compare with the original Newton’s law involving th
forceF(x). The resulting equation is

F2x21/2 xu
d

du
11/2 u2

d

dxGW25F~x!. ~59!

This looks unfamiliar, and messy. A solution of this equation~which I found after making a powe
series expansion inu2! is

W~x,u!51/u@V~~x21u2!1/2!2V~x!#1/2, ~60!

whereF(x)52dV/dx. We also have a constant of the motion

^cuc&5x21u2. ~61!

I don’t see that this adds anything useful to the study of Newton’s equation of motion; b
illustrates our general approach.

V. NONLINEAR SCHRODINGER EQUATION

Here, we continue a discussion begun in I. Assume we have several components of a c
wavefunction which depend on one or more continuous variablesx: ck5ck(x,t); and we shall
deduce equations of motion from an action

1/2E dtE dxH(
k

~ ick* dtck2dxck* dxck!2G~r,x!J , ~62!

whereG is a real ~local! function of the densitiesrk5ck*ck and may include as well som
external force. Varyingck* we get the equation of motion

dtck5 idx
2ck

2 i ]G

]rk
ck5Acuk ~63!

and we immediately see that our dynamical operator is anti-Hermitian:^A& is imaginary. This
assures us conservation of probability. We also have a conserved current density just as
usual Schro¨dinger equation. But what about conservation of energy? This was the question
in a previous section.

If we look upon the action from the point of view of classical Lagrangian field theory, then
know how to derive the time-independent Hamiltonian from canonical variables:H5(piqi2L.
The result for the action given above is

H5E dxH(
k

S dxck* dxck11/2 rk
]G

]rk
D11/2 GJ ~64!

which is clearly different from

^ iA&5E dx(
k

S dxck* dxck1rk
]G

]rk
D ~65!

unlessG is linear in ther’s.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Thus we have~re-!learned the lesson that for nonlinear systems the operator which give
time development is not the same as the operator which gives the conserved quantity
called energy; but in the usual linear quantum theory these two things are both called the H
tonian.

The above results can also be written in a more compact manner as follows. Let us wr
action as

E dt 1/2̂ cu
i ]

]t
2Vuc&, ~66!

whereV is some general operator. Then we find that we can write

^ iA&5^V11/2~V/11 iV/ i !& ~67!

and

H5^V&11/4̂ ~V/11 iV/ i !&* . ~68!

Note that for linear operators the expression (V/11 iV/ i ) vanishes.
A number of previous authors have explored nonlinear generalizations of the Schro¨dinger

wave equation.2,3 A persistent problem is how to achieve in a consistent mathematical way
physical separability of noninteracting systems. This is a deep concern, which we shall retur
studying group representations later in this paper.

VI. SPECIAL TYPES OF OPERATORS

Following the previous discussion, let us introduce a nomenclature for certain class
nonlinear operators, as follows.

Type 1:OperatorsA which satisfyAa5aA, for all positive real numbersa, or equivalently
@A/1#50. These operators may be called ‘‘amplitude invariant.’’ ~69!

Type 2: OperatorsA which satisfyAeif5eifA for all real numbersf, or equivalently
@A/ i #50. These operators may be called ‘‘phase invariant.’’ ~70!

Type 3:OperatorsA which do not involve the operation of complex conjugation when th
act on any vector. ~71!

If A is an operator of Type 3, thenA/ iB5 iA/B, or more generally,A/bB5bA/B for any
complex numberb and any operatorB. Note that Type 2 status does not in general suffice for
result.

A nonlinear operatorA which is of Type 1 and also of Type 2 has the property thatAac
5 aAc for any complex numbera; and has been called ‘‘homogeneous’’ by Weinberg.3

An operatorA of Type 3 also gives (A/11 iA/ i )5@A/1#1 i @A/ i #50; and this is also true if
A is both Type 1 and Type 2. Recall the discussion at the end of the preceding section.

If an operatorA is of Type 3 and also of Type 1~or 2!, then it must also be of Type 2~or 1!.
But being of Type 1 and also of Type 2 does not in general imply being of Type 3.

If an operatorA is of some given Type~1, 2, or 3!, thenaA, for any numbera, is of that same
type. If operatorsA andB are both of the same Type~1, 2, or 3!, then (A1B), AB, A/B are also
of that same type. Thus ifA is of some given type, thenE(A), and many other functions forme
from A, will be of that same type.

A special nonlinear operator~already used in conventional quantum theory! is the operator
K which takes the complex conjugate of all the components of the vector standing to its ri

Kc5c* ; ~72!

and we noteKK51. For any operatorA we can define its complex conjugate as
J. Math. Phys., Vol. 38, No. 7, July 1997
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A*5KAK; ~73!

and, following Eq.~22!

A*cuk5Ak~c* ,c!* , ~74!

where the reader should note the two effects of complex conjugation. Furthermore,

~aA1bB!*5a*A*1b*B* ; ~AB!*5A*B* ; ~A/B!*5A* /B* . ~75!

VII. LIE GROUPS AND ALGEBRAS

The usual Lie theory is based upon a set of linear operatorsXi , called the generators of th
group, which are closed under a commutator algebra

@Xi ,Xj #5XiXj2XjXi5Skf i j
kXk ~76!

and the numbersf i j
k , called the structure constants, characterize the particular group. The

elements are exponentials of the generators and they obey the multiplication laws

exp~aXi !exp~bXj !5exp~X8!, ~77!

whereX8 is some linear combination of all theX’s. Furthermore, the commutators obey the Jac
identity ~which says something about the structure constants! and all the equations are invariant
form under a similarity transformation,

Xi→SXiS
21. ~78!

If one tries to extend this mathematics to nonlinear operators, none of the above mac
works in the form given. However, as shown in I, we can get the same mathematical struc
be consistent if we replace the ordinary commutator by the slash commutator in the Lie al

@Xi /Xj #5Xi /Xj2Xj /Xi5Skf i j
kXk , ~79!

and use the generalized exponential functionE(aX5(aiXi) for the group elements. The slas
commutator acts linearly in its arguments if we restrict the coefficientsai to be real, and we would
also restrict the structure constantsf i j

k to be real numbers.~We may be able to extend this t
complex numbers with certain restrictions, such as being of Type 3, on the representation
structed for the operatorsX.!

If the generatorsX are anti-Hermitian operators, as this property was previously defined
nonlinear operators, then their slash commutators are also anti-Hermitian and theE function of
such operators are unitary operators. This conforms fully to the familiar situation for linea
erators.

The slash commutator obeys a Jacobi identity for any nonlinear operators, which the or
commutator fails to do for nonlinear operators. The Second Identity is essential in the pro
this.

Finally, there is the question of invariance under a similarity transformation. The formS(X
1Y)S21 does not work nicely ifS is nonlinear. We have the alternative form of transformati

X→XS5~S/X!S21;

but, while it works nicely on linear expressionsX, this operation does not work nicely on sla
products

XS /YS is not equal to~X/Y!S .
J. Math. Phys., Vol. 38, No. 7, July 1997
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However, thanks to the First and Second Identities, one can show that this does work for th
commutator

@XS /YS#5@X/Y#S . ~80!

Another interesting way to see the relation between ordinary commutators~used for elements
of the group! and slash commutators~used for the elements of the algebra! is the following:

@~11eX!,~11dY!#5ed@X/Y#1higher order ine,d. ~81!

From the discussion of the previous section, we see that it is consistent to speak of any
X’s satisfying a Lie algebra to be of Type 1 or Type 2 or Type 3. And if a set ofX’s satisfy a Lie
algebra with real structure constants, then the set ofX* ’s also satisfy the same algebra.

VIII. REPRESENTATIONS

A representation of a Lie algebra is a set of explicit constructions of how the operatorsXi act
upon a general vectorc5$c1 ,c2 ,...,cn% in a space of dimensionn, consistent with the given
commutator rules. The objective is to see what new nonlinear representations one might
addition to the known matrix representations for linear operators. This is a huge task, which
barely started in this paper. However, some general features can be stated here.~Elsewhere, the
word ‘‘representation’’ is often reserved for a linear, matrix, representation of the group or al
and anything else is called a ‘‘realization.’’!

First is the matter of ‘‘adding’’ representations. Suppose we have one representation, c
operatorsX and they act on vectorsc spanning a space of dimensionn; and we also have anothe
representation, with operatorsY acting on the vectorsf of dimensionm. Now we can form a
larger vector space, of dimensionn1m, as follows:

C5$c,f% ~82!

and the operators act as,

XC5$Xc,0% and YC5$0,Yf%, ~83!

E~aX!C5$E~aX!c,f% and E~bY!C5$c,E~bY!f%. ~84!

Note that each generator effects a change upon its own vector space, and produces ze
acting upon the other vector space. The group elementE(X), on the other hand, acts as the un
operator uponf.

From the above definitions, we can deduce that (X1Y) is the correct generator in the com
posite space and

XY5YX5X/Y5Y/X50, ~85!

E~X!E~Y!5E~Y!E~X!5E~X1Y!5E~X!1E~Y!21. ~86!

This structure has exactly the ‘‘block diagonal’’ form familiar from the discussion of lin
operators and matrices.

Building bigger spaces this way is the easy part. Next is the question of whether any
representation might be transformed into the ‘‘block diagonal’’ form that is transparently c
posite, as described above. If this is possible, then the representation is called reducible; if
is called irreducible.

Two representationsE5E(aX) and E85E(aX8) of the same dimension are equivalent
there exists some invertibleT such thatTE5E8T for every group element designated by the
J. Math. Phys., Vol. 38, No. 7, July 1997
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of group parametersa. In terms of the generators, equivalence meansT/X5X8T, as shown in I.
Thus the representation by the set of generatorsX* may or may not be equivalent to the repr
sentation generated by the setX.

I have nothing to say about Casimir operators because I have not been able to fi
nonlinear generalization of the identity@A,BC#5B@A,C#1@A,B#C which holds for all linear
operators. There is also the question of how Schur’s Lemma might be restated. As for taki
trace of an operator, see Appendix C.

IX. DIRECT PRODUCTS

With linear operators and matrices, there is also the construction of new representati
direct products of known ones. This is very important for physics, since it lets us describe
posite systems in a consistent manner. For general nonlinear representations of a group or
however, this at first seemed to me impossible. However, in an important special case—T
~phase invariant! unitary representations—something may be achieved that mimics the l
situation.

Suppose we have the elements of a Lie algebra represented as follows:

Xcuk5Sk8Rkk8~r!ck8 , ~87!

wherer stands for the set of variablesrpq5cp*cq , which guarantees that this is of Type 2; an
I have suppressed the fact that the matrix of functionsR ~call it an f -matrix for short! depends on
this particular elementX of the algebra. I will also requireRkk8

* 52Rk8k so this will give us a
unitary representation.

Now, we consider another representation of this same Lie algebra, with perhaps a di
dimension. Call the operatorsY, and let it be of this same form, but with some otherf -matrix
Sj j 8(r). The elements of the composite vector space will now be written asC5$Ck j% and the
action of the operatorsX will be taken as follows:

XCuk j5Sk8Rkk8~r1!Ck8 j ~ ‘‘diagonal’’ in j !, ~88!

where we now extend the definition of the arguments

rpq
1 5S jCp j*Cq j . ~89!

The action of the operatorsY will be

YCuk j5S j 8Sj j 8~r2!Ck j8 ~ ‘‘diagonal’’ in k! ~90!

and the arguments ofS are

rpq
2 5SkCkp* Ckq . ~91!

Now we calculate the slash productX/Y acting onC and find the result

X/YCuk j5S j 8k8Sj j 8~r2! Rkk8~r1!Ck8 j 8 . ~92!

Key to this result is the fact that the argumentsr1 are all invariant under the action of 11eY; this
is a result of unitarity. When we calculateY/X we get the identical result.

Thus with this construction of the composite vector space, we have@X/Y#50 and so the
composite operators,X1Y, obey the original Lie algebra. This procedure mimics what is usu
done in the case of linear representations by matrices; and this may be continued to prod
additional subspaces.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Now we must see how this construction relates to the representation of the Lie algebra i
individual vector space. Let me start over again, as above, but now consider the operatorY and the
f -matrixS as belonging to the same vector space asX andR. We must now see how the variable
rpq
1 ~we can drop the superscript now! are changed by the action of (11eY). The result is

rpq→rpq1e~Sp8Spp8
* rr8q1Sq8Sqq8rpq8!. ~93!

If we regardr as a matrix, along withR andS, and use the fact thatS, like R, is anti-Hermitian,
then we can write the result of this calculation succinctly as,

X/YCuk j5Sk8$RS1~Spq@S* ,r#pq ]/]rpq!R%kk8Ck8 j . ~94!

where@, # is the usual commutator.
Thus we can proceed to write the equations of the Lie algebra, e.g.,@X/Y#5Z, etc.; and see

that these are a set of coupled, bilinear differential equations involvingf -matricesR, S, etc., and
the set of variablesrpq . In this form there is no reference to the elements of the composite ve
space; it is just one way of formulating the problem of finding a single representation of th
algebra.

There is a warning here. In the one vector space the variablesrpq , as written after Eq.~87!,
are very redundant. For example,r12r215r11r22, c15c2r11/r12, etc.; but no such relations hol
for the extended definition of Eq.~89!. So, in building the representationf -matrices for the algebra
in one space, we must avoid making use of these identities and then we can use thes
f -matrices for the composite space construction. The one identity which does carry o
rpq*5rqp .

While this construction of the direct product representation looks nice, it is unclear that i
be useful. There is still the physical necessity of being able to separate the variables ass
with disjoint subsystems; and here they seem to be all intertwined in therpq . This subject will
require further study. In Sec. XIII we take another tack on the construction of a direct pro
representation for a particular case.

X. SOME SIMPLE EXAMPLES

Consider a one-dimensional representation

Ac5A~c!, ~95!

where I have taken the representation to be of Type 3—a function ofc but not involvingc* . Let
us see what happens to this when we carry out a transformation

c→c85Tc5T~c!, A→A85~T/A!T21. ~96!

We have

A8c85T/Ac5A~c!
dT~c!

dc
, ~97!

where I have assumed thatT is also of Type 3. If I choose

T~x!5expS lEx

dy/A~y! D , ~98!

then

A8c85lc8 ~99!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and this is now in the form of a linear eigenvalue equation.
Suppose now that the operatorA is of Type 2, in one dimension:

Ac5ca~r!; r5c*c; ~100!

and we look at a transformationT also of Type 2

c85Tc5ct~r!. ~101!

We transform toA85(T/A)T21 and consider

A8c85c8a8~r8!, ~102!

where

r85c8*c85rut~r!u2. ~103!

By calculatingT/Ac, we come to the result:

a8~r8!5a~r!1@a~r!1a~r!* #r~dt~r!/dr!/t~r!. ~104!

Thus givena(r), our task is to find a functiont(r) that will produce any desireda8(r8)—for
example,a8(r8)5l, a constant, which gives us a linear representation of the transformed o
tor A8. This is done by

t~r!5expH ErS duu D @l2a~u!#/@a~u!1a~u!* #J . ~105!

But if a(r) is imaginary, then this solution is nonsense; and this is a very important sp
case:A is anti-Hermitian andE(A) is unitary. Then we are faced with the equation

a8~r8!5a~r! ~106!

along with Eq.~103! relating r8 to r. Let us see the implications of this. The only way f
a8(r8) to be a constant is ifa(r) is already that constant. Thus the linear representation i
equivalence class unto itself, for each value of the eigenvaluel. If a(r) is some nonconstan
function, we can transform it into various other nonconstant functions by the choice oft(r).
Suppose we try to get the next simplest representation, linear plus cubic

a8~r8!5l~11br8!. ~107!

We see that we needl5a(0) and

ut~r!u5$@a~r!/a~0!21#/~br!%1/2. ~108!

The validity of this depends ona(r)/a(0) being greater~or less! than 1 for allr.0 and the real
constantb being correspondingly positive~or negative!.

If we add the requirement that the transformationT be unitary, thenut(r)u51 anda8(r)
5a(r) so each choice ofa(r) is inequivalent to any other choice. Such a restriction, howeve
not generally called for.

Now, suppose we have two operators,A andB, that obey the very simple algebra,

@A/B#50; ~109!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and let us look for one-dimensional representations. If we considerA andB to be of Type 3, then
we get the requirement

B~c!
dA~c!

dc
5A~c!

dB~c!

dc
; ~110!

and the solution of this tells us thatA is a constant timesB, which is a trivial situation.
Alternatively, if we take bothA andB to be of Type 2 and, furthermore, if we take them bo

to be anti-Hermitian, then we find~in a one dimensional vector space! that @A/B#50 without any
further restrictions on either operator. Thus the irreducible unitary representations of a non
Abelian Lie group can be one dimensional with generators of Type 2.

A few examples of one- and two-dimensional nonlinear representations of three-eleme
algebras are worked out in the next two sections.

XI. THE GROUP SL(2,R)

This Lie algebra has three elements,A,B,C, which obey

@A/B#5B; @A/C#52C; @B/C#52A; ~111!

and I shall seek representations of Type 3, which is appropriate also for a real vector space
will not be unitary representations. I start by assuming that we can take one of these operato
A, to be linear and ‘‘diagonal.’’

In one dimension I find

Ac5lc; Bc5lc121/l; Cc52lc111/l. ~112!

In order to avoid singular behavior asc→0, one should setl equal to zero.
In two dimensions, writec5$s,t% and note that the usual linear representation is the follo

ing:

Ac5$s/2,2t/2%; Bc5$t,0%; Cc5$0,s%. ~113!

For the nonlinear representation I keepA the same as just written, but constructB andC as
follows:

Bc5$t f ,~ t2/s!g%; Cc5$~s2/t !g,s f%, ~114!

where f andg are functions ofu5st. This satisfies the first two commutator equations for a
functions f and g. I take the same two functionsf and g in both B and C for the sake of
symmetry. That is, defining the permutation operatorP as

P$s,t%5$t,s%,

the operators of this Lie algebra will be chosen so thatPAP52A, PBP5C andPCP5B.
Finally, from the third commutator equation,@B/C#52A, we get the differential equation

~ f2g!21~ f1g!u~d/du!~ f2g!51. ~115!

One set of solutions is simply,

f ~u!2g~u!51; ~116!

and an alternative set of solutions is given as,
J. Math. Phys., Vol. 38, No. 7, July 1997
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~ f1g!5@12~ f2g!2#/@u~d/du!~ f2g!#. ~117!

Either way, we have one arbitrary function in the solution.
Here are a few noteworthy special cases. Ifg50 andf51, we have the linear representatio

If f andg are constants, independent ofu, we have a Type 1 representation. If we takef52g
51/2, we get a pretty answer

Bc5$1/2t,21/2t2/s%;Cc5$21/2s2/t,1/2s%. ~118!

To avoid the apparent singularity ats or t50, we can set

g5st h~st!; f511st h~st!, ~119!

whereh is any function which is finite at the origin. This form of the representation goes ov
the linear one as the norm ofc becomes small. Still another special case is

g50; f5@11const./~st!2#1/2. ~120!

There is now the question whether all these representations are distinct or equivalen
transformationT,

T$s,t%5$s8,t8%5$st~u!,tt~u!%, where u5st, ~121!

is the most general one of Type 3 that leaves the operatorA unchanged in form and furthermor
respects the symmetryP described above. When we calculate how this transforms the oper
B andC, we find that it gives us new functionsf→ f 8 andg→g8 as follows:

f 8~u8!5 f ~u!1~ f ~u!1g~u!!~u/t~u!!
dt~u!

du
, ~122!

g8~u8!5g~u!1~ f ~u!1g~u!!~u/t~u!!
dt~u!

du
~123!

and we also have

u85s8t85ut2~u!. ~124!

The first question is, can all the many representations described above be transformed i
linear one through an appropriate choice of the functiont(u)? From Eqs.~122! and~123! we see
that

f 8~u8!2g8~u8!5 f ~u!2g~u!. ~125!

Thus solutions of the first category,f (u)2g(u)51 ~or 21! are transformed into solution o
that same category, and that includes the linear solution~g50 andf51 or21.! However, it is not
true that all solutions in this category are equivalent to the linear one. For example, the u
solution f52g51/2, which was noted as ‘‘pretty’’ above, is an equivalence class unto itse

Solutions of the second category, wheref (u)2g(u) is different from 1 or21, are also
transformed into solutions of this same category, and these can never include the linea
Many of these are equivalent to one another, but the identification of the various equiva
classes is more complicated.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



y

at the
sen-
ase

e

the

ang-

e

ing,

f the

till

3857Charles Schwartz: Nonlinear operators. II

¬¬¬¬¬¬¬¬¬¬
XII. THE GROUP SU(2)

This Lie algebra has three elements,X,Y,Z, which obey

@X/Y#52Z; @Y/Z#52X; @Z/X#52Y. ~126!

For a Type 3 representation this can be simply related to the SL(2,R) Lie algebra studied above b
introducing the imaginaryi

Z5 iA; X5 i /2~B1C!; Y51/2~B2C!. ~127!

but we know that this will not give us a unitary representation.
We will now seek representations that are of Type 2 and are unitary. We already know th

only result in one dimension is the trivial one, so we will construct a two-dimensional repre
tation withc5$s,t%, wheres and t are complex variables. The standard result in the linear c
is

Zc5$ is/2,2 i t /2%; Xc5$ i t /2,is/2%; Yc5$t/2,2s/2% ~128!

which is i /2 times the Pauli spin matrices.
For the nonlinear representation we shall takeZ linear, as just written, and work with th

‘‘raising’’ and ‘‘lowering’’ operatorsX15X1 iY andX25X2 iY. Noting that sinceZ is linear,
@Z/ iY#5 i @Z/Y#, we find from the two commutators withZ

X1c5$ i t f ,i t ~s* /t* !g%, ~129!

X2c5$ is~ t* /s* !g,is f%, ~130!

where f andg are chosen to be real symmetric functions of the two argumentsr15s* s andr2
5t* t. This form insures thatX, Y andZ are anti-Hermitian operators; and we have imposed
symmetryP from the previous section to get the same functionsf andg in both constructions.
Finally, from the commutator equation@X/Y#52Z, now being very careful abouti ’s in the slash
products, we get the differential equation,

@~ f2g!~11r2~]22]1!!2~r2 /r121!g#~ f1g!51, ~131!

where]15]/]r1 and]25]/]r2 ; and also a second equation gotten from this one by interch
ing the subscripts 1 and 2 that appear explicitly here. The solution is

f51/2~U1U21!; g51/2~U2U21!, ~132!

where

U5@11h~r11r2!/r1r2#
21/2; ~133!

andh is an arbitrary real function of its argument.
We recover the linear solution if we chooseh50. If h is taken to be a constant times th

square of its argument, then this solution is also of Type 1.
Note that taking the complex conjugate of these operators is the same as the mappZ

→ 2 Z, X→2X, Y→1Y; both of these are symmetries of the Lie algebra.
Exploring the equivalence of these solutions, we find an equation for the mapping o

functionh(r ) into h8(r 8), with the following results. One equivalence class ish(r )50, the linear
case. Another set of equivalence classes ish(r )5ar 2, for each value ofa. All other functions
h(r ) that are everywhere positive~or negative! form another equivalence class. There are s
other equivalence classes, involving functionsh(r ) that change sign.
J. Math. Phys., Vol. 38, No. 7, July 1997
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XIII. SINGULARITIES—A COMPOSITE STATE

We have found some genuinely new nonlinear representations of these groups and ob
much further study is needed to see what else may arise from these mathematical constr
that is useful in physical theory.

Most of the new representations found in the previous two sections have singulari
occurring at the origin of one of the variables. One should not be too quick to discard them fo
reason. Perhaps the domain on the vector space may be sensibly constrained to avoid th
larities; or perhaps some other construction will yield useful results.

Here, I want to report on one success: making a composite state out of the direct prod
two vector spaces, each carrying the 2-dimensional nonlinear unitary representation of~2!
reported above.

c5$s,t%; Zc5$ i /2s,2 i /2t%,

~X1 iY!c5$ i t f ,i t ~s* /t* !g%,

f5 f ~s,t !5~U11/U !/2; g5g~s,t !5~U21/U !/2,

and

U5@11h~s* s1t* t !/~s* st* t !#21/2.

The composite vector, made from two of these representations, has four components; and
construct the ‘‘singlet’’ state, as follows:

c5$c1 ,c2 ,c3 ,c4%5$p,q,2q,r %. ~134!

The operators from one space will act on the element pairs~1,2! and~3,4! while the operators from
the other space act on the pairs~1,3! and~2,4!. In the linear situation, one would setp5r50; but
in our representations that appears to involve singularities in the functions 1/U given above. So let
us proceed with caution.

First, when we act withZ5Z11Z2 on thisc, we get

Zc5$ ip,0,0,2 ir % ~135!

and so we will want to take the limit ofp andr→0; but not too quickly. Now apply the raising
operator in one subspace

~X11 iY1!c5$2 iq f ~p,2q!,ir f ~q,r !,iq~p* /q* !g~p,2q!,ir ~q* /r * !g~q,r !% ~136!

and in the other,

~X21 iY2!c5$ iq f ~p,q!,iq~p* /q* !g~p,q!,ir f ~2q,r !,2 ir ~q* /r * !g~2q,r !%. ~137!

Now we add these two vectors and try to get the result$0,0,0,0%. The first and fourth element
cancel exactly, because the functionsf andg depend only on the absolute magnitudes of th
arguments. The second and third elements are the same

ir f ~q,r !1 iq~p* /q* !g~p,q!. ~138!

Now, as we letr→0,

ur u f ~q,r !→1/2@h~q* q!#1/2/uqu1O~r 2!; ~139!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and, as we letp→0,

upug~p,q!→21/2@h~q* q!#1/2/uqu1O~p2!. ~140!

Thus we get the desired result~zero! by taking the limits indicated with the following fixed phas
relation:

phase~p!1phase~r !52 phase~q!. ~141!

Applying X2 iY leads to the same result.
What we have achieved is a ‘‘spin zero’’ state, behaving in the usual manner of a

representation of SU~2!, by a particular construction of the composite of two ‘‘spin 1/2’’ sta
each of which belongs to the novel~and singular! nonlinear representation found above. Note t
this works for any choice of the functionh.

This appears to be a nontrivial result. I cannot make a linear triplet~spin 1! state out of these
two nonlinear representations.

XIV. DISCUSSION

This last result is provocative for elementary particle physics: Could this have something
with building mesons and baryons as composites of two or three confined quarks? A
particle’’ is one that can exist in a universe with many other free particles which can be ign
if they are far away. This is where the usual building of product wave functions or pro
representations in the linear quantum theory is crucial. The new nonlinear group represen
introduced in this paper might be used to describe individual particles, each one alone in it
universe; but they are likely to lead to logical inconsistency when allowed to ‘‘exist’’ with o
free particles. Thus these things, if they exist in our universe, cannot be realized as individu
particles. But perhaps certain composites built out of them can transform according to the
linear transformations of the relevant symmetry group—such as SU~2!, which is the little group
for massive particles in four dimensional space–time.

If such composites of two or more such nonlinear representations are possible, then we
predict a vast number of ‘‘elementary’’ particles to be found in nature. However, it is a matt
dynamics which of them might be stable or metastable. The simple rule for the physical d
position of such composites—apart from any other selection rules—is that no single one sho
allowed out. This means that the stable composites would likely be comprised of either t
three of these basic nonlinear things. This compares to the common picture of quarks. The
lation of the previous section produced something that could describe spin zero mesons.

I have tried to make a composite of three of these things that would behave as a
representation of a ‘‘spin 1/2’’ particle; but I failed.

Obviously, there is much more work to be done, investigating other groups and other n
ear representations.

APPENDIX A: LOGARITHMS

We shall adopt a definition of the generalized logarithm function to be the inverse o
generalized exponential function

L~E~A!!5A ~A1!

from which followsE(L(A))5A.
We know from earlier work that, if@A/B#50, then,E(A)E(B)5E(A1B) and therefore

L~E~A!E~B!!5L~E~A!!1L~E~B!!. ~A2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Or, equivalently: ifM andN are two commuting operators (MN5NM),

L~MN!5L~M !1L~N!. ~A3!

One can also show that

L~BCB21!5~B/L~C!!B21. ~A4!

We now want to find the series expansion forL(11tA). For ordinary variables or for linea
operators this series is well known; but for nonlinear operatorsA it will be more complicated. First
set

11tA5E~B!511B11/2B/B11/6~B/B!/B1••• ~A5!

and then expandB as a power series int:

B5tB11t2B21t3B31••• ~A6!

and solve term by term. The result is

L~11tA!5tA2t2/2A/A1t3/4$~1/3!~A/A!/A1A/~A/A!%2••• . ~A7!

One should note that the derivative of this series with respect tot does not give a result simply
related to (11tA)21, as would be the case for ordinary functions or linear operators.

This may be an appropriate place to mention that when we write infinite series of oper
their convergence may be limited to a finite domain of some parameter. Look, for example,
solution of the simple time dependent nonlinear equation shown in I~30!. This obviously has a
singularity at some finite value of the timet and therefore the formal infinite series we use
E(tA) has a limited domain of convergence centered aroundt50, which isE51. Thus we expect
the series for the logarithm, discussed above, to have in general a limited domain of conver
~The question of analytic continuation needs further study.!

APPENDIX B: SOME ADDITIONAL POWER SERIES

We previously studied the expansion

V5V~ t !5~12tA!215StnVn~A!, ~B1!

whereV051, V15A and the otherVn are given by the recursion formulas:

Vn51/~n21!SVm /Vn2m with m51, n21. ~B2!

Now considerW(t)5BV(t)5StnWn(B;A). Write this asWV215B and take the time derivative
of this equation. Proceeding as in the earlier study ofV, we find the recursion formulas

nWn5SWm /Vn2m , with m50, n21 and W05B. ~B3!

Thus with the expressionsVn known, one can generate the expressionsWn . In fact, one can see
that eachWn(B;A) can be simply gotten fromVn11(A) by replacing each first~leftmost! A with
B.
@Note that a similar simple result was found for the expressionBE(tA); however, one should
certainly not imagine that this simple result is a general property of power series with non
operators.#

Note thatB, above, can be anything at all; and so this result can be used to construct
expansions in a recursive manner for any integral power.
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r
r of

best
Write

ts of

ncy

c.

r,

If an

ted by
to be

3861Charles Schwartz: Nonlinear operators. II

¬¬¬¬¬¬¬¬¬¬
PK~ t !5~12tA!K5PK11V5StnWn~PK11~ t !;A!. ~B4!

With

PK~ t !5StnPK,n ~B5!

this yields

PK,n5SWm~PK11,n2m ;A!, where m50,n. ~B6!

This formula gives us directly the expansion terms forK522, K523, etc. To get the terms fo
positive K, solve recursively from the right hand side of this last equation, in the orde
increasingn, noting thatW0(B;A)5B.

APPENDIX C: TRACE

In the world of linear operators, taking the trace of a matrix is a common procedure. The
that I have been able to do in trying to extend this to nonlinear operators is the following.
the action of a general nonlinear operatorA on a vectorc in the form introduced in Sec. IX

Acuk5Sk8Rkk8ck8 , ~C1!

whereR, called anf -matrix, is a matrix of functions whose arguments are all the componen
c andc* . Since the original description in Sec. III involvedn functions ~in an n-dimensional
vector space! whereas Eq.~C1! involvesn2 functions, it is apparent that there is much redunda
in how the f -matrix R is expressed; but this is no hindrance here.

Now take another operator, call itB, and represent it as in Eq.~C1! by anotherf -matrix, call
it S. Calculate the result of the slash productA/B, following the general procedure shown in Se
III, and find the result

A/Bcuk5Sk8@Sk9Rkk9Sk9k81d~S!Rkk8#ck8 , ~C2!

where the differential operatord(S), which acts on thef -matrix R, is

d~S!5S j j 8@Sj j 8c j 8]/]c j1Sj j 8*c j 8* ]/]c j* #. ~C3!

This thingd(S) is really the same as Eq.~41!; but with lower cased I emphasize that it is a scala
not a matrix, likeR or S, nor a vector, likec.

We are now ready to give a definition of the trace of a general nonlinear operator.
operatorA is represented, as in Eq.~C1!, by an f -matrix calledR, and we write that relation as
A<.$A%5R, then define

Tr$A%5SkRkk . ~C4!

The result, seen from Eq.~C2! is this statement:

If Tr$A%50, then Tr$A/B%5Tr~$A%$B%!; ~C5!

and from this it follows that:

If Tr$A%5Tr$B%50, then Tr$@A/B#%50. ~C6!

This result~C6! is not as general as the familiar statement, for linear operators represen
ordinary matrices, that the trace of any commutator vanishes. But this result is just enough
J. Math. Phys., Vol. 38, No. 7, July 1997
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useful in the study of Lie algebras. It says that it is consistent for all thef matrix representations
of a Lie algebra to have zero trace—just as in the linear case.~Whether all representations can b
put into this form is another question.!

The condition Tr$A%50 is stronger than is necessary in order to make the second term o
~C2! vanish when taking the trace of$A/B%. For linear operators it will always vanish. Fo
nonlinear operators, if one says that Tr$A% is a constant, that is sufficient. And there are oth
special cases, for example: let Tr$A% depend on only the one variable^cuc&, and furthermore let
the operatorB be anti-Hermitian.

APPENDIX D: THE DERIVATIVE OPERATOR

If the state vector depends upon a continuous variablex, as inc5$ck(x)%, then we might
want to use the derivative operatord/dx, which is itself a linear operator. If we have som
nonlinear operatorA which also acts onc, then in general we would not expectd/dx to commute
with A. ~The derivative of the square of some function is not the same as the square
derivative of that function.! However, it can be readily shown that the slash commuta
@(d/dx)/A#, vanishes, provided that the operatorA is itself independent of the coordinatex and
acts upon theck(x) locally in x. To see that this result is not trivial, note that the opera
d2/dx2 does not have this property.

1C. Schwartz, J. Math. Phys.38, 484–500~1997!.
2I. Bialynicki-Birula and J. Mycielski, Ann. Phys.100, 62–93~1976!.
3S. Weinberg, Ann. Phys.194, 336–386~1989!; see further references given in both of these papers.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Bott–Borel–Weil construction for quantum supergroup
Uq(gl( m zn ))

R. B. Zhang
Department of Pure Mathematics, University of Adelaide,
Adelaide, South Australia, Australia

~Received 16 December 1996; accepted for publication 14 April 1997!

The finite dimensional irreducible representations of the quantum supergroup
Uq(gl(mun)) are constructed geometrically using techniques from the Bott–Borel–
Weil theory and vector coherent states. ©1997 American Institute of Physics.
@S0022-2488~97!04207-2#

I. INTRODUCTION

Supersymmetry and quantum groups are two of the most important discoveries of math
cal physics in recent times. These two notions have been combined together in the the
quantum supergroups, which has been under intensive investigation in the last few year
origin of quantum supergroups may be traced back to the Perk–Schultz model in sta
mechanics, but the systematic study of these remarkable algebraic structures only bega
seven years ago. Since then much has been understood about both the structures and re
tions of the quantum supergroups, and their applications have also been widely explored, l
to significant advances in various areas of physics and mathematics, notably, integrable
and low dimensional topology. Amongst the quantum supergroups arising from ‘‘deformati
of the universal enveloping algebras of basic classical Lie superalgebras, Uq(gl(mun)) has been
best studied, in particular, its representation theory was developed in Ref. 1. The presen
aims to further develop the representation theory of Uq(gl(mun)) using the techniques from
Bott–Borel–Weil theory2 and vector coherent states.3

The Bott–Borel–Weil theorem2 relates finite dimensional irreducible representations of co
pact Lie groups to cohomology groups of homogeneous vector bundles. Relevant to our i
gations in this paper is the following situation: LetG be a simple complex Lie group, which ma
be regarded as the complexification of some compact Lie group. LetP,G be a parabolic sub-
group. Given a finite dimensional irreducible representationV0 of P with a highest weight which
is assumed to be integral and dominant with respect toG as well, one forms the homogeneo
vector bundleG3pV0→G/P. The holomorphic sections of the vector bundle furnishes a fi
dimensional irreducible representation ofG. The method of vector coherent states, which w
developed to address specific problems in quantum mechanics, provides a way to explicit
struct the holomorphic sections, and to realize the Lie algebra ofG as differential operators on
G/P, thus putting the abstract Bott–Borel–Weil construction in a concrete form.

A supersymmetric version of Bott–Borel–Weil theorem was investigated by Penkov
Serganova,4,5 who also extensively developed the theory of homogeneous superspaces. It
known that supermanifold geometry is much richer than ordinary geometry. This make
Bott–Borel–Weil theory for Lie supergroups a very interesting, but also difficult, subject to s
Research on the subject has revealed interesting and complex phenomena, which are y
fully understood.

In recent years, the Bott–Borel–Weil theory has also been investigated for qua
groups.6–8 In particular, the work of Biedenharn and Lohe6,7 on the quantized universal envelopin
algebra Uq(gl(m)) is closely related to vector coherent states. It has the virtue of being ex
and thus readily applicable to investigations of mathematical structures relevant to physic
quantum group tensor operators.9
0022-2488/97/38(7)/3863/22/$10.00
3863J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics
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In this paper we will carry out the Bott–Borel–Weil construction for the quantum superg
Uq(gl(mun)). As preparations for treating the quantum supergroup, and also for the purpo
understanding the underlying geometrical structure of vector coherent states, we study th
tensively for classicalGL(mun). In the quantum case, we realize the module of any finite dim
sional irreducible representation of Uq(gl(mun)) in terms of vector valued functions on som
supermanifold, and the generators of the algebra bydifference operatorsacting on these functions

The main body of the paper is divided into Secs. II and III, respectively dealing with
Bott–Borel–Weil construction for classical and quantumGL(mun). The first two subsections o
Sec. II are of a review nature, summarizing structural and representation theoretical feature
Lie superalgebra gl(mun). Some of the material covered cannot be easily found in the mathem
cal physics literature, but is necessary for the remainder of the paper. Sections II C an
construct two types of vectors coherent states for the classical Lie supergroupGL(mun). One kind
is associated with the subgroupGL(mun21)3GL(1), and theother provides a new method fo
studying irreducible components of Kac modules. Section II E elucidates the geometrical str
of the vector coherent states, thus to relate the results of the previous two subsections to
incomplete Bott–Borel–Weil theory for Lie supergroups.

Section III consists of three subsections. Section III A investigates some structural and
sentation theoretical aspects of Uq(gl(mun)). Section III B constructs the vector coherent sta
for a special class of representations of the quantum supergroup, namely, the contragredien
irreducible representations. Some rather technical results needed for the next subsection
proved here. The last subsection presents the Bott–Borel–Weil construction of all the
dimensional irreducible representations of Uq(gl(mun)).

II. CLASSICAL GL(m zn )

A. gl( m zn )

Let us begin by introducing the familiar formulation of Lie superalgebras given in Refs
and 11. For the purpose of studying the representation theory of Lie supergroups and thei
tum analogues in geometrical terms, one needs to define supergroups within the framew
supermanifold theory, and to formulate Lie superalgebras accordingly. However, we will pos
this until Sec. II C when we construct supersymmetric coherent states, where the theory of
manifolds becomes indispensable. At the algebraic level, the formulation of Refs. 10 and
much easier to handle.

Within this formulation, a Lie superalgebra is considered as aZ2 graded Lie algebra over th
complex fieldC, namely, aZ2 graded vector space endowed with a graded bracket. The under
vector space of the Lie superalgebra gl(mun) has the standard homogeneous basis$eabua,bPI %,
where the index setI is $1,2,...,m1n%. Set I 85I \$m1n%. Introduce the gradation inde
@ #:I→Z2 such that

@a#5 H01 a<m,
a.m.

Let gl(mun)h , hPZ2 , be the vector space overC spanned by theeab with @a#1@b#
[h(mod 2). Then gl(mun)0 and gl(mun)1 are the even and odd subspaces of gl(mun), respec-
tively. We will abuse the notation somewhat and define

@ #:gl~mun!0øgl~mun!1→Z2 , @x#5 H0,1, xPgl~mun!0 ,
xPgl~mun!1 .

Then theZ2 graded Lie bracket for gl(mun) is defined by

@eab ,ecd%5dbcead2~21!~@a#1@b# !~@c#1@d# !ecbdda . ~1!
J. Math. Phys., Vol. 38, No. 7, July 1997
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For convenience, we will regard gl(mun) as embedded in its universal enveloping algebra. T
the graded bracket@,% can be interpreted as the graded commutator

@x,y%5xy2~21!@x#@y#yx. ~2!

Let h be the Lie subalgebra generated by$eaauaPI %, which is a Cartan subalgebra o
gl(mun). Introduce a basis$eauaPI % for the dual vector spaceh* such thatea(ebb)5dab . Note
that the bilinear form gl(mun)3gl(mun)→C defined by

eab3ecd°~21!@a#dbcdad ,

is super invariant and nondegenerate. Its restriction toh induces the following nondegenera
bilinear form:

~ , !:h*3h*→C, ~ea ,eb!5~21!@a#dab .

The positive and negative root spaces of gl(mun) with respect toh are, as vector spaces
respectively, given by

n15 %

a,b
Ceab , n25 %

a.b
Ceab .

Both of them form nilpotent Lie super subalgebras of gl(mun).
In the remainder of the paper, we will use the following convention adapted from Samel

book:12 If a1 anda2 are Lie super subalgebras of the Lie superalgebraa, such that the underlying
vector space ofa is the direct sum of those ofa1 anda2 , we will write a5a11a2 . In the case
when the Lie super subalgebras also satisfy@a1 ,a2%50, we will write a5a1% a2 , and say thata
is the direct sum of the two subalgebras.

The Borel subalgebras containing the Cartan subalgebrah will be denoted byb6, and they are
given byb65h1n6. A parabolic subalgebra of gl(mun) is a proper subalgebra containing a Bor
subalgebra. We call a parabolic subalgebra standard if it containsb1. A feature distinct from those
of ordinary Lie groups is that not all the parabolic subalgebras are Weyl group conjuga
standard ones. Now every standard parabolic subalgebra is of the form

p5b11u2 ,

whereu2 forms a subalgebra ofn2 generated by the elements of$ea11auaPU%, with U being a
proper subset ofI 8. Now gl(mun) can be decomposed into

gl~mun!5p1 ū2 ,

where ū2 is a subalgebra contained inn2. For any Lie superalgebraf, we denote by U(f) its
universal enveloping algebra. Then it follows from the Poincare´–Birkhoff–Witt theorem that

U~gl~mun!!5U~ ū2!U~p!.

B. Irreducible representations

Let p be any standard parabolic subalgebra, andV0(l) be a finite dimensional irreduciblep
module. Sinceh is an abelian Lie subalgebra ofp, Lie’s theorem asserts that there exists at le
one common eigenvector of all elements ofh in V0 . By noting the fact that U(p) can be decom-
posed into eigenspaces ofh ~under the adjoint action!, we immediately see that the irreduciblep
moduleV0(l) must be of highest weight type, i.e., there exists a non-nullv1PV0(l) such that
J. Math. Phys., Vol. 38, No. 7, July 1997
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eabv150, a,b,
eaav15lav1, aPI ,

andV0(l) is cyclically generated byv1 .
Construct the vector space

V̄~l!5U~gl~mun!! ^U~p!V0~l!.

Then clearly as a vector spaceV̄(l)5U( ū2)^ CV0(l), andV̄(l) furnishes a U(gl(mun)) module
with the action of U(gl(mun)) defined in the standard way: for anyxPU(gl(mun)), yPU( ū2),
xy can be expressed in the form

xy5(
t
yt8xt8 , xt8PU~p!, yt8PU~ ū2!.

Then

x+~y^v0!5(
t
yt8^xt8v0 , v0PV0~l!.

V̄(l) can be decomposed into a direct sum of weight spaces, i.e., eigenspaces ofh,

V̄~l!5 %

val

V̄v, dim V̄v,`, ~3!

wherevPh* , andhv5v(h)v, ;vPV̄v, hPh. Thea is a partial ordering of the elements o
h* defined by declaringman if m2nP % a,bZ1(ea2eb).

If W is a proper submodule ofV̄(l), thenWù$1^V0(l)%50. To see that this is indeed true
note that every nonvanishing element of1^V0(l) cyclically generatesV̄(l). Thus Wù$1
^V0(l)%Þ0 would forceW5V̄(l), contradicting the assumption thatW is a proper submodule
Let M be the union of all the proper submodules ofV̄(l). ThenM is again a proper submodul
asMù$1^V0(l)%50.M is unique and is maximal in the sense that every other proper subm
ule of V̄(l) is a submodule ofM . We will setM50 in the case that no proper submodule
V̄(l) exists. Define

V~l!5V̄~l!/M .

It is a consequence of the maximality ofM that the quotient moduleV(l) is irreducible. Further-
more,V(l) admits a weight space decomposition similar to Eq.~3!. Also, the canonical projection
p:V̄(l)→V(l) restricted to1^V0(l) is one- to -one, and the image of1^v1 is the unique
maximal vector ofV(l).

Proposition 1:The irreducible U(gl(mun))-moduleV(l) is finite dimensional if and only if
its highest weightl satisfies

la2la11PZ1 , mÞaPI 8. ~4!

This is the familiar finite dimensionality condition obtained by Kac. To understand it within
framework, we letf1 be the subalgebra spanned by all the odd raising elements$eimu i<m
,m%, and f2 be that spanned by the odd lowering elements$em i u i<m,m%. Denote by gl(m)
%gl(n) the maximal even subalgebra of gl(mun). Now we can use the Poincare´–Birkhoff–Witt
theorem for U(gl(mun)) again but in a different form to express it as
J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



y

di-
c

e will
an-
eted

m

to-

d

e
refer to

lar, for

near

res
ral
c-

a finite

3867R. B. Zhang: Quantum supergroup and Bott–Borel–Weil theory

¬¬¬¬¬¬¬¬¬¬
U~gl~mun!!5U~ f2!U~gl~m! %gl~n!!U~ f1!.

Note that both U(f6) are isomorphic to the grassmann algebra withmn generators, hence
dim U(f6)52mn. Let v1

l be the maximal vector ofV(l), which is, needless to say, annihilated b
f1 . Consider the subspaceW05U(gl(m)%gl(n))v1

l of V(l). The finite dimensionality ofW0 is
a necessary and sufficient condition in order forV(l) to be finite dimensional. As a gl(m)
%gl(n) module,W0 must be irreducible. Otherwise, a proper gl(m)%gl(n) submoduleW08 of
W0 would generate a proper gl(mun) submodule U(f2)W08,V(l), contradicting the irreducibility
of V(l). NowW0 is finite dimensional if and only ifl satisfies Eq.~4!, and this in turn leads to
our claim.

Recall that every finite dimensional irreducible representation of gl(mun) is of highest weight
type, and is uniquely determined by a highest weightlPh* satisfying Eq.~4!. Therefore, for any
given standard parabolic subalgebrap, the construction presented above yields all the finite
mensional irreducible representations of gl(mun). It is worth noting that when the paraboli
subalgebrap is chosen to be gl(m)1gl(n)1f1 , the construction coincides with that of Kac.

C. Vector coherent states: 1

From this subsection on, we need to formulate Lie superalgebras over supernumbers. W
follow the treatment of DeWitt,13 but occasionally we adopt terminologies which are more st
dard in mathematics. LetL` denote the infinite complex Grassmann algebra of Ref. 13 compl
with Frechet topology. The commutative subspace ofL` will be denoted byCc , and the anticom-
mutative subspace byCa . SetC

mun5Ca
m3Cc

n . Let t0 :L`→C be the augmentation homomorphis
mapping a supernumber to its body. We will also extend this map tot :Cmun→Cn,
(u1 ,...,um ;z1 ,...,zn)°(t0(z1),...,t0(zn)). For later use, we introduce the so-called DeWitt
pology onCmun by declaring a setU,Cmun to be open if there exists an open setO of Cn ~with
respect to the usual topology! such thatU5t21(O ). It is worth mentioning that under this
topology,Cmun is not Hausdorff.

A supervector spaceV5V0%V1 is a Z2-graded two-sidedL` module such that the left an
right actions ofL` graded commute, namely, for anyv0PV0 , v1PV1 , zPCc , uPCa , (z1u)
3(v01v1)5(v01v1)z1(v02v1)u. A supervector space admits a basis when it is a freeL`

module, i.e., a direct sum of copies ofL` itself. In that case, we will call the cardinality of th
basis the dimension of the supervector space. In the remainder of the paper, whenever we
a finite or infinite dimensional supervector space, we assume that it is free as aL` module.

A Lie superalgebra is a supervector space endowed with a Lie super bracket. In particu
the Lie superalgebra gl(mun), the underlying supervector space is a freeL` module generated by
the homogeneous basis$eabua,bPI %, and the Lie super bracket is still given by Eq.~1!. A
supervector spaceA overL` is called an associative algebra if there is defined a graded bili
mapA3A→A which is associative in the usual sense. The enveloping algebra U(gl(mun)) is now
regarded as an algebra overL` . It is not very difficult to show that our discussions on structu
and representations of gl(mun) in the previous two subsections are still valid in this more gene
setting, provided that we only consider such U(gl(mun)) modules that their underlying superve
tor spaces are freeL` modules.

Let p be the parabolic subalgebra spanned by the following elements:

eab ,
edc ,

a,bPI ,
c,dPI 8,

a<b,
c,d.

Note that the gl(mun21)%gl(1) subalgebra spanned by$eabua,bPI 8%ø$em1n m1n% is contained
in p. LetV0(l) be a finite dimensional irreduciblep module with highest weightlPh* satisfying
the condition~4!, and denote byp0 :p→gl(V0(l)) the associated irreducible representation ofp.
The induced module construction presented in the last subsection allows us to construct
J. Math. Phys., Vol. 38, No. 7, July 1997
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dimensional irreducible gl(mun) moduleV(l) as the image of U(gl(mun))^U(p)V0(l) under the
projectionp. As the restriction ofp to 1^V0(l) is one-to-one, we will abuse the notation a b
and still denotep(1^V0(l)),V(l) by V0(l). We can decomposeV(l) into a direct sum of
em1n m1n eigenspaces

V~l!5 %

k50

L

Vk ,

whereem1n m1n takes eigenvaluelm1n1k when acting onVk . Note thatV05V0(l).
Let $waua51,2,...,d% be a basis ofV(l) such that$v i5wi u i51,2,...,d0% forms a basis of

V0(l), whered5dim V(l), andd05dim V0(l). Introduce the basis$^w
auua51,2,...,d% for the

dual supervector spaceV(l)* of V(l) such that

^wauwb&5dab ,

where ^ u & denotes the dual space pairing. Then the matrix elements of anyXPgl(mun) in the
irreducible representationp:gl(mun)→gl(V(l)) furnished by the moduleV(l) are given by

p~X!ab5^wauXwb&.

It is a standard result thatV(l)* carries a left gl(mun) module structure defined by

~X+^w1u!w2&52~21!@X#@w1#^w1uXw2&.

Introduce (Za)aPI8PCmun21. Set Zi5u i , 1< i<m, Zm5zm , m,m,m1n. Then thezm are
even, while theu i are odd, and obeyu iu j52u ju i . Denote byL`@@Z## the ring of polynomials
in the variablesZa , andL`@@Z##L the subset of the polynomials of degree less or equal toL,
which is clearly finite dimensional. Needless to say, it is assumed thatzm commutes with all
elements of U(gl(mun)), while u i commutes with the even elements and anticommutes with
odd ones. We construct the linear spaceV(l)@@Z##5L`@@Z## ^ L`

V(l), and define the graded
bilinear mapV(l)*3V(l)@@Z##→L`@@Z## by

^w1up~Z! ^w2&5~21!@w1#@p~Z!#^w1uw2&p~Z!.

Set

g~Z!5expS (
aPI8

Za^eam1nD ,
where the exponential should be understood as a formal power series at this stage. Now we
a linear mapj:V(l)→L`@@Z##L^ L`

V0(l) by

jw~Z!5(
i51

d0

~21!@v i #~11@w# !^v i ug~Z!~1^w!& ^v i . ~5!

We setja(Z)5jwa(Z). Denote the supervector space spanned by all theja(Z) by VZ
l , which will

be called the space of vector coherent states. Then
Proposition 2:~1! The ja(Z), a51,2,...,d, are linearly independent overL` .
~2! VZ

l furnishes a gl(mun) module with the action defined by

X+jw~Z!5(
i51

d0

~21!@v i #~11@X#1@w# !^v i ug~Z!~1^Xw!& ^v i ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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or more compactly,

X+jw~Z!5jXw~Z!, ;XPgl~mun!.

~3! VZ
l andV(l) are isomorphic as gl(mun) modules.

Proof: Part 1 is an immediate consequence of the irreducibility ofV(l), while part 2 follows
from part 1 and the following simple calculation:

X+ja~Z!5(
b

p~X!bajb~Z!.

Observe that 1̂ v1
l is the maximal vector ofVZ

l . It is easy to see that the weight of 1^v1
l is l,

hence our claim in part 3.
Now we have realized a finite dimensional irreducible Uq(gl(mun)) module as a subset o

L`@@Z##L^V0(l). Under a suitable dualization, elements ofVZ
l may be interpreted as holomo

phic sections of a homogeneous supervector bundle. This point will be further discussed
Here, we present the explicit realization of gl(mun) in terms of differential operators on th
superbundle.

Proposition 3:The irreducible representationp:gl(mun)→End(VZ
l) of gl(mun) can be real-

ized by

p~eab!52~21!@a#~@b#11!Zb
]

]Za
^111^ p0~eab!,

p~em1n m1n!52 (
aPI8

Za
]

]Za
^111^ p0~em1n m1n!,

p~em1n a!5 (
bPI8

HZb^ p0~eba!1~21!@a#ZaZb
]

]Zb
^1J 1Za^ p0~em1n m1n!,

p~ea m1n!5
]

]Za
^1, a,bPI 8. ~6!

Proof: The correctness of the realization forea m1n is clear. For theeab , a,bPI 8, we
observe that

2~21!@a#~@b#11!Zb
]

]Za
^111^eab

commutes withg(Z). Hence

eab+ja~Z!5(
i51

d0 K v iUH 2~21!@a#~@b#11!Zb
]

]Za
^111^eabJ g~Z!~1^w!L

^v i~21!@v i #~@a#1@b#111@w# !,

which immediately yields what we want to prove. The case ofem1n m1n can be shown similarly.
As to em1n a , by using

g~Z!~1^em1n a!g~Z!2151^em1n a1~21!@a#Za (
bPI8

Zb
]

]Zb
^11~21!@a#Za^em1n m1n
J. Math. Phys., Vol. 38, No. 7, July 1997
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1 (
bPI 8

Zb^eba ,

we obtain

em1n a+ja~Z!5H ~21!@a#Za (
bPI8

Zb
]

]Zb
^1J ja~Z!1(

i , j K v jUH ~21!@a#Zap0~em1n m1n! i j

1 (
bPI8

Zbp0~eba! i j J g~Z!~1^wa!L ^v i~21!@v i #~@a#1@w# !,

from which the last formula of Eq.~6! can be read off.
Several features of this realization are worth observing. Repeated applications ofp(eab), a

,b, a,bPI , to 1^v1
l , the highest weight vector ofVZ

l , generate the irreducible moduleVZ
l

automatically, rather than an analog ofV̄(l). Also, the problem of studying the irreducibl
representations of gl(mun) may now be dealt with by studying the irreducible representation
the chain of subalgebras

gl~mun!.gl~mun21!.•••.gl~mu1!.gl~m!.

This may provide a practical method for investigating the detailed structure of the finite di
sional irreducible representations of gl(mun), a problem which is not yet solved except for spec
classes of representations.

D. Vector coherent states: 2

As we have already pointed out, Kac’ induced module construction is a special case
method developed in subsection 2, with the parabolic subalgebra chosen to be

p5gl~m!1gl~n!1f1 .

The vector coherent states associated with this parabolic subalgebra were studied by Le Bla
Rowe.14 Here, we briefly outline the construction.

Let V0(l) be a finite dimensional irreduciblep module with highest weightl. Following the
general procedure of Sec. II B, we constructV̄(l), which is isomorphic to U(f2)^V0(l), thus is
a Kac module. DefineK5 1

2(a51
m1n(21)@a#(eaa2la), which belongs to the center of U(gl(m)

^gl(n)). The Kac module can be decomposed into

V̄~l!5 %

k50

mn

V̄k~l!,

whereK acts onV̄k(l) by multiplication of the nonnegative integerk. Also, V̄0(l)51^V0(l).
Let V̄(l)* be the dual module ofV̄(l), the underlying supervector space can again be dec
posed into the direct sum of eigenspaces ofK

V̄~l!*5 %

k52mn

0

V̄k* ~l!.

By using the actions ofK on the modules we can show that

^V̄k* ~l!uV̄k8~l!&50, if k1k8Þ0.
J. Math. Phys., Vol. 38, No. 7, July 1997
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For later use, we introduce the basis$v i u i51,2,...,d0% for V0(l), and the basis$^v̄ i i i
51,2,...,d0% for V̄0* (l) such that

^v̄ i u1^v j&5d i j .

As before, we denote byM the maximal proper submodule ofV̄(l) in the atypical case, and se
M50 in the typical case.

Let (um i)1< i<m,m11<m<m1n be any point inCmnu0. Define

g~u!5expS (
i51

m

(
m5m11

m1n

um i ^eimD .
We define a linear mapC:V̄(l)→L`@@u## ^ L`

V0(l) by

w°jw~u!5(
i51

d0

~21!@v i #~11@w# !^v̄ i ug~u!~1^w!& ^v i .

Then ImC furnishes a gl(mun) module with the module action

X+jw~u!5(
i51

d0

~21!@v i #~11@X#1@w# !^v̄ i ug~u!~1^Xw!& ^v i , ;XPgl~mun!.

Furthermore,
Proposition 4:~1! Ker C5M , and ImC is irreducible.
~2! When acting on ImC, gl(mun) is realized by

p~ei j !52 (
m5m11

m1n

u jm

]

]u im
^111^ p0~ei j !,

p~emn!52(
i51

m

u in
]

]u im
^111^ p0~emn!,

~7!

p~em i !5(
j51

m

(
n5m11

m1n

un ium j

]

]un j
^11(

j51

m

um j ^ p0~eji !1 (
n5m11

m1n

un i ^ p0~emn!,

p~eim!5
]

]um i
^1, i , j<m, m,n.m,

wherep0 :gl(m)%gl(n)→gl(V0(l)) is the irreducible representation of gl(m)%gl(n) afforded
by V0(l).

Results of this Proposition for the special case of gl(mu1) were known to Dundi and Jarvis,15 and
the general case were contained in some unpublished work of Bracken’s,16 and the work of Le
Blanc and Rowe.14 In the next subsection we will see that the underlying geometry of the ve
coherent states of this subsection, and thus also Kac’ induced module construction, is very s

E. Geometrical interpretation

The geometrical meaning of the vector coherent states for gl(mun) will be briefly elucidated
in this subsection. For this purpose, we need to consider supermanifolds more genera
Cmun. Recall that there are several distinct formulations of supermanifolds, the most stud
J. Math. Phys., Vol. 38, No. 7, July 1997
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which are due, respectively, to DeWitt and to Berezin–Kostant–Leites. While the sheaf theo
approach of Berezin–Kostant–Leites has many mathematically appealing features, DeWit
mulation is conceptually closer to the theory of ordinary manifolds, and has also been w
applied in theoretical physics. It is also known17 that under certain technical assumptions, DeW
and Berezin–Kostant–Leites supermanifolds turn out to be the same. We will only dea
rather simple supermanifolds here, and will not concern ourselves with detailed functional an
on them. Thus we require little beyond basic notions of the theory of supermanifolds in
subsection.

We will work within the DeWitt framework, and consider complex supermanifolds only
very brief terms, such a supermanifoldM of dimension (n,m) is a topological space equippe
with a coordinate atlas$(Ua ,fa)ua51,2,•••%. Here, theUa are open sets which form a coverin
ofM, i.e.,M5øaUa . Thefa is a one-to-one mapping ofUa onto an open set ofCmun in the
DeWitt topology. Furthermore,fa+fb

21 is superanalytic in the sense of Ref. 13 onUaùUb when
the set is nonempty.

Let G be the component of the Lie supergroupGL(mun) connected to the identity. Needles
to say,G is a Lie supergroup in its own right, and has the Lie superalgebra gl(mun). Let P,G be
the Lie super subgroup with Lie superalgebrap, which is a parabolic subalgebra of gl(mun). We
first consider the case where the parabolic subalgebrap is generated by
$eab , em1n a , em1n m1n , a,bPI 8%. Note thatp.b2. Now G/P ~understood as the right cose
space. A more appropriate notation may beP\G! yields a homogeneous superspace,18 which
coincides with the projective superspaceCPmun21 defined in the following way. Let (Wa)aPI
5(z i ;wm)1< i<m;m11<m<m1n be any point of the superspaceC

mun. Consider the subspaceC
*
mun of

Cmun consisting of the points such that the bodies of the commuting coordinates of any given
do not vanish simultaneously. Define an equivalence relation (Wa);(Wa8), (Wa), (Wa8)PC

*
mun , if

(Wa)5c(Wa8) for somecPCc with nonzero body. ThenCPmun215C
*
mun/;. This supermanifold

can be covered by the following coordinate patches

Um5$~u1
m ,...,um

m ;zm11
m ,...,zm21

m ,zm11
m ,...,zm1n

m !%, m5m11,...,m1n,

u i
m5z i /wm , zn

m5wn /wm , the body ofwmÞ0.

The transition functions can also be easily obtained.
Consider a finite dimensional irreducible leftG moduleV(l) with highest weightl, and

denote the associated irreducible representation byTl . Let V(l)* be the dualG module, and
define V0(l)*,V(l)* to be the unique irreducible leftP submodule containing the lowes
weight vector ofV(l)* . Given a basis$^v i u% of V0(l)* , we express the left action ofP by

p+^v i u5(
j
L~p! j i ^v j u, pPP.

There is also a natural rightP module structure onV0(l)* with

^v i u+p5(
j

^v j uR~p! i j , R~p! i j5L~p! i j , pPP.

Let us now define the followingV0(l)* valued functions onG:

hw~g!5(
i51

d0

~21!@v i #~11@w# !^v i uTl~g!w& ^ ^v i u, gPG, wPV~l!, ~8!

and denote byO l(G/P) their linear span. The right translation ofG defines a module action o
O l(G/P)
J. Math. Phys., Vol. 38, No. 7, July 1997
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~g+hw!~h!5hw~hg!,

and the associated irreducible representation ofG is isomorphic toTl .
A critical property ofO l(G/P) to be observed is that

hw~pg!5hw~g!R~p21!, ;pPP. ~9!

This allows us to interpret elements ofO l(G/P) as global sections of the supervector bundle

G3PV0* ~l!→G/P,

which is the quotient spaceG3V0* (l)/;, with the equivalence relation defined by

~pg,h!;~g,hR~p21!!, pPP.

Let U,G be a neighborhood of the identityePG. We considerO l(G/P) restricted toU.
Differentiating the associated irreducible representation ofG yields an irreducible representatio
of the Lie superalgebra gl(mun), which is regarded as the left invariant vector fields onG

~X+hw!~g!5(
i51

d0

~21!@v i #~11@X#1@w# !^v i uTl~g!X+w& ^ ^v i u,

XPgl~mun!, gPU.

Recall the following decomposition of the Lie supergroupG,

G5PQ,

Q5H S I u

0 1D J .
For eachgPU,G, write g5pq, pPPùU, qPQùU. Then hw(g)5hw(q)R(p

21). Also,
every elements ofQùU can be expressed as exp((aPI8 Zaeam1n), (Za)PCPmun21. Therefore,
onU, the vector spaceO l(G/P) is isomorphic toVZ

l , with the isomorphism given by the dualit
betweenV0(l) andV0(l)* . By comparing the highest weights, we can see that this also de
a gl(mun) module isomorphism.

The result of Sec. II D can be interpreted similarly, by choosing the parabolic subalgebrp to
be gl(m)1gl(n)1f2 . We will not repeat the details here, but merely point out that in this c
the homogeneous superspaceG/P is Cmnu0, the body of which is a single point.

III. QUANTUM GL(m zn )

A. Uq(gl( m zn )) and its irreducible representations

We will consider Jimbo’s version of the quantum supergroup Uq(gl(mun)) overL` . Fix q
PCc , the body of which is assumed to be nonzero and not a root of unity. Uq(gl(mun)) is a
Z2-graded unital algebra generated by$Ka ,Ka

21,aPI ;Eb b11 ,Eb11 b ,bPI 8%, subject to the fol-
lowing relations:

KaKa
2151, Ka

61Kb
615Kb

61Ka
61,

KaEb b61Ka
215qa

dab2dab61Eb b61 ,

@Ea a11 ,Eb11 b%5dab~KaKa11
21 2Ka

21Ka11!/~qa2qa
21!,
J. Math. Phys., Vol. 38, No. 7, July 1997
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~Em m11!
25~Em11 m!250,

~10!

Ea a11Eb b115Eb b11Ea a11 ,

Ea11 aEb11 b5Eb11 bEa11 a , ua2bu>2,

S a a61
~1 ! 5S a a61

~2 ! 50, aÞm,

$Em21 m12 ,Em m11%5$Em12 m21 ,Em11 m%50,

whereqa5q(21)@a#
,

S a a61
~1 ! 5~Ea a11!

2Ea61 a11612~q1q21!Ea a11Ea61 a1161Ea a11

1Ea61 a1161~Ea a11!
2,

S a a61
~2 ! 5~Ea11 a!

2Ea1161 a612~q1q21!Ea11 aEa1161 a61Ea11 a

1Ea1161 a61~Ea11 a!
2,

andEm21 m12 andEm12 m21 are thea5m21, b5m11, cases of the following elements:

Eab5EacEcb2qc
21EcbEac ,

Eba5EbcEca2qcEcaEbc , a,c,b.

The Z2 grading of the algebra is specified such that the elementsKa
61, ;aPI , andEb b11 ,

Eb11 b , bÞm, are even, whileEm m11 and Em11 m are odd. It is well known that
Uq(gl(mun)) has the structure of aZ2 graded Hopf algebra, with a comultiplication

D~Ea a11!5Ea a11^KaKa11
21 11^Ea a11 ,

D~Ea11 a!5Ea11 a^11Ka
21Ka11^Ea11 a ,

D~Ka
61!5Ka

61
^Ka

61,

counit

e~Ea a11!5e~Ea11 a!50, ;aPI 8,

e~Kb
61!51, ;bPI ,

and antipode

S~Ea a11!52Ea a11Ka
21Ka11 , S~Ea11 a!52KaKa11

21 Ea11 a ,

S~Ka
61!5Ka

71.

The quantum supergroup Uq(gl(mun)) has variousZ2 graded Hopf subalgebras, which a
useful for analyzing the representation theory. From Eq.~10!, we can easily see that

$KauaPI % generate an abelian Lie algebra

@Ka ,Kb#5KaKb2KbKa50.

$Ka , aPI ; Ebb11 , Eb11b um1n21.bPI 8% generate a subalgebraUq(gl(mun21)%gl(1)).
$KauaPI %ø$Ebb11ubPI 8% generate a subalgebraUq(b1), which is isomorphic to the quan

tized universal enveloping algebra ofb1 .
J. Math. Phys., Vol. 38, No. 7, July 1997
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Fix any subsetQ,I 8, then$Ka
61uaPI %ø$Ebb11ubPI 8%ø$Ec11cucPQ% generate a (Q de-

pendent) subalgebraUq(p), which is isomorphic to the quantized universal enveloping algebr
a standard parabolic subalgebra ofgl(mun).

Properties of theEab were studied extensively in Ref. 1. We recall some of them bel
which will be used repeatedly in the Bott–Borel–Weil construction.

Lemma 1:~1! Assumea,b, then

@Eab ,Ecc11%50,

@Eba ,Ec11c%50, aÞc, c11, & bÞc, c11,

@Eab ,Ec11c%5dbc11EacKcKc11
21 qc

212dac~21!dcmEc11bKc
21Kc11 ,

@Eba ,Ecc11%5dacEbc11KcKc11
21 qc112dbc11~21!dcmEcaKc

21Kc11 ,

aÞc, c11, or bÞc, c11.

~2!

@Eab ,Eba%5~KaKb
212Ka

21Kb!/~qa2qa
21!,

@Eac ,Ecb%55
EabKcKb

21qb , a.b.c,

EabKc
21Kb , b.a.c,

EabKa
21Kc , b,a,c,

EabKbKc
21qb

21, a,b,c,

EcaEcb5~21!~@a#1@c# !~@b#1@c# !qcEcbEca ,

EbcEac5~21!~@a#1@c# !~@b#1@c# !qc
21EacEbc , a,b,c, or b.a.c,

@Eca ,Ecb%5@Eac ,Ebc%50, a,c,b, or a.b.c.

~3! Assume thata,b, c,d, and no two ofa, b, c andd are equal. Introduce the setsS(a,b)
5$a,a11,...,b%, andS(c,d)5$c,c11,...,d%.

If S~a,b!ùS~c,d!50”, S~ab!, or S~c,d!,

then @Eab ,Ecd%5@Eab ,Edc%5@Eba ,Ecd%5@Eba ,Edc%50.

Define

Ēab5ĒacĒcb2qcĒcbĒac ,

Ēba5ĒbcĒca2qc
21ĒcaĒbc , a,c,b.

Then theĒab are related toEab with the help of the antipode

S~Eab!52ĒabKa
21Kb ,

S~Eba!52KaKb
21Ēba , a,b.

Define the graded bilinear mapAd:Uq(gl(mun))3Uq(gl(mun))→Uq(gl(mun)) by
J. Math. Phys., Vol. 38, No. 7, July 1997
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Adx~y!5(
~x!

~21!@x~2!#@y#x~1!yS~x~2!!,

where Sweedler’s sigma notation is employed. Then

Uq~gl~mun!!→AdUq~gl~mun!! ,

x °Adx ,

yields an algebra homomorphism. We will callAd the adjoint action.
Set

Xa52Ēam1nKa
21Km1n ,

Ya5Em1na , aPI 8,

and denote byX the linear span of$XauaPI 8%, and byY that of $YauaPI 8%. Then
Lemma 2:X andY furnish Uq(gl(mun21)%gl(1)) modules under the adjoint actionAd

AdKaXb5qa
dabXb , AdecXb5dc11bXc ,

AdfcXb5dcbXc11 , AdKaYb5qa
2dabYb ,

AdecYb52qc11dcbYc11 , AdfcYb52qc11
21 da11bYc ,

AdKm1n
Xb5qm1n

21 Xb , AdKm1n
Yb5qm1nYb ,

whereec5Ecc11 , f c5Ec11c , a,b,cPI 8, c,m1n21.
In fact both modules are irreducible, and dual to each other in the following sense: the b

pairingY3X→L` defined by (Ya ,Xb)5dab identifiesY with the dual vector spaceX * of X .
This also defines a Uq(gl(mun21)%gl(1)) module isomorphism

~Adu~Ya!,Xb!5~21!@u#~Ya ,AdS~u!~Xb!!, uPUq~gl~mun21! %gl~1!!.

Therefore,C̄ :5(aPI8(21)@b#11S2(Ya)^Xa , defines an invariant of the quantum subgroup

Adu~ C̄ !5 (
aPI8

~21!@u~2!#@a11#1@b#11Adu~1!
~S2~Ya!! ^Adu~2!

~Xa!5e~u!C̄ ,

uPUq~gl~mun21! %gl~1!!.

From this fact we can easily deduce that
Lemma 3:TheC defined by

C5 (
aPI8

~21!@b#11Ya^S21~Xa!,

satisfies

@D8~u!,C #50, ;uPUq~gl~mun21! %gl~1!!, ~11!

whereD8 is the opposite comultiplication.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The finite dimensional irreducible representations of Uq(gl(mun)) defined over the complex
field were studied systematically in Ref. 1. The main conclusions still apply to the present
tion. We have
~1! Every finite dimensional irreducible Uq(gl(mun)) module admits a basis, relative to whic
theKa are diagonal.
~2! Every finite dimensional irreducible Uq(gl(mun)) module is of highest weight type and
uniquely ~up to isomorphisms! characterized by a highest weight.
~3! An irreducible Uq(gl(mun)) moduleV(l) with the maximal vectorv1

l

Eaa11v1
l 50, aPI 8,

Kbv1
l 5qb

lbv1
l , bPI .

is finite dimensional if and only ifl satisfiesla2la11PZ1 , aÞm.
~4! WhenV(l) is finite dimensional, it has the same weight space decomposition as that
corresponding irreducible gl(mun) module with highest weightl.

B. A realization of U q(gl( m zn )) on projective superspace

Before embarking on the Bott–Borel–Weil construction for the quantum superg
Uq(gl(mun)), we consider first a simple realization for it in terms of difference operators on
projective superspaceCPmun21.

Let z be a variable living inCc . Define a difference operator“z on analytic functions by

“zf ~z!5
f ~qz!2 f ~q21z!

z~q2q21!
.

Then

“z~ f ~z!h~z!!5“zf ~z!qdzh~z!1q2dzf ~z!“zh~z!5“zf ~z!q2dzh~z!1qdzf ~z!“zh~z!,

where

dz5z
d

dz

is the scaling operator. For a Grassmannian variableu, we denote

“u5
d

du
, dv5u

d

du
.

Consider (Wa)aPI5(z i ,wm)PCmun. It is clear that

@“wm
,“wn

#50, @“wm
,“z i

#50,

$“z i
,“z j

%50, ; i , j ,m,n.

The quantum supergroup Uq(gl(mun)) can be realized in terms of the difference operato
Direct calculations can easily establish that the following operators satisfy the defining rel
~10! of Uq(gl(mun)):

Eaa1152Wa11“Wa
,

J. Math. Phys., Vol. 38, No. 7, July 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



com-

contra-

te

n

e

ables

of

3878 R. B. Zhang: Quantum supergroup and Bott–Borel–Weil theory

¬¬¬¬¬¬¬¬¬¬
Ea11a52~21!@a11#~@a#11!Wa“Wa11
, aPI 8, ~12!

K b
615q6cq

b

7dWb , bPI ,

wherecPCc is an arbitrary but fixed even number. The homogeneous polynomials in the
ponents of (Wa) of a given degree furnishes an irreducible module over Uq(gl(mun)) in this
realization. Such irreducible modules can all be obtained through repeatedly tensoring the
gredient vector module with itself.

To turn this realization of Uq(gl(mun)) into one onCPmun21, we consider, e.g., the coordina
patchUm1n,CPmun21. Let

~Za!aPI85~u i ;zm!1< i<m;m11<m<m1n21 ,

u5z i /wm1n , 1< i<m,

zm5wm /wm1n , m11<m<m1n21.

Set“Za
5“a . Then

dWa
5da , Wa“Wb

5Za“b ,

Wm1n“Wb
5“b ,

Wa“Wm1n
5ZaWm1n“Wm1n

, ;a,bPI 8,

whereWm1n“Wm1n
can be expressed as

Wm1n“Wm1n
5
qdWm1n2q2dWm1n

q2q21 .

Recall thatPaPI(Ka)
(21)@a#

is a central element of Uq(gl(mun)). In an irreducible representatio
realized by degreek homogeneous polynomials in (Wa), it takes the eigenvalueq

(m2n)c2k. Thus
in this irreducible representation,Km1n and alsoWm1n“Wm1n

can be expressed in terms of th
K a , aPI 8.

Now the irreducible representation can be realized solely in terms of the new vari
(Za). We collect the results into

Proposition 5:The polynomials in components of (Za)aPI8PUm1n,CPmun21 of degrees less
or equal tok furnishes an irreducible Uq(gl(mun)) module with the generators realized in terms
difference operators on Um1n by

K a5qcqa
2da, aPI 8,

Eaa1152Za11“a ,

Ea11a52~21!@a11#~@a#11!Za“a11 , a11PI 8,

Km1n5qm1n
2k qc )

aPI8
qm1n
da , ~13!

Em1n21m1n52“m1n21 ,
J. Math. Phys., Vol. 38, No. 7, July 1997
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Em1nm1n2152zm1n21

q2cKm1n2qcKm1n
21

qm1n2qm1n
21 . ~14!

Such a realization can be constructed for each coordinate patch ofCPmun21, and the various
realizations are related by coordinate changes on the projective superspace.

The Eaa11 , Ea11a , a,m1n21, andK b , bPI given by Eq.~13! realize the Uq(gl(mun
21)%gl(1)) subalgebra of Uq(gl(mun)). We will denote this realization byY(Uq(gl(mun21)
%gl(1))), and introduce the algebra homomorphismY:Uq(gl(mun21)%gl(1))
→Y(Uq(gl(mun2 1) % gl(1))) defined byY(Eaa11)5Eaa11 , etc.

We now construct the tensor operatorY of the subalgebra in this representation, the com
nents of which will be denoted byya . Note that the complicated factor multiplyingzm1n21 in the
expression ofEm1nm1n21 commutes with the subalgebra, thus we can ignore it without affec
the tensorial properties of the tensor operator. A simple calculation gives

ya5~21!@a#11Zaq
2Sb5a11

m1n21$~21!@b11#1db%, aPI 8.

The correspondingC operator, which will be denoted byO , is given by

O5 (
aPI8

~21!@a#11ya^Eam1n . ~15!

An immediate consequence of Lemma 3 is that
Lemma 4:

@~Y ^ id !D8~u!,O #50, ;uPUq~gl~mun21! %gl~1!!, ~16!

whereD8 represents the opposite comultiplication.
Let us rewriteO as

O5O 8~q2dm1n21^1!1zm1n21^Em1n21m1n .

ThenO 8 does not depend onzm1n21 , and

O 8~zm1n21^Em1n21m1n!5q21~zm1n21^Em1n21m1n!O 8.

Introduce the formal power series

g~Z!5expq~O !, expq~x!5 (
k50

`
xk

@k#q!
. ~17!

The g(Z) is well behaved when acting onL`@@Z## ^V if the Uq(gl(mun)) moduleV is finite
dimensional. Consider the action ofO k on 1^vPL`@@Z## ^V, wherev is an arbitrary elemen
of V. An easy induction can establish that

@O 8~q2dm1n21^1!1zm1n21^Em1n21m1n#
k~1^v !

5(
t50

k
@k#q!

@k2 l #q! @ l #q!
~O 8!k2 l~zm1n21

l
^Em1n21m1n

l v !,

which in turn leads to

expq~O !~1^v !5expq~O 8!expq~zm1n21^Em1n21m1n!~1^v !.
J. Math. Phys., Vol. 38, No. 7, July 1997
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The action of powers ofO 8 on zm1n21
k

^v can be similarly simplified. Such a process can
continued, and we eventually arrive at

Lemma 5:

expq~O !~1^v !5expq~O 1!expq~O 2!•••expq~Om1n21!~1^v !, ;vPV, ~18!

where

O a5Z̃a^Eam1n,

Z̃a5q2(b5a11
m1n21

~21!@b11#
Za , aPI 8.

C. Bott–Borel–Weil construction

With the preparations of the last two subsections, we can now carry out the Bott–Borel–
construction for Uq(gl(mun)). Let Uq(p) be the parabolic subalgebra of Uq(gl(mun)) generated
by

Ka
61, aPI ; Ebb11 , Ec11c , b,cPI 8, c,m1n21,

subject to the appropriate relations of Eq.~10!. Then from results of Ref. 1 we can deduce tha

Uq~gl~mun!!5U~2 !Uq~p!,

whereU(2) is the subalgebra generated by$Em1nauaPI 8%.
The induced module construction of Sec. II B can be generalized to the present case w

much difficulty. Given any irreducibleUq(p) moduleV0 , we construct theinfinite dimensional
Uq(gl(mun)) module

V̄5Uq~gl~mun!! ^Uq~p!V0 .

WhenV̄ is irreducible, we setV5V̄. If it is not irreducible, then the given condition thatV0 is an
irreducibleUq(p) module leads to the existence of a unique maximal submoduleM of V̄. Now
V5V̄/M is irreducible.

WhenV0 is finite dimensional, it admits a unique maximal vectorv1 such that

Eaa11v150, aPI 8,

Kbv15qb
lbv1 , bPI ,

and thela must satisfy the condition thatla2la11PZ1 , mÞa,m1n21. If the highest weight
satisfies the further condition thatlm1n212lm1nPZ1 , then the resultant irreducibl
Uq(gl(mun)) moduleV is finite dimensional. In this way, we can construct all the finite dim
sional irreducible Uq(gl(mun)) modules.

We will denote byV(l) the finite dimensional irreducible Uq(gl(mun)) module with highest
weightl. Decompose it into eigenspaces ofKm1n ,

V~l!5 % k50
L V~k!~l!, L,`,

where

Km1nv5qm1n
k1lm1nv, ;vPV~k!~l!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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We choose a basis for each subspaceV(k)(l). Then the union of all of them furnishes a bas
$waua51,2,...,dimV(l)% for V(l). We order thewa in such a way thatv i5wi , i
51,2,...,dimV(0)(l), are the basis elements ofV(0)(l). Let $^wau% be the dual basis o
V(l)* , i.e., ^wauwb&5dab .

Similar to the classical case, we define a linear mapJ:V(l)→L`@@Z##L^V0(l) by

Jw~Z!5(
i51

d0

~21!@v i #~11@w# !^v i uexpq~O !~1^w!& ^v i ,

d05dim V~0!~l!, ~19!

where expq(O ) is given in Eq.~17!. SinceV(l) is finite dimensional, expq(O )(1^w) is well
defined for allwPV(l).

Using Lemma 3, we can easily see that the elements of

$Ja~Z!5Jwa~Z!ua51,2,...,dimV~l!%

are linearly independent. Their linear spanVZ
l,L`@@Z##L^V0(l) yields a Uq(gl(mun)) module

with the module action defined by

u+Jw~Z!5Juw~Z!, ;uPUq~gl~mun!!,

which is isomorphic toV(l) itself.
The quantum supergroup Uq(gl(mun)) can now be realized in terms of operators acting

VZ
l . We have
Proposition 6:Let p denote the irreducible representation of Uq(gl(mun)) afforded by the

irreducible moduleVZ
l . Then

p~Eaa11!52Za11¹a^11qa
2daqa11

da11^ p0~Eaa11!,

p~Ea11a!52Za¹a11^qa
daqa11

2da1111^ p0~Ea11a!, a,m1n21,

p~Kb!5qb
2db^ p0~Kb!, b<m1n21,

p~Km1n!5q
m1n

(a51
m1n21da

^ p0~Km1n!,

p~Em1n21m11!5“m1n21^1,

p~Em1nm1n21!5
1

qm1n212qm1n21
21 $~zm1n21^ p0~Km1n21!!p~Km1n

21 !

2~zm1n21^ p0~Km1n21
21 !!p~Km1n!%

1 (
a51

m1n22

Z̃aqm1n

212(b51
a db

^ p0~Eam1n21Km1n21Km1n
21 !,

wherep0 denotes the irreducible representation ofUq(p) afforded byV(0)(l).
Proof:We consider the Uq(gl(mun21)%gl(1)) subalgebra first. Observe that

~Y ^ id !D8~Eaa11!~1^w!51^Eaa11w,

~Y ^ id !D8~Ea11a!~1^w!51JEa11aw, ;wPV~l!, a,m1n21.
J. Math. Phys., Vol. 38, No. 7, July 1997
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By applying Lemma 4, we obtain

Eaa11+Jw~Z!5(
i51

d0

~21!@v i #~11dam1@w# !^v i uexpq~O !~1^Eaa11w!& ^v i

5(
i51

d0

^v i u~Eaa11^11K aK a11
21

^Eaa11!

3expq~O !~1^w!& ^v i~21!@v i #~11dam1@w# !

5~Eaa11^11K aK a11
21

^ p0~Eaa11!!Jw~Z!,

which immediately yields the expression forp(Eaa11). In exactly the same way, we can obta
the realizations of the other generators of this subalgebra.

The realization ofEm1n21m1n can be easily obtained from Lemma 5. To prove the form
for Em1nm1n21 , however, considerable effort is required. We will need the following techn
results:

@expq~Om1n21!, 1^Em1nm1n21#5
1

qm1n2qm1n
21 @~zm1n21^Km1n21!expq~Om1n21!

3~1^Km1n
21 !2~zm1n21^Km1n21

21 !expq~Om1n21!

3~1^Km1n!#, ~20!

@expq~O a!,1^Em1nm1n21#5~ Z̃aqm1n
21

^Eam1n21!expq~O a!~1^Km1n21Km1n
21 !, ~21!

which can be proven by repeatedly applying Lemma 1.
Set

h5(
i51

d0

^v i uexpq~O 1!••• expq~Om1n22!@expq~Om1n21!, 1^Em1nm1n21#~1^w!&

^v i~21!@v i #~11@w# !

z5(
i51

d0

^v i u@expq~O 1!••• expq~Om1n22!, 1^Em1nm1n21#expq~Om1n21!~1^w!&

^v i~21!@v i #~11@w# !.

Then

Em1nm1n21+Jw5h1z.

By using Eq.~20!, we can rewriteh as

h5
~zm1n21^ p0~Km1n21!!p~Km1n

21 !2~zm1n21^ p0~Km1n21
21 !!p~Km1n!

qm1n212qm1n21
21 Jw .

Lemma 1 asserts thatEam1n21 ~anti!commutes with allEcm1n if c,a. Thus by using Eq.~21! we
arrive at
J. Math. Phys., Vol. 38, No. 7, July 1997
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z5(
i51

d0

(
a51

m1n22

^v i u~ Z̃aqm1n
21

^Eam1n21Km1n21!expq~O 1!••• expq~O a!

3~1^Km1n
21 !expq~O a11!••• expq~Om1n21!~1^w!& ^v i~21!@v i #~11@w# !

5(
i51

d0

(
a51

m1n22

^v i u~ Z̃aqm1n

212(b51
m1n21db

^Eam1n21Km1n21Km1n
21 !expq~O 1!••• expq~O a!

3~qm1n

(b51
m1n21db

^1!expq~O a11!••• expq~Om1n21!~1^w!& ^v i~21!@v i #~11@w# !

5 (
a51

m1n22

~ Z̃aqm1n

212(b51
a db

^ p0~Eam1n21Km1n21Km1n
21 !!Jw .

Adding the final expressions ofh andz together gives the desired realization ofEm1nm1n21 .

IV. CONCLUSION

As we have explained, the construction of the vector coherent states for the supe
GL(mun) at the classical level can be regarded as one manifestation of a supersymmetric
alization of the celebrated Bott–Borel–Weil theorem, and the vector coherent states them
may be interpreted as holomorphic sections of homogeneous supervector bundles. It sho
possible to give the quantum coherent states a similar interpretation within a yet to be
developed framework of noncommutative geometry. The results on the quantum Bott–B
Weil construction should feedback concrete useful information, improving this framework i
In a separate publication,19 we will develop a global version of the quantum Bott–Borel–W
construction, where results of Refs. 20–22 on quantum homogeneous spaces will come to

Note added after proof: The vector coherent state method has been applied to the ortho
plectic Lie superalgebras in C. Quesne, J. Phys. A23, 5383~1990!; 23, 5411~1990!.
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By using the generating function formula for the product of twoq-Hermite poly-
nomials,q-deformation of the Feynman Green’s function for the harmonic oscilla-
tor is obtained. ©1997 American Institute of Physics.@S0022-2488~97!01108-0#

I. INTRODUCTION

The q-oscillators are the most extensively studied deformed dynamical systems. They
been presented in several different types.1 The e-functions of theseq-oscillators are expressible i
terms of either the discrete or the continuousq-Hermite polynomials.2

Although the literature onq-oscillators is very rich, the correspondingq-Green’s functions
have not been investigated. This looks surprising when one considers the fact that the exac
form of the Green’s function of the undeformed oscillator has been known for many decad3

It is the purpose of this note to obtain the Green’s function for one of theq-oscillators. The
q-oscillator we deal with is the one which is solved in terms of the continuousq21-Hermite
polynomials.4

In Section II we briefly review theq-oscillator realization of Ref. 4. Section III is devoted
the derivation of theq-oscillator Green’s function which is the deformation of the well know
Feynman formula. The method of the calculation of the non-trivialq→1 limit, which is essential
for arriving at the usual Feynman Green’s function, is outlined in the Appendix.

II. A q -OSCILLATOR REALIZATION

Recently Atakishiev, Frank and Wolf introduced a simple difference realization of the He
bergq-algebra.4 They also studied the correspondingq-oscillator Hamiltonian and its e-function
in terms of theq21-Hermite polynomials. Theq-annihilation and creation operators acting on t
smooth functionsf (j) with j P (2`,`) are given by

bq5
1

21/2q1/4b
v~j!S q2bj expS 1

2b
]jD2qbj expS 2

1

2b
]jD D v~j!, ~1!

bq
†5

1

21/2q1/4b
v~j!S q2bj expS 2

1

2b
]jD2qbj expS 1

2b
]jD D v~j!, ~2!

where

k52 log q, b5
1

~2~12q!!1/2
, v~j!5

1

~cosh~kbj!!1/2
, ~3!

a!Electronic mail address: ahmedov@mam.gov.tr and duru@mam.gov.tr
0022-2488/97/38(8)/3889/6/$10.00
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andj is the dimensionless variable~with \51!

j5Avmx. ~4!

The algebra satisfied by the operators~1! and ~2! is

bqbq
†2qbq

†bq51. ~5!

In the limit q→12(k→01) bq , bq
† takes the usual forms:

b5
1

21/2S j1
d

dj D and b†5
1

21/2S j2
d

dj D . ~6!

The operator

Hq5bq
†bq , ~7!

which is self-adjoint under the inner product

~ f ,g!5E
2`

`

dj f ~j!g~j!, ~8!

satisfies the e-value equation

HqCn
q~j!5@n#Cn

q~j!. ~9!

Here @n# is defined as usual as

@n#5
12qn

12q
, n50,1,2,. . . , ~10!

and the e-functions are given by

Cn
q~j!5S k

p~12q! D
1/4 q~n11/2!2/4

~~q;q!n!
1/2~cosh~kbj!!1/2 exp~2kb2j2!hn~sinh~kbj!uq!. ~11!

Herehn is the continuousq21-Hermite polynomial and (q;q)n is theq-factorial:

~q;q!n5)
j51

n

~12qj !. ~12!

In q→12 limit hn takes the form of the usual Hermite polynomial~with
sinh(kbj)→((12q)/2)1/2j):

lim
q→12

S 2

12qD
n/2

hn~sinh~kbj!uq!5Hn~j!. ~13!

III. A ‘‘PHYSICAL’’ q -OSCILLATOR AND ITS GREEN FUNCTION

Making use of the operator~7! we can write the following ‘‘physical’’q-oscillator Schro¨-
dinger equation including the ground state energy:

~q1/2bq
†bq1@ 1

2# !Fn
q~j,t !5zDz

qFn
q~j,t !. ~14!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Herez is the exponential time parameter given by

z5exp~2 ivt ! ~15!

andFn
q(j,t) is the time dependent wave function:

Fn
q~j,t !5exp~2 ivt~n11/2!!Cn

q~j!5zn11/2Cn
q~j!. ~16!

The action of theq-derivative on the time dependent factor of the above wave function

zDz
qzn11/25@n11/2#zn11/25~q1/2@n#1@ 1

2# !zn11/2 ~17!

exhibits the correct energy spectrum of the ‘‘physical’’q-oscillator.
Time dependent wave functions enable us to write theq-Green’s function for the oscillator a

Kq~j,j8;z!5 (
n50

`

zn11/2Cn
q~j!Cn

q~j8!, ~18!

where

z5 z̄ z85exp~2 iv~ t82t !!. ~19!

To execute the summation overn in ~18! we recall the following generating function formul
for the product of two continuousq-Hermite polynomials:5

~z2;q!`

~z exp~ i ~u1f!!;q!`~z exp~ i ~u2f!!;q!`~z exp~2 i ~u1f!!;q!`

1

~z exp~2 i ~u2f!!;q!`

5 (
n50

`

zn
Hn~cosuuq!Hn~cosfuq!

~q;q!n
. ~20!

Here (a;q)` is defined as

~a;q!`5)
j50

`

~12aqj !. ~21!

In q→12 limit ~see the Appendix! the formula~20! is reduced to the well known summatio
formula for the product of two undeformed Hermite polynomials:6

1

~12z2!1/2
expF2

1

12z2
~z2~j21j82!22zjj8!G5 (

n50

`
zn

2nn
Hn~j!Hn~j8! ~22!

with

j5S 12q

2 D 1/2cosu, j85S 12q

2 D 1/2cosf. ~23!

Note that by the help of~22! one can derive the well known Feynman formula for the undeform
oscillator3 ~with T5t82t)

K~j,j8;t82t !5S mv

2p i sin~vT! D
1/2

expF imv

2 sin~vT!
~~j21j82!cos~vT!22jj8!G ~24!
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from the Green’s function written in the wave function decomposition form.7

To derive theq-oscillator Green’s function we first insertq21 in place ofq by recalling the
relation5

1

~q21;q21!n
5q1/8q~n11/2!2/2

~21!n

~q;q!n
. ~25!

After making the required analytic continuations inu andf we arrive at

Eq
21S qz2

12qDEqS 2qz

12q
exp~2~u1f!! DEqS 2qz

12q
exp~u1f! DEqS qz

12q
exp~2~u2f!! D

3EqS qz

12q
exp~u2f! D5 (

n50

`
hn~sinh uuq!hn~sinhfuq!

~q;q!n
q~n11/2!2/2zn, ~26!

which is the formula suitable to ourq21- Hermite polynomials. Theq-exponentials employed in
the above equation are given in terms of then→` limit of the q-factorials as5

E1/q~2x!5Eq
21~x!5~~12q!x;q!` . ~27!

When we introduce the formula of~26! into ~18! we obtain the final form of the
q-oscillator Green’s function:

Kq~j,j8;z!5q21/8S 2kp D 1/2b~cosh~kbj!cosh~kbj8!!1/2 exp(2kb2~j21j82!z1/2

3Eq
21S qz2

12qDEqS 2qz

12q
exp~2kb~j1j8!! DEqS 2qz

12q
exp~kb~j1j8!! D

3EqS qz

12q
exp~2kb~j2j8!! DEqS qz

12q
exp~kb~j2j8!! D . ~28!

By the process sketched in the Appendix the above equation is reduced to the Fe
formula of ~24! in q→12 limit.

In T→0 (z→1) limit we distinguish two cases:
~i! For jÞj8 by the virtue of the first exponential

Eq
21S qz2

12qD5~qz2;q!`5 )
n51

`

~12qnz2! ~29!

we have

lim
T→0

Kq~j,j8;z!50. ~30!

~ii ! For j5j8 on the other hand by the virtue of the 1st, 2nd, and 3rd exponentials we

lim
z→1

Eq
21S qz2

12qDEqS 2qz

12qDEqS 2qz

12qD5 lim
z→1

)
n50

`
~12qnz2!

~12qnz!~12qnz!
. ~31!
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Then51 factor in the above equation contributes a singularity of

lim
z→1

1

12z
~32!

type.
It is easy to conclude then that the Green’s function~28! behaves as thed-function

d(exp(kbj)2exp(kbj8)) in T→0 (z→1) limit.

ACKNOWLEDGMENT
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APPENDIX: q˜12 LIMIT OF EQ. (20)

Using the definitions in~21! and ~23! we can rewrite~20! as

)
j50

`

~12z2qj !~12z2q2 j !22~12~12q!Aj !
215

(
n50

`
zn

~q;q!n
HnS S 12q

2 D 1/2jUqDHnS S 12q

2 D 1/2j8UqD ~A1!

with

Aj52
zqjjj8~11z2q2 j !2~j21j82!z2q2 j

~12z2q2 j !2
. ~A2!

Hereq→12 limit of the right hand side~rhs! of ~A1! ~with (q;q)n5(12q)n@n#!) is

lim
q→12

~rhs!5 (
n50

`
zn

2nn
Hn~j!Hn~j8!. ~A3!

Let us take the logarithm of the left hand side~lhs! of ~A1!:

log~ lhs!5(
j50

`

@ log~12z2qj !22 log~12z2q2 j !#2(
j50

`

log~12~12q!Aj !. ~A4!

Expanding the logarithm function into the series~for uzu<1) the first two terms in the abov
equation can be written as

(
j50

`

@ log~12z2qj !22 log~12z2q2 j !#5 (
k51

`
z2k

k~11qk!

52 log~12z2!q2
1/2 ~A5!

with5

~12z!q
a5c1,0~q

2a,q;z!. ~A6!

Then ~lhs! can be rewritten as
J. Math. Phys., Vol. 38, No. 8, August 1997
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~ lhs!5
1

~12z2!q2
1/2exp~2F~j,j8,zuq!! ~A7!

where

F~j,j8,zuq!5(
j50

`

log~12~12q!Aj !. ~A8!

From ~A2! we see that the functional sequenceuAj u for any value ofz, j andj8 ~except the case
z51! decreases:

uA0u.uA1u.•••.uAnu.••• . ~A9!

Let us consider the zeroth term of the sequence~A9! uA0u and fix the value ofz ~with zÞ1!. It is
clear that there existn P N such that

~12qi !uA0u,1, i.n, ~A10!

whereqi is the sequence: limi→`qi512. By the virtue of~A9! the functions (12qi)uAj u satisfy
the condition~A10!, too. Thus the logarithm function~A9! can be expanded in the Taylor series
q→12 limit as

lim
q→12

F~j,j8,zuq!5 lim
q→12

(
k51

`
~12q!k

k (
j50

`

~Aj !
k. ~A11!

In the above expression only thek51 term survives:

lim
q→12

F~j,j8,zuq!5 lim
q→12

~12q!(
j50

`

Aj . ~A12!

After expanding the denominator ofAj into the power series we arrive at

lim
q→12

F~j,j8,zuq!5
z2~j21j82!22zjj8

12z2
. ~A13!

From ~A8! and ~A14! we get

lim
q→12

~ lhs!5
1

~12z2!1/2
expF2

z2~j21j82!22zjj8

12z2 G , ~A14!

which together with~A3! establishes the desired limit of~22!.
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Relativistic classical theory of a free particle
S. Danko Bosanac
R. Bošković Institute, 10001 Zagreb, Republic of Croatia

~Received 3 January 1997; accepted for publication 27 February 1997!

By shifting the emphasis from the concept of trajectory to the concept of probabil-
ity density it is possible to incorporate the uncertainty principle into classical me-
chanics. This amendment in the nonrelativistic classical theory is sufficient to de-
rive the Schro¨dinger equation for a general potential. In order to show that the
approach has general validity it is necessary to show that it can be generalized to
the classical relativistic dynamics. In this paper it is shown how this generalization
is achieved for a free particle, and as a result the Dirac instead of the Klein–Gordon
equation is obtained. It is shown that the spin and the magnetic moment of charged
particles are classical in character because their correct values are calculated as the
averages over the classical~relativistic! phase space density, subject to the con-
straint imposed by the uncertainty principle. Since the Dirac equation has direct
connection to the classical~relativistic! dynamics the problem of the positive and
negative energy states is discussed. ©1997 American Institute of Physics.
@S0022-2488~97!00308-3#

I. INTRODUCTION

It has been recently shown that if the uncertainty principle is incorporated into clas
theory1,2 it is possible to derive the Schro¨dinger equation for a general potential3 ~for a parabolic
potential this can be shown relatively easily1,2!. Testing the validity of this idea was done o
several examples,4–6 but one big challenge remains: generalization to the relativistic dom
Although various examples in the relativistic dynamics have been investigated,7,8 and the agree-
ment with the relativistic quantum theory was excellent, the calculations were made und
approximation that the phase space density is product separable, which is not the case in
The purpose of this paper is to generalize this idea to the relativistic dynamics, and althoug
is restricted to a free particle some surprising results are obtained.

The essential idea in classical theory is to shift the emphasis from the trajectory to prob
calculations. In other words, instead of asking about the whereabouts of a particle if its
conditions are known, one asks about the probability of finding the particle at a certain posi
the initial probabilities for the coordinates and momenta are known. Therefore, instead of s
Newton’s equations one solves the Liouville equation for the phase space density, whe
requirement of satisfying the uncertainty principle in classical theory restricts its acceptable
tions. For the sake of clarity the essential steps in the nonrelativistic classical theory will fi
repeated.

The basic question which one asks can be formulated as the following: given the
probability P0(r ) of finding a particle at the positionr , and the probabilityQ0(p) of finding it
with the momentump, what is the probabilityP(r ,t) of finding it at anotherr after the timet? To
answer this question one defines a phase space densityr(r ,p,t) which obeys the Liouville equa
tion

]r

]t
1

p

m
•¹ rr2¹V•¹pr50 ~1!

and has the property that the probability densities for the coordinates and the momenta ar
by
0022-2488/97/38(8)/3895/13/$10.00
3895J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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P~r ,t !5E d3p r~r ,p,t !; Q~p,t !5E d3r r~r ,p,t !. ~2!

We also define the probability current

j5E d3pvr~r ,p,t !, ~3!

wherev5p/m is the velocity of a particle. The probability density and the probability current
interrelated through the continuity equation

]P

]t
52¹• j , ~4!

which is itself derived from the Liouville equation. The amendment we propose to classical t
requires thatP(r ,t) andQ(p,t) are related so that the inequality

DxDpxÞ\/2 ~5!

is satisfied for each Cartesian component. The inequality puts a constraint on the possible
ability densities, or the solutions of the Liouville equation. Finding a solution to this, essentia
mathematical, problem is not simple and the question is if there is a unique answer to it. How
guidance can be the signal processing techniques where the Fourier analysis is used.9 In short, we
parametrize the probabilities as

P~r ,t !5uF~r ,t !u2, Q~p,t !5uG~p,t !u2, ~6!

in order to ensure that they are positive. The auxiliary functions are now interrelated throug
Fourier transform

F~r ,t !5
1

A~2p\!3
E d3p eip•rhG~p,t !, ~7!

thus ensuring the inequality~5!. Based on this parametrization it is necessary to find how the p
space density is related to the auxiliary functionF, because in this way the required constraint
the solutions of the Liouville equation would be ensured. One possible relationship is10,11

r~r ,p,t !5
1

p3 E d3q e2ip•pF* ~r1q,t !F~r2q,t !, ~8!

where the functionF(r ,t) has to satisfy the requirement thatr satisfies the Liouville equation. I
should be emphasized that~8! is not the only relationship which ensures realization of the abo
mentioned parametrization, however, in this work we will use it because it is relatively simp
is expected that the final result is independent of the way the phase space density is relate
auxiliary functions, but in this work this point will not be elaborated further.

The functionF(r ,t) has to satisfy the requirement thatr satisfies the Liouville equation
When the parametrization~8! is replaced in~1! it is a matter of straightforward derivation to sho
that for a parabolic potential the functionc satisfies the equation

i
]F

]t
52

1

2
DF1VF. ~9!

It can be shown that this equation can be derived for an arbitrary potential.3
J. Math. Phys., Vol. 38, No. 8, August 1997
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The question we now raise is how can the above steps be repeated for the relativistic d
ics. The classical relativistic equations for trajectories are

dr

ds
5p,

dp

ds
5p0W~r ,t !,

~10!

dt

ds
5p0 ,

dp0
ds

5p•W~r ,t !,

whereW is the force, ands is the proper~invariant! time variable. The relativistic Liouville
equation for the phase space density is derived as

p0
]r

]t
1p•¹ rr1

dp0
ds

]r

]p0
1
dp

ds
•¹pr50, ~11!

where r is a function from which the probability densityP(r ,t) and the probability curren
j (r ,t) are obtained as before from the integrals

P~r ,t !5E d3p dp0r~r ,t;p,p0!, j ~r ,t !5E d3p dp0
p

p0
r~r ,t;p,p0!, ~12!

wheredr /dt5p/p0 is the velocity of the particle. In the second step one wants to ensure tha
solution of the Liouville equation satisfies the uncertainty principle, which in the relativ
domain we assume to be achieved by the straightforward generalization of~8! to the relativistic
case12

r~r ,t;p,p0!5
1

p4 E d3q dq0e
2ip•q22ip0q0F* ~r1q,t1q0!F~r2q,t2q0!. ~13!

If the phase space density~13! satisfies the Liouville equation~11!, then it is a simple exercise to
show that the equation whichF satisfies is

DF2
]2F

]t2
5F. ~14!

The validity of the equation~14! is checked by verifying that the continuity equation~4! is
satisfied. This can be done by replacingr in the definition of the current~3! and the probability
density ~2! by ~13!, and check if the two sides of the equation~4! are equal, ifF satisfies the
equation~14!. It can be shown that this is not the case, meaning that the straightforward g
alization of ~8! to ~13! is not possible. A more elaborate generalization of the function~8! is
needed as shown in the following section.
J. Math. Phys., Vol. 38, No. 8, August 1997
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II. DERIVATION OF THE RELATIVISTIC EQUATION

The phase space density~13! is generalized to

r~r ,t;p,p0!5
1

p4 E d3q dq0e
2ip•q22ip0q0@F1* ~r1q,t1q0!F1~r2q,t2q0!

1F2* ~r1q,t1q0!F2~r2q,t2q0!#, ~15!

where introducing the functionsF1 andF2 gives us additional freedom to satisfy simultaneou
the Liouville and the continuity equations. It will be assumed that the two functions are re
through a general linear form

~a•¹!F15ax
]F1

]x
1ay

]F1

]y
1az

]F1

]z
5bF11cF21dḞ11eḞ2 ,

~16!

~a•¹!F25bF11gF21dḞ11eḞ2 ,

where the constant coefficients are determined from~11! and ~4!. The dot designates partia
derivative with respect to time.

The biggest obstacle to satisfying the continuity equation is the presence ofp0 in the velocity
vector in ~12!. Therefore, the first task it is to find the coefficients in~16! which would enable
writing the current in the form

j5F1*AF11F2*BF2 . ~17!

It should be emphasized that the choice of the current~17! is immaterial, as long as it is a bilinea
form in F1 andF2 . The choice of~17! was motivated entirely by its simple form.

The current is

j5
i

2p4 E d3p
dp0
p0

E d3qdq0e
2ip•q22ip0q0@¹F1*F12F1*¹F11¹F2*F22F2*¹F2#, ~18!

where it is implicitly understood thatF1 andF2 are functions ofr2q and t2q0 , while F1* and
F2* are functions ofr1q andt1q0 , respectively. To get~17! from ~18! it is necessary to write the
term in the square bracket of~18! in the form of a derivative with respect toq0 of a certain
function. After the partial integration with respect toq0 the parameterq0 would cancel out, and
the task would be accomplished. However, this can only be achieved if the coefficients in~16!
have particular values.

The square bracket in~18! for the z component of the current is

@•••#z522i Im$F1* az
21@bF11cF21dḞ11eḞ22axF1x8 2ayF1y8 #%

22i Im$F2* az
2@bF11gF21dḞ11eḞ22axF2x8 2ayF2y8 #%, ~19!

where the symbolF1x8 means the partial derivative of the functionF1 with respect tox. The
condition that~19! should be written in the form of a partial derivative of a certain function w
respect toq0 , and that subsequently~17! is obtained, gives

b* az*
215az

21b, g* az*
215az

21g, c* az*
215az

21b,

e5d50, d* az*
215az

21d, e* az*
215az

21e, ~20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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az
21ax52ax* az*

21, az
21ay52ay* az*

21,

and

~F1* az
21axF1!x81~F1* az

21ayF1!y81~F2* az
21axF2!x81~F2* az

21ayF2!y850. ~21!

The condition~21! can only be satisfied ifax5ay50. However, when the other componen
of the current are considered, thenaz50, thus making the relationship~16! meaningless. The
problem can be resolved by making the phase space density more general. The functionsF1 and
F2 are replaced by the matrices

F15UF11

F12
U, F25UF21

F22
U, ~22!

which means that wherever one finds the complex conjugate one writes the Hermite conjuga
1, and the coefficients in~16! are now the 232 matrices. It can be shown that again the condit
which is required cannot be satisfied, for the reason as given before, without this generali
i.e., the matricesa ~for simplicity the set@ax ,ay ,az# is referenced asa! should be identically zero
However, for the matrices we have additional degrees of freedom which will be utilized. L
assume that the matricesa have the following properties:

ux5ay
21az52az

21ay , uy5az
21ax52ax

21az , uz5ax
21ay52ay

21ax , ~23!

which imply

ux
25uy

25uz
252I , ~24!

whereI is the unit matrix. One possible set of the independent matricesa which satisfies the se
~23! is

ax52 iU0 1

1 0
U, ay5U 0 1

21 0
U, az5 iU1 0

0 21
U. ~25!

The current can now be written as

j5
i

2p4 E d3p
dp0
p0

E d3q dq0e
2ip•q22ip0g0F2

]

]q0
~F1

1adF1!2
]

]q0
~F2

1aeF2!

1¹3~F1
1mF1!1¹3~F2

1uF2!G , ~26!

and after the partial integration of the first two terms it becomes

j5F1
1adF11F2

1aeF21¹3F, ~27!

whereF is a vector. The current is still not in the desired form~17! because of the last term, bu
as this term has no effect on the continuity equation, because its divergence is zero, it
omitted, and the remaining terms have the desired form~17!.

The coefficients in~16! should be further specified to satisfy the Liouville equation. When
phase space density in~11! is replaced by~15! the equation to be solved is

F̈1
1F11F̈2

1F22F1
1F̈12F2

1F̈21F1
1DF12DF1

1F11F2
1DF22DF2

1F250. ~28!

From the property of the matricesa it can be shown that
J. Math. Phys., Vol. 38, No. 8, August 1997
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~a•¹!~a•¹!F152DF1 , ~29!

and hence

2F1
1DF15F1

1@~b21bc!F11~cb1gc!F21~db1bd!Ḟ11~ec1cd!Ḟ21d2F̈1# ~30!

and similarly

2F2
1DF25F2

1@~bb1bg!F11~cb1g2!F21~db1be!Ḟ11~eg1ge!Ḟ21e2F̈2#. ~31!

The equation~28! is solved if

d25e252I , b5g50, cb5b1c1, bc5c1b1, e52d, ~32!

whereb andc are arbitrary, apart from the need to satisfy the previous symmetry relations
The set of equations~16! for which the Liouville equation is satisfied and the current can

put into the bilinear form~17!

a•¹F15cF21 i Ḟ 1 , a•¹F25bF12 i Ḟ 2 , ~33!

whered52e5 i I . The remaining coefficientsb andc are obtained from the continuity equatio
By manipulating the set~33! and assumingc52b1 we obtain

~F1
1F11̇F2

1F2!52 i¹•@F1
1aF12F2

1aF2#52¹• j . ~34!

This is the continuity equation with the currentj given by ~27!.

III. PROPERTIES OF THE RELATIVISTIC EQUATION

The set of equations~33! is explicitly

s•¹F15 iF 21Ḟ1 , s•¹F252 iF 12Ḟ2 , ~35!

wherec52b152I and a5 is. Any linear combination

F5aF11bF2 , G5aF11bF2 , ~36!

is also a solution of this set where the functionF satisfies the equation

DF2F̈5F, ~37!

whileG is derived from~36!. The coefficients in~36! are arbitrary scalars, and their choice shou
be guided by some general principles. Before discussing these it is necessary to find th
general solution of the set~35!. Since one of the functions in~35! satisfies the equation~37!, say
F1 , we can write

F15 fUh1

h2
U5 fh, ~38!

wheref is a scalar function which satisfies~37!, andh is a constant matrix. A general solution fo
F1 is now

F15E d3k@A~k!e2 ie~k!t1B~k!eie~k!t#eik•rh, ~39!
J. Math. Phys., Vol. 38, No. 8, August 1997
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wheree(k)5A11k2, and the coefficientsA andB are determined from the initial conditions. Th
other componentF2 is then given by

F25E d3k$A~k!@s•k1e~k!I #e2 ie~k!t1B~k!@s•k2e~k!I #eie~k!t%eik•rh. ~40!

One particular property of this solution is that if, for example,B50 and A is real and
symmetric, i.e.,A(2k)5A(k)5A* (k), then the probability density~12!, given by

P~r ,t !5F1
1F11F2

1F2 , ~41!

is not spherically symmetric, as one would expect. To have this symmetry explicitly incorpo
one defines the basis functions~42! as

F5
1

&

~F11F2!, G5
1

&

~F12F2!, ~42!

which satisfies the set

s•¹F52 iG1Ġ, s•¹G5 iF1Ḟ. ~43!

It can be shown for these functions that they have a general solution

F5E d3k@A~k!e2 ie~k!t1B~k!eie~k!t#eik•rh5 fh ~44!

and

G52E d3kF A~k!

11e~k!
e2 i te~k!1

B~k!

12e~k!
e1 i te~k!Geik•rs•kh5 is•¹gh, ~45!

which can be shown to have the required symmetry property.
For a unique solution we must know the parametersA, B, andh, and they must be determine

from the initial conditions. We first discuss the coefficientsA andB. The functionsF andG have
two time components, one withe2 i te and the other witheite, and the coefficientsA andB are the
measure of their relative importance. The presence of these two components has been at th
of controversies in the development of relativistic quantum theory,13 but it is easy to show the
difficulties if one tries to give them physical significance~a more extensive discussion of this poi
is in the last section of this paper!. In the basis with the functionsF andG we can choose a
solution with only a single time component if we specify att50 the following initial conditions,

f5E d3k C~k!eik•r, ḟ52 i E d3k C~k!e~k!eik•r, ~46!

in which caseB50 andA5C in ~44! and ~45!. For the same initial conditions, but in the bas
F1 andF2 , both time components are required because the coefficientsA andB are nonzero.
Since the presence of the two time components is the result of the choice of the basis, givin
physical significance is very difficult. The rule which follows is important; once the bas
chosen, in which the solution has single time component, one should use it at all times b
changing it introduces, in an artificial way, the other time component. From now on we
assume that only one time component is present (B50) when we work in the basis~42!. More
general discussion, which would also include the interference effects of the two
components,14 does not alter the basic conclusions of the paper.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Four parameters are needed for the unique specification ofF, two for each component~the
modulus and the phase!. However, because of the parametrizationF5 fh the parameters are
divided betweenf and h, two for f and two for h. The most general parametrization of
normalizedh with two parameters is15

h5UsinS k

2Deil/2
cosS k

2De2 il/2
U , ~47!

and it can be shown that with this parametrization

2h1sh5v̂5 x̂ sin~k!cos~l!1 ŷ sin~k!sin~l!1 ẑ cos~k!. ~48!

The phase space density, in the basis~42! when only one time component is present is giv
by

r5
1

p4 E d3q dq0@ f * f1¹g* •¹g1 i v̂•~¹g*3¹g!#e2ip•q22ip0g0, ~49!

where we use the convention introduced in~18!. In the derivation we used the identity

h1~s•¹g* !~s•¹g!h5u¹gu21 i v̂•~¹g*3¹g!. ~50!

If for f andg we use their explicit form, then the phase space density~for t50! is

r5E dVk

kp
2e~p1k!e~p2k!

@kp1p cos~g!#e~p2k!1@kp2p cos~g!#e~p1k!

3ReHA~p1kp!A* ~p2kp!F11
p22kp

212i v̂•~p3kp!

@11e~p1k!#@11e~p2k!#
G J , ~51!

where

kp5p0A p0
22p221

p0
22p2 cos2~g!

, p0.0, ~52!

and

cos~g!5
k•p

kp
5n̂k•n̂p , kp5kpn̂k . ~53!

The nonessential factors were omitted. The integral in the phase space density is over the
variables ofn̂k .

The phase space density is a complicated expression, but it simplifies ifA(k) is real and
symmetric ink. This is also an example from which particularly interesting properties can
deduced. First we note that there are two essentially different contributions to the phase
density, one which contains the unit vectorv̂ and the remainder. It is relatively easy to show th
the latter is symmetric with respect tor→2r , while the former is antisymmetric, i.e., it change
the sign. The same is true when the sign ofp is reversed. The two contributions describe differe
physical processes which will be discussed in the following section.
J. Math. Phys., Vol. 38, No. 8, August 1997
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IV. THE INTERNAL ROTATION

In order to fully understand the physical significance of the two contributions in~51! we first
note that there are two different expressions for the current, and yet they both satisfy the con
equation. One is given by~27! while the other, which is directly obtained from~42!, is given by
~17!. The difference is in the term¹3F, and the question is which is the correct one? Onl
comparison with the experiments will give the answer, but anticipating it we will assume th

j52G1sF2F1sG. ~54!

In the phase space this current is represented by

j5
i

2p4 E d3q dq0 d
3p dp0 e

2ip•q22ip0q0
1

p0

]

]q0
@G1sF1F1sG#, ~55!

and if the explicit form forF andG is taken from~44! and ~45!, respectively, whereB50, then
for t50

j52 Im@ f *¹g#12 Re@ f *¹g3v̂#. ~56!

In the current there are two terms, one with the streamlines without the vortices and the othe
the vortices. The latter contains the vectorv̂. If f andg are real and symmetric, then only the ter
with the vortices remains, thus indicating that the probability density has an internal rotation
implies that if the particle is charged, then a magnetic moment is produced:

m5
Q

2 E d3r r3 j52
8p

3
v̂QE dr r 3

dg

dr
f , ~57!

whereQ is the charge of the particle.
This magnetic moment is interesting in one important aspect; it is not zero even in the lim

an infinitely delocalized particle. In this limite(k)'1 ~the width of the momentum distribution
goes to zero! andg' f /2 so that

m5 1
2Qv̂. ~58!

The magnetic moment, which results from the internal rotation of the probability distributio
therefore, pointing in the directionv̂. The deviation from its value~58! is small even on the scal
of the hydrogen atom, when the difference betweene(k) and the unity is of the order~fine
structure constant!.2

The experimental value for the magnetic moment of the electron agrees very well with~58!,
however, when no higher order corrections are included~discussion of this topic goes beyond th
scope of this paper!. The choice of the gauge for the current, when¹3F was neglected in~27!,
is therefore justified. It is of interest to calculate the magnetic moment without this gaug
which case we find

m5
1

p4 E d3r d3p dp0 d
3q dq0 r3

p

p0
@F1F1G1G#e2ip•q22ip0q0

5
64p4

3
v̂E dk

k4

e~k!@11e~k!#2
A2~k!, ~59!

and in the limit of the broad probability distribution this vanishes. Even for a localized electr
the hydrogen atom the value of this magnetic moment would be negligible. Therefore the d
J. Math. Phys., Vol. 38, No. 8, August 1997
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tion of the current which is based on keeping the term withF in ~27! is justified, because there i
ample evidence that the electron has a nonvanishing magnetic moment. An important quest
now be asked: can the set of equations~43! be applied to particles which are charged witho
magnetic moments? In this case the same set of equations~43! would apply but the current which
is used would be~27!. At this stage there is no clear answer to this question.

V. THE SPIN

Equation~43! is known as the Dirac equation and the properties of its solutions have
analyzed extensively. One property in particular we would wish to address is the spin
intention is to give it a meaning within the classical concepts we have used. As we have s
the previous section the probability density has an internal rotation in a form of a vortex wh
pointing in the directionv̂, from which the correct magnetic moment is obtained. It is expec
therefore, that the average angular momentum is different from zero, and manifests itse
contribution to the overall angular momentum of the particle. To get the properties of this an
momentum we start from its definition

l5E d3r d3p dp0 r3pr~r ,t;p,p0!. ~60!

It can be easily shown that the time derivative ofl is zero, if the phase space density satisfies
Liouville equation. However, ifr is replaced by the parametrization~15!, andF andG satisfy the
set of equations~43!, this may not be the case. The reason for this is that in the derivation o
equations~43! we neglected a term in the current~27!, which had no consequence on the con
nuity equation. However, in proving thatl is time independent, ifF andG satisfy the set~43!, we
would encounter a similar term but this time it cannot be neglected. Its presence should be
differently. We start by calculating the time derivative

d

dt
l5

1

p4 E d3r d3p dp0 d
3q dq0 r3p@F1F1̇G1G#e2ip•q22ip0q0, ~61!

and there are several steps before the final result is obtained. First, the equations~43! are used to
replace the time derivative ofF andG. The momentump is replaced by (1/2i )¹q , and the
integral is partially integrated in the variablesq, after which one gets

d

dt
l5

i

2p4 E d3r d3p dp0 d
3q dq0 e

2ip•q22ip0q0r3¹q~¹•U!, ~62!

where

U5F1sG1G1sF. ~63!

After partial integration in the variablesr , and using the property

s3p5
1

i
@s~s•p!2p# ~64!

and the equations~43! we deduce

d

dt
l5

1

2p4

d

dt E d3r d3p dp0 d
3q dq0 e

2ip•q22ip0q0@F1sF1G1sG#, ~65!
J. Math. Phys., Vol. 38, No. 8, August 1997
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which is not zero. However, the term on the right is in the form of a time derivative of a ce
quantity which is very similar toF in ~27! ~the parameterp0 is missing!. Therefore we can define
the average total angular momentum by

L5 l1 1
2S, ~66!

where

S52
1

p4 E d3r d3p dp0 d
3q dq0 e

2ip•q22ip0q0@F1sF1G1sG#, ~67!

which is a time-independent quantity. The added term results from the internal rotation o
probability density and it is called the spin.

The average total angular momentum, for the real and symmetric functionsf andg defined in
the previous section, is explicitly

L5
1

2
v̂1v̂OF E dk

k4

@11e~k!#2
A2~k!G , ~68!

where the last term indicates the correction to the principal value, which is1
2 and pointing in the

direction v̂. Therefore the result of the internal rotation of the probability distribution is that
particles appear to have an additional angular momentum, the spin, which manifests itself th
the magnetic moment. The correction to its principal value is small on the scale of, sa
hydrogen atom, but for a more localized particle~electron! the deviation could be significant
More elaborate analysis would involve decomposition of the solution of~43! into the radial and
the angular parts. In this case one would select the angular distributions with a particular
angular momentum. It can be shown that in this case the average total angular momentum i
of the average orbital angular momentum and the spin. However, this analysis does not gi
additional information about the meaning of the spin and it will not be elaborated in this pa

VI. DISCUSSION

It has been shown that classical theory, if amended by the uncertainty principle, c
extended to the relativistic domain. The result is not the Klein–Gordon equation, as one
have expected to be the case, but the Dirac equation, in the form~43!. One can argue that th
derivation is not entirely classical because the uncertainty principle is a quantum conditio
ternatively one can argue that the uncertainty relationship is a law of nature which happen
discovered through quantum theory rather than by direct examination of experiments. The a
ment to classical theory is only a way of reconciling classical dynamics with this law. In the
way the derivation of this law in quantum theory is only the proof that quantum dynami
consistent with it. Regardless of how one approaches this problem, it has been shown tha
initial conditions the time evolution of the probability density, or the relativistic Dirac w
function, is determined from the relativistic classical equations of motion.

The analysis was done for a free particle but there is nothing in principle which pre
extension of the theory for an interacting particle. It was shown for a nonrelativistic particle
this can be done for a general potential,3 and there is no reason why the same ideas could no
applied to the relativistic dynamics. The main breakthrough in this paper has been to show t
Dirac equation can be derived from classical theory, and in fact ‘‘uniquely,’’ in the sense
Klein–Gordon equation is not needed as the intermediate step; this, as is well known, was t
Dirac derived the equation.

One of the obstacles when trying to reconcile relativistic classical and quantum theory
interpretation of the solutions of the relativistic quantum equations. Early in the developme
J. Math. Phys., Vol. 38, No. 8, August 1997
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the relativistic quantum theory the concept of the negative and the positive energy state
introduced,13 in connection with the solutions which have time dependencee2 iet andeiet. The
original idea was to omit one~the negative energy state! from the calculations and work with only
the single energy state~the positive energy state!. However, this idea was abandoned for seve
reasons:~i! the Klein paradox,16 ~ii ! forming a wave packet without including both states is n
possible,17 ~iii ! a small perturbation mixes the two states,18 and ~iv! discovery of the positron.
Since then it was shown that the Klein paradox is the result of a mathematical error.19 In this paper
we showed that it is always possible to form a wave packet of any size which includes only
energy~positive! states. If this is the case, then we can give a supporting argument in fav
using only the single energy states, the positive ones.

The problem when both time components are included becomes apparent when a wave
for a charge interacts with a plane electromagnetic wave. It can be shown from semicla
radiation theory that the scattered intensity of radiation has a maximum at the frequenc~the
Compton frequency!20

vc5
v0

11v0~12n̂• ẑ!
, ~69!

which is a solution of the set of equations

v0ẑ5vcn̂1p, v0115vc1e~p!, ~70!

where it was assumed that the incident electromagnetic wave of the frequencyv0 travels along the
z direction and the scattered radiation is observed in the directionn̂. This result was derived when
only the component withe2 iet ~the positive energy state! in the relativistic wave function was
taken into account. However, when the positive is replaced by the negative energy state th
frequencyvc is a solution of the same set except thate→2e, meaning also that the rest energ
e(0)51 becomese(0)521. In this case

wc5
v0

12v0~12n̂• ẑ!
. ~71!

Since there is no report that radiation~photons! of this frequency has been observed, it is reas
able to conclude that only the component of the wave function withe2 iet should be considered
This result can also be derived from quantum field theory.

However, the problem of using only the single energy states has not been resolved. It
be shown that no negative energy states are produced in the interaction with a field if initi
wave packet was selected with only the positive energy components. First of all it shou
pointed out again that if in one basis set a wave function was selected with only one tem
component, then to represent the same wave function in a different basis both components
be required. This was shown for a simple example in the previous section. The implication
associating any physical significance to the temporal components in the probability density i
misleading, even more so when the interaction is included. In describing the dynamics
interacting wave packet the basis functions are used which are normally the stationary solut
Dirac equation with the field included. The other basis functions can be used but they are
convenient, and in any case the conclusions would be the same. In this basis an initial state
selected which includes only a single temporal component. The presence of the other te
component, after some interaction time, is proved by expanding the solution into the basis
tions for the noninteracting particle~noninteracting plane waves!. Based on this prescription th
conclusion is reached that any small interaction mixes the two temporal components~in this
respect Ref. 18 is very instructive!. However, this procedure is analogous to the one descr
earlier, except that the example was with a free particle, and therefore not completely gene
J. Math. Phys., Vol. 38, No. 8, August 1997
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on the other hand, one does the analysis properly, meaning that after the interaction is o
wave function is analyzed in the noninteracting basis, it is indeed found that no mixing o
temporal components occurs. This has been shown for quite a general interaction.8

Finally, there is the question of the positron, which Dirac predicted on the basis o
symmetry properties of the relativistic quantum equation. It can be easily shown that in
equation, when the electromagnetic field is included, the negative energy solution correspo
the positive one if the sign of the charge is reversed. Another symmetry was also not
Feynman: if one changes the sign of the time component, and the sign of the coordinates, th
is equivalent to changing the sign of charge. In fact, one does not need the quantum equa
predict the positron, which is based entirely on these symmetry properties. The classical eq
~10! have precisely these symmetries. If the Lorenz force is included into them, then it is a m
of simple exercise to show that ifp0 reverses the sign, then this is equivalent to changing the
of charge. Sincep0 is associated with energy, the change of its sign is equivalent to using
negative energy in classical theory. This is absolutely permissible because one of the
conditions which determine the solution of the set~10! also includes knowingp0 at t50. The
value ofp0 can be taken negative, without any severe repercussions on the outcome. The Fe
symmetry can also be shown for the set~10!.
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Nonperturbative formulation of relativistic two-particle
states in the scalar Yukawa model

J. W. Darewych,a) D. V. Shapoval, I. V. Simenog,b) and A. G. Sitenkob)
Department of Physics and Astronomy, York University,
Toronto, Ontario M3J 1P3, Canada

~Received 16 October 1996; accepted for publication 12 March 1997!

We investigate a variational approach to the study of two-particle bound states in
quantum field theory. The scalar Yukawa model, in which scalar ‘‘nucleons’’ in-
teract via ‘‘meson’’ exchange, is considered. A variational trial state that contains
one or two scalar nucleons with any number of mediating scalar mesons is used to
derive integral equations for the one- and two-nucleon systems. Numerical solu-
tions of these equations are obtained in 111 dimensions. Comparison is made with
perturbative and nonrelativistic approximations that have been used in earlier cal-
culations. ©1997 American Institute of Physics.@S0022-2488~97!00307-1#

I. INTRODUCTION

The search for nonperturbative approaches to the description of few-particle states in st
coupled quantum field theory~QFT! continues to occupy the attention of investigators. O
approach to this problem is light-cone~or light-front! quantization. A critical overview of this
method is given, for example, by Brodskyet al.1 ~see, also, Ref. 2!. In this paper we employ the
variational method in the canonical, equal-time formulation of Hamiltonian QFT~VHM ! ~e.g.,
Refs. 3–7; a brief review of this method for few-body bound states is given in Ref. 8!. One
difficulty with applications of the VHM, based on Fock-state expansions of the trial state, is
in practice the expansion is truncated after a number of Fock states, resulting in sets of c
integral equations to be solved. Since the exact solution of such coupled equations is u
impossible to achieve, various approximations, such as approximate decoupling of the equ
are made, and these can undermine the rigorous variational nature of the results. This is t
example, of the results presented in Refs. 6b, 9, and 10, though not of those of Refs. 3–5
which are rigorously variational. The latter is achieved, however, at the expense of using a
simple variational ansatz. Thus, in the two-body QED bound-state calculation of Ref. 6a, th
function is sensitive only to the Coulomb part of the interaction Hamiltonian~the Coulomb gauge
is used in that work!, and does not sample at all the transverse-photon part of the intera
HT52ec†a•Ac. While this limitation is removed in Ref. 6b by keeping more terms in
Fock-space expansion, the resulting equations are solved in an approximate way that d
preserve the rigorous variational nature of the results.

In a previous paper on a spinless Yukawa model,11 we employed a Fock-space ansatz fo
two ‘‘nucleon’’ system, which included any number of mediating ‘‘pions,’’p, in the intermediate
state. Symbolically, we can write this trial state in the form

uc2&5f0uN1N2&1f1uN1N2p&1f2uN1N2pp&1••• . ~1!

The variational principle,

^dc2u:H2E:uc2&50, ~2!

a!Electronic mail address: darewych@yorku.ca
b!Bogolyubov Institute for Theoretical Physics, 252143, Kiev, Ukraine.
0022-2488/97/38(8)/3908/17/$10.00
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then led to an infinite chain of coupled, many-dimensional integral equations for the varia
coefficient functionsf0 ,f1 ,f2 , etc.

As was shown in that work,11 we were able to find an ansatz which solved this infinite ch
of equations exactly in the fixed-nucleon,M1 ,M2→`, limit ~Mi being the mass of nucleo
Ni!, for any strength of thep2Ni coupling and any value of the mass,m, of the mediating pions.
This ansatz, however, did not provide an exact solution to the infinite chain of coupled equ
for thefk functions, in the case where the nucleons were dynamic, that is, when their massMi is
finite. One can, nevertheless, use such an ansatz~which basically gives an explicit expression fo
fk in terms offk21 and so ultimately in terms off0! to construct a hopefully realistic ye
tractable variational trial state of the type~1!. We shall do precisely this, in the present paper,
the scalar Yukawa model~or as it is also called in the massless pion limit, the Wick–Cutko
model!. This model is based on the Lagrangian density

L5 1
2~]mf]mf2M0

2f2!1 1
2~]mx]mx2m2x2!1gf2x, ~3!

wheref is a real ‘‘nucleon’’ field, andx is the mediating ‘‘meson’’ field.
We make the usual Fourier transformation to momentum space:

f~x!5E dNp@~2p!N2v~p,M !#21/2@e2 ip•xb~p!1eip•xb†~p!# ~4!

and

x~x!5E dNq@~2p!N2v~q,m!#21/2@e2 iq•xa~q!1eiq•xa†~q!#, ~5!

wherev(p,m)5(p21m2)1/2, x5(t,x), c5\51, and we work inN-spatial plus 1 time dimen-
sions. In the Schro¨dinger picture, the canonically derived and normal-ordered Hamiltonian op
tor, which follows from~3!, is then given by the expression

:H:5E dNpV~p!b†~p!b~p!1E dNqv~q,m!a†~q!a~q!

2lE dNpdNq
M

@v~p2q,m!v~p,M !v~q,M !#1/2
b†~p!b~q!„a†~q2p!1a~p2q!…,

~6!

wherel5g/„2&M (2p)N/2… and

V~p!5v~p,M !1
M0

22M2

2v~p,M !
, ~7!

and where we do not write out theb†b† andbb terms in the Hamiltonian, as they do not contribu
to what follows. Note thatM is, at this stage, an adjustable parameter, which we shall ide
with the physical nucleon mass, distinct form the bare mass,M0 , of the Lagrangian~3!. Note also
that l has dimensions ofM (32N)/2. The ~free! nucleon creation and annihilation operato
b†(p) andb(q), satisfy the usual equal-time commutational relations,

@b~q!,b†~p!#5dN~q2p!, ~8!

and similarly for the corresponding mesonic operatorsa†(p) anda(q), while all the other com-
mutators vanish.
J. Math. Phys., Vol. 38, No. 8, August 1997
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II. ONE-NUCLEON STATES

We consider one-nucleon variational trial states of the form~cf. Ref. 11!

uc1&5E dp(
n50

` E dq1
v3/2~q1 ,m!

F~q1!•••E dqn
v3/2~qn ,m!

F~qn!

3
ln

n!
f S p1(

j51

n

qj D b†~p!)
i50

n

a†~qi !u0&, ~9!

wheredp5dNp, while F(q) and f (p) are variational ‘‘parameters’’~functions!. In Eq. ~9! and
elsewhere we suppress theN-vector notation and writep for p, px for p•x, etc. Note thatu0& is the
vacuum state annihilated by the~free! nucleon and meson annihilation operators, that
a(p)u0&5b(q)u0&50. We work in the rest frame of the system in which the total momentum
zero, that isPtotaluc&50. The ansatz~9! contains a single ‘‘nucleon’’ creation operator,b†(p),
together with any number of meson states,P i50

n a†(qi)u0&. Thus, it represents a physical nucleo
state, in which the bare nucleon is ‘‘dressed’’ with a cloud of virtual mesons.

The one-nucleon trial state~9! can also be written in the compact operator form

uc1&5E dNx

~2p!N
f ~x!elA†~x!c†~x!u0&, ~10!

where

f ~x!5E dq e2 iqxf ~q!, ~11!

c†~x!5E dp eipxb†~p!, ~12!

and

A†~x!5E dq

v3/2~q!
F~q!a†~q!eiqx. ~13!

The physical one-nucleon mass is then obtained from the variational expression

M5min
f ,F

^c1u:H:uc1&

^c1uc1&
5FexpS l2E dq

v3~q!
F2~q! D E dp f2~p!G21E dp f2~p!FV~p!

1
l2

1! E dq

v3~q!
F2~q!V~p2q!1•••1

l2n

n! S E dq

v3~q!
F2~q! D n

3VS p2(
n

qD 1•••G1l2E dq

v2~q!
F2~q!

2FexpS l2E dq

v3~q!
F2~q! D E dp f2~p!G21
J. Math. Phys., Vol. 38, No. 8, August 1997
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32l2E dpE dk

v2~k!
F~k! (

n50

`
l2n

n!
f 2S p1(

n
qD M

Av~p,M !v~p2k,M !

3S E dq

v3~q!
F2~q! D n, ~14!

where we use the notationv(p)5v(p,m),

S E dq

v3~q!
F2~q! D n5E dq1

v3~q1!
F2~q1!E dq2

v3~q2!
F2~q2!•••E dqn

v3~qn!
F2~qn!,

and

VS p1(
n

qD 5V„p1~q11q21•••1qn!….

Carrying through the minimization with respect tof (p) in Eq. ~14! yields the result that

f 2~p!5dN~p!. ~15!

This then allows one to rewrite Eq.~14! for the one-nucleon mass in the form

M5min
F

Fl2E dq

v2~q!
F2~q!1Ṽ~0!22l2E dq F~q!

v2~q!
H̃~0,q!G , ~16!

where

Ṽ~p!5E E dq
dx

~2p!N
V~q!ei ~p1q!xe2l2„G~0!2G~x!…, ~17!

H̃~p,q8!5E E dq
dx

~2p!N
H~q,q8!ei ~p1q!xe2l2„G~0!2G~x!…, ~18!

G~x!5E dq F2~q!

v3~q!
eiqx, ~19!

H~p,q!5
M

Av~p,M !v~p2q,M !
, ~20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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and withV(p) as defined in Eq.~7!. Equation~16! gives the relation between the one-nucle
energy in the rest frame, that is the physical nucleon mass, and the bare massM0 . This relation is
needed to express few-nucleon bound state energies in terms of the physical nucleon ma

In general, the equation forM must be solved numerically. However, it is possible, a
instructive, to obtain some analytic results in various limits. Thus, we consider the solution o
~16! in the weak coupling limit,l2→0. To lowest order inl2, we obtain the following expression
for the optimal form ofF(q):

F~q!5A M

v~q,M !

v~q!

v~q!1v~q,M !2M
1O~l2!. ~21!

The corresponding equation for the renormalized one-nucleon massM takes the form

M0
22M2

M
52l2E dq

v~q!

M

v~q,M !„v~q!1v~q,M !2M …

2
l4

2 E dq1
v~q1!v~q1 ,M !„v~q1!1v~q1 ,M !2M …

2

3 E dq2
v~q2!v~q2 ,M !„v~q2!1v~q2 ,M !2M …

2 M
2F v~q11q2 ,M !2M1v~q1!

1v~q2!1M S v~q1!

v~q1 ,M !
1

v~q2!

v~q2 ,M ! D2M2S 1

v~q1 ,M !
1

1

v~q2 ,M ! D
2A M

v~q11q2 ,M !
S „v~q1!1v~q1 ,M !2M …Av~q1 ,M !

v~q2 ,M !

1„v~q2!1v~q2 ,M !2M …Av~q2 ,M !

v~q1 ,M !
D G1O~l6!. ~22!

The expression~22! contains divergent integrals inN53 spatial dimensions and these must
controlled by suitable cutoffs.

The nucleon mass-renormalization condition~22! can be reduced further in the sem
relativisticm/M!1 limit. Thus, in this limit, forN51 spatial dimensions Eq.~22! yields

M0
22M2

M
5amF12

1

p

m

M
ln
4M

m
1OS m2

M2D G2a2m
1

2p Fm2

M2 ln
4M

m
1OS m2

M2D G1••• , ~23!

wherea52pl2/m2. This result~23! is consistent with the general behavior

M0
22M2

M
5amF12

1

p

m

M
ln
4M

m
1OS m2

M2 ln
M

mD G ~24!

for anya ~not justa→0! which was shown previously for this model12 for N51 spatial dimen-
sions.

Similarly, for N52 spatial dimensions, Eq.~22! reduces, in them/M!1 case, to the form

M0
22M2

M
5amS c1 ln M

m
1••• D2a2c2

m2

M
ln
M

m
1••• , ~25!

wherea54pl2/m. Lastly, forN53, Eq. ~22!, with m/M!1, yields the result
J. Math. Phys., Vol. 38, No. 8, August 1997
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M0
22M2

M
5aM ln

L

M
1•••2a2M S L

M D 31••• , ~26!

where a54pl2, and the parameterL has the behavior thatL'M exp„M0
2/(M2a)… when

M0→` andL→`.

III. TWO-NUCLEON STATES

We consider now a two-nucleon state, analogous to the one-nucleon state@Eqs.~9! and~10!#,
in which the bare nucleons are dressed by virtual mesons and interact via meson exchang
we write the two-nucleon variational states in the rest frame as

uc2&5
1

&

E dp c~p!bd
†~p!bd

†~2p!u0&, ~27!

wherec(p) is a variational function and

bd~x!5b~x!eA~x! ~28!

is a dressed particle operator so thatbd
†(p)u0& stands for a dressed particle state.

Minimization of the expression

M25
^c2u:H:uc2&

^c2uc2&
~29!

with respect toc(p) results in the equation

„2Ṽ~p!2M2…c~p!522l2E dq F2~q!

v2~q!
„c~p!1c~p1q!…

14l2E E E dp8dq8
dx

~2p!N
F~p82q8!

v2~p82q8!
H~p8,q81p8!

3e2 i ~p2p8!xe2l2„G~0!2G~x!…
„c~p!1c~p1q82p8!…. ~30!

Using ~16!, we can rewrite Eq.~30! in the form

@2„Ṽ~p!2Ṽ~0!1M …2M2#c~p!52l2E dq
F~q2p!

v2~q2p!
@2H̃~p,q2p!2F~q2p!#c~q!.

~31!

Equation ~31! is strictly variational, as no approximations have been made to undermine
property. It is, however, not an easy equation to solve, particularly inN.1 dimensions. We shal
present numerical solutions forN51 only in this work.

IV. ONE-PARTICLE STATES FOR THE ONE-DIMENSIONAL CASE

In the case of one dimension,N51, the simplest form of the variational ansatz@Eq. ~9!# with
F(q)5a, where a is an adjustable parameter, can be used. All the quantities entering
~16!–~19! are well behaved~the mass renormalization is finite! and the expression for the one
nucleon mass takes on the form~in units ofm51!
J. Math. Phys., Vol. 38, No. 8, August 1997
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M5min
a

Fa2l2p1SM1
M0

22M2

2M De22a2l21E
0

`

dq I~q!S 2v~q,M !1
M0

22M2

v~q,M !
D

24al2e22a2l2E
0

` dq

v2~q!
A M

v~q,M !

24al2E
0

`

dpE
0

`

dq
I ~p!

v2~q!

M

Av~p,M !
S 1

Av~p2q,M !
1

1

Av~p1q,M !
D G , ~32!

wherev(q)5Aq211, v(q,M )5Ap21M2, and

I ~p!5a2l2
2

pp E
0

`

dx sin~px!xK0~x!e22a2l2„12xK1~x!…, ~33!

with

Kn~x!5E
0

`

e2x cosh~ t ! cosh~nt!dt, n50,1, ~34!

being the Macdonald function.
Before considering the numerical solution of Eq.~32! for arbitraryl2 we shall consider some

limiting cases for which much of the analysis can be carried out analytically. First we consid
weak coupling limitl→0. In this case it follows from Eq.~32!, and indeed from the general form
~16! and ~22!, that the relation between the bare massM0 and the physical~renormalized! mass
M is of the form

M05M1Cl21O~l4!, ~35!

whereC is a constant. From the general form~16! @see also Eq.~22!# we obtain

C5C152ME
0

` dq

v~q!v~q,M !@v~q!1v~q,M !2M #
, ~36!

corresponding to thel2→0 optimal form ofF(q) of Eq. ~21!.
The more restricted caseF(q)5a of Eq. ~32! yields

C252F E
0

` dq

v2~q!
A M

v~q,M !G2Y E
0

` dq

v3~q!
@v~q!1v~q,M !2M #, ~37!

corresponding to the optimal value of the parametera,

a5E
0

` dq

v2~q!
A M

v~q,M !Y E
0

` dq

v3~q!
@v~q!1v~q,M !2M #. ~38!

We might note that ifF(q)5a had been simply fixed ata51, then the constantC would have the
value

C352E
0

` dq

v3 FM2v~q,M !2v~q!12v~q!A M

v~q,M !
G . ~39!
J. Math. Phys., Vol. 38, No. 8, August 1997
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For very light mesons, i.e.,M@1, all three expressions forC, namely~37!–~39!, coincide at the
value C5p. However, such coincidence is not the case in general. Thus, takingM56.944
(.mp /mp0) for definiteness, one finds thatC152.677, C252.507, anda50.840, whileC3

52.417. Evidently, the optimal value isC1 as it corresponds to the smallest value ofM @cf. Eq.
~35!#, as a consequence of the variational principle~16!. Nevertheless forM56.944 the discrep-
ancy among the three values ofCi is not large. However, this discrepancy grows asM decreases
~i.e., for massive mesons!. ThusC350 at M5M3

cr50.700 and becomes negative forM,M3
cr

corresponding toM0,M . This simply reflects the inadequate nature of the approximationF(q)
51 for large meson massesm.M . By contrast, whenM5M3

cr equations~36! and ~37! yield
C151.472,C251.108, anda50.500 corresponding toM,M0 as one would expect on physica
grounds, since the effective interactions are attractive. Indeed Eq.~37!, with the optimal value of
a as given by Eq.~32!, corresponds toM,M0 ~i.e., a positive value ofC2! for all M .

Interesting analytical results can also be obtained in the strong coupling limitl22` when
M@1 ~light meson mass!, which also corresponds toM 0@1. Thus, the expression~32! for the one
nucleon mass, whenM@1, takes the form

M5min
b

Fb2p1„e22b21D~b2!…SM0
21M2

2M
22pbl D G , ~40!

where

D~b2!52E
0

`

dq I~q!52b2E
0

`

dx xK0~x!e22b2„12xK1~x!…512e22b2, ~41!

with b5la. We note thatD(b2)'b2 for b→0 andD(b2)'1 whenb→`.
In the limit M@1 the expression~40! for the mass takes on the form

M5min
b

Fb2p1
M0

21M2

2M
22pblG , ~42!

for which the minimum occurs atbmin5l. This yields

1
2~M

22M0
2!1Mpl250, ~43!

that is,

M0
25M212pl2M ~44!

or

M05MA112pl2/M . ~45!

Therefore, for given fixedM0@1 and forl→`, Eq. ~45! implies that

M'M0
2/2pl2. ~46!

On the other hand, for given fixedM@1 and forl→` we find that the behavior ofM0(l) is of
the form

M0'A2pMl. ~47!

Equation~47! together with~35! gives the general large and smalll behavior ofM0(l) for fixed
M .
J. Math. Phys., Vol. 38, No. 8, August 1997
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Of course, the detailed form ofM0(l) for given fixedM must be obtained from the numeric
solution of Eq.~16! or, if F(q)5a, of Eq. ~32!. The dashed curve in Fig. 1 is a plot ofM 0(l) for
M56.944, obtained from Eq.~32! whena51, in units wherem51. Corresponding values ar
given in numerical form in Table I. It is evident from the figure thatM0(l) is of the formM
1C3l

2 for l2!1, in agreement with our previous analysis@Eqs.~35! and ~39!#. M0(l) appears
to exhibit linear growth with increasingl in Fig. 1. In fact, more precisely, if we writeM0

5MA112C(l)l2/M , and analyze the dependence ofC(l) on l, we find thatC(l) decreases
slowly with increasingl in a rather large interval of values ofl, but eventually it decreases to ze
and becomes negative. For fixed values ofa and fairly large values ofl, M0 reaches a maximum
at l'M /2 and then decreases. For example, in the present case (M /m56.944) this maximum

FIG. 1. Plot ofM 0 as a function ofl for the physical mass valueM56.944. Units:m51. F(q)51: dashes.F(q)
5a(maxM0): solid curve.

TABLE I. Values ofM0 for M56.944~units:m51!.

l
M 0

a51
M 0

maxM0

a
maxM0

0.0 6.944 6.944 0.840
0.05 6.950 6.950 0.840
0.1 6.968 6.969 0.840
0.2 7.040 7.043 0.839
0.3 7.157 7.166 0.837
0.4 7.318 7.333 0.835
0.5 7.518 7.542 0.832
0.6 7.753 7.789 0.828
0.8 8.314 8.381 0.820
1.0 8.965 9.078 0.810
1.2 9.679 9.854 0.798
1.4 10.43 10.69 0.787
1.6 11.20 11.56 0.775
1.8 11.97 12.47 0.763
2.0 12.73 13.40 0.751
J. Math. Phys., Vol. 38, No. 8, August 1997
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value isM0518.6 atl54.6. The approximation thata is a constant can only be used in th
domain whereM0(l) increases andM0.M .

The solid curve in Fig. 1 shows the behavior ofM0(l) for M56.944 obtained numerically
from Eq.~32!, where the optimization with respect to the parametera has been carried out. A lis
of the corresponding optimal values ofa, namelya(maxM0), is given in Table I. The minimi-
zation ofM with respect toa, for fixed M0 , in Eq. ~32! is equivalent to the maximization o
M0 for fixed M . For small values ofl both sets of results forM0 in Table I ~and Fig. 1! are
similar, and the parametera(maxM0) is not far from unity. However, asl becomes large the
variation with respect toa leads to a monotonic increase ofM0 with increasingl but at a rate
somewhat slower thanl.

We have also calculatedM0(l) from Eq. ~32! for M /m51 and 100. These results are liste
in Tables II and III, respectively. We do not plot them, since the qualitative behavior is simil
theM /m56.944 case, except that the difference between thea51 anda(maxM0) cases is much
larger forM /m51, and much smaller forM /m5100.

TABLE II. Values ofM 0 for M51 ~units:m51!.

l
M0

a51
M 0

maxM0

a
maxM0

0.0 1.0000 1.0000 0.559
0.05 1.0013 1.0033 0.559
0.1 1.0050 1.0132 0.559
0.2 1.0184 1.0521 0.556
0.3 1.0359 1.1136 0.552
0.4 1.0509 1.1938 0.547
0.5 1.0545 1.2890 0.541
0.6 1.0356 1.3955 0.535
0.8 1.6321 0.520
1.0 1.8876 0.504
1.2 2.1531 0.488
1.4 2.4234 0.472
1.6 2.6954 0.458
1.8 2.9675 0.444
2.0 3.2387 0.431

TABLE III. Values of M 0 for M5100 ~units:m51!.

l
M 0

a51
M0

maxM0

a
maxM0

0.0 100.000 100.000 0.979
0.05 100.008 100.008 0.979
0.1 100.031 100.031 0.979
0.2 100.122 100.122 0.979
0.3 100.275 100.275 0.979
0.4 100.489 100.489 0.979
0.5 100.763 100.763 0.979
0.6 101.096 101.097 0.979
0.8 101.941 101.942 0.979
1.0 103.016 103.017 0.978
1.2 104.315 104.317 0.978
1.4 105.828 105.831 0.978
1.6 107.547 107.551 0.977
1.8 109.462 109.467 0.976
2.0 111.561 111.568 0.976
J. Math. Phys., Vol. 38, No. 8, August 1997
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V. TWO-PARTICLE STATES FOR THE ONE-DIMENSIONAL CASE

The mass of the two-‘‘nucleon’’ system is obtained numerically from the one-dimens
(N51) version of Eq.~31!. For the simplest choice,F(q)5a, this gives

@2„Ṽ~p!2Ṽ~0!1M …2M2#c~p!52l2E
2`

` a dq

v2~q2p!
@2H̃~p,q2p!2a#c~q!, ~48!

where@cf. Eqs.~17!–~20!#

Ṽ~p!5E
2`

`

dq V~q2p!I ~q!1e2l2G~0!V~p!, ~49!

H̃~p,q8!5E
2`

`

dq H~q2p,q8!I ~q!1e2l2G~0!H~2p,q8!, ~50!

andM is the physical~renormalized! one-nucleon mass@cf. Eq. ~32!#. The region of integration
over dq was divided into several subregions and a standard ten-point Lagrange polynomi
mula was used to represent the functionc(q) in each subregion. The resulting ground stateM2

values, for various values ofl, are listed in Table IV and plotted in Fig. 2 forM56.944~units:
m51!.

Various curves are plotted in Fig. 2. There are three sets of variational calculations. The
curve gives variationally minimized~with respect to the parametera! values ofM2(l) as obtained
from Eq. ~48!. The correspondinga(minM2) values are listed in Table IV. Values ofM2 calcu-
lated with values ofa that optimizeM0 @i.e., a(maxM0), Table I# lie just a shade above
M2„a(minM2)… and are not plotted to avoid crowding. They are listed in Table IV. This indic
the relative insensitivity ofM2 to variations ina for the caseM /m56.944. The short-dashe
curve in Fig. 2 givesM2(l) calculated with the fixed valuea51. As might be expected, it lies
above the other two curves forl not small, in the orderM2„a(minM2)…,M2„a(maxM0)…
,M2(a51), but the difference is discernable~on the scale of the figure! only for l/M.0.1. It is
of interest to note that forl→0, M252M2Ma2a2(22a)2, wherea52pl2/m2, and has a
maximum ata51.

We plot three other curves in Fig. 2, corresponding to approximations that have bee
ployed in various calculations~e.g., Refs. 6b, 9, 10, 13; see also the discussion in Ref. 8!, and
which are based on two or three state truncations of the Fock-state expansions of the tria

TABLE IV. Values ofM 2 for M56.944~units:m51!.

l
a

minM2

M 2

a51
M 2

maxM0

M 2

minM2

M 2

semi-rel.
M 2

pert.
M 2

nonrel.

0.0 13.888 13.888 13.888 13.888 13.888 13.888
0.05 13.888 13.888 13.888 13.887 13.887 13.887
0.1 13.879 13.879 13.879 13.875 13.875 13.875
0.2 13.805 13.808 13.805 13.791 13.791 13.790
0.4 13.384 13.396 13.384 13.339 13.334 13.321
0.6 0.96 12.581 12.605 12.578 12.496 12.472 12.416
0.8 0.93 11.419 11.443 11.404 11.275 11.201 11.058
1.0 0.91 9.935 9.938 9.887 9.700 9.528 9.238
1.2 0.88 8.176 8.114 8.057 7.800 7.454 6.949
1.4 0.86 6.193 5.998 5.940 5.607 4.985 4.188
1.6 0.83 4.034 3.609 3.561 3.155 2.122 0.951
1.8 0.82 1.748 0.989 0.942 0.481
J. Math. Phys., Vol. 38, No. 8, August 1997
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@Eqs.~1! and~9!#. These approximations, which are not strictly variational, are discussed in d
in Refs. 10 and 12 for the present scalar Yukawa model. They lead to the two-‘‘nucleon’’ equ
@cf. Eq. ~22! of Ref. 12#,

„2v~p,M !2M2…c~p!52l2E
2`

` M2

v~p,M !v~q,M !

1

v2~p2q,m!
c~q!dq

2
pl4

mM E
2`

` 4m22~p2q!2

~4m21~p2q!2!2
c~q!dq. ~51!

The first term on the right of Eq.~51! corresponds to a one-meson-exchange Yukawa interac
~corresponding to a Fock space state of the formuNN&1uNNp&! with lowest-order relativistic
corrections represented by the factorM2/v(p,M )v(q,M ), which tends to unity in the nonrela
tivistic limit. The second term on the right of Eq.~51! corresponds to two meson exchange, tha
the inclusion of the Fock state of the typeuNNpp&. We shall refer to the approximation of Eq
~51! as the semirelativistic approximation. If the second term on the right of Eq.~51! is neglected,
the approximation shall be referred to as the perturbative approximation.

In the nonrelativistic limit,p/M!1, Eq. ~48!, as also Eq.~51!, reduces to the form

~p2/M12M2M2!c~p!52l2E
2`

` dq

~q2p!21m2 c~q!. ~52!

It is just the Schro¨dinger equation inN51 spatial dimensions, with a correspondingly on
dimensional Yukawa potential. The coordinate space representation of Eq.~51! in the p/M!1
limit is

S 2
1

M

d2

dx2
1V~x! Dc~x!5~M222M !c~x!, ~53!

FIG. 2. The two-particle massM 2 as a function of the coupling constantl for M56.944. Units:m51. Solid curve:
variational result withF(q)5a(minM2). Short dashes: variational result withF(q)51. Dashes with asterisks: perturba
tive result @Eq.~51! without thel4 term#. Dashes with circles: semirelativistic result@Eq. ~51!#. Dashes with squares
nonrelativistic approximation@Eq. ~52!#.
J. Math. Phys., Vol. 38, No. 8, August 1997
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where

c~x!5
1

A2p
E

2`

`

eipxc~p!dp, ~54!

and

V~x!52
2pl2

m
e2muxu1

p2l4

mM
uxue22muxu. ~55!

The first term in Eq.~55! is the attractive one-meson-exchange Yukawa potential~111 dimen-
sions!, while the second term is the repulsive two-meson-exchange potential. The nonrelat
M2(l), with one-meson exchange only@i.e., Eq.~52! or, equivalently, Eq.~53! without the second
term in ~55!#, is represented by the dashed curve with squares in Fig. 2 and listed in Table
lies below the variational relativistic results. This shows that relativistic energy correction t
nonrelativistic two-particle mass is positive. It is due to an interplay between corrections co
from the kinetic and potential energy terms in Eq.~48!.

Probably the most widely used approximation in such Fock-space treatments of few
states has been the perturbative approximation. For the 111 Yukawa model it is given by Eq.~51!
without the second term on the right, and its predictions for the mass of the two-nucleon s
is plotted in Fig. 2 as the dashed curve with asterisks~see, also, Table IV!. This approximation
yields energies that include corrections to one order inl2 beyond the nonrelativistic approxima
tion. However, the perturbative result is not strictly variational, because of the approxima
coupling of the variationally derived equations that is made in arriving at Eq.~51!. Since this
perturbative approximation has been used in various calculations~e.g., Refs. 6b, 9, 10, and 13!, as
mentioned previously, it is of interest to compare it to the present variational calculations. W
that it lies substantially below the variational results for the caseM56.944 but is qualitatively
similar. This example indicates that such perturbative approximations can give results th
qualitatively similar but are appreciably different in detail from rigorous variational ones, ex
if l/M is small.

The semirelativistic approximation@Eq. ~51!, all terms#, which also is not strictly variational
is listed in Table IV and plotted as the dashed curve with circles in Fig. 2. This approxim
includes two-meson exchange effects, in contrast to the one-meson-exchange perturba
proximation, and so is expected to be closer to the variational results. We see, from Figs. 2
Tables IV–VI, that such is indeed the case. Note that for theM /m56.944 case, the order of th
results isM 2(nonrel.),M2(pert.),M2(semirel.),M2(variational), with the semi-relativistic re
sult being reasonably close to the variational values.

TABLE V. Values ofM 2 for M51 ~units:m51!.

l
a

minM2

M 2

a51
M2

maxM0

M 2

minM2

M 2

semi-rel.
M 2

pert.
M 2

nonrel.

0.0 2.000 2.000 2.000 2.000 2.000 2.000
0.05 2.000 2.000 2.000 2.000 2.000 2.000
0.1 0.99 1.998 1.999 1.998 1.997 1.997 1.997
0.2 0.95 1.973 1.981 1.973 1.966 1.965 1.962
0.3 0.90 1.907 1.927 1.905 1.887 1.880 1.862
0.4 0.85 1.798 1.827 1.788 1.761 1.736 1.681
J. Math. Phys., Vol. 38, No. 8, August 1997
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We note, in passing, that forM /m56.944 the first excited~odd parity! state appears whe
l50.1820, 0.1825, and 0.1827 in the nonrelativistic, perturbative, and semi-relativistic ap
mations, respectively. The second excited~even parity! state sets in whenl50.2911, 0.2938, and
0.2944, respectively.

Figure 2, as indeed Figs. 3 and 4, shows that the variational ground state energyM2 of the
two-body system has the usual behavior as a function of the coupling constantl that one observes
in relativistic equations. That is,M2(l) is indiscernible from the nonrelativistic result forl!1,
but deviates from it substantially asl increases. Note thatM2 , which decreases monotonicall
with increasingl, falls belowM for l.l151.295 if M56.944 ~units: m51!. Thus, for l
.l1 , the interpretation ofM2 as a two-body mass becomes moot, since, for a spinless s
theory, the lowest excitation above the vacuum is usually identified with the fundamental pa
mass. To put it another way, it becomes energetically possible, onceM21m,M , for the mass
M particle to decay to the particle of massM2 plus a meson. This would not arise if the ‘‘nucle
ons’’ were spin 1/2 fermions.

TABLE VI. Values ofM 2 for M5100 ~units:m51!.

l
a

minM2

M 2

a51
M 2

maxM0

M 2

minM2

M 2

semi-rel.
M 2

pert.
M 2

nonrel.

0.0 200.00 200.00 200.00 200.00 200.00 200.00
0.05 200.00 200.00 200.00 199.99 199.99 199.99
0.1 199.97 199.97 199.97 199.97 199.97 199.97
0.2 199.84 199.84 199.84 199.83 199.83 199.83
0.4 199.22 199.22 199.22 199.20 199.20 199.20
0.6 198.14 198.14 198.14 198.10 198.10 198.09
0.8 0.98 196.58 196.58 196.58 196.52 196.51 196.51
1.0 0.98 194.53 194.53 194.53 194.45 194.45 194.43
1.2 0.98 192.00 192.00 192.00 191.91 191.89 191.87
1.4 0.98 188.94 188.94 188.94 188.88 188.86 188.82
1.6 0.98 185.40 185.40 185.40 185.37 185.34 185.27
1.8 0.98 181.16 181.16 181.16 181.38 181.33 181.23
2.0 0.98 176.18 176.17 176.17 176.91 176.83 176.70

FIG. 3. Same as Fig. 2 but forM5m51. The long-dashes curve gives variational results calculated usinga(maxM0).
J. Math. Phys., Vol. 38, No. 8, August 1997
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Corresponding results forM2(l) for the casesM /m51 and 100 are plotted in Figs. 3 and
and listed in Tables V and VI, respectively. They are qualitatively similar to the caseM /m
56.944, but differences among the various approximations vary considerably for the three
of M /m. Thus for theM /m5100 case~nearly massless mesons!, the results forM2 with a51,
a(maxM0) anda(minM2) are virtually indistinguishable. ForM5m, we note thatM2(a51) is
actually closer toM2„a(minM2)… than isM2„a(maxM0)… and, for smalll, M2(maxM0) is larger
thanM2(a51). The order of the nonvariational approximations is basically the same as th
M /m56.944.

We conclude with a few comments about the numerical procedure and accuracy of our r
The momentum-space bound state equations~48!, ~51!, and ~52! were solved numerically by
approximating the integrals by Gaussian quadrature formulas~see, for example, Refs. 8, 10, an
11 and citations therein for a more detailed discussion of this approach!. The results listed in
Tables IV–VI were obtained in this way. We note, however, that the nonrelativistic approxim
of Eq. ~52!, or Eq. ~53! with only thel2 term in ~55!, is analytically solvable. The bound sta
energy eigenvalues are given by

Jn8~a!52Jn11~a!1
n

a
Jn~a!50, ~56!

wheren52A2Me/m2, e5M222M , a258pMl2/m3, andJn(a) is the usual Bessel function
These analytic results, which we evaluated using the Maple program, can be used to give
idea of the accuracy of the numerical results listed in the tables. We find that the numerical
for M2(nonrel.) of Tables IV–VI agree with the analytic values given by Eq.~56! to the number
of figures listed in the tables. Our general experience has been that the accuracy of the nu
solutions of integral equations like~48!, ~51!, and~52! by Gaussian quadrature reduction decrea
with increasing strength of the coupling as well as with decreasing mass of the exchanged
tum. Nevertheless, we believe that all our numerical results are accurate to at least three
and in most cases to more.

FIG. 4. Same as Fig. 2 but forM /m5100; units:m51.
J. Math. Phys., Vol. 38, No. 8, August 1997
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VI. CONCLUDING REMARKS

We have used a variational method, within the canonical~equal-time! Hamiltonian formalism
of QFT, to study the energy of a one- and two-scalar-‘‘nucleon’’ system interacting via ne
scalar ‘‘meson’’ exchange. A variational trial state, containing one or two nucleon Fock s
with any number of mediating pion Fock states, is used to derive the variational equations
physical one- and two-nucleon systems. Numerical solutions of these equations are determ
one spatial plus time dimensions for nucleon to meson mass ratios of 1, 6.944, and 1
particular, the ground state energy of the two-nucleon system is obtained variationally as a
tion of the coupling constant. The variational results are compared to previously used pertur
semirelativistic, and nonrelativistic calculations, which are based on one- and two-meso
change truncations of the mesonic Fock space. We find that the variational results are quali
similar to the nonvariational approximations~perturbative and semirelativistic!, but that they differ
appreciably as the coupling strength increases.

We cannot give a direct quantitative comparison of our results to light-front calculation
the latter appear not to have been done for the scalar Yukawa model in 111 dimensions. The
scalar Yukawa model in 311 dimensions has been treated in the light-front formalism b
number of authors, particularly by Mu¨ller14 and Ji and Furnstahl15 ~see, also, references given
these papers, and in Ref. 1!. These light-front treatments employ the ladder approximation~which
is the approximation used in the classic Bethe–Salpeter treatment of this model by W16

Cutkosky,17 and Schwartz18!. Notwithstanding the different dimensionality, if one can assume
the contributions from transverse momenta in 311 light-cone calculations are limited to sma
momenta, a qualitative comparison between our equal-time variational 111 results and the 3
11 light-cone ladder results can be made. First, we note that the qualitative dependence
binding energy on the coupling constant is similar in the two approaches. In particular the d
dence of the binding energy on the coupling constant is quadratic in the domain whe
coupling constant is small and relativistic effects are relatively unimportant. As the binding e
grows with the coupling constant we find that in 111, as in 311,15 the nonrelativistic approxi-
mation overestimates the binding by a large amount. This implies that there is consid
departure from quadratic dependence on the coupling constant as the coupling grows.
Furnstahl15 find that the variational light-front ladder results in 311 ~which are close to the
corresponding Bethe–Salpeter results! also give much smaller binding than the perturbative
proximation. This is also what our equal-time variational results show in 111. In short, the two
approaches give qualitatively similar results, however we cannot say in detail how simi
dissimilar the results are at high coupling.

Calculations using the present method in 211 and 311 dimensions can be carried out in a
analogous fashion to those presented for 111, though the integral equations become two- a
three-dimensional, hence their solution becomes technically more difficult, as does the hand
the renormalization, particularly in 311 dimensions. The method presented here is nonpertu
tive ~variational! and so not restricted to the weak coupling regime. It is also applicable to o
nonscalar, theories.
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Long-range scattering in the position representation
J. Derezińskia) and C. Gérard
Centre de Mathe´matiques, URA 169 CNRS, Ecole Polytechnique,
91128 Palaiseau Cedex, France
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For a large class of long-range potentials we prove the asymptotic completeness of
modified wave operators constructed using solutions of the eikonal equation
2] tC(t,x)5 1

2„¹xC(t,x)…21V(x). © 1997 American Institute of Physics.
@S0022-2488~97!01208-5#

I. INTRODUCTION

In the scattering theory for Schro¨dinger operators one considers the free Hamiltonian

H05
1

2
D2 acting onL2~X!,

whereX5Rn, and the full Hamiltonian

H5
1

2
D21V~x!,

whereV is a real potential tending in some weak sense to zero whenx tends to`. As is well
known, potentialsV fall naturally into two classes: the short-range potentials where rou
speaking

uV~x!u<C^x&2m, m.1, ~1.1!

and the long-range potentials, where

u]x
aV~x!u<C^x&2m2uau, 1>m.0, uau50,1,2. ~1.2!

For short-range potentials the wave operators

Vsr
65s- lim

t→6`

ei tHe2 i tH0 ~1.3!

exist and are complete

RanVsr
65Hc~H !,

whereHc(H) denotes the continuous spectral subspace of the operatorH. For long-range poten-
tials, the limits~1.3! typically do not exist and the definition of wave operators has to be modi

Several different constructions of wave operators in the long-range case can be found
literature. Probably the most popular approach is the so-called momentum approach. It con
replacing the free dynamics e2 i tH0 by a modified free dynamics of the form e2 iS(t,D), where
R3X8{(t,j)°S(t,j) is an exact or approximate solution of the Hamilton–Jacobi equation~see
Refs. 1 and 2!.

a!On leave from Department of Mathematical Methods in Physics, Warsaw University, Hoz˙a 74, 00-682 Warszawa
Poland.
0022-2488/97/38(8)/3925/18/$10.00
3925J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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] tS~ t,j!5
1

2
j21V~¹jS~ t,j!!. ~1.4!

In Ref. 1, the existence of the modified wave operators

VS
65s- lim

t→6`

ei tHe2 iS~ t,D ! ~1.5!

and their completeness

RanVS
65Hc~H !

is shown under condition~1.2! using the stationary approach. In Ref. 2 the same result is sh
under slightly weaker conditions by the time-dependent approach.

Another approach to constructing modified wave operators is that of Isozaki–Kitada.3,2

This paper is devoted to yet another approach, which we call the ‘‘position approach’’~see
Ref. 4!.

In order to describe it let us start with the short-range case. Let us recall that

e2 i tH0u~x!5eipn/4~2pt !2n/2E ei ~x2y!2/2tu~y!dy. ~1.6!

Let F be the Fourier transformation:

F u~x!5~2p!2n/2E e2 ix•x8u~x8!dx8.

It follows directly from ~1.6! that if we set

UC0
~ t !u~x!:5eipn/4t2n/2eix

2/2tF uS xt D ,
then

e2 i tH0u5UC0
~ t !u1o~ t0!, ~1.7!

in L2 norm whent tends tò . Let nowV(x) be a short-range potential satisfying~1.1!. It follows
then from~1.7! that the wave operators in the short range case have an alternative definitio

Vsr
65s- lim

t→`

ei tHUC0
~ t !.

To handle long-range potentials, it is proposed in Ref. 4 to replace the phase fun
C0(t,x)5 x2/2t by a solutionC(t,x) of theeikonal equation

2] tC~ t,x!5
1

2
~¹xC~ t,x!!21V~ t,x!. ~1.8!

This is analogous to the replacement of the function1
2tj

2 by a solutionS(t,j) of the Hamilton–
Jacobi equation~1.4! in the momentum approach to the long-range scattering. References 4
contain the proof of the existence of the limits
J. Math. Phys., Vol. 38, No. 8, August 1997
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VC
6 :5s- lim

t→6`

ei tHUC~ t !, ~1.9!

where

UC~ t !u~x!:5eipn/4t2n/2eiC~ t,x!F uS xt D
under rather strong conditions onV(x). In our paper we would like to give a direct proof of th
completeness of the operatorsVC

1 .
The proof of existence and completeness of wave operators in the time-dependent ap

can be split in two independent steps.
In the first step one proves some rough propagation estimates which pinpoint the diffe

between bound states and scattering states. The Mourre estimate6 or the RAGE theorem are two
examples of tools used in this first step~see, for example, Refs. 2 and 7–10!. In this step there is
no essential difference between the short-range and the long-range case and the choice o
operator does not play a role.

In the second step, one has to prove some sharper propagation estimates for scatterin
which are of a semiclassical nature. The technical details of the second step depend cruc
which construction of wave operators we use. If we use the momentum approach~1.5!, then the
pseudodifferential calculus enters in an essential way, for example to estimate quantitie
@V(x),iS(t,D)#. Under minimal regularity hypotheses on the potentials this involves some r
delicate symbol classes~see Ref. 1 for the stationary approach and Ref. 2 for the time-depen
approach!.

In the Isozaki–Kitada approach one has to estimate some Fourier integral operators.
The main advantage of the position approach~1.9! is that we can make use of the fact that t

Schrödinger operator is a partial differential operator and we use neither Fourier integra
pseudodifferential calculus. Our goal in this paper is to show that the position approach c
used to prove the asymptotic completeness for long-range potentials, under the same cond
the one used in Ref. 2, Chapter 4, using rather elementary differential calculus.

In the short-range case wave operators are uniquely defined by~1.3!. In the long-range case
modified wave operators are no longer unique. A quantity, which is uniquely defined, i
asymptotic velocity

P6:5s-C`2 lim
t→6`

ei tHx/te2 i tH

5s-C`2 lim
t→6`

ei tHDe2 i tH1c~H !,

where s-C`2 lim denotes the so-called ‘‘strongC` limit’’ ~see Ref. 2 and Theorem 5.1!. One
expects that modified wave operatorsV6 have the following properties:

V6V6*51c~H !, V6*V651,
~1.10!

V6D5P6V6, V6H05HV6.

Note that if two operatorsV1
6 , V2

6 satisfy ~1.10!, then

V1
65V2

6a~D !

for someaPL`(X) such thatuau51. So in some sense, the non-uniqueness ofV6 is quite weak
~in particular, it does not influence the value of scattering cross-sections!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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It is shown in Ref. 2 that under the assumption~1.2! the operatorsVS
6 satisfy ~1.10!. In this

paper we will give an independent proof of~1.10! for the operatorsVC
6 .

To a functionS(t,j) satisfying the Hamilton–Jacobi equation~1.4! we can naturally associat
a solutionC(t,x) of the eikonal equation~1.8! by setting

C~ t,x!5vcj~^x,j&2S~ t,j!!,

where vc means the critical value. It is tempting to conjecture that for such a pair of func
S(t,j) andC(t,x) we have

VS
65VC

6 . ~1.11!

It is not difficult to show that~1.11! is true for potential satisfying

u]x
aV~x!u<Ca^x&2m2uau, 1>m.0, uau>0. ~1.12!

However, bothVS
6 andVC

6 can be constructed under the condition~1.2!, which is much weaker
than ~1.12!. We conjecture that~1.11! is true under condition~1.2!, although we have not bee
able to prove it.

In our proof we follow the general philosophy of Ref. 2. First we consider time-deca
potentials, which roughly satisfy

u]x
aV~ t,x!u<C^t&2m2uau, uau50,1,2, m.0.

We prove that for such potentials position-type modified wave operators exist and are com
~unitary!. This is the subject of Sections II and III. In Sections IV and V we apply those resul
time-independent potentials.

II. EIKONAL EQUATION I

This section is devoted to the construction of solutions of the eikonal equation for long-
time-dependent potentials.

Proposition 2.1: Let V(t,x) be a time-dependent potential such that

E
0

1`

^t& uau21i]x
aV~ t,• !i`dt,`, uau51,2. ~2.1!

Then for sufficiently big T1 there exists a real functionC(t,x) such that

2] tC~ t,x!5
1

2
~¹xC~ t,x!!21V~ t,x!,xPX,t>T1 , ~2.2!

satisfying

]x
aS C~ t,x!2

x2

2t DPo~ t12uau!ù^t&22uauL1~dt !, uau51,2. ~2.3!

Proof: In Ref. 2, Sect. 1.7, we constructed a functionS(t,j) that solves the following
Hamilton–Jacobi equation:

] tS~ t,j!5 1
2 j21V~ t,¹jS~ t,j!!, xPX, t>T,

S~T,j!50, ~2.4!
J. Math. Phys., Vol. 38, No. 8, August 1997
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and satisfies the estimates

]j
aSS~ t,j!2

1

2
tj2DPo~ t !, uau51,2. ~2.5!

We will define the functionC(t,x) by

C~ t,x!5vcj~^x,j&2S~ t,j!!, ~2.6!

where vc means the critical value. In fact if the critical point equation,

x5¹jS~ t,j!, ~2.7!

has a unique solutionj5j(t,x) for t large enough, thenC(t,x) solves the eikonal equation~2.2!.
Let us prove that~2.7! has a unique solution fort>T1. If we set

r ~ t,j!:5t21~¹S~ t,j!2tj!, ~2.8!

we can rewrite~2.7! as

j1r ~ t,j!5
x

t
, ~2.9!

where using~2.5!, we have,

r ~ t,j!Po~ t0!, ¹jr ~ t,j!Po~ t0!.

Applying the fixed point theorem we obtain a unique solutionj(t,x) to ~2.9! for t>T1. Note that
if C(t,x) is defined by~2.6!, one has

¹xC~ t,x!5j~ t,x!, ~2.10!

which shows that¹xC(t,x)2x/t Po(t0). Next we have

¹x
2C~ t,x!5¹xj~ t,x!,

and

¹xj~ t,x!1¹jr ~ t,j!¹xj~ t,x!5
1

t
,

which shows that

¹x
2C~ t,x!2

1

t
Po~ t21!.

To complete the proof of~2.3!, we will use the notation of Ref. 2, Sect. 1.4. We denoted th
by

@ t1 ,t2#{s° ỹ ~s,t1 ,t2 ,x,j!

the trajectory for the force2¹xV(t,x) having positionx at s5t1 and momentumj at s5t2. We
also put

z̃~s,t1 ,t2 ,x,j!:5 ỹ~s,t1 ,t2 ,x,j!2x2~s2t1!j.
J. Math. Phys., Vol. 38, No. 8, August 1997
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It is easy to check thatz̃(s) satisfies the following integral equation:

z̃~s!5E
t1

t2
z t1 ,s~u!¹V~u,x1~u2t1!j1 z̃~u!!du, ~2.11!

for

z t1 ,s~u!:5H 0 for u<t1 ,

u2t1 for t1<u<s,

s2t1 for s<u.

It follows from standard Hamilton–Jacobi theory~see, e.g., Ref. 2, Prop. 1.8.1! that

ỹ ~ t,T,t,0,j!5¹jS~ t,j!.

Hence

¹xC~ t,x!2
x

t
5t21~Tj2 z̃~ t,T,t,0,j!!.

It follows then from hypothesis~2.1! that

u z̃~ t,T,t,0,j!u<E
T

t

s f~s!ds, for fPL1~ds!. ~2.12!

Hence

z̃~ t !P^t&2L1~dt !ùo~ t !,

which ends the proof of~2.3! for uau51.
To finish the proof of~2.3! for uau52, we compute

¹jx~ t,j!5¹j ỹ ~ t,T,t,0,j!

5~ t2T!S 11
1

t2T
¹j z̃~ t,T,t,0,j! D ,

so that

¹x
2C~ t,x!5¹xj~ t,x!

5~ t2T!21S 11
1

t2T
¹j z̃~ t,T,t,0,j! D 21

. ~2.13!

It follows again from the equation~2.11! that

u¹j z̃~ t !u<E
T

t

s f~s!ds, for fPL1~ds!. ~2.14!

Hence,

¹j z̃~ t !P^t&2L1~dt !ùo~ t !.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Note that since¹j z̃(t)5o(t), (11@1/(t2T)#¹jz̃)
21 exists fort>T1 and

¹x
2C~ t,x!2

1

t
5~ t2T!21S 11

1

t2T
¹j z̃~ t,T,t,0,j! D 21

2
1

t

5^t&22O~ u¹j z̃~ t !u!1O~ t22!.

This implies~2.3! for uau52. h

We will also need the following lemma.
Lemma 2.2: Assume in addition to (2.1) that

E
0

`

^t&3/2i]x
aV~ t,• !i`dt,`, uau53. ~2.15!

Then the functionC(t,x) satisfies

]x
aC~ t,x!Po~ t23/2!, uau53.

Proof: From Ref. 2, Prop. 3.4.3, and its proof, we obtain that under assumptions~2.15!, one has:

]j
a z̃~ t !Po~ t3/2!, uau52.

So we obtain

¹jS 11
1

t2T
¹j z̃~ t ! D 21

Po~ t1/2!.

From ~2.13!, we deduce that we have

¹x
3C~ t,x!5

1

t2T
¹xj~ t,x!¹jS 11

1

t2T
¹j z̃~ t ! D 21

Po~ t23/2!,

which proves the lemma. h

III. POSITION-TYPE WAVE OPERATORS FOR TIME-DECAYING POTENTIALS

In this section we consider the case of time-dependent potentials. For a real functiont,x)
P R13X°C(t,x) we define the unitary operatorUC(t) by

UC~ t !u~x!:5eipn/4t2n/2eiC~ t,x!F uS xt D ,
where the Fourier transformationF is defined by

F u~x!:5~2p!2n/2E e2 ix•x8u~x8!dx8.

Let the time-dependent Hamiltonian be defined as

H~ t !:52
1

2
D21V~ t,x!.
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Let U(t,s) denote the unitary dynamics generated byH(t) in the sense described in Ref. 2, Se
B.3.

We first recall the existence of the asymptotic momentum observable for time-depe
potentials~cf. Ref. 2, Sec. 3.2!.

Theorem 3.1:Assume that

V~ t,x!5Vs~ t,x!1Vl~ t,x!

with

E
0

`

iVs~ t,• !i`dt,`,

E
0

`

i¹xVl~ t,• !i`dt,`.

Then there exists the limit

s- lim
t→1`

U~0,t ! f ~D !U~ t,0!, fPC`~X!. ~3.1!

There exists a vector D1 of commuting self-adjoint operators with a dense domain such that (
equals f(D1).

Moreover one has

s- lim
t→1`

U~0,t ! f S xt DU~ t,0!5 f ~D1!, fPC`~X!.

The observableD1 is called theasymptotic momentum.
The main result of this section is the following theorem.
Theorem 3.2:Assume that

V~ t,x!5Vs~ t,x!1Vl~ t,x!

with

E
0

`

iVs~ t,• !i`dt,`,

~3.2!

E
0

`

^t& uau21i]x
aVl~ t,• !i`dt,`, uau51,2.

Then there exists a functionC(t,x)PC1,1(X) satisfying

]x
aS C~ t,x!2

x2

2t DPo~ t12uau!ù^t&22uauL1~dt !, uau51,2,

such that the limits

VC
1 :5s- lim

t→`

U~0,t !UC~ t !, ~3.3!
J. Math. Phys., Vol. 38, No. 8, August 1997
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VC
1*5s- lim

t→`

UC~ t !*U~ t,0! ~3.4!

exist. Moreover,VC
1 is unitary and

D15VC
1DVC

1* . ~3.5!

We will start the proof of Theorem 3.2 with the proof of the existence of the limit~3.3!, which
is easy.

Proof of the existence of (3.3):By the chain rule of the wave operators, it suffices to prove t
the limit

s- lim
t→`

U l~0,t !UC~ t !

exists, whereU l(t,s) is the dynamics generated by12D
21Vl(t,x). We can rewriteUC(t) as

UC~ t !5eipn/4eiCt2 iAF , ~3.6!

whereC is the operator of multiplication byC(t,x), andA5 1
2(^x,D&1^D,x&) is the generator of

dilations. This shows that

i ] tUC~ t !f5eipn/4eiCS 2] tC1
A

t D t2 iAF f.

We recall from Proposition 2.1 thatC(t,x) satisfies the following estimates:

]x
aS C2

x2

2t DPo~ t12uau!ù^t&22uauL1~dt !, uau51,2. ~3.7!

Using the eikonal equation~1.8!, we compute forfPH2(X):

S i ] t2 1

2
D22Vl~ t,x! DUC~ t !f

5eipn/4eiCS 2] tC1
A

t
2
1

2
~D1¹C!22VlD t2 iAf

5eipn/4eiCS 2] tC2
1

2
~¹C!22Vl1

A

t
2
1

2
D22¹CD2

i

2
DC D t2 iAf

5eipn/4eiCS 2
1

2
D21S xt 2¹C DD1

i

2 S nt 2DC D D t2 iAf

5eipn/4S t22eiCt2 iA
1

2
D21t21eiCS xt 2¹C D t2 iAD1eiC

i

2 S nt 2DC D t2 iADfPL1~dt !,

using the estimates~3.7!. This proves the existence of the limit~3.3!. h

To prove the unitarity of the wave operatorVC
1 , we will need more elaborate argumen

which are close to those of Ref. 2, Sect. 3.4. In particular, we will split the potential in
long-range and short-range part. To this end we recall the following result from Ref. 2.

Lemma 3.3: (i) Suppose that Vl(t,x) satisfies
J. Math. Phys., Vol. 38, No. 8, August 1997
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E
0

`

^t& uau21i]x
aVl~ t,• !i`dt,`, uau51,2.

Let jPC0
`(X) be a cutoff function such that

E j ~y!dy51, E y j~y!dy50,

and let

Ṽl~ t,x!:5E Vl~x1t1/2y! j ~y!dy.

Then one has

E
0

`

iṼ~ t,• !2Vl~ t,• !i`dt,`,

E
0

`

i]x
aṼl~ t,• !i`^t& uau21dt,`, uau51,2,

E
0

`

i]x
aṼl~ t,• !i`^t&~1/2! uaudt,`, uau>2.

So by replacingVs by Vs1Ṽs we may assume in the rest of the section thatVl satisfies

E
0

`

i]x
aVl~ t,• !i`^t& uau21dt,`, uau51,2,

E
0

`

i]x
aVl~ t,• !i`^t&~1/2! uaudt,`, uau>2. ~3.8!

We choose forC(t,x) the solution of the eikonal equation constructed in Proposition 2.1. F
Lemma 2.2, it follows thatC satisfies, in addition to~3.7!, the estimate

i]x
aC~ t,• !i`Po~ t23/2!, uau53. ~3.9!

Using the estimates~3.7!, we obtain the following identity:

1

2
D21Vl~ t,x!5

1

2
~¹xC!21Vl~ t,x!1

i

2
DC1

1

2
~D1¹xCuD2¹xC!

52] tC1
1

2
~D1¹xCuD2¹xC!1

ni

2t
1L1~dt !.

Here (.u.) denotes the Euclidean scalar product onX8. We define

H1~ t !:52] tC1
1

2
~D1¹xCuD2¹xC!1

ni

2t
,

so that
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iH~ t !2H1~ t !iPL1~dt !, ~3.10!

and denote byU1(t,s) the ~non-unitary! dynamics generated byH1(t). It is easy to see that this
dynamics exists and is uniformly bounded using~3.10!. We will first prove some propagation
estimates for the dynamicsU1(t,s). We denote byD15] t1@H1(t),i •# the Heisenberg derivative
associated withU1(t,s).

Proposition 3.4: The following estimates hold:

~ i ! i~D2¹C~ t,x!!U1~ t,0!^D&21^x&21iPO~ t21!,

~ i i ! i~D2¹C~ t,x!!2U1~ t,0!^D&22^x&22iPO~ t23/2!.

Proof: Let us first prove(i). We compute

D1~D2¹C!52] t¹xC1@H1~ t !,i ~D2¹C!#

5 1
2 @D1¹C,i ~D2¹C!#~D2¹C!

52¹x
2C~D2¹C!.

Since¹x
2C5t1R(t), whereR(t)PL1(dt), we have:

D1~D2¹C!52
1

t
~D2¹C!1R~ t !~D2¹C!.

We introduce the observable

C1~ t !:5t~D2¹C~ t,x!!,

and we have

D1C1~ t !5R~ t !C1~ t !. ~3.11!

If we put

f 1~ t !:5iU1~0,t !C1~ t !U1~ t,0!^D&21^x&21i ,

we deduce from~3.11! that

d

dt
f 1~ t !<g~ t ! f 1~ t !,

for

g~ t !5iU1~0,t !R~ t !U1~ t,0!iPL1~dt !.

By the Gronwall inequality, we obtain

f ~ t !<Cf~T!,

which proves(i).
Let us now prove(ii) . We compute for 1< i< j<n
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D1~D2¹C! i~D2¹C! j52
2

t
~D2¹C! i~D2¹C! j1(

k
~D2¹C! i r jk~ t !~D2¹C!k

1(
k
r ik~ t !~D2¹C!k~D2¹C! j

52
2

t
~D2¹C! i~D2¹C! j1(

k
r ik~ t !~D2¹C! i~D2¹C!k

1(
k
r ik~ t !~D2¹C!k~D2¹C! j1(

k
bi jk~ t !~D2¹C!k ,

where

r i j ~ t !:52¹ i j
2C~ t,x!1d i j

1

t
PL1~dt !,

bi jk~ t !:5¹xr i j ~ t !Po~ t23/2!,

using ~3.9!. Introducing the matrix valued observable

C2~ t !5t2~~D2¹C! i~D2¹C! j !,

we obtain

D1C2~ t !5R2~ t !C2~ t !1R1~ t !C1~ t !, ~3.12!

whereR1(t)Po(t21/2) andR2(t)PL1(dt). We define now

f 2~ t !:5iU1~0,t !C2~ t !U1~ t,0!^D&22^x&22i ,

and we obtain using~3.12!

d

dt
f 2~ t !<o~ t21/2! f 1~ t !1g~ t ! f 2~ t !, ~3.13!

whereg(t)5iR2(t)iPL1(dt). Therefore by the Gronwall inequality, we obtain

f 2~ t !<Ct1/2,

which proves(ii) . h

End of the proof of Theorem 3.2:Let us first prove the existence of the limit~3.4!. By the
chain rule of the wave operators, it suffices to prove the existence of

s- lim
t→`

UC* ~ t !U1~ t,0!. ~3.14!

We compute

i21] tUC* ~ t !5e2 ipn/4F * t iA
A

t
e2 iC2e2 ipn/4F * t iAe2 iC] tC

5UC* ~ t !S x~D2¹C!2
ni

2t
2] tC D .
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Let us now pickfPD(D2)ùD(x2) and compute

i21] tUC* ~ t !U1~ t,0!f5UC* ~ t !S xt 2
1

2
~D1¹C! D ~D2¹C!U1~ t,0!f. ~3.15!

Using ~3.7!, we have

S xt 2
1

2
~D1¹C! D52

1

2
~D2¹C!1R~ t !,

whereR(t)P^t&L1(dt). So we obtain

i] tUC* ~ t !U1~ t,0!fi

<iR~ t !ii~D2¹C!U1~ t,0!fi1i~D2¹C!2U1~ t,0!fiPL1~dt !,

using Proposition 3.4. This proves the existence of the limit~3.15!.
The identity~3.5! follows from

UC~ t ! f ~D !UC* ~ t !5 f S xt D .
This completes the proof of the theorem. h

IV. EIKONAL EQUATION II

In this section we prove some additional results on solutions of the eikonal equation
though, strictly speaking, these results involve time-dependent potentials, they will be used
construction of position-type wave operators for time-independent potentials.

Let us start with the following extension of Proposition 2.1.
Proposition 4.1: Let V(t,x) be a time-dependent potential such that for anye.0

E
0

1`

t uau21 sup
uxu>et

u]x
aV~ t,x!udt,`, uau51,2. ~4.1!

Then there exists a real functionC(t,x) such that for anye.0

2] tC~ t,x!5
1

2
~¹xC~ t,x!!21V~ t,x!, in uxu>et, t>Te , ~4.2!

satisfying inuxu>et:

]x
aS C~ t,x!2

x2

2t D5o~ t12uau!ù^t&22uauL1~dt !, uau51,2. ~4.3!

Proof: In Ref. 2, Prop. 4.7.3, we proved under the hypotheses~4.1! the existence of a function
S(t,j) satisfying for anye.0 the Hamilton–Jacobi equation

] tS~ t,j!5
1

2
j21V~ t,¹jS~ t,j!!, in uju>e, t>Te , ~4.4!

and the estimates

]j
aSS~ t,j!2

1

2
tj2D5o~ t !, uau51,2 in uju>e. ~4.5!
J. Math. Phys., Vol. 38, No. 8, August 1997
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As above we will defineC(t,x) as

C~ t,x!5vcj~^x,j&2S~ t,j!!.

Let us check that foruxu>et,t>Te , there exists a unique solutionj of ~2.9! with uju>e. In fact
if uxu>et, the mapj°x2r (t,j) sends the set$juuju>e/2% into itself for t>Te and is a contrac-
tion there. The estimates~4.3! can then be proved as in Proposition 2.1. h

The following proposition will be needed to compare two solutions of the same eik
equation.

Proposition 4.2: Let V(t,x) be a time-dependent potential such that for anye.0

E
0

1`

t uau21 sup
uxu>et

u]x
aV~ t,x!udt,`, uau51,2. ~4.6!

LetQ,X\$0% be a compact set. Suppose that forj in a certain neighborhood ofQ and t>T0 the
functions Si(t,j), i51,2,are two solutions of the Hamilton–Jacobi equation

] tSi~ t,j!5
1

2
j21V~ t,¹xSi~ t,j!!

such that

]j
aSSi~ t,j!2

1

2
tj2DPo~ t !, uau51,2.

Let C i(t,x), i51,2 be the two solutions of the eikonal equation (4.2) given for
x

t
in a certain

(maybe smaller) neighborhood ofQ and t>T1 by

C i~ t,x!5vcj~^x,j&2Si~ t,j!!.

Then the limit

lim
t→1`

~C1~ t,ty!2C2~ t,ty!!

exists uniformly for yPQ.
Proof: As in ~2.8! set

r i~ t,j!:5
¹jSi~ t,j!2tj

t
.

Recall thatr i(t,j), ¹r i(t,j)Po(t0). Let j i(t,x) be the solution of

¹jSi~ t,j i !5ty,

or equivalently

j i1r i~ t,j i !5y.

Such a solution exists for a sufficiently small neighborhood ofQ for t sufficiently big. Recall that
if we set

C i~ t,x!:5xj i S t, xt D2Si S t,j i S t, xt D D ,
J. Math. Phys., Vol. 38, No. 8, August 1997
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then

¹xC i~ t,x!5j i S t, xt D .
It follows from Ref. 2, Thm. 1.9.6, that¹jS1(t,j)2¹jS2(t,j)PO(1), which implies that

r 1(t,j)2r 2(t,j)PO(t21). We deduce then from

uj12j2u<ur 1~ t,j1!2r 1~ t,j2!u1ur 1~ t,j2!2r 2~ t,j2!u ~4.7!

that

j1~ t,y!2j2~ t,y!PO~ t21!, yPQ. ~4.8!

Now we compute foryPQ and t big enough

] t~C1~ t,ty!2C2~ t,ty!!

5] tC1~ t,ty!2] tC2~ t,ty!1y¹xC1~ t,ty!2y¹xC2~ t,ty!

5~¹xC1~ t,ty!2¹xC2~ t,ty!!S y2
1

2
~¹xC1~ t,ty!1¹xC2~ t,ty!! D . ~4.9!

By the estimates~4.3! we have

y2]xC i~ t,ty!P^t&L1~dt !,

which using ~4.8! implies that the rhs of~4.9! is in L1(dt). This completes the proof of the
proposition. h

V. POSITION-TYPE WAVE OPERATORS FOR TIME-INDEPENDENT POTENTIALS

In this section we prove the existence and completeness of position-type wave operat
long-range time-independent potentials.

Theorem 5.1:Assume that

V~x!~12D!21 is compact, ~5.1!

E
1

` I ~12D!21¹xV~x!1[1,`[ S uxu
R D ~12D!21IdR,`, ~5.2!

and that V(x) can be written as

V~x!5Vs~x!1Vl~x!, ~5.3!

such that

E
0

` I ~12D!21Vs~x!1[1,`[ S uxu
R D ~12D!21/2IdR,`,

~5.4!

E
0

`

supuxu.Ru]x
aVl~x!u^R& uau21dR,`, uau51,2.

Then there exists a real functionC(t,x) such that the limits
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s- lim
t→`

ei tHUC~ t ! ~5.5!

and

s- lim
t→`

UC~ t !* e2 i tH1c~H ! ~5.6!

exist. If we denote~5.5! by VC
1 , then ~5.6! equalsVC

1* . Moreover one has

VC
1VC

1*51c~H !, VC
1*VC

151,
~5.7!

P15VC
1DVC

1* , 1c~H !H5VC
1H0VC

1* .

Before starting the proof of Theorem 5.1, let us first recall some results from Ref. 2. In R
Chap. 4, we proved under hypotheses~5.1! and ~5.2! the existence of theasymptotic velocity
observable. Its definition and properties are recalled in the following theorem.

Theorem 5.2:Assume~5.1! and ~5.2!. Then for all fPC`(X) there exists the limit

s- lim
t→1`

ei tH f S xt De2 i tH . ~5.8!

Moreover there exists a vector of commuting self-adjoint operators P1 with a dense domain
called the asymptotic velocity such that~5.8! equals f(P1).

One has

H1X\$0%~P
1!5

1

2
~P1!2, ~5.9!

1$0%~P
1!51pp~H !. ~5.10!

The proof of Theorem 5.1 consists in introducing an effective time-dependent potential an
plying then the results of Section III.

Let Q,X be compact such that 0¹Q. Fix JPC0
`(X) such that 0¹suppJ and J51 on a

neighborhood ofQ. Fix alsox0PX such thatux0uÞ0. We introduce now the following effective
time-dependent potential:

VJ~ t,x!:5~Vl~x!2Vl~ tx0!!JS xt D1Vl~ tx0!. ~5.11!

Obviously, fory in a neighborhood ofQ

Vl~ ty!2VJ~ t,ty!50. ~5.12!

From Ref. 2, Prop. 4.7.5, we obtain that

E
0

`

^t& uau21i]x
aVJ~ t,• !i`dt,`, uau51,2. ~5.13!

We denote byUJ(t,s) the unitary dynamics generated by
1
2D

21VJ(t,x) and byDJ
1 the asymptotic

velocity associated withUJ(t,s) ~see Ref. 2, Thm. 3.2.2!:

f ~DJ
1!5s- lim

t→1`

UJ~0,t ! f S xt DUJ~ t,0!, fPC`~X!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The following result has been proved in Ref. 2, Sect. 4.7. It shows that on Ran1u(D
1) one can

replace asymptotically the dynamics e2 i tH by the effective dynamicsUJ(t,0).
Lemma 5.3: There exist the limits

s- lim
t→`

ei tHUJ~ t,0!1Q~DJ
1!. ~5.14!

and

s- lim
t→`

UJ~0,t !e
2 i tH1Q~P1!. ~5.15!

If we denote~5.14! by vJ,Q
1 , then~5.15! equalsvJ,Q

1* . Moreover,

vJ,Q
1 vJ,Q

1*51Q~P1!, vJ,Q
1*vJ,Q

1 51Q~DJ
1!,

vJ,Q
1 DJ

15P1vJ,Q
1 . ~5.16!

Proof of Theorem 5.1:Let Qn,X be a sequence of compact sets such that 0¹Qn and
Qn↗X\$0%. Since1$0%(P

1)51pp(H), we have

1c~H !5s- lim
n→`

1Qn
~P1!.

Consequently to prove the existence of the limit~5.6!, it suffices to prove the existence of

s- lim
t→1`

UC~ t !* e2 i tH1Qn
~P1!,

for all n.
Let us fix one such compact setQ. We defineVJ(t,x) as in~5.11!. It follows from ~5.13! that

VJ(t,x) satisfies the hypotheses of Theorem 3.2. Consequently for the functionCJ(t,x) described
in Theorem 3.2 the limits

s- lim
t→`

UJ~0,t !UCJ
~ t !,

s- lim
t→`

UCJ
~ t !*UJ~ t,0!

exist.
We define then as in Lemma 3.3:

Ṽ~ t,x!:5E Vl~x1t1/2y! j ~y!dy. ~5.17!

It is easy to see thatṼ(t,x) satisfies for alle.0:

E
0

`

supuxu>etu]x
aṼ~ t,x!u^t& uau21dt,`, uau51,2.

Let C(t,x) be a solution of the eikonal equation described in Proposition 4.1. It remains to
that the limits

s- lim
t→1`

UC~ t !*UCJ
~ t !1Q~DJ

1!,
J. Math. Phys., Vol. 38, No. 8, August 1997
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~5.18!

s- lim
t→1`

UCJ
~ t !*UC~ t !1Q~P1!

exist.
To do this we recall from Section III thatCJ(t,x) is the solution of the eikonal equation fo

the potential

ṼJ~ t,x!5E VJ~ t,x1t1/2y! j ~y!dy,

constructed in Proposition 2.1. It is easy to show that and thatṼ(t,ty) andṼJ(t,ty) coincide for
y in a neighborhood ofQ for t big enough. Using then Proposition 4.2 we obtain the existenc

lim
t→1`

~C~ t,ty!2CJ~ t,ty!!, for yPQ.

Using then the chain rule, we obtain the existence of the limits~5.5! and~5.6!. The identities~5.7!
follow then from ~5.16! and ~3.5!. h
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Vector bundles over configuration spaces of nonidentical
particles: Topological potentials and internal degrees
of freedom

H.-D. Doebner and H.-J. Mann
Arnold Sommerfeld Institute for Mathematical Physics, Technical University of Clausthal,
38678 Clausthal-Zellerfeld, Germany

~Received 2 December 1996; accepted for publication 21 March 1997!

We consider configuration spaces of nonidentical pointlike particles. The physically
motivated assumption that any two particles cannot be located at the same point in
space–time leads to nontrivial topological structure of the configuration space. For
a quantum mechanical description of such a system, we classify complex vector
bundles over the configuration space and obtain potentials of topological origin,
similar to those that occur in the fiber bundle approach to Dirac’s magnetic mono-
pole or in Yang–Mills theory. ©1997 American Institute of Physics.
@S0022-2488~97!00408-8#

I. INTRODUCTION

In a quantum mechanical description of a system located on a nontrivial configuration
one expects that the topological structure is reflected by some observable properties of the
for example by the energy spectrum or the statistics. There are several types for such config
spaces:

~i! A pointlike particle is located on a manifold with nontrivial topological structure. In t
case the configuration space is the manifold itself. Here one can construct toy mode
example a particle on a torus,1 to study characteristic features of one-particle quant
mechanics on nontrivial spaces. Several examples of this type have a nonvanishing
mental groupp1 , e.g., forRz3(Rxy

2 \$0%) ~Aharonov–Bohm situation! p15Z holds.
~ii ! Physically motivated constraints are imposed upon a pointlike ‘‘free’’ system located

trivial configuration space. This is well known in classical mechanics, and in orde
quantize this system the question arises as to whether the constraint classical system
be quantized or if one has to impose the constraints upon the quantized ‘‘free’’ syste
the latter case one has to reformulate the classical constraints in the language of qu
mechanics.

~iii ! The fundamental group of configuration spaces of identical particles is either the
group or the symmetric group, depending on the dimension of the one-particle confi
tion space.

In this paper we investigate another type of a topological nontrivial configuration space
configuration space ofm nonidentical pointlike particles inRn. The only constraint imposed upo
the system is the statement that each two particles cannot be located at the same point in
time. It somehow surprising that this innocent-looking constraint leads to some significant
ture. We define the diagonal set as

Dm~Rn!:5$~x1 ,...,xm!P~Rn!mu' iÞ j :xi5xj% ~xiPRn!,

and the configuration spaceC̃m(R
n) of m nonidentical particles inRn as

C̃m~Rn!:5~Rn!m\Dm~Rn!.
0022-2488/97/38(8)/3943/10/$10.00
3943J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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For n>3 the nontrivial topological structure is not reflected in the fundamental grou
p1„C̃m(R

n)…50 holds—but in the cohomology ringH* „C̃m(R
n),Z….

The quantization procedure which we will use is known as Borel quantization,2 which covers
the influence of the configuration space topology. In the following we mention those details o
method, which are important for our discussion. Consider complex vector bundles over th
figuration space, where the vector indices describe internal degrees of freedom; such bund
be equipped with a Hermitian metric and nontrivial bundle structures are also possible. Is
phism classes of these bundles are classified by certain topological properties of the base m
which are partially encoded in its cohomology ring. The Hilbert space of the quantized syst
constructed by completing the space of square integrable bundle sections. Nonisomorphic
bundles give rise to the same Hilbert space but to unitary inequivalent representations
kinematical algebra. Because a flat connection does not exist on nontrivial bundles over a
connected base space, topological potentials occur. In order to obtain inequivalent quanti
one has to determine isomorphism classes of vector bundles together with correspondin
logical potentials and has to look for physical systems, which realize this mathematical stru

The paper is organized as follows: in Sec. II we list some methods for the classificati
complex vector bundles. For a detailed account of the theory of vector bundles, we recom
Ref. 3. As a first example we considerC̃2(R

n), i.e., the configuration space of two particles
Rn, in Sec. III. In Sec. IV we compute for them-particle case the cohomology rin
H* „C̃m(R

n),Z… for n>3, following an idea by Arnol’d.4 For this computation we use the Leray
Serre spectral sequence of a fiber bundle and especially Leray’s theorem for singular cohom
with coefficients in a commutative ring~see, e.g., Refs. 5 and 6!. Finally ~Secs. V and VI! we
apply the methods presented in Sec. II to the spaceC̃m(R

n) and discuss our results in view o
quantizing them-particle system. This paper contains the topological framework of Borel q
tization.

II. CLASSIFICATION OF COMPLEX VECTOR BUNDLES

We recall results from the classification theory of complex vector bundles.
1. Classification by homotopy classes:Isomorphism classes@j#PVectk(B) of complex

k-dimensional vector bundlesj5(E,p,B) over a paracompact base spaceB with total spaceE
and projection mapp are in bijective correspondence with homotopy classes@ f # of mappings

f :B→Gk~C
`!

from B into the Grassmannian manifoldGk(C
`), known as the classifying space fo

k-dimensional vector bundles. Starting with a mapf :B→Gk(C
`), the corresponding isomorphism

class@j# is given through the class@ f * (gk)#, wheregk denotes the classifying bundle over th
Grassmannian.

If B has the form of a reduced suspensionS̃(B8) of some other spaceB8,

B5S̃~B8!,

the classification is given by homotopy classes@B8, GL(k,C)# of maps

f 8:B8→GL~k,C!,

that is,

Vectk~B!5Vectk„S̃~B8!…5@B8, GL~k,C!#.

For example, if the base space is homeomorphic to then-dimensional sphere,B5Sn, we have
B5S̃(Sn21) and thus
J. Math. Phys., Vol. 38, No. 8, August 1997
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Vectk~S
n!5@Sn21, GL~k,C!#5pn21„GL~k,C!…5pn21„U~k!….

The isomorphism classes ofk-dimensional complex vector bundles over then-dimensional sphere
are classified by homotopy groups of the unitary groups. This will be used forC̃2(R

n) in Sec. III.
2. Classification by cohomology groups:The calculation of homotopy classes@B, Gk(C

`)# is
often difficult and only a few results are available. The description of complex vector bu
using systems of transition functions provides another possibility to classify them. A syste
transition functions on a spaceB relative to an open coveringV 5$Vi ,iPI % is a family of maps
gi j :ViùVj→GL(k,C) for eachi , jPI , such that

gi j ~b!gjk~b!gki~b!51, bPViùVjùVk , ~1!

holds. Two such systems,$gi j % and$gi j8 %, relative to the same open coveringV of a spaceB are
equivalent, if there exist mapsr i :Vi→GL(k,C) satisfying the relation

gi j8 ~b!5r i~b!21gi j ~b!r j~b!. ~2!

Given twok-dimensional vector bundles over a spaceB, each of them supplied with an atlas wit
transition functions relative to the same open covering, the bundles are isomorphic overB, if and
only if the systems are equivalent.

Equation~1! is a one-cocycle relation in the Cˇ ech complex with coefficients in the presheaf
smoothGL(k,C)-valued functions and the equivalence relation~2! is the statement that two
equivalent systems of transition functions differ by a one-coboundary in this Cˇ ech complex. Hence
we have

Vectk~B!5HC
1
„B,GL~k,C!…,

where the right-hand side is the first Cˇ ech cohomology class with coefficients in the sheaf
germs of smoothGL(k,C)-valued functions, denoted byGL(k,C), and with a distinguished ele
ment corresponding to the trivialk-dimensional vector bundle overB.7

In the special casek51 the coefficient groupGL(k,C) is Abelian andHC
1
„B,GL(1,C)… carries

a group structure. After retractingGL(1,C) to U(1) one can employ the short exact sequence

1→Z→RI→U~1!→1

to obtain the long exact sequence

•••→HC
1 ~B,RI !→HC

1
„B,U~1!…→HC

2 ~B,Z!→HC
2 ~B,RI !→•••

in Čech cohomology. For the fine sheafRI the cohomology groupsHC
j (B,RI ), j51,2, vanish, and

we obtain an isomorphism

HC
1
„B,U~1!…5HC

2 ~B,Z!.

Using the isomorphism between Cˇ ech cohomology with coefficients in the constant sheafZ and
singular cohomology, we have a classification of complex line bundles by

Vect1~B!5HC
1
„B,U~1!…5HC

2 ~B,Z!5H2~B,Z!.

Given an element@j#PVect1(B), the associated elementc1(@j#)PH2(B,Z) is known as the first
Chern class ofj. This result will be used in Sec. V.

3. Classification by the reduced Grothendieck groupK̃ (B): In topologicalK -theory one
uses a modified notion of equivalence of vector bundles. Using the notationun for the
J. Math. Phys., Vol. 38, No. 8, August 1997
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n-dimensional trivial vector bundle over a spaceB, two vector bundlesj andj8 overB are called
stable equivalent, provided there existq,q8PN0 such thatj % uq andj8% uq8 are isomorphic over
B.

There is a bijection between equivalence classes of stable equivalent vector bundles a
elements of the reduced Grothendieck groupK̃ (B), which is related to the Grothendieck grou
K (B) by the relation

K ~B!5K̃ ~B! %Z.

In the so-called stable range, that is,k> 1
2 dim(B), two k-dimensional complex vector bundle

overB are isomorphic if and only if they are stable equivalent. Thus we have a classificati
isomorphism classes of complex vector bundles byK̃ (B) at least in the stable range:

Vectk~B!5K̃ ~B! @k> 1
2 dim~B!#.

In general this result is not very helpful, because one has to computeK̃ (B) instead of
Vectk(B). However, in the case ofB5C̃m(R

n) the reduced Grothendieck group is known or c
be computed from the even-dimensional cohomology~see Sec. VI!.

In the following sections we apply the methods presented above to the configuration spa
nonidentical particles.

III. VECTOR BUNDLES OVER C̃2(R
n)

We consider the configuration space

C̃2~R
n!5~Rn3Rn!\D2~R

n!

of two nonidentical particles inRn,n>2, which can be written in the form

C̃2~R
n!5Rn3R13Sn21, ~3!

where the first factor describes the center of mass, the second factor their~nonvanishing! distance,
and the third factor the angular coordinates of the oriented line connecting both particles. B
Rn3R1 is contractible, we have

Vectk„C̃2~R
n!…5Vectk~S

n21!.

From method 1 in Sec. II we obtain immediately a complete classification by

Vectk„C̃2~R
n!…5pn22„U~k!….

In Table I we list the isomorphism classes of complex vector bundles overC̃2(R
n) for 2<n<8

TABLE I. Vectk„C̃2(R
n)….

n52 n53 n54 n55 n56 n57 n58

k51 0 Z 0 0 0 0 0
k52 0 Z 0 Z Z2 Z2 Z12
k53 0 Z 0 Z 0 Z Z6
k54 0 Z 0 Z 0 Z 0
k55 0 Z 0 Z 0 Z 0
k56 0 Z 0 Z 0 Z 0
J. Math. Phys., Vol. 38, No. 8, August 1997
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and 1<k<6. We mention the following results:

~i! The casen53 is exceptional, because it allows nontrivial line bundles overC̃2(R
n).

Inequivalent quantizations are labeled by an integerzPZ.
~ii ! C̃2(R

3) resembles the topological structure of Dirac’s magnetic monopole, considered
nontrivial line bundle overR3\$0% ~e.g., Ref. 8, see also Ref. 9 for a slightly differe
treatment!.

~iii ! C̃2(R
5) is similar to the base space of Yang–Mills theory~e.g., Ref. 10!.

~iv! In our context Bott’s periodicity theorem takes the form

Vectk„C̃2~R
n!…5Vectk„C̃2~R

n12!…

in the stable rangek>(n11)/2.

IV. THE COHOMOLOGY RING H* (C̃m(R
n),Z)

In contrast to the two-particle case considered in the last section, the configuration
C̃m(R

n) for m>3 cannot be decomposed in an analogous form as in~3!. Hence, the computation
of Vectk„C̃m(R

n)… is more complicated. Because our results in Secs. V and VI are based o
cohomology ringH* „C̃m(R

n),Z… and the application of the classification methods 2 and 3
scribed in Sec. II, we indicate the computation ofH* „C̃m(R

n),Z… in the following subsections.

A. A construction by Arnol’d

Following Arnol’d4 we consider the map

pm
n :C̃m~Rn!→C̃m21~R

n!,

which projects onto the firstm21 points of the ordered configuration. ThusC̃m(R
n) turns into a

fibered manifold with fiber Fm21(R
n):5Rn\$x1 ,...,xm21% over the point (x1 ,...,xm21)

PC̃m21(R
n). We retractFm(R

n) via the map

rm
n :Fm~Rn!→∨

i51

m

Sn21

to the one-point union ofm spheres of dimensionn21, and the induced map

~rm
n !* :H* S ∨

i51

m

Sn21,ZD→H* „Fm~Rn!,Z…

of the cohomology rings provides an isomorphism between the singular cohomology ofFm(R
n)

and the singular cohomology of its retract:

HpS ∨
i51

m

Sn21,ZD 5 %

i51

m

Hp~Sn21,Z!5H Z, p50,
Zm, p5n21,
0, otherwise.

~4!

From now on we exclude the casen52, which has already been discussed by Arnol’d.
Let V 5$Vi , iPI % be an open covering ofC̃m21(R

n) and consider the Cˇ ech-singular double
complex

Km
n :5C~~pm

n !21~V !,S* „Fm21~R
n!…!.

For n>3, C̃m(R
n) is simply connected andH* „Fm(R

n),Z… is a finitely generated freeZ-module.
Leray’s theorem for the singular cohomology with coefficients in the commutative ringZ applies
and theE2-term starting the Leray–Serre spectral sequence takes the form
J. Math. Phys., Vol. 38, No. 8, August 1997
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E2
p,q
„C̃m~Rn!…5Hp

„C̃m21~R
n!,Z…^Hq

„Fm21~R
n!,Z….

In the following subsections we treat the first steps of our iterationm21→m.

B. The case m53

Using the singular cohomology

Hp
„C̃2~R

n!,Z…5Hp~Sn21,Z!5H Z, p50,
Z, p5n21,
0, otherwise,

in the last but one row and~4! in the second column of Table II we obtainE2
p,q
„C̃3(R

n)…. Table
II shows that the differential operator

d2 :E2
p,q→E2

p12,q21

never connects two nonzero elements ofE2
p,q and we have

E3
p,q :5

ker~d2 :E2
p,q→E2

p12,q21!

im~d2 :E2
p22,q11→E2

p,q!
5E2

p,q .

The same argument holds for the computation of the elements (Er
p,q ,dr) in this spectral sequenc

independent of the action of

dr :Er
p,q→Er

p1r ,q2r11

on Er
p,q . Thus the sequence becomes stationary with

E2
p,q5E`

p,q

and converges to the total cohomologyHD* (K3
n) of the Čech-singular double complexK3

n , that is

GHD
l ~K3

n!5 %

p1q5 l
E`
p,q ,

whereGHD
l (K3

n) is the associated graded complex ofHD* (K3
n) with respect to some filtration o

HD* (K3
n). The fact thatGHD* (K3

n) has the formGHD
l (K3

n)5Zdim „GHD
l (K3

n)… solves the extension
problem. We have

HD* ~K3
n!5GHD* ~K3

n!

TABLE II. E2
p,q
„C̃3(R

n)….

q Hq
„F2(R

n),Z… E2
p,q
„C̃3(R

n)…

A
n21 Z2 Z2 Z2

A
0 Z Z Z

Z Z Hp
„C̃2(R

n),Z…
0 ... n21 p
J. Math. Phys., Vol. 38, No. 8, August 1997
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and the generalized Mayer–Vietoris principle states that there is an isomorphism be
HD* (K3

n) and the singular cohomologyH* „C̃3(R
n),Z….

Summarizing our results so far, we have

Hl
„C̃3~R

n!,Z…5 %

p1q5 l
E2
p,q5H Z, l50,

Z3, l5n21,
Z2, l52~n21!,
0, otherwise.

~5!

C. The case m54

We consider the fibration

p4
n :C̃4~R

n!→C̃3~R
n!

and repeat the reasoning from above. TheE2
p,q-term for the Čech-singular double complexK4

n has
the form

E2
p,q
„C̃4~R

n!…5Hp
„C̃3~R

n!,Z…^Hq
„F3~R

n!,Z….

With ~4! and ~5! we get, analogous to Table II, Table III forE2
p,q
„C̃4(R

n)…. Using similar argu-
ments as before this yields

Hl
„C̃4~R

n!,Z…55
Z, l50,
Z6, l5n21,
Z11, l52~n21!,
Z6, l53~n21!,
0, otherwise.

D. The case m>5

Finally one can prove by induction that the Poincare´ polynomial

P„C̃m~Rn!,t…:5 (
i50

dim„C̃m~Rn!…

dim~Hi
„C̃m~Rn!,Z…!t i

takes the form

P„C̃m~Rn!,t…5~11tn21!~112tn21!•••„11~m21!tn21
…

TABLE III. E2
p,q
„C̃4(R

n)….

q Hq
„F3(R

n),Z… E2
p,q
„C̃4(R

n)…

A
n21 Z3 Z3 Z9 Z6

A
0 Z Z Z3 Z2

Z Z3 Z2 Hp
„C̃3(R

n),Z…
0 ... n21 ... 2(n21) p
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511~2
m!tn211•••1~m21!! t ~m21!~n21!.

This yields

Hp~C̃m~Rn!,Z!55
Z, p50,

Z~2
m

!, p51~n21!,
A
Z~m21!! , p5~m21!~n21!,
0, otherwise.

Using the results of this section we characterize line bundles,~resp. vector bundles in the stab
range!, over C̃m(R

n),m,n>3, in Sec. V~resp. VI!.

V. LINE BUNDLES OVER C̃m(R
n)

Applying method 2 from Sec. II we classify complex line bundlesVect1„C̃m(R
n)… using

H2
„C̃m(R

n),Z…. Our computation from the previous section yields

Vect1„C̃m~Rn!…5H2
„C̃m~Rn!,Z…5H Z~2

m
!, n53,

0, n>4.

Again, as already emphasized in the two-particle case~see Sec. III!, n53 is exceptional due to the
existence of nontrivial line bundles onC̃m(R

n). In this case equivalence classes of line bundles
labeled by (2

m) integers (q1 ,...,q(
2
m)), qiPZ. We interpret this result:

~i! Nonisomorphic line bundles give unitarily inequivalent quantized systems in the sen
Borel quantization.2

~ii ! A complex line bundle overC̃m(R
3) admits a flat connection, if and only if it belongs to th

isomorphism class characterized byqi50, i51,...,(2
m), i.e., the topological structure o

such a bundle provides obstructions for the introduction of a connection on the bund
~iii ! The integersqi are interpreted as interaction parameters, which label topological pote

for a two-particle interaction, suggested by the fact that (2
m) is the number of pairs in a se

of m elements.
~iv! The choice of a particular connection on a bundle needs some additional~physically mo-

tivated! assumption. In the investigation of Dirac’s magnetic monopole bundle the s
question occurs and one demands that the physical connection has to fulfill the Ma
equation. Also in the treatment of the geometrical phase as the holonomy of a conn
defined on the principal-U(1)-bundle,

U~1!→H→PH,
whereH andPH denote the Hilbert space and the projective Hilbert space respecti
there exists anatural choice of a connection, induced by the inner product ofH.

VI. VECTOR BUNDLES OVER C̃m(R
n)

The classification ofk(>2)-dimensional vector bundles using the reduced Grothend
groupK̃ „C̃m(R

n)… ~method 3 in Sec. II! works in the stable range only. For the computation
K̃ „C̃m(R

n)… we use the fact thatC̃m(R
n) has the homotopy type of a finite CW-complex, and

result of Atiyah and Hirzebruch~Ref. 11, see also Ref. 12!. Let us consider the casen53: because
C̃m(R

3) has only even-dimensional free cohomology groups, there are no torsion eleme
K „C̃m(R

3)… and we can identifyK̃ „C̃m(R
3)… and% i51

` H2i
„C̃m(R

3),Z… additively. Note that the
ring structures are different. From our computation ofH* „C̃m(R

3),Z… we conclude
J. Math. Phys., Vol. 38, No. 8, August 1997
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Vectk„C̃3~R
3!…5K̃ „C̃3~R

3!…5H2
„C̃3~R

3!,Z…%H4
„C̃3~R

3!,Z…5Z3%Z2,

Vectk„C̃4~R
3!…5K̃ „C̃4~R

3!…5H2
„C̃4~R

3!,Z…%H4
„C̃4~R

3!,Z…%H6
„C̃4~R

3!,Z…5Z6%Z11%Z6.

Whereas the interpretation ofH2
„C̃m(R

3),Z… is given in Sec. V as a parameter set of a two-parti
interaction, the physical interpretation ofH2i

„C̃m(R
3),Z…, i>2, remains unclear. However, on

can say that these groups give a contribution only in the case ofk(>2)-dimensional vector
bundles over a configuration space of at least three particles.

VII. SUMMARY AND OUTLOOK

We gave a classification ofk-dimensional complex vector bundles over configuration spa
C̃m(R

n) of nonidenticalpointlike particles. This classification is a first step towards a quan
mechanical description of a many-particle system, with the constraint that two pointlike par
cannot be located at the same point in space–time. The methods we used for the class
depend on three parameters:

~i! n is the dimension of the physical spaceRn, in which the particles are located. Th
preferred case, at least for physical reasons,n53 is the most interesting one, also from th
mathematical point of view.

~ii ! m is the number of particles.
~iii ! k is the rank of the vector bundle, i.e., the dimension of the fiber, and constitutes the s

for internal degrees of freedom, for example, spin, isospin, colour, etc.

In order to avoid the influence of a non-trivial fundamental group, we excluded the can
52, which has to be treated separately. Nevertheless, topological effects are present due
constraint mentioned above.

We summarize our results:
For the two-particle case our classification is reduced to the computation of homotopy g

of unitary groups. An exhaustive classification for the generalm-particle case is an open problem
because vector bundles of rankk with

1,k,stable range

are not covered by the methods we used.
We have shown that topological structures appear, which are familiar in several ph

theories~Dirac’s magnetic monopole, Yang–Mills theory, geometrical phase13!. Methods and
results available in these theories might be useful for further investigations of physic
C̃m(R

n).
For a quantization onC̃m(R

n) a connection on the bundle is necessary. This leads
momentum operator acting as a differential operator on bundle sections, and we will o
Schrödinger equations by postulating a generalized first Ehrenfest relation.14 The spectrum of the
corresponding Hamiltonians can be compared with experimental data.

For a classification of vector bundles over configuration spacesCm(R
n) of identical particles

F. J. Bloore15 proved

Vect1„C3~R
n!…5H2

„C3~R
n!,Z…5Z2 ~n>3!.

For these configuration spaces one can define statistical properties and investigate a rela
between the bundle structure, a particular choice of a connection on it, and the statistical be
of the system. Again, Borel quantization has to be accomplished. Concerning configuration
J. Math. Phys., Vol. 38, No. 8, August 1997
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of nonidentical and identical particles located on a nontrivial manifold, for example, particle
a circle, a sphere, a torus, etc., only sporadic results exist~see Ref. 15 and the references there
and also Ref. 16!.
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Nöther formalism for conserved quantities in classical
gauge field theories. II. The arbitrary Bosonic matter case

L. Fatibene, M. Ferraris, and M. Francaviglia
Istituto di Fisica Matematica ‘‘J.-L. Lagrange,’’ Universita` di Torino,
Via Carlo Alberto 10, 10123 Torino, Italy

~Received 17 April 1996; accepted for publication 14 April 1997!

A formalism suited to deal with Bosonic matter represented by tensor densities
coupled with a gauge field and gravitational field is developed. No¨ther conserved
currents and superpotentials are found and the relation between the canonical and
the Hilbert stress tensors are investigated in the general case. The particular cases
of gauge theories with scalar matter fields and of purely geometrical theories with
arbitrary matter are recovered from this general formalism; as an example of ap-
plication we consider scalar densities and the vector matter fields. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!04507-6#

I. INTRODUCTION

In spite of the well known fact that conserved quantities play an important role in phy
there is no general agreement on how to select among several proposals available in field t
the physically relevant ones. In fact there are many definitions suited for particular situations
though they are in general different. Among the methods used to approach this proble
Poincare´–Cartan formalism is particularly suited to deal with the general situation in a way w
is as unrestricted as possible. This method relies on the existence of the so-called Poincare´–Cartan
form in every field theory. Both field equations and symmetries can be characterized in ter
this form which moreover can be shown to be unique for first and second order field the
which cover all cases of physical interest. Using this formalism it is then easy to investiga
relations between symmetries and conserved currents on the basis of No¨ther’s theorem. For these
reasons we believe that the Poincare´–Cartan formalism may lead to an effective solution of t
problem of conserved quantities. Hereafter, we shall just use general results about Poi´–
Cartan formalism; for a complete reference we refer the reader to Refs. 1 and 2 and refe
quoted therein.

In a previous paper of ours2 we have dealt with gravitational theories in interaction with
gauge field coupled with a scalar matter field. Cases of gravitational and ‘purely geom
theories have been considered long before~see, e.g., Refs. 1, 3, and 4 and references qu
therein!. We generalize here our framework to cover arbitrary Bosonic matter fields, i.e.,
represented by tensor densities of any rank and weight. This is not a trivial extension
previous cases, because of two different reasons. First, we stress that in this enlarged fram
we obtain some results which are qualitatively different with respect to the scalar case a
investigated~namely, in the general case, the canonical tensor and the Hilbert tensor d
coincide even on shell, while this holds true for scalar matter!. On the other hand, it is made clea
here that investigations about conservation laws in a rather wide class of field theories~which
include both purely geometrical theories and gauge theories as well! can be actually formalized in
the framework of gauge-natural fiber bundles. We recall that a bundle is agauge-natural bundle
if it is associated to a principal bundleLs(M )3MJ

rP (s>r ), whereLs(M ) is thes-frame bundle
over the baseM , (P,M ,p,G) is a principal bundle andJrP is prolongation of it tor -order jets.
For a complete reference about gauge-natural bundles see Ref. 5.

This paper leaves out on purpose the case of spinorial matter. This has in fact to be i
gated separately, since it entails the introduction of rather different mathematical tools, esp
0022-2488/97/38(8)/3953/15/$10.00
3953J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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in connection with the problem of extending those results which require the Lie dragging of
along vector fields in order to generate conserved currents. Essentially, this is due to the fa
spinor bundles are notnatural in the sense of Ref. 6. A possible extension of our formalism in
direction is currently under investigation and will form the subject of a forthcoming paper, w
we hope, will lead to a further step towards a general treatment of conservation laws via Poin´–
Cartan formalism in supersymmetric field theories.

II. CONFIGURATION BUNDLE AND GAUGE TRANSFORMATIONS

In this section we shall define the configuration bundle of a field theory describing a m
field represented by a tensor density in interaction with a gauge field and the gravitationa
We shall use the standard notation introduced in Ref. 2. We recall here briefly the main d
tions.

Let M be a manifold~of dimensionn!, which describes spacetime, and let (P,M ,p,G) be a
principal fiber bundle with structure groupG, which encodes the gauge structure of the theor

The gravitational field is described by a Lorentzian metricg onM , i.e., a section of the tenso
bundle Lor(M ). The~Lorentzian! metricg is used throughout the paper to raise and lower indi
of tensorial objects. Using a standard notation all moved indices will be replaced by a do
have a canonical way to represent Aut(P) on the bundle Lor(M ). Let us in fact take an automor
phismfPAut(P) and let f :M→M be the diffeomorphism uniquely induced byf onM . Since
Lor(M ) is a tensor bundle we can define the push-forward morphismf * :Lor(M )→Lor(M ) by
setting

f * ~g!5~T 2
0 f !~g!. ~1!

The gauge field is by definition a principal connection onP, which can be identified with a
section of J1P/G ~where the canonical right action ofG on J1P is used!, i.e., a map
M→J1P/G defined as

x°@p,v#,

and @ # denotes the equivalence class inJ1P/G wherev:Tp(p)M→TpP is such thatTpp+v
5 idTp(p)M

. We can use the functoriality of jet extensions to lift the automorphismfPAut(P) to
J1P. It is easy to verify that the morphism obtained in this way is compatible with the cano
right action onJ1P and therefore it uniquely induces an automorphism@J1f# in J1P/G, which
has the following form:

@J1f#@p,v#5@f~p!,Tpf+v+~Tp~p! f !21#, ~2!

whereT denotes the tangent map.
The definition of the configuration bundle for matter needs some further detail. LetV and

D be two vector spaces and let us consider two representations

r:G3V→V, s:GL~n,R!3D→D ~3!

together with their tensor productl:5r ^ s:G3GL(n,R)3W→W onW5V^D defined by

l~g,a,v^ t !5„r~g,v ! ^ s~a,t !…. ~4!

The principal fiber bundleP3ML(M ), where L(M ) is the frame bundle ofM , has G
3GL(n,R) as structure group, so that we can consider the associated vector bundP
3ML(M ))3lW, whose sections represent the matter fields. We are now able to defin
morphism associated tofPAut(P) in the following way:
J. Math. Phys., Vol. 38, No. 8, August 1997
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fl :„P3
M
L~M !…3lW→„P3

M
L~M !…3lW:@p,ei ,v^ t#°@f~p!,L~ f !~ei !,v^ t#, ~5!

where ei is a local basis inTM, L( f ) is the natural lift of f to L(M ) and @ # denotes the
equivalence class with respect to the right action ofG3GL(n,R) on „P3ML(M )…3lW. It is
easy to check thatfl is well defined, since it does not depend on the particular element chos
the equivalence class. When we chooses to be the tensor density representation of kind (r ,s) and
weightk, a section in„P3ML(M )…3lW will be said to describe a tensor density matter field
kind (r ,s) and weightk.

The vector bundle„P3ML(M )…3lW is a gauge-natural bundle~in the sense of Ref. 5!. In
Sec. VIII we shall consider explicitly some examples; in particular, we shall see that, if we ch
s to be the scalar representation, we obtain the theory already described in Ref. 2 for scala
while choosingG5$e% we obtain a purely geometrical theory as described in Ref. 1.

The total configuration bundle is thence the following:

B5Lor~M !3
M

~J1P/G!3
M

~„P3
M
L~M !…3lW!. ~6!

As explained above, we are able to associate to each automorphismfPAut(P) an automorphism
of B, which for simplicity will be still indicated byfPAut(B), which is called ageneralized
gauge transformation.

We remark that standard gauge transformations coincide with those generalized gauge
formations which can be calledvertical since transform fibers into themselves, while the nonv
tical ones mix, in a nontrivial way, diffeomorfisms ofM with vertical gauge transformations.

For our later convenience let us write the generalized gauge transformations in local c
nates. Choosing a trivialization ofP in a coordinate neighborhoodU,M , we have trivializations
of Lor(M ), J1P/G, L(M ) and „P3ML(M )…3lW on the same open setU and we write
(]m ,]A) for the natural basis onTP. Let us take (xm,gmn), with gmn5gnm , as local coordinates
in Lor(M ) and (xm,vm

A) as localcoordinatesin J1P/G, so thatg5gmn dx
m

^dxnPLor(M ) and
@ t21(x,e),dxm

^ (]m1vm
A]A)#PJ1P/G, wheret:p21(U)→U3G is the trivialization chosen on

P. Finally, we can choose (xm,wia) as local coordinates in„P3ML(M )…3lW, so that
@ t21(x,e),]m ,w

iaEi ^Fa#P„P3ML(M )…3lW, being]m the natural basis ofTxU andEi ^Fa a
basis ofW.

Let us take anyfPAut(P), which in this trivialization can be written locally as follows:

f:P→P:~xm,gA!°~ f m~x!,„w~x!•g!A… ~7!

with w:U→G. The associated generalized gauge transformation has, in local coordinate
following form:

H ~x8!m5 f m~x!

~g8!mn5grsJ̄m
r J̄n

s

~v8!m
A5R̄B

A~w!„LC
B~w!vr

C1]rwB
…J̄m

r

~w8! ia5„l~w,J!~w!…ia5r j
i ~w!sb

a~J!wjb

, ~8!

where we set

Jm
r :5]m f

r, J̄m
r :5~J21!m

r ,

RB
A~c!:5

]pA

]wB ~w,c!uw5e , R̄B
A~c!:5~R21!B

A~c!,
J. Math. Phys., Vol. 38, No. 8, August 1997
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LB
A~w!:5

]pA

]cB ~w,c!uc5e , L̄B
A~w!:5~L21!B

A~w!,

beingp denotes local expression of the group product.
We are now able to use these coordinates to give local expression of vector fields

natural basis (]m ,]
mn,]A

m ,] ia ,]
mn,r,]A

m,n ,] ia
m ) of J1B. In particular, we can write the infinitesima

generator of a one-parameter subgroup of generalized gauge transformations. Letf t be a one-
parameter subgroup of automorphisms ofP and letj5jm(x)]m1 j̃A(x,g)]A be its infinitesimal
generator, i.e.,

H jm~x!:5dt f t
m~x!u t50 jA~x!:5dtw t

A~x!u t50

j̃A~x,g!:5RB
A~g!jB~x!

. ~9!

We can use Eqs.~8! to lift ( w t) to a family of generalized gauge transformations inB. The
ensuing one-parameter subgroup has the following infinitesimal generator:

J5Jm]m1Jmn]mn1Jm
A]A

m1J ia] ia ~10!

having set

H Jm5dt~x8!mu t505jm

Jmn5dt~g8!mnu t5052grn]mjr2grm]njr

Jm
A5dt~v8!m

Au t505]mjA2]mjrvr
A1cAEBj

Evm
B

J ia5dt~w8! iau t505 r̄ jA
i wjajA1s̄bm

anwib]njm

, ~11!

wherecAEB5L̄C
A(g)„LE

D(g)]DLB
C(g)2LB

D(g)]DLE
C(g)… are the structure constants of the Lie a

gebraG of G ~see Ref. 2! which do not depend ongPG. We have also sets̄bm
an 5]m

n sb
a(1) and

r̄ jA
i 5]Ar j

i (e) and used the following abbreviations:

]A5
]

]wA , ]m5
]

]xm , ]r
s5

]

]Js
r .

We finally remark that the vector fields

lA~g!:5LA
B~g!]B

form a basis for vertical left invariant vector fields onP while

rA~g!:5RA
B~g!]B

form a local basis for vertical right invariant vector fields onP.

III. THE COVARIANT DERIVATIVE OF MATTER FIELDS

Let (xm,wia,wm
ia) be local natural coordinates inJ1(„P3ML(M )…3lW). The transformation

law of wm
ia with respect to generalized gauge transformations is

~w8!m
ia5„r j

i ~w!sb
a~J!wn

jb1]Ar j
i ~w!sb

a~J!wjb]nwA1r j
i ~w!]r

ssb
a~J!wjbJsn

r
…J̄m

n . ~12!

By simple calculations, which involve formulas collected in the Appendix, we can recas
generalized gauge transformation in the following form:

~V8!m
ia5r j

i ~w!sb
a~J!Vn

jbJ̄m
n , ~13!
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where we have set

Vm
ia5wm

ia2 r̄ jB
i vm

Bwja1s̄br
alGlm

r wib. ~14!

It is easy to verify thatV5Vm
ia dxm

^Ei ^Fa is the ~formal! covariant derivative of the matte
field with respect of the connection induced on„P3ML(M )…3lW by the following principal
connection onP3ML(M ):

u5dxm
^ ~]m1vm

ARA
B~g!]B2Grm

s ei
r]s

i !, ~15!

where (xm,ei
r) arenatural fibered coordinates onL(M ).

It can be easily shown that also (xm,wia,Vm
ia) are local coordinates in the bundleJ1(„P

3ML(M )…3lW) and that, as we shall see, in these coordinates the Lagrangian has a simple
expression.

We can thus use the following coordinates:

~xm,gmn ,vm
A ,wia,Gmn

l ,Fmn
A ,v~mn!

A ,Vm
ia! ~16!

as local coordinates inJ1B, wherev (mn)
A 5vm,n

A 1vn,m
A is the symmetric part of the derivative o

vm
A andFmn

A is the curvature ofvm
A , defined by

Fmn
A 5vm,n

A 2vn,m
A 1cABCvm

Bvn
C . ~17!

The curvatureFmn
A transforms under generalized gauge transformation according to the a

representation, i.e.,

~F8!mn
A 5AdC

A~w!Frs
C J̄m

r J̄n
s , ~18!

where we have set AdC
A(w):5R̄B

A(w)LC
B(w)[LB

A(w)R̄C
B(w).

IV. THE LAGRANGIAN AND THE MINIMAL COUPLING PRINCIPLE

As prescribed by general relativity, the gravitational field is described by a Lagrangia
pending on the second derivatives of the metric tensor and we assume that all fields are firs
objects. Accordingly, we choose a Lagrangian of the form

L tot :B1→An
0~M !,

where we set

B15J2 Lor~M !3
M
J1S ~J1P/G!3

M
~„P3

M
L~M !…3lW! D .

As in Refs. 2 and 1, following the requirement ofminimal couplingwe choose the tota
Lagrangian as follows:

L tot5Lg1LMG5L ds ~19!

whereLg : J
2 Lor(M )→An

0(M ) is the gravitational Lagrangian~e.g., the Hilbert Lagrangian! and
LMG is the Lagrangian of the gauge and matter fields, which is assumed to be of the first or
all variables, i.e., it can be projected as follows:

LMG :J
1B→An

0~M !. ~20!

We require now that any generalized gauge transformation is a symmetry for this Lagrangia
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An
0f +L tot+s15L tot+f1+s1 ;fPAut~P!, ~21!

wheref is meant as a generalized gauge transformation onB, f1 is its prolongation onB1 and
s1 is the prolongation toB1 of a sections. As in Ref. 2 we first recast the matter Lagrangian in t
following form:

LMG5LMG* ~gmn ,w
ia,Fmn

A ,Vm
ia!udetgu1/2ds5:V * ~gmn ,w

ia,Fmn
A ,Vm

ia!ds. ~22!

We stress that every gauge-covariant Lagrangian must have the form~22! and it must verify
the following identity for each generalized gauge transformation:

LMG* „~g8!mn ,~w8! ia,~F8!mn
A ,~V8!m

ia
…5LMG* ~gmn ,w

ia,Fmn
A ,Vm

ia!. ~23!

In view of later calculations, we notice that, using the natural coordinates inJ1B, we can
rewrite the LagrangianLMG as follows:

LMG5LMG~gmn ,vm
A ,wia,gmn,r ,vm,n

A ,wm
ia!udetgu1/2ds5V ~gmn ,vm

A ,wia,gmn,r ,vm,n
A ,wm

ia!ds.
~24!

V. THE GAUGE CURRENT

Let us now consider a one-parameter subgroup of generalized gauge transformations, t
with its infinitesimal generator given by Eqs.~10! and ~11!. As discussed in Refs. 2 and 1, th
Nöther theorem ensures that for any sections of B we have two forms onM

E~L tot ,J,s!5s1* @ f l~L tot!~LJs!2jlL#dsl ,

W~L tot ,J,s!52s1* e~L tot!~LJs! ~25!

such that the following holds:

dE~L tot ,J,s!5W~L tot,J,s!, ~26!

wheres1 is the prolongation ofs to B1 , f (L tot)5fl(Ltot)dsl is the Poincare´–Cartan morphism,
e(L tot) is the Euler–Lagrange morphism andLJs5Ts+j2J+s is called theLie derivative of the
section s.

Equation~26! implies that, ifs is a critical section,E(L tot ,J,s) is a closed (n21)-form on
M , being in this caseW(L tot ,J,s)50.

A generalized gauge transformation is called apure gauge transformationif it is vertical, i.e.,
if f5 idM . Let us thence consider a one-parameter subgroup of pure gauge transform
together with its infinitesimal generatorJV , which is obtained by takingjm50 into Eq. ~11!.
Specializing accordingly also Eqs.~25! and ~26!, for pure gauge transformations we obtain t
following:

LJV
s52JV+s52“mjA]A

m2 r̄ jA
i wjajA] ia , ~27a!

Gtot5E~L tot ,JV ,s!5@TA
ljA1TA

lm
“mjA#dsl , ~27b!

TA
l52] ia

l
V r̄ jA

i wja, ~27c!

TA
lm52]A

m,l
V , ~27d!

W~L tot ,J,s!5WAjA1WA
m
“mjA, ~27e!
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¬¬¬¬¬¬¬¬¬¬
WA5eia~L tot!r̄ jA
i wja5@] iaV 2dl] ia

l
V #r̄ jA

i wja, ~27f!

WA
m5eA

m~L tot!5@]A
m
V 2dl]A

m,l
V #, ~27g!

where“mjA5]mjA1cABCjBvm
C is the ~formal! gauge-covariant derivative with respect to t

connectionv induced by the connection~15! chosen onP3ML(M ). With these definitions, the
conservation condition~26! takes the following form:

“lTA
l1 1

2TB
mlcBACFlm

C 5WA , ~28a!

TA
m1“lTA

lm5WA
m , ~28b!

TA
~lm!50, ~28c!

from which theBianchi identityfollows:

WA2“mWA
m50. ~29!

We remark that, because of Eq.~27g!, the field equations forvm
A can be rewritten in the

following form:

TA
m1“lTA

lm50. ~30!

Setting then

~G̃tot!
l:5WA

ljA, ~Vtot!
lm:5TA

@lm#jA ~31!

it follows that

Gtot5@~G̃tot!
l1dm~Vtot!

lm#dsl . ~32!

The densityG̃tot is called thereduced (total) gauge currentand it vanishes on shell, while
Vtot is called the(total) gauge superpotential. Thus Eq.~32! tells us thatGtot5dVtot is an exact
form on shell. Comparing now the above results with what was already known about scalar
fields ~Ref. 2! we can see that there is no significant difference about gauge currents. Howev
we shall see below, differences arise when dealing with canonical currents~i.e., when the inter-
action with gravity is fully taken into account!.

VI. THE CANONICAL CURRENT

Let us consider the connectionv on P which describes the gauge field. It is meaningful
consider a vectorfieldjH on P which is horizontal with respect tov, i.e., in the formjH
5 jm(]m 1 vm

ARA
B(g)]B). Let us make use of Eqs.~10! and~11! to associate tojH an infinitesimal

generator of generalized gauge transformationsJH , whose expression can be thence obtained
taking jA5vm

Ajm in Eq. ~11!. Such aJH will be called ahorizontal generator of generalize
gauge transformations. Specializing Eqs.~25! and~26! by means of the generatorJH and setting
“mn[“ (m“n) we obtain

LJH
s5Ts+j2JH+s52“mjsgsn]mn1Fms

A js]A
m1~jsVs

ia2s̄bm
anwib

“njm!] ia , ~33a!

Etot5E~L tot ,JH ,s!5@Tr
ljr1Tr

lm
“mjr1Tr

lmn
“mnjr#dsl , ~33b!

Wtot5W~L tot ,JH ,s!5Wrjr1Wr
m
“mjr, ~33c!
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Wr52eA
m~L !Fmr

A 2eia~L !Vr
ia , ~33d!

Wr
n522emn~L !gmr1eia~L !s̄br

anwib. ~33e!

Each of the quantities defined by Eq.~33! receives a contribution both fromLg and from
LMG and it splits into two terms. Accordingly, we have

Tr
l5~Tg!r

l1~TMG!r
l , Wr5~Wg!r1~WMG!r ,

Tr
ln5~Tg!r

ln1~TMG!r
ln , Wr

m5~Wg!r
m1~WMG!r

m ,

Tr
lnm5~Tg!r

lnm ,

Eg5@~Tg!r
ljr1~Tg!r

lm
“mjr1~Tg!r

lmn
“mnjr#dsl ,

EMG5@~TMG!r
ljr1~TMG!r

lm
“mjr#dsl .

Since both LagrangiansLg andLMG are gauge-covariant, we have, as usual, the conserva
laws for both currentsEg andEMG

5
“m~Tg!r

m1 1
2~Tg!t

@lm#R
•rlm
t 1 1

3~Tg!t
lmn

“mR•rln
t 5~Wg!r

~Tg!r
m1“l~Tg!r

lm1~Tg!t
lnmR

•rln
t 2 2

3~Tg!r
lntR

•tln
m 5~Wg!r

m

~Tg!r
~mn!1“l~Tg!r

lmn50

~Tg!r
~lmn!50

~34a!

and

H “m~TMG!r
m1 1

2~TMG!t
@lm#R

•rlm
t 5~WMG!r

~TMG!r
m1“l~TMG!r

lm5~WMG!r
m

~TMG!r
~mn!50

. ~34b!

The Bianchi identities forLg andLMG are as usual

~Wg!r2“m~Wg!r
m50, ~WMG!r2“m~WMG!r

m50. ~35!

We shall now concentrate our attention onEMG . We can define the matter current as follow

Emat5@]A
m,l
V ~LJs!m

A1] ia
l
V ~LJs! ia2V jl#dsl5@~Tmat!r

ljr1~Tmat!r
lm
“mjr#ds, ~36!

where

~Tmat!r
l52

]V *

]Fml
A Fmr

A 1
]V *

]Vl
ia Vr

ia2V * dr
l , ~37a!

~Tmat!r
lm52

]V *

]Vl
ia s̄br

amwib5:2Alm•
r . ~37b!

We remark that the following holds:

Etot5Eg1@]mn,lV ~LJs!mn#dsl1Emat

so that the whole ofEtot is conserved, whileEmat is not in general conserved alone.
J. Math. Phys., Vol. 38, No. 8, August 1997
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In analogy to what we have already done in Ref. 2 for the scalar matter fields we can
that alsoEMG admits a superpotential. Letting in fact

~ẼMG!l:5~WMG!r
ljr, ~UMG!lm:5~TMG!r

@lm#jr, ~38!

we get the relation

EMG5@~ẼMG!l1dm~UMG!lm#dsl , ~39!

whereẼMG is called now thereduced (gauge and matter) energy currentandUMG is calledthe
(gauge and matter) energy superpotential. For the new quantitiesẼMG andUMG all considerations
already made about the gauge current still hold. Finally, we remark that the same conside
hold true for the gravitational conserved currentEg and for the total conserved currentEtot5Eg
1EMG .

VII. THE HILBERT STRESS TENSOR

Let us now consider a functionF on the bundleJ1B, a sections of the the configuration

bundleB→
p

M and a vertical vector fieldX on B, together with its flowf t . According to the
calculus of variations, we define thevariation of F with respect to Xands as follows:

dF:5dsF~X!:5dt@~J
1f t!* ~F+ j 1s!# t50 , ~40!

whereJ1f t denotes the lift of the flowf t to J
1B and j 1s is the prolongation of the sections to

J1B.
Writing X locally asX5dgmn]mn1dvm

A]A
m1dwia] ia , we define the following:

dVs
ia :5dsdwia2 r̄ jA

i dvm
Awja2 r̄ jA

i vm
Adwja1s̄br

aldGls
r wib1s̄br

alGls
r dwib

5“sdwia2 r̄ jA
i dvm

Awja1s̄br
aldGls

r wib,

dFmn
A :5dndvm

A2dmdvn
A1cABCdvm

Bvn
C1cABCvm

Bdvn
C5“ndvm

A2“mdvn
A ,

dGls
r :52grtGls

u dgtu1 1
2g

ru~2dudgls1dldgsu1dsdgul!

5 1
2g

ru~2“udgls1“ldgsu1“sdgul! ~41!

and we notice that, if we setLMG5LMG* udetgu1/2ds, thenLMG* is a function onJ1B. We find
then, locally, the following expression for the variation of the Lagrangian:

dLMG5F ~]mnLMG* 1 1
2LMG* gmn!udetgu1/2dgmn1] iaV * dwia1

]V *

]Fmn
A dFmn

A 1
]V *

]Vs
ia dVs

iaGds
5F2 1

2H
mndgmn1eiadwia1eA

mdvm
A1dsS ]V *

]Vs
ia dwia12

]V *

]Fms
A dvm

A2
1

2
HmnsdgmnD Gds,

~42!

where we have set

Amns:5
]V *

]Vm
ia s̄br

anwibgrs,

Hmns:5A~mn!s2A~nusum!2As~mn!,
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Hmn:522~]mnL MG* 1 1
2L MG* gmn!udetgu1/22dsH

mns12Asl(mGls
n) 522]mnV *2“sH

mns

~43!

and we have taken into account the fact thatHmns is a tensor density of weight 1. By definition
eA

m andeia are the components of the Euler–Lagrange morphism andHmn is the Hilbert stress
tensor.

The following identity can be proven by a direct calculation:

~Tmat!r
~lm!5Hr

•~lm! . ~44!

As we remarked above, the LagrangianLMG5LMG* (gmn ,w
ia,Fmn

A ,Vm
ia)udetgu1/2ds has to satisfy

the identity~23!, from which we infer the following:

22
]V *

]gmn
gtn1V * dt

m22
]V *

]Fmn
A Ftn

A 2
]V *

]Vm
ia Vt

ia1
]V *

]wia s̄bt
amwib1

]V *

]Vr
ia s̄bt

amVr
ib50,

~45a!

]V *

]Fmn
A cACBFmn

B 1
]V *

]wia r̄ jC
i wja1

]V *

]Vr
ia r̄ jC

i Vr
ja50. ~45b!

Using the formulae listed in the Appendix, we can recast Eq.~45a! in the following form:

2H t
m•1~Tmat!t

m2“sH t
m•s2eias̄bt

amwib1“r~Tmat!t
rm50. ~46!

Equation~46! gives the relation between the matter canonical tensor and the Hilbert s
tensor. On shell we have

H t
m•5~Tmat!t

m1“sU t
m•s , ~47!

whereUt
m•s52Ht

m•s1(Tmat)t
sm does not vanish in general, as it will be discussed in the n

section on the basis of a number of examples.
Since the Hilbert stress tensor enters Einstein equations in the formRmn2 1

2Rg
mn5kHmn it

can be interpreted as the object whichcontrolsgravitational sources. Thus Eq.~46! suggests that
there can be a contribution to gravitational sources other than the usual mass terms, wh
controlled by the canonical tensor (Tmat)t

m ~depending on the type of matter under consideratio!.
This possibility is now under investigation~for spinor matter! and it will be addressed in forth
coming papers.

VIII. EXAMPLES AND APPLICATIONS

A. The case of scalar matter fields

Let us first specialize our results to the case in whichl is independent onJ, i.e., let us take
sb

a(J)5db
a . In this case the principal bundleL(M ) does not play any role at all, since the role

the associated vector bundle is completely gauged away by taking the quotient with respec
right action ofG3GL(n,R). In fact, the following holds:

;ai
m , @p,ai

m]m ,v^ t#5@p,]m ,v^ s~a!~ t !#5@p,]m ,v^ t#

so thatF:„P3ML(M )…3lW→P3rW given by

@p,]m ,v^ t#°@p,v^ t#
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is a well defined isomorphism of vector bundles. Moreover, specializing accordingly als
covariant derivative~14! we find the following:

Vm
ia5wm

ia2 r̄ jB
i vm

Bwja ~48!

which proves thatL(M ) plays no role both in the configuration spaceB and in the Lagrangian.
Under these assumptions nothing changes in the gauge current and Eqs.~27! still hold. As far

as the canonical current is concerned, the explicit form of the canonical tensors~37! simplify as
follows:

~Tmat!r
l52

]V *

]Fml
A Fmr

A 1
]V *

]Vl
ia Vr

ia2V * dr
l ,

~49!

~Tmat!r
lm5:2A r

lm•50

since we have nows̄br
am50.

This implies the following simplifications in the Hilbert stress tensors:

Hmns50, Hmn522]mnV * ~50!

so that the identity~46! becomes:

H n
m•5~Tmat!n

m . ~51!

This reproduces thoroughly the results of our previous paper,2 which just referred to the case o
the scalar matter fields.

B. The purely geometrical case

Let us now assume thatl does not depend on the gauge groupG, i.e., r j
i (w)5d j

i . As we
should expect, in this case the bundleP loses its role and our formalism reproduces what w
already known for the case of the purely geometrical theories.1 We first remark that

;g, @R̃gp,ei ,v^ t#5@p,ei ,r~g!~v ! ^ t#5@p,ei ,v^ t#

so thatF:„P3ML(M )…3lW→L(M )3sW given by

@p,ei ,v^ t#°@ei ,v^ t#

is a well defined vector bundle isomorphism. As far as the covariant derivatives are concern
have

Vm
ia5wm

ia1s̄br
alGlm

r wib5:wm
ia1Zr

ialGlm
r ~52!

which proves that the matter fields are coupled with gauge fields. Taking nowG5$e% we see that
M.P.J1P.J1P/G and there is only one possible value for the gauge connectionv having zero
curvature and corresponding to the absence of the gauge field. Now thatP has lost any role, the
minimal coupling principle requires that the Lagrangian splits as

L tot5Lg1LM ,

whereLg is the gravitational Lagrangian~for example the Hilbert Lagrangian!, while the matter
Lagrangian is locally expressed by
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LM5V * ~gmn ,w
ia,Vm

ia!ds.

The gauge current vanishes identically~i.e., it is zero alsooff shell!, while the canonical tensor
take the following form:

~Tmat!r
l5

]V *

]Vl
ia Vr

ia2V * dr
l ,

~Tmat!r
lm52

]V *

]Vl
ia Zr

iam5:2A r
lm• . ~53!

The relation between the canonical and the Hilbert stress tensor has hence the form

H n
m•5~Tmat!n

m1“sU n
m•s2eiaZn

iam ~54!

which agrees with the formulae contained in Ref. 1.

C. The case of scalar density matter fields

We consider now a simple case which does not reduce to previously known examples,
the case of scalar densities. Let us then take

sb
a~J!5ek ln~ udet Ju!db

a , ~55!

wherek is any real number. We remark thatsb
a(J) is globally well defined because detJ is a well

defined scalar object onM . Taking the following identity into account:

s̄bm
an 5kdb

adm
n , ~56!

the covariant derivative of the matter field has the following expression:

Vm
ia5wm

ia2 r̄ jB
i wjavm

B1kwiaGrm
r . ~57!

The canonical tensors are thence in the form

~Tmat!r
l52

]V *

]Fml
A Fmr

A 1
]V *

]Vl
ia Vr

ia2V * dr
l ,

~58!

~Tmat!r
lm52k

]V *

]Vl
ia wiadr

m5:2Alm•
r

while the Hilbert stress tensors are given by

Hmns:52k
]V *

]Vs
ia wiagmn,

~59!

Hmn:522
]V *

]gmn
1k“sS ]V *

]Vs
ia wiaDgmn.

Accordingly, the relation between the canonical and Hilbert tensors is the following:

H n
m•5Tn

m2keiaw
iadn

m . ~60!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Hence we see that, in this case, the two tensors coincide at least on shell, even if they are d
off shell.

D. The case of vector matter fields

Finally we want to give the explicite expression of the Hilbert tensor in the case of the v
representation

sb
a~J!5Jb

a ~61!

(a,b,51,2,...,n). We will use the following identity:

s̄bm
an 5db

n dm
a . ~62!

The covariant derivative is then

Vm
ia5wm

ia2 r̄ jB
i wjawm

B1wibGbm
a ~63!

so that the canonical tensors are

~Tmat!r
l52

]V *

]Fml
A Fmr

A 1
]V *

]Vl
ia Vr

ia2V * dr
l ,

~64!

~Tmat!r
lm52

]V *

]Vl
ir wim5:2Alm•

r .

Their relation with the Hilbert stress tensor takes then the form

Hmn5Tmn
•

2ei •
nwim2“r~A@uunur#1An@mr#2A@mr#n! ~65!

from which we see that the two tensors do not coincide~either on shell! as expected.

X. CONCLUSIONS AND PERSPECTIVES

In this paper we have been able to deal with conservation laws for gravity plus gauge th
in interaction with general Bosonic matter. The examples we choose to illustrate our g
results are representative, in the sense that they are enough to confirm the claim that the ca
and the Hilbert tensors actually differ in general, even if they can be identical under restr
hypotheses. We remark that gauge-natural bundles play an important role in the formalis
have built. The first advantage one gets is that they provide a synthetical way to describe th
features of the formalism@just to give some examples, we remark that the matter bundle
gauge-natural bundle and condition~21! tells us that the Lagrangian is a gauge-natural opera#.
The second aspect in which the choice of gauge-natural bundles is relevant is that they pr
new viewpoint to select the objects to be introduced; as an example, like in a field theo
transformation

H ym5 f m~x,w!

ca5ca~x,w!

is not agood transformationsince it does not preserve the fibers, here it happens thatfl , as
defined by Eq.~5!, is the only meaningful definition in the gauge-natural bundle.

A third reason is that gauge-natural bundles form quite a rich family, to which one can e
many results which are known for natural bundles. Natural structures, in fact, are notlarge enough
J. Math. Phys., Vol. 38, No. 8, August 1997
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to contain gauge theories, but they are, under most viewpoints, deeply understood. Fo
reasons a gauge-natural formalism allows a deeper understanding of several aspects o
theories in their classical formulation.

The next step towards the definition of the fields which are relevant to physics is dealing
spinor fields, with the aim of describing in the same way both bosonic and fermionic fields.
problem is currently under investigation and a first step towards its solution in the framewo
gauge-natural structures will be published elsewhere.7,8

APPENDIX

We list here some formulas which are useful in the paper; their derivation is straightfor
The following relations hold:

J21]nJ5 J̄s
r ]nJr

s , J5det~Jn
m!, J215det~ J̄n

m! ~A1!

for which is enough to remind that

]n det~v1 ,...,vn!5(
i51

n

det~v1 ,...,]nv i ,...,vn!;

Jsn
r 5Jl

rGsn
l 2~G8!lt

r Js
lJn

t , ~A2!

whereG are the Christoffel symbols of the metricg;

]nwA5RB
A~w!vm8

BJn
m2LB

A~w!vn
B , ~A3!

]Ar~w!LB
A~w!5r~w!]Br~e!, ~A4!

wheree is the identity inG, 1 is the identity in GL(n,R) and the indices in the representationr
are implicit. Equation~A4! is easily obtained by taking the derivative with respect tocB of the
identity r(wc)5r(w)r(c) at c5e.

Similarly one can prove the following:

]Ar~w!RB
A~w!5]Br~e!r~w!, ~A5!

]l
ms~J!Jm

u 5]l
us~1!s~J!, ~A6!

]m
u s~J!Jl

m5s~J!]l
us~1!. ~A7!

Taking derivatives ofsb
a(X)sg

b(J)5sg
a(X•J) with respect toX and J and then takingX

5J51 we get the following:

]m
n sb

a~1!]u
lsg

b~1!5]m
l sg

a~1!du
n1]m

n ]u
lsg

a~1!. ~A8!
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Negative binomial and multinomial states: Probability
distributions and coherent states

Hong-Chen Fua) and Ryu Sasaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

~Received 18 October 1996; accepted for publication 10 April 1997!

Following the relationship between probability distribution and coherent states, for
example the well known Poisson distribution and the ordinary coherent states and
relatively less known one of the binomial distribution and the su~2! coherent states,
we proposeinterpretationof su~1,1! and su(r ,1) coherent statesin terms of prob-
ability theory. They will be called thenegative binomial (multinomial) stateswhich
correspond to thenegativebinomial ~multinomial! distribution, the non-compact
counterpart of the well known binomial~multinomial! distribution. Explicit forms
of the negative binomial~multinomial! states are given in terms of various boson
representations which are naturally related to the probability theory interpretation.
Here, we show fruitful interplay of probability theory, group theory, and quantum
theory. © 1997 American Institute of Physics.@S0022-2488~97!02608-X#

I. INTRODUCTION

It is well known that the photon number distribution of the ordinary coherent states1–4 is the
Poisson distribution, one of the most fundamental probability distributions, which governs ra
events~such as radioactive decays! occurring in a time~space! interval. As we will show in this
paper the relationship between the coherent states in quantum optics and the probability d
tions are neither coincidental nor superficial but essential. The main purpose of the presen
is to give unified probabilistic interpretation of the various coherent states.

For the elementary binomial distribution of the probability theory, corresponding to the b
mial expansion (11x)M5(0

M(n
M)xn, we have su~2! coherent states~the ‘‘binomial states’’~BS!5!

based on the spinM /2 representation. For the multinomial distributions corresponding to
multinomial expansion

~11x11•••1xr !
M5 (

n01n11•••1nr5M

M !

n0!n1! •••nr !
x1
n1•••xr

nr, ~1.1!

we have certain types@Holstein–Primakoff~HP! representation# of su(r11) coherent states
These coherent states are known for some time6–8 but the probabilistic interpretation seems ne
Let us call themmultinomial states~MS!. They are based on thesymmetricrepresentations cor
responding to the Young diagram

hhh•••hhM boxes. ~1.2!

In probability theory the noncompact version of the binomial distribution is well known
callednegative binomial distribution. In this paper thenegative binomial states~NBS! of quan-
tised radiation field will be introduced in a parallel way as the binomial states. It will be sh
that they are the well known coherent states of su~1,1! algebra,3,7,9,10the noncompact counterpa
of the compact su~2! algebra. They belong to the discrete series of irreducible representa
Similarly thenegative multinomial states~NMS!, the coherent states of su(r ,1) algebra belonging

a!On leave of absence from Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, P.R
Electronic mail: hcfu@yukawa.kyoto-u.ac.jp
0022-2488/97/38(8)/3968/20/$10.00
3968 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



dinary

ted
Then
created

lation
tation
en in
their

ga-

braic
ulti-
ection
aper,
mples
e basic
atoms
time it
inary
us two
es are
in the
xem-
omial
ntial
al no-

e
, for

n of (1

3969H. Fu and R. Sasaki: Negative binomial and multinomial states

¬¬¬¬¬¬¬¬¬¬
to discrete symmetric representations, will be introduced in terms of thenegative multinomial
distributions. It is easy to see that in certain limits these coherent states reduce to the or
coherent states and their tensor products, since the~negative! binomial and~negative! multinomial
distributions tend to the Poisson and multiple Poisson distributions.

This paper is organized as follows: In Sec. II thenegative binomial statesare introduced
directly as asquare rootof the negative binomial distribution. In other words, they are construc
in such a way that their photon number distribution is the negative binomial distribution.
these coherent states are shown to have the displacement operator forms. Namely, they are
by the action of the unitary operators in SU~1,1! acting on certain highest~lowest! weight states
~‘‘vacuum’’ !. In Sec. III we relate the inhomogeneous representation of su~1,1! suggested by the
negative binomial states to the symmetric two boson realisation. The two boson formu
provides natural interpretation and more explicit formulas than those of the formal represen
theory of su~1,1!. At the same time this section uncovers some Lie algebraic structures hidd
the probability distribution. The physical and statistical properties of the NBS as well as
dynamical generation are discussed in some detail in our recent publication.11 Section IV deals
with the generalization to su(r ,1), the negative multinomial states. One formulation of the ne
tive multinomial states is closely related with the Holstein–Primakoff~HP!12 type realisation of
su(r ,1) in terms ofr @5rank of su(r ,1)] bosons. Whereas the comparison with ther11 boson
realization gives natural interpretation of various quantities and concepts. By explicit Lie alge
calculation which goes quite parallel with probability theory, it is shown that the negative m
nomial states are su(r ,1) coherent states belonging to discrete symmetric representations. S
V is for summary and comments. Appendix A serves to give general background of the p
relating probability theory, coherent states and Lie algebra theory by taking elementary exa
such as the ordinary coherent states and the binomial states. Appendix B also provides som
elements like quantum mechanical generation of coherent states. A collection of two level
is discussed. It gives a good physical example of the binomial states and at the same
provides simple interpretation of the HP realisations as well as the relationship with the ord
coherent states. Appendix C gives the higher rank generalisation of the results of the previo
Appendices. Here, we advocate a seemingly ill-recognized fact that the multinomial stat
coherent states of su(r11) belonging to the symmetric representations. We stress, here as
main text, the interplay of probability theory, Lie algebra theory and quantum mechanics e
plified in various coherent states. Appendix D gives a short explanation of the negative bin
distribution as a distribution of ‘‘waiting time.’’ We adopt such notation as to reveal the esse
features underlying this subject which sometimes results in deviating from the convention
tation.

II. NEGATIVE BINOMIAL STATE

Let us start with thenegative binomial distribution. ~For an elementary introduction of th
negative binomial distribution from probability theory see Appendix D. For more details, see
example, Chap. VI of Ref. 13.!

Bn
2~h;M !5SM1n21

n Dh2n~12h2!M, n50,1,..., ~2.1!

in which 0,h2,1 andM is a positive integer. This can be rewritten as

~12h2!2MBn
2~h;M !5S 2M

n D ~2h2!n, n50,1,..., ~2.2!

and it is easy to see that the right hand side corresponds to the power series expansio
2h2)2M, thenegative binomial expansion. Thus the normalization
J. Math. Phys., Vol. 38, No. 8, August 1997
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(
n50

`

Bn
2~h;M !51 ~2.3!

is obvious. From this it is also easy to see that the negative binomial distribution~and later the
negative binomial states! can be defined for any positive numberM . In this case we have to
interpret

SM1n21
n D5

G~M1n!

G~M !n!
. ~2.4!

Let us introduce the ‘‘negative binomial state’’ ~NBS! by taking a ‘‘square root’’ of the
negative binomial distribution~2.1!. To be more precise, we follow the analogyPoisson
distribution⇔coherentstate~for details see Appendix A!

Pn~a!5e2a2
a2n

n!
⇔uaeiu&5e2a2/2(

n50

`
~aeiu!n

An!
un&, ~2.5!

in which a.0. Namely, we define NBS

uheiu;M &25~12h2!M /2(
n50

` ASM1n21
n D ~heiu!nin&, ~2.6!

in which $in&un50,1,•••% are the number states of an oscillator

@b,b†#51, bi0&50, in&5
~b†!n

An!
i0&. ~2.7!

~The reason for using a slightly unconventional notationin& will become clear in the next sec
tion.! Then the number distribution in the NBS is the negative binomial distribution~2.1!

u^niheiu;M &2u25~12h2!MSM1n21
n Dh2n5Bn

2~h;M !. ~2.8!

The condition 0,h2,1 is necessary for the NBS to be normalizable. In the next section we
have a geometrical interpretation of the same condition as characterizing the parameter sp~the
Poincare´ disk! of the su~1,1! coherent states.

Next let us rewrite Eq.~2.6! (hC[heiu)

uhC ;M &25~12uhCu2!M /2(
n50

` AM ~M11!•••~M1n21!

n!
~hC!n~b†!ni0&. ~2.9!

This can be reexpressed in the exponential form

uhC ;M &25~12uhCu2!M /2 exp@hCK1#i0&, ~2.10!

in which

K15b†AM1N[AM1N21b†. ~2.11!

Here, use is made of the following identity:14

~b†g~N!!ni0&5~b†!ng~0!g~1!•••g~n21!i0&, with g~N![AM1N, N5b†b. ~2.12!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Equations~2.10! and ~2.11! reveal the su~1,1! structure of NBS sinceK1 and its Hermitian
conjugate

K25AM1Nb[bAM1N21 ~2.13!

generate the su~1,1! algebra via HP12 realization of the discrete irreducible representation with
Bargman indexM /2. @The generalized case with the real nonintegerM gives the continuous
irreducible representation of the universal covering group of SU~1,1!#

@K1 ,K2#522K 0 , @K 0 ,K6#56K6 , K 05N1
M

2
, ~2.14!

and the ‘‘vacuum’’i0& is the lowest weight state

K2i0&50, K 0u0&5
M

2
i0&. ~2.15!

It is easy to see that Eq.~2.10! is expressed in the displacement operator form by using
disentangling theorem for su~1,1!

uheiu;M &25exp@zCK12zC*K2#i0&, zC5eiu arctanhh. ~2.16!

In other words, the negative binomial states are su~1,1! coherent states in the definition of Refs.
3, 7, and 8, although the su~1,1! structure is not obvious in the original definition of the binom
state ~2.6!. It should be remarked that in contrast to the binomial states which cover al
coherent states of su~2! the negative binomial states give only part of the su~1,1! coherent states
@There are other types of su~1,1! coherent states: for example, those which are eigenstate
K2 .15#

It should be remarked that the generating function of the negative binomial state

G2~h;M ;t !5 (
n50

`

tnBn
2~h;M !5

~12h2!M

~12h2t !M
, utu<1 ~2.17!

has a succinct ‘‘quantum’’ definition

G2~h;M ;t !5^heiu;M i tNiheiu;M &. ~2.18!

As is well known in probability theory13 the generating function is quite useful for calculatin
various statistical quantities of the negative binomial states.11

III. TWO BOSON FORMULATION OF NBS

As with the binomial states discussed in Appendices A and B, the simplest way to unde
the negative binomial states algebraically is to introduce two bosonic oscillators to expre
su~1,1! generators as bilinear forms rather than the inhomogeneous forms as given by Eqs.~2.11!,
~2.13!, and ~2.14!.16 ~We choose the formalism that the oscillators define the ordinary pos
definite Hilbert space but the generators of the algebra reflect the noncompactness.! Let us intro-
duce two bosonic oscillators

@aj ,ak
†#5d jk , j ,k50,1, ~3.1!

and the Fock space
J. Math. Phys., Vol. 38, No. 8, August 1997
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aj u0,0&50, j50,1, un0 ,n1&5
a0
†n0a1

†n1

An0!n1!
u0,0&. ~3.2!

Define

K15a0
†a1

† , K25a0a1 , K05
1
2~N01N111!, Nj5aj

†aj , ~3.3!

which satisfy su~1,1! algebra

@K1 ,K2#522K0 , @K0 ,K6#56K6 . ~3.4!

These operators either increase (K1) or decrease (K2)n0 and n1 simultaneously by 1 or keep
them unchanged (K0). In other words, the above Fock space gives a reducible representati
su~1,1! since the subspaces with differentD[n02n1 are always separated. So we can restrict it
in the case of the binomial states

D[n02n15M21>0, ~3.5!

in whichM is apositive integer@For the other sign of r.h.s. we can change the role of 0 and 1
terms of the ‘‘waiting time’’ interpretation of the negative binomial distribution~see Appendix D!
n0 is the total number of trials but the last~which is always asuccess!, n1 is the number offailures
andM is the preset number ofsuccessesto be achieved.# Thus we arrive at the discrete represe
tation of su~1,1! with Bargman indexM /2

uM1n21,n&, n50,1,..., ~3.6!

with the lowest weight state

K2uM21,0&50, K0uM21,0&5
M

2
uM21,0&. ~3.7!

Obviously this representation is irreducible. Since these states are uniquely specified byn[n1 ,
we can identify them with the number states defined in the previous section~2.7! together with the
‘‘reduced’’ oscillatorb andb†

in&5uM1n21,n&, n50,1,••• . ~3.8!

Thus we obtain the HP representation ofK6 andK0

K1→K15b†AM1N, K2→K25AM1Nb, K0→K 05N1
M

2
. ~3.9!

One advantage of the HP type realization as above is that it admits the generalization
continuous representation for nonintegerM .

The other group theoretical aspects of the negative binomial states are about the same
in the binomial states. The physical and statistical properties of the NBS as well as their dyn
generation are discussed in some detail in our recent publication.11 The content of this section
though known in Lie algebra theory, can be considered to provide some Lie algebraic backg
for the probability distribution, which are new to the best of our knowledge.
J. Math. Phys., Vol. 38, No. 8, August 1997
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IV. NEGATIVE MULTINOMIAL STATES

The negative multinomial distribution is

Mn8
2

~h;M !5~12h2!M
~M1n11•••1nr21!!

n8! ~M21!!
h1
2n1•••h r

2nr, ~4.1!

in whichM is a positive integer and

n5~n0 ,n1 ,...,nr !, n85~n1 ,...,nr !, h5~h1 ,...,h r !PR8,

0,h25h1
21•••1h r

2,1, n8!5n1! •••nr !. ~4.2!

In particular, the negativetrinomial distribution reads

Mn1 ,n2
2 ~h1 ,h2 ;M !5~12h2!M

~M1n11n221!!

n1!n2! ~M21!!
h1
2n1h2

2n2. ~4.3!

This can be easily obtained from the negative binomial distribution

Bn
2~h;M !5SM1n21

n Dh2n~12h2!M, n50,1,...,

by a binomial expansion

h25h1
21h2

2, h2n5 (
n11n25n

n!

n1!n2!
h1
2n1h2

2n2,

and collecting appropriate terms. By repeating the same thing or by applying a multin
expansion we arrive at the general form of the negative multinomial distribution~4.1!. As we will
see later this procedure also explains the generation ofnegative multinomial states.

The negative multinomial state~NMS! is defined by taking a ‘‘square root’’ of the negativ
multinomial distribution~4.1!

uhC ;M &25~12uhCu2!M /2(
n8
A~M1n11•••1nr21!!

n8! ~M21!!
~h1C!n1•••~h rC!nrin8&, ~4.4!

in which the ‘‘reduced’’ states$in8&5in1 ,...,nr&un50,1,...% are the number states ofr bosonic
oscillators

@bj ,bk
†#5d jk , bj i0&50, j51,...,r , i0&5u0,...,0&,

in8&5
~b†!n8

An8!
i0&, ~b†!n85b1

†n1•••br
†nr . ~4.5!

It should be remarked that both negative multinomial distribution~4.1! and state~4.4! are also well
defined forM positive real number.

In order to show that the negative multinomial states are the coherent states of su(r ,1), we
need to realise the algebra. Let us first construct su(r ,1) generators on the Fock space generated
r11 bosonic oscillators
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
@aj ,ak
†#5d jk , aj u0&50, j50,1,...,r , u0&5u0,0,...,0&,

un&5
~a†!n

An!
u0&, ~a†!n5a0

†n0a1
†n1•••ar

†nr . ~4.6!

Let us define theu(r ,1) generators as bilinears inaj andak
†

K1 j5a0
†aj

† , K2k5a0ak , 1< j ,k<r ,

Kjk5aj
†ak ~ jÞkÞ0!, Nj5aj

†aj . ~4.7!

It is easy to see that they leave the combination

D[N02~N11•••1Nr !

invariant and the above Fock space~4.6! is a disjoint sum of subspaces characterized by the va
of D. As before, let us impose a constraint

D[N02~N11•••1Nr !5M21>0, ~4.8!

in which M is a positive integer. Then for fixedM the restricted space provides an irreducib
representation ofu(r ,1). It has a lowest weight vector

K2 j uM21,0,...,0&50, j51,...,r ~4.9!

which is invariant under su(r )

KjkuM21,0,...,0&5Nj uM21,0,...,0&50, 1< j ,k<r . ~4.10!

Let us connect the statesin8& and un&. Each state in the above representation is uniqu
specified byn8 only and we identify

in8&[un&5un0 ,n1 ,...,nr&, n05M1n11•••1nr21

or

in1 ,...,nr&[uM1n11•••1nr21,n1 ,...,nr&, and i0&5uM21,0,...,0&. ~4.11!

On these states the su(r ,1) generators are expressed inhomogeneously

K1 j→K1 j5bj
†AM1N11•••1Nr21, K1 j→K1 j5AM1N11•••1Nr21bj ,

Kjk→K jk5bj
†bk , N j5Nj . ~4.12!

Note that the invariant subalgebrau(r ) is expressed bilinearly.
It is not difficult to generate the negative multinomial states explicitly by applying

SU(r ,1) operator on the lowest weight statei0&. For simplicity and concreteness let us show th
for the su~2,1! case

uh1e
iu1,h2e

iu2;M &25~12h2!M /2 (
n1 ,n250

` A~M1n11n221!!

n1!n2! ~M21!!
~eiu1h1!

n1~eiu2h2!
n2in1 ,n2&.

~4.13!
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
For the ‘‘negative trinomial state’’ we only have to use the su~1,1! and su~2! disentangling
theorems for the two subalgebras spanned by~0,1! and ~1,2! oscillators, respectively,

er ~e
iu1K102e2 iu1K01!5exp@eiu1 tanh rK 10#exp@ log~12tanh2 r !~N11M /2!#

3exp@2e2 iu1 tanh rK 01#, ~4.14!

er 8~eiu2K212e2 iu2K12!5exp@eiu2 tan r 8K 21#exp@2 1
2 log~11tan2 r 8!~N12N2!#

3exp@2e2 iu2 tan r 8K 12#. ~4.15!

First let us chooser such that

tanh2 r5h1
21h2

2,

to obtain

er ~e
iu1K102e2 iu1K01!i0,0&5~12h1

22h2
2!M /2(

n50

` A~M1n21!!

~M21!!n!
~eiu1Ah1

21h2
2!nin,0&,

~4.16!

which is a negative binomial state in the~0,1! subspace. Next let us chooser 8 such that

tan2 r 85h2
2/h1

2,

to obtain

er 8~eiu2K212e2 iu2K12!3er ~e
iu1K102e2 iu1K01!i0,0&5uh1e

iu1,h2e
iu2;M &2. ~4.17!

Thus we have shown that the negative trinomial states are the coherent states of su~2,1! belonging
to discrete symmetric representations. Note the parallelism with the negative trinomial distrib
at the beginning of this section. The generalization to higher rank cases is straightforward. O
to apply first su~1,1! disentangling theorem and su~2! disentangling theorems in the followin
sequence of su~2! algebras spanned by (1,2),(2,3),...,(r21,r ) oscillators.

Before concluding this section let us remark that the generalization of the discussion~4.13!–
~4.17! to the coherent states of su(r ,s) is rather straightforward.

V. SUMMARY AND COMMENTS

Stimulated by the well known fact that the photon number distribution of the ordinary co
ent states is Poissonian, we have constructed quantum mechanical states which have the o
known probability distributions such as the binomial, multinomial, negative binomial, and n
tive multinomial distributions as their particle number distributions. They turn out to be
coherent states of the well known Lie algebras of su~2!, su(r11), su~1,1!, and su(r ,1), respec-
tively, belonging to certain symmetric representations. Interpretation of these coherent st
terms of probability theory is obtained and it is quite useful. At the same time Lie alge
structure of these most fundamental probability distributions is revealed.

The results of the present paper provoke many questions, to most of which we do no
answers yet. For example: What about the coherent states of su(r11)(su(r ,1)) belonging to the
other representations?~Some coherent states can be constructed in terms of fermion oscillato2,4!
Are they also characterised by some probability distributions? The same question for the oth
algebras, in particular the exceptional ones and for theq-deformed algebras.17,18Or the affine Lie
algebras and other infinite dimensional algebras like the Virasoro and thew algebras...?
J. Math. Phys., Vol. 38, No. 8, August 1997
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APPENDIX A: BINOMIAL STATES

In Appendices A–C, we reformulate the mathematical theory of coherent states for su~2! and
su(r11) algebras. Most of the results are known in one way or another but we believe th
elementary exposition and the resulting explicit and concrete formulas and the emphasis
connection with probability distributions are helpful and useful for most readers. It is also h
that the comparison and the contrast with the compact cases will provide deeper understan
the noncompact cases treated in the main sections.

We follow the schematic path

probability distribution⇔coherent states ~A1!

by imitating the well known example of the Poisson distribution

Pn~a!5e2a2
a2n

n!
, n50,1,2,... . ~A2!

Let us introduce the ‘‘probability amplitude’’ by taking its ‘‘square root.’’@Apart from the well
known example Klein–Gordon Eq.⇒Dirac Eq., let us mention that the creation and annihilat
operatorsa†, a are also ‘‘square roots’’ of the oscillator Hamiltonian. In all these cases, inclu
the probability amplitudes, the ‘square roots’ are complex in spite of the reality~Hermiticity! of
the original objects#

uaeiu&5e2a2/2(
n50

`
~aeiu!n

An!
un&, ~A3!

in which $un&un50,1,...% are the number states of the ordinary oscillator

@a,a†#51, au0&50, un&5
~a†!n

An!
u0&. ~A4!

The origin of the additional phase factoreiu is obvious,a25aeiuae2 iu. By using the last formula
of Eq. ~A4! we can rewrite Eq.~A3! as (aC[aeiu)

uaC&5e2uaCu2/2(
n50

`
~aCa

†!n

n!
u0&5e2uaCu2/2eaCa

†
u0&5exp@aCa

†2aC* a#u0&. ~A5!

At the last step use is made of the Baker–Campbell–Hausdorff formula. Equation~A5! tells that
the parameter space is the ordinary complex planeC, which is a coset space

C5Heisenberg–Weyl group/U~1!, ~A6!

in which the Heisenberg–Weyl group is generated bya, a† and the identity operator. The stabilit
subgroupU(1) is just the group of complex numbers of unit modulus,U(1)5$eiuuu:real%.

The binomial distribution
J. Math. Phys., Vol. 38, No. 8, August 1997
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Bn~h;M !5SMn Dh2n~12h2!M2n, n50,1,...,M , ~A7!

is a well known elementary probability distribution related with binomial expansion

151M5~12x1x!M5 (
n50

M SMn D xn~12x!M2n. ~A8!

This gives the probability ofn ‘‘successes’’ amongM times repeated Bernoulli’s trials with th
success probability 0,h2,1. The associated ‘‘probability amplitude’’ is

uheiu;M &5 (
n50

M ASMn D ~heiu!n~12h2!~M2n!/2in&, ~A9!

in which $in&un50,1,...% are the number states of the oscillator

@b,b†#51, bi0&50, in&5
~b†!n

An!
i0&. ~A10!

~The reason for using a different oscillatorb, b† from the above coherent state onea, a† and the
slightly unconventional notationin& will become clear in Appendix B.! Let us call the state~A9!
the ‘‘binomial state’’ ~BS!.5,19,20At first glance one might be tempted to give a phase to the sec
factor

~A12h2eiu2!M2n. ~A11!

But this is unnecessary since it is decomposed to an overall phaseeiM u2 ~which is immaterial! and
e2 inu2 which can be absorbed by the redefinition ofu, u→u2u2 .

Next let us rewrite Eq.~A9! (hC[heiu)

uhC ;M &5~12uhCu2!M /2(
n50

M AM ~M21!•••~M2n11!

n! S hC

A12uhCu2
D n~b†!ni0&. ~A12!

Then, by making use of the following identity:14

~b†g~N!!ni0&5~b†!ng~0!g~1!•••g~n21!i0&, with g~N![AM2N, N5b†b, ~A13!

we can write Eq.~A12! in the exponential form

uhC ;M &5~12uhCu2!M /2 expF hC

A12uhCu2
I 1G i0&. ~A14!

Here,I 1

I 15b†AM2N[AM2N11b† ~A15!

together with its Hermitian conjugate

I 25AM2Nb[bAM2N11 ~A16!

generate the su~2! algebra via HP12 realization in the spinM /2 representation
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
@I 1 ,I 2#52I 0 , @I 0 ,I 6#56I 6 , I 05N2
M

2
, ~A17!

and the ‘‘vacuum’’i0& is the lowest weight state

I 2i0&50, I 0i0&52
M

2
i0&. ~A18!

By using the disentangling theorem for su~2! we can rewrite Eq.~A14! as

uheiu;M &5exp@zCI 12zC* I 2#i0&, zC5eiu arctanS h

A12h2D . ~A19!

In other words, the binomial states are su~2! coherent states in the definition of Refs. 3, 4, 6, a
7, although the su~2! structure is not obvious in the original definition of the binomial state~A9!.
Since all the irreducible representations of su~2! are exhausted by the representations~A10!–
~A18! for all non-negative integer values ofM , the binomial states give all the su~2! coherent
states.

Before closing this Appendix, let us recall the fact that the binomial distribution tends to
Poisson distribution in a certain limit. LetM→`, h→0 in such a way that the average valu
^n& is fixed: ^n&5h2M5a2. Then for finiten

Bn~h;M !→
a2n

n!
e2a25Pn~a!. ~A20!

~Of course, there are many other ways of showing this, e.g., in terms of the generating fun
of these distributions.! We have the corresponding limit at the level of the ‘‘probability amp
tude’’ ~A9!

uheiu;M &→e2a2/2(
n50

`
~aeiu!n

An!
in&, ~A21!

namely, the binomial state tends to the ordinary coherent state. This limit can also be visual
a contraction of su~2! Eqs.~A15!, ~A16! into the Heisenberg–Weyl algebra

hI 1→ab†, hI 2→ab. ~A22!

Thus Eq.~A19! tends to

uheiu;M &→exp@aeiub†2ae2 iub#i0&. ~A23!

In Appendix B we will discuss the physical problem of dynamical generation of BS sta
from certain Hamiltonian. This, in turn, will provide a mathematical framework in which~i! su~2!
structure is more visible and,~ii ! generalization to the coherent states of su(r11) algebra, the
‘‘multinomial states,’’ is straightforward.

APPENDIX B: BINOMIAL STATES: TWO BOSON FORMULATION

In order to discuss the generation of the binomial states, let us recapitulate the process
physical generation of the ordinary coherent states, for comparison. This is an oversim
model retaining only the most essential features of the coherent states. We focus on one pa
mode of the photon since the system is decomposed into a sum of such subsystems
J. Math. Phys., Vol. 38, No. 8, August 1997
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H5H01H1 , H05va†a, H15 j ~ t !a†1 j ~ t !* a, ~B1!

in which a†, a are the creation and annihilation operators of the photon andj (t) is the classical
current~with complex phase!. The state vector in the interaction pictureuc(t)& I obeys the equation
of motion

i
d

dt
uc~ t !& I5H I~ t !uc~ t !& I ,

H1~ t !5eiH0tH1e
2 iH0t5 j ~ t !eivta†1 j ~ t !* e2 ivta. ~B2!

Let us suppose that the system is in the ‘‘vacuum’’u0& at t50. Then we obtain

uc~ t !& I5Te2 i*0
t
H1~ t8!dt8u0&,

5eiV~ t !e~a~ t !a†2a~ t !* a!u0&,

a~ t !52 i E
0

t

j ~ t8!eivt8dt8, ~B3!

in which T is the time-ordering operator andV(t) is a calculable function giving the immateria
overall phase.

For thebinomial stateslet us consider a slightly different model consisting of a number
identicaltwo level atoms~bosons!. Let us also assume that the space extension of the system
big compared with the wavelength of the photon corresponding to the energy gap and th
interactions between different atoms are negligible. The system can be described by the
operators

HB5HB01HB1 ,

HB05e(
j51

M

s0
~ j ! ,

HB15(
j51

M

~l~ t !s1
~ j !1l~ t !*s2

~ j !!, ~B4!

in which M is the number of the two level atoms. As is well known21 a collection of identical
particles can also be described by oscillators corresponding to each energy eigenstate.
denote the lower~upper! state and the corresponding oscillator by 0~1! ~In quantum optics
situations one may call 0 ‘‘wiggler’’ photon and 1 ‘‘laser’’ photon19!

@aj ,ak
†#5d jk , j ,k50,1. ~B5!

Then the above Hamiltonian is equivalent to

HB85HB08 1HB18 ,

HB08 5v1N11v0N0 , Nj5aj
†aj , j50,1, v12v05e,

HB18 5m~ t !a1
†a01m~ t !* a0

†a1 , ~B6!

and its Fock space is
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
un0 ,n1&, n01n15M . ~B7!

Now the su~2! structure is obvious, since

J15a1
†a0 , J25a0

†a1 , J05
1
2~N12N0! ~B8!

generate an su~2! algebra and the Fock space~B7! gives theM11 dimensional~spin M /2!
irreducible representation corresponding to the Young diagram

hhh•••hh M boxes ~B9!

with the lowest weight state

J2uM ,0&50, J0uM ,0&52
M

2
uM ,0&. ~B10!

The state vector in the interaction pictureuc(t)& I obeys the equation of motion

i
d

dt
uc~ t !& I5HB18 ~ t !uc~ t !& I ,

HB18 ~ t !5eiHB08 tHB18 e2 iHB08 t5m~ t !ei etJ11m~ t !* e2 i etJ2 . ~B11!

Let us suppose that the system is in the lowest weight stateuM ,0& at t50. Then we obtain

uc~ t !& I5T expF2 i E
0

t

HB18 ~ t8!dt8G uM ,0&,

5T expF2 i E
0

t

m~ t8!ei et8dt8J12 i E
0

t

m~ t8!* e2 i et8dt8J2G uM ,0&. ~B12!

Since g5Te2 i*0
t
HB18 (t8)dt8PSU~2! it can always be decomposed intog5exp(zJ1

2z*J2)exp(inJ0)(zPC,nPR) and the obtained state is the binomial state. For illustration purp
let us choose a special form ofm(t)

m~ t !5 ie2 i et1 iuh, hPR. ~B13!

Then we obtain19,22

uc~ t !& I5exp@eiuhtJ12eiuhtJ2#uM ,0&,

}exp@eiu tan~ht !J1#uM ,0&}utan~ht !eiu;M &. ~B14!

However, this is not exactly the same as the binomial state~A14! given in the previous
Appendix. In order to relate these two forms let us note that the state in the Fock space~B7! is
uniquely specified byn1[n only

in&[uM2n,n&. ~B15!

Let us understand that the states$in&,n50,1,...,M % are generated by the ‘‘reduced’’ single boso
operatorsb† andb as in Eq.~A10!. Then the su~2! operators are expressed in terms ofb† and
b as
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
J1in&5J1uM2n,n&5a1
†a0uM2n,n&,

5An11AM2nuM2n21,n11&

5An11AM2nin11&,

5b†AM2Nin&, N5b†b, ~B16!

namely,

J15b†AM2N, J25AM2Nb, J 05N2
M

2
. ~B17!

Thus we have naturally ‘‘derived’’ the HP realization of su~2! used in the previous Appendix. Th
lowest weight state in this notation is

i0&[uM ,0&, J2i0&50, J 0i0&52
M

2
i0&.

At the end of the previous Appendix we have shown that the binomial state tends t
ordinary coherent state in a certain limit. Here, we will show a result in an opposite direction.
is, the binomial states can be obtained from the ordinary coherent states with two degr
freedom by appropriate ‘‘slicing’’ or restriction. This reveals some features of the binomial s
quite naturally. As before let us start with the corresponding result in the probability theory, w
is rather elementary. A double Poisson distribution is given by

Pn0 ,n1
~a0 ,a1![Pn~a!5e2a0

2
2a1

2 a0
2n0a1

2n1

n0!n1!
, n5~n0 ,n1!, a5~a0 ,a1!. ~B18!

If we restrict it to a line

n01n15M ,

we obtain the binomial distribution up to normalization

PM2n,n~a0 ,a1!5e2a0
2
2a1

2 a0
2~M2n!a1

2n

~M2n!!n!
}SMn Dh2n~12h2!M2n5Bn~h;M !, h[

a1

Aa0
21a1

2
.

~B19!

The same proposition at the level of the ‘‘probability amplitude’’ including the normaliza
can be easily obtained by considering the projection operator onto the representation space~B7!23

PM5 (
n01n15M

un0 ,n1&^n0 ,n1u. ~B20!

With the aid of the resolution of unity~over-completeness relation!

E d2a0Cd
2a1C

p2 uaC&^aCu51, aC5~a0C ,a1C!, d2a jC5d~a jC!Rd~a jC! I , j50,1,

~B21!

for the double coherent state
J. Math. Phys., Vol. 38, No. 8, August 1997
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uaC&5e2uaCu2/2 (
n0 ,n1

~a0C!n0~a1C!n1

An0!n1!
un0 ,n1&

we have

PM5E d2a0Cd
2a1C

p2 uaC&^aCuPM . ~B22!

By a change of variables

S a0Ca1C
D5

zC

A11ujCu2
S 1jCD ~B23!

we have

r.h.s. of Eq. ~B22!5E d2jC
p~11ujCu2!2 E uzCu2d2zC

p
e2uzCu2

3 (
m0 ,m150

`
1

Am0!m1!
S zC

A11ujCu2
D m01m1

jC
m1um0 ,m1&

3 (
n01n15M

^n0 ,n1u
1

An0!n1!
S zC*

A11ujCu2
D MjC*

n1

5E d2jC
p

~M11!!

~11ujCu2!M12 (
m01m15M

1

Am0!m1!
jC
m1um0 ,m1&

3 (
n01n15M

^n0 ,n1u
1

An0!n1!
jC*

n1

5E dm~jC ,jC* !ujC&^jCu, ~B24!

in which

ujC&5
1

~11ujCu2!M /2 (
n50

M ASMn D jC
n uM2n,n&5

1

~11ujCu2!M /2 (
n50

M ASMn D jC
n in& ~B25!

and the measure is

dm~jC ,jC* !5
~M11!!

M !

d2jC
p~11ujCu2!2

. ~B26!

By introducing a parameterhC[jC /A11ujCu2, we can identify ujC& as the binomial state
uhC ;M & Eq. ~A9!. This process shows elementarily that the parameter space of the binomial
is SU(2)/U(1)5CP1 (jC5a1C /a0C) obtained fromC

2 (aC5(a0C ,a1C)) by integrating out the
overall factorzC .
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APPENDIX C: MULTINOMIAL STATES

The multinomial distribution is

Mn~h;M !5
M !

n!
h1
2n1•••h r

2nr~12h2!n0 , ~C1!

in which

n5~n0 ,n1 ,...,nr !, n01n11•••1nr5M , h5~h1 ,...,h r !PRr ,

0,h25h1
21•••1h r

2,1, n!5n0!n1! •••nr !. ~C2!

Let us first define the ‘‘multinomial state’’ in the linear representation form

uhC ;M &5(
n
AM !

n!
~h1C!n1•••~h rC!nr~12uhCu2!n0/2un&, ~C3!

in which the Fock states

un&5un0 ,n1 ,...,nr&, n01n11•••1nr5M , ~C4!

are generated byr11 bosonic oscillators

@aj ,ak
†#5d jk , aj u0&50, j50,1,...,r , u0&5u0,0,...,0&,

un&5
~a†!n

An!
u0&, ~a†!n5a0

†n0a1
†n1•••ar

†nr . ~C5!

Obviously the above Fock space~C4! provides an irreducible representation of su(r11) with
generators

Jjk5aj
†ak , jÞk, Nj5aj

†aj , ~C6!

in which Jjk( j.k) are considered as shift-up operators. It is a symmetric representation c
sponding to the same Young diagram as before:

hhh•••hh M boxes, ~C7!

and the lowest weight state is

u08&[uM ,0,...,0&, J0ku08&50, Jjku08&50, j ,k.0. ~C8!

The last equation shows that the lowest weight stateu08& is invariant underu(r ). The dimension
of the above irreducible representation is

SM1r
M D5SM1r

r D ~C9!

which is the same as the number of terms in the multinomial expansion, the number
partitions ofM into r11 non-negative integers and the number ofM th order partial derivatives o
analytic functions ofr11 variables. It should be remarked that there are other types of coh
states of su(r11) (r>2) algebra belonging to the Young diagrams other than those given a
Eq. ~C7!. They cannot be constructed by bosons only.
J. Math. Phys., Vol. 38, No. 8, August 1997
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It is not difficult to generate the multinomial states explicitly by applying the SU(r11)
operator on the lowest weight~energy! stateu08&. For simplicity and concreteness let us show t
for the su~3! case

uh1e
iu1,h2e

iu2;M &5 (
n1 ,n250

M A M !

n0!n1!n2!
~h1e

iu1!n1~h2e
iu2!n2~12h1

22h2
2!n0/2un0 ,n1 ,n2&.

~C10!

This process is essentially the same as the generation of negative trinomial state given in S
For the ‘‘trinomial state’’ we only have to use the su~2! disentangling theorems twice for tw
su~2! subalgebras spanned by~0,1! and ~1,2! oscillators

er ~e
iu1J102e2 iu1J01!5exp@eiu1 tan rJ10#exp@ log~11tan2 r !~N11N2/22M /2!#

3exp@2e2 iu1 tan rJ01#, ~C11!

er 8~eiu2J212e2 iu2J12!5exp@eiu2 tan r 8J21#exp@2 1
2 log~11tan2 r 8!~N12N2!#

3exp@2e2 iu2 tan r 8J12#. ~C12!

We chooser and r 8 such that

tan2 r5
h1
21h2

2

12h1
22h2

2 , tan2 r 85
h2
2

h1
2 .

The generalization to higher rank cases is straightforward. One has to apply su~2! disentangling
theorems in the following sequence of su~2! algebras spanned by (0,1),(1,2),(2,3),...,(r21,r )
oscillators.

To obtain the su(r11) multinomial states from ther11-fold coherent states is also straigh
forward. One only needs to develop clever notation to express the essential features succ

A multiple Poisson distribution is given by

Pn~a!5e2a0
2
2•••2ar

2 a0
2n0a1

2n1•••a r
2nr

n0! •••nr !
, n5~n0 ,n1 ,...,nr !, a5~a0 ,a1 ,...,a r !.

~C13!

If we restrict it to a hyperplane

n01n11•••1nr5M , or n05M2n12•••2nr ,

we obtain the multinomial distribution up to normalization:

h j[
a j

Aa2
, a25(

j50

r

a j
2,

Pn~a!}
M !

n!
h1
2n1•••h r

2nr~12h2!n05Mn~h;M !. ~C14!

The same proposition at the level of the ‘‘probability amplitude’’ including the normaliza
can be easily obtained by considering the projection operator onto the representation space~C4!23
J. Math. Phys., Vol. 38, No. 8, August 1997
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PM5 (
n01n11•••1nr5M

un0 ,n1 ,...,nr&^n0 ,n1 ,...,nr u. ~C15!

With the aid of the resolution of unity~over-completeness relation!

E P j50
r d2a jC

p r11 uaC&^aCu51, aC5~a0C ,a1C ,...,a rC!,

d2a jC5d~a jC!Rd~a jC! I , j50,...,r ~C16!

for the multiple coherent states

uaC&5e2uaCu2/2 (
n0 ,...,nr

~a0C!n0•••~a rC!nr

An!
un0 ,n1 ,...,nr&

we have

PM5E P j50
r d2a jC

p r11 uaC&^aCuPM . ~C17!

By a change of variables

S a0C

a1C

A
a rC

D 5
zC

A11ujCu2 S 1
j1C
A

j rC

D ~C18!

we have

PM5E P j51
r d2j jC

p r~11ujCu2!2 E uzCu2rd2zC
p

e2uzCu2 (
m0 ,m1 ,...,mr50

`
1

Am! S zC

A11ujCu2
D m01m11•••1mr

3j1C
m1j2C

m2•••j rC
mr um0 ,m1 ,...,mr& (

n01n11•••1nr5M
^n0 ,n1 ,...,nr u

1

An! S zC*

A11ujCu2
D M

3j1C*
n1j2C*

n2•••j rC*
nr

5E P j51
r d2j jC

p r

~M1r !!

~11ujCu2!M1r11 (
m01m11•••1mr5M

1

Am!
j1C
m1j2C

m2•••j rC
mr um0 ,m1 ,...,mr&

3 (
n01n11•••1nr5M

^n0 ,n1 ,...,nr u
1

An!
j1C*

n1j2C*
n2•••j rC*

nr

5E dm~jC ,jC* !ujC&^jCu, ~C19!

in which
J. Math. Phys., Vol. 38, No. 8, August 1997
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ujC&5
1

~11ujCu2!M /2 (
n
AM !

n!
j1C
n1 j2C

n2 •••j rC
nr uM2( nj8 ,n8&

5
1

~11ujCu2!M /2 (
n
AM !

n!
j2C
n2 •••j rC

nr in8& ~C20!

and the measure is

dm~jC ,jC* !5
~M1r !!

M !

P j51
r d2j jC

p r~11ujCu2!r11 . ~C21!

By introducing parametersh jC[j jC /A11ujCu2, we can identifyujC& as the multinomial state
uhC ;M & ~C3!. This process shows elementarily that the parameter space of the multinomial
is SU(r11)/U(1)3SU(r )5CPr(j jC5a jC /a0C) obtained fromC

r11(aC) by integrating out the
overall factorzC .

A few words about the multiple coherent states limit of the multinomial states. For
multinomial state~C20! we let M→` and j jC→0 while keeping the ‘‘average’’ fixed,j jC

2 M
5a jC

2 to obtain for fixedn8

ujC&→e2uaCu2/2(
n8

~aC!n8

n8!
in8&. ~C22!

Like in the case of the binomial states one can express the states and thesu(r11) generators
in the ‘‘reduced’’ notation using onlyr boson oscillators. This gives rise to the generalisation
the Holstein–Primakoff realisation. But as remarked above it is applicable only to thesymmetric
representations. Because of the constraint

n01n11•••1nr5M ,

the stateun& is uniquely specified by

n85~n1 ,n2 ,...,nr !

only. So we identify

in8&5in1 ,n2 ,...,nr&[uM2( 8nj ,n1 ,...,nr&5un&, ~C23!

and introducer independent boson oscillators

@bj ,bk
†#5d jk , bj i0&50, j51,...,r ,

which create the ‘‘reduced’’ states

in8&5
~b†!n8

n8!
i0&, ~b†!n85b1

†n1•••br
†nr , n8!5n0! •••nr !. ~C24!

Then we have

J j05bj
†AM2N12•••2Nr , J 0 j5AM2N12•••2Nrbj , J jk5bj

†bk . ~C25!

Note that the ‘‘vacuum’’i0& is the lowest weight state and it is invariant undersu(r ) which is
expressedlinearly

J 0 j i0&50, J jki0&50. ~C26!
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



mial
n
ng
mong

total
f the
rgy

le in

the

3987H. Fu and R. Sasaki: Negative binomial and multinomial states

¬¬¬¬¬¬¬¬¬¬
Before closing this Appendix, let us remark on the dynamical generation of the multino
states. This is essentially the same as that of the binomial states. Let us consider a collectio~total
numberM ! of identical r11-level atoms~bosons!. It is assumed that the interactions amo
different atoms are negligibly small compared with the interactions within the same atoms a
different energy levels. As before the system is described in terms ofr11 bosonic oscillators and
the Hamiltonian at the zeroth order approximation is quadratic in the oscillators keeping the
number of atoms fixed. In other words the Hamiltonian is a Hermitian linear combination o
u(r11) generators given in Eq.~C6!. If we assume that the system is in the lowest ene
~weight! stateuM ,0,...,0& at t50, then at timet it is

e2 iHt uM ,0,...,0&,

which is a multinomial state since the time evolution operatore2 iHt is an element ofU(r11) and
theU(1) part and the SU(r ) is immaterial when they act onuM ,0,...,0&.

APPENDIX D: WAITING TIME: NEGATIVE BINOMIAL DISTRIBUTION

For those who are not familiar with probability theory, we give here a simple examp
which thenegative binomial distributionoccurs. We follow Feller’s textbook.13 Let us consider a
succession of Bernoulli’s trials each of which has the probability offailure 0,h2,1. We ask a
question: How long it will take for theM th success to turn up? Here,M is a positive integer. Since
M th success comes not earlier thanM th try, we denote byBn

2(h;M ) the probability that the
M th success occurs at the trial numberM1n,n>0. This occurs, if and only if, among theM
1n21 trials there are exactlyn failures and theM1nth trial results in success: so that

Bn
2~h;M !5SM1n21

n D ~12h2!Mh2n.

For the very unlucky the waiting time (n) can be infinite. This corresponds to the fact that
irreducible unitary representations of non-compact algebras are infinite dimensional.
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Grassmann manifold bosonization of QCD in two
dimensions

Kyoung Ho Hana) and H. J. Shinb)
Department of Physics and Research Institute of Basic Sciences, Kyunghee University,
Seoul, 130-701, Korea

~Received 18 December 1996; accepted for publication 24 April 1997!

Two-dimensional QCD is bosonized to be an integrably deformed Wess–Zumino–
Witten model under proper limit. Fermions are identified having indices of the
Grassmann manifold. Conditions for integrability are analyzed and their physical
meanings are discussed. We also address the nature of the exactly solvable part of
the theory and find the infinitely many conserved quantities. ©1997 American
Institute of Physics.@S0022-2488~97!01408-4#

I. INTRODUCTION

Understanding the quantum chromodynamics~QCD!, for example the quark confinement,
an important problem in theoretical physics which is not solved yet. One promising app
which receives much attention is the bosonization. t’Hooft found that QCD becomes equiva
an effective field theory of mesons in the limit of a large number of colors~large-M limit !.1

Elaborating this idea, the Skyrme model was revised as an effective QCD theory where b
are described by the solitions of the theory.2,3 It was found that this scheme is very helpful
describing various properties of nucleons including their masses.4 However, the bridge betwee
this phenomenological model and the physics of basic constituents is still missing. In this r
much effort was devoted to two-dimensional~2D! theory where a low-energy effective action ca
be derived directly from 2D QCD using non-Abelian bosonization.5–9 Especially in Ref. 5 it was
shown that the effective low-energy theory of the two-dimensional QCD when bosoniz
described by the Wess–Zumino–Witten~WZW! model with a mass term. This effective theo
successfully describes the baryon spectrum and their various physical properties.9 However, the
integrable structure of the theory is not known and the baryons are described by the low-e
classical solutions and not by the solitons. As the integrable structure of the theory is impor
understand the stability of baryons it is strongly desired to find a bosonization scheme wit
structure.

In this paper we describe a new way of bosonization using the conformal embedding str
of conformal field theories that was introduced in Refs. 10 and 11. This formalism leads
bosonized theory of 2D QCD which is integrable under proper limit. The integrable part o
resulting theory is a kind of non-Abelian generalization of the sine–Gordon model12 and it can be
thought of as a bosonization of a generalized massive Thirring model with a U~1! current–current
interaction. This theory is described by an integrably deformed WZW model having Grass
manifold as a symmetric space~see Ref. 12!. The deformation term corresponds to a fermion m
which only one flavor obtains. A similar analysis as in Refs. 12–15 can be applied to the p
theory, leading to a construction of the Lax pair, solitons, and Backlund transformation
theory corresponds to the bosonization of 2D QCD when we remove the U~1! current interaction
term. This interaction term, which is related to the particle pair production, does not signific
change the integrability of the theory as it does not alter the degenerate structure of the v
preserving the topological notion of solitons. We can make the contribution of this term negl
by taking proper limit. Main results of our analysis of 2D QCD bosonization with the integrab

a!Electronic mail: khan@photon.kyunghee.ac.kr
b!Electronic mail: hjshin@nms.kyunghee.ac.kr
0022-2488/97/38(8)/3988/9/$10.00
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condition are~related to four-dimensional real world!; ~1! 2D integrability under proper limit
~baryons emerge as solitons in the theory of mesons!, ~2! only one fermion is massive in 2D theor
~top quark is much massive than other quarks!, ~3! Grassmann manifold is described by SU(M
1N)/SU(M )3SU(N)3U(1) symmetric space~quarks have only two quantum numbers, i.
flavor and color!. Generalization of our method for bosonizing the massive Goddard, Nahm
Olive ~GNO! fermions corresponding to other symmetric spaces in Ref. 10 will ap
elsewhere.16

II. GNO FERMIONS AND BOSONIZATION

The action of two-dimensional QCD withM color andN flavor massive Dirac fermions is

S5E d2xF (
a51,i51

M ,N

C̄ai$2 ida
b]”2A” a~Ta!a

b%Cbi1(
i51

N

mi
~q! (

a51

M

C̄aiCai2
1

2ec
2 Tr FmnF

mnG ,
~1!

whereTa are the generators of the color SU(M ) group. Note that we assign different fermio
massesmi

(q) for each flavor. This theory has U(MN) global symmetry when we neglect the ma
term. The analysis of 2D QCD through ‘‘non-Abelian bosonization’’ introduced by Witten17 have
been achieved in Refs. 5–9. These papers analyze 2D QCD in the semiclassical limit and
the low-lying baryon spectrum,5,6 multibaryons,7 and matrix elements like various quark conten8

Their treatment was in the spirit of Skyrme model2 where baryons composed ofM quarks can be
treated as simple solitons in the bosonic language. The bosonized theory of 2D QCD is the
WZW model with action on U(MN) group manifold:

S@ f ,A,Ā#5SWZW@ f #1
1

2p E d2x Tr@ iA f ]̄ f †1 iĀ f †] f2Af Āf †1ĀA#

1(
mi
2

2p
NmE d2x Tr~ f ai,ai1 f ai,ai

† !2
1

2ec
2 E d2x Tr FmnF

mn. ~2!

HereSWZW@ f # is the action of the WZW theory withf,U(MN). The]( ]̄) denotes the derivative
with respect toz5x1t( z̄5x2t), Nm denotes normal ordering at massm, and the bosonic mas
mi is related tomi

(q) andm.18 This theory, though quite interesting, does not permit the integ
bility analysis that is essential for Skyrme model approach.

Instead of the above formalism we use in this paper a gauged WZW model with actio
G5SU(M )3SU(N)3U(1) group manifold. The idea is to expressf,U(MN) matrix elements
in Eq. ~2! in terms of the group elementsg,G and makes the theory integrable. The key expr
sion for our approach is

f ai,a8 i 85
1
2 Tr g

21pai
~1!g~pa8 i 8

~1!
2 ipa8 i 8

~2!
!5 1

2 Tr g
21pai

~2!g~pa8 i 8
~2!

1 ipa8 i 8
~1!

!. ~3!

In the following we explain the motivation of our approach and notations used in Eq.~3!. The
WZW model on theG5SU(M )3SU(N)3U(1) group which is obtained using Eqs.~2! and~3!
is conformally equivalent to the original WZW model onF5U(MN) group, i.e., the difference o
their two Virasoro algebras,LF 2LG has vanishingc-number. This fact is due to the underlyin
symmetric space structure in Eq.~3!. Reference 11 indeed shows that all possible subalgebra
classical algebra which are conformally embedded to a larger groupF can be found directly from
the known classification of symmetric spaces. The symmetric spaceG9/G for our concern is the
AIII-type Grassmann manifold withG85SU(M1N). Related with this conformal embeddin
structure is the theorem due to Goddard, Nahm, and Olive10 ~GNO for short!; a necessary and
sufficient condition for the algebraic coincidence of Sugawara energy momentum tensor wi
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of the free fermions is there exists a groupG8,G such thatG8/G is a symmetric space with th
fermions transforming underG just as the tangent space toG8/G does. Based on this theorem the
found all the fermionic theories for which an equivalent WZW bosonic action can be constru
Bosonization of 2D QCD exactly fits in this category withF5U(MN), G85SU(M1N), and
G5SU(M )3SU(N)3U(1) groups. It is interesting to note that there is no symmetric sp
which hasG5SU(L)3SU(M )3SU(N)3U(1) which means fermions at most have two qua
tum numbers, flavor and color. Let us express the group elementsg,G8 which also belongs to the
groupG as (M1N)3(M1N) matrix:

g5S gN,SU~N! 0

0 gM,SU~M !
D euT, ~4!

with

T5
2 i

M1N SMIN3N 0

0 2NIM3M
D . ~5!

Type AIII space, called the Hermitian symmetric space, has the complex structure allowin
lowing decomposition. Itsp generators, the vector space complement of Lie algebrag of G in
g8 of G8, i.e., g85g%p, can be partitioned intoMN families having two elements each:pai

(1) ,
pai
(2) ~a51,M ; i51,N!. Explicitly their matrix elements are (pai

(1)) lm5da1N,md i ,l
1da1N,ld i ,m( l ,m51,M1N) and (pai

(2)) lm52 ida1N,md i ,l1 ida1N,ld i ,m . They satisfy the follow-
ing commutation relations:

@T, pai
~1!#5pai

~2! , @T, pai
~2!#52pai

~1! . ~6!

Using propertiespai
† 5pai and Trpai

(k)pa8 i 8
(k8)52daa8d i i 8dkk8 , we can easily show that

g21pai
~1!g5 1

2f ai,a8 i 8~pa8 i 8
~1!

1 ipa8 i 8
~2!

!1 1
2f ai,a8 i 8
* ~pa8 i 8

~1!
2 ipa8 i 8

~2!
!. ~7!

Then the unitarity off is proved as

2daa8,i i 85Tr~g21pai
~1!g!~g21pa8 i 8

~1! g!52~ f f †!aa8,i i 8 . ~8!

The equality of the first and second expressions forf in Eq. ~3! can be shown using the relatio
e2uTpai

(1)euT5cosupai
(1)2sinupai

(2) and the fact that U~1! commutes with every elements ofG.
We now express the bosonic currentsCa8 i 8,ai

m(M ) ( f21] f )ai,a8 i 8 and Ca8 i 8,ai
n(N) ( f21] f )ai,a8 i 8 in

terms of the groupG bosonic currents using Eq.~3!. HereCa8 i 8,ai
m(M ) andCa8 i 8,ai

n(N) are defined as

@Tm
~M ! , pai

~1!2 ipai
~2!#5 i ~pa8 i 8

~1!
2 ipa8 i 8

~2!
!Ca8 i 8,ai

m~M ! , @Tn
~N! , pai

~1!2 ipai
~2!#5 i ~pa8 i 8

~1!
2 ipa8 i 8

~2!
!Ca8 i 8,ai

n~N! ,
~9!

whereTm
(M )(m51,M221) andTn

(N)(n51,N221) are generators of Lie algebrag85su(m1n)
corresponding to the subalgebrasu(m) and su(n) each. They are normalized as TrTm

(M )Tm8
(M )

52dmm8 , Tr Tn
(N)Tn8

(N)
52dnn8 , and TrTm

(M )Tn
(N)50. Explicitly Ca8 i 8,ai

m(M )
52 id i i 8(Tm

(M ))a81N,a1N

andCa8 i 8,ai
n(N)

5 idaa8(Tn
(N)) i ,i 8 , and they have the following properties:

@pai
~1!2 ipai

~2! , pa8 i 8
~1!

1 ipa8 i 8
~2!

#522iCai,a8 i 8
m~M ! Tm

~M !22iCai,a8 i 8
n~N! Tn

~N!14i
M1N

MN
daa8d i i 8T ~10!

and
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Cai,a8 i 8
m~M ! Ca8 i 8,ai

m8~M !
522Ndmm8 , Cai,a8 i 8

n~N! Ca8 i 8,ai
n8~N!

522Mdnn8 , Cai,a8 i 8
m~M ! Ca8 i 8,ai

n~N!
50. ~11!

Using all these properties the SU(M ) currentCa8 i 8,ai
m(M ) ( f21] f )ai,a8 i 8 becomes

1
2Ca8 i 8,ai

m~M !
~ f21!ai,a9 i 9 Tr g

21pa9 i 9
~1! g@g21]g, ~pa8 i 8

~1!
2 ipa8 i 8

~2!
!#

5 iCa8 i 8,ai
m~M ! daa9d i i 9Ca9 i 9,a8 i 8

m8~M !
~g21]g!m8

~M !
522iN~g21]g!m

~M ! , ~12!

where g21]g5(g21]g)m
(M )Tm

(M )1(g21]g)n
(N)Tn

(N)1]uT. Similarly the SU(N) current is
Ca8 i 8,ai
n(N) ( f21] f )ai,a8 i 8522iM (g21]g)n

(N) and U~1! current is (f21] f )ai,ai5 iMN]u. These ex-
pressions show that the currents satisfy level-N SU(M ) and level-M SU(N) Kac–Moody algebras
each, which can be understood as the bosonic correspondent of the GNO result.10

The action of gauged WZW theory, Eq.~2!, can also be expressed in terms of the element
groupG. For example, the kinetic term is calculated to be

~ f21] f !ai,a8 i 8~ f
21]̄ f !a8 i 8,ai

52N~g21]g!m
~M !~g21]̄g!m

~M !12M ~g21]g!n
~N!~g21]̄g!n

~N!2MN]u]̄u

5M Tr g1
21]g1g1

21]̄g11N Tr g2
21]g2g2

21]̄g22MN]u]̄u, ~13!

whereg1(g2) means the group elementg in Eq. ~4! with gM5euT51(gN5euT51). When we
take the gauge fieldAai,a8 i 85Am(Tm

(M ))a1N,a81Nd i i 8 , terms containing gauge field are also e
pressed byA5AmTm

(M ) andg. In this way the gauged WZW action, Eq.~2!, of MN3MN matrix
f can be rewritten as an action of (M1N)3(M1N) matrix g:

MSWZW@g1#1NSWZW@g2#2
1

2ec
2 FmnF

mn1
mi
2

2p
Nm Tr~g1g2e

uT!21pai
~1!~g1g2e

uT!pai
~1!

1E d2xF2
MN

8p
]u]̄u1

N

2p
Tr~ iAg2]̄g2

211 iĀg2
21]g22Ag2Āg2

211AĀ!G . ~14!

To treat the gauge field we follow the prescription of Ref. 9. First take the gaugeĀ50 and
integrate out theA field to obtain an action having2(ecN/4p)2*d2x Tr H2. HereH is defined by
]̄H5 ig2]̄g2

21 with the boundary conditionH(2`,z̄)50. In the strong coupling limit
ec /mi→` the fieldsg2 which contribute toH will become infinitely heavy and can be ignore
We then get the low-energy effective action with a substitutiong251 and a suitable identification
of the massmi . To make an integrable theory from the QCD theory in Eq.~14!, we take two
modifications on the theory together withg251; take the massmi50 excepti51 and add an
interaction term of Thirring type2@p/2M (N11)#C̄aig1CaiC̄a8 i 8g2Ca8 i 8 . The action corre-
sponding to the integrable part of the effective theory, which we will explain below, is

S5MS@ l #1M
m2

2p E d2x Tr l21plp, ~15!

wherem is related to the quark massm1 .
18 Here l andp are (N11)3(N11) matrices

l5S gN,SU~N! 0

0 1D S eif ••• 0

0 eif

•••

0 e2 iNf

D ,

~16!

J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e
As the
d

liton
ionic
ns by
e the

The

s the
, for

3992 K. H. Han and H. J. Shin: Grassmann manifold bosonization of 2D QCD

¬¬¬¬¬¬¬¬¬¬
p5S 0 0 ••• 1

0 0 ••• 0

•••

1 0 ••• 0

D ,
with f5@21/(N11)#u. The assumption that onlyi51 fermions are massive is natural when w
consider the fact that top quark is much more massive than other quarks in the real world.
U~1! current is bosonized asJ5C̄aig1Cai→ i (MN/2p)]u, U(1) current interaction is bosonize
to be (1/8p)@MN2/(N11)#]u]̄u and shifts the coefficient of the kinetic term foru in the action.
This gives the kinetic term forf in (M /8p)Tr l21] l l 21]̄ l of Eq. ~15! to be2(1/8p)@MN/(N
11)#]u]̄u. As this term does not contribute to the potential in the bosonic picture, the so
configuration originated from the degeneracy of the vacuum is maintained. In the ferm
picture the current interaction term contributes to the scattering process between solito
creating or annihilating fermion–antifermion pairs such that they dress the solitons. Not
current interaction becomes negligible when we take the large-N or large-M limit in the fermionic
picture, while the relative contribution to the kinetic term remains finite in bosonic picture.
second term in the action is originated from the mass term and is explicitlye2 i (N11)f(gN)11

21

1ei (N11)f(gN)11, which coincides with the result from Eq.~14!. So 2D QCD with a massive
fermion is bosonized to be an integrable theory deformed by the U~1! current interaction term.

III. INTEGRABILITY, SOLITONS, AND CONSERVATION LAWS

The action in Eq.~15!, especially the mass term bilinear inl , permits the equation of motion
to be expressed in a zero curvature form, leading to the integrable theory.12,13To see this, we first
apply the variation onl to obtain the equation of motion:

$2 ]̄~ l21] l !2m2@p, l21pl#% l21d l50. ~17!

Using the simple relation

]~ l21pl !1@ l21] l , l21pl#50, ~18!

Eq. ~17! can be recasted in a zero curvature form:

F]1 l21] l1lp, ]̄2
m2

l
l21plG50. ~19!

The integrability of the theory introduces the following Backlund transformation~BT!:15

l21] l2 l̃21] l̃1m2h@ l21pl̃,p#50,
~20!

h]̄~ l21pl̃ !1 l21pl2 l̃21pl̃50,

whereh is a BT parameter characterizing the solitons. The Backlund transformation offers u
ability to calculate the one-soliton solution of the theory starting from the vacuum solution
which l̃51, and multi-soliton solutions using non-Abelian superposition rules.15 When we param-
etrize l for one-soliton as
J. Math. Phys., Vol. 38, No. 8, August 1997
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l5S eiw

1

•••

1

e2 iw

D , ~21!

the BT becomes

]w22m2h sin w50,
~22!

h]̄w22 sinw50.

The one soliton solution that can be obtained from Eq.~22! is the well-known sine–Gordon
soliton, which in the static case is14

w~x!52 tan21 e4m~x2x0!. ~23!

This solution interpolates two different vacuua of the theory, i.e.,w(x→2`)50 andw(x→`)
5p, which are given by the minimum of potential2(Mm2/2p)Tr l21plp
52(Mm2/p)cos 2w, i.e., w5np.

Another important aspect of the integrable theory is it has infinitely many conse
quantities.13 The interpretation of the zero curvature equation~19! as a compatibility condition of
two linearized equations permits us to write the conserved currents in an iterative form.13 Let us
decompose the (N11)3(N11) matrix l21] l and l21pl as follows:

l21] l5S a1d c 0

2c† e 0

0 0 a2d
D , l21pl5S 0 0 r2 is

0 0 q†

r1 is q 0
D , ~24!

wherec andq are 13(N21) matrices whilee is an (N21)3(N21) matrix with propertye
52e†. Herea and d are pure imaginary number whiler and s are real. Then the conserve
currents are calculated iteratively with these matrix elements by the following formulas:

a i5
21

m2 H ~]2a1e!a i212
1

2
c†~c i211b i21!J ,

b i5
21

2m2 ~]b i211ca i211dc i21!,
~25!

Ji5]c i5
1

m2 H S c]2ac1ce1
1

2
dcDa i211

1

2
~d]2cc†!b i212

1

2
~cc†2d2!c i21J ,

J̄i5 ]̄c i52qa i212 isb i212rc i21 .

Now stating witha05b050 andc051, all higher currents satisfying]̄Ji5] J̄i can be calculated
For i51, the conservation law becomes

1

2m2 ]̄~cc†2d2!5 ]̄r . ~26!
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This is just the conservation of energy. Higher-order conserved currents in general becom
local. For example,

J25
1

2m4 H cS ]2a1e1
d

2D c†2 1

2
~d]2cc†!dJ 1J1c1 ,

~27!

J̄25
21

2m2 ~qc†2 isd!1 J̄1c1 .

This, however, can be made local if we subtract nonlocal terms containingc1 from currents. Note
that the nonlocal terms themselves satisfy the conservation law,]̄(J1c1)5]( J̄1c1). Similarly the
third-order currents after subtracting nonlocal terms containingc1 andc2 are

J35
21

2m6 cS ]2a1e1
d

2D
2

c†2
1

4m6 S cc†2 d2

2 D ~cc†2d2!1
1

8m6 ~d]2cc†!~]d2cc†!,
~28!

J̄35
1

2m4 qS ]2a1e1
1

2
dD c†2 1

4m4 is~]d2cc†!.

These conservation laws can be directly checked using the equations of motion~17! and~18! that
can be expressed in a new form as

]̄a5 ]̄e50, ]̄c1m2q50, ]̄d12ims50,

]q1~a2d!q2~r1 is!c2qe50,
~29!

]r22ids1 1
2 ~cp†1pc†!50,

]s12idr1
i

2
~cp†2pc†!50.

These infinitely many conservation laws guarantee the shape-preserving property of soliton
collisions and will be helpful in fixing the scattering amplitudes.19 The 2D QCD is an almos
integrable system and the difference from the exactly integrable system is the change
coefficient of U~1! kinetic term. We speculate the baryons after collision can have zero-so
quantum fluctuations around them, making a slight deformation of solitons.

IV. DISCUSSIONS

Finally we point out the different nature of quantum fluctuation around solitons of pre
theory from the conventional one.9 Usually the quantum fluctuation is described by the ma
l (x,t)5A(t) l 0(x)A

21(t),5 where

A5S z1 y2 ••• yN 0

z2 0

ai j

zN

0 0 z

D . ~30!
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This form describes finite-energy configuration around solitons when the soliton has the pr
l 0(x)→1 asx→6`. In the present theoryl 0(x)→” 1 whenx→`, andl (x,t) does not correspond
to finite-energy configuration. Indeed the mass term is

Tr l21plp2Tr l 0
21pl0p52~cos 2w2cosw!~z1z1*21!. ~31!

As the solitonw→p whenx→`, the energy of the new configuration becomes infinite except
the caseuz1u→1 asx→`. Similarly the term@A21Ȧ, l 0#@A

21Ȧ, l 0
†# contained inS0@Al0A

21#
2S0@ l 0# becomes

4~12cosw!$żi* żi1 ż* ż1~zi* żi !
21~z* ż !2%, ~32!

which also becomes infinite except in the caseuz1u→1. However, when we takeuz1u51 without
dependence onx, it only resultsl (x,t)5 l 0(x). Sox-dependence ofz1 andA is necessary to make
a finite-energy configuration, resulting in a pulsating solution. The detailed study of this con
ration is not performed yet and we defer it for future analysis.

Recently there appears extensive development called the decoupled bosonization.19–21 It
bosonizes 2D QCD by rewriting the theory in terms of gauge-invariant fields and desc
massless fermions in terms of positive and negative level WZW models, ghosts, and m
bosonic excitations. Like our formalism it also has led to interesting insights into the charac
tics of the model, such as its integrability, degeneracy of the vacuum, and higher sym
algebras. Also, its integrability condition is valid for the quantum theory as well. However,
model displays a complicated set of constraints, and the expression for the integrability is
cal. So it seems difficult to find explicitly the classical soliton solutions to analyze the me
spectrum and their physical properties using the method of the Skyrme model. In additio
integrability condition does not survive for the massive case in this approach.20 It can be thought
that our formulation, especially the method treating the mass term, could find interesting ap
tion in the decoupled formulation. One interesting common feature shared by two formulati
the so-called quasi-integrability, that is, particle pair production is not entirely suppresse21 It
seems worthwhile to make a detailed analysis of two formulations simultaneously and m
simple and exact bosonization formulation taking merit of each formalism.
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We elucidate the behavior of the operator (p21m2)1/22a/r near the critical value
a5ac where it ceases to be bounded below, by obtaining a familyH(z) of opera-
tors which is self-adjoint holomorphic in a domain including all realz.

2Aac2ac8, and such thatH(Aac2a)(a<ac) is just the operator (p21m2)1/2

2a/r or its Friedrich extension, whileH(2Aac2a)(ac8,a,ac) is another self-
adjoint extension. The operatorsH(z) ~z real! are shown to be positive, and to have
only discrete spectrum belowm. The eigenvalues are then analytic functions of
Aac2a neara5ac ~and become the eigenvalues of a non-self-adjoint operator
whena.ac!. We show that these eigenvalues cannot vanish, but that the lowest
eigenvalue ofH(2Aac2a) goes to zero whena→ac8 . TheL.0 eigenvalues are
analytic ina at a5ac . © 1997 American Institute of Physics.
@S0022-2488~97!01307-8#

I. INTRODUCTION

The ‘‘square root Coulomb’’ equation is the object of continuing interest.1 The motivation of
this work is to understand a peculiar behavior of the operatorH5Ap21m22a/r near the critical
value of the coupling constant. General properties of this operator have been studied in
Due to dom(Ap21m2)5dom(p),dom(1/r ), the natural domain of definition ofH is dom(p).
There is a first critical coupling constantac85 1

2 such thatH is self-adjoint whena,ac8 , and
essentially self-adjoint whena5ac8 , and there is a second coupling constantac52/p such that
H is positive whena<ac , and is unbounded below whena.ac . When ac8,a<ac , the
Friedrich extension ofH is naturally considered as the physically relevant self-adjoint opera
Thusac may be considered as the truly critical value. It is shown in Ref. 2 fora,ac thatH has
continuum spectrum in@m,`@ and only discrete eigenvalues in@0,m@ , and a lower boundE/m
>A12(a/ac)

2 of the spectrum is obtained. Then, considering the passage from ‘‘positive’’ w
a<ac , to ‘‘unbounded below’’ whena.ac , apparently good educated guesses, comforted
the lower bound of Ref. 2, are that the lowest eigenvalueE0(a) of H goes to zero when
a→ac , and that 0 belongs to the spectrum ofH whena5ac . Surprisingly, while true for Dirac
and Klein–Gordon equations, this has been disproved3 in the present case by finding lower boun
E0(ac)>cm (c.0). There was already numerical evidence for that.4

We find that this strange behavior has a simple mathematical~if not physical! explanation. It
turns out that the operatorH is holomorphic ata5ac , as a function of the parameterz
5Aac2a instead ofa. After a reachesac , the analytic continuation~which corresponds to
negativez! is given by another self-adjoint extension~other than the Friedrich’s one! of H
5Ap21m22a/r , with a going down.a can go down untilac8 , and it is only then that the lowes
eigenvalue goes to zero.

a!Electronic mail: leyaouan@qcd.th.u-psud.fr
b!Electronic mail: oliver@qcd.th.u-psud.fr
c!Electronic mail: raynal@qcd.th.u-psud.fr
d!Laboratoire associe´ au Centre National de la Recherche Scientifique—URA D0063.
0022-2488/97/38(8)/3997/16/$10.00
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Due to the boundedness ofAp21m22p, many general properties are the same
Ap21m22a/r and p2a/r . A very useful tool that we shall use for the study of these l
operators is the unitary Mellin transformation.

All the paper except Sec. VI is concerned with theL50 subspace. In Sec. II we determin
closedness property~theorem 1! and the adjoint~theorem 2! of the operatorp2a/r @defined in
dom(p)#, for anya in the complex plane. In Sec. III, we define a family of operators depen
on a parameterb, which, for suitableb, includes all the usual (a.ac) operatorsp2a/r , and we
show that this family is holomorphic and~using the Sec. II results! self-adjoint~theorem 3!. In
Sec. IV we establish spectral properties~theorem 4! of the self-adjoint members of this famil
~after addingAp21m22p!. In Sec. V, as a by-product of previous results, we obtain a simple
explicit description whenaÞac8 ~theorem 5! of the operators inp-representation, including do
mains. Finally in Sec. VI, we show thatAp21m22a/r is analytic ina at a5ac when restricted
to a L.0 subspace~theorem 6!.

II. USE OF THE UNITARY MELLIN TRANSFORMATION

Many general properties are the same for the operatorsAp21m22a/r andp2a/r , due to
the boundedness of differenceB5Ap21m22p5m2/(Ap21m21p). In this section, we concen
trate on the operatorsp2a/r . A very useful tool for their study is the unitary Mellin transform
tionM:

Mc~s!5
1

A2p
E
0

`

dp p21/22 isc~p!, ~1!

M21w~p!5
1

A2p
E

2`

`

ds p21/21 isw~s!. ~2!

The operatorp2a/r becomes

MS p2
a

r DM21w~s!5F12aVS s1
i

2D Gw~s1 i ! ~3!

with

V~z!5
tanh~pz/2!

z
. ~4!

This can be obtained by first dealing with the densely defined bounded operator (1/Ap)(1/r )
3(1/Ap) simply becoming the multiplication operator by the bounded functionV(s).

Let us write the following simple pairs of transforms that will be useful (m.0):

wa,m~s!5
m2 is

s2 ia
↔ ca,m~p!5H iA2pma

u~p2m!

p1/21a ~Rea!.0)

2 iA2pma
u~m2p!

p1/21a ~Rea!,0.
~5!

Let us consider in some detail domain questions, since they are basic in our proble
equivalent property tocPdom(pl)(l.0) ~i.e., c, plcPL2! for the Mellin transformw
5Mc is thatw(s) is theL2-limit on the real axis of a functionw(z) holomorphic in the strip
J. Math. Phys., Vol. 38, No. 8, August 1997
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$s1 i t ;0,t,l% such that the functionss°w(s1 i t ) are uniformly bounded inL2 for 0,t
,l. Moreover, w(z) is uniquely determined byw(s), the L2-limit w(s1 il) exists, and
s°w(s1 i t ) is the Mellin transform ofptc for all 0<t<l.

The natural domain ofp2a/r is dom(p2a/r )5dom(p) because dom(p),dom(1/r ). Then
we see that the right-hand side of formula~3! has an immediate meaning for any Mellin transfor
w5Mc of a functionc in dom(p), sincew(s1 i ) is in L2 andV(s1 i /2) is bounded.

The easy proof of the following theorem illustrates the usefulness of Eq.~3!.
Theorem 1:The operator p2a/r is closed iffa does not belong to the imageD0 of R by the

function s°V(s1 i /2)21.
If a is not a value ofV(s1 i /2)21, then the functionu12aV(s1 i /2)u, having no zero, is

bounded below~away from zero! since we haveV(s1 i /2)→0 whens→6`. Let us show that
this implies the closedness ofp2a/r . Let wnPdom(p) be a sequence converging towPL2 such
that (p2a/r )wn is also convergent. Then it follows from Eq.~3! that the sequencewn(s1 i )
5pwn(s) is alsoL

2-convergent. The closedness of the multiplication operator byp then tells us
thatwPdom(p) and thatwn(s1 i )→w(s1 i ). Finally from Eq.~3! and the~upper! boundedness
of 12aV(s1 i /2), we have (p2a/r )wn→(p2a/r )w, which proves the closedness ofp2a/r .

On the contrary, ifa5V(s01 i /2)21 then, taking into account the zeros5s0 of 12aV(s
1 i /2), it is easy to see that the sequence

wn~s!5
1

s2s02 i2 i /n
→w~s!5

1

s2s02 i

satisfies the condition above, namely,L2-convergence of the sequence@12aV(s1 i /2)#/@s2s0
2 i /n#. Then the inverse Mellin transformiA2pu(p21)/p3/22 is0 of the function 1/(s2s02 i ),
which does not belong to dom(p2a/r )5dom(p), nevertheless belongs to the domain of t
closure ofp2a/r . Thereforep2a/r is not closed. h

Corollary: For a real, the operator p2a/r is closed iffaÞac85 1
2.

Useful properties of the functionV(z) are displayed by the representation

V~z!5
4

p (
n50

`
1

~2n11!21z2
. ~6!

Notably, V(z) is real iff z is real or pure imaginary. Then the only real value of the funct
V(s1 i /2)21 is a5V( i /2)2151/2, obtained fors50. h

Next we determine the adjoint (p2a/r )†. As seen on Eq.~3!, p2a/r is of the formBA with
B bounded andA5p self-adjoint. Therefore, the following lemma will be useful:

Lemma 1: Let B be a bounded operator and A a self-adjoint operator. A functionc belongs
to the domain of(BA)† iff B†cPdom(A), and then we have(BA)†c5AB†c.

By definition, a pair (c,c8) belongs to the graph of (BA)† iff

^BAwuc&5^wuc8& ;wPdom~A!.

SinceB is bounded, this is equivalent to

^AwuB†c&5^wuc8& ;wPdom~A!,

and sinceA is self-adjoint, this is equivalent toB†cPdom(A) andc85AB†c. h

We decompose the complexa plane into three subsets with different behavior ofp2a/r :
D0 : set of values ofV(s1 i /2)21 for s real,
D1 : set of values ofV(z)

21 for uF(z)u,1/2;
J. Math. Phys., Vol. 38, No. 8, August 1997
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D2 : complementary set ofD0øD1 .
The curveD0 , already involved in theorem 1, separates the plane into the connected comp
D1 andD2 ~see Fig. 1!.

Theorem 2: In all cases, (p2a/r )† is an extension of p2a* /r , given by

domS S p2
a

r D
†D5H wPL2;F12a*VS s2

i

2D GwPdom~p!J ,
S p2

a

r D
†

w~x!5F12a*VS s1
i

2D Gw~s1 i !. ~7!

~1! WhenaPD2 , we have

S p2
a

r D
†

5p2
a*

r
.

~2! WhenaPD1 , let z0 be a solution ofa5V(z0)
21 with uF(z0)u,

1
2. Then the domain of

(p2a/r )† is the set of functions of the form

w~s!5c~s!1
c1

s2 i /22z0*
1

c2
s2 i /21z0*

~ i f z0Þ0, i.e., aÞac!, ~8!

w~s!5c~s!1
c1

s2 i /2
1

c2
~s2 i /2!2

~ i f z050, i.e.,a5ac! ~9!

with cPdom(p) and c1 , c2PC.
~3! WhenaPD0 , then (p2a/r )† is the closure of p2a* /r .
Applying the lemma 1 withB512aV(s1 i /2) and A5p, we obtain thatwPdom((p

2a/r )†) iff B†w(s)5@12a*V(s2 i /2)#w(s) belongs to dom(p), and that (p2a/r )†5pB† is
given by (pB†w)(s)5(B†w)(s1 i ). This is Eq. ~7!. Noticing thatV(z2 i /2) is analytic and

FIG. 1. The three subsetsD0 ,D1 ,D2 of the complexa plane with different behavior ofp2a/r ~see theorem 2!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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bounded in any strip2 1
21e,F(z), 3

22e, it is clear that ifw(s) belongs to dom(p), so does
@12a*V(s2 i /2)#w(s). Therefore (p2a/r )† is an extension ofp2a* /r .

Case 1.WhenaPD2 , the function 12a*V(z) has no zero in the stripuF(z)u< 1
2. Then the

function u12a*V(z)u is bounded below~away from 0! in the strip, because we have sayu1
2a*V(z)u. 1

2 for uF(z)u< 1
2, uR(z)u>X, X large enough, and in the compact setuF(z)u< 1

2,
R(z)u<X, the lower bound is attained and is not 0. Then@12a*V(z)#21 is analytic in uF(z)u
, 1

2 and bounded inuF(z)u< 1
2, and this implies that if@12a*V(s2 i /2)#w(s) belongs to

dom(p), then so doesw.
Case 2.WhenaPD1 , we have a zeroz5z0* of 12a*V(z) in the stripuF(z)u, 1

2. To know
the number of zeros, we may look at the image byV(z) of the pathi /22X→ i /21X→2 i /2
1X→2 i /22X→ i /22X. It is a simple loop enclosing the values attained byV(z) for uF(z)u,
1
2, uR(z)u,X, and it is covered twice, which shows that each value is attained twice. Then
may be only two zeros, and sinceV(z) is even, the other one isz52z0* ~a double zero ifz0
50!.

It is easily seen that, due to these zeros, the functions@12a*V(s2 i /2)#/(s2 i /26z0* ) belong
to dom(p), so that the domain~8! is included in dom((p2a/r )†).

Now if @12a*V(s2 i /2)#w belongs to dom(p), we can only say thatw(z) is meromorphic in
0,F(z),1, with possible simple poles atz5 i /21z0* andz5 i /22z0* preventingwPdom(p). By
subtracting these poles, we are reduced to prove the following: Ifc(s)5@12a*V(s
2 i /2)#w(s) belongs to dom(p) and w(z) is holomorphic in the strip 0,F(z),1, thenw(s)
belongs to dom(p).

This amounts to prove uniformL2-boundedness of the functionss°w(s1 i t ). Let C1 be an
upper bound ofuw(z)u in a rectangleR5$z;e<F(z)<12e,uR(z)u<X% containingz5 i /21z0*
and z5 i /22z0* as interior points. LetC2.0 be a lower bound ofu12a*V(z2 i /2)u in $z;0
<F(z)<1%2R. Then, for 0<t<1, we have

E dsuw~s1 i t !u2<C2
22E dsuc~s1 i t !u212XC1

2

andwPdom(p) is proved.
We have treated the casez0Þ0. The casez050 presents no more difficulty.
Case 3.Since (p2a/r )† is a closed extension ofp2a* /r , its domain contains the domain o

the closure ofp2a* /r . We have to prove the converse. So, givenwPdom((p2a/r )†), we have
to find a sequencewnPdom(p)5dom(p2a* /r ) which converges tow and such that the se
quence (p2a* /r )wn is convergent. Letz5s01 i andz52s0 be the zeros of 12a*V(z2 i /2) in
0<F(z)<1. From @12a*V(s2 i /2)#wPdom(p), we infer that c5@(s1s0)(s2s02 i )#/@(s
2 iA)2#wPdom(p) ~A.1 fixed!, because the function@(z1s0)(z2s02 i )#/@(z2 iA)2#@1
2a*V(z2 i /2)#21 is bounded and holomorphic in the required domains. Then for the sequ
wn , we take

wn~s!5
~s2 iA !2

~s1s01 i /n!~s2s02 i2 i /n!
c~s!.

Clearly we havewnPdom(p). Next we have

wn~s!5
~s1s0!~s2s02 i !

~s1s01 i /n!~s2s02 i2 i /n!
w~s!

and this shows the limitwn→w because the multiplication operators by (s2s02 i )/(s2s02 i
2 i /n) converge uniformly to 1 and the multiplication operators by (s1s0)/(s1s01 i /n) con-
verge strongly to 1. Finally we have
J. Math. Phys., Vol. 38, No. 8, August 1997
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s2s0
s1 i2 iA

wn~s1 i !5
s2s0

s2s02 i /n

s1 i2 iA

s1s01 i1 i /n
c~s1 i !

which shows that the left-hand side is a convergent sequence. Then, the sequence

S p2
a*

r Dwn~s!5F12a*VS s1
i

2D Gwn~s1 i !

is also convergent because (s1 i2 iA)/(s2s0)@12a*V(s1 i /2)# is bounded, and this ends th
proof. h

Corollary 1: For a real, the operator p2a/r is self-adjoint whena,ac8 , closed and sym-
metric with defect indices~1, 1! whena.ac8 , and essentially self-adjoint whena5ac8 .

Only the casea.ac8 needs a proof. The defect indices (n,n8) satisfyn1n852 since, ac-
cording to Eq.~8! or ~9!, dom(p2a/r ) is a codimension 2 subspace of dom((p2a/r )†). Since
p2a/r , being a real operator, admits self-adjoint extensions, we have alson5n8. h

When ac8,a<ac , the operatorp2a/r is positive and is not essentially self-adjoint. I
self-adjoint extensions form a one-parameter family~defect indices~1, 1!!, in which the Friedrich
extension is considered as the physically relevant one. We can now give a completely e
description of the Friedrich extension’s domain.

Corollary 2: Assumeac8,a<ac . Then the Friedrich extension of p2a/r is the restriction of
(p2a/r )† to the set of functionsw of the form

w~s!5c~s!1
c

s2
i

2
1 ib

~cPdom~p!, cPC! ~10!

whereb is the solution of V( ib)215b/tan(pb/2)5a which satisfy21/2,b<0.
The domain of the Friedrich extension is the intersection of the domain of (p2a/r )† and of

the domainQ of the closure of the quadratic form associated top2a/r .5 Whenac8,a,ac , it is
well known thatQ5dom(Ap). According to Eq.~8!, the functions in dom((p2a/r )†) are those
of the form

w~s!5c~s!1
c

s2
i

2
1 ib

1
c8

s2
i

2
2 ib

~cPdom~p!, c,c8PC!.

Since the first two terms belong to dom(Ap) and the third one does not, the conditionw
Pdom(Ap) is equivalent toc850, and Eq.~10! is obtained.

When a5ac , we no longer haveQ5dom(Ap), and we must look more closely at th
quadratic form. In the Mellin representation, it is

K c1uS p2
ac

r Dc2L 5E dsc1~s!* F12acVS s1
i

2D Gc2~s1 i !

5E dsc1S s1
i

2D * @12acV~s!#c2S s1
i

2D
wherec1 , c2Pdom(p), and we have used the holomorphy ofc1(z* )* and ofc2(z) to shift the
integration axis. It will be enough to show thatwPQ implies (s2 i /2)/(s2 iA)wPdom(Ap) ~A
.1 fixed! since with Eq. ~9! this will imply Eq. ~10! and show that the restriction of (p
2 a/r )† to Eq.~10! is an extension of the Friedrich extension, and it will be proved in theore
that the restriction of (p2a/r )† to Eq. ~10! is self-adjoint.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Now, if wPQ , there exists a sequencewnPdom(p), L2-converging tow, and such that

K wn2wmuS p2
ac

r D ~wn2wm!L→0 when n,m→`.

Since 12acV(s)>0, this last condition is equivalent to saying thatA12acV(s)wn(s1 i /2) is a
convergent sequence. Then, the only zero of 12acV(s) being a double zero ats50, and 1
2acV(s) being bounded below whens→6` ~it converges to 1!, it is still equivalent to say that
the sequences/(s1 i /22 iA)wn(s1 i /2) is convergent. Writingcn(s)5(s2 i /2)/(s2 iA)wn(s),
we have cnPdom(p),dom(Ap), L2-convergence of Apcn(s)5cn(s1 i /2), and
L2-convergence ofcn(s) to (s2 i /2)/(s2 iA)w(s). Then the closedness of the multiplicatio
operator byAp implies that the limit (s2 i /2)/(s2 iA)w(s) of cn(s) belongs to dom(Ap). h

Corollary 2 sheds some light on what happens whena→ac . Forac8,a<ac , the domain of
(p2a/r )Friedrich is, in the Mellin representation, made up of functions meromorphic in 0,F(z)
,1, with a pole allowed atz5 i /22 ib, andb is the solution ofV( ib)215a which satisfy2 1

2

,b<0. Now, whena increases toac , b increases to 0~see Fig. 2!, and the pole location shifts
toward the real axis without reaching it. Then, continuity suggests to go on increasingb from
b50. The corresponding valuesa5V( ib)21 then decreases froma5ac . The pole location
reaches the real axis~and our functions cease to belong to the Hilbert space! only whenb5 1

2,
a5ac8!.

In the next section, we show indeed that, replacing the parametera by the parameterb which
controls the location of the pole, we obtain a family of operators holomorphic in a do
including the critical pointb50.

III. A SELF-ADJOINT HOLOMORPHIC FAMILY OF OPERATORS

First, let us recall Kato’s definition.5 Let H(z) be a family of operators in a Hilbert spaceH
defined forz in an open subsetD of C. When the operatorsH(z) are bounded, the holomorph
property is well known and usually easy to verify. In fact, various definitions, series expansi
derivability, in the uniform, strong or weak sense, are all equivalent. In the general cas
family H(z) is said to be holomorphic~in D! when the following conditions are met.

~1! For eachzPD, H(z) is closed.

FIG. 2. The link (a5b/tan(pb/2)) between the usual coupling parametera and the parameterb in terms of which
analyticity properties are more transparent.
J. Math. Phys., Vol. 38, No. 8, August 1997
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~2! For eachz0PD, there is a neighborhoodD0 of z0 , a Banach spaceK , and a family of
operatorsA(z):K°H defined forzPD0 , such that~for zPD0)

~2.1! the operatorsA(z) are bounded and form a holomorphic family,
~2.2! the operatorsH(z).A(z):K°H are bounded and form a holomorphic family,
~2.3! im(A(z))5dom(H(z)),

Assuming then thatD is symmetric with respect to the real axis, a holomorphic familyH(z) is
said to be self-adjoint when

~3! For eachzPD, one hasH(z)†5H(z* ). ~note that 3! ⇒1!!.
Clearly, if B is a self-adjoint bounded operator, thenH(z) is self-adjoint holomorphic iffB

1H(z) is. Then, due to the boundedness ofB5Ap21m22p, we may concentrate on the oper
tors p2a/r .

Let us define a family of operatorsHb . The domain ofHb is the set of functionsw in L2 such
that

c5
s2 i /21 ib

s2 iA
wPdom~p! ~11!

~A.1 is a fixed constant and nothing depends on it!. The action ofHb on wPdom(Hb) is

Hbw~s!5F12
V~s1 i /2!

V~ ib! Gw~s1 i ! ~12!

or more precisely:

Hbw5H F12
V~s1 i /2!

V~ ib! G s1 i2 iA

s1 i /21 ibJ pc ~13!

with c given by Eq.~11!. Even whenR(b)52 1
2, it is clear thatHbw is in L2. This definition

makes sense for any complexb satisfyingbÞ2n ~n nonzero integer! ~elseV( ib)50!.
The domain~11! of Hb admits a more explicit description whenuR(b)uÞ 1

2. It is

dom~Hb!5dom~p! if uR~b!u. 1
2 ,

dom~Hb!5dom~p!1H c

s2 i /21 ib
;cPCJ if uR~b!u, 1

2 . ~14!

ClearlyHb is an extension ofp2a/r for the valuea5V( ib)21 @see Eq.~3!#, because anyw
in dom(p) satisfy Eq.~11!. We have equality whenuR(b)u. 1

2, butHb is a proper extension whe
2 1

2<R(b), 1
2.

We must restrict the domainD of b, because property~3! fails for a range of values ofb.
Even property~1! ~closedness! fails whenR(b)5 1

2, because then we have dom(Hb)5dom(p) by
the following lemma 2, and thenHb5p2a(b)/r ) is not closed by theorem 1. The lemma 2 w
also be used in the proof of theorem 3.

Lemma 2: Let s0 be a real number. Then we havewPL2 and (s2s0)/(s2 iA)wPdom(p) iff
wPdom(p).
The ‘‘if’’ part being evident, let us prove the converse. Assume

wPL2, c5
s2s0
s2 iA

wPdom~p!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Considerwn5@(s2 iA)/(s2s01 i /n)#cPdom(p). We havewn5@(s2s0)/(s2s01 i /n)#w,
and the sequencewn is L2 convergent tow because the multiplication operator by (s2s0)/(s
2s01 i /n) is strongly convergent to 1. On the other hand,pwn(s)5wn(s1 i )5@(s1 i2 iA)/(s
2s01 i1 i /n)#c(s1 i ) is a convergent sequence. By the closedness of the multiplication ope
by p, we conclude that the limitw of thewn belongs to dom(p). h

The only condition we will need onD ~besidesR(b)Þ 1
2! is that, if bPD satisfy

uR(b)u. 1
2, then there is nob8 in the stripuR(b8)u< 1

2 such thatV( ib)215V( ib8)21. A simple
domain would beD5$22,R(b), 1

2%. Its image covers the wholea real axis~see Fig. 2,a
>ac is obtained withR(b)50!, but not the wholea plane. For generality, we will then take fo
D the largest such domain, which is the union of the strip2 1

2<R(b), 1
2 and of the reciprocal

image byV( ib)21 of the open subsetD2 ~see Fig. 1! of thea plane.
Theorem 3: The family of operators Hb defined by Eqs. (11) and (12) is a self-adjoi

holomorphic family forbPD.
Property~1! will be a consequence of property~3!. We verify first property~2!. For the space

K we take the Hilbert space dom(p), with the scalar product of the graph ofp:

^c1uc2&85^c1uc2&1^pc1upc2&5E dsc1~s!*c2~s!1E dsc1~s1 i !*c2~s1 i !.

For the operatorAb :K°L2 we take

Abc~s!5
s2 iA

s2 i /21 ib
c~s!.

Then we have

Hb Abc~s!5H F12
V~s1 i /2!

V~ ib! G s1 i2 iA

s1 i /21 ibJ c~s1 i !.

The verification of~2.1!, ~2.2! and ~2.3! is almost trivial. The operatorAb is bounded and holo-
morphic providedR(b)Þ 1

2, andHb .Ab is bounded and holomorphic when defined~bÞ2n, n
nonzero integer!, as easily verified even whenR(b)52 1

2. Finally, the image ofAb is the domain
of Hb by definition ofHb .

We verify property~3! by distinguishing three cases forbPD.
Case 1.uR(b)u. 1

2. ThenHb5p2a/r with a5V( ib)21, a value of which, by the choice o
D, is not taken byV(z)21 in the stripuF(z)u< 1

2. According to theorem 2, case 1, we therefo
have (Hb)

†5p2a* /r5Hb* .
Case 2.uR(b)u, 1

2. ThenHb is an extension ofp2a/r with a5V( ib)21, with (p2a/r )†

given by theorem 2, case 2. The functionsw in the domain of (p2a/r )† are those of the form

w~s!5c~s!1
c1

s2 i /22 ib*
1

c2
s2 i /21 ib*

~ if bÞ0!, ~15!

w~s!5c~s!1
c1

s2 i /2
1

c2
~s2 i /2!2

~ if b50! ~16!

with cPdom(p) and c1 ,c2PC. Furthermore, the condition~11! for w to be in the domain of
Hb is now equivalent to the condition thatw is of the form

w~s!5c~s!1c hb~s!, hb~s!5
1

s2 i /21 ib
~17!
J. Math. Phys., Vol. 38, No. 8, August 1997
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with cPdom(p)5dom(p2a/r ) andcPC ~see the proof of case 2 in theorem 2!. Now, (Hb)
† is

the restriction of (p2a/r )† to the set of functionsw of the form ~15! or ~16! which satisfy the
additional condition

^Hbhbuw&5^hbu~p2a/r !†w&

or

E ds F12
V~s2 i /2!

V~ ib* ! G 1

s2 i /22 ib* Fc~s!1
c1

s2 i /22 ib*
1

c2
s2 i /21 ib* G

5E ds
1

s1 i /22 ib* F12
V~s1 i /2!

V~ ib* ! GFc~s1 i !1
c1

s1 i /22 ib*
1

c2
s1 i /21 ib* G .

These are the integrals of the function@12V(z)/V( ib* )#(1/(z2 ib* ))@c(z1 i/2)1c1 /(z
2 ib* )1c2 /(z1 ib* )# on the linesz5s2 i /2 andz5s1 i /2. There is the simple polez5 ib*
between these lines, with a nonzero residue ifc1Þ0 becausez5 ib* is a simple zero of 1
2V(z)/V( ib* ). Then the equality above is satisfied iffc150, and the domain of (Hb)

† is the set
of functionsw of the form

w~s!5c~s!1
c

s2 i /21 ib*

with cPdom(p) andcPC. Comparing with Eq.~17!, one sees that (Hb)
†5Hb* .

When b50, the additional condition is the equality of the integrals on the lines thez5s
2 i /2 andz5s1 i /2 of the function@12V(z)/V(0)#(1/z)@c(z1 i /2)1c1 /z1c2 /z

2#. Again there
is the simple polez50 between them, with a non zero residue ifc2Þ0 becausez50 is a double
zero of 12V(z)/V(0), and weobtain thatHb50 is self-adjoint.

Case 3.R(b)52 1
2. Let us show thatHb is the closure ofp2a/r with a5V( ib)21. Ac-

cording to theorem 2, this closure is (p2a* /r )†, its domain is the set ofL2 functionsw such that

F12
V~s2 i /2!

V~ ib! GwPdom~p!, ~18!

and its operation is

S p2
a*

r D †w~s!5F12
V~s1 i /2!

V~ ib! Gw~s1 i !. ~19!

The operation~19! is the same as~12!, but condition~11! is apparently stronger than Eq.~18!
because in Eq.~18! we have the zeros52F(b) of 12V(s2 i /2)/V( ib) not present in Eq.~11!.
However, according to lemma 2, Eq.~18! is equivalent to

s2 iA

s1F~b! F12
V~s2 i /2!

V~ ib! GwPdom~p!,

and this is equivalent to Eq.~11!.
Then we are done since,Hb being the closure ofp2a/r , the adjoints (Hb)

† and (p
2a/r )† are equal and, by theorem 2, equal to the closure ofp2a* /r , itself equal toHb* ~by the
previous argument withb* in place ofb!.

Therefore we have (Hb)
†5Hb* for all bPD, and the proof is complete. h

Translating our result fromb to a, we may say thatp2a/r is analytic in the complexa plane
with the cut@ac ,`#, and extends through the cut to the domainD1 ~the image of 0,R(b), 1

2! in
J. Math. Phys., Vol. 38, No. 8, August 1997
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a second sheet. Furthermore, the branching pointa5ac is a simple square root singularity, and
completely eliminated by a change of parameter. Figure 3 shows the image in thea plane of a path
passing near the pointb50. This image goes around the critical pointa5ac image ofb50. The
path could as well pass exactly atb50 where there is no singularity. In term of the parameterb,
or as well in terms ofAac2a, there is nothing critical at the critical point.

IV. SPECTRAL PROPERTIES

We consider hereb real and in the range22,b, 1
2. According to theorem 3,Hb is self-

adjoint. The corresponding values ofa5b/tan(pb/2) go from2` to ac and back toac8 . When
22,b<0, Hb is just the operatorp2a/r or its Friedrich extension.

First let us show that the well-known positivity ofHb for 22,b<0 is also true for22
,b, 1

2.
Lemma 3: Assume22,b, 1

2. We have Hb>0.
Let w1 , w2Pdom(Hb). Introducingc i(s)5(s2 i /21 ib)/(s2 iA)w i(s), by definition~11! of

dom(Hb), we havec i(s)Pdom(p) and, by definition~13! of Hb , we have

^w2uHbw1&5E dsc2~s!*
s1 iA

s1 i /22 ib F12
V~s1 i /2!

V~ ib! G s1 i2 iA

s1 i /21 ib
c1~s1 i !.

Using the analyticity ofc2(z* )* and c1(z), and the fact thats52 i /26 ib are zeros of 1
2V(z1 i /2)/V( ib) ~a double zero ifb50!, we may shift the line of integration

^w2uHbw1&5E dsc2S s1
i

2D * s2 i /21 iA

s2 ib F12
V~s!

V~ ib!G s1 i /22 iA

s1 ib
c1S s1

i

2D . ~20!

Then this is positive whenw15w2 , since 12V(s)/V( ib)512a tan(ps/2)/s (a5b/tan(pb/2)
,2/p) is positive. h

Remark:From Eq.~20!, the quadratic form̂w2uHbw1& simply writes

^w2uHbw1&5E dsw2S s1
i

2D * F12
V~s!

V~ ib!Gw1S s1
i

2D . ~21!

Herew i(s1 i /2) is defined due to the meromorphy ofw i(z) in 0,F(z),1, and may have a pole
at s50 if b50, but thens50 is a double zero of 12V(s)/V( ib).

Reintroducing now the full kinetic energyT(p)5Ap21m2, let us define

Hb,m5Ap21m22p1Hb .

FIG. 3. Shows corresponding paths in theb anda planes for analytic continuation ofp2a/r . The path in thea plane
surrounds the critical valueac and goes into a second sheet. Also corresponding linesL1 ,L2 ,L3 ,L4 are shown.
J. Math. Phys., Vol. 38, No. 8, August 1997
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SinceAp21m22p is a bounded and positive operator, the operatorHb,m is self-adjoint, and when
22,b<0, it is just the operatorAp21m22a/r ~or its Friedrich extension!. When 0,b, 1

2, we
haveac8,a,ac , andHb,m is another self-adjoint extension ofAp21m22a/r .

According to the lemma 3, the spectrum ofHb,m is included in@0,̀ #. The following lemma,
a generalization of@Ref. 2, Lemma 2.6#, will give additional information on the spectrum.

Lemma 4: Assume22,b, 1
2 and m>0. The operator1/(Hb,m11)21/(T11) is compact.

Let a5b/tan(pb/2). SinceHb is an extension ofp2a/r , we have

~Hb,m11!c2~T11!c52
a

r
c

for any cPdom(T)5dom(p)5dom(p2a/r ). We may takec51/(T11) w with any wPL2.
Multiplying then by 1/(Hb,m11) on the left, we have

1

Hb,m11
2

1

T11
5a

1

Hb,m11

1

r t
1

r 12t

1

T11
~22!

for 0<t<1, using thatr215r2tr2(12t) ~as an identity with unbounded operators!.
Now, according to Eq.~11!, we have dom(Hb,m),dom(pt) when 0<t, 1

22b. Let us fix t
.0 satisfying this inequality andt,1. Then since dom(pt),dom(r2t) ~this is true for 0<t<
3
2! the operator 1/r

t 1/(Hb,m11) is everywhere defined. It is also closed, because 1/r t is closed and
1/(Hb,m11) is bounded, and then the closed graph theorem tells us that it is bounded. It i
easy to see that the densely defined operator 1/(Hb,m11) 1/r t is bounded, and from Eq.~22! we
are reduced to show that the operator 1/r 12t 1/(T11) is compact when 0,t,1.

Now, forR,P.0, the operatorAR,P5u(R2r )/r 12t u(P2p)/@T(p)11# is compact because
it is of Hilbert–Schmidt class. The simplest way to see this is to go back momentarily to t
dimensional space. Then the operatoru(R2ur u)/ur u12t u(P2upu)/@T(upu)11# is of Hilbert–
Schmidt class because the functionsu(R2ur u)/ur u12t andu(P2upu)/@T(upu)11# are square in-
tegrable. It applies the closed subspace ofL50 states into itself, andAR,P is its restriction to this
subspace. Next,A`,P51/r 12t u(P2p)/@T(p)11# is compact as the uniform limit ofAR,P when
R→`, the limit being uniform because the operatoru(P2p)/@T(p)11# is bounded and the
function u(R2r )/r 12t converges uniformly to 1/r 12t. Finally, A`,`51/r 12t 1/@T(p)11# is
compact as the uniform limit ofA`,P whenP→`, the limit being uniform because the operat
1/r 12t 1/(T11)12t is bounded and the functionu(P2p)/@T(p)11# t converges uniformly to
1/@T(p)11# t. h

Remark:The property dom(T2a/r ),dom(Ap), valid for the Friedrich extension and fo
a,ac , is crucial for the proof in Ref. 2. We have simply extended this proof us
dom(Hb,m),dom(pt)(0<t, 1

22b).
Lemma 4 implies that the essential spectrum is the same forHb,m and for T5Ap21m2.

Therefore we havesess(Hb,m)5@m,`@ , and the spectrum ofHb,m in @0,m@ is composed of
isolated eigenvalues with finite multiplicity. It is easy to see that these eigenvalues cannot v
because ifHb,mc050, we have

05^c0u~Ap21m22p!c0&1^c0uHbc0&,

both terms must vanish since they are positive~lemma 3!, and the vanishing of the first term
immediately givesc050.

A simple variational calculation shows that the lowest eigenvalue goes to zero whenb→ 1
2.

Let us take the trial wave functionc(s)5m2 is/(s2 i/21 ib) (m.0). We havecPdom(Hb,m)
according to Eq.~11!. The squared norm of this function is
J. Math. Phys., Vol. 38, No. 8, August 1997
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^cuc&5E ds

s21~1/22b!2
5

p

u1/22bu
.

Noticing that^cuc&→` whenb→ 1
2, it is enough to see that^cuHb,mc& remains bounded, sinc

then the upper bound̂cuHb,mc&/^cuc& of the lowest eigenvalue will then go to zero. Now, usi
Eq. ~21!, we have

^cuHbc&5
m

b H p2
2

tan~pb/2! FcS 11b

2 D2cS 12D G J
~in the right side,c is the logarithmic derivative of theG function!. Actually, takingb>2 1

2

~barringa,0!, we will be satisfied with the simple bound

^cuHbc&5mE ds
1

s21b2 F12
V~s!

V~ ib!G<mE ds
1

s21b2 5
p

ubu
m.

Next, in p space, using Eq.~5! we havec(p)5 iA2pm1/22b u(p2m)/p12b, and

^cu~Ap21m22p!c&52p m2m122bE
m

` dp

p222b

1

Ap21m21p
<pm2m122bE

m

` dp

p322b

5
m2

2

p

12b
m21.

Adjustingm5m/&Aubu/(12b) gives

E0~b!<
m

&

1/22b

Aubu~12b!

for the lowest eigenvalueE0(b).
Let us recapitulate the results of this section:
Theorem 4:Assume22,b, 1

2 and m.0. The operator Hb,m is positive, with@m,`@ as its
essential spectrum and only isolated eigenvalues of finite multiplicity in@0,m@ . These eigenvalue
never vanish, but the lowest one goes to zero whenb→ 1

2.

V. BACK TO p SPACE

Let us introduce an operator (Ap21m22a/r ) formal:

F SAp21m22
a

r D
formal

cG ~p!5Ap21m2c~p!2
a

p E
0

`

dp8 ln
p1p8

up2p8u
c~p8!. ~23!

It is defined for anyL2 functionc. Notably, the integral is convergent for anyp since the function
p8° ln@(p1p8)/up2p8u# is square integrable. We may consider Eq.~23! as an operator applying
L2 into the space of all~measurable! functions.

Theorem 5: ~1! Whena,ac8 , the self-adjoint operatorAp21m22a/r is the restriction of
(Ap21m22a/r ) formal to dom(p).

~2! Whenac8,a<ac , let b be the solution ofb/tan(pb/2)5a satisfying0<b, 1
2. Then, the

Friedrich extension (respectively, the self-adjoint extension that gives the analytic continuati
Ap21m22a/r is the restriction of(Ap21m22a/r ) formal to the set of functions of the form:
J. Math. Phys., Vol. 38, No. 8, August 1997
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w~p!5c~p!1c
u~p21!

p11b S resp. w~p!5c~p!1c
u~p21!

p12b D ~24!

with cPdom(p) andcPC,
The domain is simply obtained by translating the domain defined by Eq.~14! from Mellin to

p-representation, using the Mellin transforms~5!. We have only to verify that (p2a/r ) formal
applies the domain intoL2 and that its action is given by Eq.~12!. Now, the operator (1/p)
3(1/r ) formal appliesL

2 into itself, and is in fact the closure of the bounded operator (1/p)(1/r ).
The Mellin transform ofc(p)5@(12(1/p)(a/r )) formalw#(p) is then given byc(s)5@12aV(s
2 i /2)#w(s). By compensation of the pole ofw(z) by a zero of 12aV(z2 i /2), c belongs to
dom(p), so that@(p2a/r ) formalw#(p)5pc(p) is in L2, and we have

F S p2
a

r D
formal

wG ~s!5c~s1 i !5F12aVS s1
i

2D Gw~s1 i !.

h

Remarks:~1! In the definition of the domains, the functionu(p21)/p16b can be replaced by
any function differing from it by an element of dom(p).

~2! The L2 functionsw(s1 i ) and V(s1 i /2)w(s1 i ) are the Mellin transforms ofpw(p)
2c/p6b and (1/r ) formalw(p)2V( ib)c/p6b, wherec is uniquely determined byw of the form
~24!.

~3! Whena5ac8 , we do not have an explicit description inp-space of the domain of the
closure ofAp21m22a/r .

~4! (Ap21m22a/r )† is simply the restriction of (Ap21m22a/r ) formal to the set ofL2

functionsw such that (Ap21m22a/r ) formalw belongs toL
2.

VI. THE LÞ0 OPERATORS

The action of 1/r operator on the radial functions inp space for angular momentumL is the
following:

S 1r w D ~p!5E
0

`

dp8KL~p/p8!w~p8!,

KL~x!5
1

2p E
21

1

du
PL~u!

~x1x21!/22u
5

1

2p

1

2L E21

1

du
~12u2!L

~~x1x21!/22u!L11 .

~PL is the Legendre polynomial!. In the Mellin representation, the operator (1/Ap)(1/r )(1/Ap)
will be

S 1

Ap
1

r

1

Ap
w D ~s!5VL~s!w~s!, VL~s!5E

0

`

dx x2 is21KL~x!.

To computeVL(s), we change the integration variableu in the second expression ofKL(x) to
y5(x1x2122u)/(12u2). This gives

KL~x!5
1

p E
max~x,1/x!

`

dy y2L21~y2x!21/2~y2x21!21/25
1

p E
0

`

dy y21F~yx!F~y/x!,

F~x!5u~x21!x2L/2~x21!21/2.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The transform ofF(x) is easily computed:

F̃~s!5E
0

`

dx x2 is21F~x!5E
0

1

dx xL/21 is21/2~12x!21/25Ap
G~~L1112is!/2!

G~~L1212is!/2!
.

Then we haveVL(s)5(1/2p)F̃(s/2)F̃(2s/2), and we obtain

VL~z!5
1

2

G~~L112 iz!/2!G~~L111 iz!/2!

G~~L122 iz!/2!G~~L121 iz!/2!

5
2

p (
n50

`
G~n11/2!

G~n11!

G~n1L11!

G~n1L13/2!

2n1L11

~2n1L11!21z2
. ~25!

The operatorp2a/r with domain dom(p) is given by

S p2
a

r Dw~s!5F12aVLS s1
i

2D Gw~s1 i ! ~26!

and the matrix elements writes:

^w2u~p2a/r !w1&5E dsw2S s1
i

2D * @12aVL~s!#w1S s1
i

2D . ~27!

As shown by the second expression~25!, the functionVL(s) is positive and has a maximum
at s50. Then Eq.~27! shows thatp2a/r is positive fora>aL,c and unbounded below fora
.aL,c ~the same is true ofAp21m22a/r !, with a critical coupling constant given by

aL,c5VL~0!2152
G~~L12!/2!2

G~~L11!/2!2
. ~28!

By the argument in the proof of theorem 2, case 1, we infer from Eq.~26! that we have (p
2a/r )†5p2a* /r provided the function 12aVL(z) has no zero in the stripuF(z)u< 1

2. Consid-
ering now reala, VL(z) is real at a zero of 12aVL(z), and the second expression~25! shows that
VL(z) is real only on the real axis and on the imaginary axis, and that its maximum in the
uF(z)u<1/2 is attained atz5 i /2. We conclude thatp2a/r @defined in dom(p)# is self-adjoint
whena,aL,c8 , with this other critical coupling constant given by

aL,c8 5VLS i2D
21

5L1
1

2
. ~29!

We shall not repeat the thorough analysis of the caseL50. Noting thata1,c8 5 3
2 is already

larger thana0,c5ac52/p, we shall be satisfied by the following simple result:
Theorem 6: The operators p2a/r ~angular momentum L!, as a function ofa, form a

self-adjoint holomorphic family of type A in a domain containing]2`,aL,c8 @ .
That we have an holomorphic family of typeA ~a special case of holomorphic family! means5

that all the operators have the same domain, here dom(p), and that forwPdom(p), the vector
(p2a/r )w is a holomorphic function ofa ~trivially true!. We have characterized the domainD of
a in which we have (p2a/r )†5p2a* r , by the condition that 12aVL(z) has no zero in the
strip uF(z)u> 1

2. We have seen above that ]2`,aL,c8 @,D. The only thing that remains to b
proved is thatD is an open set.

Let a0 be a value such that 12a0VL(z) has no zero in the stripuF(z)u< 1
2. Because the

function V(s1 i t ) goes to zero uniformly forutu< 1
2when s→6`, there will be no zero of 1
J. Math. Phys., Vol. 38, No. 8, August 1997
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2aVL(z) in uF(z)u< 1
2, uR(z)u.X, and forua2a0u,1, if X is large enough. On the other hand,

the compact set$uF(z)u< 1
2, uR(z)u<X%, u12aVL(z)u is uniformly continuous with respect toa

and bounded below away from zero fora5a0 . Then, there is no zero either in this set ifa is
close enough toa0 . h
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A solvable model for excitonic complexes
in one dimension

Anders J. Markvardsen and Neil F. Johnson
Department of Physics, Parks Road, Oxford University, Oxford, OX1 3PU, England

~Received 17 March 1997; accepted for publication 23 April 1997!

It is known experimentally that stable few-body clusters containing negatively-
charged electrons~e! and positively-charged holes~h! can exist in low-dimensional
semiconductor nanostructures. In addition to the familiar exciton~e1h!, three-body
‘‘charged excitons’’ ~2e1h and 2h1e! have also been observed. Much less is
known about the properties of such charged excitons since three-body problems are
generally very difficult to solve, even numerically. Here we introduce a simple
model, which can be considered as an extended Calogero model, to calculate ana-
lytically the energy spectra for both a charged exciton and a neutral exciton in a
one-dimensional nanostructure, such as a finite-length quantum wire. Apart from its
physical motivation, the model is of mathematical interest in that it can be related
to the Heun~or Heine! equation and, as shown explicitly, highly accurate, closed
form solutions can be obtained. ©1997 American Institute of Physics.
@S0022-2488~97!01508-9#

I. INTRODUCTION

The optical properties of low-dimensional semiconductor structures, called nanostruc
have attracted much attention in the past few years, both experimentally and theoretically.
the most interesting questions concerns the properties of ‘‘excitons’’ in such low-dimens
structures. An exciton~X! is a neutral, two-body complex formed by the attractive force betw
a negatively-charged electron~e! in the semiconductor conduction band and a positively-char
hole ~h! in the valence band. An exciton therefore appears to be somewhat analogous to a
gen atom. There are, however, two important distinctions. First, the hole and electron mas
typically of the same order of magnitude and, second, the low dimensionality of the nanostr
can restrict the electron and hole motion to such an extent that the exciton must be treated a
two- or one-dimensional.

Recent observations of anomalies in the optical spectra of quantum wells~i.e., two-
dimensional nanostructures! have been attributed to the formation of negatively-charged excito1

Such complexes can arise when an exciton is created in the presence of a low concentration
electrons; it may then be energetically favorable for the exciton to capture one electron to f
negatively-charged exciton, i.e., X1e→X2. In addition to two-dimensional nanostructures, it
interesting to consider the possibility of X2 formation in one-dimensional nanostructures such
a quantum wire. The consideration of such low-dimensional systems is particularly imp
since the exciton binding energies in a quantum wire are higher than those in the quantum
owing to the reduced dimensionality; this increased exciton binding energy is thought to un
the recently observed exciton lasing in a quantum wire device.2

This paper uses a simple model to investigate the properties of three-body complexes s
charged excitons. In particular, we provide closed-form expressions for the energy spectra
a charged exciton X2 and a neutral exciton X in a finite-length, one-dimensional quantum w
Even in one dimension, the three-body problem~i.e., two electrons~e! and one hole~h!! with a
Coulomb interaction would necessitate a computationally-intensive numerical solution. This
our goal; instead we wish to demonstrate that analytically-solvable models can be introdu
identify trends in the X2 and X energy spectra as a function of device parameters. We ther
0022-2488/97/38(8)/4013/10/$10.00
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sacrifice quantitative accuracy concerning a particular device in favor of a broader underst
of qualitative behavior.

Our model considers an inverse-square interaction potential between particles~e-h is attractive
and e-e is repulsive! together with a parabolic confinement potential of arbitrary strength along
wire. A non-Coulombic form for the interaction is in fact not unrealistic in nanostructures du
the presence of image charges in neighboring gates and electrodes~see, for example, Ref. 3!. As
will be discussed, the energy spectrum of the neutral exciton X shows the same qua
behavior with both 1/x2 ~i.e., inverse-square! and 1/uxu ~i.e., Coulomb! interactions. For X2, the
three-body Schrodinger equation is shown to reduce to the Heun equation. The complete
spectrum is found in the regime of physical interest. The analysis suggests that the X2 complex
can have an enhanced stability as compared to X.

II. NEUTRAL EXCITON X

Our model Hamiltonian for the neutral exciton X~i.e., e-h pair! in a finite-length one-
dimensional quantum wire is given by

H52
\2

2m* S ]2

]xe
2

1
]2

]xh
2D 1

1

2
m*v0

2~xe
21xh

2!2
qeh\

2

2m*
1

~xe2xh!
2
, ~1!

wherexe andxh are the electron and hole coordinates, the dimensionless parameterqeh charac-
terizes the electron-hole interaction strength, andm* is the effective mass of the electrons a
holes ~assumed identical!. The parabolic confinement potential has arbitrary strength and is
sumed to be the same for both the electron and hole; the confinement parameterv0 can be chosen
so as to mimic the effect of a wire of finite lengthL sinceL2;\(m*v0)

21. If qeh.
1
2 in Eq. ~1!,

then it is trivial to show that the two particles collapse toward each other for any finite valu
E; this can be seen by examining the behavior of the wave function nearxe.xh . To avoid this we
assume that 0,qeh,

1
2. In terms of the center-of-mass coordinateX5 1

2(xe1xh) and the relative
coordinatex5xe2xh , the Hamiltonian becomesH5Hc.m.(X)1Hrel(x), whereHc.m. is the
Hamiltonian for a single particle in a one-dimensional harmonic potential and

Hrel52
\2

2m

]2

]x2
1
1

2
mv0

2x22
qeh\

2

4m

1

x2
~2!

with a reduced massm5 m* /2. The eigenvalues ofHc.m. are the one-dimensional harmon
oscillator levels. The eigenvalues ofHrel are

4

Erel~n;qeh!5\v0S 2n1
3

2
2D D ; n50,1,2,. . . , ~3!

where

D5
1

2
2
1

2
~122qeh!

1/2. ~4!

As the e-h interaction is reduced~i.e.,qeh→0), Eq. ~3! becomes

E~n;0!5\v0S 2n1
3

2D ; n50,1,2,. . . , ~5!

i.e., the odd energy levels of a harmonic oscillator.4 We shall refer to the quantityD as the
electron-hole energy-shift for reasons which are clear by comparing Eq.~3! and Eq.~5!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The Hamiltonian for the neutral exciton with a Coulomb interaction, XC , is the same as in Eq
~1!, except that the last term is replaced by the interaction potential 1/uxu. We emphasize, however
that in the presence of image charges in neighboring gates, etc.,3 a Coulomb interaction will not
necessarily be more realistic than an inverse-square interaction. To date, the one-dime
Schrodinger equation for XC has not been completely solved analytically. The Hamiltonian
XC has the form

Hrel
C 52

\2

2m

]2

]x2
1
1

2
mv0

2x22
e2

eeh

1

x
, ~6!

whereeeh is the dielectric constant of the system.
Introducing the dimensionless coordinatey, wherex5by with b5A\/mv0, the eigenvalue

problem of Eq.~2! reduces to:2c9(y)1(y22 (qeh/2) (1/y
2))c(y)52Erel /\v0c(y). Equation

~6! reduces to:2c9(y)1(y22(2e2/eeh)Am/\3v0 (1/y))c(y)52Erel
C /\v0c(y). Typical values

for the device parameters are as follows:eeh512, \v050.01 eV andm* /m50.07. Using these
values, we have performed numerical calculations which show that the low-lying energy s
for XC and X can indeed be quantitatively similar, provided an appropriate value of the
parameterqeh is chosen. In theqeh→0 limit XC yields anidenticalenergy spectrum to that give
in Eq. ~5!. This indicates that the inverse-square interaction is ‘‘as realistic’’ as the bare Cou
interaction in the context of one-dimensional models with a parabolic confinement potentia
understand why this should be so, one can consider trying to solve the X and XC problems using
the complete basis set of the one-dimensional oscillator eigenstatesun& in the interval
2`,x,`, i.e.,

^xun&5 An Hn~y!exp~2y2/2!,

wherey5Amv0 /\x, Hn is a Hermite polynomial and An is the appropriate normalization con
stant. In the complete basis of statesun& we need to evaluate matrix elements of the ty
^muHun&, whereH is either the Hamiltonian of X or XC . This matrix element includes terms lik

An AmE
2`

`

Hn~y! Hm~y!V~y!exp~2y2!dy,

where the potentialV(y) is either proportional to 1/x2 or 1/uxu. It is clear that the integral diverge
whenm andn are both even. As discussed in Ref. 6, this integral is only finite if we truncate
Hilbert space so thatm andn are odd; this finding is hence consistent with the result of only o
energy levels in Eq.~5!. In this sense, both the 1/uxu and 1/x2 potentials are ‘‘non-penetrable.’’7

Physically, this means that the electrons and hole in the X and XC complexes cannot interchang
their particle ordering along the wire; the exchange energy is therefore zero. The configu
with x.0 is totally separate from the configuration withx,0. Each energy level of X and XC is
therefore doubly degenerate when the complexes are defined in the full interval2`,x,`.
Equation~3! represents the complete energy spectrum of the neutral exciton X with inverse-s
interaction.

III. CHARGED EXCITON X2

Our proposed Hamiltonian for the X2 complex may be considered as a generalization of
Hamiltonian discussed by Calogero.4 Calogero considered the three-body problem with a h
monic oscillator potential and inverse-square pair potentials for the case of three identica
ticles. Our model HamiltonianH for two electrons and one hole has the same form, but we a
the strength and sign of the interaction between the particles to be different. In particular,
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r-

re
ntial

le

ent
s sepa-
n

.

4016 A. J. Markvardsen and N. F. Johnson: Excitonic complexes

¬¬¬¬¬¬¬¬¬¬
H5 (
i5e1,e2,h

S 2
\2

2m*
]2

]xi
2

1
1

2
m*v0

2xi
2D 2

qeh\
2

2m*
1

~xe12xh!
2

1
qee\

2

2m*
1

~xe12xe2!
2

2
qeh\

2

2m*
1

~xh2xe2!
2
. ~7!

wherexe1 , xe2 , and xh are the coordinates of the two electrons and hole,qee is the electron-
electron interaction parameter (qee.0); as in Sec. II we restrict the electron-hole inte
action parameter to 0,qeh,

1
2. The three-body problem in Eq.~7! is separable.4 The separation

involves two coordinate transformations; first a Jacobi transformation:X5 1
3(xe1

1xe21xh), x5221/2(xe12xh) and y5621/2(xe11xh22xe2) which enables us to rewrite
H5Hc.m(X)1Hrel(x,y). Second, we writeHrel in terms of polar coordinatesx5r sin(f2p/3)
andy5r cos(f2p/3):

Hrel~r ,f!52
\2

2m* S ]2

]r 2
1
1

r

]

]r D1
1

2
m*v0

2r 21
\2

2m*
M

r 2
, ~8!

whereM is the following operator:

M52
]2

]f2 1
1

2F2
qeh

sin2~f2p/3!
1

qee
sin2~f!

2
qeh

sin2~f1p/3!G . ~9!

Writing an eigenfunction of Eq.~8! asc(r ,f)5R(r )F(f), the three-body problem has therefo
been reduced to finding the solutions of the following two ordinary, second-order differe
equations

HrelR~r !5ErelR~r ! ~10!

and

MF l~f!5bl
2F l~f!. ~11!

The eigenvalue problem in Eq.~10! is solved in Ref. 4 and the eigenvalues are given by

Erel5\v0~2n111bl !; n50,1,2,. . . , ~12!

leaving the nontrivial problem of solving Eq.~11!. For a given particle configuration the ang
f is limited to a certain interval. The ordering of the three particles~i.e., 2e11h) is therefore
determined byf. As seen earlier for X, the ‘‘non-penetrable’’ interaction potentials prev
particle interchange and therefore make it necessary to treat different particle configuration
rately. In the intervalf P] 0;p@ the relationship betweenf and the particle configuration is give
by

fP]0;p/3@ , xe2,xe1,xh,

fP]p/3;2p/3@ , xe2,xh,xe1, ~13!

fP]2p/3;p@ , xh,xe2,xe1 .

Using the trigonometric identity sin 3f53 sinf24 sin3f we can rewrite the wave function in Eq
~11! as
J. Math. Phys., Vol. 38, No. 8, August 1997
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F~x!5~x21!Dee/2S x2
1

4D
Deh

y~x!, ~14!

where x5 cos2(f), Deh512D51/211/2(122qeh)
1/2 and Dee51/211/2(112qee)

1/2. Hence
we have reduced the problem of solving Eq.~11! to solving the Heun differential equation8

d2y

dx2
1S g

x
1

d

x21
1

e

x21/4Ddydx1
abx2q

x~x21!~x21/4!
y50, ~15!

with coefficients

g51/2, a5Dee/21Deh21/2bl ,

d5Dee11/2, b5Dee/21Deh11/2bl , ~16!

e52Deh , q51/2~Deh!
21~Dee/4!22~bl /4!2,

and with the five parameters satisfying

a1b2g2d2e1150. ~17!

Here q is the so-called accessory parameter. An introduction to the general features of H
equation is given in Ref. 9. In addition, a recent bibliography containing 300 classified e
related to Heun’s equation are listed in Ref. 10. The relation in Eq.~17! ensures that the fou
singularities of Eq.~15! stay regular. One of these regular singularities is, however, an eleme
singularity~sinceg51/2) which implies that Eq.~15! is a special case of the Heun equation cal
the Heine equation.11 To our understanding, Heine’s equation is far less well-known and we
therefore continue referring to Eq.~15! as the Heun equation. Solutions to Eq.~15! which are of
particular interest are those which are analytic in some domain enclosing two singularities
solutions are called ‘‘Heun functions’’ and are denoted byHf, using the notation of Ref. 9. We
employ this notation in order to distinguish Heun functionsHf from Heun polynomialsHp, which
are analytic in an interval containingthreesingularities. Below, Heun functions which are analy
in the intervalx P @0;1/4# orf P @p/3;2p/3# will be studied in more detail. An eigenfunction o
Eq. ~15! defined in the regionf P @p/3;2p/3# can be written, using cos2f512 sin2f, as

F l~f!5~sin f!Dee~sin2f23/4!DehHf~1/4,q;a,b,g,d;cos2f!. ~18!

Heun functions may be found by the power-series method or by the method of hypergeo
function series.9 However, for both methods the coefficients in the series have to satisfy a t
term recursion relation. It might be possible to use the method of augmented converge
extract Heun functions from such relations, but in most cases only a numerical proced
possible.12 Although we cannot in general solve the eigenvalue problem of Eq.~15! analytically,
we will now obtain a set of highly accurate, approximate solutions for the re
fP@p/3;2p/3#; these solutions are essentially exact for a large interval of the ratioqee/qeh ,
including the range of physical interest. Employing the following trigonometric formula

2
f

sin2~f2p/3!
1

g

sin2~f!
2

f

sin2~f1p/3!
5

f1g

sin2~f!
2

9 f

sin2~3f!
, ~19!

where f andg are arbitrary functions,13 the operatorM in Eq. ~11! reduces to

M52
]2

]f2 1
qeh
2 F 11k

sin2f
2

9

sin23fG , ~20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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wherek5qee/qeh . Consider the angular dependence of the total interaction potential of the2

complex:V(f)[(11k)/sin2f29/sin23f. HereV(f) is periodic inf, V(f)5V(f1p), hence
the physics of the three-body problem is contained within af-interval ofp, e.g.,f P] 0;p@ .
Figure 1 showsV(f) for the casek51. The asymptotic behavior ofV(f) is easily understood: a
f50 the repulsion between the two electrons causes a positive singularity, atf5p/3 the attrac-
tion between the electron atxe1 and the hole atxh causes a negative singularity, etc. For t
particle configuration where the hole is between the two electrons~in Fig. 1:f P]p /3;2p/3@), the
potential does not have a repulsive divergence and therefore corresponds to the mos
three-body configuration. A very good approximation toV(f) in this interval (f P #p/3;2p/3@)
for moderate values ofk is

Vapp~f!511k2
9

sin23f
. ~21!

This is illustrated in Fig. 2. Evidently the approximation becomes more exact for smallerk and, as
will become clearer later, exact in the limitqee→2qeh . We shall restrictk to the intervalk
P @0;20@ ; Vapp(f) is now an excellent approximation toV(f). The quantityk is the ratio of the
strength of the electron-electron interaction to the strength of the electron-hole interaction, a
all practical electronic devices we expect this ratio to be less than 20. Using this approxim
Eq. ~11! becomesMappF l(f)5bl

2F l(f) whereMapp52]2/]f21 (qeh/2)Vapp . The task of
solving this differential equation can now be transformed into the problem of solving a hype
metric equation. The solutions are

F l~f!5~sin 3f!Deh
2F1~a,b;c;cos

23f!, ~22!

where

c51/2, a51/2~Deh2bl8!, b51/2~Deh1bl8!, ~23!

FIG. 1. The potential functionV(f) for the casek51. Also shown schematically are the corresponding electron-h
configurations corresponding to the variousf-regions.
J. Math. Phys., Vol. 38, No. 8, August 1997
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andbl8
251/9bl

221/18(qeh1qee). The exact eigenvalues are found to be

bl5F9~ l112D!21
1

2
~qee1qeh!G1/2; l50,1, . . . . ~24!

Combining Eq.~24! and Eq.~12! gives the complete energy spectrum of the X2 complex for the
particle configuration where the hole is placed between the two electrons andkP@0;20@ ; in
particular,

Erel~n,l ;qeh ,qee!5\v0S 2n111F9~ l112D!21
1

2
~qee1qeh!G1/2D . ~25!

In the Calogero-model limit whereqee→2qeh , the energy spectrum in Eq.~25! reduces to the
energy spectrum found by Calogero for three identical particles.4 By comparing Eq.~22! and Eq.
~18! the approximation corresponding to Eq.~21! can be expressed as

F l~f!5~sinf!Dee~sin2f23/4!DehHf~1/4,q;a,b,g,d;cos2f!

.~sin 3f!Deh
2F1~a,b;c;cos

23f!. ~26!

In the Calogero-model limit, Eq.~26! becomes exact andHf5(24)Deh
2F1 .

There exist two distinct particle configurations in which the hole is positioned betwee
two electrons. These two configurations represent different physically-accessible systems, b
of the ‘‘non-penetrable’’ property of the interaction potential as discussed in Sec. II. If X2 is
defined for the full range of these two particle configurations, then each level in Eq.~25! is
doubly-degenerate. By forming suitable linear combinations, the subspace corresponding
eigenvalue may be spanned by an antisymmetric and symmetric wave function with resp
interchange of the two electrons.

FIG. 2. Comparison of the approximate potentialVapp(f) and the exact potentialV(f) for various values ofk. For the
casek51, V(f) andVapp(f) are essentially identical.
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ir
ies of
er to
ed off

nce of a
X and

three
acting
ining a

the
with
r

ies

e,
ng

al

st that

4020 A. J. Markvardsen and N. F. Johnson: Excitonic complexes

¬¬¬¬¬¬¬¬¬¬
IV. COMPARISON OF ENERGIES OF X AND X2

We have derived the energy spectra for X and X2. One possibility might be to compare the
relative stabilities by turning off the confinement potential and calculating the binding energ
X and X2. However, a finite confinement potential is needed within the present model in ord
produce discrete energy levels for the complexes; when the confinement interaction is turn
(v0→0) a continuous spectrum14 is obtained for both X and X2. This suggests than X and X2

are not exciton complexes in the usual sense, since their existence depends on the prese
confinement potential. Keeping the confinement potential finite, the ground state energies of
X2 in the non-interacting limit (qee,qeh→0) are given by (Erel1Ec.m) which yields 2\v0 and
9/2\v0 , respectively; these energies are identical to the ground state energies for two and
spinless fermions in a harmonic potential well. We emphasize that this particular non-inter
limit is reached as a consequence of the model being strictly one-dimensional and conta
singular potential.

Keeping the confinement potential finite, we now investigate thechangesin energy of X and
X2 as the two-body interaction is varied. We introduce a quantity which we refer to as
‘‘interaction energy’’Eint , defined as the energy obtained by subtracting the total energy
vanishingly small interactions~i.e.,qee,qeh→0) from the total energy with finite interactions. Fo
X and X2 in their respective ground-states, we obtain

Eint
X ~qeh!5Erel~0;qeh!2Erel~0;0!52\v0D ~27!

and

Eint
X- ~qee,qeh!5Erel~0,0;qee,qeh!2Erel~0,0;0,0!5\v0S F9~12D!21

1

2
~qee1qeh!G1/223D .

~28!

As expected, bothEint
X and Eint

X2
become increasingly negative with increasingqeh , i.e., the

ground-state energy decreases as the electron-hole interactionqeh increases. In additionEint
X2

increases as the electron-electron interactionqee increases. We therefore interpret the quantit

Eint
X andEint

X2
as indicative of the binding strength of X and X2, respectively. As a consequenc

the relative stability of X2 and X is then effectively represented by the ‘‘relative bindi
strength’’

DEint~qee,qeh!5Eint
X2

2Eint
X 5\v0S F9~12D!21

1

2
~qee1qeh!G1/2231D D . ~29!

If DEint,0, this would suggest that X2 is more strongly bound than X; ifDEint.0, the reverse
is true. The cross-over occurs whenDEint50, i.e., when

qee58D17qeh . ~30!

We label thek value for which Eq.~30! is satisfied to bekeq . Whenk,keq for a givenqeh , then
DEint,0; whenk.keq the reverse is true. This is illustrated in the inset of Fig. 3 whereDE is
plotted as a function ofk for the caseqeh50.25. The main part of Fig. 3 showskeq as a function
of qeh . Two features are interesting. First,keq stays within a reasonably narrow interv
11,keq,15 for all values ofqeh within the model. In the range 0,qeh,0.4, keq increases only
slightly on an absolute scale. Second, the minimum value forkeq is given bykeq511. Therefore
if k is smaller than 11, as is the case for typical experimental devices, this would sugge
X2 is more strongly bound than X.
J. Math. Phys., Vol. 38, No. 8, August 1997
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V. CONCLUSIONS

In summary, we studied a new model for a class of three-body problems; highly acc
closed form solutions for this model were obtained. The model was used to study the e
complex X2 relative to the neutral exciton X. The analysis suggests that X2 might be more
strongly bound than X for typical one-dimensional devices.

Finally we note that the present results for X2 apply equally well to X1 ~i.e., one electron plus
two holes!. Future work will use the same model to examine more exotic excitonic compl
containingne electrons andnh holes, i.e., X

Dn2 whereDn5ne2nh .
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J1/22D is a Bessel function.4 ParameterD is given in Eq.~4!.
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Asymptotic of the density of states for the Schro ¨dinger
operator with periodic electromagnetic potential

Abderemane Mohameda)
CNRS UMR 6629, Department de Mathe´matiques, Universite´ de Nantes, 2,
rue de la Houssinie`re, BP 92208 F-44322 Nantes Cedex 3, France

~Received 11 July 1996; accepted for publication 7 April 1997!

For the Schro¨dinger operator inL2(Rn), n.1, with C` periodic electromagnetic
potential, we give an asymptotic formula of the integrate density of states of the
form N(m)5anm

n/21O(m (n221e)/2), ;e.0. Whenn52, this estimate enables
us to prove the finiteness of gaps in the spectrum. ©1997 American Institute of
Physics.@S0022-2488~97!03307-0#

I. INTRODUCTION

This paper is the continuation of Ref. 1, in which a rigorous proof of the Bethe–Somme
conjecture was given for the Schro¨dinger operator with a periodic electrical potential in the lo
dimensions.

Here we are interested in the study of the Schro¨dinger operator with periodic electromagnet
potential, onL2(Rn), with n>2,

PV,A5(
j51

n

„Dxj
2Aj~x!…21V~x!; ~I.1!

Ds52 i ]s , where]s5]/]s , if s is a real variable.V(x) andA(x):5„A1(x),...,An(x)… are real
andC`:

V~x!,A1~x!,...,An~x!PC`~Rn;R!. ~I.2!

Let G be a lattice onRn:

G5H (
j51

n

kjej ;k5~k1 ,...,kn!PZnJ , ~I.3!

where$e1 ,...,en% is a basis ofRn.
We assume that the electrical potentialV and the magnetic oneA are periodic:

V~x1a!5V~x! and A~x1a!5A~x!, ;aPG. ~I.4!

It is well known thatPV,A is essentially self-adjoint onL2(Rn), from C0
`(Rn), the space ofC`

functions with compact support.
For any continuous function of compact supportfPC0

0(R), the bounded operator o
L2(Rn), f (PV,A) has aC

` kernelKf (PV,A)
(x,y).

The periodicity ofV andA implied that the kernel is also periodic on the diagonal:

Kf ~PV,A!~x1a,x1a!5Kf ~PV,a!~x,x!, ;aPG and xPRn. ~I.5!

See Refs. 2 and 3 for more general situations.

a!Electronic mail: mohamed@math.univ-nantes.fr
0022-2488/97/38(8)/4023/29/$10.00
4023J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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If w(x)PC`(Rn;R), then the two operatorsPV,A andPV,A1“w are gauge equivalent and the
unitarily equivalent. Due to the formula

Kf ~PV,A!~x,x!5Kf ~PV,A1¹w!~x,x!, ; fPC0
0~R!,

the spectral results onPV,A we will make out will be gauge invariant. We need onlyV and the
magnetic fieldB to beC` and periodic, and the two-formb associated toB on the torusTn:
5Rn/G to be exact:

B~x!5~Bj ,k~x!!1< j ,k<n , Bj ,k~x!5]xjAk~x!2]xkAj~x!, b:5 (
1< j,k<n

Bj ,k~x!dxj∧dxk .

We may change gauge, so it is easy to see that we can chooseA such that

E
K

A~x!dx50 and div~A!:5(
j51

n

]xjAj50. ~I.6!

K denotes the periodic cell:

K5H (
j51

n

t jej ;t jP@0,1#J . ~I.7!

Such a periodic magnetic potential is unique and is given by

A~x!5 (
gPG*

Age
ixg, with A05~0,...,0! and Ag5

i

ugu2
Bgg, if gÞ0, ~I.8!

if B(x)5(gPGe
ixjBg andG* denotes the dual lattice:

G* :5$gPRn;gaP2pZ,;aPG%5H (
j51

n

kjej* ;kjPZJ ; ~I.9!

(ej* )1< j<n is the dual basis of (ej )1< j<n in ~I.3!: ejek*52pd jk .
An important measure associated toPV,A and which is gauge invariant is the density of sta

of PV,A . It is the Borel measurerV,A defined from~I.5! and ~I.7! by

rV,A~ f !:5E
R
f ~t!drV,A~t!5uK u21E

K

Kf ~PV,A!~x,x!dx, ; fPC0
0~R!. ~I.10!

As PV,A is an elliptic and bounded below differential operator, for every characteristic func
f5x I bounded above intervalI , the kernelKx I (PV,A

(x,y) is alsoC`, sorV,A(x I) in ~I.10! and is
well defined. The integrated density of states is the real function

N~m;PV,A!5E
2`

m

drV,A~t!5rV,A~x ]2`,m[ !. ~I.11!

This increasing function is also defined by

E
R
f ~t!drV,a~t!52E

R
]t f ~t!N~t;PV,A!dt, ; fPC0

`~R! ~I.12!

and
J. Math. Phys., Vol. 38, No. 8, August 1997
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N~t;PV,A!50, ;tP]2`,2iViL`~Rn!@ . ~I.13!

In the case without a magnetic field, it is well known by the Floquet theory~see Ref. 4! that
the spectrum ofPV,0 , s(PV,0), is purely absolutely continuous. It is formed by bands separa
possibly by open intervals called gaps. In Ref. 1 it was proved that

N~m;PV,0!5anm
n/21an22m

~n22!/21O~11m~n231e!/2!; ~I.14!

with an5(2p)2nuSn21u/n, andan2252(nan/2)uK u21*KV(x)dx.
The estimate~I.14! enables their authors to give an alternative proof of the Bet

Sommerfeld conjecture, the finiteness of gaps in the spectrum ofPV,0 , for the low dimensions,
2<n<4.

The Floquet theory works also forPV,A ~the magnetic potentialA is periodic!. If K * is the
basic periodic cell of the dual latticeG* , then PV,A is unitarily equivalent to
*
K*
% PV,A

u (du/uK * u); PV,A
u is the self-adjoint operator onL2(Tn) defined by

PV,A
u :5(

j51

n

„Dxj
2u j2Aj~x!…21V~x!, ;uPK * .

So the spectrum ofPV,A , s(PV,A), is formed by bandsbj5$l j (u);uPK * %, separated possibly
by gaps, we denoted„l j (u)…j the increasing sequence of eigenvalues of the operatorPV,A

u .
Following the proof of Ref. 5 reproduced in Ref. 4 on the absolute continuity of the spec

of PV,0 , it is easy to see that the singular spectrum ofPV,A , ss(PV,A), is reduced to the closure
of its point spectrumsp(PV,A), and that

sp~PV,A!,s~PV,A
u !, ;uPK * .

So, if ss(PV,A) is not empty, then it is discrete and1` is its only accumulation point.
In Ref. 6, it was proved thes(PV,A) is still absolutely continuous, provided theiAiL`(Rn) is

small enough. The proof of Ref. 7, which shows that there is no eigenvalue with finite multip
for PV,0 , is still valid for PV,A .

Let us recall some useful formulas coming from the Floquet theory:

N~m;PV,A!5uK * u21E
K*

S (
l j ~u!,m

1D du, ~I.15!

and, more generally,

E f ~t!drV,a~t!5uK * u21E
K*

(
j
f „l j~u!…du, ; fPC0

0~R!.

In this paper we generalize the estimate~I.14! in the following way.
Theorem I.1: Under the assumptions on V and A (I.2) and (I.4), if n>2, then for any fixed

e.0, we have the following asymptotic expansion asm→1`:

N~m;PV,A!5anm
n/21O~m~n221e!/2!; ~I.16!

with an5(2p)2nuSn21u/n.
Using ~I.15! to get an asymptotic formula forN(m;PV,A), the modern techniques of Ref. 8 t

study the counting function of the eigenvalues of elliptic differential operator would give

N~m;PV!5anm
n/21o~m~n21!/2!,
J. Math. Phys., Vol. 38, No. 8, August 1997
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when they are applied toPV,A
u .

The remainder estimate~I.16! is sharp, if we compare it to the well-known one above.
WhenV takes its minimum only onG and when the associated Hessian is nondegener

then, ifB(0)50, using semiclassical analysis~see, for example, Ref. 9!, it is easy to see that ther
existshN.0 such that theN first bands of the spectrum ofPl2V,lA are localized in the intervals
I k5]2hN1lak ,lak1hN@ , for k51,...,N. (ak), is the increasing sequence of eigenvalues o
harmonic oscillator with a constant magnetic field. So, for largel.0, there are many gaps in th
spectrum ofPl2V,lA .

The same is true forPV,lA if the only zeros ofB(x) areG and if they are zero of some orde
m, one can takeI k5]2hN1l2/(m12)ak ,l

2/(m12)ak1hN@ ; see Ref. 10. (ak) is the sequence o
eigenvalues of a Schro¨dinger operator with a polynomial magnetic field.

The crucial question is to know if the gaps in the spectrum are finite or not. As in the
without a magnetic field in Ref. 1, the estimate~I.16! enables us to give an answer for th
question for some dimensionn. Here we can just say that the equivalent of the Beth
Sommerfeld conjecture is true whenn52: the gaps in the spectrum ofPV,A are finite ifn52 ~see
Corollary II.2!.

Let us be reminded that the condition zero flux for the magnetic field~i.e., the two-formb is
exact!, is necessary for the finiteness of the gaps; forn52 and for a constant magnetic fiel
B0 , A(x)5(b0x2 ,2b0x1) with b0Þ0, the gaps in the spectrum ofPeV,A are infinite if e.0 is
small enough.

Our method is the same as in Ref. 1. Forl0.0 such that

PV,A1l0.0, ~I.17!

we have to construct the half-wave operatoreitQ,

Q:5@PV,A1l0#
1/2, ~I.18!

as a Fourier integral operator. For smallutu the calculus is well known~see Ref. 11 or 8!. For large
utu, we need just to control the symbol of the pseudodifferential operator~p.d.o.!, eitQe2 i tQ0,

Q0 :5@P0,01l0#
1/25~2D1l0!

1/2. ~I.19!

For an operator that is a periodic p.d.o. one, it was proved in Ref. 1 that its symbol c
estimated in terms of theL2(Tn) norm of the related Floquet operator. Here, asQ2Q0 is a p.d.o.
of order zero~instead of order21 for the case without a magnetic field!, the estimates of the
derivatives of the symbol ofeitQe2 i tQ0 are less fine for largeutu.

If wV,A(t,x,j) is the symbol ofeitQe2 i tQ0, wV,A(t,x,Dx)5eitQe2 i tQ0, and if r V,A(t,j)
5*K„wV,A(t,x,j)21…dx, then, whenV is normalized, it was proved in Ref. 1 that, for an
aPNn,

^j&112uau@^t&~^j&1^t&!#2uau ]j
ar V,0~ t,j!PL`~R3Rn!,

(^z&5(uzu211)1/2 if zPRm!. Here, with a magnetic potential, we have only

^j& uau^t&22uau ]j
ar V,A~ t,j!PL`~R3Rn!.

This explains the roughness of the estimate~I.16! compared to the one~I.14!.
Later on, we will assume the assumptions of Theorem I.1, the magnetic potentialA will

satisfy ~I.6!, and we will normalizeV(x) by

E
K

V~x!dx50. ~I.20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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If E is a Hilbert space,L(E) will denote the space of a bounded linear operator ofE.
For any periodic,~G-periodic!, functiong on Rn, (gg) will be its Fourier coefficients:

g~x!5 (
gPG*

gge
ixg, if gPL loc

2 ~Rn! and g~x1a!5g~x!, ;aPG. ~I.21!

For any operatorTPL(L2(Rn)), KT(x,y) will be its Schwartz kernel:

^T f ug&:5E
Rn
T f~x!ḡ~x!dx5E

Rn3Rn
KT~x,y! f ~y!ḡ~x!dy dx, ; f ,gPL2~Rn!. ~I.22!

For any integerm and anyfPL2(Rm), f̂ will denote the Fourier transform off ,

f̂ ~j!5E
Rm
e2 ixj f ~x!dx, ~I.23!

and for anyxPRm, ^x&5(uxu211)1/2.

II. THE MAIN RESULT FOR THE FOURIER COEFFICIENTS OF THE NUMBER OF
FLOQUET EIGENVALUES

Let l0.0 be fixed such that (PV,A1l0)
21 exists, for example, we take

l0511iViL`~Rn! . ~II.1!

We define the operatorsQ andQ0 by ~I.18! and ~I.19!.
For a periodic operatorLPL„L2(Rn)…, LTa5TaL, ;aPG, with Ta( f )(x)5 f (x1a), ; f

PL2(Rn), such thatL has a smooth kernelKL(x,y), we denote the average trace ofL by
T̃r(L),

T̃r~L !:5
1

uK u EKKL~x,x!dx. ~II.2!

Then we get

T̃r f ~Q!5rV,A~F !, ; fPC0
`~R!, ~II.3!

with F(t)5 f „(t1l0)
1/2
…, if tP@2l01Inf$s(PV,A)%,1`@ , the value ofF(t), when t,2l0

t,2l01Inf$s(PV,A)%, does not matter@rV,A is defined in~I.10!#.
Let bPG and L a periodic operator with a continuous kernel; then the functionx→KL(x

1b,x), is periodic. We define its average,

T̃rb~L !:5T̃r~TbL !5uK u21E
K

KL~x1b,x!dx. ~II.4!

Then we define the complex measure%V,A
b ,

%V,A
b ~ f !5E

R
f ~t!d%V,A

b ~t!:5T̃rb„f ~PV,A!…, ; fPC0
0~R!. ~II.5!

Remark that%V,A5%V,A
0 .

The Floquet theory gives
J. Math. Phys., Vol. 38, No. 8, August 1997
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%V,A
b ~ f !52E

R
]t f ~t!Nb~t,PV,A!dt, ; fPC0

`~R!, ~II.6!

with Nb(t,PV,A) defined as in~I.15! by

Nb~t,PV,A!:5uK * u21E
K*

eibuS (
l j ~u!,t

1D du. ~II.7!

We get a similar formula to~II.3!,

T̃rb„f ~Q!…5%V,A
b ~F !, ; fPC0

`~R!, ~II.8!

@F is related tof as in ~II.3!#.
The formulas~II.6! and ~II.7! show that%V,A

b is a Borel measure and

u%V,A
b ~ f !u<%V,A~ u f u!, ; fPC0

`~R!. ~II.9!

The main result of this section is the following theorem.
Theorem II.1: Assume the assumptions of Theorem I.1, I.20, and n52. Then there exists

bPG, bÞ0, andhb.0, depending only on b, such that

uNb~m;PV,A!u1uN2b~m;PV,A!u>hbm
~n21!/4, ;m.1. ~II.10!

We define now

N1~m;PV,A!5sup
u

H (
l j ~u!,m

1J and N2~m;PV,A!5 inf
u
H (

l j ~u!,m
1J . ~II.11!

Following an idea of Dahlberg and Trubowitz,12 as in Ref. 1, we get the following Corollar
from ~I.1! and ~II.1!.

Corollary II.2: If n52, then there exists a non-negative constanth0.0, such that

N1~m;PV,A!2N2~m;PV,A!>h0m
~n21!/4, ;m.1. ~II.12!

So there existsL.0, such that

@L,1`@,s~PV,A!. ~II.13!

The inclusion~II.13! proves a Bethe–Sommerfeld conjecture forPV,A , the finiteness of gaps
in the spectrum ofPV,A , whenn52.

One can find the history of the proof of the original Bethe–Sommerfeld conjecture forPV,0 in
Ref. 1.

The theorems I.1 and II.1 will be proved in Sec. VI.
Remark II.3: The estimate (II.10) is always satisfied for any nonzero b, if the magnetic fi

small enough, i.e., when n52, there existse0.0 such that, if0,e,e0 , then

uNb~m;PV,eA!u1uN2b~m;PV,eA!u>hbm
~n21!/4, ;m.1; ~II.14!

hb is in (II.10) and can be chosen independent ofe.

III. PERIODIC PSEUDODIFFERENTIAL CALCULUS

We adopt the notations of Ref. 1. Letd.0 be an integer andgz a Riemannian diagonal metri
on Rd,
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
gz5(
j51

d

qj
2~z!dzj

2, @with qj~z!.0#. ~III.1!

For a non-negative continuous function,M (z)PC(Rd;R1), and for a regular functionp(z), we
write, as in Ref. 8,

p~z!PS„M ~z!;gz…, iff ;aPNd, 'Ca.0, s.t.u]z
ap~z!u<CaM ~z!)

j51

d

qj
a j~z!.

~III.2!

We will denote bygz
0 the usual Euclidian metric onRd:

gz
05(

j51

d

dzj
2. ~III.3!

S (Rd) will denote the Schwartz space ofC` fast-decreasing functions andS 8(Rd) its dual space.
For any realm, Hm(Rd) will denote the usual Sobolev space of orderm on Rd.

We consider onR2n the metric

gx,j5gx
01^j&22gj

0, ;~x,j!PR2n. ~III.4!

A symbol p(x,j)PS(^j&m;gx,j) is said to be periodic iff

p~x1a,j!5p~x,j!, ;aPG; ~III.5!

in this case, we will writep(x,j)5(gPG*e
ixgpg(j). Then, for any (j ,a)PN3Nn, 'Cj ,a.0, s.t.

u]j
apg~j!u<Cj ,a^g&2 j^j&m2uau, ;~g,j!PG*3Rn. ~III.6!

For a periodic symbolp(x,j)PS(^j&m;gx,j), and for any fixeduPRn, the p.d.o.p(x,u
1D), defined by the symbolp(x,u1j), leads to an operatorpu(x,D): C`(Tn)→„C`(Tn)…8,
pu(x,D)v(x)5p(x,u1D) ṽ(x), @ṽ(x) is the extension ofv(x) on Rn by G periodicity#, and, if
v(x)5(gPG*vge

ixgPC`(Tn),

pu~x,D !v~x!5 (
gPG*

p~x,u1g!vge
ixg5 (

gPG*
eixg (

%PG*
v%pg2%~u1% !. ~III.7!

pu(x,D) operates continuously on the Sobolev spaces in the following way:

pu~x,D !:Hs~Tn!→Hs2m~Tn!, ;sPR.

If q(x,j) is another periodic symbol,

q~x,j!5 (
gPG*

qg~j!eixgPS~^j& l ;gx,j
d !,

then

s~x,D !5p~x,D !q~x,D !⇔su~x,D !5pu~x,D !qu~x,D !, ;uPK * , ~III.8!

and obviously, in this case,s(x,j) is a periodic symbol,
J. Math. Phys., Vol. 38, No. 8, August 1997
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s~x,j!5 (
gPG*

sg~j!eixg, sg~j!5 (
%PG*

pg2%~j1% !q%~j!. ~III.9!

We mention thatsPS(^j&m1 l ;gx,j), and for any integerN,

s~x,j!2 (
uau,N

1

i uaua!
]j
ap~x,j!]x

aq~x,j!PS~^S&m1 l2Ngx,j!. ~III.10!

Let us recall the Floquet theory for p.d.o. LetT be an operator defined onL2(Rn), which is
a periodic p.d.o. of orderm,

Tu~x!5s~x,D !u~x!, ;uPD~T!, ~III.11!

with s(x,j)5(gPG*sg(j)e
ixgPS(^j&m;gx,j).

If m.0, we assumeT elliptic, i.e., there existsa(x,j)PS(^j&2m;gx,j), such that

a~x,D !s~x,D !2I dPOp S~^j&21,gx,j!. ~III.12!

Then

T5E
K*

%

Tu
du

uK * u
, with Tu:5su~x,D !. ~III.13!

Moreover, ifm<0, then

(
gPG*

usg~j!u2<is~x,D !i
L„L2~Rn!…

2 . ~III.14!

This estimate comes from~III.13! and

(
gPG*

sg2r~j!eixg5su~x,D !~er!, with er~x!:5eixr,

if rPG* andj2r5uPK * ~see Ref. 1 for more details!.

IV. THE HALF-WAVE UNITARY GROUP

Let us assume the hypotheses of Theorem I.1 with electromagnetic potentialsV andA such
that ~I.6! and~I.20! are satisfied. IfQ is the operator defined by~I.17! and~I.18!, then by Refs. 13
and 14~see also Ref. 15!, Q is a p.d.o.:

QPOpS~^j&;gx,j!, Qu~x!5q~x,D !u~x!, ;uPS ~Rn!. ~IV.1!

It is obvious from~I.4! thatQ is a periodic p.d.o.,

q~x,j!5 (
gPG*

qg~j!eixgPS~^j&;gx,j!. ~IV.2!

The Seeley calculus13 ~see also Ref. 8! shows that
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



4031Abderemane Mohamed: Asymptotic of the density of states

¬¬¬¬¬¬¬¬¬¬
q~x,j!2~ uj2A~x!u21l0!
1/22 1

2V~x!~ uj2A~x!u21l0!
21/2

1~1/2i !„uj2A~x!u21l0…
23/2j]x„jA~x!…PS~^j&22;gx,j!. ~IV.3!

So, if

s0~j!5~ uju21l0!
1/2, „Q05s0~D !…, ~IV.4!

thenq(x,j);s0(j)1( j>0q2 j (x,j), in the sense thatq2 j (x,j)PS(^j&2 j ;gxj), ; j>0, and for
anyN.0,

q~x,j!2s0~j!2 (
j50

N21

q2 j~x,j!PS~^j&2N;gx,j!. ~IV.5!

From ~IV.3! and ~IV.4!, we may take

q0~x,j!52
jA~x!

s0~j!
~IV.6!

and

q21~x,j!5
uA~x!u2

2s0~j!
2

„jA~x!…2

2„s0~j!…3
1

V~x!

2s0~j!
2

j]x„jA~x!…

2i „s0~j!…23 . ~IV.7!

The main point we will need is that~I.6! and ~I.20! implies that

E
K

q0~x,j!dx50 and E
K

q21~x,j!dx5E
K

S uA~x!u2

2s0~j!
2

„jA~x!…2

2„s0~j!…3Ddx. ~IV.8!

Theorem IV.1: Assume the assumptions of Theorem II.1.
Let c(x,D) be a given periodic p.d.o.:

c~x,j!5 (
gPG*

cg~j!eixgPS~^j&2m;gx,j!, with m>0. ~IV.9!

Then for any real fixed t0 ,

Wc~ t0!:5eit0Qc~x,D !e2 i t0Q0POpS~^j&2m;gx,j!, ~IV.10!

and it is a periodic p.d.o. More precisely there exists a symbol
wc(t,x,j)PC`(R3R2n), wc(t,x1a,j)5wc(t,x,j), ;aPG,
such that

Wc~ t !5wc~ t,x,Dx!, ;tPR. ~IV.11!

Moreover, if

wc~ t,x,j!5 (
gPG*

wc,g~ t,j!eixg, ~IV.12!
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
then for any( j ,k,a)PN3N3Nn, there exists a constant Cj ,k,a such that

S (
gPG*

ugu2 j u] t
k]j

awc,g~ t,j!u2D 1/2<Cj ,k,a^t& j12uau^j&2m2uau, ~IV.13!

;(t,j)PR3Rn. So

wc~ t,x,j!PSS ^t&@n/2#11^j&2m;dt21^t&2gx
01

^t&4

^j&2
gj
0D . ~IV.14!

~For a real x, @x# is the integer part of x, @x#<x,@x#11 and @x#PZ.!
Proof: It is well known thatWc(t) is p.d.o. and asQ andQ0 are periodic;Wc(t) is also

periodic. We have just to prove~IV.13! and as in Ref. 1; we will follow the proof of~IV.14! using
the theorem of characterization of p.d.o. of Beals14 ~see also Ref. 15!.

For operatorsL, M , andT,

adL~T!5@L;T#5LT2TL and adL,M~T!5LT2TM. ~IV.15!

Let kPN be given and let

Wc
~k!~ t !5] l

kWc~ t !5 i keitQadQ,Q0

k
„c~x,D !…e2 i tQ0. ~IV.16!

As adQ,Q0

k
„c(x,D)…POpS(^j&2m;gx,j),

there exists a constantCk.0 such that

iWc
~k!~ t !iL„L2~Rn!…<Ck , ;tPR, ~IV.17!

and more precisely, for any reals, there exists a constantCk,s.0 such that

iWc
~k!~ t !iL„Hs~Rn!;Hm1s~Rn!…<Ck,s , ;tPR. ~IV.18!

The estimate~IV.17! is obvious and so is this one,

iQm1sWc
~k!~ t !Q0

2siL„L2~Rn!…5i i keitQQm1s adQ,Q0

k
„c~x,D !…e2 i tQ0iL„L2~Rn!…<Ck,s ,

which is equivalent to~IV.18! @Ck,s is as in~IV.18!#.
Let L be an operator, then

] t~adL„Wc
~k!~ t !…!5 i adQ,Q0

~adL„Wc
~k!~ t !…!1 i @adL~Q!Wc

~k!~ t !2Wc
~k!~ t !adL~Q0!#.

~IV.19!

This differential equation, in thet variable, satisfied byadL„Wc
(k)(t)…, implies

adL„Wc
~k!~ t !…5eitQadL„Wc

~k!~0!…e2 i tQ01 ieitQH E
0

t

e2 i tQ@adL~Q!Wc
~k!~t !

2Wc
~k!~t !adL~Q0!#e

i tQ0 dtJ e2 i tQ0. ~IV.20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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¬¬¬¬¬¬¬¬¬¬
Now if T(t) is an operator depending smoothly ontPR, then

adL„e
itQT~ t !e2 i tQ0

…5eitQadL„T~0!…e2 i tQ01 ieitQS E
0

t

@e2 i tQ
„adL~Q2Q0!1adL~Q0!…e

i tQT~t!

2T~t!adL~Q0!#dt D e2 i tQ0

1eitQS E
0

t

[e2 i tQadL„e
i tQ] tT(t)e

2 i tQ0
…ei tQ0 dt D e2 i tQ0. ~IV.21!

We recall that~IV.4! and ~IV.5! imply

adDxj
~Q0!50 and adDxj

~Q2Q0!POpS~1;gx,j!.

We need a technical lemma.
Lemma IV.2: Let j.0 be an integer and for l50,1...,j let al(x,D) be a periodic p.d.o.,

al(x,j)PS(^j&2ml;gx,j), with ml>0. If

S~ t !5E
0

t

e2 i t jQaj~x,D !ei t jQE
0

t j
e2 i t j21Qaj21~x,D !ei t j21Q•••

3E
0

t2
e2 i t1Qa1~x,D !ei t1Qa0~x,D !dt1•••dt j , ~IV.22!

then there exists an integer M( j ), depending only on j,
M ( j )3( j11) periodic p.d.o.

bd,l~x,D !, l50,1••• j , 1<d<M ~ j !, bd,l~x,j!PS~^j&2pl;gx,j! ~pl>0!,

and M( j )3( j12) periodic p.d.o.,

bd,l8 ~x,D !, l50,1••• j11,1<d<M ~ j !, bd,l8 ~x,j!PS~^j&2pl8;gx,j! ~pl8>0!,

such that, if A5Dxk
, then

e2 i tQadA„e
itQS~ t !e2 i tQ0

…eitQ0

5 (
d51

M ~ j ! E
0

t

e2 i t jQbd, j~x,D !ei t jQE
0

t j
e2 i t j21Qbd, j21~x,D !e2 i t j21Q•••

3E
0

t2
e2 i t1Qbd,1~x,D !ei t1Qbd,0~x,D !dt1•••dt j

1 (
d51

M ~ j ! E
0

t

e2 i t j11Qbd, j118 ~x,D !ei t j11QE
0

t j11
e2 i t jQbd, j8 ~x,D !ei t jQ•••

3E
0

t2
e2 i t1Qbd,18 ~x,D !ei t1Qbd,08 ~x,D !dt1•••dt j11 . ~IV.23!

Proof of Lemma IV.2:We do it by induction. Forj51, ~IV.23! comes from~IV.21! and
~IV.22!. If the lemma is valid for anyj , j,N, and if j5N, then
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eitQ] tS~ t !e2 i tQ05aN~x,D !eitQSN21~ t !e
2 i tQ0,

with SN21(t) satisfying~IV.22! with j5N21. We write that

adA~eitQ] tS~ t !e2 i tQ0!5adA„aN~x,D !…eitQSN21~ t !e
2 i tQ01aN~x,D !adA„e

itQSN21~ t !e
2 i tQ0

….
~IV.24!

Then applying~IV.23! to adA„e
itQSN21(t)e

2 i tQ0
… and taking into account~IV.21! and~IV.24!, we

found thatadA„e
itQS(t)e2 i tQ0

… satisfies also~IV.23!. The lemma is proved.
Now if L andT(t) are as in~IV.21! and if adadL(Q0)

(Q0)50, then we have also the formul

e2 i tQadL„e
itQT~ t !e2 i tQ0

…eitQ05adL„T~0!…1 i t adadL~Q0!„T~0!…1E
0

t

@ ie2 i tQadL~Q2Q0!

3ei tQT~t!1e2 i tQadL„e
i tQ] tT~t!e2 i tQ0

…ei tQ0#dt

1E
0

tE
0

r

e2 i tQ@ i 2adadL~Q0!~Q2Q0!e
i tQT~t!

1 i adadL~Q0!„e
i tQ ] tT~t!e2 i tQ0

…ei tQ0#dt dr. ~IV.25!

We need another technical lemma as~IV.2!.
Lemma IV.3: Let j.0 be an integer and for l50,1...j let al(x,D) be a periodic p.d.o.,

al~x,j!PS~^j&2ml;gx,j!, with ml>0.

If

S~ t !5E
0

t

e2 i t jQaj~x,D !ei t jQE
0

t j
e2 i t j21Qaj21~x,D !ei t j21Q•••E

0

t2
e2 i t1Q

3a1~x,D !ei t1Qa0~x,D !dt1•••dt j , ~IV.26!

then there exists an integer M( j ), depending only on j,
M ( j )3( j12) periodic p.d.o.,

bd,l~x,D !, l50,1••• j , 1<d<M ~ j !, bd,l~x,j!PS~^j&2pl;gx,j! ~pl>0!;

M ( j )3( j11) periodic p.d.o.,

bd,l8 ~x,D !, l50,1••• j11, 1<d<M ~ j !, bd,l8 ~x,j!PS~^j&2pl8;gx,j! ~pl8>0!;

and M( j )3( j13) periodic p.d.o.,

bd,l9 ~x,D !, l50,1••• j12, 1<d<M ~ j !, bd,l9 ~x,j!PS~^j&2pl9;gx,j! ~pl9>0!,

such that
J. Math. Phys., Vol. 38, No. 8, August 1997
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e2 i tQadA„e
itQS~ t !e2 i tQ0

…eitQ0

5 (
d51

M ~ j ! E
0

t

e2 i t jQbd, j~x,D !ei t jQE
0

t j
e2 i t j21Qbd, j21~x,D !ei t j21Q•••E

0

t2
e2 i t1Qbd,1~x,D !

3ei t1Qbd,0~x,D !dt1•••dt j1 (
d51

M ~ j ! E
0

t

e2 i t j11Qbd, j118 ~x,D !ei t j11Q

3E
0

t j11
e2 i t jQbd, j8 ~x,D !ei t jQ•••E

0

t2
e2 i t1Qbd,18 ~x,D !ei t1Qbd,08 ~x,D !dt1•••dt j11

1 (
d51

M ~ j ! E
0

t

e2 i t j11Qbd, j129 ~x,D !ei t j12QE
0

t j12
e2 i t j11Qbd, j119 ~x,D !ei t j11Q•••E

0

t2
e2 i t1Q

3bd,19 ~x,D !ei t1Qbd,09 ~x,D !dt1•••dt j12 , ~IV.27!

for A5xk or A5s0(D) with s(j)PS(1;^j&22gj
0).

We have the following properties:

11(
l50

j

ml<(
l50

j

pl , 11(
l50

j

ml<(
l50

j11

pl8 and 11(
l50

j

ml<(
l50

j12

pl9 , ~IV.28!

and for l50,...,j12,

pl9~x,j!50, if A5s0~D !POpS~1;^j&22gj
0!. ~IV.29!

Proof of Lemma IV.3:We do it also by induction. Forj51, ~IV.27! and ~IV.28! come from
~IV.25! and ~IV.26!. We use~IV.21! @instead of~IV.25!#, to get~IV.29!.

If the lemma is valid for anyj , j,N, and if j5N,
then, whenA5s0(D)POpS(1;^j&22gj

0),
we do as for Lemma~IV.2!. We get

eitQ ] tS~ t !e2 i tQ05aN~x,D !eitQSN21~ t !e
2 i tQ0,

with SN21(t) satisfying~IV.26! with j5N21. So

adA~eitQ] tS~ t !e2 i tQ0!5adA„aN~x,D !…eitQSN21~ t !e
2 i tQ01aN~x,D !adA„e

itQSN21~ t !e
2 i tQ0

….
~IV.30!

Then from~IV.21!, ~IV.26! with j5N, and from~IV.30!, when we apply the hypothesis of th
recurrence toSN21(t), we get~IV.27! and ~IV.28! with bd,l9 (x,D)50.

If A5xk , then we write that

adadA~Q0!~e
itQ] tS~ t !e2 i tQ0!5adadA~Q0!„aN~x,D !…eitQSN21~ t !e

2 i tQ0

1aN~x,D !adadA~Q0!„e
itQSN21~ t !e

2 i tQ0
…. ~IV.31!

As adA(Q0)5sA,0(D)POpS(1;^j&22gj
0),

then from~IV.25!, @instead of~IV.21!#, from ~IV.26! with j5N, and from~IV.31!, when we apply
the hypothesis of the recurrence toSN21(t), we get~IV.27! and~IV.28!. Lemma IV.3 is proved.
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Continuation of the proof of Theorem IV.1:Let L1 ,...,L j be j operators such that for ever
kP$1,...,j %, Lk5xl (k) or Lk5Dxl (k)

for somel (k)P$1,...,n%. Using Lemma IV.3 whenA5xp ,
and Lemma IV.2 whenA5Dxp

, we get

adL j+•••+adL1„Wc
~k!~ t !…5eitQH adL j+•••+adL1„Wc

~k!~0!…1 (
d51

M ~ j !

(
l51

j1N~ j ! E
0

t

e2 i t lQad, j ,l ,l~x,D !ei t lQ

3E
0

t l
e2 i t l21Qad, j ,l ,l21~x,D !ei t l21Q•••E

0

t2
e2 i t lQad, j ,l ,1~x,D !

3ei t1Qad, j ,l ,0~x,D !dt1•••dt lJ e2 i tQ0, ~IV.32!

and

ad, j ,l ,p~x,j!PS~^j&2mj ,l ,p;gx,j!, with mj ,l ,p>0, ~IV.33!

and, ifN( j ) is the number ofLl such thatLl5xd( l ) , then

(
p50

l

mj ,l ,p>mj :5m1N~ j !. ~IV.34!

So, for any reals, there existsCj ,s.0 such that;tPR,

iadL j+•••+adL1~Wc
~k!~ t !!iL„Hs~Rn!;Hmj1N~ j !1s~Rn!…<Cj ,s^t&

j1N~ j !. ~IV.35!

The Beals characterization theorem proves that, for any fixedt0PR,

Wc
~k!~ t0!POpS~^j&2m;gx,j!.

We get that the periodic symbol~in x!, wc,t(x,j)5wc(t,x,j) of Wc(t) is regular in
(t,x,j). The estimate~IV.13! comes from~III.14! and~IV.35!. We recall that~IV.14! comes from
~IV.13! and the continuous injection

H @n/2#11~Tn!�C0~Tn!.

Theorem IV.1 is proved. d

We let

W~ t !:5eitQe2 i tQ05w~ t,x,Dx!. ~IV.36!

We know from Theorem IV.1 thatW(t) is a periodic p.d.o.:

w~ t,x,j!5 (
gPG*

wg~ t,j!eixg, ~IV.37!

and
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w~ t,x,j!PSS ^t&@n/2#11;gt
01^t&2gx

01
^t&4

^j&2
gj
0D . ~IV.38!

From the definition ofw0(t,j) in ~IV.37! and from the estimate~IV.13!, we get

w0~ t,j!PSS 1;gt01 ^t&4

^j&2
gj
0D . ~IV.39!

We recall the Taylor expansion ofW(t).
Theorem IV.4: The symbol w(t,x,j) of W(t) has the asymptotic expansion

w~ t,x,j!;(
j>0

t j

j !
w~ j !~x,j!, ~IV.40!

with w( j )(x,j)5] t
jw(t,x,j) ut50 ,

w~ j !~x,D !5 i jadQ,Q0

j ~ I d!. ~IV.41!

The asymptotic expansion has the following meaning.
For any NPN and for any regular function with compact support onR, w(t)PC0

`(R),

t2N21w~ t !Fw~ t,x,j!2(
j50

N
t j

j !
w~ j !~x,j!GPS~1;gt

01gx,j!. ~IV.42!

The proof comes from Theorem IV.1 and the well-known equality

W~ t !5(
j50

N
~ i t ! j

j !
adQ,Q0

j ~ I d!1 ieitQH E
0

t

e2 i tQ
~ i t!N

N!
adQ,Q0

N ~ I d!e
i tQ0dtJ e2 i tQ0.

We have also an asymptotic expansion ofw(t,x,j) in the classical meaning of p.d.o. as
Ref. 1. Instead of the case without a magnetic field, here we have a real phase.

Let q0(x,j) be the symbol defined in~IV.6! and satisfying~IV.5!. We write its Fourier
expansion,

q0~x,j!5 (
gPG*

j

s0~j!
Age

ixg, ~IV.43!

and for everyN.0, there existsCN.0, such that

^g&NuAgu<CN , ;gPG* . ~IV.44!

Let c(t,x,j) be the real phase satisfying

] tc~ t,x,j!5
j

s0~j!
]xc~ t,x,j!1q0~x,j! and c~0,x,j!50. ~IV.45!

Then

c~ t,x,j!PS~^t&;gt
01gx

01^t&2^j&22gj
0!, c~ t,x1a,j!5c~ t,x,j!, ;aPG, ~IV.46!
J. Math. Phys., Vol. 38, No. 8, August 1997
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and we shall see below that

c~ t,x,j!5t (
gPG*

j

s0~j!
AgzS i t j

s0~j!
g Deixg, ~IV.47!

with the function onC, z(z)5(ez21)/z.
Theorem IV.5: The symbol w(t,x,j) of W(t) has the asymptotic expansion

w~ t,x,j!;eic~ t,x,j!(
j>0

p2 j~ t,x,j!, ~IV.48!

with p0(t,x,j)51, p2 j (0,x,j)50, and for j>1,

p2 j~ t,x,j!PS~^t&3 j^j&2 j ;gt
01gx

01^t&2^j&22gj
0!,

~IV.49!

p2 j~ t,x1a,j!5p2 j~ t,x,j!, ;aPG.

The asymptotic expansion has the following meaning.
For anyw(t)PC0

`(R), and for any NPN,

w~ t !Fw~ t,x,j!2eic~ t,x,j!(
j50

N

p2 j~ t,x,j!GPS~^j&2N21;gt
01gx,j!. ~IV.50!

Proof:We recall thatW(t) is the solution of] tW(t)5 i @QW(t)2W(t)Q0#.
We know that for any functionw(t) as in ~IV.50!,

w~ t !w~ t,x,j!PS~1;gt
01gx,j!.

So, for any positive integerN,

w~ t !H i ] tw~ t,x,j!1@q~x,j!2s0~j!#w~ t,x,j!1 (
1<uau<N

~2 i ! uau

a!
]j

aq~x,j!]x
aw~ t,x,j!G

PS~^j&2N21;gt
01gx,j!. ~IV.51!

Looking forw(t,x,j) satisfying~IV.48! with ~IV.49!, the relations~IV.5! and~IV.51! lead to the
phase equation~IV.45! and the transport equations, forj.0,

] tp2 j~ t,x,j!2
j

s0~j!
]xp2 j~ t,x,j!

5 i(
k51

j

q2k~x,j!p2 j1k~ t,x,j!1 ie2 ic~ t,x,j! (
2<uau< j11

~2 i ! uau

a! (
k521

j2uau

]j
aq2k~x,j!

3]x
a@eic~ t,x,j!p2 j1k1uau~ t,x,j!#, ~IV.52!

with q1(x,j)5s0(j).
Lemma IV.6: If c(t,x,j)5(gPG*cg(t,j)e

ixg is a periodic symbol,

c~ t,x,j!PS~^t& l^j&m;gt
01gx

01^t&2^j&22gj
0!, ~IV.53!

c(t,x1a,j)5c(t,x,j), ;aPG.
Then there exists a symbol a(t,x,j) solution of the equation
J. Math. Phys., Vol. 38, No. 8, August 1997
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] ta~ t,x,j!2
j

s0~j!
]xa~ t,x,j!5c~ t,x,j! and a~0,x,j!50, ~IV.54!

which is periodic,

a~ t,x1a,j!5a~ t,x,j!, ;aPG, a~ t,x,j!5 (
gPG*

ag~ t,j!eixg,

and

a~ t,x,j!PS~^t& l11^j&m;gt
01gx

01^t&2^j&22gj
0!, ~IV.55!

i.e. ;N, kPN and;aPNn, 'CN,a.0, such that

u] t
k ]j

aag~ t,j!u<CN,k,a^g&2N^t& l111uau^j&m2uau. ~IV.56!

Proof of the lemma:The assumption~IV.53! means that, for allN, kPN andaPNn, there
existsCN,a.0, such that

u] t
k ]j

acg~ t,j!u<CN,k,a^g&2N^t& l1uau^j&m2uau. ~IV.57!

Equation~IV.54! is equivalent to

] tag~ t,j!2 i
jg

s0~j!
ag~ t,j!5cg~ t,j! and ag~0,j!50, ;gPG* . ~IV.58!

So, for allgPG* ,

ag~ t,j!5eit @jg/s0~j!#E
0

t

e2 i t@jg/s0~j!#cg~t,j!dt. ~IV.59!

The estimate~IV.56! comes from~IV.57! and ~IV.59!.
In fact, we have a global formula for the symbola(t,x,j),

a~ t,x,j!5E
2~1/2!„t1k~x,j!…

~1/2!„t1k~x,j!…

c̃~ t,x,j,t!dt; ~IV.60!

if k(x,j)5@s0(j)/uju2#xj, then

c̃~ t,x,j,t!:5cS 12 „t1k~x,j!…1t,F12 „t1k~x,j!…2tG j

s0~j!
1Fx2xj

j

uju2G ,j D .
We get~IV.47! from ~IV.45! and ~IV.59!.

Now Theorem IV.5 follows from~IV.45!, ~IV.46!, ~IV.51!, ~IV.52!, and Lemma IV.6.

V. THE ASYMPTOTIC OF THE DENSITY OF STATE

As in the case of without a magnetic field, we have a good functional calculus.
Theorem V.1: Let f(t) be a regular real function onR such that

f ~t!PS~^t&m;^t&22gt
0!. ~V.1!

Then the operator f(Q) is a periodic p.d.o. There exists a periodic symbol
J. Math. Phys., Vol. 38, No. 8, August 1997
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s f ~Q!~x,j!5 (
gPG*

s f ~Q!,g~j!eixg, ~V.2!

such that

s f ~Q!~x,j!PS~^j&m;gx,j!, ~V.3!

and f(Q)5s f (Q)(x,D).
Moreover, s f (Q)(x,j) has an asymptotic expansion of the form

s f ~Q!~x,j!;(
j>0

s f ~Q!,m2 j~x,j!, ~V.4!

with

s f ~Q!,m2 j~x,j!PS~^j&m2 j ;gx,j!, ~V.5!

and for every positive integer N,

s f ~Q!~x,j!2(
j50

N

s f ~Q!,m2 j~x,j!PS~^j&m2N21;gx,j!. ~V.6!

Proof: Here we reproduce briefly the proof of Ref. 1 in the case without a magnetic fie
We may assumem,21, even taking g(t):5^t&22@ umu#22f (t) instead of f „f (Q)

5(Q211)@ umu#11g(Q)….
In this casef (t)PHs(Rn), ;sPR,

and we can writef (Q)5(2p)21*Rf (t)e
itQ dt5s f (Q)(x,D),

s f ~Q!~x,j!5~2p!21E
R
f̂ ~ t !w~ t,x,j!eits

0~j! dt. ~V.7!

LetN be a fixed positive integer. We choose another integerM larger thenN: M.N1n. Then by
the Taylor formula~see Theorem IV.4!, we may write

w~ t,x,j!5(
j50

M
t j

j !
w~ j !~x,j!1tM11r M11~w!~ t,x,j!, ~V.8!

so, if for any positive integerj , f ( j )(t)5]t
j f (t), then@with s0(j) defined in~IV.4!#,

s f ~Q!~x,j!5(
j50

M
~2 i ! j

j !
f ~ j !

„s0~j!…w~ j !~x,j!1~2p!21E
R
f̂ ~ t !tM11r M11~w!~ t,x,j!eits

0~j! dt.

~V.9!

As there exists some constanth0.0 such thats0(j).h0^j&, integrating by parts, we get

E
R
f̂ ~ t !tM11r M11~w!~ t,x,j!eits

0~j! dt5E
R
„s0~j!…2M21eits

0~j!~2 i ] t!
M11

3$ f̂ ~ t !tM11r M11~w!~ t,x,j!%dt. ~V.10!

~V.1! with m,21 shows that for any three integersj , k, and l , 0<k< l ,
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^t& j] t
k
„ f̂ ~ t !t l…PL2~R!. ~V.11!

Recalling that w( j )(x,D)5 i jadQ,Q0

j (I d) and r M115( i /tM11)eitQ$*0
t e2 i tQ@( i t)M/

M !] adQ,Q0

M (I d)e
i tQ0 dt%e2 i tQ0, then Theorem~V.1! comes from Theorem IV.1, V.1 and IV.8–

V.11. d

We are able to extract~V.4! in the following way.
Remark V.2: In the asymptotic expansion (V.4), we can take

s f ~Q!,m~x,j!5 f „s0~j!…,
~V.12!

s f ~Q!,m21~x,j!2@2 i „q~x,j!2s0~j!…3 f 8„s0~j!…#PS~^j&m22;gx,j!,

so by (IV.5) and (IV.6), we may assume

s f ~Q!,m21~x,j!5 i
jA~x!

s0~j!
3 f 8„s0~j!…. ~V.13!

Notice also that T˜r„f (Q)…, is well defined whenever

f ~t!PS~^t&2m;^t&22gt
0!, with m.n.

@ T̃r(A) is defined by~II.2!.#
Theorem V.3: Let f(t)PC0

`(R) and letl@1 be a large non-negative real number.
Then, asl→1`, T̃r„f (Q2lI d)… has the following asymptotic expansion:

T̃r„f ~Q2lI d!…;(
j>0

E
0

1`

an212 j~r ! f „~r 21l0!
1/22l…dr, ~V.14!

with

an21~r !5~2p!2nuSnur n21, an22~r !50, ~V.15!

and

an23~r !5
r n21

2uK u
3H ] r1

n21

r J H E
K3Sn21

F r ~wA~x!!2

r 21l0
2

uA~x!u2

r Gdx dV~w!J
@Sn21 is the unit sphere and dV(v) its usual measure#, and more generally,

ak~r !PS~^r &k;^r &22gr
0!. ~V.16!

The asymptotic expansion is to be understood in the following way: for any integer N.n,
there exists a constant CN.0, depending only on N@and not onl nor on f(t)#, such that

UT̃r f „~Q2lI d!…2 (
j50

N21 E
0

1`

an212 j~r ! f „~r 21l0!
1/22l…drU

<CNln2NH i tNf̂ ~ t !iL1~R!1(
j50

N

i] t
j f̂ ~ t !iL1~R!J . ~V.17!

Proof: The proof is the same as the one in Ref. 1 for the case without a magnetic field. L
sketch it. Letx~t! be a cutoff function satisfying
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x~t!PC0
`~R!, x~t!5x~2t!, 0<x~t!<1,

~V.18!

x~t!51, if utu, 1
2, and x~t!50, if utu.1.

We denote byxl the function

xl~t!5x„2l21~t2l!…. ~V.19!

Let w0(t,j) be the symbol defined by~IV.37!, w0(t,j)5uK u21*Kw(t,x,j)dx. By ~II.2! and
~V.7!,

T̃r~ f ~Q2lI d!„I d2xl~Q0!…!5~2p!2n21E
R3Rn

eit ~s0~j!2l! f̂ ~ t !w0~ t,j!~12xl„s
0~j!…!dt dj.

~V.20!

As us0(j)2lu.l/4 on the support of 12xl„s
0(j)…, we may integrate by parts int and then, for

any integerM ,

T̃r~ f ~Q2lI d!„I d2xl~Q0!…!

5 i M~2p!2n21E
R3Rn

eit ~s0~j!2l!
„s0~j!2l…2M~12xl„s

0~j!…!] t
M@ f̂ ~ t !w0~ t,j!#dt dj.

So taking into account~IV.39! and ~IV.4!, if M.n, we get the estimate

uT̃r~ f ~Q2lI d!„I d2xl~Q0!…!u<ln2MCM(
j50

M

i] t
j f̂ ~ t !iL1~R! , ~V.21!

with CM depending only onM ~and not onf !.
Now writing that

T̃r„f ~Q2lI d!xl~Q0!…5~2p!2n21E
R3Rn

f̂ ~ t !w0~ t,j!xl„s
0~j!…eit ~s0~j!2l! dt dj,

we integrate by parts inuju, using

teit (s
0~j!5~2 i !H s0~j!

j

uju2
]jJ eit (s0~j!.

In the vicinity of infinity in t, we found that for any integerM ,

E
R3Rn

„12x~ t !… f̂ ~ t !w0~ t,j!xl„s
0~j!…eit „s

0~j!2l… dt dj

5 i ME
R3Rn

„12x~ t !…t2M f̂ ~ t !eit „s
0~j!2l…H ]j

j

uju2
s0~j!J M$w0~ t,j!xl„s

0~j!…%dt dj.

Using ~IV.39!, we found that there exists a contantCM , as in~V.21!, such that

U~2p!2n21E
R3Rn

„12x~ t !… f̂ ~ t !w0~ t,j!xl„s
0~j!…eit ~s0~j!2l! dt djU

<CMS E
l/2

3l/2

r n212M dr D E
R
utuM„12x~ t !…u f̂ ~ t !udt.
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



en

4043Abderemane Mohamed: Asymptotic of the density of states

¬¬¬¬¬¬¬¬¬¬
So there exists aCM as in ~V.21!, such that

U~2p!2n21E
R3Rn

„12x~ t !… f̂ ~ t !w0~ t,j!xl„s
0~j!…eit „s

0~j!2l… dt djU
<ln2MCME

R
utuM„12x~ t !…u f̂ ~ t !udt. ~V.22!

Now we use the Taylor formula~cf. Theorem IV.4!, and we integrate by parts as above, th
by ~IV.42!, for any integerM , there exists aCM as in ~V.21!, such that

U E
R3Rn

x~ t ! f̂ ~ t !w0~ t,j!xl„s
0~j!…eit „s

0~j!2l… dt dj2 (
j50

M21
i j

j ! ER3Rn
x~ t ! f̂ ~ t !eit „s

0~j!2l…

3H ]j

j

uju2
s0~j!J j$w0

~ j !~j !xl„s
0~j!…%dt djU<ln2MCME

R
x~ t !u f̂ ~ t !udt; ~V.23!

@w0
( j )(j):5] t

jw0(t,j) ut5051/uK u *Kw
( j )(x,j)dx].

But for any integersj , 0< j,M ,

U E
R3Rn

„12x~ t !… f̂ ~ t !eit „s
0~j!2l…H ]j

j

uju2
s0~j!J j$w0

~ j !~j !xl„s
0~j!…%dt djU

5U i M2 jE
R3Rn

„12x~ t !… f̂ ~ t !t2~M2 j !eit „s
0~j!2l…H ]j

j

uju2
s0~j!J M$w0

~ j !~j !xl„s
0~j!…%dt djU

<ln2MCME
R
„12x~ t !…utu2M1 j u f̂ ~ t !udt, ~V.24!

and as for~V.21! @with CM is as in~V.21!#,

U (
j50

M21
i j

j ! ER3Rn
x~ t ! f̂ ~ t !eit „s

0~j!2l…H ]j

j

uju2
s0~j!J j$w0

~ j !~j !xl„s
0~j!…%dt dj

2 (
j50

M21
i j

j ! ER3Rn
x~ t ! f̂ ~ t !eit „s

0~j!2l…
„12x~ uju!…H ]j

j

uju2
s0~j!J j$w0

~ j !~j !%dt djU
<ln2MCM(

j50

M

i] t
j f̂ ~ t !iL1~R!. ~V.25!

Then Theorem V.3 follows from~V.21!–~V.25!. The properties~V.15! come from~IV.4!–
~IV.8! and ~IV.41!.

Theorem V.4: Let Ñ(l;Q) be the integrated density states of Q:

Ñ~l;Q!5T̃r„x ]2`,l@~Q!…. ~V.26!

Then, for anydP]0,1@ ,

Ñ~l;Q!5Ñ~l;Q0!1O ~ln212d!, as l→1`. ~V.27!

@If I is an interval,x I(t) denotes the characteristic function ofI .#
We are reminded that
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Ñ~l;Q0!5~2p!2nE
s0~j!,l

dj5~2p!2n
uSnu
n

ln1O ~ln22!. ~V.28!

Proof of the Theorem:Let dP]0,1@ be fixed. Withx~t! as ~V.18!, define the function

f l,d~t!5x~ldt!. ~V.29!

As d,1, the estimate~V.17!, with N>(11d)/(12d), shows that whenl→1`,

T̃r„f l,d~Q2lI d!…5O ~ln212d!. ~V.30!

Define the functionwl,d(t) by

wl,d~t!5H 1, if 0,t,l,
x„ld~t2l!…, if t.l
x~t!, if t,0.

, ~V.31!

Thenwl,d(t)PC0
`(R) and its Fourier transform is

ŵl,d~ t !52 i t21x̂12
~ t !2 i t21x̂11

~l2dt !e2 i tl, ~V.32!

with x16
(t)5]tx(t), if6t>0,

so, by~V.18!, x16
(t)PC0

`(R).
According to the proof of~V.21!, for any integerM , we have

E
R3Rn

eit „s
0~j!2l…

„12x~ t !…t21x̂11
~l2dt !~12xl„s

0~j!…!w0~ t,j!dt dj

5 i ME
R3Rn

eit „s
0~j!2l…

„s0~j!2l)2M~12xl„s
0~j!…!

3] t
M$„12x~ t !…t21x̂11

~l2dt !w0~ t,j!%dt dj.

So, if M.n, taking into account~IV.39! and ~IV.4!, then asl→1`,

E
R3Rn

eit „s
0~j!2l…

„12x~ t !…t21x̂11
~l2dt !~12xl„s

0~j!…!w0~ t,j!dt dj5O ~1!. ~V.33!

Integrating by parts inuju, we get as for~V.22! that

E
R3Rn

eit „s
0~j!2l…

„12x~ t !…t21x̂11
~l2dt !xl„s

0~j!…w0~ t,j!dt dj

5 i ME
R3Rn

eit „s
0~j!2l…

„12x~ t !…t212Mx̂11
~l2dt !H ]j

j

uju2
s0~j!J M

3$xl„s
0~j!…w0~ t,j!%dt dj.

So using~IV.39!, we found that, for anyM.0, there exists a constantCM , depending only on
M , such that
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U E
R3Rn

eit „s
0~j!2l…

„12x~ t !…t21x̂11
~l2dt !xl„s

0~j!…w0~ t,j!dt djU
<ln2MCME

R
utuM21ux̂11

~l2dt !udt<ln2M ~12d!CME
R
utuM21ux̂11

~ t !udt. ~V.34!

Now, from ~V.32!–~V.34!, we obtain that for anyd,1, asl→1`,

E
R3Rn

„12x~ t !…ŵl,d~ t !w0~ t,j!eit „s
0~j!2l… dt dj5O ~1!. ~V.35!

Following the proof of Theorem V.3 and the one of V.35, we get easily that there exi
constantCd , depending only ond, such that

UT̃r„wl,d~Q!…2(
j50

n E
0

1`

an212 j~r !wl,d„~r
21l0!

1/2
…drU<CdF11E

R
uŵl,d~ t !udtG .

So by ~V.32!, asl→1`,

T̃r„wl,d~Q!…5(
j50

n E
0

1`

an212 j~r !wl,d„~r
21l0!

1/2
…dr1O ~l!. ~V.36!

The definitions~V.31! of wl,d(t), ~V.26! of Ñ(l,Q), and~V.29! of f l,d(t) lead to

uÑ~l,Q!2T̃r„wl,d~Q!…u<T̃r„f l,d~Q!…; ~V.37!

we use that the density of state ofQ is a positive measure.
Theorem V.4 follows from~V.30!, ~V.36!, ~V.37!, ~V.15!, and~V.16!. d

VI. PROOF OF THEOREM (1.1) AND THEOREM (2.1)

Proof of Theorem (1.1):Taking into account~I.17!–~I.19! and~V.28!, one can see easily tha
Theorem I.1 follows from Theorem V.4. As a matter of fact, if we takel5(m1l0)

1/2, with m
@1, we get thatN(m;PV,A)5Ñ(l;Q) and Ñ(l;Q0)5anm

n/2, with thean of Theorem I.1.
Proof of Theorem (2.1):We need the proposition below.
Proposition VI.1: Assume the assumptions of Theorems I.1, I.6, and I.20.
If bPG and bÞ0, then for everydP@0,1@ , there exists a constant Cb,d , depending only on

b andd, such that

UÑb~m;PV,A!2
m~n21!/4

ubu~n11!/2

2

~2p!~n11!/2uK u
sinS m1/22

n21

2
p D E

K

e2 ifb~x! dxU
<Cb,d~11m~n23!/41m~n212d!/2!. ~VI.1!

fb(x) is the regular, periodic, and real function defined by

fb~x!5 (
gP@b#'

bAge
ixg, ~VI.2!

where@b#',G* is the Bragg hyperplane sublattice orthogonal to b,

@b#'5$gPG* ;gb50%,
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and the Ag are the Fourier coefficients of A(x):

A~x!5 (
gPG*

Age
ixg.

Theorem II.1 follows from Proposition VI.1, as we will see below. Noting~I.3!, we choose

b5(
j51

n

kjej , with 1,k1,•••,kn , ~VI.3!

the kj are chosen to be prime integers. Then by~I.9!,

gP@b#', gÞ0⇒g5(
j51

n

l jej* , with (
j51

n

u l j u.k1 . ~VI.4!

As A050 by ~I.6!, noting~VI.2! and~IV.44!, we can find a constantN0.0 such that, if in~VI.3!
k1.N0 , then

ufb~x!u1uf2b~x!u<
p

4
. ~VI.5!

For such ab, if (n21)/4P” N ~which is always the case ifn52!, ~VI.2! and ~VI.5! show that
~II.10! is satisfied.

Remark II.3 follows in the same way: multiplyingA by e leads to multiplyfb(x) by e.
Proof of Proposition (VI.1):The formulas~II.4! and ~II.5! show that, for anyfPC0

`(R),

%V,A
b ~ f !5~2p!2nuK u21E

K3Rn
eibjs f~x,j!dx dj5T̃rb„f ~PV,A!…, ~VI.6!

wheres f(x,j) is the symbol off (PV,A): s f(x,D)5 f (PV,A).
If m@1, andl5(m1l0)

1/2, then by~II.7!,

Nb~m;PV,A!5%V,A
b
„x ]2`,m@~PV,A!…5T̃rb„x]2`,l[~Q!…. ~VI.7!

Now if dP#0,1@ and if wl,d(t) is the function defined by~V.31!, then, using~II.9!, we get

uÑb~l;Q!2T̃rb„wl,d~Q!…u<T̃r~x„ld~Q2lI d!…!. ~VI.8!

If dP#0,1@, it follows from ~V.30! and ~VI.8! that

uÑb~l;Q!2T̃rb„wl,d~Q!…u5O ~ln212d!, as l→1`. ~VI.9!

But by ~VI.6!, if w0(t,j) is the symbol defined by~IV.36! and ~IV.37!, we may write

T̃rb„wl,d~Q!…5~2p!2n21E
R3Rn

ŵl,d~ t !w0~ t,j!ei „ts
0~j!1bj… dt dj. ~VI.10!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Now the proof remains the same as the one of Theorem V.4 with some minor alteration
dP#0,1@ be fixed. Changingx(t) into x(Cb

21t), with Cb.0 a large constant depending only o
ubu, and taking~V.32! into account, we may found that, for anytP#0,1@, asl→1`,

E
R3Rn

„12x~Cb
21t !…ŵl,d~ t !w0~ t,j!x~l2t

„s0~j!2l…!ei „ts
0~j!1bj… dt dj5O ~1!,

~VI.11!

providing that we integrate by parts in thej variable using

„12x~Cb
21t !…@ t1s0~j!uju22bj#21uju22s0~j!j ]je

i „ts0~j!1bj…5 iei „ts
0~j!1bj… ~VI.12!

@instead of„12x(t)…t21s0(j)uju22j ]je
its0(j)5 ieits

0(j)#.
In the same way we get also that for anytP#0,1@, asl→1`,

E
R3Rn

„12x~Cb
21t !…t21x̂11

~l2dt !e2 i tlw0~ t,j!ei „ts
0~j!1bj…

„12x~l2t
„s0~j!2l…!…dt dj

5O ~l2`!. ~VI.13!

So ~V.32!, ~VI.11!, and~VI.13! show that, asl→1`,

T̃rb„wl,d~Q!…5~2p!2n21E
R3Rn

x~Cb
21t !ŵl,d~ t !w0~ t,j!ei „ts

0~j!1bj… dt dj1O ~1!.

~VI.14!

We recall that from~IV.39! we have

x~Cb
21t !w0~ t,j!PS~1;gt

01^j&22gj
0!. ~VI.15!

We let

t0~j!5s0~j!uju22bj, ~VI.16!

so

„12x~ uju!…t0~j!PS~1;gj
0!. ~VI.17!

By the Taylor formula, we may write that

w0~ t,j!2(
j50

n
„t1t0~j!…j

j !
] t
jw0„2t0~j!,j…5

„t1t0~j!…n11

~n11!!
c~ t,j!, ~VI.18!

and by~VI.15!, we get that

x~Cb
21t !„12x~ uju!…c~ t,j!PS~1;gt

01^j&22gj
0!. ~VI.19!

Integrating by parts using~VI.12!, we found
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T̃rb„wl,d~Q!…5~2p!2n21E
R3Rn

x~Cb
21t !ŵl,d~ t !ei „ts

0~j!1bj…(
j50

n
i j

j !
$]js

0~j!uju22j% j

3] t
jw0„2t0~j!,j…„12x~ uju!…dt dj1~2p!2n21

3E
R3Rn

x~Cb
21t !ŵl,d~ t !ei „ts

0~j!1bj…

3Fw0~ t,j!x~ uju!1
i n11

~n11!!
$]js

0~j!uju22j%n11c~ t,j!„12x~ uju!…Gdt dj.

~VI.20!

Now we use the following properties,tŵl,d(t)PL`(R) @this comes from~V.32!#, w0(0,j)51,
and the one~VI.19!, to see that whenl→1`,

E
R3Rn

x~Cb
21t !ŵl,d~ t !ei „ts

0~j!1bj…Fw0~ t,j!x~ uju!1
i n11

~n11!!
$]js

0~j!uju22j%n11

3c~ t,j!„12x~ uju!…Gdt dj

5E
R3Rn

x~Cb
21t !ŵl,d~ t !ei „ts

0~j!1bj…

3Fx~ uju!1
i n11

~n11!!
$]js

0~j!uju22j%n11c~0,j!„12x~ uju!…Gdt dj1O ~1!

5E
R3Rn

ŵl,d~ t !ei ~ ts
0~j!1bj!Fx~ uju!1

i n11

~n11!!
$]js

0~j!uju22j%n11c~0,j!„12x~ uju!…Gdt dj

1O ~1!52pE
Rn

wl,d„s
0~j!…eibjFx~ uju!1

i n11

~n11!!
$]js

0~j!uju22j%n11

3c~0,j!„12x~ uju!…Gdj1O ~1!.

So, asl→1`,

E
R3Rn

x~Cb
21t !ŵl,d~ t !ei „ts

0~j!1bj…Fw0~ t,j!x~ uju!1
i n11

~n11!!
$]js

0~j!uju22j%n11c~ t,j…

3„12x~ uju!…#dt dj5O ~1!.

By ~VI.20! we get also that, asl→1`,

T̃rb„(wl,d~Q!…5~2p!2nE
Rn

wl,d„s
0~j!…eibj(

j50

n
i j

j !
$]js

0~j!uju22j% j] t
jw0„2t0~j!,j)

3„12x~ uju!…dj1O ~1!. ~VI.21!

But by ~VI.15!, for j>1,
J. Math. Phys., Vol. 38, No. 8, August 1997
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$]js
0~j!uju22j% j] t

jw0„2t0~j!,j…„12x~ uju!…PS~^j&2 j ;gj
0!, ~VI.22!

then ~V.31!, ~VI.21!, and~VI.22! gives that, asl→1`,

T̃rb„(wl,d~Q!…5~2p!2nE
$jPRn,s0~j!,l%

eibj(
j50

n
i j

j !
$]js

0~j!uju22j% j] t
jw0„2t0~j!,j…

3„12x~ uju!…dj1O ~11ln212d!. ~VI.23!

We need the Lemma below.
Lemma VI.2: If0<m and c(j)PS(^j&2m;^j&22gj

0), then, ast→1`,

E
$jPRn,uju,t%

eibjc~j!dj5O ~11t~n2122m!/2!. ~VI.24!

Proof of the Lemma:If m.n, ~VI.24! is obvious,@c(j) is integrable onRn#.
If m<n, and if kPN is such thatm1k.n, asbÞ0, we may integrate by partsk times to

obtain

E
$jPRn,uju,t%

eibjc~j!dj5E
$jPRn,uju,t%

eibjH ib

ubu2
]jJ kc~j!dj

1tn21(
j50

k21 E
Sn21

ei tbv
bv

i ubu2 H ib

ubu2
]jJ j c~tv!dV~v! ~VI.25!

@Sn21 is the unit sphere anddV(v) its usual measure#.
As for anyaPNn, tm1uau ]j

ac(tv)PL`(R13Sn21), the stationary phase theorem16 shows
that ast→1`,

E
Sn21

ei tbv
bv

i ubu2 H ib

ubu2
]jJ j c~tv!dV~v!5O ~t2m2 j2~n21!/2!. ~VI.26!

Then ~VI.24! follows from ~VI.25! and ~VI.26!.
Continuation of the proof of Proposition (VI.1):Theorem IV.5 and the properties~IV.46!,

~IV.48!–~IV.50!, ~VI.22!, and~VI.23! lead to

T̃rb„(wl,d~Q!…5
1

~2p!nuK u E$jPRn,s0~j!,l%
E
K

eibjeic„2t0~j!,x,j… dx dj1O ~lrd!,

~VI.27!

as l→1` (rd5Max$0,(n23)/2,n212d%).
Taking ~IV.4! into account, we let

t5Al22l0, ~VI.28!

then from the Lemma VI.2,~VI.25! and ~VI.27!, whenl→1`,

T̃rb„(wl,d~Q!…5
tn21

~2p!nuK u ESn21
E
K

bv

i ubu2
ei tbveic„2t0~tv!,x,tv… dx dV~v!1O ~lrd!.

~VI.29!

Noting ~IV.4!, ~IV.47!, and~VI.16!, we get
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c„2t0~tv!,x,tv…5cb~x,v!:52~bv! (
gPG*

~vAg!eixgz„2 i ~bv!~gv!…. ~VI.30!

The stationary phase theorem~see Ref. 16!, ~VI.29!, and~VI.30! show that asl→1`,

T̃rb„wl,d~Q!…5
t~n21!/2

ubu~n21!/23
1

~2p!~n11!/2uK u
3E

K

1

i ubu @ei „tubu2~n21!/4p…eicb~x,b/ubu!

2e2 i „tubu2~n21!/4p…eicb~x,2b/ubu!#dx1O ~lrd!. ~VI.31!

But by ~VI.30!,

cbS x, b

ubu D5cbS x,2 b

ubu D52 (
gPG*

bAge
ixgz~2 ibg!, ~VI.32!

as z(z)5(ez21)/z, and bgP2pZ, ;gPG* ,
we get from~VI.32!,

cbS x, b

ubu D5cbS x,2 b

ubu D52 (
gP@b#'

bAge
ixg, ~VI.33!

where@b#',G* is the Bragg hyperplane, sublattice orthogonal tob.
Proposition~VI.1! follows if we notice that, asl→1`,

Nb~l;Q!2T̃rb„wl,d~Q!…5T̃rb„x ]2`,l@~Q!…2T̃rb„wl,d~Q!…5O ~ln212d!,

which comes from~II.9! ~V.30!, and~V.31!. d
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Path space measures for Dirac and Schro ¨dinger
equations: Nonstandard analytical approach

Toru Nakamura
Sundai Preparatory School, 2-5-17, Kanda-Surugadai, Chiyoda-ku, Tokyo 101, Japan

~Received 29 January 1997; accepted for publication 29 April 1997!

A nonstandard path space*-measure is constructed to justify the path integral
formula for the Dirac equation in two-dimensional space–time. A standard measure
as well as a standard path integral is obtained from it. We also show that, even for
the Schro¨dinger equation, for which there is no standard measure appropriate for a
path integral, there exists a nonstandard measure to define a*-path integral whose
standard part agrees with the ordinary path integral as defined by a limit from
time-slice approximant. ©1997 American Institute of Physics.
@S0022-2488~97!01908-7#

I. INTRODUCTION

The path integral formulas1 for the fundamental solutions~FS! for initial value problems of
the Schro¨dinger and the Dirac equations have been justified as limits in strong or uniform topo
in Hilbert space from the time-slice approximant.2,3

For the Dirac equation in two-dimensional space–time having electromagnetic pote
(D2

em), a measure over a path space can be constructed to give meaning to the path ‘‘int
literally, as Ichinose4,5 showed in 1982. In 1984 Gaveauet al.6,7 pointed out that the path spac
measure for the Poisson process gives an FS to the telegraph equation, which reduces to
the free Dirac equation when continued analytically in time. Then in 1985 Blanchardet al.8

proved that the measure for the Poisson process gives an FS toD2
em.

As to the application of nonstandard analysis to path integral, Moore in 1982 applied
standard analysis to give a rigorous definition of the path integral over fields.9 Albeverio et al.
indicated in their book10 in 1986 that the nonstandard analysis could be a useful tool.

In 1991, the present author11 constructed a 232-matrix valued*-measurem0 over a non-
standard path space and proved that the*-path integral with respect to the*-measure gives the FS
to D2

em. It will be shown in Sec. III that the*-measure is of bounded variation and its to
variation is the probability measure for the Poisson process. It will also be shown that a sta
measure and a standard path integral over a standard path space is obtained fromm0 , which is
essentially the same as the one Ichinose presented in his paper.4 He used the free kernel for th
Dirac equation for each sliced time interval to get the path space measure. On the contra
make use of* -path space which is finer than the standard path space, though the num
*-paths is* -finite. We assign a 232-matrix to each*-path as its* -measure. Recall that a
* -finitely additive* -measure over a*-finite path space is defined only if we assign one matrix
each*-path. This assignment is suited to provide the free kernel for the Dirac equation fo
time interval as is shown in Theorem 1, consequently the measure constructed in the presen
is essentially the same as Ichinose’s. Since the*-measure contains more detailed informatio
than the standard measure, we can derive the standard measure’s property more easily~cf. Theo-
rem 4! and can take the nonrelativistic limit of the*-path integral for the Dirac equation so that w
get the*-path integral for the Schro¨dinger equation~cf. Sec. IV!.

For the Schro¨dinger case curiously, it is impossible to give a meaning to the path integr
terms of a measure over a path space.12 Therefore, the path ‘‘integral’’ is first defined for imag
nary time~or imaginary mass! in terms of the Wiener measure, and the real time~or real mass!
solution is recovered by analytic continuation.13
0022-2488/97/38(8)/4052/21/$10.00
4052 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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In Sec. IV, we propose an alternative way and show that even in the Schro¨dinger case, a
*-measure exists to define a*-path integral whose standard part agrees with the path integra
time-slice approximation. We shall obtain the*-measure for the Schro¨dinger case, as a nonrela
tivistic limit of the *-measure for the Dirac case. It will be found in this procedure, that the:0

saturation principle plays an essential part in making configuration space cut-off uniform in
data fPL2(R)ùC(R) and tPR1.

As long asc is finite, the*-measurem0 is of bounded variation, so that its standard part ex
as mentioned before. However, the boundedness is lost in the limitc→`, and we cannot obtain
from it a standard measure in the Schro¨dinger case.

Our formulation and calculations use nonstandard analysis, especially 2:0-saturated nonstand
ard model.14 We shall begin with considering an infinitesimal* -random walk on a rectangula
lattice L5T3X with infinitesimal spacinge in T andce in X. We use the following notations
*A is the nonstandard extension ofA; N andR are the sets of natural numbers and the r
numbers, respectively;R1(*R1) is the set of positive real~* -real! numbers; st(a) is the standard
part of a; a.b means thatua2bu is an infinitesimal. FortPR, t is the element ofT which
satisfiest<t,t1e. For xPR, x is the element ofX which satisfiesx<x,x1ce.

The definition oft will be slightly changed in Sec. IV.
The Dirac equation in two-dimensional space–time is given by

i\
]

]t
c~ t,x!5Hc~ t,x!, ~1!

H5S 2 ic\
]

]x
2eA1~ t,x! Da1eA0~ t,x!I1mc2b, ~2!

whereI is the 232 identity matrix,a, b are 232 Hermitian matrices obeying

a25b25I , ab1ba50,

and A0 , A1PC2(R2), that is, they are differentiable twice and the quadratic derivatives
continuous.

The Schro¨dinger equation is

i\
]

]t
f~ t,x!5HSf~ t,x!, HS52

\2

2m

]2

]x2
1V~x!. ~3!

We shall denote the free Hamiltonians of Dirac and Schro¨dinger byH0 andH0
S , respectively.

II. NONSTANDARD MEASURE FOR DIRAC EQUATION

We consider a*-random walkXv(t), tPT on a*-latticeX for a fixed positive infinitesimale.
Namely,

Definition 1: ~1! For positivee.0 andNP*N\N,

L5T3X where T5$0,e,2e,...,Ne%, X5$0,6ce,62ce,•••%.

~2! Let V be the set of internal functions fromT to the set$21,1%. The*-pathXv(•) from y is
defined for eachvPV by

Xv~ke!5y1 (
l50

k21

cev~ l e! ~k51,2,...,N!.

In the standard theory, the time translation for the free Dirac equation is given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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expF2
iH 0t

\ G5expF2
i t

\
~ca p̂1mc2b!G5 lim

n→`
H expF2

imc2bDt

\ GexpF2
ica p̂Dt

\ G J n,
wherep̂52 i\(]/]x) and we have used Trotter’s formula fort5nDt. Then,

^xuexpF2
iH 0t

\ G uy&5 lim
n→`

E
2`

`

•••E
2`

`

^xuÛ~Dt !uxn21&

3^xn21uÛ~Dt !uxn22&•••^x1uÛ~Dt !uy&)
i51

n21

dxi ,

with

Û~Dt !5expF2
imc2bDt

\ GexpF2
ica p̂Dt

\ G .
Here, the Dirac bracket̂•u•& is 232 matrix valued.

Sincea has the spectral projectionsP15(I1a)/2 with eigenvalue 1 andP25(I2a)/2 with
eigenvalue21, we have

expF2
ic p̂aDt

\ G5expF2
ic p̂Dt

\ GP11expF ic p̂Dt

\ GP2 ,

and hence

^xuÛ~Dt !uy&5^xuexpF2
imc2bDt

\ GexpF2
ic p̂aDt

\ G uy&

5expF2
imc2bDt

\ G S ^xuexpF2
ic p̂Dt

\ G uy&P11^xuexpF ic p̂Dt

\ G uy&P2D
5expF2

imc2bDt

\ G~d~x2y2cDt !P11d~x2y1cDt !P2!.

Thus we obtain

^xuÛ~Dt !uy&5expF2
imc2bDt

\ G~d~x2y2cDt !P11d~x2y1cDt !P2!

.S I2 imc2bDt

\ D ~d~x2y2cDt !P11d~x2y1cDt !P2! ~4!

for sufficiently smallDt.
The right-hand side of Eq.~4! suggests that in nonstandard version the two*-paths inL

reaching (t1e,x), one from (t,x1ce) and the other from (t,x2e), may carry matrix-valued
weightsP7 while the ‘‘vertex’’ carries exp@2iemc2b/\#.I2iemc2b/\ as shown in Fig. 1.

Expecting that the finite time translation may be composed of the infinitesimal ones, we a
a *-measurem0(Xv) to each*-path the processXv(t)(tPT) traces.

Definition 2: ~1! Let Pk(ke,Xv(ke)) be a vertex of a* -pathXv , and l k the line segment
betweenPk andPk11 . Then,

m0~Xv!5L~ l N21!M0~PN21!L~ l N22!•••M0~P1!L~ l 0!, ~5!
J. Math. Phys., Vol. 38, No. 8, August 1997
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where

M0~Pk!5I2~ i emc2b/\!,

L~ l k!5 HP1 if the slope of l k is c,
P2 if the slope of l k is 2c.

~2! For a given standard functionf5( f2
f1 ) and (t,x)PR2, we define

c~ t,x!5st~C~ t,x!!, ~6!

where

C~ t,x!5 (
XvPP t,x

m0~Xv!* f ~Xv~0!! ~7!

withP t,x5 $XvuXv(t)5 x%.
Recall that we can define a matrix-valued*-measure over a*-finite set only if we assign a

matrix to each element of the set~see Definition 3!. PuttingI2 i emc2b/\5M0 , we note

P6
2 5P6 , P6P750, bP65P7b, ~P6M0!

k5P6M0 .

We also note that

~P6M0!
kP65P6 ,

~P7M0!
l~P6M0!

kP65S 2
i emc2

\ DP7b,

~P6M0!
m~P7M0!

l~P6M0!
kP65S 2

i emc2

\ D 2P6 ,

~P7M0!
n~P6M0!

m~P7M0!
l~P6M0!

kP65S 2
i emc2

\ D 3P7b,

•••

for natural numbersk,...,n.
By these formulas, we can calculatem0(Xv):
Proposition 1: Let R(Xv)5$ j uv( j e)v(( j21)e)521% and r(Xv) be the* -number of the

members in R(Xv), thenm0(Xv) is simply given by
~i! If v(0)51, v((N21)e)51, r (Xv)52k, then

FIG. 1. Assignment of matrices.
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



4056 Toru Nakamura: Path space measures for Dirac and Schrödinger equations

¬¬¬¬¬¬¬¬¬¬
m0~Xv!5S 2
i emc2

\ D 2kP1 .

~ii ! If v(0)521, v((N21)e)51, r (Xv)52k11, then

m0~Xv!5S 2
i emc2

\ D 2k11

P1b.

~iii ! If v(0) 5 1,v((N21)e) 5 21, r (Xv)52k11, then

m0~Xv!5S 2
i emc2

\ D 2k11

P2b.

~iv! If v(0)521, v((N21)e)5 2 1, r (Xv)52k, then

m0~Xv!5S 2
i emc2

\ D 2kP2 .

We have the following proposition.11

Proposition 2: (1) The wave functionc remains unchanged even if the sum in Eq. (7)
is restricted to the set

P t,x;k5$XvPP t,xur ~Xv!,k%

for any infinite numberk.
(2) c is near standard.

Eachm0(Xv) is eitherP6 or P6b multiplied by scalar (2 i emc2/\) r (Xv). Let us denote this
scalar factor bym̃0(Xv).

Consider two sets of* -paths

D5$XvPP t,xuvPV%, Dn5$XvPD ur ~Xv!5n%,

and definem̃0(D) and m̃0(Dn) by

m̃0~D !5 (
XvPD

m̃0~Xv!, m̃0~Dn!5 (
XvPDn

m̃0~Xv!.

Then, we have the following proposition.
Proposition 3: If N5 t/e P *N\N and nPN, then

m̃0~Dn!

m̃0~D !
.

1

n! S 2 imc2t

\ D n expF imc2t

\ G , ~8!

which suggests thatm̃0 has a property of Poisson process though the parameter(2 imc2/\) is
pure imaginary.

Proof: Sincem̃0(Xv)5(2 i emc2/\)n for XvPDn , we get

m̃0~Dn!52SN21
n D S 2

i emc2

\ D n5 2

n! S 2 imc2t

\ D n ~N21!!

~N212n!!Nn .
2

n! S 2 imc2t

\ D n,
m̃0~D !52(

k50

N21 SN21
k D S 2

imc2t

N\ D k52S 12 i
mc2t

N\ D N21

.2 expF2 imc2t

\ G .

J. Math. Phys., Vol. 38, No. 8, August 1997
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Then,

m̃0~Dn!

m̃0~D !
.

1

n! S 2 imc2t

\ D n expF imc2t

\ G ~9!

which completes the proof.
The*-measure is given so concretely in Proposition 1 that we can calculate the*-fundamental

solutionK 0(t,x;0,h) which is defined as follows.
Let

K~t,j;0,h!5 (
XvPP t,j;0,h

m0~Xv!

with

P t,j;0,h5$XvuXv~t!5j, Xv~0!5h%.

Put t5Ne, x5 lce andh5kce. Then,

either K~ t,x;0,kce!50 or K~ t,x;0,~k11!ce!50

becauseN and l2k must have the same parity for a connecting*-path to exist, consequently,

C~ t,x!5(
h
K 0~ t,x;0,h!* f ~h!2ce,

putting

K 0~ t,x;0,h!5~1/2ce! (
XvPP t,x;0,h

m0~Xv!.

For simplicity, puth50 and thenN and l must have the same parity.
Theorem 1:

K 0~ t,x;0,0!.
1

2 S I ]

c]t
2a

]

]x
2
imc

\
b D S J0Smc

\
Ac2t22x2D u~ct2uxu! D ,

where J0 is the Bessel function of order0 and u(x) is defined by

u~x!5 H10 if x.0,
if x,0.

Proof:Whenc2t22x2,0, it is clear that

K 0~ t,x;0,0!50

by the definition ofK 0 . We assumec2t22x2.0.
We classify the*-paths into four types;

~i! the first slope is1c and the last slope is1c,
~ii ! the first slope is2c and the last slope is1c,
~iii ! the first slope is1c and the last slope is2c,
~iv! the first slope is2c and the last slope is2c.
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of

f
n

4058 Toru Nakamura: Path space measures for Dirac and Schrödinger equations

¬¬¬¬¬¬¬¬¬¬
If Xv is of type ~i!, for example, then

m0~Xv!5S 2
i emc2

\ D 2kP1

as is noted in Proposition 1.
Denote the sum of contributions from the*-paths of type~i!, ~ii !, ~iii !, and~iv! by K̃ 1P1 ,

K̃ 2P1b, K̃ 3P2b, andK̃ 4P2 , respectively. Then

K 0~ t,x;0,0!5K̃ 1P11K̃ 2P1b1K̃ 3P2b1K̃ 4P2 . ~10!

Let us calculate

K̃ 15
1

2ce (
n

S 2
i emc2

\ D 2nNn ,

whereNn is the number of the*-paths of type~i! with r (Xv)52n. Nn is identified with the
number of the solutions~x1 ,...,xn11 , y1 ,...,yn! of positive integers which satisfy the system
equations

H x11x21•••1xn115p
y11y21•••1yn5q ~p1q5N,p2q5 l !,

that is,

Nn5
~p21!!

n! ~p212n!!

~q21!!

~n21!! ~q2n!!
5

A

n! ~n21!!
, A5

~p21!! ~q21!!

~p212n!! ~q2n!!
.

Owing to Proposition 2, we can choose an arbitrary infinite numberk for the upper limit of
r (Xv). We choose it to be of lower order of infinity thanAt0 /e, wheret0 is an arbitrary unit of
time.

Sincec2t22x2.0, bothp5(1/2ce)(ct1x) andq5(1/2ce)(ct2x) have the same order o
infinity as t0 /e. This order is sufficient to substitutepnqn21 for A, because the difference i
K̃ 1 from the substitution is at most

U 1

2ce (
n51

k S 2
i emc2

\ D 2n pnqn21~k11!2

n! ~n21!! S 1p1
1

qDU
<
mc~k11!2

2\ S 1p1
1

qD (n50

* `

1

n! ~n11!! S emc2p

\ D n11S emc2

\ D n.0. ~11!

Here, we have used the inequality

uA2pnqn21u,pnqn21~k11!2S 1p1
1

qD .
Consequently,

K̃ 1.
1

2ce (
n50

k21
pn11qn

~n11!!n! S 2 i emc2

\ D 2n12

.

J. Math. Phys., Vol. 38, No. 8, August 1997
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Noticing that

pn11qne2n115~ApeAqe!2n11Ap

q
5SAc2t22x2

2c D 2n11Act1x

ct2x
,

we get

K̃ 1.2
mc

2\
Act1x

ct2x
J1Smc

\
Ac2t22x2D.

1

2 S 1c ]

]t
2

]

]xD J0Smc

\
Ac2t22x2D . ~12!

Similarly,

K̃ 2.2
imc

2\
J0Smc

\
Ac2t22x2D , ~13!

K̃ 3.2
imc

2\
J0Smc

\
Ac2t22x2D , ~14!

K̃ 4.2
mc

2\
Act2x

ct1x
J1Smc

\
Ac2t22x2D.

1

2 S 1c ]

]t
1

]

]xD J0Smc

\
Ac2t22x2D . ~15!

By these formulas and Eq.~10!, we get the conclusion.
When the electromagnetic potentialsAi ( i50,1) is added to the Dirac equation, we have

replace Eq.~4! by

^xuÛ~Dt !uy&.S I2 iDt

\
~mc2b1eA0~ t,x!I2eA1~ t,x!a! D

3@d~x2y2cDt !P11d~x2y1cDt !P2#,

and consequently, Eqs.~5! and ~7! by

m~Xv!5L~ l N21!M ~PN21!•••M ~P1!L~ l 0!,

C~ t,x!5 (
XvPP t,x

m~Xv!* f ~Xv~0!!

with

M ~Pk!5I2
i e

\
~mc2b1e*A0~Pk!I2e*A1~Pk!a!.

m(Xv) is related tom0(Xv) by the following equation, that is, the effects of the potentials
factorized as a numeral:

m~Xv!5 )
k¹R~Xv!

H 12e
i

\
~e*A0~Pk!2e*A1~Pk!s~ l k!!J m0~Xv!, ~16!

wheres( l k) is the sign of the slope ofl k .
We then have the following theorem.11

Theorem 2: If A jPC2(R2) and fjPC2(R), thenc(t,x) is the solution to the Dirac equation
with electromagnetic potentials Aj .
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III. STANDARD MEASURE FOR DIRAC EQUATION

The*-measure in Sec. II defined for each*-path inP t,x leads to an internal* -finitely additive
* -measure space (P t,x ,A,m0).

Definition 3: Define(P t,x ,A,m0) by

A5$E#P t,xuE is internal%,

m0~E!5 (
XvPE

m0~Xv! for EPA.

The functionm0 is an internalM2(*C)-valued set function defined onA, whereM2(*C)
denotes the set of 232 matrices with their matrix elements in*C.

We define*-total variation ofm0 by

um0u~E!5* sup
P

(
i51

l

* im0~Di !i .

Here,* i i denotes the norm defined onM2(*C), andP5$D1 ,D2 ,...,Dl% is an internal partition
of E into * -finitely many sets inA, that is

DiùDj5B~ iÞ j !, ø
i51

l

Di5E, DiPA.

Then,
Proposition 4: The inequality

um0u~E!<2 expFmc2t

\ G
holds for tPR and EPA.

Proof: From Proposition 1,

* im0~Xv!i5~mc2e/\!r ~Xv!.

Then,

um0u~E!<um0u~P t,x!5 (
XvPP t,x

* im0~Xv!i52(
k50

N21 SN21
k D Smc2t

\N D k<2 expFmc2t

\ G .
Proposition 4 says thatm0 is of bounded variation. Then, owing to Zˇ ivaljević’s theory,15 we

can derive fromm0 a standards-additive 232 matrix-valued measuremL over the nonstandard
*-path spaceP t,x . For the reader’s convenience, we shall repeat the definitions. After tha
shall define a standard measuremL on a standard path spacePt,x and discuss the connectio
between nonstandard and standard integrations.

Sinceum0u is *R1-valued, we can apply the Loeb measure theory16 to get the Loeb measur
space (P t,x ,L(A),L(um0u)), whereL(A) is a standards-field over the*-path spaceP t,x , and
L(um0u) is a standards-additiveR1-valued measure on (P t,x ,L(A)).

Note thatE belongs toL(A) iff there existsAPA such thatL(um0u)(EDA)50. If A1 ,
A2PA are two sets which approximateE in this sense, then

st~* im0~A1!2m0~A2!i !<st~ um0u~A1DA2!!<L~ um0u!~EDA1!1L~ um0u!~EDA2!50
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r

ation

of
th

4061Toru Nakamura: Path space measures for Dirac and Schrödinger equations

¬¬¬¬¬¬¬¬¬¬
and hence

m0~A1!.m0~A2!.

This allows us to give the following definition.
Definition 4: DefinemL(E) for EPL(A) by

mL~E!5st~m0~A!! ~17!

where A is a member ofA such that L(um0u)(EDA)50.
Then,

Proposition 5:(P t,x ,L(A),mL) is a standard M2(C)-valued, s-additive measure space ove
the nonstandard path spaceP t,x .

Proof: See Proposition 1.6 in the Zˇ ivaljević’s paper.15

We define a standard measure on a standard path space.
Definition 5: Let

Pt,x5$x~s!PC@0,t#ux~ t !5x%,

B5$A#Pt,xu$XvPP t,xust XvPA%PL~A!%,

mL~A!5mL~$XvPP t,xust XvPA%! for APB,

wherestXvPPt,x is a standard path defined by

~st Xv!~s!5st~Xv~s!! for sP@0,t#.

Then,
Theorem 3: (Pt,x ,B,mL) is a standardM2(C)-valueds-additive measure space, andB

contains all cylinder sets ofPt,x .
Proof: Let Bn be a Borel set inRn. We call

$x~s!PPt,xu~x~ t1!,...,x~ tn!!PBn%

a cylinder set ofPt,x and denote it byM (Bn ,t1 ,...,tn).
The s-additivity of (B,mL) follows directly from that of (L(A),mL). Let us show that

M (Bn ,t1 ,...,tn) belongs toB for any Borel setBn .
First, letBn5(a1 ,b1)3•••3(an ,bn) be a product of open intervals inR. Then, the cylinder

setM (Bn ,t1 ,...,tn) belongs toB, because

$XvPP t,xust XvPM ~Bn ,t1 ,...,tn!%

5 ø
pPN

HXvPP t,xUai1 1

p
<Xv~ t i !<bi2

1

p
, 1< i<nJ PL~A!.

Second, ifBn is a product of open sets inR, M (Bn ,t1 ,...,tn) belongs toB, sinceB is
s-additive.

Last, by the same reason,M (Bn ,t1 ,...,tn) belongs toB for any Borel setBn .
Sincem0 is given in concrete shape in Proposition 1, we can easily get further inform

about the standard measuremL .
Theorem 4: The measure mL is concentrated on the set S of polygonal lines consisting

finitely many line segments with slopes6c, that is, the set of zigzag paths going back and for
finitely many times with velocities6c.

Proof: Let
J. Math. Phys., Vol. 38, No. 8, August 1997
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S̃5$XvPP t,xur ~Xv! is finite%.

Then

umLu~P t,x\S̃!5 lim
n→`

umLu~$Xvur ~Xv!>n%!

5 lim
n→`

stum0u~$Xvur ~Xv!>n%!

< lim
n→`

st (
k5n

N21

2Smc2t

N\ D kSN21
k D5 lim

n→`
(
k5n

`
2

k! Smc2t

\ D k50.

Therefore,

umLu~P t,x\S̃!50. ~18!

Let us show

$Xvust Xv¹S%#P t,x\S̃. ~19!

Suppose thatXvPS̃ changes its directions at timesn1e,n2e,•••,nle, lPN, then t1<t2
<•••<t l , where st(nie)5t i .

If t jÞt j11 , then

~st Xv!~ t j11!2~st Xv!~ t j !

t j112t j
.
Xv~nj11e!2Xv~nje!

nj11e2nje
56c,

because

~st Xv!~ t i !5st~Xv~ t i !!.st~Xv~nie!!.

Thus we have stXvPS so that Eq.~19!.
Let P5$A1 ,...,Al% be an arbitrary partition ofPt,x\S into the sets inB, that is,

AiùAj5B~ iÞ j !, ø
i51

l

Ai5Pt,x\S, AiPB.

From Eq.~19!

$Xvust XvPAj%#$Xvust Xv¹S%#P t,x\S̃,

and hence

imL~A1!i1•••1imL~Al !i5imL~$Xvust XvPA1%!i1•••1imL~$Xvust XvPAl%!i

<umLu~$Xvust XvPA1%!1•••1umLu~$Xvust XvPAl%!

<umLu~P t,x\S̃!50,

which completes the proof.
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Let us proceed to see the connection between nonstandard and standard path integra
Nonstandard path integral* *P t,x

G@Xv#m0(dXv) w.r.t. m0 was defined just before Theorem
as the*-finite path-sum

* E
P t,x

G@Xv#m0~dXv!5 (
XvPP t,x

m0~Xv!G1@Xv#S 10D1 (
XvPP t,x

m0~Xv!G2@Xv#S 01D , ~20!

where

Gj@Xv#5 )
k¹R~Xv!

H 12e
i

\
~e*A0~Pk!2e*A1~Pk!s~ l k!!J * f j~Xv~0!!. ~21!

Let us define the standard path integral*Pt,xg@x(s)#mL(dx(s)) w.r.t.mL by

E
Pt,x

g@x~s!#mL~dx~s!!5E
Pt,x

g1@x~s!#mL~dx~s!!S 10D1E
Pt,x

g2@x~s!#mL~dx~s!!S 01D , ~22!

where

gj@x~s!#5expF2
i

\ E
0

t

$eA0~s,x~s!!ds2eA1~s,x~s!!dx~s!/c%G f j~x~0!!. ~23!

The integral~22! of scalar function with respect to matrix-valued measure is defined in
IV 10.7. in Dunford and Schwartz’s book.17

Theorem 5:

* E
P t,x

G@Xv#m0~dXv!.E
Pt,x

g@x~s!#mL~dx~s!!.

Proof: First, let us see the connection between the nonstandard path integral w.r.t.m0 and the
standard path integral w.r.t.mL . Notice thatuGi@Xv#u is bounded by some constant inR1 uni-
formly in Xv . Therefore, the composite function st+Gi is mL-integrable if it ismL-measurable by
Sec. IV 10.8 in Dunford and Schwartz’s book.17 Let B5O(a,r ) andBn5O(a,r2(1/n)) be open
balls in the complex plainC with centera and radiir and r2(1/n), respectively. Then,

~st+Gi !
21~B!5 ø

nPN
Gi

21~*Bn!PL~A!,

which implies that st+Gi is mL-measurable, and hencemL-integrable.
We should compare

(
XvPP t,x

m0~Xv!Gi@Xv# with E
P t,x

~st+Gi !@Xv#mL~dXv!.

Let D be a rectangle inC which includes (st+Gi)(P t,x). Divide D equally into n2-pieces of
rectanglesDn,k

D5 ø
k51

n2

Dn,k

which satisfy
J. Math. Phys., Vol. 38, No. 8, August 1997
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sup$uz12z2uuz1 ,z2PDn,k%5
d

n

for some constantd in R. Choosezn,kPDn,k arbitrarily, and defineGi ,n by

Gi ,n@Xv#5 (
k51

n2

zn,kxEn,k
~Xv!,

wherexA is the characteristic function of a setA, andEn,k is an arbitrary set inA which satisfies

umLu~En,kD~st+Gi !
21~Dn,k!!50.

Then,$Gi ,nun51,2,...% is a sequence of simple functions such that

~i! Gi ,n converges to st+Gi asn→` ~mL-almost everywhere!,
~ii ! limn→`*P t,x

Gi ,n@Xv#mL(dXv)5*P t,x
(st+Gi)@Xv#mL(dXv) in the norm ofM2(C

2).

It also satisfies

uGi@Xv#2Gi ,n@Xv#u<en with lim
n→`

en50 ~uniform in Xv!.

Then,

* I (
XvPP t,x

m0~Xv!Gi@Xv#2E
P t,x

Gi ,n@Xv#mL~dXv!I<enum0u~P t,x!.

As n→`,

(
XvPP t,x

m0~Xv!Gi@Xv#.E
P t,x

~st+Gi !@Xv#mL~dXv!. ~24!

For the next step, we compare the integral w.r.t.mL with the integral w.r.t.mL . Let

Hi@Xv#5expF2
i

\ E
0

t

$e*A0~s,Xv~s!!ds2e*A1~s,Xv~s!!s~Xv!ds/c%G * f i~Xv~0!!.

Notice that Theorem 4 implies that

~st+Gi !@Xv#5~st+Hi !@Xv# mL-almost everywhere,

and hence

E
P t,x

~st+Gi !@Xv#mL~dXv!5E
P t,x

~st+Hi !@Xv#mL~dXv!. ~25!

Define, by the same way asGi ,n , a sequence of simple functions

Hi ,n@Xv#5 (
k51

n2

wn,kxFn,k
~Xv!, Fn,kPA,

which approximates st+Hi in the sense of~i!, ~ii ! above. Then,
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ce

words

as

4065Toru Nakamura: Path space measures for Dirac and Schrödinger equations

¬¬¬¬¬¬¬¬¬¬
E
P t,x

~st+Hi !@Xv#mL~dXv!5 lim
n→`

E
P t,x

Hi ,n@Xv#mL~dXv!. ~26!

Definegi ,n for x(s)PPt,x by

gi ,n@x~s!#5 (
k51

n2

wn,kx F̃n,k
~x~s!!

with

F̃n,k5$x~s!PPt,xu'XvPFn,k , stXv5x~s!%.

Then,

E
P t,x

Hi ,n@Xv#mL~dXv!5E
Pt,x

gi ,n@x~s!#mL~dx~s!! ~27!

by the definition ofmL .
It is clear that

lim
n→`

gi ,n@x~s!#5gi@x~s!# mL-almost everywhere,

andugi ,nu is bounded by some constant inR uniformly in n. Then, by the dominated convergen
theorem~cf. Theorem 10.10 in the Dunford and Schwartz’s book17!, we get

lim
n→`

E
Pt,x

gi ,n@x~s!#mL~dx~s!!5E
Pt,x

gi@x~s!#mL~dx~s!!. ~28!

From Eqs.~24!, ~25!, ~26!, ~27!, and~28!, the conclusion is clear.

IV. NONSTANDARD MEASURE FOR SCHRÖDINGER EQUATION

We wish to obtain a*-path space measure for the Schro¨dinger equation, by lettingc be an
infinite number.

First, we consider the free case. Anticipating that the matrixK 0 becomes diagonal for infinite
c, we introduce

Definition 6: For a given initial data f(x)PL2(R)ùC(R), we define

f~ t,x!5st~F1~ t,x!!,

where

S F1~ t,x!

F2~ t,x! D5 (
XvPP t,x

m0~Xv!S * f ~Xv~0!!

0 D .
In the following proposition, we shall not state the conditions one, c andux2hu, leaving the

precise statements until later when we makex-space cut-off in Proposition 7. Whenx andh are
restricted within the cut-off space, we have the following proposition. Hereafter, we use the
‘‘small’’ and ‘‘large’’ in the sense of order of magnitude.

Proposition 6: Lete be sufficiently small as given in Eq. (43), and c be sufficiently large
given in Eq. (40), thenK 0 is diagonal and
J. Math. Phys., Vol. 38, No. 8, August 1997
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~1.1!2component ofK 0~ t,x;0,h!.A m

2p i\t
expF im~x2h!2

2\t GexpF2 i
mc2

\
tG . ~29!

Proof: The velocityc of light is infinite here while it was finite in Theorem 1. Therefore, w
must estimate the bounds of errors caused by the approximations in Theorem 1 more carefu
should also pay attention tot-dependence, for we are going to take an infinitesimalt in Theorem
6 below.

In the proof of Theorem 1, we restrictedXv to the setP t,x;k . The error caused by the
restriction can be bounded by

E15
mc

\

ezzk

k!
~30!

using the formula for the remainder of Taylor expansion, where

z5mcAc2t22~x2h!2/\.

The boundE1 is infinitesimal whenk is chosen sufficiently larger thanz.
The boundE2 of the error from the substitution ofpnqn21 for A can be further bounded as

E2<
mc

2\
~k11!2S 1p1

1

qD (n50

* `
1

n! ~n11!! Smc2ep

\ D n11Smc2eq

\ D n

<
2m2c3~k11!2e

\2 (
n50

* `
z2n

~2n!!
,2m2c3~k11!2eze/\2. ~31!

The boundE2 is infinitesimal because we choosee sufficiently small.
The error from the substitution 1 for

Act6~x2h!

ct7~x2h!

is bounded by

E35
ux2hu
ct

Am

\t
, ~32!

which is negligible whenx andh are the in the cut-off space.
The bound of the error from truncating the power series expansion of the Bessel function

infinite numberk is essentially the same asE1 .
Finally, the error from the asymptotic expansion~35! below is bounded by

E45
1

ct
A \

mc2t
, ~33!

which is also negligible, forc is infinite.
From Eqs.~12!, ~13!, ~14!, ~15!, and

Act6~x2h!

ct7~x2h!
.1,
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we getK̃ 1.K̃ 4 andK̃ 2.K̃ 3. Then, the right-hand side of Eq.~10! becomes diagonal if we
choose the representatives ofa andb so thatb is diagonal. For example, we can take

a5S 0 1

1 0D , b5S 1 0

0 21D ,
then

K 0~ t,x;0,h!.S K̃ 11K̃ 2 0

0 K̃ 12K̃ 2D .
The ~1,1!-component of this matrix is

K̃ 11K̃ 2.2
mc

2\ H * J1Smc

\
Ac2t22~x2h!2D1 i * J0Smc

\
Ac2t22~x2h!2D J . ~34!

Supposeux2hu is smaller thanct so thatz is infinite. Then

z5
mc

\
Ac2t22~x2h!2.

mc2t

\ S 12
~x2h!2

2c2t2 D ,
and asymptotically asz→`

* J1~z!;2A 2

pz
cosS z1

p

4 D , * J0~z!;A 2

pz
sinS z1

p

4 D . ~35!

Putting them into Eq.~34!, we get

K̃ 11K̃ 2.A m

2p i\t
expF im~x2h!2

2\t GexpF2 i
mc2

\
tG

which is equal to Eq.~29!.
The last factor exp@2imc2t/\# does not depend onx andh, and can be removed by changin

the origin of energy or changing Hamiltonian. So, we put it in the path space measure~see
Definition 7!.

Let us go into the case with potentials. We introduce a double lattice structure in the time
namely, a fine lattice with an infinitesimal spacinge and a coarse one with spacingt5ne, where
n is infinite andt is yet infinitesimal. The fine lattice belongs toL we have been using so far, an
the zigzag paths onL present the Zitterbewegung of the Dirac particle. On the coarse scale w
the particle appear to move much more slowly than the light, we have the asymptotic be
~29!, which belongs to a Schro¨dinger particle. Thus the single path in Fig. 2 for a Schro¨dinger
particle is actually a bundle of infinitely many zigzag paths of a Dirac particle~Fig. 3!.

Since the amplitude of the Zitterbewegung is of the order\/mc and is infinitesimal for
c→`, the potentialV(x)PC(R) we consider is practically constant on this scale. Therefore,
sum over paths onL can be taken in two steps, first on the fine scale for each time inte
(kt,(k11)t) for fixed Xv(kt) (k51,2,...,nt) and then sum overXv(kt) on the coarse time
scale. The potential is practically constant for each time interval in the first summation, the s
summation takes the form of Trotter’s formula that picks up the effects of the potential on
t,2t,..., leaving the propagation in between to be free as dictated by Eq.~29!.

When we try to formulate the above argument rigorously, we encounter difficulties resu
from our restriction onux2hu in Proposition 6. Namely,ux2hu has to be sufficiently smaller tha
ct in order forK 0 to be the fundamental solution to the free Schro¨dinger equation. Therefore, w
J. Math. Phys., Vol. 38, No. 8, August 1997
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have to makex-space cut-off sufficiently smaller thanct, as well as it must be uniform in initia
functions fPL2(R)ùC(R). Fortunately, such kind of uniform cut-off is possible in nonstand
analysis owing to the 2:0-saturation principle.

Fix a positive infinitesimalt. Let nt be the largest* -integer less than or equal tot/t, and let
t5tnt .

Proposition 7: Suppose that V(x) is a real-valued continuous function and the Hamiltoni
HS52(\2/2m)(]2/]x2)1V(x) is self-adjoint with its domain inL2. Then,

'A0P*R ; fPL2~R!ùC~R! ;aPR1 ;tPR1 ;A.A0* I exp@2 i t*HS/\#* f ~x!

2E
2A

A

•••E
2A

A

expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )
j50

nt21
1

A2p i
* d̃xj I

2

,a, ~36!

where

St~xn ,xn21 ,...,x0!5(
j51

n Sm2 ~xj2xj21!
2

~ t/n!2
2V~xj ! D t

n
, * d̃x5Am

\t
* dx.

Proof: It is known in the standard theory that for anyfPL2(R)ùC(R) andnPN

~Un~ t/n!!nf ~x!5E
R
•••E

R
expF i\ St~x,xn21 ,...,x0!G f ~x0!)

j50

n21
1

A2p i
d̃xj ,

FIG. 2. Path at coarse scale.

FIG. 3. Paths at fine scale.
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where

Un~ t/n!5expF2
i

\

t

n
V~x!GexpF2

i

\

t

n
H0
SG , H0

S52
\2

2m

]2

]x2
, d̃xj5Amn

\t
dx.

Then, by the transfer principle,

~*Unt
~ t/nt!!nt* f ~x!5E

*R
•••E

*R
expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )

j50

nt21
1

A2p i
* d̃xj ~37!

holds.
The right-hand side of Eq.~37! is approximated by a truncated integration, that is,

; fPL2~R!ùC~R! ;aPR1 ;tPR1 'A0P*R1 ;A.A0

* I E
*R
•••E

*R
expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )

j50

nt21
1

A2p i
* d̃xj

2E
2A

A

•••E
2A

A

expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )
j50

nt21
1

A2p i
* d̃xj I

2

,a

holds. If we consider this proposition as a binary relation between the ordered triple^ f ,a,t& and
A0 , then the relation is obviously internal and concurrent. Then,

'A0P*R1 ; fPL2~R!ùC~R! ;aPR1 ;tPR1 ;A.A0

* I E
*R
•••E

*R
expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )

j50

nt21
1

A2p i
* d̃xj

2E
2A

A

•••E
2A

A

expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )
j50

nt21
1

A2p i
* d̃xj I

2

,a ~38!

holds by the 2:0-saturation principle.
On the other hand,

* I ~*Unt
~ t/nt!!nt* f ~x!2expF2

i

\
t*HSG * f ~x!I

2

,a ~39!

holds by the transferred Trotter formula. From Eqs.~37!, ~38!, and ~39!, we get the conclusion
~36!.

We have three parameterst,c,e. Now, let us determine their values by using the dimensi
less infinite numberA0 whose existence is assured in Proposition 7. We have already fixedt as an
arbitrary positive infinitesimal. Definec by

c5A \

mt0
expA1 , A15A0e

t0 /t, ~40!

wheret0 is an arbitrary unit of time.
Now, let us define the third parametere. The following inequality:

; fPL2~R!ùC~R! ;aPR1 ;tPR1 'e0P*R1 ;e,e0
J. Math. Phys., Vol. 38, No. 8, August 1997
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* I E
2A1

A1
•••E

2A1

A1
expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )

j50

nt21
1

A2p i
* d̃xj

2 (
x0 ,...,xnt21

expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )
j50

nt21
1

A2p i
D̃xj I

2

,a ~41!

holds since both* f and*St are*-continuous. Here,

D̃xj5ceAm

\t
,

and the sum in the left-hand side of Eq.~41! is taken over allxjPXA1
, where

XA1
5$cekuuceku,A1A\t/m, k50,61,62,...%.

The summation in Eq.~41! is identified with the summation over all piecewise linear co
tinuous paths with vertices (0,x0), (t,x1),..., ((nt21)t,xnt21) and ~t,x!.

If we consider the proposition~41! as a binary relation between the triple^ f ,a,t& ande0 , then
the relation is obviously internal and concurrent. Then we have

'e0P*R1 ; fPL2~R!ùC~R! ;aPR1 ;tPR1 ;e,e0

* I E
2A1

A1
•••E

2A1

A1
expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )

j50

nt21
1

A2p i
* d̃xj

2 (
x0 ,...,xnt21

expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )
j50

nt21
1

A2p i
D̃xj I

2

,a ~42!

by the 2:0-saturation principle. Definee by

e,min$e0 ,t0e
2k%, k5

m2t0
2

\2 c4. ~43!

For convenience, we choosee so thatt/eP*N.
Now, we have defined the values of all parameters. Roughly speaking,cAmt0 /\ is suffi-

ciently larger than bothA1 andt0 /t ande is sufficiently smaller thanl 0 /c ~l 0 is an arbitrary unit
of length!. Let us define the*-path integral for the Schro¨dinger equation with potentialV(x).
Recall that we changed the definition oft by t5tnt just before Proposition 7, thoughx remained
unchanged.

Definition 7: (1) DefineP t,x
A1 by

P t,x
A15$Xv~• !PP t,xuXv~kt!PXA1

, k50,1,...,nt21% ~44!

for (t,x)PR2.
(2) For f(x)PL2(R)øC(R) and (t,x)PR2, definef by

f~ t,x!5st~F1~ t,x!!, ~45!

where
J. Math. Phys., Vol. 38, No. 8, August 1997
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S F1~ t,x!

F2~ t,x! D5 (
XvPP

t,x
A1

mV~Xv!S * f ~Xv~0!!

0 D ~46!

with

mV~Xv!5expF2
i

\ (
j51

N1

tV~Xv~ j t!!GexpF i mc2

\
tGm0~Xv!.

We have the main theorem of this section.
Theorem 6: Suppose the initial function f(x) and the potential V(x) satisfy the following

conditions;

~i! Hs52(\2/2m)]2/]x21V(x) is self-adjoint inL2(R),
~ii ! V(x)PC(R),
~iii ! f (x)PL2(R)øC(R).

Then, f(t,x) is the solution to the Schro¨dinger equation with potential V(x) which satisfies
the initial conditionf(0,x)5 f (x).

Proof:We should compare

C~ t,x!5 (
x0 ,...,xnt21

expF i\ *St~x,xnt21 ,...,x0!G * f ~x0! )
j50

nt21
1

A2p i
D̃xj

appeared in Eq.~42! with F1(t,x) in Eq. ~46!. Recall thatF1 is defined only for the lattice points
x with xPR. Let us first extend the definition ofF1 for the other lattice pointsxPXA1

by the
same formula as Eq.~46!, that is, it is defined by the*-path integral. Second, defineF1 as the step
function for the other pointsx in the interval* @2A1A\t/m,A1A\t/m#.

We have definedt, c ande so that the errorsEi in the proof of Proposition 6 are small enoug
even when the effect caused bynt-times iterations are taken into account. Consequen
C(t,x)2F1(t,x) is small enough for* L2-norm estimation, that is,

* iC~ t,x!2F1~ t,x!i2,a ~47!

for all aPR1. By the formulas~36!, ~42!, and~47!, we get

* iexp~2 i tHS/\!* f ~x!2F1~ t,x!i2,a ~48!

for all aPR1, that is, the left-hand side is infinitesimal.
Since the difference betweent and t is infinitesimal,

* iexp~2 i t*HS/\!* f ~x!2exp~2 i t *HS/\!* f ~x!i2,a

holds. Then,

* iF1~ t,x!2exp~2 i t *HS/\!* f ~x!i2.0. ~49!

Let us defineL(t,x) as the step function defined by the values exp(2it*HS/\)* f(x) of the
lattice pointsxPX. Then,

* iL~ t,x!2exp~2 i t *HS/\!* f ~x!i2.0 ~50!

since exp(2itHS/\)f(x) is continuous.
By Eqs.~48!, ~49!, and~50!, we get

* iF1~ t,x!2L~ t,x!i2.0. ~51!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Put

Ae5$xPRuust~F1~ t,x!!2exp@2 i tHS/\# f ~x!u.e%

for ePR1. Then,

Ae#H st~x!uuF1~ t,x!2L~ t,x!u.
e

2J ~52!

holds by the definition ofL. Denote the right-hand side of Eq.~52! by Be , then

m~Be!.*mS H xP*RuuF1~ t,x!2L~ t,x!u.
e

2J D ,
wherem is the Lebesgue measure. Denote the right-hand side byr e , then

e2

4
r e<* iF1~ t,x!2L~ t,x!i2

2.0

holds by Eq.~51!, consequentlyr e is infinitesimal. Then, the setBe is a null set so that the sam
is the setAe . This completes the proof of the theorem.

Remark:The *-measurem0 is of bounded variation because of the factor (2 i emc2/\)k if
c is finite. However, the positive and negative parts of the real or imaginary part of the m
elements ofm0 grows without bound asc→`, so that the Loeb measure cannot be construc
Nevertheless, their difference must have meaning, though we don’t know at this moment h
extract a meaningful quantity from that.
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Nonlinear quantization of integrable classical systems
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It is demonstrated that the so-called ‘‘unavoidable quantum anomalies’’ can be
avoided in the framework of a special nonlinear quantization scheme. In this
scheme, the quantized Hamiltonians are represented by nonlinear but homogeneous
operators in Hilbert space. The nonlinear terms are of the same order as quantum
anomalies, and their role is to cancel anomalies. The quantization method proposed
is applicable to integrable classical dynamical systems and the result of quantiza-
tion is again an integrable~but, generally, nonlinear! ‘‘quantum’’ system. A simple
example is discussed in detail. Irrespective of the existence of possible physical
applications, the method provides a constructive way for extending the notion of
quantum integrability to nonlinear spectral problems and gives a practical tool for
building completely integrable nonlinear spectral equations in Hilbert space.
© 1997 American Institute of Physics.@S0022-2488~97!00106-0#

I. INTRODUCTION

It is known that quantization does not generally preserve zero commutation relations be
observables. In other words, classically integrable systems may cease to be integrable aft
quantization. Of course, the quantization procedure is not unique. There are infinitely many
to quantize a system and, for this reason, the integrability can sometimes be recovered a
appropriate choice of a quantization scheme. However, the typical situation~especially for mul-
tidimensional systems! is that there are no quantization schemes at all in which such a reco
would be possible. In such a case we speak of the ‘‘unavoidable quantum anomalies.’’

In order to understand the reason for the existence of unavoidable quantum anomalie
sider a certain completely integrableN-dimensional classical system withN mutually commuting
integrals of motionHn , n51,...,N. Denote byĤn

(0) , n51,...,N the quantum versions of thes
classical integrals of motion obtained within some fixed quantization scheme. Assume that
torsHn

(0) do not commute with each other. For a randomly chosen quantization scheme th
typical situation. Computing the commutator of these operators, we obtain

@Ĥn
~0! ,Ĥm

~0!#5\2F̂nm
~1!1\3F̂nm

~2!1••• . ~1.1!

Obviously, this expansion should start with\2. Otherwise we would obtain nonzero Poiss
brackets in the classical limit, which is impossible becauseHn , n51,...,N are, by assumption
integrals of motion. Now remember that the chosen quantization scheme is not unique. Th
trivial consequence of the fact that, instead of operatorsĤn

(0) , n51,...,N, we could consider
arbitrary operators of the form

Ĥn5Ĥn
~0!1\Ĥn

~1!1\2Ĥn
~2!1•••, n51,...,N, ~1.2!

which, evidently, would have the same classical limit. This fact suggests improving the co
tation relations~1.1! by replacing the operatorsĤn

(0) by more general operators~1.2! with appro-
priately chosen correctionsĤn

(1) , Ĥn
(2) ,... . Requiring that@Ĥn ,Ĥm#50, using~1.1! and~1.2! and
0022-2488/97/38(8)/4073/13/$10.00
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collecting the terms of the same order in\, we obtain the system of recurrence relations
corrections of our interest. For example, the equation determining the first correction reads

@Ĥn
~0! ,Ĥm

~1!#1@Ĥn
~1! ,Ĥm

~0!#1\F̂nm
~1!50, n.m, n,m51,...,N. ~1.3!

However, even this first equation clearly demonstrates that the solution of the problem do
generally exist. Indeed, the number of unknowns in Eq.~1.3! is N. At the same time, the numbe
of equations isN(N21)/2. If N.3, i.e., for more than three-dimensional models, the sys
becomes overdetermined and generally has no solutions. This is what we meant, saying
multdimensional models the situation with quantum anomalies is typical and cannot be avoi
the framework of standard formalism of quantum mechanics. Of course, in the presence o
symmetry in a model, the equations for corrections may cease to be independent and thei
tive number may decrease. In this case the quantization without anomalies may become p
Such a situation is usually realized in models obtainable in the framework of ther -matrix method
if the underlying symmetry is su~2! or su~3!. As much as we know, for higher symmetries t
problem with quantum anomalies in ther -matrix approach remains still unsolved.

The aim of the present paper is to demonstrate that construction of quantization schem
of any quantum anomalies~at least on the states! becomes possible if one drops out the conditi
of linearity of quantum mechanics. The resulting nonlinear Schro¨dinger equations are very simila
to Doebner–Goldin equations1 recently derived in the framework of a rather general quantiza
scheme based on the use of infinite-dimensional algebras of vector fields and grou
diffeomorphisms.2,3 Speaking of nonlinear Schro¨dinger equations and nonlinear quantum mech
ics, we mean a hypothetical quantum theory in which the observables are represented by no
operators in Hilbert space. At the present time there are many examples of such theories~see, e.g.,
Refs. 4–7,1 and references therein!. Because up to now there are no experimental indications
the quantum world is nonlinear, the measure of nonlinear effects in all reasonable theories
be very small. In our scheme this condition is automatically satisfied because in this sche
role of nonlinear terms is to cancel quantum anomalies, and therefore, the order of these t
the same as the order of anomalies, i.e., at most\2.

In this paper we restrict ourselves to discussing a particular~but very important! case of
quantization of completely integrable classical systems. We leave the consideration of the g
case to later publications. In the case of completely integrable systems, the procedure of
zation consists of three steps. The first step is to separate variables in an integrable c
system. The separation of variables is understood here in the generalized~Sklyanin! sense. Fol-
lowing Sklyanin,8 we call aN-dimensional classical system separable if there exists such aca-
nonical transformationto canonically conjugated variablespi , qi , i51,...,N in which the
Hamilton–Jacobi equation for the system becomes equivalent to a system of one-dimen
multiparameter spectral equationsFi(qi ,pi ,h1 ,...,hN), i51,...,N with some polynomial func-
tions Fi . For more details see Ref. 8. The second step lies in the standard quantizat
one-dimensional multiparameter equations obtained after the separation of variables. Th
step is to reconstruct an integrable quantum system from the quantized one-dimensional eq

The first step is most nontrivial from the practical point of view, because, in practice,
often very difficult to check whether a given classical system is integrable or not, and even i
in which canonical coordinates it is separable. However, this difficulty can be avoided by usin
‘‘classical inverse method of separation of variables’’~classical IMSV!, when instead of checking
the integrability or separability of a given system, we are simply building systems that are
rable and integrable by construction.8,9

The last step is nothing else than the so-called ‘‘quantum inverse method of separat
variables’’ ~quantum IMSV!, which, up to now, has been applied to systems of separated e
tions with linear dependence on separation constants~see, e.g., Refs. 9–12!. For such equations
J. Math. Phys., Vol. 38, No. 8, August 1997
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the resulting quantum systems are always linear. The nonlinear quantum operators appear
the separated equations depend on separation constants nonlinearly.

These two classical and quantum versions of IMSV will be discussed in detail in Secs.
III. In Sec. IV we explain what we mean by nonlinear quantization. Section V is devoted
discussion of specific two-dimensional models for which all the aspects of the proposed q
zation scheme become transparent and clear. Unfortunately, these models, because of th
dimensionality, are not examples of models with true quantum anomalies. The discussion
latter would force us to work in at least four-dimensional space, which, of course, would le
very cumbersome expressions, nondesirable in the framework of this paper.

II. CLASSICAL VERSION OF IMSV

Let Fi5Fi(x,y,z1 ,...,zN), i51,...,N beN ~may be partially or completely coinciding! poly-
nomial functions ofN12 complex variablesx,y,z1 ,...,zN . ConsiderN ordinary first-order dif-
ferential equations,

Fi S qi , ]Si~qi !]qi
,h1 ,...,hND50, i51,...,N, ~2.1!

for N functionsSi(qi), i51,...,N. Obviously, all these equations can be explicitly integrated a
solving the algebraic equationsFi(x,y,z1 ,...,zN)50 with respect to the second variable,y
5Yi(x,z1 ,...,zN). We shall write the result in the following form:

Si~qi !5E Yi~qi ,h1 ,...,hN!dqi , i51,...,N, ~2.2!

stressing the fact that all solutions depend onN arbitrary numbersh1 ,...,hN parametrizing Eqs.
~2.1!.

Let us now note that the equalities~2.1! are not violated if we replace the functionsSi(qi) in
them by their sum

S~q!5 (
k51

N

Sk~qk!. ~2.3!

This gives us the following new system of equations:

Fi S qi , ]S~q!

]qi
,h1 ,...,hND50, i51,...,N, ~2.4!

for a single functionS(q) of N variablesq1 ,...,qN . This system admits~by construction! a total
separation of variables and its solution is given by formulas~2.3! and ~2.2!.

At the same time, the system~2.4! can be interpreted as a system ofN algebraic equations fo
N unknown variablesh1 ,...,hN . Solving it with respect toh1 ,...,hN we obtain

ha5HaS q, ]S~q!

]q D , a51,...,N, ~2.5!

whereHa(q,p) are some functions of twoN-component vector variablesq5$q1 ,...,qN% andp
5$p1 ,...,pN%. Interpreting these variables as canonically conjugated coordinates and mom
$qa ,pb%5dab , let us consider anN-dimensional classical dynamical system with the Ham
tonian,

H~q,p!5E„H1~q,p!,...,Hr~q,p!…, ~2.6!
J. Math. Phys., Vol. 38, No. 8, August 1997
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in which E(h1 ,...,hN) is an arbitrarily fixed function ofh1 ,...,hN .
It is not difficult to see that the stationary Hamilton–Jacobi equation for the Hamilto

H(q,p),

HS q, ]S~q!

]q D5E, ~2.7!

is separable by construction and its complete solution~i.e., a solution parametrized byN arbitrary
parameters! has the form

E5E~h1 ,...,hN!, S~q!5(
i51

N E Yi~qi ,h1 ,...,hN!dqi . ~2.8!

This immediately follows from the fact that, after fixing the form of the functionE(h1 ,...,hN), the
equation~2.7! becomes equivalent to the separable system~2.6!.

So we have demonstrated that any set ofN functionsFi(x,y,z1 ,...,zN), i51,...,N generates
a certain separable classical dynamical system by means of the procedure that we shall refe
to as theclassical inverse procedure of separation of variables.

It is not difficult to show that the classical system obtained in such a way is not only sepa
but also completely integrable in the sense that its Hamiltonian admits enough mutually com
ing integrals of motion. In order to demonstrate this fact, it is sufficient to show that the func
Ha(q,p), a51,...,N form a commutative family.

Indeed, ifHa5Ha(q,p),a51,...N, then we have by definition,

Fi5Fi~qi ,pi ,H1 ,...,HN!50, i51,...,N. ~2.9!

Therefore

dFi
dqk

5
]Fi

]qk
1(

l51

N
]Fi

]Hl

]Hl

]qk
50, ~2.10!

dFi
dpk

5
]Fi

]pk
1(

l51

N
]Fi

]Hl

]Hl

]pk
50, ~2.11!

and, consequently,

(
l51

N
]Fi

]Hl

]Hl

]qk
52

]Fi

]qk
, ~2.12!

(
l51

N
]Fi

]Hl

]Hl

]pk
52

]Fi

]pk
. ~2.13!

On the other hand, we have
J. Math. Phys., Vol. 38, No. 8, August 1997
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05$Fi1
,Fi2

%5 (
k51

N FdFi1
dqk

dFi2
dpk

2
dFi1
dpk

dFi2
dqk

G
5 (

k51

N F ]Fi1

]qk

]Fi2

]pk
2

]Fi1

]pk

]Fi2

]qk
G1 (

k,l51

N F ]Fi1

]qk

]Fi2

]Hl

]Hl

]pk
2

]Fi1

]pk

]Fi2

]Hl

]Hl

]qk
G

1 (
k,l51

N F ]Fi1

]Hl

]Hl

]qk

]Fi2

]pk
2

]Fi1

]Hl

]Hl

]pk

]Fi2

]qk
G1 (

k,l51

N ]Fi1

]Hk

]Fi2

]Hl
$Hk ,Hl%. ~2.14!

Applying ~2.12! and ~2.13! to ~2.14!, we obtain

(
k,l51

N ]Fi1

]Hk

]Fi2

]Hl
$Hk ,Hl%5 (

k51

N F ]Fi1

]qk

]Fi2

]pk
2

]Fi1

]pk

]Fi2

]qk
G . ~2.15!

Since the functionsFi1
andFi2

depend on different variables ifi 1Þ i 2 , we have

(
k,l51

N ]Fi1

]Hk

]Fi2

]Hl
$Hk ,Hl%50, ~2.16!

for all i 1 and i 2 , and, because of the invertibility of the matrixi]Fi /]Hki , we have

$Hk ,Hl%50. ~2.17!

It is not difficult to see that the functionsH1 ,...,HN constructed in such a way are functional
independent and thus the classical system with HamiltonianH5E(H1 ,...,HN) is completely
integrable.

III. QUANTUM VERSION OF IMSV

Let Fi5Fi(x,y,z1 ,...,zN), i51,...,N now beN ~may be partially or completely coinciding!
polynomial functions ofN12 generally noncommuting variablesx,y,z1 ,...,zN . We assume tha
these variables are distributed in the expression in the order in which they are written. Co
N linear differential equations,

Fi S qi ,i\ ]

]qi
,h1 ,...,hNDC i~qi !50, i51,...,N, ~3.1!

for N functionsC i(qi), i51,...,N. We shall call equations of the type~3.1! multiparameter
spectral equations. The role of the spectral parameters in them is played by the num
h1 ,...,hN . The problem is to find all admissible values of these parameters for which the sy
~3.1! has solutions belonging to a certaina priori given classesWi of functionsC i(qi)PWi , i
51,...,N. The set of all admissible ‘‘N-plets’’ $h1 ,...,hN% will be called thespectrumof the
system~3.1!. Below we shall assume that the classesWi , i51,...,N are chosen in such a way tha
the system~3.1! has a discrete spectrum. The corresponding discrete set of solutions we rep
as

C i~qi !5J i~qi ,h1 ,...,hN!, i51,...,N, ~3.2!

stressing their correspondence to the values of spectral parametersh1 ,...,hN .
Let us now note that the equalities~3.2! are not violated if we replace the functionsC i(qi) in

them by their product
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r
in

nctions.

om

rg com-

uting
. The

of the

4078 A. Scotti and A. Ushveridze: Nonlinear quantization of integrable systems

¬¬¬¬¬¬¬¬¬¬
C~q!5)
i51

N

C i~qi !, ~3.3!

belonging to the classW5 ^ i51
N Wi . This gives us the following new system of equations:

Fi S qi ,i\ ]

]qi
,h1 ,...,hNDC~q!50, i51,...,N, ~3.4!

for a single functionC(q) of the N-component vector variableq5$q1 ,...,qN%. This system
admits~by construction! a total separation of variables and its solution is given by formulas~3.3!
and ~3.2!.

At the same time, the system~3.4! can be interpreted as a system ofN algebraic equations fo
N unknown spectral parametersh1 ,...,hN . Note that this system is not a system of equations
noncommuting variables since the operators are assumed to be already applied to wave fu
Solving it and multiplying the result byC(q), we obtain

haC~q!5ĤaS q,i\ ]

]qDC~q!, a51,...,N, ~3.5!

whereĤa(q,p) is some formal writing for, generally, nonlinear differential operators built fr
two N-component noncommuting operatorsq5$q1 ,...,qN% andp5$ i\]/]q1 ,...,i\]/]qN%. We
interpret these operators as operators of coordinates and momenta satisfying the Heisenbe
mutation relations@q^p#5 i\I .

Consider theN-dimensional nonlinear operator,

Ĥ~q,p!5E„Ĥ1~q,p!,...,Ĥr~q,p!…, ~3.6!

whereE(h1 ,...,hN) is the same polynomial function ofN variablesh1 ,...,hN , as in the previous
section. At this point we only note that if the arguments of this function are noncomm
variables, they should be distributed in the expression in the order in which they are written
product of nonlinear operators will be understood hereafter as their composition.

It is easy to see that the nonlinear spectral equation,

ĤS q,i\ ]

]qDC~q!5EC~q!, ~3.7!

is separable by construction and its complete solution~i.e., a solution parametrized byN spectral
parameters! has the form

E5E~h1 ,...,hN!, C~q!5 )
a51

N

J i @a#~qa ,h1 ,...,hN!. ~3.8!

This immediately follows from the fact that, after fixing the form of the functionE(h1 ,...,hN), the
equation~3.7! becomes equivalent to the separable system~3.4!.

So, we have demonstrated that anyN arbitrarily chosen functionsFi(x,y,z1 ,...,zN), r
51,...,N generate a certain, in general, nonlinear separable spectral equation by means
procedure that we shall refer to as thequantum inverse procedure of separation of variables. The
equation~3.7! will be called the~nonlinear! Schrödinger equation.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Now we show that the operatorsĤa5Ĥa(q,p) can~in some sense! be considered as integra
of motion of a certain completely integrable nonlinear ‘‘quantum’’ system. Indeed, from
definition of these operators it immediately follows that they are homogeneous operators o
unity, i.e., for any constantc,

Ĥa~cC!5cĤaC. ~3.9!

Moreover, as follows from~3.5!, these operators have a common set of eigenfunctions:

ĤaC5haC, a51,...,N. ~3.10!

By using these two properties, we can consider two chains of equalities:

ĤaĤbC5ĤahbC5hbĤaC5hbhaC ~3.11!

and

ĤbĤaC5ĤbhaC5haĤbC5hahbC. ~3.12!

Subtracting~3.12! from ~3.11!, we find that

@Ĥa ,Ĥb#C50. ~3.13!

Note that the operatorsĤa are nonlinear only if the multiparameter spectral equations~3.2!
depend on their spectral parameters nonlinearly. In the case of linear dependence on
parameters the operatorsĤa will obviously be linear. Assume that the set of solutions of equat
~3.7! is complete in the sense thatW ~see above! is a Hilbert space and any function fromW can
be expanded in solutions of Eq.~3.7!. If the operatorsĤa are linear, then we can claim tha
equality ~3.13! holds for all elements ofW, and thus the operatorsĤa commute in the strong
operator sense. In the case of nonlinear operatorsĤa this reasoning does not work, and th
commutativity should be understood in the weak sense, i.e., on the solutions of the sp
problem~3.7!.

IV. THE NONLINEAR QUANTIZATION METHOD

In the previous section we used the term ‘‘Schro¨dinger equation’’ and the adjective ‘‘quan
tum’’ in order to stress the fact that Eqs.~2.7! and ~3.7! are related to each other by som
‘‘quantization procedure.’’ This means that taking in the ‘‘quantum Schro¨dinger equation’’~3.7!
the classical limit\→0, we obtain the classical Hamilton–Jacobi equation~2.7!. In order to see
this, it is sufficient to represent the ‘‘wave functions’’C(q) in the form

C~q!5expS i\ S~q! D , ~4.1!

after which it becomes clear that the factorizability of the wave functions implies the decom
ability of their logarithms, i.e., classical actions. This enables one to write

C i~qi !5expS i\ Si~qi ! D , i51,...,N, ~4.2!
J. Math. Phys., Vol. 38, No. 8, August 1997
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which reduces the problem of verifying our assertion to checking that in the classical lim
multiparameter spectral equations~3.1! reduce to Eqs.~2.1!. But this is obvious because th
substitution of~4.2! into ~3.1! gives an expression whose constant term in\ exactly coincides with
~2.1!. All other terms of higher orders in\ vanish in the limit\→0.

V. AN EXAMPLE

In this section we consider a simple example demonstrating how the proposed schem
work. We start with twoF functions of the form

F1~x,y,h,g!5x21y22
e

2a4
h22S 2a2 x211Dh1g ~5.1!

and

F2~x,y,h,g!5x21y22
e

2a4
h22S 2a2 x211Dh2g, ~5.2!

in which the variablesx andy are associated with classical or quantum coordinates and mom
andh,g are spectral parameters. We see that, generally, the functions~5.1! and ~5.2! depend on
the spectral parameters nonlinearly, but ife50 or a5`, this dependence becomes linear. For t
reasone anda will play the role of nonlinear deformation parameters of a system. Let us
construct classical and quantum models associated with functions~5.1! and ~5.2!.

A. Classical case

According to the results of Sec. II, functions~5.1! and ~5.2! can be used for building the
integrals of motion for a certain two-dimensional completely integrable classical dynamica
tem. Denoting these integrals byH5H(q,p) and G5G(q,p), where q5$q1 ,q2% and p
5$p1 ,p2%, and following the general prescriptions of Sec. II, we can write for them the follow
two elementary solvable equations:

p1
21q1

22
e

2a4
H22S 2a2 q1211DH1G50 ~5.3!

and

p2
21q2

22
e

2a4
H22S 2a2 q2211DH2G50. ~5.4!

Let us take the first integralH as the Hamiltonian of a system. Define for this Hamiltonian
potential V(q)5H(q,0). Despite the fact that the Hamiltonian cannot be generally represent
the sum of kinetic and potential energies, this function still reflects some general spectral p
ties of the model. Indeed, as it follows from Eqs.~5.2! and~5.3!, the HamiltonianH5H(q,p) is
an increasing function ofp2. Therefore, we have the inequalityH(q,p)>V(q), which means that
the volume of the phase space bounded by the level surfaceH(q,p)5h should be finite ifh
<maxV(q) and infinite if h>maxV(q).

In the particular case, when the parametera4 is very large, the system~5.3!–~5.4! becomes
linear, and, solving it, we obtain the model with the Hamiltonian,

H5
p21q2

2
, ~5.5!
J. Math. Phys., Vol. 38, No. 8, August 1997
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which is nothing else than the two-dimensional symmetric harmonic oscillator, i.e., the su
Hamiltonians of one-dimensional harmonic oscillators. The second integral of motion,G, reduces
in this case to the difference of Hamiltonians of one-dimensional harmonic oscillators, and
the commutativity ofH andG is obvious. The potentialV(q)5q2/2 of this model does not hav
an upper bound and the motion in this system is always finite.

If a is finite bute is small, then we still have a linear system of equations forH andG, whose
solution leads to a little bit more complicated model with the Hamiltonian,

H5
a2

2

p21q2

a21q2
. ~5.6!

Although the commutativity ofH with the correspondingG is not so obvious as in the previou
case, it also can be checked by direct computation of the Poisson bracket. Now the potentia
model is bounded by maxV(q)5a2/2, and therefore the model~5.6! describes finite motion ifh
,a2/2 and infinite motion ifh.a2/2.

In the most general case, when bothe and a are finite numbers, the equations~5.3!–~5.4!
become quadratic and have now two different solutions forH. For definiteness we choose th
solution that is continuously connected with particular solutions~5.5! and ~5.6!. It has the form

H5
a2

e2
~q21a2!H 211A11

e2~p21q2!

~a21q2!2
J . ~5.7!

Reconstructing the second solutionG of this system, and checking its commutativity withH, we
can again make sure that the obtained model is completely integrable. As before, its poten
monotonically increasing function ofq2 and tends to maxV(q)5a2/2 if q2→`.

Despite the fact that the model~5.7! looks rather complicated, its Hamilton–Jacobi equation
separable by substitutionS(q)5S1(q1)1S2(q), and reduces to the system of two on
dimensional equations forS1(q1) andS2(q2). This system is nothing else than the initial syste
~5.3!–~5.4! with p15]S1(q1)/]q1 , p25]S2(q2)/]q2 , H5h andG5g. Solving it, we obtain the
complete integral of the model,

S~q!5E dq1AS 2h
a2

21D q121 e

2a4
h21h2g1E dq2AS 2h

a2
21D q221 e

2a4
h21h1g,

~5.8!

parametrized by two arbitrary parametersh andg. From this solution it is clearly seen that fo
h,a2/2 the motion in the system is finite, in full accordance with general reasonings given a

Concluding the exposition of the classical case, let us stress again the fact that in thi
there is no principal difference between the models associated with functions~5.1! and~5.2! with
linear and nonlinear dependence on spectral parameters. We have seen that in nonlinear c
models turned out to be more complicated than in the linear one but they are still ordinary cla
models admitting a quite standard interpretation in terms of the Hamilton–Jacobi equation

B. Quantum case

Let us now use functions~5.1! and ~5.2! for building quantum versions of the models di
cussed in the previous subsection. We start with multiparameter spectral equations associa
these functions and having the form

H 2\2
]2

]q1
2 1q1

22
e

2a4
h22S 2

a2
q1
211D h1gJ C1~q1!50 ~5.9!
J. Math. Phys., Vol. 38, No. 8, August 1997
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and

H 2\2
]2

]q2
2 1q2

22
e

2a4
h22S 2

a2
q2
211D h2gJ C2~q1!50. ~5.10!

It is not difficult to see that the system of these equations will have discrete spectrum if we re
the square integrability of both functionsC1(q1) andC2(q2). Indeed, let us rewrite these equ
tions in the form

H 2\2
]2

]q1
2 1v2q1

2J C1~q1!5e1C1~q1! ~5.11!

and

H 2\2
]2

]q2
2 1v2q2

2J C2~q2!5e2C2~q2!, ~5.12!

with

v5A12
2h

a2
~5.13!

and

e15
e

2a4
h21h2g, e25

e

2a4
h21h1g. ~5.14!

We see that formulas~5.11! and ~5.12! look like ordinary Schro¨dinger equations for simple
harmonic oscillators, and therefore, if the functionsC1(q1) andC2(q2) are normalizable, have
standard solutions,

C1~q1!5HnS Av

\q1
D expH vq1

2

\ J , C1~q2!5HmS Av

\q2
D expH vq2

2

\ J ~5.15!

and

e15v\~2n11!, e25v\~2m11!, ~5.16!

where byHn andHm we denoted the ordinary Hermite polynomials. Comparing formula~5.16!
with ~5.13! and ~5.14!, we obtain the system of two equations,

e

2a4
h21h2g5~2n11!\A12

2h

a2
,

e

2a4
h21h1g5~2m11!\A12

2h

a2
, ~5.17!

for h andg. The sum of these equations gives a single equation forh:

e

2a4
h21h5~n1m11!\A12

2h

a2
, ~5.18!

which, obviously, has a discrete set of solutions.
Consider particular cases of Eq.~5.16!. Let a be large. Then the solution of this equation c

be written down immediately. It is
J. Math. Phys., Vol. 38, No. 8, August 1997
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h5~n1m11!\. ~5.19!

We see that the spectrum of the parameterh is unbounded. Let nowa be finite ande be small.
Then we obtain a quadratic equation forh. Solving it and choosing that solution that is a co
tinuous deformation of~5.19!, we obtain

h5
~n1m11!2\2

a2 H 211A11
a4

~n1m11!2\2J . ~5.20!

In this case the spectrum of the parameterh is bounded byhmax5a2/2. If the numbersn,m are
large, then the distances between neighboring spectral points are small, so that the poihmax
5a2/2 is the accumulation point of the spectrum. The general case of arbitrarye anda can be
considered analogously. The explicit solution of Eq.~5.18! is very complicated, because~5.18! is
now a fourth-order algebraic equation. However, the qualitative behavior of the spectrum
same as in the last case. As before, the spectrum is bounded byhmax5a2/2, and this is its
accumulation point.

Thus, we have demonstrated the normalizability of functionsC1(q1) andC2(q2) as well as
the discreteness and infiniteness of the spectrum of Eqs.~5.9! and ~5.10! in the interval 0,h
,a2/2. Analogously, it can be shown that forh.a2/2 the functionsC1(q1) andC2(q2) are
non-normalizable and the spectrum of multiparameter spectral equations~5.9! and ~5.10! is con-
tinuous, in full accordance with the classical case.

Let us now try to understand whether the spectral values of the parameterh can be considered
as the eigenvalues of a certain two-dimensional operator in Hilbert space. In order to d
it is sufficient to follow the general prescriptions of Sec. III. Let us multiply the first equa
~5.9! by C2(q2), and the second one~5.10! by C1(q1). Introducing the function
C(q)5C1(q1)C2(q2) and adding Eqs.~5.9! and ~5.10!, we get a single equation forC(q),

H 2\2D1q22
e

a4
h222S 1

a2
q211D hJ C~q!50, ~5.21!

containing a single spectral parameterh. Consider first the particular cases of this equation.
Let a be large. Then the terms proportional toh2 andhq2 in ~5.21! vanish, and we obtain the

ordinary Schro¨dinger equation for a two-dimensional harmonic oscillator,

1
2$2\2D1q2%C~q!5hC~q!. ~5.22!

Let a now be finite ande small. Then the only term proportional toh2 in ~5.21! vanishes and we
obtain again a linear spectral equation, but with the weight functionq2/a211. In order to reduce
the Hamiltonian of this equation to the Hermitian form, we can redefine the wave functio
C(q)→(q2/a211)1/2C(q), after which the equation becomes

a2

2

1

Aq21a2
$2\2D1q2%

1

Aq21a2
C~q!5hC~q!. ~5.23!

Let us now consider the general case of arbitrarya ande. Now the spectral parameterh does not
enter in Eq.~5.21! linearly, and thus, cannot be considered as an eigenvalue of some
operator. The only thing that we can do in this case, is to solve Eq.~5.21! with respect toh, and
then, multiplying the result byC(q) and exchanging the left- and right-hand sides, write
nonlinear differential equation,
J. Math. Phys., Vol. 38, No. 8, August 1997
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a2

e2
~q21a2!H 211A11

e2~2\2DC~q!1q2C~q!!

~a21q2!2C~q!
J C~q!5hC~q!. ~5.24!

Note that the ordinary~linear! quantization of the classical system with HamiltonianH leads to the
linear Schro¨dinger equation of the form

a2

e2
~q21a2!H 211A11

e2~2\2D1q2!

~a21q2!2
J C~q!5hC~q!, ~5.25!

with all necessary permutations of noncommuting operators guaranteeing the Hermitian sym
of the corresponding Hamiltonian. Expanding Eqs.~5.24! and~5.25! in \2, it is easy to see that the
first two terms of these expansions coincide. The difference~the nonlinearity! appears only in the
third term and is of order\2. This nonlinearity is of the type (DC/C)2C and is very similar to
nonlinearities appearing in the Doebner–Goldin quantization scheme.

VI. CONCLUSION

Of course, the example we discussed here is rather artifical and hardly has some rela
reality ~even if one belives that the quantum world is nonlinear!, but it clearly demonstrates th
idea lying in the ground of our approach. At any rate, irrespective of the physical reasonabi
models obtainable by means of our nonlinear quantization procedure, the method that we pr
provides a constructive way for extending the notion of quantum integrability to nonlinear sp
problems and gives a practical tool for buiding completely integrable nonlinear spectral equ
in Hilbert space.

An interesting application of this method would be construction of nonlinear version
quantum Gaudin models associated with higher Lie algebras. As it was noted in Ref. 13
exist multiparameter spectral equations whose solutions exactly coincide with Bethe ansat
tions for the Gaudin models. Some of these equations depend on spectral parameters linea
application of quantum IMSV to such equations leads to ordinary~linear! Gaudin models@the
simplestsl(2) case of such a transformation was considered in detail in Ref. 12#. However, if the
rank of a Lie algebra is sufficiently high, then, along with the ‘‘linear’’ multiparameter spec
equations, there are equations in which the spectral parameters enter nonlinearly. The app
of quantum IMSV to such equations should lead to completely integrable models having the
spectra as the ordinary Gaudin models, but realized by nonlinear operators in Hilbert spa
explicit construction of such models is an interesting mathematical problem, and we ho
consider it in one of the forthcoming publications.
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Spinning particle in six dimensions
S. L. Lyakhovich, A. A. Sharapov, and K. M. Shekhter
Department of Physics, Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia

~Received 9 September 1996; accepted for publication 28 March 1997!

Massive spinning particle in 6d-Minkowski space is described as a mechanical
system with the configuration spaceR5,13CP3. The action functional of the model
is unambiguously determined by the requirement of identical~off-shell! conserva-
tion for the phase-space counterparts of three Casimir operators of the Poincare´
group. The model proves to be completely solvable. Its generalization to the con-
stant curvature background is presented. Canonical quantization of the theory leads
to the relativistic wave equations for the irreducible 6d fields. © 1997 American
Institute of Physics.@S0022-2488~97!03207-6#

I. INTRODUCTION

A classical description of relativistic spinning particles is one of the traditional branche
theoretical physics having a long history.1–3 By now, several approaches to this problem ha
been developed. Most of the research is based on the enlargement of the Minkowski sp
extra variables, anticommuting2 or commuting,3–5 responsible for the spin evolution. Being we
adapted for the quantization, the theories using Grassmann variables encounter, however,
ties on attempting to justify them at the classical level. Besides that, the quantization of
theories lead to the Poincare´ representation of fixed spin.

The orbit method, developed in Ref. 6, is the universal approach for the description o
elementary systems. The basic object of this approach is a presymplectic manifoldE , being a
homogeneous transformation space for a certain Lie groupG, and the system is considered
‘‘elementary’’ for this group. The manifold carries the invariant and degenerate closed two
V such that quotient spaceE /ker V is a homogeneous symplectic manifold~in fact, it may be
identified with some covering space for coadjoint orbitO of groupG!. If u is a potential one-form
for V, then the first-order action functional of the system may be written as

S5E u.

Being applied to the Poincare´ group, this method gives the Souriau classification of the spinn
particles. Meanwhile, there is another trend to describe a spinning particle by means of a
tional formalism based on an appropriate choice of the configuration space for spin.1–5

In a recent paper,4 the new model was proposed for a massive particle of arbitrary spi
d54 Minkowski space to be a mechanical system with the configuration spaceR3,13S2, where
two-sphereS2 corresponds to the spinning degrees of freedom. It was shown that princ
underlying the model have a simple physical and geometrical origin. Quantization of the m
leads to the unitary massive representations of the Poincare´ group. The model allows the direc
extension to the case of higher superspin superparticle and the generalization to the anti-d
space.

Despite the apparent simplicity of the model’s construction, its higher-dimensional gen
zation is not so evident, and the most crucial point is the choice of configuration space for s
this work we describe the massive spinning particle in six-dimensional Minkowski spaceR5,1,
which may be considered as a first step toward the uniform model construction for all h
dimensions. It should also be noted that this generalization may have a certain interest in i
rights since six is the one in every four dimensions: 3, 4, 6, and 10 possess the rema
0022-2488/97/38(8)/4086/18/$10.00
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properties such as the presence of two-component spinor formalism or light-likeness of the
bilinear.7 These properties are conditioned by the connection between the division algebra
the Lorentz groups of these spaces,8

SL~2,A!;SO↑~dim A11,1!,

whereA are the division algebrasR, C, H, O of real and complex numbers, quaternions, a
octonions, respectively. Besides that, these are exactly the dimensions where the classica
of the Green–Schwarz superstring can be formulated.9

Let us now sketch the broad outlines of the construction. First of all, for any even dime
d, the model’s configuration space is chosen to be the direct product of Minkowski s
Rd21,1 and somem-dimensional compact manifoldKm being a homogeneous transformation spa
for the Lorentz group SO(d21,1). Then the manifoldMd1m5Rd21,13Km proves to be the
homogeneous transformation space for the Poincare´ group. The action of the Poincare´ group on
Md1m is unambiguously lifted up to the action on the cotangent bundleT* (Md1m) being the
extended phase space of the model. It is well known that the massive unitary irreducible
sentations of the Poincare´ group are uniquely characterized by the eigenvalues ofd/2 Casimir
operators,

C15P2, Ci115WA1•••A2i2 iWA1•••A2i21
, i51,...,

d22

2
,

whereWA1•••A2i21
5eA1•••Ad

JA2iA2i11•••JAd22Ad21PAd and JAB ,PC are the Poincare´ generators.
This leads us to require the identical~off-shell! conservation for the quantum numbers associa
with the phase space counterparts of Casimir operators. In other words,d/2 first-class constraints
should appear in the theory.

Finally, the dimensionalitym of the manifoldKm is specified from the condition that th
reduced~physical! phase space of the model should be a homogeneous symplectic manifold
Poincare´ group~in fact, it should coincide with the coadjoint orbit of maximal dimensiond2/2!. A
simple calculation leads tom5d(d22)/4. In the case of four-dimensional Minkowski space t
yieldsm52, and two-sphereS2 turns out to be the unique candidate for the internal space of
spinning degrees of freedom. In the case considered in this paperd56, and hencem56. As will
be shown below the suggestive choice forK6 is the complex projective spaceCP3.

The models can be covariantly quantized a la Dirac by imposing the first-class constrai
the physical states being the smooth complex functions on the homogeneous spaceMd(d12)/4

5Rd21,13Kd(d22)/4,

~Ĉi2d i !C50, i51, ...,
d

2
,

where the parametersd i are the quantum numbers characterizing the massive unitary repres
tion of the Poincare´ group. Thus, the quantization of the spinning particle theories reduces t
standard mathematical problem of harmonic analysis on homogeneous spaces. It should
marked that manifoldMd(d12)/4 may be thought of as theminimal ~in sense of its dimensionality!
one admitting a nontrivial dynamics of arbitrary spin, and hence it is natural to expect tha
corresponding Hilbert space of physical states will carry theirreducible representation of the
Poincare´ group.

The paper is organized as follows. In Sec. II we deal with the description of the configur
space geometry, its local structure, and various parametrizations. In Sec. III we derive the m
action functional in the first-order formalism. We also consider the solutions of classical equ
of motion and discuss the geometry of the trajectories. In Sec. IV the second-order formalis
the theory is presented and the different reduced forms of the Lagrangian are discussed. H
J. Math. Phys., Vol. 38, No. 8, August 1997
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also investigate the causality conditions for the theory. Section V is devoted to the quantiza
the theory in the Hilbert space of smooth tensor fields overM12. The connection with the rela
tivistic wave equations is apparently stated. In the Conclusion we discuss the received resu
further perspectives. In the Appendix we have collected the basic facts of half-spinorial form
in six dimensions.

II. GEOMETRY OF THE CONFIGURATION SPACE AND COVARIANT
PARAMETRIZATION

We start with describing a covariant realization for the model’s configuration space chos
M125R5,13CP3. The manifoldM12 is the homogeneous transformation space for Poincare´ group
P and, hence, it can be realized as a coset spaceP/H for some subgroupH,P. In order to present
the subgroupH in an explicit form it is convenient to make Iwasawa decomposition for
six-dimensional Lorentz group SO~5,1! in maximal compact and solvable subgroups,

SO~5,1!5SO~5!R. ~1!

Then the minimal parabolic subgroup, being defined as a normalizer ofR in SO~5,1!, coincides
with SO~4! R. By means of the decomposition SO~4!5SO~3!3SO~3!, the subgroupH is identi-
fied with @SO~2!3SO~3!#R. Thus

M125R5,13CP3;
Poincare´ group

@SO~2!3SO~3!#R
;R5,13

SO~5!

SO~2!3SO~3!
, ~2!

and thereby one has the isomorphism

CP3;
SO~5!

SO~2!3SO~3!
. ~3!

Furthermore, from the sequence of the subgroups,

SO~2!3SO~3!,SO~4!,SO~5!, ~4!

and the obvious isomorphismsS4;SO~5!/SO~4!, S2;SO~3!/SO~2! one concludes thatCP3 may
be considered as the bundleCP3→S4 with the fiberS2. The fibers lie inCP3 as projective lines
CP1;S2.

Since the subgroupH is nonunimodular there is no Poincare´ invariant measure onM12.
Nevertheless, from relation~3! it follows that there is a quasi-invariant measure that becom
genuine invariant when the Lorentz transformations are restricted to the stability subgro
time-like vector SO~5!. This observation will be essentially used in Sec. VI for the constructio
the Poincare´-invariant inner product for physical states.

In spite of the quite intricate structure, the subgroupH admits a simple realization, namely,
can be identified with all the SO~5,1! transformations multiplying the Weyl spinorl by a complex
factor,

Na
blb5ala , aPC\$0% ~5!

~all the details concerning the six-dimensional spinor formalism are collected in the Appe!.
This observation readily leads to the covariant parametrization ofCP3 by a complex Weyl spinor
subject to the equivalence relation

la;ala , aPC\$0%. ~6!

By construction, the Poincare´ group generators act onM12 by the following vector fields:
J. Math. Phys., Vol. 38, No. 8, August 1997
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PA5]A, MAB5xA]B2xB]A2„~sAB!a
blb]

a1c.c.…, ~7!

where$xA% are the Cartesian coordinates onR5,1. It is evident that Poincare´ generators commute
with the projective transformations~6! generated by the vector fields

d5la]
a, d̄5l̄a]̄

a. ~8!

Then the space of scalar functions onM12 is naturally identified with those function
F(xA,la ,l̄b) that satisfy the homogeneity conditions

dF5d̄F50. ~9!

Let us consider the ring of invariant differential operators acting on the space of scalar fun
onM12. Such operators should commute with the Poincare´ transformations~7! and the projective
ones~8!. It is easy to see that there are only three independent Laplace operators. They a

h52]A]A ,
~10!

n15lal̄b]
b]̄a, n25l̄alb]

ab]cd]̄
c]d,

where ]ab5(sA)ab]A . Casimir operators of the Poincare´ group in representation~7! can be
expressed through the Laplace operators as follows:

C15PAPA52h,
~11!

C25
1
24W

ABCWABC5n21hn1 , C35
1
64W

AWA5n1n212hn1 ,

whereWA5eABCDEFMBCMDEPF , W
ABC5eABCDEFMDEPF are Pauli–Lubanski vector and ten

sor, respectively.
In what follows we will also use another covariant parametrization ofM12 in terms of a

non-zero light-like vectorbA and anti-self-dual tensorhABC constrained by the relations

bAbA50, bA;abA, hABC;ahABC, aPR\$0%,

hABC52 1
6c

ABCDEFhDEF , bAh
ABC50, ~12!

hABChCDE5 1
4d

[A
[Db

B]bE] .

~Here the anti-self-dual tensorhABC is chosen real that is always possible inR5,1.! As a matter of
fact, the first two relations imposed onbA defineS4 as a projective light-cone. With the use o
Lorentz transformations each point onS4 can be brought into another one parametrized by

vectorb
o
A5(1,0,0,0,0,1). By substitutingb

o
A into the fourth equation one reduces the ten com

nents ofhABC to the three independent values, for instanceh012, h013, h014. Then the last equation
takes the form

~h012!
21~h013!

21~h014!
25 1

4, ~13!

i.e., it defines the two-sphereS2. In such a manner we recover the local structure ofCP3 discussed
above. The relationship between these two parametrizations may be established explicitly w
use of the following Fierz identity:

l̄alb5
1
4l̄s̃Al~sA!ab1

1
12l̄s̃ABCl~sABC!ab . ~14!
J. Math. Phys., Vol. 38, No. 8, August 1997
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DefiningbA andhABC throughl̄a ,la as

bA5l̄s̃ Al, hABC5 i l̄s̃ ABCl, ~15!

one can get~12!. The Poincare´ generators~7! and Laplace operators~11! can straightforwardly be
rewritten in terms ofbA andhABC, but we omit the explicit expressions here since in what follo
the spinor parametrization ofCP3 will be mainly used.

III. ACTION FUNCTIONAL IN THE FIRST-ORDER FORMALISM AND CLASSICAL
DYNAMICS

We proceed to the derivation of an action functional governing the point particle dynami
M12. The main dynamical principle underlying our construction is the requirement of iden
~off-shell! conservation for the classical counterparts of three Casimir operators~11!.

As a starting point, consider the phase spaceT* (R5,13C4) parametrized by the coordinate
xA,la ,l̄b and their conjugated momentapA ,p

a,p̄b satisfying the canonical Poisson-bracket re
tions,

$xA,pB%5dAB , $la ,p
b%5da

b , $l̄a ,p̄
b%5da

b . ~16!

Obviously, the action of the Poincare´ group onM12 ~7! is lifted up to the canonical action o
T* (R5,13C4). This action induces a special representation of the Poincare´ group on the space o
smooth functionsF over the phase space, and the corresponding infinitesimal transformation
be written via the Poisson brackets as follows:

dF5$F,2aAPA1 1
2K

ABJAB%. ~17!

HereaA andKAB52KBA are the parameters of translations and Lorentz transformations, re
tively, and the Hamilton generators read as

PA5pA , JAB5xApB2xBpA1MAB , ~18!

where the spinning part of Lorentz generators is given by

MAB52psABl1c.c.

The phase-space counterparts of Casimir operators associated with the generators~18! can be
readily obtained from~11! by making formal replacements:]A→pA , ]a→pa, ]̄a→p̄a. The result
is

C15p2,
~19!

C25p2~p̄l!~pl̄!2~p̄pp!~l̄pl!, C35~p̄l!~pl̄!~p̄pp!~l̄pl!.

As is seen, the Casimir functionsC2 ,C3 are unambiguously expressed via the classical analog
Laplace operators~10!,

D15~p̄l!~pl̄!, D25~p̄pp!~l̄pl!, ~20!

and, thereby, one may require the identical conservation ofD1 ,D2 instead ofC2 ,C3 .
Let us now introduce the set of five first-class constraints, three of which are dynamica

T15p21m2'0,

~21!

J. Math. Phys., Vol. 38, No. 8, August 1997
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T25D11d1
2'0, T35D21m2d2

2,

and the other are kinematical,

T45pl'0, T55p̄l̄'0. ~22!

Here parameterm is identified with the mass of the particle, while the parametersd1 ,d2 relate to
the particle’s spin. The role of kinematical constraints is to make the Hamiltonian reduction
extended phase space to the cotangent bundleT* (M12). In configuration space these constrain
generate the equivalence relation~6! with respect to the Poisson brackets~16!. The constraints
T1 ,T2 ,T3 determine the dynamical content of the model and lead to the unique choice f
action functional.

From ~21! it follows that on the constraint surface the conserved chargesD1 and D2 are
limited to be negative~or zero! constants. These restrictions are readily seen from the follow
simple reasons. Let us introduce the set of threep-transversal tensors,

WABC5eABCDEFJ
DEpF, WA5eABCDEFJ

BCJDEpF, VA5MABp
B. ~23!

Since thep is a time-like vector~21!, the full contraction of each introduced tensor with its
should be non-negative. Then one may check that the following relations take place:

WABCW
ABC5p2D12D2>0, WAW

A5D1D2>0,
~24!

VAV
A52p2D12D2>0.

Resolving these inequalities, we come to the final relation:

D2<m2D1<0, ~25!

which in turn implies thatud2u>ud1u. Thus, the set of constraints~21! leads to the self-consisten
classical dynamics only provided that the relation~25! holds true.

Assuming the theory to be reparametrization invariant, the Hamiltonian of the mode
linear combination of the constraints, and the first-order~Hamilton! action takes the form

SH5E dtH pAẋA1pal̇a1p̄alGa2(
i51

5

eiT
iJ . ~26!

Heret is the evolution parameter,ei are the Lagrange multipliers associated to the constraints
e45ē5 . Varying ~26! one gets the following equations of motion:

l̇a5e2~p̄l!l̄a1e3~ l̄pl!p̄bpba1e4la ,

ṗa52e2~pl̄!p̄a2ė3~p̄pp!l̄bp
ba2e4p

a,
~27!

ẋA52e1p
A1e3$~p̄sAp!~l̄pl!1~p̄pp!~l̄s̃Al!%,

ṗA50.

Despite the quite nonlinear structure, the equations are found to be completely integrabl
arbitrary Lagrange multipliers. This fact is not surprising as the model, by construction, des
a free relativistic particle possessing a sufficient number of symmetries.

In the spinning sector the corresponding solution looks like
J. Math. Phys., Vol. 38, No. 8, August 1997
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la5eE4 cos~m2E3d2!S cos~E2d1!la
01

sin~E2d1!

d1
~p̄0l

0!l̄a
0D

1eE4
~ l̄0pl0!

m2

sin~m2E3d2!

d2
pabS sin~E2d1!

d1
~p̄0l

0!p0
b2cos~E2d1!p̄0

bD ,
~28!

pa5e2E4 cos~m2E3d2!S cos~E2d1!p0
a2

sin~E2d1!

d1
~p0l̄

0!p̄0
aD

1e2E4
~p̄0pp0!

m2

sin~m2E3d2!

d2
pab S sin~E2d1!

d1
~p0l̄

0!lb
01cos~E2d1!l̄b

0D ,
and for the space–time evolution one gets

pA5p0
A ,

xA~t!5x0
A12~E11E3d2

2!p0
A2m22VA~t!, ~29!

VA~t!5V1
A cos~2m2E3d2!1V2

A sin~2m2E3d2!.

Here Ei(t)5*0
t dt ei(t), vectorV

A is defined as in~23! and the initial datala
05la(0), p0

a

5 pa(0), p0
A are assumed to be chosen on the surface of constraints~21!, ~22!.

Let us briefly discuss the obtained solution. First of all, one may resolve the kinem
constraints~22! by imposing the gauge-fixing conditions of the form

e45e550, l051, ~30!

so thatl i , i51,2,3 can be treated as the local coordinates onCP3. Then from~28!, ~29! we see
that the motion of the point particle onM12 is completely determined by an independent evolut
of the three Lagrange multiplierse1 ,e2 ,e3 . The presence of two additional gauge invariances
comparison with the spinless particle case causes the conventional notion of the particle
line, as the geometrical set of points, to fail. Instead, one has to consider the class of
equivalent trajectories onM12, which, in the case under consideration, is identified with thr
dimensional surface, parametrized bye1 ,e2 ,e3 . The space–time projection of this surface
represented by the two-dimensional tube of radiusr5Ad2

22d1
2 along the particle’s momentap, as

is seen from the explicit expression~29!. This fact becomes more clear in the rest reference sys
p̊A5(m,0) after identifying the evolution parametert with the physical time by the law

x05ct. ~31!

Then Eq.~29! reduces to

x~t!5m22V~t!5V1 cos~2m
2E3d2!1V2 sin~2m

2E3d2!, ~32!

where, in accordance with~24!, V25m2(d2
22d1

2), and hence

V1
25V2

25d2
22d1

2 ~V1 ,V2!50. ~33!

The rest gauge arbitrariness, related to the Lagrange multipliere3 , causes that, in each moment
time, the space–time projection of the motion is represented by a circle of radiusr. This means
that after accounting spin, the relativistic particle ceases to be localized in a certain po
Minkowski space but represents a string-like configuration contracting to the point only, pro
that d15d2 .
J. Math. Phys., Vol. 38, No. 8, August 1997
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Finally, let us discuss the structure of the physical observables of the theory. Each ph
observableA being a gauge-invariant function on the phase space should meet the require

$A,Ti%50, i51,...,5. ~34!

Due to the obvious Poincare´ invariance of the constraint surface, the generators~18! automatically
satisfy~34! and thereby they are the observables. On the other hand, it is easy to compute t
dimension of the physical phase space of the theory is equal to 18. Thus, the physical su
may covariantly be parametrized by 21 Poincare´ generators subject to three conditions~19!, and,
as a result, any physical observable proves to be a function of the generators~18! modulo con-
straints. So a general solution of~34! reads as

A5A~JAB ,PC!1(
i51

5

a iTi , ~35!

a i , being an arbitrary function of phase space variables.
In fact, this implies that the physical phase space of the model is embedded in the linear

of the Poincare´ algebra through the constraints~21! and therefore coincides with some coadjo
orbit O of the Poincare´ group.

IV. SECOND-ORDER FORMALISM

In order to obtain a second-order formulation for the model, one may proceed in the sta
manner by eliminating the momentapA , pa, p̄a and the Lagrange multipliersei from the Hamil-
tonian action~26! resolving equations of motion:

dS

dpA
5

dS

dpa 5
dS

dp̄a 5
dS

dei
50, ~36!

with respect to the momenta and the multipliers. The corresponding Lagrangian action w
invariant under the global Poincare´ transformation and will possess five gauge symmetries a
ciated with first-class constraints~21!. The presence of kinematical ones will result in the inva
ance of Lagrangian action under the locall rescalings:la→ala . At the same time, by construc
tion, among the gauge transformations related to the dynamical constraints will necessarily
one corresponding to reparametrizations of the particle world linet→t8(t).

It turns out, however, that the straightforward resolution of Eqs.~36! is rather cumbersome
Fortunately, in the case in hand there is another way to recover the covariant second-ord
mulation exploiting the symmetry properties of the model. Namely, we can start with the
general Poincare´ and reparametrization invariant ansatz for the Lagrange action and specify
requiring the model to be equivalent to that described by the constraints~21!.

As a first step we classify all the Poincare´ invariants of the world line being functions over th
tangent bundleTM12. One may easily verify that there are only three expressions possessing
properties,

ẋ2, j5
~ l̇ẋl!~lG ẋl̄!

ẋ2~ l̄ẋl!2
, h5

eabcdl̇al̄blG cld

~ l̄ẋl!2
. ~37!

Notice thatj andh are invariant under reparametrizations as well as under the locall rescalings
~6!, so the kinematical constraints~22! are automatically accounted for.

Then the most general Poincare´ and reparametrization invariant Lagrangian onM12 reads as

L5A2 ẋ2F~j,h!, ~38!
J. Math. Phys., Vol. 38, No. 8, August 1997
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whereF is an arbitrary function.
The particular form of the functionF entering~38! may be found from the requirement th

the Lagrangian is to lead to the Hamilton constraints~21!. The substitution of the canonica
momenta,

pA5
]L

] ẋA
, pa5

]L

]l̇a
, p̄a5

]L

]lGa
, ~39!

to the dynamical constraintsT1 andT2 gives the following equations:

]L

] ẋA
]L

] ẋA
1m250⇒F21j~j1h!S ]F

]j D 222j
]F

]j
22h

]F

]h
12jh

]F

]j

]F

]h
2m2F50 ~40!

and

]L

]lGa
la

]L

]l̇b
l̄b1d1

250⇒S ]F

]j
D 21d1

2F50. ~41!

The integration of these equations results with

F5~2d1A2j1Am224d1
2h14AAh!2, ~42!

A being an arbitrary constant of integration. The account of the rest constraintT3 does not
contradict the previous equations, but determines the value ofA as

A5mAd2
22d1

2. ~43!

Putting this all together, we come up with the Lagrangian,

L5A2 ẋ2S m224d1
2

eabcdl̇al̄blG cld

~ l̄ẋl!2
14mA~d2

22d1
2!

eabcdl̇al̄blG cld

~ l̄ẋl!2
D 12d1U l̇ẋl

l̄ẋl
U .
~44!

It should be stressed that the parametersd1 andd2 entering the Lagrangian are dimensional a
cannot be made dimensionless by redefinitions involving only the mass of the particle an
speed of lightc. Whereas, using the Planck constant we may set

d15
\

c
k1 , d25

\

c
k2 , ~45!

wherek1 andk2 are already arbitrary real numbers satisfying the inequalityuk1u<uk2u. Turning
back to the question of particle motion@see~29! and below# we also conclude that the radiusr of
the tube, representing the particle propagation in Minkowski space, is proportional to\. So, this
‘‘nonlocal’’ behavior of the particle is caused by spin that manifests itself as a pure quantum
disappearing in the classical limit\→0.

As is seen, for a given nonzero spin, the Lagrangian~44! has a complicated structure involv
ing radicals and, hence, the reality condition forL requires special consideration. Similar to th
spinless case, the space–time causality implies that

ẋ2,0, ẋ0.0. ~46!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Then expression~44! is obviously well defined only provided that

h>0,
~47!

m224d1
2h14mA~d2

22d1
2!h>0.

As will be seen below the first inequality is always fulfilled, while the second conditio
equivalent to

0<h<
m2

4d1
4 ~d21Ad2

22d1
2!2. ~48!

Together, Eqs.~46! and ~48! may be understood as the full set of causality conditions for
model of a massive spinning particle.

Passing to the vector parametrization of the configuration space in terms ofbA andhABC , the
basic invariantsh andj take the form

j52
4ẋAḣ

ABCḣBCDẋ
D1 ẋ2ḃ224~ ẋḃ!2

16ẋ2~ ẋb!2
, h5

ḃ2

4~ ẋb!2
, ~49!

and the corresponding Lagrangian reads as

L5A2 ẋ2Sm22d1
2 ḃ2

~ ẋb!2
12mA~d2

22d1
2!

ḃ2

~ ẋb!2
D

1d1A4ẋAḣ
ABCḣBCDẋ

D1 ẋ2ḃ224~ ẋḃ!2

4~ ẋb!2
, ~50!

where the holonomic constraints~12! are assumed to hold. In view of~49! the condition~47!
becomes evident sinceḃA is orthogonal to the light-like vectorbA and thereby is space~or light-!
like. Recalling that the vectorbA parametrizesS4, condition~48! forbids the particle to move with
arbitrarily large velocity, not only in Minkowski space but also on the sphereS4.

Classically the parametersd1 andd2 can be chosen to be arbitrary numbers subject only to
restriction ud1u<ud2u. There are, however, two special cases:d15d250 and d150 when the
Lagrangian~50! is considerably simplified. The former option is of no interest as it correspond
the case of a spinless massive particle, while the latter leads to the following Lagrangian:

L5A2 ẋ2Sm212md2A ḃ2

~ ẋb!2
D , ~51!

which is the direct six-dimensional generalization of the (m,s)-particle model proposed earlier4

for D54. The configuration space of the model~51! is represented by the direct product
Minkowski spaceR5,1 and four-dimensional sphereS4 parametrized by the light-like vectorbA. It
is easy to see that the reduced model cannot describe arbitrary spins, since the third C
operator~11!, being constructed from the Poincare´ generators acting onR5,13S4, vanishes iden-
tically. As will be seen below, the quantization of this case leads to the irreducible represent
of the Poincare´ group realized on totally symmetric tensor fields on Minkowski space.

V. GENERALIZATION TO THE CURVED BACKGROUND

So far we discussed the model of a spinning particle living on the flat space–time. In
section, we will try to generalize it to the case of a curved background. For these ends o
J. Math. Phys., Vol. 38, No. 8, August 1997
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replace the configuration spaceM12 byM63CP3, whereM6 is a curved space–time. Now th
action functional should be generalized to remain invariant under both general coordinate
formations onM6 and local Lorentz transformations onCP3. Let em

A andvmAB be the vielbein
and the torsion free spin connections, respectively.

The minimal covariantization of the Lagrangian~44! gives

L5A2gmnẋ
mẋnS m224d1

2
eabcdl̇al̄blG cld

„ẋmem
A~ l̄sAl!…2

14mA~d2
22d1

2!
eabcdl̇al̄blG cld

„ẋmem
A~ l̄sAl!…2

D
12d1U ẋmemA~ l̇sAl!

ẋmem
A~ l̄sAl!

U , ~52!

where

l̇a5l̇a2
1
2ẋ

mvmAB~sAB!a
blb ~53!

is the Lorentz covariant derivative along the particle’s world line.
Proceeding to the Hamilton formalism one gets the set of five constraintsTi8 , i51, . . . ,5,

which may be obtained fromTi ~21! ~22! by replacingpA→PA , where

PA5eA
m~pm1 1

2vmCDM
CD!. ~54!

HereeA
m is the inverse vielbein andMCD is the spinning part of the Lorentz generators~18!. The

generalized momentumPA satisfies the following Poisson brackets relation:

$PA ,PB%5 1
2RABCDM

CD, ~55!

RABCD being the curvature tensor ofM6. Now it is easy to find that

$T18 ,T38%5RABCDq
APBMCD,

~56!

qA5~ l̄sAl!~p̄Pp!1~ l̄Pl!~p̄sAp!.

The other Poisson brackets of the constraints are equal to zero. So, in general, the con
T18 ,T38 are of the second class, which implies that switching on an interaction destroys th
class constraints algebra and, hence, gives rise to unphysical degrees of freedom in the
What is more, the Lagrangian~52! is explicitly invariant under reparametrizations of the particle
world line, while the gauge transformations associated with the remaining first-class cons
T28 ,T48 ,T58 , do not generate the full reparametrizations of the theory~the space–time coordinate
xm onM6 remain intact!. The last fact indicates that the equations of motion derived from~52!
are contradictory. Thus the interaction with an external gravitational field is self-consistent
provided that the rhs of~56! vanishes. This requirement leads to some restrictions on the curv
tensor. Namely, with the use of the identityMABqB'0 one may find that~56! is equal to zero if
and only ifRABCD has the form

RABCD5
R

30
~hAChBD2hADhBC!, ~57!

whereR is a constant~the scalar curvature of the manifoldM6!. So the minimal coupling to
gravity is self-consistent only provided thatM6 is the space of constant curvature.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Concluding this section, let us also remark that the Lagrangian~52! may be obtained using th
group theoretical principles outlined in the Introduction. To this end, one should replac
Poincare´ group by SO~5,2! or SO~6,1! depending onR,0 or R.0. ~cf. see Ref. 4!.

VI. QUANTIZATION

In Sec. III we have seen that the model is completely characterized, at the classical lev
the algebra of observables associated with the phase space generators of the Poincare´ group. We
have shown that the observablesA5(PA ,JAB) constitute the basis, so that any gauge-invari
value of the theory can be expressed via the elements ofA.

To quantize this classical system means to construct an irreducible unitary representa

r :A→EndH, ~58!

of the Lie algebraA in the algebra EndH of linear self-adjoint operators in a Hilbert spac
where the physical subspaceH is identified with the kernel of the first-class constraint operato
Here by a Lie algebra representationr we mean a linear mapping fromA into EndH, such that

r ~$ f ,g%!52 i @r ~ f !,r ~g!#, ; f ,gPA, ~59!

where @r ( f ),r (g)# is the usual commutator of Hermitian operatorsr ( f ),r (g). Unitary means
that the canonical transformations of the model’s phase space generated by observablesA
should correspond to unitary transformations onH. Besides that, we should supply the algebraA

by the central element 1 and normalizer by the condition

r ~1!5 id, ~60!

i.e., the constant function equal to 1 corresponds underr to the identity operator onH.
Now it is seenthat the quantization of the model is reduced to the construction of the un

irreducible representation of the Poincare´ group with the given quantum numbers fixed by
constraints~21!, ~22!.

Within the framework of the covariant operatorial quantization the Hilbert space of phy
statesH is embedded into the space of smooth scalar functions onR5,13C4, and the phase spac
variablesxA,pA ,la ,p

a are considered to be Hermitian operators subject to the canonical
mutation relations.

In the ordinary coordinate representation,

pA→2 i ]A , pa→2 i ]a, p̄a→2 i ]̄a ~61!

the Hermitian generators of the Poincare´ group ~observables! take the form

PA52 i ]A , MAB52 i „xA]B2xB]A1~sAB!a
b~lb]

a1l̄b]̄
a!…. ~62!

By contrast, the quantization of the first-class constraints is not so unambiguous. As is see
the explicit expressions~21!, ~22!, there is an inherent ambiguity in the ordering of operat
l̂a , p̂b andlRa , pC b. Luckily, as one may verify, the different ordering prescription for the ab
operators results only in renormalization of the parametersd1

2, d2
2 and modification of the kine-

matical constraints by some constantsn andm. Thus, in general~after omitting inessential mul-
tipliers!, the quantum operators for the first-class constraints may be written as

T̂15h2m2, T̂25D12d18
2, T̂35D22d28

2,
~63!

T̂45d2n, T̂55d̄2m,
J. Math. Phys., Vol. 38, No. 8, August 1997
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where the operators on the rhs of relations are defined as in~8!, ~10!, andd18
2, d28

2 are renormal-
ized parametersd1

2, d2
2.

The subspace of physical statesH is then extracted by conditions

T̂i uFphys&50, i51 ,...,5. ~64!

The imposition of the kinematical constraints yields that the physical wave functions are h
geneous inl and l̄ of bedegree (n,m), i.e.

F~x,al,āl̄!5anāmF~x,l,l̄!. ~65!

From the standpoint of the intrinsicM12 geometry, these functions can be interpreted as the sp
tensor fields being the scalars on Minkowski spaceR5,1 and, simultaneously the densities
weight (n,m) with respect to the holomorphic transformations ofCP3. Requiring the fields~65!
to be unambiguously defined on the manifold, the differencen2m should be restricted to be a
integer.

Let us consider the space↑H@0#(M12,m) of massive positive frequency fields of the type~0,0!
~i.e., the scalar fields onM12!. Such fields satisfy the mass-shell condition

~h2m2!F~x,l,l̄!50, ~66!

and possess the Fourier decomposition

F~x,l,l̄!5E dp

p0
ei ~p,x!F~p,l,l̄!,

~67!

p21m250, p0.0.

The space↑H@0#(M12,m) may be endowed with the Poincare´-invariant and positive-definite
inner product defined by the rule

^F1uF2&5E dp

p0
E
CP3

v̄∧v F̄1F2 , ~68!

where the three-formv is given by

v5
eabcdladlb∧dlc∧dld

~ l̄pl!2
. ~69!

Then↑H@0#(M12,m) becomes the Hilbert space and, as a result, the Poincare´ presentation acting
on this space by the generators~62! is unitary. This representation can be readily decomposed
the direct sum of irreducible ones by means of Laplace operatorsD1 and D2 . Namely, the
subspace of the irreducible representation proves to be the eigenspace for both Laplace op
This implies the following:

↑H@0#~M12,m!5 %

s1 ,s250,1,2,...,
s1>s2

↑Hs1 ,s2
~M12,m!, ~70!

and the spectrum of Laplace operators is given by the eigenvalues

d18
25s2~s211!, d28

25m2s1~s113!, s1>s2 , s1 ,s250,1,2,... . ~71!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Consequently, the subspace of physical states satisfying the quantum conditions~64! is exactly
↑Hs1 ,s2

(M12,m). The explicit expression for an arbitrary field from↑Hs1 ,s2
(M12,m) reads as

F~p,l,l̄!5F~p!a1•••as11s2
b1•••bs12s2

la1
•••las1

l̄as111
•••l̄as11s2

l̄b1•••l̄bs12s2

~ l̄pl!s1
. ~72!

Here the spin-tensorF(p)a1•••as11s2
b1•••bs12s2 is considered to be thep-transversal,

pa1b1F~p!a1•••as11s2
b1•••bs12s250 ~73!

~for s1Þs2!, and its symmetry properties are described by the Young tableaux presented in
The fieldF(p)a1•••as11s2

b1•••bs12s2 can be identified with the Fourier transform of the sp
tensor field on Minkowski spaceR5,1. Together, the mass-shell condition,

~p21m2!F~p!a1•••as11s2
b1•••bs12s250, ~74!

and relation~73! constitute the full set of relativistic wave equations for the mass-m, spin-
(s1 ,s2) field in six-dimensions. Thus the massive scalar field onM12 generates fields of arbitrar
integer spins on Minkowski space.

In order to describe the half-integer spin representations of the Poincare´ group, consider the
space↑H@1/2#(M12,m) of massive positive frequency fields with tensor type~1,0!. These fields
possess the Fourier decomposition and may be endowed with the following Hermitian
product:

^F1uF2&1/25E dp

p0
E
CP3

v̄∧v~l̄pl!21F̄1F2 . ~75!

Then the decomposition of the space↑H@1/2#(M12,m) with respect to both Laplace operators rea
as

↑H@1/2#~M12,m!5 %

s1 ,s251/2,3/2,...,
s1>s2

↑Hs1 ,s2
~M12,m!, ~76!

where invariant subspaces↑Hs1 ,s2
(M12,m) are the eigenspaces ofD1 andD2 with eigenvalues

d18
25~s22

1
2!~s21

3
2!, d28

25~s12
1
2!~s11

7
2! s1 ,s251/2,3/2,..., s1>s2 . ~77!

The explicit structure of an arbitrary field from↑Hs1 ,s2
(M12,m) is

F~p,l,l̄!5F~p!a1•••as11s2
b1•••bs12s2

la1
•••las1

l̄as111
•••l̄as11s2

l̄b1•••l̄bs12s2

~ l̄pl!s1
, ~78!

whereF(p)a1•••as11s2
b1•••bs12s2 is thep-transversal tensor

FIG. 1. The Young tableaux for the irreducible spin-tensor field of spin- (s1 ,s2).
J. Math. Phys., Vol. 38, No. 8, August 1997
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pa1b1F~p!a1•••as11s2
b1•••bs12s250 ~79!

~for s1Þs2!, and its symmetry properties are described by the same Young tableaux~Fig. 1!.
Consequently, from~76!, ~77! it follows that the massive type~1,0! field onM12 generates fields
of arbitrary half-integer spins on Minkowski space.

It is instructive to rewrite the inner product for two fields from↑Hs1 ,s2
(M12,m) in terms of

spin-tensorsF(p)a1•••as11s2
b1•••bs12s2. The integration over spinning variables may be perform

with the use of the basic integral

E
CP3

v̄∧v5
48ip3

~p2!2
, ~80!

and the result is

^F1uF2&5NE dp

p0
F̄1~p!a1•••a2s1F2~p!a1•••a2s1

, ~81!

where

F2~p!a1•••amb1•••bn
5ea1b1c1d1•••eanbncndnpan11cn11

•••pamcmF2~p!c1•••cmd1•••dn, ~82!

andN is some normalization constant depending ons1 ands2 .

VII. CONCLUSION

In this paper we have suggested the model for a massive spinning particle in six-dimen
Minkowski space as a mechanical system with configuration spaceM125R5,13CP3. The La-
grangian of the model is unambiguously constructed from theM12 world line invariants when the
identical conservation is required for the classical counterparts of Casimir operators. As a
the theory is characterized by three genuine gauge symmetries.

The model turns out to be completely solvable as it must, if it is a free relativistic particle.
projection of the class of gauge equivalent trajectories fromM125R5,13CP3 ontoR5,1 represents
the two-dimensional cylinder surface of radiusr;\, with generatings parallel to the particle
momenta.

Canonical quantization of the model naturally leads to the unitary irreducible representat
the Poincare´ group. The requirement of the existence of smooth solutions to the equations f
physical wave functions results in quantization of the parameters entering the Lagrangian o
is the same, in quantization of particle’s spin.

It should be noted that switching on an interaction of the particle to the inhomogen
external field, one destroys the first-class constraint algebra of the model and the theory, th
becomes inconsistent, whereas the homogeneous background is admissible. The physic
underlying this inconsistency is probably that the local nature of the inhomogeneous field
contradict to the nonlocal behavior of the particle dynamical histories. A possible meth
overcome the obstruction to the interaction is to involve the Wess–Zumino-like invariant om
in the action~44!. It has the form

G5r
~l̄aẋ

abl̇b!

~ l̄aẋ
ablb!

1 r̄
~lGaẋ

ablb!

~ l̄aẋ
ablb!

.

As is easy to see,G is invariant under thel rescalings up to a total derivative only. This fac
however, does not prevent to say about dynamics of the particle onM12. The similar trick solves
the problem of interaction in the case ofd54 spinning particle.5
J. Math. Phys., Vol. 38, No. 8, August 1997
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APPENDIX: HALF-SPINORIAL FORMALISM IN SIX DIMENSIONS

Our notations are as follows: capital Latin letters are used for Minkowski space indice
small Latin letters for spinor ones. The metric is chosen in the formhAB5diag(2,1,...,1). The
Clifford algebra of 838 Dirac matricesGA reads as$GA ,GB%522hAB . The suitable represen
tation forGA is

GA5S 0 ~sA!aȧ

~ s̃A! ȧa 0 D , sA5$1,g0 ,ig1 ,ig2 ,ig3 ,g5%,
s̃A5$1,2g0 ,2 ig1 ,2 ig2 ,2 ig3 ,2g5%,

~A1!

whereg i , i50,1,2,3,5 are the ordinary Dirac matrices in four dimensions. The charge conjug
matrix is defined as

C5G2G45S I 0

0 Ĩ
D , I5 Ĩ5S 0 1

21 0
u 0

– – – u – – –

0 u
0 1

21 0

D . ~A2!

The spinor representation of SO~5,1! on Dirac spinorsC5(
p̄ ḃ

la
) is generated by

SAB52
1

4
@GA ,GB#5S ~sAB!a

b 0

0 ~ s̃AB! ȧḃ
D

5S 2 1
4 ~sAaȧ

s̃B
ȧb2sBaȧ

s̃A
ȧb! 0

0 2 1
4~ s̃A

ȧbsBbḃ
2s̃B

ȧbsAbḃ
!
D . ~A3!

The representation is decomposed into two irreducible ones corresponding to the left- and
handed Weyl spinors. It turns out that the representation~A3! and its complex conjugated ar

equivalent: (sAB* ) ȧ
ḃ5I ȧ

a(sAB)a
bI b

ḃ, (s̃AB* )ab5 Ĩ aȧ(s̃AB)
ȧ
ḃĨ

ḃ
b . So, one can convert the dotte

spinor indices into undotted ones,

l̄a5I a
ȧl
*
ȧ , p̄a5 Ĩ aȧp

* ȧ.

While the gradient and contragradient representations are inequivalent because of the abs
an object raising and/or lowering spinor indices, as distinguished from the four-dimensiona
It is convenient to turn from the matrices (sA)aȧ ,(s̃A)

ȧa to (sA)ab5(sA)aȧĨ
ȧ
b ,(s̃A)

ab

5 Ĩ aȧ(s̃A)
ȧa. They possess a number of properties,

~sA!ab52~sA!ba , ~ s̃A!ab52~ s̃A!ba,

~sA!ab~sA!cd522eabcd, ~ s̃A!ab~ s̃A!cd522eabcd,
J. Math. Phys., Vol. 38, No. 8, August 1997
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~sA!ab52 1
2eabcd~ s̃A!cd, ~ s̃A!ab52 1

2e
abcd~sA!cd ,

~A4!

~sA!ab~ s̃A!cd52~da
cdb

d2da
ddb

c!, ~sA!ab~ s̃B!ba524hAB ,

~sA!ab~ s̃B!bc1~sB!ab~ s̃A!bc522hABda
c,

~ s̃A!ab~sB!bc1~ s̃B!ab~sA!bc522hABd
c
a .

Here we introduced two invariant tensorseabcd and eabcd, totally antisymmetric in indices, and
e12345e123451. With the aid of introduced objects one may convert the vector indices
antisymmetric pairs of spinor ones; e.g., for a given vectorpA ,

pA→pab5pA~sA!ab , pab5pA~ s̃A!ab, pA52 1
4pab~ s̃A!ba52 1

4p
ab~sA!ba . ~A5!

Consider two objects,

~sABC!ab5
1
4~sAs̃BsC2sAs̃BsC!ab , ~ s̃ABC!ab5 1

4~ s̃AsBs̃C2s̃AsBs̃C!ab. ~A6!

They obey the following properties:

~sABC!ab5~sABC!ba , ~ s̃ABC!ab5~ s̃ABC!ba,

~sABC!ab5
1
6eABCDEF~sDEF!ab , ~ s̃ABC!ab52 1

6eABCDEF~ s̃ DEF!ab,

~sABC!ab~ s̃ABC!cd56~da
cdb

d1da
ddb

c!,
~A7!

~sABC!ab~sABC!cd5~ s̃ABC!ab~ s̃ABC!cd50,

~sABC!ab~ s̃DEF!ba5eABC
DEF1dA

[DdB
EdC

F] ,

~ s̃ABC!ab~sDEF!ba52eABC
DEF1dA

[DdB
EdC

F] .

The brackets around the indices mean antisymmetrization. With the aid of introduced objec
antisymmetric Lorentz tensor of the third rank may be converted into a pair of symmetric
pinors,

MABC5 1
12„M

ab~sABC!ba1Mab~ s̃ABC!ba…,
~A8!

Mab5MABC~ s̃ABC!ab, Mab5MABC~sABC!ab .

In conclusion, we write out the Fierz identities and rules of complex conjugation for diffe
spinor bilinears. For the sake of simplicity, we omit the contracted spinor indices throughou
paper, e.g. (xs̃Ac)5xa(s̃A)

abcb , (xs̃ABCc)5xa(s̃ABC)
abcb ,

caxb5
1
4~cs̃Ax!sA

ab1
1
12~cs̃ABCx!~sABC!ab ,

xbca5
1
4~xc!da

b2 1
2~xsABc!~sAB!a

b,

~cx!*5~ c̄x̄ !, ~cx̄!*52~ c̄x!,
~A9!

~xs̃Ac!*5~ x̄s̃Ac̄ !, ~ x̄s̃Ac!*52~xs̃Ac̄ !,

~ x̄s̃ABCc!*52~xs̃ABCc̄ !, ~xs̃ABCc!*5~ x̄s̃ABCc̄ !.
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



f

vo

ett.

S.

ti-de

ep-th/

4103Lyakhovich, Sharapov, and Shekhter: Spinning particle in six dimensions

¬¬¬¬¬¬¬¬¬¬
Analogous relations take place for a spinor with upper indices.
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Generalization of Shannon’s theorem for Tsallis entropy
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By using the assumptions that the entropy must~i! be a continuous function of the
probabilities$pi%(piP(0,1); i ), only; ~ii ! be a monotonic increasing function of
the number of statesW, in the case of equiprobability;~iii ! satisfy the pseudoad-
ditivity relation Sq(A1B)/k5Sq(A)/k1Sq(B)/k1(12q)Sq(A)Sq(B)/k

2 ~A and
B being two independent systems,qPR andk a positive constant!, and~iv! satisfy
the relation Sq($pi%)5Sq(pL ,pM)1pL

qSq($pi /pL%)1pM
qSq($pi /pM%), where

pL1pM51(pL5( i51
WL pi and pM5( i5WL11

W pi!, we prove, along Shannon’s lines,

that the unique function that satisfies all these properties is the generalized Tsallis
entropySq5k(12( i51

W pi
q)/(q21). © 1997 American Institute of Physics.

@S0022-2488~97!03607-4#

I. INTRODUCTION

Nonextensive physical systems are being intensively studied nowadays. A recently intro
formalism, namely Tsallis statistics,1 has been proposed in order to cover many of such anoma
systems. Indeed, it has been successfully applied to Le´vy-type2–4 and correlated-type5–8 anoma-
lous diffusions, turbulence in electron plasmas,9 the solar neutrino problem,10 quantum
groups,11–13 nonlinear dynamical systems,14 cosmology,15 linear response theory,16 as well as to
optimization technics.17–23

This thermo-statistical formalism is based upon the so-called Tsallis entropy formula

Sq5k
12( i51

W pi
q

q21
~qPR!, ~1!

wherek is a positive constant~which we shall from now on take equal to 1!, q is a real number,
W is the total number of microscopic configurations, and$pi% is the set of associated probabilitie
(( i51

W pi51). It is easily seen that in the limitq→1, one recovers the well-known Boltzmann
Gibbs–Shannon formula21

S52(
i51

W

pi ln pi , ~2!

which successfully accounts for extensive problems.
It is known thatSq satisfies the following conditions:

~i! Sq is, for 0,pi,1, a continuous function of$pi%, only.
~ii ! For a given set ofW equiprobable states, i.e.,pi51/W, Sq is a monotonic increasing

function of W, namelySq5(W12q21)/(12q).
~iii ! For two independent systemsA andB, the generalized entropy of the composed syst

A1B satisfies the pseudoadditivity relation~see, for instance, Ref. 11!:

Sq~A1B!5Sq~A!1Sq~B!1~12q!Sq~A!Sq~B!. ~3!

~iv! With
0022-2488/97/38(8)/4104/4/$10.00
4104 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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W5WL1WM , ~4!

pL5(
i51

WL

pi ~WL terms!, ~5!

pM5 (
i5WL11

W

pi ~WM terms!, ~6!

~hence, pL1pM51! ~7!

we have:1,20

Sq~$pi%!5Sq~pL ,pM !1pL
qSqS H pipLJ D1pM

qSqS H pipMJ D . ~8!

In this letter we show that theuniquefunction that simultaneously satisfies all these properties
the Tsallis generalized entropy formula~1!. By so doing, we are generalizing, for the case
nonextensive systems, the famous Shannon’s theorem.24

II. PROOF

Let us decompose a choice fromsm equally likely possibilities into a series ofm choices with
s equally likely possibilities each. It is straightforward to show that using condition~iii ! one gets:

Sq~s
m!5

@11~12q!Sq~s!#m21

12q
. ~9!

This expression is the generalization forqPR of the extensivity condition of the Boltzmann–
Gibbs–Shannon entropy, and, in the limitq→1, yields the well-known result24

S1~s
m!5mS1~s!. ~10!

For a large enoughm ands it is always possible to find a pair of integer numbers (t,n) such that

sm<tn<sm11. ~11!

Now, from condition~ii !, we have, for all values ofq:

Sq~s
m!<Sq~ t

n!<Sq~s
m11! ~12!

so, using Eq.~9! for q,1,

@11~12q!Sq~s!#m<@11~12q!Sq~ t !#
n<@11~12q!Sq~s!#m11. ~13!

Taking the logarithm of this inequality we get

m

n
<
ln@11~12q!Sq~ t !#

ln@11~12q!Sq~s!#
<
m

n
1
1

n
~14!

or equivalently,

Umn 2
ln@11~12q!Sq~ t !#

ln@11~12q!Sq~s!#
U<e[

1

n
. ~15!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Now, from Eq.~11!, we have

m

n
<
ln t

ln s
<
m

n
1
1

n
~16!

and, as before,

Umn2
ln t

ln sU<e[
1

n
. ~17!

Combining Eqs.~15! and ~17! there comes

U ln t

ln s
2
ln@11~12q!Sq~ t !#

ln@11~12q!Sq~s!#
U<2e. ~18!

If we now allow e→0 we get

ln@11~12q!Sq~s!#

ln s
5
ln@11~12q!Sq~ t !#

ln t
5p~q!, ~19!

wherep(q) is a quantity which at most can depend onq.
So we get the functional form ofSq(t) given by:

Sq~ t !5
tp~q!21

12q
. ~20!

Let us now consider a choice fromW partitions, each one with probability

pi5
ni

( i51
W n1

, ~21!

whereni is the number of possibilities in thei th partition, each one with equal probability. Usin
condition ~iv! expressed in Eq.~8! we get

SqS H 1

( i51
W n1

J D 5Sq~p1 ,p2 ,...,pW!1(
i51

W

pi
qSqS H 1ni J D ~22!

or, using the functional form of Eq.~20!,

~( i51
W ni !

p21

12q
5Sq~p1 ,p2 ,...,pW!1(

i51

W

pi
qS niq21

12q D ~23!

so

SqS p1 ,p2 ,...,pWD5
1

12q H S (
i51

W

ni D p211(
i51

W

pi
q2(

i51

W

pi
qni

pJ ~24!

but

ni
p5pi

pS (
i51

W

ni D p. ~25!
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Thus, substituting into Eq.~24!, we see that, in order to satisfy condition~i! so thatSq($pi%) must
depend only on$pi%, one must have

p512q. ~26!

Therefore

Sq~$pi%!5
12( i51

W pi
q

q21
~27!

and, fort equiprobable choices,

Sq~ t !5
t12q21

q21
. ~28!

In this way we have generalized, for the Tsallis entropy, Shannon’s remarkable theorem.
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An
(1) Toda solitons and the dressing symmetry

H. Belicha) and R. Paunovb)
Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150,
Rio de Janeiro, Brazil

~Received 23 December 1996; accepted for publication 5 March 1997!

We present an elementary derivation of the solitonlike solutions in theAn
(1) Toda

models which is an alternative to the previously used Hirota method. The solutions
of the underlying linear problem corresponding to theN-solitons are calculated.
This enables us to obtain explicit expression for the element which, by dressing
group action, produces a generic soliton solution. In the particular example of
monosolitons we suggest a relation to the vertex operator formalism, previously
used by Olive, Turok, and Underwood. Our results can also be considered as
generalization of the approach to the sine–Gordon solitons, proposed by Babelon
and Bernard. ©1997 American Institute of Physics.@S0022-2488~97!03107-1#

I. INTRODUCTION

The solitons appear in various topics of the modern mathematical and elementary p
physics.1 Generically, the solitons represent field configurations which are topologically nontr
Therefore they turn out to be a natural object in studying nonperturbative effects in the qua
theory.1,2 There is another~nonequivalent! approach to the solitons which treats them as soluti
of integrable nonlinear evolution equations.3–5 The crucial point is that the equations of motio
appear as a zero curvature condition of a certain Lax connection. As a consequence of th
can map, in a manner explained in Refs. 3–5, the original dynamical variables into a
scattering data, which, due to the integrability, satisfies linear evolution equations. This tra
mation, called direct spectral transformation, yields the action-angle variables of the syste
get back the original dynamical variables one has to perform the so-called inverse sca
transformation. This approach, known in the literature as the Inverse Scattering Method~ISM!,3–5

provides an elegant procedure to solve integrable nonlinear evolution equations.
Within the ISM, the solitons arise after imposing the vanishing of the reflection coefficie

the corresponding Lax operator. Due to the last condition, the inverse scattering equations
to a linear algebraic system, which only depends on the scattering data related to the d
spectrum of the Lax operator.

The Toda equations6 admit a Lax representation,7 and, due to the existence of a classic
r -matrix, are integrable. In Ref. 7 another important idea has been advanced: to use gene
Cartan matrices in order to obtain integrable field equations. In particular, the affine Toda th
correspond to the extended Cartan matrices of simple Lie algebras. The last are derived fr
simple Lie algebra Cartan matrices by adding the extended root which is minus the highes
There is an alternative approach8 which consists in the study of the properties of a Lax opera
which has a special form. The ideas developed in Ref. 8 have been further explored in Re
get generalized Drinfeld–Sokolov integrable hierarchies. The crucial step within this appro
to expand, after a suitable gauge transformation, the components of the Lax connectio
certain maximally commuting subalgebra of the underlying affine Lie algebra. This ensure
existence of infinite number of conserved quantities. A similar procedure applied to the
Toda models appeared also in Ref. 10.

a!Electronic mail: belich@cbpfsu1.cat.cbpf.br
b!Electronic mail: paunov@cbpfsu1.cat.cbpf.br
0022-2488/97/38(8)/4108/20/$10.00
4108 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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The dressing group is a special symmetry of the integrable evolution equations.11 It admits an
elegant interpretation within the tau-function approach.12 Dressing transformations act on th
components of the corresponding Lax connection without changing its form.13 Therefore, the
dressing group turns out to be a symmetry of the phase space. To ensure the covarianc
symplectic structure under dressing transformations, one has to introduce a specific P
bracket on the dressing group.13,14 In this paper we are not going to analyze this problem sinc
presents difficulties even for the dressing group elements which generate monosolitons fr
vacuum in the sine–Gordon theory.15 The dressing symmetry has been exploited recently16 to treat
a huge class of integrable hierarchies which admit a vacuum solution.

The soliton solutions in theAn
(1) Toda model are found by Hollowood17 who used the Hirota

method. Later it became clear that the Hirota method can be applied to get solitons in ar
affine Toda models.18 The relation between the soliton solutions in the affine Toda theories
special elements in the affine~or Kac–Moody! Lie algebras, called vertex operators, is clarified
Ref. 19. An intriguing property of the formalism, developed in these papers, is that it pe
generalization for the Toda theories based on twisted affine Lie algebras in Ref. 20.

The actual interest to the affine Toda solitons is due to their relation to theN-body integrable
systems.21 It turns out that the solitons are related to certain~relativistically invariant! integrable
systems with finite degrees of freedom. Another interesting property of the affine Toda solit
that they are closely related to the Seiberg–Witten duality.22

We outline the content of this paper. In Sec. II we generalize a method to get so
introduced by Date23 which is complementary both to the Hirota method17,18and to the ISM.24 To
illustrate the generality of our approach we fix the coupling constant to be real. This is to sa
we are working with algebraic instead of the usually treated physical solitons which only exi
imaginary values of the coupling constant. As a result we obtain theN-solitons as they were
expressed in Ref. 21. In Sec. III we evaluate the dressing group element which generates
from the vacuum in the defining representation of sl(n11). Our result appears to be a genera
zation of the element calculated by Babelon and Bernard.25 Section IV is devoted to the relatio
to the vertex operator construction of solitons advanced by Oliveet al.19

II. SOLITON SOLUTIONS IN THE An
(1) TODA THEORIES

The problem of finding soliton solutions in the affine Toda models was previously approa
in the literature by using the Hirota method17,18and with the help of group theoretical methods19

Soliton solutions only exist for imaginary values of the coupling constant. Moreover, it
clarified that, despite the equations of motion and the Lagrangian density being comple
solitons carryrealmomentum and energy. The properties of the affine Toda systems, both fo
and imaginary coupling constants, are studied within the ISM.24 The standard scheme of the ISM
meets certain obstructions when applied to the affine Toda models based on arbitrary sim
algebras. In particular, it turns out that the Jost solutions,5 and therefore the elements of th
transition matrix, lose their nice analiticity properties as functions on the spectral parame
this section we generalize an elegant method23 to obtain theAn

(1) Toda solitons. It exploits two
important features of the soliton solutions: first, due to the vanishing of the reflection coefficie
the auxiliary linear problem, the corresponding Jost solutions are single-valued functions
spectral parameterl; second, the soliton Jost solutions are uniquely determined by the scat
data related to the discrete spectrum of the underlying Lax operator. Applying the ideas dev
in Ref. 23 to theAn

(1) Toda models, we recover the equations describing the discrete spectr
the corresponding linear problem, by using a finite-order inner automorphisms of the simple Lie
algebraAn . The last has ordern11 and introduces the so-calledprincipal gradationin the affine
Lie algebraAn

(1) .26

The An
(1) Toda equations are equivalent to a zero-curvature condition of a connection

components of which belong to the loop Lie algebra sl˜(n11) in the principal gradation. We will
start by introducing certain basic facts concerning the Lie algebras sl(n11) and sl˜(n11) and the
J. Math. Phys., Vol. 38, No. 8, August 1997
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notion of gradation.26,27 As it is well known, sl(n11) is the Lie algebra of the traceless (n11)
3(n11) matrices. Denote byEi j the elementary matricesEi j5u i &^ j u, i , j51,..., n11, which
satisfy the commutation relations of the Lie algebra gl(n11)

@Ei j , Ekl#5d jkEil2d i l Ek j. ~II.1!

The Cartan subalgebraH is generated by the traceless combinations of the diagonal mat
Eii Hj5( i51

n11 j iE
ii , ( ij i50. The rank of sl(n11) is n. To describe the root system we fix a

orthonormalized basis$ei% in then11-dimensional Euclidean space. Then the roots are exhau
by a i j5ei2ej , iÞ j . The corresponding step operators areEa i j5Ei j . As simple roots one can
choose the elements6a i56(ei2ei11), i51,...,n. The step operators satisfy the commutati
relations

@Hj , E
6a i#56a i •jE

6a i56~j i2j i11!E
6a i,

~II.2!

@Ea i, E2a j #5d i j Ha i
.

The rest of the step operators is obtained by taking successive commutators of the step op
Ea i and of their transposedE2a i. The highest root isc5a11•••1an5e12en11 . This can be
translated in the language of the step operators:@Ec, Ea#50 for any step operator related to
positive roota. Note also thatEc5E1n11. One also introduces the extended roota052c and its
step operatorEa05En111.

We proceed by recalling some facts about the finite-order inner automorphisms of the s
Lie algebras. There is a general theorem due to Kac26 ~for an introductory review see also Ref. 9!
which states that the finite-order inner automorphisms of a simple Lie algebraG are parametrized
by r11 relatively prime non-negative integers wherer stands for the rank of the Lie algebra. I
what follows, we shall need a special inner automorphisms of G5sl(n11), the order of which
is n11, sn1151. To define it, we first recall that the fundamental weightsl i are dual to the
simple roots 2a i•l j /a i•a i5d i j , i , j51,...,r . SpecifyingG5sl(n11) one gets

l i5 (
k51

i

ek2
i

n11 (
k51

n11

ek , i , j51,..,n. ~II.3!

Consider also the vector in the root space

r5(
i51

n

l i . ~II.4!

Using the above notations one defines the following inner automorphismX→s(X) of the Lie
algebra sl(n11)19,20,26

s~X!5SXS21, S5e2p i Hr /n11
, ~II.5!

where the diagonal matrixHpPH depends linearly on the vectorr ~II.4! Hr

5(k51
n11 rkuk&^ku; rk are the components of~II.4! in the basis$ei% ~II.3!. In view of ~II.2!, s acts

diagonally in the corresponding Cartan–Weyl basis

s~Hj!5Hj ,

s~Eakl!5vakl•rEakl5v l2kEakl,

v5e2p i /~n11!, ~II.6!
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ion of

es
lated to
fy

algebra

h

4111H. Belich and R. Paunov: An
(1) Toda solitons and the dressing symmetry

¬¬¬¬¬¬¬¬¬¬
from where it becomes clear thats has ordern11. Note that the Lie algebraG5sl(n11),
equipped by the above automorphism, becomes a graded Lie algebra,

G5 % kPZn11
G k , s~G k!5vkG k , @G k , G l ##G k1 l , ~II.7!

in the above equations and in what follows we adopt the following convention: the summat
indices which take values in the cyclic groupZn11 is understood modulon11.

There exists an alternative basis in sl(n11) closely related to the automorphism~II.5!. We
shall briefly review its construction~for further details, see Refs. 19 and 20!. First of all one
observes that the generators

E i5 (
k51

n112 i

Ekk1 i1 (
k51

i

En111k2 ik5 (
kPZn11

Ekk1 i , i51,...n, ~II.8!

are mutually commuting. Therefore they span another Cartan subalgebraH8. In the second
identity of the above equation the summation index 1<k<n11 is read modulon11. Due to
~II.6!, the elements~II.8! are eigenvectors of the automorphisms:

s~E i !5v iE i . ~II.9!

Here we only consider the Lie algebra sl(n11). For general simple Lie algebras, the eigenvalu
of the corresponding automorphism, restricted to the alternative Cartan subalgebra, are re
the Betti numbers. Fixing the definingn11-dimensional representation, it is not difficult to veri
that the matrix with entries

V i j5v~ i21!~ j21!,
~II.10!

V i j
215

1

n11
v2~ i21!~ j21!, 1< i , j<n11,

diagonalizesH8

V21E iV5 (
k51

n11

v i ~k21!Ekk. ~II.11!

From the expression

S5vn/2(
k51

n11

v12kEkk, ~II.12!

for the operatorS which implements the automorphism~II.5!, and taking into account~II.11!, we
get the commutation relations

V61EkV
715v7kn/2S6k. ~II.13!

To complete the alternative basis, we need to add the corresponding to the Cartan sub
H8 step operators. In view of~II.11! we see that

Fi j5VEi jV21, iÞ j , ~II.14!

are eigenvectors of the adjoint action of the generators~II.8!. Combining the last observation wit
~II.9! we conclude that the automorphism~II.5! permutes the step operators~II.14!. We calculate
explicitly its action with the help of~II.13!:
J. Math. Phys., Vol. 38, No. 8, August 1997
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s~Fi j !5SVEi jV21S215VE1E
i jEnV

215VEi21 j21V215Fi21 j21, ~II.15!

i , j51,...,n11 mod~n11!.

It is seen from the above expression thats acts on the alternative basis as an element of the W
group~more precisely, it is a Coxeter element!. Moreover, it is clear that the action ofs separates
the set of the step operators~II.14! into n nonintersecting orbits, parametrized by the differen
i2 j @~II.15!#, each containingn11 elements. Within the elements of eachs-orbit we choose the
following representatives

Fi5VEi111V215Fi111, i51,...n, ~II.16a!

@E i , F
j #5~v i j21!F j . ~II.16b!

Introducing the grade expansions~II.7! of the above generators,

Fi5 (
kPZn11

Fk
i , s~Fk

i !5vkFk
i , ~II.17!

we observe that the rest of the elements in thes-orbit of Fi @~II.16a!# are linear combinations o
the componentsFk

i . Therefore one gets a graded basis which is formed byE i , i51...n @~II.8!#,
andFk

i , i51,...n; kPZn11 . Note that due to~II.9!, ~II.16b!, and ~II.17! the commutation rela-
tions

@E i , Fk
j #5~v i j21!Fk1 i

j ~II.18!

are valid.
Starting from a Lie algebraG one associates to it the loop algebraG̃5C@l,l21# ^G , i.e., it

is the set of the Laurent series on a formal parameterl, which will play the role of a spectra
parameter of the auxiliary linear problem, with coefficients belonging toG . In the other words,G̃
is spanned on the elementsXn5lnX wherenPZ andXPG . The commutator is

@Xm , Yn#5@X,Y#m1n .

Now we introduce the Lie algebra sl˜(n11) in the principal gradation. It is generated by th
expansionX(l)5( lPZl

lXl with XlPsl(n11) together with the restriction

X~vl!5s„X~l!…, ~II.19!

where the automorphisms acts on the Laurent coefficientsXn as indicated by~II.5!. The operator
d5l]/]l introduces aZ-gradation inG̃5sl(n11):

G̃5 % nPZG ñ, @d, G̃ n#5nG ñ. ~II.20!

Comparing~II.7! with ~II.19! and taking into account the above decomposition one concludes
G k.G̃ k1 l (n11) for kPZn11 and lPZ. Starting from the alternative basis~II.8! and ~II.17! on
sl(n11) one gets a basis of sl̃(n11) in the principal gradation. It is formed by the elemen
E i1 l (n11) for i51,..., n, lPZ, andFi1 l (n11)

j for j51,..., n, iPZn11 , lPZ. The subalgebra
generated byEk , kÞ0 mod(n11), is a maximal Abelian subalgebra. It is known in the literatu
as the principal Heisenberg subalgebra. The Heisenberg subalgebras of the loop and the a
algebras play a crucial role in constructing integrable hierarchies.8–10 Introducing the element19,20
J. Math. Phys., Vol. 38, No. 8, August 1997
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Fi~m!5(
lPZ

m2 lFl
i ~II.21!

and taking into account the commutator~II.18! and its extension in the loop algebra, one obta

@E i , F
j~m!#5~v i j21!m iF j~m!. ~II.22!

In the above commutators and in what follows we will perform a slight abuse of notat
namely, the lower index will be used to indicate both the discreteZn11 and to parametrize theZ
gradation as introduced in~II.20!.

To introduce theAn
(1) Toda equations we first define the following element of the Car

subalgebra

F5
1

2 (
i51

n11

w iE
ii , (

i
w i50. ~II.23!

Then theAn
(1) affine Toda equations can be written in the following form:

]1]2F5m2@eadFE1 , e2adFE2#,

x65x6t, ]65
]

]x6 , ~II.24!

eadXY5eX.Y.e2X,

whereE6 are grade61 elements of the principal Heisenberg subalgebra of sl˜(n11). More
precisely, they are liftings ofE1 andEn @~II.8!# in the loop algebra

E65l61 (
kPZn11

Ekk61. ~II.25!

Substituting back the above expressions into the equations of motion~II.24! and taking into
account the notation~II.23! we end up with the system

]1]2w i5m2~es i2w i112ew i212w i !, iPZn11 . ~II.26!

It is an easy task to check that~II.24! is equivalent to the zero-curvature condition

]1A22]2A11@A1 , A2#50 ~II.27!

of a connection whose components belong to the loop algebra sl̃(n11) in the principal gradation:

A1~x,l!52]1F~x!1mE1 ,
~II.28!

A2~x,l!5me22adF~x!E2 ,

where we adopted the abbreviationx5(x1,x2). The dependence on the spectral parameter in
above expressions comes from the dependence of the elements of the principal Heisenbe
algebraE6 on it. The zero curvature condition~II.27! implies that there exists covariantly consta
vectorw(x,l) with respect to the covariant derivativesD65]61A6 :

„]61A6~x,l!…w~x,l!50. ~II.29!
J. Math. Phys., Vol. 38, No. 8, August 1997
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In what follows we shall assume that the above equation is considered in the defining rep
tation of sl(n11). Since the componentsA6 are in the principal loop algebra sl̃(n11), they obey
the relations~II.19!. Performing the rescaling of the spectral parameterl→v21l, one immedi-
ately observes that~II.29! remains invariant provided that

w~x,l!→~S w!~x,l!,
~II.30!

~S w!~x,l!5Sw~x,v21l!,

where the matrixS implements the automorphism~II.5!. The above symmetry of the~II.29! allows
us to get a matrix solution of it, starting from the columnw(x,l);

W~x,l!5iw~x,l!,vn/2~S 21w!~x,l!•••vn2/2~S 2nw!~x,l!i . ~II.31!

Note that the last expression justifies our choice to work with the defining representation. Sin
order of the automorphisms @~II.5!# is n11 @~II.6!#, it is clear that the (n11)th power of the
operatorS ~and therefore ofS @~II.30!#! which implements this automorphism is proportional
the identity operator in any irreducible representation of sl(n11). This restricts us to look for
matrix solutions of~II.29!, starting from a vector one, by using the symmetry~II.9! in the defining
representation only since it has dimensionn11.

To get soliton solutions we shall look for special solutions of the system~II.29! which admit
the expansion

w~x,l!5(
j50

N

l jw~ j !~x!e~x,2l!,

~II.32!

e~x,l!5expHmS lx11
x2

l D J ,
whereN is a non-negative integer which will be identified with the number of solitons
w( j )(x), j51,...,N, arel-independent vectors. We shall require also thatw(N) is the constant
vector with unit components

w~N!5 (
k51

n11

uk&, E6w
~N!5l61w~N!. ~II.34!

To fix the rest of the coefficients in the expansion~II.32! we shall impose the following
relations onw(x,l):23

~S 2r jw!~x,m j !5v2r j n/2cjw~x,m j !, j51,...,N, ~II.34!

for certain constantscj and m j and discrete parameters, called soliton species,r j which take
nonvanishingvalues in the cyclic groupZn11 . Taking into account~II.12! and~II.30! we conclude
that the above equations can be equivalently written as follows:

wk~x,v
r jm j !5v~12k!r jcjwk~x,m j !, ~II.35!

wherewk are the components of the vectorw:

w5 (
k51

n11

wkuk&.
J. Math. Phys., Vol. 38, No. 8, August 1997
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From ~II.34! we see that the matrixW(x,l) @~II.31!# is degenerate forl5vkm j wherekPZn11

and j51,...,N. For these values of the spectral parameter, the columns with numbe
2k mod (n11) andr j112k mod (n11) are proportional.

To demonstrate that the expansions~II.32! together with~II.33! and~II.34! satisfy~II.29!, we
shall make the following observation: suppose thatU(x,l)5PN21(x,l)e(x,2l), where
PN21(l) is a vector-valued polynomial onl of degreeN21, is a solution of~II.34!. Then
U(x,l) vanishes identically. To see this, note that due to~II.34!, the coefficients of the polynomia
PN21 satisfy certain homogeneous linear system ofN equations. For generic values ofm j , the
determinant of this system is different from zero. Therefore there only exists a vanishing so
and henceU(x,l)[0. Let us apply this observation to

U1~x,l!5]1w~x,l!12]1F~x!w~x,l!1mE1w~x,l!,
~II.36!

U2~x,l!5]2w~x,l!1me22adF~x!E2w~x,l!.

As consequence of~II.5!, ~II.6!, and~II.9! and sincew(x,l) is a solution of~II.34!, one checks
immediately that the above expressions satisfy~II.34! also. Inserting~II.32! into ~II.36! we get

e~x,l!U1~x,l!5lNX2]1Fw~N!2mS 12
1

l
E1Dw~n21!C1RN21~x,l!,

e~x,l!U2~x,l!5
m

l
~le22adFE221!w~0!~x!1SN21~x,l!,

whereRN21 andSN21 are polynomials onl of degree not greater thanN21. To derive the first
of the above expansions we have also used~II.33!. ThereforeU6 vanish identically provided tha

2]1Fw~N!5mS 12
1

l
E1Dw~N21!,

~II.37!

le22adFE2w
~0!~x!5w~0!~x!.

This method to construct affine Toda solitons is a straightforward generalization of the app
applied by Date23 for the sine–Gordon model. Taking into account~II.8! and~II.23! one can write
the above expressions as

]1w i5m~wi
~N21!2wi11

~N21!!,
~II.38!

e2a i•F5ew i2w i115
wi11

~0!

wi
~0! , iPZn11 .

To find explicit expressions from~II.38! for the fieldsw i one has to solve the linear equatio
~II.35! which can be written as follows:

(
l51

N

m j
l21

„v j
l21e~2v jm j !2cjv j

12ke~2m j !…wk
~ l2 !5m j

N
„cjv j

12ke~2m j !2v j
Ne~2v jm j !…,

v j5v r j , k51,...,n11, ~II.39!

wherewk
( l21) are the components of the coefficientsw( l21) which appeared in the expansio

~II.32!; here and in what follows we shall omit thex6 dependence in the exponentialse(x,l)
@~II.33!#. By Kramer’s formula we get the solution
J. Math. Phys., Vol. 38, No. 8, August 1997
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wk
~0!5~2 !N)

j51

N

m jv j

detG~k11!

detG~k! ,

~II.40!

wk
~N21!5

1

m
]1 ln detG~k!, k51,...,n11,

whereG(k) is aN3N matrix with entries

Gjl
~k!5m j

l21
„v j

l21e~2v jm j !2cjv j
12ke~2m j !…. ~II.41!

There is a ‘‘canonical’’ expression for the determinant ofG(k).23 A way to obtain it is to multiply
and divide by the Van der Mond determinant detM whereM jl5m j

l21 ( j ,l51,...,N), and to
calculate the matrix elements of productG(k)M21. The final result reads

detG~k!5~2 !N
P j51

N cjv j
12ke~2m j !

Pp.q~mp2mq!
tk21 ,

tk5det~11Vk/2.V.Vk/2!, ~II.42!

V5diag~v1 ,...,vN!,

where the elements of the matrixV are given by

Vjk5
AXjXk

m j
12mk

2 ,

Xj5
1

cj
~m j

22m j
1!)

lÞ j

m l
22m j

1

m l
22m j

2 expH 22im sin
pr j
n11 S m j̃ x

12
x2

m j̃
D J , ~II.43!

m j̃5v j
1/2m j , m j

65v j
61/2m j̃ .

Substituting back~II.40! into ~II.38! we get

e2wk5
tk

tk21
5

det~11Vk/2.V.Vk/2!

det~11V~k21!/2.V.V~k21!/2!
. ~II.44!

The above expression for the affine TodaN-solitons permits us to establish a relation to t
relativistically invariantN-body integrable systems of Calogero–Moser type.21

From ~II.42! and~II.43! it is seen that the solutions~II.44! describe propagation ofN solitons:
the variablesm j̃ are the rapidities while the quantities

aj5
1

cj
~m j

22m j
1!)

lÞ j

m l
22m j

1

m l
22m j

2 ~II.45!

are related to the positions. Note that more than the continuous parametersaj andm j , the solitons
are characterized by the discrete parametersr j @~II.34!#. As a final remark of this section, w
observe that the solutions with oscillations around the standard solitons, which have been
recently in detail,28 appear as particular cases of the general expressions~II.42!–~II.44! for par-
ticular values of the rapidity-type parametersm j .
J. Math. Phys., Vol. 38, No. 8, August 1997
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III. THE DRESSING PROBLEM FOR THE An
(1) TODA SOLITONS

The dressing group is a symmetry of the nonlinear evolution equations which admit
curvature~or Lax! representation. It was shown in Ref. 13 that the dressing group appears
semiclassical limit of the quantum group symmetry. The dressing group acts by gauge tra
mations on the components of the Lax connection which preserve its form. Therefore, i
symmetry of the space of solutions of the corresponding integrable model. The aim of this s
is to present a derivation of the dressing group elements which generateN-solitons in theAn

(1)

Toda theories. This problem has been already solved in Ref. 25 for the sine–Gordon eq
which is theA1

(1) Toda model. Expressions for the dressing group elements which create so
from the vacuum have been conjectured in Ref. 16 for a large class of integrable hierarch

In order to be able to compare our results with the expressions of Babelon and Berna25 it
will be convenient to perform a field-dependent gauge transformation on the components
connection~II.28!:

D6→eFD6e
2F5]61A6 ,

~III.1!

A656]6F1me6adFE6 .

It is clear that for the vacuum solutionF50, the components of the above connection take
following form:

A65mE6 . ~III.2!

In accordance with the general definition, the dressing transformations are represented b
group elementsg(x,l)PSL̃(n11) which act on~III.1! as gauge transformationsA6→A6

g ,

A6
g 52]6gg

211gA6g
21, ~III.3!

such that the connectionA6
g has the same form as the original one@~III.1!# with F→Fg. Since

by gauge transformations the curvature transforms asF125@D1 ,D2#→gF12g
21, we see that

the dressing transformations are symmetries of the underlying equations of motion~II.26! and
~II.27!.

In view of ~III.1!, it is clear that

T ~x,l!5eF~x!W~x,l!, ~III.4!

where the matrixW was introduced by~II.31!, is a solution of the linear problem

~]61A6!T ~x,l!50. ~III.5!

Due to the expansion~II.32!, it is obvious that the componentswk of the
~n11-dimensional! vectorw admit the following representation:

wk~x,l!5)
j51

N

~l1ek j~x!…e~x,2l!, 1<k<n11. ~III.6!

The dependence of the variablesek j on x
1 andx2 is fixed by ~II.35! which, taking into account

the above expression, reads

)
l51

N
ekl1v r jm j

ekl1m j
5cjv

r j ~12k!
e~v r jm j !

e~m j !
. ~III.7!
J. Math. Phys., Vol. 38, No. 8, August 1997
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In view of ~III.6! we can express the matrix~II.31! as follows:

W~x,l!5U~x,l!E~x,l!, ~III.8a!

Ukl~x,l!5v~k21!~ l21!)
j51

N

~ek j1v l21l!, ~III.8b!

Ekl~x,l!5dkle~2vk21l!, k,l51,...,n11. ~III.8c!

As a next step, we shall calculate the determinant of~II.31!. First of all we note that due to the
above equations, the exponential singularities of the matrix elements ofW disappear in its deter
minant. Therefore, detW is a meromorphic function on the Riemann sphereCP1. Further, due to
~II.35!, detW vanishes wheneverln115m j

n11 for j51,...,N. This wants to say that detW has at
leastN(n11) zeroes. This number is exact since one has the expansion

detW~x,l!5~2 !nNl~n11!N detVX11OS 1l D C, l→`, ~III.9!

where the matrixV is given by~II.10!. It is clear that detW has no other poles and, therefore, d
to the Cauchy’s theorem we end up with the result

detW~x,l!5~2 !nN detV)
j51

N

~ln112m j
n11!. ~III.10!

In what follows it will be necessary to express theAn
(1) Toda fields~II.23! and~II.26! in terms of

the variablesekl @~III.6!# ~these variables appeared in the study of the periodic solutions o
KdV equation and of the periodic Toda chain29!. To do that, it suffices to compare~II.32! with
~III.6!. The result is

wk
~0!5)

j51

N

ek j , ~III.11!

which together with~II.38! and ~II.40! yields the expression

e2wk5~2 !N)
j51

N
ek j
m j

, k51,...,n11. ~III.12!

Since the fieldF @~II.23!# belongs to the Cartan subalgebra of sl(n11), the following restriction,

)
k51

n11

)
j51

N

ek j5~2 !N~n11!)
j51

N

m j
n11, ~III.13!

takes place.
Turning back to the dressing problem, we define the normalized transport matrix

T~x,l!5T ~x,l!T 21~0,l!. ~III.14!

As a reference point we choose those with light-cone coordinatesx15x250. It is obvious that
the above matrix is unimodular. Moreover, due to~III.5!, it belongs to the loop group SL˜(n
11) in the principal gradation. LetT @~III.4!# andT @~III.14!# be the transport matrices associat
to certainN-soliton solution~II.44! and ~III.12!, andT 0 , andT0 be the corresponding vacuum
transport matrices. Therefore one can write
J. Math. Phys., Vol. 38, No. 8, August 1997
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T~x,l!5 f ~x,l!T0~x,l! f21~0,l!, ~III.15a!

f ~x,l!5T ~x,l!T 0
21~x,l!5eF~x!W~x,l!W0

21~x,l!5eF~x!U~x,l!U0
21~x,l!,

~III.15b!

T0~x,l!5T 0~x,l!T 0
21~0,l!5e2m~E1x

11E2x
2!, ~III.15c!

whereW(x,l) andW0(x,l) are the matrices~II.31! corresponding to a genericN-soliton solution
~II.44! and to the vacuum, respectively; the matrixU in the last equation~III.15b! is given by
~III.8a!–~III.8c! while U0 stands for its vacuum solution analogue. Due to~III.8b! it turns out that
U05V @~II.10!#. Taking into account these remarks we conclude thatf (x,l)
5eF(x)U(x,l)V21. In view of ~III.15a!, f (x,l) is a gauge transformation which transforms t
vacuum solution transport matrixT0 into the transport matrixT, related to aN-soliton solution.
Therefore, it generates a dressing transformation. Note also that the elementf (x,l) is in the
principal gradation

f ~x,vl!5Sf~x,l!S21. ~III.16!

To get the above equation we observe that the matrix~III.8b! satisfies the equationU(x,vl)
5lv2n/2U(x,l)E2 which, combined with the commutation relations~II.13!, produces~III.16!.
Due to~II.19! we see thatf (x,l) belongs to the loop group GL˜(n11) in the principal gradation.
From ~III.10! it is seen that

det f ~x,l!5~2 !nN)
j51

N

~ln112m j
n11!. ~III.17!

Note that the solution of the dressing problem~III.15a! is not unique. The reason is that there ex
x6-independent matricesu(l) which are not proportional to the identity and commute withT0
@~III.15c!#. Therefore the element

g~x,l!5 f ~x,l!u~l! ~III.18!

is the general solution of the dressing problem; in the above equationf (x,l) @~III.15b!# is a
particular solution of it. To fix the unknown matrixu(l) we impose a set of restrictions

u~l!E6u21~l!5E6 , ~III.19a!

u~vl!5Su~l!S21, ~III.19b!

det u~l!5
~2 !N

P j51
N ~ln112m j

n11!
, ~III.19c!

g~x,l!5H e2F~11O~l!! for l→0,

eFS 11OS 1l D ! for l→`.

~III.19d!

~III.19e!

To justify the above requirements we note that~III.19a! ensures the commutativity ofu(l) with
T0 @~III.15c!#; taking into account~III.16!, we see that~III.19b! guarantees that the dressing gro
elementg(x,l! is in the principal gradation;~III.19c! comes from the requirement thatg(x,l)
should be unimodular; finally,~III.19e! is a consequence of a grade analysis applied to~III.3! ~for
details, see Refs. 13 and 25!. It is easy to check that the general solution~III.19b! is given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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u~l!5u0~l!1 (
k51

n

uk~l!Ek , ~III.20!

where the generatorsEk of the alternative Cartan subalgebraH8 were introduced by~II.8!.
Inserting the above expansion into~III.19b! and taking into account~II.9! we end up with

uk~vl!5vkuk~l!, k50,...,n. ~III.21!

To calculate the determinant ofu(l) we shall use~II.11!:

det u~l!5detV21u~l!V5 )
k51

n11 S (
l51

n11

Vklu l21~l!D 5 )
k51

n11 S (
l51

n11

u l21~vk21l!D .
~III.22!

More than~III.19a!–~III.19e!, we shall require that the entries of the matrix~III.18! are meromor-
phic functions onCP1 with simple poles located at the pointsl5vpm j for p50,...,n and j
51,...,N. In view of the last restriction, only a finite number of solutions survive. Among th
we choose that which satisfies the system

(
l51

n11

Vklu l21~l!5
1

P j51
N ~vk21l2m j !

, k51,...,n11. ~III.23!

It is clear that~III.22! together with the above equation guarantees the validity of~III.19c!. Note
also that~II.23! is compatible with~III.21!. Inserting back~III.20! and ~III.23! into ~III.18! we
obtain

g~N!~F,$m%,l!5eFG~N!~F,$m%,l!V21, ~III.24a!

where the upper index indicates the number of solitons andG (N) is a (n11)3(n11) matrix with
entries

Gkl
~N!~F,$m%,l!5v~k21!~ l21!)

j51

N
l1v12 lek j~x!

l2v12 lm j
. ~III.24b!

Note that the dependence on the space–time coordinates is dictated by~III.7! and ~III.12!. The
expansion~III.19e! is satisfied as a consequence from~III.12!. We note that the method present
in this section was previously used in Ref. 30 to solve the dressing problem for the alge
geometrical solutions in the sine–Gordon model.

IV. THE FACTORIZATION PROBLEM AND THE RELATION TO THE VERTEX
OPERATOR APPROACH

There exists a general scheme to construct solitons in the affine Toda theories.19 Substantially,
it is based on the group-algebraic approach to the integrable systems, developed by Lezn
Saveliev.31 To apply the Leznov–Saveliev analysis to the affine Toda equations one first con
the Conformal affine Toda~CaT! equations.32,33The last appear as a zero-curvature condition o
connection of the form~II.28!, the components of which belong to the affine Lie algebraĜ . It is
the central extension of the corresponding loop algebraG̃ . The necessity to introduce centr
extension of the loop algebra is due to the fact that the Leznov–Saveliev analysis applies
algebras which admit~nontrivial! highest weight representations. Such representations only ex
the central charge is different from zero. In the case of the CaT models, the group-alg
approach yields the general solution of the equations of motion, parametrized by a free m
field and a group element which belongs to the affine Lie groupĜ. It was suggested in Ref. 1
J. Math. Phys., Vol. 38, No. 8, August 1997
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that solitons arise when the group element factorizes in a product of special elements of the
Lie group which are closely related to the vertex operators. These elements are exponential
loop algebra elements which diagonalize the adjoint action of the principal Heisenberg suba
Within the formalism of Ref. 19, insertion of one such element results in a creation of a s
soliton. The group-algebraic approach to the solitons in the affine Toda theory was further
oped in Ref. 25. In the last paper, on the example of the conformally extended sinh–G
model, it was shown that the solitons can be obtained from the vacuum via specific dr
transformations. The explicit form of the corresponding dressing group elements has been
establish a relation to the vertex operator formalism.19 Moreover, it was demonstrated that th
solution of the dressing problem in the affine group differ from those in the loop group by a f
which is in the center. The arguments used in Ref. 25 can be easily generalized to apply
arbitrary affine Toda theory. In the present section we extend the results of Ref. 25 for thAn

(1)

Toda models, i.e., starting from~III.24a! and ~III.24b! we first show that one can factorize
generic dressing group elements into a product of ‘‘monosoliton’’ factors; second, we analyz
expressions~III.24a! and ~III.24b! for N51 and obtain the relation to the vertex operator co
struction of the soliton solutions.19

We start by writing the elements~III.24a! and ~III.24b! in a slightly different form,

g~N!~F,$m%,l!5
1

n11 (
rPZn11

Sr uvF~$m%,v2rl!&^v0uS2r , ~IV.1a!

uvF~$m%,l!&5 (
i51

n11

ew i /2)
a51

N
l1e ia
l2ma

u i &,

uv0&5 (
i51

n11

u i &, ~IV.1b!

where the operatorS was introduced by~II.5! and ~II.12!. It is clear that the property~III.16! is
manifestly satisfied by the expression~IV.1a!. Note that the vectoruv0& already appeared in a
different context~II.33!. We proceed by advancing the hypothesis that~IV.1a! admits the repre-
sentation

g~N!~F,$m%,l!5ePNg~1!~FN ,mN ,l!• ••• •eP 1g~1!~F1 ,m1 ,l!, ~IV.2!

where

P l5
1

2 (
k51

n11

pklE
kk, Fl5

1

2 (
k51

n11

f klE
kk,

~IV.3!

(
k51

n11

pkl5 (
k51

n11

f kl50, l51,...,N,

are certain elements of the Cartan subalgebra of sl(n11); g(1)(Fl ,m l ,l) are monosolitonic
factors. They have the same form as~IV.1a! and ~IV.1b! with uvF& substituted by

uvFl~m l ,l!&5eFl (
i51

n11
l2m le

2 f i l

l2m l
u i &. ~IV.4!

Note that substituting back the above expression into~IV.1a! and taking into account~III.12! we
reproduce~III.24a! and ~III.24b! with N51. It is not difficult to calculate the inverse element
J. Math. Phys., Vol. 38, No. 8, August 1997
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~g~1!!21~F,m,l!5eK~F !g~1!~2F,m,l!e2K~F !,
~IV.5!

K~F !5
1

2 (
i51

n11

~Hl i
1Hl i21

! f i ,

where l i , i51,...,n, are the fundamental weights@~II.3!# of sl(n11); l05ln1150 and
l→Hl is the natural identification of then11-dimensional Euclidean space with the (n11)
3(n11) diagonal matricesHl5( i l iE

ii . Therefore, the last of the above equations can
equivalently written as

Ki~F !2Ki11~F !5
f i1 f i11

2
. ~IV.6!

Note also thatKi(F)5Ki1n11(F) since( i f i50.
To demonstrate the validity of the factorized expression~IV.2! we first introduce the notation

gl
~N!~F,$m%,l!5g~N!~F,$m%,l!•~g~1!!21~F1 ,m1 ,l!e2P 1

• ••• •~g~1!!21~Fl ,m l ,l!e2P l,

l50,1,...,N, ~IV.7!

g0
~N!~F,$m%,l!5g~N!~F,$m%,l!.

Taking into account~IV.1a!, ~IV.1b!, and ~IV.5! we observe that the above element can
alternatively expressed as

gl
~N!~F,$m%,l!5 (

rPZn11

Sr uvF~$m%,v2rl!&^r l~v2rl!uS2r
•e2K~Fl !2P l,

~IV.8!

^r l~l!u5 (
j51

n11

^ j ur j l ~l!,

where the coefficientsr j l satisfy the following recursion relations

r j l11~l!5
1

n11 (
k51

n11

eLkl11rkl~l! (
sPZn11

v~ j2k!s
l2vsm l11e

fkl11

l2vsm l11
,

~IV.9!

Lkl115Kk~Fl11!2Kk~Fl !2
f kl111pkl

2
,

together with the initial conditions@see~IV.1a! and ~IV.1b!#

r j05
1

n11
. ~IV.10!

To fix recursively the unknown Abelian factorsFl and P l we shall impose the following
conditions: first, the elementgl

(N) @~IV.8!# has no poles at the pointsl5m1 ,...,m l ,

resm i
gl

~N!50, 1< i< l ; ~IV.11!
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and, second, we require that the multipliersr j l @~IV.8! and~IV.9!# are meromorphic functions on
l which have simple poles atl5v r im i for i51,...,l and are homolomorphic elsewhere. Due
this restriction we can write

resvrm i
r j l50, rÞr i , 1< i< l . ~IV.12!

The discrete parametersr i51,...,n appeared naturally in the description of the soliton solutio
~II.34!, ~II.35!, and~III.7!. We stress that due to~III.16!, the requirement~IV.11! guarantees tha
the matrix gl

(N) @~IV.7!# has no singularities forln115m i
n11, i51,...,l . The significance of

~IV.12! will become clear in what follows. Taking into account~IV.12!, we see that~IV.11!,
written in terms of the entries of the matrix~IV.7! and ~IV.8!, reads

resm l
~gl11

~N! ! i j50

m

resvr l11m l11
r j l115m l11~12v r l11!v~ j112 i !r l11 )

aÞ l11

v r l11m l112ma

m l112ma

•)
a

m l111e ia
v r l11m l111e ia

r j l11~m l11!. ~IV.13!

The last equation is consistent since, due to~III.7!, its rhs does not depend oni . Therefore, we
conclude that the soliton dynamics, encoded in~III.7!, is crucial in solving the factorization
problem~IV.2!. This observation also explains the reason to impose the condition~IV.12!. On the
other hand, in view of~IV.9! we get

resvrm l11
r j l115

v j rm l11

n11 (
k51

n11

v r ~12k!eLkl11rkl~v rm l11!~12efkl11!,

~IV.14!

rPZn11 ,

where the factorsLkl11 were defined by~IV.9!. Inserting the above expression into~IV.13! we get
another consistency condition:

r j l11~m l11!5rkl11~m l11!, j ,k51,...,n11, ~IV.15!

To calculate the above quantities we recall the general identity

1

n11 (
rPZn11

v rk

l2v2rm
5

ln2kmk

ln112mn11 ,

~IV.16a!

0<k<n,

from which in the limitl/m→1 one gets

(
r51

n
v rk

12v r 5H n

2
1k, 2n<k<0,

2
n

2
211k, 1<k<n11.

~IV.16b!

Settingl5m l11 in ~IV.9! and using~IV.12! for r50, we obtain with the help of~IV.16b! the
following expressions:
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r j l11~m l11!5eL jl11r j l ~m l11!1
m l11

n11 (
k51

n11

eLkl11~12efkl11!rkl8 ~m l11!

2
1

n11 S (
k51

n11

~k2 j !1~n11!(
k51

j D eLkl11rkl~m l11!~12efkl11!. ~IV.17!

Inserting this identity in~IV.15! and taking into account the second equation~IV.9! we obtain

epjl /25
r j l ~m l11!

„Pkrkl~m l11!…
1/~n11! e

2K j ~Fl !. ~IV.18!

The j -independent factor in the denominator is fixed by~IV.3!. Therefore, the algebraic syste
~IV.12! and ~IV.13! reduces to

(
kPZn11

v r ~12k!S rkl~v rm l11!

rkl~m l11!
2v2r

rk11l~v rm l11!

rk11l~m l11!
DeKk~Fl11!2 f kl11/2

5d r ,r l11
~12v r ! )

aÞ l11

v rm l112ma

m l112ma
)
a

m l111e1a
v rm l111e1a

3 (
kPZn11

S 11m l11

d

dl
ln

rkl
rk11l

~m l11! DeKk~Fl11!2 f kl11/2. ~IV.19!

Note that forr50 the above equation is satisfied identically. We recall also thatr jÞ0 mod (n
11). Due to this and sinceK(Fl11) andFl11 are traceless, we conclude that~IV.19! determines
uniquelyFl11 as a function ofFl . Continuing the procedure, we finally arrive at the elem
gN
(N) @~IV.7!#. From ~IV.11! we conclude that it is aholomorphicfunction on the spectral param
eter. This wants to say thatgN

(N) does not depend onl. Due to the fact that this element satisfi
~III.16!, it is clear that its off-diagonal elements vanish identically. The unique element w
remains undetermined isPN @~IV.3!#. One can use this ambiguity to setgN

(N)51. This completes
the factorization procedure.

In what follows we shall concentrate our attention on the dressing group elements
generate monosolitons from the vacuum. Due to the general expressions and in view
one-soliton specification~IV.4!, one gets

]

]w i
g~1!~F,m,l!•~g~1!!21~F,m,l!5eK~F!~Bi~m,l!2Bn11~m,l!!e2K~F!, i51,...,n,

~IV.20a!

whereF @~II.23!# is a one-soliton solution~II.44!, K(F) was introduced in~IV.5! and~IV.6!, and

Bi~m,l!5(
l, i

ln111 l2 im i2 l

ln112mn11 Eil1
1

2

ln111mn11

ln112mn11 E
ii1(

l. i

l l2 imn111 i2 l

ln112mn11 Eil , i51,...,n11.

~IV.20b!

We recall that sinceF is traceless, one of its components can be expressed in terms of the o
In calculating the derivatives on the lhs of~IV.20a! we have setwn1152( i51

n w i . The expres-
sions~IV.20b! follow from ~IV.1a!, ~IV.1b!, ~IV.4!, and the summation formula~IV.16a!. Let us
introduce the loop group element

h~1!~F,m,l!5e2K~F!g~1!~F,m,l!. ~IV.21!
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From ~IV.20a! it follows that this element satisfies the system

]

]w i
h~1!~F,m,l!5Ji~m,l!h~1!~F,m,l!, i51,...,n, ~IV.22a!

Ji~m,l!5S ]

]wn11
2

]

]w i
DK~F!1Bi~m,l!2Bn11~m,l!,

~IV.22b!

wn1152(
i51

n

w i .

An intriguing property of the loop algebra elementsJi is that theydo not dependon the affine
Toda fieldsw i for i51,...,n. Combining this observation with the integrability condition of t
linear differential system~IV.22a! we conclude that

@Ji~m,l!, Jj~m,l!#50, ~IV.23!

and therefore the following representation

g~1!~F,m,l!5eK~F!e( i51
n w i J

i ~m,l! ~IV.24!

takes place. Note that forn51, which corresponds to the sinh–Gordon model, the diago
prefactor in the rhs of the above equation disappears and we end up with the exponentiate
of the one-soliton dressing group element.25

We proceed with the following remark: as it was noted in Ref. 13, the general dre
problem admits two solutions depending on the analiticity properties forl→0 andl→`. In other
words, the solutions~III.24a! and ~III.24b! in particular, due to the Gauss decomposition in
loop group SL(n11), represent two different elements. Skipping the dependence on the
parameters one can write

g~l!5 Hg1~l!,
g2~l!,

l→0,
l→`, ~IV.25!

from where we conclude that the elementg(l) we analyzed before is an analytic continuation
two differentelements of the loop group. As noted in Refs. 13 and 14, a dressing group ele
is represented by the pair (g1 ,g2) and there is a canonical diffeomorphism between the dres
group and the underlying loop group

~g1 ,g2!→g2
21g1 . ~IV.26!

We stress that this map is not an isomorphism of Lie groups since it does not preser
multiplication. Denote byJ1

i (m,l) andJ2
i (m,l) the expansions of the elements~IV.22b! around

l→0 andl→`, respectively. Let us calculate the value of the map~IV.26! for the one-soliton
dressing group elements. Expanding~IV.20b! aroundl→0 andl→` and using~IV.22b! we get
~IV.24!

~g2
~1!!21~F,m,l!g1

~1!~F,m,l!5:e( i51
n w i I

i ~m!:
~IV.27!

I i~m!5J1
i ~m,l!2J2

i ~m,l!52 (
l51

n11

(
kPZ

S El2 i1k~n11!
i l

mk~n11!1 l2 i2
El1k~n11!
n11l

mk~n11!1 l D , iPZn11 ,
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where the normal product : : means writingJ2
i on the left:J2

i J1
j :5:J1

j J2
i :5J2

i J1
j and the lower

indices, as we defined in Sec. II, count the powers ofl. To be more precise, one should stress t
the elementsI i are not well defined in the loop algebra. To avoid this difficulty, one considers
level one representations of the corresponding affine Lie algebra.19,20,26,27It is not difficult to
calculate the commutators of the above elements with the grade61 elements of the principa
Heisenberg subalgebra~II.25!. The result is

@ I i~m!, E1#5m„I i~m!2I i21~m!1I n~m!…,

@ I i~m!, E2#5
1

m
„I i~m!2I i11~m!1I 1~m!…. ~IV.28!

Comparing the expressions~IV.27! with ~II.16a!, ~II.16b!, and~II.21! we obtain

I i~m!5 (
lPZn11

v l~v2 i l21!Fl~m!. ~IV.29!

The above identity together with~II.22!, ~IV.27!, and ~IV.28! suggests a relation to the verte
operator approach to the affine Toda solitons.19,20

It is worthwhile to make several remarks and comments. First of all, we recall that ther
two related but inequivalent notions of solitons.1–5 From the physical point of view a soliton is
localized solution of the field equations which carries finite physical quantities, like momen
energy, etc. There is another concept of solitons, adopted within the ISM, namely solitons
when the underlying auxiliary linear problem is reflectionless. In the present paper we rela
physical requirements and deal with the solitons as they were treated by the ISM. Our reaso
this is that the formalism developed by us can be repeated without any modification in the ph
region of the coupling constant. Due to this, for the sake of brevity, we preferred to work
certain real value of the coupling constant and to enjoy the algebraic beauty of the soliton
tions. Second, in the present paper we restricted ourselves to studyAn

(1) Toda solitons only. One
reason to do that was our intention to keep the discussion as elementary as it is possible.
other hand, our approach is based on the observation that the connection~II.28! belongs to the
principal gradation. Due to that we exploited the observation that the gradation generating
morphisms @~II.5!# yields a symmetry of the linear system~II.29!. For general Lie algebras, on
can repeat the procedure of Sec. II to construct soliton solutions, but in general it is not po
to construct the counterpart of~II.32!. The reason is that the order ofs @~II.5!#, except for the
An andCn Lie algebras, is always smaller than the dimension of any irreducible represent
Therefore, to generalize the results of Secs. III and IV, we have to look for an additional sym
of the linear system~II.29!. This problem is under investigation. Finally, we note that in contr
to the seminal paper,25 where in the particular example of the sinh–Gordon model the factor
tion problem~IV.7! was treated by using Ba¨cklund transformations, we preferred the algebr
recursive approach described in the present section. It remains as an open question to rela
two approaches. The Ba¨cklund transformations forAn

(1) Toda equations have been studied in R
34. As final comment, we stress that the expressions~IV.27!–~IV.29! provide the relation to the
vertex operator formalism only for one soliton solutions. We hope to go back to this proble
generalN-solitons elsewhere.
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We solve the constrained Kadomtsev–Petviashvili~cKP! hierarchy by using the
gauge transformation technique. We show that there are two kinds of gauge trans-
formations which preserve the form of the Lax operator of the cKP hierarchy. One
of them is differential type and the other is integral type. Through two such gauge
transformations we obtain not only the Wronskian-typet-functions for the cKP
hierarchy, but also the binary-typet-functions which have not been obtained
before. © 1997 American Institute of Physics.@S0022-2488~97!02108-7#

I. INTRODUCTION

Recently, there are several papers concerning the so-called ‘‘constrained KP~cKP! hierarchy’’
from various points of view.1–15 In general, the cKP hierarchy is the ordinary KP hierarch16

restricted to pseudo-differential operator of the form

L5] l1(
i50

l22

ui]
i1(

j51

m

f j]
21c j , m51,2,3,..., ~1!

]kL5@Bk ,L#, Bk[L1
k/ l , k52,3,..., ~2!

where ui , f i and c i are all functions ofx[t1 and higher time-evolution variablest2 ,t3,...;
][]1 , whereas (A)6 denote the differential part and the integral part of the pseudo-differe
operatorA, respectively. Note that the integral part of the Lax operator~1! is described by the
eigenfunctionsf j and adjoint eigenfunctionsc j . That is, fori51,...,m, they satisfy

]kf i5~Bkf i !0 , ]kc i52~Bk*c i !0 , ~3!

where ( )0 denotes the zeroth order term and* stands for the conjugate operatio
(AB)*5B*A* , ]*52], f (x)*5 f (x). It can be shown that~2! is consistent with~3!.

In this paper, we are going to solve the cKP hierarchy by using the gauge transform
method that has been successfully applied to several integrable systems.17,18 In the following, let
us briefly review the basic idea of the gauge transformation method.

We can rewrite the hierarchy equations~2! as follows:

]nBm2]mBn1@Bm ,Bn#50 ~m,n52,3,...!. ~4!

which is called the Zakharov–Shabat~ZS! equation19 and is equivalent to the whole set of equ
tions in ~2!. If we can find a set of functions$ui ,f i ,c i% and hence a corresponding set
differential operators$Bk% satisfying~4!, then we have a solution to the cKP hierarchy.
0022-2488/97/38(8)/4128/10/$10.00
4128 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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Given a Lax operator~1!, there exists a unique corresponding operatorL1/l , such that

L1/l5]1v1]
211v2]

221•••, ~5!

where$v i% can be in terms of$ui ,f i ,c i% and vice versa. It can be shown thatL1/l also satisfies the
Lax equation~2!. Thus, from the theory of the KP hierarchy~see, for example, Ref. 16!, the set
$v i% can be generated from a single function calledt-function, such that

v15]x
2 ln t,

v25
1

2
~]x] t22]x

3!ln t, ~6!

A

etc. Through the above expressions,$ui ,f i ,c i% can also be expressed in terms of the sa
t-function. Thus we can alternatively represent a solution to the cKP hierarchy by its corres
ing t-function.

Suppose$Bk
(0)% already satisfies~4!. Let

Bk
~1![TBk

~0!T211~]kT!T21, ~7!

whereT5T(x1 ,x2 ,...) is anyreasonable pseudo-differential operator. It is easy to see tha
form of the transformation~7! automatically guarantees the ZS equation~4!. That is$Bk

(1)% will
necessarily satisfy~4! as well. Note that althoughBk

(0) are differential operators, the right-han
side of~7! will in general not be a purely differential operator. However if we suitably choose
transformation operatorT such that allBk

(1) , as defined by~7!, are purely differential operators
then$Bk

(1)% represents a valid new solution to the cKP hierarchy. We will show that there are
desired gauge transformation operators that will make allBk

(1) of ~7! purely differential operators
In fact, these two types of the gauge transformations~sometimes called binary Darboux transfo
mations! have been applied to the KP equation to obtain its soliton solutions17 and, afterward,
have been successfully extended to the KP hierarchy.20,21For the cKP hierarchy, only one of them
has been considered in the literature.8,11,12However, it seems that there was an operator missin
the formulation. Therefore, our work serves to fill the gap in this approach. By success
applying these two kinds of gauge transformations on any given input solution (t-function!, one
can generate new solutions to the cKP hierarchy.

This paper is organized as follows: in Sec. II we construct two kinds of gauge transforma
which preserve the form of the Lax operator~1!. We then, in Sec. III, successively apply the
gauge transformations to obtain the Wronskian-type and binary-typet-functions of the cKP hier-
archy. Some concluding remarks are presented in Sec. IV.

II. GAUGE TRANSFORMATION OPERATORS

In order to ensure that the transformed operatorBk
(1) is again a purely differential operato

one can assume that the term]kTT
21 in Bk

(1) cancels the integral parts which might occur
TBk

(0)T21.8,20 Therefore one assumes that the gauge transformation operatorT satisfies

]kTT
2152~TBk

~0!T21!2 . ~8!

Of course, this is a restrictive assumption, as the necessary conditions to ensure thatBk
(1) is

differential is only given by (]kTT
21)252(TBk

(0)T21)2 . As far as the operatorT defined in~8!
is concerned, the transformations of the hierarchy to be considered are the following:
J. Math. Phys., Vol. 38, No. 8, August 1997
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Bk
~0!→Bk

~1!5~TBk
~0!T21!1 , ~9!

L ~0!→L ~1!5TL~0!T21. ~10!

There are two types of the gauge transformation operators that satisfy the requirement of~8!:

Type I. TD~x!5x]x21, ]kx5~Bk
~0!x!0 , ~11!

Type II. TI~m!5m21]21m, ]km52~Bk
~0!*m!0 . ~12!

Herex andm are eigenfunction and adjoint eigenfunction of the Lax operatorL (0), respectively.
After introducing these two types of the gauge transformation operators, let us show th
transformations~9! and~10! also guarantee that the new pair,L (1) andB(1), again satisfies the Lax
equation

]kL
~1!5@Bk

~1! ,L ~1!#. ~13!

For the type I transformation,~13! can be checked by establishing the following identity f
arbitrary pseudo-differential operatorP,18

~x]x21Px]21x21!15x]x21~P!1x]21x212x]x~x21~~P!1x!0!]
21x21, ~14!

and then substitutingP5(L (0))k/ l and using the fact thatx is an eigenfunction of the Lax operato
L (0). For the type II transformation, a similar identity@compares with~14!# used to prove~13! is
given by

~m21]21mPm21]m!25m21]21m~P!2m21]m2m21]21m]x~m21~~P* !1m!0!. ~15!

In the following, let us discuss these two types of gauge transformations from the po
view of preserving the form of the Lax operator.

Type I: Under the gauge transformation of type I, the transformed Lax operator reads11

L ~1!5x]x21S L1
~0!1(

i51

m

f i
~0!]21c i

~0!D x]21x21[L1
~1!1L2

~1! , ~16!

L1
~1!5L1

~0!1x~]x~x21L1
~0!x!>1]

21!x21, ~17!

L2
~1!5f0

~1!]21c0
~1!1(

i51

m

f i
~1!]21c i

~1! , ~18!

f0
~1!5xF ]x~x21~L1

~0!x!0!1(
i51

m

(]x~x21f i
~0!!]x

21~xc i
~0!!1f i

~0!c i
~0!)G[~TD~x!L ~0!!x, ~19!

c0
~1!5x21, ~20!

f i
~1!5x]x~x21f i

~0!!5TD~x!f i
~0! , ~21!

c i
~1!52x21]x

21~xc i
~0!!52TI~x!c i

~0! , ~22!

where the notations]xf[ f x and]x
21f[*xf have been used. Notice that there is an extra term

the integral part of the transformed Lax operatorL2
(1) . To preserve the form of the integral par

we follow the approach by Aratynet al. in Ref. 11 to choosex that coincides with one of the
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original eigenfunctions that appeared in the integral part ofL (0), e.g.,x5f1
(0) . Thus one has

f1
(1)50, and f0

(1) takes over its role. The gauge transformation~7! then becomes an auto
Bäcklund transformation. From~10!, we know that the transformation rule for the operatorL1/l is
the same asL, i.e.,

~L ~0!!1/l→~L ~1!!1/l5TD~f1
~0!!~L ~0!!1/lTD

21~f1
~0!!. ~23!

However, it has been shown20 that the transformed coefficients$v i
(1)% are related to the origina

coefficients$v i
(0)% as follows:

v1
~1!5v1

~0!1]x
2 ln f1

~0! ,

v2
~1!5v2

~0!1
1

2
~]x] t22]x

3!ln f1
~0! , ~24!

A

etc. Thus, comparing with eqs.~6!, we see that under the gauge transformation~11! with
x5f1

(0) , the t-function associated with the Lax operatorL (0) transforms according to

t~0! →
TD~f1

~0!
!

t~1!5f1
~0!t~0!. ~25!

Type II. For type II transformation, the transformed Lax operator reads

L ~1!5m21]21mS L1
~0!1(

i51

m

f i
~0!]21c i

~0!Dm21]m[L1
~1!1L2

~1! , ~26!

L1
~1!5L1

~0!2m21]21~]x~m21L1
~0!*m!>1!*m, ~27!

L2
~1!5f0

~1!]21c0
~1!1(

i51

m

f i
~1!]21c i

~1! , ~28!

f0
~1!5m21, ~29!

c0
~1!52mF ]x~m21~L1

~0!*m!0!2(
i51

m

(]x~m21f i
~0!!]x

21~mc i
~0!!2f i

~0!c i
~0!)G

[2~TD~m!L ~0!* !m, ~30!

f i
~1!5m21]x

21~mf i
~0!!5TI~m!f~0!, ~31!

c i
~1!52m]x~m21c i

~0!!52TD~m!c i
~0! . ~32!

Similarly, if we choosem5c1
(0) , then the transformed Lax operator preserves the original f

and thet-function transforms as

t~0! →
TI ~c1

~0!
!

t~1!5c1
~0!t~0!. ~33!

Let us make a remark here. Although the transformations~25! and~33! look like the same as
the formulae derived in the KP hierarchy,20 there is a main difference between the cKP and the
J. Math. Phys., Vol. 38, No. 8, August 1997
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hierarchies. For the cKP hierarchy, to ensure that the gauge transformed Lax operator pr
the form ~1!, the eigenfunctionx and the adjoint eigenfunctionm can not be arbitrarily chosen
They must be constructed from the integral part of the Lax operator~1!. For the KP hierarchy,
however, there is no such restriction.

We have shown that there are two kinds of gauge transformation operators, the diffe
typeTD and the integral typeTI , which seem to be of fundamental importance for generating
solutions (t-functions! to the cKP hierarchy. In general, the gauge transformation opera
~16!–~22! and ~26!–~32! can be successively applied. Let us summarize the results as follow

TD
~k! :L ~k!→L ~k11!, TD

~k![f1
~k!]~f1

~k!!21, ~34!

L ~k11!5TD
~k!L ~k!~TD

~k!!215L1
~k11!1(

i51

m

f i
~k11!]21c i

~k11! , ~35!

f1
~k11!5~TD

~k!L ~k!!f1
~k! , ~36!

c1
~k11!5~f1

~k!!21, ~37!

f i
~k11!5f1

~k!]x~~f1
~k!!21f i

~k!!5TD
~k!f i

~k! , ~38!

c i
~k11!52~f1

~k!!21]x
21~f1

~k!c i
~k!!52TI~f1

~k!!c i
~k! , i52,3,...,m, ~39!

t~k11!5f1
~k!t~k!, ~40!

and

TI
~k! :L ~k!→L ~k11!, TI

~k![~c1
~k!!21]21c1

~k! , ~41!

L ~k11!5TI
~k!L ~k!~TI

~k!!215L1
~k11!1(

i51

m

f i
~k11!]21c i

~k11! , ~42!

f1
~k11!5~c1

~k!!21, ~43!

c1
~k11!52~TD~c1

~k!!L ~k!* !c1
~k! , ~44!

f i
~k11!5~c1

~k!!21]x
21~c1

~k!f i
~k!!5TI

~k!f i
~k! , ~45!

c i
~k11!52c1

~k!]x~~c1
~k!!21c i

~k!!52TD~c1
~k!!c i

~k! , i52,3,...,m, ~46!

t~k11!5c1
~k!t~k!, ~47!

where the superscriptk in bracket stands for theorder index of the corresponding transformatio
step, and the subscripti refers to thechannelindex to which the~adjoint! eigenfunctions corre-
spond. We would like to emphasis that the pre-chosen eigenfunctionf1

(k) ~adjoint eigenfunction
c1
(k)) for constructing the gauge transformation operatorTD

(k) (TI
(k)) is by no means unique. In fac

the eigenfunctionsf i
(k) ~adjoint eigenfunctionsc i

(k)) with iÞ1 are allowed as well. Differen
choices for the gauge transformation operators may lead to different solutions~or t-functions!. In
the next section, we will illustrate this point more explicitly.
J. Math. Phys., Vol. 38, No. 8, August 1997
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III. SUCCESSIVE GAUGE TRANSFORMATIONS

In order to investigate the net results of successive transformations by using the two ki
gauge transformation operators described above, let us classify all of the successive tran
tions in the following ways. If the eigenfunctionsf i

(k) ~adjoint eigenfunctionsc i
(k)) used to

construct the gauge transformation operatorsTD
(k)(TI

(k)) only come from one channel~i.e., i fixed!,
we call this casesingle-channel, otherwisemulti-channel. On the other hand, if only one type o
the gauge transformation operator (TD or TI) is used in a successive transformations, we ca
pure, otherwisemixed. Therefore, we have four cases to be discussed, namely, single-ch
~pure!, single-channel~mixed!, multi-channel~pure!, and multi-channel~mixed!. In the following,
let us investigate these cases separately.

Case A: single-channel (pure). Using the gauge transformation operatorTD , one can con-
struct the followingn-step gauge transformation:

L ~0!→
TD

~0!

L ~1!→
TD

~1!

L ~2!→
TD

~2!

••• →
TD

~n21!

L ~n!. ~48!

From ~34!–~40! and repeated use of the following important composition formula
Wronskians:22

TkTk21•••T1~ f !5
Wk~ f !

Wk
, ~49!

where

Tk5
Wk

Wk21
]
Wk21

Wk
5S ]1S ln Wk21

Wk
D
x
D , W0[1, ~50!

Wk[Wk@u1 ,...,uk#, Wk~ f ![Wk11@u1 ,...,uk , f #, ~51!

then-step gauge-transformed eigenfunctions and thet-function of the cKP hierarchy for arbitrary
initial L (0) are given by11

f1
~n!5TD

~n21!TD
~n22!...TD

~0!~~L ~0!!nf1
~0!!5

Wn11@f1
~0! ,h1

~1! ,...,h1
~n!#

Wn@f1
~0! ,h1

~1! ,...,h1
~n21!#

, ~52!

f i
~n!5TD

~n21!TD
~n22!...TD

~0!f i
~0!5

Wn11@f1
~0! ,h1

~1! ,...,h1
~n21! ,f i

~0!#

Wn@f1
~0! ,h1

~1! ,...,h1
~n21!#

, i52,3,...,m, ~53!

t~n!5f1
~n21!f1

~n22!...f1
~0!t~0!5Wn@f1

~0! ,h1
~1! ,...,h1

~n21!#t~0!. ~54!

Heret (0) andt (n) are thet-functions of the Lax operatorsL (0) andL (n), respectively, andh1
(k) is

defined by

h1
~k![~L ~0!!kf1

~0! . ~55!

Similarly, we can construct anothern-step gauge transformation using onlyTI :

L ~0!→
TI

~0!

L ~1!→
TI

~1!

L ~2!→
TI

~2!

... →
TI

~n21!

L ~n!. ~56!

Then from~41!–~47!, we have
J. Math. Phys., Vol. 38, No. 8, August 1997
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c1
~n!5~21!nTD~c1

~n21!!TD~c1
~n22!!...TD~c1

~0!!~~L ~0!* !nc1
~0!!

5~21!n
Wn11@c1

~0! ,ĥ1
~1! ,...,ĥ1

~n!#

Wn@c1
~0! ,ĥ1

~1! ,...,ĥ1
~n21!#

, ~57!

c i
~n!5~21!nTD~c1

~n21!!TD~c1
~n22!!...TD~c1

~0!!c i
~0!

5~21!n
Wn11@c1

~0! ,ĥ1
~1! ,...,ĥ1

~n21! ,c i
~0!#

Wn@c1
~0! ,ĥ1

~1! ,...,ĥ1
~n21!#

, i52,3,...,m, ~58!

t~n!5c1
~n21!c1

~n22!...c1
~0!t~0!5Wn@ĥ1

~n21! ,...,ĥ1
~1! ,c1

~0!#t~0!, ~59!

whereĥ1
(k) is defined by

ĥ1
~k![~L ~0!* !kc1

~0! . ~60!

Case B: single-channel (mixed). Now let us consider a successive gauge transformatio
which bothTD andTI are taken into account.

From ~37!, ~43!, and the definitions ofTD andTI , it is easy to show that

TI
~k!TD

~k21!5TD
~k!TI

~k21!51. ~61!

Thus, once we find thatTD followed by TI or vice versa within a channel, we can contra
them into an identity operator.

In general, if among then gauge transformation operatorsT(0),T(1),...,T(n21), p of them are
of TD type andq(5n2p) of them are ofTI type, then the final tau-functiont

(n) is given by the
following formula:

t~n!5Wp2q@f1
~0! ,h1

~1! ,...,h1
~p2q21!#t~0!, if p>q, ~62!

or

t~n!5Wq2p@ĥ1
~q2p21! ,.,ĥ1

~1! ,c1
~0!#t~0!, if q>p. ~63!

Obviously, the above solutions are included in case A.
Case C:multi-channel (pure). The general case involving the gauge transformation oper

TD only has been considered by Aratynet al. in Ref. 12 as follows:

L ~0! →
TD~f1

~0!
!

... →
TD~fm

~m21!
!

L ~m!→...,

L ~~k21!m! →
TD~f1

~~k21!m!
!

... →
TD~fm

~km21!
!

L ~km! →
TD~f1

~km!
!

, ~64!

L ~km11! →
TD~f1

~km11!
!

... →
TD~fs

~km1s21!
!

L ~km1s!,

where 1<s<m. The correspondingt-function of this (km1s)-step transformation is given by12

t~km1s!5W@f1
~0! ,...,fm

~0! ,h1
~1! ,...,hm

~1! ,...,h1
~k21! ,...,hm

~k21! ,h1
~k! ,...,hs

~k!#t~0!. ~65!
J. Math. Phys., Vol. 38, No. 8, August 1997
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However, if we use the gauge transformation operatorTI , instead ofTD , then it is straightforward
to show that

t~km1s!5W@ĥs
~k! ,...,ĥ1

~k! ,ĥm
~k21! ,...,ĥ1

~k21! ,...,ĥm
~1! ,...,ĥ1

~1! ,cm
~0! ,...,c1

~0!#t~0!. ~66!

Case D:multi-channel (mixed). This case is slightly more complicated according to the ab
classification. In fact, it contains all the cases discussed previously.

Using the relations listed at the end of Sec. II, we can show that, up to a minus sig
following two-step transformation,

L ~k21! →
TD~f i

~k21!
!

L ~k! →
TI ~c j

~k!
!

L ~k11!, iÞ j , ~67!

acting ont (k21), is equivalent to the following one:

L ~k21! →
TI ~c j

~k21!
!

L ~k! →
TD~f i

~k!
!

L ~k11!. ~68!

A similar result also holds for a successive differential~or integral! type transformation, in view of
the Wronskian structure presented in case C. Hence, this permutation property, together w
contraction property~61!, enables us to write down thet-functions for any successive transfo
mations.

Let us consider them52 case. Now we have two channels to construct ann-step successive
transformation. Based on the previous discussions, we know that the net effect of such suc
transformations ont (0) only depends on the residual gauge transformation operators within
channel. Suppose eventually there aren1 TD operators andn2 TI operators that survive in the firs
and the second channels, respectively~of course,n11n2<n). Then the final tau-function can b
easily written down as

t~n!5U Ex

f1
~0!c2

~0! Ex

h1
~1!c2

~0! ••• Ex

h1
~n121!c2

~0!

A A A

Ex

f1
~0!ĥ2

~n221! Ex

h1
~1!ĥ2

~n221! ••• Ex

h1
~n121!ĥ2

~n221!

f1
~0! h1

~1! ••• h1
~n121!

f1x
~0! h1x

~1! ••• h1x
~n121!

f1xx
~0! h1xx

~1! ••• h1xx
~n121!

A A A

U •t~0!, if n1>n2 ,

~69!

or
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t~n!5U Ex

ĥ2
~n221!f1

~0! ••• Ex

ĥ2
~1!f1

~0! Ex

c2
~0!f1

~0!

A A A

Ex

ĥ2
~n221!h1

~n121! ••• Ex

ĥ2
~1!h1

~n121! Ex

c2
~0!h1

~n121!

ĥ2
~0! ••• ĥ2

~1! c2
~0!

ĥ2x
~n221! ••• ĥ2x

~1! c2x
~0!

ĥ2xx
~n221! ••• ĥ2xx

~1! c2xx
~0!

A A A

U •t~0!, if n2>n1 .

~70!

These binary-typet-functions generalize the Wronskian-type solutions8,10,11of the cKP hierarchy
and have not been discussed before.

IV. CONCLUDING REMARKS

We have studied the solutions of the cKP hierarchy by using the gauge transform
method. We show that there are, in fact, two kinds of gauge transformations which preser
form of the Lax operator of the cKP hierarchy. Through two such kinds of gauge transforma
we obtain the Wronskian-type and binary-typet-functions which have very simple expressions

We would like to remark that then-soliton solutions of the cKP hierarchy can be eas
derived through the Wronskian-type solutions. For example, consider the solution~65! with
m52, k51 ands50. Then up to an allowable factor, thist-function coincides with the conven-
tional form of the two-solition solution to the KP hierarchy.16 In general, we can construct th
n-soliton solutions from the cKP hierarchy withm5n. On the other hand, it has been pointe
out20 that the binary-typet-functions are related to the Nakamura determinant solutions23 of the
KP equation. More recently, the solutions for the cKP hiearachy have also been obtained by
methods.24,25 It will be interesting to compare our results with theirs. We leave this work t
future publication.
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Spectral transform and solitons for the three-wave
coupling model with nontrivial boundary conditions

E. V. Doktorov
B. I. Stepanov Institute of Physics, 70 F. Skaryna Ave.,
220072 Minsk, Republic of Belarus

~Received 6 March 1997; accepted for publication 26 March 1997!

A nonlinear three-wave coupling model with nontrivial boundary conditions is
analyzed in the framework of the inverse spectral transform. Spectral data are
determined and their evolution is derived. It is shown that there exists mutual
cancellation of divergences of the scattering matrix elements in branching points on
the plane of a spectral parameter. A regular dark-soliton-type solution is obtained.
© 1997 American Institute of Physics.@S0022-2488~97!02507-3#

I. INTRODUCTION

Nonlinear integrable models of resonant wave coupling processes that describe the inte
of radiation with matter possess a number of peculiarities distinguishing these models from
of integrable systems. First, to solve the equations, it is necessary to give, along with an
datum, some boundary values. Second, the related dispersion relation is represented by a
lytic function of the complex spectral parameter. The first example of such a system wa
self-induced transparency equations that were given a Lax pair, and soliton solutions by L1

The inhomogeneous broadening was taken into account in Ref. 2 and more general bo
conditions were included in the integrable scheme in Ref. 3. Recently, Leon4 proposed a method
for solving a system of coupled waves for arbitrary boundaries, these boundary values enter
nonanalytic dispersion relation. Integrability of the generalized self-induced transparency
tions accounting for the Kerr nonlinearity and dispersion effect was shown in Ref. 5. It shou
noted that Kaup and Newell6 developed a systematic method to construct and solve nonli
equations with a singular dispersion relation and linear and homogeneous evolution of s
data.

In the above papers, soliton solutions have been sought within the class of bright so
having zero asymptotic values. On the other hand, there exists another class of nonlinear lo
excitations arising on a modulationally stable background carrier wave, the so-called dark so
For the nonlinear Schro¨dinger equation, these solutions were considered in the framework o
inverse spectral transform by Zakharov and Shabat7 for symmetric boundaries, and by Boiti an
Pempinelli8 for asymmetric boundaries. An analysis of the corresponding linear spectral pro
was performed in Ref. 9.

Dark solitons have attracted great attention for their specific properties, especially i
nonlinear optics context.10 Moreover, the nonzero boundaries for problems with a nonana
dispersion relation occur usually as a direct physical consequence. Nevertheless, obtainin
soliton solutions was so far restricted almost exclusively by the nonlinear Schro¨dinger equation7,11

and the Manakov model12 having analytic dispersion relations. Recently Claude13 proposed a
general]̄-problem-based approach to formulation of the inverse spectral transform for evolu
with a nonanalytic dispersion relation in the case of nonzero asymptotic values. However, e
solutions were not given in Ref. 13.

The aim of the present paper is to elaborate the inverse spectral transform techniq
solving explicitly the resonant three-wave coupling equations,

iqt1
1
2qxx2uqu2q52iga1ā2 , a1x5qa2 , a2x12iaa25q̄a1 , ~1!
0022-2488/97/38(8)/4138/13/$10.00
4138 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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with nontrivial boundary values for the complex fieldsq, a1 , anda2 . Equations~1! were studied
by Claude, Latifi, and Leon14 in connection with the problem of the nonlinear interaction of
electrostatic high-frequency wave~represented by the slowly varying amplitudesa1 anda2! with
an ion-acoustic wave~the amplitudeq! in a two-component homogeneous plasma. We will c
sider the model~1! with the real parametersa and g as a paradigm for a description of th
resonant three-wave nonlinear interaction with nontrivial boundary conditions.

This paper is organized as follows. In Sec. II, the boundary conditions are formulated th
consistent with Eqs.~1! and provide regularity of soliton solutions. In Sec. III, following Ref. 1
we derive the necessary results concerning the Zakharov–Shabat spectral problem in the
the nonzero boundaries. Section IV is devoted to obtaining the evolution equations for sp
data. The novel feature displayed here is the mutual cancellation of divergences of the sca
matrix elements. In Sec. V, the Gel’fand–Levitan integral equation for the Jost solutions is de
and the reconstruction of the potential is performed. Soliton solution of Eqs.~1! with nontrivial
boundary conditions is obtained in Sec. VI. The Appendix contains the proof of some
concerning the Gel’fand–Levitan equation.

II. BOUNDARY CONDITIONS AND LAX REPRESENTATION

It is evident that far from any boundary value is capable of supporting the regular soluti
Eqs.~1!. For example, zero asymptotics forq at uxu→` does not provide such a solution.14 Hence,
the determination of relevant boundary conditions consistent with the system~1! represents an
important step in seeking nonsingular solutions. Let us take the boundary condition for the
q(x,t) at x→2` as

q~x,t !→re2i ~mx2nt !, ~2!

with a real background parameterr and real parametersm andn to be found from the consistenc
requirement. Substituting Eq.~2! into the last two Eqs.~1!, we get an equation fora1 at x
→2`:

a1xx12i ~a2m!a1x2r2a150. ~3!

A simple analysis of solutions of this linear equation shows that the possibility of avoi
exponentially growing asymptotic values fora1 consists in adopting a connection between
equation parametersp152i (a2m) andp252r2 in the formp1

254p2 . This leads to a determi
nation of the parameterm asm5a1r and to the following asymptotics fora1 anda2 :

a1→Creirx, a2→ iCre2 i ~2a1r!xe2int, x→2`, ~4!

C is an arbitrary constant. Substituting now the asymptotics~2! and ~4! into the first Eq.~1!, we
fix the parametern:

n5~a1r!21 1
2r

21guCu2.

Hence, we have determined the asymptotics for all the fieldsq, a1 , anda2 at x→2`. As regards
the asymptotic behavior atx→1`, we can define it forq only,

q~x,t !→re2i ~mx2nt !1 iu, u5const, x→1`, ~5!

while the fieldsa1 anda2 , being solutions of the first-order equations, do not admita priori given
boundaries atx→1`.

For further convenience, let us introduce new fundamental fields,

u~x,t !5q~x,t !e2int, A1~x,t !5a1~x,t !, A2~x,t !5a2~x,t !e
22int, ~6!
J. Math. Phys., Vol. 38, No. 8, August 1997
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and define new functions

P~x,t !52A1Ā2 , N~x,t !5uA1u21uA2u2.

Then the system~1! is written as

iut1
1
2uxx2~ uuu22r22w!u5 igP, Px22iaP52uN, Nx5uP̄1ūP, ~7!

wherew52(a1r)21g, while the boundary conditions take the form

x→2`: u→re2i ~a1r!x, P→2 iruCu2e2i ~a1r!x, N→2ruCu2,
~8!

x→1`: u→re2i ~a1r!xeiu.

Equations~7! admit the Lax representationcx5Uc, c t5Vc with matrices

U5S 2 ik ū

u ikD ,

V5
i

2 S 2k21uuu22r22w1
g

k2a
N

ux12iku1
g

k2a
P

2ūx12ikū2
g

k2a
P̄

22k22uuu21r21w2
g

k2a
N
D . ~9!

Herek is a spectral parameter and Eqs.~7! are equivalent to the conditionUt2Vx1@U,V#50. It
should be noted that we do not identify the spectral parameterk with the mismatch parametera.

III. LINEAR SPECTRAL PROBLEM

In this section we will investigate the linear spectral problem,

cx~k,x!5U~k,x!c~k,x!, ~10!

with the matrixU ~9! and boundary values~8!. Let us define the Jost solutionsT6(k,x) of Eq.
~10! with the asymptotic values

T2~k,x!→E~k,x!, x→2`,
~11!

T1~k,x!→L~u!E~k,x!, L~u!5expS 2
i

2
us3D , x→1`.

Here

E~k,x!5e2 i ~a1r!xs3S 1 ik

2 ik 1 D e2 ilxs3 ~12!

is a solution of the asymptotic spectral problem

Ex5S 2 ik re22i ~a1r!x

re2i ~a1r!x ik DE
and
J. Math. Phys., Vol. 38, No. 8, August 1997
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l~k!5A~k2a!~k2a22r!, k511r21~a1l2k!. ~13!

The branch of the square root inl(k) is fixed by the condition15 sign l(k)5signk. The
asymptotic behavior~11! of T1 agrees with the relationU15L(u)U2L21(u) between the
asymptotic valuesU65 limx→6` U(k,x) of the matrixU.

It follows from the explicit expression~12! that the continuous spectrumRr of the spectral
problem~10! fills out the whole real axis of the complexk plane, except for a lacuna between t
pointsa anda12r. These points coincide with the branching points of the functionl(k) ~13!.
The matrixE(k,x) is defined on the Riemann surface of the functionl(k). This surface consists
of two copiesG6 of the complexk plane cut along the real axis from2` to a and from
a12r to 1` with relevant sewing of the cut edges. Since the spectral problem~10! is self-
conjugate, the finite number of the discrete spectrum pointskj , j51,2,...,n lies on the real axis
too, but inside the lacuna. The matrixE(k,x) is not unimodular, detE522kl/r, and degenerate
in the branching points, that is, forl50. The same is true for the Jost solutions because deT6

5detE.
The scattering matrixS(k) is defined asT2(k,x)5T1(k,x)S(k) and, due to the involution

S̄(k)5s1S(k)s1 , s1 is the Pauli matrix, has the following structure forkPRr :

S~k!5S a~k! b̄~k!

b~k! ā~k!
D , detS51, kÞa, kÞa12r.

Let T6
( j ) , j51,2 be the columns of the matricesT6 . Then it is easy to show that

a~k!52
r

2kl
det~T2

~1! ,T1
~2!!, b~k!52

r

2kl
det~T1

~1! ,T2
~1!!,

~14!

ā~k!52
r

2kl
det~T1

~1! ,T2
~2!!, b̄~k!52

r

2kl
det~T2

~2! ,T1
~2!!.

Simple zeroskj of the functiona(k), a(kj )50, determine the points of the discrete spectrum
follows from Eqs.~14! that in this case

T2
~1!~kj ,x!5g jT1

~2!~kj ,x!, ~15!

andg j is the transition coefficient. The quantities$b(k),kPRr ; kj ,g j , j51,2,...,n% subject to
theu condition,15 constitute the set of the spectral data for the spectral problem~10! with the initial
potential u0(x)5u(x,t50).

IV. EVOLUTION OF SPECTRAL DATA

The next step in finding solutions of Eqs.~7! by the inverse spectral transform is to derive t
evolution equations for the spectral data. Let us define the matrixF(k,x)5$T1

(1)(k,x),
T2
(2)(k,x)%, which is a solution of the spectral problem~10! and analytic on the sheetG2 , i.e., for

Im l(k)<0. In order to find the asymptotics ofF at x→2`, we expressT1
(1) in terms of the

scattering matrix elements due to the relationT15T2S
21:

T1
~1!5āT2

~1!2bT2
~2!→āE~1!2bE~2!, x→2`.

Because ofT2
(2)→E(2) at x→2`, we have

F→EQ2 , Q25S ā 0

2b 1D .

J. Math. Phys., Vol. 38, No. 8, August 1997
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Similarly, we find forx→1`,

F→L~u!EQ1 , Q15S 1 b̄

0 ā
D .

It should be stressed that the triangular matricesQ6 are interconnected by the important relatio
Q15SQ2 .

Now we consider the evolutionary equation,

c t~k,x,t !5V~k,x,t !c~k,x,t !. ~16!

Let c5F f (t), where f (t) is some function of time. Then we havec→EQ2 f (t) for x→2`.
Substituting this asymptotic value into Eq.~16! at x→2`, we find the equation forf :

f t5~Q2
21
V 2Q22Q2

21Q2t! f . ~17!

HereV 25E21V2E andV25 limx→2` V. Similarly we get forx→1`,

c→L~u!EQ1 f5L~u!ESQ2 f .

Inserting this expression into Eq.~16! and taking into account Eq.~17!, we obtain the needed
evolution equation for the scattering matrix:

St5V 1S2SV 2 . ~18!

Here V 15E21L21(u)V1L(u)E and V15 limx→1` V. The asymptoticsV2 is easily found
from Eq. ~9! because we know the corresponding limit values~8! for the fieldsu, P, andN.
Hence,

V25e2 i ~a1r!xs3~Bs11Ds3!e
i ~a1r!xs3,

where

B52rS a1k1r2
g

k2a
uCu2D , D5 ik22

i

2
w1 i

gr

k2a
uCu2.

This gives

V 25 ivs3 , v5lS a1k1r2
g

k2a
uCu2D . ~19!

Hence, the matrixV 2 is a diagonal one.
As regards the matrixV 1 , it is not found in such a direct manner asV 2 because we do no

know the asymptotics atx→1` for N entering the matrixV ~9!. Nevertheless, there is a way t
overcome this difficulty. Indeed, it is easy to see from Eqs.~1! and~6! that the vectorB5(B2

B1) with

B15A2e
iax andB25A1e

iax satisfies the equation

SB1

B2
D
x

5S 2 ia ū

u ia D SB1

B2
D , ~20!

and admits due to Eqs.~4! the asymptotic behavior
J. Math. Phys., Vol. 38, No. 8, August 1997
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SB1

B2
D →
x→2`

CS ie2 i ~a1r!x

ei ~a1r!x D . ~21!

On the other hand, the columnT2
(2) satisfies the following equation fork5a:

T2x
~2!5S 2 ia ū

u ia DT2
~2! , ~22!

and has the asymptotics

T2
~2! →

x→2`
S ie2 i ~a1r!x

ei ~a1r!x D . ~23!

A comparison of Eqs.~20! and ~21! with Eqs.~22! and ~23! gives

SB1

B2
D5CT2

~2!~k5a!. ~24!

This relation enables us to obtain the asymptotic behavior of the vectorB at x→1`. Namely,
because of

T2
~2!5āT1

~2!1b̄T1
~1!→L~u!~ āE~2!1b̄E~1!!, x→1`,

we find

SB1

B2
D →
x→1`

C~ ā2 i b̄ !k5aL~u!S ie2 i ~a1r!x

ei ~a1r!x D .
Now one could imagine that the needed asymptotics forN5uB1u21uB2u2 at x→1` is at his
disposal. Unfortunately, the functionsā(k) and b̄(k) are, in general, divergent in the poin
k5a, i.e., for l50, as it follows from Eq.~14!. In other words, there exists the representatio

ā~k'a!5
ā21

l
1ā01••• , b̄~k'a!5

b̄21

l
1b̄01••• .

In this connection, let us analyze in more detail the structure ofā(k) andb̄(k) for l→0. It is clear
that we have atk5a ~i.e., atl50 andk51!,

T1~k5a! →
x→1`

L~u!S e2 i ~a1r!x ie2 i ~a1r!x

2 iei ~a1r!x ei ~a1r!x D 5~T1
~1! ,iT1

~1!!,

i.e., T1
(2)(k5a)5 iT1

(1)(k5a) at x→1`. Now we can write from Eq.~14!,

b̄52
r

2lk
det$T2

~2! ,T1
~2!% →

l→0
2

r

2lk
det$T2

~2! ,iT1
~1!%5

ir

2lk
det$T1

~1! ,T2
~2!%52 i ā~l→0!.

Hence, we obtain the following relation:15

lim
k→a

ā~k!

b̄~k!
5 i ,
J. Math. Phys., Vol. 38, No. 8, August 1997
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which givesā215 i b̄21 , and finally

~ ā2 i b̄ !k→a5 i
b̄21

l
1ā02 i

b̄21

l
2 i b̄05~ ā02 i b̄0!~a!.

Consequently, the above divergences cancel mutually and this fact allows us to obtain the
totics of the functionsP andN at x→1` as follows:

P→22iruCu2~11s!e2i ~a1r!xeiu, N→2ruCu2~11s!, x→1`, ~25!

wheres(a)5ua0u21ub0u2212 i (a0b̄02ā0b0).
It should be noted that we have actually two asymptotic expressions forP asx→1`, the one

is Eq.~25! and the other follows directly from the first equation in~7! with u for x→1` from ~8!.
The comparison of these asymptotics fixes the parameterC up to a phase:

uCu25 1
2~11s!21. ~26!

Substituting now Eqs.~25! and ~26! into Eq. ~9!, we derive the expression forV1 ,

V15L~u!FV21
i

2

gr

k2a

s

11s
e2 i ~a1r!xs3~s32 is1!e

i ~a1r!xs3GL21~u!,

and forV 1 ,

V 15V 21
i

2

gr

l

s

11s
eilxs3~s32 is1!e

2 ilxs3, x→1`.

Hence, the evolution equation for the scattering matrix takes now the form

St5@V 2 ,S#1
i

2

gr

l

s

11s
eilxs3~s32 is1!e

2 ilxs3S, x→1`. ~27!

In order to obtain the desired evolution equations for the scattering matrix elementsa(k) and
b(k), we make use of the following formulas:16

lim
x→1`

eilx

l2 i0
52p id~l!, lim

x→1`

e2 ilx

l2 i0
50.

This gives (lPRr)

at5
i

2
gr

s

11s S al 12pbd~l! D , bt52 i S 2v1
gr

2l

s

11s Db. ~28!

The delta function in Eq.~28! represents the contribution of the branching point. As regards
evolution equations for the discrete spectral data, we have

kjt50, g j t522il j S kj1a1r2
1

2

g

kj2a Dg j . ~29!

Herel j5 in j , n j5A(kj2a)(a12r2kj ).0, and we note thatb50 anduau51 for the discrete
spectrum, i.e.,s50.

Further strategy consists in the derivation of the Gel’fand–Levitan-type integral equatio
the Jost functions and in the reconstruction of the potential.
J. Math. Phys., Vol. 38, No. 8, August 1997
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V. GEL’FAND–LEVITAN EQUATION

In order to derive integral equations for the Jost solutions, we introduce first the uniform
variablez5k2a2r1l(k) that maps the points of the continuous spectrum to the whole
axis in the complexz plane, while the Riemann sheetsG6 are mapped to the upper and low
half-planes, respectively. In terms of the variablez we have the following relations:

k2a2r5
1

2 S z1
r2

z D , l~k!5
1

2 S z2
r2

z D , k52
r

z
,

E~z,x!5exp@2 i ~a1r!xs3#S 1 2 ir/z

ir/z 1 D expF2
i

2 S z2
r2

z D xs3G .
Let us now write the relationT2

(1)5aT1
(1)1bT1

(2) in the form

1

a~z!
T2

~1!~z,x!5T1
~1!~z,x!1r ~z!T1

~2!~z,x!, r ~z!5
b~z!

a~z!
. ~30!

Following Ref. 15, it can be shown that the columnT1
( j ) admits the integral representation in th

form

T1
~ j !~z,x!5L~u!E~ j !~z,x!1E

x

`

ds G~x,s!L~u!E~ j !~z,s!, j51,2, ~31!

andG(x,s)→0 at s→`. Hence, Eq.~30! can be written as

1

a~z!
T2

~1!~z,x!2L~u!E~1!~z,x!5E
x

`

ds G~x,s!L~u!E~1!~z,s!1r ~z!FL~u!E~2!~z,x!

1E
x

`

ds G~x,s!L~u!E~2!~z,s!G . ~32!

The left-hand side of this equation is analytic for Iml.0, except for a finite number of poles i
the pointszj5kj2a2r1 in j , uzj u5r, and due to limuzu→` a(z)5exp(iu/2) turns to zero for
uzu→`. Multiplying Eq. ~32! by exp(ily), x<y, integrating inz along the real axis, and applyin
the Jordan lemma, we represent the left-hand sideL of the obtained equation in the form

L52p i(
j51

n

ResF eilya~z!
T2

~1!~z,x!,zj G52p i(
j51

n

eil j ycjT1
~2!~zj ,x!,

wherecj5g j /a8(zj ) and Eq.~15! was taken into account. As far as the right-band side is c
cerned, we can write it as

R54pe2 iu/2FG~x,y!S 10De2 i ~a1r!y1S j̃~x1y!e2 i ~a1r!x

h̃~x1y!ei ~a1r!x D 1E
x

`

ds G~x,s!S j̃~s1y!e2 i ~a1r!s

h̃~s1y!ei ~a1r!s D G ,
where

j̃~x!5
r

4p i E2`

` dz

z
r ~z!eilx, h̃~x!5

eiu

4p E
2`

`

dz r~z!eilx, ~33!

and the following integrals were taken into account:
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E
2`

`

dz eil~z!x54pd~x!, E
2`

` dz

z
eil~z!x50.

Equating both sidesL andR, we finally obtain the Gel’fand–Levitan equation:

Ĝ~x,y!1V~x1y!1E
y

`

ds Ĝ~x,s!V~s1y!50. ~34!

Here

Ĝ~x,y!5ei ~a1r!xs3G~x,y!e2 i ~a1r!xs3, V~x!5S j~x! h̄~x!

h~x! j~x!
D ,

j~x!5 j̃~x!2
1

2
r(
j51

n
cj
zj
e2n j x, h~x!5h̃~x!2

i

2
eiu(

j51

n

cje
2n j x, ~35!

and the functionj(x) is real ~see the Appendix!.
In order to reconstruct the potentialu from a solution of the integral equation~34!, we write

the spectral equation~10! in the form

T1x5~2 iks31Q!T1 , ~36!

where

Q5S 0 ū

u 0D , lim
x→1`

Q5Q1 , Q15rS 0 e22i ~a1r!xe2 iu

e2i ~a1r!xeiu 0 D .
Following Eq.~31!, we take the integral representation forT1 :

T1~k,x!5L~u!E~k,x!1E
x

`

dy G~x,y!L~u!E~k,y!,

and insert it into Eq.~36!:

]xL~u!E~k,x!2G~x,x!L~u!E~k,x!1E
x

`

dy ]xG~x,y!L~u!E~k,y!

5„2 iks31Q~x!…FL~u!E~k,x!1E
x

`

dy G~x,y!L~u!E~k,y!G . ~37!

It follows from the asymptotic behavior]xL(u)E5(2 iks31Q1)L(u)E of the spectral problem
~36! that

2 iks3L~u!E~k,x!5~]x2Q1!L~u!E~k,x!.

This gives
J. Math. Phys., Vol. 38, No. 8, August 1997
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2 iks3E
x

`

dy G~x,y!L~u!E~k,y!5E
x

`

dy s3G~x,y!s3„]y2Q1~y!…L~u!E~k,y!

5E
x

`

dy ]y@s3G~x,y!s3L~u!E~k,y!#

2E
x

`

dy s3]yG~x,y!s3L~u!E~k,y!

2E
x

`

dy s3G~x,y!s3Q1~y!L~u!E~k,y!

52s3G~x,x!s3L~u!E~k,x!

2E
x

`

dy s3 ]yG~x,y!L~u!E~k,y!

2E
x

`

dy s3G~x,y!s3Q1~y!L~u!E~k,y!,

where the propertyG(x,y)→0 aty→1` was used at the last step. Substituting this relation i
Eq. ~37!, we obtain the reconstruction formula for the potential:

Q~x!5Q1~x!2G~x,x!1s3G~x,x!s3 . ~38!

Hence, having solved the Gel’fand–Levitan equation~34!, we can obtain from Eq.~38! the
potentialu being a solution of Eq.~7!.

VI. SOLITON SOLUTION

The dark soliton solution of Eqs.~7! corresponds to the reflectionless caser (z)50. The
functiona(z) has now the single zero in the pointz1 ~and the single pole in the pointz̄1!:

a~z!5eiu/2
z2z1
z2 z̄1

.

Hence, the spectral data includez1 (Im z1.0) andc1 with c1 /z1[2m1 , m1.0 ~this result was
obtained in the Appendix!. Because ofuz1u5r and z̄1 /z15exp iu ~the u condition15!, we have
z152r exp(2iu/2). Now it follows from Eqs.~35!

j~x!5
1

2
m1re

2n1x, h~x!5
i

2
m1z1e

iue2n1x,

V~x!5
1

2
m1S r 2 i z̄1e

2 iu

iz1e
iu r

D e2n1x.

Let us represent the matrixV(x) as15 V5M1N1
t e2n1x, with

M15Am1

2 S r
iz1e

iu D , N15Am1

2 S 1
2 i ~ z̄1 /r!e2 iu D

and seek for a solution of Eq.~34! in the formĜ(x,y)5g(x)N1
t e2n1y. After a simple calculation

we obtain
J. Math. Phys., Vol. 38, No. 8, August 1997
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Ĝ~x,x!52
m1

2

e22n1x

11~m1r/2n1!e
22n1x S r 2 i z̄1e

2 iu

iz1e
iu r

D .
Now we find the soliton solution from Eq.~38!:

u5re2i ~a1r!xeiuS 11 i
m1z1

r

e22n1x

11~m1r/2n1!e
22n1xD . ~39!

This relation can be transformed to the more convenient form. With a glance to

m152
c1
z1

52
1

z1

g1

ȧ~z1!
52

2ig1n1
z1

e2 iu/2, ~40!

we obtain 11(m1r/2n1)e
22n1x511 ig1e

22n1x. Besides, it follows from Eq.~40! that c1
52ig1n1 exp(2iu/2), which givesim1z152rg1 sin(u/2)exp(2iu/2). As a result, the expressio
in parentheses in Eq.~39! is transformed to (11 ig1e

22n1xe2 iu)(11 ig1e
22n1x)21. Hence,

u5r
11 ig1e

22n1xe2 iu

11 ig1e
22n1x

e2i ~a1r!xeiu. ~41!

Now we should take into account the time evolution of the parameterg1 . To this end, we turn
to the second equation in Eq.~29! and obtain

g1~ t !5expF2n1S k11a1r2
1

2

g

k12a D t Gg1~0!.

Before substituting that into Eq.~41!, we introduce quantities representing the velocity and ini
position of the soliton:

v5k11a1r2
1

2

g

k12a
, x05

1

2n1
ln ig1~0!. ~42!

Then the soliton solution takes the form

u5r
11exp~2 iu!exp@22n1~x2vt2x0!#

11exp@22n1~x2vt2x0!#
e2i ~a1r!xeiu, ~43!

which is to our knowledge the first example of the dark soliton solution for the model with
nonanalytic dispersion relation.

Evidently, the solution~41! agrees with the asymptotics~8!. The more transparent represe
tation for the dark soliton solutionq(x,t) as a gap in the constant background is achieved for
moduleuqu2:

uqu25r22n1
2 sech2 n1~x2vt2x0!.

It should be noted that there exists the possibility of having a dark soliton at rest by means
suitable choice of the parameters in the expression forv ~42!. The analytic expressions forP and
N that correspond to the soliton~43! can be easily derived from Eqs.~7!. The n dark soliton
solution is obtained by a simple generalization of the above procedure.
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APPENDIX: PROOF OF THE REALITY OF j(x )

In this appendix we prove that the functionj(x) entering Eq.~35! is real. Let us consider firs
the functionj̃(x) ~33!. The involutionk2 i0→k1 i0, l→2l leads toz→r2/z. Because of the
connection15 T̄(k1 i0)5s3T(k2 i0)s3 between the Jost solutions, we haveT(r2/z)
5s3T̄(z)s3 . This givesr (r

2/z)52 r̄ (z). Then we get

jD ~x!52
r

4p i E dz

z
r̄ ~z!expF2

i

2 S z2
r2

z D xG5
r

4p i E2`

` dz

z
r S r2

z DexpF2
i

2 S z2
r2

z D xG
5

r

4p i E2`

` dy

y
r ~y!expF i2 S y2

r2

y D xG5 j̃~x!.

Now we show that the quantitycj /zj enteringj(x) is real too. It is shown in Ref. 15 that ther
exists the involutionk→ k̄, l→2l̄, which does not interchange the sheetsG6 . In terms of the
columns of the Jost solution this involution leads to

T̄6
~1!~ k̄,x!5 ik21s1T6

~1!~k,x!, T̄6
~2!~ k̄,x!52 ik21s1T6

~2!~k,x!. ~A1!

Then it follows from Eqs.~15! and ~A1! that the transition coefficientsg j are purely imaginary,
g j5 i g̃ j , Im g̃j50. Now we calculatecj :

cj5g j S da~z!

dz D
z5zj

21

5g j S da~k!

dk D 21S dk~z!

dz D
z5zj

21

.

Becausea(k);eiu/2(z2zj )(z2 z̄j )
21, the derivative„da(k)/dk…kj is real. Then taking into ac-

countzj5r exp(idj), we have

S dkdzD
z5zj

5
1

2 S 12
r2

z2 D
z5zj

5
1

2
~12e22id j !5 i exp~2 id j !sin d j

and

cj5
g̃ j exp~ id j !

a8~kj !sin d j
.

This leads to

cj
zj

5
g̃ j

a8~kj !r sin d j
,

i.e., cj /zj is real and negative. Hence, the functionj(x) is real as a whole.
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Universal and integrable nonlinear evolution systems
of equations in 2 11 dimensions

Attilio Maccari
Technical Institute ‘‘G. Cardano,’’ Piazza della Resistenza 1,
00015 Monterotondo, Rome, Italy

~Received 31 July 1996; accepted for publication 2 April 1997!

Integrable systems of nonlinear partial differential equations~PDEs! are obtained
from integrable equations in 211 dimensions, by means of a reduction method of
broad applicability based on Fourier expansion and spatio–temporal rescalings,
which is asymptotically exact in the limit of weak nonlinearity. The integrability by
the spectral transform is explicitly demonstrated, because the corresponding Lax
pairs have been derived, applying the same reduction method to the Lax pair of the
initial equation. These systems of nonlinear PDEs are likely to be of applicative
relevance and have a ‘‘universal’’ character, inasmuch as they may be derived from
a very large class of nonlinear evolution equations with a linear dispersive part.
© 1997 American Institute of Physics.@S0022-2488~97!02107-5#

I. INTRODUCTION

It is well known that certain nonlinear evolution partial differential equations~PDEs! of wide
applicative relevance, for instance the nonlinear Schro¨dinger equation, are integrable, i.e., cha
acterized by a very simple mathematical structure and solvable via an adequate spectral tra
~S integrable! or via an appropriate change of variables~C integrable!.

An explanation of this fact is based on the observation that these equations have a un
character, because they may be obtained from a very large class of nonlinear evolution PD
means of a reduction method that is asymptotically exact in the limit of weak nonline
moreover, the same model equations obtained in this way appear in many applicative situ
where weakly nonlinear effects are important.1,2

The reduction method preserves integrability and then the model equations are likely
integrable; it is sufficient that the very large class of equations from which they are obtai
contain just one integrable equation, provided the limiting procedure preserves integrability
generally happens for a correct asymptotic limit.3

Thus this approach, besides explaining why certain model equations are integrable and
cable, provides a powerful tool to investigate the relation among different integrable equatio
test the integrability of nonlinear evolution PDEs and, most important, to identify integr
evolution equations that are likely to be of applicative relevance.

The reduction method can also be applied to the nonlinear ordinary differential equatio
order to construct an approximate solution.4,5

In previous papers the reduction method was applied to obtain model equations of non
Schrödinger type, in 1111,2 and in 2116,7 dimensions, which emerge from the study of t
wave modulation induced by weak nonlinear effects for a large class of nonlinear evolution P
characterized by a dispersive linear part and a largely arbitrary nonlinear part.

The basic idea of the reduction method is to consider a nonlinear evolution PDE whose
part is dispersive; as is well known the linear evolution is most appropriately described in ter
Fourier modes and each Fourier mode evolves with constant amplitude and an associate
velocity, which represents the speed with which a wave packet peaked at that Fourier mode
move in configuration space. To evaluate the weak nonlinear effects it is convenient to con
specific Fourier mode and follow it by going over to a frame of reference that moves wit
0022-2488/97/38(8)/4151/14/$10.00
4151J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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group velocity. The weak nonlinear effects may involve a non-negligible contribution, bec
they give rise to a modulation of the amplitude of that Fourier mode~that would remain constan
in the absence of nonlinear effects!. The modulation is best described in terms of resca
‘‘coarse-grained’’ and ‘‘slow’’ variables, that permit one to consider the weak nonlinear effec
larger space and time scales; indeed, the first step of the reduction method~in 211 dimensions!
is to use a moving frame of reference via the transformation:

j5ep~x2V1t !, h5ep~y2V2t !, t5eqt, p.0, q.0, ~1.1!

where V15V1(K1 ,K2), V25V2(K1 ,K2) are the components of the group velocityV(K)
[(V1(K1 ,K2),V2(K1 ,K2)) of the linearized equation, i.e., of the equation obtained after neg
ing all the nonlinear terms, ande is the expansion parameter, supposed to be sufficiently sm

Therefore it is demonstrated that the function that represents the amplitude modulation
fies, in terms of the rescaled, slow, variables, evolution equations having a universal cha
since the coarse-grained nature of the new variables implies that only certain general feat
the nonlinear interaction are important.

In this paper we expose two interesting extensions of this approach. If the original non
evolution PDE that is the starting point for the reduction method has a linear part characteriz
two ~or more! Fourier modes having the same group velocity, then we consider a solution th
the linear limit, is a superposition—of course with constant coefficients—of these modes.
consequence the nonlinear effects induce a modulation of the amplitudes of these modes
also accounts for their interaction.

The model equations obtained from known integrable equations, as shown in the nex
tions, are therefore integrable and likely to appear in many applicative contexts.

In Sec. II we derive a system of nonlinear evolution PDEs:

iCt~j,h,t!1Cjj~j,h,t!2x~j,h,t!C~j,h,t!50, ~1.2a!

iFt~j,h,t!1Fjj~j,h,t!2x~j,h,t!F~j,h,t!50, ~1.2b!

xh~j,h,t!5~ uC~j,h,t!u21auF~j,h,t!u2!j , ~1.2c!

whereaÞ0,61, C~j,h,t,! F~j,h,t! are complex andx~j,h,t! is real. In Sec. III we demonstrat
explicitly that it isS integrable, because we derive the relative Lax pair.

In particular, the eigenvalue problem is

Lf~j,h,t!50, ~1.3a!

where the operatorL is

L5 iD 1

]

]h
2 iD 2

]

]j
2C̃~j,h,t!, ~1.3b!

and

D15S 1 0 0

0 0 0

0 0 0
D , D25S 0 0 0

0 a 0

0 0 1
D , ~1.3c!

C̃~j,h,t!5
1

&

S 0 aw~j,h,t! C~j,h,t!

aw* ~j,h,t! 0 0

C* ~j,h,t! 0 0
D . ~1.3d!
J. Math. Phys., Vol. 38, No. 8, August 1997
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f(j,h,t) is the column vector

f~j,h,t!5S f1~j,h,t!

f2~j,h,t!

f3~j,h,t!
D . ~1.3e!

The temporal evolution of the eigenfunctions is given by

ft~j,h,t!1Af~j,h,t!50, ~1.4a!

where the operatorA is

A52 iD 1]j
21 ix~j,h,t!D11Ĉ~j,h,t!]j2Ĉj~j,h,t!, ~1.4b!

with

Ĉ~j,h,t!5
1

&

S 0 0 0

w* ~j,h,t! 0 0

C* ~j,h,t! 0 0
D . ~1.4c!

The determination of the Lax pair resolves the problem ofS integrability of the system~1.2!.
In Sec. IV we consider a more general extension of the method~with no constraint on the

group velocity!, because we study the interaction between two different Fourier modesKI and

KĨ , which are so near that the variable change~1.1! does not realize their different group velocit
We obtain

iCt~j,h,t!1Cjj~j,h,t!2x~j,h,t!C~j,h,t!2x̃~j,h,t!F~j,h,t!50, ~1.5a!

iFt~j,h,t!1Fjj~j,h,t!2x~j,h,t!F~j,h,t!2x̃* ~j,h,t!C~j,h,t!50, ~1.5b!

xh~j,h,t!5~ uC~j,h,t!u21uF~j,h,t!u2!j , ~1.5c!

x̃h~j,h,t!5~C~j,h,t!F* ~j,h,t!!j , ~1.5d!

whereC~j,h,t!, F~j,h,t!, x̃(j,h,t) are complex andx~j,h,t! is real. The relative Lax pair is
deduced and theS integrability is then explicitly demonstrated.

The operatorsL andA for Eq. ~1.5! have the form

L5 iD 1]j1 iD 2]h2C̃~j,h,t!, ~1.6a!

A52 iD 2]j
21 i x̂~j,h,t!1Ĉ~j,h,t!]j2Ĉj~j,h,t!, ~1.6b!

with

C̃~j,h,t!5
1

&

S 0 F~j,h,t! 0

F* ~j,h,t! 0 C* ~j,h,t!

0 C~j,h,t! 0
D , ~1.6c!

Ĉ~j,h,t!5
1

&

S 0 0 0

F* ~j,h,t! 0 C* ~j,h,t!

0 0 0
D , ~1.6d!
J. Math. Phys., Vol. 38, No. 8, August 1997
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x̂~j,h,t!5S x~j,h,t! 0 x̃* ~j,h,t!

0 0 0

x̃~j,h,t! 0 x~j,h,t!
D , ~1.6e!

D15S 0 0 0

0 21 0

0 0 0
D , ~1.6f!

D25S 1 0 0

0 0 0

0 0 1
D . ~1.6g!

As implied by the preceding discussion, we expect that these two model equations are
applicable.

Finally in the last section we recapitulate the most important results and indicate som
sible extensions.

II. MODEL EQUATIONS AND FOURIER MODES WITH EQUAL GROUP VELOCITY

In this section we deriveS-integrable systems of nonlinear equations by means of an ex
sion of the reduction method, which is possible if the group velocity, relative to the linea
starting equation, is equal for two Fourier modes with different wave vectorKI 5(K1 ,K2).

We can consider that particular solution which in the linear approximation is a superpo
of these modes. The nonlinear term induces a modulation of their amplitudes, which is due t
interaction. The validity of the method is easily understood, because the variable transform
~1.1! operates in the same way upon the two Fourier modes which move with the same ve
and then can interfere.

The final system of nonlinear PDEs is relative to the modulation of the amplitudes of the
Fourier modes and inherits the integrability property of the starting equation, as will be de
strated in Sec. III, applying the reduction method to the Lax pair.

We consider the Nizhnik equation, integrable by means of the spectral transform,8

Ut~x,y,t !1Uxxx~x,y,t !23~V~x,y,t !U~x,y,t !!x50, ~2.1a!

Vy~x,y,t !5Ux~x,y,t !, ~2.1b!

whereU5U(x,y,t) andV5V(x,y,t) are real and the dispersion relation and the group velo
of the linear part of the equation are

v52K1
3, ~2.2!

VI ~KI !5~V1~K1 ,K2!,V2~K1 ,K2!!,
~2.3!

V1~K1 ,K2!523K1
2,V2~K1 ,K2!50.

Two Fourier modes with the same value ofK1 , but different K2 , i.e., KI 5(K1 ,K2),KĨ
5 (K1 ,K̃2) possess equal group velocity. We can use the transformation~1.1! which is identical
for the two Fourier modes and introduce the following formal expansion:
J. Math. Phys., Vol. 38, No. 8, August 1997
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U~x,y,t !5 (
n1 ,n252`

1`

egn1n2cn1n2
~j,h,t,e!exp$ i ~n1z11n2z2!%, ~2.4!

where z15K1x1K2y2vt, z25K1x1K̃2y2vt, gn1n2
5un1u1un2u for n1 ,n2Þ0, g005r is a

non-negative rational number which will be fixed afterwards, andcn1n2
(j,h,t;e)

5c2n12n2
* (j,h,t;e) becauseU(x,y,t) is real. Thecn1n2

’s depend one and it is supposed tha

their limit for e→0 exists and is finite; in the following they will be denoted wi
cn1n2

(j,h,t).
The final goal is to obtain the evolution equation for the modulation of the amplitu

c(j,h,t)5c01(j,h,t) andw(j,h,t)5c10(j,h,t), by means of the different equations gene
ated from the coefficients of the Fourier modes.

It is more convenient to separate the contributions of the linear and nonlinear parts,

egn1n2Dn1n2
cn1n2

5eFn1n2
, ~2.5!

whereDn1n2
is an operator acting uponcn1n2

andFn1n2
is the contribution of the nonlinear par

Dn1n2
is easily calculated:

Dn1n2
5~2 in1v2 in2v1eq]t2V1~K1 ,K2!e

p1]j!1~ in1K11 in2K11ep1]j!
3, ~2.6!

and then

D0052V1~K1 ,K2!e
p1]j1O~eq,e3p1!, ~2.7!

D015D105eq]t13iK 1e
2p1]j

21O~e3p1!. ~2.8!

We now introduce an analogue Fourier expansion:

V~x,y,t !5 (
n1 ,n252`

1`

e g̃n1n2wn1n2
~j,h,t;e!exp$ i ~n1z11n2z2!% ~2.9!

and we obtain

wn1n2
5~n1K11n2K1!~n1K21n2K̃2!

21cn1n2
1o~ep1,ep2!. ~2.10!

Fn1n2
can be derived, evaluating the importance of the different terms, which originate

the interference of the Fourier amplitudescn1n2
(j,h,t) andwn1n2

(j,h,t):

F0053ep1~c01w0211c021w011c10w2101c210w10!j1h.o.t., ~2.11a!

F1156iK 1~c10w011c01w10!1h.o.t., ~2.11b!

F12153ep~c021w101c10w021!j1h.o.t., ~2.11c!

F1053iK 1~c00w10e
r1c10w00e

r1c021w11e1c11w021e1c121w01e1c20w210e1c210w20e!

1h.o.t., ~2.11d!

where h.o.t.5higher order terms.
After taking q52, p15p251, r51 for the proper balance of terms, the equations for

Fourier modes can be obtained in the limite→0:
J. Math. Phys., Vol. 38, No. 8, August 1997
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c005
2

K1
S uc01u2

K̃2

1
uc10u2

K2
D , ~2.12a!

c1152
1

K1
S 1

K2

1
1

K̃2
D c01c10, ~2.12b!

c1215
1

K1
S 1

K2

1
1

K̃2
D c021c10, ~2.12c!

c2052
1

K1
2 c10

2 , c0252
1

K1
2 c01

2 , ~2.12d!

and we arrive at the evolution equations forc015C and forc105F ~with w005x!:

iCt~j,h,t!23K1Cjj~j,h,t!523K1x~j,h,t!C~j,h,t!, ~2.13a!

iFt~j,h,t!23K1Fjj~j,h,t!523K1x~j,h,t!F~j,h,t!, ~2.13b!

xh~j,h,t!5
2

K1K2
~auC~j,h,t!u21uF~j,h,t!u2!j , ~2.13c!

wherea5K2 /K̃2 .
After the cosmetic rescaling

h̃5
K̃2

K1
h, t̃523K1t, ~2.14a!

F̃5
&

K2

F, C̃5
&

K̃2

C, ~2.14b!

we arrive at the final form

iCt~j,h,t!1Cjj~j,h,t!2x~j,h,t!C~j,h,t!50, ~2.15a!

iFt~j,h,t!1Fjj~j,h,t!2x~j,h,t!F~j,h,t!50, ~2.15b!

xh~j,h,t!5~ uC~j,h,t!u21auF~j,h,t!u2!j , ~2.15c!

whereaÞ0,61.
This system must be integrable by the spectral transform, because it has been derived

S-integrable equation, and that will be explicitly demonstrated in Sec. III.
Let us now consider the implications of these results in the context of the nonlinear evo

systems of PDEs in 111 dimensions. A model system can be easily obtained, if we takej5h:

iCt~j,t!1Cjj~j,t!2uC~j,t!u2C~j,t!2auF~j,t!u2C~j,t!50, ~2.16a!

iFt~j,t!1Fjj~j,t!2uC~j,t!u2F~j,t!2auF~j,t!u2F~j,t!50. ~2.16b!

TheS integrability of Eq.~2.16! will be explicitly demonstrated in Sec. III.
J. Math. Phys., Vol. 38, No. 8, August 1997
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III. THE LAX PAIR FOR THE MODEL EQUATION

We can apply the reduction method also to the Lax pair of the Nizhnik equation, to de
strate explicitly the integrability by the spectral transform of Eq.~2.15!, because in this way we
identify the Lax pair that permits one to obtain a compatibility condition which reproduces
system of Eq.~2.15!.

First we consider the Lax operators of Eq.~2.1!:

L5
]

]x

]

]y
2U~x,y,t !, ~3.1!

A5
]3

]x3
23V~x,y,t !

]

]x
. ~3.2!

It can be verified by direct substitution that the operator relation

LT5 i @L,A#5 i ~LA2AL! ~3.3!

is identical with the Nizhnik equation.

If we now consider the eigenvalue problem:

Lf~x,y,t !50, ~3.4!

using relation~3.3!, we can obtain the evolution equation forf(x,y,t):

f t~x,y,t !1Af~x,y,t !50. ~3.5!

The functionf(x,y,t) can be expanded in Fourier modes in the form

f~x,y,t !5 (
n1 ,n252`@n1odd,n2even#

1`

egn1n2fn1n2
~j,h,t;e!expF i S l1x1l2y1l3t1

n1
2
z11

n2
2
z2D G

1 (
n1 ,n252`@n1even,n2odd#

1`

egn1n2fn1n2
~j,h,t;e!

3expF i S l4x1l5y1l6t1
n1
2
z11

n2
2
z2D G , ~3.6!

with z15K1x1K2y2vt, z25K1x1K̃2y2vt, gn125gn11 for n.0, gn225gn11 for n,0,
fn1n2

(j,h,t;e)’s which parametrically depend one and remain finite whene→0, l j , j

51,...,6, real constants to be determined later on.
Inserting now the expression forf(x,y,t) in Eq. ~3.4!, we derive a series of relations whic

are generated by the coefficients of the Fourier modes.
Each relation must be valid for a given order of approximation ine. In particular, for the

fundamental harmonicsn1561, n2561, andn151, n2522, or n1522, n251, considering
termsO(e0) in Eq. ~3.4!, we can fix:

l15l45
K1

2
, l252

K2

2
, l552

K̃2

2
. ~3.7!

As a consequence, we understand that the harmonics
J. Math. Phys., Vol. 38, No. 8, August 1997
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f10,f210,f01,f021 ,f221,f122 , ~3.8!

are fundamental, i.e., for themgn1n2
assumes the smallest value.

The successive ordere for Eq. ~3.4! allows us to obtain the new spectral problem, because
thefn1n2

’s may be expressed by means of the fundamental harmonics~3.8!, which are connected
through the relations:

iK 1f10,h~j,h,t!5C10~j,h,t!f210~j,h,t!1C01~j,h,t!f122~j,h,t!, ~3.9a!

iK 2f210,j~j,h,t!52c210~j,h,t!f10~j,h,t!, ~3.9b!

iK̃ 1f01,h~j,h,t!5C01~j,h,t!f021~j,h,t!1C10~j,h,t!f221~j,h,t!, ~3.9c!

iK̃ 2f021,j~j,h,t!52C021~j,h,t!f01~j,h,t!, ~3.9d!

iK̃ 2f122,j~j,h,t!52C021~j,h,t!f10~j,h,t!, ~3.9e!

iK 2f221,j~j,h,t!52C210~j,h,t!f01~j,h,t!. ~3.9f!

We then conclude that the harmonicsf10, f210, f122 , are decoupled with respect to th
harmonicsf01, f021 , f221, and we get two separated but identical spectral problems.

By means of the variable rescaling~2.14!, we arrive at the final form

Lf̃~j,h,t!50, ~3.10!

L5 iD 1

]

]h
2 iD 2

]

]j
2C̃~j,h,t!, ~3.11!

D15S 1 0 0

0 0 0

0 0 0
D , D25S 0 0 0

0 a 0

0 0 1
D , ~3.12!

C̃~j,h,t!5
1

&

S 0 aw~j,h,t! C~j,h,t!

aw* ~j,h,t! 0 0

C* ~j,h,t! 0 0
D . ~3.13!

f̃(j,h,t) is the column vector

f̃~j,h,t!5S f10~j,h,t!

f210~j,h,t!

f122~j,h,t!
D . ~3.14!

To calculate the temporal evolution, we must insert expression~3.6! in ~3.5! and consider the
relation obtained for the different harmonicsn1 , n2 and for a given order of approximation ine.

In correspondence with the lower order and for the harmonicsn1561, n2561, andn1
51, n2522, or n1522, n251, we fix

l35l652
v

2
. ~3.15!
J. Math. Phys., Vol. 38, No. 8, August 1997
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If we consider the next order ine, we newly obtain the spectral problem~3.10!–~3.14! and as
we demonstrate in the following this fact permits us to eliminate the unknown quantitiesf̃10,
f̃210, f̃122 , etc., corrections of ordere to f10, f210, f122 , etc., which appear in Eq.~3.5! at
the ordere2, taking into account the relation~3.4! calculated at the same order and in corresp
dence with the same harmonics.

In particular, if we consider Eq.~3.4! calculated for the ordere2 for n1521, n250, we get

iK 2f̃210,j2f210,jh1C210f̃101C211f1221C00f2101C10f2301C01f21221C021f212

50. ~3.16!

To evaluate this expression we consider thatf230, f212, f2122 are connected with the
fundamental harmonics@we must calculate Eq.~3.4! for n1523, n250, n1521, n252, n1
5 22, n2521, at the lower order ine#:

f230~j,h,t!52S 1

2K1K2
DC210~j,h,t!f210~j,h,t!, ~3.17a!

f212~j,h,t!52S 1

K1~K̃22K2!
D C01~j,h,t!f210~j,h,t!, ~3.17b!

f2122~j,h,t!52S 1

K1~K̃21K2!
D ~C021~j,h,t!f210~j,h,t!1C210~j,h,t!f122~j,h,t!!,

~3.17c!

We now consider Eq.~3.5! at the ordere2 for n1521, n250, which furnishes the tempora
evolution off210,

f210,t23K1K2
21C210f10,j13K1K2

21~c210,j2K1K2
21C210,h!f1013iK 1

2K2
21~2 iK 2f̃210,j

2C210f̃10!23iK 1K̃2
21~K22K̃2!

21uC01u2f21023iK 1K̃2
21~K21K̃2!

21uC01u2f210

23iK 1K̃2
21~K21K̃2!

21c01C210f1222
3
2iK 1K2

22uC10u2f21050. ~3.18!

From Eqs.~3.16!, ~3.17a!, ~3.17b!, ~3.17c!, and~3.18!, we get

f210,t23K1K2
21C210f10,j13K1K2

21C210,jf1013iK 1
2K2

21C00f210

13iK 1
2K2

21C211f12226iK 1K2
22uc10u2f21026iK 1K2

21K̃2
21uc01u2f210

23iK 1K2
22K̃2

21~K21K̃2!c210C01f12250. ~3.19!

If we want to identify the temporal evolution off10, the calculation of the corrections is no
necessary and we get

f10,t13iK 2f10,jj23iK 2xf1050, ~3.20!

taking into account that

f30~j,h,t!52S 1

2K1K2
Dc10~j,h,t!f10~j,h,t!, ~3.20a!
J. Math. Phys., Vol. 38, No. 8, August 1997
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f12~j,h,t!52S 1

2K1K̃2
D C01~j,h,t!f10~j,h,t!. ~3.20b!

These relations are a consequence of Eq.~3.4!, considered at the lower order ine for the
correspondent harmonics. For the temporal evolution off122 , we calculate Eq.~3.4! at the order
e2, for n151, n2522,

iK̃ 2f̃122,j1C021f̃101C00f1222~K1K21K1K̃2!C10C021f2101C121f210

2 iK̃ 2
21~C021f10! ,h2~K1K21K1K̃2!

21uC10u2f1222~2K1K̃2!
21uC01u2f122

2~K1K22K1K̃2!
21uC10u2f12250. ~3.21!

If we consider Eq.~3.5! at the ordere2 for n151, n2522, we get

f122,t23K1K̃2
21C021f10,j13K1K̃2

21~C021,j2K1K̃2
21C021,h!f1013iK 1

2K2
21C10f2122

23iK 1
2K̃2

21~C021f̃101 iK̃ 2f̃122,j!23iK 1~2K̃2
2!21uC01u2f122

13iK 1~K2
22K2K̃2!

21uC10u2f12250, ~3.22!

because we have used the expressions forf124 andf322 , obtained considering Eq.~3.4! for
n151, n2524, andn153, n2522, at the lower order ine,

f124~j,h,t!52S 1

2K1K̃2
D 21

C021~j,h,t!f122~j,h,t!, ~3.23a!

f322~j,h,t!5S 1

K1~K̃22K2!
DC10~j,h,t!f122~j,h,t!, ~3.23b!

The temporal evolution off122 is obtained by means of Eqs.~3.21! and ~3.22!:

f122,t23K1K̃2
21C021f10,j13K1K̃2

21C021,jf1013iK 1
2K2

21C10f122

13iK 1
2K̃2

21C121f21026iK 1K̃2
22uC01u2f12223iK 1K̃2

21~K2
212K̃2

21!

3C10C021f21026iK 1K̃2
21K2

21uC10u2f12250. ~3.24!

Via the transformation~2.14! and taking into account Eqs.~2.12a! and ~2.12c!, we arrive at
the final form for the operatorA:

A52 iD 1]j
21 ix~j,h,t!D11Ĉ~j,h,t!]j2Ĉj~j,h,t!, ~3.25!

Ĉ~j,h,t!5
1

&

S 0 0 0

w* ~j,h,t! 0 0

C* ~j,h,t! 0 0
D . ~3.26!

The determination of the Lax pair resolves the problem ofS integrability of the system~2.15!.
If we take j5h in Eqs. ~3.11! and ~3.25!, we obtain the Lax pair of the 111 dimensional

system of nonlinear PDEs~2.16!:
J. Math. Phys., Vol. 38, No. 8, August 1997
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L5 iD
]

]j
2C̃~j,t!, ~3.27!

where

D5S 1 0 0

0 a 0

0 0 1
D , ~3.28!

A52 iD 1]j
21 ix~j,t!D11Ĉ~j,t!]j2Ĉj~j,t!. ~3.29!

IV. THE REDUCTION METHOD APPLIED TO FOURIER MODES WITH DIFFERENT
GROUP VELOCITY

In Sec. II we have considered a method able to treat different Fourier modes with the
group velocity, because only in this case they may interfere and generate a system of c
nonlinear differential equations for the modulation of the Fourier amplitudes, taking into ac
the nonlinear parts of the starting equation.

We demonstrate in this section that our method may be applied also when two generic F
modes have different group velocities

VI ~KI !5~V15V1~K1 ,K2!,V25V2~K1 ,K2!!,

VI ~KĨ !5~Ṽ15V1~K̃1 ,K̃2!,Ṽ25V2~K̃1 ,K̃2!!, ~4.1!

VI ~KI !ÞVI ~KĨ !

but KI andKĨ are infinitely near

K̃15K11aes, K̃25K21aes, s.0, ~4.2!

wherea is a real constant ands is sufficiently large.

Via the usual transformation, we obtain

Dj5 j̃2j5ep1~X2Ṽ1t !2ep1~X2V1t !52tDV1e
p,

~4.3!

Dh5h̃2h5ep2~Y2Ṽ2t !2ep2~Y2V2t !52tDV2e
p,

where

DV15Ṽ12V1 , DV25Ṽ22V2 ,
~4.4!

t5eqt, q52p, p15p25p,

and

Dj52tS ]V1

]K1
1

]V1

]K2
Daes1p2q52tS ]V1

]K1
1

]V1

]K2
Daes2p, ~4.5!

Dh52tS ]V2

]K1
1

]V2

]K2
Daes2p. ~4.6!
J. Math. Phys., Vol. 38, No. 8, August 1997
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If we choose

s.sC5p, ~4.7!

thenDj→0 andDh→0, whene→0.
Two Fourier modes may interfere and then give rise to a modulation of the amplitudes, d

the nonlinear terms.
Equation~4.7! is equivalent to the condition that the group velocities are so near tha

spatio–temporal rescaling~1.1! does not perceive their difference, because the ‘‘slow’’ a
‘‘coarse-grained’’ nature of the new variables makes negligible their difference, in the asym
limit.

We again consider the Nizhnik equation

Ut~x,y,t !1Uxxx~x,y,t !23~V~x,y,t !U~x,y,t !!x50, ~4.8a!

Vy~x,y,t !5Ux~x,y,t !, ~4.8b!

and the formal Fourier expansion

U~x,y,t !5 (
n1 ,n252`

1`

egn1n2cn1n2
~j,h,t;e!exp$ i ~n1z11n2z2!%, ~4.9!

where the only difference from Sec. II is thatz15K1x1K2y2vt, z25K̃1x1K̃2y2vt.
The operatorDn1n2

is now

Dn1n2
5~2 in1v2 in2ṽ1eq]t2V1~K1 ,K2!e

p1]j2V2~K1 ,K2!e
p2]h!

1~ in1K11 in2K̃11ep1]j!
3. ~4.10!

We now introduce an analog Fourier expansion

V~x,y,t !5 (
n1 ,n252`

1`

e g̃n1n2wn1n2
~j,h,t;e!exp$ i ~n1z11n2z2!% ~4.11!

and we derive the relations

f00,h5c00,j , f121,h5c121,j , ~4.12!

and

wn1n2
5~n1K11n2K1!~n1K21n2K2!

21cn1n2
1o~ep1,ep2!, ~4.13!

for n1Þ2n2 .
After taking q52, p15p251, r51 for the proper balance of terms, the equations for

Fourier modes can be obtained in the limite→0,

c005
2

K1K2
~ uc01u21uc10u2!, ~4.14a!

c1152
2

K1K2
c01c10, ~4.14b!
J. Math. Phys., Vol. 38, No. 8, August 1997
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c1215
2

K1K2
c021c10, ~4.14c!

c0252
1

K1K2
c01
2 , ~4.14d!

and we arrive at the evolution equations forc015C and forc105F ~with w005x, w2115x̃!,

Ct~j,h,t!13iK 1Cjj~j,h,t!23iK 1x~j,h,t!C~j,h,t!23iK 1x̃~j,h,t!F~j,h,t!50,
~4.15a!

Ft~j,h,t!13iK 1Fjj~j,h,t!23iK 1x~j,h,t!F~j,h,t!23iK 1x̃* ~j,h,t!C~j,h,t!50,
~4.15b!

xh~j,h,t!5S 2

K1K2
D ~ uC~j,h,t!u21uF~j,h,t!u2!j , ~4.15c!

x̃h~j,h,t!5S 2

K1K2
D ~C~j,h,t!F* ~j,h,t!j , ~4.15d!

whereC(j,h,t), F(j,h,t), x̃(j,h,t) are complex andx(j,h,t) is real.

After the cosmetic rescaling

h̃5
K2

K1
h, t̃523K1t, ~4.16a!

F̃5
&

K2
F, C̃5

&

K2
C, ~4.16b!

we get

iCt~j,h,t!1Cjj~j,h,t!2x~j,h,t!C~j,h,t!2x̃~j,h,t!F~j,h,t!50, ~4.17a!

iFt~j,h,t!1Fjj~j,h,t!2x~j,h,t!F~j,h,t!2x̃* ~j,h,t!C~j,h,t!50, ~4.17b!

xh~j,h,t!5~ uC~j,h,t!u21uF~j,h,t!u2!j , ~4.17c!

x̃h~j,h,t!5~C~j,h,t!F* ~j,h,t!j !. ~4.17d!

An interesting model system of nonlinear PDEs in 111 dimensions is obtained if we tak
t5h:

iCt~j,h,t!1Cjj~j,h,t!2x~j,h,t!C~j,h,t!2x̃~j,h,t!F~j,h,t!50, ~4.18a!

iFt~j,h,t!1Fjj~j,h,t!2x~j,h,t!F~j,h,t!2x̃* ~j,h,t!C~j,h,t!50, ~4.18b!

xt~j,h,t!5~ uC~j,h,t!u21uF~j,h,t!u2!j , ~4.18c!

x̃t~j,h,t!5~C~j,h,t!F* ~j,h,t!!j . ~4.18d!

The Lax pair of Eqs.~4.17! and ~4.18! can be deduced by means of the same techni
illustrated in Sec. III and the final result has been reported in Sec. I.
J. Math. Phys., Vol. 38, No. 8, August 1997
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V. CONCLUSION

The main aim of this paper has been to show two extensions of the reduction method th
to the identification of two systems of nonlinear evolution PDEs, which are integrable and
sumably of applicative interest.

We have outlined the approach that permits one to obtain such systems of equations a
next steps will be the explicit resolution of the spectral problem and the possible identificat
localized or asymptotically finite solutions.

To clarify the relation between these integrable systems of equations and other inte
equations, note that if we takeC(j,h,t)5F(j,h,t) in Eqs.~1.2! and ~1.5! we obtain

iCt~j,h,t!1Cjj~j,h,t!5C~j,h,t!x~j,h,t!,

xh~j,h,t!5~ uC~j,h,t!u2!j . ~5.1!

This equation is already known to be integrable and applicable.9

Its dispersion relation (v5k1
2) is degenerate because a component of the group veloci

zero (]v/]k250). According to this reason, Eq.~5.1! does not belong to a general class
integrable equations, such as the Davey–Stewartson equation, but it appears to be a pa
case.10

Another obvious development is the application of the second extension of the redu
method, exposed in this paper, to other integrable nonlinear evolution equations, for instan
Kadomtsev–Petviashvili equation, in order to discover other model systems of PDEs.

The application of the first method is on the contrary restricted to the case of same
velocities for different wave numbers.

It is also convenient to push the approach beyond its ‘‘leading order’’ application by loo
at special cases when some key parameters vanish or to consider different rescalings in
spatial variables (p1Þp2), on the analogy of the case of the model equations.6,7
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Superintegrable n 5 2 systems, quadratic constants
of motion, and potentials of Drach
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The properties of superintegrable systems in two degrees of freedom, possessing
three independent globally defined constants of motion, are studied using as an
approach, the existence of hidden symmetries and the generalized Noether’s theo-
rem. The potentials are obtained as solution of a system of two partial differential
equations. First the case of standard Lagrangians is studied and then the method is
applied to the case of Lagrangians with a pseudo-Euclidean kinetic term. Finally,
the results are related with other approaches and with a family of potentials admit-
ting a second integral of motion cubic in the velocities obtained by Drach.
© 1997 American Institute of Physics.@S0022-2488~97!00607-5#

I. INTRODUCTION

Integrability is a property related with the existence of globally defined constants of moti
addition to the energy function.1–3

Integrable systems in the sense of Liouville must have as many globally defined consta
motion in involution as degrees of freedom. This property is difficult to satisfy and, becau
this, most systems are indeed nonintegrable. Nevertheless, integrability is considered as
important property in mathematical terms, because it means the existence of some inte
geometrical structures in the phase space, and in physical terms, because it is a property
with regular behavior and predictibility. Moreover, the KAM theorem states that small pertu
tions of the integrable systems preserve many of the geometric properties characterizing i
bility.

The theory of Lagrangian~or Hamiltonian! integrable nonlinear systems of a finite number
degrees of freedom, and the related problem of the existence of constants of motion, is a c
matter that has always deserved great attention. It is related with many branches of mathe
physics and it has been studied from different viewpoints~see, for example, Refs. 4–22 for som
articles published in these last few years!.

A certain class of systems, which are known as superintegrable~or overintegrable23!, pos-
sesses not onlyn but 2n 2 1 independent constants of motion~for the theory of superintegrabl
systems see Refs. 23–31!. The best known case of this very particular class of systems is
Kepler problem that possesses five functionally independent integrals of motion.

Most known integrable systems are Hamilton–Jacobi separable, that is, systems w
associate Hamilton–Jacobi equation that can be solved by separation of variables after an
priate set of coordinates has been found.32,33 An important point is that separable systems ha
constants of motionI k , k 5 1,2,...,n, which are linear or quadratic in the velocities.

Friset al.24 studied in 1965 the two dimensional Hamiltonians with standard Euclidean kin
term for which the Hamilton–Jacobi equations separate in more than one coordinate sys
R2 and obtained four different cases~they were mainly interested in the quantum viewpoint but
results obtained are also valid at the classical level!. The generalization toR3, which was initiated
in 1967 by Makarovet al.,25 has been recently reconsidered by Evans.26

In this article we will study the existence ofn52 superintegrable Lagrangian systems w
quadratic constants of motion using as an approach the Lagrangian formalism~that is, we will not
0022-2488/97/38(8)/4165/14/$10.00
4165J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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make use of the Hamilton–Jacobi method!. The article is organized as follows: In Sec. II we stu
the existence of superintegrable systems withn52 standard Lagrangians. We first derive a syst
of second-order equations that the potential functionV(x,y) must satisfy and then we obtai
several particular solutions. In Sec. III, we study the existence of superintegrable system
pseudo-Euclidean kinetic energy. The results obtained in Sec. II are related with those obta
Friset al. in Ref. 24 using the Hamilton–Jacobi~or Schrödinger! approach, and the results of Se
III are related with some potentials studied by Drach in Ref. 34 in relation to the existen
systems with cubic integrals. Finally, in Sec. IV we make some final comments.

II. INTEGRABLE AND SUPERINTEGRABLE n 5 2 LAGRANGIAN SYSTEMS WITH
QUADRATIC CONSTANTS OF MOTION

In two degrees of freedom, only one additional constant of the motion besides the ene
required for the integrability of the system. The following theorem studies the case in whic
additional constant is an algebraic function quadratic in the velocities. Notice that polyno
constants of the motion for Lagrangians of mechanical class are either even or odd in the
ties. Therefore ifI 2 is a quadratic integral forL, then it can also contain velocity-independe
terms in the velocities but not linear ones.

Theorem 1: Let L be the following two-degrees of freedom Lagrangian

L5~ 1
2!~vx

21vy
2!2V~x,y!,

and suppose that L has a constant of the motion I25I 2(x,y,vx ,vy) that is quadratic in the
velocities

I 25I 221I 20~x,y!, I 225avx
21bvxvy1cvy

2,

where a, b, andc, are functions of x and y. Then
(i) The three functions a, b, and c must take the form

a5a2y
21a1y1a0 ,

b522a2xy2a1x2c1y2b0 ,

c5a2x
21c1x1c0 ,

where ai , bi , and ci , are constants.
(ii) The potential V(x,y) must be solution of the following differential equation:

2~a2c!Vxy1b~Vyy2Vxx!13ayVx23cxVy50.

Proof: This theorem can be proven using different alternative ways. We will use a
approach the generalized Noether’s theorem; that is, Noether’s theorem for generalized or
symmetries.

Let I 25I 221I 20 be a quadratic constant forL and let us denote byXL the dynamical field

XL5vx
]

]x
1vy

]

]y
1F1~x,y!

]

]vx
1F2~x,y!

]

]vy

and by Ỹ the vector field generating the symmetry ofXL from which I 2 arises. SinceI 2 is
nonlinear, this vector fieldỸ must be a hidden symmetry of the LagrangianL. Moreover, it is the
Hamiltonian vector field35–37of the functionI 2 with respect to the Lagrangian symplectic structu
vL .
J. Math. Phys., Vol. 38, No. 8, August 1997
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The vector fieldỸ can be written in the formỸ5Y1Yv whereYv represents the vertical pa
of the vector field andY the nonvertical part. The nonvertical part is directly determined by
derivatives of the functionI 2 with respect to the velocities

Y5S ]I 2
]vx

D ]

]x
1S ]I 2

]vy
D ]

]y
.

The vertical fieldYv takes the form

Yv5XXLS ]I 2
]vx

D C ]

]vx
1XXLS ]I 2

]vy
D C ]

]vy
.

Therefore, the expression ofi (Ỹ)vL is given by

i ~Ỹ!vL5S ]I 2
]vx

Ddvx1S ]I 2
]vy

Ddvy2XXLS ]I 2
]vx

D Cdx2XXLS ]I 2
]vy

D Cdy.
This one-form must be the differential of the functionI 2 . Hence we arrive at four conditions fo
I 2 , two of which reduce to identities. The other two are

]I 2
]x

52XLS ]I 2
]vx

D , ]I 2
]y

52XLS ]I 2
]vy

D .
These two conditions can be split into two subsets of equations according to the dependenc
velocities:

~a! The terms dependent in the velocities lead to

ax50, bx1ay50, cy50, cx1by50.

Solving these four equations we obtain the expressions given in~i!.
~b! The terms independent of the velocities lead to

dI205~2aF11bF2!dx1~bF112cF2!dy.

UsingF152Vx , F252Vy , and the condition of exactitude we obtain

b~Vyy2Vxx!12~a2c!Vxy1~2ay2bx!Vx2~by22cx!Vy50.

Making use of the four equations~a! we obtain that this equation reduces to the partial differen
equation~ii !.

Therefore, according to the statement of this theorem, ifV(x,y) satisfies a very specia
second-order equation, then the dynamics described by the LagrangianL is integrable. As an
example, let us consider the potential

V5~ 1
2!~Ax

21By2!1x2y1ey3.

of Hénon-Heiles.23,38,39This system has three integrable cases, two of them,~i! e5 1
3, B5A and

~ii ! e52, A andB, arbitrary, with a second integralI 2 quadratic in the velocities. Fore5 1
3 the

potential satisfies the wave equationVyy2Vxx50, corresponding toI 225vxvy . In the case~ii ! the
potentialV satisfies

2~y2k!Vxy2x~Vyy2Vxx!13Vx50, k5~ 1
4!~4A2B!,
J. Math. Phys., Vol. 38, No. 8, August 1997
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and the functionI 22 becomesI 225(yvx2xvy)vx1kvy
2.

In two degrees of freedom, two independent integrals of motion, in addition to the en
function, are required for the superintegrability of the system. Consequently, when usin
approach, superintegrability appears as a property associated with potentials character
satisfying not one but two independent partial differential equations.

This following proposition summarizes this last property.
Proposition 2: Let the function V be the solution of the following system of two pa

differential equations:

2~a2c!Vxy1b~Vyy2Vxx!13ayVx23cxVy50,

2~A2C!Vxy1B~Vyy2Vxx!13AyVx23CxVy50,

where the functions a,b,c, and A,B,C, are given by

a5a2y
21a1y1a0 , A5A2y

21A1y1A0 ,

b522a2xy2a1x2c1y2b0 , B522A2xy2A1x2C1y2B0 ,

c5a2x
21c1x1c0 , C5A2x

21C1x1C0 ,

with ai ,bi ,ci and Ai ,Bi ,Ci two different sets of real constants such that the two above sec
order equations are independent. Then, if T denotes the Euclidean kinetic function T5( 12)(vx

2

1vy
2), the Lagrangian L5T2V(x,y) is superintegrable with quadratic constants of motion.
Using this proposition as a starting point, we have studied the existence of superinte

systems with standard Lagrangian. That is, we have analyzed all the different combinati
equations that one can construct given different values of the two sets of coefficients. Notic
different systems of equations related by transformations preserving the kinetic term~in this case
translations and rotations! are considered as equivalent. The calculus has been made in two
First, we obtain the general solution of one of the two partial differential equations, which dep
on two arbitrary functions. Second, we substitute this general solution in the other equatio~the
caseVd is solved by using a complex variable!. The general solution of the total system is a line
combination of three simpler potentials.

The two first cases,~a! and ~b!, satisfy the equationVxy50 and correspond, therefore, to
direct sum of one-degree of freedom systems.

~a! The two linear second-order equations are

Vxy50, x~Vxx2Vyy!12yVxy13Vx50.

The potential, which we will denote byVa, is

Va5k1V1
a1k2V2

a1k3V3
a ,

V1
a5S 12D ~x214y2!, V2

a5
1

x2
, V3

a5y,

whereki , i51,2,3, are three arbitrary constants. The three constant of motionI 1
a , I 2

a , andI 3
a take

the form

I 1
a5S 12D vx21S 12D k1x21 k2

x2
,

J. Math. Phys., Vol. 38, No. 8, August 1997
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I 2
a5 1

2 vy
212k1y

21k3y,

I 3
a5~yvx2xvy!vx1k1S x2y D2k2S 2yx2 D1

k3
x2
.

~b! The two second-order equations are

Vxy50, xy~Vxx2Vyy!1~y22x2!Vxy13yVx23xVy50.

The potential, which we will denote byVb, is

Vb5k1V1
b1k2V2

b1k3V3
b ,

V1
b5S 12D ~x21y2!, V2

b5
1

x2
, V3

b5
1

y2
.

The three constants of motionI 1
b , I 2

b , andI 3
b take the form

I 1
b5S 12D vx21S 12D k1x21 k2

x2
, I 2

b5S 12D vy21S 12D k1y21 k3
y2
,

I 3
b5~xvy2yvx!

212k2S yxD
2

12k3S xyD
2

.

This functionVb is the so-called Smorodinsky–Winternitz potential first study~from the
quantum viewpoint! in Ref. 24 and generalized forn53 in Refs. 25 and 26 and forn.3 in Ref.
27 and 28.

~c! The two second-order equations are

2xVxy1y~Vyy2Vxx!13Vy850,

~y22x2!Vxy2xy~Vxx2Vyy!13yVx823xVy850.

The potentialVc, solution of this system of equations, is

Vc5k1V1
c1k2V2

c1k3V3
c ,

V1
c5

1

y2
, V2

c5
1

Ax21y2
, V3

c5
x

y2Ax21y2
,

and the two constant of motionI 2
c and I 3

c take the form

I 2
c5~yvx2xvy!vy1

2k1x

y2
1

k2x

Ax21y2
1
k3~2x

21y2!

y2Ax21y2
,

I 3
c5~yvx2xvy!

21
2k1x

2

y2
1
2k3xAx21y2

y2
.

Notice that asV2
c is a central potential, the integralI 3

c does not depend onk2 .
~d! In this last case the two second-order equations are
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2yVxy1x~Vxx2Vyy!13Vx850,

2xVxy2y~Vxx2Vyy!13Vy850.

These equations can be decoupled by making use of complex variables. Using the
(x,y)→(z5x1 iy , z*5x2 iy), they become

2zS ]2V

]z2 D13S ]V

]z D50, 2z* S ]2V

]z* 2D13S ]V

]z* D50.

The general solution of these complex equations is

V5k1~zz* !21/21c2z
21/21c3~z* !21/2,

which can be rewritten as

Vd5k1V1
d1k2V2

d1k3V3
d ,

V1
d5

1

Ax21y2
, V2

d5ReF 1

Ax1 iy
G , V3

d5ImF 1

Ax1 iy
G .

It follows thatV2
d andV3

d take the form

V2
d5

@Ax21y21x#1/2

Ax21y2
, V3

d5
@Ax21y22x#1/2

Ax21y2
.

These last two expressions forV2
d and V3

d correspond to the solutions obtained by Friset al.
making use of parabolic coordinates. Concerning the two constant of motion,I 2

d andI 3
d , they take

the form

I 2
d5~xvy2yvx!vy1

k1x

Ax21y2
2

ic2y

Ax1 iy
1

ic3y

Ax2 iy
,

I 3
d5~xvy2yvx!vx1

k1y

Ax21y2
1

ic2x

Ax1 iy
2

ic3x

Ax2 iy
,

which can be rewritten as

I 2
d5~xvy2yvx!vy1

k1x

Ax21y2
1k2y ImF 1

Ax1 iy
G2k3y ReF 1

Ax1 iy
G ,

I 3
d5~xvy2yvx!vx1

k1y

Ax21y2
2k2x ImF 1

Ax1 iy
G1k3x ReF 1

Ax1 iy
G .

We close this section making the following observation. One can prove directly tha
a-dependent family of potentialsVa

d defined by

Va
d5

@Ax21y21~ax1by!#1/2

Ax21y2
, a5cosa, b5sin a,
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4171Manuel F. Rañada: Superintegrable systems and potentials of Drach

¬¬¬¬¬¬¬¬¬¬
is a solution of the two original real equations. Consequently, the potentialṼd5k1V1
d1kaVa

d is
superintegrable for any value ofa. This property seems to be related to the fact that the
differential equations are self-related by a rotation. That is, in a sense these two equations
considered as one single equation but presented in two different forms: the original form a
rotated form.

III. SUPERINTEGRABLE SYSTEMS WITH PSEUDO-EUCLIDEAN KINETIC ENERGY

The most general form of ann52 regular Lagrangian of mechanical class takes the form

L5~ 1
2!gi jv

iv j2V~q1,q2!, i , j51,2,

wheregi j are the coefficients of a Riemannian metricg. In Sec. II we studied the standard case
g Euclidean. Now in this section we are going to study the other important particular case

L5vxvy2U~x,y!,

corresponding tog pseudo Euclidean~or Minkowskian!.
Concerning the case of two degrees of freedom admitting a second integral of motion

is cubic in the velocities, we will point out that in 1935 Drach34 studied systems with a Lagrangia
of the formL5vxvy2U(x,y) and obtained ten different cases where there exists an addit
integral of motion cubic in the velocities~see also Refs. 3 and 40!. The corresponding potential
appear~all of them!, as a linear combination of three more simple potentials. Using his nota
the ten potentials are

~a! UD
a 5

a

xy
1bxr1yr21gxr2yr1, r i

213r i1350;

~b! UD
b 5

a

Axy
1

b

~y2mx!2
1

g~y1mx!

Axy~y2mx!2
;

~c! UD
c 5axy1

b

~y2ax!2
1

g

~y1ax!2
;

~d! UD
d 5

a

Ay~x2a!
1

b

Ay~x1a!
1

gx

Ax22a2
;

~e! UD
e 5

a

Axy
1

b

Ax
1

g

Ay
;

~ f! UD
f 5axy1by

2x21c

Ax21c
1g

x

Ax21c
;

~g! UD
g 5a~y13mx!221b~y23mx!1g~y2mx!~y29mx!;

~h! UD
h 5

a

~y1mx!2/3
1

b~y2mx!

~y1mx!2/3
1

g„4~y2mx!223~y1mx!2…

~y1mx!2/3
;

~k! UD
k 5ay23/21bxy23/21gx;
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~ l! UD
l 5a~3y2rx!1bx21/21gx21/2~y2rx!;

wherea, b, andg, are three arbitrary parameters.
Notice that the Cartan one-form associated to the LagrangianL5T2U, T5vxvy , takes the

form uL5vydx1vxdy. Consequently, if there is an integral of motionI for L, then the associated
symmetryY is related withI by

Y5S ]I

]vy
D ]

]x
1S ]I

]vx
D ]

]y
.

Using these two expressions foruL andY we can prove an appropriate new version of Theor
1. We omit the details and give directly the following proposition.

Proposition 3: Let the function U be the solution of the following system of two pa
differential equations:

2aUyy22cUxx13ayUy23cxUx50,

2AUyy22CUxx13AyUy23CxUx50,

where the functions a,b,c and A,B,C, are given by

a5a2y
21a1y1a0 , A5A2y

21A1y1A0 ,

b522a2xy2a1x2c1y2b0 , B522A2xy2A1x2C1y2B0 ,

c5a2x
21c1x1c0 , C5A2x

21C1x1C0 ,

with ai ,bi ,ci and Ai ,Bi ,Ci two different sets of real constants such that the two above sec
order equations are independent. Then, if T denotes the pseudo-Euclidean kinetic fu
T5vxvy , the Lagrangian L5T2U(x,y) is superintegrable with quadratic constants of motio

Using this proposition as a starting point, we have studied the existence of superinte
systems. As done above in the standard case of Lagrangians withg Euclidean, we analyze the
different combinations of equations that one can construct given different values to the
different sets of coefficients. We have obtained the following superintegrable systems:

~a! The two linear second-order equations are

Uyy2r 2Uxx50,

2yUyy22rxUxx13Uy23rU x50,

wherer denotes a parameter. The solution of this system, which we will denote byUa, is

Ua5k1U1
a1k2U2

a1k3U3
a ,

U1
a5x1ry , U2

a5
1

~x2ry !2
, U3

a53~x21r 2y2!110rxy.

Notice that this potentialUa can be identified with the potentialUD
g of Drach by only making the

changer523m. The two quadratic constants of the motion,I 2
a and I 3

a , take the form

I 2
a5vx

21r 2vy
212k1r ~x1ry !2

2k2r

~x2ry !2
12k3r „5~x21r 2y2!16rxy…,
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I 3
a5~xvy2yvx!~vx2rvy!1S k12 D ~x2ry !21

2k2~x1ry !

~x2ry !2
12k3~x2ry !2~x1ry !.

Obviously, making use of these two functions we can construct a new constant of motionJa cubic
in the velocities. It takes the form

Ja5~vx2rvy!
2~vx1rvy!1rP~x,y!vx1r 2Q~x,y!vy

with

P~x,y!52k1~x2ry !2
4k2

~x2ry !2
14k3~x2ry !~3x15ry !,

Q~x,y!522k1~x2ry !2
4k2

~x2ry !2
24k3~x2ry !~5x13ry !.

Nevertheless this new function will not be a fundamental one, that is, it will be dependent
will not give new information.

~b! The two linear second-order equations are

Uyy2r 2Uxx50,

y2Uyy2x2Uxx13yUy23xUx50.

The potential, which we will denote byUb, is

Ub5k1U1
b1k2U2

b1k3U3
b ,

U1
b5xy, U2

b5
1

~x2ry !2
, U3

b5
1

~x1ry !2
,

and the two constants of the motion,I 2
b and I 3

b , take the form

I 2
b5vx

21r 2vy
21k1~x

21r 2y2!2
2k2r

~x2ry !2
1

2k3r

~x1ry !2
,

I 3
b5~xvy2yvx!

22
4k2xy

~x2ry !2
2

4k3xy

~x1ry !2
.

We have obtained a new potential of Drach. In this case it isUD
c .

At this point we make the following two observations: First, notice that whenT5vxvy , the
angular momentumJ5xvy2yvx arises as a Noether constant generated not by rotations b
the vector field Y5x(]/]x)2y(]/]y), which is a symmetry for potentials of the form
U5U(xy). Because of thisI 3

b does not depend onk1 . Second, in a sense these two potentia
Ua andUb, can be considered as the pseudo-Euclidean~or hyperbolic! version ofVa andVb.

~c! The two linear second-order equations are

2xUxx13Ux50, 2yUyy13Uy50.

The potential, which we will denote byUc, is

Uc5k1U1
c1k2U2

c1k3U3
c ,
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U1
c5

1

Axy
, U2

c5
1

Ax
, U3

c5
1

Ay
,

and the two constants of the motion,I 2
c and I 3

c , take the form

I 2
c5~xvy2yvx!vx1k1Ax

y
2k2Ax1k3

x

Ay
,

I 3
c5~xvy2yvx!vy2k1Ay

x
2k2

y

Ax
1k3Ay.

~d! The two linear second-order equations are

2yUyy13Uy50, y2Uyy2x2Uxx13yUy23xUx50.

The potential, which we will denote byUd, is

Ud5k1U1
d1k2U2

d1k3U3
d , U1

d5
1

Axy
, U2

d5
1

x2
, U3

d5
1

xAxy
,

and the two constants of the motion,I 2
d and I 3

d are given by

I 2
d5~xvy2yvx!vx1k1Ax

y
1
2k2
x

1
k3

Axy
,

I 3
d5~xvy2yvx!

22
4k2y

x
24k3Ay

x
.

~e! The two linear second-order equations are

Uyy50, 2ryUyy22xUxx13rU y23Ux50.

The potentialUe solution of these two equations is

Ue5k1U1
e1k2U2

e1k3U3
e ,

U1
e5

1

Ax
, U2

e5y1rx, U3
e5

y13rx

Ax
,

and the two constants of the motion,I 2
e and I 3

e , take the form

I 2
e5vx

212k2x14k3Ax,

I 3
e5~xvy2yvx!~rvx2vy!2k1

rx2y

Ax
1k2

~rx2y!2

2
1k3

~rx2y!2

Ax
.

Notice that I 2
e does not depend ony. For a standard Lagrangian this property will me

separation of variables in the potential. The following proposition studies the existence of s
class of integrals for the case of pseudo-Euclidean kinetic term.
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Proposition 4: Let J5vx
21K(x,y) be a constant of motion independent ofvy for the Lagrang-

ian L5vxvy2U(x,y). Then,

~i! The potential U must be a linear function of y; that is, U(x,y)5U1(x)y1U0(x).
~ii ! The function K does not depend on y.
~iii ! The function J and the potential U are related by Kx852U1 .

The proof follows, by direct computation, from the expression of the two forces arising
L.

~f! The two linear second-order equations are

Uyy50, y2Uyy2x2Uxx13yUy23xUx50.

The potentialUf solution of these two equations is

Uf5k1U1
f 1k2U2

f 1k3U3
f , U1

f 5xy, U2
f 5

1

x2
, U3

f 5
y

x3
,

and the two constants of the motion,I 2
f and I 3

f , take the form

I 2
f 5vx

21k1x
22

k3
x2
, I 3

f 5~xvy2yvx!
22

4k2y

x
2
4k3y

2

x2
.

The expression ofI 2
f follows, as was the case withI 2

e , of the linear character ony of Uf and the
statement of Proposition 4.

Next we will study three new cases with equations admitting as solutions other potenti
Drach. The three cases are obtained by introducing a deformation in two of the cases pre
solved.

~g! Let us consider the above case~d! but now introducingc15r as a parameter. In such
case the two linear second-order equations become

~2yUyy13Uy!2r ~2xUxx13Ux!50,

y2Uyy2x2Uxx13yUy23xUx50,

and then we have the following potential of Drach as a solution:

Ug5k1U1
g1k2U2

g1k3U3
g ,

U1
g5

1

Axy
, U2

g5
1

~x2ry !2
, U3

g5
x1ry

Axy~x2ry !2
.

The corresponding two constants are

I 2
g5~xvy2yvx!~vx2rvy!1~x1ry !~k1U112k2U21k3U3!1

4k3rAxy
~x2ry !2

,

I 3
g5~xvy2yvx!

224xy~k2U21k3U3!.

~h! Suppose now, once more, the case~d! but now with the coefficientc0 as the paramete
r modifying the equations. We have

2yUyy13Uy50, y2Uyy2~x22r 2!Uxx13yUy23xUx50,
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4176 Manuel F. Rañada: Superintegrable systems and potentials of Drach

¬¬¬¬¬¬¬¬¬¬
and then we obtain the following solution:

Uh5k1U1
h1k2U2

h1k3U3
h ,

U1
h5

1

Ay~x2r !
, U2

h5
1

Ay~x1r !
, U3

h5
x

Ax22r 2
.

The two constants of the motion,I 2
h and I 3

h , are given by

I 2
h5~xvy2yvx!vx1xXk1U11k2U21k3S rxD

2

U3C,
I 3
h5~xvy2yvx!

22r 2vy
222ryXk1U12k2U21k3S rxDU3C.

Remark that in both two cases,~g! and~h!, the differential equations can be considered as
extension of those of the previous case~d!. Nevertheless, we have

lim
r→0

Ug5Ud, lim
r→0

, I 2
g5I 2

d , lim
r→0

I 3
g5I 3

d ,

but

lim
r→0

Uh5
k11k2

Axy
1k3 , lim

r→0
I 2
h5~xvy2yvx!vx1~k11k2!Ax

y
,

lim
r→0

I 3
h5~xvy2yvx!

2.

ConsequentlyUg can be interpreted as a deformation ofUd taken as a whole, butUh is just a
deformation of only the first partial potentialU1

d .
~i! As a final case, let us consider the above case~f! but with c05rÞ0. The two equations are

Uyy50, y2Uyy2~x21r !Uxx13yUy23xUx50;

the solution is

Ui5k1U1
i 1k2U2

i 1k3U3
i ,

U1
i 5xy, U2

i 5
x

Ax21r
, U3

i 5
~2x21r !y

Ax21r
;

and the two quadratic constants,I 2
i and I 3

i , are given by

I 2
i 5vx

21k1x
212k3xAx21r ,

I 3
i 5~xvy2yvx!

21rvy
21k1ry

21
2k2ry

Ax21r
1
2k3rxy

2

Ax21r
.

Remark that
J. Math. Phys., Vol. 38, No. 8, August 1997
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lim
r→0

Ui5k4xy1k2 , lim
r→0

I 2
i 5vx

21k4x
2, lim

r→0
I 3
i 5~xvy2yvx!

2, k45k112k3 .

HenceUi does not appear as a deformation ofUf taken as a whole but only of the first parti
potentialU1

f .
We close this section summarizing. We have obtained several superintegrable solutionUa,

a5a,b,...,i , most of them depending on a parameterr . It seems that the pseudo-Euclidea
structure leads to a less rigid dynamics than the Euclidean one and it permits more superint
potentials. We have also proven that seven of the obtained solutions correspond to seven
potentials obtained by Drach some time ago in a very different context. They areUa, Ub, Uc,
Ue, Ug, Uh, andUi , which can be identified~up to some small change of notation! with UD

g ,
UD
c , UD

e , UD
l , UD

b , UD
d , andUD

f , respectively.

IV. FINAL COMMENTS

We have made use of the Lagrangian formalism, the existence of hidden symmetries, a
generalized Noether’s theorem for the study of the theory of superintegrable systems. Besi
theoretical interest, this approach has provided a practical procedure for the computation
ticular superintegrable potentials. In the case of the standard Lagrangians we have recove
results obtained by Friset al., making use of the Hamilton–Jacobi approach. In the case of
pseudo-Euclidean kinetic metric we have obtained nine different superintegrable solutions

The number of known integrable systems admitting a second integral of motion which is
in the velocities is very reduced~see Ref. 3 and 40–42!. We have proven that seven of the te
potentials obtained by Drach in Ref. 34 are actually superintegrable systems and that the
sponding cubic integral was not a fundamental one but just a consequence of the existence
more simple independent quadratic constants. We notice that this difference must be consid
an important one since the dynamics of a superintegrable system is always much more regu
the dynamics of an integrable system~e.g., existence of closed trajectories as in the Kep
problem!. We think that there are a number of related matters, such as the properties of the
three potentials of Drach, the existence of superintegrable systems with more general Riem
kinetic terms, the existence of superintegrable systems with nonquadratic integrals, and som
interesting questions, that must be investigated in the future.
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Nonlocal quadratic Poisson algebras, monodromy map,
and Bogoyavlensky lattices
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A new Lax representation for the Bogoyavlensky lattice is found and itsr -matrix
interpretation is elaborated. Ther -matrix structure turns out to be related to a
highly nonlocal quadratic Poisson structure on a direct sum of associative algebras.
The theory of such nonlocal structures is developed and the Poisson property of the
monodromy map is worked out in the most general situation. Some problems
concerning the duality of Lax representations are raised. ©1997 American Insti-
tute of Physics.@S0022-2488~97!00208-9#

I. INTRODUCTION

In this work we find some new results on the well-known integrable system, the Bogo
lensky lattice. However, these results, dealing with one particular system, allow us to touc
general problems of the Hamiltonian theory of integrable systems.

The first of these problems is the nature ofthe most general quadratic Poisson bracketson
associative algebras~or, in a different setting, on Lie groups!. These brackets were invented a
used for various purposes in Refs. 1–7. They serve as a wide generalization of the so
Sklyanin bracket.8,9 The characteristic property of the Sklyanin bracket in the Lie groups settin
that it defines a Lie–Poisson structure, i.e., the group multiplication is a Poisson map with r
to this bracket. In the framework of associative algebras the corresponding property m
formulated in the following manner. Let the algebrag carry the Sklyanin bracket, consider th
direct sumg5g(1)% ••• %g(n) ~g(k) aren copies ofg!, and supplyg with the direct sum of the
Sklyanin brackets. Then the monodromy mapg°g, defined as (u1 ,...,un)°un• ••• •u1 , has the
Poisson property. Although several generalizations of this statement are available in the lite
the most general version still has not appeared, presumably because of the lack of inte
examples.

The most examples where the monodromy map is of interest are connected with the
models, where eachg(k) in the direct sumg is attached to thekth lattice site and plays the role o
the phase space of thekth particle. In all known examples the Poisson bracket ong is either
ultralocal ~the functions depending only on theg(k) are in involution for differentk!, or non-
ultralocal, but still with some locality properties~usually the functions ong(k) are in involution
with the functions ong( j ), unlessu j2ku<1!.

In this paper we establish the Poisson property of the monodromy map in the most g
situation~see Proposition 5 and Theorem 1!. Namely, we allow an arbitrary nonlocality, when th
functions ong(k) do not commute with the functions ong( j ), irrespective of the value ofu j
2ku. We give also a rather spectacular example of the situation where our construction
~and is natural and necessary!—the well-known Bogoyavlensky lattice. It is interesting to note th
in this example differentg(k)’s are attached not to single lattice sites, but to sets of equidistant
~or, in other terminology, to different sorts of particles!.

Not very surprisingly, to obtain these new results for an old system, we have to deal w
novel Lax representation for it. Here we touch the second general problem: theduality. It is well

a!Electronic mail address: suris@cevis.uni-bremen.de
0022-2488/97/38(8)/4179/23/$10.00
4179J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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known that often one and the same integrable system admits two~or more! Lax representations
living in different Lie algebras. In particular, the Lax matrices of these representations
different dimensions.

If one knows a Lax representation for a system at hand, then it is often possible to fi
alternative Lax representation by the following trick. Take a characteristic polynomial o
known Lax matrix. It serves as a generating function for the integrals of motion. Using s
determinantal identities, one can often represent this function as a characteristic polynom
some other matrix. Then there is a good chance that this matrix is indeed a~new! Lax matrix, i.e.,
that it takes part in a Lax representation for our system.

One of the determinantal identities often used by such transformations is the so-
Weinstein–Aronszajn formula.10,11A novel feature of the present work is that instead of the la
formula we use the Laplace expansion in order to find new Lax matrices.

What is, however, very important and not provided by determinantal identities, is establi
a correspondence~if possible, possessing certain Poisson properties! between different Lax ma-
trices, rather than between their characteristic polynomials. To my knowledge, it was done o
the framework of linear Poisson brackets.11 It would be highly desirable to work out such corr
spondences in various different contexts, e.g., if one of the Lax matrices belongs to a line
another to a quadratic Poisson algebra~the most prominent example being the usual Toda latt
cf. Refs. 9 and 12!, or if the both matrices belong to quadratic Poisson algebras~e.g., the relativ-
istic Toda lattice, cf. Refs. 13, 14, and 3!.

The example elaborated in the present paper belongs to the latter class~both algebras qua
dratic!, and has two additional interesting features. First, the Poisson structure of the first~old! Lax
formulation includes a Dirac reduction, and, second, the dimensions of both Lax matrices~old and
new! grow with the number of particles.

II. QUADRATIC BRACKETS ON ASSOCIATIVE ALGEBRAS

Let g be an associative algebra equipped with a nondegenerate scalar product^•,•& which is
invariant in the following sense:

^u•v,w&5^u,v•w&. ~2.1!

The gradient¹wPg of a smooth functionw on g is defined by the following relation:

^¹w~u!,X&5
d

d«
w~u1«X!U

«50

;XPg. ~2.2!

Denote also

dw~u!5u•¹w~u!, d8w~u!5¹w~u!•u. ~2.3!

The following ‘‘hierarchy’’ of quadratic brackets ong is known.
~1! The Sklyanin bracket8,15

$w,c%~u!5^R~d8w!,d8c&2^R~dw!,dc&.

The linear operatorR on g has to be skew-symmetric,

R*52R,

in order to assure the skew-symmetry of the bracket; here* denotes the adjoint operator wit
respect to the scalar product^•,•&. A sufficient condition for this bracket to satisfy the Jaco
identity is the so-called modified Yang–Baxter equation for the operatorR:
J. Math. Phys., Vol. 38, No. 8, August 1997
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@R~X!,R~Y!#5R~@R~X!,Y#1@X,R~Y!# !2a@X,Y# ;X,YPg ~2.4!

with some constanta. We shall denote this condition by mYB(R; a).
~2! The Li–Parmentier–Oevel–Ragnisco bracket16,17

$w,c%~u!5^A~d8w!,d8c&2^A~dw!,dc&1^S~dw!,d8c&2^S~d8w!,dc&.

For the skew-symmetry of this bracket one needs

A*52A, S*5S.

A sufficient condition for the Jacobi identity is given by mYB(A;a) and an additional property o
the linear operatorsA,S:

@S~X!,S~Y!#5S~@A~X!,Y#1@X,A~Y!# ! ;X,YPg. ~2.5!

We shall denote this condition by Hom(S,A). It turns out that the set of two condition
mYB(A;a), Hom(S,A) is equivalent also to the set of two conditions mYB(A;a), mYB(A
1S;a).

~3! The most general quadratic bracket ong,1–3

$w,c%~u!5^A~d8w!,d8c&2^D~dw!,dc&1^B~dw!,d8c&2^C~d8w!,dc& ~2.6!

We shall denote this expression by PB(A,B,C,D). For the skew-symmetry one needs the follo
ing conditions on the linear operatorsA,B,C,D:

A*52A, D*52D, B*5C. ~2.7!

Proposition 1: Sufficient conditions for (2.6) to be a Poisson bracket are given by the c
tions

mYB~A;a!, mYB~D;a!, Hom~B,D !, Hom~C,A!. ~2.8!

If

A1B5C1D5R, ~2.9!

then the above sufficient conditions are equivalent to

mYB~A;a!, mYB~D;a!, mYB~R;a!. ~2.10!

Under the conditions given in the Proposition 1, the following Hamiltonian system ong is
defined for every smooth functionw:

u̇5$w,u%5u•A„d8w~u!…2D„dw~u!…•u1u•B„dw~u!…2C„d8w~u!…•u. ~2.11!

If ~2.9! is fulfilled, then this equation takes the Lax form for Ad–invariant Hamiltonian functi
w. For such functions

dw~u!5d8w~u!, ~2.12!

and we get the equation in the Lax form:

u̇5$w,u%5@u,R~dw~u!!#. ~2.13!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Proposition 2: Under the condition (2.9) Ad-invariant functions are in involution with resp
to the bracket$•,•%, hence each Ad-invariant function is an integral of motion for (2.13).

III. POISSON BRACKETS ON DIRECT SUMS

Consider a ‘‘big’’ algebrag5 % k51
n g, a direct sum ofn copies of the algebrag. So, the

multiplication in g is componentwise: ifu5(u1 ,...,un)Pg, andv5(v1 ,...,vn)Pg, then

u–v5~u1•v1 ,...,un•vn!.

Define the~nondegenerate, invariant! scalar productŠ^•,•&‹ on g as

^^u,v&&5 (
k51

n

^uk ,vk&.

Now let A, B, C, D be linear operators ong satisfying conditions analogous to~2.7! and to
~2.8! @or ~2.10!#. Then one can define the bracket PB~A,B,C,D! on g:

$F,C%~u!5Š^A~d8F!,d8C&&2Š^D~dF!,dC&‹1Š^B~dF!,d8C&‹2Š^C~d8F!,dC&‹.
~3.1!

To be able to deal with these objects, let us introduce the following~natural! notations. Let
A i(u) be thei th component ofA~u!. Then we set

A i~u!5(
j51

n

Ai j ~uj !. ~3.2!

Let also¹ jF, djF, dj8F denote thej th components of the corresponding objects for a smo
functionF~u! on g.

Then the conditions~2.7! for the operatorsA, B, C, D read

Ai j*52Aji , Di j*52Dji , Bi j*5Cji .

The bracket~3.1! takes the form

$F,C%~u!5 (
i , j51

n

^Ai j ~dj8F!,di8C&2 (
i , j51

n

^Di j ~djF!,diC&

1 (
i , j51

n

^Bi j ~djF!,di8C&2 (
i , j51

n

^Ci j ~dj8F!,diC&. ~3.3!

It is interesting to reformulate the conditions of the Proposition 1 for the operatorsA, B, C, D
acting ong in terms of the operatorsAi j , Bi j , Ci j , Di j acting ong.

Proposition 3: The conditionmYB~A;a! for a skew symmetric operatorA is equivalent to the
following set of conditions:

~1! n equationsmYB(Aj j ;a);
~2! n(n21) equationsHom(Ai j ,Aj j ) ~for all iÞ j !;
~3! n(n21)(n22)/6 conditions~for all i, j,k!:

@Ai j ~X!,Aik~Y!#5Aik~@Akj~X!,Y# !1Ai j ~@X,Ajk~Y!# ! ;X,YPg.

We shall denote the last condition by Aux(Ai j ,Aik ;Akj ,Ajk).
Proposition 4: The conditionHom~C,A! is equivalent to the set of
J. Math. Phys., Vol. 38, No. 8, August 1997
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~1! n2 conditionsHom(Ci j ,Aj j ) ~for all 1< i , j<n!;
~2! n2(n21)/2 conditionsAux(Ci j ,Cik ;Akj ,Ajk) ~for all 1< i , j ,k<n, j,k!.

Remark 1: Let us comment on why in Proposition 3 it is enough to requ
Aux(Ai j ,Aik ;Akj ,Ajk) only for i, j,k. First, this condition is obviously~skew! symmetric with
respect to the interchangej↔k. Further, it turns out to be symmetric also with respect to cyc
shifts of the triple (i , j ,k) of distinct indices. To demonstrate this, notice that due to nonde
eracy of the scalar product the above condition may be expressed as

^@Ai j ~X!,Aik~Y!#,Z&5^Aik„@Akj~X!,Y#…,Z&1^Ai j „@X,Ajk~Y!#…,Z&

for arbitraryX,Y,ZPg. Using the skew-symmetry of the operatorA (Ai j*52Aji ) and the invari-
ance of the scalar product, we can transform this into

2^X,Aji „@Aik~Y!,Z#…&5^X,Ajk„@Y,Aki~Z!#…&2^X,@Ajk~Y!,Aji ~Z!#&

for arbitraryX,Y,ZPg. Again, due to the nondegeneracy of the scalar product this is equiv
to

2Aji „@Aik~Y!,Z#…5Ajk„@Y,Aki~Z!#…2@Ajk~Y!,Aji ~Z!#

for arbitraryY,ZPg. This is exactly Aux(Ajk ,Aji ;Aik ,Aki), i.e., the above condition for the tripl
( j ,k,i ).

Remark 2:For n52 we see that the mYB~A;a! for the skew-symmetric operator

A5SA11 A12

A21 A22
D

on g%g is equivalent to the set of four conditions

mYB~A11;a!, mYB~A22;a!, Hom~A12,A22!, Hom~A21,A11!

for the operators ong. Comparing with Proposition 1, we see that it is exactly the suffici
conditions for PB(A11,A12,A21,A22) to be a Poisson bracket. This coincidence was first poin
out in Refs. 4 and 5.

IV. POISSON PROPERTIES OF THE MONODROMY MAP

An interesting and important question arising in connection with the Poisson brackets o
direct sums is the question on the Poisson properties of the monodromy maps.

Proposition 5: Letg be equipped with the Poisson bracketPB~A,B,C,D!. Suppose that the
following relations hold:

Ai11,j112Di , j1Bi11,j2Ci , j1150 for 1< i , j<n21;

A1,j111B1,j50⇔Aj11,12Cj ,150 for 1< j<n21;

Dn, j1Cn, j1150⇔Dj ,n2Bj11,n50 for 1< j<n21.

Then the map

M:g°g, M~u!5M~u1 ,...,un!5un ••• u1 ~4.1!

is Poisson, if g is equipped withPB(A11,B1n ,Cn1 ,Dnn).
Proof: Take two smooth functionsw,c on g, and form two functionsF,C on g according to
J. Math. Phys., Vol. 38, No. 8, August 1997
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F~u!5w~T!, C~u!5c~T!,

where

T5M~u!5un • ••• •u1 .

It is easy to see that

¹ jF~u!5uj21• ••• •u1•¹w~T!•un• ••• •uj11 .

Consequently,

djF~u!5uj•¹ jF~u!5uj• ••• •u1•¹w~T!•un• ••• •uj11 , ~4.2!

dj8F~u!5¹ jF~u!•uj5uj21• ••• •u1•¹w~T!•un• ••• •uj . ~4.3!

In particular,

dnF~u!5dw~T!, d18F~u!5d8w~T!,

and for 1< j<n21 we have

djF~u!5dj118 F~u!.

Substituting the last two formulas into~3.3!, we see that under the conditions of the Propositi
almost all the terms cancel, leaving us with

$F,C%~u!5^A11„d8w~T!…,d8c~T!&2^Dnn„dw~T!…,dc~T!&

1^B1n„dw~T!…,d8c~T!&2^Cn1„d8w~T!…,dc~T!&,

which proves the Proposition. j

A further important observation is related to the form of the Lax equations ong in the case
when the Hamiltonian function has the form

F~u!5w~M~u!…5w~un• ••• •u1!, ~4.4!

andw is an Ad-invariant function ong. Under this condition we can represent the formulas~4.2!
and ~4.3! as

djF~u!5dw~Tj !, dj8F~u!5dw~Tj21!, ~4.5!

where

Tj5uj• ••• •u1•un• ••• uj11

@so that, in particular,T05Tn5T5M(u)#.
Proposition 6: Letg be equipped with the Poisson bracketPB~A,B,C,D!. Then the Hamil-

tonian equations of motion generated by the Hamiltonian function (4.4) with an Ad-inva
function, w, may be presented in the form

u̇i5uiRi2L iui , ~4.6!

where
J. Math. Phys., Vol. 38, No. 8, August 1997
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Ri5(
j51

n

~Ai , j111Bi , j !„dw~Tj !…,

L i5(
j51

n

~Di , j1Ci , j11!„dw~Tj !…

[in these formulas the subscripts should be taken(modn), so that Ai ,n115Ai ,1 and Ci ,n11

5Ci ,1] .
Proof: This follows immediately from the equations of motion ong analogous to~2.11!, the

notation~3.2!, and the formulas~4.5!. j

The most important and interesting for applications is the situation when not only the m
dromy mapM is Poisson, but also its compositions with the different powers of the shift

s:g°g, s~u1 ,...,un21 ,un!5~u2 ,...,un ,u1!. ~4.7!

Shifting subscripts in the conditions of Proposition 5, we arrive at the following fundame
statement.

Theorem 1: Let g be equipped with the Poisson bracketPB~A,B,C,D!. Suppose that the
following relations hold:

Ai11,j1152Bi11,j5Ci , j1152Di , j for iÞ j ;

Aj11,j112Dj , j1Bj11,j2Cj , j1150 for all 1< j<n.

Then each map

M+s j :g°g, M+s j~u!5Tj ~4.8!

is Poisson, if g is equipped with the Poisson bracket

PB~Aj11,j11 ,Bj11,j ,Cj , j11 ,Dj j !.

The Hamiltonian equations of motion generated by the Hamiltonian function (4.4) with an
invariant function, w, are of the form

u̇j5ujL j212L juj , L j5Rj„dw~Tj !…, ~4.9!

where

Rj5Aj11,j111Bj11,j5Dj , j1Cj , j11 .

[In all the formulas the subscripts should be taken(modn)] .
This Theorem may be considered as a final link in the chain of generalizations.5,6,8,15,16,18–21

However, for the non-ultralocal quadratic Poisson structures on direct sums discussed in
papers the operatorsA,B,C,D always had only few nonvanishing ‘‘operator entries,’’ name
Aj , j , Dj , j , Bj11,j , andCj , j11 . The ‘‘most nonlocal’’ example~though only withn52! appeared
in Ref. 3 in connection with the relativistic Toda lattice.

V. BASIC ALGEBRAS AND OPERATORS

Two sorts of algebras will play the basic role in our presentation. They are well suite
describe various lattice systems with the so-called open-end and periodic boundary cond
respectively.

~1! For theopen-end casewe setg5gl(N), the algebra ofN3N matrices
J. Math. Phys., Vol. 38, No. 8, August 1997
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u5 (
i , j51

N

ui j Ei j . ~5.1!

The ~nondegenerate, invariant! scalar product is chosen as

^u,v&5tr~u•v !. ~5.2!

~2! For the periodic case g,gl(N)@l,l21# is a twisted subalgebra of the loop algeb
gl(N)@l,l21#, consisting of formal semiinfinite Laurent series overgl(N) satisfying

u~l!5 (
pPZ
p!`

(
i2 j[p

~mod N!

lpui j
~p!Ei j . ~5.3!

The scalar product is chosen as

^u~l!,v~l!&5tr„u~l!•v~l!…0 , ~5.4!

the subscript 0 denoting the free term of the formal Laurent series.
In these cases of matrix algebras the Poisson bracket PB(A,B,C,D) may be written in a fine

tensor form.
~1! In the open-end casefunctionsui j form the functional basis of the set of functions o

g. It is easy to see that¹ui j5Eji . For a linear operatorR on g define the correspondingN2

3N2 matrix r :

r5 (
i , j ,k,l

^R~¹ui j !,¹ukl&Ei j ^Ekl . ~5.5!

Then it is easy to check that the pairwise Poisson brackets of the coordinate functions may
into the formula

$u%
,
u%5~u^u!a2d~u^u!1~ I ^u!b~u^ I !2~u^ I !c~ I ^u!. ~5.6!

Here the matricesa,b,c,d correspond to the operatorsA,B,C,D in the same manner, asr corre-
sponds toR.

~2! Analogously, in theperiodic casethe functional basis of the set of functions ong is
formed by the coordinatesui j

(p) , for which¹ui j
(p)5l2pEji . TheN

23N2 matrix r (l,m) depend-
ing on two parametersl,m, corresponding to a linear operatorR, is now defined as

r ~l,m!5 (
p,q

i2 j[p~mod N!
k2 l[q~mod N!

^R~¹ui j
~p!!,¹ukl

~q!&lpmqEi j ^Ekl . ~5.7!

The pairwise Poisson brackets of the coordinate functions may be presented in the form ana
to ~5.6!:

$u~l! ^
,
u~m!%5„u~l! ^u~m!…a~l,m!2d~l,m!„u~l! ^u~m!…

1„I ^u~m!…b~l,m!„u~l! ^ I …2„u~l! ^ I …c~l,m!„I ^u~m!…. ~5.8!

The Poisson brackets PB~A,B,C,D! on the ‘‘big’’ algebrag may be also presented in th
tensor form. For example, in theperiodic casethe tensor representation of the bracket~3.3! reads
J. Math. Phys., Vol. 38, No. 8, August 1997
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$uj~l! ^
,
ui~m!%5„uj~l! ^ui~m!…ai j ~l,m!2di j ~l,m!„uj~l! ^ui~m!…

1„I ^ui~m!…bi j ~l,m!~uj~l! ^ I …2„uj~l! ^ I …ci j ~l,m!„I ^ui~m!….

~In theopen-end caseone has simply to omit everywhere the spectral parametersl, m!.
The usefulness of the tensor notation lies in that it provides us with an efficient meth

finding Poisson submanifolds for the bracket PB(A,B,C,D). Suppose that there is a Poisson spa
S with a Poisson bracket$,%0 and local coordinatess, and a mapT(s):S°g. Suppose also tha
the matrix $T(s)^

,
T(s)%0 , composed of pairwise Poisson brackets of entries of the ma

T(s), may be presented in the form~5.6! or ~5.8!, respectively@naturally, in terms ofT(s) instead
of u#. Then the setT(S),g is a Poisson submanifold for the bracket PB(A,B,C,D). For a simple
proof, see Ref. 3.

Now we introduce several operators which will be widely used in the following presenta
~1! In theopen-end case gas a linear space may be presented as a direct sum

g5 %

k52N11

N21

gk ,

wheregk is the set of matrices with nonzero entries only on thekth diagonal, i.e., in the position
( i , j ) with i2 j5k. In particular,g0 is a set of diagonal matrices, which serves as a commuta
subalgebra ofg. The other two obvious subalgebras are

g15 %

k51

N21

gk , g25 %

k52N11

21

gk ,

i.e., the sets of strictly lower and upper triangular matrices.
~2! In theperiodic case gas a linear space is a direct sum

g5 %

kPz
k!`

gk ,

wheregk is the set of monomial matrices fromg containing only the powerlk. Again g0 is a
commutative subalgebra ofg. The two other subalgebras are

g15 %

0,k!`

gk , g25 %

k,0
gk ,

i.e., the sets of Laurent series with positive and with negative powers ofl, respectively.
In the both cases,g as a linear space is a direct sum of three subspacesg1 , g2 , g0 , and we

denote the corresponding projections byP1 , P2 , P0 , respectively.~Obviously, as a setg0 is
identical in both the open-end and the periodic case, but, of course,P0 has different meaning in
these two cases.!

Define a linear operatorR0 on g by

R05P12P2 . ~5.9!

Define also a skew-symmetric linear operatorP on g0 by

P~Ej j !5 (
k51

N

p jkEkk , p jk5H 1, j.k,
21, j,k,
0, j5k,

~5.10!

and continueP on the wholeg according toP5P+P0 .
J. Math. Phys., Vol. 38, No. 8, August 1997
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Then the following operators satisfy all conditions of Proposition 1:

A5 1
2~R01P!, D5 1

2~R02P!,
~5.11!

B5 1
2~P02P!, C5 1

2~P01P!,

so that the Poisson bracket PB(A,B,C,D) is defined. Note that these operators have the prop
~2.9!:

A1B5C1D5R5 1
2~R01P0!. ~5.12!

An important property of these operators was established in Ref. 22.
Proposition 7: Fix an elementEPg1 :

E5 (
k51

N21

Ek11,k or E5l(
k51

N

Ek11,k

in the open-end and periodic case, respectively. Then for an arbitrary natural number m>2, the
set

Pm215E% %

j50

m21

g2 j ~5.13!

is a Poisson submanifold for the bracketPB(A,B,C,D).
To conclude this section we give also the expressions for the matricesr 0 , p0 , p correspond-

ing to the operatorsR0 , P0 , P, respectively. The expression for ther 0 depends on the case. In th
open-end case,

r 05(
i, j

Ei j ^Eji2(
i. j

Ei j ^Eji . ~5.14!

In theperiodic case,

r 0~l,m!5
lN1mN

lN2mN (
i51

N

Eii ^Eii1 (
p51

N21
2lpmN2p

lN2mN (
i2 j[p

~mod N!

Ei j ^Eji . ~5.15!

The expressions forp0 , p are identical in both cases:

p05(
i51

N

Eii ^Eii , ~5.16!

p5 (
i , j51

N

p i j Eii ^Ej j . ~5.17!

The matricesa,b,c,d corresponding to the operatorsA,B,C,D are given in theperiodic case
by

a~l,m!5 1
2~r 0~l,m!1p!, d~l,m!5 1

2„r 0~l,m!2p…,
~5.18!

b5 1
2~p02p!, c5 1

2~p01p!,

and in theopen-end caseone has to omit the spectral parametersl, m.
J. Math. Phys., Vol. 38, No. 8, August 1997
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VI. BOGOYAVLENSKY LATTICE

We will be studying the following integrable lattice system, known as the Bogoyavle
lattice23 ~although it was introduced earlier in Ref. 24, and its certain special case appeared
Ref. 25!:

żk5zkS (
j51

m21

zk1 j2 (
j51

m21

zk2 j D . ~6.1!

It may be considered on an infinite lattice~all the subscripts belong toZ!, and admits also
finite-dimensional reductions of two types: open-end and periodic. We shall denote the num
lattice cites~particles! in the finite reductions byM2m11 in the open-end case, byM in the
periodic case, for reasons which will become clear soon. The boundary conditions in the op
case are

zk50 for k<0 and for k>M2m12;

in the periodic case all the subscripts belong toZ/MZ.
A Hamiltonian interpretation of this system was found in Ref. 23: the system~6.1! is Hamil-

tonian with the Hamiltonian function

H~z!5( zk ~6.2!

with respect to the Poisson bracket given by

$zj ,zk%5H zjzk , j2k51,...,m21,
2zjzk , j2k52m11,...,21,
0, else

~6.3!

@in the periodic case withM.2m22 the conditions of the typej2k51,...,m21 have to be
understood (modM )#.

Bogoyavlensky has found also the Lax representations for this system:

Ṫ5@T,P#, ~6.4!

where

T~z,l!5l2m11( zkEk,k1m211l( Ek11,k , ~6.5!

P~z,l!5( ~zk1zk211•••1zk2m11!Ekk1lm( Ek1m,k . ~6.6!

Here for the infinite lattices all the subscripts belong toZ, for the periodic case all the
subscripts belong toZ/MZ, and for the open-end case all the subscripts belong to 1,...,M ~so that
for both types of finite reductions the matrices involved in the Lax representations areM3M !.
Moreover, in the infinite-dimensional and open-end cases the dependence on the spectral
eterl becomes inessential and may be suppressed by settingl51. Below we consider only finite
lattices. It can be said that in these cases the Lax matrixT belongs to the algebrag, which is
defined exactly asg in the previous section with the only difference being thatN should be
everywhere replaced byM .
J. Math. Phys., Vol. 38, No. 8, August 1997
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In Ref. 22 we gave anr -matrix interpretation of the Bogoyavlensky lattices. The main res
of Ref. 22 concerning the lattice~6.1! may be summarized as follows. Let the operato
A,B,C,D on g be defined as in the previous section, withN replaced byM . Define also a Poisson
bracket PB(A,B,C,D) on g. Then, according to Proposition 7, the setPm21,g defined as in
~5.13! is a Poisson submanifold. Obviously, the setT m21 , consisting of the Lax matrices~6.5!, is
a subset ofPm21 .

Proposition 8: The Dirac reduction of the bracketPB(A,B,C,D) to the subset
T m21,Pm21 coincides with the bracket (6.3). The Dirac correction to the Hamiltonian vec
field $w,u%, when reducing it to the setT m21 , vanishes, ifw(u)5c(um) with some Ad-invariant
functionc.

This Proposition explains the Lax equation~6.4!, because the Hamiltonian function~6.2! can
obviously be seen as

H5
1

m
tr~Tm!, so that dH5d8H5Tm,

and it is not difficult to check that for the matrix~6.6! there holds:

P5~P11P0!~T
m!5~R1 1

2I !~T
m!.

VII. ILLUSTRATIVE EXAMPLE: VOLTERRA LATTICE

We intend now to establish another Lax representation for the Bogoyavlensky lattices,
native to~6.4!. To illustrate our approach by the simple particular case, we start with the la
~6.1! corresponding tom52, and known also as the Volterra~or Lotka–Volterra, or Langmuir!
lattice:

żk5zk~zk112zk21!. ~7.1!

The invariant Poisson bracket~6.3! for this system is

$zk11 ,zk%5zk11zk , ~7.2!

and the corresponding Hamiltonian function

H~z!5(
k
zk . ~7.3!

We want to separate all the particles into two ‘‘sorts:’’

uk5z2k21 , vk5z2k . ~7.4!

In terms of these two sorts of particles the equations of motion~7.1! may be put down as

u̇k5uk~vk2vk21!, v̇k5vk~uk112uk!. ~7.5!

The underlying Poisson bracket~7.2! is now

$vk ,uk%5vkuk , $uk11 ,vk%5uk11vk , ~7.6!

and the Hamiltonian function~7.3! is equal to

H~u,v !5(
k

~uk1vk!. ~7.7!
J. Math. Phys., Vol. 38, No. 8, August 1997
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A. Periodic case

The notation~7.4! is consistent with theM -periodic boundary conditions, only if the tota
number of particles iseven. Hence we consider in this subsection only the case

M52N. ~7.8!

The usualM3M52N32N Lax matrix for the Volterra lattice is

T~z,l!5l(
k51

2N

Ek11,k1l21(
k51

2N

zkEk,k11 . ~7.9!

Its natural ambient space is the algebrag defined in the previous section.
Our aim in this section is to elaborate on an alternativeN3N Lax representation for this

system, naturally living in the algebrag whose definition was given in Sec. V.
Define two Lax matrices fromg:

L1~u,v,l!5l(
k51

N

Ek11,k1 (
k51

N

~uk1vk21!Ekk1l21(
k51

N

ukvkEk,k11 , ~7.10!

L2~u,v,l!5l(
k51

N

Ek11,k1 (
k51

N

~uk1vk!Ekk1l21(
k51

N

uk11vkEk,k11 . ~7.11!

Proposition 9: (1) The set of matrices L1(u,v,l) [or L 2(u,v,l)] forms a Poisson submani
fold in g, if the latter is equipped with the Poisson bracketPB(A,B,C,D).

(2) The Volterra lattice (7.5) admits two (equivalent) Lax representations

L̇15@L1 ,R~L1!#, L̇25@L2 ,R~L2!#. ~7.12!

(3) The function

det„L1~u,v,l!2mI N…5det„L2~u,v,l!2mI N… ~7.13!

serves as a generating function of integrals of motion of the Volterra lattice. Moreover,

det„T2~z,l!2mI M…5det„L1~u,v,l
2!2mI N…det„L2~u,v,l

2!2mI N…. ~7.14!

Proof:We prove first of all the third statement, which will also give a motivation for cons
ering the matrices~7.10! and ~7.11!.

The generating function of integrals of motion for the periodic Volterra lattice, following fr
theM3M Lax representation, can be chosen as

det„T2~z,l!2mI …. ~7.15!

Here the matrixT2(z,l) has the following structure:

T2~z,l!5l2(
k51

2N

Ek12,k1 (
k51

2N

~zk1zk21!Ekk1l22(
k51

2N

zkzk11Ek,k12 . ~7.16!

We use the Laplace formula to represent the determinant~7.15! as
J. Math. Phys., Vol. 38, No. 8, August 1997
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det~T22mI !5 (
i1,•••, i N

det~T22mI !S 1 3 ... 2N21

i 1 i 2 ... i N
D det~T22mI !S 2 4 ... 2N

j 1 j 2 ... j N
D .

~7.17!

Here the sum is taken over all possible orderedN-tuples (i 1 ,...,i N) of the natural numbers from
(1,...,2N), and the numbersj 1,•••, j N form the complement of (i 1 ,...,i N) to (1,...,2N). We
use the notation

AS a1 a2 ... aN

b1 b2 ... bN
D

for the submatrix ofA formed by the elements standing on the intersection of the r
(a1 ,...,aN) with the columns (b1 ,...,bN).

Now the crucial observation based on the explicit formula~7.16! and on the hypothesis~7.8!
is the following: in fact in the huge sum~7.17! all but one term vanishes identically, so that we a
left with

det~T22mI !5det~T22mI !S 1 3 ... 2N21

1 3 ... 2N21D det~T22mI !S 2 4 ... 2N

2 4 ... 2ND . ~7.18!

However, it is easy to calculate that

„T2~z,l!2mI 2N…S 1 3 ... 2N21

1 3 ... 2N21D 5L1~u,v,l
2!2mI N , ~7.19!

„T2~z,l!2mI 2N…S 2 4 ... 2N

2 4 ... 2ND 5L2~u,v,l
2!2mI N . ~7.20!

This proves the formula~7.14!. To prove the formula~7.13!, notice that the matricesL1 ,L2 are in
fact connected by means of a similarity transformation, due to the followingimportant observa-
tion:

L1~u,v,l!5U~u,l!V~v,l!, L2~u,v,l!5V~v,l!U~u,l!, ~7.21!

where

U~u,l!5l(
k51

N

Ek11,k1 (
k51

N

ukEkk , ~7.22!

V~v,l!5I1l21(
k51

N

vkEk,k11 . ~7.23!

The third statement of the Proposition is herewith completely proved.
Turning to the first statement, we notice that the both matricesL1 , L2 have the same structur

as the Lax matrix of the Toda lattice~cf. Ref. 3!:

L~a,b,l!5l(
k51

N

Ek11,k1 (
k51

N

bkEkk1l21(
k51

N

akEk,k11 . ~7.24!

The expressions for the ‘‘Toda coordinates’’ (a,b) are given for the matrixL1 by
J. Math. Phys., Vol. 38, No. 8, August 1997
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bk5uk1vk21 , ak5ukvk , ~7.25!

and for the matrixL2 by

bk5uk1vk , ak5uk11vk . ~7.26!

Now a very remarkable circumstance is that in both parametrizations~7.25! and ~7.26! the
equations of motion~7.5! imply the equations of motion of the Toda lattice:

ḃk5ak2ak21 , ȧk5ak~bk112bk!, ~7.27!

while the Poisson brackets~7.6! imply thequadraticPoisson brackets for the Toda lattice:

$bk11 ,bk%5ak , $ak11 ,ak%5ak11ak ,
~7.28!

$bk ,ak%52bkak , $bk11 ,ak%5bk11ak .

The corresponding Hamiltonian function~7.7! in both parametrizations is equal to

H5 (
k51

N

bk . ~7.29!

An r -matrix interpretation of the quadratic Poisson bracket~7.28! for the Toda lattice was
found in Ref. 3. It was demonstrated there that the matricesL(a,b,l) form a Poisson submanifold
in the algebrag equipped with PB(A,B,C,D). The proof in Ref. 3 consisted of a verification o
the tensor form of this result:

$L~l! ^
,
L~m!%5„L~l! ^L~m!…a~l,m!2d~l,m!„L~l! ^L~m!…

1„I ^L~m!…b„L~l! ^ I …2„L~l! ^ I …c„I ^L~m!…. ~7.30!

In the formula~7.30! L stands for the Lax matrix~7.27! of the Toda lattice, but it might as
well stand for either of the Lax matrices~7.10! or ~7.11! of the Volterra lattice. This already
proves the first statement of the Proposition. Taking into account that the Hamiltonian fun
~7.7! is equal to

H5w~L1!5w~L2!,

where

w~L !5tr~L !0 so that dw~L !5L,

we see that the second statement of the Proposition is also proved. j

However, we want to rederive the basic result~7.30! here from the viewpoint of the mono
dromy maps, which will simplify its proof and provide an additional information.

Proposition 10: The pairs of matrices(U,V) form a Poisson submanifold in the algebrag
5g%g equipped with the Poisson bracketPB~A,B,C,D!, where

A5S A B

C AD , B5SB B

B 2CD ,
C5SC C

C 2BD , D5SD 2C

B D D .

J. Math. Phys., Vol. 38, No. 8, August 1997
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Proof: The proof of this statement consists of the direct verification of the following ident
@each of them is simpler than~7.30!, because they deal only with bidiagonal matrices, while~7.30!
deals with tridiagonal ones#:

$U~l! ^
,
U~m!%5„U~l! ^U~m!…a~l,m!2d~l,m!„U~l! ^U~m!…

1„I ^U~m!…b„U~l! ^ I …2„U~l! ^ I …c„I ^U~m!…,

$V~l! ^
,
V~m!%5„V~l! ^V~m!…a~l,m!2d~l,m!„V~l! ^V~m!…

2„I ^V~m!…c„V~l! ^ I …1„V~l! ^ I …b„I ^V~m!…,

$U~l! ^
,
V~m!%5„U~l! ^V~m!…c2b„U~l! ^V~m!…

1„I ^V~m!…b„U~l! ^ I …2„U~l! ^ I …c„I ^V~m!…,

$V~l! ^
,
U~m!%52„V~l! ^U~m!…b1c„V~l! ^U~m!…

1„I ^U~m!…b„V~l! ^ I …2„V~l! ^ I …c„I ^U~m!….

~Of course, the last two identities are equivalent, so that it is enough to verify one of them!. j

Now the conditions of Theorem 1 withn52 read

A1252B115C2252D21, A2152B225C1152D12,

A222D111B212C1250,

A112D221B122C2150,

and are, obviously, fulfilled. This Theorem assures that the monodromy mapg°g defined as
(U,V)°V•U5L2 is Poisson, if the target spaceg is equipped with the Poisson bracket

PB~A11,B12,C21,D22!5PB~A,B,C,D !,

and that the map (U,V)°U•V5L1 is also Poisson, if the target spaceg is equipped with the
Poisson bracket

PB~A22,B21,C12,D11!5PB~A,B,C,D !,

which coincides with the previous one. It follows that the manifold consisting of the mat
L2(u,v,l) @or of the matricesL1(u,v,l)# is Poisson in this bracket, as an image of a Pois
manifold under a Poisson map.

Theorem 1 implies also that the Hamiltonian equations of motion on the pairs (U,V) with the
Hamiltonian function

w~UV!5w~VU! ~w Ad-invariant!

may be presented in the form of the ‘‘Lax triads’’

U̇5U•R„dw~VU!…2R„dw~UV!…•U,

V̇5V•R„dw~UV!…2R„dw~VU!…•V,

where

R5A1B5C1D5A111B125A221B215D111C125D221C21.
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These Lax triads imply also the Lax equations for the matricesL15VU andL25UV:

L̇15@L1 ,R„dw~L1!…#, L̇25@L2 ,R„dw~L2!…#.

We would like to point out that these results are parallel to those obtained in Ref. 3 fo
relativistic Toda lattice.

B. Open-end case

We outline briefly the features of the open-end case different from those of the periodic
First of all, the condition~7.8! is no longer necessary for the applicability of our constructi

However, it remains more elegant in this case, being completely parallel to periodic cas
consider this variant first, i.e., the Volterra lattice with open ends andoddnumber of particles:

uk , k51,...,N, and vk , k51,...,N21.

Both Lax matricesL1 , L2 belong to one and the same algebrag, theN3N open-end version of
the algebrag:

L1~u,v !5 (
k51

N21

Ek11,k1 (
k51

N

~uk1vk21!Ekk1 (
k51

N21

ukvkEk,k11 , ~7.31!

L2~u,v !5 (
k51

N21

Ek11,k1 (
k51

N

~uk1vk!Ekk1 (
k51

N21

uk11vkEk,k11 . ~7.32!

~In the first of these formulasv050, in the second onevN50.! All the statements of Proposition
10 remain valid, if one drops out the dependence on the spectral parameterl. Also the factorizaton

L1~u,v !5U~u!V~v !, L2~u,v !5V~v !U~u! ~7.33!

holds, with the matrices

U~u!5 (
k51

N21

Ek11,k1 (
k51

N

ukEkk , V~v !5I1 (
k51

N21

vkEk,k11 .

As in the periodic case, the pairs (U,V) form a Poisson submanifold ing%g carrying the corre-
spondent Poisson bracket.

Consider now the variant with

M52N21,

when the open-end Volterra lattice consists of anevennumber of particles:

uk , k51,...,N21, and vk , k51,...,N21,

and the usual Lax matrix is 2N2132N21. In this case the matricesL1 , L2 have different
dimensions, namelyL1 is still N3N and is given by~7.31! ~this time with vanishinguN!, while
L2 is N213N21:

L2~u,v !5 (
k51

N22

Ek11,k1 (
k51

N21

~uk1vk!Ekk1 (
k51

N22

uk11vkEk,k11 . ~7.34!
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Correspondingly, the two alternative Lax representations of the Volterra lattice, analogo
~7.12!, are still valid, but live intwo different algebras; the Lax matrices still form Poisson
submanifolds, but also intwo different algebras; their characteristic polynomials do not coincid
any more, but satisfy instead the identity

det„L1~u,v !2mI N…5~2m!det„L2~u,v !2mI N21….

An interpretation in terms of the Poisson bracket ong%g fails in this formulation.
All these inconveniences, however, can be repaired if we include the Volterra lattice

2N22 particles into the one with 2N21 particles, i.e., add a dummy particleuN with a trivial
evolution: uN50. Then the both matricesL1 , L2 becomeN3N and coincide with~7.31! and
~7.32! @L2 having vanishing dummy entries in the positions (N,N) and (N21,N)#, and the whole
construction@including the factorization~7.33! and the Poisson property of the manifold (U,V)#
remains valid. Indeed, the conditionuN50 is compatible not only with the equations of motio
~7.5!, but also with the Poisson brackets~7.6!.

VIII. ALTERNATIVE LAX REPRESENTATION FOR THE GENERAL BOGOYAVLENSKY
LATTICE

A. Periodic case

For the general Bogoyavlensky lattice~6.1! we separate all the particles intom sorts, accord-
ing to

vk
~ j !5zm~k21!1 j , j51,2,...,m. ~8.1!

This is consistent with theM -periodic boundary conditions, only if

M5mN. ~8.2!

In these new notations the equations of motion~6.1! take the form

v̇k
~ j !5vk

~ j !S (
i5 j11

m

~vk
~ i !2vk21

~ i ! !1(
i51

j21

~vk11
~ i ! 2vk

~ i !!D . ~8.3!

The quadratic Poisson bracket~6.3! invariant under this flow may be presented in the followi
nice form:

$vk
~ i ! ,vk

~ j !%5vk
~ i !vk

~ j ! , $vk11
~ j ! ,vk

~ i !%5vk11
~ j ! vk

~ i ! for 1< j, i<m. ~8.4!

~As usual, all other brackets vanish.! The corresponding Hamiltonian function~6.2! is equal to

H5 (
k51

N

(
j51

m

vk
~ j ! . ~8.5!

Introduce the followingN3N matrices, depending on the variables corresponding to
particles of only one sort, and on the spectral parameterl:

Vj~l!5I1l21(
k51

N

vk
~ j !Ek,k11 , j51,2,...,m. ~8.6!

We suppress in this notation the argumentv ( j ) of the matrixVj , because it can be restore
unambigously from the subscript. We shall need also the matrix
J. Math. Phys., Vol. 38, No. 8, August 1997
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U1~l!5l(
k51

N

Ek11,k1 (
k51

N

vk
~1!Ekk . ~8.7!

Now we can define the Lax matrix as a ‘‘monodromy matrix,’’

Lm~v ~1!,...,v ~m!,l!5Vm~l!• ••• •V2~l!•U1~l!, ~8.8!

and its shifted versions as

L j~v
~1!,...,v ~m!,l!5Vj~l!• ••• •V2~l!•U1~l!•Vm~l!• ••• •Vj11~l!. ~8.9!

Theorem 2: (1) The set of matrices Lj (v
(1),...,v (m),l) for each1< j<m forms a Poisson

submanifold in the algebra g equipped with the Poisson bracketPB(A,B,C,D).
(2) The Bogoyavlensky lattice (8.3) admits a set of m (equivalent) Lax representations

L̇ j5@L j ,R~L j !#. ~8.10!

(3) The generating function of integrals of motion in the N3N representation is connecte
with an analogous object in the M3M representation by

det~Tm~z,l!2mI M !5)
j51

m

det„L j~v
~1!,...,v ~m!,lm!2mI N…, ~8.11!

all factors in this product being mutually equal.
Proof: As by the proof of Proposition 8, we start with the third statement. Apply the Lap

formula to expand the determinant

det„Tm~z,l!2mI M…,

according to the decomposition of the rows intom complementary sets, thej th of them (1< j
<m) having the numbers„j ,m1 j ,...,m(N21)1 j …. The matrixTm has a very special structure
namely

Tm~z,l!PEm1 %

i50

m21

g2mi ~8.12!

@cf. ~7.16! for m52#. Taking this structure into account, we see that only one from the h
number of terms in the Laplace formula does not vanish:

det~Tm2mI M !5)
j51

m

det~Tm2mI M !S j m1 j ... m~N21!1 j

j m1 j ... m~N21!1 j D .
Now the submatrices ofTm can be directly calculated, which gives

„Tm~z,l!2mI M…S j m1 j ... m~N21!1 j

j m1 j ... m~N21!1 j D 5L j~v
~1!,...,v ~m!,lm!2mI N ~8.13!

@cf. for m52 the calculation of the submatrices~7.19! and ~7.20! resulting in the expression
~7.10! and ~7.11!#.

Since all matricesL j (v
(1),...,v (m),lm) are connected by means of a similarity transformati

their determinants are mutually equal, which proves the third statement of the Theorem.
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The first statement follows from Proposition 7. Indeed, it is easy to see from~8.13! and~8.12!
that the set of matricesL j (v

(1),...,v (m),l) for eachj is exactly the

Pm215E% %

i50

m21

g2 i .

The second statement follows now from the generalr -matrix theory, because the function~8.5!
may be presented asH5w(L j ), wherew(L)5tr (L)0 , so thatdw(L)5L. j

We want, however, just as in the previous section, to give another proof of the first stat
of Theorem 2, based upon the interpretation of the matricesL j (v

(1),...,v (m),l) as monodromy
matrices.

Theorem 3: The ordered m-tuples(U1 ,V2 ,...,Vm) form a Poisson submanifold in the alge
bra g5 % j51

m g, if the latter is equipped with the Poisson bracketPB~A,B,C,D!, where the opera-
tors A,B,C,D are defined according to the formulas:

Ai j5H A,
2B,
C,

if i5 j ,
if i51, j.1 or i. j.1,
if i.1, j51 or j. i.1,

Bi j5 H B,
2C,

if i51 or i. j ,
if j> i.1,

Ci j5 H 2B,
C,

if i> j.1,
if j. i or j51,

Di j5H D,
B,

2C,

if i5 j ,
if i. j ,
if j. i .

Proof: To prove this statement, one may straightforwardly verify the following identities

$U1~l! ^
,
U1~m!%5„U1~l! ^U1~m!…a~l,m!2d~l,m!„U1~l! ^U1~m!…

1„I ^U1~m!…b„U1~l! ^ I …2„U1~l! ^ I …c„I ^U1~m!…,

$Vj~l! ^
,
Vj~m!%5„Vj~l! ^Vj~m!…a~l,m!2d~l,m!„Vj~l! ^Vj~m!…

2„I ^Vj~m!…c„Vj~l! ^ I …1„Vj~l! ^ I …b„I ^Vj~m!…,

$U1~l! ^
,
Vj~m!%5„U1~l! ^Vj~m!…c2b„U1~l! ^Vj~m!…

1„I ^Vj~m!…b„U1~l! ^ I …2„U1~l! ^ I …c„I ^Vj~m!… j.1,

$Vj~l! ^
,
U1~m!%52„Vj~l! ^U1~m!…b1c„Vj~l! ^U1~m!…

1„I ^U1~m!…b„Vj~l! ^ I …2„Vj~l! ^ I …c„I ^U1~m!… j.1,

$Vi~l! ^
,
Vj~m!%52„Vi~l! ^Vj~m!…b2b„Vi~l! ^Vj~m!…

1„I ^Vj~m!…b„Vi~l! ^ I …1„Vi~l! ^ I …b„I ^Vj~m!… i, j ,

$Vi~l! ^
,
Vj~m!%5„Vi~l! ^Vj~m!…c1c„Vi~l! ^Vj~m!…

2„I ^Vj~m!…c„Vi~l! ^ I …2„Vi~l! ^ I …c„I ^Vj~m!… i. j .
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~The third of these identities is equivalent to the fourth one, and the fifth is equivalent to the
Therefore, in fact, one needs to verify only four identities.! Propositions 3 and 4 allow us to chec
easily that the operatorsA, B, C, D satisfy the conditions of Proposition 1 and thus indeed de
a Poisson bracket PB~A,B,C,D!. j

Now a careful inspection convinces that all the conditions of Theorem 1 withn5m are
fulfilled. This Theorem states that the maps

~U1 ,V2 ,...,Vm!°L j

are Poisson, if the target spaces carry the Poisson brackets

PB~Aj11,j11 ,Bj11,j ,Cj , j11 ,Dj , j !5PB~A,B,C,D !.

Together with Theorem 3 this implies the Poisson property of the manifold formed by the ma
L j with respect to the latter bracket.

Further, it follows from Theorem 1 that the equations of motion of an arbitrary flow of
Bogoyavlensky lattice hierarchy with the Hamiltonian functionw(L) ~L5L j , w Ad-invariant!
admits a Lax representation:

U̇15U1•R„dw~Lm!…2R„dw~L1!…•U1 ,

V̇j5Vj•R„dw~L j21!…2R„dwL j )…•Vj , 2< j<m.

As a consequence, the following Lax equations hold:

L̇ j5@L j ,R„dw~L j !…#, 1< j<m.

The Bogoyavlensky lattice proper corresponds here tow(L)5tr L,dw(L)5L.

B. Open-end case

As for the Volterra lattice (m52), Theorem 2 holds almost literally in the open-end case

M5mN,

i.e., for the lattice consisting ofm(N21)11 particles

vk
~1! , 1<k<N; and vk

~ j !, 1<k<N21 for j52,...,m.

All that has to be changed is to omit the spectral parameterl in all formulas and to define the
matricesU1 , Vj as

U15 (
k51

N21

Ek11,k1 (
k51

N

vk
~1!Ekk ,

Vj5I1 (
k51

N21

vk
~ j !Ek,k11 .

For the lattices with the number of particles different fromm(N21)11 we can add one o
several dummy particles with the trivial dynamics, so that all the results remain valid.

There is, however, one more problem concerning the open-end case that has to be me
namely the problem of lacking integrals of motion. Indeed, the generating function
J. Math. Phys., Vol. 38, No. 8, August 1997
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det~L j2mI N!

gives now onlyN integrals of motion, which form.2 is much less than necessary for comple
integrability. The lacking integrals in a closely related problem~full Toda lattice! were constructed
in Refs. 26 and 27. Analogous construction can be performed also for the both Lax represen
~M3M andN3N! for the Bogoyavlensky lattice, leading presumably to two sets of additio
integrals. However, our argument based on the Laplace formula does not imply the coincide
even some relations between these two sets. It would be very important to study this prob
detail.

IX. CONCLUDING REMARKS

In the present paper a well-known integrable lattice system was further studied, which ga
opportunity to touch two general problems of the theory of integrable systems, more precis
the Hamiltonian aspects of this theory. The first of these problems was completely solved
namely it was found the most general conditions for monodromy map on a direct sum of
ciative algebras to be Poisson with respect to some general quadratic brackets. We were ab
rid of all sorts of locality conditions, and to provide an example where such nonlocal struc
naturally arise.

Another general problem, a problem ofduality between different Lax representations for o
and the same system, remains almost completely open. Our present results merely add o
example of this situation, and we hope that its careful analysis will bring us closer to the so
of the general problem.
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Spherically symmetric collapse of an anisotropic fluid
body into an exotic black hole

A. Das, N. Tariq, and D. Aruliah
Department of Mathematics and Statistics, Simon Fraser University,
Burnaby, British Columbia, V5A 1S6, Canada
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The classical gravitational equations of Einstein are investigated for an anisotropic
fluid body in the case of spherical symmetry. An equation of stateT(4)(4)
1k2T(1)(1)50 is imposed. The junction conditions@Tab#n

b50 of Synge are re-
quired to be satisfied on the boundary of the fluid body. A class of exact, analytical
solutions depending on four parameters is obtained. The solutions satisfy the equa-
tion of state and the weak energy conditions prior to the collapse of the boundary
inside the event horizon. However, in the interior of the event horizon, the matter
undergoes a transition into an exotic state. A portion of the fluid turns tachyonic
with T44,0, a second portion has complex eigenvalues for@Tab#, and a third part
has signature14. © 1997 American Institute of Physics.
@S0022-2488~97!00407-6#

I. INTRODUCTION

The gravitational collapse of a star of two solar masses is an intriguing field of research
investigations of such a collapse according to the field equations of Einstein can be carri
with complete mathematical rigor.~However, the studies of quantum black holes, although fa
nating, are not yet totally rigorous.!

The most popular classical black hole solutions are derived by Kruskal1 and Kerr.2 However,
these are solutions of the vacuum equations. The Reissner–Nordstrom and Kerr–Ne
solutions3 of a charged black hole involves a stress-energy-momentum tensor generated pu
electromagnetic fields. More realistic models of spherical collapse of a star are give
Tolman–Bondi4,5 and Friedmann7,8 solutions. The next order of difficulty in treating a collapsin
star as a perfect fluid body has proven mathematically intractable so far. A more realistic
with other complexities for a spherically symmetric case is provided by the anisotropic
body.9,10 A paper9 ~which we will refer to as paper I! has been published where the fluid bo
coming from infinity collapses into a black hole.

In this article, we generate the ‘‘ansatz’’ for the total mass function from the paper I.
obtain a four-parameter class of exact analytical solutions which represents a regular11 anisotropic
fluid before reaching the event horizon. However, the fluid inside the horizon is transforme
an exotic fluid.9 Let us explain the use of the word ‘‘exotic’’ here. For parametric valueb
52N/(2N11), NPN, the interior has a regular part and a tachyonic sector withT44,0. These
parts are separated by a singularity~just like in paper I!. However, for parametric valuesb
51/(2N11), NPN, the interior of the black hole has three distinct sectors~besides the singu
larity!. The first part is tachyonic or superluminous. In the second part, the 434 matrix @Tab# has
complex eigenvalues and is of Segre class@(11),zz̄#. In the third part, the signature of the metr
has changed to14. ~Such positive definite metric forms are called gravitational instantons.
instanton solutions were first discovered by Klosteret al.,12 Hawking13 rediscovered these later!
In the arena of the spherically symmetric quantum black holes, Gegenberg and Kundstatter14 have
obtained an example of the change of signature to14.
0022-2488/97/38(8)/4202/26/$10.00
4202 J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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II. NOTATIONS AND FIELD EQUATIONS

We adopt notations and conventions from Synge’s book,15 except we shall denote covarian
derivatives by“k and units are chosen so thatc58pG51. Einstein’s equations for an anisotrop
fluid body are given by9

Eab :5Gab1Tab50, ~2.1a!

Tab :5~r1p'!uaub1p'gab1~pi2p'!sasb , ~2.1b!

T a:5“bT
ab50, ~2.1c!

U:5gabu
aub1150, ~2.1d!

S :5gabs
asb2150, ~2.1e!

P :5gabu
asb50, ~2.1f!

C a~gcd ,gi j ,k!50. ~2.1g!

Here,C a stand for the four possible coordinate conditions. The total number of unknown
tions in the system~2.1a!–~2.1g! is 21. The total number of algebraic and semilinear par
differential equations is 27. There exist six algebraic identitiesEab2Eba[0 and four differential
identifies“bE

ab2T a[0. Therefore, the number of algebraically and differentially independ
equations is 17. Thus, the system of equations is underdetermined. We can impose one equ
state

F~r,pi ,p'!50 ~2.2!

and three other subsidiary conditions.
In a realistic fluid body, one or all of the following energy conditions of Hawking and Ell11

should hold:

~ i! r>0, r1pi>0, r1p'>0 ~weak energy conditions!; ~2.3a!

~ ii ! r>upiu, r>up'u ~dominant energy conditions!; ~2.3b!

~ iii ! r1pi>0, r1p'>0, r1pi12p'>0 ~strong energy conditions!. ~2.3c!

In a model of a collapsing fluid body, junction conditions must hold on its boundary]D̃. We
choose four junctions conditions15

$@Tab#n
b% u]D̃

50, ~2.4!

where na are components of a unit normal to]D̃ and the square bracket denotes the ju
discontinuity.

We can obtain eigenvalues and eigenvectors of the 434 matrix@Tab# from ~2.1b! and~2.1d!–
~2.1f!. These are given by

Tabu
b52rua, ~2.5a!

Tabs
b5pisa. ~2.5b!

Therefore, the eigenvalues are (2r,pi ,p' ,p').
J. Math. Phys., Vol. 38, No. 8, August 1997
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We shall list some of the physically relevant quantities associated with any kind of fluid
These are given by16

u̇a:5ub“bu
a, ~2.6a!

U:5“bu
b, ~2.6b!

vab :5“ [bua]1u̇[aub] , ~2.6c!

sab :5¹ (bua)1u̇(aub)2
U

3
~gab1uaub!. ~2.6d!

Here,u̇a, U, vab , andsab represent absolute acceleration, expansion, rate of vorticity, and ra
shearing, respectively.

III. THE SPHERICALLY SYMMETRIC CASE

A spherically symmetric metric in the curvature coordinate chart15 is characterized by

ds25exp@a~r ,t !#dr21r 2dV22exp@g~r ,t !#dt2, ~3.1a!

dV2:5du21sin2udf2. ~3.1b!

Nontrivial field equations from~2.1a! are

E 1
15G1

11T115r22@12e2a~11rg ,1!#1T1150, ~3.2a!

E 2
2[E3

35G2
21T225~1/2!e2a@2g ,111~1/2r !~rg ,112!~a2g! ,1#

1~1/2!e2g@a ,441~1/2!a ,4~a2g! ,4#1T2250, ~3.2b!

E 4
45G4

41T445r22@12~re2a! ,1#1T4450, ~3.2c!

E 1
45G1

41T145~1/r !~e2a! ,41T1450. ~3.2d!

The above is a system of semi-linear partial differential equations in a two-dimensional do
Nontrivial conservation equations from~2.1c! are

T 15T11,11T41,41~2/r !@11~r /4!g ,1#T
1
11~1/2!~a1g! ,4T

4
12~1/2!g ,1T

4
42~2/r !T2250,

~3.3a!

T 45T14,11T44,41~2/r !@11~r /4!~a1g! ,1#T
1
41~1/2!a ,4~T

4
42T11!50. ~3.3b!

The two differential identities in the system of equations~3.2a!–~3.2d! and ~3.3a! and ~3.3b! are

E 1
1,11E 4

1,41~2/r !@11~r /4!g ,1#E
1
11~1/2!~a1g! ,4E

4
12~1/2!g ,1E

4
42~2/r !E 2

22T 1[0,
~3.4a!

E 1
4,11E 4

4,41~2/r !@11~r /4!~a1g! ,1#E
1
41~1/2!a ,4~E

4
42E 1

1!2T 4[0. ~3.4b!

Synge’s strategy of solving these equations is the following:

~1! PrescribeT44,0 and solveE4
450 to obtaine2a5g11.

~2! DefineT14 by the equationE1
450 .

~3! PrescribeT11 and solveE1
12E4

450 to obtaineg52g44.
~4! DefineT22 by the conservation equationT 150.
J. Math. Phys., Vol. 38, No. 8, August 1997
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~5! By the preceding steps, the identity~3.4a! implies thatE 2
250.

~6! By the identity~3.4b!, we now must haveT 450.

At this stage, all the field equations and conservation equations are satisfied.
In case we have an equation of state like~2.2!, thenT11 cannot be prescribed freely in ste

~3!. However, we can solve forT11 in terms ofT44 and carry out that step.
Now, the eigenvalues and eigenvectors of the known 232 matrix

FT11 T14

T41 T44
G

will supply us the solutions forr, pi , p' , ua, andsa.
In this paper, we choose the equation of state

T~4!
~4!1k2T~1!

~1!5T441k2T1150, ~3.5a!

3<k2, ~3.5b!

T1152k22T44.0. ~3.5c!

@The inequality~3.5b! is chosen to satisfy the weak energy condition and other regularities.#
In a model for a collapsing star, the interior, exterior, and boundary hypersurface corre

in the curvature coordinate chart to domains

D̃I :5$~r ,u,f,t !PR4:0,r,B~ t !,0,u,p,2p,f,p,t,c1%, ~3.6a!

D̃I0
:5$~r ,u,f,t !PR4:B~ t !,r ,0,u,p,2p,f,p,t,c1%, ~3.6b!

]D̃:5$~r ,u,f,t !PR4:r5B~ t !,0,u,p,2p,f,p,t,c1%. ~3.6c!

Here,r5B(t) gives a positive-valued differentiable function that represents the boundary h
surface of the star. The constantc1 stands for the coordinate time when the boundary reaches
event horizon.~The equation~4.5d! gives c1 explicitly.! The corresponding two-dimensiona
domains are given by

DI :5$~r ,t !PR2:0,r,B~ t !,t,c1%, ~3.7a!

DI0
:5$~r ,t !PR2:B~ t !,r ,t,c1%, ~3.7b!

]D:5$~r ,t !PR2:r5B~ t !,t,c1%. ~3.7c!

Two nontrivial junction conditions emerge from~2.4!. These are expressed as

$T112T41B8~ t !% u]D50, ~3.8a!

$T142T44B8~ t !% u]D50, ~3.8b!

where the prime stands for a total derivative.
J. Math. Phys., Vol. 38, No. 8, August 1997
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IV. A CLASS OF EXACT SOLUTIONS

We choose a reasonable ‘‘total mass’’ function

M ~r ,t !:5
q

2 F r

12t/c2
G j.0, ~4.1a!

0,q, ~4.1b!

0,c2 , ~4.1c!

T44522r22M ,152~ jqr j23!/~12t/c2!
j,0, ~4.1d!

3< j . ~4.1e!

The positive parametersq andc2 are otherwise arbitrary. The inequality~4.1e! is chosen to avoid
a singularity ofT44 at the origin. We solve the equation~3.2c! (E 4

450) with ~4.1d! to obtain

A~r ,t !:5exp@2a~r ,t !#512
qr j21

~12t/c2!
j.0. ~4.2!

@The proof thatA(r ,t).0 will be given in the next section.#
Substituting~4.2! in ~3.2d!, we define

T14 :5
jqr j22

c2~12t/c2!
j11.0. ~4.3!

Thus,E1
450 is satisfied.

Solving forT11 from ~3.5a! and ~4.1d!, we get

T115
jqr j23

k2~12t/c2!
j.0. ~4.4!

Substituting~4.4!, ~4.1d!, and~4.2! into ~3.2a! and ~3.2c!, the equationE 1
12E 4

450 yields

exp@g~r ,t !#5@A~r ,t !#21@A~r ,t !/D~ t !#b, ~4.5a!

b:522S j

j21D S 11
1

k2D , ~4.5b!

0<b,1, ~4.5c!

c1 :5c22q~c2!
j /~k! j21, ~4.5d!

D~ t !:5S c12t

c22t D.0, ~4.5e!

ds2~D̃I !5F12
qr j21

~12t/c2!
j G21

dr21r 2dV22F12
qr j21

~12t/c2!
j Gb21S c22t

c12t D
b

dt2, ~4.5f!

ds2~DI !5F12
qr j21

~12t/c2!
j G21

dr22F12
qr j21

~12t/c2!
j Gb21S c22t

c12t D
b

dt2. ~4.5g!
J. Math. Phys., Vol. 38, No. 8, August 1997
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The inequality 0<b,1 arises partly from the fact that

lim
j→`

lim
k→`

b51

and partly from the weak energy condition and other regularities. Note that in the limit asb↓0, we
get back the metric of the previous paper.9

Now, by the conservation equation~3.3a!, we can define

T22 :5
j ~ j21!qr j23

2k2~12t/c2!
j 1

j ~ j21!~12b!~11k22!q2r 2 j24

4~12t/c2!
2 jA~r ,t !

2
jqr j21

2~c2!
2 H j ~11b/2!qr j21@D~ t !#b

~12t/c2!
2 j12@A~r ,t !#b11

1
~ j11!@D~ t !#b

~12t/c2!
j12@A~ t !#b

2
b~c22c1!@D~ t !#b21

2c2~12t/c2!
j13@A~r ,t !#bJ 5p' . ~4.6!

We can use equations~4.4!, ~4.3!, ~4.1d!, and~4.5a! to construct the matrix

FT11 T14

T41 T44
G .

Solving the eigenvalue problem for this matrix, we obtain

r5
jqr j23

2c2~12t/c2!
j11 @AD1~12k22!~c22t !#, ~4.7a!

pi5
jqr j23

2c2~12t/c2!
j11 @AD2~12k22!~c22t !#, ~4.7b!

u152
&r @A~r ,t !#~12b!/2@D~ t !#b/2

~D!1/4A~11k22!~c22t !1AD
, ~4.7c!

u45
1

&~D!1/4

@D~ t !#b/2

@A~r ,t !#~b21!/2
A~11k22!~c22t !1AD, ~4.7d!

s15
@A~r ,t !#1/2

&~D!1/4
A~11k22!~c22t !1AD, ~4.7e!

s452
&r @A~r ,t !#~1/22b!@D~ t !#b

~D!1/4A~11k22!~c22t !1AD
, ~4.7f!

u25u35s25s3[0, ~4.7g!

D:5~11k22!2~c22t !224r 2@D~ t !/A~r ,t !#b, ~4.7h!

v r :5
Ag11u1

A2g44u
4

5
22r

~11k22!~c22t !1AD
F S c22t

c12t D S 12
qr j21

~12t/c2!
j D G2b/2

. ~4.7i!

The validity of these solutions depends upon the inequalitiesA(r ,t).0 andD>0; these will be
proved in the next section. Figure 1 depicts the various physical quantities in~4.7! prior to the time
t5c1 .
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



4208 Das, Tariq, and Aruliah: Collapse into an exotic black hole

¬¬¬¬¬¬¬¬¬¬
V. THE BOUNDARY, JUNCTION, AND ENERGY CONDITIONS

The boundary of the star is chosen to correspond to

r5B~ t !:5~c22t !/k.0, ~5.1a!

B8~ t !52~1/k!,0, ~5.1b!

uB8~ t !u51/k,1/). ~5.1c!

Now, the Schwarzschild mass of the fluid body is defined by@see Eq.~4.1a!#

m:5M „B~ t !,t…5~1/2!q~c2 /k! j.0, ~5.2a!

q5~2m!~k/c2!
j.0. ~5.2b!

At t5c1 , the boundary is given by the radial coordinater5B(c1)5(c22c1)/k52m @by ~4.5d!#,
and it is the event horizon.

The junction conditions~3.8a! and~3.8b! reduce@with the help of~4.4!, ~4.3!, ~4.1c!, ~4.5g!,
~5.1a! and ~5.1b!# to

@T112T41B8~ t !# ur5B~ t !5
jq@B~ t !# j22

kc2~12t/c2!
j11 S 12F D~ t !

A~B~ t !,t !G
bD[0, ~5.3a!

FIG. 1. Graphs ofv r , r, pi , andp' as functions of (r ,t). ~Here the parameters arec25A5, j53, k53, andq51.!
J. Math. Phys., Vol. 38, No. 8, August 1997
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@T142T44B8~ t !# ur5B~ t !5
jq@B~ t !# j23

c2~12t/c2!
j11 SB~ t !2

~c22t !

k D[0. ~5.3b!

Therefore, the junction conditions areidentically satisfied.
We can compute various quantities asr approaches the boundary from the left. These

given by

lim
r↑B~ t !

~r!5
jq~c2k

21! j23~12k22!

~12t/c2!
3 .0, ~5.4a!

lim
r↑B~ t !

~pi![0, ~5.4b!

lim
r↑B~ t !

~p'!5
mjk

~c22t !3 S 221
mk@~ j21!~11k2!~12b!1b2~21b! j #

~c12t ! D , ~5.4c!

lim
r↑B~ t !

~v r !52~1/k!5B8~ t !, ~5.4d!

lim
r↑B~ t !

F D~ t !

A~r ,t !G51, ~5.4e!

lim
r↑B~ t !

~D!5~c22t !2~12k22!2.0. ~5.4f!

We shall prove now thatA(r ,t).0. Consider the curve inR2 given by

A~r ,t !:512
qr j21

~12t/c2!
j 50, ~5.5a!

or

r5j~ t !:5@q21~12t/c2!
j #1/~ j21!.0, ~5.5b!

vs:5A g11
2g44

dj

dt
~ t ! ~5.5c!

52
j

c2~ j21!
U ~c12t !

~c22t !A~r ,t !U
b/2Fq21S 12

t

c2
D G1/~ j21!

,0. ~5.5d!

Since (12t/c2) is a monotone-decreasing function oft for c2.0, we must have

q~c2 /k! j21512~c1 /c2!,12~ t/c2! for 2`,t,c1 ,

and

0,12~ t/c2!,q~c2 /k! j21 for c1,t,c2 .

Therefore,
J. Math. Phys., Vol. 38, No. 8, August 1997
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@j~ t !# j215q21~12t/c2!
j.Fc2k ~12t/c2!G j21

5@B~ t !# j21 for 2`,t,c1 ,

and

@j~ t !# j21,Fc2k ~12t/c2!G j21

5@B~ t !# j21 for c1,t,c2 .

So, we have

A~r ,t !512F r

j~ t !G
j21

~5.6a!

.12F r

B~ t !G
j21

.0 for 0,r,B~ t ! and t,c1 , ~5.6b!

A~r ,t !,12F r

B~ t !G
j21

for 0,r,B~ t ! and c1,t,c2 . ~5.6c!

Now, we shall prove thatD>0. Consider a fixedt0,c1 and 0,r,B(t0). The differentiable
functions

qr j21

~12t0 /c2!
j.0, F12

qr j21

~12t0 /c2!
j G21

, 2r 2F D~ t0!

A~r ,t0!
Gb,

D~r ,t0!5~11k22!2~c22t0!
224r 2F D~ t0!

A~r ,t0!
Gb

are, respectively, monotone-increasing, monotone-increasing, monotone-decreasing
monotone-decreasing functions ofr . Since limr↓0 D(r ,t0)5(11k22)2(c22t0)

2.0 and
limr↑B(t0) D(r ,t0)5(12k22)2(c22t0)

2.0 @by the equation~5.4!#, we can conclude tha
D(r ,t).0 in the domainDI given by the equation~3.7a!. We can have a stronger inequali
D(r ,t).(12k22)2(c22t0)

2.0 for the same domain. Using this inequality, the equations~4.7a!
and ~4.7b! yield

r.0, ~5.7a!

pi.0, ~5.7b!

r1pi5
jqr j23AD

c2~12t/c2!
j11.0, ~5.7c!

r2pi5
jqr j23~12k22!

~12t/c2!
j .0, ~5.7d!

r.upiu. ~5.7e!

These inequalities will be useful to check the energy conditions.
Now, we shall investigate the sign ofp' in the equation~4.6!. By ~4.6! and~4.7a!, we derive
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2~r1p'!5F1~r ,t !1F jqr j23

~12t/c2!
j GF2~r ,t !1F q2r 2 j24

~12t/c2!
2 jA~r ,t !GF3~r ,t !, ~5.8a!

F1~r ,t !:5F jbq~12c1 /c2!r
j21

2c2~c12t !~12t/c2!
j12GF D~ t !

A~r ,t !G
b

, ~5.8b!

F2~r ,t !:5A D

~c22t !2
1@11~ j22!k22#2~ j11!S r 2@D~ t !#b

~c22t !2@A~r ,t !#bD , ~5.8c!

F3~r ,t !:5
1

2
j ~ j21!~11k22!~12b!2 j 2S 11

b

2D S r 2@D~ t !#b

~c22t !2@A~r ,t !#bD . ~5.8d!

At a particular instantt0,c1 , the function F1(r ,t0).0 and the functionsF2(r ,t0) and
F3(r ,t0) are monotone-decreasing functions ofr in the interval„0,B(t0)…. Moreover, the one-
sided limits are given by

lim
r↓0

F2~r ,t0!521~ j21!k22.0, ~5.9a!

lim
r↑B~ t0!

F2~r ,t0!52k22~k222!.0, ~5.9b!

lim
r↓0

F3~r ,t0!5~1/2! j ~ j21!~12b!~11k22!.0, ~5.9c!

lim
r↑B~ t0!

F3~r ,t0!5~ j /2!@~ j21!~12b!2~12b1~112b! j !k22#. ~5.9d!

It is not easy to infer that the sign of limr↑B(t0) F3(r ,t0) in ~5.9d!. By ~5.8b!, ~5.8c!, ~5.9a!, and
~5.9b!, it can be concluded that

F1~r ,t0!1F jqr j23

~12t/c2!
j GF2~r ,t0!.0

for 0,r,B(t0). Moreover, from~5.8a!–~5.8d! and ~5.9a!–~5.9c!, it is clear that

~r1p'!.0

for 0,r,d, whered.0 is sufficiently small. If we can prove that limr↑B(t0)(r1p')>0, then it
can be concluded that (r1p')>0 for the entire interval 0,r,B(t0). Using ~5.4a! and ~5.4c!,
we have to satisfy the weak inequality

lim
r↑B~ t0!

~r1p'!5
mjk

~c22t0!
3 F2~k222!1

mk@~ j21!~11k2!~12b!1b2~21b! j #

c12t G>0,

~5.10a!

or

~ j21!~11k2!~12b!1b2~21b! j>0. ~5.10b!

Recalling the definition ofb in ~4.5b! and substituting
J. Math. Phys., Vol. 38, No. 8, August 1997
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k25j11, j5~1/2!~j2h15!, ~5.11!

the inequality reduces to a simpler inequality:

24<jh. ~5.12!

Therefore, recalling the lower bounds 3< j , 3<k2, and~5.12!, the allowable limits are

3< j , )<k, 24<~k221!~k222 j14! ~5.13!

for the satisfaction of

r1p'>0. ~5.14!

The noncompact four-dimensional domain of the parameters is given by

Dp :5$~ j ,k,q,c2!PR4:3< j ,)<k,24<~k221!~k222 j14!,0,q,0,c2%. ~5.15!

Therefore, by~5.7a!, ~5.7c!, and~5.14!, the weak energy conditions are satisfied in the inter
DI of the fluid @see Eqs.~3.7a!# for every parameterj , k, q, andc2 in Dp of the equation~5.15!.

VI. MATCHING OF THE INTERIOR METRIC TO THE EXTERIOR SCHWARZSCHILD
METRIC

Consider the following four-dimensional interior metric given by the equation~4.5f!. In the
limit as r↑B(t), the limiting metric is given by

ds2~]D̃ !5F12
2m

B~ t !G
21

dr21@B~ t !#2dV22F12
2m

B~ t !G
b21S c22t

c12t D
b

dt2. ~6.1!

But, by equations~5.1a!, ~5.2a!, and~4.5d!

12
2m

B~ t !
5S c12t

c22t D . ~6.2!

Therefore,~6.1! can be rewritten as

ds2~]D̃ !5F12
2m

B~ t !G
21

dr21@B~ t !#2dV22F12
2m

B~ t !G S c22t

c12t D
2

dt2. ~6.3!

The above metric can be joined continuously to the exterior metric

ds2~D̃I0
!5S 12

2m

r D 21

dr21r 2dV22S 12
2m

r D S c22t

c12t D
2

dt2. ~6.4!

This metric can be transformed into the Schwarzschild metric

ds2~D̃I
0
#!5S 12

2m

r # D 21

~dr#!21~r #!2~dV#!22S 12
2m

r # D ~dt#!2 ~6.5!

by the coordinate transformation
J. Math. Phys., Vol. 38, No. 8, August 1997
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r #5R#~r !:5r , u#5u, f#5f, ~6.6!

~dV#!2:5~du#!21sin2 u#~df#!2,

t#5T#~ t !:5t2~c22c1!ln~c12t !1c0 .

Here,c0 is an arbitrary constant. Figure 2 illustrates the relation between the Schwarzschild
t# and the interior time for the parametersc25A5, c15A5/2, andc05(c22c1)lnuc1u.

Now, we shall investigate continuities and jump discontinuities across the boundary]D of
various geometrical quantities derivable from the interior metric in~4.5f! and the exterior metric
in ~6.4!. In the sequel, we shall denote a jump discontinuity across the boundary by the follo

@DF~r ,t !# ur5B~ t !
:5 lim

r↓B~ t !

F~r ,t !2 lim
r↑B~ t !

F~r ,t !. ~6.7!

We express the orthonormal tetrad, Riemann invariants, and the Kretchmann scalar in the
D̃I and the exteriorD̃I0

of the fluid body by the following equations:

e~1!
a 5H AA~r ,t !d~1!

a for D̃I ,

A12
2m

r
d~1!
a for D̃I0

;
~6.8a!

e~2!
a 5r21d~2!

a for D̃IøD̃I0
ø]D̃; ~6.8b!

e~3!
a 5~r sin u!21d~3!

a for D̃IøD̃I0
ø]D̃; ~6.8c!

e~4!
a 5H @A~r ,t !#~12b!/2@D~ t !#b/2d~4!

a for D̃I ,

F12
2m

r G21/2S c12t

c22t D d~4!
a for D̃I0 ;

~6.8d!

FIG. 2. t# versust, with c255, c15A5/2, andc05(c22c1)lnuc1u.
J. Math. Phys., Vol. 38, No. 8, August 1997
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R~2!~3!~2!~3!5H qr j23

~12t/c2!
j 5

2M ~r ,t !

r 3
for D̃I ,

2m

r 3
for D̃I0

;
~6.8e!

R~1!~2!~1!~2!5R~1!~3!~1!~3!5H ~ j21!M ~r ,t !

r 3
for D̃I ,

2
m

r 3
for D̃I0

;
~6.8f!

@DR~1!~2!~1!~2!# ur5B~ t !
52

jmk3

~c22t !3
; ~6.8g!

R~2!~4!~2!~4!5R~3!~4!~3!~4! ~6.8h!

5H ~ j21!~12b!M ~r ,t !

r 3
for D̃I ,

m

r 3
for D̃I0

;

~6.8i!

@DR~2!~4!~2!~4!# ur5B~ t !
5
mk3~22 j2b1 jb !

~c22t !3
; ~6.8j!

R~1!~2!~2!~4!5R~1!~3!~3!~4!5H 2
jqr j22

2c2~12t/c2!
j11 F D~ t !

A~r ,t !G
1/2

for D̃I ,

0 for D̃I0
;

~6.8k!

@DR~1!~2!~2!~4!# ur5B~ t !
5

jmk3

~c22t !3
; ~6.8l!

R~1!~4!~1!~4!5H p'1
~ j21!bM~r ,t !

r 3
for D̃I ,

2
2m

r 3
, for D̃I0

;
~6.8m!

R~a!~b!~c!~d!R
~a!~b!~c!~d!

55
4~p'!21

4~ j21!bqrj23

~12t/c2!
j p'1F qr j23

~12t/c2!
j G2$41~ j21!2@4~12b!13b2#%

2F 2 jqr j22

c2~12t/c2!
j11G2F D~ t !

A~r ,t !G
2b

for D̃I ,

48m2/r 6 for D̃I0
.

~6.8n!

In the above equations, the tetrad componentse(b)
a and R(2)(3)(2)(3) are all continuous~once

removable discontinuities are dealt with! and other Riemann invariants have jump discontinuit
across the boundary]D̃. In the limit t↑c1 , all the interior Riemann invariants, exce
R(1)(2)(2)(4)5R(1)(3)(3)(4) andR(1)(4)(1)(4), have limiting values. However,
J. Math. Phys., Vol. 38, No. 8, August 1997
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lim
t↑c1

uR~1!~2!~2!~4!ur5B~ t !
u→` and lim

t↑c1
uR~1!~4!~1!~4!ur5B~ t !

u→`,

indicating the beginning of a singularity. Loosely speaking, in the limit ast↑c2 , the interior
Riemann invariants, the Kretchmann scalar,r, pi , andp' all diverge. Physically speaking, in th
limit as t↑c2 , the fluid body collapses into the ultimate singularity. The Kretchmann scalar
p' become singular on the curver5j(t)(c1,t,c2) in the equation~5.5b!. Therefore, the sin-
gularity that starts right at the instantt5c1 on the event horizonr52m travels along the curve
r5j(t) andbecomesthe ultimate singularity att5c2 . However, the singular event on the eve
horizon remains unobservable by any external observer. Thus, the cosmic censorship hypo
just barely preserved. These comments will be helpful to interpret physically Figs. 3 and 4

VII. ANALYSIS OF THE COLLAPSE INTO A BLACK HOLE IN SEVEN COORDINATE
CHARTS

We shall explain the collapse of the spherically symmetric fluid body into a black hole
seven coordinate charts for the submanifoldM2 corresponding tou5const,f5const. Domains

FIG. 3. Collapse of a star into a black hole depicted inr -t and KSS charts.
J. Math. Phys., Vol. 38, No. 8, August 1997
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of various charts will be denoted by abbreviated notations. For example, the domainDI0
will be

denoted byI 0 , DI1
by I 1 , etc. Moreover, the subset of points of the intermediate bound

between two neighboring domains will be indicated by$ i .b.%. Therefore, by the equation~3.7a!,
we can write the abbreviated equationI 1øI 2ø$ i .b.%5I , etc.

Now, we shall provide Fig. 4 which depicts the collapse of the spherically symmetric
body into a black hole by seven charts. The symbolx stands for the homeomorphism from
domain inM2 into a domain inR2.

The relationships of various charts with their corresponding domains can be understood
corresponding line-elements and various coordinate transformations. For example, in ther -t chart,
the interior and exterior metrics and the corresponding domains are@see equations~3.7b!, ~6.4!,
~3.7a!, and~4.5g!#

ds2~ I 0!5S 12
2m

r D 21

dr22S 12
2m

r D S c22t

c12t D
2

dt2, ~7.1a!

I 05$~r ,t !PR2:B~ t !,r ,2`,t,c1%;

ds2~ I !5S 12
qr j21

~12t/c2!
j D 21

dr22S 12
qr j21

~12t/c2!
j D b21S c22t

c12t D
b

dt2, ~7.1b!

I5$~r ,t !PR2:0,r,B~ t !,2`,t,c1%.

It will be instructive to investigate the three-dimensional hypersurfacesr5const andt
5const. The pertinent equations, by use of~6.4!, ~4.5f!, and~4.1a!, are

FIG. 4. Collapse into a black hole depicted in seven coordinates charts.
J. Math. Phys., Vol. 38, No. 8, August 1997
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gab~••• !r ,ar ,b5g11~r ,t !5H S 12
2m

r D in D̃I0
,

S 12
2M ~r ,t !

r D in D̃I ;

gab~••• !t ,at ,b5g44~r ,t !5H 2S 12
2m

r D 21S c12t

c22t D
2

in D̃I0
,

2S 12
2M ~r ,t !

r D 12bS c12t

c22t D
b

in D̃I .

These equations clearly demonstrate that the hypersurfacesr52m and t5c1 are event horizons
In the Schwarzschild coordinate chart,@see Eqs.~6.5! and ~6.6!#

r #5r ,

to

t#5t2~c22c1!ln~c12t !1c,

ds2~ I 0
#!5S 12

2m

r # D 21

~dr#!22S 12
2m

r # D ~dt#!2, ~7.2!

I 0
#5$~r #,t#!PR2:B#~ t#!,r #,t#PR%,

B#~ t#!:5B~ t !5k21~c22t !.

In the r̃ - t̃ chart, we have

ds2~ II Ĩ 0!5S 12
2m

r̃ D 21

~dr̃ !22S 12
2m

r̃ D S c22 t̃

t̃2c1
D 2~dt̃!2,

~7.3!

II Ĩ 0 :5$~ r̃ , t̃ !PR2:2m, r̃ ,c1, t̃,c2%.

Inside the event horizon, one of the charts is theR-T chart. In this chart,

ds2~ II 0!5S 2mT 21D S c22R

R2c1
D 2dR22S 2mT 21D 21

dT2,

II 0 :5$~R,T!PR2:c1,R,c2 ,B~R!,T,2m%, ~7.4!

B~R!:5k21~c22R!.

The above domain is also called aT-domain and corresponds to a vacuum solution.
The continuation of theR-T chart in the interior domainII 1 is furnished by

ds2~ II 1!5S qTj21

~12R/c2!
j21D b21S c22R

R2c1
D bdR22S qTj21

~12R/c2!
j21D 21

dT2,

II 1 :5$~R,t !PR2:c1,R,c2 ,j~R!,T,B~R!%, ~7.5!

j~R!5@q21~12R/c2!
j #1/~ j21!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The fluid represented by~7.5! has peculiar properties which will be discussed in the next sec
The metric corresponding to the open setII 2

(m) of M2 depends very much upon the value
the parameterbP(0,1). For values such asb52n/(2n11) ~wheren is a non-negative integer!,
the r -t chart in ~7.1b! can be continued to obtain

ds2~ II 2!5S 12
qr j21

~12t/c2!
j D 21

dr22S 12
qr j21

~12t/c2!
j D 21/~2n11!S c22t

t2c1
D 2n/~2n11!

dt2,
~7.6!

II 25$~r ,t !PR2:0,r,j~ t !,c1,t,c2%.

For the valuen50, we recover the metric of the previous paper.9 However, for values such a
b51/(2n11) ~where n is a non-negative integer!, the natural extension of~7.1b! yields the
gravitational instanton metric

ds2~ II 2!5S 12
qxj21

~12y/c2!
j D 21

dx21S 12
qxj21

~12y/c2!
j D 22n/~2n11!S c22y

y2c1
D 1/~2n11!

dy2,
~7.7!

II 25$~x,y!PR2:0,x,j~y!,c1,y,c2%.

The irrational values ofb yield @as a natural continuation of~7.1a!# a complexmetric in II 2 .
There is a coordinate transformation from the exterior domainI 0 of the r -t chart into the

Kruskal–Synge–Szekeres~KSS for short! coordinatesU1 ,V1 . This transformation is given be
low.

U152A r

2m
21~c12t !k/2 exp@~r2t2c!/4m#,0, ~7.8a!

V15A r

2m
21~c12t !2k/2 exp@~r1t1c!/4m#.0, ~7.8b!

S r

2m
21Dexp~r /2m!5FY1~U1V1!

2m
21GexpFY1~U1V1!

2m G52U1V1.0, ~7.8c!

~c12t !2k expF t1c

2m G5„c12T1~U1V1!…
2k expFT1~U1V1!1c

2m G52
V1

U1
.0, ~7.8d!

ds2~ Î 0!52
32m3

Y1~U1V1!
expF2

Y1~U1V1!

2m GdU1dV1 , ~7.8e!

Î 05$~U1 ,V1!PR2:U1,0,B̂~U1!,V1%. ~7.8f!

The boundary curveV15B̂(U1) is given parametrically by

U152~c12t !~11k!/2 exp@~c22kc2~11k!t !/4m#,
~7.9!

V15~c12t !~12k!/2 exp@~c21kc2~12k!t !/4m#, 2`,t,c1 .

In Fig. 4, we note that the boundary curveV15B̂(U1) never crosses the event horizonU150.
However, the proper timesH along the boundary curve, starting at a coordinate timet0,c1 , is
given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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sH5E
t0

c12UdsdtUur5B~ t !

dt5A12k22S A~c12t0!~c22t0!1~mk!lnF11
2Ac12t0

Ac22t02Ac12t0
G D .
~7.10!

Therefore,sH is a finite positive number and the boundary of the fluid body reaches the e
horizon at a finite proper time.

The domainI 0
(m)øII 0

(m)øIII 0
(m)øIV0

(m)øV0
(m)ø$ i .b.% can be mapped into theU–V plane of

the KSS coordinates. We shall provide the explicit coordinate transformations from the do

II Ĩ 0 of the r̂ – t̂ and the domainII 0 of theR–T plane in the following equations.

U5A r̃

2m
21~ t̃2c1!

k/2 exp@~ r̃2 t̃2c!/4m#.0, ~7.11a!

V5A r̃

2m
21~ t̃2c1!

2k/2 exp@~ r̃1 t̃1c!/4m#.0, ~7.11b!

II Ĩ 05$~ r̃ , t̃ !PR2:2m, r̃ ,c1, t̃,c2%, ~7.11c!

U5A12
T

2m
~R2c1!

k/2 exp@~T2R2c!/4m#.0, ~7.11d!

V5A12
T

2m
~R2c1!

2k/2 exp@~T1R1c!/4m#.0, ~7.11e!

II 05$~R,T!PR2:c1,R,c2 ,B~R!,T,2m%, ~7.11f!

ds2~ I Î 0øII Î 0øIV̂0øV̂0ø$ i .b.%!52
32m3

Y~UV!
expF2

Y~UV!

2m GdUdV, ~7.11g!

UY~UV!

2m
21UexpSY~UV!

2m D5UuVu>0, ~7.11h!

Y~UV!52m@11W~2UV/e!#, ~7.11i!

whereW is the LambertW-function17 defined by the transcendental equationW(x) expW(x)
[x.

The domainI Î 0øIV̂0ø$ i .b.% represents the matter-free part of the black hole. Every poin

I Î 0øIV̂0ø$ i .b.% is a trapped surface. The points corresponding to the singularity have
excised in Fig. 4 from the manifoldM2 . This is done because, mathematically speaking,
singularity is undefined. It has been represented by two dashed curves instead. Our cho
seven charts do not cover points corresponding to the boundary line between domainsI 0

(m) and
III 0

(m) . It remains an open problem to obtain the eighth chart which will cover this line.

VIII. THE FLUID BODY INSIDE THE BLACK HOLE

We shall analyze the fluid occupying the domain corresponding toII 1 in Fig. 4. By the metric
~7.5!, the corresponding four-dimensional metric is given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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ds2~ I Î 1!5F qTj21

~12R/c2!
j21Gb21Fc22R

R2c1
GbdR21T2dV22F qTj21

~12R/c2!
j21G21

dT2, ~8.1a!

5:
@A#~R,T!#b21

@D#~R!#b
dR21T2dV22@A#~R,T#21dT2, ~R,T!PI Î 1 .

~8.1b!

The energy-momentum-stress tensor components will be defined by the Einstein tensor c
nents computed from~8.1a!. These are furnished by

T~1!
~1!5T1152G1

152
jqTj23

~12R/c2!
j,0, ~8.2a!

T4152G4
15

jqTj22

c2~12R/c2!
j11.0, ~8.2b!

T~4!
~1!5

jqTj22

c2~12R/c2!
j11 S ~R2c1!

~c22R! F qTj21

~12R/c2!
j21G21D b/2.0, ~8.2c!

T1452
jqTj22

c2~12R/c2!
j11 S ~R2c1!

~c22R! F qTj21

~12R/c2!
421G21D b,0, ~8.2d!

T~1!
~4!52T~4!

~1!,0, ~8.2e!

T~2!
~2!5T22

52G2
2

5
qTj23~ j21!@~ j22!~12b!2b#

2~12R/c2!
j

2
jqTj21@2~ j11!~R2c1!/c21qb~c2 /k! j21#

4~c2!
2~12R/c2!

j13

@D#~R!#b21

A#~R,T!] b

2
q2T2 j24~~ j21!2~12b!~22b!~c22R!22~21b! j 2T2@D#~R!#/A#~R,T!#b)

4~c2!
2~12R/c2!

2 j12A#~R,T!

[T~3!
~3! , ~8.2f!

T~4!
~4!5T4452G4

45
jqTj2

k2~12R/c2!
j.0, ~8.2g!

T~1!
~1!1k2T~4!

~4![0. ~8.2h!

It should be noted thatT(1)(1),0, T(4)(4).0, anduT(1)(1)u.uT(4)(4)u. These inequalities indicate
drastic modification of the constitutive fluid.

The eigenvalues and eigenvectors corresponding to the equation

Tabv
b5lva

@see also equations~2.5a! and ~2.5b!# yield the following results:

D#:5~11k22!2~c22R!224T2@D#~R!/A#~R,T!#b, ~8.3a!
J. Math. Phys., Vol. 38, No. 8, August 1997
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l~1!5
jqTj23

2c2~12R/c2!
j11 ~AD#2~12k22!~c22R!!, ~8.3b!

l~4!52
jqTj23

2c2~12R/c2!
j11 ~AD#1~12k22!~c22R!!, ~8.3c!

l~2!5l~3!5T~2!
~2!5:p' , ~8.3d!

@v ~1!
1 #25

2T2A#~R,T!@D#~R!/A#~R,T!#2b

AD#~AD#1~11k22!~c22R!!
, ~8.3e!

@v ~1!
4 #25

A#~R,T!~AD#1~11k22!~c22R!!

2AD#
, ~8.3f!

@v ~4!
1 #25F D#~R!

A#~R,T!G
b A#~R,T!~AD#1~11k22!~c22R!!

2AD#
, ~8.3g!

@v ~4!
4 #25

2T2A#~R,T!

AD#~AD#1~11k22!~c22R!!
F D#~R!

A#~R,T!G
b

, ~8.3h!

v ~1!
2 5v ~1!

3 5v ~4!
2 5v ~4!

3 [0, ~8.3i!

v ~2!
a 5T21d~2!

a , v ~3!
a 5~T sin u!21d~3!

a , ~8.3j!

gabv ~c!
a v ~d!

b 5d~c!~d! :5diag@21,1,1,1#, ~8.3k!

d~c!~d!v ~c!
a v ~d!

b 5gab, ~8.3l!

Tab52l~1!v ~1!
a v ~1!

b 1l~2!@v ~2!
a v ~2!

b 1v ~3!
a v ~3!

b #1l~4!v ~4!
a v ~4!

b

5~p'2l~1!!v ~1!
a v ~1!

b 1p'g
ab1~l~4!2p'!v ~4!

a v ~4!
b . ~8.3m!

In the caseb50, it is clear from the equation~8.3a! that D#.0 andl (1) ,l (4) are both real.
However, in caseb.0, D# is not necessarily non-negative and further analysis is required. Le
choose a particularR0P(c1 ,c2). In the intervalj(R0),T,B(R0) @the functionsB and j are
defined by eqs.~7.4! and ~7.5!, respectively#, it is clear that the functionsA#(R0 ,T):
5qTj21/(12R0 /c2)

j21, 2@A#(R0 ,T)#
21 andD#(R0 ,T) are monotone-increasing. Moreover

lim
T↑B~R0!

D#~R0 ,T!5~12k22!2~c22R0!
2.0.

But,

lim
T↓j~R0!

D#~R0 ,T!5~11k22!2~c22R0!
224@j~R0!#

2@D#~R0!#
b lim
T↓j~R0!

@„T/j~R0!…
j2121#2b

→2`.

Therefore, there exists a curveT5G(R) in theR–T plane defined implicitly by

D#~R,T!50, j~R!,G~R!,B~R!. ~8.4!
J. Math. Phys., Vol. 38, No. 8, August 1997
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The domainII 1 can be subdivided into

II 15II 1
~1!øII 1

~2!ø$ i .b.%, ~8.5a!

II 1
~1! :5$~R,T!PR2:c1,R,c2 ,G~R!,T,B~R!%, ~8.5b!

II 1
~2! :5$~R,T!PR2:c1,R,c2 ,j~R!,T,G~R!%, ~8.5c!

$ i .b.%:5$~R,T!PR2:c1,R,c2 ,T5G~R!%. ~8.5d!

In the domainII 1
(1) , the eigenvaluesl (1) andl (4) are real, so that the equation~8.3m! can be

expressed as

Tab5@p'1ul~1!u#v ~1!
a v ~1!

b 1p'g
ab2@p'1ul~4!u#v ~4!

a v ~4!
b ,

~8.6!

gabv ~1!
a v ~1!

b 521, gabv ~4!
a v ~4!

b 51.

The physical interpretation of the energy-momentum-stress tensor in~8.6! is not completely
clear. One possible explanation is that the fluid motion is tachyonic and the velocity compo
are given byv (a)

4 . In this case,pi52ul (1)u,0, which is a tension. Another distinct possibility
to considerv (a)

1 as components of fluid velocity so that the fluid speed is less than the spe
light. In this case, however,pi52ul (4)u,0 which is a tension again.

When the events under consideration lie in$ i .b.%, the eigenvalues are still real; furthermor
l (1)5l (4),0.

In the domainII 1
(2) , the eigenvaluesl (1) and l (4) are complex. Moreover, we have th

following equations:

l~1!5 l1 ih, ~8.7a!

l :52
jqTj23

2c2~12R/c2!
j11 ~12k22!~c22R!,0,

h:5
jqTj23

2c2~12R/c2!
j11 AuD#u, ~8.7b!

l~4!5l~1!, ~8.7c!

v ~1!
a 5~1/& !~ua1 iwa!, ~8.7d!

u1:5AA#~R,T!

2 sin u F D#~R!

A#~R,T!G
b/2

@cos~u/2!2sin~u/2!#, ~8.7e!

u4:5AA#~R,T!

2 sin u
@cos~u/2!1sin~u/2!#, ~8.7f!

w1:52AA#~R,T!

2 sin u F D#~R!

A#~R,T!G
b/2

@cos~u/2!1sin~u/2!#, ~8.7g!

w4:5AA#~R,T!

2 sin u
@sin~u/2!2cos~u/2!#, ~8.7h!
J. Math. Phys., Vol. 38, No. 8, August 1997
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tan u:5A4T2„D#~R!/A#~R,T!…b

~11k22!2~c22R!2
21, ~8.7i!

u25u35w25w3[0, ~8.7j!

v ~4!
a 52 iv ~1!

a , ~8.7k!

Tab5~p'2 l !~uaub2wawb!1h~uaub1wawb!1p'g
ab, ~8.7l!

gabu
aub521, gabw

awb51. ~8.7m!

By ~8.7k!, we notice that the matrix@Tab# is not diagonizable13,16 and is of the type II or Segre
class@(11),zz̄#.

There is another domainII 2 interior to the event horizont5c1 . The metric for the parametric
values

b5
1

2N11
, k25

~2N11! j

2N~ j22!21
, NPN, ~8.8!

is given by

ds2~ II 2!5F12
qxj21

~12y/c2!
j G21

dx21F12
qxj21

~12y/c2!
j Gb21Fc22y

y2c1
Gbdy2,

~8.9!

II 2 :5$~x,y!PR2:0,x,j~y!, c1,y,c2%.

The corresponding four-dimensional metric is given by

ds2~ I Ĩ 2!5F12
qxj21

~12y/c2!
j G21

dx21x2dV21F12
qxj21

~12y/c2!
j Gb21Fc22y

y2c1
Gbdy2

5:@Â~x,y!#21dx21x2dV21@Â~x,y!#b21@D̂~y!#2bdy2. ~8.10!

The above metric has signature14. Thus, it represents an interiorgravitational instantonsolution.
We define the energy-momentum-stress tensor componentsTab :52Ga

b . The components are
given explicitly by

T115
jqxj23

k2~12y/c2!
j Þ0, ~8.11a!

T4452
jqxj23

~12y/c2!
j,0, ~8.11b!

k2T111T 4
4[0, ~8.11c!

T145
jqxj22

c2~12y/c2!
j11.0, ~8.11d!

T415
jqxj22

c2~12y/c2!
j11 F D̂~y!

Â~x,y!
G b.0, ~8.11e!
J. Math. Phys., Vol. 38, No. 8, August 1997
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T225T335
jq@~b/2!~12c1 /c2!1~ j11!~y2c1!#x

j21@D̂~y!#b21@Â~x,y!#2b

2~c2!
2~12y/c2!

j13
2

j ~ j21!qxj23

2k2~12y/c2!
j

1
j 2q2~11b/2!x2 j12@D̂~y!#b@Â~x,y!#212b

2~c2!
2~12y/c2!

2 j12
1

~ j21!2q2~12b!~12b/2!x2 j24

2~12y/c2!
2 j Â~x,y!

.

~8.11f!

IX. CONCLUDING REMARKS

Let us consider the dependences of various geometrical and physical quantities on th
parametersq andc2 . In the limit asq↓0, all the components ofTab vanish by Eqs.~4.1d!, ~4.3!,
~4.4!, and ~4.6!. In that limit, the interior Riemann invariants all vanish by~6.8e!–~6.8i!. More-
over, the interior line element~4.5f! tends to

ds2~D̃I !5dr21r 2dV22dt2, ~9.1!

which is obviously flat. Therefore, in the limit asq↓0, the fluid body is completely annihilated
In the limit asc2→` andk5(q/2m)1/j c2→`, the interior line element~4.5f! goes over into

ds2~D̃I !5@12qr j21#21dr21r 2dV22@12qr j21#b21@12~2m!121/jq1/j #2bdt2,
~9.2!

D̃I5$~r ,u,f,t !PR4:0,r,q1/~ j21!,0,u,p,2p,f,p,tPR%.

The above is a static metric generated by a spherically symmetric anisotropic fluid. The ph
quantities for this static solutions are@by the equations~4.3!, ~4.7a!, ~4.7b!, and~4.6!#

T145T41[0, r5 jqr j23, pi5r/k2,

p'5
j ~ j21!qr j23

2k2
1
j ~ j21!~11k22!q2r 2 j24

4~12qr j21!
. ~9.3!

We can summarize the various properties@Eqs. ~2.6a!–~2.6c!# of the fluid flow inside the
domainD̃I by the following equations:

u̇15u1u,1
11u4u,4

11
1

2 S q~ j21!r j22

~12t/c2!
j D @A~r ,t !#21$~u1!21~12b!@A~r ,t !#b@D~ t !#2b~u4!2%,

~9.4a!

u̇45u1u,1
41u4u,4

41
jqr j21

2c2~12t/c2!
j11 @A~r ,t !#212b@D~ t !#b~u1!2

1
1

2 F ~12b! jqr j21

c2~12t/c2!
j11 @A~r ,t !#211

b~c22c1!

~c22t !~c12t !G~u4!2, ~9.4b!

u25u3[0, ~9.4c!

U5@A~r ,t !#12b/2@D~ t !#b/2F 2
&

r 2 S r 3

AAD1/4A~11k22!~c22t !1AD
D
,r

1
1

&

S r 2 A~11k22!~c22t !1AD

AAD1/4
D
,t
G,0, ~9.4d!
J. Math. Phys., Vol. 38, No. 8, August 1997
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vab[0. ~9.4e!

For the parameterb51/(2N11), the radial, null geodesics emerging out of the inter
metric ~4.5f! are given by the equations

dR

dt
~ t !56H S c22t

c12t D S 12
qr j21

~12t/c2!
j D J 1/@2~2N11!#

, ~9.5!

for t,c1 .
It is clear that

lim
t↑c1

S dRdt ~ t ! D→6`

and that (dR/dt)(t) is purely imaginary fort.c1 . Thus, null geodesics do not exist inside t

domainI Ĩ 0 of the gravitational instantons. Therefore, the metric~4.5f! is null geodesically incom-
plete. The spatial geometry before the event horizont5c1 can be partially analyzed. If we
consider the two-dimensional surface corresponding tot5t0,c1 andu5p/2, then the line ele-
ment ~4.5f! reduces to

ds25g11~r ,t0!dr
21r 2df2, ~9.6a!

g11~r ,t0!:5 H ~12qr j21/~12t0 /c2!
j !21 for 0,r,k21~c22t0!,

~122m/r !21 for r>k21~c22t0!.
~9.6b!

It is well known that~9.6a! is due to a smooth surface of revolution inR3. It can be generated by
revolving the parametrized curve

x15X 1~r !:5r ,

x25X 2~r ![0,

x35X 3~r !:55 E01

r A qxj21

~12t0 /c2!
j2qxj21 dx for 0,r,

c22t0
k

,

E
01

~c22t0!/kA qxj21

~12t0 /c2!
j2qxj21 dx1A8m~r22m! for r>

c22t0
k

,

about thex3 axis. In the limitt0↑c1 , this surface of revolution develops a curvature singularity
the origin. The spatial geometry is independent of the parameterb occurring in the metric~4.5f!.

Now, we shall compute the ‘‘total mass’’ functions inside the black hole. In the insta

domainI Ĩ 2 , the total mass function is chosen to be

M inst~x,y!52
1

2 E
01

x

T44~w,y!w2 dw5
q

2 S x

12y/c2
D j , ~9.7a!

M inst„j~y!,y…5j~y!5@q21~12y/c2!
j #1/~ j21!, ~9.7b!

0,x,j~y!, c1,y,c2 . ~9.7c!

In the exotic domainI Ĩ 1 , the total mass function is chosen to be
J. Math. Phys., Vol. 38, No. 8, August 1997
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Mexot~R,T!:52
1

2 E
j~R!

T

T1
1~R,t!t2 dt5

q

2 S Tj2@j~R!# j

~12R/c2!
j D , ~9.8a!

Mexot„R,B~R!…5m2j~R!, ~9.8b!

c1,R,c2 , j~R!,T,B~R!. ~9.8c!

Note that the exotic mass is generated by thetension T1
1,0 instead of the usual mass dens

T44 . We can compute the total mass function inI Ĩ 1øI Ĩ 2 from the equations~9.7b! and~9.8b! for
any cP(c1 ,c2). It is given by

M inst„j~c!,c…1Mexot„c,B~c!…5m, ~9.9!

the Schwarzschild mass.
We have tried to generalize the ‘‘total mass’’ function of this paper in the equation~4.1a! into

M̃ ~r ,t !:5~q/2!@r /B~ t !# j . ~9.10!

Here,B is a positive-valued differentiable function withB8(t),0 which is otherwise arbitrary
The field equations~3.2a!–~3.2c!, the conservation equations and the junction conditions~3.8a!
and ~3.8b! can be solved. However, the resulting metric can be transformed into~4.5f!.

In this mathematically exact model of a spherically symmetric black hole collapsing
infinity, we have encountered five distinct types of material.

~1! There is the regular anisotropic fluid which satisfies weak energy conditions before colla
into the event horizon.

~2! In the domainII 1
(1) of the black hole, the mass density is generated by the tension.

~3! In the domainII 1
(2) of the black hole, the energy-momentum-stress tensor has complex e

values.
~4! In the domainII (2) of the black hole, the matter has properties of gravitational instanton
~5! Finally, there is the matter in the disguise of a singularity inside the black hole and it i

least understood of all.

This model reminds us of the five distinct sheaths or Koshas of the Vedanta philoso18

~The word Kalpa of the Sankhya philosophy representing a cosmological cycle has been
tioned in the well-known book by Misneret al.7!
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Limits of space–times in five dimensions and their
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A limiting diagram for the Segre classification in 5-dimensional space–times is
obtained, extending a recent work on limits of the energy–momentum tensor in
general relativity. Some of Geroch’s results on limits of space–times in general
relativity are also extended to the context of five-dimensional Kaluza–Klein space–
times. © 1997 American Institute of Physics.@S0022-2488~97!03907-8#

I. INTRODUCTION

In general relativity, it is well known that the curvature tensor can be uniquely decomp
into three irreducible parts, namely the Weyl tensor, the traceless Ricci tensor and the Ricci
Petrov and others1–3 have discussed the algebraic classification of the Weyl part, which is kn
nowadays as Petrov classification. The algebraic classification of the Ricci part, known
Segre classification, has been discussed by several authors4,5 under different viewpoints, and is
important, for example, in the characterization of matter distributions6–11 as part of the procedure
for checking local equivalence of space–times,12–17 and in the study of limits of non-vacuum
solutions of Einstein’s field equations.18–20

In 1969, Geroch21 discussed some basic properties of limits of space–times in general
tivity ~GR!. Regarding the algebraic types of the Weyl tensor he showed that the Penrose s
ization diagram2 for the Petrov classification is also a limiting diagram, that is to say, un
limiting processes only space–times with the same Petrov type or one of its Penrose spe
tions can be reached.

In a recent work Paivaet al.20 have investigated the relations among the Segre types o
Ricci tensor under limiting processes in the framework of general relativity. They have obtai
limiting diagram for the Segre classification of symmetric two-tensors in GR. Among the rele
consequences of their limiting scheme it is worth mentioning that it permits an extension
coordinate-free approach to limits recently devised18 ~see also Ref. 19!.

Kaluza–Klein-type theories in five and more dimensions are of notable interest in at leas
contexts.

In the framework of gauge theories they have been used in the quest for unification
fundamental interactions in physics. This idea, that the various interactions in nature mig
unified by enlarging the dimensionality of the space–time, has a long and honourable histo
goes back to the works of Nordstro¨m, Kaluza and Klein.22–24

The possibility that space–time has more than four dimensions has also received much
tion regarding its cosmological aspects. Investigation has been focused on attempts to und
for example, why the universe presently appears to have only four space–time dimension
whether it is a higher-dimensional dynamically evolving manifold—the space–time expands

a!Electronic mail: fmpaiva@symbcomp.uerj.br
b!Electronic mail: reboucas@cat.cbpf.br
c!Electronic mail: teixeira@novell.cat.cbpf.br
0022-2488/97/38(8)/4228/9/$10.00
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the extra dimensions contract or remain constant. The first cosmological model in which the
dimensions contract as a result of the cosmological evolution was proposed by Chodo
Detweiler.25 Since then, a great deal of work has evolved along this line of research~see, for
example, Ref. 26 and references therein!.

From a purely technical viewpoint higher-dimensional Kaluza–Klein-type theories have
used as a way of finding new exact solutions of Einstein’s equations in four dimensions.27,28

More recently Wesson29–32 and others~see also Mc Manus33 and references therein! have
given a new impetus to the study of~411!-gravity by their investigation in a five-dimensiona
extension of general relativity with a variable rest mass. The fifth dimension of this new the
a convenient mathematical way of geometrizing the rest mass and of allowing one to stu
possibility that it may be variable. As such the fifth dimension needs not to be compactified
does in most of the other Kaluza–Klein-type theories.

An essential result for the present article came out in a recent paper by Santoset al.34 ~see also
Hall et al.35!, where they have performed the Segre classification of second order symm
tensors on five-dimensional~5-D for short! Lorentzian spaces.

In the present paper we build a limiting diagram for the Segre types in five-dimens
space–times, generalizing previous work on this matter.20 We also extend some of Geroch
results on limits of space–times in general relativity to the context of 5-D Kaluza–Klein-
theories. Although the Paivaet al.18 coordinate-free procedure for finding out limits of spac
times in GR has not yet been extended to 5-D space–times, the limiting diagram studied
present work will certainly be relevant to any approach to the possible limits of space–tim
five dimensions.

Throughout this paper we shall use the concept of limit of a space–time introduced in R
~see also Refs. 21,36!, wherein by a limit of a space–time, broadly speaking, we mean a lim
a family of space–times when some free essential parameters are taken to a limit. So, for ex
in the one-parameter family of Schwarzschild solutions each member is a Schwarzschild s
time with a specific value for the mass parameterm. By space–time we understand a real diffe
ential manifold with a metric of Lorentzian signature together with the attendant mathem
structures usually required in physics.37 Finally we note that although the Ricci tensor is co
stantly referred to, the results of the following sections apply to any second order real sym
tensor defined on 5-dimensional Lorentzian spaces.

In the next section we present a brief summary of the main results on Segre classifica
5-D and introduce the minimal and characteristic polynomial types corresponding to the
types in 5-D space–times. These results are required for section III, where we build a lim
diagram for the Segre type in 5-D. In the last section we discuss our main results and
extensions.

II. SEGRE TYPES IN 5-D

The algebraic classification of the Ricci tensor in 5-D space–times can be cast in terms
eigenvalue problem,

~Rb
a2ldb

a!Vb50, ~2.1!

wherel is a scalar,Vb is a vector and the mixed Ricci tensorRb
a is looked upon as a linea

operatorR:Tp(M )→Tp(M ). Here and in what followsM is a real 5-dimensional space–tim
manifold locally endowed with a Lorentzian metric of signature (12222),Tp(M ) denotes the
tangent space toM at a pointpPM and latin indices range from 0 to 4, unless otherwise sta
Although the matrixRb

a is real, the eigenvaluesl and the eigenvectorsVb are often complex. A
mathematical procedure used to classify matrices in such a case is to reduce them throug
larity transformations to canonical forms over the complex field. Among the existing cano
J. Math. Phys., Vol. 38, No. 8, August 1997
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forms the Jordan canonical form~JCF! turns out to be the most appropriate for a classification
Rb
a in 5-D.34 In the Jordan canonical form, a matrix consists of Jordan blocks along the

diagonal. A Jordan block is, for example, a matrix of form

F l1 1 0 0

0 l1 1 0

0 0 l1 1

0 0 0 l1

G , ~2.2!

where the equal elements along the main diagonal are the eigenvalue associated to the
block. It is well known that the Jordan canonical form is uniquely defined up to the ordering o
Jordan blocks.

In the Jordan classification two square matrices are said to be equivalent if similarity
formations exist such that they can be brought to the same JCF. The JCF of a matrix
explicitly its eigenvalues and makes apparent the dimensions of the Jordan blocks. Howev
many purposes a somehow coarser classification of a matrix is sufficient. In the Segre cla
tion, for example, the value of the roots of the characteristic equation is not relevant—on
dimension of the Jordan blocks and degeneracy of eigenvalues matter. The Segre type
@n1n2•••nr # of the dimensions of the Jordan blocks. Equal eigenvalues in distinct block
indicated by enclosing the corresponding digits inside round brackets. Thus, for example,
degenerated Segre type@(31)1# four out of the five eigenvalues are equal; there are three line
independent eigenvectors, two of which are associated to the Jordan blocks of dimensions 3
whereas the last one corresponds to the block of dimension 1.

In classifying symmetric tensors in a Lorentzian space–time two refinements to the
Segre notation are often used. Instead of a digit to denote the dimension of a block with co
eigenvalue a letter is used, and the digit corresponding to a time-like eigenvector is separate
the others by a comma.

As far as 5-D space–times are concerned, due to the Lorentz signature, the real eigen
of Rb

a may be space-like, null or time-like. For these space-times, it can be shown34 that some
Segre types~as, for example, Segre types@5#, @41#, @32# and@221#! are not allowed because of th
Lorentzian signature of the metric and the symmetry ofRab . One also learns from Santoset al.34

that the possible Segre types ofRb
a in 5-D Lorentz spaces are the following:

~1! @1,1111# and its degeneracies@1,11~11!#, @~1,1!111#, @1,~11!~11!#, @~1,1!~11!1#, @1,1~111!#,
@~1,11!11#, @~1,1!~111!#, @~1,11!~11!#, @1,~1111!#, @~1,111!1# and @~1,1111!#. Type @~1,1111!#
implies thatRab is proportional to the metricgab ; it is usually referred to as Segre 0.

~2! @2111# and its specializations@21~11!#, @~21!11#, @~21!~11!#, @2~111!#, @~211!1# and @~2111!#.
The first digit corresponds to a null eigenvector while the others are associated to spa
eigenvectors.

~3! @311# and its degeneracies@3~11!#, @~31!1# and @~311!#. Here again the first digit correspond
to a null eigenvector while the others correspond to space-like eigenvectors.

~4! @z z̄111# and its degeneracies@z z̄~11!1# and@z z̄~111!#. Herez and z̄ correspond to complex
conjugate eigenvectors with complex conjugate eigenvalues. The digits correspond to
like eigenvectors with real eigenvalues.

We shall now discuss the characteristic and minimal polynomials in connection with S
types and build a table, which will be important in the derivation of the limiting diagram for
Segre classification of the next section.

Associated to the eigenvalue problem~2.1! one has the determinant

uRb
a2ldb

au, ~2.3!
J. Math. Phys., Vol. 38, No. 8, August 1997
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which is a polynomial of degree five inl, called thecharacteristic polynomialof Rb
a . The

fundamental theorem of algebra38 ensures that, over the complex field, it can be always factor
as

~l2l1!
d1~l2l2!

d2
•••~l2l r !

dr, ~2.4!

wherel i ( i51,2, . . . ,r ) are the distinct roots of the polynomial~eigenvalues!, anddi the corre-
sponding degeneracies. To indicate the characteristic polynomial we shall introduce a ne
$d1d2•••dr% of eigenvalues degeneracies, hereafter referred to as thetype of the characteristic
polynomial.

The minimal polynomial can be introduced as follows. LetP be a monic matrix polynomial of
degreen in Rb

a , i.e.,

P5Rn1cn21R
n211cn22R

n221•••1c1R1c0d, ~2.5!

whered is the identity matrix andcn are, in general, complex numbers. The polynomialP is said
to be theminimal polynomialof R if it is the polynomial of lowest degree inR such thatP50. It
can be shown39 that the minimal~monic! polynomial is unique and can be factorized as

~R2l1d!m1~R2l2d!m2•••~R2l rd!mr, ~2.6!

where mi is the dimension of the Jordan block ofhighest dimensionfor each eigenvalue
l1 ,l2 , . . . ,l r , respectively. We shall denote the minimal polynomial through a third
im1m2•••mr i , hereafter referred to as thetype of the minimal polynomial.

We can work out now the characteristic and minimal polynomials for each Segre type in
The powerdi of the term corresponding to each eigenvaluel i in the characteristic polynomial is
the sum of the dimensions of the Jordan blocks with the same eigenvaluel i , whereas in the
minimal polynomial the powermi is the dimension of the Jordan block of highest dimension w
that eigenvalue. Thus, for example, the Segre types@~1,111!1#, @~31!1# and@~211!1# have the same
type for the characteristic polynomial, namely type$41%, while their corresponding minimal poly
nomials are, respectively, of typesi11i , i31i andi21i . On the other hand, the Segre types@3~11!#
and @~31!1# have the typei31i for the minimal polynomial, while the associated characteris
polynomials are, respectively, of types$32% and$41%. We also remark that the Segre types@2~111!#
and @~21!~11!# have the same type for both polynomials, namely$32% and i21i .

Table I collects together the characteristic~columns—CP! and minimal polynomial~rows—
MP! types corresponding to the possible Segre types of a symmetric two-tensor in 5-D Lore
spaces. It should be noticed that the characteristic polynomial for the complex Segre

@z z̄111#, @z z̄1~11!# and @z z̄~111!# have been denoted, respectively, by$z z̄111%, $21z z̄% and
$3z z̄%.

III. LIMITING DIAGRAM FOR SEGRE TYPES IN 5-D

In the study of limits of space–times it is worth noticing that there are some properties th
inherited by all limits of a family of space–times.21 These properties are called hereditary. Th
for example, a hereditary property devised by Geroch can be stated as follows:

Hereditary property:

Let T be a tensor or scalar field built from the metric and

its derivatives. IfT is zero for all members of a family of

space–times, it is zero for all limits of this family.

~3.1!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Two corollaries of this property are that limits of conformally flat space–times are con
mally flat, and that limits of Ricci flat space–times are also vacuum solutions in GR.

In general, the algebraic type of the Weyl tensor is not a hereditary property under lim
processes. Nevertheless, it needs to be at least as specialized as the types in the Penros
ization diagram for the Petrov classification are.21

Similarly, although the Segre type of the Ricci tensor is not in general preserved
limiting processes, there exits a limiting diagram for the Segre types in GR, which has
recently discussed.20

In this section, we shall discuss limiting diagrams for both the characteristic and min
polynomial types, and combine them to determine a limiting diagram for the Segre types ofRb

a in
5-D Lorentzian spaces.

Clearly the characteristic~2.3! and the minimal~2.6! polynomials ofRb
a as well as the eigen

values are built from the metric and its derivatives20. Since they are either scalars or tensors b
from the metric and its derivatives~hereafter referred to as Geroch scalars and Geroch tensors!, the
hereditary property~3.1! can be applied to them.

A limiting diagram for the types of a five degree characteristic polynomial correspondin
the eigenvalue problem~2.1! can now be constructed. We first note that as at each degenerac
Geroch scalar~the difference between two roots of the characteristic polynomial! vanishes, by the
hereditary property~3.1!, under a limiting process the degeneracy of the characteristic polyno
either increases or remains the same. Besides, the real and imaginary parts of complex ro
also Geroch scalars. Therefore, Segre types with real roots cannot have as a limit a Segre ty
a complex root. Further, since complex roots can occur only in complex conjugate pairs, u
limiting process they either remain complex or become a pair of degenerate real roots.
results can be collected together in the limiting diagram for the characteristic polynomial sho
Figure 1. For the sake of simplicity, in the limiting diagrams in this paper we do not draw ar
between types whenever a compound limit exists. Thus, in Figure 1, e.g., the
$11111%→$2111%→$311%→$32% imply that the limit$11111%→$32% is allowed.

A limiting diagram for the types of a five degree minimal polynomial of the Ricci tensor
be constructed as follows. According to the hereditary property~3.1!, the minimal polynomial of
a family of space–times is zero for all limits of this family. Therefore, under limiting processe

TABLE I. Characteristic~columns—CP! and minimal~rows—MP! polynomial types corresponding to the Segre types
Rb
a in 5-D Lorentzian spaces.

CP→ $11111% $z z̄111% $2111% $21zz% $221% $311% $3z z̄% $32% $41% $5%
MP↓

i11111i @1,1111# @z z̄111#

i2111i @2111#

i311i @311#

i1111i @1,11~11!# @z z̄1~11!#
@~1,1!111#

i211i @21~11!# @~21!11#

i31i @3~11!# @~31!1#

i111i @~1,1!1~11!# @~1,11!11# @z z̄~111!#
@1,~11!~11!# @1,1~111!#

i21i @2~111!# @~211!1#
@~21!~11!#

i3i @~311!#

i11i @~1,11!~11!# @~1,111!1#
@~1,1!~111!# @1,~1111!#

i2i @~2111!#

i1i @~1,1111!#
J. Math. Phys., Vol. 38, No. 8, August 1997
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degree of the minimal polynomial either decreases or remains the same. Besides, from the l
diagram for the characteristic polynomial in Figure 1 we notice that also the numberr of distinct
eigenvalues either decreases or remains the same. Taking into account these properties
work out the limiting diagram for the minimal polynomial shown in Figure 2, where the colu
correspond to the same degreem11m21•••1mr of the minimal polynomial, and the rows cor
respond to the same numberr of distinct eigenvalues. It should be noticed that although we co
also have distinguished complex from real roots in the minimal polynomial diagram, for
purpose in this paper it can be verified that no useful information would arise.

From the limiting diagrams for the characteristic and minimal polynomials in Figures 1 a
we substitute for each type of the characteristic and minimal polynomials the corresponding
types taken from Table I. This gives rise to the two limiting diagrams given in Figures 3 a
respectively. We have not taken into account the character of the eigenvectors. Thus, for ex
we represent the Segre types@~1,1!111# and @1,11~11!# by the set-type@~11!111# and the Segre
types @~1,11!~11!# and @~1,1!~111!# by the set-type@~111!~11!#. The set-types@~11!1~11!# and
@~111!11# are similarly introduced.

We can now collect together the information of the limiting diagrams of Figures 3 and
finally draw a limiting diagram for the Segre types in 5-D, shown in Figure 5. Thus, for exam
starting from the limiting diagram for the minimal polynomial~Figure 4! one finds that the Segr
type @2111# may have as its limit the types@311#, @11~111!# and @z z̄1~11!#. However, from the
diagram for the characteristic polynomial shown in Figure 1 one finds that the Segre type@2111#
cannot have the type@z z̄1~11!# as its limit. So, we have only two arrows starting from the Se
type @2111#, as it has been drawn in Figure 5. Although the other arrows in Figure 5 ca
similarly determined, we shall not discuss them here for the sake of brevity.

To close this section we remark that again in the limiting diagram shown in Figure 5
character of the eigenvectors is not taken into account. We shall return to this point in the
section.

FIG. 1. Limiting diagram for the characteristic polynomial in 5-D Lorentzian spaces.

FIG. 2. Limiting diagram for the minimal polynomial in 5-D Lorentzian spaces. The typesi221i , i32i , i22i , i4i and
i5i are not shown since they do not correspond to any Segre type~see Table I!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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IV. CONCLUSION

In this work we have constructed a limiting diagram for the Segre classification of a se
order symmetric two-tensor defined on 5-D Lorentzian spaces~Figure 5!. To achieve this goal we
have essentially used the hereditary property~3.1! together with the limiting diagrams for th
characteristic and minimal polynomial types, which we have worked out in section III.

Improvements of the limiting diagram that we have presented in this article can st
tackled. A first refinement would arise by taking into account the character of the eigenvecto
take into account the types which differ by the character of the eigenvectors one has fir
separate the set-types into its two members, and check whether one of these members can
other as its limits and vice-versa. Secondly, one needs to find out whether the Segre types
can have as limit one set-type can have a limit both members of the set. Finally, one ou
examine whether the Segre types which can be a limit of one set-type can be a limit o
member of the corresponding Segre set-type. Perhaps most of these checkings can be mad
by extending to 5-D space-times the hereditary properties discussed in the context of G20 A
second refinement of the limiting diagram shown in Figure 5 can be made by figuring
criterion for separating the Segre types@2~111!# and@~21!~11!#, which have the same type for bot

FIG. 3. Diagram for the limits of Segre types ofRb
a in 5-D Lorentzian spaces according to the types of the character

polynomial.

FIG. 4. Diagram for the limits of Segre types ofRb
a in 5-D Lorentzian spaces according to the type of the minim

polynomial.
J. Math. Phys., Vol. 38, No. 8, August 1997
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characteristic and minimal polynomials. A third improvement of the limiting diagram give
Figure 5 might arise if besides the type of the characteristic and minimal polynomials one
siders the values of their roots.

The limiting diagrams of the Petrov and the Segre classification play a fundamental role
study of limits of space–times in general relativity,18,19,40as briefly discussed in the introduction
Although the coordinate-free technique for finding out limits of space–times in GR18 have not yet
been extended to 5-D space–times, the limiting diagram studied in the present work will ce
be applicable to any coordinate-free approach to possible limits of non-vacuum space–tim
five dimensions.
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On Einstein’s equations for space–times admitting
a non-null Killing field
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We consider the three-dimensional formulation of Einstein’s theory for space–
times possessing a non-null Killing fieldja. It is known that for the vacuum case
some of the basic field equations are deducible from the others. It will be shown
here how this result can be generalized for the case of essentially arbitrary matter
fields. The systematic study of the structure of the fundamental field equations is
carried out. In particular, the existence of geometrically preferred reference systems
is shown. Using local coordinates of this type two approaches are presented result-
ing in resolvent systems of partial differential equations for the basic field vari-
ables. Finally, the above results are applied for perfect fluid space–times describing
possible equilibrium configurations of relativistic dissipative fluids. ©1997
American Institute of Physics.@S0022-2488~97!00908-0#

I. INTRODUCTION

If one is given a complicated system of nonlinear partial differential equations to solve—
happens frequently, for instance, in Einstein’s gravitational theory—it is hard to see whether
exists any relationship between the equations or not. Sometimes the realization of certain
connection might induce the introduction of an entirely new technique in solving the sel
problem. This was the case, for example, when Cosgrove1 gave a new formulation of field equa
tions for stationary axisymmetric vacuum gravitational fields, or when, by a generalizatio
Cosgrove’s approach, Fackerell and Kerr2 derived a resolvent system of differential equations
the vacuum field equation of Einstein’s theory for space–times with a single non-null Ki
vector field.

In the first part of this paper we are going to show that the fundamental results the intr
tion of the new approach was based on in Refs. 1 and 2 can be generalized for space
possessing a non-null Killing field with essentially arbitrary matter fields. Subsequently, the
erties of the basic field equations are studied in the situation where the gradient of the norm
Killing field and the twist of the Killing field are linearly independent. It is shown, for instan
that there exists a geometrically preferred vector field on the space of Killing orbits so th
basic field equations possess—in local coordinate systems adopted to this vector field
simple form. In particular, a number of the relevant field variables and/or their partial deriva
with respect to the coordinate associated with the preferred vector field are found to be iden
zero. By the application of the associated simplifications, two different approaches in de
resolvent systems of partial differential equations for the basic field variables are presente
first is a general approach while the second one is a generalization, for particular matter fie
the techniques applied for the study of stationary axisymmetric vacuum fields by Cosgrove.1 In the
last part of this paper the application of both of these techniques for the case of perfect
possessing four-velocity parallel to a timelike Killing field will be presented.

a!Electronic mail address: istvan@rmkthe.rmki.kfki.hu
0022-2488/97/38(8)/4237/18/$10.00
4237J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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II. THE FIELD EQUATIONS

In this section, first, we shall recall some of the notions and techniques of the formalis
general relativity developed for space–times possessing a non-null Killing vector field. Th
will be shown that some of the field equations involved are always deducible from the o
Finally, as a direct application of this result the basic field equations will be reformulat
displaying the simplest form of the relevant equations—corresponding to the possible subc

Consider a smooth space–time, (M ,gab), with a non-null Killing vector field,ja. It is well
known that for such a space–time the formulation of Einstein’s theory can be simplified co
erably by making use of a three-dimensional formalism.3,4 In particular, this is done as follows
Let S denote the space of Killing orbits ofja. It is assumed here thatS can be given the structur
of a three-dimensional differentiable manifold so that the projection map,f: M→S , fromM onto
S is a smooth mapping.3 This condition always holds locally, and, for the case of a timel
Killing field in a chronological space–time, is shown to be satisfied globally.5 Consider, now, the
following three fields onM : the norm of the Killing field,

v5jaja ; ~2.1!

the twist of the Killing field,

va5eabcdj
b¹cjd; ~2.2!

and the symmetric tensor field,

hab5gab2v21jajb . ~2.3!

The images of these fields by the differential,f* , of f give rise to tensor fields on the three-spa
S . For instance,f* hab is the natural induced metric onS which is Lorentzian or Riemannian
according to whether the Killing field,ja, is spacelike or timelike.~Hereafter we restrict our
considerations to the three-spaceS so it should not cause a big confusion that the same nota
will be used for the tensor fields living onS and for their natural ‘‘pull backs’’ ontoM .!

Then the basic field equations are4,5

Rab
~3!5 1

2v
21DaDbv2 1

4v
22~Dav !~Dbv !1 1

2v
22$vavb2hab~vmvm!%1ha

mhb
nRmn

~4! , ~2.4!

D [avb]52eabmnj
mhp

nRq
~4!pjq, ~2.5!

DaDav5 1
2v

21~Dmv !~Dmv !2v21vmvm22Rmn
~4!jmjn, ~2.6!

Dava5
3
2v

21vmD
mv, ~2.7!

whereRab
(3) andDa denote the Ricci tensor and the covariant derivative operator associated

hab , while Rab
(4) is supposed to be given in terms of the energy-momentum tensor,Tab , of the

matter fields by virtue of Einstein’s equations

Rab
~4!58p~Tab2

1
2gabT!. ~2.8!

Equations~2.4!–~2.7! relate the various types of projections of the four-Ricci tensor to ten
fields and their covariant derivatives living on the three-spaceS . It is important that the entire
geometrical content of Einstein’s theory for a space–time, (M ,gab), with a non-null Killing vector
field, ja, can be uniquely represented by a three-dimensional metric space, (S ,hab), along with
the fieldv andva satisfying the above set of field equations. Even more important that, to
three-dimensional formulation,$(S ,hab);v,va%, of this type—up to gauge transformations—
there exists a unique four-dimensional space–time, (M ,gab), with a Killing field, ja, so that the
J. Math. Phys., Vol. 38, No. 8, August 1997
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projection mapf: M→S reproduces the three-dimensional formulation we started with. In f
~2.7! is just the integrability condition ensuring that the four-geometry can be recovered from
three-dimensional formulation.3,4

Note that no restrictions have been raised concerning the matter fields. In fact, what we
need is that the matter fields be represented by tensor fields,C ( i )

a1 ...ak
b1 ...bl

( iPI ), onM , and,
a diffeomorphism invariant action be associated with them so that the energy-momentum
Tab , and the Euler–Lagrange equations can be expressed in terms of appropriate variations
action.

It is important to note that the invariance ofTab under the action of the isometry grou
associated withja does not imply that the fieldsC ( i )

a1 ...ak
b1 ...bl

are invariant. There are, fo
instance, exact solutions of the stationary vacuum Einstein–Maxwell field equations so th
electromagnetic fields are nonstationary.6 On the other hand, wheneverLjC ( i )

a1 ...ak
b1 ...bl

50 for
each value ofi one might consider the unique decomposition of the fieldsC ( i )

a1 ...ak
b1 ...bl

into
tensor fields which possess definite ‘‘tangential’’ or ‘‘perpendicular’’ character with regard to
free indices. These fields can be built up from tensorial products ofja, ja and the pull backs of
tensor fieldsc ( j )

a1 ...an
b1 ...bn

living on S .
It is well known that Eqs.~2.4!–~2.7! can be simplified by the introduction of the conform

metric ĥab defined as

ĥab5«vhab , ~2.9!

where« takes the value11 ~resp.21! for spacelike~resp. timelike! Killing fields. Then~2.4!–
~2.7! take the form

R̂ab5
1
2v

22$~D̂av !~D̂bv !1vavb%1$ha
mhb

n1«v22ĥabj
mjn%Rmn

~4! , ~2.10!

D̂ [avb]52eabmnj
mRp

~4!njp, ~2.11!

D̂aD̂av5v21$~D̂mv !~D̂mv !2vmvm%22«v21Rmn
~4!jmjn, ~2.12!

D̂ava52v21vmD̂
mv, ~2.13!

where D̂a and R̂ab are the covariant derivative operator and the Ricci tensor associated
ĥab .

Although we are considering the set of basic field equations for space–times with a K
vector field—in which case some simplifications arise compared to the general case—the
set of field equations is still rather complicated. For instance, Eqs.~2.10!–~2.13! give rise, in local
coordinates to a system of coupled nonlinear second-order partial differential equations f
functionv and the components of the tensor fieldsva , ĥab , C ( i )

a1 ...ak
b1 ...bl

. In fact, the situation
is, in general, even worse because, in addition to~2.10!–~2.13!, we have to solve simultaneousl
the Euler–Lagrange equations which govern the evolution of matter fields in the space–time
that these equations of motion, in general, couple to the above set of field equations, incr
thereby the complexity of the whole problem. Therefore it is important to know what are the
relationships between these equations.

Now, we are going to show that in the formulation of Einstein’s theory for space–t
possessing a non-null Killing vector field the same type of simplification arises as for the ca
stationary axisymmetric vacuum case realized by Cosgrove.1 In particular, it can be shown tha
Eqs.~2.10! and~2.11! are actually far more fundamental than~2.12! and~2.13!. More precisely, by
using ~2.10! and ~2.11! one can derive the following algebraic relationship:
J. Math. Phys., Vol. 38, No. 8, August 1997
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~D̂bv !@D̂aD̂av2v21$~D̂mv !~D̂mv !2vmvm%12«v21Rmn
~4!jmjn#

1vb@D̂
ava22v21vmD̂

mv#1«v21hb
m@¹nRmn

~4!2 1
2¹mR

~4!#50. ~2.14!

Up to this point we have considered only the set of basic field equations~2.10!–~2.13! which
are equivalent to Einstein’s equations and an integrability condition. Remember that the four
tensor,Rab

(4) , was assumed to be given in terms of the energy-momentum tensor,Tab . Thereby,
the last term of the left-hand side of~2.14!, which is, in fact,«v21hb

m¹nTmn , cannot be put to
zero simply by referring to the four-dimensional twice-contracted Bianchi identity. It is kno
however, that this term is identically zero whenever either the complete set of Einstein’s equ
or the Euler–Lagrange equations for the matter fields are satisfied. Since our aim is to de
relationship between some of the relevant Einstein’s equations, to get rid of this term later
be assumed that the equations of motion are satisfied by matter fields.@The author would like to
say thank you to the unknown referee who pointed out the need for the clarification of wh
four-dimensional Bianchi identity cannot be applied to set the third term of~2.14! to zero imme-
diately.#

The way one could get the relation~2.14! is the following: Substitute the right-hand side
~2.10! for R̂ab into the following expression:

D̂aR̂ab2
1
2D̂bR̂. ~2.15!

Then by using~2.11! a straightforward calculation yields that

D̂aR̂ab2
1
2D̂bR̂5 1

2v
22
ˆ~D̂bv !@D̂aD̂av2v21$~D̂mv !~D̂mv !2vmvm%12«v21Rmn

~4!jmjn#

1vb@D̂
ava22v21vmD̂

mv#‰2«v23~D̂bv !~Rmn
~4!jmjn!1v22vaD̂ [avb]

1@D̂arab2
1
2D̂b~ ĥ

mnrmn!#, ~2.16!

whererab5$ha
mhb

n1«v22ĥabj
mjn%Rmn

(4) . Sinceja is a Killing field onM we get by~2.13!

v22vaD̂ [avb]52«v22hb
m~¹njm!Rp

~4! njp1«v23~D̂bv !~Rmn
~4!jmjn!. ~2.17!

We also have, for instance,LjRab
(4)50. Moreover, it can be shown by using the relationsh

between the covariant derivative operatorsDa andD̂a , with a tedious but straightforward calcu
lation, that

D̂arab2
1
2D̂b~ ĥ

mnrmn!5«v21hb
m@¹nRmn

~4!2 1
2¹mR

~4!#22«v22hb
m~¹njm!Rp

~4! njp. ~2.18!

Now using~2.16!–~2.18! we obtain

D̂aR̂ab2
1
2D̂bR̂5 1

2v
22
ˆ~D̂bv !@D̂aD̂av2v21$~D̂mv !~D̂mv !2vmvm%12«v21Rmn

~4!jmjn#

1vb@D̂
ava22v21vmD̂

mv#1«v21hb
m@¹nRmn

~4!2 1
2¹mR

~4!#‰. ~2.19!

Since the tensor fieldR̂ab is just the Ricci tensor associated with the three metric,ĥab , in virtue
of the twice-contracted Bianchi identity, we have that the left-hand side of the previous equ
is identically zero. This proves then that~2.14! holds identically.

In the remaining part of this section we are going to study the consequences of the alg
relation ~2.14!. We shall use the assumption that the Euler–Lagrange equations are satisfi
matter fields, which implies in the case when they are derived from a diffeomorphism inva
action that
J. Math. Phys., Vol. 38, No. 8, August 1997
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¹aTab50, ~2.20!

so the third term of~2.14! is zero. Therefore, we have that the relevant form of~2.14! says then
that the above particular linear combination of the form fields,D̂av andva , must vanish identi-
cally. Correspondingly, there are two subcases which have to be treated separately, n
D̂av andva might be either linearly independent or not.

Whenever the two form fieldsD̂av andva are linearly independent only the trivial combin
tions of them can vanish identically. In this case~2.12! and ~2.13! can be deduced from~2.10!,
~2.11!, and the Euler–Lagrange equations. It is then sufficient to solve~2.10! and ~2.11! along
with the relevant equations of motion for matter fields since any solution of these equation
automatically satisfy~2.12! and ~2.13! as well.

Suppose now that the two form fields,D̂av and va , are linearly dependent. This migh
happen whenever one of them vanishes throughout or there exists a function,f , such that

va5 f •~D̂av !. ~2.21!

~i! Consider first the case of vanishingD̂av, i.e., we suppose thatv is constant throughout
Since we can introduce then a new Killing field instead ofja by rescalingja with an arbitrarily
chosen constant factor we may assume here, without loss of generality, thatv5«. Furthermore,
for this case~2.14! implies that the relevant form of~2.13! is a consequence of~2.10!, ~2.11!, and
~2.20!. Hence, the whole content of the basic field equations reduce to

R̂ab5
1
2 vavb1$ha

mhb
n1«ĥabj

mjn%Rmn
~4! , ~2.22a!

vmvm522«Rmn
~4!jmjn, ~2.22b!

D̂ [avb]52eabmnj
mRp

~4! njp. ~2.22c!

~ii ! Suppose now thatva50, i.e.,ja is hypersurface orthogonal. Then~2.11! and ~2.13! are
expected to hold and, furthermore, the relevant form of~2.12! is simply a consequence of~2.14!.
Hence, the basic equations for the case under consideration simplify to4

R̂ab5
1
2v

22~D̂av !~D̂bv !1$ha
mhb

n1«v22ĥabj
mjn%Rmn

~4! . ~2.23!

~iii ! Finally, suppose that neitherD̂av nor va vanishes, and there exists a function,f , such
that ~2.21! holds. Then the elimination ofva from ~2.10!–~2.13! yields by using the above
relationship

R̂ab5
1
2v

22~11 f 2!~D̂av !~D̂bv !1$ha
mhb

n1«v22ĥabj
mjn%Rmn

~4! , ~2.24a!

D̂aD̂av5v21~12 f 2!~D̂mv !~D̂mv !22«v21Rmn
~4!jmjn, ~2.24b!

~D̂af !~D̂av !5v21@~11 f 2!~D̂mv !~D̂mv !12«Rmn
~4!jmjn#, ~2.24c!

~D̂ [af !~D̂b]v !52eabmnj
mRp

~4! njp. ~2.24d!

It can easily be checked that the relevant form of~2.14! implies that~2.24b! is deducible from the
Euler–Lagrange equations and~2.24a!, ~2.24c!, and ~2.24d!. Hence, for this last case, equation
~2.21!, ~2.24a!, ~2.24c!, and~2.24d! display the entire contents of the basic field equations.
J. Math. Phys., Vol. 38, No. 8, August 1997
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III. GEOMETRICALLY PREFERRED LOCAL COORDINATES

In the remaining part of this paper we shall restrict our consideration to the case of ind
dent form fields, i.e., we suppose that (D̂ [av)vb]Þ0 on a subsetS̃ of S . ~The other possibility,
whenD̂av andvb are linearly dependent, will be examined elsewhere.! According to the results
of the previous section to get a solution of the basic field equations,~2.10!–~2.13!, it is sufficient
to solve~2.10! and~2.11! along with the relevant set of Euler–Lagrange equations. In this sec
we are going to examine the properties of the fundamental equations~2.10! and ~2.11!. In par-
ticular, it will be shown that there exist geometrically preferred local coordinate systems in w
these equations possess very simple form.

We shall use the following shortened form of~2.10! and ~2.11!;

R̂ab5
1
2v

22$~D̂av !~D̂bv !1vavb%1rab , ~3.1!

D̂ [avb]5sab , ~3.2!

where

rab5$ha
mhb

n1«v22ĥabj
mjn%Rmn

~4! ~3.3!

and

sab52eabmnj
mRp

~4! njp. ~3.4!

Note thatrab is a symmetric whilesab an antisymmetric tensor field onS , both depending on the
fields v, ĥab , C ( i )

a1 ...ak
b1 ...bl

.

Since (D̂a[v)vb]Þ0 on S̃ there exists a nowhere vanishing vector field,ka, there defined as

ka5 êabc~D̂bv !vc , ~3.5!

where êabc denotes the three-dimensional volume element associated withĥab , i.e., êabc
5eabcdj

d.
Then the following hold

Lkv50, ~3.6!

kava50, ~3.7!

ka~R̂ab2rab!50, ~3.8!

and

Lk~R̂ab2rab!5v22ke$seavb1sebva%. ~3.9!

Equations~3.6!–~3.8! are direct consequences of the definition ofka. For ~3.9! note that

Lk~R̂ab2rab!5keD̂e~R̂ab2rab!1~R̂eb2reb!D̂ak
e1~R̂ae2rae!D̂bk

e. ~3.10!

However, according to~3.8! we have (R̂eb2reb)D̂ak
e52keD̂a(R̂eb2reb), and so

Lk~R̂ab2rab!5ke$D̂e~R̂ab2rab!2D̂a~R̂eb2reb!2D̂b~R̂ae2rae!%. ~3.11!

Now, using~3,1!, ~3.6!, and~3.7! we get
J. Math. Phys., Vol. 38, No. 8, August 1997
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Lk~R̂ab2rab!5v22ke$~D̂ [eD̂a]v !~D̂bv !1~D̂av !~D̂ [eD̂b]v !1D̂ [eva]vb1vaD̂ [evb]%,
~3.12!

which imply, along with~3.2! and the fact thatD̂a is torsion free, that~3.9! holds.
Note that wheneverkesea is vanishing onS̃ , we have

Lk~R̂ab2rab!50, ~3.13!

i.e., ka is a collineation vector field ofR̂ab2rab . According to the definition ofsab the contrac-
tion kesea is identically zero whenever there exist functionsa, b such thatRp

(4) njp5ajn

1bkn. For the vacuum case,rab5sab50 ~or a5b50!. Then~3.9! reduces to the well-known
result thatka is a Ricci collineation vector.7

It is straightforward to check that~3.6!–~3.9! are satisfied not merely forka but for any vector
field possessing the formf ka, wheref is an arbitrary function onS̃ . Hereafter, the vector fields
k̂a5 f ka, which are defined with the use of a nonvanishing function,f , on S̃ will be referred as
being geometrically preferred.

Just like for the vacuum case~see Ref. 2! one can introduce geometrically preferred loc
coordinate systems. Denote byk̂a any of the geometrically preferred vector fields and consi
local coordinates, (x1,x2,x3), adopted tok̂a, i.e.,

k̂a5S ]

]x3D
a

or k̂a5d3
a. ~3.14!

This type of coordinates can always be introduced~at least locally! on S̃ .
In such a local coordinate system, (x1,x2,x3), Eqs.~3.6!–~3.9! take the form

]v
]x3

50, ~3.15!

v350, ~3.16!

R̂3b2r3b50, ~3.17!

and

]

]x3
~R̂ab2rab!5v22$s3avb1s3bva%, ~3.18!

whereb takes the values 1,2,3. Note that whenever one of the functions,r3b (b51,2,3), does not
vanish identically, ~3.17! gives algebraical relationship~s! between the variables
v,ĥab ,C ( i )

a1 ...ak
b1 ...bk

and the derivatives ofĥab andC ( i )
a1 ...ak

b1 ...bk
. Then we get that in such a

adopted local coordinate system, (x1,x2,x3), ~3.1! is equivalent to~3.17! and

R̂AB5 1
2v

22$~]Av !~]Bv !1vAvB%1rAB , ~3.19!

where]Av denotes the partial derivative ofv with respect to the variablex
A, and the capital Latin

indices take the values 1, 2.
It can be easily checked that in such a coordinate system~3.2! takes the form

]1v22]2v15s12, ]3vA5s3A . ~3.20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Observe that, wheneversab vanishes identically, these equations imply that~at least locally! there
exists a function,v5v(x1,x2), so that

vA5]Av. ~3.21!

Using these simplifications, in the next two sections two different methods in establi
resolvent systems of partial differential equations for the basic field variables will be prese

IV. GENERAL METHOD

This section is devoted to the introduction of a general approach to get a resolvent sys
differential equations for the basic field variables. This approach is based on the following o
vation: It seems to be a general feature of the present formulation of Einstein’s theory that~3.17!
can be solved for the functionv in many cases. Hereafter, we shall assume that the fi
C ( i )

a1 ...ak
b1 ...bl

are invariant under the action of the isometry group associated withja, thereby we
can use the fieldsC ( j )

a1 ...am
b1 ...bn

to represent the matter content instead of them. Combin
these two facts, hereafter we shall assume that the norm of the Killing field,v, can be given in
terms of quantities derived from the induced three-geometry,ĥab , and, possibly, from the tenso
fieldsc ( i )

a1 ...am
b1 ...bn

, representing the matter fields. Correspondingly, we shall assume that
exists a function

v5v~ ĥab ,]dĥab ,]d]rĥab ;c~ j !
a1 ...am

b1 ...bn
,]dc~ j !

a1 ...am
b1 ...bn

,]d]rc~ j !
a1 ...am

b1 ...bn
!,

~4.1!

where the presence of second-order partial derivatives of the fieldsc ( j )
a1 ...am

b1 ...bn
indicates that

the matter Lagrangian is supposed to contain at most second-order partial derivatives o
fields and the Greek indices refer to components of tensor fields in geometrically pre
adopted local coordinates.

To start off note that~3.19! can be recast into the form

HAB5v22$~]Av !~]Bv !1vAvB%, ~4.2!

where

HAB52~R̂AB2rAB!. ~4.3!

It is important to emphasize that at each~explicit or implicit! appearance of the functionv in ~4.2!
the substitution of the right-hand side of~4.1! is understood. Since we are dealing with the case
linearly independent form fields, i.e., (D̂ [av)vb]Þ0 on S̃ , ~4.2! can be shown to be equivalent t
the following set of equations:

vA5e
HA2~]1v !2H1A~]2v !

@det~HAB!#1/2
, ~4.4!

and

H11~]2v !222H12~]1v !~]2v !1H22~]1v !22v2 det~HAB!50, ~4.5!

where the sign ambiguity ofvA is indicated by the factore ~i.e., e561! in ~4.4!.
Using the definition~3.3! of rab and~3.17! it can be checked easily thatv depends on at mos

second-order derivatives of the metric functions,ĥab , since only the termsR̂a3 enter ~3.17!.
Therefore, with the assumption that at most second-order covariant derivatives of the
c ( j )

a1 ...am
b1 ...bn

are involved in the matter Lagrangian, we can conclude that~4.5! is at most a
J. Math. Phys., Vol. 38, No. 8, August 1997
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third-order partial differential equation for the fieldsĥab andc ( j )
a1 ...am

b1 ...bn
. Three additional

partial differential equations restricting these fields have to be taken into consideration. The
derived by substituting the right-hand side of~4.4! for vA into ~3.20! and can be given as follows

~]1H22!~]1v !1H22~]1]1v !2~]1H12!~]2v !22H12~]2]1v !2~]2H12!~]1v !1~]2H11!~]2v !

1H11~]2]2v !1]1„ln @det ~HAB!#21/2
…„H22~]1v !2H12~]2v !…

2]2„ln @det ~HAB!#21/2
…„H12~]1v !2H11~]2v !…5e@det ~HAB!#1/2s12, ~4.6!

~]3H12!~]1v !2~]3H11!~]2v !1]3„ln @det ~HAB!#21/2
…„H12~]1v !2H11~]2v !…

5e@det ~HAB!#1/2s31, ~4.7!

~]3H22!~]1v !2~]3H21!~]2v !1]3„ln @det ~HAB!#21/2
…„H22~]1v !2H12~]2v !…

5e@det ~HAB!#1/2s32. ~4.8!

The first equation,~4.6!, is fourth order while the last two are third-order nonlinear par
differential equations. These equations along with~3.17!, ~4.5!, and the relevant set of Euler
Lagrange equations give rise to a resolvent system of field equations for the variablesĥab and
c ( j )

a1 ...am
b1 ...bn

. Once one could get a solution of these field equations one can determinev via
~4.1!; moreover,vA can be given in virtue of~4.4!.

Clearly, the applicability of this approach strongly depends on the detailed functional fo
v which was implicitly used throughout this section. For instance, the explicit form of the b
field equations,~3.17! and~4.5!–~4.8!, for the variablesĥab andc ( j )

a1 ...am
b1 ...bn

can be examined
only for particular matter fields separately. In Sec. VII we are going to give the functional for
v for perfect fluid matter sources possessing four-velocity parallel to a timelike Killing field
for particular equations of state.

V. GENERALIZATION OF COSGROVE’S METHOD

In this section we generalize the techniques developed originally for stationary axisymm
vacuum fields for space–times possessing a singe non-null Killing field with matter fields
fying the additional conditions given below. More precisely, a slightly modified version of C
grove’s approach will be established so as to derive from the basic set of field equati
resolvent system of differential equations for the basic variables.

The two conditions are the following:
Condition 5.1:The tensor fieldsab vanishes throughout, i.e.,j [aRb]e

(4)je50.
Condition 5.2:The tensor fieldrab has the property that, in a geometrically preferred lo

coordinate system, its componentsrAB (A,B51,2) can be given exclusively in terms of th
induced three-geometry,ĥab .

In particular,Condition 5.1implies that~at least locally! there exists such a functionv that
va5D̂av. Since we are dealing with the case of independent form fields, i.e., (D̂ [av)vb]Þ0, the
functionsv andv are then functionally independent.Condition 5.2might be satisfied when~3.17!
can be solved forv; moreover~by using the relevant expression forv!, one can eliminate thereb
v and c ( j )

a1 ...am
b1 ...bn

from rAB . Whenever both of the above conditions hold~3.19! can be
recast into the form

HAB5v22$~]Av !~]Bv !1~]Av!~]Bv!%, ~5.1!

where we used the expression~4.3! for HAB . Furthermore, due toCondition 5.2the left-hand side
of ~5.1! depends exclusively on the induced three-metric while the right-hand side of it dep
J. Math. Phys., Vol. 38, No. 8, August 1997
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merely on the functionsv andv. Sincev andv are functions ofx1 andx2, Eq. ~5.1! shows that
the same is true for the functionsHAB even if, for instance, some of the components ofĥab may
depend onx3. @Note that this property of the functionsHAB is in fact a simple consequence of th
general result~3.13!.# Since v and v are functionally independent we have that the functio
HAB can be considered as the components of a nonsingular Riemannian metric on a
dimensional manifold. Note that the right-hand side of~5.1! is just the well-known representatio
of a Riemannian two-metric in local coordinates (v,v) with Gaussian curvature21. Hence, for
the Gaussian curvature,KH , of the metric,HAB ,

KH521 ~5.2!

has to hold. This equation is, in fact, a fourth-order partial differential equation for the compo
of the tensor fieldsĥab . For the case of linearly independent form fields under consideration~5.2!
is the necessary and sufficient condition for the existence of functionsv andv satisfying~5.1!.

The outline of the proof of the above statement can be given as follows: Since w
considering the case of linearly independent form fields,~3.21! and ~4.4! yield

]Av5e1
HA2~]1v !2H1A~]2v !

det ~HAB!1/2
, ~5.3!

where the ambiguity in sign ofv is indicated bye1 ~i.e., e1561!. Substituting~5.3! into ~5.1!
with settingA,B52 and solving for]1v we obtain

]1v5
H12~]2v !1e2 det ~HAB!1/2@v2H222~]2v !2#1/2

H22
, ~5.4!

whereH22Þ0 since otherwise (D̂ [av)vb] should vanish ande2561. Furthermore, the substitu
tion of ~5.4! into ~5.3! yields

]2v5e1e2@v
2H222~]2v !2#1/2, ~5.5!

and

]1v52e1
det ~HAB!1/2~]2v !2e2H12@v

2H222~]2v !2#1/2

H22
. ~5.6!

Equations~5.4!–~5.6! are equivalent to~5.1!. The integrability condition,]2]1v5]1]2v, for the
functionv can be shown1 to give rise to the following Appel equation:

2H22~]2]2U !24H22~]2U !22~]2H22!~]2U !1H22
2 1F@H2224~]2U !2#1/250, ~5.7!

whereU[ 1
2 ln(ev) and

F[ 1
4e2•det~HAB!21/2$22H22~]2H21!1H21~]2H22!1H22~]1H22!%. ~5.8!

Utilizing Cosgrove’s substitution~see Refs. 1 and 2!

]2U52~H22!
1/2M ~11M2!21, ~5.9!

we obtain from~5.4! and ~5.7! the following pair of Riccati equations

]AM5XA12YAM1ZAM
2. ~5.10!

Here the functionsXA , YA , andZA are defined as
J. Math. Phys., Vol. 38, No. 8, August 1997
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XA5
e2

4 det~HAB!1/2H22

@H12~]AH22!2H22~]AH121]2HA12]1HA2!#1
1

2
HA2~H22!

21/2,

~5.11!

YA5 1
2e2•dA1•det~HAB!1/2~H22!

21/2, ~5.12!

and

ZA5XA2HA2~H22!
21/2. ~5.13!

The integrability conditions for the simultaneous set of Riccati equations,~5.10!, reduce to a single
condition,1,2 which, not unexpectedly, may be put into the form of~5.2!.

Summarizing the results of this section we can say the following: To get a resolution o
basic field variables we have to solve first~5.2! for ĥab . Then the solutions of the simultaneou
Riccati equations,~5.10!, can be used to determine the functionv via ~5.4! and~5.9!. Afterwards,
~5.3! can be applied to construct the functionv. A detailed discussion about the resolution of t
corresponding problems for the vacuum case, particularly about the solutions of Riccati equ
of the above type, can be found in Ref. 1. Finally, using these functions—v, v, and ĥab—the
Euler–Lagrange equations have to be solved for the components of tensor fields represen
matter content.

It is worth mentioning that~5.1! inherits a remarkable feature of the corresponding equa
given for the vacuum case noticed by Geroch.3 Namely, this equation is invariant under the acti
of anSL(2,R) transformation. Two of the relevant parameters are associated with gauge tra
mations but there exists a one-parameter subclass of ‘‘effective’’SL(2,R) transformations yield-
ing new solutions from known ones. In particular, by starting with a particular solu
(v0 ,v0), of ~5.1! associated with a fixed set of functionsHAB one can generate a one-parame
family of solutions (vt ,vt) to this equation. More precisely, one can show by a straightforw
modification of the proof of Theorem 1 of Ref. 1 that for fixed functionsHAB satisfying~5.2! the
full set of solutions of~5.1!, apart from those related to gauge transformations of the space–
(M ,gab), is generated from the particular solution, (v0 ,v0), by the transformation

vt5
v0

~cost2v0 sin t!21v0
2 sin2 t

, ~5.14!

vt5
~sin t1v0 cost!~cost2v0 sin t!2v0

2 sin t cost

~cost2v0 sin t!21v0
2 sin2 t

. ~5.15!

There is, however, a significant difference between the vacuum case and the case
consideration. Namely, for the case of vacuum the relevant form of~5.1! is the only field equation
to be solved while for the general case with matter the basic field variables have to satisfy,
~5.1!, both~3.17! and the relevant set of Euler–Lagrange equations, as well. Therefore, one
expect that there is no matter field so that the above transformation can be applied. Never
there exists such a matter field~see Sec. VII! where certain restrictions on the basic field variab
~associated with the matter content! can ensure the applicability of the transformation~5.14! and
~5.15!, and, consequently, one may generate new solutions of Einstein’s equations. In par
this transformation was used to derive a number of new perfect fluid solutions from known on8,9

VI. PERFECT FLUIDS

In this section some of the basic notions and results in connection with perfect fluids w
recalled and some of the consequences of the presence of Killing fields in the space–times
discussed.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Consider a perfect fluid with mass density,r, and pressure,P ~both quantities measured in th
rest frame of the fluid!, furthermore, with four-velocityua, whereuaua521. ~Note that the tensor
fields C ( i )

a1 ...ak
b1 ...bl

on M for the present case are the fieldsr, P and ua .! The energy-
momentum tensor is given as

Tab5ruaub1P~gab1uaub!. ~6.1!

Furthermore, the Euler–Lagrange equations are

ua¹ar1~r1P!¹aua50, ~6.2!

~r1P!ua¹aub1~gab1uaub!¹
aP50. ~6.3!

It is known that for perfect fluid sources these equations are equivalent to the ‘‘integrab
condition of Einstein’s equation

¹aTab50. ~6.4!

In particular,~6.2! and ~6.3! are equivalent to the ‘‘parallel toua’’ and the ‘‘orthogonal toua’’
projections of~6.4!, respectively. Thereby, it is usual in the formulation of Einstein’s theory
space–times with perfect fluids to postulate merely the form of the energy-momentum t
Tab , and solve Einstein’s equations since the equations of motion for the fluid then are aut
cally satisfied. We have chosen, however, a somewhat reversed approach here. In Sec. I
assumed that Euler–Lagrange equations are satisfied~which implies for the present case th
¹aTab50! and this condition was used to show that some of the basic field equations are d
ible from the others. It is important to emphasize that we earn more than we lose by replaci
two basic field equations,~2.11! and ~2.12!, by Euler–Lagrange equations. Equations~2.11! and
~2.12! are second-order partial differential equations while the above Euler–Lagrange equ
are first-order ones for perfect fluid.

Consider now the consequences of the presence of a Killing field.ja, for perfect fluid matter
sources. First of all,

LjTab50. ~6.5!

Again, by the presence of a preferred vector field,ua, one might consider the unique decomp
sition of LjTab into symmetric tensor fields so that each of these tensor fields has de
‘‘tangential’’ or ‘‘perpendicular’’ character with regard to their free indices. SinceLjTab van-
ishes all of these projections must vanish, as well. Thereby (LjTab)u

aub50 which gives that

Ljr50. ~6.6!

Then (LjTab)u
apb

e50 yields that

Lju
a50, ~6.7!

or r1P50. @Note, however, when the equation of state is chosen to ber1P50, then the
energy-momentum tensor is of the formTab5Pgab , and~6.4! implies thatP is constant through-
out. This is precisely the case of vacuum fields with nonzero cosmological constant, so it se
be reasonable to assume thatr1P is not identically zero, and hereafter we do that.# Finally, from
(LjTab)p

a
ep f

b50 we get

LjP50 ~6.8!
J. Math. Phys., Vol. 38, No. 8, August 1997
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4249István Rácz: Space–times with a non-null Killing field

¬¬¬¬¬¬¬¬¬¬
throughout, where the projector,pa
b , is defined to bepa

b5dab2uaub . All in all, each of the
physical quantities related to the perfect fluid are invariant under the action of the isometry
associated withja. Consequently, for a general perfect fluid space–time possessing a
null Killing field we can use, without loss of generality, instead of the fieldsr, P, ua

(‘ ‘ C ( i )
a1 ...ak

b1 ...bl
’’ ! given onM the fields r, P, ui5uaja , u'

a5habu
b ~‘‘ c ( j )

a1 ...am
b1 ...bn

’’ !
defined onS .

Determine now the relevant form ofrab andsab . According to~2.8! and ~6.1! we have

Rab
~4!58p@~r1P!uaub1

1
2~r2P!gab#. ~6.9!

Furthermore, by the definition ofrab andsab ,

rab58p@~r1P!$~ha
mum!~hb

nun!1«v22~ueje!
2ĥab%1«v21~r2P!ĥab#, ~6.10!

and

sab528peabmnj
mun~r1P!~ueje! ~6.11!

hold.
For simplicity, one may restrict one’s considerations to the case of vanishingsab . Equation

~6.11! implies thatsab50 whenever either of the following hold:uej
e50 or j [aub]50 ~or r

1P50 but this case has been excluded earlier!. Thereby, we can say thatsab50 throughout if
and only if either the four-velocity of the fluid,ua, is parallel to the Killing field,ja, which means
that the space–time is stationary and

ua5~2v !21/2ja ~6.12!

or

uaja50, ~6.13!

which might be the case whenever the Killing field,ja, is spacelike. For both of these cas
Condition 5.1holds, which implies that there exists~at least locally! a functionv such that

va5D̂av. ~6.14!

Let us consider the following particular case of perfect fluid sources: There are two com
ing Killing fields, j (A)

a (A51,2), on the space–time, and the four-velocity of the fluid,ua, can be
given as a linear combination of these Killing fields

ua5A~j~1!
a 1Bj~2!

a !. ~6.15!

Then with linearly independent Killing fields~6.7! and ~6.15! yield that the functionsA andB
satisfy

Lj~A!
A5Lj~A!

B50 ~A51,2!. ~6.16!

Now, applying~6.7! and ~6.8! for the Killing fields, j (A)
a , and using~6.15! we get that

Lur5LuP50, ~6.17!

and, the equations of motion,~6.2! and ~6.3!, reduce to

~r1P!¹aua50, ~6.18!
J. Math. Phys., Vol. 38, No. 8, August 1997
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~r1P!ua¹aub1¹bP50. ~6.19!

One extracts from~6.15! and~6.16! that the fluid is expansion free, i.e.,¹au
a50 throughout.

Thereby,~6.18! holds identically. Furthermore, a straightforward calculation yields that

ua¹aub52
1

2
A2H ¹b~2A22!2

]~2A22!

]B
¹bBJ , ~6.20!

which along with~6.19! and ~6.20! gives that

¹aP1
1

2
~r1P!F¹a~ ln A

22!2
]~ ln A22!

]B
¹aBG50. ~6.21!

As it was argued in Ref. 10,~6.21! implies thatP5P(A,B) andr5r(A,B) even ifA andB
are functionally dependent or constant. Furthermore, since the four-velocity, given by~6.15!, is a
unit timelike vector we have

A2252$~j~1!
a j~1!a!12B~j~1!

a j~2!a!1B2~j~2!
a j~2!a!%, ~6.22!

which along with~6.21! ~and the above conclusion! gives that the equation of state must be of t
form

r5r~P!. ~6.23!

The remaining Euler–Lagrange equation,~6.21!, simplifies further whenever
@](lnA22)/]B#¹aB50, i.e.,

¹aB50 or
]~ ln A22!

]B
50. ~6.24!

The case¹aB50 is that of a ‘‘rigid fluid,’’ i.e., the four-velocity,ua, is parallel to the timelike
Killing field ja5j (1)

a 1Bj (2)
a . It is important to emphasize that Eqs.~6.15!–~6.23! along with

their consequences hold~with B50! without any alteration even if the space–time admits onl
single timelike Killing field,ja5j (1)

a , parallel to the four-velocity of the fluid,ua.
The other possibility,](lnA22)/]B50, along with ~6.22! gives thatB52j (1)

e j (2)e /
j (2)
f j (2) f , i.e., the four-velocity of the fluid,u

a, is orthogonal toj (2)
a , which, therefore, must be a

spacelike Killing field.
Note that for both of these cases not merely the Euler–Lagrange equations are simplifi

in accordance with this fact, the potential space associated with the Lagrangian of this par
case of ‘‘gravity plus perfect fluid’’ system admits a symmetry.10

Moreover, equations~6.21!, ~6.23!, and~6.24! yield then that

A22~P!5A0
22
•expF22E

P0

P dP8

r~P8!1P8G , ~6.25!

whereA0
22 andP0 are constants of the integration. Consequently, whenever the four-veloc

the fluid,ua, is either parallel to a Killing field,ja, or spanned by two commuting Killing fields
as in ~6.15!, with B52j (1)

e j (2)e /j (2)
f j (2) f , and, the equation of state,r5r(P), is known, then

the functionA225A22(P) or P5P(A22) can be determined via~6.25!. Note that the function
A22 possesses the form

A225 H 2v, if u[ajb]50,
W2v21, if uaj~2!a50, ~6.26!
J. Math. Phys., Vol. 38, No. 8, August 1997
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where

W252~j~1!
e j~1!e!~j~2!

f j~2! f !1~j~1!
h j~2!h!

2. ~6.27!

Note that the functionW has the following simple geometrical meaning. In canonical W
coordinates, (r,z,f), the three-metric,ĥab , can be given as

ĥab5diag$exp~2g!,exp~2g!,2W2%, ~6.28!

whereg andW are functions of the coordinates (r,z).4

VII. PERFECT FLUIDS WITH FOUR-VELOCITY PARALLEL TO A KILLING FIELD

In this section we shall apply the results of the previous sections for perfect fluid space–
possessing a timelike Killing field,ja, parallel to the four-velocity of the fluid,ua. Such a fluid
has expansion- and shear-free flow, i.e., it is ‘‘rigid.’’ Thereby one might ask whether there
any physically realistic situation in which such a model can be applied. However, it was show
Geroch and Lindblom11 that in a generic theory of relativistic dissipative fluids the equilibriu
states are perfect fluid states. Furthermore, they showed that for these perfect fluids, whi
resent the equilibrium configurations of dissipative relativistic fluids, the four-velocity is par
to a Killing field.11 Therefore, the model we are dealing with in this section has to have phy
relevance, and, in fact, it is the needed one as long as we are looking for a faithful descrip
possible equilibrium configurations of relativistic dissipative fluids.

First the applicability of the generalization of Cosgrove’s method and then the genera
proach will be considered. Clearly, for this type of perfect fluids,Condition 5.1is satisfied and we
show thatCondition 5.2holds, as well. Now, sinceu[ajb]50, the Killing field, ja, is timelike so
« takes the value21. Furthermore,~6.6! yields that

rab516pv21Pĥab . ~7.1!

The relevant form of~3.17!,

R̂3b516pv21Pĥ3b , ~7.2!

can then be solved forv. Since we have a nonvanishing spacelike vector field,ka, and the
three-metric,ĥab , is nonsingular,ĥ33 cannot vanish. Whenever there is another nonvanishing
among the functions,ĥ3b , then ~7.2! gives rise to an algebraical restriction on the compone
R̂3b of the Ricci tensor associated withĥab . We obtain from~7.1! and ~7.2!

rAB5
R̂33

ĥ33
ĥAB , ~7.3!

which means thatCondition 5.2is satisfied. Furthermore, this equation yields, along with~4.3!,

HAB52S R̂AB2
R̂33

ĥ33
ĥABD . ~7.4!

For the particular case under consideration the functionsHAB depend exclusively on the
induced three-metric,ĥab , and the relevant form of~5.2! is, in fact, a fourth-order partial differ-
ential equation for the components ofĥab . It is striking to what an extent the corresponding ba
field equations are similar in structure to the vacuum counterparts. Turning back to the main
J. Math. Phys., Vol. 38, No. 8, August 1997
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note that the functionsv andv can be determined by virtue of~5.3!–~5.13!. Finally, the pressure
P, can be determined by~7.2! and the mass density,r, by the Euler–Lagrange equations,~6.21!.

After solving ~5.2! and fixing the functionsHAB we may ask for the conditions under whic
the transformation~5.14! and ~5.15! yields new solutions of the basic field equations. The t
equations to be solved are, for the present case,~7.2! and~6.21!. It is straightforward to check tha
by choosingPt to satisfy the equationPtvt

215P0v0
21 and derivingrt , for each pair of the

functionsvt andPt , in virtue of ~6.21! we get a one-parameter family of solutions of the ba
field equations. Note that the invariance properties of the Lagrangian of electrically charged
perfect fluids was studied earlier by Krameret al.4,12However, their considerations were restrict
to the case of a static space–time exclusively. Thereby the transformation transparented
~5.14! and ~5.15! is new for perfect fluids although it is a straightforward generalization o
known algorithm. Further analysis related to this transformation and derivation of new p
solutions by making use of it can be found in Refs. 8 and 9.

An interesting subcase of these perfect fluid space–times, discovered many years
Ehlers,12,4 is the case of vanishing pressure, i.e., of a stationary space–time with dust poss
four-velocity,ua, parallel to a timelike Killing field,ja. According to~3.17!, ~3.18!, and~7.1! the
field equations are then the same as for the vacuum case. Note, however, that~6.21! implies then
v5const. The value ofv may be chosen throughout to be21, so the field equations simplify to

R̂3b50, ~7.5!

R̂AB5 1
2~]Av!~]Bv!. ~7.6!

For the energy density,r, we obtain from~2.22b!, ~6.9!, and~6.12! the constraint

r5
1

8p
~]Av!~]Av!. ~7.7!

Accordingly, a stationary dust (sd) solution, represented byv (sd)521, v (sd)5 ln@v(sv)# and
ĥab
(sd)5ĥab

(sv) , can be assigned to every static vacuum (sv) solution, given in terms ofv (sv) and
ĥab
(sv) , where the energy density of the dust satisfies the constraint~7.7!.13,4

Although the above general method can be applied in a straightforward way to get sol
of Einstein’s equations for the selected perfect fluid source there is an unfavorable aspect
method. Namely, the most significant physical quantities—the mass density,r, and the pressure
P, characterizing the possible physical states of the fluid—can be determined only at the ve
of the entire process in terms of the functionv and the three-geometry,ĥab . Therefore the
equation of state,r5r(P), has to be in accordance of the corresponding constraints, w
implies that it cannot be chosen freely. The general approach, introduced in Sec. IV, can b
to cure this problem but the price we have to pay is the appearance of extra nonlinearities

The general method was developed to ensure more control on the physical properties of
fields in solving the relevant set of field equations. The significance of the seemingly tec
differences between the two methods can be transparented for the examined perfect fluid
as follows: Remember that the basic point in the general approach was the specification
functional form of v in terms of the three-geometry and tensor fields representing the m
content. Moreover, for the present situation the basic field equations are~5.1! @whereHAB is given
by ~7.4!#, ~7.2!, and~6.25!. Note that~6.25!, which is, indeed, the integrated form of the Eule
Lagrange equation, gives now the functional relation between the functionsv, r andP as

v~P!5v0•expF22EP dP8 G . ~7.8!

P0 r~P8!1P8

J. Math. Phys., Vol. 38, No. 8, August 1997
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With the help of~7.2! and~7.8! it can be shown that the functionv can be given in terms of the
three-geometry exclusively. Note that~7.8! is independent of the three-geometry and, indeed,
the only equation where one can control the physical properties of the solution describing th
by the substitution of a physically realistic equation of state. Consider, for instance, the c
polytrope equation of state, i.e.,

r5cPa, ~7.9!

whereaP(0,1)ø(1,̀ ) andc.0. Using then~7.8! and ~7.9! one gets

v5v0FPa211c

P0
a211cG22/~a21!

. ~7.10!

After solving ~7.2! for v and substituting the resulting function into~5.1! one might attempt to ge
solutions of the yielded equation, where nowHAB is given by~7.4!. Remember that for the presen
case of perfect fluidssab is identically zero, thereby one has to solve merely the relevant form
~4.5! and ~4.6! along with the possible two equations involved by~7.2!. ~Note that the last two
equations might give further algebraical relationships between certain components of the
metric and the three-Ricci tensor.! Although the derivation of the equations is straightforward,
appearance of extra nonlinearities—related to the functional form ofy—are frightening. Note,
however, that whenever one is able to find solutions of these equations, the physical releva
the solutions is automatically assured.

VIII. FINAL REMARKS

A new formulation of Einstein’s equations for space–times admitting a non-null Kil
vector field and arbitrary matter field was given in this paper. First it was shown that some
basic field equations are always deducible from the others. Then the existence of a geome
preferred vector field and related coordinate systems were shown. Based on the associat
plifications, two methods were presented obtaining systems of partial differential equations
basic variables associated with the space–time geometry and with the matter content. Both
developed approaches were applied for perfect fluid space–times which describe equil
configurations of relativistic dissipative fluids. The symmetry properties of the relevant equa
and differences of the two approaches were studied. It was shown, furthermore, that the tech
which were developed by Cosgrove1 for the vacuum stationary axisymmetric problem can
generalized straightforwardly for these perfect fluid space–times despite the fact that in o
aminations we assumed merely the existence of a single timelike Killing field.

It is worth emphasizing that the general results of this paper, given in details in Secs. II–
valid for any space–time in Einstein’s theory which possesses a non-null Killing field and e
tially arbitrary matter fields. Thereby, it would deserve further studies to find out how to a
these results for even more interesting situations in which time dependence may occur
different types of matter fields are present.
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A generalized formula for integrable classes of surfaces
in Lie algebras

Jan Cieślińskia)
Filia Uniwersytetu Warszawskiego w Bialymstoku, Instytut Fizyki, ul. Lipowa 41,
15-424 Bialystok, Poland

~Received 8 July 1996; accepted for publication 11 March 1997!

We discuss relations between the approach of Fokas and Gelfand to immersions on
Lie algebras and the theory of soliton surfaces of Sym. We show that many results
concerning immersions on Lie algebras can be reduced to or interpreted within the
soliton surfaces approach. We present also some new results, including a generali-
zation of the Fokas–Gelfand formula for integrable classes of surfaces in Lie alge-
bras @and, in particular, in~pseudo!-Euclideann-dim. spaces#. The generalized
formula is used to formulate a method of constructing integrable classes of sur-
faces. As an example we discuss the class of linear Weingarten surfaces defined by
the linear relationship between Gaussian and mean curvatures. We construct ex-
plicitly a one-parameter family of linear Weingarten surfaces parallel~equidistant!
to a given pseudospherical surface. ©1997 American Institute of Physics.
@S0022-2488~97!00207-7#

I. INTRODUCTION

In this paper we consider surfaces immersed in Lie algebras. Any semi-simple Lie algeb
be identified withRn with an appropriate scalar product~not necessarily positively definite!. The
best-known example is the Lie algebra su~2! isomorphic toE3 @the Killing–Cartan form defines a
Euclidean scalar product inR3 and the Lie bracket corresponds to the vector~skew! product in
R3#. The surfaces immersed inRn can be characterized by the so-called fundamental forms~see
Sec. II!. The coefficients of the fundamental forms satisfy a system of nonlinear partial differe
equations: Gauss–Mainardi–Codazzi–Ricci~GMCR! equations~in the casen53 we call them
GMC equations!. In some cases this system reduces to a single equation. For instance, it i
well known that pseudospherical surfaces are associated with the sine–Gordon equation w
spherical and constant mean curvature surfaces with the~elliptic! sinh–Gordon equation~see, for
instance, Refs. 1–5 and historical references cited therein!.

The surfaces corresponding to integrable6,7 systems are known as integrable surfaces~note
that both sine–Gordon and sinh–Gordon equations are integrable!. Of course, the integrability is
a property of a givenclassof surfaces~a single surface corresponds to a special solution of
GMCR system!. Maybe it is better to use the term ‘‘integrable geometry’’8 ~for example, geom-
etry of pseudospherical surfaces, constant mean curvature surfaces, Bianchi surfaces, etc!.

An important property of integrable partial differential equations is the existence of the
called linear problem. In the case of two independent variablesx1 andx2 the linear problem can
be usually written in the form6,7,9

C,k5UkC, k51,2, ~1!

where the comma, as usual, means differentiation (C,k :5]C/]xk) andU1 andU2 are matrices
depending in a prescribed way on the dependent variables of the considered nonlinear sys
on an auxiliary~very important! parameterl ~‘‘spectral parameter’’!. The nonlinear system itsel
should be equivalent to the compatibility conditions

a!Electronic mail: janek@alpha.fuwb.edu.pl, janek@fuw.edu.pl
0022-2488/97/38(8)/4255/18/$10.00
4255J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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U1,22U2,11@U1 , U2#50. ~2!

In the present paper we confine ourselves to the very important case ofU1 andU2 taking values
~for reall! in a given Lie algebraG .

The theory of ‘‘soliton surfaces’’ developed by Sym3,10,11 establishes a general relation b
tween integrable systems and integrable geometries. The Sym~or Sym–Tafel! formula3,11

F5C21C ,l ~3!

associates with a given nonlinear system~2! al-family of immersionsF5F(x1,x2;l) into the Lie
algebra of the linear problem~1!. It should be pointed out that soliton surfaces of the sine–Gor
equation are pseudospherical surfaces and the application of the standard dressing method6,9 to the
associated linear problem exactly reconstructs the classical Bianchi–Lie–Ba¨cklund transformation
for pseudospherical surfaces.3,11 The similar coincidence has been noted also in some o
cases.4,12,13

The soliton surfaces approach provided a geometrical interpretation for many integ
physical systems~spins, vortices, chiral fields, etc.!3,11,14–22and is very useful to construct explic
itly large classes of surfaces.3–5,13,23–25The Sym formula is also a very efficient tool to define a
construct discrete surfaces.26,27

Recently Fokas and Gelfand28 have proposed a more general formula for surfaces imme
into Lie algebras:

F5a1C
21UC1a2C

21VC1a3C
21C ,l1a4xC21UC1a5yC21VC1C21M0C, ~4!

wherea1 ,...,a5 are constant scalars andM0PG is a constant matrix. Here and throughout t
paper we always identify

U[U1 , V[U2 , x[x1, y[x2.

In this paper we present the following generalization of the formula~4!:

F5g0C
21C,l1C21MC, ~5!

where g0[a3 is a constant andM is a matrix depending onx, y, and l. The formula ~4!
corresponds to the choice

M5~a11a4x!U1~a21a5y!V1M0 .

In fact it is not difficult to associate parametric surfaces with a given solution of the presc
linear problem. It can be done in many ways. A separate question is the existence of an
metrical or physical interpretation of the surfaces.

The main purpose of this paper is to discuss relations between the Fokas–Gelfand ap
and the Sym theory of soliton surfaces. We are going to show that many results of Foka
Gelfand can be interpreted within the framework of the Sym approach. In particular, the fo
~4! and the more general formula~5! can be obtained from the formula~3! in two different ways:
by redefining the spectral parameter or by an appropriate gauge transformation. In some
however, the formula~4! or ~5! is more natural. We discuss, for example, the case of par
surfaces.

As an example, we discuss some immersions associated with the sine–Gordon eq
Beside the well-known case of pseudospherical surfaces it describes, among others, some
coordinates on the sphereS2 and linear Weingarten surfaces defined by the following relation:28–30

K22c2H1c1
21c2

250, c1Þ0, ~6!
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



.

. Intro-

stance,

ent
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whereK is the Gaussian curvature,H is the mean curvature, andc1 andc2 are given constants

II. PRELIMINARIES: IMMERSIONS IN R n

An immersion ~or parametric surface! F mapping a domainV,R2 into a Euclidean~or
pseudo-Euclidean! spaceRn is a smooth function

V{~x,y!°F5F~x,y!PRn

such that for anyx andy the tangent vectorsF,x andF,y are linearly independent.
31,32We recall

that the image ofF ~considered as a subset ofRn! can have intersections.
F can be implicitly characterized byn21 fundamental forms. The scalar product inRn

~denoted by the center dot! induces the first fundamental form~a metric on the surfaceF!

I5dF•dF5g11dx
212g12dxdy1g22dy

2,

i.e., gi j :5F, i•F, j . The first fundamental form is an intrinsic property of the surfaceF. The
second fundamental form characterizes the immersion of the surface in the ambient space
ducing normal vectors~unit vectors orthogonal to the surface! ns (s51,...,n22) one can define
second fundamental forms as follows

II s52dF•dns5b11
s dx212b12

s dxdy1b22
s dy2.

In other words,bi j
s :5F, i j • n

s.
Sometimes it is convenient to consider an orthonormal basis in the tangent space, for in

e15
F,x
Ag11

, e25
g11F,y2g12F,x
Ag11 det~gi j !

.

Let us define the moving orthonormal frame on the surface as ann3n matrixE, the transpose of
which is given byET:5(e1 ,e2 ,n

1,...,nn22). The kinematic equations for the frameE, known as
Gauss–Weingarten equations, read as follows:

E,x5V1E, E,y5V2E, ~7!

where coefficients of the matricesV1 andV2 are expressed by the coefficientsgi j andbi j
s of the

fundamental forms. Integrability conditions for GW equations

V1,y2V2,x1@V1, V2#50, ~8!

are known as GMCR equations.

A. Immersions in R 3

In the casen53 there are only two fundamental forms with coefficientsgi j andbi j ~the index
s is not necessary!. The matrixSwith coefficientsbj

i :5gikbk j ~wheregi j is the matrix inverse to
gi j and the summation overk is assumed! represents the ‘‘shape operator’’ acting in the tang
space.31 The principal curvatures,k1 andk2 , are defined as eigenvalues ofS. The corresponding
eigenvectors are called ‘‘principal directions.’’ The Gaussian curvatureK and mean curvature
H are defined as follows:

K:5k1k2 , H:5 1
2~k11k2!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The matricesE andVk assume values in SO~3! and so~3!, respectively. It is convenient to use th
well-known isomorphism so~3!.su~2! ~see, for instance, Ref. 36! and to rewrite the equations~7!
in terms of 232 matrices. An explicit form of the matrices is given, for example~Ref. 3, p. 179!,
by

C,k52
i

2 S Ak Bk

B̄k 2Ak
DC, k51,2, ~9!

wherei 2521 and

Ak :5
G1k
2 Adet~gi j !

g11
, Bk :5

g11b2k2g12b1k

Ag11 det~gi j !
2

ib1k

Ag11
,

whereG1k
2 are standard Christoffel symbols,G i j

k :5 1
2g

ks(gis, j1gs j, i2gi j ,s). The SU~2! group is
the double covering of SO~3!. There is a 1–1 correspondence between pairs (C,2C) of solutions
to ~9! and orthonormal frames (e1 ,e2 ,n).

III. SURFACES IMMERSED IN Rn AS SURFACES IN LIE ALGEBRAS

By the Ado theorem every finite-dimensional Lie algebra has a matrix representation~for the
Lie groups analogical theorem holds only locally!.34 In the sequel we confine ourselves to re
matrix Lie algebras.

Invariant bilinear formB:G3G°R in the Lie algebraG is characterized by the propert
B(@a, b#,c)5B(a,@b, c#). The nondegenerate bilinear form, denoted by^a,b&:5B(a,b), is
called scalar product~we do not demand it to be positive definite!. The condition
^@a, b#,c&5^a,@b,c#& is the infinitesimal version of the invariance with respect to adjoint tra
formations:

^F21aF,F21bF&5^a,b&,

where F is an element of the corresponding Lie groupG. Indeed, it is enough to pu
F5exp(«c) and expand in«.

One can associate with any matrix representationf of the Lie algebra the invariant bilinea
form Bf given by the formula~see, for example, Ref. 35!

Bf~a,b!5Tr ~ f ~a! f ~b!!

@note that in what follows we always identifya[ f (a)#. In some cases the formBf is nondegen-
erate and may be treated as a scalar product.

The bilinear form associated with the adjoint representation is of special importa
Bad(a,b):5Tr(ada + adb). It is known as the Killing–Cartan form and is nondegenerated if
only if G is semisimple.

A. Soliton surfaces approach

An interesting connection between the classical geometry of manifolds~with possible singu-
larities and intersections! immersed inRn and the theory of solitons is given by the formula~3!.3,10

Let us recall thatC entering formula~3! is a solution of the system~1! where matricesU1 and
U2 are functions ofx

1, x2, andl. We assume that forlPR the matricesUk take values in a Lie
algebraG ~one usually adds a more restrictive but useful requirement that matricesUk are
meromorphic functions ofl with G -valued coefficients!. Then one can confineC to the corre-
sponding Lie group which implies that the matrixF5F(x1,x2;l) is G -valued.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Originally the Sym approach was formulated for semisimple Lie algebras equipped wit
so-called Killing–Cartan form.3,36However, it can be extended on any Lie algebra with an inv
ant scalar product. ThenG can be identified with a pseudo-Euclidean spaceRn and the function
F represents al-family of parametric surfaces immersed inG>Rn.

Usually F given by ~3! can be interpreted as a solution to some nonlinear model.3,11 The
definition ~3! implies the integrability of the model@provided that~2! is integrable, of course#.

Starting from the formula~3! one can compute tangent vectors

F,k5C21Uk,lC, ~10!

and the metric tensorgi j5^F, i ,F, j&5^Ui ,lUj ,l& ~where we used the invariance of the sca
product!. Note that to computegi j it is not necessary to solve differential equations~1!! It is
sufficient to know the matricesU1 andU2 . The normal vectors can be expressed in a similar w

ns5C21CsC, s51,...,n22, ~11!

whereCs can be expressed byUk ,l . In the casen53,

n5
@F,1 , F,2#

Adet~gi j !
.

To compute second fundamental forms the explicit knowledge ofC is still not necessary. The
Gauss–Weingarten equations are equivalent to

F,k j5C21~Uk ,l j1@Uk ,l , Uj # !C,

and the GMC equations (F, i jk5F, ik j )

C21@Ui ,l ,Uj ,k2Uk, j1@Uj , Uk##C50

are identically satisfied provided that~2! holds.
The soliton surfaces approach is very useful in construction of integrable geometries3,5,8,13

Indeed, any class of soliton surfaces given by~3! is integrable. The theory of soliton surfaces h
been applied to many integrable systems providing geometrical interpretation and unificat
integrable nonlinearities like spins, chiral fields, strings, vortices, etc.3,11,22

B. The Fokas–Gelfand approach

Consider an immersionF onn-dimensional Lie algebraG ~the existence of an invariant scala
product is assumed!. The immersion is implicitly defined by28

F,x5C21AC, F,y5C21BC, ~12!

whereA andB are functions onG andC is a function on the corresponding Lie groupG. These
equations are compatible iff

A,y1@A, C,yC
21#5B,x1@B, C,xC

21#.

CharacterizingC by G -valued functionsU andV,

C,xC
215U, C,yC

215V, ~13!

we rewrite the compatibility conditions as
J. Math. Phys., Vol. 38, No. 8, August 1997
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A,y2B,x1@A, V#2@B, U#50, ~14a!

where, obviously,U andV have to satisfy compatibility conditions following from~13!:

U,y2V,x1@U, V#50. ~14b!

The normal vectors to the immersionF are characterized by the conditions

^F,x ,n
s&50, ^F,y , n

s&50, ^ns,nr&5dsr .

One can easily see that they also can be defined by the adjoint transformation~11!.28 Note that
Cs (s51,...,n22) are functions onG characterized by conditions

^A,Cs&50, ^B,Cs&50, ^Cs,Cr&5dsr .

Corollary 1: All derivatives of F can be expressed in terms of A, B, U, and V. Therefore, the
fundamental forms of F can be expressed without the explicit knowledge ofC:

I5^A,A&dx212^A,B&dxdy1^B,B&dy2,

II s5^Cs,A,x1@A,U#&dx21^Cs,A,y1@A,V#&dxdy1^Cs,B,y1@B,V#&dy2.

C. A generalized immersion function

A very important step in applying the theory outlined in Sec. III B is to solve the follow
problem:

Given G-valued functionC to find a class ofG -valued functions A, B for which one can
construct explicitly the immersion F defined implicitly by (12).

One solution to the problem isA5U,l , B5V,l and in that caseF is given by the formula~3!.
Fokas and Gelfand formulated a more general theorem~Ref. 28, Theorem 1.2! and gave the
formula ~4! for F. The theorem can be generalized as follows.

Theorem 2: Let differentiable functions Uj5Uj (x
1,x2;l)( j51,2) with values in the Lie

algebraG of a Lie group G satisfy (2), C5C(x1,x2;l) is G-valued solution of the system (1,
j1, j2, and M8 are any given functions of x1, x2, andl, g0 are constants. Then the equation

F, j5C21~j k, jUk1jkU j ,k1g0Uj ,l1@M 8, Uj #1M 8, j !C

(the summation over k is assumed) are compatible and define a parametric su
F5F(x1,x2;l)PG explicitly given by

F:5j1C21U1C1j2C21U2C1g0C
21C,l1C21M 8C. ~15!

Proof: The compatibility conditions can be easily verified taking into account
C,k5UkC, (C21),k52C21Uk and Uk, j2Uj ,k1@Uk , Uj #50 for k, j51,2. Differentiating
F we obtain the above expressions forF, j .

Fokas and Gelfand28 considered the casej15a11a4x
1 andj25a21a5x

2.
In fact the above theorem can be formulated in a way even more general. Namely, it

necessary to confine oneself toM 8 andjk being given functions ofx1 andx2.
Theorem 3: Suppose thatC is a G-valued solution of (1) and M is aG -valued matrix

depending in an arbitrary way onl and x1, x2, also through the dependent variables of t
nonlinear system (2). Then the equations (12) with

A5g0U,l1M ,x1@M , U#, B5g0V,l1M ,y1@M , V# ~16!
J. Math. Phys., Vol. 38, No. 8, August 1997
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are compatible and F is given explicitly by

F5g0C
21C,l1C21MC. ~17!

Proof: The compatibility conditions for equations~12! and~16! can be verified in the straight
forward way. Differentiating~17! one obtains~12! with A, B given by~16!. Therefore the solution
to ~12! and ~16! is given by~17! up to an additive constant. h

The generalization presented here is quite obvious and both theorems are rather trivial
ever, it would be interesting to find and study physical and geometrical models solvable
framework of the Fokas–Gelfand approach. From this point of view it is important to hav
possibly most general formulation.

IV. AN EXAMPLE: IMMERSIONS ASSOCIATED WITH THE SINE–GORDON EQUATION

The standard linear problem for the sine–Gordon equation,

w,xy5sin w, ~18!

is given by~1! where

U15lf11w,xf3 , U252
1

l
~cosw f11sin w f2!, ~19!

and f1 , f2 , andf3 form an orthonormal frame in su(2).E3 ~in particular,@ f1 , f2#5f3 , etc.!. For
instance,

f15
i

2 S 0 1

1 0D , f25
i

2 S 0 i

2 i 0D , f35
i

2 S 1 0

0 21D . ~20!

In the sequel we apply the formula~17! to the linear problem~19! in a few simple cases.

A. Pseudospherical surfaces: g051, M50

In this case~17! reduces to the Sym–Tafel formula~3! and, applying it to the linear problem
~19!, we obtain in an explicit way thel-family of pseudospherical surfaces (K52l22) endowed
with asymptotic coordinates:

I5dx212l22 cosw dxdy1l24dy2, II52l21 sin w dxdy.

Fixing l we confine ourselves to surfaces of given curvature. The assumptiong051 is not very
important, for otherg0Þ0 we get pseudospherical surfaces withK52(g0 /l)

2.

B. Gauss map for pseudospherical surfaces and Tchebysheff coordinates on the
sphere: g050, M5f3

Coordinates on the unit sphereS2 are uniquely determined by the first fundamental for
Because ofF5n the second fundamental form is always proportional to the first one:II52I .
The Gauss mapF°n for the pseudospherical surfaces~3! is given by

n5C21f3C.

The vectorn assumes values in the unit sphereS2. The corresponding coordinates, similarly
coordinate lines on the pseudosphere, form the Tchebysheff net:

I5l2dx222 cosw dxdy1l22dy2.
J. Math. Phys., Vol. 38, No. 8, August 1997
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~We recall that Tchebysheff coordinates are defined by the conditionsg11,y5g22,x50.! One can
easily verify that in the case of the special Tchebysheff coordinates~g115g2251, g1252cosq!
on the unit sphere GMC equations reduce exactly to the sine–Gordon equation~18!.

C. A class of orthogonal lines on the sphere: g0 5 0 , M5U2

The image of the immersionF5C21U2C is a subset of the sphere. The fundamental for
are given by

I5sin2w dx21l22~w,y!
2dy2.

Does one obtain in this way all orthogonal coordinates on the sphere? The answer is negati
orthogonal lines on the sphere of the radiusR ~i.e., coordinates with the metricI5a2dx2

1b2dy2! are defined by the equation

~a21b,x!,x1~b21a,y!,y1R22ab50.

The sine–Gordon case is obtained fora5sinw andb5Rw,y but the equation has many mor
solutions. For instance, the conformal coordinates (a5b) are described by the elliptic Liouville
equation

c,xx1c,yy12 exp~c!50

@wherec52 log(a/R)#. Moreover, a given solution of the sine–Gordon equation defines orth
nal coordinates but on a subset of the sphere.

V. IMMERSIONS ON LIE GROUPS VERSUS THE SOLITON SURFACES APPROACH

A. The immersions on Lie groups and the generalized Sym formula

The results presented in Sec. III B certainly contain as a special case the Sym formu~3!.
However, reformulating them in an appropriate way we can show that they can be derived fr
analog of the Sym formula.

Theorem 4: Let C be a solution of the system (1) where Uk5Uk(x
1,x2,l) and lete be the

parameter of a one-parameter group of transformations in the space parametrize
(x1,x2,l,C) defined by the following equations:

x̃ k5xk1ejk1••• , l̃5l1eg01••• , C̃5C1eM 8C1••• , ~21!

where jk5jk(x1,x2), g05const, and M85M 8(x1,x2). Then the following ‘‘generalized Sym
formula,’’

F:5C̃21
dC̃~ x̃ k,l̃!

de
U

e50

,

defines an immersion in the Lie algebraG and, moreover, the immersion is identical with th
given by (15).

Proof: First of all, let us note that~21! transforms~1! into itself. C̃ depends one explicitly
~through the gauge transformation generated byM ! and throughx̃ 1, x̃ 2, andl̃ which depend on
e as well. Therefore,

dC̃

de
5
dx̃ k

de

]C̃

] x̃ k
1
dl̃

de

]C̃

]l̃
1

]C̃

]e
,

J. Math. Phys., Vol. 38, No. 8, August 1997
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and applying~21! and ~1! we obtain immediately~15!. h

B. Transformations of soliton surfaces

In this section we consider the transformations of soliton surfaces~3! induced by the trans-
formations which do not change the nonlinear system~2!. The transformation

C°CC, ~22!

whereC is a nondegenerate matrix not depending onx1 andx2, leaves invariant even the linea
problem~1! itself. Then there are gauge transformations

C85GC, F85F1C21G21G,lC, ~23!

whereG is any nondegenerate matrix~it can depend onx1, x2, andl!. The transformation~23!
obviously changes the matricesUk but leaves invariant the compatibility conditions~2!.

Proposition 5: Let F be given by the general formula (17) withg0Þ0. Then there exists a
matrix G such that F is given by the Sym formula F5F21F,z, whereF5GC and z5l/g0 .

Proof: F21F,z5g0C
21C,l1g0C

21G21G,lC. To complete the proof it is enough to no
tice thatG is a solution to the matrix linear ordinary differential equation of the first-or
g0G,l5GM. h

1. Euclidean motions

On the level of soliton surfaces~3! the transformation~22! corresponds to rigid motions of th
whole surface

F°C21C,l1C21FC.

The first component~constant with respect tox1 andx2! describes, obviously, a translation of th
surface while the second one describes a rotation~note that the similarity transformation preserv
the scalar product!.

2. Gauge equivalence

In the caseG5G(x1,x2) the transformation~23! leaves the soliton surface invariant:F8
5F.

If two integrable systems have identical soliton surfaces, then one may try to find a tra
mation~change of variables! between the corresponding fundamental forms. If such a transfo
tion exists in an explicit form, then both systems are gauge equivalent~the computation of the
gauge matrixG is not necessary!. In some cases this approach provided nontrivial results.17

3. Parallel surfaces

An immersionF8 onR3 is parallel~or equidistant! to F iff F2F85r 0n, wheren is a normal
vector to surfaceF and r 0 is a constant. Obviously, in the corresponding points ofF8 andF we
haven85n. Indeed,n, j are orthogonal ton so the tangent vectorsF, j8 span the plane parallel to
the plane spanned byF, j .

One can immediately see that parallel surfaces are given as a special case of the
Gelfand formula~4!. It is enough to puta15a25a45a550 and to identify

F85a3C
21C,l , M05r 0CnC21.
J. Math. Phys., Vol. 38, No. 8, August 1997
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On the other hand, according to Proposition 5, parallel surfaces can be obtained by apply
appropriate gauge transformation to the Sym formula~3!. It has been demonstrated on the exam
of spherical surfaces inE3 which are parallel to constant mean curvature surfaces~the classical
theorem of Bonnet!.4,22

4. The Darboux –Bianchi transformation

Formally, the Darboux–Bianchi–Ba¨cklund ~DBB! transformation is also a specific gaug
transformation. It is distinguished by the requirement that matricesU8 andV8 of the transformed
linear problem have exactly the same form asU andV. A gauge matrixG satisfying this condition
is known as a Darboux matrix and will be denoted byD. An explicit form of D can be found
provided thatD is rational inl ~multiplied, possibly, by a scalar function depending onl only!.

The simplest DBB transformation is defined by the matrixD with a single pole. In SU(m)
case the unimodular Darboux matrix3,20,37reads

D5S l2l1

l2l̄1
D d/mS I1 l12l̄1

l2l1

PD , ~24!

wherel1 is a complex parameter andP is the Hermitean projector~i.e.,P25P andP†5P! onto
the spaceC(l̄1)Vim , whereVim is a constant vector space of a given dimensiond. Note that
Tr P5d. The DBB for soliton surfaces immersed in su(m) @i.e., the transformation~23! with
G5D# is given by11,37

F̃5F1
2 Im l1

ul2l1u2
C21i S dm2PDC. ~25!

The transformation~25! has an interesting property that the length of the segmentF̃2F is con-
stant. Indeed, for su(m) one can define an invariant scalar product by^a,b&52mTr(ab). Com-
puting Tr(d/m2P)25d(12d/m) we obtain

uF̃2Fu5
2uIm l1u
ul2l1u2

Amd~m2d!.

The length ofF̃2F does not depend onx1,x2 indeed.

C. Immersions in R 3

Consider an arbitrary immersionF in R3. It can be characterized by the tangent vectors~12!.
ChoosingC in an appropriate way we can always represent the tangent vectors in the follo
way:

F,x5aC21f1C, F,y5bC21f1C1cC21f2C, acÞ0, ~26!

where fk (k51,2,3) form an orthonormal basis inE3.su(2). Thenormal vector is obviously
given byn5C21f3C and the fundamental forms read28

I5a2dx212abdxdy1~b21c2!dy2,
~27!

II5au2dx
212av2dxdy1~bv22cv1!dy

2.

whereuk andvk are coefficients ofU,V @see~13!# in the basisfk :

U5u1f11u2f21u3f3 , V5v1f11v2f21v3f3 .
J. Math. Phys., Vol. 38, No. 8, August 1997
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The matrix of the shape operator is given by

S5
1

ac2 S u2~b21c2!2abv2 a2v22abu2

c~cv21bv1! 2acv1
D , ~28!

and the mean and Gaussian curvature read, respectively,

H5
~b21c2!u22a~bv21cv1!

2ac2
,

~29!

K5
bu2v22cu2v12av2

2

ac2
.

The compatibility conditions~14! can be expressed in terms ofa,b,c andu1 ,u2 ,u3 ,v1 ,v2 ,v3 :

cu35ay2bx , av35bu32cx , av25bu22cu1 , ~30a!

u1,y2v1,x1u2v32u3v250, u2,y2v2 ,x1u3v12u1v350 , ~30b!

u3,y2v3,x1u1v22u2v150.

Note thatv1 , v2 , andu2 define the second fundamental formII . Using the third equation of the
system ~30a! one can express the fundamental forms byu1 , u2 , and v1 ~compare Ref. 28,
Theorem 2.2!. The other coefficients,u3 , v2 , andv3 , are also expressed by~30a!. Considering a
class of surfaces with prescribed or relatedH andK it is convenient to use~29!. Thus~30b! and
~29! assume the form

S a,y2b,x
c D

,y
2S ba,y2~bb,x1cc,x!

ac D
,x

1acK50,

u2,y2S bu22cu1
a D

,x
1
a,y2b,x

c
v12

ba,y2~bb,x1cc,x!

ac
u150,

u1,y2v1,x1
a,y2b,x

a
u12

c,x
a

u250, ~31!

cu21bu12av152acH, u1~bu22cu1!2au2v15a2cK.

Eliminating v1 from the last two equations we obtain

a2K22au2H1u1
21u2

250. ~32!

Now we are going to expressU andV in terms of the coefficients of the fundamental form
gi j andbi j using ~30a! and ~27!:

g115a2, g125ab, g225b21c2,

b115au2 , b125av2 , b225bv22cv1 .

As a result we have
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U5
g12b112g11b12

Ag11 det~gi j !
f11

b11

Ag11
f21

Ag11S ~Ag11!,y2S g12

Ag11
D
,x
D

Adet~gi j !
f3 ,

V5
g12b122g11b22

Ag11 det~gi j !
f11

b12

Ag11
f21S g12~Ag11!,y

Ag11 det~gi j !
2

g22,x

2Adet~gi j !
D f3

@note that det(gij)5a2c2#. Identifying fk with the basis~20! and taking into account the definition o
G i j
k , we obtain the following proposition.
Proposition 6: Thesu~2! representation of Fokas and Gelfand (Ref. 28, Theorem 2.2

identical with the representation (9) used by Sym.
However, the~implicit! parametrization of a surface bya, b, c, u1 , u2 , andv1 often seems

more convenient than the standard parametrization bygi j andbi j . For example, one avoids th
computation of the Christoffel symbols.

Remark 7: We can always put a51 by a change of coordinates.
Indeed, introducing new coordinatesx̃ and ỹ such that

ỹ5y, x̃5 x̃~x,y!,
] x̃

]x
5a,

we obtain

F, x̃5C21f1C, F, ȳ5C21XS b2
] x̃

]yD f11cf2CC.

Geometrical interpretation of the new parametrization is quite obvious: we choose the arc
parameterx̃ on coordinate linesy5const.

VI. LINEAR WEINGARTEN SURFACES

The equation~32! suggests a natural possibility to consider surfaces with prescribed l
relation betweenK andH. This is a subclass of an interesting family of Weingarten surfaces.
recall that Weingarten surfaces are defined by the requirement that their principal curvatu
related, i.e., there exists a functionf such thatf (k1 ,k2)50. Obviously the relation~6! defines a
subclass among Weingarten surfaces: linear Weingarten surfaces.29,30,38The conditionc1Þ0 dis-
tinguishes surfaces associated with a nonlinear equation~sine-Gordon equation!.30

A. Implicit description

Assuminga51 ~compare Remark 7!, u15c1 , andu25c2 ~c1 andc2 can depend only onl!
we obtain~6! as a direct consequence of~32!. Then the system~31! reduces to

S b,xc D
,y

2S ~b21c2!,x
2c D

,x
5cK, ~33a!

c1b,x1c2c,x5~cH!,x , ~33b!

c2b,x2c1c,x5b,xH, ~33c!

K22c2H1c1
21c2

250, ~33d!

and the matricesU andV are given by
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U5c1f11c2f22
b,x
c

f3 ,

V5~c1b1c2c22cH!f11~c2b2c1c!f22
~b21c2!,x

2c
f3 . ~34!

Integrating~33b! and ~33c! we obtain

cH5c1b1c2c1F1 , c1~b
21c2!12F1b5F2 , ~35!

where F15F1(y) and F25F2(y) are arbitrary functions. Introducingn and r, new arbitrary
functions ofy given byn:5F1 /c1 andr2:5F21n2, we solve~35! to obtain

c5r sin q, b52n1r cosq,

H5c21c1 cot q, K5c2
22c1

212c1c2 cot q,

where, because of~33a!, q5q(x,y) satisfies

q,xy1nq,xx1r~c2
22c1

2! sin q12rc1c2 cosq50. ~36!

The first fundamental form,I5dx212bdxdy1(b21c2)dy2, can be rewritten as

I5~dx2ndy!212r cosq~dx2ndy!dy1r2dy2,

which means thatx̃ andy ~wheredx̃5dx2ndy! are Tchebysheff coordinates. In the sequel
confine ourselves to these coordinates. In other words, we putn50 and the equation~36! becomes

q,xy1r~c2
22c1

2!sin q12rc1c2 cosq50. ~37!

The casec250 corresponds to pseudospherical surfaces (K52c1
2).

B. Explicit formulas

In Sec. VI A we considered implicitly~i.e., on the level of fundamental forms! the subclass of
Weingarten surfaces distinguished by the condition~6! ~or, more precisely, by the conditionsu1
5c 1 andu25c2!. Let us proceed to finding an explicit representation of linear Weingarten
faces.

We will make use of Theorem 3. GivenA, B, U, andV expressed by the fieldq and some
constants we will try to findM and the dependence of the constants onl. The necessary condition
for l to be a spectral parameter is the absence ofl in the compatibility conditions~2!. Therefore
we require the coefficients in the equation~37! @i.e., r(c1

22c2
2) andrc1c2# to bel-independent.

Thus

c25c1r 0 , r5c1
22f ,

wherer 0 and f5 f (y) do not depend onl. Therefore it is enough to find the dependence ofc1 on
l. Substituting

A5f1, B5r cosq f11r sin q f2 ,

U5c1f11c2f21q,xf3 ,
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V52r~c1 cosq1c2 sin q!f11r~c2 cosq2c1 sin q!f2 ,

M5m1f11m2f21m3f3 ,

into ~16! we have

g0c1,l1m1,x1m2q,x2m3c1r 051,

g0r 0c1,l1m2,x1m3c12m1q,x50, m3,x1m1r 0c12m2c150,

g0f c1,lc1
22~cosq1r 0 sin q!1m1,y2m3f c1

21~r 0 cosq2sin q!5 f c1
22 cosq,

2g0f c1,lc1
22~r 0 cosq2sin q!1m2,y2m3f c1

21~cosq1r 0 sin q!5 f c1
22 sin q,

m3,y1m1f c1
21~r 0 cosq2sin q!1m2f c1

21~cosq1r 0 sin q!50.

The simplest case is given by the matrixM which does not depend onq. It implies immediately

m15m250, g0c1,l2m3c1r 051, g0r 0c1,l1m3c150, m3,x5m3,y50,

and, finally

c15
l

g0~11r 0
2!
, c25

lr 0
g0~11r 0

2!
, m352

g0r 0
l

. ~38!

Therefore, Weingarten surfaces~6! parametrized by the abovec1 andc2 are given by the formula
~17! @in fact ~4! is sufficient# with M52g0r 0f3 /l andC satisfying the linear problem~1! such
that

U15
l

g0~11r 0
2!

~ f11r 0f2!1q,xf3 ,

~39!

U25
fg0~11r 0

2!

l
„2~cosq1r 0 sin q!f11~r 0 cosq2sinq!f2….

It is convenient to change the orthonormal basis in the tangent space,

f18 :5
f11r 0f2
A11r 0

2
, f28 :5

f22r 0f1
A11r 0

2
,

to introduceq0 such that

cosq0 :5
12r 0

2

11r 0
2 , sinq0 :5

2r 0
11r 0

2 ,

and to choose

g05
1

A11r 0
2
, f5

1

11r 0
2 .

Moreover, we will evaluate the formula~17! in l5g0 . Then the linear problem~39! coincides
with ~19! wherew:5q2q0 . The Weingarten surfaces~6! can be parametrized byr 0 ,
J. Math. Phys., Vol. 38, No. 8, August 1997
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~11r 0
2!K22r 0H1150, ~40!

and are explicitly given by the formula

F5@C21C,l82r 0C
21f3C#ul851 , ~41!

wherel85lA11r 0
2 andC solves the linear problem given by~1! and~19!. The first component

describes a pseudospherical surface (K521). The corresponding Weingarten surface is para
at the distancer 0 .

Corollary 8: The surfaces equidistant to pseudospherical surfaces are linear Weing
surfaces. The formula (41) associates with a given pseudospherical surface an explici
parameter family of parallel Weingarten surfaces (40).

One-parameter families of linear Weingarten surfaces~on the level of fundamental forms!
were considered by T. K. Milnor.29

The Bäcklund transformation for linear Weingarten surfaces has been already constructe38,39

Our results suggest an easy way to construct also the Darboux–Ba¨cklund transformation. One
should just apply the Darboux matrix~24!.

VII. HOW DO WE SEARCH FOR INTEGRABLE CLASSES OF SURFACES?

A. Lie symmetries

One can easily see that the Gauss–Weingarten equations play the role of the linear p
for GMC equations. However, there is no parameter which is so essential to apply techniq
the theory of solitons.6,7 The most natural possibility is to use Lie point symmetries40 to insert the
spectral parameter and this approach has been applied in particular cases since many ye~see,
for example, Refs. 28, 41, and 42!. In a more general way the method has been formulated
fundamental paper of Krasil’shchik and Vinogradov~Ref. 43, section 3.5, p. 179! and, indepen-
dently, by Leviet al.44 In the last paper there is given a systematic algorithm to investigate
problem: one computes the group of Lie point symmetries of the given nonlinear equatio
then it is enough to check if there exists a one-parameter group which changes the corresp
linear problem in an essential way~i.e., the group parameter cannot be removed by any ga
transformation!. In following papers we formulated a more convenient version of the algori
~using Lie algebras instead of Lie groups!8,45 and proposed to extend it on a larger class
symmetries~‘‘extended Lie point symmetries’’!.8,45,46 Extended Lie point symmetries are poi
transformations relating solutions of different equations. In other words, they are not symm
of a single equation but of a class of equations.

B. Immersions in spheres

The next method, proposed by Doliwa and Santini,47,48proved to be very effective in the cas
of integrable curves. It consists in identifying the spectral parameter with the radius of a s
One considers immersions in spheresSn with the radius given byl21 in such a way that for each
l the GMCR equations are exactly the same~i.e., do not depend onl!. Thusl enters only the
corresponding equations for the moving frame associated with the immersion. A rema
feature of this method is the derivation of the Sym–Tafel formula~3! in the limiting case
l°` ~note that thenSn°Rn!.

C. Application of the generalized immersion formula

The results of the Sec. VI B suggest one more way to introduce the spectral para
Namely, we can use directly the formulas~12! and~16! assuming that the parameters entering
fundamental forms depend in an unknown way on the spectral parameter. One can hope to
dependence from~16! under the additional assumption that the coefficients of GMC equation
J. Math. Phys., Vol. 38, No. 8, August 1997
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not depend onl. We have still quite a lot of freedom because there are no restrictions o
matrix M . However, it is usually sufficient to chooseM as simple as possible~e.g., to require
M5const!.

In fact this method of introducing the spectral parameter is closely related to the Lie sy
tries method and especially to the extended Lie point symmetries. Indeed, it is important to
GMC equations with a number of parameters which, in turn, can be madel-dependent.

The main advantage of our method is an explicit connection between the inserted par
and the considered immersion~the method of Doliwa and Santini have the similar property
well!. Introducing the parameter by Lie symmetries we usually obtain the original immersion~e.g.,
by the Sym–Tafel formula! but sometimes the linear problem must be changed by some~a priori
unknown! gauge transformation.4,22

It seems that there are close relations between all the methods presented in this sect
one can expect that the most efficient method for finding integrable geometries should comb
these approaches.

VIII. CONCLUSIONS

An important conclusion of the Fokas–Gelfand paper28 is drawing attention to the fact tha
given an integrable system with a linear problem in a Lie algebraG one can associate
(n15)-parameter family (n5dim G ) of immersions onG . We generalized this observatio
showing that the family of associated immersions can be extended and is parametrizedn
arbitrary functions and one additional~spectral! parameter.

However, the general theorems of Ref. 28 and of the present paper~Theorems 2 and 3! are of
limited value. The important point only slightly touched in this paper is to find geometric in
pretation of the immersions given by the generalized formulas~4! and ~17!. In other words, it
would be important to find some families of immersions~interesting for geometry or for othe
applications! defined by various restrictions on the arbitrary functions. Some examples are
cussed in Sec. V B.

Note that the formula~17! can describe both surfaces with the same GMC equations but
different geometry~e.g., parallel surfaces! and different surfaces of the same geometry@e.g.
surfaces related by the Ba¨cklund ~or Darboux–Bianchi! transformation#.

We have shown that the Fokas–Gelfand and Sym approaches to immersions on Lie a
are closely related and practically equivalent. Immersions on Lie algebras can be conside
gauge transformations of soliton surfaces. We suggested a method~combining both approaches! to
generate integrable classes of surfaces by an appropriate introduction of the spectral par
The method has been discussed in the example of linear Weingarten surfaces and certainly
be tested on other available examples.
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On the effect of pruning on the singularity structure
of zeta functions

Per Dahlqvist
Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

~Received 24 September 1996; accepted for publication 15 April 1997!

We investigate the topological zeta function for unimodal maps in general and
dynamical zeta functions for the tent map in particular. For the generic situation,
when the kneading sequence is aperiodic, it is shown that the zeta functions have a
natural boundary along its radius of convergence, beyond which the function lacks
analytic continuation. We make a detailed study of the function)n50

` (12z2
n
)

associated with sequences of period doublings. It is demonstrated that this function
has a dense set of singular points and zeros on the unit circle, exhibiting a rich
number theoretical structure. ©1997 American Institute of Physics.
@S0022-2488~97!00808-6#

I. INTRODUCTION AND PRELIMINARIES

In chaotic dynamics one aims at a global description of the phase space flow rather
description of individual trajectories. The appropriate tool for this analysis is evolution oper
~Ruelle–Perron–Frobenius operators!. It requires a rather extensive mathematical apparatu
understand the spectrum of this operator in detail. The problem is that one has to restr
functions space, acted on by the operator, in order to capture only the physically relevan
trum. However it seems as if, in many cases, this relevant spectrum can be identified w
spectrum of poles ofzeta functionsor ~even better! zeros of Fredholm determinants. These fun
tions require only knowledge of the periodic orbits and their invariants, such as stability and l
and no reference to specific function classes. The link between the spectra of evolution op
and their zeta functions has been rigorously established only for restricted classes of system
e.g., expanding~or hyperbolic! systems with a symbolic dynamics of finite subshift type.1–3 For
such systems the Fredholm determinants may even be entire functions.

However, there are many ergodic systems of physical relevance that do not fall into this
of systems. We can then no longer expect singularities to be absent from the Fredholm d
nants. There are strong indications that for certain intermittent systems the zeta function
Fredholm determinants exhibit branch point singularities4–6 and the corresponding branch cut
associated with a continuous component of the spectrum of the transfer operator.7 There is evi-
dence that these singularities do carry important information about the dynamics of the s
such as power law decay of correlations and phase transitions among, e.g., the gene
Lyapunov exponents.5,8,9

In this paper we will study the analytic structure of the zeta function for expanding sys
with no symbolic dynamics of finite subshift type.

We will study the simplest conceivable system, namely one-dimensional unimodal~one-
humped! mapsx° f l(x)5l•g(x) with one external control parameterl.10–12

The kneading sequenceI l is the orbit of the critical point, represented by a string ofR and
L ’s depending on the branch of the map visited. The ordering of kneading sequences with r
to the parameterl do not depend on the details of the unimodalg(x) if it has strictly negative
Schwartzian derivative.10,12

The kneading sequence can be of one of three types

~a! It maps to the critical point again, aftern iterations. If so, we adopt the convention
terminate the kneading sequence with aC, and refer to the kneading sequence as finit
0022-2488/97/38(8)/4273/10/$10.00
4273J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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~b! Preperiodic, i.e., it is infinite but with a periodic tail.

~c! Aperiodic.

Much dynamic information is encoded in the following one-parameter family of z
functions:13

1/z~b,z!5)
p

S 12
znp

uLpu12bD . ~1!

The product in~1! runs over all primitive periodic orbitsp, having periodnp and stability
Lp5 d fnp/dx ux5xp

with xp being any point alongp. The set of allowed periodic orbits can b
deduced directly from the kneading sequence.12

We will only study a very special case of this function in detail, namely the topological
function,

1/z top~z! [ 1/z~b51,z! 5)
p

~12znp!, ~2!

and then turn to some speculations aboutb,1 at the end. The leading zeroz0 of 1/z top(z) ~the
one with smallest modulus! and the topological entropyh are related byh52 log z0. There is one
unimodal map for which 1/z top(z) contains all information concerning 1/z(b,z) for all b, namely
the following piecewise linear map, called thetent map:14–16

x° f ~x!5H l•x, xP@0,1/2,#

l•~12x!, xP~1/2,1#
, ~3!

where the parameterlP(1,2#. SinceuLpu5lnp we have

1/z~b,z!51/z top~z/l
12b!. ~4!

The topological entropy ish5 log l.
The tent map does not exhibit periodic windows, familar from maps with a smooth maxim

the sequences of period doublings are squeezed into a zero length intervals in parameter s
map with a smooth maximum, such as the logistic map, the topological entropy is a
staircase-like function of the parameterl.

The set of periodic points of the tent map is countable. A consequence of this fact is th
set of parameter values for which the kneading sequence is finite or preperiodic are counta
hence of measure zero and consequentlythe kneading sequence is aperiodic for almost alll. For
general unimodal maps the corresponding statement is that the kneading sequence is aper
almost all topological entropies. The latter statement has no immediate correspondence in
eter space due to the complicated relationship between the topological entropy and the pa
l.

It is, in fact, easy to write down the expanded topological zeta function corresponding
given kneading sequenceI l5PC, of lengthn, whereP5s1s2 . . . sn21 is a string of symbols
where each symbolsi5L orR. Now let ai51 if si5L andai521 if si5R. The expanded zeta
function is a polynomial of degreen

1/z top~z! 5)
p

~12zp
n!5~12z!•(

i50

n21

biz
i , ~5!

where
J. Math. Phys., Vol. 38, No. 8, August 1997
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b051,

bi5bi21ai , 1< i<n21. ~6!

If the kneading sequence is infinite@i.e., type~b! or ~c!# the finite sum is replaced by an infinit
series. This simple explicit formula is not commonly seen in the literature, but follows from
17 by direct application of Lemma 4.5 and Corollary 10.7.

The function( i50
n21biz

i is called the characteristic polynomial in the literature.12,18 In Ref. 14
it appeared as a characteristic function whose zeros correspond to eigenvalues of the ev
operator acting on the space of piecewise constant functions.

An important consequence of~6! is that the sequence$bi% has a periodic tail if and only if the
sequence$ai% has one. We will make use of this observation in section III.

II. A QUICK JOURNEY THROUGH PARAMETER SPACE

The universal sequence of finite kneading sequences is a well studied subject but to
ourselves acquainted with~5! and ~6! we will discuss some special cases . The letters~a! to ~d!
refer to Table I.

„a… I l5H`(R). ~This is called the harmonic extension ofRC in Ref. 10.! This is the accu-
mulation point of the first cascade of period doublings. The topological zeta functions is giv
1/z top(z)5(12z)•)n50

` (12z2
n
). The kneading sequence is aperiodic. We will study this fu

tion in some detail in the next section. Similar cascades of period doublings accompan
periodic orbits, or equivalently phrased, a sequence of harmonics follows every finite kne
sequence.

TABLE I. Ordered kneading sequences up to length seven and some longer.

I (C) 1/z top(z)/(12z)

RC
RLRC
RLRRRLRC
a)H`(R) )n50

` (12z2
n
)

RLRRRC
RLRRRRRC
b! RLR` (122z2)/(11z)
RLRRRRRRC
RLRRRRC
RLRRC
RLRRLRC
c! RLC (12z2z2)
RLLRLC
RLLRLRC
RLLRC
RLLRRRC
RLLRRC
RLLRRLC
RLLC
RLLLRLC
RLLLRC
RLLLRRC
RLLLC
RLLLLRC
RLLLLC
RLLLLLC
d! RL` (122z)/(12z)
J. Math. Phys., Vol. 38, No. 8, August 1997
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„b… I l5RLR`. This is a so calledband merging point. The inverse topological zeta functio
is 1/z top(z)5(12z)(122z2)/(11z). The kneading sequence is of type b!. The preperiodic
kneading sequence gives rise to the denominator (11z) above and thus a pole of 1/z top(z). The
two leading zerosz561/A2 are of the same size. For the tent map, a slight increase of the co
parameter will yield agapbetween the leading and next to leading zero and strong mixing.
point, and higher band merging points, has been extensively studied in the literature.14–16

„c… I l5RLC. The last Sarkovski orbit12 enters the system; orbits of arbitrary period a
allowed. The kneading sequence isRLC and via eqs. ~5! and ~6! we get
1/z top(z)5(12z)•(12z2z2). This can also be realized as follows~cf. Ref. 19 for details!. The
kneading sequence isRLC, so the only forbidden subsequence isRLL. All allowed periodic
orbits, exceptL̄ , can can be built from an alphabet with lettersRL andR. Following Ref. 19 we
write this alphabet as$RL,R; L̄ %, yielding the topological zeta function 1/z top(z)5(12z)
3(12z2z2). The leading zero is the inverse golden meanz05(A521)/2.

„d… I l5RL`. The symbolic dynamics is an unrestricted binary one with alphabet$R,L%, the
zeta function is simply 1/z top(z)5122z. The kneading sequence is of type~b! but the associated
denominator (12z) gets canceled by the prefactor in~5!.

III. LACUNARY ZETA FUNCTIONS

Consider a functionf (z)5(ciz
i defined by a power series. A meromorphic function ha

well defined analytic continuation in the entire complex plane, except at the poles. Fun
exhibiting branch point singularities can be continued except on certain imposed cuts.

But there is a class of functions that cannot be analytically continued outside a region~typi-
cally a disk!, the boundary of this region is called anatural boundary. There are some specia
cases where it is easy to detect the presence of a such a boundary. The classical exampgap
series orlacunaryseries, first studied by Fredholm, Weierstrass and Hadamard. The easie
ample is perhaps provided by the seriesf (z)5(z2

n
. The increasinggaps in the sequence o

coefficients make the function noncontinuable beyond the circle of convergenceuzu51.
Another example is when the coefficients can take on only a finite number of values an

sequence of coefficients does not ultimately become periodic, then the function again has t
circle as a natural boundary.20 This result can be directly applied to the expansion of 1/z top , cf. eq.
~6!, for an aperiodic kneading sequence. We can thus get the following theorem for free.

Theorem 1: The topological zeta function1/z top for unimodal maps has the unit circle as
natural boundary for almost all topological entropies and for the tent map~3!, for almost alll.

Below we are going to study a specific example of topological zeta functions exhibiti
natural boundary. Cascades of period doublings is a central concept for the description of u
dal maps. This motivates a close study of the function

J~z!5 )
n50

`

~12z2
n
!. ~7!

The expansion ofJ(z) begins asJ(z)512z2z21z32z41z5 •••. The radius of conver-
gence is obviously unity. The simple rule governing the expansion will effectively prohibit
periodicity among the coefficients making the unit circle a natural boundary. We will not fo
this line of thought; we will instead make a detailed study of the fine structure of this boun
and, as a byproduct, conclude that the unit circle is opaque, stated as Theorem 2 below.

First we rewriteJ as

J~z!5 )
n50

`

~12xn!, ~8!
J. Math. Phys., Vol. 38, No. 8, August 1997
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where thexn’s are defined iteratively:

xn5xn21
2 ,

x05z. ~9!

We write thexn on polar formxn5r n exp(2pixn) where r n and xn are real numbers andxn is
restricted to the unit interval. The iteration rule is

r n5r n21
2 5r 0

2n,

xn52xn21mod 1.
~10!

Suppose now we chooser 0 close to, but inside, the unit circler 0512e. Thenr n will be close to
unity for n<N(e)'2 log e/log 2 and then decrease to zero quickly. By choosinge we effectively
selectN(e) factors of the product representation ofJ and by decreasinge we can conclude
whetherJ(z) diverges to` or 0 or perhaps converges to a finite value asz approaches
exp(2pix) from within; we thus refer toz5exp(2pix) as a singular point, zero or a regular poin
respectively. We will put this idea on rigorous footing in the following.

We will now focus our attention on the second recursion relation in~10! which happens to be
the binary shift map, and we will restrict our attention to rationalx0. Takex05p/q to be proper
reduced fractions, that isq P N and

pPVq5$p;pPN, 1<p<q, ~p,q!51%, ~11!

where (p,q) denote thegreatest common divisorof q andp. The number of elements inVq is
Euler’s functionf(q). We are thus led to study the following map fromVq to itself:

pn52pn21modq. ~12!

We will separately consider the three cases.

~i! q52m

~ii ! q52mq8, where (q8,2)51

~iii ! (q,2)51

We begin with~i!. If we setr512 then only the firstm factors of the product~7! are nonzero and
the subsequent will be zero and the corresponding point on the unit circlez5exp(2pix) is a zero.
These are in a sense trivial zeros and we will eventually discover that they are not the only
However case~i! is sufficient to make zeros dense on the unit circle.

Case~ii ! reduces to case~iii ! afterm applications of the map.
Now to the more interesting behavior of the map~12! for case~iii !. Below we are going to

apply some fundamental results from number theory; they can be found in any standard tex
The text below is rather compact so, in order to digest it, it could be advisable to verify Tab
step by step during the reading.

Now 2 P Vq . It is well known that the setVq is an Abelian group with respect to multipli
cation moduloq. This has some important consequences. The map will move points inVq along
cycles, because the existence of transients would imply nonexistence of unique inverse
ondly, if the setVq is divided into several subcycles, all of them has the same lengthl q , and
l q is a divisor off(q). The numberl q will be the smallest solution to

2l q51modq. ~13!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Due to Euler’s theorem we see thatl q5f(q) is always a solution but it is not necessarily th
smallest. In number theory one says that 2 is a primitive congruence root moduloq if
l q5f(q), or equivalently, that 2 is a generator of the residue class moduloq.

First, if q5p is a prime then 2 may or may not be a generator. There is no other way th
check it by hand~or look it up in a table!. For p,100 we can use 2 as a generator forp5 3, 5,
11, 13, 19, 29, 37, 53, 59, 61, 67 and 83 but not for 7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 8
97. If 2 generates the residue class forq5p it also acts as generator forq5pa unless
2p2151modp2. This is an accident which is very rare if possible, it does not occur for any p
p,1000. When building up Table II we do not have to worry about this complication.

Next supposeq is composite. Then, there does not exist any primitive congruence roo
l q,f(q). Indeed, ifq5q1•q2 and (q1 ,q2)51 ~andq1 ,q2 Þ 1) it is fairly easy to show that
l q<f(q)/(f(q1),f(q2))<f(q)/2. We can be more explicit than so: decomposeq into prime
factorsq5p1

a1p2
a2 . . . pr

ar where alla i.0. If all residue classes modulopi
a i can be generated b

2 then one can show thatl q5$f(p1
a1),f(p2

a2), . . . ,f(pr
ar)%, where$a,b% stands for theleast

common multiplewith an obvious generalization for several arguments. Recall that for a com
ite numberq5p1

a1p2
a2 . . . pr

ar Euler’s function is given by

f~q!5q•~121/p1! . . . ~121/pr !. ~14!

The reader can now verify the second and third columns of Table II.
The analysis above can tell whether or not the setVq splits up into subcycles under action o

the mapp°2p modq. We can also tell how many subcycles in total have periodn. The reason
is that the binary shift map admits a binary coding of its periodic orbits. There are

Mn5
1

n(dun
m~n/d!2d ~15!

primitive cycles of lengthn, m is the Möbius function, see, e.g., Ref. 19 for a derivation. F
instance,M352 so there are two period three cycles, both corresponding toq57, cf. Table II.
M453 so there are three cycles of period four, corresponding toq55, q59 andq515.

Next we address the question if a given~sub!cyclec corresponds to a singular point, a zero
a regular point of the functionJ(z). For cyclec we define

TABLE II. Some number theoretic data used to study the structure of the unit circle for the functionJ(z).
Explanations given in section III.

q f(q) l q Fq(1)

3 2 2 3 `
5 4 4 5 `
7 6 3 7 `2

9532 4 4 3 `
11 10 10 11 `
13 12 12 13 `
1553•5 8 4 1 12

17 16 8 17 0,̀
19 18 18 19 `
2153•7 12 6 1 12

23 22 11 23 `2

25552 20 20 5 `
27533 18 18 3 `
29 28 28 29 `
31 30 5 31 02,12,`2

3353•11 20 10 1 0,̀
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



t
ll

ber

en

-

gular

-

e
, and

arried

ch

art of

4279Per Dahlqvist: On the effect of pruning

¬¬¬¬¬¬¬¬¬¬
cc5 )
pjPc

~12e2p ip j /qc!. ~16!

In the appendix we prove that ifuccu,1 then the pointsz5exp(2pipj /qc) for all pj P c are zeros
of J(z). If c.1 they are singular points and ifc51 they are regular points. It is not straigh
forward to expresscc ~without numerical computation! for a given cycle but the product over a
cycles corresponding to a givenqc5q

Cq5 )
qc5q

cc5 )
1< j,q,~ j ,q!51

~12e2p i j /q![Fq~1!, ~17!

is easily expressed.Fq(x) are the so called cyclotomic polynomials frequently studied in num
theory. We can again use well established results21 from number theory and state that:

if q is a prime power q5pa thenCq5p, and if q contains two or more distinct prime factors th
Cq51.

The reader can now verify the fourth column of Table II.
We were interested in the contributioncc from one cycle and ifl q,f(q) we are only able to

compute the productCq of contributions from all cycles corresponding toq. In some cases we
find that two cyclesc1 andc2 are related by complex conjugation~again a purely number theo
retical property!: Cc1

5C̄c2
and thusuCc1

u5uCc2
u. This is the case for, e.g.,q57. When there is

no such symmetry there seems to be a preference to produce somec such thatuCcu,1 leading to
zeros ofJ(z) that are surely nontrivial.

In the fifth column we indicate whether the different subcycles correspond to zeros, sin
points or regular points. Many entries required explicit calculations.

As a special case consider family of denominatorsq53n. According to the previous reason
ing, all residue classes moduloqn are generated by 2, so thatl qn5f(qn). This means thatVqn
does not split up into subcycles. Allz corresponding topPVqn

are thus singular points sinc
F(q)53.1. This is sufficient to show that singular points are also dense on the unit circle
we can state the following.

Theorem 2: The sets of zeros and singular points ofJ(z) are dense on the unit circle.
The functionJ(z) can thus not be continued outside the unit circle.

IV. CONCLUDING REMARKS

As we remarked before, our findings concerning the topological zeta functions can be c
over directly to the general zeta function,

1/z~b,z!5)
p

S 12
znp

uLpu12bD , ~18!

only for piecewise linear maps when 0<b,1 . However, if a small nonlinearity is added, su
that the map is still expanding, the topological zeta function will, after proper rescaling ofz, `a la
eq. ~4!, approximate the exact expansion of the zeta function,

1/z~b,z!5(
i50

n

f iz
i1(

i50

`

ciz
i , ~19!

where( i50
n f iz

i is the rescaled topological zeta function, closely related to the fundamental p
a cycle expansionin Ref. 19. The correction( i50

` ciz
i tends to zero ifb→1 or the nonlinearity

shrinks to zero. If not, and the kneading sequence is finite (n finite!, the coefficientsci will
J. Math. Phys., Vol. 38, No. 8, August 1997
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decrease exponentially wheni@n. But if n5` and the kneading sequence is aperiodic we kn
that ( i50

n f iz
i has a natural boundary. However it is no longer clear in what sense the corre

( i50
` ciz

i is small. It seems however unlikely that it will manage to cancel the natural boun
However, the methods used in this paper do not immediately apply to the nonlinear case
leave that as a speculation.

The reasoning above suggests that one could expect a boundary~or its remnants! along

uzu5^u f 8u12b&, ~20!

when there is no finite Markov partition.^.& is some suitable defined average, presumably g
metric.

In Ref. 22 it is shown that for piecewise monotone maps 1/z(z) is holomorphic inside

z, lim
n→`

supS )
i51

n

u f 8~xi !u D
12b
n

~21!

wherexi11J5 f (xi) and the supremum is taken over the initial pointx1. The only requirement is
that the weight, in this case 1/u f 8u12b, is of finite variation.~For a more recent development on th
subject see Refs. 23–25.! If there exists a finite Markov partition~e.g., due to finiteness of th
kneading sequence! we know that this holomorphic disk is limited by a pole of 1/z(z), related to
the exponential decay of the sequenceci above. What we suggest is that in the generic situa
with no finite Markov partition, the holomorphic region is limited by a much more severe si
larity, possibly a natural boundary.

In numerical computation of zeros a presence of a natural boundary will cause prob
When looking for zeros of the truncated power series expansion of 1/z(z) one will typically find
that zeros accumulate along the boundary as the truncation length is increased.26 The situation will
hardly be improved by applying some continued fraction expansion of the zeta function. Su
approach could be a good idea if the~inverse! zeta function was meromorphic. But the presen
of a natural boundary would presumably lead to accumulation of zerosand poles along the
boundary of the successive rational approximations of the zeta function.
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APPENDIX: PROOF OF A RESULT IN SECTION III

Consider the function

J~z5r 0e
2p ix0!5 )

n50

`

~12r 0
2ne2p ixn!. ~A1!

We are interested in the behavior ofJ when r 0→12. x0 is kept fixed and chosen so that th
sequence$xn% is periodic:xn1m5xn . We rewrite the previous equation as

J~z5r 0e
2p ix0!5)

k50

`

f ~r 0
2mk

!, ~A2!

where
J. Math. Phys., Vol. 38, No. 8, August 1997
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f ~r !5 )
l50

m21

~12r 2
l
e2p ixn!. ~A3!

First we consider the caseu f (1)u.1, and we will show thatuJu→` as r 0→12. Obviously
f (r ) is an entire analytic function and in particular a continuous function so that there exists
r̃ such thatu f (r )u.C.1 for all 1.r> r̃ . We split up the product

J~r 0e
2p ix0!5 )

k50

k̃21

f ~r 0
2mk

!•)
k5 k̃

`

f ~r 0
2mk

![D~ r̃ !•)
k50

k̃21

f ~r 0
2mk

!. ~A4!

We chooser 0
2m k̃

5 r̃ so thatD( r̃ ) is a constant,

D~ r̃ !5 )
k5 k̃

`

f ~r 0
2mk

!5)
k50

`

f ~ r̃ 2
mk

!, ~A5!

depending only on our choice ofr̃ . It is finite becauser̃ ,1 andJ(z) converges inside the uni
circle. We now have

uJu.D~ r̃ !•Ck̃, ~A6!

which can be made arbitrarily large by choosingk̃ sufficiently large and thusr sufficiently close
to unity.

The case whenu f (1)u,1 is worked out in complete analogy it is is shown thatuJu→0 as
r 0→12.

The casef (1)51 requires just a little more work. First we rewrite eq.~A4!

J~r 0e
2p ix0!5D~ r̃ !•)

k50

k̃21

f ~ r̃ 2
m~k2 k̃ !

!5D~ r̃ !•)
k51

k̃

f ~ r̃ 2
2mk

!. ~A7!

We want to show that the product converges whenk̃→`, and thusr 0→12. We appeal again to
the analyticity off (r ). Since f (1)51 there exist a constantE such that

u f ~r !21u,E~12r !, r̃ <r,1. ~A8!

The product~A7! converges if

(
k50

`

u f ~ r̃ 2
2mk

!21u,`. ~A9!

Using ~A8! we get the condition

(
k50

`

u f ~ r̃ 2
2mk

!21u,E(
k50

`

~12 r̃ 2
2mk

!, ~A10!

which converges since

~12 r̃ 2
2mk

!5O~2 log r̃ 22mk!, k→`. ~A11!
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A natural basis of states for the noncommutative sphere
and its Moyal bracket

J. Gratusa)
Laboratoire de Gravitation et Cosmologie Relativistes,b!

Tour 22/12 4eme etage, Boite Courrier 142, 4pl Jussieu, F75252 Paris, France

~Received 24 March 1997; accepted for publication 7 May 1997!

An infinite-dimensional algebra which is a nondecomposable reducible representa-
tion of su~2! is given. This algebra is defined with respect to two real parameters. If
one of these parameters is zero, the algebra is the commutative algebra of functions
on the sphere, otherwise it is a noncommutative analog. This is an extension of the
algebra normally referred to as the~Berezin! quantum sphere or ‘‘fuzzy’’ sphere. A
natural indefinite ‘‘inner’’ product and a basis of the algebra orthogonal with re-
spect to it are given. The basis elements are homogeneous polynomials, eigenvec-
tors of a Laplacian, and related to the Hahn polynomials. It is shown that these
elements tend to the spherical harmonics for the sphere. A Moyal bracket is con-
structed and shown to be the standard Moyal bracket for the sphere. ©1997
American Institute of Physics.@S0022-2488~97!02208-1#

I. INTRODUCTION

The noncommutative or ‘‘fuzzy’’ sphere has been considered by several authors in dif
contexts. It is an example for a general quantization procedure.1–3

It is also an example often used in noncommutative geometry4–8 ~see also references within!,
and in the theory of membranes9 which has application to supersymmetry. It is studied in relat
to coherent states,10,11 and as a reduction of the symplectic algebra onR6.12,13

Normally the approximation for the algebra of functions on a sphere is in terms of mat
where the functions on a sphere appear only in the limit as the size of the matrix tends to in
In this article, however, we examine a two-parameter algebra of polynomialsP (k,R) with k,
RPR. For different values ofk andR we obtain the following.

~i! The commutative algebra of finite sums of harmonics on the sphere~whenk50!. In this
caseR plays the radius of the sphere.

~ii ! The finite matrix representation of su~2!. Whenk2(N221)54R2, thenMN(C) forms a
quotient algebra, andR2 is the Casimir operator.

~iii ! The polynomial algebra generated by the creation and annihilation operators for a
harmonic oscillator, The Symplecton Realization of SU~2!.14,15 For this casek51 and
R2523/16! ~We can extend the range of parameters so thatR2 is negative.!

~iv! A noncommutative algebra of polynomials which is an infinite-dimensional represent
of su~2!, for other values ofk.

In Sec. II we introduce the algebra and give a bilinear form on it. In Sec. III we give a b
of P (k,R) which is orthogonal with respect to this bilinear form. Some of the basis elem
were given previously for the matrix case in Ref. 16.

In Sec. IV we give an alternative representation of the elements ofP (k,R), and show how
the basis elements can be written in terms of Hahn polynomials. We also show thatP (k,R) may

a!Electronic mail: gratus@ccr.jussieu.fr
b!Laboratoire associe´ au CNRS URA 769.
0022-2488/97/38(8)/4283/18/$10.00
4283J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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be viewed as an infinite-dimensional, reducible, nondecomposable representation of su~2!, and
give some of its ideals.

In Sec. V we look at the commutative case,k50, and show that the basis elements beco
the standard spherical harmonics. In Sec. VI we calculate the Moyal bracket, which is the li
the commutator ask→0. We also look at what the limits of the standard operators onP (k,R)
are.

Finally, in the Appendix we draw attention to some facts about the universal envelo
algebra of su~2! which are needed for some of the proofs.

Notation and order of proofs:The summation convention is not used in any part of the arti
The results in the Appendix are used throughout the article. This section may be read first si
proofs in this section require material from the rest of the article.

II. DEFINITION OF THE ALGEBRA P (k,R)

Given the constantsk, RPR, with R.0, we define the algebraP (k,R) to be

P ~k,R!5$Free noncommuting algebra of polynomials inx,y,z%/;, ~1!

where; are the relations:

@x,y#; ikz, @y,z#; ikx, @z,x#; iky, x21y21z2;R2. ~2!

We note that this is a well-defined algebra since it is equivalent to the quotient

U~k!/J~R!, ~3!

whereU5U(k) is the universal enveloping algebra of the Lie algebra su~2! andJ(R) is the ideal

J~R!5$~x21y21z22R2! f u fPU%. ~4!

This ideal is two-sided since (x21y21z22R2) commutes with all elements inU. As shown in
Sec. IV, we may viewP (k,R) as the vector space for a representation of su~2!. This represen-
tation is reducible but not decomposable.@The same of which is true forU(k), the universal
enveloping algebra.# Any attempt to giveP (k,R) a Hilbert space structure would make th
representation of su~2! noncontinuous.

Usually k andR are implicit and we simply writeP . We chose the representatives of ea
equivalent classfPP to be the totally symmetric formally trace-free polynomial in$x,y,z%. This
means that we can writefPP as

f5 (
n50

degree~ f !

(
a1 ...an51

3

f a1•••an
xa1xa2•••xan, ~5!

where$x1,x2,x3%5$x,y,z%. Each f a1 ...an is completely symmetric in its indices and satisfies

(
b51

3

f bba3a4 ...an50. ~6!

The condition~6! will be called formally trace-free to distinguish it from the matrix trace. In t
Appendix we give some more information about the elements ofU which can be written as totally
symmetric polynomials and we define the formal trace of these elements.

There is a natural linear bijection

Ck1 ,k2
:P ~k1 ,R!°P ~k2 ,R! ~7!
J. Math. Phys., Vol. 38, No. 8, August 1997
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given as follows: LetfPP (k1 ,R) and gPP (k1 ,R) both be written in the totally symmetric
formally trace-free form~5!. ThenCk1,k2

( f )5g if and only if f a1 ...an5ga1 ...an for all indices

$a1 ,a2 ,...%. This mapping is principally used when one of thek’s is zero, since it then relates th
commutative algebra of functions on the sphere with the noncommutative algebra. It is clea
the definition ofCk1 ,k2

that it is not a homomorphism@i.e., it does not preserve the product o
P (k,R)#.

Let P n,P be the set of all homogeneous polynomials of ordern, i.e.,

P n

5H (
a1 ...an51

3

f a1a2 ...anx
a1xa2•••xanU f a1a2 ...an is totally symmetric and formally trace-freeJ .

~8!

Then dim (P n)52n11. So as a set

P 5 %
n50

`

P n ~finite sums only!. ~9!

We define the projection

pn :P ° %
r51

n

P r . ~10!

We define the operation of taking the Hermitian conjugate by

†:P °P , ~ab!†5b†a†, x†5x, y†5y, z†5z, l†5l̄ for lPC. ~11!

There is a sesquilinear form onP given by

^•,•&:P 3P °C,
~12!

^ f ,g&5p0~ f
†g!.

In Sec. III we give a basis ofP n andP which is orthogonal with respect to this bilinear form. W
also show that this form is Hermitian:^ f ,g&5^g, f &. However, this bilinear form is not positive
definite and̂ f , f & may be positive, negative, or zero. It could be called adegenerate pseudo-inne
product.

As stated in the Introduction, there are a number of values ofk andR for which P (k,R) is
a special algebra. Ifk50, thenP (0,R)>C00(S

2), the set of finite sums of spherical harmonic
In this casê•,•& does become positive definite and equal to the standard inner product of fun
on S2. We can then closeC00(S

2) to giveL2(S2). This will be analyzed in Sec. V.
If k2(N221)54R2 with NPZ, N>1, thenpN21P (k,R)>MN , the set ofN3N matrices.

This isomorphism is given explicitly in Sec. III. In this case the bilinear form restricted
P N21 is an inner product, while the bilinear form on any other element vanishes.

It is also possible to take the limitR→`, with k constant. This case is dealt with in Ref.

III. ORTHOGONAL BASIS OF P (k,R)

In this chapter we give an explicit orthonormal basis forP n andP . As when dealing with
representations on su~2!, it turns out to be very convenient to work with the ladder operators
J. Math. Phys., Vol. 38, No. 8, August 1997
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J15x1 iy , J25x2 iy , ~13!

which obey the relations

@z,J1#5kJ1 , @z,J2#52kJ2 , @J1 ,J2#52kz, z21 1
2J2J11 1

2J1J25R2. ~14!

Useful operators onP are given by

ez f5@Jz , f #, ~15!

and similarly forex ,ey ,

e6 f5@J6 , f #, ~16!

D5ez
22kez1e1e25ex

21ey
21ez

2. ~17!

We will call D the Laplacian operator.
Lemma 1: The LaplacianD commutes with e1 , e2 , and ez . With respect to the bilinear form

(12), ez andD are self-adjoint while e2
† 5e1 .

Proof:

^e2 f ,g&5p0„~J2 f !†g2~ f J2!†g…

5p0~ f
†J1g2J1 f

†g!5p0~ f
†J1g2 f †gJ1!2p0„e1~ f †g!…5^ f ,e1g& ; f ,gPP ,

since from Corollary 16p0(e1 , f )50 for all fPP . j

The effects of these operators are calculated below. We will show that the spacesP n are
invariant under the operatorsex , ey , ez , e6 , andD, and that theP n are the orthogonal eigens
paces ofD.

These operators vanish whenk50 and we obtain the commutative algebra of functions on
sphere. In Sec. VI we give the valuek21e1 , etc., andk22D. The last of these is the standa
Laplacian for functions on the sphere.

In the following theorem we give a basis ofP which is orthogonal with respect to the bilinea
form ~12!. This is given byPm

n , wheren,mPZ,n>0,umu<n. ThePm
n are defined to be propor

tional toe2
n2m(J1

n ), and normalized so that^Pn
m ,Pn

m&P$1,0,21%. This basis was observed in Re
7 for the case of finite representation~see below! and some of the properties in the followin
theorem are given therein. In Ref. 15, Topic 3.4, there is a special case of this basis for th
of P (k,R) with k51 andR252 3

16! This has a slightly different inner product which in this ca
is positive definite.

Theorem 2: For kÞ0 there is a basis ofP (k,R) given by

$Pn
m~k,R!un,mPZ,n>0,umu<n%, ~18!

where

Pn
m~k,R!5ank

m2nS ~n1m!!

~2n!! ~n2m!! D
1/2

e2
n2m~J1

n!. ~19!

We shall write Pn
m5Pn

m(k,R) when there is no doubt aboutk and R. This basis is orthogonal with
respect to the bilinear form. The ‘‘normalization’’ constantanPR, an.0, defined so that
^Pn

m ,Pn
m&P$1,0,21%.

Each Pn
m can be written as a homogeneous formally trace-free symmetric polynomi

(x,y,z) of order n. Thus the set$Pn
m ,m52n,...,n% forms an orthogonal basis forP n and
J. Math. Phys., Vol. 38, No. 8, August 1997
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Ck1 ,k2S Pn
m~k1 ,R!

an~k1 ,R!
D 5

Pn
m~k2 ,R!

an~k2 ,R!
. ~20!

Each Pn
m is an eigenvector of the operators ez andD:

ezPn
m5kmPn

m , ~21!

DPn
m5k2n~n11!Pn

m , ~22!

so that theP n are the orthogonal eigenspaces ofD. The ladder operators e1 and e2 increase or
decrease m so thatP n can be viewed as a2n11-dimensional adjoint representation ofsu~2!:

e1Pn
m5k~n2m!1/2~n1m11!1/2Pn

m11, ~23!

e2Pn
m5k~n1m!1/2~n2m11!1/2Pn

m21. ~24!

The effect of taking the Hermitian conjugate is given by

~Pn
m!†5~21!mPn

2m . ~25!

Proof: To showPm
n is an eigenvector ofez ~21! we have

ezPn
n5anezJ1

n 5an(
r50

n21

J1
r ez~J1!J1

n2r215knPn
n ,

while

eze2Pn
m5e2ezPn

m1ad@z,J2#Pn
m5kme2Pn

m2ke2Pn
m5k~m21!e2Pn

m .

Thus ~21! follows by induction.
For the ladder operatorse1 ande2 , ~24! is obvious from the definition ofPn

m . To show~23!
we note

e1~e2
n2mJ1

n !5@e1 ,e2
n2m#J1

n

52k (
r51

n2m

e2
r21eze2

n2m2rJ1
n 52k2 (

r50

n2m21

e2
r21en

n2m2rJ1
n ~m1r !

52k2e2
n2m21J1

n (
r50

n2m21

~m1r !5k2~n2m!~n1m11!e2
n2m21J1

n .

From the effects ofe1 , e2 , andez , ~22! is trivial. Orthogonality is simply an application o
ez , D, and Lemma 1.

To show thatan is independent ofm, we note

^Pn
m ,Pn

m&5k21~n1m11!21/2~n2m!21/2^e2Pn
m11,Pn

m&

5k21~n1m11!21/2~n2m!21/2^Pn
m11,e1Pn

m&5^Pn
m11,Pn

m11&.

For the effect of Hermitian conjugation, we see that sinceez(Pn
0)50, thenPn

0 may be written
as a polynomial inz, and from ~14! it is real. This polynomial is given explicitly in Sec. IV
Therefore (Pn

0)†5Pn
0. Since

~e1 f !†5@J1 , f #†5@ f †,J2#52e2~ f †!,
J. Math. Phys., Vol. 38, No. 8, August 1997
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then

~e1
mf !†5~21!me2

m~ f †!.

By repeated use of~23! and ~24! we have

Pn
m5k2mS ~n1m!!

~n2m!! D
1/2

e1
m~Pn

0!,

Pn
2m5k2mS ~n1m!!

~n2m!! D
1/2

e2
m~Pn

0!.

Thus ~25! follows.
The proof of the statement that$Pn

mum52n,...,n% forms a basis forP n is given in the
Appendix. j

We note that the elementsPn
0 were discovered by Bayen and Fronsdal.16 However, they do not

mention using the ladder operators to get all the elements.

A. Finite representation of P

Theorem 3: For the discrete set ofk such that

k2~N221!54R2, ~26!

where NPZ, N>1, there exists a surjective homomorphism

wN :P ~k,R!°MN~C!. ~27!

This is the N3N representation ofsu~2!. It satisfies

wN~ f g!5wN~ f !wN~g! ; f ,gPP , ~28!

wN~ f !50 ; fPP n,nPN, ~29!

p0~ f !5
1

N
tr„wN~ f !… ; fPP . ~30!

The bilinear form is a genuine inner product if restricted topN21(P ), while ^ f ,g&50 if f
PP n, gPP , and n>N.

Proof: If wN is anMN(C) representation of su~2!, thenwN(x), wN(y), andwN(z) satisfy the
same commutation relations, and the Casimir operator is the same as inP (k,R). ThuswN is a
homomorphism~28!.

As in the example below, one can writewN(J1) as an upper triangular matrix~with zeros on
the diagonal!. ThereforewN(J1

N )50. SincewN is a homomorphismwN„e2( f )…50 if wN( f )
5 0, sowN(Pn

m)50 if n>N. Hence~29!.
Since we can writewN(J1) as an upper triangular matrix, tr„wN(J1

n )…50 for all n.0, and
tr (wN„e1( f )…)5tr @wN(J2),wN( f )#50 so tr(wN(Pm

n ))50 for all n.0. This gives~30!. j

We now give an explicit representationwN :P °MN(C) This representation is very useful fo
calculating formulae. LetuN,r & with r50,...,N21 be the orthogonal basis column vectors whi
are eigenvectors ofwN(z). Since the dimension of the representation is explicit we dropwN . Then
by rewriting the standard ladder operators we have

J1uN,r &5k~N2r21!1/2~r11!1/2uN,r11&, ~31!
J. Math. Phys., Vol. 38, No. 8, August 1997
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J2uN,r &5kr 1/2~N2r !1/2uN,r21&, ~32!

zuN,r &5kS r2
N21

2 D uN,r &. ~33!

The dual touN,r & is given by ^r ,Nu. The usefulness of these representations is given by
following theorem.

Theorem 4: Let f be a (noncommuting) polynomial in$J1 ,J2 ,z,k,R%. Using the identities
(14) we can put fPP . Thus we can write

f5 (
n50

degree~ f !

(
m52n

n

f nm~k,R!Pn
m , ~34!

where the productan(k,R) f nm(k,R) is a polynomial ink and R. The fnm can be calculated
simply from its values whenk2(N221)54R2. That is, if gnm(k,R) is another polynomial and

f nm„2R~N221!21/2,R…5gnm„2R~N221!21/2,R… ;NPZ,N>2, ~35!

then f nm(k,R)5gnm(k,R) for all k,R. This result is independent of the value ofan(k,R).
Proof: The basis termPn

m/an is a polynomial in$J1 ,J2 ,z,k,R%. Its value is independent o
the actual definition ofan . The manipulation off into the above form makes sure thatanf nm is
a polynomial. The second part follows since all polynomials are determined by their value
finite number of distinct points. j

We note that, given a polynomialf (J1 ,J2 ,z) of order r , we can use the above theorem
calculatef nm . This process is of the order ofr

3. However, if we directly use the equations~14!,
then the process takes an exponential amount of time. This can be used to get compu
calculate explicit expressions in thePn

m .
We can now extend some of the basic facts about the matrix trace for allk,RPR andR

.0.
Corollary 5:

p0~ f g!5p0~g f ! and ^ f ,g&5^g, f & ; f ,gPP , k,RPR,R.0. ~36!

B. The ‘‘normalization’’ constant an

Theorem 6: Since

p0~J2
n J1

n !5
~n! !2

~2n11!! )
r51

n

„4R21k2~12r 2!…, ~37!

we define

sn~k,R!5sign„p0~J2
n J1

n !…, ~38!

an~k,R!5 H up0~J2
n J1

n !u21/2, sn~k,R!Þ0,
1, sn~k,R!50.

~39!

If we let N0 be the smallest integer greater than or equal to(4R2k2211)1/2, i.e.,

N05 d~4R2k2211!1/2e, ~40!

then the value ofsn(k,R) is given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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sn~k,R!H 1, n<N021,
~21!n2N011, n>N0 , and ~4R2k2211!1/2¹Z ,
0 n>N0 , and ~4R2k2211!1/25N0PZ .

~41!

The ‘‘normalization’’ of Pn
m is now

^Pn
m ,Pn

m&5sn~k,R!. ~42!

Proof: By repeated application of~32! we have

^r ,NuJ2
mJ1

muN,r &5k2m
~N2r21!!

~N2r2m21!!

~r1m!!

r !
.

Thus

p0„wN~J2
mJ1

m!…5k2m
1

N (
r50

N21
~N2r21!!

~N2r2m21!!

~r1m!!

r !

5k2m
m! ~N21!!

N~N2m21!! (
r50

N2m21
~11m2N!r~m11!r

~12N!r r !

5k2m
m! ~N21!!

N~N2m21!!
F~11m2N,m11;12N;1!,

whereF(a,b;c;z) is the hypergeometric function. Since this has only a finite number of term
may write

F~11m2N,m11;12N;1!5 lim
e→0

F~11m2N,m11;12N1e;1!,

which is also a polynomial. We may then use the standard result

F~a,b;c;1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
.

This formula is normally only valid whenR(c2a2b).0; however, it is valid here since th
number of terms is finite. Thus

F~11m2N,m11;12N;1!5 lim
e→0

G~12N1e!G~e22m21!

G~2m1e!G~2N2m1e!
5

m! ~N1m!!

~2m11!! ~N21!!
,

which implies

p0~J2
mJ1

m!5k2n
~N1m!!

N~N2m21!!

~m! !2

~2m11!!
.

SubstitutingN5(4R2k2211)1/2 and using Theorem 4 gives~37!. The rest of the theorem is
derived from this equation. j

IV. ‘‘J -EXPRESSIONS,’’ AN ALTERNATIVE REPRESENTATION FOR P (k,R)

Given fPP , then we can use the commutation relations~14! to push theJ1 andJ2 to the left
of each term. If aJ1 andJ2 appear in one term, we can use the Casimir identity to remove b
J. Math. Phys., Vol. 38, No. 8, August 1997
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Thus the resulting terms must either have onlyJ1’s or only J2’s or neither. If we collect all the
terms with the same number ofJ1’s or J2’s as their factors, thenf may be written as a sum o
terms of the form

$~J1!mp~z!,p~z!,~J2!2mp~z!%,

wherep(z) is a polynomial inz. By looking at the action ofez on each of these possibilities, w
see that iff is an eigenvector ofez then we may write

f5H ~J1!mpf
m~z,k,R! if ezf5kmf and m.0,

pf
0~z,k,R!, if ezf50,

~J2!2mpf
m~z,k,R!, if ezf5kmf and m,0.

~43!

This will be known asJ notation. It turns out to be more convenient to consider only the c
whenP has a finite representation, and we therefore writepf

m(z,N). This is a function ofz,
N, andk, with k being implicit. However, all the expressions can be generalized by substit
N5(4R2k2211)1/2, and using Theorem 4. This theorem is valid since the definition
knPn

m/an automatically makes it a polynomial in (J6 ,z,R,k).
Theorem 7: Since Pn

m is a eigenvector of ez we have

Pn
m5H ~J1!mpn

m~z,N! for m.0,

pn
0~z,N! for m50,

~J2!2mpn
m~z,N! for m,0,

~44!

where for m>0

pn
m~z,N!5an~2k!n2mS 2n

n2mD 21/2

hn2m
~m,m!S zk 1

N21

2
,N2mD , ~45!

pn
2m~z,N!5an~21!m~k!n2mS 2n

n2mD 21/2

hn2m
~m,m!S zk2m1

N21

2
,N2mD , ~46!

where hn
(a,b)(x,N) follows the notation of Ref. 17, Chap. 2. These are the Hahn polynomials.

has an explicit formulation in terms of generalized hypergeometric functions:

pn
m~z,N!5an~2k!n2mS 2n

n2mD 21/2 ~m11!n2m~m112N!n2m

~n2m!!

33F2Sm2n,2
z

k
2
N21

2
,n1m11;m11,m112N;1D , ~47!

where m>0.
Before proving this, let’s start with a little lemma.
Lemma 8: For a polynomial p(z) and mPZ1 a positive integer,

p~z!J1
m5J1

mp~z1mk!, ~48!

p~z!J2
m5J2

mp~z2mk!, ~49!

J1
mJ2

m5 )
s50

m21

~R22~z2sk!„z2~s11!k…!, ~50!
J. Math. Phys., Vol. 38, No. 8, August 1997
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J2
mJ1

m5 )
s50

m21

~R22~z1sk!„z1~s11!k…!. ~51!

Proof: From ~14! we have zJ15J1(z1k). Thus zJ1
m5J1

m(z1mk) and zpJ1
m5J1

m(z
1mk)p, hence the result.

For the other equations we note

J1
mJ2

m5J1
m21

„R22z~z2k!…J2
m215J1

m21J2
m21~R22„z2~m21!k…~z2mk!!. j

Proof of Theorem 7:Given two basis harmonicsPn1

m1, Pn2

m2PP , then we havê Pn1

m1,Pn2

m2&

50 if m1Þm2 or n1Þn2 . Writing these inJ form we have form1Þm2 or n1Þn2 andm1 ,
m2>0

p0„pn1
m1~z,N!J2

m1J
1

m2pn2
m2~z,N!…50.

Thus

(
r50

N21

^r ,Nupn1
m1~z,N!J2

m1J
1

m2pn2
m2~z,N!uN,r &50.

It is clear this is satisfied form1Þm2 . It is also obvious that the summand vanished ifr1m
.N21. Taking m15m25m>0 and n1Þn2 we have

(
r50

N2m21

pn1
m XkS r2

N21

2 D ,NCpn2m XkS r2
N21

2 D ,NC^r ,NuJ2
mJ1

muN,r &.

Now

^r ,NuJ2
mJ1

muN,r &5k2mS ~N2r21!!

~N2r2m21!!

~r1m!!

r ! D
is precisely the weight function for the Hahn polynomialshn8

(a,b)(r ,N8) wherea5m, b5m, n8
5n2m, and N85N2m. Now to get the correspondence between the functions we loo
coefficient of the highest order inr . It is easy to show

e2~J1
mzp!52k~p12m!J1

m21
„zp111O~z,p!…,

whereO(z,p) is a polynomial inz of orderp or less. So

e2
p ~J1

m!5~2k!p
~2n!!

~2n2p!!
J1
n2p

„zp1O~z,p21!…,

and

Pn
m5an~21!n2mS 2n

n2mD 1/2J1
m
„zn2m1O~z,n2m21!…,

sopn
m(z,N) is a polynomial inz of ordern2m. This is the same orderhn2m

(m,m)(r ,N). From Ref. 17,
p. 42, we have

hn2m
~m,m!S zk1

N21

2
,ND5S 2n

n2mD „zn2m1O~z,n2m21!…,
J. Math. Phys., Vol. 38, No. 8, August 1997
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hence~45!. Expression~47! follows from the literature.
Finally ~46! is simply an application of Lemma 8.

A. The reducibility and ideals of P (k,R)

Lemma 9: For any fPP we define

vn :P °P vn~ f !5 (
m52n

n

~Pn
m!†f Pn

m . ~52!

Thenvn is a self-adjoint operator onP with respect to the bilinear form. It commutes with t
operators e1 , e2 , ez , andD. It is diagonal with respect to the basis elements Pn

m , and the
eigenvalues depend only on n so we can write

vn~ f !5vnaf ; fPP a, ~53!

wherevna is a real polynomial of(n,k):

(
m52n

n

~Pn
m!†Pn

m5vn~1!5vn05sn~k,R!~2n11!. ~54!

Proof: Self-adjointness follows from the definition ofvn and Corollary 5, while the fact tha
it commutes withe6 , ez , andD follows from direct substitution. Sincevp(Pn

m) is a polynomial,
then by the operations ofez andD it is clear that is must be proportional toPn

m . Furthermore,
sincevp commutes withe2 , then the eigenvector for the space spanned byPn

m must be indepen-
dent ofm. Hence~53!. Sincevp(1)PP 0, then~54! follows by consideringp0„vp(1)…. j

Lemma 10: For allk, RPR, P (k,R) has at least one proper left ideal given by I5$ f zu f
PP %. AlsoP (k,R) has a proper two-sided idea if and only if(4R2k2211)1/2PZ.

Proof: To see thatI is a proper left ideal we note that 1¹I . Assume there existsfPP such
that f z51. Then, writingf in J notation we have

f z5 (
a50

degree~ f !

J1
a pa~z!z1 (

a51

degree~ f !

J2
a p2a~z!z51,

wherepa(z) is a polynomial inz. Looking at the operation ofez this impliespa(z)50 for a
Þ0 while p0(z)z51, which is impossible. ThusI is a left ideal ofP .

We note, however, that ifP contained infinite~unbounded! sums, then there is a solutionf
5(n50

` f nPn
0 such thatf z51. This expression cannot be written inJ notation.

If 4R25k2(N221), for some NPZ, then from Theorem 3 the subspac
% r5N

`
P r,P (k,R) is a two-sided ideal. This is because it is the kernel ofwN . Otherwise, let

I,P be a two-sided ideal andfPI . Then by the operation ofez andD we can show there is a
basis elementPn

mPI . By application ofe6 we haveP n,I for somen. From ~54! we have
sn(k,R)(2n11)PI . Since (4R2k2211)1/2¹Z, we have from Theorem 6,sn(k,R)Þ0 so 1
PI . j

Theorem 11:The map given by

r:su~2!°$ f :P °P u f is linear%,
~55!

r~a!~ f !5a f , aPsu~2!, fPP ,
J. Math. Phys., Vol. 38, No. 8, August 1997
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may be viewed as an infinite-dimensional representation ofsu~2!. This representation is alway
reducible but not decomposable. It is ‘‘Hermitian’’ in that it respects the Hermitian conjug
defined by the bilinear form

^r~a! f ,g&5^ f ,r~a†!g& ;aPsu~2!, f ,gPP . ~56!

Proof: The subspaceIPP given in Lemma 10 is invariant under the action ofr. However,P
is not decomposable because from the action ofr on the element 1PP one can generateP . The
Hermitian conjugate is by direct substitution. j

We note that the universal enveloping,U~k! is also reducible but not decomposable. A
attempt to giveP (k,R) a Hilbert space structure would mean the actions of su~2! were noncon-
tinuous operators.

V. THE COMMUTATIVE CASE k50

As mentioned in the Introduction, the algebraP (k,R) is a commutative algebra whenk
50 and is isomorphic to the algebra of functions on the sphere. In this section we will show
P (0,R)5C00(S

2), the set of finite sums of spherical harmonics.
To make this isomorphism explicit we write

xuk505x5R sin f sin u,

yuk505y5R cosf sin u, zuk505z5R cosu. ~57!

To distinguish elements ofP (k,R) with kÞ0 from the elements ofC00(S
2) the latter are written

in bold when there may be doubt. From~13! we have

J15 ie2 ifR sin u, J252 ieifR sin u. ~58!

From ~39! we have

anuk505
„~2n11!! …1/2

n!
~2R!2n . ~59!

From ~26! we may think of the casek50 as the limit asN→`. Near this limit ~i.e., for large
N!

k;2R/N. ~60!

The definition forPn
m ~19! is not valid in the casek50. We therefore define them as the limit

Pn
m~0,R!5 lim

k→0
Ck,0„Pn

m~k,R!…. ~61!

Theorem 12: In the casek50 the ‘‘fuzzy’’ spherical harmonics become the standard sphe
cal harmonics

Pn
muk505~21!nS ~n1m!! ~2n11!

~n2m!! D 1/2e2 imfPn
2m~cosu!5~21!nYn

2m~u,f!, ~62!

where Pn
m(z/R) are the associated Legendre functions, and Yn

2m(u,f) are the orthonormal har-
monics on the sphere. SoP (0,R)5C00(S

2), the set of finite sums of spherical harmonics. T
bilinear form onP becomes the standard inner product on C00(S

2):
J. Math. Phys., Vol. 38, No. 8, August 1997
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^ f ,g&→^f,g&S25
1

4pR2 E
S2
f̄g sin u dfdu. ~63!

Proof: From ~45!, ~61!, and Theorem 4, we have form>0

Pn
muk505 lim

N→`

~Pn
m!5 lim

N→`
S J1

man~2k!n2mS 2n
n2mD 21/2

hn2m
~m,m!S zk1

N21

2
,N2mD D

5~ iR sin u!me2 imf
~~2n11!! !1/2

n!
~2R!2n~22R!n2mS 2n

n2mD 21/2

3 lim
N→`

SNm2nhn2m
~m,m!S zk1

N21

2
,N2mD D .

From Ref. 17, p. 46, this is given by

lim
N→`

~Pn
m!5~ iR sin u!me2 imf

„~2n11!! …1/2

n!
~2R!2n~22R!n2mS 2n

n2mD 21/2

Pn2m
~m,m!~cosu!,

wherePn2m
(m,m)(z/R) is the Jacobi polynomial. This is related to the associated Legendre func

by

Pn2m
~m,m!~cosu!5

n!

~n2m!!
~2i sin u!2mPn

2m~cosu!.

Hence~62!. Form.0 we note that taking the limit of~25!

Pn
2muk505~21!mPn

muk505~21!nYn
m~u,f!.

It is clear now thatP (0,R)5C00.
If f5(nmf nmYn

mPP (0,R), thenp0( f )5 f 00. However,

1

4pR2 E Yn
m~u,f!sin u dfdu5 H1, m50 and n50

0, otherwise, .

so ~63!. j

VI. THE MOYAL BRACKET

The Moyal bracket is defined by the limit of the commutator of two elements

$•,•%:C00~S
2!3C00~S

2!°C00~S
2!,

$f,g%5 lim
k→0

S 1ik @C0,k~ f!,C0,k~g!# D . ~64!

Theorem 13: If f,gPC00(S
2), then we have that the Moyal bracket is the natural brac

arising from the symplectic form on S2:

$f,g%5
1

R sin u S ]f

]f

]g

]u
2

]f

]u

]g

]f D . ~65!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Proof: Since we are dealing with only finite sums of basis elements we need not worry
limits. Since the Moyal bracket is linear in both terms we need only consider its effect on
elements. Letf5C0,k(f) and g5C0,k(g) be eigenvectors ofez . For this proof we write]f

5]/]f. We note that for a polynomialp(z)

]f„J1
mp~z!…52 imJ1

mp~z!, ]f„J2
mp~z!…5 imJ2

mp~z!,

1

R sin u
]u„J1

mp~z!…52J1
mS p8~z!2

mz

R22z2
p~z! D ,

1

R sin u
]u„J2

mp~z!…52J2
mS p8~z!2

mz

R22z2
p~z! D .

It is necessary to consider separately the cases that the eigenvalues off andg have~i! the same
sign and~ii ! different signs. Let us first consider the case when the eigenvalues off andg have
positive sign. Then we can write

f5J1
a p~z! and g5J1

b q~z!,

wherea, b>0 andp(z) andq(z) are polynomials. Then

@ f ,g#5J1
a p~z!J1

b q~z!2J1
b q~z!J1

a p~z!

5J1
a1b

„p~z1kb!q~z!2p~z!q~z1ka!…

5J1
a1b~„p~z1kb!2p~z!…q~z!2p~z!„q~z1ka!2q~z!…!.

In the limit ask→0, we haveJ1→J1 , p(z)→p(z), and 1/k„p(z1bk)2p(z)…→bp8(z). So

lim
k→0

S 1ik @ f ,g# D52 iJ1
a1b

„bp8~z!q~z!2ap~z!q8~z!…5~R sin u!21~]ff]ug2]uf]fg!.

Hence true in this case. If the eigenvalues off andg both have negative sign, then we note th

f †→ f̄

and

@ f ,g#/~ ik!5@g†, f †#†/~ ik!→$ f̄,ḡ%5$f,g%.

Now consider case~ii !. We write

f5J1
a p~z!, g5J2

b q~z!, and %2
b ~z!5J1

b J2
b , %1

b ~z!5J2
b J1

b ,

wherea, b>0 andp(z) andq(z) are polynomials. Consider firsta>b.

@ f ,g#5J1
a p~z!J2

b q~z!2J2
b q~z!J1

a p~z!

5J1
a J2

b p~z2kb!q~z!2J2
b J1

a p~z!q~z1ka!

5J1
a2b%2

b ~z!p~z2kb!q~z!2J1
a2b%1

b
„z1~a2b!k…p~z!q~z1ka!

5J1
a2b~%2

b ~z!„p~z2kb!2p~z!…q~z!1%2
b ~z!p~z!„q~z!2q~z1ka!…1„%2

b ~z!

2%1
b ~z!…p~z!q~z1ka!1~%1

b ~z!2%1
b
„z1k~a2b!…!p~z!q~z1ka!!.
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In the limit k→0 this becomes

lim
k→0

S 1ik @ f ,g# D5J1
a2bS ~R22z2!bp8~z!~2b!q~z!1~R22z2!bp~z!~2a!q8~z!

12~R22z2!b21b2zp~z!q~z!2~a2b!p~z!q~z!
d

dz
~R22z2!bD

5J1
a2b~~R22z2!b„2bp8~z!q~z!2ap~z!q8~z!…1~R22z2!b212zabp~z!q~z!!

5~R sin u!21~]f„J1
a p~z!…]u„J2

b q~z!…2]f„J2
b q~z!…]u„J1

a p~z!…!.

Likewise, if b.a, then we consider@ f †,g†# as before. j

We now wish to consider how we can extend this theorem to cover the largest possible
of L2(S2). For our case a sufficient extension toC00(S

2) is given by the set

H f5(
nm

f nmYn
mPL2(S2)Uu f nmu;n23J . ~66!

This is because in this case]f fPL2(S2) and (sinu)21]u fPL2(S2). Hence the right-hand side o
~65! is defined.

A. Limit of the operators as k˜0

As already mentioned, the operationsez , e6 , andD from ~15!–~17! mean they identically
vanish ifk50. We therefore calculate the first nonvanishing term in their expansions. We se
ex , ey , ez , e1 , ande2 are vector fields whileD is a second-order differential operator corr
sponding to the Laplacian.

Theorem 14: In the limit k→0 we have

~ ik!21ex→cosf]u2cot u sin f]f , ~67!

~ ik!21ey→2sin f]f2cot u cosf]f , ~68!

~ ik!21ez→]f , ~69!

~ ik!21e1→e2 if~]u2 i cot u]f!, ~70!

~ ik!21e2→eif~]u1 i cot u]f!, ~71!

and as one would expect

~ ik!21ex~y!→z and cyclic permutations. ~72!

These are not independent since

xex1yey1zez50. ~73!

Also the ‘‘fuzzy’’ Laplace operator tends to the usual Laplace operator on the sphere:

2k22D→]u
21cot u]u1~sin u!22]f

2 . ~74!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Proof: The expressions fore1 , e2 , andez come by substitutingJ1 , J2 , andz as one of the
terms in the Moyal bracket. The other expressions are derived from these. j

VII. DISCUSSION

This work forms a basis for the investigation into the differential and connection structur
the fuzzy sphere.~Follow references in Ref. 5.! Basis spinors and vectors can be constructed
considering a similar quotient. This time the space of polynomials is generated by the Jo
Schwinger map.~See Ref. 18, Topic 5.3.! This is the area of present research by the author. T
might be used for studying Fermions and vector Bosons on the sphere. This basis forms a
over the space of functions, thus enabling one to look at connections.19,20

It would be useful to know how these results can be extended for other algebras. For su~3! one
would consider replacingJ6 with u6 andv6 , whereu2 andv2 are the root system. In this cas
we would have a basis something like

eu2

a ev2

b ~u1
c v1

d !,

with some relation for thea, b, c, andd. The case of su(n) would be equivalent using the roo
system. We might be able to extend this to all Lie algebras of compact Lie group.

This article has demonstrated how one can use a quotient of a free noncommuting alge
a finite set of elements to examine a geometry. For existence of an exterior algebra this q
algebra must form a ‘‘generalized algebra.’’21 This may be necessary for quantizing gene
manifolds.
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APPENDIX: SOME RESULTS ABOUT THE UNIVERSAL ENVELOPING ALGEBRA U

This section is needed to establish the fact thatPn
mPP n. Since the dimension ofP n is 2n

11, it is obvious that$Pn
m ,m52n,...,n% form an orthonormal basis forP n. ~There may be an

easier way without introducing this machinery.! Some of these results are mentioned without pr
in Ref. 16.

Let us define the algebraU by

U5$Free noncommuting algebra of polynomials inx,y,z%/;, ~A1!

where

@x,y#; ikz, @y,z#; ikx, @z,x#; iky, ~A2!

There is a natural basis of this algebra given by the three-vectorS(a,b,c) with a, b, cPZ and
a,b,c>0. This represents the sum of all symmetric permutations of the wordxaybzc, each with
coefficient 1. Thus, for example,

S~2,1,0!5x2y1xyx1yx2.

It is easy to show thatS(a,b,c) has (a1b1c)!/(a!b!c!) terms. For consistency we defin
S(a,b,c)50 if either a,0, b,0, or c,0. These will be known asS expressions.

We can define the formal trace by
J. Math. Phys., Vol. 38, No. 8, August 1997
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Tr:U°U,

TrS (
a1 ...ap

f a1 ...apxa1•••xapD 5 (
b51

3

(
a1 ...ap

f b,b,a3 ...apxa3•••xap. ~A3!

Thus if fPU and Tr(f )50, thenfPP . We have the following theorem for the manipulation
theS expressions.

Theorem 15:The formal trace of anS expression is given by

Tr„S~a,b,c!…5S~a22,b,c!1S~a,b22,c!1S~a,b,c22!. ~A4!

The commutator of x and anS expression is given by

exS~a,b,c!5@x,S~a,b,c!#52k~b11!S~a,b11,c21!1k~c11!S~a,b21,c11! ~A5!

and cyclic permutation for ey and ez . The relationship between these operations is given by

Tr +ex5ex+Tr, ~A6!

and similarly for ey and ez . We can split anS expression to the mth order to give

S~a,b,c!5 (
d1e1 f5m

S~a2d,b2e,c2 f !S~d,e, f !. ~A7!

Proof: We can think of theS expressionS(a,b,c) as being a sum of terms. Letw be a
permutation ofxdyezf , with d<a, e<b, f<c. Take all the terms inS(a,b,c) which start with
w. These terms must finish with each term inS(a2d,b2e,c2 f ). This works with each per-
mutation ofxdyezf , soS(a,b,c) must contain the termS(d,e, f )S(a2d,b2e,c2 f ). Now if we
let d,e, f run over all setsd1e1 f5m andd,e, f>0, then this covers all possibilities, and no tw
are repeated. Hence~A7!.

From ~A7!, puttingm52 we have

S~a,b,c!5S~2,0,0!S~a22,b,c!1S~0,2,0!S~a,b22,c!1S~0,0,2!S~a,b,c22!

1S~1,1,0!S~a21,b21,c!1S~1,0,1!S~a21,b,c21!1S~0,1,1!S~a,b21,c21! .

Now Tr(x2)5Tr(y2)5Tr(z2)51; hence~A4!. Proof of ~A5! is by induction on the order of the
polynomial by the use of~A7! with m51. Proof is~A6! is by direct substitution. j

Corollary 16: We are now in a position to prove that ex : P
n°P n and likewise for ey ,

ez , e6 , andD. Also Pn
mPP n.

Proof of Pn
mPP n: From the definition ofPn

n ,

Pn
n5anJ1

n 5an~x1 iy !n5an(
r50

n

i rS~n2r ,r ,0!.

Also
J. Math. Phys., Vol. 38, No. 8, August 1997
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Tr~Pn
n!5an(

r50

n

i r„S~n2r22,r ,0!1S~n2r ,r22,0!…

5an(
r50

n22

i rS~n2r22,r ,0!1an(
r50

n22

i r12S~n2r22,r ,0!50.

SoPn
n is a symmetric formally trace-free polynomial of ordern. SoPn

nPP n.
From ~A5! we see that iff is anS expression of ordern, then so ise2( f ). From ~A6! we

see that iffPP n, thene2( f )PP n. SoPn
mPP n. j
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Representations of the BRST algebra and unsolvable
algebraic problems

S. S. Horuzhy and A. V. Voronin
Steklov Mathematical Institute, 117966 Moscow, GSP-1, Russia

~Received 4 April 1996; accepted for publication 14 January 1997!

Complete solution of the decomposition problem for finite-dimensional representa-
tionsp of the BRST algebraA is presented. As shown earlier by the authors@Rev.
Math. Phys.5, 191 ~1993!#, A coincides with the Lie superalgebral (1,1). It is
proved that an arbitraryp either has the decomposition into a direct sum of irre-
ducible and/or indecomposable representations~IR and IDR, respectively! or has
the set of indecomposable subrepresentations that does not admit any classification.
All the series of IDR are explicitly described, and all the unclassifiable cases are
reduced to definite unsolvable algebraic problems. The absence of classification is
established by means of a special computer method, which opens a new possibility
to search for unsolvable algebraic problems. ©1997 American Institute of Phys-
ics. @S0022-2488~97!00907-9#

I. INTRODUCTION

As we have shown in Refs. 1 and 2, the BRST symmetry on a quantum level shou
described not by the ‘‘old’’ BRST algebraA05L$N,Q% ~N being the ghost number operator an
Q the BRST charge!, but a larger algebraA5L$R,N% %L$Q,K%, whereR is the operator of the
complete number of ghosts and spurions andK the operator of lowering the ghost number. T
extension of the BRST symmetry fromA0 toA provides a clear physicogeometrical interpre
tion of the BRST formalism. By virtue of its system of the Lie~super!brackets:

@N,R#50;

@N,Q#5Q, @N,K#52K, @R,Q#5@R,K#50; ~1!

$Q,K%5R, $Q,Q%5$K,K%50,

A coincides with the Lie superalgebral (1,1), which is the algebra of all linear endomorphisms
the superspaceC1,1. Hence, it is not difficult to deduce2 that the BRST symmetry is nothing bu
the complete symmetry between ghosts and gauge spurions. TheA-module structure is physically
much more informative than that of theA0 module, and due to this, most of the usual proble
of the BRST formalism can be reduced to problems of the theory of representations ofA. If a
representationp of A acting in the state spaceH of BRST quantum theory is decomposed in
irreducible and, possibly, indecomposable representations~IR and IDR, resp.!, then nearly all
questions on the structure ofH can easily be answered; in particular, one can calculate BR
cohomologies of states, kerQ/ranQ. Similarly, as we have shown in Ref. 3, properties of BR
observables that are defined by the BRST operator cohomologies kerd /rand ~d being the super-
derivation, generated byQ, on the algebraP of all physical fields, ghosts, and spurions!, can
easily be found, if the decomposition problem is solved for another representation ofA, namely,
dA : A→Der P , where DerP is the set of all superderivations ofP . For a large class of the
so-called BRST–Fock theories, studied in Ref. 4, the operator BRST cohomologies have
exactly calculated.3 Thus, a general BRST theory can be defined as a triplet (P ;p,dA), and the
major part of its structural problems can be solved on the basis of the decomposition theoryp
anddA , two different types ofA representations.
0022-2488/97/38(8)/4301/22/$10.00
4301J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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Initial elements of this theory are obtained in Ref. 1. There all the involutions ofA and its
representations are fully described, the absence of infinite-dimensional IR ofA is proved, and a
series of physical representations ofA in Krein spaces is constructed. However, the represe
tions in this series turned out to be completely reducible, and so the important problem o
lyzing IDR ofA was not touched upon yet.

In what follows, we present a complete study of the decomposition problem for fi
dimensional representations ofA. As a first stage we describe finite-dimensional representat
of the subalgebraCR%L$Q,K% that is the nilpotent Lie superalgebrasl(1,1) and is of independen
physical interest as a symmetry algebra of supersymmetrical quantum mechanics. Fo
sl(1,1) andl (1,1) we find a rich variety of IDR grouped in a regular series whose structu
determined by nilpotent parts ofR,N. But the specific feature of our results is that in many ca
the set of all IDR does not admit any classification. It means that, notwithstanding the
dimension ofsl(1,1) andl (1,1), these algebras are highly ‘‘wild’’ objects, in the terminology
Gelfand–Kirillov. To prove the absence of classification for a set of representations of
algebra or group is a problem, for which no general method is available, and the only he
idea is to reduce the classification problem to some unsolvable algebraic problem. In our c
use the result by Gelfand and Ponomarev,5,6 according to which the problem of canonical form
a pair of commuting matrices~the GP problem, for brevity! is unsolvable. We found that ou
classification problems are usually reduced to some generalizations of the GP problem a
developed a computer method, based on the MAPLE system, for proving the unsolvability o
generalizations. Thus, as a byproduct of our study, several new unsolvable algebraic proble
found, and the method presented makes it possible to look for other ones.

II. REPRESENTATIONS OF sl (1,1)

For an arbitrary representation ofA in finite-dimensional spaceH, one has

R5 (
bPs~R!

~bEb1R̂b!; N5 (
aPs~N!

~aẼa1N̂a!.

BesidesQ,K, it is often convenient to use the operatorsA5Q1K, B52 i (Q2K), which can be
represented as

A5 (
lPs~A!

~lPl1Âl!; B5 (
mPs~B!

~m P̃m1B̂m!.

HereEb ,Ẽa ,Pl ,P̃m are projections on the root subspaces of corresponding operators, formin
decompositions of unity;R̂b ,N̂a ,Âl ,B̂m are nilpotent operators. LetH5ubPs(R)Hb be the
decomposition over the root subspaces ofR, andRb , Kb ,..., reductions of corresponding opera
tors toHb .

Proposition 1: For eachbÞ0, one has

Hb5ranQb1ranKb5Qb ranKb1Kb ranQb .

Proof: ForbÞ0 there existsRb
21, and the nilpotency ofRb2bI b implies thatRb

21 is a finite
polynomial inRb , thus commuting withQb andKb . Hence, for allFPHb , one has

F5Rb
21~KbQb1QbKb!F5Kb~QbRb

21!F1Qb~KbRb
21!F,

which implies

Hb5Qb ranKb1Kb ranQb5ranQb1ranKb . ~2!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Suppose a nonzero vectorFPranQbùranKb , i.e., F5KbC5Qbx for someC, xPHb , is
existing. ThenQbF5KbF50, whenceRbF50, which is impossible. Hence the sum in~2! is
direct. q.e.d.x

Corollary 2: The mappings

Qb :ranKb→ranQb , Kb :ranQb→ranKb ,

are bijective.
Proof: It follows from Proposition 1 thatQb :ranKb→ranQb is a surjection. Now, ifF

5KbxÞ0, thenRbF5KbQbFÞ0, i.e.QbFÞ0, and the mapping in question is also an injec
tion. The case ofKb is identical. x

Obviously, every finite-dimensional representation~p,H! of the algebrasl(1,1) has the de-
compositionp5 % bPs(R)pb , wherepb(•)5p(•)uHb

.
Proposition 3: For every representationpb of sl(1,1)with bÞ0, the following decomposition

in IDR is valid:

pb5 %

i51

m~b!

¸ iDb
pi. ~3!

Here Db
pi is the ‘‘Jordan doublet’’ (see Definition 1 below) of the dimension2pi , natural numbers

pi are dimensions of the Jordan cells of the operator RuranQb
(the same as for RuranKb

) for the

eigenvalueb, ¸ i the number of cells with the dimension pi , and m(b) the number of values taken
by the cell dimension.

Proof: Due toR ranKb,ranKb , the reductionRuranKb
is well defined as an operator with

the spectrum in the pointb. Let ranKb5u i51
n(b)

Hb
(pi ) be the Jordan decomposition of this opera

tor, pi the dimensions of the Jordan cells~values of somepi may coincide!. It is easy to check that
in each subspace,Hb

(pi )1QbHb
(pi ) a representation ofsl(1,1) is acting, which we denoteDb

pi. By
Proposition 1,Hb is the direct sum of such subspaces andpb the direct sum of corresponding
representations. Checking easily that the representations with the same dimensions are equ
we obtain~3!.

Let us prove, now, thatDb
pi is an IDR ofsl(1,1). The proof uses the standard method~see the

proof of Theorem 3 in Ref. 2!. By construction,Hb
(pi ) is spanned by the Jordan chainF,

(b2R)F,...,(b2R)pi21F[$(b2R)kF%k50
pi21 of some adjoint vectorFPranKb , while

QHb
(pi ) is spanned by the Jordan chain$(b2R)kQF%k50

pi21. Taking an arbitrary naturalp,pi
21, we check easily that the subspace

L$~b2R!pF,...~b2R!pi21F%1̇L$~b2R!pQF,...~b2R!pi21QF%, ~4!

is invariant undersl(1,1), while its complement in the space of the representationDb
pi is not. It is

also clear, by construction, that~4! is the general form of invariant subspace, and soDb
pi is

indecomposable. x

Let us recall1,2 that two-dimensional subspaceH̃b5L$F,QFuFPranK,RF5bF% is a
simplesl(1,1) module, corresponding to the ‘‘doublet’’ IRDb ; if, moreover, the operatorN is
acting inHb , andNF5aF, then H̃b is also a simplel (1,1) module, corresponding to the
l (1,1) doubletDa11/2,b . The subspaceL$Hb

(p) ,QHb
(p)% is a direct generalization ofH̃b . It is a

completely similarsl(1,1) or l (1,1) module, only instead of a pair of eigenvectors, it is generat
by a pair of the Jordan chains, each includingp adjoint vectors. As a result, it is not 2- but
2p-dimensional and not simple, but still indecomposable. Thus, it is natural to accept
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



—in
by

lem is
give

The
reduce
e form

is input

algo-
nsion,
d

4304 S. S. Horuzhy and A. V. Voronin: Representations of the BRST algebra

¬¬¬¬¬¬¬¬¬¬
Definition 1: 2p-dimensional IDRDb
p of sl(1,1) or l (1,1) in the space of the form

L$Hb
(p) ,QHb

(p)%, whereHb
(p) is the p-dimensional Jordan cell of the operatorRuranK for the

eigenvalueb, will be called theJordan R-doublet.
Thus, we have the series of IDR that starts atp51 with the IRDb or Da11/2,b ~so that these

IR can be considered as a particular case ofDb
p for p51!. ~3! also implies the obvious

Corollary 4: Letp be a finite-dimensional representation of sl(1,1) with no ‘‘zero-sector,’’
i.e., 0¹s(R). Then the following conditions are equivalent:

~1! p is completely reducible;
~2! R has the semisimple spectrum in the representationp, i.e.,

R5 (
bPs~R!

bEb .

Properties of representationsp0 with s(R)5$0% ~‘‘zero-sector representations’’! turn out to
be radically different. In contrast to the simplest decomposition~3! with the single series of IDR,
for p0 the problem of classifying all possible IDR is, most probably, unsolvable. However
contrast to the case ofl (1,1), for which the complete results on the unsolvability are given
Propositions 7 and 16 below—we did not succeed in finding the complete proof forsl(1,1). Going
to the operatorsA,B, we find the problem of classifying the subrepresentations ofp0 to be
equivalent to the problem of canonical form~up to similarity! of a pair of matricesa,b, such that

ab1ba50, a25b2, a2k50. ~5a!

Equivalently, matricesa, b can be such that

a25b250, ~ab1ba!p50; ~5b!

using the computer method mentioned in the Introduction, we could not prove that this prob
unsolvable, but we did prove the unsolvability of a number of rather close problems. Let us
here just two examples.

Proposition 5: Let a pair of matrices a,b satisfy the conditions

ab1ba50, ~6!

or the condition

a250, b350. ~7!

Then the problem of canonical form (up to similarity) of this pair of matrices is unsolvable.
Proof: This proof will only be sketched, since its main part is computer calculations.

method used is the computer search for such a matrix example, which makes it possible to
the problem in question to the unsolvable GP problem. The example was searched for in th
of a pair of block matricesa,b ~whose elements are matrices, in their turn!, where the matrices
a,b of the unsolvable problem were put in as elements on some specially chosen places. Th
had to satisfy the following key condition: if two pairs (a,b) and (a8,b8) are related by a
similarity transformation, then the corresponding pairs~a,b! and (a8,b8) are also related by a
similarity transformation; and the converse is true too. Basing on the MAPLE system, an
rithm was constructed which was looking through large sets of matrices of a given dime
picking up those which meet the needed conditions. For the condition~6! the search is simple an
can be done even without the computer; the result is
J. Math. Phys., Vol. 38, No. 8, August 1997
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a5S 0 2I 0 0

0 0 0 I

0 0 0 a

0 0 0 0

D ; b5S 0 0 I 0

0 0 0 a

0 0 0 b

0 0 0 0

D . ~8!

On the contrary, for the condition~7! the computer search is quite nontrivial. Several solutio
have been found, of which the simplest is the following one:

a5S 0 0 0 a

0 0 I 0

0 0 0 0

0 0 0 0

D ; b5S 0 0 0 0

I 0 b 0

0 0 0 I

0 0 0 0

D .
x

For the condition~5a!, corresponding tosl(1,1) zero-sector representations, the algorithm
not find any solutions in the set of all pairs of 434 block matrices, as well as in large familie
~chosen on the basis of heuristic arguments! of five-, six-, and seven-dimensional pairs.

III. l (1,1): NONZERO SECTOR

Let us proceed to representations ofl (1,1), for which the structure of a representation
sl(1,1) is complemented by the operatorN5(aPs~N!~aẼa1N̂a!.

Lemma 6: The following formulas are valid:

QẼa5H Ẽa11Q, a11¹s~N!,

0, a11Ps~N!;
QN̂a5H N̂a11Q, a11¹s~N!,

0, a11Ps~N!.
~9!

Similar formulas, with the substitution ofa11 by a21, are valid for K.
Proof: For any integerk, ~1! implies QNk5(N21)kQ, whence it followsQP(N)5P(N

21)Q for any polynomialP(N). But the operator (N2zI)21 for zPr(N) is also a polynomial in
N ~see, e.g., Ref. 7!, whence one has

Q~N2zI!215~N2~z11!I !21Q.

Using this, we easily get the desired from the resolvent representations:

Ẽa5
1

2p i R
Ca

~N2zI!21 dz; N̂a5
1

2p i R
Ca

~z2a!~N2zI!21 dz,

where the contourCa encircles the pointz5a and no other points ofs(N). x

Let nowp, pb be an arbitrary finite-dimensional representation ofl (1,1) and its reduction to
a root subspace ofR for an eigenvaluebÞ0. Then

s~Nb!5$aPs~N!uẼaEbÞ0%; (
aPs~Nb!

ẼaEb5Eb , @Ẽa ,Eb#50.

Hence, by Proposition 1 we obtain

Hb5 u
aPs~Nb!

Hab ; Hab8Ẽa ranKb1̇QbẼa ranKb[Hab
~1!1̇Hab

~2! . ~10!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Now, bÞ0 implies

Ẽa ranKbÞ$0%⇒~a11!Ps~Nb!. ~11!

Indeed, by Lemma 6 one hasẼa ranKb,ranKb , and by Corollary 2,QburanKb
is a bijection.

Hence,Ẽa ranKbÞ$0% impliesQbẼa ranKbÞ$0%, and due to Lemma 6 this is possible only
QbẼa5Ẽa11Qb , (a11)Ps(Nb).

Due to~11!, there are no eigenvaluesaPs(Nb) such that (a61)¹s(Nb) i.e.,s(Nb) splits
up into chains of two or more eigenvalues:

s~Nb!5 ø
iPD~b!

@a i #, @a i #[$a i ,a i11,...,a i1ni%;

~a i21!, ~a i1ni11!¹s~Nb!, ni>1. ~12!

Each chain@a i # consists of (ni11) eigenvalues, and the decomposition~10! includesni terms
corresponding to it. Using Lemma 6, we check easily thatHab is an invariant subspace o
pab . Thus, the decomposition problem forpb , bÞ0, is reduced to the same problem f
pab8puHab

. The structure ofpab is determined by the spectra of operatorsRab5RbuHab
,

Nab5NbuHab
and is quite different in all four possible cases:

~2.1! R̂ab5N̂ab50,

~2.2! R̂abÞ0, N̂ab50,

~2.3! R̂ab50, N̂abÞ0,

~2.4! R̂abÞ0, N̂abÞ0.

~2.1! In this case, anyFPHab
(1) is a common eigenvector forR and N; KF50, and

L$F,QF% is a simple two-dimensionall (1,1)-module, the space of the doubletDa11/2,b . These
doublets being IR, their spaces either coincide, or do not intersect; hencepab is completely
reducible and is the equivalence class ofDa11/2,b , while pb is the direct sum of such classes,

pb5 %

aPs~Nb!

¸aDa11/2,b . ~13!

~2.2! This case is reduced to the structure of a representation ofsl(1,1), sinceẼa ranKb is
the eigenspace ofN, where thel (1,1) structure is identical to the structure ofsl(1,1) in the
subspace ranKb ~see Proposition 3!. In Ẽa ranKb the nilpotent operatorR̂b is acting, and space
Hb

(pi ) of its Jordan cells, spanned by the chains$R̂b
¸F%k50

pi21, FPẼa ranKb , are invariant for both
R andN, and not intersecting, by the property of the Jordan decompositions. Hence the s
Hb

(pi )uQbHb
(pi ) are invariant underl (1,1) and carry 2pi-dimensional IDR ofl (1,1) ~checking

that they are indecomposable goes in the same way as in Proposition 3!. By construction, we see
that these IDR coincide with the JordanR doublets introduced in Definition 1, and so we obta

pb5 %

aPs~Nb!

%

i51

m~a,b!

¸ iDa11/2,b
pi , ~14!

where the notations are the same as in~3!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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~2.3! Now all FPẼa ranKb are eigenvectors ofR, but they can be eigenvectors or adjoi
vectors forN. In the last case, invariant subspaces of the pairR,N are the Jordan cellsH̃ab

(r j ) of the

nilpotent operatorN̂a , spanned by the chains$N̂a
kF%k50

r j21, FPẼa ranKb . In QbẼa ranKb

5Ẽa11Qb ranKb similar subspaces are the Jordan cellsH̃a11,b
(sj ) of N̂a11 , spanned by the chain

$N̂a11
k C%k50

sj21, CPẼa11Qb ranKb . By Lemma 6,QN̂a
l F5N̂a11

l QF, l51,2,..., and, taken
together with the similar formula forK, this implies that the order of nilpotency ofN̂a11 on the
subspaceQbẼa ranKb is equal to the order of nilpotency ofN̂a on the subspaceẼa ranKb , i.e.,
r j5sj . Hence, the subspaceH̃ab

(r j )uQbH̃ab
(r j )5H̃ab

(r j )uH̃a11,b
(r j ) is the (2r j )-dimensionall (1,1)

module. As in Proposition 3, we can check that this module corresponds to the IDR, whic
denote asD̃a11/2,b

r j .

Definition 2: The 2r -dimensional IDR D̃a11/2,b
r j of l (1,1) in the space of the form

L$H̃ab
(r ) , QbH̃ab

(r ) %, whereH̃ab
(r ) is the Jordan cell of the operatorNu Ẽa ranKb

for an eigenvaluea,
will be called theJordan N-doublet.

Thus we have another series of IDR, which starts atr51 with the same IR as the series of th
JordanR-doublets, i.e.,D̃a11/2,b

1 5Da11/2,b
1 5Da11/2,b . The spaces of the new doublets do n

intersect@cf the case~2.2!#, and we obtain

pb5 %

aPs~Nb!

%

j51

n~a,b!

¸ j D̃a11/2,b
r j , ~15!

where natural numbersr j are dimensions of the Jordan cells of the operatorNu Ẽa ranKb
and

n(a,b) the number of different values taken by these dimensions.
~2.4! In the general case we find that the set of all IDR, which enter the decompositio

pab andpb , cannot be classified.
Proposition 7: Let the spectra of both Rb and Nb not be semisimple. Then the decomposit

of pb involves, in the general case, such a system of IDR, which does not admit any classifi
The corresponding classification problem is equivalent to the problem of canonical form (
similarity) of a pair of commuting nilpotent matrices, which is equivalent, in its turn, to
unsolvable problem of the canonical form of a pair of arbitrary commuting matrices.

Proof: Let aPs(Nb) be such thatẼa ranKbÞ$0%. By virtue of the arguments following
Lemma 6, it is sufficient to consider the decomposition problem for the~sub!representationpab in

Hab5Ẽa ranKb1̇QbẼa ranKb5Ẽa ranKb1̇Ẽa11Qb ranKb . Due to the structure ofHab

the generators ofpab can be written down as block 232 matrices~we omit the indicesa, b for
the sake of brevity!:

Q5S 0 0

q 0D ; K5S 0 k

0 0D ; N5S n1a 0

0 ñ1a11D ; R5S r1b 0

0 r̃1b D , ~16!

where n,ñ,r , r̃ are nilpotent matrices. The Lie~super!brackets forl (1,1) imply the following
relations:

kq5r1b; ñq2qn50; @n,r #50; qk5 r̃1b;

nk2kñ50; @ ñ, r̃ #50; r̃ q2qr50, rk2kr̃50. ~17!

Since the mappingQ:Ẽa ranKb→Ẽa11 ranQb is bijective ~Corollary 2!, one can, without
loss of generality, putq5I in ~16! and, taking~17! into account,~16! takes the form
J. Math. Phys., Vol. 38, No. 8, August 1997
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Q5S 0 0

1 0D ; K5S 0 r1b

0 0 D ; N5S n1a 0

0 n1a11D ; R5S r1b 0

0 r1b D . ~18!

Now we shall show that the classification problem for representations of the form~18! is
equivalent to the problem of canonical form~up to similarity! of a pair of commuting nilpotent
matrices. It is enough to check that if a set (Q,K,N,R) of generators of the form~18! is changed
to another set (Q8,K8,N8,R8) of the same form, generating an isomorphic representation
l (1,1), then the pairs of matrices (n,r ) and (n8,r 8), corresponding to these two sets, are a
isomorphic, andvice versa. So we suppose that

VQ5Q8V, VK5K8V; VN5N8V, VR5R8V, ~19!

where

V5S v11 v12
v21 v22

D
is some nonsingular matrix. From~18! and ~19!, one has

V5S v11 0

v21 v11
D , v11n5n8v11, v11r5r 8v11, detv11Þ0,

i.e. the pair (n,r ) is isomorphic to (n8,r 8). The converse property is checked in the same wa
The last step is to prove the equivalence of the problems of canonical form for a pair o

type (n,r ) and a pair of arbitrary commuting matrices. Consider the following pair of bloc
34 matrices:

n5S 0 1 0 0

0 0 0 1

0 0 0 a

0 0 0 0

D , r5S 0 0 1 0

0 0 0 a

0 0 0 b

0 0 0 0

D . ~20!

For arbitrary commuting matricesa,b, (n,r ) is a pair of commuting nilpotent matrices. One c
show that an isomorphic change of pairs (n,r )→(n8,r 8) implies an isomorphic chang
(a,b)→(a8,b8), andvice versa: the proof is straightforward, exactly like the previous one,
volving the pairs of the form~18!. This means that the problem of canonical form of a pair of
type ~20! includes, as a particular case, the problem of canonical form of a pair of comm
matrices, which is the unsolvable GP problem. Obviously, the last problem includes, as a p
lar case, the problem for nilpotent commuting matrices, and so both problems are equivale

x

Corollary 8: Let p be a finite-dimensional representation of l(1,1) with no ‘‘zero-sector,’’
i.e., 0¹s(R). Then the following conditions are equivalent:

(1) p is completely reducible;
(2) R and N have semisimple spectra in the representationp.
Proof: 2→1 is obtained in the study of the case~2.1! above. 1→2 is implied by the results

of the study of the cases~2.2!–~2.4!.
The results in this section give the complete solution of the decomposition problem

representations without the zero sector.
J. Math. Phys., Vol. 38, No. 8, August 1997
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IV. l (1,1): THE ZERO SECTOR

Representations (p0 ,H) of the zero sector, for whichR is a nilpotent operator, are chara
terized by a much more complicated structure. Now the subspaces ranQ and ranK may not span
all of H, and, moreover, may have a nontrivial intersection. Such intersection generates,
shall see, a certain effect of ‘‘gluing together’’ for IDR: spaces of different IDR can intersect,
if ~and only if! the intersection includes vector~s! from ranQùranK, the linear hull of these
spaces is the space of an IDR of a new type. This fact justifies the following definition.

Definition 3:A natural numbeŗ 5dim(ranQùranK) will be called thedefectof the cor-
responding representation ofl (1,1).

Thus, each of the four cases to be considered:

~3.1! R50, N̂50;

~3.2! RÞ0 N̂50;

~3.3! R50 N̂Þ0;

~3.4! RÞ0, N̂Þ0;

is now subdivided into the cases (3.n2a) with ¸50 and (3.n2b) with ¸.0, n51,...,4. The
property ~11! of s(N) disappears, and in the splitting~12! of s(N) into chains@a i # of the
eigenvalues, the chains with a single element are possible. Subspaces of the chains,

H i8 1̇
akP@a i #

Ẽak
H,

remain invariant underl (1,1), but now they are not spanned, in the general case, by do
structures,

Ha08Ẽa ranKuQẼa ranK,

similar toHab in ~10!. Thus, instead of~10!, we only haveH5u
i
H i . We shall solve the

decomposition problem for an arbitraryp i[puH i , using the decomposition ofH i , generated by
the Jordan structure of 2-nilpotent operatorsQ,K:

H i5L1u~L2uQL2!5M1u~M2uKM2!. ~21!

HereL1 ,L2 are spaces of the Jordan cells ofQ, which are determined by the properties

QrLr5$0%, kerQr21ùL r5$0%, r51,2,

which imply

L1uQL25kerQ; QL25ranQ. ~22!

Obviously,L1 andQL2 consist of eigenvectors ofQ, L2 is the set of adjoint vectors ofQ, and
L2uQL2 is spanned by the Jordan chains$F,QFuF¹kerQ%; the mapQ:L2→QL2 is bijec-
tive. The choice ofL r is not unique, and the freedom of this choice will be exploited below. T
same properties hold forM1 ,M2 .

Lemma 9: The following properties hold forL r ,M r :

RL1,QL2 , RL2,L2 , ~23a!

RM1,KM2 , RM2,M2 . ~23b!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Proof: Due toL1,kerQ, for FPL1 , one hasRF5QKFPranQ. To get the second
inclusion in ~23a!, note that the operator (QuL2

)21 is well defined onQL2 , and for anyF

PL2 one hasF5(QuL2
)21C, CPQL2 . As, obviously,RQL2,QL2 , thenRuQL2

is well
defined too, and the equality

@RuQL2
,~QuL2

!21#50, ~24!

can be easily checked on any vectorxPQL2 . Hence, we haveRF5R(QuL2
)21C

5(QuL2
)21RCPL2 , since (QuL2

)21 acts fromQL2 to L2 . The proof of~23b! is identical.
x

(3.12a) and (3.22a). We start with presenting a general method for solving the decom
sition problem for zero-sector representations ofl (1,1). The method and the solution will b
formulated for the case (3.22a), while the solution for (3.12a) will follow as a particular case.
Then the solution for (3.32a) will be obtained as a simple modification. Next, a generalization
the method will allow us to consider the cases (3.i2b), i51,2,3, with ¸.0. The cases (3.4
2a,b) fall in a different category: for them the decomposition problem is unsolvable, which
prove in the concluding Proposition 16.

By ~21!,H i is split into threeQ subspaces and independently into threeK subspaces, so tha
it is spanned by nine intersections, forming a kind of 333 matrix structure~see Fig. 1!. We shall
usually consider vectors from a definite root subspace ofN, i.e., ẼaH i , aP@a i #, but the pro-
jectionsẼa ,Ẽa61 will be omitted, for the sake of brevity.

Using this structure, we shall construct the complete system of IDR inH i . Let us start with
the subspace

QL25ranQ5~QL2ùM1!u~QL2ùM2!,

whose vectors are of the formQF, FPL2 . Consider both components on the right-hand s
separately.

~1! QFPQL2ùM1 . These are eigenvectors ofR(QFPker R). There are two subcases.
~a! KF50. One hasRQF50 and alsoRF5KQF50 ~which does not meanRuL2

[0, since
FPL2 is subject to the conditionQFPM1!. F,QF being eigenvectors ofN, L$F,QF% is a
l (1,1)-module, the space of a two-dimensional IDR~since$QF% is an invariant subspace!. Ob-
viously, this IDR is an analog forb50 of the doublet IRDa11/2,b ; but it is important to note tha
this analog is not unique. Indeed, denoting@p# the space of a representationp, we see that for any
IR doublet, one has

@Da11/2,b#5L$F,QF%5L$C,KC%,

FIG. 1. The structure ofH i . Here the central box is empty iff̧50.
J. Math. Phys., Vol. 38, No. 8, August 1997
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for someF,C; but if b50, the last equality is impossible, and the modulesL$F,QF% and
L$C,KC% correspond to different IDR, since their submodules, respectively,$QF% and $KC%,
have, respectively, the highest and the lowest of the possible values ofa. These IDR will be
denoted, respectively, byDa1

1 andDa2
1 . Obviously, this splitting of doublets generates the sa

splitting for JordanR- andN-doublets, whenF andC are adjoint vectors forR or N.
~b! KFÞ0. In this case one has

RF5QKFPL2ùQL25$0%, due to KM15$0% and RL2,L2 ;

KQF50, due to KM15$0%;

RQFPQL2ùKM25$0%, due to RM1,KM2 ;

QKF50; RKF5KRF50.

HenceL$F,QF,KF% is a l (1,1)-module, the space of a three-dimensional~triplet! IDR that we
denoteTa

1 if FPẼaH i @the rays$KF% and$QF% being l (1,1)-invariant subspaces#.
~2! QFPQL2ùM2 . These are adjoint vectors ofR, generating the Jordan chain

$RlQF% l50
r . Consider the same two subcases.

~a! KF50. ThenFPL2ùker K; F andQF are adjoint vectors ofR, generating the Jordan
chains $RkF%k50

pi21 and $RkQF%k50
r i21; the vectorKQF5RF generates the same Jordan cha

~without the first term! asF. Let us prove the following.
Proposition 10: LetFPL2 (respectively,M2) be an adjoint vector of R. Then the Jordan chains
corresponding toF and QF (respectively, KF) are of the same length.

Proof: The casepi,r i is excluded because of@R,K#50. If pi.r i , then for some natura
m one hasRmQF50,RmFÞ0. SinceRL2,L2 , one has in this case,RFPL2 , R

mFPL2 and
soRmFPkerQùL2 , which is impossible. ForFPM2 the proof is identical. x

Thus we havepi5r i , and the linear hull of the union of the two chains is the space o
2pi-dimensional IDR, the JordanR-doublet, which we denoteDa1

pi @cf. Definition 1 and the
discussion in the case (12a); the seriesDa1

p starts with an IDRDa1
1 ; see above#. The indecom-

posability is checked in the standard way, as it is done forDb
pi in the proof of Proposition 3.

~b! KFÞ0. In this caseKQFÞ0 due to kerKùM25$0%, and F,QF,KF,KQF are
adjoint vectors ofR, if RFÞ0, or eigenvectors, ifRF50. The last case, however, is forbidden
¸50, sinceRF50 implies 0ÞKQF52QKFPranQùranK. In the first case we have fou
Jordan chains that are all of the same length, which is proved by an easy extension of Prop
10. The linear hull of their union is the space of a 4p-dimensional~p being the length of the
chains! IDR, which we shall call theJordan R-quartet Wa

p . Let us also note one more propert
which is needed below:QKFÞ0. Indeed, we can suppose without the loss of generality thaF
PM2 ~if this is not so, we can obtain it by changingM2 , which is possible due to the freedom
in its definition and described in detail below!. ThenRFPM2 too, and ifQKF50, one also has
RF5KQFPKM2 , which is impossible because ofM2ùKM25$0%.

Thus, we have obtained all the types ofl (1,1)-submodules ofH i , which include vectors from
ranQ5QL2 . Each IDR of each type is present with some multiplicity, and the spaces of all
span a certain subspaceH i ,Q.ranQ. As in the case for decompositions into IR, there are ma
systems of IDR complete in the sense that the union of their spaces spans all ofH i ,Q . But, in
contrast to the case of IR, spaces of IDR can intersect with each other, so that, generally sp
the decomposition ofH i ,Q over such a complete system is not a direct sum. Now, we are g
to prove the important fact: although the modules obtained are indeed intersecting in various
there exists decomposition ofH i ,Q into a direct sum of indecomposable doublets, triplets, a
quartets, usual and Jordan ones.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The types of IDR obtained include JordanR-doubletsDa11/2,0
p , triplets Ta

1, and Jordan
R-quartetsWa

p . It is easy to see that the space of anyDa11/2,0
p cannot intersect with the space o

any other IDR. Indeed, denoting@p# the space of a representationp and taking into accoun
ranQùranK5$0%, one has that the only kind of intersection the modules@Da11/2,0

p # can have, is
as follows:QFP@Da11/2,0

p #, QF5QC for C from the space of some other IDR. But the m
Q:L2→QL2 is bijective and henceQF5QC implies F5C, due toF, CPL2 . The same
property implies that modules@Ta

1 #1 and @Ta
1 #2 can intersect only ifKF15KF2 , F1,2

P@Ta
1 #1,2, and modules@Wa

p1#1 , @Wa
p2#2 can intersect only ifKF15KF2 and/or KQF1

5KQF2 , F iP@Wa
pi# i , i51,2. But the last kind of intersection is impossible because of the s

property forK: the mapK:M2→KM2 is bijective; by the construction of@Wa
pi#, QF iPM2 ,

F iPL2 , and hence KQF15KQF2 implies QF15QF2 . Let us also note tha
@Wa

p1#1ù@Wa
p2#2Þ$0% impliesp15p2 , since both quartets have one common JordanR-chain, and

their otherR-chains are all of the same length as the latter.
Assume that in constructing the decomposition ofH i ,Q we came to a module@Ta

1 #1
5L$F1 ,QF1 ,KF1%, such thatKFPù i51

l @Ta
1 # i , i.e., the vectorsF iP@Ta

1 # i are such thatF i

5F1
(2)1F i

(0) , whereF1
(2)PM2 , F i

(0)Pker K, i51,...,l ~recallH i5M21ker K!. By con-
struction of the Jordan decomposition~21!, the subspaceM2 is put into correspondence to a give
KM2 , and hence is not unique but defined up to a transformationF→F1x, xPker K, for any
vector or set of vectorsFPM2 . Using this freedom, we changeM2 as follows:F1

(2)→F1
(2)

1F1
(0)5F1 , i.e. the newM2 will include F1 instead ofF1

(0) . The vectorsF2 ,...,F l can be
represented as

F j5F11F j
~0!2F1

~0![F11F j
~0!8 , F j

~0!8Pker K, j52,...,l .

Then

@Ta
1 # j5L$F11F j

~0!8 ;Q~F11F j
~0!8!;KF1%5@Ta

1 #11̇L$F j
~0!8,QF j

~0!8%

5@Ta
1 #11̇@Da1

1 # j ; j52,...,l .

This means that the linear hull ofl triplets @Ta
1 # i intersecting by the ray$KF1% coincides with the

direct sum of the triplet@Ta
1 #1 and (l21) indecomposable doublets. By the same trick, the lin

hull of m JordanR-quartets@Wa
p# i intersecting by the ray$KF1% can be represented as the dire

sum of the quartet@Wa
p#1 and (m21) JordanR-doubletsDa1

p , with the samep @not triplets, due
to F j

(0)8Pker K; cf. case~2a! above#.
Thus we have obtained the decomposition ofH i ,Q into the direct sum,

H i ,Q51̇
i ,a

@¸d,i ,aDa1

pi #1̇
a

@¸ t,aTa
1 # 1̇

j ,a
@¸w, j ,aWa

qj #, ~25!

where ¸d, j ,a ,¸ t,a ,¸w, j ,a are multiplicities of the corresponding IDR. In the doublet part,
non-Jordan casepi51 is included.

At the next stage, we perform the same constructions, starting with the subspace

ranK5KM25~L1ùKM2!1̇~L2ùKM2!.

In this way, we obtain a set ofl (1,1)-submodules ofH i , having the same structure~25! and
spanning a certain subspaceH i ,K . SinceH i ,Q includes the Jordan chains of the form$RlKF%
and $RlKQF%, generated by vectors from ranK, there is a nontrivial intersection
H i ,QùH i ,K . Thus, to obtain a united decomposition into the direct sum ofl (1,1)-submodules for
J. Math. Phys., Vol. 38, No. 8, August 1997
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L$H i ,QøH i ,K%, we have to solve the matching problem: to prove that theQ decomposition~25!
and a similarK-decomposition can be chosen in such a way that they will coincide
H i ,QùH i ,K .

The procedure of constructingH i ,Q consisted eventually of the two stages:~1! the construc-
tion of the JordanR-decomposition of ranQ ~by an inductive procedure described below!, pre-
senting ranQ in the form of JordanR-chains ~eigenvectors ofR enter as particular cases o
chains!; ~2! the construction ofl (1,1)-modules, to which these chains belong. The last stage m
it necessary in all cases to consider not only vectorsQFaPQL2 , but also their counterpart
FaPL2 and the corresponding JordanR-chains. Thus, at the first stage of the procedure
construct a set of JordanR-chains for vectors from ranQ ~an eigenvector can be considered a
particular case of the chain!, spanning ranQ. When the same procedure is applied to ranK, we
find its subspace ranKùH i ,Q already decomposed into some JordanR-chains. Hence, to match
the Q and K-decompositions, one has to prove the following: the JordanR-decomposition of
ranK can be performed in such a way that it will include a certain given subset of Jo
R-chains. The decomposition in question is the representation of someĤ ~e.g., ranK orH i ,K ,
etc.! in the form @cf. ~21!#

Ĥ5 1̇
k51

p

1̇
i51

k

Ri21Nk

(Rp50). Its construction is an inductive process starting with ranRp215Rp21Np and recon-
structing the setsNi back fromi5p to i51. The reconstruction is obviously not unique: at ea
stepNi is determined up to the transformationF→F1x, xPker Ri21 for any vector or group of
vectorsFPNi . This freedom allows us to include inNi the vectors and chains we need, under
only condition of their linear independence, which is satisfied in our procedure of
Q-decomposition.

At the last stage of constructing theK-decomposition, proceeding from the JordanR-chains to
l (1,1)-modules, we add to theR-chains forKCb , KQCbPranK5KM2 , the R chains for
Cb , and the procedure demands thatCbPM2 . But theR-chains inH i ,KùH i ,Q , being parts of
theQ-decomposition, are theR-chains forFa ,KFa ,KQFa such thatFaPL2 . Hence, there is
one more matching condition: allFaPL2ùH i ,KùH i ,Q should lie inM2 . It is easy to see tha
this condition can be satisfied too: due to the freedom in the choice ofM2 , described above
M2 can be changed by means of the transformationFa

(2)→Fa
(2)1Fa

(0)5Fa , whereFa
(2) ,Fa

(0)

are the projections ofFa onM2 and kerK, respectively. It is easy to see also that in construct
H i ,K we obtain the modules@Da2

1 # and @Da2
p # instead of@Da1

1 # and @Da1
p # on theQ-stage.

The matching problem being solved, we have the extension of the direct sum decomp
~25! to L$H i ,QøH i ,K%. Looking at Fig. 1, presentingH i as the sum of nine subspaces, we s
that the subspace obtained does not include onlyL1ùM1 . Obviously, all the rays in this re
maining part ofH i are one-dimensional~singlet! l (1,1)-submodulesSa

1. Adding the sum over the
chains@a i #, we get the final answer.

Proposition 11: For every representation of l(1,1) with R50, ¸50 and the semisimple
spectrum of N, the following decomposition in IDR is valid:

p05 %

aPs~N!

@¸s,aSa
1

% ¸d1,aDa1
1

% ¸d2,aDa2
1

% ¸ t,aTa
1 #. ~26!

For every representation of l(1,1) with Rp50, pPN, ¸50 and semisimple spectrum of N, the
following decomposition in IDR is valid:

p05 %

aPs~N!

@¸s,aSa
1

%

i51

n~a!

¸d1 ,i ,aDa1

pi %

j51

m~a!

¸d2 , j ,aDa2

pj % ¸ t,aTa
1

%

l51

r ~a!

¸w,l ,aWa
ql#, qlÞ1. ~27!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Clearly, the solution~26! of the decomposition problem for the case~3.1-a! follows as a
particular case from~27!. Note that both~26! and ~27! do not include any IR, except singlets.

~3.3–a!. Like in the case~2.3! for the nonzero sector, we obtain nowl (1,1)-modules, gener
ated by the Jordan cells of the nilpotent operatorN̂a . The following inclusions similar to~23a!
and ~23b! for R will be needed:

N~QL2!,QL2 ; N kerQ,kerQ; NL2,L2 . ~28!

Only the last one is not implied directly by thel (1,1) brackets. To derive it, we use the opera
(QuL2

)21:QL2→L2 and prove the relations

@N,~QuL2
!21#uQL2

52~QuL2
!21, ~29!

checking it on anyC5QFPQL2 . SinceL25Q21(QL2), for any FPL2 , one hasF
5 Q21C, CPQL2 , whence, due to~29!,

NF5NQ21C5Q21NC2Q21CPL2 ,

and ~28! in proved.
Now we proceed as in the case~3.2-a!, using the expansion ofH i into eight subspaces~see

Fig. 1! and starting withQL25ranQ5(QL2ùM1)uQL2ùM2). The method being exactly
the same, we just present the results.

1. QFP(QL2ùM1)ùH̃a11 (H̃a115̇Ẽa11H).
In the subcaseKF50 invariant subspaces are spanned by pairs of the JordanN-chains forF

andQF, i.e., we havel (1,1) modulesL$N̂a
r1F,N̂a11

r2 QFur 1 ,r 250,1,2,...%. Using Lemma 6, one
proves easily@see case~2.3!# that the chains are of the same length, sayr , and hence these
modules correspond to the JordanN-doubletsD̃a1

r , defined by means of an obvious modificatio
of Definition 2 for D̃a11/2,b

r .
In the subcaseKFÞ0, invariant subspaces are spanned by the three JordanN-chains, those

for F, QF, and KF, i.e., we have the modulesL$N̂a
r1F,N̂a11

r2 QF,N̂a21
r3 KFur 1 ,r 2 ,r 3

50,1,2,...%, which are obviously indecomposable. The corresponding IDR we call theJordan
N-tripletsand denoteT̃a

r ~r is the length of the chain, the same for all of them!.
2. QFP(QL2ùM2)ùH̃a11 .
This case is now impossible, sinceQFPM2 ,QFÞ0 imply KQFÞ0 ~due to kerKùM2

5$0%!, butR50, ¸50 imply KQF50.
Next, we include the modules for vectors from ranK, taking care to use only those Jorda

N-chains from ranKùH̃ i ,Q ~H̃ i ,Q being the linear hull of all the modules constructed at
Q-stage!, which have been used at theQ-stage.

Then we single out all the IDR with intersecting spaces. Again, we find that the do
modules@D̃a6

r # do not intersect, and for the modules@ T̃a
r # intersections can be generated only

vectors of the formKF, FPM2 . ChangingM2 , we transform the linear hulls of the intersec
ing @ T̃a

r # into direct sums of@ T̃a
r # and @D̃a6#.

Finally, we include modules for vectors fromL1ùM1 . These vectors being, in the gener
case, adjoint forN, we getr -dimensional IDR in the spacesL$N̂a

r1Fur 150,1,...,r %, called the
Jordan N-singletsand denoted asS̃a

r .
As a result, we have the following solution of the decomposition problem.
Proposition 12: For every representation of l(1,1) with R50 and ¸50, the following de-

composition in IDR is valid:

p05 %

a F %

r
¸s,r ,aS̃a

r
%

r
¸d1 ,r ,aD̃a1

r
%

r
¸d2 ,r ,aD̃a2

r
%

r
¸ t,r ,aT̃a

r G . ~30!
J. Math. Phys., Vol. 38, No. 8, August 1997
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(3.12b) and (3.22b). We proceed now to the general case¸Þ0.
Proposition 13: For every representation of l(1,1) with R50, semisimple spectrum of N an

arbitrary ¸PN, the following decomposition in IDR is valid:

p05p0
~1!

%X, ~31!

wherep0
(1) is given by the right-hand side of (26), while X is the contribution of new types of

arising at ¸.0.
For every representation of l(1,1)with Rp50, pPN, semisimple spectrum of N and arbitrar

¸PN, the following decomposition in IDR is valid:

p05p0
~2!

%X, ~32!

wherep0
(2) is given by the right-hand side of (27). The part X includes non-Jordan qua

Wa
1 and three new series of IDR, having the form of chains of glued together triplets Ta

1, with or
without an IDR doublet Da6

1 at one of the ends of a chain:

X5 %

aPs~N!
F¸w,aWa

1
%

lPD1,a

¸ l ,a~DT!~ l !,a %

mPD2,a

¸m,a~TD!~m!,a %

rPD3,a

¸ r ,aT~r !,aG . ~33!

Here (DT)( l ),a is a 2(l11)-dimensional IDR, whose space is spanned by the spaces of an
doublet Da1

1 and l triplets Ta12
1 ,...,Ta12l

1 :

@~DT!~ l !,a#5L$@Da1
1 #, @Ta12

1 #,...,@Ta12l
1 #%,

the modules on the right-hand side being ‘‘glued together’’ in such a way that their bases for
following chain [the basis in(DT)( l ),a]:

where KF050, QF l¹ranQùranK.
(TD)(m),a is a 2(m11)-dimensional IDR, whose space is spanned by the spaces of m

together triplets Ta
1,...,Ta12(m21)

1 and an IDR doublet D(a12m)2
1 :

@~TD!~m!,a#5L$@Ta
1 #,...,@Ta12~m21!

1 #,@D ~a12m!2
1 #,%,

and whose basis is the chain of the form

KF1 — F1 — QF15KF2 — •••Fm — QFm5KFm11 — Fm11 ,

where KF1¹ranQùranK, QFm1150.
T(r ),a is a (2r11)-dimensional IDR, whose space is spanned by the spaces of r g

together triplets Ta
1,...,Ta12(r21)

1 :

@T~r !,a#5L$@Ta
1 #,...,@Ta12~r21!

1 #%,

and whose basis is the chain of the form

KF1 — F1 — QF15KF2 — •••KF r — F r — QF r ,

where KF1 ,QF r¹ranQùranK.
The complete number of all gluings in X equals the defect ofp0 :
J. Math. Phys., Vol. 38, No. 8, August 1997
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(
aPs~N!

F¸w,a1 (
lPD1,a

¸ l ,al1 (
mPD2,a

¸m,am1 (
rPD3,a

¸ r ,a~r21!G5¸. ~34!

Proof: The general scheme will be the same as in~3.2–a!, but the gluing effect demands mor
careful coordination of theQ- andK-decompositions.

For ranQ one now has

ranQ5QL25~QL2ùM1!u~QL2ùKM2!u~QL2ùM2!.

As before, we use this formula to construct and make the list of all the types of IDR, but
using the freedom in the definitions ofL i , M i , we shall put some conditions on the ID
constructed. Due to these conditions, the IDR will automatically have the properties needed
matching of theQ- andK-decompositions.

~1! QFPQL2ùM1 .
In this caseRF5KQF5QKF50. Consider the following subcases.
~a! KF50. One hasFPL2ùker K, andL$F,QF% is the space of an IDR doubletDa1

1 ,
included inp0

(2) .
~b! KFÞ0. ThenKF5x1QF8, xPL1 , F8PL2 .
There are two more subcases.
(b1) xÞ0. ThenL$F,QF,KF% is the space of a tripletTa

1, included inp0
(2) . For matching

purposes we also secure the following properties of the basis vectors:~1! KFPL1ùKM2 ; ~2!
FPL2ùM2 . To get the first property, we change the subspaceL1 ~as it was done forM2 in
the proof of Proposition 11!: since L1 is defined up to a transformationF→F1C, C
PranQ, we can secure thatx1QF85KFPL1 . The second property is either fulfilled from th
start or can be obtained by means of redefiningM2 .

(b2) x50. Then KFPQL2ùKM2 , i.e., KF5QF8, F8PL2 . This means that
L$F,QF,KF% is the triplet module, intersecting with some other module, which inclu
QF8. Thus it should belong to@X#.

~2! QFPQL2ùKM2 .
Again RF5KQF5QKF50, and the same subcases have to be considered.
~a! KF50. One hasFPL2ùker K andQF5KF8 for someF8PM2 . Thus,L$F,QF%

5@Da1
1 # is the doublet module glued together with some other module, includingKF8; so it

belongs to@X#.
~b! KFÞ0. ThenKF5x1QF9, xPL1 , F9PL2 .
(b1) xÞ0. RedefiningL1 and ~if needed! M2 @see the case (12b1)#, we get KF

PL1ùKM2 , FPL2ùM2 . ThenL$F,QF,KF%5@Ta
1 # is the triplet module glued togethe

with some other module, includingKF85QF, so it belongs to@X#.
(b2) x50. Then bothKF andQF are inQL2ùKM2 . This means thatL$F,QF,KF%

5@Ta
1 # is the triplet module glued together with two other modules, including, respectiv

KF85QF andQF95KF. Obviously, it belongs to@X#.
~3! QFPQL2ùM2 .
QL2ùM2 being R-invariant, we fix up some of its Jordan decomposition into cha

L$RiQFu i50,1,2,...%. Consider the subcases.
~a! KF50. This case is identical to the same case in (3.22a). F andQF generate the

Jordan chains of the same lengthpi , which span the space of the JordanR-doubletDa1

pi , included
in p0

(2) .
~b! KFÞ0. This case is different from the same case in (3.22a). Two subcases have to b

considered.
(b1) RF50 ~the case, absent aţ50!. One hasKQFÞ0 ~since kerKùM25$0%! and

QKF52KQFÞ0. Redefining L2 , one can get KFPL2ùKM2 . Then
J. Math. Phys., Vol. 38, No. 8, August 1997
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L$F,QF,KF,KQF%5@Wa
1 # is the quartet module to be included in@X#. Its specific property is

the presence, due to̧Þ0, of two doublet submodules@Da1
1 # and@Da2

1 #, glued together into the
triplet submoduleL$QF,KF,KQF%.

(b2) RFÞ0. The case is identical to the same case in (3.2–a). One hasKQFÞ0, and the
base vectorsF,QF,KF,KQF have the Jordan chains of the same lengthpi . These chains span
the space of the JordanR-quartetWa

pi included inp0
(2) . Let us also note some properties of th

case, needed for the matching ofQ- andK-decompositions. In the same way as in (3.22a), we
can prove thatQKFÞ0. RedefiningL2 , we can also getKFPL2ùKM2 and KQF
PL2ùKM2 ~in the last case use thatQKQF5QRFÞ0 andRFPL2!.

Having obtained all the types ofl (1,1) submodules, produced by vectors from ranQ
5QL2 , we proceed to theQ-decomposition. First of all, we note that submodules produced
vectors fromQL2ùM2 contribute only quartetsWa

1 to X and have no intersections with othe
modules caused by̧Þ0. Thus, we single outQL2ùM2 , present it in the form of Jordan chain
and perform theQ-decomposition exactly as in the case (3.22a), obtaining the termsWa

1 in X
andDa1

pi , Wa
pi in p0

(2) .
Now, the construction of the remaining part of theQ-decomposition will be done by means o

a special algorithm, having the form of constructing a certain basisx1 ,x2 ,..., in (QL2ùM1)

1̇(QL2ùKM2). We start by picking upx15QF1PQL2ùM1 ~supposex1PẼa11H i!, then
take the correspondingF1PL2 and go toKF1 . Here three variants are possible.~1! KF150.
Then L$QF1 ,F1%5@Da1

1 #. We putx25F1 , pick up x3PQL2ùM1 , and repeat the proce
dure.~2! KF1PL1ùKM2 . ThenL$QF1 ,F1 ,KF1%5@Ta

1 #. We putx25F1 , x35KF1 , pick
up x4PQL2ùM1 , and repeat the procedure.~3! KF1PQL2ùKM2 . ThenKF15QC1 . We
take the correspondingC1PL2 and have the same three variants for it.~3-1! KC150. Then
L$QC1 ,C1%5@D (a22)1

1 #. By construction, this doublet module is glued together with the trip
moduleL$QF1 ,F1 ,KF1%5@Ta

1 #, so that we have obtained the chain (DT)(1),a . We put x2

5F1 , x35KF1 , x45C1 , pick up x5PQL2ùM1 , and repeat the procedure.~3-2! KC1

PL1ùKM2 . Then L$QC1 ,C1 ,KC1%5@Ta22
1 #. By construction, this is the triplet module

glued together with the preceding one, so that we have the chainT(2) . We put x25F1 , x3

5KF1 , x45C1 , x55KC1 , pick up x6PQL2ùM1 , and repeat the procedure.~3-3! KC1

PQL2ùKM2 . ThenKC15QC2 , and so we have a cyclic, or circular mechanism: the st
~3-3! of our algorithm brings us back to~3! with its three variants, whence one can, in the gene
case, come again to~3-3!. Obviously, this mechanism produces the pure triplet chainsT(r ),a @if
after r21 cycles we get the case 3-2! instead of 3-3!# and the chains (DT)( l ),a @~if after l21
cycles we get the case 3-1!#. Closed chains, which return to the same vectorQC i

PQL2ùKM2 after some cycles, are impossible, because all the chains produced by the
rithm are strictly ordered by decreasinga.

Clearly, the algorithm presented produces the completeQ-decomposition. By construction
after some stages, the basisx1 ,x2 ,..., will surely span all ofQL2ùM1 ; then, if some subspac
H8,QL2ùKM2 is not spanned yet, we have only to repeat the stage~3! of the algorithm some
number of times, starting withxkPH8.

TheK-decomposition is constructed by the same method, but we perform it, using only
free part’’ of ranK5KM2 , i.e., the part that did not enter into theQ-decomposition. Thus, we
single out the free part ofL2ùKM2 , which contributes Jordan doubletsDa2

pi and Jordan quar-

tetsWa
pi to p0

(2) and quartetsWa
1 to X. Then we apply the algorithm described above to the f

part ofL1ùKM2 ~obviously,QL2ùKM2 has no free part!. When this algorithm takes us t
some vectorQF5KCPQL2ùKM2 , we obtain more chains, which can be either of t
T(r ),a type or of the (TD)(m),a type, since the doublet, as before, can be only at the end of a c
but chains are now ordered by increasinga. As for the matching of theQ- and
K-decompositions, it is already done automatically now, due to the conditions on the basis v
which we have checked, listing the types of modules.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Finally, adding singlet modules collected inL1ùM1 and noting that the nilpotent part o
R, when it is present, contributes nothing toX, we see that the formulas~31!, ~32!, ~33! are now
completely proved. The formula~34! can easily be checked from the construction: each@Wa

1 #
includes one basis vector from ranQùranK5QL2ùKM2 , while all the other basis vectors o
this subspace belong to the chains and the number of them in each type of chains can be
trivially.

The only remaining point in the proof of Proposition 13 is the following lemma.
Lemma 14: The representations(DT)( l ),a , (TD)(m),a , and T(r ),a are indecomposable.
Proof: From the chain structure of, say,T(r ),a ~see Proposition 13!, we easily obtain that the

set of all its submodules consists of triplets@Ta12 j
1 #, singlets of the form$x%,QL2ùKM2 , and

linear hulls of arbitrary groups of these triplets and singlets. Now we note that each of
submodules has the following property: it includes at least one vector of the formQF5KC such
that eitherF or C does not belong to the submodule in question. This means that the comple
to this submodule is notl (1,1)-invariant. The same property holds for the set of submodule
(DT)( l ),a and (TD)(m),a ~but it does not hold for submodules of the modules considered in
proof of Proposition 11 and generated by sets of intersecting triplets, whose intersections do
in ranQùranK!. Thus, Lemma 14 and Proposition 13 are proved. x

It is worth noting that our algorithmic procedure brings us very closely to the comp
computerization of the problem. Basing on it, it is already not difficult to make the prog
producing the decomposition of the form~31!–~33! for an arbitrary finite-dimensional represe
tation of l (1,1).

~3.32b!. There are no important new effects in this case, so a brief exposition is suffic
Solution of the decomposition problem is given by the following.

Proposition 15: For every representation of l(1,1) with R50 and arbitrary ¸PN, the fol-
lowing decomposition in IDR is valid:

p05p0
~3!

% X̃, ~35!

wherep0
(3) is given by the right-hand side of (30), and X˜ is the contribution of new IDR, arising

due to¸Þ0. X̃ has exactly the same form, as in the case (3.2–b), with all the doublets, triplets,
and quartets replaced by their Jordan N-generalizations:

X̃5 %

a F %

r
¸w,r ,aW̃a

r
%

r
%

lPD1,r ,a

¸ r ,l ,a~D̃T̃!~ l !,a
r

%

r
%

mPD2,r ,a

¸ r ,m,a~ T̃D̃ !~m!,a
r

%

r
%

sPD3,r ,a

¸ r ,s,aT̃~s!,a
r G .

~36!

Here the chains of IDR are formed by Jordan N-triplets, glued with each other and/or with
Jordan N-doublet by a common Jordan N-chain lying in ranQùranK. Namely, one has

@~D̃T̃!~ l !,a
r #5L$@D̃a1

r #,@ T̃a12
r #,...,@ T̃a12l

r #%,

where the basis is of the form

dim~D̃T̃!~ l !,a
r 52r ~ l11!,

@~ T̃D̃ !~m!,a
r #5L$@ T̃a

r #,@ T̃a12
r #,...,@ T̃a12~m21!

r #,@D̃ ~a12m!2
r #%,

where the basis is of the form
J. Math. Phys., Vol. 38, No. 8, August 1997
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$N̂a21
i KF1% i50

r —$N̂a
i F1% i50

r —$N̂a11
i QF15N̂a11

i KF2% i50
r —•••—$N̂a12m21

i QFm

5N̂a12m21
i KFm11% i50

r —$N̂a12m
i Fm11% i50

r ,

dim~ T̃D̃ !~m!,a
r 52r ~m11!,

@ T̃~s!,a
r #5L$@ T̃a

r #,@ T̃a12
r #,...,@ T̃a12s

r #%,

where the basis is of the form

$N̂a21
i KF1% i50

r —$N̂a
i F1% i50

r —$N̂a11
i QF1

5N̂a11
i KF2% i50

r —•••—$N̂a12~m21!
i Fm% i50

r —$N̂a12m21
i QFm% i50

r ,

dim T̃~s!,a
r 5r ~2s11!.

The complete number of gluings in the components of X˜ equals the defect ofp0 :

(
a,r

F¸w,r ,a1 (
lPD1,r ,a

¸ l ,r ,arl1 (
mPD2,r ,a

¸m,r ,arm1 (
sPD3,r ,a

¸s,r ,ar ~s21!G5¸.

Proof: This follows the same scheme, as in the case~3.22b!, so we give it very briefly. We
construct first the JordanN-decomposition on ranQ5QL2 , split into three parts, the building
blocks are now the JordanN-chains of the form$N̂a11

r QF%, QFPranQùH̃a11 .
~1! QFP(QL2ùM1)ùH̃a11 .
One hasKQF5QKF50, KN̂a11

r QF5N̂a
r KQF50. Consider the subcases.

~a! KF50. ThenFPL2ùker K, and L$N̂a
i F,N̂a11

j QF% i , j50
r is the space of the Jorda

N-doubletD̃a1
r , included inp0

(3) .
~b! KFÞ0, i.e.KF5x1QC, xPL1 , CPL2 . One has two more subcases.
(b1) xÞ0. Using, if needed, redefinitions ofL1 and M2 , we can secure thatKF

P(L1ùKM2)ùH̃a21 andFP(L2ùM2)ùH̃a . ThenL$N̂a
i F,N̂a11

j QF,N̂a21
k KF% i , j ,k50

r is
the space of the JordanN-triplet T̃a

r , included inp0
(3) .

(b2) x50. Then KF5QCP(QL2ùKM2)ùH̃a21 , and L$N̂a
i F,N̂a11

j QF,
N̂a21
k KF% i , j ,k50

r is the space of the JordanN-triplet T̃a
r , which is glued together with some othe

IDR, whose space contains the JordanN-chain$N̂a21
k QC%; both spaces should belong to@X̃#.

~2! QFP(QL2ùKM2)ùH̃a11 .
One hasQF5KF8 andQKF5KQF5KN̂a11

r QF50. Consider the subcases.
~a! KF50. ThenFPL2ùker K, and L$N̂a

i F,N̂a11
j QF% i , j50

r is the space of the Jorda
N-doubletD̃a1

r , which is glued together with some other IDR, whose space contains the J
N-chain$N̂a11

i KF8%; both spaces should belong to@X#.
~b! KFÞ0, i.e.,KF5x1QC, xPL1 , CPL2 . One has two more subcases.
(b1) xÞ0. By means of redefiningL1 and M2 ~if needed!, we secure thatKF

P(L1ùKM2)ùH̃a21 , FP(L2ùM2)ùH̃a . Then L$N̂a
i F,N̂a11

j QF,N̂a21
k KF% i , j ,k50

r is
the space of the JordanN-triplet T̃a

r , which is glued together with some IDR, whose spa
contains the JordanN-chain$N̂a11

i KF8%; both spaces should belong to@X̃#.
(b2) x50. Then KF5QCP(QL2ùKM2)ùH̃a21 , and L$N̂a

i F,N̂a11
j QF,

N̂a21
k KF% i , j ,k50

r is the space of the JordanN-triplet T̃a
r , which is glued together with two othe

IDR, whose spaces contain, respectively, the JordanN-chains$N̂a11
i KF8% and $N̂a21

k QC%; all
these spaces should belong to@X̃#.
J. Math. Phys., Vol. 38, No. 8, August 1997
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~3! QFP(QL2ùM2)ùH̃a11 .
~a! KF50. One has QKF50 and henceKQF52QKF50, which contradicts

ker KùM25$0%. Thus this subcase is impossible.
~b! KFÞ0. Then, as we have seen,KQFÞ0, and henceQKFÞ0. RedefiningL2 , we

secure thatKFP(L2ùKM2)ùH̃a21 . ThenL$N̂a
i F,N̂a11

j QF,N̂a21
k KF,N̂a

l KQF% i , j ,k,l50
r is

the space of the JordanN-quartetW̃a
r , which includes two JordanN-doublet submodules, glue

together~respectively,L$N̂a11
j QF,N̂a

l KQF% and L$N̂a21
k KF,N̂a

l KQF%!, and is contained in
@X̃#.

From these examples of IDR we proceed to theQ-decomposition onH i ,Q , using same
algorithm, as in the case (3.22b). The only important distinction from this case is the followin
one: constructing the basisx1 ,x2 ,..., in (QL2ùM2)u(QL2ùKM2), we use not single vec
tors QF, but the Jordan N-chains; e.g., we start, choosing some ch
$N̂a11

i QF%,QL2ùM2 , etc. Obviously, it puts an additional restriction on the choice ofQF.
The rest of the construction goes in the same way. On the final stage we check that all th
types of representations are IDR, using the same arguments, as in the proof of Lemma 14

x

(3.42a,b). The case, when boths(R) ands(N) are not semisimple, can be treated witho
separating the~sub!cases of̧ 50 and¸.0.

Proposition 16: Let Rp50 for some natural p and boths(R) ands(N) are not semisimple.
Then the decomposition ofp involves, in the general case, such a system of IDR, which doe
admit any classification. The corresponding classification problem includes, as a particular
the unsolvable problem of canonical form of a pair of commuting matrices (the GP problem.

Proof: Assume that there isaPs(N) such that (a11)Ps(N), Ẽa ranKÞ$0%,

Ẽa11Q ranKÞ$0%. ThenHa05̇Ẽa ranKuẼa11Q ranK is an l (1,1) module, but, in contras
to the nonzero-sector case, the mappingQ:Ẽa ranK→Ẽa11Q ranK may be not bijective, and
we cannot deduce for the representationpa0 inHa0 any structure formulas of the type of~18! for
pab in Hab . However, to prove the negative statement, the unsolvability of the classific
problem, it is sufficient to point out any example ofpa0 with the unclassifiable system of IDR
Such an example can be~and was! found by our computer method, and another example
provided by the formulas~18!, if we putb50 in them.~This is rather surprising, since practical
no properties of the zero sector can be obtained by simply puttingb50 in the nonzero-secto
results.! We check easily that all the proof following~18! still holds after puttingb50, so that
~18! with b50 defines the representationpa0 satisfying the initial assumptions and having
unclassifiable system of IDR. x

Here it is worth also giving the example found by the computer method, since it belon
quite a different class of representations, where two components of the representation
Ha0 are not isomorphic. This example is given by the following set of 737 block matrices:

Q5S 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 I 0 0 0

D ; K5S 0 0 0 0 I 0 0

0 0 0 0 0 0 I

0 0 0 0 0 0 a

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

D ;
J. Math. Phys., Vol. 38, No. 8, August 1997
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N5S a 0 I 0 0 0 0

0 a 0 a 0 0 0

0 0 a b 0 0 0

0 0 0 a 0 0 0

0 0 0 0 a1I 0 a

0 0 0 0 0 a1I b

0 0 0 0 0 0 a1I

D ; R5S 0 I 0 0 0 0 0

0 0 0 I 0 0 0

0 0 0 a 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 I

0 0 0 0 0 0 a

0 0 0 0 0 0 0

D ,

~37!

where a,b are arbitrary matrices. The algorithm realized on the base of the MAPLE sy
secures the key property: two zero-sectorl (1,1) representations of the form~30! are isomorphic if
and only if the corresponding pairs (a,b) are similar. We can also see that the dimension of
components ofHa0 is equal, respectively, to 4n and 3n ~n dimension of blocks!.

V. DISCUSSION

The algebraA5 l (1,1) is not a particularly simple object. There are many studies devote
its subalgebras, such assl(1,1), the ‘‘old’’ BRST algebraA05L$N,Q% or the ‘‘extended’’ BRST
algebraB5CN%L$Q,K%. Although they are simpler objects thanA, of course, for all of them
only extremely incomplete results on the representation theory were obtained. For instance,
the most careful of these studies, the work by Patra and Tripathy8 onA0- andB-modules, obtains
only some structural properties of IDR, without describing any series of them or touchin
important problems of dimensions of IDR and decompositions into IDR. This is not surpri
however, because there is no general theory of IDR and, as a rule, the set of all IDR of a gr
algebra is hardly describable. The only exception that we know is the exhaustive analysis
IDR of the Lorentz group done by Gelfand and Ponomarev in Ref. 6.

Given this situation, the possibility of a complete study of the IDR ofl (1,1) and a complete
solution of the decomposition problem was rather unexpected to ourselves. In the first place
secured by our method: Jordan decompositions of generators turned out to be a very efficie
which makes it possible to expose and exploit close links between the IDR structure an
nilpotent structure of generators. Moreover, this method preserves the maximal parallel w
classical theory of decompositions into IR, providing natural extensions to IDR for many
elements of this theory: eigenspace→root space, IR doublet→the JordanR- or N-doublet, etc. As
a result, one can hope that the main blocks in our method~constructing decompositions into IDR
on the ranks of suitable generators, using the Jordan decompositions of these gener
transforming these decompositions into direct sums, using the arbitrariness in the J
decompositions—matching all the decompositions! are rather general and can be applied to ot
decomposition problems as well. Similar hopes can be connected with our computer met
finding new unsolvable algebraic problems. But, in any case, the superalgebral (1,1) can now be
added to the small list of objects, whose system of finite-dimensional IDR is described comp
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Tensoring with small quantized representations
Hans Plesner Jakobsena)
Mathematics Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark

~Received 22 April 1996; accepted for publication 5 June 1996!

We give an elementary proof of the associativity of the reduced tensor product that
also works for primitive roots of21. At the same time, we get a useful under-
standing of how representations ‘‘fuse’’ into each other. ©1997 American Insti-
tute of Physics.@S0022-2488~97!01708-8#

I. INTRODUCTION

Following the fundamental paper of Reshetikin and Turaev,1 a number of investigations o
invariants for three-manifolds, e.g., Refs. 2–4, use implictly or explicitly a ‘‘reduced te
product’’ ^ which is applied to a finite setI of representations of an algebraA. For p1 , p2

PI , p1^ p2 is obtained fromp1^ p2 by removing, in a prescribed way, a maximal summand
‘‘quantum dimension zero.’’ The crucial requirements are thatI must be closed under this tens
product and̂ must be associative.

In the case whereA is a quantum group at a primitive root of 1, the associativity, wh
apparently ‘‘well known to physicists,’’ to our knowledge was first rigorously established in
2 for the case ofAn and the general case was obtained in Ref. 5.

Especially the investigation in Ref. 4 requires explicitly the representations to be unitary
for this reason one is forced to consider primitive roots of21. At the same time the investigatio
in Ref. 5 uses some deep results from algebra as well as Lusztig’s canonical bases and
more elementary approach might give a useful perspective. The current paper is the resul
desire to meet these requirements.

Our basic tool is what we call a ‘‘small’’representation of a quantum group. This conce
defined in terms of a number of, for our purposes, useful properties. It turns out that each qu
group has at least one such representation.

It may be said that our approach is in spirit related to that of Ref. 3. Upon describing
program to Andersen we learned that he and Paradowski, in anticipation of certain res
Lusztig’s book,6 had launched a program which, among other things, would deal with other
of 1. Their efforts have recently found a successful completion in Ref. 7.

II. NOTATION AND BACKGROUND RESULTS

We consider the Cartan matrix$ai j % i , j51
n corresponding to a simple finite-dimensional com

plex Lie algebra and letUK denote the quantum group over the fieldK5Q(q) generated by the
4n generatorsE1 ,...,En ,F1 ,...,Fn ,K1

6 ,...,Kn
61 with the usual ‘‘quantized Serre relations.’’ Fo

i51,...,n we letdiP$1,2,3% be chosen such that$diai j % is symmetric, and more generally use th
notation of Ref. 8.

HereN0 denotes the non-negative integers.
We recall the following definition:
Definition 2.1:9 Let A5Z@q, q21#.

~i! UA
1 is the A-subalgebra of UK generated by Ei

(r ), r>0, i51,...,n.
~ii ! UA

2 is the A-subalgebra of UK generated by Fi
(r ), r>0, i51,...,n.

a!Electronic mail address: jakobsen@math.ku.dk
0022-2488/97/38(8)/4323/13/$10.00
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~iii ! UA
0 is the A-subalgebra of UK generated by Ki

6 , and @ t
Ki ;c#, where i51,...,n, cPZ, t

PN0 .

Finally, UA is the A-subalgebra of UK generated by Ei
(r ) , Fi

(r ) , Ki
61, r>0, i51,...,n, and

we introduce the notationUA(b
2)5UA

2UA
0.

For vP„Q(q)* …n we denote byL(v) the unique irreducible highest-weight module f
UK . If L5(qd1m1,...,qdnmn) for some m1 ,...,mnPN0 , we have in a natural way a
UA-submoduleLA(L) of L(L) generated by the primitive vector.

In the following our field is alwaysC. For azPC* we letUz5UA^ AC whereC is made into
an A-algebra by specialization atz. Similarly, for any A-moduleM we setM z5M^C. C z

likewise denotes the specialization of the integrable modules. We will always takez to be a
primitive l th root of61 or, occasionally, we takez51. We assume throughout thatl is prime
to the nonzero entries in the Cartan matrix and that it is bigger than the Coxeter number.

Remark 2.2: In many cases one is interested in yet another quantum algebra, Ulit , defined
directly from the Serre relations by viewing the parameter q in the Serre relations as a com
number. In the case where q is not a root of unity there is not a great deal of difference, but
root of unity case, which is the interesting one, this algebra has a big center. Indeed, it is
dimensional over its center.10 The results about representations and tensor products that
obtain below carry over directly to Ulit basically because Ulit is a subalgebra of Uq . Observe that
high powers of the elements Ei

h and Fj
h are mapped to zero in representations. This follo

because they are of the form, e.g., Ei
h5@h#di! •Ei

(h) , and @h#! specializes to zero at a primitive

l th root of unity provided that h>l .
Definition 2.3: Let Mz be a finite-dimentional module and letf be an endomorphism. Th

quantum trace trz(f) is given by the formula

trz~f!5tr~K2rf!, ~2.1!

where K2r5PbPD1Kb . In particular, thequantum dimension is given by

dimz~M z!5tr~K2r!. ~2.2!

Let X5Zn andX15N0
n#X. If L5(l1 ,...,ln)PX, we denote byjL the following character

of Uz
0:

L~Ki !5zdil i, LS FKi ,c
t G D5Fl i1c

t G
di

, ~2.3!

and we extend this to a character, also denotedjL , onUz(b
2) in the usual way.

The induced module corresponding toL ~see Definition 3.1 below! is denoted byHz
0(L), and

the irreducible highest-weight module is denoted byLz(L).
The following formula is well known:11

Proposition 2.4:

dimq~L!5 )
bPD1

qdb~L1r,b∨!2q2db~L1r,b∨!

qdb~r,b∨!2q2db~r,b∨!
. ~2.4!

Finally we recall the Shapovalov determinant of the Hermitian form in the quantum ca
proved by De Concini and Kac10 ~see also Ref. 12!: If LPX, the determinant of the contravarian
Hermitian form on the weight spaceM z(L)2n of the Verma moduleM z(L) of highest weightL
@and type (1,1,...,1)# is given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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detL,z~h!5 )
bPD1

)
mPN

S @m#db

zdb„L1r2~m/2!b,b∨
…2z2db„L1r2~m/2!b,b∨

…

zdb2z2db
D Par~h2mb!

. ~2.5!

We denote byC the first dominant alcove,

C5$LPX1u~L1r,a∨!,l for all aPD1%. ~2.6!

The following has been established in Ref. 8, but it is also an easy consequence of the f
~2.6! together with the generic irreducibility of the induced modules:8

Proposition 2.5: IfLPC̄, then Hz
0(L)5Lz(L).

Finally, we leta0 denote the highest short root.
Lemma 2.6:

~L1r,a∨! ~2.7!

attains its maximum precisely fora5a0 .
Proof: We shall assume that there are two root lengths since the claim otherwise is tri

true. If ah denotes the highest root, then this is long, anda05ah2as for some short rootas . It
follows that

~L1r,ah
∨!5„~L1r,as

∨!1~L1r,a0
∨!…

~a0 ,a0!

~ah ,ah!
, ~L1r,a0

∨!, ~2.8!

where the strict inequality follows because of the presence ofr. h

III. INDUCTION

We now briefly introduce the induced modules of Andersenet al.:8 Let C A denote the cat-
egory of integrableUA-modules and introduce the notationC A(b

2) for the category of integrable
UA(b

2)-modules.
The induction functor

HA
0
„UA /UA~b2!,2…:C A~b2!→C A ~3.1!

is defined by the following definition.
Definition 3.1: Let M be a UA(b

2)-module inC A(b
2). Set

homUA~b2!~UA ,M !5$ fPhom~UA ,M !u f ~u2u1!5u2f ~u1!,u1PUA ,u
2PUA~b2!%, ~3.2!

and consider this as a UA-module via

u f~x!5 f ~xu!. ~3.3!

Let F(V) denote the integrable part of anyg-module V and set

HA
0
„UA /UA~b2!,M …5F„homUA~b2!~UA ,M !… ~3.4!

for any UA(b
2)-module. We call this the induced module and set

HA
0~L!5HA

0
„UA /UA~b2!,jL… ~3.5!

for the one-dimensional representationjL of b2 ~L dominant integral!.
Finally, we introduce in a similar way the induction functor HK

0 and the modules HK
0 (L).
J. Math. Phys., Vol. 38, No. 8, August 1997
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In the following we wish to evaluate finite-dimensionalUK-modules. This we define as fol
lows, where we use the fact8 that such modules are completely reducible together with the
lowing result:

Lemma 3.2: LetL be dominant integral. Then

HK
0 ~L!5K^ AHA

0~L!. ~3.6!

Proof: This follows becauseA→K is flat.8 h

Lemma 3.2 also tells what theUA-invariant subspaces ofHA
0(L) are, sinceHK

0 (L) is known13

to be an irreducibleUK-module.
Lemma 3.3: Any nonzero UA-invariant subspace of HA

0(L) has the same weight multiplicitie
as the full space.

Proof: SpecializingHA
0(L) at a genericz gives aUz-module which is known to be irreducibl

@and the weight multiplicities inHA
0(L) are the same as, e.g., inH1

0(L)#. The statement follows
immediately from this. h

The following result has been established for primitive roots of 1 by Andersen,5 basically
using Kempf vanishing as established in Ref. 8. It has been extended to arbitrary roots of 1
14, by employing deep results about canonical bases.

Proposition 3.4:

Hz
0~L!5C^ AHA

0~L!. ~3.7!

Proof: The weight multiciplities inUz
1 are equal to those inUA

1 . Furthermore, it is clear tha
a weight space inHA

0(L) cannot specialize to zero since the elements inHA
0(L) simply are

homomorphisms that satisfy a certain finiteness condition. Hence, specializing to zero would
thatA specializes to zero, which is absurd~cf. Lemma 3.3!.

Suppose now that specialization is not surjective. Consider theright UA-module

RA~L!51L ^UA~b2!UA , ~3.8!

where 1L denotes the one-dimensionalUA(b
2)-module defined by the characterjL . In an appro-

priate sense, the left module homUA(b
2)(UA,1L) is the dual of this module. The Weyl module

equivalent to the quotient ofRA(L) by the spacePA generated by the elementsE(s)
^1, s.l i .

Comparing with the situation at a genericz it follows ~analogous to the proof of Lemma 3.3! that
this is the dual ofHA

0(L).
In a similar way,

Rz~L!5jL ^Uz~b2!Uz ~3.9!

is the dual of homUz(b
2)(Uz ,jA). We know8 thatHz

0(L) is finite dimensional~and its weights are
conjugate under the Weyl group!.

The polarPz ~annihilator! of Hz
0(L) in Rz(L) is, naturally, invariant. Since the specializatio

HA
0(L)→Hz

0(L) is injective,Pz#(PA)z . On the other hand,Pz contains, by a simple computa
tion, the specialization of the elementsEi

(s)
^1, s.l i . Thus, (PA)z#Pz . h

By Lemma 3.2 and Proposition 3.4 we may say thatHz
0(L) has been obtained by specializ

tion of the moduleHK
0 (L) or thatHz

0(L) is HK
0 (L) ‘‘evaluated atz.’’ We will do that and also

extend the terminology to, e.g., tensor products of such modules.
J. Math. Phys., Vol. 38, No. 8, August 1997
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IV. TENSORING WITH THE ADJOINT REPRESENTATION

We denote the adjoint representation by Ad and we denote the representation whose
weight is that ofa0 by Adl ~the ‘‘little adjoint’’ representation!. More precisely, the names o
these representations ought perhaps to have the prefix ‘‘the quantum analogues of,’’ but w
this.

We first prove four lemmas for the ‘‘generic case’’UK . In fact, we prove them for the
specializations toz51. Since we have complete reducibility over the fieldK, there will be a
perfect match-up between the primitive vectors in theK-modules considered~and their weights!
and the primitive weight vectors in the specializations of the modules~as defined below!.

Lemma 4.1: Let

xL11L22v5 (
v1>0,v2>0,v11v25v

yL12v1
^zL22v2

~4.1!

be a nonzero highest-weight vector in L1(L1)^L1(L2) of highest weightL11L22v. Then
yL1

and zL2
occur in nonzero expressions.

Proof: If not, let, say,yL12ṽ be a weight vector of a highest weight occurring in the sum
follows that this must be a highest-weight vector inL1(L1). h

Lemma 4.2: The natural map

Ad1^L1~L!{x^v→x•vPL1~L! ~4.2!

is a g-map. It is nontrivial exactly when L1(L) is nontrivial.
Proof: Obvious. h

Before stating the next lemma we need some notation: For eachaPD, chooseeaPga and
e2aPg2a such thatB(ea ,e2a)51, whereB denotes the Killing form. For each simple ro
a i , i51,...,n, choosehi , h

iPh such that

hi5@ea i
,e2a i

#, ~4.3!

and

; i , j :@hi ,za j
#5d i , j za j

. ~4.4!

Lemma 4.3: Let L1(L) be a highest-weight representation of highest weightL and highest-
weight vectorvL . The vector

(
aPD

e2a ^ea•vL1(
i51

n

hi ^hi•vLPAd1^L1~L! ~4.5!

is a highest-weight vector of weightL if and only ifLÞ0.
Proof: This follows easily from Ref. 11, pp. 19–20. h

Lemma 4.4: There can be at most as many copies of L1(L) in Ad1^L1(L) as there are
L iÞ0.

Proof: A highest-weight vector of weightL in Ad1^L1(L) must have the form

ṽ5(
i

cihi ^vL1 (
mPD1

(
j

xm
~ j !

^vL2m
~ j ! , ~4.6!

wherevL denotes a nonzero highest-weight vector inL1(L), xmPgm, and vL2m
( j ) PL1(L) has

weightL2m. SupposeL j50. Then
J. Math. Phys., Vol. 38, No. 8, August 1997
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zj
1ṽ52cjzj

1
^vL1~rest!, ~4.7!

where the ‘‘rest’’ term cannot contain anything proportional tozj
1

^vL , since this would have to
originate fromzj

1(zj
1

^vL2a j

(k) ) and, by assumption,L1(L)L2a j50. Thus,cj50. h

Proposition 4.5:

homUA
„HA

0~L!,Ad^HA
0~L!…5homUA~b2!„HA

0~L!,Ad^ jL…. ~4.8!

Proof: This follows directly from the Frobenious reciprocity law combined with the so-ca
tensor identity. h

Proposition 4.6: The multiplicity of the representation L(L) in Ad^L(L) is equal to the
number of simple rootsa i for whichL iÞ0.

Proof: We may pass betweenHK
0 , HA

0, andL(L) at our convenience. We first consider
representationL0 for which exactly oneL i0

Þ0. As mentioned previously, we may use the resu
for z51 in the generic case and so, by combining Lemma 4.2 with Lemma 4.4, it follows
L(L0) occurs exactly once in Ad̂L(L0). Thus, by Proposition 4.5 there is exactly one nontriv
U(b2)-homomorphismf0 :L(L0)→Ad^ jL0

, andf0 satisfies in particular

f0~vL0
!5hi0^ci0, ~4.9!

whereci0 denotes a nonzero element in the one-dimensional modulejL0
.

Let us now consider an arbitrary finite-dimensional highest-weight moduleL(L), and let
VL

2 be theUA(b
2)-invariant subspace consisting of all weight vectors of weight strictly sma

thanL. The quotient map

p: L~L! ^Ad^ jL0
→L~L!/VL

2
^Ad ^ jL0

~4.10!

is then ab2-module map. The target space is clearly isomorphic to Ad^ jL ^ jL0
, and we viewp

as taking its values in this space. All in all, we now have a nontrivialU(b2)-map

p + ~1^ f0!: L~L! ^L~L0!→Ad^ jL1L0
. ~4.11!

Evidently, this map is also nonzero when restricted to theUA-invariant subspaceL(L
1L0)#L(L)^L(L0). In fact, we must clearly have

p + f0~vL1L0
!5hi0^ c̃i0. ~4.12!

wherec̃i0 denotes a nonzero element injL1L0
.

It follows from this argument that there is aUA(b
2)-map from anyL(L) with L iÞ0 to the

corresponding module Ad̂jL , and this map sends the highest-weight vectorvL to an element of
the formhi ^c with cÞ0. h

There are analogous results for Adl :
Lemma 4.7: For the algebras Bn , G2 , and F4 there can be at most as many copies

L(L) in Adl ^L(L) as there areL iÞ0.
Proof: This follows by the same kind of argument as for Ad. h

Proposition 4.8: For the algebras Bn , G2 , and F4 the multiplicity of the representation
L(L) in Adl ^L(L) is equal to the number of simpleshort rootsa i for whichL iÞ0.

Proof: This follows by arguments similar to those for Ad. One simply has to introduce
zero-weight space in Adl in the left-band tensors in the vector in~4.5!. h
J. Math. Phys., Vol. 38, No. 8, August 1997
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V. FILTRATIONS

The following definition of a tilting module is not the usual definition, but it is a theorem5 that
we lose no generality by using it. LetG be a commutativeA-algebra and setUG5UA^ AG.

Definition 5.1: Agood filtration of an integrable UG-module M is a filtration

05F0,F1•••,Fn5M , ~5.1!

with Fi /Fi21[HG
0(L i) for someL1PX1, i51,...,n. A tilting module is an integrable modul

for which both M and M* have good filtrations.
The following comes from general results of Donkin and Ringel as proved by Paradowsk

Andersen:7

Proposition 5.2: For eachLPX1 there is a unique indecomposable tilting module d(L)
satisfying the following:

~i! Every weightm of D(L) satisfiesm<L.
~ii ! dim D(L)L51.

The crucial property we shall be using is the following.5

Proposition 5.3: Let M be a tilting module. Then there exist uniquely determined non-neg
integersaL(M ), LPX1, such that

M5 % LPX1D~L!aL~M !. ~5.2!

Proposition 5.4:

Hz
0~L1! ^Hz

0~L2! ~5.3!

has a good filtration.
Proof: Clearly we may viewHA

0(L1)^HA
0(L2) as a space of homomorphisms defined

UA^UA and with values injL1
^ jL2

. Analogous properties are held by the specialized obje
We may then decompose

Hz
0~L1! ^Hz

0~L2! ~5.4!

directly by considering a filtration according to the ‘‘degree of vanishing on the diagonal’’ in
spirit of Ref. 15. At the same time, we will pay attention to the decomposition of the te
products of the correspondingUA- andUK-modules, especially because we have complete re
ibility for the latter.

First consider the restriction homomorphism

R0:Hz
0~L1! ^Hz

0~L2!→Hz
0~L11L2!,

~5.5!

„R0~f!…~u!5f„D~u!….

ThatR0 indeed takes values in the said space follows from the formulas9

D~Ei
~r !!5(

t50

r

qdi t~r2t !Ei
~r2t !Ki

t
^Ei

~ t ! , ~5.6!

D~Fi
~r !!5(

t50

r

q2di t~r2t !Fi
~ t !

^Ki
2tFi

~r2t ! , ~5.7!

D~Ki !5Ki ^Ki . ~5.8!
J. Math. Phys., Vol. 38, No. 8, August 1997
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The surjectivity ofR0 comes about as follows: It follows either from~5.6! or by using the
counit that

Dz :Uz→Uz ^Uz ~5.9!

~restricted toUj
1! is injective. On the level of homomorphisms, i.e., forgetting the finiten

criterion for being in a spaceH0, we then obtain all homomorphisms.
Finally, the finiteness condition does not affect this at all. This is because in the generi

~or in theUA-case! we get as image a module which contains all weights~Lemma 3.3!. The claim
then follows from Proposition 3.4. Put differently, the only way surjectivity could be ruined wo
be if Dz were to map some element which is not in the annihilator ofHz

0(L11L2) into the
annihilator ofHz

0(L1)^Hz
0(L2) in Uz

1
^Uz

1 . However,Dz is the localization ofDA , hence the
latter would have to share this property. However, this clearly is in conflict with the fact tha
genericz we have full reducibility@with one summand equivalent toHz

0(L11L2)#.
Now letK 0 denote the kernel of the map— ‘‘the homomorphisms that vanish on the diag

D.’’ Then we proceed to analyzeK 0 according to the degree of vanishing on the diagonal:
Consider a~PBW! decomposition

UA
0UA

1
^UA

15S•D~UA
1!, ~5.10!

where S#UA
0UA

1
^UA

1 is chosen such that the decompositionu5sD(u1) of an elementu
PUA

0UA
1

^UA
1 is unique. To be specific, chooseS5UA

0UA
1

^1. It follows easily by induction on
the height of the weight of the term in the second place in the tensor product that this choi
the desired properties.

At the first level we then consider maps

R1:K 0→Hz
0~L11L22a i ! ~5.11!

given by

„R1~f!…~u!5f~sa i
D~u!…, ~5.12!

wheresa i
5Ei

(1)
^1. For similar reasons we again have surjectivity~if nontrivial!. For eachi we

then get a kernelK i
1 and these kernels together span the space of homomorphism that van

the first order on the diagonal. This argument may clearly be continued to give the full filtra
h

Remark 5.5: Notice that we actually only need this result in the case where the mo
Hz
0(L1) and Hz

0(L1) are irreducible. In this case an even simpler proof of Proposition 5.4 may
given by elementary bookkeeping of weights.

Corollary 5.6: LetL1 , L2PX1. Suppose that the dual of Hz
0(L i) is equal to Hz

0(L̃i) for some
L̃iPX1 for i51,2. Then

Hz
0~L1! ^Hz

0~L2! ~5.13!

is a tilting module.
Proof: This follows directly from the definition of tilting module together with Propositi

5.4. h

VI. SMALL REPRESENTATIONS

Lemma 6.1: Suppose

~L11r,a0
∨!5x and ~L2 ,a0

∨!5y, ~6.1!
J. Math. Phys., Vol. 38, No. 8, August 1997
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and supposeL̃ is a highest-weight representation that occurs inL1^ L2 . Then

~L̃1r,a0
∨!<x1y ~6.2!

with equality especially whenL̃5L11L2 .
Proof: Trivial. h

We now introduce some terminology:
Definition 6.2: A representationLgd is calledgood if

~Lgd ,a0
∨!<2, ~6.3!

and if, furthermore, for any representationL, the only representationL̃ in L(L)^L(Lgd) for
which

~L̃1r,a0
~!5~L1r,a0

~!12 ~6.4!

is L̃5L1Lgd.
The representationLe is calledexcellent if

~Le ,a0
~!<1. ~6.5!

The representationLs is calledsmall if it is either good or excellent. Finally, Lg is called
generating if any L occurs in the n-fold tensor product ofLg with itself.

The following is easily verified~cf. Table I and Table II!:
Lemma 6.3: For anyg there is a small representation. Moreover, with the exception of Bn it

can be chosen to be generating. In the case of Bn there is exactly one representation which is n
generated, namelyL5(0,...,0,1).

Remark 6.4: Since the mentioned representation for Bn in particular satisfies

;L̃PD:~L̃,a0
~!!l , ~6.6!

we do not have to take it into consideration, cf. the proof of Proposition 8.2.
Definition 6.5: We denote the representation in Lemma 6.3 byLS .
Definition 6.6: Suppose that Hz

0(L1) and Hz
0(L2) are irreducible. Let Hz

0(L̄1) and Hz
0(L̄2)

denote the dual representations. We then denote byK 0(L1 ,L2) the kernel in Hz
0(L1)

^Hz
0(L2) of the restriction homomorphismR 0 (5.5) and we denote byP 0 the annihilator in

Hz
0(L1)^Hz

0(L2) ofK
0(L̄1 ,L̄2).

Proposition 6.7: Suppose thatLgd is good and that

~L1r,a0
~!5l 21. ~6.7!

ThenK 0(L ,Lgd) is semi-simple andP 0 is equivalent to Hz
0(L1Lgd). Let

P15K 0ùP 0. ~6.8!

Then P1 is equivalent to Hz
0(L) and is noncomplemented inP 0. Let W15K 0*P1 . Then there

is an invariant subspace W2 such that

Hz
0~L! ^Hz

0~Lgd!5W1%W2 . ~6.9!

Finally, there is a nonsplit exact sequence

0→Hz
0~L1Lgd!→W2→Hz

0~L!→0. ~6.10!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Proof: The most important observation is that according to Definition 6.2 and formula~2.6!,
the Verma module of highest weightL1Lgd contains a primitive vector of weightL and multi-
plicity 1. Clearly, P 0 as anA-module must be the Weyl module, hence also the special
module and the primitive vector of weightL is contained in this space. It is clear thatK 0 is
always completely reducible since its weights are all below the critical height. Hence all prim
weight vectors of weightL are contained inK 0. HenceP1 is nontrivial and can be reached from
the highest-weight space. Consider the space

Hz
0~L! ^Hz

0~Lgd!/P
0. ~6.11!

For similar reasons, this is completely reducible and there will be the same number of sum
of highest weightL in ~6.11!, sayr , as there are inK 0 or ‘‘generically.’’ The reason behind this
fact is that

„Hz
0~L! ^Hz

0~Lgd!/K
0
…[Hz~L1Lgd! ~[P 0!, ~6.12!

hence, becauseK 0ùP 0[Hz
0(L), P 01K 0 is not the full space.

In the space of primitive vectors of weightL we now choose a basis containing the one fro
P 0. We can use the remainingr21 in the decomposition~6.11!. LetWL denote the remaining
summand in~6.11!. Then we may takeW2 as the inverse image of this space in the full ten
product. The other claims follow immediately. h

Remark 6.8: There are of course identical results for the case where the two factors
^-product are interchanged. We shall see later (Corollary 7.4) thatdimq W250.

VII. TECHNICAL MATTERS

To substantiate some of our previous and coming claims, we present here some facts
simple Lie algebras and selected representations of these.

For the classical groups, the defining representation isl1 . We label the simple roots as in Re
16.

Lemma 7.1: Let mPN, that q is an lth root of21, andaPD1. Suppose that

~L1r,a~!5 l1m. ~7.1!

Then

dimq~L2ma!5~21! l ~Sa! dimq~L!, ~7.2!

wherel (Sa) denotes the length of the element Sa of the Weyl group.
Proof:We have that

TABLE I. Some interesting roots and representations.

g Highest short root5a0 a0 Ad L @(L,a0
~)#

An a11a21•••1an l11ln a0 l1(1) @l i(1)#
Bn a11a21•••1an l1 l2 ln(1) @l i(2), i,n#
Cn a112a21•••12an211an l2 2l1 l1(1) @l i(2), i.1#
Dn a112a21•••12an221an211an ln22 a0 l1(1),ln21(1),ln(1)
E6 a112a212a313a412a51a6 l2 a0 l1(1),l6(1)
E7 2a112a213a314a413a512a61a7 l1 a0 l7(1)
E8 2a113a214a316a415a514a613a712a8 l8 a0 l8(2)
G2 2a11a2 l1 l2 l1(2)
F4 a112a213a312a4 l4 l1 l4(2)
J. Math. Phys., Vol. 38, No. 8, August 1997
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~L1r2ma,b~!5„Sa~L1r!1 la,b~
…, ~7.3!

and

qdb~ la,b~!5q2db~ la,b~!5~21!~a,b!. ~7.4!

Thus,

dimq~L2ma!5~21!(bPD1~a,b! )
bPSa~D1!

qdb~L1r,b~!2q2db~L1r,b~!

qdb~r,b~!2q2db~r,b~!

5~21!2~a,r!~21! l ~Sa! dimq~L!, ~7.5!

as follows from, e.g., Humphreys’ Lemma 10.3.A.16 h

Lemma 7.2: For the algebras G2 , F4 , and E8 the lengths of the reflexions corresponding
the highest short root are5, 15,and57, respectively.

Proof: This follows in an elementary way from a representation of the relevant root sys
see, e.g., Ref. 16, p. 65. h

Lemma 7.3: For G2 the representationl1[2a11a2 has dimension7.We have

„~n111,n211!,~2a11a2!…52~n111!13~n211!. ~7.6!

If n150, there may be a problem with L(L),L(l1)^L(L). However, if we demand that l is no
divisible by 3, then this cannot occur.

For F4 the dimension ofl4[a112a213a312a4 is 26. The zero-weight space is two
dimensional and

„~n111,n211,n311,n411!,~a112a213a312a4!…

5~n111!14~n211!13~n311!12~n412!. ~7.7!

Clearly, n350 is impossible. In fact, n3 must be odd if the expression in (7.7) is to equal l21.
Finally, by combining Lemmas 7.1–7.3 with Proposition 6.7, we obtain the following.
Corollary 7.4: The representation W2 in (6.10) has q-dimension 0.

VIII. TENSORING VERSUS q-DIMENSION

The following is a fundamental result:

TABLE II. Small representations.

g

LS

@(LS ,a0
~)# Comment Also small

An l1(1) Defining l i(1) and
(l11ln)(2) ~Ad!

Bn l1(2) Defining and Adl ln(1) ~not really needed!
Cn l1(1) Defining l2(2) (Ad

l )
Dn l1(1) Defining ln21(1), ln(1), and

ln22(2) (Ad
l )

E6 l1(1) ••• l6(1) andl2(2) ~Ad!
E7 l7(1) ••• l1(2) ~Ad!
E8 l8(2) Ad5Adl •••
G2 l1(2) Adl •••
F4 l4(2) Adl •••
J. Math. Phys., Vol. 38, No. 8, August 1997
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Proposition 8.1:5 Let E,MPC be finite dimensional and suppose thattrq( f )50 for all f
PEndUK

(M ). Thentrq(f)50 for all fPEndUK
(E^M ). In particular, dimq(Q)50 for all sum-

mands of Ê M .
We can now state our main result:
Proposition 8.2: LetL1 andL2 be in the first dominant alcove C. Then Lz(L1)^Lz(L2) is

a direct sum

Lz~L1! ^Lz~L2!5Lz~L i ~1!! % ••• %Lz~L i „n~1,2!…! %S, ~8.1!

whereL i (1) ,...,L i „n(1,2)…PC and S is a direct sum

S5 %D~Lk!, ~8.2!

where each D(Lk) has q-dimension 0.
Proof: Let s5(L11L21r,a0

∨). For s,l everything is completely reducible and hence
right. In fact, even fors5l we have the result since the induced modules stay irreducible in
closureC̄ of the fundamental alcove. Next we observe that the result is true if one of the fa
is LS ~Proposition 6.7 and Corollary 7.4!. Next observe that for any representationLPC,
Lz(L)5Hz

0(L) andC is closed under taking dual modules. Thus, we can use the results o
V, in particular the important results, Proposition 5.3 and Corollary 5.6.

Suppose now that the formula~8.1! holds for a given pairL1 ,L2 . It then follows that the
moduleS is a direct sum ofD(L j )’s each ofq-dimension 0. By tensoring both sides byLS and
using Proposition 8.1 we clearly get a right-hand side that is a direct sum of simple mo
Lz(L j ) with L jPC and a moduleS̃ for which trq(f)50 for all fPEndU(S̃).

Concerning the left-hand side, we can consider the tensor productLS^ L1 which we can
assume to decompose into a direct sum% iL i of representations fromC, and thus the left-hand
side is a sum of the form% iL i ^ L2 . ~We might, of course, have chosen to tensorLS ontoL2 first
instead.! It follows by the uniqueness of the decomposition of tilting modules that each o
summandsL i ^ L2 satisfies a formula like~8.1!. Moreover, the left-hand side can be written a
direct sum of tilting modules, hence so can the right-hand side. Moreover, by the uniqueness
decomposition into tilting modules, we can keep track of all the tilting modules
q-dimension 0 on the right-hand side and hence on the left-hand side.

Thus, we can extend the set ofL1 ,L2PC3C for which ~8.1! holds. Eventually, by the
property ofLS , we get it to hold for all pairs inC3C. h

We can now introduce the reduced tensor product^ :
Definition 8.3: In the notation of Proposition 8.2 we set

Lz~L1! ^Lz~L2!5Lz~L i ~1!! % ••• %Lz~L i „n~1,2!…!. ~8.3!

Theorem 8.4:The reduced tensor product is associative.
Proof: Consider

Lz~L1! ^Lz~L2! ^Lz~L3!. ~8.4!

If we first decompose the tensor product involvingL1 ,L2 and then tensor onto the result wi
Lz(L3) we get a result, call it (122)23, which by Proposition 8.2 is a sum of simple modu
corresponding to certainL iPC together with a moduleS12 such that each summand ofS12,3 has
q-dimension 0.

~122!235 % iLz~L i
12,3! %S12,3. ~8.5!

In the same way we get a result 12(223) for the other way of grouping together in the tens
product,
J. Math. Phys., Vol. 38, No. 8, August 1997
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12~223!5 % jLz~L j
1,23! %S1,23. ~8.6!

By the associativity of the usual tensor product, (122)23512(223), and cutting down by
central character to one of the simple summands we get

N12,3
i Lz~L i ! %S12,3

i 5N1,23
i Lz~L i ! %S12,3

i . ~8.7!

Takingq-dimension on both sides we get thatN12,3
i 5N1,23

i .
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Proof of Polyakov conjecture on supercomplex plane
M. Kachkachi
HASSAN 1er University, FST, de Settat, Department of Mathematics, P.B. 577,
Settat Morocco

S. Kouadik
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Using Neumann series, we solve iteratively the super Beltrami Equations~SBE! to
arbitrary order. Then applying this, we compute the energy momentum tensor and
n-points function for genericn starting from WZP action on the supercomplex
plane. We solve the superconformal ward identity and we show that the iterative
solution to arbitrary order is resumed by WZP action. This proves the Polyakov
conjecture on supercomplex plane. ©1997 American Institute of Physics.
@S0022-2488~97!04107-8#

I. INTRODUCTION

At the quantum level, in superconformal field theory, one has either a super-Weyl rescal
the metric or a superdiffeomorphism anomaly. However, in two dimensions, there is a
functionalG loc whose BRS variationsG loc relates these two anomalies.1 This result leads to the
holomorphic factorization of the partition function~i.e., chirally split! of the vacuum as a func

tional of super-Beltrami differentialsm̂, m̂̄:

Zv~m̂,m̂̄ !5Zv~m̂,0!1Zv~0,m̂̄ !. ~1!

The chiral partZv(m̂,0) satisfies the Ward identity2,3

S ]̄2m̂]2
3

2
]m̂2

1

2
Dm̂D D ]Zv~m,0!

dm̂
5k]2 Dm̂, ~2!

wherek is the central charge of the model that measures the strength of the superdiffeomo
anomaly and

][
]

]z
, ]̄[

]

] z̄
; D[

]

]u
1u

]

]z
; D25].

The Wess–Zumino–Polyakov actionGWZP corresponding to the superdiffeomorphism anomaly
the supercomplex plane SC” , reads2,3 as

GWZP5kpE
SC”
dt1 ]1D1L~a1!m̂~a1!, ~3!

whereL5 ln(Dû), with û being the isothermal coordinate satisfying the super-Beltrami equa
~SBE! introduced in Refs. 3 and 4 and that will be given in Sec. II.a1 anddt1 are defined as
follows:

a1[~z1 ,z̄1 ,u1!; dt1[
dz1`dz̄1
2p i

du1 .
0022-2488/97/38(8)/4336/7/$10.00
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The Polyakov conjecture5–7 is that the action~3! resumes the normalized perturbative series
Zv(m̂,0). Thus, for a suitable choice ofm̂ one can write

GWZP5Zv~m̂ !.

On the supercomplex plane SC” and on the supertorus, the Polyakov conjecture was ver
only at the third order.3 Our purpose in this paper is to generalize the work of Ref. 3 on SC” and
to show that the Polyakov conjecture is true to any order inm̂.

In Sec. II, we will give some preliminaries of SBE on the supercomplex plane by consid
some restrictions of the superspace geometry. In Sec. III, we will solve the SBE iterative
arbitrary order using the method that was developed in Ref. 3 and that is based on the Ne
series. The solution will be inserted inGWZP, in order to compute the energy momentum ten
and the operator product expansion~OPE!. This will be achieved in Sec. IV. Section V will be
devoted to solve the anomalous superconformal Ward identity~2!. Afterward, we will show that
the solution, independent of the fields of the model, agrees with that given in the previous s
This will conclude the proof of the Polyakov conjecture. Section VI contains our conclusion
discussions.

II. SUPERCOMPLEX PLANE AND SUPER-BELTRAMI EQUATIONS

A super-Riemann surface~SRS! is a complex supermanifold of dimension~1,1! endowed with
coordinates (z,u) and provided locally by holomorphic coordinates (ẑ,û) referred to as isotherma
or projective coordinates. These coordinates are related to the former ones by a quasisupe
mal transformation parametrized by super-Beltrami coefficientsm̂, n, ands.

The isothermal coordinatesẑ and û are diffeomorphisms with respect to the reference sys
(z,u) and verify the following SBE:4,8,9

]̄ ẑ1 û ]̄ û5m̂~] ẑ1 û ]û !,

2]uẑ1 û ]uû5n~] ẑ1 û ]û !, ~4!

2] ū ẑ1 û ] ū û5s~] ẑ1 û ]û !.

Here we adopt the special gauge (n5u,s50) that simplifies the description of the deformation
SRS considerably.4,9 Indeed, in this framework, Eqs.~4! reduce to

]̄ ẑ1 û ]̄ û5m̂~] ẑ1 û ]û !, Dẑ5 û D û, ] ū ẑ5 û ] ū û. ~5!

The last equation implies that there is noū dependence, while the second is known as
superconformal constraint. It can be derived also by requiring that the derivativeD transforms
homogeneously.10,11 The decoupled form of SBE reads4 as

]̄ ẑ5m̂ ] ẑ1 1
2Dm̂ Dẑ, ~6a!

]̄ û5m̂ ]û1 1
2Dm̂ D û. ~6b!

One sees that form̂50, the solutions of SBE are superconformal maps. In the sequel, we w
interested only in theû component as the actionGWZP is constructed in terms of the12-
superdifferentialD û.
J. Math. Phys., Vol. 38, No. 8, August 1997
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III. RESOLUTION OF THE SUPER-BELTRAMI EQUATION (6b)

In this section, we solve the SBE~6b! iteratively to arbitrary order using the method based
the Neumann series without discussing the convergence of this series forumu,«, where« is a
sufficiently small quantity. This is a generalization of Kachkachi’s work3 to arbitrary order of the
perturbative series in terms ofm̂ on the supercomplex plane. For this purpose we write Eq.~6b! as

]̄L5 1
2]m̂1B DL, ~7!

whereB[m̂D1 1
2Dm̂ andL5 ln Dû.

We fix the following normalization: Form̂50, û5u ~L50!. The resolution of Eq.~7! itera-
tively in powers ofm̂ will be accomplished by using the generalized Cauchy formula introduce
Ref. 3; that is,

~ ]̄21F !~z1 ,u1!5E
SC”

dz2`dz̄2
2p i

du2S u12u2
z12z22u1u2

DF~z2 ,u2!, ~8!

where F(z,u) is some function defined on SC” and (u12u2)/(z12z22u1u2)5(u12u2)/(z1
2z2) is the Cauchy kernel on SC” ; that is, we have

]̄z1S ū12 ū2
z12z2

D 52pd~z12z2!d~ z̄12 z̄2!~u12u2![d3~a12a2!. ~9!

This definition implies that

E
SC”

dz2`dz̄2
2p i

du2 d3~a12a2!F~a2!5F~a1!.

The formal series, solution of Eq.~7! is given by3

L5 (
n51

`

]̄21ln~z,u!, ~10!

with l15
1
2]m̂ andln5BD ]̄21ln21 .

For n.1 one gets

]̄21ln5~21!n~n21!/2E
SC”

)
j52

n11

dt j)
i51

n21

~Ci ,i11Bi11Di11!Cn,n11l1~an11!. ~11!

Here we will use the notation

dt i5
dzi`dz̄i
2p i

du i , Di[]u i
1u i] i , Ci , j5

u i2u j

zi2zj
. ~12!

Bi means thatB is evaluated at the pointai[(zi ,z̄i ,u i). The sign in front of the integral
(21)n(n21)/2, arises from the commutation of the Cauchy kernel with the product of meas
P j52

n11 dt j , and we have adopted the conventionP i51
0 (Ci ,i11BiDi11)[1. The formula~11! con-

tains a power of super-Beltrami differentialsm̂ and its derivatives. In order to express this equat
in powers ofm̂ only, we proceed as follows: First we rewrite Eq.~11! as
J. Math. Phys., Vol. 38, No. 8, August 1997
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]̄21ln~a1!5~21!n~n21!/2E
SC”

)
j52

n11

dt j f 1,k21Ck,k11 ]k11f k11,n21•g1~21!n~n21!/2

3E
SC”

)
j52

n11

dt j f 1,k21Ck,k11„Dk11m̂~ak11!…Dk11f k11,n21•g, ~13!

where f l ,m5P i5 l
m (Ci ,i11Bi11Di11) andg5Cn,n11l1(an11) and where we have developed th

kth term of the product (Ck,k11Bk11Dk11).
After integrating by parts the second term on the rhs of Eq.~13!, we get

]̄21ln~a1!5
~21!n~n21!/2

2n E
SC”

)
j52

n11

dt jF )
i51

n21

~Ci ,i11] i112DiCi ,i11Di11!

3]nCn,n11)
l52

n11

m̂~al !G . ~14!

Note that the same procedure, the use of Eq.~13! and the integration by parts, must be done
each term in Eq.~11!. One can verify that the summation overn of this quantity givesL.

For instance, the solution ofL to the second order inm̂ reads as

L~a1!5 (
n51

2

]̄21ln5
1

2 ESC” dt2 ]1C1,2m̂~a2!

2
1

4 ESC” dt23@~C1,2]22D1C1,2D2!]2C2,3#m̂~a2!m̂~a3!, ~15!

where dt23[dt2•dt3 .

We have thus obtained the solution (ẑ, ẑ̄,u), parametrized bym̂ andm̂̄, as a perturbation of the
initial complex structure (z,z̄,u).

IV. OPE AND WARD IDENTITIES

With the help of Eqs.~14! and ~10!, the actionGWZP of Eq. ~3! takes the form

GWZP5kp (
n51

`
~21!n~n11!/2

2n E
SC”

)
j51

n11

dt jF ]1D1)
i51

n21

~Ci ,i11] i11

2DiCi ,i11Di11!]nCn,n11)
l51

n11

m̂~ l !G . ~16!

The variation of this action with respect tom̂ yields the energy momentum tensor:

T~a1!5
dGWZP

dm̂~a1!
522kp„]1D1L~a1!2D1L~a1!]1L~a1!…522kpS, ~17!

whereS denotes the super-Schwarzian derivative,

S5
D4û

D û
22

D3û D2û

~D û !2
.
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NoteT(a1) vanishes atm̂50, which means thatm̂ is an exterior source. Then-points function can
be easily derived. Indeed, we have

^T~1!T~2!•••T~n!&5~21!n
dnGWZP

dm̂~n!•••dm̂~1!
U

m̂~n!50

5k
~21!n~n11!/2

~2p!n21

3 (
perm

~21!p]1D1)
i51

n22

~Ci ,i11] i112DiCi ,i11Di11!]n21Cn21,n .

~18!

The sum is over all possible permutations different from 1 and (21)p stands for the sign of the
permutation.

Using this result one can show that then-points function takes the form

^T~1!•••T~n!&5k
~21!n~n11!/2

2~2p!n21 (
perm
Þ1

~21!pF )
i51

n22

~2Ci ,i11] i111DiCi ,i11Di1123] iCi ,i11!

3]n21
2 Cn21Cn21,nG . ~19a!

By applying the operator]̄1 to Eq. ~19a!, we get the following Ward identity:

]̄1^T~1!•••T~n!&5
~21!n~n11!/2

2~2p!n21 k(
perm
Þ1

~21!p„2d3~a12a2!]21D1d
3~a12a2!D2

23]1d
3~a12a2!…)

i52

n22

~2Ci ,i11] i111DiCi ,i11Di1123] iCi ,i11!

3Dn21]n21
2 Cn21,n . ~19b!

As an example, the three-points function reads as

^T~1!T~2!T~3!&5
k

2~2p!2(perm
Þ1

~21!p~2C1,2]21D1C1,2D223]1C1,2!D2]2
2C2,3, ~20a!

for which the Ward identity is

]̄1^T~1!T~2!T~3!&5
k

2~2p!2
$@2d3~a12a2!]21D1d

3~a12a2!D223]1d
3~a12a2!#

3D2]2
2C2,32~2↔3!%. ~20b!

V. ITERATIVE RESOLUTION OF THE ANOMALOUS WARD IDENTITY

We apply the same method used in Sec. II in order to get the iterative solution o
superconformal Ward identity@Eq. ~2!#. This is written as
J. Math. Phys., Vol. 38, No. 8, August 1997
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]̄S dZv
dm̂ D5p11K

dZv
dm̂

, ~21!

with p15k]2Dm̂ and K5m̂]1 3
2]m̂1 1

2Dm̂D.
Iteratively one gets

]̄S dZv
dm̂ D5 (

n51

`

pn or
dZv
dm̂

5 (
n51

`

]̄21pn , ~22!

with pn5K ]̄21pn21 , and p1 was given above.
After performing the calculation, one finds

]̄21pn5
~21!n~n21!/2

2n22 kE
SC”

)
j52

n11

dt jC1,2)
i52

n21

@m̂~ i !Ci ,i11] i111
3
2] im̂~ i !Ci ,i11

1 1
2Di11m̂~ i !DiCi ,i113]n11

2 Dn11m̂~n11!#. ~23!

Here again the sign (21)n(n21)/2 in front of Eq. ~23! arises from the commutation of the Cauch
kernelCi , j with the product of measures.

As in Sec. III we express the formula~23! in terms of powers ofm̂ only ~i.e., without
derivatives ofm̂! by integrating by parts. This gives

]̄21pn5
~21!n~n11!/2

2n21 kE
SC”

)
j52

n11

dt j )
i51

n21 F ~2Ci ,i11] i111DiCi ,i11Di11

23] iCi ,i11!Dn]n
2Cn,n11)

l52

n11

m̂~ l !G . ~24!

The summation overn of this quantity givesdZ/dm̂(1).
Then-points function can thus be easily derived. It coincides with Eq.~19!. This means that

the Polyakov action resumes the perturbative series; the solution of the Ward identity. Th
Polyakov conjecture is proved on the supercomplex plane.

VI. CONCLUSION

In summary, we have solved the super-Beltrami equations for the projective coord
( ẑ,û) iteratively to arbitrary order in powers of super-Beltrami differentials. Then, using this re
in the WZP action, we derive the energy momentum tensor andn-points function for arbitrary
n. We solve the anomalous superconformal Ward identity iteratively using the Neumann
and we show that then-points function calculated by means of this solution coincides with the
derived from the WZP action.

The Polyakov conjecture states that the solution of the Ward identity is unique, independ
the fields of the model, and is resumed by the WZP action. Here we showed that this con
is true on SC” .
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Boundary and initial boundary-value problems for
separable backward–forward parabolic problems a)
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A backward–forward parabolic equation is considered in a strip which is infinite in
the timelike direction, with boundary conditions on the sides of the strip. The
unique bounded solution of the problem is given explicitly by separation of vari-
ables. In addition, a similar problem in a semi-infinite strip is treated, with initial
data at the end of the strip. It is shown that the solution can be represented arbi-
trarily closely in the maximum norm by a sum of functions obtain by separation of
variables. ©1997 American Institute of Physics.@S0022-2488~97!00108-4#

I. INTRODUCTION

This work is concerned with solutions of a partial differential equation of the form2Txx
1b(x)Ty50, where the coefficientb(x) changes sign. More specifically, we shall consider
solution, by separation of variables, of backward–forward boundary value problems of the

2Txx1b~x!Ty50 for 21,x,1, 2`,y,`,

T~1,y!50 for 2`,y,`,
~1.1!

T~21,y!5 f ~y! for 2`,y,`,

T~x,y! bounded

on the strip@21, 1#3(2`,`), and initial-boundary value problems of the form

2Txx1b~x!Ty50 for 21,x,1, y.0,

T~x,0!5u~x! for xPG15$x:b~x!.0%,
~1.2!

Tx~21,y!5Tx~1,y!50 for y.0

u bounded

on the half-strip@21,1#3@0,̀ ).
In studying the steady advection and diffusion of heat in parallel flow in a channel, Lud

and Robertson1 were led to a whole channel boundary value problem of the form~1.1! for the
temperatureT(x,y). Hereb(x) is the given velocity of the flow, which changes sign within t
channel. Thus~1.1! is a backward–forward parabolic partial differential equation. Ludford

a!To Hugh Turrittin on his 90th birthday.
0022-2488/97/38(8)/4343/11/$10.00
4343J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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Robertson solved the problem for the case whenb(x) and f (y) are step functions by using
matching technique. We shall present a very simple method of solving it for a large cla
b(x) and f (y).

By a bounded weak solutionof the problem~1.1! we mean a bounded measurable functi
T(x,y) such that the integration by parts formula

E
2`

` E
21

1

T~x,y!@2hxx2b~x!hy# dxdy5E
2`

`

f ~y!hx~21,y! dy ~1.3!

is valid for all smooth functionsh which vanish on the boundaryx561, and which vanish for all
y with sufficiently large absolute value.

Because the functionb(x) is independent ofy, the problem~1.1! is separable. That is, th
differential equation and the homogeneous boundary conditions are satisfied by the produc
tionscn(x)e

2lny, where theln andcn are the eigenvalues and eigenfunctions of the proble

2c95lbc,
~1.4!

c~21!5c~1!50.

Becauseb changes sign, this problem has infinitely many positive eigenvalues, which we wr
increasing order asln with n.0, and infinitely many negative eigenvalues, which we write
increasing order asln with n,0.

We shall obtain the following result, in which the hypotheses onf are tailored to include the
step function treated by Ludford and Robertson.1 Throughout this work we shall use the notatio
(p,q) for the standardL2 scalar product*21

1 pq dx.
Theorem 1: Let b be bounded and measurable, and let its null set have measure zer

f be bounded, and suppose that there are at most finitely many points at which f has
discontinuities, and that in the intervals outside these jumps f is uniformly Lipschitz contin
Then the problem (1.1) has a unique bounded weak solution, which is given by the Fourier

T~x,y!5
1

2
f ~y!~12x!2 (

n,0

cn8~21!

~bcn ,cn!
H E

y

`

@ f ~z!2 f ~y!#eln~z2y! dzJ cn~x!

1 (
n.0

cn8~21!

~bcn ,cn!
H E

2`

y

@ f ~z!2 f ~y!#eln~z2y! dzJ cn~x!. ~1.5!

This series converges uniformly on every closed set which does not contain a point(x,y) with
y a jump point of f. The solution satisfies the inequalities

min$ inf@ f #,0%<T~x,y!<max$sup@ f #,0%.

If y0 is a point of continuity of f, then T(x,y) is continuous in(x,y) on the line y5y0 , and
the function T(•,y0) is in H1@21,1# and assumes the boundary values f(y0) at 21 and0 at 1.

If y0 is a jump point of f, then T is continuous in(x,y) in any open subinterval of the line
y5y0 in which either b>a or b<2a for some positivea.

Initial-boundary problems of the form~1.2! with various boundary conditions arise in
variety of applications, such as diffusion governed by the steady-state Fokker–Planck eq
and electron scattering. See Ref. 2 for an overview of applications and results.

By abounded weak solutionT of the problem~1.2! we mean a bounded measurable functi
which satisfies the equation
J. Math. Phys., Vol. 38, No. 8, August 1997
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E
0

`E
21

1

T~x,y!@2hxx2b~x!hy#dxdy5E
G1
u~x!h~x,0!dx ~1.6!

for all smooth functionsh which satisfy the boundary conditionshx(61,y)50, which vanish for
all sufficiently largey, and which vanish on the part of the initial liney50 whereb,0.

It was shown by Beals3,4 that if b is continuous, if at each zerob behaves likeux2x0ua(x
2x0) for somea.2 1

2, and if the initial functionu lies in the weightedL2 spaceL2(G
1,bdx),

then there exists a unique weak solutionTPC(@0,̀ ),L2(@21, 1#,ubudx)ùL2,loc(H
1(@21, 1#).

~For the special case of the Dirichlet problem with a linear functionb, this theorem was proved
earlier by Baouendi and Grisvard.5!

The problem~1.2! is also separable. That is, the differential equation and the boundary
ditions are satisfied by products of the formfn(x)e

2lny, where theln are the eigenvalues an
fn are the corresponding eigenfunctions of the problem

2f95lb~x!f for 21,x,1,
~1.7!

f8~21!5f8~1!50.

Becauseb changes sign, this problem again has both positive eigenvalues calledln with n.0 and
negative eigenvaluesln with n,0. Because of the Neumann boundary conditions, it has
additional eigenvaluel050 with the eigenfunctionf051. If the integral ofb is zero, there is also
a generalized eigenfunctionq which corresponds to the eigenvalue 0.~See Ref. 6!

Beals showed that the eigenfunctions, and the generalized eigenfunctionq, if it exists, form a
basis for the weighted spaceL2(@21,1#,ubudx). It is then easily seen~see Lemma 3! that for each
fixed y>0 such a weak solution can be expanded in a Fourier series in which only the coeffi
of the eigenfunctions corresponding to the non-negative eigenvalues differ from zero. In pa
lar, one can expand the initial functionu on the setG1 in such an expansion, which is then
partial-range expansion.

Because the eigenfunctions do not satisfy any orthogonality relation on the setG1, one cannot
find explicit expressions for the coefficientscn of this expansion in terms ofu without solving the
problem first. However, Beals has shown6 that the eigenfunctionsfn with n>0 have the property
that

(
n>0

cn
2u~bfn ,fn!u<E

G1H (
n>0

cnfn~x!J 2ub~x!udx. ~1.8!

It follows that when least-squares approximation is used to obtain a finite sum(n50
N dnfn which

approximatesu in theL2(@21,1#,ubudx) norm, this norm can be made arbitrarily small by choo
ing N sufficiently large, and the resultingdn , defined to be 0 forn.N, are close to the correc
cn in the sense that((dn2cn)

2u(bfn ,fn)u is small. This fact, together with an argument we sh
use in the proof of Lemma 3, shows that the sum(n50

N dnfn(x)e
2lny gives a uniform approxi-

mation toT on any half-strip@21,1#3@a,`) with a.0. However, the error bound grows t
infinity as a approaches zero, so that this method does not give good information abou
solution neary50.

We shall show that when the initial function is continuous, this phenomenon can be av
by obtaining an approximation result in the maximum norm. The solutions of~1.2! take their
maxima onG13$0% whereG1 is the closure ofG1. Therefore a uniform approximation of th
initial function u by the sum(n50

N dnfn(x) leads to the uniform approximation of the solutio
T by the sum(n50

N dnfn(x)e
2lny. Of course, this uniform approximation is only possible ifu is

continuous.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Theorem 2:Suppose that b is infinitely differentiable on@21,1#. Also assume that the zero
of b are all interior points and have finite order, and that none of these zeros is a local max
of b. If u(x) is continuous onG1, then for anye.0 there exists a finite set of coefficien
$d1 ,...,dN% with the property that

Uu~x!2 (
n50

N

dnfn~x!U<e for xPG1. ~1.9!

Moreover, the solution of (1.1) satisfies the inequality

UT~x,y!2 (
n50

N

dnfn~x!e2lnyU<e. ~1.10!

Theorem 2 will be based on the following Lemma, which is of interest in itself. We shall
that T(x,y) is a bounded local weak solutionof the differential equation and boundary cond
tions in ~1.2! in the strip@21,1#3(0,̀ ) if it is bounded and measurable and if the equation~1.6!
holds for all smooth functionsh which satisfy the Neumann boundary conditions and wh
vanish aty50 and outside a bounded set. We shall show that such a function is a cla
solution of the differential equation fory.0.

Lemma 3: Let b(x) be bounded and measurable, and suppose that the set where it van
has measure 0. Let T(x,y) be a bounded local weak solution in@21,1#3(0,̀ ) of the boundary
value problem (1.2). Then for all y.0 the functions T, Tx , and Txx /b are continuous and
infinitely differentiable with respect to y, and the partial differential equation and boundar
conditions in (1.2) are satisfied. Moreover, there exist coefficients cn such that the series

(
n50

N

cnfne
2lny ~1.11!

converges to T, uniformly on any strip@21,1#3@a,`) with a.0.
Theorem 1 will be proved in Sec. II. Sections III and IV are devoted to the proof of Lem

3 and Theorem 2, respectively. In Sec. V we discuss what happens when other boundary co
are used in the problems~1.2! and ~1.1!.

II. HEAT ADVECTION AND DIFFUSION IN A CHANNEL

We apply the definition~1.3! of weak solution withh5z(y)cn(x)e
lny, wherecn is an

eigenfunction of the problem~1.4!, and z vanishes outside a bounded interval. We obtain
formula

E
2`

`

$z8~y!elny~bT~•,y!,cn!1z~y!cn8~21! f ~y!elny%dy50

for all functionsz which vanish outside a bounded interval.
This means that the coefficient ofz is the distribution derivative of the coefficient ofz8. In

particular, the coefficient ofz8 differs from an indefinite integral of the coefficient ofz by a
constant. Becausef andT are bounded, we can evaluate the constant by lettingy approach infinity
if ln,0 and minus infinity ifln.0. Thus, we obtain the explicit formulas
J. Math. Phys., Vol. 38, No. 8, August 1997
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„bT~•,y!,cn…5H 2cn8~21!E
y

`

f ~z!eln~z2y! dz for n,0,

cn8~21!E
2`

y

f ~z!eln~z2y! dz for n.0.
~2.1!

We define the function

m~x!5 1
2~12x!. ~2.2!

The definition~1.4! of cn and integration by parts show that

~bm,cn!5~m,2ln
21cn9!5ln

21cn8~21!. ~2.3!

Subtractingf (y) times this formula from~2.1! yields the formal Fourier series

T~•,y!2 f ~y!m~x!5( dn~y!cn~x!,
~2.4!

dn~y!5H 2~bcn ,cn!
21cn8~21!E

y

`

@ f ~z!2 f ~y!#eln~z2y! dz for n,0,

~bcn ,cn!
21cn8~21!E

2`

y

@ f ~z!2 f ~y!#eln~z2y! dz for n.0.

Thus if the weak solutionT exists, its Fourier series must have the form~1.5!.
We shall consider the convergence of this series in the Hilbert spaceH0

1 with the scalar
product

~u,v !H
0
15~u8,v8!. ~2.5!

It was observed by Manes and Michelletti7 that the eigenfunctionscn of ~1.4! are also the
eigenfunctions of the operatorM , which is defined by the equation (M @v#,w)H

0
15(bv,w) for all

wPH0
1. It is easily seen thatM @v# is the solution of the problem

2~M @v# !95bv,
~2.6!

M @v#~21!5M @v#~1!50.

Becauseb is bounded, this operator is compact. Because the null set ofb has measure zero,M has
no null space, and its eigenvalues are the reciprocals of theln . In particular, thecn form a
complete orthogonal set inH0

1.
Even though the functionm is not inH0

1 because it does not vanish at21, the problem~2.6!
with v5m still defines a functionM @m# in H0

1. Integration by parts shows thatM @m# has the
Fourier series

M @m#5(
cn8~21!

ln
2~bcn ,cn!

cn . ~2.7!

This series converges toM @m# in H0
1.

We shall suppose for the time being thatf has no jump points, so that it is uniformly Lipschit
continuous. That is, there is a constantA such thatu f (z)2 f (y)u<Auz2yu for all y andz. Then a
simple integration shows that
J. Math. Phys., Vol. 38, No. 8, August 1997
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udn~y!u<Auc8~21!uu~bcn ,cn!
21uln

22. ~2.8!

This inequality shows thatudnu is bounded byA times the absolute value of thenth Fourier
coefficient ofM @m# in ~2.7!. Because the Fourier series ofM @m# converges inH0

1 in which the
cn are orthogonal, it follows that the series in~2.4! also converges inH0

1, uniformly in y. Thus the
functionT defined by~2.4! is continuous and satisfies the boundary conditions, andT is in H1 for
eachy.

In order to verify that this functionT is a weak solution, we consider a smooth functi
h(x,y) which vanishes atx561 and outside a bounded set. Because the series in~2.4! converges
uniformly, we can write the left-hand side of~1.3! in the form

E
2`

`

~2hxx2bhy ,T!dy5E
2`

`

„2hxx , f ~y!m…dy2E
2`

`

f ~y!~bhy ,m!dy

1( E
2`

`

~2hxx2bhy ,dncn!dy. ~2.9!

Integration by parts with respect tox and use of the definition~2.2! of m show that
„2hxx , f (y)m…5 f (y)hy(21,y). Therefore, the first integral on the right side of~2.9! is equal to
the integral on the right side of~1.3!, so ~1.3! will hold if the last two terms in~2.9! cancel.

Becausehy is smooth and vanishes atx561, its Fourier series converges uniformly inx and
y. Since (bm,cn) is given by~2.3!, we find that

2E
2`

`

f ~y!~bhy ,m!dy52( ln
21cn8~21!~bcn ,cn!

21E
2`

`

f ~y!~bhy ,cn!dy. ~2.10!

Next we use integration by parts and the definition~1.4! of cn to show that

~2hxx2bhy ,cn!5Fln2
d

dyG~bh,cn!.

By using this relation and the definition~2.4! of dn , we can write a term of the sum in~2.9! with
n,0 as follows:

2~bcn ,cn!
21cn8~21!E

2`

` E
y

`

@ f ~z!2 f ~y!#eln~z2y! dzFln2
]

]yG„bh~•,y!,cn…dy

52~bcn ,cn!
21cn8~21!H E

2`

`

f ~z!E
2`

z S 2
]

]yDeln~z2y!
„bh~•,y!,cn…dydz

1ln
21E

2`

`

f ~y!@ln~bh,cn!2~bhy ,cn!#dyJ
5ln

21~bcn ,cn!
21cn8~21!E

2`

`

f ~y!~bhy ,cn!dy. ~2.11!

The same expression holds forn.0. We see that these terms are exactly the negatives of tho
~2.10!, so that the last two terms in~2.9! cancel. ThusT given by~2.4! is indeed a weak solution
of the problem~1.1! under the additional hypothesis thatf is continuous.

In order to obtain bounds forT, we first make the further temporary assumption that th
exists a constantB such thatf (y)50 for uyu>B. Let F be a bound foru f u. Then if y.B, we see
from the formulas in~2.4! that dn(y)50 for n,0, and that forn.0
J. Math. Phys., Vol. 38, No. 8, August 1997
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udn~y!u<Fucn8~21!uln
22u~bcn ,cn!

21ueln~B2y!.

The last factor approaches zero exponentially asy→`, uniformly in n. Thus comparison with the
series~2.7! for M @m# shows that the convergent series in~2.4! approaches zero asy→`, uni-
formly in x. The same argument gives the same result asy→2`.

Thus, if f is uniformly Lipschitz continuous and vanishes near infinity, the correspon
weak solution of the problem~1.1! is given by ~2.4!, and it vanishes at infinity. The usua
maximum principle then gives the bounds

min$ inf@ f #,0%<T<max$sup@ f #,0%. ~2.12!

In other words, the statements of Theorem 1 are valid for such a function.
We shall show in the Appendix that iff satisfies only the hypotheses of Theorem I, one c

construct a sequence of functionsf n(y) which also satisfies the temporary conditions, and wh
has the property that the corresponding sequenceTn of bounded weak solutions converges, un
formly on closed rectangles which do not contain jump points, to the functionT defined by~2.4!.
We shall also show that this function has the properties stated in Theorem 1.

III. A REGULARITY LEMMA

In addition to the positive eigenvaluesln with n.0 and the negative eigenvaluesln with
n,0, the problem~1.7! has the eigenvaluel050 with the eigenfunction 1. If (b1,1)50, there is
also a generalized eigenfunctionq, which is a solution of the problem

2q95b for 21,x,1, q8~21!5q8~1!50, ~3.1!

with the normalization

~bq,q!50. ~3.2!

@Note that (b1,q)5(q8,q8).0. Therefore there is a unique constant which must be added
solution of the differential equation in~3.1! to make the sum satisfy~3.2!.# The functionq is a
generalized eigenfunction of~1.7! corresponding tol050.

It was pointed out by Beals~Ref. 4, p. 403! that one can treat this problem like the Dirichl
problem by introducing the Hilbert spaceĤ with the scalar product

~v,w!Ĥ5~v8,w8!1 H u~b1,1!u21~bv,1!~bw,1! if ~b1,1!Þ0,
~bq,1!21~bv,q!~bw,q! if ~b1,1!50,

whose norm is equivalent to theH1 norm.
One defines the compact self-adjoint operatorM̂ on this space by the equation (M̂ @v#,w) Ĥ

5(bv,w) for all wPĤ. ThenM̂ @v# is the solution of the problem

2~M̂ @v# !95H b$v2~b1,1!21~bv,1!1% if ~b1,1!Þ0,

b$v2~bq,1!21~bv,1!q%, if ~b1,1!50,

~M̂ @v# !8~21!5~M̂ @v# !8~1!50,

~bM̂@v#,1!5sgn@~b1,1!#~bv,1! if ~b1,1!Þ0,

~bM̂@v#,q!5~bv,1! if ~b1,1!50.
J. Math. Phys., Vol. 38, No. 8, August 1997
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It is easily seen thatM̂ has the eigenvaluesln with nÞ0 with the corresponding eigenfunc
tionswn . If (b1,1)Þ0, M̂ has the one additional eigenvalue sgn@(b1,1)# with the corresponding
eigenvector 1. If (b1,1)50, M̂ has the two additional eigenvalues61 with the corresponding
eigenvectorsq61.

As usual, the eigenvectors are orthogonal with respect to the scalar product ofĤ, and they are
complete in this space. It follows that the eigenvectors are also orthogonal with respect
indefinite scalar product (bv,w). SinceĤ is a dense subspace ofL2 , the eigenfunctions are als
complete inL2 .

Proof of the Lemma:By hypothesis,T(x,y) is a bounded local weak solution of the proble
~1.2! in the sense that the equation~1.6! holds for all smoothh which satisfy the boundary
conditionshx(61,y)50, which vanish for sufficiently largey, and which vanish aty50. In
particular, this equation holds whenh5z(y)fn(x)e

lny, where z is a smooth function which
vanishes at y50 and for large y. Because thish satisfies the equation2hxx2bhy
5 2b(x)z8(y)fn(x)e

lny, we find that

E
0

`

z8~y!elny
„bT~•,y!,fn…dy50

for all smoothz which vanish at 0 and̀ . As is well known, this implies that the coefficient o
z8 is a constant, which we callcn(bfn ,fn) whennÞ0. Hence, we obtain the formula

~bT~•,y!,fn!/~bfn ,fn!5e2lnycn for y.0, nÞ0. ~3.3!

SinceT is bounded, we see by lettingy→` in this equation, thatcn50 whenn,0. If (b1,1)
Þ0, the above argument also shows that the Fourier coefficient off0 is a constantc0 , so that the
Fourier series ofT has the form in~1.11!.

If ( b1,1)50, the above argument still shows that„bT(•,y),fn… is zero forn,0 and constant
for n50. Since the functionh5z(y)@y1q(x)#, whereq is the solution of~3.1! and~3.2!, satisfies
the equation2hxx2bhy52bz8@y1q#, the definition~1.6! shows that„bT(•,y),y1q… is also
constant. SinceT is bounded and„bT(•,y),1… is constant, we see by lettingy approach infinity
that the constant„bT(•,y),1… is zero, and that„bT(•,y),q… is constant. Since (bq,q)50 and
(bq,1)Þ0, the part of the Fourier series ofT which involves the terms 1 andq is
(bq,1)21@(bT,q)11(bT,1)q#. Thus the coefficient ofq in the Fourier series~3.4! of T(x,y) is
zero and that off051 is a constantc0 . Thus, whether (b,1) is zero or not, the Fourier series fo
T(•,y), has the form in~1.11!.

Choose any a.0. Because T(•,a/2)PL2 , M̂ @T(•,a/2)#PĤ. That is, the series
(n>0ln

21cne
2lna/2fn converges inĤ. Becauselnye

2ln(y2a/2) is uniformly bounded, it follows
that the Fourier series~1.11! for T(•,y) converges inĤ, uniformly in y for y>a. We conclude
that for y.0 the functionT(•,y) is in H1 and the series also converges to it uniformly.

In fact, (lny)
pe2ln(y2a/2) is bounded uniformly inn and y for y>a.0 when p is any

positive integer. Therefore the same argument can be applied to any partial derivative with r
to y of the Fourier series. The same is true of the series obtained by differentiating the ser
T twice with respect tox and then dividing byb. This establishes the continuity properties
Lemma 3. The fact thatT is a classical solution follows by comparing the series forTxx /b and
Ty , and the Lemma is proved.

IV. PROOF OF THEOREM 2

We consider the initial-boundary value problem~1.2!. A result of Freidlin and Weinberger8

implies that ifb is Lipschitz continuous in@21,1# with (b1,1)>0 and measure (G1).0, and if

u is continuous onG1, then there exists a unique bounded generalized solutionT of this problem,
J. Math. Phys., Vol. 38, No. 8, August 1997
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and this solution is continuous on the set$(x,y):y.0%ø$(x,y):y>0,b(x).0%. One can see by
looking at the proof that the solution is also continuous on the set$(x,y):y>0,b(x),0%. Since
the set whereb50 has measure zero, we see that, in particular,bT(x,0)PL1 .

If ( b1,1),0, the construction in Ref. 8 leads to a unique bounded generalized solution
the same properties for each prescribed value of the limit aty5`.

To prove Theorem 2 we use a result of Stroock and Taniguchi~Ref. 9, Corollary 4!, which
states that under the hypotheses of Theorem 2, those boundary points (z,0) whereb(z)50 are
regular. That is,u(z) is the limit of T(x,y) as (x,y) approaches (z,0) through points with
y.0. As we have already seen, the probabilistic solution of~1.2! which was constructed in Ref
8 is continuous at all points withy50 wherebÞ0. We conclude thatT is continuous on the
closed strip@21,1#3@0,̀ ). In particular,T(•,y) converges uniformly toT(•,0) asy goes to
zero.

It is known ~Ref. 10, Theorem 4.1! that a generalized solution as constructed in Ref. 8
weak solution in the sense of the definition~1.6!. By Lemma 3 the series~1.11! converges to
T(•,y) in Ĥ, uniformly in y>a.0.

The uniform convergence ofT(•,y) to T(•,0) implies that for anye.0 there is aye.0 such
that uT(x,ye)2T(x,0)u,e/2. The uniform convergence of the Fourier series toT(•,ye) implies
that there is anN such that

UT~x,ye!2 (
n50

N

cnfn~x!e2lnyeU,e/2.

Thus we obtain the inequality~1.9! of Theorem 2 withdn5cne
2lnye. The inequality~1.10! then

follows from the maximum principle.
When (b1,1),0, the construction in Ref. 8 leads to a unique bounded continuous sol

T of ~1.2! for any specified value of the limitc0 at infinity. Henced05c0 may be arbitrarily
specified. That is, when (b1,1),0, the Neumann eigenfunctionsfn with n.0 are complete on
G1 in the maximum norm. In particular, the eigenfunction 1 can be uniformly approximate
G1 by a linear combination of these eigenfunctions.

V. OTHER BOUNDARY CONDITIONS

We have presented the results for the initial-boundary value problem~1.2! with Neumann
boundary conditions, but they are easily extended to other boundary conditions.

For example, if the boundary conditions are replaced by the Dirichlet conditionsT(21,y)
5T(1,y)50, we only need to replace the spaceĤ by H0

1 and the eigenfunctions ofM̂ by those of
M in the proofs of Lemma 3 and Theorem 2 to obtain the analogous results. However, one
require the initial functionu to vanish at those points ofG1 which lie on the boundary$21,1%.
One also needs to extend the results of Ref. 8 to the Dirichlet problem, but this is easily d

For other homogeneous boundary conditions, one only needs to use the appropriate
spaceH and define the compact operatorm by the equation (m@v#,w)H5(bv,w).

In a similar manner, one can obtain analogs of Theorem 1 for boundary value problems
form ~1.1! with other boundary conditions. The most difficult case is that of the Neumann co
tions Tx(21,y)5 f (y), Tx(1,y)50. The spaceH0

1 and the operatorM are replaced byĤ and
M̂ , respectively. The functionm is replaced by the functionm̂ which satisfies the initial conditions
m̂(1)5m̂8(1)50 and the differential equation2m̂95(b1,1)21b if ( b1,1)Þ0 or 2m̂9
5(bq,1)21bq if ( b1,1)50.

If ( b1,1)Þ0, we find by insertingh5z(y) into the analog of~1.3! that „bT(•,y),1… is an
antiderivative of2 f (y). Thus one needs the additional hypothesis that*0

y f (z) dz is uniformly
bounded, and the solution is determined only to within an additive constant. In add
cn8(21) must be replaced by2fn(21) in the other coefficients in the series~1.5!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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When (b1,1)50, we insert the functionsz(y)@q(x)1y61# into the analog of~1.3! to see
that (bT,q)1(y61)(bT,1) is an indefinite integral of2@q(21)1y61# f (y). It follows that
(bT,1) is again an antiderivative off , but that also„bT(•,y),q… is equal toq(21)(bT,1) minus
an indefinite integral of„bT(•,y),1…. Thus we need the hypotheses that both*0

y f (z) dz and
*0
y(y2z) f (z) dz are uniformly bounded. The solution is again determined to within an add

constant.
The regularity conditions are proved as in Sec. II. Because there are no Dirichlet cond

andmPH1, its Fourier series converges inH1. Therefore, the solution is continuous everywhe
in the strip, and lies inH1 for eachy, even whenf has jumps.

Similar results can be obtained for other boundary conditions as well.

APPENDIX: REMAINDER OF THE PROOF OF THEOREM 1

As promised at the end of Sec. II, we shall show here how to extend the proof of Theo
from the case in whichf (y) is continuous and vanishes outside a bounded set to the general
We shall do this in two steps.

Suppose first thatf is bounded and uniformly Lipschitz continuous, but that it does not va
outside a bounded set. Define the sequence of uniformly Lipschitz continuous approxim
functions f n by setting

f n~y!5H f ~y! for uyu<n,
0 for uyu>n11,
linear for n<uyu<n11.

Since f n vanishes near infinity, the functionTn obtained by replacingf by f n in ~2.4! is a weak
solution of ~1.1! with f replaced by f n . Because min$inf@ f n#,0%>min$inf@ f #,0% and
max$sup@ f n#,0%<max$sup@ f #,0%, eachTn has the bounds~2.12!.

Let dn
(n)(y) denote the coefficient in~2.4! with f replaced byf n . Choose anyy and let

n.uyu. Thenf n(y)5 f (y) and f n(z)2 f (z)50 for uzu<n. It easily follows from the formula~2.4!
that if F is a bound foru f u,

udn
~n!~y!2dn~y!u<2Fu~bcn ,cn!

21cn8~21!ln
21ue2ulnu~n2uyu!.

Because the functionze2z is bounded forz>0, we can bound the right-hand side by a const
times e2ulnu(n2uyu)/2 times the corresponding Fourier coefficient ofM @m# in ~2.7!. Because as
n→` the exponential function approaches 0 uniformly fory in any bounded interval, we conclud
thatTn converges toT in H0

1 uniformly in y on any bounded set. In particular,Tn converges to
T uniformly on any bounded set.

Letting n approach infinity in the defining relation~1.3! with f replaced byf n andT by Tn

then shows thatT is, indeed, a bounded weak solution. The bounds~2.12! follow from letting
n→` in the inequality~2.12! with T replaced byTn . Thus Theorem 1 is established for contin
ous f .

If f has finitely many jump discontinuities but has the properties in Theorem 1, we choos
integern larger than twice the distance between any two jump points and define the approxim
sequencef n(y) by stating thatf n is continuous,f n(y)5 f (y) when the distance fromy to any
jump point is at leastn21, and f n is linear on each interval of length 2/n centered at a jump point
Let dn

(n)(y) be the coefficient defined by~2.4! with f replaced byf n .
Becausef n is bounded and uniformly Lipschitz continuous, the functionTn defined by~2.4!

with f replaced byf n is a weak solution for these boundary values, and it satisfies the bo
~2.12!. Choose a pointy whose distance from any jump point is at leastd.0. Then if nd.1,
J. Math. Phys., Vol. 38, No. 8, August 1997
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f n(y)5 f (y). Moreover, ifF is a bound foru f u, then u f n(z)2 f (z)u<2F, and f n(z)2 f (z) van-
ishes outside intervals of length 2/n centered at the jump points. Thus if there areJ jump points,
we obtain the bound

udn
~n!~y!2dn~y!u<2FJn21u~bcn ,cn!

21cn8~21!ue2ulnu~d2n21!.

By using the comparison series~2.7!, one finds as before thatTn converges toT in H0
1, uniformly

on any closed set which contains no point whosey coordinate is a jump point off .
BecauseTn satisfies~2.12!, this is sufficient to permit one to take limits in the equation~1.3!

with f replaced byf n andT replaced byTn . Thus,T is a weak solution and satisfies the boun
~2.12!. It is defined by means of the series~2.4! for all y which are not jump points off . The set
of linesy5yj where theyj are the jump points has measure zero in the strip, so that the valu
T on this set are not needed to verify~1.3!.

If eitherb>a.0 orb<2a,0 in an open interval (a,b) and if y0 is a jump point ofF, then
T is a bounded weak solution of a uniformly parabolic equation in a neighborhood of (a,b)
3$y0%. It follows from standard theory that the values ofT on this interval can then be chosen
thatT is continuous in its neighborhood. That is, the limits ofT from above and from below are
equal, and they define a continuous function. We defineT in this way, and this establishes the la
part of Theorem 1.
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3R. Beals, ‘‘An abstract treatment of some forward-backward problems of transport and scattering,’’ J. Funct. An34,
1–20 ~1979!.

4R. Beals, ‘‘Indefinite Sturm-Liouville problems and half-range completeness,’’ J. Diff. Eq.56, 391–407~1985!.
5M. S. Baouendi and P. Grisvard, ‘‘Sur une e´quation d’evolution changeant de type,’’ J. Funct. Anal.2, 352–369~1968!.
6R. Beals, ‘‘Partial range completeness and existence of solutions to two-way diffusion equations,’’ J. Math. Ph22,
954–960~1981!; 24, 1932~1982!.

7A. Manes and A. M. Micheletti, ‘‘Un’estenzione della teoria variazionale classica degli autovalori per operatori e
del secondo ordine,’’ Boll. Un. Mat. Ital.7~4!, 285–301~1973!.

8M. Freidlin and H. F. Weinberger, ‘‘On a backward-forward parabolic equation and its regularization,’’ J. Diff. Eq.105,
264–295~1993!.

9D. W. Stroock and S. Taniguchi, ‘‘Regular points for the first boundary value problem associated with degenerate
operators,’’ inProbability Theory and Harmonic Analysis, edited by J.-A. Chao and W. A. Woyczyn´ski, Pure and
Applied Mathematics98 ~Dekker, New York, 1986!, pp. 183–194.

10N. V. Krylov, ‘‘On controllable diffusion processes with unbounded coefficients,’’ Izv. Akad. Nauk SSSR Ser. Ma
45, 734–759~1981!; Math. USSR Izv.19, 41–64~1982!.
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



as is of
ndard
to the
act,
ravity

range
ations
re no

not—
makes
,

ries are
r,

We use
iskis

atical
pted to
ach can

with a

ingapore

¬¬¬¬¬¬¬¬¬¬
Disconnected forms of the standard group
Brett McInnesa)
International Centre for Theoretical Physics, Trieste, Italy

~Received 7 November 1996; accepted for publication 5 March 1997!

Recent work in quantum gravity has led to a revival of interest in the concept of
disconnectedgauge groups. Here we explain how to classify all of the~nontrivial!
groups which have the same Lie algebra as the ‘‘standard group,’’
SU~3!3SU~2!3U~1!, without requiring connectedness. The number of possibilities
is surprisingly large. We also discuss the geometry of the ‘‘Kiskis effect,’’ the
ambiguity induced by nontrivial space–time topology in such gauge theories.
© 1997 American Institute of Physics.@S0022-2488~97!02406-7#

I. INTRODUCTION

The fact that there is no one-to-one correspondence between Lie groups and Lie algebr
basic importance in physics: it is related, for example, to the existence of spinors. In the Sta
Model of elementary particle interactions, the Lie algebra of the gauge group is isomorphic
algebra of SU~3!3SU~2!3U~1!. But what is the corresponding group? Even in the comp
connected case, there are nine distinct possibilities. Recent developments in quantum g1

have led Choiet al.2 to revive the suggestion of Kiskis3 that gauge groups can bedisconnected, a
possibility which also arises in higher-dimensional theories.4 Again, if we allow the gauge group
of the Standard Model to be disconnected, what is its precise global structure?

The purpose of this work is not to settle such questions, but rather to show how the full
of possibilities can be displayed. The techniques are rather simple, but the ultimate classific
can be surprisingly intricate. For example, leaving aside trivial cases, we find that there a
fewer than 137 distinct compact groups having the same algebra as SU~3!3SU~2!3U~1!. The
point here is not that all of these groups correspond to physically viable theories—they do
but rather that, among so many possibilities, just one corresponds to reality. What principle
the selection? We shall see that grand unified and Kaluza–Klein5 theories can do so: for example
again leaving aside trivial cases, there isjust onegroup having the algebra ofE8 . @For SO~10!,
however, the figure is 8.#

One reason for interest in disconnected gauge groups is the fact that gauge symmet
thought to be preserved by certain quantum-gravitational effects.1 On the other hand, howeve
Kiskis3 observed that disconnected gauge groups can themselves lead toapparentviolations of
discrete symmetries, with bizarre consequences such as the loss of charge conservation.
our results on disconnected groups to give an outline description of the geometry of this ‘‘K
effect.’’

The elementary approach adopted here differs somewhat from that of the pure-mathem
literature on disconnected Lie groups. We feel that the present approach is better ada
non-semi-simple groups such as the standard group. Nevertheless, a more abstract appro
also be useful, and we discuss this briefly in Sec. V.

In any case, it is desirable to be able to survey all of the possible groups associated
given algebra. We begin with a discussion of theconnectedcase.

a!Permanent address: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, S
119260, Republic of Singapore.
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II. THE TRUE GROUP

The connected compact Lie groups having the algebra of SU~3!3SU~2!3U~1! are the follow-
ing nine:

I. SU~3!3SU~2!3U~1!.
II. PSU~3!3SU~2!3U~1!.
III. SU~3!3SO~3!3U~1!.
IV. PSU~3!3SO~3!3U~1!.
V. SU~3!3U~2!.
VI. PSU~3!3U~2!.
VII. U ~3!3SU~2!.
VIII. U ~3!3SO~3!.
IX. @SU~3!3SU~2!#•U~1!.

Here PSU~3! is the projective special unitary group, isomorphic to SU(3)/Z3 , whereZ3 is the
center of SU~3!. To understand the dot notation in type IX, recall that ifA andB are subgroups of
a groupG, thenA•B ~the set of products! is a subgroup ofG if A•B5B•A. ~We shall always
take it that this condition is satisfied whenever we writeA•B.! Note that the elements ofA and
B need not commute~so the product may not be direct! and thatA andB can intersect nontrivially
~so the product need not be semi-direct!. For example, the unitary group U~3! may be written as
U~3!5U~1!•SU~3!, with U~1! and SU~3! intersecting nontrivially. Similarly if we regard
SU~3!3SU~2! as a subgroup of U~3!3U~2! in the obvious way, and if we embed U~1! in
U~3!3U~2! through

u→~u2I 3 ,u
23I 2!,

then @SU~3!3SU~2!#•U~1! is a subgroup of U~3!3U~2! which is not globally isomorphic to
SU~3!3SU~2!3U~1!. For if l is any sixth root of unity then (l2I 3 ,l

3I 2) is an element ofboth
SU~3!3SU~2! andof U(1), so theintersection is nontrivial.

Chan and Tsou6 and O’Raifeartaigh7 argue that the actual gauge group~the ‘‘true group’’7! of
the Standard Model is@SU~3!3SU~2!#•U~1!. Their reasoning may be interpreted as follows. L
G be any Lie group, and letG̃ be a covering group~not necessarily the universal covering!. Then
any representation ofG furnishes a representation ofG̃, but the converse is not true: som
representations are ‘‘lost’’ in the transition fromG̃ toG. Thus SU~3!3SU~2!3U~1!, for example,
has many representations which do not yield representations of@SU~3!3SU~2!#•U~1!. However,
Chan and Tsou6 and O’Raifeartaigh7 point out thatnoneof these is actually used in the Standa
Model—that is, all of the representations actually used are in fact representation
@SU~3!3SU~2!#•U~1!. Hence the latter is to be regarded as the ‘‘true group’’ of the Stand
Model.

When the argument is formulated in these terms, one sees clearly that it is an argumen
parsimony: the representations used in the Standard Model are still, after all, representation
covering groups of@SU~3!3SU~2!#•U~1!. One could therefore argue that the covering grou
SU~3!3SU~2!3U~1!, SU~3!3U~2!, and U~3!3SU~2!, are also acceptable.@Indeed, in ‘‘SO~10!’’
grand unification, where the gauge group is actually Spin~10!, the relevant subgroup of Spin~10! is
globally isomorphic to SU~3!3SU~2!3U~1!, embedded through Spin~6!•Spin~4! rather than
U~5!.# The others~types II, III, IV, VI, and VIII ! must be rejected, however.

How might these observations be physically relevant? While there is some ambiguity
global structure of the Standard Model gauge group itself, this ambiguity is resolved in va
ways by more general theories. For example, the SU~5! grand unified theory8 fixes the global
structure as@SU~3!3SU~2!#•U~1!, because this is the only one among the nine types which ca
embedded in SU~5!. Similarly, Kaluza–Klein theories interpret gauge groups as isometry gro
of Riemannian manifolds, and the structure of such groups is unambiguously fixed by the
J. Math. Phys., Vol. 38, No. 8, August 1997
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etry of the manifold. For example, the isometry group of the seven-dimensional manifoldCP2

3S23S1 ~whereCP2 is the complex projective plane andSn is the n-sphere! is locally iso-
morphic to SU~3!3SU~2!3U~1!, but the actual structure~of the identity component! is
PSU~3!3SO~3!3U~1! ~type IV!. A theory of this kind must be rejected if~as in the Kaluza–Klein
example cited! it predicts the wrong global structure for the standard group; and this is why
important to be able to survey the complete range of possibilities.

Before leaving the connected case, we wish to draw the reader’s attention to the foll
important observation. The ‘‘explicit’’ U~1! in @SU~3!3SU~2!#•U~1! corresponds to hypercharge
not to electric charge. A careful examination of the invaluable Ref. 7~see the remarks on page 10
regarding the normalization of hypercharge! shows that the electromagnetic U~1! is embedded in
@SU~3!3SU~2!#•U~1! @again regarded as a subgroup of U~3!3U~2!# through

u→Xu2I 3 ,u23S u6 0

0 u26D C.
Notice that, ifl is any third root of unity, then (l2I 3 ,I 2) is an element of both SU~3! and the
electromagnetic U~1!, so that the combined gauge group of chromodynamics and electrom
tism is U~3!, not SU~3!3U~1!, in agreement with Refs. 6 and 7. This is rather remarkable, bec
@SU~3!3SU~2!#•U~1! does, in fact, contain SU~3!3U~1!: one merely needs to embed U~1!
through

u→Xu2I 3 ,u23S u2 0

0 u22D C
to obtain a U~1! which intersects SU~3! trivially. In short, the electromagnetic U~1! is embedded
in @SU~3!3SU~2!#•U~1! in just such a way that it intersects SU~3! and SU~2! nontrivially.

III. DISCONNECTED GAUGE GROUPS

The concept of disconnected gauge groups was introduced by Kiskis,3 who observed that such
gauge groups could lead to interesting physical effects on non-simply-connected space–tim
example, if the gauge group of electromagnetism is taken to be the orthogonal group O~2! instead
of U~1!5SO~2!, and if we can find a gauge potential with holonomy group isomorphic to O~2!,
then there will be apparent topological violations of charge conservation. Recently the not
disconnected gauge groups has been revived by Choiet al.2 in their theory of the strong CP
problem. This prompts the question: given a connected Lie group, can we find all those d
nected groups having the given group as identity component?

In this form, the question is not a useful one; for given any connected groupG, and any
nontrivial finite groupF, F3G is a disconnected group withG as identity component. Howeve
as Kiskis3 observes, this kind of disconnected group is of no physical interest. For iff is an
element which commutes with every element ofG, then it acts as the identity on the conserv
charges and maps states into themselves.3 Now notice that if we write O~2! as a disjoint union of
connected components,

O~2!5SO~2!øu•SO~2!,

whereu is an orthogonal matrix of determinant21, thenu cannotbe chosen to commute with
every element of SO~2!. These observations suggest the following definition. Every disconne
Lie group can be written as a disjoint union of connected components,

G5G0øg1•G0øg2•G0ø••• ,
J. Math. Phys., Vol. 38, No. 8, August 1997
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whereG0 is the identity component and thegi ~which are not uniquely defined, of course! are not
elements ofG0 . If none of thegi can be chosen so thatgi commutes with every element o
G0 , then we shall say thatG is anontrivial disconnected group. For example, O~2! is a nontrivial
disconnected group with SO~2! as identity component; it is not, however, the only nontriv
disconnected group with SO~2! as identity component. For if we think of SO~2! as the real
subgroup of SU~2!, then

SO~2!ø iu•SO~2!,

with i5A21, is also nontrivial, and is not isomorphic to O~2!. Every nontrivial disconnected
group with SO~2! as identity component is isomorphic to one of these two groups, as we sha

Our problem can now be formulated as follows: given a connected Lie group, can we fi
thosenontrivial disconnected groups having the given group as identity component?~Note that it
is by no means obvious that there are finitely many distinct nontrivial disconnected groups h
a given group as identity component, and there are in fact cases where the number is infin! In
this section we shall explain how this can be done. The case of the standard group is som
complicated, as the following result indicates.

Theorem 1: There are nine compact connected groups locally isomorphic
SU~3!3SU~2!3U~1!. There are 128 compact nontrivial disconnected groups locally isomorph
SU~3!3SU~2!3U~1!.

The reader will perhaps prefer to be spared the full details. Instead we shall prove the
gous results in three simpler~but still physically interesting! cases, and leave it to the interest
reader to extend the method to the standard group.~See the Remark after Theorem 2, below.!

Theorem 2: ~a! There are three connected, and five nontrivial disconnected, groups lo
isomorphic to SO~10!.

~b! There are three compact connected, and twenty compact nontrivial disconnected,
locally isomorphic to U~3!.

~c! There is one connected group locally isomorphic toE8 . There isno nontrivial discon-
nected group locally isomorphic toE8 .

Proof: ~a! The three connected groups are Spin~10!, SO~10!, and SO(10)/Z2 . ~In general, the
connected groups are obtained by factoring out the subgroups of the center of the universa
the quotients are distinct provided9 that there is no automorphism of the universal cover wh
maps pairs of these subgroups into each other.! Let G be a nontrivial disconnected group wit
Spin~10! as identity component, so that

G5Spin~10!øg1•Spin~10!øg2•Spin~10!ø••• .

Let Ad(gi) denote conjugation bygi . Since Ad(gi) is continuous, it maps a connected compon
to a connected component, and since it fixes the identity, it is an automorphism of Spin~10!. If it
is an inner automorphism, Ad(gi)5Ad(s) for somesPSpin(10), thengi can be modified so tha
it commutes with every element of Spin~10!; hence the nontriviality ofG implies that Ad(gi) is
outer. If Ad(gi) and Ad(gj ), iÞ j , induce the same outer automorphism modulo are inner a
morphism, then we have

Ad~gi !5Ad~gj !•Ad~s!

for somesPSpin(10), so thatgi
21gjs commutes with every element of Spin~10!, and sogi

21gj
•Spin(10) is a connected component ofG such thatgi

21gj can be modified to commute with
every element of Spin~10!; thus gi•Spin(10)5gj•Spin(10). Hence there is a corresponden
between the connected components ofG and the elements of the outer automorphism group
Spin~10!.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Now the outer automorphism group of a compact, simply connected, simple Lie gro
given by the symmetry group of the corresponding Dynkin diagram.10 In the case of Spin~10!, the
Dynkin diagram has a single symmetry, namely a reflection about the long axis, and soG has
precisely two connected components, and we can write

G5Spin~10!øg•Spin~10!.

By modifying g suitably, we can arrange for Ad(g) to induce any specific outer automorphism
Spin~10!. Let $ei%, i51, ...,10, generate the relevant Clifford algebra, and let Ad(e1) denote
conjugation on Spin~10! by e1 . Then Ad(e1) is an outer automorphism of Spin~10!, for if a
5e1e2e3e4e5e6e7e8e9e10, thena is central in Spin~10! but Ad(e1)a52a. We chooseg such
that Ad(g)5Ad(e1) on Spin~10!.

Clearly Ad(e1)
25Ad(e1

2) is trivial, and hence the same is true of Ad(g)25Ad(g2). But g2 is
an element of Spin~10!, sog2 is in the center of Spin~10!. Setg25z; then

zg5g35gz,

so z is fixed by Ad(g). Now the center of Spin~10! is just $61,6a%, and since Ad(g)a
5Ad(e1)a52a, we evidently haveg2561. We have shown that every nontrivial disconnect
group with Spin~10! as identity component is isomorphic to Spin(10)øg•Spin(10), with
Ad(g) acting on Spin~10! in a prescribed way and withg of order either 2 or 4. The two
possibilities may be written asZ2•Spin(10) andZ4•Spin(10).

Both possibilities do actually occur. If we pickg5e1 , we see thatZ4•Spin(10) is just
Pin~10!. For Z2•Spin(10), consider Pin~12!, and setg5e1e11e12. Then embedding Spin~10! in
Pin~12! in the obvious way, we find that Ad(g) has the same effect on Spin~10! as Ad(e1), but
g251; thus Spin(10)øe1e11e12•Spin(10) is a subgroup of Pin~12! isomorphic toZ2•Spin(10).

To see thatZ4•Spin(10) is not isomorphic toZ2•Spin(10), suppose the contrary: lets
PSpin(10) be such thatg2521, (gs)2511, and both Ad(g) and Ad(gs) have the same effec
on anytPSpin(10). Then Ad(s)t5t, so s is central. ClearlysÞ61, but if s56a, then (gs)2

52g2a2521, a contradiction. Thus there are precisely two distinct nontrivial disconne
groups with Spin~10! as identity component.

For SO~10! the argument is similar: any nontrivial disconnected group with SO~10! as identity
component can be expressed as SO(10)øg•SO(10), where Ad(g) has the effect of conjugation
by the matrixA5diag(21,1,1,1,1,1,1,1,1,1). Hereg256I 10, where I 10 is the identity matrix.
Choosingg5A gives usZ2•SO(10), which is just the orthogonal group O~10!. Regarding SO~10!
as a subgroup of SU~10!, and settingg5 iA we obtain the group

Z4•SO~10!5SO~10!ø iA•SO~10!

as a subgroup of SU~10!. It is easy to verify that these two groups are not isomorphic, and so t
are two distinct nontrivial disconnected groups with SO~10! as identity component.

The orthogonal group O~10! has centerZ2 , so O(10)/Z2 is well defined. LetA* be the
projection of the O~10! matrix A; then Ad(A* ) is an outer automorphism of SO(10)/Z2 . A
nontrivial disconnected group with SO(10)/Z2 as identity component has the form
„SO(10)/Z2…øg•„SO(10)/Z2…, with Ad(g) having the same effect on SO(10)/Z2 as Ad(A* ).
Again,g2 must be central in SO(10)/Z2 ; but unlike Spin~10! and SO~10!, SO(10)/Z2 has a trivial
center, so we must haveg251 here. Takingg5A* , we have an example. Thus there is only o
nontrivial disconnected group in this case, namelyZ2•„SO(10)/Z2…5O(10)/Z2 .

To summarize: the five nontrivial disconnected groups locally isomorphic to SO~10! areZ2
•Spin(10), Pin~10!, O~10!, Z4•SO(10), and O(10)/Z2 . All five have two connected component

~b! There are three connected groups in this case: SU~3!3U~1!, PSU~3!3U~1! and U~3!. The
Dynkin diagram of SU~3! has a single symmetry, and so, modulo inner automorphisms, SU~3! has
J. Math. Phys., Vol. 38, No. 8, August 1997
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a single outer automorphism: we can take this to be complex conjugation of matrices. Co
conjugation is also an outer automorphism of U~1!. Therefore SU~3!3U~1! has essentially three
outer automorphisms, and every nontrivial disconnected group with SU~3!3U~1! as identity com-
ponent has either two or four connected components. In the latter case, it will be possi
express such a group as

G5Søu•Søf•Søuf•S,

whereS5SU~3!3U~1! and, if (s,u) denotes any element ofS, with sPSU(3) anduPU(1),

Ad~u!:~s,u!→~ s̄,u!, Ad~f!:~s,u!→~s,ū!,

the bar denoting the complex conjugate. Note that while Ad~u! and Ad~f! commute, it does not
follow that the same is true ofu andf themselves.

Now u2 is an element ofS, and clearly it is central: henceu25(z,u), wherez is central in
SU~3!. We have

Ad~u!u25u25~ z̄,u!,

so z̄5z5I 3 , the only real matrix in the center of SU~3!. Now let v be an element of U~1! such
that v25u21, and consider

u*5u•~ I 3 ,v !Pu•S.

Clearly (u* )25u2•(I 3 ,v
2)51, and conjugation byu* has the same effect as conjugation byu;

thus we can assume thatu251. ~Notice that the possibility of redefiningu is crucial here: without
it, we would have infinitely many distinct candidates foru.!

Similarly f2 is central inS, f25(z,u), whereu must be real, hencef25(z,61). Consider

f*5f•~z,1!Pf•S.

We have (f* )25f2
•(z2,1)5(I 3 ,61) sincez35I 3 , and, sincez is central in SU~3!, Ad(f* ) has

the same effect as Ad~f!; thus we can take it thatf25(I 3 ,61). Similarly, (uf)25(I 3 ,61) ~but
there is no need to redefineuf in this case!. Combining these results, we find that eitheru andf
commute, orfu5uf(I 3 ,21). Hence there are four cases@for convenience, we write (I 3 ,21) as
21#:

~i! u25f251, uf5fu, ~uf!251.

~ii ! u25f251, uf52fu, ~uf!2521.

~iii ! u251, f2521, uf5fu, ~uf!2521.

~iv! u251, f2521, uf52fu, ~uf!251.

These four groups are all distinct. Suppose, for example, that type~ii ! is isomorphic to type
~iii !. Then there must exist a central element (z,u)PS such thatf4(z,u) is of order 2~where
f4 is of order 4!. However,

„f4~z,u!…252Ad~f4!„~z,u!…~z,u!5~z2,21!Þ1.

The distinct groups with two connected components are, in an obvious notation,Søu•S,
Søf2•S, Søf4•S, Søuf2•S, andSøuf4•S. ~In these last two, we may assumeuf25f2u
anduf45f4u.! Hence there are at most nine nontrivial disconnected groups with SU~3!3U~1! as
identity component.
J. Math. Phys., Vol. 38, No. 8, August 1997
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All nine types do actually occur. To see this, regard SU~3!3U~1! as a subgroup of
O~6!3U~2! as follows: ifA1 iB, with A andB real, is any element of SU~3!, then (B

A
A

2B) is an
element of SO~6!, so we can map SU~3!3U~1! into O~6!3U~2! by

~A1 iB,eic!→XSA 2B

B A D ,S cosc 2sin c

sin c cosc D C.
Now let u andf be the elements of O~6!3U~2! defined by

u5Xdiag~1,1,121,21,21!,S 0 2 i

i 0 D C
f5XI 6 ,S 1 0

0 21D C.
Then Ad~u! maps

XSA 2B

B A D ,S cosc 2sin c

sin c cosc D C to XS A B

2B AD ,S cosc 2sin c

sin c cosc D C,
Ad~f! maps it to

XSA 2B

B A D ,S cosc sin c

2sin c cosc D C,
andu25f251, while uf5fu(I 6 ,2I 2), and so we have type~ii ! above realized explicitly as a
subgroup of O~6!3U~2!. Similarly, for the other types, we define:

~i! u5~diag~1,1,1,21,21,21!,I 2!, f5„I 6 ,~0
1

21
0 !….

~iii ! u5~diag~1,1,1,21,21,21!,I 2!, f5„I 6 ,~0
i

2 i
0 !….

~iv! u5„diag~1,1,1,21,21,21!,~ i
0

0
2 i !…, f5„I 6 ,~0

i
2 i
0 !….

We see that all nine groups can be given explicitly as subgroups of O~6!3U~2!.
Since complex conjugation induces an outer automorphism on PSU~3!, the discussion for

nontrivial disconnected groups with identity component PSU~3!3U~1! is very similar to that for
SU~3!3U~1! ~in fact it is slightly simpler! and so we shall not present it. Again, there are n
such groups.

Finally, U~3! is different from the preceding two cases, because the centralZ3 in SU~3! is
identified with theZ3 in U~1!; hence it is not meaningful to apply complex conjugation to SU~3!
without applying it also to U~1!. In fact, U~3! has, up to inner automorphisms, a single ou
automorphism; so a nontrivial disconnected group has, in this case, the form U(3)øg•U(3),
where Ad(g) induces complex conjugation, andg is of order 2 or 4. Embedding U~3! in U~6! by
A1 iB→(B

A
A

2B) and considering the matrices diag(1,1,1,21,21,21) and diag(i,i,i,2i,2i,2i),
we see thatZ2•U(3) andZ4•U(3) exist as subgroups of U~6!. The total number of compac
nontrivial disconnected groups locally isomorphic to SU~3!3U~1! is thus 91912520.

~c! As the center ofE8 is trivial,9 there is no other connected group locally isomorphic
E8 . As the Dynkin diagram has no symmetries,E8 has no outer automorphism, and so there is
nontrivial disconnected group locally isomorphic toE8 . ~Among the simple groups, onlyG2 ,
F4 , andE8 achieve this extreme simplicity.! This completes the proof.

Remark:The proof of Theorem 1 is similar to that of part~b! of this theorem. Note that unlike
SU~3!, SU~2! has no outer automorphism; complex conjunction of SU~2! is effected by conjuga-
J. Math. Phys., Vol. 38, No. 8, August 1997
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tion by (1
0

0
21). Hence, the inclusion of SU~2! does not affect the number of possible connec

components. However, it usually affects the number of types of group. For example,S
5U~3!3SU~2!, then a nontrivial disconnected group withS as identity component has the form
Søg•S, with Ad(g) inducing complex conjugation on U~3!, andg25(6I 3 ,6I 2), leading to four
possibilities@instead of two, in the case of U~3! alone#.

The analysis here emphasizes the distinction between SU~3!3SU~2!3U~1! and
@SU~3!3SU~2!#•U~1! in a most striking way. For while there are only two nontrivial disconnec
groups with @SU~3!3SU~2!#•U~1! as identity component, the corresponding figure
SU~3!3SU~2!3U~1! is 42.

IV. APPLICATION: THE KISKIS EFFECT

When Kiskis3 introduced disconnected gauge groups, he noted the following remar
consequence. Consider aZ2•U(1) gauge theory, withZ2 generated by an element which induc
complex conjugation. Suppose that we can find a gauge connection with the full gauge
Z2•U(1), asholonomy group. Then there will be an apparent violation of charge conservation
charge of any particle can be reversed simply by transporting it around a suitable noncontr
path.

This ‘‘Kiskis effect’’ is the principal novelty arising from the gauging of a discrete symme
if CP is gauged,2 for example, then one may have to contend with ‘‘wormholes’’ which conv
particles into their antiparticles. Leaving aside the possible physical problems associated wi
let us ask a mathematical question: granted that wormholes exist and that the gauge g
disconnected, does itnecessarilyfollow that the Kiskis effect will make itself felt? The answer
this question isno; the Kiskis effect is possible only if the global structure of the gauge group
the topology of the wormhole satisfy a simple condition. Again we see here the importan
being able to classify all of the disconnected groups associated with a given connected gr

Consider, for example, the connected gauge group of the combined electromagnet
strong interactions, U~3!. Here there are two possible nontrivial disconnected groups,Z2•U(3)
andZ4•U(3). TheKiskis effect will occur if these groups occur as the holonomy group10,11 of
connections on principal bundles over the space–time,M . It is easy to show that this is only
possible ifp1(M ), the fundamental group, has a subgroupN such thatp1(M )/N5Z2 . Thus, to
take a somewhat exotic example, ifM hasp1(M )5T12, the group~of order 12! of rotational
symmetries of a regular tetrahedron, then~since this group has no subgroup of order 6! there will
be no Kiskis effect forZ2•U(3) or Z4•U(3).

Suppose, however, thatp1(M ) doeshave such a subgroup. Then is the Kiskis effect ine
table? This is a more difficult question, and we cannot go into the details here; but the es
point is that, once again, the answer depends on the precise structure of the disconnected
question. Remarkably, the answer is ‘‘yes’’ forZ2•U(3), but ‘‘not necessarily’’ forZ4•U(3), for
in fact the latter cannot occur as a holonomy group over some manifolds which do satis
above necessary condition. In this case, then, we have two very different strategies for av
the Kiskis effect: we can useZ2•U(3) in which case wemust impose a strong condition on th
topology ofM ; or we can takeZ4•U(3) as the gauge group, and impose much weaker condit
onM . The proofs of these assertions will be given elsewhere, but enough has been said to
the potential importance of the distinctions being made in this work.

V. REMARKS ON THE GENERAL THEORY OF DISCONNECTED LIE GROUPS

A much more sophisticated and abstract theory of disconnected compact Lie groups is
by de Siebenthal.12 His approach is based on the theory of group extensions and their chara
However, that approach only applies directly to semi-simple groups, and fairly explicit resul
J. Math. Phys., Vol. 38, No. 8, August 1997
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given only for simple groups. Our results on SO~10! are in agreement with de Siebenthal’s resu
on page 50 of Ref. 12; our concept of a nontrivial disconnected group corresponds to his ‘‘
sions naturelles.’’

As our principal concern in this work is with completely explicit classifications and w
groups which are not semi-simple, the methods of Ref. 12 are not directly applicable here
ertheless, the techniques given by de Siebenthal will undoubtedly be important in any f
physical applications of disconnected Lie groups. For example, Ref. 12 describes a deep th
conjugacy in disconnected Lie groups. One of the most basic and useful results in the the
compact connected Lie groups is the fact that any element is contained in a maximal torus
these maximal tori being mutually conjugate. de Siebenthal proves the analogous result fo
pact disconnected groups, which may be stated in a simplified form as follows. LetG be compact,
letG0 be the identity component, letx be any element ofG, and letT0 be a maximal torus of the
identity component of the centralizer ofx in G0 . Then every element of the connected compon
xG0 is conjugate, with respect toG0 , to an element ofxT0 . The reader is referred to Ref. 12 fo
further useful results in this direction.

VI. CONCLUSION

In this work we have shown how to classify, up to isomorphism, all of the nontrivial disc
nected groups associated with some connected groups which arise in physics. In each c
number of disconnected groups has been finite, but this is not the case in other examples
while the number is finite for SU~3!3SU~2!3U~1!, it is infinite for the very similar group
SU~3!3SU~2!3U~1!3U~1!; in fact, there are infinitely many distinct groups with two connec
components having this last as identity component.~This is due to the fact that a torusTn of
dimension greater than unity has an infinite automorphism group,13 isomorphic to the group
consisting of integern3n matrices of determinant61; note that, for any integerm, the matrix

@1
m

2m
12m2

# is of order 2.! In this sense, SU~3!3SU~2!3U~1! and its quotients are significantl
simpler than groups having additional U~1! factors.

For S5@SU~3!3SU~2!#•U~1!, the ‘‘true group’’ ~in the sense of O’Raifeartaigh7! of the
Standard Model, we find just two groups,Z2•S andZ4•S. It is natural to associate the generato
of Z2 and Z4 with the charge conjugation operator, and then it is important to investigate
existence of gauge connections havingZ2•S or Z4•S as holonomy group. Surprisingly, these tw
groups, apparently so similar, lead to very different holonomy theories, particularly whe
Higgs mechanism is considered. This will be discussed elsewhere.
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An algebraic algorithm for calculating Clebsch–Gordan
coefficients; application to SU(2) and SU(3)
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A recent paper gave an explicit construction for inducing shift tensors of a compact
reductive Lie group from shift tensors of a suitably defined subgroup. The shift
tensors were defined on model spaces of holomorphic vector-coherent-state
wave functions. In this paper, we use these shift tensors to obtain an algorithm
for computing Clebsch–Gordan coefficients. The approach reproduces the known
analytical results for SU~2! and gives a simple algorithm for computing SU~3!
coefficients. The algorithm is shown to yield analytical expressions for
the multiplicity-free SU~3! couplings of type (l20)^ (l10). © 1997 American
Institute of Physics.@S0022-2488~97!02708-4#

I. INTRODUCTION

The importance of CG~Clebsch–Gordan! coupling coefficients in practical applications o
group theory has motivated the development of many algorithms for their computation. I
early derivation of SU~2! coupling coefficients, Wigner1 used the fact that the SU~2! matrix
coefficient functions~the so-called Wigner functions! satisfy the equation

2 j 311

8p2 E
SU~2!

D
k3m3

j 3* ~V!D k2m2

j 2 ~V!D k1m1

j 1 ~V!dV5~ j 1k1 , j 2k2u j 3k3!~ j 1m1 , j 2m2u j 3m3!* . ~1!

Thus Wigner’s derivation of CG coefficients relied on knowing the Wigner functions and b
able to integrate over the group. In attempting to extend Wigner’s method to other groups,
faced with the obstacle that one does not know the corresponding Wigner functions and, e
one did, the integrals would be too difficult to evaluate. It is therefore appropriate to pu
algebraic approaches which avoid these problems.

It will be assumed in the following, unless explicitly stated otherwise, thatG is a compact
semisimple Lie group. The symboll will be used to denote the highest weight of an irrepRl on
a Hilbert spaceVl; a generic weight will be denoted by the symboln. An orthonormal basis for
Vl will be specified either by wave functions$can

l % or, equivalently, by state vectors$ulan&%,
wherea indexes the multiplicity of the weightn. However, the multiplicity index will usually be
suppressed when not needed as, for example, for the highest weight stateull&. A corresponding
orthonormal basis for the tensor product spaceVl2^Vl1 will be denoted by wave functions~state
vectors! $Can

sl[uslan&%. where s indexes the multiplicity of irreps equivalent toRl in
Rl2^Rl1. With these notations, the desired CG coefficients are the overlaps

~l1a1n1 ,l2a2n2usl3a3n3!5^Ca3n3

sl3 uca2n2

l2 ^ ca1n1

l1 &* . ~2!

In this paper we present an algorithm for computing the CG coupling coefficients for a g
G when the coupling and recoupling coefficients are known for a suitable subgroupH,G. To
confirm that the algorithm is both reliable and practical, we apply it to SU~2! and SU~3!. These
groups provide good test cases because analytical expressions are known for all SU~2!1 and
0022-2488/97/38(8)/4363/26/$10.00
4363J. Math. Phys. 38 (8), August 1997 © 1997 American Institute of Physics
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several SU~3!2,3 couplings. Moreover, computer programs are available which give the nume
values of SU~3! coefficients.4 The development of faster, more efficient, algorithms for comput
CG coeffcients for SU~3! is also of practical importance because of the widespread use of S~3!
in elementary particle and nuclear physics.

Many approaches have been pursued for computing SU~3! CG coefficients. For example, D
Swart determined basis states$Ca3n3

sl3 % for the SU~3! tensor product representationRl2^Rl1

which were eigenstates of a set of commuting operators.5 By this means, he was able to determi
CG coefficients for a number of couplings of particular relevance to the octet model of pa
physics. Moshinsky2 calculated overlaps of tensor product states in polynomial~Bargmann space!
representations. Hecht3 derived recursion relations from the identities

^ f i
†Ca3n3

sl3 uca2n2

l2 ^ ca1n1

l1 &5^Ca3n3

sl3 u~ f ica2n2

l2 ! ^ ca1n1

l1 &1^Ca3n3

sl3 uca2n2

l2 ^ ~ f ica1n1

l1 !&, ~3!

where f i is a lowering operator in the su~3! Lie algebra. With these relations, he determin
analytical expressions for several important couplings. A sophisticated apparatus has been
oped in recent years by Klink and Ton-That6 for decomposing tensor products of group repres
tations and computing various coupling and recoupling coefficients on polynomial spaces
approach closest to ours, and for which computer codes are widely used, is that of Draay
Akiyama.4 Their approach, like ours, makes use of shift tensors.

Shift tensors which act on a model space for the group were introduced by Biedenharn,
and colleagues7,8 with the objective of developing methods that would apply to any unitary gro
A model space Vfor a groupG is a direct sum of modulesV5(Vl, one copy for each irrep o
G. A shift tensor is a G-invariant set of linear operators onV, having the property that its
components map all the vectors of one irreducible subspace ofV to another irreducible subspac

Biedenharn and Louck showed that shift tensors for the U(n) groups can be labelled b
operator patternsin parallel with the Gel’fand patterns used to label basis vectors of an irredu
U(n) representation. A shift tensorTlbm has the property that the matrix elements of its com
nents satisfy the equation

^l3a3n3uTa2n2

lbm ul1a1n1&5dl3 ,l11mdn3 ,n11n2(s ~l1a1n1 ,la2n2usl3a3n3!* ^l3iTlbmil1&s ,

~4!

in accord with the Wigner–Eckart theorem. This equation is an expression of the essentia
erty of a shift tensorTlbm which is that its components map a subspaceVl1 of the model space
V to the unique subspaceVl11m,V, where the weightm is the so-calledshift; ^l3iTlbmil1&s is
a reduced matrix element and (l1a1n1 ,la2n2usl3a3n3) is a CG coefficient. Thus if one ca
evaluate the matrix elements and reduced matrix elements of shift tensors, one has a m
determine CG coefficients.

Subsequently, Flath and Towber9 refined the definition of a shift tensor by introducing th
idea of coherence. This enabled them to relate the actions of acoherent shift tensoron different
irreps. It also enabled them to prove a number of theorems for SU~3! and conjecture the validity
of their theorems for other connected compact Lie groups.

In a recent paper,10 we showed that shift tensors for semisimple Lie groups can be indu
from shift tensors of suitably defined subgroups. Our construction made use of the VCS~vector
coherent state! theory of induced representations of Refs. 11 and 12. In a subsequent paper13 we
gave a realization of the coherent tensors and confirmed the Flath–Towber conjectures fo
properties. The coherent tensors give a clear group theoretical meaning to the operator pat
Biedenharn and Louck’s shift tensors. They also relate Biedenharn and Louck’s progra
computing CG coefficients to Wigner’s method as follows.
J. Math. Phys., Vol. 38, No. 8, August 1997
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Let V5(Vl be a model space for a compact semisimple Lie groupG, whereVl is a module
for an irrepRl of highest weightl. Let $ulan&% denote an orthonormal basis forVl. The states
$ulan&% have coherent state wave functions$can

l %, which are functions over the group wit
values

can
l ~g!5^lluRl~g!ulan&5D l,an

l ~g!, gPG, ~5!

whereull& is a highest weight state andD l,an
l is a generalized Wigner function. According to th

Peter–Weyl theorem, the generalized Wigner functions, defined by

D bm,an
l ~g!5^lbmuRl~g!ulan&, ~6!

are a basis forL 2(G) and satisfy the orthogonality relations

d~l!E
G
D bm,an

l* ~g!D b8m8,a8n8
l8 ~g!dv~g!5dll8dbb8dmm8daa8dnn8 , ~7!

whered(l) is the dimension of the irrepRl and dv is the normalized invariant measure. Thus, t
above coherent state representation defines an embedding ofV in L 2(G)

Q:V→L 2~G!; ulan&°D l,an
l . ~8!

Conversely, there is a densely defined map fromL 2(G) ontoV for which

P:L 2~G!→V; D bm,an
l °dmlulan&. ~9!

Thus, the model space is identified with a subspace ofL 2(G). Now, as shown in Ref.13, the
operators

Wan
lbm5PD bm,an

l Q ~10!

are the components of coherent shift tensors$Wlbm% on V with matrix elements given by

^l3a3n3uWa2n2

l2bmul1a1n1&5d~l3!E
G
D

l3 ,a3n3

l3* ~g!D bm,a2n2

l2 ~g!D l1 ,a1n1

l1 ~g!dv~g!. ~11!

From the orthogonality properties of the Wigner functions, cf. Eq.~7!, these matrix elements ar
given by

^l3a3n3uWa2n2

l2bmul1a1n1&5(
s

~l1a1n1 ,l2a2n2usl3a3n3!* ^l3iWl2bmil1&s , ~12!

with

^l3iWl2bmil1&s5~l1l1 ,l2bmusl3l3!. ~13!

This confirms thatWlbm is a shift tensor of the Biedenharn–Louck type and that the up
operator labelsbm can be identified with the left indices of the basis$D bm,an

l % for the regular
representation. Thus, with coherent shift tensors, the Biedenharn–Louck approach for com
CG coefficients becomes equivalent to Wigner’s method.

While Wigner’s method provides a simple way to determine CG coefficients for SU~2!, it is
impractical for higher rank Lie groups, as mentioned above. However, as we now show
realization of shift tensors on model spaces of holomorphic VCS wave functions yields alge
expressions and recursion relations which are easily solved on a computer and which, in
J. Math. Phys., Vol. 38, No. 8, August 1997
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~e.g., multiplicity free! cases, yield analytical results. The main result of this paper is an exp
algorithm, given in the form of a theorem in Section IV, for computing SU~3! CG coefficients in
the so-called canonical SU~3! . SU~2! basis. The application of the algorithm to other Lie grou
is considered in the Discussion of Section VI.

II. INDUCED SHIFT TENSORS

This section briefly summarizes the main results of Ref. 10, concluding with explicit ex
sions for a complete set of shift tensors on a model space of holomorphic VCS wave function11,12

A. Holomorphic VCS representations

Let gR be the real Lie algebra of a compact semisimple Lie groupG and letg be its complex
extension. Theng has decomposition

g5n11h1n2 , ~14!

wheren6,g are nilpotent subalgebras of raising and lowering operators, respectively, andh,g is
a reductive subalgebra having a Cartan subalgebrat which is also a Cartan subalgebra ofg so that
h has the same rank asg. The most useful decompositions for our purpose are ones for whih

has known representations andn6 are Abelian. For simplicity, we restrict consideration, in th
paper, to such situations although the construction, given in Ref. 10, is more general.

Let $ei% be the root vectors inn1 and let$ f i% be corresponding root vectors inn2 . Let l be
a dominant integral weight forg. Thenl is the highest weight for a UIR~unitary irreducible
representation! Rl of G. Let Vl be the module forRl and letUl be the subspace

Ul5$wPVluRl~ei !w50,;eiPn1%. ~15!

We shall refer to the states inUl ashighest gradestates. The subspaceUlPVl of highest grade
states is known to be a module for an irreprl of h of highest weightl. Moreover, ifH,G is the
subgroup whose Lie algebrahR is a real form ofh, the corresponding irrep ofH is unitary.

Let $h«n
l % be an orthonormal basis forUl, wheren is a weight and« is a multiplicity index.

Then a state vectoruC&PVl is represented by a VCS wave functionc, which is a holomorphic
vector-valued function of a set of complex variablesz5$zi% with

c~z!5(
«n

h«n
l ^h«n

l ueẑuC&PUl, ~16!

and

ẑ5(
i
ziR

l~ei !. ~17!

The corresponding representationG of the Lie algebrag is then given by

@Gl~X!c#~z!5(
«n

h«n
l ^h«n

l ueẑRl~X!uC&, ;XPg. ~18!

One finds that

Gl~ei !5“ i5]/]zi , eiPn1 , ~19!

Gl~ha!5rl~ha!2(
i j

zia i
j
“ j , haPh, ~20!
J. Math. Phys., Vol. 38, No. 8, August 1997
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Gl~ f i !5(
j
zjr

l~hji !1 1
2(
jkl

zjzka jki
l
“ l , f iPn2 , ~21!

where we have used the notations

hji5@ej , f i #, @ha ,ei #5(
j

a i
jej , @ej ,@ek , f i ##5(

l
a jki
l el . ~22!

Basis vectors forVl are generated by acting on the highest grade vectors$h«n
l % with polynomials

in the lowering operators$ f i%. Basis vectors for the corresponding VCS spaceFl are similarly
generated by acting on the vectors$h«n

l % with polynomials in the VCS lowering operator
$Gl( f i)%.

B. Zero-shift tensors

First observe that the elements of the Lie algebrag are components of a zero-shift tensor. T
highest grade components of this tensor are the raising operators$ei% and the lowest grade
components are the lowering operators$ f i%. It follows that the VCS representation of the
operators,$G(ei)5“ i% and$G( f i)% given by Eqs.~19! and~21! are, respectively, the highest an
lowest grade components of a zero shift tensor on the model spaceF. Moreover, we can define a
set of zero shift tensors$Pn%, wherePn is an irreducible tensor of highest weightn whose highest
grade components are polynomials in$“ i%.

Let Pn
n andPñ

n denote the subsets of highest and lowest grade components ofPn, respectively,

where the subscriptsn and ñ signify the highest-weights of the two subsets. ThenPn
n andPñ

n are

irreducibleh tensors of highest weightsn and ñ , respectively. Theseh tensors have the importan
property that the components ofPn

n are polynomials in the raising operatorsG(ei)5“ i whereas
the components ofPñ

n are polynomials in the lowering operatorsG( f i). For example, for
g5su~2! with h5u~1!, there is a single raising operatorG(J1) of u~1! weight11 and a single
lowering operatorG(J2) of weight 21. Thus we describeG(J6) as the components of U~1!
tensors of highest weight61, respectively.

C. The holomorphic model space

Let Fl be the module for the irreducible VCS representationGl. Then, if L is the set of
dominant integral weights forg, the sum

F5 (
lPL

Fl ~23!

is a module for the direct sum representation

G5 (
lPL

Gl. ~24!

We shall refer toF as a holomorphic model space and toG as the universal VCS representatio
Theh-tensors$Pñ

n
% feature in the construction of a nonorthonormal basis$ulnrv«n&% for the

holomorphic model spaceF which reduces the subalgebra chain

g . h . t

l nr v « n
, ~25!
J. Math. Phys., Vol. 38, No. 8, August 1997
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wheret is a Cartan subalgebra for bothh andg. Thus the labels (nrv«n) are defined such tha
v is a highest weight for a UIR ofh, n is a weight relative to the Cartan subalgebrat, « indexes
the multiplicity of n in v, andnr together index the multiplicity ofv in l. Such basis vectors ar
expressible in the form

ulnrv«n&5@Pñ
n

~ f ! ^ hl#rv«n , ~26!

where the notation signifies that theh-irreps with highest weightsñ andl are coupled tov and
r indexes the multiplicity of the irrepv in the coupled productñ^ l. One sees that the highe
grade vectors areul0l«n&5h«n

l and VCS basis wave functions are expressible

cnrv«n
l ~z!5 (

«8n8
h«8n8

l ^l0l«8n8ueẑulnrv«n&5@Pñ
n

~G~ f !! ^ hl#rv«n . ~27!

Thus for the subset ofn50 states, we have the identity

c0l«n
l 5h«n

l . ~28!

A general VCS wave function is seen to be of the form

cl~z!5 (
«8n8

cl«8n8~z!h«8n8
l , ~29!

wherecl«8n8 is a polynomial inz;$zi%.
Note that, sinceh is not semisimple,l need not be dominant integral for the irreprl of h to

be unitary. However, if the weightl is not dominant integral it cannot be the highest weight o
UIR of g. Thus the condition for the VCS irrep ofg, induced from an irreprl of h, to be unitary
is thatrl should be unitary andl should be dominant integral.

D. General shift tensors

According to a generalized Biedenharn–Louck theorem, given in Ref. 10, a complete
shift tensors$Tlnrv«n% for g can be put into one-to-one correspondence with the basis w
functions $cnrv«n

l % for the model space. Thus the components$Tn8r8v8«8n8
lnrv«n % of a shift tensor

Tlnrv«n have a double set of labels; the upper labels~corresponding to Biedenharn and Louck
operator patterns! characterize the tensor and the lower labels index its components.

To uniquely specify a shift tensorTlnrv«n, it is sufficient to specify its highest grade com
ponents$T0l«8n8

lnrv«n%. This can be done as follows. Let$tl«n% be a set of shift tensors forh. Then,
as shown in Ref. 10, the highest grade components of a set of shift tensors forg are defined by the
h-coupled operators

T0l«8n8
lnrv«n

5@ tv«n
^Pn

n~G~e!!#rl«8n85@ tv«n
^Pn

n~“ !#rl«8n8 . ~30!

Note the correspondence between wave functions and shift tensors given by Eqs.~27! and ~30!.
The tensors defined by Eq.~30! are seen to have a natural action on the VCS wave function
the general form given by Eq.~29!, in which the components ofPn

n(“) act as differential opera
tors oncl«8n8(z) and the components oftv«n act ash-shift tensors on the vectorsh«8n8

l .
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III. CG COEFFICIENTS FOR SU(2)

CG coefficients for SU~2! have been derived many times and are well known. We rede
them here using the shift tensors of Eq.~30! as a prototype example to illustrate the methodolo
and ensure that it works.

A. VCS representation of su(2)

We take as a basis for the Lie algebra su~2! the usual angular momentum operato
$J0 ,J6%. Let j j denote a basis vector for a one-dimensional irrepr j of the u~1! subalgebra
spanned byJ0 such that

r j~J0!j j5 j j j . ~31!

The universal VCS representation of su~2! is then given by

G~J1!5“, G~J0!5J02z“, G~J2!52zJ02z2“, ~32!

where

J05r~J0!, r5(
j

r j ~33!

and j is summed over all values for which 2j is a non-negative integer.
An orthonormal basis of VCS wave functions for an su~2! irrep is given by

c jm5Kjmw jm , m52 j , . . . ,1 j , ~34!

where

w jm~z!5
zj2m

A~ j2m!!
j j , Kjm5A ~2 j !!

~ j1m!!
. ~35!

One sees that the su~2! operators of Eq.~32! act on these wave functions to give the stand
results

G~J0!c jm5mc jm , G~J6!c jm5A~ j7m!~ j6m11!c jm61 . ~36!

B. CG coefficients for highest weight states

It will be convenient to use the shorthand notations

si5 j i1mi , di5 j i2mi , i51,2,3,

k15 j 21 j 32 j 1 , k25 j 11 j 32 j 2 , k35 j 11 j 22 j 3 , ~37!

J5 j 11 j 21 j 3 .

The highest weight components of a set of shift tensors for su~2! are given, according to Eq
~30!, by the operators

Tj
jn5jn“

j2n, ~38!

with n in the range2 j , . . . ,1 j . According to the Wigner–Eckart theorem, CG coefficien
( j 1m1 , j 2m2u j 3m3) are proportional to the matrix elements
J. Math. Phys., Vol. 38, No. 8, August 1997
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F~ j 1m1 , j 2m2u j 3m3!5^ j 3m3uTm2

j 2nu j 1m1&, ~39!

with n5 j 32 j 1 . Matrix elements of the highest weight component of these operators are obt
immediately from Eqs.~34!, ~35! and ~38!;

F~ j 1m1 , j 2 j 2u j 3m3!5dm3 ,m11 j 2
A~2 j 1!!d1!s3!

~2 j 3!!s1!d3!
. ~40!

The other matrix elements are determined from the identity

^ j 3m3u@J2 ,Tm2

j 2n#u j 1m1&5^ j 3m3uJ2u j 3m311&F~ j 1m1 , j 2m2u j 3m311!

2F~ j 1m121,j 2m2u j 3m3!^ j 1m121uJ2u j 1m1& ~41!

which leads to the recursion relation

A~ j 21m2!~ j 22m211!F~ j 1m1 , j 2m221u j 3m3!

5A~ j 31m311!~ j 32m3!F~ j 1m1 , j 2m2u j 3m311!

2A~ j 11m1!~ j 12m111!F~ j 1m121,j 2m2u j 3m3!. ~42!

Although this recursion relation can be solved in generality with relative ease, it is simpl
determine the coefficients (j 1m1 , j 2m2u j 3 j 3) for highest weight states first. The remaining coe
cients can then be evaluated as shown in the following section.

If we setm35 j 3, Eq. ~42! simplifies to

A~ j 21m211!~ j 22m2!F~ j 1m1 , j 2m2u j 3 j 3!

52A~ j 11m1!~ j 12m111!F~ j 1m121,j 2m211u j 3m3! ~43!

and gives

F~ j 1m1 , j 2m2u j 3 j 3!5~21!d2A k3!s1!s2!

~2 j 2!!k2!d1!d2!
F~ j 1 j 32 j 2 , j 2 j 2u j 3 j 3!. ~44!

Hence, with the starting values given by Eq.~40!, we obtain

F~ j 1m1 , j 2m2u j 3 j 3!5~21!d2
k3!

k2!
A ~2 j 1!!s1!s2!

~2 j 2!!d1!d2!
. ~45!

We now have the CG coefficients

~ j 1m1 , j 2m2u j 3 j 3!5Nj 1 j 2 j 3
F~ j 1m1 , j 2m2u j 3 j 3!, ~46!

to within norm factors, which can be determined from the unitarity requirement

(
m11m25 j 3

u~ j 1m1 , j 2m2u j 3 j 3!u251. ~47!

We have
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



4371D. J. Rowe and J. Repka: Clebsch–Gordan coefficients for SU(2) and SU(3)

¬¬¬¬¬¬¬¬¬¬
(
m11m25 j 3

uF~ j 1m1 , j 2m2u j 3 j 3!u25S k3!
k2!

D 2 ~2 j 1!!

~2 j 2!!
(

m11m25 j 3

s1!s2!

d1!d2!
. ~48!

An identity, derived by Sharp,14

(
m11m25 j 3

s1!s2!

d1!d2!
5

~J11!!k1!k2!

~2 j 311!!k3!
~49!

then gives the norm factor

Nj 1 j 2 j 3
5~21!k3A~2 j 2!!

~2 j 1!!

~2 j 311!!

~J11!!

k2!

k1!k3!
, ~50!

where the phase is chosen such that the coefficient (j 1 j 1 , j 2 j 32 j 1u j 3 j 3) is positive. It follows that

~ j 1m1 , j 2m2u j 3 j 3!5~21!d1A~2 j 311!!

~J11!!

k3!

k1!k2!

s1!s2!

d1!d2!
. ~51!

C. General SU(2) CG coefficient

From the highest weight states

uC j 3 j 3
&5 (

m181m285 j 3

~ j 1m18 , j 2m28u j 3 j 3!uc j 2m28
^ c j 1m18

&, ~52!

one can determine the statesuC j 3m3
& by means of the identity

uC j 3m3
&5A ~ j 31m3!!

~2 j 3!! ~ j 32m3!!
~J2! j 32m3uC j 3 j 3

&5
1

Kj 3m3

~J2!d3

A~d3!!
uC j 3 j 3

&. ~53!

We also know that

~J2!d3uc j 2m28
^ c j 1m18

&5 (
n50

d3 S d3n D u~~J2!nc j 2m28
! ^ ~~J2!d32nc j 1m18

!& ~54!

and, from Eq.~53!, that

J2
n uc j 2m28

&5
Kj 2m2

Kj 2m28
A~d2!!

~d28!!
uc j 2m2

&, with m25m282n. ~55!

It follows that a general CG coefficient

~ j 1m1 , j 2m2u j 3m3!5^c j 2m2
^ c j 1m1

uC j 3m3
& ~56!

is given by the expression
J. Math. Phys., Vol. 38, No. 8, August 1997

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ple
wn
wever,

4372 D. J. Rowe and J. Repka: Clebsch–Gordan coefficients for SU(2) and SU(3)

¬¬¬¬¬¬¬¬¬¬
~ j 1m1 , j 2m2u j 3m3!5
Kj 1m1

Kj 2m2

Kj 3m3

Ad1!d2!

d3!
(
n

S d3n D ~ j 1m18 , j 2m28u j 3 j 3!

Kj 1m18
Kj 2m28

Ad18!d28!
dm

18 ,m11d32ndm
28 ,m21n .

~57!

Thus we obtain

~ j 1m1 , j 2m2u j 3m3!5~21! j 12 j 31m2A~2 j 311!

~J11!!

d1!d2!s3!

s1!s2!d3!

k3!

k1!k2!

3 (
n50

d3

~21!nS d3n D ~ j 11 j 32m22n!! ~ j 21m21n!!

~ j 12 j 31m21n!! ~ j 22m22n!!
. ~58!

IV. CG COEFFICIENTS FOR SU(3)

As a second example, we use the shift tensors, defined generally by Eq.~30!, to derive
recursion relations for SU~3! CG coefficients. The recursion relations obtained provide a sim
computer algorithm for computing SU~3! coefficients numerically. They also reproduce the kno
analytical expressions of Hecht and yield some useful new expressions. We emphasize, ho
that our objective is not only a faster algorithm for computing SU~3! coefficients. It is also an
algorithm that applies to other Lie groups.

A. Classification of basis states

The complex extension of the Lie algebra su~3! is spanned by infinitesimal generators

u~1! grading operator: X52C112C222C33, ~59!

su~2!: I15C23, I 05
1

2
~C222C33!, I25C32, ~60!

raising operators: e25C12, e35C13, ~61!

lowering operators: f 25C21, f 35C31, ~62!

where$Ci j % is the standard basis for u~3!.
Let Ĉi j denote the operatorCi j in an irrepR(lm) with highest weight (lm); i.e.,

Ĉi j5R~lm!~Ci j !. ~63!

The highest weight stateu(lm)hw& for this irrep satisfies the equation

Ĉ23u~lm!hw&5êi u~lm!hw&50, i51,2, ~64!

~Ĉ112Ĉ22!u~lm!hw&5lu~lm!hw&, ~Ĉ222Ĉ33!u~lm!hw&5mu~lm!hw&. ~65!

It will be convenient to label a highest weight by the eigenvalues ofX̂ and Î 0, i.e., byk ands ,
where

X̂u~lm!hw&5ku~lm!hw&, k52l1m, ~66!

Î 0u~lm!hw&5su~lm!hw&, s5m/2. ~67!
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We shall refer to the u~1! operatorX as a grading operator. SinceX commutes with all the
elements of su~2!, it follows that the states of an su~3! irrep of a given grade carry a representati
of the u~2! ; u~1!1su~2! , su~3! subalgebra. In particular, the highest grade states

$jn
~ks![u~lm!0sn&;n52s, . . . ,1s% ~68!

span a u~2! irrep r (ks) with u~1! quantum numberk52l1m and su~2! spin s5m/2.
The lowering operators are components of a spin-1

2 tensor,P̃
1/2;

P̃1/2
1/2~ f̂ !5 f̂ 2 , P̃21/2

1/2 ~ f̂ !5 f̂ 3 . ~69!

In generating a basis for the SU~3! irrep R(lm), we shall also need su~2! tensors$P̃j ( f̂ )% whose
components$P̃m

j ;m52 j , . . . ,1 j % are polynomials in the lowering operators;

P̃m
j ~ f̂ !5

~ f̂ 2!
j1m~ f̂ 3!

j2m

A~ j1m!! ~ j2m!!
. ~70!

An orthonormal basis is then given by states

u~lm! j IM &5NjI @ P̃
j~ f̂ ! ^ j~ks!# IM , ~71!

whereNjI is a norm factor and the bracket denotes the su~2! coupling

@ P̃j~ f̂ ! ^ j~ks!# IM5(
mn

~sn, jmuIM !P̃m
j ~ f̂ !u~lm!0sn&. ~72!

These states have grade« given by

X̂u~lm! j IM &5«u~lm! j IM &, ~73!

with

«5k26 j , k52l1m. ~74!

In particle physics, the quantum numberI is interpreted as isospin andM is its component. The
quantum numbers« and j are related to hypercharge and strangeness~cf. Fig. 1!. Thus the basis
states defined by Eq.~71! have good isospin, hypercharge and strangeness.

B. VCS representation

Expressions for the above basis states in a VCS representation and matrix elements
su~3! algebra in this basis can be found, for example, in Ref. 12. A less formal treatment c
found in Ref. 15. We summarize the main results below.

The basis states$u(lm) j IM &% have holomorphic VCS wave functions defined by

c j IM
~lm!~z!5(

n
jn

~ks!^~lm!0snueẑu~lm! j IM &, ~75!

where

ẑ5z2ê21z3ê3 . ~76!

The infinitesimal generators in this representation are the operators
J. Math. Phys., Vol. 38, No. 8, August 1997
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G~X!5k23(
i52

3

zi“ i , ~77!

G~ I1!5 ŝ11z2“3 , G~ I 0!5 ŝ01
1
2~z2“22z3“3!, G~ I2!5 ŝ21z3“2 , ~78!

G~ei !5“ i , G~ f i !52(
j52

3

Ĉi j zj2zi(
j52

3

zj“ j , ~79!

where“ i5]/]zi ,

Ĉi j5r~ks!~Ci j !2d i jr
~ks!~C11!, i , j52,3, ~80!

and ŝ05
1
2(Ĉ222Ĉ33), ŝ15Ĉ23, ŝ25Ĉ32 are intrinsic spin operators which satisfy the equation

ŝ0jn
~ks!5njn

~ks! , ŝ6jn
~ks!5A~s7n!~s6n11!jn61

~ks! . ~81!

Matrix elements of the infinitesimal generators are evaluated in this representation by writing
wave functions in the form

c j IM
~lm!~z!5KjI

~lm!w j IM
~lm!~z!, ~82!

where

w j IM
~lm!~z!5@ P̃j~z! ^ j~ks!# IM , P̃m

j ~z!5
~z2!

j1m~z3!
j2m

A~ j1m!! ~ j2m!!
~83!

FIG. 1. Weight diagram for an su~3! irrep of highest weight (lm). The horizontal axis shows the values ofM ~component
of isospin! associated with each weight. The vertical scale on the right shows the grade« while the scale on the left shows
the value ofj needed to reach that grade from the states of highest grade~for which j50). In particle physics, the vertica
scale would be labelled by hypercharge or strangeness; quantum numbers that are linearly related to« and j . The su~3!
states of a given grade carry a sum of su~2! irreps of spinI , where I runs over the rangeI5u j2su, . . . ,j1s, with
s5m/2. The weights for the su~2! highest weight states, for whichM5I , are shown as filled circles at the correspondi
lattice points. It can be seen that the highest and lowest grade weights correspond to the states of su~2! irreps with
I5m/2 andl/2, respectively.
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and the norm factors$KjI
(lm)% are to be determined such that the representation is unitary; i.e.,

that the Hermiticity relationship

^~lm! j1 1
2 ,I 8i f̂ i~lm! j I &5~21! I 81 ~1/2! 2I^~lm! j I i êi~lm! j1 1

2,I 8&* ~84!

is satisfied. Note that, in defining su~2!-reduced matrix elements, we follow the standard conv
tion for su~2! of expressing the Wigner–Eckart theorem in the form

^IM uTm
j uI 8M 8&5~ I 8M 8, jmuIM !

^I iTj i I 8&
A2I11

, ~85!

i.e., with a factorA2I11 included in the denominator of the right hand side.
Because of the simple form ofG(ei)5“ i , the matrix elements ofei are easy to evaluate in

the VCS representation. One finds

^~lm! j I i êi~lm! j1 1
2 ,I 8&5~21! I 81 j1 ~1/2! 2 ~m/2!A~2 j11!~2 j12!~2I11!~2I 811!

3W~ I 8I j1 1
2 j ;

1
2

m
2!
Kj1 ~1/2! ,I 8

~lm!

KjI
~lm! . ~86!

Matrix elements off̂ i are equally easy to evaluate if one expressesG( f i) in the form

G~ f i !5@L,zi #, ~87!

whereL is the SU~2! scalar operator

L52 Î22 ĵ22
1

2(i j Cj j zi¹ i1
3

2(i zi“ i . ~88!

The operatorL is diagonal in the$c j IM
(lm)% basis with eigenvalues given by

Lc j IM
~lm!5V j I

~lm!c j IM
~lm! ,

V j I
~lm!5~2l1m13! j2 j ~ j11!2I ~ I11!. ~89!

We find that

^~lm! j1 1
2 ,I 8i f̂ i~lm! j I &5~21! I 81 ~1/2! 2I~V j1 ~1/2! ,I 8

~lm!
2V j I

~lm!!

3S KjI
~lm!

Kj1 ~1/2!q,I 8
~lm! D 2^~lm! j I i êi~lm! j1 1

2, I 8&. ~90!

It follows that the unitarity requirement is satisfied if the ratioKj1 (1/2) ,I 8
(lm) /KjI

(lm) is assigned the
value

Kj1 ~1/2! ,I 8
~lm!

KjI
~lm! 5AV j1 ~1/2! ,I 8

~lm!
2V j I

~lm!. ~91!

We then obtain

^~lm! j1 1
2 ,I 8i f̂ i~lm! j I &5d I 8,I1 ~1/2!A~l1s2I2 j !~s1I1 j12!~ I1 j2s11!
J. Math. Phys., Vol. 38, No. 8, August 1997
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1d I 8,I2 ~1/2!A~l1s1I2 j11!~s2I1 j11!~ I2 j1s!. ~92!

The range ofj I values for which the basis statesu(lm) j IM & are non-vanishing is inferred a
follows. First, observe thatI2 j lies in the range

2s<I2 j<s, s5m/2. ~93!

Thus we write

I2 j5s2q, q50,1,2,. . . ,m. ~94!

Next observe that the matrix element^(lm) j1 1
2,I1

1
2i f̂ i(lm) j I & vanishes unless

l1s2I2 j.0. ~95!

Thus sinceI>s2 j , we find that the allowed values ofI1 j are given by

I1 j5s1p, p50,1,2,. . . ,l. ~96!

One also ascertains that the matrix element^(lm) j1 1
2,I2

1
2i f̂ i(lm) j I & never vanishes for any

values ofj andI in the ranges given by Eqs.~93! and~96!. The ranges ofj andI values are shown
on a weight diagram for an SU~3! irrep in Fig. 1. Note that the parametersp andq have the same
meaning and take precisely the same range of values here as in Hecht’s paper;3 this greatly
facilitates comparing results of the two papers.

In the following, we shall need the identities

u~lm! j IM &5
1

KjI
~lm!

@ P̃j~ f̂ ! ^ u~lm!0s&] IM ~97!

and

KjI
~lm!5A ~l12s11!!l!

~l1s1I2 j11!! ~l1s2I2 j !!
. ~98!

The former is derived by first noting that the state@ P̃j ( f̂ )^ u(lm)0&] IM has VCS wave function

@ P̃j~@L,z# ! ^ jks!&] IM5S KjI
~lm!

K0s
~lm!D 2w j IM

~lm!~z! ~99!

and choosing the absolute norms of wave functions by settingK0s
(lm)51. The state

@ P̃j ( f̂ )^ u(lm)0&] IM then has VCS wave functionKjI
(lm)c j IM

(lm) and Eq.~97! follows. The values of
the KjI

(lm) coefficients, given by Eq.~98!, are obtained from the ratios, given by Eq.~91!, with
K0s
(lm)51.
More details of VCS representations of su~3! are given in Ref. 12.

C. Shift tensors and their matrix elements

From the general expression, Eq.~30!, we have a set of SU~3! shift tensors$T(lm) j IM % with
highest grade components

T0sn
~lm! j IM5@Pj~“ ! ^ t«IM #sn , «52l1m26 j , s5

m

2
, ~100!
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where

Pjm~“ !5
~2¹2!

j2m~“3!
j1m

A~ j2m!! ~ j1m!!
, ¹ i5

]

]zi
, ~101!

and

t«IM5j«t IM ~102!

is a U~2! shift tensor expressed as a product of U~1! and SU~2! shift tensors. Note that the U~1!
quantum number« is the eigenvalue of the grade operatorX and, sinceT0sn

(lm) j IM is the highest
grade component of a tensor of highest grade 2l1m ~cf. Eq. ~66!! andPj has grade 6j , it follows
that «52l1m26 j .

Matrix elements of the above shift tensors can be expressed as products of SU~2! CG coef-
ficients and SU~2!-reduced matrix elements according to the Wigner-Eckart theorem of Eq.~85!.
Similarly, they can be expressed as products of SU~3! CG coefficients and SU~3!-reduced matrix
elements

^~l3m3! j 3I 3M3uTj 2I2M2

~l2m2! j IM u~l1m1! j 1I 1M1&

5(
a

~~l1m1! j 1I 1M1 ,~l2m2! j 2I 2M2ua~l3m3! j 3I 3M3!^~l3m3!uuuT~l2m2! j IM uuu~l1m1!&a .

~103!

Thus by factoring the SU~3! CG coefficient

~~l1m1! j 1I 1M1 ,~l2m2! j 2I 2M2ua~l3m3! j 3I 3M3!

5~ I 1M1 ,I 2M2uI 3M3!~~l1m1! j 1I 1 ,~l2m2! j 2I 2ia~l3m3! j 3I 3!, ~104!

where the factors are, respectively, an SU~2! CG coefficient and an SU~2!-reduced SU~3! CG
coefficient, we obtain

^~l3m3! j 3I 3iTj 2I2

~l2m2! j IM i~l1m1! j 1I 1&

A2I 311
5(

a
~~l1m1! j 1I 1 ,~l2m2! j 2I 2ia~l3m3! j 3I 3!

3^~l3m3!uuuT~l2m2! j IM uuu~l1m1!&a . ~105!

Since CG coefficients are the components of a unitary transformation, they obey orthogo
relationships which establish them as the components of a set of orthonormal vectors. Th
can regard the reduced matrix elements^(l3m3) j 3I 3iTj 2I2

(l2m2) j IM i(l1m1) j 1I 1&/A2I 311 as compo-

nents of a set of nonorthonormal vectors which can be orthonormalized by Gramm–Schm
other methods to give CG coefficients.

Matrix elements of the highest grade components of the shift tensors, defined by Eq.~100!, are
easily evaluated and found to be given by
J. Math. Phys., Vol. 38, No. 8, August 1997
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^~l3m3! j 3I 3iT0s
~l2m2! j IM i~l1m1! j 1I 1&

5dM ,I32I1
d j , j 12 j 3

~21!2 jA~2s211!~2I 111!~2I 311!
~2 j 111!!

~2 j !! ~2 j 3!!

3H s1 j 1 I 1

I j s2

s3 j 3 I 3
J Kj 1I1

~l1m1!

Kj 3I3

~l3m3! , ~106!

where the array in curly brackets is an SU~2! 9 j symbol. The other matrix elements are obtain
from recursion relations obtained by equating the expression

@G~ f !,Tj 2I2

~l2m2! j IM
# I
28M28

5
^~l2m2! j 21 ~1/2! ,I 28i f̂ i~l2m2! j 2I 2&

A2I 2811
T
j 21 ~1/2! ,I28M28

~l2m2! j IM
, ~107!

obtained from Eq.~92!, with the identity

@G~ f !,Tj 2I2

~l2m2! j IM
# I
28M28

5@G~ f ! ^Tj 2I2

~l2m2! j IM
# I
28M28

2~21! I21 ~1/2! 2I28@Tj 2I2

~l2m2! j IM
^ G~ f !# I

28M28
.

~108!

Equating matrix elements of the right hand sides of Eqs.~107! and ~108! gives the recursion
relation

f ~~l2m2! j 2I 2 ;I 28!F~~l1m1! j 1I 1 ,~l2m2! j 21
1
2 ,I 28i j I ~l3m3! j 31

1
2,I 38!

5(
I3

~21! I31I282I12 ~1/2!~2I 2811!W~ I 3I 38I 2I 28 ;
1
2 I 1! f ~~l3m3! j 3I 3 ;I 38!

3F~~l1m1! j 1I 1 ,~l2m2! j 2I 2i j I ~l3m3! j 3I 3!

2(
I18

~21! I21I182I38~2I 2811!W~ I 1I 18I 28I 2 ;
1
2 I 38! f ~~l1m1! j 1I 1 ;I 18!

3F~~l1m1! j 11
1
2 ,I 18 ,~l2m2! j 2I 2i j I ~l3m3! j 31

1
2 ,I 38!, ~109!

where

F~~l1m1! j 1I 1 ,~l2m2! j 2I 2i j I ~l3m3! j 3I 3!

5
Kj 3I3

~l3m3!

Kj 1I1

~l1m1!Kj 2I2

~l2m2! ^~l3m3! j 3I 3iTj 2I2

~l2m2! j IM i~l1m1! j 1I 1&, ~110!

f ~~lm! j I ;I 8!5
Kj1 ~1/2! ,I 8

~lm!

KjI
~lm! ^~lm! j1 1

2 ,I 8i f̂ i~lm! j I &, ~111!

andW(abcd; 12f ) is an SU~2! Racah coefficient for which there are well-known analytical expr
sions. Thus, theF coefficients are easily computed, for any value ofj 2, starting from the given
expression of Eq.~106! for j 250.
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D. Evaluation of SU(3) CG coefficients

Equation ~105! implies that the matrix elementŝ (l3m3) j 3I 3iTj 2I2

(l2m2) j IM i(l1m1)

j 1I 1&/A2I 311 are components of a set of nonorthonormal vectors which can be orthonorm
to give CG coefficients. It follows from Eq.~110! that SU~3! CG coefficients are linear combina
tions ofF coefficients of the form

~~l1m1! j 1I 1 ,~l2m2! j 2I 2ia~l3m3! j 3I 3!

5
Kj 1I1

~l1m1!Kj 2I2

~l2m2!

Kj 3I3

~l3m3! (
j I

Na, j I ~~l1m1!~l2m2!;~l3m3!!

3
F~~l1m1! j 1I 1 ,~l2m2! j 2I 2i j I ~l3m3! j 3I 3!

A2I 311
, ~112!

which satisfy the orthogonality properties of CG coefficients. Thus having determined tF
coefficients, one can readily compute the CG coefficients. The following theorem provid
simple algorithm.

Theorem: Let R(al3m3) denote an SU~3! irrep of highest weight (l3m3) in the tensor product
R(l2m2)^R(l1m1), wherea indexes the multiplicity of such irreps. Then the SU~3! CG coefficients
for the couplingR(l2m2)^R(l1m1)→R(al3m3) are given by the following algorithm:

~i! Starting with the coefficients

F~~l1m1! j 1I 1 ,~l2m2!0s2i j I ~l3m3!0s3!

5d j , j 1
~21! I11I1 j 12s3A~m211!~2I 111!WS I 1m1

2

m2

2
I ; j 1

m3

2 D , ~113!

and

f ~~lm! j I ;I 8!5d I 8,I1 ~1/2!~l1s2I2 j !A~s1I1 j12!~ I1 j2s11!

1d I 8,I2 ~1/2!~l1s1I2 j11!A~s2I1 j11!~ I2 j1s!, ~114!

evaluate the otherF((l1m1) j 1I 1 ,(l2m2) j 2I 2i j I (l3m3)0s3) coefficients by repeated applicatio
of the equation

F~~l1m1! j 1I 1 ,~l2m2! j 2I 2i j I ~l3m3!0s3!

52
1

f~ ~l2m2! j 22 ~1/2! ,I 28 ;I 2!
(
I18

~21! I281I182s3~2I 211!

3W~ I 1I 18I 2I 28 ;
1
2 s3! f ~~l1m1! j 1I 1 ;I 18!

3F~~l1m1! j 11
1
2 ,I 18 ,~l2m2! j 22

1
2 ,I 28i j I ~l3m3!0s3!. ~115!

~ii ! Find linear combinations of theseF coefficients

~~l1m1! j 1I 1 ,~l2m2! j 2I 2ia~l3m3!0s3!5Kj 1I1

~l1m1!Kj 2I2

~l2m2!(
j I

Na, j I ~~l1m1!~l2m2!;~l3m3!!

3F~~l1m1! j 1I 1 ,~l2m2! j 2I 2i j I ~l3m3!0s3!, ~116!
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which satisfy the orthogonality properties required of CG coefficients. This can be don
Gramm–Schmidt or other methods. The linear combinations are a subset of CG coefficien

~iii ! Evaluate the remaining CG coefficients by means of the expression

~~l1m1! j 1I 1 ;~l2m2! j 2I 2ia~l3m3! j 3I 3!

5
Kj 1I1

~l1m1!Kj 2I2

~l2m2!

Kj 3I3

~l3m3!
A~2 j 311!~m311!~2I 111!~2I 211!~2 j 111!! ~2 j 211!!

3 (
j 18I18 j 28I28

~21! I11I22I182I282 j 3A ~2I 1811!~2I 2811!

~2 j 18!! ~2 j 122 j 18!! ~2 j 28!! ~2 j 222 j 28!!

3WS m1

2
j 1I 18 j 12 j 18 ;I 1 j 18DWS m2

2
j 2I 28 j 22 j 28 ;I 2 j 28D

3S 2 j 3

2 j 122 j 18
D
1
25 I 18 I 28

m3

2

j 12 j 18 j 22 j 28 j 3

I 1 I 2 I 3
6 S ~l1m1! j 18I 18 ,~l2m2! j 28I 28ia~l3m3!0

m3

2 D
K
j
18I18

~l1m1!
K
j
28I28

~l2m2! .

~117!

Proof:Equation~113! is obtained from Eqs.~110! and~106!. Equation~114! is obtained from Eqs.
~111! and ~92!. Equation~115! is a special case of Eq.~109!. Equation~116! is a special case o
Eq. ~112!. It remains to derive Eq.~117!.

First observe that the coefficients of Eq.~116! give the highest grade states

ua~l3m3!0s3M &[uC0s3M
a~l3m3!

&5 (
j 1I1 j 2I2

~~l1m1! j 1I 1 ,~l2m2! j 2I 2ia~l3m3!0s3!

3u@c j 2I2

~l2m2!
^ c j 1I1

~l1m1!
#s3M& ~118!

in the tensor product spaceV(l2m2)^V(l1m1). From these states, we can use Eq.~97! to construct
a complete basis of states

uC j 3I3M3

a~l3m3!
&5

1

Kj 3I3

~l3m3! @ P̃j 3~ f̂ ! ^ uC0s3

a~l3m3!
&] I3M3

, ~119!

for the (al3m3) irrep. The desired SU~3! CG coefficients are then the overlaps

~~l1m1! j 1I 1 ,~l2m2! j 2I 2ia~l3m3! j 3I 3!5^@c j 2I2

~l2m2!
^ c j 1I1

~l1m1!
# j 3I3MuC j 3I3M

a~l3m3!
&. ~120!

It follows that these coefficients are given by
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~~l1m1! j 1I 1 ;~l2m2! j 2I 2ia~l3m3! j 3I 3!

5
1

Kj 3I3

~l3m3!A2I 311
^@c j 2I2

~l2m2!
^ c j 1I1

~l1m1!
# j 3I3i P̃

j 3~ f̂ !iC0s3

a~l3m3!
&

5
1

Kj 3I3

~l3m3!A2I 311
(

j 18I18 j 28I28
~~l1m1! j 18I 18 ,~l2m2! j 28I 28ia~l3m3!0s3!

3^@c j 2I2

~l2m2!
^ c j 1I1

~l1m1!
# j 3I3i P̃

j 3~ f̂ !i@c
j
28I28

~l2m2!
^ c

j
18I18

~l1m1!
#s3&. ~121!

It remains only to evaluate the matrix elements on the rhs of this expression.
First observe thatP̃m

(1/2)( f̂ ) acts on tensor product states according to the equation

P̃m
1/2~ f̂ !uc j 2I2M2

~l2m2!
^ c j 1I1M1

~l1m1!
&5u~ P̃m

1/2~ f̂ !c j 2I2M2

~l2m2!
! ^ c j 1I1M1

~l1m1!
&1uc j 2I2M2

~l2m2!
^ ~ P̃m

1/2~ f̂ !c j 1I1M1

~l1m1!
!&.

~122!

Thus it is convenient to write

P̃ m
1/2~ f̂ !5 P̃ m

1/2~ f̂ 2!1 P̃ m
1/2~ f̂ 1!, ~123!

with the understanding thatP̃m
1/2( f̂ 1) and P̃m

1/2( f̂ 2) act onV(l1m1) andV(l2m2), respectively. Then,
sinceP̃m

j ( f̂ ) is expressible as the SU~2!-coupled product of 2j copies ofP̃m
1/2( f̂ ), i.e.,

P̃m
j ~ f̂ !5

1

A~2 j !!
@Pm

1/2~ f̂ ! ^ •••^ P̃m
1/2~ f̂ !# jm , ~124!

we determine that

P̃m
j ~ f̂ !5(

n
S 2 jn D 1/2@ P̃n/2~ f̂ 2! ^ P̃j2 h/2~ f̂ 1!# jm ~125!

and

~~l1m1! j 1I 1 ;~l2m2! j 2I 2ia~l3m3! j 3I 3!

5
1

Kj 3I3

~l3m3!A2I 311
(

j 18I18 j 28I28
~~l1m1! j 18I 18 ,~l2m2! j 28I 28ia~l3m3!0s3!

3(
n

S 2 j 3n D 1/2^@c j 2I2

~l2m2!
^ c j 1I1

~l1m1!
# I3i@ P̃

n/2~ f̂ 2! ^ P̃j 32 ~n/2!~ f̂ 1!# j 3i@c
j
28I28

~l2m2!
^ c

j
18I18

~l1m1!
#s3&.

~126!

In a manner similar to the way Eq.~92! was derived, one determines that

^c j I
~lm!i P̃k~ f̂ !ic j 8I 8

~lm!&5d2k, j2 j 8~21! j2 j 82I1I 8
KjI

~lm!

Kj 8I 8
~lm!

3A ~2 j11!!

~2 j 8!! ~2k!!
~2I11!~2I 811!WS m

2
j I 8k;I j 8D . ~127!

Thus we obtain Eq.~117!.
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V. THE MULTIPLICITY FREE ( l20)^ (l10) COUPLING

The equations simplify considerably when the coupling is multiplicity free. Suppose
example, thatm15m250. The multiplicity labelsj 1 and j 2 for the statesu(l1m1) j 1I 1M1& and
u(l2m2) j 2I 2M2& then take the unique valuesj 15I 1 and j 25I 2 and may be suppressed. Furthe
more, the recursion relation of Eq.~115! becomes

f~ ~l20!I 22
1
2 ;I 2!F~ ~l10!I 1 ,~l20!I 2i ~lm!0~m/2!!

5~21! I11I2212 m/2~2I 211!WS I 1I 11 1

2
,I 2I 22

1

2
;
1

2

m

2 D
3 f S ~l10!I 1 ;I 11

1

2DFS ~l10!I 11
1

2
,~l20!I 22

1

2
i~lm!0

m

2 D ~128!

with the selection rules~the first expressing grade conservation!

I 11I 25
m

2
, l11l25l12m. ~129!

From Eq.~114!, we have

f ~~l0!I ;I1 1
2!5~l22I !A~2I11!~2I12! ~130!

and the Racah coefficient takes the value

WS I 1I 11 1

2
,I 2I 22

1

2
;
1

2

m

2 D5~21! I11I22 ~m/2!A~ I 12I 21 ~m/2! 11!~ I 22I 11 ~m/2!!

~2I 111!~2I 112!2I 2~2I 211!
.

~131!

To simplify the notation, it is convenient to suppress some of the constant parameters by w

Fm~m,n!5FS ~l10!I 1 ,~l20!I 2i~lm!0
m

2 D , ~132!

with

m52I 1 , n52I 2 , m5m1n, l5l11l222m. ~133!

The recursion relation then becomes

~l22n11!2nFm~m,n!52~l12m!A~m1n2m!~m1m2n12!Fm~m11,n21!. ~134!

From Eq.~113!, one has the value of the coefficient

Fm~m,0!5
~21!m

Am11
~135!

and, from the recursion relation~134!, one obtains the general result

Fm~m,n!5
~21!m1n

Am11

~l12m!! ~l22n!!

~l12m!!l2!
A m!

m!n!
. ~136!

From Eq.~116!, we then have the CG coefficients
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S ~l10!I 1 ,~l20!I 2i~lm!0
m

2 D5Nm

~21!m1n

m11
Al1!m! ~l122I 1!! ~l222I 2!!

l2! ~l12m!! 2~2I 1!! ~2I 2!!
~137!

to within Nm norm factors. The norm factors are evaluated by the unitarity condition

(
I11I25m

S ~l10!I 1 ,~l20!I 2i~lm!0
m

2 D 251, ~138!

which gives

S Nm

m11D
2l1!

l2!

m!

~l12m!! 2 (
m1n5m

~l12m!! ~l22n!!

m!n!
51 . ~139!

The sum in this expression can be evaluated by Sharp’s identity@cf. Eq. ~53!#, which gives

(
m1n5m

~l12m!! ~l22n!!

m!n!
5

~l11l22m11!! ~l12m!! ~l22m!!

~l11l222m11!!m!
. ~140!

Thus we obtain

Nm5~m11!Al2!

l1!

~l12m!!

~l22m!!

~l11!!

~l1m11!!
~141!

and the CG coefficients

S ~l10!I 1 ,~l20!I 2i~lm!0
m

2 D5~21!m1nA m! ~l11!! ~l122I 1!! ~l222I 2!!

~l12m!! ~l22m!! ~l1m11!! ~2I 1!! ~2I 2!!
.

~142!

We now plug this expression into Eq.~117! to obtain the general (l20)^ (l10) coefficients.

~~l10!I 1 ,~l20!I 2i~lm! j I !

5~21!mA~l11!~m11!! ~l1m1I2I 12I 211!! ~l1m2I2I 12I 2!! ~m1n2m11!!

~l12m!! ~l22m!! ~l12m!! ~l22n!!

3A~m11!! ~n11!!

~l1m11!! (
m81n85m

~21!n8
~l12m8!! ~l22n8!!

m8! ~m2m8!!n8! ~n2n8!! 5 I 18 I 28
m

2

I 12I 18 I 22I 28 j

I 1 I 2 I
6 ,

~143!

with the understanding that

m52I 1 , m852I 18 , n52I 2 , n852I 28 , j5I 11I 22
m

2
. ~144!

This expression simplifies whenI5I 11I 2 . The 9j symbol then has the simple value
J. Math. Phys., Vol. 38, No. 8, August 1997
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5 I 18 I 28
m

2

I 12I 18 I 22I 28 j

I 1 I 2 I 11I 2
6 5

1

A~m11!~2I 111!~2I 211!~2 j11!
~145!

and the CG coefficient becomes

~~l10!I 1 ,~l20!I 2i~lm! j I 11I 2!

5~21!mA ~l11!m! ~l1m2m2n!!m!n! ~m1n2m!!

~l12m!! ~l22m!! ~l1m11!! ~l12m!! ~l22n!!

3 (
m81n85m

~21!n8
~l12m8!! ~l22n8!!

m8! ~m2m8!!n8! ~n2n8!!
. ~146!

This expression agrees with the identity, derived in the Appendix,

~~l10!I 1 ,~l20!I 2i~lm! j I 11I 2!5S l1

2
,
l1

2
2m,

l2

2
,
l2

2
2nU l

2
,
l

2
2m2m2nD , ~147!

where the quantity on the right of this equation is an SU~2! CG coefficient.

VI. CONCLUDING REMARKS

We have shown in this and a preceeding paper that the Biedenharn-Louck program fo
puting CG coefficients by means of shift tensors can be completed by VCS methods. Th
tensors were constructed in a holomorphic VCS representation in Ref. 10. In this paper, w
shown that one can evaluate matrix elements of the highest weight components of thes
tensors and from them compute matrix elements of other components by solving simple rec
relations. The matrix elements obtained in this way can be regarded as the overlaps

^Ca3n3

bl3 uca2n2

l2 ^ ca1n1

l1 &5^ca3n3

l3 uTa2n2

l2bmuca1n1

l1 &, m5l32l1 ~148!

of a nonorthonormal set of state vectors$uCa3n3

bl3 &% with the basis vectors$uca2n2

l2 ^ ca1n1

l1 &% in the

tensor product spaceVl2^Vl1. The desired CG coefficients are then linear combinations of th
matrix elements

~l1a1n1 ,l2a2n2usl3n3!*5(
b

Ns,b~l1 ,l2 ;l3!^Ca3n3

bl3 uca2n2

l2 ^ ca1n1

l1 & ~149!

chosen such that the corresponding states

(
b

Ns,b* ~l1 ,l2 ;l3!uCa3n3

bl3 & ~150!

are an orthonormal basis. Such linear combinations are easily found, e.g., by Gramm–S
methods.

In carrying out the orthonormalization, it is noted that the linear transformation matr
N(l1 ,l2 ;l3), do not depend on the group-theoretically defined basis labelsa3n3. Thus they are
conveniently determined for the subset of highest weight states$Cl

bl3% for eachl3. Then, from

3
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the CG coefficients (l1a1n1 ,l2a2n2usl3l3) or, equivalently, the reduced CG coefficien
(l1a1 ,l2a2isl3), one generates analytic expressions for all other CG coefficients as s
explicitly for SU~3!, as part of Theorem 1, in Section IV D.

Although the program has been carried out for SU~2! and SU~3!, the algorithm is more
general. Moreover, it can be implemented incrementally. Thus in determining the represen
of SU~3!, one makes use, in VCS theory, of a knowledge of the CG and Racah coefficie
SU~2!. We now find that we can similarly determine SU~3! CG coefficients using as input th
SU~2! CG, Racah and 9j coefficients. As Draayer and Akiyama have shown,4 one can compute
Racah and 9j symbols for SU~3! from the CG coefficients. Thus one can now proceed to ind
the representations and coupling coefficients for rank three Lie groups, starting from SU~3!. Some
natural candidates are SU~4!, SO~6! and Sp~3!.

It should be noted, however, that the given construction works only for subgroup chai
which the corresponding induced representations are holomorphic. Thus for the unitary grou
algorithm works with the so-called canonical basis; e.g.,

SU~n!.SU~n21!. ~151!

Other bases are also of interest. For example, one often needs SU~3! CG coefficients in an SO~3!,
as opposed to an SU~2!, basis. The Draayer–Akiyama package computes these coefficien
computing first the SU~3! . SU~2! coefficients and then making a transformation of basis. S
a procedure is always possible. However, in view of the importance of the SU~3! . SO~3!
coefficients, one would like a more direct, and more efficient, algorithm. Unfortunately, w
VCS induction has been adapted to give SU~3! representations in an SO~3! basis, the correspond
ing induction of SU~3! shift tensors in an SO~3! basis has not been developed. This is someth
we intend to work on.

It should be noted, however, that the transformation methods of Draayer and Akiyam
work. Moreover, they allow one to proceed to higher ranks. For example, CG coefficients
be very useful if known for the compact and noncompact symplectic groups Sp~3! and Sp~3,R!. It
would now appear to be relatively straightforward to compute these coefficients, for exam
an Sp~3,R! . SU~3! . SO~3! basis, taking as input the SU~3! CG coefficients, in an SO~3! basis,
together with the basis independent SU~3! Racah and 9j symbols.

APPENDIX A: SOME SPECIAL SU(3) CG COEFFICIENTS

Some SU~3! CG coefficients are very easy to obtain. Consider, for example, the tensor
uct of two highest grade statesu(l1m1)0(m1/2)m1& ^ u(l2m2)0(m2/2)m2&. These states ca
couple only to the highest grade statesu(l3m3)0(m3/2)m3& of an irrep for which

2l31m352l11m112l21m2 . ~A1!

Thus we obtain

S ~l1m1!0
m1

2
m1 ,~l2m2!0

m2

2
m2U~l3m3!0

m3

2
m3D

5d2l31m3,2l11m112l21m2S m1

2
m1 ,

m2

2
m2U m3

2
m3D ~A2!

or

S ~l1m1!0
m1

2
,~l2m2!0

m2

2 I ~l3m3!0
m3

2 D5d2l31m3,2l11m112l21m2
. ~A3!
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Thus in the tensor product

~1,1! ^ ~1,1!5~2,2!1~3,0!123~1,1!1~0,3!, ~A4!

for example, we have the coefficients for the highest grade states of the (2,2)-
(3,0)-coupled irreps. This is significant because, as shown in Section IV, if we know the
coefficients for the highest grade states of a coupled irrep, we have analytical expressions
CG coefficients for that irrep. Thus we have analytical expressions for all (1,1)^ (1,1)→(2,2) and
(1,1)^ (1,1)→(3,0) coefficients.

We can also obtain the (1,1)̂(1,1)→(0,3) coefficients in a similar manner. Consider t
weight diagram for the (1,1)̂ (1,1) coupled irreps shown in Fig. 2. The weights for the high
grade states are shown in Fig. 2~a! for both sides of Eq.~A4!. However, for another choice o
grading operator, the weights of the highest grade states are as shown in Fig. 2~b!. This enables us
to obtain the (1,1)̂ (1,1)→(0,3) CG coefficients.

Recall that the grading operator for SU~3! was chosen, cf. Eq.~66!, to be the operator
X52C112C222C33 and that the highestX-grade states of an SU~3! irrep of highest weight
(lm) carry an SU~2! irrep of spinm/2, where SU~2! is the I -spin algebra withI15C23, I 05

1
2

(C222C33), I25C32. The root diagram for SU~3!, shown in Fig. 3, suggests that we also co
sider theY-grading operator

Y5C111C2222C33 ~A5!

and theF-spin operators

F15C12, F05
1

2
~C112C22!, F25C21. ~A6!

FIG. 2. Weights for the (1,1)̂ (1,1) SU~3! representation. Weights for states of highestX grade are highlighted in~a!.
Weights for states of highestY grade are highlighted in~b!.

FIG. 3. Root diagram for su~3! showing the roots for theI -spin andF-spin su~2! subalgebras.
J. Math. Phys., Vol. 38, No. 8, August 1997
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The highestY-grade states of an irrep of highest weight (lm) then carry an SU~2! irrep ofF spin
l/2.

If we label a basis of states$u(lm)YFN&;N52F, . . . ,1F% by Y-grade andF-spin quantum
numbers, then the highestY-grade states are identical to the special states

U~lm!Y5l12m,F5
l

2
NL 5U~lm! j ,I5

m

2
1 j ,M5I L ~A7!

in the X-graded $u(lm) jJM &% basis. Furthermore, if we combine two such sets of high
Y-grade states, we obtain

u~l2m2!l212m2 ,F2N2& ^ u~l1m1!l112m1 ,F1N1&

5(
F3

~F1N1 ,F2N2uF3N3!u~l3m3!l312m3 ,F3N3&, ~A8!

where

F15
l1

2
, F25

l2

2
, F35

l3

2
, ~A9!

l312m35l112m11l212m2 , ~A10!

N35N11N2 . ~A11!

Using the identity~A7!, Eq. ~A8! can be rewritten

u~l2m2! j 2 ,s21 j 2 ,s21 j 2& ^ u~l1m1! j 1 ,s11 j 1 ,s11 j 1&

5(
l3

dl312m3 ,l112m11l212m2

3S l1

2
,
l1

2
22 j 1 ,

l2

2
,
l2

2
22 j 2U l3

2
,
l3

2
22 j 3D

3U~l3m3! j 3 ,
m3

2
1 j 3 ,

m3

2
1 j 3L , ~A12!

Thus, we obtain the SU~3! CG coefficients

S ~l1m1! j 1 ,
m1

2
1 j 1 ,~l2m2! j 2 ,

m2

2
1 j 2I ~l3m3! j 3 ,

m3

2
1 j 3D

5dl312m3 ,l112m11l212m2S l1

2
,
l1

2
22 j 1 ,

l2

2
,
l2

2
22 j 2U l3

2
,
l3

2
22 j 3D . ~A13!

From these results we easily derive, by the methods of Section IV, all SU~3! coefficients for the
couplings

~l1m1! ^ ~l2m2!→~l3m3! ~A14!

for which 2l31m352l11m112l21m2 or l312m35l112m11l212m2 . These are the ana
logs of the SU~2! coefficients (J1M1 ,J2M2uJ11J2 ,M11M2) for the so-called stretched cou
plings.
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Semiclassical determinants of Schro ¨dinger operators
on bundles with curvature of low rank

David S. Simon
Division of Mathematics and Science, Nova Southeastern University,
Fort Lauderdale, Florida 33314

~Received 8 October 1996; accepted for publication 22 April 1997!

The semiclassical (k→`) limit of a Schrödinger operatorDk acting on thekth
tensor power of a line bundle is studied. An inductive argument is given to show
that a previously derived infinite series representation for the leading term in the
large k expansion of ln detDk reduces under certain circumstances to simple ex-
pressions involving the Riemann zeta function. These results hold when the curva-
ture of the bundle is confined to a single plane at each point. ©1997 American
Institute of Physics.@S0022-2488~97!02808-9#

I. INTRODUCTION

A Schrödinger operator is a differential operator formed by adding a smooth potential f
tion V(x) to a Laplacian. Consider a Schro¨dinger operatorDk which acts on sections of thekth
tensor power of a line bundleE. In previous work,1 the limit k→` was considered, and expre
sions for the leading terms in the largek expansion of the logarithm of the determina
ln detDk were obtained. The limitk→` is important in the study of Demailly’s holomorphi
Morse inequalities.2,3 It is also important physically, since it represents the semiclassical lim
the quantum mechanical system whose dynamics are generated byDk . In the latter case,V(x)
represents the potential energy of a charged, spinless particle, and the curvature of the
represents an external gauge field.

In reference 1, an infinite series representation was derived for the determinant ofDk in the
semiclassical limit, using as a starting point the asymptotic expression derived by Demaill3 for
heat kernels of such operators. The goal here is to show that under certain circumstanc
infinite series describing the determinant can be summed to give a very simple expression
ing the Riemann zeta function and its derivative.

The notation will be that used by Demailly3 and Simon,1 and the setting of the problem wil
be as follows. LetM be a compact, closed manifold of real dimensionm, and letE be a complex
line bundle overM . M will be assumed to have a Riemannian metric,gmn . Let G be a Hermitian
connection onE, with curvature 2-formC. On a line bundle, the connection and curvature can
written asG52 iA andC52 iB, whereA andB are real-valued forms.~Note that in physical
applications,M will generally not be compact, so that the determinant may diverge; but the o
of physical relevance is usually the determinantper volumewhich will remain finite.!

At each pointx, the two-formB can be used to define a real, antisymmetric matrixr in the
following manner:

B~w,v !5g~w,rv !,

for all w,vPTxM . Let the rank ofr at pointxPM be denoted by 2l~x!. l (x) is the number of
nonzero blocks ofr (x) when it is block-diagonalized, and so is an integer between 0
@m/2#, where the bracket denotes the integer part. About each point there exists a local coo
system, such thatB can be written in terms ofr as

B~x!5(
j51

l ~x!

r 2 j21,2j~x!dx2 j21`dx2 j .
0022-2488/97/38(8)/4389/9/$10.00
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Let l j5r 2 j21,2j , for 1< j< l (x). By an appropriate ordering of the coordinates, all of thel j can
be taken to be positive.

Let $en% be an orthonormal frame defined locally on some region ofE. Then the covariant
derivativeD acting on sections ofE can be written locally asD( f nen)5(d fn)en2 iAn

m f nem ,
where eachf n is a smooth function.D then induces an operatorDk5d2 ikA acting on sections of
the product bundleE^k. From this, we define the Bochner, or covariant, Laplacian, acting
sections ofE, Dk*Dk . Here, the star denotes Hermitian conjugation. Finally, letV(x) be a smooth
Hermitian matrix acting on sections of a vector bundleF with base spaceM . Then, the operator
of interest to us is

Dk5
1

k
Dk*Dk1V~x!.

This operator acts on sections of the bundleEk
^F. What we wish to do, then, is to calculate th

asymptotic limit of the determinant detDk , ask→`. ~Note: the potential term above differs by
minus sign from that of reference 3.!

We now review some of the results of reference 9 which will be needed here. LetE be a line
bundle over a compactm-dimensional manifoldM , and letDk be the operator defined abov
Also, at each pointx, let 2l (x) be the rank ofB, and letV be thel3 l matrix with thel j along
the diagonal, and zeros elsewhere; in other words,V is the nondegenerate part ofr . Then, as
k→`,

ln detDk52S k

4p Dm/2(
i50

` E
M

$Tdi@P
1~2V!, . . . ,Pi~2V!#

3@TrV1V#m/22 iGi
m~x!%dvol~x!1O ~km/221/5!, ~1!

whereTdi is the i th Todd polynomial,Pi is the i th elementary symmetric polynomial in th
eigenvalues ofV, and

Gi
m~x!55

~21!m/22 i

~m/22 i !! @c~m/22 i11!1g2 ln Tr~V1V!# , for evenm, m/2> i ,

G~ i2 m/2! , for m even,m/2, i ,

G~ i2 m/2! , for oddm.

For a matrixA, the Todd polynomials are defined by the formula

det
A

~ I2e2tA!
5~21!nt2n(

i
Tdi@P

1~A!, . . . ,Pi~A!#t i .

For more information on the Todd polynomials, see reference 4.@Note that in equation~1! V is a
scalar-valued matrix, not a 2-form; as a result the series does not terminate after a finite num
terms. This is in contrast to typical applications of the Todd polynomials, whereV is often a
curvature two-form; in that case,Tdn(V)50 for n.2m.#

Let us briefly summarize the main results of this paper so that they will not be lost ami
details of the calculations to follow. It will be found in section II that equation~1! can be summed
in closed form under certain circumstances. In particular, we find that ifM is even dimensiona
and if the maximum rank ofB is 2, then
J. Math. Phys., Vol. 38, No. 8, August 1997
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ln detDk5
~21!m/221

~m/221!! EM S kl

2p Dm/2H F ln 2l2cSm2 D2gGzS 12
m

2
,wD2z8S 12

m

2
,wD J dvol~x!,

~2!

wherew5 1
2(11V/l), and V andl are, respectively, the classical scalar potential term and

sole nonzero eigenvalue ofV. c and z are the dilogarithm and generalized Riemann z
functions.5 ~The prime on the zeta function denotes differentiation with respect to the first
able.! In 4 dimensions, this gives back the correct results, usually obtained via quantum
theory, for a charged particle in a pure electric or pure magnetic field.6 If the dimension is odd,
equation~2! is replaced by

ln detDk;
~21!~m21!/2

~m22!!!
Ap

2EM S kl

2 Dm/2zS 12
m

2
,wDdvol~x!. ~3!

It remains to be seen if the series can be summed into a closed form forl.1.

II. THE EVEN-DIMENSIONAL CASE

In this section and the next, we will study the asymptotic determinant in the case in w
only one independent component of the curvature is nonzero. Equation~1! gives an especially
simple result in this case. The form of the result differs in even and odd dimensions. The ide
be to show that the determinant can be put into a simple form in 2 dimensions and in 3 d
sions, then to use inductive arguments to obtain similar results in higher dimensions.

As a matter of notational convenience, from now on, the symbol ‘‘; ’’ will be used to denote
that the object on the right of a formula is the leading term in the largek expansion of the objec
on the left.

Recall that the rank ofr is 2l , wherel is the number of nonzero blocks of the form

S 0 2l j

l j 0 D ,
that appear when the matrixB is block-diagonalized.l may be a function of position, since som
of thel j may vanish at some values ofx.

Here, though, we want to consider the situation whenl (x) never exceeds 1~except possibly
on a set of measure zero!. In this case the sum overi in expression~1! for the determinant can be
done explicitly. This is due to the fact that the argument of the Todd polynomial is now a nu
rather than a matrix, so we find that

Tdi~A!5
~21! i11

i !
Bil

i , ~4!

whereBi is thei th Bernoulli number. The sums over the Bernoulli numbers can then be writte
terms of the generalized Riemann zeta function,z(s,v). ~For information on Bernoulli numbers
and zeta functions, see reference 5.! In the following, for simplicity assume also thatV(x) is
simply a function, rather than a matrix. The generalization to matrix-valuedV(x) is obvious.

First, considerm52. Using the expression above for the Todd polynomials, equation~1!
gives us fork→`,

ln detDk;S k

2p D E
M

l~x!Hw1S 122wD ln~2lw!1(
i52

`

~21! i11
~ i22!!

i !
Biw

12 i J dvol~x!,

~5!
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wherel(x) is the single positive curvature component andw(x)5 1
2@11V(x)/l(x)#. B2n1150

for n.1, while theB2n have the following integral representation:5

B2n5~21!n11~4n!E
0

` t2n21

espt21
dt.

Using these facts plus the information5 that z(0,w)52w1 1
2 and

z8~0,w!5 ln G~w!2
1

2
ln 2p52z~0,w!ln w2w1 (

n50

`
~2n!!

~2n12!!
B2n12w

22n21,

a straightforward but tedious calculation allows us to put equation~5! into the form

ln detDk;
k

2pEMl~x!$z~0,w!ln 2l2z8~0,w!%dvol~x!, ~6!

where the prime on the zeta function denotes a derivative with respect to the first variable.
the expression we seek for the asymptotic limit on a two-dimensional surface.

As an interesting aside, note that when the potentialV is zero,w(x)51
2, and so

ln detDk;S k

4p D ln 2E
M

l~x!dvol~x!5S 12 ln 2D •x~E^k!,

wherex(E^k) is the Euler–Poincare characteristic of the bundleE^k. In other words, the deter
minant in this case tends asymptotically to a topological invariant. This seems to be an accid
two dimensions; in higher dimensions, the ln 2l(x) terms, for example, fail to cancel out. Th
asymptotic approach by determinants of various sorts to topological invariants seems to
common feature in two dimensions. For example, D’Hoker and Phong,7 and Sarnak8 calculate the
determinant of the]̄ -Laplacian on Reimann surfaces of constant negative curvature; if the s
classical limits of their results are taken, it is easy to see that they also predict that the log
determinant will approach a limit proportional to the Euler characteristic.

If we now look at the case ofm54, l51, another application of equations~1! and~4! plus a
great deal of effort will show the following:

ln detDk;S k

2p D 2E
M

l2$~12 ln 2l!z~21,w!1z8~21,w!%dvol~x!, ~7!

wherew is defined as before. The steps involved in deriving this result directly from equatio~1!
are long and tedious. But, fortunately, we can avoid the ordeal of going through the deriv
because both~6! and ~7! are special cases of the following theorem.

Theorem 1: Suppose that the dimension is even and thatl<1 almost everywhere. Then,

ln detDk;
~21!m/221

~m/221!! EM S kl

2p Dm/2H F ln 2l2cSm2 D2gGzS 12
m

2
,wD2z8S 12

m

2
,wD J dvol~x!.

~8!

Proof: Define the quantitiesam andrm by the following relations:
J. Math. Phys., Vol. 38, No. 8, August 1997
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E
M

am~l~x!,w~x!!dvol~x!; ln detDk,

E
M

rm~l~x!,w~x!!dvol~x!5
~21!m/221

~m/221!! EM S kl

2p D
m
2 H F2z8S 12

m

2
,wD1 ln 2l2cSm2 D2gG

3zS 12
m

2
,wD J dvol~x!.

We have

rm~l,w!5
~21!m/221

~m/221!! S kl

2p Dm/2H F ln 2l2cSm2 D2gGzS 12
m

2
,wD2z8S 12

m

2
,wD J ,

and from equation~1!,

am~l,w!5S k

2p D m/2H (
i50

m/2 F ~21! i11

i !
Bi~2l! i G~l1V!m/22 i

~21!m/22 i

~m/22 i !!

3FcSm2 2 i11D 1g2 ln~l1V!G
1 (

i5m/211

` F ~21! i11

i !
Bi~2l! i G ~l1V!m/22 iS i2 m

2
21D ! J .

What we need to show is thatam5rm , for all evenm. To achieve this we need the followin
easily verified facts:

~1! zS 12
m

2
,wD5

2

m

d

dw
zS 2

m

2
,wD ,

~2! z8S 12
m

2
,wD5

2

mFzS 12
m

2
,wD1

d

dw
z8Sm2 ,wD G ,

~3! cSm2 11D5cSm2 D1
2

m
.

Fact~3! is a basic property of the dilogarithm functionc(s) ~see reference 5, for example!. Facts
~1! and ~2! can be verified directly, using Hermite’s integral representation5 of the zeta function,

z~s,v !5
1

2
v2s1

1

s21
v12s12E

0

`sin~stan21~ t/v !!
~v21t2!s/2

dt

e2pt21
,

which is valid forRe(v).0. With this information in hand, a direct calculation shows that

rm52
2p

kB

d

dw
rm12 , ~9!

am52
2p

kB

d

dw
am12 . ~10!
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Equations~9! and ~10! make it clear that ifam5rm , for some value ofm, then am12 and
rm12 can differ only by terms which are independent ofw. In other words,
am12(l,w)2rm12(l,w)5cm12(l). If the cm termsare independent ofw, it suffices to show
that cm50 for all m at any one fixed value ofw. In particular, we can take the limit ofw→`.

Remembering thatw5 1
2(11V/l) and using Hermite’s integral representation ofz(s,w) in the

expression forrm , it is again a straightforward calculation to show thatam andrm do indeed have
the same limit asw→`, namely,

lim
w→`

am5 lim
w→`

rm52
1

~m/2!! S 2k

8p Dm/2FcSm2 11D1g2 ln
V

2G .
The fact that this is true for allm, plus the fact thata25r2 @by equation~6!# implies by induction
that the integration constants arising from the recursion relations~9! and~10! must be zero for all
m. This completes the proof of~8!. Q.E.D.

III. THE ODD-DIMENSIONAL CASE

Since the two-formB cannot be defined in one dimension, we will proceed directly to
simplest case of interest, that of three dimensions. Form53, the curvature form will again have
only a single nonzero block, which will again be represented by a single positive number,l. So
l51, and an application of equation~1! gives

ln detDk;S k

4p D 3/2E
M
(
n50

`

Tdn@P
1~2l!, . . . ,Pn~2l!#~l1V!3/22nGS n2

3

2Ddvol~x!.

Denote the integrand of the last expression bys(x), so that

ln detDk5S k

4p D 3/2E
M
dvol~x!s~x!. ~11!

Then, once again definingw5 1
2(11V/l) and using equation~4!, we have

s~x!5 (
n50

`

Tdn@P
1~2l!, . . . ,Pn~2l!#~l1V!3/22nGS n2

3

2D
5 (

n50

`
~21!n11

n!
Bn~2l!nGS n2

3

2D ~l1V!3/22n

52~2lw!3/2(
n50

`
~2w!2n

n!
BnGS n2

3

2D
52~2lw!3/2H ~2w!21B1GS 12

3

2D1 (
n50

`
~2w!22n

~2n!!
B2nGS 2n2

3

2D J
52~2lw!3/2H 2

Ap

w
1B0GS 2

3

2D1 (
n51

`
~2w!22n

~2n! !
B2nGS 2n2

3

2D J
52~2lw!3/2H 2

Ap

w
1
4

3
Ap1hJ , ~12!

where
J. Math. Phys., Vol. 38, No. 8, August 1997
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h5 (
n51

`
~2w!22n

~2n!!
B2nGS 2n2

3

2D .
The fourth equality above follows from the fact thatB2n1150 for n.0. To evaluate the serie
definingh, we again make use of the integral representation of the Bernoulli numbers, so

h5 (
n50

`
w22n

~2n!!
GS 2n2

3

2D ~21!n11~4n!E
0

` t2n21dt

e2pt21

522E
0

` t21dt

e2pt21(n51

` GS 2n2
3

2D
~2n21!! S 2

t2

w2D n

522E
0

` t21dt

e2pt21
LS 2

t2

w2D ,
with the definition

L~x!5 (
n51

` GS 2n2
3

2D
G~2n!

xn.

Using the Legendre duplication formula,5 we can put this into the form

L~x!5p (
n51

`
~Ax!2n

G~2n!GS 5222nD .
In order to proceed further, we note thatL(x) is the even part of the absolutely convergent ser

p (
n51

`
~Ax!n

G~n!G~ 5
22n!

.

So,

L~x!5
p

2 H (
n51

`
~Ax!n

G~n!G~ 5
22n!

1 (
n51

`
~2Ax!n

G~n!G~ 5
22n!

J
5

pAx
2 H (

n50

`
~Ax!n

n!G~ 3
22n!

2 (
n50

`
~2Ax!n

n!G~ 3
22n!

J .
The values of these series can found in standard math tables~cf. for example Ref. 9!, and so we
find that

L~x!5
pAx
2G~ 3

2!
$~11Ax!1/22~12Ax!1/2%.

Settingx52t2/w2 and substituting the resulting expression forL into h, we obtain
J. Math. Phys., Vol. 38, No. 8, August 1997
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h52
p i

w3/2GS 32D
E
0

` dt

e2pt21
$~w1 i t !1/22~w2 i t !1/2%.

But note that

~w6 i t !5~w21t2!1/2e6 i tan21~ t/w!,

~w6 i t !1/25~w21t2!1/4e162~ i /2!tan21~ t/w!

5~w21t2!1/4H cosF12tan21
t

wG6 isinF12tan21
t

wG J .
So,

h5
2 ip

w3/2G~ 3
2!
E
0

` dt

e2pt21

1

~w21t2!21/4~22i !sinF2
1

2
tan21

t

wG
522ApHw2

3
2zS 2

1

2
,wD2

1

2
w211

2

3 J .
The last equality follows from another application of the Hermite integral representation o
zeta function. Therefore, using the definition ofs in equation~12!, we have

s~x!52~2l!3/2ApzS 2
1

2
,wD ,

and so by equation~11! we find finally that

ln detDk;2ApE
M
d3xS kl

2p D 3/2zS 2
1

2
,wD .

Thus the determinant can be put into a simple closed form in three dimensions.
We can now show by induction that forl<1, there is a simple closed form for the determ

nant, analogous to~8!, valid for all odd dimensions.
Theorem 2: For odd dimensionm>3, if l<1 almost everywhere then

ln detDk;
~21!~m21!/2

~m22!!!
Ap

2EM S kl

2 Dm/2zS 12
m

2
,wDdvol~x!.

Proof: The method of proof is essentially the same as for Theorem 1. Define

am5S k

4p Dm/2(
i50

`
~21! i11

i !
Bi~2l! i~l1V!m/22 iGS i2 m

2 D
5S kl

2p Dm/2(
i50

`
~21! i11

i !
Biw

m/22 iGS i2 m

2 D ,
rm5

~21!~m21!/2

~m22!!!
Ap

2 S kl

2 Dm/2zS 12
m

2
,wD .
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Then, ln detDk;*Mamdvol(x), so that the theorem is proven if we can show thatam5rm , for all
m. Once again, we can take the derivative of both quantities with respect tow and directly verify
that

d

dw
am1252

kl

2p
am ,

d

dw
rm1252

kl

2p
rm .

So, again, these relations and the fact thata35r3 imply that am and rm can only differ by
w-independent terms. Again, we can show that these terms vanish by computing

lim
w→`

am5 lim
w→`

rm52S kV4p Dm/2GS 2
m

2 D .
@To obtain this equality, it is necessary to use the identity

GS 2
m

2 D5
2Ap

m!!
~22!~m11!/2,

for integerm.# The theorem is now proven. Q.E.D
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@S0022-2488~97!01808-2#

Equation~1.3! should read

H05
1

2 (
j51

n S 2
]2

]xj
2 1v j

2xj
2D .

In the first line after Eq.~2.5a!, the operator2 d2/dxi
2 1 v i

2xi
2 should read

~1/2!~2d2/dxi
21v i

2xi
2! .

The last line of p. 2187 should read

Rn for «>0 .27

The definitions ofaj andaj
† after Eq.~4.11! should read

aj5~2v j !
21/2~v j xj1]/]xj ! , aj

†5~2v j !
21/2~v j xj2]/]xj ! .
0022-2488/97/38(8)/4398/1/$10.00
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Towards a Coulomb gas of instantons of the S0(4) 3U(1)
Higgs model on R4

K. Arthur
School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland

G. M. O’Brien
School of Theoretical Physics, Dublin Institute for Advanced Studies,
10 Burlington Road, Dublin 4, Ireland

D. H. Tchrakian
Department of Mathematical Physics, St. Patrick’s College Maynooth, Maynooth, Ireland
and School of Theoretical Physics, Dublin Institute for Advanced Studies,
10 Burlington Road, Dublin 4, Ireland
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The SO~4!3U~1! Higgs model onR4 is extended by aF3 term so that the action
receives a non-vanishing contribution from the interactions of two-instantons and
three-instantons, and can be expressed as the inverse of the Laplacian onR4 in
terms of the mutual distances of the instantons. The one-instanton solutions of both
the basic and the extended models have been studied in detail numerically.
© 1997 American Institute of Physics.@S0022-2488~97!02809-0#

I. INTRODUCTION

Instantons are expected to play a central role in the semiclassical analysis of non-pertu
phenomena in non-linear field theories. Both the electroweak and the strong interactio
described by the dynamics of the Yang–Mills~YM ! model and hence the SU~2! instantons1 of the
relevant YM models onR4 in each case are expected to be employed. Unfortunately, this pro
turned out to be less successful than it was hoped. One of the main obstacles encountered
infrared problem arising from large instanton effects in the tunneling between topologically
tinct vacuua. This problem arises directly as a consequence of the scale invariance of th
model onR4 , which results in the dependence of the instanton solution on anarbitrary scale
parameter. The introduction of anabsolutescale would overcome this problem, and this is t
original motivation of the present work.

The most natural way of introducing anabsolutescale is by the introduction of Higgs fields
so that the dimensional parameter representing the non-zero vacuum expectation value
Higgs self-interaction potential can set theabsolutescale of the would-be theory. A related b
additional feature of the presence of a Higgs field is theexponential localisationof the instanton
solution, which results in the possibility of constructing a multi-instanton field configuratio
which the individual instantons overlap only asymptotically. This is what would enable the
struction of adilute gasof instantons. Furthermore, with the appropriate asymptotic behavio
these instantons, it may become possible to construct a dilute gas of instantons which i
non-trivially to yield a Coulomb gas in the appropriate dimensions. By a Coulomb gas we u
stand a gas where the contribution to theaction coming from the interactions is given by th
inverse of the Laplacian in terms of the mutual distances of the constituents of the gas. It
aim in the present work to propose a gauged Higgs model onR4 which acheives the objectives jus
stated.

The construction of such a Coulomb gas for a Higgs model onR3 was performed long ago by
Polyakov.2 The Higgs model there2 consisted of the SU~2! YM field interacting with an su~2!
valued Higgs field and the usual symmetry breaking Higgs potential. First, the well kn
monopole3 solution of this model was taken to be theexponentiallylocalised instanton in 211
0022-2488/97/38(9)/4403/19/$10.00
4403J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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dimensions. Second, a Coulomb gas of these instantons was constructed using the asy
fields of the monopole.3 Our plan in the present work is to propose a gauged Higgs model w
supports instanton solutions with the requisite asymptotic properties capable of describing
lomb gas onR4 . We shall restrict ourselves to this first task here, and defer the second techn
complicated task of constructing the resulting dilute gas action to a future work. Before proc
we make a remark aimed at putting the task at hand in perspective: Polyakov’s construction2 of the
Coulomb gas of instantons onR3 is the three-dimensional analogue of the two-dimensional C
lomb gas of instantons contructed previously by Berezinsky and by Kosterlitz and Thou4

employing the O~2! model onR2 , while the present work proposes the corresponding insta
field configuration onR4 .

Our sole task in this paper is to find the instanton solution of a particular Higgs m
satisfying the above-stated criteria. We shall not attempt to compute the action of the corre
ing Coulomb gas. Our plan is based on the three-dimensional example,2 namely to construct an
appropriate gauged Higgs model in contrast with the non-gauged model employed in the
dimensional example.4 Section II will be concerned with the instanton solution of the ba
SO~4!3U~1! Higgs model proposed in Ref. 5. We will make a detailed numerical study of
solution and find out that in spite of the instanton in question being exponentially localised
asymptotic properties do not permit the construction of a dilute gas whose inter-instanton
actions support a Coulomb gas. Then in Section III we shall propose two extended versions
basic model and will verify the existence of unit topological charge instantons by nume
techniques. These extended models are designed specially to support a non-trivial dilute C
gas onR4 . Finally, in Section IV we will summarise our results and give a brief discussion of
outlook for the extended models.

II. THE BASIC MODEL

First we briefly describe the SO~4!3U~1! model introduced in Ref. 5 and then procede
Sections II A, II B, and II C where we give the asymptotic solutions, the numerical solutions
an analysis of the inter-instanton interactions, respectively.

The basic model onR4 is described by the anti-Hermitian SO~4!3U~1! gauge connection
Âm5Am1 ig5am and the anti-Hermitian Higgs multipletF5g5gafa , Am being the SO~4! con-
nection,am the U~1! connection andfa a 4-vector real Higgs field. The model, which is deriv
from the eight-dimensional member of the scale invariant Yang–Mills hierarchy6 on R43S4 by
dimensional descent,7 has the following Lagrange density

L45Tr@ F̂mnrs
2 14l1$F̂ [mn ,D̂r]F%2218l2~$~h21F2!,F̂mn%2@D̂ [mF,D̂n]F#!2

254l3$~h21F2!,D̂mF%2154l4~h21F2!4#. ~1!

In Eq. ~1! and everywhere below, the brackets@ ,# and $,% denote commutators and anticomm
tators, respectively, and square brackets around indices signify total antisymmetrisation. A
curvatureF̂ and the covariant derivativeD̂ pertain to the SO~4!3U~1! connectionÂ5A1 ig5a,
while below we shall useF andD pertaining to the SO~4! connectionA. The 4-form curvature
field Fmnrs , in this notaion, is defined asFmnrs5$Fm[n ,Frs]%. The last term in Eq.~1! multi-
plying l4 is the symmetry breaking self-interaction potential of the Higgs fieldF. The constanth
is the vacuum expectation value~VEV! of the Higgs field and has the inverse dimensions
length,L21. In definition~1! of the Lagrangian, where the gauge coupling constant is set equ
1, the dimension of the Lagrangian as it stands is that ofL24. The four parametersla , a51,2,3,4,
which we shall denote with a vector notationlW , are dimensionless and the only restriction on th
is that they must bepositive. It is clear thatany oneof the four lW may be set equal to 1 by
rescaling the Higgs field, but we do not do that here.
J. Math. Phys., Vol. 38, No. 9, September 1997
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A physically very important property of the system~1! is, that at high momenta or sma
distances when the magnitude of the Higgs field is negligible with respect to the dimen
constanth, the system is dominated by the term with the highest power ofh. This happens to be
the coefficient of theh4 term in ~1!:

Lhigh;TrF2
l2

3
F̂mn

2 2l3~D̂mF!21
l4

4
~h21F2!2G , ~2!

namely the Yang–Mills–Maxwell–Higgs system featuring the usual quartic symmetry brea
Higgs potential.Lhigh in Eq. ~2! is the dominant contribution of Eq.~1! at high energy leading to
a perturbativeaction featuring propagating gauge fields as expected. The system~2! does not
support instanton solutions because it does not fulfill the scaling requirements of Derrick’s
rem and hence cannot describenon-perturbativephenomena without introducing some form
constrained instantons, which is precisely what is avoided by employing Eq.~1! for this purpose.
Thus model~1! can be regarded as the low energy effective action density corresponding t~2!,
describing thenon-perturbativedynamics.

There are two other physically relevant properties of system~1!. The first is that the gauge
group SO~4! leads to chirally symmetric dynamics, hence it does not fit in with electrow
theory. The second is that at low momentum or large distances, the gauge field dynam
dominated by thequartic 4-form curvature term TrF̂mnrs

2 whose propagation properties again
not fit in with electroweak dynamics. This is due to the absence of the usualquadratic 2-form
curvature Yang–Mills term TrF̂mn

2 in Eq. ~1! leading to the absence of propagating gauge fie
which are present in the electroweak interactions.

We must therefore conclude that model~1! is not suited to be a prototype for an electrowe
theory, but it is consistent with the features of strong interaction dynamics both at high an
momenta. In this respect, the U~1! connectionam in the gauge field multipletÂ5(Am1 ig5am) is
irrelevant and can consistently be suppressed. We have leftam in the definition ofL4 in Eq. ~1!,
because that is the most general8 model descending from the 4p dimensional member of the
Yang–Mills hierarchy that can support instantons with the required properties to be discus
detail in the rest of this work, and also because when we restrict to the spherically sym
configuration below the imposition of this symmetry will eliminate this U~1! field anyway.

In view of the above reasoning, we will study the properties of this model in the conte
strong interaction dynamics at low momentum, and in particular will attempt to construct a
gas of instantons that satifies the properties of a Coulomb gas inR4 , analogously to Polyakov’s
work2 in R3 . As the title states, however, this program will not be completed but we wil
restricted henceforth to the study of the classical instanton solutions of this model and its
sions.

When the values ofla respect the following restrictions:la.1 for eacha, then the action
density~1! is bounded from below by the topological charge density%5]mVm , expressed as the
divergence of the Chern–Simons formVm given by5

Vm52
1

8p2
«mnrs Trg5Fh4ÂnS F̂rs2

2

3
ÂrÂsD2

1

6
h2F$F̂ [rs ,D̂n]F%2

1

6
F~$~h21F2!,F̂rs%

1D̂ [rFD̂s]F!D̂nFG . ~3!

The surface integral of this density is the topological chargeN, and the spherically symmetri
solutions with which we will be concerned in this paper yieldN51 for this integral.

In the limit wherela51 for all a, or lW 5(1,1,1,1), this bound can be saturated and
resulting action then is equal to the topological chargeN. If, however, any of thela take positive
J. Math. Phys., Vol. 38, No. 9, September 1997
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values smaller than 1, then the action is not bounded any more byN but by lminN, wherelmin is
the smallest of thosela which are smaller than 1. This can be shown using similar argumen
those used in Ref. 9 in the case of the Abelian Higgs model. Whenla,0 for anya, we lose the
topological lower bound.

In the case where the topological lower bound is saturated we have the following self-du
or Bogomol’nyi, equations:

1
36 «mnrsg5F̂mnrs2~h21F2!250, ~4!

1
9 «mnrsg5$F̂ [rs ,D̂m]F%2$~h21F2!,D̂nF%50, ~5!

1
2 «mnrsg5~$~h21F2!,F̂rs%1D̂ [rFD̂s]F!2~$~h21F2!,F̂mn%1D̂ [mFD̂n]F!50. ~6!

The system~1! shares an important property with the Skyrme10 model onR3 , namely that all but
the second power of the derivative of any field component are excluded. This has been a c
in the construction of Eq.~1!. Like the Skyrme model, the self-duality equations saturating
topological bound are overdetermined.5,11 Accordingly, the only solutions of Eqs.~4!–~6! are the
trivial constant solutions we shall see below, and any non-trivial solutions we find will satisf
second-order Euler–Lagrange equations and not Eqs.~4!–~6! even forla51 for all a.

The most important property we shall require of the instanton solution is the larger limit of
the magnitude of the Higgs fielduFu5A2TrF2,

lim
r→`

uFu5h ~7!

in terms ofh, the VEV of the Higgs field. Requiring this asymptotic condition, we shall find t
the corresponding behaviors of the SO~4! gauge connectionAm and the full Higgs multiplet are

lim
r→`

Am5 1
2 g21]mg, lim

r→`

F5hg, ~8!

in terms of the SO~4! group elementg5g5gmx̂m , with x̂5x/r . We now adapt the arguments i
Ref. 12 pertaining to the SU~2! YM instanton to the solutions satisfying Eq.~8!. In the temporal
gaugeA050 each component ofAm andF become time independent, thus enabling the iden
cation of our solutions as instantons.

The solutions we shall seek below are restricted to the spherically symmetric restriction
Euler–Lagrange equations, namely, the unit topological charge instantons. This restriction i
adequate since instanton configurations of all charges can be attained by considering the co
of arbitrarily manyN51 intantons, since as we shall see below these overlap only asymptoti
The reason is the presence of the Higgs field which introduces the absolute scale with res
which the instantons will be localised. Indeed, we shall be able to acheive anexponentialdecay
yielding this localisation, similar to the instantons of thef4 model13 on R2 and ‘‘compact
electrodynamics’’2,13 on R3 .

A. Asymptotic solutions

Since we are unable to solve analytically the Euler–Lagrange equations of the
dimensional subsystem of Eq.~1! arising from the imposition of spherical symmetry, we will giv
explicit solutions in ther @1 andr !1 asymptotic regions only.

Under the imposition of spherical symmetry onR4 , the Abelian fieldf mn5] [man] defining
system~1! vanishes and we are left with only the SO~4! field Âm5Am , for which we employ the
following spherically symmetric ansatz:
J. Math. Phys., Vol. 38, No. 9, September 1997
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Am5
11 f ~r !

r
gmnx̂n , F5h~r !g5gmx̂m , ~9!

wheref (r ) is a dimensionless function andh(r ) has the same dimensions ash. gmn52 1
4@gm ,gn#

is the ~Dirac! spinor representation of SO~4!.
Substituting Eq.~9! into Eq. ~1!, performing the angular integrations and with a conveni

rescaling, we have the following one-dimensional subsystem:

L45
1

r 3
~12 f 2!2f r

21
4 f

3
r 3~h22h2!2hr

21
l1

r
~@~12 f 2!h# r !

2

1l2r ~@~h22h2! f # r !
21

3l1

r 3
~ f h~12 f 2!!214l3r ~ f h~h22h2!!2

1
l2

r
~~12 f 2!~h22h2!12 f 2h2!21

l4

4
r 3~h22h2!4, ~10!

having suppressed the overall constant factor coming from the angular volume. The subscrr in
Eq. ~10! denotes the differentiationf r5 d f /dr .

Using the notationd fL5 ]L/] f 2 (d/dr) (]L/] f r), we express the two Euler–Lagrang
equations of Eq.~10!. The equationd fL50 arising from the arbitrary variationsd f is

d fL45
2

r 3
~12 f 2!S 2 f f r

21
3

r
~12 f 2! f r2~12 f 2! f rr D1

4l1

r 2
f h~@~ f 221!h# r

2r @2 f r
2h12 f f rr h14 f f rhr1~ f 221!hrr # !22l2~h22h2!~@~h22h2! f # r

1r @2hr
2f 12hhrr f 14hhr f r1~h22h2! f rr # !1

6l1

r 3
f h2~ f 221!~3 f 221!

18l3r f h2~h22h2!21
4l2

r
f ~3h22h2!~~h22h2!~ f 221!12 f 2h2!, ~11!

and using the similar notationdhL5 ]L/]h2 (d/dr) (]L/]hr), the equationdhL50 arising from
dh is given by

dhL452
8l3

3
r 2~h22h2!~2rhhr

21~h22h2!~rhrr 13hr !!1
l1

r 2
~ f 221!

3~@~ f 221!h# r2r @2 f r
2h12 f f rr h14 f f rhr~ f 221!hrr # !

24l2h f~@~h22h2! f # r1r @2hr
2f 12hhrr f 14hhr f r1~h22h2! f rr # !

1
6l1

r 3
~ f 221!2f 2h124l3r f 2h~h22h2!~3h22h2!1

4l2

r
h~3 f 221!

3~~h22h2!~ f 221!12h2f 2!12l4r 3~h22h2!3h. ~12!

Since system~1! is a non-Abelian Higgs model like the models employed in Ref. 3, we ex
the solution to have asymptotic behavior similar to that of the monopole.3 Accordingly, we seek
solutions with the following properties:
J. Math. Phys., Vol. 38, No. 9, September 1997
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lim
r→0

f ~r !521, lim
r→`

f ~r !50, ~13!

lim
r→0

h~r !50, lim
r→`

h~r !5h. ~14!

The first members of both Eqs.~13! and~14! guarantee that the solution is regular atr 50, while
the second members satisfy criteria of finite action. Moreover, the second members of
equations result in the asymptotic behavior anticipated in Eq.~8!, which is essential for the
interpretation of the finite action topologically stable solution as the instanton of the dyna
model.

Expanding around their asymptotic valuesf (r )501F(r ) andh(r )5h2H(r ) in the region
r @1 in terms of the small functionsF(r ) and H(r ), and retaining only linear terms in thes
functions, Eqs.~11! and ~12! reduce, respectively, to

r2Frr23rFr23r2F50, ~15!

s2Hss2sHs28s2H50, ~16!

in which we have used the following two dimensionless rescalings ofr : r5Al1hr ,
s5A(l2/2l1)hr .

The solutions of Eqs.~15! and ~16! are expessed in terms of modified Bessel functions
lead to the followingexponentiallydecaying solutions:

f ~r !5l1h2r 2K2~A3l1hr !, ~17!

h~r !5hS 12A l2

2l1
hrK 1S 2Al2

l1
hr D D , ~18!

in the r @1 region.
In the r !1 region, we tried a solution in powers of the rescaled radial variabler5hr and

found

f ~r!5Ar21o~r4!, ~19!

h~r!5Br1o~r3!, ~20!

where the dimensionless constantA and the constantB with the dimensions ofh are arbitrary and
will be determined by the numerical integrations immediately below. Note that the behaviors~19!
and ~20! lead to fields (Am ,F) @Eq. ~9!# that are regular and differentiable atr 50.

B. Numerical solutions

We have integrated the equationsd fL450 anddhL450 given, respectively, by Eqs.~11! and
~12! numerically starting with the functions~19! and ~20! nearr 50 and choosing the numerica
values of the constantsA and B so that f (r ) and h(r ) reach their asymptotic values given b
the second members of Eqs.~13! and ~14!. We have performed this integration for the fo
lowing values of the dimensionless parameterslW ( i )5(l (1) ,l (2) ,l (3) ,l (4)), with
lW (1)5(0.5,0.5,0.5,0.5),lW (2)5(0.8,0.8,0.8,0.8),lW (3)5(1,1,1,1), andlW (4)5(1.2,1.2,1.2,1.2). The
numerical values of the pair of constants$A,B% are fixed by each of these numerical integratio
and are listed, respectively, in the first and second columns of Table I. The profiles of the fun
f (r ) are given in Figure 1, and those ofh(r ) are given in Figure 2. We do not exhibit the profile
of the action densities corresponding to these solutions since they are all ball shaped, as e
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



these

of the
ause

y one
dimen-
meters

ini-

tic

nt
r
al La-

4409Arthur, O’Brien, and Tchrakian: Towards a Coulomb gas of instantons of the SO(4)

                    
of spherically symmetric lumps. The values of the action integralsS(lW ( i )), i 51,2,3,4 for each of
these solutions are listed in the third column of Table I. We defer a detailed discussion of
quantitative results to Section IV.

The above integrations demonstrate the existence of the spherically symmetric solutions
basicmodel,5 but we find it interesting to pursue our numerical studies somewhat further bec
of an unusual feature of the model at hand. This concerns the overdetermined11 nature of the
Bogomol’nyi equations~4!–~6!, a feature shared with the Skyrme model10 on R3 . While in the
usual Skyrme model the overdetermined self-duality equations are parametrised only b
dimensional constant which sets the absolute scale, here in addition to the corresponding
sional constanth we have the three independent components of the four dimensionless para

lW . It is therefore interesting to investigate numerically the quantitative departure from the ‘‘m

mal’’ configurationlW 5(1,1,1,1).
We know from Refs. 5 and 11 that Eqs.~4!–~6! are only satisfied by the constant asympto

values of f (r ) and h(r ), given by Eqs.~13! and ~14!, and therefore that the stress tensorT mn

corresponding to these solutions does not vanish. It is interesting to see how the componeT 44

of the stress tensor behaves in detail, quantitatively. Now the componentT44 of the stress tenso
corresponding to the spherically symmetric sub-system equivalent to the one-dimension
grangian~10! is

TABLE I. Basic model: Values ofA andB and the actionS(lW a) as functions oflW (a).

l (a) A B S(lW (a))

0.5 0.300044 0.653908 1.023269
0.8 0.324460 0.650557 1.611897
1.0 0.335691 0.648918 2.002486
1.2 0.344599 0.647561 2.392250

FIG. 1. Profiles of the functionf (r ) for the systems characterised bylW (1)5(0.5,0.5,0.5,0.5),lW 25(0.8,0.8,0.8,0.8),

lW (3)5(1,1,1,1),lW (3)5(1.2,1.2,1.2,1.2), respectively, from right to left.
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



s the

ivial

ons

e
l

4410 Arthur, O’Brien, and Tchrakian: Towards a Coulomb gas of instantons of the SO(4)

                    
T445S 1

r 3
~12 f 2!2f r

22
l4

4
r 3~h22h2!4D 1S 4l3

3
r 3~h22h2!2hr

22
3l1

r 3
f 2h2~12 f 2!2D

1S l1

r
@~12 f 2!h# r

224l1r f 2h2~h22h2! D
1S l2r @~h22h2! f # r

22
l2

r
@~12 f 2!~h22h2!12 f 2h2#2D . ~21!

Note that each one of the four large brackets in Eq.~21! vanishes separately in the~overdeter-
mined! self-dual limit lW 5(1,1,1,1). In that case, the vanishing of each large bracket state
corresponding Bogomol’nyi equation, namely,

1

r 3
~12 f 2! f r1

1

2
~h22h2!50, ~22!

2~h22h2!hr2
3

r 3
~12 f 2! f h50, ~23!

1

r 2
@~12 f 2!h# r12~h22h2! f h50, ~24!

1

r
@~h22h2! f # r2

1

r 2
@~12 f 2!~h22h2!12 f 2h2#50. ~25!

ThusT44 in Eq. ~21! gives a quantitative measure of the departure of a solution from the tr
self-dual field configuration satisfying Eqs.~22!–~25!. We have plotted the profiles ofT44 for each
of the four solutions exhibited in Table I and Figures 1–3, in Figure 4.

Equations~22!–~25! are the spherically symmetric restrictions of the Bogomol’nyi equati
~4!–~6!. Specifically, Eq.~22! pertains to Eqs.~4!, Eqs.~23! and~24! to Eq.~5! and Eq.~25! to Eq.
~6!. It can be observed immediately that when each of Eqs.~22!–~25! is squared, the sum of th
square terms yields the spherically symmetric restriction of Eq.~1!, namely, the one-dimensiona

FIG. 2. Profiles of the functionh(r ) for the systems characterised bylW (1)5(0.5,0.5,0.5,0.5),lW 25(0.8,0.8,0.8,0.8),

lW (3)5(1,1,1,1),lW (3)5(1.2,1.2,1.2,1.2). All curves are strongly overlapping.
J. Math. Phys., Vol. 38, No. 9, September 1997
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system~10!. The corresponding sums of the cross terms is then the spherically symme
restriction of the topological charge density%5]mVm ~3!, divided byr3/8p2h3. Since% is a total
divergence, the corresponding one-dimensional topological charge density which is this qu
s, turns out to be a total derivative given by

s52
1

2

d

drS 3 f S 12
1

3
f 2D26~12 f 2! f g21~123 f 2! f g4D , ~26!

which is expressed in terms of the rescaled radiusr5hr and the rescaled dimensionless functi
g(r)5h21h(r). The integral*sdr, the topological charge of the one-dimensional subsys
~10!, is immediately evaluated using the limits~13! and ~14! to yield N51.

Having acheived a detailed quantitative understanding of our spherically symmetric solu
we procede to consider the question of inter-instanton interactions.

FIG. 3. Profiles of the action densities of the solutions to the systems characterised bylW (1)5(0.5,0.5,0.5,0.5),

lW 25(0.8,0.8,0.8,0.8),lW (3)5(1,1,1,1),lW (3)5(1.2,1.2,1.2,1.2), respectively, in order of the heights of the curves.

FIG. 4. Profiles ofT44 given by Eq.~21! for the systems characterised bylW (1)5(0.5,0.5,0.5,0.5),lW (2)5(0.8,0.8,0.8,0.8),

lW (3)5(1,1,1,1),lW (3)5(1.2,1.2,1.2,1.2), respectively, in order of the lowest to highest curves.
J. Math. Phys., Vol. 38, No. 9, September 1997
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C. Inter-instanton interaction

As we saw above, even for the vector of parameterslW 5(1,1,1,1), the instanton solution isnot
self-dual and the stress tensor doesnot vanish. It is therefore expected that the force between s
instantons is non-vanishing, and hence that a dilute gas of such instantons can be constru

In this paper, we shall adapt Polyakov’s2 construction of a dilute gas of instantons onR3 to
our problem onR4 . As in Ref. 2, we will set out to construct a Coulomb gas of intantons. Gi
that our solution is expressed by the ansatz~9! and obeys boundary conditions~13! and~15!, we
opt to work in the Dirac-string gauge introduced in Refs. 5 and 14. In this gauge, the Higgs
in the r @1 regionF(`)5hg5gmx̂m is gauged to be a constant valued fieldvF5hg5g4 , by
rotating it in the direction of thex4 axis under the action of a suitable SO~4! gauge rotationv. As
a result the Higgs potential and the covariant derivative of the Higgs field vanish, reducin
~asymptoticr @1) action density~1! to the only remaining termFmnrs

2 .
The gauge field connection and curvature in the Dirac-string gauge are calculated from E~9!

with f (r )50 according to Eq.~13!. Just as the SU~2! symmetry of the connection in the Georgi
Glashow model onR3 breaks to U~1! for the asymptotic fields in the Dirac string gauge, so
SO~4! symmetry of the connection~9! breaks to SO~3! here. This SO~3! valued asymptotic
connection and its curvature are given,5,14 respectively, by

vAi5
1

~11 x̂4!r
g i j x̂ j , vA450, ~27!

vFi j 52
1

r 2S g i j 1
1

11 x̂4

x̂[ ig j ]kx̂kD , vFi45
1

r 2
g i j x̂ j , ~28!

where the same notations as above are used, and with the indexm5 i , 4, i 51,2,3. The Dirac-string
singularity along the negativex4 axis is manifest in Eq.~27!. Indeed the SO~d! gauge field onRd

for arbitraryd breaks down to an SO(d21) asymptotic field in the Dirac-string gauge, given
Eq. ~28! in which the subscripts 4 are replaced byd, the gamma matrices are understood to be
d-dimensional gamma matrices and the singularity in the connection is on the negativexd axis.
This is explained in detail in Ref. 14. Note that the apparent lack of rotational invariance i
~28! is just a gauge artifact, and it is easy to check that gauge invariant quantities such as TFmn

2 ,
Tr* FmnFmn , TrFmnFnrFrm etc., are SO~4! scalars. Only in thed53 case does Eq.~28! take a
manifestly SO~3! invariant form, namely,

vFmn5
1

2r 2
«mnlx̂l s3 .

The components of the curvature in Eq.~28! are given in Cartesian coordinates and are valid in
regionr @1. It is therefore desirable to express the components of the curvature on the 3-sphS3

at infinity in polar coordinates like the Wu–Yang monopole15 whose only non-vanishing compo

nent on the 2-sphereS2 at infinity is vFuf5 1
2s3 sinu. In terms of the two polar coordinatesc and

u, and the azimuthal coordinatef on S3 at infinity, the non-vanishing components of the curv
ture vF are

vFcu5sin c~g31 cosf1g23 sin f!, ~29!

vFuf52sin2 c sin u~g12 cosu1~g31 sin f1g23 cosf!sin u!, ~30!

vFi j 52sin c sin u~2g12 sin u1~g31 sin f1g23 cosf!cosu!. ~31!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Since our instantons are exponentially localised, cf. Eqs.~17! and~18!, we shall consider tha
a gas of non-overlapping instantons at positions$xa%, with xab5uxa

m2xb
mu@h21 can be described

by the linear superposition

Fmn5(
a

qa
vFmn~x2xa!, ~qa561!. ~32!

Following Ref. 2, we argue that the first contribution to the action comes from the sum ovea of
the action integrals of the one-instanton solution. The first, dominant contributions to these
grals comes from the integration of the action density

L4
~1!5(

a
Tr$Fm[n~x2xa!,Frs]~x2xa!%2, ~33!

where the integration is restricted toinside the four-dimensional spheres of radiiR around each
instanton, such thath21!R!xab . The second contribution comes from the inter-instanton in
action terms in the action density calculated from Eq.~32!, integrated over the four-dimensiona
volumeoutsidethese spheres with radiiR. The second contribution to the action is the integral
the following density:

L4
~2!5 (

a,b,c,d
Tr$Fm[n~x2xa!,Frs]~x2xb!%$Fm[n~x2xc!,Frs]~x2xd!%, ~34!

where at least two of the four summation indicesa,b,c andd must be different. Otherwise, whe
a5b5c5d, the sum is over one index only and Eqs.~33! and~34! coincide, and the integral in
the regionoutside Ris negligible compared with that in the regioninside R.

It turns out that when the asymptotic field strengths~28! in the Dirac-string gauge are sub
situted into Eq.~34! the latter vanishes exactly, leading to vanishing contribution to the action
to inter-instanton interactions. This is because the 4-form curvatureFmnrs constructed from two
distictly situated 2-form curvaturesFmn(x2xa) andFrs(x2xb) itself vanishes exactly. This las
statement can be understood more succinctly by noting that the asymptotic curvature 2-form
by Eqs.~29!–~31! is defined with respect to thethreecoordinates$c,u,f% on S3 and to construct
a non-vanishing curvature 4-formvFABCD we need at leastfour coordinates.

III. THE EXTENDED MODELS

The status of the unit charge spherically symmetric instanton solution of thebasic
SO~4!3U~1! model ~1! is that, while the individual lumps are exponentially localised permitt
the construction of a dilute instanton gas, the asymptotic interactions of these instantons
sufficiently strong to lead to a Coulomb gas, in contrast to the situation in the two well-kn
models, namely the O~2! model in two4 and the Georgi–Glashow model inthree2 dimensions.
Since it is our eventual aim to construct a Coulomb gas of instantons infour dimensions, thebasic
model ~1! must be modified. The search for such possible modifications is the purpose o
Section. The asymptotic solutions of these will be given in Section III A and their nume
solutions in Section III B.

The modification of Eq.~1! will take the form of an extension of Eq.~1!. The extended mode
will consist of Eq.~1! plus some other gauge invariant terms depending on (Am ,F), such that at
least one term in it depends only on the curvatureFmn and is independent of the Higgs fieldF.
This is because in the Dirac-string gauge~27! all gauge invariant quantities depending onF
vanish. If the extension consists of a positive definite quantity, then it would be expected th
topological lower bound given by the surface integral of Eq.~3! remains valid and hence that th
new instanton will be classically stable.
J. Math. Phys., Vol. 38, No. 9, September 1997
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To orient ourselves, we reconsider the situation in thebasicmodel. There the curvature decay
with an inverse square power like the monopole3 on R3 and like the latter the asymptotic conne
tion behaves asAm

(`)5 1
2 g21]mg. After passing to the Dirac-string gauge the only term in Eq.~1!

which contributes, namely,vFmnrs , decays with theeighth power of r and hence the four-
dimensional integral of it decays with thefourth power ofr . It is clear why this decay is too stron
to result in a Coulomb potential since the latter is characterised by itsinverse squarebehavior in
four-dimensions. This leads us unambiguously to the criterion that the extension to ourbasic
model must include a term decaying with thesixthpower ofr , and since we expect the asymptot
properties of theextendedmodel to be the same as those of thebasic model ~13!, i.e., inverse
squaredecaying curvature, the extension must include thethird power of the curvature. Inevitably
this means that a new dimensional constant different from the Higgs vacuum expectation vh
must be introduced. We shall refer to this as criterion~A! below.

The other criterion,~B!, which we shall require is that the density in question involve
higher powers of the velocity fields than thesecond. In other words, for fixedm andn, no higher
powers of (]mAn)2 should occur in the new density. This criterion is respected by all Skyrme
models, including the Skyrme model10 as well as the hierarchy of Yang–Mills models6 and their
descendents.7 In the context of some more phenomenologically motivated considerations
criterion could be relaxed, but this is not the case in the present work. The reason for requiri
criterion is that in its absence the definition of the canonical momentum fields would le
problems in, say, the collective coordinate quantisation and more specifically in the analysis
fluctuation spectrum when this is eventually performed. While this analysis is beyond the sc
the present work, we envisage that it should in principle be accessible and hence insist h
criterion ~B!.

Having stated our main criteria~A! and~B! for the extension, we introduce the other criter
Obviously this density must be both Lorentz invariant, and gauge invariant. In addition it wou
an advantage from the viewpoint of establishing the existence of the instanton of the ext
model, if this density was positive definite by construction. As we shall see below, it will no
possible to satisfy this last criterion.

Subject to the constraints of Lorentz and gauge invariances, criterion~A! narrows the choices
for candidates down to the following three densities:

TrFnlFlmFmn , TrFmlFln* Fmn , Tr~DlFmn!~DlFmn!.

The last of these is equivalent to the non-local effective action density for low mome
gluons,16,17 TrFmnD2Fmn , while the other possible term Tr(DmFmn)2 with the required dimen-
sions is related to the two of the above listed terms through

Tr~DmFmn!252TrFmnFnlFlm1 1
2 Tr~DlFmn!2. ~35!

Invoking criterion~B! eliminates all but the first of these three candidates, namely, the exte
to our basic model~1! must be uniquely

L35k1
2 TrFmnFnlFlm , ~36!

wherek1 is the new constant with the same dimensions ash. This particular dynamical mode
~36! defined onR6 , has appeared previously in the literature18,19 in a different context where
self-dual solutions are found18,19 and their stability is examined.20 In particular, the fact that
criterion~A! is satisfied by Eq.~36! was discussed in some detail in Ref. 18. In the present con
on R4 , it was first proposed in Ref. 21.

Anticipating a result of Section III A, namely, that the extension of Eq.~1! by the density~36!
will result in a power decay for the gauge connection functionf (r ) which in its absence had
J. Math. Phys., Vol. 38, No. 9, September 1997
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decayedexponentiallyaccording to Eq.~17!, we introduce a second extension to be added to
first one~36! with the aim of rectifying this situation. This second extension, which will introdu
yet another dimensional constant, is

L25k2
4 Tr~~DmF!21l5~h21F2!2!, ~37!

wherek2 is this second constant with the dimensions ofh, andl5 is an unimportant dimension
less constant which will be set equal to 1 below. The density~37! is immediately recognised as th
usual quadratic Higgs kinetic term plus the usual symmetry breaking potential. This term,
entirely F dependent, will have no effect on the inter-instanton interactions and is introd
merely to restore exponential decay. Clearly it is not possible to add the usual YM termFmn

2 term
to Eq. ~37! as this will render the action logarithmically divergent and would invalidate
instanton solution.

We note here that the optional criterion of positive definiteness isnot satisfied by Eq.~36!.
This will necessitate some detailed asymptotic and numerical analysis of the extended s
carried out below, because the lack of positive definiteness of the extension means th
topological stability of the instanton of thebasicmodel ~1! does not automatically guarantee th
same for the extended model. Indeed, if the coupling constantk1 in Eq. ~36! is allowed to be large,
its lack of positivity will destroy the stability of the instanton in the extended model. Thus
imperative that this constantk1 be taken to be small. What small means in this context will
determined according to quantitative criteria to be applied in Section III B, where the num
integrations are described, and the extent to which these criteria are met will be discussed i
in Section IV. Here, in justification the extension~36!, we suffice to note that the value of th
density remains positive as long as the asymptotic conditions~13! are respected as we shall find
be the case in the Section III A.

Summarising, we propose two related extensions of Eq.~1!. The first is obtained by the
addition of Eq.~36! to Eq.~1!, namely,L I5L41L3 , and the second by the addition of Eqs.~36!
and ~37! to Eq. ~1!, namely,L II 5L41L31L2 .

A. Asymptotic solutions

The one-dimensional subsystemsL3 andL2 arising from the imposition of spherical symme
try on the extensionsL3 andL2 , analogous to the one-dimensional subsystem~10! of Eq. ~1! are,
respectively,

L35
k1

2

r
~12 f 2!S 3 f r

21
1

r 2
~12 f 2!2D , ~38!

L25
1

2
k2

4r 3S hr
21

3

r 2
f 2h212l5~h22h2!2D . ~39!

It is important to note that the one-dimensional densityL3 remains positive provided that th
asymptotic conditions~13! are satisfied by the solution, despite not being a positive defi
quantity by construction. We shall find this to be the case below when we solve the E
Lagrange equationsd fLI50 andd fLII 50 in the regionr @1. This will be the justification for
employing Eq.~36! as an extension.

The Euler–Lagrange equationsd fL350 for Eq.~38!, and,d fL250 anddhL250 for Eq.~39!,
are given, respectively, by

d fL352
6k1

2

r S ~12 f 2! f rr 2 f f r
22

1

r
~12 f 2! f r1

1

r 2
~12 f 2!2f D , ~40!
J. Math. Phys., Vol. 38, No. 9, September 1997
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d fL253k2
4rh2f , ~41!

dhL25k4r ~3 f 2h24l5r 2~h22h2!h23rhr2r 2hrr !. ~42!

To start with we dispose of the question of the asymptotic solutions in ther ! 1 region, to
both the extended modelsL I andL II . We have verified that the additional terms do not chan
the behaviors~19! and ~20! for the functionsf (r ) andh(r ), respectively. It then just remains t
find the asymptotic behaviors in ther @1 region.

Consider first the extended systemL I5L41L3 . ThedhLI5dhL450 equations of its one-
dimensional subsystem are unchanged and are given by Eq.~12!, while thed fLI5d fL41d fL350
equations are now given by Eqs.~11! and~40!. Linearising the latter around the asymptotic val
of f (r )501F(r ) we find

r 2Frr 2rF r1S 12S l1h2

k1
2 D D F50, ~43!

which has a powerdecaysolution yielding

f ~r !;r 12Al1~h/k1! ~44!

provided thatAl1h/k1.1. This is not physically unreasonable since the constanth is expected to
be large, whilek1 can be taken to be small. In practice we have seth51 in all our numerical
computations and takenl1 to be of the order of unity, whilek1 must be taken to be substantial
smaller than unity if the lack of positive definiteness ofL3 @Eq. ~36!# is not to predjudice the
instanton solution of thebasicmodel. Thus, for the parameters employed in our numerical c
putations, the conditions for Eq.~44! to imply a rapid decay are met.

Notwithstanding the fact that we expect a rapid decay~44! for the functionf (r ), it would be
desirable to extend the model in such a way that like the functionh(r ), the functionf (r ) also
decays exponentially. This is because the validity of the approximations that will be made
eventual application of the instanton solutions found here to the construction of a dilute ins
gas, rely on the strong localisation of the instantons and the best way of meeting this requi
is by exponential localisation.

To this end, we consider the extensionL II 5L41L31L2 . In this case, the one-dimension
Euler–Lagrange equationsd fLII 5d fL41dFL31d fL250 anddhLII 5dhL41dhL250 are given
by Eqs.~11!, ~12!, ~40! and~42!. Linearising these around their asymptotic valuesf (r )501F(r )
andh(r )5h1H(r ) we find

r2Frr2rFr2r4F50, ~45!

s2Hss13sHs2s2H50, ~46!

where we have used the dimensionless rescalingsr5(k2
4/2k1

2h2)1/4hr ands52A2l5hr of the
radial variabler . Note that the notationsr ands in Eqs.~45! and~46! are different from those in
Eqs. ~15! and ~16!. From the fourth power ofr in the last term of Eq.~45! it is clear that this
equation cannot be brought to the form of a modified Bessel equation so we evalua
asymptotic solution directly, yieldingf (r ) in the r @1 region to be

f ~r !5expS k2
2

2A2k1h
h2r 2D , ~47!

which is clearly exponentially localised. Equation~46!, on the other hand, can be brought to t
form of a Bessel equation with the solutionH(s)5s21K1(s) yielding
J. Math. Phys., Vol. 38, No. 9, September 1997
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h~r !5hS 12
1

2A2l5hr
K1~2A2l5hr !D . ~48!

In summary, we see that in the extended modelL I5L41L3 , the functionh(r ) is exponen-
tially localised according to Eq.~18!, while the functionf (r ) is power localised according to Eq
~44!. In the extended modelL II 5L41L31L2 both functionsf (r ) andh(r ) are exponentially
localised according to Eqs.~47! and ~48!, respectively.

We see that the functionh(r ) is exponentially localised according to Eqs.~18! and ~48! for
both the extended modelsL I5L41L3 andL II 5L41L31L2 , respectively, while the fuction
f (r ) is power localised according to Eq.~44! for the modelL I5L41L3 and exponentially
localised according to Eq.~47! for L II 5L41L31L2 .

Perhaps the most important result of this subsection is that the asymptotic behaviors
function f (r ) in both extended models given, respectively, by Eqs.~19!, ~44!, and ~19!, ~47!,
ensure that the one-dimensional density~38! does not become negative.

B. Numerical solutions

For the purposes of numerical integrations we have employed the following two values
coupling constantk1 , k150.1 and 0.01 in Eq.~36!, which result in appropriately small quantita
tive extensions of thebasicmodel.

For the extended modelL I5L41L3 given by Eqs.~1! and ~36!, we have integrated equa
tionsd fLI5d fL41d fL350 anddhLI5dhL450 given, respectively, by Eqs.~11!, ~40!, and~12!,
numerically, starting with the functions~19! and~20! nearr 50 and choosing the numerical value
of the constantsA andB so thatf (r ) andh(r ) reach their asymptotic values given by the seco
members of Eqs.~13! and ~14!. We have performed this integration only for the dimensionl
coupling constantslW (3)5(1,1,1,1). The numerical values of the pair of constants$A,B% are fixed
by the numerical integrations, and are listed in Table II. The profiles of the functionsf (r ) for this
extended model are not given since they are qualitatively the same as those in Figure 1, wh
function h(r ) in this extended model coincides with the functionh(r ) in the basicmodel and is
given by the curve pertaining tolW 5(1,1,1,1) in Figure 2. The numerical values of the total actio
SI(k1 ,lW (3)) are listed in the last column of Table II.

For the extended modelL II 5L41L31L2 given by Eqs.~1!, ~36!, and ~37!, we have
employed the same two values of the coupling constantk150.1, 0.01 as above and for each
these, the values of the coupling constantk250.25 andk250.5. We have integrated the tw
second-order equationsd fLII 5d fL41d fL31d fL250 given by Eqs.~11!, ~40!, and ~41!, and,
dhLII 5dhL41d2L250 given by Eqs.~12! and ~42!. Again we have performed this integratio
only for lW 5(1,1,1,1), and the values of the pair of numerical constants$A,B% are fixed by the
numerical integration and are listed in Table III. Again the profiles of the functionsf (r ) andh(r )
are not exhibited since they are qualitatively the same as those in Figures 1 and 2. The nu
values of the total actionsSII (k1 ,k2 ,lW (3)) pertaining to these two solutions are listed in the l
column of Table III.

TABLE II. Model I: Values ofA andB and the actionSI(K1), as functions
of K1 for fixed lW 5lW (3).

k250
k1 A B SI(lW (3) ,k1)

0.01 0.335669 0.648919 2.002553
0.1 0.333488 0.648989 2.009151
J. Math. Phys., Vol. 38, No. 9, September 1997
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Since the densityL3 ~36! is not positive definite, the stability of the instantons of both t
models described by the densitiesL I andL II are not guaranteed by the stability of the instant
of the basic model. We argued above however, that if the coupling constantk1 is small enough,
the instantons of the extended models will nevertheless be stable. To this end, the values
total actions corresponding to each instanton given above are relevant. Quantitatively, we
demonstrate that the addition of the extension densities~36! and~37! to thebasicdensity~1! does
not result in an appreciable change in the value of the action integrals. The detailed compa
are deferred to Section IV.

Before proceding to Section IV, however, we must perform one further numerical com
tion. From the viewpoint of these quantitative comparisons, the difference of the extended
L I from thebasicmodel is just the non-positive densityL3 and hence the interesting quantity
the difference of their action integrals. The extended modelL II , however, is the result of the
addition of the non-positive densityL3 to the positive definite densityL III 5L41L2 and not to
the basic density alone. The interesting quantity in this case therefore is the difference o
action integral ofL II from that of the system described byL III 5L41L2 , which we have not
previously studied numerically. This we now do by integrating the Euler–Lagrange equa
d fLIII 5d fL41d fL250 given by Eqs.~11! and ~41!, anddhLIII 5dhL41dhL250 given by Eqs.
~12! and~42!. We have performed the numerical integrations for the value oflW 5lW (3)5(1,1,1,1)
only, and for the values of the coupling constantk250.25 andk250.5. The numerical values o
the constants$A,B% for these solutions are listed in Table IV, while the values of the total ac
are listed in Table IV. We do not plot the profiles of the functionsf (r ) and h(r ) in this case
because they are qualitatively the same as those in Figures 1 and 2.

IV. SUMMARY AND DISCUSSION

We have made a detailed numerical study ofunit topological charge instanton solutions of th
SO~4!3U~1! Higgs model5 and its extensions21 on R4 . The extensions to thebasic model are
devised such that the dynamics of the extended model would in principle be capable of supp
a dilute Coulomb gas of interacting instantons. This construction, however, is deferred to
work, and in the present work we have restricted ourselves to establishing the existence
classical instanton solutions using numerical methods.

TABLE III. Model II: Values of A andB and the actionSII (K1) as func-
tions of K1 for fixed lW 5lW (3), and two values ofK2.

k250.25
k1 A B SII (lW (3) ,k1 ,k2)

0.01 0.336761 0.651287 2.010352
0.1 0.334577 0.651353 2.016969

k250.50
0.01 0.350511 0.679313 2.108078
0.1 0.348347 0.679341 2.115000

TABLE IV. Model III: Values of the constantsA and B and the action
SIII (K2) as functions ofK2 for fixed lW 5lW (3).

k150
k2 A B SIII (lW (3) ,k2)

0.25 0.336783 0.651286 2.010284
0.50 0.350533 0.679313 2.108006
J. Math. Phys., Vol. 38, No. 9, September 1997
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In Section II, we have studied the spherically symmetric instanton solution of the

models~1! parametrised by a set of dimensionless constantslW 5(l1 ,l2 ,l3 ,l4), for four different

such setslW ( i ) ,i 51,2,3,4 listed in Table I. The results are exhibited in Table I and Figures 1

2. The peculiar feature of the system~1! is that for the casei 53, namely, forlW (3)5(1,1,1,1),
where the lower bound on the action is saturated by the Bogomol’nyi equations~4!–~6!, the only
solution is the trivial constant asymptotic values of the fields. That Equations~4!–~6! are overde-
termined can clearly be seen by inspection of their spherically symmetric restrictions~22!–~25!,
which are four constraints on two functions. This feature is shared with the usual Skyrme mo10

in which case, however, the departure of the soliton solution from the self-dual field configu
is fixed by the absolute scale there. Here by contrast this departure depends on the dimen

parameterslW ( i ) , and in this sense our model is more akin to the Abelian Higgs model9 on R2

which even though itdoessupport self-dual solutions, the departure from self-duality depend
the value of the dimensionless parametersl multiplying the Higgs potential.l in that case is the

analogue oflW ( i ) here. In both models the value of the action integral increases with an increa
the value of these dimensionless parameters. This is seen to be the case from the third co

Table I, where all the action integralsS(lW ( i )) are larger than the topological lower bounds.

particular the action for thei 54 case,S(lW (4)), is larger than the lower bound of unit magnitud

equal to the topological charge, while the actionsS(lW ( i )) for i 51,2,3 are each larger than the
respective lower bounds (l ( i ))min5l ( i ) . To demonstrate more quantitatively the departure fr
the self-dual configuration, we have plotted the profiles of the one-dimensional restriction
stress-tensorT44 for each solution in Figure 4.

In Section III we have given some arguments in favor of our choice of extended model
proceded to study these numerically. It turns out that our choice for an extension of Eq.~1! is
narrowed down to the cubic density~36!. This density being non-positive definite, there is
guarantee that its addition to Eq.~1! will not invalidate the topological lower bound. In that ca
the extended model would not support an instanton solution. We have argued that for
enough coupling of this term, the instanton solution persists in the extended model as the d
ics of the basic model is robust enough. The numerical data pertaining to this extended moL I

is given in Table II. We can see that the action ofL I does not differ appreciably from the actio

of the basic model, by comparing the actionsSI(lW (3) ,k1) in Table II with the actionS(lW (3)) in
Table I. Indeed, this difference is smaller for the case with the smaller value of the cou
constantk1 , thus justifying our claim that for small enough modifications of the basic mode
can expect to have instanton solutions.

The functionh(r ) parametrising the instanton of the extended modelL I is localised expo-
nentially according to Eq.~18!, but the functionf (r ) is power localised according to Eq.~44!. This
has motivated us to consider yet another extension, for which both functionsh(r ) and f (r ) are
exponentially localised. This is the modelL II which results from the further addition of th
density~37! to L I and whose exponentially decaying solutions are given by Eqs.~47! and ~48!.
The numerical data for this model is given in Table III. To carry out the corresponding qua

tive checks as in the previous case, we need to compare the values of the actionsSII (k1 ,k2 ,lW (3))
with the action integral of the positive definite density defined by the sum of Eq.~1! and the
positive definite densityL2 defined by Eq.~37!. We have denoted this system byL III and listed
the numerical data pertaining to it in Table IV. We must therefore compare the ac

SII (k1 ,k2 ,lW (3)) in Table III with the corresponding actionsSIII (k2 ,lW (3)) in Table IV. The quali-
tative conclusions are exactly the same as those for the extended modelL I , namely, that the
action in the extended modelL II is close enough to that of the basic model, thatL II also supports
instanton solutions.

Quantitatively, the differencesSI(lW (3) ,k150.01,k250)2S(lW (3) ,k150,k250)56731026

and SII (lW (3) ,k150.01,k250.25)2SIII (l (3) ,k150,k250.25)56831026 are practically equal,
J. Math. Phys., Vol. 38, No. 9, September 1997
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implying that the system~1! is equally robust against the addition of~36! as against the addition
of ~36! and ~37!, even though in the second case the exponential decay was better sa
Evidently, this means that the value chosen for the coupling constantk1 was sufficiently small so
that the extended systems arising from the addition of the non-positive definiteF3 term ~36! result
in new systems that also support instanton solutions. To test the validity of this criterion, co
the differences of the corresponding actions for the extended models with a larger value
coupling constantk1. Thus SI(lW (3) ,k150.1,k250)2S(lW (3) ,k150,k250)5666531026 and
SII (lW (3) ,k150.1,k250.25)2SIII (l (3) ,k150,k250.25)5668531026, which are again nearly
equal to each other but are very considerably larger than the former pair of differences
completes our justification of the extended modelsL I5L41L3 andL II 5L41L31L2 .

Having established that theextendedmodels also can support instantons with the sa
asymptotic properties as the instantons of thebasicmodel, the remaining task is to compute th
volume integral

Sint5E d4x (
a,b,c

TrFmn~x2xa!Fnl~x2xb!Flm~x2xc! ~49!

in the Dirac string gauge. ClearlySint in Eq. ~49! is the only non-vanishing contribution to the
action due to inter-instanton interactions since in the Dirac string gauge the asymptotic con
tions of all Higgs dependent terms vanish and the density of the only other Higgs indepe
term in either extended action density coming fromFmnrs also vanishes according to our arg
ments at the end of Section III B, namely, Eq.~34!. The integrand in Eq.~49!, which is readily
calculated by substituting Eq.~28! in Eq. ~49!, is a quantity of considerable complexity and sin
we will not perfom the integration here we do not write it down. If one set any two of
summation indicesa,b,c, in Eq.~49! the same, namely, restricted to ‘‘two neighbor’’ interaction
then the integrand would become singular at the origin in the usual way. Thus the interactio
will have to take account of ‘‘three neighbor’’ interactions. This situation may be change
replacing the cubic extension term~36! in ~49! by the alternative densityFmnD2Fmn appearing in
Eq. ~35!,

Sint5E d4x(
a,b

TrDlFmn~x2xa!DlFmn~x2xb!, ~50!

which is a ‘‘two neighbor’’ interaction. The details of these contributions to the action as we
their consequences in the resulting effective theory of strong interactions will be investigate
given elsewhere.
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Extension of the Barut–Girardello coherent state
and path integral
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We extend the Barut–Girardello coherent state for the representation of SU~1,1! to
the coherent state for a representation of U(N,1) and construct the measure. We
also construct a path integral formula for some Hamiltonian. ©1997 American
Institute of Physics.@S0022-2488~97!01509-0#

I. INTRODUCTION

The harmonic oscillator is a fundamental physical system and one of the few which is s
exactly. Therefore it has been well studied not only for the system itself but also for applicat
other physical systems. The coherent state is defined as the eigenstate of the annihilation op1

It is a useful tool for study of the harmonic oscillator. The properties of the coherent state ar
well studied.

Extension of the coherent state to various systems has been made. As for the SU~1,1! group,
the Perelomov’s generalized coherent state is well known.2 The treatment is very easy. Extensio
of the generalized coherent state to a representation of U(N,1) has been made.3 Making use of the
coherent state, we have shown the Wentzel–Kramers–Brillovin~WKB! exactness,3,4 which means
that the WKB approximation gives the exact result. Also, we have extended the periodic co
state5,6 to the ‘‘multi-periodic coherent state’’ of a representation of U(N,1) and have shown the
WKB exactness.7,8

There is another coherent state of SU~1,1! which is known as the Barut–Girardello~BG!
coherent state.9 The BG coherent state is defined as the eigenstate of the lowering operato
BG coherent state has a characteristic feature. The eigenvalueK of the Casimir operator is valid
for K.0.10 In spite of the range of the representation of SU~1,1!, K>1/2.11

Extension of the BG coherent state has been made to some groups.12 In this paper we extend
the BG coherent state to a representation of U(N,1) to examine the WKB exactness and other

The contents of this paper are as follows. In Sec. II we compare the coherent states
harmonic oscillator, the Perelomov’s coherent state, and the BG coherent state. We extend
coherent state and construct the measure in Sec. III. In Sec. IV, we construct a path in
formula in terms of the coherent state constructed in Sec. III. The last section is devoted
discussions.

II. COHERENT STATES

The coherent state of the harmonic oscillator is defined as the eigenstate of the annih
operator such that

auz&5zuz&, zPC, ~2.1!

wherea(a†) is the annihilation~creation! operator. Alternative expression of the coherent stat

uz&5eza†
u0&. ~2.2!

a!Electronic mail address: fujii@yokohama-cu.ac.jp
b!Electronic mail address: funahasi@yokohama-cu.ac.jp
0022-2488/97/38(9)/4422/13/$10.00
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In the harmonic oscillator, both are equivalent. The explicit form is

uz&5 (
n50

`
zn

An!
un&, ~2.3!

in the standard notation. The conditions of the ‘‘coherent state’’ in the Klauder’s sense13 are as
follows:

~1! continuity: the vectoru l & is a strongly continuous function of the labell , and
~2! completeness~resolution of unity!:

I 5E u l &^ l u dl. ~2.4!

Now consider the extension to the representation of SU~1,1!. The su~1,1! algebra is

@K3 , K6#56K6 , @K2 , K1#52K3 , K656~K16 iK 2!, ~2.5!

and the representation is

$uK,m&um50,1,2,•••%, K> 1
2, 2K is an eigenvalue of the Casimir operator,~2.6!

which satisfies

K3uK,m&5~K1m!uK,m&,

K1uK,m&5A~m11!~2K1m!uK,m11&, ~2.7!

K2uK,m&5Am~2K1m21!uK,m21&.

The extension of~2.2! is known as the Perelomov ‘‘generalized coherent state,’’ whose form

uj&[ejK1uK,0&5 (
n50

` A~2K !n

n!
jnuK,n&, jPD~1,1!, ~2.8!

where

D~1,1!5$jPCuuju,1%, ~2.9!

and

~a!n[a•~a11!•••~a1n21!. ~2.10!

The inner product is

^juj8&5
1

~12j* j8!2K , ~2.11!

and the resolution of unity is

2K21

p E
D~1,1!

dj* dj

~12uju2!22K12 uj&^ju51K , ~2.12!

where
J. Math. Phys., Vol. 38, No. 9, September 1997
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dj* dj[d~Re j!d~ Im j!. ~2.13!

On the other hand, the extension of~2.1! is known as the Barut–Girardello coherent state, wh
satisfies

K2uz&5zuz&. ~2.14!

The explicit form~apart from the normalization factor! is

uz&5 (
n50

`
zn

An! ~2K !n

uK,n&, zPC. ~2.15!

The inner product is

^zuz8&5G~2K !~z* z8!2K11/2I 2K21~2Az* z8!, ~2.16!

whereG(p) is the gamma function,

G~p!5E
0

`

dt e2tt p21, ~2.17!

and I n(z) is a modified Bessel function of the first kind:

I n~z!5S z

2D n

(
n50

`
~z/2!2n

n!G~n1n11!
. ~2.18!

The resolution of unity is

E dm~z,z* !uz&^zu51K ,
~2.19!

dm~z,z* !5
2K2K21~2uzu!

pG~2K !
uzu2K21 dz* dz.

In contrast to the coherent state of the harmonic oscillator,~2.8! and~2.15! are not equivalent.
Especially it is remarkable that~2.19! holds forK.0, while ~2.12! holds forK> 1

2.

III. EXTENSION OF THE BARUT–GIRARDELLO COHERENT STATE

In this section we construct the BG-type coherent state for some U(N,1) representation and it
measure.

The u(N,1) algebra is defined by

@Eab , Egd#5hbgEad2hdaEgb ,
~3.1!

hab5diag ~1,...,1,21!, a,b,g,d51,...,N11,

with a subsidiary condition

2 (
a51

N

Eaa1EN11,N115K, K51,2,... . ~3.2!

We identify these generators with creation and annihilation operators of harmonic oscillato
J. Math. Phys., Vol. 38, No. 9, September 1997
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Eab5aa
†ab , Ea,N115aa

†aN11
† ,

~3.3!

EN11,a5aN11aa , EN11,N115aN11
† aN1111,

wherea anda† satisfy

@aa , ab
† #51, @aa , ab#5@aa

† , ab
† #50, a,b51,2,...,N11. ~3.4!

The Fock space is

$un1 ,...,nN11&un1 ,n2 ,...,nN1150,1,2,...%,

un1 ,...,nN11&[
1

An1! •••nN11!
~a1

†!n1•••~aN11
† !nN11u0,0,...,0&, ~3.5!

aau0,0,...,0&50.

On the representation space it is

1K[ (
$n%50

` Un1 ,...,nN ,K211 (
a51

N

naL K n1 ,...,nN ,K211 (
a51

N

naU, ~3.6!

where an abbreviation

(
$n%50

`

[ (
n150

`

(
n250

`

••• (
nN50

`

~3.7!

has been used.
We put the form of the coherent state as

uz&[ (
$n%50

`

Cn1 ,•••,nN
~z!z1

n1•••zN
nNUn1 ,...,nN ,K211 (

a51

N

naL ~3.8!

to determine the coefficientsCn1 ,•••,nN
(z)’s so as to satisfy the condition:

EN11,auz&5zauz&, a51,...,N. ~3.9!

By noting

aaun1 ,...,na ,...,nN11&5Anaun1 ,...,na21,...,nN11&, a51,...,N11, ~3.10!

the explicit form of the left-hand side of~3.9! is
J. Math. Phys., Vol. 38, No. 9, September 1997
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EN11,auz&5 (
n150

`

••• (
na50

`

••• (
nN50

`

Cn1 ,..., nN
~z!z1

n1•••za
na•••zN

nNAna

3AK211 (
b51

N

nbUn1 ,...,na21,...,nN ,K211 (
b51

N

nb21L
5za (

$n%50

`

Cn1 ,...~na11!,...nN
~z!Ana11

3AK1 (
b51

N

nbz1
n1•••za

na•••zN
nNUn1 ,...,na ,...,nN ,K211 (

b51

N

nbL , ~3.11!

where a shiftna→na21 has been made in the second equality. Thus~3.9! leads to a recursion
relation:

Cn1 ,..., ~na11! ,..., nN
~z!Ana11AK1 (

b51

N

nb5Cn1 ,..., nN
~z!. ~3.12!

This is easily solved to become

Cn1 ,..., na ,..., nN
~z!5AG~K1(b51

N nb2na!

na!G~K1(b51
N nb!

Cn1 ,..., 0 ,...,nN
~z!. ~3.13!

Application of ~3.13! to all a’s (a51,...,N) leads to

Cn1 ,..., nN
~z!5A G~K !

n1! •••nN!G~K1(b51
N nb!

C0...0~z!. ~3.14!

Putting ~3.14! into ~3.8!, we obtain the form of the coherent state:

uz&5C~z! (
$n%50

` A G~K !

n1! •••nN!G~K1(b51
N nb!

z1
n1•••zN

nNUn1 ,...,nN ,K211 (
a51

N

naL ,

~3.15!

where we have writtenC0...0(z) as C(z). Here C(z) is a normalization factor and affects n
physical quantity, so hereafter we simply putC(z)51. Especially, in theN51 case~with
K→2K!, ~3.15! becomes

uz&5 (
n50

` A G~2K !

n!G~2K1n!
znuK,n&, ~3.16!

which coincides with~2.15!, whereun,2K211n& has been identified withuK,n& in the represen-
tation of SU~1,1!, ~2.6!.

The inner product of the coherent states is
J. Math. Phys., Vol. 38, No. 9, September 1997
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^zuz8&5 (
$n%50

`
G~K !

n1! •••nN!G~K1(a51
N na!

~z1* z18!n1•••~zN* zN8 !nN

5G~K ! (
m50

`
1

m!G~K1m! (
n11•••1nN5m

m!

n1! •••nN!
~z1* z18!n1•••~zN* zN8 !nN

5G~K ! (
m50

`
1

m!G~K1m!
~z1* z181•••1zN* zN8 !m

5G~K !~z†z8!2~K21!/2I K21~2Az†z8!, ~3.17!

whereI n(z) is a modified Bessel function of the first kind.
Now we construct the measure so as to satisfy the resolution of unity:

E dm~z,z†!uz&^zu51K . ~3.18!

The explicit form of the left-hand side of~3.18! is

E dm~z,z8!uz&^zu5 (
$n%50

`

(
$m%50

` A G~K !

n1! •••nN!G~K1(a51
N na!

3A G~K !

m1! •••mN!G~K1(a51
N ma!

u$n%&^$m%u

3E dm~z,z†!z1
n1•••zN

nN~z1* !m1•••~zN* !mN, ~3.19!

where

dm~z,z†![s~z,z†!@dz†dz#,
~3.20!

@dz†dz#[ )
a51

N

d~Re z!d~ Im z!,

and an abbreviation

u$n%&[Un1 ,...,nN ,K211 (
a51

N

naL , ~3.21!

has been used. We put

za5Ar aeiua, a51,...,N, ~3.22!

and assume thats depends only on the radial parts:

dm~z,z†!5~ 1
2!

Ns~r 1 ,...,r N!dr1du1•••drNduN , dz†dz5~ 1
2!

Ndr1du1•••drNduN .
~3.23!

Then ~3.19! becomes
J. Math. Phys., Vol. 38, No. 9, September 1997
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~3.19!5 (
$n%50

`

(
$m%50

` A G~K !

n1! •••nN!G~K1(a51
N na!

A G~K !

m1! •••mN!G~K1(a51
N ma!

u$n%&^$m%u

3S 1

2D NE
0

`

dr1•••E
0

`

drN s~r 1 ,...,r N!E
0

2p

du1•••E
0

2p

duN

3r 1
~n11m1!/2

•••r N
~nN1mN!/2ei ~n12m1!u1•••ei ~nN2mN!uN

5pN (
$n%50

`
G~K !

n1! •••nN!G~K1(a51
N na!

u$n%&^$m%u E
0

`

dr1•••E
0

`

drN s~r 1 ,...,r n!r 1
n1•••r N

nN.

~3.24!

Thuss(r 1 ,...,r N) must satisfy

pNG~K !E
0

`

dr1•••E
0

`

drN s~r 1 ,...,r N!r 1
n1•••r N

nN5G~n111!•••G~nN11!GS K1 (
a51

N

naD .

~3.25!

After some considerations, we found the following formula:

E
0

`

dr1r 1
s1•••E

0

`

drN r N
sN2~r 11•••1r N!~K2N!/2KK2N~2Ar 11•••1r N!

5G~s111!•••G~sN11!GS K1 (
a51

N

saD . ~3.26!

~See Appendix A for the derivation of the formula.! This is verified as follows. On the left-han
side of ~3.26!, we put

r 15j1~12j2!,

r 25j1j2~12j3!,

A ~3.27!

r N215j1j2•••jN21~12jN!,

r N5j1j2•••jN ,
]~r 1 ,...,r N!

]~j1 ,...,jN!
5j1

N21j2
N22•••jN22

2 jN21 ,

to obtain
J. Math. Phys., Vol. 38, No. 9, September 1997
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~ lhs!52E
0

`

dj1j1
N211s11•••1sN1~K2N!/2KK2N~2Aj1!E

0

1

dj2 j2
N221s21•••1sN~12j2!s1

3E
0

1

dj3j3
N231s31•••1sN~12j3!s2•••E

0

1

djN21jN21
11sN211sN~12jN21!sN22

3E
0

1

djN ~12jN!sN21jN
sN

52E
0

`

dj1j1
~K1N!/21s11•••1sN21KK2N~2Aj1!

3B~s111,N211s21•••1sN!•••B~sN11,sN2111!, ~3.28!

where we have used the integral expression of the beta function:

B~p,q!5E
0

1

dt tp21~12t !q21. ~3.29!

By putting

Aj15u, ~3.30!

the j1-integral in ~3.28! becomes

~j1-integral part!5E
0

`

du uK1N12~s11•••1sN!21KK2N~2u!

5 1
4G~K1s11•••1sN!G~N1s11•••1sN!, ~3.31!

where the formula

E
0

`

dx xm21Kn~ax!5
1

4 S 2

aD m

GS m1n

2 DGS m2n

2 D , a.0, Rem.uRe nu, ~3.32!

has been used~see Appendix B!. By noting the relation

B~p,q!5
G~p!G~q!

G~p1q!
, ~3.33!

~3.28! finally becomes

~3.28!5G~s111!•••G~sN11!G~K1s11•••1sN!, ~3.34!

which is just the right-hand side of~3.26!.
Comparing~3.25! with ~3.26!, we find that

s~r 1 ,...,r N!5
2

pNG~K !
~r 11•••1r N!~K2N!/2KK2N~2Ar 11•••1r N!. ~3.35!

Therefore we obtain the measure

dm~z,z†!5
2iziK2NKK2N~2izi !

pNG~K !
@dz†dz#, ~3.36!
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where

izi[Az†z. ~3.37!

It is remarkable that (3.36) holds for K.0.
In the N51 case,~3.36! (K→2K) is

dm~z,z* !5
2uzu2K21K2K21~2uzu!

pG~2K !
@dz* dz#, ~3.38!

which is just the measure of BG coherent state~2.19!. The explicit form of~3.18! is

E 2iziK2NKK2N~2izi !

pNG~K !
@dz†dz# (

$n%50

`

z1
n•••zN

nNUn1 ,...,nN ,K211 (
a51

N

naL
3 (

$m%50

`

~z1* !m1•••~zN* !mNK m1 ,...,mN ,K211 (
a51

N

maU51K . ~3.39!

IV. CONSTRUCTION OF A PATH INTEGRAL FORMULA

We construct a path integral formula with a Hamiltonian

Ĥ[ (
a51

N11

caEaa5 (
a51

N

maEaa1KcN111K , ma[ca1cN11 . ~4.1!

We have shown the WKB exactness of the trace formula with this Hamiltonian in terms o
‘‘generalized coherent state’’3 and the ‘‘multi-periodic coherent state.’’7 In this section we write
down the trace formula in terms of our BG coherent state.

The matrix element of the Hamiltonian is

^zuĤuz8&5G~K11!~z†z8!2~K21!/2H cN11I K21~2Az†z8!1 (
a51

N

ma

za* za

Az†z8
I K~2Az†z8!J .

~4.2!

The Feynman kernel is defined by

K~zF,zI;T![^zFue2 iĤ TuzI&5 lim
M→`

^zFu~12 iDtĤ !MuzI&, Dt[T/M , ~4.3!

wherezI(zF) is the initial ~final! state andT is time interval. The explicit form of the kernel is

K~zF ,zI ;T!5 lim
M→`

E )
i 51

M21

dm „z~ i !,z†~ i !…)
j 51

M

^z~ j !u~12 iDtĤ !uz~ j 21!& U
z~0!5zI

z~M !5zF

5 lim
M→`

E )
i 51

M21

dm „z~ i !,z†~ i !…)
j 51

M HG~K !„z†~ j !z~ j 21!…2~K21!/2

3I K21~2Az†~ j !z~ j 21!!F12 iDtKH cN11
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1 (
a51

N

ma

za* ~ j !za~ j 21!

Az†~ j !z~ j 21!

I K~2Az†~ j !z~ j 21!!

I K21~2Az†~ j !z~ j 21!!
J GJ

5E )
i 51

M21

dm „z~ i !,z†~ i !…)
j 51

M

$G~K !„z†~ j !z~ j 21!…2~K21!/2I K21~2Az†~ j !z~ j 21!!%

3expF2 iDtK (
k51

M H cN111 (
a51

N

ma

za* ~k!za~k21!

Az†~k!z~k21!

I K~2Az†~k!z~k21!!

I K21~2Az†~k!z~k21!!
J G ,

~4.4!

where the resolution of unity~3.18! has been inserted in the first equality, andO„(Dt)2
… terms,

which finally vanish inM→` limit, have been omitted in the last equality.
The trace formula is defined by

Z[E dm ~z,z†!^zue2 iĤ Tuz&5E dm ~z,z†!K~z,z;T!. ~4.5!

The explicit form is

Z5 lim
M→`

E )
i 51

M

dm„z~ i !,z†~ i !…)
j 51

M

$G~K !„z†~ j !z~ j 21!…2~K21!/2I K21~2Az†~ j !z~ j 21!!%

3exp F2 iDtK (
k51

M H cN111 (
a51

N

ma

za* ~k!za~k21!

Az†~k!z~k21!

I K~2Az†~k!z~k21!!

I K21~2Az†~k!z~k21!!
J GU

z~M !5z~0!

5 lim
M→`

e2 iKcN11TE )
i 51

M H 2iz~ i !iK2NKK2N~2iz~ i !i !

pNG~K ! @dz†~ i !dz~ i !# J

3)
j 51

M

$G~K !iz~ j !i2K11I K21~2Az†~ j !z~ j 21!!%

3exp F2 iDtK (
k51

M

(
a51

N

ma

za* ~k!za~k21!

Az†~k!z~k21!

I K~2Az†~k!z~k21!!

I K21~2Az†~k!z~k21!!
G

5 lim
M→`

e2 iKcN11TE )
i 51

M H 2KK2N~2iz~ i !i !I K21~2Az†~ i !z~ i !!

pNiz~ i !iN21 @dz†~ i !dz~ i !# J

3exp F2 iDtK (
k51

M

(
a51

N

ma

za* ~k!za~k21!

Az†~k!z~k21!

I K~2Az†~k!z~k21!!

I K21~2Az†~k!z~k21!!
G . ~4.6!

In the N51 case,~4.6! is
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Z5 lim
M→`

e2 ihKTE )
i 51

M X2

p
K2K21~2uz~ i !u!I 2K21~2Az* ~ i !z~ i 21!!@dz* ~ i !dz~ i !#C

3expF2 ihDt (
k51

M

Az* ~k!z~k21!
I 2K~2Az* ~k!z~k21!!

I 2K21~2Az* ~k!z~k21!!
G , ~4.7!

whereh[c11c2 .
Even in theN51 case, it seems to be complicated not only to make the WKB approxima

but also to calculate exactly.

V. DISCUSSION

We have extended the BG coherent state for the representation of SU~1,1! to some repre-
sentation of U(N,1) and constructed the measure. The eigenvalue of the Casimir ope
(I 5(a51

N11 Eaa), K, can be enlarged toK.0.
We have also constructed the path integral formula with the same Hamiltonian with whic

WKB exactness is examined in terms of some coherent states. However, in this case, the
the coherent state is so complicated that the WKB approximation as well as the exact calc
does not seem to be easy. Showing the WKB exactness is now under consideration.

APPENDIX A: DERIVATION OF THE FORMULA (3.26)

The definition of the gamma function immediately leads to the relation

E
0

`

dra e2aar ar a
sa5aa

2~sa11!
G~sa11!. ~A1!

Multiplying equations~A1! from a51 to N and puttingaa51/x for all a(51,...,N), we obtain

E
0

`

dr1 r 1
s•••E

0

`

drN r N
sNe2R/x5xs11•••1sN1NG~s111!•••G~sN11!, ~A2!

where

R[r 11•••1r N . ~A3!

In both sides, by multiplyinge2xxK2N21 and by integrating overx, the right-hand side become

~rhs!5G~s111!•••G~sN11!GS K1 (
a51

N

saD . ~A4!

Then the left-hand side is

~ lhs!5E
0

`

dr1 r 1
s1•••E

0

`

drN r N
sNE

0

`

dx xK2N21e2R/x2x

5E
0

`

dr1r 1
s•••E

0

`

drN r N
sNRK2NE

0

`

du u2K1N21e2u2R/u, ~A5!

where a change of variable,u5R/x, has been made in the second equality. By the inte
expression of the modified Bessel function,
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Kn~z!5
1

2 S z

2D nE
0

`

dt t2n21e2t2z2/4t, ~A6!

the u-integral is written by

E
0

`

du u2K1N21e2u2R/u52R2~K2N!/2KK2N~2AR!. ~A7!

Thus ~A5! becomes

~A5!5E
0

`

dr1 r 1
s1•••E

0

`

drN r N
sN2R~K2N!/2KK2N~2AR!. ~A8!

Finally, by ~A4! and ~A8!, we obtain

E
0

`

dr1 r 1
s1•••E

0

`

drN r N
sN2~r 11•••1r N!~K2N!/2KK2N~2Ar 11•••1r N!

5G~s111!•••G~sN11!GS K1 (
a51

N

saD . ~A9!

APPENDIX B: THE PROOF OF THE FORMULA (3.32)

By the integral representation of the modified Bessel function,

Kn~z!5
Ap

G~n1 1
2!

S z

2D nE
1

`

dy e2zy~y221!n21/2, for n.21/2, ~B1!

the left-hand side of the formula~3.32! becomes

E
0

`

dx xm21Kn~ax!5
Ap

G~n1 1
2!
E

1

`

dy ~y221!n21/2H E
0

`

dx xm21S ax

2 D n

e2axyJ . ~B2!

Changing a variablex to t such that

axy5t ~B3!

leads thex-integral to

E
0

`

dx xm21S ax

2 D n

e2axy5
1

amym1n2n E
0

`

dt e2ttm1n215
G~m1n!

am2nym1n . ~B4!

Thus ~B2! becomes

~B2!5
Ap

G~n1 1
2!

G~m1n!

am2n E
1

`

dy
1

ym1n ~y221!n21/2. ~B5!
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Further, we make a change of a variable such that

y51/At ~B6!

to obtain

~B5!5
Ap

G~n1 1
2!

G~m1n!

am2n

1

2 E
0

1

dt t~m2n!/221~12t !n11/221

5
Ap

G~n1 1
2!

G~m1n!

am2n11 BS m2n

2
,
m1n

2 D
5

Ap

am2n11 GS m2n

2 DGS m1n

2 D G~m1n!

GS m1n

2 DGS m1n

2
1

1

2D , ~B7!

where we have used the integral expression of the beta function:

B~p,q!5E
0

1

dt tp21~12t !q21, ~B8!

and the relation

B~p,q!5
G~p!G~q!

G~p1q!
. ~B9!

By the formula

G~z!G~z11
2!5222z11ApG~2z!, ~B10!

the product of the gamma functions is written as

GS m1n

2 DGS m1n

2
1

1

2D522~m1n!11ApG~m1n!. ~B11!

Thus ~B7! becomes

~B7!5
1

4 S 2

aD m

GS m2n

2 DGS m1n

2 D , ~B12!

which is just the right-hand side of the formula.
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An affine string vertex operator construction
at an arbitrary level

R. W. Gebert
Institute for Advanced Study, School of Natural Sciences, Princeton, New Jersey 08540

H. Nicolai
Max-Planck-Institut fu¨r Gravitationsphysik, Albert-Einstein-Institut,
Schlaatzweg 1, D-14473 Potsdam, Germany

~Received 13 January 1997; accepted for publication 9 April 1997!

An affine vertex operator construction at an arbitrary level is presented which is
based on a completely compactified chiral bosonic string whose momentum lattice
is taken to be the~Minkowskian! affine weight lattice. This construction is mani-
festly physical in the sense of string theory, i.e., the vertex operators are functions
of Del Giudice–Di Vecchia–Fubini~DFF! ‘‘oscillators’’ and the Lorentz genera-
tors, both of which commute with the Virasoro constraints. We therefore obtain
explicit representations of affine highest weight modules in terms of physical
~DDF! string states. This opens new perspectives on the representation theory of
affine Kac–Moody algebras, especially in view of the simultaneous treatment of
infinitely many affine highest weight representations of arbitrary level within a
single state space as required for the study of hyperbolic Kac–Moody algebras. A
novel interpretation of the affine Weyl group as the ‘‘dimensional null reduction’’
of the corresponding hyperbolic Weyl group is given, which follows upon re-
expression of the affine Weyl translations as Lorentz boosts. ©1997 American
Institute of Physics.@S0022-2488~97!03109-5#

I. INTRODUCTION

In this article we propose a generalization of the Frenkel–Kac–Segal~FKS! vertex operator
realization of nontwisted affine Lie algebras at level one1,2 to an arbitrary level. This construction
was originally based on the spatial compactification of a bosonic string whose momentum
is taken to be the~Euclidean! root lattice of a finite-dimensional simple Lie algebra ofADE type.
The Laurent coefficients~modes! of the tachyon vertex operators together with the string osci
tors then constitute a basis of the affine algebra. This basis is not physical in the sense of
theory since, except for the zero mode, these operators do not commute with the Virasor
straints. However, there is also a ‘‘covariant’’ version of the FKS construction,3,4 where the
momentum lattice of the string is enlarged by a two-dimensional Minkowski lattice; then the
mode operators are indeed physical in the sense of string theory and already by themselve
a basis of the affine algebra. Apparently it has not been generally appreciated so far that
from being manifestly physical, this construction is applicable to affine Lie algebras at arbi
level and thus more general than the FKS construction. The characteristic feature of our mo
that the momentum lattice of the string is taken to be the~Minkowskian! affine weight lattice. This
model was recently exploited in Ref. 5 to construct an explicit representation of the affine
awara generators in terms of~transversal! Del Giudice–Di Vecchia–Fubini~DDF! operators at
arbitrary level.

A main new result of this article is a string vertex operator realization of the affine Cart
Weyl basis~in particular the step operators! at an arbitrary level in terms of physical~DDF!
operators rather than ordinary string oscillators as in Refs. 3 and 4. Consequently, we can e
the action of these operators on any given physical state directly in terms of the DDF basis
construction leads us to consider a new type of~level-dependent! physical fieldX m(z), similar to
the old Fubini–Veneziano field,Xm(z), but where the ordinary string oscillators are replaced
level-l transversal DDF oscillators. Apart from the center of mass coordinate, the fieldsX m were
0022-2488/97/38(9)/4435/16/$10.00
4435J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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already introduced in Ref. 5. Whereas the correct definition of the center of mass mode ofX m did
not matter in Ref. 5, it is absolutely essential here; somewhat surprisingly, this definition turn
to involve the Lorentz generatorsMmn , which are physical operators, rather than the operatorsqm,
which are not physical unlike the center of mass momentapm. The construction also requires
corresponding new type of ‘‘tachyon vertex operator’’ withXm replaced byX m; more general
operators of this type presumably will be needed at a later stage.

The proper definition of the center of mass mode, and the corresponding replacemen
translation generator by a Lorentz transformation leads us to our second main result, namely
interpretation of the affine Weyl group as a ‘‘dimensional null reduction’’ of the hyperbolic W
group. More specifically, this result hinges on re-expressing the so-called~affine! Weyl transla-
tions as Lorentz boosts. Consequently, these elements of the affine Weyl group should re
called ‘‘Weyl boosts.’’ In this way it becomes obvious that the embeddings of the finite, affine
hyperbolic Weyl groups of the finite, affine and hyperbolic Kac–Moody algebrasḡ,g, ĝ, re-
spectively~with the finite algebraḡ of rankd22!, are just the discrete analogs of the correspo
ing sequence of embeddings of the continuous groups SO(d22),ISO(d22),SO(d21,1) into
one another@see Eq.~4.16!#. Here ISO(d22) is defined to be the subgroup of SO(d21,1) leaving
invariant a given lightlike vector, which in our case is just the affine null rootd. We find it
remarkable that this new description of the affine Weyl group is really forced upon us by the
approach, and this suggests that it is the truly natural interpretation of the known result th
affine Weyl group is a semidirect product of the finite Weyl group and the affine Weyl tra
tions. While the affine Weyl transformations leave the level of a given representation fixed
can in principle also consider level-changing boosts. As we expect such transformations to p
important new insights into the structure of hyperbolic Kac–Moody algebras and their
groups we briefly discuss these generalizations in the last section.

We believe that the results presented in this article open new and promising perspectiv
the theory of irreducible representations of affine Lie algebras, especially with regard t
problem of understanding hyperbolic Kac–Moody algebras~actually our main goal!, where one
must simultaneously deal with infinitely many inequivalent representations of arbitrary leve
shown in the present article, this aim can be achieved by embedding all the affine represe
spaces into a single Fock space of physical states. Among the fascinating open proble
further study let us especially mention the idea of extending the present construction to ‘‘
changing vertex operators’’~actually, this will be a generic feature when we go over to
hyperbolic extension of the affine Lie algebra!, possibly also of more general-type than t
tachyon-type vertex operators utilized here. Whereas the affine generators themselves invol
transversal DDF operators and thus contribute only transversal excitations to states within a
irreducible affine representation, the longitudinal DDF operators by construction map
vacuum vectors into each other and will accordingly act as representation-changing~and, in
general, even level-changing! operators. The latter have so far played no role in the represent
theory of affine algebras, and are unnecessary as long as one deals only with one represen
a time. However, it is clear that a proper understanding of the longitudinal DDF operators i
of the keys to unraveling the mysteries of indefinite and hyperbolic Kac–Moody algebras.

II. AFFINE WEIGHTS AND DDF OPERATORS

We consider a nontwisted affine Lie algebrag5n2 % h% n1 ~for general references on thi
subject see, e.g., Refs. 6 and 7! with underlying simple finite-dimensional Lie algebraḡ of type
ADE and with rankd22 (d.2). The affine~respectively, finite! root lattice is denoted byQ
~respectively,Q̄!. The space of dominant integral affine weights is given by

P1 :5$LPh* uL–r IPZ1,0<I<d22%5 (
I 50

d22

Z1LI1Cd,
J. Math. Phys., Vol. 38, No. 9, September 1997
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where d is the affine null root,r I are the affine simple roots, andLI (0<I<d22) are the
fundamental affine weights defined byLI–r J5d IJ and LI–L050 for 0<I , J<d22. For any
dominant weightL the levell P Z is defined by~in comparison with Ref. 5 we have switche
signs so as to be in unison with the standard conventions.6,7!

l :5L–d. ~2.1!

By L(L) we denote the corresponding integrable irreducible highest weight module overg. It is
clear thatL(L)>L(L1zd) for all zPC. By putting

L8:5L1
1

l
S 12

1

2
L2Dd

for any LPP1 of nonzero level we thus obtain a ‘‘tachyonic’’~i.e., L8252! dominant integral
affine weight which gives rise to a highest weight moduleL(L8) isomorphic toL(L). Without
loss of generality we shall assume from now on thatL is some tachyonic dominant weight o
positive levell .

Now let l be any weight inV~L!, the set of weights forL(L). It ensues that~i! l2P2Z and
~ii ! l2<L252. To see this we note thatl5L2r for somerPQ1 . Then ~i! follows from l2

52(12L–r )1r2 by the fact thatL is an integral weight and thatQ is an even lattice by
assumption. To prove~ii !, we use thatl is Weyl equivalent to a uniquel8PP1ùV(L) with
decompositionl85L2r 8 for some r 8PQ1 ; hencel25l825L22L–r 82l8–r 8<L252 be-
cause bothL andl8 are dominant@cf. Ref. 6 ~Proposition 11.4.a!#.

These observations are crucial for the DDF construction to be described below: for any
l weight lPV(L) we define its DDF decomposition8 by

l5a2nkl , ~2.2!

where

kl :5
1

l
d, ~2.3!

and the vectora is uniquely determined by demandinga252. Thusn512 1
2l

2, and by the above
result,n is always a non-negative integer as required by the DDF construction. We will refera
as the ‘‘tachyonic level-l vector’’ and to the corresponding stateua& as the ‘‘tachyonic level-l
state’’ associated tol. Note that, forl .1, the tachyonic vectora occurring in Eq.~2.2! in general
is not a weight forL(L) because of the fractional coefficient in front ofd. Rather it will be used
as an auxiliary vector in the construction below.

A central feature of our approach is the realization of the affine representation spaceL(L) as
a ~tiny! subspace of a much bigger spaceP of physical string states, itself a subspace of a Fo
spaceF which is the direct sum of irreducible Heisenberg modules created by the usual
oscillators from the ground statesul&[exp(il–q)u0& for arbitrary affine weightsl. More pre-
cisely,

F :5span$a2m1

m1 •••a
2mM

mM ul&ulPh* ,mm.0%, ~2.4!

where the string oscillatorsam
m (mPZ,0<m<d21) and the center of mass operatorsqm, pm obey

the standard commutation relations

@am
m ,an

n#5mhmndm1n,0 , @qm,pn#5 ihmn, a0
m[pm

with pmul&5lmul&. To isolate the physical states, we introduce the Virasoro operators
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



l

e

on
er-

-

heir

and

4438 R. W. Gebert and H. Nicolai: Affine string vertex operators at an arbitrary level

                    
Lm :5
1

2 (
nPZ

:an•am2n:, ~2.5!

which satisfy a Virasoro algebra with central chargec5d @the normal-ordering:•••: with respect
to the string oscillatorsam

m in Eq. ~2.5! is defined in the usual manner#. The space of physica
string statesP ,F is then defined as

P :5$cPF uL0c5c,Lnc50;n.0%. ~2.6!

As already indicated, we shall be interested in certain subspaces ofP ; more specifically, the affine
representation spaceL(L) associated with the highest weightL will be embedded into the spac

P ~L!5 %
lPV~L!

P ~l!,P , ~2.7!

where

P ~l!:5$cPF uL0c5c, Lnc50;n.0, pmc5lmc, 0<m<d21% ~2.8!

denotes the space of physical string states with momentuml.
An explicit realization of the physical states is afforded by the so-called DDF operators.9,10 To

write them down we need the DDF decomposition~2.2! since these operators will always act
some tachyonic stateua& associated with a given weightl in the sense explained above. Furth
more, we need a set of polarization vectorsj i[j i(a)[j i(l) (1< i<d22) satisfyingj i

–j j

5d i j and j i
–d5j i

–a50, which constitute a basis for the complex vector spaceh̄* dual to the
Cartan subalgebrah̄ of ḡ. The DDF operators are defined by9,10 @to make the notation less cum
bersome, and contrary to the notational conventions of Ref. 5, we here suppress the labell on the
DDF operators in Eqs.~2.9! and ~2.10! because this dependence is already implied by t
dependence ona#

Am
i ~a!:5 R dz

2p i
j i~a!–P~z!exp@ imkl –X~z!#, ~2.9!

Am
2~a!:5 R dz

2p i
:F2a–P~z!1

m

2

d

dz
ln kl –P~z!Gexp@ imkl –X~z!#:

2
1

2 (
nPZ

3
3An

i ~a!Am2n
i ~a!3

312dm0kl –p, ~2.10!

Am
1~a!:5 R dz

2p i
kl –P~z!exp@ imkl –X~z!#5dm0kl –p, ~2.11!

for mPZ, 1< i<d22. Here we have used the well-known Fubini–Veneziano coordinate
momentum fields, respectively,

Xm~z!:5qm2 ipm ln z1 i (
mÞ0

1

m
am

mz2m, ~2.12!

Pm~z!:5 i
d

dz
Xm~z!5 (

mPZ
am

mz2m21, ~2.13!

and employed the standard normal-ordering3
3•••3

3 for the transversal DDF operators
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3
3Am

i An3
j 3 :5H Am

i An
j

An
j Am

i
for m<n
for m.n. ~2.14!

Let us recall from Ref. 5 that the shift of any polarization vectorj i(a)[j i(l) along thed
direction leaves the associated DDF operatorAm

i (a) unchanged formÞ0, because the residue o
a total derivative always vanishes. On the other hand, the differencej i(L)2j i(l) for any l
PV(L) is, without loss of generality, always proportional tod. Thus, formÞ0, we are effectively
dealing with a single set of DDF operatorsAm

i (L) for the whole moduleL(L); the zero mode
operators do differ for differenta, however. For definiteness, we choose the polarization vecto
be j i(L) throughout.

The above operators obey the commutation relations

@Am
i ,An

j #5md i j dm1n,0kl –p, ~2.15!

@Am
2 ,An

i #50, ~2.16!

@Am
2 ,An

2#5~m2n!Am1n
2 1

262d

12
m~m221!dm1n,0kl –p. ~2.17!

They arephysical, i.e.,

@Lm ,An
i #5@Lm ,An

6#50. ;m,nPZ,1< i<d22,

and therefore map physical into physical states. Moreover, they constitute a spectrum-gen
algebra for the string. In particular,

P ~l!5spanH A
2m1

i 1 •••A
2mM

i M A2n1

2 •••A2nN

2 ua&U( mm1( nn512
1

2
l2J , ~2.18!

for a DDF decompositionl5a2nkl of l and for i m51,...,d22, mm.0, n1>•••>nN>2. Note
that A21

2 ua&}L21ua2kl &, i.e., A21
2 generates null physical states which must be discarded.

III. AFFINE VERTEX OPERATORS AT ARBITRARY LEVEL

We introduce a linear mappL : g→End P (L) as follows:

K°d–p,

d°L0–p,
~3.1!

Hm
i ° R dz

2p i
j i~L!–P~z!exp@ imd–X~z!#,

Em
r ° R dz

2p i
:exp@ i ~r1md!–X~z!#:cr ,

with rPD̄ and thusr1mdPD. cr denotes a cocycle factor satisfyingcre
is–q5e(r ,s)eis–qcr for

some bimultiplicative two-cocyclee normalized s.t.e(0,0)5e(r,2r )51. Indeed, it is straightfor-
ward to check~see Refs. 3 and 4! that the above operators are physical, i.e.,

@Lm ,pL~K !#5@Lm ,pL~d!#5@Lm ,pL~Hn
i !#5@Lm ,pL~En

r !#50

for all m,nPZ, rPD̄, 1< i<d22. More precisely, for anylPV(L) one has
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pL~K !:P ~l!→P ~l!,

pL~d!:P ~l!→P ~l!,
~3.2!

pL~Hm
i !:P ~l!→P ~l1md!,

pL~Em
r !:P ~l!→P ~l1r1md!.

Furthermore, the following relations hold:

@pL~Hm
i !,pL~Hn

j !#5l md i j dm1n,0 , ~3.3!

@pL~Hm
i !,pL~En

r !#5~j i
–r !pL~Em1n

r !, ~3.4!

@pL~Em
r !,pL~En

s!#5H 0 if r–s>0

e~r ,s!pL~Em1n
r1s ! if r–s521,

pL~Hm1n
r !1l mdm1n,0 if r–s522

~3.5!

@pL~K !,pL~x!#50 ;xPg, ~3.6!

@pL~d!,pL~Hm
i !#5mpL~Hm

i !, ~3.7!

@pL~d!,pL~Em
r !#5mpL~Em

r !. ~3.8!

HencepL defines a level-l vertex operator realization ofg on P (L). By identifying the vacuum
vectorvL in L(L) with the tachyonic ground stateuL& in P (L), we conclude that

L~L!�P ~L!. ~3.9!

To see this, we first write down the realization of the Chevalley–Serre generators, viz.

ei :5pL~E0
r i !, f i :52pL~E0

2r i !, hi :5pL~r i–H0!5r i–p, for 1< i<d22,

e0 :5pL~E1
2u!, f 0 :52pL~E21

u !, h0 :5pL~K2u–H0!5r0–p,

whereu denotes the highest root inD̄. Ten we have to verify@see, e.g., Ref. 6~Corollary 10.4!#
both the vacuum vector conditions

eI uL&50 for 0<I<d22, ~3.10!

and the null vector conditions

f I
11r I–LuL&50 for 0<I<d22. ~3.11!

From Eq.~3.2! we infer that

eI :P ~l!→P ~l1r I !, f I :P ~l!→P ~l2r I ! for 0<I<d22.

HenceeI uL& has at least eigenvalue 2 forL0 becauseL25r I
252 andL is dominant, so that (L

1r )2>4; but this contradicts the fact thateI uL& is a physical state@cf. Eq. ~2.8!#, henceeI uL&
must be zero. The null vectorsf I

11r I–LuL& vanish by the same argument since1
2@L2(11r I
J. Math. Phys., Vol. 38, No. 9, September 1997
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•L)r I #
2521L–r I . In other words, the null vectors are really zero in our approach. The s

P (l) must not be confused with the weight spaceL(L)l , the space of states with weightl in the
representation; rather, we have the~in general proper! inclusion

L~L!l�P ~l!. ~3.12!

If we make use of the observation that in Eq.~3.1! only transversal linear combinations of th
string oscillators and consequently transversal DDF operators can occur, we conclude tha

multL~l!5dim L~L!l<dim P transv.
~l! 5pd22~12 1

2l
2!. ~3.13!

This is a universal estimate for the weight multiplicities of any irreducible affine highest we
module which seems to be new. Forl 51 this bound is known to be saturated;1 at a higher level,
however, the formula may constitute only a crude upper bound. In general, there are ‘‘m
states,’’ namely the physical states which lie inP (l) but not inL(L)l . Note, however, that thes
have nothing to do with the above null vectors.

We also note that

pL~Hm
i !5Al m

i ~L!, ~3.14!

which shows that the transversal DDF operatorsAl m
i (L) occur not only as part of the spectru

generating algebra for the physical string states but also as homogeneous Heisenberg su
of the affine algebra. One might therefore ask whether it is possible to rewrite the step ope
pL(Em

r ) also in a manifestly physical form in terms of these DDF operators. Indeed, th
possible if in addition one uses the Lorentz generators. To this end we introduce thetransversal
coordinate field

X L
i ~z![X i~z!:5~j i !m~kl !nMmn2 i ~j i

–p!ln z1 i (
mÞ0

1

m
Am

i ~L!z2m, ~3.15!

where

Mmn:5qmpn2qnpm2 i (
nÞ0

1

n
a2n

[m an
n] ~3.16!

are the Lorentz generators, and thetransversal momentum field

P L
i ~z![P i~z!:5 i

d

dz
X i~z!5 (

mPZ
Am

i ~L!z2m21 ~3.17!

~where we again do not indicate the dependence on the level explicitly.! Note that the center o
mass coordinate in Eq.~3.15! is (j i)m(kl )nMmn rather thanqi as one might have naively guesse
This choice is forced upon us by the requirement that the fieldX i(z) should be physical: since

@Lm ,Mmn#50, ~3.18!

we have, with definition~3.15!,

@Lm ,X i~z!#50, ~3.19!

whereas Eq.~3.19! would not vanish if the zero mode wereqi . Second, substituting
(j i)m(kl )n Mmn for qi amounts to a replacement of a translation generator~in momentum space!
by a Lorentz rotation. As we will see, this is precisely what is required because our new e
J. Math. Phys., Vol. 38, No. 9, September 1997
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sions are defined in terms of DDF operators which shift the momentum by a vector propor
to kl whereas Eq.~3.1! is defined in terms of ordinary string oscillatorsam

m which do not shift
momentum. There is a corresponding reinterpretation of the affine Weyl translation by a Lo
boost~see Sec. IV!.

Observe also that we have defined the new fieldX i(z) so far only for transversal indices
However, our definition can be generalized to the longitudinal componentsX 6 by means of the
operatorsAm

6 defined in Eqs.~2.10! and~2.11!, respectively. Note thatAm
1[0 for all mÞ0, just as

in light cone gauge string theory. Although we will make no use of the componentsX 6 in this
article, we expect them to become relevant in future generalizations involving level-cha
operators~see Sec. V!. We note that fields~3.15! are transcendental expressions in terms of
standard oscillator basis.

Next we establish the relation between the ‘‘old’’ step operatorspL(Em
r ) defined in Eq.~3.1!

and a set of new ones which manifestly depend on the DDF operators. The ‘‘new’’ level-l step
operators are defined by

Êm
r ~L!:5 R

0

dz

2p i
zl m

3
3 exp@ i r•X ~z!#3

3cr , ~3.20!

where we use the standard normal ordering~2.14! for the Heisenberg oscillators and where t
cocycle factorscr , which are functions of momentum, were explained after Eq.~3.1! and are the
same as in Ref. 1. The operators~3.20! will permit us to evaluate the action of the step operat
directly in terms of the DDF basis.

Theorem 1: On the representation space L(L), we have

pL~Em
r !5Êm

r ~L!, ~3.21!

where the operatorspL(Em
r ) and Êm

r (L) are defined, respectively, in Eqs. (3.1) and (3.2
Consequently, the operators Eˆ

m
r (L), Al m

i (L), d–p, andL0–p realize the affine algebra at levell

on P (L) in terms of the transversal Heisenberg algebra spanned by the Am
i ’s.

Proof: By construction, the operatorsÊm
r are physical. The DDF operatorAn

i shifts the mo-
mentum bynkl , and since the residue in Eq.~3.20! picks up 11l m1r–a of such modes forÊm

r

~a denotes the eigenvalue ofp!, the contribution of the DDF oscillators to the shift of momentu
will be (11l m1r–a)kl . On the other hand, the zero mode involving the Lorentz genera
provides a momentum shift byr2(11r–a)kl [@ l #t r(a)2a, so that in totalÊm

r mapsP (l) into
P (l1r1md) as required. The momentum shift@ l #t r(a) is just a Weyl translation, and we will retur
to this point in Sec. IV@see Eq.~4.4!#.

Next, we have to check that the new step operators satisfy the required commutation rel
and this part of the proof is very similar to the corresponding one for the FKS construction.
the last observation we immediately get

@v–p,Êm
r #5v–~r1md!Êm

r ,

for anyvPh* , which yields the correct commutation relations withpL(K), pL(d), andpL(H0
i ).

By the use of Eqs.~3.14!, ~4.14!, and~2.15! we obtain, formÞ0,

@pL~Hm
i !,i X L

j ~z!#5d i j zm,

from which Eq.~3.4! follows. Now, let us work out the commutator of two step operators wh
amounts to calculating the operator product of normal-ordered exponentials of the trans
coordinate field, namely,
J. Math. Phys., Vol. 38, No. 9, September 1997
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@Êm
r ,Ên

s#5e~r ,s! R
0

dw

2p i R
w

dz

2p i
zl mwl n

3
3 exp@ i r•X ~z!#33

33 exp@ is•X ~w!#3
3cr1s.

We split the transversal coordinate field as follows:

X L
i ~z!5X ,

i ~z!1Qi2 iPi ln z1X .
i ~z!,

where

X "
i ~z!:5 i (

m"0

1

m
Am

i ~L!z2m, Qi :5~j i !m~kl !nMmn, Pi :5j i
•p,

so that we can write the step operators explicitly as

Êm
r 5 R dz

2p i
exp@ i r•X ,~z!#ei r–Qzr–P exp@ i r•X .~z!#cr .

Using Eq.~2.15! and the relation@Qi ,Pj #5 id i j , which is valid on the level-l subspaceP ~L!
only, we find that

exp@ i r•X .~z!#exp@ is•X ,~w!#5S 12
w

z D r–s

exp@ is•X ,~w!#exp@ i r•X .~z!# ~ uzu.uwu!,

zr–Peis–Q5zr–seis–Qzr–P,

ei r–Qcre
is–Qcs5e~r ,s!ei ~r1s!–Qcr1s.

Thus, we have

@Êm
r ,Ên

s#5e~r ,s! R
0

dw

2p i R
w

dz

2p i
$zl mwl n~z2w!r–s exp@ i r•X ,~z!1 is•X ,~w!#

3ei ~r1s!–Qzr–Pws–P exp@ i r•X .~z!1 is•X .~w!#%cr1s.

It is clear that the commutator vanishes forr–s>0. For r–s521, we haver1sPD̄. Furthermore,
the contour integral ofz aroundw then has the effect of settingz5w in the integrand due to the
simple pole, and the resulte(r ,s)Êm1n

r1s follows. The caser–s522 is equivalent tos52r and
corresponds to a second order pole atz5w of the integrand. Cauchy’s theorem then yields t
required result, viz.

@Êm
r ,Ên

s#5 R
0

dw

2p i
wl n

d

dz Fzl m1 i r–X ,~z!1S z

wD r–P

1 i r–X .~z!G
z5w

5 R
0

dw

2p i
wl ~m1n!@r•P ~w!1l mw21#5Am1n

r 1l mdm1n,0 .

Finally, we have to verify thatÊm
r really gives the same result aspL(Em

r ) in terms of the
string oscillators. For this purpose, we re-express the DDF operators for a given trans
physical state in terms of ordinary string oscillators. Then the leading oscillator contribution
the same because any product of DDF operatorsAm

i differs from the corresponding product o
string oscillatorsam

i only by terms all of which involve at least one lightlike oscillatord–a2n with
the null rootd @this statement is no longer true for longitudinal DDF operators as can be se
J. Math. Phys., Vol. 38, No. 9, September 1997
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simple inspection of Eqs.~A7!–~A10! given in Ref. 8#. Moreover, the Lorentz generators do n
contribute to the leading oscillator terms. Since any physical state is uniquely determined
leading oscillators, the result follows. j

We emphasize again that the equality stated in the theorem holds only on the sub
P (L),P , but not on the whole physical state spaceP . This is because we must utilize th
relationkl •a5kl •l51 for all lPV(L) in the proof. We note that an analogous result wo
hold for the original FKS construction if one makes the simple replacementzm→zl m ~see Ref. 11
where this observation was made in the context of parafermions!. However, in our approach, th
level-l representation space is a subspace of a much bigger space, the space of all physic
of arbitrary level, which enables us to treat infinitely many irreducible representations sim
neously~as required by a representation theoretic approach to hyperbolic Kac–Moody alge!.

One of the nice features of the above realization is that it allows us to simply understand
is special about the basic representation, i.e., levell 51: only in this case is it possible to expre
the step operators entirely in terms of the homogeneous Heisenberg subalgebra spanne
pL(Hm

i )’s, for ul u.1, the step operators cannot be expressed in terms of the operatorsAl m
i alone.

As a result we again have missing states, namely physical states which cannot be ‘‘reach
applying step operators successively to the tachyonic vacuum vectorvL[uL& that defines the
representation. As we pointed out already, these missing states must not be confused with
vectors of the conventional approach. The consequences of our new formulation for the c
tation of affine characters is an intriguing problem for further study.

As an application of Theorem 1 we can immediately rederive the new expression for the
Sugawara generators given in Ref. 5. Recall that in terms of the affine Cartan–Weyl basi~3.1!
these are given by

Lm
@ l # :5

1

2~ l 1h∨! (
nPZ F (i 51

d22

+
+pL~Hn

i !pL~Hm2n
i !+

+1(
rPD̄

+
+pL~En

r !pL~Em2n
2r !+

+G , ~3.22!

whereh∨ denotes the dual Coxeter number ofḡ. The new normal-ordering symbol+
+••• +

+ refers to
the mode indices of the affine generators; for the operatorspL(Hn

i ) ~but not for the step opera
tors!! it is the same as Eq.~2.14! by Eq. ~3.14!. The operatorsLm

@ l # are well known to generate
Virasoro algebra~see, e.g., Ref. 12, and references therein!

@Lm
@ l # ,Ln

@ l ##5~m2n!Lm1n
@ l # 1

c~ l !

12
~m32m!dm1n,0pL~K !, ~3.23!

with central charge

c~ l !:5
l dim g

l 1h∨ . ~3.24!

They act as outer derivations on the affine Lie algebra according to

@Lm
@ l # ,Al n

i #52nAl ~m1n!
i , @Lm

@ l # ,Ên
r #52nÊm1n

r . ~3.25!

In particular, we observe thatL0
@ l #52pL(d). By construction, the Sugawara generators

physical, viz.

@Lm
@ l # ,Ln#50 ;m,nPZ. ~3.26!

Now let z:5e2p i /l ~or any other primitivel th root of unity!. We have5 the following corollary.
Corollary 1: The operatorsLm

@ l # can be directly expressed in terms of the transversal Heis
berg algebra by
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



sing

4445R. W. Gebert and H. Nicolai: Affine string vertex operators at an arbitrary level

                    
Lm
@ l #5

1

2l (
nPZ

(
i 51

d22

3
3Al n

i Al ~m2n!
i

3
31

h∨

2l ~ l 1h∨! (
nÞ0~ l !

(
i 51

d22

3
3An

i Al m2n
i

3
3

1
~ l 221!~d22!h∨

24l ~ l 1h∨!
dm,02

1

2l ~ l 1h∨! (
rPD̄

(
p51

l 21
1

uzp21u2

3 R
0

dz

2p i
zl m21

3
3 exp$ i r•@X ~zpz!2X ~z!#%3

3 . ~3.27!

Proof: Using the operator expansion in the proof of Theorem 1 we get

(
nPZ

+
+Ê2n

r Êm1n
2r

+
+[ (

n>0
Ê2n

r Êm1n
2r 1 (

n.0
Êm2n

r Ên
2r

5H R dz

2p i R
uzu.uwu

dw

2p i
2 R dz

2p i R
uzu,uwu

dw

2p i J ~z2w!22(
n>0

z2l nwl ~m1n!

3S z

wD r–P

exp$ i r•@X ,~z!2X ,~w!#%exp$ i r•@X .~z!2X .~w!#%

5 R
0

dw

2p i (
p51

l R
wp

dz

2p i H zl wl m

~z2w!2~zl 2wl ! 3
3 exp$ i r•@X ~z!2X ~w!#%3

3J ,

wherewp :5zpw. With the identity

zl 2wl

z2wp
5zl 211zl 22wp1•••1zwp

l 221wp
l 215:F~z,wp!,

the sum over the poles atz5wp for 1<p<l 21 immediately yields the third term in Eq.~3.27!.
As regards the pole atz5w, we have to evaluate

(
rPD̄

R
0

dw

2p i

1

2

d2

dz2 H zl wl m

F~z,wl ! 3
3 exp$ i r•@X ~z!2X ~w!#%3

3J U
z5w

5
1

2 (
rPD̄

R
0

dw

2p i H wl m
d2

dz2 F zl

F~z,wl !G
z5w

1
1

l
wl m11

3
3F d

dw
i rX ~w!G2

3

3J ,

where the terms linear inr drop out due to the sum over both positive and negative roots. U
Eq. ~3.17! and the fact that

(
rPD̄

r ^ r52h∨ (
i 51

d22

j i
^ j i ,

the second term is seen to give a contribution

h∨

2l ~ l +h ∨)
(
nPZ

(
i 51

d22

3
3An

i Al m2n
i

3
3 ~3.28!

in the formula for the Sugawara operators. Finally, a straightforward calculation yields
J. Math. Phys., Vol. 38, No. 9, September 1997
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1

2

d2

dz2 F zl

F~z,wl !G
z5w

5
l 221

12l w

which, together withuD̄u5(d22)h∨, leads to the constant term in Eq.~3.27!. j

IV. THE AFFINE WEYL GROUP

We now return to the remarks made at the beginning of the proof of Theorem 1. As
there, the momentum shift effected by the step operator~3.20! on a given state is the combinatio
of the shifts effected by the DDF operators~which are always along the null rootd! and a zero
mode contribution, such that the total shift coincides with the one obtained for the origina
operator of Eq.~3.2!. Furthermore, we observed that the so-called~affine! Weyl translations
naturally appeared there; the latter are designated byt rPT for rPQ and act onh* as

t r~v!:5v1~v–d!r2@~v–d! 1
2r

21r–v#d, ~4.1!

wherevPh* . Now, it is a well-known result that the affine Weyl group is the semidirect prod
of the Weyl group of the underlying finite dimensional Lie algebraḡ and the affine Weyl trans
lations, i.e.,

W~g!5W~ ḡ!›T. ~4.2!

To re-examine this result in the light of our approach we need the following family of translat

@ l #t r~v![v8:5v1~v–kl !r2@~v–kl ! 1
2r

21r–v#kl , ~4.3!

for l PN andkl was defined in Eq.~2.3!. More specifically, we have the following transformatio
formulas for a tachyonic level-l vectora, a polarization vectorj i(a), and the affine null vectord,
respectively:

@ l #t r~a![a85a1r2~ 1
2r

21r–a!kl , ~4.4!

@ l #t r~j i~a!![j i~a8!5j i~a!2@r–j i~a!#kl , ~4.5!

@ l #t r~d![d85d. ~4.6!

The above maps are linear and indeed fulfill the translation property

@ l #t r+
@ l #ts5

@ l #t r1s ;r ,sPQ̄. ~4.7!

Moreover, they preserve the~Minkowskian!! norm, i.e.,v825v2. We will now exploit this fact by
re-interpreting them as Lorentz boosts. In this way the affine Weyl group becomes a di
subgroup of ISO(d22), the subgroup of the full Lorentz group SO(d21,1) leaving fixed a given
lightlike vector. For the level-preserving transformations considered in this section, ISO(d22) is
therefore nothing but the stability subgroup~in the hyperbolic Weyl group! of the affine null root
d.

To proceed, we rewrite Eq.~4.3! as

vm8 5 @ l #T m
nvn ~4.8!

with

@ l #T m
n[~@ l #t r !m

n:5dm
n 1r m~kl !n2~kl !mr n2 1

2r
2~kl !m~kl !n. ~4.9!
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



the

ent of
tural
Weyl
f

bolic
ull-

bras
t a time.
tween
llows

onent
ust
t arise
nsiders
itrary

4447R. W. Gebert and H. Nicolai: Affine string vertex operators at an arbitrary level

                    
It is elementary to show that@ l #T 5exp @l #v with

@ l #vmn :5r m~kl !n2r n~kl !m . ~4.10!

We have a unitary representation@ l #T̂ of this Lorentz boost on the Fock space by means of
Lorentz generators~3.16!, viz.

@ l #T̂ :5expS i

2
@ l #vmnMmnD ; ~4.11!

one finds that

@ l #T̂ ~l–q!~ @ l #T̂ !215 @ l #t r~l!–q, @ l #T̂ ~l–am!~ @ l #T̂ !215 @ l #t r~l!–am ;mPZ. ~4.12!

For instance, on the tachyon stateua&, we get

@ l #T̂ ua&5ua8&. ~4.13!

Since, as we already noted, the transverse DDF oscillators remain unchanged formÞ0, we
therefore have, onP (L),

@ l #T̂ Am
i ~a!~ @ l #T̂ !215Am

i ~a8!5Am
i ~a!, ~4.14!

@ l #T̂ A0
i ~a!~ @ l #T̂ !215A0

i ~a8!5A0
i ~a!2r–j i~a!. ~4.15!

Although the replacement of the momentum shift by the Weyl translation~4.3! and the
re-interpretation of this translation as a Lorentz boost was forced on us by the replacem
ordinary string oscillators by DDF operators, it is now clear that this interpretation is the na
one. This is also evident from the following diagram, which displays the nested sequence of
groups of the finite, affine and hyperbolic Kac–Moody algebrasḡ,g, ĝ as discrete subgroups o
the corresponding continuous groups

W~ ḡ! , W~g! , W~ ĝ!

ù ù ù

SO~d22! , ISO~d22! , SO~d21,1!

~4.16!

We can thus think of the affine Weyl group as a dimensional null reduction of the full hyper
Weyl group, similar in spirit to the Kaluza–Klein reduction of Einstein’s theory with a n
Killing vector which was recently studied in Ref. 13, where the group ISO(d22) made its
appearance as the residual tangent space symmetry.

V. LONGITUDINAL DDF OPERATORS AND LEVEL-CHANGING TRANSFORMATIONS

We finally turn to longitudinal DDF operators. In the representation theory of affine alge
these have played no role so far, because one usually considers only one representation a
By contrast, the longitudinal DDF operators do change the level, and therefore interpolate be
different, and inequivalent affine representations. This fact is immediately evident if one a
the vectorr in the exponent of Eq.~3.20! to have levell Þ0, in which case the fieldX m

inevitably acquires a longitudinal component. Conversely, a nonvanishing longitudinal comp
in this expression implies thatr cannot only have components in the affine root lattice, but m
havel Þ0. While the necessity of studying several representations simultaneously does no
in the theory of affine representations as such, the problem must be faced when one co
hyperbolic Kac–Moody algebras which contain infinitely many affine representations of arb
J. Math. Phys., Vol. 38, No. 9, September 1997
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level. Furthermore, as shown in Ref. 8, longitudinal states do appear in these algebras. W
that the formalism developed in this paper furnishes the requisite tools for further investigati
this direction, because it allows us to embed the different representations into a single Fock
of physical states. In this section we present some preliminary results concerning the longi
DDF operators, which we expect to become relevant in future developments. In particular, w
also consider the level-changing generalizations of the Lorentz boosts~4.9!, whose unitary imple-
mentation yields operators interpolating between DDF operators of different level.

Because there is an infinity of tachyonic statesua&, the longitudinal DDF operatorsAm
2(a)

introduced in Eq.~2.10! constitute an infinity of Virasoro algebras, but with uniform cent
chargec5262d, see Eq.~2.17!. By construction, all of these commute with the Virasoro ge
eratorsLm , and are therefore physical. Moreover, they also commute with the Sugawara g
tors ~3.22!

@L m
@ l # ,An

2~a!#50 ~5.1!

for all tachyonica associated with a weightlPV(L). Although their polarization is alonga, a
short calculation shows that they are still invariant under the Lorentz boost~4.8!, in accordance
with Eqs.~4.14! and ~4.15!; namely, we have

@ l #T̂ Am
2~a!~ @ l #T̂ !215Am

2~a8!5Am
2~a!,

@ l #T̂ A0
2~a!~ @ l #T̂ !215A0

2~a8!5A0
2~a!1r–a.

Their commutation relations with the step operators~3.20! ~for r PD̄! are given by

Êm
r An

2~a!5An
2~a8!Êm

r , ~5.2!

wherea8 is the Weyl-boosted tachyon momentum defined in Eq.~4.4!. In deriving this result, the
AiAi term in Eq. ~2.10! is essential. The longitudinal DDF operators can thus be regarde
intertwining operators between different~but isomorphic! representations. The above relation a
permits us to extend the proof of Theorem 1 to states containing longitudinal excitations by s
moving all step operators to the right of the longitudinal DDF operators.

So far, we have only considered the action of integrated tachyon vertex operators ass
with affine rootsr1mdPD. From the point of view of string theory it is natural to incorpora
‘‘step operators’’ associated with arbitrary tachyonic affine dominant integral weightsL8. So let
us define

EL8:5 R dz

2p i
:exp@ i L8–X~z!#:cL8 ~5.3!

for L8PP1 satisfyingL8252. SinceL8 has nonvanishing level in general, only the special c
of level zero~L85r1md for rPD̄! leads to the step operatorsEm

r . By construction, the gener
alized step operators are physical,

EL8:P ~l!→P ~l1L8!; ~5.4!

but the crucial observation is that they change the level, i.e., they map from a highest w
moduleL(L) to the moduleL(L1L8). Again, one might wonder whether these operators can
rewritten in a manifestly physical form, and it is at this point that the longitudinal DDF opera
will enter the stage. In the remainder, we will therefore generalize the affine Weyl translatio
level-changing translations which will be necessary for rewriting the generalized step opera
terms of the DDF operators.
J. Math. Phys., Vol. 38, No. 9, September 1997
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For anyl1 in the weight systemV(L1) of a dominant weightL1 with positive levell 1 , we
define

@ l #tl1
~v!:5v1~v–kl !l12@~v–kl ! 1

2l1
21v–l1#kl 1l 1

. ~5.5!

Note that the affine null root is no longer invariant but is rescaled according to

@ l #tl1
~kl !5kl 1l 1

. ~5.6!

The above maps are linear and again fulfill the translation property

@ l 1l 1#tl2
+ @ l #tl1

5 @ l #tl11l2
. ~5.7!

Moreover, they preserve the norm, which allows us to rewrite them as Lorentz boosts. To se
we rewrite Eq.~5.5! as

@ @ l #tl1
~v!#m

nvn5 @ l #T m
nvn ~5.8!

with

@ l #T m
n[~@ l #tl1

!m
n:5dm

n 1~l1!m~kl !n2~kl 1l 1
!m~l1!n2 1

2l1
2~kl 1l 1

!m~kl !n. ~5.9!

A careful calculation shows that@ l #T 5exp@l #v with

@ l #vmn :5 lnS 11
l 1

l
D @~l1!m~kl 1

!n2~kl 1
!m~l1!n#. ~5.10!

The last two equations generalize the expressions in Eqs.~4.9! and~4.10!, respectively, which can
be reobtained by puttingl 150. The unitary representation@ l #T̂ of this level-changing Lorentz
boost on the Fock space is still given by formula~4.11!. By Eq. ~5.6!, conjugation with the
operator@ l #T̂ transmutes level-l DDF operators into level-(l 1l 1) DDF operators.

A natural ansatz for alongitudinal coordinate fieldanalogous to Eq.~3.15! is

X L,L1

2 ~z!:5 lnS 11
l 1

l
D ~L1!m~kl 1

!n Mmn2 i ~L1–p!ln z1 i (
mÞ0

1

m
Am

2~L1L1!z2m,

~5.11!

with associatedlongitudinal momentum field

P L,L1

2 ~z!:5 i
d

dz
X L,L1

2 ~z!5 (
mPZ

Am
2~L1L1!z2m21. ~5.12!

This means, however, that one will have to face up to the problem of dealing with exponent
such operators. This is not quite the same as exponentiating the Virasoro algebra beca
operators are always well defined on finite occupation number states, for which the co
integral picks up only finitely many contributions, but the technical problems of manipulating
expressions~e.g., computing operator products analogous to the ones used in the proof of Th
1! still seem daunting. The relevant calculations would be analogous to the computation of
scattering amplitudes in the light cone gauge, with the longitudinal operators and bilinea
transversal oscillators in the exponent—something that apparently has never been done
literature.
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Fermion doubling on a lattice and topological aspects
of chiral anomaly
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The problem of fermion doubling on a lattice has been discussed here from the
specific geometrical properties of a lattice structure and topological aspects of
chiral anomaly. It is argued that there cannot be chiral anomaly on a lattice and as
such there cannot be any conserved charge. This unveils the root cause of fermion
doubling, and the unwanted fermions just reflect the geometrical properties of a
lattice and may be viewed as to represent the ‘‘fictitious’’ chiral spinors associated
with the lattice structure which make chiral fermions anomaly free. ©1997
American Institute of Physics.@S0022-2488~97!00708-1#

I. INTRODUCTION

As is well known, there appears an equal number of species of left- and right-handed
fermions for a general class of lattice fermion theories for each combination of quantum num
Indeed, a theorem by Nielsen and Ninomiya1 states that a space cubic lattice, with a biline
Hamiltonian which is local, Hermitian, translation invariant and with bilinear locally defi
conserved charges, has fermions appearing in pairs with opposite chirality and the same
quantum numbers. In view of this, a lattice fermion formulation without species doubling and
explicit chiral symmetry appears to be impossible.

Several attempts have been made to eliminate the unwanted fermions. Wilson2 proposed a
way to remove these extra particles by giving them a mass of the order of the cutoff so th
have just one fermion with a relativistic spectrum in the continuum limit. The disadvantag
using Wilson fermion is that chiral symmetry is not an exact symmetry. Even for vanishing m
the fermion lattice action with the Wilson term is not chiral invariant. Thus the use of Wi
fermions in a lattice formulation of field theories where chiral invariance is supposed to pla
important role is not possible. Susskind3 has proposed a lattice fermion formulation where t
fermion field function has just only one component instead of all four components defined
site of the lattice. This solves part of the naive degeneracy and one has a discreteg5 invariance.
However, continuous chiral transformation cannot be defined. Moreover, because of the fa
there is likely no Goldstone theorem for discrete symmetries the pion mass comes out too
strong coupling calculations.4 Thus for the Susskind approach the problem of continuous ch
symmetry and associated Goldstone boson does remain. Drellet al.5 proposed a model, known a
SLAC fermions, where the condition of locality has been abandoned. In this scheme an i
jump propagator has been suggested to solve the fermion doubling problem. This imp
nonlocal lattice action which contains products of fields arbitrarily far apart. As a consequen
a gauge theory with SLAC fermions one gets nonlocal and noncovariant contributions i
continuum limit. Nielsen and Ninomiya6 have constructed a model with only one two-compon
fermion on a lattice, dropping the assumption of the existence of a conserved charge.
scheme the fermion field is taken to be real. One can assign to the field components charg

a!C.S.I.R. Emeritus Scientist.
0022-2488/97/38(9)/4451/11/$10.00
4451J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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are not conserved at the scale of the fundamental lattice and only approximately conserved
low-energy regime.

Karsten and Smit7 have pointed out that the presence of doublers is related to the fact th
axial currents are necessarily nonanomalous on a lattice and one has more fermions cance
anomaly. Recently Creutz and Tytgat8 have noted that the problem of species doubling is
merely a particular property of the lattice gauge theory. Rather, it is more general in the sen
a similar phenomenon occurs when we have gauge fields coupled to the chiral currents fr
effective Lagrangian for pseudoscalar mesons. The problem is intricately related to the
anomaly. Thus the issue reduces to nonperturbatively removing the extra species when the
theory is made anomaly free. In this note we shall argue that the very geometrical aspe
lattice space structure does not allow the anomaly to exist on a lattice as the anomaly is ca
when the topological aspect of chiral anomaly is considered in the background of this l
geometry. This bears the seed to remove the problem of fermion doubling on a lattice non
batively.

II. FERMIONS ON A LATTICE

In this section we follow Karsten and Smit7 to show degeneracy of fermions on a lattice. L
us consider a four-dimensional Euclidean hypercubic lattice. The lattice spacing isa and the
lattice points are labeled with

xm5nma, nm50,61,62,..., m51,2,3,4. ~1!

The range of the momenta is restricted to the interval

2p/a,km,p/a. ~2!

To find a lattice version of the continuum action for a free spin1
2 fermion fieldc,

S5E d4xF i(
m

1

2
c̄~x!gm]Jmc~x!2mc̄~x!c~x!G , ~3!

we have to replace the differentials by differences. Thus the lattice fermion action takes the

S5( S (
m

i

2a
@c̄~x!gmc~x1am!2c̄~x1am!gmc~x!#2mc̄~x!c~x! D . ~4!

Here(5a4(n andam is a vector along them direction with lengtha. The action~4! has a global
U(1) invarianceĉ(x)5Vc(x) andcC (x)5c̄(x)V21, VPU(1), which is made local by introduc
ing a gauge fieldUm(x) defined on links (x,x1am). Thus we write

S5( H( i

2a
@c̄~x!gmUm~x!c~x1am!2c̄~x1am!gmUm~x!c~x!#2mc̄~x!c~x!J 1S~U !.

~5!

HereU transforms as follows:

Ûm~x!5V~x!Um~x!V21~x1am!. ~6!

For weak fields we can introduce a vector potentialvm(x) by defining

Um~x!5exp@ igavm~x!#. ~7!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Inserting this definition in~5! we can derive Feynman rules by Fourier transformation. T
fermion propagator is

S~p!5S (
m

gm

1

a
sin pma1mD 21

. ~8!

The c̄cvm vertex function is

ggm cos 1
2~p2q!ma, p1q1k50. ~9!

It can be shown that Eq.~5! effectively describes 16 fermions with degenerate massm and charge
g. It is noted that we have a 2d degeneracy of fermions ind-dimensions. We can shift the rang
of mementa top/a,pm,3p/a using periodicity 2p/a. The fermion propagatorS(p) does not
vanish in the limita→0 in 16 regions in momentum space about the pointspm50 or p/a. Let us
denote such points byp̄. The action~5! is invariant under a group of 16 symmetry transform
tions,

ĉ~x!5Tc~x!, cC ~x!5c̄~x!T21, ~10!

where T51, and gmg5(21)xm /a. The transformationT5g1g5(21)x1 /a shifts p1 to p11p/a
~modulo 2p/a!, and p̄5(0,0,0,0) is transformed intop̄5(p/a,0,0,0) and vice versa,p̄
5(0,p/a,0,0) into p̄5(p/a,p/a,0,0) and so on. Now from a study of the propagatorS(p) about
a point p we have around each pointp̄ all the states of a free Dirac particle with massm, 16
particles in total. Wilson removed these extra particles by giving them a mass of the order
cutoff. He adds an extra term

1

2a ( @c̄~x!Um~x!c~x1am!1c̄~x1am!Um
† ~x!c~x!22c̄~x!c~x!# ~11!

to the action~5!. The fermion propagator now becomes

S~p!5F(
m

gm

1

a
sin pma1m1

1

a (
m

~12cospma!G21

. ~12!

For smallpm , the extra term isO(a). This extra term is a momentum-dependent mass term
gives 15 fermions a massm1k2/a ~k51, 2, 3, or 4!. We have just one fermion with a relativisti
spectrum in the continuum limita→0. However, this extra term breaks chiral symmetry.

In the foregoing it is tacitly assumed that all four components ofc are defined in a lattice
Susskind has proposed a lattice fermion formulation wherec(x) is a one-component field. Thi
solves part of the naive degeneracy. However, in this case one has a discreteg5 invariance as a
continuous chiral transformation cannot be defined. An infinite jump propagator@O(1/a)# has
been proposed by Drellet al.,5 known as SLAC propagator, which is characterized by the prop
that pm is defined in the range2p/a,pm,p/a with a period of 2p/a and has a gap atpm

5p/a with width 2p/a. This gap implies a nonlocal lattice action and in the continuum li
a→0, one has a nonlocal and Lorentz noncovariant contribution.

Karsten and Smit7 have shown that these 16 fermions have the interesting properties th
have 8 particles with chiral charge 1 and another 8 particles with chiral charge21 so that the
fermion content of the theory is anomaly free. Thus we find that in a lattice formulation on
to give up something: explicit chiral symmetry~Wilson! or locality ~SLAC fermions! or one has
extra fermions canceling the anomaly.
J. Math. Phys., Vol. 38, No. 9, September 1997
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III. LATTICE FERMIONS AND TOPOLOGICAL ASPECTS OF CHIRAL ANOMALY

We here observe that the discretization of space in a lattice can be achieved from Mink
space–time by a Lorentz symmetry breaking condition as well as by theq-deformation of the
Lorentz group.9 The Lorentz symmetry is broken when we consider the motion of a particle i
anisotropic space. Indeed, if we consider that in three-space dimension the components
linear momentum satisfy a commutation relation of the form

@pi , pj #5 ime i jk

xk

r 3 , ~13!

this corresponds to an axisymmetric system where the anisotropy is introduced along a pa
direction. The motion of a particle in such a space is analogous to the motion of a charged p
in the field of a magnetic monopole wherem corresponds to the monopole strength. The ang
momentum operatorJ is given by

J5r3p2mr , m50,61/2,61,63/2,..., ~14!

and the eigenvalue ofJ2 is a conserved quantity in this space instead of the eigenvalue ofL2. In
Minkowski space–time the effect of anisotropy can be incorporated, retaining relativistic co
ance if we consider that a ‘‘direction vector’’jm is introduced at each space–time pointxm so that
in a complexified space–time the coordinate is given byzm5xm1 i jm . In an earlier paper10 it has
been shown that the quantization of a fermion can be achieved when we introduce an anis
in the internal space so that the internal variable appears as a ‘‘direction vector’’ attache
space–time point. The opposite orientations of the ‘‘direction vector’’ correspond to a particl
antiparticle. In the complexified space–time having the coordinatezm5xm1 i jm , a fermion~an-
tifermion! is characterized by the domain such thatjm belongs to the interior of the forward
~backward! light cone and as such represents the upper~lower! half-plane.11 In such a space one
should take into account the polar coordinatesr ,u,f along with the anglex specifying the
rotational orientation around the ‘‘direction vector’’jm . The eigenvalue of the operatori ]/]x
given bym just corresponds to the ‘‘internal helicity.’’ This disconnected and anisotropic natu
space indicates that the behavior of the angular momentum operator in such a region is sim
that of a charged particle moving in the field of a magnetic monopole. The spherical harm
incorporating the termm have been extensively studied by Fierz12 and Hurst.13 In fact, we have

Yl
m,m5~11x!2~m2m!/2~12x!2~m1m!/2

dl 2m

dl 2mx
@~11x! l 2m~12x! l 1m#eimfe2 imx, ~15!

wherex5cosu. The quantitiesm andm just represent the eigenvalues of the operatorsi ]/]f and
i ]/]x, respectively. It is noted that in such a space we can have half-orbital angular mom
( l 51/2) with m561/2 and m561/2. This is found to be analogous to the result tha
monopole-charged particle composite representing a dyon satisfying the conditiongq5 1

2 has its
angular momentum shifted by12 unit and its statistics shift accordingly.14 This suggests that
fermion can be viewed as a scalar particle moving withl 5 1

2 in such a space.
Now we point out that the overall space where a ‘‘direction vector’’~vortex line! is attached

to a space–time point effectively leads to the discretization of space depicting a lattice struc
any two space points cannot come close together within an infinitesimal distance due to the
lines. Indeed the ‘‘direction vector’’~vortex line! may be associated with thel z-value of a particle
moving in such a space withl 51/2, and the specification ofl z-value for particle and antiparticle
states may be viewed as to represent chiral spinors. Thus we can associate a spin system
‘‘direction vector’’ ~vortex line! when fermions are polarized in one or other direction. This can
generalized to ann-dimensional Euclidean space when we consider that the latticization of su
J. Math. Phys., Vol. 38, No. 9, September 1997
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space can be achieved when we take that this is given by the surface of an (n11)-dimensional
sphere of infinitely large radius having a fictitious monopole at the center. The continuum lim
attained when the monopole charge vanishes.

Now to study the problem of anomaly on a lattice we note that chiral anomaly arises
consequence of the quantization procedure. In an earlier paper10 it has been shown that Nelson
stochastic quantization procedure can be generalized to have a relativistic framework a
quantization of a Fermi field can be achieved when we take into account Brownian m
processes in the internal space also apart from that in the external space. For the quantizat
Fermi field, we have to introduce an anisotropy in the internal space so that the internal va
appears as a ‘‘direction vector.’’ The opposite orientations of the ‘‘direction vector’’ correspon
particle and antiparticle. To be equivalent to the Feynman path integral we have to tak
account complexified space–time when the coordinate is given byzm5xm1 i jm wherejm corre-
sponds to the ‘‘direction vector’’ attached to the space–time pointxm .11 Since for quantization we
have to introduce Brownian motion process both in the external and internal space, after q
zation, for an observational procedure, we can think of the mean position of the particle
external observable space with a stochastic extension as determined by the internal sto
variable. The nonrelativistic quantum mechanics is obtained in the sharp point limit.11 This analy-
sis of the quantization procedure suggests that we can write the position and momentum v
of this extended body as

Qm5qm1 iQ̂m ,
~16!

Pm5pm1 i P̂m ,

where qm(pm) denotes the mean position~momentum! in the external observable space a
Q̂m( P̂m) is given by the internal variable denoting the stochastic extension. Introducing a
constantv5\/ lmc, wherem is the mass of the particle, the quantum uncertainty relations
now be written in terms of the dimensionless variables where we replaceQm by Qm / l andPm by
Pm /mc:

@Qm , Pn#5 ivgmn , @Q̂m , P̂n#5 ivgmn . ~17!

As has been shown by Brooke and Prugovecki,15 these relations admit the following represen
tion of Qm /v andPm /v:

Qm

v
52 i S ]

]pm
1fmD ,

~18!

Pm

v
5 i S ]

]qm
1cmD ,

wherefm andcm are complex-valued functions. However, when we introduce an anisotrop
the internal space giving rise to the internal helicity to quantize a fermion,fm and cm become
matrix-valued functions due to the noncommutativity character of the componentsfm(cm). To
interpret the ‘‘direction vector’’ as an internal helicity we can choose the chiral coordinate

zm5xm1 i jm5xm1
i

2
la

mua, ~19!

where we identify the coordinate in the complex manifold with

jm5 1
2la

mua, a51,2, ~20!
J. Math. Phys., Vol. 38, No. 9, September 1997
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u being a two-component spinor. We now replace the chiral coordinate by the matrices

zAA85xAA81 1
2la

AA8ua, ~21!

where

xAA85
1

&

F x02x1 x21 ix3

x22 ix3 x01x1 G
and

la
AA8PSL~2,C!.

This helps us to associate the internal helicity with the spinorial variableua as we can now
construct the helicity operator10

S52la
AA8uap̄ApA8 , ~22!

wherep̄A(pA8) denotes the spinorial variable corresponding to the four-momentumpm ~the ca-
nonical conjugate ofxm! and is given by the matrix representation

pAA85p̄ApA8. ~23!

The internal helicity can now be identified with the fermion number. It may be noted that sinc
have taken the matrix representation ofpm as pAA85p̄ApA8 necessarily implyingpm

2 50, the
particle will have its mass due to the nonvanishing character of the quantityjm

2 . It is observed that
the complex conjugate of the chiral coordinate given by~19! will give rise to a massive particle
with opposite internal helicity corresponding to an antifermion.

In this complexified space–time exhibiting the internal helicity state we can write the m

gmn~x,u,ū !5gmn
AA8~x!ūAuA8 . ~24!

It has been shown elsewhere16 that this metric structure gives rise to the SL(2,C) gauge theory of
gravitation and generates the field strength tensorFmn given in terms of the gauge fieldsBm ,
which are matrix-valued having the SL(2,C) group structure, and is given by

Fmn5]mBn2]nBm1@Bm , Bn#. ~25!

This suggests that we can consider a gauge theoretic extension for a fermion and we can
the matrix-valued functionsfm(cm) in Eq. ~18! with the gauge fieldBm(Cm) where Bm(Cm)
PSL(2,C). Now we note that if we demandFmn50 at all points on the boundaryS3 of a certain
volume V4 inside whichFmnÞ0, then the gauge potentials tend to a pure gauge in the lim
case towards the boundary, i.e., we have

Bm5U21]mU. ~26!

This helps us to write the Lagrangian in the limiting case

L5M2 Tr ~]mU†]mU !1Tr @]mUU†,]nUU†#2, ~27!

whereM is a suitable constant having the dimension of mass. It is noted that the Skyrme
Tr @]mUU†, ]nUU†#2 arises here from the termFmnFmn where the first term is related to th
gauge noninvariant termM2BmBm in the Lagrangian. In view of this we note that the quantizat
J. Math. Phys., Vol. 38, No. 9, September 1997
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of a Fermi field considering an anisotropy in the internal space leading to an internal he
corresponds to the realization of a nonlinears-model where the Skyrme term automatically aris
stabilizing the soliton. Indeed this is no surprise as the anisotropic feature of the internal
prevents it from shrinking to zero size. The simplest Lagrangian density which is invariant
SL(2,C) transformation in spinor affine space is given by17

L5 21
4 Tr eabgdFabFgd , ~28!

which is reflection noninvariant. Indeed, it is to be noted that the Skyrme term does not man
express the internal anisotropy as it is invariant underP andT. So to incorporate this anisotropi
feature in the Lagrangian~27! we should add the Wess–Zumino term where the action is give

SWZ5
iN

240p2 E emnlsr Tr @U21]mUU21]nUU21]lUU21]sUU21]rU# d5x, ~29!

wherex5x,t,x5. Here the physical space–time is the boundary of the five-dimensional dom
Witten18 has shown that the constantN has to be an integer for the existence of a consis
quantum description of the Skyrmion. The quantization ofN is analogous to the Dirac quantiza
tion of the producteg of electric and magnetic charges. It is noted that the Lagrangian~28! is
associated with the Wess–Zumino term in the nonlinears-model. It may be pointed out here tha
the expression~29! vanishes unlessUPSU(n) with n>3.18 From this analysis, it appears tha
massive fermions appear as solitons and the fermion number is of topological origin. Indee
the Hermitian representation we can take the group manifold SU~2! and this leads to a mappin
from the space three-sphereS3 to the group spaceS3@SU(2)5S3# and the corresponding windin
number is given by

q5
1

24p2 E
S3

dsmemnab Tr @U21]nUU21]aUU21]bU#. ~30!

Evidently q can be taken to represent the fermion number.
The Lagrangian density in spinor affine space given by Eq.~28! gives rise to a conserve

current

Jm
u 5emnabBn3Fab , ~31!

where the gauge fieldBm5Bm•g and the field strengthFmn5Fmn•g, g being the infinitesimal
generators of the group SL(2,C) in tangent space

g15F0 0

1 0G , g25F1 0

0 21G , g35F0 1

0 0G . ~32!

Indeed from the properties of the above Lagrangian, we find17

emnab~]nFab2Bn3Fab!50, ~33!

which suggests that

Ju
m5emnabBn3Fab5emnab]nFab . ~34!

Then, using the antisymmetric property of the Levi-Civita tensor densityemnab, we get

]mJu
m5emnab]m]nFab50. ~35!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Since in this formalism SL(2,C) gauge fields act as background fields for a Dirac spinor giv
rise to its topological properties, to describe matter field in this formalism, the Lagrangian w
modified by the introduction of the SL(2,C) invariant Lagrangian density. Hence for a Dirac fie
neglecting the mass term, we write

L52c̄gmDmc2 1
4 Tr eabgdFabFgd , ~36!

whereDm is the SL(2,C) gauge covariant derivative defined byDm5]m2 igBm whereg is some
coupling strength. It is to be observed that by the introduction of the SL(2,C) gauge field La-
grangian we are effectively taking into account the effect of the extension of the fermionic
giving rise to the internal helicity in terms of the gauge fields. Now if we split the Dirac mas
spinor in chiral forms and identify the internal helicity11/2(21/2) with left ~right! chirality
corresponding tou( ū), we can write

c̄gmDmc5c̄gm]mc2 igc̄gmBm
a gac

5c̄gm]mc2
ig

2
$c̄RgmBm

1 cR2c̄RgmBm
2 cR1c̄LgmBm

2 cL1c̄LgmBm
3 cL%. ~37!

Then the three SL(2,C) gauge field equations give rise to the following three conservation law19

]m@ 1
2~2 igc̄RgmcR!1Jm

1 #50,

]m@ 1
2~2 igc̄LgmcL!1 igc̄RgmcR!1Jm

2 ] 50, ~38!

]m@ 1
2~2 igc̄LgmcL!1Jm

3 #50.

These three equations represent a consistent set of equations if we choose

Jm
1 52Jm

2 /2, Jm
3 51Jm

2 /2, ~39!

which evidently guarantees the vector current conservation. Then we can write

]m~c̄RgmcR1Jm
2 !50,

~40!

]m~c̄LgmcL2Jm
2 !50.

From these we have

]m~c̄gmg5c!5]mJm
5 522]mJm

2 . ~41!

Thus the anomaly is expressed here in terms of the gauge field currentJm
2 . However, since in this

formalism the chiral currents are modified by the introduction ofJm
2 , we note from Eq.~40! that

the anomaly vanishes. The charge corresponding to the gauge field part is

q5E J0
2 d3x5E

surface
e i jk ds iF jk

2 , i , j ,k51,2,3. ~42!

Visualizing F jk
2 to be the magnetic-field-like components for the vector potentialBi

2, we see that
q is actually associated with the magnetic pole strength for the corresponding field distrib
Thus we find that the quantization of Fermi field associates a background magnetic field a
J. Math. Phys., Vol. 38, No. 9, September 1997
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charge corresponding to the gauge field effectively represents a magnetic charge. Th
emnab Tr FmnFab in the Lagrangian can be actually expressed as a four divergence of the
]mVm where

Vm52
1

16p2 emabg Tr FBaFbg2
2

3
~BaBbBg!G . ~43!

We recognize that the gauge field Lagrangian is related to the Pontryagin density

P52
1

16p2 Tr* FmnFmn5]mVm, ~44!

whereVm is the Chern–Simons secondary characteristic class. The Pontryagin index

q5E P d4x ~45!

is a topological invariant. As we know, the introduction of the Chern–Simons characteristic
modifies the axial vector current as

J̃ m
5 5Jm

5 12\Vm , ~46!

where]mJ̃ m
5 50 though]mJm

5 Þ0. We find from Eq.~40! that the Chern–Simons secondary ch
acteristic class is effectively represented by the currentJm

2 constructed from the SL(2,C) gauge
field. Thus we have the Chern–Simons topology in-built in the system and it is associated w
topological aspects of a fermion.

This analysis suggests that anomaly vanishes when we take into account the quantum
etry where the microlocal space–time is characterized by an anisotropic feature such that
rection vector’’~vortex line!, jm is attached to a space–time pointxm so that in the complexified
space–time the coordinate is given byzm5xm1 i jm . However, in the naive Minkowski space
time where the coordinate is just represented byxm , we come across anomaly as a consequenc
the quantum mechanical symmetry breaking. We have pointed out earlier that the geom
feature of lattice structure of space effectively incorporates a similar geometry as the lattici
can be viewed as the introduction of a ‘‘vortex line’’ at a space–time point. Also, this ma
caused by the introduction of a fictitious magnetic monopole at the center of a sphere so t
lattice space is given by the surface. Now as the anomaly is associated with a magnetic chq
given by the Pontryagin index where the monopole strengthm is related to this by the relation
q52m, we note that the very lattice structure suggests that there cannot be any anomal
lattice. Indeed the anomaly which is associated with the currentJm

2 effectively may be taken to
arise from the geometrical feature of a lattice space characterized by the ‘‘vortex line’’ attach
a space–time point or a ‘‘fictitious’’ monopole at the center of a sphere where the surface
sents a lattice structure. Thus we have a chiral current associated with a lattice site when the
field lies in the link. This chiral current may be related to a chiral fermion as we have the re

]mJm
2 52 1

2]mJm
5 ,

so that we have a solution of the form

Jm
2 52 1

2c̄gm~11g5!c ~47!
J. Math. Phys., Vol. 38, No. 9, September 1997
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as the vector current is conserved. In view of this we note that the very geometrical featur
lattice structure is as if there are ‘‘fictitious’’ chiral fermions at a lattice site. These are respon
for the cancelation of anomaly on a lattice. This unveils the root cause of fermion doubling an
extra spinors just represent these ‘‘fictitious’’ chiral fermions.

IV. SPECIES DOUBLING AND FERMIONIC CHARGE

Nielson and Ninomiya6 have constructed a model with only one two-component fermion o
lattice, dropping the assumption of the existence of a conserved charge, e.g., fermion n
Thus the corresponding fermion field is taken to be real. However, we can assign locally d
but only approximately conserved charges. It may be noted that if we do not require th
charge be locally defined, it is possible to define a conserved charge for a real field on a
since we can assign the chargeQ̄(p) the value11 for some values of the momentump and
21 for the oppositep-value. One might then either leave the charge undefined outside
regions inp space or letQ̄(p) have discontinuities as a function ofp, meaning the charge no
being locally defined. If, however, we want the charge to be locally defined, then there mus
for all values of the momentump in the Brillouin Zone many eigenstates with a given char
eigenvalue. To a model with only one Weyl particle, we can then only assign approxim
conserved charge. In fact, it is possible to formulate a model which looks like that of the com
field formulation with nonconserved charges as the Hamiltonian does not satisfy the conditi
the complex-valued formulation with conserved charges. This suggests that charges are n
served but are approximately conserved in the low-energy regime only. It may be pointed ou
that as the lattice fermions are found to be nonanomalous there cannot be any locally d
conserved charge. This follows from the fact that the chiral anomaly is associated wit
Pontryagin index which is a topological index related to the fermion number. Indeed, it has
shown in an earlier paper20 that we have the Pontryagin indexq which satisfies the relation

q52m5E ]mJm
2 d4x52

1

2 E ]mJm
5 d4x. ~48!

Here m ~as well asq! corresponds to a monopole strength satisfying the Dirac quantiza
condition em5 1

2. It is noted thatq is an integer wherem can take the value 0,61/2,61,
63/2,... . Thus the quantization conditionem51/2 is equivalent to the relationeq51 and for
m561/2, i.e.,q561, we havee561 depicting the fermionic charge. Now from the relatio
~48! we note that when there is no anomaly, the Pontryagin index vanishes and hence we
define a conserved charge like fermion number. It may be added here that chiral anomaly is
with the Berry phase20 where the phase factor is given byeifB with

fB52pm. ~49!

Evidently from the above relation~48! we note that when the theory is nonanomalous, the Be
Phase loses its topological character and can be removed. Thus for lattice fermions we h
specific property that the Hamiltonian for a time-dependent closed path evolution allows an
state with only a dynamical phase factor when the quantum phase of Berry is removed
dynamical phase.

V. DISCUSSION

In this note we have argued that the problem of fermion doubling on a lattice is not an iso
event as it may occur when the original theory of fermion is anomaly free. This is consisten
the observation of Creutz and Tytgat.8 Indeed, it has been pointed out that the very geometr
aspect of the discretization of space in a lattice can be viewed as if there are ‘‘fictitious’’ c
fermions on a site which cancels the anomaly. In view of this, we can interpret that the unw
J. Math. Phys., Vol. 38, No. 9, September 1997
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fermions just reflect the geometrical properties of a lattice and can be identified with these
titious’’ chiral fermions associated with the lattice structure. In reality, these fermions nee
exist. It may be added here that in a recent paper21 we have shown that chiral anomaly gives ri
to the mass of a particle. This suggests that anomaly effectively generates a length scale. N
a discrete space in a lattice, the length scale of the order of lattice spacing effectively c
viewed as if generated by the ‘‘hidden’’ anomaly which may be taken to be generated b
‘‘fictitious’’ chiral fermions associated with the latticization of Minkowski space–time. It may
noted that the lattice theory does not just provide one extra particle which is enough to can
anomaly as ind-dimensions, we have in total 2d fermions. This follows from the fact that th
‘‘direction vector’’ jm attached to a lattice sitexm also has the same dimension asxm and this is
responsible for the discretization in every direction. This leads to the generation of all
‘‘fictitious’’ spinors such that the theory becomes nonanomalous. Indeed this picture sugges
one can generate a one-dimensional lattice theory taking the continuum limit in the rem
directions, e.g., in three dimensions of a four-dimensional lattice theory.

Finally, we point out here that though we generally take that the lattice spacinga→0 to attain
the continuum limit, it is not so naive as it involves the loss of specific geometrical features s
related to the lattice structure where the continuum space–time is devoid of these propert
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The BRST operator of quantum symmetries: The quantum
analogs of Donaldson invariants

A. B. Hammou and M. Lagraa
Laboratoire de Physique Theorique, Universite d’Oran Es-Senia, 31100, Algerie

~Received 3 May 1996; accepted for publication 31 January 1997!

We construct the BRST operator of quantum symmetries and show that the nilpo-
tency of this operator can either be derived from the Hopf axiom structure of the
quantum group symmetries or from the Jacobi identity of their quantum Lie alge-
bra. We extend this BRST operator to the topological transformations and we
investigate the properties of invariant polynomials of curvatures from which we
derive the descent equations for Donaldson invariants. ©1997 American Institute
of Physics.@S0022-2488~97!00508-2#

I. INTRODUCTION

The different approaches of noncommutative geometry proposed in the last decade1–3 have
received broad attention from the physics community. This interest began by a convincing
cation into a geometrical framework of the gauge fields and the Higgs sector of the sta
model.4 It provided also the possibility to understand the renormalization of the convent
quantum field theories by the introduction of a natural cutoff and more progress in new calcu
in the theory of gravity.5

Following the general ideas of noncommutative geometry, Woronowicz developed a bi
riant differential calculus over quantum groups6 which has been a very influential subject for th
construction of the gauge theories where the role of gauge group is played by a noncomm
Hopf algebra and a base space which is either ordinary space–time manifold7–10 or noncommu-
tative algebra~quantum base space!.11 In this framework, theq-deformation of the BRST algebra
for SUq(2) ~Ref. 12! and its generalization to SUq(N) ~Ref. 13! have also been developed.

On the other hand, it is established that there exists a free bigraded commutative diffe
algebra14 in connection with a gauge fixing in Witten’s topological field theory.15 This algebra is
generated by the gauge fields and the ghosts and by the exterior derivationd and the BRST
topological operatordTOP. The purpose of this paper is to translate this algebra to the nonc
mutative case where the symmetry of the theory is played by a noncommutative Hopf alge
the light of the infinitesimal gauge transformations developed in Ref. 16, we construct a B
operator corresponding to these infinitesimal gauge transformations, the quantum analogs
topological transformations, and the invariant polynomials of the curvature from which we d
the descent equations of the Donaldson invariants.

The present paper is organized as follows: in Sec. II, we summarize the basic results
differential calculus over the quantum groups6 and investigate the properties of the infinitesim
transformations of the gauge theory fields based on quantum groups.16 In Sec. III, we construct the
BRST operator corresponding to the infinitesimal transformations presented in Sec. II a
show that the nilpotency of this operator can either be derived from the Hopf axioms o
quantum groups or from the Jacobi identity of their quantum Lie algebra. These BRST tra
mations are recast into the generalized structure equation and Bianchi identity of the
algebra which are extended to those of the topological transformations. We close this pa
constructing invariant polynomials of curvatures and by showing that the quantum analog
the Chern–Simons term and the descent equations of the Donaldson topological invariant k
same form as that of the conventional case.
0022-2488/97/38(9)/4462/12/$10.00
4462 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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II. THE QUANTUM GAUGE TRANSFORMATIONS

Before we start to construct the gauge transformations corresponding to quantum symm
let us recall some background of the differential calculus over quantum groups developed i
6. Let Mn

m (n,m51,...,N) be a noncommutative elements of a multiplicative matrix wh
generate freely an unital associative algebraH equipped with the following maps:

a coproductD:H→H ^ H which acts on the generators asD(Mn
m)5Mn

k^ Mk
m and satisfies

the coassociativity condition

~D ^ id!D5~ id^ D!D; ~2.1!

a counite:H→C which is expressed by the relation

~e^ id!D5~ id^ e!D5 id; ~2.2!

and an antipodeS:H→H satisfying the condition

mo~S^ id!D5mo~ id^ S!D51He, ~2.3!

where id is the identify map,m:H ^ H→H is the multiplicative map, and 1H is the unity ofH.
HereD ande are algebra homomorphisms andS is an algebra antihomomorphism which makeH
into a noncommutative Hopf algebra~quantum group!.

The exterior derivation of any elementaPH is defined as

da5@X, a#5u i~x i* a!5u i~x i ^ id!D~a!, ~2.4!

where the vector fieldsx i :H→C are functionals such thatx i(1H)50; u i is a right invariant basis
of a bicovariantA-bimodule G equipped with a left bimodule homomorphismDL :G→H ^ G
satisfying the left covariance relation

~ id^ DL!DL5~D ^ id!DL and ~e^ id!DL5 id, ~2.5!

and a right bimodule homomorphismDR :G→G ^ H satisfying the right covariance relation

~ id^ D!DR5~DR^ id!DR and ~ id^ e!DR5 id, ~2.6!

with the bicovariance condition

~DL ^ id!DR5~ id^ DR!DL ; ~2.7!

andXPG is a bi-invariant element, i.e.,DL(X)51^ X andDR(X)5X^ 1.
From the covariance of the derivatived we can see that the Cartan–Maurer formu(a)

5u ix i(a) transforms under the left coactionDL as

DL~u!~a!5a~1!S~a~3!! ^ u~a~2!!5~ id^ u!ad~a!, ~2.8!

where the left adjoint coaction map ad:H→H ^ H is defined as ad(a)5a(1)S(a(3)) ^ a(2) and
satisfies the relation

~D^id!ad5~id^ad!ad. ~2.9!

Here a(1) , a(2) , and a(3) are elements of the algebraH given by (id̂ D)D(a)5a(1)^ a(2)

^ a(3) with the notationD(a)5a(1)^ a(2) . Applying the exterior derivative on~2.4! we get the
Cartan–Maurer formula
J. Math. Phys., Vol. 38, No. 9, September 1997
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du5u∧u5 1
2@u,u#5u i∧u j~x i* x j !5 1

2u
iu j~dk

i d l
j2Lkl

i j !x i* x j5
1
2u

k
^ u l@xk , x l #qu , ~2.10!

which makes the vector spaceT of functionalsx i equipped with the quantum Lie bracket (T
^ T){(x,x)→@x i ,x j #quPT given by the formula

@xk ,x l #qu~a!5~dk
i d l

j2Lkl
i j !x i* x j~a!5~xk^ x l !ad~a!, ~2.11!

where the convolution product of functionalsx i is given by (x i* x j )(a)5(x i ^ x j )D(a) and
L:G ^ 2→G ^ 2 is a bicovariant bimodule automorphism such that for any left-invariant elemeh
and any right-invariant elementu of the A-bimodule,L(h ^ u)5u ^ h.

From ~2.11! and ~2.9!, we can establish the quantum Jacobi identity

†x i ,@x j , x l #qu‡qu5†@x i , x j #qu ,x l‡qu1L i j
km
†xk ,@xm , x l #qu‡qu . ~2.12!

Let us now consider a gauge theory in which the symmetry is played by the Hopf alg
H and the base space by a noncommutative algebraXB .11 A section~matter field! is a linear map
c:G→XB and a quantum gauge transformation is a convolution invertible algebra
T:H→XB which preserves the identityT(1H)51XB

and acts on the section as

c85T* c5~T^ c!DL . ~2.13!

These quantum gauge transformations satisfy the following convolution product

T* T5~T^ T!D. ~2.14!

The set of sectionscPG(E) can be considered as a fiber of a left quantum vector bun
E(XB ,V,A) where the covariant exterior derivative is a linear map¹5de*
1A* :G(E)→G1(E), d is the exterior derivative on the baseXB , and the gauge fieldA is a map:
H→V1(XB) whose image is a quantum Lie algebra valued matrix of one-forms onXB , A
5Aix i .

We require that the exterior covariant derivative of a section transforms as a section

¹8c85T* ¹c5~T^ ¹c!DL ~2.15!

with ¹c5(¹ ^ c)DL . In order to be consistent with this transformation, the covariant exte
derivative must transform as

¹85~T^ ¹!ad, ~2.16!

and the gauge fieldA as

A8~a!5T~a~1!!T
21~a~3!! ^ A~a~2!!1T~a~1!!dT21~a~2!! ^ 1XB

. ~2.17!

The associated curvature is a mapF:A→V2(XB) given by

F5dA1A* A5dAix i1
1
2A

i
•Aj@x i , x j #qu . ~2.18!

Its image is a quantum Lie valued matrix of two-forms onXB ; i.e., F(a)5Fix i(a), A* A5Ai

•Aj (x i* x j ) where ~•! denotes a product of elements ofV (1)(XB) giving an element of
V (2)(XB).

By using the skew tensoriel product (A^ B)(C^ D)5(21)bc(AC^ BD), whereb(c) is the
degree of the formB(C)PV(XB), we can show that the curvature transforms with the adjo
coaction as
J. Math. Phys., Vol. 38, No. 9, September 1997
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F85T∧F5~T^ F !ad. ~2.19!

The exterior covariant derivative acts on a mapO:H→V(XB), which transforms like~2.19!,
as

¹O5dO1A* O2~2 !nO* A, ~2.20!

where n is the degree of the formO. It is easy to show, from~2.17! and ~2.19!, that ¹O
transforms asO. By applying the exterior derivative on~2.18! we get the Bianchi identity

¹F5dF1A* F2F* A50. ~2.21!

From the coassociativity condition~2.1!, the left covariance~2.5!, and the property of the
adjoint coaction~2.9!, we can show that the finite gauge transformations of the section,
connection, and the curvature are closed, i.e., ifT is a finite gauge transformation,T85T* T is
also a gauge transformation.16

Now, we consider the ‘‘infinitesimal’’ variation of the quantum gauge transformations defi
above. The definition of this variation is inspired by the expression of the bicovariant derivat
the quantum groupH(2.4). It is given by

da~T!~a!5a ix i~a~1!! ^ T~a~2!!5~a* T!~a!5~a ^ T!D~a!, ~2.22!

wherea ix i map:H→XB anda i are considered as infinitesimal quantum parameters of tran
mationsT. By constructiona transforms as the Cartan–Maurer form~2.8!,

a85T∧a5~T^ a!ad, ~2.23!

from which we deduce its infinitesimal version of parametersb as

db~a!5b∧a5b i
•a j~x i ^ x j !ad5b i

•a j@x i , x j #qu . ~2.24!

With this definition, the infinitesimal versions of~2.13!, ~2.17!, and~2.19! read, respectively,

dac5a* c5a i~x i ^ c!DL , ~2.25!

daA52da1a∧A52da ix i1a i
•Aj@x i , x j #qu ~2.26!

daF5a∧F5a i
•F j~x i ^ x j !ad5a i

•F j@x i , x j #qu . ~2.27!

By using~2.24! and the Leibniz rule ofda , we can show that the closure of the infinitesim
transformations is given by

~dbda2dadb!~c,F or A!5db∧a~c,F or A!, ~2.28!

wheredb∧a is an infinitesimal transformation of parameterb∧a5b i
•a j@x i , x j #qu .16 An explicit

computation of~2.28! in terms of components leads us to the following commutation rules:

a i•b
j5Lkl

i j bk
•a l , ~2.29!

~dk
i d l

j2Lkl
i j !~dbk

•a l1ak
•db l !50. ~2.30!

Let us consider now a finite transformation of the convolution product of two param
a* b5a i

•b j (x i* x j ). We require that this product transforms as a module algebra,

~a* b!8~a!5~a8* b8!~a!5~T^ a!ad~a~1!!•~T^ b!ad~a~2!!5~T^ a* b!ad~a!, ~2.31!
J. Math. Phys., Vol. 38, No. 9, September 1997
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whose infinitesimal version with respect to the parameterw reads

dw~a* b!5w∧~a* b!5w i
•a j

•bk~x i ^ x j ^ xk!~ id^ D!ad. ~2.32!

Using now the Leibniz rule property ofdw , we can rewrite~2.32! as

dw~a* b!5~w∧a!* b1a* ~w∧b!5~w i
•a j

•bk!@x i , x j #qu* xk1~a i
•w j

•bk!x i* @x j , xk#qu

5~w i
•a j

•bk!~@x i , x j #qu* xk1L i j
lmx l* @xm ,xk#qu!, ~2.33!

where we have used~2.29!. From the definition of the quantum commutator~2.11!, ~2.32! can be
expressed as

dw~a* b!5~w i
•a j

•bk!@x i , x j* xk#qu , ~2.34!

where

@x i , x j* xk#qu5@x i , x j #qu* xk1L i j
lmx l* @xm , xk#qu5x i* x j* xk2L i j

lmLmk
pqx l* xp* xq .

~2.35!

We can apply the same method by replacinga andb by F in ~2.33! to get

Fi
•a j5Lkl

i j ak
•Fl . ~2.36!

The relations~2.29! and ~2.36! lead us to rewrite the infinitesimal gauge transformation with
classical commutators

dba5b* a2a* b5@b, a#, ~2.37!

daF5a* F2F* a5@a, F#. ~2.38!

By requiring thatda commutes with the exterior derivative, we can compute the transfor
tion of the curvature directly from~2.18! as

daF5d~a∧A!2da•A2A•da1~a∧A!•A1A•~a∧A!. ~2.39!

To obtain the same transformation as~2.27!, we must have

Ai
•a j5Lkl

i j ak
•Al and Ai

•da j52Lkl
i j dak

•Al , ~2.40!

yielding (a∧A)* A1A* (a∧A)5a∧(A* A) and da∧A2da* A2A* da50, respectively. From
the first equality of~2.40! we can rewrite~2.26! as

daA52da1a* A2A* a52da1@a,A#. ~2.41!

Note that the formalism presented in this section yields results very similar to those of
7 and 10 without any assumption on the commutation rules between the gauge parameter
gauge field or the curvature.

III. THE QUANTUM BRST TRANSFORMATIONS

In this section we construct a BRST operator of the quantum transformations presented
previous section. As for the classical case, we obtain the quantum BRST operatordB by replacing
the infinitesimal gauge parametersa5a ix i by the quantum ghostsC5Cix i . Thus, the quantum
BRST transformation of the sectionc, the curvatureF, and the gauge fieldA can be directly
deduced from their infinitesimal transformation given in the previous section as
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dBc52C* c52~C^ c!DL , ~3.1!

dBF52C∧F52Ci
•F j~x i ^ x j !ad, ~3.2!

dBA52dC^ 12C∧A52dCix i2Ci
•Aj~x i ^ x j !ad. ~3.3!

As for the exterior derivatived, we require that the BRST transformationdB satisfies the
Leibniz rule in the graded sense with an underlying bigraduation on the differential alg
V(XB) by giving to theA the bidegree~1,0!, F the bidegree~2,0!, andC the bidegree~0,1!. We
require also thatdB is nilpotent and satisfyddB1dBd50.

To satisfy these properties, we take in addition to~3.1!–~3.3! the BRST transformation of the
ghostC as

dBC52~C* C! ~3.4!

or

dBC52Ci
•Cj~x i* x j !52 1

2C
i
•Cj@x i , x j #qu . ~3.5!

The latter equality comes from the fact that, as opposite to the parametersa i which has a bidegree
~0,0!, the ghostCi has a bidegree~0,1! and, therefore the quantum symmetrization for the para
eters, (dk

i d l
j2Lkl

i j )ak
•a l50 @~2.29!#, becomes a quantum antisymmetrization for the ghosts

Ci
•Cj5 1

2~dk
i d l

j2Lkl
i j !Ck

•Cl or Ci
•Cj52Lkl

i j Ck
•Cl . ~3.6!

Now we are ready to show that the nilpotency of the BRST operator can either be de
from the axioms of the Hopf algebraH or from the Jacobi identity of the quantum Lie algeb
~2.12!. By applying the BRST operator on~3.4!, we get

dB
2C52dB~C* C!5„~C* C!* C…2„C* ~C* C!…

5Ci
•Cj

•Ck~x i ^ x j ^ xk!~D ^ id!D

2Ci
•Cj

•Ck~x i ^ x j ^ xk!~ id^ D!D, ~3.7!

where the nilpotencydB
2C50 follows from the coassociativity property~2.1! of the coaction.

UnderdB
2, the sectionc transforms as

dB
2c5dB~2C* c!

5„~C* C!* c…2„C* ~C* c!…

52~Ci
•Cjx i ^ x j ^ c!~D ^ id!DL1~Ci

•Cjx i ^ x j ^ c!~ id^ DL!DL , ~3.8!

where the vanishing ofdB
2c is a consequence of the left covariance~2.5!.

Similarly, we can compute

dB
2F5dB~2C∧F !5„~C* C!∧F)…2„C∧~C∧F !…

5Ci
•Cj

•Fk~x i ^ x j ^ xk!~D ^ id!ad2Ci
•Cj

•Fk~x i ^ x j ^ xk!~id^ad!ad

50, ~3.9!

which follows from ~2.9!.
We can also show the nilpotency of the quantum BRST transformations by using~3.5!, the

quantum Jacobi identity~2.12!, and the relation~3.6! to get
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dB
2C5 1

4C
i
•Cj

•Ck~†@x i , x j #qu ,xk‡qu2†x i ,@x j , xk#qu‡qu!

52 1
4C

i
•Cj

•CkL i j
lm
†x l ,@xm , xk#qu‡qu

5 1
4C

i
•Cj

•Ck
†x i ,@x j , xk#qu‡qu

5 1
4C

i
•Cj

•Ck~@x i , x j* xk#qu2L jk
lm@x j , x l* xm#qu!

5 1
2C

i
•Cj

•Ck@x i , x j* xk#qu

5 1
2C

i
•Cj

•Ck~x i* x j* xk2L i j
lmLmk

pqx l* xp* xq!50, ~3.10!

where the second line in~3.10! follows from the Jacobi identity~2.12! while the third and the las
lines follow from ~3.6! and ~2.35!. For the section and the curvature, we obtain respectively

dB
2c5dB~2C* c!5 1

2~Ci
•Cj@x i , x j #qu!* c2Ci

•Cjx i* ~x j* c!

5 1
2C

i
•Cj@x i , x j #qu* c2 1

2C
i
•Cj@x i ,x j #qu* c50 ~3.11!

and

dB
2F5dB~2Ci

•F j@x i , x j #qu!5 1
2C

i
•Cj

•Fk
†@x i , x j #qu ,xk‡qu2Ci

•Cj
•FK

†x i ,@x j ,xk#qu‡qu

5 1
2C

i
•Cj

•Fk~†@x i ,x j #qu ,xk‡qu

2†x i ,@x j ,xk#qu‡qu1L i j
lm
†x l ,@xm ,xk#qu‡qu!50, ~3.12!

where~3.6! and the Jacobi identity~2.12! have been used. Finally,dB
2 acts on the gauge fieldA as

dB
2A52dB~dC^ 11C∧A!5ddBC1~C* C!∧A2C∧dC2C∧~C∧A!. ~3.13!

The above logic shows that (C* C)∧A2C∧(C∧A)50. Then the nilpotency is obtained only
d(C* C)1C∧dC505 1

2d(C∧C)1C∧dC5 1
2(dC∧C1C∧dC), which is simply the BRST ver-

sion of ~2.30! where we have replaceda andb by C without changing the sign because the to
degree ofdCi is even. The equationd(C* C)1C∧dC50 yields

dCi
•Cj5Lkl

i j ~Ck
•dCl !. ~3.14!

The exterior derivative acts on the relationd(C* C)1C∧dC50 to give

dC∧dC50 or dCi
•dCj5Lkl

i j dCk
•dCl , ~3.15!

which exhibits the quantum symmetrization ofdCi . Under these rules, the graded different
algebraV(XB) contains a BRST subalgebra generated byA andC, and two antiderivations,d and
dB , which bidegree~1,0! and~0,1!, respectively. One notices that the BRST transformations of
curvature and the gauge field can be written as

dBF52@C, F#52~C* F2F* C!, ~3.16!

dBA52dC2@C, A#52dC2~C* A1A* C!, ~3.17!

with the following rules:

Fi
•Cj5Lkl

i j Ck
•Fl and Ai

•Cj52Lkl
i j Ck

•Al , ~3.18!

which are the BRST version of~2.36! and ~2.40! and which insure the graded Leibniz ru
property ofdB . Under this form, we can recast these BRST transformations in the equation
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~d1dB!~A1C!1~A1C!* ~A1C!5F, ~3.19!

F* ~A1C!2~A1C!* F5~d1dB!F, ~3.20!

which express the horizontality condition for the generalized quantum gauge fieldÃ5A1C and
the Bianchi identity, respectively.

As usual, we can extend these quantum BRST transformations to the topological trans
tion by simply adding to the second hand of Eq.~3.19! the topological ghostC:H→V (1,1)(XB)
and its ghostF:H→V (0,2)(XB), which are both valued quantum Lie algebra:

~d1dTOP!~A1C!1~A1C!* ~A1C!5F1C1F. ~3.21!

The nilpotency of the derivatived1dTOP,

d25ddTOP1dTOPd5dTOP
2 50, ~3.22!

gives the Bianchi identity

~F1C1F!* ~A1C!2~A1C!* ~F1C1F!5~d1dTOP!~F1C1F!. ~3.23!

Expanding the above equations in bidegree, we obtain the following quantum topolo
BRST transformations;

dTOPA52dC2C* A2A* C1C52¹C1C, ~3.24!

dTOPC52C* C1F52 1
2C∧C1F, ~3.25!

dTOPF52C* F1F* C52C∧F, ~3.26!

dTOPC52dF1F* A2A* F2C* C1C* C52¹F2C∧C, ~3.27!

dTOPF52dC2A* C1C* A2C* F1F* C52¹C2C∧F, ~3.28!

where we have used~3.21! and the following commutation rules;

Xi
•Cj5Lkl

i j Ck
•Xl ~X5C,F!, ~3.29!

which come from the fact thatC andF transform under the quantum gauge transformations w
the left-adjoint coaction. They transform under the BRST transformations as the curvature
~3.29! is ~3.18! where the curvature is replaced byC or F. Note that if we putC50, dTOP reduces
to

dSA5C, dSC52¹F, and dSF50, ~3.30!

which are the quantum version of the BRST like-supersymmetry of the topological g
theories.15

IV. THE INVARIANT POLYNOMIALS AND THE QUANTUM ANALOGS OF THE
DONALDSON INVARIANTS

As for the classical case, we will derive the quantum analogs of the descent equations
Donaldson invariant polynomials from the construction of invariant polynomials curvature.
construction of invariant polynomials of mapsAn5An

i x i :H→V2(XB), which transform with
respect to left-adjoint quantum transformations as~2.19! and take their values in the quantum L
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algebra, need a quantum trace in the adjoint representation. We require that this quantum
must be invariant under the left-adjoint coaction;16 i.e., Tr„ad(a)…51H ^ Tr (a) and the product of
the curvaturesAn transforms under the quantum transformations as a module algebra

~A1* A2!8~a!5~A18* A28!~a!5~T^ A1!ad~a~1!!~T^ A2!ad~a2!5~T^ A1* A2!ad~a!. ~4.1!

Under these conditions the trace of product ofAn is invariant

Tr~A18* A28!5Tr~T^ A1* A2!ad~a!5~T^ A1* A2!Tr„ad~a!…

5~T^ A1* A2!„1H ^ Tr~a!…51XB
^ Tr~A1* A2!, ~4.2!

where we have usedT(1H)51XB
.

The infinitesimal version of~4.2! reads

Tr„a∧~A1* A2!…~a!5~a i
•A1

j
•A2

k!~x i ^ x j* xk!Tr„ad~a!…

5~a i
•A1

j
•A2

k!~x i ^ x j* xk!„1A^ Tr~a!…50. ~4.3!

Here we have used the linearity property of the functionalx i andx i(1H)50. Making use of the
Leibniz rule ofda and ~2.36! gives the same invariance~4.3!.

Let us note that
~a! ~4.2! and ~4.3! are valid for any number of mapsA1

i lx i 1
,...,An

i nx i n
,:A→V2(XB), and

~b! ~4.3! implies that

Tr@x i , xk* x l #qu50, ~4.4!

which is also valid for any number ofxk in the product of convolution. We point out that th
constraint on the Killing metricgi j 5Tr@x i , x j # postulated in Refs. 7 and 10 to obtain a Lagran
ian invariant under the infinitesimal gauge transformations can be obtained directly from~4.4! by
using ~2.35! and the commutator in terms of structure constants of the quantum Lie algebra

~c! The product of two quantum gauge transformations acts on the curvature as

An9~a!5„~T* T!∧An…~a!5~T^ T^ An!~D ^ id!ad~a!

5~T^ T^ An!~id^ad!ad~a!

5„T∧~T∧An!…~a!5~T∧An8!~a!, ~4.5!

which implies

Tr~An9* Am9 !~a!5Tr~An8* Am8 !~a!5Tr~An* Am!~a! ~4.6!

without any change of the quantum trace definition, contrary to what is stated in Refs. 8 and
pointed out in Ref. 17.

Let us now apply¹ on the quantum trace of the convolution product

¹ Tr~A1* •••* An!5d Tr~A1* •••* An!5d Tr~A1* •••* An!1Tr~A* A1* •••* An!

2Tr~A1* •••* An* A!, ~4.7!

where we have used the fact that the covariant exterior derivative acts on the inv
Tr(A1* •••* An) under the gauge transformation as a simple exterior derivative and the Le
rule of the covariant derivative~2.20!. Equations~4.7! imply that
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



ion,

ions for

4471A. B Hammou and M. Lagraa: The BRST operator of quantum symmetries

                    
Tr~A* A1* •••* An!2Tr~A1* •••* An* A!50, ~4.8!

which is realized if

An
i
•Aj5Lkl

i j Ak
•An

l . ~4.9!

In fact from ~4.9!, the equation~4.8! becomes

Ai
•A1

i 1•••An
i n Tr@x i , x i 1* •••* x i n

#qu , ~4.10!

which vanishes identically as a consequence of~4.4!.
We are now in position to construct the descent equation by replacing in~4.2! An by the

curvature. For example, the quantum trace of the product of two curvatures

P45Tr~F* F !, ~4.11!

is invariant, and the Bianchi identity~2.21! implies thatP4 is closed. We will show thatP4 is also
d-exact. Indeed, by applying the exterior derivative on

Q35Tr~A* F2 1
3A* A* A!, ~4.12!

we get

dQ35Tr~F* F2 2
3A* F* A2 1

3F* A* A2 1
3A* A* F1 2

3A* A* A* A!. ~4.13!

By developing with respect ofx i the different parts of the second hand of the latter equat
we can see from the property of the quantum trace of the quantum commutator andAi

•Aj

52Lkl
i j Ak

•Al , which is directly obtained from the definition~2.18! of the curvature, that
Tr(A* A* A* A)50. From ~4.9! we can obtain Tr(A* F* A)52Tr(A* A* F) and Tr(F* A* A)
52Tr(A* F* A), which lead us to

P45dQ3 . ~4.14!

Here P4 can be interpreted as a quantum analog of the Chern class andQ3 as a quantum
analog of the Chern–Simons three-form.

The same logic can be applied to

W45Tr„~F1C1F!* ~F1C1F!… ~4.15!

to get

~d1dTOP!W450, ~4.16!

whose development in terms of bidegree gives the quantum analogs of the descent equat
the Donaldson invariant polynomials15

d Tr~F* F !50, ~4.17!

dTOP Tr~F* F !1d Tr~F* C1C* F !50, ~4.18!

dTOP Tr~F* C1C* F !1d Tr~C* C1F* F1F* F !50, ~4.19!

dTOP Tr~C* C1F* F1F* F !1d~C* F1F* C!50, ~4.20!

dTOP Tr~C* F1F* C!1d Tr~F* F!50, ~4.21!
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dTOP Tr~F* F!50. ~4.22!

It is easy to verify directly Eq.~4.17!–~4.22! by using~3.18!, ~3.29!, and~4.9!.

V. CONCLUSION

Although the quantum BRST has been investigated by Watamura,12 our approach is quite
different from that. Watamura discussed only the simplest case of SUq(2) where the consistenc
of the BRST algebra is satisfied with the help of assumptions on the commutation rules be
the section and the ghosts or the gauge fields, and the BRST operator is defined as a
commutator with the singlet component of the ghost. In our scheme, the BRST operator is d
as in the classical case, by replacing the gauge parametera in the variationda by the ghost.
Taking into account the degree of the ghost, the Leibniz rule of the gauge variation beco
graded Leibniz rule for the BRST operator. This gives a general feature to our construction
the commutation rules of the BRST algebra are derived only from the antiderivation featuredB

whose nilpotency has either been established from the Hopf axioms of the quantum gro
from the Jacobi identity of their quantum Lie algebra independently of the form of theR matrix.

The invariant polynomials of valued quantum Lie algebra two-forms are constructed fro
adequate quantum trace which is invariant under left-adjoint coaction. Explicitly, this trace c
expressed for all quantum groups which are equipped with a metric consistent with the
relations

Ci j M
i
kM

j
l5Ckl , CklM i

kM
j
l5Ci j

as SOq(N), Spq(2N) or the quantum group of nondegenerate bilinear form.18 For SUq(N) we can
take theN3N matrix «ab constructed in Ref. 13 as the metricCab. With this metric we can
construct the quantum trace of the generators of the quantum group as Tr(Mn

m)5CnkM
n

mCmk

which verify the invariance under the left-adjoint coaction, Trad(Mn
m)51^ Tr(Mn

m). This quan-
tum trace permits us to construct the quantum analog of the Chern classP4 , the Chern–Simons
three-formQ3 , and the descent equations for the Donaldson invariants which keep the sam
as those of the conventional one.15 Finally, note that the results obtained in this algebraic form
ism give the classical limit in the caseL i j

kl5d i
ld

j
k where all the generators of the BRST algeb

become functions which commute.
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The Dirac operator and gamma matrices for quantum
Minkowski spaces
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Gamma matrices for quantum Minkowski spaces are found. The invariance of the
corresponding Dirac operator is proven. We introduce momenta for spin 1/2 par-
ticles and get~in certain cases! formal solutions of the Dirac equation. ©1997
American Institute of Physics.@S0022-2488~97!00509-4#

I. INTRODUCTION

It is widely recognized that geometry of space–time should drastically change at very
distances, comparable with Planck’s length. On the other hand, there is no satisfactory p
theory which would describe such a change. A lot of effort was devoted to simple physical m
describing possible changes of geometry which can occur. One of several possibilities is pr
by the theory of quantum groups: The related examples of quantum space–times have a~quantum!
group of symmetries which can be as big as the classical Poincare´ group. If we want to have a
quantum space–time which has exactly the same properties as the classical Minkowsk
endowed with the action of~spinorial! Poincare´ group, we get the classification of quantu
Minkowski spaces and quantum Poincare´ groups given in Ref. 1. The related differential structu
on quantum Minkowski spaces was determined in Ref. 2. Therefore, we are able to wri
Klein–Gordon equation for spin 0 particles and solve it~at least formally! in many cases. The
same holds for the Dirac equation for spin 1/2 particles provided we are able to find the g
matrices~and certain other objects!. This remaining task is undertaken in the present paper
Section II we recall the theory of quantum Minkowski spaces and quantum Poincare´ groups. In
Section III we prove that the requirement of invariance of the Dirac operator determines a
gamma matrices up to two constantsa,bPC. The square of the Dirac operator is equal to t
Laplacian~as in the classical case! if and only if ab51. The normalizationa5b51 is chosen. We
study certain expressions like the deformed Lagrangian. In Section IV we get~in certain cases!
formal solutions of the Dirac equation and introduce the momenta for spin 1/2 particles.

The gamma matrices for the example of the standardq-Lorentz group andq-Minkowski
space3,4 were considered in Ref. 4~cf. also Refs. 5–7!. This case however does not fall into ou
scheme~the correspondingq-Poincare´ group contains dilatations! and involves essentially only
one 2-dimensionalR-matrix ~while in our considerations we have two independent 2-dimensio
R-matrices:L andX).

The gamma matrices@given by Eqs.~III.25! and~III.9!# and relations among them@condition
2. of Theorem III.2 and Eq.~III.7!# were announced in Ref. 8. Recently, when the present p
was essentially completed, some gamma matrices~satisfying a condition like condition 2. o
Theorem III.2! appeared also in Ref. 9. That paper contains explicit formulae for the ga
matrices and metric tensor in some cases. Also the transformation properties are discusse

We sum over repeated indices~Einstein’s convention!. If V,W are vector spaces thent:V
^ W→W^ V is given byt(x^ y)5y^ x, xPV, yPW. We denote the unitN3N matrix by1N or
1. If A is an algebra,vPMN(A), wPMK(A), then the tensor productv ^ wPMNK(A) is
defined by

~v ^ w! i j
kl5v i

kw
j
l , i ,k51, . . . ,N, j ,l 51, . . . ,K.
0022-2488/97/38(9)/4474/18/$10.00
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We set dimv5N. If A is a * -algebra then the conjugate ofv is defined asv̄ PMN(A), where

v̄ i
j5(v i

j )* . We also setv* 5 v̄ T @vT denotes the transpose ofv, i.e. (vT) i
j5v j

i ]. We write a
;b if a,b are proportional, i.e.,a5kb for kPR* .

Throughout the paper quantum groupsH are abstract objects described by the correspond
Hopf * -algebras Poly(H)5(A,D). We denote byD,«,S the comultiplication, the counit and th
coinverse of Poly(H). In particular,S is invertible (S215* +S+* ). We say thatv is a represen-
tation of H (vP RepH) if vPMN(A), NPN, and

Dv i
j5v i

k^ vk
j , «~v i

j !5d i
j , i , j 51, . . . ,N,

in which caseS(v i
j )5(v21) i

j . The conjugate of a representation and tensor products of re
sentations are also representations. Ifv,wP RepH, dim v5N, dim w5M , then we say thatA
PM M3N(C) intertwinesv with w if Av5wA. We say thatv,w are equivalent (v.w) if such
A can be chosen as invertible. ForrPA8 ~the dual vector space ofA), aPA, we setr* a
5(id^ r)Da, a* r5(r ^ id)Da.

II. QUANTUM LORENTZ AND POINCARÉ GROUPS

In this section we recall the definitions and properties of quantum Lorentz and Poi´
groups as well as quantum Minkowski spaces. These objects are the natural generalization
standard objects known from the relativistic physics.

Quantum Lorentz groups are defined as quantum groups with the same properties
classical Lorentz group SL(2,C).10 The classification of quantum Lorentz groups is given
follows.10 The set A of polynomials on a quantum Lorentz group is the universal un
* -algebra generated bywAB , A,B51,2, satisfying

wA
BwC

DEBD5EAC, ~II.1!

EAC8 wA
BwC

D5EBD8 , ~II.2!

XAB
CDwC

KwD
L* 5wA

C* wB
DXCD

KL , ~II.3!

A,B,C,D,K,L51,2, where the matricesEPM431(C), E8PM134(C), XPM434(C) are given
~up to a nonzero factor! in Ref. 10. The setA becomes a Hopf* -algebra if we define the
comultiplication and the counit in such a way thatw becomes a representation, i.e.,

DwA
B5wA

C^ wC
B , «~wA

B!5dA
B , A,B51,2. ~II.4!

Equations~II.1!–~II.3! can also be written as

~w^ w!E5E, E8~w^ w!5E8, X~w^ w̄!5~w̄^ w!X. ~II.5!

In particular, settingE115E2250, E1251, E21521, EAB8 52EAB, XAB
CD5dA

DdB
C , we get the

classical Lorentz group SL(2,C). ThenwA
B are the matrix elements of the fundamental repres

tation of SL(2,C), i.e., wA
B(h)5hA

BPC, hPSL(2,C). Moreover, f * (g)5 f (g)PC for f PA,
gPSL(2,C).

For any quantum Lorentz group we define its representationL as

L5V21~w^ w̄!V, ~II.6!

where

VAB
i5~s i !AB , ~V21! i

AB5 1
2~s i !AB5 1

2 ~s i !BA , ~II.7!
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



e
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s05S 1 0

0 1D , s15S 0 1

1 0D , s25S 0 2 i

i 0D , s35S 1 0

0 21D
are the Pauli matrices. ThenL̄5L is irreducible.

In the next step we introduce the quantum Poincare´ groups, i.e., the quantum groups with th
properties of the~spinorial! Poincare´ group. Their definition and~almost complete! classification
are given in Ref. 1. It turns out that each quantum Poincare´ group is related to one of quantum
Lorentz groups described byE, E8 andX5tQ8 as follows:

~1! E5e1^ e22e2^ e1 , E852e1
^ e21e2

^ e1,

Q85S t21 0 0 0

0 t 0 0

0 0 t 0

0 0 0 t21

D , 0,t<1, or

~2!

E,E8 as above, Q85S 1 0 0 c2

0 1 0 0

0 0 1 0

0 0 0 1

D , or

~3! E5e1^ e22e2^ e11ce1^ e1 , E852e1
^ e21e2

^ e11ce2
^ e2,

Q85S 1 0 0 rc2

0 1 0 0

0 0 1 0

0 0 0 1

D , r>0, or

~4!

E,E8 as above, Q85S 1 c c 0

0 1 0 2c

0 0 1 2c

0 0 0 1

D , or

~5! E5e1^ e21e2^ e1 , E85e1
^ e21e2

^ e1,

Q85 i S t21 0 0 0

0 2t 0 0

0 0 2t 0

0 0 0 t21

D , 0,t<1, or
J. Math. Phys., Vol. 38, No. 9, September 1997
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~6!

E,E8 as above, Q85 i S 1 0 0 c2

0 21 0 0

0 0 21 0

0 0 0 1

D , or

~7!

E,E8 as above, Q85 i S r 0 0 §

0 2r § 0

0 § 2r 0

§ 0 0 r

D ,

r 5~ t1t21!/2, §5~ t2t21!/2, 0,t,1,

e1 ,e2 form the standard basis ofC2, e1,e2 the corresponding dual basis of (C2)* , cPR* ~cf.
Remark below!. One hasq51 in cases~1!–~4! and q521 for ~5!–~7!. We setq1/251 for q
51 andq1/25 i for q521.

The setB of polynomials on a quantum Poincare´ group is the universal unital* -algebra
generated byA andyi , i 50,1,2,3, satisfyingI B5I A ,

~R21! i j
kl~ykyl2Zkl

mym1Tkl2Lk
mL l

nTmn!50, ~II.8!

yiwA
B5GiA

C jw
C

Byj1~HV! iA
CwC

B2L i
jw

A
C~HV! jC

B , ~II.9!

~yi !* 5yi , ~II.10!

where R5(V21
^ V21)(12^ X^ 12)(L ^ L̃ )(12^ X21

^ 12)(V^ V), G5(V21
^ 12)(12^ X)(L

^ 12)(12^ V), Z5(14^ V21)@HV^ 121(G^ 12)(12^ H̃V)#V, H̃V52tG21HV, L5sq1/2(14

1qEE8), L̃5qtLt, s561, (HV) iC
D5(V21) i

ABHABC
D , Ti j 5(V21) i

AB(V21) j
CDTABCD, the

possibleHABC
D ,TABCDPC ~for given quantum Lorentz group ands), A,B,C,D51,2, are pro-

vided in Ref. 1~for c,k51). ThenB becomes a Hopf* -algebra if we define the comultiplicatio
and counit in such a way that

Dyi5L i
j ^ yj1yi

^ I , «~yi !50, i 50,1,2,3, ~II.11!

and Eq.~II.4! holds.
Remark:We setc5k51 for the objects considered in Ref. 1. The objects withc,kPR* @c

51 in cases~1!, ~5!, ~7!# are isomorphic to those withc5k51 in the following way: N
5diag(c,1), N 5V21(N^ N)V, w(c)5NwN21, X(c)5(N^ N)X(N21

^ N21), E(c);(N
^ N)E, E8(c);E8(N21

^ N21), L(c)5N LN 21, yi(c,k)5kN i
j y

j , H(c,k)5k(N^ N
^ N)HN21, T(c,k)5k2(N^ N^ N^ N)T, etc. One should mention that formally takingk→0,
nextc→0 @in cases~2!, ~3!, ~4!# or t→1 @in case~1!#, we can deform all the objects related to t
cases~1!–~4! with s51 ~and any allowedH,T) to the classical case@~1!, s5t51, H5T50].
Thereforek,c and 12t can serve as small deformation parameters.

In particular,H5T50 is always allowed. If in addition we consider the classical Lore
group ands51, we get the classical~spinorial! Poincare´ group. It is defined as

P5SL~2,C!›R45$~g,a!:gPSL~2,C!,aPR4%
J. Math. Phys., Vol. 38, No. 9, September 1997
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with multiplication (g,a)•(g8,a8)5(gg8,a1lg(a8)), where the double covering SL(2,C)
{g→lgPSO0(1,3) is given bylg(x) is i5g(xjs j )g* , gPSL(2,C), xPR4 ~we treatlg as map-
ping from R4 into R4). The groupP is the double covering of the~connected component of!
vectorial Poincare´ group

P̃5SO0~1,3!›R45$~M ,a!:MPSO0~1,3!,aPR4%

with multiplication (M ,a)•(M 8,a8)5(MM 8,a1Ma8). This coveringp:P→ P̃ is defined by
p(g,a)5(lg ,a). We should mention thatP is more important in quantum field theory thanP̃. In
these notationsf (g,a)5 f (g) for f PA @in particular, wA

B(g,a)5wA
B(g)5gA

BPC] and
yi(g,a)5ai5 i th coordinate ofaPR4. Then the relations~II.1!–~II.3! and ~II.8!–~II.9! express
the commutativity of our algebra (R5t, G5t, Z50 in this case!. The case~1!, s51, 0,t
,1, H5T50, corresponds to the quantum Poincare´ group of Ref. 11.

Finally, we pass to quantum Minkowski spaces, i.e., the quantum analogues of the Mink
space. Their definition and properties are also given in Ref. 1. According to Ref. 1, each qu
Poincare´ group admits exactly one quantum Minkowski space. The setC of polynomials on a
quantum Minkowski space is introduced as the universal unital* -algebra generated byxi , i
50,1,2,3, satisfying the relations

~R214! i j
kl~xkxl2Zkl

mxm1Tkl!50, ~II.12!

~xi !* 5xi , ~II.13!

i , j 50,1,2,3. The action of the quantum Poincare´ group on the quantum Minkowski space is give
by the unital* -homomorphismC:C→B ^ C satisfying (id ^ C)C5(D ^ id)C, (« ^ id)C5 id
and

C~xi !5L i
j ^ xj1yi

^ I , i 50,1,2,3. ~II.14!

In particular, for the classical Poincare´ group we get the classical Minkowski spaceM
5R4. Then xi are the coordinates onM : xi(v)5v i5 i th coordinate ofvPM . Moreover,C
corresponds to the actions:P3M→M of P on M given by s(p,v)5(g,a)v5lg(v)1a, p
5(g,a)PP, vPM . One has

C~ f !5 f +s ~II.15!

for f PC .
Let us recall2 that 4-dimensional covariant differential calculus on a quantum Minkow

space exists if and only if

F̃[@~R21! ^ 14#$~14^ Z!Z2~Z^ 14!Z1T^ 142~14^ R!~R^ 14!~14^ T!%50.

This requirement singles out some quantum Poincare´ groups which are described after the proof
Theorem 1.1 of Ref. 2~in particular, the trivial choiceH5T50 is always allowed!. From now on
we limit ourselves to quantum Poincare´ groups and quantum Minkowski spaces withF̃50. Then
for given quantum Minkowski space the 4-dimensional covariant differential calculus exists a
unique. It is described by partial derivatives] i :C→C , i 50,1,2,3, which are determined by th
following properties:

] i~ I !50, ~II.16!

] i~xkf !5dk
i f 1~Rkl

inxn1Zkl
i !~] l f !, f PC . ~II.17!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The ] i satisfy the following covariance property

~ id^ ] j !~C f !5~L i
j ^ I !@C~] i f !#, f PC . ~II.18!

According to Proposition 3.1.2 of Ref. 2, its proof and Ref. 1,] i can be also obtained a
follows. We setG̃5(V21

^ 12)(12^ L̃ )(X21
^ 12)(12^ V) and define a unital homomorphismf

5( f i
j ) i , j 50

3 :A→M4(C) by f i
j (w

C
D)5GiC

D j , f i
j (w

C
D* )5G̃iC

D j . Then there exists a unita
homomorphismX:B→M5(C) given by

X~a!5S ~ f l
j~S~a!!! j ,l 50

3 0

0 «~a!
D , aPA, ~II.19!

X~yi !5S ~Zil
j ! j ,l 50

3 ~d i
j ! j 50

3

0 0
D , i 50,1,2,3. ~II.20!

In practical computations one can use the formula1 f l
j (S(a))5 f l

j (a* ). It turns out that

X5S ~Xj
l ! j ,l 50

3 ~Yj ! j 50
3

0 «
D ~II.21!

with Xj
l ,YjPB8. One has

] j5~Yj ^ id!C, r j
k5~Xj

k
^ id!C ~II.22!

wherer j
k:C→C also appear in the proof of Theorem 1.1 of Ref. 2.

The metric tensor is defined2 as an invertible matrixg5(gi j ) i , j 50
3 PM434(C) such that its

matrix entriesgi j satisfy the invariance and self-adjointness conditions:

L i
jL

k
lg

jl 5gik, gik5gki, ~II.23!

i ,k50,1,2,3. Suchg is unique up to a nonzero real multiplicative factor. It satisfiesRg5g. Here,
we choose it as

g522q1/2~V21
^ V21!~12^ X^ 12!~E^ tE! ~II.24!

~cf. Ref. 2 and Remark below!. Matrix elements ofg21 are denoted bygi j . The Laplacian is
given2 as

h5gi j ] j] i . ~II.25!

It is invariant and commutes with partial derivatives:

~ id^ h !@C~ f !#5C~h f !, f PC , ~II.26!

h] i5] ih, i 50,1,2,3. ~II.27!

According to Refs. 1 and 2, the ‘‘sizes’’ of all our constructions are the same as for the cla
Poincare´ group, the classical Minkowski space and the standard differential calculus on i~we
consider only the polynomial functions!.

Remark:The factor~22! in Eq. ~II.24! gives the standard metric tensorg5diag(1,21,21,
21) for the classical Poincare´ group and was taken into account in the expression for a propag
near the end of Section 4 of Ref. 2. However, it was not fixed in the considerations after~3.8! of
Ref. 2.
J. Math. Phys., Vol. 38, No. 9, September 1997
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In particular cases the metric tensorg5(gi j ) i , j 50
3 equals

~1!, ~5! g5q diag(t,2t21,2t21,2t),

~2!, ~6! g5
1

2
qS 22c2 0 0 2c2

0 22 0 0

0 0 22 0

2c2 0 0 222c2

D ,

~3! g52
1

2S ~r 11!c222 0 22ic ~11r !c2

0 2 0 0

2ic 0 2 2ic

~11r !c2 0 22ic ~r 11!c212

D ,

~4! g52
1

2S 3c222 22c 22ic 3c2

22c 2 0 22c

2ic 0 2 2ic

3c2 22c 22ic 3c212

D ,

~7! g5diag(2r 1§,r 1§,r 2§,r 1§)

@q51 for ~1!–~4! andq521 for ~5!–~7!#.

III. INVARIANCE OF THE DIRAC OPERATOR

In this section we prove that the requirement of invariance of the Dirac operator]” determines
all the gamma matrices up to two constants. Then using the condition]”25h we provide the exact
form of the gamma matrices. We also study certain expressions like the deformed Lagran

We shall consider gamma matricesg iPM434(C), i 50,1,2,3. At the moment they are no
determined yet. The Dirac operator has form]”5g i

^ ] i ~cf. Ref. 2!. It acts on bispinor functions
fPC̃ [C4

^ C ~in a more advanced approach we should consider square integrable functionf).
In the classical case the Poincare´ groupP acts onC̃ as follows:

f8~x8!5S ~g!f~x!,

wherefPC̃ , xPM , f(x)PC4, f8 is f transformed byp5(g,a)PP, x85p•x, f8(x8)PC4,
S is a representation of the Lorentz group SL(2,C) acting in the spaceC45C2

% C2 of bispinors,
S .w% w̄ ~undotted and dotted spinors!. Writing f5«a^ fa where «a , a51,2,3,4, form the
standard basis ofC4, replacingx by p21x and thenp by p21, using Eq.~II.15! and setting

@C̃~f!#~p,x!5f8~x!, ~III.1!

C(fa)5fa(1)
^ fa(2) ~Sweedler’s notation, exception of Einstein’s convention!, one obtains

C̃~«a^ fa!5G a
lfa~1!

^ « l ^ fa~2!, ~III.2!

whereG 5(S 21)T.w% w̄ @cf. remarks after Eq.~III.3!#.
J. Math. Phys., Vol. 38, No. 9, September 1997
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For the general quantum Minkowski space we define the actionC̃:C̃→B ^ C̃ of quantum
Poincare´ group onC̃ by Eq. ~III.2!, whereG is a representation equivalent tow% w̄. For the
future convenience we choose

G 5cw% w̄ ~III.3!

wherecw5(wT)21. We notice that Eq.~II.5! implies ~here we treatE as 232 matrix and then10

E85E21)

wEwT5E. ~III.4!

Therefore,cw.w:

cw5E21wE. ~III.5!

In the classical case one has the invariance of the Dirac operator:

@]”f#85]”f8. ~III.6!

Then assuming thatf satisfies the Dirac equation (i ]”2m)f50, we get

05@~ i ]”2m!f#85 i ~]”f!82mf85~ i ]”2m!f8,

i.e.,f8 also satisfies the Dirac equation. It means that the Dirac equation is invariant. On the
hand, using Eq.~III.1!, the invariance condition~III.6! is equivalent to

C̃~]”f!5~ id^ ]”!@C̃~f!#, fPC̃ . ~III.7!

We set Eq.~III.7! as the condition of invariance of the Dirac operator for the general quan
Minkowski space. The main result of the present Section is contained in

Theorem III.1: The following are equivalent:

1. The Dirac operator is invariant [i.e., Eq. (III.7) is satisfied]

2.

g i5S 0 bAi

as i 0 D ~III.8!

where

Ai5q21/2ET~s i+D !E, ~III.9!

(s i+D)KL5(s i)ABDAB
KL , D5tX21t, a,bPC (E is regarded here as232 matrix).

Proof: Settingf5«a^ fa and using Eq.~III.2!, one easily checks that the LHS of Eq.~III.7!
equals

G m
s~g j !m

a~] jf
a!~1!

^ «s^ ~] jf
a!~2!. ~III.10!

Similarly, using Eqs.~III.2! and ~II.18!, we obtain that the RHS of Eq.~III.7! is equal to

G a
lfa~1!

^ ~g i !s
l«s^ ] i@fa~2!#5G a

lL j
i~] jf

a!~1!~g i !s
l ^ «s^ ~] jf

a!~2!. ~III.11!

Choosingf5xr« t , one getsfa5xrda
t , ] jf

a5d r
jd

a
tI . In this case Eq.~III.7! @i.e., the equality

of Eqs.~III.10! and ~III.11!# yields
J. Math. Phys., Vol. 38, No. 9, September 1997
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G m
s~g r !m

t5G t
lL r

i~g i !s
l . ~III.12!

On the other hand Eq.~III.12! implies that Eq.~III.10! equals Eq.~III.11! and~III.7! follows ~for
generalf). Therefore Eqs.~III.7! and ~III.12! are equivalent.

Setting

Wl
i
,
s5~g i !s

l , ~III.13!

we can write Eq.~III.12! as

WG 5~G ^ L!W. ~III.14!

Defining

N5~14^ V!W, ~III.15!

using Eqs.~II.6! and ~III.3!, Eq. ~III.14! can be translated as

N~cw% w̄!5~cw^ w^ w̄% w̄^ w^ w̄!N. ~III.16!

According to Eq.~III.5! and Proposition 2.1 of Ref. 1~cf. also Ref. 10!,

cw^ w^ w̄.~w1
^ w̄! % w̄, w̄^ w^ w̄.~w^ w1! % w

~decompositions into irreducible components, we use the notation of Proposition 2.1 of R!.
Thus

N5S 0 N1

N2 0 D , ~III.17!

Eq. ~III.16! means that

N1w̄5~cw^ w^ w̄!N1 , ~III.18!

N2
cw5~w̄^ w^ w̄!N2 ~III.19!

and N1 ,N2 are fixed up to multiplicative constants. Using the definition ofcw, Eq. ~II.3! and
conjugated~II.1!, one can check that solutions of Eqs.~III.18!, ~III.19! are given by

~N1!ABC
D52adA

BdC
D ,

~N2!ABC
D52bq21/2~X21!BC

KLEKAELD,

a,bPC, where additional scalar factors 2,q21/2 are added for future convenience. Using Eq
~III.13!, ~III.15! and ~II.7!, we finally get Eq.~III.8!. h

In the standard Dirac theory]”25h. We set this as the additional condition for our gamm
matrices. Then the Dirac equation (i ]”2m)f50 implies ~formally! the Klein–Gordon equation
(h1m2)f50.

Theorem III.2: Assume Eq. (III.8). The following are equivalent:

1. ]”25h.

2. g ig j1Rji
lkgkg l52gji 1, i , j 50,1,2,3.

3. ab51.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Remark:Condition 2 was considered in Ref. 2~cf. Refs. 12, 6!. For the classical Poincar´
group it gives the standard relationg ig j1g jg i52gi j 1.

Proof: According to Ref. 2, condition 2 implies condition 1. Conversely, assume that co
tion 1 holds. Applying its both sides toxmxn, using Eqs.~II.16!, ~II.17! and Rg5g, we get
condition 2. It remains to prove the equivalence of conditions 2 and 3.

Using Eq.~III.13!, it is easy to check that condition 2 is equivalent to

@14^ ~R11!#~W^ 14!W52•14^ g. ~III.20!

In virtue of Eq.~III.15!, Eq. ~III.20! can be translated as

@14^ ~RL11!#~N^ 14!N52•14^ gL , ~III.21!

where

RL5~12^ X^ 12!~L ^ L̃ !~12^ X21
^ 12!,

gL522q1/2~12^ X^ 12!~E^ tE!.

This, in turn, means that

@12^ ~RL1116!#~N1^ 14!N252•12^ gL , ~III.22!

@12^ ~RL1116!#~N2^ 14!N152•12^ gL . ~III.23!

But we can write

N152a~M ^ 12!, N252bq21/2~12^ X21
^ T!~tE^ E^ 12!,

whereM :C→C2
^ C2 andT:C2

^ C2→C are such thatMAB5TAB5dA
B . Using this,

~12^ T!~M ^ 12!5~T^ 12!~12^ M !512

and the 16 relations~2.1!, ~2.3!–~2.9!, ~2.17!–~2.20! and ~2.35!–~2.38! of Ref. 1, after some
computations we get that the left hand sides of Eqs.~III.22!, ~III.23! are both equal to 2ab12

^ gL . Therefore, condition 2 is equivalent toab51. h

Remark:Here, we explain why each of conditions~III.22!–~III.23! ~expressing equalities o
3232 matrices! leads to only one numerical condition. Let us begin with Eq.~III.22!. In virtue of
~III.18!, ~III.19! (N1^ 14)N2 intertwinescw with z5cw^ L ^ L whereL5w^ w̄. Using Propo-
sition 2.1 of Ref. 1,

L ^ L.I % w1
% w1

% ~w1
^ w1!. ~III.24!

Thus

z.w% ~w% w3/2! % ~w^ w1! % ~w^ w1
% w3/2

^ w1!.

Hence (N1^ 14)N2 can be nonzero only in first two components of Eq.~III.24!. Moreover, using
the remarks after~2.25! of Ref. 1,RL1116 kills the second component of Eq.~III.24! and the LHS
of Eq. ~III.22! intertwines cw with cw^ I ~here I denotes the trivial subrepresentation ofL

^ L). The same is true for the RHS@cf. Eq. ~II.23!#. Such intertwinners are represented
numbers and Eq.~III.22! is equivalent to one numerical condition. We treat Eq.~III.23! in a
similar way. Our remarks are valid in particular in the classical case.
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The transformationa°x21a, b°xb (xPC\$0%) corresponds tog i°Dg iD21 where D
5x12% 12 , which is equivalent to scaling of the undotted spinor. Therefore, we may seta5b
51 and obtain

g i5S 0 Ai

s i 0 D ~III.25!

whereAi are given by Eq.~III.9!.
In particular cases one gets:
~1!, ~5! A05qts0 , A152qt21s1 , A252qt21s2 , A352qts3 ,
~2!, ~6!

A05qS 12c2 0

0 1D , A152qs1 , A252qs2 , A35qS 212c2 0

0 1D ,

~3!

A05S c2~12r !11 c

c 1D , A15S 22c 21

21 0 D , A25S 0 i

2 i 0D ,

A35S c2~12r !21 c

c 1D ,

~4!

A05S c211 2c

2c 1 D , A152s1 , A252s2 , A35S c221 2c

2c 1 D ,

~7! A05(§2r )s0 , A15(r 1§)s1 , A25(r 2§)s2 , A35(r 1§)s3

@q51 for ~1!–~4! andq521 for ~5!–~7!#.
In the following we shall study the analogues of certain sesquilinear expressions which a

in the standard Dirac theory. They involve the gamma matrixg0. But in the deformed case th
corresponding matrix will be in general different fromg0 and denoted byA. We set

A5S 0 KT

K 0 D , ~III.26!

where

K52E~E21!T ~III.27!

~as 232 matrices!. For f5«a^ faPC̃ we put f†5la^ fa* , f̄5f†(A^ I ), where la

P(C4)* form a basis dual to the standard basis«a of C4. We shall prove that expressions likef̄f

and deformed LagrangianL5f̄( i ]”2m)f transform themselves in the same way as in the s
dard theory:

Proposition III.3: For f5«a^ fa,x5«a^ xaPC̃ one has

~C̃f!†~ I ^ A^ I !~C̃x!5C@f†~A^ I !x#, ~III.28!

~C̃f!†~ I ^ A^ I !@ I ^ ~ i ]”2m!#~C̃x!5C@f†~A^ I !~ i ]”2m!x#, ~III.29!
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where(ba^ ca)†5ba* ^ ca
† for baPB, caPC̃ .

Proof: Using Eqs.~III.5! and ~III.4!, we notice that

wK~cw!T5wKETwT~E21!T52wEwT~E21!T52E~E21!T5K.

Applying the Hermitian conjugation, one obtainscwKTw̄T5KT. These two equations and Eq
~III.3! give

Ḡ AG T5A. ~III.30!

Therefore,

~C̃f!†~ I ^ A^ I !~C̃x!5@~G a
lfa~1!!* ^ l l ^ fa~2!* #~ I ^ A^ I !@G b

sxb~1!
^ «s^ xb~2!#

5fa~1!* G a
l* AlsG b

sxb~1!
^ fa~2!* xb~2!5fa~1!* Aabx

b~1!
^ fa~2!* xb~2!

5AabC~fa!* C~xb!5C~laA«b^ fa* xb!5C~f†~A^ I !x!

and Eq.~III.28! follows. Replacingx by (i ]”2m)x and using Eq.~III.7!, one gets Eq.~III.29!.
Remark.We were not able to get a similar fact forf̄g if. h

In particular casesK equals:

~1!,~2! K512 , ~3!,~4! K5S 1 22c

0 1 D , ~5!,~6!,~7! K5212 .

IV. SOLUTIONS OF THE DIRAC EQUATION AND MOMENTA

In this section we use Ref. 2 to get~in certain cases! formal solutions of the Dirac equation
We introduce the momenta for spin 1/2 particles. They have good transformation prop
commute with the Dirac operator, are self-adjoint w.r.t. the inner product introduced in Secti
and in general differ from momenta for spin 0 particles. Unfortunately, only in some cases
are diagonalizable with real eigenvalues. Considerations in this section are largely formal~except
of Proposition IV.1!.

In the case when the Lorentz group is classical~case~1!, t51), we getR5t. Then we obtain
formal solutions of the Dirac equation (i ]”2m)f50 (m>0) as in case 2. of Section 4 of Ref. 2
In these cases metric tensorg5diag(1,21,21,21) and the gamma matrices

g05S 0 12

12 0 D , g i5S 0 2s i

s i 0 D , i 51,2,3,

are classical. Solutions have formf5v ^ e2 ixapa ~according to the conventions of our paper, w
use a different order of tensor product than in Ref. 2! where pa are real numbers andv is a
solution of

P jg
jv5mv ~IV.1!

with

m5AP 0
22P 1

22P 2
22P 3

2

andP jPR obtained frompi as in Ref. 2. We solve Eq.~IV.1! as in the standard theory:
for m.0 we get
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v5S w

m21P kskw
D ~wPC2!,

for m50 one has

vPspan5 S P 12 i P 2

2P 02P 3

0

0

D , S 0

0

P 01P 3

P 11 i P 2

D 6 ~P 0Þ2P 3!,

vPspan5 S 1

0

0

0

D , S 0

0

0

1

D 6 ~P 052P 3Þ0!

~or vPC4 if all P i50 — unphysical case!.
Now let us consider case 1. of Section 4 of Ref. 2~for Z50). In addition to gamma matrice

we need also* -algebraF and its * -representationsp in Hilbert spacesH with basesek , k
PK. We recall thatF is generated bypa, a50,1,2,3, satisfying (pa)* 5pa, pkpl5Rlk

ji p
ipj .

Then solutionsw of the Dirac equationi ]”w5mw (m>0) are provided in terms ofwsl5(id
^ psl)(e

2 ix ^ p), wherex^ p5xa
^ gabp

b, s,l PK, psl(a)5(esup(a)el) for aPF . Namely, w
5wv l5« i ^ vsiwsl ( i 51,2,3,4) for vPH ^ C4 such that Uv5mv. Here, Usi

kn

5pks(pt)gat(g
a) i

n , m5p(gi j p
j pi)1/2 ~we assume that it is a number, which holds, e.g., forp

irreducible as in Ref. 2!.
In the following we limit ourselves to cases~1!–~2! of Section II. Thengab are real,x^ p is

self-adjoint,e2 ix ^ p unitary and the components ofw are bounded~since the summation overs
will be finite!. SetA5p01p3, B5p12 ip2, B* 5p11 ip2, D5p02p3. We have found the fol-
lowing admissiblep:

~1!~a! pabd in l 2(Z) with orthonormal basisen , nPZ, defined by

pabd~A!en5t22naen , pabd~B!en5ben21 ,

pabd~B* !en5ben11 , pabd~D !en5t2nden ,

a,dPR, (a,d)Þ(0,0), b.0.
~b! p̃abd in C defined by

p̃abd~A!5a, p̃abd~B!5b, p̃abd~B* !5 b̄ , p̃abd~D !5d,

a,dPR, b50 or a5d50, bPC* .
~2!~a! pad in l 2(N) with orthonormal basisen , nPN, defined by

pad~A!en5c2~a1nd!en , pad~B!en5cdn1/2en21 ,

pad~B* !en5cd~n11!1/2en11 , pad~D !en5den ,

dPR* , aPR, e2150.
~b! p̃ab in C defined by

p̃ab~A!5a, p̃ab~B!5b, p̃ab~B* !5 b̄ , p̃ab~D !50,
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aPR, bPC.
After some computations one findsU,v and finally solutionsw of the Dirac equationi ]”w

5mw (m>0). They are~up to linear combinations! as follows:
~1! m5(t21ad2tubu2)1/2,
~a! m.0:

w5S mwnl

0

t2n21dwnl

2tbwn21,l

D , S 0

mwnl

2tbwn11,l

t22n21awnl

D ;

m50:

w5S bwnl

dt2n22wn21,l

0

0

D , S 0

0

bwnl

2at22nwn21,l

D .

~b! m.0 (b50, ad.0):

w5S mw11

0

t21dw11

0

D , S 0

mw11

0

t21aw11

D ;

m50:

w5S 0

w11

0

0

D , S 0

0

w11

0

D ~a5b50!,

w5S w11

0

0

0

D , S 0

0

0

w11

D ~d5b50!.

~2!~a! m5c(ad)1/2, m.0:

w5S mwnl

0

dwnl

2cdn1/2wn21,l

D , S 0

mwnl

2cd~n11!1/2wn11,l

c2~a1nd1d!wnl

D ;

m50:
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w5S c~n11!1/2wn11,l

wnl

0

0

D , S 0

0

wnl

2cn1/2wn21,l

D .

~b! m50 for b50, aÞ0:

w5S w11

0

0

0

D , S 0

0

0

w11

D
~we have omitted unphysical casea5b50 whenw5r ^ w11 with any rPC4).

Now we shall pass to the momenta for spin 1/2 particles~in general case!. Let us recall that for
spin 0 particles the momenta were defined asPj5 i ] j and partial derivatives] j can be also
obtained by] j5(Yj ^ id)C @see~II.22!#. It suggests to define the momenta for spin 1/2 partic
as

P̃j5 i ]̃ j , ~IV.2!

]̃ j5~Yj ^ id!C̃:C̃→C̃ . ~IV.3!

This choice is justified by the following
Proposition IV.1: Let us define]̃ j as in Eq. (IV.3). Then

]̃ j]”5]” ]̃ j , ~IV.4!

~ id^ ]̃ j !C̃~a!5~L i
j ^ I !C̃~ ]̃ i~a!!, aPC̃ . ~IV.5!

Remark:Proposition IV.1 is valid for any homogeneous quantum space endowed with
action of inhomogeneous quantum group in the sense of Ref. 2~with F̃50). Equation~IV.4!
implies that~up to technical difficulties! the deformed momenta are well defined in the space
solutions of the Dirac equation (i ]”2m)f50 (m>0). Equation~IV.5! means that the moment
for spin 1/2 particles transform themselves in the same way as the momenta for spin 0 pa
@cf. Eq. ~II.18!#.

Proof: We set@cf. Eq. ~II.22!#

r̃ j
k5~Xj

k
^ id!C̃:C̃→C̃ . ~IV.6!

Applying Yj ^ id or Xj
k

^ id to Eq. ~III.7!, we get Eq.~IV.4! and

r̃ j
k]”5]” r̃ j

k. ~IV.7!

Next we are going to prove

Yj* a5L i
j$a* Yi%, ~IV.8!

$Xk
j* a%L i

j5L j
k$a* Xj

i%, ~IV.9!
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aPB. For aPA Eq. ~IV.8! is trivial while Eq.~IV.9! follows from Eqs.~II.19!, ~1.5! of Ref. 13
and invertibility of S. For a5ys Eq. ~IV.8! is trivial while Eq. ~IV.9! follows from Eqs.~II.19!,
~II.20! and ~3.60! of Ref. 13 (pi are calledyi now!. But the set ofaPB satisfying Eqs.~IV.8!,
~IV.9! is an algebra@use the homomorphism property ofX of Eq. ~II.21!#. Therefore Eqs.~IV.8!,
~IV.9! follow for all aPB.

Moreover, using Eq.~III.2!, one obtains

~ id^ C̃!C̃5~D ^ id!C̃. ~IV.10!

Now tensoring Eqs.~IV.8!, ~IV.9! from right by bPC̃ , replacinga^ b by C̃(x), xPC̃ , using
Eqs.~IV.10!, and~IV.3!, ~IV.6!, one obtains Eq.~IV.5! and

~ id^ r̃ k
j !C̃~a!~L i

j ^ I !5~L j
k^ I !C̃~ r̃ j

i~a!!. ~IV.11!

In the same way, using (id̂C)C5(D ^ id)C, one can also get~1.11!–~1.12! of Ref. 2. h

Using the properties ofX and Eq.~III.2!, one gets

]̃ m5Xm
j~G a

l !El
a

^ ] j , r̃ m
k5Xm

j~G a
l !El

a
^ r j

k ,

whereEl
a are matrix units (El

a«b5da
b« l). First consider the case when the Lorentz group

classical@~1!, t51] ands51. Then f i
j5d i

j«. Using Eq.~II.19!, one gets

]̃ m5 id^ ]m , r̃ m
k5 id^ rm

k.

Taking the solutionw5v ^ e2 ixapa as in the beginning of the present section, one obtains

P̃mw5v ^ i ]me2 ixapa5P mw

~cf. case 2. of Section 4 of Ref. 2!. Thus in this case the momenta are just like the momenta
spin 0 particles. For all other cases it is easy to check thatf i

m(wA
B)Ód i

mdA
B , Xi

m(G a
l)Ódm

id
l
a

and

]̃ iÓ id^ ] i , r̃ i
kÓ id^ r i

k

~acting onf5«a^ xb or f5«a^ I ). It means that in general momenta depend on spin.
Let us return to the general case. Set

Ft
r5gtmXm

j~G a
l !gjr El

a,

P̃t5 igtm ]̃ m , Pr5 igr j ] j . Then

P̃t5Ft
r ^ Pr .

The transformation property of the momentaP̃t easily follows from Eq.~IV.5!:

~ id^ P̃t!C̃~a!5@~g21TLgT!m
t
^ I #C̃~ P̃m~a!!.

Due to Eq.~IV.4!, P̃t commute with]”. One can check thatFt
r are self-adjoint w.r.t. the inne

product defined in Section III (f̄Ft
rc5Ft

rfc for f,cPC4) while Pr are self-adjoint according
to Ref. 2. Therefore,P̃t are self-adjoint. However, the inner product of Section III is not positiv
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defined and self-adjointness does not guarantee diagonalizability or reality of the spectrum
shall see. Namely, after long computations one gets the following form forP̃t in cases~1!–~2!,
Z50 ~case 1. of Section 4 of Ref. 2 as considered above!:

identifying wnl with en one can representP̃t as operators inC4
^ H5(C2

^ H) % (C2
^ H)

such that

P̃t5R̃t
% ~R̃t!*

~this is related to the self-adjointness ofP̃t, * is given by the standard Hermitian structures inC2

andH) where
~1!

R̃05
s

2S tp~A!1t21p~D ! 0

0 t21p~A!1tp~D !
D ,

R̃15
s

2S t21p~B!T1tp~B* !T 0

0 t21p~B* !T1tp~B!TD ,

R̃25 i
s

2S t21p~B!T2tp~B* !T 0

0 tp~B!T2t21p~B* !TD ,

R̃35
s

2S tp~A!2t21p~D ! 0

0 t21p~A!2tp~D !
D ,

~2!

R̃05
s

2S p~A!1p~D ! 2c2p~B!T

0 p~A!1p~D !
D ,

R̃15
s

2S p~B* !T1p~B!T 2c2p~D !

0 p~B* !T1p~B!TD ,

R̃25 i
s

2S p~B!T2p~B* !T c2p~D !

0 p~B!T2p~B* !TD ,

R̃35
s

2S p~A!2p~D ! 2c2p~B!T

0 p~A!2p~D !
D .

According to Eq.~IV.4!, P̃t act in the subspace of solutions of the Dirac equation. Howe
consideringP̃1, P̃2 w.r.t. the found solutions, there appears complex spectrum@case~1!# or
nondiagonalizability@case~2!, m.0.# But in case~2!, m50 all P̃r are diagonalizable with rea
spectrum~in the subspace of found solutions!. One can try to overcome this difficulty by mod
fying the definition of]̃ m . However, one checks that it is not possible to get always@in all cases
~1!,~2!# diagonalizability with real spectrum~without spoiling the other properties ofP̃m) by
choosing another ansatz of the form]̃ m5Mm

j
^ ] j (Mm

jPC, Mm
jÓ0).
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Supersymmetry and supercoherent states
of a nonrelativistic free particle

Boris F. Samsonova)

Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia

~Received 20 October 1996; accepted for publication 16 May 1997!

Coordinate atypical representation of the orthosymplectic superalgebra osp (2/2) in
a Hilbert superspace of square integrable functions constructed in a special way is
given. The quantum nonrelativistic free particle Hamiltonian is an element of this
superalgebra which turns out to be a dynamical superalgebra for this system. The
supercoherent states, defined by means of a supergroup displacement operator, are
explicitly constructed. These are the coordinate representation of the known atypi-
cal abstract super group OSp (2/2) coherent states. We interpret obtained results
from the classical mechanics viewpoint as a model of classical particle which is
immovable in the even sector of the phase superspace and is in rectilinear move-
ment ~in the appropriate coordinate system! in its odd sector. ©1997 American
Institute of Physics.@S0022-2488~97!00809-8#

I. INTRODUCTION

The supersymmetry in physics has been introduced in the quantum field theory for unify
interactions of different kinds in a unique construction.1 Supersymmetric formulation of quantum
mechanics is due to the problem of spontaneous supersymmetry breaking.2 Ideas of supersymme
try have been profitably applied to many nonrelativistic quantum mechanical problems sinc
now there are no doubts that the supersymmetric quantum mechanics has its own right to ex~see
for Ref. 3 a recent review!. It is worth noticing that almost all papers are concerned with
stationary Schro¨dinger or Pauli equations. There are only a few papers dealing with nonstatio
equations.4,5

The mathematical foundation of the conventional quantum mechanics consists in the op
theory in a Hilbert space.6,7 The notion of Hilbert space is also indispensable in the construc
of unitary representations of Lie groups. The space of square integrable on Lebesgue m
functions is one of the most important realizations of the Hilbert space.

When we pass from the conventional quantum mechanics to the supersymmetric on
from conventional Lie algebras and groups to superalgebras and supergroups we need th
of Hilbert superspace. There are few works about Hilbert superspaces.8,9 It seems that mathemati
cally rigorous and consistent theory of Hilbert superspaces and the theory of operators ac
these superspaces need to be developed.

In this paper for a particular case of nonrelativistic free particle we construct a Hilbert s
space which is az2-graded infinite-dimensional linear space equipped with a super-Herm
form ~superscalar product! and in some sense complete. Solutions of the free particle Schro¨dinger
equation form a dense set in this superspace.

The notion of coherent states is widely used in the conventional quantum mechanic
mathematical physics.10–12 Many definitions of coherent states exist.11 The more suitable for
generalization to the supersymmetric case is the one based on the group-theoretical ap
developed by Perelomov for a wide class of conventional Lie groups.10 This definition has a
natural generalization to Lie supergroups and superalgebras based on the notion of sup
translation operator.13

a!Electronic mail address: samsonov@phys.tsu.tomsk.su
0022-2488/97/38(9)/4492/12/$10.00
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In a number of papers14,15 abstract representations of some simple Lie superalgebras
studied and with their help supercoherent states have recently been constructed5,13,16–19and un-
derlying geometric structure has been envisaged.18,19 Nevertheless, application of these results
the quantum mechanics is not numerous.5,13 The supercoherent states of a charged spin-1

2 particle
in a constant magnetic field13 and in a time-varying electromagnetic field5 are explored and
interpreted in a physical context. The role of Grassmann variables is clarified and insight is g
into the link between supercoherent states and the classical motion. The fermion monopole
which is known to have a dynamical OSp (1/2) supersymmetry is considered and their su
herent states are obtained.13

In this paper we show that not only the above-mentioned quantum systems may be inte
in terms of supersymmetric notions but every nonrelativistic one-dimensional quantum s
with quadratic in coordinatex Hamiltonian exhibits supersymmetric properties. We concent
our attention on a simple but nontrivial case of the nonrelativistic free particle which in
interpretation has OSp (2/2) dynamical supersymmetry. More precisely, the space of solut
the Schro¨dinger equation for the free particle is an atypical Lie osp (2/2)-module. We use
notion of supergroup both as az2-graded group and a superanalytic supermanifold.20 The action of
a supergroup operator translation is defined on a dense set in the Hilbert superspace. This
maps the dense set from the Hilbert superspace onto the Grassmann envelope of the seco
of the Hilbert superspace. Being applied to a maximal symmetry vector~in our case the vacuum
vector! this operator produces supercoherent states for the free particle which are the coo
representation of the known atypical osp (2/2) coherent states. These states, are paramet
the points of theN51 superunit diskD (1u1). The supermanifoldD (1u1) is a phase superspace
a classical system possessing remarkable property, namely, geometric quantization of this
gives a superholomorphic representation of the initial~i.e., free particle! quantum system. By thes
means we construct a classical mechanics system which corresponds to the nonrelativisti
tum free particle. Finally we interpret the obtained classical system as a classical particle w
immovable in the even sector of the phase superspace and is in rectilinear movement in
sector.

The paper is organized as follows. In Sec. II we summarize the well-known results abo
representation in the Hilbert space of symmetry algebra of the free particle Schro¨dinger equation
we need further. Section III includes two parts. In the first one we recall main notions abo
superanalysis and in the second we construct a Hilbert superspace of square integrable fu
In Sec. IV we define the action of operators in constructed Hilbert superspace which are sym
operators for the free particle Schro¨dinger equation and realize an atypical coordinate represe
tion of the osp (2/2) superalgebra. In Sec. V the coherent states for the nonrelativistic free p
are constructed. In Sec. VI we discuss obtained results, compare them with the known on
interpret from the classical mechanics viewpoint.

II. SCHRÖDINGER ALGEBRA

In this section we summarize briefly the well-known constructions21 for a representation in the
Hilbert space of square integrable on Lebesgue measure functions of the Schro¨dinger algebra
G 2 which is a dynamical symmetry algebra for the nonrelativistic free particle.

Consider the free particle Schro¨dinger equation

i ] tx~x,t !5hx~x,t !, h52]x
2, ]x

25]x•]x , ]x5]/]x . ~1!

Solutions of this equation pertaining to the spaceL2(R) of square integrable functions on full rea
axis with respect to Lebesgue measure are well known:21

xn~x,t !5^xun,t&5~2 i !n@n!A2p~11 i t !#21/2expS 2 in arctant2
x2

414i t DHen~z!,

~2!
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z5x/A11t2, Hen~z!522n/2Hn~z/& !,

where Hn(z) are the Hermitian polynomials. LetL be lineal ~linear hull! of the functions
$xn(x,t)%. Introduce the notationscn(x,t)5x2n(x,t)5x2n(2x,t) and wn(x,t)5x2n11(x,t)
52x2n11(2x,t), n50,1,2,..., and denoteL 0 the lineal of even functions$cn(x,t)% andL1 the
lineal of odd ones$wn(x,t)%.

If we introduce the scalar product~Hermitian form! in L in a usual way,

^x1~x,t !ux2~x,t !&5E
2`

`

x̄1~x,t !x2~x,t !dx, ~3!

where overline signifies the complex conjugation and the integral should be understood
sense of Lebesgue, then the completionL̄ of the linealL with respect to the measure induced
this scalar product gives the Hilbert spaceH. We denotê •u•& j the restriction of the scalar produc
~3! on the linealsL j , j 50,1. The completion of the linealsL j with respect to the norms
generated by the appropriate scalar products produces the Hilbert subspacesH j5L̄ j . It is clear
that for the linealL we have the orthogonal sumL5L 0

% L1 and for the spaceH we have the
orthogonal decompositionH5H0

% H1. By these means we obtain the well-known construction21

of the Hilbert space structure on the solutions of the Schro¨dinger equation~1!.
Symmetry operators for the equation~1! are defined as usual as the operators which transf

any solution of this equation to another solution of the same equation. These operators re
coordinate representation of the Schro¨dinger algebraG 2 and have the form

K 252t2] t2tx]x2t/21 ix2/4, K 152t]x1 ix/2,
~4!

K 05 i , K 215]x , K 225] t , K 05x]x12t] t11/2.

The operators~4! are defined on the dense setL,H and L is the Lie G 2-module. Moreover,
every operator from~4! is skew-symmetric with respect to the scalar product~3! and, conse-
quently, with the help of the exponential mapping we may construct a group of un
operators.7,21

Since we are not interested in the other representations of the algebraG 2 we shall denote
G 25span$K 0,61 ,K 62 ,K 0% where span stands for the linear hull over the real number fieR
if we want to have the real algebraG 2(R) and over the complex number fieldC for its complex
form G 2(C).

Let us pass inG 2(C) to another basis more suitable for our purpose. Considera6

5 1
2( i K 217K 1). Operators$a6,I %, where I is the identity operator, form the basis of th

Heisenberg–Weil algebraw1 . Consider now the quadratic combinations ofa6, i.e., k6

52(a6)2, k05a1a21a2a1. Since for everyxPL equation~1! represents an operator identi
]x

252 i ] t , operatorsk0 andk6 acting inL may be considered of the first degree in]x and] t . It
is easy to see that these operators form another basis in subalgebra sC)
5 span$K 0,K 62%,G 2(C) and G 2(C)5sl (2,C)*w1(C). Its real form sl~2,R! is isomorphic
to su~1.1!. Moreover, it is apparent thatL 0 andL1 are irreducible Lie su~1.1!-modules of the
weight 1

4 and 3
4, respectively. Note that the operatorsa6 map the linealsL 0 and L1 one into

another. We note as well the following conjugation properties of the operators fromG 2 with
respect to the scalar product~3!: (a6)†5a7, k0

†5k0 , (k6)†5k7 , which hold on the linealL.
To conclude this section we would like to notice that the procedure specified above m

applicable to a wide class of Hamiltonians of the formh52]x
21A(t)x21B(t)x1C(t). This

assertion follows from the well-known fact that the nonstationary Schro¨dinger equation with this
Hamiltonian has integrals of motion~symmetry operators! ã 6 that depend only on the derivativ
]x and form a representation of the Heisenberg–Weil algebraw1 .12 Their quadratic combinations
being apparently symmetry operators may be expressed only through the]x and] t on the space of
J. Math. Phys., Vol. 38, No. 9, September 1997
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the solutions of the nonstationary Schro¨dinger equation. These operators form a representatio
the algebra su~1.1!. The semidirect sum of representations of su~1.1! andw1 gives a representa
tion of the Schro¨dinger algebraG 2 . The Hilbert space structure on the solutions of the Sch¨-
dinger equation is introduced with the help of the well-known constructions of the discrete
representation of the Schro¨dinger algebra. The latter is built of two Lie irreducible su~1.1! mod-
ules in the same way as above.

III. HILBERT SUPERSPACE OF SQUARE INTEGRABLE FUNCTIONS

A. Basic definitions

In what follows we shall use the Grassmann-valued analysis.8,14,20,22,23It is worth mentioning
that for some notions several distinct definitions exist in the literature. In these cases we g
definition we use.

The more suitable approach to the superanalysis for our purpose is the one described
23 and based on the theory of functions in Banach spaces and the theory of Banach algebr
basis notion in this approach is the notion of commutative Banach superalgebra introdu
follows.

Let L be az2-graded linear spaceL5L0% L1 . When an elementaPL0 , it is calledeven
@parity p(a)50# and whenaPL1 it is calledodd@parity p(a)51#. The elements fromL0 andL1

are calledhomogeneous. When the structure of associative algebra with unitePL0 and even
multiplication operation@i.e., p(ab)5p(a)1p(b), mod 2 for homogeneousa and b# is intro-
duced inL it is calledsuperalgebra. SuperalgebraL is calledcommutativeif supercommutator
@a, b#5ab2(21)p(a)p(b)ba50 for homogeneousa,bPL. Further, the commutative superalg
bra L5L0% L1 is supposed to be a Banach space with the normi f gi<i f i•igi , f , gPL, iei
51. The componentsL0 and L1 are closed subspaces inL. When L is defined over the rea
number fieldR we obtain the real superalgebraL~R!, and for the case of the complex number fie
C we obtain its complex formL~C!.

Given a real superalgebraL~R!, real superspaceRL
m,n of dimension (m,n) over L~R! is

defined as follows:

A complex superspaceCL
m,n overL~C! is defined in the same way but with the help of the comp

superalgebraL~C!. If for every point X5(x,u)5(x1 ,...,xm ,u1 ,...un)PRL
m,n we introduce the

norm iXi25ixi21iui25(k51
m ixki21( j 51

n iu j i2, thenRL
m,n becomes a Banach space. Every co

nected open setO,RL
m,n is calleddomainin RL

m,n .

Let us have two superspacesRL
m,n and RL8

m8,n8 with the normsi•i and i•i8, L#L8, and a

domain O in RL
m,n . Function f (X):O→RL8

m8,n8 is calledcontinuousin the pointXPO if i f (X
1H)2 f (X)i8→0 wheniHi→0. The same function is calledsuperdifferentiable from the leftin

the pointXPO if elementsFk(X)PRL8
m8,n8 , k51,...,m1n, such that

f ~X1H !5 f ~X!1 (
k51

m1n

HkFk~X!1t~X,H !,

whereit(X,H)i8/iHi→0 wheniHi→0 exist. The functionsFk(x) are calledleft partial super-
derivativesof f with respect toXk in the pointXPO :

Fk~x!5
] f ~X!

]Xk
, Fm1 j~x!5

] f ~X!

]Xm1 j
, k51,...,m, j 51,...n.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The expression(k51
m1n Hk] f (X)/]Xk is called left superdifferentialof the function f (X) in the

point X.
One can find more details about superanalysis in Ref. 23.

B. Hilbert superspace

Consider the real superspaceRL
1,1 defined overL(R)5L0(R) ^ L1(R) whereL0(R)5R and

L1(R) has two generatorsu and ū with the propertiesu25 ū25uū1 ūu50, u% 5u. The complex
superspaceCL

1,1 is defined overL(C)5L0(C) ^ L1(C) whereL0(C)5C andL1(C) has the same
generatorsu and ū.

Consider now functions fromRL
1,1 to CL

1,1 of the following form: C0(t,x,u,ū)
5c(x,t),c(x,t)PH0 andC1(t,x,u,ū)5uw(x,t),w(x,t)PH1. We shall designate the collectio
of the functionsC0(t,x,u,ū) andC1(t,x,u,ū) asH 0̄ andH 1̄ , respectively. It follows from these
constructions thatH 0̄ and H 1̄ are linear spaces~over the fieldC!, and Hs5H 0̄ % H 1̄ is a
z2-graded linear space of functions. The elements fromH 0̄ andH 1̄ are calledhomogeneouswith
the parityp(F)50 whenFPH 0̄ andp(F)51 whenFPH 1̄ .

Define in the spaceHs scalar product (super-Hermitian form)as follows:

~F1uF2!5E F̄1~ t,x,u,ū !F2~ t,x,u,ū !ie2 i ū u dxdudūPC. ~5!

Since the integration in superspaces is developed in Ref. 23 for sufficiently smooth function~it is
a supergeneralization of various integral constructions based on Riemann integral and
Lebesgue integral! we should make more precise the sense of integral in~5!. If functionsF1 and
F2 are defined by their homogeneous componentsF l(x,u,ū)5F l

0(x,u,ū)1F l
1(x,u,ū),

F l
0(x,u,ū)5x l

0(x)PH 0̄ , and F l
1(x,u,ū)5ux l

1(x)PH 1̄ , l 51,2, and functionsx l
j (x), j 50,1,

are sufficiently smooth, then we may interpret the integral~5! in the sense defined in Ref. 23. I
our case this integral becomes equal to a product of two integrals. The first one is a conve
integral with respect to the variablex and the second one is an integral with respect to
Grassmann variablesu andū. The only integral with respect to the Grassmann variables diffe
from zero is*ūu dudū51. Thus, for the integral~5! we obtain the expression

~F1uF2!5~F1
0uF2

0!01~F1
1uF2

1!1,
~6!

~F1
j uF2

j ! j5 i j^x1
j ux2

j & j , x l
jPH j , l 51,2, j 50,1.

We note that the spacesH 0̄ andH 1̄ are mutually orthogonal with respect to the scalar product~5!
and are complete in the sense we shall make more precise so that (•u•) j , j 50,1, are the restric-
tions of the scalar product~5! on the spacesH j̄ .

In the case when functionsx l
jPL2(R) are not sufficiently smooth for applying the definitio

of the integral given in Ref. 23, we directly apply the formula~6! for calculating the integral~5!.
We remind the reader that the scalar product^•u•& in L2(R) is defined with the help of the
Lebesgue integral. We will notice that the formula~6! is in accord with the definition of the
super-Hermitian form in the abstract Hilbert superspace given in Ref. 19. The super-Her
form ~6! is positive definite in the sense that the Hermitian forms^•u•& j , j 50,1, from which it is
expressed are positive definite.

The super-Hermitian form generates a norm inHs . For every F5F01F1PHs , F0

5x0(x,t), andF15ux1(x,t) we put by definition

iFi2[u~FuF!u5ix0i0
21ix1i1

2, ~7!
J. Math. Phys., Vol. 38, No. 9, September 1997
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where i•i j are the norms inH j , j 50,1, generated by the appropriate scalar products. It is
difficult to see that the properties of the norm so defined correspond to the axioms of the co
tional norm: ~i! iFi>0, ~ii ! iFi50 if and only if F50, ~iii ! icFi5ucu•iFi , ;cPC, ~iv!
iF11F2i<iF1i1iF2i . It follows thatHs is a normed space in the usual sense. Conditions~i!,
~iii !, and~iv! mean that the norm is a convex functional inHs ~see, e.g., Ref. 24!. Condition~ii !
means that the set$i•i% formed from a single convex functional is sufficient for defining a~strong!
topology inHs . The spaceHs becomes a locally convex topological space.24 Just in this sense we
shall understand the completeness of the spaceHs which we shall call theHilbert superspace. In
fact, this signifies that the spaceHs contains only linear functions of the variableu with the
coefficients fromH. Since the functionsCn

0(t,x,u,ū)5cn(x,t) andCn
1(t,x,u,ū)5uwn(x,t) form

bases in the spacesH 0̄ andH 1̄ , respectively, we have obtained aseparableHilbert superspace. It
is worth noticing that other definitions of the Hilbert superspace exist.9

IV. ATYPICAL COORDINATE REPRESENTATION OF osp (2/2)

We may now define the action of operators in the spaceHs . Let us putK05k05h/2 and
K65k6 . These operators by definition act only on the variablex and do not affect the Grassman
variableu. This signifies that they have the even parity. Since the operatorsk0 andk6 are defined
on the linealL5L 0

% L1, the operatorsK0 andK6 are defined on the linealLs5L 0̄ % L 1̄ over
the fieldC, whereL 0̄ is the lineal overC of the even functionsCn

0(t,x,u,ū) andL1 is the lineal
overC of the odd onesCn

1(t,x,u,ū). It is clear that closureL̄ 0̄ of the linealL 0̄ with respect to
the norm~7! gives H 0̄ and similar closureL̄ 1̄ gives H 1̄ . Moreover,L̄s5L̄ 0̄ % L̄ 1̄5Hs . Op-
eratorsK0 andK6 form a basis of subalgebra su~1.1! of the superalgebra under construction a
linealsL 0̄ andL 1̄ are Lie irreducible su~1.1!-modules.

We may define operators of the left multiplication by the variableu and the left differentiation
]u5]W /]u ~we define the left action of the operators on vectors! for the elements fromLs . It is
clear that in our case;FPLs we haveuF¹Ls and]uF¹Ls . Nevertheless, the same operato
may be defined not only for the elements fromLs but for every linear function ofu. Therefore
operatorB5 1

4(u]u2]uu) is defined on the functions fromLs and Ls is its invariant space.
Moreover, it is easy to see thatBF52 1

4(21)p(F)F for every homogeneousFPLs .
Operatorsa6 map the linealsL 0 andL1 one into another. With their help we construct t

odd sector of the superalgebra under construction:V65&a6u andW65&a6]u . OperatorsV6

map vectors fromL 0̄ to vectors fromL 1̄ . OperatorsW6 realize the inverse mapping. In add
tion, V6F150;F1PL 1̄ and W6F050;F0PL 0̄ .

It is an easy exercise to check that the set of operators$K0 ,K6 ,B,V6 ,W6% is closed with
respect to the supercommutator@A, C#5AC2(21)p(A)p(B)CA and generalized Jacobi identit
holds. The nonzero supercommutators are written as follows:

@K0 , K6#56K6 , @K2 , K1#52K0 , @K0 , V6#56 1
2V6 , @K0 , W6#56 1

2W6 ,

@K6 , V7#57V6 , @K6 , W7#57W6 , @B, V6#5 1
2V6 , @B, W6#52 1

2W6 ,

@V6 , W6#5K6 , @V6 , W7#5K07B.

Vector C0
0 has the properties

K0C0
05 1

4C0
0, BC0

052 1
4C0

0, K2C0
05V2C0

05W6C0
050.

It follows that the set of operators$K0 ,K6 ,B,V6 ,W6% realizes an atypical~coordinate! repre-
sentation of the abstract orthosymplectic superalgebra osp (2/2)5osp (2/2)0̄ % osp (2/2)1̄ , where
osp (2/2)0̄5span$K0 ,K6 ,B% and osp (2/2)1̄5span$V6 ,W6%.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The nonrelativistic free particle Hamiltonianh52]x
25(a11a2)25 1

2K11 1
2K21K0 is an

element of osp (2/2) superalgebra and, consequently, this algebra is a dynamical supersy
algebra for this system. Moreover, its representation spaceLs is the space of solutions of the fre
particle Schro¨dinger equation

i ] tC~ t,x,u,ū !5hC~ t,x,u,ū !.

Given the super-Hermitian forms~5! and~6! we define operatorA1 superadjointto anA. An
operatorAPosp (2/2) is defined on the dense setLs in Hs . Then, for every homogeneou
elementAPosp (2/2), elementF1* PHs is uniquely defined by the equation

~F1* uF2!5~21!p~F1!p~A!~F1uAF2!, F2PLs , ~8!

for a homogeneousF1PHs . Therefore we may putF1* 5A1F1 . The range of the values o
operatorA1 is the collection of allF1PHs which verify the equation~8!.

The Hilbert superspace introduced here is quite analogous to the conventional Hilbert
and we may use many conventional definitions~see, e.g., Refs. 6, 7, and 24!. In particular, the
definition of a closed operator remains unchanged. Then, since the operatorh is essentially
self-adjoint inH, the operatorK0 is essentially self-adjoint inHs . OperatorB is restricted and
consequently closed inHs . It is not difficult to see thatB15B. The operatorsa and a1 are
defined inL,H and are mutually conjugated. This involves the following conjugation prope
K0

15K0 , K6
15K7 , B15B, V6

15 iW7 , and W6
15 iV7 , valid in Ls . Moreover, ;A

P osp (2/2) the following relations hold inLs : (A1)15A, (AC)15(21)p(A)p(C)C1A1, and
@A, C#152@A1, C1#.

Given az2-graded linear spaceLs5L 0̄ % L 1̄ @for example, the linealLs or the superalgebra
osp (2/2)# we should have the possibility to define the multiplication of the elements fromLs on
the elements from a complex commutative Banach superalgebraL(C)5L0(C) % L1(C). In par-
ticular, we need definition of theL(C) envelope of the second kindL̃s of the spaceLs . This
definition is similar to the definition of the Grassmann envelope of the second kind of the spaLs

~Ref. 14!, where the role of a Grassmann algebra plays the algebraL~C!: L̃s5„L0(C) ^ L 0̄…

% „L1(C) ^ L 1̄…5„L(C) ^ Ls…0̄ . The elements fromL~C! play the role of supernumbers, the el
ments fromL0(C) play the role ofc-numbers, and the elements fromL1(C) play the role of
a-numbers. This terminology corresponds to Ref. 8.

Let us make more precise the definition of the complex conjugation inL̃s andL~C!. Put by
definition

b1b25b̄1b̄2 , bF5b̄F̄, ;FPLs , ;b,b1 ,b2PL~C!. ~9!

This definition differs from one widely used in literatureb1b25b2b1, b1 ,b2PL(C) ~Refs. 8 and
14! which gives for the productbb̄ a real value independently on the parity ofb. We shall use the
definition~9! since in the other case one faces some inconsistencies. In particular, the super-¨hler
two-form becomes neither real nor imaginary, and it is difficult to establish the correspon
between physical observables and self-superadjoint operators.19

We shall use the expression~5! for the calculation of the scalar product of the elements fr
H̃s . Definition ~5! realizes in this case the following mapping:H̃s^ H̃s→L0(C). The rule of
manipulation with the supernumbers in the scalar product

~b1F1ub2F2!5~21!p~F1!p~b2!b̄1b2~F1uF2!,

whereF1 andb2 are homogeneous elements fromHs andL~C! and the rule of complex conju
gation for the scalar product of homogeneous elements
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



al

ce

r con-
(2/2).

.

f

ave

by one
t

e
e in

.

e

se
-

4499Boris F. Samsonov: Supersymmetry and supercoherent states

                    
~F1uF2!5~21!p~F1!p~F2!~F2uF1!

follow from Eq. ~5! as well.
Now we have all elements necessary for constructing supercoherent states.

V. FREE PARTICLE SUPERCOHERENT STATES

Supercoherent states are the direct generalization13 of coherent states for the convention
~non-super! Lie groups and algebras.10

We follow the definition of supergroup given in Ref. 20. An (m,n)-dimensional supergroup
G is both an abstract group and an (m,n)-dimensional superanalytic supermanifoldSL

m,n with
superanalytic mappingG^ G→G:(g1 ,g2)→g1g2

21. Superanalytic supermanifoldSL
m,n is defined

as a Hausdorf space with an atlas such thatSL
m,n is locally homeomorphic to a flat superspa

RL
m,n and the transition functions are superanalytic.

An operator of left translations on a supergroup has been used in Refs. 13 and 18 fo
structing supercoherent states for the algebra osp (1/2) and in Ref. 19 for the algebra osp
Using the same approach we pass in osp (2/2,C) to super-Hermitian base,

X15K0 , X25B, X35K11K2 , X45 i ~K12K2!,

X55V12 iW2 , X65V22 iW1 , X75W12 iV2 , X85W22 iV1 ,

which has the propertyXj
15(21)p(Xj )Xj . Further, the Grassmann envelope osp˜ (2/2) of the

algebra osp˜ (2/2) over the real Grassmann algebraG(2)5G0(2)% G1(2) should be considered
An arbitrary elementX̃ from osp̃(2/2) has the form

X̃5(
j 51

4

j j
0Xj1(

j 51

4

j j
1X41 j , j j

0PG0~2!, j j
1PG1~2!. ~10!

The set of left translations on the supergroup OSp (2/2) is defined as follows:13 T(g)5exp (iX̃),
gPOSp (2/2).

The highest symmetry vector~fiducial state! in Hs is C0
0. Its isotropy subalgebra consists o

Cartan subalgebra of osp (2/2,C) which is spanned of$B,K0%, all lowering operators
$K2 ,V2 ,W2%, and one raising operatorW1 . The latter is a consequence of the fact that we h
obtained the atypical representation of the osp (2/2) superalgebra.19 Therefore, the osp (2/2)
coherent states in this case are the osp (1/2) coherent states as well and are labeled
complex parameterzPC, uzu,1, and one Grassmann parametera. Sincez parametrizes the uni
disc D (1), the corresponding supermanifold, realized in terms of coordinates (z,a), is calledN
51 superunit disc and denoted byD (1u1)[OSp~2/2!/U ~1/1! where subgroup U (1/1) has th
generatorsK0 , B, andW6 . This reasoning leads to the following translation operator suitabl
our case:

D8~z,a!5exp~zK12 z̄K21aV12 i āW2!, uzu,1, ~11!

where the use of the complex variables (z,a) instead of the real supernumbersj j
l has been made

The action of operator~11! is defined on the elements fromLs,Hs . It maps the linealLs

onto H̃s defined overL(C)5L0(C) % L1(C), whereL0(C)5C andL1(C) is defined overC with
the help of two Grassmann generatorsj,j̄ anda,āPL1(C). Moreover, this operator preserves th
value of the scalar product (D8(z,a)F1uD8(z,a)F2)5(F1uF2);F1,2PLs . This property char-
acterizes asuperisometricoperator.

To rewrite operator~11! in the form of the ordered exponential factors we may u
superextension25 of the well-known Baker–Campbell–Hausdorf26 relation. However, the exis
J. Math. Phys., Vol. 38, No. 9, September 1997
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tence of the relationsK2C0
050 and W2C0

050 make it possible to use a simpler translati
operatorD(z,a)5exp(zK11aV1), instead. This operator does not preserve the scalar pro
Therefore, we have to introduce a normalizing constant. Thus, for supercoherent states we
the following relation:

Cza~ t,x,u,ū !5N8 exp~zK11aV1!C0
0~ t,x,uū!5N„cz~x,t !1&auwz~x,t !…, ~12!

where

cz~x,t !5S s1s̄

4p D 1/4

~s1 i t !21/2 expF 2x2

4~s1 i t !G ,
wz~x,t !5a1cz~x,t !52

ix

4

11s

s1 i t
cz~x,t !,

s5
12z

11z
, N511

i āa

4~12zz̄!
, uzu,1.

Functioncz(x,t) is the free particle coherent state obtained by applying the displacement op
for the algebra su~1.1! to the lowest vectorc0(x,t) of the representation with the weightk05 1

4,
and wz(x,t) is an analogous one~but non-normalized to unity! corresponding to the weightk1

5 3
4.

VI. DISCUSSION AND CONCLUDING REMARKS

The coherent states of the abstract orthosymplectic superalgebra osp (2/2) are studied
in Ref. 19. If we expand the functionscz(x,t) andwz(x,t) in terms of the basis functionscn(x,t)
andwn(x,t),

cz~x,t !5~12zz̄!1/4(
n50

`

znAG~n1 1
2!

n!G~ 1
2!

cn~x,t !,

wz~x,t !5
1

2
~12zz̄!1/4(

n50

`

znAG~n1 3
2!

n!G~ 3
2!

wn~x,t !,

we obtain the same formula as those given in Ref. 19 for the atypical abstract OSp (2/2) co
states att5 1

4 andb52 1
4. In that paper the geometric properties of the coherent states super

fold are studied. It is established that their underlying geometries turn out to be those of
symplectic OSp (2/2) homogeneous space possessing the super-Ka¨hler structure; superunitary
irreducible representation of the OSp (2/2) supergroup in the super-Hilbert space of the su
lomorphic in the superunit discD (1u2) ~for the atypical inD (1u1)! functions is explicitly con-
structed.

Given the supercoherent states~12! and the scalar product~5! we can calculate the classica
observables in phase spaceD (1u1). These are the covariant Berezin symbols of the osp (2
superalgebra generators:Hcl5^zauHuza&, HPosp (2/2). Our calculation gives the followin
result:

K0
cl5

1

4

11uzu2

12uzu2 Ka , K1
cl5

z

2~12uzu2!
Ka , K2

cl5
z̄

2~12uzu2!
Ka ,

where
J. Math. Phys., Vol. 38, No. 9, September 1997
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Ka5S 11
i āa

12uzu2D
and

V1
cl5

ia

2~12uzu2!
, V2

cl5
ia z̄

2~12uzu2!
,

~13!

W1
cl5

2āz

2~12uzu2!
, W2

cl5
2ā

2~12uzu2!
.

Note that the even quantitiesK0
cl and K6

cl completely coincide with those given in Ref. 19 att
5 1

4 andb52 1
4, but for the odd ones we have the different sign. This difference is due to the p

factor (2 i )n in the basis functions~2!.
Using the potential of the super-Ka¨hler metric f (z,z̄,a,ā)5 logu^0uza&u22, we may calculate

the supersimplectic formv and then the Hamiltonian vector superfieldsXH associated to a clas
sical observablesHcl. The same supersymplectic formv is used to define a Poisson superbrac
in the space of smooth functions onD (1u1) and obtain by these means a Poisson superalgebra
these quantities are the straightforward generalization of the usual~nonsuper! Hamiltonian me-
chanics~see, e.g., Ref. 27!, which in our case is the Hamiltonian mechanics of the free particl
D (1u1) phase superspace. The geometric quantization of this classical mechanics gives th
tum mechanics of the free particle we started from, but in the superholomorphic represen
The reader may find the detailed calculations in Ref. 19.

We will now discuss another interpretation of our results which is a generalization o
conventional~nonsuper! interpretation of the free particle squeezed states presented in Re
Note that sincecz(x) is an even function andwz(x) is an odd one, we havêczuxucz&
5^wzuxuwz&50 and^czupucz&5^wzupuwz&50 wherep52 i ]/]x. Using the expressions ofx and
p in terms of the operatorsa6: x52pt12i (a12a2) and p52(a11a2), we express the
productsxu andpu in terms of the superalgebra generatorsV6 :

pu52
1

&

~V11V2!, xu52tpu1 i&~V12V2!.

With the help of the expressions forV6
cl ~13! we find the expectation values of these quantities

the stateCza :

^pu&za5p0ā, ^xu&za5~2p0t1x0!ā,

where

x052
12z

&~12zz̄!
, p052

i ~11z!

2&~12zz̄!
.

If now we pass from the variablesz andz̄ to p0 andx0 by puttingz5( ip01 1
2x0)/( ip02 1

2x0), we
may conclude that the trajectory of a particle becomes a straight line in the odd sector
superspace whereas in the even sector the particle is immovable because of the con
^CzauxuCza&50 and^CzaupuCza&50.

In this paper a simpler example of the space of square integrable superfunctions is give
space may be considered as a realization of a Hilbert superspace. It is clear that in more c
J. Math. Phys., Vol. 38, No. 9, September 1997
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cases we need to have a theory of measure for superspaces. In particular, to give a mathem
rigorous general concept of square integrable superfunctions the super generalization of
besgue integral based on the Lebesgue measure is indispensable. We now have many in
results obtained in supersymmetric quantum mechanics3 but a mathematically rigorous and con
sistent base of this theory is far from completion.

As a final comment we note that our constructions of the Hilbert superspaceHs are based on
a natural grading of the conventional Hilbert spaceH5H0

% H1. Therefore, these construction
are applicable not only to the free particle but to every system for which such a decompo
exists. In particular, minor modifications are necessary for obtaining a Hilbert superspace str
on the solutions of the Schro¨dinger equation with a Hamiltonian quadratic inx. Further, the
representation of the osp (2/2) superalgebra obtained in this paper is based on an i
dimensional representation of the Schro¨dinger algebraG 2 . It follows that every quantum system
with the same symmetry algebra may be treated as a system possessing a dynamical o
supersymmetry. With the help of the operatorsã and ã 1 a representation of osp (2/2) supera
gebra suitable for this case may be constructed. Exponential mapping of the OSp (2/2) gen
gives superisometric supergroup operator translation which produces the supercoherent s
the system under consideration in the same way as it was made above.
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Debye potentials for Maxwell and Dirac fields
from a generalization of the Killing–Yano equation

I. M. Benn,a) Philip Charlton,b) and Jonathan Kressc)

Department of Mathematics, University of Newcastle, Callaghan, NSW 2308, Australia

~Received 16 October 1996; accepted for publication 29 April 1997!

By using conformal Killing–Yano tensors, and their generalizations, we obtain
scalar potentials for both the source-free Maxwell and massless Dirac equations.
For each of these equations we construct, from conformal Killing–Yano tensors,
symmetry operators that map any solution to another. ©1997 American Institute
of Physics.@S0022-2488~97!03509-3#

I. INTRODUCTION

Maxwell’s equations require that the Maxwell 2-forms be closed, and hence locally e
They are globally exact if we discount the existence of magnetic monopoles, and Max
equations can then be written as second-order equations for a potential 1-form. In the abs
sources the Maxwell 2-forms are also co-closed and hence locally co-exact. For charg
solutions they are globally co-exact and a potential 3-form can be introduced. A Hertz poten
a 2-form in terms of which the Maxwell 2-form can be expressed so as to be simultaneously
and co-exact, and hence satisfy the source-free Maxwell equations. In certain cases o
parameterize the Hertz potential in terms of a function satisfying a second-order differ
equation. Thus Maxwell solutions can be expressed in terms of a scalar potential, the
potential.~Clearly we have paraphrased what Hertz and Debye actually did. Although we sha
attempt to give an historical account it might be noted that Bromwich and Whittaker also co
uted to these ideas. We have given references later.!

Some of the important solutions to Maxwell’s equations in flat space are expressed in te
solutions to a scalar equations. If the Lorenz gauge condition is imposed on the potential 1
then Maxwell’s equations require that it be harmonic. In a parallel basis this requires th
components be harmonic functions. The plane wave solutions may be obtained in this wa
radiating multipole solutions are adapted to spherical symmetry. Here the electric and ma
fields are required to satisfy a vector Helmholtz equation. Solutions to this vector equation c
expressed in terms of solutions to scalar Helmholtz equation. Thus the radiating multipole
can be expressed in terms of scalar potentials. In a curved space–time one cannot imm
generalize these solutions, as the derivatives introduce extra connection terms. Coh
Kegeles1 seem to have been the first to apply the Hertz potential formalism to Maxwell’s vac
equations in a curved background. They point out that the Hertz potential must be some ge
cally privileged 2-form, and that algebraically-special space–times have such 2-forms,
sponding to the repeated principal null directions.

Sections II–V are all preliminaries to the Debye potential formalism. A preliminary rea
may begin at Sec. VI, referring to the earlier sections as necessary. Section II introduces
notation, whilst Sec. III expresses some results on the Petrov classification scheme in a fo
will be convenient later. In Sec. IV we introduce the conformal Killing–Yano equation. T
conformal generalization of Yano’s Killing-tensor equation was introduced in Ref. 2. We s
how the equation can be written equivalently in terms of exterior operations. This provid

a!Electronic mail: mmimb@cc.newcastle.edu.au
b!Electronic mail: philipc@maths.newcastle.edu.au
c!Electronic mail: jkress@maths.newcastle.edu.au
0022-2488/97/38(9)/4504/24/$10.00
4504 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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elegant statement of the equation. Moreover, it is natural to have the equation expressed
way when considering Maxwell’s equations which are themselves most naturally expres
exterior form. Any differential form may be regarded as a tensor on the spinor space. We
how the conformal Killing-Yano equation for a 2-form is equivalent to an equation for a 2-in
Killing spinor. This relationship has not always been made clear; indeed, tensors equiva
Killing spinors have been called Penrose–Floyd tensors. In Sec. V we consider equatio
self-dual 2-forms whose eigenvectors are shear-free. When the 2-forms have only one rea
vector then Robinson’s theorem3 says that they are proportional to a closed form. We show
equivalently the 2-forms satisfy a ‘‘gauged’’ conformal Killing–Yano equation. This restatem
of Robinson’s theorem proves convenient for obtaining Debye potentials. When the 2-form
two real shear-free eigenvectors then we recover the equations obtained by Dietz and Ru¨diger.4

We obtain the integrability conditions for these shear-free equations that we will need later. W
this by relating the self-dual 2-forms to spinor fields. This is not only a convenient wa
obtaining these integrability conditions, but also enables us to consider the Debye scheme
Dirac equation in Sec. VII.

In Sec. VI we show how Debye potentials for Maxwell fields are related to repeated prin
null directions in algebraically-special space–times. This had previously been done in New
Penrose formalism by Cohen and Kegeles.1,5 Thus their Debye potential equations were writt
out explicitly in an adapted basis. The advantage of our approach is that we obtain the eq
in a basis-independent way, which we feel makes it easier to see how the various ingredient
scheme enter.~Of course, to solve the equations in any given space–time necessitates ch
some basis adapted to the geometry.! Other workers have utilized different aspects of spec
properties of space–times admitting Debye potentials. Stewart6 considered Petrov typeD vacuum
space–times and used the more specialized Geroch–Held–Penrose formalism to obtain sim
equations. Torres del Castillo7 emphasizes the special properties of totally null foliations or ‘‘n
strings’’ in his treatment of null Hertz potentials. Wald8 has pointed out the nature of the rel
tionship between Cohen and Kegeles’ Debye potential equations the decoupled massle
components of Teukolsky9,10 from which he derives the Debye potential equations.

In the special case in which there exists a conformal Killing–Yano tensor the Debye pot
scheme becomes both simpler and more powerful.~Here our way of writing the conforma
Killing–Yano equation is particularly well adapted to the scheme.! It is possible to use Debye
potentials to obtain a symmetry operator for Maxwell’s equations, mapping any source-free
well solution to another. This has been shown by Torres del Castillo11 using 2-index Killing
spinors. Now Kalnins, McLenaghan and Williams12 have obtained the most general second or
symmetry operator for the source-free Maxwell system. Their operator contains a term cons
from a 4-index Killing spinor. We show how such an operator is obtained from the D
potential scheme. We show how it is expressed in terms of a ‘‘generalized conformal Kil
Yano tensor.’’

In Sec. VII we treat the massless Dirac system analogously to the Maxwell system. We
the relation to previous work, and in particular show how the Debye potential method gener
Penrose’s ‘‘spin raising’’ and ‘‘spin lowering’’ operators, constructed from twistors
conformally-flat space,13 to an algebraically-special space–time.

In the final section we summarize our results and discuss possible generalizations.

II. NOTATION AND CONVENTIONS

The exterior calculus of differential forms will be used extensively. As usual∧ denotes the
exterior product andd the exterior derivative. IfX is a vector field thenX4 denotes the interior
derivative that contracts ap-form with X to produce a (p21)-form. The interior derivative is an
antiderivation on differential forms~as isd! with X4A5A(X) for A a 1-form. It follows that ifv
is a p-form then
J. Math. Phys., Vol. 38, No. 9, September 1997
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ea∧Xa4v5pv,

where the coframe$ea% is dual to the frame$Xa%.
On a pseudo-Riemannian manifold the metric tensorg establishes a natural isomorphis

between vector fields and differential 1-forms. The 1-formX[ is defined such thatX[(Y)
5 g(X,Y) for all vector fieldsY. ThusX[ has components obtained by lowering those ofX with
the metric tensor. The inverse of[ is ], resulting in the vectorv] having components obtained b
raising those of the 1-formv.

The metric tensor also gives a natural isomorphism between the space ofp-forms and the
(n2p)-forms, wheren is the dimension of the manifold. This isomorphism is the Hodge dua
map*. On a decomposablep-form we have

* ~X1
[∧X2

[∧...∧Xp
[!5Xp4Xp214...X14* 1, ~1!

where* 1 is the orienting volumen-form. We shall only consider four-dimensional Lorentzia
manifolds. The metric tensorg will be taken to be positive-definite on spacelike vectors. W
these conventions we have

** v5 Hv
2v

if v is of odd degree;
if v is even. ~2!

The Hodge dual may be combined with the exterior derivative to form the co-derivatived* that
acts on a form to lower the degree by one. For the case of four dimensions and Lore
signature

d* 5* d* . ~3!

The exterior derivative and the co-derivative can be expressed in terms of the Lorentzian c
tion ¹ by

d5ea∧¹Xa

and

d* 52Xa
4¹Xa

.

The Clifford algebra of each cotangent space is generated by the basis 1-forms. It may b
tified with the vector space of exterior forms with Clifford multiplication related to the exte
and interior derivatives by

Af5A∧f1A]
4f

for A a 1-form andf an arbitrary form. We will juxtapose symbols to denote their Cliffo
product. Whereas the Clifford product of two homogeneous forms will be inhomogeneou
Clifford commutator of a 2-form with another form will preserve the degree of that form.
Clifford commutator, denoted@ , #, is related to the exterior product by

@F,f#522Xa4F∧Xa
4f,

whereF is a 2-form andf is an arbitrary form. The Lie algebra formed by the 2-forms un
Clifford commutation is the Lie algebra of the Lorentz group.~In general they form the Lie
algebra of the appropriate pseudo-orthogonal group.! Clifford multiplication by the volume form
relates a form to its Hodge dual. In forming Clifford products it is convenient to denote the vo
form by z, that is
J. Math. Phys., Vol. 38, No. 9, September 1997
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z5* 1. ~4!

We then have

* f5fjz,

wherej is the Clifford algebra involution that reverses the order of products and leaves the 1
generators fixed. Since Hodge duality preserves the space of 2-forms, squaring to min
identity, the space of complex 2-forms can be decomposed into self-dual and anti-self-dua
spaces satisfying* F5 iF and* F52 iF , respectively. It then follows that these sub-spaces fo
simple ideals in the Clifford commutator Lie algebra.

Forms of even degree form a sub-algebra of the Clifford algebra. The complexified
sub-algebra has two inequivalent irreducible representations, the spinor representations. Ag
will simply juxtapose symbols to denote the Clifford action on a spinor. So ifc is a spinor andv
any element of the Clifford algebra we writevc to denote the Clifford action ofv on c. The
eigenvalues of the volume form label the inequivalent spinor representations. A spinorc is even
or odd according to whetherizc5c or izc52c. We have a spin-invariant symplectic produc
which we will denote by a bracket~ , !, that is block diagonal on the inequivalent spinor spac
This product will be chosen such that

~u,vv !5~vju,v !. ~5!

This spinor product gives an isomorphism with the space of dual spinors. We letū denote the dual
spinor such that

ū~v !5~u,v !.

Since tensor products of spinors and their duals are linear transformations on the space of

~u^ v̄ !w5~v,w!u,

we may naturally identify such tensors with elements of the Clifford algebra. Under Clif
multiplication by an arbitrary formf we have

f~u^ v̄ !5fu^ v̄,

~u^ v̄ !f5u^ fjv.

Under the involutionj we have

~u^ v̄ !j52v ^ ū. ~6!

The parity of the spinors determines that of their tensor product. For example, ifu andv lie in the
same spinor space thenu ^ v̄ is an even form, as the spinor product is zero on spinors of diffe
parity. Equation~6! shows that the symmetry properties of the tensor product determine
eigenvalue ofj. For example, the symmetric combinationu ^ v̄ 1 v ^ ū is necessarily odd
under j. So if both spinors lie in the same spinor space this combination is then a 2-
Moreover, this 2-form will be self-dual if bothu andv are even. We may expand a tensor prod
of spinors intop-form components as

u^ v̄5 1
4~v,u!1 1

4~v,eau!ea2 1
8~v,eabu!eab1 1

4~v,eazu!eaz2 1
4~v,zu!z. ~7!

Here we use the abbreviated notationeab to denoteea∧eb.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Since, in the Lorentzian case, the irreducible representations of the complexified Cl
algebra are the complexifications of those of the real Clifford algebra, we may choose the
gate linear charge conjugation operator such that it is related to complex conjugation by

~u,v !* 5~uc,vc!

and

~uc!c5u.

In general we follow the conventions of Ref. 14.

III. ALGEBRAICALLY SPECIAL SPACE-TIMES

In this section we summarize the Petrov classification of the curvature tensor. In particul
will state the condition that a space–time be algebraically-special in a form convenient to

In a four-dimensional Lorentzian space–time the Hodge dual map squares to minus one
acting on 2-forms. With the Hodge dual as complex structure the space of 2-forms m
regarded as a three-dimensional complex space. The Lorentzian metric induces a metric
space of 2-forms. By using the complex structure of Hodge duality this metric defines a co
Euclidean structure on the space of 2-forms. The curvature tensor can be thought of as a
the space of 2-forms in such a way that, in an Einstein space, it commutes with Hodge dual
may thus be regarded as a complex linear map. It is also self-adjoint with respect to the co
Euclidean structure. The Petrov classification scheme classifies the Jordan canonical form
curvature tensor. Details can be found in Refs. 15 and 16.

The metric tensor induces a metric on the space ofp-forms. If f andc arep-forms then their
scalar productf • c is defined by

f∧* c5f•c* 1,

which becomes

f•c5 1
2Xa4Xb4fXa

4Xb
4c,

whenf andc are 2-forms. We may use this metric to regard the tensor product of two 2-form
an endomorphism on the space of 2-forms,

~f ^ c!~F !5~c•F !f.

Clearly, symmetric tensor products correspond to self-adjoint operators, and thus more ge
so do tensors with ‘‘pairwise interchange symmetry.’’ Those tensors that are double-sel
correspond to endomorphisms on the space of self-dual~or anti-self-dual! 2-forms.

The curvature tensor may be regarded as an endomorphism on 2-forms by using the m
relate it to a totally covariant tensor,

R52Rab
^ eba ,

where$Rab% are the curvature 2-forms. The double-self-dual part of the curvature tensorR1 is
related to the conformal tensorC and the curvature scalarR by

R15C2 1
6 Reab^ eab5C2 1

3 RI ,

whereI is the identity map on 2-forms. The conformal tensorC can be expressed in terms of th
conformal 2-forms as
J. Math. Phys., Vol. 38, No. 9, September 1997
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C52Cab
^ eba .

Thus acting on an arbitrary 2-formf we have

Cf52Xa4Xb4fCab. ~8!

The Petrov type of a space–time is determined by the number of eigenvectors and eigenva
the conformal tensor when acting in this way on the space of self-dual 2-forms. An algebra
general conformal tensor has three linearly-independent eigenvectors with distinct eigenval
other cases being classed as algebraically-special.

Any self-dual 2-formf that is null is also decomposable, and hence has one independen
null eigenvectorK, K4f50. The principal null directions of the conformal tensor correspond
null self-dual 2-forms that satisfyf∧Cf50 ~see Ref. 15!. This is clearly satisfied by any nul
eigenform of C. Such eigenforms correspond to repeated principal null directions.
algebraically-special space–time may be characterized as one admitting a null eigenform
conformal tensor. The only space–times that admit two independent null eigenforms are
type D. In this case the two independent null eigenforms have the same eigenvalue.

IV. CONFORMAL KILLING–YANO TENSORS

Killing tensors were introduced as tensors which obey generalizations of Killing’s equa
with conformal Killing tensors obeying analogs of the vector conformal Killing equation.
generalization was to replace the vector with a totally symmetric tensor, whilst Yano17 extended
Killing’s equation to a totally antisymmetric tensor. We shall~as is now common! refer to the
latter as Killing–Yano tensors, reserving the term Killing tensor for a totally symmetric tens

Killing’s equation expresses the condition that a vector field generate an isometry in ter
the symmetrized covariant derivative of the vector field. The Killing tensor and Killing–Y
tensor equations are also usually expressed in terms of the symmetrized covariant der
However, the efficiency of the exterior calculus enables the Killing–Yano equation to be w
much more succinctly in terms of the antisymmetrized covariant derivative. IfK is any vector field
then the covariant derivative¹Kb can be decomposed into symmetric and skew parts. The s
metric part can be further decomposed into a trace-free part and the trace. The symm
covariant derivative is related to the Lie derivative of the metric tensor. In four dimension
have

¹XK[5 1
2X4dK[2 1

4X
[d* K[1 1

2 $LKg2 1
4 Tr~LKg!g%~X!,

whereLK denotes the Lie derivative and Tr the trace.~As is usual, we use the metric tensor
regard any degree two tensor as a linear map on vector fields.! So the conformal-Killing equation
can be written~in four dimensions! as

¹XK[5 1
2X4dK[2 1

4X
[d* K[ ;X. ~9!

If in addition d* K[ 5 0 thenK is a Killing vector. Notice that Eq.~9! implies that

ea∧¹Xa
K[5 1

2e
a∧Xa4dK[5dK[.

Sinceea∧¹Xa
5d the coefficient ofX4dK[ is just such that we cannot conclude thatdK[50.

Similarly Eq. ~9! implies that

Xa
4¹Xa

K[52 1
4Xa4~ead* K[!52d* K[
J. Math. Phys., Vol. 38, No. 9, September 1997
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in four dimensions. Thus the coefficient ofX[d* K[ is just such that we cannot conclude from E
~9! thatd* K[50. This observation suggests how the conformal Killing Eq.~9! can be generalized
to forms of higher degree: the covariant derivative is related to the exterior derivative an
coderivative with the coefficients chosen such that we do not automatically have the form c
or co-closed. Ifv is a 2-form then this generalization gives the equation

3¹Xv5X4dv2X[∧d* v ;X. ~10!

From this we can use¹Xv(Y,Z) 5 1
2Z4Y4¹Xv to show thatv must also satisfy

¹Yv~X,Z!1¹Zv~X,Y!5 1
3d* v~X!g~Y,Z!2 1

6d* v~Y!g~Z,X!2 1
6d* v~Z!g~X,Y! ;X,Y,Z,

~11!

which is Tachibana’s conformal generalization of Yano’s Killing equation.2 Now taking X
5 Xa andY5Xb in Eq. ~11!, and multiplying both sides byeab, we recover Eq.~10!. Hence Eqs.
~10! and ~11! are equivalent and we may adopt Eq.~10! as the conformal Killing–Yano~CKY!
equation.

The CKY equation is invariant under Hodge duality. Equation~1! shows that

* ~X[∧d* v!52X∧* d* v

52X4** d* v by ~3!

52X4d* v by ~2!.

Equivalently

* ~X4dv!5~X[∧* dv!.

Since ¹X* 5* ¹X it follows that * v is a CKY tensor ifv is. Thus any solution to the CKY
equation can be decomposed into self-dual and anti-self-dual CKY tensors.

The CKY equation also often appears in yet another guise. Elements of the Clifford al
are naturally identified with tensors on the space of spinors. More generally, tensor produ
exterior forms may be regarded as higher degree tensors on the spinor spaces, and so any
for an exterior form can also be written in spinor notation. The CKY equation can be writte

V50,

where

V5Va^ ea

with

Va53¹Xa
v2Xa4dv1ea∧d* v.

The tensorV can be thought of as a tensor acting on three even spinorsu, v andw, and one odd
spinora by

V~u,v,w,a!5~u,Vav !~a,eaw!.

Since the spin-invariant product satisfies Eq.~5! we have
J. Math. Phys., Vol. 38, No. 9, September 1997
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~u,Vav !52~Vau,v ! for Va 2-forms,

5~v,Vau! since the product is symplectic.

ThusV is automatically symmetric in the first two spinors. It will be totally symmetric in the th
even spinors if it is symmetric under interchange ofu andw say. Since the space of even spino
is two-dimensional and the product is symplectic we have the identity

~u,v !w1~v,w!u1~w,u!v50 for all even u,v,w.

Thus

V~u,v,w,a!5~u,Vav !~a,eaw!52~a,ea$~Vav,w!u1~w,u!Vau%!

5~v,Vaw!~a,eau!2~w,u!~a,eaVav !

5V~v,w,u,a!2~w,u!~a,eaVav !

5V~w,v,u,a!2~w,u!~a,eaVav !.

Now

eaVa5ea∧Va1Xa
4Va ,

and theVa are such thatea∧Va50 andXa
4Va50. ThusV is totally symmetric on the three eve

spinors. Ifv is self-dual thenV(u,v,w,a) will be zero unless the first three spinors are even a
the last is odd. Thus the CKY equation for a self-dual 2-form can be regarded as a spin-irred
tensor-spinor equation. This spinor equation, equivalent to the CKY equation, was introdu
its own right in Ref. 18, and is now usually known as the Killing spinor equation.13 Because
Killing spinors were introduced separately their correspondence with CKY tensors has not a
been made clear. There is potential for confusion in that tensors corresponding to Killing s
have also been called Penrose–Floyd tensors.19

In the following section we will consider equations for 2-forms related to shear-free con
ences. The CKY equation can be regarded as a special case of the shear-free equation.
bility conditions for the CKY equation then follow as special cases of those for the shea
equation which will be derived in the following section.

V. SHEAR-FREE EQUATIONS

A congruence of curves may be specified by a vector field, the tangent field. The congr
is shear-free if the tangent field generates conformal transformations on its conjugate spa~the
space of vectors to which it is orthogonal!. Thus the shear-free condition is a generalization of
conformal-Killing condition. Since the shear-free condition is conformally invariant, the var
shear-free equations that will be given all have a conformal covariance. If a vector field gen
conformal transformations on its conjugate then so does any vector field proportional to it.
a reparametrization of the congruence corresponds to a scaling of the tangent field the sh
condition is a reparametrization-invariant property of the congruence. The condition that a
gruence be shear-free can be formulated as a ‘‘gauged’’ conformal Killing equation, whe
connection terms ensure covariance under a scaling of the vector field. Thus a vector fiK
corresponds to a shear-free congruence if it satisfies the equation20

¹̂XK[5 1
2X4d̂K[2 1

4X
[d̂* K[ ;X. ~12!

Here ¹̂ is a scaling-covariant derivative,
J. Math. Phys., Vol. 38, No. 9, September 1997
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¹̂XK[5¹XK[12qA~X!K[

for some real 1-formA. ~The factor of 2 and the constantq will be convenient later.! The gauged
exterior derivatived̂ and co-derivatived̂* are related to¹̂ by

d̂5ea∧¹̂Xa
, d̂* 52Xa

4¹̂Xa
.

@Equation~12! has the numerical coefficients chosen for four dimensions, although it is e
generalized to arbitrary dimensions.# Throughout we shall write various shear-free equations
terms of a ‘‘gauged’’ covariant derivative. However, it must be remembered that the formA,
playing the role of connection, is not some given background field, but depends upon the
field K. WhenK is non-null thenA can be expressed in terms ofK, whereas in the null case onl
certain components can be expressed in terms ofK.20

If K is null ~and real! then it may be related to an even spinoru by

K[5~ iuc,eau!ea .

Clearly the correspondence betweenK andu is not one-to-one, there being aU(1) freedom in the
choice ofu. The shear-free condition~12! for K is then equivalent to the following equation fo
u:

¹̂Xu2 1
4X

[D̂u50 ;X, ~13!

where

¹̂Xu5¹Xu1qA~X!u, ~14!

whereA is a complex 1-form whose real part isA, D̂ is the Dirac operator

D̂5ea¹̂Xa
.

The shear-free spinor Eq.~13! is a C* -covariant twistor equation, whereC* is the group of
nonzero complex numbers. TheU(1) part of the covariance stems from the projective relations
betweenu and K, whilst the scaling part of the covariance is related to the reparametriza
invariance of the shear-free condition. In the same way that we showed the spinorial corr
dence of the CKY equation in the previous section, we may regard Eq.~13! as an equation for a
spin tensor acting symmetrically on two even spinors and one odd spinor. Written thu
shear-free spinor equation was obtained by Sommers.21

A ~real! null vector fieldK may be put into correspondence with a self-dual decompos
2-form f by the relation

K[f50.

A given K only determinesf up to a complex scaling. The shear-free condition forK gives rise
to an equation forf. In fact Robinson’s theorem3 shows thatf is proportional to a closed~and
hence, since it is self-dual, co-closed! 2-form; that is, a Maxwell solution. It will be convenient fo
us to state the shear-free condition forf differently. In terms of the even spinoru representingK
we may choose

f5u^ ū. ~15!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The shear-free condition foru then translates to an equation forf. It is simplest to obtain the
corresponding equation forf written in terms of a Clifford commutator,@ , #. If we write f as in
Eq. ~15! then we can show thatu satisfies Eq.~13! if and only if

¹̂Xf2 1
4@X[ea,¹̂Xa

f#50, ~16!

where

¹̂Xf5¹Xf12qA~X!f. ~17!

Since the Clifford commutator term can be written as

1
2@X[ea,¹̂Xa

f#5X4d̂f2X[∧d̂* f2¹̂Xf

we see that the shear-free Eq.~13! is equivalent to the gauged conformal Killing–Yano equati

3¹̂Xf5X4d̂f2X[∧d̂* f. ~168!

~We reiterate that the formA depends upon the 2-formf; in particular, should there be two
shear-free 2-forms then, in general, the ‘‘gauge terms’’ occurring in each equation will be d
ent.! Thus as an alternative to Robinson’s theorem we can state that a decomposable s
2-form corresponds to a shear-free null congruence if and only if it satisfies theC* -gauged
conformal Killing–Yano equation. One can show that null solutions to Eq.~168! can be scaled to
produce Maxwell fields, and vice versa, and so indeed this statement is equivalent to Robi
theorem. Previously Dietz and Ru¨diger4 investigated a generalization of Robinson’s theore
They considered nondecomposable 2-forms corresponding to two independent null congru
They showed that both these congruences are shear-free if and only if the self-dual 2-form s
an equation equivalent to Eq.~168!. Although they showed that their equation was a generaliza
of the CKY equation they did not interpret the extra terms as gauge terms. Moreover, the
considered nondecomposable solutions to the equation. In fact it is rather nice to have a
equation for a 2-form that characterizes any eigenvectors as being shear-free, whether there
or two independent real eigenvectors.

The shear-free equations can be differentiated to obtain integrability conditions relating
ond derivatives to curvature terms. We shall make use of these later on. First we consid
shear-free spinor equation. Differentiating Eq.~13! introduces the curvature operatorR̂(X,Y) of
¹̂. Since¹̂ is related to¹ by Eq. ~14! the curvature operators are related by

R̂~X,Y!u5R~X,Y!u2qX4Y4F u, ~18!

whereF is theC* curvature,

F 5dA.

Since

R~X,Y!u5 1
2e

a~X!eb~Y!Rabu, ~19!

whereRab are the curvature 2-forms, Eq.~13! has the integrability condition,

Rabu12qXb4Xa4F u2 1
2~eb¹̂Xa

2ea¹̂Xb
!D̂u50. ~20!

Multiplying by ea gives
J. Math. Phys., Vol. 38, No. 9, September 1997
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Pbu22qXb4F u1¹̂Xb
D̂u1 1

2ebD̂2u50, ~21!

wherePb are the Ricci 1-forms.14 Multiplying this by eb produces

D̂2u5
4q

3
F u2

1

3
Ru, ~22!

whereR is the curvature scalar. A Laplacian on spinors is given by the trace of the Hessia

¹̂25¹̂Xa¹̂Xa
2¹̂¹Xa

Xa.

This is related to the square of the Dirac operator by curvature terms,

D̂2u5¹̂2u1 1
2e

abR̂~Xa ,Xb!u. ~23!

By Eqs.~18! and ~19! we have

eabR̂~Xa ,Xb!u52 1
2Ru12qF u,

and so Eq.~22! can be written as

¹̂2u5
q

3
F u2

1

12
Ru. ~228!

Since the conformal 2-formsCab are given by

Cab5Rab2 1
2~Pa∧eb2Pb∧ea!1 1

6Rea∧eb ,

we may use Eqs.~20!, ~21!, and~22! to obtain the integrability condition,

Cabu1qGabu50, ~24!

where

Gab5 1
6ebaF 1 1

2F eba . ~25!

Now we look at the integrability conditions for the decomposable self-dual 2-form describin
shear-free congruence. Iff is related tou by Eq.~15! then we may use the integrability conditio
~24! of Eq. ~13! to obtain an analogous integrability condition of Eq.~168!. If we defineCf by Eq.
~8! then from Eqs.~15! and ~7!,

Cf52 1
2~u,eabu!Cba52 1

2~u,Cabu!eba

by the ‘‘pairwise symmetry’’ of the conformal tensor. Now we may use Eq.~24! to obtain

Cf5
q

2
~u,Gabu!eba52

q

4
~u,~Gab2Gab

j !u!eab52
q

12
~u,@F ,eba#u!eab

from Eq. ~25!,

52
q

12
~u,eabu!@F ,eab#

due to the ‘‘pairwise antisymmetry’’ ofXp4Xq4@F ,eba#,
J. Math. Phys., Vol. 38, No. 9, September 1997
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5
2q

3
@F ,f# ~26!

from Eq. ~7!.
In analogy with Eq.~23! the trace of the Hessian is related to the ‘‘gauged’’ Laplace–Beltr

operatorD̂ by

D̂f5¹̂2f1eb∧Xa
4R̂~Xb ,Xa!f5¹̂2f1 1

4@eba,R̂~Xb ,Xa!f#,

where

D̂f52~ d̂d̂* 1d̂* d̂!f.

Since¹̂ is related to¹ by Eq. ~17! the curvatures are related by

R̂~X,Y!f5R~X,Y!f22qX4Y4F f

and hence

@eba,R̂~Xb ,Xa!f#5@eba,R~Xb ,Xa!f#14q@F ,f#522Cf2 4
3Rf14q@F ,f#.

Thus D̂ is related to¹̂2 by

D̂f5¹̂2f2 1
2Cf2 1

3Rf1q@F ,f#. ~27!

By differentiating Eq.~168! we obtain

3¹̂2f5D̂f,

and so Eq.~26! gives the integrability condition

¹̂2f5
q

3
@F ,f#2

1

6
Rf ~28!

or

D̂f1 1
2Rf5q@F ,f#, ~288!

where the left-hand side is the conformally covariant~gauged! Laplace–Beltrami operator.
The integrability condition~26! shows thatf∧Cf50 and thus the nullf corresponds to a

principal direction. In a Ricci-flat space–time the Goldberg–Sachs theorem makes the st
statement that a shear-free null congruence must correspond to a repeated principal null di
and conversely any repeated principal null direction must correspond to a shea
congruence.22,23More generally necessary and sufficient conditions for a shear-free congruen
correspond to a repeated principal null direction are given by the generalized Goldberg–
theorem.24 So in the generalized Goldberg–Sachs class of space–timesf must be an eigenform o
the conformal tensor. Thus from Eq.~26! the commutator ofF andf must be proportional tof,
and so from Eq.~15! we see that the spinoru must be an eigenvector ofF . Thus

qF u53mu, ~29!

for some eigenfunctionm, and

q@F ,f#56mf. ~30!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The integrability condition~22! for the spinor becomes

D̂2u54mu2 1
3Ru, ~31a!

¹̂25mu2 1
12Ru, ~31b!

whilst Eq. ~28! becomes

¹̂2f52mf2 1
6Rf, ~32a!

D̂f1 1
2Rf56mf, ~32b!

and Eq.~26! becomes

Cf54mf. ~33!

We can obtain integrability conditions for the CKY equation using the results that we hav
shear-free equations. In the case of a null self-dual CKY tensor we simply have the cond
above where the ‘‘gauge’’ terms are zero. In this case the corresponding shear-free spinor e
reduces to the twistor equation. From Eq.~26! we see that the CKY tensor is a null eigenvector
C with eigenvalue zero. In fact Eq.~24! shows that any self-dual 2-formf that hasu as eigen-
spinor satisfiesCf50. ThereforeC must have two linearly-independent eigenvectors, and so
space–time must be typeN or conformally-flat.

If v is a non-null self-dual 2-form then we may writev in terms of a pair of even spinorsu1

andu2 as

v5 1
2~u1^ ū21u2^ ū1!. ~34!

In the same way that we showed that the shear-free spinor Eq.~13! led to the ‘‘gauged’’ conformal
Killing–Yano Eq.~16! we may show that the non-nullv satisfies the CKY equation if and only i
the spinors$ui% both satisfy a shear-free equation, with the spinors having oppositeC* ‘‘charges.’’
~Dietz and Ru¨diger showed that the 2-formv satisfies a gauged CKY equation if and only if th
spinors$ui% satisfy the shear-free equation.4 In general theC* ‘‘charge’’ of v is the sum of those
of u1 andu2 . So we have here just a special case whenv is a CKY tensor.!

We may use the integrability conditions for the spinor equations to obtain integrability
ditions for v, just as we did in the shear-free case. We have

Cv52 1
2~u2 ,eabu1!Cba52 1

2~u2 ,Cabu1!eba52 1
2~u1 ,Cabu2!eba.

The integrability condition~24! for u1 gives

Cv5
q1

2
~u2 ,Gabu1!eba, ~35!

whilst that foru2 gives

Cv5
q2

2
~u1 ,Gabu2!eba5

q1

2
~u2 ,G ab

ju1!eba

sinceq252q1 .
Subtracting this from Eq.~35! shows that

~u2 ,~Gab2G ab
j!u1!eba50.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Repeating the steps that lead to Eq.~26! then shows that we must have

@F ,v#50. ~36!

From this we can conclude that the self-dual part ofF is proportional tov. Sinceu1 andu2 are
eigenvectors ofv, and henceF , there must be some functionm such that

qiF ui53mui ~no sum!. ~298!

Both of the$ui% satisfy the integrability conditions~31a! for the appropriate covariant derivative
From each of the spinors we can make a null shear-free 2-form,

f i5ui ^ ūi ~no sum!,

each satisfying the integrability condition~33!. Thus each of thef i corresponds to a repeate
principal null direction. Thus for a non-null CKY tensor to exist we must have Petrov typeD ~or
conformally-flat!, within the generalized Goldberg–Sachs class of space–times. Each off1 and
f2 satisfies the integrability conditions~32a!.

We now return to the integrability condition~35! for v. If we insert Eq.~25! into Eq.~35! and
use Eq.~298! then we have

Cv528mv. ~37!

Thusf1 , f2 , andv form an eigenbasis of self-dual 2-forms under the action of the confor
tensor. The CKY tensorv also satisfies Eq.~32a! where the ‘‘gauge terms’’ are absent from th
Laplace–Beltrami operator.

We have seen that for a non-null CKY tensor to exist the space–time is necessarily P
type D. Suppose now that we have Petrov typeD with f1 and f2 null shear-free 2-forms
corresponding to repeated principal null directions. We cannot, in general, assume any r
between the gauge terms in the two different shear-free equations. We letv be defined by Eq.~34!
such that$f1 ,f2 ,v% is an eigenbasis forC. Since eachf i is an eigenvector ofC, Eq. ~29!
becomes

qiF iui53m iui ~no sum!, ~2988!

where now we cannot assume thatF 1 and F 2 are related. It then follows that eachf i is an
eigenvector ofC with eigenvalue 4m i , and since the eigenvalues are assumed equal we
conclude thatm15m2 . Proceeding as we did in Eq.~35! we can expressCv in terms of the
integrability conditions for either spinor,

Cv5Fm4 ~u2 ,ebau1!2
1

4
~q1F 1u2 ,ebau1!Geba5Fm4 ~u2 ,ebau1!2

1

4
~q2F 2u1 ,ebau2!Geba.

Sincev has been assumed an eigenvector ofC we must haveu2 an eigenspinor ofF 1 . By taking
the product withu1 , which is also an eigenspinor, we see that the eigenvalues of the two sp
must be opposite. We can draw similar conclusions forF 2 and have

q1F 1u153mu1 , q1F 1u2523mu2 ,

q2F 2u1523mu1 , q2F 2u253mu2 .

It follows that the self-dual part ofq1F 11q2F 2 is zero. That is, the self-dual part of the curvatu
of the gauge term entering into the equation forv is zero~as was shown by Dietz and Ru¨diger4!.
It then follows thatv satisfies Eq.~27! with the C* -curvature term on the right-hand side zer
J. Math. Phys., Vol. 38, No. 9, September 1997
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Hencev satisfies Eq.~32a!, and in addition Eq.~30!. Thus Eq.~32a! is satisfied by any shear-fre
2-form whose eigenvectors are aligned with repeated principal directions.

We have seen that in typeD space–times the self-dual part of theC* -curvature associated
with v must vanish. When the anti-self-dual part is also zero thenv can be scaled to a CKY
tensor. Penrose and Walker’s result on Killing spinors shows that this can be done in ever
D Einstein space.18

VI. DEBYE POTENTIALS AND SYMMETRY OPERATORS FOR SOURCE-FREE
MAXWELL FIELDS

Maxwell’s equations require that the electromagnetic field 2-formF be closed. This is auto
matically satisfied ifF is exact,F5dA say, whereA is the potential 1-form. In source-fre
regionsF is also required to be co-closed, that isd* F50. This would be automatically satisfie
if there were a co-potential 3-formB such thatF5d* B. Suppose that a 2-formZ satisfies

DZ52dG 2d* W , ~38!

whereG andW are arbitrary forms of degree one and three respectively. Then by noting tha
can be rewritten as

d* ~W 2dZ!5d~d* Z2G ! ~388!

we see thatZ provides us with a 2-form that is both exact and co-exact and hence a Ma
solution. The 2-formZ is called a Hertz potential.25 On the face of it Eq.~38! does not offer a
promising approach, solving this equation is no easier than solving the original Maxwell
tions. However, in some circumstances, with an appropriate choice of the form forZ, solutions to
Eq. ~38! can be written in terms of solutions to a scalar equation; a Debye potential equatio~see
Refs. 26, 1, and references therein!. Cohen and Kegeles1 applied the Debye potential method
the solution of Maxwell’s equations in curved space–times. They pointed out that in algebra
special space–times there exist privileged 2-forms corresponding to the repeated princip
direction. Using the Newman–Penrose formalism they explicitly obtained scalar Debye pote
by aligning the Hertz potential with the repeated principal null direction; the resulting s
equation being expressed in the adapted null basis.

In this section we show how a Debye potential is obtained by choosingZ to be proportional
to a shear-free 2-form in an algebraically-special space–time. As we shall explicitly us
shear-free equation, rather than an adapted basis, the resulting Debye potential equation
expressed in a basis-independent form. The scheme becomes more powerful when a co
Killing–Yano tensor exists.

Consider a shear-free 2-formf, satisfying Eq.~168!. ~We allow f to be either null or non-
null, and in the case in which theC* -charge is zero then we have a CKY tensor.! Let f be a scalar
field with oppositeC* -charge so that the 2-formf f is aC* -scalar. Then the Laplacian off f can
be expressed as

¹2~ f f!5¹̂2f f12¹̂Xa
f ¹̂Xaf1 f ¹̂2f,

where¹̂ is theC* -covariant derivative. We can write this in terms of theC* -gradient as

¹2~ f f!5¹̂2f f12¹̂grad ff1 f ¹̂2f,

or

D~ f f!5¹̂2f f12¹̂grad ff1 f ¹̂2f2 1
2f Cf2 1

3f Rf ~39!
J. Math. Phys., Vol. 38, No. 9, September 1997
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by Eq. ~27!. Now, from the shear-free Eq.~168! we have

3¹̂grad ff5grad f4d̂f2d̂ f ∧d̂* f5Xa
4@¹̂Xa

~ f d̂f!2 f ¹̂Xa
d̂f#2d~ f d̂* f!1 f d̂d̂* f

52d* ~ f d̂f!1 f d̂* d̂f2d~ f d̂* f!1 f d̂d̂* f

52d* ~ f d̂f!2d~ f d̂* f!2 f D̂f.

Inserting this into Eq.~39! gives

D~ f f!5¹̂2f f2 2
3d* ~ f d̂f!2 2

3d~ f d̂* f!1 f ~¹̂2f2 2
3D̂f!2 1

2f Cf2 1
3f Rf.

Whenf is self-dual with its eigenvectors repeated principal null directions this becomes, b
~32a!,

D~ f f!5~¹̂2f 2 1
6Rf !f2lf f f2 2

3d* ~ f d̂f!2 2
3d~ f d̂* f!,

where

2mf1 1
2Cf5lff. ~40!

It is convenient to identifylf as an eigenvalue,

Cf5n2lff, ~408!

wheren is the number of~real! eigenvectors off. Thus whenf is null n51 andlf is just the
eigenvalue ofC corresponding tof, whereas in the non-null casen52 andlf is a quarter of the
eigenvalue ofC. So if the scalar field satisfies the equation

¹̂2f 2 1
6 Rf 5lf f ~41!

then we can relate an exact form to a co-exact one,

d@d* ~ f f!2 2
3f d̂* f#5d* @ 2

3f d̂f2d~ f f!#.

Thus out of the 2-formf and the scalarf we have a source-free Maxwell solution,

F8~ f ,f!5d@d* ~ f f!2 2
3f d̂* f# ~42a!

5d* @ 2
3f d̂f2d~ f f!#. ~42b!

Notice how with this approach, unlike that of Cohen and Kegeles, we do not need to choo
gauge termsG andW by inspection, rather they appear naturally and are given explicitly in t
of f. Using Eq.~3! and the fact thatd̂* 5* d̂* , we can see thatF8( f ,f) is anti-self-dual for
self-dualf.

To apply this scheme to construct a Maxwell solution in a given space–time it is necess
solve the scalar Eq.~41!. The shear-free 2-formf enters into this equation, not only through th
eigenfunctionlf , but also through the ‘‘gauge term’’A. We may expose the gauge terms in t
shear-free Eq.~168! by writing it as

YXf5q@Xb∧A,f#24qA~X!f, ~43!

where we have definedYX by
J. Math. Phys., Vol. 38, No. 9, September 1997
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YXf53¹Xf2X4df1Xb∧d* f. ~44!

When there is only one repeated principal null direction then the self-dualf will be null. To use
Eq. ~43! to determineA it is convenient to pick some adapted basis.~Such a point comes to us a
when we have to actually solve equations.! Let S be the maximal totally isotropic subspace su
that XPS⇔X[f50. Then forX in S Eq. ~43! reduces to

YXf522qA~X!f ;XPS.

This enables half of the components ofA to be found. To compute the remaining components
may pick a maximal isotropic subspaceS8 to complementS. Then letc be a null self-dual 2-form
such thatXPS8⇔X[c50. Then the remaining components ofA can be calculated from Eq.~43!
which becomes

YXf•c526qA~X!f•c ;XPS8.

In a typeD space–time there are two repeated principal null directions. Thus one can c
either of the two corresponding null shear-free 2-forms as Hertz potentials, or one can choo
non-null 2-formv that has both repeated principal directions as eigenvectors. Thus there are
possible choices of Hertz potential, as was pointed out by Mustafa and Cohen.27 They chose to
normalizev to have constant length, whereas we have chosen to scalev to be CKY and so their
equation for a non-null Debye potential will differ from ours by exact gauge terms.

In the non-null case the gauge term is determined directly in terms ofv. In this case Eq.~43!
gives

YXv•v524qA~X!v•v ;X.

This expression was given by Dietz and Ru¨diger.4 Clearly the scheme simplifies in the case
which we have a CKY tensor, for then the gauge terms are absent from the Debye po
equation.

Equation~42a! enables a Maxwell field to be constructed from a shear-free 2-form a
scalar Debye potential satisfying Eq.~41!. It turns out that we can conversely take a shear-f
2-form and a Maxwell field and construct a scalar Debye potential. Iff (F,f)5F•f then the
C* -covariant Laplacian is given by

¹̂2f ~F,f!5¹2F•f12¹Xa
F•¹̂Xaf1F•¹̂2f,

where theC* -charge off (F,f) is the same as that off. Sincef satisfies the shear-free Eq.~168!,

3¹Xa
F•¹̂Xaf5¹Xa

F•~Xa
4d̂f!2¹Xa

F•~ea∧d̂* f!5dF•d̂f1d* F•d̂* f50

by Maxwell’s equations. We may then use Eq.~27! to relate¹2F to DF, which is zero by
Maxwell’s equations, to obtain

¹̂2f ~F,f!5~ 1
2CF1 1

3RF !•f1F•¹̂2f5F•~ 1
2Cf1 1

3Rf1¹̂2f!

sinceC is self-adjoint,

5F•~ 1
2Cf1 1

6Rf12mf!

by Eq. ~32a!,

5F•~lff1 1
6Rf!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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So f (F,f) satisfies Eq.~41!; notice, however, thatf (F,f) has the same ‘‘charge’’ asf, whereas
the construction of a Maxwell field fromf requires a Debye potential with opposite charge.

For those space–times that admit a non-null CKY tensor the above gives a method o
ping any Maxwell field to another. As was shown in Sec. V, when we have a non-null CKY te
v we have a pair of null shear-free 2-forms,f1 andf2 , having oppositeC* -charge. We can take
one of these,f1 say, and a given Maxwell fieldF to construct a Debye potentialf (F,f1). This
will then have the appropriate charge to combine withf2 to form a new Maxwell field~also note
that lf1

5lf2
!. That is, we have a symmetry operatorLf1f2

, mapping between Maxwell fields
defined by

Lf1f2
F5F8~F•f1 ,f2!.

Interchanging the roles off1 and f2 gives another symmetry operator. However, by using
shear-free equations forf1 andf2 it can be shown that when acting on a Maxwell fieldF, their
difference vanishes and so

Lf1f2
F5Lf2f1

F.

We can also use a non-null CKYv directly to make a symmetry operator for Maxwell fields. T
scalarf (F,v) is a Debye potential satisfying an uncharged equation and hence can be com
again withv to produce a Maxwell field. Hence

LvvF5F8~F•v,v!

is another symmetry operator. Since self-dual and anti-self-dual 2-forms are mutually ortho
these symmetry operators map only the self-dual part of a Maxwell field to an anti-self
Maxwell field. To see the relationship between these symmetry operators, we will first recas
in terms of a higher order generalization of a CKY 2-form.

The CKY tensorv enters quadratically in the symmetry operatorLvv . By taking the tensor
product ofv with itself we obtain a tensor, quadratic inv, which we may regard as an endomo
phism on the space of 2-forms, as we did in Sec. III. In this way we may writeLvv in terms of
a degree-four tensor constructed fromv. Let P1 be the operator that projects out the self-dual p
of any 2-form. Then clearlyP1 commutes with the Hodge dual. Since it is self-adjoint w
respect to the metric on 2-forms it corresponds to a pairwise-symmetric tensor. Then out
self-dualv we construct the tensorK,

K5v ^ v2 1
3~v•v!P1. ~45!

In Sec. IV we showed howv corresponded to a spin-tensor. In the same way one can show
K corresponds to a totally symmetric spin tensor. The symmetry operator constructed fromv can
be written in terms ofK as

LvvF5d@d* ~KF !2 2
5D* K~F !# ~46a!

5d* @ 2
5DK~F !2d~KF !#, ~46b!

where the ‘‘exterior derivative’’D is defined by

DK~G!5d~KG!2ea∧K~¹Xa
G!

for G an arbitrary 2-form. The ‘‘co-derivative’’D* is defined analogously.
The only nonzero inner products between a CKYv and its associated oppositely charged n

shear-free 2-formsf1 andf2 are related by
J. Math. Phys., Vol. 38, No. 9, September 1997
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f1•f2522v•v.

After calculating the action ofK on the self-dual basis$v,f1 ,f2% we can use this to see that a
alternative expression forK is

K5 1
2f1^ f21 1

2f2^ f12 1
3f1•f2P1.

Then using the shear-free equations forf1 andf2 we can rewrite the right-hand side of Eq.~46a!
to show that

LvvF5 1
2Lf1f2

F1 1
2Lf2f1

F5Lf1f2
F5Lf2f1

F,

since we have already seen that the two terms on the right-hand side are equal when ac
Maxwell fields. Hence, as was pointed out by Torres del Castillo11 who wrote down these opera
tors using the two-component spinor formalism, the various Debye schemes give rise to on
symmetry operator.

The CKY equation forv can be used to obtain an analogous equation forK. The analogy is
closest if we write the CKY equation in terms of the Clifford commutator as in Eq.~16!. For any
2-form f let Lf be the operator that maps any 2-form to the Clifford commutator,Lf(c)
5 @f,c#. Then the CKY equation can be written as

¹Xv2 1
4LX[∧ea¹Xa

v50,

whilst K satisfies the equation

¹XK2 1
6@LX[∧ea,¹Xa

K#50. ~47!

Here the bracket denotes the commutator of the operators. One can show that Eq.~47! corresponds
to a spin-irreducible spin-tensor equation, as we showed is the case for the CKY equation.
the CKY equation corresponds to the Killing spinor equation, Eq.~47! corresponds to the ‘‘4-
index Killing spinor’’ equation. Kalnins, McLenaghan, and Williams obtained a symmetry op
tor for Maxwell fields from a 4-index Killing spinor.12 They then obtained a corresponding tens
equation which they observed was analogous to the CKY equation as written by Tachibana2 @Eq.
~11!#.

VII. DEBYE POTENTIALS AND SYMMETRY OPERATORS FOR MASSLESS DIRAC
FIELDS

In the previous section we showed how we could associate a Debye potential with a she
2-form, enabling the source-free Maxwell equations to be solved in terms of solutions to a
equation. In the more special case in which there existed a CKY tensor, we showed the r
between the Debye potential scheme and a symmetry operator constructed from the CKY
In this section we shall show the analogs of these constructions for massless Dirac fields.

Let u be an even shear-free spinor corresponding to a repeated principle null direction, a
f be a scalar field with oppositeC* -charge. Then the odd spinorc8( f ,u) given by

c8~ f ,u!5d̂ f u1 1
2f D̂u ~48!

is a C* -scalar. The action of the Dirac operator onc8( f ,u) is
J. Math. Phys., Vol. 38, No. 9, September 1997
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Dc8~ f ,u!5ea~¹̂Xa
d̂f u1d̂ f ¹̂Xa

u1 1
2¹̂Xa

f D̂u1 1
2f ¹̂Xa

D̂u!

5d̂2f u2d̂* d̂ f u1ead̂f ¹̂Xa
u1 1

2 d̂ f D̂u1 1
2f D̂2u

5¹̂2f u1d̂2f u1 1
2f D̂2u12~¹̂grad̂ fu2 1

4d̂ f D̂u!

5~¹̂2f 2 1
6Rf !u12m f u1d̂2f u

by the shear-free Eq.~13! and its integrability condition~31a!. If the C* -charge ofu is q, then the
charge off is 2 q and we have

d̂2f 52q fF

and so

d̂2f u523m f u by ~5.34!.

Thus

Dc8~ f ,u!5~¹̂2f 2 1
6Rf !u2m f u,

and soc8( f ,u) satisfies the massless Dirac equation iff satisfies the ‘‘Debye potential’’ equatio

¹̂2f 2 1
6Rf 5 1

4lf f , ~49!

wheref 5 u ^ ū is an eigenvector ofC with eigenvaluelf . This equation is of the same form
as that for the Debye potential used to construct a Maxwell field fromf. However, here the
C* -charge of the scalar potential is half that required in the Maxwell case, and the eigenva
also different. In the special case in which the ‘‘gauge terms’’ are zero the shear-free s
satisfies the twistor equation. In this case the construction of a massless Dirac solution
scalar field satisfying the conformally-covariant wave equation is an example of what Penro
called ‘‘spin raising.’’13

As in the Maxwell case, we may form a scalar potential from a shear-free spinor a
massless Dirac solution. In the special case in which the shear-free equation reduces to the
equation this corresponds to Penrose’s ‘‘spin lowering.’’13 Out of the shear-free spinoru and
massless Dirac solutionc we form a scalarf (u,c) from the scalar product (u,c),

f ~u,c!5~u,c!. ~50!

~Unfortunately the notation does not work well for us here. The brackets on the left-hand
denote that the scalar is constructed fromu and c, whereas the bracket on the right-hand s
denotes the symplectic product of the two spinors.! The scalarf (u,c) has the sameC* -charge as
u, and we may evaluate the gauged Laplacian of it by noting that the gauged covariant der
is compatible with the spinor product:

¹̂2f ~u,c!5~¹̂2u,c!12~¹̂Xau,¹Xa
c!1~u,¹2c!.

Sinceu satisfies the shear-free Eq.~13!,

~¹̂Xau,¹Xa
c!5 1

4~eaD̂u,¹Xa
c!5 1

4~D̂u,Dc!50

since c satisfies the massless Dirac equation. We may then use Eq.~23! to relate the spinor
Laplacian to the square of the Dirac operator, which gives zero when acting onc, to give
J. Math. Phys., Vol. 38, No. 9, September 1997
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~¹̂Xau,¹Xa
c!5~¹̂2u1 1

4Ru,c!5~mu1 1
6Ru,c!

by the integrability condition~31b!,

5~m1 1
6R! f ~u,c!.

Thus the scalarf (u,c) satisfies the ‘‘Debye potential’’ Eq.~49!. Note, however, thatf (u,c) has
the same ‘‘charge’’ asu, opposite to that required to combine withu to make a massless Dira
solution.

To construct one Dirac solution from another we need a pair of shear-free spinors
opposite ‘‘charges,’’ and this is just the case in which we have a CKY tensor. In that case w
proceed as in the Maxwell case and define the symmetry operatorLu1u2

by

Lu1u2
c5c8~~u1 ,c!,u2!5d̂~u1 ,c!u21 1

2~u1 ,c!D̂u2 . ~51!

By interchanging the two spinors in this construction we could have formed the operatorLu2u1
.

However, as we shall see, these two operators are in fact the same when acting on massle
fields. Since¹̂ is compatible with the spinor inner product,

d̂~u1 ,c!5~¹̂Xa
u1 ,c!ea1~u1 ,¹Xa

c!ea5 1
4~eaD̂u1 ,c!ea1~u1 ,¹Xa

c!ea by ~13!.

Thus

d̂~u1 ,c!u25 1
4~eau2^ eaD̂u1!~c!1~eau2^ ū1!~¹Xa

c!

5 1
4e

a~u2^ D̂u1!eac1 1
2e

a~u2^ ū11u1^ ū2!~¹Xa
c!

1 1
2e

a~u2^ ū12u1^ ū2!~¹Xa
c!. ~52!

If f is anyp-form theneafea5(422p)(21)pf. So if f is odd, a sum of a 1-form and a 3-form
this becomeseafea522fj. We can then use Eq.~6! to rewrite the first term in Eq.~52! using

1
4e

a~u2^ D̂u1!ea5 1
2D̂u1^ ū2 . ~53!

The last term in Eq.~52! is made up of an antisymmetric combination of two spinors of the sa
parity. Thus this even form is even underj, and is thus a sum of a 0-form and a 4-form. The
forms commute and anticommute respectively with the 1-formea to enable this last term to b
written in terms of the Dirac operator onc, which vanishes sincec is assumed to satisfy th
massless Dirac equation. Thus we can write the symmetry operator onc as

Lu1u2
c5 1

2~D̂u1^ ū21D̂u2^ ū1!~c!1 1
2e

a~u2^ ū11u1^ ū2!~¹Xa
c!.

In this form the two spinors enter symmetrically. Thus

Lu1u2
c5Lu2u1

c

for c a massless Dirac solution. The symmetric tensor product of the two spinors is the
tensorv, in terms of which the symmetry operator can be written more concisely. Differentia
v, and using the shear-free spinor equation, produces

¹Xa
v5 1

2¹̂Xa
u1^ ū21 1

4u1^ eaD̂u21 1
2¹̂Xa

u2^ ū11 1
4u2^ eaD̂u1.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Clifford multiplication by ea then shows that

dv2d* v5 3
4~D̂u1^ ū21D̂u2^ ū1!,

by Eq. ~53!, and hence we may express the symmetry operator onc as

Lu1u2
c5eav¹Xa

c1 2
3dvc2 2

3d* vc.

This operator, constructed out of a self-dualv, maps even solutions of the massless Dirac equa
into odd solutions, and annihilates odd spinors. Clearly we could have taken an anti-self-dua
tensor and constructed a symmetry operator that maps odd Dirac to solutions to even on
more generally we have a symmetry operatorLv constructed out of any CKY tensorv ~with no
assumptions of self-duality!,

Lvc5eav¹Xa
c1 2

3dvc2 2
3d* vc.

It can be seen directly from the CKY equation, and its integrability conditions, that this is in
a symmetry operator. In fact one can show that

@D,Lv#5~vD2 1
3dv1d* v!D.

Operators, such asLv , whose commutator withD is of the form RD ~where R is another
operator! are calledR-commuting.

Kamran and McLenaghan19 have obtained the most general first-orderR-commuting operator
for the Dirac operator. They showed that the nontrivial terms in this operator are constructed
conformal Killing–Yano tensors of degree 1, 2, and 3. The operator constructed from the c
mal Killing vector is just the Lie derivative with the appropriate conformal weight, correspon
to the well known conformal covariance of the equation. A conformal Killing–Yano 3-form is
the dual of a conformal Killing 1-form. Although they do not explicitly point it out, the opera
that Kamran and McLenaghan construct from the 3-form is essentially just the operator fo
from the corresponding conformal Killing vector~the operators differ by a term involving th
Dirac operator and an overall factor ofz!. That part of their operator,K v , constructed from ‘‘a
conformal generalization of a Penrose–Floyd tensor,’’ is obtained from a slight modificati
Lv ,

K v5z~Lv2vD !,

where z is the volume form. The operatorK v , expressed in terms of a Killing spinor, wa
obtained independently by Torres del Castillo.11 Clearly Lv andK v only differ by a factor ofi
when acting on massless Dirac solutions, but the commutator ofK v with the Dirac operator
becomes

@D,K v#52 2
3zd* vD.

The conformal Killing–Yano tensorv is a Killing-Yano tensor whend* v50. Thus in this case
the above commutator shows thatK v is a symmetry operator for the massive Dirac equation
this caseK v has been interpreted as a generalized total angular momentum operator by
and McLenaghan.28

VIII. DISCUSSION AND CONCLUSIONS

There has been much work done on Debye potential methods for solving massles
equations, and on the construction of symmetry operators for these equations in algebra
special space–times. However, the relation between different approaches has not alway
J. Math. Phys., Vol. 38, No. 9, September 1997
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made clear. We believe that the basis-independent formalism that we have given here m
clearer to see the ingredients that have gone into the various constructions. We have ex
shown the relationship between symmetry operators constructed from Debye potentials an
given by Kalnins, McLenaghan, and Williams12 constructed from a 4-index Killing spinor.

In this paper we have only considered the case of a four-dimensional Lorentzian space
One potential advantage of the approach that we have adopted is that it should be easie
which features of the results translate to different dimensions and signatures. The adapted
the Newman–Penrose formalism is of course optimized for the Lorentzian case, and any e
component expression will become unwieldy in higher dimensions. Whereas one can a
~subject to the usual topological caveats! introduce spinors in any number of dimensions, there
many features of the 2-spinor calculus that are special to four dimensions. Four dimensio
also rather special for Maxwell’s equations; 2-forms are ‘‘middle forms.’’ If we regard Maxwe
theory as a gauge theory then the Maxwell forms will be 2-forms regardless of the dime
However, the geometrical relationship between null Maxwell solutions and shear-free null g
sics is carried over to higher dimensions to a relationship between ‘‘middle forms’’ and ce
foliations.29 Conformal Killing–Yano tensors are of course readily introduced in any numbe
dimensions~indeed Tachibana2,30 considered arbitrary dimensions, although positive-definite
nature!. In four dimensions conformal Killing–Yano 2-forms are the only non-trivial general
tion of conformal Killing vectors. The 0-forms and 4-forms are parallel if they are CKY whilst
3-form is just the Hodge dual of a conformal Killing vector. In higher dimensions there ar
course more possibilities. We hope to see which of these tensors can be used to generate s
operators for various massless field equations.

The symmetry operator given by the Debye scheme is expressed in terms of a ‘‘4-
Killing spinor’’ that is formed from the tensor product of the CKY 2-form. However, for this to
a symmetry operator we only need the ‘‘4-index Killing spinor’’ equation to be satisfied; it is
necessary that the ‘‘4-index Killing spinor’’ be a product of ‘‘2-index’’ones. At this point in t
paper we have not given full details of how our calculations were performed. We hope to g
fuller account of ‘‘generalized conformal Killing–Yano tensors’’ in a more general setting la

There are a number of aspects of Debye potentials and symmetry operators that we h
discussed here. One is the application to higher spin fields. In conformally-flat space–times
potentials can readily be extended to include massless fields of arbitrary spin.13 A Debye potential
prescription for spin-32 fields in electro-vac space–times, within the generalized Goldberg–S
class, has been given by Torres del Castillo, who has also discussed Debye potentials for
fields.31,32,8An important application of symmetry operators, and their relation to CKY tensor
the question of separation of variables. The separation constants obtained in this procedure
given an intrinsic characterization in terms of eigenvalues of symmetry operators. Torre
Castillo33 has shown how, for Maxwell fields, the Starobinsky constant is given by the symm
operator obtained via Debye potential methods in the Pleban´ski–Demian´ski background and
Silva-Ortigoza34 has presented a similar analysis for the Rarita-Schwinger~spin-32! equation. Re-
cently Kalnins, Williams, and Miller35 have given a detailed account of the separation of varia
for electromagnetic and gravitational perturbations in the Kerr space–time using Hertz pote

As a final note, we point out that not only have Debye potential methods been succes
applied to many cosmologically interesting space–times,36,37 they have also lead to new solution
in the seemingly unrelated fields of isotropic elastic media38 and force-free magnetic fields.39
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A continued fraction representation for the effective
conductivity of a two-dimensional polycrystal

Karen E. Clark
Department of Mathematics and Statistics, The College of New Jersey,
Trenton, New Jersey 08650

~Received 1 May 1996; accepted for publication 9 June 1997!

A continued fraction representation for the effective conductivity tensors* of a
two-dimensional polycrystal is derived. This representation is in terms of a se-
quence of positive definite symmetric matrices which characterize the underlying
geometric structure of the material. The proof is accomplished by considering a
particular basis for the Hilbert space of fields in the composite in which the linear
operators relevant to determining the effective conductivity take simple forms as
infinite matrices. These infinite matrices are then used in the variational definition
of the effective conductivity to formulate the continued fraction. This continued
fraction is used to derive upper and lower bounds ons* . © 1997 American
Institute of Physics.@S0022-2488~97!02409-2#

I. INTRODUCTION

We consider in this paper the effective conductivity function of a two-dimensional polyc
talline material. A polycrystal is a material made up of grains that share the same condu
tensor but with crystal orientation that varies from grain to grain. We study the effective con
tivity of such a material, that is, the constant tensors* that describes the overall conductivit
behavior of the composite. A continued fraction expansion fors* is derived which incorporates
the principal conductivitiess1 ands2 and also a series of matrices which incorporate informat
about the underlying geometry of the sample.

Previous work on polycrystals in two dimensions include the result det(s* (s1 ,s2))
5s1s2 , which is due to Dykhne,1 Mendelson,2 and Schulgasser,3 the latter two of whom based
their analysis on the earlier work of Keller.4 For fixed real values ofs1 and s2 Lurie and
Cherkaev5 have described the range of all possible effective conductivities and have shown
laminate microstructure attains the value ofs* for any given polycrystal. Clark and Milton6 have
proven that laminates simulate the effective conductivity for any two-dimensional polycry
independent of the values ofs1 ands2 .

The representation given here for a polycrystal in two dimensions is based on the wo
Milton,7 who derived a similar continued fraction expression for the effective conductivity
multicomponent composite in any dimension using the field equation recursion method
method considers the Hilbert space of relevant fields in the composite and orders a basis
Hilbert space according to how the fields appear in perturbation expansions for the curre
electric fields in the material. An expansion for the effective conductivity function is then de
by expressings* in terms of matrices which come from inner products between these fields.
these matrices reflect the geometric information about the composite.

Prior to Milton’s result continued fraction representations had been found for the effe
conductivity of two-component isotropic composites by studying the analytic features ofs* . In
this instance a continued fraction expansion had been found~see the paper by Golden8! by
utilizing the fact thats* (s1 ,s2)/s1 is a Stieltjes function of the ratios1 /s2 .9,10 This was based
on the earlier work of Bergman.11 Expressing such Stieltjes functions as continued fractions
been studied extensively and there are several excellent references on this subject.12,13 The reader
is also referred to the 1981 paper by Milton,14 in which a continued fraction expression for th
effective conductivity is derived.
0022-2488/97/38(9)/4528/14/$10.00
4528 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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The expression derived in this paper for the effective conductivity of a polycrystal is in t
of a sequence of 232 matrices~denotedA i andUi! which incorporate successively more fields
the Hilbert space and thus more geometric information about the composite as higher order
fraction are computed. An important feature of the representation is that if at any stage a
these matrices is singular, then the continued fraction terminates. In particular, this occurs
the composite is a laminate. Here the continued fraction will give an exact representation f
effective conductivity tensor.

To derive the continued fraction expansion we need only consider two relevant operat
the Hilbert space of fields in the polycrystal. We express these operators as infinite block di
matrices in an appropriate basis and then use the variational definition of the effective condu
to represents* in terms of these matrices. The representation we derive for these relevant o
tors as block diagonal matrices is based on the method of Jacobi tridiagonalization. It is
known from basic linear algebra that a collection of commuting self-adjoint operators ca
simultaneously diagonalized.15 However, the operators we consider do not commute. Never
less, by using certain commutation relations discussed in Sec. II it is possible to construct
so that the matrix forms of these operators will all be block diagonal in that basis.

There are several reasons to want to express the effective conductivity of a polycrys
geometry as a continued fraction. Such a representation could be truncated at successive s
give rational approximations to the effective conductivity function, each of which would pos
the same relevant analytic features as the effective conductivity function. It has also been fo
some cases that a crude bound on an approximants

*
( i ) will yield a good bound on the true

effective conductivitys* .
The paper is organized as follows. In Sec. II we describe the Hilbert spaceH of fields in the

polycrystal and the relevant operators acting on these fields, which will be used in determini
effective conductivity. In Sec. III we introduce a basis for the Hilbert spaceH in terms of the
operators defined in Sec. II. In Sec. IV we illustrate that a basis forH may be found so that the
infinite matrix forms of the relevant operators in this basis are block diagonal. In Sec. V
perturb the basis further to produce an especially simple form for the matrix representations
relevant operators. Finally, in Sec. VI we use these infinite matrices and the variational defi
for the effective conductivity to derive a continued fraction expansion fors* . In Sec. VII we give
an alternate method for deriving the same continued fraction expression which holds for co
valued conductivities. In Sec. VIII we describe how the continued fraction representation c
used to derive bounds ons* .

II. HILBERT SPACE FRAMEWORK AND OPERATOR IDENTITIES

In this section we formulate the Hilbert space framework for the relevant fields in the p
crystal and describe the operators in the Hilbert space which will be used to determine a con
fraction representation for the effective conductivity. A polycrystal is a material which is c
prised of grains that share the same conductivity tensor but for which the crystal orien
changes from grain to grain. Another way of expressing this is to say that the eigenvalues
conductivity tensor are constant throughout the material but the eigenvectors change di
from grain to grain. Hence in two dimensions the local conductivitys~x! can be expressed in th
form

s~x!5RT~x!S s1 0

0 s2
DR~x!, ~2.1!

whereR~x! at each pointx is a rotation matrix
J. Math. Phys., Vol. 38, No. 9, September 1997
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R~x!5S cosu~x! sin u~x!

2sin u~x! cosu~x!
D ,

which describes the orientation of the crystal.
The local field equations for the current and electric fields in a heterogeneous mater

given by j ~x!5s~x!e~x! where the current fieldj and the electric fielde satisfy“•j50, “3e50,
ands is the local conductivity tensor given by Eq.~2.1!. The effective conductivity tensors* is
the constant tensor defined by the relationj* 5s* e* wherej* ande* are the volume averages o
the current and electric fields.

Without loss of generality~see the paper by Golden and Papanicolaou16! we restrict ourselves
to periodic media where the unit cellD is taken to have unit volume. We further assume thats is
a bounded tensor with positive definite real part, i.e., that the~possibly complex! eigenvaluess1

ands2 satisfy 0,a<Re(s1), Re(s2), andus1u, us2u<b for some positivea andb with b>a.0.
An appropriate space for formulating the equations of conductivity is the Hilbert spaceH of

square integrable vector fields in the unit cellD, where the inner product and norm inH are given
by ^p1 ,p2&5*Dp̄1

T(x)p2(x)dx, upu5^p,p&1/2, wherep̄ denotes the complex conjugate ofp. The
average value of a field, denoted by either^p& or p* , is defined by

p* 5^p&5E
D

p~x!dx.

Since any periodic field can be split into a curl-free and a divergence-free part it follows th
Hilbert spaceH can be decomposed as the direct sum of three mutually orthogonal subs
H5U%E %J , where

~1! U is the space of uniform fields:UPU satisfiesU5^U&;
~2! E is the space of electric fields:EPE satisfieŝ E&50 and“3E50;
~3! J is the space of current fields:JPJ satisfieŝ J&50 and“–J50.

The projection operators onto the subspacesU, E , and J are denotedG0 , G1 , and G2 ,
respectively. By the decomposition of the spaceH we have

G01G11G25I . ~2.2!

Also, since the subspacesU, E , and J are orthogonal~by Green’s theorem! the projections
satisfyGiGj5d i j Gi . We will also make use of the operatorR' which acts pointwise by rotating
the fields by 90°, i.e.,

R'S a1~x!

a2~x! D5S a2~x!

2a1~x! D .

If we let e15(0
1) ande25(21

0 ), we can separate the dependence ofs~x! on the geometry of the
polycrystal from the dependence on the values of the principal conductivitiess1 and s2 and
rewrite the crystal conductivity given by Eq.~2.1!:

s~x!5s1x1~x!1s2x2~x!, ~2.3!

wherex1 andx2 are defined asx1(x)5RT(x)e1^ e1R(x), x2(x)5RT(x)e2^ e2R(x). These op-
erators are projections satisfying

xixj5d i j xi , x11x25I . ~2.4!

Consequently, we can introduce the spaces:
J. Math. Phys., Vol. 38, No. 9, September 1997
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~1! P 1 consisting of fieldsP1 with x1P15P1 ;
~2! P 2 consisting of fieldsP2 with x2P25P2 ,

which correspond to fields locally aligned with the crystal axes. Thus we have the Hilbert
decompositionH5P 1% P 2 . The operators defined thus far satisfy the following commuta
relations which will be useful later on:

R'x15x2R' , R'G15G2R' . ~2.5!

The first of these relations follows from the fact that rotation matrices commute in two dimen
and the second follows from a similar argument in Fourier space. As these relations do not h
three dimensions, the result is restricted to two dimensions. Finally, it should also be noted
rotation commutes with averaging we have one more commutation relation:R'G05G0R' .

III. SERIES EXPANSIONS FOR RELEVANT FIELDS IN THE COMPOSITE

In this section we describe a way of expanding the relevant fields in the composite
infinite series in terms of the operatorsG1 andx1 defined in Sec. II. We begin with the fieldse1

and e2 which form a basis for the set of uniform fields in the unit cellD. We continue by
considering the set of fields

e4i 215x1~G1x1! i 21e1 ,

e4i5x1~G1x1! i 21e2 ,
~3.1!

e4i 115~G1x1! ie1 ,

e4i 125~G1x1! ie2 for i>1.

In fact this set forms a basis for the spaceH of relevant fields in the composite.7 By ‘‘relevant’’
we mean the space of uniform, current, and electric fields which satisfy the field equation

j1J5s~e1E!, ~3.2!

wherej , ePU, EPE , JPJ , ands given by Eq.~2.3!. If we apply the operatorG1 to both sides
of Eq. ~3.2! we have

05G1s~e1E!. ~3.3!

Substituting fors, using the facts thatG1e50 andG1E5E, and rearranging, Eq.~3.3! becomes

G1x1e5F s2

s22s1
I2G1x1GE. ~3.4!

If we take the inverse of the operator in brackets on the right-hand side of Eq.~3.4! and apply it
to the left-hand side we obtain a series expansion forE given by

E5(
j 50

` S s22s1

s2
D j 11

~G1x1! j 11e. ~3.5!

Once we have an expansion for the electric fielde1E in powers of$(G1x1)k% we can find an
expansion for the current fieldj1J in powers of $(G1x1)k% directly from the relationj1J
5s~e1E! wheres5(s12s2)x11s2I .
J. Math. Phys., Vol. 38, No. 9, September 1997
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IV. INFINITE MATRIX REPRESENTATIONS OF THE RELEVANT OPERATORS

In this section we use the basis for the set of fields in the composite, described in Sec.
represent the operatorsG0 , G1 , G2 , x1 , x2 , R' as infinite matrices. As will become clear, it
possible to choose a basis such that these matrix representations will be of an especially
form. Let $q̃i% be the fields obtained from the basis fields$ei% @defined in Eq.~3.1!# through the
Gram–Schmidt orthogonalization process. With this choice of basis the matrices represenG1

andx1 will be block tridiagonal andR' will be block diagonal. The proof of this is straightfor
ward and is left to Appendix A.

The matrix representation ofR' is

R'5 dR 0 0 0 0 •••

0 RT 0 0 0 •••

0 0 R 0 0 •••

0 0 0 RT 0 •••

0 0 0 0 R

A A A A �

e
where R5F0 21

1 0 G . ~4.1!

The proof of this is also straightforward and is left to Appendix B.
The operatorG0 ~which simply averages a given field! projects onto the first two~uniform!

fields in the Hilbert space and thus will clearly have (G0)1,15(G0)2,251 and all other entries zero
Given the fact that the matrix representations ofG1 andx1 in the$q̃i% basis are of a tridiagona

block form with 232 matrix blocks, it remains to determine the exact form of the infinite matr
representing these operators. In fact, the matrix representations of the projectionsG1 andx1 are
slightly more technical than the two given above. AsG0 andG1 are orthogonal and symmetric, th
operatorG1 will have a 232 zero matrix in the upper left-hand corner, followed by 434 diagonal
blocks as below:

G15 d0 0 0 0 0 0 •••

0 U1 W1 0 0 0 •••

0 W1
T V1 0 0 0 •••

0 0 0 U2 W2 0 •••

0 0 0 W2
T V2 0 •••

0 0 0 0 0 U3

A A A A A �

e, ~4.2!

where all entriesŨi , W̃ i , Ṽ i are 232 matrices. Similarly, in the basis$q̃i% the matrix form ofx1

will be
J. Math. Phys., Vol. 38, No. 9, September 1997
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x15 dÃ1 Z̃1 0 0 0 •••

Z̃1
T B̃1 0 0 0 •••

0 0 Ã2 Z̃2 0 •••

0 0 Z̃2
T B̃2 0 •••

0 0 0 0 Ã3

A A A A �

e , ~4.3!

again whereÃ i , B̃i , Z̃ i are all 232 matrices. By using the relationships~2.2! and ~2.4! we can
expressG̃2 and x̃2 as infinite matrices in terms ofŨi , W̃ i , Ṽ i , Ã i , B̃i , Z̃ i .

Furthermore, as bothG1 and x1 should be symmetric we haveŨi , Ṽ i , Ã i , B̃i symmetric.
Substituting the matrix representations forG1 , G2 , andR' into the commutation relation given b
Eq. ~2.5! we see that each 434 block of theG1 matrix must satisfy

RTŨi5~ I2Ũi !R
T, RṼ i5~ I2Ṽ i !R, ~4.4!

RTW̃ i52W̃ iR, ~4.5!

whereR is defined as in Eq.~4.1!. Similarly, by substituting the matrix forms ofx1 , x2 , andR'

into the commutation relation~2.5! we see that the diagonal blocks in thex1 matrix must satisfy

RTÃ i5~ I2Ã i !R
T, RB̃i5~ I2B̃i !R, RTZ̃ i52Z̃ iR. ~4.6!

Multiplying Eq. ~4.4! on the left-hand side byR and noting that trace (Ũi)5trace(RŨiR
T) we

deduce that

trace~Ũi !51. ~4.7!

Similarly, from Eq.~4.6! we see that

trace~Ã i !51. ~4.8!

If we let

W̃ i5Fw11 w12

w21 w22
G

and equate matrix entries of Eq.~4.5! it is apparent thatw2152w12 andw115w22. ThusW̃ i can
be written as a multiple of a rotation matrix. That is we can find an anglef i such that

W̃ i5a iR~f i !, ~4.9!

where a i
25w11

2 1w12
2 and R(f i) is the usual rotation matrix by an anglef i . Performing an

analagous calculation gives the same result for theZ̃ i matrices. That is, we may express theZ̃ i ’s
as

Z̃ i5b iR~g i ! ~4.10!

for some angleg i andb i
25z11

2 1z12
2 .
J. Math. Phys., Vol. 38, No. 9, September 1997
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V. ROTATING THE BASIS FIELDS TO FURTHER SIMPLIFY MATRIX REPRESENTATIONS

In this section we change our$q̃i% basis slightly in order to simplify even further the matr
representations we have found thus far. In particular, we rotate the basis fields$q̃i% in pairs so that
the matricesW i andZ i are symmetric in the new basis$qi%. The new basis will be related to th
old one via

q2i 115~cosu i !q̃2i 112~sin u i !q̃2i 12 ,

q2i 125~sin u i !q̃2i 111~cosu i !q̃2i 12 ,

for i>0 and the choice of angles$u i% to be determined. It should be noted that this change
basis does not change the relations~4.7! or ~4.8!. In this new basis each 434 diagonal block of the
matrix representingG1 will be transformed to become

F Ui W i

W i
T V i

G5FRT~u2i 21!ŨiR~u2i 21! RT~u2i 21!W̃ iR~u2i !

RT~u2i !W̃ i
TR~u2i 21! RT~u2i !Ṽ iR~u2i !

G . ~5.1!

Each block in the matrix representation ofx1 will become

F A i Z i

Z i
T Bi

G5FRT~u2i 22!Ã iR~u2i 22! RT~u2i 22!Z̃ iR~u2i 21!

RT~u2i 21!Z̃ iR~u2i 22! RT~u2i 21!B̃iR~u2i 21!
G . ~5.2!

The goal is to choose rotations$u i% so thatW i andZ i are symmetric. Using Eqs.~4.9! and~4.10!
this occurs whena iR

T(u2i)R
T(f i)R(u2i 21)5a iR

T(u2i 21)R(f i)R(u2i) andb iR
T(u2i 21)RT(g i)

3R(u2i 22)5b iR
T(u2i 22)R(g i)R(u2i 21), which are satisfied when

u2i 212u2i5f i , u2i 222u2i 215g i . ~5.3!

In fact, if the rotation angles$u i% are chosen to satisfy Eq.~5.3! the matrix representation
simplify considerably. We now have

W i5a i I , Z i5b i I . ~5.4!

Thus once the initial rotation angleu0 is chosen, Eq.~5.3! determines the entire set of rotatio
angles$u i% which will produce the simplified matrix forms ofG1 andx1 .

By using the fact thatG1 andx1 are projections we see that the blocks must in addition sat

Ui1V i5I , ~Ui !
21a i

2I5Ui , ~5.5!

and

A i1Bi5I , ~A i !
21b i

2I5A i . ~5.6!

Equating matrix entries of Eqs.~5.5! and ~5.6! and using Eqs.~4.7! and ~4.8! we have

a i
25u112u11

2 2u12
2 5det~Ui !, b i

25a112a11
2 2a12

2 5det~A i !, ~5.7!

where theu’s are the matrix components ofUi and thea’s are the matrix components ofA i . So
finally we can represent the operatorG1 as a block-diagonal matrix where each 434 block has the
form
J. Math. Phys., Vol. 38, No. 9, September 1997
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F Ui a i I

a i I I 2Ui
G with a i5Adet~Ui !.

Similarly, the matrix form ofx1 has 434 blocks on the diagonal each with the form

F A i b i I

b i I I 2A i
G with b i5Adet~A i !.

It should be noted that Eqs.~4.7!, ~4.8!, and ~5.7! imply that theUi ’s and A i ’s are all positive
semidefinite matrices with trace one. In addition Eqs.~5.5! and ~5.6! imply that Ui andA i have
especially simple inverses:

Ui
215

1

det~Ui !
~ I2Ui !, A i

215
1

det~A i !
~ I2A i !. ~5.8!

VI. DERIVATION OF CONTINUED FRACTION FORMULA USING VARIATIONAL
PRINCIPLES

Using the simplified matrix representations of the operatorsx1 andG1 it is possible to derive
a formula for the effective conductivity of a polycrystal as a continued fraction in terms o
matricesA i andUi . At the j th level this representation incorporatesA j andUj . The derivation
will be accomplished by considering the variational definition of the effective conductivity w
is given by

^e,s* e&5min
EPE

^e1E,s~e1E!& ~6.1!

for s1 , s2 real ande a fixed uniform field inU. Any elementEPE can be written as an ‘‘infinite
vector’’ in the $qi% basis as

E5 d 0
u1

v1

u2

v2

A e, ~6.2!

where0, ui , andvi are all 2-vectors. AsG1E5E, using the matrix form ofG1 it is clear that the
u1’s andvi ’s are related by

vi5
1

a i
~ I2Ui !ui or ui5

1

a i
Uivi . ~6.3!

These two forms are consistent by Eq.~5.8!. So Eq.~6.1! can be rewritten as a minimum over th
fields $vi%:

^e,s* e&5 min
v1 ,v2 ,...

^e1E,s~e1E!&, ~6.4!
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whereE is given by Eq.~6.2! in which theui ’s are given by Eq.~6.3!. We will now rewrite Eq.
~6.4! in terms of the vector forms ofe andE and compute the minimum. Any uniform fielde can
be written as below and using Eq.~6.3! we may decompose the fieldE asE5E11g(E1)1E2 ,
where

e5 de*
0
0
A e, E15 d 0

0
v1

0
0
A

e, g~E1!5 d 0
1

a1
U1v1

0
0
0
A

e, E25 d 0
0
0

1

a2
U2v2

v2

1

a3
U3v3

v3

A

e. ~6.5!

As before, all entries within these ‘‘infinite vectors’’ are really 2-vectors themselves. Let us
defines

*
(1) as

^E1 ,s
*
~1!E1&5 min

v2 ,v3 ,...
^E11E2 ,s~E11E2!&, ~6.6!

whereE1 is any vector of the form given in Eq.~6.5!. We use these definitions to reexpress E
~6.4! in terms of its individual components:

^e,s* e&5 min
v1 ,v2 ,...

^e1g~E1!1E11E2 ,s~e1g~E1!1E11E2!&. ~6.7!

The block diagonal structure ofx1 ~and hence also the matrix representation ofs! implies that the
cross term vanishes and hence Eq.~6.7! can be rewritten as

^e,s* e&5 min
v1 ,E2

@^e1g~E1!,s~e1g~E1!!&1^E11E2 ,s~E11E2!&#.

By minimizing overE2 and using Eq.~6.6! the last term can be replaced by^E1 ,s
*
(1)E1&. Thus

^e,s* e&5min
v1

@^e1g~E1!,s~e1g~E1!!&1^E1 ,s
*
~1!E1&#. ~6.8!

We may now substitute the matrix representation of the local conductivity@given by substituting
the matrix form ofx1 into Eq. ~2.3!# and the vector forms ofe andg(E1) defined by Eq.~6.5! to
determine this minimum. In terms of the components of the ‘‘infinite vectors’’ Eq.~6.8! is equiva-
lent to

^e,s* e&5~s12s2!^e* ,A1e* &1s2^e* ,e* &1min
v1

F~v1! ~6.9!

where

F~v1!5
2~s12s2!b1

a1
^e* ,U1v1&1^v1 ,Mv1&,
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M5
s1

a1
2 U1

21
~s22s1!

a1
2 U1A1U11s~1!.

s(1) is defined to be the block in the matrix representation ofs
*
(1) which is relevant to the inne

product withE1 . In other wordŝ E1 ,s
*
(1)E1&5^v1 ,s(1)v1&. We use variational principles to fin

the minimum and plug it into Eq.~6.9! to arrive at an expression for the effective conductivit

s* 5~s12s2!A11s2I2~det A1!~s12s2!2U1$s1U1
21~s22s1!U1A1U11~det U1!s~1!%21U1 .

~6.10!

In symmetric form this is

s* 5s1A11s2~ I2A1!2~det A1!~s12s2!2U1
1/2$s1U1

1/2~ I2A1!U1
1/2

1s2U1
1/2A1U1

1/21~det U1!U1
21/2s~1!U1

21/2%21U1
1/2.

From here, of course, it is possible to keep going by definings(2), s(3), etc., as in Eq.~6.6!
to obtain an expression for the effective conductivity as a continued fraction in terms o
matricesA i and Ui . At the second stage the expression would be as in Eq.~6.10! with s(1)

replaced by

s~1!5~s12s2!A21s2I2~det A2!~s12s2!2U2$s1U2
2

1~s22s1!U2A2U21~det U2!s~2!%21U2 .

An important feature of this representation is that if any of the matrices in the set$A i% or $Ui% is
singular then the continued fraction terminates. In particular, this occurs when the polycryst
a layered structure.

VII. AN ALTERNATE DERIVATION OF THE CONTINUED FRACTION REPRESENTATION

We would like this same continued fraction representation for the effective conductivity g
by Eq.~6.10! to hold even if the principal conductivitiess1 ands2 are complex. In fact, it is quite
easy to derive the same expression fors* without using variational principles by elementa
linear algebra. As before, we may express any element ofU%E ase1E11g(E1)1E2 as in Eq.
~6.5!. Similarly, by using the fact thatG2J5J for anyJPJ and our knowledge of the matrix form
of G2 we may write an element ofU%J as

j1J5 d j*

2
1

a1
~ I2U1!w1

w1

2
1

a2
~ I2U2!w2

w2

A
e. ~7.1!

In this cases(1) is defined as the matrix that relatesv1 andw1 , i.e.,w15s(1)v1 . It can be checked
that this is consistent with the definition~6.4! in the case wheres1 ands2 are real.

We now multiply out the first two entries of the matrix-vector version ofj1J5s~e1E! to
obtain
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j* 5s2~ I2A1!e* 1s1A1e* 1~s12s2!
b1

a1
U1v1 ,

and

2
1

a1
~ I2U1!w15~s12s2!b1e* 1

s1

a1
~ I2A1!U1v11

s2

a1
A1U1v1 .

As we must by definition havej* 5s* e* , w15s(1)v1 we may solve these equations fors* to
arrive at precisely the same expression as given by Eq.~6.10!.

VIII. USING THE CONTINUED FRACTION REPRESENTATION TO DETERMINE BOUNDS

We can use the continued fraction expansion~6.10! to determine upper and lower bounds o
the effective conductivity tensors* in terms of known geometric information about the micr
structure of the polycrystal, which is incorporated in the matricesA i andUi . Let us assume tha
s1 ands2 are real valued. We begin with the variational definition fors* , expressed as

^e,s* e&5min
v

lim
n→`

K e1(
i 51

n

~Ei1g~Ei !!,sS e1(
i 51

n

~Ei1g~Ei !!D L ,

where analagous to Sec. VI we define the infinite vectorEi as the vector withvi in the 2i 11st
place and zeroes elsewhere, andg(Ei) as the vector with (1/a i)Uivi in the 2i th place and zeroes
elsewhere. If we interchange the limit and minimum and consider finite values ofn, we have the
upper bound

^e,s* e&<min
v
K e1(

i 51

n

~Ei1g~Ei !!,sS e1(
i 51

n

~Ei1g~Ei !!D L .

Computing the minimum gives the bound

s* <Jn~s1 ,s2 ,$A i%,$Ui%!, 1< i<n,

where Jn is the continued fraction expansion~6.10! terminated at thenth stage withs(n)

5s1An111s2(I2An11).
To determine a lower bound ons* we consider the complementary variational principle

^ j ,s*
21j &5min

JPJ

^ j1J,s21~ j1J!&.

We perform the same calculation as in Sec. VI, withj1J as in Eq. ~7.1!. This results in a
continued fraction expansion fors

*
21:

s
*
215S 1

s1
2

1

s2
DA11

1

s2
I2~det A1!S 1

s1
2

1

s2
D 2

~ I2U1!

3F 1

s1
~ I2U1!21S 1

s2
2

1

s1
D ~ I2U1!A1~ I2U1!1~det U1!s̃~1!G21

~ I2U1!, ~8.1!

where as befores̃(1) has the form~8.1! with A1 , U1 , s̃(1) replaced byA2 , U2 , s̃(2), etc.
Considering truncated sums and minimizing as described above results in the lower bound

s
*
21<Kn~s1 ,s2 ,$A i%,$Ui%!, 1< i<n,
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



w the

f

the
for

d The

e
t

.

4539Karen E. Clark: A continued fraction for s* in a 2D polycrystal

                    
whereKn is the continued fraction expression~8.1! terminated by

s̃~n!5
1

s1
An111

1

s2
~ I2An11!.

The bounds derived in this section are not optimal, however, they can be used to narro
previously known bounds discussed in the introduction. It is known that the eigenvaluesl1 andl2

of s* lie on the hyperbolal1l25s1s2 , s1<l1 , l2<s2 . If we take the trace of both sides o
the expressions derived in this section, we have the upper and lower boundsl11l2<trace(Jn)
and 1/l111/l2<trace(Kn). This restricts the eigenvalues to a lens shaped region. Thus
eigenvalues must lie on the part of the hyperbola enclosed by this lens. This is illustratedn
51 in Fig. 1.
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APPENDIX A: PROOF OF BLOCK DIAGONAL STRUCTURE OF THE RELEVANT
MATRICES

Here we prove that the matrix forms ofG1 , x1 , andR' are block diagonal in an appropriat
basis. We begin with the basis forH given by $ei%. After we perform the Gram–Schmid
orthogonalization process on this set we have an orthonormal basis of fields$q̃i% given by q̃i

5vi /ivi i wherev15e1 , v25e25R'e1 ,

FIG. 1. Middle curve is the boundl1l25s1s2 , s1<l1 , l2<s2 . Lower curve is 1/l111/l25K1. Upper curve isl1

1l25J1 . Thus the bounds are narrowed to the middle curve enclosed by the intersecting upper and lower curve
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v4i 215x1~G1x1! i 21e12 (
j 51

4i 22

cj
~4i 21!vj , v4i5x1~G1x1! i 21e22 (

j 51

4i 21

cj
~4i !vj ,

v4i 115~G1x1! ie12(
j 51

4i

cj
~4i 11!vj , v4i 125~G1x1! ie22 (

j 51

4i 11

cj
~4i 12!vj

for i>1 where thecj ’s are constants.
To determine the form of the matrices it is necessary to see how each of the operators

the elements of the set$vi%. The behavior is essentially the same in the$q̃i% basis so we can ignore
the normalizations for the moment. By using only the definitions of the fields$vj% given above we
prove by induction thatG1v15G1v250,

G1v4i 215v4i 111(
j 51

4i

m j
~4i 21!vj , G1v4i5v4i 121 (

j 51

4i 11

m j
~4i !vj ,

G1v4i 115 (
j 51

4i 12

m j
~4i 11!vj , G1v4i 125 (

j 51

4i 12

m j
~4i 12!vj ,

for i>1 where them j ’s are constants. Thus as$vi% is an orthogonal set it is clear from this that th
matrix representation ofG1 in this basis will be block diagonal with a 232 zero block in the upper
left corner followed by 434 blocks on the diagonal.

Again by using only the definition of the basis set we proceed by induction oni to see thatx1

operating on the set$vi% acts in the following manner:

x1v15v31(
j 51

2

j j
~1!vj , x1v25v31(

j 51

3

j j
~2!vj ,

x1v4i 215(
j 51

4i

j j
~4i 21!vj , x1v4i5(

j 51

4i

j j
~4i !vj ,

x1v4i 115v4i 131 (
j 51

4i 12

j j
~4i 11!vj , x1v4i 125v4i 141 (

j 51

4i 13

j j
~4i 12!vj

for i>1 with constant coefficientsj j . From this it is seen~again, using the orthogonality of th
vi ’s! that the matrix representation ofx1 will have 434 blocks on the diagonal.

APPENDIX B: PROOF OF THE STRUCTURE OF THE ROTATION MATRIX

Finally we see how the operatorR' acts on the fields$vj% given in Appendix A. In this
instance in addition to the definitions of thevj ’s we need also use Eqs.~2.2!, ~2.4! and ~2.5! to
computeR'v15v2 , R'v252v1 ,

R'v4i 2152v4i1 (
j 51

4i 21

h j
~4i 21!vj , R'v4i5(

j 51

4i

h j
~4i !vj ,

R'v4i 115v4i 121 (
j 51

4i 11

h j
~4i 11!vj , R'v4i 125 (

j 51

4i 12

h j
~4i 12!vj
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for i>1 and constanth j ’s. Given this it follows that the matrix form ofR' will have 232 blocks
on the diagonal and zeros elsewhere. Furthermore, asR' should be skew symmetric and satis
R'

2 52I we see that the diagonal blocks must either beR or RT whereR is given by Eq.~4.1!. In
fact these blocks alternate. To check this, we use the sum expressions above to compute

~R'!4i ,4i 215
1

iv4i i•iv4i 21i ^v4i ,R'v4i 21&52
iv4i i

iv4i 21i,0, ~B1!

and

~R'!4i 12,4i 115
1

iv4i 12i•iv4i 11i ^v4i 12 ,R'v4i 11&5
iv4i 12i
iv4i 11i.0. ~B2!

Thus the matrix form ofR' is as given in Eq.~4.1!.
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On 311 decompositions with respect to an observer field
via differential forms

Marián Feckoa)

Department of Theoretical Physics, Comenius University,
MlynskáDolina F2, 842 15 Bratislava, Slovakia

~Received 9 January 1997; accepted for publication 28 May 1997!

311 decompositions of differential forms on a Lorentzian manifold (M ,g;
1222! with respect to arbitrary observer field and the decomposition of the
standard operations acting on them are studied, making use of the ideas of the
theory of connections on principal bundles. Simple explicit general formulas are
given as well as their application to the Maxwell equations. ©1997 American
Institute of Physics.@S0022-2488~97!01809-4#

I. INTRODUCTION

There is rather extensive literature devoted to 311 split of the laws of physics in curved
space–time~cf. Ref. 1 for a review and also the references therein!. According to Sec. II of Ref.
1 there are two rather different methods available to cope with the problem, viz. the congr
method and the hypersurface one.

Here we present a systematic method of 311 split within thecongruencemethod using the
language ofdifferential formson both~4 and 311! levels.

The use of forms within the 311 decomposition program can be traced back to the class
paper on geometrodynamics2 ~p. 581!, where it was applied, however, in the framework of t
hypersurfacemethod~cf. also Ref. 3, pp. 93–94!; the time serves there as a parameter labeling
spacelike hypersurfaces and the time derivative of a form is interpreted as a differentiatio
respect to a parameter.

The observer field approach similar to ours can be found in Ref. 4~pp. 193–197!. What we
add here is the introduction of the~simply realized! operator hor~cf. Sec. III! and a spatial exterior
derivative within the general congruence approach~Sec. IV B!. These objects turn out to be ver
convenient to manipulate and enable one to derive very simple and at the same time g
decomposition formulas and rules.

The following data are assumed in the article: a four-dimensional Lorentzian~g of the signa-
ture1222! manifoldM with orientation~[space–time!, and anobserver~velocity! field, i.e., a
future oriented vector field onM obeying

g~V,V![iVi251 ~1.1!

~the integral curves ofV provide then the congruence of proper-time parametrized world line
observers!.

All the constructions are in fact local, i.e., it is enough that the objects mentioned abov
available only in a domainU,M rather than globally and consequently no global properties oM
are assumed.

a!Present address: Department of Theoretical Physics, Comenius University, Mlynska´ Dolina F2, 842 15 Bratislava,
Slovakia; Electronic mail: fecko@fmph.uniba.sk
0022-2488/97/38(9)/4542/19/$10.00
4542 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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II. THE DECOMPOSITION OF FORMS

For any vector fieldW let us define the following standard operations on forms:

i W :Vp~M !→Vp21~M !,

j W :Vp~M !→Vp11~M !,

i Wa~U,...!:5a~W,U,...!, ~2.1!

j Wa:5W̃`a, W̃[g~W,.![[gW. ~2.2!

Then the following identity holds:

j Wi U1 i U j W5g~U,W!, ~2.3!

in particular,

j Vi V1 i Vj V51[ identity on V~M !. ~2.4!

Further, introducing

P :5 i Vj V , Q :5 j Vi V , ~2.5!

one checks easily that they represent the set ofprojection operatorson Vp(M ), i.e.,

P 25P , Q 25Q , P Q505QP , P 1Q51. ~2.6!

Then for anyaPVp(M ) one has

a5~Q1P !a5Ṽ` i Va1 i Vj Va, ~2.7!

i.e., one obtains thedecomposition

a5Ṽ` ŝ1 r̂ , ~2.8!

where

ŝ[ i Va, r̂[ i Vj Va. ~2.9!

III. OPERATOR HOR AND SPATIAL FORMS

At any point mPM we definevertical ~instantaneous time! direction—parallel toV and
horizontal~instantaneous 3-space! directions—perpendicular toV. Then for any vector there is th
unique decomposition

U5U i1U'[ver U1hor U

and one can define~in the spirit of the theory of connections on principal bundles, cf. Ref. 5!

~hor a!~U,W,...!:5a~hor U,hor W,...!. ~3.1!

It turns out~cf. Appendix A! that this operation is realized explicitly as

hor a5 i Vj Va[P a[ r̂ , ~3.2!
J. Math. Phys., Vol. 38, No. 9, September 1997
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so that the decomposition in Eq.~2.8! can be rewritten also as

a5Ṽ` i Va1hor a. ~3.3!

We also introduce the space of purelyspatial ~horizontal! p-formsby

V̂p~M !:5$aPVp~M !ua5hor a% ~3.4!

@i.e., ŝ50 in the decomposition~2.8!# and the Cartan algebra of spatial forms

V̂~M !:5 % pV̂p~M ! ~3.5!

~it is closed with respect tò !. One readily verifies@inserting arguments and using the definitio
~3.1!# that the projection operatorP [hor is compatible with the algebra structure inV(M ),

hor~a1lb!5hor a1l hor b, a,bPV~M !, lPR, ~3.6!

hor~a`b!5hor a`hor b, a,bPV~M !, ~3.7!

i.e.,

hor:V~M !→Im hor[V̂~M !<V~M ! ~3.8!

is anendomorphismof the Cartan algebraV(M ). From Eq.~3.3! we obtain useful criterion:

a5spatial form⇔ i Va50. ~3.9!

Then we see thatr̂ ,ŝ in the decomposition~2.8! are spatial@Eq. ~2.9! plus i Vi V50#.
Note: If a local orthonormal frame fieldea[(e0[V,ei) and its dualea[(e0[Ṽ,ei) are used

and if

a5
1

p!
aa•••bea`•••`eb, ~3.10!

then the decomposition~2.8! is just split into two parts which do and do not contain, respective
the basis 1-forme0[Ṽ, i.e.,

a5e0` ŝ1 r̂ , ~3.11!

whereŝ, r̂ , being spatial, do not already contain the local ‘‘time’’ basis 1-forme0, but rather only
the ‘‘spatial’’ basis 1-formsei ; explicitly

~3.12!

IV. THE DECOMPOSITION OF THE OPERATIONS ON FORMS

According to Eq.~2.8! any form on (M ,g,V) can be 311 decomposed as

a5Ṽ` ŝ1 r̂ ,
J. Math. Phys., Vol. 38, No. 9, September 1997
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so that the full information aboutaPVp(M ) is encoded~in an observer-dependent way! into a
pair of spatialforms ŝPV̂p21(M ) and r̂ PV̂p(M ). In this section we perform the decompositio
of the standardoperationson forms, viz. theHodge star* and theexterior derivative d~some
other important operators are then easily obtained by their combinations!. By this, we mean to
introduce some ‘‘spatial’’ operations~acting directly onŝ, r̂ and dependent on the observe!
producing the same effect as does the given operator acting ona.

A. The Hodge star

The horizontal subspace of a tangent space at each point inherits natural metric tensorĥ ~with
signature1 1 1 by definition, i.e.,g5Ṽ^ Ṽ2ĥ) and orientation@a spatial frame (e1 ,e2 ,e3) is
declared to be right-handed if (V[e0 ,e1 ,e2 ,e3) is right-handed#. These data are just enough fo
the uniquespatial Hodgeoperator

*̂ :5* ĥ :V̂p~M !→V̂32p~M ! ~4.1!

~it is to be applied only on spatial forms!. Using the operator

ĥa:5~21!degaa

one readily computes~cf. Appendix B! that the decomposition of the ‘‘full’’ Hodge star reads

* ~Ṽ` ŝ1 r̂ !5Ṽ` *̂ r̂ 1 *̂ ĥ ŝ. ~4.2!

As an example, applying this to 1PV0(M ) ~ŝ50, r̂ 51! results in the decomposition of th
4-volume form

* 1[v5Ṽ` *̂ 15:Ṽ`v̂, ~4.3!

where

v̂:5 *̂ 1 ~4.4!

is thespatial volume form. In the local orthonormal right-handed coframe fieldea it is just

v[e0`e1`e2`e35e0`~e1`e2`e3![Ṽ`v̂. ~4.5!

B. The exterior derivative

Let b̂ be a spatial form,D a spatial~[horizontal! domain~i.e., the domain of any possibl
dimension with the property that any vector tangent to it is horizontal!. Then

E
D

db̂5
1. E

]D

b̂ due to Stokes’s theorem

5
2. E

D

hor db̂[E
D

d̂b̂ since D is horizontal

⇒

E
D

d̂b̂5E
]D

b̂, ~4.6!
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where we introduced thespatial exterior derivative

d̂:V̂p~M !→V̂p11~M !,
~4.7!

d̂:5hor d[ i Vj Vd

~exactly like thecovariantexterior derivative of forms on principal bundle with connection!. Thus
for spatial forms and domains the ‘‘full’’ operatord in the Stokes formula can be replaced byd̂.

This means thatd̂ and *̂ provide the basic building blocks for the ‘‘three-dimensional vec
analysis’’ operations, being the natural generalizations of div, curl etc. used in Minkowski s

~div;*̂ d̂*̂ , curl; *̂ d̂,...!. We emphasize that the validity of thespatial Stokes formula~4.6! for d̂
is essential for the usefulness and naturality of the latter, e.g., as a means to relate th
differential 311 laws to the corresponding integral ones~like div B50↔rB•dS50!.

So our task now is to express the action of the fulld operator in terms ofd̂ ~and possibly some
other ones! directly on ŝ, r̂ present in the decomposition~2.8! of a. We have

da5dṼ` ŝ2Ṽ`dŝ1dr̂

so that we are to focus our attention on two particular issues, viz.d of Ṽ andd of a spatial form.
The decomposition of the 2-formdṼ according to Eq.~2.8! results in

dṼ5Ṽ`â1 ŷ ~4.8!

with âPV̂1(M ), ŷPV̂2(M ). The formsâ,ŷ are thekinematical characteristicsof the observer
field V, which can be easily extracted from any givenV using Eq.~2.9!. Their physical meaning
is discussed in Appendix C. It turns out~see also Refs. 6–8! that â equals theacceleration 1-form

â5g~¹VV,• ![g~a,• ![ã ~4.9!

~a[¹VV is theacceleration fieldcorresponding toV! and the 2-formŷ, thevorticity form~tensor!
is the measure of the~non!integrability of the spatial~horizontal! distribution, i.e., it encodes
whether or not the instantaneous 3-spaces mesh together to form a~local! spatial 3-domainD ~or,
equivalently, whether or not thetime synchronizationis possible!. These properties ofâ andŷ are
reflected in the terminology:V is said to begeodesicif â50, irrotational or time synchronizable
if ŷ50 andproper-time synchronizableif both â and ŷ vanish ~then V5] t , Ṽ5dt in adapted
coordinates!.

The computation of the action ofd on a spatial form, as well as on a general forma then, is
performed in Appendix D and the result reads

d~Ṽ` ŝ1 r̂ !5Ṽ`~2d̂ŝ1LVr̂ 1â` ŝ!1~ d̂r̂ 1 ŷ` ŝ!. ~4.10!

The formula~4.10! gives the desired 311 decomposition of the fulld operator. Notice the explicit
occurrence of both kinematical characteristicsâ and ŷ.

The spatial exterior derivatived̂ shares some important properties with the fulld. In particu-
lar, it is thegraded derivationof the spatial Cartan algebraV̂(M ). Indeed, according to Eq.~3.7!
we have

~4.11!
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On the other hand, it isnot nilpotentin general, but rather~see Appendices D and G!

d̂d̂b̂52 ŷ`LVb̂, b̂PV̂~M ! ~4.12!

holds. This may seem to contradict Eq.~4.6!, since the~full ! exterior derivative can be uniquel
defined by the~full ! Stokes formula9 ~and it is then nilpotent due to the nilpotence of the bounda
operator!. The situation can be clarified as follows: Forany domainD andaPV(M ) one has

E
D

dda5E
]]D

a50 ~4.13!

~since]]50! which leads todda50 identically, i.e.,d is nilpotent. For aspatial domainD and
spatial form b̂ one has similarly

E
D

d̂d̂b̂5E
]]D

b̂50. ~4.14!

This does not mean, however, thatd̂d̂b̂50 identically, now, but ratherd̂d̂b̂ should vanish upon
restriction to anyspatialD . The only nontrivial cases are for the dimension ofD being 3 or 2. For
dim D53, ŷÞ0 @and thusd̂d̂b̂Þ0 due to Eq.~4.12!# means~via Frobenius theorem! that spatial
D @to be used in Eq.~4.14!# does not exist at all. For dimD52 we haveb̂5function[f and the
question is whether (V f) ŷ vanishes~for any f ! upon restriction on any spatial two-dimension
domainD . This is, however, the case as a result ofŷ being the measure of nonintegrability~the
bracket of any two vectors tangent toD is trivially again tangent toD!. Thus there isno conflict
between Eqs.~4.6! and ~4.12!.

V. MATRIX NOTATION

For the computation of more complex expressions@e.g., thecodifferential in Eq. ~5.3!# it is
quite useful to introduce matrix realization of the operators. If the decomposition~2.8! of a is
represented by a column

a[Ṽ` ŝ1 r̂↔S ŝ
r̂ D

then, e.g.,

* ~Ṽ` ŝ1 r̂ !5Ṽ` *̂ r̂ 1 *̂ ĥ ŝ↔S *̂ r̂

*̂ ĥ ŝ
D [S 0 *̂

*̂ ĥ 0
D S ŝ

r̂ D
so that

*↔S 0 *̂

*̂ ĥ 0
D .

For the exterior derivative we obtain similarly

d~Ṽ` ŝ1 r̂ !↔S 2d̂ŝ1LVr̂ 1â` ŝ

d̂r̂ 1 ŷ` ŝ D[S 2d̂1â LV

ŷ d̂
D S ŝ

r̂ D
or
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d↔S 2d̂1â LV

ŷ d̂
D .

In the same sense we can then also express other useful operations in terms of such matr
the sake of convenience we collect them here together:

*↔S 0 *̂

*̂ ĥ 0
D , * 21↔S 0 2 *̂ ĥ

*̂ 0
D , ~5.1!

ĥ↔S 2ĥ 0

0 ĥ D , d↔S 2d̂1â LV

ŷ d̂
D , ~5.2!

d:5* 21d* ĥ↔S 0 2 *̂ ĥ

*̂ 0
D S 2d̂1â LV

ŷ d̂
D S 0 *̂

*̂ ĥ 0
D S 2ĥ 0

0 ĥ D
5S d̂ *̂ ~ ŷ` *̂ !

2 *̂ LV*̂ 2 d̂1 *̂ ~ â` *̂ ĥ !
D , ~5.3!

where

d̂:5 *̂ 21d̂*̂ ĥ ~5.4!

is thespatial codifferential,

i V↔S 0 0

1 0D , j V↔S 0 1

0 0D , ~5.5!

hor5 i Vj V↔S 0 0

1 0D S 0 1

0 0D 5S 0 0

0 1D , ~5.6!

LV[ i Vd1diV↔S LV 0

â LV
D . ~5.7!

VI. THE MAXWELL EQUATIONS

According to the standard conventions on the relationship between the components
electromagnetic field 2-formF[ 1

2Fabe
a`eb ~ea is g-orthonormal frame! and the 3-space vector

of the electric and magnetic fields, respectively,

F0a5Ea5Ea, Fab52eabgBg[2eabgBg ~6.1!

~ea is ĥ-orthonormal frame;a, b,... run from 1 to 3, being raised and lowered by thespatialmetric
tensorĥab[1dab[2hab!, one can associate with the electric and magnetic fields thespatial
forms

Ê5Eaea5:E–dr , B̂5BadSa5:B –dS,
~6.2!

dSa :5 1
2eabgeb`eg.
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Then

F5Ṽ`Ê2B̂↔S Ê

2B̂D ~6.3!

~so thatŝ5Ê, r̂ 52B̂ here!. Similarly the electric4-current 1-formdecomposes to

j 5 j aea5 j 0e01 j ie
i[rṼ2 ĵ↔S r

2 ĵ D , ĵ :5 j aea5 j aea. ~6.4!

Then

* F5Ṽ`~2 *̂ B̂!2 *̂ Ê↔S 2 *̂ B̂

2 *̂ Ê
D , ~6.5!

* j 5Ṽ`~2 *̂ ĵ !1rv̂↔S 2 *̂ ĵ
rv̂

D ~6.6!

and so the 311 decomposition of the Maxwell equations

d* F524p* j , ~6.7!

dF50 ~6.8!

and the continuity equation

d* j 50, ~6.9!

respectively, result in

d̂*̂ Ê1 ŷ` *̂ B̂54prv̂, ~6.7a!

d̂*̂ B̂2LV*̂ Ê2â` *̂ B̂54p *̂ ĵ , ~6.7b!

d̂Ê1LVB̂2â`Ê50, ~6.8a!

d̂B̂2 ŷ`Ê50, ~6.8b!

and

LV~rv̂!1d̂*̂ ĵ 2â` *̂ ĵ 50. ~6.10!

In particular, in the simplest situation, viz. for the irrotational (ŷ50), geodesic (â50) observer
field V ~thenV5] t , Ṽ5dt! we get

d̂*̂ Ê54prv̂, ~6.7a8!

d̂*̂ B̂2L] t*̂ Ê54p *̂ ĵ , ~6.7b8!

d̂Ê1L] t
B̂50, ~6.8a8!
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d̂B̂50, ~6.8b8!

and

L] t
~rv̂!1d̂*̂ ĵ 50 ~6.108!

~there is a simple rule to modify these equations to the caseâÞ0 but still ŷ50; cf. Appendix I!.
Since Eqs.~6.7a!–~6.10! are written in terms of differential forms and standard well-beha

operations with respect to integrals, one can readily write down their correspondingintegral
versions: let spatial domains of necessary dimensions exist~two-dimensional surfaceS , three-
dimensional volumeD—the latter case needsŷ50, therefore we putŷ50 in the equations where
the integration over the three-dimensional domain is performed!; then

R
]D

*̂ Ê54pE
D

rv̂[4pQ, ~6.11a!

R
]S

*̂ B̂2
d

dtU
0
E

Ft~S !
*̂ Ê2E

S

â` *̂ B̂54pE
S

*̂ ĵ , ~6.11b!

R
]S

Ê1
d

dtU
0
E

Ft~S !
B̂2E

S

â`Ê50, ~6.12a!

R
]D

B̂50, ~6.12b!

and

d

dtU
0
E

Ft~D !
rv̂1 R

]D

d̂*̂ ĵ 2E
D

â` *̂ ĵ 50, ~6.13!

whereFt is the ~local! flow generated byV.
Equations~6.7a!–~6.10! can be also expressed in more familiar form, making use of th

dimensional vector analysis operators div, curl, etc.; this is done in Appendix H@cf. ~H8!–~H12!#.
Equivalently, if instead of Eq.~6.7!

dF54p j ~6.14!

is used, Eqs.~6.7a! and ~6.7b! are to be replaced by

d̂Ê2 *̂ ~ ŷ` *̂ B̂!54pr, ~6.14a!

d̂B̂2 *̂ LV*̂ Ê2 *̂ ~ â` *̂ B̂!54p ĵ ~6.14b!

@they can be obtained directly by also applying*̂ on Eqs.~6.7a! and ~6.7b!#.
The decomposition of the4-potential1-form

A↔S f

2ÂD ~6.15!

gives
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S Ê

2B̂D↔F[dA↔S 2d̂1â LV

ŷ d̂
D S f

2ÂD5S 2d̂f1fâ2LVÂ

f ŷ2d̂Â D , ~6.16!

so that

Ê52d̂f1fâ2LVÂ, ~6.17!

B̂5d̂Â2f ŷ. ~6.18!

Finally, the gauge transformation:

A°A8[A1dx↔S f

2ÂD1S 2d̂1â LV

ŷ d̂
D S 0

x D ~6.19!

is

f°f8[f1Vx, ~6.20!

Â°Â8[Â2d̂x. ~6.21!

VII. CONCLUSIONS AND SUMMARY

In this article we presented a simple method of 311 decomposition of the physical equation
written in terms of differential forms on space–time (M ,g) with respect to a general observer fie
V.

The method consists of the decomposition of both forms and operations on them. The d
position of forms is based technically on a simple identity~2.4!, which can be interpreted in term
of projection operators onVp(M ). The decomposition of the operations on forms consists firs
the decomposition~4.2! of the Hodge star operator and then the decomposition of the ext
derivatived. Here the formalism mimics the approach used standardly in the theory of con
tions on principal bundle, viz. we first introduce the operator hor@projecting on the ‘‘spatial part’’
of the form; its simple realization is given by Eq.~3.2!# and then define thespatial exterior
derivative asd̂:5hor d̂ ~the counterpart of thecovariantexterior derivative on principal bundle
with connection!. The decomposition ofd is then given by Eq.~4.10!. The essential property ofd̂,
which makes it a useful object, is the validity of thespatial Stokes formula~4.6!. It provides the
usual link between the differential and integral formulations of the physical laws, respect
The language of differential forms on both 4 and 311 levels turns out to be the most convenie
tool for realization of this link, since forms are the objects directly present under the integral

Let us also mention that the quantities of physical interest which ‘‘are not’’ forms~energy–
momentum tensor, Ricci and Einstein tensors, etc.! admit description in terms of forms;4 it is then
possible to apply the decomposition presented here also to them.
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APPENDIX A: PROOF OF EQ. (3.2)

The formula to be proved

~hor a!~U,...,W![a~hor U,...,horW!5~ i Vj Va!~U,...,W! ~A1!
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is F linear⇒ it is enough to take either all vector fields (U,...,W) horizontal or one vertical~then
V is enough! and the rest horizontal. The former case means to check

a~U,...,W!5a~U,...,W!2~Ṽ` i Va!~U,...,W!, ~A2!

the latter case

05~ i Vi Vj Va!~U,...,W!. ~A3!

Both are easily seen to hold.

APPENDIX B: PROOF OF EQ. (4.2)

In general, one has in any orthonormal right-handed frame by definition

~B1!

Let

~B2!

~B3!

and

~B4!

Then if
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ŝ[
1

~p21!!
ŝi ••• je

i ••• j , ~p21!2form,

r̂[
1

p!
r̂ k••• le

k••• l , p2form,

and

a5e0` ŝ1 r̂ , ~B5!

we have

* ~e0` ŝ1 r̂ !5
1

~p21!!
ŝi ••• j* e0i ••• j1

1

p!
r̂ k••• l* ek••• l5e0` *̂ r̂ 1 *̂ ĥ ŝ. ~B6!

APPENDIX C: INTERPRETATION OF â AND ŷ IN EQ. (4.8)

Let

dṼ5Ṽ`â1 ŷ

be the decomposition~4.8! of the 2-formdṼ. Then according to Eq.~2.9! one has

~C1!

However, for the Levi-Civita connection one has in arbitrary coordinates

~LVg! i j 5Vi ; j1Vj ; i ~C2!

⇒

so that

~C3!

where

a:5¹VV ~C4!

is theacceleration fieldcorresponding to the observer fieldV; thus

â5g~a,• ![ã. ~C5!
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The 2-form yˆ: According to the Frobenius theorem,ŷÞ0 means the nonintegrability of thehori-
zontal ~3-space! distribution. This can also be rephrased as the impossibility of the synchron
tion of the clocks within the 3-space for the observers moving alongV. Indeed, let

t:U→R

be a time function~coordinate! in a 4-regionU, synchronized for any two nearby space-relat
points, i.e.,

~1! Wt50 for any horizontalW ~t is constant along the instantaneous 3-space!,
~2! Vt[x.0 ~time increases along any observer’s world line!.

Condition ~1! can also be rewritten as

05~hor W!t5^dt,hor W&5^hor dt,W&[^d̂t,W&

for any W, i.e.,

d̂t50 ~C6!

as a 1-form. According to Eq.~D 1!

05d̂t5dt2~Vt!Ṽ[dt2xṼ

or

Ṽ5cdt, c[x21.0. ~C7!

Then

dṼ5dc`dt5
dc

c
`cdt5Ṽ`S 2

dc

c D5Ṽ`S 2
d̂c1~Vc!Ṽ

c D 5Ṽ`S 2
d̂c

c D .

Comparison with Eq.~4.8! then gives

ŷ50, â52
d̂c

c
[2d̂F, c[eF. ~C8!

Thus ŷÞ0 is the obstacle for existence of a time functiont synchronized in 3-space and~if ŷ
50! F:5ln c is the ‘‘ gravitational potential’’ ( Ref. 6, p. 33).

APPENDIX D : THE PROOFS OF EQS.(4.10) AND (4.12)

Let b̂ be any spatial form, i.e.,i Vb̂50; then

so that onspatial forms

db̂5Ṽ`LVb̂1d̂b̂. ~D1!

Then on ageneralforms a,
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da5d~Ṽ` ŝ1 r̂ !5dṼ` ŝ2Ṽ`dŝ1dr̂

5~Ṽ`â1 ŷ!` ŝ2Ṽ`~Ṽ`LVŝ1d̂ŝ!1Ṽ`LVr̂ 1d̂r̂

5Ṽ`~LVr̂ 2d̂ŝ1â` ŝ!1~ d̂r̂ 1 ŷ` ŝ!, ~D2!

where all forms in the brackets are already spatial.
The computation ofd̂d̂: for arbitrary horizontal formb̂

~D3!

since

~D4!

APPENDIX E: THE VOLUME EXPANSION COEFFICIENT u

According to Eq.~4.2!

v[* 15Ṽ` *̂ 1[Ṽ`v̂,

wherev̂[ *̂ 1 is thespatial volume form. The standard definition of thevolume expansioncoef-
ficient u is ~Ref. 6, p. 9!

u:5V;m
m [¹•V[div V. ~E1!

Since

LVv5~div V!v[uv

one can write

uv5Ṽ`~uv̂!5LVv5~LVṼ!`v̂1Ṽ`LVv̂5~cf. Appendix C!5â`v̂1Ṽ`LVv̂.

The first term vanishes~spatial 4-form!, LVv̂ is spatial~the end of Appendix D! so that

LVv̂5uv̂, ~E2!

which means thatu is the rate of change of3-volumesalong the observer’s word lineg ~with ġ
5V!. As an exampleLV(rv̂)5(Vr1u)v̂ @see Eq.~6.10!#.

APPENDIX F: THE IDENTITIES RESULTING FROM dd 50

Applying d on the decomposition~4.8! and using~4.10! one obtains

05ddṼ5dṼ`â2Ṽ`dâ1dŷ5Ṽ`~LVŷ2d̂â!1~ d̂ŷ1 ŷ`â!
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so thatâ and ŷ are always related by

d̂â5LVŷ, ~F1!

d̂ŷ52 ŷ`â. ~F2!

In particular, forŷ50 we get

d̂â50. ~F3!

From Eq.~C8! we even know that

â52d̂F ~F4!

in this case.
Applying dd50 on a spatial formr̂ and taking into account Eqs.~F1! and ~F2! we obtain

another useful identity:

@LV ,d̂#52â`LV on V̂~M ! ~F5!

@this shows that ‘‘time’’ derivativeLV and ‘‘space’’ derivatives hidden ind̂ do not commute in
general; they do commute, however, for the geodesic observer field (â50)#.

APPENDIX G: FORMAL LINKS WITH THE THEORY OF CONNECTIONS ON PRINCIPAL
BUNDLES

The formulation used in this article resembles in many respects the theory of connectio
principal bundles.5 There is a~right! actionRg of a Lie groupG on the total spaceP, if we set
G[(R,1), P[M ~globally one needsV to becompletefor this! and the action is identified with
the flow generated byV. The difference is, however, that the horizontal distribution here isnot G
invariant in general: sinceṼ is the counterpart of theconnection formv—both define the hori-
zontal distribution via annihilation—and the group is one dimensional, the~R,1! invariance
meansLVṼ50. But

LVṼ 5
~C3!

âÞ0 in general ~G1!

@thus forgeodesic~[nonaccelerating! observer field thereis in fact R connection available#.
Many formulas here are very similar to those in the connection theory, e.g.,

d̂b̂5db̂2Ṽ`LVb̂ ~G2!

@cf. Eq. ~D1!# is the counterpart of the standard formula valid for the computation of thecovariant
exterior derivative of the horizontal forma of type r, viz.

Da5da1r8~v!`̇a, ~G3!

wherev is the connection form,r a representation ofG. To see this more explicitly, one has t
notice that the forms of typer satisfy

Lj i
a52r8~Ei !a ~G4!

(j i[jEi
being the fundamental field corresponding to the basis elementEi of the Lie algebraG of

G! and consequently
J. Math. Phys., Vol. 38, No. 9, September 1997
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r8~v!`̇a5v i`r8~Ei !a52v i`Lj i
a ~G5!

or

Da5da2v i`Lj i
a. ~G6!

This formula is valid forall horizontal forms on the principal bundle~not only of typer!. For the
one-dimensional group~as is the case here! we have exactly the form~G2!.

In the same way one can see the similarity of

d̂d̂b̂52 ŷ`LVb̂ ~G7!

@Eq. ~4.12!# with the standard formula

DDa5r8~V!`̇a[V i`r8~Ei !a, ~G8!

whereV, the curvature 2-form, is the counterpart of ourŷ: both encode the~non!integrability of
the horizontal distribution and consequently both are computed by the same rule, viz.

ŷ:5hor dṼ[d̂Ṽ vs V:5hor dv[Dv.

The counterpart of theBianchi identity DDv50 is

d̂d̂Ṽ5d̂ŷ 5
~F2!

2 ŷ`â.

This is not zero in general, but itis zero for â50, whenṼ doesdefine a connection.

APPENDIX H: THE MAXWELL EQUATIONS IN THE STANDARD VECTOR ANALYSIS
NOTATIONS

We use the standard three-dimensional Euclidean space relations@cf. the definitions in Eq.
~6.2!#

Ê5E–dr , B̂5B–dS, ĵ 5 j–dr , ŷ5y–dS, â5a–dr ,
~H1!

*̂ Ê5E–dS, *̂ B̂5B–dr , *̂ ĵ 5 j–dS, *̂ ŷ5y–dr , *̂ â5a–dS,

ŷ` *̂ B̂5~y–B!v̂, â` *̂ B̂5~a3B!–dS, â` *̂ ĵ 5~a–j !v̂,

ŷ`Ê5~y–E!v̂, â`Ê5~a3E!–dS.

One can then introduce curl and div operations according to

d̂Ê5:~curl E!–dS, ~H2!

d̂*̂ Ê5:~div E!v̂, ~H3!

and consequently,

d̂B̂5:~div B!v̂, ~H4!

d̂*̂ B̂5:~curl B!–dS. ~H5!
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These definitions guarantee the validity of ‘‘standard’’ integral formulas like

R
]D

E–dS5E
D

~div E!v̂, ~H6!

R
]S

B–dr5E
S

~curl B!–dS ~H7!

as a consequence of the ‘‘spatial’’ Stokes formula~4.6!. Then from Eqs.~6.7a!–~6.10! we obtain

div E1y–B54pr, ~H8!

~curl B!–dS2LV~E–dS!2~a3B!–dS54p j–dS, ~H9!

~curl E!–dS1LV~B–dS!2~a3E!–dS50, ~H10!

div B2y–E50, ~H11!

and

LV~rv̂!1~div j !v̂2~a–j !v̂50 ~H12!

or ~cf. Appendix E!

Vr1ur1div j2a–j50 ~H13!

as well as the corresponding integral versions

R
]D

E–dS54pE
D

rv̂[4pQ , ~H14!

R
]S

B–dr2
d

dtU
0
E

Ft~S !
E–dS2E

S

~a3B!–dS54pE
S

j–dS, ~H15!

R
]S

E–dr1
d

dtU
0
E

Ft~S !
B–dS2E

S

~a3E!50, ~H16!

R
]D

B–dS50, ~H17!

and

d

dtU
0
E

Ft~D !
rv1 R

]D

j–dS2E
D

~a–j !v̂50. ~H18!

In the simplest situation, i.e., for irrotational~y50!, geodesic~a50! observer fieldV ~then V
5] t , Ṽ5dt! we get

div E54pr, ~H19!

~curl B!–dS2L] t
~E–dS!54p j–dS, ~H20!
J. Math. Phys., Vol. 38, No. 9, September 1997
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~curl E!–dS1L] t
~B–dS!50, ~H21!

div B50, ~H22!

and

] tr1ur1div j50. ~H23!

APPENDIX I: THE EQUATIONS d a5b AND da5g FOR IRROTATIONAL OBSERVER
FIELD

Let V be anirrotational ( ŷ50) observer field. Then@cf. Eq. ~C 8!#

â52d̂F, F[ ln c, Ṽ5cdt, V5c21] t ~I1!

~eF[c—lapse function, cf. Ref. 10!. Let us study the equation of the structure

da5b. ~I2!

If

a↔S ŝ
r̂ D , b↔S Ŝ

R̂D , ~I3!

we have

S 2d̂1â LV

0 d̂
D S ŝ

r̂ D5S Ŝ

R̂D ~I4!

or

~2d̂1â!ŝ1LVr̂ 5Ŝ, d̂r̂ 5R̂. ~I5!

Now

~2d̂1â!ŝ52d̂ŝ2d̂F` ŝ52e2Fd̂~eFŝ!,

LVr̂ 5e2FL] t
r̂

so that we obtain

2d̂~eFŝ!1L] t
r̂ 5eFŜ, d̂r̂ 5R̂. ~I6!

Thus we have the simple rule: The acceleration termâ52d̂F manifests itself only through the
replacement

ŝ°eFŝ[c ŝ, Ŝ°eFŜ[cŜ ~I7!

of the upper components of Eq.~I3! ~the lower ones being unchanged! in the corresponding
equations withâ50, i.e., in

2d̂ŝ1L] t
r̂ 5Ŝ, d̂r̂ 5R̂. ~I8!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The similar analysis repeated for the equation

da5g

where

g↔S G

R
D ~I9!

shows that the replacement to be performed in the corresponding equations withâ50 is

r̂ °eF r̂[c r̂ , R°eFR[cR, ~I10!

i.e., only thelower components do change now.
For the case of the Maxwell equations~6.14!, ~6.8!, and the continuity equation~6.9! it results

in the replacements

Ê°eFÊ[cÊ, r°eFr[cr ~I11!

in the homogeneouspair ~r is, however, trivial since it is not present there!,

B̂°eFB̂[cB̂, ĵ °eF ĵ [c ĵ ~I12!

in the inhomogeneouspair and

ĵ °eF ĵ [c ĵ ~I13!

in the continuity equation, i.e., the equations forâ52d̂F read ~cf. Ref. 10, pp. 18–19 and
Appendix H here!

d̂*̂ Ê54prv̂, d̂*̂ ~eFB̂!2L] t*̂ Ê54p *̂ ~eF ĵ !, ~I14!

d̂~eFÊ!1L] t
B̂50, d̂B̂50, ~I15!

and

L] t
~rv̂!1d̂*̂ ~eF ĵ !50. ~I16!
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On a first integral of the Kepler problem
Maria Dina Vivarelli
Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italia

~Received 7 April 1997; accepted for publication 30 April 1997!

A quadratic first integral of the Kepler problem, obtained by Benenti~‘‘Orthogonal
separable dynamical systems,’’5th International Conference on Differential Ge-
ometry and its Applications, 24–28 August 1992, Silesian University at Opava!
through separation in elliptic coordinates, is shown to be intimately connected with
the pre-quantization of the Kepler manifold, thus acquiring a physical interpreta-
tion. © 1997 American Institute of Physics.@S0022-2488~97!02609-1#

I. INTRODUCTION

It is well known that in the Euclidean 3-space the only autonomous Hamiltonian of the
H5T1V that admits a conserved Laplace–Runge–Lenz vector is the classical Kepler pr
Hamiltonian,

H5~p,p!/22K2r 21, ~1!

where~,! denotes the standard scalar product,p the canonical momentum vector,K a dimensional
constant, andr the distance of the particle of unit mass from a fixed point in the Euclidean sp

Recent investigations by Benenti1 show how the Laplace–Runge–Lenz vector is intimat
connected with the separation in elliptic coordinates. By separation of variables on a Euc
n-space with metric tensorgi j is meant the existence of a coordinate system (qi) that allows us to
find an additive complete integralS5( i 51

n Si(q
i ;c1 ,c2 ,...,cn) for the geodesic Hamilton–Jacob

equationH5 1
2g

i j (]S/]qi)(]S/]qj )5E.
One of the constants of integrationci is the mechanical energy~usuallyc15H5E!.
Separability is related to the existence of Killing vectors~linear first integrals! and of Killing

tensorsK of order 2 ~quadratic first integrals!. As for Killing tensors, for symmetric tenso
productsù of Killing tensors and for orthogonal elliptic Staeckel systems we refer to the Ap
dix. Here we just recall that the Killing tensorK for theelliptic–hyperbolic Staeckel systemin the
Euclidean plane with focusesF15(2c,0) and F25(c,0) is expressed byK5R1ùR2

5@v,r1#ù@v,r2#, wherer i( i 51,2) is the distance of the moving particle from the focusFi so
that 2c5uF1F2u and v is the unit rotation in the plane. The curvesr i5const given by the
eigenvalues ofK , r1522c21 1

2(r 12r 2)2, r2522c21 1
2(r 11r 2)2, define the orthogona

elliptic–hyperbolic separable coordinatesq15r 11r 2 , q25r 12r 2 .
Benenti has shown in Ref. 1 that a nongeodesic Hamiltonian,

H5 1
2g

i j pipj1V,

with potentialV compatible with an orthogonal separation of variables, that isK–dV5dŨ, admits
~besidesc15H5E! the quadratic first integral c2 in involution:

c25 1
2K

i j pipj1Ũ. ~2!

Then a nongeodesic Hamiltonian with the most general bicentered symmetric potential,

V5V~r 1!1V~r 2!5a0~r 1
21r 2

2!1
a1

r 1
1

a2

r 2
~a iPR! ~3!
0022-2488/97/38(9)/4561/9/$10.00
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~which is compatible with an elliptic–hyperbolic separation in the plane with focusesF1ÞF2!
admits the quadratic first integral~2!, given explicitly by

c25v–K–v1Ũ5~@r1 ,v#,@r2 ,v# !1Ũ, ~4!

wherev is the particle velocity vector.
Thus Benenti, after introducing the vector

a5F22F15r12r2 , ~5!

so that

Ũ52a1~a,r 21r1!, ~6!

shows, from~1! and~3!, that theKepler problem(a05a250) is integrable in elliptic–hyperbolic
coordinatesand admits the quadratic first integral~4!, given explicitly by

c25@r1 ,v#22~a,A!, ~7!

where the vector

A5†v,@r1 ,v#‡1
a1

r 1
r1 , ~8!

coincides with the celebratedLaplace–Runge–Lenz vector.
Thus, by Benenti’s aforementioned procedure—based on the intrinsic geometrical cha

ization of the orthogonal separation in terms of Killing tensors—the Laplace–Runge–Lenz v
is derived as a particular ‘‘constituent’’ of the quadratic first integralc2 in ~7!.

In the present paper—by a completely different procedure—and as an outcome of our pr
ous works,2–9 we derive the integralc2 directly from the Laplace–Runge–Lenz vector. Precise
in the spirit of the unified rotodilatation approachpresented in Ref. 8 for the Kepler problem, aft
the following.

~a! Deriving a simple quaternion expression for the Laplace–Runge–Lenz vectorV that
suggests the introduction of the focus vectorV* .

~b! By extending, by means ofV andV* , theprequantizationof the negative energy surfac
of the Kepler problem~Kepler manifold!, notoriously diffeomorphic to the symplectic product
two 2-spheres,

we show how the integral c2 stems directly from the prequantization of the Kepler manifo
In this approach the integral c2 is intimately connected with the radius of the 2-spheres and t
acquires a physical interpretation.

II. THE PECULIAR ROTO-DILATATION K˜x 5qq *
For clarity’s sake we recall, in the unified roto-dilatation spirit of Ref. 8, the main result

our notes2–9 concerning the classical three-dimensionalKepler problem, symplectically described
by the Hamiltonian system@(R32$0%)3R3,dQ,H#, where the symplectic phase space manif
(R32$0%)3R35$x,yux,yPR3;xÞ0% is endowed with the canonical symplectic 2-formdQ
5d(y–dx) and the flow of the HamiltonianH5 1

2y
22K2r 21 is obtained by integration of the

Hamiltonian equations,

ẋ5y, ẏ52K2r 23x S •[ d

dt
, r 5uxu D , ~9!

which correspond to the Newtonian equations in the EuclideanconfigurationspaceR32$O%:
J. Math. Phys., Vol. 38, No. 9, September 1997
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ẍ1K2r 23x50, ~10!

and where

x5r r ~11!

represents theposition vectorx of the Keplerian particle of unit mass with respect to the fix
attractive pointO, the unit vectorr pointing in the radial direction, fromO toward the particleP.

In Ref. 8 we have first regarded the vector decomposition~11! as thepeculiar roto-dilatation
K→x, given by the composition of an active rigid rotationK→r, which carries the third unit
vectorK of a fixed orthonormal reference frame$O,I ,J,K % onto the unit radial vectorr, and a
radial dilatation by the scale factorr (t).

Second, we have shown how the compound roto-dilatationK→x yields all theconstants of
the Kepler motion, i.e., the following.

~a! The angular momentum vectorG5@x,y# of constant modulusG, whence in the standard
plane polar coordinate system$O,r (u),t (u)% the position vector decomposition~11! acquires the
standard polar expression:

x5r r5
G2K22

11e cosu
r, ~12!

wheree is the eccentricity of the conic orbit with focus atO and reference line (u50) given by
the pericentric fixed unit vectoru05r(0). By up/2 we denote the fixed orthogonal unit vector
the oriented$r,t% plane. When the particle satisfies the plane Kepler motion~12!, the frame
$O,r,t % rotateswith angular velocityu̇5Gr 22, and the two fixed unit vectors are given expli
itly by

u05cosur2sin ut, up/25sin ur1cosut, ~13!

where cosu5(G2K222r)(er)21, sinu5(G2K22ṙ)(eG)21.
~b! The pericentric Laplace–Runge–Lenz vector,

V[Vu05K2eu05@ ẋ,G#2K2r 21x, ~14!

obtained from~13!, together with the constant vectorD[Dup/25K2eG21up/2 , which gives the
position of the center of Hamilton’s hodograph~velocity circle ẋ5D1R, with radius vectorR
5K2G21t!.

~c! The energy E:

E5
1

2
uẋu22

K2

r
5~V22K4!D2~2V2!21, ~15!

which expresses the trigonometric condition sin2 u1cos2 u51 for the proper rotation matrix ele
ments in~13!.

The compound roto-dilatationK→x, which rotates the unit vectorK about the originO and
stretches it by the radial distance factorr , has asimple quaternion descriptiongiven by x
5r (MK M̄ )5CK C̄, where C̄ is the conjugate of the quaternionC5C01C1I1C2J1C3K
5ArM , M being the unit quaternion in the real algebra of quaternionsh which characterizes the
rotation inR3 aboutO. By choosing the correspondenceC↔q ~given explicitly byC0↔2u4 ,
C1↔u2 , C2↔u3 , C3↔u1! between the quaternionC and the quaternionq5u11u2i 1u3 j
1u4k with anti-involute q* 5u11u2i 1u3 j 2u4k and such thatqq̄5r , we have found that
CKC̄5qq* , whencewe have expressed the roto-dilatationK→x in the simple quaternion form
J. Math. Phys., Vol. 38, No. 9, September 1997
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x5qq* , ~16!

which is the product of a quaternion and its anti-involute.
The instantaneous angular velocityV52Ṁ M̄ , of the rotationK→r satisfies

~V,r!52Ṁ0M31Ṁ1M22Ṁ2M11Ṁ3M050,

which we have simply written as

qq̇* 5q̇q* , ~17!

and thevelocity vectorẋ, by derivation of~16! with respect to time, acquires the quaterni
expression

ẋ52qq̇* , ~18!

whence

~ ẋ,x!5r ~ q̇q̄1qqG !, uẋu254rq̇qG . ~19!

In the Appendix we report the link between the relation~16! and the so-called regularizing KS
map devised for the Kepler problem. We just notice here that the kinematical relation~17! gives
the physical interpretation of the KS bilinear relation.

Finally we briefly recall that, in Ref. 9, by a symmetrization procedure applied to the qu
nion equations of the Keplerian conic orbits, we have found that~16! leads directly both to the
~Levi-Civita! time transformation,

ds5r 21 dt S or
d

ds
5

rd

dt D , ~20!

and to thepeculiar quaternion transformationthat associates to each quaternionqPh the quater-
nion tPh defined by

q85vt S 85
d

ds
; q,tPhD , ~21!

where the prime denotes derivation with the fictitious times and where

2v252E. ~22!

III. THE LAPLACE–RUNGE–LENZ VECTOR IN QUATERNION FORM. THE
APOCENTRIC FOCUS VECTOR V*

We now present a simple quaternion expression for the Laplace–Runge–Lenz vector~14!.
By ~20!, or q̇5r 21q8, we find that the velocity vector~18! becomes

ẋ52r 21qq
*
8 , ~23!

and from~19! that

~ ẋ,x!5q8q̄1qq̄8, uẋu254r 21q8q̄8. ~24!

Now, G5@x,ẋ# and for alla, b, c P R3, †a,@b,c#‡5(a,c)b2(a,b)c. Thus, we write the Laplace
vector V given by ~14! as V5uẋu2x2( ẋ,x) ẋ2K2r 21x. But from ~15!, uẋu2x2K2r 21x52Ex
1K2r 21x, whence
J. Math. Phys., Vol. 38, No. 9, September 1997
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V52Ex1K2r 21x2~ ẋ,x!ẋ. ~25!

The last term in~25! is, by ~23! and ~24!, (ẋ,x) ẋ52q8q
*
8 12r 21qq̄8qq

*
8 being

r 5qq̄5q̄q. ~26!

Owing to the propertiesa5a* , (bc)* 5c* b* and to ~16! and ~24!, we have that
qq̄8(qq

*
8 )5qq̄8(q8q* )5(q̄8q8)qq* 5(q8q̄8)qq* 5(q8q̄8)x5r uẋu2421x ~where the scalarq̄8q8

5q8q̄8 is the norm ofq8!. Thus, by collecting these results, we write~25! in the form

V5Ex22q8q
*
8 1@E1~K2r 212uẋu2221!#x5Ex22q8q

*
8 , ~27!

the term between the square brackets being a null vector by the definition~15! of E.
Finally, by ~16!, ~21!, and~22! we find that~27! yields

V522v2~qq* 1tt* !, ~28!

which is the simple quaternion expressionfor the Laplace vectorV.
Now, this particular expression suggests we introduce the vector

V* [2
V

2v2 5qq* 1tt* 5x1tt* . ~29!

The vector V* is an apocentric vector with the norm, according to~14!, given by V*
5K2e(2v2)21. For theelliptic Kepler orbits, having the negative energy 2v252E notoriously
related to the length 2a of the major axis by the formula

2v252E5K2~2a!21, ~30!

the norm of the vectorV* is

V* 52ae. ~31!

But 2ae expresses exactly the distance between the twofocusesof the ellipse, sayFe

5(2ae,0) and Fa5(ae,0). Thus, in the case of elliptic orbits the vectorV* represents the
position vector of theempty focus Fe with respect to theattractive focusFa , i.e.,

V* 5Fe2Fa . ~32!

Hencewe shall callV* the ~apocentric! focus center.
Remark:SinceO5Fa , the position vectorx5P2O of the particleP in the elliptic Kepler

motion allows, by~32! and ~29!, the following vector decomposition:

V* 5$~P2Fa!1~Fe2P!%5x1tt* .

By this decomposition we gaina physical interpretation for the vector quaternion tt* : while
qq* 5x5P2Fa denotes the particle position vector~with respect to theattractive focus Fa!,
tt* 5Fe2P52xe denotes theopposite of the particle position vector~with respect to theempty
focusFe!. Summarizing, we may write

V* 5x2xe .
J. Math. Phys., Vol. 38, No. 9, September 1997
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IV. THE PREQUANTIZATION OF THE KEPLER MANIFOLD
AND THE FIRST INTEGRAL c 2

The velocity vector~23!, by inserting~26! and the anti-involute of~21!, or q
*
8 5vt* , be-

comes

ẋ52v~qq̄!21qt* , ~33!

and the angular velocity, by inserting the anti-involute ofq̇5r 21q85r 21vt in ~17!, satisfies

qt* 5tq* . ~34!

The kinematical expressions~33! and ~34! provide the natural extension of the quaternion tra
formation q→x given by ~16! onto the quaternion transformation (q,t)→(x,ẋ5y) in the full
phase space of the Kepler problem.

If B denotes the set of quaternion couples (q,t) in (h2$0%)3h satisfying~34!, i.e.,

B5$~q,t !uqP~h2$0%!, tPh, qt* 5tq* %,

the extended quaternion transformation in the full phase space of the Kepler proble
B→(R32$0%)3R3:

x5qq* , y5
2v

qq̄
qt* . ~35!

The result~35! coincides with the one we have already presented, in adifferentway, in Ref.
3. Thus, let us summarize here one of its important consequences—the prequantization
Kepler manifold—referring to Ref. 3 for more details.

The quaternion relationx5qq* , unaffected by the quaternion gauge transformat
q→qekf5q(cosf1k sinf), maps the set ofunit quaternions~the real unit 3-sphereS3

5$quu1
21u2

21u3
21u4

251%! onto the real unit 2-sphereS25$xux1
21x2

21x3
251%, the whole

circle S15$qekf% of unit radius ofS3 being mapped onto a single point ofS2.
This quaternion Hopf fiberingS3→S2 allows the prequantization of the symplectic manifo

S2, i.e., the construction of the principalS1-fiber bundle(S3,S2,S1,p) with the projectionp given
by ~16!.

Notice that the prequantization ofS2 depends in an essential manner on theparticular ex-
pression of the projectionp. Thus, owing to the different expressions of the two relations in~35!,
an extension to the symplectic product manifoldS23S2 with product projection given by~35!
requires the introduction of a suitable diffeomorphism on the spaceB so that both the relations ar
of the typebb* , for bPh. The finding of such a diffeomorphism has been inspired by
physical statement.

For each fixed negative energyE, the four-dimensional compact manifold of all classic
isoenergetic elliptic orbits~the Kepler manifold! is diffeomorphic to the symplectic productS2

3S2 of two 2-spheres of radiusK2, characterized, respectively, by the two vectors

x̃5V1A22EG, ỹ5V2A22EG, ~36!

with norm ux̃u5uỹu5K2.
By substituting into~36! the quaternion expressions forV and G, we have shown thatx̃

52v2(q1tk* )(q1tk* )* , ỹ52v2(q2tk* )(q2tk* )* . Thus, the diffeomorphism on
B:(q,t)→(q̃, t̃), given explicitly by q̃5&v(q1tk* ), t̃5&v(q2tk* ), suggests that both ex
pressions~35! should be written as the product of a quaternion and its anti-involute, i.e., intro
the coordinate mapp̃:(q̃, t̃)→( x̃,ỹ) defined byx̃5q̃ q̃ , ỹ5 t̃ t̃ . Since the map squares th
* *
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norms, it follows that theprequantization of the negative-energy manifoldS2
K23S2

K2

5$( x̃,ỹ)uux̃u5uỹu5K2%, is given by the manifoldS3
K3S3

K5$(q̃, t̃ )uu q̃ u5u t̃ u5K% with projec-
tion p̃.

Now the prequantization of the Kepler manifold and the introduction of the new focus v
V* allow us to obtain the integral c2 presented by Benenti.

In fact, owing to the orthogonality of the two vectorsV and G appearing in~36! and that
characterize the radius of each sphereS2

K2, we can write the norm relation

ux̃u25uỹu25V21~22E!G2,

or, equivalently, by~22!:

K45V214v2G2. ~37!

The scalar factor 4v2 reminds us of the norm (2v2)21V of the apocentric focus vectorV*
defined for the elliptic Kepler orbits. Hence we divide~37! by 2v2, obtaining the scalar expres
sion

K4

2v2 5
V

2v2 V12G2,

which we interpret in vector notationas

K4

2v22G25~G,G!2~V* ,V!. ~38!

The expression~38! relates the radiusK2 of the symplectic 2-sphere to the characteristic vect
G, V, V* of the negative-energy Kepler orbit manifold.

Finally, by defining the scalar

c2[
K4

2v22G2, ~39!

we find that~38! becomes

c25~G,G!2~V* ,V!, ~40!

which coincides exactly with the quadratic first integral (7) obtained by Benenti.
Thus—by way of our roto-dilatation and prequantization procedure—we not onlyrecover the

quadratic first integral c2 given by Benenti, but also we presenta physical interpretation since the
expression (39) shows explicitly the link between c2 and the radius K2 of the symplectic 2-sphere
that characterize the Kepler manifold of elliptic orbits with fixed energy2v2.

V. CONCLUDING REMARKS

The construction of the quadratic first integralc2 for the Kepler manifold comes naturall
from the three-dimensional roto-dilatation approach combined with the prequantizing quate
extensions.

The relationship between this approach and the one by Benenti in terms of Killing tenso
together with the results by Perelemov,10 the subject of our further investigations.

Let us conclude by writing~39! in a different way. SinceV5†y,@x,y#‡2K2r 21x, 2V* 1x
5xe , (G,G)5(@x,y#,@x,y#) and (a,@b,c#)5(c,@a,b#), we rewrite~38! as
J. Math. Phys., Vol. 38, No. 9, September 1997
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K4

2v22G25~@x,y#,@xe ,y# !1K2~1V* ,r 21x!,

where bothx andxe appear and where ifK252a1 , the last term is Benenti’s scalar functionŨ
given by ~6!.

Thus, if we ‘‘fill’’ the empty focus and setŨ5(V* ,a2r 2
21xe2a1r 21x), we recover Benen-

ti’s expression~4! for the quadratic first integral in the field of two Newtonian centers of attr
tion.
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APPENDIX: KILLING TENSORS AND KS MAP

Killing tensors.If a first integralF of a geodesicHamiltonianH5 1
2g

i j pipj is expressed as a
homogeneous polynomial function of degreek of the momenta (pi), or F
5(1/k!)Ki 1••• i kpi 1•••pi k

, then the coefficientsKi 1••• i k define the components of a contravaria
symmetric tensor, the Killing tensorK of orderk ~see Refs. 11–14!.

Stäckel15 has shown that in an orthogonal separable coordinate system (qi), gi j 50 for i
Þ j , the first integrals in involution with respect to the Poisson bracket are quadratic polyno
in the momenta (pi), thus defining Killing tensors of order 2.

In a Stäckel system (K1 ,...,Kn) of n independent Killing 2-tensors in involution, possessi
n independent orthogonal eigenvectors in common, one may always takeK15(gi j )5g. Thus, for
n52, a Sta¨eckel system~g,K ! may be represented by the single tensorK . The two independen
eigenvaluesr1 andr2 of K define the orthogonal separable coordinates q15r2 , q25r1 . Here
we just recall thaton a Euclidean planeevery Killing tensorK is characterized by the symmetr
tensor product of two Killing vectorsK5RPùRQ , where the Killing vectorRP(x)5@v,x# rep-
resents the unit rotation about the fixed pointP in the plane~the symbol@,# denotes the standar
vector product; the unit vectorv is orthogonal to the plane andx is the position vector of a poin
in the plane with respect toP!.

The equationsr i5const given by the eigenvalues ofK define families of confocal conics with
focuses exactly at the singular pointsP andQ ~where the two eigenvalues ofK coincide!. As a
result, there arefour kinds of separable coordinates in the plane: elliptic–hyperbolic (PÞQ);
polar (P[Q); parabolic (P→`); Cartesian (P→`,Q→`).

A potential functionV is compatiblewith an orthogonal separation in a Sta¨ckel system if and
only if the one-formK–dV is closed, i.e.,d(K–dV)50 ~see Ref. 1, 16!.

The KS map.The equations of motion~10! of the classical three dimensional Kepler proble
develop a singularity when the particle falls into the center of attraction~collision for r 50!. This
singularity may be removed by the regularization procedure ofKustaanheimo and Stiefel (KS),17

which essentially relies on both theLevi-Civita time transformation: ds5r 21 dt ~or d/ds
5rd/dt! and on thecoordinate transformation(R42$0%)→(R32$0%): u→x given explicitly by
the KS map: x15u1

22u2
22u3

21u4
2, x252(u1u22u3u4), x352(u1u31u2u4) so that r

5Ax1
21x2

21x3
25u1

21u2
21u3

21u4
25uuu2 and ~bilinear relation! u4u̇12u3u̇21u2u̇32u1u̇4

50.
In our works2–7 we have presented aquaternion description of the KS mapobtained by

identifying the parametric spaceR4 of real vectors with the real algebra of quaternions,h, so that
q[u11u2i 1u3 j 1u4k ~with conjugate q̄[u12u2i 2u3 j 2u4k and anti-involute q* [kq̄k21

5u11u2i 1u3 j 2u4k! and by identifying the three-dimensional real subspaceh* 5 im$1,i , j %
5$xPh:x5x* % with the Euclidean spaceR35$x5xux5x11x2i 1x3 j ,x450%, so thatr 5uqu2

5qq̄.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The KS map becomesx5qq* , whence the singular equations~10! become the four regula
equationsu91v2u50, where85d/ds and 2v252E.
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15P. Stäckel, ‘‘Uber quadratische integrale der differentialgleichungen der dynamik,’’ Ann. Math. Pura Appl.26, 55–60
~1987!.

16S. Benenti and G. Rastelli, ‘‘Sistemi di coordinate separabili nel piano euclideo,’’ Mem. Accad. Sci. Torino15, 1–21
~1991!.

17P. Kustaanheimo and E. Stiefel, ‘‘Perturbation theory of Kepler motion based on spinor regularization,’’ J. Reine
Math. 218, 204–219~1965!.
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



ticles
of
tisfied.

ake,

ion
sical’’

initial
ooth
ne in
ns, for
d point
s in a
pera-

s. Nor

                    
Dynamics of Brownian particles in a potential
R. F. Streater
Department of Mathematics, King’s College, Strand, London, WC2R 2LS, England

~Received 27 January 1997; accepted for publication 9 June 1997!

Let f (x,t) be the density of a cloud of particles, andT(x,t) the temperature atx

PRd at timet. Let f̊ PL1(Rd)ùLp(Rd) andT̊, measurable uniformly positive and
exponentially bounded inRd, be given. We study the coupled system
] f /]t5divk(¹f 1 f ¹V/T), ]T/]t5k8 ]2T/]x21k¹V•(¹f 1 f ¹V/T), with ini-

tial data f (x,0)5 f̊ (x) andT(x,0)5T̊(x). We show that there is a unique solution
for small times if the conditionsp.d, ¹VPL` and DVPL` hold. © 1997
American Institute of Physics.@S0022-2488~97!02309-8#

I. INTRODUCTION

In Ref. 1 we suggested that the equation for the Brownian motion of a gas of par
travelling at their terminal velocity in a potentialV(x) should be supplemented by an equation
motion for the temperature field, so that the first and second laws of thermodynamics are sa
Thus a gas of Brownian particles falling in gravity should leave a trail of warm fluid in its w
since its potential energy is being converted into heat. We derived the equations

] f ~x,t !

]t
5divS k~x,T~x,t !!S ¹f ~x,t !1

f ~x,t !¹V~x!

T~x,t ! D D , ~1!

C
]T~x,t !

]t
5k8

]2t~x,t !

]x2
1k~x,T~x,t !!¹V~x! • S ¹f ~x,t !1

f ~x,t !¹V~x,t !

T~x,t ! D . ~2!

In general,C is a positive function ofx andT. The usual equation of Smoluchowski@Ref. 2, Eq.
~50!# is Eq. ~1! with k5T; the temperatureT is put constant; that is, the Smoluchowski equat
describes isothermal conditions. In this paper we shall concentrate on the model called ‘‘clas
in Ref. 1, whereC51 andk is independent ofx andT, but T is not constant.

The functionf (x,t) represents the probability density of finding a tagged particle atx at time
t, in the presence of a cloud of similar particles. There is then no reason to expect the
distribution to be smooth, so we first rewrite our equations in integral form, which in the sm
case are equivalent to the differential equations together with the initial conditions. This is do
Sec. 2. The proof of existence and uniqueness of solutions to the resulting integral equatio
small times, occupies Sec. 3. The method is to show that a solution of the equations is a fixe
of a certain integral transform, which is a contraction in a suitable metric space. This hold
small time interval, whose size depends on some power of the lower bound of the initial tem
ture and inversely on some power of the initialLp—norm of f , as well as on norms of¹V and
DV. No use is made of the existence of the conserved energy integral

E5E f ~x,t !V~x!dx1E T~x,t !dx, ~3!

which is easily shown to be constant in time. This expresses the first law of thermodynamic
do we use the existence of a Lyapunov function
0022-2488/97/38(9)/4570/6/$10.00
4570 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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S~ t !52E f ~x,t !log f ~x,t !dx1E log T~x,t !dx, ~4!

which is easily shown to increase in time except at a fixed point. This expresses the second
thermodynamics. It is to be expected that these laws will give prior estimates allowing
extend the existence of solutions to arbitrary time~under more smoothness assumptions on
initial data!. I have so far only been able to do this for the case of one dimension, in the sp
case whenk850. The difficulty is that the system of equations does not obey the usual Lips
condition atT50, because of the inverse power ofT occurring on the right-hand side. It follow
that in order to be able to use standard methods, we must show that the solution (f ,T) stays away

from T50 at every pointx. If the initial valuesT̊(x) are uniformly bounded away from 0, we ca
make a start, but since the right-hand side of Eq.~2! contains the possibly negative term¹V
•¹f , the solution might approachT50 at some pointsx as time goes by. The conserved quan
ties, the norm and the energy, put no lower limit onT, and the entropy involves only the integr
of log T, and does not easily yield pointwise lower bounds forT.

In the fully nonlinear case, when the capacityC and k depend onT, new methods will be
needed. In the original equation of Smoluchowski, withk5T, the reciprocal 1/T is cancelled out,
but the equation is no longer uniformly elliptic. Then even the local existence proof po
challenge.

II. INTEGRAL FORM OF THE PROBLEM

Let

Gk~x,t !5~2pkt !2d/2expS 2
uxu2

2kt D , ~5!

whereuxu25x1
21•••1xd

2. The integral form of Eqs.~1! and ~2! is

f ~x,t !5 f 0~x,t !1kE
0

t

dsE djGk~x2j,t2s!div~T~j,s!21¹jV~j,s! f ~j,s!!, ~6!

T~x,t !5T0~x,t !1kE
0

t

dsE djGk8~x2j,t2s!¹jV~j! • ~¹j f ~j,s!1T~j,s!21f ~j,s!¹jV~j!!.

~7!

Here,

f 0~x,t !5E Gk~x2j,t ! f̊ ~j!dj, ~8!

T0~x,t !5E Gk8~x2j,t !T̊~j!dj ~9!

are the free solutions with initial dataf̊ and T̊. See Ref. 3, p. 50 and p. 347, for proof of th
equivalence of the differential and integral forms in the smooth case. Equation~8! and Eq.~9! are
valid if

f̊ PL1ùLp, uT̊~x!u<C exp$auxu%, a,2, ~10!
J. Math. Phys., Vol. 38, No. 9, September 1997
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which we shall assume, since we shall see that the natural space for the solutionsf (x,t) at each
time is L1ùLp; to avoid the derivative on the density functionf we rewrite yet again by inte-
grating by parts and discarding the boundary terms; this gives

f ~x,t !5 f 0~x,t !2kE
0

t

dsE dj¹jGk~x2j,t2s!•¹V~j! f ~j,s!T~j,s!21 ~11!

T~x,t !5T0~x,t !2kE
0

t

dsE dj¹jGk8~x2j,t2s!•¹V~j! f ~j,s!

1kE
0

t

dsE djGk8~x2j,t2s!¹V~j!•¹V~j! f ~j,s!T~j,s!21

2kE
0

t

dsE djGk8~x2j,t2s!DV~j! f ~j,s!. ~12!

It is these equations that will be shown to have a unique solution for smallt. The idea of the
proof is to take the right-hand side as defining an operator acting on a small ball around th
solution, in a suitable metric space of pairs of functions, (f ,T), and to show that this operator i
a proper contraction. The contraction-mapping theorem4 p. 268, Theorem 3, then shows that the
is a unique fixed point of the operator; this fixed point is then a solution.

III. PROOF OF EXISTENCE AND UNIQUENESS

For any measurable functiong of d11 variables, and anyr>1, t1.0, put

igi r ,`5 sup
0<t<t1

S E
Rd

dxug~x,t !ur D 1/r

~13!

if finite, where sup is the essential supremum. Letf̊ , T̊ obey Eq. ~10! for some p.1; let
u5( f 1 ,T1) andv5( f 2 ,T2) wheref j andTj are measurable,j 51,2. Define a metric on the set o
pairs by

d~u,v !5i f 12 f 2i1,̀ 1i f 12 f 2ip,`1sup
t<t1

sup
xPRd

uT1~x,t !2T2~x,t !u, ~14!

if finite. Let u05( f 0 ,T0), where f 0 and T0 are given by Eq.~8! and Eq.~9!. Let BR be the
complete metric space of all pairsu5( f ,T) such that

d~u,u0!<R. ~15!

Then we see that forr 51 andr 5p we have

i f i r ,`5i f 2 f 01 f 0i r ,`<i f 2 f 0i r ,`1i f 0i r ,`<R1i f̊ i r ~16!

if uPBR , since the free time evolution is a contraction in allLr . In the same way, we can als
show that ifuPBR , thenT(x,t) is exponentially bounded inuxu for eachT, since this is a known
property of the free solutionT0 .3 However, it is more important to boundT(x,t) from below, in

view of the reciprocal that occurs in the equations. Let us say thatT̊ is uniformly positiveif there
existsd.0 such that

uT̊~x!u>d for all xPRd. ~17!
J. Math. Phys., Vol. 38, No. 9, September 1997
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It follows from the positivity ofG that if T̊ obeys Eq.~17!, then so doesT0(x,t) for any t. Then
if u5( f ,T)PBR we have

T~x,t !5T0~x,t !1~T~x,t !2T0~x,t !!>T0~x,t !2R>d/2 ~18!

if R is chosen less thand/2.
Define the operator onBR by Gu5(g,U) where

g~x,t !2 f 0~x,t !52kE
0

t

dsE dj¹jGk~x2j,t2s!•¹V~j! f ~j,s!T~j,s!21, ~19!

U~x,t !2T0~x,t !52kE
0

t

dsE djGk8~x2j,t2s!DV~j! f ~j,s! ~20!

1kE
0

t

dsE djGk8~x2j,t2s!¹V~j!•¹V~j! f ~j,s!/T~j,s!

~21!

2kE
0

t

dsE dj¹jGk8~x2j,t2s!•¹V~j! f ~j,s!. ~22!

Then our integral equations~11! and ~12! hold if Gu5u, that is,u is a fixed point ofG.
We shall need the following estimates; let 1/p11/q51. Then

E
0

t

dsiG~ t2s!iq5O~ t12d/~2p!!, p.d/2, ~23!

E
0

t

dsi¹G~ t2s!iq5O~ t ~12d/p!/2!, ~p.d! ~24!

and for any functionF and anyr>1,

S E dxU E
0

t

dsE dj¹Gk~x2j,t2s!F~j,s!U r D 1/r

<Ct1/2iFi r ,` . ~25!

The first two are elementary. So is the third! Let an asterisk denote the convolution in the
variable. Then

I E
0

t

ds¹G~ t2s!* F~s!I
r

<E
0

t

dsi¹G~ t2s!* F~s!i r<E
0

t

dsi¹G~ t2s!i1iF~•,s!i r

by Young’s inequality,5 p. 29,

<Ct1/2sup
s<t

iF~•,s!i r

by Eq. ~24! with q51 andp5`, which is Eq.~25!. We can now give our theorems, which a

proved under the assumption thatf̊ PL1(Rd)ùLp(Rd), p.d, T̊.d and is exponentially bounded
andR,d/2.

Theorem 1: For smallt1 , G mapsBR into itself.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Proof: Let Gu5(g,U). There are five terms iniGu2u0i ; two come from the one-norm an
thep-norm of the termg2 f 0 in Eq. ~19!, one comes from each of the lines~20! and~21! and one
comes from the line~22!. The last three terms contribute toU2T0 . For the first two, put
F5¹V f T21 in Eq. ~25!:

I E
0

t

dsE dj¹jGk~x2j,t2s!•¹V~j! f ~j,s!T~j,s!21I
r ,`

<sup
t<t1

Ct1/2i¹Vi`i f T21i r ,` by Eq.~25!

<Ct1
1/2i¹Vi`2/d~R1i f°i r ! by Eqs.~18! and~16!. ~26!

Putting r 51 andr 5p in turn gives the result that

ig2 f 0i1,̀ 1ig2 f 0ip,`5O~ t1
1/2!. ~27!

Now consider the term~20!; put q5p/(p21), andH5kDV; then by Hölder’s inequality and Eq.
~23!,

U E
0

t

dsE djGk8~x2j,t2s!H~j! f ~j,s!U<E
0

t

dsiG~•,s!iqiHi`i f ip,`

<Ct1
12d/~2p!i f ip,`

5O~ t1
12d/~2p!!~R1i f̊ ip! ~28!

by Eq. ~16!. The treatment of the term~21! is the same, withH5k¹V•¹V, giving

U E
0

t

dsE djGk8~x2j,t2s!H~j! f ~j,s!/T~j,s!U<Ct1
12d/~2p!i f /Tip,`

5O~ t1
12d/~2p!! by Eqs.~16! and~18!. ~29!

Similarly, from Eq.~24! we get for the term~22!

U E
0

t

dsE dj¹Gk8~x2j,t2s!•¹V~j! f ~j,s!U<Ct1
12d/pi¹Vi`i f ip,`5O~ t1

12d/p! ~30!

Putting these estimates together with Eq.~27! we see that ifp.d,

iGu2u0i5ig2 f 0i1,̀ 1ig2 f 0ip,`1iU2T0i`,`,R

if t1 is small enough. ThusG mapsBR into itself. h

Theorem 2: For small enought1 , G is a proper contraction onBR ; that is, there existsC,1
such that for allu1PBR , andu2PBR we have

iGu12Gu2i<Ciu12u2i . ~31!

Proof: Let u15( f 1 ,T1), u25( f 2 ,T2), and Guj5(gj ,U j ), j 51,2. Let us estimate
iGu12Gu2i . The calculation is similar to that given in theorem 1; we just replacef (j,s) by
f 1(j,s)2 f 2(j,s) where it appears without the factorT21, as in the inequalities~28! and~30!, and
we replacef (j,s)/T(j,s) by
J. Math. Phys., Vol. 38, No. 9, September 1997
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f 1~j,s!/T1~j,s!2 f 2~j,s!/T2~j,s!

in Eqs.~26! and ~29!. Note that forr 51 andr 5p,

i f 12 f 2i r ,`<iu12u2i

and that

I f 1

T1
2

f 2

T2
I

r ,`

< I f 1

T1T2
~T22T1!1

f 12 f 2

T2
I

r ,`

<4d22i f 1i r ,`iT22T1i`,`12d21i f 12 f 2i r ,`

<~4d22~R1i f̊ i r !12d21!iu12u2i .

These estimates then show thatG is a contraction for small enought1 , since they are multiplied
by O(t1

12d/p). h

If f̊ is non-negative, then so is the solutionf (x,t) in its range of existence; for, having solve
for T(x,t), a positive measurable function, we can apply the Gaussian lower bound of Ref
the full Greenian of the equation forf (x,t). Knowing that the solution is non-negative gives
immediate proof, on integrating Eq.~1!, that the time evolution conservesi f (•,t)i1 .
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A class of homogeneous nonlinear evolution equations
with stable, localized solutions in any dimension

G. Auberson
Laboratoire de Physique Mathe´matique et The´orique, UPRES-CNRS A 5032,
Universitéde Montpellier II, 34095 Montpellier Cedex 5, France

~Received 16 April 1997; accepted for publication 30 April 1997!

A new set of nonlinear evolution equations is introduced and studied. These equa-
tions derive from a local Lagrangian and are~i! homogeneous and~ii ! invariant
under the Galilei group or the Lorentz group~including time reversal!. Some of
them have confined solutions with a solitonlike behavior, irrespective of the space
dimension. Moreover, these solutions are shown to be stable against small and
localized perturbations. Another family of localized solutions is worked out, and
briefly discussed with regard to the elusive integrability properties of the new
equations. ©1997 American Institute of Physics.@S0022-2488~97!01609-5#

I. INTRODUCTION

A certain class of homogeneous, nonlinear evolution equations of the Schro¨dinger type were
introduced and first discussed in 1990 by Sabatier.1 Such equations were independently derived
Doebner and Goldin from group theoretical arguments2 and then extensively studied,2–7 including
a thorough classification of them.7 The main feature of these equations is the existence of local
solutions, irrespective of the space dimension. In fact, it turns out that such solutions appea
for a subclass of equations, which cannot be derived from a local Lagrangian. The stabi
those solutions was investigated in Ref. 5, with the result that none of them are stable. S
conclusions were arrived at in a further study dealing with relativistic extensions~scalar and
spinorial! of the previous equations.8 The instability phenomenon was therefore thought to
related in some way to their non-Lagrangian character.

In the present paper, we extend the set of homogeneous nonlinear evolutions~nonrelativistic
or relativistic! to include new Lagrangian equations. These equations will then be shown to
localized, stablesolutions~again in any dimension!. To this end, we shall have to accept strong
nonlinearities in the Lagrangian. Apparently, this is the price to pay in order to obtain poten
interesting solutions from the physical point of view within the class of homogeneous equa
Whether these solutions~or at least some of them! are ‘‘true’’ solitons or not remains to be
investigated, as well as the general mathematical properties~like integrability if any! of the new
set.

In Sec. II, we derive the general form of a Lagrangian generating homogeneous non
equations which are both Galilei and time reversal invariant. This is first done in the ‘‘Sc¨-
dinger’’ case. The generalization to relativistic versions is obtained by natural extensions. I
III we deal with some simple examples of equations of the type just introduced which have
localized solutions. Galilean~or Lorentz! boosts trivially transform these solutions into travellin
waves, which exhibit a solitonlike behavior. Their stability is established in Sec. IV. Section
an attempt to construct more ‘‘exotic’’ solutions. It is shown that certain equations of the g
type admit, besides solitary waves of constant velocity, uniformly accelerated localized w
Whether this is just a curiosity or the sign of a reacher structure of the set of confined soluti
still unknown. A few technical details are disposed of in three appendices.

II. HOMOGENEOUS EVOLUTION EQUATIONS DERIVING FROM A LAGRANGIAN

We first recall the general from of homogeneous, Schro¨dinger-like equations considered i
previous works~ignoring possible external potentials!:1–7
0022-2488/97/38(9)/4576/18/$10.00
4576 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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i
]c

]t
5a0Dc1Fa1

Dc*

c*
1a2S“c

c D 2

1a3S“c*

c* D 2

1a4U“c

c U2Gc. ~2.1!

Obviously these equations are invariant under global gauge transformations. They are als
reversal invariant provided that all coefficientsa j are real~in Refs. 2–4, 6, and 7, howeve
complexa j8s were allowed, albeit subjected to some interrelations!. Further, Galilei invariance
requires thata452(a11a3) ~this condition was assumed in Ref. 5!.

Equation~2.1! cannot be recast in a Euler–Lagrange form with a local Lagrangian, ex
when

a1522a2522a35a4 ~2.2!

@this may be seen, e.g., from Eq.~2.11! below#. With this strong restriction, it has been shown th
Eq. ~2.1! is also linearizable.5,7

On the other hand, permanently localized solutions of Eq.~2.1! exist in the only two following
situations:

a25a352a1 , a450, ua0u,ua1u, or
~2.3!

a25a35
1

2
a42a1 , a05a122a4 , a4Þa1 ,

and all these solutions are unstable against small perturbations.5

The incompatibility of the conditions~2.2! and~2.3! means that, within the class of equatio
~2.1!, localized solutions are never generated by a Lagrangian dynamics, a fact which mi
related to the instability of those solutions. This impels us to extend the class of equations
form (2.1)1(2.2), to look for possible localized solutions of them, and to study the stab
properties of the latter. Thus, our first aim in this section is to work out the generalLagrangian
dynamics expressed by equations of the form

i
]c

]t
5F~c,“c,Dc!c ~2.4!

which are~i! homogeneous,~ii ! time reversal invariant, and~iii ! Galilei invariant.
Condition ~i! demands thatF be invariant through the changec→lc(lPC), and automati-

cally implies global gauge invariance and conservation of the norm.
Condition ~ii ! states that Eq.~2.4! is invariant through the substitutionc(x,t)→c̃(x,t)

[c* (x,2t), which requiresF(c,“c,Dc)5F* (c* ,“c* ,Dc* ).
Finally, condition~iii ! means that Eq.~2.4! must be invariant under the full Galilei group

including the spatial rotations and the pure Galilean transformations:

c~x,t !→c̃~x,t ![ei ~vx2~1/2!v2t !c~x2vt,t ! ~2.5!

~notice that the choice of normalization in the phase simply fixes the scale of the variablesx and
t!. This will put further~more important! restrictions on the general form ofF.

To begin with, we remark that ifL(c,]c/]t,“c) is a Lagrangian generating Eq.~2.4!, its
dependence in]c/]t must be entirely contained in a term proportional to (c* ]c/]t
2c]c* /]t), in order to produce the lhs of that equation. Therefore, it may be written as

LS c,
]c

]t
,“c D5

i

2 S c*
]c

]t
2c

]c*

]t D1G~c,“c!, ~2.6!
J. Math. Phys., Vol. 38, No. 9, September 1997
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where the functionG must now be properly restricted to meet the requirements~i!–~iii ! above. To
derive its general expression is a rather straightforward matter which is sketched in Appen
with the result

G~c,“c!5
1

8
ucu2S“c

c
2
“c*

c* D 2

1ucu2LS u“ucuu
ucu D , ~2.7!

whereL is an arbitrary, real-valued function of one real variable.
In the following, it will be more convenient to use the modulus-phase representatioc

5reiu of the wave function, which gives the Lagrangian~2.6!1~2.7! the form

L52r2
]u

]t
2

1

2
r2~“u!21r2L~q! with q[

u“ru
r

. ~2.8!

Then the Euler–Lagrange equations of motion for the fieldsu(x,t) andr(x,t) are

]r2

]t
1] j~r2] ju!50, ~2.9!

2
]u

]t
1~“u!21

1

q
L8~q!

Dr

r
1

1

q S L8~q!

q D 8 ] jr

r

]kr

r

] j]kr

r
12qL8~q!2q2L9~q!22L~q!50,

~2.10!

where] j means]/]xj ~with the summation convention on repeated indices! and the dash is for
d/dq. Of course, Eq.~2.9! merely expresses the conservation of the usual Noether current
ciated with gauge invariance. In terms of the complex functionc, Eqs. ~2.9! and ~2.10! are
equivalent to

i
]c

]t
52

1

2
Dc1

1

2 F S 11
L8

q D Dr

r
1

1

q S L8

q D 8 1

r3 ] jr ]kr ] j]kr12qL82q2L922L Gc.

~2.11!

This is the set of equations of the type~2.4! we were looking for, parametrized by an arbitrary re
function L(q). The case considered in the beginning of this section just corresponds to a
function of q2,

L~q!5a1bq2, ~2.12!

for which Eq. ~2.11! reproduces Eqs. (2.1)1(2.2) ~up to the gauge transformationc→e2iatc!
with a05 1

2b2 1
4 anda15 1

2b1 1
4 ~the assigned value ofa0 is simply due to the choice of scale

b5 1
2 gives back the linear Schro¨dinger equation!. In the case of one space dimension, to be trea

first in the next section, Eq.~2.11! simplifies into

i
]c

]t
52

1

2

]2c

]x2 1
1

2 F ~L911!
]q

]x
12qL822L1q2Gc, q5

]

]x
Logucu. ~2.13!

Although the class~2.11! still admits all space–time symmetries of the class~2.1!, one has to
remark that an interesting property of the latter is now lost. Namely, it was stressed in Refs.
5 that all equations of the type~2.1! allow a separation of spatial variables~together with a
decoupling of the center-of-mass and relative motions in case the equations deal with a
particle system!. This is no longer true in general for Eq.~2.11!: enforcing such a property ther
J. Math. Phys., Vol. 38, No. 9, September 1997
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precisely restrictsL to be of the form~2.12!. We also notice that equations of the type~2.11! are
definitely not linearizable by alocal change of functions, except again whenL is of the form
~2.12!. This fact was already established in Ref. 5~see also Ref. 7!.

The relativistic extension of Eq.~2.11! is immediate, at least for areal, scalar fieldf. Indeed,
it suffices to observe that the Lorentz invariant version of the Lagrangian~2.6!1~2.7! is

L~f,]mf!5f2L~q!, q252
1

f2 ]mf ]mf, ~2.14!

where the usual relativistic notationsxm5(x05t,x), ]m5]/]xm and metricgmn5diag(1, 21,
21, 21) are used~we shall not write down equations for complexf, which may assume variou
forms becauseL can now depend onufu22]mf]mf* , f22]mf]mf, and c.c. without spoiling the
Lorentz and time reversal invariances!. Equation~2.14! yields the equation of motion

hf2
1

L8 F S L8

q D 8 1

f3 ]mf ]nf ]m]nf1q~2qL82q2L922L !Gf50 ~2.15!

(h[]0
22D). One notices the appearance of a ‘‘mixed term,’’ proportional to]mf ]nf ]m]nf. It

vanishes only ifL is of the form~2.12!, which here leads to the trivial, linear case, i.e., the f
Klein–Gordon equation withm25a/b. As Eq. ~2.15! is a partial differential equation~PDE! of
the second order in all variables, the question of its type naturally arises. Since it is mor
nonlinear, this type can be given a meaning only locally with respect tof. It is shown in Appendix
B that Eq.~2.15! is of hyperbolic type (1,2,2,2) wherever

q
L9~q!

L8~q!
.0. ~2.16!

Not too surprisingly, the condition~2.16! will reappear in our discussion of stability in Sec. IV

III. SOLITARY WAVES

Evidently, the nonlinear equations of the previous section admit plane wave solu
A exp i(kx2vt) with arbitrary amplitudeA. The dispersion laws have the standard forms

v~k!5 1
2k

22L~0! ~3.1!

for the nonrelativistic equation~2.11! and

v2~k!5k22q0
2 ~3.2!

for the complexified version of Eq. ~2.15! generated by L5ufu2L(q), q2

52ufu22 ]mf ]mf* . In Eq. ~3.2!, q0 must belong to the set of zeros ofL(q) ~with possibly
q0

2,0!.
We also expect more interesting solutions, like ‘‘bumps’’ and ‘‘kinks.’’ In this section,

concentrate on solitary waves with constant shape and constant travelling velocity. Taking
tage of Galilei or Lorentz invariance, one can set on their rest frame and look for solutions o
~2.11! and ~2.15! with (]/]t)ucu50 ~resp.]f/]t50!. Then, in the Schro¨dinger case, Eq.~2.9!
reads div@r(x)“u(x,t)#50 and, choosing firstu50, Eq. ~2.11! is equivalent to Eq.~2.10! with
]r/]t5u50. The same is true for Eq.~2.15! with staticf. Thus, in both cases, one has to find t
stationary solutions of the same equation~2.10! ~with u50!, wherer(x) may stand forf~x! as
well. In the case of one space dimension that we consider first, this equation becomes
J. Math. Phys., Vol. 38, No. 9, September 1997
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L8

q

rxx

r
1qS L8

q D 8 rxx

r
12qL82q2L922L50, q5

rx

r
. ~3.3!

It can be written in terms ofq(x) only:

L9~q!qx12qL8~q!22L~q!50, ~3.4!

which is now first order. Thus, givenL(q),r(x) is simply obtained by quadratures, and com
pletely fixed up to a factor and a spatial translation.

Among the simplest choices for the functionL are polynomials. Unfortunately, localize
solutions@i.e., such thatr(x)→0 asx→6`# will never be generated thereby, as was alrea
observed in the particular case of Eq. (2.1)1(2.2). To see that this is a general fact, we rewr
Eq. ~3.4! as

qx522q
P~q!

P8~q!
with P~q![L~q!2qL8~q!, ~3.5!

and notice that Eq.~3.5! in turn is equivalent to a simple functional relation betweenr andq:

P„q~x!…r2~x!5const. ~3.6!

This relation shows us that for a localized solution limx→` P(q(x))56`. With a polynomial
function P, this would require limx→` q(x)56`, whereas Eq.~3.5! would read asymptotically
qx.x→`constq2, henceq(x).x→`const/x, which is a contradiction.

Therefore, we need to enlarge the class of functionsL. Some simple, rationalL ’s already do
the job, but lead to solutions the explicit form of which is rather intricate. We prefer to give s
examples involving both algebraic and nonalgebraicL ’s, but with simple confined solutions:

L1~q!5A12q2 → q1~x!52tanh 2x, r1~x!5
1

Acos 2x
,

L2~q!512
q

2
ln

11q

12q
→ q2~x!52tanhx, r2~x!5

1

coshx
,

L3~q!5eq2
22qE

0

q

ds es2 → q3~x!52x, r3~x!5e2~1/2!x2
~ ‘ ‘gausson’’!,

L4~q!512
q

2
ln

q

22q
→ q4~x!5

e22x

cosh 2x
, r4~x!5

ex

Acosh 2x
~ ‘ ‘kink’’ !.

~3.7!

Several remarks are in order:

~i! The examples of Eq.~3.7! clearly display how the asymptotic behaviors ofr as x→1`
andx→2` are controlled by the position and type of two singularities ofL(q) ~finite or
infinite!, a connection which in fact is quite general in view of Eq.~3.6!.

~ii ! For L1 , L2 , andL3 , the condition~2.16! is satisfied in the whole allowed range of~real!
values of q. Accordingly, Eq. ~2.15! is of hyperbolic type~not only locally but also
globally! with the expected signature in these three cases. This is no longer true fo
choiceL4 , which allows the kink solutionf(x)5r4(x).

~iii ! Each of the functionsL in Eq. ~3.7! has exactly one~or two opposite! real zero~s!
(6)q0 and no pure imaginary ones. Thusq0

2.0 in all cases and, according to Eq.~3.2!, the
corresponding plane wave solutions exhibit a ‘‘tachyonic behavior’’ in the relativistic c
J. Math. Phys., Vol. 38, No. 9, September 1997
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~Notice, however, that the interpretation of“kv5k/v as a group velocity is questionab
here, since one is not allowed to form wave packets by a linear superposition of
waves!!

~iv! That the solution of Eq.~3.3! is essentially unique~a consequence of the homogeneity
our equations! does not mean that, givenL, Eq. ~2.13! admits only one solitary wave o
constant shape: remember thatu has been set to zero from the beginning. In fact, allow
for a varying phase ofc will, in general, produce new localized solutions. In particul
taking c(x,t)5e2 ivtr(x) leads again to Eq.~3.3! for r(x) with L(q) simply replaced by
L(q)1v, which will change the solution without affecting its asymptotic behavior.
give an explicit example, let us choose the functionL2(q) of Eq. ~3.7!. One then finds that
Eq. ~3.13! has the family of localized solutions:

cv~x,t!5e2ivtrv~x!, ~v.0!, ~3.8!

whererv is given by the parametric equations

rv~x!5A 12q2

12n2q2,

x52
1

2 S ln
11q

12q
2n ln

11nq

12nqD ,

~21,q,1!, n[A v

v11
. ~3.9!

We now turn to the energy-momentum content of the solitary waves and to their kinem
The canonical expressions of the energy densityH and momentum densityP are

H[
]L

]u t
u t2L5

1

2
r2~“u!22r2L~q!,

P[2
]L

]u t
“u5r2

“u ,
S q25

1

r2~“r!2D , ~3.10!

for the ‘‘Schrödinger’’ Lagrangian~2.8! and

H[
]L

]f t

f t2L52
L8~q!

q
f t

22f2L~q!,

P[2
]L

]f t

“f5
L8~q!

q
f t“f ,

S q25
1

f2 @~“f!22f t
2 # D , ~3.11!

for the relativistic Lagrangian~2.14!. Sticking again to one space dimension, let us write down
~conserved! total energyE and total momentumP resulting from the densities~3.10! and~3.11!.
For a solution

c~x,t !5ei „vx2~v2/2!t…r~x2vt ! ~3.12!

of Eq. ~2.13! @the positive functionr may be one of those listed in Eq.~3.7!#, one obtains from Eq.
~3.10!

E[E
2`

`

dx H5E01
1

2
mv2,

~3.13!
J. Math. Phys., Vol. 38, No. 9, September 1997
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P[E
2`

`

dx P5mv,

where

E052E
2`

`

dx r2~x!L„q~x!…,

~3.14!

m5E
2`

`

dx r2~x!.

The kinematics of a nonrelativistic particle of massm is properly recovered, withm given by the
squared norm of the wave in its rest frame. As for the ‘‘background’’ energyE0 , its expression
can be given the form

E052 1
2r

2~x!L8„q~x!…u2`
1` ~3.15!

by noticing that Eq.~3.4! is equivalent to (d/dx)@r2L8(q)#52r2L(q). In the examples of Eq
~3.7!, m andE0 are all finite except for the kink. We see that our solitary waves behave ex
like the soliton of the standard nonlinear Schro¨dinger equation~with the same expression of th
mass!. In contrast, the relativistic version is somewhat pathological in this respect, when com
to the usualf4-theories with lumps or kinks. Indeed, for a solution

f~x,t !5r„g~x2vt !…, g5~12v2!21/2 ~3.16!

of Eq. ~2.15!, one gets from Eq.~3.11!

H52g2v2r2qL8~q!2r2L~q!,
~3.17!

P52g2vr2qL8~q!,

where the argument ofr and q is y[g(x2vt). Now, according to Eq.~3.6!, K[r2qL8(q)
2r2L(q) is a ~nonvanishing! constant, so thatH reads as well

H52g2r2qL8~q!1K. ~3.18!

Thus, subtracting out the irrelevant constantK ~i.e., an infinite background energy!, one obtains
formally

E5E
2`

`

dx H5
1

g E
2`

`

dy H5gM ,

~3.19!

P5vgM ,

with

M52E
2`

`

dx r2~x!q~x!L8„q~x!…. ~3.20!

This would express the correct relativistic kinematics of an object of massM , were it not that
M5`! Actually, the integral in Eq.~3.20! diverges for all four examples of Eq.~3.7!, and one can
convince oneself that the same happens for any solutionr with smooth asymptotic behavior
~decreasing or not!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Therefore, our solitary waves have an acceptable particlelike interpretation only in the
relativistic version of the evolution equations, i.e., Eq.~2.13! @or ~2.11!#.

Finally, we come to the extension of our results to higher dimensions. In this process
encounters no more obstacles than with the ‘‘non-Lagrangian’’ evolutions, Eqs. (2.1)1(2.3) @in
fact, working with homogeneous nonlinear equations is a~tricky! way to circumvent the Derrick’s
scaling argument9#. To see more closely how its comes about, let us consider the possibility
solitary wave with spherical symmetry in three space dimensions:

c~x,t !5ei „vx2~v2/2!t…r~ ux2vtu! ~3.21!

~for definiteness we limit our discussion to the ‘‘Schro¨dinger’’ case!. For this wave to be a
solution of Eq.~2.11!, the radial functionr(r ) must obey Eq.~2.10! ~with u50! which, after
reduction, reads

L9~q!qr12S q1
1

r DL8~q!22L~q!50, ~3.22!

where q5r r /r, r r5dr/dr. This equation differs from Eq.~3.4! only through the explicit
r -dependent term. Such a term of course forbids a trivial integration, but does not change
tatively the solution of Eq.~3.4! already at our disposal, as long asL(q) behaves properly~in
order to prevent the occurrence of a singularity atr 50!. Clearly, a general analysis is not wor
doing here, and a typical example will be sufficient. Let us chooseL(q)5A12q2, as in Eq.~3.7!
for one space dimension. Then, introducing in place ofq(r ) the more convenient functionu(r )
defined byq52tanh 2u, Eq. ~3.22! becomes

du~r !

dr
512

1

r
tanh 2u~r !. ~3.23!

Using classical arguments from the theory of ordinary differential equations~ODE! ~with the
boundedness of the rhs for allr>r 0.0 anduPR as an essential ingredient!, it is not difficult to
show that this equation has a~unique! solution on@0,̀ !, which is infinitely differentiable there
with

lim
r→0

1

r
u~r !5

1

3
, lim

r→`

1

r
u~r !51. ~3.24!

Hencer(r )5exp@2*0
r dstanh 2u(s)# is also infinitely differentiable on@0,̀ ! with

r~r ! .
r→0

12 1
3r

2, r~r ! .
r→`

conste2r . ~3.25!

That is all that we need. Similar results are obtained for the other functionsL of Eq. ~3.7! ~except
for L4! and also,mutatis mutandis, with the relativistic equation~2.15!.

To summarize, the number of dimensions plays no critical role in the present context.

IV. STABILITY OF SOLITARY WAVES

Although we know that the evolution equations~2.11! and~2.15! are not linearizable~barring
the trivial cases!, it could happen that they are completely integrable for a certain nontrivial c
of functions L. For the present, however, we have no clue to that, and no indication tha
solitary waves obtained in the previous section are true solitons~in some sense!. Therefore, it is of
importance to check the stability of those solutions, which appears as a minimal requireme
their possible physical interest. To take this step is easier here than for the equations
J. Math. Phys., Vol. 38, No. 9, September 1997
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1(2.3) treated in Ref. 5, since we can take advantage of the Lagrangian formalism. Clearl
enough to work in the rest frame. Considering first Eq.~2.11!, let us start from a localized solutio
c05r0eiu0 of the type discussed in Sec. III, i.e., with]r0 /]t50, “u050, and introduce smal
perturbations:

r5r0~11eh!,
~4.1!

u5u01ex.

By inserting~4.1! in Eq. ~2.8! and using the equation of motion forc0 , one obtains

L5L01e2L21O~e3!1total derivatives, ~4.2!

whereL0 is the Lagrangian calculated withc0 , andL2 , which governs the dynamics of the re
fields ~h,x! in the linear approximation, is given by

L2522r0
2h

]x

]t
2

1

2
r0

2~“x!22r0
2 ]u0

]t
h21

1

2
r0

2S L8

q D ~“h!2

1
1

2q S L8

q D 8
~“r0“h!21F S L8

q D r0~“r0“h!h1r0
2Lh2G . ~4.3!

Here, L stands forL(q) with q5u“r0u/r0 . The last bracket in Eq.~4.3! can be simplified by
rearranging it as

1

2
divFL8

q
r0~“r0!h2G1Fr0

2L2
1

2
divS L8

q
r0“r0D Gh2.

In this expression, the first term is dynamically inactive, whereas the second one is eq
r0

2(]u0 /]t)h2 according to the equation of motion~2.10!. The Lagrangian~4.3! finally boils down
to

L2522r0
2h

]x

]t
2

1

2
r0

2~“x!21
1

2
r0

2S L8

q D ~“h!21
1

2q S L8

q D 8
~“r0“h!2. ~4.4!

From this we deduce the energy density produced by the perturbation at the ordere2:

H[
]L2

]~]x/]t !

]x

]t
2L25

1

2
r0

2~“x!22
1

2
r0

2S L8

q D ~“h!22
1

2q S L8

q D 8
~“r0“h!2,

which is conveniently recast in the form

H25
1

2
r0

2H ~“x!22
L8

q
@~“h!22~g“h!2#2L9~g“h!2J . ~4.5!

Here, the second~resp. third! term in the curly bracket is proportional to the squared transve
~resp. longitudinal! component of“h with respect to the local unit vectorg[(1/q)“r0 /r0 .
Thus, Eq.~4.5! shows us thatH2>0 everywhere provided that

L8~q!

q
<0 and L9~q!<0 ~4.6!
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for all values of qP$q(x)uxPR3% @notice that in the case of one space dimension, the
inequality ~4.6! is unnecessary since the second term in Eq.~4.5! then vanishes#. This strongly
suggests that the inequalities~4.6! are precisely the conditions insuring the stability of the solita
waves. Such a statement is somewhat premature, however, because the Lagrangian~4.4! is ca-
nonically singular and the ‘‘Hamiltonian’’ resulting from Eq.~4.5! does not generate the dynami
of the ~h,x! fields. One needs to refine the argument by looking at the equations of m
deduced from Eq.~4.4!, namely,

2r2
]h

]t
52div~r0

2
“x!,

~4.7!

2r0
2 ]x

]t
52divH r0

2 L8

q
@“h2~g“h!g#1r0

2L9~g“h!gJ .

Now, for a basic solutionc0 to be stable, it is required that the time frequencies of the ‘‘Fouri
components of an admissible perturbation~h,x! have a vanishing imaginary part. To test that w
set

h~x,t !5Re@e2 ivtX~x!#,
~4.8!

x~x,t !5Re@e2 ivtY~x!#,

with v5n1 il in Eq. ~4.7!. The complex fields (X,Y) obey the equations

2iv r0
2X5div~r0

2
“Y!,

~4.9!

2iv r0
2Y5divH r0

2 L8

q
@“X2~g“X!g#1r0

2L9~g“X!gJ ,

which we combine to produce

vY div~r0
2
“Y* !1v* X* divH r0

2 L8

q
@“X2~g“X!g#1r0

2L9~g“X!gJ 50. ~4.10!

The integration of this identity overR3 yields

nE d3x r0
2F u“Yu21

L8

q
~ u“Xu22ug“Xu2!1L9ug“Xu2G50,

~4.11!

lE d3x r0
2F u“Yu22

L8

q
~ u“Xu22ug“Xu2!2L9ug“Xu2G50,

where the real and imaginary parts have been separated, after integrating by parts and ge
of the all-integrated terms. From the second equation~4.11!, we see that the conditions~4.6!
enforcel50. Hence we find the stability of the solutionc0 under these conditions, as expecte

Of course, the validity of this conclusion is bound to that of Eq.~4.11!, which involves the
removal of an integrated divergence. The latter is justified as long asuhu and uxu decrease fas
enough at infinity, more precisely when~for three space dimensions!

lim
r→`

r 2r0
2F S UL8

q U1uL9u D uh“hu1ux“xuG50. ~4.12!
J. Math. Phys., Vol. 38, No. 9, September 1997
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This means that the stability we are referring to is properly guaranteed only with respect to
perturbations which fulfill Eq.~4.12!.

The study of the stability of the solitary waves solving Eq.~2.15! proceeds along the sam
lines. Starting with a static solutionf0 and its perturbed formf5f0(11eh) one obtains from
Eq. ~2.14!, after a lengthy calculation and reduction, the second-order Lagrangian forh :

L25
1

2
f0

2S L8

q D F2S ]h

]t D 2

1~“h!2G1
1

2q S L8

q D 8
~“f0“h!2 ~4.13!

~now canonically regular!, which generates the equation of motion

f0
2S L8

q D ]2h

]t2 5divH f0
2S L8

q D @“h2~g“h!g#1f0
2L9~g“h!gJ , ~4.14!

whereg5(1/q)“f0 /f0 . Then, definingX as in Eq.~4.8! and proceeding as below that equatio
we arrive at the constraints

lnE d3x f0
2S L8

q D uXu250,
~4.15!

E d3x f0
2H 2S L8

q D @~l22n2!uXu21~ u“Xu22ug“Xu2!#2L9ug“Xu2J 50,

provided again thath obeys Eq.~4.12! ~with f0 for r0 andx50!. If now the conditions~4.6! hold
true, we see that the compatibility of the two equalities~4.15! impliesl50, i.e., the stability of the
solutionf0 . Notice, however, that reversing the two inequality signs in Eq.~4.6! is irrelevant here
@as it has to since Eq.~2.16! is insensitive to the changeL→2L#, so that Eq.~4.6! becomes
essentially equivalent to the condition~2.16! insuring the proper hyperbolicity of the PDE~2.15!.

Thus we find out that, for both the ‘‘Schro¨dinger’’ and the relativistic homogeneous evolutio
equations, the issue of stability for the solitary waves is settled by checking the conditions~4.6!.
An inspection of the functionsL given in the examples of Eq.~3.7! reveals that Eq.~4.6! holds
true for all of them~albeit only in one space dimension for the latter one, corresponding to
kink!. We therefore conclude that all solitonlike solutions described in the previous sectio
stable against small perturbations~within the restriction mentioned above!, irrespective of the
kinematics~Galilean or relativistic! and of the space dimension~except, of course, for the kink!.

Needless to say, the bearing of this conclusion is limited, as usual, by the lack of
inherent to any lowest-order perturbative approach to the stability problem.

V. OTHER LOCALIZED SOLUTIONS AND FINAL COMMENTS

The solutions of our evolution equations discussed in Secs. III and IV are essentially
their modulus becomes time independent through a Galilei~or Lorentz! transformation. For lack of
a general method of integration it is desirable, at the very least, to go beyond such solutio
suitable reductions of Eqs.~2.11! and~2.15! to ordinary differential equations. At present, we ha
discovered in this way only one new type of globally regular solutions of Eq.~2.11!, which
represent auto-accelerated solitary waves. To derive them we specialize to one space dimen
which case Eqs.~2.9! and ~2.10! assume the form

~r2! t1~r2ux!x50, ~5.1!

2u t1~ux!
21L9~q!qx12qL8~q!22L~q!50, q5

rx

r
, ~5.2!
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and we consider the reduction obtained by demanding that 2u t1(ux)
2 depend onx and t only

throughq(x,t) ~if this can be made consistent!. Then Eq.~5.2! implies at once thatq is a function
of a sole variablex2X(t), where the functionX(t) is for the moment arbitrary. The same must
true for r ~because of norm conservation!, which leads to the ansatz

r5r~y!, y5x2X~ t !. ~5.3!

From now on, we takey and t as independent variables. The unknown functions arer(y), X(t),
andu(y,t) and Eqs.~5.1! and ~5.2! read

2Ẋ~r2!y1~r2uy!y50, ~5.4!

2u t22Ẋuy1~uy!252G~y!, ~5.5!

where

G~y![L~q!2qL8~q!2
1

2
L9~q!qy , q5q~y!5

ry

r
. ~5.6!

The general solution of Eq.~5.4! is readily found:

u~y,t !5Ẋ~ t !y1Y~ t !E
0

y dy8

r2~y8!
1Z~ t !, ~5.7!

with Y andZ arbitrary. The insertion of this expression in Eq.~5.5! yields an equation where th
variables are now separated, and which in principle can be solved for the functionsX, Y, Z, and
r. WhenYÓ0, however, the analysis becomes quite involved, while the ensuring solution
either singular or very similar to those corresponding to a vanishing functionY. Thus, for the sake
of simplicity, we choose henceforthY[0, which gives

2Ẍ~ t !y2Ẋ~ t !212Ż~ t !52G~y!. ~5.8!

The general solution of this equation is

X~ t !5a1bt1 1
2gt2,

Z~ t !5s1dt1 1
2bgt21 1

6g
2t3, ~5.9!

G~y!5~d2 1
2b

2!1gy,

where a, b, g, s, and d are arbitrary real constants. Performing a space–time translation
removing a trivial phase factor, one can always seta5b5s50 ~if gÞ0!. We arrive at a solution
of Eq. ~2.13! of the form

c~x,t !5ei „dt1gtx2~g2/3!t3…rS x2
g

2
t2D , ~5.10!

which indeed represents a fixed shape, uniformly accelerated wave. Its modulus is determin
q(y), by the last equation~5.9!. Explicitly,

1

2
L9~q!

dq

dy
5L~q!2qL8~q!2d2gy. ~5.11!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The best way to study this differential equation is to compare it with the equation obtaine
discarding the ‘‘nonautonomous’’ termgy @this trick was already used in connection with E
~3.22!#. To this end, we replacey therein by a new variableu, defined by

q~y!5q0~u!, ~5.12!

whereq0(u) solves

1

2
L9~q0!

dq0

du
5L~q0!2q0L8~q0!2d ~5.13!

~i.e., appears in the solution of the static problem associated with the functionL, in the sense of
Sec. III!. From Eqs.~5.11!–~5.13!, we deduce the equation determiningu(y):

du

dy
512g

y

L„q0~u!…2q0~u!L8„q0~u!…2d
. ~5.14!

It turns out that for many functionsL which lead to a confined static wave, Eq.~5.14! has solutions
such that the correspondingr(y) @in Eq. ~5.10!# is also exponentially damped at infinity. To b
specific, let us consider one of our favorite examples:L(q)5A12q2 ~with d50!. Then, accord-
ing to Eq.~3.7!,

q0~u!52tanh 2u, ~5.15!

and Eq.~5.14! becomes

du

dy
512g

y

cosh 2u
. ~5.16!

Again, standard ODE arguments show us that, for anyg and any initial conditionu0[u(0), this
equation has a~unique! solution, which is infinitely differentiable onR. A problem arises, how-
ever: for largeugu and smalluu0u, one can convince oneself thatu(y) becomes necessarily negativ
for y→1` ~if g.0! or positive fory→2` ~if g,0!. A priori, one has no guarantee that th
same does not happen even for smallugu and largeuu0u. However, this would be catastrophic fo
localization, since thenr(y)→1` for y→1` or y→2` @see Eqs.~5.12! and~5.15!#. To clear
up the matter, a more detailed analysis is necessary. In Appendix C it is shown by a fixed
method that forany g, uu0u can be chosen large enough as to insure

lim
y→6`

u~y!

y
51. ~5.17!

Accordingly, limy→6` q(y)571, which impliesr(y).uyu→` e2uyu and establishes the existenc
of a localized, accelerated solitary wave of the form~5.10! ~in fact, a whole family of them,
parametrized byu0!.

Such solutions~which have no counterparts in the case of the standard nonlinear Schro¨dinger
equation! are also found for the other functionsL listed in Eq.~3.7!, and they presumably persis
in higher dimensions~we have not looked into this in details!. However, the provision of a phas
factor is likely to be essential here: it seems that Eq.~2.15! in one space dimension admits n
regular solutions of the formf(x,t)5r„x2X(t)… with a nonlinear functionX. Let us also remark
that Eqs.~3.13! and ~3.14! are still valid ~with v5gt! for the travelling wave~5.10!, which then
J. Math. Phys., Vol. 38, No. 9, September 1997
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behaves like a soliton driven by a constant forcemg. The energy supply evidently comes fro
infinity: the difference between the~nonvanishing and time-dependent! energy flows atx51`
andx52` just accounts for the rate of increaseĖ5mg2t.

On a more general level, other tractable reductions for the type of equations proposed
paper would, of course, be welcome, as well as any indication on the possible integrabi
some of them. In this regard, carrying out a Painleve´ analysis~e.g., along the lines of Ref. 10! in
order to select ‘‘good’’ candidates for the functionsL entering Eqs.~2.11! and~2.15! appears to be
quite an impracticable task. As for the simple choices given in Eq.~3.7!, none of them distin-
guishes itself in this respect~if indeed the Painleve´ test is reliable at all in the present context!. Let
us take, for instance,L(q)512 1

2q ln@(11q)/(12q)# and consider the travelling wave reduction
the PDE~2.13! defined byr(x,t)5F(x2vt). Then Eqs.~3.8! and ~3.9! ~with x replaced byx
1const! may be seen as part of the general solution of the resulting ODE. When the variabl
complexified and the solution is analytically continued, one finds from Eqs.~3.8! and ~3.9! that
rv(x) develops nonpolar singularities whereverrv

2 (x)51/n2:

rv~x!56
1

n
6

@9~12n2!#1/3

2n5/3 ~x2x6!2/31••• . ~5.18!

These singularities are movable and cannot be eliminated by a change of variable and fu
since bothx6 and 1/n are related to the boundary data forc(x,t). Thus, if one is ready to accep
the Painleve´ property as a necessary condition for a nonlinear PDE to be integrable, one w
conclude that the equation~2.13! is not ~with this choice ofL!. Beyond this particular problem
further work is clearly needed in order to unravel the mathematical properties of Lagran
homogeneous, nonlinear equations, and possibly to lay down their physical relevance.
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APPENDIX A: DERIVATION OF EQ. (2.7)

We establish the expression~2.7! containing the nonlinear part of the ‘‘Schro¨dinger’’ La-
grangian, first in the case of one space dimension.

In terms of the polar decompositionc5reiu, the Lagrangian~2.6! reads

L52r2u̇1G~r,u,r8,u8! ~A1!

~where the dot and the prime denote respectively]/]t and ]/]x!. The conditions~i! and ~ii !
imposed below Eq.~2.4! are then easily transferred to the functionG. Up to a totalx-derivative,
the latter must be

~i! homogeneous of the second degree in (r,r8) and translationally invariant with respect t
u, that is,

G~kr,u1a,kr8,u8!5k2G~r,u,r8,u8!1
d

dx
h1~r,u;k,a! ;kPR1 ,aPR, ~A2!

~ii ! real valued and symmetric with respect to (u,u8):

G5G* ,
~A3!

G~r,2u,r8,2u8!5G~r,u,r8,u8!1
d

dx
h2~r,u!.
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As for the Galilean invariance~iii !, it requires that, if

r̃~x,t ![r~x2vt,t !,

ũ~x,t ![u~x2vt,t !1vx2 1
2v

2t,

thenL( r̃,ũ,r̃8,ũ8)5L(r,u,r8,u8)1d/dx..., which yields

r2S vu81
v2

2 D1GS r,u1vx2
v2

2
t,r8,u81v D5G~r,u,r8,u8!1

d

dx
h3~r,u;v ! ;vPR.

~A4!

An obvious guess for the solution of the constraint~A2! is

G~r,u,r8,u8!5r2gS r8

r
,u8D ~A5!

with an arbitrary functiong. The full generality of this solution~up to an irrelevant total
x-derivative! remains dubious, however, due to the presence of the second term on the rhs
~A2!. In fact, by performing suitable derivations with respect tok anda, one can really prove tha
Eq. ~A5! represents the most general solution. As this step is straightforward but lengthy, w
it. The constraint~A4! then becomes

r2Fvu81
v2

2
1gS r8

r
,u81v D2gS r8

r
,u8D G5

d

dx
h3~r,u;v ! ;vPR. ~A6!

Again, an obvious solution of this functional equation is

gS r8

r
,u8D52

1

2
u821c

r8

r
u81LS r8

r D ~A7!

with arbitrary functionL and constantc, and an analysis similar to that mentioned just abo
shows that this solution is the general one. Finally, the constraint~A3! imposes thatc vanish and
L be a real-valued function. We therefore end up with

G~r,u,r8,u8!52
1

2
r2u821r2LS r8

r D , ~A8!

or, equivalently,

G~c,c8!5
1

8
ucu2S c8

c
2

c* 8

c* D 2

1ucu2LS ucu8
ucu D , ~A9!

which is just the one-space dimension version of Eq.~2.7!. The extension ton space dimensions
readily follows from the invariance with respect to the rotations inRn.

APPENDIX B: LOCAL TYPE OF THE PDE (2.15)

The local type of a second-order PDE or the form~2.15! is defined as the signature of th
quadratic form:

MmnXmXn[Fgmn2
1

L8 S L8

q D 8 1

f2 ]mf]nf GXmXn. ~B1!
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To determine it in a simple way, we use the Sylvester law of inertia, which entails the invar
of this signature under Lorentz transformations. Let us define

L[
1

L8 S L8

q D 8
, um5

1

f
]mf, ~B2!

so thatumum52q2 and

Mmn5gmn2Lumun . ~B3!

Then ~assumingq2Þ0!
~i! if the vector fieldum is spacelike at a pointxm(q2.0), we can choose a local Lorent

frame whereum5(0,u1,0,0), in which case the matrix~B3! becomes diagonal with eigenvalue

l1521 ~ twofold!,

l251, ~B4!

l35212L~u1!25212Lq2.

~ii ! If um is timelike (q2,0), we can chooseum5(u0,0,0,0), in which case

l1521 ~ threefold!,
~B5!

l2512L~u0!2511Lq2.

In both cases, we see that the matrixMmn has one positive eigenvalue and three negative o
provided that

11Lq2.0, ~B6!

or, equivalently, that the signature of~B1! is ~1,2,2,2! iff qL9/L8.0. This is the condition
~2.16! we wished to establish.

APPENDIX C: PROOF OF EQ. (5.17)

We show here that, for anyg, the solutionu(y) of the differential equation~5.16! with
u(0)5u0 satisfies the asymptotic property~5.17! if u0 is properly chosen~it may depend ong!.

To begin with, we notice that both Eqs.~5.16! and~5.17! are invariant through the substitutio
g→2g, y→2y, andu→2u. Thus we can assumeg.0 without loss of generality. We also
recast Eq.~5.16! in the integral form

u~y!5u01y2gE
0

y

dz
z

cosh 2u~z!
. ~C1!

Consider firsty<0. It follows from Eq.~C1! that

u~y!<u01y ;y<0. ~C2!

Reinjecting this in Eq.~C1!, one immediately derives the first~easy! part of Eq.~5.17!,

lim
y→2`

u~y!

y
51, ~C3!
J. Math. Phys., Vol. 38, No. 9, September 1997
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valid for anyu0 .
Turning next toy>0, let us define

D~y!5u~y!2u02y, ~C4!

which transforms Eq.~C1! into an integral equation forD:

D~y!52gE
0

y

dz
z

cosh 2@u01z1D~z!#
. ~C5!

One can now apply the contraction mapping principle within the Banach spaceL`(R1) of
bounded functionsf on R1 with norm i f i5supy>0u f (y)u. Let B be the closed unit ball in
L`(R1):

B5$ f PL`~R1!ui f i<1%. ~C6!

Then the mappingA:D°D̃ defined onL`(R1) by

D̃~y!52gE
0

y

dz
z

cosh 2@u01z1D~z!#
~C7!

takesB into itself if u0 is positive and large enough. Indeed,

uD̃~y!u<gE
0

`

dz
z

cosh 2@u01z1D~z!#
;y>0, ~C8!

so that, by using the inequality

cosh~a1b!> 1
2e

a2ubu ;a>0,;b, ~C9!

we get

iD̃i< 1
2ge22u0e2iDi, ~C10!

andDPB⇒D̃PB whenever

u0>11
1

2
ln

g

2
. ~C11!

It remains to check the contractivity property inB. One has

D̃1~y!2D̃2~y!5gE
0

y

dz z
sinh @D1~z!2D2~z!# sinh @2~u01z!1D1~z!1D2~z!#

cosh 2@u01z1D1~z!# cosh 2@u01z1D2~z!#
;y>0.

~C12!

By using again~C9! together with

usinh ~a1b!u< 1
2e

uau1ubu ;a,b,
~C13!

usinh ~a2b!u< 1
2ua2bue ;a,b with uau,ubu<1,

we obtain

iD 1̃2D 2̃i< 1
4ge722u0iD12D2i ;D1 ,D2PB. ~C14!
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Therefore, the mappingA is a contraction ofB into itself as soon as the condition@stronger than
~C.11!#

u0.
7

2
1

1

2
ln

g

4
~C15!

is fulfilled. The Banach–Cacciopoli theorem then asserts the existence of a~unique! fixed point of
A in B, i.e., the existence of aboundedsolution D of the integral equation~C5!. Now u(y)
[ u0 1 y 1 D(y) must coincide with the solution of the differential equation~5.16!, and the
boundedness ofD under the condition~C15! immediately entails

lim
y→1`

u~y!

y
51, ~C16!

which was the second part of Eq.~5.17! to be proven.
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Signs and approximate magnitudes of Lyapunov
exponents in continuous time dynamical systems
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Methods for algebraically determining the signs and the magnitudes of Lyapunov
exponents of a given dynamical system are studied. The existence of zero
Lyapunov exponents for the Toda, He´non–Heiles, and Ro¨ssler systems are shown.
The approximate Lyapunov spectra of Lorenz and Ro¨ssler systems are computed.
© 1997 American Institute of Physics.@S0022-2488~97!01109-2#

I. INTRODUCTION

Calculating the Lyapunov spectrum of a dynamical system is a widely used tool for d
mining whether the system has a sensitive dependence on initial conditions or not, or, in
popular terms, whether it ischaoticor not.

Let us demonstrate the notion using a continuous-time, autonomous dynamical system

ẋ5v~x!, ~1!

with xPRn and v:Rn→Rn, having the initial conditionsxt505x0 . Now, assume that thos
initial conditions are subject to a small perturbationdx0 . The exponential growth/decay rate
each distinct principal axis throughout the time is defined to be theLyapunov exponent1 in that
direction. If the Lyapunov exponent in any direction points to a tendency of exponential grow
in-time, then the system is said to have a sensitive dependence on initial conditions. There
system has to possess at least one positive Lyapunov exponent to be termed aschaotic. Some
authors2–4 thus consider only the largest exponent. However, it is quite hard to show the exis
of a positive exponent algebraically. Due to this difficulty, all practical methods of Lyapu
exponent calculation known to the authors involve numerical approaches, based either on
lations or on some given time series.

Various approaches in Lyapunov exponent calculation of dynamical systems can be cla
as

~1! algorithms based on direct variation of trajectories,5

~2! continuous time algorithms,6,7

~3! eigenvalue-based algorithms,8

~4! algebraic attempts.9

With the exception of the algebraic attempts~which can only be applied to very few systems und
restricted conditions!, all algorithms are based on a structure that augments the dynamical sy
considering the tangent flow around a fiducial trajectory. See Ref. 10 for further discussi
various methods.

Although these algorithms are applicable to an arbitrary dynamical system, their com
tional stability and convergence to the correct values are often in doubt. Apart from the fac
‘‘at least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a
point,’’ 11 it may still be obscure from the simulations if we have any zero exponent or
particularly, if we face a slightly positive or slightly negative exponent. Thus, there shoul
another device to lead us to the zero exponent.
0022-2488/97/38(9)/4594/12/$10.00
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Roepstorff9 bases his work on Ref. 1 to form a framework for the algebraic calculatio
Lyapunov exponents. Lie algebraic methods are used to reformulate the dynamics and its
flow. Then one tries to find an appropriate basis for the system such that the Lie brackets
basis vectors commute and the Lie brackets of the basis vectors with the system dynamic
in linear combinations of the basis vectors. If one can find such a basis, the author calls the
a simple smooth flow.

The aim of this work is to concentrate on the signs of the Lyapunov exponents of a sy
On one hand we shall try to isolate the zero exponents, and on the other we shall try to sa
words about positive exponents without numerically solving, i.e., simulating the system. F
we attempt to give some approximate estimations for the Lyapunov exponents. Thus we atte
qualify a dynamical system as a chaotic or a regular system, on which there are differen
opinion between physicists and mathematicians.

Whenever it is sufficient, the natural basissi
j5d i j is taken for the dynamics vector, where th

upper index identifies the vector and the lower stands for the component. In such cases, the
flow is characterized by

Ai
j5

]v i

]xj
. ~2!

Whenever necessary, some appropriate basis—that can as well be a function of the sta
chosen. The characteristic equation of the system is then formed over the matrixA defined by

@sj , v#5siAi
j . ~3!

Note that for the standard basis, the two are equivalent. Here, we would like to enlarge the
of simple smooth flowto the systems whose characteristic equation thus formed is independ
the states.

II. HAMILTONIAN SYSTEMS

For a Hamiltonian system ofn degrees of freedom, the characteristic equation formed w
either of the above methods is in the form

ulI 2Au5(
i 50

n

c2il
2i , ~4!

wherec2i are functions of the states withc2n51. Thus the solutions forl are in such a form tha
they are composed by the following rules:12

~1! there are an even number of zeros,
~2! imaginary roots appear in conjugate pairs,
~3! complex roots appear in6 conjugate quartets,
~4! real roots appear in6 pairs.

Another property of the Hamiltonian systems is the following lemma:
Lemma:If I is an integral of the Hamiltonian system characterized by the HamiltoniaH

which does not have explicit time dependence, then the Lie bracket of the vectory of the Hamil-
tonian dynamics and the vectoru of the integral’s dynamicsgive zero.

Proof: Let us enumerate the states such that the coordinates form the firstn states and the
momenta are the states fromn11 to 2n. That is,

v i5 HH ,~ i 1n! , i<n,
2H ,~ i 2n! , i .n, ~5!
J. Math. Phys., Vol. 38, No. 9, September 1997
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and, similarly, with theintegral’s dynamicswe mean

ui5 H I ,~ i 1n! , i<n,
2I ,~ i 2n! , i .n, ~6!

where the subscripts after ‘‘,’’ refer to partial derivatives with respect to the corresponding
SinceI is an integral of motion, we have the property

İ 5( I ,iv i50, ~7!

which can be written as

(
i<n

~ I ,iH ,~ i 1n!2I ,~ i 1n!H ,i !50. ~8!

Now consider thej th component of the Lie bracket@v, u#:

@v, u# j5(
i

~v iuj ,i2uiv j ,i !. ~9!

Then for j <n, we have

@v, u# j52(
i<n

]

]xj 1n
~ I ,iH ,~ i 1n!2I ,~ i 1n!H ,i !, ~10!

and for j .n,

@v, u# j5(
i<n

]

]xj 1n
~ I ,iH ,~ i 1n!2I ,~ i 1n!H ,i !, ~11!

which are both zero from Eq.~8!.
This lemma enables us to write a basis for the dynamics, if it hasn integrals of motion. For

instance, ifn52, $v,u2v% is a basis.

A. Example: Three-particle Toda lattice

The three-particle Toda lattice Hamiltonian13 is of the form

HT5
p1

21p2
21p3

2

2
1e2~q12q2!1e2~q22q3!1e2~q32q1!. ~12!

When one performs the coordinate transformation

q15
2A6

3
xcm1

2)

3
x112x2 , ~13!

q25
2A6

3
xcm2

4)

3
x1 , ~14!

q35
2A6

3
xcm1

2)

3
x122x2 , ~15!
J. Math. Phys., Vol. 38, No. 9, September 1997
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names the corresponding momenta aspx1
5x3 andpx2

5x4 , and makes the scalingsdt→)dt and
HT→HT/24, one gets

HT5 1
2 ~x3

21x4
2!1 1

24 ~e~2x212)x1!1e~2x222)x1!1e24x2!2 1
8. ~16!

The corresponding vector fieldv then becomes

v5F x3

x4

2
)

12
~e~2x212)x1!2e~2x222)x1!!

2
1

12
~e~2x212)x1!1e~2x222)x1!22e24x2!

G . ~17!

If we consider the natural basis, the tangent flow is characterized by the matrix

A53
0 0 1 0

0 0 0 1

2
1

2
~g11g2! 2

)

6
~g12g2! 0 0

2
)

6
~g12g2! 2

1

6
~g11g21g3! 0 0

4 , ~18!

where

g15e~2x212)x1!, ~19!

g25e~2x222)x1!, ~20!

g358e24x2. ~21!

Note thatgi.0. The corresponding characteristic equation is

ulI 2Au5l41l2 1
6~4g114g21g3!1 1

12~4g1g21g1g31g2g3!, ~22!

which, for l2, has the solution

l252 1
12~4g114g21g3!6 1

12A16g1
2116g2

21g3
2216g1g224g1g324g2g3. ~23!

Note that the term in the square root,D, is positive semi-definite as it can be written as

D5gTFg5@g1 g2 g3#F 16 218 22

28 16 22

22 22 1
G F g1

g2

g3

G , ~24!

and the matrixF is positive semi-definite with eigenvalues 24, 9, and 0. Moreover, the magn
of the leading term in Eq.~23! is greater thanD, since it involves the formsb andAb224ac,
respectively, where alla, b, andc are positive. Thus in both of the6 cases in Eq.~23!, l2 turns
out to be negative, which means the roots of Eq.~22! are imaginary. Since the Lyapuno
J. Math. Phys., Vol. 38, No. 9, September 1997
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exponents are defined to be the real parts of the eigenvalues of the tangent flow, they all t
to be zero. This confirms the fact that the Lyapunov exponents of this integrable Hamilt
system is composed of zeros.

B. Example: Hé non–Heiles system

The Hénon–Heiles Hamiltonian14

HHH5 1
2~x1

21x2
21x3

21x4
2!1x1

2x22x2
3/3 ~25!

is the third-order series truncation of the Toda Hamiltonian in Eq.~16!. Although the Toda system
is integrable, none of its series truncations above and including the third order are integ
Nevertheless, the numerical solution of the system gives a near integrable behavior for a ra
the values of the Hamiltonian.15 This behavior is extensively worked on in Ref. 16 and 17 an
mechanism explaining the existence of such a behavior is proposed in Ref. 18. Now, it is e
that the existence of two zero Lyapunov exponents, which is shown below, would also cont
to the existence of a nearly conserved quantity.

The vector field of the He´non–Heiles system is

v5F x3

x4

22x1x22x1

2x22x1
21x2

2
G . ~26!

The tangent flow in the natural basis is characterized by the matrix

A5F 0 0 1 0

0 0 0 1

22x221 22x1 0 0

22x1 2x221 0 0

G . ~27!

The characteristic equation is then,

ulI 2Au5l412l21124r 2, ~28!

wherer 25x1
21x2

2. Solving it for l2 gives

l252162r . ~29!

For the choicel252122r , l has two imaginary solutions for allxPR4. Thus two of the
Lyapunov exponents of the He´non–Heiles system are zero.

III. DISSIPATIVE SYSTEMS

In characteristic equations of dissipative systems, we no longer have the opportunity to
the l in even powers. Thus generalizing what we have done for the Hamiltonian systems
possible. Now, we shall deal with expressions like

f 5(
i 50

n

ail
i50 ~30!

for an nth order system withan51.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The locations of the roots of such a polynomial can be found via the Sturm sequ
$ f 1 ,...,f N% with N<n where

f 15 f , ~31!

f 25
] f

]l
, ~32!

f i5RemainderS f i 21

f i 22
D for i .2. ~33!

To find the number of real roots in the range (a,b) one has to fill Table I, whereC(•) stands for
the count of sign changes in the sequence$ f 1 ,...,f N%. The number of real roots in the rang
(a,b) is given byC(a)2C(b).

Now consider the number of real roots for a system with the characteristic polynomial o
~30!. The first two lines of the table are2,1 and 1,1 for odd n, and1,1 and 2,1 for even
n.

A. Example: Rö ssler chaos

Rössler chaos19 is a third-order system with the following vector field,

v5F 2x22x3

x11ax2

b1x3~x12g!
G , ~34!

wherea, b, andg are parameters.
To fill the table of the Sturm sequence for the range (2`,`), it is more appropriate to selec

the basis$@1,0,0#,@0,1,0#,@0,0,x3#% rather than the natural basis. For such a choice, the tan
flow is characterized by

A5F 0 1 1

21 a 0

2x3 0 2b/x3

G ~35!

and the characteristic equation can be found as

ulI 2Au5l31~b/x32a!l21~11x32ab/x3!l1b/x32ax3 . ~36!

The possible ways to fill in the Sturm sequence are shown in Table II. It can be easily s
that case 1 is impossible. Note thatcase 2and case 3correspond to the existence of a ze
Lyapunov exponent, since they mean there is one real root and a pair of complex conjugate

TABLE I. Strum sequence table.

a b

sign„f 1(a)… sign„f 1(b)…
sign„f 2(a)… sign„f 2(b)…
A A
sign„f N(a)… sign„f N(b)…

C(a) C(b)
J. Math. Phys., Vol. 38, No. 9, September 1997
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real root and the real part of the complex roots—if nonzero—will stand for the nonzero expo
As the imaginary part of the complex root stands for an oscillation, it designates a zero Lya
exponent. Note that the necessary and sufficient condition for such a setting is a negativef 4 in the
Sturm sequence. If we form the Sturm sequence with a generic cubic polynomial,

f 5l31a2l21a1l1a0 , ~37!

we find

f 15l31a2l21a1l1a0 , ~38!

f 253l212a2l1a1 , ~39!

f 35~a2
2/32a1!l1a2a1/623a0/2, ~40!

f 4524a1
31a2

2a1
2118a0a1a224a0a2

3227a0
2. ~41!

Here

a05b/x32ax3 , ~42!

a1511x32ab/x3 , ~43!

a25b/x32a ~44!

for the Rössler system with the chosen basis.
Now, consider the third equation of the Ro¨ssler system, multiply both sides withe2*(x12g) dt,

and get

d

dt
@x3e2*~x12g! dt#5be2*~x12g! dt. ~45!

Integrating both sides and solving forx3 gives

x35x3oe*~x12g! dt1be*~x12g! dtE e2*~x12g! dt dt. ~46!

We conclude from this equation thatx3 is positive for a positive initial condition. In other words
once it is positive, it is always positive. Then we can, without loss of generality, assumex3 to be
positive.

Taking the parametersa5 3
20, b5 1

5, andg510, f 4 becomes

TABLE II. Ways to fill in the Strum sequence table for the generic third-
order polynomiall31a2l21a1l1a0 .

case 1 case 2 case 3 case 4
2` ` 2` ` 2` ` 2` `

2 1 2 1 2 1 2 1

1 1 1 1 1 1 1 1

1 2 1 2 2 1 2 1

1 1 2 2 2 2 1 1

1 2 2 1 2 1 3 0
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



ent.
ld be
e cubic
.

-

t roots
ess of
terms

onent
predict
if the

on, we
mics.
shall

r such
ination

ty, we
ost
ne of

l

4601I. Birol and A. Hacinliyan: Signs and magnitudes of Lyapunov exponents

                    
f 452S 1

27
x3

31
203

1800
x3

21
52 409

480 000
x31

9343

360 000
2

11191

2 160 000
x3

21

1
1 277 519

432 000 000
x3

221
1591

18 000 000
x3

231
1591

27 000 000
x3

24D , ~47!

which is always negative for positivex3 . This shows the existence of a zero Lyapunov expon
Next, if the Rössler system is a smooth flow, the signs of the remaining exponents shou
determined by the same characteristic equation. We can solve them using the solution for th
polynomials. Letq5a1/32a2

2/9 andr 5(a2a123a0)/62a2
3/27, whereai are defined as in Eqs

~42!–~44!, and lets15(r 1Aq31r 2)1/3 and s25(r 2Aq31r 2)1/3. Then the other Lyapunov ex
ponents would be characterized by

l15s11s22a2/3, ~48!

l252~s11s2!/22a2/3. ~49!

Note that the quoted figures are not the Lyapunov exponents, but the real parts of the distinc
of the characteristic polynomial. They are presented to give an idea about the sign definiten
the exponents. Unfortunately, these figures are not sign definite. Substituting the defined
gives

l1.0 for x3.1.9889, ~50!

l2,0 for x3.0.5905. ~51!

Thus the Ro¨ssler system is not a simple smooth flow.

IV. APPROXIMATION SCHEMES

In the last section, we were able to comment on the existence of a zero Lyapunov exp
and made a discussion about the sign of the other exponents. However, we were not able to
the magnitudes of the nonzero exponents. Moreover, we were able to make comments
considered system was a simple smooth flow in the sense of Roepstorff or not. In this secti
will concentrate on the approximate magnitudes of the Lyapunov exponent of a given dyna

In Ref. 9, the selection of a basis is not tied to a procedure. For practical purposes, we
restrict the conditions given by Roepstorff. Given a dynamical system, it is not clear whethe
a basis exists in general. If such a basis does exist, it is not unique, since any linear comb
of them will still work. Among those combinations, we pick the one that gives a diagonalA, i.e.,

@si , v#5l isi . ~52!

Other than the Ro¨ssler system, which as we have already seen fails the necessary proper
have studied the Lorenz20 and the He´non–Heiles systems. All three systems involve at m
quadratic polynomial expressions in terms of their states in their dynamics. However, in no
the cases we were able to obtain a closed polynomial expression for thesi ’s. To that end, we shal
study some approximate methods.

A. Scheme I: Augmented system

One approach is to try a polynomial ansatz for thesi ’s in the form

si
h5ai0

h 1ai1
h j xj1ai2

h jkxjxk1••• , ~53!
J. Math. Phys., Vol. 38, No. 9, September 1997
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where the repeated indexes are summed. Note that keeping only the zeroth-order terms
eigenvalue equation is equivalent to linearizing the dynamics around the origin, since

@si
~0!, v#5l isi

~0!

reduces toAosi
(0)5l isi

(0) . This is an eigenvalue equation of ordern.
In the next order, we keep up to linear terms in the eigenvalue equation and can write~52! as

A1si
(1)5l isi

(1) , where si
(1)5(ai0

h Aai1
h j )T is an n1n2-dimensional vector. This means that th

polynomial basis is an overcomplete basis and spurious eigenvalues will arise. In the secon
truncation the dimensionality isn1n21n2(n11)/2. We have calculated the eigenvalues of
zeroth-, first-, and second-order truncations for the Ro¨ssler and the Lorenz systems as in Table
The results are shown with that are obtained through numerical simulation.21

In the Rössler system, the eigenvalues cluster around the Lyapunov exponents giv
simulation, whereas the eigenvalues of the Lorenz system are scattered.

B. Scheme II: Picard-like iteration

An alternative approach is to use an iterative scheme for thesi ’s resembling the Picard

method. As a starting point, we takesi
j (0)

5d i j . We then define the sequence

sj
~k11!5

@s1
~k! , v#

i@sj
~k! , v#i

. ~54!

This sequence always yields annth-order eigenvalue equation. However, there are still two pr
lems:

~1! definition of a norm for polynomial functions where the behavior of the polynomial depe
on the time development of the dynamical system and

~2! the convergence of this sequence.

TABLE III. Approximation schemes I and II for Ro¨ssler and Lorenz systems with the indicated parameters. Numbe
parantheses show the multiplicity of the corresponding value, if it appears more than once.

Rössler
a50.15, b50.2, g510

Lorenz
s516, b54, g545.92

Simulation 0.08, 0.00,210.12 1.50, 0.00,222.46

Approx. scheme I
Zeroth order 0.08, 0.00,210.00 19.60,24.00,236.62

Approx. scheme I 56.24, 51.62, 36.62, 19.62
First order 0.08~2!, 0.00~8!, 210.00(2) 0.00~2!, 24.00,24.62,223.62

236.62,256.62

Approx. scheme I 20.00, 10.00~3!, 0.08, 92.93, 69.24, 60.24, 56.24
Second order 0.00~18!, 20.08(4), 210.00(3) 36.62~2!, 32.62, 27.62, 23.62,

19.62, 13.00, 4.00~2!, 0.00~6!,
24.00,219.62(2), 223.62,228.62,
232.62,236.62,243.24,252.24,
256.24,275.93

Approx. scheme II 0.08,20.27,210.22 3.00,20.02,262.80~fifth iter.!
0.87, 0.00,264.17~eighth iter.!
0.13, 0.00, 65.19~eleventh iter.!
J. Math. Phys., Vol. 38, No. 9, September 1997
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In practice we have tried a number ofnormssuch as taking the coefficient with the largest absol
value ~implies omitting all other terms in the basis!; keeping up to quadratic terms and using
minimum value; and keeping up to quadratic terms and using theequilibrium point obtained by
zeroing the linear parts. We have not been able to obtain completely satisfactory results by
these schemes and we have found no reason to choose one of these definitions as the mos
one. The results for the Ro¨ssler and Lorenz cases are summarized in Table III. In both of th
approaches, the condition of having zero Lie brackets between the basis vectors is only im
as an initial condition.

C. Average Rö ssler dynamics

Since the attractor of the Ro¨ssler chaos is in the shape of some loops around the origin,
consider the system in cylindrical coordinates. Making the coordinate transformation

x15r sin~u!, ~55!

x25r cos~u!, ~56!

x35z, ~57!

we obtain a dynamics

ṙ 5 1
2ar 2 1

2ar cos~2u!2z cos~u!, ~58!

u̇5
1

2
a sin~2u!1

z

r
sin~u!11, ~59!

ż5b1rz cos~u!2gz. ~60!

Sincer stands for the radius in the coordinate system, it is non-negative. Still, note that the
definiteness ofr can be shown in a manner similar tox3 . On the other hand,r should be bounded
from above so as to be in the attractor. Thus, an averaging overu should be valid and the average
system is

^u̇&51, ~61!

^ ṙ &5 1
2a^r &, ~62!

^ ż&5b2g^z&, ~63!

with the solution

^u&5uo1t, ~64!

^r &5r oeat/2, ~65!

^z&5
b

g
1S zo2

b

g De2gt. ~66!

From this solution, we can read the approximate Lyapunov exponents asa/2, 0, and2g.
We can also reach this result making the assumption that on the attractor^x1&50, since the

attractor is a rotational pattern centered near the origin. Ifx1(t) is known, then we can writex3 as
J. Math. Phys., Vol. 38, No. 9, September 1997
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x35S x302
b

g De2gt1*x1 dt1E be2gt1*x dt dt. ~67!

If ^x1&50, thenx3 in the average becomes

^x3&5S x302
b

g De2gt1
b

g
. ~68!

Substituting this solution inẋ1 and ẋ2 equations gives the solution

^x1&5
~x302b/g!~a1g!

g21ag11
e2gt1eat/2

„k1 sin~vt !1k2 cos~vt !…1
ab

g
, ~69!

^x2&5
x302b/g

g21ag11
e2gt1eat/2

„k3 sin~vt !1k4 cos~vt !…2
b

g
, ~70!

~71!

whereki are defined in terms of the initial conditions andv5A12a2/4 for a,2. Again, the
approximate Lyapunov exponents are read out to bea/2, 0, and2g.

V. CONCLUSION

Chaotic behavior is usually characterized by means of Lyapunov exponents. Numeric
culation of zero Lyapunov exponents is subject to the accumulation of truncation and rou
errors and is therefore an error-prone process. Apart from Haken’s theorem,11 which only guar-
antees the existence of one zero Lyapunov exponent under certain conditions, and Roep
algebraic procedure,9 which can only be used for specific systems, no general algorithm or c
rion for the existence of zero Lyapunov exponents exist. In this work, we have investigate
possibility of establishing the presence of zero Lyapunov exponents through algebraic crite
this work, we have investigated a number of both Hamiltonian and non-Hamiltonian syste
establish some criteria concerning zero Lyapunov exponents. The criteria can in princip
applicable to other systems. However, sign definiteness or root bracketing conditions whi
have used in this work may or may not be applicable, depending on the system.

Hamiltonian systems give a chance to estimate the Lyapunov exponents in pairs, beca
their symplectic nature. Dissipative systems will not permit such a simplification and will
require root bracketing criteria. Approximation schemes can be introduced; however, their
cability also depends on the system under investigation.

In this work, we have been able to demonstrate the presence of nonzero Lyapunov exp
in a wide class of systems known to exhibit chaotic behavior. These criteria can also be po
as an alternative tool for characterizing chaotic behavior.
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One of the cornerstones of the theory of integrable systems of KdV type has been
the remark that then-GD ~Gel’fand–Dickey! equations are reductions of the full
Kadomtsev–Petviashvilij~KP! theory. In this paper we address the analogous prob-
lem for the fractional KdV theories, by suggesting candidates of the ‘‘KP theories’’
lying behind them. These equations are called ‘‘KP(m) hierarchies,’’ and are ob-
tained as reductions of a bigger dynamical system, which we call the ‘‘central
system.’’ The procedure allowing passage from the central system to the KP(m)

equations, and then to the fractional KdVn
m equations, is discussed in detail in the

paper. The case of KdV3
2 is given as a paradigmatic example. ©1997 American

Institute of Physics.@S0022-2488~97!01209-7#

I. INTRODUCTION

The study of integrable systems of KdV type received, in the last few years, a new im
from important developments in two-dimensional~quantum! field theory. In this framework, much
attention has been paid to the conformalW N algebras of symmetries of these theories. In the ca
studied at first, they have been shown1,2 to be a quantum extension of the second Poisson struc
of then-GD ~Gel’fand–Dickey! theories3,4 associated with a classical Lie algebrag. The powerful
method of Hamiltonian reduction has been widely applied to study and classify those hiera
of partial differential equations and the associatedW algebras~see, e.g., Ref. 5!. A class of new
integrable hierarchies~called fractional KdV or generalized DS! has been obtained6–11 by means
of a generalization of the Drinfel’d–Sokolov construction. Roughly speaking, fractional K
hierarchies correspond to the case in which the value of the momentum mapping for the
tesimal gauge action of the loop algebraLg is different from the sum of the~duals of the! simple
positive roots ofg. They have been shown8,9,12 to be classified by homogeneous elements
Heisenberg subalgebras of the affinizationḡ of g.

One of the cornerstones of the theory of integrable systems of KdV type is the fact thatn-GD
theories can be obtained from the full Kadomtsev–Petviashvilij~KP! hierarchy by means of a
suitable reduction process.4,13,14In this paper we study the problem of the generalization of s

a!Electronic mail: casati@vmimat.mat.unimi.it
b!Electronic mail: falqui@sissa.it
c!Electronic mail: magri@vmimat.mat.unimi.it
d!Electronic mail: pedroni@dima.unige.it
0022-2488/97/38(9)/4606/23/$10.00
4606 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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a link to the case of fractional KdV theories. Namely, we want to suggest candidates of
theories’’ lying behind fractional KdV ones.

Our starting point is a special hierarchy of dynamical systems described by equatio
Riccati type, which we call thecentral system~CS!. They are defined on the spaceH of se-
quences$H (k)%kPN of Laurent series of the form

H ~0!51, H ~k!5zk1(
l>1

Hl
kz21 ~I.1!

by the following equations

]H ~k!

]t j
1H ~ j !H ~k!5H ~ j 1k!1(

l 51

k

Hl
jH ~k2 l !1(

l 51

j

Hl
kH ~ j 2 l !. ~I.2!

They arise in the framework of the bi-Hamiltonian approach to the KdV equation, as we sha
in Sec. II. One can remark that the spaceH is a subspace of the big cell of the Sato Grassmann
Gr(H),13,15 and therefore, one can suspect that these equations are related to the linear fl
the gl` action onGr(H). This is indeed correct, since one can prove that the two type
equations are related by a Darboux transformations. The study of this connection, howe
outside the scope of the present paper.16 Our aim, in this paper, is to derive the fractional Kd
equations from CS by a double process of reduction.

The ideas of the present approach are conveniently described by adopting a geometric p
view. We regard equations~I.2! as defining a hierarchy of vector fieldsXj on H. We notice that
these vector fields commute, and we consider the space

Q m5H/Xm ~I.3!

of the orbits of the vector fieldXm . Since the CS flows commute, each vector fieldXj sends
solutions ofXm into different solutions, and therefore induces a flow on the spaceQm . We shall
call the hierarchy of the reduced flows onQm the KP(m) hierarchy. The reason is that form51,
one obtains in this way the usual KP hierarchy in the 111-dimensional picture. We were led t
consider different values ofm by the conjecture10,17 that m-fractional KdV hierarchies can be
obtained by ‘‘exchanging the roles oftm andt1’’ in the m-GD equations. However, we stress th
the projection ontoQm , which can also be thought of as a field-theoretic redefinition of flows
‘‘independent variables,’’ in our geometrical scheme is more conveniently considered as a
tion of the central system.

Besides the spaceQ m, we consider the manifold

Zn :5$HPHuXn~H !50% ~I.4!

of the zeroes ofXn and its submanifold

S n5$HPZnuH ~n!5zn%, ~I.5!

where the Laurent seriesH (n) assumes the constant valueH (n)5zn. We remark that they are
invariant submanifolds for the central system. The restrictions of the vector fieldsXj to S n give
rise to a second system of reduced equations which we call CSn equations. Finally, we combine
the two reduction processes, by considering the space

Q n
m5S n /Xm ~I.6!
J. Math. Phys., Vol. 38, No. 9, September 1997
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of the orbits of the vector fieldXm restricted toS n . We obtain a reduction of the CSn equations
which we call KdVn

m equations. Since the reduction processes commute, they can also be s
restrictions of the KP(m) equations toQ n

m . The relevant manifolds are shown in Fig. 1.
It is our belief that, whenm and n are coprime, the KdVn

m equations coincide with the
fractional KdV equations~or generalized type I GD equations! studied in.8,12 This will be shown
explicitly in the case of KdV3

2.
Other interesting equations can be obtained by different choices of the reduction spac

for example, the restrictions ofXj to the intersectionS nùZp of two invariant manifolds give rise
to finite-dimensional dynamical systems of Bogoyavlensky–Dubrovin–Novikov type.18,19 Simi-
larly, the projection of the KP(m) hierarchy into the space

Q ~m,l !5Q m/Xl ~I.7!

of the orbits of the reduction ofXl to Qm, can lead to equations in two space dimensions. They
denoted KP(m,l ) in Fig. 2, where the full reduction scheme is represented; the left arrows den
restriction to invariant submanifolds, and the right arrows denote a projection onto orbit s
Qm .

The main aim of this paper is to study the equations CSn , KP(m), and KdVn
m and their

relations. The paper is organized as follows. Section II is a brief introduction to the central s

FIG. 2. The full reduction schemes.

FIG. 1. The reduced manifolds.
J. Math. Phys., Vol. 38, No. 9, September 1997
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from the point of view of the bi-Hamiltonian approach to the KdV equations. The first fundam
tal properties of CS are studied in Sec. III, where we describe in detail the submanifoldsS n and
the quotient spacesQm. Section IV gives a preliminary view of the equations which can
obtained by iterating and combining the reduction processes in the simplest casem51, n52
corresponding to the usual KP theory. In Sec. V we exhibit the explicit structure of the equa
CSn and KP(m). Section VI is devoted to the KdVn

m equations. In particular we work out the ca
KdV3

2. Finally, in Sec. VII we give the bi-Hamiltonian interpretation of these equations along
lines explained in Sec. II, and we make an explicit comparison with the approach based
generalized DS procedure.

II. THE CENTRAL SYSTEM

The present approach to fractional KdV hierarchies comes from the bi-Hamiltonian theo
KdV equation. It may be suitable, therefore, to collect in this section the main ideas of this th

The starting point is the relation between bi-Hamiltonian manifolds and integrable sys
clarified by a theorem of Gel’fand and Zakharevich.20 Let the phase spaceM be a
(2n11)-dimensional manifold, endowed with a pencil of compatible Poisson brackets

$ f ,g%l5$ f ,g%12l$ f ,g%0 . ~II.1!

We assume that this pencil has maximal rank everywhere onM, and that the symplectic leaves o
$ f ,g%l are submanifolds of dimension 2n in M. As it was noticed by Gel’fand and Zakharevic
its Casimir function is a polynomial of degreen in the parameterl

H~l!5H01H1l1•••1Hnln, ~II.2!

and its coefficients (H0 ,H1 ,...,Hn) are in involution with respect to all the Poisson brackets of
pencil. Therefore they verify the conservation laws

]

]t j
Hk50, ~II.3!

where the derivative of the functionHk is taken along the Hamiltonian vector field associated w
the functionH j . These vector fields define an integrable system onM.

This bi-Hamiltonian strategy may be formally extended to partial differential equations in
space variablex, with two significant differences. The Casimir functionsH(l) now become a
Laurent series inl ~or in some power ofl! and the involution relations$Hi ,H j%l50, i , j
50, ...,n, are replaced by local conservations laws~or continuity equations! of the form

]h

]t j
5]xH

~ j !. ~II.4!

This fact is responsible for the appearance of a further important object of the theory: thecurrent
densities H( j ). They define a new geometrical structure associated with the points of the
space, which evolves in time along the orbits of Eq.~II.4!. The central system is the system
equations describing the time evolution of the current densitiesH ( j ).

Let us describe these features in the example of the KdV equations. From the bi-Hamil
point of view, the KdV theory may be seen as the study of the Casimir function and the cu
densities associated with the Poisson pencil

u̇52 1
2vxxx12~u1l!vx1uxv. ~II.5!
J. Math. Phys., Vol. 38, No. 9, September 1997
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This pencil can be obtained by a Marsden–Ratiu reduction of a Lie–Poisson pencil define
thesl~2! loop algebra.21,22Hereu is a point of the phase space of the KdV theory,v is a covector,
and the Poisson pencil is a map from the cotangent space to the tangent space.

The computation of the Casimir function is comparatively easy. Let us setl5z2, and let us
introduce the Hamiltonian densityh(z) of the Casimir function according to

H~z!52zE
S 1

h~z!dx. ~II.6!

One can prove thath(z) is the unique monic Laurent series

h~z!5z1(
l>1

hl~x!z2 l ~II.7!

which solves the Riccati equation

hx1h25u1z2. ~II.8!

Thus the role of this equation is to define the Casimir function at any pointu of the phase space
The computation of the currentH ( j ) is, instead, a little more tricky. We have to consider t

Faàdi Bruno polynomialsh(k) defined by the recursive formula

h~k11!5hx
~k!1hh~k!, ~II.9!

starting fromh(0)51. Then we have to linearly combine these polynomials, with coefficie
depending on the coefficientshi of h(z), but independentof z,

H ~ j !5 (
k50

j

ck
j ~h1 ,h2 ,...!h~k!~z! ~II.10!

in such a way to obtain Laurent seriesH ( j ) of the form

H ~ i !~z!5zj1(
l>1

Hl
iz2 l . ~II.11!

They are the current densities we are looking for. Indeed one can prove22,23 that, whenu evolves
according to the KdV hierarchy, the solutionh(z) of the Riccati equation~II.8! evolves exactly
according to the conservation laws~II.4!, with the currents~II.11!. Furthermore, the current den
sities presently defined evolve in time according to the central system~I.2!.

To arrive at the general form of the central system~I.2!, we have to remark that the assum
tion thath(z) be a solution of the Riccati equation is actually inessential. Indeed, Eqs.~II.10! and
~II.11! define the current densitiesH ( j ) associated with any Laurent seriesh(z) of the form~II.7!.
Therefore we can regard Eq.~II.4! as a system of local conservation laws for any monic Laur
seriesh(z), whether or not it satisfies the Riccati equation~II.8!. This enlarged hierarchy is the K
theory. Indeed, Eq.~II.4!, considered on an arbitrary monic Laurent seriesh(z), is ~a possible
form of! the celebrated KP equations.15,23,24

The second remark is that also the definition~II.10! of the current densities we have used
construct the KP equations, is inessential. The central system is actually independent
definition ~II.10! of the currentsH ( j ), and only rests on the particular form of their Laure
expansion~II.11!. Therefore we can eliminate any reference to a ‘‘space variablex’’ and to a
‘‘Hamiltonian densityh(z), ’’ and we can regard the central system as defining an indepen
family of vector fields on the spaceH of collections of such currents. From this perspective,
J. Math. Phys., Vol. 38, No. 9, September 1997
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~II.10! ~associated with the KP equations! and the Riccati equation~II.8! ~leading to the KdV
theory! are simply a set ofconstraints, which are compatible with the central system. Oth
constraints are possible as well, leading to different systems of equations. Among them th
the fractional KdV systems.

III. THE CENTRAL SYSTEM AND ITS REDUCTIONS

In this section we begin to study the central systems and its reductions. The starting p
the observation that the CS vector fields pairwise commute. To prove this property, we begi
some remarks on its structure.

Let us consider the spaceL of truncated Laurent series

l ~z!5(
2`

N~ l !

l jz
j . ~III.1!

In this space the currentsH ( j ), j >0, introduced in Sec. I as

H ~0!51, H ~k!5zk1(
l>1

Hl
kz2 l , ~III.2!

determine a subspace

H1 :5^H ~0!,H ~1!,...&, ~III.3!

transversal to the subspace

H2 :5^z21,z22,...& ~III.4!

of the Laurent series of strictly negative degree. We can now regard any solution of CS
subspaceH1(t) moving inL. The characteristic property of the solutions of CS is the invaria
of H1(t) with respect to the action of the differential operators]/]t j1H ( j ) associated with the
currents.

Proposition III.1: Along the flows of the central system the subspaceH1(t) satisfies the
invariance relation

S ]

]t j
1H ~ j !D ~H1!,H1 . ~III.5!

Proof: We show that this relation completely defines CS. Since the currentsH (k) form a basis of
H1 , the invariance property~III.5! entails the existence of coefficientscl

jk independent ofz such
that

]H ~k!

]t j
1H ~ j !H ~k!5(

l 50

j 1k

cl
jkH ~ l !. ~III.6!

These coefficients are easily determined by comparing the expansion in powers ofz of both sides
of Eq. ~III.6!. The final result is Eq.~I.2! defining the central system. j

As an immediate consequence of the previous result, we obtain the following compact
sentation of CS. We denote byp1 andp2 the canonical projections associated with the deco
position

L5H1 % H2 ~III.7!
J. Math. Phys., Vol. 38, No. 9, September 1997
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of the spaceL. Then we have
Proposition III.2: The central system is the family of dynamical systems on the cur

H ( j ) given by

]

]tk
H ~ j !52p2~H ~ j !H ~k!!. ~III.8!

Proof: We applyp2 to both sides of~III.6! and we get

p2S ]H ~k!

]t j
1H ~ j !H ~k!D 50.

The assertion follows from the fact thatH (k)5zk1( l>1Hl
kz2 l so that (]H (k)/]t j )PH2 . j

From the symmetry inj andk of the right-hand side of~III.8!, we finally obtain the following
Proposition III.3: Every solution ofCS satisfies the exactness condition

]

]tk
H ~ j !5

]

]t j
H ~k!. ~III.9!

j

We are now ready to prove the commutativity property of the CS flows.
Proposition III.4: The flows of the central system pairwise commute.
Proof: We compute the action of the commutator@Xj ,Xk# of two vector fields of the hierar-

chy on a generic current:

@Xj ,Xk#~H ~ i !!5
]

]t j

]H ~ i !

]tk
2

]

]tk

]H ~ i !

]t j
. ~III.10!

We remark that this quantity belongs toH2 , thanks to the specific form ofH ( j ). Then we observe
that, using the exactness property~III.9!, this commutator can be also written in the form

@Xj ,Xk#~H ~ i !!5F ]

]t j
1H ~ j !,

]

]tk
1H ~k!GH ~ i !,

so that the commutator of the vector fields coincides with the commutator of the ope
]/]t j1H ( j ) associated with the currents. Hence the invariance property~III.5! entails that
@Xj ,Xk#(H

( i )) belongs to the subspaceH1 for all theH ( i )’s. But H1ùH25$0%, and therefore
@Xj ,Xk# vanishes. j

A. The invariant submanifolds S n

From the commutativity of the flows it follows that the setZn of zeroes of the vector field
Xn , defined by the quadratic equations

H ~k1n!2H ~k!H ~n!1(
l 51

k

Hl
nH ~k2 l !1(

l 51

n

Hl
kH ~n21!50, ~III.11!

is an invariant submanifold for CS. Moreover, onZn we have

]H ~n!

]t j
5

]H ~ j !

]tn
50, ~III.12!
J. Math. Phys., Vol. 38, No. 9, September 1997
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thanks to the exactness property~III.9!. Therefore the manifoldZn is foliated by invariant sub-
manifolds defined by the equationH (n)5const. Among all these leaves we choose the one g
by the condition

H ~n!5zn, ~III.13!

which is the counterpart of the choice usually considered in the reduction theory from KP
n-GD hierarchies.13,14

Definition III.5: We call S n the submanifold of the zeroes of Xn , where the current H(n)

satisfies the relation (III.13).
The equations defining this submanifold can be explicitly found by eliminatingH (n) from

~III.11! by means of the constraints~III.13!. This leads to the conclusion thatS n is the subset of
H defined by the equations

H ~ j 1n!5znH ~ j !2(
l 51

n

Hl
jH ~n2 l !. ~III.14!

Therefore it is parametrized by the firstn21 currents (H (1),...,H (n21)).
A more intrinsic characterization is provided by the following
Proposition III.6: The submanifoldS n is the subset ofH given by the equation

zn~H1!,H1 , ~III.15!

i.e., the set of the points where the operator of multiplication by zn leaves the spaceH1 invariant.
Proof: First of all, it is easily shown that the condition~III.15! is necessary. It is enough

indeed, to observe that the invariance relation

S ]

]tn
1H ~n!D ~H1!,H1 ~III.16!

characterizing the vector fieldXn , at the points ofS n boils down to the relation~III.15! thanks to
~III.13!.

To show that the condition is also sufficient, let us remark thatzn
•H (0)5zn

•15zn belongs to
H1 and then can be developed as

zn5(
l 50

n

cl
nH ~ l !. ~III.17!

By a comparison between the coefficients of the positive powers ofz we obtain that

zn5H ~n!. ~III.18!

In the same way it can be proved that

znH ~ j !5H ~ j 1n!1(
l 51

n

Hl
jH ~n2 l !. ~III.19!

Now it is enough to write this relation in the form

H ~ j 1n!2znH ~ j !1(
l 51

n

Hl
jH ~n2 l !50 ~III.20!
J. Math. Phys., Vol. 38, No. 9, September 1997
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with the condition~III.14!. j

B. The quotient spaces Qm

Let us consider now the second process of reduction. We concentrate on a vector field
hierarchy, sayXm , and we denote the corresponding timetm by

tm5x, ~III.21!

in order to point out its special role in the reduction. This amounts to converttm into a ‘‘space
variable,’’ in the terminology used in the theory of KP equations. It is worthwhile to remark
the projection toQm with mÞ1 formalizes the procedure that in the physics literature17 is usually
described as the ‘‘exchangex↔tm . ’’

Definition III.7: We callQm the space of the solutions of the mth flow of the central sys
i.e., the space of orbits of the vector field Xm.

Thanks to the commutativity condition, any vector fieldXj of CS induces a flow, which we
still denote byXj , on Qm . The first problem to be solved is to characterize the varietyQm .

Proposition III.8: The quotient spacesQm can be identified with the space of m-tupl
$H (a)(z)%a51,...,m of Laurent series of the form

H ~a!~z!5za1(
l>1

Hl
a~x!z2 l , ~III.22!

whose coefficients are functions of the space variable x.
Proof: It suffices to remark that the equations defining the vector fieldXm may be written in

the form of recursion relations

H ~ j 1m!5S ]

]x
1H ~m!DH ~ j !2(

l 51

j

Hl
mH ~ j 2 l !2(

l 51

m

Hl
jH ~m2 l !. ~III.23!

They allow to compute the currents (H (m11),H (m12),...) asdifferential polynomials in the firstm
currents (H (1),...,H (m)). Explicitly, this means that the coefficients of (H (m11),H (m12),...) are
polynomials in the coefficients of (H (1),...,H (m)) and theirx derivatives. Since the generato
(H (1),...,H (m)) depend onx in a completely arbitrary way, we conclude that the space of orbit
the vector fieldXm coincides with the space ofm-tuples of Laurent series~III.22!. j

IV. PRELIMINARY EXAMPLES OF REDUCED EQUATIONS

Let us consider the simplest examples of reductions of the central system. We first co
the submanifoldS 2 . According to Eq.~III.14!, it is parametrized by the single Laurent seri
H (1). To simplify the notations we set

h~z!:5H ~1!5z1(
l>1

hlz
2 l . ~IV.1!

The constraints definingS 2 are

H ~2!5z2, H ~3!5z2h~z!2h1h~z!2h2 , H ~4!5z4

~IV.2!

H ~5!5z2H ~3!2H1
3h~z!2H2

35~z42h1z21h1
22h3!h~z!2h2z21h2h12h4 ,

and so on. To construct CS2, it is sufficient to plug these constraints in the equation
J. Math. Phys., Vol. 38, No. 9, September 1997
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]h~z!

]t j
5H ~ j 11!2hH~ j !1(

l 51

j

hlH
~ j 2 l !1H1

j ~IV.3!

to get the equations displayed in Table I.
It is worthwhile to display also the first CS3 equations. By setting

k~z!:5H ~2!5z21(
l>1

klz
2 l ~IV.4!

along with ~IV.1! and using the first parametric equations of the submanifoldS 3

H ~3!5z3, H ~4!5z3h2h1k2h2h2h3 , H ~5!5z3k2k1k2k2h2k3 , ~IV.5!

we get the equations collected in Table II.
Let us now consider the quotient spaceQ1 . We keep the usual notationH (1)5h, but we recall

that hereh must be considered as a Laurent seriesh5z1( l>1 hl(x)/zl , whose coefficients
depend on the space variablex. By using the equations of the vector fieldX1 , from ~III.22! we
obtain the relations

H ~2!5hx1h222h1 ,

H ~3!5Hx
~2!1hH~2!2h1h2h25hxx13hhx1h323h1h23~h1x1h2!, ~IV.6!

•••.

TABLE I. The first CS2 equations.

]h1

]t1
522h2

]h1

]t3
522h412h1h2

]h2

]t1
52~2h31h1

2!
]h2

]t3
522h51h2

21h1
3

]h3

]t1
52~2h412h1h2!

]h3

]t3
522h612h1

2h2

]h4

]t1
52~2h512h1h31h2

2!
]h4

]t3
522h712h1

2h32h3
21h1h2

2

]h5

]t1
52~2h612h1h412h2h3!

]h5

]t3
522h822h3h412h1

2h412h2h2h3

]h1

]t5
52h3h222h612h1h422~h1!

2h2

]h2

]t5
5h3

212h2h41h1
2h322h72h1h2

22~h1!
4

]h3

]t5
52h3h422h1

3h222h812h1h3h2

]h4

]t5
522h913h1h3

222h1
3h31h4

22h2
2h1

21h2
2h3

]h5

]t5
52h2h3

222h2h1
2h322h1014h1h3h422h1

3h4
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The KP~1! equations, describing the projection of CS onQ1 , are obtained by introducing th
recursion relation~IV.6! in the equation

]h

]t j
5H ~ j 11!2hH~ j !1(

l 51

j

hlH
~ j 2 l !1H1

j 5
]H ~ j !

]x
. ~IV.7!

Expanding these equations in powers ofz, one constructs the equations displayed in Table
After a suitable coordinate change,15,23,24 these equations coincide with the usual KP eq

tions in the 111 formalism.
We shall now consider the double reduction on the spaceQ2

1. We can start either from
KP~1! or from CS2. In the first case, we have only to impose the constraint

H ~2!5hx1h222h15z2 ~IV.8!

that is,

2h21h1x50,

TABLE II. The first CS3 equations.

]h1

]t1
5k122h2

]h2

]t1
5k222h32h1

2

]h3

]t1
5k322h2h122h4

]h4

]t1
5k422h1h322h52h2

2

]h5

]t1
5k522h1h422h2h322h6

]h1

]t2
5

]k1

]t1
52h32k21h1

2

]h2

]t2
5

]k2

]t1
52h1k12h42k31h2h1

]h3

]t2
5

]k3

]t1
52k1h22h1k22h52k41h1h3

]h4

]t2
5

]k4

]t1
52k1h32k2h22h1k32h62k51h1h4

]k1

]t2
5h41h1k12h2h122k3

]k2

]t2
5h52h2

22h1k212k1h222k42k1
2

]k3

]t2
5h62h1k32h2h322k1k212k1h322k5

]k4

]t2
5h72h1k42h2h422k1k312h4k122k62k2

2
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2h31h2x1h1
250,

~IV.9!

2h41h3x12h1h250,

•••

on the currents~IV.6!. As it is well-known,23 this is the constraint defining the Hamiltonians of t
KdV hierarchy, which leads from the KP equations to the KdV equations.

In the second case, we can proceed in three steps. First, we use the exactness conditio~III.9!
to write the equations of Table I in the form of Table IV.

Then we transform the timet1 in a space variablex, and we regard the first CS2 equation as
a set of recursive relations

2h252h1x ,

2h352~h2x1h1
2!,

~IV.10!

2h452~h3x12h1h2!,

•••.

They allow to identify the spaceQ2
1 with the space of scalar functionsu[2h1 in one space

variablex ~the phase space of KdV!. Finally, we insert these constraints in the first componen
each vector fieldXj of CS2 ~the other components can be neglected, since they give rise on
differential consequences of the previous ones!. Once again, we get the KdV equations

]u

]t3
5]x~h32h1

2!5 1
8]x~uxx23u2!,

~IV.11!

]u

]t5
5]x~h522h1h31h1

3!5 1
32]x~uxxxx210uuxx25ux

2110u3!,

and so on. This computation clearly points out how the projection process allows us to tran
a family of dynamical system into a hierarchy of evolution partial differential equation in 111
dimensions~one space dimension and one time dimension!.

TABLE III. The first KP~1!equations.

]h1

]t1
5h1x

]h1

]t2
5]x~h1x12h2!

]h2

]t1
5h2x

]h2

]t2
5]x~h2x1h1

212h3!

]h3

]t1
5h3x

]h3

]t2
5]x~h3x12h412h1h2!

]h1

]t3
5]x~h1xx13h2x13h3!

]h2

]t3
5]x~h2xx13h3x13h1h1x13h413h1h2!

]h3

]t3
5]x~h3xx13h4x13h1h2x13h1xh213h1h313h2

21h1
3!
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We end this section by briefly describing another example of double reduction of CS, o
intersectionS nùZp . In this case we obtain systems of ordinary differential equations in a fi
number of fields. Let us exemplify this feature by considering the intersectionS 2ùZ5 . Looking
at the equations definingX5 in Tables I and III we obtain the constraints

h65h1h41h2h32h1
2h2 ,

h75h2h41 1
2~h3

21h1
2h32h1h2

22h1
4!,

~IV.12!

h85h3h41h1h2h32h1
3h2 ,

•••,

which are an infinite system of recurrence relations allowing to express all thehl ’s, for l>6, as
polynomial functions ofh1 ,...,h5 . Therefore the invariant submanifoldS 2ùZ5 is five dimen-
sional. The restriction of CS2 to this submanifold is simply constructed by plugging the constra
~IV.12! in the first five components of the vector fieldsX1 andX3 . We get the equations

TABLE IV. The CS2 equations as conservation laws.

]h1

]t1
522h2

]h1

]t3
5

]

]t1
~h32h1

2!

]h2

]t1
52~2h31h1

2!
]h2

]t3
5

]

]t1
~h42h1h2!

]h3

]t1
52~2h412h1h2!

]h3

]t3
5

]

]t1
~h52h1h3!

]h4

]t1
52~2h512h1h31h2

2!
]h4

]t3
5

]

]t1
~h62h1h4!

]h5

]t1
52~2h612h1h412h2h3!

]h5

]t3
5

]

]t1
~h72h1h5!

]h1

]t5
5

]

]t1
~h522h1h31h1

3!

]h2

]t5
5

]

]t1
~h62h2h32h1h41h2h1

2!

]h3

]t5
5

]

]t1
~h72h3

22h1h51h3h1
2!

]h4

]t5
5

]

]t1
~2h3h41h1

2h42h1h61h8!

]h5

]t5
5

]

]t1
~2h3h52h1h71h91h1

2h5!
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]h1

]t1
522h2 ,

]h1

]t3
52~2h422h1h2!,

]h2

]t1
52~2h31h1

2!,
]h2

]t3
52~2h52h2

22h1
3!,

]h3

]t1
52~2h412h1h2!,

]h3

]t3
52~2h1h412h2h324h1

2h2!,

]h4

]t1
52~2h512h1h31h2

2!,
]h4

]t3
52~2h3

22h1
2h32h1

422h1h2
212h2h4!,

]h5

]t1
52~4h1h414h2h322h1

2h2!,
]h5

]t3
52~4h3h422h1

3h222h1
2h4!.

~IV.13!

The equations corresponding to the vector fieldsX2 j 11 , for j >2, are combinations of Eqs
~IV.13!. Hence the equations we have written represent the whole reduced system. After a s
coordinates change, they coincide with the second Novikov system18 relative to the KdV hierar-
chy.

V. THE EQUATIONS CSN AND KP(M)

In Sec. III we explained the geometric process leading to the CSn and KP(m) equations. In this
section we shall give an algebraic definition of these equations by using the concept ofFaà di
Bruno basisassociated with a~finite set of! monic Laurent series. We present this idea first for
CSn case. In Sec. III we showed that this is a system of ordinary differential equations in th
(n21) currents

H ~a!5za1(
l>1

Hl
az2 l , ~V.1!

for a51,...,n21. As usual, we setH (0)51 and we we consider the pointH (n)5zn in the spaceL
of all truncated Laurent series. We callstationary Faa` di Bruno basisat the pointzn the basis of
L defined by the iterates

F ~ j 1n!5zn
•F ~ j !,

~V.2!

F ~a!5H ~a! for a50,...,n21,

of the initial generators (H (0),...,H (n21)), for j PZ. Let us denote withH1 the subspace ofL
spanned by the nonnegative elements of the Faa` di Bruno basis at the pointzn, and withH2 the
subspace spanned by the negative ones. We decomposeL in the direct sum

L5H1 % H2 , ~V.3!

and we call

H ~ j !5p1~zj ! ~V.4!

the projections onH1 of the powerszj with respect to this decomposition.
Definition V.1 (Second definition ofCSn): We call CSn the dynamical system in the curren

(H (1),...,H (n21)) defined by

]H ~a!

]t j
52p2~H ~a!H ~ j !!, ~V.5!
J. Math. Phys., Vol. 38, No. 9, September 1997
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for a51,...,n21, and jPN.
We proceed in the same way for the KP(m) equations. In this caseL is the space of the

truncated Laurent series whose coefficients are functions of the space variablex, and we consider
the point

H ~m!5zm1(
l>1

Hl
mz2 l . ~V.6!

We call differential Faàdi Bruno basisat the pointH (m) the basis ofL defined by the iterates

F ~ j 1m!5~]x1H ~m!!•F ~ j !,
~V.7!

F ~a!5H ~a! for a50,...,m21,

of the initial generators (H (0),...,H (m21)), for j PZ. We observe that the computation of th
elementsH ( j ), with j ,0, of the Faa` di Bruno basis does not require any integration, since
recurrence relation~V.7! can be inverted in a purely algebraic way. As before, we decompos
spaceL in the form ~V.3!, and we introduce the projections

H ~ j !5p1~zj ! ~V.8!

of the powerszj . Even if we used the same notations to point out the analogy between the
situations, one has to keep in mind that they live in different spaces, and that the Faa` di Bruno
basis are defined in a different way.

Definition V.2 (Second definition ofKP(m)!: We call KP(m) the system of evolutionary partia
differential equations in the currents(H (1),...,H (m)) defined by

]H ~a!

]t j
52p2~H ~a!H ~ j !!, ~V.9!

for a51,...,m, and jPN.
Now we have to show that the equations defined above coincide with the ones obtained

reduction process.
Proposition V.3: The equations (V.5) and (V.9) constructed by the Faa` di Bruno basis algo-

rithm coincide with the reduced equations CSn and KP(m) defined by the reduction scheme.
Proof: We callĤ1 the subspace ofL spanned by the currentsH ( j ) of the central system~the

same subspace that we denoted withH1 in Sec. III!. We considerĤ1 at a generic point of the
submanifoldS n . From ~III.15! at the points ofS n the subspaceĤ1 is invariant with respect to
multiplication byzn. Hence it contains all non-negative elements of the stationary Faa` di Bruno
basis associated with the pointzn. ThereforeĤ1 at the points ofS n coincides with the subspac
H1 appearing in the decomposition~V.3!, constructed by choosing as generators the curre
(H (1),...,H (n21)) defining the point ofS n . It follows that the projection~V.4! belongs toĤ1 ,
and therefore coincides with the corresponding current of CS evaluated atS n . The first part of the
proposition then follows from Proposition III.2.

As far as the KP(m) equations are concerned, one can argue in the same way. In this ca
evaluate the subspaceĤ1 at the points of a generic integral curve of the vector fieldXm . We use
the invariance property~III.5! to conclude that at these points the subspaceĤ1 contains all
non-negative elements of the differential Faa` di Bruno basis~V.7!, and therefore it coincides with
the subspaceH1 associated with the pointH (m). This observation leads to the conclusion that
projection~V.8! coincides with the currentH ( j ) of CS evaluated at the points of the integral cur
of the vector fieldXm . This suffices to prove the coincidence between the KP(m) equations
obtained by projection and Eqs.~V.9!. j
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To enlighten the~differential! Faàdi Bruno algorithm, we consider the KP~2! equations. We
put h5H (1) andk5H (2). The first elements of the Faa` di Bruno basis at the pointk, associated
with the generators (1,h), are

F ~0!51, F ~3!5hx1kh,

F ~1!5h, F ~4!5kx1k2, ~V.10!

F ~2!5k, F ~5!5hxx12khx1hkx1k2h.

We combine these elements in the form

H ~1!5F ~1!, H ~3!5F ~3!2h1F ~1!2~h21k1!F ~0!,
~V.11!

H ~2!5F ~2!, H ~4!5F ~4!22k1F ~1!22k2F ~0!

in order to obtain Laurent series with the asymptotic behaviorH ( j )5z( j )1O(z21). They are the
currentsH ( j ) written as differential polynomials ofh andk. To obtain the KP~2! equations we can
either compute the projectionsp2(hH( j )) andp2(kH( j )), or write the equations

]

]t j
h5H ~ j 11!2hH~ j !1(

l 51

j

hlH
~ j 2 l !1H1

j ,

~V.12!

]

]t j
k5]xH

~ j !.

In particular, the first vector field of the KP~2! hierarchy is given by

]

]t1
h5k2h212h1 ,

]

]t1
k5]xh. ~V.13!

This computation allows us to illustrate the link between KP~1! and KP~2!. Indeed we write Eqs.
~V.13! in the form

k5
]

]t1
h1h222h1 , ]xh5

]

]t1
k ~V.14!

and we take thex derivative of the first equation above to get

]xk5
]

]t1
hx12hhx22h1x .

By substitution we get

]xk5
]2

]t1
2 k12h

]

]t1
k22

]

]t1
k1 . ~V.15!

By this process, we can expressh, k, and the collection of their ‘‘space derivatives
(hx ,kx ;hxx ,kxx ;...) ast1-differential polynomials inh. As a consequence, all the currentsH ( j )

are expressed ast1-differential polynomials inh, and the KP~2! system~V.12! reduces to the
KP~1! equations withx5t1 ,
J. Math. Phys., Vol. 38, No. 9, September 1997
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]

]t j
h5

]

]t1
H ~ j !. ~V.16!

Conversely, the KP~2! hierarchy can be obtained as a differential prolongation of KP~1!. More
precisely, starting from KP~1!, one has to putk:5H (2) and to use the definition ofk and the second
equation of KP~1!,

k5hx1h222h1 ,
]

]t2
h5kx ~V.17!

to express all thex derivatives ofh in terms ofh, k, and theirt2 derivatives. At this point one
simply changes the names of the variablesx andt2 , by putting at firstx°t1 and thent2°x. This
kind of procedure is easily extended to describe the relations between the KP~1! and KP(m) equa-
tions, form>3. As a matter of fact, the existence of such a link between different KP(m) theories,
which gives rise to these mappings of flows, is extremely natural in our approach. It is a c
quence of the fact that all KP(m) theories aredifferentfield-theoretic pictures of thesameinfinite-
dimensional dynamical system, the central system.

VI. THE KdVN
M EQUATIONS

The KdVn
m equations are the restriction of the KP(m) equations to the invariant submanifo

Qn
m of the orbits ofXm which are tangent toS n ~see Fig. 1!. In the casen.m, the spaceQ n

m is
characterized by the following property.

Proposition VI.1: Let(H (1),...,H (m)) be a generic point ofQ m, and let(H (1),...,H (n21)) be
the first(n21) currents constructed by the (differential) Faa` di Bruno algorithm of Sect. V. The
point (H (1),...,H (m)) belongs toQn

m if and only if the Laurent series(]x 1 H (m))H (a), for
a50,...,n21 admit the linear expansion

~]x1H ~m!!H ~a!5 (
b50

n21

ub
a~l!H ~b!, ~VI.1!

where the coefficients ub
a(l) depend polynomially onl 5 zn and on the coordinates Hl

1,...,Hl
m of

the point ofQn
m .

Proof: We recall that the vector fieldXm is defined by the equation

S ]

]tm
1H ~m!D ~H1!,H1 ~VI.2!

and thatS n is characterized by the property

zn
•~H1!,H1 . ~VI.3!

Thus onS n the subspaceH1 is generated by (H (1),...,H (n21)) and by multiplication by powers
of l. Equation~VI.1! simply means thatXm is tangent toS n . j

To see how this condition works in practice, we are restricted from now on to the ca
KdV3

2. In the notations of Sec. IV, i.e.,h(z)5H (1), k(z)5H (2), l5z3, the submanifoldQ 3
2 is

defined by the constraints

~]x1k~z!!F 1
h~z!

k~z!
G5U~l!F 1

h~z!

k~z!
G . ~VI.4!
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The matrixU is easily computed by comparing the powers ofz on both sides. We obtain th
generalized Frobenius matrix

U5S 0 0 1

l1h21h1 h1 0

2k22h3 l12k12h2 2h1

D . ~VI.5!

Therefore the constraints~VI.4! are equivalent to the pair of Riccati equations

h~z!x1h~z!k~z!5z31h1h~z!1~h21k1!, ~VI.6!

h~z!x1k~z!252h1k~z!1h~z!~2k12h21z3!2~h322k2!. ~VI.7!

Proposition VI.2: TheQ3
2 constraints allow us to express all the fields$hj ,kj% j >3 of the KP(2)

theory as differential polynomials of the first four components h1 ,h2 ,k1 ,k2 . Therefore the space
Q3

2 can be identified with the space of generalized Frobenius matrices (VI.5) and KdV3
2 reduces to

a hierarchy on four fields, h1 ,h2 ,k1 ,k2.
Proof: The coefficient ofz21 of ~VI.6! gives

h35h1
22h1x2k2 , ~VI.8!

and, in general, the coefficients ofz2 i of ~VI.7! and ofz2( i 11) of ~VI.6! can be read as a linea
system in the unknowns (ki 12 ,hi 13) of the form

F2 21

1 1 G Fki 12

hi 13
G5Fa i

b i
G , ~VI.9!

where the right-hand side is ax-differential polynomial in the Laurent coefficients$hl ,km% with
l , i 13, m, i 12. j

To obtain the KdV3
2 hierarchy in the form of a zero-curvature equation we consider the ve

field Xj and the associated currentH ( j ) constructed with the differential Faa` di Bruno algorithm of
Sec. V. Since this vector field is tangent toS 3 at the points ofQ3

2, there exists a matrix
V ( j )(l), whose entriesv ( j )

b
a(l) are polynomials inl5z3 with coefficients depending on th

Laurent coefficients$hi% and$ki%, such that

S ]

]t j
1H ~ j !DH ~a!5 (

b50

n21

v ~ j !b
a
~l!H ~b! ~VI.10!

for a50,1,2.
Proposition VI.3: The KdV3

2 hierarchy on the space of generalized Frobenius matrices (V
admits the zero-curvature representation

]

]t j
U2

]

]x
V ~ j !1@U,V ~ j !#50. ~VI.11!

Proof: It is enough to cross differentiate Eqs.~VI.1! and~VI.10! defining the matricesU and
V ( j ), and to recall the result of Proposition VI.2 about the possibility of expressing the La
coefficientshj ,kj , j >3, in terms (h1 ,h2 ,k1 ,k2). j

The same procedure can be used for other fractional KdV equations. It should be com
with the approach of Refs. 8 and 9.
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VII. ON THE BI-HAMILTONIAN ASPECTS OF KdV 3
2

To show that our KdV3
2 hierarchy coincides with the fractionalsl3

(2) KdV hierarchy of Ref. 17,
it could suffice to remark that KdV3

2 can be also obtained from KdV3
1 ~which is the classical

Boussinesq hierarchy! by means of thex↔t2 interchange, in the same way as KP~2! is obtained
from KP~1!. Actually, this hierarchy was first studied in Ref. 7 by means of the Hamilton
reduction suggested in Refs. 6 and 25, and the existence of two compatible Hamiltonian stru
was also pointed out. The theory of fractional KdV hierarchy has been further explored
generalized in a number of papers~see, e.g., Refs. 8, 9, 11, and 12!, by means of the study of its
Lie-algebraic aspects.

In this section we will briefly address the problem of showing a direct relation betwee
KdV3

2 treated in Sec. VI and the corresponding generalizedsl3
(2) DS one of Refs. 7 and 8, assumin

as a starting point its bi-Hamiltonian aspects. Full proofs and detailed explanations will be
elsewhere.26 The reader should keep in mind the logical path followed in Sec. II, where the K~1!

hierarchy has been derived from the Poisson pencil of KdV.
We recall that a manifoldM is said to be bi-Hamiltonian if it is endowed with two compa

ible Poisson brackets, and that a Poisson bracket can be assigned in terms of a Poisso
P:T* M→TM as

$ f ,g%5^d f ,Pdg&. ~VII.1!

We consider the Lie algebrasl~3! and its loop algebraG5L(sl(3)), i.e., the space ofC` maps
from S 1 to sl~3!. The algebraG is a bi-Hamiltonian manifold~see, e.g., Refs. 3 and 21!. The
Poisson structures we will consider hereinafter are

~P0!M•V5@A2 ,V#, ~VII.2!

~P1!M•V5Vx1@V,M #. ~VII.3!

Here M is a point inG, V is a cotangent vector atM , x is the parameter onS1, andA2 is the
element

A25S 0 0 0

1 0 0

0 1 0
D ~VII.4!

in G. To lower the number of degrees of freedom, one seeks~following the seminal paper3! a
Poisson reduction of this bi-Hamiltonian structure. According to the bi-Hamiltonian variant21 of
the Marsden–Ratiu reduction theorem,27 one has to consider a symplectic leafS of P0 , the
~integrable! distribution D5P1 (ker P0), and the intersectionE5DùTS . Then the quotient
manifold N 5S /E is still a bi-Hamiltonian manifold. In our case, we chooseS to be the
symplectic leaf passing through the point

B25S 0 0 1

0 0 0

0 0 0
D . ~VII.5!

The submanifoldS has dimension 6 overC`(S1), and its generic point can be parametrized

S 5S p0~x! p2~x! 1

q0~x! p1~x!2p0~x! 2p2~x!

q2~x! q1~x! 2p1~x!
D . ~VII.6!
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Then we consider the distributionD, which turns out to be tangent toS , soE5D. The quotient
manifold N 5S /E is parametrized by the four fields

u052p01p11p2
2,

u15q012p0p22p1p22p2
31p2x ,

~VII.7!

u25q12p0p212p1p21p2
31p2x ,

u35q21p0x2p2p2x1q0p22q1p21p0p12p2
422p1p2

2.

The reduced Poisson pencilPl
N 5P1

N 2lP0
N on N turns out to be

Pl
N 5S 2

3]x 2u12l u21l ~ 1
3]x

22u0]x2u0x!

* 0 ~Pl
N !23 ~2u1]x1u1x22u0u1!2l~22]x12u0!

* * 0 ~u2]x1u2x12u0u2!2l~22]x22u0!

* * * ~Pl
N !44

D , ~VII.8!

where

~Pl
N !2352]x

213u0]x12u0x1u322u0
2,

~Pl
N !4452 2

3]x
31~ 4

3u0x12u31 2
3u0

2!]x1 2
3u0u0x1u3x1 2

3u0xx .

They are computed according to the standard procedure explained in Refs. 27 and 21. The
Poisson tensorP1

N coincides with the one given in Ref. 9, after the change of coordinates

u052Ũ, u15G̃1, u25G̃2, u35T̃2Ũ21 1
2Ũx ~VII.9!

andx°2x.
The basic remark to connect this theory with the KdV3

2 treated in Sec. VI is that the quotien
spaceN can be identified with the space of~generalized! Frobenius matrices

U5S 0 0 1

u1 u0 0

u3 u2 2u0

D ~VII.10!

by noticing that the constraintsp05p250 define a submanifoldU of S transversal to the
distribution D. Consequently, by comparing the matrices~VI.5! and ~VII.10! we arrive at the
identification

u05h1 , u15h21k1 , u252k12h2 ,
~VII.11!

u352k22h353k22h1
21h1x ,

which can be inverted in local form to yield

h15u0 , h25 1
3~2u12u2!,

~VII.12!

k15 1
3~u11u2!, k25 1

3~u31u0
22u0x!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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This procedure sets up a diffeomorphism

F:N →Q3
2 ~VII.13!

between the reduced bi-Hamiltonian manifoldN and the phase space of the KdV3
2 theory. This

diffeomorphism enjoys the following properties, which we limit ourselves to state without pr
~they will be detailed elsewhere26!:

~1! The integral onS1

H~z!53z2E
S1

k~z!dx, ~VII.14!

of the pullback of the second current of the KdV3
2 theory is a Casimir function of the

Poisson pencil~VII.8!.
~2! The push-forward of the Hamiltonian vector fields onN associated with this Casimi

function are the KdV3
2 flows ~VI.11! on Q3

2. Hence we are allowed to identify the tw
theories.

This result can be usefully compared with the KdV case briefly treated in Sec. II. The
(5KdV2

1) theory is a theory in a single fieldu, defined on the quotient spaceN 2
1 associated with

the Lie–Poisson pencil on the loop algebra ofsl2 and with the matrices21

A15S 0 0

1 0D , B15S 0 1

0 0D . ~VII.15!

The KdV3
2 theory is a theory on four fields (u0 ,u1 ,u2 ,u3), defined on the quotient spaceN 3

2

associated with the Lie–Poisson pencil on the loop algebra ofsl3 and with the matrices

A25S 0 0 0

1 0 0

0 1 0
D , B25S 0 0 1

0 0 0

0 0 0
D . ~VII.16!

In the first case the Casimir function of the reduced Poisson pencil is defined by the solutionh(z)
of the singleRiccati equation

hx1h25u1z2. ~VII.17!

In the latter case, the Casimir function is computed by solving thepair of Riccati equations

hx1kh5u0h1~u11l!,
~VII.18!

kx1k252u0k1~u21l!h1u3 ,

in the first two currentsH (1)5h(z), H (2)5k(z). The appearance of these systems of Ricc
equations is a general feature of KdVm

n theories withm>2 which, in our opinion, deserves furthe
attention.

When the pointu evolves according to the KdV hierarchy, the solutionh of the Riccati
equation~VII.17! evolves according to the KP~1! equations

]

]t j
h52p2~hH~ j !! ~VII.19!

defined in Sec. II. Similarly, when the point (u0 ,u1 ,u2 ,u3) evolves according to the KdV3
2 hier-

archy, the solution (h,k) of the Riccati system~VII.18! evolves according to the KP~2! equations
J. Math. Phys., Vol. 38, No. 9, September 1997
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]

]t j
h52p2~hH~ j !!,

]

]t j
k52p2~kH~ j !!. ~VII.20!

In both cases the current densitiesH ( j ), which are constructed in a different way in the tw
theories evolve in time according to the central system~I.2!. This completes the view of the
relations connecting the central system and the fractional KdV hierarchies we discussed in th
of KdV3

2.
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hospitality at theCentre Émile Borel, where part of this work has been completed.

1V. A. Fateev and S. L. Lukyanov, ‘‘Additional symmetries and exactly-soluble models in two-dimensional confo
field theory,’’ Sov. Sci. Rev. A Phys.15, 1–124~1990!.

2T. G. Khovanova, ‘‘The Gel’fand Dikii Lie Algebras and the Virasoro Algebra,’’ Funct. Anal. Appl.20, 332–334
~1987!.

3V. G. Drinfeld and V. V. Sokolov, ‘‘Lie Algebras and Equations of Korteweg–de Vries Type,’’ J. Sov. Math.30,
1975–2036~1985!.

4L. A. Dickey, Soliton Equations and Hamiltonian Systems, Adv. Series in Math. Phys. Vol. 12~World Scientific,
Singapore, 1991!.

5W-symmetry, edited by P. Bouwknegt and K. Schoutens, Adv. Series in Math. Phys. Vol. XX,~World Scientific,
Singapore, 1995!.

6M. Bershadsky, ‘‘Conformal Field Theories via Hamiltonian reductions,’’ Commun. Math. Phys.139, 71–82.~1991!.
7I. Bakas and D. A. Depireux, ‘‘A Fractional KdV Hierarchy,’’ Mod. Phys. Lett. A6, 1561–1573~1991!.
8M. F. de Groot, T. J. Hollowood, and J. L. Miramontes, ‘‘Generalized Drinfel’d–Sokolov Hierachies,’’ Commun. M
Phys.145, 57–84~1992!.

9N. J. Burroughs, M. F. DeGroot, T. J. Hollowood, and J. L. Miramontes, ‘‘Generalized Drinfel’d–Sokolov Hierac
II. The Hamiltonian structures,’’ Commun. Math. Phys.153, 187–215~1993!.

10D. A. Depireux and P. Mathieu, ‘‘On the ClassicalWN
( l ) algebras,’’ Int. J. Mod. Phys. A7, 6053–6080~1992!.

11L. Fehér, J. Harnad, and I. Marshall, ‘‘Generalized Drinfel’d–Sokolov Reductions and KdV type Hierarchies,’’ C
mun. Math. Phys.154, 181–214~1993!.

12C. R. Ferna´ndez-Pousa, M. V. Gallas, J. L. Miramontes, and J. Sa´nchez Guillen, ‘‘W-Algebras from soliton equation
and Heisenberg subalgebras,’’ Ann. Phys.243, 372–419~1995!.

13G. Segal and G. Wilson, ‘‘Loop Groups and equations of the KdV type,’’ Publ. Math. IHES61, 5–65~1985!.
14E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, ‘‘Transformation Groups for Soliton Equations,’’ inProceedings of

R.I.M.S. Symposium on Nonlinear Integrable Systems—Classical Theory and Quantum Theory, edited by M. Jimbo and
T. Miwa ~World Scientific, Singapore, 1983!, pp. 39–119.

15M. Sato and Y. Sato, ‘‘Soliton equations as dynamical systems on infinite-dimensional Grassmann manifo
Nonlinear PDEs in Applied Sciences~US–Japan Seminar, Tokyo!, edited by P. Lax and H. Fujita~North-Holland,
Amsterdam, 1982!, pp. 259–271.

16G. Falqui, F. Magri, and M. Pedroni, ‘‘Bihamiltonian geometry, Darboux coverings, and linearization of the KP h
chy,’’ SISSA Report No. 82/97/FM.

17P. Mathieu and W. Oevel, ‘‘TheW3
(2) conformal algebra and the Boussinesq hierarchy,’’ Mod. Phys. Lett. A6, 2397–

2404 ~1991!.
18O. I. Bogoyavlensky and S. P. Novikov, ‘‘The relationship between Hamiltonian formalism of stationary and

stationary problems,’’ Funct. Anal. Appl.10, 92–95~1976!.
19B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, ‘‘Non-linear equations of the Korteweg–de Vries type, finite-

linear operators, and Abelian varieties,’’ Russ. Math. Surv.31, 59–146~1976!.
20I. M. Gel’fand and I. Zakharevich, ‘‘On the local geometry of a bi-Hamiltonian structure,’’ inThe Gel’fand Mathemati-

cal Seminars 1990–1992, edited by L. Corwinet al. ~Birkäuser, Boston, 1993!, pp. 51–112.
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Exact solution of a boundary value problem
in semiconductor kinetic theory

E. H. de Groot and C. Dalitz
Universität Bielefeld, Theoretische Physik, Universita¨tsstr. 25, 33615 Bielefeld, Germany

~Received 12 February 1997; accepted for publication 19 May 1997!

An explicit solution of the stationary one-dimensional half-space boundary value
problem for the linear Boltzmann equation is presented in the presence of an arbi-
trarily high constant external field. The collision kernel is assumed to be separable,
which is also known as ‘‘relaxation time approximation;’’ the relaxation time may
depend on the electron velocity. Our method consists in a transformation of the
half-space problem into a non-normal singular integral equation, which has an
explicit solution. © 1997 American Institute of Physics.
@S0022-2488~97!01009-8#

I. INTRODUCTION

The motion of electrons or holes in a bulk semiconductor under the action of an externa
E can be described by a probability densityf (t,x,p) for finding a charge carrier at timet and point
x with momentump. Under the assumptions of quasineutrality1 and a low electron concentration
so that interactions among the electrons themselves~via collisions or Pauli’s principle! can be
neglected,2 this probability density satisfies the linear Boltzmann equation

~] t1p]x2E]p! f ~ t,x,p!5Q f ~ t,x,p!,

where we have set the charge and effective mass of the electrons equal to unity. The
collision operatorQ describes scattering of the electrons by vibrations of the host lattice
consequently strongly depends on the model for the electron–phonon interaction.

In this article we consider collision models with separable collision kernels. These mode
also known asrelaxation time approximationswith momentum-dependent relaxation times. A
though these models do not account for some high field effects in semiconductors,3 they are
widely used because of their relatively simple mathematical structure. While the solution o
initial value problem is easily obtained in these models,4,5 the boundary value problem is far mor
intricate. Up to now, a solution of the boundary value problem in the relaxation time approx
tion has been found only by Cercignani for a specificp dependence of the relaxation time6 and by
Dalitz in the zero temperature limit.7

In this article, we present a solution of the stationary one-dimensional half-space problem
a constant electric field for quite generalp-dependent relaxation times. The somewhat simp
case of a constant relaxation time is treated in the unpublished preprint8 in great detail. In the
half-space problem the semiconductor is taken semiinfinite@xP(0,̀ )#; at the boundaryx50,
electrons are shot in with a given momentum distributionw. Thus we seek the solution of

~p]x2E]p! f ~x,p!5Q f ~x,p! ~1!

with the boundary conditions

f ~0,p!5w~p! for p.0 and lim
x→`

f ~x,p!50. ~2!

For zero electric fieldE[0, Case9 has found a solution via an eigenfunction technique in
context of neutron diffusion in solids. Completeness theorems for these eigenfunctions hav
0022-2488/97/38(9)/4629/15/$10.00
4629J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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proven by Zweifel10 for the general equationh(p)]xf 1A f 50 under the assumption thatA be
a self-adjoint positive operator in some appropriate function space. In the case of a no
electric field, however, this general result is no longer valid because the operatorA52E]p

2Q is not self-adjoint.
Nevertheless, for specific collision operators, an eigenfunction expansion of the so

might be possible also in the presence of a constant external field. In Ref. 11 a kind of half
completeness of the eigenfunctions has been proven for a constant relaxation time in th
temperature limit, and in Ref. 12 the same has been proven for two very specific collision k
at an arbitrary temperature of the semiconductor host lattice.

In this article we show that the half-space problem in the relaxation time approxim
generally can be solved via an eigenfunction expansion, provided the collision frequency
analytic function of the momentump that increases not more than linearly inp for p→`. In
complete analogy to the half-range completeness theorem about Case’s singular eigenfunc13

we shall prove that a pretty general class of boundary valuesw can be written as a superpositio
of eigenfunctions.

II. THE COLLISION MODEL

In the nondegenerate situation, the electron phonon collision operatorQ in ~1! has the genera
form2

Q f ~p!5M ~p!E dp8 K~p8,p! f ~p8!2 f ~p!E dp8 M ~p8!K~p,p8!, ~3!

whereM (p):5M0e2p2/2u is the Maxwellian at temperatureu of the semiconductor lattice, which
is assumed to be in equilibrium. Thecollision kernel K(p,p8) is a symmetric and positive distri
bution. The second integral in~3!, which gives the total scattering rate, is calledcollision fre-
quencyn; its reciprocal is calledrelaxation timet:

n~p!5
1

t~p!
:5E dp8 M ~p8!K~p,p8!. ~4!

Throughout this article we assume the collision kernels to be separable; that is,K(p,p8)5n(p)
•n(p8)5„t(p)•t(p8)…21. This assumption is also known asrelaxation time approximation
~RTA!. If we normalize the Maxwellian so that*M (p)n(p) dp51, we obtain the RTA in its
usual form,

Q f ~p!5
1

t~p! S M ~p!E d3p8
f ~p8!

t~p8!
2 f ~p! D , ~5!

and by comparison with~4! we see thatt(p) indeed is the relaxation time, because of o
normalization*M /t51. The relaxation time approximation~5! generally can be a good approx
mation for the collision operator, provided the collision kernelK is a measurable function with
finite norm *dp*dp8 M (p)M (p8)K2(p,p8),`. For then~5! is equivalent to keeping only the
largest term in the eigenfunction representation of the symmetric and square integrable
AM (p)K(p,p8)AM (p8).14

III. EIGENFUNCTION EXPANSION OF THE SOLUTION

In order to solve the stationary Boltzmann equation~1!, we make the separation ansa
f l(x,p):5e2lxgl(p). We then obtain for the functionsgl the ‘‘eigenvalue’’ equation (Q
1 E]p)gl(p) 5 2lpgl(p), which reads with the collision operator~5!
J. Math. Phys., Vol. 38, No. 9, September 1997
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„E]p1lp2n~p!…gl~p!52n~p!M ~p!E dp8 n~p8!gl~p8!. ~6!

In order to get rid of the integral on the right-hand side of~6!, let us normalize*ngl51. Then the
general solution of~6! reads

gl~p!5
M0

E
e2lp2/2E1N~p!/EH Cl2E

0

p

dq n~q!e~l2E/u!q2/2E2N~q!/EJ , ~7!

whereCl is an integration constant andN ~read ‘‘capitaln’’ ! denotes the primitive function of the
collision frequency

N~p!:5E
0

p

dq n~q!. ~8!

For generall, ~7! is integrable with respect top only if lim p→` n(p)/p5c,`. In fact, if this
condition is violated, the onlyL1-integrable solutions of~6! are M (p) with l5E/u and the
homogeneous solution withl50. If the condition is satisfied, the solution~7! is L1-integrable for
everyl•sign (E).c. For simplicity we assume thatc50.

Because of the boundary condition at infinity~2!, only positive values are allowed forl.
Consequently, we must assume thatE.0, for otherwisegl would grow exponentially forp
→ 6 `. This means that the fieldE must act in such a way that the electrons are driven back to
boundaryx50.

Inserting the eigenfunction~7! into the normalization condition*dp ngl51, we find for the
constantCl after a partial integration in the numerator

Cl5
*2`

` dp pe2lp2/2E1N~p!/E*0
pdq n~q!e~l2E/u!q2/2E2N~q!/E

*2`
` dp pe2lp2/2E1N~p!/E

. ~9!

Since Eq.~1! is linear, any superposition of solutionsf l(x,p) is a solution of~1! too. Thus we
assume the solution to be of the form

f ~x,p!5E
0

`

dl A~l! f l~x,p!5E
0

`

dl A~l!e2lxgl~p!. ~10!

The expansion coefficientsA(l) must be determined from the boundary valuew. Settingx50 in
~10! yields

f ~0,p!5w~p!5E
0

`

dl A~l!gl~p! for p.0. ~11!

If this equation can be solved forA(l), then the half-space problem~1! and~2! is solved by~10!.
Hence the task is to determine the class of boundary valuesw for which ~11! has a solution
A(l) and to determine this solution in terms ofw. We shall see that~11! indeed can be solved i
the boundary value is a Laplace transform of any tempered distribution, for then~11! is equivalent
to a singular integral equation which can be solved explicitly.

It is interesting to note that the representation~10! of the solution of the stationary Boltzman
equation~1! can be written in a different form which is more general than the representatio
eigenfunctions. If we define
J. Math. Phys., Vol. 38, No. 9, September 1997
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h~j!:5E
0

`

dl e2lj/2EA~l!S E
2`

`

dp n~p!e2lp2/2E1N~p!/ED 21

,

then f (x,p)5*0
`dl A(l)e2lxgl(p) takes the form

f ~x,p!5eN~p!/Eh~p212Ex!1
eN~p!/E

E E
2`

`

dp8 n~p8!eN~p8!/E

3E
p

p8
dq n~q!e2N~q!/EM ~q!h~p21p822q212Ex!.

The boundary condition atx50 leads to an integral equation for the unknown functionh. Maybe
a solution of this equation is possible for a more general class of boundary valuesw.

IV. A SINGULAR INTEGRAL EQUATION FOR THE EXPANSION COEFFICIENTS

If we insert the eigenfunctions~7! into the boundary conditionf (0,p)5w(p) for p.0 and
make the substitutionst5p2/2E and s5q2/2E, the integral equation~11! for the expansion
coefficientsA(l) reads

E

M0
e2N~A2Et!/Ew~A2Et!5E

0

`

dl A~l!Cle2lt2E
0

`

dl A~l!e2lt

3E
0

t

ds elsAE/2sn~A2Es!e2N~A2Es!2sE/u. ~12!

Now let us make the assumption that the left-hand side of~12! can be written as a Laplac
transform of any tempered distributionC:

E

M0
e2N~A2Et!/Ew~A2Et!5E

0

`

dl e2ltC~l!. ~13!

Additionally let us assume that there is a continuous functionN with N (m).0 for m.0 and

AE/2se2N~A2Es!/En~A2Es!5E
0

`

dm e2msN ~m!. ~14!

Examples for which this holds aren(p)5apa with 21,a<1 and sums of these powers. If w
integrate~14! from s to infinity, we find

Ee2N~A2Es!/E5E
0

`

dm e2msN ~m!/m. ~15!

ThereforeN /m is locally integrable atm50 and, consequently,N (0)50. Integrating a second
time from s to infinity, we find limm→0 N /m50, so thatb~l! defined below@see ~19!# is a
continuous function ofl. Insertion of~13! and~14! into ~12! and usage of the shifting theorem o
the Laplace transform leads to~remember uniqueness of the Laplace transform!

C~l!5H Cl1P E
0

`

dm
N ~m!

l2E/u2mJ A~l!2U~l2E/u!N ~l2E/u!P E
0

`

dm
A~m!

m2l
, ~16!

where the symbol ‘‘P ’’ means Cauchy’s principal value andU denotes Heaviside’s step function
This equation is a singular integral equation for the expansion coefficientsA(l). In the limit
J. Math. Phys., Vol. 38, No. 9, September 1997
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u→0, the U-function in front of the singular integral overA vanishes, which simplifies the
situation considerably and allows the treatment described in Ref. 7, Sec. 6.

In contrast to ‘‘normal’’ singular equations however, the right-hand side of~16! has a zero at
l5E/u. Thus we are dealing with a ‘‘non-normal’’ problem. This zero is easily split off b
partial integration using2E]qe2N/E5ne2N/E in the numerator ofCl @see~9!# and usage ofE
5*0

`dm N /m @see~15!#. The result is

C~l!5~l2E/u!•H a~l!A~l!1b~l!P E
0

`

dm
A~m!

m2lJ ~17!

with the notations

a~l!5P E
0

`

dm
N ~m!

m~l2m2E/u!
1

*2`
` dp pe2lp2/2E1N~p!/E*0

pdq qe~l2E/u!q2/2E2N~q!/E

*2`
` dp pe2lp2/2E1N~p!/E

,

~18!

b~l!52Q~l2E/u!
N ~l2E/u!

l2E/u
. ~19!

V. SOLUTION OF THE SINGULAR INTEGRAL EQUATION

In Appendix Sec. I we will prove thata(l),0 for l<E/u. Thereforea(l)6 ipb(l) has no
zeroes forlPR1, and we can transform the non-normal problem~17! into a normal problem
simply by dividing both sides by (l2Eu).

However, if we divide the left-hand side of~17! by (l2E/u), we obtain adistribution, even
if C is a smooth function. Although the standard theory of singular integral equations15 only deals
with Hölder-continuous functions, physicists have for a long time been applying the same me
to distributions as well~see Ref. 16 for a comprehensive but heuristic treatment!; meanwhile
Estrada and Kanwal have presented a rigorous theory.17 Recently the semi-infinite Hilbert trans
form of distributions has been discussed in a more general framework.18

If we divide ~17! by (l2E/u), we obtain the normal singular integral equation

Y~l!5a~l!A~l!1b~l!P E
0

`

dm
A~m!

m2l
. ~20!

The tempered distributionY is the most general solution of the linear~distributional! equation
Y•(l2E/u)5C. Thus we can writeY5Yh1Y i whereYh(l):5cEd(l2E/u) is the general
solution of the corresponding homogeneous equation andY i is a particular solution of the inho
mogeneous equation. The existence ofY i is assured by Ho¨rmander’s theorem.19 If C(l) is
Hölder-continuous atl5E/u, we can takeY i(l)5P C(l)/(l2E/u). For a general tempere
distribution C, a particular solutionY i is still given by the principal value provided we defin
principal value integrals in the generalized sense of Ref. 17 or 18. Thus we have

Y~l!5P
C~l!

l2E/u
1cEd~l2E/u!. ~21!

The zero on the right-hand side of~17! has introduced the arbitrary constantcE into our problem.
This is in agreement with Pro¨ssdorf’s result in a nondistributional framework20 that such a zero
increases the index of the equation by one. We shall see that the constantcE will be of good use
later on.
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Although the problem of ‘‘non-normality’’ is solved, there is still a problem with Eq.~20!.
The standard theory of singular integral equations is only applicable to equations on afinite
interval, but our equation lives on a semiinfinite interval. We can circumvent this difficulty
the transformation

m5
11y

12y
and l5

11x

12x
, ~22!

which maps the interval 0,l,` monotonously onto the interval21,x,1. This transformation
does not seem to be well known. For instance, Paveri-Fontana and Zweifel21 recently presented an
ab initio derivation of an inversion formula for the half-Hilbert transform which turns out to
equivalent to the well-known inversion formula on a finite interval22 if the transformation~22! is
made.

With this transformation, Eq.~20! transforms into

Ŷ~x!5â~x!Â~x!1b̂~x!P E
21

1

dy
Â~y!

y2x
~23!

with the definitions

Ŷ~x!:5YS 11x

12xD Y ~12x! and Â~x!:5AS 11x

12xD Y ~12x!,

â~x!:5aS 11x

12xD and b̂~x!:5bS 11x

12xD .

Although the theory of singular integral equations on a finite interval is well developed~see Ref.
16 or 23 for a comprehensive summary!, we will sketch the solution of~23! in some detail. Let us
start with the definition of the analytic functionF associated with the distributionÂ:

F~z!:5
1

2p i E21

1

dx8
Â~x8!

x82z
for zPC\@21, 1#,

which is a holomorphic function inC\@21, 1#. If z approaches the cut@21, 1# from above or
below, its boundary values are given by the Plemelj formula

lim
e→0

F~x6 i e!5F6~x!5
1

2p i
P E

21

1

dx8
Â~x8!

x82x
6

1

2
Â~x!.

Hence our integral equation~23! can be written as a relation between these two boundary va
~remember thatâ6p i b̂Þ0!,

Ŷ~x!

â~x!2p i b̂~x!
5

â~x!1p i b̂~x!

â~x!2p i b̂~x!
F1~x!2F2~x!, ~24!

which is known as aRiemann–Hilbert problem in the literature. Now we are looking for a
function x which is holomorphic in the complex plane cut at@21, 1# and satisfies the boundar
condition
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â~x!1p i b̂~x!

â~x!2p i b̂~x!
5

x1~x!

x2~x!
.

If we find such a function, we can determinexF from ~24! and therefore alsoF, and fromÂ
5F12F2 we can obtainÂ. A function with this property is

x~z!5~z11!m~z21!neG~z! ~25!

with

G~z!:5
1

p E
21

1

dx8
g~x8!

x82z
~26!

and

g~x!:5
1

2i
lnS â1p i b̂

â2p i b̂
D 5arccotS â~x!

pb̂~x!
D . ~27!

In ~27! we are choosing the main branch of the arcus cotangens~see the Appendix Sec. II!. The
exponentsm andn must be chosen in such a way thatx andF are integrable near the end poin
z561 ~see Ref. 23 for details; this is the crucial point where the interval must be finite!:

21,m2 lim
x→21

g~x!/p,1, 21,n1 lim
x→11

g~x!/p,1,

In the Appendix Sec. II it is proven thatg(21)50 andg(11)5p. Therefore we must choos
m50 andn521. Thus theindex of the integral equation, which is defined bym1n, is 21.
Consequently,~23! has a solutionÂ only if the inhomogeneityŶ satisfies theorthogonality
relation16

E
21

1

dx
Ŷ~x!x2~x!

â~x!2p i b̂~x!
50. ~28!

FortunatelyY contains the arbitrary constantcE , which we will choose in such a way that th
orthogonality relation holds. If~28! is satisfied, the solution of our integral equation~23! is unique
and reads

Â~x!5F1~x!2F2~x!

with

F~z!5
1

x~z!

1

2p i
E

21

1

dx8
x2~x8!Ŷ~x8!

@â~x8!2p i b̂~x8!#~x82z!
.

By application of the Plemelj formula to~25!–~27! we can expressx6 in terms of principal value
integrals. Moreover, the solution of the original equation on the semiinfinite interval~0,̀ ! is easily
obtained via the transformation inverse to~22!. If we set x5(l21)/(l11) and x85(m
21)/(m11), we obtain

A~l!5
a~l!

a2~l!1p2b2~l!
Y~l!
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2
b~l!e2G~l!

Aa2~l!1p2b2~l!
P E

0

`

dm
~m11!eG~m!Y~m!

~l11!Aa2~m!1p2b2~m!~m2l!
~29!

with the notations

G~l!:5
l11

p
P E

0

`

dm
g~m!

~m11!~m2l!
~30!

and

g~m!:5
1

2i
lnS a1p ib

a2p ib D5arccotS a~m!

pb~m! D . ~31!

The orthogonality relation for the inhomogeneityY becomes

E
0

`

dm
Y~m!eG~m!

Aa2~m!1p2b2~m!
50. ~32!

According to Noether’s theorem on singular integral equations,24 a necessary and sufficient con
dition for the solvability of the inhomogeneous equation~20! is the orthogonality of the inhomo
geneityY to all solutionsB(l) of the adjoint homogeneous equation

a~l!B~l!2P E
0

`

dm
b~m!B~m!

m2l
50. ~33!

In our situation, this equation only has one solution. Comparison of Noether’s orthogo
condition*YB50 with ~32! shows@the same result is obtained, of course, by direct solution
~33!#

B~l!5
eG~l!

Aa2~l!1p2b2~l!
. ~34!

Because of

m11

~m2l!~l11!
5

1

m2l
1

1

l11

and ~32!, we may write~29! as

A~l!5
1

a2~l!1p2b2~l! H a~l!Y~l!2
b~l!

B~l!
P E

0

`

dm
B~m!Y~m!

m2l J .

Now let us insertY according to~21!. The constantcE must be chosen

cE52
1

B~E/u!
E

0

`

dm B~m!P
C~m!

m2E/u
~35!

so that the orthogonality relation~32! is satisfied. Finally we arrive at the solution of the singu
integral equation for the expansion coefficients:
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A~l!5
1

a2~l!1p2b2~l! H a~l!P
C~l!

l2E/u
1a~l!cEd~l2E/u!

2
b~l!

B~l!~l2E/u!
P E

0

`

dm
B~m!C~m!

m2l J , ~36!

whereB(l) is given by~34!.
Obviously, our solutionf (x,p)5*dl A(l)e2lxgl(p) is well defined only ifC/a is locally

integrable atl50. From Eq.~A1! in the Appendix we conclude that forl→0

1/a~l!;const•E
2`

`

dp pe2lp2/2E1N~p!/E→`.

Thus, if we demand

`.E
0

`

dp pw~p!5E
0

`

dp pw~p!e2N~p!/EeN~p!/E 5
~13! M0

E E
0

`

dl C~l!E
0

`

dp pe2lp2/2E1N~p!/E,

~37!

the solution of the half-space problem is given by the eigenfunction expansion~10! with expansion
coefficients~36!.

Let us repeat this result in the form of a half-range completeness theorem for the eige
tions gl .

Theorem: The integral N(p)5*0
pn(q) dq over the collision frequencyn be such that

Ee2N~p!/E5E
0

`

dm e2mp2/2EN ~m!/m

for some continuous functionN with N (m).0 for m.0. Then each functionw:R1→R with
*0

` dp pw,`, that is a Laplace transform of any tempered distributionF

w~p!5E
0

`

dm F~m!e2mp2/2E,

is a superposition of eigenfunctions

w~p!5E
0

`

dl A~l!gl~p!,

where the expansion coefficients are given by (36) with

C~l!5
1

M0
E

0

l

dm
N ~m!

m
F~l2m!. ~38!

Remarks: ~a! Relation~38! betweenC andF is an immediate consequence of~13!, ~15!, and
the convolution theorem of the Laplace transform.

~b! According to~36!, the expansion coefficientsA(l) generally contain a singular contribu
tion from the eigenvaluel5E/u, the corresponding eigenfunction of which is the Maxwelli
M (p) at temperatureu. This confirms a conjecture of Stichel and Strothmann,25 who took this as
a starting point for an asymptotic analysis of the boundary value problem.
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VI. EXAMPLES

A. Maxwellian as boundary value

If the boundary value is a Maxwellian of the temperatureu of the host medium, that is
w(p)5M (p)5M0e2p2/2u, the solution of the half-space problem readsf (x,p)5e2Ex/uM (p), as
can be deduced from~1! with the use ofQM[0. Hence we should obtainA(l)5d(l2E/u), so
that this situation provides a nice test of our solution.

Indeed, forw5M the inverse Laplace transformC defined in~13! reads

C~l!5U~l2E/u!
N ~l2E/u!

l2E/u
52b~l!.

Thus the expansion coefficients~36! read in this case

A~l!5
1

a2~l!1p2b2~l! H a~l!cEd~l2E/u!2
a~l!b~l!

l2E/u

1
b~l!

B~l!~l2E/u!
P E

0

`

dm
B~m!b~m!

m2l J ,

and the constantcE is given by~note that the symbolP can be omitted because ofb(l)[0 for
l<E/u!

cE5
1

B~E/u!
E

0

`

dm
B~m!b~m!

m2E/u
.

Because of relation~33!, the integrals overBb can be replaced bya(l)B(l) and
a(E/u)B(E/u). If we take care ofb(E/u)50, we obtain indeedA(l)5d(l2E/u).

B. Constant relaxation time

In the case of a constant relaxation timen(p)5const51/t, the quantitiesa, b, andB in the
formula ~36! for the expansion coefficients can be calculated explicitly. Moreover, there
relation betweena and b that allows a simplification of some expressions. For details of
calculation we refer the interested reader to Ref. 8.

Without loss of generality we can sett and u equal unity.26 Then the functionN that is
necessary for the calculation ofC via ~38! readsN (m)5(E/2pm)1/2e21/2Em, and the functionsa
andb are given by

a~l!5A4E

p
l3/2e21/2ElP E

0

`

dx
x23/2e21/x

2l~l2E!2x
,

b~l!52U~l2E!A E

2p

e21/2E~l2E!

~l2E!3/2 ,

where the principal value integral ina allows for an explicit evaluation

P E
0

`

dx
x23/2e21/x

y2x
5H yAp~122A2ye2y*A2y

` e2t2 dt! for y<0,

yAp~122Aye2y*0
Ayet2 dt! for y>0.
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Moreover in this situation the functionB(l), which generally contains a principal value integr
@see ~34! and ~30!#, can be expressed in terms of a regular integral. We find@apart from an
irrelevant constant which cancels out in~36!#

B~l!}l23/2e1/2Elj~l!

with

j~l!5expH E

2p E
E

`

dm
g~m!

m1l2E

2l2E

2m2EJ ,

whereg(m)5arccot(a/pb) is the function defined in~31!. The functionj is a smooth function of
l which is very close to a straight line; it is sketched in Fig. 1 for different values of the
E.

At first glance, the divergence ofB(l) for l→0 might cause trouble in the integrals in~36!.
However, it follows from ~37! that C(l)l23/2e1/2El is locally integrable atl50. Hence all
integrals in~36! are well defined.
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APPENDIX: PROPERTIES OF THE COEFFICIENTS IN THE SINGULAR INTEGRAL EQUATIO

I. Negativity of a(l) for l<E/u

For l<E/u, the first integral in the definition ofa~l! ~18! is a regular integral instead of
singular integral. Hence we may write this integral with the use of~15!:

E
0

`

dm
N ~m!

m~l2m2E/u!
52E

0

`

dm
N ~m!

m E
0

`

dp
p

E
e~l2m2E/u!p2/2E

FIG. 1. The functionj~l! for three different values ofE.
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52E
0

`

dp pe~l2E/u!p2/2E2N~p!/E.

Thus, combining terms in~18!, we obtain forl<E/u

a~l!52
*2`

` dp pe2lp2/2E1N~p!/E*p
`dq qe~l2E/u!q2/2E2N~q!/E

*2`
` dp pe2lp2/2E1N~p!/E

. ~A1!

SinceN(p) is an increasing function, the denominator of~A1! is always positive. Now we will
prove that the numerator is positive too. For this purpose, let us convert all integrals over re
with negative values ofp andq into integrals over positive values. If we do so, we can write
the numerator of~A1!

E
0

`

dp pe2lp2/2E1N~p!/EE
p

`

dq qe~l2E/u!q2/2E2N~q!/E

2E
0

`

dp pe2lp2/2E1N~2p!/EE
0

`

dq qe~l2E/u!q2/2E2N~q!/E

1E
0

`

dp pe2lp2/2E1N~2p!/EE
0

p

dq qe~l2E/u!q2/2E2N~2q!/E.

In the first term we write*p
` dq5*0

` dq2*0
p dq. Collecting terms with*0

` dq and *0
p dq, the

numerator of~A1! reads

~A2!

We can estimate the positive first term in the curly braces via*0
` dq.*0

p dq. Thus we arrive at
the following lower estimate for~A2!:

Since this lower estimate is positive, the numerator in~A1! is positive, and consequentlya~l! is
negative forl<E/u.

II. Behavior of a and b for large l

The index of our singular integral equation depends crucially on the values of

g~l!5
1

2i
ln S a~l!1p ib~l!

a~l!2p ib~l! D ~A3!

for l→0 andl→`. Thus we need to determine the behavior of the argument of the logarith
l varies from zero to infinity.
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First note that the absolute value of this argument is equal to unity for any value ofl, because
the numerator and denominator are complex conjugates. Moreover, becauseb[0 for l<E/u, the
argument is11 for l<E/u and with the choice ln (1)50 we have

g~l![0 for l<E/u.

Now let us consider the real and imaginary parts of the argument of the logarithm

ReS a1p ib

a2p ib D5
a22p2b2

a21p2b2 and ImS a1p ib

a2p ib D5
2pab

a21p2b2 . ~A4!

We know from the previous section thata(E/u) is negative, and from the definition~19! we know
that b(l),0 for l.E/u. In consequencethe imaginary part is positive ifl is slightly greater
than E/u.

Moreover, from~A4! we see that the real part cannot be positive while the imaginary pa
zero. In other wordsthe positive real axis cannot be crossed for finitel.

In order to determine the behavior forl→`, we use the lemma on the asymptotic behav
of a and b ~see below!. An immediate consequence of the lemma is that liml→` b/a50 and
a(l).0 for large values ofl. Hence (a1p ib)/(a2p ib) approaches11 with a negative
imaginary part forl→`.

Applying this result to our functiong(l) defined in~A3!, we obtain the limiting values

lim
l→0

g~l!50 and lim
l→`

g~l!5p. ~A5!

The logarithm may be expressed in terms of the arcus tangens function

g~l!5arctanS pb~l!

a~l! D5arccotS a~l!

pb~l! D . ~A6!

We must choose the branch of the arcus tangens, or arcus cotangens, respectively, in suc
that ~A6! is a continuous function ofl and~A5! is satisfied. The resulting branches are sketch
in Fig. 2.

Lemma: Asl approaches infinity, the asymptotic behavior ofa and b is given by

FIG. 2. Our choice of the branches of the arcus tangens and the arcus cotangens in~A6! so thatg(l) is a continuous
function.
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b~l!;AE/2pn~0!l23/2, ~A7!

a~l!;AE/2plE
2`

`

dp e2p2/2u
n~p!

n~0!
5

AE/2pl

M0n~0!
. ~A8!

Proof: Equation~A7! is a consequence of~14! and the Tauberian theorems on the Lapla
transform~see Ref. 27, part 1!, which may be applied because ofN >0. If we remember the
definition b(l1E/u)5Q(l)N (l)/l, we see that~A7! holds.

The asymptotic evaluation ofa~l! is a bit more intricate. Let us examine each term in t
definition ~18! separately:

The first term on the right-hand side of~18! behaves like

;
l→` 1

l2E/u E
0

`

dm
N ~m!

m
5

E

l2E/u
. ~A9!

The denominator of the second term in~18! can be written as an integral over the positive re
axis, which is easily evaluated asymptotically with Laplace’s method~see Ref. 28, Chap. 3!

The numerator of the second term on the right-hand side of~18! can be evaluated as follows: afte
conversion of all integrals over the negative real axis into integrals over the positive axi
substitutet5q2/2E ands85p2/2E. If we then transforms5s82t and change the order of inte
grations, we obtain

E2E
0

`

ds e2lsE
0

`

dt e2Et/u$eN„A2E~s1t !…/E2N~A2Et!/E2eN„2A2E~s1t !…/E2N~2A2Et!/E%.

Again we may apply Laplace’s method;28 we only need to determine the behavior of the inn
integral fors→0. The term in curly braces behaves like

$•••% ;
s→0

s
n~A2Et!1n~A22Et!

A2Et
.

Thus the inner integral behaves likes*2`
` dp e2p2/2un(p)/E, and consequently the numerator

~18! behaves like

;
l→` E

l2 E
2`

`

dp e2p2/2un~p!. ~A11!

Collecting ~A9!–~A11! and inserting intoa~l! according to~18! yields ~A8!.
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Point symmetries are obtained for all equations in the KP hierarchy. The Lie alge-
bra for each equation is infinite dimensional and involves several arbitrary func-
tions of the corresponding timetN . The symmetry algebra is a semidirect sum of a
Virasoro algebra and a Kac–Moody one. The ‘‘positive’’ part of this algebra is
embedded into the knownW` algebra of KP symmetries and into the free fermion
algebraĝl (`). The corresponding action on the tau-function is presented. The
negative part of the point symmetries does not fit into the free fermion algebra, but
is embedded into aP` algebra, based on the algebra of pseudodifferential opera-
tors. © 1997 American Institute of Physics.@S0022-2488~97!02509-7#

I. INTRODUCTION

The purpose of this article is to investigate the symmetries of equations which belong
famous Kadomtsev–Petviashvili~KP! hierarchy of partial differential equations~PDE!. We shall
use the word ‘‘symmetry’’ in a very general sense: a ‘‘symmetry’’ of an equation, or a se
equations, will be any further equation, compatible with the studied ones. In the conte
integrable evolution equations we shall understand ‘‘symmetries’’ as flows, commuting wit
considered flow. This definition includes classical ‘‘point symmetries’’ as a particular case.

The Kadomtsev–Petviashvili~KP! equation1 was introduced in the context of waves prop
gating in shallow water, or in a plasma, and corresponds to small transverse perturbati
solutions of the Korteweg–de Vries equation. It is currently under intense study in view
applications in conformal quantum field theory and string theory. A partial review of this topic
be found in Ref. 2.

The KP equation is known to be integrable, in the sense that there is a Lax pair asso
with it, it allows infinitely many conservation laws, solitons and has all the usual attribute
integrability.3–6 The KP equation is the first nontrivial member of an infinite hierarchy of mutu
compatible equations,7–9 each representing a flow with respect to a different ‘‘time’’tN .

Several papers were devoted to different particular symmetries of the KP equation; se
Refs. 10–14. Here we need the most general symmetries which, on the other hand, a
symmetries of the entire KP hierarchy.

We shall use results from papers in Ref. 7 and also Refs. 15–18. The famous glˆ(`) group of
symmetry transformations which act on thetau-functionof the KP hierarchy was introduced in
series of profound papers by the Japanese school of Satoet al.. For a review see Ref. 7. Here w
make the most use of the paper in Ref. 18 where symmetries were found that we shall refe
‘‘PDO ~pseudodifferential operator! symmetries’’ and shall use the notationP` for them in the

a!Permanent address: Institute of Oceanology, Krasikova 23, Moscow 117218, Russia.
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present paper. The PDO symmetry algebra is a direct sum of three subspaces:P`5W` % H
% I ` . HereH is the well-known Abelian algebra of higher KP flows. It is the center ofP` . The
‘‘positive part’’ of P` which is known now as theW` algebra of symmetries was studied in Re

15 and in Refs. 19,20. The embedding of these symmetries into glˆ(`) symmetries was explicitly

described. TheW` % H subalgebra of KP symmetries results from theŴ11` algebra action on the

KP tau-function. TheŴ11` symmetries have applications in matrix models21–25 and in the so-

called bispectral problem.26 For the representation theory of theŴ11` algebra, irrespectively of
connections with soliton theory; see Ref. 27~for applications in soliton theory only specia
weights are available!.

The ‘‘negative part’’ ofP` , which we callI ` here, has so far not been adequately studie
Another infinite dimensional Lie group associated with the KP equation is the Lie grou

local ‘‘point transformations,’’ taking solutions of the equation into solutions. The Lie algebr
point symmetries, which we refer to asLP forms a subalgebra in the algebra of all symmetri
Historically it is this group that is usually called the ‘‘symmetry group’’ of an equation. P
symmetries constitute a classical topic in the theory of partial differential equations since the
of Sophus Lie~see, e.g., Ref. 28 for a modern exposition!.

The calculation of the ‘‘symmetry group’’ of a differential equation is entirely algorithmi28

and can be done using various computer packages.29

It turns out that for a number of equations the corresponding symmetry algebra has a
typical structure: it is a semidirect sum of the Virasoro algebra and a nilpotent subalgebr
Kac–Moody algebra~both without central charges!.30–35This result was obtained for the KP an
Davey–Stewartson equations, for the two-dimensional Toda lattice, for the three-dimen
3-wave resonant interaction system and for some other equations.32–35 This Kac–Moody–
Virasoro structure is typical for integrable equations in three space–time variables.

The Virasoro algebra obtained in these cases corresponds to the reparametrization of tht ime
variable. It is not the same Virasoro algebra that corresponds to the reparametrization
spectral parameterin soliton theory17,18,36,37which was applied in the matrix models21–24 and
which completely belongs to theW` part of P` . Point symmetries belong to the wholeP` and
not only to itsW` part.

In this paper we solve the following problems:~1! To present the PDO symmetry algebraP`

of the KP hierarchy, to describe its negative partI ` . ~2! To obtain all point symmetries of the KP
and the higher KP equations from PDO ones.~3! To prove that they have the mentioned typic

structure.~4! To extract the positive part of the point symmetries from the glˆ(`) symmetries and
to write down the corresponding fermionic representation.~5! To explain why only a finite sub-
algebra of the infinite-dimensional algebra of point symmetries survives when one reduc
higher KP equations to any two-dimensional KdV-type equation. We also clarify the meani
the ‘‘conditional symmetries’’ of integrable and of ‘‘conditionally integrable’’ evolution equ
tions, considered earlier38,39 in the context of integrable systems.

We mention the following. The KP hierarchy and the higher KP equations have diffe
representations. The notion of ‘‘point symmetry’’ depends on the choice of the represent
Here we choose the KP higher equation in its most traditional Zakharov–Shabat form as
tionary equations written for one functionw(x,y,tN) in two space variablesx andy and one time
variabletN ; N is the number of the equation in the hierarchy.

In Section II we solve problem~1!. Namely, we review some results on the KP hierarchy a
its symmetries, making use of the Gel’fand–Dickey approach via the algebra of pseudodiffe
operators.9 We present the results in a unified manner and include some known, but not
accessible results.15–17 We present a generalization of KP flows which we call PDO flows. T
commutation relation for these flows is given by Theorem 1. We introduce theP` algebra. The

action of this algebra on the KP solutionw( tW) is given by Theorem 2. A further result is a
J. Math. Phys., Vol. 38, No. 9, September 1997
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explicit description of its negative part which is important to obtain point symmetries an
compare them with theĝl (`) action on the tau-function.

Section III is devoted to the Lie point symmetries of the first two equations in the
hierarchy. The problems~2!–~5! listed above are solved in Section IV. We obtained Lie po
symmetries of theKPN equations. We derive the relation betweenP` ~and its subalgebraW`) and
Lie point symmetries; see Theorems 3–5. We write down an analog of the Lax equations a
associated linear problem which contains integro-differential equations with respect to the s
parameter. The fermionic representation of the positive part of the point symmetries is giv
formulas~4.17!,~4.18!. It is different from the known formulas for the free fermion representati
of the Virasoro algebra. In the same section we prove that only a finite subalgebra of
symmetries survives a symmetry reduction~to a KdV-type, or Boussinesq-type equation!. We also
give examples of conditional symmetries. For the case of general reductions we encounte
problems which we pose in the last part of the last Section.

For group times we shall use the following notations:z, $tk%, $tmn%.

II. THE KP HIERARCHY AND ITS PDO SYMMETRIES P`

A. The algebra of pseudodifferential operators. Formal Zakharov–Shabat dressings

We shall make use of the associative algebra of pseudodifferential operators~PDO! in one
variable on a linef (x,]) satisfying the permutation rule

f ~]!g~x!5 (
k50

`
g~k!~x! f ~k!~] !

k!
, ~2.1!

where (k) denotes thek-th derivative with respect to the argument. For example, we have

]21x5x]212]22. ~2.2!

For a detailed exposition see, e.g., Ref. 9. There is a natural Lie algebra structure on the
given by the commutator@A,B#5AB2BA; we denote this algebra byA.

An operation of conjugation (* ) is introduced, defined by the rules

x* 5x, ]* 52], ~AB!* 5B* A* . ~2.3!

We shall also make use of the splitting of the space of PDO into the direct sumA=A1

% A2, with

~San]n!15 (
n>0

an]n, ~San]n!25 (
n,0

an]n. ~2.4!

We see thatA+ is the subalgebra of differential operators,A2 the subalgebra of purely integra
operators.

The highest power of the operator] in a given PDO is called the order of this PDO.
We also need a linear functional res] on A, defined as

res] San]2n5a1 . ~2.5!

Let us introduce aspace of formal Zakharov–Shabat dressing operators:

K 5H K511(
j 51

`

K j~x!]2 j J . ~2.6!
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



ssing
ally
Shabat

sent

ts,

es of

4647A. Yu. Orlov and P. Winternitz: Pseudodifferential operators and symmetries

                    
We callK the formal Zakharov–Shabat dressing operator, by analogy with the analytical dre
operator of their fundamental paper.4 The formal Zakharov–Shabat dressing operators actu
appeared in the lectures of Manin, see Ref. 40. Points of the space of the formal Zakharov–
dressings are parametrized by a semi-infinite set of arbitrary functions of one variablex, and
sometimes we shall write

K 5$K j~x!, j 51,2,3,. . . ,`%. ~2.7!

Remark:Under some restrictions one can identify the spaceK with the ‘‘rotated Segal–
Wilson Grassmannian’’g21W.41 We do not consider the Grassmannian approach in the pre
paper.

We consider only sufficiently smooth functionsK j (x); then an inverse integral operator exis
namely

K21511(
j 51

`

K̃ j~x!]2 j , ~2.8!

with coefficients

K̃ j~x!52K j~x!1P~K1 ,K2 , . . . ,K j 21!, ~2.9!

whereP is a differential polynomial in the indicated arguments.
We shall also need the *-conjugate operator,

K* 21511(
j 51

`

K j* ~x!]2 j ~2.10!

@whereK j* (x) is simply a notation for new coefficients, not* -conjugates ofK j (x)].
In the next subsection we consider certain vector fields on the spaceK .

B. Vector fields and their commutators. Generalized KP flows

Let us now consider the linear space of pseudodifferential operators of the form

Ai5(
n

an
i ~x,z1 ,z2 ,z3 , . . . !]n, ~2.11!

wherean are some fixed functions. The ‘‘time’’zi plays a privileged role in the operatorAi and
in the coefficientsan

i . Note that the summation can be over both positive and negative valu
n. Let us now introduce a mapping,

Ai→VAi
, ~2.12!

from the PDOsAi onto vector fieldsVAi
on the spaceK according to the rule

VAi
K[F ]

]zi
,K G52~KAiK

21!2K. ~2.13!

We see that these vector fields preserve the chosen form ofK given by eq.~2.6!. Each vector
field VAi

induces a flow of all of the coefficientsKn(x) of K, once we allow the coefficients
Kn(x,zi) in eq. ~2.6! to depend onzi , as well as onx.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Moreover these vector fields form a closed subspace with respect to the commutator of
fields; this subspace we shall denoteV . A result that will be used a great deal below is t
following.

Theorem 1: The commutator of two vector fields of the form of eq. (2.13) satisfies

@VAi
,VAj

#K52~KFi j K21!2K, ~2.14!

where we have

Fi j 5@Ai ,Aj #1
]Ai

]zj
2

]Aj

]zi
. ~2.15!

Proof: Let eq.~2.13! hold for VAi
andVAj

. We then have

VAi
~VAj

K !5VAi
~2KAjK

21!2K.

SinceVAi
acts as a differentiation, and commutes with the splitting~2.4!, we obtain

VAi
VAj

K52~~VAi
K !AjK

21!2K2~K~VAi
Aj !K

21!2

1~KAjK
21~VAi

K !K21!2K2~KAjK
21!2VAi

K.

We replaceVAi
K using eq.~2.13! again and then write the commutator as

VAi
VAj

K2VAj
VAi

K5~K~VAj
Ai2VAi

Aj !K
21!2K1$@~KAiK

21!2 ,~KAjK
21!#

2@~KAiK
21!2 ,KAiK

21#1@~KAjK
21!2 ,~KAiK

21!2#%2K.

The term in curly brackets can be simplified, using the decomposition~2.4! and the fact that we
have (( )1( )1)250. We obtain

$ %25$@~KAiK
21!,~KAjK

21#%25$K@Ai ,Aj #K
21%2 ,

and this completes the proof. h

Lemma 1: Let Ai be a PDO of the order p. The constraint,

~KAiK
21!250, KPK , ~2.16!

restricts the space K to a subspace parametrized by p21 arbitrary functions
$K j (x), j 51,2, . . . ,p21% for p.0. If p,0 (2.16) has no solutions.

For proof one need consider a recurrence relation which results from eq.~2.16!.
Remark:One can treat~2.16! as the condition of invariance of a certain subspace ofK with

respect to the flowVi . This condition allows us to express$K j (x), j >p% via $K j (x), j
51,2, . . . ,p21% which remains a set of arbitrary functions of one variable.

Corollary 1: Two flows with respect to zi and to zj commute iff

~KFi j K
21!250. ~2.17!

If F i j (x) does not vanish identically this condition restricts the spaceK to a subspace
parametrized by p21 arbitrary functions$K j (x), j 51,2, . . . ,p21% for p.0, where p is the order
of Fi j . The flows do not commute if p,0.

When Fi j (x) does not vanish identically, but~2.17! is valid, then we are in the situatio
known asconditional symmetries,38,39namely, when two flows commute only under some rest
tion on the space of solutions.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Remark:~1! The operatorsAi5(Anm
i (zW)xn]m can be viewed as connections corresponding

the algebra of PDO and eq.~2.15! defines a curvature. Eq.~2.15! shows that the mapping~2.12! is
not a mapping of the Lie algebra of PDOA to the Lie algebra of vector fieldsV . The zero
curvature conditionFi j 50 is a sufficient condition for the flows with respect tozi andzj to be
compatible. Note also that when one goes fromA to its central extension, the algebraV will be
the same.

~2! A supersymmetric version of eq.~2.14! has been used to construct supersymmetries for
superKP hierarchy.15 A discrete version of eq.~2.14! was also used in the same paper.

C. The KP hierarchy

Let us chooseAn5]n, wheren is any nonzero integer. Let us again consider the inte
operatorK of eq. ~2.6! and this time interpret the coefficientsK j as depending on an infinite
sequence of times. . . ,t22 ,t21 ,t1 ,t2 , . . . . We shall identify the first two as space variable

t15x, t25y, the third will bet35t. We keep the notation][]x[] t1
.

We can write an infinite hierarchy of partial differential equations, the Kadomts
Petviashvili hierarchy, in the following compact form:

]K

]tn
52~K]nK21!2K. ~2.18!

It follows from Theorem 1 that the flows~2.18! all commute, i.e.,

@]n ,]m#K50, ]n5]/] tn
. ~2.19!

For n50 we shall use the different notationt00. As a rule we shall omit the dependence on t
nonpositive times and shall putt0050, tn50, n,0. We shall use the notationtW for the collection
of ‘‘KP higher times’’ t1 ,t2 ,t3 , . . . . Throughout we putt15x, t25y.

Each operator eq.~2.18! ~for a fixedn.0) gives rise to an infinite coupled set of PDEs for t
coefficientsK j of eq. ~2.6!.

Each equation can be labeled by a pair (n; i ):

]nKi2 (
l 51

n S n
l 21DK l

~n2l 11!5Pol~K1 ,K2 , . . . ,Kn1 i 22!, i 51,2,3,. . . , ~2.20!

where Pol is a differential polynomial inK j , j ,n1 i 21 and theirx-derivatives up to ordern21.
The linear part of the polynomials has been separated out in the left hand side of eq.~2.20!, so all
terms on the right hand side are quadratic or higher. Note that each equation in the system~2.20!
involves just one timetn and the variablex.

How does one get the three-dimensional KP, higher KP equations and the Jimbo–Miwa
equation38 from ~2.18!? These equations are written for a set$Ki ,1< i<r % of unknown functions
of d variablestnk

, k51,2, . . . ,d, which play the role of space~time! variables ind-dimensional
space. They are obtained by taking the set of equations~2.20! with labels (nk ; i ). To get equations
in the three-dimensional space spanned byx, tm , tn one should consider a system ofr equations
for $Ki ,1< i<r %, r 5m1n22. In the present paper we shall consider KP higher equation
3-dimensional space spanned byx, y, tN and we shall call these equationsKPN .

For example, to obtain the Kadomtsev–Petviashvili equation itself, orKP3, taken53 and
n52 and hence (n; i )5(3;1), (2;1) and (2;2). Thecorresponding equations are

]3K12~K1
-13K2913K38!53K1

2K1823K1K1923K18
223K28K123K18K2 , ~2.21!
J. Math. Phys., Vol. 38, No. 9, September 1997
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]2K12~K1912K28!522K1K18 , ~2.22!

]2K22~K2912K38!522K18K2 . ~2.23!

All three are evolution equations~in t3, t2 and t2, respectively! for the functionsK1, K2 andK3.
Using ~2.23! and ~2.22! to eliminateK3 andK2 from eq.~2.21! for the variable

w~ tW !522K1~ tW !, ~2.24!

we obtain the potential KP equation; see~2.31c! below ~the usual KP equation is satisfied b
u[wx).

A further example isKP4. It is obtained by takingn54 and hence (n; i )5(4;1), (3;1),
(3;2), (2;1), (2;2), (2;3). Inaddition to eqs.~2.21!, ~2.22! and ~2.23! we obtain 3 further
evolution equations:

]4K12~K19914K2-16K3914K48!5210K18K19112K1K18
224K1

3K1816K1
2K19

24K1K1-212K18K2814K1
2K2818K1K18K2

26K19K226K1K2924K2K2824K18K324K1K38 , ~2.25!

]3K22~K2-13K3913K48!523K18K2813K1K18K223K19K223K2K2823K18K3 , ~2.26!

]2K32~K3912K48!522K18K3 . ~2.27!

We can consider eq.~2.25! to be the basic evolution equation forK1 and eliminateK2, K3 and
K4 using the other equations. The result is not unique. It leads for instance to the second eq
of what Jimbo and Miwa also call the KP hierarchy in Ref. 8:

wxxxy13wxywx1wywxx12wyt3
23wxt4

50. ~2.28!

Equation~2.28! was called the Jimbo–Miwa equation in Refs. 38,39. To avoid misunderstan
we shall never use the notion ‘‘KP hierarchy’’ in the Jimbo–Miwa sense in the present pap

Alternatively, the termwy can be eliminated, using eq.~2.28! together with the KP itself@eq.
~2.31c!#, to obtain the usual higher order~namely the number four! KP equation9 involving x,y
and t4 only; it is ~2.31d! below.

Notice that the KP equation andKP4 equation are nonlocal ones.
Finally we remark that the entire KP hierarchy can be written in terms of the func

w522K1(x,y,t3 , . . . ) as

]w

]tn
52res] K]nK21, n51,2, . . . , ~2.29!

where res] is defined in~2.5! , and all higher termsK2, K3, . . . , areexcluded using

K j 118 5
1

2
]2K j1K18K j2

1

2
K j9 . ~2.30!

Equation~2.30! follows from eq.~2.18! for n52.
For eachn the right hand side of eq.~2.29! involves onlyw, its y-derivatives up to ordern21

and a finite number ofx-derivatives andx integrals ofw. Thus we have the KP hierarchy~which
is actually the potential KP hierarchy! beginning with
J. Math. Phys., Vol. 38, No. 9, September 1997
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]w

]t1
5wx , ~2.31a!

]w

]t2
5wy , ~2.31b!

]w

]t3
5

1

4
wxxx1

3

4
wx

21
3

4
]21wyy , ~2.31c!

]w

]t4
5

1

2
wxxy14wxwy22]21wxxwy1

1

2
]22wyyy . ~2.31d!

D. Formal Baker–Akhiezer functions

Below we shall make use of the formal Baker–Akhiezer functions.9 They can be defined in
terms of the PDOK of eq. ~2.6! by putting

w~l,t0 , tW !5Kez5ezS 11 (
n51

l2nKn~ t0 , tW ! D , ~2.32a!

w* ~l,t0 , tW !5K* 21e2z5e2zS 11 (
n51

l2nKN* ~ t0 , tW ! D , ~2.32b!

z~l,t0 , tW !5 (
k51

lktk1t0 ln l, tW5t1 ,t2 , . . . , t15x, ~2.32c!

wherel is a formal complex parameter. We introduce here the additional parametert0 as in Ref.
42 and in Refs. 36,37. It is responsible for the Schlesinger discrete transformations, a spec
of Darboux transformations of the KP hierarchy. It was not used in Ref. 9.

We shall need the following lemma, due to Dickey.9

Lemma 2: Let A5(ka
k]k and B5(kb

k]2k be any two PDOs. Then we have

resl~Aelx!~Be2lx!5res] AB* . ~2.33!

Proof: A direct calculation of the two sides of eq.~2.5! shows that both are equal to

l.h.s.5r.h.s.5 (
n1m51

~21!manbm .

We have used the definition~2.5! and the fact that the formula]nelx5lnelx holds forn positive
and negative in a formal calculus.9 h

Using the above lemma, eq.~2.29! and the definition~2.30! we obtain a formula summing up
the KP hierarchy in terms of the formal Baker–Akhiezer functions:

]w~ t0 , tW !

]tm
52resllmw~l,t0 , tW !w* ~l,t0 , tW !, ~2.34!

which can be rewritten as

2ww* 521
wx

l2
1

wy

l3
1

wt

l4
1 . . . . ~2.35!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The asterisk in eq.~2.35! has the same meaning as in eq.~2.10!, i.e., it does not indicate conju
gation. The terml21 is absent in eq.~2.35!, since we haveK11K1* 50. Thel0 term on the right
hand side of eq.~2.35! follows from the asymptotic behavior of the Baker functions forl→1`.

In addition to~2.34! one could consider the Schlesinger transformation as a discrete equ
with respect tot0:

w~ t011,tW !2w~ t0 , tW !52] lnw~0,t0 , tW !; ~2.36!

see Refs. 42,36 for details.

E. P` symmetries of the KP hierarchy

We shall call a ‘‘symmetry’’ of the KP equation any differential, or integro-differential eq
tion that is evolutionary in a group timez, i.e., of the form

]w

]z
5S@w, tW,z#, ~2.37!

whereS is a function ofw, its x andy derivatives and of integrals of the type]2kw, k.0, that is
compatible with the KP equation itself. Similarly, a symmetry of the KP hierarchy will be
equation of the form~2.37!, compatible with the entire hierarchy. That is for eachm,

]z] tm
w5] tm

]zw. ~2.38!

With this interpretation, all higher equations in the KP hierarchy are symmetries of th
equation itself. Since all of the corresponding flows@see eq.~2.19!# commute, these symmetrie
generate an Abelian Lie algebra.

Other symmetries of the KP equation exist and typically the corresponding equations~2.37!
have coefficients explicitly depending on the independent variablesx, y, t. Among them we
mention the Lie point symmetries10,30,31and also some other symmetries of theKP3 equation.11–13

The most complete treatment of all symmetries of the KP hierarchy in the framework of int
bility theory is given in Refs. 15–18,36. To put those results into the present context, let us u
mapping of Section II B from the space of pseudodifferential operators to vector fields
describe a certain subalgebraP` of the algebra of vector fieldsV which was introduced in Section
II B.

We choose the PDOs to be

Amn5 x̂n]m, n,mPZ, ~2.39!

wherex̂ is the following extension ofx:

x̂5x1t0]211 (
kÞ1

ktk]
k21, ~2.40!

and construct the mappingAmn→Vmn with

VmnK5@]mn ,K#52~Kx̂n]mK21!2K, ~2.41!

where]mn is a derivative with respect to the group timetmn . We havetm0[tm , m Þ 0 (t00 is not
t0). It is necessary to define explicitly negative powers ofx̂ to represent them as a power series
] ~this was not done in the earlier papers!. One can do it in many different ways. In the prese
paper we shall define negative powers in two ways.
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~i! We shall set higher KP times equal to zero, starting from a certain numberN11. ThenN

becomes the order ofx̂. We put

~ x̂!215~NtN!21~]!12N~11O~ tN
21!!, ~2.42!

which is a purely integral operator of order 12N.
For this choice of KP higher times we also consider the integral operators of type

exp i
k

N
x̂]12N5eiktN~11O~]21!!, kPZ. ~2.43!

~ii ! For other purposes we we taketk50, k,0, take a noninteger value oft0 and put

~ x̂!215~11O~]!!~ t011!21], ~2.44!

which is a differential operator of infinite order.
To get point symmetries below one should use only the above convention~i!.
For any given choice it follows from Theorem 1 that we have

~]mn]k2]k]mn!K50, n,mPZ, ~2.45!

and hence for any values ofm andn the flow of ~2.39! is compatible with the flows of the KP
hierarchy.

The Lie algebra of the vector fieldsVmn , generated byx̂n]n
m for nÞ0, nPZ and] tm

2]x
m for

n50, m.0, is the algebra of ‘‘additional symmetries’’ of the KP hierarchy which were int
duced in Refs. 16,18. Now we considerm,n,m8,n8PZ. The commutation relations have the for

@Vmn ,Vm8n8#;@xn]m,xn8]m8#, nn8Þ0, ~2.46a!

@Vmn ,Vm8n8#50, nn850. ~2.46b!

The algebra of vector fieldsVmn will be called theP` algebra,P`,V . It is a direct sum~as
vector spaces! of three subalgebrasP`5W` % H % I ` . The subalgebra of vector fieldsVmn , n.0
is theW` algebra. The algebraH consists of vector fieldsVm0, mPZ, the casem.0 describes the
higher KP flows. The ‘‘negative’’ subalgebran,0 will be referred to asI ` . Note that due to the
last commutation relation~2.46b! this algebra is different from the Lie algebra of PDOs in o
variableA described in Section II A.

In order to define the action of the symmetry algebraI ` on solutions of the KP equation it i
necessary to specify the representation ofx̂21, following, e.g., eq.~2.42! or eq. ~2.44!; then we
havex̂2n5( x̂21)n. This is a new element with respect to earlier work.18 In a forthcoming paper
we shall discuss it in more detail. Now we want only to note that to getP` symmetries from the
free fermion algebragl̂(`) action on tau-functions we should choose the definition~2.44! and
keep the parametert0 as a noninteger.

The algebraP` has infinitely many different infinite-dimensional Abelian subalgebras. A
one of them can be chosen to generate a hierarchy of commuting flows in addition to high
flows ~see Remark 7 in Ref. 15!. They could be called ‘‘second-level KP hierarchies.’’ Ea
hierarchyKP@Q# is defined by PDOQ( x̂,]), which produces the flows:

VQnPP` , nPZ, ~2.47!

with respect to the timestn
(Q) . The hierarchyKP@]# is the KP hierarchy itself. Each of theKP@Q#

hierarchies commutes with the originalKP@]# one@due to the extension ofx to x̂ in eq. ~2.40!#.
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



n

te
s

rameter
ee Ref.

eory in

e
t

ed

4654 A. Yu. Orlov and P. Winternitz: Pseudodifferential operators and symmetries

                    
As in the case of the KP hierarchy, it is possible to construct finite closed subsystems ofr partial
differential equations for a subset of the functions$Ki(x),i 51,2, . . . ,r ,`% if the order ofQ is
finite. As in Section II C it is then possible to construct evolution equations for one functiow,
evolving in a 3-dimensional space, spanned by (x,tm

(Q) ,tn
(Q)) with any integersm, n.0.

Also the algebraP` of flows contains infinitely many different sets of Virasoro flows:

VQn11PPP` , @P,Q#51, ~2.48!

Q5Q~ x̂,]!, P5P~ x̂,]!. ~2.49!

Remark:In the same way as one constructs theP` algebra for the KP hierarchy, one can wri
a P` algebra for theKP@Q# hierarchy if the invertible operatorP̂ exists. One considers flow
~2.39!–~2.41! with the replacements (x̂,])→( P̂,Q) and tk , tmn→tk

(Q) , tmn
(Q) .

Amongst them we mention one of particular interest. It corresponds toVx̂]m[Vm1PW` . It
was introduced in Refs. 15–18, and corresponds to a reparametrization of the spectral pa
l. For a detailed consideration of these symmetries and vector fields on Riemann surfaces s
36. It has been used for establishing relations between soliton theory and quantum field th
Refs. 21–23.

In the present paper we usedifferent Virasoro flows VPn11QPW` ,H,I ` for n.21, n521,
and n,21, respectively. As we shall see forQ5]N these Virasoro flows correspond to th
reparametrizations of a higher KP time variabletN . For N53,4 these flows result in the poin
symmetries ofKP3 and KP4 equations which were obtained earlier30,31,39 with the help of a
different method.

Following Ref. 15 we introduce the pair

L5K]K21, M̂5Kx̂K21, @L,M̂ #51, ~2.50!

which act in the following way on the formal Baker function:

Lw~l!5lw~l!, M̂w~l!5
]w~l!

]l
, ~2.51!

where we use the ‘‘hat’’ onM to note the extension~2.40!. ~The notationsh andM were used in
Refs. 15,16,18 rather thanx̂ and M̂ , and thet0 term was not used.! A similar ‘‘canonical pair’’
L,M̂ was used in Ref. 43 to construct symmetries for the dispersionless KP hierarchy@the so-
called SDIFF~2! KP hierarchy#.

Let us defineM̂ 215Kx̂21K21 and the corresponding]l
21 . We write formally

M̂ 21w~l!5]l
21w~l!. ~2.52!

In agreement with~2.42! we treat]l
21 in eq.~2.52! as a path integral overl from the pointl

to l5`:

]l
21w~l,t0 , tW !5 Èl

w~l8,t0 , tW !dl8, u tWuÞ0, ~2.53!

where the path is so chosen that forl→`, the integrand vanishes. This convention will be us
below to obtain point symmetries.

In agreement with eq.~2.44! we treat]l
21 in the following way: we expandez in the Baker

function ~2.32! into a positive power series inl and formally multiply it by the remainingO(1)
part of w . Then we integrate each term according to the following rule:
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]l
21ln1t05~n1t011!21ln1t011,nPZ, ~2.54!

where we should take a noninteger value oft0. This convention can be used to embedP`

symmetries into the Japanese fermionicgl̂(`) ones, see our forthcoming paper.44

For each convention~2.53!,~2.54! we set]l
2n5(]l

21)n.
The flow of the functionw522K1 with respect to the ‘‘time’’tmn of eq. ~2.41! is given by

the following theorem.
Theorem 2: Let K be the PDO of eq. (2.6) and tmn , where m,n are any integers, the tim

defined in eqs. (2.39), (2.41). Given the convention about n,0, the P̀ flows of w522K1 with
respect to the times tmn are given as

]mnw52res]~Kx̂n]mK21!52res]M̂
nLm, ~2.55a!

or equivalently,

]mnw~ t0 , tW !52resl lm
]nw~l,t0 , tW !

]ln
w* ~l,t0 , tW !. ~2.55b!

Proof: Theorem 2 is a consequence of Lemma 2 of Section II D. We setA5Kx̂]m, B5K* 21

and use the definition~2.32! of the formal Baker–Akhiezer functions. We then have

res] Kx̂n]mK215resl~Kx̂n]mez!~K* 21e2z!

5resllm~Kx̂nez!~K* 21e2z!5resllm
]nw~l!

]ln
w* ~l!. ~2.56!

h

F. Symmetries via vertex operators

In order to link glˆ(`) symmetries7 which act on thet-function with ‘‘PDO’’ ones,15–18 we
need some results on vertex operators andt-functions. The vertex operators can be written as

X~l,t0 , tW !5expS t0 ln l1 (
k51

`

lktkD expS 2]02 (
k51

`
1

klk
]kD , ~2.57!

X* ~l,t0 , tW !5expS 2t0 ln l2 (
k51

`

lktkD expS ]01 (
k51

`
1

klk
]kD . ~2.58!

The zero modet0 ln l2]0 was added to the vertex operator in Ref. 36 to simplify calcu
tions. It can be checked by a direct calculation that the vertex operators introduced above
the fermion algebra anticommutation relations:

X~l!X~m!1X~m!X~l!50, ~2.59a!

X* ~l!X* ~m!1X* ~m!X* ~l!50, ~2.59b!

X~m!X* ~l!1X* ~l!X~m!5d~l2m!, ~2.59c!

where d(l2m) is the Diracd-function with respect to integration about a circleS1 ~close to
l→`),
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d~l2m!5 (
n52`

` S m

l D n 1

l
, ~2.60a!

R f ~l!d~l2m!dl5 f ~m!. ~2.60b!

The ‘‘zero-time’’ t0 as a discrete variable, was introduced in Refs. 7 and 42, though it wa
used in these papers to add a zero mode to the vertex operators~2.57! and~2.58!. One of the uses
it was put to in Ref. 36 was to introduce the flag space of Grassmannians into KP theory.

A t-function is a function of all the timestW5$t1 ,t2 , . . . % and also of the discrete ‘‘zero’’ time
t0,7,42,36,37

t5tn~ tW !, n5t0 . ~2.61!

The formal Baker function nearl5` can be expressed in terms of vertex operators and
t-function as

w~l,t0 , tW !5
X~l,t0 , tW !t~ t011,tW !

t~ t0 , tW !
~2.62!

~with a similar expression forw* ).
For any sufficiently small shift (tW2 tW8) we have the bilinear identity

resl5`w~l,t0 , tW !w* ~l,t0 , tW8!50. ~2.63!

Let us now consider variations of thet-function due to the vector field,

Vlmt5X~l!X* ~m!t. ~2.64!

In the Kyoto school approach7 this is an infinitesimal group transformation of thet-function,
corresponding to an action of the algebra glˆ(`). Let us calculate the corresponding induced act
on KP solutionsw1, following Ref. 15. We have

Vlmw522resk5`~Vlmw~k!!w* ~k!, ~2.65!

wherek is a spectral parameter and all times inw(k) andw* (k) are set equal. In deriving~2.65!
use is made of the relations

w~k!5ez~k!S 12
w

2k
1OS 1

k2D D , w* ~k!5e2z~k!S 11OS 1

kD D . ~2.66!

We recall that the relation between thet-functions and solutions is

w~ t0 , tW !52
]

]x
ln t~ t0 , tW !, ~2.67!

but we do not use that here. For the Baker function we have

Vlmw~k!5
X~k!~Vlmt!

t
2w~k!

Vlmt

t
. ~2.68!

The last term in eq.~2.68! does not contribute to the residue in eq.~2.65! and we obtain
J. Math. Phys., Vol. 38, No. 9, September 1997
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Vlmw522resk
~X~k!X~l!X* ~m!t!

t
w* ~k!. ~2.69!

From the fermion commutation relations~2.59! we obtain

@X~k!,X~l!X* ~m!#52d~k2m!X~l!, ~2.70!

and hence

2resk
~X~k!X~l!X* ~m!t!

t
w* ~k!5reskd~k2m!

X~l!t

t
w* ~k!2resk

X~l!X* ~m!X~k!t

t
w* ~k!.

~2.71!

Making use of the bilinear identity~2.63! we can see that the last term in eq.~2.71! vanishes.
Using eqs.~2.69!, ~2.70! and ~2.62! we obtain the final result,

Vlmw52w~l!w* ~m!. ~2.72!

This formula was announced in Ref. 18~with some obvious misprints! and a proof was given in
Ref. 15. Equation~2.72! plays a key role if we wish to relate the symmetries~2.55! with the gl̂(`)
transforms.7 Using eqs.~2.64! and ~2.72! we can write the following commutative diagram:

Vlmt5X~l!X* ~m!t → Vlmw52w~l!w* ~m!

↓ ↓

]mnt5n! resl5` rese50e2n21lmX~l1e!X* ~l!t → ]mnw52 reslm
]nw

]ln
w* .

~2.73!

Remark: In ~2.73! we haveeÞ0, n>0. The second formula defines the action ofŴ11`

generators acting on the tau-function. The casen,0 is considered in Ref. 44.
Below, in Section IV, we shall make use of the formalism of Sections II E and II F to ob

all point symmetries of the equations of the KP hierarchy.

III. POINT SYMMETRIES AND CONDITIONAL SYMMETRIES OF THE KP AND JM
EQUATIONS

Among the symmetries of type~2.37! of the KP equation there is a subclass that is
particular interest, namely equations of the form

]w

]z
52~v1]x1v2]y1vN] tN

!w1p, p5p~w,x,y,tN!, vW 5vW ~w,x,y,tN!. ~3.1!

These correspond to Lie pointLP symmetries of the considered equation, in this case the
equation~2.31c!.

The reason for this terminology is that if we view eq.~3.1! as a partial differential equation fo
w(x,y,tN ,z) then the corresponding characteristic system is

dz5
dx

v1
5

dy

v2
5

dtN
vN

5
dw

p
. ~3.2a!
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Now consider the Lie group of~local! point transformations (x,y,tN ,w)→( x̃ , ỹ , t̃ N ,w̃) taking
solutions of the potential KP equation into solutions. These transformations can be found
entirely algorithmic manner,28,29 that does not depend on the integrability of the considered e
tion. The method first produces the Lie algebra of the symmetry group of the form

V̂5v1]x1v2]y1vN] tN
1p]w , ~3.2b!

where the functionsv1 ,v2 ,vN andp are solutions of a system of linear differential equations,
determining equations. The symmetry group transformations are obtained by integrating the
field V̂, once the functionsv i are known. This amounts to integrating eq.~3.2a! in which z is a
group parameter. Notice the difference of signs beforev i in eq.~3.1! and~3.2a!, as implied by the
method of characteristics.

The Lie point symmetry algebra for the potential KP equation was found in Ref. 31.
solution of the determining equations involves five arbitrary functionsf ,g,h,k,l of one variable,
namelytN , N53.

The general element of the point symmetry algebra of the potential KP equation~2.31c! was
shown to have the form

V̂5T~ f !1Y~g!1X~h!1W~k!1U~ l !, ~3.3a!

with ~we addt0-dependent terms to the symmetries found in Refs. 30, 31!

T~ f !5 f ] t1
2

3
y f8]y1

1

3 Fx f81
2

3
y2f 9G]x

2F1

3
w f81

1

9
~x214yt0! f 91

4

27
xy2f-1

4

243
y4f 99G]w , ~3.3b!

Y~g!5g]y1
2

3
yg8]x2S 2

3
t0g81

4

9
yS xg91

2

9
y2g-D D ]w , ~3.3c!

X~h!5h]x2
2

3S xh81
2

3
y2h9D ]w , ~3.3d!

W~k!5ky]w , ~3.3e!

U~ l !5l ]w , ~3.3f!

where f , g, h, k and l are functions of timet5t3 ~the sign of timet has been changed wit
respect to Ref. 31!.

The ‘‘symmetry’’ in the sense of eq.~3.1!, i.e., the evolutionary equation in group timez
compatible with the PKP equation~2.31c! in this case is a first order linear equation, namely

wz5 f wt1S 2

3
y f81gDwy1F1

3
x f81

2

9
y2f 91

2

3
yg81hGwx1F1

3
w f81

1

9
~x214yt0! f 91

4

27
xy2f-

1
4

243
y4f 991

2

3
t0g81

4

9
xyg92

8

81
y2g-1

2

3
xh82

4

9
y2h92yk2l G . ~3.4!

The vector fields~3.3! can of course be integrated to yield point transformations, taking solut
of the PKP equation into solutions.30,31

The nonzero commutation relations of the symmetry algebra are
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@T~ f 1!,T~ f 2!#5T~ f 1f 282 f 18 f 2!, ~3.5!

@Y~g1!,Y~g2!#5
2

3
X~g1g282g18g2!, ~3.6a!

@Y~g!,X~h!#5
4

9
W~hg92g8h8!2

8

9
U~gh9!, ~3.6b!

@Y~g!,W~k!#5U~gk!, ~3.6c!

@X~h1!,X~h2!#52
2

3
U~h1h282h18h2!, ~3.6d!

@T~ f !,Y~g!#5YS f ġ2
2

3
g ḟ D , ~3.7a!

@T~ f !,X~h!#5XS f ḣ2
1

3
h ḟ D , ~3.7b!

@T~ f !,W~k!#5W~ f k̇1 ḟ k!, ~3.7c!

@T~ f !,U~ l !#5US f l̇ 1
1

3
l ḟ D . ~3.7d!

We see that the fieldsT( f ) form a centerless Virasoro algebra. The vector fie
$Y(g),X(h),W(k),U(l )% form a centerless Kac–Moody algebra. Actually, this is a loop alge
with t as the loop parameter. The underlying Lie algebra is a 9-dimensional nilpotent Lie al
that can be embedded into sl(8,R). A basis is provided by the vector fields,

Y5X1,15]y , Q5X25y]x , H5X3,15xy]w ,

X5X3,25]x , U5X4,15x]w , W35X4,25y3]w , ~3.8!

W25X5,15y2]w , W15X6,15y]w , W05X7,15]w .

There is a natural grading on this algebra and the first label onXi , j determines the place of eac
elementXi , j in this grading. The embedding into sl(8,R) is given by the matrices
J. Math. Phys., Vol. 38, No. 9, September 1997
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1
0 0 0 2x 0 0 2w1 w0

0 0 0 q 0 0 2w2 2w1

0 0 0 0 0 0 26w3 2w2

0 0 0 0 0 0 h 2u

0 0 0 0 0 0 q 2x

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 y

0 0 0 0 0 0 0 0

2 . ~3.9!

The Jimbo–Miwa equation~2.28!, taken on its own, has been shown not to pass any of
usual integrability tests.38 Moreover, its symmetry algebra does not have a Kac–Moody–Vira
structure.38 An alternative approach was taken in Ref. 39, namely that of ‘‘conditional sym
tries.’’ Thus, Lie point symmetries were found that leave only a subset of the solution set o
JM equation invariant, namely those that simultaneously satisfy the PKP equation~2.31c!.

The corresponding Lie algebra does have a Kac–Moody–Virasoro structure and its g
element can be written as39

V5Z~ f !1T~g!1Y~h!1X~k!1U~g!, ~3.10!

Z~ f !5 f ] t4
1

3

4
t3 ḟ ] t3

1
1

128
@32x ḟ148yt3 f̈ 19t3

3 f̂ #]x1
1

32
@16y ḟ19t3

2 f̈ #]y

2
1

128
@32w ḟ132xy f̈16t~4y213t3x! f̂ 19yt3

3f iv#]w , ~3.11!

T~g!5g] t3
1

1

32
@16yġ19t3

2g̈#]x1
3

4
t3ġ]y2

1

3
@4~3t3x12y2!g̈19yt3

2ĝ#]w , ~3.12a!

Y~h!5h]y1
3

4
t3ḣ]x2

1

4
@2xḣ13t3yḧ#]w , ~3.12b!

X~k!5k]x2yk̇]w , U~G!5G~ t4 ,t3!]w , ~3.12c!

where f , g, h andk are functions oft4.
Finally we note that the symmetry algebra of theKP4 equation~2.31d! can either be calcu-

lated directly, or can be obtained from the ‘‘conditional’’ symmetry algebra~3.11!, ~3.12!. Indeed,
eq. ~2.31d! does not involve the variablet3, neither in its coefficients, nor as a derivative. Hen
we can considert3 to be constant in eq.~3.11!. This amounts to dropping the Lie algebra eleme
T(g), after using them to eliminate thet3-derivative inZ( f ).

The result is again a Kac–Moody–Virasoro algebra as the symmetry algebra of eq.~2.31d!,
namely

V5T~ f !1Y~g!1X~h!1U~ l !, ~3.13!

with
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T~ f !5 f ] t4
1

1

4
ḟ ~x]x12y]y!2

1

4
~w ḟ1xy f̈!]w , ~3.14a!

Y~g!5g]y2
1

2
xġ]w , X~h!5h]x2yḣ]w , U~ l !5 l ]w , ~3.14b!

where f (z), g(z), h(z) and l (z) are all arbitrary functions of the timet45z.
Exactly the same symmetry algebra~3.14! can be obtained by using a standard algorith

presented, e.g., in Ref. 28 and implemented in a MACSYMA program.29 The Virasoro subalgebra
of eq.~3.14! corresponds to the vector fieldsT( f ). The remaining vector fields$Y(g),X(h),U( l )%
form a centerless Kac–Moody algebra. This is a loop algebra withz as the loop parameter. Th
underlying Lie algebra is a five-dimensional nilpotent Lie algebra with the basis

X5]x , Y5]y , P15x]w , P25y]w , H5]w , ~3.15!

isomorphic to the Heisenberg algebra in two dimensions. The algebra~3.15! can be imbedded into
sl(4,R) as follows:

M5S 0 p1 p2 h

0 0 0 x

0 0 0 y

0 0 0 0

D . ~3.16!

An earlier observation is that all known integrable PDEs in 3-dimensions have Kac-Mo
Virasoro algebras as Lie point symmetry algebras. This includes the KP equation,30 the PKP
equation,31 the Davey–Stewartson equation,32 the 3-wave resonant interaction equations33 and
several others.29–34 In Section IV we shall show that the same is true for each equation in the
hierarchy.

The arbitrary functionsf , g, h, . . . , of thetime tN used above can be developed into Laure
series,

h5h11h2 , h15 (
n>0

hntN
n , h25 (

n,0
hntN

n . ~3.17!

We shall call the symmetries involvingh1 and h2 the positiveand negativeparts of the point
symmetries, respectively.

IV. LIE POINT SYMMETRIES OF THE KP HIERARCHY FROM THE P` ONES

A. Extraction of point symmetries

Let us now present the main result of this article, namely to obtain the point symmetrie
higher KP equations and show that the corresponding algebras have a Kac–Moody–V
structure. The corresponding Lie point symmetries can be directly extracted from the symm
generated by the pseudodifferential operatorsAmn of eq.~2.39! via Theorem 2. Moreover, we wil
show that all the symmetries given in eq.~2.55! that are local~no integrals!, are point symmetries
We call a symmetry trivial if it vanishes identically for anyw(x,y,tN).

Theorem 3: (a) Let N be the number of an equation in the KP hierarchy.
(b) Let us have m2n<N(12n).
(c) Set all tk[0 except t0, t1, t2, tN .
(1) Then, for n>0 the Ẁ % H subalgebra of P̀ reduces to the positive part of the Lie poi

symmetries of the KPN equation.
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(2) For n<0 the ‘‘negative’’ subalgebra Ì,P` reduces to the negative part of the Lie poi

symmetries of the KPN if we interpret x̂21 as in eq. (2.42), and]l
21 as in eq.~2.53! ~see Theorem

2!.
Proof: First let us rewrite the symmetries~2.55! of the KP hierarchy using a different basi

Instead of the operatorsAmn5 x̂n]m of eq. ~2.39! @or lm]l
n of eq. ~2.55b!#, let us consider a

different basis labelled by an integera and an arbitrary function of one variableha(x) ~that can
be expanded into a power series, or Laurent series!. We fix some integerN and consider the
operators~there is no summation over the repeatinga),

ha,N5lahaS ]

]lND 5laha~]E!, E~l!5lN, NÞ0. ~4.1!

Sometimes we shall omit the labela below. ForN50 we putE(l)5 lnl. We have the splitting

h5h11h2 , h15 (
n>0

hn]E
n , h25 (

n,0
hn]E

n , ~4.2!

wherehn are constants. We rewrite the symmetries~2.55b! in the form

VN~a,h!w~ t0 , tW !52resllaFhaS ]

]lND w~l,t0 , tW !Gw* ~l,t0 , tW !, ~4.3!

whereVN(a,h) is a vector field acting onw. For h(x)5(Nx)n, a5m1nN2n, we recover the
symmetries~2.55b! with VN(a,h)5Vmn1(k.0ckVm2k,n2k . The condition~b! of Theorem 3 is
equivalent to the conditiona<N .

Let us rewrite eq.~4.3! in a more convenient form, using eq.~2.32! for the formal Baker–
Akhiezer functions. Our aim is to replace the power series in derivatives]l , implicit in eq. ~4.3!,
by power series inl itself. The formula we are aiming at is

VN~a,h!w~ t0 , tW !52resla f ~l,t0 , tW !w~l,t0 , tW !w* ~l,t0 , tW !, ~4.4!

where f (l,t0 , tW) is a function to be determined. We shall use the following relation, valid
differential operators and@in view of ~c! and therefore of~2.53!# also for integral ones:

h~]!ex5exh~]1x8!•152ex(
k50

`
h~k!~x8!

k!
~~x8!21]!k

•1, ~4.5!

wherex85]x/]x.
Comparing eq.~4.3! and eq.~4.4! and using eq.~2.32! we have

f ~l!5w21~l!h~]E!eF, ~4.6a!

F5 (
k51

`

lktk1t0 ln l1 lnS 11 (
n51

l2nKn~ t ! D . ~4.6b!

The KP hierarchy is written in terms of the functionw522K1. All higher coefficientsKn ,n.1
in eq. ~4.6b! are expressed nonlocally in terms ofK1 @see eqs.~2.20!, . . . , ~2.27!#. Since we will
be using eq.~4.4! to extractlocal symmetries, we shall drop all negative powersl2n in eq.~4.6b!,
except forl21. We obtain
J. Math. Phys., Vol. 38, No. 9, September 1997
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f ~l!5hH 1

NlN21

]

]l
1 (

k51

`
k

N
lk2Ntk1

1

N
l2Nt01

w

2NlN11
1O1S 1

lN12D J •1. ~4.7!

Another ingredient in eq.~4.4! is the expansion~2.35! which we rewrite as

2ww* 521
wx

l2
1

wy

l3
1

wt

l4
1 . . . 1

wtN

lN11
1O2S 1

lN12D . ~4.8!

Both O1 andO2 contain nonlocal terms as coefficients before each degree ofl2N212m,m.0. By
comparing linear nonlocal terms for each degree ofl in O1 with similar terms inO2 one can
verify after some computation that they are different and therefore never cancel each other.
expanding the functionh$ % into a Taylor series we note that nonlocal terms~integrals ofw) will
be avoided iff the termsO(l2N22) do not participate in the calculation of the residue in eq.~4.4!.
This imposes the necessary restriction

a<N. ~4.9!

For the same reason, we must ‘‘freeze’’ all times in eq.~4.7! exceptt0 ,t15x, t25y andtN , where
N is the number of the chosen equation in the KP hierarchy that we are considering@N53 for the
KP itself, N54 for KP4 eq. ~2.31c! and so on#. Thus, we set

tk50, k>N11, 3<k<N21, ~4.10!

in eq. ~4.7!.
Finally, we expandf (l) in a Taylor series abouttN , keep only local terms and obtain fo

N.2,

VN~a,ha!w5reslaH ha~ tN!1
1

N
ha8 ~ tN!F2l22Ny1l12Nx1l2Nt01

1

2
l2N21wG

1
1

2!N2
ha9~ tN!@4l422Ny214l322Nxy1l222N~x214y14yt022Ny!#

1
1

3!N3
ha-~ tN!@8y3l623N112xy2l523N#1

1

4!N4
ha99~ tN!16y4l824N

1O1~l2N22!J H 21
wx

l2
1

wy

l3
1 . . . 1

wtN

lN11
1O2~l2N22!J . ~4.11!

~There is no summation overa in this formula.!
The Lie point symmetries of all the equations of the KP hierarchy are contained in eq.~4.11!.

Let us remember that to obtain them explicitly in terms of vector fields of the form of eq.~3.2!
with t5t3 replaced bytN it will suffice to perform the substitutions@see~3.1!,~3.2!#

p→p]w , v1wx→2v1]x , v2wy→2v2]y , vNwtN
→2vN] tN

. ~4.12!

h

Remark:One can omit condition~c! of the Theorem. In this caseP`-symmetry transforma-
tions contain additional terms which are proportional to certain nonlocal expressions th
J. Math. Phys., Vol. 38, No. 9, September 1997
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multiplied by polynomial functions of higher timestk ; seeO(eW ) terms in Section IV B. One can
continue~4.11! for N50,1,2. ForN52 we get the transformations of initial values ofw(x,y,tN).
Evolution with respect to the timetN , .2 adds nonlocal terms. Let us note that the freezing of
KP higher times as in condition~c! is used in matrix models21–23 and in the bispectral problem
26,45

Theorem 4: The nonvanishing Lie point symmetries contained in symmetries (eq 4.3) ar
following: (a) Virasoro symmetries fora5N; (b) Kac–Moody symmetries fora52, 1, 21 (and
also for a50 when N53). This Kac–Moody algebra is a nilpotent one. (c) The entire Lie po
symmetry algebra is a semiderct sum of centerless Virasoro algebra and a nilpotent subalge
a centerless Kac–Moody algebra.

Proof: From ~4.11! it follows that for N.a.2 and fora,21 symmetries vanish. The fac
that for a5N, 2, 1, 0,21 we get a semidirect sum of the Virasoro algebra and nilpotent K
Moody algebras~both without central charge! follows from Theorem 1. h

Notice that the valuesN,2,1,0,21 are also the ‘‘dimensions’’ oftN ,y,x,t0 ,w. For five func-
tionshN ,h2 ,h1 ,h0 ,h21 we shall use the notationsf ,g,h,k,l , respectively, and the correspondin
point symmetry generators areT( f ),Y(g),X(h),W(k),U(l ).

Let us write down an analog of theZakharov–Shabat representationfor the point symmetry
equations. Let us denote the group time corresponding to the flowVN(a,h) asz5zN(a,h). From
the considerations in Section II one can obtain the symmetry equation for the KP solutionwx as

F ]y2]22wx ,]z1S LahS 1

N
M̂L12ND D

2
G50, N.0, ~4.13!

where for L,M̂ see ~2.50!, for M̂ 21 see ~2.42!, the subscript ‘‘-’’ was defined in~2.4!. The
associated linear problemis the following one:

S ]z2S LahS 1

N
M̂L12ND D

1
Dw~l,t0 , tW !5lah~]lN!w~l,t0 , tW !, ~4.14!

wherew is the Baker–Akhiezer function. Ifh is an integral operator one should use the conv
tion ~2.53! to calculate the r.h.s. ForN50 we takeh(M̂L), h(l]l). To get the Zakharov–Shaba
equations and to get the associated linear problem for invariant solutions of these symmetry
one should just remove the partial derivative]z from formulas~4.13! and~4.14!. One can compare
the formula~4.14! for the invariant solution with those in the so-called bispectral problem,
Ref. 46.

Let us consider the positive part of the point symmetries withh(t)5(n>0hntn and let us
considerh* (n):5(n>0n!hnn2n21. Let us takeE5lN,n5lN2(l1e)NÞ0. From Ref. 15~see
also Section II F in the present paper! it follows that we have the following.

The positive part of Lie point symmetries are obtained from the action of certain generat
the Ŵ11` algebra on the tau-function, namely,

VN~a,h!t~ t0 , tW !5resl5`resn50lah* ~n!X~E1n,t0 , tW !X* ~E,t0 , tW !t~ t0 , tW !, ~4.15!

with a5N, 2, 1, 0,21 , considered at the pointtW5t1 ,t2,0,0,. . . ,0,tN,0,0, . . . .
Remark:It is possible to continue Eq.~4.15! to the negative part of the Lie point symmetrie

with the help of convention~2.53!; see Ref. 44 for details.
Now let us consider an embedding of the Lie point symmetries into the free fermion alg

We shall not go into the details~one can find them in Ref. 44!, the notations below are taken from
the well-known paper.7 Here we write down fermionic generators only for the positive part of
point symmetries.

Let us introduce the following free fermions:
J. Math. Phys., Vol. 38, No. 9, September 1997
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c~l,t0!5( ln1t0cn , c* ~l,t0!5( l2n2t021cn* , ~4.16!

where t0 is not necessarily an integer. The fermionscn , cn* , (cncm* 1cm* cn5dm,n ,cnu0.50
for n,0), the vacuum and the normal odering :: below are defined as in Ref. 7. Then the po
part of the Lie point symmetries results from the glˆ(`) action on the fermionic tau-function of th
following generators:

l a,k5resl5` :lacE
~k11!~l!c* ~l!:, k11>0, ~4.17!

wherecE denotes the derivative with respect toE5lN. These generators belong to theŴ11`

algebra and produce point symmetry flows which belong to theW` part of P` symmetries.
For a5N this gives one half of the Virasoro generators:@ l n ,l k#5(n2k)l k1n , n, k>21.

We could continue the formula~4.17! for negativek using the convention~2.54! for integration
over l. However we get symmetries which are not point ones.

Finally we present the following generators of a centerless Virasoro algebra~the so-called
Witt algebra! which corresponds to a different basis of periodical nonsingular functionsh:

Lk5resl5` :E~eik]Ec~l!!c* ~l!:, kPZ. ~4.18!

This Witt algebra produces point symmetry flows which belong to theW` part of P` symmetries
that are written in the basis~2.43! rather than the basis of$x̂n, n>0%.

B. The Virasoro subalgebras of point symmetries

Let us first of all obtain the Virasoro subalgebra of the symmetry algebra for each ch
equation in the KP hierarchy. We have in mind the equations written for the func
w(t0 ,x,y,t,t4 , . . . )522K1(t0 ,x,y,t,t4 , . . . ). Thehigher times different fromx,y,tN we denote
by eW . Symmetry transformations are nonpoint ones until all variables exceptt0 ,x,y and tN are
‘‘frozen’’: eW50. To obtain the Virasoro symmetries, we seta5N in eq. ~4.11! and calculate the
residue. The functionf below ishN of Section IV A. Let us consider each value ofN separately,
starting formally from the casesN51,2.

~1! N5a51, tW5x,e2 ,e3 , . . . ,

T~f!5f~x!]2~f8~x!w1f 9~x!~t 0
22t0!!]w1O~eW!. ~4.19!

This formula can be interpreted as the transformation of a ‘‘current’’w(x)52]xln t under the
conformal transformation of the space variablex. Then the termf 9(t0

22t0) appears due to a
central extension, see Ref. 44. These transformations correspond to the point symme
the ‘‘lower’’ KP equations~e.g., to the two-dimensional Toda lattice42!.

~2! N5a52, tW5x,y,e3 ,e4 , . . . ,

T~f!5f~y!]y1
f8~y!

2
x]2S f8~y!w

2
2

x~122t0!f 9~y!

4
1

x3f -~y!

24 D ]w1O~eW !. ~4.20!

See Ref. 44 for applications of these transformations.
~3! N5a53, tW5x,y,t,e4 ,e5 , . . . ,

We obtainT( f )1O(eW ), whereT( f ) as in eq.~3.3b!.
~4! N5a54, tW5x,y,e3 ,t4 ,e5 , . . . ,

We obtainT( f )1O(eW ), whereT( f ) as in eq.~3.14a!, f 5 f (t4).
~5! N5a55, tW5x,y,e3 ,e4 ,t5 ,e6 , . . . ,

T~f!5f~t5!]t5
1

1

5
f 8~t5!~x]x12y]y!2

1

25
~5w f8~ t5!14y2f 9~ t5!!]w1O~eW !. ~4.21!
J. Math. Phys., Vol. 38, No. 9, September 1997
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~6! N5a>6, tW5x,y,e3 , . . . ,eN21 ,tN ,eN11 , . . . ,

T~f!5f~tN!]tN
1

1

N
f 8~tN!~x]x12y]y!2

1

N
wf8~tN!]w1O~eW!. ~4.22!

O(0W )50 in these formulas. The commutation relations are the same in all cases, namely th
eq. ~3.5!.

C. The Kac–Moody subalgebras of point symmetries

The remaining local symmetries have a Kac–Moody structure in all cases and are al
tained from eq.~4.11! by performing the substitutions~4.12! and calculating the residues fora,N
in ~4.11!. When acting on the KP solutionw(x,y,tN) the Kac–Moody algebras have no centr
charge. The functionsg,h,k,l below areha of ~4.3! and correspond toa52,1,0,21, respec-
tively. For eachN we take the same values oftW as in Section IV B.

Up to termsO(eW ), O(0W )50, we obtain the following results.
N50, a521 yield the vector field

U~ l !522l ~ t0!]w1O~ tW !. ~4.23!

N51, a50,21 yield the vector fields

W~k!522t0k8~x!]w , U~ l !522l ~x!]w . ~4.24!

N52, a51, 0, 21 yield the vector fields

X~h!5h~y!]x2S t0h8~y!1
1

4
h9~y!x2D ]w , W~k!522k~y!x]w ,U~ l !522l ~y!]w .

~4.25!

N53, a52, 1, 0 and21 yield the vector fields~3.3c!, . . . ,~3.3f!, respectively.
N54, a52, 1 and21 yield the vector fields~3.14b!.
N55, a52, 1 and21 lead to

Y~g!5g~ t5!]y2
4

5
g8y]w , ~4.26a!

X~h!5h~ t5!]x , ~4.26b!

U~ l !522l ~ t5!]w , ~4.26c!

respectively.
N>6, a52, 1 and21 lead, respectively, to

Y~g!5g~ tN!]y , ~4.27a!

X~h!5h~ tN!]x , ~4.27b!

U~ l !522l ~ tN!]w . ~4.27c!

As N increases, the specific character of the Kac–Moody subalgebra simplifies. The u
lying finite-dimensional nilpotent Lie algebra is a 9-dimensional subalgebra of sl(8,R) for the KP
itself. ForN54 it is a 5-dimensional subalgebra of sl(4,R), isomorphic to the Heisenberg algeb
J. Math. Phys., Vol. 38, No. 9, September 1997
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H(2). For N55 this algebra is 4-dimensional,$]y ,y]w ,]w% % $]x% and can be embedded int
sl(4,R). For N>6 the algebra is a 3-dimensional$]x ,]y ,]w% and Abelian.

D. The symmetry groups

The advantage of point symmetries is that they can be integrated easily and explicitly t
the group transformations. Let us construct the corresponding transformations by integrati
one parameter subalgebras of the vector fields~3.2!, obtained above in terms of arbitrary function
f ,g,h,k,l @which areha of ~4.3! for a5N, 2, 1, 0,21, respectively#. We puteW50. For the sake
of simplicity we shall use the same notationz for different group times. The functionsp,v i from
eq. ~3.2! are expressed in terms off , g, h, k, l , see Sections IV B and IV C.

d x̃

dz
5v1~ x̃ , ỹ , t̃ N ,w̃!,

d ỹ

dz
5v2~ x̃ , ỹ , t̃ N ,w̃!,

d t̃ N

dz
5vN~ x̃ , ỹ , t̃ N ,w̃!,

dw̃

dz
5p~ x̃ , ỹ , t̃ N ,w̃!, ~4.28a!

x̃ uz505x, ỹ uz505y, t̃ Nuz505tN , w̃ uz505w,
] t̃ N

]tN
5

f ~ t̃ N!

f ~ tN!
. ~4.28b!

N>6. Virasoro@eq. ~4.22!#:

t̃ N5c21~z1c~ tN!!, x̃5xS ] t̃ N

]tN
D 1/N

, ỹ5yS ] t̃ N

]tN
D 2/N

,

w̃5wS ] t̃ N

]tN
D 21/N

, c~ t !5E t dt8

f ~ t8!
. ~4.29a!

Thus we see that under the change oftN the variablesx,y, w transform as 1/N, 2/N, and
2 1/N forms, respectively. The Kac–Moody algebra@eq. ~4.27!# integrates to

t̃ N5tN , x̃5x1zh~ tN!, ỹ5y1zg~ tN!, w̃5w12zl ~ tN!. ~4.29b!

N55. Virasoro@eq. ~4.21!#:

t̃ 55c21~z1c~ t5!!, x̃5xS ] t̃ 5

]t5
D 1/5

, ỹ5yS ] t̃ 5

]t5
D 2/5

,

w̃5S ] t̃ 5

]t5
D 21/5Fw2

4

25
y2

ḟ ~ t̃ 5!2 ḟ ~ t5!

f ~ t5!
G . ~4.30a!

Kac–Moody@eq.~4.26!#:

t̃ 55t5 , x̃5x1zh~ t5!, ỹ5y1zg~ t5!,

w̃5w12l ~ t5!z2
4

5
g8~ t5!yz2

2

5
g~ t5!g8~ t5!z2. ~4.30b!

N54. Virasoro@eq. ~3.14a!#:
J. Math. Phys., Vol. 38, No. 9, September 1997
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t̃ 45c21~z1c~ t4!!, x̃5xS ] t̃ 4

]t4
D 1/4

, ỹ5yS ] t̃ 4

]t4
D 1/2

,

w̃5S ] t̃ 4

]t4
D 21/4S w2

1

4
xy

ḟ ~ t̃ 4!2 ḟ ~ t4!

f ~ t4!
D . ~4.31a!

Kac–Moody@eq. ~3.14b!#:

t̃ 45t4 , x̃5x1zh~ t4!, ỹ5y1zg~ t4!,

w̃5w1S l ~ t4!2
1

2
xġ~ t4!2yḣ~ t4! D z2~ ġ~ t4!h~ t4!12g~ t4!ḣ~ t4!!

z2

4
. ~4.31b!

The formulas for the group transformations forN53 ~the KP equation itself! are somewhat more
complicated. They were given in Refs. 30, 31 and we do not reproduce them here. We no
that theN53 Virasoro transformation creates a rationalKP3 solutionw(x,y,t), which is propor-
tional to x2.

N52. Virasoro@eq. ~4.20!#:

ỹ5c21~z1c~y!!, x̃5xS ] ỹ

]y
D 1/2

,

w̃~ x̃ , ỹ !5S ] ỹ

]y
D 21/2

w~x,y!1
x̃ ~122t0!

f ~ ỹ !
@ f 8~ ỹ !2 f 8~y!#

1
x̃3

24f ~ ỹ !2
$ f ~y! f 9~y!2 f ~ ỹ ! f 9~ ỹ !%1

1

2
@ f 82~ ỹ !2 f 82~y!#.

Kac–Moody@eq. ~4.25!#:

ỹ5y, x̃5x1zh~y!,

w̃~ x̃ , ỹ !5w~x,y!2t0h8~y!z2
1

4
h9~y!Fx2z1xh~y!z1

1

3
h2~y!z3G .

If we apply theN52 transformations to the vacuum solutionw[0 we create a rationa
potentialw̃.

The Virasoro algebra induces a reparametrization of timetN , that is compensated for by
redefinition of the other variables. The transformation induced byX(h) is a transition to a moving
frame, moving along thex-axis with arbitrary acceleration. Forh5const it is a translation, for
h5t5tN a Galilei transformation.

E. Restriction to integrable equations in 1 11-dimensions and to finite-dimensional
systems

The situation is different for 111-dimensional~one ‘‘space’’ and one ‘‘time’’ variable! and
finite-dimensional reductions of the equations of the KP hierarchy.

The Lie point symmetry groups are drastically reduced for the 111-dimensional case. The
Virasoro subalgebra, corresponding to arbitrary reparametrizations of time, reduces to time
lations and dilations only. The Kac–Moody subalgebra reduces to a finite dimensional suba
J. Math. Phys., Vol. 38, No. 9, September 1997
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Let us explain these facts from the general approach. We shall consider theKPn equation and
its solutionw5w(x,y,tn) under 111 reductions of the following types. The first is the reducti
to the higher KdV equation of number n, which is obtained by imposing the constraint

~K]2 K21!250. ~4.32!

In this casew(x,y,tn)5w(x,tn), wheren is an odd number. The second is a higher Boussin
equation, it is obtained by imposing the constraint

~K]nK21!250, n.2. ~4.33!

In this case theKPn solutionw(x,y,tn) depends onx,y but not ontn .
Constraints of type~4.32!,~4.33! are called p-KdV constraints, wherep52 for ~4.32! and

p5n for ~4.33!.
Let us consider point transformation labelled byN52 and byN5n in formula ~4.11! asso-

ciated with space variablest2 and tn . The problems to be solved are symmetry flow
VN(a,h), N52, n compatible with two-dimensional reductions~4.32!,~4.33!.

As we understood in Section IV A the Lie point transformations of the KP equation lab
by N are produced by the flows~4.11!, which we denoted byVN(a,h):

VN~a,h!K52~KAN~a,h!K21!2K, AN~a,h!5]ahS 1

N
x̂]12ND , ~4.34!

where

a5N, 2, 1, 0,21. ~4.35!

Lemma 3: The compatibility of the p-KdV constraint@p52, n for (4.32),(4.33)]with the flow
Vn(a,h) produces the new constraint (KFK21)250, whereF is a PDO of orderpF5p:

F5F]p,]ahS 1

n
x̂]12nD G , ord F5p1a2n. ~4.36!

In view of ~4.35! the order ofF is either p or less. It means that the compatibility conditio
reduces to one of the following possibilities:~a! F50, ~b! F5]p, ~c! F51 ~or any constant!, ~d!
the symmetry flow is compatible with the p-KdV reduction under some additional restriction
K , so the flowVn(a,h) is not a symmetry but a conditional symmetry of the p-KdV.

The case~a! gives the restrictionh51. The case~b! corresponds toh being a linear function
anda5n. This flow describes a rescaling. The case~c! corresponds to a string-type equation. A
a result the Lie point symmetries of a constrained equationKPn obtained from~4.32!, or from
~4.33!, are described by the following theorem.

Theorem 5: If the KPn equation is reduced to a higher KdV one [see (4.32)], the Lie po
symmetries of the KPn equation reduce to the generators of translations] tn

,]x , ]w and rescaling.

This corresponds to the choice(a5n, h51), (a51, h51), (a521, h5 1
2), @a5n,

h5 (1/n) x̂]12n], respectively. For n53 (KdV itself) there is also a Galilei transformation, whic

is described by(a51,h5 1
3x̂]22).

In case of the reduction (4.33) the Lie point symmetries of the KPn reduce to the generators
of translations]y ,]x ,]w and rescaling transformation and for n53 to the transformation y]w .
This corresponds to the choice(a52, h51), (a51, h51), (a521, h51), @a5n, h

5 (1/n) x̂]12n] , @a50, h5 (1/n) x̂]12n#, respectively.
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Examples:The potentialKP3 equation~2.31c! has just 3 inequivalent reductions30,31, ~by the
translationsP25]y @this is reduction~4.32!#, P05] t @this is the reduction~4.33!#, or P15]x , this
case is not interesting since the reduced equation is linear and its solution isw5y f(t)1g(t)).

The reduction byP2 leads to the potential Korteweg–deVries equation,

wt5
1

4
wxxx1

3

4
wx

2 . ~4.37!

The reduction of the symmetries~3.3! results in the following 5-dimensional symmetry algebr

P05T~1!5] t , D5T~ t !5t] t1
1

3
x]x2

1

3
w]w ,

P15X~1!5]x , B5X~ t !5t]x2
2

3
x]w , U5]w . ~4.38!

We see thatP0, P1, D and B correspond to time and space translations, dilations and Ga
boosts, respectively.

The reduction byP0 leads to the potential Boussinesq equation~with y as time!,

wxxx13wx
213]x

21wyy50. ~4.39!

The reduction of the symmetries~3.3! in this case results in the following ones:

D5x]x12y]y2w]w , P15X~1!5]x ,

P25Y~1!5]y , W~1!5y]w , U~1!5]w , ~4.40!

so the inherited symmetry algebra is five-dimensional.
In case of reduction~4.33! one can also consider point transformations withn52 since they

describe transformations ofw(x,y) when all other KP higher times are equal to zero. Th
transformations are nontrivial only forn53. However for this case we shall not obtain new po
symmetries for the Boussinesq equation other than~4.41!.

For N>4 the situation is quite similar. The most interesting reductions are obtained usin
translation] tN

. The inherited symmetry algebras in this case are always four-dimensional, na

D5x]x12]y2w]w , P15]x , P25]y , U5]w . ~4.41!

It is natural to consider more general reductions than~4.32! and ~4.33!.
Compatibility of constraints and flows.Now let us consider reductions of the generalized

flows to 111-dimensional equations and to finite-dimensional dynamical systems and form
some problems that we encounter.

First of all we should note that a large number~if not all known! integrable 111-dimensional
systems are obtained from the KP hierarchy, or its generalizations treated in Section II, b
posing constraints. Thus to consider symmetries of 111-dimensional equations we impose
given constraint and consider the compatibility of symmetry flow with the constraint. The
patibility condition may result in anew constraint, in this case we have a conditional symmet
We encounter the problem of the compatibility of different constraints.

An integral operator which can be presented in the formS5(a51
r b0a]21ba0, where

b0a ,ba0 are some functions ofx and r ,`, is a Volterra integral operator with a degenera
kernal. This representation is not unique, for a given Volterra operatorS there exists a minima
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value of r , which we shall call the rank ofS. For example, rank]2252, see~2.2!. Operators of
this type first were considered in Refs. 15 and 47–49 to describe symmetries and sym
reductions of the KP hierarchy; see also Refs. 50–53.

Let us impose the following constraint on the space of the formal Zakharov–Shabat dre
K : given a numberr i and a PDOAi of order pi , we impose that (KAiK

21)2 should be a
Volterra integral operator with a degenerate kernel of rankr i,`, i.e.,

Li5KAiK
21, K .K @Ai #5$K:rank ~KAiK

21!25r i,`%. ~4.42!

Lemma 4: For pi.0 this constraint restricts the spaceK to the subspaceK @Ai #,K which
is parametrized by a set of pi12r i21 arbitrary functions of x.

To get a finite-dimensional system~ordinary differential equations! let us consider apair of
constraints~4.42! i 51, 2. The question is, does there exist anyKPK solving both constraints. If
it exists, then we can consider the algebra of constraints spanned by$Ai ,i 51,2%. Example 1: Both
Ai are independent ofx. When the solution of~4.42! exists it is the Burchnall–Chaundy commu
tative ring spanned by$Li ,i 51,2%.54 Example 2: the string equations,19,20,23see~2.48! forAi5Q,
P. Example 3: the bispectral problem.46

Problem 1: To classify all pairs of PDOs Ai for given finite ranks ri which can be simulta-
neously transformed by a formal Zakharov–Shabat dressing KPK to

$A1 ,A2%→
K

$L1 ,L2%, rank~Li !25r i , i 51, 2, ~4.43!

and to describe the corresponding subspace of the formal Zakharov–Shabat dressings
K .K @A1, A2#5$K:rank(KAiK

21)25r i , i 51, 2%.
We are convinced that this problem is an extremely difficult one.
Let us denote the subalgebra of PDOs spanned byAi , i 51, 2 byA@A1 ,A2#. Let us make one

simple proposal.
Proposal 1: For r1, r250 the spaceK @A1 ,A2# is empty ifA@A1 ,A2# contains a purely

integral operator.
Example:The p-KdV equation is defined by

~K]pK21!250. ~4.44!

It is impossible to impose the following Virasoro~‘‘string-type’’ ! constraint (Kx̂]qK21)250 for
the p-KdV equation ifp1q21,0 sinceA@]p,x̂]q# contains the integral operator]p1q21. How-
ever for the scaling constraint, whenq51, and for the ‘‘Galilei constraint’’q512p the space
K @]p,x̂]q# is not empty. For the same reason the Virasoro flowsVx̂]q are not compatible with
~4.44! if p1q21,0.

To get 111-dimensional integrable systems like the KdV or the NLS equations one need~1!
to impose one constraint~4.42!; ~2! to choose the vector field~2.13!. Again the question is whethe
the given flow~2.13! is compatible with the given constraint~4.42!.

To be more explicit we should write down the action of a flowVj ~2.13! on the operator
Li5KAiK

21 of form ~4.42!. We get

VjLi5@Li ,~KAj K21!2#5@~KAj K21!1 , Li #1KFi j K21, Fi j 5@Ai , Aj #1Vj Ai , ~4.45!

where the last term does not necessarily vanish. When this flow preserves the given form~4.42!
then the equation~4.45! gives rise to a 111-dimensional system.

Problem 2: To describe all flows (2.13) which preserve a given constraint (4.42).
If the curvature satisfiesFi j 50 then the flow definitely preserves the constraint~4.42!. Then

~4.45! is a Lax system of equations forpi2112r i independent functions in the two-dimension
space spanned byx, zj . For examples see Ref. 47~see also Ref. 50!. If we takeAi5], Aj5]2 we
J. Math. Phys., Vol. 38, No. 9, September 1997
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get ther i-component nonlinear Schroedinger equation, or forr i>2 we get ther i11 resonant
wave system. By takingx-independent PDOsAi of higher order we get systems which were call
‘‘constrained KP hierarchies.’’ Certain pairs of such restrictions give rise to different type
restricted flows49 which are either autonomous, or nonautonomous finite-dimensional dyna
systems.

V. CONCLUSIONS

We have found the point symmetries of all higher KP equations and proved that each
they constitute a semidirect sum of a Virasoro and a current algebra. The advantage
approach is that we use the soliton theory and consider the whole hierarchy of KP equations
Virasoro algebra corresponds to the reparametrization group of the corresponding KP high
tN . The topic is embedded into the standard soliton theory, involvingL2A pairs, tau-functions,
W` symmetries. Let us note that point transformations forN53, N52 generate rational KP
potentials, which do not vanish at infinity, described in Ref. 55.

We can suggest some possible applications of these symmetries. First, the role of sym
for the quantization problem is well-known. Let us note that application of the ‘‘spectral param
reparametrization’’17,36 Virasoro algebra appeared indirectly.2,21,25 This algebra was not con
nected with reparametrizations of the space variablex, which is of importance in conforma
theories of phase transitions in 2D. One can expect the appearance of the Virasoro algebr
solvable models arising from space variable reparametrizations. We are sure that the ‘‘tim
arametrization’’ Virasoro algebra will be of use.

A different application is to use these reparametrization symmetries for considering integ
equations on Riemann surfaces, where one needs changes of thet-variable to glue different maps
together.

Another application is the standard one: to get special solutions.
The way of getting point symmetries described in this paper is available not only for th

hierarchy but also for the multicomponent KP hierarchy7,56 and therefore for almost all known
integrable models, such as the~211!D 3-wave resonant system hierarchy,~111!D Toda lattice
hierarchy, Davey–Stewartson one etc., where additional symmetries were found; see Refs
~in the paper16 ‘‘two-dimensional equations’’ correspond to the (211)-dimensional ones in the
present paper!. The results of this article confirm a conjecture made earlier, namely that the
point symmetries of integrable PDEs in 3-dimensions are infinite-dimensional and have ‘‘a
acteristic Kac–Moody structure.’’34 Since an advantage of Lie point symmetries is the possib
of finding them using computer packages, they represent a tool for investigating a given eq
and may be excluding it from the list of integrable equations.

The following problem~not considered in this paper! arises. We mentioned in the Introductio
that the notion of point symmetries depends on the choice of variables and representations
flows. In soliton theory different variables can be connected in a highly nonlocal way.~Moreover
soliton theory may be viewed as a science about parametrizations and changes of variables
this quality it has a lot of applications in both mathematics and theoretical physics.! The point
transformations have the advantage of being easily integrated to group transformations. Th
lem is the following: given a glˆ(`) or P` symmetry flow, are there variables, for which this flo
corresponds to point transformations? Does each element of the KP glˆ(`), or the KPP` algebra
give rise to some point symmetry?

In this paper we consider a topic which is broader than point symmetries of the highe
equations. We have started a study of the ‘‘negative part’’ ofP` . For the convention~i! its
integral part appears not to be part of the free fermion algebra, connected with infinite
matrices. We show in the paper in Ref. 44 that one can construct a Virasoro algebra with a
extension in terms of free fermions. The positive part of this algebra is given by eq.~4.17! and
gives rise to the positive part of point symmetries. Its negative part gives rise to the h
J. Math. Phys., Vol. 38, No. 9, September 1997
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nonlocal symmetries which are connected with the negative part of point symmetries via s
Liouville flows.47,48
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Painlevé analysis of new higher-dimensional soliton
equation

K. Porsezian
Institut für Theoretische Physik, Universita¨t Hannover, 30167 Hannover, Germany
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In this note, we prove that the recently proposed new higher-dimensional nonlinear
partial differential equation admits the Painleve´ property. We briefly discuss the
integrability properties of the equation. ©1997 American Institute of Physics.
@S0022-2488~97!02807-7#

I. INTRODUCTION

In the last decade there has been increasing interest in identifying the soliton poss
nonlinear evolution equations in different branches of science.1–3 From the detailed investigations
a large class of nonlinear partial differential equations have been derived and establish
integrability properties like Lax pairs,N-soliton solutions, bi-Hamiltonian structure and so on in
systematic way.2,3 To date, many effective methods have been developed such as inverse s
ing transform method, Painleve´ analysis, Hirota’s bilinearization method, Ba¨cklund transformation
method, Lie symmetries, and so on2–4 in this exciting area of soliton theory to investigate abo
the integrability properties. Among them, the Painleve´ analysis5,6 is considered to be one of th
powerful and systematic method to identify the integrability case~s! of nonlinear equations and t
construct the integrability properties in a systematic way.6–12

Singularity structure analysis admitting the Painleve´ (P2) property advocated by Ablowitz
et al.5 for ordinary differential equations~ODEs! and extended by Weiss, Tabor, and Carnev
~WTC!6 to partial differential equations~PDEs! plays a key role in investigating the integrabilit
properties of many nonlinear dynamical systems. The WTC extension of Painleve´ analysis to
nonlinear PDEs consists, like for ODEs, of two parts:

~i! generation of necessary conditions for the absence of movable singularities in the ‘‘g
solution,’’ and

~ii ! explicit proof of sufficiency by finding the transformation which either linearizes the n
linear PDE or yields the~good! Lax pair.

Since the formulation of the Painleve´ tests, there has been considerable interest in using
Painlevéproperty as a means of whether given equations, both partial and ordinary differ
equations, are integrable or not. To apply this test to partial differential equations we us
theory of complex functions with several complex variables.

The major difference between analytic functions of one complex variable and several co
variables is that, in general, the singularities of a function of several complex variables can
isolated. If C5C(z1 ,z2 ,...,zn) is a meromorphic function ofn complex variables~2n real
variables!, the singularities ofC occur along analytic manifolds of~real! dimension 2n22. These
manifolds are determined by conditions of the form

f~z1 ,z2 ,...,zn!50, ~1!

wheref is an analytic function of (z1 ,z2 ,...,zn) in a neighborhood of the manifold.
With reference to the above we say that a partial differential equation has the Pa´

property when the solutions of the PDE are single valued about the movable singularity man
0022-2488/97/38(9)/4675/5/$10.00
4675J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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For PDEs we require that the solution be a single-valued functional of the data, i.e. arb
functions. This is a formal property and not a restriction on the data itself.

To verify if a PDE has the Painleve´ property we introduce a method of expanding a solut
of a nonlinear PDE~NPDE! about a movable, singular manifold~1!. Let q5q(z1 ,z2 ,...,zn) be a
solution of the PDE and assume that

q5fp(
j 50

`

qjf
j , ~2!

wheref and

q~z1 ,z2 ,...,zn! ~3!

are analytic functions of (z1 ,z2 ,...,zn) in a neighborhood of the manifold~1!. Substitution of~2!
into the PDE determine the possible values ofp and defines the recursion relations forqj , j
50,1,2,... . When p is a negative integer and~2! is a valid and general expansion about t
manifold ~1!, then the solution has a single-valued representation about~1!. If this representation
is valid for all allowed movable singularity manifolds, then the PDE has the Painleve´ property. For
a specific PDE it is necessary to identify all possible values forp and then find what the form o
the resulting ‘‘phi’’ series is.

A point that should be emphasized is that the ‘‘phi’’ series for nonlinear PDE contains a
deal of information about the PDE. The remarkable feature of the Painleve´ analysis, particularly
for soliton equations, is that a natural connection exists with respect to the Lax pair, Ba¨cklund
transformation~BT!, complete integrability, etc.6–12 For equations that do not have Painle´
property, it is still possible to obtain single-valued expansion by specializing the arbitrary
tions that appear in the ‘‘phi’’ series expansions and the construction of particular solution
also possible.13 This specialization leads to a system of partial differential equations for
formally arbitrary data. For specific systems, and it is also conjectured in general, these eq
are integrable. The form of resulting reduction enables the identification of integrable redu
of the original systems. The modifications for this analysis have also been suggested in Refs
9 ~also references in Ref. 9!. In this paper, we consider the new higher-dimensional NPDE
analyze the Painleve´ property and other integrability properties.

II. PAINLEVÉ ANALYSIS OF NEW HIGHER-DIMENSIONAL NONLINEAR EQUATION

In a very recent article, Maccari14 considered the Kadomtsev–Petviashvili~KP! equation

Qxt1Qxxxx1lQyy23~Q2!xx50, ~4!

where Q5Q(x,y,t) is real, l561, and the subscripts denote differentiation. Then, using
asymptotically exact reduction method based on Fourier expansion and spatiotemporal res
a new higher-dimensional NPDE has been derived and the construction of Lax pairs ar
discussed. The new (211)-dimensional NPDE is of the form

iqt1qxx1qR50, ~5!

Rt1Ry1~qq* !x50. ~6!

Equations~5! and ~6! are similar to integrable Zakharov equations in plasma physics to des
the behavior of sonic Langmuir solitons which are Langmuir oscillations trapped in regio
reduced plasma density caused by the ponderomotive force due to a high-frequency field@when
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x5y in Eq. ~6!#.15 In this case, the resulting (111)-dimensional system admits the 333 Lax
pairs. In order to apply Painleve´ analysis, we rewrite Eqs.~5! and ~6! in terms ofq5a andq*
5b. Under these substitutions, we get

iat1axx1aR50, ~7!

2 ibt1bxx1bR50, ~8!

Rt1Ry1~ab!x50. ~9!

Assume the leading orders of the solutions of Eqs.~7!–~9! have the form

a;a0fa, b;b0fb, R;R0fd, ~10!

wherea, b, andd are integers to be determined. Substituting~10! in to ~7!–~9! and balancing the
most dominant terms, we obtaina5b521 andd522 with

a0b052fx~f t1fy!, R0522fx
2. ~11!

For finding the resonances, we substitute

a5(
j 50

ajf
j 21, b5(

j 50
bjf

j 21, R5(
j 50

Rjf
j 22. ~12!

into ~7!–~9! and, equating the coefficients of (f j 23f j 23,f j 23), we get the resonance values
the form

j 521,0,2,3,4. ~13!

The resonances ‘‘j 521’’ and ‘‘ j 50’’ correspond to the arbitrariness of the singular ma
fold f(x,y,t)50 and the coefficientsa0 andb0 , as can be seen from Eq.~11!, respectively.

The existence of sufficient number of arbitrary functions at the other resonance values
checked by substituting the full Laurent expansion~12! in Eqs. ~7!–~9! and analyzing the equa
tions obtained by collecting the coefficients of different powers off. To simplify the calculations,
we use the reduced manifold ansatz of Kruskal,16 i.e., f(x,y,t)5x1c(y,t)50 anda, b, andR
are functions ofy and t. Collecting the coefficients of (f22,f22,f22), we obtain

a15
2 ia0f t

2
, ~14!

b15
ib0f t

2
, ~15!

R150. ~16!

From the coefficients of (f21,f21,f21), we have

ia0t1~a0R21a2R0!50, ~17!

2 ib0t1~b0R21b2R0!50. ~18!

From the above equations, it is clear that one of the coefficients (a2 ,b2 ,R2) is arbitrary.
Solving the coefficients of (f0,f0,f0), we get
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R352
f tt

2
, ~19!

a0b31a3b052@R2t1R2y1R3~f t1fy!1a1b21b1a2#. ~20!

Hencea3 or b3 is arbitrary. Continuing further, from the coefficients of (f1,f1,f1), we find that
eithera4 or b4 or R4 is arbitrary.

Thus the general solutiona(x,y,t), b(x,y,t), andR(x,y,t) of Eqs.~7!–~9! admits the suffi-
cient number of arbitrary functions without the introduction of any movable critical manifold,
satisfying the Painleve´ property and hence the system is expected to be integrable.

As Eqs.~5! and~6! satisfy the required condition to be integrable, we now proceed to ob
the associated integrability properties of the system.

Now, to construct the Ba¨cklund transformation, the series representation~12! is truncated at
the constant level terms

a5
a0

f
1a1 , b5

b0

f
1b1 , R5

R0

f2 1
R1

f
1R2 . ~21!

Equation~21! can also be treated as BT of Eqs.~7!–~9!. Next, to construct the bilinear form
we truncate the series in the form

a5
a0

f
5

G

F
, b5

b0

f
5

G*

F
, ~22!

R5
R0

f2 1
R1

f
52~ log f!xx52~ log F !xx . ~23!

Using the above bilinear transformations in Eqs.~5! and ~6!, we construct the bilinear equa
tions in the following form:

~ iD t1Dx
2!G•F50, ~24!

Dx~Dt1Dy!F•F52
GG*

2
, ~25!

whereD is the Hirota operator

DxDy5S ]

]x
2

]

]x8D S ]

]y
2

]

]y8DG~x,y!•F~x8,y8!ux5x8, y5y8. ~26!

Once the bilinear form is known, then we can construct the soliton solutions of Eqs.~5! and
~6! by expandingG and F in terms of power series. As the corresponding (111)-dimensional
Zakharov equations admit 333 Lax pairs, we believe that Eqs.~5! and ~6! may also admit the
333 Lax pairs. The work is in progress along these lines.

Thus in this note we have investigated the Painleve´ analysis of the recently proposed highe
dimensional nonlinear partial differential equation and showed that it admits the Painleve´ prop-
erty. We have briefly discussed the construction of the integrability properties.
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Integrable discretizations of the spin
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Integrable discretizations are introduced for the rational and hyperbolic spin
Ruijsenaars–Schneider models. These discrete dynamical systems are demon-
strated to belong to the same integrable hierarchies as their continuous-time coun-
terparts. Explicit solutions are obtained for arbitrary flows of the hierarchies, in-
cluding the discrete time ones. ©1997 American Institute of Physics.
@S0022-2488~97!01309-1#

I. INTRODUCTION

The famous Calogero–Moser many-particle model possesses the most ramified tree
possible kinds of generalizations. Even at the classical~nonquantum! level, one has three types o
the usual Calogero–Moser~CM! systems: rational, hyperbolic/trigonometric, and elliptic.1,2 They
may be viewed as being related to theAN21 root system, and there exist immediate generalizati
to other root systems.1 A relativistic generalization of the CM systems constitute the Ruijsenaa
Schneider~RS! models,3,4 appearing also in three variants~rational, hyperbolic/trigonometric, an
elliptic!. Some time ago spin generalizations of the CM models were introduced,5,6 recently they
attracted more attention.7–9 Finally, a spin generalization of the RS model was introduced
studied very recently,10 it found its application also to the solitons of affine Toda theories.11 ~We
have not mentioned some other directions of generalizing the CM model, such as imp
external potentials, etc.!

Still another direction of the development of CM type models is theirtime discretization,
which was started by finding the discrete time CM system in Ref. 12 and followed by
discretization of the RS system in Ref. 13.~Actually, the discretizations of the CM model an
some its generalizations appeared a decade earlier in the image of Ba¨cklund transformations.14!
The integrable discretizations found in these papers turned out to have a remarkable proper
belong to the same integrable hierarchies as their continuous-time counterparts, i.e., the
with continuous-time systems such attributes as Hamiltonian structure, Lax matrices,r -matrices,
action-angle variables, and so on. This property was clearly identified and put in a basi
general procedure of discretization of integrable systems in Refs. 15 and 16, for further de
ments see Refs. 17, 18, and 19.

In the present paper we continue this line of research by applying this general procedure
spin RS model. Despite the fact that a Hamiltonian structure for this recently introduced sys
still unknown, it is possible to attach a hierarchy of flows to this model and to solve explicitl
initial value problem for a general flow of the hierarchy. This is done~for the rational and
hyperbolic systems! in Sec. III. The discrete time systems are introduced and studied in Sec
In Sec. V we show what our results give for the usual RS model~without spins!: even in this case

a!Electronic mail: ragnisco@romal.infn.it
b!Electronic mail: suris@cevis.uni-bremen.de
0022-2488/97/38(9)/4680/12/$10.00
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we obtain new results, or better, give new insights. Several open problems are outlined in S

II. SPIN RS MODEL

We prefer to give here the results for the hyperbolic and rational spin RS models in a
suitable for our present purposes, since it is difficult to extract the corresponding results fro
general setting of Ref. 10.

The model is described in terms ofN scalar variablesxk , 1<k<N, N vectorsuak&PCd, 1
<k<N, andN covectorŝ bkuPCd, 1<k<N. We shall represent vectorsuak& as columns of the
d3N matrix A, and covectorŝbku as rows of theN3d matrix B.

The spin RS model proper as given in Ref. 10 is described by the equations of motion

ẋk5^bkuak&. ~2.1!

uȧk&52lkuak&2(
j Þk

uaj&^bj uak&V~xj2xk!, ~2.2!

^ḃku5lk^bku1(
j Þk

^bkuaj&^bj uV~xk2xj !. ~2.3!

Here for the rational model

V~x!5
1

x
2

1

x1g
5

g

x~x1g!
~2.4!

and for the hyperbolic one

V~x!5coth~x!2coth~x1g!5
sinh~g!

sinh~x!sinh~x1g!
, ~2.5!

gPC being the parameter of the model. Further,lk5lk(x,a,b) in ~2.2! and ~2.3! are arbitrary
functions of the dynamical variables. The simplest possible choice is, of course,lk50. Solutions
of the system with arbitrarylk’s may be obtained from the solutions of the system withlk50
upon change of variablesuak&°Lkuak&, ^bku°Lk

21^bku with Lk5exp(* tlk(t8)dt8).
These models admit Lax representations

L̇5@M ,L# ~2.6!

with the Lax matrix, which we prefer to choose in the form

L5L~x,a,b!5 (
j ,k51

N
g

xj2xk1g
^bj uak&Ejk , ~2.7!

or

L5L~x,a,b!5 (
j ,k51

N
sinh~g!exk2xj

sinh~xj2xk1g!
^bj uak&Ejk , ~2.8!

in the rational and hyperbolic cases, respectively. The matrixM5M (x,a,b) has the entries
J. Math. Phys., Vol. 38, No. 9, September 1997
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M jk5V~xj2xk!^bj uak&, j Þk. ~2.9!

Mkk5lk . ~2.10!

In fact, provided the ansatz~2.7! or ~2.8! is given, the Lax equation~3.6! may be derived as a
consequence of the following two equations, which are in a sense more fundamental:

Ȧ52AM, Ḃ5MB. ~2.11!

So far, to our knowledge, the Hamiltonian formulation of this model has not been der
This makes it impossible to give a rigorous statement about complete integrability of the sp
model. However, an explicit theta-function solution for this model was given in Ref. 10, an
shall now demonstrate that in the rational and hyperbolic cases a simpler solution can be gi
terms of eigenvalues of certain matrices constructed explicitly from the initial conditions, ju
for usual CM and RS models1,3 and for the spin CM model.5

III. SPIN RS HIERARCHY

We want to show now that the rational and the hyperbolic spin RS models described abo
in fact only the simplest representatives of the two corresponding hierarchies, and to deriv
representations for each flow of these hierarchies. The members of the hierarchies are enc
an arbitrary conjugation-covariant function f (L) on gl(N), the spin RS models proper corre
sponding to the casef (L)5L. ~Note that in the hypothetical Hamiltonian formulation the me
bers of the hierarchies would be encoded by conjugation-invariant Hamiltonian functionsw(L),
such thatf (L)5L¹w(L)5¹w(L)L, cf. Ref. 20 in the nonspin case.!

For a conjugation-covariant functionf (L) we introduce the system of differential equation

ẋk5 f ~L !kk , ~3.1!

uȧk&52lkuak&2(
j Þk

uaj&M jk , ~3.2!

^ḃku5lk^bku1(
j Þk

Mk j^bj u, ~3.3!

here in the rational caseL is defined by~2.7!, and

M jk5
f ~L ! jk

xj2xk
, j Þk; ~3.4!

in the hyperbolic caseL is defined by~2.8!, and

M jk5
exj 2xk

sinh~xj2xk!
f ~L ! jk , j Þk; ~3.5!

the scalarslk , 1<k<N are, as before, arbitrary functions onx, a, b. @It is easy to see that we
recover the system~2.1!–~2.3! for f (L)5L.#

As the spin RS model proper, this general system also admits Lax representation

L̇5@M ,L#, ~3.6!

which, given the ansatz~2.7! or ~2.8! for the Lax matrix, is a consequence of
J. Math. Phys., Vol. 38, No. 9, September 1997
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Ȧ52AM, Ḃ5MB. ~3.7!

Here the off-diagonal entries of the matrixM are given by~3.4! or ~3.5!, respectively, while the
diagonal ones by

Mkk5lk . ~3.8!

To solve the system explicitly for an arbitraryf (L), we need to introduce an auxiliar
diagonal matrixX by the following formulas: in the rational case

X5diag~x1 ,...,xN!. ~3.9!

and in the hyperbolic case

X5diag~e2x1,...,e2xN!. ~3.10!

It is important to note that the ansatz~2.7! for the rational Lax matrix is equivalent to

XL2LX1gL5gBA, ~3.11!

while the ansatz~2.8! for the hyperbolic Lax matrix is equivalent to

egXLX212e2gL52 sinh~g!BA. ~3.12!

A key observation necessary for an explicit integration of equations of motion is the fo
ing: The evolution equation forxk ~3.1! together with the expressions~3.4! and~3.5! may be cast
in a single matrix differential equation forX. whose form depends on the case under scrut
Namely, for the rational one:

Ẋ5@M ,X#1 f ~L !. ~3.13!

and for the hyperbolic one:

Ẋ5@M ,X#12X f~L !. ~3.14!

Now we proceed as in Refs. 1, 3, and 5: define the matrixV5V(t) as the solution of the
matrix differential equation

V̇V215M ~3.15!

with the initial conditionV(0)5I . Then in the rational case

X5X~ t !5V~X01t f ~L0!!V21, ~3.16!

in the hyperbolic case

X5X~ t !5VX0e2t f ~L0!V21, ~3.17!

and in both cases

L5L~ t !5VL0V21. ~3.18!

A5A~ t !5A0V21, B5B~ t !5VB0 . ~3.19!
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



tional

-
of
t
the

finite

4684 O. Ragnisco and Y. B. Suris: Discrete spin RS model

                    
So, just as in the case of the usual CM and RS models and the spin CM model, in the ra
case the positionsxk are the eigenvalues of the matrixX01t f (L0), and in the hyperbolic case
exp(2xk) are the eigenvalues of the matrixX0 exp(2t f(L0)). As in the spin CM model, the corre
sponding eigenvectors~i.e., the diagonalizing matrixV! define the evolution of spin degrees
freedom. The nonuniqueness of the diagonalizing matrix~which is in principle defined up to a lef
multiplication by a diagonal matrix! is reflected in the arbitrariness of the diagonal part of
matrix M5V̇V21, i.e., of the scalarslk @cf. ~3.8!#.

The explicit solution of the equations of motion provided by~3.16!, ~3.17!, ~3.18!, and~3.19!
clearly shows that no singularity occurs in the behavior of the dynamical variables at any
time, inspite of the singularities~in x! exhibited by the potential functionV(x) ~2.4! and ~2.5!.
Indeed, neither the diagonalizing matrixV nor the matricesX01t f (L0) ~in the rational case!,
X0 exp(2t f(L0)) ~in the hyperbolic case! develop any finite-time singularity; in fact we have

det V~ t !5det V~0!expS t(
k

lkD ~3.20!

and, in the rational case

det X~ t !5det~X01t f ~L0!! ~3.21!

while, in the hyperbolic case

det X~ t !5det~X0!exp~2t Tr f ~L0!! ~3.22!

so that all the above quantities are entire functions oft.

IV. INTEGRABLE DISCRETIZATIONS OF THE SPIN RS MODELS

We introduce now two families of maps

~xk ,uak&,^bku!°~ x̃k ,uãk&,^b̃ku!

depending on the small parameterh.0 and approximating, ash→0, the rational and hyperbolic
spin RS models, respectively. Just as the spin RS models haveN free parameterslk

5lk(x,a,b), will our maps haveN free parametersmk .
The rational spin RS map is defined by

x̃k2xk5hmk
21^b̃kuak&. ~4.1!

mkuãk&2uak&52hS (
j Þk

uã j&^b̃ j uak&
x̃ j2xk

2(
j 51

N uaj&^bj uak&
xj2xk1g D , ~4.2!

^b̃ku2mk^bku5hS (
j Þk

^b̃kuaj&^bj u
x̃k2xj

2(
j 51

N
^b̃kuã j&^b̃ j u
x̃k2 x̃ j1g D , ~4.3!

where the parametersmk are supposed to satisfy the following asymptotic relations:

mk~x,x̃,a,ã,b,b̃;h!511hmk
~0!~x,x̃,a,ã,b,b̃!1O~h2!. ~4.4!

The simplest possible choice is, of course,mk51.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The standard implicit functions theorem implies that Eqs.~4.1!–~4.3! for h small enough have
a unique solution (x̃,ã,b̃) which is O(h) close to (x,a,b). Hence a map (x,a,b)°( x̃,ã,b̃) is
defined, being an approximation of the timeh shift along the trajectories of the rational version
the system~2.1!–~2.3! with

lk~x,a,b!5mk
~0!~x,x̃,a,ã,b,b̃!2g21^bkuak& ~4.5!

@the second term in the right-hand side of this formula stems from the fact that in the second
in ~4.2!, ~4.3! the term corresponding toj 5k is present, as opposed to~2.2!, ~2.3!#. The choice
mk51 corresponds, therefore, to the flow of the rational spin RS model withlk

52g21^bkuak&. In order to get an approximation for the flow withlk50 one can take, for
example,mk511hg21^b̃kuak&.

The hyperbolic spin RS map is defined by:

e2~ x̃ k2xk!2152hmk
21^b̃kuak&, ~4.6!

mkuãk&2uak&52hF(
j Þk

uã j&^b̃ j uak&~coth~ x̃ j2xk!21!

2(
j 51

N

uaj&^bj uak&~coth~xj2xk1g!21!G . ~4.7!

^b̃ku2mk^bku5hF(
j Þk

^b̃kuaj&^bj u~coth~ x̃k2xj !21!

2(
j 51

N

^b̃kuã j&^b̃ j u~coth~ x̃k2 x̃ j1g!21!G . ~4.8!

Under the same assumption~4.4! as before, this system defines a map (x,a,b)°( x̃,ã,b̃) approxi-
mating the timeh shift along the trajectories of the hyperbolic system~2.1!–~2.3! with

lk~x,a,b!5mk
~0!~x,x̃,a,ã,b,b̃!2~coth~g!21!^bkuak&. ~4.9!

The choicemk51 corresponds this time to the flow of the hyperbolic spin RS model withlk

52(coth(g)21)̂ bkuak&.
An outstanding property of the introduced discretizations for the spin RS models is

solvability. More precisely, they turn out to belong to the same hierarchies as their contin
time counterparts. That means that they admit discrete time Lax representations with the sa
matrices as the continuous systems.

Theorem 1: The maps (4.1)–(4.3) and (4.6)–(4.8! have the following discrete Lax represe
tations:

L̃M5ML, ~4.10!

ÃM5A~ I 1haL !, ~ I 1haL̃ !B̃5MB. ~4.11!

Here for the rational casea5g21, L is as in (2.7), and

M jk5
h^b̃ j uak&
x̃ j2xk

; ~4.12!
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for the hyperbolic casea5coth~g!21, L is as in (2.8), and

M jk5
hexk2 x̃ j

sinh~ x̃ j2xk!
^b̃ j uak&; ~4.13!

in both cases the condition

Mkk5mk ~4.14!

is imposed.
Theproof of this Theorem follows by direct calculation. It should be remarked that the s

phenomenon as in the continuous cases takes place, namely that the evolution equations~4.11! for
A, B are in a sense more fundamental then the Lax equation~4.10! for L: given the ansatz~2.7!
or ~2.8! for L and a corresponding ansatz~4.12! or ~4.13! for M, the Lax equation~4.10! is a
consequenceof ~4.11!.

From the Lax equation~4.10! follows that the equations~4.11! can be presented also as

Ã5A~ I 1haL !M21, B̃5M~ I 1haL !21B. ~4.15!

As a consequence we get:ÃB̃5AB, or

(
j 51

N

uã j&^b̃ j u5(
j 51

N

uaj&^bj u.

This allows us to rewrite the hyperbolic map~4.6!–~4.8! in the following form:

tanh~ x̃k2xk!5hnk
21^b̃kuak&, ~4.16!

nkuãk&2uak&52hS (
j Þk

uã j&^b̃ j uak&coth~ x̃ j2xk!2(
j 51

N

uaj&^bj uak&coth~xj2xk1g!D .

~4.17!

^b̃ku2mk^bku5hS (
j Þk

^b̃kuaj&^bj ucoth~ x̃k2xj !2(
j 51

N

^b̃kuã j&^b̃ j ucoth~ x̃k2 x̃ j1g!D ~4.18!

@wherenk5mk1h^b̃kuak&, so that, for example, the choicenk51 leads to a discretization of th
hyperbolic spin RS model withlk52coth(g)^bkuak&#.

It turns out to be possible to find continuous time flows from the spin RS hierarchiesinter-
polating our maps~we say that a map is interpolated by a flow! if each orbit of the map is given
by the values att5nh, nPZ, of a certain orbit of the flow!. The following statement gives thes
interpolating flows. This, further, provides us with explicit solutions of the introduced disc
time dynamical systems.

Theorem 2: The map (4.1)–(4.3) is interpolated by the flow of the rational spinRShierarchy
(3.1)–(3.3) with the function

f ~L !5L~ I 1hg21L !21.

Analogously, the map (4.6)–(4.8) is interpolated by the flow of the hyperbolic spinRS hierarchy
(3.1)–(3.3) with the function

f ~L !5
1

2h
logS I 1h~coth~g!11!L

I 1h~coth~g!21!L D .
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Proof for the rational case: Equations of motion~4.10!, ~4.15!, wherea5g21, have to be
supplemented with an ansatz forM, which may be also represented as an equation of motion
the auxiliary diagonal matrixX from ~3.9!:

X̃M2MX5hB̃A.

Introduce now the matrix

M5M~ I 1hg21L !21.

In terms of this matrix evolution equations may be presented as

L̃5MLM 21, ~4.19!

Ã5AM21, B̃5MB, ~4.20!

X̃M ~ I 1hg21L !2M ~ I 1hg21L !X5hMBA. ~4.21!

But the ansatz~2.7! for L, being equivalent to the commutation relation~3.11!, implies:

~ I 1hg21L !X5X~ I 1hg21L !1hL2hBA.

This allows us to rewrite~4.21! in the form

X̃M2MX5hML~ I 1hg21L !215hM f~L !. ~4.22!

Defining nowV as the solution of the matrix difference equation

ṼV215M ~4.23!

with an initial conditionV05I , we see immediately that the solution of~4.19!, ~4.20!, and~4.22!
is given by

L5VL0V21, A5A0V21, B5VB0 , ~4.24!

X5V~X01nh f~L0!!V21. ~4.25!

which proves the Theorem in the rational case.
Proof for the hyperbolic case: The equations of motion~4.10!, ~4.15!, where this timea

5e2g/sinh(g), have to be supplemented with an ansatz forM, which is this time equivalent to
the following equation of motion for the auxiliary diagonal matrixX from ~3.10!:

X̃M2MX52hB̃AX.

In terms of the matrix

M5M~ I 1haL !21

the evolution equations forL, A, B take the form~4.19!, ~4.20!, and forX, the form

X̃M ~ I 1haL !2M ~ I 1haL !X52hMBAX. ~4.26!

The ansatz~2.8! for L is equivalent to the commutation relation~3.12!, which, in turn, implies

~ I 1haL !X5X~ I 1hae2gL !22hBAX
J. Math. Phys., Vol. 38, No. 9, September 1997
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@where we have taken into account thataeg sinh(g)51#. This allows us to rewrite~4.26! in the
form

X̃M5MX
I 1hae2gL

I 1haL
5MXe2h f~L !. ~4.27!

Defining nowV by ~4.23!, we see immediately that the solution of~4.19!, ~4.20!, and ~4.27! is
given by ~4.24! and

X5VX0S I 1hae2gL0

I 1haL0
D n

V215VX0e2nh f~L0!V21. ~4.28!

which proves the Theorem in the hyperbolic case.

V. CONNECTION WITH THE USUAL RS MODEL

In the cased51. i.e., whenuak&. ^bku become scalars, the spin RS models yield back the u
spinless ones.3,4 The usual RS hierarchy is now well studied. In particular. explicit solutions w
found in Refs. 3 and 4 for the rational and hyperbolic cases. and in Ref. 10 in the elliptic on
Hamiltonian structure of the usual RS hierarchy is known and admits anr -matrix
interpretation.20–22

To obtain the usual RS model from its spin counterpart in the cased51, one setsakbk5ck in
~3.1!–~3.3!, and it follows irrespectiveof the values of the parameterslk :

ẋk5ck ,

ċk5ck(
j Þk

cj@V~xk2xj !2V~xj2xk!#.

These equations describe the usual RS model, the simplest flow of the usual RS hierarch
The same reduction is admissible for our discrete systems. Namely.irrespectiveof the values

of parametersmk the rational equations~4.1!–~4.3! imply:

h(
j 51

N
c̃j

x̃ j2xk
2h(

j 51

N
cj

xj2xk1g
51, ~5.1!

2h(
j 51

N
c̃j

x̃k2 x̃ j1g
1h(

j 51

N
cj

x̃k2xj
51, ~5.2!

and the hyperbolic equations~4.16!–~4.18! imply:

h(
j 51

N

c̃j coth~ x̃ j2xk!2h(
j 51

N

cj coth~xj2xk1g!51. ~5.3!

2h(
j 51

N

c̃j coth~ x̃k2 x̃ j1g!1h(
j 51

N

cj coth~ x̃k2xj !51. ~5.4!

These equations are very similar to those found in Ref. 13, and can be analyzed alo
same lines. Namely, each pair of equations~5.1!, ~5.2! or ~5.3!, ~5.4! may be considered as a linea
system for 2N variablesck , c̃k with a Cauchy matrix. This system may be explicitly solved, wh
allows then to write down ‘‘Newtonian’’ equations of motion in terms ofx variables only.
J. Math. Phys., Vol. 38, No. 9, September 1997
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To appreciate the difference between the equations found in Ref. 13 and here. it w
instructive to compare the Lax representations for them. Our results immediately imply th
representation of the form

L̃M5ML,

where in the rational case

L5 (
j ,k51

N
g

xj2xk1g
ckEjk , M5 (

j ,k51

N
h

x̃j2xk
ckEjk ,

and in the hyperbolic case

L5 (
j ,k51

N
sinh~g!exk2xj

sinh~xj2xk1g!
ckEjk , M5 (

j ,k51

N
hexk2 x̃ j

sinh~ x̃ j2xk!
ckEjk .

So, they belong to the same hierarchies as their continuous-time counterparts; the interp
flows are given by the same formulas as in Theorem 2.

The Lax representations for the systems found in Ref. 13 have the same~up to a simple gauge
transformation! Lax matricesL, but different matricesM, namely in the rational case

M5 (
j ,k51

N
g

x̃ j2xk1g
ckEjk .

and in the hyperbolic case

M5 (
j ,k51

N
sinh~g!exk2 x̃ j

sinh~ x̃ j2xk1g!
ckEjk .

Hence they also belong to the same hierarchies as their continuous-time counterparts,
interpolated by different flows. In fact, interpolating flows were found in Ref. 13 to correspon

f ~L !52~L1hg21!21

in the rational case, and to

f ~L !5
1

2h
logS L1h~coth~g!21!I

L1h~coth~g!11!I D
in the hyperbolic case.

We see that the maps found in the present article serve as approximations to the flow
RS hierarchy withf (L)5L, which corresponds to the Hamiltonian functionw(L)5tr(L), while
the maps found in Ref. 13 serve as approximations to another flow of the RS hierarchy, c
terized by f (L)52L21, which corresponds to the Hamiltonian functionw(L)5tr(L21). We
notice thatboth maps are derived in Ref. 23 along with their Lax representations~in the general
elliptic case!. However, Hamiltonian interpretation and relations to continuous time hierarchie
not discussed there.

VI. CONCLUSION

This paper contains the application of a general procedure of integrable discretizations
rational and hyperbolic spin RS models. There arise several natural questions.
J. Math. Phys., Vol. 38, No. 9, September 1997
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What about the elliptic spin RS model? We have not pursued this point, basically because
the lacking Hamiltonian structure of this model. Indeed, a natural extension of our results
elliptic case leads to a discrete Lax equation with a spectral parameterl:

L̃~l!M~l!5M~l!L~l!

with the same Lax matrix

L~l!5 (
j ,k51

N

F~xj2xk1gl!^bj uak&Ejk

as for the continuous system, and

M~l!5 (
j ,k51

N

F~ x̃ j2xk ,l!^b̃ j uak&Ejk

@hereF(x,l)5s(x1l)/s(x)s(l), and s(x) is the Weierstrass sigma function#. However, in
absence of the underlying Hamiltonian structure we cannot make any assertions about co
integrability of the resulting system. A surrogate for this—an explicit solution of arbitrary flow
a hierarchy—is also not available in the elliptic case. We intend to return to the elliptic case
future.

What about spin CM models? These models, at least their rational and hyperbolic versi
can be discretized along the same lines as the spin RS models. However, this~paradoxically! turns
out to be a technically more difficult problem. A reference to the standard implicit func
theorem when discussing the equations of the type~4.1!–~4.3! has to be replaced by less trivia
algebraic considerations. This will be discussed elsewhere.
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We defineVandermonde-like determinantsand analyze their structure. The result-
ing scheme is well-suited to achieve a remarkable compactness and transparency in
N-soliton formulas or, more generally, in formulas forN-fold Darboux or Ba¨cklund
transformations. ©1997 American Institute of Physics.@S0022-2488~97!02109-9#

I. INTRODUCTION

The famous old Vandermonde determinants are defined as follows,

V N~x1 ,...,xN!:5U 1 x1 x1
2 ••• x1

N21

1 x2 x2
2 ••• x2

N21

••• ••• ••• ••• •••

1 xN xN
2 ••• xN

N21

U , ~1!

and it is easy to check thatV N can be written as a product of differences,

V N~x1 ,...,xN!5)
i . j

~xi2xj !. ~2!

Determinants of a structure that somewhat resembles Vandermonde determinants were
several authors1–5 when establishing formulas for multiple Darboux or Ba¨cklund transformations.
So far no one, to the best of our knowledge, has investigated such determinants in a sys
manner. With regard to some particular physical application, however, an outline of the co
developed here was given in Appendix A of a recent paper.6 ThereVandermonde-like determi
nantswere introduced by the formula

V MN~ar ;br uxr !:

5U a1 a1x1 ••• a1x1
M21 b1 b1x1 ••• b1x1

N21

a2 a2x2 ••• a2x2
M21 b2 b2x2 ••• b2x2

N21

••• ••• ••• ••• ••• ••• ••• •••

aM1N aM1NxM1N ••• aM1NxM1N
M21 bM1N bM1NxM1N ••• bM1NxM1N

N21 ,

U ~3!

wherer 51,2,...,M1N.
In Sec. II, we discuss the structure of these determinants and establish several useful fo

In particular we shall see thatV MN generally can be written as a sum over products of genu

a!Electronic mail address: steudel@photon.fta-berlin.de
0022-2488/97/38(9)/4692/4/$10.00
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Vandermonde determinants. This formula considerably simplifies the manipulation and num
evaluation of higher-order determinants of such a structure. In Sec. III, we give a few applic
to N-fold Darboux or Ba¨cklund transformations.@Our notation is such thatDarboux transforma-
tions apply to some spectral problem with one independent variable whileBäcklund transforma-
tions are such transformations extended to a lincar system of simultaneous partial differ
equations corresponding to some nonlinear evolution equation~s!.#

The appearance of Vandermonde-like determinants inN-fold Darboux or Ba¨cklund transfor-
mations is a consequence of a characteristic system of linear algebraic equations. It is rel
the zeros of the determinant of the Darboux matrix which is a polynomial in thespectral param-
eter, cf. Ref. 4. The definition~3! for V MN with two subscripts proves to be useful for dynamic
systems connected with 232 scattering problems. Obviously this definition can be generalize
a straightforward way to get someV N1•••Nn

provided withn>3 subscripts, and Vandermonde-lik
determinants of such a type appear for Darboux transformations connected withn3n scattering
problems. Here the casen52 is considered only.

II. PROPERTIES OF VANDERMONDE-LIKE DETERMINANTS

There is a series of nice and useful properties fulfilled by Vandermonde-like determi
which are either obvious due to the definition~3! or easy to prove. HereV MN(ar ;br uxr) is a
homogenous function of orderM in the variablesar , of orderN in the variablesbr , and of order
(2

M)1(2
N) in the variablesxr , r 51,...,M1N. ForN50 andar51, V MN reduces toV M . There is

a translational invariance,

V MN~ ...uxr !5V MN~ ...uxr1x0!. ~4!

We may interchange the right and the left parts,

V NM~br ;ar uxr !5~21!MNV MN~ar ;br uxr !, ~5!

and we may derive a recursion formula,

V MN~as ;bsuxs!5~21!M1N11aM1NV M21,N~ar~xr2xM1N!;br uxr !

1~21!N11bM1NV M ,N21~ar ;br~xr2xM1N!uxr !, ~6!

r 51,2,...,~M1N21!, s51,2,...•••,~M1N!.

For some applications, cf. Ref. 6, a formula for replacingxr by xr
21 in V N11,N is useful,

V N11,N~ab ;bbuxb!5~21!NS )
a51

2N11

xa
ND V N11,NS ab ;

bb

xb
Uxb

21D , b51,2,...,2N11. ~7!

The most important property is given by thereduction formula

V MN~ar ;br uxr !5(
P

«PS )
j 51

M

ar ~ j !D S )
k5M11

M1N

br ~k!D V M~xr ~1! ,...,xr ~M !V N~xr ~M11! ,...,xr ~M1N!!.

~8!

The sum goes over all permutationsP5(r (1),...,r (M1N)) of (1,2,...,M1N) such thatr ( i )
,r ( j ) for i , j <M as well as forM, i , j ; «P511 for P even or21 for P odd.

By this formula any Vandermonde-like determinant generally is expressed as a sum
binary products of genuine Vandermonde determinants. Thus the (M1N)! terms of the determi-
nant are replaced by (M

M1N) terms, e.g., forM5N54, 40 320 terms are reduced to 70 terms.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Proof of (8): The determinant in particular contains one term that is the product of the u
left M3M subdeterminant multiplied by the lower rightN3N subdeterminant, andV MN is just
the sum over all such terms with the rows permuted and with the proper sign factors added~This
is an application of Laplace’s expansion theorem for determinants.!

We note that the reduction formula~8! can easily be generalized to determinants of the t
V N1•••Nn

mentioned in the Introduction.

III. EXAMPLES OF N-FOLD BÄ CKLUND TRANSFORMS IN TERMS OF
VANDERMONDE-LIKE DETERMINANTS

A. Stationary axisymmetric Einstein equations

The vacuum Einstein equations in the case of stationarity and axial symmetry are equ
to the Ernst equation for some complex potentialf .7,8 The N-fold Bäcklund transformf of any
Ernst potentialf 0 may be written in the form1

f 5 f 0

V N11,N~ar ;br uxr !

V N11,N~ar ;cr uxr !
~9!

with

x151: xr5g r 21 as r 52,3,...,2N11, ~10!

ar51 as r 51,2,...,2N11, ~11!

b15a0 , c151; br5cr5a r 21Ag r 21 as r 52,3,...,2N11. ~12!

The meaning of the quantitiesgn (n51,2,...,2N) andan (n50,1,2...,2N) may be found in Ref. 1.
For f 051 ~flat space! andN51 one obtains the famous Kerr solution describing a rotating bl
hole. An arbitraryN leads to a formal superposition of such solutions.

B. The AKNS class of equations

The Ablowitz–Kaup–Newell–Segur~AKNS! class contains a huge set of nonlinear par
differential equations for a pair of two functionsq andr .9 Specializations~including some relation
betweenq and r ! lead to well-known examples like the sine–Gordon, Korteweg–de Vries,
nonlinear Schro¨dinger equations. TheN-fold Bäcklund transform of any ‘‘seed solution’’q0 and
r 0 is given by2

q5q01~21!N2i
V N11,N21~1;b r ul r !

V N,N~1;b r ul r !
, r 5r 02~21!N2i

V N11,N21~1;a r ul r !

V N,N~1;a r ul r !
, ~13!

where thea r andb r (51/a r) are solutions of some Riccati equations with coefficients depen
on q0 and r 0 , while thel r are constants~see Ref. 2!. For trivial initial solutionsq0 and r 0 one
obtains uniform expressions for allN-soliton solutions of equations belonging to the AKNS cla

C. W-systems

There are several dynamical systems known in physics which are connected with some
scattering problems calledW problems, and for themN-fold Darboux transformations were es
tablished in Ref. 10. These transformations also could be expressed in terms of Vandermon
determinants as could easily be seen from the structure of Eqs.~35! and~36! in the quoted paper
However, it would require a bit more space and preparation to give the explicit formulas h
J. Math. Phys., Vol. 38, No. 9, September 1997
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More particularily, the coherent propagation of an optical wave in a two-photon amplifi
connected witha degenerate W-system. For this dynamical system explicit formulas in terms
Vandermonde-like determinants were already given in Ref. 6.

IV. HISTORICAL COMMENT

The termVandermonde determinantwas introduced by Cauchy.11 According to Dieudonne´12

this notation is not justified because Vandermonde never introduced such a determinant ex
Moreover, Lebesgue13 explains that probably the origin of the notation was nothing but a mi
terpretation of some superscripts in Vandermonde’s article.14 Nevertheless, there is no doubt th
we owe to Alexandre Theophile Vandermonde~February 28, 1735–January 1, 1796! important
contributions to algebra13 and that, in particular, he was one of the founders of general determ
theory.15 Thus there is, at least, an indirect justification to keep this notation, and we would li
remember Vandermonde’s name on the occasion of the 200th anniversary of his death, tho
are doing this with a slight delay.
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Cosmological Einstein–Yang–Mills equations
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Theoretical Physics Institute, University of Alberta,
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We use a systematic construction method for invariant connections on homoge-
neous spaces to find the Einstein–SU(n) –Yang–Mills equations for Friedmann–
Robertson–Walker and locally rotationally symmetric homogeneous cosmologies.
These connections depend on the choice of a homomorphism from the isotropy
group into the gauge group. We consider here the cases of the gauge group SU(n)
and SO(n), where these homomorphisms correspond to unitary or orthogonal rep-
resentations of the isotropy group. For some of the simpler cases the full system of
the evolution equations are derived, for others we only determine the number of
dynamical variables that remain after some mild fixing of the gauge. ©1997
American Institute of Physics.@S0022-2488~97!00109-6#

I. INTRODUCTION

There has been extensive work on Einstein–Yang–Mills~EYM! cosmological models in the
last decade. This work was partly motivated by the successes of inflationary models driv
scalar fields in solving flatness and~to a large extent! horizon problems in cosmology. The intere
in inflationary models driven by fields other than scalar fields is a consequence of less att
features of the former.1 Minisuperspace EYM cosmology is a natural extension of a nonpertu
tive treatment of self-gravitating scalar fields. It has been realized that despite a large phas
associated with seemingly redundant extra gauge degrees of freedom, there already exist
tematic mathematical method~based on Wang’s theorem2! for the construction of invariant con
nections over homogeneous spaces in the same spirit as that of Kaluza–Klein theories. As
seen in Sec. II, such invariant connections are related to the representation theory of comp
algebras. For some of the most easily constructed cases of SO(n)-YM fields, the solutions were
obtained on closed Friedman–Robertson–Walker~FRW! cosmologies.3–5 SU~2!-YM fields on
open FRW cosmologies have also been of some interest.6,7 In this particular representation ther
is one degree of freedom associated with the YM fields.

Conformal invariance of YM field equations~due to the fact that they are zero-rest-ma
fields! results for the homogeneous and isotropic case in a decoupling of the gravitational an
degrees of freedom. The energy momentum tensor is that of a radiation perfect fluid a
geometry is that of a Tolman universe.

Despite the fact that it is known that the construction of invariant YM connections coul
generalized—at least in principle—to other compact gauge groups and cosmological mode
compact and noncompact spatial sections, a systematic attempt to study models based o
complicated representations in FRW and anisotropic homogeneous cosmologies has n
conducted.

In the present paper we derive the EYM equations for SU(n)-FRW and SU(n) locally rota-
tionally symmetric~LRS! cosmologies.

a!Electronic mail: darian@phys.ualberta.ca
b!Electronic mail: hp.kunzle.ualberta.ca
0022-2488/97/38(9)/4696/18/$10.00
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Section II is an exposition of a general but rather explicit construction of the Riemann
YM curvatures based on the theory of connections invariant under symmetry groups th
transitively on the base manifold. It turns out that the resulting purely algebraic Yang–
equations do not require any explicit choice of gauge. Such space–time homogeneous mo
not considered to be realistic physically, and we make no attempt in this paper to find any
solutions.

In Sec. III we derive the EYM equations for spatially homogeneous cosmological models
result is a system of ordinary differential equations, where again the YM gauge needs to be
only mildly, for example, by setting the temporal component of the potential to zero. The spa
homogeneous and isotropic models are discussed in Sec. IV. Although the space–time ge
is completely determined independently of the YM fields, the latter satisfy, in general,
complicated coupled system of evolution equations. We derive here a few general facts fo
trary gauge groups and some more explicit equations corresponding to different possib
fields for the gauge groups SU(n) and SO(n).

Finally, in Sec. V we consider, in a unified way, all LRS cosmological models with a SUn)
Yang–Mills source. In such models, after solving for the constraints, there are 2(n21) degrees of
freedom associated with the YM fields. Here we just concentrate on what we consider the si
YM connections that contain a ‘‘magnetic’’ part and derive the full evolution equations of
EYM system. An analysis of the solutions of this quite complicated system is beyond the sc
this paper. Even the system for homogeneous YM fields in two-dimensional flat space is kno
be nonintegrable. A dynamical system analysis of LRS Bianchi I models with SU~2!-YM fields
was given in Ref. 8.

II. EINSTEIN–YANG–MILLS EQUATIONS ON HOMOGENEOUS SPACE–TIME

Following the conventions of Ref. 9, we let (M ,g) be a connected pseudo-Riemannian ma
fold with its Levi-Civita connection, andK its isometry group. Its~left! action,

c̄:K3M→M :~a,x!°c̄ax, ~1!

is transitive and effective onM . Fixing a pointx0PM ~to be called theorigin!, the isotropy
subgroupK0 of K is defined by

K0 :5$aPKuc̄ax05x0%, ~2!

and all isotropy subgroups for different points ofM are conjugate. The manifoldM is diffeomor-
phic to the set of left cosets ofK with respect toK0 , M>K/K0 , and there is a one-to-on
correspondence betweenK-invariant pseudo-Riemannian metrics onM and adK0

-invariant nonde-
generate symmetric bilinear formsg̊ on the quotient spacek/k0 of the corresponding Lie algebra

We wish to describe Yang–Mills connections that have as many symmetries as the me
space–time and therefore assume that the full isometry group also acts by principal bundl
morphisms,

c̃:K3P→P, ~3!

on the principal bundleP that project onto isometries onM , thus satisfying

p+c̃5c̄+p and c̃a+Rg5Rg+c̃a , ;aPK, ;gPG, ~4!

wherep is the projection,G the structure~gauge! group, andR the right action ofP. If the gauge
potential is invariant under this action, i.e. if the connection formṽ on P is invariant,c̃a* ṽ5ṽ for
all aPK, then so is the curvature formṼ, c̃a* Ṽ5Ṽ. It follows that
J. Math. Phys., Vol. 38, No. 9, September 1997
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L X̃ṽ50 and L X̃Ṽ50, ;XPk, ~5!

whereX̃ is the infinitesimal generator of the actionc̃ on P corresponding toXPk.
Now it is known ~see, for example, Ref. 10! that equivalence classes of suchc̃-invariant

principal bundlesP over M are in one-to-one correspondence with conjugacy classes of ho
morphismsl:K0→G. Herel and c̃ are related by

c̃a~u0!5Rl~a!u0 , ;aPK0 , ~6!

whereu0 is any fixed element ofp21(x0).
Moreover, Wang’s theorem~Ref. 2; also see Ref. 9! states that~for fixed l! the set of

c̃-invariant connections onP is in one-to-one correspondence with the set of linear m
L:k→g that satisfy

L~X!5l~X! ~XPk0!,
~7!

L+adk5adl~k!+L ~kPK0!,

~wherel now also denotes the induced Lie algebra homomorphism!, and the invariant connection
and curvature onP are then given by

^X̃,ṽ&5̊L~X! ~XPk!, ~8!

^X̃∧Ỹ/Ṽ&5̊@L~X!,L~Y!#2L~@X,Y# ! ~X,YPk!. ~9!

The symbol5̊ indicates that these equations only hold at the fixed pointu0PP. The second
equation of~7! becomes infinitesimally,

L~@X,Y# !5@l~X!,L~Y!#, ;XPk0 , ;YPk. ~10!

For practical calculations we need to introduce a basis$eaua51•••m% of the Lie algebrak, such
that the corresponding generators$eaua51•••n% span the tangent spaceTx0

M at x0 while the

$eGuG5n11•••m% span the Lie subalgebrak0 . Thus, if the structure constantscab
l are introduced

by

@ea,eb#5cab
l el , ~11!

then

cGD
a 50. ~12!

The infinitesimal generatorsēa on M corresponding toea form a frame field in a neighborhood o
x0 , but this will, in general, only be global onM if M admits a simply transitive isometr
subgroup and is thus a group manifold. Let$ūa% be the local one-form field dual to$ēa%.
A pseudo-Riemannian metricg on M can now be written in the form

g5gabū
a

^ ūb, ~13!

where the componentsg̊ab :5gab(x0) satisfy

g̊r (acb)G
r 50, ~14!
J. Math. Phys., Vol. 38, No. 9, September 1997
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because of the adK0
invariance. The coefficients of the Levi-Civita connection and the curva

tensor with respect to this frame atx0 are then given by

Gbc
a 5̊ 1

2cbc
a 1garcr (b

s gc)s , ~15!

Rbcd
a 5̊Gcr

a Gdb
r 2Gdr

a Gcb
r 2ccd

r G rb
a 1cbS

a ccd
S . ~16!

From here on the symbol5̊ denotes equality atx0 only. Note that neither the components ofg, G,
nor R are constant onM , in general.

Equation~15! is easily derived from the equationL ēa
g50 stating that theēa are infinitesimal

isometries, and that assumptions that the linear connection is metric and symmetric. Equati~16!
is obtained most conveniently from Wang’s theorem applied to the bundle of pseudo-ortho
frames overM . Here, however, the principal bundle and the connection on it are already fixe
well as the action ofK on the bundle, which is the natural lift of the action onM . Thus~8! fixes
the Wang map together with the requirement of zero torsion and~9! then leads to~16! ~cf. Ref. 9,
Chap. X!. In a systematic study of EYM systems from a Kaluza–Klein perspective in Ref. 11
Riemann tensor for metrics on homogeneous spaces is also calculated in a very explicit f
terms of the structure constants of the symmetry group by another method, which lead
different but equivalent expression.

The gauge fields being invariant under a transitive symmetry group are also determin
their values at just one point ofM , which we take to be the originx0 . Their derivatives that occu
in the Yang–Mills equations can be computed using again Wang’s theorem, so that the
equations are reduced to a purely algebraic form. Lets be a local section ofP, thus satisfying
p+s5 idM , and introduce the local gauge potentialA and the gauge fieldF by

A5s* ṽ, F5s* Ṽ. ~17!

Then we have the following lemma.
Lemma 1: Under the above assumptions the Lie derivative of the gauge curvature F0

PM can be written in the form

L X̄F5̊2@L~X!,F#2@^X̄,A&,F#. ~18!

Proof: SinceX̄5p* +s* X̄5p* X̃, the vector fieldX̂5s* X̄2X̃ is vertical onP. Now L X̄F
5L X̄s* Ṽ5s* Ls

*
X̄Ṽ5s* (L X̃1X̂Ṽ)5s* LX̂Ṽ in view of ~5!. But

LX̂Ṽ5i X̂ dṼ1di X̂ Ṽ52i X̂@ṽ∧Ṽ#52@^X̂,ṽ&,Ṽ#1@ṽ∧i X̂Ṽ#52@^X̂,ṽ&,Ṽ#, ~19!

in view of the Bianchi identities,dṼ1@ṽ∧Ṽ#50, and the fact thatiZṼ50 for any vertical vector
field Z. Pulling back~19! to M by s, L X̄F5s* LX̂Ṽ52s* @^X̂,ṽ&,Ṽ#52@s* ^X̂,ṽ&,F#. But
s* ^X̂,ṽ&5s* is

*
X̄ṽ2s* ^X̃,ṽ&5i X̄s* ṽ2s* ^X̃,ṽ&5̊i X̄A2L(X) by ~8!. h

We choose now for the vector fieldX̄ the local space–time frame vectorsēa and let

A5Abūb, F5 1
2Fabū

a∧ ūb. ~20!

Then, introducing the~space–time! covariant derivativesFab/c5(L ēc
F)ab12Fr [aGb]c

r , together
with ~18!, we have

Fab/c5̊@Lc2Ac ,Fab#12Fr [aGb]c
r , ~21!

whereLc :5L(ec).
Since the gauge-covariant derivative ofF is defined by
J. Math. Phys., Vol. 38, No. 9, September 1997
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DaFbg5“aFbg1@Aa ,Fbg#, ~22!

we now find, interestingly, that the Yang–Mills equations,DlFla50, can be written in these
frame components without involving the gauge potentials,

@L r ,Fra#1Gar
l Fl

r1FalG rs
l grs5̊0. ~23!

In view of ~9!, the frame componentsFab of the Yang–Mills field are given by

Fab5̊@La ,Lb#2cab
r L r2cab

S lS . ~24!

Einstein’s equations are also easily formulated in these frame components,

Rab5kTab , ~25!

wherek58p ~Newton’s constant!, the velocity of light is set to unity,

Tab5Xab2 1
4Xr

rgab , Xab :5^Far ,Fb
r &, ~26!

and ^, & represents a bi-invariant scalar product on the gauge group Lie algebrag. The stress
energy tensorTab has zero trace, and the Ricci tensor components are obtained from~16!.

All these equations hold only at the originx0PM and they form a complicated algebra
system. For a given isometry groupK of space–time and a chosen basis ofk, the structure
constants can be considered fixed. The homomorphisml can be chosen arbitrarily and then fixe
Possible choices are found by considering the subgroups of the gauge groupG onto which there
are homomorphisms from the isotropy groupK0 , in particular, imbeddings ofK0 in G. This
classification is discussed~for semisimpleK0 and semisimpleG! in Refs. 12 and 13. After the
choice of a particular homomorphism, Eqs.~7! or, infinitesimally,~10!, i.e.

@La ,lG#1caG
r L r52caG

S lS , ~27!

must be solved forL that is then substituted into~23!, ~24! and into Einstein’s equations~25!.
In the ~most important! case of a reductive homogeneous space,caG

S 50 and~27! is a homo-
geneous linear system. ThenL can also be regarded as an intertwining operator between
linear representations of the isotropy groupK0 in the following way. We havek5k0% m as a
vector space and the mapL in ~7! is fully determined by the linear mapL̄:m→g that satisfies

L̄+f5c+L̄, ~28!

wheref:K03m→m:(a,X)°ada X andc:K03g→g:(a,Z)°adl(a) Z. ThenL̄ is an intertwin-
ing operator between these representations ofK0 , namely the adjoint representationf on m and
the representationc on g.

Also, the gab are arbitrary, subject to~14!. But not all choices need lead to nonisomet
space–times. One can reduce the number of free parameters by bringinggab into a canonical form
using basis transformations by automorphisms ofK that leave the subgroupK0 invariant.

III. EYM EQUATIONS IN SPATIALLY HOMOGENEOUS COSMOLOGICAL MODELS

Let (M ,g) now be ann11-dimensional space–time manifold with an isometry groupK
whose orbits aren-dimensional space-like hypersurfaces, so thatM5S3R with K acting transi-
tively on S and K0 the isotropy subgroup atx0PS. We choose to describe the metric by
coordinate timet and a frame field$ēa% of Killing vector fields onS,

g52dt^ dt1gabū
a

^ ūb. ~29!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Assume also that theēG (G5n11•••m) vanish at a fixed pointx0PS. It then follows that the
S t-coordinate components of the frame vectorsēa do not depend on the timet, so that

@] t ,ēa#50, ;a51•••m. ~30!

The connection and curvature components with respect to the local space–time frame fie$ē0

5] t ,ēa% can then be calculated in the standard fashion. If

Kab5 1
2ġab ~31!

is the extrinsic curvature of the hypersurfaces and an overdot denotes the time derivative, w
for the Ricci tensor components,

R005̊2grsK̇rs1Ks
rKr

s , ~32!

R0b5̊Kb
r crs

s 1Ks
rcrb

s , ~33!

Rab5̊K̇ab1Kr
rKab22KarKb

r 1R
S

ab . ~34!

HereR
S

is the Ricci tensor onS and is given, according to~16!, by

R
S

ab5̊Gba
r Gsr

s 2Gsa
r Gbr

s 2G ra
s csb

r 1caS
r crb

S . ~35!

The gab andKab depend ont, the cbg
a are constant~on $x0%3R!, and theGbc

a are still given by
~15!.

The calculation of the Yang–Mills equations for a gauge connection invariant under a
metry group with orbits on surfaces of constantt is analogous to the one on spherically symmet
static space–times and is done as first outlined in Ref. 10~see also Ref. 14!. Locally one can
introduce a gauge potentialA5A0 dt1A, whereA is the potential of a~t-dependent! invariant
connection onS andA0 is ag-valued scalar, invariant under Adl(K0) . In practice~unless there are
incompatible boundary conditions in the time evolution!, A0 can be gauged away. This is becau
a time-dependent gauge transformation to achieve such a result needs to satisfy an o
differential equation on the gauge group that can always be solved, at least locally int.
In terms of the space–time coframe$ū05dt,ūa%, we now write for the Yang–Mills field

F5Ea dt∧ ūa1 1
2Babū

a∧ ūb. ~36!

Then the Lie derivative ofF in the time direction is

L] t
F5Ėa dt∧ ūa1 1

2Ḃabū
a∧ ūb, ~37!

and those alongS are still given by~18!. Just as in Sect. II we can then compute the fra
components of the covariant derivates and find

Fab/c5̊@Lc2Ac ,Fab#12Br [aGb]c
r 12E[aKb]c , ~38!

F0b/c5̊@Lc2Ac ,Eb#2ErGbc
r 1BbrKc

r , ~39!

Fab/05̊Ḃab12Br [aKb]
r , ~40!
J. Math. Phys., Vol. 38, No. 9, September 1997
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F0b/05̊Ėb2ErKb
r . ~41!

The Yang–Mills equations thus become

@Er ,L r #2crs
r Es5̊0, ~42!

Ėa1@A0 ,Ea#1Kr
rEa22Ka

r Er2@Bar ,L r #1Ba
scrs

r 2 1
2garcpq

r Bpq5̊0, ~43!

where

Bab5̊@La ,Lb#2cab
r L r2cab

S lS , ~44!

Ea5̊] tLa1@A0 ,La#, ~45!

and we may choose the gauge such thatA050.
For the stress–energy tensor components we find~if we now restrict ton53!

T005
1
2~E21B2!, ~46!

T0a5ea
rs^Er ,Bs&, ~47!

Tab52^Ea ,Eb&2^Ba ,Bb&1 1
2~E21B2!gab , ~48!

whereBa :5 1
2ea

rsBrs , E2:5^Er ,Er&, and B2:5^Br ,Br&. Einstein’s equations~25! can now be
brought into the form

R
S

1~Kr
r !22KrsKrs5k~E21B2!, ~49!

Ka
r crs

s 1Ks
rcra

s 5kea
rs^Er ,Bs&, ~50!

K̇ab22KarKb
r 1Kr

rKab1R
S

ab5kTab . ~51!

If we choose the gauge such thatA050, then, after a basis of the symmetry Lie algebrak and the
homomorphisml: K0→G are chosen and a pointx0PS is fixed, we have as dynamical variable
the functionsgab(t), subject to~14!, and theg-valued functionsLa(t), subject to~27!. Equations
~49! and ~50! can be considered the Hamiltonian and the momentum constraints, respec
They restrict somewhat the choice of initial values for an initial time, but will afterward
preserved by the time evolution. This follows as a special case from the general analysis
Cauchy problem in EYM theory.

Only a time-independent basis transformation ink by automorphisms leavingk0 invariant can
now be used to possibly eliminate some variables. The algebraic problem of finding the po
homomorphismsl and solving forL is similar to the one mentioned in Sect. II, but a litt
simpler. The isotropy groupK0 is now a subgroup of SO~3!, and thus compact, so that th
homogeneous space is reductive. Moreover, on the three-dimensional space-like space sec
isotropy group can only be either SO~3! or U~1! ~or trivial!. We will consider in the following
sections some of these cases that can be handled without recourse to the more advanc
niques of the theory of Lie algebra representations.
J. Math. Phys., Vol. 38, No. 9, September 1997
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IV. ISOTROPIC COSMOLOGICAL MODELS

The isotropy subgroupK0 of a space–time transitive isometry group must be a subgrou
the Lorentz group and a classification of all homomorphisms of such a subgroup into any co
gauge groupG is a nontrivial algebraic problem. For a cosmological model with thr
dimensional homogeneous space sections the situation is much simpler, sinceK0 must be a
subgroup of SO~3!, which leaves only SO~3!, U~1!, or the trivial subgroup. In this section w
consider the ‘‘physically isotropic’’ models whereK0 is SO~3!. There are still many possible
conjugacy classes of homomorphismsl and a complete classification for arbitrary compact grou
G may not be known. We will here mainly consider the case whenG is either SU(n) or a real
orthogonal group.

When SO~3! is the isotropy group of an isometric action on the three-dimensional manifoS,

the (S,g
3
) must be of constant curvaturek and its isometry groupK is SO~4!, E(3), or SO~3,1!,

respectively, depending on whetherk is positive, zero, or negative. The Lie algebra has a b
$ei , f i% ( i 51•••3) with commutators

@ei ,ej #5ke i j
r f r , ~52!

@ei , f j #5e i j
rer , ~53!

@ f i , f j #5e i j
r f r , ~54!

where thef i span the Lie algebra of the isotropy group. We can choosek to be61 or 0 and the
e i j

r in this section now refers to the Euclidean metric inR3.
The geometry of these isotropic models is then already determined, namely the one

well-known Friedman–Robertson–Walker space–times. We have in the terminology of Se

gab5a~ t !dab , Kab5 1
2ȧdab , R

S

ab52kdab , ~55!

where the overbar was dropped and$u i% is the coframe dual to$ei%. In terms of theconformal
time t the metric is

g5R~t!2~2dt21dabu
a

^ ub!, ~56!

so that a5R2 and ḟ5df/dt5R21 df/dt5ḟ for any function f. The stress tensor, bein
isotropic, is of the form

Tab5pgab , ~57!

where p is the pressure and, since the source will be a zero-rest-mass Yang–Mills field
mass–energy density ism53p. Einstein’s equations are now equivalent to

ä522k and kp5 1
4 a22ȧ21ka, ~58!

or, in terms of the conformal time,

R91kR50 and kp5R24R821kR225~const!R24. ~59!

The complete time evolution of the geometry and thus the stress–energy tensor is therefore
obtained explicitly. It remains to formulate the equations for the Yang–Mills field. If we use a
the notationL i5L(ei) and nowl i5l( f i), then Eqs.~27! become
J. Math. Phys., Vol. 38, No. 9, September 1997
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@l i ,L j #5e i j
rL r . ~60!

They represent a system of linear equations for theL i once thel i , i.e., the homomorphism is
chosen. We have from~44! and ~45!,

Ei5L̇i5R21L i8 and Bi5R21~ 1
2e i

rs@L r ,Ls#2kl i !, ~61!

for the Yang–Mills fields~where the indices onL andl are raised and lowered with respect
d i j !, so that

E25R24d rs^L r8 ,Ls8&, ~62!

B25 1
2R

24~^@L r ,Ls#,@L r ,Ls#&24k^L r ,L r&12k2^l r ,l r&!. ~63!

The YM field equations become

L i922kL i2†@L i ,L r #,L
r
‡50, ~64!

@L r8 ,L r #50. ~65!

From ~49!, ~50!, and~57! we have, moreover,

e i
rs^l r ,Ls8&50, ~66!

^Ei ,Ej&1^Bi ,Bj&52pgi j . ~67!

To derive these expressions we have used, whenever convenient,~60! as well as the invariance o
the inner product̂,& on g.

We can go a little further before we need to specify the gauge groupG, but the specific
structure of the isotropy group and its action onS incorporated in Eqs.~60! are essential. Equa
tions ~60! are a system of linear equations for the~g-valued! L i . Let $L i

K ,K50,...,r 21% be a
basis of the solution space whereL i

05l i sincel i is always a solution and is nonzero except ifl
is the trivial homomorphism.

Lemma 2: The basis vectors$L i
K ,K50,...,r 21% of the solution space of Wang’s condition

(60) satisfy the following relations:

e i
rs@L r

K ,Ls
L#5gS

KLL i
S , ~68!

@L i
(K ,L j

L)#5 1
2 e i j

rgS
KLL r

S , ~69!

gM
KL5gM

LK , ~70!

LKL:5d rs@L r
K ,Ls

L#52LLK, ~71!

^L i
K ,L j

L&5aKLd i j , with aKL5aLK, ~72!

gS
KLaSM5aKSgS

LM , ~73!

gL
0K52dL

K and L0K50. ~74!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Proof: To prove~68! let Li andM j be solutions of~60! andNi5e i
rs@Lr ,Ms#. Then we can

show that@l i ,Nj #5e i j
r Nr by a simple calculation using the Jacobi identity and the identi

satisfied by the Levi-Civita symbole i jk . ThusNi is also a solution of~60!. ~However, the full
solution space need not be a Lie subalgebra ofg, in general.!

Equations~69! and ~71! follow immediately from the antisymmetry of the Lie bracket a
~70! is a consequence of either~68! or ~69!.

To prove~72! we let a i j
KL :5^L i

K ,L j
L& and use~60! and the invariance of the scalar produ

^, &,

e i j
r a rk

KL5^e i j
r L r

K ,Lk
L&5^@l i ,L j

K#,Lk
L&52^L j

K ,@l i ,Lk
L#&52^L j

K ,e ik
r L r

L&52e ik
r a j r

KL ,

from which the result easily follows.
Finally, ~73! follows directly from the invariance of the scalar product and~74! is an imme-

diate consequence of~60! sinceL i
05l i . h

The only time-dependent quantities are now the amplitudesFK(t) which satisfy the Yang–
Mills equations in the form

LKLFK8 FL50, ~75!

FK9 22kFK1
1

2
gK

LMgM
PQFLFPFQ50. ~76!

Here (LKL), defined in~71!, is an array of skewsymmetric matrices one for each dimension o
Lie algebrag. From ~61! we have

Ei5R21FK8 LLi
K and Bi5R21S 1

2
gM

KLFKFL2kdM
0 DL i

M , ~77!

and, in view of~72!, Einstein’s equations~66! and~67! reduce to~59!, and the following expres-
sion for the mass–energy density,

m5 1
2~E21B2!, ~78!

where now

E253R24aKLFK8 FL8 , ~79!

B253R24S k2a002ka0MgM
KLFKFL1

1

4
gR

KLaRSgS
PQFKFLFPFQD . ~80!

~Using the relations of Lemma 2 it can be verified thatmR4 is constant, as it should be.! The
quantities aKL, gM

KL , and LKL depend only on the Lie algebrag and the homomorphism
l:su(2)→g. Hence, to find all possible isotropic EYM equations, one has to find allsu~2!
subalgebras ofg ~up to an inner isomorphism!, thus choosing the homomorphisml @see Ref. 13
and then solve the equation~28! for the intertwining operatorL̄5(L i

K)#. This can be done in a
systematic way using a Cartan–Weyl basis ofg by the methods given in Ref. 12. Here we w
only consider those examples that can be dealt with in a more elementary way, without inv
the theory of Lie algebra root systems.

We know that all ~connected! compact gauge groups can be imbedded as subgroup
GL(n,R) or GL(n,C) @in fact, in SO(n) for somen#. Moreover, all finite-dimensional comple
~real! representations of SU~2! are equivalent to unitary~real orthogonal! ones and decompos
orthogonally into irreducible parts. Thus, at least for the unitary and the real orthogonal grou
J. Math. Phys., Vol. 38, No. 9, September 1997
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can determine the possible homomorphisms directly from the well-known representation t
If, for example,l̃ is a n3n-unitary representation ofK0 , i.e., l̃:a°Ua , ;aPK0 , whereUa is
a unitary matrix, thenl:a°(detUa)

21/nUa is a homomorphism into SU(n). Moreover, it is easily
seen that equivalent representations define conjugate homomorphisms and that, in fact,conjugacy
classes of homomorphisms of K0 into SU(n) are in one-to-one correspondence with equivalen
classes of n-dimensional unitary representations of K0 . Similarly, any realn-dimensional or-
thogonal representation ofK0 immediately defines a homomorphism into SO(n).

If now K05SU(2)15 then anyn-dimensional unitary~or real orthogonal! representation is a
direct sum of irreducible unitary~real orthogonal! representations, i.e., any homomorphis
l:SU~2!→SU(n) is conjugate to one that maps into block matrices,

l~a!5S Dk1
~a!

�

Dkr
~a!

D , ~81!

where eachDki
is an irreducibleki-dimensional representation and wherek11•••1kr5n. As is

well known, the Lie algebra representation corresponding to ann-dimensional irreducible repre
sentation can be written as follows. If$t1 ,t2 ,t3% is the standard basis ofsu~2! in terms of
anti-Hermitian matrices andlk5l(tk) are the images insu(n), then the latter can be represent
by the matrices

~l1! lm5Am~n2m!d l ,m11 , l25l1
H , ~82!

l152
i

2
~l11l2!, l252

1

2
~l12l2!, ~l3! lm52 i S n11

2
2mD d lm . ~83!

Consider first a homomorphism class from SU~2! to SU(n), that arises from an irreducible unitar
representation inCn. Then thel i in ~60! can be chosen as the matrices~83! and the system~60!
can be explicitly solved~this also follows from more general results of representation theory! for
the L j that can now be taken to be (n3n) skew-Hermitian matrices. It follows that

L i5Fl i , ~84!

i.e., the solution space is one dimensional. In this case the YM potential is thus determine
single functionF~t!. For a simple Lie algebra likesu(n) the invariant product̂, & must be a
multiple of the Killing form,

^X,Y&52cnk~X,Y!, ~85!

for some constantcn.0, which we will choose to be 1. It follows from~68! and ~69! that g0
00

52 anda005n2(n221)/6, so that the Yang–Mills equations become

F922~k2F2!F50, ~86!

whence

dF

Ac22~F22k!2
5dt, ~87!

where the constantc254mR4/„n2(n221)…. ThusF~t! is periodic in the cosmological timet and
can be expressed in terms of an inverse elliptic integral. It is easily seen that the ‘‘electric
J. Math. Phys., Vol. 38, No. 9, September 1997
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‘‘magnetic’’ contributions to the energy densitym oscillate in the timet. These equations@for
G5SU(2)# have previously been derived and analyzed by Gal’tsov and Volkov.6

If the homomorphism class is not induced by an irreducible representation the gauge fie
be more complicated. However, since the evolution of the geometry of space–time is a
determined, only the evolution of the gauge fields can be affected. Table I shows the dime
d of the solution space of~60! for the some homomorphismsl:su(2)→su(n). Here 1% 2, for
example, means thatl is obtained from a representation inC3 that decomposes into a~trivial!
one-dimensional one and an irreducible two-dimensional one. In these cases, according to~76!, the
YM field depends ond independent amplitudesFK(t) that each satisfy a second-order equatio
However, at least forn<6, thec constraint conditions~75! ~which are not linearly independent, i
general! simply imply that many of theFK are proportional to each other, so that the remain
numberneq of second-order equations that must be solved is much smaller.

To give one example, for an SU~5! theory with the homomorphisml corresponding to a
representation of the type 1% 1% 3, we find the Yang–Mills equations,

F912F~F213C22k!50, ~88!

C912C~3F21C22k!50, ~89!

and

E2520R24~F821C82! and B2520R24@~F21C22k!214F2C2#. ~90!

The contribution of the electric and the magnetic part to the mass–energy density changes
similarly as in the ‘‘irreducible’’ case, but the gauge fields now ‘‘rotate’’ in the Lie algebra
more dimensions.

TABLE I. This table gives, for different homomorphisms,l:su(2)→su(n) the numberd of dimensions of the solution
space of~60!, the numberc of nonzero constraint conditions~75!, and the numberneq of independent amplitudes tha
satisfy second-order equations in time.~Trivial homomorphisms and those arising from irreducible representations are
included.!

n l d c neq

3 1% 2 1 0 1

4 1% 1% 2 1 0 1
1% 3 3 1 2
2% 2 4 3 2

5 1% 1% 1% 2 1 0 1
1% 1% 3 5 6 2

1% 4 1 0 1
1% 2% 2 4 4 2

2% 3 2 0 2

6 1% 1% 1% 1% 2 1 0 1
1% 1% 1% 3 7 11 2

1% 1% 4 1 0 1
1% 1% 2% 2 4 4 2

1% 2% 3 4 3 3
1% 5 1 0 1

2% 2% 2 9 11 2
2% 4 4 4 3
3% 3 4 5 2
J. Math. Phys., Vol. 38, No. 9, September 1997
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If the gauge group is SO(n) we can similarly classify thel by considering all
n-dimensional real orthogonal representations ofsu~2!. These decompose into irreducible bloc
of dimensions 2k11 or 4k for integerk, but not 2k12 ~see, e.g., Ref. 16!. It does not seem to
be simple to write down formulas for these representations for arbitraryn as in~82! and~83!. But
there exists an algorithm to construct them explicitly. First note that an irreducible com
representation ofsu~2! leaves invariant a bilinear formb on Cn. For the choice ofl in ~82! and
~83!, we find thatbkl5(21)kd l ,n112k , which is symmetric for oddn and skew for evenn.

Thus, ifn is odd thenl is of real type, i.e., the representation is unitarily equivalent to one
real orthogonal matrices. In fact,

l̃k5UHlkU, where UHU5 id and UTbU5 id ~91!

are the generators of the orthogonal representation. The matricesU can be easily computed b
diagonalizingb by congruence. For al:su(2)→so(2k11) that corresponds to an irreducib
representation, it now follows easily from the complex case that the solutions of~60! are again of
the form ~84! and the single time-dependent amplitudeF satisfies~86!. For n54k the explicit
irreducible representations are obtained via the Lie algebra homomorphism,

r:gl~ l ,C!→gl~2l ,R!:A5A11 iA2°Ã5S A1 2A2

A2 A1
D , ~92!

which mapssu( l ) into so(2l ). For l 52k the image of the matriceslk generate an irreducible
4k-dimensional real orthogonal representation ofsu~2!. Again, it can be verified explicitly tha
~60! has only the solutions~84! and that the only amplitude satisfies~86!.

The remaining equivalence classes of homomorphismsl into so(n) can now be obtained from
reducible orthogonal representations in the same way as those forsu(n). Some examples are
tabulated in Table II. The corresponding equations and expressions forE2 andB2 are very similar
to ~4! and ~90!.

V. LOCALLY ROTATIONALLY SYMMETRIC COSMOLOGICAL MODELS

Spatially homogeneous cosmological models withK05U(1) have been extensively studie
and are known as locally rotationally symmetric~LRS! models. Our construction of four
dimensional isometry groups of LRS models is along the lines with Ref. 17. It is known th
K0 is compact, then there exists a reductive decomposition ofk ~i.e., there is a subspacem such
thatk5k01m and@k0 ,m#,m andk0ùm50!. The choice of such a reductive decomposition is n
unique. As it will be seen shortly, a judicious choice of a reductive decomposition greatly
plifies the EYM equations. It is interesting to note that for all Bianchi cosmologies except Bia
III, there is a reductive decomposition in whichm is a Lie subalgebra@such a decomposition fo
BIII would require SU~1,1! to be solvable, which contradicts the simplicity of SU~1,1!#. In a
suitable basise1 ,...,e4 , such thate1 ,e2 ,e3 spanm ande4 spank0 ,

2c14
2 5c24

1 51, c34
a 50 ~a51,2,3!. ~93!

The Ad(K0) invariance of the metric expressed via~14! then restricts the space metric to the for
diag(f2,f2,f2s2), where f and s are functions oft. Given an invariant basis on a homogeneo
space, one can start from this metric and, after integrating the Killing equations, find out w
spatially homogeneous space–times admit the action of a four-dimensional isotropy grou~cf.
Table III and Ref. 18!. Krameret al.17 have classified all such space–times with two integersl and
k @Bianchi V ~BV! does not fall into this category and is treated separately#. All homogeneous
spaces that have the same four-dimensional isometry group, belong to group manifolds~Bianchi
J. Math. Phys., Vol. 38, No. 9, September 1997
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cosmologies!. Such group manifolds correspond to different three-dimensional subgroups o
isometry group, which act simply transitively on the hypersurfaces of homogeneity. The Kr
et al. classification~Sec. 11.1! is based on the metric

g5 f 2@2C22~dx21dy2!1 1
4 s2 dz22 ls2C21~y dx2x dy!dz1 l 2s2C22~y dx2x dy!2# ,

~94!

whereC:5111/2k(x21y2), or, for Bianchi V,

g5 f 2@e2z~dy21dx2!1s2 dz2#.

TABLE II. Values d, c, and neq for the equivalence classes of homomorphismsl:su(2)→so(n) for small n. Trivial
homomorphisms and those arising from irreducible representations are not included. The question marks indica
where the constraint equations do not simply imply that some amplitudes are proportional to others.

n l d c neq

4 1% 3 2 0 2

5 1% 1% 3 3 1 2
1% 4 1 0 1

6 1% 1% 1% 3 4 3 2
1% 1% 4 1 0 1

1% 5 1 0 1
3% 3 3 1 2

7 1% 1% 1% 1% 3 5 6 2
1% 1% 1% 4 1 0 1

1% 1% 5 1 0 1
1% 3% 3 5 1 ?

3% 4 2 0 2

8 1% 1% 1% 1% 1% 3 6 10 2
1% 1% 1% 1% 4 1 0 1

1% 1% 1% 5 1 0 1
1% 1% 3% 3 7 2 ?

1% 7 1 0 1
3% 5 3 0 3
4% 4 6 17 2

TABLE III. The three homogeneous cosmologies with a four-dimensional isometry group. WH refers to the W
Heisenberg group.

Class Homogeneous cosmology Isometry group l k

A BI E(2)^ U(1) 0 0
A BVII 0

B BV BVII h^ U(1) ••• •••
B BVII h

B BIII SU~1,1!^U~1! 0 21
A BVIII 1 21
A BII WH^ U(1) 1 0
A BIX SU~2!^U~1! 1 1
••• Kantowski–Sachs SU(2)̂R 0 1
J. Math. Phys., Vol. 38, No. 9, September 1997
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These metrics all have~generically! four-dimensional isometry groups. We must now selec
frame field of Killing vectors in such a way as to lete4 generate the isotropy group and th
structure constants to satisfy~93!. The following choice achieves this:

e152
k

&

xy]y2
1

&

~11K !]x1& ly]z ~]x!,

e25
k

&

xy]x1
1

&

~12K !]y1& lx]z ~]y!,

e3522]z ~2x]x2y]y1]z!,

e45x]y2y]x ~y]x2x]y!,

~95!

whereK:5(k/2)(x22y2) and the entries of theright columnare the Killing vector fields of BV.
The above Killing vector fields and nonvanishing structure constants,

c12
3 5 l , c12

4 5k, or c13
1 5c23

2 521 for BV, ~96!

determine the isometry group, embeddings of the isotropy group in the isometry group
conjugacy class, and identify the three-dimensional homogeneous spaces that admit an ac
four-dimensional isometry group. HereS is simply connected. It is known that the number
degrees of freedom in minisuperspace models depends on the choice of topology.19

Our aim is to construct the invariant SU(n)-YM connections for homogeneous spaces lis
in the above table. In doing so, we have to find all the conjugacy classes of homomorp
l:U~1!→SU(n).

Such conjugacy classes of homomorphisms are well understood for spherically sym
solutions of the EYM equations~cf. Ref. 14!. These classes of homomorphisms are basically
the same form as~81!. However, since the irreducible representations of U~1! are one dimensional
Dk have only one entry. Therefore if U(1)5$zPC:uzu51%, then

l:z°diag~zj 1,...,zj n! S (
i 51

n

j i50, j i5an integerD , ~97!

is clearly a homomorphism of U~1! into SU(n). The set of integersj p(p51,...,n) such thatj p

> j q for p,q, yields all conjugacy classes of homomorphismsl:U~1!→SU(n). DenotingD :
5( i /2)diag(j1,...,jn) we have

L@e4 ,ei #5@l~e4!,L i #5@D ,L i #⇒c4i
r L r5@D ,L i #, ~98!

in which L i are traceless anti-Hermitian matrices as in Sec. IV. These equations and~93! give

L252@D ,L1#, L15@D ,L2#, @D ,L3#50, ~99!

which in turn yield

~L l !pq@42~ j p2 j q!2#50, l 5~1,2!. ~100!

The solution to the above equations is

L15 i /2~L12L2!, L2521/2~L11L2!, L152~L2!H, ~101!
J. Math. Phys., Vol. 38, No. 9, September 1997
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where j p> j q for p,q, and thereforeL1(L2) is a strictly upper~lower! triangular matrix.
Moreover, (L1)pqÞ0 only if j p5 j q12. The general solution of the above equations is in the r
space corresponding toD, @the Cartan subalgebra ofsu(n)# and, in principle, could be obtaine
for any compact group. However, such a general treatment is out of the scope of the presen
~cf. Ref. 20!. Some interesting special cases to consider are the following.

~a! j p50, ;pP$1,...,n%, ~trivial homomorphism! requiresL15L250 andL3 is completely
undetermined.

~b! If u j p2 j quÞ2;p,qP$1,...,n% then L15L250 and L3 is a diagonal traceless ant
Hermitian matrix. In this case the gauge group reduces to its maximal torus@i.e.,
U~1!^•••^ U~1!,SU(n)#.

~c! If j p5 j p1112, ;pP$1,...,n21%⇒D5( i /2)diag(n21,n23,...,2n11). Then ~99! and
~100!, respectively, imply thatL3 is an anti-Hermitian traceless diagonal matrix and (L1)p,p11

52(L2
H )p11,p are the only nonvanishing entries ofL6 .

In ~b! the EYM equations for SU~2!-YM fields reduce to that of axially symmetric electro
magnetic fields and one can show that~a! and ~b! are gauge equivalent.8 We consider~c! the
simplest non-Abelian YM field in which the entries ofD correspond to the magnetic quantu
numbers in then-dimensional unitary representation of SU~2!. Up to a gauge transformation, th
representation yields the only possible non-Abelian connection for SU~2!-YM fields. Therefore we
derive the EYM equations for this particular example, starting with

~L1!p,p115vpeigp, pP$1,...,n21%,

L35 i diag~a1 ,...,ap2ap21 ,...,2an21!. ~102!

The YM constraints~42! in terms of these variables are as follows:

vp
2ġp12ȧps22H0

1J 50. ~103!

Terms in the upper~lower! part of the braces refer to the ‘‘general’’~BV! case. The YM dynami-
cal equations~43! consist of

v̈p1~ f 21 ḟ 1s21ṡ !v̇p1 f 22vpS s22ãp
21

1

2
W̃p2 f 2ġp

22 H k
s22J D50,

g̈p1~2v̇pvp
211 f 21 ḟ 1s21ṡ !ġp12~ f s!22ãpH0

1J 50,

äp1~ f 21 ḟ 2s21ṡ !ȧp1 f 22ãpvp
22

1

2
ls2f 22@Wp1p~n2p!k#H1

0J 50, ~104!

and Einstein equations~49!–~51! are, respectively,

3 f 22 ḟ 212 f 21 ḟ s21ṡ1 f 22H k2 1
4 l 2s2

23s22 J 5k f 22~T11T2!,

f̈ 12 f 21 ḟ 21 ḟ s21ṡ1 f 21H k2 1
2 l 2s2

22s22 J 5k f 21T1 ,

s̈13 f 21 ḟ ṡ2 f 22~ks2 l 2s3!H1
0J 5ks f 22~T222T1!, ~105!
J. Math. Phys., Vol. 38, No. 9, September 1997
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with the only nontrivial momentum constraint given by

s21ṡ H0
1J 5kn f22S (

p
ãpġpvp

22(
p

vpv̇pH0
1J D . ~106!

Here we have used the abbreviations

ãp :52ap2ap212ap11 ,

Wp :5vp
22 H2lap

0 J , ~107!

W̃p :52Wp2Wp212Wp111 H4k
0 J ,

and

T1 :5nFs22(
p

a8 pȧp1
1

4
f 22S (

p
W̃pWp1S 1

3Dn~n221!k2H1
0J D G ,

T2 :5n(
p

F v̇p
21vp

2ġp
21vp

2~ f s!22S ãp
21 H0

1J D G , ~108!

and it is understood that all subscripted quantities are zero when the index is outside the
$1,...,n21%.

At this point, we do not intend to give a complete analysis of the above system of differe
equations. However, a few points are in order. For the general case, ifvpÞ0 ;p, ġp50 and the
first equation in~105!, the Hamiltonian constraint, is the only constraint of the system.
dynamical evolution is expected to preserve the constraintḢ50. Indeed, as a check on th
consistency of the above equations, one can show, for example, forG5SU(2), that Ḣ5

2(6 ḟ / f 12ṡ/s)H. One observes that there are 2(n21) degrees of freedom associated with Y
fields. Such an explicit integration is very complicated for the Bianchi V case, but as mention
the end of Sec. III we would expect the constraints to be conserved in view of the ge
consistency of the Cauchy problem.

The above system is the set of SU(n)-EYM equations for the particular homomorphism fro
U~1! to SU(n) chosen above for all spatially homogeneous cosmologies with isotropy group~1!.
These equations are mildly gauge dependent~A0 was set to 0!. Nevertheless, the gauge-invaria
quantities like the various components of the energy–momentum tensor, are easily expres
terms ofap , gp , and vp . We plan to pursue a more detailed analysis of these equation
SU~2!-YM fields.
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Null surfaces and the Bach equations
Mirta Iriondo,a) Carlos N. Kozameh,b) and Alejandra Rojasc)

FaMAF, Universidad Nacional de Co´rdoba, 5000 Co´rdoba, Argentina

~Received 31 December 1996; accepted for publication 21 April 1997!

It is shown that the integrability conditions that arise in the null surface formulation
~NSF! of general relativity~GR! impose a field equation on the local null surfaces
which is equivalent to the vanishing of the Bach tensor. This field equation is
written explicitly to second order in a perturbation expansion. The field equation is
further simplified if asymptotic flatness is imposed on the underlying space–time.
The resulting equation determines the global null surfaces of asymptotically flat,
radiative space–times. It is also shown that the source term of this equation is
constructed from the free Bondi data atI . Possible generalizations of this field
equation are analyzed. In particular we include other field equations for surfaces
that have already appeared in the literature which coincide with ours at a linear
level. We find that the other equations do not yield null surfaces for GR. ©1997
American Institute of Physics.@S0022-2488~97!01008-6#

I. INTRODUCTION

Recently, a new formulation of general relativity~GR! has been developed where, instead
a metricgab(x) on the space–time, the basic variables are two functions defined on the bun
null directions. Denoting byxa the points of the space–time and by (z,z̄) the parameters on th
sphere of null directions, the basic variables in the so-called null surface formulation~NSF! of GR
are

~i! a function Z(xa,z,z̄) such that, for fixed values of (z,z̄), its level surfaces, i.e.,Z
5 const, are characteristic surfaces on the space–time, and

~ii ! another scalar functionV that, for fixed (z,z̄), plays the role the conformal factor, i.e
fixes the scale to measure distances on the space–time.

It follows from the above properties thatZ yields the conformal structure of the space–tim
and thus determines nine out of the ten components of the metricgab(x) whereasV fixes the last
component. The scalarV, however, plays a more important role in the dynamics of the theo

The variablesZ and V satisfy three differential equations with the following geometric
interpretation:

~1! A complex first-order differential equation forV andZ given schematically as
ZV5W@Z#V,

with Z ~essentially]/]z! the covariant derivative on the sphere of null directions1,2 andW a
functional that only depends onZ.

~2! A complex differential equation forZ involving derivatives with respect to (xa,z,z̄).
~3! A real equation forV andZ that adopts the form

]1
2V5Q@Z#V,

with ]1 a derivative along a null geodesic on theZ5const hypersurface andQ another
functional that only depends onZ.

a!Electronic mail address: mirta@fis.uncor.edu
b!Electronic mail address: kozameh@fis.uncor.edu
c!Electronic mail address: tere@fis.uncor.edu
0022-2488/97/38(9)/4714/16/$10.00
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The first two equations must be satisfied byZ andV if they are to yield a conformal metric fo
the space–time. These equations, calledmetricity conditions(mI) and (mII ) are purely kinemati-
cal, since they are valid for any~conformal! metric with Lorentzian signature. The last equatio
denoted by~E!, is equivalent to the vacuum Einstein equations for a lorentzian metric.

If we interpret ~E! as an equation forV, then the full dynamics can be thought of as
ordinary differential equation~ODE! for a single scalar, rather than the usual ten equations f
metric tensor. The reader should be reminded, however, that the cut functionZ that enters in~E!
cannot be arbitrary since it must satisfy the metricity conditions. In fact, the three equa
(mI), (mII ), and~E! must be solved simultaneously forV andZ to obtain a consistent solution t
the dynamical problem.

In this paper we reexamine the field equations of the NSF and show that the dynamics
conformal structure can be written as a single equation for the functionZ.

We first observe that the scalarV satisfies two differential equations,~E! and (mI), where two
functionals ofZ, Q andW, play the role of source terms. Thus, for a nontrivial solution to ex
integrability conditions must be imposed onQ andW.

We then study the integrability conditions of those equations and show that they imp
differential equation on the local null surfaces of the NSF. The resulting equation, togethe
the metricity condition (mII ), turns out to be equivalent tothe Bach equationsfor a conformal
metric and nicely tie this formalism with previous known results.

We also observe that the new equation, which will also be called Bach equation, and (mII ) are
equations only forZ, i.e., they do not include the conformal factor. Thus, they describe
dynamics of the conformal structure of the space–time.

By imposing globality conditions on the Bach equation, we obtain an integrodiffere
equation that determines the null surfaces of asymptotically flat, radiative space–times.
equation the Bondi free data plays the role of a source term and its solutions have a dual m
They represent past null cones from points atI and two-surfaces atI representing the intersec
tion of null cones from interior points with the null boundary. These two-surfaces are called
cone cuts of null infinity or simply lc cuts.

Since the field equations that determine the lc cuts are so complicated one is tempted to
it is possible to generalize our formalism, keeping the kinematical arena provided byI but
replacing the Bach equation with a simpler equation for the two-surfaces. It is clear tha
surfaces satisfying the new equations would not yield conformal vacuum metrics but if the
the other hand, satisfy (mII ) they would be characteristic surfaces of an underlying metric of
space–time with a given dynamical evolution due to an effective stress-energy tensor. In p
lar, we examine two possible generalizations of the field equations for the cuts and show tha
solutions are not null surfaces of any metric since equation (mII ) is not satisfied. The lesson bein
learned here is that although the metricity conditions are kinematical in nature they play a
important role when trying to describe GR via these nonlocal variables.

This paper is structured as follows. A brief review of the NSF is presented in Sec. II wh
the ‘‘standard’’ derivation of the Bach equations is given in Sec. III. The integrability condit
of the NSF equations and a second-order perturbation procedure together with the field eq
for the light cone cuts are presented in Sec. IV. Possible generalizations of the light cone eq
are given in Sec. V. All these alternative models fail to satisfy the metricity conditions. The
results are summarized and possible applications are discussed in the Conclusions. Sever
iary calculations are presented in the Appendices.

II. A BRIEF REVIEW OF NSF

Since a thorough description of the NSF is already given in the literature,3–5 we will summa-
rize its main results without any derivations and defer the inquisitive reader to the referenc

The formalism first introduces a functionZ(xa,z,z̄) with xa points on the space–time an
(z,z̄) parameters on the sphere such that, for each (z,z̄), Z5const yields a family of surfaces o
J. Math. Phys., Vol. 38, No. 9, September 1997
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the manifold. We ask ifZ5const can be thought of as null surfaces of a conformal metric
general the answer is no since the equation

ĝab~x!Z,a~xc,z,z̄ !Z,b~xc,z,z̄ !50 ~1!

is an infinite set of algebraic equations, one for each value of (z,z̄), for the nine coefficients of the
conformal metricĝab. Therefore, we ask what are the conditions to be imposed onZ such that a
nontrivial ĝab(x) with Lorentzian signature exists. Two types of equations arise in the searc
these conditions; the first type yields the components of the conformal metric, while the s
type identifies necessary conditions to be satisfied byZ @i.e., the metricity conditions (mI) and
(mII )#. The conditions and metric components can be better expressed if we introduce
coordinate system given by a set of four-scalars associated withZ, namely

u i~xa,z,z̄ !5~u0,u1,u2,u1!5~Z,ZZ,ZpZ,ZZpZ!5~u,w,w̄,R!. ~2!

We will refer to theu i as theintrinsic coordinate system associated with the parametrized fam
of characteristic surfaces, labeled by the parameters (z,z̄).

Introducing its associated one-form basisua
i 5]au i and dual vectors basisu i

a such that
u i

au a
j 5d i

j , we find that the conditions can be written in terms of two scalars

L[Z2Z, V2[gabZ,aZZpZ,b ,

as

~mI ! ZV5 1
2WV,

~mII ! ]2L5 1
2Z]1L2„W1Z~ ln q!…]1L,

with q5(12]1L]1L̄), ] i[]/]u i , and

W~12 1
4]1L]1L̄!5]1L1 1

2Zp]1L2 1
2Z~ ln q!2 1

4]1LZp~ ln q!1 1
2]1L~L̄,21 1

2Z]̄1L!.

In the above equations, one is implicitly assuming that the scalarsL andV are functions of
(u,w,w̄,R,z,z̄), i.e., one assumes thatu i is a well-behaved coordinate system, that the relati
ship ~2! can be inverted to writexa as a function ofu i , and that thexa so obtained has bee
inserted in the rhs of the defining equations forL andV.

It can also be shown that as a consequence of the metricity conditions (mI) and (mII ) one
constructs a metricĝab(x), i.e., independent of the parameters (z,z̄), as a functional ofL andV,
~cf. Ref. 4!. The explicit form of the metric is given as

ĝab5ĝi j ~L,L̄!u i
au j

b ,

whereĝi j 5V2gi j and

~gi j !5S 0 0 0 1

0 2]1L 21 g11

0 21 2]1L̄ g12

1 g11 g12 g11

D , ~3!

with g1152 1
2(Zp]1L1]1LW̄)5g12 and g115222 1

2Zp
2]1L1Z]2L̄1O (L2).
J. Math. Phys., Vol. 38, No. 9, September 1997
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So far the description of null surface theory has been completely kinematical. Our var
~V andL! must satisfy the metricity conditions to define a Lorentzian metric. We now addres
problem of finding a metric that in addition satisfies the trace-free vacuum Einstein equation
ĝab satisfies

R̂ab2 1
4R̂ĝab50. ~4!

Contracting this equation withu1
au1

b and using the explicit form of the metric in this coordina
system yields

~E! ]1
2V5QV,

where

Q52
1

q
]1

2L̄]1
2L2

3

8q2 ~]1q!21
1

4q
]1

2q.

Thus this equation together with the metricity conditions (mI) and (mII ) build up a system of
differential equations equivalent to the vacuum Einstein equations.

It should be mentioned that theZ operator used above adopts a different form when written
theu i coordinate system. We recall that when applied on a functionf (xa,z,z̄), Z is the covariant
derivative with respect toz. However, if we writexa5xa(u i ,z,z̄), then theZ operator adopts the
form

Z5Z81w]01L]11R]21~ZpL22w!]1 , ~5!

whereZ8 is the partial covariant derivative, i.e., keeping theu i fixed, and] i[]/]u i .
It follows from this equation that the directional derivatives] i do not commute with theZ or

Zp operators. We now write the commutation relations~and corresponding notation! between these
derivatives since they will be used throughout this work.

Using ~5! and denoting byd i5@] i , Z# and d̄ i5@] i , Zp# ~cf. Ref. 4! we obtain

d15]21]1L]11 f 1]1 , d25]2L]11 f 2]1 ,
~6!

d15]02S 2

q
2 f 1D ]11]1L]1 , d05 f 0]11]0L]1 ,

where

f 15
1

q
„]1L1Zp]1L1]2L]1L̄1~]1L]1L̄1Z]1L̄1]2L̄!]1L…,

f 15
1

q
„Zp]1L1]2L]1L̄1~]1L]1L̄1Z]1L̄1]0L̄!]1L…,

~7!

f 25
1

q
„22]1L1]0L1Zp]2L1]2L]2L̄1~]2L]1L̄1Z]2L̄…]1L…,

f 05
1

q
„Zp]0L1]2L]0L̄1~]0L]1L̄1Z]0L̄!]1L….

For later use we also compute
J. Math. Phys., Vol. 38, No. 9, September 1997
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@]1
n , Z#5 (

i 50

n21

]1
n212 i@]1 , Z#]1

i for nPN ~8!

and

h1 :5@]1 , d1#5]1f 1]11]1
2L]1 , ~9!

h2 :5@]1 , h1#5]1
2f 1]11]1

3L]1 ~10!

h3 :5@]1 , h2#5]1
3f 1]11]1

4L]1 . ~11!

III. THE BACH EQUATION

The Bach tensor6

Bab[¹m¹nCmabn1
1
2R

mnCmabn

is a trace-free, symmetric, two-index tensor constructed from the metric of the space–time
particular useful feature: under rescaling of the metric it transforms with a conformal weigh
we will see below, the vanishing of the Bach tensor~a conformally invariant statement! arises as
a necessary condition for a space–time to be conformal to an Einstein space–time.7

Consider the conformal transformation

gab5V2ĝab or equivalently ĝab5V2gab,

and assume thatĝab satisfies the trace free vacuum field equations~4!. In terms ofV andgab these
equations read

¹a¹bV2 1
4DVgab1 1

2V~Rab2 1
4Rgab!50, ~12!

whereD5¹b¹b is the 4-dim Laplacian.
We now ask what conditions should be imposed ongab so that a solution of~12! exists. If we

consider Eq.~12! as a second-order differential equation forV, it is then clear that, for a nontrivia
solution to exist, integrability conditions must be imposed on the metricgab . Taking the curl of
~12! and using the Bianchi identities yields

V¹dCabcd2¹dVCabcd50. ~13!

Equation~13! is a new condition imposed onV. Thus, we have to consider a new syste
consisting of Eqs.~12! and ~13!.

In order to find the integrability conditions of this system, we take¹a to Eq. ~13!:

¹aV¹dCabcd2~¹a¹dV!Cabcd1V¹a¹dCabcd2¹dV¹aCabcd50. ~14!

On the other side, assuming that Eq.~13! is satisfied and using the symmetries of the Weyl tens
we obtain

V¹aV¹dCabcd5¹aV¹dVCabcd5V¹dV¹aCabcd.

This implies that

¹aV¹dCabcd5¹dV¹aCabcd.

Hence, replacing the last expression in~14! and using~12!, we have
J. Math. Phys., Vol. 38, No. 9, September 1997
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Bbc[¹a¹dCabcd1
1
2R

adCabcd50.

Thus, the vanishing of the Bach tensor is a necessary condition for a metric to be confo
related to an Einstein metric.

A brief review of the above procedure shows that we have taken the following identity

¹a~¹ [a~¹b]¹cV2 1
4gb]cDV!2 1

2Cabc
d¹dV!50, ~15!

and used the field equations~12! and~13! to get rid of first and second derivatives ofV yielding

VBbc50. ~16!

We will call the lhs of Eq.~15! the generating integrability conditionof the conformal
Einstein equations. In general, given a PDE for a field we define itsgenerating integrability
conditionas the equation constructed with the minimum number of commutators such that
the field equations are used, all derivatives of the field disappear. In particular, substitutin
~12! and ~13! in Eq. ~15! yields the integrability condition~16!.

It is worth mentioning that the vanishing of the Bach tensor is a necessary but in gener
a sufficient condition. A second integrability condition arises from considering existence of
tions to~13!.7 It can be shown, however, that for asymptotically flat space–times the vanishi
the Bach tensor is both a necessary and sufficient condition to obtain the conformal struc
Ricci flat space–times.8 Since our main motivation is to study this class of space–times we
not explicitly state the second condition.

IV. THE INTEGRABILITY CONDITIONS

As we said before, equations~E!, (mI), and (mII ) are the field equations of the NSF. Note th
(mI) ~a complex differential equation! and~E! ~an ODE! are two equations that must be satisfi
by a real functionV. It is therefore natural to study the integrability conditions of the followi
system of equations:

~E! ]1
2V5QV, ~mI ! ZV5 1

2WV, ~m̄I ! ZpV5 1
2W̄V. ~17!

In the above equations the integrability condition between (mI) and (m̄I) is trivially satisfied
becauseZp2L5Z2L̄ ~cf. Ref. 3!, it remains to study the integrability condition between~E! and
(mI) ~and complex conjugate!.

Although in principle the procedure to generate the integrability conditions of~17! is straight-
forward, in practice it becomes quite cumbersome. To illustrate our approach we first cons
linearized version of~17!, namely,

~E8! ]1
2V50, ~mI ! ZV5 1

2W1V, ~m̄I ! ZpV5 1
2W̄1V, ~18!

with W1[]1L1 1
2Zp]1L.

Note that we are not writing~17! perturbately, i.e., we are not assuming thatV has a pre-
scribed behavior inL. Rather, we are assuming thatV has no prescribed behavior onL and the
coefficients of Eq.~18! are the linearized version of the corresponding coefficients of~17!. The
main advantage of considering the system of equations~17! is that it yields the linearized versio
of the integrability conditions without the technical complications of the full nonlinear syste

Proposition IV.1 The generating integrability condition of Eqs. (18) is

2~]1Z13]2!@]1
2, ]1#V5 1

4V]1
5Zp2L523VB11,
J. Math. Phys., Vol. 38, No. 9, September 1997
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where B11 5 Babu1
au1

b . The first equality is obtained via the field equations (18) and the sec
equality is a straightforward calculation of the linearized Bach tensor in theu i coordinate system
Thus, the integrability condition of (18) is given by

]1
5Zp2L50.

Proof: The proof is tedious but straightforward. It essentially consists of applying onV the
commutators@] i] j , Z#, @] i] j , Zp#, and @] i] j , ]k#, for i 5(0,1,2,1), to generate an enlarge
system of differential equations such that when taking a further commutator, the first and s
derivatives ofV disappear.

The details are given in Appendix A. h

Remark IV.1: It is important to note that the term]1
5Zp2L in the above proposition has bee

obtained via two independent calculations. On one hand, it arises from the generating integ
ity condition of Eq. (18). On the other hand, it comes from an explicit calculation of the B
tensor using a linearized metric in theu i coordinate system. This is not a mere coincidence. As
will see below, we will show that the generating integrability condition of (17) is the Bach ten.

As mentioned before, the calculations leading to the integrability condition of the system~17!
are quite involved but follow the same steps as the calculations done at first order inL ~for proof
see Appendix B!.

Proposition IV.2: The generating integrability condition of Eqs. (17) is

„]1Z13]21F]11]1F1 3
2~Zp]1L1W̄]1L!]113]1L]1…@]1

2, ]1#V1c.c.523VB11, ~19!

where c.c. means complex conjugate, and F5F[L] is given in (B6).
Comparing the two propositions, we immediately see that extra terms of higher orderL

arise in Proposition IV.2. Those counterterms are needed to cancel the first derivativesV
obtained in the full calculation of the commutator@]1

2, ]1#V.

A. Second-order perturbation

Note that in Proposition IV.2 we have not calculated the explicit form of the integrab
condition. Although in principle this can be done, this calculation is extremely involved and
not shed extra light on the subject. It is of interest, however, to compute the condition up to s
order in L since it yields the first nontrivial contribution to the field equations for our nonlo
variables.

Consider the lhs of Eq.~19! and its complex conjugate. Since@]1
2, ]1#V is O ~L!, we writeF

up to orderL asF53W1 . Thus, to second order inL, Eq. ~19! can be written as

~]1Z13d113]1W1!@]1
2, ]1#V1c.c.523VB1150. ~20!

We thus have twoindependentmethods to compute the integrability conditions to seco
order: computing the@1,1# component of the Bach tensor to second order or using the lhs of~20!.
It should be mentioned that blindly trying to compute the Bach tensor to second order inu i

coordinate system quickly exceeds the algebraic power of MAPLE~or alike!. We have instead
used the relationships that link several commutators ofV with their corresponding tensoria
counterparts to simplify the intermediate steps of the calculation. For example, using the re
ships between@] i] j , Z#V and ~12! and between@] i] j , ]k#V and ~13! we can write the compo-
nents of Christoffel symbols and Ricci and Weyl tensors that are needed for this computa
terms ofQ andW. The detailed calculations are given in Ref. 9. The final equation reads

]1
5Z2L̄5

1

4
]1

4~Z]1L̄W1]1L̄ZW1@d1 ,Z#L̄!13h1]1
2W̄12h2]1W̄1

1

2
h3W̄1

1

2
~]1Z13]2!
J. Math. Phys., Vol. 38, No. 9, September 1997
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3S 4]1Q12]1ZQ1
3

2
]1

2L̄]1
2W2]1L̄]1

3W

1
3

2 S 1

2
]1W]1

3W̄2
1

2
]1]1L]1

3W̄1]1
2LS ]1

4L̄2]0]1
3L̄1

1

2
]1~3]1

2W̄22]1
2 f̄ 1! D D

2
3

4
~3]1

2W̄22]1
2 f̄ 1!]1

2W2
3

2
]1

3L̄S Z]1
2W

2
2]2]1WD 1c.c. ~21!

For simplicity we have dropped the subindex 1 onW in the rhs of~21! since it can only
contain linear terms inL. As we will see in the next subsection, the linearizedW vanishes for
asymptotically flat space–times. This gives a considerable simplification in the resulting equ

It is worth mentioning that using the generating integrability condition to second-order y
the same result.

B. Asymptotically flat spaces-times

As was shown by L. Mason, the vanishing of the Bach tensor is both a necessar
sufficient integrability condition for the existence of a solution to Eq.~12! when the underlying
space–time is asymptotically flat along null directions.8 Thus, for those space–times Eq.~21!
yields the field equation for the nonlocal variableZ up to second order inL. On the other hand
Eq. ~21! as it stands is valid even for metrics that are not asymptotically flat. It is thus clea
asymptotic flatness imposes extra conditions onW and/orQ on this equation. We now derive
these conditions.

We first notice thatW on the rhs must be known to first order inL since it is always
multiplied by factors of orderL. To obtain the specific form of the linearizedW compatible with
an asymptotic structure we first solve the linearized Bach equation and then construct the
spondingW. As we show in the next sectionW vanishes to first order by virtue of the fiel
equations.

A vanishingW ~to first order inL! gives a big simplification to~21!. We rewrite this equation
as

]1
5Zp2Z2Z5S ~u i ,z,z̄ !, ~22!

where the functionS is considered as a source and is given by

2S ~u i ,z,z̄ !5 1
2]1

4
„2]2L]1L̄1]1ZpL]2L̄1]1L]0L̄1~]2ZpL22]1L2Z]1ZpL!]1L̄…

1~]1Z13]2!~4]1Q12]1ZpQ!13]1
2L~]1

4L̄2]0]1
3L̄2]1]1

3ZL̄!1c.c.

In order to determine the global null surfaces of asymptotically flat, radiative space–tim
integrate Eq.~22! using asymptotic boundary conditions onL.

We claim that the final equation reads

Zp2Z2Z5„Z2s̄B12ZZZsG B1~ZZ!2sJ B1sBsG B1c.c.…2E
2`

Z

ṡBsG B dm

2E•••
R

` E
R4

`

S ~u i ,z,z̄ ! dR1•••dR5 , ~23!

with sB the free Bondi data atI .
J. Math. Phys., Vol. 38, No. 9, September 1997
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Proof: Our goal is to show that limR→` Zp2L is finite and it is constructed from the free Bon
data sB . It would then follow from the peeling conditions that limR→` ]1

i Zp2L50, for i
51,...,4, thus giving only one ‘‘constant’’ of integration to Eq.~22!.

We consider atI the Bondi coordinates (u,z,z̄) and the lc cut given byu5Z(xa,z,z̄), where
xa is an interior point of the space–time.

Bondi coordinates come equipped with a null tetrad (n̂a, l̂ a,m̂a,mC a) that atI have the fol-
lowing properties:n̂a is a generator ofI , m̂a andmC a are tangent vectors along the Bondi cutu
5const, andl̂ a points along the direction of the null hypersurface that define the Bondi cuts aI .
Furthermore, the vectorl̂ a is used to construct the shear associated with the Bondi cuts asB

[m̂amC b¹al̂ b , i.e., it contains information about the interior of the space–time.
The lc cutu5Z(xa,z,z̄), on the other hand, is constructed from the intersection of the fu

null cone from xa with I . This cut also comes equipped with an associated null te
(na,l a,ma,m̄a) with the following geometrical properties:na is chosen so that it becomes
generator ofI , ma, andmC a so that they are tangent toI . The vectorl a points along the generator
of the null cone fromxa. At I it yields the shear associated with the lc cut, namelysZ

[mam̄b¹al b .
It can be shown3 that the Bondi shearsB and lc cut shearsZ are related through the equatio

Z2Z5sB2sZ . ~24!

This kinematic relationship among the two shears and the functionZ is known as Sachs’ theorem
and it is one of the starting equations for deriving the functional form of the free data of the
equation. Note thatsZ depends on (u,v,v̄,R,z,z̄) whereassB only depends on (u,z,z̄). Thus,
when we move the apex of the coneR to null infinity along a null geodesic with fixed values o
(u,v,v̄,z,z̄), the value ofsB will not change and we only have to compute the asymptotic va
of sZ . Solving the differential equations for the optical parametersr ands associated with the
null cone with apex atR we find that in the limitR→`

sZ5O S 1

R2D .

Thus, using the Sach’s theorem we have the following decay forL:

L5sB1O S 1

R2D .

Another important kinematic relationship is given by10

]0Zp2L5S Z2s̄B2Z2E
R

`

F̄dr1c.c.D 1@ d̄0 , Zp#L1G, ~25!

where

G5S Z3~W]1L!1Z2ZpS W̄2
1

2
]1L̄W2

1

2
Zp~]1L]1L̄! D1c.c.D12Zd0L2

1

2
Zp3~W]1L!

2
1

2
Zp2ZS W2

1

2
]1LW̄2

1

2
Z~]1L]1L̄! D2

1

4
Z~d0L̄22]1L]1L̄22 f 1]1L̄1 f 1]2L̄

2Zf 1]1L̄1]1Ld1L̄2Z]1L]1L̄!2ZS W̄2
1

2
]1L̄W2

1

2
Zp~]1L]1L̄! D
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and

F5
1

4
~Zp~]1L]11 f 1]1!2c.c.!]1L1

1

2
~ f 1]11]1L]11c.c.!]1L1

1

4
~]1L]1

2 1 f 1]1]1

2c.c.!L1S ]11
Zp]1

2 D ~W]1L!2S ]22
Zp]1

2 D S W2
1

2
]1LW̄2

1

2
Zp~]1L]1L̄! D .

Since in asymptotically flat space–timesV511O (1/R6) andW52Z ln V, we obtain

W5O S 1

R5D .

Using the above decay we calculate

Zp2sB~Z,z,z̄ !5Zp82sB1Zp2ZṡB12ZpZZpṡB

1~ZpZ!2s̈B5Zp82sB1s̄BṡB12ZpZZpṡB1~ZpZ!2s̈B1O S 1

R2D , ~26!

and

@ d̄0 ,Zp#L5]0L̄]0L1O S 1

R2D ,

F5O S 1

R5D , ~27!

G5O S 1

RD .

Thus, using~25! together with~26! and ~27! yields the free data

lim
R→`

Zp2L5„Z2s̄B12ZZZsG B1~ZZ!2sJ B1sBsG B1c.c.…1E
Z

`

ṡBsG B du.

This completes the proof. h

V. THE METRICITY CONDITIONS

In this section we explore possible generalizations of the lc cut equations. The idea is to
the kinematical arena provided byI and replace~23! with a simpler equation for the two-surface

The main motivation for such a generalization is to obtain a field equation that is a
approximation of the conformal Einstein equations. A related motivation is to be able to o
analytic solutions and a complete knowledge of the solution space.

It is clear that the surfaces satisfying the new equations would not yield conformal va
metrics, but if they, on the other hand, satisfy (mII ), they would be characteristic surfaces of
underlying metric of the space–time with a given dynamical evolution due to an effective s
energy tensor. In particular, we examine two field equations for cuts, one of them appearing
literature and the other one provided by~23! with S 50.

Before considering the possible generalizations of~23! we analyze the linearized version o
this equation, namely,
J. Math. Phys., Vol. 38, No. 9, September 1997
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Z2Zp2Z~1!~xa,z,z̄ !5Z2s̄~xal a ,z,z̄ !1Zp2s~xal a ,z,z̄ !, ~28!

with xal a a cut for Minkowski space.
The regular solution to this equation can be written as

Z~1!~xa,z,z̄ !5E
S 2
„Zp82G008~z,z8!s~xa,z8,z̄8!1Z82G008~z,z8!s̄~xa,z8,z̄8!… dS 82,

where theG008(z,z8) is the corresponding Green’s function on the sphere and the ‘‘prim
implies dependence in the integrations variables (z8,z̄8). Applying Z2 to the last equation we
obtain the following expression forL:

L~xa,z,z̄ !5s~xal a ,z,z̄ !1E
S 2

Z2G028s̄8 dS 82, ~29!

whereG028[Z82G008 .
The linearized metricity condition (mII ) reads

~mII ! ]2L2 1
2Z]1L50. ~30!

Thus, inserting Eq.~29! in (mII ) yields, after some manipulations,

]2L2
1

2
Z]1L52

1

2 E
S 2

sG 8~3Z2G028m
al a81Z3G028l

al a8!dS 8250.

We have thus shown that the solution to the linearized field equations~28! are the null
surfaces of metricgab(x

a) with coefficients given by~3!. Likewise, we can also show thatW
vanishes to first order. A straightforward calculation gives

W5]1L1
1

2
Zp]1L52

1

2 E
S 2

sG 8~Zp2G028m̄
al a82ZpZ2G028l

al a8! dS 8250.

Thus, the solutions to~28! automatically satisfy the metricity conditions (mI) and (mII ) to
first order.

We now consider possible generalizations of~23! that agree with~28! to first order.
In a recent paper,8 L. Mason conjectured that the following equation,

Z2Zp2Z5Z2s̄~Z,z,z̄ !1Zp2s~Z,z,z̄ !, ~31!

should lead to a generalization of the Bach equation for the lc cuts. Mason also pointed out t
solutions to this equation could yield a metric of conformal Finsler type, i.e., would not
conformal metric for the space–time. Since~31! agrees with the linearized version of~23! we
should test if (mII ) is satisfied to second order. We thus consider

Z2Zp2Z~2!~xa,z,z̄ !5Z2s̄~Z~1!,z,z̄ !1Zp2s~Z~1!,z,z̄ !,

which gives

L~xa,z,z̄ !5s~Z~1!,zz̄ !1E
S 2

Z2G028 ,s̄~Z~1!,z8,z̄8! dS 82.

Since the second-order metricity condition (mII ) for asymptotically flat space–times is identical
~30!, we insert the expression forL in this equation obtaining
J. Math. Phys., Vol. 38, No. 9, September 1997
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]2L2
1

2
Z]1L52

1

2 E E
S 2

dS 82dS 92sG 8
~ l [amb] l [a8 mb]8 !2

~ l cl c8!4 l [amb] l [a8 l b]9 ~G029s91G0229s̄9!Þ0,

where we have used the explicit form of the Green’s function andZ(1) to obtain the above
expression.

Thus, the solutions to~31! are not characteristic surfaces of an underlying conformal me
Note that the free data of~31! is given on the cut and, thus, the solutions of this equation sa
Huygens’ principle. On the other hand, the solutions of~23! are manifestly non-Huygens. It wa
thought that replacing the rhs of~31! with the free data obtained in the previous section, nam

~Z2s̄B1sBsG B12ZZZsG B1~ZZ!2sJ B1c.c.!2E
2`

Z

ṡBsG B dm,

could improve the situation. An explicit calculation shows that doing this replacement also fa
satisfy ~30!.

In both cases the solutions to the field equations would not be null surfaces of any metric
equation (mII ) is not satisfied. It is worth remarking that although the metricity condition (mII ) is
kinematical in nature it becomes a useful tool to check if solutions to generalizations for the
equations are also characteristic surfaces.

VI. CONCLUSIONS

We have shown that the dynamics of the conformal structure can be written as a
equation for the functionZ. We proved that this equation is equivalent to the vanishing of
Bach tensor and wrote its explicit form to second order in a perturbation expansion. Using a
priate asymptotic boundary conditions, we obtained the field equations that determine the
null surfaces for asymptotically flat space–times. However, it follows from~E! that, onceZ is
given, the conformal factor can be explicitly written as a functional ofZ. Thus, the field equations
for Z determine not only the conformal structure but the full geometry of the Einstein space
have also shown that metricity condition (mII ) becomes an important tool to decide if genera
zations of the field equations of the lc cuts also yield a conformal structure on the manifold

One of the main applications of the field equations for the lc cuts could be to tes
formation of singularities on radiative space–times. Assume one gives regular initial datasB at
I 2 representing incoming gravitational waves. A very important question, for which there
answer yet, is to determine whether or not singularities will be developed in the future.
generally accepted that if the data is ‘‘strong enough,’’ the self-interaction of the gravitat
waves will develop a singularity. It is also accepted that if the data is weak, the waves will s
into the future without forming a singularity. The lc cuts, on the other hand, can be used as
to detect singularities since their index number is equal to 1~topological spheres! if the space–
time is regular and 0~open surfaces! if it has a singularity.11 Thus, if we could show that for a
given datasB the solution space of~23! contains a subspace with vanishing index number,
would prove that the space–time has developed a singularity. Note also that the conforma
V plays no role in this discussion.

Another possible line of research would be to obtain generalizations of the lc cut equ
that satisfy the metricity conditions or, as pointed out by Mason, to see if the generalized equ
are good approximations to general relativity for weak fields.

Future work will address the above issues.
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APPENDIX A: PROOF OF PROPOSITION IV.1

Proof: Applying first order commutators@] i] j , Z# and@] i] j , Z# on V, and using~E8!, (mI)
and (mII ) yield eight new linear independent differential equations forV, namely,

]2]1V5 1
4]1

2~WV!2 1
2h1V,

]2
2 V1]1L]2]1V5 1

2]1]2~WV!2@]1 , d2#V2Z]2]1V,

]0]1V1]1]2V5 1
2]1]1~WV!2@]1 , d1#V2Z]1]1V, ~A1!

]0]1V1 1
2Z]1L̄]1]2V5

1

2S 1

2
]1

2 ~WV!1]1
2~W̄V!22h̄1V2@]1 ,d1#V2

1

2
Z]1]1~W̄V!

1Z@]1 ,d̄1]V!1 1
2ZZp]1]1V,

]0
2V2~22 f 12 1

2Z
2]1L̄!]0]1V5 1

2]1]0~WV!2@]1 , d0#V2 1
2Z„

1
2]1

2 ~WV!1]1
2~W̄V!22h̄1V

2@]1 , d1#V2 1
2Z]1]1~W̄V!1Z@]1 ,d̄1V…2 1

2Z
2Z]1]1V,

and their complex conjugate.

Remark A.1: Note that this algebraic system has eight equations in second derivativeV
and nine unknowns, therefore one of them shall be a parameter, for example, ]0]1V. This
parameter corresponds to the trace of the field equations.

We thus have to consider the commutators@] i] j , ]k# of V. Taking @]1
2, ]1# on V yields

0[4@]1
2,]1#V54]1~]1]1V!24]1~]1

2V!5]1
3~W̄V!22h̄2V, ~A2!

whereh̄25@]1 , h̄1#, and~E8! and the complex conjugate of the first equation of~A1! have been
used in the last equality.

Similarly applying the commutator@]1]1 , ]2# on V gives

0[4@]1]1 ,]2#V54]1~]1]2V!24]2~]1]1V!,

5]1
2]1~WV!2]1

2]2~W̄V!22~]1h1V2]2h̄1V!, ~A3!

here we have used the expressions for]1]6V given in the system~A1!. Furthermore,

0[4@]1
2, ]0#V14@]1]2 , ]1#V54]1~]0]1V1]2]1V!24]1~]1]2V!

5]1
2]1~WV!24]1@]1 , d1#V24]1Z]1]1V12]1h1V,

where the last equations have been obtained using once again the corresponding expressio
second derivatives]0]1V1]2]1V and ]1]2V given in ~A1!. Finally, replacing]1]1V, using
~A3!, and commutating a couple of times gives

0[4@]1
2, ]0#V14@]1]2 , ]1#V52Z]1

3~W̄V!12Zh̄2V. ~A4!

Summarizing, the original system has become larger and it remains to find equations
pendent ofV as integrability conditions. One of these conditions can be obtained by applyin]1

on Eq.~A4! and using~8! as follows.
J. Math. Phys., Vol. 38, No. 9, September 1997
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4]1Z@]1
2,]1#V5]1Z„]1

3~W̄V!22h̄2V…,

5]1
4Z~W̄V!2]1@]1

3, Z#~W̄V!22]1Zh̄2V,

5]1
4Z~W̄V!23]2]1

3~W̄V!22]1Zh̄2V,

5]1
4Z~W̄V!23]2~4@]1

2, ]1#V12h̄2V!22]1Zh̄2V. ~A5!

In the last equation we have used~A2!. Consequently we write

0[4]1Z@]1
2, ]1#V112]2@]1

2, ]1#V5]1
4Z~W̄V!26]2h̄2V22]1Zh̄2V

5V]1
4ZW̄14]1

3ZW̄]1V26@]2 , h̄2#V22@]1 Z,h̄2#V.

~A6!

Here we have used the system~A1!, and equations~E8! and (mI). Note that this equation contain
only first derivatives ofV. Using now the expression forW and calculating the commutator
@]1 , h̄2# and @]1Z, h̄2#, we find that the coefficients enclosed to] iV are zero and as conse
quence the equation~A6! becomes

]1
4ZW̄50.

Note that the complex conjugate commutators of~A6! give the same integrability condition sinc
ZW̄5ZW.

Using again the definition ofW, we obtain a differential equation forL, namely,

]1
5Z2L̄50.

This completes the proof. h

APPENDIX B: PROOF OF PROPOSITION IV.2

Proof: Following the same approach that leads to~A1! but using the full commutators give
the following system of equations,

]2]1V1]1L]1]1V5 1
4]1

2~WV!2 1
2h1V2 1

2Z~QV!2 f 1QV,

]2
2 V1]1L]2]1V5 1

2]1]2~WV!2@d2 , Z#V2 f 2QV2]2L]1]1V2 f 1]2]1V2Z~]1]2V!,
~B1!

]0]1V1q]1]2V5 1
2]1]1~VW!2@d1 , Z#V2 f 1QV2~ f 11]1L!]1]1V2Z]1]1V

1]1L„1
2]1]2~WV!2@d2 , Z#V2 f 2QV2]2L]1]1V2 f 1]2]1V

2Z~]1]2V!…,

and their complex conjugate. Since the last equation is real, this system contains only five
independent equations.

The remaining equations for]0
2V and ]1]0V and its complex conjugate are obtained

applyingZ andZ2 on the last equation of the system~B1!.
We now consider the commutators@] i] j , ]k#V. Taking the first equation of~B1! and com-

muting with ]1 gives

@]1
2, ]2#V1]1L@]1

2, ]1#V5@]1
2, d1#V2 f 1@]1

2, ]1#V22h1]1V2h2V
J. Math. Phys., Vol. 38, No. 9, September 1997
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5]1~]1d1V!2d1~QV!22h1]1V2h2V

5 1
4]1

3~WV!2 1
2]1Z~QV!2 3

2h1]1V2 1
2h2V2d1~QV!. ~B2!

Thus, algebraically solving for~B2! and its c.c. yields

0[4@]1
2, ]1#V5c111 , ~B3!

where

c111[
1

q
„]1

3~W̄V!2]1L̄]1
3~WV!…2

6

q
~ h̄1]1V2]1L̄h1]1V!2

2

q
~ h̄2V2]1L̄h2V!

2
2

q
„]1Zp~QV!2]1L̄]1Z~QV!…2

2

q
„d̄1~QV!2]1L̄d1~QV!…. ~B4!

As in the first-order calculation we obtain new integrability conditions calculating@]1
2, ]1#V

and @]1]1 , ]2#V.
In order to obtain the integrability condition corresponding to Eq.~A4!, we follow the same

procedure as in the first-order calculation giving

054@]1
2, ]0#V14q@]1]2 , ]1#V,

54„]1~]0]1V1q]1]2V!2]0~]1
2V!2q]1~]1]2V!2]1q~]2]1V!….

Using the corresponding equations of the system~B1!, and ~E!, and the integrability condition
given by @]1]1 , ]2#V50, we obtain

0[4@]1 , ]0#V14q@]1]2 , ]1#V52~Zc1111Fc111!, ~B5!

where

F52 f 11]1L2 1
2~Zp]1L1W̄]1L!. ~B6!

Note that Eq.~B5! can be obtained by applying the operator~Z1F! on the integrability condition
~B3!.

The integrability condition independent of] iV corresponding to Eq.~A6! can essentially be
calculated following the same procedure as in the first-order calculation.

Namely, we take]1 to Eq. ~B5! and commutate]1
3 with Z. On the other hand we apply th

operator„]21 1
2(Zp]1L1W̄]1L)]11]1L]1… on Eq. ~B3! and replace this result in the previou

equation or equivalently

0[4]1~Z@]1
2, ]1#V1F@]1

2, ]1#V!112„]21 1
2~Zp]1L1W̄]1L!]11]1L]1…@]1

2, ]1#V

5]1~Zc1111Fc111!13„]21 1
2~Zp]1L1W̄]1L!]11]1L]1…c111 . ~B7!

When this expression is written explicitly using the previous equations, the rhs of this integra
condition has no second derivatives ofV except for a term with]0]1V. The coefficient of this
term is purely imaginary, thus the integrability condition is given by the real part of~B7!.

We also claim that the real part of Eq.~B7! does not contain first derivatives ofV. To prove
this, instead of doing a straightforward calculation, we follow a tensorial approach establish
correspondence between the integrability condition~B7! and the coordinates components of t
Bach tensor~for details, see Ref. 9!. h
J. Math. Phys., Vol. 38, No. 9, September 1997
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The status of diffeomorphism superselection
in Euclidean 2 11 gravity
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This work addresses a specific technical question of relevance to canonical quan-
tization of gravity using the so-called new variables and loop-based techniques of
Ashtekar, Rovelli, and Smolin. In particular, certain ‘‘superselection laws’’ that
arise in current applications of these techniques to solving the diffeomorphism
constraint are considered. Their status is elucidated by studying an analogous sys-
tem: 211 Euclidean gravity. For that system, these superselection laws are shown
to be spurious. This, however, is only a technical difficulty. The usual quantum
theory may still be obtained from a loop representation and the technique known as
‘‘Refined Algebraic Quantization.’’ ©1997 American Institute of Physics.
@S0022-2488~97!01409-6#

I. INTRODUCTION

A recent advance in canonical quantization techniques was the introduction1 of refined alge-
braic quantization~RAQ! ~and related techniques2,3! for solving quantum constraints and fo
inducing physical inner products. As shown in Ref. 1 the use of such techniques often res
‘‘superselection rules.’’ While such superselection rules can correspond to important proper
the physical system1,4 which are present even at the classical level, when RAQ is used to solv
diffeomorphism constraints of a quantum theory of connections as in Ref. 1, the interpretat
the superselection rules is less clear.

In particular, when 211 gravity is expressed as a theory of connections,5–7 the simplest
observables appear to violate these rules. This is because, in a loop representation, the
select between states associated with different topological types of graphs or loops, while
tant observables in the 211 theory are traces of holonomies of connections around non
tractable curves, which mix the above states.

In a loop representation, such operators change not only the topology but also the hom
type of a loop-state. The goal of this paper is to determine the status of these superselectio
in Euclidean 211 gravity and to determine whether their presence prevents the quantiz
scheme described in Ref. 1 from succeeding. This will help to clarify the standing of such me
in the loop-based approach to 311 gravity.

We will proceed in two stages. It will first be shown that methods based on a loop repr
tation and the ‘‘refined algebraic quantization scheme’’~RAQ! of Ref. 1 do yield the usua
results5,8,9 for Euclidean 211 gravity when they are properly applied. In this case, the m
straightforward treatment differs from the particular approach suggested in Ref. 1. Howev
also show that the solution may be recast in the form advocated in Ref. 1 in which the diffe

a!Present address: Albert-Einstein-Institut, Max-Planck-Institut fu¨r Gravitationsphysik, Schlaatzweg 1, 14473 Potsda
Germany, Electronic mail: thiemann@aei-potsdam.mpg.de
0022-2488/97/38(9)/4730/11/$10.00
4730 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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phism constraints are solved first and the Hamiltonian constraints are then solved as a
stage. Regarding the ‘‘diffeomorphism superselection rules’’ mentioned above, we will se
they disappear in the final solution of this system. Some concluding comments about expec
for the 311 theory are given in Sec. IV and we draw on supporting material from the Appen
This discussion suggests that the intermediate presence of the superselection rules in th11
theory is due to the singular nature of our description of the theory, but that a similar singu
may be present in the loop approach to the 311 case.1

This work will make use of a loop representation along the lines of Ref. 1 as well a
refined algebraic techniques discussed there, in Ref. 4, and elsewhere. As a result, what fo
best considered a technical addendum to Ref. 1 and the review of that material will be ke
minimum. We use the same structures and definitions as in Ref. 1, except as where noted
We will, however, briefly discuss the formulation of Euclidean 211 gravity as a canonical theor
of connections since that was not discussed in Ref. 1.

As described by Witten,5 Euclidean 211 vacuum gravity may be considered as a theory
cotriads ēaI and SU~2! valued connectionsĀa

I . Here a,b are space–time indices on a thre
manifold M . The system is governed by the action

S~ ēaI ,Āa
I !5 1

2E
M

d3xẽabcēaIF̄bc
I , ~I.1!

whereẽabc is the Levi-Civita density onM andF̄bc
I is the curvature of the connectionĀa

I . This is
just the 211 Einstein–Hilbert action written in terms of the triad and spin connection. For
convenience we have taken the action to differ from that of Ref. 5 by a factor of 1/2.

If we now takeM to be of the formR3S ~for a closed orientable two-manifoldS!, we may
make a 211 decomposition of the above action. The result is a system where the Hamilton
simply a sum of constraints. We shall takei , j ,k to be abstract indices associated with the manif
S. The canonical variables are a connectionAi

I which is the pull back of the connectionĀa
I to S

and a vector densityẼI
i 5 ẽ i j ejI , wheree i j is the Levi-Civita density onS andejI is the pull back

of eaI to S. These satisfy the canonical commutation relations

$Ai
I~x!,ĒI

j~x8!%5d i
jdJ

I d2~x,x8! ~I.2!

and, in terms ofAi
I , ẼI

j , the constraints are

Fi j
I 50, D jẼI

j50, ~I.3!

whereFi j
I andD j are the curvature and covariant derivative associated withAi

I , respectively.
The second constraint is known as the Gauss constraint and generates SU~2! gauge transfor-

mations. The first constraint is more complicated, but clearly generates transformations that
change the connection. The reader will, at this point, notice the distinct lack of a constrain
generates diffeomorphisms. Such a constraint would have the formẼI

i Fi j
I 50. Although it is not

one of the constraints~I.3!, this function clearly vanishes on the constraint surface; the resu
that any function invariant under the transformations generated by theF50 constraint also be-
comes invariant under diffeomorphisms once it has been restricted to the constraint surface
sense then, the Witten constraints are in fact weakly equivalent~for nondegenerate triads! to the
set of constraints10

DiẼ I
i 50, Ẽ I

i Fi j
I 50, eK

IJẼ I
i ẼJ

j Fi j
K50, ~I.4!

but ~I.3! and ~I.4! are not strongly equivalent.
We are therefore left with the question of which set of constraints to use here. On th

hand, the well-understood description of 211 gravity refers to the constraints~I.3!. On the other,
J. Math. Phys., Vol. 38, No. 9, September 1997
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we are most interested in gaining insight into 311 gravity, for which only a description of the
form ~I.4! is available. Furthermore, the question of the ‘‘diffeomorphism superselection sec
which we wish to study does not arise unless there is in fact a diffeomorphism constraint.
ever, the densitized ‘‘Hamiltonian constraint’’EEF50 of ~I.4! is as difficult to define here as in
the 311 case.

One approach might be to apply techniques such as those introduced by Thiemann
311 Hamiltonian constraints in Ref. 11. However, because of conceptual and technical co
cations involved, we leave direct investigation of the constraints~I.4! for future work12 and
content ourselves here with following a hybrid approach. After briefly reviewing the refi
algebraic techniques in Sec. II, we define our system using the Witten constraints~I.3! and show
that the combination of a loop representation with refined algebraic techniques generates th
physical Hilbert space in a straightforward manner. In Sec. III, we show that the physical
generated in this wayare annihilated by the diffeomorphism constraintẼI

i Fi j
I 50 in the sense

described in Ref. 1 and that our physical Hilbert space could have been constructed by fol
the procedure outlined in Ref. 1, in which the diffeomorphism constraintẼI

i Fi j
I is solved first

~through RAQ! and the ‘‘remaining parts’’ of the constraints~I.3! are solved later by RAQ-like
techniques. Section IV discusses the implications for the 311 theory, drawing on the Appendix
for support.

II. QUANTIZATION

We now proceed to quantize the system described in Sec. I and to impose the constrain~I.3!
using a loop representation and the techniques of refined algebraic quantization. That is to s
will follow Ref. 1 in considering an auxiliary kinematical Hilbert spaceHaux5L2(A/G ,dm0)
where A/G is the Ashtekar–Isham ‘‘quantum configuration space of gauge equiva
connections’’13 appropriate to the connections discussed above. This space contains no
connections but suitably generalized ‘‘distributional’’ connections as might be expected
required in the configuration space of a quantum field theory. Note thatdm0 is the corresponding
Ashtekar–Lewandowski measure.14 States in this space are gauge invariant, so there is no ne
impose the Gauss constraints, they are considered to be identically satisfied on this space@If one
wishes, one may1 begin with a larger Hilbert spaceL2(Ā,dm̂0) whose states are not gaug
invariant, introduce the Gauss constraints as operators on this space, and solve them by
arrive atHaux5L2(A/G ,dm0) as above.#

We must, however, define and solve theF50 constraints. This involves a slight complicatio
as the generalized connections ofA/G are not in general differentiable. Thus the curvatureF is
strictly speaking not well-defined on this space. Whatis well-defined though is the holonomy of
generalized connection, this is in fact the very definition ofA/G . We therefore proceed a
follows: The statementF50 for a smooth connectionA is equivalent to the statement that th
holonomyha(A) of A around each contractable loopa in S is trivial, that is, gives just the uni
element of SU~2!. A manifestly gauge invariant formulation of the constraints is thus

Ca8 :522Ta~A!50, ~II.1!

whereTa(A):5tr(ha(A)), for all contractable loops. The virtue of writing theF50 constraint in
the form~II.1! is that we can extend it toA/G . The disadvantage is that this constraint classica
does not generate gauge transformations on the constraint surface asTa22 is quadratic inF. We
will actually use a constraint of the form

Ca5u22Ta~A!u3/2 ~II.2!
J. Math. Phys., Vol. 38, No. 9, September 1997
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for all contractable loopsa. While, classically, this is even worse than~II.1!, we shall see that a
certain ‘‘cancellation of singularities’’ occurs, and that this is in fact a preferred form of
constraints.

We now wish to solve these constraints using the refined algebraic quantization proc
Recall that this involves introducing a preferred dense subspaceF of the Hilbert spaceHaux and
defining an~antilinear! maph from F to its dualF8 which ‘‘projects a state onto the constrai
surface’’ in the sense that the imagehf of any fPF is a solution of the constraints:C(hf)
50, whereC denotes the constraints. Note that the action ofC on F8 is defined to be the dual o
its action onF. The details are given in Ref. 1, but we remind the reader that the solutionshf in
the image ofh are given a Hilbert space structure through

^hauhb&[~hb!@a#. ~II.3!

The maph must be real and positive in the sense that, for allf1 , f2PF,

~hf1!@f2#5~~hf2!@f1# !* and ~hf1!@f1#>0 ~II.4!

andh must commute with every strong observableA. That is, for any operatorA which commutes
with all gauge transformations, we must have

~hf1!@Af2#5~~hA†f1!!@f2#. ~II.5!

In this case~II.3! defines an inner product which may be used to complete the set of stateshf in
the image ofh to a ‘‘gauge invariant’’ Hilbert spaceH inv . Moreover, this inner product has th
property that any strong observableA on Haux induces on operatorAinv on the physical Hilbert
space satisfying the same reality conditions; i.e.,Ainv

† 5(A†) inv . The operatorAinv is defined by

Ainv~hf!5h~Af!. ~II.6!

Note that the invariant Hilbert space was referred to as the ‘‘physical’’ Hilbert space in Refs.
4. The terminology we use here is more appropriate for the current setting, in which we allo
possibility that this procedure be applied more than once, solving only some of the constra
each step.

A nice idea for constructing the maph is through ‘‘group averaging.’’1,3,4 Under appropriate
conditions, an expression of the form

~hf1!@f2#5E
G

dq^f1uU~g!uf2&, ~II.7!

with dg the Haar measure on the gauge groupG, gives a well-defined maph with the required
properties. This heuristic idea is often quite useful in applying RAQ, although it will not b
direct use for our case.

The constraintF50 is a pure configuration constraint: It does not involve the canon
momenta. This situation is reminiscent of solving the relativistic free particle constraintp21m2

50 in the momentum representation. Let us recall how this works as it will clarify our case
In the relativistic particle case we chooseHaux:5L2(R2,d4p) and F:5C0

`(R4), say, the
smooth test functions of compact support. The constraintC5p21m250 is easy to solve: each
solution can be written in the formc f(p)5d(C) f (p) where f PF. The point is thatc fPF8 is
not an element ofHaux. But why can we claim that the constraint was solved by group averag
This is becauseĈ:5 p̂21m2 is an essentially self-adjoint operator onHaux with core F whose
unique self-adjoint extension we may exponentiate to obtain a one-parameter unitary
Û(a):5exp(iaĈ) with aPR. The Haar measure onR is the Lebesgue measure and so for ea
fPF we obtain the following group average map
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



group

re

distri-

ure

a

ant.

4734 Marolf, Mourão, and Thiemann: Diffeomorphism superselection in 211 gravity

                    
~h f !~f!:5E
R

da

2p
^ f ,Û~a!f&5c f~f! ~II.8!

in analogy with~II.7!.
Why does this lead to the desired result? The answer is that one way of looking at the

average procedure is that one wishes to solve the exponentiated constraintÛ(a)51;a and the
average over all theÛ(a) has to be done in such a way that we get thed(Ĉ) back, or, in other
words, such that the translation of the parametera in Û(a)Û(b)5Û(a1b) is irrelevant because
we are using a translation invariant measure~the Haar measure! on the parameter space.

Another feature of the relativistic particle shared by our model is that the solutions toC50
are not unique. For the free particle they are twofold,p056Ap21m25:6v(p) which we may

encode in the following wayC5C1C2 whereC65p06Ap21m2. Also, in the sense of distri-
butionsd(C)5(1/2v)@d(C1)1d(C2)#5:*M dn(v)d(p0,v) where M5$6v(p)% is the so-
lution space andn is proportional to a counting measure onM. We will encounter precisely the
same structure in our model. This concludes the discussion of the relativistic particle.

Let us now turn to our case. The solutions toF50 are the flat connections, and, since we a
interested only in gauge-invariant information, we have the spaceM, the moduli space of flat
connections modulo gauge transformations as our solution space. Therefore we write the
bution d(F) as

d~F !5E
M

dn~A0!d~A,A0!, ~II.9!

where n is some~real-valued! measure onM. We will derive a preferred measuredn below
which agrees with the one give by Witten.5 This is in direct analogy with writing thed(p2

1m2) as a sum of twod distributions, the discrete measure there was replaced by the measn
accounting for the fact thatM is a manifold.

The next step is nontrivial: We have to writed(A0 ,A) as a well-defined distribution on
suitableF. Let us choose, as in the 311 case,Haux:5L2(A/G ,dm0) wherem0 is the Ashtekar–
Lewandowski measure and letF:5Fcyl be the cylindrical functions onA/G . It turns out that
Haux has an orthonormal basis, the so-called spin-network statesTg,j ,c ~see Ref. 1!. Hereg stands
for a piecewise analytic closed graph,j5( j 1 ,...,j E) is a labeling of its edgese1 ,...,eE with spin
quantum numbers andc5(c1 ,...,cV) is a labeling of its vertices with certain SU~2! invariant
matrices. The stateTg,j ,c is built from c and ^ k51

E p j k
(hek

(A)), wherep j is the j th irreducible
representation of SU~2!, by contraction of all group indices in such a way that it is gauge invari
We may use such states to representd(A,A0) as

d~A0 ,A!5 (
g,j ,c

Tg,j ,c~A!Tg,j ,c~A0! ~II.10!

since, by the orthonormality of spin networks, this satisfies*dm0(A)f(A)5f(A0) for all f
PFcyl . The associated rigging maphF :Fcyl→Fcyl8 is given by

~hFc!~f!5E
A/G

dm0~A!c~A!d~F !f~A!. ~II.11!

Notice that, although the sum~II.10! ranges over a complete set of piecewise analytic graphs~an
uncountable set!, the resulthFc is still a well-defined element ofFcyl8 .

Can the result~II.11! also be obtained by explicitly averaging the constraints~II.1! in analogy
with ~II.8!? At least at a heuristic level, the answer is in the affirmative.~At a more technical level,
J. Math. Phys., Vol. 38, No. 9, September 1997
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there is a subtlety in that the group generated by the full set of constraints~II.2! does not fit well
with the projective structure ofHaux.! To see this, notice first that one can write the de
distribution on SU~2! with respect to the Haar measuremH as follows

d~g,1!5E
R

dt

2p
exp~ i t @12tr~g!/2#3/2! ~II.12!

as the reader can check himself by explicitly writingmH in terms of local coordinates onS3. Note
that the power 3/2 is important here as it cancels certain singularities~actually, degeneracies! in
the measure. This observation motivates us to construct a cylindrical definition ofhF which we
sketch below.

For each graphg choose a set of generatorsa1(g),...,an(g)(g) of the subgroup of the
homotopy group ofg corresponding to contractable loops onS. Let now

Ug~ t1 ,...,tn~g!!:5 )
i 51

n~g!

Ua i ~g!~ t i ! where Ua~ t !:5exp~ i tCa!. ~II.13!

We are now in the position to definehF cylindrically: Since eachf, cPFcyl are just finite linear
combinations of spin-network states it will be sufficient to definehF on spin-network statesc
5Tg,j ,c through~II.11! for eachf5Tg8,j8,c8 . It turns out that the proper definition, precisely
analogy to~II.8!, is given by

~hFTg,j ,c!~Tg8,j8,c8!:5E
Rn

dnt

~2p!n ^Tg,j ,c ,Ugøg8~ t1 ,...,tn!Tg8,j8,c8&, ~II.14!

wheren5n(gøg8). Namely, using the definition ofm0 which assigns to each holonomical
independent loop one independent integration variable with respect to the Haar measure on~2!
we explicitly compute that~II.14! equals

E dmH~g1!•••dmH~gm!@Tg,j ,cTg8,j8,c8#~g1 ,...,gm!5:E
M

dn~A0!~Tg,j ,cTg8,j8,c8!~A0!,

~II.15!

where the square brackets on the left-hand side mean that the function is to be evaluated
trivial holonomy for the contractable loops which thus leaves only an integration over holono
g1 ,...,gm along loops that generate the homotopy group ofS. The right-hand side defines th
measuredn on M and agrees with the measure given by Witten.5 It is easy to see that~II.14!
coincides with ~II.11!. Note that, even though we must make a choice of generator
p1(gøg8) to even write down the integral~II.14!, the resulting definition ofhF is independent of
this choice. In addition, note that we have seen no sign of the superselection rules that a
Ref. 1. We shall return to this issue in the next section.

III. A SOLUTION IN TWO STAGES

Recall that one of the main objectives of the present paper is to solve the theory usin
space of diffeomorphism invariant states~from Ref. 1! as an intermediate step. That is, we use
rigging maphDiff from Ref. 1 to define a Hilbert spaceHDiff of diffeomorphism invariant state
and then solve the Hamiltonian constraint using a second topological vector subspaceFDiff of
HDiff and a rigging maphHam:FDiff→FDiff8 . ~In the 311 case there are some additional difficu
ties with such an approach due to the fact that the corresponding Hamiltonian constraint do
J. Math. Phys., Vol. 38, No. 9, September 1997
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commute with diffeomorphisms. In the present model this problem does not occur because
of F50 constraints is invariant under diffeomorphisms.!
That is, roughly speaking, we wish to write

hF5hHam+hDiff . ~III.1!

In contrast, in Sec. III we solved all of the constraints in one step. As outlined in the Introduc
the diffeomorphism and Hamiltonian constraint are included in theF50 constraint. What we
would like to see now is how theF50 constraint can be split into two parts, the diffeomorphi
part and a remainder. This remainder will, in some sense, define our ‘‘Hamiltonian constra

There are, however, two immediate problems with~III.1!. The fist is that each rigging map i
antilinear, so that the left-hand side is antilinear while the right is linear. The other is tha
left-hand side is a map fromFCyl to FCyl8 , while the right is a map fromFCyl to FDiff8 ~through
FDiff !. Clearly then, we will need a natural antilinear maps:FDiff8 →FCyl8 . This map will be an
extension of an adjoint map, and will be discussed below in the course of our argument.

We do this as follows. Recall that each diffeomorphism invariant distribution in the s
FDiff ~constructed in Ref. 1! is a linear combination of spin-network states associated with a fi
number of graphs. To be more precise, collect the tripleg,j ,c into a single indexc and letT@c#

3(A) be the distribution defined by

T@c#~A!:5 (
c8P@c#

Tc8~A!, ~III.2!

where@c# is the set of labels of the spin-network states that one obtains by acting onTc with all
possible analytic diffeomorphisms. Our objective is now to write a solutiond(F)Tc to theF50
constraint in terms ofhDiff and a remaining operationhHam to be obtained. To that end we writ
~II.9! explicitly as

d~F !5(
c

Tc~A!E
M

dn~A0!Tc~A0!5:(
c

Tc~A!kc , ~III.3!

where the sum is overall labelsc. What helps us now is that sinceTc(A0) is diffeomorphism
invariant forA0PM, it follows that the integralskc do not depend onc but only on the diffeo-
morphism equivalence class@c#. We also note thatTc(A) is real, so that we may drop th
overline.

We will therefore relabelkc ask@c# and so write~III.3! in the form

d~F !5(
@c#

k@c#T@c#~A!, ~III.4!

which is already a sum of diffeomorphism invariant distributions only.
If we introduce the notationT@c# for the linear functional onFCyl given by T@c#(f)

5*A/G T@c#(A)f(A), then we may write

hF~1!5(
@c#

k@c#T@c# . ~III.5!

In order to connect with Ref. 1, recall that, due to the superselection rules,nDiff was not
uniquely defined in Ref. 1. In fact, the possible rigging maps were labeled by uncountably
real parameters. However, all of these maps were of a similar form. Let us simply choose
these maps and refer to it ashDiff . We will see that nothing will depend on which map w
chosen. Note thathDiff then has the form
J. Math. Phys., Vol. 38, No. 9, September 1997
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hDiffTc5a@c#T@c# ~III.6!

for somea@c#PR1.
Let c0 be a particular label. We wish to place our rigging map in the form

hFTc0
5:~s+hHam+hDiff !Tc0

5~s+hHam!T@c0#a@c0# . ~III.7!

The maphHam will act on FDiff , the group averaged cylindrical functions onA/G . Notice that
the spaceFDiff is a space of distributions onFCyl but a space of test functions for the spa
FDiff8 , the dual ofFDiff .

We now address the maps. It is to be an antilinear map fromFDiff8 to FCyl8 . We will construct
this map by~anti!linearly extending the adjoint map onHDiff . Recall that,HDiff is defined
through the following inner product onFDiff :

^hDifff,hDifff8&Diff :5@hDifff#~f8! for all f,f8PFCyl. ~III.8!

Thus~III.8! defines an antilinear~adjoint! map †:FDiff→FDiff8 . On the image †FDiff ,FDiff8 , this
map is invertible and the inverse †21 is also antilinear. We note that †FDiff in fact provides a basis
for FDiff8 and thatFDiff ,FCyl8 . Using antilinearity then, we may attempt to extend †21 to map
from all of FDiff8 into FCyl8 . The result is in fact well defined and gives the desired m
s:FDiff8 →FCyl8 .

Let us now definehHam to be of the form

hHam•T@c#5(
@c8#

a~@c#,@c8# !T
@c8#

† , ~III.9!

where †:FDiff→FDiff8 is the map given above. Then

~s+hHam!T@c#5(
@c8#

a* ~@c#,@c8# !T@c8# . ~III.10!

The coefficientsa will be chosen so that~III.7! is satisfied. The equalitya@c0#(s+nHam)T@c0#

5d(F)Tc0
is to be understood in the sense of distributions onFCyl and so can be checked b

evaluating both sides on all possibleTc . In order to do that we need the Clebsh–Gordon form

Tc0
Tc5(

c8
b~c0 ,c;c8!Tc8 , ~III.11!

which is a finite sum thanks to the piecewise analyticity of the graphs involved. Notice tha
coefficientsb(c0 ,c;c8(c0 ,c)) are invariant under simultaneous diffeomorphic mappings ofc0 and
c.

Finally, usingT@c#(Tc8)5x@c#(c8) @wherex@c#(c8) is the characteristic function given by 1 fo
c8P@c# and 0 otherwise# together with~III.11!, we find

@hFTc0
#~Tc!5@hF~1!#~Tc0

Tc!5(
c8

b~c0 ,c;c8!@hF~1!#~Tc8!5(
c8

b~c0 ,c;c8!k@c8# .

~III.12!

The first equality in~III.12! uses the fact thatTc is real valued. Notice that despite the appeara
of the Clebsh–Gordon coefficientsb(c0 ,c;c8) ~which seem to depend onc0 ,c!, the correspond-
ing sum actually depends only on the equivalence classes@c0#,@c# since we have@w•Tc0

#@w8

•Tc#5Tc0
Tc on the space that of flat connections, for arbitraryw,w8PDiff( S).
J. Math. Phys., Vol. 38, No. 9, September 1997
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Thus if we definea(@c0#,@c#)5a@c0#
21 Sc8b(c0 ,c;c8)k@c8# , then, since the Clebsh–Gordo

coefficients are real we have

@~s+hHam+hDiff !~T@c0#!#~Tc!5(
@c8#

b~@c0#,@c#;c8!k@c8#5@hHamT@c0##~Tc!. ~III.13!

That is, we have constructed a maphHam:FDiff→FDiff8 ,FCyl8 such thathF5s+hHam+hDiff . Note
that the compositionhHam+hDiff is independent ofa@c# , and thus independent of the particul
choice of the maphDiff .

Let us now examine the status of the ‘‘superselection rules’’ described in Ref. 1, asso
with the averaging over diffeomorphisms. According to these rules, the statesT@c# , T@c8#PHDiff

were superselected wheneverc and c8 were associated with graphsg,g8 in distinct diffeomor-
phism classes. Note, however, that in this case we may still have@hHam(T@c#)#(T@c8#)Þ0 or,
equivalently,

^T@@c## ,T@@c8##&physÞ0, ~III.14!

so that the corresponding states are not superselected. In fact, wheneverc andc8 are associated
with homotopically equivalent triplesc5(g,j ,c) and c85(g8,j 8,c), the statesT@@c## and T@@c8##

are proportional. Furthermore, the operatorT̂a,phys:T̂a,physhF f 5hF@Ta f # is well-defined and
mixes even homotopically distinct graphs. As a result, no sign of the superselection rules re
in the physical Hilbert space.

IV. CONCLUSIONS

We have seen in Sec. II that the ‘‘superselection rules’’ among the diffeomorphism in va
states in no way carry over to the physical space. This result was not unexpected, as we t
‘‘correct’’ description of 211 Euclidean gravity to be that given by Witten5 in which no super-
selected sectors arise. However, the appearance of such spurious superselection rules in
mediate stage was in no way an obstacle to the solution of the theory using loop representat
refined algebraic techniques, or even to solving first the diffeomorphism constraint and
implementing the remaining constraints. We recall that any of the possible mapshDiff can be used
and that they all lead to the same physical Hilbert space in the end.~In our presentation this wa
true by construction. However, the maphF is unique at least up to the choice of measuredn while
any choice ofhDiff is compatible with any choice ofdn. Therefore, given anyhDiff , the same
array of physical Hilbert spaces may be constructed through maps of the formhHam+hDiff .! This
can be taken as an encouraging sign for a similar approach in the 311 case. On the other hand
we have used the Witten constraints and the fact that they are well-defined onHaux to achieve our
goals. Such techniques are not available in the 311 case; it remains to be seen if this differen
is crucial.

Let us now address the question of whether the diffeomorphism superselection rules w
spurious in 311 gravity. We first note that, as described in Refs. 1 and 4, there are m
examples for which superselection laws arising from RAQare of physical relevance, as they hav
analogues even at the classical level. What accounts for the difference between these s
Several answers may be given. For example, in Ref. 4 it was found that spurious superse
rules can arise through a poor choice of the subspaceF. In general though, it appears that su
spurious superselection rules are associated with singular structures in either the system o
description of it.

To illustrate this point, recall the RAQ deals directly with only the strong observables o
system. Now, at least classically, this is no problem for any sufficiently smooth system. LetG be
the phase space of a classical system withC the corresponding constraint surface andG the group
of gauge transformations. WhenC/G is a smooth submanifold ofG/G, all of the physics is indeed
J. Math. Phys., Vol. 38, No. 9, September 1997
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captured by strong observables. Any observable~that is, any function onC/G! may be extended
to G/G and pulled back toG, where it defines a strong observable. Thus the strong observ
capture all of the physics of the system.

In our quantum case, however, there were interesting observables~the T̂a,phys! which were not
strongly diffeomorphism invariant. It would be interesting to understand whether this was d
some sort of singularity in the classical phase space or simply due to our quantum descript
any case, something analogous happens for 311 systems. It is shown in the Appendix that,
least in the representation based on the Ashtekar–Lewandowski Hilbert space, there are
quantum operators which are weak observables~with respect to the diffeomorphism constrain!
but which do not become equivalent to any strongly diffeomorphism invariant observable
the diffeomorphism constraints are imposed.

There are of course several possible interpretations here. Note that the Appendix co
only the diffeomorphism~and gauge! constraints. It is therefore possible that, once the full alge
including the Hamiltonian constraints are considered, no analogue of these operators will r
Another possibility is that these observables are simply spurious results of the quantization m
and have no physical meaning. A third, however, is that such observables are importan
proper treatment of the system and that we must expand our techniques to take them into a
In any case, when we consider that the Hamiltonian constraint of 311 gravity11 mixes the
‘‘superselected sectors’’ much ashHam does in the 211 case, it appears likely that the diffeo
morphism superselection laws are spurious in 311 gravity as well.
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APPENDIX: STRONG QUANTUM OBSERVABLES IN 3 11 GRAVITY

In this appendix we show that the quantization scheme for 311 gravity considered in Ref. 1
contains operators that are weakly invariant under diffeomorphisms but which are not w
equivalent to any operator which isstronglyinvariant under diffeomorphisms. Before proceedin
we should recall certain subtleties of the Ashtekar–Lewandowski Hilbert space and car
define what we mean by weak observables. Recall that the diffeomorphism constraints them
are not actually defined as operators on this space.1 Instead, it is the finite diffeomorphisms~which
may be interpreted as exponentiated versions of the constraints! which are defined onHaux. These
operators are, however, sufficient to define a spaceFDiff of diffeomorphism invariant states whic
are naturally thought of as the quantum analogue of the classical space of solutions to the
morphism constraints. By weak equivalence of two operatorsB and C, we therefore mean tha
B andC coincide when acting onFDiff . Furthermore, a weak observable is naturally defined to
one which mapsFDiff into itself.

The construction of the observables is quite straightforward. Recall thatFDiff is in fact a space
of ‘‘dual states,’’ specifically, of linear functionals on the spaceFcyl of cylindrical functions. Thus
any operatorA whose adjointA† acts on and preserves the spaceFcyl of cylindrical states has a
natural ‘‘dual action’’ onFDiff given by

@AcDiff #~f!5cDiff ~A†f!. ~A1!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Now, simply choose any two nontrivial spin network statesT1 ,T2 and consider the setsST1
,ST2

of
all states that can be obtained fromT1 ,T2 , respectively, by diffeomorphisms. SinceT1 andT2 are
each associated with analytic graphs, the cardinality of both setsST1

, andST2
is the same, namely

that of the power setP ~R! of all real numbers. As a result, there is bijectiona betweenST1
and

ST2
and our observableA may be defined by

AT5a~T! for TPST1
,

~A2!

while Ac50 if ^cuT&50 for all TPST1
.

Note thatA is a bounded operator whose range lies inVT2
, the space of states spanned by s

network states inST2
. The adjointA† is of a similar form but is defined by the mapa21.

Both A andA† are in fact weak observables. To see this, we simply compute the action
diffeomorphism onAcDiff for a diffeomorphism invariant statecDiff . SinceFDiff is a space of
linear functionals onFCyl , AcDiff is entirely determined by its action on spin network stat
which form a basis forFCyl . For any diffeomorphismD and any spin networkT, @DAcDiff #
3(T)5cDiff (A

†D21T). If T is orthogonal to the spaceVT2
~spanned by spin networks inST2

!

then this vanishes. Otherwise, we may takeT to beD8T2 for some diffeomorphismD8. In either
case we have

@DAcDiff #~T!5cDiff ~D9A†T!5@AcDiff #~T! ~A3!

for some diffeomorphismD9. ThusA preservesFDiff and is a weak observable with respect
diffeomorphisms. However, since we are free to chooseT1 and T2 from different superselected
sectors~as defined by Ref. 1! for the algebra of strongly diffeomorphism invariant operators, i
clear that the action ofA on FDiff does not preserve the superselection sectors. As a resuA
cannot be weakly equivalent to any strongly diffeomorphism invariant operator.
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Space–time averages in macroscopic gravity
and volume-preserving coordinates
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The definition of the covariant space-time averaging scheme for the objects~ten-
sors, geometric objects, etc.! on differentiable metric manifolds with a volume
n-form, which has been proposed for the formulation of macroscopic gravity, is
analyzed. An overview of the space-time averaging procedure in Minkowski space-
time is given and comparison between this averaging scheme and that adopted in
macroscopic gravity is carried out throughout the paper. Some new results concern-
ing the algebraic structure of the averaging operator are precisely formulated and
proved, the main one being that the averaging bilocal operator is idempotent iff it
is factorized into a bilocal product of a matrix-valued function on the manifold,
taken at a point, by its inverse at another point. The previously proved existence
theorems for the averaging and coordination bilocal operators are revisited with
more detailed proofs of related results. A number of new results concerning the
structure of the volume-preserving averaging operators and the class of proper
coordinate systems are given. It is shown, in particular, that such operators are
defined on an arbitraryn-dimensional differentiable metric manifold with a volume
n-form up to the freedom of (n21) arbitrary functions ofn arguments and 1
arbitrary function of (n21) arguments. All the results given in this paper are also
valid whenever appropriate for affine connection manifolds including~pseudo!-
Riemannian manifolds. ©1997 American Institute of Physics.
@S0022-2488~97!00309-5#

I. INTRODUCTION

Space-time averaging procedures play an important role in modern physics because of,
all, their relevance to deriving classical macroscopic theories. A well-known example of s
procedure is the space-time scheme developed for averaging out the microscopic Lorentz
dynamics to derive the macroscopic Maxwell electrodynamics~see, for example, Refs. 1–4!.5

Another important physical argument for considering space-time averaging procedures is th
are relevant to modelling the process of physical measurement. It is the space-time aver
physical fields that are known6,7 to have direct observational status and physical meaning.

The space-time averaging procedure of classical electrodynamics utilizes explicitly th
character of the Minkowski space-time manifold and its formulation is essentially based o
existence of Cartesian coordinates. In this connection, the following questions are of intere

a!Electronic mail: m.mars@qmw.ac.uk
b!Electronic mail: zala@camk.edu.pl. Sniadeccy Fellow. Address after 10 May 1997: School of Mathematical Sc

Queen Mary & Westfield College, University of London, Mile End Road, London E1 4NS, England, United Kin
Electronic mail: rmz@maths.qmw.ac.uk
0022-2488/97/38(9)/4741/17/$10.00
4741J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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importance: whether it is possible~a! to encode the properties of the averaging procedure
covariant manner suitable for differentiable manifolds not equipped with a metric and a co
tion in general, and~b! to formulate the corresponding covariant averaging procedure for
objects which can live on such manifolds and to clear up its geometric meaning. Having r
~a! and ~b!, the next question of primary importance is~c! how the averaging procedure may b
made compatible with a metric and a connection when the differentiable manifold possesse
structures.

It should be pointed out here that the above problem of generalizing the flat space
procedure for curved manifolds goes far beyond being simply an academic problem. One
most important areas of applicability is the general theory of relativity where the space-tim
4-dimensional pseudo-Riemannian manifold. As is well-known, there is not yet a satisfa
derivation of the Maxwell equations in general relativity, apart from the covariantization pr
dure where the partial derivatives of the special theory of relativity are replaced by covarian
~see, for example, Ref. 8!. A physically motivated and mathematically correct derivation of
macroscopic Maxwell equations by averaging out the general relativistic microscopic Max
Lorentz equations is still lacking and, furthermore, the very foundations of microscopic ele
dynamics in general relativity are not well-established yet. Another problem in general rela
where the availability of a space-time averaging procedure is of primary importance is th
called averaging problem~see Refs. 9–12 for a review and discussion!. Its main motivation comes
from cosmology where Einstein’s equations are usually utilized with a hydrodynamic s
energy tensor without any satisfactory proof of why the left-hand side of the equations~the field
operator! keeps the same structure while the right-hand side has been changed, or average
a real discrete matter distribution~stars, galaxies, etc.! to a continuous one. The task here is
carry out a space-time averaging of Einstein’s equations in order to understand the structure
averaged~macroscopic! field equations and apply them to deal with the overwhelming majority
cosmological problems. A solution for this problem is also desirable in order to provide a rig
basis for constructing continuous matter models from discrete ones~this construction is based in
modern cosmology mainly on phenomenological grounds!.

The goal of this paper is twofold:~1! to give precise formulations and detailed proofs of so
new results concerning the algebraic structure of the averaging and coordination operators
properties of the space-time averages within the so-called macroscopic gravity9,11,13–16~the basics
of this averaging procedure has been developed in Refs. 17, 18!; ~2! to revisit the previously
shown existence of the bilocal operators of macroscopic gravity11,13 with more detailed proofs of
related results. The paper is organized as follows. Section II gives an overview of the spac
averaging scheme used in electrodynamics. The space-time averages of macroscopic gra
defined in Section III. The next two sections are devoted to the algebra of the averaging op
with a discussion of its algebraic properties and a formulation of an important theorem statin
the averaging bilocal operator is idempotent iff it is factorized into a bilocal product of a ma
valued function on the manifold, taken at a point, by its inverse at another point. The differ
properties of the averages and the coordination bivector are summarized in Section VI. In S
VII the existence theorems for the averaging and coordination operators are formulate
proved. The last Section VIII is devoted to the definition and properties of the proper coord
systems, the coordinates in which the averaging operators take their simplest form. It is sho
particular, that such operators are defined on an arbitraryn-dimensional differentiable metric
manifold with a volumen-form up to the freedom of (n21) arbitrary functions ofn arguments
and one arbitrary function of (n21) arguments. A summary on the meaning and content of
space-time averaging procedure of macroscopic gravity is given in the Conclusion.

Though given forn-dimensional differentiable metric manifolds with a volumen-form, they
are valid whenever appropriate for affine connection manifolds, including~pseudo!-Riemannian
manifolds. All the results in this paper also hold generally forn-dimensional differentiable mani
folds with a volumen-form possessing neither a metric nor a connection.
J. Math. Phys., Vol. 38, No. 9, September 1997
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II. SPACE-TIME AVERAGES IN MINKOWSKI MANIFOLD

The space-time averaging procedure applied in electrodynamics is explicitly based on t
character of the Minkowski space-timeE and the existence of the Cartesian coordinates (t,xa),
a51,2,3. The space-time averages are defined as follows.1–4

Definition 1: The average value of a tensor field pb
a(x), xPE , over a compact space regio

S and a finite time intervalDt at a supporting point(t,xa)PDt3S is

^pb
a~ t,xa!&E5

1

DtVS
E

Dt
E

S
pb

a~ t1t8,xa1xa8!dt8 d3x8. ~1!

Here, VS is the 3-volume of the region S, which is usually taken as a 3-sphere of radius R arou
the point xa at the instant of time t,

VS5E
S
d3x8.

Formula ~1! defines the average value^pb
a(t,xa)&E at a point (t,xa) on the manifoldE . In

order to obtain averaged tensor fields and define its derivatives, it is necessary to make ad
assumptions concerning the averaging regionsS and the intervalsDt. This assumptions are usu
ally made only tacitly~see, however, a discussion in Ref. 1!, or they are supposed to be trivial, b
should be explicitly writen down here:~i! a regionS and an intervalDt must be prescribed a
every point (t,xa)PE in order to define an averaged field^pb

a(t,xa)&E , ~ii ! all the regionsS and
time intervalsDt are typical in some defined sense — they are usually required to be of the
shape and volume,VS5const andDt5const, and related to each other by shifting along
Cartesian coordinate lines. These properties are very easily arranged by Lie-dragging of a
S and an intervalDt, chosen around a point (t,xa)PE , along the congruences of the Cartesi
coordinate lines19 to get a ‘‘covering’’ of the manifold~or its connected part! with a region of the
same shape and volume and a time interval of the same length around each point ofE . Conse-
quences of the properties~i! and~ii ! are, first of all, theuniquenessof the definition of the average
field ^pb

a(t,xa)&E , and, secondly, the commutation formulae between the averaging and the p
derivatives

]

]t
^pb

a~ t,xa!&E5 K ]

]t
pb

a~ t,xa!L
E

,
]

]xa
^pb

a~ t,xa!&E5K ]

]xa
pb

a~ t,xa!L
E

. ~2!

The essence of this approach lies in the exploitation of the calculational advantages of the
sian coordinates on a flat manifold. The Cartesian coordinates play a central role both in d
the averages~1! and in obtaining properties, such as Eq.~2!, which will allow the averaging out of
the partial~ordinary! differential equations under interest. It should be stressed that by requirin~i!
and ~ii ! the averageŝpb

a(t,xa)&E become local functions of (t,xa), i.e.,

S ]

]xa

]

]t
2

]

]t

]

]xaD ^pb
a~ t,xa!&E50, ~3!

and, therefore, they are provided with proper analytical properties. Furthermore, the func
dependence of the average~1! on the averaging region and interval,S andDt, becomes simply a
parametric dependence on the value of the volumeVS and the lengthDt. One can, therefore, appl
the standard differential and integral calculus to deal with the averages and averaged equ
The set of averaged components^pb

a(t,xa)&E given by Eq.~1! in Cartesian coordinates are th
components of a Lorentz tensor within the class of coordinate transformationsx̃a5Lb

axb1ab
J. Math. Phys., Vol. 38, No. 9, September 1997
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with a constant shiftab and a constant Lorentz transformation matrixLb
a . Now, if it is necessary

to consider an average field in another coordinate system, the components of^pb
a(t,xa)&E in that

new system are found by applying the standard tensorial transformation law.
There is still another property of the averages^pb

a(t,xa)&E widely used in macroscopic elec
trodynamics~but again, often only tacitly assumed!; the idempotency of the averages

^^pb
a~ t,xa!&E&E5^pb

a~ t,xa!&E . ~4!

In order to prove this property we must calculate the average value^^pb
a(t,xa)&E&E of the average

^pb
a(t,xa)&E

^^pb
a~ t,xa!&E&E5

1

DtVS
E

Dt
E

S
S 1

Dt8VS8
E

Dt8
E

S8
pb

a~ t1t81t9,xa1x8a1x9a!dt9 d3x9D dt8 d3x8.

~5!

Now, the expression~5! leads to Eq.~4! under either of two additional assumptions:~iii 8! the
averaging regionDt83S8 is the same regionDt3S with the supporting point at (t8,x8a)
PDt3S and the average valuêpb

a(t,xa)&E does not depend on the choice of a supporting po
within a chosen region;~iii 9! the averaging regionDt83S8 is a different neighbouring region an
the average valuêpb

a(t,xa)&E remains the same if evaluated over any neighbouring reg
containing a neighbourhood ofx. Although they seem different the above assumptions are
ertheless essentially equivalent. Indeed,~iii 8! puts emphasis on the independence of the aver
value with respect to the choice of a supporting point from a set of all possible points in afixed
averaging region, while ~iii 9! puts emphasis on the independence of the average value with re
to the choice of an averaging region from a set of all possible regions defined by a neighbou
of a fixed supporting point. Remembering~ii ! that the averaging regions are typical, change of
supporting point can be considered as change of the averaging region, and vice versa
assumptions thereby encode the same fundamental property of the averages which is inh
related to the philosophy of averaging itself — an averaging region is considered as a poin
the macroscopic point of view, and the change of either a supporting point or an averaging
does not affect the corresponding average value. The reason for this is that the differences
by the above variations are negligibly small from a macroscopic point of view.20 Thus, the
well-known procedure of space-time averaging in classical electrodynamics presupposes th
specific conditions~i!, ~ii ! and~iii ! to ensure reasonable analytical and tensorial properties o
averages~1!. Clearly, the whole procedure relies crucially on the existence and properties o
exceptional coordinate system in a flat space-time, namely, Cartesian coordinates. These
tions, which seem more or less trivial at first sight, require further analysis to make clear
geometrical meaning and invariant content. This will allow a reasonable formulation of a s
time averaging procedure on general~not necessarily flat! manifolds.

III. DEFINITION OF SPACE-TIME AVERAGES IN MACROSCOPIC GRAVITY

Let us remind the definition of the space-time averages adopted in macroscopic gravi11,13

This procedure is a generalization of the space-time averaging procedure adopted in ele
namics~see Section II! and it is also based on the concept of Lie-dragging of averaging reg
which makes it valid for any differentiable manifold.

Definition 2: Chosen a compact regionS,M in an n-dimensional differentiable metri
manifold (M, gab) with a volume n-form and a supporting point xPS to which the average
value will be prescribed, the average value of an object (tensor, geometric object, etc.) pb

a(x),
xPM, over a regionS at the supporting point xPS is defined as
J. Math. Phys., Vol. 38, No. 9, September 1997
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p̄b
a~x!5

1

VS
E

S
pb

a~x,x8!A2g8dnx8[^pb
a&, ~6!

where VS is the volume of the regionS,

VS5E
S
A2gdnx. ~7!

Here, the integration is carried out over all pointsx8PS, g85det(gab(x8)) ~since the pri-
mary interest is in space-time manifolds, it is assumed that this determinant is negative, oth
the negative sign inA2g must be dropped! and the bold face objectpb

a(x,x8) in the integrand of
Eq. ~6! is a bilocal extension of the objectpb

a(x),

pb
a~x,x8!5Am8

a
~x,x8!pn8

m8~x8!Ab
n8~x8,x!, ~8!

by means of bilocal averaging operatorsAb8
a (x,x8) and Ab

a8(x8,x). The averaging scheme i
covariant and linear,̂apb

a1bqb
a&5a^pb

a&1b^qb
a&, a,bPR, by construction and the average

object p̄b
a keeps the same tensorial character aspb

a .

Let us suppose that the bilocal functionsAb8
a (x,x8) andAb

a8(x8,x) are defined locally on an
open subsetU,M, x,x8PU. In the following sections their algebraic and differential propert
are formulated and analyzed to show that averaging operators with such properties do ex
also to find out the corresponding properties of the averages~6!.

IV. ALGEBRA OF THE AVERAGING OPERATOR

The following algebraic properties, which are a formalization of the properties of the sp
time averages in macroscopic electrodynamics using the language of bilocal operators,
quired to hold.9,11,13

Property 1: The coincidence limit ofAb8
a is

lim
x8→x

Ab8
a

~x,x8!5db
a . ~9!

Property 2: The operatorAb8
a is idempotent

Ab8
a

~x,x8!Ag9
b8~x8,x9!5Ag9

a
~x,x9!. ~10!

These two properties imply thatAb
a8(x8,x) is the inverse operator ofAb8

a (x,x8),

Ab8
a

Ag
b85dg

a andAb8
a

Aa
g85db8

g8 , and that the average tensorp̄b
a(x) takes the same value as th

original tensorpb
a(x), p̄b

a(x)5pb
a(x), when the integrating regionS is chosen infinitesimally

small, or tends to zero. This implies an additional algebraic property of the averages~6!, namely,
that the averaging procedure commutes with the operation of index contraction.

The idempotency~10! of the averaging operatorAb8
a is designed to provide the idempotenc

of the averages~6! in macroscopic gravity

p% b
a~x!5 p̄b

a~x!. ~11!

Indeed, let us consider for simplicity a vectorva(x) and calculate the twice averaged val

v% a(x) around the same pointxPU by using the definition~6!
J. Math. Phys., Vol. 38, No. 9, September 1997
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v% a~x!5
1

VSx

E
Sx

S 1

VSx8

E
Sx8

Ab8
a

~x,x8!Ag9
b8~x8,x9!vg9~x9!A2g9dnx9DA2g8 dnx8, ~12!

whereSx8 is an averaging region around the pointx8PU. By applying the idempotency conditio
~10! the expression~12! takes the form

v% a~x!5
1

VSx

E
Sx
S 1

VSx8

E
Sx8

Ag9
a

~x,x9!vg9~x9!A2g9dnx9DA2g8 dnx8. ~13!

Now, if the term in parentheses were independent ofx8, we could take it outside the integral wit
respect to the variablex8 to get the resulting property~11!. This term in Eq.~13!, however,
depends explicitly onx8 in the integration regionSx8 . Similarly as in macroscopic electrodynam
ics, the idempotency~11! of the averages~6! follows under either of two additional assumptions21

~iii 8! the averaging regionSx8 is the same regionSx with the supporting point atx8PSx and the
average valuep̄b

a(x) does not depend on the choice of a supporting point within a chosen re
~iii 9! the averaging regionSx8 is a different neighbouring region and the average valuep̄b

a(x)
remains the same if evaluated over any neighbouring region containing a neighbourhood ox. As
it was emphasized in Section II this is a fundamental property of any physically reaso
classical averaging procedure and such stability of averages comes from the basic princi
averaging.

A microscopic field to be averaged is supposed to have two essentially different var
scales,22 l andL, satisfying

l!L, ~14!

and an averaging region must be taken of an intermediate sized such as

l!d!L ~15!

so that the averaging effectively smooths out all the variations of the microscopic field of the
l. It is implicitly assumed in every averaging scheme~for example, in the averaging schem
applied in classical physics in Minkowski space-time, such as in hydrodynamics and elec
namics — see Section II! that the result of the averaging is insensitive to the choice of
supporting point within a fixed averaging region and it is independent of the choice of integr
~averaging! region itself provided the scaled satisfies the condition~15!. This means that the
microscopic averaging region is considered as a single ‘‘point’’ for the macroscopic ave
field. Such regions have been called ‘‘physically infinitesimally small’’ by Lorentz.23

The trouble is, however, to perform a mathematically rigorous proof of this fact. This pro
already appears in the usual averaging procedures in flat space-times and, to the best
knowledge, remains unsolved~see, for example, a discussion in Ref. 24 for the case of hydro
namics!. Furthermore, it is not clear whether the property~11! has to be interpreted as an exa
one, or it is rather an approximate property. A satisfactory formal analysis of the idempo
property of the volume averages is still lacking, though it is extensively used.25 This problem
certainly deserves further examination.26

V. STRUCTURE OF THE AVERAGING OPERATOR

In the previous section we discussed two algebraic Properties 1 and 2 of the bilocal op
Ab8

a (x,x8) and the physical motivations which make these two conditions plausible. In
section the consequences of requiring Eqs.~9! and~10! in the structure of the bilocal operator a
analyzed. The following main theorem holds.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 1: The bilocal operatorAb
a8(x8,x) is idempotent if and only if it is factorized. Tha

is to say, for a bilocal operatorAb
a8(x8,x) Properties 1 and 2 are equivalent to

Ab
a8~x8,x!5Fi

a8~x8!F21
b
i ~x!, ~16!

where Fi
b(x) is a set of n linear independent vector fields and F21

b
i (x) is the associated dua

1-form basis, i51, . . . ,n, and summation over i is carried out.
Proof: The inverse implication is checked trivially, so let us consider the direct implica

only. Indeed, the partial derivative of the idempotency relation~2!, Aa8
g9(x9,x8)Ab

a8

3(x8,x)5Ab
g9(x9,x), with respect toxs8 results in the following expression:

Aa8,s8
g9 ~x9,x8!Ab

a8~x8,x!1Aa8
g9~x9,x8!Ab,s8

a8 ~x8,x!50.

Contracting this expression withAg9
e8 (x8,x9) andAm8

b (x,x8) and using both Eqs.~9! and~10! one
gets

Ag9
e8 ~x8,x9!Am8,s8

g9 ~x9,x8!1Ab,s8
e8 ~x8,x!Am8

b
~x,x8!50. ~17!

Now, the first summand does not depend onx and the second one does not depend onx9, which
means that

Ab,s8
e8 ~x8,x!Am8

b
~x,x8![Bm8s8

e8 ~x8!, ~18!

whereBm8s8
a8 are arbitrary functions depending only on the variablex8. The relation~18! imme-

diately implies the following identity for the functionsBm8s8
a8 (x8):

Bm8[s8,d8]
e8 1Br8[s8

e8 Bm8d8]
r8 50, ~19!

where the square brackets denote, as usual, antisymmetrization and the underlined indices
affected by antisymmetrization. Considering now Eq.~18! as a set of linear partial differentia

equations for the unknownsAb
a8(x8,x) (x being a parameter!

Ab,s8
e8 ~x8,x!5Bm8s8

e8 ~x8!Ab
m8~x8,x!, ~20!

one observes that they are always integrable becauseBm8s8
a8 (x8) satisfy the identity~19!. The

general solution of the system of equations~20! is of the form

Ab
e8~x8,x!5Fi

e8~x8!Hb
i ~x!,

whereFi
a8(x8), i 51,...,n, aren2 independent solutions of Eq.~20! and Hb

i (x) are n2 arbitrary
constants of integration~thereby depending onx). It only remains to impose the coincidence lim
property~9! to setHb

i (x)5F21
b
i (x) and the proof of the theorem is completed. h

VI. DIFFERENTIAL PROPERTIES OF BILOCAL OPERATORS

In this section the differential properties of the bilocal operators are summarized. This
view is essential for understanding further results concerning the space-time averaging sc

In order to obtain the averaged fields of the geometric objects onM one needs to assign a
averaging regionSx to each pointx of U,M, where the averaging integral~6! is to be evalu-
ated. Furthermore, to calculate directional, partial and covariant derivatives of the averaged
J. Math. Phys., Vol. 38, No. 9, September 1997
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a law of correspondence between neighbouring averaging regions must be defined.11,13,18A natural
way to define such a correspondence is to relate averaging regions by Lie-dragging, or map
a region into another along a vector field~see Section II!, by means of another bilocal operato

W b
a8(x8,x) which is also assumed to satisfy the coincidence limit property~9!.
To derive the commutation formulae between the averaging and the derivation, one s

define first the directional derivative of an average fieldpb
a(x) along a vector fieldjW5d/dl,

d

dl
p̄b

a~x!5 lim
Dl→0

1

Dl
@ p̄b

a~x1Dx!2 p̄b
a~x!#, ~21!

whereDxa5ja(x)Dl. Let us define now the shift field for every pointx8PSx as11,13,18

Sa8~x8,x!5W b
a8~x8,x!jb~x!. ~22!

Now, the averaging regionSx1Dx associated with the pointx1Dx is obtained by Lie-dragging the
averaging regionSx a parametric lengthDl ~the same for allx8PSx) along the integral lines of
the fieldSa8.

The coordination bivectorW b
a8 allows the construction of the shift vectorSa8 for any aver-

aging region and any vectorja ~the shift vector at the supporting point for that region!. By
choosingn such linearly independent vector fieldsj i

a and shifting averaging regions along the
one can build a covering of the manifold with one averaging region associated to evx
PU,M. This procedure is a formalization of the condition~i! of Section II.

As a consequence of the definitions~6!, ~21! and ~22! one can obtain the following formula
for the commutation of partial differentiation and averaging:11,13

p̄b,l
a 5^Am8

a pn8,e8
m8

Ab
n8W l

e8&1^pb
a

W l:e8
e8 &2 p̄b

a^W l:e8
e8 &2^S sl

a pb
s&1^ps

a
S bl

s &. ~23!

Here,S sl
a are the so-called structural functions,S bg

a 5Ae8
a (Ab,g

e8 1Ab,s8
e8

W g
s8) andW l:e8

e8 is

the divergence of the coordination bivector,W l:e8
e8 5W l,e8

e8 1(lnA2g) ,e8W l
e8 . In an affine con-

nection space with connection coefficientsGbg
a ~a Riemannian space is considered in Ref. 18! the

same formula~23! remains valid for covariant derivatives, where partial differentiation is repla

by the covariant one and the divergenceW l:e8
e8 is replaced byW l;e8

e8 5W l,e8
e8 1Ge8W l

e8 ~with

Ge85Ge8a8
a8 ). The commutation formula~23! has a very transparent meaning: the first term in

right-hand side is the average value of the derivative ofpb
a weighted byW b

a8 , the last two terms

are due to the non-triviality of the averaging operatorAb
a8 , while the second and third term

describe the effect of a non-trivial averaging measure in Eq.~6! and the variation in the value o
the volume for different regions, respectively. Indeed, the change in the volumeVS of an ~aver-
aging! regionS,M Lie-dragged along a vector fieldj is given by~see, for example, Refs. 17
27!

d

dl
VS5E

S
divj dV, ~24!

which can be written in terms of partial derivatives after using Eq.~22! as21

VS,b5^W b:a8
a8 &VS . ~25!

The expression~23! is the most general version of formulae~2! for arbitrary averaging and
coordination operators.
J. Math. Phys., Vol. 38, No. 9, September 1997
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A fundamental problem one has to face now is whether it is possible or not to define a u
covering of the manifoldM, like in Minkowski space-time~see Section II!. In other words, given
a microscopic tensor fieldpb

a(x), the goal is to determine a uniquely defined averaged tensor
p̄b

a(x) with reasonable analytical properties in its dependence on the supporting point. Fu
more, we must deal with the problem that the averages~6! depend functionally on the averagin
regionsp̄b

a(x)5 p̄b
a(x)@S# and applying the commutation formula~23! to find averaged equation

would, in general, bring volume dependent terms into them, which is undesirable. In the c
Minkowski space-time the uniqueness of the averaged field with the proper analytical behav~3!
and the parametric dependence on the averaging region volume are ensured by the cond~ii !
~see Section II! which sets the averaging regions to be typical, of the same shape and vo
VS5const andDt5const, and shifted along the Cartesian coordinate lines. To arrange si
properties for the generalized averages~6! one must look for some specific conditions on t

coordination operatorW b
a8 . The following remarkable theorem holds11,13 ~its version for Rie-

mannian manifolds has been given in Ref. 18!.

Theorem 2: In the averaging region coordination by the bivectorW b
a8 on an arbitrary

differentiable manifold, it is necessary and sufficient to require

W [b,g]
a8 1W [b,d8

a8
Ag]

d850 , ~26!

for the average tensor field pb̄
a(x) to be a single valued local function of the supporting point x

U,M,

p̄b,[mn]
a 50. ~27!

Proof: The sufficiency of Eq.~26! is easily proved by calculating the antisymmetrized seco
partial derivative of Eq.~23! which, after using Eq.~26!, gives Eq.~27!. The necessity follows
from the analysis of the condition~27! after taking into account that the averaging regions and
tensor fieldpb

a are arbitrary. h

Geometrically, Eq.~26! means that, given an averaging regionS, the regionS̃ obtained by
transportingS along an infinitesimal parallelogram constructed from two commuting vector fi

j and z according to the law~22! coincides with the original region,S̃5S. This is a highly
non-trivial property which allows to construct a covering of the manifold with an averaging re
attached to every point in the manifold, thus generalizing the corresponding part of the con
~ii ! in Section II. In the formalism of bilocal exterior calculus the condition~26! reads that the

operator W b
a8 is biholonomic, which means that the bilocal coordinate 1-form ba

W a85W b
a8dxb has vanishing biholonomicity coefficients in the bilocal Maurer-Car

equations.13

It should be noted here that formula~27! is analogous to formula~3! in both form and
meaning.

Another condition on the coordination bivectorW b
a8 is the requirement that the Lie-draggin

of a region is a volume-preserving diffeomorphism11,13 ~Ref. 18 for Riemannian manifolds!

W b:a8
a8 50, ~28!

which means that the averaging regions do not change the value of the volume when
~coordinated! along a chosen vector fieldj according to Eq.~22!. This generalizes the correspon
ing part of the condition~ii ! in Section II.

Thus, the condition~26! states that the average tensor field is a single valued local functio
the supporting pointx ~27!. Adding the condition~28!, the average tensor field does not depe
explicitly on the value of the region volumeV5VS , andV itself is a free parameter of the theor
J. Math. Phys., Vol. 38, No. 9, September 1997
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Given a microscopic tensor fieldpb
a(x) on M, the average tensor fieldp̄b

a(x) is therefore
uniquely defined onU,M and can be handled within the framework of standard differential

integral calculus. Requiring additionally that the two bivectorsAb
a8 andW b

a8 coincide

Ab
a85W b

a8 ~29!

the first term in the commutation formula~23! becomes exactly the average derivative. Using
conditions~26!, ~28! and ~29!, the commutation formula acquires a remarkable simply form11,13

p̄b,g
a 5^pb,g

a 1pb,a8
a

W g
a8&. ~30!

The corresponding analogues of this expression for covariant differentiation are obtained
placing partial derivatives by covariant ones. To obtain the expression for directional deriv
we must contract this expression with a vectorjg and insert the vector fieldSa8 from Eq. ~22! in
the second term of the right-hand side of Eq.~30!. Formula~30! generalizes formulae~2! and it

can be easily shown13 to become exactly~2! if W b
a85db

a and the volumen-form « is standard,

that is (lnA2g) ,e850 and«5dx1` . . . `dxn.27,28 In Section VIII one can find more details o
this particular case, see formulae~46! and ~53!.

VII. EXISTENCE THEOREMS

The differential conditions~26! and ~28! together with the algebraic conditions~9!, ~10! and
~29! are to be considered as a set of partial differential and algebraic equations for the un

functionsW b
a8 . Provided a solution for the system is found, the existence of such operatorsAb

a8

andW b
a8 ~and therefore of the averages with the above described properties! is proved. Theorem

1 has revealed the structure of the operatorW b
a8 obeying the algebraic properties~9!, ~10!. The

following theorem gives the general solution of Eq.~26! ~in Refs. 11, 13, and 18 for Riemannia
manifolds, the same theorem has proved a solution of Eq.~26! with Eq. ~29! sought in a factorized
form ~16!, and now, with Theorem 1 taken into account, it gives the general solution!.

Theorem 3: In an arbitrary n-dimensional differentiable manifold the general solution of
equations

W [b,g]
a8 1W [b,d8

a8
W g]

d850 , ~31!

for idempotent bilocalsW b
a8(x8,x) is given by

W b
a8~x8,x!5 f i

a8~x8! f 21
b
i ~x! ~32!

where fi
a(x)]a5f i is any vector basis satisfying the commutation relations

@ f i ,f j #5Ci j
k fk ~33!

with constant structure functions (anholonomicity coefficients) Ci j
k ,

Ci j
k 5const. ~34!

Proof: Due to Theorem 1 the idempotent bivectorW b
a8(x8,x) has the factorized form~16!

W b
a8~x8,x!5Fi

a8~x8!F21
b
i ~x!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Inserting this expression into Eq.~31! one finds

Fi
a8~x8!F21

[b,g]
i ~x!1Fi ,d8

a8 ~x8!F21
[b
i ~x!F j

d8~x8!F21
g]
j ~x!50 . ~35!

Now, using the expression relating derivatives of a vector basis and its dual 1-form basis

F j ,m8
a8 52Fl

a8F21
b8,m8
l F21

j
b8 ~36!

in equation~35!, it becomes

2Fl
rFk

sF21
[r,s]
i ~x!52Fl

r8Fk
s8F21

[r8,s8]
i

~x8![Clk
i , ~37!

which is exactly the expression for the anholonomicity coefficientsClk
i in terms of a 1-form basis

Equations~37! say that any vector basisFi
a(x)5 f i

a(x) such that its corresponding dual 1-for

basisf 21i
5 f a

21i
dxa satisfies the Maurer-Cartan equation

df 21i
52

1

2
Cjk

i f 21j
` f 21k

~38!

with constant anholonomicity coefficientsClk
i 5const, is a solution of Eq.~31!. The class of all

such bases constitutes the general solution of equations~31! and therefore the general solution fo
the coordination bivector satisfying Eqs.~26! and ~29!. h

The next theorem proves the existence of solutions for the equation~28! within the class of
bivectors satisfying Eq.~32!21 @its version for a particular subclass of Eq.~32!, see Section VIII
and Proposition 1 below, has been given in Refs. 11, 13, and 18 for the case of Riem
manifolds#.

Theorem 4: In an arbitrary n-dimensional differentiable metric manifold(M, gab) with a

volume n-form there always exist locally volume-preserving bivectorsW b
a8(x8,x) of the form (32)

with (34) satisfying Eq. (28).

Proof: For a bivectorW b
a8(x8,x)5 f i

a8(x8) f 21
b
i (x) equations~28! read

f i :a8
a8 [ f i ,a8

a8 1~ lnA2g! ,a8 f i
a850. ~39!

Writing Eq. ~39! as

2 f i
a8 f 21

b8,a8
i

1~ lnA2g! ,b850, ~40!

and using the definition of the anholonomicity coefficients in terms of 1-form basis@see Eq.~37!
above# this equation can be rewritten as:

2 f i
a8 f 21

a8,b8
i

2Ck j
j f 21

b8
k

1~ lnA2g! ,b850. ~41!

Now it is sufficient to show the integrability of this quasi-linear partial differential equation
prove the theorem. Taking into account Eq.~34! and the propertyCji

i Ckl
j 50 which holds in that

case, one can easily show that Eq.~41! is always integrable on an arbitraryn-dimensional differ-
entiable manifold with a volumen-form. h

It should be stressed here that the conditionsCjk
i 5const due to Theorem 3 are essential for t

proof of Theorem 4 and they guarantee the local existence ofn linear independent divergence fre
vectors, the result holding for both orientable and non-orientable manifolds~by using the so-called
odd volumen-form29,30!.31
J. Math. Phys., Vol. 38, No. 9, September 1997
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Another important point is thatn vector fieldsf i
a satisfying Eqs.~33! and~34! define a finite

dimensional Lie group on the averaged manifolds which is directly related with the symmetr
such manifolds.32

These two theorems prove the existence of solutions for the set of equations~9!, ~10!, ~26!,

~28!, and ~29!, and therefore prove the existence of the bilocal operatorW b
a8(x8,x) with the

corresponding algebraic and differential properties~27! and ~30! for the averages~6!.
Now a particular subclass of the operators~32! with Eq. ~34! will be considered to analyze

some additional properties and to reveal the functional structure of the subclass.

VIII. THE PROPER SYSTEMS OF COORDINATES

As it has been emphasized in the Introduction and Section II, the space-time averagin
cedure adopted in electrodynamics is essentially formulated in Cartesian coordinates and
properties are shown by exploiting the exceptional character of this coordinates~see Section II for
details!. The covariant formalism developed for the averages~6! in macroscopic gravity~Sections
III-VI ! generalizes the averaging scheme of macroscopic electrodynamics for arb
n-dimensional differentiable manifolds and while keeping covariant properties which are a
gous to those in electrodynamics.

Let us now consider the macroscopic gravity averaging scheme for a particular subcl
operators~32! with ~34!. This particular subclass admits a special coordinate system in whic
averages and their properties have especially simple form and meaning. Such a coordinate
is an analogue for macroscopic gravity of the Cartesian coordinates in Minkowski space-ti

Let us hereby restrict the class of solutions of the equations~31! to the subclass satisfying

@ f i ,f j #50, ~42!

that is Ci j
k [0. In this case the vector fieldsf i

a constitute a coordinate system and there alw
exist n functionally independent scalar functionsf i(x) such that the vector and correspondi
dual 1-form bases are of the form

f i
a~x~fk!!5

]xa

]f i
, f a

21i
~f~xm!!5

]f i

]xa
. ~43!

Thus, the bilocal operatorW b
a8(x8,x) becomes

W b
a8~x8,x!5

]xa8

]f i

]f i

]xb
. ~44!

Being functionally independent, the set ofn functionsf i(x) can be taken as a system of loc
coordinates on the manifoldM11,13 ~Ref. 18 for Riemannian manifolds!.

Definition 3: A coordinate system$f i% defined by n scalar functionsf i5f i(x) in Eq. (43)
will be called a proper coordinate system.

The usefulness of this definition is motivated by the fact that in a proper coordinate syste

bilocal operatorW b
a8(x8,x) takes the simplest possible form

W j
i ~f8,f![W b

a8~x8,x! uxa5f i5db
a8[dj

i , ~45!

where the bilocal Kronecker symboldb
a8 is defined asdb

a85d i
a8db

i . The definition of the average
~6! acquires a remarkable simple form@closely resembling the space-time averages of macrosc
electrodynamics~1!# when written using a proper coordinate system
J. Math. Phys., Vol. 38, No. 9, September 1997
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p̄ j
i ~f!5

1

VSf

E
Sf

pj
i ~f8!A2g~f8!dnf8. ~46!

Theorem 4 has proved the existence of volume-preserving bilocal operators~32! and~34!, and

therefore the existence of solutions of Eq.~28! for operatorsW b
a8 of the form ~44!. It is useful,

however, to prove it here independently due to the above mentioned importance of the
system of coordinates for the macroscopic gravity averaging scheme. The following stat
holds in this case11,13 ~Ref. 18 for Riemannian manifolds!.

Proposition 1: In an arbitrary n-dimensional differentiable metric manifold(M, gab) with a
volume n-form, there always exist locally a set of n scalar functionally independent func
f i(x) such that the corresponding coordination bivector (44) satisfies condition (28).

Proof: Let us write down equations~28! for the bivectorW b
a8 ~44!

]2xa8

]f i]f j

]f j

]xa8
1~ lnA2g~x8!! ,m8

]xm8

]f i
50 ~47!

in terms of the unknownsf i(x). These equations are equivalent to the system of quasi-li
partial differential equations@compare with Eq.~41!# for f 21

a
i ~43!

2 f i
a8~x8~fk!! f 21

a8, j
i

~fk!1~ lnA2g~x8~fk!!! , j50 ~48!

which are always locally integrable on an arbitraryn-dimensional differentiable manifold with a
volume n-form. Then, in accordance with Eq.~43! f i(x) are solutions of the equation
f ,a

i 5 f 21
a
i , which are also always locally integrable because the integrability condit

f 21
[a,b]
i 50 are fulfilled due toCjk

i 50 ~42!. h

The following result is an obvious consequence of this Proposition.
Corollary 1: Any proper coordinate coordinate system such that the corresponding biv

(44) satisfies condition (28) is a volume-preserving system of coordinates,

~ lnA2g~fk!! , j50, or, g~fk!5const. ~49!

It should be noted here that all arguments concerning non-orientable manifolds and
existence given after Theorem 4 apply here as well~see Section VII!.

For the case of~pseudo!-Riemannian manifolds, Corollary 1 states that in a proper coordi
system the Christoffel symbolsGba

a , ~which areGba
a 5(lnA2g) ,b due to equi-affinity of Rie-

mannian manifolds! vanish

G i~f![G i j
j 5~ lnA2g~fk!! , j50. ~50!

Another useful characterization of the volume-preserving coordinates, in addition to Eq.~49!,
or Eq. ~50!, can be obtained in terms of the expansion of the vector fields tangent to the c
nates lines. Defining a vectorx( i ) tangent to a coordinate linef i as

x~ i !5x~ i !
j ]

]f j
5d~ i !

j ]

]f j
, ~51!

it is immediate to find that in the proper coordinate system$f i% the expansion divx ( i ) of the vector
field ~51! is

x~ i !: j
j 5~ lnA2g~fk!! ,i50, ~52!
J. Math. Phys., Vol. 38, No. 9, September 1997
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so that the condition of vanishing expansion for the tangent vector fieldsx( i ) is equivalent to the
definition of volume-preserving coordinates~49!.

In addition to very simple and transparent forms of the coordination bivector~44! and the
averages~46!, the volume-preserving proper coordinate systems also allow a remarkably s
expression for the commutation between partial differentiation and averaging. Indeed, expr
~30! becomes in the proper coordinate system

]

]fk
p̄ j

i ~f!5K ]

]f8k
pj

i ~f8!L , ~53!

which is exactly the same commutation formula for as in the averaging scheme in Minko
manifolds~2!.

Let us now study the functional structure of the class of the volume-preserving coordina
understand how large it is and how much freedom for coordinate transformations it contain
following Proposition reveals the structure of the class.

Proposition 2: The class of volume-preserving coordinate transformations on an arbi
n-dimensional differentiable metric manifold(M, gab) with a volume n-form, contains(n21)
arbitrary functions of n arguments and one arbitrary function of(n21) arguments.

Proof: Due to Proposition 1 the volume-preserving coordinates are characterized by the
dition ~49!. The class of coordinate transformationsya5ya(xm) which preserve this condition,

]

]ya
~ lnA2g~y!!50,

]

]xm
~ lnA2g~x!!50, ~54!

is defined by the system of partial differential equations33

]2ya

]xn]xm

]xm

]ya
50. ~55!

Equations~55! can be easily written as equations for the Jacobian of the coordinate transform
ya5ya(xm),

]

]xnFdetS ]ya

]xmD G50, ~56!

which have the general solution

detS ]ya

]xmD 5C, ~57!

where C is a non-vanishing constant to ensure invertibility of the coordinate transforma
Expanding the Jacobian~57! by its first row we get

]y1

]x1
j1~y2, . . . ,yn!1•••1

]y1

]xn
jn~y2, . . . ,yn!5C, ~58!

wherejn(y2, . . . ,yn) are the corresponding minors of the determinant, depending therefore
on (n21) functionsy2, . . . ,yn. These (n21) functions are arbitrary functionally independe
functions ofxm, andjn can be taken as explicit functions ofxm, jn5jn(xm). Then equation~58!
reads
J. Math. Phys., Vol. 38, No. 9, September 1997
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jn~xm!
]y1

]xn
5C. ~59!

This is a linear partial differential equation for the unknowny1(xm). Its general solution is known
to be

y1~xm!5yp
1~xm!1h~k2~xm!, . . . ,kn~xm!!, ~60!

where yp
1(xm) is a particular solution of Eq.~59!, kA(xm), A52, . . . ,n, are n21 functionally

independent first integrals satisfying

jn
]kA

]xn
50, ~61!

andh is an arbitrary function of (n21) argumentskA. Thus, the general solution of the equatio
~55! defining the class of volume-preserving coordinates~54! contains (n21) arbitrary functions
yA(xm) of n argumentsxm and one arbitrary functionh(kA) of (n21) variableskA(xm). h

The set of proper coordinate systems forms quite a big class and this functional freedom
be used to specify additional properties of the averages~6!, or ~46!, when necessary.

Choosing different proper coordinate systemsf i will give different average fields~46! of a
given microscopic tensor fieldpb

a(x). In general, the averagesp̄ j
i (f) and p̄ j

i (f̃) calculated in the
proper coordinate systemsf i and f̃ i are not related by a tensorial law under the transforma
f̃ i5f̃ i(f j ), nor are the operatorsW j

i(f8,f) andW j
i (f̃8,f̃) related by a tensorial transforma

tion with each of them beingdj
i ~45! in its own proper coordinates system. It should be noted h

that averages~6!, and~46!, are obviously tensorial with respect to coordinate transformations~as
follows directly from its definition!. The reason for the ‘‘non-tensorial’’ properties between

proper coordinates is due to the structure~32!, or ~44!, of the bilocal operatorW b
a8(x8,x) itself,

which involves a functional freedom in changing the functionsf i
a(x), or f i(x). This ‘‘non-

tensorial’’ property is very natural, indeed, for it states the exceptional character of the p
coordinate systems for obtaining the simplest and most transparent form of the averages
averaging and coordination operators. It closely resembles, on the other hand, the defini
averages in macroscopic electrodynamics as it was noted above, and the exceptional char
Cartesian coordinates used in that averaging procedure. The class of the proper coordinate
on an arbitrary differentiable metric manifold is a natural counterpart of the Cartesian coord
system on a Minkowski manifold. The property they share in common is that both are vo
preserving.

There is, however, a special subclass within the class of volume-preserving coordinate
formations described in Proposition 2 which keeps the bilocal operator~45! and the averages~46!
covariant.

Proposition 3: The class of transformationsf i→f̃ i which keeps the bivectorW b
a8 and the

averages~6! covariant within the class of proper system of coordinates is

f̃ i5L j
i f j1ai , ~62!

whereL j
i and ai are constant.

Proof: The proof is straightforward. Consider two proper coordinate systemsf i andf̃ i , and
require the bivectorsW j

i(f8,f) andW j
i(f̃8,f̃), each of the form~45! in its own proper coor-

dinates, to be equal
J. Math. Phys., Vol. 38, No. 9, September 1997
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]xa8

]f i

]f i

]xb
5

]xa8

]f̃ i

]f̃ i

]xb
. ~63!

Since the coordinate systemxa in equation~63! is proper by assumption it must be eitherf i or f̃ i .
Choosingf i one immediately obtains

dj
i5

]f i

]f̃ l
uf̃~x8!

]f̃ l

]f j
uf~x!

. ~64!

This last equation has as general solution~62!. It is easy to show that the class of transformatio
between proper coordinates keeps the averages~46! also covariant. h

Due to Proposition 3, if the manifold (M, gab) is chosen to be a~pseudo!-Riemannian
spacetime, the averages~46! defined in proper coordinates are Lorentz tensors exactly like
averages in Minkowski space-time~see Section II!.

IX. CONCLUSION

Thus, the covariant averaging procedure for objects~tensors, geometric objects, etc.! in the
framework of macroscopic gravity9,11,13 is a natural generalization of the space-time averag
procedure of macroscopic electrodynamics. It gives a covariant formulation of the conditio
the averages, which provide them with natural algebraic and analytical properties. A wide cl
averaging and coordination bilocal operators satisfying all the properties exist locally on an
trary n-dimensional differentiable manifold with a volumen-form, including metric and affine
connection manifolds and, in particular,~pseudo!-Riemannian spaces. The class of proper coo
nate systems, analogous to Cartesian coordinate system of Minkowski space-time and gene
them, gives the simplest and most transparent form of the averages. The averaging proced
is formulated allows a large functional freedom which is incorporated in an elegant way an
be used to arrange additional specific conditions for the averages.
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A rejoinder on quaternionic projective representations
S. L. Adler
Institute for Advanced Study, Princeton, New Jersey 08540

G. G. Emch
Department of Mathematics, University of Florida, Gainesville, Florida 32611

~Received 18 April 1997; accepted for publication 22 April 1997!

In a series of papers published in this journal, a discussion was started on the
significance of a new definition of projective representations in quaternionic Hilbert
spaces. In the present paper we give what we believe is a resolution of the semantic
differences that had apparently tended to obscure the issues. ©1997 American
Institute of Physics.@S0022-2488~97!01709-X#

I. WIGNER’S THEOREM REVISITED

We must first harmonize the notations in papers1–4 that were written more than 30 years apa
and for different audiences. LetHH be a quaternionic Hilbert space. In order to facilitate t
transcription to Dirac’s bra-ket notation, we write the multiplication by scalars on the right,
the scalar product defined to be linear in its second term:

~cp,fq!5p* ~c,f!q, ~1!

in conformity with ufq&5uf&q.
Under the initial assumptions of Wigner,5 reformulated by Bargmann,6 or the assumptions o

Emch and Piron,7 a symmetrym is defined as a map that preserves transition probabilities betw
rays, or equivalently as an automorphism of the orthocomplemented latticeP (HH), the elements
of which are the closed subspaces~i.e., the projectors! of the Hilbert spaceHH .

The theorem known as Wigner’s theorem~by physicists!, and as the infinite-dimensiona
version of the fundamental theorem8 of projective geometry~by mathematicians! asserts that every
symmetry is implemented by a counitary operatorU, satisfying

PPP ~HH!°m@P#5U* PU, ~2!

with

U~cq!5~Uc!aU@q#,;cPHH and qPH, ~3a!

and

aU@q#5vU* qvU , for some vUPH, with vU* vU51; ~3b!

i.e., aU is an automorphism of the field of quaternions. The counitarity ofU means that

U* U5UU* 5I , so that ~Uc,Uf!5aU@~c,f!#, ~3c!

which reflects the fact that for a colinear operatorA the adjoint is defined by

~A* c,f!5aA
21@~c,Af!#. ~4!

Conversely, every counitary operator implements a symmetry.
0022-2488/97/38(9)/4758/5/$10.00
4758 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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Finally, a symmetry determines the counitary operator that implements it, uniquely up
‘‘phase;’’ specifically the quaternionic form of Schur’s lemma1 implies that two counitary opera
torsU1 andU2 implement the same symmetry if and only if there exists a unit quaternionv, such
that U25U1Cv , whereCv is the counitary operator defined by

Cvc5cv. ~5!

Indeed,

PPP ~HH!°Cv* PCv5P. ~6!

Hence, for every symmetry separately, one can choose aunitary operator to implement this
symmetry; and this unitary operator is unique up to a sign.

So far, and as long as each symmetry is treated separately, the above approach co
premises of both Adler2 and Emch.1

II. STRONG AND WEAK PROJECTIVE REPRESENTATIONS

When an abstract groupG is represented as a group of symmetries, i.e., when a symm
m(g) is assigned to everygPG in such a manner that

m~g1!m~g2!5m~g1g2!, ;~g1 ,g2!PG3G, ~7a!

i.e.,

PPP ~HH!°m~g1!†m~g2!@P#‡5m~g1g2!@P#, ;~g1 ,g2!PG3G, ~7b!

one can repeat the above procedure for eachg separately, and obtain a lifting by unitary operato
U(g), satisfying

U~g1!U~g2!56U~g1g2!. ~8!

WhenG is a Lie group, andm is acontinuousrepresentation, the brutal lifting just describe
may, however, not lead to acontinuousunitary representation. As physics needs continuity
define the observables corresponding to the generators of the unitary representation, it is r
ing to know that continuity is obtained, nevertheless,1 as a result of the following procedure.

First, one shows that there always exists a continuous local lifting by counitary operators
satisfying the condition

U~g1!U~g2!5U~g1g2!Cv~g1 ,g2! . ~9!

In this expressionCv is a counitary operator, defined as in~5!, where nowv5v(•,•) is a
continuous function of each of its arguments, takes its values in the unit quaternions, and sa
besides the trivial conditionsv(g,e)5v(e,g), the 2-cocycle condition:

v~g1 ,g2g3!v~g2 ,g3!5v~g1g2 ,g3!aU
g3

21@v~g1 ,g2!#; ~10a!

for the purpose of ulterior comparison with~13!, we rewrite~10a! as

Cv~g1 ,g2g3!Cv~g2 ,g3!5Cv~g1g2 ,g3!Ug3

21Cv~g1 ,g2!Ug3
. ~10b!

Second, one shows that such a lifting is always equivalent to acontinuous, unitary, local, but
true representation~i.e., nov, not even a6 sign, ambiguity!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Third, whenever the Lie groupG is simply connected, this can be extended to a continuo
unitary representation of the whole groupG. In cases where the group is doubly connected~e.g.,
the rotation group in three dimensions!, one only obtains the above result for its covering gro
it is when one has to consider the group itself that the6 ambiguity of ~8! can possibly manifes
itself. As the latter amendment~covering multiply connected groups! is not germane to the issu
on which we want to concentrate in this paper, we will not pursue that part of the discussion

The straightforward generalization we just sketched, extending to quaternionic Hilbert s
the analysis familiar from the complex Hilbert spaces situation presents one remarkable fe
the ‘‘phase reduction’’ is always locally trivial. Mathematically, this can be understood1 from the
fact that the local phase reduction amounts to finding, up to equivalence, all the extensions9 of the
Lie algebra ofG by the Lie algebra of the group of automorphisms of the field of quaternion
the latter happens to be the semisimple Lie algebra su(2,C), all such extensions are trivial.10 In
this respect the complex case is much more involved, as shown by Bargmann.11 In particular, the
phase reduction isnot locally trivial for the Galilei group, a fact that is interpreted as viewing t
mass as parametrizing the sectors of a superselection rule. Two attitudes are possible
juncture. The first, which was chosen by Emch,1 was to accept that Galilean QMis different in its
quaternionic realization from what it is in its complex realization. The second is to pursu
issue, and to generalize the definition of a projective representation; this was recently propo
Adler.2

Translated in the notation of this paper, Adler’s proposal2 is to replace condition~9! by the
weakened condition,

U~g1!U~g2!5U~g1g2!LV~g1 ,g2! , ~11!

whereLV(g1 ,g2) is the linear operator,

LV~g1 ,g2!c5(
k

fkvk~g1 ,g2!~fk ,c!, ~12!

with vk(g1 ,g2)* vk(g1 ,g2)51 and F5$fkuk51,2,...% is a complete orthonormal basis i
HH , the same for all pairs (g1 ,g2) of elements ofG. Note that

LV~g1 ,g2g3!LV~g2 ,g3!5LV~g1g2 ,g3!Ug3

21LV~g1 ,g2!Ug3
. ~13!

III. DISCUSSION

While $11,13% look somewhat similar to$9,10b%, there are major differences between the
two formulations; our purpose in this paper is to delineate sharply the scope and reach o
variations.

First, ~9! is a direct consequence of the condition~7!. Hence one should expect condition~7!
to be violated by~11!. This is indeed the case: see~16! below. Recall that~7! is the defining
condition for the usual definition of a projective representation, asP (HH) is the projective space
associated to the vector spaceHH . It is, in fact, equivalent to~9!, and it is the condition Adler2

refers to as the defining property of astrongprojective representation, in opposition to~11!, which
is equivalent to~16!, and which he introduces as the definition of aweakprojective representation

Second,~9! is a relation among essentially counitary operators. It is true, as we just
tioned, that a powerful theorem1 allows us to reduce the phases and thus to obtain a locally tr
continuous unitary representation, so that~9! becomes ultimately a relation between linear ope
tors. Nevertheless, this reduction is not instructive in the present juncture since it is~9! itself @not
~8!# that serves as a motivation for the extension~11!. By contrast,~11! is in its very essence a
relation between unitary operators; in particular,L is a linear operator~in fact, a unitary operator!
J. Math. Phys., Vol. 38, No. 9, September 1997
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that involves the choice of a complete orthonormal basisF5$fkuk51,2,...%; i.e., the focusing on
one complete set of commuting observables, or more precisely, on a discrete, maximal A
real subalgebra,

AF5H A:cPHH°Ac5(
k

fkak~fk ,c!PHHJ , ~14!

the minimal projectors of which are the projectorsPfk
on the one-dimensional rays correspondi

to each elementfk of the chosen basisF. We denote byP (AF) the Boolean sublattice o
P (HH) generated by these projectors.

Third, as a consequence of the above remark, whereas the colinear operatorsCv(g1 ,g2) in ~9!

implement the trivial symmetry@see~6!#—and are, in particular, independent of any choice o
Hilbert space basis—that is not the case for the symmetry implemented by the linear ope
LV(g1 ,g2) . Indeed, we have generically only

PPP ~AF!°LV~g1 ,g2!
* PLV~g1 ,g2!5P. ~15!

Hence, the symmetry implemented byU(g1g2) coincides with the symmetry implemented b
U(g1)U(g2) only for the elements of the distinguished maximal Abelian algebraAF chosen to
define the linear operatorsLV(g1 ,g2) :

PPP ~AF!°m~g1!@m~g2!@P##5m~g2g2!@P#, ;~g1 ,g2!PG3G. ~16!

This, compared to~7!, is the major difference between the conditions defining weak versus s
projective representations. While both require, for each symmetryseparately, that m(g) be an
automorphism of thewhole system~a condition necessary to support the use of Wigner’s th
rem!, the difference appears when it comes to the representation of agroup of symmetries: the
strong definition requires~7b!, i.e., thatm is a representation on the fullP (HH), whereas the
weak definition requires only~16!, i.e., that this condition hold onP (AF).

This is the price one must be prepared to pay for the relaxing from the ‘‘strong’’ condition~9!
to the ‘‘weak’’ condition ~11!—which is the generalization proposed by Adler.2 At this price, it
has become possible12,4,13 to classify the irreducible weakly projective representations of c
nected Lie groups; to embed complex projective representations into weakly projective q
nionic representations~even when the Bargmann complex phase reduction is not locally trivial!; to
construct quaternionic coherent states~including the weakly projective case!; and to discuss how
in the complex case, the weak condition~11! already implies the stronger condition of~9!.

After comparing their original motivations, the authors realized how they both had hop
take advantage of the SU~2! symmetry of the quaternions: Emch1 was interested in finding som
natural coupling between the inhomogeneous Lorentz group of special relativity and the in
symmetries then known in elementary particle theory; Adler2 was similarly interested in finding a
source in the ray structure of Hilbert space for the color symmetry. It seems fair to say that
with the generalization proposed by Adler,2 the structure of the current quaternionic models
quantum theories is not~yet! rich enough to accommodate dreams that extend beyond the com
Hilbert space formalism.
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Reduction formula for moments of stochastic integrals
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~Received 31 October 1996; accepted for publication 7 May 1997!

We show how moments of stochastic integrals can be expressed explicitly as ex-
pectation values of ordinary Lebesgue integrals. This result generalizes the well
known relationship for the second moment. ©1997 American Institute of Phys-
ics. @S0022-2488~97!02408-0#

I. INTRODUCTION

Let ws be the standard Wiener process in@0,t#, F a progressively measurable function~i.e.,
F(s) is measurable with respect to thes –algebra generated bywu , uP@0,s#) such that
E*0

t F2(s)ds,`. It is well known that the second moment of the stochastic Ito inte
*0

t F(s)dws can be expressed as the expectation value of the Lebesgue integral*0
t F2(s)ds

ES E
0

t

F~s!dwsD 2

5ES E
0

t

F2~s!dsD .

Our aim is to generalize this formula expressing higher moments of the stochastic integ
expectation values of ordinary Lebesgue integrals. This result will be obtained in the specia
when F(s) depends only on the marginal at times of the Wiener process, i.e. we have th
F(s)5 f (ws) for some functionf :R°R.

The motivation for the above problem comes from the following observation. Let consi
stochastic equation of the formdXt5b(Xt)dt1dwt . Under very general conditions we can writ
by Girsanov’s formula, the Radon–Nikodym derivative of the law induced by the processX with
respect to the Wiener measure as

dPX

dPw
5expH E

0

t

b~ws!dws2
1

2E0

t

dsb2~ws!J .

From the above density it is possible to get some quantitative information on the processXt by a
perturbative analysis~similar to the cluster expansion in Statistical Mechanics!, see Ref. 1 and
more recently Ref. 2. In such an expansion higher order moments of the stochastic in
*0

t b(ws)dws arise naturally.
To state our basic result we introduce the following notation:f (k)(x)5dkf (x)/dxk,

Cn
k5n!/ @k!(n2k)! # binomial coefficient,@x# integer part ofx, n!! 5n(n22)(n24)••• and

u(x) Heaviside function@with the conventionu(0)50].
Theorem 1: Let fPC[n/2](R) such that

ES E
0

t

ds f~k!~ws!
2D

n
2
,`, k50,•••,@n/2# ~1!

a!Electronic mail: l.bertini@ic.ac.uk
b!Electronic mail: cancrini@orphee.polytechnique.fr
0022-2488/97/38(9)/4763/8/$10.00
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then

ES E
0

t

f ~ws!dwsD n

5EF (
k51

[n/2]

~2k21!!! Cn
2kE

0

t

ds1•••E
0

t

dsn )
l 51

k

d~s2l 212s2l !

3S )
j 52k11

n

D j
nD ~ f ~ws1

!••• f ~wsn
!!G , ~2!

where the differential operators Dj
n are defined by

D j
n5(

i 51

n

u~si2sj !] i

with ] i( f 1(ws1
)••• f i(wsi

)••• f n(wsn
))5 f 1(ws1

)••• f i8(wsi
)••• f n(wsn

).
We note that in formula~2! the product overj is omitted when 2k11.n. We also remark Eq.

~1! ensures that*0
t f (ws)dwsPLn(Pw) and that each term on the right-hand side of Eq.~2! is well

defined. The basic tools in the derivation of formula~2! are the properties of Gaussian process
for them it is in fact possible to compute explicitly the correlation functions. Theorem 1 is pr
in Section II. In Section III we discuss some generalizations.

II. PROOF OF THEOREM 1

Before proving the theorem, to clarify the meaning of formula~2!, we write it explicitly ~with
some easy algebraic simplifications! for n53,4.

ES E
0

t

f ~ws!dwsD 3

56E
0

t

ds1E
0

s1
ds3E~ f 8~ws1

! f ~ws1
! f ~ws3

!!, ~3!

ES E
0

t

f ~ws!dwsD 4

53ES E
0

t

ds f2~ws! D 2

124E
0

t

ds1E
0

s1
ds3E

0

s3
ds4 E~ f 9~ws1

!

3 f ~ws1
! f ~ws3

! f ~ws4
!1 f 8~ws1

!2f ~ws3
! f ~ws4

!

1 f 8~ws1
! f ~ws1

! f 8~ws3
! f ~ws4

!!. ~4!

Proof of Theorem 1:Let us first assume thatf is bounded with its first@n/2# derivatives, f
PCb

[n/2](R). Let I :5*0
t f (ws)dws and 05s0,s1,•••,sm5t be a partition of@0,t# into m

subintervals, introduce

I ~l!:5 (
k50

m21

f ~wsk
!@wsk11

2wsk
#, ~5!

wherel5maxk(sk112sk).
We have thatI (l) converges toI in Ln(Pw) as l→0. In fact by applying the Burkolder–

Davis–Gundy~BDG! inequality, see, e.g., Ref. 3, we get

EuI 2I ~l!un<C~n!ES (
k50

m21 E
sk

sk11
dt@ f ~wt!2 f ~wsk

!#2D n/2

, ~6!

whereC(n) is an absolute constant. Asf 8 is bounded it is easy to conclude that the right-ha
side of ~6! vanishes asl→0.

Hence formula~2! follows once we show
J. Math. Phys., Vol. 38, No. 9, September 1997
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lim
l→0

E~ I ~l!!n5EF (
k51

[n/2]

~2k21!!! Cn
2kE

0

t

ds1•••E
0

t

dsn )
l 51

k

d~s2l 212s2l !

3S )
j 52k11

n

D j
nD ~ f ~ws1

!••• f ~wsn
!!G . ~7!

By using Eq.~5! we get

E~ I ~l!!n5ES (
k1 ,•••,kn50

m21

f ~wsk1
!••• f ~wskn

!@wsk111
2wsk1

#•••@wskn11
2wskn

# D . ~8!

Let us consider a generic term in Eq.~8!

E~ f ~wsk1
!••• f ~wskn

!@wsk111
2wsk1

#•••@wskn11
2wskn

# !. ~9!

As f is progressively measurable we get a nonzero result only if there is at least one coinci
of the indices, i.e.,ki5kj for somei , j 51, ... ,n. Moreover, all the terms withk coincidences
produce thekth term in the sum on the right-hand side of Eq.~7!. In fact, we can rewrite Eq.~9!
as

E~ f ~ws0
!n0@ws1

2ws0
#n0f ~ws1

!n1@ws2
2ws1

#n1
••• f ~wsm21

!nm21@wsm
2wsm21

#nm21!, ~10!

wheren01n11•••1nm215n. Since the transition probability of the Wiener process is given
the density

Pt~x2y!:5~2pt !21/2expH 2
~x2y!2

2t J
andw050 a.s., the explicit integral expression for Eq.~10! is

E )
j 50

m21

Psj 112sj
~xj 112xj !dxj 11• )

j 50

m21

f ~xj !
nj@xj 112xj #

nj . ~11!

Our aim in evaluating Eq.~11! is to obtain an expression where all the factors@xj 112xj #
nj ,

j 50,•••,m21 are eliminated. We start by computing the integral indxm , which gives
(mm2121)!! @sm2sm21#nm21/2 if nm21 is even and zero otherwise. We next proceed inductive
We use the identity

@xj 112xj #
nj Psj 112sj

~xj 112xj !5@xj 112xj #
nj 21@sj 112sj #S 2

]

]xj 11
Psj 112sj

~xj 112xj ! D
and integrate by parts. We get two terms. The former is when the derivative]/]xj 11 acts on
@xj 112xj #

nj 21 and it is interpreted as the contraction between two termswsk11
2wsk

; in the latter
the derivative acts only onf (xj 11)nj 11 since the integrals indxi , i . j 11 have already been
reduced. We interpret this term as the contraction betweenwsj 11

2wsj
and f (wsj 11

). The proce-
dure is iterated until all the@xj 112xj #

nj factors are eliminated.
The result of the above inductive procedure is summarized by the contraction rules

~a! (wski11
2wski

)(wskj 11
2wskj

) contraction→d(ki2kj )(ski112ski
);

~b! (wski11
2wski

) f (wskj
) contraction→u(skj

2ski
) f 8(wskj

)(Ski112Ski
).

Applying ~a! and ~b! to Eq. ~9! all the factors (wski11
2wski

) can be eliminated.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Let us consider first the terms where the maximum number of contractions~a! are made.
These contributions generate, when the sum over all the indicesk1 , ... , kn and the limitl→0
are taken, the last addendum~the one fork5@n/2#) in Eq. ~7!. Note that, asf is bounded with all
its first @n/2# derivatives, the above limit is easily justified. Since formula~9! is invariant under
permutations of the indicesk1 , ... , kn , all terms of this type give the same result. To comp
the combinatorial factor we distinguish between the following possibilities:

n is even. There are (n21)!! pairings~a! and no differential operators; we then have on
a product of delta functions.
n is odd. There are (n22)!! pairings~a! andCn

n21 choices of the field@wski11
2wski

# in

the ~b! pairing; we now have the product of (n21)/2 delta functions and one differentia
operator,Dn

n .
The contribution of the relative terms is

~n22!!! Cn
n21@u~skn21

2skn
!]n21~ f ~wsk1

!••• f ~wskn
!!

1•••1u~sk1
2skn

!]1~ f ~wsk1
!••• f ~wskn

!!]

5~n22!!! Cn
n21Dn

n~ f ~wsk1
!••• f ~wskn

!!.

The terms with one~a!–pairing less and two differential operators more produce
k5@n/2#21 addendum in Eq.~7!. The combinatorial counting is analogous. For thekth term in
Eq. ~7! we have

Cn
2k° # of choices for the 2k’s@wski11

2wski
# out ofn,

~2k21!!! ° # of pairings between the 2k’s@wski11
2wski

#,

)
l 51

k

d~k2l2k2l 21!~sk2l
2sk2l 21

!° result of the~a!-pairings,

S )
j 52k

n

D j
nD ~ f ~wsk1

!••• f ~wskn
!!° result of the~b!-pairings.

We note that the term fork50 is zero because the product of theu functions produces noncom
patible conditions.

By a density argument we finally extend formula~2! to the functionsf satisfying condition
~1!. We can in fact find a sequencef NPCb

[n/2](R) such that f N(x)5 f (x) for uxu,N and
u f N

(k)(x)u,u f (k)(x)u11, k50,...,@n/2#. Applying the BDG inequality we then find

lim
N→`

EU E
0

t

@ f ~ws!2 f N~ws!#dwsUn

< lim
N→`

C~n!ES E
0

t

ds@ f ~ws!2 f N~ws!#
2D n/2

50

and, by Hölder inequality, the analogous convergence for the right-hand side of Eq.~2!. h

III. GENERALIZATIONS

We discuss in this Section some generalizations, these can be proven as Theorem 1
shall only sketch the arguments. We first note that formula~2! also holds for a functionf depend-
ing explicitly on time, i.e.,f 5 f (s,ws).
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



. 2, to
s,

drift
ener-

r
k

le

e

nce
al and

4767L. Bertini and N. Cancrini: Reduction formula for stochastic integrals

                    
In the perturbative expansion of the Girsanov’s density it is more convenient, see Ref
consider the Radon–Nikodym derivative of the law ofXt not with respect to the Wiener proces
but with respect to the Ornstein–Uhlenbeck process which is obtained by linearizing the
b(Xt). We therefore extend the reduction formula to cover this case. More generally, we g
alize Theorem 1 to functionsf depending on the stochastic process

j t5E
0

t

w~s!dws , ~12!

wherew(s) is a deterministic function. We remark thatj t can be identified in law with a Wiene
process whose time is defined byt(t)5*0

t w(s)2ds. For example for the Ornstein–Uhlenbec

process we haveUt5U01e2twt(t) , t(t)5 1
2(e

2t21).
Corollary 2: Let wPC(@0,t#) and let fPC[n/2](R) such that

ES E
0

t

ds f~k!~js!
2D n/2

,`, k50, ... ,@n/2#

then formula (2) holds if the differential operators Dj
n are defined by

D j
n5(

i 51

n

u~si2sj !w~sj !] i .

Proof: It follows the same steps as in Theorem 1, we simply note that the contraction ru~b!
becomesf (jsi

)—dwsj
contraction→u(si2sj )w(sj ) f 8(jsi

)dsj . h

Formula~2! can be easily generalized also to the product ofn stochastic integrals. We denot
by Sn the permutation group ofn elements.

Corollary 3: Let fi i 51, ... ,n satisfy the hypotheses of Theorem 1, then

ES E
0

t

f 1~ws1
!dws1

•••E
0

t

f n~wsn
!dwsnD

5EF (
k51

[n/2] E
0

t

ds1•••E
0

t

dsn

1

2kk! ~n22k!!

• (
pPSn

)
l 51

k

d~sp~2l 21!2sp~2l !!S )
j 52k11

n

Dp~ j !
n D ~ f 1~ws1

!••• f n~wsn
!!G , ~13!

where the differential operators are defined as in Theorem 1.
Proof: Unlike Theorem 1, we cannot collect all terms with a given number of contraction~a!,

but we have to sum over all the different contractions. We thus get formula~13!; the factor
2kk!(n22k)! is due to the following overcountings:

2k° permutations of two vertex in every~a!2pairing,

k! ° permutations of the~a!2pairings,

~n22k!! ° permutations of the~b!2pairings. h

We now show how the integrals in formula~2! can be expressed as iterated integrals. Si
the covariance of the Wiener process induces a time ordering this formulation is more natur
more suitable for computation. The price to pay is an increased combinatorial calculus.
J. Math. Phys., Vol. 38, No. 9, September 1997
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We note the integrand on the right-hand side of Eq.~2! is not invariant under permutations o
the $si ,i 51, ... ,n%, this invariance can be recovered writing formula~13! for equal functions.
We thus write Eq.~13! in terms of iterated integrals as

ES E
0

t

f ~ws!dwsD n

5EF (
k51

[n/2] E
0

t

ds1E
0

s1
ds2•••E

0

sn21
dsn

n!

2kk! ~n22k!!

• (
pPSn

)
l 51

k

d~sp~2l 21!2sp~2l !!S )
j 52k11

n

Dp~ j !
n D ~ f ~ws1

!••• f ~wsn
!!G , ~14!

where we employed the following prescription for thed distribution*0
`d(x)g(x)dx5 1

2g(0).
Using the time ordering, the differential operatorsD j

n have now a simpler expression, they c
be replaced by

D̃ j5(
i 51

j 21

] i . ~15!

For the same reason the sum in Eq.~14! can be restricted to the permutationsp which satisfy the
conditions

~i! up(2l 21)2p(2l )u51, l 51, ... , k ~first neighbors condition!;
~ii ! p( l )51 for somel 51, ... , k.

Condition ~i! holds since for the other terms the measure defined by the product of the
functions is supported by a lower dimensional manifold. SinceD̃150 we have~ii !.

In formula~14! we can therefore replace the sum overSn with the sum over its subset~it is not
a subgroup! Sn

k defined by conditions~i! and ~ii !. We note that

)
l 51

k

d~sp~2l 21!2sp~2l !!S )
j 52k11

n

D̃p~ j !D ~ f ~ws1
!••• f ~wsn

!! ~16!

is invariant under the exchange of the arguments of the delta functions, of permutations
d(si2sj ) and of theD̃ j operators. We define an equivalence relation; in Sn

k , p;p8 iff p8 is
obtained fromp by the exchange of the indices in each of the firstk couples, the permutation
between the firstk couples, the permutation of the lastn22k indices. Each equivalence clas
consists of 2kk!(n22k)! elements. Denoting byAn

k5Sn
k/; we have thus proven the following

Theorem.
Theorem 4: Under the hypotheses of Theorem 1

ES E
0

t

f ~ws!dwsD n

5EF (
k51

[n/2]

n! E
0

t

ds1E
0

s1
ds2•••E

0

sn21
dsn (

pPAn
k
)
l 51

k

d~sp~2l 21!2sp~2l !!

3S )
j 52k11

n

D̃p~ j !D ~ f ~ws1
!••• f ~wsn

!!G . ~17!
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



ls
y can

t
entity

the

have
of

stant

4769L. Bertini and N. Cancrini: Reduction formula for stochastic integrals

                    
Application to Lp estimates.We give an example of howLp estimates for stochastic integra
can be derived. In particular we show how, with elementary computations, a BDG inequalit
be obtained in a simple case. For simplicity we assumen is even.

Proposition 5: Let f(ws)5exp$lws%, lPR, then'b,B.0 such that

n! 1/2bnES E
0

t

f 2~ws!dsD n/2

<ES E
0

t

f ~ws!dwsD n

<n! 1/2BnES E
0

t

f 2~ws!dsD n/2

. ~18!

Estimate~18! is a BDG inequality with the optimaln dependence.4,5 The key step is the nex
Lemma, which can be proven by a tedious but straightforward computation based on the id

E~exp~l~ws1
1•••1wsn

!!!

5expH l2

2
@12~s12s2!122~s22s3!1•••1~n21!2~sn212sn!1n2sn#J . ~19!

Lemma 6: There exists K.0 such that for eachpPAn
k

EE
0

t

ds1E
0

s1
ds2•••E

0

sn21
dsn)

l 51

k

d~sp~2l 21!2sp~2l !!S )
j 52k11

n

D̃p~ j !D ~ f ~ws1
!••• f ~wsn

!!

<KnEE
0

t

ds1E
0

s1
ds2•••E

0

sn21
dsn)

l 51

n/2

d~s2l 212s2l !•~ f ~ws1
!••• f ~wsn

!!. ~20!

Proof of Proposition 5:The estimate from below is a consequence of Theorem 1. By
choice of f each term in the sum overk in Eq. ~2! is positive. Since (n21)!!>ann! 1/2, we can
keep only the term fork5n/2 and get the first inequality in Eq.~18!.

To prove the upper bound we use Theorem 4. From a combinatorial counting we
uSn

ku52k(n22k)!kGn22
k21 whereGn

k5(n2k)!/(n22k)! is the number of possible arrangements
k dimers~two nearest neighbors elements! in $1, ... , n%. Hence

uAn
ku5

uSn
ku

2kk! ~n22k!!
5

k~n2k21!!

k! ~n22k!!
<C2n

k . ~21!

Equation~17! and Lemma~20! imply

ES E
0

t

f ~ws!dwsD n

<Knn! (
k50

n/2

(
pPAk

n
EF E

0

t

ds1E
0

s1
ds2•••E

0

sn21
dsn )

l 51

n/2

d~s2l 212s2l !

3~ f ~ws1
!••• f ~wsn

!!G5Kn(
k50

n/2

uAk
nu~n21!!! ES E

0

t

f ~ws!
2dsD n/2

, ~22!

where the last identity reflects the correct prescription for thed-distribution. Recalling Eq.~21!,
Proposition 5 follows withB52K. h
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Zeta function regularization in de Sitter space:
The Minkowski limit

Alan Chodosa) and András Kaiserb)

Center for Theoretical Physics, Sloane Physics Laboratory, Yale University,
New Haven, Connecticut 06520-8120

~Received 12 September 1996; accepted for publication 28 March 1997!

We study an integral representation for the zeta function of the one-loop effective
potential for a minimally coupled massive scalar field inD-dimensional de Sitter
space–time. By deforming the contour of integration we present it in a form suit-
able for letting the de Sitter radius tend to infinity, and we demonstrate explicitly
for the caseD52 that the quantitiesz~0! andz8~0! have the appropriate Minkowski
limits. © 1997 American Institute of Physics.@S0022-2488~97!01308-X#

I. INTRODUCTION

In this paper we examine some properties of the effective potential for a minimally cou
scalar field in de Sitter space–time. We regard this as a preliminary study with applicati
symmetry-breaking effects in de Sitter space, which can have significant cosmolo
consequences.1 These can be investigated if one also includes a potential for the scalar field

Our particular concern in this work is to examine the regularization of the effective pote
by the zeta function method,2 and to show that after such regularization one can compute ex
itly the limit of the potential as the de Sitter radiusa tends to infinity, and recover thereby th
Minkowski space result.

Of course de Sitter space itself becomes Minkowski space as the radius becomes infini
furthermore at the naive level the limit of the de Sitter zeta functionz(s) goes over into the
Minkowski one ~see below!. However, in order to regularize the effective potential one m
perform an analytic continuation ofz to a neighborhood ofs50. After this is done, it is no longe
evident~or even necessarily true! that the zeta function possesses the correcta→` limit.

In other words, the process of analytic continuation and thea→` limit may not commute with
each other, and it is reassuring to check explicitly that the analytically continuedz(s) still pos-
sesses the expected Minkowski limit.

A simple example of what needs to be checked is provided by the series

f ~s;a!5 (
n50

`

e2~n11!a~s22!~21!n ~1.1!

~a.0!, which for Rs.2 clearly obeys

lim
a→`

f ~s;a!50. ~1.2!

However, f (s;a) possesses an analytic continuation ins,

f ~s;a!5
1

11ea~s22! , ~1.3!

a!Electronic mail address: chodos@yalph2.physics.yale.edu
b!Electronic mail address: kaiser@hepunix.physics.yale.edu
0022-2488/97/38(9)/4771/12/$10.00
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which, in a neighborhood ofs50, has the limit

lim
a→`

f ~s;a!51. ~1.4!

Let’s take a look at the Minkowski zeta function first. InD dimensions, it is defined by

z~s!5(
k

m2s

~k21m2!s , ~1.5!

wherem is a scale factor with dimensions of mass, that is included to make the dimensionz
independent ofs.

In Minkowski space–time the sum is really continuous, so we can replace(k with
VdDk/(2p)D ~V is the volume of the space–time! to transform it into an integral form

z~s!5VE dDk

~2p!D

m2s

~k21m2!s ~1.6!

or divide byV to obtain thez density

z̃~s!5E dDk

~2p!D

m2s

~k21m2!s . ~1.7!

II. DE SITTER ZETA FUNCTION

Proceeding to the de Sitter case we note thatD-dimensional de Sitter space–time can
embedded in aD11-dimensional Minkowski space~we use signaturê1,2,2,...,2&!, where it is
a D-dimensional hypersurface determined by

z02
2(

i
zi 252a2. ~2.1!

We use the following parametrization of this space:

z05asinh ~x0!,

z15acosh~x0! cos~x1!,
~2.2!

z25acosh~x0! sin ~x1! cos~x2!,

•••

We start with the de Sitter action

S5E dDx$]mf* ]mf2m2ufu2%. ~2.3!

Substitutingx052 ix4 , we obtain the Euclidean action

S5E dDx$]mf* ]mf1m2ufu2%. ~2.4!

The classicalf(x) field configurations form a vector space with the scalar product
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^f,c&5E dxf* ~x!c~x!, ~2.5!

and the second variation of the action

d2S

df~x!df* ~y!
5~hE1m2!d~x2y! ~2.6!

is similarly considered a matrix~bilinear operator on the vector space!. The zeta function is
defined with the eigenvalues of this matrix,

z~s!5(
i

m2s

l i
s , ~2.7!

wherem2s is included to get a dimensionless quantity. When we substitutex052 ix4 , cosh (x0)
transforms into cos (x4), and sinh (x0) into 2 i sin (x4). This means that now we have

z052 i asin ~x4!,

z15acos~x4! cos~x1!,
~2.8!

z25acos~x4! sin ~x1! cos~x2!,

•••,

which shows that Euclidean de Sitter space is a~series of! D-sphere~s!, therefore the eigenfunc
tions ~eigenvectors! of d2S/df(x)df(y) are generalized spherical functions, with the eigenva
l5 l ( l 1D21)/a21m2. The multiplicity of the modes with the samel is3

G~D1 l 11!

G~D11!G~ l 11!
2

G~D1 l 21!

G~D11!G~ l 21!
, ~2.9!

so

z~s!5(
l

F G~D1 l 11!

G~D11!G~ l 11!
2

G~D1 l 21!

G~D11!G~ l 21!G m2s

F l ~ l 1D21!

a2 1m2Gs ~2.10!

5
m2sa2s

G~D11! (
l

@~D1 l !~D1 l 21!2 l ~ l 21!#
G~D1 l 21!

G~ l 11!

1

F S l 1
D21

2 D 2

2b2Gs ,

~2.11!

where b252m2a21„(D21)/2…2.
Let’s make a brief digression here, and check how thez-density approaches the Minkowsk

case asa→`. Divide z by the volume of de Sitter space,aDVD , whereVD is the surface area o
a D11-dimensional sphere, in other words the volume of the manifoldSD:
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z̃~s!5
1

aDVD
z~s!5

1

aDVD

1

G~D11! (
l

@~D1 l !~D1 l 21!2 l ~ l 21!#

~2.12!

3
G~D1 l 21!

G~ l 11!

m2s

F l ~ l 1D21!

a2 1m2Gs .

Transform the sum over discrete values ofl into a continuous integral by substitutingl /a→k
and 1/a→dk. We also assumel @1, yielding (D1 l )(D1 l 21)2 l ( l 21)→2Dl 52Dka, G(D
1 l 21)/G( l 11)→ l D22, and l ( l 1D21)/a2→k2. This gives

1

aDVD
z~s!5

2Dm2s

G~D11!VD
E kD21dk

~k21m2!s 5
2Dm2s

G~D11!VD

1

VD21
E dDk

~k21m2!s . ~2.13!

Now substitute the valueVD52p(D11)/2/G„(D11)/2…:

1

aDVD
z~s!5

2Dm2sGS D

2 DGS D11

2 D
G~D11!4pD11/2 E dDk

~k21m2!s 5

m2sGS D12

2 DGS D11

2 D
G~D11!pD11/2 E dDk

~k21m2!s .

~2.14!

And finally use the identityG(z)G(z11/2)/G(2z)52122zp1/2:

1

aDVD
z~s!5

m2s22D

pD E dDk

~k21m2!s 5E dDk

~2p!D

m2s

~k21m2!s , ~2.15!

which is the Minkowskiz-density.
Now back to the de Sitter zeta function. Use the transformation:4

1

@a22b2#g 5
Ap

G~g!
E

0

`S t

2b D g21/2

e2atI g21/2~bt ! dt. ~2.16!

We get

z~s!5
m2sa2s

G~D11! (
l

D~D12l 21!
G~D1 l 21!

G~ l 11!

Ap

G~s!
E

0

`S t

2b D s21/2

e2„l 1~D21!/2…tI s21/2~bt ! dt.

~2.17!

Concentrate on the terms involvingl , and evaluate the sum

(
l

D~D12l 21!
G~D1 l 21!

G~ l 11!
e2~1/2!~D12l 21!t ~2.18!

522D
]

]t F(
l

G~D1 l 21!

G~ l 11!
e2~1/2!~D12l 21!tG ~2.19!

522D
]

]t Fe2@~D21!/2#t(
l

G~D1 l 21!

G~ l 11!
e2 l t G
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522D
]

]t Fe2@~D21!/2#t
G~D21!

~12e2t!D21G ~2.20!

5G~D11!
2 cosh~ t/2!

@2 sinh~ t/2!#D . ~2.21!

Now use this result in the expression of the zeta function

z~s!5
m2sa2s

G~D11!

Ap

G~s!
E

0

`S t

2b D s21/2FG~D11!
2 cosh~ t/2!

@2 sinh~ t/2!#DG I s21/2~bt ! dt. ~2.22!

With an appropriate correction factor, one can extend the contour of integration from2` to `,
integrating above the origin. We will need to introduce a branch cut somewhere in the co
plane between the origin and infinity; let this branch cut be on the negative imaginary axis~i.e.,
from the origin to2 i`!, which corresponds to the contour passing the origin on the pos
imaginary side to avoid the cut:

z~s!5
m2sa2sAp

G~s!

1

12eip~2s2D ! E
2`1 iD

`1 iD S t

2b D s21/2 2 cosh~ t/2!

@2 sinh~ t/2!#D I s21/2~bt ! dt. ~2.23!

HereD is an arbitrary positive quantity, but less than 2p to stay between the origin and the fir
pole of the integrand on the positive imaginary axis. This expression is the desired an
continuation that is well-defined in a neighborhood ofs50.

III. DEFORMING THE CONTOUR

Use an integral representation of the Bessel function,5

z~s!5
m2sa2sAp

G~s!

1

12eip~2s2D ! E
2`1 iD

`1 iD S t

2b D s21/2 2 cosh~ t/2!

@2 sinh~ t/2!#D

3F 1

ApG~s!
S bt

2 D s21/2E
21

1 ebtu

~12u2!12s duGdt ~3.1!

5
m2sa2s

@G~s!#2

1

12eip~2s2D ! E
2`1 iD

`1 iD S t

2D 2s21 2 cosh~ t/2!

@2 sinh~ t/2!#D E
21

1 ebtu

~12u2!12s du dt.

~3.2!

We want to expand this expression ins arounds50, so that we can deducez and its first
derivative from the result. These are the quantities that determine the effective potential.

First examine the integral overu:

E
21

1 ebtu

~12u2!12s du5E
0

1 ebtu1e2btu

~12u2!12s du5E
0

1 ebt~12v !1e2bt~12v !

v12s~22v !12s dv ~3.3!

5ebtE
0

1 e2btv

v12s~22v !12s dv1~bt←→2bt !. ~3.4!

However,
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ebtE
0

1 e2btv

v12s~22v !12s dv5ebtH E
0

1 1

v12s~22v !12s dv2E
0

1 e2btv21

v12s~22v !12s dvJ . ~3.5!

The first term yields

1

2s
1 ln 21O~s!. ~3.6!

The second term can be written as

E
0

1 1

v12s~22v !12s (
n51

`
~2btv !n

n!
dv ~3.7!

5E
0

1 1

v~22v !
@11s ln v1O~s2!#@11s ln~22v !1O~s2!# (

n51

`
~2btv !n

n!
dv.

~3.8!

Since we are looking only for the first two powers ofs in the expansion, and we have a 1/2s
term already, we will not need the terms proportional tos. Therefore we only need

E
0

1 1

v~22v ! (
n51

`
~2btv !n

n!
dv, ~3.9!

which gives

(
n51

`
~2bt !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D . ~3.10!

So

z~s!5
m2sa2s

@G~s!#2

1

12eip~2s2D ! E
2`1 iD

`1 iD S t

2D 2s21 2 cosh~ t/2!

@2 sinh~ t/2!#D

3H ebtF 1

2s
1 ln 21(

n51

`
~2bt !n

n! S 2n21 ln 22(
m51

n21
2n2m21

m D 1O~s!G1~bt←→2bt !J dt.

~3.11!

Here we have not yet expanded the terms outside the curly brackets in powers ofs; we shall

do it later. Evaluate the above expression forma@1. This meansb5A(D21)2/42m2a2

'6 ima.
Let’s find a way of closing the contour of integration at infinity in the upper or lower h

plane, as appropriate for the different terms. First analyze the expression

eimatF 1

2s
1 ln 21 (

n51

`
~2 imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 1O~s!G . ~3.12!

We can write ln 2 as(m51
` 22m/m, and with this,
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(
n51

`
~2 imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 5 (
n51

`
~2 imat !n

n! (
m5n

`
2n2m21

m
~3.13!

5 (
n51

`
~2 imat !n

~n11!! (
m51

`
22m

11~m22!/~n11!
,

~3.14!

which clearly shows ane2 imat/(2 imat) asymptotic behavior forumatu@1. This combined with
the eimat in front yields 1/(2 imat), which cancels with the similar term frombt←→2bt, so
we can subtract it from the expression. Then the remaining expression will go to zero at le
fast as 1/(m2a2t2). This allows us to close the contour for this term in the upper half-plane.
integrand has poles in the upper half plane at 2p in, n51,2... . Applying the residue theorem, w
obtain the integral as a sum:

m2sa2s

@G~s!#2

1

12eip~2s2D ! E
2`1 iD

`1 iD S t

2D 2s21 2 cosh~ t/2!

@2 sinh~ t/2!#D eimatF2
e2 imat

2 imat
1

1

2s
1 ln 2

1 (
n51

`
~2 imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 1O~s!Gdt ~3.15!

5
m2sa2s

@G~s!#2

1

12eip~2s2D ! (
n51

`

2p i
1

G~D !

]D21

]tD21U
t52p in

H S t

2D 2s21

2 cosh~ t/2!S t22p in

2 sinh~ t/2! D
D

3eimatF2
e2 imat

2 imat
1

1

2s
1 ln 21 (

n51

`
~2 imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 1O~s!G J .

~3.16!

From this form it can be seen that this contribution is finite, and it goes to zero withma→`.
For the e2 imat term, we could similarly close the contour in the lower half-plane, exc

that the integrand has a cut from the origin to2 i`, because of the (t/2)2s21. So the curve that we
use to close the contour must come back from2 i` to 0 in the positive real half-plane, then g
around the singularity at the origin anticlockwise, and go back to2 i` in the negative real
half-plane, before continuing the arc to2`. The complete contour constructed this way does
encircle any singularities, therefore the loop integral is zero, which means that the contribut
the piece of contour along the cut cancels the contribution of the piece above the real axis,
is the integral that we want to determine~the two quarter-arcs from̀ to 2 i` and from2 i` to
2` contribute zero, similarly to the semi-arc in the upper half-plane in the previous case!. So our
integral above the real axis will be equal to the integral from2 i` to 2 i e on the branch continu-
ous with the left side of the cut, then a circle around zero clockwise with radiuse, and then back
from 2 i e to 2 i`.

Now we expand in powers ofs:
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I ~s!5
m2sa2s

@G~s!#2

1

12eip~2s2D ! E
2`1 iD

`1 iD S t

2D 2s21 2 cosh~ t/2!

@2 sinh~ t/2!#De2 imatF2
eimat

imat

1
1

2s
1 ln 21 (

n51

`
~ imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 1O~s!G dt ~3.17!

5
1

22p i
@s1s2

„2 ln~ma!22G8~1!1 ip…1O~s3!#

3E
c
S 2

t F112s ln
t

2
1O~s2!G 2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat

3F2
eimat

imat
1

1

2s
1 ln 21 (

n51

`
~ imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 1O~s!G dt.

~3.18!

IV. EVALUATION OF THE INTEGRAL

Let’s split the integral into the following terms:

I 15E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat
1

2s
dt,

I 25E
c

2

t
2s ln

t

2

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat
1

2s
dt,

I 35E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat
2eimat

imat
dt, ~4.1!

I 45E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat ln 2 dt,

I 55E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat (
n51

`
~ imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D dt,

keeping only the two lowest-order terms ins. Only I 2 has a cut along the negative imaginary ax
so the other terms will decompose into the contributions of a series of poles along the ne
imaginary axis. The contribution from all the poles except the origin can be expressed as

m2sa2s

@G~s!#2

1

12eip~2s2D ! (
n51

`

2p i
1

G~D !

]D21

]tD21U
t522p in

H S t

2D 2s21

2 cosh~ t/2!S t22p in

2 sinh~ t/2! D
D

e2 imat

3F2
eimat

imat
1

1

2s
1 ln 21 (

n51

`
~ imat !n

n! S 2n21 ln 22 (
m51

n21
2n2m21

m D 1O~s!G J , ~4.2!

which is finite and goes to zero withma→`, similarly to the contribution of the poles in th
upper half-plane.
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Now calculate the contribution from the pole at the origin for all butI 2 . Here we shall
specialize to the caseD52 for simplicity. However, we shall retain the symbolD in certain places
to keep track of the expansions. In the end, we always setD52.

I 15
1

2s E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat dt

5
1

2s E
c
dt

4

t3 F11t2S 1

8
2

D

24D1••• G S 12 imat2
1

2
m2a2t21••• D

5
2

s
~22p i !S 1

24
2

1

2
m2a2D5s212p i S m2a22

1

12D , ~4.3!

I 35E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D

21

imat
dt52

1

ima E
c
dt

4

t4 F11t2S 1

8
2

D

24D1••• G50, ~4.4!

I 45 ln 2E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat dt

5 ln 2E
c
dt

4

t3 F11t2S 1

8
2

D

24D1••• G S 12 imat2
1

2
m2a2t21••• D

54 ln 2~22p i !S 1

24
2

1

2
m2a2D54p i ln 2S m2a22

1

12D , ~4.5!

I 55E
c

2

t

2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat (
n51

`
~ imat !n

n! S 2n21 ln 22 (
i 51

n21
2n2 i 21

i D dt

5E
c
dt

4

t3 F11t2S 1

8
2

D

24D1••• G S 12 imat2
1

2
m2a2t21••• D

~4.6!

S imat ln 22
1

2
m2a2t2~2 ln 221!2

i

6
m3a3t3S 4 ln 22

5

2D1••• D
54~22p i !1/2m2a2524p im2a2.

Now calculateI 2 on the contour that consists of a straight part from2 i` to 2 i e on the
branch of the ln function continuous with the left side of the cut, then a circle around the o
with radiuse, and then another straight part from2 i e to 2 i`. First calculate the contribution o
the straight parts. Since the direction of integration on the two sides of the cut is opposite, on
contribution of the discontinuity across the cut remains, which can be expressed as

1

2s E
e

`

dx
2

x
2s~22p i !

2 cos~x/2!

@22i sin~x/2!#D e2max ~4.7!

5E
e

`

dx
4

x3 ~22p i !i DF12x2S 1

8
2

D

24D1••• Ge2max ~4.8!

5F8p i
21

2x2 e2maxG
e

`

28p i E
e

`

dx
21

2x2 ~2ma!e2max28p i E
e

`

dx
1

24x
e2max

~4.9!
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54p i e22e2mae2F8p i
1

2x
~2ma!e2maxG

e

`

1E
e

`

dx 4p i
1

x S m2a22
1

12De2max

~4.10!

58p i e22e2mae14p i e21mae2mae1@4p i ln y~m2a221/12!e2v#ema
`

14p i E
ema

`

dy ln yS m2a22
1

12De2y. ~4.11!

Considering that*0
` dy ln ye2y5G8(1), we get

54p i e22~21ema!e2mae24p i ln ~ema!~m2a221/12!e2ema

14p i S m2a22
1

12D S G8~1!2E
0

ema

dy ln ye2yD . ~4.12!

Our procedure is to takee→0 before we letma go to infinity. This means that we can expan
this result ine and discard all terms with positive exponents:

54p i e22~21ema!~12ema11/2e2m2a2!24p i ln ~ema!~m2a221/12!

14p i ~m2a221/12!G8~1! ~4.13!

54p i e2228p i e21ma16p im2a224p i ~m2a221/12!ln~ema!

14p i ~m2a221/12!G8~1!. ~4.14!

Now we must calculate the contribution of the circle around the origin. The radius o
circle ise, andt can be expressed aseeiu. This means that lnt5ln e1iu, dt is equivalent toi tdu,
and the integration around the circle from2 i e clockwise means thatu runs from 3/2p to 2p/2.
So for this part of the integral we have

1

2s E
3/2p

2p/2

i t du
2

t
2sS ln

e

2
1 iu D 2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat ~4.15!

52i ln
e

2 E
3/2p

2p/2

du
2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat22E
3/2p

2p/2

u du
2 cosh~ t/2!

@2 sinh~ t/2!#D e2 imat

~4.16!

52i ln
e

2 E
3/2p

2p/2

du
2

t2 F11t2S 1

8
2

D

24D1••• G S 12 imat2
1

2
m2a2t21••• D

12E
2p/2

3/2p

u du
2

t2 F11t2S 1

8
2

D

24D1••• G S 12 imat2
1

2
m2a2t21••• D ~4.17!

54i ln
e

2
~22p!S 1

24
2

1

2
m2a2D14E

2p/2

3/2p

u duS t222 imat211
1

24
2

1

2
m2a21••• D .

~4.18!

Here we drop the terms that containt to a positive power, because on the circlet5eeiu for t,
and those terms will vanish ase→0. Thus we have
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28p i ln
e

2 S 1

24
2

1

2
m2a2D14E

2p/2

3/2p

u duS e22e22iu2 imae21e2 iu1
1

24
2

1

2
m2a2D

528p i ln
e

2 S 1

24
2

1

2
m2a2D14 ~4.19!

Fu 1

22i
e22e22iu2u ima

1

2 i
e21e2 iu1S 1

24
2

1

2
m2a2D u2

2 G
2p/2

3/2p

24E
2p/2

3/2p

duS 1

22i
e22e22iu2 ima

1

2 i
e21e2 iuD ~4.20!

528p i ln
e

2 S 1

24
2

1

2
m2a2D24p i e2218p imae2114p2S 1

24
2

1

2
m2a2D ~4.21!

524p i e2218p i e21ma22p2S m2a22
1

12D14p i S m2a22
1

12D ln
e

2
. ~4.22!

To obtainI (s), we assemble the contribution of the pole at the origin and the cut along
negative imaginary axis toz(s), to first order ins:

I ~s!5
m2sa2s

@G~s!#2

1

12eip~2s2D ! $I 11I 21I 31I 41I 5% ~4.23!

5
1

22p i
@s1s2~2 ln~ma!22G8~1!1 ip!1O~s3!#H s212p i S m2a22

1

12D14p i e22

28p i e21ma16p im2a224p i S m2a22
1

12D ln ~ema!14p i S m2a22
1

12DG8~1!

24p i e2218p i e21ma22p2S m2a22
1

12D14p i S m2a22
1

12D ln
e

2
10

14p i ln 2S m2a22
1

12D24p im2a2J ~4.24!

5
1

22p i
@s1s2

„2 ln ~ma!22G8~1!1 ip!1O~s3!] H s212p i S m2a22
1

12D12p im2a2

24p i S m2a22
1

12D ln ~ma!14p i S m2a22
1

12DG8~1!22p2S m2a22
1

12D J ~4.25!

5
1

22p i H 2p i S m2a22
1

12D1sF ~2 ln ~ma!22G8~1!1 ip!2p i S m2a22
1

12D12p im2a2

24p i S m2a22
1

12D ln ~ma!14p i S m2a22
1

12DG8~1!22p2S m2a22
1

12D G1O~s2!J
~4.26!

52S m2a22
1

12D1sF2m2a212S m2a22
1

12D ln ~m/m!G1O~s2!. ~4.27!
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From this expression, keeping only the leading behavior in (ma), and dividing by 4pa2 ~the
volume of 2-D de Sitter space! to obtain the zeta function density, we find

z̃~0!52
m2

4p
~4.28!

and

z̃8~0!52
m2

4p S 11 ln
m2

m2D . ~4.29!

For the Minkowski zeta function density in 2-D, we have from Eq.~1.7!

z̃~s!5E dDk

~2p!D

m2s

~k21m2!s •5
m2

4p S m2

m2D s 1

s21
, ~4.30!

which gives precisely the values forz~0! andz8~0! that we have obtained above.

V. CONCLUSIONS

In this paper we have, starting with the definition of thez function for a minimally coupled
massive scalar field inD-dimensional de Sitter space, given an integral representation for it w
is well defined nears50. We have then deformed the contour of integration so as to expose
terms which give the leading behavior as the de Sitter radiusa tends to infinity.

In this limit, de Sitter space becomes Minkowski space, and we verify, specializing to the
D52 for simplicity, thatz~0! andz8~0! tend to the expected Minkowski values. This is a prope
that is not at all evident from the original integral representation, and, as pointed out i
Introduction, is a property that might have been lost in the process of analytic continuation
both reassuring and a nontrivial check of our computations that the Minkowski limit is in
recovered after analytic continuation.

With these results in hand, one can consider the addition of a symmetry-breaking poten
the scalar field. One will then be able to study questions related to field quantization in de
space in the presence of interactions that, in Minkowski space, would lead to symmetry-bre
effects. In particular, one will be able to study the way in which particular time slicings may
to symmetry restoration whereas others may allow the symmetry to remain broken.1 Investigations
along these lines are in progress.
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Casimir invariants and characteristic identities for gl (`)
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A full set of ~higher-order! Casimir invariants for the Lie algebragl(`) is con-
structed and shown to be well defined in the categoryOFS generated by the highest
weight ~unitarizable! irreducible representations with only a finite number of non-
zero weight components. Moreover, the eigenvalues of these Casimir invariants are
determined explicitly in terms of the highest weight. Characteristic identities satis-
fied by certain~infinite! matrices with entries fromgl(`) are also determined and
generalize those previously obtained forgl(n) by Bracken and Green@A. J.
Bracken and H. S. Green, J. Math. Phys.12, 2099 ~1971!; H. S. Green,ibid. 12,
2106 ~1971!#. © 1997 American Institute of Physics.@S0022-2488~97!02508-5#

I. INTRODUCTION

In recent years infinite-dimensional Lie algebras have become a subject of interest in
mathematics and physics~see Refs. 1 and 2 and the references therein!. We mention as an
example, related to the topic of the present article, that the Lie algebragl(`) and its completion
and central extensiona` play an important role in the theory of soliton equations,3,4 string theory,
two-dimensional statistical models, etc.5 In addition, these algebras provide an example of Ka
Moody Lie algebras of an infinite type.1,6

In this paper, we derive a full set of Casimir invariants for the infinite-dimensional gen
linear Lie algebragl(`), corresponding to the following matrix realization~see the notation at the
end of the Introduction!:

gl~`!5$x5~ai j !u i , j PN, all but a finite number of aijPC are zero%. ~1!

Characteristic identities satisfied by certain infinite matrices with entries fromgl(`) are also
determined and generalize those obtained by Bracken and Green7,8 for gl(n). Such identities are
of interest and have found applications to state labeling problems9 and to the determination o
Racah–Wigner coefficients.10

A basis for the Lie algebragl(`) is given by the Weyl generatorsei j , i , j PN, satisfying the
commutation relations:

@ei j ,ekl#5d jkeil 2d l i ek j . ~2!

The categoryO generated by highest weight irreduciblegl(`) modules, corresponding to th
‘‘Borel’’ subalgebra,

N15 lin. env.$ei j u i , j PN%, ~3!

has been constructed in Ref. 11. By definition, eachgl(`) moduleVPO contains a unique~up to
a multiplicative constant! vectorvL , the highest weight vector, with the properties

N1vL50, eii vL5L ivL , ; i PN. ~4!

a!Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria;
Electronic mail: stoilova@inrne.acad.bg
0022-2488/97/38(9)/4783/11/$10.00
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The highest weightL[(L1 ,L2 ,L3 ,...) of VPO uniquely labels the module,V[V(L). More-
over, all unitarizable irreducible highest weightgl(`) modulesV(L), corresponding to the natu
ral conjugation operation: (ei j )

†5eji , ; i , j PN, have been determined.11 The moduleV(L)PO
carries a unitarizable representation ofgl(`) if and only if

L i2L jPZ1 , ; i , j PN, L iPR, ; i PN. ~5!

In the paper we will consider the categoryOFS,O, of modules generated by all unitarizab
irreduciblegl(`) modules with a finite number of nonzero highest weight componentsL i . These
are modulesV(L) with highest weights,

L[~L1 ,L2 ,...,Lk,0,...![~L1 ,L2 ,...,Lk ,0̇!. ~6!

The paper is organized as follows. In Sec. II we give some useful results on the repre
tions of gl(`) with a finite number of nonzero components of the highest weight. In Sec. II
construct a full set of convergent Casimir invariants on each moduleV(L). Section IV is devoted
to the computation of the eigenvalues of these Casimir invariants for all modules from the
categoryOFS . In Sec. V we present a derivation of the polynomial identities satisfied by ce
matrices with entries fromgl(`), which generalize those obtained previously forgl(n).

Throughout the paper we use the following notation:

irrep~s!—irreducible representation~s!;
lin. env. $X%-the linear envelope ofX;
C—the complex numbers;
R—the real numbers;
Z1—all non-negative integers;
N—all positive integers;
U(A)—the universal enveloping algebra ofA.

II. PRELIMINARIES

Denote byH the Cartan subalgebra ofgl(`). The spaceH* dual toH is described by the
forms « i , i PN, where« i :x→aii , andx is given by ~1! only for diagonalx. Let ~ , ! be the
bilinear form onH* defined by (e i ,e j )5d i j . For a weightm5( i 51

` m i« iPH* with m i being
complex numbers we writem[(m1 ,m2 ,...,mn ,...). Theroots « i→« j ( iÞ j ) of gl(`) are the
nonzero weights of the adjoint representation. The positive roots are given by the set

F15$« i2« j u1< i , j PN%. ~7!

Define

r5
1

2 (
i 51

`

~122i !e i . ~8!

Let Dn be the set ofgl(`) weights:

Dn5$nun5~n1 ,...,nn ,0̇!, n iPZ1 , i 51,2,...,n21, nnPN%, ~9!

and letDn
1,Dn be the subset of dominant weights inDn :

Dn
15$nunPDn ,~n,« i2« i 11!PZ1 , ; i PN%. ~10!

Denote
J. Math. Phys., Vol. 38, No. 9, September 1997
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DFS
1 [øn51

` Dn
1 , DFS[øn51

` Dn . ~11!

Note the following.
~1! The irreduciblegl(`) modulesV(L) with highest weightsLPDk

1,DFS
1 , corresponding

to the natural conjugation operation, generate the subcategoryOFS,O of unitarizablegl(`)
modules~6!;

~2! Each moduleV(L) gives rise to a unitarizable module for the canonical subalge
gl(n),gl(`) with generatorsei j , i , j 51,...,n. In general,V(L) is a reduciblegl(n) module;
more precisely, it is a completely reduciblegl(n) module;

~3! If n is a weight inV(L), thennPDn , for somenPZ1 .
Let Ln be the projection of thegl(`) highest weightLPDk

1 onto the weight space ofgl(n)
so that, forn.k,

Ln5~L1 ,...,Lk,0,...,0n!5~L1 ,...,Lk ,0̇n2k!. ~12!

Theorem 1: (i) The gl(n) module Vn(L),V(L), LPDk
1 , cyclically generated by the high

est weight vectorvL
1PV(L), is irreducible with highest weightLn .

(ii) If vPV(L) is a weight vector of weightnPDn , thenvPVn(L).
Proof: ~i! The cyclic gl(n) moduleVn(L) generated byvL

1 is well known to be indecom-
posable~see, for instance, Ref. 12!. The result then follows from the complete reducibility
V(L) considered as agl(n) module.

~ii ! Let vPV(L) have weightnPDn . From the Poincare´–Birkhoff–Witt theorem we may
write

v5pvL
1 , pPU~N2!, ~13!

with N2 the subalgebra ofgl(`) generated by all negative root vectors,

N25 lin. env.$ei j u i . j PN%. ~14!

The weightnPH* has the form

n5L2(
i 51

`

mi~« i2« i 11!, ~15!

andmi50 for all but a finite number ofi . SincenPDn , mi50 for i .n, so that

n5L2(
i 51

n

mi~« i2« i 11!. ~16!

In view of the linear independence of the simple roots« i2« i 11 , ~16! implies that

pPU~N2!ùU@gl~n!#. ~17!

Thereforev is a vector from thegl(n) moduleVn(L), vPVn(L). h

Consider thegl(`) modulesV(L) and V(m), with highest weightsLPDk
1 and mPDl

1 ,
respectively. Take the tensor product of them,

V~L! ^ V~m!, ~18!

and suppose thatvn
1 is agl(`) highest weight vector in~18!. Then for somen, nPDn

1 so thatvn
1

is a linear combination of vectors of the form
J. Math. Phys., Vol. 38, No. 9, September 1997
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v ^ w, ~19!

wherev andw have weights inDn . Theorem 1then implies thatvPVn(L), wPVn(m). There-
fore

vn
1PVn~L! ^ Vn~m!. ~20!

SinceL hask andm has l nonzero components, thenn can have at mostk1 l nonzero compo-
nents, so thatn<k1 l . Hence w.l.o.g. we may taken5k1 l . Thus, if vn

1 is a gl(`) highest
weight vector in~18! then

vn
1PVn~L! ^ Vn~m!, n5k1 l , ~21!

is a gl(n) highest weight vector. Conversely, given agl(n) highest weight vector,

vn
1PVn~L! ^ Vn~m!, n5k1 l ,

we have

ei j vn
150, ; i , j 51,...,n,

while

ei j vn
150, ; j .n,

since all weights inV(L) andV(m) have entries inZ1 . Thereforevn
1 must be agl(`) highest

weight vector.Vn(L) and Vn(m) are gl(n) irreducible modules with highest weightsLn and
mn , respectively. For their tensor product decomposition we write

Vn~L! ^ Vn~m![V~Ln! ^ V~mn!5 % nmnV~nn![ % nmnVn~n!, ~22!

wheren[(nn ,0̇).
Hence we have proved the following.
Theorem 2: The irreducible gl(n) module decomposition,

Vn~L! ^ Vn~m!5 % nmnVn~n!, ~23!

implies the gl(`) irreducible module decomposition

V~L! ^ V~m!5 % nmnV~n!, ~24!

whereLPDk
1, mPDl

1, n5k1 l .

III. CONSTRUCTION OF CASIMIR INVARIANTS

An obvious invariant forgl(`) is the first-order invariant,

I 15(
i 51

`

eii . ~25!

However, it is not clear how to construct appropriate higher-order invariants forgl(`). Let us
therefore consider the second-order invariantI 2

(n) of gl(n):
J. Math. Phys., Vol. 38, No. 9, September 1997
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I 2
~n!5 (

i , j 51

n

ei j eji 5(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

(
j . i 51

n

ei j eji 1(
i 51

n

eii
2

52(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

(
j . i 51

n

~eii 2ej j !1(
i 51

n

eii
2

52(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

~n1122i !eii 1(
i 51

n

eii
2

52(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

eii ~eii 1122i !1nI1
~n! , ~26!

where I 1
(n)[( i 51

n eii is the first-order invariant ofgl(n). Due to the last term in~26! the gl(n)
second-order invariant diverges asn→`. Eliminating the last term in~26! ~the rest of the expres
sion is also an invariant! and taking the limitn→`, one obtains the following quadratic Casim
for gl(`):

I 252(
i 51

`

(
j , i

`

ei j eji 1(
i 51

`

eii ~eii 1122i !, ~27!

which is convergent@see formula~36!# on the categoryOFS of irreps considered. OnV(L), L
PDk

1 , I 2 takes the constant value

xL~ I 2!5(
i 51

k

L i~L i1122i !5~L,L12r!. ~28!

This construction suggests how to proceed to the higher-order invariants ofgl(`).
To begin with we introduce the characteristic matrix,

Ai
j5eji . ~29!

This matrix, in fact, arises naturally in the context of characteristic identities, to be discuss
Sec. V. Powers of the matrixA are defined recursively by

~Am! i
j5 (

k51

`

Ai
k~Am21!k

j , @~A0! i
j[d i j #. ~30!

Using induction and thegl(`) commutation relations~2! one obtains the following.
Proposition 1:

@ekl ,~Am! i
j #5d j l ~Am! i

k2d ik~Am! l
j . h ~31!

Therefore the matrix traces,

tr~Am![(
i 51

`

~Am! i
i , ~32!

are formally Casimir invariants. They are, however, divergent except form51, in which case we
obtain the first-order invariant~25!. The purpose of the present investigation is to construct a
set of Casimir invariants that are well defined and convergent on the categoryOFS .

The following is the main result of the paper.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 3: The Casimir invariants defined recursively by

I 15(
i 51

`

Ai
i5tr~A!;

I m5(
i 51

`

@~Am! i
i2I m21#5tr@Am2I m21#, ~33!

form a full set of convergent Casimir invariants on each module, V(L)POFS . h

Observe first that theI m so defined~33! are indeed Casimir invariants~seeProposition 1!. It
remains to prove that they are convergent on the categoryOFS . We will do this by induction. It
is constructive to consider first the casem52:

I 2[(
j 51

`

@~A2! j
j2I 1#5(

j 51

` F(
i 51

`

ei j eji 2I 1G5(
j 51

` F(
i . j

`

ei j eji 1(
i , j

`

ei j eji 1ej j
2 2I 1G

5(
j 51

` F2(
i . j

`

ei j eji 1(
i , j

`

~eii 2ej j !1ej j
2 2I 1G5(

j 51

` F2(
i . j

`

ei j eji 1ej j ~ej j 2 j 11!1(
i , j

`

eii 2I 1G
5(

j 51

` F2(
i . j

`

ei j eji 1ej j ~ej j 2 j !2(
i . j

`

eii G52(
j 51

`

(
i . j

`

ei j eji 1(
j 51

`

ej j ~ej j 22 j 11!, ~34!

which agrees with the definition~27!.
Now let vPV(L), LPDk

1 , be an arbitrary weight vector. Then the weight ofv has the form.

n5~n1 ,n2 ,...,n r ,0̇!, ~35!

so that( i 51
r n i5( i 51

k L i5xL(I 1). Note that

Ai
jv5eji v50, ; i .r , ~36!

and that the second-order invariantI 2 is convergent on eachV(L)POFS @cf. formula ~27!#.
Applying Proposition 1and ~36! for i .r , one obtains

~Am! i
iv5(

j 51

`

Ai
j~Am21! j

i v5(
j 51

`

eji ~Am21! j
i v5(

j 51

`

$@~Am21! j
j2~Am21! i

i #v1~Am21! j
i ej i v%

5(
j 51

`

@~Am21! j
j2~Am21! i

i #v. ~37!

In particular, for the casem52 we have

~A2! i
iv5(

j 51

`

@Aj
j2Ai

i #v5(
j 51

`

ej j v5I 1v, ; i .r , ~38!

so that

„~A2! i
i2I 1…v50, ; i .r , ~39!

which is another proof for the convergence ofI 2 . More generally, we have the following.
Proposition 2: For any weight vectorvPV(L), and mPN there exist rPN such that
J. Math. Phys., Vol. 38, No. 9, September 1997
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„~Am! i
i2I m21…v50, ; i .r . ~40!

Proof: We proceed by induction and assumey has weightn as in~35!. Formula~40! is valid
for m52 ~39!. Assuming the result is true for a givenm, i.e.

~Am! i
iv5I m21v, ; i .r ,

we have@see~37!#

~Am11! i
iv5(

j 51

`

@~Am! j
j2~Am! i

i #v5(
j 51

`

@~Am! j
j2I m21#v5I mv, ; i .r , ~41!

which proves~40!. h

I m ~33! is convergent on eachV(L) for m52. Assume it is convergent and well defined
V(L) for a givenm. Then, withv as in ~40!, we have

I m11v[(
i 51

`

@~Am11! i
i2I m#v5(

i 51

r

@~Am11! i
i2I m#v5(

i 51

r

~Am11! i
iv2rI mv, ~42!

so thatI m11 is convergent and well defined onV(L).
This completes the~inductive! proof of Theorem 3.
In the next section we will obtain an explicit eigenvalue formula for these invariants.

IV. EIGENVALUE FORMULA FOR CASIMIR INVARIANTS

In this section we apply our previous results to evaluate the spectrum of the invariants~33!.
Let vPV(L), be an arbitrary vector of weightn5(n1 ,...,n r ,0̇). Then, keeping in mind

Proposition 1, the fact that (Am21)k
j has weight« j2«k under the adjoint representation ofgl(`)

and that all vectors ofV(L) have weight components inZ1 , we must have forj <r ,

~Am21!k
j v50, ;k.r . ~43!

Therefore

~Am! i
jv5 (

k51

`

Ai
k~Am21!k

j v5 (
k51

r

Ai
k~Am21!k

j v. ~44!

Proceeding recursively, we may therefore write

~Am! i
jv5~Ām! i

jv, ; i , j 51,...,r , ~45!

where (Ā) i
j5eji , ; i , j 51,...,r , is thegl(r ) characteristic matrix, and the powers of the matrixĀ

are defined by~30! with i , j ,k51,...,r and Ā instead ofA. It follows then that the formula~42!
can be written as

I mv5(
i 51

r

@~Ām! i
i2I m21#v5@ I m

~r !2rI m21#v, ~46!

with

I m
~r !5(

i 51

r

~Ām! i
i , ~47!
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being themth-order invariant ofgl(r ). Formula~46! is valid ;mPN, which gives a recursion
relation for theI m with the initial condition

I 1v5xL~ I 1!v. ~48!

In particular, it follows from~46! that the invariantsI m are certainly convergent on all weigh
vectors vPV(L).

To determine the eigenvalues ofI m let v5vL
1 be the highest weight vector of the unitarizab

moduleV(L) and let

L5~L̄,0̇!PDk
1 , L̄[~L1 ,...,Lk!. ~49!

Then for the eigenvalues of theI m one obtains the recursion relation@see~46!#

xL~ I m!5xL̄~ I m
~k!!2kxL

~ I m21!, xL~ I 1!5(
i 51

k

L i , ~50!

wherexL̄(I m
(k)) is the eigenvalue of themth-order invariant~47! of gl(k) on the irreduciblegl(k)

module with highest weightL̄; the latter is given explicitly by13

xL̄~ I m
~k!!5(

i 51

k

a i
m )

j Þ i 51

k S a i2a j11

a i2a j
D , ~51!

where

a i5L i112 i .

We thereby obtain for the eigenvalues of the Casimir invariantsI m ,

xL~ I m!5(
i 51

k

Pm~a i ! )
j Þ i 51

k S a i2a j11

a i2a j
D , ~52!

for suitable polynomialsPm(x), which, from Eq.~50!, satisfy the recursion relation

Pm~x!5xm2kPm21~x!, P1~x!5x. ~53!

In particular,

P2~x!5x22kx5x
x22k2

x1k
; ~54a!

P3~x!5x32k~x22kx!5x
x31k3

x1k
, ~54b!

and more generally, it is easily established by induction that

Pm~x!5x
xm2~21!mkm

x1k
. ~55!

Thus we have the following.
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Theorem 4: The eigenvalues of the Casimir invariants Im ~33!, on the irreducible unitarizable
gl(`) module V(L), LPDk

1 are given by

xL~ I m!5(
i 51

k

a i S a i
m1~21!m11km

a i1k D)
j Þ i

k S a i2a j11

a i2a j
D , where a i5L i112 i . ~56!

h

V. POLYNOMIAL IDENTITIES

Let D be the comultiplication on the enveloping algebraU@gl(`)# of gl(`) @D(ei j )5ei j

^ 111^ ei j , i , j PN, with 1 being the unit inU@gl(`)##. Applying D to the second-order Casim
invariant ~27! of gl(`), we obtain

D~ I 2!5I 2^ 111^ I 212 (
i , j 51

`

ei j ^ eji . ~57!

Therefore

(
i , j 51

`

ei j ^ eji 5
1

2
@D~ I 2!2I 2^ 121^ I 2#. ~58!

Denote byp«1
the irrep ofgl(`) afforded byV(«1). The weight spectrum for the vector modu

V(«1) consists of all weights« i , i 51,2,..., each occurring exactly once. Denote byEi j , i , j
PN the generators on this space,

p«1
~ei j !5Ei j , ~59!

with Ei j an elementary matrix.
As for the algebragl(n), we introduce the characteristic matrix

A5 (
i , j 51

`

p«1
~ei j !eji 5 (

i , j 51

`

Ei j eji 5
1

2
~p«1

^ 1!@D~ I 2!2I 2^ 121^ I 2#. ~60!

ThereforeA is the infinite matrix introduced in Sec. III@see~29!# and the entries of the matrix
powersAm are given recursively by~30!. We will show that the characteristic matrix satisfies
polynomial identity acting on thegl(`) moduleV(L), LPDk

1 . Let pL be the representation
afforded byV(L). From Eq.~60! acting onV(L) we may interpretA as an invariant operator o
the tensor product moduleV(«1) ^ V(L):

A[ 1
2~p«1

^ pL!@D~ I 2!2I 2^ 121^ I 2#. ~61!

From Theorem 2, we have, for the tensor product decomposition,

V~«1! ^ V~L!5 % i 51
k118V~L1« i !, ~62!

where the prime signifies that it is necessary to retain only those summands for whichL1« i

PDFS
1 . Therefore on eachgl(`) moduleV(L1« i) in ~62!, A takes the eigenvalue

1
2@xL1« i

~ I 2!2x«1
~ I 2!2xL~ I 2!#5 1

2@~L1« i ,L1« i12r!2~«1 ,«112r!2~L,L12r!#

5L i112 i ~63!

~seeTheorem 4!. Thus we have the following theorem.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 5: On each gl(`) module V(L), LPDk
1 the characteristic matrix satisfies th

polynomial identity

)
i 51

k11

~A2a i !50, ~64!

with a i5L i112 i the characteristic roots. h

The characteristic identities~64! are thegl(`) counterpart of the polynomial identities en
countered forgl(n) by Bracken and Green7,8 ~more precisely their adjoint identities!. It is worth
noting, in view of the decomposition~62!, that these identities may frequently be reduced. So
reduced identities are indicated below for certain choicesLPDFS

1 of the gl(`) highest weight:

L5~ 1̇k ,0̇!: ~A21!~A1k!50; ~65a!

L5~k,0̇!: ~A11!~A2k!50; ~65b!

L5~ ṗk ,q̇l ,0̇!: ~A2p!~A1k2q!~A1k1 l !50, p,q. ~65c!

Note: Sometimes the characteristic and reduced identities are the same; for instance, in~65b! the
reduced identity coincides with the characteristic identity. This is in stark contrast to the ch
teristic identities forgl(n).

More generally, having in mind~58!, introduce a characteristic matrix,

AL5 (
i , j 51

`

pL~ei j !eji 5
1

2
~pL ^ 1!@D~ I 2!2I 2^ 121^ I 2#, ~66!

corresponding to any irreppL of gl(`) afforded byV(L), LPDk
1 . In a suitably chosen basis fo

V(L), AL is an infinite matrix with entries

~AL!a
b5 (

i , j 51

`

pL~ei j !abeji . ~67!

Acting on an irreduciblegl(`) module V(m), mPDl
1 , AL may be regarded as an invaria

operator on the tensor product moduleV(L) ^ V(m):

AL[ 1
2~pL ^ pm!@D~ I 2!2I 2^ 121^ I 2#. ~68!

Now applyingTheorem 2, the decomposition of the tensor product spaceV(L) ^ V(m) is given by
the gl(k1 l ) branching rule,

Vn~L! ^ Vn~m!5 % nmnVn~n!, ~69!

with n5k1 l . Let $ln
i % i 51

d be the set of distinct weights in thegl(n) moduleVn(L). Then the
allowed highest weightsnn occurring in the decomposition~69! are of the formnn5mn1ln

i , for

somei . It follows that onV(n), n5(nn ,0̇), the matrixAL takes the constant values

aL,i5
1
2@xm1l i

~ I 2!2xL~ I 2!2xm~ I 2!#5 1
2@„l i ,l i12~m1r!…2~L,L12r!#, l i5~ln

i ,0̇!,
~70!

which are the characteristic roots of the matrixAL . Thus we have the following.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 6: On the irreducible gl(`) module V(m), mPDFS
1 , the characteristic matrix

AL satisfies the polynomial identity

)
i 51

d

~AL2aL,i !50. ~71!

These identities are obvious generalizations of those ofTheorem 5@see~64!#. Note, in this case,
that Eq. ~69! implies the reduced identity satisfied by the matrixAL on the gl(`) module
V(m), given by

)
n

~AL2an!50, ~72!

where now

an5 1
2@~n,n12r!2~L,L12r!2~m,m12r!#. ~73!

Casimir invariants for the infinite-dimensional general linear Lie algebra have been obt
explicitly, and their eigenvalues on any irreducible highest weight unitarizable representatio
a finite number of nonzero weight components computed. With the help of the second
Casimir invariant, we have obtained characteristic identities for the Lie algebragl(`), which are
a generalization of those forgl(n).

It is well known that the invariants of finite-dimensional Lie algebras play an important
in their representation theory. However, for the infinite-dimensional Lie algebras, correspo
full sets of Casimir invariants have not yet been determined. The present paper is a step in
this problem.
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A family of exact travelling wave solutions to nonlinear
evolution and wave equations

V. V. Gudkov
Institute of Mathematics and Computer Science, University of Latvia,
Riga LV-1459, Latvia

~Received 28 January 1997; accepted for publication 14 May 1997!

A family $q% of the multicomponent special functions is defined for obtaining the
exact travelling wave solutions to nonlinear evolution and wave equations. It is
shown that the functionsqn from $q% for somen52,4,... are closely related to the
special unitary groups SU(n). The necessary and sufficient conditions for existence
of a family of the exact multicomponent travelling wave solutions to a quasilinear
evolution equation are given. An efficiency of the method based onq-functions is
demonstrated on several classes of the nonlinear partial differential equations.
© 1997 American Institute of Physics.@S0022-2488~97!00909-2#

I. INTRODUCTION

In this paper we give a uniform kind of the exact travelling wave solutions to the compl
integrable nonlinear partial differential equations~PDEs!. There are several methods for obtainin
the exact solutions to nonlinear PDEs~see, for instance, Refs. 1–5!. To make a method of the
substitutions more efficient we define a family$q% of the special multicomponent functions. The
functions are intended for obtaining the exact travelling and solitary wave solutions for ma
the nonlinear PDEs encountered in different areas of physics. An essential part of a family$q% is
the matrix functions. Two functions, real functionq0 and complex functionq1 , from the family
were defined in our previous papers.4,5

A most important point is that the matrix representation of the functionsqnP$q% (n
52,4,...) is closely related to the special unitary groups SU(n). For example, it is shown that th
values of the function 2q221 ~one of the solutions of the nonlinear Klein–Gordon equation! can
be put in one-to-one correspondence with the spin rotation group SU~2!. We suppose that suc
application of the SU(n) groups introduces an additional descriptive geometrical aspect in
quantum field theories. An important point also is an interpretation of complex function 2q121
~another solution of the nonlinear Klein–Gordon equation! as rotation of a proton system, whic
implies a corresponding rotation of an adjacent hydroxyl system~see example 7 at the end of th
paper!.

The paper is organized as follows. In Sec. II the definition of the functionsqnP$q% (n
52,3,...) is based on hypercomplex numbers of thenth order, i.e., on 2n-dimensional numbers
~about these numbers see, for instance, Ref. 6!. An algebra of the hypercomplex numbers in t
case of their matrix representation is the same as matrix algebra. For a matrix representa
functionsq2 andq4 we use the Pauli7 and Dirac8 matrices, respectively. The relations withqn and
SU(n) and the one-to-one correspondence between 2q221 and SU~2! are established. In Sec. II
we present a general formula for derivatives of functionsq and as a theoretical result we give th
necessary and sufficient conditions for existence of exact travelling wave solutions for quas
PDEs. In Sec. IV we obtain the families of travelling wave solutions to the specific nonli
PDEs. It is important to stress that the well-known solutions expressed in terms of tanh an
we find in terms ofq0 and, in addition, we obtain a family of the new solutions expressed in te
of q1 , q2 ,... .
0022-2488/97/38(9)/4794/10/$10.00
4794 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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II. FAMILY OF SOLUTIONS

Let us define the multicomponent functions

qn~z!5„11exp~2z!…21S E1exp~z!(
k51

m

akMkD , (
k51

m

ak
251, ~1!

wherezP(2`,`); n52,3,... is an order of hypercomplex numbersE, Mk ; E is unit; andm is
the number of anticommuting hypercomplex numbersMk , such thatMiMk52MkMi for iÞk
and MkMk52E for k51,2,...,m.

We add to the family$qn% two real functions,

q0~z!5„11exp~z!…21, q* ~z!5„12exp~z!…21,

and the complex functionq1 , which is defined from~1! by takingM15 i , n5m51, andE51. It
is easy to show that

q1~z!5q0~2z!1 i
a1

2
sech~z!, a1561.

The functionp5q0 was defined in Ref. 4 for obtaining the exact travelling wave solutions
reactive-diffusive equations. The functionq5q1 was defined in Ref. 5, where the exact travelli
wave solutions for some evolutionary equations were constructed. In view of the fact th
function q* is undefinite on the pointz50, this point should be excluded from a considerat
when one will need to obtain a solution in terms ofq* .

Theorem 1: Let $q%5$q0 ,q* ,q1 ,q2 ,...%. Then any qP$q% satisfies to the logistic equatio

q85q~q2E!, 85
d

dz
. ~2!

Proof: It is easy to verify that functionsq0 , q* , and q1 satisfy ~1!, whereE51. Having
assumed thatq5qn (n52,3,...), we calculate

q8~z!5
exp~z!

„11exp~2z!…2 S „12exp~2z!…(
k51

m

akMk22 exp~z!ED ,

q~z!„q~z!2E…5
exp~z!

„11exp~2z!…2 S „12exp~2z!…(
k51

m

akMk2exp~z!~E2S!D ,

where taking into account the anticommuting property of the numbersMk we have S
5(k,i

m akaiMkMi52E. We obtain the result from the comparison of the two equalities.
This is a fundamental property of$q%. Moreover, anyqP$q% satisfies the boundary cond

tions

q~z!→E for z→2`, q~z!→0 for z→`.

Note some other properties of the functionsq:

q0~z!5 1
2„12tanh~z/2!…, q08~z!52 1

4 sech2 ~z/2!,

q* ~z!5 1
2„12coth~z/2!…, q

*
8 ~z!5 1

4 csch2 ~z/2!,
J. Math. Phys., Vol. 38, No. 9, September 1997
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q1~z!5q0
1/2~2z! exp„if~z!…, f~z!5a1 arctan„exp~z!….

The functions„q(z)…k satisfy the equation

~qk!85kqk~q2E!, k51,2,... .

A more practical significance has the matrix representation of the hypercomplex numbe
a vector space~with respect to addition of the matrices! W of all n3n-complex matrices one ca
choose a set of linear-independent matricesMk (k51,2,...,m) that are unitary (Mk

215Mk* ),
anti-Hermitian (Mk* 52Mk), and anticommuting (MiM j52M jMi) matrices, where a symbol*
denotes a passage to the complex conjugate transposed matrix. A maximal number o
matrices Mk form together with unit E a basis in a real~over real numbers! vector
~m11-dimensional! proper subspaceV in W. Any matrix M from V can be represented as

M5c0E1 (
k51

m

ckMk ,

whereck (k50,1,...,m) are real numbers. It follows from

MM* 5S c0E1 (
k51

m

ckMkD S c0E2 (
k51

m

ckMkD 5 (
k50

m

ck
2E

that M is a unitary matrix in the case(k50
m ck

251. If, in addition detM51, thenM belongs to
SU(n) ~a subgroup of all unitaryn3n-complex matrices with unit determinant!. The matrices
Mk should be chosen in such a way that detM5(k50

m ck
2. In this case for anyz it is easy to verify

that

„11exp~2z!…1/2qn~z! belong to SU~n!.

An explicit choice ofMk for n52 and 4 we demonstrate on an example of an accept
model of quantum field theory, based on the well-known Klein–Gordon equation:1,7,8

Du2utt52m2u1lu3, D5 (
k51

3
]2

]xk
2 , l.0. ~3!

Let

j5 (
k51

3

akxk2gt, (
k51

3

ak
251, g2,1.

Then by substitutingu5aq1bE(qP$q%) into ~3!, we find a family $u% of travelling wave
solutions

u~j!56
m

Al
„2q~bj!2E…, b56mA 2

12g2.

Let us present the most interesting solutionsu0 , u1 , u2 , andu4 corresponding toq0 , q1 ,
q2 , andq4 , respectively, as follows. Here

u0~j!5~7m/Al! tanh~bj/2! ~4!

is the well-known solution of Klein–Gordon equation. Also,
J. Math. Phys., Vol. 38, No. 9, September 1997
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u1~j!5~7m/Al!tanh~bj!2 ia1 sech~bj!… ~5!

is a complex solution, which can be represented as

u1~j!5~7m/Al! exp„if~bj!…, f~bj!5a1 arctan„2csch~bj!…;

u2~j!5~7m/Al!S tanh~bj!E2sech~bj!(
k51

3

akMkD ,

where the anticommuting hypercomplex numbersM1 , M2 , andM3 are represented as

M15 is15S 0 i

i 0D , M252 is25S 0 21

1 0 D , M35 is35S i 0

0 2 i D
by using Pauli matricessk ~see Ref. 7, p. 27! for k51,2,3. We have

u4~j!5~7m/Al!S tanh~bj!E2sech~bj!(
k51

4

akMkD ,

where four anticommuting hypercomplex numbersMk are represented as

M15S 0 0 0 1

0 0 1 0

0 21 0 0

21 0 0 0

D , M25S 0 0 0 2 i

0 0 i 0

0 i 0 0

2 i 0 0 0

D ,

M35S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D , M45S i 0 0 0

0 i 0 0

0 0 2 i 0

0 0 0 2 i

D .

Here matricesMk are equivalent to the Dirac matricesg k ~see Ref. 8, p. 64! for k51,2,3,4.
Let us consider a connection between the solutionu2 and SU ~2!. Note that matricesE,

M1 , M2 , andM3 form a basis in the real vector spaceV of 232 complex matrices,

M5c0E1 (
k51

3

ckMk5S c01 ic3 2c21 ic1

c21 ic1 c02 ic3
D ,

where allck are real numbers. It is easy to verify thatMM* 5(k50
3 ck

2 and detM5(k50
3 ck

2. Thus
M belongs to the rotation group SU~2! if and only if (k50

3 ck
251 ~see Ref. 9, p. 132!. At the same

time the last means that SU~2! is topologically equivalent to the sphereS3 in R4. Using this fact
we state the following.

Theorem 2: A set of the matrices2q2(j)2E for all jP@2`, `# is in one-to-one correspon
dence with the matrix groupSU~2!.

Proof: For anyjP@2`, `# the values of the function

2q2~j!2E52tanh~j!E1sech~j!(
k51

3

akMk
J. Math. Phys., Vol. 38, No. 9, September 1997
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are the matrices fromV and the equality

tanh2~j!1sech2~j!(
k51

3

ak
251

is valid. Thus we obtain that matrix 2q2(j)2E belongs to SU~2!. On the other hand for any poin
(c0 ,c1 ,c2 ,c3) of sphereS3 with (k50

3 ck
251 @we remind the reader that SU~2! is topologically

equivalent toS3# we uniquely obtain valuesj andak as follows:

tanh~j!52c0 , ak5ck /sech„arctanh~2c0!…, k51,2,3. ~6!

Thus we obtain one and only one matrix 2q2(j)2E corresponding to the point (c0 ,c1 ,c2 ,c3) on
sphereS3. This completes the proof of the theorem.

Moreover, for fixeda1 , a2 , and a3 from ~6! the function 2q2(j)2E can be presented o
S3 as a trajectory which starts from point~1,0,0,0! for j52`, passes through poin
(c0 ,c1 ,c2 ,c3) for j5arctanh(2c0), and ends on the point (21,0,0,0). Substitutingj by bj one
can observe that solutionu2(j) describes a trajectory on the sphere of the radiusm/Al.

Now we consider a connection betweenu4 and SU~4!. It is obvious thatE, M1 , M2 , M3 , and
M4 is a basis in the proper subsetV of the vector spaceW of all complex 434 matrices. The
V is a real~over real numbers! vector space and for anyj matrix M52q4(bj)2E belongs to
V. Moreover, it follows from

tanh2~bj!1sech2~bj!(
k51

4

ak
251

that detM51 andMM* 5E, i.e., matrix 2q4(bj)2E belongs to SU~4!.
Note that a family of solutions$u% is obtained in assumptiong2,1. If we setg2.1, then the

function

v562m~~2/l!q~2bj!„12q~2bj!…!1/2,

whereb56m„1/(g221)…1/2, qP$q%, solves the equation~3!. Here forq5q0 we have

v56m~2/l!1/2 sech~bj!.

III. NECESSARY AND SUFFICIENT CONDITIONS

We set

u~z!5qn~az!, Ln5)
k51

n

~n1k21!, aP~2`,`!, n.0,

and if q5qn (n52,3,...), thenn is positive rational number.
Theorem 3: Thenth derivative on u(z) is expressed by

u~n!5qnanLnS qn1 (
k51

n
~21!kankq

n2k

~n1n2k!•••~n1n21!D , ~7!

where the coefficients ank are given by recursion relations

ank5an21k1~n1n2k!an21k21 , an21n50, an21051, ~8!

for n51,2,...,k51,2,...,n.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Proof: Note thatu85anqn(q2E). Now we suppose that~7! is valid for n21. Then we have

u~n!5an21Ln21

d

dz S qn1n211 (
k51

n21
~21!kan21,kq

n1n212k

~n1n212k!•••~n1n22!D 5anLnqn~q2E!

3S qn211 (
k51

n21
~21!kan21,kq

n212k

~n1n2k!•••~n1n21!D . ~9!

It follows from recursion relations~8! that ~9! yields ~7!. The theorem is proved.
From ~9!, it is easy to see that

u~n!5u8R~q!, n51,2,...,

whereR is a polynomial of ordern21. From~8!, it is obvious thatann5nn.
Let us consider the quasilinear equation

]mu

]tm 5(
i 50

n
] iu

]xi (
k50

N1n2 i

Aikurk, ~10!

whereAik are real coefficients,r .0, N50,1,...; n51,2,...; m51,2,...,N1n. Since we are inter-
ested in the travelling wave solutions, we letz5x2gt, whereg is the speed of the propagatin
waves.

For i 51,2,...,n andn.0 we set

Aik50 for k52n,...,21,

bik5
~21!kaik

~n1 i 2k!•••~n1 i 21!
for k51,2,...,i ,

bi051, bik50 for k52N2n11,...,21,i 11,...,N1n,

Bi ,N1n2 j5 (
k50

N1n2 j

bikAi , j 1k2 i for j 50,1,...,N1n.

Note that substitutionu5au* andAik* 5Aikark transfers~10! into itself after removing the aster
isks. Therefore without loss of generality we give the conditions for existence of the trave
wave solution in the formu5qn(az).

Theorem 4: Let n51/r . Then equalities

A0k1(
i 51

n

a iL iBi ,N1n2k5~2ag!mbm,m2kLm ~11!

for all k50,1,...,N1n are necessary and sufficient conditions for the existence of the soluti
5qn(az) to the Eq. (10):

Proof: We substituteu5qn(az) into ~10!, take into account~7!, and divide the two parts o
~10! on qn. As the result we obtain the equation

~2ag!mLm(
k50

m

bm,m2kq
k5 (

k50

N1n

A0kq
k1 (

k50

N1n

qk(
i 51

n

a iL iBi ,N1n2k .
J. Math. Phys., Vol. 38, No. 9, September 1997
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This is a polynomial onq. It is clear thatq is its solution if and only if all the coefficients of th
polynomial are equal to zero, i.e., all the equalities~11! are valid. The theorem is proved.

IV. EXAMPLES

First of all we note that the families

$qn%, $~2q8!n%, H (
i 50

k

ciq
iJ ~12!

may be applicable to solve the specific nonlinear partial differential equations.
Let

v~z!5S 24
dq~y!

dy D n

, y52az,

whereq, z, a, andn are the same as in Sec. III. Then we find

v85a2nv„2q~y!2E…,

v952a22n~2n11!vS v1/n2
2nE

2n11D ,

v-52a2~2n11!~2n12!v8S v1/n2
~2n!2E

~2n11!~2n12! D .

Now we consider the examples.
~1! The Born–Infeld equation10

~11ux
2!utt22utuxutx2~12ux

2!uxx50

has a travelling wave solution of the typeu(t,x)5u(x6t). Therefore, any function from~12! is
a solution of this equation forz5x61.

~2! The considerations of a generalized Korteweg–de Vries equation1,2,11,12

ul1Aurux1Buxxx50, A,B,r .0, ~13!

are related to the popular topics in many physical sciences, such as theoretical physics, ph
fluids, plasma physics, etc. Substituting ofu(x,t)5v(z) into ~13! leads to the equation

2g1Av r2Ba2
„~2n11!~2n12!v1/n2~2n!2

…50

for the unknown constantsn, a, andg. From this equation we find

n5
1

r
, g5a2~2n!2B, a25

A

B~2n11!~2n12!
.

Thus, KdV Eq.~13! has a family$v% of the travelling wave solutions

u~x2gt !5„24q8~y!…n where y52a~x2gt !. ~14!

It follows from property24q08 (y)5sech2(y/2) that the solitary solutionu0(z)5sech2n(az) is
consistent with Refs. 2 and 11. The other solutions from the family„24q8 (y)…n for q
5q1 ,q2 ,... arenew.
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~3! A generalized Benjamin–Bona–Mahony equation2,13

ut1~Aur11!ux2Butxx50, A,B,r .0,

can be solved in the same way as~13! by substitution ofu(x,t)5v(z). Thus, we obtain a family
$u% of travelling wave solutions~14! provided that

n5
1

r
, g511

2A

~r 11!~r 12!
, a56

r

2
Ag21

gB
.

For q5q0 the solitary solutionu0(z)5sech2n(az) is consistent with Ref. 2. Forq5q1 ,q2 ,... the
solutions are new. Forr 51 we have a family of solutions

u~x2gt !524q~2az!„q~2az!2E….

~4! Let us consider a generalized Sharma–Tasso–Olver~STO! equation2

ut1Audux1Butux
21Cusuxx1Duxxx50, ~15!

whereA, B, C, D, b, t, ands are real numbers. The substitution ofu5qn(az) into ~15! leads to
the equation

2g1Aqdn1Banqn~t11!~q21!1Ca~n11!qsnS q2
n

n11D
1Da2~n11!~n12!S q22q

2n11

n12
1

n2

~n11!~n12! D50

for the unknown constantsn, a, g. Yang2 used the substitution ofu5a tanhn (bz1c) to reduce
~15! to an analogous equation where many cases corresponding to parametersd, t, ands were
discussed. We consider only one cased52(t11)52s which includes the values from th
original STO equation. Thus we obtain the family$u% of travelling wave solutions

u~x2gt !5qn~az! for d52~t11!52s,

provided that

n5
2

d
, g5a2n2D, a5

2n~B1C!

D~n11!~2n11!
.

Note that we have one more relation between the coefficients

AD~n11!~2n11!21n2~n12!~B1C!22n~2n11!~B1C!„Bn1C~n11!…50.

For A5B5C53, D51, d52, t50, ands51, as in the original STO equation, this relation
valid providedn51; thus, anyq(az)P$q% satisfies~15!.

~5! The two-dimensional Korteweg–de Vries–Burgers equation14

~ut1uux1muxxx2luxx!x1suyy50

for real m andl ands561 can be solved by substitution of

u~x,y,t !5 (
k50

2

ckq
k~aj! where j5x2by2gt.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Thus, we obtain two families of travelling wave solutions

u15c2q2~aj! and u25c2~q2~aj!2E!,

provided that

c252
12l2

25m2 , a52
l

5m
, sb22g56

6l2

25m
.

Note that sign plus in the last term is related to functionu1 , and sign minus is related to functio
u2 . In particular, forq5q0 , due toq0(2z)512q0(z), the solutionsu1 andu2 are exactly the
same as in Ref. 14, namely,

3l2

25m
„sech2 ~aj!22 tanh~aj!62….

For q5q1 ,q2 ,... thesolutions are new.
~6! The Burgers–Huxley equation15

ut2uxx1Auux1Bu~u21!~u2C!50

can be solved by substitution ofu(x2gt)5aq(az)1bE. The calculations leads to

a5~A6AA218Ba2!/4, g5~aa21bAa2aB„3b222b~C11!1C…!/~aa!.

Thus, we obtain a family of solutionsu5aq1bE for a andb such as in the cases

b50,aP$C,1%; b51,aP$C21,21%; b5C,aP$2C11,2C%;

and if B50 the coefficientsa andb are arbitrary real numbers
~7! In Refs. 16 and 17 the proton conductivity in a one-dimensional chain of water

described. A local displacement of a proton from one stable equilibrium state2u0 to another
1u0 is described by the one-dimensional Klein–Gordon Eq.~3! with l5m254e0 /u0

2. Davidov
~see Ref. 17, p. 98! presupposed that the rotations of any hydroxyl link in the chain are desc
by the same equation~3! to within the constantsl and m. It is known that a hydroxyl link
~so-called Bjerrum’s defect! rotates about anglep ~see Ref. 17, p. 98!. However, a real solution
pointed out in Ref. 17 does not explain a hydroxyl link rotation. However, our complex solu
u1(j)57u0 exp„if(j)… with polar anglef changing on valuep is useful to explain it. Really, it
is sufficient to interpret the solutionu1 as a proton displacement going around a potential bar
about anglep. It is evident that a hydroxyl link rotation about anglep is equivalent to a proton
displacement in the horizontal plane around the vertical oxygen hydrogen bond. Thus we
new solutionu1 , which explains hydroxyl link rotation.

V. CONCLUSION

The above mentioned examples show that theq-functions approach is a fairly efficient metho
for obtaining the travelling wave solutions to some classes of the partial differential equation
q-functions, thanks to their relations with SU(n) groups, may be useful in the quantum fie
theories. From the above examples it is clear that theq-functions may be useful in others areas
physics as well.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Department of Mathematics, Anadolu University, Eskis¸ehir, Turkey

~Received 1 May 1996; accepted for publication 2 December 1996!

We show that self-dual two-forms in 2n-dimensional spaces determine a
n22n11-dimensional manifoldS 2n and the dimension of the maximal linear
subspaces ofS 2n is equal to the~Radon–Hurwitz! number of linearly independent
vector fields on the sphereS2n21. We provide a direct proof that forn oddS 2n has
only one-dimensional linear submanifolds. We exhibit 2c21-dimensional sub-
spaces in dimensions which are multiples of 2c, for c51,2,3. In particular, we
demonstrate that the seven-dimensional linear subspaces ofS 8 also include among
many other interesting classes of self-dual two-forms, the self-dual two-forms of
Corrigan, Devchand, Fairlie, and Nuyts@Nucl. Phys. B214, 452 ~1983!# and a
representation ofC l 7 given by octonionic multiplication. We discuss the relation of
the linear subspaces with the representations of Clifford algebras. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!01603-4#

I. INTRODUCTION

The self-dual Yang–Mills fields in four dimensions have remarkable properties that
found several physical applications. On the other hand, the notion of self-duality cannot be
generalized to higher dimensions. Here we present a characterization of~anti!self-dual Yang–
Mills fields by an eigenvalue criterion. The main idea is given in our previous paper.1 Here we
study the geometry of the space of self-dual two-forms.

Let M be a 2n-dimensional differentiable manifold, andE be a vector bundle overM with
standard fiberRn and structure groupG. A Yang–Mills potential can be represented by
G -valued connection one-formA onE, whereG is a linear representation of the Lie algebra of t
gauge groupG. Then the gauge fields are represented by the curvatureF of the connectionA that
is given locally by theG valued two-form

F5dA2A∧A.

The Yang–Mills action is theL2 norm of the curvature two-formF

iFi25E
M

tr~F∧* F !,

where* denotes the Hodge dual defined relative to a positive definite metric onM . The Yang–
Mills equations

a!Electronic mail address: bilge@mam.gov.tr
b!Electronic mail address: tdereli@rorqual.cc.metu.edu.tr
c!Electronic mail address: skocak@vm.baum.anadolu.edu.tr
0022-2488/97/38(9)/4804/11/$10.00
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dEF50, * dE* F50,

wheredE is the bundle covariant derivative and2*dE* is its formal adjoint, determine the critica
points of the action. Ind54 dimensionsF is called self-dual or anti-self-dual provided

* F56F.

Self-dual or anti-self-dual two-forms are the global extrema of the Yang–Mills action. This ca
seen as follows: The Yang–Mills action has a topological lower bound

iFi2>E
M

tr~F∧F !.

The term tr(F∧F) is related to the Chern classes of the bundle. Actually ifE is a complex
two-plane bundle withc1(E)50, then the topological bound is proportional toc2(E) and this
lower bound is realized by a~anti!self-dual connection. Furthermore, SU~2! bundles over a four
manifold are classified by*c2(E), hence self-dual connections are minimal representatives o
connections in each equivalence class of SU~2! bundles. This is a generalization of the fact that
SU~2! bundle admits a flat connection if and only if it is trivial.

In the literature essentially three notions of self-duality in higher dimensions were being
~i! A two-form F in dimension 2n is called self-dual if the Hodge dual ofF is proportional to

Fn21. ~Here wedge product ofF ’s should be understood.! This notion is introduced by Trautman2

and Thcrakian3 and used widely by others. For details we refer to a review by Ivanova and Po4

~ii ! Self-dual two-formsF in dimensions 2n54k are defined to be the ones such thatFk is
self-dual in the Hodge sense. That is* Fk56Fk. This is a nonlinear set of conditions and th
action which is minimized is

E
M

tr~Fk∧* Fk!.

This notion is adopted by Grossman, Kephardt, and Stasheff~GKS! in their study of instantons in
eight dimensions.5

~iii ! Both the criteria above are nonlinear. Alternatively,~anti!self-dual two-forms in 2n
dimensions can be defined as eigen-bivectors of a completely antisymmetric fourth rank
that is invariant under a subgroup of SO(2n). The set of such self-dual two-forms would span
linear space. This notion of self-duality is introduced by Corrigan, Devchand, Fairlie, and N
~CDFN!, who studied the first-order equations satisfied by Yang–Mills fields in spaces of di
sion greater than four and derived SO~7! self-duality equations inR8.6

It can be shown that the self-dual two-forms defined by the above criteria satisfy Yang–
equations. However, the corresponding Yang–Mills action need not be extremal. In ord
derive topological bounds in higher dimensions we briefly recall the computation of the ch
teristic classes of a vector bundleE in terms of the local curvature two-forms.7 Let Fa be the
matrix of the local curvature two-form with respect to a local basis of sections ofE on a trivial-
izing neighborhoodUa . The invariant polynomialssk

a of Fa are defined by

det~ I 1tFa!5 (
k50

n

sk
atk.

They are independent of the basis of local sections. Thus ifsk
a andsk

b are invariant polynomials
of the local curvature two-formsFa and Fb, respectively, onUa and Ub , they agree on the
intersectionUaøUb . Hence these locally defined 2k-forms patch up to give globally define
2k-forms sk . Furthermore it can be shown that7 the sk’s are closed 2k-forms, hence they define
J. Math. Phys., Vol. 38, No. 9, September 1997
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the deRham cohomology classes inH2k and these cohomology classes depend only on the bun
i.e., they are independent of the connection. For a complex vector bundle, the cohomology c
sk is proportional to the Chern classck , while for a real vector bundle, thes2k11’s are exact
forms, ands2k’s are proportional to the Pontrjagin classespk’s.

In the literature, the topological lower bounds for curvature Lagrangians are usually giv
terms of trFk, whereFk means the product of the matrixF with itself k times, with the wedge
multiplication of the entries. The invariant polynomialssk’s can be obtained as linear combin
tions of trFk, for example, as given in Ref. 8.

In four dimensions the topological bound we wrote above is the only one that is availab
eight dimensions, on the other hand, it is possible to introduce two independent topol
bounds. The topological lower bound on the action

E
M

tr~F2∧* F2!>kE
M

p2~E!

corresponds to the choice of Thcrakian and GKS. The self-duality~in the Hodge sense! of F2

gives global minima of this action involving the second Pontryagin number*p2(E). In our pre-
vious paper1 we introduced another topological lower bound on the action

E tr~F∧* F !2>k8E
M

p1~E!2.

This involves the square of the first Pontryagin number and has to be taken into account
topology of the Yang–Mills bundle on an eight manifold has to be characterized by both th
and the second Pontryagin numbers.

The notion of self-duality introduced by us1 encompasses all the criteria given above. W
recall here that a self-dual two-form can be defined by an eigenvalue criterion in the follo
way. ~We adopt a different terminology, and use self-dual rather than strongly self-dual as
used in Ref. 1. SupposeF is a real two-form in 2n dimensions, and letV be the corresponding
2n32n skew-symmetric matrix with respect to some local orthonormal basis. If the eigenv
of V are6 il1 ,...,6 iln , then by a change of basis,V can be brought to the block-diagonal for

S 0 l1

2l1 0

•

•

•

0 ln

2ln 0

D .

The two-formF is called self-dual or anti-self-dual provided the absolute values of the eige
ues are all equal, that is

ul1u5ul2u5•••5ulnu.

To distinguish between the two cases, orientation must be taken into account. We defineF to be
self-dual if V can be brought with respect to an orientation-preserving basis change to the
block-diagonal form such thatl15l25•••5ln . Similarly, we defineF to be anti-self-dual ifV can
J. Math. Phys., Vol. 38, No. 9, September 1997
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be brought to the same form by an orientation-reversing basis change. It is not difficult to
that in dimensionD54, the above definition coincides with the usual definition of self-duality
the Hodge sense.

We have already shown that the definition of self-duality by the equality of the eigenv
implies the criteria~i! and~ii !, and the CDFN two-forms in eight dimensions are self-dual in
above sense.

Let S 2n be the set of self-dual two-forms in 2n dimensions. In Sec. II we give the manifol
structure ofS 2n. In Sec. III, we show that the dimension of maximal linear spaces ofS 2n is equal
to the number of linearly independent vector fields onS2n21. We give a direct proof that in eigh
dimensions starting from the self-duality condition on eigenvalues we obtain the CDFN sel
two-form. We also explain the construction of new families of self-dual two-forms inS 8 in terms
of Clifford representations using octonionic multiplication.

II. THE GEOMETRY OF SELF-DUAL TWO-FORMS IN ARBITRARY 2 n DIMENSIONS

In this section we describe the geometrical structure of self-dual two-forms in arbitrary
dimensions.I denotes an identity matrix of appropriate dimension.

Definition 1: Let A2n be the set of antisymmetric matrices in 2n dimensions. Then
S 2n5$APA2nuA21l2I 50, lPR, lÞ0%.

Note that ifAPS 2n, andA250, thenA50, and ifAPS 2n, thenlAPS 2n for lÞ0.
Proposition 2. The setS 2n is diffeomorphic to„O(2n)ùA2n…3R1.
Proof: Let APS 2n with A21l2I 50. Note that l252~1/2n!tr A2. Define k5@2~1/

2n!tr A2#1/2, Ã5(1/k)A. Then, Ã21I 50, hence ÃÃ†5I . Consider the map w:
S 2n→„O(2n)ùA2n…3R1 defined byw(A)5(Ã,k). The mapw is 1–1, onto, and differentiable
Its inverse is given by (B,a)→aB is also differentiable, hencew is a diffeomorphism. e.o.p

Remark 3. O(2n)ùA2n is a fiber bundle over the sphereS2n22 with fiber O(2n22)ùA2n22.
~See Ref. 9, p. 215.!

For our purposes the following description ofS 2n is more useful.
Proposition 4:S 2n is diffeomorphic to the homogeneous manifold„O(2n)3R1

…/U(n)3$1%,
and dim S 2n5n22n11.

Proof: Let G be the product groupO(2n)3R1, whereR1 is considered as a multiplicativ
group.G acts onS 2n by (P,a)Ȧ5a(PtAP), wherePPO(2n), aPR1, APS 2n, andt indicates
the transpose. Since all matrices inS 2n are conjugate to each other up to a multiplicative const
this action is transitive, and actually anyAPS 2n can be written asA5lPtJP, where
l5@2~1/2n!tr A2#1/2, with PPO(2n) andJ5(2I

0
0
I ). It can be seen that the isotropy subgro

of G at J is U(n)10 and G/U(n) is diffeomorphic toS 2n ~Ref. 11, p. 32, Thm. 3.62!. Then
dim S 2n5dim„O(2n)3R1/U(n)… can be easily computed as dimS 5dim O(2n)
112dim U(n)5(2n22n11)2n25n22n11. e.o.p.

In particular, in eight dimensions,S 8 is a 13-dimensional manifold.
As O(2n) has two connected components~SO(2n) andO(2n)\SO(2n)!, U(n) is connected

andU(n),SO(2n), S 2n has two connected components. One of them~that containsJ! consists
of the self-dual forms and the other of the anti-self-dual forms.

III. MAXIMAL LINEAR SUBMANIFOLDS OF S 2n

In this section we will show that the dimension of maximal linear subspaces ofS 2n is equal
to the number of linearly independent vector fields onS2n21. The maximal number of pointwise
linearly independent vector fields on the sphereSN is given by the Radon–Hurwitz numberk. If
N1152n5(2a11)24d1c with c50,1,2,3, thenk58d12c21 ~see, e.g., Ref. 12, p. 45, Thm
7.2!. Using this formula it can be seen that there are three vector fields onS3, seven onS7, three
on S11, eight onS15, and so on. In particular there is only one vector field on the spheresS2n21 for
odd n.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Let L2n
a be a maximal linear subspace ofS 2n, wherea is a real parameter. Since the eleme

of L2n
a are skew-symmetric and nondegenerate, the dimension ofL2n

a is less than or equal to
2n21. For example, in dimension eightS 8 is 13-dimensional, and we will show, that the maxim
linear subspaces are 7-dimensional, hence they form 6-dimensional families.

Proposition 5. The dimension of the maximal linear subspaces ofS 2n is equal to the number
of linearly independent vector fields on S2n21.

Proof: We will show that bases of linear subspaces ofS 2n give rise to linearly independen
vector fields onS2n21. Let $hi%, i 51,...,k, be an orthogonal basis forL2n

a . That is thehi ’s are,
linearly independent matrices satisfying tr(hi

thj )5d i j . Supposej1,...,j2n are coordinates onR2n

and letr5~j1,...,j2n! be a vector inR2n. By a slight abuse of notation we denote byS2n21 the
sphere centered at the origin passing through the pointr . Then the vector fieldsXi5hir are
tangent toS2n21, since^Xı , r &5r thir50, by the skew-symmetry of thehi ’s. The linear indepen-
dence of hi ’s implies the linear independence of theXi ’s and thus proves our claim
( i 51

k l iXi5( i 51
k l ihiR50 impliesl15•••5lk50 because thehi ’s are linearly independent. Thi

shows that the dimension of a maximal linear subspace ofS 2n is less than the Radon–Hurwit
number. Conversely, the Radon–Hurwitz numberk ~associated to 2n! is equal to the maxima
dimension of the Clifford algebra acting onR2n.12 If we take such a representation ofC l k on R2n,
the images of a generator set$v1 ,...,vk% ~with v i

2521, v iv j1v jv i50 for iÞ j ! are given by
skew-symmetric matrices with respect to an appropriate basis ofR2n. These images generat
linearly a k-dimensional subspace ofS 2n. This shows that the dimension of a maximal line
subspace ofS 2n is equal to the Radon–Hurwitz number. e.o

This property shows that there is an intimate relationship between generalised self-dual
Clifford algebras. We will give a systematic exposition of this relationship in a subsequent
lication.

We remark that theXi ’s form an orthogonal frame. As thehi ’s and (hi1hj )’s both belong to
S 2n, hi

252ki
2I , and hihj1hjhi5ki j I for some constantski and ki j . Then since

^hi ,hj&5tr(h,h j)50, and trace is symmetric, it follows thathihj1hjhi50. Then foriÞ j

2^Xi ,Xj&5^Xi ,Xj&1^Xj ,Xi&5Rt~hi
thj1hj

thi !R52Rt~hihj1hjhi !R50.

We now prove directly that for oddn there are no linear subspaces other than the
dimensional ones.

Proposition 6. LetM5$APS 2nu(A1J0)PS 2n%. ThenM5$kJukeR% for odd n.

Proof. Let A 5 (
2A

12
t

A11
A22

A12), whereA111A11
t 50, A221A22

t 50. As before if (A1J0)PS ,

thenAJ01J0A is proportional to the identity. This givesA111A2250 and the symmetric part o

A12 is proportional to identity. ThereforeA 5 kJ0 1 (A120

A11
2A11

A120), where A120
denotes the

antisymmetric part ofA12 andk is a constant. Then the requirement thatAPS gives

@A11, A120
#50, A11

2 1A120

2 1kI50, kPR.

As A11 andA120
commute, they can be simultaneously diagonalizable, hence for oddn they can be

brought to the form

A115diag~l1e,...,l~n21!/2e,0!,

A120
5diag~m1e,...,m~n21!/2e,0!,

up to the permutation of blocks, wheree5~21
0

0
1!, and 0 denotes a 131 block. If the blocks occur

as shown, clearlyA11
2 1 A120

2 cannot be proportional to identity. It can also be seen that, ex

for l i5m i50, the same result holds for any permutation of the blocks. e.
J. Math. Phys., Vol. 38, No. 9, September 1997
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IV. AN EXPLICIT CONSTRUCTION OF LINEAR SUBMANIFOLDS OF S 8

The defining equations of the setS 8 are homogeneous quadratic polynomial equations for
components of the curvature two-form and they correspond to differential equations whic
quadratic in the first derivative of the connection. Thus the study of their solutions, hence the
of the moduli space of self-dual connections, is rather difficult. On the other hand the sel
two-forms lying in a linear subspace ofS 2n will correspond to linear gauge field equations. T
study of the structure of the linear submanifolds ofS 2n in general is not attempted here, but
least forS 8 we know that these linear submanifolds form a six-parameter family, and there
a priori reason to single out one of them.

In Ref. 1 we have shown that the two-forms satisfying a set of 21 equations propos
Corriganet al. belong toS 8. We shall first give a natural way of arriving at them, but it w
depend on a reference form. Changing the reference form, one obtains translates of this
dimensional plane, which in some cases looks more pregnant than the original one. Then w
give a general procedure to construct self-dual two-forms in 4n dimensions using self-dual/ant
self-dual forms and certain symmetric matrices in 2n dimensions. The matrices corresponding
these building blocks are actually the representations of Clifford algebras in skew-symm
matrices and dual Clifford algebras in symmetric matrices in 2n dimensions. The CDFN plane an
the representation ofC l 7 using octonionic multiplication will arise naturally from these constru
tions.

Note that we excluded the zero matrix fromS 2n in our definition in order to obtain its
manifold structure. We denoteS̄ 2n5S 2nø$0%, including the zero matrix. By linearity of the
action ofO(2n) on S2n we obtain the following.

Lemma 7: LetL be a linear submanifold ofS̄ 2n. ThenLP5PtLP for PPO(2n) is also a
linear submanifold ofS̄ 2n.

Let J05diag~e,e,e,e!, wheree5~21
0

0
1!. Note that anyAPS 8 is conjugate toJ0, hence any

linear subset ofS̄ 8 can be realized as the translate of a linear submanifold containingJ0 under
conjugation. Thus without loss of generality we can concentrate on linear subsets containingJ0. In
the following, by abuse of notation, we will not distinguish betweenS 2n and its closure.

Proposition 8: If APS 8 and ~A1J0!PS 8, where J05diag~e,e,e,e!, with e5~21
0

0
1!, then

A5S ke r 1S~a! r 2S~b! r 3S~g!

2r 1S~a! ke r 3S~g8! 2r 2S~b8!

2r 2S~b! 2r 3S~g8! ke r 1S~a8!

2r 3S~g! r 2S~b8! 2r 1S~a8! ke

D ,

where kPR, r 1, r 2, r 3 are in R1, and S~u!5~sinu
cosu

2cosu
sinu !, and a, a8, b, b8, g, g8 satisfy

a1a85b1b85g1g8.

Proof: If A and A1J0 are both inS 8, then the matrixAJ01J0A is proportional to the
identity. This gives a set of linear equations whose solutions can be obtained without difficu
yield
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A51
0 a12 a13 a14 a15 a16 a17 a18

2a12 0 a14 2a13 a16 2a15 a18 2a17

2a13 2a14 0 a12 a35 a36 a37 a38

2a14 a13 2a12 0 a36 2a35 a38 2a37

2a15 2a16 2a35 2a36 0 a12 a57 a58

2a16 a15 2a36 a35 2a12 0 a58 2a57

2a17 2a18 2a37 2a38 2a57 2a58 0 a12

2a18 a17 2a38 a37 2a58 a57 2a12 0

2 .

Then the requirement that the diagonal entries inA2 be equal to each other give the followin
equations after some algebraic manipulations:

a13
2 1a14

2 5a57
2 1a58

2 , a15
2 1a16

2 5a37
2 1a38

2 , a17
2 1a18

2 5a35
2 1a36

2 .

Thus we can parametrizeA by

a135r 1 cosa, a155r 2 cosb, a175r 3 cosg,

a145r 1 sin a, a165r 2 sin b, a185r 3 sin g,

a575r 1 cosa8, a375r 2 cosb8, a355r 3 cosg8,

a585r 1 sin a8, a385r 2 sin b8, a365r 3 sin g8.

Finally the requirement that the off-diagonal terms inA2 be equal to zero gives quadrat
equations, which can be rearranged and using trigonometric identities they givea1a8
5b1b85g1g8. e.o.p.

Thus the set of matricesAPS 8 such that~A1J0!PS 8 constitutes an eight-parameter fam
and the equations of CDFN correspond to the casea81a5b81b5g81g50. Thus we have an
invariant description of these equations, which we repeat here for convenience:

F122F3450, F122F5650, F122F7850,

F131F2450, F132F5750, F131F6850,

F142F2350, F141F6750, F141F5850,

F151F2650, F151F3750, F152F4850,

F162F2550, F162F3850, F162F4750,

F171F2850, F172F3550, F171F4650,

F182F2750, F181F3650, F181F4550.

The ~skew-symmetric! matrix of such a two-form is
J. Math. Phys., Vol. 38, No. 9, September 1997
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1
0 F12 F13 F14 F15 F16 F17 F18

0 F14 2F13 F16 2F15 F18 2F17

0 F12 F17 2F18 2F15 F16

0 2F18 2F17 F16 F15

0 F12 F13 2F14

0 2F14 2F13

0 F12

0

2 .

We will refer to the plane consisting of these forms as the CDFN plane. Let us now consider
reference formJ5(2I

0
0
I ) instead ofJ0. HereJ can be obtained fromJ0 by conjugationJ5PtJ0P

with

P51
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

2 .

Then the conjugation of the CDFN plane byP is given by the following~D58 self-dual! two-
form

F12J1S V8 V9

V9 2V8
D ,

whereV8 is a D54 self-dual two-form andV9 is a D54 anti-self-dual two-form. We found it
remarkable that a similar construction was given a long time ago by Witten.13

At the end of this section, we shall obtain this plane from a general rule for the constru
of orthonormal bases for linear subspaces and also show that it corresponds to the represe
of Cl7 using octonionic multiplication.

We shall now discuss a general procedure for constructing linear subspaces of self-dual
Note thatS 2n is the set of skew-symmetric matrices inO(2n)3R. We defineP 2n to be the set of
symmetric matrices inO(2n)3R. Recall that an orthonormal basis for ak-dimensional linear
subspaces ofS 2n corresponds to the representation ofClk in the skew-symmetric matrices. Simi
larly an orthonormal basis for ak-dimensional linear subspace ofP 2n corresponds to a represen
tation of the dual Clifford algebraClk8 in the symmetric matrices. These bases will be the build
blocks for self-dual forms in the double dimension.

We have already shown that in dimensions 2n52(2a11) the maximal linear subspaces o
S 2n are one-dimensional. Similarly, in dimensions 2n54(2a11), the dimension of maximal
linear subspaces ofS 2n are three-dimensional. It can be seen that the matrices
J. Math. Phys., Vol. 38, No. 9, September 1997
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4812 Bilge, Dereli, and Koçak: The geometry of self-dual two-forms

                    
J05S 0 0 I 0

0 0 0 I

2I 0 0 0

0 2I 0 0

D , J15S 0 I 0 0

2I 0 0 0

0 0 0 2I

0 0 I 0

D , J25S 0 0 0 I

0 0 2I 0

0 I 0 0

2I 0 0 0

D ,

whereI is the identity matrix, form an orthonormal basis for three-dimensional linear subspac
S 4(2a11).

From now on we consider the self-dual two-forms in 8n dimensions. The matrix of a self-dua
form can be written in the form

F5S Aa Ba1Bs

Ba2Bs Da
D ,

where the matricesAa , Ba , andDa are anti-symmetric andBs is symmetric. The requirement tha
F2 be proportional to the identity matrix gives the following equations:

Aa
25Da

2, Aa
21Ba

22Bs
25kI, @Ba , Bs#50,

AaBa1BaDa50, BaAa1DaBa50,

AaBs1BsDa50, BsAa1DaBs50.

Now if we furthermore require thatF be built up from the linear subspaces ofS 4n andP 4n, then
we see thatAa , Da , Ba , andBs have to be nondegenerate.

We shall give now an explicit construction of various linear subspaces ofS 8. Let A2 and
A1 be orthonormal bases for linear subspaces ofS 2n andP 2n, respectively.

In two dimensions we have the following structure:

A25H S 0 1

21 0D J , A~1!
1 5H S 1 0

0 1D J , A~2!
1 5H S 1 0

0 21D ,S 0 1

1 0D J .

From the commutation relations it can be seen that the orthonormal bases for linear sub
of self-dual two-forms in four dimensions are determined by the choice ofBs . The choice
BsPA~1!

1 leads to the usual anti-self-dual two-forms, while the choiceBsPA~2!
1 leads to the

self-dual two-forms. Hence in four dimensions we obtain two different sets of orthonormal
for linear subspaces ofS 4. By similar considerations, we obtain seven different bases for lin
subspaces ofP 4. The elements ofA1 andA excluding the identity matrix are listed below:

a15S 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

D , a25S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D , a35S 0 0 0 1

0 0 1 0

0 21 0 0

21 0 0 0

D ,

b15S 0 1 0 0

21 0 0 0

0 0 0 21

0 0 1 0

D , b25S 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

D , b35S 0 0 0 1

0 0 21 0

0 1 0 0

21 0 0 0

D ,
J. Math. Phys., Vol. 38, No. 9, September 1997
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c15S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D , c25S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D , p15S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D ,

p25S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21

D , d15S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D , d25S 0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D ,

q15S 0 1 0 0

1 0 0 0

0 0 0 21

0 0 21 0

D , q25S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D , e15S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D .

Using the commutation relations it can be shown that in four dimensions we can chan
sets ofA1 andA2 as follows:

A~1!
2 5$a1 ,a2 ,a3%, A~2!5$b1 ,b2 ,b3%, A~1!

1 5$I %,

A~2!
1 5$c1 ,c2 ,e1%, A~3!

1 5$p1 ,q2 ,d2%, A~4!
1 5$p2 ,q1 ,d1%,

A~5!
1 5$c1 ,p1 ,p2%, A~6!

1 5$c2 ,q2 ,q1%, A~7!
1 5$e1 ,d2 ,d1%.

Orthonormal bases for linear subspaces ofS 8 can be constructed using the sets given abo
For example, the choiceBsP$d2 ,p1 ,q2% determines the possible choices forBa’s, Aa’s, andDa’s
and leads to the CDFN plane. On the other hand, the choiceBs[I leads to the plane obtained b
conjugation given above.

We now show that the basis obtained by choosingBs5I corresponds to the representation
C l 7 using octonionic multiplication. Let us describe an octonion by a pair of quaternions (a,b).
Then the octonionic multiplication rule is (a,b)+(c,d)5(ac2d̄b,da1bc). If we represent an
octonion (c,d) by a vector inR8, its multiplication by imaginary octonions correspond to line
transformations onR8. Using the multiplication rule above, it is easy to see that we have
following correspondences:

~ i ,0!→S b1 0

0 2b1
D , ~ j ,0!→S b2 0

0 2b2
D ,

~k,0!→S b3 0

0 2b3
D , ~0,1!→S 0 I

2I 0D ,

~0,i !→S 0 a1

a1 0 D , ~0,j !→S 0 a2

a2 0 D , ~0,k!→S 0 a3

a3 0 D .

Finally, we would like to point out that these constructions can be generalized to dimen
which are multiples of eight, by replacing the unit element with identity matrices of approp
size.
J. Math. Phys., Vol. 38, No. 9, September 1997
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In dimensions which are multiples of 16, one can make use of the propertyC l k185C l k^C l 8
to obtain aC l k18 representation onR16n, using an already known representation ofC l k on Rn.
Hence linear subspaces ofS 16n can be obtained from the knowledge of the linear subspace
S n .

V. CONCLUSION

In this paper we have characterized~anti!self-dual Yang–Mills fields in even dimensiona
spaces by putting constraints on the eigenvalues ofF. The previously known cases of self-du
Yang–Mills fields in four and eight dimensions are consistent with our characterization
believe this new approach to self-duality in higher dimensions deserves further study. It
appear more important to try to understand the totality of the nonlinear space of self-dua
forms as the choice of a linear subspace ofS 2n is a priori incidental. Nevertheless, there are som
exceptional linear subspaces, probably the most important being the one in eight dimension
by octonionic multiplication. In this way the close connection between the self-dual gauge
in eight dimensions and the octonionic instantons14–17 becomes self-evident.
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Distributed Gaussian polynomials and associated
Gaussian quadratures

Hasan Karabulut and Edwin L. Sibert III
Department of Chemistry and Theoretical Chemistry Institute,
University of Wisconsin—Madison, Madison, Wisconsin 53706

~Received 7 May 1997; accepted for publication 13 June 1997!

An orthogonal function set called distributed Gaussian orthogonal polynomials is
constructed from equally spaced Gaussians and the corresponding quadrature is
studied. The infinite chain limit of both polynomials and the quadrature is studied
and analytical expressions are found for polynomials, quadrature points, weights,
and Lagrange functions. The connections to Wannier functions are explored, and a
way of constructing Wannier functions from Gaussians is proposed.
© 1997 American Institute of Physics.@S0022-2488~97!03009-0#

I. INTRODUCTION

Distributed Gaussians are used widely in chemical physics computations as a basis
variational calculations of vibrational energy levels. The distributed Gaussian basis~DGB! has
been popularized in chemical physics by Light and co-workers. Their important 1986 p1

showed the simplicity and accuracy of the Gaussian basis, and this started widespread use
basis in chemical physics problems, although the idea seems to have some history befo
paper.1 Other than using the Gaussians as a variational basis, Peet and co-workers2,3 have used the
Gaussian basis for the collocation method and demonstrated that this basis provides cons
accuracy.

The major advantage of using distributed Gaussians as a basis is their compactne
required matrix elements can be calculated very accurately with a few point Gaussian quadr
In multidimensional computations, a second advantage is the flexibility of allowing basis func
only in the regions of configuration space where the wave function amplitude is signifi
Because of these and some other advantages, the distributed Gaussian basis is widely
molecular vibration computations.

The Gaussians themselves are not orthogonal. The orthogonal functions required for
tional calculations are obtained usually by diagonalizing the overlap matrix. To our knowle
until the present work, there has been no report of an orthogonal set of functions made
distributed Gaussians. In this paper we present such an orthogonal set. We call this set ‘‘D
uted Gaussian orthogonal polynomials,’’ or briefly, ‘‘DG polynomials.’’ The orthogonal set
we constructed turns out to be related to the orthogonal polynomial set called the Stieltjes–
polynomials. We also study associated Gaussian quadrature for DG polynomials and stud
metries and various limit cases of the DG polynomials and the associated Gaussian quad

In the infinite chain limit of the Gaussians, we derive analytical expressions for the po
weights, and Lagrange functions of the quadrature. The infinite chain Lagrange function
found to be Wannier functions for a particular choice of the arbitrary phase factor. Using
results we provide a recipe for constructing Wannier functions from distributed Gaussians.

II. DISTRIBUTED GAUSSIAN ORTHOGONAL POLYNOMIALS

In this section we show that a linear combination of equally spaced Gaussians can be
as a polynomial. Like any other polynomial set, there must be an orthogonal polynomi
corresponding to these polynomials. We construct this orthogonal set below.

Consider a chain of Gaussians,
0022-2488/97/38(9)/4815/17/$10.00
4815J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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gn~x!5e2c2~x2n!2
, n50,...,̀ . ~1!

A linear combination of the firstN11 Gaussians can be written as

(
k50

N

akgk~x!5e2c2x2

(
k50

N

ake
2c2k2

~e2c2x!k. ~2!

The sum in the second expression is anNth-order polynomial ofe2c2x. Because such a linea
combination can be written as a polynomial, it must be possible to build the correspo
orthogonal polynomials. We define an orthogonal set of functions from a linear combinati
Gaussians as follows:

Fn~x!5 (
k50

n

Ck
n~21!kec2k/2gk~x!; n50,1,2,...,̀ . ~3!

We call these functions distributed Gaussian polynomials, or DG polynomials. TheFn(x) must be
orthogonal to all Gaussiansgk(x) for k,n. This will ensure thatFn(x) is orthogonal toFm(x)
for m,n. The coefficientsCk

n must be determined by the orthogonality conditions and norm
ization of the orthogonal polynomials. We take our normalization condition asC0

n51. In the
Appendix we show how to calculate theCk

n coefficients. They are

Ck
n5

~q;q!n

~q;q!k~q;q!n2k
, ~4!

whereq5e2c2
and

~a;q!`5)
k50

`

~12aqk!, ~5!

and

~a;q!k[
~a;q!`

~aqk;q!`
5~12a!~12aq!~12aq2!•••~12aqk21!, ~6!

for k.0 and (a;q)0[1. These coefficients,Ck
n , are called theq-binomial coefficients,4 for in the

limit q→1 (c→0) they become the binomial coefficients (k
n). They have the symmetryCk

n

5Cn2k
n .

A. Relation to Stieltjes–Wigert polynomials

In this section we show how theFn(x) of Eq. ~3! are related to the Stieltjes–Wigert poly
nomials.5 If we shift the functionsFn(x) by a distances, the orthogonality is still preserved,

E
2`

1`

Fm~x2s!Fn~x2s!dx50, nÞm. ~7!

If we denoteu5e2c2x andq5e2c2
, thenFn(x2s) is written as

Fn~x2s![Fn~u;s!5e2~ ln u!2/~24 ln q!usPn~u;s!, ~8!

where
J. Math. Phys., Vol. 38, No. 9, September 1997
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Pn~u;s!5 (
k50

n

Ck
n~21!kq2k/2q~k1s!2

uk. ~9!

The orthogonality integral of Eq.~7! becomes

E
0

`

e2~ ln u!2/~22 ln q!u2s21Pn~u;s!Pm~u;s!du50, nÞm. ~10!

Evidently, the polynomialsPn(u;s) are orthogonal with the weight function

W~u!5e2~ ln u!2/~22 ln q!u2s21. ~11!

For s5 1
2, the weight function is the lognormal distribution and the corresponding polynomial

known as Stieltjes–Wigert polynomials. Hence,Pn(u; 1
2) are proportional to Stieltjes–Wiger

polynomials.

B. The recurrence relation

Fn(x) must satisfy a recurrence relation similar to that of Stieltjes–Wigert polynom
Consider the recurrence relation,

e2c2xFn~x!5dn21
n Fn21~x!1dn

nFn~x!1dn11
n Fn11~x!. ~12!

We find the recurrence relation for theCk
n coefficients by inserting Eq.~3! into Eq. ~12! to

obtain

2Ck21
n ec2~23/212k!5Ck

n21dn21
n 1Ck

ndn
n1Ck

n11dn11
n . ~13!

The dk
n coefficients can be calculated using this relation, since we know theCk

n from Eq. ~4!.
Taking k5n11, k5n, andk50 in Eq. ~13! the recurrence coefficients are found as

dn11
n 52q22~n11/4!,

dn
n5~11q2qn11!q22~n11/4!, ~14!

dn21
n 52~q2qn11!q22~n11/4!.

III. THE GAUSSIAN QUADRATURE FOR DG POLYNOMIALS

Since theFn(x) are orthogonal polynomials ofu5e2c2x, we can also define a Gaussia
quadrature for these polynomials. In this section we investigate this quadrature.

We define theN-point Gaussian quadrature as follows:

E
2`

1`

f ~x!dx'(
k51

N

wkf ~xk!, ~15!

where thex1 ,...,xN are the quadrature points andw1 ,...,wN are the weights. The quadratur
points are given by the zeros ofFN(x) and quadrature is exact for the integrals

E
2`

`

e22c2x2
~e2c2x!n dx5E

0

` e2~ ln u!2/~22 ln q!

u
un du, n50,1,...,2N21. ~16!

The integrands are Gaussians up to a constant factor,
J. Math. Phys., Vol. 38, No. 9, September 1997
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e22c2x2
~e2c2x!n5e2c2n2/2e22c2~x2n/2!2

. ~17!

They are not the same Gaussians asgn(x)5e2c2(x2n)2
, but a new set of Gaussians,

Gn~x!5e22c2~x2n/2!2
, n50,1,...,2N21, ~18!

which are centered on both whole and half integers, and they have narrower widths. The q
ture will not be exact for the parent Gaussiansgn(x)5e2c2(x2n)2

, however. Only thegn(x)gm(x)
products of parent Gaussians will be integrated exactly with the quadrature because

gn~x!gm~x!5e2c2~n2m!2/2Gn1m~x!.

The Lagrange polynomials play an important role in the development of the theory of Gau
quadratures. Similar functions, we call Lagrange functions following Baye and Heenen,6 can be
defined as follows:

Ln~x!5e2c2~x22xn
2
!)
k51
kÞn

N

~e2c2x2e2c2xk!/~e2c2xn2e2c2xk!, n51,2,...,N. ~19!

Clearly they are linear combinations ofg0(x),...,gN21(x), andLn(x) vanishes at all quadratur
points exceptxn . That is, they satisfyLn(xm)5dnm . The productLn(x)Lm(x) is a linear combi-
nation ofGk(x) set, and its integral can be evaluated exactly using the quadrature as follow

E
2`

1`

Ln~x!Lm~x!dx5 (
k51

N

wkLn~xk!Lm~xk!5wndnm . ~20!

This relation tells us that the Lagrange functions are orthogonal, and it also gives us a rec
calculating the weights,

wn5E
2`

1`

Ln
2~x!dx. ~21!

A more useful formula for the weights in real numerical calculations is

wn5gm
21~xn!E

2`

1`

gm~x!Ln~x!dx, ~22!

which follows from evaluating the integral above using the quadrature. Herem can take any value
between 0 andN, but should be chosen as the closest integer toxn for better numerical accuracy
For practical ways of calculating the quadrature points and weights see the work of Karab7

Another way of expressing the Lagrange function is as follows:

Lk~x!5g k
NFN~x!/~e2c2x2e2c2xk!, ~23!

wheregk
N is chosen to satisfyLk(xn)5dnk . We will refer to this form later in treating the infinite

chain.
There are some symmetries associated with quadrature points, weights, and Lagrang

tions that are not immediately obvious. In this section we explore these symmetries.
We start with symmetries of quadrature points. The functionFN(x) can be factored as
J. Math. Phys., Vol. 38, No. 9, September 1997
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FN~x!5 (
k50

N

Ck
N~21!kec2k/2e2c2~x2k!2

5ec2/16ec2x/2FN~x!, ~24!

where

FN~x!5 (
k50

N

Ck
N~21!ke2c2~x2k11/4!2

~25!

is written as a sum over Gaussians that are displaced by a quarter to the left. The functionFN(x)
has two important properties. First, the zeros ofFN(x) are the same as the zeros ofFN(x).
Second, because of theCk

N5CN2k
N symmetry,FN(x) is either even or odd with respect toXN

5N/22 1
4, the midpoint between the centers of the first (k50) and last (k5N) quarter-shifted

Gaussians. This means that the zeros ofFN(x) are symmetrically distributed with respect toXN .
If the number of quadrature pointsN is odd, one of the points does not have a symmetric p

This point is located at the centerXN . Consequently we know one zero from the symmetry for o
N.

The symmetry of the quadrature points implies some symmetries for the Lagrange func
Consider the transformationx→2XN2x. The functionsLk(2XN2x) have zeros at all the quadra
ture points, except at the symmetrically related pointsxN112k andxk . TheLk(2XN2x) is a linear
combination of Gaussians shifted by half. By multiplying the functionLk(2XN2x) with
e2c2(x2xN112k), we can shift the Gaussians back by half without changing the zeros. The res
function is a linear combination of unshifted Gaussians, and it has the correct zeros
LN112k(x). This gives us a symmetry,

LN112k~x!5e2c2~x2xN112k!Lk~2XN2x!, k51,2,...,N. ~26!

The weights also have a symmetry; the weights for the symmetric points are the same.
easily verified by noting that

wk5E
2`

1`

Lk
2~x!dx5E

2`

1`

Lk
2~2XN2s!ds, ~27!

wheres52XN2x. Using Eq.~26!, the above equation can be rewritten as

wk5e22c2xN112kE
2`

1`

e2c2sLN112k
2 ~s!ds. ~28!

This integral can be evaluated exactly using the quadrature to obtain

wk5wN112k , k51,2,...,N. ~29!

IV. THE LIMIT CASES

There are many limit cases of DG polynomials and the corresponding Gaussian quadr
For the finite chain the obvious limits arec→0 andc→`. Here we summarize the most importa
results for the finite chain. In the next section we treat the infinite chain limit.

In the limit c→`, the most interesting result is that the quadrature points approach

xn5~n21!1 1
4, n51,2,...,N.
J. Math. Phys., Vol. 38, No. 9, September 1997
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This can be seen from Eq.~25!. TheCk
n→1 asc→`. The location of the zeros ofFN(x) are less

and less affected by the distant Gaussians asc gets larger, and in the limitc→` the zeros move
to midpoints between quarter-shifted Gaussians.

To study the limitc→0, we consider the functionKn(s,c), defined as

Fn~x!5~21!n~c/A2!ne2s2/2Kn~s,c!,

wheres5&cx. From Eq.~12!, the recurrence relation satisfied byK(s,c) is

e&cs21

~c/A2!
Kn~s,c!5

dn21
n

~c/A2!2
Kn21~s,c!1

dn
n21

c/A2
Kn~s,c!1dn11

n Kn11~s,c!. ~30!

We take the limitc→0 using the calculateddk
n values and obtain

2sKn~s,0!52nKn21~s,0!1Kn11~s,0!. ~31!

This is simply the recurrence relation for the Hermite polynomials. To conclude thatKn(s,0) are
indeed Hermite polynomials, we need to confirm that the functionsK0(x,0) andK1(x,0) are the
Hermite polynomials. TheF0(x) andF1(x) have the limits

F0~x!5e2c2x2
5~2c/A2!0e2~cx!2

, ~32!

F1~x!5e2c2x2
2ec2/2e2c2~x21!2→~2c/A2!1e2~cx!2

@2~A2cx!1O~c!#. ~33!

ClearlyK0(s,0)51 andK1(s,0)52s. This proves that theKn(s,0) are Hermite polynomials. This
limit can also be expressed as

lim
c→0

Fn~s/A2c;c!

~2c/A2!n
5e2s2/2Hn~s!, ~34!

whereHn(s) are the standard Hermite polynomials. In the equation above the suppressed p
eter c in FN(x)5FN(x;c) is shown explicitly for clarity. A result that follows from the abov
limit is that the quadrature points go to infinity as&cxi→hi

N1O(c), or, xi→hi
N/&c1O(c0),

wherehi
N is thei th root of the Hermite polynomialHN(s). The center of these points is zero rath

thanXN5(N21)/21 1
4, as it should be. To get the correct center, the first-order corrections t

functionsKn(s,c) must be calculated. This should introduce anO(c0) correction~which would be
XN! to the quadrature points, and this would restore the correct center.

V. THE INFINITE CHAIN LIMIT

In this section we derive the infinite chain limits of the finite chain quadratures present
the previous section. We find the quadrature points, weights, and Lagrange functions.

A. Points and weights of infinite chain quadrature

The points and weights can be obtained from the limit of a finite chain quadrature, as we
in the next section. They can also be obtained directly from simple symmetry arguments,
show here. The quadrature must be exact forGn(x)5e22c2(x2n/2)2, (n52`,... ,̀ ). Using this as
a motivation, we will search for a quadrature point set uniformly distributed atxn5n1e and
constant weight for all the pointswn5w` , where the goal is to find a quadrature that yields
integrals of the GaussiansGn(x) centered at both whole and half integers. Because of the tr
lational symmetry of quadrature points, it is sufficient to treat onlyG0(x) andG61(x):
J. Math. Phys., Vol. 38, No. 9, September 1997
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E
2`

1`

e22c2x2
dx5A p

2c25w` (
i 52`

1`

e22c2~ i 1e!2
, ~35!

and

E
2`

1`

e22c2~x61/2!2
dx5A p

2c25w` (
j 52`

1`

e22c2~ j 1e61/2!2
. ~36!

These conditions would be satisfied ife571
22e or e561

4. Thus, the quadrature points must b
given byxn

65n6 1
4. From the above equations, the weights, which are all equal, are found

w`5A p

2c2

1

(m52`
1` e22c2~m11/4!2

. ~37!

Applying the Jacobi identity,

(
n52`

1`

e2~x2n!2/t5Apt (
n52`

1`

e2p2n2tein2px, ~38!

which is just the Fourier series of the periodic function on the left, to the above expression fow` ,
we get a second expression for the weights,

w`5
1

(n52`
1` ~21!ne22~p/c!2n2 . ~39!

This second expression is preferred, since one can readily confirm that forc<1 only the leading
term is needed for eight digit accuracy, and only three terms are needed in the sum to ob
digit accuracy.

There are two quadratures for calculating theGn(x) integrals exactly for the infinite chain
These two distinct quadratures have pointsxn

15n1 1
4 and xn

25n2 1
4, respectively. Both have

weightswn5w` . In the next section we will show how these quadratures follow from the limi
finite chain quadratures.

B. Infinite chain limit of distributed Gaussian polynomials

If we take the limitn→`, Eq. ~3! becomes

F`~x!5 (
k50

1`
1

~q,q!k
~21!ke~1/2!c2ke2c2~x2k!2

. ~40!

The zeros of this function give the quadrature points of the semi-infinite chain. These zeros
be found explicitly, so one must consider the fully infinite chain, which we will simply call
infinite chain for convenience. For the infinite chain the zeros can be found explicitly du
symmetry, as we now show.

Consider the shifted polynomialsFn(x1L) andF`(x1L), whereL is an integer. Shifting
does not change the orthogonality relations of theFn(x) set, thus the limit

lim
L→`

e2~1/2!c2LF`~x1L !5
1

~q,q!`
(

k52`

1`

~21!ke~1/2!c2ke2c2~x2k!2
~41!
J. Math. Phys., Vol. 38, No. 9, September 1997
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is the infinite chain limit of the DG orthogonal polynomials. The constant term (q,q)` is unim-
portant. The relevant quantity is the sum that we define as a function,

S~x;c!5 (
k52`

1`

~21!ke~1/2!c2ke2c2~x2k!2
. ~42!

The zeros ofS(x;c) are the quadrature points. To find them, we factorS(x;c) as follows:

S~x;c!5ec2/16ec2x/2 (
k52`

1`

~21!ke2c2~x11/42k!2
. ~43!

In the above sum, the Gaussians are shifted to the left by a quarter, and they have unity coe
with alternating signs. Clearly the zeros of such a sum are the midpoints between the q
shifted Gaussians; hence, we find the quadrature points asxn5n1 1

4. This corresponds to the
xn

15n1 1
4 andwn5w` quadrature set we found previously.

The other set of quadrature points,xn
25n2 1

4, corresponds to the infinite chain limit of th
polynomials ofe22c2x. The Fn(2x) are the corresponding polynomials andF`(2x) is the
semi-infinite chain limit. Shifting this byL to the right and taking a limit similar to Eq.~41!, we
get S(2x;c). The zeros are the mirror image of thexn

15n1 1
4 points; hence we find the secon

quadrature point set asxn
25n2 1

4. The weights are the same,wn5w` .
The S(x;c) has the interesting property of being orthogonal to all of the Gaussians o

infinite chain. That is,

E
2`

1`

S~x;c!e2c2~x2n!2
dx50 ~n52`,... ,̀ !. ~44!

This orthogonality results from the fact thatFn(x) is constructed to be orthogonal to the Gau
iansg0(x),...,gn21(x), andS(x;c) is found from a limit ofFn(x) @cf. Eq. ~41!#.

We can obtain an infinite product representation forS(x;c). In order to do this, we conside
theta functions. The theta functions are defined as4

Q~x;q!5 (
n52`

1`

qn2
xn, ~45!

or as any function that can be formed by various specializations of this series. There is a
infinite product representation for this series4 discovered by Jacobi. It takes the form

(
2`

1`

qn2
xn5 )

n50

`

~12q2n12!~11xq2n11!~11x21q2n11!. ~46!

The S(x,c) can be expressed as a theta function as follows:

S~x;c!5e2c2x2

(
k52`

1`

~2e2c2~x11/4!!ke2c2k2
5e2c2x2

Q~2e2c2~x11/4!;e2c2
!. ~47!

Applying the triple product formula to the above expression, we obtain the infinite product
resentation for theS(x;c),

S~x;c!5e2c2x2

)
n50

`

~12e2~2n12!c2
!~12e2c2~x21/42n!!~12e22c2~x21/41n11!!. ~48!
J. Math. Phys., Vol. 38, No. 9, September 1997
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C. Infinite chain Lagrange functions

The goal of this section is to construct the infinite chain Lagrange functions. In ord
distinguish Lagrange functions for thex1 andx2 sets, we use the superscripts6. We note that the
Lagrange functions for the infinite chain have the property that

Ln
1~x!5L0

1~x2n!, ~49!

or, in other words, the Lagrange functions are all the displaced form of the same fun
Therefore it is sufficient to construct just one of them. We will constructL0

1(x), the Lagrange
function for thex0

151 1
4 quadrature point.

From the limit of the expression in Eq.~23!, the Lagrange function can be expressed as

L0
1~x!5g

S~x;c!

12e2c2~x21/4!
5g

(k52`
1` ~21!kec2k/2e2c2~x2k!2

12e2c2~x21/4!
, ~50!

whereg is chosen to satisfyL0
1( 1

4)51. We can construct an infinite product representation for
Lagrange function by replacingS(x;c) in the above equation, with the infinite product repres
tation given in Eq.~48! to obtain

L0
1~x!5e2c2~x221/16!)

k51

` S 12e2c2~x21/42k!

12e22c2k D S 12e22c2~x21/41k!

12e22c2k D . ~51!

The reader can readily verify thatL0
1( 1

4)51.
We can obtain a much faster converging expression for the Lagrange function by fac

S(x,c) in Eq. ~50! as shown in Eq.~43! and by summing even and odd indexed terms in
nominator of Eq.~50! separately and applying Jacobi’s Identity to each of the sums. The re
can be recombined to give

L0
1~y!5

~c2/p!e2c2y/2

(n50
1` ~21!n~2n11!e2p2~2n11!2/c2F (

n50

1`

~21!ne2p2~2n11!2/2c2 sin~2n11!py

sinh~c2y!
G ,

~52!

where y5x2 1
4. If c<1, the ratio of the second term to the first term is of ordere24p2/c2

,10217, hence only the first term needs to be retained, and the equation simplifies to

L0
1~y!'

c2

p

sin py

sinh c2y
e2c2y/2. ~53!

This representation allows us to see that thec→0 limit of Lagrange functions is

lim
c→0

L0
1~x!5

sin p~x2 1
4!

p~x2 1
4!

. ~54!

A representation in terms of a linear combination of Gaussians,

L0
1~x!5g (

k52`

1`

ake
2c2~x2k!2

, ~55!
J. Math. Phys., Vol. 38, No. 9, September 1997
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can also be found. In order to determine the expansion coefficients, we carry out a polyn
division on the left-hand side of Eq.~50!,

(
k52`

1`

ake
2c2~x2k!2

5
(k52`

1` ~21!kec2k/2e2c2~x2k!2

12e2c2~x21/4!
. ~56!

This reduces to a difference equation for theak coefficients,

ak2ak21e23c2/2e2c2k5~21!kec2k/2. ~57!

Solving this equation under the condition thatak→0 ask→6`, we obtain

an5~21!ne2c2~ unu1n/2!S (
j 50

`

~21! je2c2 j ~ j 12unu11!D ~n52`,... ,̀ !, ~58!

whereunu is the absolute value ofn. This gives thean coefficients. The normalization constantg

appearing in Eq.~55! is found from the normalization conditionL0
1( 1

4)51 as

g5S (
k52`

`

ake
2c2~k21/4!2D 21

. ~59!

With these results, the right Lagrange functions are given explicitly as

Ln
1~x!5 (

k52`

`

bk2ngk~x!, ~60!

where

bn5gan . ~61!

Clearly, from Eq.~58!, thebn coefficients decay three times faster exponentially on the right
than on the left side. Consequently, the Lagrange functions are not symmetrical.

Having found the right Lagrange functionsLn
1(x), the left Lagrange functionsLn

2(x) are
given by taking the mirror image of right Lagrange functions,

Ln
2~x!5L2n

1 ~2x!5L0
1~2x1n!. ~62!

VI. INFINITE CHAIN LAGRANGE FUNCTIONS AS WANNIER FUNCTIONS

The fact that there is a Gaussian quadrature for an infinite chain of Gaussians has im
consequences. In this section, we will derive some equalities involving the inverse of the o
matrix and integral representations for thebn coefficients. The Lagrange functions we construc
are a special case of Wannier functions. We will explore the links to the Wannier function
provide a general method for constructing Wannier functions from Gaussians.

To begin, consider the overlap matrix,

Snm5E
2`

1`

gn~x!gm~x!dx5A p

2c2e2c2~n2m!2
. ~63!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The overlap matrix is cyclic,Snm5Sn2m,0 and symmetric,Snm5Smn . We will adopt the notation
that whenever the second index is zero we will omit it, i.e.,Sn,05Sn . The inverse of the overlap
matrix is given as

Snm
215E

0

1 ei2p~n2m!t

Z~ t !
dt, ~64!

whereZ(t) is the following sum:

Z~ t !5 (
k52`

`

ei2pntSn5
p

c2 (
k52`

`

e22~p/c!2~ t2k!2
. ~65!

The second expression forZ(t) follows from the first via the Jacobi identity Eq.~38!. The inverse
is easily verified by evaluating(kSnkSkm

21 using Eqs.~63!–~65!. For an extensive discussion of th
inverse of the overlap matrices see the work of Calais and Appel.8

Consider the orthogonality integral,

E
2`

1`

Ln
1~x!Lm

1~x!dx5w`dnm5 (
k52`

1`

Sn2m2ksk , ~66!

wheresk is defined in terms of thebn coefficients, Eq.~61!, as

sk5 (
j 52`

`

bj bj 2k . ~67!

Thesn coefficients have the symmetrysn5s2n . The first expression for the integral~the middle
term! in Eq. ~66! is obtained by evaluating the integral with the quadrature, and the se
expression for the integral~the third term! is obtained by integrating term by term. Forn5m this
gives another representation of the weightsw` . The equality between the second and third ter
in Eq. ~66! is in the form of a linear equation set for thesk , and can be solved by using th
inverse of the overlap matrix as follows:

sn5w`Sn
215w`E

0

1 ei2pnt

Z~ t !
dt. ~68!

The coefficientssn /w` can be interpreted as Fourier coefficients of the denominator in
integrand,

1

Z~ t !
5

1

w`
(

n52`

1`

sne2 i2pnt. ~69!

We can also obtain similar relations for thebn coefficients by considering the following
integral:

E
2`

1`

gn~x!L0
1~x!dx5w` e2c2~n21/4!2

5 (
k52`

1`

Sn2kbk . ~70!

Again, the first expression is obtained by calculating the integral using the quadrature, a
second is obtained by integrating term by term. Thebk are solved by using the inverse of th
overlap matrix to obtain
J. Math. Phys., Vol. 38, No. 9, September 1997
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bm5 (
k52`

1`

sm2ke
2c2~k21/4!2

. ~71!

Heresn5w`Sn
21 is invoked.

This relation can be obtained in a different way. Consider the functionR(x,y) defined as

R~x,y!5 (
n52`

1`

Ln
1~y!Ln

1~x!5 (
m52`

1`

em~y!gm~x!, ~72!

whereem is

em~y!5 (
k52`

1`

sm2ke
2c2~y2k!2

. ~73!

For y5 1
4, we haveR(x, 1

4)5L0(x) sinceLn( 1
4)5dn0 , and comparing the coefficients of Gaussia

gm(x), we get

bn5 (
k52`

1`

sn2ke
2c2~k21/4!2

, ~74!

which is the same relation as Eq.~71!.
The functionR(x,y) has a meaningful interpretation. In the finite chain quadrature when

of the quadrature points is chosen arbitrarily, it is still possible to define a quadrature tha
integrategn(x)gm(x) products exactly. This kind of quadrature is called the Gauss–Radau qu
ture. If the first quadrature point is chosenx15y, then the other quadrature pointsx2 , x3 ,...,xN

are given by the zeros of(n51
N Ln(x)Ln(y), which serves as the Lagrange function in the Gau

Radau quadrature for the quadrature pointx1 . @Here Ln(x) are the true Gaussian quadratu
Lagrange functions; no point is arbitrary.# The R(x,y) is the Lagrange function corresponding
the arbitrary quadrature pointy in the infinite chain limit of the Gauss–Radau quadrature.
further details to this approach see the work of Karabulut.7

As y→ 1
4 the en(y) approaches thebn coefficients. Figure 1 shows how this transition occu

asy→ 1
4. There is a ‘‘turning point’’ for the behavior of theen(y) from the faster exponent to th

slower exponent. The ‘‘turning point’’ goes to infinity asy approaches14, anden(y) decays with
the faster exponent aty5 1

4 for positive indicesn.
We can obtain integral representations for theen(y) andbn coefficients too. If we multiply

both sides of Eq.~69! with ei2p(m2y)te2(p/c)2t2 and integrate from2` to 1`, the left side
becomes proportional to left side of Eq.~73!, which gives us an integral representation of t
em(y) coefficients as

em~y!5
w`Ap

c E
2`

1` ei2p~m2y!t

Z~ t !
e2~p/c!2t2 dt. ~75!

For y5 1
4 we get an integral representation of thebn coefficients,

bm5
w`Ap

c E
2`

1` ei2p~m21/4!t

Z~ t !
e2~p/c!2t2 dt. ~76!

Next, we investigate connections between the infinite chain Lagrange functions and W
functions.9 First, we recall some basic facts about Wannier functions. The normalized B
functions made from Gaussians are given as
J. Math. Phys., Vol. 38, No. 9, September 1997
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f t~x!5eiQ~ t !S (
n52`

1`

ei2ptngn~x!D Y Anorm, ~77!

where eiQ(t) is an arbitrary periodic phase factor and the norm is defined as the integr
unnormalized Bloch function in the parentheses over one period,

norm5E
0

1U (
n52`

1`

ei2ptngn~x!U2

dx. ~78!

Using the Poisson summation formula, the norm can be evaluated as

norm5 (
n52`

1`

ei2ptnSn5Z~ t !, ~79!

which turns out to be the same expression as theZ(t) that we introduced before. The normalize
Bloch functions satisfy the following orthogonality relation:

E
2`

`

f t~x!fq* ~x!dx5 (
n52`

1`

d~q2t2n!. ~80!

FIG. 1. Plots of loguen(y)u @cf. Eqs. ~73! and ~75!# versusn for c50.6 and~a! y50.24, ~b! y50.2499, and~c! y
50.249 999. Fory50.25, the coefficientsem(y) are equal to the expansion coefficientsbm for the Lagrange functions
expressed as a linear combination of Gaussians@cf. Eq. ~60!#.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The Bloch functions are periodic functions of the parametert, so they can be expressed as
Fourier series,

f t~x!5 (
n52`

1`

ei2ptnWn~x!. ~81!

The Fourier coefficients are the Wannier functions,

Wn~x!5E
0

1

e2 i2ptnf t~x!dt5 (
m52`

`

cm2ngm~x!. ~82!

The Gaussian coefficients of the Wannier functions are given as

cn5E
0

1

eiQ~ t !
ei2ptn

Z~ t !
dt, ~83!

whereeiQ(t) is the arbitrary periodic phase factor. Different choices of theeiQ(t) yield different
Wannier functions. The orthonormality of the Wannier functions,

E
2`

1`

Wn* ~x!Wm~x!dx5dnm , ~84!

can easily be verified using Eqs.~80! and ~82!.
Our infinite chain Lagrange functions are Wannier functions corresponding to a part

choice of phase factor. We can obtain the corresponding phase factor by insertingWn(x)
5Ln(x)/Aw` into Eq. ~81!, and then reexpressing the Lagrange function as a linear combin
of Gaussians. After redefining the summation indices we obtain

(
n52`

1`

ei2ptn
L0

1~x2n!

Aw`

5SAZ~ t !

w`
(

m52`

1`

e2 i2ptmbmD S (n52`
1` ei2ptngn~x!

AZ~ t !
D . ~85!

Comparing with Eq.~77!, we see that the first term on the right side of Eq.~85! is the phase factor

eiQL~ t !5AZ~ t !

w`
(

m52`

1`

e2 i2ptmbm , ~86!

whereQL(t) stands for the Lagrange phase. The fact that this function has unit magnitud
easily be verified as follows:

U 1

Aw`
(

m52`

1`

e2 i2ptmbmU2

5
1

w`
(

m52`

1`

ei2ptmsm5
1

Z~ t !
. ~87!

Transition from the second expression to the third is via~69!.
The result in Eq.~86! gives us a powerful tool to construct new Wannier functions. Taking

general phaseQ(t)5QL(t)1G(k) and replacing 1/AZ(t) with

1

AZ~ t !
5

e2 iQL~ t !

Aw`
(

m52`

1`

e2 i2ptmbm , ~88!

we can obtain the coefficients of Wannier functions as
J. Math. Phys., Vol. 38, No. 9, September 1997
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cn5
1

Aw`
(

k52`

1`

bn2kS E
0

1

eiG~ t !ei2pkt dtD . ~89!

The difficulty with constructing Wannier functions is calculating the integrals ofeiQ(t)ei2ptn/
AZ(t) because theAZ(t) in the denominator is not easy to deal with. The integr
*0

1eiG(t)ei2p(n2m)t dt are calculable analytically for many phase factorseiG(t). ChoosingeiG(t)

51 gives us our Lagrange functions back. Choosing other phase factors gives us new W
functions. Here we give a few examples of phase factors for which this integral is ea
calculate.

As a first example, let us take the phase factor

eiG~ t !5H 1, 0,uxu, 1
4,

21, 1
4,uxu, 1

2.
~90!

This is the phase within one period. The integral is elementary,

E
0

1

eiG~ t !ei2pnt dt5H 2 sin~pn/2!/pn, nÞ0,

0, n50.
~91!

This gives us a real Wannier function. Another example that yields real Wannier functions

eiG~ t !5
12qei2pt

12qe2 i2pt , ~92!

whereuqu,1 andq is a real number. The integral is

E
0

1

eiG~ t !ei2pnt dt5H ~12q2!qn, n>0,

2q, n521,

0, n,21.

~93!

One can also generalize this phase as

eiG~ t !5ei2mpt
12qei2Npt

12qe2 i2Npt , ~94!

wherem andN are integers. The integral is again easily calculated. Clearly, other examples c
generated.

In general, for any real periodic functionsU(t) andV(t) satisfyingU21V251 we can take
eiG(t)5U(t)1 iV(t) as a phase factor that gives us considerable freedom to construct Wa
functions. In general, these Wannier functions will be complex. If we chooseU(t) even andV(t)
odd with respect to the origin, the imaginary part of the integral vanishes, which make
Wannier functions real. The central problem in this method is finding a way of constructin
analytically integrable phase function that gives Wannier functions with desired properties~sym-
metry, asymmetry, decay rate of coefficients, etc.!.

To our knowledge, the only example of Wannier functions made out of Gaussians is giv
Wannier.10 Itakutti et al.11 also give Wannier functions that resemble those of Wannier,10 how-
ever, they did not provide an analytical expression for their Wannier functions. Instead, the
their calculations for 30 equally spaced Gaussians. Their prescription seems to be(m Snm

21/2gm(x),
and this would be a symmetric Wannier function sinceSnm

21/2 is a cyclic and symmetric matrix. Bu
their plots show asymmetric functions, and it is not clear to us how they obtained their
J. Math. Phys., Vol. 38, No. 9, September 1997
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Considering the scarcity of Wannier functions constructed out of Gaussians analytically~numeri-
cally one can always do it of course!, it appears that there is much work left to be done in t
direction of research.

VII. SUMMARY

We have established that a linear combination of a finite chain of equally spaced Gau
can be written as a polynomial. We have constructed the corresponding orthogonal polynom
called distributed Gaussian polynomials. We then studied the corresponding Gaussian qua
and explored its symmetries and limit cases. We found the infinite chain limit of our finite c
polynomials and the quadrature. In the infinite chain limit the quadrature points, weights, an
Lagrange functions can be found explicitly due to the symmetry. We found the quadrature p
weights, and three representations of the infinite chain Lagrange functions. We then found in
representations for the Gaussian coefficientsbn and thesn5(kbkbk2n coefficients by taking
advantage of the infinite chain quadrature. Finally, we established that our infinite chain Lag
function is a Wannier function for a particular choice of the arbitrary phase factor, and we f
the corresponding phase factor. As a byproduct of this result, we obtained a recipe for const
a Wannier function from Gaussians.

We initially studied Gaussians for the purpose of using them as a basis set in varia
calculations. Eventually, enough fundamental results came out of our work that they justi
separate publication. In future work, we will use the analytical results presented here to a
the ability of distributed Gaussians to represent arbitrary functions, as well as construct d
variable representations~DVRs! from the distributed Gaussians and show how they compar
other DVRs that can be found in the literature.
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APPENDIX: EXPRESSION FOR Ck
n COEFFICIENTS

The derivation of theCk
n coefficients is conveniently carried out using theq-binomial theo-

rem. So we will proceed by first discussing theq-binomial theorem, and then using it in th
derivation of theCk

n . Theq-binomial theorem12,13 is stated as follows:

(
k50

`
~a;q!k

~q;q!k
xk5

~ax;q!`

~x;q!`
, ~A1!

whereuqu,1 for convergence. The symbols (a;q)` and (a;q)k were defined in Eqs.~5! and~6!.
To use theq-binomial theorem to find theCk

n , we seta5q2n andx5qj in Eq. ~A1! to obtain

(
k50

n
~q2n;q!k

~q;q!k
~qj !k5

~qj 2n;q!`

~qj ;q!`
50, j 51,2,...,n. ~A2!

This is evident if one notes that, on the left side, the termsk.n in the sum are zero. Because
n is a positive integer, then (q2n;q)k50 for k.n; hencek runs up ton. The right side vanishes
for 0, j ,n values only, because in this range ofj values the nominator (qj 2n;q)` vanishes and
the denominator does not. Forj .n, both the nominator and denominator are nonzero. Foj
<0, both the nominator and denominator have simple zeros asj approaches a nonpositive intege
hence the zeros cancel each other to yield a nonzero limit for the sum.

Now we are ready to find theCk
n coefficients. In order to prove that theFn(x) of Eq. ~3! are

orthogonal, it is sufficient to prove thatFn(x) is orthogonal tog0(x), g1(x),...,gn21(x), i.e.,
J. Math. Phys., Vol. 38, No. 9, September 1997
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~Fn ,gm!5A p

2c2(
k50

n

Ck
n~21!kec2k/2e2c2~m2k!2/250, m50,1,...,n21. ~A3!

Here (gk ,gm)5Ap/2c2e2c2(m2k)2/2 is used. Now, if one choosesq5e2c2
, then the above equa

tion can be written as

(
k50

n

@Ck
n~21!kq~2

k
!2nk#~qn2m!k50, m50,1,...,n21. ~A4!

Here the (2
k)5k(k21)/2 are the binomial coefficients. Clearly, if we set

Ck
n~21!kq~2

k
!2nk5

~q2n;q!k

~q;q!k
, ~A5!

then, from Eq.~A2!, Eq. ~A4! is satisfied. The above expression for the coefficientsCk
n can be put

in a more handsome form by using the identity

~q2n;q!k5
~q;q!n

~q;q!n2k
~21!kq~2

k
!2nk, k50,1,...,n, ~A6!

which can be proven by elementary manipulations, to obtain

Ck
n5

~q;q!n

~q;q!k~q;q!n2k
. ~A7!

This is the expression forCk
n coefficients.
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Green’s matrix from Jacobi-matrix Hamiltonian
B. Kónya, G. Lévai, and Z. Papp
Institute of Nuclear Research of the Hungarian Academy of Sciences,
P.O. Box 51, H-4001 Debrecen, Hungary

~Received 25 February 1997; accepted for publication 3 April 1997!

We propose two ways for determining the Green’s matrix for problems admitting
Hamiltonians that have infinite symmetric tridiagonal~i.e., Jacobi! matrix form on
some basis representation. In addition to the recurrence relation coming from the
Jacobi-matrix, the first approach also requires the matrix elements of the Green’s
operator between the first elements of the basis. In the second approach the recur-
rence relation is solved directly by continued fractions and the solution is continued
analytically to the whole complex plane. Both approaches are illustrated with the
non-trivial but calculable example of the D-dimensional Coulomb Green’s matrix.
We give the corresponding formulas for the D-dimensional harmonic oscillator as
well. © 1997 American Institute of Physics.@S0022-2488~97!00409-X#

I. INTRODUCTION

Green’s operators play a central role in theoretical physics, especially in quantum mech
since the fundamental equations are formulated as integral equations containing Green’s op
in their kernels. Integral equation formalisms have an advantage over those based on diffe
equations because they automatically incorporate the boundary conditions. In spite of th
differential equations are more extensively used in practical calculations. The reason certa
that the Green’s operators occurring in integral equations are much more complicated th
corresponding terms in the Hamiltonian.

A possible way of compensating this drawback is using a representation in which the G
operator appears in a simple form. In this respect the momentum-space representation i
appealing, as the free Green’s operator is very simple there. This is the main reaso
momentum-space techniques are so frequently used and also why they are capable of cop
complicated integral equations like the Faddeev equations~see Ref. 1 for a review!.

The free Green’s operator can also be given analytically between harmonic oscillator~HO!
states.2 This allowed the construction of a flexible method for solving the Lippmann–Schwi
equation in HO-space, which contains the free Green’s operator in its kernel.3 The representation
of operators on a finite subset of a countable basis, such as the HO basis, turns the Lipp
Schwinger equation into a matrix equation. The completeness of the basis ensures the conv
of the method. Actually, this is equivalent to a separable expansion of the potential~see, e.g., Ref.
4 for a review!. In this approach only the potential term is approximated, the terms in the Gre
operator~the kinetic energy term in the case of the free Green’s operator! are not. Thus, although
one is working with finite matrices, the solution possesses correct asymptotic behavior.

To give account of the fact that Coulombic asymptotics are genuinely different from the
one, the kernel of the integral equations describing Coulombic systems should include Coul
rather than free Green’s operators. For the two-body Coulomb Green’s operator there e
Hilbert-space basis in which its representation is very simple, namely, the Coulomb–Stu
~CS! basis. In CS-space the Coulomb Green’s operator can be given by simple and
computable special functions, which can be continued analytically to the complex plane.5 This is
also a countable basis, so we have a matrix representation.

In the past few years a quantum mechanical approximation method for treating Coulom
interactions in two-body calculations was developed along this line. The analytic Cou
Green’s matrix allows the extension of the method to resonant- and scattering-state calcula6
0022-2488/97/38(9)/4832/13/$10.00
4832 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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Since only the asymptotically irrelevant short-range interaction is approximated, the correct~two-
body! Coulomb asymptotics is guaranteed. The corresponding computer codes for solving
body bound-, resonant- and scattering-state problems were also published.7

Recently the CS-space representation approach to the Faddeev integral equations h
applied to solving the three-body bound- and scattering-state problem with Cou
interactions.8,9 In this formulation of the equations the most crucial point is calculating the re
vent of the sum of two independent, thus commuting, two-body Coulombic Hamiltonians. T
given by the convolution integral10

~z2h12h2!215
1

2p i RC
dw~z2w2h1!21~w2h2!21. ~1.1!

Here, the contourC should encircle, in counterclockwise direction, the spectrum ofh2 without
penetrating into the spectrum ofh1 . The analytic nature of the two-body Green’s matrix made
evaluation of the contour integral, also in practice, possible. In fact, the convolution int
follows directly from the Dunford–Taylor integral representation of operators.11 A function of an
operatorh is defined as

f ~h!5
1

2p i RC
dw f~w!~w2h!21, ~1.2!

wheref should be analytic onC. This way we can calculate complicated functions of operator
well.

Making use of Eq.~1.1!, we can solve problems which otherwise would amount to solv
non-separable partial differential equations with unknown boundary conditions. So we believ
the analytic representation of simple Green’s operators is of extreme importance, probably in
fields of physics too, but certainly for the solution of the underlying integral equations of qua
mechanics.

Hamiltonians having Jacobi-matrix forms were also extensively studied in the context o
L2 approach to quantum scattering theory.12,13 Here, the Hamiltonian is represented on an app
priate L2 basis, which is chosen in such a way, that the asymptotic part of the Hamilto
possesses a Jacobi-matrix form. The resulting three-term recurrence relation can be solv
lytically, yielding the expansion coefficients of both a ‘‘sine-like’’S̃(r ) and the ‘‘cosine-like’’
solution C̃(r ). The Jacobi-matrix solutionsS̃(r ) and C̃(r ) are then used to obtain the exa
solution to a model scattering problem defined by approximating the potentialV by its projection
VN onto the finite subspace spanned by the firstN basis functions. So, on the level of physic
assumptions theL2 approach and the methods used in Refs. 3 and 5–7 are equivalent in the
sense as the Schro¨dinger equation is equivalent to the Lippmann–Schwinger equation. Howe
we believe that the approaches starting from integral equations, especially those in Refs. 5
superior since they allow us to cope with problems still lacking satisfactory solution, suc
three-body scattering problems with Coulomb interactions. We note that in theL2 approach the
Green’s function of a Jacobi-matrix Hamiltonian can also be constructed from the coefficie
the solutionsS̃(r ) andC̃(r ).13 However, this construction is applicable only in very exceptio
cases.

In this paper we wish to demonstrate that, if the Hamiltonian appears in a symmetric in
tridiagonal, i.e., Jacobi-matrix form in some basis representation with analytically known m
elements, then the corresponding Green’s matrix can be given in terms of three-term recu
relation. We present two independent methods for determining the Green’s matrix from a
term recurrence relation.

In our first method~method A! we consider this relation only as a useful computational to
In addition to the recurrence relation this approach also requires, the matrix element of the G
J. Math. Phys., Vol. 38, No. 9, September 1997
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4834 Kónya, Lévai, and Papp: Green’s matrix from Jacobi-matrix Hamiltonian

                    
operator between the first elements of the basis. This often necessitates the analytical evalu
complicated integrals, which restricts its use to exceptional cases only. Once this matrix e
has been calculated, we can resort to the recurrence relation in order to determine the G
matrix. However, from the numerical point of view the recurrence relations can lead to ca
tional problems and instabilities.14

In our second approach~method B! we propose direct solution of this recurrence relation
continued fractions. The richness of the theory of recurrence relations and continued fra
enable us to avoid the difficult and strenuous procedure of method A. The inverse of the G
matrix can be evaluated solely from the ratio of two successive elements of the recurrence re
In method B this ratio is provided by a continued fraction. This means that, all the above
tioned numerical problems can be avoided, since the recurrence relation is completely igno
a computational tool.

In Sec. II below we sketch methods A and B. In Sec. III we illustrate method A wit
non-trivial but calculable example, the D-dimensional Coulomb problem. The correspo
3-dimensional formulas had been presented earlier5–7 and were extensively used in both two- an
three-body calculations. A summary of the relevant mathematical formulas for continued fra
and three-term recurrence relations is given in Sec. IV. In Sec. V method B is presented us
example of the D-dimensional Coulomb problem. This is followed by numerical illustration
Sec. VI. Finally, in the Appendix the D-dimensional harmonic oscillator is considered. We s
that the harmonic oscillator Hamiltonian takes a Jacobi-matrix form on a harmonic oscillator
that has a different frequency parameter.

II. JACOBI-MATRIX REPRESENTATION

We first define our representation space for the quantum mechanical problem. Let us co
the basis states$u i &% and$u ĩ &%, with i 50,1,2,. . . , which form a complete bi-orthogonal set, i.e

^ ĩ u j &5^ i u j̃ &5d i j ~2.1!

15(
i 50

`

u ĩ &^ i u5(
i 50

`

u i &^ ĩ u. ~2.2!

Let us start with the defining equation of the Green’s operatorG corresponding to HamiltonianH

15~E2H !G, ~2.3!

and apply it to the ketu j̃ &

u j̃ &5~E2H !Gu j̃ &. ~2.4!

Inserting a completeness relation betweenE2H andG, and multiplying form the left by the bra
^ i u we get

d i j 5 (
i 850

`

^ i u~E2H !u i 8&^ ĩ 8uGu j̃ &. ~2.5!

If ^ i u(E2H)u i 8& takes a Jacobi-matrix form the infinite sum is reduced only to three terms an
arrive at a recurrence relation for the matrix elementsGi j 5^ ĩ uGu j̃ &:

d i j 5Jii 21Gi 21 j1Jii Gi j 1Jii 11Gi 11 j , i 51,2, . . . ,j 50,1, . . . , ~2.6!
J. Math. Phys., Vol. 38, No. 9, September 1997
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whereJi j 5^ i u(E2H)u j & are the elements of the Jacobi-matrix. For thei 5 j 50 case Eq.~2.5!
takes the form

15J01G101J00G00. ~2.7!

In method A, ifG00 is known, we can calculateG10 from Eq. ~2.7!, and then can continue to
Gj 0 using Eq.~2.6!. Interchanging the indices in Eq.~2.6! we again get a three-term recurren
relation which can be utilized to generate theGi j elements from the knownG0 j terms. The
analytic calculation ofG00 together with the application of the recurrence relation~2.6! with Eq.
~2.7! constitutes the basic idea of method A.

In method B we compute the Green’s matrix without the explicit use of the recurr
relation. From the theory of special matrices we know that the inverse of a Jacobi-matrix, i.e
Green’s matrix, possesses the property15

Gi j 5H piqj , if i< j

pjqi , if j < i
. ~2.8!

Therefore, forj <N and i<N we can write the resolvent equation~2.5! as

d i j 5 (
i 850

N

~Jii 8Gi 8 i1d iNJiN11GjN11!5 (
i 850

N

~Jii 81d iNd i 8NJiN11pN11 /pN!Gi 8 j

5 (
i 850

N

~Jii 81d iNd i 8NJiN11G0N11 /G0N!Gi 8 j , ~2.9!

i.e., the inverse of the truncatedN3N Gi j
(N) Green’s matrix is given as

~Gi j
~N!!215Ji j 1d jNd iNJiN11G0N11 /G0N . ~2.10!

Equation ~2.10! asserts that the inverse of the truncated Green’s matrix is determined b
elements of the Jacobi-matrix and the ratioG0N11 /G0N . The later will be calculated by continue
fractions derived only from the elements of Jacobi-matrix. This is the basic idea of method B
notice, that in many practical applications, like the solution of Lippmann–Schwinger equatio
is directly the (Gi j

(N))21 that is really needed~see, e.g., Ref. 9!.

III. D-DIMENSIONAL COULOMB GREEN’S MATRIX IN COULOMB–STURMIAN
REPRESENTATION

Here we define the Coulomb–Sturmian basis and show that on this particular bas
D-dimensional Coulomb Hamiltonian has a Jacobi-matrix structure. We also derive the
sponding three-term recurrence relation for the Green’s matrix and present its solution via m
A. In doing so we apply techniques established already for the 3-dimensional (D53) case.5

Let us consider the radial Schro¨dinger equation for the D-dimensional hydrogen atom in
l th partial wave

HCc~r ![F2
\2

2mS d2

dr 2
2

1

r 2S l 1
D23

2 D S l 1
D21

2 D D 2
Zl2

r Gc~r !5Ec~r !. ~3.1!

~See, e.g., Ref. 16 and references.! The bound-state energy spectrum is given by
J. Math. Phys., Vol. 38, No. 9, September 1997
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Enr l
52

mZ2l 4

2\2S nr1 l 1
D21

2 D 2 , ~3.2!

and the corresponding wave functions are

cnr l
~r !5a0S r 0G~nr11!

2G~nr12l 1D21! D
1/2

expS 2
a0

2
r D ~a0r ! l 1

D21
2 Lnr

~2l 1D22!~a0r !, ~3.3!

where we used the notationa05((nr1 l 1(D 2 1/2)r 0)21 and r 05\2/(2mZl2).
The Coulomb–Sturmian equation has a structure similar to the eigenvalue equation~3.1!

S 2
d2

dr 2
1

1

r 2S l 1
D23

2 D S l 1
D21

2 D2
~2n12l 1D21!bS

r
1bS

2D f~bS ,r !50 ~3.4!

and is solved by the Coulomb–Sturmian~CS! functions

^r unl&[fnl~bS ,r !5S G~n11!

G~n12l 1D21! D
1/2

exp~2bSr !~2bSr ! l 1
D21

2 Ln
~2l 1D22!~2bSr !,

~3.5!

which are the generalizations of the corresponding CS functions for the 3-dimensional c17

Here,bS is a real parameter, thus we have the bound-state CS functions.
Introducing the notation̂r unl̃&[fnl(bS ,r )/r we can express the orthogonality and comple

ness of the CS functions as

^nlun8 l̃ &5dnn8 ~3.6!

and

15 (
n50

`

unl̃&^nlu5 (
n50

`

unl&^nl̃u, ~3.7!

respectively, confirming that they form a bi-orthonormal basis.
The overlap of two CS functions can be written in terms of a three-term expression

^nlun8l &5~2bS!21@dnn8~2n12l 1D21!2dnn821~~n11!~n12l 1D21!!1/2

2dnn811~n~n12l 1D22!!1/2#. ~3.8!

A similar expression holds for the matrix element ofHC:

^nluHCun8l &5
\2bS

4m Fdnn8S 2n12l 1D212
2

r 0bS
D1dnn821~~n11!~n12l 1D21!!1/2

1dnn811~n~n12l 1D22!!1/2G . ~3.9!

From the above two equations follows the Jacobi-matrix structure ofJnn8
C

5^nluE2HCun8l &.
The Jacobi-matrix structure immediately implies a three-term recurrence relation~2.6! which,

in method A, can only be solved ifG00
C is at our disposal. This matrix element can be gained

evaluating an integral of the D-dimensional Coulomb Green’s function
J. Math. Phys., Vol. 38, No. 9, September 1997
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GlD
C ~r ,r 8,E!52

im

\2k

GS l 1
D21

2
1 ig D

G~2l 1D21!
M2 ig,l 1

D
2 21~22 ikr,!W 2 ig,l 1

D
2 21~22 ikr.!,

~3.10!

with the n5n850 CS functions~3.5!, whereg51/(2r 0k) andk is the wave number. Using th
formula by Buchholz18

GS m11

2
2k D W k,

m
2
~a1t !Mk,

m
2
~a2t !

5t~a1a2!
1
2E

0

`

expS 2
1

2
~a11a2!t coshwD I m~ t~a1a2!

1
2 sinh w!S coth

w

2 D 2k

dw,

~3.11!

the integration can be performed analytically19,5 and the final result is

G00
C 52

4mbS

\2~bS2 ik!2

1

l 1~D21!/21 ig

32F1S 2 l 2
D23

2
1 ig,1;l 1

D11

2
1 ig12;S bS1 ik

bS2 ikD 2D . ~3.12!

IV. CONTINUED FRACTIONS AND THREE-TERM RECURRENCE RELATIONS

Based on the mathematical literature20,14we give a brief review of the underlying mathema
cal theorems. Let$an(z)%1

` and $bn(z)%0
` , an(z) Þ 0, be two sequences of complex value

functions defined on the regionD of the complex plane. We define the linear fractional transf
mationsn(w,z) as

sn~wn ,z!5
an~z!

bn~z!1wn
, n>1, s0~w0 ,z!5b0~z!1w0 , ~4.1!

and

Sn~wn ,z!5Sn21~sn~wn ,z!,z!, S0~w0 ,z!5s0~w0 ,z!. ~4.2!

A continued fraction is an ordered pair

~~$an~z!%,$bn~z!%!,$ f n~z!%!, ~4.3!

where$ f n(z)% is given by

f n~z!5Sn~0,z!, n50,1,2,3,. . . . ~4.4!

Here, Sn(wn ,z) is called thenth approximant of the continued fraction with respect to t
$wn%n50

` complex series.Sn(wn ,z) can be written, using one of the standard notations, as

Sn~wn ,z!5b0~z!1
a1~z!

b1~z!1

a2~z!

b2~z!1•••1

an~z!

bn~z!1wn
. ~4.5!
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The convergence of a continued fraction means the convergence of the sequence of appro
Sn(wn ,z) to an extended complex number

f ~z!5 lim
n→`

Sn~wn ,z!5b0~z!1Kn51
` S an~z!

bn~z! D , ~4.6!

where

Kn51
` S an~z!

bn~z! D5
a1~z!

b1~z!1

a2~z!

b2~z!1•••1

an~z!

bn~z!1•••
. ~4.7!

It should be noted that iff (z) exists for two different sequences of$vn% then f (z) is unique.
A special class of continued fractions for which the limits

lim
n→`

an~z!5a~z! and lim
n→`

bn~z!5b~z! ~4.8!

exist for all z P D is called limit 1-periodic continued fractions. The fixed pointsw6(z) of the
linear fractional transformation

s~w,z!5 lim
n→`

sn~wn ,z!5
a~z!

b~z!1w
, ~4.9!

wherew5 limn→`wn , are given as the solution of the quadratic equation

w5
a~z!

b~z!1w
, ~4.10!

w6~z!52b~z!/26A~b~z!/2!21a~z!. ~4.11!

The w6(z) with smaller modulus is called attractive fixed point, while the other one is calle
repulsive fixed point. Sincew6(z) represent the tail of a limit 1-periodic continued fraction w
can speed up the convergence using the attractive fixed point in the approximantSn(w,z).

The idea of the analytic continuation of the continued fractionf (z) in Eq. ~4.6! is based on the
proper choice of$wn% in the approximantSn(wn ,z).20,21 If a continued fraction exists in a certai
complex regionz P D then in many cases it is possible to extend the region of convergence
larger domainD* $D, whereD* depends on the choice of the functionswn(z). In the case of
limit 1-periodic continued fractions the analytic continuation is defined with the help of the fi
pointsw6(z) of Eq. ~4.10! as

f D* ~z!5 lim
n→`

Sn~w6~z!,z!. ~4.12!

The computation of the approximantsSn(w6(z),z) might be unstable for certainz, which
leads to unsatisfactory convergence. This problem can be overcome by using the Baue
transformation.20 The Bauer–Muir transform of a continued fractionb0(z)1K(an(z)/bn(z)) with
respect to a sequence of complex numbers$wn%n50

` is the continued fraction
d0(z)1K(cn(z)/dn(z)), whose ‘‘classical’’ approximantsSn(0,z) are equal to the modified ap
proximantsSn(wn ,z) of the original continued fraction. The transformed continued fraction ex
and can be calculated as

d05b01w0 , c15l1 , d15b11w1 ,
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ci5ai 21qi 21, di5bi1wi2wi 22qi 21 , i>2, ~4.13!

l i5ai2wi 21~bi1wi !, qi5l i 11 /l i i>1,

if and only if l i Þ 0 for i 51,2, . . . .
We now return to the three-term recurrence relation focusing on their intimate relatio

continued fractions. A three-term recurrence relation can be written as

Xn115bnXn1anXn21, n51,2,3,. . . , ~4.14!

wherean ,bn are complex numbers andan Þ 0. The solutions of a three-term recurrence relat
span a two-dimensional linear space. The$xn% nontrivial ~i.e., Þ $0%) solution is said to be
minimal if there exists another solution$yn% such that

lim
n→`

xn /yn50. ~4.15!

Solution$yn% here is called dominant. The minimal solution is unique, apart from a multiplica
constant.

The existence of the minimal solution is strongly related to the convergence of a cont
fraction constructed from the coefficients of the recurrence relation. This connection is revea
Pincherle’s theorem.14,20 According to this the following statements hold: A: Eq.~4.14! has a
minimal solution if and only if the continued fraction

Kn51
` S an

bn
D5

a1

b11

a2

b21•••1

an

bn1•••
~4.16!

converges, B: if$Xn% is a minimal solution then forN50,1,2,. . . ,

xN11

xN
52Kn51

` S an1N

bn1N
D52

a11N

b11N1

a21N

b21N1•••1

an1N

bn1N1•••
. ~4.17!

The second statement asserts that the ratio of two successive element of the minimal sol
provided by a continued fraction.

V. CONTINUED FRACTION FOR G0N11 /G0N

First we show that in certain domain of the complex plane the physical relevant solution
recurrence relation~2.6! for the Green’s matrix is the minimal solution. In case of short-ran
potentials the Green’s function can be constructed as22

G~r ,r 8,k!5w l~k,r ,! f l
~1 !~k,r .!/F ~k!, ~5.1!

wherew l(k,r ) is the regular solution,f l
(1)(k,r ) is the Jost solution,F (k) is the Jost function and

k is the wave number. The Jost solution is defined by the relation

lim
r→`

e7 ikr f l
~6 !~k,r !51. ~5.2!

Let us define a ‘‘new’’ Green’s function as

G̃~r ,r 8,k!5w l~k,r ,! f l~k,r .!/F ~k!, ~5.3!
J. Math. Phys., Vol. 38, No. 9, September 1997
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wheref l is a linear combination off l
(1) and f l

(2) . If RE,0 f l
(1) is exponentially decreasing an

f l
(2) is exponentially increasing. Thus, for anyG̃ we have

lim
r 8→`

G~r ,r 8,k!

G̃~r ,r 8,k!
50, if RE,0. ~5.4!

We note, that bothG andG̃ satisfy the defining equation Eq.~2.3!, but onlyG of Eq. ~5.1! is the
physical Green’s function. The above considerations, with a slight modification in Eq.~5.2!, are
also valid for the Coulomb case.

An interesting result of the study of Ref. 13 is that the Green’s matrix from Jacobi-m
Hamiltonian, in correspondence with Eq.~2.8!, has an analogous structure to Eq.~5.1!

Gii 8~k!5~w l ! i ,
~k!~ f l

~1 !! i .
~k!/F ~k!, ~5.5!

where (w l) i(k)5^w l(k)u ĩ & and (f l
(1)) i(k)5^ f l

(1)(k)u ĩ &. Similarly, we define (f l) i(k)
5 ^ f l(k)u ĩ & and

G̃ii 8~k!5~w l ! i ,
~k!~ f l ! i .

~k!/F ~k!. ~5.6!

On the RE,0 region of the complex plane asr→` f l(k,r ) exponentially dominates ove
f l

(1)(k,r ), thus for theirL2 representation the following relation holds:

lim
i→`

~ f l
~1 !! i~k!

~ f l ! i~k!
50, if RE,0. ~5.7!

This implies a similar relation for the Green’s matrices

lim
i 8→`

Gii 8~k!

G̃ii 8~k!
50, if RE,0. ~5.8!

So, in theRE,0 region of complexE-plane the physical relevant Green’s matrixGii 8
appears as the minimal solution of recurrence relation~2.6!. Thus, according to Pincherle’s theo
rem ~4.17!, the ratio needed in Eq.~2.10! for the Green’s matrix can be calculated by the cont
ued fraction

G0N11~e!

G0N~e!
52Ki 5N

` S ai

bi
D , ~5.9!

whereai52Jii 21 /Jii 11, bi52Jii /Jii 11 andJi j is the Jacobi-matrix.
In the case of D-dimensional Coulomb Green’s matrix we have

ai52A i ~ i 12l 811!

~ i 11!~ i 12l 812!
, i 51,2, . . . , ~5.10!

bi~e!5
2~e2bS

2!~ i 1 l 811!12bS/r 0

~e1bS
2!A~ i 11!~ i 12l 812!

, i 50,1,2,. . . , ~5.11!

with e52mE/\2 and l 85 l 1(D23)/2.
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On the region of scattering states the recurrence relation does not have minimal soluti
the continued fraction~5.9! diverges. On the other hand,G0N11(e)/G0N(e) is an analytic function
of e, and there is a region of the complex plane where we have a representation for this fun
thus values on other regions can be obtained by the analytic continuation of the boun
formula, i.e., by the analytic continuation of the continued fraction~5.9!. Since now we have a
limit 1-periodic continued fraction, its analytic continuation, according to Eq.~4.12!, can be
achieved with fixed points

w6~e!52b~e!/26A~b~e!!2/41a, ~5.12!

where

a5 lim
i→`

ai521, b~e!5 lim
i→`

bi52~e2bS
2!/~e1bS

2!. ~5.13!

Considering the formula for Green’s operators23

^ ĩ uG~E1 i0 !u ĩ &2^ ĩ uG~E2 i0 !u ĩ &522p i^ ĩ uc~E!&^c~E!u ĩ &, ~5.14!

wherec(E) is the scattering wave function, and the analytic properties of Green’s operato
can readily derive that the imaginary part of^ ĩ uG(E1 i0)u ĩ & should be negative. This conditio
can only be fulfilled with the choice ofw1 . This choice gives an analytic continuation to th
physical sheet, whilew2 , which also converges, gives an analytic continuation to the unphy
sheet.

From the above considerations it follows that utilizing only the Jacobi-matrix the Gre
matrix can be obtained for arbitrary complex energies by simply evaluating a continued fra

VI. NUMERICAL ILLUSTRATIONS

Below we demonstrate the convergence and the numerical accuracy of method B. We
late the matrix elementG00

C (e) of D-dimensional Coulomb Green’s operator for thel 50 and
D53 case at bound- and scattering-state energies. We examine the convergence of co
fraction with different choice of$wn% in Eq. ~4.6! and the effect of Bauer–Muir transformation
For comparison we also give the exact value forG00

C (e) ~3.12!.
In the case ofRe<0, we take thewn50, wn5w1 andwn5w2 choices. In Table I we can

observe excellent convergence to the exact value in all cases. The choice ofwn influences only the
speed of convergence.

In the region ofRe>0, in complete accordance with Pincherle’s theorem, the contin
fraction ~5.9! diverges, only its analytic continuation withwn5w1 and wn5w2 is convergent.
However, as the first column in Table II shows, the convergence is rather poor. This can c
erably be improved by the repeated application of Bauer–Muir transforms. In fact, an acc
similar to the bound-state case can easily be reached here with, e.g., an eightfold Baue
transform.

In order that we have a more stringent test we have performed the contour integral

I ~C!5
1

2p i RC
deG00~e!. ~6.1!

If the domain surrounded byC does not contain any pole, thenI (C)[0. If this domain contains
a single bound-state pole, thenI (C)5^ 0̃ uc&^cu 0̃& must hold, while ifC circumvents the whole
spectrum thenI (C)5^ 0̃ u 0̃& is expected. With appropriate selection of Gauss integration po
we could reach 12 digits accuracy in all cases. This demonstrates that the calculation
Green’s matrices from J-matrices via continued fractions is accurate on the whole complex
J. Math. Phys., Vol. 38, No. 9, September 1997
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VII. SUMMARY AND CONCLUSIONS

In this paper we have shown that if in some basis representation the Hamiltonian ta
Jacobi-matrix form the corresponding Green’s matrix can be calculated on the whole co
energy plane by a continued fraction, whose coefficients are related to the elements of the
matrix. To justify this statement we presented the example of the D-dimensional Coulomb
lem, in particular, we calculated the Coulomb–Sturmian-space representation o
D-dimensional Coulomb Green’s operator. Numerical examples proved the accuracy a
efficiency of the method.

The applicability of the techniques presented here can be extended beyond the ex
discussed above. We may have a physical situation in which only the asymptotic part
Hamiltonian has Jacobi-matrix structure. In this case, like in theL2 approach we can approximat
V by its projectionVN onto a finite subspace spanned by the firstN basis states and can genera
the analytic Green’s matrix as a solution of a Lippmann–Schwinger matrix equation~see, e.g., in
Ref. 8,9!. Also, our analytic two-body Green’s matrices may be used to derive Green’s matric
composite systems via convolution integrals based on two-body problems.

It should be emphasized that we used the Jacobi-matrix form of a particular Hamiltonian
and the method is applicable to any Jacobi-matrix Hamiltonian if the matrix elements are k
analytically. This later requirement may be relaxed and thus we can determine approx
Green’s matrices from J-matrices generated by the numerical Lanczos procedure.
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TABLE I. Convergence of the continued fraction for first element of the Green’s matrix atRe,0 with method B. The
first, second and third column contain approximants of the continued fraction withwn50, wn5w1 andwn5w2 , respec-
tively. For comparison we also give the exact result. All theG values are scaled with 102.

e5(2100,0)
n GB

(0) GB
(w1) GB

(w2)

1 ~25.44922314793965,0! ~25.59142801316938,0! ~20.92906408986331,0!
2 ~25.54075476366523,0! ~25.56131039101044,0! ~24.70080363351349,0!
3 ~25.55501552420656,0! ~25.55812941271530,0! ~25.39340957492282,0!
4 ~25.55726787304507,0! ~25.55775017508704,0! ~25.52662100417805,0!
5 ~25.55762610832912,0! ~25.55770176067796,0! ~25.55192403535264,0!
6 ~25.55768333962797,0! ~25.55769530213874,0! ~25.55663951922343,0!
7 ~25.55769251168083,0! ~25.55769441374319,0! ~25.55750389878413,0!
8 ~25.55769398510141,0! ~25.55769428874846,0! ~25.55766025755765,0!
9 ~25.55769422223276,0! ~25.55769427085427,0! ~25.55768824220786,0!

10 ~25.55769426045319,0! ~25.55769426825710,0! ~25.55769320762502,0!
11 ~25.55769426662100,0! ~25.55769426787592,0! ~25.55769408236034,0!
12 ~25.55769426761735,0! ~25.55769426781946,0! ~25.55769423553196,0!
13 ~25.55769426777843,0! ~25.55769426781103,0! ~25.55769426221577,0!
14 ~25.55769426780450,0! ~25.55769426780976,0! ~25.55769426684377,0!
15 ~25.55769426780872,0! ~25.55769426780957,0! ~25.55769426764335,0!
16 ~25.55769426780940,0! ~25.55769426780954,0! ~25.55769426778103,0!
17 ~25.55769426780951,0! ~25.55769426780954,0! ~25.55769426780465,0!
18 ~25.55769426780954,0! ~25.55769426780870,0!
19 ~25.55769426780954,0! ~25.55769426780939,0!
20 ~25.55769426780950,0!
21 ~25.55769426780954,0!
22 ~25.55769426780954,0!

GA5(25.55769426780954,0)
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APPENDIX: THE GREEN’S MATRIX OF THE D-DIMENSIONAL HARMONIC
OSCILLATOR

Here, we present the formulas analogous to those in Sec. III for the D-dimensional har
oscillator. The radial Schro¨dinger equation in this case is

HHOc~r ![F2
\2

2mS d2

dr 2
2

1

r 2S l 1
D23

2 D S l 1
D21

2 D D 1
1

2
mv2r 2Gc~r !5Ec~r !. ~A1!

The energy eigenvalues are

Enl5\vS 2n1 l 1
D

2 D ~A2!

and the corresponding wave functions can be written as

^r uv,nl&[cnl~v,r !5v1/4S 2G~n11!

GS n1 l 1
D

2 D D 1/2

expS 2
v
2

r 2D ~vr 2!
l
2 1~D21!/4Ln

~ l 1D/221!~vr 2!,

~A3!

wherev5mv/\. The harmonic oscillator functions are orthonormal and form a complete s
the usual sense.

The harmonic oscillator Hamiltonian with parameterv on the basis of harmonic oscillato
function with parameterv8 takes a Jacobi-matrix form

TABLE II. Convergence of the continued fraction for first element of the Green’s matrix atRe.0 with method B. The
first, second, third and fourth column contain approximants of the continued fraction withwn5w1 and without, with
one-fold, with five-fold and with eight-fold Bauer–Muir transform, respectively. For comparison we also give the
result. All theG00 values are scaled with 102.

e5(1000,1)
n GB

(w1)(0) GB
(w1)(1) GB

(w1)(5) GB
(w1)(8)

1 ~1.076,20.678! ~1.8072,20.3293! ~20.4129544,20.14238595! ~20.2321154,20.073120618!
5 ~1.074,20.279! ~1.1225,20.3783! ~4.29352799,21.63424931! ~21.4408861,20.350899497!

10 ~1.198,20.325! ~1.1425,20.3162! ~1.13445656,20.32244006! ~1.20667672,20.237375310!
15 ~1.110,20.346! ~1.1497,20.3353! ~1.14598003,20.33019962! ~1.14702383,20.332562329!
20 ~1.160,20.307! ~1.1415,20.3287! ~1.14512823,20.33023791! ~1.14511731,20.330140243!
25 ~1.141,20.354! ~1.1478,20.3298! ~1.14523860,20.33015825! ~1.14523597,20.330179581!
30 ~1.139,20.312! ~1.1437,20.3311! ~1.14522511,20.33018993! ~1.14522395,20.330182552!
35 ~1.157,20.341! ~1.1458,20.3290! ~1.14522377,20.33017859! ~1.14522539,20.330181124!
40 ~1.131,20.325! ~1.1451,20.3312! ~1.14522642,20.33018226! ~1.14522527,20.330181563!
45 ~1.158,20.327! ~1.1448,20.3294! ~1.14522458,20.33018138! ~1.14522524,20.330181440!
50 ~1.135,20.337! ~1.1457,20.3305! ~1.14522559,20.33018133! ~1.14522527,20.330181470!
55 ~1.149,20.320! ~1.1446,20.3300! ~1.14522512,20.33018161! ~1.14522525,20.330181465!
60 ~1.145,20.340! ~1.1456,20.3300! ~1.14522528,20.33018135! ~1.14522526,20.330181464!
65 ~1.140,20.322! ~1.1449,20.3304! ~1.14522527,20.33018153! ~1.14522525,20.330181466!
70 ~1.152,20.334! ~1.1453,20.3298! ~1.14522523,20.33018143! ~1.14522526,20.330181465!
75 ~1.137,20.329! ~1.1452,20.3304! ~1.14522528,20.33018147! ~1.14522526,20.330181466!
80 ~1.152,20.327! ~1.1450,20.3296! ~1.14522524,20.33018146! ~1.14522526,20.330181465!
85 ~1.140,20.335! ~1.1454,20.3302! ~1.14522527,20.33018145! ~1.14522526,20.330181465!
90 ~1.147,20.323! ~1.1450,20.3301! ~1.14522525,20.33018147! ~1.14522526,20.330181465!
95 ~1.146,20.336! ~1.1453,20.3300! ~1.14522526,20.33018145! ~1.14522526,20.330181465!

GA5(1.14522526,20.330181465)
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^v8,nluHHO~v,E!uv8,n8l &5dnn8S \
v21v82

2v8
S 2n81 l 1

D

2 D D
2dnn821\

v22v82

2v8
S n8S n81 l 1

D

2
21D D 1/2

2dnn811\
v22v82

2v8
S ~n811!S n81 l 1

D

2 D D 1/2

. ~A4!

The calculation of the Green’s matrix via method B goes analogously to the Coulomb
The matrix element̂0l uGHO(E)u0l &, which can be used in method A, is given as

^0l uGHO~E!u0l &528
v8v

v821v2

1

~E2\v~ l 1D/2!!

32F1S 2
l

2
2

D

4
112

E

2\v
,1;

l

2
1

D

4
112

E

2\v
;S v2v8

v1v8
D 2D . ~A5!
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Fermionic q -Fock space and braided geometry
S. Majida)

Department of Applied Mathematics & Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, United Kingdom
and Research Institute of Mathematical Sciences, Kyoto University, Kyoto 606, Japan

~Received 10 September 1996; accepted for publication 12 November 1996!

We write the fermionicq-Fock space representation ofUq(sl̂n) as an infinite ex-
tended braided tensor product of finite-dimensional fermionicUq(sln)-quantum
planes or exterior algebras. Using braided geometrical techniques developed for
such quantum exterior algebras, we provide a newR-matrix approach to the
Kashiwara–Miwa–Stern action of the Heisenberg algebra on theq-fermionic Fock
space, obtaining the action in detail for the lowest nontrivial case@b2 , b22#
52„(12q24n)/(12q24)…. © 1997 American Institute of Physics.
@S0022-2488~97!02908-3#

I. INTRODUCTION

In this paper we use techniques from ‘‘braided geometry’’ to study theq-deformed fermionic
Fock space representations of the affine quantum groupsUq(sl̂n).1–4 The properties of this
q-deformed Fock space are closely connected with the theory of vertex operator algebr
q-correlation functions. In particular, using the vertex operator algebra approach it has been
in Ref. 4 that there is an action of the Heisenberg algebra on the level 1 fermionic Fock
representation ofUq(sl̂n) through natural ‘‘shift’’ operatorsbi . The existing proof uses intimatel
the Uq(sl̂n) quantum symmetry and its action on particularq-Fock space generators, and
somewhat indirect. A direct verification by hand of the Heisenberg action appears tractabl
for n52, being already very involved forn53.

We provide now a new approach to this fermionicq-Fock space via the theory of braide
groups,5 which works uniformly for alln. Indeed, all constructions are factored though the fin
dimensionalsln R-matrix, only the general properties of which are used. The theory of bra
groups which we use has been developed extensively in recent years as a systematic app
q-deformed geometry; see Ref. 6, Chap. 10, for an introduction. In particular, the standard
dimensional quantum planes have such a braided group structure or coaddition, which allo
to define braided differentiation,7 integration, epsilon tensors,8 differential forms, etc. on such
spaces in a systematic way. Using such methods, we construct the fermionicq-Fock space directly
as a kind of infinite braided tensor product of finite-dimensional fermionic quantum-bra
planes, and explicitly derive the Heisenberg algebra action of Ref. 4 for the lowest non
Heisenberg generatorsb1 and b2 , but for all n. Even these cases will be hard enough, but
believe that they demonstrate the possibility of a new approach using such techniques. Ultim
it may be possible to computeq-correlation functions themselves by such methods, which is
of the motivations for the work. Moreover, because we do not make use of any quantum sym
but, rather, only the general properties of theR-matrix, our approach would appear to hold as w
for nonstandardR-matrices where the corresponding affine quantum groups are not known.

Our starting point is the infinite dimensional quantum planes or exchange algebras, ass
to unitary solutions of the parametrized Yang–Baxter equations

a!Royal Society University Research Fellow and Fellow of Pembroke College, Cambridge. On leave 1995 and 199
Department of Mathematics, Harvard University, Cambridge MA 02138.
0022-2488/97/38(9)/4845/9/$10.00
4845J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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R12S z

wDR13~z!R23~w!5R23~w!R13~z!R12S z

wD , R~z!5R~z21!21
21 ~1!

in a compact notation. Associated to this is the corresponding fermionic quantum planeL„R(z)…
with

u1~z!u2~w!52u2~w!u1~z!RS z

wD , i.e., u i~z!u j~w!5ub~w!ua~z!Ra
i
b

j S z

wD , ~2!

whereR(z)PMn^ Mn andu(z) i , i 51,...,n. There are also similar formulas without the2 signs
for bosonic-type exchange algebras. The fermionic Fock space in Ref. 4 is of this general ty~2!,
where, more precisely, the authors considered vectors near to a chosen ‘‘vacuum vector,’’
than the algebra itself.

In Sec. II, we study the algebra~2! for the entire class of solutions of~1! of the form

R~z!5
R2zR21

21

q2zq21 . ~3!

This Baxterization formula solves~1! for any matrix solutionR of the ordinary Yang–Baxter
equations which is of Hecke type, in the sense

~PR2q!~PR1q21!50, ~4!

where P is the permutation matrix, which is the generality at which we work. This appro
includes theUq(sl̂n) fermionicq-Fock space by taking forR the standardsln R-matrix, but we are
not limited to this case. We show that the algebraL„R(z)… is an infinite ‘‘tensor product’’ of
copies of the fermionic quantum planeL(R) with

u1u252qu2u1R. ~5!

Such fermionic quantum planes have key properties from the theory of braided geometry,
we shall use. Among them is the braided coaddition

Du5u ^ 111^ u, ~1^ u1!~u2^ 1!52q21~u2^ 1!~1^ u1!R, ~6!

where the two copies ofL(R) in L(R) ^ L(R) enjoy the braid statistics shown~generalizing the
usual Bose–Fermi statistics of usual exterior algebras!, which makes them braided groups rath
than quantum groups. Moreover, because braided geometry works as well for fermionic
bosonic spaces, its principal notions such as braided differentiation, etc., work as well forL(R) as
for the more usual bosonic quantum planes. In particular, as a case of Ref. 7, we have b
differentiation on fermionic quantum planes8

] i~u1u2•••um!5e1
i u2•••um@m; 2q21R#1...m ,

u1u2•••um]Q i5u1•••um21em
i @m;2q21R#1...m ,

~7!

@m; R#1...m511~PR!121~PR!12~PR!231•••1~PR!12•••~PR!m21m ,

@m;R#1...m511~PR!m21m1~PR!m21m~PR!m22m211•••1~PR!m21m•••~PR!12,

as operators] i , ]Q i :L(R)→L(R). Here (ei) j5d j
i is a basis vector. One can also apply such id

at the infinite-dimensional level~2!, as functional differentiation, though we do not do so here
J. Math. Phys., Vol. 38, No. 9, September 1997
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Our goal is to make use of some of the rich structure of finite-dimensional braided spa
study the infinite-dimensional fermionic Fock space. In effect, we study these exchange al
as ‘‘braided wave functions’’ where at each point~in momentum space! we have a modeu i

behaving as a fermionic quantum plane. Moreover, our deriviations in this paper do not dep
any point on the precise form of the HeckeR-matrix. We derive the Heisenberg algebra action
Sec. III in this setting. In Sec. IV, we conclude with some comments about covariance.

Some notations in the paper are as follows. Apart from thebraided integer matrices7 @m; R#
and @m; R# in ~7!, we also set

@m;q22#[
12q22m

12q22 , @m,n;R#[~PR!mm11~PR!m11m12•••~PR!n21n ,

@m,n;R#[~PR!n21n•••~PR!m11m12~PR!mm11 .

There is a change in conventionsq→q21 in our paper relative to Ref. 4. Also, we write th
fermionic quantum plane relations such as~5! in the even more compact form in which w
suppress the numerical suffices entirely. Thus

uu[u1u2 , i.e., uu52quuPR

is ~5! in our notation: the tensor product of the vector indicesu i is to be understood. When we d
write numerical sufficesu1 , u2 , etc., we henceforth mean the actual components of the vectu.
Finally, we write

$u,c%R[uc1q21cuPR, i.e., $u i ,c j%R[u ic j1q21cbuaRa
i
b

j

and sometimesR[2q21R, as useful shorthand notations.

II. FERMIONIC FOCK SPACE

The level 1 Fock space representation ofUq(sl̂n) has been constructed in Refs. 1 and 2 a
studied further in several papers, notably Refs. 3 and 4. Here we take a slightly different po
view on this representation, taking as starting point the fermionic ‘‘exchange algebra’’L„R(z)…
defined in~2!. Our goal in this section is to break down the structure of this exchange algebr
many copies of standard finite-dimensional fermionic quantum planesL(R) as in ~5!. We write
u(z)5(zPZu

izi .
Theorem 2.1:When R(z) is of the form (3) (as in the sln case), thenL„R(z)… is an infinite

number of copies$u i% of the fermionic quantum planeL(R) associated to the finite-dimension
R-matrix R, with relations

u iu i~PR1q21!50, $u i ,u i 21%R50,

$u i ,u j%R5~q2221!S (
s51

s,~ i 2 j !/2

u j 1su i 2s~11q22!s21~11PR!1u~ i 1 j !/2u~ i 1 j !/2q22„~ i 2 j !/221…D
for i 2 j .1. Here the last term is included only if i2 j is even.

Proof: From the form ofR(z) we have

(
i , j

S q2q21
z

wD u iu j ziwj5(
i , j

u jwju izi S PR2
z

w
~PR!21D .

We equate powers ofz andw, and hence require
J. Math. Phys., Vol. 38, No. 9, September 1997
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u ju i PR1u iu jq5u j 11u i 21~PR!211u i 21u j 11q21. ~8!

Considering the same equation withi→ j 11 and j→ i 21 and combining with~8! times qPR
gives

~u iu j1u ju i !~PR1q21!50, ~9!

on using the Hecke condition~4!. This implies, in particular, that theu i modes each obey th
finite-dimensional fermionic quantum plane algebra. Next, we consider~8! with j 5 i 21, i.e.,

u i 21u i PR1u iu i 21q5u iu i 21~PR!211u i 21u iq21.

Combining with~9! and the Hecke condition (PR)2511(q2q21)PR gives $u i ,u i 21%R50 for
neighboring modes. Finally, for non-neighboring modes, we use the Hecke condition to wri~8!
in the form

$u i ,u j%R5$u i 21,u j 11%R1~q2221!~u i 21u j 111u j 11u i 21!, ~10!

which gives an inductive formula for$u i ,u j%R in terms of ‘‘usual’’ anticommutators of the inter
mediate modes. Alternatively, which we prefer, we use~9! and the Hecke condition to write~10!
as

$u i ,u j%R5$u i 21,u j 11%R„11~q2q21!PR…1~q2221!u j 11u i 21~12q21PR!. ~11!

Using this, we obtain the formula stated for the ordering relations between nonadjacent mod
induction. Note that, by the Hecke condition~4!, (12q21PR)PR5(12q21PR)(2q21). The
start of the induction is when thei and j are equal or one apart~asi 2 j is even or odd!, cases that
we have already computed separately. We see that between adjacent modes there are t
braid statistics associated to two copies of the finite-dimensional fermionic quantum plan@as
needed for their braided coaddition structure in~6!#. Between modes that are further apart, w
have the same ‘‘leading’’ braid statistics1descendent terms involving intermediate modes.h

The algebra in this theorem is computed formally from the power series, but can afterwa
taken as a definition of the exchange algebra, as generated byu i . We proceed now on this basis
We see that each of the modes has a geometrical picture as the algebraL(R) of q-differential
forms; see Ref. 8 for the braided-geometrical construction~starting from the braided coadditio
law!. In particular, in nice cases~such as thesln case!, each has a top form

v i5u1
i •••un

i

with all others of this degree being multiples of it. The productsu iv i are zero for alli . There is
also an underlying bosonic space withu i5dxi , wherexi obeyxixi5xixiq21PR. We do not use
this full geometrical picture here, regarding theu i as intrinsic fermionic-type coordinates in the
own right.

It is worth noting that our fermionic Fock space algebra in Theorem 2.1 is clearly a
complicated variant of the actual braided tensor product algebra^ i 52`

` L i(R) with relations

u iu i~PR1q21!50, $u i ,u j%R50, ~12!

for all i . j . This algebra was discussed in Ref. 5, where it was proposed as a discrete mode
exchange algebra in 2-D quantum gravity.9 Indeed, one can consider it as a fermionic excha
algebra for the discretely~and additively! parametrizedR-matrix
J. Math. Phys., Vol. 38, No. 9, September 1997
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R~ i 2 j !5H q21R, i . j ,
qR, i 5 j ,
qR21

21, i , j .
~13!

The algebra~12!, although pertaining to a different model than the one above~and with i as a
discrete version of a position variable rather than a mode label!, nevertheless has a similar form t
our fermionic Fock space in Theorem 2.1, just without the descendent modes. Moreove
construction of~12! as a braided tensor product@with relations as in~6! between different modes#
ensures that it remains covariant under~a dilatonic extension of! Uq(sln) or other quantum group
~according to theR-matrix!. By contrast, the more complicated fermionic Fock space in Theo
2.1 is covariant underUq(sl̂n) or other affine quantum group.

III. COMPUTATION OF THE HEISENBERG ALGEBRA ACTION

It is clear from the form of the relations~8! of L„R(z)… that

bi :L„R~z!…→L„R~z!…, bi~u j !5u j 1 i , ~14!

is a derivation on the algebra, for eachi . It is shown in Ref. 4~by Hecke algebra and verte
operator methods! that thesebi define an action of the Heisenberg algebra according to

@bi ,b2 j #5d i , j i S 12q22ni

12q22i D , ~15!

when acting on

v5v0v1•••

or vectors near to this~differing only in finitely many coefficients!. We show now how this resul
can alternatively be obtained by braided-geometrical methods. Note thatv is in a completion of
the algebra generated by the modes. However, all our operations stay within the space of
near to it, and hence remain algebraic; see Ref. 4 for a more formal way to say this.

Proposition 3.1: For i>1, we have

bi~v!50, b2 i~v!5b2 i~v0!v1•••1v0b2 i~v1!v2•••1•••1v0v1•••v i 22b2 i~v i 21!v i••• .

Proof: First, bi(v)50 for all i>1 sincebi(v
j ) has in it modesu j 1 i ; moving these to the

right using the braided-anticommutation relations withu j ,u j 11,...,u j 1 i 21, gives eventually
u j 1 iv j 1 i50. Along the way, if i>2, we generate descendents which lie in the ra
u j 11,...,u j 1 i 21; moving each of these to the right kills these as well. Similarly for their desc
dents, etc.

For b2 i we have

b2 i~v j !5u1
j 2 iu2

j •••un
j 1•••1u1

j •••un21
j un

j 2 i5ua1

j 2 iua2

j •••uan

j @n;R#1...n
a1 ...an1descendents,

where the descendents involveu j 2 i 11,...,u j 21. We movedu j 22 to the left in each term, just as in
the definition of braided differentiation,7 but now picking up descendents from the right-hand s
of the anticommutators in Theorem 2.1.

Hence, when we computeb2 i(v) as a derivation, only the firsti terms contribute, as stated
the v0•••v j 21b2 i(v

j ) for j > i do not contribute because the terms ofb2 i(v
j ) each contain a

mode in the rangeu j 2 i ,...,u j 21, which, using the relations in Theorem 2.1, can be pushed
until it multiplies one ofv j 2 i ,...,v j 21, and thereby vanishes. The descendents generated in
J. Math. Phys., Vol. 38, No. 9, September 1997

                                                                                                                



cen-

it to

d

do the

des
f these
s
ess,

4850 S. Majid: Fermionic q-Fock space and braided geometry

                    
process wheni>2 can likewise be pushed to the left and annihilated. Similarly for their des
dents, etc. h

The simplest case of~15! follows trivially:
Proposition 3.2: b21(v j )5u a1

j 21u a2

j •••u an

j @n;R#1...n
a1 ...an. Hence @b1 ,b21#5@n;q22# when

acting onv.
Proof: In this caseu j 21 is adjacent tou j so no descendents are generated when we move

the left in each term ofb21(v j ). Henceb21(v)5u21u0•••u0@n;R#v1••• . When we applyb1 to
this, only the action onu21 contributes: other modes have degree>1 and annihilate when move
to the right. Henceb1„b21(v)…5u0•••u0@n;R#v1••• . On the other hand,PR acts as2q21 on
uu @the defining relations of each modeL(R) in Theorem 2.1#. Hence@n;R# can be replaced by
@n;q22# when acting onL (0)(R). h

The same techniques apply for the action of the higher Heisenberg generators. We
computation now for@b2 ,b22#.

Lemma 3.3:

b22~v j !5u j 22u j •••u j@n;R#1...n1~q2221!u j 21u j 21u j •••u j~@n21;R#2...n

1@2,3;R#@1,2;R#@n22;R#3...n1•••1@2,n21;R#@1,n22;R#@2;R#n21n

1@2,n;R#@1,n21;R# !.

Hence

b2„b22~v0!…v1•••5„@n;q22#1~12q22!~@n21;q24#2q22~n21!@n21;q22# !…v.
Proof: Clearly,

b22~v j !5u1
j 22u2

j •••u n
j 1•••1u1

j •••un21
j un

j 22

5u j 22u j •••u j@n,R#1•••n1~q2221!u1
j 21u j 21u j •••u j@n21;R#2•••n

1~q2221!u 1
j u 2

j 21u j 21u j •••u j@n22;R#3•••n1•••1~q2221!u1
j •••un22

j un21
j 21 un

j 21,

where we use

u ju j 225u j 22u j PR1~q2221!u j 21u j 21

from Theorem 2.1. We move eachu j 22 to the left at the price of a factorPR and au j 21u j 21. We
then add up all the descendents as generated in each position.

From this expression, the expression stated forb22(v j ) follows at once: in each of the
descendent terms, we moveu j 21u j 21 to the left, accumulating powers ofPR for each one.

Thenb2„b22(v0)…v1••• is computed as follows. When we applyb2 , only its action on the
u22 mode or the firstu21 mode inb22(v0) can contribute, since the other cases produce mo
which can be pushed to the right and annihilated, along with their descendents. The first o
gives u0•••u0@n;R#v1•••5v@n;q22# by the relations inL (0)(R). The second case contain
u1u21u0u0•••u0, where u1 can also be pushed to the right and annihilated. In the proc
however, it contributes a descendent

u0u0•••u0~q2221!2~@n21;R#2•••n1@2,3;R#@1,2;R#@n22;R#3•••n

1•••1@2,n;R#@1,n21;R# !v1••• .

Finally, using the relations inL (0)(R), we can replacePR by q22, giving

~q2221!2~@n21;q22#1q24@n22;q22#1•••q24~n22!@1;q22# !v
J. Math. Phys., Vol. 38, No. 9, September 1997
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5~12q22!~@n21;q24#2q22~n21!@n21;q22# !v

as stated. h

By a strictly analogous computation, we have

b2~v j !5u j •••u ju j 12@n;R#1•••n1~q2221!u j •••u ju j 11u j 11~@n21;R#1•••n21

1@1,2;R#@2,3;R#@n22;R#1•••n221•••1@1,n22;R#@2,n21;R#@2;R#12

1@1,n21;R#@2,n;R# !,

showing its descendents explicitly. Here we movedu j 12 to the right, and the resulting descenden
also to the right.

Proposition 3.4:@b2 ,b22#52„(12q24n)/(12q24)… when acting onv.
Proof: We are now ready to compute

b2„b22~v!…5b2„b22~v0!v11v0b22~v1!…v2••• ,

where b2(v2)v3, etc., do not contribute, as in Proposition 3.1~shifted down by translation
invariance!. The first term is the same asb2„b22(v0)…v1••• ~for the same reason! and was
computed in Lemma 3.3. The second term is

b2„v
0b22~v1!…v2•••5b2~u0•••u0ua1

21ua2

1 •••uan

1 @n;R#1•••n
a1•••an!v2•••

5b2~u21u0•••u0@1,n11;R#1•••na1
ua2

1 •••uan

1 @n;R#1•••n
a1•••an!v2•••

5u1u0•••u0@1,n11;R#1•••na1
ua2

1 •••uan

1 @n;R#1•••n
a1•••anv2•••

5u0•••u0u1@1,n11;R#@1,n11;R#1•••na1
ua2

1 •••uan

1 @n;R#1•••n
a1•••anv2•••

where the descendents inb22(v1) annihilate againstv0 to the left, and so do not contribute in th
first line. We move theu21 mode to the left in the second line, picking up powers ofPR. The
third equality then appliesb2 . Only its action onu21 contributes, since modesu2 or higher can be
moved to the right and annihilate. The fourth equality moves the resultingu1 to the right, picking
up powers ofPR again.

We now use the Hecke condition in the form (PR)25q221(q2221)PR and the Yang–
Baxter equations in the form (PR)23(PR)12(PR)235(PR)12(PR)23(PR)12 repeatedly to observe
that

u0•••u0u1@1,n11;R#@1,n11;R#5u0•••u0u1
„q22@2,n11;R#@2,n11;R#

1~q2221!~PR!nn11•••~PR!23~PR!12~PR!23•••~PR!nn11…

5u0•••u0u1~q22@2,n11;R#@2,n11;R#

1~q2221!@1,n;R#~PR!nn11@1,n;R# !

5u0•••u0u1
„q22@2,n11;R#@2,n11;R#

1~q2221!q22~n21!@1,n11;R#…

5•••5u0•••u0u1
„q22n1~q2221!q22~n21!~ @n11;R#21!…

5u0•••u0u1
„q22n2~q2221!q22~n21!

…5u0•••u0u1q22~n21!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The third equality replacesPR by q22 in @1,n;R# since it acts onu0•••u0 to its left. We then
iterate these steps, collecting the@ ,n11;R# which are generated in this way as@n11;R#21.
Finally, we note that

u0•••u0u1@n11;R#5u0•••u0]Q•u150,

since on the right-hand side we have the braided differential ofn11 copies ofu0, which vanishes.
With this result, we can complete our calculation as

b2„v
0b22~v1!…v2•••5v0q22~n21!ua1

1 •••uan

1 @n;R#1•••n
a1•••anv2•••5q22~n21!@n;q22#v

sincePR can be replaced byq22 when acting on the algebraL (1)(R).
Adding this contribution to that from Lemma 3.3, we find

b2„b22~v!…5„@n;q22#~11q22~n21!!1~12q22!~@n21;q24#2q22~n21!@n21;q22# !…v,

which computes to the final result stated. h

Although we have only covered thei 51,2 cases of~15! in this paper, it is clear that the
method introduced here can provide a viable alternative to the vertex operator proof in R
Since the approach there uses directly the correlation function forXXZ vertex operators, our direc
‘‘braided geometric’’ technique implies, in principle, a new approach to the computation of t

IV. CONCLUDING REMARKS

It is significant that all computations in this paper have been made without reference t
specific details of theR-matrix, so long as it is Hecke type. This means that theq-fermionic Fock
space and the Heisenberg action on it can be defined independently of any affine quantum
metry and works in cases where the affine quantum symmetry is not known in any detail. W
expect an affine quantum group symmetry to exist, however, even in these nonstandard c

For example, we can take forR the nonstandard 434 R-matrix associated to Alexander
Conway knot polynomial. DefiningR(z) by Baxterization, we can study the relations10

l1
6~z!l2

6~w!RS z

wD5RS z

wD l2
6~w!l1

6~z!, l1
2~z!l2

1~w!RS z

w
qcD5RS z

w
q2cD l2

1~w!l1
2~z!,

~16!

@c, l6~z!#50, Dqc5qc
^ qc, D l6~z!5 l6~zq6c2/2! ^ l6~zq7c1/2!,

wherec15c^ 1 andc251^ c andc and l6 are, respectively, scaler and matrix generators. A
making suitable ansatze for the form ofl6 one can expect to arrive at a nonstandard affi
quantum group related by transmutation to the affine super quantum groupUq( ŝl 1u1). This is
because of the categorical correspondence between the nonstandard and super quantum
shown in detail at the finite-dimensional level in Ref. 11. More generally, we can take HecR
not related to any known affine quantum group or affine super quantum group. Developin
corresponding theory of vertex operator algebras for such nonstandard cases is an inte
direction suggested by our approach. Note also that finite-dimensional fermionic quantum
are known for non-HeckeR-matrices as well, and hence it seems likely that an extension of
above ‘‘braided tensor product’’ approach should be able to includeq-Fock spaces associated
affine quantum groups whereR is not of Hecke type, such asUq(sô3).

Finally, we would like to point out the analogy between the need for a dilation extensio
the finite-dimensional symmetry quantum group in braided geometry~see Ref. 6, Chap. 10! and
the fact that the fermionicq-Fock space is not a level 0 representation but a level 1 represent
of Uq( ŝl n) ~according to theR-matrix!: i.e., it is not quite covariant under the quantum loop gro
associated toR(z) but under its central extension byc. Indeed, the origin is the same, namely t
J. Math. Phys., Vol. 38, No. 9, September 1997
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difference between the~fermionic! quantum plane normalization of theR-matrix and the so-called
quantum group normalization needed for full covariance. Without such a problem, the exc
algebra~2! should be covariant under the quantum loop group in theR-matrix form with genera-
tors l6(z), which would make it a level 0 module ofUq(sl̂n). Hence it appears that simila
‘‘dilaton’’ effects are responsible for the anomaly which makes the fermionic Fock space co
ered above into level 1. This relation between the central charge and the dilation is a s
direction for further work.
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A new boson calculus for SU(3)
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It is shown that the Gelfand-Weyl pattern forSU(3) can be uniquely expressed in
terms of four non-negative and one positive or negative free integers. This provides
an optimal, albeit non-linear, boson calculus forSU(3) in terms of four harmonic
oscillators and one planar rotor.~By optimal it is meant that every irreducible
representation is obtained once and once only.! Our techniques can be generalized
to other groups. ©1997 American Institute of Physics.@S0022-2488~97!00705-6#

I. INTRODUCTION

In this paper we present a new boson calculus forSU(3).1,2 That is, we will formulate the Lie
algebra ofSU(3) in terms of the boson operators and the Model space3–6 for SU(3) in terms of
polynomials in such operators. For this purpose let us first recapitulate some facts and ideas
approach to construct Lie algebras. Creation and annihilation operators were first introduce
physics by Dirac7 in 1928. Later Fock constructed their infinite dimensional representati
Bilinear products of such operators can be of interest physically in a wide variety of prob
either in field theory or in many-particle systems. The commutator of any two bilinear produ
these operators is either zero or a linear combination of bilinear products. This is the ki
commutation rule that helps in constructing Lie algebras out of such operators. The simple
of a Lie algebra generated from bilinear products of creation and annihilation operators is th
where there are only two quantum states or particles. The Lie algebras thus generated
identified with the Lie algebra ofSU(2). Schwinger8 used this approach to formulate and stu
the whole theory of angular momentum. Application of this technique to study the irredu
representations~IRs! of SU(3) started soon after Elliott’s discovery of theSU(3) symmetry of
the harmonic oscillator potential to describe the rotational spectra of nuclear levels.9 Soon many
realizations of the Lie algebra ofSU(3) in terms of boson operators were formulated.1,2 But a
boson calculus forSU(3), similar to the one forSU(2), could not be formulated because of th
problems associated with the outer multiplicity of the IRs of this group. However, the effor
create such a calculus started afresh with the recognition of the utility of this approach to
model spaces4,5 for SU(3).

In what follows we review, very briefly, the work done by others, by using the boson calc
approach, to construct new Model spaces forSU(3).

The paper of Biedenharn and Flath10 formulates the Lie algebra ofSU(3) in terms of six
boson operators divided into two sets. Their model space forSU(3) is the set of all polynomials
with complex coefficients, which are formed out of these six boson operators and which satis
tracelessness condition. They then identify this Hilbert space as a single non-unitary irred
representation ofSO(8) and as a single unitary irreducible representation ofSO(6,2). Following
the approach of Biedenharnet al., several papers appeared using the apparatus of Boson calc
The paper of Bracken and McCracken11 makes use of six pairs of bosons to generate
SU(3) Lie algebra. Using these they construct new creation and annihilation operators whi

a!Electronic mail address: jsp@imsc.ernet.in
b!Electronic mail address: sharat@imsc.ernet.in
0022-2488/97/38(9)/4854/9/$10.00
4854 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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also Wigner operators~tensor and shift operators forSU(3)). Thevector space generated from
vacuum vector by repeated application of these creation operators carries a model sp
SU(3). Subsequently Bracken12 used eight pairs of boson operators and realized a model spa
SU(3) in terms of polynomials of new creation and annihilation operators~Wigner tensor and
shift operators! defined in terms of the above eight pairs, and acting on vacuum. The wo
Deenen and Quesne13 makes use of the complementary relation between theU(p,q) andU(n) Lie
groups to formulate a model ofSU(3) in terms of aU(1,1) group. Lastly Le Blanc and Rowe14,15

construct models ofSU(3) in terms of unitary irreducible representations ofSO(n,2) and
SO(2n) algebras.

II. REVIEW OF BOSON CALCULUS FOR SU(2)

We first review the case ofSU(2).16,17The basis vectors of an irreducible representation~IR!
of SU(2) are labeled u jm& where j 50,1/2,1,3/2, . . . labels the IR and m5 j , j 21,
j 22, . . . ,2 j 11, or 2 j labels the basis vectors of this IR. Thus the labelm is not independent of
j . However we may define1

n15~ j 1m!, n25~ j 2m!, ~1!

which are non-negative integers. We have

j 51/2~n11n2!, m51/2~n12n2!. ~2!

This shows that arbitrary non-negative integer values forn1 andn2 reproduce all the basis vector
once and once only. Thus all basis vectors of every IR are simply relabeledun1n2& using two free
non-negative integers. This also suggests a realization of theSU(2) algebra using two indepen
dent quantum oscillators. We may interpretn1 and n2 as the occupation numbers of the tw
oscillators. Also the action of the generators of the Lie algebra onun1n2& may be reinterpreted a
the action on the Fock space of the oscillators. The elements of this space are defined in th
way. For this purpose let

@ai , aj* #5d i j .

Then u0& is defined by

au0&50

and un& is defined as

un&5
~a* !n

An!
u0&. ~3!

We get the operator correspondence,

J15a1
!a2 , J25a2

!a1 , J351/2~N̂12N̂2!,
~4!

J251/4~N̂11N̂2!~N̂11N̂212!,

for the Lie algebra generators in terms of the oscillator creation and annihilation operators,aa
! and

aa (a51,2), respectively. HereNa5aa
!aa , a51,2, are the corresponding number operators

Obtaining a realization of Lie algebra in terms of some canonical variables is easy. I
context of the above example, consider the quantum mechanical Hamiltonian,
J. Math. Phys., Vol. 38, No. 9, September 1997
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H5 (
a51,2

aa
!aa ,

with the canonical commutation relations,

@aa , ab
! #5dab ,

other commutators being zero. Both the Hamiltonian and the commutation relations ha
evidentSU(2) symmetry which transformsaa ,a51,2, as a doublet. Therefore we may constr
the corresponding charges,

Ji5aa
! 1

2 ~s i !abab , i 51,2,3,

wheres i are the usual Pauli matrices. These charges will have theSU(2) Lie algebra.

III. AN OPTIMAL BOSON CALCULUS FOR SU(3): UNIQUE RESOLUTION OF THE
WEIGHT LATTICE BY FREE INTEGERS

Following the example of the groupSU(2), outlined in the previous section, we could ha
considered oscillators in other~irreducible or reducible! representations and obtained a realizat
of the Lie algebra. This generalizes to any Lie algebra. ForSU(3), we could consider, for
instance, three sets of annihilation and creation operators,aa andab

! , a,b51,2,3, respectively,
transforming as 3 and 3! representations. But the tensors

aa1

! aa2

! . . . aan

! u0&

obtained from them are totally symmetric ina1 ,a2 , . . . ,an . Therefore we only generate IR
corresponding to one column Young’s tableau. The method often used to obtain all IRs is
nine oscillators,aa

m andaa
m! ,a,m51,2,3. Now,

H5tra1a[ (
a,m512

3

aa
m!aa

m

with

@aa
m , ab

n #5dabdmn.

We may regardaa
m , for eachm51,2,3, as a set of three triplets ofSU(3). ~This system, however

has a much larger symmetry.! We now have enough room to generate tensors of mixed symm
and therefore all IRs. However, in general, each IR is contained in the Fock space more tha
It is possible1 to define a subspace of the entire Fock space~by constructing a highest weigh
vector for each IR!, which contains every IR once and once only. But handling this subs
explicitly is not easy.

The Jordan-Schwinger boson calculus1 for SU(2) has the remarkable property that every
is generated once and once only. Construction of a boson calculus for other groups with
property is a vexing problem. In other words, the conventional labeling of the basis vectors
IRs has involved constraints. We would like a unique label using certain free variables. S
construction would be valuable especially for the Clebsch-Gordan theory.

Here we show that the basis vectors of all IRs ofSU(3) can be uniquely labeled using fiv
free integers, four of which are non-negative and one is either positive or negative. This pro
an optimal boson calculus forSU(3), with four oscillators and a planar rotor. However, th
transformation of the canonical variables is non-linear.
J. Math. Phys., Vol. 38, No. 9, September 1997
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For this demonstration, we begin with the Gelfand–Zetlin basis18,19 for the IRs. This is
represented by the triangular array,

S m13 m23 0

m12 m22

m11

D .

The entries are non-negative integers satisfying betweenness constraints:

~ i! m13>m12 ~ ii ! m12>m23 ~ iii ! m23>m22

~ iv! m22>0 ~v! m12>m11 ~vi! m11>m22.
~5!

These basis states may also be represented by the Weyl tableau with two rows of boxes
1’s, 2’s and 3’s as follows:

1st row 2nd row

# of 1’s m11 zero

# of 2’s m122m11 m22

# of 3’s m132m12 m232m22

~6!

We represent this tableau by a one-row set of boxes filled up with61,62,63 as follows.
When the left ends of the two rows are in flush, make the following replacements:

This exhausts all possibilities as a consequence of the inequalities~ii ! and~vi! in Eq. ~5!. Also
the other inequalities simply imply that the number of62 and63 boxes is non-negative. More
over the 3-boxes in the second row may either fall short of or spill over the 1-boxes in the
row. This means that either11 or 21 boxes are present, but not both together. We take
constraint into account by a variablel which when positive represents number of11 boxes and
when negative~the modulus! represents the number of21 boxes. In addition, we define fou
non-negative integers,

# of 23 -boxes5n21 ,

# of 22 -boxes5n22 ,

# of 12 -boxes5n12 ,

# of 13 -boxes5n11.

~7!

For any arbitrary non-negative integer values ofn21 , n22 , n11 , n12 and ~positive or nega-
tive! integer value ofl , we get a unique basis state and all basis states are reproduced. We
therefore relabeled the basis vectors of all the IRs uniquely using five free variables. The Ge
Zetlin labels are given by
J. Math. Phys., Vol. 38, No. 9, September 1997
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m225n21 ,

m235n211n221u l uu~2 l !,

m115n211n221u l uu~1 l !,

m125n211n221n121u l u,

m135n211n221n111n121u l u,

~8!

whereu( l ) is the step function,

u~ l !51, l .0,

50, l<0. ~9!

The inverse relations are

n215m22,

n225 1
2 ~m111m23!2 1

2 um112m23u2m22,

n125m122
1
2 ~m111m23!2 1

2 um112m23u,

n115m132m12,

l 5m112m23.

~10!

The IRs may be simply labeled by the numbern1 of 1-column andn2 of 2-column boxes of
the young tableau. In terms of our variables,

n25n211n221u l uu~2 l !, n15n111n121 lu~1 l !. ~11!

It is possible to generalize this technique for other groups also. In fact, a similar techniqu
been used20,21to solve Littlewood–Richardson rule in favor of free integers, thereby getting la
for the Clebsch–Gordan series.

The conventional labels for the basis vectors of a given IR areI , the isospin;I 3, the 3rd
component of the isospin; andS, the strangeness. In terms of our labels,

I 5 1
2 ~n221n121u l u!, I 35 1

2 ~n222n121 l !,

S5n221n111u l uu~2 l !.

~12!

This specifies the elements of Cartan subalgebra in terms of our canonical variables.
Now to write the four oscillator and planar rotor basis states in explicit form define

following states in the direct product space of Hilbert spaces of the four oscillators and that
planar rotor,

un11n21n12n22l &5un11& ^ un21& ^ un12& ^ un22& ^ u l &, ~13!
J. Math. Phys., Vol. 38, No. 9, September 1997
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where un61&,un62& are the states of the oscillators@Eq. ~3!# with occupation numbersn61 ,n62

50,1,2,3, ..., andu l & is the state of the planar rotor with planar angular momentuml (Lu l &5 l u l &
and l 50,61,62, ...).

Then to every such occupation number state there corresponds a Gelfand–Zetlin sta
vice-versa in view of Eqs.~8! and ~10!,

un11n21n12n22l &↔US m13 m23 0

m12 m22

m11

D L .

In order to express other elements of the Lie algebra, we have to do more work. We d
strate this below.

For the generatorE1
2, we have

E1
2US m13 m23 0

m12 m22

m11

D L 5~m122m11!
1/2~m112m2211!1/2U

3S m13 m23 0

m12 m22

m1111
D . ~14!

Now whenm11→m1111 , we see from this equation,

l→ l 11 .

Further, since

n225m232m221
1
2 ~ l 2u l u!,

we get

n22→n221 1
2 2 1

2 ~ u l 11u2u l u!.

We have

e~ l ![u l 11u2u l u

511 , l>0,

521 , l ,0. ~15!

Therefore,

n22→n221u~2 l !.

Similarly,

n12→n122 1
2 2 1

2 ~ u l 11u2u l u!,
J. Math. Phys., Vol. 38, No. 9, September 1997
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so that

n12→n122u~1 l !2d l ,0 .

Therefore, with our labeling,

E1
2un21n22n11n12l &5~n221u l uu~ l !11!1/2~n121u l uu~2 l !!1/2

3un21 ,n221u~2 l !,n11 ,n122u~ l !2d l ,0 ,l 11&.

In order to writeE1
2 directly, we define the projection operatorsP6 andP0 :

P6un21n22n11n12l &5u~6 l !un21n22n11n12l &,
~16!

P0un21n22n11n12l &5d l ,0un21n22n11n12l &.

We have

P11P21P051. ~17!

Using the raising and lowering operatorsL6 for l ,

L6[exp7 iu. ~18!

We may write

E1
2un21n22n11n12l &5L1~n221u l uP111!1/2~n121u l uP2!1/2~P2un21 ,n2211,n11 ,n12 ,l &

1~P11P0!un21 ,n22 ,n11 ,n1221,l &).

Since,P2P150, etc., we may write

E1
2un21n22n11n12l &5L1~~n121u l u!1/2P2~n2211!1/2un21 , n2211,n11 ,n12 ,l &

1~n221u l u!1/2P1~n12!1/2un21 ,n22 ,n11 ,n1221,l &

1~n2211!1/2P0~n12!1/2un21 ,n22 ,n11 ,n1221,l &).

From this we get the operator expression

E1
25L1~~N121uLu!1/2a22

! P21~N221uLu11!1/2a12~P11P0!!. ~19!

We present the operator expressions for other generators:

E1
35L1F S ~N211N221N121uLu11!

~N221N121uLu!~N221N121uLu11! D
1/2

a11~a12
! ~N2211!1/21a22

! ~N1211!1/2!

3P22a21
! ~a12N22

1/21a22N12
1/2!S ~N111N221N121uLu11!

~N221N121uLu!~N221N121uLu11! D
1/2

~P11P0!G ,
~20!
J. Math. Phys., Vol. 38, No. 9, September 1997
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E2
35a21

! a22S ~N221uLu!~N111N221N121uLu11!

~N221N121uLu!~N221N121uLu11! D
1/2

1S ~N121uLu!~N211N221N121uLu11!

~N221N121uLu!~N221N121uLu11! D
1/2

a11
! a12 . ~21!

The remaining generatorsE2
1, E3

1, E3
2 are obtained as hermitian conjugates ofE1

2, E1
3, E2

3, respec-
tively.

In this paper we have shown that there is a unique labeling of the weights of all IRs ofSU(3)
in terms of four non-negative and one positive or negative free integers. This provides an op
albeit non-linear, boson calculus forSU(3) involving four oscillators and one planar rotor.

Because we have a better labeling of the states of the IRs we can handle Clebsch-G
theory for SU(3) and the theory of tensor operators better. This was already considered
previous paper.22 Our techniques are applicable for other groups also.

IV. DISCUSSION

To summarize the results we note that in this paper we have formulated a new boson c
for SU(3). This calculus involves four boson oscillators and a planar rotor. The basis states
IRs of SU(3) are put in one-to-one correspondence with the direct product space of the H
spaces of the four oscillators and that of a planar rotor~Eq. ~13!!. Expressions for the generato
of SU(3) operating on these states were obtained~Eqs.~19!–~21!!.

Before concluding this paper we wish to connect the results of this paper with those of
earlier papers of ours22,23in which the IRs ofSU(3) were obtained in terms of polynomials in fou
complex variables and positive or negative integral powers of a fifth complex variable. Se
Refs. 24–26. These states are labeled by six non-negative integersP,Q,R,S,U,V with the con-
straint P1Q5R1S. The relation of these quantum numbers to our present oscillator qua
numbers is given below.

Let us consider the constraint,P1Q5R1S, involving non-negative integers. Define no
negative integers,n225 min(P,R), n125 min(Q,S). Also define~positive or negative! an inte-
ger l 52R1P. We replace the set (P,Q,R,S) by three free integers (n22 ,n12 ,l ). The inverse
relation is

P5n221u l uu~ l !, Q5n121u l uu~2 l !,

R5n221u l uu~2 l !, S5n121u l uu~ l !.
~22!

Further,

V5n11 , U5n21 . ~23!

The above equations, Eqs.~22! and ~23!, allow us to relate, in a one-to-one way, the basis sta
of IRs of SU(3) described in this paper, in terms of four boson oscillators and a planar roto
its basis states described, in terms of five complex variables, in our earlier paper.22
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of the inverse problem
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A maximum entropy statistical treatment of an inverse problem concerningframe
theory is presented. The problem arises from the fact that aframe is an overcom-
plete set of vectors that defines a mapping withno uniqueinverse. Although any
vector in the concomitant space can be expressed as a linear combination of frame
elements, the coefficients of the expansion arenot unique. Frame theoryguarantees
the existence of a set of coefficients which is ‘‘optimal’’ in a minimum norm sense.
We show here that these coefficients are also ‘‘optimal’’ from a maximum entropy
viewpoint. © 1997 American Institute of Physics.@S0022-2488~97!01608-3#

I. INTRODUCTION

Frames were introduced by Duffin and Shaeffer within the context of nonharmonic Fo
series,1 where most of the theory was developed~a complete review is given in Ref. 2!. The
interest inframe theoryhas received great impetus since that mathematical structure was ad
to studycoherent states, among which one may citeWeyl–Heisenberg coherent states,3–6 that are
the result of translations and modulations of a single function, andaffine coherent states, called
wavelets, that arise as translations and dilations of a single function.4–8 Typically, a frame is an
over-complete set of vectors that, in spite of not being linearly independent, can nonethel
used to express any vector as a linear combination of them. Theframe conditionensures that the
inverse mapping does exist and that an appropriate set of coefficients can be obtained by m
the reciprocal frame. However, due to the lack of linear independence of the frame elements
a set of coefficients isnot unique. The lack of uniqueness poses a problem that has to be
mounted if one expects the coefficients to be endowed with some relevant physical inform
Now, if one wishes to recognize a particular set of coefficients as ‘‘optimal,’’ an approp
decision criterion has to be adopted. It is well known that thereciprocal frameprovides a set of
coefficients which is ‘‘optimal’’ in a minimum norm~MN! sense.2,4 The MN requirement may be
a reasonable criterion to be adopted in the case of some applications, but,a priori, certainly not in
all of them. In this paper we tackle the inverse problem from a statistical point of view and
that the reciprocal frameprovides one with a set of coefficients that is also ‘‘optimal’’ in
maximum entropy~ME! sense.

The earlyframe theorywas devised with the discrete case in mind, but an interesting ge
alization, recently proposed,8–11 allows for the inclusion ofcontinuouscases as part of the sam
general structure. This generalization includes continuous transforms, such as the windowe
rier transform~WFT! or the continuous wavelet transform~CWT!, as special instances of a mo
general framework. Here we adopt the generalized structure and develop our statistical des
of the inverse problem within thegeneralized framedefinition.

We shall~i! regard each admissible solution of the inverse problem as a stochastic pr
~random function! distributed according to a suitable probability density~to be determined! and
~ii ! estimate the desired solution as the mean value of such a random function. Then, among
0022-2488/97/38(9)/4863/9/$10.00
4863J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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probability densities capable of yielding admissible solutions we shall single outone, adopting the
maximum entropy postulate~MEP!. Finally, we will show that, from the ME probability density
a mean value function is inferred that is provided by thereciprocal frame, being therefore iden-
tical with the MN solution.

The paper is organized as follows: In Sec. II thegeneralized framedefinition is given and
some properties to be used are summarized. In Sec. III the proposed maximum entropy sta
treatment of the inverse problem is developed. The WFT and the CWT are given as exam
the general formalism. Some conclusions are drawn in Sec. IV.

II. BACKGROUND ON FRAMES

Let H be the Hilbert space of possible functions~on the real lineR! to be analyzed andM a
set of labelsM 5 $m P M %. Adopting Dirac’s notation,12we represent a vectorf P H asu f & and its
dual as^ f u. The identity operator inH is then expressed in the fashion

Î H5E
R
ut&^tudt. ~1!

Let m be a measure onM and let us denote asL2(m) the Hilbert space in which the identit
operator reads

Î L2~m!5E
M

um&^mudm~m!. ~2!

For all u f 1& andu f 2& P H the functional representation ofH can be introduced by inserting~1! in
^ f 1u f 2&, i.e.,

^ f 1u f 2&5E
R
^ f 1ut&^tu f 2& dt ~3!

with f 2(t)5^tu f 2& and f 1* (t)5^ f 1ut&5^tu f 1&* , where f * (t) indicates the complex conjugate o
f (t). In the same way, forug1& andug2&PL2(m), the functional representation ofL2(m) is given
by operator~2!:

^g1ug2&5E
M

^g1um&^mug2& dm~m!. ~4!

Now we are in a position to give the definition ofgeneralized frame:10

Definition: A family of vectorsuhm&PH; mPM is called ageneralized frame~henceforth to
be referred as simply aframe! if, for every u f &PH,

~a! The function f̃ (m)5^mu f̃ &5^hmu f & is measurable.
~b! There exists a pair of constants 0,A <B ,` such that

A^fuf&H<^ f̃ u f̃ &L2~m!<B^ f u f &H . ~5!

The constantsA andB are called theframe boundsand~5! the frame condition. The latter implies
that u f̃ &PL2(m) wheneveru f &PH. Then the mappingT̂:H°L2(m) defines an operator, calle
the frame operator,

T̂5E
M

um&^hmudm~m!. ~6!
J. Math. Phys., Vol. 38, No. 9, September 1997
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The adjoint operatorT̂†:L2(m)°H is

T̂†5E
M

uhm&^mudm~m!. ~7!

The frame conditioncan be expressed in terms of the operatorĜ5T̂†T̂:H°H as

AÎH<Ĝ<BÎH . ~8!

From ~6! and ~7! Ĝ is explicitly given by

Ĝ5E
M

uhm&^hmudm~m!. ~9!

The inequality~8! entails thatĜ has a bounded inverseĜ21. In fact, Ĝ21 satisfies2,4,10

B21Î H<Ĝ21<A21Î H . ~10!

Assuming thatĜ21 is known explicitly, thereciprocal frame$uhm&; mPM % is calculated as
uhm&5Ĝ21uhm&, mPM . Thus, from~9! we obtain the following resolution of the unity operat
in H:

Î 5E
M

uhm&^hmudm~m!5E
M

uhm&^hmudm~m!. ~11!

The family $uhm&;mPM % turns out to be aframe as well, with frame bounds B21 and
A21.2,4,10 The associatedframe operator Sˆ :H°L2(m) is here

Ŝ5E
M

um&^hmudm~m!5T̂Ĝ21, ~12!

and its adjointŜ†:L2(m)°H

Ŝ†5E
M

uhm&^mudm~m!5Ĝ21T̂†. ~13!

The reciprocal frameof $uhm&;mPM % happens to be, again, the originalframe.2,4,10 When the
frame boundsare equal theframe is called a tight one and the reciprocal frame satisfies
uhm&5uhm&/A. For the caseA51 the frame is self-reciprocal.

Let F be the range of the operatorT̂:H°L2(m), i.e., the subspace

F 5Ran~ T̂!5$u f̃ &;T̂u f &5u f̃ &;u f &PH%. ~14!

One also has Ran(Ŝ)5Ran(T̂). The operatorŜ†5Ĝ21T̂†:L2(m)°H provides the reconstruction
of u f &PH from u f̃ &PF as u f &5Ŝ†u f̃ &. In fact, for u f̃ &PF , u f̃ &5T̂u f & and we have

Ŝ†u f̃ &5E
M

uhm&^muT̂u f &dm~m!5E
M

uhm&^hmu f &dm~m!5E
M

uhm&^hmu f &dm~m!5u f &. ~15!

Notice thatF is just a closedsubspace, notall of L2(m) @not everyug &PL2(m) can be expressed
as ug&5T̂u f &#. The orthogonal projection operatorP̂ from L2(m) onto F is P̂5T̂Ŝ†5ŜT̂† ~Refs.
4 and 10!, which, explicitly, adopts the appearance
J. Math. Phys., Vol. 38, No. 9, September 1997
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P̂5E
M

um8&^hm8uh
m&^mudm~m!dm~m8!5E

M
um8&^hm8uhm&^mudm~m!dm~m8!. ~16!

Sinceug̃ &PF if and only if ug̃ &5 P̂ug̃ &, it follows that, ug̃ &PF if and only if

ug̃ &5E
M

um8&^hm8uh
m&^mug̃ &dm~m!dm~m8!5E

M
um8&^hm8uhm&^mug̃ &dm~m!dm~m8!

~17!

or

g̃~m8!5^m8ug̃ &5E
M

^hm8uh
m&^mug̃&dm~m!5E

M
^hm8uhm&^mug̃ &dm~m!. ~18!

The abovereproducing kernelequation provides the necessary and sufficient condition fo
vector ug̃ &PL2(m) to belong toF .

Although u f &PH can be reconstructed as in~15!, the corresponding expansion is not uniqu
Indeed, allug&PL2(m) can be written asug&5ug̃ & 1u g̃ &', with ug̃ &PF and ug̃ &'PF ', the
orthogonal complement ofF in L2(m), and sinceŜ†ug̃ &'50 we have:Ŝ†ug&5Ŝ†(ug̃ &1ug̃ &')
5Ŝ†ug̃&5u f &. This implies that the inversion problem for determining^mug& from the equation

u f &5E
M

uhm&^mug&dm~m! ~19!

hasno uniquesolution. The most general solution is of the form^mug&5^hmu f &1^mug̃ &', with
ug̃ &'PF '. Therefore, by settingug̃ &'50 one obtains the MN solution. Equivalently, changi
uhm& to uhm& in ~19!, the MN solution for the corresponding inverse problem is^mug&5^hmu f &. In
what follows we show that̂mug&5^hmu f & is also an ‘‘optimal’’ solution in a ME sense.

III. ME STATISTICAL ESTIMATE OF THE INVERSE PROBLEM

The problem we address now is that of inverting the equation

^tu f &5E
M

^tuhm&^mug&dm~m!. ~20!

We begin by splitting the above complex equation into real and imaginary parts so that it be

f u~ t !5E
M
„hm

u ~ t !gu~m!2hm
v ~ t !gv~m!…dm~m!, ~21!

f v~ t !5E
M
„hm

v ~ t !gu~m!1hm
u ~ t !gv~m!…dm~m!, ~22!

wheref u(t) and f v(t) are the real and imaginary parts of^tu f & while hm
u (t) andhm

v (t) are the real
and imaginary parts of̂ tuhm&, and gu(m) and gv(m) are the real and imaginary parts o
^mug&. As discussed in the previous section, there exist several functions^mug& capable of
satisfying~21! and~22!. Our aim is that of selecting ONE of those solutions as ‘‘optimal’’ in a M
sense. The inversion problem is then transformed into one ofstatistical inference. The essential
step in this respect is to regard each admissible solution^mug& as a random function, distribute
according to a~to be determined! probability density. This probability density represents o
ignorance vis-a-visthe fact that there is not a unique solution. Within this statistical framew
J. Math. Phys., Vol. 38, No. 9, September 1997
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we estimate the desired solution as the mean value of the random function^mug& and denote it as
^mug&5gu(m)1 i gv(m). Let $Aj% be the measurable set that allows one to calculate~21! and~22!
as,

f u~ t !5 lim
K→`

(
j 51

K

„hmj

u ~ t !gu~mj !2hmj

v ~ t !gv~mj !…m~Aj !, ~23!

f v~ t !5 lim
K→`

(
j 51

K

„hmj

v ~ t !gu~mj !1hmj

u ~ t !gv~mj !…m~Aj !. ~24!

At the fixed pointsmj , j 51,...,K, bothgu(mj ) andgv(mj ) are random variables. To simplify th
notation let us introducegu5gu(m1),...,gu(mK) and gv5gv(m1),...,gv(mK). Assuming that
these 2K random variables are distributed according to a probability densityP(gu,gv), the mean
valuesgu(mj ) andgv(mj ) involved in ~23! and ~24! are calculated as

gu~mj !5E
2`

`

P~gu,gv!gu~mj !dgudgv, j 51,...,K, ~25!

gv~mj !5E
2`

`

P~gu,gv!gv~mj !dgudgv, j 51,...,K, ~26!

wheredgu5dgu(m1),...,dgu(mK) and dgv5dgv(m1),...,dgv(mK). We shall make surêmug&
PL2(m) through the more stringent requirement thatigi2 be finite. This also ensures the finitud
of the variance of the probability density. Consequently, we have to deal with the constrain

igi25E
2`

`

lim
K→`

(
j 51

K

P~gu,gv!„gu~mj !
21gv~mj !

2
…m~Aj !dgudgv5C, ~27!

whereC is anunknownconstant. AsP(gu,gv) is normalized to unity, it satisfies

E
2`

`

P~gu,gv!dgudgv51. ~28!

We face now the problem of determiningP(gu,gv) satisfying~23!, ~24!, ~27!, and~28!. Among all
the probability densities capable of fulfilling these constraints, we selectoneadopting the MEP.
This criterion yields the probability density that, being consistent with the available dat
maximally noncommittal with respect to our lack of information.13,14

The entropy, or uncertainty, associated withP(gu,gv) is given by Shannon’s measure

H~gu,gv!52E
2`

`

P~gu,gv!ln P~gu,gv!dgudgv. ~29!

In order to proceed take limK→`, which entails that, here, the appropriate measure is
entropy rateH̄ ~entropy per degree of freedom!, defined as.15

H̄5 lim
K→`

1

2K
H~gu,gv!. ~30!

We look then for the probability density that maximizesH̄ with constraints~23!, ~24!, ~27!, and
~28!. In order to introduce the constraints~23! and~24! into the variational process, we divide th
J. Math. Phys., Vol. 38, No. 9, September 1997
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axisR into intervals of lengthDt51/N centered at the pointst i and take limN→` at the end of
the calculation. We incorporate each constraint~23! evaluated att5t i via a Lagrange multiplier
that we writel t i

uDt and each constraint~24! through a Lagrange multiplierl t i
vDt. Constraints~27!

and ~28! are introduced through the Lagrange multipliersb andl0 , respectively. Thus the func
tional, S, to be maximized adopts the appearance

S52E
2`

`

P~gu,gv!S ln P~gu,gv!

2K
1b(

j 51

K

„gu~mj !
21gv~mj !

2
…m~Aj !D dgudgv

2l0E
2`

`

P~gu,gv!dgudgv2
1

N (
i 51

N

l t i
u(

j 51

K

„hmj

u ~ t i !g
u~mj !2hmj

v ~ t i !g
v~mj !…m~Aj !

2
1

N (
i 51

N

l t i
v (

j 51

K

„hmj

v ~ t i !g
u~mj !1hmj

u ~ t i !g
v~mj !…m~Aj !, ~31!

and, from the conditiondS/dP50, we obtain

P~gu,gv!5exp2~2Kl011!

3expS 22K(
j 51

K

„gu~mj !g1~mj !1gv~mj !g2~mj !1bgu~mj !
21bgv~mj !

2
…m~Aj !D ,

~32!

where

g1~mj !5
1

N (
i 51

N

l t i
uhmj

u 1l t i
vhmj

v , ~33!

g2~mj !5
1

N (
i 51

N

l t i
vhmj

u 2l t i
uhmj

v , ~34!

while the normalization constraint~28! entails

exp~2Kl011!5E
2`

`

expS 22K(
j 51

K

„gu~mj !g1~mj !1gv~mj !g2~mj !

1bgu~mj !
21bgv~mj !

2
…m~Aj !D dgudgv. ~35!

Obviously, we are led to

exp~2Kl011!5)
j 51

K S p

2Kbm~Aj !
DexpS Kg1~mj !

2m~Aj !

2b DexpS Kg2~mj !
2m~Aj !

2b D , ~36!

so that, by replacing~32! into ~25! and ~26! and calculating the pertinent integrals, we have

gu~mj !52
g1~mj !

2b
52

1

2bN (
i 51

N

l t i
uhmj

u ~ t i !1l t i
vhmj

v ~ t i !, ~37!
J. Math. Phys., Vol. 38, No. 9, September 1997
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gv~mj !52
g2~mj !

2b
52

1

2bN (
i 51

N

l t i
vhmj

u ~ t i !2l t i
uhmj

v ~ t i !. ~38!

Passing now to the limit limN→`, the above equations yield

gu~mj !52
1

2b E
R
„l t

uhmj

u ~ t !1l t
vhmj

v ~ t !…dt, ~39!

gv~mj !52
1

2b E
R
„l t

vhmj

u ~ t !2l t
uhmj

v ~ t !…dt, ~40!

or

^mj ug&5gu~mj !1 i gv~mj !5E
R
j~ t !hmj

* ~ t ! dt5^hmj
uj&, ~41!

with j(t)52(l t
u1 il t

v)/(2b).
From Eq. ~41! we gather that̂ mj ug&PF . Using ^mug& in ~20! and performing the inner

product operation on both sides with^hm8u we have

^hm8u f &5E
M

^hm8uhm&^mug& dm~m!, ~42!

and, sincêmug&PF , thereproducing kernelequation~18! is verified. Hence,̂mug&5^hmu f & and
we conclude that the statistical estimate^mug& 5 ^hmu f & is an ‘‘optimal’’ solution in a ME sense.

A. Some special cases: The WFT, the CWT, and discrete frames

The frame formulation proposed in Refs. 8–11, and adopted here in order to develo
present statistical treatment of the inverse problem, allows one to derive the WFT and CW
special cases of the same structure. In addition, the classical discrete frame formulation1,2,4 also
appears as a particular case of the generalized theory.

For the WFT,M5R2 is the set of all the continuous parametersm5(v,b) and dm(m)
5 dvdb. In this case, the frame elements areuhm&5uwv,b&/iwi with

^tuwv,b&5w~ t2b!exp~ ivt !, ~43!

with w(t) any function inH. The inverse problem for the WFT involves then the inversion of
equation

^tu f &5
1

iwi ER2
w~ t2b!exp ~ ivt !^v,bug& dvdb. ~44!

As the frame is self-reciprocal: uwv,b&5uwv,b&/iwi and the ME estimate for̂v,bug& gives the
WFT of u f &, i.e.,

^v,bug&5
1

iwi ^wv,bu f &5
1

iwi ER
w~ t2b!* exp~2 ivt ! f ~ t !dt. ~45!

For the CWT,M5R2, m5(a,b), anddm(m)5dadb/(Cca2). The frame elements are the wav
lets
J. Math. Phys., Vol. 38, No. 9, September 1997
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^tuca,b&5a21/2ca,bS t2b

a D , ~46!

with c(t) a mother wavelet satisfying the admissibility condition

Cc5E
R

uĉ~v!u2

uvu
dv,`, ~47!

whereĉ(v) is the Fourier transform ofc(t).
The equation to be inverted in this case is

^tu f &5
1

Cc
E

R2
a21/2ca,bS t2b

a D ^a,bug&
dadb

a2 . ~48!

Thereciprocal frameis also trivial, asuca,b&5uca,b&, and the ME estimate of the inverse proble
is the CWT ofu f &, i.e.,

^a,bug&5^ca,bu f &5E
R
a21/2c* S t2b

a D f ~ t !dt. ~49!

WhenM5Zn andm is the counting measure@m(A)5number of elements inA#, L2(m)
5 l 2(Zn) and thegeneralized theoryreduces to the classical discrete one. The discrete versio
both the WFT and CWT, for the sampling density required to give rise to aframe,4–6 involves
reciprocal frameswhich are of no trivial character and have to be calculated by recours
iterative algorithms.4,16

IV. CONCLUSIONS

A statistical treatment of theframeinverse problem has been presented. The problem has
transformed into a problem ofstatistical inferenceby considering the set of admissible solutio
as a random function and adopting the MEP as a decision criterion to select the probability d
that, being consistent with the data, is less committal with respect to our lack of information
statistical treatment presented here leads one to conclude that thereciprocal framegives rise to a
solution that, in addition to being ‘‘optimal’’ in a MN sense, is also ‘‘optimal’’ from a M
viewpoint.

As special cases, the WFT and CWT have been obtained from the concomitant in
problems as ‘‘optimal conjectures,’’ derived according to MEP strictures.
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New universality classes in one-dimensional
O(N)-invariant spin-models with an n -parametric action

Erhard Seiler and Karim Yildirim
Max-Planck-Institut fu¨r Physik (Werner-Heisenberg-Institut)
Föhringer Ring 6, D-80805 Mu¨nchen, Germany

~Received 23 February 1996; accepted for publication 7 March 1997!

An action withn parameters, which generalizes theO(N)2RPN21 model, is con-
sidered in one dimension for generalN. We use asymptotic expansion techniques
to determine where the model becomes critical and show that for the actions con-
sidered there exists a family of hypersurfaces whose asymptotic behavior deter-
mines a one-parameter family of new universality classes. They interpolate be-
tween theO(N) vector model class and theRPN21 model class. Furthermore
continuum limits are discussed, including the exceptional caseN52. © 1997
American Institute of Physics.@S0022-2488~97!02907-1#

I. INTRODUCTION

The question of universality is central for lattice field theories. It is generally tacitly assu
that it does not matter which lattice discretization of a classical action is employed, if o
interested only in the continuum limit. Recently Caraccioloet al.1 have sown doubt about thi
universality for the two-dimensional~2D! O(N) nonlinears-models. Their claim that there ar
different universality classes once one introduces in addition to the standard ‘‘isovector’’ cou
an ‘‘isotensor’’ term in the action has generated some controversy. Both Niedermayeret al.2 and
Hasenbusch3 argue that this violation of the universality dogma is only apparent and th
disappears as soon as one is looking at the right observables.

Since a definite mathematical answer to this question for the 2D models is out of rea
seems worthwhile to study the question in the exactly solvable 1D model. While we were wo
on this question, Cucchieriet al.4 produced a lengthy paper on the subject; their conclusions a
to a large extent with our findings. However, we find that their paper does not answer a
questions that come to mind. For instance, they study mostly one-parameter families of
general coupling functions as well as a two-parameter family, but in much less detail and
ality.

In this paper we considern-parameter families of actions that are natural generalization of
actions studied in Ref. 1. We still obtain only a one-parameter family of universality classes
as in the cases examined in Ref. 4. On the other hand it turns out that these different unive
classes reflect the true spectral properties of the transfer matrix, whereas the reinterpre
proposed by Refs. 2 and 3, which reduce everything to the ‘‘standard’’ universality clas
unrelated to the transfer matrix.

This paper is organized as follows: in Sec. II we introduce ann-parameter family of actions
for 1D O(N)-invariant spin models taking values on the sphereSN21, with nearest-neighbor
interactions. It generalizes the generic mixed isovector/isotensor model. The main result i
presented in Sec. III: using asymptotic expansion techniques we find where and in which w
models become critical. Especially, there are hypersurfaces on which an infinite number o
universality classes appear. In the next section it is shown that the restrictions on the Hami
made in Sec. III are not essential~in the case ofnon-negativeparameters!. In Sec. IV we also
discuss the continuum limit and give a supplement to the paper by Cucchieriet al.4 Finally, our
conclusions are stated in Sec. V.
0022-2488/97/38(9)/4872/10/$10.00
4872 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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II. PRELIMINARIES

We want to study the critical behavior of spin models which are generalizations o
well-known O(N)2RPN21 model.1 Therefore, we consider nearest-neighbor interactions g
by polynomials(k51

n bkx
k in the O(N)-invariant scalar products–s8, i.e.,

S :5(
x

(
k51

n

bk~sx•sx11!k. ~1!

The spins takes values on the sphereSN21,RN @with the O(N)-invariant, normalized measur
dV(s)# and all parametersb5(b1 ,...,bn)PR>0

n are non-negative. The Hilbert spac
L2(SN21) can be decomposed into the eigenspacesH l of the Laplace–Beltrami operatorDLB ,
corresponding to the eigenvalues2 l ( l 1N22); sinceDLB is a Casimir element of the Lie algebr
of O(N), these eigenspaces are invariant subspaces under the right action ofO(N). The projec-
tions onto the corresponding eigenspaces are given by the integral kernels

P l~s,s8!5
2l 1N22

N22
Cl

~N22!/2~s•s8!, ~2!

where the integrals are to be taken with the measuredV(s), and Cl
N/221 are theGegenbauer

polynomials.5

The transfer matrix corresponding to~1! is given by the integral kernel

T ~s–s8!:5expS (
k51

n

bk~s–s8!kD . ~3!

BecauseT commutes with theO(N) rotations, it will also leave these eigenspaces invariant,
in fact it will act as multiplication by the eigenvaluel l on these subspaces. Hence we can evalu
the eigenvaluesl l for NPN\$1% as

l l~b!:5
tr P lT

tr P l
5E

21

1

expS (
k51

n

bkx
kD ~12x2!~N23!/2

Cl
N/221~x!

Cl
N/221~1!

dx

5E
0

p

expS (
k51

n

bk cosk~ t !D sinN22~ t !
Cl

N/221
„cos~ t !…

Cl
N/221~1!

dt ~4!

with the substitutions–s85:x5cos(t) and l PN0 ~n:52: mixed isovector/isotensor model!; for
N52, we use the Chebychev polynomials of the first kind: T0(x)51 and Tl(x)
5( l /2)limN↓2@2/(N22)#CN/221(x), for l>1.

For the case of non-negative parametersbk the transfer matrix is a positive operator due
reflection positivity.6,7 Therefore it is possible to define ‘‘masses’’ in terms of the normaliz
eigenvaluesl̃l(b)5l ll0

21, l>1, as

ml~b!:5 logS l0~b!

l l~b! D52 log„l̃l~b!…. ~5!

Incidentally, there is a certain ‘‘gauge’’ symmetry in this action: changing the sign o
bk , k odd, can be compensated by the substitutiony:52x in the Gegenbauer polynomials; this
in turn can be achieved by multiplyingsx by (21)x, which can be considered as a gau
transformation not affecting the physics.
J. Math. Phys., Vol. 38, No. 9, September 1997
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We are now going to examine where this model becomes critical and has a~well-defined!
continuum limit; that means thatall masses have to vanish. In one dimension, this requires th
least one of the parameters goes to infinity. Finally we define the ratio of the masses~5! as

Rl~b!:5
ml~b!

m1~b!
~6!

with m1(b) as the reference mass.

III. MAIN RESULT: THE HYPERSURFACES FOR THE NEW UNIVERSALITY CLASSES

In this section we will show how to get~in principle! all normalized eigenvalues
l̃l :5l ll0

21 from l0 . Because of the impossibility of an exact analytic formula in the gen
n-parameter case, we use the generalizedLaplace methodof asymptotic expansion techniques8,9 to
evaluate the leading term~s! of l0 , and thereby also for alll̃l .

Using ~4! it can be seen that the eigenvaluesl̃l are obtained froml0 as follows:

l̃l~b!5
2l

G~N/221!Cl
N/221~1! (

m50

l /2
~21!mG~N/2211 l 2m!

m! ~ l 22m!!22m

]

]b l 22m
~ log„l0~b!…!, N>3,

~7!

l̃l~b!52l
l

2 (
m50

@ l /2#
~21!m~ l 2m21!!

m! ~ l 22m!!22m

]

]b l 22m
~ log„l0~b!…!, N52, ~8!

with (]/]b0)(log„l0(b)…)[1. A priori these two equations are valid for 1< l<n, but we can
apply them for alll>1 by the following trick: First notice thatn can be arbitrarily large. We us
this fact to modify the action by introducing additional couplingsb r for all r< l ~if not already
present!; then we take the required derivatives and finally set the parameters not appearing
action equal to 0.

Now we turn to the problem of obtaining an asymptotic expansion forl0 . Let us define first
some abbreviations for the expressions in~4! for the case ofl0 @note thatC0

N/221(x)/C0
N/221(1)

[1#:

f ~x!:5 (
k51

n

bkx
k, g~x!:5~12x2!~N23!/2, ~9!

F~ t !:5 (
k51

n

bk cosk~ t !, G~ t !:5sinN22~ t !. ~10!

Laplace’s method for asymptotic expansion requires the knowledge of the absolute max
f (x), respectivelyF(t), in the corresponding interval. A maximum off at the pointx0 is said to
be of orderj , if f (r )(x0)50 for r 50,1,...,j 21 and f ( j )(x0)Þ0. An internal maximum is thus a
least of order 2, whereas a boundary maximum can have any orderj >1. Any maximum that
contributes to the leading term is called aprincipal maximum. We will now consider the simples
case and show in the following section that these restrictions are unimportant. The simple~but
not trivial! case is given by sendingibi→` ~with any normi•i! in such a way that

f 8~21!→2` and f 8~1!→`, respectively, F9~p!→2` and F9~0!→2`.
~11!
J. Math. Phys., Vol. 38, No. 9, September 1997
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Whereas atx51 (t50) there is always a~principal! maximum, this is not a necessity forx5
21 (t5p), but we would like to treat these both cases together. The leading term forl0 reads
therefore forNPN\$1%:

l0~b!5
G~~N21!/2!

2~32N!/2

G~N22!~0!

~N22!!

exp~(k51
n bk!

~~11e!(k51
n kbk!

~N21!/2

3X11S ~11e!(k51
n kbk

~11h!(k51
n ~21!kkbk

D ~N21!/2

expS 22 (
k51

@~n11!/2#

b2k21D C, ~12!

wheree stands for a correctionO„((k51
n kbk)

21
… andh for O(„(k51

n (21)kkbk…
21). Due to~10!

we have~for N>3!

G~N22!~ t !5] t
N22

„sinN22~ t !…5] t
N22

„tN221O~ tN!…5~N22!1O~ t2!, ~13!

so thatG(N22)(t0)/((N22)!)51 for t050 and, by way of the transformationt→p2t, also for
t05p.

From these formulas it follows, as we will show below, that for allN>2

l̃l~b!;12
l ~ l 1N22!

2

1

(k51
n kbk

2„12~21! l
…expS 22 (

k51

@~n11!/2#

b2k21D
3S (k51

n kbk

(k51
n ~21!kkbk

D ~N21!/2

1OXS (
k51

n

kbkD 22C, ~14!

if at least one of theb2k21→`. In this case alll̃l tend to 1, i.e., all masses vanish, so that t
model becomes critical. After presenting the proof to~14!, we will turn back to this point to
examine the opposite case, in which allbk , k odd, remain bounded from above.

The proof to~14! requires two steps: first, we will show that the essential coefficient of
‘‘power’’ term is the eigenvalue ofDLB , then we will examine the exponential term.

The eigenvalue ofDLB arises from the following identities,~15! below for N>3 and ~16!
below for N52, valid in each case forl PN0 :

l ~ l 1N22!

N21
5

2l

G~N/221!Cl
N/221~1! (

m50

@ l /2#
~21!m~ l 22m!G~N/2211 l 2m!

m! ~ l 22m!!22m , ~15!

and in the limitN↓2

l 252l
l

2 (
m50

@ l /2#
~21!m~ l 22m!~ l 2m21!!

m! ~ l 22m!!22m , ~16!

wherel /2 is the normalization factor coming from

Tl~x!5
l

2
lim
N↓2

2

N22
CN/221~x!, l>1,

with Tl denoting theChebychev polynomials of the first kind.5

The strategy for the proof of~15! and ~16! is to apply the following formulas forr 51 and
y51

2 ~Refs. 5 and 10!:
J. Math. Phys., Vol. 38, No. 9, September 1997
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(
m50

@ l /2#
~21!mG~N/2211 l 2m!

m! ~ l 22m!!
y2m5GS N

2
21D ylCl

N/221S 1

2yD ,

~17!

dr

dyr Cl
N/221~y!52r S N

2
21D

r

Cl 2r
N/2211r~y!,

(
m50

@ l /2#
~21!m~ l 2m21!!

m! ~ l 22m!!
y2m5

2

l
ylTl S 1

2yD ,
dr

dyr Tl~y!52r 21G~r !lCl 2r
r ~y!. ~18!

In addition we need the identity

Cl
N/221~1!5S N1 l 23

l D , ~19!

which arises from the definition of theJacobi polynomials.5 Because of the triviality of the
identities~15! and especially in~16! for l 50, we restrict ourselves tol>1:

X2yl 11GS N

2
21D d

dy
Cl

N/221S 1

2yD CU
y51/2

52Xyl 11GS N

2
21D2S N

2
21DCl 21

N/2 S 1

2yD S 2
1

2y2D CU
y5 l /2

5
2

2l S N

2
21DGS N

2
21DCl 21

N/2 ~1!

5
N22

2l
GS N

2
21D S N1 l 22

l 21 D

5

GS N

2
21D

2l
~N22!

~N1 l 22!!

~ l 21!! ~N21!!

5

GS N

2
21D

2l

~N1 l 23!!

l ! ~N23!!

N22

N22

N1 l 22

N21
l

5

GS N

2
21D

2l
Cl

N/221~1!
l ~ l 1N22!

N21
~20!

and

X2yl 11
2

l

d

dy
Tl S 1

2yD CU
y51/2

52Xyl 11
2

l
lCl 21

1 S 1

2yD S 2
1

2y2D CU
y51/2

5
2

2l
Cl 21

1 ~1!5
2

2l S l
l 21D5

l

2l 21
5

l 2

2l

2

l
. ~21!
J. Math. Phys., Vol. 38, No. 9, September 1997
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So far, the first two terms ofl̃l @see~14!# are determined. Because in the representation of~12! the
argument of the exponential term involves only thebk , k odd, we distinguish the derivatives o
this term with respect tobk , k even or odd, and denote them by]̃ j ,even and ]̃ j ,odd for 1< j <n.
Again, we consider only the leading term:

]̃ j ,even;

N21

2 S (k51
n kbk

(k51
n ~21!kkbk

D ~N23!/2

exp~22(k51
@~n11!/2#b2k21!S j

(k51
n ~21!kkbk

2
~21! j j (k51

n kbk

~(k51
n ~21!kkbk!

2D
11S (k51

n kbk

(k51
n ~21!kkbk

D ~N21!/2

exp~22(k51
@~n11!/2#b2k21!

;2expS 22 (
k51

@~n11!/2#

b2k21D ~N21! j (k51
@~n11!/2#~2k21!b2k21

~(k51
n ~21!kkbk!

2 S (k51
n kbk

(k51
n ~21!kkbk

D ~N23!/2

.
~22!

Because one of the oddbk→`, this contribution is of order exponential times power and the
fore subleading, compared to the first two terms in~14!:

]̃ j ,odd;]̃ j ,even1

exp~22(k51
@~n11!/2#b2k21!X22S (k51

n kbk

(k51
n ~21!kkbk

D ~N21!/2C
11S (k51

n kbk

(k51
n ~21!kkbk

D ~N21!/2

exp~22(k51
@~n11!/2#b2k21!

;22 expS 22 (
k51

@~n11!/2#

b2k21D S (k51
n kbk

(k51
n ~21!kkbk

D ~N21!/2

. ~23!

We remark that thefirst line of ~22! as well as~23! is valid in general~independent of the
conditionb2k21→`!.

If we look at Eq. ~14!, we see that three different ways of sendingibi→` have to be
distinguished, depending on the relative importance of the second and third terms:

(k51
n kbk

exp~2(k51
@~n11!/2#b2k21!

S (k51
n ~21!kkbk

(k51
n kbk

D ~N21!/2

5S (k51
@~n11!/2#~2k21!b2k21

exp~2(k51
@~n11!/2#b2k21!

1
2(k51

@n/2#kb2k

exp~2(k51
@~n11!/2#b2k21!

D S (k51
n ~21!kkbk

(k51
n kbk

D ~N21!/2

——→
ibi→` H 0 Case I,

cP]0,`[ Case II,

` Case III.
J ~24!

Here the first summand vanishes in the limitibi→` because of the assumption that at least o
of the b2k21→`. The quotient of the linear forms inbk converges always to a value of th
interval #0,1# @this follows from condition~11! in connection with~12! and ~13!#.

We are interested in the limit of the mass ratiosRl @see~6!# in the three cases just defined. B
expanding the logarithms of the eigenvalues using~14! we obtain
J. Math. Phys., Vol. 38, No. 9, September 1997
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~25!

The result of~25! can be interpreted as follows: In Case I the ratio is in the class of
O(N)-vector modelin Case III in the class of theRPN21 model, whereas in Case II we have foun
new universality classeslying between them, parametrized byc. By the way, if we set allbk

50 exceptb1 , we recognize the pureO(N)-vector model which belongs to Case I.
We can summarize the main result of this paper as follows: the new universality class

obtained by sendingibi→` in such a way that

(k51
n kbk

exp~2(k51
@~n11!/2#b2k21!

S (k51
n ~21!kkbk

(k51
n kbk

D ~N21!/2

→cP]0,`@ , ~26!

or equivalently foribi→` on the hypersurfaces

2 (
k51

@n/2#

kb2k5c expS 2 (
k51

@~n11!/2#

b2k21D 1h~b!, cP]0,`@ , ~27!

with

lim
ibi→`

h~b!expS 22 (
k51

@~n11!/2#

b2k21D 50. ~28!

Of course, what matters is only the asymptotic behavior of those hypersurfaces which is ind
dent of the functionh.

Let us return to~14! where we had assumed that at least one of thebk , k odd, will go to
infinity. The converse is that all of them are bounded~from above!. Then the contribution from
]̃ j ,even @see~22!# has purely power character and moreover is equal to the term whose coeffi
is the eigenvalue ofDLB . For ]̃ j ,odd @see~23!# the additional term tends to a constant. That me
in the limit ibi→` ~here at least one of thebk , k even, has to go to infinity!, only thel̃l , l even,
tend to 1, whereas

l̃2r 11→11
22 exp~22(k51

@~n11!/2#b2k21!

11exp~22(k51
@~n11!/2#b2k21!

5thS (
k51

@~n11!/2#

b2k21D ,1. ~29!

Therefore, the model will not become critical in this case. Nevertheless, we can consider th
~note that there is noN dependence!

Rl5
ml

m1
→

12~21! l

2
. ~30!
J. Math. Phys., Vol. 38, No. 9, September 1997
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So we end up in the universality class of the pureRPN21 model, which is the special case i
which all bk50 exceptb2 .

In the following section we will see that this picture remains valid in the general case o
n-parameter model, defined by~4!.

IV. GENERALIZATION AND CONTINUUM LIMIT

In this section we drop the two restrictions on the action made in Sec. III and discus
consequences for a continuum limit.

First, we want to point out that the one restriction made in the beginning of the last se
namely that f 8(21)→2` and f 8(1)→`, is irrelevant. Sincef 8(1)5Sk51

n kbk and we are
interested in the limitibi→`, the second condition is obviously automatically fulfilled. Let
assume that the first condition is not satisfied, i.e.,f 8(21) is bounded from below. Since we onl
have to consider the case that asymptoticallyf has a maximum atx521, we may also assum
that it is bounded from above, i.e., we have

u f 8~21!u5U(
k51

n

~21!k21kbkU5U2 (
k51

@n/2#

kb2k2 (
k51

@~n11!/2#

~2k21!b2k21U<K,`. ~31!

If now all b2k21 as well as allb2k remain bounded, no statement about any asymptotic beha
is possible. Otherwise, both sums above inb2k21 andb2k have to go to infinity. However, in this
case, using~31!, we get from

ef ~21!2 f ~1!5expS 22 (
k51

@~n11!/2#

b2k21D <e2K/n expS 2
1

n (
k51

n

kbkD ~32!

that ef (21) is exponentially suppressed inall b2k21 as well as inall b2k . Therefore, this corre-
sponds to the Case I of~25!.

Next, we allow~principal! maxima lying inside of the interval:x0P] 21,1@ , respectivelyt0

P]0,p@ . First of all, we want to remark that such an internal maximum can appear forf , defined
in ~9!, only for n>3. As mentioned there, atx51, we have always a principal maximum for th
action in question. So, if there is~at least! one internal maximum atx0 , notice that in~12! the
exponential term in the parenthesis would be replaced by exp„2(k51

n (12x0
k)bk…. This means that

ef (x0) is exponentially suppressed in eachbk , 1<k<n, and therefore in the asymptotic expansi
the contribution fromx0 would be subleading. This completes the proof of the statement tha
restrictions made in Sec. III are unimportant.

Let us now discuss the continuum limit. This and the problem for principal maxim
different orders is discussed in some detail in Ref. 4 for the case of a family with at mos
parameters and a general action. They find that if the only maximum is at an internal point
interval~a situation excluded by our assumption that all the parametersbk are non-negative!, there
exists no continuum limit. ForN>3, it is shown that the normalized eigenvaluesl̃l of ~4! cannot
tend to 1@so that the masses~5! would vanish#, because of the fact that

uCl
N/221~x0!u

Cl
N/221~1!

,1 for ux0u,1 and l PN. ~33!

Unfortunately, this does not cover the special caseN52. However, we want to give an alternativ
~simpler! proof for this fact which is also valid forN52.

We use the following formula for theGegenbauer polynomialsin terms of theChebychev
polynomials of the first kind11 ~valid for N>3!:
J. Math. Phys., Vol. 38, No. 9, September 1997
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Cl
N/221

„T1~x!…5
2

„G~N/221!…2 (
m50

@1/2#
G~N/2211m!G~N/2211 l 2m!

m! ~ l 2m!!
Tl 22m~x!. ~34!

Note that all coefficients are positive! To prove~33!, it suffices to show that for anyt0P]0,p@ one
of the Tl 22m(x0) in ~34! @with x05cos(t0)# is less than 1.@Of course, forl 51, we have only one
term, T1(x)5x[cos(t), whose absolute value is always less than 1 for such at0 .# Assume that
Tl(x0)561 ~only one sign to choose!. Without loss of generality, consider forl>2

Tl 22~x0!5cos„~ l 22!t0…5cos~ l t 0!cos~2t0!2sin~ l t 0!sin~2t0!

56cos~2t0!56T2~x0!Þ61. ~35!

For N52, the inequality~33! is not true for certain pointst05pq, qPQù]0,1@ . However,
we can repeat the arguments used above: assumeTl(x0)561 ~again, l>2 and one sign to
choose!; this time, consider

Tl 21~x0!56T1~x0!Þ61. ~36!

This means that not all masses would go to 0 if at such at0 the functionF @see Eq.~10!# has a
maximum. Consequently, in these cases, there exists no continuum limit. So, as far as th
tinuum limit is concerned, there is nothing special about the caseN52.

Our conclusions are in agreement with those of Ref. 4, where they overlap. Our analy
however, more general in one respect: we allow for arbitrarily many parameters, where
authors of Ref. 4 allow only one or two. On the other hand, the form of interactions consider
us is more restricted since we only consider polynomials in the scalar products of two neigh
spins with non-negative coefficients.

It is easy to see that the continuum limits obtained in the new universality classes corre
to quantum-mechanical Hamiltonians of the form

H52aDLB1bP1const, ~37!

whereDLB is the Laplace–Beltrami operatoron SN21 and P is the ‘‘parity operator’’ mapping
every point of the sphere into its antipode~note thatP is a unitary, self-adjoint involution!. Since
P corresponds to multiplication by (21)l on the eigenspaceH l of DLB , it is not hard to check
that we obtain the mass ratios of the new universality classes given in~25! by choosinga
51/(N21) andb522c/(N21) ~and const52b!.

We do not get the more general continuum Hamiltonians discussed in Ref. 4 becau
restricted ourselves to polynomials with non-negative coefficients in order to ensure refl
positivity. It should be noted, however, that the most general quantum-mechanical Hamil
compatible withO(N) invariance is still more general than the form given in Ref. 4: it is given

H5(
l> l

clP l , ~38!

where theP l are the projectors onto the eigenspaces, defined in~2!, andcl are arbitrary coeffi-
cients.

V. CONCLUSIONS

In this paper we determined the critical behavior of the generalizedO(N)2RPN21 model
with an n-parametric action for the general case in one dimension and for generalN using
asymptotic expansion techniques. There exist hypersurfaces on which an infinite number
universality classes appears, which can be parametrized by a variable interpolating betwe
J. Math. Phys., Vol. 38, No. 9, September 1997
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O(N) vector model class and theRPN21 model class. For the ratio of the masses, there i
difference between even and odd masses in the form of an additional constant. We also ex
the continuum limit and gave some relevant additional information for the caseN52.

We found a one-parameter family of universality classes in the continuum limit, describ
Eq. ~27!, that arises in particular for the standard mixedO(N)2RPN21 models. These model
were also studied in the Refs. 2 and 3; these authors concluded, however, that there is o
universality class corresponding to the standardO(N) model. At least the arguments of Ref. 2 th
rely on the negligibility of vortices are clearly applicable in our 1D situation. So how is
apparent conflict to be resolved?

The authors of Ref. 2 reach their conclusion by considering the decay properties o
correlations of new spin variables, and their claims for those is certainly correct. However,
new spins arenonlocal functions of the original spins, and therefore the behavior of their co
lations cannot be related in an obvious way to spectral properties of the transfer matri
analyzed directly the spectrum of the transfer matrix and found that there are indeed new u
sality classes.

Finally, we would like to make a remark about a possible generalization of our resu
negative values of some parameters. If negative~or even complex! values are allowed, we gen
erally lose reflection positivity and therefore the quantum-mechanical interpretation of the m
The most general Hamiltonians given in Eq.~38! can certainly be obtained as continuum limits
such lattice models; we only have to choose as the transfer matrixT 5exp(2aH) and send
a→0. Such transfer matrices correspond, however, to very involved actions that depend ona ~the
parameter controlling the approach to criticality! in a very nonobvious way. It remains an ope
question whether the Hamiltonians~38! can also be obtained by using more ‘‘natural’’ actions
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Comment on ‘‘Factorization of scattering matrices
due to partitioning of potentials in one-dimensional
Schrö dinger-type equations’’ [J. Math. Phys. 37,
5897 (1996)]

M. Sassoli de Bianchia)

Institut de Physique The´orique, Ecole Polytechnique Fe´dérale de Lausanne,
CH-1015 Lausanne, Switzerland

~Received 31 December 1996; accepted for publication 25 April 1997!

@S0022-2488~97!00609-9#

In their recent paper,1 Aktosun, Klaus, and van der Mee considered the problem of factor
tion of the scattering matrix for the one-dimensional Schro¨dinger equation and two of its gene
alizations~wave propagation in a nonhomogeneous medium and wave propagation in a no
servative medium!, and the related problem of decomposition of a potential into fragments.

Our first comment is to point out that in Sec. III of Ref. 2 some similar results were
obtained, using Levinson’s theorem, for the special case of the two-potential system fo
Schrödinger equation when each fragment is compactly supported. Moreover, the general d
tion of bound-states and zero-energy resonances of finite periodic potentials presented in
of Ref. 2 provides a nice example of a decomposition of a potential into fragments.

Our second comment concerns the factorization formula for the scattering matrix which
proven in Ref. 3 and reconsidered in Ref. 1 in order to allow for the inclusion of Dirac d
functions in the potential. It is worth mentioning, for completeness, the recent proof of the
torization formula given in Ref. 4, for the problem of a scattering particle with position-depen
mass. The proof uses an adaptation of the variable phase method which allows for the der
of first-order differential equations for transmission and reflexion amplitudes. These equ
remain consistent if the potential includes Dirac delta functions and their integration give
factorization property of the scattering matrix. Since the results of Ref. 1 are based on the
tence of a factorization formula, they remain also valid for the generalized Schro¨dinger equation
with position-dependent mass~see also Ref. 5 for the analysis of the finite periodic potential fo
particle having position-dependent mass!.

We conclude our comments by presenting a third alternative proof of factorization o
scattering matrix using integral equations instead of the Schro¨dinger differential equation. We
restrict ourselves to the factorization formula for the transmission amplitude@formula ~2.18! of
Ref. 1# and of a potential fragmented into only two pieces:V(x) 5 V0,1(x) 1 V1,2(x) ~for the
notations we refer the reader to Ref. 1. The general case of a potential fragmented intoN pieces
follows by induction!.

The transmission amplitude,T(k), and the reflection amplitude for a particle incident from t
right, R(k), associated with the potentialV(x), admit the following well known integral repre
sentations:

T~k!512
i

2k E dx~V0,1~x!1V1,2~x!!eikxc r~k,x!, ~1!

5T0,1~k!2
i

2k E dx V1,2~x!c l ;0,1~k,x!c r~k,x!, ~2!

a!Permanent address: CH-6921 Vico Morcote, Switzerland. Electronic mail: time@tinet.ch
0022-2488/97/38(9)/4882/2/$10.00
4882 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
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5T1,2~k!2
i

2k E dx V0,1~x!c l ;1,2~k,x!c r~k,x!, ~3!

and

R~k!52
i

2k E dx~V0,1~x!1V1,2~x!!e2 ikxc r~k,x!, ~4!

5R0,1~k!2
i

2k E dx V1,2~x!c r ;0,1~k,x!c r~k,x!, ~5!

5R1,2~k!2
i

2k E dx V0,1~x!c r ;1,2~k,x!c r~k,x!, ~6!

wherec l(k,x)5T(k) f l(k,x) and c r(k,x)5T(k) f r(k,x) are the usual physical solutions for a
incoming wave from the left and from the right, respectively. Since by definitionV0,1(x)50 for x
in the support ofV1,2(x) and vice versa, one can replace in Eqs.~2! and ~3! the solutions
c l ;0,1(k,x) andc l ;1,2(k,x) by their asymptotic forms. Combining the obtained equations with
~1!, one finds the relation

T~k!5T0,1~k!T1,2~k!2T0,1~k!L1,2~k!
i

2k E dx V0,1~x!e2 ikxc r~k,x!. ~7!

Similarly, one can replace in Eq.~5! c r ;0,1(k,x) by its asymptotic form and combine it with Eqs
~4! and ~7!. The result is

T~k!5T0,1~k!T1,2~k!1T0,1~k!L1,2~k!R1,0~k!F12
i

2k E dx V1,2~x!eikxc r~k,x!G . ~8!

Finally, using Eq.~2! into Eq. ~8! one obtains

T~k!5T0,1~k!T1,2~k!1L1,2~k!R1,0~k!T~k! ~9!

or equivalently

T~k!5
T0,1~k!T1,2~k!

12L1,2~k!R1,0~k!
, ~10!

which is the desired factorization property for the transmission amplitude. Similar argument
to factorization formulas for reflection amplitudes.

1T. Aktosun, M. Klaus, and C. van der Mee, J. Math. Phys.37, 5897~1996!.
2M. Sassoli de Bianchi and M. Di Ventra, J. Math. Phys.36, 1753~1995!.
3T. Aktosun, J. Math. Phys.33, 3865~1992!.
4M. Sassoli de Bianchi and M. Di Ventra, Euro. J. Phys.16, 260 ~1995!.
5M. Sassoli de Bianchi and M. Di Ventra, Superl. Microstr.20, 149 ~1996!.
J. Math. Phys., Vol. 38, No. 9, September 1997
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The quartic anharmonic oscillator and its associated
nonconstant magnetic field

T. Allen, C. Anastassiou, and W. H. Klink
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

~Received 5 March 1997; accepted for publication 16 April 1997!

Quantum mechanical anharmonic oscillators and Hamiltonians for particles in ex-
ternal magnetic fields are related to representations of nilpotent groups. Using this
connection the eigenfunctions of the quartic anharmonic oscillator with potential
Va(x)5(a1(x2/2))2 can be used to determine the eigenfunctions of a charged
particle in a nonconstant magnetic field, of the formBz5b21b3x. The quartic
anharmonic oscillator eigenvalues for low-lying states are obtained numerically and
a function which interpolates betweena!0 ~a double harmonic oscillator! anda
@0 ~a harmonic oscillator! is shown to give a good fit to the numerical data.
Approximate expressions for the quartic anharmonic oscillator eigenfunctions are
then used to get the eigenfunctions for the magnetic field Hamiltonian. ©1997
American Institute of Physics.@S0022-2488~97!03010-7#

I. INTRODUCTION

It is well known that there are many completely integrable systems in classical mechanic
are not soluble in quantum mechanics. The class of one-dimensional anharmonic oscillato
vide one such example. Another is a charged, spinless particle in an external magnetic fie
a vector potential of the formAx5Az50, Ay5Ay(x). Such a vector potential generates a ma
netic field in thez direction that in general varies inx. Classically, for motion confined to thex–y
plane, such a system is completely integrable because two integrals of the motion exi
HamiltonianH and the generalized momentumpy . However, the only known quantum mechan
cal solution for such systems is for a constant magnetic field,Ay(x)5B0x. In that case, as show
by Landau,1 the eigenfunctions and eigenvalues are closely related to those of the har
oscillator.

In fact, this quantum mechanical relationship between two different classically comp
integrable systems, namely, the harmonic oscillator and the constant magnetic field, can b
eralized. If the functionAy(x) is a polynomial inx, then there exists a nilpotent group wit
representations on the Hilbert spaceL2(R2) ~the Hilbert space for a particle in thex–y plane!
whose generators give the Hamiltonian for the charged particle. Furthermore, if the represe
for the nilpotent group onL2(R2) is reducible, then the space of irreducible representations o
nilpotent group isL2(R), in which case the Hamiltonian is that of an anharmonic oscillator. O
of the goals of this paper is to obtain numerical solutions of quartic anharmonic oscillators w
can then be used to obtain solutions for particles in a nonconstant magnetic field.

As an illustration, consider the case of a constant magnetic field.2 Then the nilpotent group is
the Heisenberg group, which can be written as the set of matrices

GH :5H S 1 a c

1 b

1
D J [$~a,b,c!%, a,b,cPR. ~1!

To get a unitary representation onL2(R2), we induce with the subgroup (0,0,c)→eig, g real. This
representation is given by
0022-2488/97/38(10)/4887/13/$10.00
4887J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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~U ~a,b,c!
g C!~x,y!5eig~bx1c!C~x1a,y1b!, CPL2~R2!. ~2!

Lie algebra representations are given by the~anti-Hermitian! operators

~a,0,0!→A5
]

]x
, ~0,b,0!→B5

]

]y
1 igx, ~0,0,c!→C5 ig, @A,B#5C. ~3!

The Hamiltonian for the particle in a constant magnetic field is quadratic in the generatorsA and
B

22Hg5A21B25
]2

]x2 1S ]

]y
1 igxD 2

, ~4!

whereg is the ~dimensionless! strength of the magnetic field. IfHg is Fourier transformed iny,
the Hamiltonian for the harmonic oscillator results. Group theoretically, this corresponds t
composing a reducible representation onL2(R2) to irreducible ones onL2(R).

The irreducible representations of the Heisenberg group are induced by the sub
(0,b,c)→ei (bb1cg), b, g real. These representations are given by

~U ~a,b,c!
bg w!~x!5ei ~bb1gxb1gc!w~x1a!, wPL2~R!. ~5!

The infinitesimal generators are

~a,0,0!→A5
]

]x
, ~0,b,0!→B5 i ~b1gx!, ~0,0,c!→C5 ig, ~6!

and the Hamiltonian is

22H5A21B25
]2

]x22~b1gx!2, ~7!

the harmonic oscillator Hamiltonian.
It is also possible to analyze the Hamiltonian for the regular representation onL2(R3), where

~RgF !~x!5F~xg!, FPL2~R3!,

~R~a,b,c!F !~x,y,z!5F~x1a,y1b,z1c1xb!, ~8!

with the Lie algebra representation

A5
]

]x
, B5

]

]y
1x

]

]z
, C5

]

]z
. ~9!

In this case the Hamiltonian is called a sub-Laplacian and is written as

D:5A21B25
]2

]x2 1S ]

]y
1x

]

]zD
2

. ~10!

The sub-Laplacian plays an important role in dealing with the generalized heat equation,

Dpt5
]pt

]t
, pt505d3~x!, ~11!
J. Math. Phys., Vol. 38, No. 10, October 1997
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the solution of which is given in Refs. 3 and 4.
More generally ifA~x! is any polynomial inx, there exists a nilpotent group with represe

tations onL2(R3) whose generators give the charged-particle Hamiltonian. This can be sho
the following way.

Let A~x! be the vector potential associated with a magnetic fieldB~x! that couples to a
charged particle. Then the commutator of the generalized momentum will be

F1

i

]

]xj
2Aj~x!,

1

i

]

]xk
2Ak~x!G5 i e jklBl~x!,

F1

i

]

]xj
2Aj~x!, Bk~x!G5

1

i

]Bk

]xj
,

A ~12!

If the vector potentialA~x! is a polynomial inx, then these commutation relations will close
give a nilpotent Lie algebra. A quadratic sum of the generators gives the charged-particle H
tonian

2H5 (
j 51,2,3

F1

i

]

]xj
2Aj~x!G2

. ~13!

Thus any vector potential that is polynomial in its spatial variables generates a representa
some nilpotent Lie algebra acting onL2(R3).

On L2(R), on the other hand, consider the nilpotent Lie algebra generated by 1/i (]/]x) and a
polynomialp(x); again commutators starting with

F1

i

]

]x
,p~x!G5

1

i

]p

]x

A ~14!

will eventually close, giving a representation of some nilpotent Lie algebra. The Hamiltoni
this case is again a quadratic sum of generators, of the form

2H52
]2

]x2 1@p~x!#2, ~15!

which is the Hamiltonian for an anharmonic oscillator.
In Sec. II we will work out these connections for a nilpotent group called the quartic grouQ,

and show that representations ofQ link the quartic anharmonic oscillator to a particle in
nonconstant magnetic field of the formBz5b21b3x, Ax5Az50. In Sec. III we analyze the
quartic anharmonic oscillator using a combination of numerical methods and analytic appro
tions. In Sec. IV we relate these oscillator solutions to the charged particle problem.

II. THE QUARTIC GROUP Q

In this paper we will look at the simplest nilpotent group generalization of the Heisen
group, a group denoted byQ because it generates the quartic anharmonic oscillator~as well as a
nonconstant magnetic field Hamiltonian!.

Define the quartic nilpotent groupQ by
J. Math. Phys., Vol. 38, No. 10, October 1997
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Q:55 S 1 b b2/2 b3

1 b b2

1 b1

1

D 6 [$~b,b!%, b,biPR. ~16!

ThenQ forms a group under ordinary matrix multiplication, with group multiplication given

~b,b!~b8,b8!5S b1b8,b11b18 ,b21b281bb18 ,b31b381bb281
b2

2
b18D ,

~17!

~b,b!215S 2b,2b1 ,2b21bb1 ,2b31bb22
b2

2
b1D .

Important subgroups ofQ include the Heisenberg groupGH5$(b,0,b2 ,b3)% and the invariant
Abelian subgroup$(0,b1 ,b2 ,b3)%.

The irreducible representations ofQ are obtained by inducing from the invariant Abelia
subgroup

~0,b!→ei b•b, bPR3; ~18!

then

~U ~b,b!
b w!~x!5ei @b1b11b2~b21xb1!1b3~b31xb21~x2/2!b1!#w~x1b!,

~b,b!PQ, wPL2~R!. ~19!

From these irreducible representations onL2(R), it is possible to compute the~anti-Hermitian!
infinitesimal operators corresponding to one-parameter subgroups ofQ

~b,0,0,0!→X05
]

]x
, ~0,b1,0,0!→X15 i S b11b2x1b3

x2

2 D ,

~0,0,b2,0!→X25 i ~b21b3x!, ~0,0,0,b3!→X35 i ~b3!.
~20!

The commutation relations are

@X0 ,X1#5X2 , @X0 ,X2#5X3 , ~21!

with all other commutators zero; these commutation relations agree with those coming fro
Lie algebra ofQ, as is easily checked by making use of the matrix realization ofQ, Eq. ~16!. The
relationship betweenQ and quartic anharmonic oscillators is given by writing the Hamiltonian
a quadratic sum of generators

22Hb5X0
21X1

25
]2

]x22S b11b2x1
b3

2
x2D 2

. ~22!

The nonconstant magnetic field related toQ is obtained from the reducible representati
induced from the subgroup (0,0,b2 ,b3)→ei (b2b21b3b3)
J. Math. Phys., Vol. 38, No. 10, October 1997
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~U
~b,b!

b2b3c!~x,y!5ei @b2~b21xb1!1b3~b31xb21~x2/2!/b1!#3c~x1b,y1b1!, cPL2~R2!,

X05
]

]x
, X15 i S b2x1b3

x2

2 D1
]

]y
,

X25 i ~b21b3x!, X35 ib3 ;
~23!

22Hb2b35X0
21X1

25
]2

]x2 1F i S b2x1b3

x2

2 D1
]

]yG2

,

which is the Hamiltonian for a particle in a nonconstant magnetic field given byAx5Az50, Ay

5b2x1b3x2/2, Bz5b21b3x.
Though the Hamiltonian in Eq.~23! appears to be the usual Hamiltonian for a particle in

external magnetic field, all the quantities, including the representation labelsb2b3 , are dimen-
sionless. To connect the Hamiltonian Eq.~23! with a Hamiltonian that has the dimensions
energy the following transformations must be made.

Let H5hH8, h carrying units of energy andH8 a dimensionless operator. Likewise letA
5aA8, m5Mm8, and B5bB8. Suppose we write“ as (]/]w1 ,]/]w2 ,]/]w3), wherewi are
Cartesian coordinates. LetL be a constant with units of length, and letw15Lx, w25Ly, w3

5Lz, wherex, y, andz are now dimensionless variables. Then we have

hH85
1

2m S 2
\ i

L
“x,y,z2

ea

c
A8D 2

2
1

2
Mbm8–B8. ~24!

Note that the combinationsh0[(hmL2/\2), a0[(aLe/\c) andM0b0[(MbmL2/\2) are dimen-
sionless parameters. If we now define new, dimensionless operatorsH05h0H8, A05a0A8, m0

5M0m8 andB05b0B8; then the operator

H05 1
2~2 i“2A0!22 1

2m0–B0 ~25!

is completely dimensionless as well.
As before, we will now restrict the class of vector potentials toA05(0,b2x1b3(x2/2)

1••• ,0)[(0,Ay(x),0), which produces an inhomogeneous,x-dependent magnetic field in th
z-direction. In this case the Hamiltonian becomes

H052
1

2

]2

]x2 1
1

2 S 2 i
]

]y
2Ay~x! D 2

2
1

2

]

]z2 . ~26!

If the eigenfunctions of this Hamiltonian are written asC(x,y,z)5e2 ib1y2 ipzz3F(x), then we
have~ignoring the constantpz

2 term!

H52
1

2

]2

]x2 1
1

2
~b11Ay~x!!2. ~27!

In particular, if we chooseAy5b2x1b3(x2/2) the Hamiltonian becomes

22H5
]2

]x22S b11b2x1b3

x2

2 D 2

, ~28!

which is identical to Eq.~22!.
Introducing the linear transformationx85b3

1/3(x1b2 /b3) and defining
J. Math. Phys., Vol. 38, No. 10, October 1997
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a[
b1b32~1/2!b2

2

b3
4/3 , ~29!

en~a![2b3
22/3E, ~30!

we find that the Schro¨dinger equationHFn5EFn reduces to

]2Fn

]x82 2S a1
x82

2 D 2

Fn52en~a!Fn . ~31!

From Eq.~29!, we see thata depends onb1 , the momentum along they direction which can
take any value. So for a given magnetic field~i.e., a givenb2 and b3! H has a continuous
spectrum. Physically this means that particles can drift along they axis to infinity, corresponding
classically to a grad-B drift.

Finally, before considering particular solutions, we note that the quartic potential@Eq. ~31!# is
equivalent to the problem of a general quartic potentialVc5c01c1x81c2x821c3x831c4x84,
wherec4.0 and22HF(x8)52ecF(x8). Because we will frequently use this equivalence
translate results from other studies into the variables used in this paper, we list the equation

a5~4c4!22/3S c22
3c3

2

8c4
D , mz52~4c4!21/2S c12

c2c3

2c4
1

c3
3

8c4
2D ,

~32!

e~a!5a21~4c4!21/3S ec2c01
c1c3

4c4
2

c2c3
2

16c4
2 1

3c3
4

256c4
3D ,

where mzX2 can be added to the magnetic field Hamiltonian, Eq.~23!, to allow for external
electric fields.

III. NUMERICAL ANALYSIS

Much of the previous work on the quartic Hamiltonian has centered on finding precise m
ods of determining its eigenvalues for specific values ofa. Success is often measured by ho
many decimals one can produce afterN iterations of one’s procedure. We take a somew
different approach. Instead of seeking very precise energies for particular values ofa, we wish to
find functions that approximateen(a) for all aPR, as theseen(a) and their associated eigen
functions are needed to obtain the magnetic field eigenfunctions.

We have used a Runge–Kutta numerical integration program to calculate the eigenvalu
a wide range ofa. The results agree with those of other researchers.5–8 These data are shown i
Fig. 1 ~solid lines! and compared with the eigenvalues for a simple harmonic oscillator~dotted
lines!. Furthermore, the integration technique can provide the values of the zeros of the
functions. These data are shown in Fig. 2 forn52,3, as a function ofa.

We now wish to construct functionsen(a) and zn(a) that interpolate the energy and ze
data. The asymptotic behavior ofen(a) is already known. In the casea@0, the potentialVa

5a21ax21x4/4 may be approximated by ignoring thex4 term. This leaves a simple harmon
potential plus a constant potential. The asymptotic solutions become

en~a!5a21~2n11!Aa, a@0, ~33!

Fn5hnS x

a1/4De~2Aax2/2!, a@0. ~34!
J. Math. Phys., Vol. 38, No. 10, October 1997
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The numerical results confirm this behavior. For example, for the ground state, the diffe
between the quartic eigenvalue and the harmonic asymptote ata54 is already as small as 0.04

Describing the asymptotic behavior in the casea!0 requires a different approach. For an
a,0, Va becomes a double-well potential, each well centered aboutx56A22a. Rewriting the
potential around either of these points, we obtain

Va5 1
4~x6A22a!47A22a~x6A22a!322a~x6A22a!2. ~35!

For a large and negative, the main contribution will come from the final, quadratic term. Ei
functions will approach the sum or difference of two independently displaced harmonic osc
wave functions. Consequently, eigenvalues will pair up at each harmonic energy level, whi
can write asen(a)5(n1@11(21)n#/2)A22a. Numerically, the pairing occurs as early asa
522.90 for the ground and first excited states, anda524.30 for the second and third.

FIG. 1. Eigenvalues of the quartic potential as a function ofa.

FIG. 2. Zeros of the quartic eigenfunctions as a function ofa.
J. Math. Phys., Vol. 38, No. 10, October 1997
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The numerical results shown in Fig. 1 provide yet another guide to the functional for
en(a). When the harmonic eigenvalues are subtracted from the total anharmonic eigenvalu
difference falls off as 1/a for large magnitudes ofa.

For these reasons, we have tried to fit the numerical data to a function of the form

en~a!5a2u~a!1S ~as~a!!3/21
p

qD 1/3

, ~36!

whereu~a! is an analytic approximation to the step function;s is a similar, step-like function
describing the asymptotic behavior andp/q is a ratio~of order unity! of polynomials that correctly
approximates the numerical behavior fora'0.

Specifically, we have chosen the forms

u~a!5
1

11t1e2t2a , s~a!5s2s1

~12e2s1a!

s21s1e2s1a ,

p~a!5p01p1a1p2a2, q~a!511q1a1q2a2,
~37!

wheres15(2n11)2, and it ands2 are predetermined by the required asymptotic slopes, bu
rest of the coefficients are found using some fitting method.

Our current best fit, in terms of^uen2enumu2&, uses the coefficients in Table I. Note that f
en , n>1, p0'0.17(2n11)4, so that fora'0, en}(2n11)4/3 as predicted by WKB methods.6

The fit is sufficiently good that it cannot be distinguished from the solid line in Fig. 1.
We also wish to construct a functionzn(a) describing the zeros of the eigenfunctions.

doing so, we need to incorporate the following asymptotic behavior:

a@0: zn→
jn

a1/4,

a!0: z2 ,z3→A22a ,
~38!

wherejn is a zero of the correspondingnth Hermite polynomial. For example,j25A1/2 andj3

5A3/2.
We have chosen to try to fit the data forz2(a) andz3(a) using a function of the form

zn~a!5
~2a tanha!1/2e2dza1jnedza1~p8/q8!

e2dza1~a tanha!1/4edza
, ~39!

where dz and the coefficients in the ratio of polynomialsp8/q8 are found using some fitting
method.~The tanha term acts as a continuously differentiable approximation to the absolute v
function.! Our current best fit, in terms of^uzn2znumu2&, uses the coefficients in Table II.

The same Runge–Kutta program that provided us with the data for the eigenvalues and
also calculated values of the unnormalized eigenfunctionFn(x,a) at various pointsxPR. We

TABLE I. Best fit eigenvalue coefficients.

s2 t1 t2 s1 p0 p1 p2 q1 q2

e0 2 0.817 5 1.2052 0.713 0.3398 0.6170 0.0622 20.669 0.1934
e1 2 0.256 3 1.862 1.2245 13.79 14.50 1.553 20.5775 0.2407
e2 18 0.000 436 6.448 0.953 105.5 113.1 2.34 20.208 0.133
e3 18 3.983 7 6.2445 0.8612 408.9 197.4 7.93 20.335 0.0927
J. Math. Phys., Vol. 38, No. 10, October 1997
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wish to use these data, along with our knowledge of the eigenvalues and zeros, to for
analytic approximations toFn(x,a), which we will do here forn50 – 3.

Different researchers have used various Ansa¨tze as the approximate forms of quartic oscillat
eigenfunctions. One common approach, useful fora.0, is to assume an eigenfunction of the for

Fn5e2~x2/2!(
i 50

`

cnx2n, ~40!

and to substitute that into the differential equation. A three-term difference equation results,
may then be solved approximately using determinant methods.5,9 Alternatively, one can use the
zeroth-order WKB approximation and make appropriate simplifications for large or smalla.9

Mindful of the WKB results, one could also choose some specific form for the eigenfun
that obeys the correct asymptotic behavior, such as

F05e2@aE0
2x41~1/36!x6#1/2

, E0
32

1

4
E02

1

24a3/250, ~41!

as was done by Ginsburg and Montroll.10

For a,0, Balsaet al. suggest using harmonic oscillator eigenfunctions and a variati
method wherein not only the variational parameter but also the excited state numbern are
varied.11 Arias de Saavedra and Buendı´a, on the other hand, propose that a basis set of sum
displaced harmonic oscillators be used as the Ansatz in a variational procedure.12

In all these cases, however, the Ansatz is decided upon first, then used to approxim
quartic eigenvalues. Such methods can produce extremely precise results. For example,
Meurice, and Soemadi have recently devised a method giving 30-digit accuracy for the fir
excited states,13 and Vinette and Cˇ ı́žek have produced a 62-digit result for the ground-sta
a50 case.8

However, because we wish to translate the quartic eigenfunctions into eigenfunctions
corresponding magnetic field problem, which requires solutions for all values ofa, we do not seek
precise determination of the eigenvalues by variational or other methods. Instead, we assu
the eigenvalues, the zeros of the eigenfunctions, and other pertinent features of the proble
been determined numerically and strive to find approximate, analytic functions that mim
exact solution for alla. In other words, instead of approximating the eigenvalues by assum
form for the eigenfunction, we attempt the inverse: approximate the eigenfunction by assum
form for the eigenvalues.

Toward this end, we desire a general form for the eigenfunction that incorporates the ca
a both positive and negative, its magnitude both large and small. Fora>0 ~the single-
well potential!, the eigenfunction will be centered on the origin. Fora,0 ~the double-well po-
tential!, it will resemble the sum or difference of two oscillator eigenfunctions displaced a dist
6A22a from the origin. Further, we know that asymptotically, the eigenfunctions approa
single harmonic oscillator eigenfunction whena@0 and two displaced harmonic oscillator eige
functions whena!0.

TABLE II. Best fit zero coefficients.

dz p08 p18 p28 q18 q28

z2 0.564 0.068 20.766 21.460 1.370 1.826
z3 0.469 0.142 20.896 20.622 0.599 0.989
J. Math. Phys., Vol. 38, No. 10, October 1997
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We will make an assumption similar to that of Aharonov and Au,14 that the exponent of the
eigenfunctions may be expressed as an infinite series. We use powers ofx2 rather than a series o
orthogonal functions because the potential itself is a polynomial inx2. A form for the even parity
eigenfunctions that has the correct asymptotic limits is

F0
a~x!5A0~a!cosh~b0~a!x!e2~a02x

21a04x
41••• !,

F2
a~x!5A2~a!~x22z2

2~a!!cosh~b2~a!x!e2~a22x
21a24x

41••• !,

~42!

and so on. For the odd parity eigenfunctions we write

F1
a~x!5A1~a!sinh~b1~a!x!e2~a12x

21a14x
41••• !,

F3
a~x!5A3~a!~x22z3

2~a!!sinh~b3~a!x!e2~a32x
21a34x

41••• !,

~43!

and so on. Here,An(a) are normalizations depending ona and theank(a) are as yet unspecified
functions of a. The cosh(bn(a)x) and sinh(bn(a)x) terms have been introduced so that
a→2`, two independent harmonic oscillators with the same energy result. This means t
a→2`, bn(a)52A22aan2(a). Further, fora>0, bn(a)→0. The quantitieszn(a) occurring
in Eqs.~42! and ~43! are the zeros of the eigenfunctions and are given in Eq.~39!.

By substituting each eigenfunction, Eqs.~42!, ~43! into the Schro¨dinger equation, and expand
ing aboutx50, we obtain recursion relations for each eigenfunction. For example, for the gr
state

a025
1
2~e081b0

2!,

a045
1

12~~e08
22a!2b0

4!,

a065
1

45~e08~e08
22a!1b0

62 3
8!,

A ~44!

wheree085e02a2.
There are a number of ways of obtainingbn(a). We have chosen to determinebn(a) by

minimizing the integral

iFn
a i2Fn,num

a i i25E
2`

1`

dxuFn
a i2Fn,num

a i ~x!u2, ~45!

whereFn,num
a i (x) are the numerically determined values of the eigenfunctions for the pote

(a i1(x2/2)2); andFn
a(x) are the functions in Eqs.~42! and ~43! along with the corresponding

recursion relations. The results forb0(a) andb1(a) are shown in Fig. 3 fora.22. A function
that roughly approximatesb1(a) is

b1~a!5

22ae20.0242a1
2.42312.033a10.394a2

110.190a10.00869a2

11e20.0242a . ~46!

The difficulty we have with determining thebn(a) is that when the eigenvalues becom
nearly degenerate fora,0, it is very difficult to get reliable eigenfunctions numerically a
hence, to obtain thebn(a) for those values ofa. For that reasonb0(a) andb1(a) are not given
for a,22 in Fig. 3. However, fora>0, whenbn(a);0, we are able to obtain very good fits fo
Fn

a.0(x). In this case using three terms in the recursion relations, the quantityiFn
a2Fn,num

a i2 is
less than 1027 for n50,1,2,3. For 22<a,0 the fits are not as good. In Figs
J. Math. Phys., Vol. 38, No. 10, October 1997
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4 and 5 we show the results fora521.5 for F0 and F1 . Clearly more work is needed in
obtaining reliable numerical data for the eigenfunctions in the regiona,0, where the eigenvalue
are nearly degenerate.

IV. CONCLUSION

Using group theoretical methods, we have shown that eigenfunctions for a particle
nonconstant magnetic field given by the vector potentialAy(x)5b2x1b3(x2/2), Ax5Az50, are
related to the eigenfunctions of a quartic anharmonic oscillator with a potentialV(x)5(a

FIG. 3. Numerical results forb0(a) andb1(a).

FIG. 4. c0(x) for a521.5.
J. Math. Phys., Vol. 38, No. 10, October 1997
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1(x2/2)2). No exact solutions to this potential are known. However, with suitable approxim
eigenfunctions and eigenvalues for the quartic anharmonic oscillator, we can construct the
functions for a particle in a nonconstant magnetic field.

Given Fn
a(x), Eqs.~42!, ~43! the magnetic field eigenfunctions are

cE,b1 ,pz

b2b3 ~x!5e2 ib1ye2 ipzzFn
a~x!, E5 1

2b3
2/3en~a!, a5

~b1b32 1
2b2

2!

b3
4/3 , ~47!

whereb2 andb3 give the~dimensionless! field strength, andb1 is the~conserved! momentum in
the y direction.

Though the Hamiltonian for the quartic anharmonic oscillator has a discrete spectrum
Hamiltonian for the particle in a nonconstant magnetic field has a continuous spectrum, in co
to a particle in a constant magnetic field~confined to a plane!. And, since theFn

a(x) are anhar-
monic oscillator solutions, they die off asuxu gets large, which means the motion of the particle
bounded in thex direction. It is not, however, bounded in they direction. Physically, these result
correspond to a quantized grad-B drift, in which particles in a nonconstant magnetic field d
execute circular motion, but rather drift in they direction to infinity.

To obtain approximations for the magnetic field eigenfunctions, we require the eigenfun
and eigenvalues of the quartic anharmonic oscillator for all values ofaPR. As discussed in Sec
III, for large magnitudes ofa, the potentialVa(x) approaches harmonic oscillator potentials. Th
the asymptotic forms of the quartic anharmonic oscillator eigenfunctions and eigenvalue
constrained to approach known harmonic oscillator values.

In contrast to what is done in many numerical studies of the anharmonic oscillator~wherea
is fixed and very precise values of the eigenfunctions and eigenvalues are sought!, we have instead
used the numerical data to approximate the eigenfunctions and eigenvalues of the quartic
monic oscillator for all values ofa. We have chosen functions that have the correct asymp
behavior and which contain parameters that can be adjusted to give a best fit to numerica

FIG. 5. c1(x) for a521.5.
J. Math. Phys., Vol. 38, No. 10, October 1997
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From the functional forms we have chosen for the energy eigenvaluesen(a), given in Eqs.
~36! and~37!, and for the zeros of the eigenfunctions, given in Eq.~39!, the parameters have bee
chosen to give a best fit for each value ofn50 – 3.

Similarly, a functional form for the eigenfunctionsFn
a(x), given in Eq.~42!, provides the

means for approximating the eigenfunctions forn50 – 3. Here, however, the procedure is som
what more complicated than for the eigenvalues and zeros, for it is necessary to know the
eter bn(a) before the coefficients appearing in the eigenfunctions can be determined; we
chosen to determine thebn(a) by minimizing iFn2Fn,numi for all a. A more effective procedure
might describe thebn using Ansatz-indepedent parameters such as wave function extrema.
natively, an Ansatz that did not require this extra parameterbn might be sought. Indeed, ifa is
restricted to nonnegative values, the parameterbn can be set equal to zero~see Fig. 3!. In this case,
our approximation method successfully and efficiently describes the eigenfunctions.
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A sufficient condition for the existence of bound states
in a potential

K. Chadan
Laboratoire de Physique The´orique et Hautes Energies,a! Universitéde Paris XI,
Bâtiment 211, F-91405 Orsay Cedex, France

R. Kobayashi
Department of Mathematics, Science University of Tokyo, Noda, Chiba 278, Japan
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For a wide class of purely attractive potentials, we obtain a new sufficient condition
for the existence of bound states for any angular momentum. Applied to some
exactly soluble cases, the condition gives good results as compared to exact results.
© 1997 American Institute of Physics.@S0022-2488~97!01810-0#

I. INTRODUCTION

In this paper, we consider the nonrelativistic Schro¨dinger equation for a particle in a spher
cally symmetric potentialV(r ). The potential is assumed to be real, purely attractive~negative!,
and to satisfy the usual assumptions:V is locally L1, and satisfies the Bargmann–Jost–P
condition1

E
0

`

r uV~r !u dr,`, ~1!

which guarantees that the number of bound states is finite. For this class of potentials, the
several sufficient conditions for the existence of bound states. The first one is the Ca
condition,2 valid for the S-wave. In customary units\52M51, whereM is the mass of the
particle, the condition reads

sup
R.0

F 1

R E
0

R

r 2uV~r !u dr1RE
R

`

uV~r !u drG.1. ~2!

If the left-hand side of~2! is just 1, the bound state may be at the thresholdE50 ~a resonance a
zero energy!. In other words, if we multiply an attractive potentialV by a coupling constantl, and
increasel starting from zero, we secure a bound state forlV as soon asl is large enough so a
to have~2!.

A second sufficient condition is the following. We define firstW(r ) by

W~r !52E
r

`

V~ t ! dt, ~3!

whereV is again purely attractive, and satisfies~1!. The functionW(r ) is an absolutely continuou
and positive function, and belongs toL1(0,̀ ) since

E
0

`

W~r ! dr5E
0

`

drE
r

`

uV~ t !u dt5E
0

`

r uV~r !u dr. ~4!

a!Laboratoire associe´ au Centre National de la Recherche Scientifique—URA D0063.
0022-2488/97/38(10)/4900/9/$10.00
4900 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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The second sufficient conditions reads then3 ~see also Appendix A!

2E
0

`

rW2~r ! dr2E
0

`

W~r ! dr.0. ~5!

Here again, if we considerlV, we see that we secure the existence of at least one bound st
soon asl is larger than

lmin5
*0

`W~r ! dr

2*0
`rW2~r ! dr

. ~6!

Both conditions~2! and~5! are for theS-wave, but can be generalized to higher angular mome
or for the existence of at least one bound state below some negative energy.2,3 They give good
results for usual potentials~exponential, square-well, Yukawa, Hulthe´n, etc.!.

Other conditions have also been found.4 However, they are more involved. Of course, one c
always try to find a trial wave function vanishing at the origin and for which the mean-value o
Hamiltonian Hl52(d2/dr2)1V(r )1 l ( l 11)r 22 is negative. If such a trial function can b
found, one has at least one bound state. However, what we are looking for are conditions
to ~2! or ~5!, where onlyV, and its powers and moments, appear, without any reference to a
function. The condition we obtain here is formula~23! below.

To conclude this introduction, let us mention that generalizations of~2! to noncentral poten-
tials, as well as to then-body case, are also known.5,6

II. SUFFICIENT CONDITIONS FOR INCREASING POTENTIALS

We consider now potentials which are again purely attractive, but also increasing,V8(r )
>0. Such potentials have been considered in the past by Calogero7 and Cohn8 for deriving upper
bounds on the number of bound states, the so-called Calogero–Cohn bound for theS-wave, or its
generalization9 to higher l . For such potentials, the local integrability condition is unnecess
Indeed, we have firstV(`)50. For, if V does not go to zero at infinity, there would exist anR
such that, forr .R, V(r ),2e, e.0, and this would contradict~1!. Starting fromr 5`, and
decreasingr , V(r ) can have only finite negative jumps. Indeed, if at somer 0 , V(r ) has an infinite
jump, this would mean thatV(r )52` for r ,r 0 , and we have again a contradiction with~1!. As
r→0, the jumps may become larger and larger, but in such a way as to preserve~1!. Anyway,
W(r ) is always an absolutely continuous function, and is now a concave function becausW9
5V8>0.

We are looking for bound states, whatever their energyE ~,0! may be. Following Birman
and Schwinger,10,11 the continuity argument allows us to consider the thresholdE50, and work
with the Schro¨dinger equation at zero energy. Now, at zero energy, if we combine the Schro¨dinger
equation for the reduced radial wave functionw l(r ) of angular momentuml , with potentiallV,

w l9~r !5FV~r !1
l ~ l 11!

r 2 Gw l~r !, ~7a!

together with the boundary conditionw l(0)50, we obtain the integral equation11

w l~r !5r l 111
l

2l 11 E
0

`

r ^
l 11r &

2 l@2V~r 8!#w l~r 8! dr8, ~7b!

wherer ^5min (r,r8), andr &5max (r,r8). As was shown by Jost and Pais,12 condition ~1! on the
potential entails that Eq.~7b! is of the Fredholm type, and that its solution, by Fredhom theory
given by
J. Math. Phys., Vol. 38, No. 10, October 1997
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w l~r !5
N~l;r !

D~l!
, N~l;0!50, ~8!

where the Fredholm determinantsN and D are both entire functions ofl, whateverr is ~>0!.
Moreover, D(l) is identical with the Jost functionF(k,l) at zero energy,k5AE50. Now,
condition ~1!, together with the boundary conditionw l(0)50, entails that the Hamiltonian

Hl52
d2

dr2 1
l ~ l 11!

r 2 1lV~r ! ~9!

is self-adjoint inL2(0,̀ ) for real potentials. Therefore, the eigenvalues of the integral kerne
~7b!, that is, the inverse of the zeros ofD(l), are real. SinceV is negative, these eigenvalues a
positive, simply because for negativel the Hamiltonian is a positive operator, and therefo
cannot have negative eigenvalues. We call the eigenvaluesLn51/ln , n51,2,...,L1.L2.•••
.Ln.••• .

Now, it is also known in the theory of Fredholm integral equations12 that the series expansio
of ~7b!, the Neumann~Born! series, is convergent, and gives the unique solution of the equa
provided thatulu,l1 . At l5l1 , D(l) vanishes, and the convergence breaks down. If we l
now carefully at~7b!, we see that its series expansion has all its terms positive. Therefore,
replace these positive terms by smaller ones, and the series thus obtained is still diverge
original series is,a fortiori, also divergent. This idea is what is behind the derivation of~2!, which
applies tol 50, or its generalization forlÞ0.

We wish now to introduceW, and use its convexity to find a different kind of sufficie
condition. Before proceeding further, we have to note the following properties ofw l(r ) andW(r ).
First, under the assumption~1! on the potential, and independently of any series expansion
have1

lim
r→0

r 2 l 21w l~r !51, ~10!

lim
r→0

r 2 lw l8~r !5 l 11, ~11!

and

lim
r→`

r 2 l 21w l~r !5Al , Al finite, ~12!

lim
r→`

r 2 lw l8~r !5~ l 11!Al . ~13!

WhenAl50, we have a bound state, or at least a resonance, according to the value ofl .1/2 or
l<1/2, at zero energy.1 On the other hand, again from~1!, we have

lim
r→0,̀

rW~r !50. ~14!

The second limit is trivial because

rW~r !5r E
r

`

uV~ t !u dt<E
r

`

tuV~ t !u dt→0
J. Math. Phys., Vol. 38, No. 10, October 1997
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as r→`. To prove the first part, we know thatW is a continuous function, and increases asr
decreases. Also,W is L1 at the origin because of~4!. We have also thatrW is bounded asr→0,
since

rW~r !<E
r

`

tuV~ t !u dt<E
0

`

tuV~ t !u dt,`.

Therefore, if the continuous, positive, and bounded functionrW(r ) does not go to zero asr→0,
there should exist anr 0.0 such that, forr ,r 0 , one hasrW(r ).a0 , a0.0. This contradicts the
integrability of W(r ) at r 50.

We now replace in the integral equation~7b! V by W8, andw l by r l 11c l , and integrate by
parts. Because of~10!–~14!, all the integrated terms vanish, and we are led to the equiva
integral equation

c l~r !511
l

~2l 11!r 2l 11 E
0

r

W~r 8!@r 82l 12c l~r 8!#8 dr81
l

2l 11 E
r

`

W~r 8!@r 8c l~r 8!#8 dr8.

~15!

We can again iterate this integral equation, starting form the zeroth-order termc l(0)51, and
we are led, of course, to a convergent series as long asl,l1 , which diverges atl5l1 . Now, it
is easily checked that this new series also has all its terms positive. This is true for the first
term c l

(1) obtained from~15! by replacing in the integralsc l by 1 andc l8 by 0, and is trivially
checked step by step~see Appendix B!. Now comes the essential point that, according to~8!, the
divergence of the series atl5l1 is becauseD(l) vanishes, and this divergence is independen
r . If it happens for oner , it happens for everyr .0. Also, we obtain a minorizing positive serie
if we replace in the above integral equationW(r ) by a smaller positive function. Now,W(r ) being
a concave function, the curve ofW(r ) is always above its tangent at any point, for instance
somer 5R. Therefore, for allr , we have

W~r !>W0~r ![@V~R!~r 2R!1W~R!#u~R02r !, ~16!

whereR0 is the point where the tangent atW(r ) at the pointr 5R meets the real axis:

R0~R!5R1
W~R!

2V~R!
. ~17!

Of course,R0(R)>R for all R. In caseR is a point of discontinuity ofV ~a jump inV!, we have
the left tangent and the right tangent, and, of courseW(r ) is always above both. In this case, o
the right-hand side of~16! we must takeV(R1) andV(R2), and similarly for~17!. In any case,
it follows that if the Neumann series for

c l ,0~r !511
l

~2l 11!r 2l 11 E
0

r

W0~r 8!@r 82l 12c l ,0~r 8!#8 dr81
l

2l 11 E
r

R0~r !

W0~r 8!

3@r 8c l ,0~r 8!#8 dr8 ~18!

diverges, the same is true for~15!, and, therefore, we have a bound state. Now,~18! is nothing else
than the equivalent integral equation for the radial Schro¨dinger equation at zero energy fo
w l ,0(r )5r l 11c l ,0(r ) with the square-well potential

lV0~r ![lW08~r !5lV~R!u @R0~R!2r #, ~19!

whereR0 is given by~17!. That is, forr ,R0(R),
J. Math. Phys., Vol. 38, No. 10, October 1997
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w l ,09 ~r !5FlV0~r !1
l ~ l 11!

r 2 Gw l ,0~r !. ~20!

Now, the solution of this equation forr ,R0 , with the square-well potentiallV0 , is simply,
up to a multiplicative constant,

w l ,0~r !5ArJl 11/2~l1/2uV~R!u1/2r !. ~21!

In order forlV0 to have a bound state, it is now sufficient that

l1/2uV~R!u1/2R0~R!. j l ,18 , ~22!

wherej l ,18 is the first maximum of the functionx1/2Jl 11/2(x), Jn being the Bessel function of orde
n. This maximum is, by definition, positive, and~22! is nothing else than the usual condition1 for
a square-well potential of depth2luV(R)u and widthR0(R) to have a bound state of angula
momentuml . When l 50, w l ,0(r ) reduces to a sine, so thatj 0,18 5p/2, and we get the usua
condition for anS-wave bound state.

Therefore, if~22! is satisfied, i.e.,l is large enough, the Neumann series of~18! breaks down.
A fortiori, this is also true for the Neumann expansion of~15!, so that~22! is the sufficient
condition we are looking for. Collecting these results, and sinceR was arbitrary, we finally have
the following.

Theorem 1: For a spherically symmetric potentialV, which is purely attractive and increas
ing, and satisfies~1!, a sufficient condition for having a bound state with angular momentuml is

sup
R.0

uV~R!u1/2FR1
W~R!

2V~R!G. j l ,18 , ~23!

whereW is defined by~3!, and j l ,18 is the first maximum ofx1/2Jl 11/2(x).

Remark: At the points of discontinuity of the potential,r 1 ,r 2 ,..., where it has jumps, we mus
include on the left-hand side of~23! both determinations, from the right and from the left,V(r n

1) andV(r n2).
Applied in the simple case ofl 50, wherej 0,18 5p/2, we obtain from~23! the following table:

Potential l1 l2 l̄(23)

2le2r 1.446 7.618 1.68

2le2r 2 2.684 17.80 2.88

2le2r /r 1.68 6.456 2.20

2l
a2

~11ar!4
p2 4p2 S98D

2

p 2

2l
1

~11r2!2
3 15 3.46

Here,l1 andl2 are the exact thresholds for having one, respectively two, bound states, anl̄ is
obtained from~23!. As we see,~23! gives reasonably good results, which are far from the thre
olds l2 for two bound states.
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III. MORE GENERAL CASES

So far, we have been assuming that the potential is increasing. Also, we have been loo
bound states below energy zero, the threshold of the continuum. In this section, we shall
alize ~23! as follows. First, we shall relax the conditionV8>0, and replace it by the milde
condition9

d

dr
@r 122p~2V!12p#<0,

1

2
<p,1. ~24!

Whenp5 1
2, we get backV8>0. However, forp. 1

2, it is easily seen that the potential may ha
oscillations. This can be checked on the following examples:

V1~r !52r ~2p21!/~12p!e2r /~12p!, ~25!

V2~r !52r 2~2p21!/~12p!$@11 1
2~sin r 1cos r !#e2r%1/~12p!. ~26!

The first potential, which vanishes at the origin, has a minimum before going again to ze
infinity. The second, which vanishes also at the origin, oscillates indefinitely, and goes to
whenr goes to infinity. Both satisfy~24!. The second generalization is to find a sufficient con
tion for having at least one bound state below some given negative energyE052g2.

The first generalization to attractive potentials satisfying only~24! is easy. The trick is to
transform the Schro¨dinger equation~7a! at zero energy with a potential satisfying~24! to another
Schrödinger equation of the same kind, that is, again at zero energy, but now with a p
attractiveand increasingpotential, and with the same number of bound states. Then one can
directly our condition~23! to this new potential. More precisely, let us write~24! as

d

dr
@•••#52q~r !, ~27!

whereq(r ) is a positive function, which isL1(a,`) for any a.0. Solving the differential equa
tion ~27! with the conditionV(`)50, we find

V~r !52r ~2p21!/~12p!S E
r

`

q~ t ! dtD 1/~12p!

. ~28!

The two examples given at the beginning of this section are obtained, respectively, by
q1(t)5exp(2t), andq2(t)5(11sin t) exp (2t).

As r→0, the only requirement onq(r ) is that the potential~28! should satisfy, of course, th
integrability condition~1!. It is then shown9 that the transformation

r→Z5r 1/2~12p!, w→C~Z!5Z~2p21!/2w„r ~Z!…, ~29!

which mapsr P@0, `) one-to-one intoZP@0, `), andw~0!50 to C~Z50)50, leads to the zero
energy Schro¨dinger equation

C̈~Z!5FlV̄~Z!1
L~L11!

Z2 GC~Z!, ~30!

where

V̄~Z!524~12p!2 S E
r

`

q~ t ! dtD 1/~12p!U
r 5Z2~12p!

, ~31!
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and

L5L~ l ,p!52 1
21~12p!~2l 11!, ~32!

again with the boundary conditionC~Z50)50. As is seen in~31!, the new potential is now an

increasing function ofZ, V̇̄(Z)>0. Moreover, ifw vanishes at somer 0.0, the same is true forC
at the correspondingZ0 . Therefore,w and C have the same number of nodes onr P@0,̀ ) and
ZP@0,̀ ), respectively. It follows then from the nodal theorem13 that the number of bound state
is the same for~7a! and~30!. We can therefore apply our Theorem 1 directly toV̄(Z) in the new
variableZ, and then reformulate the result in terms of the old variabler .

The second generalization is to obtain a sufficient condition for the existence of a bound
below some negative energyE052g2. Here, one finds that it is now sufficient to replaceW(r ),
defined by~3!, by

Wg~r !52E
r

`

V~ t !e22gt dt. ~33!

A straightforward but lengthy and tedious calculation shows that the arguments of Sec.
through without further ado, and one gets again a condition similar to~23!, but more complicated
We shall come back to this, and other connected problems, in a forthcoming paper.
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APPENDIX A

Reference 3 not being easily accessible, we give here the proof of~5!, which is very simple,
and uses the Birman–Schwinger technique for proving the Bargmann bound.10 We consider the
kernel of the integral equation~7b! for l 50

K~r ,r 8!52r ,V~r 8!52@ru~r 82r !1r 8u~r 2r 8!#V~r 8!. ~A1!

If we denote the thresholdsl1,l2,•••,ln,••• for lV to have 1,2,...n,... bound states, we
have

(
1

`
1

ln
5TraceK5E

0

`

r ~2V! dr5E
0

`

W~r ! dr. ~A2!

Suppose now we iterate onceK to get

K ~2!~r ,r 8!5E
0

`

K~r ,r 9!K~r 9,r 8!d r9. ~A3!

We then get((1/ln
2)5TraceK (2). It is some cumbersome formula containing twiceV. We use

now V5W8, and integrate by parts. It turns out that all the integrated terms vanish atr 50 and
r 5` because of~14!, and the trace simplifies to

(
1

ln
2 52E

0

`

rW2 dr. ~A4!
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



ive.

t
is that

of the

.

urse,

,

4907K. Chadan and R. Kobayashi: Bound states in a potential

                    
Consider now((1/ln
2)2((1/ln). If all ln are larger than one, the above quantity is negat

In this case,V is too weak to have bound states because the first bound state occurs forl1V,
l1.1. Therefore, if the above difference is positive, at least one ofln , and indeed at leastl1 ,
should be less than one. And ifl1 is less than one, this means thatV is strong enough to have a
least one bound state. Therefore, a sufficient condition for having at least one bound state
~A4!–~A2!.0. And this is precisely~5!.

In three dimensions, and for a general potential without spherical symmetry, the kernel
Lippmann–Schwinger equation is

K~x,y!52
1

4p

V~y!

ux2yu
. ~A5!

If V is negative, we have again positive eigenvaluesLn51/ln . However, the trace is infinite here
So we must iterate once.10 Then, if the Rollnik condition is satisfied,11

E uV~x!V~y!u
ux2yu2 d3x d3y,`, ~A6!

K (2) has a finite trace, and the same is true for all other iteratesK (3),..., etc. Again, by an
argument identical to the radial case, if we consider(1

`(1/ln
3)2(1

`(1/ln
2), we are led to the

following.
A sufficient condition for the existence of at least one bound state is

TraceK ~3!2TraceK ~2!.0. ~A7!

A more general condition, whether the potential is spherically symmetric or not, is, of co

TraceK ~n!2TraceK ~m!.0, m,n. ~A8!

APPENDIX B

We consider Eq.~15!, where we suppress the indexl for simplicity, and iterate it, beginning
with the zeroth-order term

c051, c0850. ~B1!

The next iteration gives

c15
~2l 12!l

~2l 11!r 2l 11 E
0

r

W~r 8!r 82l 11 dr81
l

2l 11 E
r

`

W~r 8! dr8. ~B2!

It is easily seen that

@r 2l 12c1~r !#8>0, @rc1~r !#8>0. ~B3!

This, when used in~15!, gives a positivec2 , and again it can be also checked that one has

@r 2l 12c2#8>0, @rc2#8>0. ~B4!

One can continue this process indefinitely, and it is easily shown that if@r 2l 12cn#8 and@rcn#8 are
positive, the same happens for@r 2l 12cn11#8, and @rcn11#8. All this reasoning is, of course
independent of what the positive functionW(r ) is.
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Bounds on Schro ¨ dinger eigenvalues for polynomial
potentials in N dimensions
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Department of Mathematics and Statistics, Concordia University,
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If a single particle obeys nonrelativisticQM in RN and has the HamiltonianH5
2D1(q.0 a(q)r q, a(q)>0, then the lowest eigenvalueE is given approximately
by the semiclassical expressionE5minr.0$(1/r 2)1(q.0 a(q)(P(q,N)r )q%. It is
proved that this formula yields a lower bound whenP(q,N)
5(Ne/2)1/2(N/qe)1/q@G(11N/2)/G(11N/q)#1/N and an upper bound when
P(q,N)5(N/2)1/2@G((N1q)/2)/G(N/2)#1/q. An extension is made to allow for a
Coulomb term whenN.1. The general formula is applied to the examplesV(r )
5r 1r 21r 3 and V(r )5r 21r 41r 6 in dimensions 1 to 10, and the results are
compared to accurate eigenvalues obtained numerically. ©1997 American Insti-
tute of Physics.@S0022-2488~97!04110-8#

I. INTRODUCTION AND MAIN RESULT

In 1976 Barnes, Brascamp, and Lieb1 employed a sharp form of Young’s inequality to provid
a general lower-bound formula for the lowest eigenvalue of the Schro¨dinger operatorH52D
1V(r ) in N>1 spatial dimensions, wherer 5ir i , rPRN. The restriction on the potentialV(r ) is
that

I ~a!5E e2aV~r !dNr,` ~1.1!

for all a.0. As an application they studied the pure power potentials

V~r !5vr q, v.0, q.0, ~1.2!

and they obtained the lower bound

E>Nv2/~q12!S 21q

2q D F G~11N/2!

G~11N/q!G
2q/N~q12!

e~q22!/~q12!. ~1.3!

Meanwhile a Gaussian ‘‘trial function’’ provided the upper bound

E<Nv2/~q12!S 21q

2q D FqG~~N1q!/2!

NG~N/2! G2/~q12!

. ~1.4!

The purpose of this paper is to extend the pure power-law bounds~1.3! and~1.4! to the case
of potentials which are positive combinations of positive powers. Thus the Hamiltonian we
sider is given by

H52D1v (
q.0

a~q!r q, va~q!>0. ~1.5!

Our principal result is that the lowest eigenvalue ofH is approximated by the semiclassic
formula
0022-2488/97/38(10)/4909/5/$10.00
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E5min
r .0

H 1

r 2 1v (
q.0

a~q!~P~q,N!r !qJ ~1.6!

in which, for a lower bound, the numbersP(q,N) are given by

P5PL~q,N!5S Ne

2 D 1/2S N

qeD
1/qF G~11N/2!

G~11N/q!G
1/N

, ~1.7!

and for an upper bound by the formula

P5PU~q,N!5S N

2 D 1/2FG~~N1q!/2!

G~N/2! G1/q

. ~1.8!

Since numerical estimates of such eigenvalues are readily available today, the main p
this result is its generality and simplicity. All the parametric dependence of the eigenva
captured by the energy-bound formulas. Thus, for example, the minimization in~1.5! can easily be
performed exactly to yield parametric formulas (v(r ),E(r )) for the dependency of the eigenvalu
E on the overall coupling parameterv. ForN.1, it is possible to use the same formula~1.6! even
when the Coulomb term2a(21)r 21 is also added: In this caseP(21, N)5 1

2(N21) must be
used for the lower bound. For the upper bound~1.8! continues to be valid, although alternativeP
numbers derived from an exponential trial function, and presented in Sec. III, may be usefu
Coulomb coefficient is sufficiently large. The addition of the Coulomb term does not depen
Young’s inequality and theoverall potential is not restricted by the inequality~1.1!.

The derivation of the lower bound given in Sec. II below uses the lower bound~1.3! for pure
powers and the ‘‘sum approximation,’’2,3 which is outlined briefly so as to make the present pa
more self-contained. The pure-power lower bounds are used in lieu of exact values, wh
course, would be preferred. Forq521 andq52 these bounds are in fact exact. The upper bou
is obtained by a straightforward application of a trial function and a minimization with respe
scale. It is perhaps interesting that both general bounds may be expressed by the same s
sical formula: One simply has to insert the appropriateP numbers. In Sec. III we present som
numerical results for the two examplesV(r )5r 1r 21r 3 andV(r )5r 21r 41r 6 in dimensions 1
to 10.

II. ENERGY BOUNDS

The derivation of the lower bound is based on two elements: a variational representati
Schrödinger eigenvalues; and a variational argument that applies to sums of potential term
dimensions 1 and 3 this approach has been developed earlier.2,3 We now present the essence of t
idea, specialized for our present application to discrete sums of pure powers. For some
technical details we shall have to refer to the earlier papers.

First, suppose thatE(q) represents the lowest eigenvalue of the HamiltonianH52D
1sgn(q)rq, thenE(q) has the representation

E~q!5min
r .0

FP~q!2

r 2 1sgn~q!r qG ~2.1a!

5min
r .0

F 1

r 2 1sgn~q!~P~q!r !qG ~2.1b!
J. Math. Phys., Vol. 38, No. 10, October 1997
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5sgn~q!S 11
q

2D S 2

uqu D ~q!/~21q!

P~q!~2q!/~21q!, qÞ0.

~2.1c!

The step from~2.1a! to ~2.1b! involves a scale change in the ‘‘dummy’’ variabler . Thus for each
power q, ~2.1c! establishes a monotonic functional relationship betweenE(q) and P(q). The
dependence ofP(q) on q is much smoother than that ofE(q), which has an infinite derivative a
q50. It has been proved,3 for example, thatP(q) is a monotonic increasing function and that t
limit q→0 yields the eigenvalues of the log potential.

We now consider the spectrum of a Hamiltonian whose potential is the sum of terms e
which could alone support a bound state for any positive value of the coupling parameter.
the potentials we shall use in this paper are mixtures of attractive powers, this assump
satisfied. To fix ideas we consider the case of just two such terms

H52D1arp1brq5vS 2D1
a

v
r pD1~12v!S 2D1

b

~12v!
r qD , 0,v,1. ~2.2!

The functionsFp(v)5E(p)v (2)/(21p) andFq(v)5E(q)v (2)/(21q) describe how the lowest eigen
values ofHp52D1vr p andHq52D1vr q depend on the coupling parameterv. By employing
the ~unknown! exact ground stateC as a ‘‘trial function’’ in the identity~2.2! we see that the
lowest eigenvalueE of H is bounded below by the expression

E. max
vP~0,1!

FvFpS a

v D1~12v!FqS b

~12v! D G . ~2.3!

This could be described as an optimized Weyl lower bound4–6.
We have proved2 that, in terms of theP numbers, the optimized lower bound~2.3! may be

recast into the semiclassical form

E.min
r→0

F 1

r 2 1a~P~p!r !p1b~P~q!r !qG . ~2.4!

The maximization in~2.3! has not been converted into the minimization of~2.4!. The general
derivation is given in Ref. 2: By setting up the so-called ‘‘kinetic-potential’’ formalism it
possible to show that any discrete Schro¨dinger eigenvalue can be expressed in a semiclass
form, including a minimization; then it is proved that the optimal lower bound, correspondin
our application to~2.3!, is expressed in this formalism by replacing the unknown kinetic poten
for the sum by the sum of the kinetic potentials of the components; for pure powers,
components are the potential terms themselves, with theP numbers inserted. In the semiclassic
form ~2.4! we note that the mean kinetic energy^2D& has been replaced by 1/r 2 and the mean
potential energy is obtained from the potential function itself by the insertion of the appropriP
numbers in each term. Thus by an immediate generalization, we obtain the general form~1.6! for
the lower bound. Since we have thelower bounds~1.3! for the single-power eigenvaluesE(N,q)
at our disposal, we obtain the correspondingPL ~1.7! by applying the monotonic corresponden
~2.1c!. A sharpending of the bounds could be obtained by using knownexactsingle-power eigen-
values, say, forq51. However, our main purpose is to establish simple and general eigen
formulas. As an indication of the extensibility of the results, we point out that the addition
Coulomb term forN>2 is obtained by using the same formula~1.6! with the additional~exact! P
value
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E~N,21!52
1

~N21!2 ⇒P5PL5
1

2
~N21!, N>2. ~2.5!

We now turn to the upper bounds. Whenever we apply a trial functionF to the Hamiltonian
and we minimize with respect to a scale parameters(r→r 85sr ), the result can be expressed
the semiclassical form~1.6!. We can see this by the following general dimensional~or scaling!
argument: The mean kinetic energy necessarily has the form

^2D&5~F,2DF!/iFi25K/s2, ~2.6!

and the mean powers have the form

^sgn~q!r q&5sgn~q!~Qs!q, ~2.7!

for suitableK andQ. By writing K/s251/r 2, and definingP5Q/K1/2, and minimizing over the
scale~expressed now in terms ofr ! we see that~1.6! is indeed the general form of the result. A
we need to do is to compute theP5PU numbers for each ‘‘shape’’ of trial function. For Gaussi
and exponential trial functions we obtain, respectively,

P5PU~q,N!5Pg~q,N!5S N

2 D 1/2FG~~N1q!/2!

G~N/2! G1/q

~2.8!

and

P5PU~q,N!5Pe~q,N!5
1

2 FG~N1q!

G~N! G1/q

. ~2.9!

The exponential result may be useful if the Coulomb term is included~for N>2! since, for
example, a Gaussian wave function produces an 8% error in the pure Coulomb case wN
53.

III. TWO EXAMPLES

We now consider the examples

V1~r !5r 1r 21r 3 ~3.1!

TABLE I. Table of ground-state eigenvalues ofH 5 2D 1 r 1 r 2

1 r 3 in N spatial dimensions. Lower and upper bounds,EL andEU , have
been calculated with the general formula~1.6!, and accurate valuesE have
been obtained by direct numerical integration of Schro¨dinger’s equation.

N EL E EU

1 1.7987 1.8306 1.8309
2 3.5233 3.5644 3.5655
3 5.2608 5.3066 5.3087
4 7.0258 7.0746 7.0778
5 8.8210 8.8720 8.8762
6 10.6459 10.6987 10.7037
7 12.4991 12.5534 12.5593
8 14.3792 14.4348 14.4415
9 16.2848 16.3415 16.3489

10 18.2143 18.2720 18.2801
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and

V2~r !5r 21r 41r 6. ~3.2!

In Table I and Table II we exhibit the results obtained by use of the eigenvalue formula~1.6! for
these potentials in dimensions 1 to 10, along with some accurate values obtained by the
numerical integration of Schro¨dinger’s equation.

IV. CONCLUSION

The simple and general result of Barnes, Brascamp, and Lieb1 for bounds on Schro¨dinger
eigenvalues corresponding to pure power potentials has been extended to sums of such
The more general bounds are obtained from the semiclassical formula~1.6! which involves a
minimization over a single variable. This formula is extensible, as we have demonstrated w
addition of a Coulomb term. The formula can also be sharpened by the use of more accuP
numbers which could be obtained, for the lower bound, by more accurate single-power eig
ues, and, for the upper bound, by the use of an improved wave function. In all of these resu
dimensionN is kept as a free parameter.
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TABLE II. Table of ground-state eigenvalues ofH52D1r 21r 41r 6 in N
spatial dimensions. Lower and upper bounds,EL andEU , have been calcu-
lated with the general formula~1.6!, and accurate valuesE have been ob-
tained by direct numerical integration of Schro¨dinger’s equation.

N EL E EU

1 1.5209 1.6149 1.6582
2 3.3367 3.5139 3.5979
3 5.4053 5.6564 5.7784
4 7.6976 8.0155 8.1727
5 10.1924 10.5713 10.7615
6 12.8734 13.3086 13.5298
7 15.7275 16.2151 16.4657
8 18.7440 19.2809 19.5593
9 21.9140 22.4974 22.8024

10 25.2300 25.8574 26.1878
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Hypercomplex numbers and the description of spin states
J. J. Hamiltona)

Department of Physics, University of Maryland, College Park, Maryland, 20742b!

~Received 16 October 1996; accepted for publication 30 April 1997!

A family of hypercomplex numbers is introduced in which multiplication is com-
mutative and members can have up to eight components. In particular, the eight
basis elements$E% contain those for ordinary complex numbers,E** 5E, as well
as new elements whereE** 52E; the operation * being the generalization of
complex conjugation. This family lends itself to the description of quantum me-
chanical spin states in that it offers a simple treatment of time reversal, represen-
tations with the same conjugation properties as underlying operators, and explicit
continuous-angle spherical harmonic functionsZsm(u,f) analogous to the
Ylm(u,f) for orbital angular momentum. The new elements are especially well
suited for half-integral spin states, whereas conventional complex numbers remain
useful for integral spin states. ©1997 American Institute of Physics.
@S0022-2488~97!02310-4#

I. INTRODUCTION

Operators in quantum mechanics have properties which are independent of the speci
resentations used to enact calculations. A unitary transformation to a new set of basis state
leave these properties unchanged. Since the value of specific matrix elements will chang
such a transformation, we must be careful not to ascribe the properties of these matrix elem
the operator itself. For example, the momentum operatorpx is often described as being imagina
since it is represented by the derivative (\/ i )(]/]x). However, this occurs only in the coordina
representation. In the momentum representation,px is represented by a real numberp, andx by
the imaginary derivativei\]/]p. One might conclude thatpx or x are imaginary or real dependin
on the specific representation used.

An alternative treatment is to consider the operator to be real or imaginary independent
representation. Thus, we can take the conjugate of the operator relation,

@x,px#5 i\, ~1!

without recourse to any specific representation, so that

@x* ,px* #52 i\. ~2!

In Eq. ~2! we understand one ofx or px to be purely imaginary and the other to be purely re
~evidently we have a choice as to which is which! in the sense that for an operatorA, the conjugate
operatorA* is equal to2A ~or 1A) for one which is purely imaginary~or real!.

For the sake of being definite, we can choosex to be real andpx to be imaginary. Thus, even
in the momentum representation there is no ambiguity:

px* up&52pxup&52pup&. ~3!

In the case of orbital angular momentum,L , we see that it is necessarily purely imagina
being a product ofx andp. So the operator relation,

a!Present address: 8645 Concord Dr., Jessup, MD 20794.
b!Address to which correspondence should be sent.
0022-2488/97/38(10)/4914/15/$10.00
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L3L5 i\L , ~4!

which is shorthand for

@Lx ,Ly#5 i\Lz , ~5!

and a cyclic permutation of indices is easily transformed to

L* 3L* 52 i\L* , ~6!

with the recognition ofL* as2L .
In taking L* as2L , we recognize that this holds for all three components ofL . This is not

always depicted in standard representations, since Eq.~5! requires only that one component b
purely imaginary. As a result, in matrix formulations two components are often represented
purely real numbers. For example, for eigenstates ofL2 and Lz with respective eigenvalue
l ( l 11)\2 andm\, wherel 50,1,2, . . . , andm52 l ,2 l 11, . . . ,l , we frequently find the repre
sentation forl 51 is

Lx5
\

A2S 0 1 0

1 0 1

0 1 0
D , Ly5

\

A2S 0 2 i 0

i 0 2 i

0 i 0
D , Lz5\S 1 0 0

0 0 0

0 0 21
D , ~7!

with basis statesu l 51, m& given by

u1,1&5S 1

0

0
D , u1,0&5S 0

1

0
D , u1,21&5S 0

0

1
D . ~8!

In Eq. ~7! only Ly is explicitly imaginary; in Eq.~8! all numbers are real. This contrasts th
coordinate representation, with polar and azimuthal anglesu andf, where all three component
are explicitly imaginary,

Lx5 i\S sin f
]

]u
1cot u cosf

]

]f D ,

Ly5 i\S 2cosf
]

]u
1cot usinf

]

]f D , Lz52 i\
]

]f
. ~9!

Moreover, eigenstatesu l ,m& are represented by spherical harmonicsYlm(u,f)1 so that

u1,61&57A 3

8p
sinue6 if, u1,0&5A 3

4p
cosu. ~10!

The Ylm’s have the property thatYlm* (u,f)5(2)mYl ,2m(u,f). This phase relationship is
evident in Eq.~10!, and is important in the proper calculation of matrix elements. Since this oc
in a representation in whichL is explicitly imaginary, it suggests that we can ascribe the sa
property to the statesu l ,m& irrespective of representation. Thus

~ u l ,m&)* 5~2 !mu l ,2m&. ~11!

Note that the ket vector (u•••&)* remains a ket vector upon conjugation. In particular, it does
turn into a bra vector̂•••u as it does when taking the adjoint.
J. Math. Phys., Vol. 38, No. 10, October 1997
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The relation~11! is not readily apparent in Eq.~8!. However, it can be recovered by a simp
basis transformation. To wit,

u1,61&5
71

A2 S 1

0

6 i
D , u1,0&5S 0

1

0
D . ~12!

With this basis, thel 51 matrices become purely imaginary:

Lx5\S 0 0 0

0 0 i

0 2 i 0
D , Ly5\S 0 i 0

2 i 0 0

0 0 0
D , Lz5\S 0 0 2 i

0 0 0

i 0 0
D . ~13!

In the case of spin angular momentum,S, the situation is more complicated. Intrinsic spin
not the same as orbital angular momentum, in that it has no direct classical analog. Howeve
one form of spin is the orbital angular momentum of constituent components, it is reasona
assume that we can make the assignmentS*52S. The validity of this assumption will be exam
ined more closely below. In that case, as in Eq.~6!, the conjugation of the relation,

S3S5 i\S, ~14!

is just the replacement ofS with 2S.
As before we focus on eigenstatesus,m& of S2 andSz with eigenvaluess(s11)\2 andm\

wheres now equals 0,1/2,1,3/2, . . . , andm52s,2s11, . . . ,1s. For integer spins, represen-
tations ofS are isomorphic to those ofL . Thus, Eqs.~12! and~13! are perfectly valid fors51, and
all three componentsSx , Sy , and Sz are explicitly imaginary. Moreover, we see th
us51, m&* 5(2)mus51,2m&.

But does this hold for half-integer spin? In the simplest case,s51/2, S is expressed in terms
of the Pauli spin matricess,

S5\s/2, ~15!

where

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D , ~16!

with corresponding eigenvectors

u1/2,1/2&5S 1

0D , u1/2,21/2&5S 0

1D . ~17!

As in Eq. ~7!, Eq. ~16! shows onlySy as having imaginary matrix elements. Also in th
representation, a relation such as Eq.~11! for s51/2 states is not evident. Again, we distingui
between invariant properties of operators and properties of specific matrix elements in any
representation. We can ask whether or not it is possible to find a new representation, as wa
for the case ofl or s51, in which the matrix elements themselves show the propertiesS*52S for
all three components, and

~ us,m&)* 5~2 !mus,2m&, ~18!
J. Math. Phys., Vol. 38, No. 10, October 1997
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for s51/2. The answer is that such a transformation, at least one using conventional co
coefficients, is not possible.

Moreover, the coordinate-representation operators of Eq.~9! cannot be used for the compo
nents ofS. Because spin has no classical analog, the interpretation of coordinatesu and f as
internal degrees of freedom is not straightforward. It is well known that attempts to us
operators of Eq.~9! to generate spherical harmonicsYlm for half-integral l fail to produce a
suitably normalizable closed family of 2l 11 members.

It is possible, therefore, that the assignment ofS* as 2S, and the corresponding phas
relationship of Eq.~18! are not justified for half-integral spin. However, I will argue that the
relationships have meaning, and this can be seen by the following argument.

Let K be the Hilbert space operator which forms the complex conjugate,2

~ uc&)* 5Kuc&5uc* &, ~19!

for statesuc&, and

G* 5KGK21, ~20!

for arbitrary operatorsG, which can even be simplec-numbers.K is an antilinear operator in tha

K~auc1&1buc2&)5a* Kuc1&1b* Kuc2&. ~21!

In any given representation, the matrix elements ofG* are not simply the complex conjugates
the matrix elements ofG, although they can be for a certain select representation. This was
in Eq. ~3!. Nor are the components (c* )n of the stateuc* & necessarilycn* , where thecn’s are the
components ofuc&.

However, if we adopt Eq.~18! as a property of the statesus,m&, then it is enough to show tha
the operatorS* is equal to2S for all s. For this we can use the well-known representat
indicated by Eqs.~7! and ~16!, i.e., the one in whichSz is diagonal. This representation
generated by setting

~Sz!mm85m\dmm8, ~22!

and making use of the raising and lowering operators,

S65Sx6 iSy , ~23!

where

S6us,m&5A~s7m!~s6m11!\us,m61&, ~24!

to generate the matrix elements ofSx andSy .
In this representation the matrix elements have the property

~Sm!mm8
* 5~2 !m82m11~Sm!2m,2m8, ~25!

wherem 5 x, y, or z. This can be seen directly in Eqs.~7! and~16!. From Eqs.~19! and~20! we
can write

KSmus,m&5Sm* Kus,m&5Sm* ~ us,m&)* . ~26!

Expanding the left side of Eq.~26! in terms of a complete set of basis states and using Eq.~18! on
the right side gives
J. Math. Phys., Vol. 38, No. 10, October 1997
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Sm* ~2 !mus,2m&5 (
m852s

1s

K~Sm!m8mus,m8&. ~27!

Expanding the left side and again making use of Eqs.~18! and ~20! gives

(
m8

~2 !m~Sm* !m8,2mus,m8&5(
m8

~2 !m8~Sm!m8m
* us,2m8&. ~28!

From this we directly find the matrix elements ofSm* in terms of those ofSm :

~2 !m~Sm* !2m8,2m5~2 !m8~Sm!m8m
* . ~29!

Hence, from Eq.~25!,

~Sm* !mm852~Sm!mm8, m5x,y,z, ~30!

or S* 52S for half-integer as well as integer spin.
Now we may well ask why, ifS* 52S, can we not find a simple transformation fors51/2,

as was done fors51, to express all matrix elements (S)qq8 in terms of purely imaginary numbers
The answer is that such a transformation does exist, and will be given explicitly below, but
involves hypercomplex numbers. The need for hypercomplex numbers follows directly from
~18!,

Kus,m&5~2 !mus,2m&5~ i !2mus,2m&, ~31!

and hence

K2us,m&5K~ i !2mus,2m&5~2 i !2mKus,2m&5~2 i !2m~ i !22mus,m&5~2 !2mus,m& ~32!

where the third step of Eq.~32! follows from the antilinearity ofK.
Normally we think ofK2 as being the identity transformation. That is, the conjugate o

conjugate is the original number. Yet Eq.~32! shows thatK2511 for integral spin, andK2521
for half-integral spin. Thus,

K25~2 !2s. ~33!

So, if we wish to find a representation in which the matrix elements ofS are the negatives of thei
conjugates, then for integral spin, ordinary complex numbers,c, suffice asc** 5c. However, for
half-integral spin, then we seek hypercomplex numbersa with the propertya** 52a. Note that
despite the use of such numbers, transition probabilities will still be non-negative purely
numbers given by squared-magnitudes of amplitudes.

A transformation to a new representation is never essential. Calculations can be perfor
any representation so long as algebraic errors are avoided. A transformation to a new repr
tion is useful only insofar as it enhances insight into the problem at hand, or to the degree
reduces the chance of making computational mistakes. We will see that by this measure,
of hypercomplex numbers to describe spin states offers a number of advantages. Among th
a simple treatment of time reversal, new treatments of spinor algebra, and differential operat
S analogous to those forL given in Eq.~9!. This last characteristic will allow us to generate spin
spherical harmonicsZsm(u,f) analogous to the orbital spherical harmonicsYlm(u,f). Finally,
with L andS on an equal footing, we have a total angular momentumJ5L1S with the property
J* 52J.
J. Math. Phys., Vol. 38, No. 10, October 1997
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II. HYPERCOMPLEX ARITHMETIC

Real numbersa have a single component given bya5a0E0 wherea0 is real andE0 is the
trivial basis element of unit magnitude, i.e.,E051. Complex numbersa have two components
the real and imaginary parts, and are given bya5a0E01a1E1 wherea0 anda1 are purely real,
andE15 i . In general, an arbitrary hypercomplex number has 2r components wherer is a non-
negative integer, and is written as

a [ r ]5 (
n50

2r21

anEn , ~34!

where thean’s are real. In the present case, we will require that theEn’s all be roots of61, of
which half will beA11 and half will beA21. Note, however, that all theE’s are distinct, as they
are distinguished by their conjugation properties. The number of elements must be a power
insure that they form a closed group under multiplication. Furthermore, multiplication in this
will be commutative, unlike conventional quaternions and octonions whose multiplication is a
commutative.

For the problem at hand, we wish to make use of elementsE with the propertyE** 52E.
This will requirer 53 so that our hypercomplex numbers will have eight components in gen
Since, in many cases of interest, many of the components of a given number will be zero,
also ascribed single-letter names to theEn’s, just asE1 is known byi , to make the arithmetic les
cumbersome. The necessary definitions are shown in Table I.

Certain features of Table I bear examination. In particular, the definition of any elemenE is
E2561 andE* 5 ~unit phase!3E. Thus,i andk are both roots of21, but differ in thati *5 2 i
whereask* 51k. There is also some choice in the definitions. For example, I have assignedE0 to
1, but it could just as easily be21. Similar assignments have been made for the other com
nents. The names are arbitrary, but are chosen to depart as little from ordinary usage as p

The numberh will play an important role in what follows. It has the propertiesh251,
h* 52h, andhh* 521. It is known to generate the family of hyperbolic complex numbers,3 and
has found application among the ‘‘perplex’’ numbers.4 However, it is the elementsE42E7 which
have the propertyE** 52E. These elements are also distinct from their conjugates so thaa*
andb* are suitable basis elements in their own right, independent ofa andb. Finally, one might
ask whether other definitions such asE256 i might be useful. Such numbers can be defined,
they turn out to be linear combinations of those in Table I, and so convey no new informa

Addition is straightforward and clearly commutative. Ifa5(anEn and b5(bnEn , then
g5a1b5((an1bn)En .

As with all roots of61, trigonometric functions can be generated by taking an exponen

exp~Enu!5cosh~u!1En sinh~u!, n50,2,4,6,

5cos~u!1En sin~u!, n51,3,5,7. ~35!

Beyond r 51, nonzero hypercomplex numbers can have zero norm. Just as a zero
number is obtained by adding21 to 1, one gets a zero-norm number by adding in equal amo

TABLE I. Definitions of unit basis elementsE.

n 0 1 2 3 4 5 6 7

En 1 i h k a b* a* b
En

2 1 21 1 21 1 21 1 21
En* E0 2E1 2E2 E3 hE4 2hE5 2hE6 hE7
J. Math. Phys., Vol. 38, No. 10, October 1997
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any two distinct roots of11 or any two distinct roots of21. Thus, 16h has zero norm, as doe
i 6k. In general, the norm ofa is given by the determinant of a matrixM (a),

Mnn8~a!5~2 !n~n811!aw~n,n8! , ~36!

where the indexw is

w~n,n8!5 (
q50

r 21

2qH F intS n

2qD 1 intS n8

2qD Gmod~2!J , ~37!

with ‘‘int’’ denoting the integer part. Thus

norm~a!5det@M ~a!#5U a0 a1 a2 a3 a4 a5 a6 a7

2a1 a0 2a3 a2 2a5 a4 2a7 a6

a2 a3 a0 a1 a6 a7 a4 a5

2a3 a2 2a1 a0 2a7 a6 2a5 a4

a4 a5 a6 a7 a0 a1 a2 a3

2a5 a4 2a7 a6 2a1 a0 2a3 a2

a6 a7 a4 a5 a2 a3 a0 a1

2a7 a6 2a5 a4 2a3 a2 2a1 a0

U . ~38!

The structure of this determinant is easier to see if we form the following 232 matrices:

A5S a0 a1

2a1 a0
D , B5S a2 a3

2a3 a2
D , C5S a4 a5

2a5 a4
D , D5S a6 a7

2a7 a6
D , ~39!

whereupon

norm~a!5UA B C D

B A D C

C D A B

D C B A

U . ~40!

A number will have zero norm if the sum of any two of the matricesA, B, C, or D equals the
sum of the other two, or if they all sum to zero. Also, by this definition, the norm incre
exponentially as 2r . Thus, expressed as a member of the family ofr 53, the real number 5 ha
norm 58. We must therefore distinguish between the norm of a number and its magnitude,
by ~norm!1/2r

.
In the present case, as mentioned above, multiplication is commutative. The binary pr

of the elementsE are given in Table II.
In this respect, these numbers differ from the quaternions of W. R. Hamilton,5 or their octo-

nion extensions.6 Quaternions and octonions have hypercomplex basis elementsE which all have
the propertyE2521. Furthermore, multiplication is not commutative. If we call the bases for
r 52 family of quaternions$1,i 8,h8,k8% then

~ i 8!25~h8!25~k8!2521 ~quaternions! ~41!

and
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i 8h85k852h8i 8and cyclic ~quaternions!. ~42!

This contrasts with the present case, where from Table II we see

i 25k2521; h2511 ~43!

and

ih5k51hi. ~44!

Quaternions and octonions also exist in hyperbolic form (E2511),7,8 but the family depicted in
Table II is clearly different.

Multiplication of arbitrary hypercomplex numbers is straightforward. Ifg5ab5ba, then by
using Table II and collecting terms we find

gn5(
n8

an8Mn8n~b!5(
n8

bn8Mn8n~a!. ~45!

The matrixM of a product follows readily:

M ~ab!5M ~a!M ~b!5M ~b!M ~a!, ~46!

and hence

norm~ab!5norm~a!norm~b!. ~47!

Matrix multiplication is not usually commutative, but the symmetry of theM matrices allows the
commutative multiplication in Eq.~46!. Since from Eq.~36! we have

an5M0n~a!5~2 !nMn0~a!, ~48!

we see that Eq.~45! is just a special case of Eq.~46!.
Division is equally straightforward. Ifg5a/b then we can multiply the denominator b

various factors until it is purely real. Multiplying the numerator by the same factors gives

gn5
det@N~a,b!#

det@M ~b!#
, ~49!

whereN(a,b) is a matrix given by

TABLE II. Multiplication table of basis elementsE.

3 1 i h k a b* a* b

1 1 i h k a b* a* b
i i 21 k 2h b* 2a b 2a*
h h k 1 i a* b a b*
k k 2h i 21 b 2a* b* 2a
a a b* a* b 1 i h k

b* b* 2a b 2a* i 21 k 2h
a* a* b a b* h k 1 i
b b 2a* b* 2a k 2h i 21
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Nn8n9~a,b!5an9 n85n,

5Mn8n9~b!, otherwise.
~50!

The M matrix of a quotient is

M ~a/b!5M ~a!M 21~b!5M 21~b!M ~a! ~51!

and

norm~a/b!5
norm~a!

norm~b!
. ~52!

Again we see that Eq.~49! is just a special case of Eq.~51!.
Various adjoint-type numbers can be obtained by operating on the components of a

complex number. If the numbera is represented by the 8-tuple$a0 , . . . ,a7%, then

a* 5$a0 ,2a1 ,2a2 ,a3 ,2a6 ,a7 ,a4 ,2a5%, ~53!

and

a** 5$a0 ,a1 ,a2 ,a3 ,2a4 ,2a5 ,2a6 ,2a7%, ~54!

which shows the property we desire. We can also define

ā5$a0 ,2a1 ,a2 ,2a3 ,a4 ,2a5 ,a6 ,2a7%, ~55!

so that

En5~2 !nEn ~56!

and

EnEn51, ;n. ~57!

For ordinary complex numbers,ā5a*.

III. MATRIX REPRESENTATIONS

Now that we have a family of numbers which can explicitly show the properties depicte
Eq. ~18!, we can use them for matrix representations. We must first generalize the definition
Hermitian adjoint. If an operatorG has matrix elementsGqq8, then its Hermitian adjointG† has
matrix elementsGqq8

† given by

Gqq8
†

5Gq8q. ~58!

Hermitian operators are still self-adjoint.
Let us now transform thes51/2 states in Eq.~17! in a similar way to thes51 states of Eqs.

~8! and ~12!. We will hold to the convention that inner products such as^c1uc2& or ^c1uGuc2&
remain invariant under the transformation. One way, but not the only way, to transform Eq~17!
is as follows:
J. Math. Phys., Vol. 38, No. 10, October 1997
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u1/2,1/2&5
1

A2
S a

b* D , ^1/2,1/2u5~1/A2!~a2b* !,

~59!

u1/2,21/2&5
1

A2
S 2b

2a* D , ^1/2,21/2u5~1/A2!~b2a* !.

The Pauli matrices become

sx5S 0 2h

2h 0 D , sy5S h 0

0 2hD , sz5S 0 2 i

i 0 D , ~60!

wherein all matrix elementssqq8 have the propertysqq8
* 5 2sqq8. The raising and lowering

operators are

S65
\

2S 6k 2h

2h 7kD . ~61!

We can represent the stateus,m& by a column vector with componentscq(sm), where the
indexq ranges from1s to 2s in integer steps. Except for relative phases, Eqs.~12! and~59! can
be generalized as follows:

cq~sm!5esk
m3U ~dq,m1 idq,2m!/A2, m.0,

~dq,umu2 idq,2umu!/A2, m,0,

dq,0 , m50,

~62!

wherees is a phase.
Spin matrix elements are

~Sz!qq852 i\qdq8,2q ~63!

and

~S6!qq85
\

2
A~s1q!~s2q11!@6kdq8,q211hdq8,2~q21!#

1
\

2
A~s2q!~s1q11!@6kdq8,q112hdq8,2~q11!#, 1/2,uqq8u<s2,

5\~S6
,!qq8, uqq8u,1/2, ~64!

where

~S6
,!qq85As~s11!

2
@dq,0~6kdq8,12hdq8,21!1dq8,0~6kdq,12hdq,21!#, s50,1,2, . . . ,

5
~s11/2!

2
@6k~dq,1/2dq8,1/22dq,21/2dq8,21/2!,

2h~dq,1/2dq8,21/21dq,21/2dq8,1/2!#, s51/2,3/2,. . . .

~65!

Sx and Sy are obtained from combinations ofS6 . In this representationS6 , Sx , and Sy are
symmetric, andSz5 i 3 ~real matrix! with Sx ,Sy5h3 ~real matrix!.
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We can see from Eqs.~62!–~65! that it is not necessary to make use of the fullr 53 set of
numbers to achieve a representation where the spin matrix elements have the p
(S)qq8

* 52(S)qq8. Depending on the choice ofes , we could use ther 52 base subset$1,i ,h,k%,
and take advantage of the simpler algebra. For example, ifes51, then this representation has th
property that (uc&)** 5uc& in apparent violation of Eq.~33!. This discrepancy can be resolved
we reexamine Eq.~31!, in which we identified21 with i 2. We now see from Table I that we als
could have used215k2, with the propertyk* 51k, and givingK251 for all s. But as it turns
out, it is worthwhile to retain the fullr 53 family, and using states for whichK25(2)2s. These
have a natural advantage when it comes to time reversal, as will be seen in Sec. V be
suitable choice fores in this case would be

es5a2s, ~66!

although in Eq.~59! we usede1/25a/Ak.
As a final example, I give the matrices fors53/2 using Eq.~66!:

u3/2,3/2&5Ak

2S b

0

0

2a*
D , u3/2,1/2&5Ak

2S 0

a

b*

0

D , ~67!

u3/2,21/2&5
1

A2kS 0

a

2b*

0

D , u3/2,23/2&5
1

A2kS 2b

0

0

2a*
D ,

Sx5\1
0 0

A3

2
h 0

0 0 2h 2
A3

2
h

A3

2
h 2h 0 0

0 2
A3

2
h 0 0

2 , Sy5\1
0

A3

2
h 0 0

A3

2
h h 0 0

0 0 2h
A3

2
h

0 0
A3

2
h 0

2 , ~68!

Sz5\S 0 0 0 23i /2

0 0 2 i /2 0

0 i /2 0 0

3i /2 0 0 0

D .
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IV. CONTINUOUS VARIABLE REPRESENTATIONS

Consider the vector operatorR:

R15Rx1 iRy5eifF f ~u!
]

]u
1g~u!

]

]fG ,
R25Rx2 iRy52e2 ifF f * ~u!

]

]u
1g* ~u!

]

]fG , ~69!

Rz52 i
]

]f
,

We will consider the conditions under whichR is a suitable representation for an angular m
mentum vector. By restrictingf and g to cases wheref ** 5 f and g** 5g we guarantee tha
R*52R. Furthermore, by keepingf andg independent off, we have

@Rz ,R6#56R6 , ~70!

so thatR6 will make suitable raising and lowering operators. To insure thatR3R5 iR, we require

f g* 1 f * g5 i @ f * f 82 f ~ f * !8# ~71!

and

g* g2 i @ f * g82 f ~g* !8#/2521, ~72!

where a prime denotesd/du. In the case ofL , f (u)51 andg(u)5 i cotu.
It should be noted that the form of Eq.~69! is not manifestly Hermitian. This is also true o

Eq. ~9!. However, if, as in the case ofL , the non-Hermitian parts ofR have a zero matrix elemen
when operating on a given set of state functions, then Eq.~69! will be a suitable representation fo
a Hermitian operator.

We seek eigenfunctionsZsm(u,f) for R similar to the spherical harmonicsYlm(u,f) for L . In
this case, however,s will take on half-integral as well as integral values. We want functions w
the propertyZsm* 5(2)mZs,2m , and so will try functions of the form

Zsm~u,f!5~const!3usm~u!eimf. ~73!

The requirement thatR1 annihilateZss gives

uss~u!5vs~u!, ~74!

where

v~u!5expF2 i E g~u!

f ~u!
duG . ~75!

The relationships invoked byR must work for any value ofs. In particular, fors51/2, R2

must lowerZ1/2,1/2 to Z1/2,21/2. Together with the requirement onZ*, we find

iC

2
Av~u!F S f *

f Dg~u!2g* ~u!G5~2 !1/2C* Av* ~u!, ~76!
J. Math. Phys., Vol. 38, No. 10, October 1997
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whereC is a normalizing constant. We can simplify the situation by restrictingf (u) to cases
wheref * (u) 5 either1 f (u) or 2 f (u). By Eq.~71!, theng* (u)52g(u) or 1g(u) respectively.
In this case,v* (u)5v(u) and Eq.~76! requires thatg(u)5~constant!. By Eq. ~72!, therefore,
g(u)56h or 6k, andusm(u) is independent ofm. Thus,

Zsm}vs~u!eimf. ~77!

One convenient choice, which leads tov(u) in trigonometric form, is

f ~u!51; g~u!52h; v~u!5eku. ~78!

This special choice ofR we can callQ:

Q15Qx1 iQy5eifF ]

]u
2h

]

]fG , Q25Qx2 iQy52e2 ifF ]

]u
1h

]

]f G ,
~79!

Qz52 i
]

]f
, uQu25Qx

21Qy
21Qz

252
]2

]u2
2k

]

]u
.

The appropriate functionsZsm are

Zsm~u,f!5
esk

m

4p

eksueimf

A~s1m!! ~s2m!!
, ~80!

wherees can be defined as in Eq.~62!. TheZsm’s now transform in the proper way:

@Zsm~u,f!#* 5~2 !mZs,2m~u,f!, Q6Zsm5A~s7m!~s6m11!Zs,m61 ,
~81!

QzZsm5mZsm, uQu2Zsm5s~s11!Zsm.

The orthogonality condition is

E
0

4p

duE
0

4p

dfZs8m8~u,f!Zsm~u,f!5
ds8sdm8m

~s1m!! ~s2m!!
. ~82!

So while theZ’s are orthogonal, they are not orthonormal. This, however, is not a fundam
problem; it simply means that we must keep track of co- and contra-variant indices.

We can defineZsm(u,f) as

Zsm~u,f!5~s1m!! ~s2m!!Zsm~u,f!, ~83!

so that

E
0

4p

duE
0

4p

dfZs8m8~u,f!Zsm~u,f!5ds8
sd

m8
m . ~84!

If the state ket vectoruc& is represented as

^u,fuc&5(
m

cmZsm~u,f!, ~85!

then the corresponding bra vector^cu is
J. Math. Phys., Vol. 38, No. 10, October 1997
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^cuu,f&5(
m

cmZsm~u,f!, ~86!

and inner products are computed accordingly. It should be noted that fors51/2 ~and the trivial
case ofs50), theZ-functions are normalized, so no distinction between co- and contra-va
indices is needed.

In the case ofL , u andf are the angular coordinates of an actual particle. In the case ofS, u
andf are spin variables and are open to interpretation. In particular, they are the genera
displacements with regard to total andz-component of spin angular momentum, respectively. T
is, one can go froms to s11 by multiplying byeku, or, more generally, byv(u).

Occasionally the need arises for eigenfunctions ofQ projected along some other axis besid
thez-axis. These functions can be calculated by means of the usual rotational transformatio
a particularly simple case exists for spin 1/2. In this case,Q is equivalent tos/2, so we seek
eigenfunctions of the form,

~ n̂•s!W1/2,61/2~u,f,n̂!56W1/2,61/2~u,f,n̂!, ~87!

wheren̂ is a unit vector with orientation (h,j) with respect to thez-axis. The solution is

W1/2,61/2~u,f,n̂!5@Z1/2,61/2~u1h,f2j!1Z1/2,61/2~u2h,f2j!#/2

6@Z1/2,71/2~u1h,f2j!2Z1/2,71/2~u2h,f2j!#/2k. ~88!

It is tempting to consider the variablef to be a common azimuthal coordinate which d
scribes both spinand orbital angular momentum. In such a case, the total angular mome
wave function would be;ei (mL1mS)f so that the totalz-component of angular momentum wou
be Jz5Lz1Sz52 i\]/]f5mJ\, wheremJ5mL1mS . However, difficulties would arise during
any operation which distinguishes spin from orbital angular momentum. In short, the contin
representation can be used whenever angular momenta are combined, but theu andf coordinates
for both the addends and the sum should be kept as distinct variables.

V. TIME REVERSAL

Under time reversalT, the operatorx remains invariant, butp, L , andS change sign. Our
seemingly arbitrary assignment, in Sec. I, ofx as real andp as imaginary can now be put to goo
use, as we havex*5x, p*52p, L*52L , andS*52S. Thus, a natural definition of the ant
linear operatorT is simply

T5K. ~89!

This contrasts with treatments where the conjugation of operators is representation-depen
these requireT5UK, whereU is an ad hoc unitary operator specific to the representatio
hand.2

The identification ofT asK, along with the requirement that9

T25~2 !2s ~90!

means that we should use descriptions which obey Eq.~33!. That is, our choice ofes in Eqs.~62!
and ~80! should be that in Eq.~66!, or something similar. In field theories whereT2 obeys some
other phase relationship,es can be chosen accordingly.

1L. I. Schiff, Quantum Mechanics, 3rd ed.~McGraw-Hill, New York, 1968!, Sec. 14.
2See Ref. 1, Sec. 29.
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On the universal Chamseddine–Connes action.
I. Details of the action computation

Bruno Iochum,a) Daniel Kastler,b) and Thomas Schückera)

Centre de Physique Theorique, CNRS-Luminy, Case 907,
F-13288 Marseille Cedex 9, France

~Received 3 December 1996; accepted for publication 30 January 1997!

We give a detailed computation of the bosonic action of the Chamseddine–Connes
model which we performed using different techniques. ©1997 American Institute
of Physics.@S0022-2488~97!03006-5#

I. INTRODUCTION

The theory presented in Refs. 1–3 proposes a new access to the bosonic Lagrangian
standard model now in the same thimble as the gravitational action~plus a cosmological constan
and a Weyl term squared!, technically based on the heat-kernel expansion rather than on
quantum Yang–Mills formalism of the former theory~cf., e.g., Ref. 4!. The relationship between
the two approaches is at present not clear—further work is needed on this point. The doctr
interpreting the new theory is also new: the obtained standard model Lagrangian is though
a bare Lagrangian tied up with aspects of the theory at an energy of the order of the Planck
so that the approximate accelerator situation~assuming no big effects within the ‘‘big desert,’’ a
assumption of course deserving further investigations! would require a renormalization-grou
treatment described in Ref. 3, which we intend to scrutinize in a later paper. This interpreta
backed by observing the following.

~i! One expects a fundamental theory unifying all interactions to describe matter in its p
presumably more fundamental state.

~ii ! The theory yields correctly terms with correct relative critical signs that would imp
ably turn out in a random fashion.

~iii ! One obtains the welcome presence of quadratically divergent terms fitting with the
son renormalization-group philosophy.

Minkowskian geometry has two consequences in physics. First, starting from Coulomb
for a static, purely electric field it generates the magnetic field together with its coupling con
m051/(e0c2). Second, it changes our understanding of space-time, no more absolute tim
length. Likewise, Riemannian geometry has two consequences. First, starting from Newton
for a static gravitational field it generates general relativity. Second, no more universal tim
more length at all. Finally, noncommutative geometry has two consequences. First, startin
a parity breaking Yang–Mills connection it generates the Higgs scalar together with its mas
spontaneous symmetry breaking.5 Second, space-time becomes fuzzy below a certain scaleL.
Within noncommutative geometry, the action of all four interactions and all ‘‘elementary’’
ticles consisted—so far—of three different pieces, the Dirac action for spin1

2 fermions, the Yang–
Mills–Higgs action for spin 0 and 1 bosons, and the Einstein–Hilbert action for the sp
graviton.6 The first two pieces are characterized by a gauge invariance, the third piece is c
terized by diffeomorphism invariance. The fuzziness of space-time originated from the firs
pieces and the scaleL was the Higgs mass. In March this year, Connes1,2 completed the axioms
of noncommutative geometry in the sense that now there is a one-to-one correspondence b

a!Also at the Universite´ de Provence. Electronic mail: iochum@cpt.univ-mrs.fr; schucker@cpt.univ-mrs.fr
b!Also at the Universite´ de la Méditerranée.
0022-2488/97/38(10)/4929/22/$10.00
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commutative spectral triples and Riemannian geometries with spin. As a byproduct, he suggests
natural unification of the three action pieces.

A spectral triple consists of an associative algebraA, a representation on a Hilbert spaceH
classifying the fermions and a Dirac operatorD. The invariance group is simply the automorphis
group ofA. The latter is chosen to be a tensor product of the infinite-dimensional, commu
algebra of differentiable functions on space-timeM by a matrix algebraA describing an interna
space,A5C`(M ) ^A. Then the automorphism group is the semidirect product of diffeom
phisms and gauge transformations and the latter are inner automorphisms. For the comm
case whereA5C, there are only diffeomorphisms and the Dirac operator encodes the metricA
is noncommutative, e.g.,A5C% H% M3(C) for the standard model, then the metric ‘‘fluctuates
that is, it picks up additional degrees of freedom from the internal space, the Yang–Mills co
tion, and the Higgs scalar. In the physicist’s language, the spectral triplet is the Dirac actio
multiplet of dynamical fermions in a background field. This background field is a fluctua
metric, consisting of so far adynamical bosons of spin 0, 1, and 2. The remaining two action
are obtained from the spectrum of the covariant Dirac operatorDA indexed by the quantum
one-formA. These two pieces together are simply the number of eigenvalues ofuDAu that are
smaller thanL, that is Tr„F(uDAu/L…), with F the characteristic function of the unit interval. Th
function ofL can be calculated conveniently from the heat kernel expansion.3 If F is the logarithm
then we have an old physical interpretation of this action formula,7 the dynamics of the bosons ar
inducedfrom one-loop quantum corrections with fermions circulating in the loop. However,
so-induced gravity has a negative Newton constant. WithF, the characteristic function instead
this action yields Klein–Gordon together with spontaneous symmetry breaking for spin 0, Y
Mills for spin 1 and Einstein–Hilbert for spin 2 and all signs come out correctly.

The aim of this paper is to provide a detailed description of the Chamseddine–Conne
versal bosonic action3 at the tree level of the standard model. The essential ingredients o
computation is the heat kernel expansion applied to the square of the previously generalize
operator of the standard model~in the real spectral triple guise! exploited by means of a genera
ized Lichnérowicz’ formula.

II. NOTATION AND REMINDER

The reader will find an index of notations at the end of the paper.
M is in what follows a four-dimensional smooth compact oriented spin manifold with

boundary for which we use the following notation:A5C`(M ), the volume element ofM is
dv, SM is the spin bundle ofM with a Clifford module of smooth sections„S~M !,g…, “

M is the

Levi-Civita connection ofM with spin connection“̃ with curvature R̃. The Clifford module ofM
is denoted byCl (M ).

Our frame is that of the real spectral triple„A,~H,x,D!, J … of the standard model~cf. Ref.
4!, tensor product of the classical real spectral triple by the inner space real spectral
„A,(H,x,D),J… that we recall: the algebra is the tensor productA5C`(M ) ^A of the space-time
algebraA5C`(M ) by the inner-space algebraA5C% H% M3(C), where H denotes here the
quaternion algebra. TheZ/2-graded Hilbert spaceH is the tensor productH5L2(SM) ^ H, the
inner spaceK cycle (H,x,D) specified byH5H% H̄, with

H x~j,h̄ !5~xj,xh!,

~p,q,m!~j,h̄ !5„~p,q!j,~p,m!h…,

D~j,h̄ !5~Dj,Dh!,

J~j,h̄ !5~h,j̄ !,

H ~p,q,m!PA
~j,h̄ !PH , ~1!

in terms of theK cycle (H,D,x)5(Hq ,Dq ,xq) % (H1 ,D1 ,x1) ~the subscriptsq, resp. 1 stand for
quark, resp. lepton!, with the quark and lepton parts:
J. Math. Phys., Vol. 38, No. 10, October 1997
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Hq5~ CR
2

uR dR

% CL
2

uL dL

! ^ CN

Generations
^ C3

Color
~dim Hq512N536!, ~2!

H15~CR
1

eR

% CL
2

nL eL

! ^ CN

Generations
^ C1 ~dim H153N59!, ~3!

Z/2 graded by the~right–left! parity x, and acted upon as follows by algebraic eleme
(p,q,m)PA: the quaternionq acts in the obvious way onCL

2; the complex scalarp acts as the
diagonal quaternion

S p̄ 0

0 pD
on CR

2, and multipliesCR
1 by p̄; the 333 matrix m acts onC3 ~and trivially onC1!. Finally, the

generalized quark, resp. lepton Dirac operators are

Dq5

uR dR uL dL

S 0 0 Mu* 0

0 0 0 Md*

Mu 0 0 0

0 Md 0 0

D uR

dR

uL

dL

5

R L

S 0 M*

M 0 DR

L
, ~4!

D15

eR nL eL

S 0 0 Me

0 0 0

Me* 0 0
D eR

nL

eL

, ~5!

with Mu , Md , MePEnd CN the fermion mass matrices. We follow the conventions thatMu , Me

are diagonal real matrices, and

Md5CKMS md 0 0

0 ms 0

0 0 mb

D ,

CKM being the Cabibbo–Kobayashi–Maskawa mixing matrix.
The tensor-product full spectral triple„A,~H,x,D!,J … is then as follows:H5L2(SM) ^ H is

acted upon by the grading involutionx5g5
^ x; the conjugationJ 5C^ J, tensor product of the

usual charge-conjugationC of Euclidean electrodynamics by the conjugationJ of the spectral
inner space; the algebraA via the representationpD5pD” ^ pD , tensor product of the represen
tation pD” of A on L2(SM) by the representation ofA on H; the generalized Dirac operatorD

5D” ^ idH1g5
^ D, D5D* 5 igm

“̃m, the Dirac operator.
The spectral triple„A,~H,x,D!,J … is an example of a ‘‘spectral geometry’’ in the sense

Ref. 1—the last metamorphosis of Connes’ noncommutative geometry. We have, correspon
with respect to the objects considered in the previous Yang–Mills formalism, the following
of emphasis.

We pass on the one hand from the~generalized! Dirac operatorD to the covariant Dirac
operatorDA5D1A1JAJ of the spectral formalism, indexed by the quantum one-formA ~in
the quantum Yang–Mills approach,DA served to define the fermionic part of the action, howev
J. Math. Phys., Vol. 38, No. 10, October 1997
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now it will also play the basic role for the formulation of the bosonic action!; on the other hand,
we use instead of the Hilbert spaceH its smooth dense subspaceE5S(M ) ^ H.

We now give the basic definition.
Definition 1: The universal bosonic action ofM is defined as

Tr FS 1

L2 DA
2D , ~6!

whereDA5D1A1JAJ is the ‘‘covariant Dirac operator’’ of the standard model in the spec
formalism.F is a function:R1*→R, such thatF@(1/L2)DA

2# is trace class, whereL is the cutoff.
The universal action will be the sum of the bosonic action and the fermionic action of the
(c,DAc) wherec is an element ofE5S(M ) ^H.

The required trace-class property, as well as positivity of the bosonic action, are achiev
choosing forF:@0,1#→@0,F(0)# a positive sufficiently regular function decreasing from a posit
valueF(0) to the value 0 at 1, moreover constant in a small interval@0,e#, so that all its derivatives
vanish at 0. In fact, a sensible choice forF is the characteristic function of the interval@0,1#. We
will not pay attention to the mathematical difficulties related to the choice of the functionF.

Note that the splittingH5H% H̄, of the inner space induces a splittingH5Hpart% Hantipart

into Hilbert subspaces, respectively, pertaining to particles and antiparticles. Since the res
of DA to Hpart andHantipartare charge conjugate to each other, they yield identical contribut
to the bosonic action, which will be computed using onlyDA restricted toHpart @henceforth again
denoted byDA ; from now on,E will correspondingly denote the particle subbundleS~M !^H#.

III. COMPUTATIONS

We shall compute the bosonic action by means of a technique based on the fact thatDA is a
generalized Dirac operator of a smooth vector bundleV ~with set of smooth sectionsE!, its square
DA

2 thus being a generalized Laplacian.V is the tensor product of the spin bundle by the inn
bundle with typical fiberH5Hq% H1 . Thus, rank~V!53619545. Using the classical heat kern
expansion,8 we expressF(DA

2) as an integral of heat kernels~Laplace transform!, thus getting for
F equals to the characteristic function of the interval@0, 1#, the following asymptotic expressio
for largeL:

Tr FS 1

L2 DA
2D'L4f 0a0~DA

2!1L2f 2a2~DA
2!1 f 4a4~DA

2!, ~7!

where f 05*RF(u)u du, f 25*RF(u) du, f 45F(0); andaj (DA
2)5*M aj (x,DA

2)dv, with

a0~x,DA
2!5~4p!22 trx~1!, ~8!

a2~x,DA
2!5~4p!22 trz~

1
6s12E!, ~9!

a4~x,DA
2!5

~4p!22

360
trx$5s2122r2112R21260sE1180E2130RmnR

mn%, ~10!

where we omitted in$ % the terms 12s;a
a1, 260E;a

a ~surface terms by the Green’s theorem!. Here
R, r , resp.s, are the respective Levi-Civita Riemann tensor, Ricci tensor, and scalar curvatu
M , with r25rmnrmn, R25RmnabRmnab. And E andR are obtained from the following prescrip
tion: expressDA

2 canonically as the sum of a connection LaplacianD“ andEPEnd E: R is then
the endomorphism-valued curvature 2-tensor of the connection“ of E. Our E ands are Gilkey’s
2E and2s.8
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Our next task is thus to writeDA
2 as the canonical decompositionD“1E: this is achieved via

the two following lemmas. Lemma 1 first expressesDA as the sumD“1F of the Dirac operator
of a Clifford bundle plus an endomorphism anticommuting with Clifford multiplication by o
forms. Lemma 2 then easily computes the canonical decomposition ofDA

2 using the twisted-
Clifford-bundle version of the Lichne´rowicz formula.

Lemma 1: (i) The dense subspaceE5S~M !^H of the Hilbert spaceHpart is a finite-projective
A module, expressible as the tensor product

E5S~M ! ^AE, with E5A^AH, ~11!

becoming a Clifford module~E,c) under theZ/2 gradingx and the Clifford action

c5g ^ idE , ~12!

and split in a direct sum of a quarkonic and the leptonicA module according to the decompo
sition E5Eq% E1 , whereEq5A^ Hq andE15A^ H1 .

(ii) We haveDA5D“1F5 icm
“m1F, direct sum(DA)q% (DA)1 of the quarkonic and the

leptonic parts:

~DA!q5Dq
“1Fq,

~DA!15D1
“1F1,

where
Dq

“5 icm
“qm ,

D1
“5 icm

“1m ,
~13!

where, describingEnd Eq as 434 matrices with entries inS(M ) ^M (CN) tensorized by
M (Ccolor

3 ), resp.End E1 as 333 matrices with entries inS(M ) ^M (CN).
The endomorphismsFq and F1 of E, respectively, act on the quark and lepton subspaces

the matrices:

Fq5

uR dR uL dL

S 0 0 F2g5
^ Mu* 2F1g5

^ Mu*

0 0 F1g5
^ Md* F2g5

^ Md*

F2g5
^ Mu F1g5

^ Md 0 0

2F1g5
^ Mu F2g5

^ Md 0 0

D uR

dR

uL

dL

^13 , ~14!

and

F15

eR nL eL

S 0 F1g5
^ Me* F2g5

^ Me*

F1g5
^ Me 0 0

F2g5
^ Me 0 0

D eR

nL

eL

, ~15!

whereF i5F̄iPC`(M ,C). Note that

F•

•

5S F2 F1

2F1 F2D PC`~M ,H!.

The connection“ of E is the tensor product:

“5¹̃ ^ idE1 idS~M ! ^“

E, ~16!
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of the spin connection¹ of S~M ! by the connection¹E of E specified as follows: ¹E is the direct
sum¹E

q% ¹E
1 of a quark and a lepton connection acting, respectively, on the quark and le

subspaces as the sum of the exterior derivative and the matrices:

idS~M ! ^~¹E
q2]!m52 i

uR dR uL dL

S 2am ^1N 0 0 0

0 am ^1N 0 0

0 0 b1
1m ^1N b1

2m ^1N

0 0 b2
1m ^1N b2

2m ^1N

D uR

dR

uL

dL

^13

2 icm
a 14^ 1N^ 132 icm

a 14^ 1N^
la

2
, ~17!

and

idS~M ! ^~¹E
12]!m52 i

eR nL eL

S am ^1N 0 0

0

0 b1
1m ^1N b1

2m ^1N

0 b2
1m ^1N b2

2m ^1N

D eR

nL

eL

2 iam13^ 1N . ~18!

Following the physicists’ usage we multiply by i our connection one-forms, vector potentia
make them self-adjoint. Note that a quaternion is anti-hermitian if and only if it is traceless.
a andc0 are classical U~1!-vector potentials:ā5a, c0PV1(M ,C), b˙

˙ is a classical SU~2!-vector
potential:

b˙
˙5S b1

15b̄1
1 b1

25b̄2
1

b2
1 b2

252b1
1
D PV1~M , iHtraceless!

c˙5(ca)a51,...,8 is a SU(3)-vector potential(the la are the eight Gell–Mann matrices).

Proof: E5S(M ) ^H is the finite-projectiveA module pull-back of theC module by theA–C
bimoduleS~M !, obviously expressible as the tensor product ofA modulesE5S(M ) ^AE. The
action ~12! of Cl (M ) on E then makes it a Clifford module (E,c), indeedE is a Z/2-graded
Cl (M ) module, owing to the Clifford relationscmcn1cncm5gmn.

The remaining claims follow from the matrix form of the Dirac operatorD and the vector
potentials in the spectral standard model, which we recall:

uR dR uL dL

S D ^ 1N 0 g5
^ Mu* 0

0 D ^ 1N 0 g5
^ Md*

g5
^ Mu 0 D ^ 1N 0

0 g5
^ Md 0 D ^ 1N

D
eR nL eL

uR

dr

uL

dL

S D ^ 1N 0 g5
^ Me*

0 D ^ 1N 0

g5
^ Me 0 D ^ 1N

D eR

nL

eL

~19!
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and, using the shorthand

a˙
˙5S 2a 0

0 aD
and the setting

H5F-1,

iA~a,b˙
˙ ,H,c0 ,c˙!

uR dR uL dL eR nL eL ūR d̄R ūL d̄L ēR n̄L ēL

5S g~a˙
˙! ^ 1N M* ~g5H ^1N!

~g5H ^1N!M g~b˙
˙! ^1N

D ~20!

Leptonic reduction
of latter

g~c0!12^ 1N^ 131g~ca!12^ 1N^ ~la/2!

g~a!13^ 1N .

Lemma 2: LetV be a smooth vector-bundle overM , with anA module of smooth sectionsE,
provided with a connection¹E, and consider the twisted Clifford bundleSM ^V, c5g ^ idV with
Clifford-module~E,c) of smooth sections,

E5S~M ! ^E, ~21!

and Clifford connection

“5¹̃ ^idE1 idS~M ! ^¹E, ~22!

giving rise to the Dirac operator

D“5 icm
“m , where cm5gm

^ idE . ~23!

Then, givenFPEndA(E) anticommuting with all cm, the generalized Dirac operator,

DF5 icm
“m1F, ~24!

has the square

~DF!25D“1E, ~25!

whereD“ is the connection Laplacian of“:

D“52gmn~“m“n2Gmn
a

“a!, ~26!

and EPEndA(E) is given by

E5 1
4s12 1

2c~RE!1 icm@“m ,F#1F2, with c~RE!52gmgn
^ RE~em ,en!, ~27!

wheres is the scalar curvature ofM and RE is the curvature of¹E.
Note that~25! is the canonical form of the generalized Laplacian (DF)2 as the sum of a

connection Laplacian and an endomorphism and observe that@“m ,F# lies in EndA~E! as the
commutator of a]m derivation and a 0 derivation.

Proof: We have
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~DF!25~ icm
“m1F!~ icn

“n1F!52cm
“mcn

“n1 icm
“mF1 iFcm

“m1F2

5D“21 icm@“m ,F#1F25D“1 1
4s12 1

2c~RE!1 icm@“m ,F#1F2, ~28!

where we plugged in the Lichne´rowicz formula for the square ofD“:

D“25D“1 1
4s12 1

2c~RE!. ~29!

Lemma 3 (computation ofF2 and F4):
(i) We haveF25Fq

2
% F1

2, with

Fq
25uFu2

uR dR uL dL

S 1^ Mn
2 0 0 0

0 1^ MdMd* 0 0

0 0 1^ Mu
2 0

0 0 0 1^ Md* Md

D uR

dR

uL

dL

^ 13 , ~30!

whereuFu25F1F11F2F2, and

F1
25

eR nL eL

S uFu21^ Me
2 0 0

0 F1F11^ Me
2 F2F11^ Me

2

0 F1F21^ Me
2 F2F21^ Me

2
D eR

nL

eL

, ~31!

whence, withmu5Mu
2, md5MdMd* , and me5Me

2:

H trx~Fq
2!58AquFu2, with Aq53 trN~mu1md!,

trx~F1
2!58A1uFu2, with A15trN me ,

trx~F2!58AuFu2, with A5trN@3~mu1md!1me#.

~32!

(ii) We haveF45Fq
4

% F1
4, with

Fq
45uFu4

uR dR uL dL

S 1^ Mu
4 0 0 0

0 1^ ~MdMd* !2 0 0

0 0 1^ Mu
4 0

0 0 0 1^ ~Md* Md!2

D uR

dR

uL

dL

^ 13 , ~33!

and

F1
45

eR nL cL

S uFu41^ Me
4 0 0

0 uFu2F1F11^ Me
4 uFu2F2F11^ Me

4

0 uFu2F1F21^ Me
4 uFu2F2F21^ Me

4
D cR

nL

cL

~34!

whence
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H trx~Fq
4!58BquFu4, with Bq53 trN~mu

21md
2!,

trx~F1
4!58B1uFu4, with B15trN~me

2!

trx~F4!58BuFu4, with B5trN@3~mu
21md

2!1me#.

~35!

Proof: ~i! We have

Fq5S 0 F ˙
˙*

F ˙
˙ 0 D ^ 13 ,

where, generalizing

F ˙
˙5S F2 F1

2F1 F2D PC`~M ,H!.

we put

F ˙
˙* 5S F2g5

^ Mu* 2F1g5
^ Mu*

F1g5
^ Md* F2g5

^ Md*
D , F ˙

˙5S F2g5
^ Mu F1g5

^ Md

2F1g5
^ Mu F2g5

^ Md
D . ~36!

So

F ˙
˙* F ˙

˙5S ~F2F21F1F1! ^ Mu
2 0

0 ~F1F11F2F2! ^ Md* Md
D

5S uFu21^ Mu
2 0

0 uFu21^ MdMd*
D , ~37!

and

F ˙
˙F

˙
˙* 5S uFu21^ Mu

2 0

0 uFu21^ Md* Md
D , ~38!

thus

Fq
25S F ˙

˙* F ˙
˙ 0

0 F ˙
˙F

˙
˙*

D ^ 135uFu2S 1^ Mu
2 0 0 0

0 1^ MdMd* 0 0

0 0 1^ Mu
2 0

0 0 0 1^ Md* Md

D ^ 13 ,

~39!

and trN denoting the trace in the generation spaceCN, N53,

trx~Fq
2!54•3•2uFu2 trN~mu1md!524uFu2 trN~mu1md!, ~40!

trx~Fq
4!54•3•2uFu4 trN~mu

21md
2!524uFu4 trN~mu

21md
2!. ~41!

~ii ! Since
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F1
25S 0 F11^ Me* F2g5

^ Me*

F1g5
^ Me 0 0

F2g5
^ Me 0 0

D S 0 F1g5
^ Me* F2g5

^ Me*

F1g5
^ Me 0 0

F2g5
^ Me 0 0

D
5S uFu21^ Me

2 0 0

0 F1F11^ Me
2 F2F11^ Me

2

0 F1F21^ Me
2 F2F21^ Me

2
D , ~42!

we have

trx~F1
2!54•2uFu2 trN me58uFu2 trN me , ~43!

and further,

F1
45S uFu41^ Me

4 0 0

0 uFu2F1F11^ Me
4 uFu2F2F11^ Me

4

0 uFu2F1F21^ Me
4 uFu2F2F21^ Me

4
D . ~44!

Thus

trX~F1
4!54uFu2~ uFu21F1F11F2F2!trN~me

2!58uFu4 trN~me
2!. ~45!

Lemma 4 (computation of cm@“m ,F# and (cm@“m ,F#)2):
(i) With DF ˙ and DF ˙ , the one-forms

DF j5dF j1 i~aF j2bj
kF

k!
~46!

DF j5dF j2 i~aF j2bk
jFk!, j 51,2,

i.e.

H DF ˙5dF ˙1 iS a2ba
ta

2 DF ˙,

DF ˙5dF ˙2 iF ˙S a2ba
ta

2 D ,

we have cm@“m ,F#5cm@“mq ,Fq#1cm@“m l ,Fl #, with

cm@“qm ,Fq#

5S 0 0 g~DF2!g5
^ Mu* 2g~DF1!g5

^ Mu*

0 0 g~DF1!g5
^ Md* g~DF2!g5

^ Md*

g~DF2!g5
^ Mu g~DF1!g5

^ Md 0 0

2g~DF1!g5
^ Mu g~DF2!g5

^ Md 0 0

D ^ 13

~47!

and
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cm@“1m ,F1#5S 0 g~DF1!g5
^ Me* g~DF2!g5

^ Me*

g~DF1!g5
^ Me 0 0

g~DF2!g5
^ Me 0 0

D ; ~48!

hence we have

trx$c
m@“qm ,Fq#%5trx$c

m@“1m ,F1#%5trx$c
m@“m ,F#%50. ~49!

(ii) Finally ,

trx~ icm@“qm ,Fq# !258AquDFu2, with Aq53 trN~mu1md!,

trx~ icm@“lm ,Fl # !258Al uDFu2, with Al5trN me ,

trx~ icm@“m ,F# !258AuDFu2, with A5trN@3~mu1md!1me#.

Proof: F commutes with the spin-connection one-form since the latter commutes withg5. It
also commutes with the gluon connection one forms whose matrices are diagonal with e
Clifford scalars. Thus, it suffices to compute@ idS(M ) ^ (“8Eq2])m ,F#, with “8E obtained from
“

E by deleting the gluon connection.
Lepton direct summand:

@ idS~M ! ^ ~“8El2]!m#–F1

52 iS am ^ 1N 0 0

0 b1
1m ^ 1N b1

2m ^ 1N

0 b1
1m ^ 1N b2

2m ^ 1N

D S 0 F1g5
^ Me* F2g5

^ Me*

F1g5
^ Me 0 0

F2g5
^ Me 0 0

D
52 iS 0 amF1g5

^ Me* amF2g5
^ Me*

~b1
1mF11b1

2mF2!g5
^ Me 0 0

~b2
1mF11b2

2mF2!g5
^ Me 0 0

D , ~51!

F1•@ idS~M ! ^ ~“8E12]!m#

52 iS 0 F1g5
^ Me* F2g5

^ Me*

F1g5
^ Me 0 0

F2g5
^ Me 0 0

D S am ^ 1N 0 0

0 b1
1m ^ 1N b1

2m ^ 1N

0 b2
1m ^ 1N b2

2m ^ 1N

D ,

52 iS 0 ~F1b1
1m1F2b2

1m!g5
^ Me* ~F1b1

2m1F2b2
2m!g5

^ Me*

F1amg5
^ Me 0 0

F2amg5
^ Me 0 0

D , ~52!

thus
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



,
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2 i@ idS~M ! ^ ~“

E12]!m ,F1#

5S 0 ~amF12F1b1
1m2F2b2

1m!g5
^ Me* ~amF22F1b1

2m2F2b2
2m!g5

^ Me*

~b1
1mF11b1

2mF22F1am!g5
^ Me* 0 0

~b2
1mF11b2

2mF22F2am!g5
^ Me* 0 0

D
(53)

@“1m ,F1#5S 0 ~DF1!mg5
^ Me* ~DF2!mg5

^ Me*

g5~DF1!m ^ Me 0 0

g5~DF2!m ^ Me 0 0
D , ~54!

thus

cm@“1m ,F1#5S 0 g~DF1!g5
^ Me* g~DF2!g5

^ Me*

g~DF1!g5
^ Me 0 0

g~DF2!g5
^ Me 0 0

D , ~55!

and thus

~cm@“1m ,F1# !2

52S g~DFk!g~DFk! ^ Me
2 0 0

0 g~DF1!g~DF1! ^ Me
2 0

0 0 g~DF2!g~DF2! ^ Me
2
D ,

~56!

whence

Trx$~ icm@“1m ,F1# !2%58uDFu2 tr Nme58A1uDFu2. ~57!

Quark direct summand:

i@ idS~M ! ^ ~¹8Eq2]!m#•Fq

5S 2am ^ 1N 0 0 0

0 am ^ 1N 0 0

0 0 b1
1m ^ 1N b1

2m ^ 1N

0 0 b2
1m ^ 1N b2

2m ^ 1N

D
3S 0 0 F2g5

^ Mu* 2F1g5
^ Mu*

0 0 F1g5
^ Md* F2g5

^ Md*

F2g5
^ Mu F1g5

^ Md 0 0

2F1g5
^ Mu F2g5

^ Md 0 0

D ^ 13 ,

5S 0 0 2amF2g5
^ Mu* amF1g5

^ Mu*

0 0 amF1g5
^ Md* amF2g5

^ Md*

~bk
2mFk!g

5
^ Mu ~b1

kmFk!g5
^ Md 0 0

~bk
1mFk!g

5
^ Mu ~b2

kmFk!g5
^ Md 0 0

D ^ 13 , ~58!
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iFq•@ idS~M ! ^ ~¹Eq2]!m#

5S 0 0 F2g5
^ Mu* 2F1g5

^ Mu*

0 0 F1g5
^ Md* F2g5

^ Md*

F2g5
^ Mu F1g5

^ Md 0 0

2F1g5
^ Mu F2g5

^ Md 0 0

D S 2am ^ 1N 0 0 0

0 am ^ 1N 0 0

0 0 b1
1m ^ 1N b1

2m ^ 1N

0 0 b2
1m ^ 1N b2

2m ^ 1N

D ^ 13

5S 0 0 2~b2
2mF21b2

1mF1!g5
^ Mu* ~b1

2mF21b1
1mF1!g5

^ Mu*

0 0 ~b1
1mF11b2

1mF2!g5
^ Md* ~b1

2mF11b2
2mF2!g5

^ Md*

2amF2g5
^ Mu amF1g5

^ Md 0 0

amF1g5
^ Mu amF2g5

^ Md 0 0

D ^ 13 ,

~59!

thus

i@ idS~M ! ^ ~¹Eq2]!m ,Fq#

5S 0 0 2~amF22bkm
2 Fk!g5

^ Mu* ~amF12bkm
1 Fk!g5

^ Mu*

0 0 ~amF12b1kmFk!g5
^ Md* ~amF22b2kmFk!g5

^ Md*

~amF22bk
2mFk!g

5
^ Mu 2~amF12bk

km
1 F!g5

^ Md 0 0

2~amF12bk
1kmF!g5

^ Mu 2~amF22b2
kmFk!g5

^ Md 0 0

D
^ 13 ,

~60!

whence

@“qm ,Fq#5S 0 0 g5 DF2
^ Mu* 2g5 DF1

^ Mu*

0 0 g5 DF1^ Md* g5 DF2^ Md*

g5 DF2^ Mu g5 DF1
^ Md 0 0

2g5 DF1^ Mu g5 DF2
^ Md 0 0

D ^ 13

and

cm@“qm ,Fq#

5S 0 0 g~DF2!g5
^ Mu* 2g~DF1!g5

^ Mu*

0 0 g~DF1!g5
^ Md* g~DF2!g5

^ Md*

g~DF2!g5
^ Mu g~DF1!g5

^ Md 0 0

2g~DF1!g5
^ Mu g~DF2!g5

^ Md 0 0

D ^ 13 ;

~61!

upper corner of@“qm ,Fq#2

5S g~DF2!g5
^ Mu* 2g~DF1!g5

^ Mu*

g~DF1!g5
^ Md* g~DF2!g5

^ Md*
D S g~DF2!g5

^ Mu g~DF1!g5
^ Md

2g~DF1!g5
^ Mu g~DF2!g5

^ Md
D

52S @g~DF2!g~DF2!1g~DF1!g~DF1!# ^ Mu
2 @g~DF2!g~DF1!2g~DF1!g~DF2!#g ^ Mu* Md

@g~DF1!g~DF2!2g~DF2!g~DF1!# ^ Md* Mu @g~DF1!g~DF1!1g~DF2!g~DF2!# ^ Md* Md
D ,

~62!
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whence

trx$upper corner@“qm ,Fq#2%524uDFu2 trN~mu1md!5trx$ lower corner~@“qm ,Fq# !2%,
~63!

thus

Trx$~ icm@“qm ,Fq# !2%58uDFu2 trN@3~mu1md!#58AquDFu2. ~64!

It remains for us to computec(RE)2 andRmnR
mn:

Lemma 5 [computation of c(RE)2 andRmnR
mn]: Let (em ,em) be an orthonormal frame of the

tangent bundle ofM . We have

trx@c~RE!2#528 trV~RE
mnREmn! ~65!

and

trx@RmnR
mn#52 1

2~rank V!R214 trV~RE
mnREmn!. ~66!

Proof: SinceRE
mn :5RE(em ,en)52RE

nm , we have

trx@c~RE!2#5trx@„~gmgn
^ R~em ,en!

E
…

2#

5trx@~gmgngagb
^ RE~em ,en!RE~ea ,eb!#

54~gmnab1gmbna2gmanb!trV~RE
mnRE

ab!

54~gmbna2gmanb!trV~RE
mnRE

ab!

54 trV~REb
nREn

b2REa
nRE

a
n!

54 trV~RE
bnREnb2RE

anREan!

528 trV~RE
mnREmn!. ~67!

Moreover,

trx@RmnR
mn#5trx@~R̃mn ^ idE1 idSM

^ Rmn
E !~R̃mn

^ idE1 idSM
^ REmn!#.

5trx~R̃mnR̃mn
^ idV!1trx~ idSM

^ RE
mnREmn!12 trx~R̃mn ^ REmn!

5~rank V!trSM
~R̃mnR̃mn!14 trV~RE

mnREmn!

52 1
2~rank V!R214 trV~RE

mnREmn!, ~68!

where we plugged the value

trSM
~R̃mnR̃mn!5 1

16RmnabRmn
st trx~gagbgsgt!

5 1
4RmnabRmn

st~gabgst1gatgbs2gasgbt!

5 1
4~Rmn

tsRmn
st2Rmn

stRmn
st!

52 1
2Rmn

stRmn
st52

1
2R2,

and took account of the fact that trSM
(R̃mn)5 1

4 trSM
(Rmnabgagb)5 1

4 trSM
(Rmnabgab)50.
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We now have the ingredients of the computation of our heat-kernel expansion.
Computation of a0(x,DA

2): we have (4p)2a0(x,DA
2)5trx(1)54 rankV.

Computation of a2(x,DA
2): we have to compute (4p)2a2(x,DA

2)5trx(
1
6 s12E), recalling

that we foundE5 1
4 s12 1

2c(RE)1 icm@“m ,F#1F2. With > denoting equality under trx , we have
1
6 s12E> 1

6 s12 1
4 s12F2, whence

~4p!2a2~x,DA
2!5

rank V

3
s28AuFu2

~for the convenience of the reader we recall that we found

H trx~Fq
2!58AquFu2,

trx~F1
2!58A1uFu2,

trx~F2!58AuFu2,
~32!

H trx~Fq
4!58BquFu4,

trx~F1
4!58B1uFu4,

trx~F4!58BuFu4,
~35!

H trx~ icm@“qm ,Fq# !258AquDFu2,
trx~ icm@“1m ,F1# !258A1uDFu2,
trx~ icm@“m ,F# !258AuDFu2.

~50!

Computation of a4(x,DA
2): Using the shorthandsr25rmnrmn andR25RmnabRmnab, we get

360~4p!2a4~x,DA
2!5trx$5s2122r2112R21260sE1180E2130RmnR

mn%

5trx$~
5
4s

222r212R2!1130sF21180F41180~ icm@“m ,F# !2145c~R!2

130RmnR
mn%

5~rank V!~5s228r227R2!1240AsFu211440BuFu411440AuDFu2

1120 trV~RE
mnREmn!

5218~rank V!C21240AsuFu211440BuFu411440AuDFu2

2240 trV~RE
mnREmn!. ~69!

We first took account of the fact that we have

260sE1180E2>260@ 1
4s

211sF2#145@ 1
4s

211c~RE!214~ icm@“m ,F# !214F412sF2#

>2 15
4 s21130sF21180F41180~ icm@“m ,F# !2145c~RE!2, ~70!

neglecting the cross-terms inE2 involving c(R) or/andcm@“m ,F# ~these vanish under trx : owing
to tr gm50 and trgmgn5tr gngm). We then plugged into~69! the values~65! and ~66!, and
finally effected the replacement:

5s228r227R2588p2x4218C2, ~71!

where C25R22r21 1
3s

2 is the square of the Weyl tensor, and we subsequently suppresx4

52(4p)22(R224r21s2), sincex4 dv is the Euler form, which, by the Gauss–Bonnet theor
does not contribute to the action. We proved the following.
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Lemma 6: We have, for the bundleV ~the moduleE!

~4p!2a0~x,DA
2!54 rankV, ~72!

~4p!2a2~x,DA
2!52

rank V

3
s28AuFu2, ~73!

~4p!2a4~x,DA
2!52 1

20~rank V!C21 2
3AsuFu214BuFu414AuDFu22 2

3 trV~RE
mnREmn!,

~74!

with the same results for the bundlesVq , resp.V1 (the section modulesEq , resp.E1) obtained by
the replacementsrank V→rank Vq , A→Aq , B→Bq and trV→trVq

, resp. rank V→rank V1 ,
A→A1 , B→B1 and trV→trV1

.
We now write the bosonic action density, as given by~7!. For rankV545, we get@at this

point we keep the global expression2
3 trV(RmnRmn) of the gluonic part of the action, deferring it

detailed description to Proposition 2, which also discusses the modular adjustment#.
Proposition 1: The bosonic Lagrangian IB is given for a general function F by

~4p!2I B'180L4f 0215L2f 2s28L2A f2uFu22 9
4f 4C21 2

3f 4AsuFu214B f4uFu4

14A f4uDFu22 2
3f 4 trV~RE

mnREmn!, ~75!

and for the choice F5characteristic function of@0,1# corresponding to f0 5 1
2, f 2 5 f 4 5 1,

~4p!2I B'90L4215L2s28L2AuFu22 9
4C

21 2
3AsuFu214BuFu414AuDFu22 2

3 trV~RE
mnREmn!.

~76!

Proof: We have

~4p!2I B'4L4f 0 rank V2L2f 2@1 rankVs18AuFu2#

1 f 4@2 1
20~rank V!C21 2

3AsuFu214BuFu414AuDFu22 2
3 trV~RE

mnREmn!#

54L4f 0 rank V2L2
1

3
rank V f 2s2

1

20
rank V f 4C2

28L2A f2uFu21 2
3f 4AsuFu214B f4uFu414A f4uDFu22 2

3f 4 trV~RE
mnREmn!.

~77!

Proposition 2 [computation oftrV(R8E
mnR8Emn)]: The gluonic part of the bosonic Lagrang

ian is as follows: with R8E
mn the curvature tensor obtained from RE

mn by performing the ‘‘modu-
lar adjustment’’, i.e., settingg052 1

3f, one has

2trV~R8E
mnR8E

mn!5 40
3 Nfmnfmn12Nhs

mnhs
mn12Nga

mnga
mn ~78!

@one has separately,

2trVq
~R8Eq

mnR8Eqmn!5 22
3 Nfmnfmn1 3

2Nhs
mnhs

mn12Nga
mnga

mn , ~79!

and

2trV1
~R8El

mnR8Elmn!5 18
3 Nfmnfmn1

N

2
hs

mnhs
mn ]. ~80!

Here f andg0 are classical U~1! curvatures:f̄5f, g0PV2(M ,C);
h˙

˙ is a classical SU~2! curvature:
J. Math. Phys., Vol. 38, No. 10, October 1997
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h˙
˙2S h1

15h̄1
1 h1

25h̄2
1

h2
1 h2

252h1
1
D PV2~M , iHtraceless!;

g˙5(ga)la/2 is a SU~3! curvature~the la , a51,...,8, are the Gell–Mann matrices!.
Proof: In accordance with~17!, ~18! we have

iREq
mn5

uR dR uL dL

S 2fmn ^1N 0 0 0

0 fmn ^1N 0 0

0 0 h1
1mn ^ 1N h1

2mn ^1N

0 0 h2
1mn ^1N h2

2mn ^1N

D uR

dR

uL

dL

^ 131g0
mn14^ 1N^ 13

1ga
mn14^ 1N^

la

2
, ~81a!

transformed by modular adjustment into

iR8Eq
mn5

uR dR uL dL

S 2 4
3 fmn ^1N 0 0 0

0 2
3fmn ^1N 0 0

0 0 h1
1mn ^1N h1

2mn ^1N

0 0 h2
1mn ^1N h2

2mn ^1N

D uR

dR

uL

dL

^ 131ga
mnl4^ 1N^

la

2
,

~81b!

and

iRE1
mn5

eR nL eL

S 2fmn ^1N 0 0

0 h̄1
1mn

^1N h̄1
2mn

^1N

0 h̄2
1mn

^1N h̄2
2mn

^1N

D eR

nL

eL

, ~82!

wherehi
k5hi

k2 1
3fd

i
k , and h̄5h1fd i

k . We thus have, after some algebra,

2R8Eq
mnR8Eqmn5

uR dR uL dL

S 16

9
fmnfmn

^1N 0 0 0

0
4

9
fmnfmn

^1N 0 0

0 0 h1
imnhi

1mn ^1N h1
imnhi

2mn ^1N

0 0 h2
imnhi

1mn ^1N h2
imnhi

2mn ^1N

D uR

dR

uL

dL

^ 13

1ga
mnga

mn14^ 1N^ 13 , ~83!

and
J. Math. Phys., Vol. 38, No. 10, October 1997
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2R8E1
mnR8E1mn5

eR nL eL

S 4fmnfmn
^1N 0 0

0 h̄1
imnh̄i

1mn ^1N h̄1
imnh̄i

2mn ^1N

0 h̄2
imnh̄i

1mn ^1N h̄2
imnh̄2

mn ^1N

D eR

nL

eL

. ~84!

The quark contribution to trV(R8E
mnR8Emn): for the computation tensor product traces Tp

^ Tr3 , we shall use the following elementary fact: due to the tracelessness of thela and the
relation Tr(lalb)52dab , we have

$Trp^ Tr3%@M ^ 131Na
^ ~la/2!#253 Trp M21 1

2 Trp~NaNa!, M ,NaPM p~C!. ~85!

From this it follows that we have no mixed electroweak-chromodynamics terms~a fact that is
general for this type of gauge invariance! and that the gluonic contribution is

2Nga
mnga

mn . ~86!

Noting that we have, by the fact that thehk
i are traceless,

hi
kmnhk

i
mn5hi

kmnhk
i
mn1 2

9fmnfmn, ~87!

we get the electroweak contribution:

3N~ 16
9 fmnfmn1 4

9fmnfmn1hi
kmnhk

i
mn1 2

9fmnfmn!5 22
3 Nfmnfmn1 3

2Nhs
mnhs

mn ~88!

~we used the fact that

hs
mnhs

mn52hi
kmnhk

i
mn). ~89!

The lepton contribution to trV(R8E
mnR8Emn): using

h̄i
kmnh̄k

i
mn5hi

kmnhk
i
mn12fmnfmn, ~90!

we get, using again~89!,

N~4fmnfmn1hi
kmnhk

i
mn12fmnfmn!56Nfmnfmn1 1

2Nhs
mnhs

mn . ~91!

Concluding, we have the following.
Theorem: For F the characteristic function of@0,1#, the bosonic Lagrangian is given a

follows after modular adjustment:

~4p!2I B'90L4215L2s28L2AuFu22 9
4C

21 2
3AsuFu214BuFu4

14AuDFu21 80
9 Nfmnfmn1 4

3Nhs
mnhs

mn1 4
3Nga

mnga
mn , ~92!

whereL is the cutoff and

A5trN@3~Mu
21Md* Md!1Me

2#,
~93!

B5trN@3~Mu
41Md* MdMd* Md!1Me

4#.

This result agrees with the Chamseddine–Connes paper,3 up to the change

z2→Tr~ uk0
du41uk0

uu41 1
3uk0

eu4!,

in Ref. 3, which we suggest, with the following correspondence of notation:
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Ref. 3 the present paper

H F

g01Bm ,g01Bmn 22am ,22fm

g02A
˙
m ,g02F

˙
mn b˙

m ,h˙
mn

g03G
˙
m ,g02C

˙
mn cm ,g˙

mn

R 2s

y2 1
3A

z2 1
3B

. ~94!

Remark 1: The modular adjustmentRE
mn→R8E

mn that we have performed, was before taki
trV of the square. But, in fact, one gets the same result if one first computes trV(RE

mnREmn) and
then effects the replacementg0→2 1

3f, a fact that is not so evident; thus we give a proof.
Since the modular adjustment concerns only the quark contribution, we need only consid

latter. Now~81! is rewritten, leavingg0 as it stands:

iREq
mn5

uR dR uL dL

S ~g0
mn2fmn! ^ 1N 0 0

0 ~g0
mn1fmn! ^ 1N 0

0 0 ~h˙
˙mn2d ˙

˙mng0
mn! ^1N

D uR

dR

uL

dL

^ 13

1ga
mn14^ 1N^

la

2
. ~81a!

The prescription~85! then yields

2trVq
~REq

mnREq
mn!53N@~g0

mn2fmn!~g0mn2fmn!1~g0
mn1fmn!~g0mn1fmn!1~hi

kmn2d i
kg

0
mn!

3~hi
k
mn2d i

kg
0mn!#12Nga

mnga
mn

53N@~4g0
mng0mn12fmnfmn1hi

kmnhi
k
mn#12Nga

mnga
mn

53N@~4g0
mng0mn12fmnfmn1 1

2h
s
mnhs

mn#12Nga
mnga

mn , ~95!

which the replacementg0→2 1
3f changes into

3N@~ 4
912!fmnfmn1 1

2h
s
mnhs

mn#12Nga
mnga

mn5 22
3 Nfmnfmn1 3

2Nhs
mnhs

mn12Nga
mnga

mn .
~96!

Remark 2: The sum of the surface terms that we discarded in the expression of the act
the following:

11p2x41 3
8Ds1 4

3AD~ uFu2!, ~97!

wherex4 dv is the Euler form.
Proof : All the surface terms come froma4(x,DA

2). We should first recover thex4 term,
which according to~71! was associated to the square of the Weyl tensor in the expres
88p2x4 2 18C2 5 8(11p2x4 2 9

4C
2): whence the first term of~97!, by comparison with~75!. On

the other hand, the surface terms that we discarded from (4p)2a4(x,DA
2) inside the bracket$ %

sum up to

1
360 trx$12s;

a
a1260E;

a
a%5 1

360D trx$212s1160„

1
4s12 1

2c~RE!1 icm@“m ,F#1F2
…%
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5 1
360D trx$3s1160F2%

5 1
360D$3s rank V160•8AuFu2%5 3

8Ds1 4
3AD~ uFu2!, ~98!

where we used~32!.

IV. CONCLUSION

The axioms of noncommutative geometry produce the Euclidean bosonic Lagrangian fro
fermionic Lagrangian as input. Apart from surface terms, this bosonic Lagrangian consists
complete Einstein–Hilbert–Yang–Mills–Higgs Lagrangian of the standard model, a cosmolo
constant, a higher derivative gravity term of pure Weyl square form, and the conformal curva
Higgs coupling. After a proper normalization of the kinetic terms of the spin 2, spin 1, and s
fields, all the parameters of the standard model can be read from Eqs.~92! and ~93!:

mPlanck
2 5

16p

3K S 452
2A2

B DL2, ~99!

mHiggs
2 54L2, ~100!

mW
2 5

A2

8B
L2, ~101!

g25g35 1
4AK, ~102!

sin2 uW53
8, uW being the Weinberg angle. ~103!

The cosmological constant is

2

K S 452
2A2

B DL4, ~104!

and the coefficient of the Weyl term to the square is29/4K. Here,K is an overall normalization
constant. One findsK516p2 by considering the usual Dirac operator on the flat 4-torus with u
radii. There,a054(4p)22 and all highera’s vanish and the Chamseddine–Connes action
haves like 2p2L4 and coincides, for largeL, with the number of eigenvalues smaller thanL.

As in grand unified theories, Eqs.~99!–~104! are to be taken at the scale, just below t
Planck mass. Accordingly, the Chamseddine–Connes theory implies that space-time be
fuzzy below the Planck length and gives a meaning to the old semiquantitative argument co
ing the Heisenberg uncertainty relation with the Schwarschild radius.
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A5A^ A5C`(M ) ^„C% H% M3(C)… Total algebra
M Space–time
A5C`(M ) Space–time algebra

gm5gm215gm* Dirac matrices

SM Spin bundle
S~M ! Its module of smooth section
H Algebra of quaternions
A5C% H% M3(C) Internal algebra
H5L2(SM) ^ H5Hpart% Hantipart Total Hilbert space
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E5S(M ) ^ H5S(M ) ^ AE,
E5A^ AH

Twisted bundle ~dense sub-
space ofH!

L2(SM) Square integrable spinors o
space-time

H5H% H̄, dim H590 Internal Hilbert space of par
ticles and antiparticles

H5Hq% H1 , dim Hq536, dimH159 q for quarks and 1 for leptons
D5D” ^ idH1g5

^ D Total Dirac self-adjoint opera-
tor

D” Classical Dirac operator onSM

D5D% D̄ Internal Dirac operator of par
ticles and antiparticles

D5Dq% D1 Quarks and leptons
DA5D1A1JAJ Covariant Dirac operator re

stricted to particles
A Gauge bosons and Higgs sc

lars represented onH
¹M Levi–Civita connection onM
R Its Riemann curvature tensor
r Ricci tensor
s Scalar curvature
C Weyl tensor

¹̃ Spin connection

R̃ Curvature of¹̃
¹E Connection onE parametrized

by the Hermitian matrix
a U~1! vector potential,
b SU~2! vector potential
c SU~3! vector potential
RE Curvature of“E parametrized

by the Hermitian matrix
f U~1! curvature
h SU~2! curvature
g SU~3! curvature
R8E RE transformed by modular

adjustment

“5¹̃ ^idE1 idS(M ) ^¹E Connection onE

R5R̃^ idE1 idS(M ) ^ RE Its curvature

F i5F̄i , i 51,2 Complex doublet of Higgs
scalars

F Higgs scalars represented o
H
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Gauge transformations in relativistic two-particle
constraint theory

H. Jalloulia) and H. Sazdjianb)

Division de Physique The´orique,c! Institut de Physique Nucle´aire, UniversitéParis XI,
F-91406 Orsay Cedex, France

~Received 11 March 1997; accepted for publication 2 May 1997!

Using connection with quantum field theory, the infinitesimal covariant Abelian
gauge transformation laws of relativistic two-particle constraint theory wave func-
tions and potentials are established and weak invariance of the corresponding wave
equations shown. Because of the three-dimensional projection operation, these
transformation laws are interaction dependent. Simplifications occur for local po-
tentials, which result, in each formal order of perturbation theory, from the infra-
red leading effects of multiphoton exchange diagrams. In this case, the finite gauge
transformation can explicitly be represented, with a suitable approximation and up
to a multiplicative factor, by a momentum dependent unitary operator that acts in
x-space as a local dilatation operator. The latter is utilized to reconstruct from the
Feynman gauge the potentials in other linear covariant gauges. The resulting effec-
tive potential of the final Pauli–Schro¨dinger type eigenvalue equation has the gauge
invariant attractive singularitya2/r 2, leading to a gauge invariant critical coupling
constantac51/2. © 1997 American Institute of Physics.
@S0022-2488~97!00410-6#

I. INTRODUCTION

The knowledge of the behavior of Green’s functions under gauge transformations in Q1–3

plays a crucial role in proving gauge invariance of observables and in particular of bound
energies.4,5 In practical calculations, however, one generally uses approximations to exact
tions, which necessitate a close control of the degree of realization of the various symmet
the system under study.

In QED, it has appeared that the Coulomb gauge is the most convenient gauge for treat
bound state problem, since it allows the optimal expansion of the Bethe–Salpeter equa6–8

around the nonrelativistic theory.4,9–12Covariant gauges produce, at each formal order of per
bation theory, spurious infra-red singularities that are cancelled only by higher order diagram13,14

and thus become of less practical interest. The main disadvantage of the Coulomb ga
however, its noncovariant nature, which does not allow its incorporation in covariant equat

From this viewpoint, constraint theory, which leads to a manifestly covariant th
dimensional description of two-body systems,15–17has opened a new perspective in the subjec
was shown18–20 that the expansion of the Bethe–Salpeter equation around the constraint t
wave equations in the Feynman gauge~as well as for scalar interactions! is free of the above-
mentioned diseases of covariant gauges and allows a systematic study of infra-red leading
of multiphoton exchange diagrams; the latter can then be represented in three-dimensionalx-space
as local potentials. Summing the series of these leading terms one obtains a local pote
compact form,20 which is well suited for a continuation to the strong coupling domain of
theory or for a generalization to other effective interactions.

The purpose of the present paper is to investigate the forms of the local potentials in

a!Electronic mail: jallouli@ipno.in2p3.fr
b!Electronic mail: sazdjian@ipno.in2p3.fr
c!Unité de Recherche des Universite´s Paris 11 et Paris 6 associe´e au CNRS.
0022-2488/97/38(10)/4951/20/$10.00
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covariant gauges and to find the relationships between them. Our approach is accomplished
steps. First, using the connection of the constraint theory wave equations with the Bethe–S
equation, we determine the infinitesimal gauge transformation laws of constraint theory
functions and potentials for fermion–antifermion systems and establish the~weak! invariance of
the corresponding wave equations. Second, specializing to the local potential approximati
show that the finite gauge transformation can be represented, with a suitable approximation
to a multiplicative factor, by a momentum dependent unitary operator that acts inx-space as a
local dilatation operator. Under the action of the latter, the potentials undergo two kind
modification. In the first one, they are changed in a form invariant way, by the replacement o
argumentr ~the c.m. interparticle distance! by a functionr (j), wherej is the gauge variation
parameter. Apart from a rapid variation near the origin,r (j) is essentially dominated by it
large-distance behavior, in whichr is simply shifted by a constant value. In the second kind
modification, certain parts of the spacelike components of the electromagnetic potential are
tionally modified.

Studying the short-distance behavior of these~three-dimensional! potentials we find that the
effective potential that appears in the final Pauli–Schro¨dinger type eigenvalue equation has t
gauge-invariant attractive singularitya2/r 2. As is known, to such a singularity there correspon
a critical valueac of the coupling constant,ac51/2, at which value the fall to the center ph
nomenon occurs.

Constraint theory thus provides us with a three-dimensional framework in which the
potential approximation consistently fulfills the requirement of gauge invariance of the th
These results, while deduced in the framework of QED, might also survive, with approp
adaptations, to the incorporation or consideration of other types of interaction.

The plan of the paper is the following. In Sec. II, the gauge transformation properties o
Green’s functions and of the Bethe–Salpeter wave function are reviewed. In Sec. III, the
tesimal gauge transformation laws of the constraint theory wave functions and potentia
determined. The case of the local approximation of potentials is considered in Sec. IV. The g
properties of the gauge transformations in the local approximation are studied in Sec.
summary and concluding remarks follow in Sec. VI.

II. GAUGE TRANSFORMATIONS OF GREEN’S FUNCTIONS AND WAVE FUNCTIONS

Gauge transformation laws of Green’s functions in QED can be obtained with several eq
lent methods:~i! by considering the operator changes in the field operators;1 ~ii ! by modifying in
the functional integral the gauge fixing condition;2 ~iii ! by using the Ward–Takahashi identities3

In the present work we shall consider only linear covariant gauges, characterized by a par
j; the photon propagator is then

Dmn~k!52S gmn2j
kmkn

k2 D i

k21 i e
. ~2.1!

The reference gauge is taken here to be the Feynman gauge and the transformations e
Green’s function calculated in the gaugej with respect to its value in the Feynman gaugej
50). More generally, these transformations concern the passage from a gaugej1 to a gaugej2 ,
with j5j22j1 .

The transformation law of the unrenormalized Green’s function of a charged particle~a boson
or a fermion! is

Gj~x!5exp$ ie2j~D~x!2D~0!!%G~x!, ~2.2!

wheree is the unrenormalized electric charge of the particle andD is defined as
J. Math. Phys., Vol. 38, No. 10, October 1997
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D~x!5E d4k

~2p!4

eik.x

~k21 i e!2 , D~k!5
1

~k21 i e!2 . ~2.3!

Notice that the transformation law is spin independent.
For a two-particle Green’s function, with particle 1 representing a fermion~boson! with

chargee1 and particle 2 an antifermion~boson! with charge2e2 , the transformation law is3,13

Gj~x1 ,x2 ;y1 ,y2!5exp$ i j@e1
2~D~x12y1!2D~0!!1e2

2~D~x22y2!!2D~0!!#%exp$ i je1e2@D~x1

2x2!1D~y12y2!2D~x12y2!2D~y12x2!#%G~x1 ,x2 ;y1 ,y2!. ~2.4!

One also deduces from Eq.~2.4! the gauge transformation law of the Bethe–Salpeter w
function. We assume that the two-particle system is neutral in charge, hence

e15e25e. ~2.5!

The time separation between outgoing and ingoing states is defined asT5((x1
01x2

0)2(y1
0

1y2
0))/2. For large time separations (T→`) and finite values ofx1

02x2
0 andy1

02y2
0, G satisfies

the cluster decomposition:7

G~x1 ,x2 ;y1 ,y2! 5
T→`

h(
n

Fn~x1 ,x2!F̄n~y1 ,y2!, ~2.6!

whereh511 for bosonic fields andh521 for fermionic fields; the sum overn corresponds to
a complete set of states;Fn is a generalized Bethe–Salpeter wave function with respect to
intermediate stateun& and becomes the usual Bethe–Salpeter wave function whenun& is a bound
state.6,7 Although the functionD has a logarithmic increase at infinity, the charge neutra
condition ~2.5! leads to a mutual cancellation of singular terms and one obtains13

Fj~x1 ,x2!5eie2j~D~x12x2!2D~0!!F~x1 ,x2!. ~2.7!

The infinite factorD~0! in Eqs.~2.2!, ~2.4!, and~2.7! determines the transformation law of th
wave function renormalization constantZ2 .2 In the remaining part of this work, we shall no
consider radiative corrections and hence shall ignore gauge transformation effects coming
photons associated entirely with one particle; only exchanged photon contributions will be
into account. ~More generally, one may consider different gauges for exchanged photons a
photons entering in radiative corrections.4! Except in particular limiting procedures, such as in E
~2.6!, there are no, in general, cancellations between the two kinds of contributions, since th
concerned with different variables.

While the behavior under gauge transformations of Green’s functions and wave functi
very simple~in x-space!, the same is not true for the inverse of Green’s functions, the ve
functions and the scattering amplitudes. In this case, only infinitesimal gauge transformation
relatively simple forms. They can be obtained either by inverting the Green’s functions or by
the Ward–Takahashi identities.

The infinitesimal change of the inverse of the four-point Green’s function is

djG
2152G21~djG!G21. ~2.8!

Equations~2.8! and ~2.4! can then be used to show the invariance, in a weak form, of
Bethe–Salpeter equation. The latter can directly be written in terms ofG21 as

G21F50. ~2.9!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Invariance of this equation under gauge transformations requires

~djG
21!F1G21djF5G21~2~djG!G21F1djF!50. ~2.10!

Replacing in this equationdjG and djF by their expressions~2.4! and ~2.7!, respectively, one
obtains

D~x12x2!E d4z1d4z2G21~x1 ,x2 ;z1 ,z2!F~z1 ,z2!

2E d4x18d
4x28d

4y1d4y2d4z1d4z2G21~x1 ,x2 ;x18 ,x28!~D~x182y2!

1D~x282y1!!G~x18 ,x28 ;y1 ,y2!G21~y1 ,y2 ;z1z2!F~z1 ,z2!50. ~2.11!

~The contribution ofdjF has been cancelled by one of the terms ofdjG.! The first term vanishes
on account of Eq.~2.9!. In the second and third terms, the gauge propagatorsD acting multipli-
catively onG, join one of thex8’s to they of the other line; in momentum space, they produ
crossed diagrams withG; these do not have bound state poles at the positions of the d
diagram poles; therefore, the two productsDG cannot prevent the factorG21F from vanishing,
on account of Eq.~2.9!. One thus establishes the weak gauge invariance of the Bethe–Sa
equation.

This conclusion is not changed when one includes radiative corrections relative to ferm
boson lines and vertices. In particular, radiative corrections that joinx8 to y on the same line,
imply in momentum space integrations on the bound state pole position, which is then transf
into a cut.

To display the gauge transformation property of the off-mass shell scattering amplitud
pass into momentum space. The infinitesimal form of Eq.~2.4! is

djG~p1 ,2p2 ;p18 ,2p28!5 ie2djE d4k

~2p!4 D~k!@G~p12k,2~p21k!;p18 ,2p28!

1G~p1 ,2p2 ,p181k,2~p282k!!2G~p12k,2p2 ;p18 ,2~p282k!!

2G~p1 ,2~p21k!;p181k,2p28!#. ~2.12!

This equation is graphically represented in Fig. 1. We notice that ifG has a~simple! bound state
pole, then in the right-hand side of Eq.~2.12! the first two terms have also the same po
However, this pole being simple, one concludes that the gauge transformation does not cha
bound state energy.4,5 @Otherwise, the singularity structure in the right-hand side of Eq.~2.12!
would be that of a double pole.#

The scattering amplitudeT is defined from the Green’s functionG as

T5G1
21G2

21@G2G0#G1
21G2

21, ~2.13!

whereG1 andG2 are the external particle propagators andG0 is their product:

G05G1G2 . ~2.14!

The infinitesimal gauge transformation law ofT is then
J. Math. Phys., Vol. 38, No. 10, October 1997
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djT5 ie2dj@G1
21~p1!2G1

21~p18!#@G2
21~2p2!2G2

21~2p28!#D~p12p18!1 ie2djE d4k

~2p!4 D~k!

3@G1
21~p1!G1~p12k!T~p12k,2~p21k!;p18 ,2p28!G2~2~p21k!!G2

21~2p2!

1G2
21~2p28!G2~2~p282k!!T~p1 ,2p2 ;p181k,2~p282k!!G1~p181k!G1

21~p18!

2G1
21~p1!G2

21~2p28!G1~p12k!G2~2~p282k!!T~p12k,2p2 ;p18 ,2~p282k!!

2T~p1 ,2~p21k!;p181k,2p28!G1~p181k!G2~2~p21k!!G1
21~p18!G2

21~2p2!#. ~2.15!

Taking the external particles on their mass-shell, one immediately deduces from this eq
gauge invariance of the on-mass shell scattering amplitude.

The unitarity of the gauge transformation can be checked with the invariance of the no
the Bethe–Salpeter wave function. We first notice that, according to Eq.~2.4!, the adjointF of the
Bethe–Salpeter wave function@Eq. ~2.6!# transforms in the same way asF @Eq. ~2.7!# ~with the
same sign in the exponential function!; this is due to the fact that the gauge functionD @Eq. ~2.3!#
is imaginary for Euclidean variables inx-space. The norm of the internal part of the Beth
Salpeter wave function is8

~f,f!5E d4xf̄
]G21

]s
f52 ih, ~2.16!

wheres5P25(p11p2)2 andh was defined after Eq.~2.6!.
Using infinitesimal gauge transformations together with Eqs.~2.7!, ~2.8! and ~2.12! and re-

stricting ourselves to Hermitian kernels and time-reversal invariant interactions, we find~in com-
pact notation!

FIG. 1. Infinitesimal change, under gauge transformations, of two-particle Green’s function.~One-particle radiative cor-
rections are neglected.! The dashed line, including its vertices, is the gauge propagatorie2dj/(k2)2.
J. Math. Phys., Vol. 38, No. 10, October 1997
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dj~f,f!5 ie2djH E f̄D
]G21

]s
f1E f̄

]G21

]s
Df2E f̄

]G21

]s
@~DG!1~GD!2~DG!cr

2~GD!cr#G
21f2E f̄G21@~DG!1~GD!2~DG!cr2~GD!cr#

]G21

]s
f

2E f̄G21
]

]s
@~DG!1~GD!2~DG!cr2~GD!cr#G

21fJ , ~2.17!

where the subscript ‘‘cr ’’ designates the terms corresponding to the crossed diagrams@Eq. ~2.12!
and Fig. 1#. In the above equation, one is entitled to use the wave equation~2.9!, or its adjoint,
f̄G2150, as long asG21 is not multiplied by terms having a pole at the bound state positio
the s-channel. Therefore, the crossed diagram terms disappear and after some algebraic c
tions one remains with the following terms, which also ultimately vanish:

dj~f,f!52 ie2djH E f̄
]G21

]s
~GD!G21f1E f̄G21~DG!

]G21

]s
f

1E f̄G21
]

]s
@DG1GD#G21fJ

52 ie2djH E f̄G21
]

]s
~DGG21!f1E f̄

]

]s
~G21GD!G21fJ

52 ie2djH E f̄S ]D

]s DG21f1E f̄G21S ]D

]s DfJ 50. ~2.18!

Let us finally remark that the gauge propagatorD, having a singular infra-red behavior, ma
lead, during the evaluation of Feynman diagram integrals, to infra-red divergences. Howev
integrals involved in the variationsdjG @Eq. ~2.12!# and djT @Eq. ~2.15!# are actually globally
infra-red regular, although individual terms are divergent, as can be checked by taking
integrands the limitk→0. In later calculations, some of the terms present indjG or djT will be
dropped, for they do not contribute to the bound state poles. It should be understood, in such
that their infra-red divergent parts are kept, in order to maintain the regularity of the rema
integral.

III. GAUGE TRANSFORMATIONS OF CONSTRAINT THEORY WAVE FUNCTIONS AND
POTENTIALS

Constraint theory15–17 allows the elimination of the relative energy variable of the two p
ticles by means of a manifestly covariant equation. The choice of the latter is not uniqu
generally various choices are related one to the other by canonical or wave function trans
tions. We choose the following constraint:

@~p1
22p2

2!2~m1
22m2

2!#C̃~x1 ,x2!50, ~3.1!

wherep1 and p2 are the momentum operators of particles 1 and 2,m1 and m2 their respective
masses andC̃ is the constraint theory wave function. We use standard definitions for the tota
relative variables:P5p11p2 , p5(p12p2)/2, x5x12x2 , M5m11m2 . For states that are
eigenstates of the total momentumP, we define transverse and longitudinal components of fo
vectors with respect toP and denote them with indicesT and L, respectively; thusxm

T5xm

2x.P̂P̂m , xL5x.P̂, P̂m5Pm /AP2, PL5AP2, r 5A2xT2.
With these definitions, constraint~3.1! can be written in the following form:
J. Math. Phys., Vol. 38, No. 10, October 1997
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C~p![2PLpL2~m1
22m2

2!'0. ~3.2!

ConstraintC allows the elimination of the relative longitudinal momentumpL and fixes the
evolution law with respect to its conjugate variablexL . The internal dynamics of the system
becomes three-dimensional, apart from the spin degrees of freedom, expressed in terms
transverse vectorxT.

In the presence of constraintC, the individual Klein–Gordon operators become equal:

H0[~p1
22m1

2!uC5~p2
22m2

2!uC5
P2

4
2

1

2
~m1

21m2
2!1

~m1
22m2

2!2

4P2 1pT2. ~3.3!

The wave equations for two spin-0 particle systems are

~p1
22m1

22Ṽ!C̃~x1 ,x2!50, ~3.4a!

~p2
22m2

22Ṽ!C̃~x1 ,x2!50, ~3.4b!

while for spin-12 fermion–antifermion systems they are17,21

~g1 .p12m1!C̃5~2g2 .p21m2!ṼC̃, ~3.5a!

~2g2 .p22m2!C̃5~g1 .p11m1!ṼC̃. ~3.5b!

~The antifermion Dirac matricesg2 act onC̃, represented as a 434 matrix, from the right, in the
reverse order of their appearance.! PotentialsṼ are Poincare´ invariant operators and depend onx
only through the transverse vectorxT.

Equations~3.4a!–~3.4b! and ~3.5a!–~3.5b! can also be written in a unified form. Introducin
the individual particle propagatorsG1 and G2 ~with i -factors in the numerators in momentu
space! and their productG0 @Eq. ~2.14!# and defining

g̃05H0G0uC~p! , ~3.6!

Eqs.~3.4a!–~3.4b! and ~3.5a!–~3.5b! take the form

~ g̃0
211Ṽ!C̃50. ~3.7!

In order to establish the connection of constraint theory wave equations and potential
the Bethe–Salpeter equation and related quantities, one projects, with an appropriate weig
tor, which is chosen here to beH0 @Eq. ~3.3!#, Green’s functions, scattering amplitudes and wa
functions on the constraint hypersurface~3.2!. Thus, defining the left-projected Green’s functio
G̃,

G̃~P,p,p8!522ipd~C~p!!H0G~P,p,p8!, ~3.8!

one can iterate, in the right-hand side,G aroundG̃, repeatedly using its integral equation. O
ends up with an integral equation satisfied byG̃, the kernel of which is related to the Bethe
Salpeter kernelK.20 Defining the constraint theory wave functionCC from the residue ofG̃ at a
bound state pole,

CC[2p2PLd~C!C̃522ipd~C!H0F, ~3.9!
J. Math. Phys., Vol. 38, No. 10, October 1997
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one finds that the wave functionC̃ satisfies Eq.~3.7! with Ṽ related to the scattering amplitude b
means of a Lippmann–Schwinger-quasipotential type equation:10,20,22

Ṽ5T̃~12g̃0T̃!21, ~3.10!

T̃~p,p8!5
i

2PL
T~p,p8!uC~p!,C~p8! . ~3.11!

@In T, the total four-momentum conservation factor (2p)4d4(P2P8) has been amputated.#
Conversely, the Bethe–Salpeter wave functionF can be reconstructed fromCC with the

equation

F5G0T~12g̃T!21CC , g̃52ipd~C!g̃0 , ~3.12!

G0 and g̃0 being defined in Eqs.~2.14! and ~3.6!.
Equation~3.10! is the basis for the calculation of the potential of constraint theory from

scattering amplitude. Iterating Eq.~3.10! with respect toT̃, one finds thatṼ receives contributions
in addition to those of the ordinary Feynman diagrams, from new diagrams having at lea
three-dimensional box sub-diagram, corresponding to the presence of the constraint facg̃0 .
These diagrams, which we call ‘‘constraint diagrams,’’ play a crucial role in the cancella
mechanism of spurious infra-red singularities19,20 and in the reorganization of the perturbatio
series.

The infinitesimal gauge transformation law of the constraint theory wave function is obta
by starting from Eqs.~3.9! and using Eqs.~3.12! and ~2.7!. One has

djC̃52
i

2PL
H0djFuC52

i

2PL
ie2djH0~DF!uC52

i

2PL
ie2djH0~DG0T!~12g̃0T̃!21C̃,

~3.13!

where the integration inside the term (DG0T) is four-dimensional.
The transformation law of the potential is obtained by starting from the relationship bet

the wave equation operator (g̃ 0
211Ṽ) @Eq. ~3.7!# and the scattering amplitudeT̃ @Eqs. ~3.10!–

~3.11!#:

~ g̃ 0
211Ṽ!5g̃ 0

21~12g̃0T̃!215~12T̃g̃0!21g̃ 0
21. ~3.14!

One finds the relation

dj~ g̃ 0
211Ṽ!5~ g̃ 0

211Ṽ!g̃0~djT̃!g̃0~ g̃ 0
211Ṽ!, ~3.15!

which, according to the transformation law~2.15!, becomes

dj~ g̃ 0
211Ṽ!5

i

2PL
ie2dj~ g̃ 0

211Ṽ!g̃0$G0
21~D1DG0T!1~D1TG0D!G0

212~crossed!%

3g̃0~ g̃ 0
211Ṽ!. ~3.16!

When this equation is applied on the wave functionC̃, the operator (g̃ 0
211Ṽ) of the utmost

right gives zero@Eq. ~3.7!# provided it is not multiplied by terms having the bound state pole at
same position. Therefore, the crossed terms, as well as the singleD terms, disappear from the
equation. Furthermore, in the second term of the right-hand side of the equation the p
( i /(2PL))(g̃ 0

211Ṽ)g̃0T is, according to Eqs.~3.14!, the four-dimensional continuation~in rela-
J. Math. Phys., Vol. 38, No. 10, October 1997
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tive longitudinal momentum! of (12T̃g̃0)21T̃5Ṽ, which does not have a pole; hence, it does
contribute when Eq.~3.16! is applied onC̃. One thus obtains the equation

@dj~ g̃ 0
211Ṽ!#C̃5

i

2PL
ie2dj~ g̃0

211Ṽ!H0~DG0T!~12g̃0T̃!21C̃, ~3.17!

where Eq.~3.6! was used.
The combination of the two transformation laws~3.13! and ~3.17! leads to the weak invari-

ance of the wave equation~3.7!:

dj@~ g̃ 0
211Ṽ!C̃#'0. ~3.18!

The invariance of the norm ofC̃ can be shown in a similar way as for the Bethe–Salpe
wave function@Eqs.~2.16!–~2.18!#. The norm of the internal part ofC̃ is10,17,20

~ c̃,c̃ !52hE d3xT4P2cS
]

]s
@ g̃0

211Ṽ#c̃52PL , ~3.19!

wherecD is the adjoint ofc̃, equal toc̃* in the bosonic case and to@g1Lg2Lc̃#† in the fermionic
case;s5P2 andh was defined after Eq.~2.6!. Using the transformation laws~3.13! and~3.16! and
arguments similar to those used in Eqs.~2.16!–~2.18! one shows the~weak! invariance of the
norm ~3.19!:

dj~c̃,c̃ !50. ~3.20!

Contrary to the four-dimensional case, the gauge transformation laws~3.13! and~3.17! of the
three-dimensional theory explicitly depend on the interaction, a feature that renders their e
tions rather tricky. Furthermore, the amplitudeT that appears in the transformation is not subm
ted on its left to the constraint~3.2!. Therefore, the quantity (i /(2PL))T(12g̃0T̃)21 represents a
four-dimensional continuation of potentialṼ @Eq. ~3.10!#. Its evaluation, in the general cas
cannot be done in compact form. However, when the local approximation is used for the p
tials, simplifications occur. This case is considered in Sec. IV.

IV. GAUGE TRANSFORMATIONS IN THE LOCAL APPROXIMATION OF POTENTIALS

In the lowest order of perturbation theory~one photon exchange!, relationship~3.10! provides
a local expression forṼ in three-dimensionalx-space~with respect toxT!. It turns out that this
property can also be maintained, in a certain approximation, in higher orders. The pertur
theory calculations effected in Ref. 20 have shown that, in the Feynman gauge, the inf
leading part of the contribution of then-photon exchange diagrams can be represented in~three-
dimensional! x-space by a local function ofr (5A2xT2), of the type (a/r )n, a being the fine
structure constant. The sum of these leading terms also yields a local function forṼ. Therefore,
the local approximation ofṼ can be considered as a sensible one: it includes not only lowest o
effects, but also leading effects of multiphoton exchange diagrams. The use of this approxim
considerably simplifies the resolution of wave equations, where now standard methods of qu
mechanics can be applied. In the rest of this article we shall limit ourselves to this approxim
and shall correspondingly consider the transformation laws obtained in Sec. III.

In the fermionic case, to ensure positivity of the norm, potentialṼ must satisfy an
inequality;21 for local potentials that commute withg1Lg2L , the parametrization,23

Ṽ5tanhV, ~4.1!
J. Math. Phys., Vol. 38, No. 10, October 1997
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satisfies this condition. Introducing the wave function transformation,

C̃5~coshV!C, ~4.2!

the norm of the internal part of the new wave functionC becomes~in the c.m. frame!

E d3xTr H c†F114g10g20P0
2 ]V

]P2GcJ 52P0 , ~4.3!

which, for c.m. energy independent potentials, reduces to the conventional free norm of st
Considering local potentialsV ~in xT! composed of combinations of scalar, pseudoscalar

vector potentials,

V5V11g15g25V31g1
mg2

nS gmn
LLV21gmn

TTU41
xm

Txn
T

xT2 T4D , ~4.4!

and using transformations~4.1!–~4.2!, Eqs.~3.5a!–~3.5b! can be brought into forms analogous
the Dirac equation, where each particle appears as placed in the external potential created
other particle. The wave equation satisfied by particle 1 becomes21

H FPL

2
e2V21

~m1
22m2

2!

2PL
e22V2Gg1L2

M

2
e2V12

~m1
22m2

2!

2M
e2V11e22U4Fg1

T
•pT1

i\

2xT2

3~e22T421!~2g1
T
•xT1 ig1

Tas2ab
TT xTB!1~e22T421!

g1
T
•xT

xT2 xT
•pT22i\e22T4g2

T

•xTS V̇11g1Lg2LV̇21g15g25V̇31g1
T
•g2

TU̇41
g1

T
•xTg2

T
•xT

xT2 Ṫ4D G J C50, ~4.5!

where we have defined

Ḟ[
]F

]xT2 , samn5
1

2i
@gam ,gan# ~a51,2!. ~4.6!

The wave equation satisfied by particle 2 can be obtained from Eq.~4.5! by the replacements
p1↔2p2 , x→x, m1↔m2 , g1↔g2 . We recognize that the scalar potentialV1 acts as a modifi-
cation of the total massM of the fermions through the changeM→Me2V1 while (m1

22m2
2) is kept

fixed. The timelike vector potentialV2 acts as a modification of the c.m. total energyPL through
the changePL→PLe2V2, while (p1L

2 2p2L
2 )5(m1

22m2
2) is kept fixed. The spacelike potentialU4

changes the orbital angular momentum operator fromL to Le22U4 ~in the c.m. frame! and the
combinationU41T4 of the spacelike potentials changes the radial momentum operator frompr to
pre

22(U41T4) ~in the classical limit!. The pseudoscalar potential appears only in spin-
\-dependent terms.

In QED, the summation of leading infra-red effects of multiphoton exchange diagram
described above,20 leads to the following expressions for the timelike (V2) and spacelike~U4 and
T4! parts of the electromagnetic potential in the Feynman gauge:

V25
1

4
lnS 11

2a

PLr D , ~4.7!

U45V2 , T450. ~4.8!
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Potentials~4.7!–~4.8! are compatible with the minimal substitution rules proposed long ag
Todorov for spin-0 particles, on the basis of an identification of the two-particle motion in the
frame to that of a fictitious particle with appropriately defined reduced mass and energy.18 These
rules were extended to the fermionic case by Crater and Van Alstine.16 The above potentials wer
shown to reproduce the correctO(a4) effects in muonium and positronium spectra.21,24

Similar results as above can also be derived with scalar photons contributing to the
potentialV1 @Eq. ~4.4!#.16,20

The application of the previous summation method of the Feynman diagrams to the in
tions of bosons shows, as one naturally expects, that the classical parts of the potentials
fermionic case~written in the Pauli–Schro¨dinger form21! and in the bosonic case coincide.20

Therefore, one can use unified potentials for both cases.
It is not straightforward to generalize the above evaluation and summation techniques to

covariant gauges than the Feynman gauge. The presence of the additional gauge piec
photon propagator breaks the permutational symmetry used in the previous calculations a
ders their evaluation rather complicated. This is why these potentials will be evaluated fro
Feynman gauge, using the infinitesimal transformation laws obtained in Sec. III.

To have a rough idea of the expected results, we first consider in some detail the one-
exchange approximation. The corresponding potential is then local, without a further appro
tion. Indeed, Eq.~3.10!, specialized to the one-photon exchange diagram, projects, with the
straint condition~3.2!, the photon propagator in momentum space on the surfacekL50; the
potential inx-space is obtained with the three-dimensional Fourier transformation with resp
kT. One finds for the photon propagator in three-dimensionalx-space, in the gaugej, the expres-
sion

D̃mn~xT!5
i

4p S gmn
LL1gmn

TTS 12
j

2D1
xm

Txn
T

xT2

j

2D 1

r
; ~4.9!

it yields the following expressions for the potentials in the gaugej:

V2j5
a

2PLr
, U4j5V2j1Ugj , T4j52xT2U̇gj , Ugj52

j

2

a

2PLr
. ~4.10!

@The dot operation is defined in Eq.~4.6!.# To this order,V2j is independent ofj.
After replacing these potentials in the wave equation~4.5! ~and in the equivalent one o

particle 2! and designating byCj the corresponding wave function, it can be seen that the w
function transformation,

Cj5U~j!C, U~j!.~11 ie2jS0!,

S05
1

2
~FxT

•pT1pT
•xTF !, F5

1

4p

1

2PLr
, ~4.11!

removes, to first order ina, all thej-dependent terms from the wave equation and gives back
wave equation in the Feynman gauge. The operatorS0 can also be written in the following form

S052
i

4 FH0 ,ExT2

dxT2F G52
i

2PL
@H0 ,D̃~xT!#, ~4.12!

where D̃(xT) is the three-dimensionally reduced expression of the gauge propagatorD(x) @Eq.
~2.3!# ~calculated by the Schwinger parametrization and dimensional regularization!:
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D̃~xT!5E d3kT

~2p!3

eikT
•xT

~kT21 i e!2 52
1

8p
r . ~4.13!

The above study can also be repeated for the bosonic case, the same results as
~4.11!–~4.12! being found.@The wave equations for vector interactions with bosons can be fo
in Refs. 16, 17. In the first paper of Ref. 17, the eigenvalue equation in the Feynman ga
given by Eq.~5.12! with the identifications (12B)5(12A)215e2V25e2U4.#

To investigate the transformation laws for the higher order diagrams, we go back t
general case of Eqs.~3.13! and ~3.17!. We use the wave equation~3.7!, together with relation
~3.10!, in its integral form, valid for a bound state,

C̃1g̃0T̃~12g̃0T̃!21C̃50, ~4.14!

and add it, multiplied with an appropriate~nonsingular! factor, to Eq.~3.13!. We obtain

djC̃52
i

2PL
ie2djH0$~DG0T!1~D̃g̃0T̃!%~12g̃0T̃!21C̃2

i

2PL
ie2djH0D̃C̃. ~4.15!

The quantity (D̃g̃0T̃) is the constraint diagram counterpart of the amplitude (DG0T)20 and the
integration inside it is three-dimensional, after constraint~3.2! is used.

We can still add to Eq.~4.15! the contribution of the crossed diagram counterpart of (DG0T),
denoted by (DG0T)cr , in which the gauge propagatorD crosses the scattering amplitudeT ~see
Fig. 2!. This is possible since (DG0T)cr does not have a pole at the bound state position in
s-channel and hence one can apply the operator (12g̃0T̃)21 on C̃ and obtain zero. Thus, Eq
~4.15! becomes

djC̃52
i

2PL
ie2djH0$~DG0T!1~DG0T!cr1~D̃g̃0T̃!%~12g̃0T̃!21C̃2

i

2PL
ie2djH0D̃C̃.

~4.16!

The sum of the amplitudes (DG0T), (DG0T)cr and (D̃g̃0T̃) can be evaluated at leading ord
of the infra-red counting rules of QED with the eikonal approximation25–27 adapted to the bound
state problem. This approximation was verified to yield the correct results for the leading ter
the two-photon exchange diagrams and then was generalized to higher order diagrams.20 It con-
sists of making the following approximations in the fermion propagators:

FIG. 2. The three diagrams entering in the evaluation of the interaction-dependent part of the change of the co
theory wave function. The shaded box is the off-mass shell scattering amplitude. The cross indicates the co
diagram.
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G1~p12k1!.
i

22p1•k11 i e
@~g1Lp1L1m1!2g1Lk1L#,

G2~2~p21k2!!.
i

2p2•k21 i e
@~2g2Lp2L1m2!2g2Lk2L#, ~4.17!

and of neglecting, at intermediate stages of the calculation, momentum transfers relative
graphs of a given graph. Neglecting thus in the amplitudeT, in Eq.~4.16!, the momentum transfer
the calculation becomes similar to that of two-photon exchange diagrams.~For positivity reasons,
we also retain the quadratic termkL

2 in the productG1G2 .! One finds

~DG0T!1~DG0T!cr1~D̃g̃0T̃!.D̃S 21
H0

4p1Lp2L
D T̃. ~4.18!

At leading order, the termH0 /(4p1Lp2L) is equivalent to2g̃0
21; neglecting quantum effects, th

latter can be brought to the utmost right and replaced there byṼ. One finally obtains

djC̃52
i

2PL
ie2djH0D̃~11Ṽlead,j!

2C̃, ~4.19!

whereṼlead,j is the infra-red leading part ofṼ ~in the gaugej!, i.e., the timelike component of th
vector potential and whereg1Lg2L is replaced by21:

Ṽlead,j52tanhV2j . ~4.20!

@In the Feynman gaugeV2 is given by Eq.~4.7!.#
Similarly, Eq. ~3.17! yields

@dj~ g̃ 0
211Ṽ!#C̃5

i

2PL
ie2dj~ g̃ 0

211Ṽ!H0D̃~11Ṽlead,j!
2C̃. ~4.21!

To integrate Eq.~4.19! up to finitej’s, we bring the operatorH0 to the utmost right and use
the equation of motion~with the approximationH0.24p1Lp2Lg̃ 0

21!:

djC̃52
i

2PL
ie2dj$@H0 ,D̃~11Ṽlead,j!

2#14p1Lp2LD̃~11Ṽlead,j!
2Ṽlead,j%C̃. ~4.22!

The solution of this equation is

C̃j2
5Ū~j2 ,j1!C̃j1

,

Ū~j2 ,j1!5P S expH ie2E
j1

j2
djW~j!J D ,

W~j!52
i

2PL
$@H0 ,D̃~11Ṽlead,j!

2#14p1Lp2LD̃~11Ṽlead,j!
2Ṽlead,j%, ~4.23!

whereP is the path ordering operator.
In the following, we shall study an approximate form of this transformation law. To this

we adopt two simplifications. First, we assume that in the commutator, inW(j), the potential
Ṽlead,j can be approximated by its expression of the Feynman gauge:
J. Math. Phys., Vol. 38, No. 10, October 1997
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Ṽlead,j.Ṽlead,F5S 12A112a/PLr

11A112a/PLr
D . ~4.24!

Second, we assume that the two operators inW(j) are commuting objects. With these approx
mations the gauge transformation operatorŪ(j2 ,j1) takes the form

Ū~j2 ,j1!.T~j2 ,j1!U~j22j1!,

U~j!5eie2jS, S52
i

2PL
@H0 ,D̃~11Ṽlead,F!2#,

~4.25!

T~j2 ,j1!5expH e2

2PL
E

j1

j2
dj4p1Lp2LD̃~11Ṽlead,j!

2Ṽlead,jJ .

@T(j2 ,j1) and U(j) are supposed to be commuting.# As we shall see in Sec. V, the abov
approximate forms provide the main qualitative properties of the gauge transformations of
functions and potentials.

The wave equation operator (g̃ 0
211Ṽ) transforms as

@ g̃ 0
211Ṽ#j5T21~j2 ,j1!U~j22j1!~ g̃ 0

211Ṽ!U†~j22j1!T21~j2 ,j1!. ~4.26!

Transformations~4.25!–~4.26! ensure the~weak! invariance of the norm~3.19!.
Among the two transformation operatorsU andT, it is the former which is the nontrivial one

generating local transformations inx-space, while the latter acts as a multiplicative factor. In
following we shall focus our attention on the properties of the operatorU.

V. PROPERTIES OF GAUGE TRANSFORMATIONS IN THE LOCAL APPROXIMATION
OF POTENTIALS

This section is devoted to the study of the properties of gauge transformations in the
approximation of potentials, implemented by the operatorU @Eq. ~4.25!#. There is a complete
similarity between the cases of bosons and fermions~the operatorU is spin independent! and for
this reason we shall concentrate on the case of fermions only. The generatorS of the transforma-
tions will be written in a form similar to that of Eq.~4.11!, which is more tractable for practica
calculations. Thus, the gauge transformation operatorU(j) is defined as

C̃j5U~j!C̃, U~j!5ei j~ f xT.pT1pT.xTf !/~2\!,
~5.1!

f 5
a

2PLr

]

]r
@r ~11Ṽlead,F!2#, Ṽlead,F5S 12A112a/PLr

11A112a/PLr
D .

The operatorU(j) acts through changes of the variablesxT andpT. We denote byxT(j), r (j)
andpT(j) the new expressions obtained fromxT, r andpT, respectively, afterU(j) has acted on
them. We have

xa
T~j!5U~j!xa

TU†~j!, r ~j!5U~j!rU †~j!, r 5A2xT2, ~5.2!

from which we deduce the differential equations:

]xa
T~j!

]j
52 f ~r ~j!!xa

T~j!,
]r ~j!

]j
52 f ~r ~j!!r ~j!. ~5.3!
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We notice that the variablexa
T/r remains unchanged under the action ofU(j), which acts as a

local dilatation operator inx-space, and hence it is sufficient to study the variation ofr .
The solution of Eq.~5.3! is

E
r

r ~j! dz

z f~z!
52j, ~5.4!

from which we also deduce

]r ~j!

]r
5

r ~j! f ~r ~j!!

r f ~r !
. ~5.5!

The action ofU(j) on the momentum operatorpT is more involved. The operatorpT(j) is no
longer parallel topT and has components alongxT. For reasons that will become evident belo
we parametrizepT(j) by means of two functionsUgj5Ugj(r (j),r ) and Tgj5Tgj(r (j),r ) as
follows:

pa
T~j!5U~j!pa

TU†~j!5e22Ugjpa
T1e22Ugj~e22Tgj21!

xa
T

xT2 xT.pT

1 i\xa
TF 1

xT2 e22Ugj~e22Tgj21!22~U̇gj1Ṫgj!e
22~Ugj1Tgj!G .

~5.6!

@The dot operation is defined in Eq.~4.6!.# The last term, proportional toi\xa
T , is fixed by the

hermiticity condition. From the definition ofpT(j) we obtain the differential equation

]pa
T~j!

]j
5 f ~r ~j!!pa

T~j!12 ḟ ~r ~j!!xa
T~j!xT~j!.pT~j!15i\xa

T~j! ḟ ~r ~j!!

12i\xT2~j!xa
T~j! f̈ ~r ~j!!. ~5.7!

@The dot derivations are with respect toxT2(j).# Use in both sides of Eq.~5.7! of parametrization
~5.6! leads to differential equations concerning the functionsUgj andTgj :

22
]Ugj

]j
5 f ~r ~j!!, 22

2Tgj

]j
52xT2~j! ḟ ~r ~j!!. ~5.8!

~The terms proportional toi\xa
T do not lead to new conditions.! Taking into account Eq.~5.3! and

the boundary conditionpT(j50)5pT, the solutions of Eqs.~5.8! are

Ugj5
1

2
lnS r ~j!

r D , Tgj5
1

2
lnS f ~r ~j!!

f ~r ! D . ~5.9!

These also imply the relation

4r 2
]Ugj

]r 2 5e2Tgj21. ~5.10!

In the nonrelativistic limit one has the behaviors

Ugj5
1

2M
Ugj

NR1OS 1

M2D , Tgj5
1

2M
Tgj

NR1OS 1

M2D . ~5.11!
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In this limit, Eq. ~5.10! reduces to the relation

Tgj
NR52r 2

]Ugj
NR

]r 2 . ~5.12!

We next study the action of the operatorU on the wave equation operator (g̃ 0
211Ṽ). We first

consider the operatorg̃ 0
21 @Eq. ~3.6!#, which is composed of the Dirac operators (g1•p17m1)

and (2g2•p27m2). The Dirac operator (g1•p12m1), say, becomes (g1•p12m1)j , where only
the operatorpT has changed, according to the transformation law~5.6!. The operator (g1•p1

2m1)j has the same structure as the wave equation operator~4.5!, in which V15V25V350 and
U4

5 Ugj , T45Tgj . @The terms proportional to the matricess2ab
TT , present in Eq.~4.5!, mutually

cancel out when expressions~5.9! are used forUgj andTgj .# A similar conclusion is also obtaine
with the Dirac operator (2g2•p22m2)j . The two operators (g1•p1)j and (2g2•p2)j ~strongly!
commute and hence (g̃ 0

21)j is a well defined operator, in which the ordering of the Dir
operators is irrelevant.

The action of the operatorU on the potentialṼ is obtained by the replacement in it ofr by
r (j), according to the transformations~5.2! and ~5.4!:

Ṽj5Ṽ~r ~j!!. ~5.13!

Examining then the norm of the wave functionC̃j @Eq. ~3.19!# ~in the kernel of which, after
the evaluation of the action of]/]s, one uses the equations of motion!, one deduces that th
passage to the wave functionCj , characterized by a norm of the type~4.3!, is again obtained with
transformations of the type~4.1!–~4.2!:

Ṽj5tanhVj , C̃j5~coshVj!Cj . ~5.14!

The Dirac type wave equations satisfied byCj have the same structure as Eqs.~4.5!, in which,
however, the potentialsUgj andTgj have been added up to the existing potentialsU4(r (j)) and
T4(r (j)) of Vj . This feature indicates us that these wave equations could also have been ob
from the following wave equation satisfied by a wave functionC̃j8 defined below:

~ g̃ 0
211Ṽj8!C̃j850, ~5.15!

whereṼj8 is defined as

Ṽj85tanhVj8 , ~5.16!

andVj8 has the following timelike (V2j8 ) and spacelike (U4j8 ,T4j8 ) components:

V2j8 5V2j5V2~r ~j!!,

U4j8 5U4j1Ugj5U4~r ~j!!1Ugj~r ~j!,r !,
~5.17!

T4j8 5T4j1Tgj5T4~r ~j!!1Tgj~r ~j!,r !.

The wave functionC̃j8 is related toCj by the transformation

C̃j85~coshVj8!Cj . ~5.18!

The relationship betweenC̃j8 andC̃j is
J. Math. Phys., Vol. 38, No. 10, October 1997
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C̃j85~coshVj8!~coshVj!
21C̃j . ~5.19!

Therefore, the two wave equation operators@ g̃ 0
211Ṽ#j and (g̃ 0

211Ṽj8) are equivalent:

@ g̃ 0
211Ṽ#j'g̃ 0

211Ṽj8 . ~5.20!

The advantage of the representationC̃j8 is that its wave equation operator has the conventio
form ~3.7! with a potentialṼj8 which is local. In this representation, among the three potentialsV2 ,
U4 and T4 , only V2 has a form invariant transformation law. If the scalar and pseudosc
potentials,V1 andV3 , were present, they would transform asV2 . ~In this caseṼlead @Eqs.~5.1!#
should also contain the scalar potentialV1 .!

The above transformation laws satisfy the group property, as can be checked by com
two successive transformations; hence, they can be used starting from any gauge.

Let us now return to the explicit expression of the functionf , Eq. ~5.1!. Equation~5.4! then
yields

1

~2x~j!21!
expS 2

x~j!21D5
1

~2x21!
expS 2

x21
2j D , x5A11

2a

PLr
. ~5.21!

It does not seem possible to expressr (j) in compact form in terms ofr andj. However, the
above equation provides easily the asymptotic behaviors ofr (j):

r ~j! 5
r→`

r 2
aj

2PL
1OS 1

r D , ~5.22a!

r ~j! 5
r→0

re22jS 11APLr /2a

11A~PLr /2a!e2jD expH 4APLr

2a
~12e2j!J 1O~r 2!.re22j. ~5.22b!

We have plotted, in Fig. 3, the curvesr (j) ~in units of 2a/PL! for three values of the gaug
parameter,j522 ~Yennie gauge!, j50 ~Feynman gauge! and j51 ~Landau gauge!. It is ob-
served that the large-distance behavior~5.22a! is reached very rapidly.

From Eqs.~5.1! or Eq. ~5.5! one also obtains the asymptotic behaviors off (r (j))/ f (r ):

f ~r ~j!!

f ~r !
5

r→`

11
aj

2PLr
1OS 1

r 2D , ~5.23a!

f ~r ~j!!

f ~r !
5

r→0

11
1

2
APLr

2a F 1

11A~PLr /2a
2

e2j

11A~PLr /2a!e2j
14~12e2j!G1O~r !.

~5.23b!

Equations~5.22a!–~5.23b!, together with Eqs.~5.9! and~5.17!, yield the behaviors of the new
potentials in the corresponding limits. The large-distance expansions~5.22a! and ~5.23a! are
particularly relevant in the nonrelativistic limit.

Of particular interest is the short-distance behavior of the effective potential. Accordin
Eqs. ~5.1!–~5.2!, the wave functionC̃j(x

T) is equal toC̃(xT(j)); Eq. ~5.22b! indicates us that
r (j) behaves liker near the origin and therefore the behavior of the wave function does
change there under the gauge transformation; this in turn means that the dominant short-d
singularity of the effective potential has remained the same. These features can also be
explicitly from the wave equations.
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To this end, let us consider, for the electromagnetic interaction, the Pauli–Schro¨dinger type
eigenvalue equation obtained from the wave equation~4.5! ~in the c.m. frame!:21

H e4~U41T4!FP2

4
e4V22

1

2
~m1

21m2
2!1

~m1
22m2

2!2

4P2 e24V2G2p22L2
1

r 2 ~e4T421!1...J f350,

~5.24!

wheref3 is a reduced~four-component! wave function andL is the orbital angular momentum
operator; the dots stand for spin- and\-dependent terms, which are not relevant for the pres
purpose. The dominant short-distance singularity is provided by the terme4(V21U41T4). In the
Feynman gauge,@Eqs. ~4.7!–~4.8!#, it yields the singularitya2/r 2, which is attractive and pro-
duces at the critical valueac5 1

2 the fall to the center phenomenon. A detailed analysis of
problem has shown that the theory undergoes at this value ofa a chiral phase transition;28 such a
conclusion has also been reached from the Bethe–Salpeter equation in the ladder approxim29

and from lattice theory calculations.30,31 Considering Eq.~5.24! in the gaugej, the potentialsV2 ,
U4 andT4 become replaced byV2j8 , U4j8 andT4j8 , respectively. We find that the modification o
the coefficient of the short-distance singularity coming from the form invariant part ofV2j8
1U4j8 , i.e., from V2j1U4j , is cancelled by that coming from the form noninvariant partUgj

1Tgj , and therefore the same singularitya2/r 2 emerges again.
One consequence of this result is that the critical coupling constantac has the same value12 in

all gauges. This is a consistency check of the formalism, sincea, representing here the invarian
charge, should lead to a gauge invariant critical valueac . ~In the present approximation, wher

FIG. 3. The curvesr (j) versusr ~in units of 2a/PL! for three values of the gauge parameter,j522 ~Yennie gauge!,
j50 ~Feynman gauge! andj51 ~Landau gauge!.
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radiative corrections are neglected, the physical and bare charges are identical; in any eve
quantities should be gauge invariant.! This is in contrast with the results obtained from t
Bethe–Salpeter equation in the ladder approximation, where the value ofac is gauge dependen
~equal top/4 in the Feynman gauge and top/3 in the Landau gauge29,32!.

We also emphasize the particular role played byṼlead, in f @Eq. ~5.1!#, in the short-distance
behavior of the potentials in the gaugej. If Ṽlead were absent, then the exact solution of Eq.~5.4!
would be r (j)5r 2aj/(2PL) @the same as the asymptotic behavior~5.22a!#, producing in the
Coulomb potential a singularity shifted to the positionr 5aj/(2PL). On the other hand, when
Ṽlead is present inf , the functionr f @cf. Eq. ~5.4!# vanishes liker when r tends to 0 and, as a
result, the singularity of the Coulomb potential becomes maintained at the positionr 50 in the
gaugej.

The results obtained so far with the approximations~4.25! are not qualitatively modified when
the dependence onj of Ṽlead,j is introduced with an iterative treatment. This is a consequenc
the asymptotic behaviors~5.22a!–~5.22b! and of the fact that the corresponding behaviors of
functionD̃(11Ṽlead,j)

2 in f @Eq. ~5.1!# are not changed. Similarly, one can also estimate the ef
of the operatorT @Eq. ~4.25!#. The integrand in the argument of the exponential inT is a positive
function. The behavior of the integral can be studied in the asymptotic regions with the a
relations~5.22a!–~5.22b!. In the limit r→0, the argument of the exponential tends to zero, wh
for r→`, it tends to the constant value (j22j1)a2p1Lp2L /(2PL

2) and generally remains a smoo
function between these two limits. These properties justify the factorization approximation
at the level of the gauge transformation operatorŪ @Eqs.~4.23! and ~4.25!#.

Let us finally remark that transformations~5.1!, because of their spin-independent charac
can also be applied in the case of bosonic wave equations, where now the operatorg̃ 0

21 is equal
to 2H0 , and the distinction between the representationsC̃j andC̃j8 becomes irrelevant.

VI. SUMMARY AND CONCLUDING REMARKS

Using the connection with quantum field theory, we established the infinitesimal cova
Abelian gauge transformation laws of constraint theory two-particle wave functions and pote
and showed weak invariance of the corresponding wave equations. Contrary to the
dimensional case and because of the three-dimensional projection operation, these transfo
laws are interaction dependent.

Simplifications occur when one sticks to local potentials, which result, in each formal ord
perturbation theory, from the infra-red leading effects of multiphoton exchange diagrams. I
case, the finite gauge transformation can explicitly be represented, with a suitable approxi
and up to a multiplicative factor, by a momentum-dependent unitary operator that acts inx-space
as a local dilatation operator. The latter acts on the potentials through two kinds of modific
a change of the argumentr of the potentials into a functionr (j) and a functional change of certai
parts of the spacelike components of the electromagnetic potential. The functionr (j) is essentially
dominated by its large-distance behavior, in whichr is simply shifted by a constant value. It wa
shown that the dominant short-distance singularity of the effective potential of the P
Schrödinger type eigenvalue equation is gauge invariant with a critical valueac of the coupling
constant equal to 1/2.

The above results allow the search for optimal gauges when incorporating new contrib
into the potentials, which might come either from QED, or from other interactions. For insta
it is known that vacuum polarization affects only the transverse part of the photon propa
Therefore, the choice of the Landau gauge for the introduction of the effective charge seem
most indicated.

The similarity in structure between QED and perturbative QCD, up to the color gauge g
matrices and the difference in the effective charges, allows us to envisage the considera
J. Math. Phys., Vol. 38, No. 10, October 1997
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many of the previous results in problems of quarkonium spectroscopy, where one has a
incorporate at large distances the effects coming from the confining potential. Here also the
for optimal gauges may become useful for subsequent applications.
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In thermal field dynamics, thermal states are obtained from restrictions of vacuum
states on a doubled field algebra. It is shown that the suitably doubled Fock repre-
sentations of the Heisenberg algebra do not need to be introduced by hand but can
be canonically handed down from deformations of the extended Heisenberg bial-
gebra. No artificial redefinitions of fields are necessary to obtain the thermal rep-
resentations and the case of arbitrary dimension is considered from the beginning.
Our results support a possibly fundamental role of bialgebra structures in defining
a general framework for thermal field dynamics. ©1997 American Institute of
Physics.@S0022-2488~97!02010-0#

I. INTRODUCTION

The notion of a doubling structure is present in every theory describing thermal pheno
This doubling, however, is most transparent in the approach known as thermal field dyn
~TFD!. Thermal field dynamics1 is based on the idea that thermal states of a quantum sys
described by the field algebraA can be given as restrictions of vacuum states of a doubled alg
of observablesA^A. The doubling ofA is usually given by the so-called tilde conjugation rul
which can be thought of as a mapping ofA>A^ 1 into 1^ A:

~ab!;5 ã b̃ , ~la1mb!;5l* ã1m* b̃ , ~ ã !;5a,

~a1!;5 ã1,

uvacuum&;5uvacuum&,

with a,bPA andl,mPC ~the complex numbers!.

Such a dual conjugation was proposed as a consequence of the physical analysis
vacuum-condensation phenomenon, associated with the presence of the unitarily inequ
vacua of systems with infinite degrees of freedom. This inequivalence is described properl
Bogoliubov transformation of basic operators ofA.

The first attempt to put TFD on an axiomatic basis appeared in Ojima’s work2 based on the
modular~Tomita–Takesaki! conjugation ofC* -algebras. Such a modular conjugation realizes
omnipresent dual conjugation by switching the algebraA and its commutantA8 in the thermal
~equilibrium! representation.
0022-2488/97/38(10)/4971/9/$10.00
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However the explicit splitting ofA^A into A ^ 1 and1^ A is not necessary. For all intende
purposes a doubling fromA to A^A without a specification of two copies ofA in A^A is
sufficient and one can therefore in all of the following drop the tilde conjugation rules, reta
only the idea of a doubling.

Note that already at this point the present treatment departs from the different and diffe
motivated approach to thermal field dynamics based on the modular~Tomita–Takesaki! conjuga-
tion as given by I.Ojima.2

Given a vacuum statevJ on A one can introduce a doublingdx :A→A^ A such that the
desired thermal statevx is given by

vx5~vJ^ vJ!+dx . ~1!

That this is indeed the case is shown in Section II which also reviews basic facts o
Heisenberg algebra and its exponentiation, the Weyl algebra, mostly omitting proofs. This s
of producing thermal states has in this setting no deeper justification except that it works.

However, there are two more general points of view.
First, the doubling of the algebra of observables characteristic for thermal field dynam

just an example of taking tensor products of representations of the field algebraA. A general and
systematic way of taking tensor products of representations is given, ifA is equipped with a
bialgebra structure,3 so it would be nice to have one on our algebra.

Second, a new possibility to study the thermal problem in an algebraic setting has em
with the works of Celeghini, Vitiello and their co-workers by exploring quantum deformation
Weyl–Heisenberg~WH! in connection with coherent and squeezed states, and quantum di
tion. The fact that one can produce squeezed states and thermal states by deformation
extended Weyl algebra has been shown using one-dimensional examples4–6 and the use of the
coalgebra structure as the doubling in thermal field theory was discussed in Refs. 7–9. In p
lar, a coherent state representation has been exploited and applications to lattice quantum m
ics have been suggested.5,6 These works on q-groups and thermal phenomena have set the qu
of how fundamental the doubling structure for the thermal systems is. A preliminary answer t
question can be given through the notion of Lie symmetries.10 In that approach a part of th
structure of the theory is deduced from a bialgebra~eventually produced from a symmetry Li
algebra10,11! with the rest given by the requirement of a Fock structure. The Fock structure
can, however, also be cast into a bialgebra form by using the extended Heisenberg algeb~see
Section III! thus allowing an axiomatic setting of the theory starting only from a bialgebra.

The present treatment is a further development of these results. It deals with the cas
higher dimensional phase space in a rather covariant way. The results are then, in particula
right form to be used, e.g., for the description of quantum fields on a curved spacetime backg
where there is no preferred Hamiltonian to split the phase space into separate modes.

Both points of view presented above ask for a bialgebra. Unfortunately, the Heise
algebraA cannot be turned into one as shown in Section III. However, it turns out that by g
over to a slightly different algebra, the extended Heisenberg algebraU, one can do away with this
problem, and there is a mapping from the extended Heisenberg algebraU onto the Heisenberg
algebraA that allows one to transport interesting structures, particularly the comultiplicatioD
responsible for tensor products of representations, into the context of physical observables

This is true even if one q-deforms the extended Heisenberg bialgebra: The deformed ex
Heisenberg algebraUx maps down onto theundeformedHeisenberg algebraA thus giving nothing
new for the algebra but providing us with new possible doublingsDx . It is these new doublings
Dx coming from deformations of the extended Heisenberg algebra that allow us to expre
arbitrary quasifree state in a way similar to thermal field dynamics. This is shown in Sectio
together with a discussion of the relevant deformations.

An example showing the relationship between the deformation parameterx and the inverse
J. Math. Phys., Vol. 38, No. 10, October 1997
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temperature of the corresponding thermal state is given in Section IV. Section V contains c
sions and some general remarks.

II. THE HEISENBERG ALGEBRA AND ITS WEYL FORM

In order to set the notation it will be shown now that thermal states on a Heisenberg a
A can be obtained from a Fock representation~i.e., an irreducible representation obtainable fro
a vacuumvJ by the Gel´fand–Naimark–Segal-construction~GNS-construction, see, e.g., that in O
Bratteli and D.W. Robinson12! by a suitable ad hoc doubling. The Heisenberg algebra is gene
from a symplectic vector spaceG of arbitrary dimension with the symplectic forms(d,d) by the
usual commutation relations:

f~z1!f~z2!2f~z2!f~z1!5 i\s~z1 ,z2!, z1 ,z2PG

or

W~z1!W~z2!5e@~ i /2!s~z1 ,z2!#W~z11z2!, z1 ,z2PG.

Heref(z) are the field operators andW(z) their exponentiated Weyl form:

W~z!5eif~z!.

A vacuum statevJ on the field algebraA is given by a complex structureJ on G. On the Weyl
generators one has:

vJ~W~z!!5e2~1/4!z+J+s+z, ~2!

with contractions between the relevant vectors and tensors indicated by+. The vacuum state is als
fully determined by its two-point function:

vJ~f~z1!f~z2!!5 1
2z1+J+s+z2 .

The thermal states to be considered are quasifree and thus correspond to free~i.e., quadratic!
field Hamiltonians. For each quasifree state there is by the modular theory13 ~Kubo–Martin–
Schwinger theory~KMS theory, see O. Bratteli and D.W. Robinson12,14!! a Hamiltonian with
respect to which the state is thermal and therefore one has to show that one can produ
quasifree state of interest by our doubled Fock representations. Any quasifree state corresp
to a positive definite Hamiltonian can be written in the form~compare with O. Bratteli and D.W
Robinson,14 p.50!:

vx~W~z!!5e2~1/4!z+coth~V/2!+J+s+z, ~3!

where V is a positive definite operator arising from the diagonalization of the correspon
HamiltonianH:15

H5V+J+s. ~4!

It is known from thermal field dynamics thatV can be related to a Bogoljubov operatorx on
G anticommuting withJ by the following relation, giving an alternative parametrization of qu
sifree states:

cosh~2x!5coth
V

2
, ~5!

vx~W~z!!5e2~1/4!z+cosh~2x!+J+s+z ~6!
J. Math. Phys., Vol. 38, No. 10, October 1997
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with x satisfying

J+x52x+J, ~7!

s+x52x+s. ~8!

The promised doublingdx is now given by the following action on the Weyl generators:

dx~W~z!!5W~cosh~x!z! ^ W~sinh~x!z!. ~9!

One can check now by direct calculation thatdx is an algebra homomorphism and that
produces from the doubled vacuum statevJ^ vJ the right quasifree statevx :

vx5~vJ^ vJ!+dx~W~z!!

5~vJ^ vJ!~W~coshxz! ^ W~sinhxz!!

5vJ~W~coshxz!!vJ~W~sinhxz!!

using ~2!

5e2~1/4!z+ coshx+J+s+ coshx+ze2~1/4!z+ sinh x+J+s+ sinh x+z

by ~7!, ~8!

5e2~1/4!z+~cosh2x1sinh2x!+J+s+z

by the identity cosh2x1sinh2x5cosh2x

5e2~1/4!z+cosh2x+J+s+z.

But this is just the quasifree state~6! that is required.

III. THE EXTENDED HEISENBERG ALGEBRA AND ITS DEFORMATIONS

One would like to use a bialgebra structure on a field algebra, in particular the Heise
algebraA, and by the GNS-construction a vacuum statevJ giving a Fock representation, t
produce a new representation in which the vacuum doubled by the comultiplicationD will be a
thermal~and thus reducible! state.

There is, however, a problem with this straightforward idea: There is no bialgebra structu
the Heisenberg algebraA. This can be easily seen from the fact that the Heisenberg commut
relations for the fieldf(z) require a commutator to be proportional to the unit of the algebra

f~z1!f~z2!2f~z2!f~z1!5 i\s~z1 ,z2!1.

Now, a counit« of the bialgebra structure has to vanish on commutators and has to be
to 1 on the unit of the algebra, which is not possible unless the proportionality constant
commutation relations~Planck’s constant! is zero.

To improve that, the unit1 of the algebra can be replaced by an abstract central elemenH.
Now it is no longer necessary for the counit« to be equal to1 on this central element, the
commutation relations can be considered as a Lie algebra and there exists even a Hopf
structure on this extended Heisenberg algebraU which is actually now a universal envelopin
algebra of a Lie algebra.16 To recover a meaning in the field algebra one can map the extensiU
J. Math. Phys., Vol. 38, No. 10, October 1997
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onto the plain Heisenberg algebraA. The mapD ():A→A^ A induced from the comultiplication
D:U→U^ U is no longer preserving the algebra unit but it is a morphism of algebras and
allows a tensor product of representations.

What is gained by considering the extended Heisenberg algebraU is the possibility of having
an underlying bialgebra structure giving a canonical doubling on the algebra of observableA.

Moreover, the extended Heisenberg algebraU can be deformed without changing the schem
thus producing new interesting doublings on the Heisenberg algebra. The useful deformatio
be found for the one-dimensional case in S. Majid16 and G. Vitiello,17 written in terms of annihi-
lation and creation operators. Additional information on how to obtain these algebras by co
tions from semisimple ones can be found in Ref. 18.

In our case the class of possible deformations will be parametrized by a Bogoljubov op
x on the classical phase spaceG assuming that a vacuum is given by the choice of a comp
structureJ on G. The Bogoljubov operator is characterized by anticommuting with the com
structureJ as well as with the symplectic forms on G:5,6

J+x52x+J, s+x52x+s.

Our deformations will break the manifest symplectic group symmetry of the extended He
berg algebraU sincex is not an invariant under these symmetries. They will be written in te
of a set ofR-independent eigenvectors$zi ,Jzi%.

The deformed commutation relations are:

@f~zi !,p~zj !#52 id i j @2H#x i
, ~10!

@f~zi !,H#50, ~11!

@p~zi !,H#50 wherep~zi !:5f~Jzi ! ~12!

and@x#x i
:5

sinhx ix

sinhx i
. ~13!

The deformed comultiplicationDx is:

Dxf~zi !5f~zi ! ^ ex iH1e2x iH ^ f~zi !, ~14!

Dxp~zi !5p~zi ! ^ ex iH1e2x iH ^ p~zi !, ~15!

DxH5H ^ 111^ H. ~16!

It can be checked by direct calculation that the comultiplicationD preserves the commutatio
relations and that it is coassociative:

@Dxf~zi !,Dxp~zi !#52 id i j @2DxH#x i
, ~17!

~Dx ^ 1!+Dx5~1^ Dx!+Dx . ~18!

The deformed commutation relations~10!–~12! give rise to an algebra isomorphic to th
undeformed one (x50). An isomorphism can be easily established, e.g., by rescaling the ge
tors f(zi) by 2H/(2Hx i

). In this sense only the coalgebra structure is nontrivially deformed
can be checked by observing that the cocommutative comultiplicationDx50 becomes non-
cocommutative. This point was emphasized by Celeghini, Giachetti, Sorace and Tarlini in R
If the Heisenberg algebra is understood as constructed from the classical phase space
J. Math. Phys., Vol. 38, No. 10, October 1997
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consist not only of the algebra alone but also of the inclusion map of generatorszi from the
classical phase space, then even the deformation~10!–~12! is nontrivial. A rescaling, e.g., off(zi)
is no longer possible without loosing the normalization ofzi with respect to the metricJ+s or
changing the inclusion map.

In the Weyl form the deformed commutation relations and the comultiplication can be w
as:

U~zi !V~zj !5e2 i [2H] x iV~zj !U~zi !, ~19!

DxU~zi !5U~exzi ! ^ U~e2xzi !, ~20!

DxV~zi !5V~exzi ! ^ V~e2xzi !, ~21!

with:

U~zi !:5eif~zi !5W~zi !, ~22!

V~zi !:5eip~zi !5W~Jzi !. ~23!

We turn now to the canonical mappingsp, pn of the deformed extended Heisenberg alge
Ux and its coproductsDx

n21Ux onto the Heisenberg algebraA and its tensor productsA^ n. It will
be required thatp, pn are algebra homomorphisms and thatH as well asDx

n21H are mapped by
p, pninto the units1, 1^ n. In the following the generatorsf(zi), p(zi) will be identified with their
imagesp(f(zi)), p(p(zi)).

The mapp is fully specified and it is thus tempting to setpn5p^ n, but thenDx
n21H would

be mapped inton•1 instead of1. To fix the normalization one has to set:

pn~Dx
n21f~zi !!5

1

An
p^ n~Dx

n21f~zi !!, ~24!

pn~Dx
n21p~zi !!5

1

An
p^ n~Dx

n21p~zi !!. ~25!

Now pn is also fully specified. The important thing now is that the mapDx
n21:Ux→Ux

^ n

factors through the mapsp, pn as can be checked on the generators. The result is a map

Dx
~n21!:A→A^ n ~26!

which fills in the commutative diagram

~27!

The mapDx
(n21) is an algebraic homomorphism and thus allows one to take tensor pro

of representations. Note, however, that due to the necessary normalizationDx
(n21) is not a co-

multiplication.
In the casen52, Dx

(1) is our canonical doubling. If we use now this canonical doubling
doubling a vacuum statevJ and the corresponding Fock representation, one obtains the statevx :
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



tions
m

-

4977Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras

                    
vx~U~zi !![vx~W~zi !!

5~vJ^ vJ!+Dx
~1!~U~zi !!

5~vJ^ vJ!S US ex
zi

A2
D ^ US ex

zi

A2
D D

5e2~1/4!~1/2!zi +ex+J+s+ex+zi )e2~1/4!~1/2!zi +e2x+J+s+e2x+zi )

5e2~1/4!~zi + ~e2x1e22x!/2+J+s+zi !

5e2~1/4!~zi +cosh2x+J+s+zi !

and similarly:

vx~V~zi !![vx~W~Jzi !!5e2~1/4!~Jzi +cosh2x+J+s+Jzi !.

By extension from the generators one gets:

vx~W~zi !!5e2~1/4!~zi +cosh2x+J+s+zi !. ~28!

But this is just the quasifree state~6!.

IV. AN EXAMPLE: THE HARMONIC OSCILLATOR

In the special case of a one-dimensional harmonic oscillator some particular simplifica
occur. In its two-dimensional phase spaceG>R2 there exists a basis in which the symplectic for
s, the complex structureJ and the given Bogoljubov operatorx take the form:

sab5S 0 1

21 0D , ~29!

Ja
b5S 0 1

21 0D , ~30!

xa
b5S x 0

0 2x
D . ~31!

This basis is unique and can be given also by geometrical considerations unlessx50. UsingJ as
the imaginary unit one can now identify the phase spaceG with the complex numbers:

G>C. ~32!

The vacuum statevJ and the statevx obtained in~28! are then given by

vJ~W~z!!5e2~1/4!izi2
, ~33!

vx~W~z!!5e2~1/4!cosh2xizi2
. ~34!

The Hamiltonians compatible with the complex structureJ @i.e., those which have a diagonaliza
tion ~4! giving the fixedJ] are determined by the matrix

Hab5EbS 1 0

0 1D . ~35!
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The corresponding thermal states are

vb~W~z!!5e2~1/4!coth~bE/2!izi2
. ~36!

Fixing E as the energy of the harmonic oscillator and comparing~34! and~36! the statesvx

are identified with the thermal states,vb , of the Hamiltonian at inverse temperatureb, obtaining
the relation

coth
bE

2
5cosh 2x ~37!

between the inverse temperatureb and the deformation parameterx. So, in the end, the defor
mation parameterx has a nice interpretation as a function of the inverse temperature as po
out in Ref. 9 and explicitly exhibited here by~37!.

V. CONCLUSION

It is shown that there is a class of deformations of the extended Heisenberg bialgebraUx that
provide canonical doublings by mapping down their comultiplications on the Heisenberg al
A. These doublings give directly, without any redefinitions, all representations arising from
sifree states by the GNS-construction. In particular, the doublings give all thermal represen
for free Hamiltonians. Our construction works clearly for any finite dimensional system and o
level of calculus also for infinite dimensional systems. Functional analytic discussions fo
infinite dimensional case are omitted. Note, however, that at no point is unitary equivalen
representations used and that all Bogoljubov transformations are given by symplectomorphi
the classical phase space. Thus no problem is expected in extending our considerations
infinite dimensional case.

It would be useful to know if there are deformations other than the ones used here
extended Heisenberg algebraU. If not, then the construction becomes entirely canonical, since
class of deformations appears to be the only choice one could make in the construction. If th
other deformations, then it would be interesting to see the interpretation of the induced dou
on the Heisenberg algebraA arising from them.

In any case the present results show that the bialgebra structure is a logical way to ap
thermal field theory by providing both the correct results and a mathematically satisfactory g
structure.
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Generating functionals of physical vertex operators
in superstring

Seichi Naito
Department of Physics, Osaka City University, Sumiyoshiku, Osaka, Japan

~Received 10 January 1997; accepted for publication 2 June 1997!

We defineN operators as operators that are already normally ordered with respect
to the Friedan–Martinec–Shenker spinor operator. With the help of thus definedN
operators, we can give the generating functional of physical vertex operators
~GFPVO! of fermionic particles~i.e., in the Ramond sector of the superstring!. We
also propose GFPVO of bosonic particles~i.e., in the Neveu–Schwarz sector of the
superstring!, which is simply obtained by supergeneralizing GFPVO in the bosonic
string. © 1997 American Institute of Physics.@S0022-2488~97!01610-1#

I. INTRODUCTION AND PRELIMINARIES

In attempting to unify the forces of nature, superstring theory1 ~valid in ten-dimensional
space–time! seems to be a very attractive one; it describes fermionic particles as well as bo
ones, incorporating supersymmetry in ten-dimensional space–time. Unfortunately, how w
explain actual physical phenomena in four-dimensional space–time by using superstring th
still missing at present. However, it will be helpful to understand how physical fermionic part
as well as bosonic ones~in ten-dimensional space–time! can be described by superstring theory.
calculating scattering amplitudes among~arbitrarily excited! physical fermionic particles and
bosonic ones, quantum superstring field theory developed by many people~based on Witten’s
proposal2! might be expected to be useful.

In our previous paper,3 we have investigated the quantum open string field theory and h
shown how scattering amplitudes among physical particles can be calculated by using W
quantum string field theory,4 together with the generating functional of physical vertex opera
~GFPVO! in bosonic string theory.5,6 This method will be relatively easily generalized to quantu
superstring field theory, provided that we have both GFPVO of fermionic particles~or Ramond
states! and GFPVO of bosonic particles~or Neveu–Schwarz states!. However, these GFPVOs o
the superstring are still not known, so that we construct and investigate them in our ser
papers. GFPVO of fermionic particles is characteristic of the superstring theory. On the
hand, GFPVO of bosonic particles can be easily obtained by simply supergeneralizin
GFPVO6 in the bosonic string case.~‘‘Supergeneralizing’’ means ‘‘generalizing to supersymm
ric theory.’’! In this paper, we explain in detail how we can construct them.

As for the preliminaries of this paper, we briefly explain our previous results6 on GFPVO in
bosonic string; We have the following~covariant! string coordinateX6 j (z) ~for j 50 – 4, 10–17!
in 26-dimensional space–time,

X60~z![
X0~z!

A2
6

X9~z!

A2,
~1.1!

X6 j~z![
Xj~z!

A2i
6

Xj 14~z!

A2
, for j 51 – 4,

and
0022-2488/97/38(10)/4980/30/$10.00
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X6 j~z![
Xj~z!

A2i
6

Xj 18~z!

A2
, for j 510– 17, ~1.18!

which are represented by

X6 j~z!5X6 j~z;1 !1X6 j~z;2 !. ~1.2!

In Eq. ~1.2!, positive frequency partX6 j (z;1) is given by

X6 j~z;1 !52 i p̃6 j log z1 i (
n51

` an
6 j

An
z2n, ~1.28!

while the negative frequency partX6 j (z;2) is given by

X6 j~z;2 !5q6 j2 i (
n51

` a2n
6 j

An
zn. ~1.29!

Operators in Eqs.~1.28! and ~1.29! satisfy the following commutation relations:

@an
6 j ,a2m

7k #52d jkdnm , for j ,k50 – 4, 10– 17 andn,m51,2,..., ~1.3!

and

@ p̃6 j ,q7k#5 id jk, for j ,k50 – 4,10– 17, ~1.4!

all other commutation relations being equal to zero. The radial orderingR is defined to be placing
any operator with the argumentz8 to the left of any operator with the argumentz in the case
uz8u.uzu. The normal ordering : : is defined to be placing any negative frequency partX6 j (z8;
2) to the left of any positive frequency partX6k(z;1). Then we find~for j ,k50 – 4, 10–17! that

R–X6 j~z8!X7k~z!5d jk log~z82z!1:X6 j~z8!X7k~z!: ~1.5!

and

R–X6 j~z8!X6k~z!5:X6 j~z8!X6k~z!:, ~1.6!

contractions being defined by

X6 j~z8!X7k~z!5d jk log~z82z!. ~1.7!

Incidentally, the Lorentz scalar in 26-dimensional space–time is given by

2 (
m50

25

AmBm5(
6

(
j

A6 jB7 j5(
6

A60B701(
6

(
j

8A6 jB7 j , ~1.8!

with

(
j

[(
j 50

4

1 (
j 510

17

and (
j

8[(
j 51

4

1 (
j 510

17

. ~1.88!
J. Math. Phys., Vol. 38, No. 10, October 1997
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We introduce light-cone operators~for j 51 – 4, 10–17!, i.e., p6 j ’s ~total momentum opera
tor!, am

6 j ’s, and a2n
6 j ’s ~for n,m51,2,3,...!, which satisfy the following commutation relation

among themselves;

@am
6 j ,a2n

7k#5mdmnd
jk, for j ,k51 – 4,10– 17 andn,m51,2,3,... . ~1.9!

Next, we introduce the light-cone operatorPa
6 j †

(w) in the bosonic string, defined by

Pa
6 j †

~w![
1

w S p6 j1 (
n51

`

w2na2n
6 j D , for j 51 – 4,10– 17. ~1.10!

@We should notice that the string coordinateX6 j in ~1.1! and ~1.18! ~for j 50 – 4, 10–17! com-
mutes with the light-cone operator~1.10!.# Then, GFPVO in the bosonic stringF(z0 ;Pa

†) is
constructed by6

F~z0 ;Pa
† !5:exp„r0~z0!1r1~z0 ;Pa

† !1r2~z0 ;Pa
† !…:, ~1.11!

wherer i ’s ( i 50 – 2) in Eq.~1.11! are given by

r0~z0![(
6

2 ip60X70~z0!, ~1.12!

r1~z0 ;Pa
† ![2(

6
(

j
8i R dw

2p i
Pa

6 j †
~w!X7 j

„z~w!…, ~1.13!

and

r2~z0 ;Pa
† ![2(

j
8 R dw

2p i
Pa

1 j †
~w! R dw8

2p i
Pa

2 j †
~w8!log

z~w!2z~w8!

w2w8
, ~1.14!

where we have used( j8 in Eq. ~1.88!. TheQ-number functionz(w) used in Eqs.~1.13! and~1.14!
is the one determined by inversely solving the following conformal mappingz→w in the bosonic
string:6

z2z05w:expS X10~z!

ip10 2
X10~z0!

ip10 D :. ~1.15!

Various functions inF(z0 ;Pa
†) can be explicitly calculated6 by using the following theorem

where we should notice that allX10’s are commutative among them.
Theorem „conformal mapping in bosonic string…:6 We obtain ~q number! z5z(w) by

inversely solvingw5w(z) ~1.15! ~w andz0 beingc numbers.! Then, any functionf (z) ~which is
the function ofz analytic atz5z0! can be expressed by the function ofw by the following
formula:

f ~z!5@ f ~z!#. ~1.16!

In Eq. ~1.16!, @ # is the function ofw defined by

@a~z!#[a~z0!1 (
n51

`
wn

n!
e2nI~z0!]z0

n21
„enI~z0!]z0

a~z0!…, ~1.17!

with
J. Math. Phys., Vol. 38, No. 10, October 1997
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I ~z0![
X10~z0!

ip10 . ~1.18!

Furthermore, the formula~1.17! is rewritten into

@a~z!#5a~z0!1 (
n51

`

wnS (
k50

n
1

k!
Rn2k

~n! ~z0!]z0

k S k

n
a~z0! D D , ~1.19!

where we have used the shorthand notation

Rm
~n!~z0![

1

m!
exp„2nI~z0!…~]z0

!m exp„nI~z0!…. ~1.20!

The stress operator of the bosonic string is defined by

T~z8![(
j

(
6

:
1

2
]z8X

6 j~z8!]z8X
7 j~z8!:, ~1.21!

with ( j in Eq. ~1.88!. Furthermore, with the help of( j8 in Eq. ~1.8!, we define the light-cone
number operatorN ~of bosonic string! by

N[ (
n51

`

(
6

(
j

8a2n
7 j an

6 j . ~1.22!

Then, we have proved6 the following operator product expansion~OPE!;

R–T~z8!F~z0 ;Pa
† !5

1

~z82z0!2 S 2S (
j

p1 j p2 j DF~z0 ;Pa
† !1@N,F~z0 ;Pa

† !# D
1

1

z82z0
]z0

F~z0 ;Pa
† !1~ terms regular atz85z0!. ~1.23!

In Sec. II, we introduce theN operators~in theR sector!, which are already normally ordere
with respect to FMSs spinor operator. Furthermore, we define the contraction and normal or
in the NS and R sectors, with the help of string coordinosC6 j (z)’s in the NS and R sectors,
respectively. In Sec. III, we introduce the superconformal mapping in theR sector
(zF ,uF)→(w,j) and we show how we can find the inverse superconformal map
(w,j)→(zF ,uF). In Sec. IV, we give the generating functional of physical vertex opera
~GFPVO! FN$h%

F (z0 ,u0 ;PF
†)S$h%(z0), usingzF(w,j) anduF(w,j) introduced in Sec. III. With the

help of thus defined GFPVO in theR sector, we can obtain~not GSO projected! physical Ramond
states in21

2 picture. In Sec. V, GFPVOFB(z0 ,u0 ;PB
†) in the NS sector is given by simply

supergeneralizing the GFPVOF(z0 ;Pa
†) ~1.11! of bosonic string. For this purpose, we introdu

the superconformal mapping in theNS sector (zB ,uB)→(w,j) @which is obtained easily by
supergeneralizing the conformal mapping~1.15! z→w in the bosonic string#. Inverse supercon-
formal mapping~w,j)→(zB ,uB) is also solved. Using thus defined GFPVO in theNS sector, we
show how we can obtain~not GSO projected! physical Neveu–Schwarz states in both the21 and
0 picture. In Sec. VI, we discuss our results.
J. Math. Phys., Vol. 38, No. 10, October 1997
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II. N OPERATORS IN THE R SECTOR OF THE SUPERSTRING AND CONTRACTIONS
IN THE NS AND R SECTORS

In superstring theory, we have the following supervector-field, which is the covariant vec
ten-dimensional space–time;

X6 j~z,u![X6 j~z!1uC6 j~z!, for j 50 – 4, ~2.1!

with

X60~z,u![
1

A2
„X0~z!1uC0~z!…6

1

A2
„X9~z!1uC9~z!… ~2.18!

and

X6 j~z,u![
1

A2i
„Xj~z!1uC j~z!…6

1

A2
„Xj 14~z!1uC j 14~z!…, for j 51 – 4. ~2.19!

The Grassman even partX6 j (z) ( j 50 – 4) of the supervector field~1.1! will be called the string
coordinate, and it is the same as the one explained in Sec. I. On the other hand, the Grassm
partC6 j (z) ( j 50 – 4) of the supervector-field will be called the string coordino in this paper,
it is represented as7

C6 j~z!5:exp„6f j~z!…:f , ~2.2!

cocycle factors8 being abbreviated here and hereafter. In Eq.~2.2!, we have used

f j~z![f j~z;1 !1f j~z;2 !, ~2.3!

where positive frequency partf j (z;1) is given by

f j~z;1 ![pf
j log z2 (

n51

` fn
j

An
z2n, ~2.38!

while the negative frequency partf j (z;2) is given by

f j~z;2 ![qf
j 1 (

n51

` f2n
j

An
zn, ~2.39!

with the commutation relations

@fn
j ,f2m

k #5d jkdnm , for j ,k50 – 4 andn,m51,2,3,...., ~2.4!

and

@pf
j ,qf

k #5d jk, for j ,k50 – 4. ~2.5!

The normal ordering in thef representation is denoted by : :f in Eq. ~2.2! and it means placing
any creation operatorf j (z8;2) to the left of any annihilation operatorfk(z;1). The right-hand
side of Eq.~2.2! will be called the string coordinoC6 j (z) in thef representation, hereafter. The
the radial ordered products amongA andB ~denoted byR–AB! are calculated in terms of norma
ordered products in thef representation~denoted by :AB:f! as
J. Math. Phys., Vol. 38, No. 10, October 1997
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R–:exp„6f j~z8!…:f :exp„7fk~z!…:f5S 12d jk1
d jk

z82zD :exp„6f j~z8!7fk~z!…:f ~2.6!

and

R–:exp„6f j~z8!…:f :exp„6fk~z!…:f5„12d jk1d jk~z82z!…:exp„6f j~z8!6fk~z!…:f .
~2.7!

We notice that :exp„6f j (z8)…:f involves the factorz6pf
j
. In addition to thef representation

~2.2!, the string coordinoC6 j (z) has other representations, which are different among
sectors1 ~i.e., the Neveu–Schwarz sector and the Ramond sector, which will be referred to s
as theNS sector and theR sector, hereafter!. In the following, we will explain these represent
tions.

The superstring in theNS sector is defined to be the superstring having integer-valued ei
values ofpf

j ( j 50 – 4! in Eq. ~2.38!. Then, the string coordinoC6 j (z) ~2.2! is single valued, so
that it can be Laurent expanded atz50 as

C6 j~z!5C6 j~z;1 !1C6 j~z;2 !5z21/2S (
n51

`

b n21/2
6 j z2n11/2D 1z21/2S (

n51

`

b 2n11/2
6 j zn21/2D .

~2.8!

The right-hand side of Eq.~2.8! will be referred to as the string coordino in theNS sector,
hereafter. With the help of Eqs.~2.6! and ~2.7!, we can derive anticommutation relations

$b n21/2
6 j ,b 2m11/2

7k %5d jkdnm , for j ,k50 – 4 andn,m51,2,3,..., ~2.9!

all other anticommutation relations being equal to zero. Finally, the normal ordering in thNS
sector is denoted by : :NS, and it is defined to be placing anyC6 j (z8;2) to the left of any
C6k(z;1). Then we have forj ,k50 – 4 that

R–C6 j~z8!C7k~z!5
d jk

z82z
1:C6 j~z8!C7k~z!:NS ~2.10!

and

R–C6 j~z8!C6k~z!5:C6 j~z8!C6k~z!:NS. ~2.11!

Therefore, we find from Eqs.~1.5!, ~1.6!, ~2.10!, and~2.11!, together with Eq.~2.1!, that

R–X6 j~z8,u8!X7k~z,u!5d jk log~z82z2u8u!1:X6 j~z8,u8!X7k~z,u!:NS, ~2.12!

so that we define the contraction in theNS sector by

~2.13!

The statesup&f andf^p8u in the f representation are defined, respectively, by

f j~z;1 !up&f5p• log zup&f ~2.14!

and

f^puf j~z;2 !5f^puqf
j , ~2.148!
J. Math. Phys., Vol. 38, No. 10, October 1997
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with

f^p8up&f5f^0uexpS (
j 50

4

~2p8 j1pj !qf
j D u0&f5)

j 50

4

dp8 j ,pj . ~2.15!

Since the right-hand side of

:exp„6f j~z!…:fu0&f5:exp„6f j~z;2 !…:fu0&f , ~2.16!

is analytic atz50, we find from Eq.~2.8! that

b n21/2
6 j u0&f50, for n51,2,3,... . ~2.17!

The superstring in theR sector is defined to be the superstring having half-integer-va
eigenvalues ofpf

j ( j 50 – 4) in Eq. ~2.38!, so that the string coordinoC6 j (z) ~2.2! is double
valued. In the following, we especially consider the string coordinoC6 j (z) ~2.2!, in the presence
of the following FMSs spinor operator existing atz0 ~which has been introduced b
Friedan–Martinec–Schenker7!:

S$h%~z0!5:expS 1

2
f0~z0! D :f)

j 51

4

:exp„eh
j f j~z0!…:f , ~2.18!

where we have abbreviated cocycle factors.8 In Eq. ~2.18!, we have used

:exp„eh
j f j~z0!…:f[H :exp„1 1

2 f j~z0!…:f , for e1
j [1 1

2 ,

:exp„2 1
2 f j~z0!…:f , for e2

j [2 1
2 ,

~2.19!

and we shall define the analytic string coordinoCh
6 j (z;z0) by

Ch
6 j~z;z0![~z2z0!7eh

j
:exp„6f j~z!…:f , for h56. ~2.20!

The operatorCh
6 j (z;z0) will be called analytic atz5z0 , sinceCNh

6 j (z) in the following equation
is analytic atz5z0 ;

R–Ch
6 j~z;z0!:exp„eh

j f j~z0!…:f5:exp„6f j~z!…exp„eh
j f j~z0!…:f[CNh

6 j~z!:exp„eh
j f j~z0!…:f .

~2.21!

Equation~2.21! defines anN operator

CNh
6 j~z![:exp„6fNh

j ~z!…:f ~2.22!

with the subscriptNh, which shows that bothCNh
6 j (z) and fNh

j (z) are the operators alread
normally ordered~in thef representation! with respect to the operatorf j (z0) in :exp„eh

j f j (z0)…:f

of Eq. ~2.18!. It should be remarkable thatCNh
6 j (z) ~which will be called the analytic string

coordino in theN-operator’s form! defined by Eq.~2.21! are single valued, so thatCNh
h j (z) has the

following representation forh56:
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CNh
h j ~z!5:exp„hfNh

j ~z!…:f , ~2.23!

[
1

z S (
n50

`

dnNh
h j z2nD 1

1

z S (
n51

`

d2nNh
h j znD , ~2.24!

„[CNh
h j ~z;1 !1CNh

h j ~z;2 !…, ~2.25!

with

CNh
h j ~z!5CN6

6 j ~z!, for h56. ~2.26!

On the other hand,CNh
2h j(z) has the following representation~for h56!:

CNh
2h j~z![:exp„2hfNh

j ~z!…:f , ~2.27!

[S (
n51

`

dnNh
2h jz2nD 1S (

n50

`

d2nNh
2h j znD , ~2.28!

„[CNh
2h j~z;1 !1CNh

2h j~z;2 !…, ~2.29!

with

CNh
2h j~z![CN6

7 j ~z!, for h56. ~2.30!

The right-hand side of Eqs.~2.24! and ~2.28! will be called the analytic string coordino in theR
sector, hereafter. Since we have

R–Ch
6 j~z8;z0!Ch

7k~z;z0!S$h%~z0![„R–CNh
6 j~z8!CNh

7k~z!…S$h%~z0!

5S 12d jk1
d jk

z82zD :exp„6f j~z8!7fk~z!…S$h%~z0!:f

~2.31!

and

R–Ch
6 j~z8;z0!Ch

6k~z;z0!S$h%~z0![„R–CNh
6 j~z8!CNh

6k~z!…S$h%~z0!

5„12d jk1d jk~z82z!…:exp„6f j~z8!6fk~z!…S$h%~z0!:f ,

~2.32!

we can derive the anticommutation relations

$dnNh
6 j ,d2mNh

7k %5d jkdnm , for j ,k50 – 4 andn,m51,2,3,... . ~2.33!

In the following, the normal ordering in theR sector is denoted by : :R and it is defined to be
placing anyCNh8

6 j (z;2) to the left of anyCNh8
6 j ,(z;1). Then we can derive that

R–CNh8
6 j

~z8!CNh
7k~z!5

d jk

z82z
1:CNh8

6 j
~z8!CNh

7k~z!:R ~2.34!

and
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R–CNh8
6 j ,~z8!CNh

6k~z!5:CNh8
6 j

~z8!CNh
6k~z!:R , for j ,k50 – 4, ~2.35!

so that we can define the contractions in theR sector by

~2.36!

and

~2.37!

Furtheremore, we notice from Eq.~2.1! that

R–X6 j~z,u!S$h%~z0!5XN
6 j~z,u;z0!S$h%~z0!, ~2.38!

where

XN
6 j~z,u,z0![X6 j~z!1u~z2z0!6eh

j
CNh

6 j~z!. ~2.39!

Similarly, as for

Yh
6 j~z,u,z0![X6 j~z!1uCh

6 j~z;z0!, with ~2.20!, ~2.40!

we have from Eq.~2.21! that

R–Yh
6 j~z,u;z0!S$h%~z0!5YNh

6 j~z,u!S$h%~z0!, ~2.41!

where we have defined

YNh
6 j~z,u![X6 j~z!1uCNh

6 j~z!. ~2.42!

Finally, we find~for j ,k50 – 4! the following contractions in theR sector:

~2.43!

~2.44!

and

~2.45!

while contractions in theR sector among operators with the same6 do not exist.
For later conveniences, we define various terminologies; General non-N-operatorF(z) is

N-ized intoN-operatorFN(z) by the following relation:

R–F~z!S$h%~z0!5FN~z!S$h%~z0!. ~2.46!
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We can also say thatN-operatorFN is N-ized from non-N-operatorF. @In the case when the
N-operatorFN(z) is analytic atz5z0 , the non-N-operatorF(z) will be called analytic atz
5z0 , hereafter.# This process of obtainingFN(z) from F(z) will be called N-izing and will be

denoted by→
N

as follow;

non-N operators→
N

N operators

X6 j~z,u! ~2.1! →
N

XN
6 j~z,u;z0! ~2.39!,

Yh
6 j~z,u;z0! ~2.40! →

N
YNh

6 j~z,u!, ~2.42!, ~2.47!

C6 j~z! ~2.2!→
N

CN
6j~z;z0!5~z2z0!

6eh
j
CNh

6j~z!,

Ch
6 j~z;z0! ~2.20! →

N
CNh

6 j~z! ~2.22!.

Contractions in theR sector defined by Eqs.~2.43!–~2.45! will be generalized to contraction
in theR sector amongN operators and non-N operators as follows. In the case when both (z8,u8)
and (z,u) are justc numbers, we have

~2.48!

~2.49!

and

~2.50!

The non-N operator in Eqs.~2.48!–~2.50! is simply denoted byF8(G), which is N-ized into
FN8 (GN). Then, Eqs.~2.48!–~2.50! can be summarized as

~2.51!
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



r-

4990 Seichi Naito: Physical vertex operators in superstring

                    
Furthermore, normal ordered products in theR sector, among theseF (N)8 andG(N) , are denoted by
:F (N)8 G(N) :R , and they are defined, respectively, by

~2.52!

so that we have

R–:F8G:RS$h%~z0!5:FN8 GN :RS$h%~z0!. ~2.53!

III. SUPERCONFORMAL MAPPING IN THE R SECTOR

The covariant differential operator is defined by

Du[
]

]u
1u

]

]z
. ~3.1!

When ‘‘f ’’ is a function of (z,u), we introduce the following simplified notations:

Du f [Du f ~z,u!, ]z
nf [S ]

]zD
n

f ~z,u!. ~3.2!

Integration over the Grassman odd coordinateu is defined by

E du f ~z,u!5]u f ~z,u!. ~3.3!

A function f (z8,u8) is called analytic atz85z, when it has Taylor expansion,

f ~z8,u8!5 (
n50

`
~z82z2u8u!n

n!
]z

nf ~z,u!1 (
n50

`
~z82z2u8u!n~u82u!

n!
]z

n Du f ~z,u! ~3.4!

5 (
n50

`
~z82z!n

n!
„11~u82u!Du2u8u]z…]z

nf ~z,u!. ~3.48!

The expansion coefficients in Eq.~3.4! can be calculated by contour integrals;

]z
nf ~z,u!5n! R

z

dz8 du8

2p i

u82u

~z82z2u8u!n11 f ~z8,u8! ~3.5!

and

]z
nDu f ~z,u!5n! R

z

dz8 du8

2p i

1

~z82z2u8u!n11 f ~z8,u8!, ~3.58!

where the integration contour inz8 encloses onlyz in the anticlockwise direction.
Coordinates (zF ,uF) „(w,j)… in superspace are pairs of the Grassman even coordinatezF(w)

and the Grassman odd coordinateuF(j). In this section, we introduce the following superconfo
mal mapping in the Ramond sector (zF ,uF)→(w,j); the c number functionw5w(zF ,uF) is
given by
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zF2z02AzF2z0uFu05w:expS X10~zF ,uF!

ip10 2
X10~z0!

ip10 D :R , ~3.6!

with

X10~zF ,uF![X10~zF!1uF :exp„f0~zF!…:f[X10~zF!1AzF2z0uFC1
10~zF ;z0!. ~3.7!

In Eq. ~3.7!, we have used the analytic string coordinoC1
10(zF ;z0) defined by Eq.~2.20! for j

50. Furthermore, the normal ordered product in theR sector~among non-N operators! is denoted
by : :R , and it is defined by the formula~2.52!. Then, we have

:~ :exp„1f~z!…:f!n:R5~ :exp„1f~z!…:f!n. ~3.8!

Furthermore, we can introduce the~c number! Grassman odd coordinatej(zF ,uF) @as the
superpartner of the~c number! Grassman even coordinatew(zF ,uF),] by imposing

DuF
2~DuF

j!Dj50, ~3.9!

where

Dj[
]

]j
1j

]

]w
. ~3.10!

The condition~3.9! leads to

DuF
w5jDuF

j. ~3.11!

Applying Eq. ~3.9! to uF , we easily find

DuF
j5

1

DjuF
, ~3.12!

so that Eq.~3.9! is rewritten into

DuF
5

1

DjuF
Dj . ~3.13!

Furthermore, applying Eq.~3.9! to Eq. ~3.11!, we find

]w

]zF
5~DuF

!2w5~DuF
j!22j

]j

]zF
. ~3.14!

Therefore, substitutingDuF
j given by Eq.~3.14! onto the right-hand side of Eq.~3.11!, we find

that the Grassman odd coordinatej(zF ,uF) is determined in terms of the Grassman even coo
natew(zF ,uF) by

j~zF ,uF!5~]zF
w!21/2 DuF

w. ~3.15!

Finally, the integration measure transforms as

dw dj5dzF duF DuF
j. ~3.16!
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We can obtain~q-number functions! zF5zF(w,j) anduF5uF(w,j) by inversely solvingw
5w(zF ,jF) ~3.6! andj5j(zF ,jF) ~3.15! @(w,j) and (z0 ,u0) beingc numbers#. This can be done
by proving the following theorem, where we should notice that all analytic string coordinosC1

10’s
are anticommutative with each other.

Theorem „superconformal mapping in the R sector…: In the case when non-N operators
A6(z) and B6(z) are analytic atz5z0 @see the part right after Eq.~2.46! for the definition of
being analytic#, functionsF6(zF ,uF), given by

F1~zF ,uF![A1~zF!1uFAzF2z0B1~zF! ~3.17!

and

F2~zF ,uF![AzF2z0A2~zF!1uFB2~zF!, ~3.18!

can be expressed as the functions ofw andj by the following formula:

F6~zF ,uF!5@F6~zF ,uF!#j501jKF~w!@DuF
F6~zF ,uF!#j50 , ~3.19!

with

KF~w!5~]w@zF2z0#j502~]w@uF#j50!@uF#j50!1/2. ~3.198!

In Eqs.~3.19! and ~3.198!, we have used the functions@ #j50 , defined by

@A1~zF!1uFAzF2z0B1~zF!#j50

[A1~z0!1 (
n51

`
wn

~n21!!
e2nI~z0!

3 lim
z→z0

F]z
n21S enI~z!S 1

n
]zA

1~z!1S ~z2z0!
C1

10~z;z0!

ip10 1u0DB1~z! D D G , ~3.20!

and

@AzF2z0A2~zF!1uFB2~zF!#j50

[ (
n50

`
wn11/2

n!
e2~n11/2!I ~z0!

3 lim
z→z0

F ]z
nS e~n11/2!I ~z!S Az2z0]zSAz2z0

A2~z!

n11/2D
1S ~z2z0!

C1
10~z;z0!

ip10 1u0DB2~z!
D D G ,

~3.21!

where we have used

I ~z![
X10~z!

ip10 and C1
10~z;z0![

C10~z!

Az2z0

. ~3.22!

Proof: Suppose that functionsF6(zF ,uF) can be expressed~as functions ofw andj! by
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F6~zF ,uF!5@F6~zF ,uF!#j501j@G6~zF ,uF!#j50 , ~3.23!

where@F6#j50 and@G6#j50 are functions of onlyw, to be determined hereafter. First, we noti
that

DjF
6~zF ,uF!5@G6~zF ,uF!#j501j]w@F6~zF ,uF!#j50 , ~3.24!

so that we have

@G6~zF ,uF!#j505@DjF
6~zF ,uF!#j505@~DuF

j!21DuF
F6~zF ,uF!#j50

5KF~w!@DuF
F6~zF ,uF!#j50 . ~3.25!

In Eq. ~3.25!, KF(w) is given by

KF~w![@~DuF
j!21#j505F S ]w~zF ,uF!

]zF
D 21/2G

j50

, ~3.258!

where we have used Eq.~3.14!. Next, the function@F6(zF ,uF)#j50 can be expressed as th
function of w by

@F1~zF ,uF!#j50[A1~0!1 (
n51

`

wnFn ~3.26!

and

@F2~zF ,uF!#j50[ (
n50

`

wn11/2Fn11/2. ~3.27!

Then we have

Fn5 R
0

dw dj

2p i

j

wn11 F1~zF ,uF!5 R
z0

dzF duF

2p i

DuF
w

wn11 F1~zF ,uF!

5
1

n R
z0

dzF duF

2p i

1

wn DuF
F1~zF ,uF!, ~3.28!

where Eq.~3.26! is used in the first step, while Eqs.~3.16! and~3.11! are used in the second ste
In much the same way, we obtain from Eq.~3.27! that

Fn11/25
1

n11/2 R
z0

dzF duF

2p i

1

wn11/2 DuF
F2~zF ,uF!. ~3.29!

Substitutingw(zF ,uF) ~3.6! onto the right-hand sides of Eqs.~3.28! and~3.29! gives~in shorthand
notations! that

Fn~11/2!5
1

n~11/2!
expS 2XnS 1

1

2D C X10~z0!

ip10 D
3 R

z0

dzF duF

2p i

exp~„n~1 1
2!…@X10~zF,0F!/ ip10# !

~zF2z02AzF2z0!n~11/2!
DuF

F1~2 !~zF,0F!, ~3.30!
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which lead to the formulas~3.20! and ~3.21!, with the help of operators defined by Eq.~3.22!.
Then, non-N operatorsuF andzF @obtained by applying formulas~3.21! and~3.20!, respectively#
will be denoted by

uF5uF~w,j!5JF~w!1jKF~w!, ~3.31!

~with JF~w![@uF#j50!, ~3.318!

and

zF5zF~w,j!5z01LF~w!1jKF~w!JF~w!, ~3.32!

~with LF~w![@zF2z0#j50!. ~3.328!

Finally, substituting Eqs.~3.31! and ~3.32! into

Dj~zF2z0!5uFDjuF , ~3.33!

we find that the non-N operatorKF(w) in Eq. ~3.258!# can be determined as the function ofw by

KF~w!5„]wLF~w!2]wJF~w!•JF~w!…1/2, ~3.34!

which @together with Eqs.~3.318! and ~3.328!# leads to Eq.~3.198!. ~Q.E.D.!
In the following, we shall derive a theorem~superconformal mapping in theR sector in the

N-operator’s form!, which isN-ized from the above-mentioned theorem byN-izing @i.e., ~2.47!#:
First, we can introduce the followingN operators:

uNF[uNF~w,j![JNF~w!1jKNF~w!, ~3.35!

zNF[zNF~w,j![z01LNF~w!1jKNF~w!JNF~w!, ~3.36!

and

KNF~w!5„]wLNF~w!2]wJNF~w!•JNF~w!…1/2, ~3.37!

which areN-ized, respectively, from non-N operatorsuF ~3.31!, zF ~3.32!, andKF(w) ~3.34! by
N-izing @i.e., ~2.47!#. N operatorszNF(w) anduNF(w) satisfy the following superconformal map
ping in R sector~in the N-operator’s form!, i.e., (zNF ,uNF)→(w,j):

zNF2z02AzNF2z0uNFu05w:expS XN
10~zNF ,uNF ;z0!

ip10 2
X10~z0!

ip10 D :R ~3.38!

and

j5~]zNF
w!21/2 DuNF

w. ~3.388!

Next, we considerN operatorsAN
6(z) andBN

6(z), which are functions ofz analytic atz5z0 . With
respect to theseAN

6(zNF) andBN
6(zNF), we can define@ #j50 ~which is the function ofw! by the

following formulas:
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@AN
1~zNF!1uNFAzNF2z0BN

1~zNF!#j50

[AN
1~z0!1 (

n51

`

wnS (
k51

n
1

~k21!!
Rn2k

~n! ~z0!]z0

k21X1
n

]z0
AN

1~z0!1u0BN
1~z0!C

1 (
k52

n
1

~k22!!
Rn2k

~n! ~z0!]z0

k22
„VN~z0!BN

1~z0!…
D ~3.39!

and

@AzNF2z0AN
2~zNF!1uNFBN

2~zNF!#j50

[ (
n50

`

wn11/2S (
k50

n
1

k!
Rn2k

~n11/2!~z0!]z0

k Xk11/2

n11/2
AN

2~z0!1u0BN
2~z0!C

1 (
k51

n
1

~k21!!
Rn2k

~n11/2!~z0!]z0

k21
„VN~z0!BN

2~z0!…
D , ~3.40!

where we have used shorthand notations~1.20! ~generalized ton50, 61
2,61,...!, together with the

N operator,

VN~z0![
CN1

10 ~z0!

ip10 . ~3.41!

~We notice that Eqs.~3.39! and ~3.40! ~in the N-operator’s form! are thoseN-ized, respectively,
from Eqs.~3.20! and ~3.21! ~in the non-N-operator’s form! by N-izing @i.e., ~2.47!#.! Equipped
with these preliminaries~3.38!–~3.41!, we can obtain the following~N-ized! theorem:

Theorem „superconformal mapping in the R sector in the N-operator’s form…: N opera-
tors FN

6(zNF ,uNF), given by

FN
1~zNF ,uNF![AN

1~zNF!1uNFAzNF2z0BN
1~zNF! ~3.42!

and

FN
2~zNF ,uNF![AzNF2z0AN

2~zNF!1uNFBN
2~zNF!, ~3.43!

can be expressed as functions ofw andj by the following formula:

FN
6~zNF ,uNF!5@FN

6~zNF ,uNF!#j501jKNF~w!@DuNF
FN

6~zNF ,uNF!#j50 , ~3.44!

with

KNF~w!5~ ]w@zNF2z0#j502~]w@uNF#j50!@uNF#j50!1/2. ~3.45!

@We notice from Eq.~3.44! that N operatorsJNF(w) in Eq. ~3.35! andLNF(w) in Eq. ~3.36! are
obtained~as functions ofw! by

JNF~w!5@uNF#j50 ~3.46!

and
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LNF~w!5@zNF2z0#j50 , ~3.47!

so thatKNF(w) in Eq. ~3.45! can be obtained~as a function ofw! by using Eq.~3.37!.#

IV. GENERATING FUNCTIONAL OF PHYSICAL VERTEX OPERATORS AND
SUPERSTRESS OPERATOR IN THE R SECTOR

In the R sector of superstring, we construct the generating functional of physical v
operators~GFPVO!, with the help of which we can obtain arbitrarily excited physical~open
superstrings! Ramond states~i.e., fermionic particles!: In addition to the light-cone operato

Pa
6 j †

(w) ~1.10! for j 51 – 4, we introduce light-cone operatorsdm
6 j and d2n

6 j ~for j 51 – 4 and
n,m50,1,2,...), which satisfy the following anticommutation relations among themselves:

$dm
6 j ,d2n

7k%5dmnd
jk, for j ,k51 – 4 andn,m50,1,2,..., ~4.1!

all other anticommutators being zero. Then, we introduce the light-cone operatorPF
6 j †

(w,j) in the
R sector, defined by

PF
6 j †

~w,j![
j

w S p6 j1 (
n51

`

w2na2n
6 j D 1

1

Aw
S d0

6 j1 (
n51

`

w2nd2n
6 j D , ~4.2!

„[jPa
6 j †

~w!1pd
6 j †

~w!…. ~4.28!

We should notice that the supervector fieldXm(z,u) ~2.1! commutes with the light-cone operato
~4.2!.

In theR sector of superstring~i.e., in the fermionic sectors5F!, F$h%
F (z0 ,u0 ;PF

†) ~in the non-
N-operator’s form! is the operator constructed by

F$h%
F ~z0 ,u0 ;PF

† ![:exp„rN1
0F ~z0 ,u0!1r1F~z0 ,u0 ;PF

† !1r$h%
2F ~z0 ,u0 ;PF

† !…:R , ~4.3!

where : :R is the normal ordering in theR sector~among non-N operator! defined by Eq.~2.52!,
and we have used the following various functions:

rN1
0F ~z0 ,u0![2 ip10YN1

20 ~z0 ,u0!2 ip20X10~z0! ~4.4!

5(
6

2 ip60X70~z0!2u0ip10CN1
20 ~z0!, ~4.48!

r1F~z0 ,u0 ;PF
† ![2(

6
(
j 51

4

i R dw dj

2p i
PF

6 j †
~w,j!X7 j

„zF~w,j!,uF~w,j!…, ~4.5!

and

r$h%
2F ~z0 ,u0 ;PF

† !

[2(
j 51

4 R dw dj

2p i
PF

2 j †
~w,j! R dw8 dj8

2p i
PF

1 j †
~w8,j8!

3 log
zF~w,j!2zF~w8,j8!2„@zF~w,j!2z0#/@zF~w8,j8!2z0#…eh

j
uF~w,j!uF~w8,j8!

w2w82~w/w8!eh
j
jj8

,

~4.6!
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whereeh
j is the constant in FMSs spinor operatorS$h%(z0) ~2.18!. Non-N operatorszF(w,j) and

uF(w,j) used in Eqs.~4.5! and ~4.6! are those determined by inversely solving Eqs.~3.6! and
~3.15!, with the help of the theorem@i.e., ~3.19!–~3.21!#.

The j th component of the superstress operator in theR sector is defined by

TjF~z8,u8![(
6

:
1

2
]z8X

6 j~z8,u8!Du8X
7 j~z8,u8!:R ~4.7!

[u8S (
6

:
1

2
]z8X

6 j~z8!]z8X
7 j~z8!:1(

6
:
1

2
]z8C

6 j~z8!•C7 j~z8!:RD
1(

6

1

2
]z8X

6 j~z8!•C7 j~z8!, ~4.8!

where we have used the supervector field~2.1!. With the help of Eq.~4.7!, we define the super
stress operator in theR sectorTF(z8;u8) by

TF~z8,u8![(
j 50

4

TjF~z8,u8!5u8TF~z8!1
1

2
F F~z8!, ~4.9!

whereTF(z8) andF F(z8) will be called the stress operator and stressino operator in theR-sector,
respectively. In the stress operatorTF(z8) ~4.9!, the following normal ordered product in theR
sector used in Eq.~4.8! can be rewritten into those in thef representation as follows:

(
j 50

4

(
6

:
1

2
]z8C

6 j~z8!•C7 j~z8!:R5 lim
z→z8

(
j 50

4

(
6

1

2
]z8S R–:e6f j ~z8!:f :e7f j ~z!:f

2
1

z82z S z82z0

z2z0
D 6eh

j D
5(

j 50

4

:
1

2
„]z8f

j~z8!…2:f2
5/8

~z82z0!2 . ~4.10!

On the other hand, we can find from Eqs.~2.45! and ~2.50! the following contraction in theR
sector.

~4.11!

With the help of Eq.~4.11!, we find the following operator product expansion~OPE! among
superstress operators in theR sector;

R–TF~z8,u8!TF~z,u!5
5/2

~z82z2u8u!3 1
3/2~u82u!

~z82z2u8u!2 TF~z,u!1
u82u

z82z2u8u
]zTF~z,u!

1
1/2

z82z2u8u
DuTF~z,u!1

1

~z81z22z0!2 S 5/4

z82z
1

5u8u

~z82z!2D
1~ terms regular atz85z!. ~4.12!
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We introduce light-cone fermionic eigenstatesu$ p̂%;$h%&F , on whichPF
6 j †

~4.2! operates. They are
defined by

p6 j u$ p̂%;$h%&F5 p̂6 j u$ p̂%;$h%&F , dn
6 j u$ p̂%;$h%&F5an

6 j u$ p̂%;$h%&F50 ~ for n51,2,3,...!
~4.13!

and

S d0
1 j u$ p̂%;$h%&F50, in the casee1

j 51 1
2 ,

d0
2 j u$ p̂%;$h%&F50, in the casee2

j 52 1
2,

~4.14!

where ‘‘h’’ is the one used ineh
j of FMSs spinor operatorS$h%(z0) ~2.18!. Furthermore, we define

the light-cone number operatorNF ~in the fermionic sector! by

NF[ (
n51

`

(
6

(
k51

4

~a2n
7kan

6k1nd2n
7kdn

6k!. ~4.15!

Then, we shall investigate ~in our second paper9! the OPEs among GFPVO
FN$h%

F (z0 ,u0 ;PF
†)S$h%(z0) @which is N-ized fromR–F$h%

F (z0 ,u0 ;PF
†)S$h%(z0)# and the superstres

operator~4.9!, especially in the case when the eigenvaluesp̂6 j of light-cone fermionic eigenstate
u$ p̂%;$h%&F satisfy the following on-shell condition:

05S S 2(
j 50

4

p1 j p2 j DFN$h%
F0~1!~z0 ;PF

† !1@NF ,FN$h%
F0~1!~z0 ;PF

† !# DS$h%~z0!u0&fu$ p̂%;$h%&F .

~4.16!

With respect to theN operator,

FN$h%
F ~z0 ,u0 ;PF

† ![FN$h%
F0 ~z0 ;PF

† !1u0FN$h%
F1 ~z0 ;PF

† !, ~4.17!

our obtained OPEs are given as follows: As for OPEs related with the stress operatorTF(z8), we
have

R–TF~z8!FN$h%
F0 ~z0 ;PF

† !S$h%~z0!u0&fu$ p̂%;$h%&F

5
1

z82z0
]z0

„FN$h%
F0 ~z0 ;PF

† !S$h%~z0!…u0&fu$ p̂%;$h%&F1O~1! ~4.18!

and

R–TF~z8!FN$h%
F1 ~z0 ;PF

† !S$h%~z0!u0&fu$ p̂%;$h%&F

5
1

z82z0
]z0

„FN$h%
F1 ~z0 ;PF

† !S$h%~z0!…u0&fu$ p̂%;$h%&F1O~1!. ~4.19!

Furthermore, as for OPEs related with the stressino operatorFF(z8), we have

R–F F~z8!FN$h%
F0 ~z0 ;PF

† !S$h%~z0!u0&fu$ p̂%;$h%&F

5
1

~Az82z0!3
FN$h%

F1 ~z0 ;PF
† !S$h%~z0!u0&fu$ p̂%;$h%&F1OS 1

Az82z0
D ~4.20!
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and

R–F F~z8!FN$h%
F1 ~z0 ;PF

† !S$h%~z0!u0&fu$ p̂%;$h%&F5OS 1

Az82z0
D . ~4.21!

We notice that limz0→0 CN
6 j (z;z0) is just Ramond operators,1 since Eqs.~2.24! and ~2.28!

lead to

lim
z0→0

CN
6 j~z;z0!5 lim

z0→0
~z2z0!6eh

j
CNh

6 j~z!5 (
n52`

`

dn,Nh
6 j z2n21/2, for h56. ~4.22!

Therefore, substituting Eq.~4.22! into the following superstress operator in theR sector~in the
N-operator’s form!,

TFN~z8,u8;z0!5(
6

(
j 50

4

:
1

2
]z8XN

6 j~z8,u8;z0!Du8XN
7 j~z8,u8;z0!:R

[u8TFN~z8;z0!1 1
2 F FN~z8;z0!, ~4.23!

the stress operator in theR sector~in theN-operator’s form! can be expressed~in the limit z0→0!
by

lim
z0→0

TFN~z8;z0!5 (
n52`

`

LNn
F z82n22, ~4.24!

while the stressino operator in theR sector~in theN-operator’s form! is given~in the limit z0→0!
by

lim
z0→0

F FN~z8;z0!5 (
n52`

`

F Nn
F z82n23/2. ~4.25!

By using OPE~4.12! in the limit z0→0, super-Virasoro generatorsLNn
F ’s in Eq. ~4.24! andF Nn’s

in Eq. ~4.25! in the R sector are found to satisfy the following super-Virasoro algebra in thR
sector:1

@LNn
F ,LNm

F #5~n2m!LNn1m
F 1 5

4 n3dn,2m ,

@LNn
F ,F Nm

F #5~ 1
2 n2m!F Nn1m

F

and

$F Nn
F ,F Nm

F %55n2dn,2m12LNn1m
F . ~4.26!

In Eqs. ~4.24!–~4.26!, n and m are integers. Taking the limitz0→0 of OPE~4.20!, and taking
account of the stressino operator~4.25!, we finally find that

F Nn
F S lim

z0→0
FN$h%

F0 ~z0 ;PF
† !S$h%~z0!u0&fu$ p̂%;$h%&F D

5dn0S lim
z →0

FN$h%
F1 ~z0 ;PF

† !S$h%~z0!u0&fu$ p̂%;$h%&F D , for n50,1,2,... . ~4.27!

0
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In Eq. ~4.27!, limz0→0 is well defined, since Eqs.~2.16! with ~2.22! shows that

CNh
6 j~z!S$h%~z0!u0&f5:exp„6fNh

j ~z;2 !…:fS$h%~z0!u0&f ~4.28!

is analytic, even atz50. It should be noticed that the right-hand side of Eq.~4.27! generates
zero-norm~on-shell! states, since we have the factorF N0

F
F N0

F 5LN0
F @from Eq. ~4.26!# vanishing

in the on-shell case~4.17!. Incidentally, Eqs.~2.23! and ~2.24!, together with Eq.~4.28!, lead to

dnNh
h j :exp„eh

j f j~z0!…:u0&f50, for n50,1,2,..., ~4.29!

while Eqs.~2.27! and ~2.28! together with Eq.~4.28! give

dnNh
2h j :exp„eh

j f j~z0!…:u0&f50, for n51,2,3,... . ~4.30!

The following fermionic states:

lim
z0→0

FN$h%
F0 ~z0 ;PF

† !S$h%~z0!u0&fu$p%;$h%&F , ~4.31!

will be called physical Ramond states in the2 1
2 picture. In quantum superstring field theor

physical Ramond states in the21
2 picture2,7 are described by the following GFPVO~having

conformal weight equal to 0!:

:exp„s~z0!…::exp„2 1
2 f~z0!…:FN$h%

F0 ~z0 ;PF
† !S$h%~z0!, ~4.32!

wheres andf are ghost operators introduced by Friedan, Martinec, and Schenker,2 and contrac-
tions among them are given by

s~z01!s~z02!5 log~z012z02! ~4.33!

and

f~z01!f~z02!52 log~z012z02!. ~4.34!

V. GFPVO IN THE NS SECTOR

In this section, various results on GFPVO in theNS sector of the superstring are given~the
explicit proof of which will be found in our second paper9!.

In addition to the light-cone operatorPa
6 j †

(w) ~1.10! for j 51 – 4, we introduce light-cone
operatorsbm21/2

6 j ’s and b2n11/2
6 j ’s ~for j 51 – 4 andn,m51,2,3,...), which satisfy the following

anticommutation relations among themselves:

$bm21/2
6 j ,b2n11/2

7k %5dmnd
jk, for j ,k51 – 4 andn,m51,2,3,..., ~5.1!

all other anticommutators being zero. Next, we introduce the light-cone operatorPB
6 j †

(w,j) in the
NS sector defined by

PB
6 j †

~w,j![
j

w S p6 j1 (
n51

`

w2na2n
6 j D 1

1

Aw
S (

n51

`

w2n11/2b2n11/2
6 j D ~5.2!

„[jPa
6 j †

~w!1pb
6 j †

~w!…. ~5.28!
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We should notice that the supervector fieldXm(z,u) ~2.1! commutes with the light-cone operato
~5.2!.

The following GFPVOFB(z0 ,u0 ;PB
†) in the NS sector of the superstring is easily obtain

by simply supergeneralizing GFPVOF(z0 ;Pa
†) ~1.11! of the bosonic string:

FB~z0 ,u0 ;PB
† ![:exp„r0B~z0 ,u0!1r1B~z0 ,u0 ;PB

† !1r2B~z0 ,u0 ;PB
† !…:NS, ~5.3!

where : :NS is the normal ordering in theNS sector defined by Eq.~2.12! and r iB’s ( i
50,1,2) in Eq.~5.3! are those defined by

r0B~z0 ,u0![(
6

2 ip60X70~z0 ,u0!, ~5.4!

r1B~z0 ,u0 ;PB
† ![2(

6
(
j 51

4

i R dw dj

2p i
PB

6 j †
~w,j!X7 j

„zB~w,j!,uB~w,j!… ~5.5!

and

r2B~z0 ,u0 ;PB
† ![2(

j 51

4 R dw dj

2p i
PB

1 j †
~w,j! R dw8 dj8

2p i
PB

2 j †
~w8,j8!

3 log
zB~w,j!2zB~w8,j8!2uB~w,j!uB~w8,j8!

w2w82jj8
. ~5.6!

~Q numbers! zB(w,j) anduB(w,j) used in Eqs.~5.5! and~5.6! are those determined by inverse
solving the superconformal mapping in theNS sector (zB ,uB)→(w,j);

zB2z02uBu05w:expS X10~zB ,uB!

ip10 2
X10~z0 ,u0!

ip10 D :NS ~5.7!

and

j~zB ,uB!5~]zB
w!21/2 DuB

w. ~5.8!

@We notice that Eq.~5.7! is easily obtained by supergeneralizing the conformal mapping~1.15! in
the bosonic string.# Obtained~q number! zB5zB(w,j) and uB5uB(w,j) @(w,j) and (z0 ,u0)
beingc numbers# can be expressed by

uB~w,j!2u0[JB~w!1jKB~w! ~5.9!

and

zB~w,j!2z02uB~w,j!u0[LB~w!1jKB~w!JB~w!. ~5.10!

Substituting Eqs.~5.9! and ~5.10! into

Dj~zB2z02uBu0!5~uB2u0!Dj~uB2u0!, ~5.11!

we find the relation

KB~w!5„]wLB~w!2]wJB~w!•JB~w!…1/2. ~5.12!
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Various functions in Eqs.~5.9! and ~5.10! are explicitly obtained with the help of the followin
theorem, where we should notice that allC10’s are anticommutative among them.

Theorem „superconformal mapping in the NS sector…: For any function f (z,u)[a(z)
1ub(z) ~which is analytic atz5z0! the function f (zB ,uB) can be expressed as the function
(w,j) by the following formula:

f ~zB ,uB!5@ f ~zB ,uB!#j501jKB~w!@DuB
f ~zB ,uB!#j50 , ~5.13!

with

KB~w!5~]w@zB2z02uBu0#j502~]w@uB2u0#j50!@uB2u0#j50!1/2. ~5.138!

In Eqs.~5.13! and~5.138!, we have used the function@ #j50 ~which is the function ofw! defined
by

@a~zB!1uBb~zB!#j50[a~z0!1u0b~z0!1 (
n51

`

wn expS 2nu0

C10~z0!

ip10 De2nI~z0!

3S 1

n!
]z0

n
„enI~z0!u0b~z0!…

1
1

~n21!!
]z0

n21S enI~z0!S 1

n
]z0

a~z0!1
C10~z0!

ip10 b~z0! D D D ,

~5.14!

with the shorthand notation

I ~z0![
X10~z0!

ip10 . ~5.15!

Furthermore, the formula~5.14! is rewritten as

@a~zB!1uBb~zB!#j505a~z0!1u0b~z0!

1 (
n51

`

VnS (
k50

n
1

k!
Rn2k

~n! ~z0!]z0

k S k

n
a~z0!1u0b~z0! D

1 (
k51

n
1

~k21!!
Rn2k

~n! ~z0!]z0

k21
„V~z0!b~z0!…

D , ~5.16!

where we have used the shorthand notations~1.20! and

V[w exp„2u0V~z0!… and V~z0![
C10~z0!

ip10 . ~5.17!

Proof: Equations~5.13!–~5.17! can be derived by inversely solving Eqs.~5.7! and~5.8! ~in a
similar way as we have derived Eqs.~3.19!–~3.22! from Eq. ~3.6! and ~3.15!#. ~Q.E.D.! @We
remark that the formula~5.13! givesJB(w)5@uB#j50 andLB(w)5@zB2z02uBu0#j50 , with the
help of which theq-number functionKB(w) in Eq. ~5.13! can be obtained by Eq.~5.12!.#

The j th component of the superstress operator in theNS sector is defined by
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TjB~z8,u8![(
6

:
1

2
]z8X

6 j~z8,u8!Du8X
7 j~z8,u8!:NS ~5.18!

[u8S (
6

:
1

2
]z8X

6 j~z8!]z8X
7 j~z8!:1(

6
:
1

2
]z8C

6 j~z8!

•C7 j~z8!:NSD 1(
6

1

2
]z8X

6 j~z8!•C7 j~z8!, ~5.19!

where we have used the supervector field~2.1!. With the help of Eq.~5.18!, we define the
superstress operator in theNS sectorTB(z8,u8) by

TB~z8,u8![(
j 50

4

TjB~z8,u8!5u8TB~z8!1
1

2
F B~z8!, ~5.20!

whereTB(z8) andF B(z8) will be called the stress operator and the stressino operator in theNS
sector, respectively. In the stress operatorTB(z8) ~5.20!, the normal ordered product in theNS
sector used in Eq.~5.19! can be rewritten into those in thef representation as follows:

(
j 50

4

(
6

:
1

2
]z8C

6 j~z8!•C7 j~z8!:NS5 lim
z→z8

(
j 50

4

(
6

1

2
]z8S R–:e6f j ~z8!:f :e7f j ~z!:f2

1

z82zD
5(

j 50

4

:
1

2
„]z8f

j~z8!…2:f . ~5.21!

It should be noticed from Eqs.~4.10! and ~5.21! that the stress operatorTB(z8) in the NS sector
@i.e., ~5.20!# is the same as theq-number part in the stress operatorTF(z8) in the R sector@i.e.,
~4.9!#.

It is well known that contractions~2.13! in the NS sector lead to the following operato
product expansion~OPE! among superstress operators in theNS sector:

R–TB~z8,u8!TB~z,u!5
5/2

~z82z2u8u!3 1
~3/2!~u82u!

~z82z2u8u!2 TB~z,u!1
u82u

z82z2u8u
]zTB~z,u!

1
1/2

z82z2u8u
DuTB~z,u!1@ terms regular at~z8,u8!5~z,u!#.

~5.22!

We introduce light-cone bosonic eigenstatesu$ p̂%&B , on whichPB
6 j †

~5.2! operates. They are
defined by

p6 j u$ p̂%&B5 p̂6 j u$ p̂%&B , an
6 j u$ p̂%&B5bn21/2u$ p̂%&B50, for n51,2,3,... . ~5.23!

Furthermore, we define the light-cone number operatorNB ~in the bosonic sector! by

NB[ (
n51

`

(
6

(
k51

4 Xa2n
7kan

6k1S n2
1

2Db2n11/2
7k bn21/2

6k C. ~5.24!

Then, GFPVO in theNS sector~5.3!, which can be decomposed into

FB~z0 ,u0 ;PB
† ![FB0~z0 ;PB

† !1u0FB1~z0 ;PB
† !, ~5.25!
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satisfies the following OPE with the superstress operator~5.20!:

R–TB~z8,u8!FB~z0 ,u0 ;PB
† !

5
u82u0

~z82z02u8u0!2 S 2S (
j 50

4

p1 j p2 j DFB~z0 ,u0 ;PB
† !1@NB ,FB~z0 ,u0 ;PB

† !# D
1

1
2

z82z02u8u0
Du0

FB~z0 ,u0 ;PB
† !1

u82u0

z82z02u8u0
]z0

FB~z0 ,u0 ;PB
† !

1~ terms regular atz85z0!. ~5.26!

@It is to be noticed that OPE~5.26! is easily conjectured from the supergeneralizing OPE~1.23! in
the bosonic string, which has been derived in our previous paper.6# When eigenvaluesp̂6 j of
light-cone bosonic eigenstatesu$ p̂%&B satisfy the following on-shell condition:

05S S 2
1

2
2(

j 50

4

p1 j p2 j DFB0~1!~z0 ;PB
† !1@NB ,FB0~1!~z0 ;PB

† !# D u0&fu$ p̂%&B , ~5.27!

OPE ~5.26! is rewritten into the following OPEs, by using the decompositions~5.20! and ~5.25!.
As for OPEs related with the stress operatorTB(z8), we have

R–TB~z8!FB0~z0 ;PB
† !u0&fu$ p̂%&B

5S 1
2

~z82z0!2 FB0~z0 ;PB
† !1

1

z82z0
]z0

FB0~z0 ;PB
† !D u0&fu$ p̂%&B

1~ terms regular atz85z0! ~5.28!

and

R–TB~z8!FB1~z0 ;PB
† !u0&fu$ p̂%&B

5S 1

~z82z0!2 FB1~z0 ;PB
† !1

1

z82z0
]z0

FB1~z0 ;PB
† ! D u0&fu$ p̂%&B

1~ terms regular atz85z0!. ~5.29!

Furthermore, as for OPEs related with the stressino operatorF B(z8), we have

R–F B~z8!FB0~z0 ;PB
† !u0&fu$ p̂%&B5

1

z82z0
FB1~z0 ;PB

† !u0&fu$ p̂%&B1~ terms regular atz85z0!

~5.30!

and

R–F B~z8!FB1~z0 ;PB
† !u0&fu$ p̂%&B

5S 1

~z82z0!2 FB0~z0 ;PB
† !1

1

z82z0
]z0

FB0~z0 ;PB
† ! D u0&fu$ p̂%&B

1~ terms regular atz85z0!. ~5.31!

On the other hand, by substituting the string coordinosC6 j (z8)’s in theNSsector@i.e., ~2.8!#
onto the right-hand side of Eq.~5.19!, the stress operator in theNS sector is obtained in the form
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TB~z8![
1

z82 S (
n52`

`

Ln
Bz82nD , ~5.32!

and the stressino operator in theNS sector is obtained in the form

F B~z8![
1

~Az8!3 S (
n52`

`

F n21/2
B z82n11/2D . ~5.33!

Then, super-Virasoro generatorsLn
B’s in Eq. ~5.32! andF n

B’s in Eq. ~5.33! are found from OPE
~5.22! to satisfy the following super-Virasoro algebra in theNS sector:1

@Ln
B ,Lm

B #5~n2m!Ln1m
B 1 5

4 n~n221!dn,2m ,

@Ln
B ,F m11/2

B #5S n

2
2m2

1

2D F n1m11/2
B

and

$F n11/2
B ,F 2m21/2

B %55n~n11!dn,m12Ln2m
B , ~5.34!

wheren andm are integers.
Taking the limitz0→0 of OPE~5.28! @~5.29!# and taking account of the stress operator~5.32!,

we finally find under the on-shell condition~5.27! that the following physical conditions ar
satisfied:

„Ln
B2 1

2 ~1!dn0…„ lim
z0→0

FB0~1!~z0 ;PB
† !u0&fu$ p̂%&B…50, for n50,1,2,... . ~5.35!

Furthermore, physical Neveu–Schwarz states~in the 21 picture!, given by

lim
z0→0

FB0~z0 ;PB
† !u0&fu$ p̂%&B , ~5.36!

are picture changed into physical Neveu–Schwarz states~in the 0 picture!, given by

lim
z0→0

FB1~z0 ;PB
† !u0&fu$ p̂%&B , ~5.37!

since OPE~5.30! in the caseu85u050 leads to the following formula:

F B~z8!„ lim
z0→0

FB0~z0 ;PB
† !u0&fu$ p̂%&B…5 1

z8
„ lim
z0→0

FB1~z0 ;PB
† !u0&fu$ p̂%&B…1O~1!, ~5.38!

which is valid, even if the on-shell condition~5.27! is not satisfied.
In quantum superstring field theory, physical Neveu–Schwarz states in21 and 0 pictures2,7

are described, respectively, by the following GFPVOs~having conformal weight equal to 0!:

:exp„s~z0!…::exp„2f~z0!…:FB0~z0 ;PB
† ! ~ in the 21 picture! ~5.39!

and

:exp„s~z0!…:FB1~z0 ;PB
† ! ~ in the 0 picture!, ~5.40!

wheres andf are ghost operators introduced by Friedan, Martinec, and Schenker,2 and contrac-
tions among them are given by Eqs.~4.33! and ~4.34!.
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VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have given generating functionals of physical vertex operators~GFPVOs! in
each Ramond and Neveu–Schwarz sector of the superstring, by the following steps: In Sec
notice that the string coordinoC6 j ~2.2! in thef representation is common to both theR and the
NS sectors. However, in constructing GFPVOs in theR andNS sectors, we need the following
normal orderings and contractions in theR andNS sectors, which are different from those in th
f representation; The string coordino in theNS sector is simply represented by Eq.~2.8!, with
anticommutation relations~2.9! among~Grassman odd! operatorsb . Then, the normal ordering in
theNS sector is defined to be placing any~Grassman odd! creation operatorb 2n11/2

6 j to the left of
any annihilation operatorb m21/2

6k ~for n,m51,2,...!, so that the contraction in theNS sector is
found out to be given by Eq.~2.13!. On the other hand, in order to define the normal ordering
contraction in theR sector, we must introduceN operators, which are those already norma
ordered~in thef representation! with respect to FMS’s spinor operatorS$h%(z0) ~2.18!. Then, the
analytic string coordinoCh

6 j (z;z0) is defined by Eq.~2.20!, which isN-ized intoCNh
h j (z) ~2.24!

andCNh
2h j(z) ~2.28!, with anticommutation relations~2.33! among~Grassman odd! operatorsd’s.

Then, the normal ordering in theR sector is defined to be placing any~Grassman odd! negative
frequency partCNh

6h j(z;2) to the left of any positive frequency partCNh
6hk(z8;1) operator. There-

fore, contractions in theR sector~amongN operators! are found out to be given by Eqs.~2.43!–
~2.45!, while those~among non-N operators! are defined to be given by Eqs.~2.48!–~2.50!. In Sec.
III, we introduce the superconformal mapping in theR sector (zF ,uF)→(w,j) given by Eqs.~3.6!
and ~3.15!, assuming that both (w,j) and (z0 ,u0) are justc numbers. It should be noticed tha
‘‘ z0’ ’ in Eq. ~3.6! is the position at which FMS’s spinor operatorS$h%(z0) ~2.18! is located. We
solve the inverse superconformal mapping (w,j)→(zF ,uF). Results~in the non-N-operator’s
form! are summarized in the theorem@i.e., Eqs.~3.19!–~3.21!#. Furthermore, these results a
N-ized into those for (w,j)→(zNF ,uNF), so that we find Eqs.~3.39!–~3.47!. In Sec. IV, we
construct GFPVO in theR sectorR–F$h%

F (z0 ,u0 ;PF
†)S$h%(z0) ~in the non-N-operator’s form!,

which is given by using Eqs.~4.3!–~4.6! and ~2.18!, which can be easilyN-ized into
FN$h%

F (z0 ,u0 ;PF
†)S$h%(z0) ~in the N-operator’s form! by N-izing @i.e., ~2.47!#. With the help of

OPEs~4.18!–~4.21! @under the on-shell condition~4.16!#, we prove physical Ramond states in th
2 1

2 picture@i.e., ~4.31!# satisfy physical conditions~4.27!, the right-hand side of which generate
zero-norm states. In Sec. V, we introduce the superconformal mapping in theNS sector
(zB ,uB)→(w,j) given by Eqs.~5.7! and ~5.8!, provided that both (w,j) and (z0 ,u0) are justc
numbers. We solve the inverse superconformal mapping (w,j)→(zB ,uB). Results are summa
rized in the theorem@i.e., Eqs. ~5.13!–~5.16!#. With the help of thus obtainedzB(w,j) and
uB(w,j), GFPVO in theNS sectorFB(z0 ,u0 ;PB

†) is constructed by the formulas~5.3!–~5.6!,
which are easily obtained by supergeneralizing our GFPVO@given by Eqs.~1.11!–~1.14!# in the
bosonic string. With the help of OPEs~5.28! and ~5.29! in the NS sector, we can show tha
physicalNS states in the21~0! picture~5.36! @~5.37!# satisfy physical conditions~5.35!. Further-
more, Eq.~5.38! shows that physicalNS states~in the 21 picture! are picture changed into
physicalNS states~in the 0 picture!.

Finally, we notice that the stress operatorTf(z8) defined by

Tf~z8![(
6

(
j 50

4

:
1

2
]z8X

6 j~z8!]z8X
7 j~z8!:1(

j 50

4

:
1

2
„]z8f

j~z8!…2:f , ~6.1!

can be used in both theR andNS sectors, since Eqs.~4.10! and ~5.21! lead, respectively, to

TF~z8!5Tf~z8!2
5/8

~z82z0!2 ~6.2!

and
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TB~z8!5Tf~z8!. ~6.3!

On the other hand, OPE amongTf(z8) andS$h%(z0) shows thatS$h%(z0) is the primary operator of
conformal weight 5/8. This fact explains the presence of the second term on the right-hand
Eq. ~6.2!.

In our forthcoming second paper,9 we shall explain in detail how to derive OPEs~4.18!–
~4.21! in the R sector. On the other hand, we briefy comment on the derivation of OPE~5.26! in
the NS sector.

In the forthcoming third paper,10 GFPVO in the R sector is constructed by
FN$h%

F (z0 ,u0 ;PF
†)S$h%(z0), whereFN$h%

F (z0 ,u0 ;PF
†) ~4.17! is explicitly obtained by

FN$h%
F ~z0 ,u0 ;PF

† !~[FN$h%
F0 ~z0 ;PF

† !1u0FN$h%
F1 ~z0 ;PF

† !!

5:expS (
j 51

4

ZNh
F j ~z0 ,u0 ;PF

† !D ~12u0ip10C0,N1
20 !expS 2(

6
(
j 50

4

ip6 jX7 j~z0!D :R .

~6.4!

In giving formulas of ZNh
F j in Eq. ~6.4!, we shall introduce the following notationsQ6h j(Q

5a,d,p,X,C):

Qh j5H Q1 j , for h51

Q2 j , for h52
and Q2h j5H Q2 j , for h51,

Q1 j , for h52,
~6.5!

where ‘‘h’’ is the same as the one ineh
j in FMSs spinor operatorS$h%(z0) ~2.18!. How we can

calculateZNh
F j ’s in Eq. ~6.4! up to arbitrarily required terms will be explained. For example, fi

some terms in functionsZNh
F j ’s in Eq. ~6.4! will be explicitly found out to be

ZNh
F j ~z0 ,u0 ;PF

† !52u0iph jC0,Nh
2h j 2 ia21

h j
„X1

2h j2 ip2h jI 11V1C0,Nh
2h j 1u0~C1,Nh

2h j 1I 1C0,Nh
2h j !…

2 ia21
2h j

„X1
h j2 iph jI 11u0~C1,Nh

h j 2 iph jV1!…1 id21
h j

„C1,Nh
2h j 1 1

2 I 1C0,Nh
2h j

2 ip2h jV11u0~X1
2h j1 1

2 V1C0,Nh
2h j 2 3

5 ip2h jI 1!…

1 id21
2h j

„C1,Nh
h j 2 iph jV11u0~X1

h j2 iph jI 1!…1•••, ~6.6!

where we have used following shorthand notations:

I ~z0![
X10~z0!

ip10 , I m[]z0

mI ~z0!, I m
n [~ I m!n, ~6.7!

Vk11[
1

k!
]z0

k
CN1

10 ~z0!

ip10 , ~6.8!

Xk
6 j[

1

k!
]z0

k X6 j~z0! ~6.9!

and

Ck11,Nh
h j [

1

k!
]z0

k CNh
h j ~z0!, Ck,Nh

2h j [
1

k!
]z0

k CNh
2h j~z0!. ~6.10!
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On the other hand, in our forthcoming fourth paper,11 GFPVO in the NS sector
FB(z0 ,u0 ;PB

†) @constructed by~5.3!–~5.6!# is explicitly obtained in the form

FB~z0 ,u0 ;PB
† !„[FB0~z0 ;PB

† !1u0FB1~z0 ;PB
† !…

5:exp@1 ipmXm~z0 ,u0!#expS (
6

(
j 51

4

ZB
6 j~z0 ,u0 ;PB

† !D :NS, ~6.11!

where

ipmXm~z0 ,u0!5 ipmXm~z0!1u0ipmCm~z0![2(
6

(
k50

4

ip6kX0
7k2u0S (

6
(
k50

4

ip6kC1/2
7kD .

~6.12!

We shall explain how to calculateZB
6 j ’s in Eq. ~6.11! up to an arbitrarily reguired number o

terms. For example, first some terms inZB
6 j ’s are explicitly found out to be

ZB
6 j~z0 ,u0 ;PB

† ![ ib21/2
6 j

„C1/2
7 j2 ip7 jV1/21u0~X1

7 j2 ip7 j I 1!…

2 ia21
6 j S X1

7 j1V1/2C1/2
7 j2 ip7 j I 1

1u0~2V1/2X1
7 j1C1/211

7 j 1I 1C1/2
7 j2 ip7 jV1/211! D 1•••, ~6.13!

where we have used the following shorthand notations:

I ~z0![
X10~z0!

ip10 , I m[]z0

mI ~z0!, I m
n [~ I m!n, ~6.14!

V1/21k[
1

k!
]z0

k C10~z0!

ip10 , ~6.15!

Xk
6 j[

1

k!
]z0

k X6 j~z0!, ~6.16!

and

C1/21k
6 j [

1

k!
]z0

k C6 j~z0!. ~6.17!

Furthermore, we shall10,11discuss GSO-allowed1 physical Ramond states in the21
2 picture, as

well as GSO-allowed physical states in both the21 and 0 pictures.

1For reviews of~super-! string theory, see, M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory~Cambridge
University Press, New York, 1987!, Vols. 1 and 2; M. Kaku,Introduction to Superstring~Springer-Verlag, New York,
1988!.

2E. Witten, Nucl. Phys. B276, 291 ~1986!.
3S. Naito, J. Math. Phys.38, 1413~1997!.
4E. Witten, Nucl. Phys. B268, 253 ~1986!; D. J. Gross and A. Jevicki,ibid. B 283, 1 ~1987!; 287, 225 ~1987!; 293, 29
~1987!; S. B. Giddings, Nucl. Phys. B278, 242~1986!; S. B. Giddings and E. Martinec,ibid. 278, 242~1986!; R. Bluhm
and S. Samuel,ibid. 323, 337 ~1989!, and various papers cited therein; S. Samuel,ibid. 341, 513 ~1990!, and various
papers cited therein; S. Samuel,ibid. 308, 285 ~1988!; C. B. Thorn,ibid. 287, 61 ~1987!; A. LeClair, M. E. Peskin, and
C. R. Preitschopf,ibid. 317, 411 ~1988!; ibid. 317, 464 ~1989!, and various papers cited therein.

5S. Naito and M. Nishimoto, J. Math. Phys.31, 3053~1990!.
6S. Naito, J. Math. Phys.34, 2166~1993!.
7D. Friedan, E. Martinec, and S. Schenker, Nucl. Phys. B271, 93 ~1986!.
J. Math. Phys., Vol. 38, No. 10, October 1997
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8V. A. Kostelecky, O. Lechtenfeld, W. Lerche, S. Samuel, and S. Watamura, Nucl. Phys. B288, 173 ~1987!.
9S. Naito, ‘‘Operator product expansions and super-stress operator,’’ submitted to J. Math. Phys.

10S. Naito, ‘‘Physical vertex operators in Ramond sector of superstring,’’ in preparation.
11S. Naito, ‘‘Physical vertex operators in Neveu–Schwarz sector of Superstring,’’ in preparation.
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Coherent states map for MIC–Kepler system
A. Odzijewicza) and M. Świȩtochowskib)

Institute of Physics, Warsaw University Division, 15-424 Bial”ystok, Lipowa 41, Poland

~Received 2 April 1996; accepted for publication 14 April 1997!

The coherent states map for MIC–Kepler system is constructed. The quantization
of this system is given by the coherent states method. ©1997 American Institute
of Physics.@S0022-2488~97!02709-6#

I. INTRODUCTION

The MIC–Kepler system describes a charged massive nonrelativistic particle in an ex
Coulomb field modified by a centrifugal field and a Dirac monopole magnetic field. Su
physical system was first studied by MacIntosh and Cisneros in Ref. 1, which explains the
‘‘MIC–Kepler.’’ Many other authors also investigated various aspects of this system, e.g
Refs. 2–4.

Our main purpose is to quantize the MIC–Kepler system by using a method based o
notion of coherent states map, i.e., a map of the classical phase space into the complex pr
Hilbert space~quantum phase space!. This method was proposed in Ref. 5. On the one hand
allows us to reconstruct physical quantities, which describe the physical system, from its co
states map. On the other hand, it unifies the Kostant–Souriau quantization with the B
*-product quantization. This general fact is illustrated in Sec. V by the example of the M
Kepler system.

Investigating the classical description of the MIC–Kepler system, we use, besides can
coordinates, the twistor coordinates as well. With the help of the twistor formalism descriptio
show that the phase space of the system is a three-dimensional complex manifold isomor
the complex vector bundle of rank two overCP~1!. It is constructed from the twistor phase spa
C4>T by the symplectic reduction to the submanifoldVm,T of twistors with positive constan
twistor norm^t,t&5m5const. After passing to the canonical coordinates (x,p)PṘ33R3, where
Ṙ35R3\$0%, one finds that, if one interpretsm as the magnetic charge, the reduced symple
manifold Ṽ>Ṙ33R3, can be interpreted as the phase space of the MIC–Kepler system~see
Statement 1 of Sec. II!. One can also identifyṼ with the manifold of positive projective twistor
CP1(3), which is the phase space of a massless particle with positive helicity. This surp
coincidence needs an explanation. But we do not consider it in this paper.

In Sec. III we present a method of constructing the coherent states mapK̃ :M̃→CP(M) for
the reduced symplectic manifoldM̃ if the coherent states mapK :M→CP(M) for an initial
symplectic manifold is given. For the detailed description of the method, see Ref. 6. Then, i
IV, this method is applied to the construction of a one-parameter family of coherent states
K l :Ṽ→CP(Ml), l.0. The mapK l is a complex analytic embedding of the MIC–Kepl
phase spaceṼ into the complex projective Hilbert spaceCP(Ml). Therefore it defines a Ka¨hler
quantum bundleLl→Ṽ, whereLl5K l* E is the pull-back of the tautological quantum bund
E→CP(Ml). In Sec. VI the quantization procedure proposed in Ref. 6 is applied to the clas
system with the phase space (Ṽ,K l* vFS), wherevFS is the Fubini-Study~1,1!-form. We show
that for m.0 andl→` this system corresponds to the MIC–Kepler system and form→0 and
l→0 to the Kepler system. From the geometric quantization point of view, it is natural to as

a!Electronic mail: aodzijew@cksr.ac.bialystok.pl
b!Electronic mail: mirosl@fuw.edu.pl
0022-2488/97/38(10)/5010/21/$10.00
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the proportionality ofl to magnetic charge. Hence, it is possible that the undeformed MIC–Ke
model ~i.e., for l→; `), is valid for large values of magnetic charge only.

II. THE TWISTOR DESCRIPTION OF CLASSICAL MIC–KEPLER SYSTEM

In this section we describe the classical MIC–Kepler system in terms of twistor spaT
>(C4,1122). This is motivated by two reasons. The twistor description clarifies the phy
interpretation of the considered system and supplies their phase space with a natural¨hler
structure, which makes it possible to apply the complex geometry methods. This is crucial f
quantization of the MIC–Kepler system.

Below we will use the following two realizations:

F5Fd5S 1
0

0
21D and F5Fs5 i S 0

21
1
0D , ~1!

of the twistor form

^t,t&5kt1Ft, ~2!

where tPC4, 1, 0PMat232(C) and k is a positive constant. One can make the twistor sp
U~2,2!-phase space after endowing it in the U~2,2!-invariant symplectic form

v12 :5dg, ~3!

g:5 i ^t,dt&5 ikt1F dt, ~4!

where one assumes that U~2,2! acts on T linearly s(g)t:5gt. The map J12 :T→u(2,2)
>u(2,2)* , given by

J12~ t !:5 iktt1F, ~5!

is a momentum map, i.e.,

v124

xX5d Tr~J12X!, ;XPu~2,2!, ~6!

where xX is Hamiltonian field generated byX. Since the momentum mapJ12 is U~2,2!-
equivariant,

Ad* ~g!+J125J12+s~g!, ;gPU~2,2!, ~7!

one has the monomorphism of Lie algebras,

~u~2,2!,@•,•# !�~C `~T,R!,$•,•%!, ~8!

where$•,•% is the Poisson bracket defined by the symplectic formv12 .
Now, we perform the reduction of twistor phase space (T,v12) to the submanifoldVm�T,

which is a level surfacem21(const) of the function

m:5Tr~J12D0!, ~9!

where

D052 i1Pu~2,2!. ~10!

The flow generated bym is given by
J. Math. Phys., Vol. 38, No. 10, October 1997
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sm~t!t5ei tt, tPR. ~11!

The quotient spaceṼ:5Vm /U(1) is a six-dimensional differential manifold. SinceD0 is in the
centralizer of the conformal algebrau(2, 2), the reduced phase space inherits the structure
U~2,2!-phase space from the twistor phase space. Let us denote the reduced symplectic fo
reduced action of SU~2,2!, and the reduced momentum map byṽ, s̃, and J̃12 , respectively.

We will consider the Hamiltonian,

n5Tr~J12R0!5kt1t, ~12!

where

R052 iF21Psu~2,2!. ~13!

It commutes withm, i.e., $m,n%50 and is invariant with respect to the unitary groupU(4).
Hence, the Hamiltonian system (T,v12 ,J12 ,n) has the subgroup U~2,2!ùU~4! as a symmetry
group. After reduction toṼ, which is possible since$m,n%50, that symmetry is inherited by th
reduced Hamiltonian system (Ṽ,ṽ,s̃,J̃12 ,ñ).

Taking the realizationFs and expressing the twistort in the real coordinates (xi ,pi) defined
by

C4{t5F t1

t2

t3

t4
G5:3

A k

2k
~x11 ix2!

A k

2k
~x31 ix4!

1

A2mk
~p11 ip2!

1

A2mk
~p31 ip4!

4 , ~14!

we find that the Hamiltonian system (T,v12 ,J12 ,s,n) is equivalent to the system of the fou
one-dimensional isotropic harmonic oscillators:

S R8,(
i 51

4

dpi`dxi ,
1

2m (
i 51

4

~pi
21kmxi

2!D . ~15!

Therefore, the reduced Hamiltonian system (Ṽ,ṽ,s̃,J̃12 ,ñ) could be interpreted as a system
four harmonic oscillators, with the constraint

m5Ak

m
~p1x22p2x11p3x42p4x3!5const. ~16!

There is also another physical interpretation of the Hamiltonian system (Ṽ,ṽ,s̃,J̃12 ,ñ). In
order to exhibit it let us consider the smooth map

Y:H~2!3Ċ2→H~2!, ~17!

whereH(2) is the vector space of 232 Hermitian matrices andĊ 2:5C2\$0%. We assume thatY
satisfies the conditions
J. Math. Phys., Vol. 38, No. 10, October 1997
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~ i! Y~X1tej̄jTe;eiwj!5Y~X;j!, ;w,tPR,

~ ii ! j1Y~X;j!j5m, ~18!

for (X,j)PH(2)3Ċ2, wheree5(21
0

0
1). UsingY, one defines the map

D~X,j!:5S j

„X2 1
2iY~X,j,j1!…j D PC4. ~19!

The mapD takes the same values on the equivalent arguments, where the equivalance rel

~X8,j8!;~X,j!, ~20!

is defined as follows: there existt, wPR, such that

X82X5tej̄jTe and j85eiwj. ~21!

So, finally one obtains the diffeomorphism,

D̃:P→̃Ṽ, ~22!

between the quotient manifoldsP:5H(2)3Ċ 2
/; andṼ5Vm/U(1).

Using the skew realization of twistor formF5Fs andt5(p
j ), we express~9! by the formula

ik~j1p2p1j!5m.0, ~23!

which shows thatṼ is an affine bundle,

A3→ Ṽ

↓p
Ċ2/U~1!

, ~24!

over Ċ2/U(1). On theother hand, the quotient manifoldP is a vector bundle,

R3→ P

↓p
Ċ2/U~1!

, ~25!

with the fiber

p21~@j#!>H~2!/$tej̄jTe:tPR%. ~26!

The mapD̃ is an isomorphism of the above two bundles. The mapC:P→Ṙ33R3 defined by

S q
pD5C~@~X,j!#!:5S j1sj

x1x0

j1sj

j1j
D , ~27!

where (s0 ,s) are the Pauli matrices andX5:x0s01xs, gives an isomorphism of the vecto

bundleP with the vector bundleṘ33R3→
pr1

Ṙ3. Let us mention here that in the vector coordinat
the translation along the vectorej̄jTe,
J. Math. Phys., Vol. 38, No. 10, October 1997
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X→X1tej̄jTe,

assumes the form

S x0

x D→S x0

x D1tS q
2qD . ~28!

Hence, the expressionx1x0(q/q) with q5uqu is an invariant of the translation~28!.
The result is that we obtain the affine bundles isomorphism,

D̃+C21:Ṙ33R3→̃Ṽ. ~29!

The pull-back of the symplectic formṽ under this isomorphis, expressed in the coordina
(q,p)PṘ33R3, is given by

vm5~D̃+C21!* ṽ5 imd
j1dj

j1j
2kdq`dS p2

1

2

q

q
3yD

52
m

2

1

q3 qiekli dqk`dql2k dq`dS p2
1

2

q

q
3yD , ~30!

wherey5y(q,p) is obtained from

y0s01ys5Y. ~31!

The action of conformal group U~2,2! transported byD̃+C21 on theṘ33R3 and momentum
mapJm :5 J̃12+D̃+C21 expressed in the matrix coordinatesQ:5q11qs, P:5ps takes the form

s̃~g!~Q,P!5~ 1
2„A1B~P2 i 1

2Y!…Q„A1B~P2 i 1
2Y!…†

3Re@„C1D~P2 i 1
2Y!…„A1B~P2 i 1

2Y!…21# !, ~32!

and

Jm~Q,P!5
k

2 S Q~P1 i 1
2Y! 2Q

~P2 i 1
2Y!Q~P1 i 1

2Y! 2~P2 i 1
2Y!Q

D , ~33!

respectively, whereg5(B
A

D
C)PU(2.2), A,B,C,DPM232(C).

Concluding, we have the following.
Statement 1: TheU~2,2!-symplectic manifold(Ṽ,ṽ,s̃,J̃12 ,ñ) is isomorphic with theU~2,2!-

symplectic manifoldṘ33R3, for which the symplectic formvm , the group action, and momentum
map Jm are given by (30), (32), and (33), respectively.

Thus, from now on we will identifyṼ with Ṙ33R3 and will use the coordinates (q,p). The
reduced Hamiltonian of the system of the four one-dimensional harmonic oscillators after
back onṘ33R3 assumes the form

Hosc5 ñ+D̃+C21~q,p!5Tr„Jm~q,p!R0
…5kqS S p2

1

2

q

q
3yD 2

1S m

2k D 2 1

q2 11D . ~34!

The Hamiltonian of the MIC–Kepler system with magnetic chargeeM ~see Ref. 2! is given by
J. Math. Phys., Vol. 38, No. 10, October 1997
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Hmic5
1

2m
p21

eM
2

8m

1

q22eE
2 1

q
. ~35!

Making the canonical transformation,

q→q, p→p2
1

2

q

q
3y, ~36!

the Hamiltonian system (Ṙ33R3,vm ,Hosc) reduces to the one for whichy50. So, below we shall
assume thatq3y50. In that case, the levels

Hosc~q,p!5n5const, Hmic~q,p!5E5const, ~37!

are identical if one assumes that

2mE521, 2mkeE
25n and keM5m. ~38!

Additionally, one has

vm4

xHosc
5d~Hosc2n!5d„q~Hmic2E!…5~Hmic2E!dq1vm4

qxHmic
. ~39!

Thus, the vector fieldsxHosc
andxHmic

, after restriction to the levelHmic
21(E)5Hosc

21(n), differ only
up to the factorqÞ0.

Therefore, if the conditions~38! are satisfied, the MIC dynamics and osc dynamics coinc
after restrictions to the levels~37!.

The rescaling,

q→c21q, p→cp, ~40!

wherec.0 does not changevm and transformsHmic to

Hmic
c 5c2S 1

2m
p21S eM

2

8mD 2 1

q22
eE

2

c

1

qD . ~41!

In that case the flowssosc and smic have the same trajectories on the levelsHmic
c 21(E)

5Hosc
21(n) if

E52c2
1

2m
, n52mk

eE
2

c
52mke and keM5m. ~42!

Hence, one can identify mic dynamics with rescaled osc dynamics ifE andn satisfy the relation

E522m
eE

4k2

n2 , ~43!

which is obtained from~42! by the elimination of the rescaling parameterc.
In such a way the problem of the integration of the MIC–Kepler system reduces to

problem of the integration of the system of four one-dimensional harmonic oscillators. The
is completely integrable. The flowsosc is given by the one-parameter subgroup,

g~t!5exp~tR0!5S cost1 sin t1

2sin t1 cost1D , ~44!
J. Math. Phys., Vol. 38, No. 10, October 1997
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see~13!. The integrals of motion are given by

d0~q,p!:5Tr„Jm~q,p!D0…52 i Tr Jm5m5keM , ~45!

d~q,p!:5Tr„Jm~q,p!D…5k~q3p!1
m

2

q

q
5kS q3p1

eM

2

q

qD , ~46!

r 0~q,p!:5Tr„Jm~q,p!R0
…5n5kqS p21S eM

2 D 2 1

q2 11D , ~47!

r ~q,p!:5Tr„Jm~q,p!R…5TrFJmS 0 s

2s 0 D G5kS d3p12me2
1

q
qD , ~48!

where

D052 i S 1 0

0 1D , D52 i S s 0

0 s
D , R05S 0 1

21 0D , R5S 0 s

2s 0 D : ~49!

are generators of the Lie algebrau(2,2)ùu(4). Theintegralsd and r are them deformations of
the angular momentumq3p and the Runge–Lentz vector (q3p)3p12me2(q/q), respectively.
After passing from twistor coordinates to the (q,p) coordinates, one obtains from~44!,

q~t!5cos 2t–q01r sin2 t1uq0up0 sin 2t, ~50!

p~t!5m
d

dt
q~t!. ~51!

From ~50! one sees that the motion is flat and cyclic with periodp.
The generatorDk generates the rotation of~q,p! with respect to thek axis. The transformation

generated byRk expressed in the coordinates~q,p! is rather complicated and will not be use
below. So, we omit it here.

If 2 1
2(q/q)3yÞ0, one obtains the same formulas as above except for~51!, which changes to

p~t!5m
d

dt
q~t!1

1

2

q~t!

q~t!
3y~t!. ~52!

In the limit m→0 the MIC–Kepler system coresponds to the Kepler system, for which the p
space isṘ33S35Ṙ33R3ø(Ṙ33$`%), where the subsetṘ3ø$`% in the twistor description is
related to

H S 0
p DPV0/U~1!:pPĊ2J .

The above formulas pass on the corresponding ones for the Kepler system. But no
domain of the canonical coordinates does not cover the entire phase spaceṘ33S3.

III. COHERENT STATES MAP FOR THE REDUCED PHASE SPACE

In this section following Ref. 6, we present the construction of the coherent states map
reduced phase space in the case when one has the coherent states map for the initial pha
Let us recall that any physical system may be characterized by the triple~see Ref. 5!:
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



tes

dle.

system

tho-
t

ap

e

. 5, it is
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~i! a differential manifoldM ;
~ii ! a complex separable Hilbert spaceM;
~iii ! a differential mapK :M→CP(M) ~the coherent states map!.

If M is a symplectic manifold with symplectic formv and K is a symplectic map, i.e.v
5K * vFS, wherevFS is the Fubini-Study form on the complex projective Hilbert spaceCP~M!,
we shall call the physical system (M ,M,K ) a mechanical system. Having the coherent sta
map one can quantize a certain class of classical observables defined on the phase spaceM . This
method of quantization was proposed in Ref. 5. Let us now present it briefly.

Let E:5$(v,l )PM3CP(M):vP l % be the tautological line bundle overCP~M! and E8:
5E\$zero section%. The bundleE carries the canonical structure of the prequantum bun
Namely,~i! the Hermitian metric HFS is given by the scalar product^•u•& in the Hilbert spaceM;
~ii ! E is a holomorphic bundle; thus there exists a uniquely defined canonical connection“

FS

consistent with HFS and with the holomorphic structure ofE; and ~iii ! i curv “

FS5vFS.
Using the coherent states map we obtain the prequantum bundle over the mechanical

(M ,v):

K * E5:L→M , K * “

FS5:“, K * HFS5:H, ~53!

which is the pull-back of the universal prequantum bundle,

„E→CP~M!,“FS,HFS
…. ~54!

The functionf PC `(M ,R) generates a one-parameter group,

s f :R→Aut L8, ~55!

of automorphisms of the prequantum principal bundleL85L\$zero section%; see Ref. 7. On the
other hand, the self-adjoint operatorF5F†PM generates the one-parameter group of the au
morphismUF8 (t)5ei tF of the tautological principal bundleE8. According to Ref. 5, we say tha
couple (f ,F) satisfies the Ehrenfest condition if the diagram

L8→
K8

E8

s f~t!↓↓ UF8 ~t!, ~56!

L8→
K8

E8

commutative for eachtPR. By definition the mapK 8 is the pull-back of the coherent states m
on the principal bundles.

Let E denote the set of all couples (f ,F) satisfying the Ehrenfest condition. We will use th
notation

CE
`~M !:5pr1 E , LE~M!:5pr2 E , ~57!

where pr1 and pr2 are the projections of the productC`(M ,R)3L(M), whereL~M! is the
algebra of the bounded operators, on the first and second components, respectively. In Ref
shown that

~CE
`~M ,R!.$•,•%! ~58!

and
J. Math. Phys., Vol. 38, No. 10, October 1997
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~LE~M!,@•,•# ! ~59!

are Lie algebras. The$•,•% and@•,•# denote here the Poisson bracket and the commutator, res
tively. The maps

pr1+pr2
21:LE~M!→CE

`~M !, pr2+pr1
21:CE

`~M !→LE~M!, ~60!

are a homomorphism of Lie algebras.
The homomorphism pr2+pr1

21 applied to the operatorF gives the mean values of functio
^F&:M→R, i.e.,

^F&~q!:5Tr~P~g!F !5pr1+pr2
21~F !~q!, ~61!

whereP(q) is the orthonormal projection on the coherent stateK (q), qPM .
The homomorphismQ:5pr2+pr1

21, which is inverse tô•&, could be interpreted as the qua
tization ~the Ehrenfest quantization! of the classical observables fromC E

` (M ). The detailed
description of this quantization procedure and its relation to Kostant–Souriau~see Ref. 7! and
Berezin* -product quantization~see Refs. 8, 9! is given in Ref. 5. The above method of quan
zation can be naturally extended to the case where the generatorsF are possibly unbounded
operators. We need to make then the assumption, however, that all the coherent states li
domains of these operators, and indeed, for the MIC–Kepler system this is the situatio
prevails.

Now, we shall describe the quantum reduction procedure proposed in Ref. 6, which is
on the Ehrenfest quantization. In order to do that let us fix a submanifoldP�M and a system of
quantized~in the Ehrenfest sense! observablesf 1 ,...,f kPC E

` (M ) in involution,

$ f i , f j%50, ~62!

for i , j 51,2,...,k. Everywhere below we will assume the following.

~A1! The submanifoldP�M is invariant with respect to the Hamiltonian flowss f 1
,...,s f k

gen-
erated byf 1 ,...,f k , respectively.

~A2! The quantum observablesQ( f 1),...,Q( f k) have discrete spectral i 1
l •••l i k

k , wherei 1 ,...,i k

PN.
~A3! The differentials (d fi)m , wherei 51,...,k are linearly independent for eachmPP. It follows

from ~A1! and ~A3! that Hamiltonian fields,x f l
,...,x f k

,

v
4

xfl
5dfl , ~63!

after restriction toP�M , define ak-dimensional involutive distributionF ,TP. Taking
this into account we will also assume the following.

~A4! The quotient spaceP̃:5P/F is a manifold and the projectionP→P̃ is a submersion.

Now, let Ml
i l

l be the eigensubspace of the operatorQ( f l) corresponding to the eigenvalu

l i l
l . Let P l

i l

l : M→Ml
i l

l be orthogonal projection onMl
i l

l . By P l
i l

l •••l
i k

k we denote the orthogo

nal projection on the subspace,

Ml
i 1

1 •••l
i k

k 5Ml
i 1

1 ù•••ùMl
i k

k . ~64!

Let K:V→M\$0%, whereV is an open subset ofM , be a local trivialization of the coheren
states map,
J. Math. Phys., Vol. 38, No. 10, October 1997
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K ~q!5@K~q!#, ~65!

for qPV. One can cover by such sets all of phase space and forK8:V8→M\$0% and q
PVùV8; one has

K8~q!5g~q!K~q!. ~66!

whereg:VùV8→C* .
Now, we define the map

K l
i 1

1 •••l
i k

k :P→CP~Ml
i 1

1 •••l
i k

k !, ~67!

by

K l
i 1

1 •••l
i k

k ~q!:5@~P l
i 1

1 •••l
i k

k +K !~q!#, ~68!

for qPVùP. In view of ~66! the definition does not depend on the local trivialization of t
coherent states map.

From the conditions~A1!, ~A2!, and from the Ehrenfest condition, one has

K l
i 1

1 •••l
i k

k „s f 1
~t1!,...,s f k~tk!m…5@P l

i 1

1 •••l
i k

k +K„s f 1
~t1!,...,s f k~tk!m…#

5@P l
i 1

1 •••l
i k

k „ei t1Q~ f 1!•••etkQ~ f k!K~m!…#

5@ei t1l i 1

1
•••ei tkl i k

k
~P l

i 1

1 •••l
i k

k +K !~m!#5K l
i 1

1 •••l
i k

k ~m!. ~69!

Hence, the mapK l
i 1

1 •••l
i k

k is constant on the levels of the involutive distributionF . So, it gives the

map

K̃ l
i 1

1 •••l
i k

k :P̃→CP~Ml
i 1

1 •••l
i k

k !, ~70!

defined on the quotient manifoldP̃. In such a way we shall come to the family of the new physi
systems~the reduced physical systems!,

~P̃,Ml
i 1

1 •••l
i k

k ,K l
i 1

1 •••l
i k

k !, ~71!

parametrized by the common spectrum of the observablesQ( f 1),...,Q( f k). In general, the 2-form
K

l
i 1

1 •••l
i k

k* vFS could be singular. Therefore, the reduced physical systems are not necessa

chanical systems.
One could relate the quantum reduction described above to the classical reduction pro

if the distributionF is equal to the distribution

$X PG~TP!:v uP4

X 50%,TP. ~72!

Then the quotient manifold is the reduced phase space (P̃,ṽ), where the reduced symplectic form
is defined by the identification

T@p#P>TpP/F p
.
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In the case whenP5J21(m) is a level surface of a momentum mapJ:M→G * for which the
stabilizerG m is spanned by the Hamiltonian fieldsX f 1

,...,X f k
, one obtains the family of clas

sical phase spaces (P̃m ,ṽm) parametrized bym5(m1 ,...,mk)PRk>G m* ; see Ref. 10. If the re-
duced coherent states mapK l

i 1

1 •••l
i k

k is symplectic,

K
l

i 1

1 •••l
i k

k* vFS5ṽm1•••mk
, ~73!

for somem1•••mk , then the condition~73! quantizes the valuesm15 f 1(p),...,mk5 f k(p) of the
classical observablesf 1 ,...,f k with respect to which the physical system was reduced.

IV. COHERENT STATES MAP FOR MIC–KEPLER SYSTEM

In this section we apply the method of the quantum reduction described in the Sec. III
construction of the coherent states map for the MIC–Kepler system. The construction will be
in the diagonal twistor coordinates, i.e.t5(q

h), in which the twistor form is given by

^t,t&5k~h1h2q1q!, ~74!

whereh, qPC2, and the generators of Lie algebrau(2)3u(2) are given by

D052 i S 1 0

0 1D , D52 i S s 0

0 s
D , R052 i S 1 0

0 21D , R52 i S s 0

0 2s
D .

In addition to the twistor symplectic form, see~26!,

v125 ik~dh1∧dh2dq1∧dq!, ~75!

we will also introduce the symplectic form

v115 ik~dh1∧dh1dq1∧dq!, ~76!

s12~t!S h
q D5ei tS n

q D ~77!

and

s11~t!S h
q D5 S ei th

e2 i tq D , ~78!

wheres12 is Hamiltonian flow with respect to the symplectic formv12 ands11 is Hamiltonian
flow with respect to the symplectic formv11 .

The involution

I S h
q D5

defS h

q̄ D ~79!

defines a U(2)3U(2)—Hamiltonian spaces isomorphism between (T,v12 ,J12) and
(T,v11 ,J11) and intertwines the flows~77! and ~78!:

I +s12~t!5s11~t!+I , ;tPR. ~80!

The momentum mapsJ12 :T→u(2)3u(2) andJ11 :T→u(2)3u(2) are related by
J. Math. Phys., Vol. 38, No. 10, October 1997
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R~ I !+J12+I 5J11 , ~81!

whereR(I ) is the representation of the involution inu(2)3u(2) defined by

R~ I !~X,Y!5~X,2YT!, for ~X,Y!Pu~2!3u~2!. ~82!

Now, let us fix the orthonormal basis in the abstract Hilbert spaceM,

^eabuegd&5dagdbd , ~83!

where the multi-indicesa, b, g, dP(Nø$0%)3(Nø$0%). The Gauss coherent states map,

K 115@K11#:T→CP~M!, ~84!

of the twistor spaceT is defined by

K11~h,q!:5 (
a50

` Fk uau1ubu 1

a!b1G1/2

haqbeab , ~85!

whereuau5a11a2 , qa5q1
a1q2

a2, anda! 5a1!a2!. The mapK 11 is a symplectic embedding
i.e.,

K 11* vFS5v11 . ~86!

Using K11 , one defines the antilinear monomorphism ofM into the vector spaceO (T) of
complex analytic functions on the twistor space,

I 11~c!~ t !:5^cuK11~ t !&. ~87!

For c,wPM one has

^cuw&5E
M

I 11~c!~ t !I 11~w!~ t !e2kt1t d4t. ~88!

Thus one can identify the abstract Hilbert spaceM with the Hilbert spaceL2O (T,dmG), of
complex analytic functions onT, which are square intergrable with respect to the Gauss mea

dmG5e2kt1t d4t. ~89!

Substitutingw5K11(t) into ~88!, one finds the reproducing formula

c~ t !5E
T
^K11~ t8!uK11~ t !&c~ t8! dmG~ t8!, ~90!

where we identifyI 11(c) with c.
The group U~4! has the unitary irreducible representation

„T~g!c…~ t !:5c~g21t !, ~91!

in the Hilbert spaceL2O (T,dmG)>M.
The Gauss coherent states mapK11 is equivariant with respect to~91!, i.e.,

T~g!K11~ t !5K11~gt!. ~92!
J. Math. Phys., Vol. 38, No. 10, October 1997
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So, the functions

f X5Tr~J11X!, ~93!

whereXPu(4)>u(4)* and

J11~ t !5 iktt1, ~94!

is the momentum map of the U~4!-symplectic manifold (T,v11), are quantizable in the Ehrenfe
sense. In the holomorphic representation the quantized momentum map is given by

Q~ f X!5 i t TX
]

]t
. ~95!

Thus the quantized magnetic chargeQ(m) is given by the operator

Q~m!5 i t TFd

]

]t
5 i S hT

]

]h
2qT

]

]q D . ~96!

@Let us recall here thatm5Tr(J12D0)5Tr(J11R0).#
Now, we shall use the procedure of the quantum reduction in order to obtain the coh

states map for the system with a fixed magnetic charge. To do this let us fix the level surfaVm

and the eigenvector spaceMl,M of the operatorQ(m), which corresponds to the eigenvalu
lPNø$0%. It follows from ~96! that Ml is spanned by those basis vectorseab for which uau
2ubu5l. Thus, the mapP l+K11 :T→Ml , whereP l is the orthogonal projector onMl , is
given by

P l+K11~h,q!5 (
uau2ubu5l

Fk uau1ubu 1

a!b! G
1/2

haqbeab . ~97!

SinceMl is invariant with respect toT„U(2,2)ùU(4)…, the mapP l+K11 is equivariant with
respect to the group U~2!3U~2!>U~2,2!ùU~4!.

The mapP l+K11+I is also a U~2!3U~2!-equivariant map if one modifies the action of th
group U~2!3U~2! on the twistor space to the following form:

T{ S h
q D→ S g1h

g2q DPT, ~98!

where (g1 ,g2)PU~2!3U~2!. The submanifoldVm , which consists of twistors with the sam
magnetic chargem, is invariant with respect to the action~98!. Thus, the map

Kl :5P l+K11+I uVm
~99!

is a U~2!3U~2!-equivariant map and satisfies

Kl„s12~t!t…5ei tlKl~ t !, ~100!

for tPR. This is so becauseI satisfies~80!. Taking into account the above facts, we conclude t

K l :5@Kl#:Ṽ→CP~Ml! ~101!

is a family of the coherent states maps of the phase spaceṼ:5Vm /s12 parametrized byl
PNø$0%. Since the flows12 belongs to the centralizer of U~2!3U~2!, the physical system
(Ṽ,K l ,Ml) possesses U~2!3U~2! symmetry.
J. Math. Phys., Vol. 38, No. 10, October 1997
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The maps

V{w:@ t#→~z,u,w!:5S h2

h1
,h1q1,h1q2D ~102!

and

V8{w8:@ t#→~z8,u8,w8!:5S h1

h2
,h2q1,h2q2D , ~103!

whereV5$@ t#PṼ:h1Þ0% andV85$@ t#PṼ:h2Þ0%, form a holomorphic atlas onṼ. The tran-
sition mapw8+w21:w(VùV8)→w8(VùV8) is given by

~z8,u8,w8!5w8+w21~z,u,w!5~1/z,zu;zw!. ~104!

From ~101! and ~104! one sees thatṼ has the structure of a complex analytic manifold that
consistent with the structure of the complex vector bundle,

C2 → Ṽ

↓p
CP~1!

, ~105!

over the Riemann sphereCP~1!. The transition functiong:p(V)ùp(V8)→C* for that bundle is
given by

g~@h#!5
h1

h2
5z. ~106!

Because of~100!, the maps

Kl
V :5~k2h1!2lKluV :V→Ml , ~107!

Kl
V8 :5~k2h2!2lKluV8 :V8→Ml ~108!

are well defined on their domains and after expression in complex coordinates assume the
ing form:

Kl
V+w21~z,u,w!5 (

b11b21l>a2
F kb11b2

~b11b21l2a2!!b1!b2!a2! G
1/2

•za2ub1wb2eb11b21l2a2 ,a2 ,b1 ,b2
, ~109!

Kl
V8+w821~z,u,w!5 (

b11b21l>a1
F kb11b2

~b11b21l2a1!!b1!b2!a1! G
1/2

•z8a1u8b1w8b2ea1 ,b11b21l2a1 ,b1 ,b2
. ~110!

On the intersectionVùV8, they are related by

Kl
V~@ t# !5gl~@ t# !Kl

V8~@ t# !, ~111!

where the transition function,
J. Math. Phys., Vol. 38, No. 10, October 1997
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gl~@t#!:5Sh2

h1
Dl

5zl, ~112!

is holomorphic. So, the coherent states mapK l :Ṽ→CP(Ml) is a holomorphic map.
Let the bundleEl:5 ^

lE be thel-tensor product of the tautological line bundleE→CP(1)
and let the bundleEl→CP(Ml) be the tautological line bundle over the projective comp
Hilbert spaceCP(Ml). Then, from~106!, ~111!, and~112! follows the analytic isomorphism o
the complex line bundles,

p* El →̃ K l* El5:Ll

↘ ↙
Ṽ

. ~113!

The metric Hl :5K l* HFS, expressed in the framesV :V→Ll , defined by

sV~@ t# !:5„@ t#,Kl
V~@ t# !…. ~114!

is given by

Hl„sV~@ t# !,sV~@ t# !…5^Kl
V~z,u,w!uKl

V~z,u,w!&5~11 z̄z!lFl„k2~11 z̄z!~ ūu1w̄w!…,
~115!

where

Fl~x!5 (
n50

`
1

n! ~l1n!!
xn5~ iAx!2lJl~2iAx!, ~116!

Jl being a Bessel function. The connection~1,0!-form is given by

Ql5 i ] log^Kl
V~z,u,w!uKl

V~z,u,w!&

5 i
Fl21

Fl

h1dh

h1h
1 i S Fl21

Fl
2l D dq1q

q1q

5 iGl~x!
z̄ dz

11zz̄
1 i „Gl~x!2l…

ū du1w̄ dw

ūu1w̄w
, ~117!

where“

lsV5Ql ^ sV , “

l:5K l* “

FS, Gl5Fl21 /Fl , and

x:5k2~11zz̄!~uū1ww̄!5
n22m2

4
. ~118!

It is easy to see from~117! that the coherent states mapK l is not symplectic, i.e.

vl :5K l* vFS5]QlÞv12 .

However, from the properties

Gl8~x!512
1

x
Gl~x!„Gl~x!2l…, ~119!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Gl8~x! ——→
l→`

0, ~120!

Gl~x! ——→
l→` 1

2
~l1Al214x!, ~121!

and from

h1h5uh1u2~11 z̄z!, q1q5
1

uh1u2 ~ ūu1w̄w!, ~122!

uh1u25
1

2

m1Am214k2~11 z̄z!~ ūu1w̄w!

k~11 z̄z!
, ~123!

it follows that

Gl~x! ——→
l→`

kh1h, ~124!

„Gl~x!2l… ——→
l→`

kq1q, ~125!

if one putsm5l.

Therefore, in the limit of large magnetic chargel5m→
;

`, the phase space of the physic
system,

~Ṽ,Ml ,K l!, ~126!

corresponds to the phase space of the classical MIC–Kepler system (Ṽ,v12).
The above allows us to interpret this system as a ‘‘quantum deformation’’ of the MIC–Ke

system (Ṽ,ṽ) described in Sec. II. In the next section we will investigate the system~126! within
the framework of the theory of physical systems, which was proposed in Ref. 5.

V. QUANTUM DESCRIPTION OF THE MIC–KEPLER SYSTEM

According to Ref. 5, each physical system is completely characterized by fixing the coh
states mapK :M→CP(M), ~also see then beginning of Sec. III!. In the case of the MIC–Keple
system, which we want to study here, the classical phase space isṼ, the Hilbert spaceM is equal
to Ml , and the coherent states mapK 5K l is given by~110!.

We shall start from the resolution of the identity operator. Let us denote by

P l~@ t# !:5
uKl~@ t# !&^Kl~@ t# !u
^Kl~@ t# !uKl~@ t# !&

, ~127!

the orthogonal projector on the coherent stateK l(@ t#), @ t#PṼ. Using the equality

E
0

`

xl/2Kl~2Ax!xn dx5n! ~n1l!!, ~128!

valid for nPNø$0%, we find the following resolution of the identity:
J. Math. Phys., Vol. 38, No. 10, October 1997
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15E
Ṽ
P l~@ t# !dml~@ t# !, ~129!

where the measuredml is given by

dml~@ t# !5
1

2p3 xl/221
Fl~x!Kl~2Ax!

Gl8~x!„Gl8~x!21…

dmL@ t#, ~130!

Kl being a Bessel function. ThedmL is the Liouville measure, which in the coordinatesw(@ t#)
5(z,u,w) assumes the form

dmL~@ t# !5L3vm~@ t# !5 iGl8~x!„Gl8~x!21…dz̀ dz̄̀ du`dū`dw`dw̄. ~131!

Both measures,dml and dmL are invariant with respect to the group U~2!3U~2!. The map
@ t#→P l(@ t#) satisfies

P l~@gt# !5T~g!P l~@ t# !T~g!†, ~132!

for gPU~2!3U~2!. The projectorP l(@ t#) represents the coherent stateK l(@ t#). The function
%PL1(Ṽ,dml), normalized byi%i151, represents the state

P l~% !:5E
Ṽ
P l~@ t# !%~@ t# !dm~@ t# !, ~133!

as a mixture of coherent states. According to Ref. 5 the mixed stateP l(%) is an equilibrium state
if

Tr„P l~@ t# !P l~% !…5~w+% !~@ t# !, ~134!

for some mapw:R→R. By definition ~see Ref. 5! the energy functionH ~in order to define the
equilibrium state of the system! has to be a solution of Eq.~134! for a fixedw. For the case unde
consideration we postulate the U~2!3U~2! invariance of the HamiltonianH. Then, from the
invariance ofdml and from ~132! it follows that H satisfies~134!. Each U~2!3U~2!-invariant
function onṼ is expressed by the functionn ; see~12!. So, keeping in mind the above conside
ation and the equalityHosc5n, we assume that the Hamiltonian of the system is given by

Hl :5Tr~JlD0!52GlS n22m2

4 D2l5Al21~n22m2!S Gl8S n22m2

4 D21D , ~135!

where Jl is the momentum map for the phase space (Ṽ,vl), with the action of the group
U~2!3U~2! given by ~98!. When l5m→̃`, it corresponds toH`5n5Hosc, i.e., the classical
Hamiltonian for the MIC–Kepler system. Since the coherent states mapK l :Ṽ→CP(Ml) is a
U~2!3U~2!-equivariant map, the HamiltonianHl and the integrals of motion,

dl5Tr~JlD!5Gl

~1,z̄!s~z
1!

11 z̄z
1~Gl2l!

~ ū,w̄!s~w
u !

ūu1w̄w
, ~136!

and

rl5Tr~JlR!5Gl

~1,z̄!s~z
1!

11 z̄z
2~Gl2l!

~ ū,w̄!s~w
u !

ūu1w̄w
, ~137!
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are quantized in the Ehrenfest sense.
In order to find the explicit form ofQ(Hl), Q(dl), and Q(rl), we use the holomorphic

realization of the Hilbert spaceMl .
The map

Ml∋v→I ~v !:5^vuKl
V&sV* PO G~Ṽ,Ll* ! ~138!

is an anti-linear monomorphism of theMl into the vector space of the holomorphic sections
the linear bundleLl* dual to Ll . Let L2

„G(Ll* ),dml) be the Hilbert space of those sectio
c:Ṽ→Ll* , which are squere integrable with respect to the measuredml ,

^cuc&:5E
Ṽ
Hl* ~c,c!dml,`, ~139!

whereHl* is the Hermitian metric onLl* induced byHl . Now, since the resolution of the identit
~129! holds, the mapI could be considered as an antilinear monomorphism of Hilbert spa
Therefore we will identifyMl with I (Ml)5:L2O (Ṽ,dml). The spaceL2O (Ṽ,dm) is a holo-
morphic realization of the abstract Hilbert space. From Proposition 6 of Ref. 5, it follows
L2O (Ṽ,dm) is preserved by

I +Q~ f !+I 215 i“x f

l 1 f , ~140!

where x f is the Hamiltonian vector field corresponding tof PC E
`(V̄), i.e., vl4

x f5d f . The
integrals of motionHl , dl , andrl , which belong to the Poisson algebraC E

`(Ṽ), generate the
following Hamiltonian fields:

xHl
522i ~u]u1w]w!12i ~ ū] ū1w̄] w̄!,

xd
l
152 i @~12z2!]z1~uz2w!]u1~wz2u!]w#1 i @~12 z̄2!] z̄1~uz2w̄!] ū1~wz2w̄!] w̄#,

xd
l
25~11z2!]z2~uz1w!]u2~wz2u!]w1~11 z̄2!] z̄2~uz1w̄!] ū2~wz2ū!] w̄ ,

xd
l
3522i ~w]w2z]z!12i ~w̄] w̄2 z̄] z̄ !, ~141!

x r
l
152 i @~12z2!]z1~uz1w!]u1~wz1u!]w#1 i @~12 z̄2!] z̄1~uz1w̄!] ū1~wz1ū!] w̄#,

x r
l
25~11z2!]z2~uz2w!]u2~wz1u!]w1~11 z̄2!] z̄2~uz2w̄!] ū2~wz1ū!] w̄ ,

x r
l
3522i ~u]u2z]z!12i ~ ū] ū2 z̄] z̄ !.

Using the formulas~141!, one obtains from~140! the quantum integral of motionQ(Hl), Q(dl
k),

Q(r l
k)PLE(Ṽ), which after realization in the complex analytic representationI +LE(Ṽ)+I 21

assume the following form:

Q~Hl!52~u]u1w]w!1l, ~142!

Q~dl
1!5~12z2!]z1z~u]u1w]w1l!2~w]u1u]w!, ~143!

Q~dl
2!5 i @~11z2!]z2z~u]u1w]w1l!2~w]u2u]w!#, ~144!
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



ation of
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Q~dl
3!52~w]w2z]z!1l, ~145!

Q~r l
1!5~12z2!]z1z~u]u1w]w1l!1~w]u1u]w!, ~146!

Q~r l
2!5 i @~11z2!]z2z~u]u1w]w1l!1~w]u2u]w!#, ~147!

Q~r l
3!52~u]u2z]z!1l. ~148!

The quantum HamiltonianQ(Hl) has discrete spectrumn52s1l, sPNø$0% and the eigen-
subspace that corresponds ton consists holomorphic sectionsc5cn,lsV* , where the coordinate
functions are the polynomials given by

cl,n~z,u,w!5 (
0<a2<~l1n!/2
0<b2<~n2l!/2

ca2b2
za2u~n2l!/22b2wb2. ~149!

From general theory it follows that the mean value function^Q(Hl)& ~the Berezin covariant
symbol! is equal to the classical HamiltonianHl .

SinceGl(x)2l.0 for x.0 and

Gl8511
1

x
Gl~Gl2l! ~150!

the classical HamiltonianHl is a monotonically increasing function of the integral of motionn.
Thus one can express, using~135!, the spectrum ofQ(n) by the spectrum ofQ(Hl),

nn5A4Gl
21S n1l

2 D1m2, ~151!

whereGl
21 is the function inverse toGl . After doing a ‘‘Moser regularization procedure’’~see

Sec. II and Ref. 11!, we can identify the dynamics given byQ(Hl) with the dynamics of the
MIC–Kepler system. So, from~43! it follows that

En522m
e4k2

nn
2

522m
e4k2

4Gl
21@~n1l!/2#1m2

. ~152!

For l'` one hasGl8(x)'1/(l11). Therefore ifl is large,

nn
2>~n22l2!

l11

l
1m2. ~153!

Identifying the deformation parameterl with the magnetic chargem and using~153!, we obtain
the approximate version of~152!,

En522m
e4k2

n21~n22l2!~1/l!
, ~154!

which, for (n2l)/l'0, reduces the formula for the spectrum of the Kepler system.
The quantum angular momentum vectorQ(dl) and quantum Runge–Lentz vectorQ(rl)

being the generators of the symmetry Lie algebra of the system, can be used for the numer
the basis ofL2O (Ṽ,dml), consistent with the spectral decomposition ofQ(Hl). This basis is
given by
J. Math. Phys., Vol. 38, No. 10, October 1997
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5029A. Odzijewicz and M. Świȩtochowski: Coherent states map for MIC–Kepler system

                    
cn,d,m
l ~u,w,z!5z~d1l!/2w~n2l!/2 ~155!

(
s50

~n22!/2 S n2d

2
s

D S zu
w D s

(
i 50

m

i ! S m
i D S n2l

2
2s

i
D S 1

~d1l!/21s

u

wD i

, ~156!

wheren5l, l 1 2,...,d5l, l 1 2,...,n, andm52d, 2 d 1 2,...,d 2 2,d.
The polynomialscn,d,m

l are common eigenvectors,

Q~Hl!cn,d,m
l 5ncn,d,m

l , ~157!

Q~r l
3!cn,d,m

l 5mcn,d,m
l , ~158!

Q~d!2cn,d,m
l 5d~d12!cn,d,m

l , ~159!

Q~r !2cn,d,m
l 5„n21l22d~d12!…cn,d,m

l , ~160!

for a commuting system of operatorsQ(Hl), Q(dl
3), Q(dl)2, Q(rl)2.

The relations between quantum observablesQ(Hl), Q(dl)2 andQ(rl)2 are the following:

@Q~dl
i !,Q~dl

j !#52i e i jkQ~dl
k !, ~161!

@Q~r l
i !,Q~r l

j !#52i e i jkQ~dl
k !, ~162!

@Q~dl
i !,Q~r l

j !#52i e i jkQ~r l
k !, ~163!

@Q~Hl!,Q~rl!#5@Q~Hl!,Q~rl!#50, ~164!

Q~dl!21Q~rl!25Q~Hl!21l2, ~165!

Q~dl!2
•Q~rl!25lQ~Hl!. ~166!

In the limit l5m→`, one obtainsHl→l, dl→d`5(r 1 ,d2 ,r 3), and rl→r`5(d1 ,r 2 ,d3),
where d and r are given by~46! and ~48!, respectively. However, the observablesd` and r`

satisfy the same commutation relation asd andr . The noncoincidence (d` ,r`) with ~d,r ! follows
from the fact that the coherent states mapK l is equivariant with respect to the action~98!, which
differs from standard linear actionU(2)3U(2) on the twistor space.

Ending, we shall remark that the phase space of MIC–Kepler systemṼ can be identified with
the complex manifoldCP1(3), which consists of positive projective twistors. The latter has
interpretation as the phase space of a photon. So, depending on the choice of coordina
manifold Ṽ is the phase space of two crucial physical systems. This curious coincindence
a more detailed investigation, which we intend to make the subject of subsequent publicat
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Logarithmic potential of Hermite polynomials
and information entropies of the harmonic
oscillator eigenstates a)
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Diagonal 647, 08028 Barcelona, Spain
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The problem of calculating the information entropy in both position and momen-
tum spaces for thenth stationary state of the one-dimensional quantum harmonic
oscillator reduces to the evaluation of the logarithmic potentialVn(t)
52*2`

`
„Hn(x)…2 ln ux2tue2x2

dx at the zeros of the Hermite polynomialHn(x).
Here, a closed analytical expression forVn(t) is obtained, which in turn yields an
exact analytical expression for the entropies when the exact location of the zeros of
Hn(x) is known. An inequality for the values ofVn(t) at the zeros ofHn(x) is
conjectured, which leads to a new, nonvariational, upper bound for the entropies.
Finally, the exact formula forVn(t) is written in an alternative way, which allows
the entropies to be expressed in terms of the even-order spectral moments of the
Hermite polynomials. The asymptotic (n@1) limit of this alternative expression
for the entropies is discussed, and the conjectured upper bound for the entropies is
proved to be asymptotically valid. ©1997 American Institute of Physics.
@S0022-2488~97!00709-3#

I. INTRODUCTION

In the framework of the modern density functional theory,1–5 the physical and chemica
properties of a many fermion system may be completely described by means of the single-p
probability density, which is to be denoted byr~r ! in position space andg~p! in momentum space
The spread or extent of these quantum-mechanical probability densities is measured
Boltzmann–Shannon information entropy, which for one-dimensional systems is defined a

Sr52E
2`

`

r~x!ln r~x!dx, ~1!

in position space, and

Sg52E
2`

`

g~p!ln g~p!dp, ~2!

in momentum space. These entropies are closely related to fundamental and/or experim
measurable quantities, such as, e.g., the kinetic energy and the magnetic susceptibility,
makes them useful in the study of the structure and dynamics of atomic and mole
systems.6–10 Moreover, they have been applied to a wide range of quantum-mechanical prob
such as the mathematical formulation of the position-momentum uncertainty principle11–13 and
spreading of wave packets,14,15approximate calculations of energy eigenvalues and eigenstate
means of the maximum-entropy principle,16,17 and time evolution of chemical reactions.18

a!Expanded version of a talk presented at the International Workshop on Orthogonal Polynomials in Mathematical
~Madrid, June 1996!.
0022-2488/97/38(10)/5031/13/$10.00
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The calculation of position and momentum entropies for physically interesting quantum
has been the subject of considerable effort in recent years. It has been shown19,20 that, for the
stationary states of many important systems, such asD-dimensional harmonic oscillator an
hydrogen atom, the entropies can be expressed in terms of the integrals

En[2E
2`

`

„pn~x!…2 ln„pn~x!…2w~x! dx,

wherepn(x) are orthogonal polynomials with respect to the weight functionw(x). These integrals
are called ‘‘entropies of the orthogonal polynomialspn(x), ’’ and they are closely related to th
Lp-norms, whose study is of independent interest in the theory of general orthogonal and ex
polynomials.21

Asymptotic formulas forEn in then→` limit have been obtained in the case whenpn(x) are
general orthogonal polynomials on a finite interval,22 or Freud orthogonal polynomial
@w(x)5exp(2uxum), m.0# on the whole real axis.21,23,24However, the analytical value of thes
entropies is only known for Chebyshev polynomials of the first and second kinds, in an
form, and for Gegenbauer polynomials in an approximate way.19 The problem of determining the
entropies of general orthogonal polynomials remains open.

For thenth eigenstate of the one-dimensional harmonic oscillator Hamiltonian,

H5
p2

2m
1

1

2
mv2x2,

the probability densities for position and momentum are expressed in terms of the Hermite
nomial Hn(x),

r~x!5
a

2nn!Ap
„Hn~ax!…2e2a2x2

, g~p!5
1

2nn!Apa
„Hn~p/a!…2e2p2/a2

,

wherea[(mv)1/2 ~we choose units such that\51!. The corresponding entropies of position a
momentum can be written as

Sr52 ln a1Sn , Sg5 ln a1Sn , ~3!

where

Sn5 ln~2nn!Ap!1n1
1

2
1

1

2nn!Ap
En~H ! ~4!

is given in terms ofEn(H), the so-called entropy of Hermite polynomials, whose expression

En~H !52E
2`

`

„Hn~x!…2 ln„Hn~x!…2e2x2
dx. ~5!

The values ofSn have been numerically calculated up ton5500,19 while for n@1 they are
approximately given by the asymptotic formula

Sn; ln~pA2n!21, ~6!

which has been rigorously proved by means of the theory of strong asymptotics of
polynomials,23 and can also be derived from the semiclassical~Wentzel–Kramers–Brillouin! ap-
J. Math. Phys., Vol. 38, No. 10, October 1997
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proximation for one-dimensional quantum systems.25,26On the other hand, the variational inequa
ity relating entropy and standard deviation for arbitrary one-dimensional random variables,12

SA< 1
21 ln~A2pDA!,

together with Eq.~3! and the well-known values ofDX and DP for the harmonic oscillator
eigenstates,

~DX!25S n1
1

2D 1

a2 , ~DP!25S n1
1

2Da2,

yields the upper bound

Sn< 1
21 ln A~2n11!p. ~7!

However, the exact analytical value ofSn has been calculated only in the simplest casesn50 and
n51.19 For the ground state (n50) we have

S05 ln~Ap!1 1
2, ~8!

so that in this case the equality sign holds in~7! and the entropy sumSr1Sg52Sn attains the
lower bound in the optimal entropic uncertainty relation for one-dimensional position
momentum,11,12

Sr1Sg>11 ln p,

while in the first excited state (n51) we have

S15 ln~2Ap!2 1
21g, ~9!

whereg is Euler’s constant. The main aim of the present work is to find the generalization of
results to arbitrary values ofn.

The Hermite polynomialHn(x) has n real and simple zeros, and is of the for
Hn(x)52nxn1O(xn21) ~see, e.g., Ref. 27!, so that it can be factorized as

Hn~x!52n)
i 51

n

~x2xn,i !,

wherexn,i ( i 51,2,...,n) is the i th root of Hn(x). Introducing this expression into the logarithm
function in ~5!, and taking into account the normalization integral for Hermite polynomials,

E
2`

`

„Hn~x!…2e2x2
dx52nn!Ap,

we see thatEn(H) can be written in the form20

En~H !522nn!Ap ln~22n!12(
i 51

n

Vn~xn,i !, ~10!

whereVn(t) is the logarithmic potential of the Hermite polynomialHn(x), defined as

Vn~ t !52E
2`

`

„Hn~x!…2 lnux2tue2x2
dx. ~11!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Then ~real and simple! zeros ofHn(x) are symmetrically distributed around the origin, sin
Hn(2x)5(21)nHn(x).27 Therefore, it is readily seen thatVn(2t)5Vn(t), and Eq.~10! can also
be written as

En~H !522nn!Ap ln~22n!12eVn~0!14(
i 51

m

Vn~xn,i !, ~12!

wherexn,i ( i 51,2,...,m) is the i th positiveroot of Hn(x), and we have introduced the convenie
notations

m[Fn

2G , e[n22m. ~13!

In the latter equation, the square brackets denote integer part of the expression within, so te is
equal to 0 or 1 according to whethern is even or odd.

Equations~10! and~12! show that the problem of calculatingEn(H), and henceSn , reduces
to the evaluation ofVn(t) at the zeros ofHn(x). In Sec. II below we obtain a closed analytic
expression forVn(t) in terms of1F1 and2F2 hypergeometric functions, which, unlike the recu
sive formula derived in Ref. 20, provides us with analytical expressions forEn(H) andSn when
the exact location of the zeros ofHn(x) is known. An inequality for the values ofVn(t) at the
zeros ofHn(x) is conjectured, which leads to a new upper bound forSn , stronger than that in Eq
~7! for n odd. Finally, in Sec. III, it is shown that the exact formula forVn(t) can be written as an
infinite series involving the Gauss2F1 hypergeometric function, which enables us to expr
En(H) andSn in terms of the even–order spectral momentsm2k(n) of the Hermite polynomials.
Comparison of the asymptotic (n@1) limit of this alternative expression with Eq.~6! proves the
asymptotic validity of the conjectured upper bound forSn .

II. CALCULATION OF THE LOGARITHMIC POTENTIAL AND THE ENTROPIES

To calculateVn(t), we first make use of the multiplication formula for Hermite polynomi
~see, e.g., Ref. 28!,

Hm~x!Hn~x!5 (
j 50

min~m,n!
m!n!2 j

~m2 j !! ~n2 j !! j !
Hm1n22 j~x!,

which in the particular casem5n gives, writing j 5n2k,

„Hn~x!…252nn! (
k50

n S n
kD H2k~x!

2kk!
.

Substituting this equation in the expression~11! of the logarithmic potentialVn(t), we find

Vn~ t !52nn! (
k50

n S n
kD W2k~ t !

2kk!
, W2k~ t !52E

2`

`

H2k~x!lnux2tue2x2
dx. ~14!

Now we are faced with the problem of calculating the integralsW2k(t), which can also be
considered as logarithmic potentials for Hermite polynomials and thus have independent in
To achieve this goal, we consider the Taylor series expansion

W2k~ t !5(
r 50

` W2k
~r !~0!

r !
t r . ~15!
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Making the change of variablesx5y1t in Eq. ~14!, we have

W2k~ t !52E
2`

`

H2k~y1t !lnuyue2~y1t !2
dy.

By repeated application of Leibniz’s rule for differentiating under the integral sign, and taking
account that, from Rodrigues’ formula for Hermite polynomials,

dr

dzr „e2z2
Hn~z!…5~21!re2z2

Hn1r~z!,

we obtain

W2k
~r !~ t !5~21!rW2k1r~ t !,

so that Eq.~15! reads

W2k~ t !5(
r 50

`
~21!rW2k1r~0!

r !
t r . ~16!

The parity propertyHn(2x)5(21)nHn(x) implies thatW2k1r(0)50 if r is odd, and Eq.~16!
simplifies to

W2k~ t !5(
r 50

`
W2k12r~0!

~2r !!
t2r , W2k12r~0!522E

0

`

H2k12r~x!e2x2
ln x dx. ~17!

The integralsW2k12r(0) may be evaluated by means of the following result,27

E
0

`

H2n~x!xne22ax2
dx5~21!n

22n2~n13!/2

Apa~n11!/2
GS n11

2 DGS n1
1

2DFS 2n,
n11

2
;

1

2
;

1

2a D ,

where F(a,b;c;z)52F1(a,b;c;z) is the Gauss hypergeometric function, which is valid f
Rea . 0, Ren . 21. In our case, witha5 1

2 andn5k1r , we obtain

E
0

`

H2k12r~x!xne2x2
dx5~21!k1r

22k12r 21

Ap
GS n11

2 DGS k1r 1
1

2DFS 2k2r ,
n11

2
;

1

2
;1D .

~18!

The hypergeometric function of unit argument on the right-hand side can be simplified usin
property29

F~2n,b;c;1!5
~c2b!n

~c!n
,

wheren is a positive integer or zero,c is not a negative integer or zero, and (z)n is Pochhammer’s
symbol,

~z!n5
G~z1n!

G~z!
5~21!n

G~12z!

G~12z2n!
. ~19!

We thus have
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FS 2k2r ,
n11

2
;
1

2
;1D5

~2n/2!k1r

~ 1
2!k1r

5
G~ 1

2!G~k1r 2n/2!

G~k1r 1 1
2!G~2n/2!

,

and Eq.~18! then reads

E
0

`

H2k12r~x!xne2x2
dx5~21!k1r22k12r 21GS n11

2 D G~k1r 2n/2!

G~2n/2!
.

Differentiating this equation with respect ton, we obtain

E
0

`

H2k12r~x!xne2x2
ln x dx5~21!k1r22k12r 21GS n11

2 D G~k1r 2n/2!

G~2n/2!

3
1

2 S cS n11

2 D2cS k1r 2
n

2D1cS 2
n

2D D , ~20!

wherec(z)5G8(z)/G(z) is the logarithmic derivative of the gamma function. In the case w
k1r 50, this formula reduces to

E
0

`

H0~x!xne2x2
ln x dx5

1

4
GS n11

2 DcS n11

2 D ,

so that we readily get

W0~0!52
1

2
GS 1

2DcS 1

2D5
Ap

2
~g12 ln 2!. ~21!

On the other hand, bothG(z) and c(z) have simple poles forz50, with residues 1 and21,
respectively. Therefore, whenk1r .0, we can take the limitn→0 in Eq. ~20! to obtain

E
0

`

H2k12r~x!e2x2
ln x dx52

Ap

4
~21!k1r22k12rG~k1r !, k1r .0,

which in turn leads to

W2k12r~0!5
Ap

2
~21!k1r22k12rG~k1r !, k1r .0. ~22!

We can evaluateW2k(t) by substituting Eqs.~21! and ~22! into ~17!. In the casek50, we
have

W0~ t !5W0~0!1(
r 51

`
W2r~0!

~2r !!
t2r5

Ap

2 S g12 ln 21(
r 51

`
~21!r22rG~r !

G~2r 11!
t2r D . ~23!

Using the recurrence and duplication formulas for the gamma function,27,29

G~z11!5zG~z!, G~2z!522z21~ 1
2!zG~z!,
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together with~19!, and shifting the summation index tos5r 21, Eq.~23! can be written in terms
of a 2F2 hypergeometric function,

W0~ t !5
Ap

2 S g12 ln 222t2
2F2S 1,1;

3

2
,2;2t2D D . ~24!

On the other hand, fork.0 we have

W2k~ t !5(
r 50

`
W2k12r~0!

~2r !!
t2r5

Ap

2
~21!k22k(

r 50

`
~21!r22rG~k1r !

G~2r 11!
t2r , ~25!

and use of the duplication formula for the gamma function and Eq.~19! leads to

W2k~ t !5
Ap

2
~21!k22k~k21!! M S k,

1

2
,2t2D , ~26!

whereM (a,c,z)51F1(a;c;z) is Kummer’s confluent hypergeometric function. Substituting E
~24! and ~26! into ~14!, we finally obtain

Vn~ t !52nn!ApS g

2
1 ln 22t2

2F2S 1,1;
3

2
,2;2t2D1

1

2 (
k51

n S n
kD ~21!k2k

k
M S k,

1

2
,2t2D D ,

~27!

which is the sought for closed analytical expression for the logarithmic potentialVn(t) defined by
Eq. ~11!.

In the particular caset50, using the identity

g12 ln 21 (
k51

n S n
kD ~21!k2k

k
52cS m1e1

1

2D , ~28!

whose proof can be found in the Appendix, Eq.~27! reduces to

Vn~0!522n21n!Apc~m1e1 1
2!. ~29!

The functionVn(t) in Eq. ~27! is plotted againstt for 0<n<5 in Fig. 1. Therefrom we see
that Vn(t) hasn local minima, which are located at the zeros ofHn(x),20 and the value ofVn(t)
at these minima decreases monotonically asuxn,i u increases. We also observe that it holds
inequality

Vn~xn,i !<Vn~0!, ~30!

which is strict forxn,iÞ0. We conjecture Eq.~30! to be valid for alln, although we have not bee
able to prove it analytically. On the other hand,Vn(0),0 for all n>1, since then27,29

cS m1e1
1

2D52g22 ln 212 (
k51

m1e
1

2k21
.0, ~31!

so that the absolute value ofVn(xn,i) increases monotonically withuxn,i u. This implies, in view of
Eqs.~10! and ~12!, that the contribution of the zeros ofHn(x) to the entropySn increases as so
does their absolute value.

A closed formula for the entropy of Hermite polynomialsEn(H) can be obtained by combin
ing Eqs.~10! and ~27!,
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FIG. 1. Logarithmic potentialVn(t) for 0<n<5, as given by Eq.~27!.
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En~H !52nn!ApS ng22(
i 51

n

xn,i
2

2F2S 1,1;
3

2
,2;2xn,i

2 D1 (
k51

n S n
kD ~21!k2k

k (
i 51

n

M S k,
1

2
,2xn,i

2 D D .

~32!

Alternatively, using Eq.~12! instead of~10!, and taking into account Eqs.~29! and~31!, we obtain

En~H !52nn!ApS ng22e (
k51

m1e
1

2k21
24(

i 51

m

xn,i
2

2F2S 1,1;
3

2
,2;2xn,i

2 D
12(

k51

n S n
kD ~21!k2k

k (
i 51

m

M S k,
1

2
,2xn,i

2 D D . ~33!

In turn, from these results, using Eq.~4!, we obtain forSn the expressions

Sn5 ln~2nn!Ap!1n1
1

2
1ng22(

i 51

n

xn,i
2

2F2S 1,1;
3

2
,2;2xn,i

2 D
1 (

k51

n S n
kD ~21!k2k

k (
i 51

n

M S k,
1

2
,2xn,i

2 D , ~34!

and

Sn5 ln~2nn!Ap!1n1
1

2
1ng22e (

k51

m1e
1

2k21
24(

i 51

m

xn,i
2

2F2S 1,1;
3

2
,2;2xn,i

2 D
12(

k51

n S n
kD ~21!k2k

k (
i 51

m

M S k,
1

2
,2xn,i

2 D , ~35!

respectively, which are the generalizations of Eqs.~8! and ~9! to arbitrary values ofn. For
example, in then52 case, the zeros of the polynomialH2(x)54x222 are61/&, so that we
have

S25 ln~8Ap!1
5

2
12g222F2S 1,1;

3

2
,2;2

1

2D28M S 1,
1

2
,2

1

2D14M S 2,
1

2
,2

1

2D ,

while in then53 case the zeros ofH3(x)58x3212x are 0 and6A3/2, and we have

S35 ln~48Ap!1
5

6
13g262F2S 1,1;

3

2
,2;2

3

2D212M S 1,
1

2
,2

3

2D112M S 2,
1

2
,2

3

2D
2

16

3
M S 3,

1

2
,2

3

2D .

Fully analytic, though increasingly cumbersome, expressions of this kind may be written for
n<9, since thenHn(x)5xeH̃m(x2), whereH̃m(x) is a polynomial of degreem<4.

Using Eqs.~10! and ~29!, the conjectured inequality~30! yields an upper bound forEn(H),

En~H !<22nn!ApS ln~22n!1ncS n1e11

2 D D52nn!nApS g22 (
k51

m1e
1

2k21D , ~36!
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where, recalling Eq.~13!, we have writtenm1e in the equivalent form (n1e)/2, and the second
expression is obtained from the first one by using~31!. Introducing the previous equation into~4!,
we get

Sn< lnS n!Ap

2n D 1n1
1

2
2ncS n1e11

2 D5 ln~2nn!Ap!1
1

2
1nS 11g22 (

k51

m1e
1

2k21D .

~37!

This conjectured upper bound forSn turns out to be stronger than that given by Eq.~7! whenn is
odd, and coincides with the exact value not only forn50, but also forn51 @see Eqs.~8! and~9!#.

III. ALTERNATIVE EXPRESSIONS

Using Eq.~23! for W0(t), and Eq.~25! for W2k(t), k.0, Eq. ~27! can be written as

Vn~ t !52nn!ApS g

2
1 ln 21

1

2 (
r 51

`
~21!r~r 21!!

~2r !!
~2t !2r

1
1

2 (
k51

n S n
kD ~21!k2k

k! (
r 50

`
~21!rG~k1r !

~2r !!
~2t !2r D ,

which, taking advantage of Eq.~28!, and writing again (n1e)/2 instead ofm1e, simplifies to

Vn~ t !52n21n!ApS 2cS n1e11

2 D1(
r 51

`
~21!r~r 21!!

~2r !!
~2t !2r

1 (
k51

n S n
kD ~21!k2k

k! (
r 51

`
~21!rG~k1r !

~2r !!
~2t !2r D . ~38!

Taking into account Eq.~19!, together with the identity29

S n
kD5

~21!k~2n!k

k!
,

the summation overk in the double series of Eq.~38! can be performed in terms of the Gau
hypergeometric function,

(
k51

n S n
kD ~21!k2kG~r 1k!

k!
5~r 21!! „F~2n,r ;1;2!21….

Substituting this equation into~38!, we obtain

Vn~ t !52n21n!ApS 2cS n1e11

2 D1(
r 51

`
~21!r22r~r 21!!

~2r !!
F~2n,r ;1;2!t2r D , ~39!

which is an alternative expression for the logarithmic potentialVn(t).
The entropy of the Hermite polynomials defined by Eq.~10! can thus be written in the form

En~H !52nn!ApS 2 ln~22n!2ncS n1e11

2 D1n(
r 51

`
~21!r22r~r 21!!

~2r !!
F~2n,r ;1;2!m2r~n!D ,

~40!
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wherem r(n) (r 50,1,2, . . . ) are thespectral moments around the origin of the Hermite polyn
mial Hn(x), i.e., the quantities

m r~n!5
1

n (
i 51

n

~xn,i !
r , ~41!

and Eq.~4! then yields

Sn5 lnS n!Ap

2n D 1n1
1

2
2ncS n1e11

2 D1n(
r 51

`
~21!r22r~r 21!!

~2r !!
F~2n,r ;1;2!m2r~n!.

~42!

This new expression forSn is less useful than Eqs.~34! and ~35! for practical calculations,
since, unfortunately, there are no global and compact expressions for the momentsm2r(n), but
they have to be recurrently generated. For Hermite polynomials,m r(n) vanishes whenr is an odd
integer, while it can be shown30 that

m0~n!51, m2~n!5
n21

2
,

and forr>2 the even spectral momentsm2r(n) are determined by means of the nonlinear rec
rent formula

~2n122s!ms23~n!22ms21~n!1nS (
t51

s24

ms232t~n!m t~n!D 50, s>5.

However, Eq.~42! turns out to be more appropriate than Eqs.~34! and ~35! to display the
relation between our exact results and the asymptotic approximation~6!. Use of the well-known
asymptotic expansions for the gamma and psi functions29 gives

ln~n! !;S n1
1

2D ln n2n1
1

2
ln~2p!1O~n21!,

cS n1e11

2 D; lnS n1e

2 D1O~n22!; ln n2 ln 21
e

n
1O~n22!,

where the remaining terms of these expansions can be explicitly written in terms of Ber
numbers. Substituting these results into Eq.~42!, we obtain

Sn; ln~pA2n!1
1

2
2e1n(

r 51

`
~21!r22r~r 21!!

~2r !!
F~2n,r ;1;2!m2r~n!1O~n21!. ~43!

Comparison of this equation with~6! leads to the asymptotic formula

n(
r 51

`
~21!r22r~r 21!!

~2r !!
F~2n,r ;1;2!m2r~n!;e2

3

2
1o~1!. ~44!

Finally, we note that, comparing the exact formula forSn , Eq. ~42!, with the conjectured uppe
bound~37!, the latter turns out to be equivalent to the inequality
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(
r 51

`
~21!r22r~r 21!!

~2r !!
F~2n,r ;1;2!m2r~n!<0, ~45!

which Eq.~44! implies to be, at least, asymptotically valid. Whenn is even, the validity of Eqs.
~37! and ~45! follows from that of Eq.~7!, which then places a stronger upper bound onSn than
~37!. For n odd, however, Eq.~37! is stronger than~7!, so that the problem of finding a proof o
its general validity remains open.
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APPENDIX: PROOF OF EQ. (28)

Equation~28! follows from the identity

(
k51

n S n
kD ~21!k2k

k
52 (

k51

n
12~21!k

k
, ~A1!

which is the particular casex52 of the more general formula

f ~x![(
k51

n S n
kD ~21!kxk

k
52 (

k51

n
12~12x!k

k
. ~A2!

The validity of Eq. ~A2! can be proved by induction overn, and also by considering th
Newton binomial expansion off 8(x),

f 8~x!5
1

x (
k51

n S n
kD ~2x!k5

~12x!n21

x
.

Making the change of variables 12x5t, and taking into account that

tn21

t21
5 (

k50

n21

tk,

we readily obtain

f ~x!5E ~12x!n21

x
dx5 (

k51

n
~12x!k

k
1C.

Finally, the value of the integration constantC is determined from the conditionf (0)50, which
leads to Eq.~A2!.

The expression 12(21)k vanishes ifk is even, while it is equal to 2 ifk is odd, so that only
the odd values ofk give a nonvanishing contribution to the right-hand side of~A1!. If n52m
1e, with m5@n/2# and e50,1 for n even and odd, respectively, the last nonzero term in
summation is that corresponding tok52m12e21 ~2m215n21 for n even and 2m115n
for n odd!. Writing k52l 21, we have
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(
k51

n
12~21!k

k
5 (

k51

2m12e21
12~21!k

k
52 (

l 51

m1e
1

2l 21
,

and taking into account Eq.~31! we complete our proof of~28!.
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On the causal structure of Minkowski spacetime
Launey J. Thomas, III and Eyvind H. Wichmann
Department of Physics, University of California, Berkeley, California 94720

~Received 13 February 1997; accepted for publication 30 May 1997!

The causal structure of Minkowski spacetimeM is discussed, in terms of the no-
tions of causal complementation and causal completion. These geometric notions
are relevant for quantum field theory and the theory of the Klein-Gordon equation.
Particular attention is given to closed, convex, causally complete subsets ofM, and
the properties of such sets are discussed. The study of such sets is motivated by
potential applications to the theory of local nets of von Neumann algebras. The
notion of the envelope of uniqueness of a subset ofM, familiar from the theory of
the wave equation, is discussed, and some results about the relation of this envelope
to the causal completion of the set are presented. ©1997 American Institute of
Physics.@S0022-2488~97!00610-5#

I. INTRODUCTION

It is the purpose of this paper to present a systematic account of some features of the ge
of Minkowski spacetime which are of interest in physical theories. In particular we wil
concerned with thecausal structureof spacetime. In two subsequent papers we will discuss
actual application of our results to relativistic local quantum theories. These applications a
discussed in any detail in the present paper, but we will occasionally refer to various featu
such theories to provide motivation for our geometric considerations.

This work is based substantially on results presented in the doctoral thesis of one
authors~L.J.T.!.1

The material in this paper is organized into five Sections. For easy cross-reference defin
lemmas, propositions, and theorems~regarded as a single class of items! are labelled by the
number of the section, followed by a number showing the order in which the item appears
the section.

The association of operators or operator algebras with ‘‘suitable’’ regions in Minkow
spacetimeM is a central feature of local quantum field theory,2–5 and of the theory of nets of loca
von Neumann algebras within the framework of the algebraic approach to quantum field the5,6

This association reflects the idea that the physical phenomena can be completely descr
terms of local observables corresponding to measurements or operations carried out
bounded subsets of Minkowski spacetime. The association is subject to a number of phy
motivated conditions, such as the conditions of local independence, causality, Poincare´ covariance
and isotony.2–6 It is not possible to associate local operators withall subsets ofM in a meaningful
manner. For a sensible physical interpretation we must restrict the considerations to subset
are in some sense geometrically uncomplicated. In the algebraic approach to quantum field
much attention has been given in the past to some very special subsets, namelydouble conesand
certainwedges. A double cone is an intersection of a forward lightcone with a backward lightc
and a ‘‘wedge’’ is a region bounded above by one characteristic plane and bounded bel
another characteristic plane not parallel with the first. We denote the set of all such open w
by W , and we refer to the open wedges and their closures ascausal wedges. A principal aim of
this paper is to discuss a much larger family of subsets of Minkowski spacetime with which
can associate local operators in a reasonable manner. This family is defined in Section III~Defi-
nition 3.3!.

In Section II we review and discuss some basic features of the geometry of Minko
spacetimeM. For the formulation and study of the conditions of causality and local independ
0022-2488/97/38(10)/5044/43/$10.00
5044 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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thecausal structureof Minkowski spacetime is of great importance. We begin by considering
important notions ofcausal complementsandcausally completesets. The causal complementRc

of a subsetR of M is the set of all points which are spacelike relative to all points inR. A subset
is said to be causally complete if it is equal to the causal complement of its causal comple
Two regionsR1 and R2 are said to becausally disjointif they are spacelike separated, i.e.,
R1,R2

c ~in which caseR2,R1
c), and in a ‘‘local physical theory’’ it is assumed that the tw

regions are thenphysically independent. In quantum physics this assumption is reflected in
condition that any two observables~operators! Q1 and Q2 associated withR1 and with R2,
respectively, commute. This condition is the well-knowncondition of locality. The notion of
causally disjoint regions is also relevant for the classical theory of the wave equation o
Klein-Gordon equation: the restriction of a wave function toR1 is independent of the restriction o
the wave function toR2 ~within the solutions manifold!. This means in particular that the initia
values can be specified independently in two disjoint subsets of a spacelike ‘‘initial value
face,’’ and that ‘‘influences propagate within the lightcone.’’7 At the end of Section II we conside
some topological issues. Causally complete sets have somewhat ‘‘better’’ topological prop
than ‘‘arbitrary’’ subsets ofM, as shown in Proposition 2.5. The causal complement of an ope
is ~trivially ! closed, but the causal complement of a closed, causally complete set is not nece
open. The nature of closed, causally complete sets, and their causal complements, is cla
Proposition 2.6.

The discussion in Section III concerns the interplay between convexity and the causal
ture ofM. For an affine space we have a well-known separation principle, according to whic
disjoint convex subsets of the space, of which one is open, are separated from each oth
hyperplane. For two such subsets ofM which are also causally disjoint we have the separat
principle stated in Proposition 3.1, which involves causal wedges.

In Section III we are in particular interested in closed, convex, causally complete regio
M, and more specifically in the setK E of regions specified in Definition 3.3. The familyK E

contains as a subset the setK C of all compact, convex, causally complete subsets ofM. The set
K C contains all double cones, but is much larger than the setD of all double cones. Actually
KPK C if and only if K is an intersection of some set of double cones~Proposition 3.8!. In a
two-dimensional spacetime the setK C consists precisely of all ‘‘double cones,’’ which are no
actually rectangular regions bounded by isotropic lines. In many respects it is reasonable to
the elements inK C as the proper generalizations to a four-dimensional spacetime of these
angles in the two-dimensional world. An important feature of the familyK C , and of the larger
family K E , is that they are closed under intersections, which isnot the case for the setD of all
double cones.

A closed, convex subset of an affine space is an intersection of closed half-spaces~bounded by
hyperplanes!. In Theorem 3.2 we show that a closed, convex,causally completesubset ofM, such
that its causal complement has a nonempty interior, is an intersection of closed causal wedg~i.e.,
of closures of wedges in the familyW defined above!. In particular the sets in the familiesK C

andK E can be so described. This rather plausible result is a key element in the applicatio
have in mind. In a paper by Bisognano and Wichmann8 the construction of a local net of vo
Neumann algebras was discussed. The starting point in this construction is an association o
Neumann algebraA(W) with every wedgeWPW , in such a manner that the conditions
isotony, Poincare´ covariance, and locality are satisfied. The net is then extended by definin
algebraB(D), for every closed double coneDPD , as the intersection of all algebrasA(W) for
which W.D. Furthermore, the algebraA(Dc) ~associated with the causal complementDc of a
closed double coneD) is defined as the weak closure~or double commutant! of the union of all
algebrasA(W) for which W,Dc. As discussed by Bisognano and Wichmann, such a local
has many features which are reasonable and desirable with reference to the physical interpr
In a subsequent paper we will extend the net by defining an algebraB(K), for everyKPK C , as
the intersection of all algebrasA(W) for which W.K, and an algebraA(Kc) as the weak
J. Math. Phys., Vol. 38, No. 10, October 1997
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closure of the union of all algebrasA(W) for which W,Kc. We will show that many interesting
conclusions can be drawn about the resulting net, and it is perhaps obvious that the a
depends strongly on the purely geometric Theorem 3.2. The attempt to associate von Ne
algebras witheveryopen or closed causally complete subset ofM is beset with problems which ar
absent for the convex sets~and their causal complements!, hence our interest in the sets discuss
in Section III.

In Section IV we discuss what we here call ‘‘envelopes of uniqueness.’’ The concept inv
is well known in the theory of linear hyperbolic partial differential equations, but we know o
universally accepted name for the construct. For any open subsetS of Minkowski spacetime this
envelopeE(S) is defined as the smallest subset ofM containingS, which contains the open doubl
coneDo if it contains either the ‘‘base’’ ofDo, or the open line segment joining the two apices
Do. Let f(x) be a solution of the Klein-Gordon equation, with null regionN(f), i.e.,N(f) is the
complement of the support off. It is well known that ifS is an open region contained inN(f),
then E(S) is also contained inN(f), and in particular we haveE(N(f))5N(f). The region
E(S) is anenvelope of uniquenessin the sense that if two solutionsf1(x) andf2(x) agree on an
open setS, then they also agree onE(S). The mappingS→E(S) is accordingly of interest for the
theory of the Klein-Gordon equation. It turns out that it is also relevant for quantum field th
We will discuss this in detail in a subsequent paper, but we want to comment briefly on the
here. Within the framework of a relativistic local theory, letQ1 andQ2 be two operators assoc
ated, in some sense, with subsets ofM. For anyxPM, let Q1(x)5T(x)Q1T(x)21 be the translate
of Q1, obtained by conjugatingQ1 with the translation operatorT(x). We consider the commu
tator C(x)5@Q1(x),Q2#. A question which often arises is the following. Given thatC(x)50 on
some open setS,M, where else doesC(x) vanish? The complete answer to this question is
known, but, in thespecial casewhenS is a union of wedges inW , one can show thatC(x)50
on E(S). These remarks are intended to indicate why we are interested in unions~and intersec-
tions! of wedges. Theorem 4.11 at the end of the Section is of particular interest for the ap
tions to field theory.

If S is an open subset ofM, then the setScc and the envelopeE(S) are in generalnot equal,
but there are classes of setsS for which Scc andE(S) are actually equal. In Theorem 4.8 we sta
the necessary and sufficient conditions for the two envelopes to be equal, and in Section
give a number of examples of potential physical interest in whichScc5E(S), as well as examples
in which SccÞE(S). It is trivial that we always haveE(S),Scc.

In Section V we discuss various configurations of causal wedges. The question of whe
wedges inW have a nonempty intersection is of interest, and this question is answer
Proposition 5.1. The simplest case arises when the two wedgesW1 and W2 are in ageneral
relative position, by which we mean a configuration such that the four normals of the boun
planes of the wedges are linearly independent. For such a configuration we haveW1ùW2Þ0” and
W1

cùW2
cÞ0” . Proposition 5.3 and Lemma 5.4 deal with related questions for an arbitraryfamily of

wedges inW .
Suppose that the twoclosedwedgesW̄1 andW̄2 have a nonempty intersectionW̄1ùW̄2. It is

perhaps intuitively obvious that the intersection is contained in an infinite number of other c
causal wedgesW̄. The conditions forW̄.W̄1ùW̄2 are stated in Proposition 5.2. One of the ma
results of this paper is Theorem 5.7, which concerns this issue for an arbitrary family of we

We should state here explicitly that our discussion in this paper concernsfour-dimensional
Minkowski spacetime. However, practically all the results in Sections II–IV also apply, with
minor modifications in the formulation and reasoning, to any Minkowski-type spaceMn ~with
n21 spatial dimensions, and one temporal dimension!. We could have stated our results in
general form, for an arbitraryn, but we did not want to do so since the casen54 is the only case
of genuine physical interest. However, in the study of certain~physical! phenomena concernin
quantum fields or wave propagation, one does make excursions into Minkowski-type spac
different dimensionality, for purely technical-mathematical reasons. In his study of matrix
J. Math. Phys., Vol. 38, No. 10, October 1997
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ments^F8u@Q1(x),Q2#uF9&5m(x) of commutators, Araki9 associated such a functionm(x) on
M with a solution of the wave equation on afive-dimensional Minkowski-type space in a certa
specific manner. On the basis of known properties of solutions of the wave equation Araki
then draw interesting conclusions about the matrix-element functionsm(x) ~which do not, in
general, satisfy any partial differential equations!. This approach is a generalization of well know
methods in the theory of linear hyperbolic partial differential equations, based on linear map
between solutions of such equations in spaces of different dimensionalities.7 In Section IV, Propo-
sitions 4.1, 4.2, and 4.4 for afive-dimensional spaceM5 are thus of interest for precisely the abo
reason.

In contrast to the discussion in Sections II–IV, the discussion in Section V refers specifi
to four-dimensional Minkowski spacetime. Some of the reasoning depends on geometric p
ties of a four-dimensional spacetime which have no counterparts in spaces of lower~or higher!
dimensionality. This does not mean that there might not exist features in spaces of a di
dimensionality which are analogous to those discussed, but we have not investigated this q
systematically, and we have nothing to say about such generalizations.

II. SOME BASIC FEATURES OF THE GEOMETRY OF MINKOWSKI SPACETIME

In this section we will discuss some aspects of the geometry of Minkowski spacetimM,
which are of interest in physics. By ‘‘geometry’’ we mean the totality of relationships betw
subsets ofM which are invariant under the Poincare´ group. The topology and the affine properti
of M and R4 are the same, but the geometries of these spaces are very different. Mink
spacetime has what we can call acausal structure, which has no counterpart in Euclidean geo
etry, and this structure is of great interest in physical applications.

If R is any subset ofM, we denote the closure ofR by R̄, the interior ofR by Ro, the
complement ofR by R̃, and the boundary ofR by ]R.

We parameterize the points ofxPM by the usual Cartesian coordinatesx5(x1 ,x2 ,x3 ,x4)
5(x,t), with reference to some particular inertial frame, wheret5x4 is the time-coordinate, and
x5(x1 ,x2 ,x3) are the spatial coordinates. The Minkowski scalar product is defined as

x•y5x4y42 (
a51

3

xaya5x4y42x•y.

With a choice of an origin 0, the manifoldM is also regarded as a four-dimensional vec
space in the usual fashion.

For x8,x9PM, we denote by@x8,x9# the closed straight line segment withx8 andx9 as end
points, and we denote the open line segment by (x8,x9). By ‘‘line’’ we always mean astraight
line, unbounded in both directions. By anopen half-linewe mean a set of the form$x01tuut.0%,
where theendpoint x0 is some point ofM, and whereu is a non-zero vector inM. A closed
half-line is a set of the form$x01tuut>0%.

A 3-plane, or hyperplanep is any three-dimensional linear submanifold ofM. A 3-planep is
determined by itsnormal u ~which is a non-zero vector inM) and any one of its pointsy by

p5$xuxPM,~x2y!•u50%. ~2.1!

We say thatp is spacelikeif u is timelike, thatp is timelike if u is spacelike, and thatp is
characteristicif u is isotropic ~‘‘lightlike’’ !. We will be particularly interested in characterist
3-planes, referred to as ‘‘characteristic planes’’ for short. We note here that a 3-plane is c
teristic if and only if it contains an isotropic line but no timelike line, and that a character
plane is uniquely determined by any isotropic line which it contains. The direction of this lin
then the normal of the plane.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Let the 3-planep be either spacelike or characteristic, in which case we can select a no
of the standard form u5(u,1), with uuu<1. With reference to the representation in~2.1!, with u
of the standard form, we say that a pointx is abovep if x•u.y•u, andbelowp if x•u,y•u.
These notions of ‘‘above’’ and ‘‘below’’ are Poincare´ invariant.

Let p85$xuxPM,x•u85q8% andp95$xuxPM,x•u95q9% be two non-parallel characteristi
3-planes with normalsu85(u8,1) andu95(u9,1): hereq8 and q9 are arbitrary constants. W
define theopensetW(p8,p9) by

W~p8,p9!5$xuxPM,x•u8.q8,x•u9,q9%,

and henceW(p8,p9) consists of all pointsx which lie above thelower planep8 and below the
upper planep9. We denote byW the set of all such wedge-regions inM. To distinguish this kind
of wedge-region~bounded bycharacteristicplanes! from other wedge-regions inM we can em-
ploy the termcausal wedgefor the wedges inW and their closures. In what follows we will refe
to an element inW as awedge, for short, when there is no risk of misunderstanding. We callu8
the lower normal, andu9 the upper normalof the wedge. Any two wedges inW are Poincare´
equivalent, and in particular equivalent to the special wedgesWR andWL defined by

WR5$xuxPM,x3.ux4u%, WL5$xuxPM,x3,2ux4u%. ~2.2!

The intersectionp8ùp9 of the boundary planes of a wedge is a 2-plane, which isspacelike
in the sense that every line contained in this 2-plane is spacelike. We refer to the intersec
the edge of the wedge W(p8,p9). The wedges in~2.2! have the common edge$xux
PM,x3505x4%. Every spacelike 2-plane is the common edge of a unique pair of wedges inW .

If R is any subset ofM, we define thecausal complement Rc of R as

Rc5$xuxPM,x2y spacelikefor all yPR%.

We employ the notationRcc for the iterated causal complement (Rc)c, and we similarly write
Rccc for (Rcc)c5(Rc)cc. We immediately see thatR,Rcc, and thatR0

c.Rc andR0
cc,Rcc when-

everR0,R. From this it follows thatRccc5Rc for any subsetR of M.
We say that a subsetR of M is causally completeif and only if R5Rcc, and for any subsetS

of M we call Scc the causal completion of S. We say that two subsetsR1 and R2 are causally
disjoint if and only if R1,R2

c , in which caseR2,R1
c . If R is causally complete, we call the se

R̄ùRc the rim of R ~or of Rc).
We note here some basic facts about causal complementation and causal completion.
Proposition 2.1:~a! If R is any subset ofM, thenRc5Rccc andRcc are causally complete.
~b! For any two subsetsR1 ,R2 of M we have

~R1øR2!c5R1
cùR2

c , ~R1ùR2!c.~R1
cøR2

c!cc.R1
cøR2

c .

More generally, ifF is any family of subsets ofM, then

~ø$RuRPF %!c5ù$RcuRPF %,

and

~ù$RuRPF %!c.~ø$RcuRPF %!cc.ø$RcuRPF %. ~2.3!

The three sets in~2.3! are in general unequal, but, for some familiesF , either one or both of
the inclusion relations can be identities.

~c! Let $RauaPA% be a family ofcausally completesubsets ofM. Then the intersection

R5ù$RauaPA%5Rcc

is causally complete, and
J. Math. Phys., Vol. 38, No. 10, October 1997
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Rc5~ø$Ra
c uaPA%!cc. ~2.4!

Proof: The assertions in parts~a! and ~b! are trivial. We consider part~c!. We have
(ø$Ra

c uaPA%)c5ù$Ra
ccuaPA%5ù$RauaPA%5R, and as a causal complement of a set,R is

thus causally complete. Forming the causal complements of both members in the re
(ø$Ra

c uaPA%)c5R we obtain the relation in~2.4!. This completes the proof.
It is easily seen that ifWPW , then bothW and W̄ are causally complete. For the wedg

W(p8,p9)PW we have

W~p8,p9!c5W̄~p9,p8!.

This trivial relation is important in what follows.
The open forward lightconewith y as apex is the setV1(y)5$x1yuxPM,x4.uxu%, and the

open backward lightconewith y as apex is the setV2(y)5$x1yuxPM,x4,2uxu%. The open
lightconewith y as apex is the setV(y)5V1(y)øV2(y).

We note here the trivial fact that every timelike line intersects every forward lightconeV1(x)
and every backward lightconeV2(x), and that the intersections are open half-lines. Any t
forward lightcones intersect, and any two backward lightcones intersect. More generall
intersection of anyfinite number of forward lightcones is nonempty and contains a forw
lightcone, and similarly the intersection of anyfinite number of backward lightcones is nonemp
and contains a backward lightcone.

Let x8,x9PM be such thatx9PV1(x8). Theclosed double cone D(x8,x9) with x8 andx9 as
apices is defined as

D~x8,x9!5V̄1~x8!ùV̄2~x9!.

The intersection (]V1(x8))ù(]V2(x9)) determines a unique spacelike 3-planes which
contains the intersection, which is aspherein s ~relative to the metric ons induced by the
Lorentz ‘‘metric’’ on M). The closed ball with this sphere as its boundary will be called thebase
of the closed double coneD(x8,x9). If s8 is any spacelike 3-plane, and ifB is any closed ball in
s8, then there exists a unique double coneD with B as its base. The set of all closed double con
is a Poincare´ invariant set, and any two closed double cones are related through a Po´
transformation and a dilation. We will denote this set byD in what follows. Note that wedo not
include the ‘‘degenerate’’ closed double cones consisting of a single point or an isotropi
segment in this setD . The interiorDo of any DPD is thus a~nonempty! open double cone, and
we haveDo5D. The baseBo of Do is the relative interior of the baseB of D in the 3-plane
containingB.

It is trivial that the open and closed double cones are causally complete. Letx8,x9PM be such
that x9PV1(x8), and let@x8,x9# be the closed, and (x8,x9) be the open, line segments withx8
andx9 as end points. We then have@x8,x9#cc5D(x8,x9) and (x8,x9)cc5D(x8,x9)o. We also see
that if B is the base of a double coneD, thenBcc5D andBo

cc5Do, whereBo is the base ofDo.
In this connection we note the following related facts. LetR,M be causally complete. If R
contains two timelike separated pointsx8 andx9, with x9PV1(x8), thenD(x8,x9)PR. Further-
more, if R contains the endpoints of anisotropic interval @x8,x9#, thenR contains the interval. A
causally complete set is not in general convex, but it is ‘‘partially convex,’’ with respec
timelike or isotropic intervals in the above sense.

For anyR,M we define thefuture of Ras V̄1(R)5ø$V̄1(x)uxPR%, and thepast of Ras

V̄2(R)5ø$V̄2(x)uxPR%. We then haveRc5(V̄1(R)øV̄2(R) )̃ , which is a paraphrase of ou
earlier definition of the causal complement. It is of interest to pursue these notions for the
J. Math. Phys., Vol. 38, No. 10, October 1997
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when R is causally complete, and henceR and Rc form a causally complementary pair. In th
proposition which follows we state miscellaneous facts in the matter, which may aid in
visualization of the possible configurations.

Proposition 2.2:Let X andY be two nonempty subsets ofM which form acausally comple-
mentary pair, i.e., X5Yc5Xcc, Y5Xc5Ycc. We denote the futureV̄1(X) of X by XF for short,
and similarly we writeXP5V̄2(X), YF5V̄1(Y), andYP5 V̄2(Y). We define the setsZ1 andZ2

by Z15XFùYF andZ25XPùYP . Then:
~a! Each one of the three setsXF , YF , and Z1 is a nonempty union of closed forwar

lightcones which containsV̄1(x) if it containsx. Similarly each one of the three setsXP , YP , and
Z2 is a nonempty union of closed backward lightcones which containsV̄2(x) if it contains x.
Each one of the six sets isconnected.

~b! We have

XF5ỸP , YF5X̃P , XP5ỸF , YP5X̃F ~2.5!

and

X5XFùXP , Y5YFùYP . ~2.6!

~c! The four setsX, Y, Z1 , andZ2 arepairwise disjoint, and

XøYøZ1øZ25M.

~d! The boundaries ofXF , XP , YF , andYP are hypersurfaces, which are described, relat
to any particular~standard! coordinate system, by

]XF5]YP5$~x,a~x!!uxPR3%, ]XP5]YF5$~x,b~x!!uxPR3%, ~2.7!

where

a~x!5 inf$t81ux2x8uu~x8,t8!PX%5sup$t82ux2x8uu~x8,t8!PY%,
~2.8!

b~x!5 inf$t81ux2x8uu~x8,t8!PY%5sup$t82ux2x8uu~x8,t8!PX%.

The functionsa(x) andb(x) arecontinuousfunctions onR3 which satisfy the conditions

ua~x8!2a~x9!u<ux82x9u, ub~x8!2b~x9!u<ux82x9u ~2.9!

for all x8,x9PR3.
~e! Every timelike linel intersects both of the setsZ1 andZ2 . Furthermorel intersectsat

least oneof the setsX, Y, or X̄ù Ȳ. The linel intersects at most one of the setsX or Y, but may
intersect neither one. An intersection withX or with Y is a finite interval, which may be open
half-open, or closed. An intersection withX̄ùȲ is always a single point, and we have

X̄ùȲ5~]X!ù~]Y!,~]Z1!ù~]Z2!,XøYø~X̄ùȲ!. ~2.10!

Proof: ~1! The assertions in part~a! are trivial. We note here that the intersection of tw
closed forward~backward! lightcones is a nonempty union of closed forward~backward! light-
cones. These facts are relevant for the consideration of the setsZ1 andZ2 .

We consider part~b!. Suppose that there exists a pointzPXFùYP . There must then exist a
point xPXùV̄2(z) and a pointyPYùV̄1(z), which is a contradiction since we would then ha
yPV̄1(x). The assumption thatXFùYPÞ0” is thus untenable, and it follows thatXF,ỸP .
J. Math. Phys., Vol. 38, No. 10, October 1997
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Suppose that there exists a pointzPX̃FùỸP . Since z¹X there must exist a pointy
PYùV̄(z), and sincez¹Y there must exist a pointxPXùV̄(z). Since zPX̃F we have

XùV̄2(z)50” , and sincezPỸP we haveYùV̄1(z)50” . This implies thatyPYù V̄2(z) and x

PXù V̄1(z), which is a contradiction since we would then havexP V̄1(y). The assumption tha

X̃FùỸPÞ0” is thus untenable, and it follows thatXF.ỸP . From these results we conclude th

XF5ỸP . Interchanging the roles ofX andY we obtainYF5X̃P .
On the basis of these relations, and the definition of the causal complement, we then ha

identities X5Yc5ỸPùỸF5XFùXP , and similarly we obtain the relationY5YFùYP . This
proves the relations in~2.6!. The assertions in part~c! follow at once from the fact that we ca

write X5XFùXP , Y5YPùYF5X̃FùX̃P , Z15XFùYF5XFùX̃P , and Z25YPùXP

5X̃FùXP .
~2! We consider part~d!. A point (x,t) is in XF if and only if there exists some poin

(x8,t8)PX such thatt>t81ux2x8u, and hence a point (x,t) is on the boundary ofXF if and only
if t5 inf$t81ux2x8uu(x8,t8)PX%[a(x). We easily see that this defines the functiona(x) for all
xPR3. We thus have]XF5$(x,a(x))uxPR3%. The other relations in~2.7! and ~2.8! follow in a
similar manner, with reference to~2.5!.

From the fact thatV̄1(x),XF wheneverxPXF , it follows that V̄1(x), X̄F wheneverx

P X̄F . Suppose now thatx8P]XF and x9PV1(x8). Then x9 is an interior point of XF . We
conclude that no two points of]XF can betimelike separated, which is precisely what the fir
inequality in ~2.9! states. The second inequality is established by the same kind of reasonin

~3! We consider part~e!. Let l be a timelike line. SinceZ1 is a union of closed forward
lightcones, andZ2 is a union of closed backward lightcones, it follows that the intersectionsl
with Z1 and Z2 are oppositely directed non-intersecting half-lines. Ifx8,x9P l ùX, then
@x8,x9#, l ùX, and we conclude that ifl intersectsX, then l ùX is a finite interval. Concerning
the nature of the interval we note the following. Ifl intersects a double coneDPD , then the
intersection is a closed interval, whereas the intersection is an open interval ifl intersectsDc. Let
x,yPM be such thatyPV1(x), and let R5V1(x)ù V̄2(y). We easily see that the setR is
causally complete. If a timelike linel intersects this ‘‘half-open double cone,’’ then the interse
tion is a half-open interval. We also note that ifl passes through the rimR̄ùRc, thenl intersects
neitherR, nor Rc.

It is trivial that a timelike linel cannot intersect both a setX and its causal complemen
Xc5Y. Suppose thatl intersectsX̄ in a pointx and intersectsȲ in a pointy. If xÞy, then we can
clearly find a pointx8PX ‘‘close’’ to x, and a pointy8PY ‘‘close’’ to y such that@x8,y8# is a
timelike interval, which is a contradiction sinceY5Xc. Hencel can intersectboth X̄ and Ȳ only
if l ù X̄ is a singlepoint equal tol ù Ȳ.

~4! We consider the case whenl is a timelike line which intersects neitherX, nor Y. We then
havel ,Z1øZ2 , andl ù Z̄1ù Z̄2 is a single pointz such thatV1(z),Z1 andV2(z),Z2 . We
either havezPZ1 , or elsezPZ2 . We consider the case whenzPZ1 . With the assumptionz
PZ1 we haveV̄1(z),Z1 , and henceV̄1(z)ùX50” . We must haveV̄2(z)ùXÞ0” , because
otherwise we would havezPY. Let x0P V̄2(z)ùX. Since V2(z),Z2 we conclude thatx0

P]V2(z), i.e., the interval@x0 ,z# is isotropic. Letl i be the isotropic line containing@x0 ,z#, and
let xP(x0 ,z). The linel i cannot contain any point ofY sincex0PX. Every point ofV̄2(x) which
is not onl i is in V2(z),Z2 , and we conclude thatV̄2(x)ùY50” . Sincex0P V̄2(x) we also have
V̄1(x)ùY50” , and it follows thatxPX. Hence we have@x0 ,z)PX, and thuszP X̄. Similarly we
havezP Ȳ, and we have thus shown that if a timelike line does not intersectXøY, then it must
intersectX̄ù Ȳ. The case whenzPZ2 is settled by similar reasoning. The relations in~2.10! then
follow readily from what has been shown. This completes the proof.

The setsX andY are thus ‘‘pinned’’ between the two continuous hypersurfaces describe
J. Math. Phys., Vol. 38, No. 10, October 1997
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~2.7! in terms of the functionsa(x) and b(x). For reasonably ‘‘simple’’ setsX the two hyper-
surfaces are characteristic surfaces, as illustrated by the cases whenX is a double cone inD or a
wedge inW . In general the situation is ‘‘simple’’ ifX andY satisfy the conditionsXo5X̄ and
Yo5Ȳ, but these conditions do not hold for arbitrary causally complementary pairs. For exa
the setX may be a portion of a characteristic plane, in which caseXo is empty, and we have
a(x)5b(x) for all (x,t)PX. As we will explain in Section IV, such sets cannot be dismissed
‘‘unphysical.’’ A more drastic example of ‘‘pathology’’~which can safely be declared to be
unphysical! is the following. The setX is a countable dense set of points in the 3-pla
s5$(x,0)uxPR3%. Then X is causally complete, andY5Xc is the relative complement ofX
within the 3-planes. The hypersurfaces]Z1 , ]Z2 , ]XF , and]XP are all equal tos, and for the

rim of X we haveX̄ù Ȳ5s. This latter observation shows that the rim of a causally complete
is not always a 2-manifold, as it is for ‘‘well-behaved’’ sets, such as double cones or wedg

Inspection of~2.8! shows that the functionsa andb depend only on theclosure X̄of X. If
neitherX nor Y is a singleton, there existdifferentcausally complementary pairs with thesame
functionsa and b. For example, the functionsa and b are the same for a closed double co
DPD , and for its interiorDo. They are also the same for a great multitude of causally comp
setsX which satisfy the conditionD.X.Do. The functionsa and b can be of interest in the
analytic approach to some problems, but they do not provide a complete description
geometric configuration.

We next state and prove a useful lemma concerning the location of the rimX̄ù Ȳ.
Lemma 2.3:Let the premises and notation be as in Proposition 2.2.
~a! If the double coneDPD contains a pointxP X̄, and a pointyP Ȳ, thenD contains a point

of the rim R5 X̄ù Ȳ.
Furthermore, if xPX, and yPY, then there exists a pointzPRùD such that z

P(XùD)ù(YùD).
~b! If the closed forward lightconeV̄1(z8) contains a pointx of X̄ and a pointy of Ȳ, then

V̄1(z8) contains a point ofR5 X̄ù Ȳ. Furthermore, ifxPX andyPY, which is the case if and
only if z8PZ2 , then there exists a point zrPRù V̄1(z8) such that zr

P(XùV̄1(z8)ù(YùV̄1(z8).
Similarly, if the closed backward lightconeV̄2(z9) contains a pointx of X̄ and a pointy of

Ȳ, thenV̄2(z9) contains a point ofX̄ù Ȳ. Furthermore, ifxPX andyPY, which is the case if and
only if z9PZ1 , then there exists a point zrPRù V̄2(z9) such that zr

P(XùV̄2(z9)ù(YùV̄2(z9).
~c! If an isotropic line l i contains a pointxPX and a pointzPR, then@x,z),X. Similarly, if

l i contains a pointyPY and a pointzPR, then@y,z),Y.
~d! Let @x,y# be anisotropic line segment, such thatxP X̄ andyP Ȳ. Then@x,y# contains a

point of X̄ù Ȳ.
Proof: ~1! It will be convenient to first prove the assertions in part~c!. In view of the

symmetric roles played byX andY, it suffices to prove the first assertion. We assume thatzÞx
PX, since there is otherwise nothing to prove. We consider the case whenzP]V1(x). Suppose
that x1P(x,z) but x1¹X. There must then exist a pointy1PYù V̄(x1). We cannot havey1

P V̄1(x1), sincexP V̄2(x1), and we cannot havey1PV2(z), sincezPR. The pointy1 cannot lie
on the isotropic linel i passing throughx andz, and it follows thaty1¹ V̄2(x1),V2(z)ø l . The
assumption thatx1P(x,z) but x1¹X thus leads to a contradiction, and we conclude that@x,z),X.
In a similar manner we conclude that@x,z),X if zP]V2(x).

~2! We next consider part~a!. Let D5D(z1 ,z2)PD , and suppose thatxP X̄ùD and y

P ȲùD. We select a standard coordinate system in such a way thatz15(0,l8), z25(0,l9). Let
l 5$(0,l)ulPR1% be the timelike line containingz1 andz2. By Proposition 2.2 it must intersect a
J. Math. Phys., Vol. 38, No. 10, October 1997
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least one of the setsX, Y, or R5 X̄ù Ȳ. The setsV1(z2) and V2(z1) can contain no point of
X̄ø Ȳ sinceDù X̄Þ0” andDù ȲÞ0” , and hence we havel ù( X̄ø Ȳ),@z1 ,z2#. We first dispose of
the case whenl intersectsR. Hencel ùR5$z%,@z1 ,z2#,D.

Suppose now thatxPX andyPY. If z is an interior point of the interval@z1 ,z2# we clearly
have zP(XùD)ù(YùD). We consider the case whenz5z1. We must then havex,y
P]V1(z1)ùD, and it follows by part~c! that zP(XùD)ù(YùD). The conclusion is the sam
if z5z2.

~3! We now consider the case whenl intersectsX, but not R, in which casey¹ l . Let
z95 l ù]V1(y) andz85 l ù]V2(y). The pointsz8, z9, andy5(y,s) determine a unique timelike
2-planev ~which containsl ). Let T be the closed triangle inv with these points as vertices. B
this construction we haveT,D. With uP@0,1# we define the linel (u) parallel with l , and in the
planev, by l (u)5$(uy,l)ulPR1%. For uP@0,1# we havel (u)ùX,T sinceyP Ȳ. For eachu

the linel (u) must intersect one of the setsX or Ȳ. Let u0 be the largest number in@0,1# such that
l (u) intersectsX for all uP@0,u0). We easily see thatl (u0) must intersect the rimR5 X̄ù Ȳ, in
a single pointz, and we then havezP(XùD).

Suppose now thatyPY. If z is in the relative interior ofT in v, and hence in the interior o
D, then zP(XùD)ù(YùD). We thus consider the case whenz is on the boundary ofT,
excluding the points ofl . We either havez5y, or else the interval@y,z# is isotropic, in which case
we have@y,z)PY. In either case we havezP(YùD), and hencezP(XùD)ù(YùD).

The conclusions are the same in the case whenl intersectsY, but notR, and we have thus
proved the assertions in part~a!.

~4! We consider part~b!, and assume thatxP V̄1(z1)ù X̄ and yP V̄1(z1)ù Ȳ. Let z2

PV1(x)ùV1(y). We then havez2PV1(z1) and$x,y%,D(z1 ,z2), V̄1(z1). By part ~a! it then
follows that D5D(z1 ,z2) , and henceV̄1(z1), contains a point ofX̄ù Ȳ, as asserted. Further
more, if xPX and yPY, then D contains a pointzrP(XùD)ù(YùD), and we havezr

P(XùV̄1(z1))ù(YùV̄1(z1)). The remaining assertions in part~b! are proved in a similar man
ner.

~5! We consider part~d!, and assume that@x,y#, with yP]V1(x), is an isotropic line seg-
ment, such thatxP X̄ andyP Ȳ. Let u be a forward timelike vector, and lety(l)5y1lu. Then
y(l)PV1(x) whenl.0, and the double coneD(l)5D(x,y(l)) contains the pointsxP X̄, and
yP Ȳ. By part ~a! it follows that D(l) contains a point ofX̄ù Ȳ, and since this holds for an
arbitrarily smalll.0, we conclude that@x,y# must contain a point ofX̄ù Ȳ. This completes the
proof.

The proposition which follows shows the importance of the rim~or, rather, any neighborhoo
of the rim!.

Proposition 2.4:Let X andY be two nonempty subsets ofM which form acausally comple-
mentary pair, i.e., X5Yc5Xcc, Y5Xc5Ycc.

~a! Let N be a neighborhood of the rimR5 X̄ù Ȳ. Then

Y5~XùN!cùX̃, X5~YùN!cùỸ. ~2.11!

~b! If X is closed, thenY5RcùX̃.
Proof: ~1! We consider part~a!. We first note that (XùN)c.Xc5Y, and sinceXùY50” it

follows that (XùN)cùX̃.Y. To prove the equality at left in~2.11! we have to show that ther
existsno point yP(XùN)c such thaty¹XøY. Suppose thaty0¹XøY. The closed lightcone
V̄(yo) must then contain a pointxPX and a pointyPY, and weeither havex,yP V̄1(y0), in
which caseV̄2(y0)ù(XøY)50” , or else x,yP V̄2(y0), in which caseV̄1(y0)ù(XøY)50” . In
the first case it follows from part~b! of Lemma 2.3 that there exists a pointzPR such thatz
J. Math. Phys., Vol. 38, No. 10, October 1997
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P(XùV̄1(y0). Every neighborhood ofz thus contains a point ofNùXù V̄1(y0), which means that
y0¹(XùN)c. We arrive at the same conclusion in the case thatx,yP V̄2(y0), and we have thus
proved the equality at left in~2.11!. In view of the symmetric roles played byX andY the equality
at right is also valid.

~2! Suppose now thatX is closed. SinceR,X we haveRcùX̃.Y. If y0PX̃ùỸ, we conclude
by the same reasoning as above thatV̄(y0) contains a pointzPR, and hencey0¹Rc. It follows
that Y5RcùX̃. This completes the proof.

It will now be appropriate to discuss some questions of topology. The interplay betwee
topology forM and the operations of causal complementation and causal completion is som
complicated. We will not discuss all the intricacies in detail here, but only note some rather s
facts.

Causally complete subsets have ‘‘better’’ topological properties than arbitrary subsetsM.
One aspect of this is shown in the proposition which follows.

Proposition 2.5:Let R be acausally completesubset ofM. Then:

~ R̄!o5Ro.

Proof: Suppose thatxP(R̄)o. Since (R̄)o is open we have 0” ÞV2(x)ù(R̄)o,V2(x)ùR̄, and
sinceV2(x) is open it follows thatV2(x)ùR is nonempty. SimilarlyV1(x)ùR is nonempty. Let
yPV2(x)ùR and zPV1(x)ùR. We then havexPV1(y)ùV2(z) and zPV1(y). Let
D5D(y,z) be the closed double cone withy andz as apices. SinceR is causally complete we
haveD,R, and hencexPDo,Ro. Since this holds for everyxP(R̄)o, and since we trivially have
(R̄)o.Ro, the conclusion (R̄)o5Ro follows.

If S is anyopensubset ofM, thenSc is closed~but Scc need not be open: see the discuss
following the proof of Proposition 2.6!. A causally completesubsetS of M is open if and only if
both the future and the past ofS are open. Acausally completesubsetK of M is closed if both the
future and the past ofK are closed, but the future and the past of a closed causally complete s
K are not necessarily both closed. IfK is a compactsubset ofM, thenKc is open, andKcc is
compact. The causal complementKc of an arbitrary ~non-compact! closed subsetK of M is not
necessarily open, andKcc is not necessarily closed, as we see by the following example. LetK be
the hyperbolic arcK5$(0,0,cosh(l),sinh(l))ulPR1%, and letWR andWL be the wedges defined i
~2.2!. ThenK is closed, but its causal completionKcc5WR is open, and its causal compleme
Kc5W̄L is closed.

The nature of the causal complement of aclosedcausally complete set is of interest, and w
describe some features of such a set in the proposition which follows.

Proposition 2.6:Let X andY be two nonempty subsets ofM which form acausally comple-
mentary pair, i.e., X5Yc5Xcc, Y5Xc5Ycc. In addition we assume thatX is closed. Then, we
have the following.

~a! If Y has anonemptyinterior, then

Yo5Ȳ ~2.12!

and

~Yo!c5Yc5X. ~2.13!

~b! The setY has anemptyinterior if and only if there exists a timelike line which intersec
Y in a singlepoint. If this is the case, then there exists a characteristic planep containing bothY
andX, andX is a closed union of isotropic lines contained inp. Y is the relative complement o
X in p, and is also a union of isotropic lines inp.
J. Math. Phys., Vol. 38, No. 10, October 1997
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~c! Each of the following three conditions is asufficientcondition forY to beopen~given that
X is closed!: ~I! The setV̄(x)ù ȲùX is compactfor everyxPM. ~II ! The rim ȲùX is confined
between two spacelike planes.~III ! The rim ȲùX is confined to a region of the form
S(t0 ,u)5$(x,t)uuuxu1to.utu%, whereu and to are constants such that 1.u>0 andto.0.

Proof: ~1! We first consider the situation under the assumption that there existsno timelike
line which intersectsY in a single point. Let yPY, and letl be a timelike line throughy. The
intersectionl ùY is then a finite interval, with a nonempty relative interior inl . Let y8 and y9
PV1(y8) be the endpoints ofl ùY. Since (y8,y9),Y we have D(y8,y9)o,Y, and hence
D(y8,y9)o,Yo. It follows that yP@y8,y9#,D(y8,y9),Yō. Hence YoÞ0” , and Yo,Y,Yō,
which implies the identity in~2.12!.

We write X15(Yo)c, and we trivially haveX1.X. We consider the possibility that ther
exists a pointxPX1 such thatx¹X. Let l be a timelike line throughx. It must intersect one of the
setsX or Y, but it cannot intersectY, because it would then also intersectYo, which contradicts the
assumption thatxPX15(Yo)c. Let l ùX5@x8,x9#, with x9P V̄1(x8). We consider the case whe
xPV1(x9). Let x0P(x9,x). Sincex0¹X, there must exists a pointyPYù V̄(x0). We cannot have
yP V̄1(x0) since x9PV2(x0). Hence we haveyP V̄2(x0),V2(x), which means thatV2(x)
intersectsYo, but this entails a contradiction. Similarly the assumption thatxPV2(x8) leads to a
contradiction, and we conclude thatX15X, as asserted in~2.13!.

~2! We now consider the situation when there exists a timelike linel which intersectsY in a
singlepoint y0. We select a standard coordinate system in such a way thatl is the time axis, and
y0 is the origin,y05(0,0). We consider the possibility that there exist a pointy8PV1(y0)ùY.
We would then haveD(y0 ,y8),Y, but this entails a contradiction, sincel ùD(y0 ,y8) is not a
single point. Hence we haveV1(y0)ùY50” , and in a similar fashion we conclude th
V2(y0)ùY50” .

For each positive integern, let zn95(0,21/n). We havezn9PV2(y0), and hencezn9¹Y, which
implies thatV̄(zn9)ùXÞ0” . The backward coneV̄2(zn9),V2(y0) can contain no point ofX since
y0PY. HenceV̄1(zn9) contains a point ofX, and since we also havey0P V̄1(zn9), it follows by
Lemma 2.3 that there exists a pointxn95(xn9 ,tn9)PV̄1(zn9)ùR, whereR5 X̄ù Ȳ5Xù Ȳ. The point
xn9 cannot be inV1(y0), and we accordingly have

uxn9u>tn9>uxn9u21/n. ~2.14!

We can thus find an infinite sequencexn9 , nPZ1 , of points inR which satisfy the inequalities
in ~2.14!. Such a sequence cannot have any~finite! limit point, because ifx9 were such a point we
would havex9P]V1(y0), andx9PR,X sinceR is closed. It follows thatuxn9u must tend to1`,
and thattn9/uxn9u must tend to11, asn tends to infinity. By similar reasoning~starting from a
sequencezn85(0,1/n), nPZ1 , of points in V1(y)) we conclude that there exists an infini
sequencexn85(xn8 ,tn8), nPZ1 , of points inR such that

uxn8u>2tn8>uxn8u21/n, ~2.15!

and, in analogy with the above, we conclude thatuxn8u tends to1`, and that2tn8/uxn8u tends to11,
asn tends to infinity.

Suppose now that we have chosen two such sequences of points inR such that the conditions
in ~2.14! and ~2.15! hold. The points in the sequences must satisfy the condition

uxn92xm8 u>tn92tm8 ~2.16!

for all m,nPZ1 , since two points ofR5 X̄ù Ȳ cannot be timelike separated. Combining~2.16!
with ~2.14! and ~2.15! we obtain the inequality
J. Math. Phys., Vol. 38, No. 10, October 1997
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uxn9u1uxm8 u2uxn92xm8 u<1/n11/m ~2.17!

for all m,nPZ1 . Sinceuxn8u and uxn9u tend to infinity withn, we easily conclude from~2.17! that

lim
n→`

xn9/uxn9u52 lim
n→`

xn8/uxn8u5u

for some unit vectoruPR3, and this unit vector is independent of the choice of the two sequen
~3! Let p5$xux•u50% be the characteristic plane containing the origin, with norm

u5(u,1). We now want to show that bothX and Y are confined to the planep. Suppose that
z5(z,t) is a pointbelow the planep, which means thatt,u•z. We then have

lim
n→`

$~ tn92t !2uxn92zu%5 lim
n→`

H tn92t2uxn9u1
xn9•z

uxn9u
J 5 lim

n→`
$~ tn92uxn9u!1~u•z2t !%5u•z2t.0.

Hence, for a sufficiently largen, the interval@z,xn9# is timelike, and sincexn9PR5 X̄ù Ȳ this
is not possible for anyzPXøY. By a similar argument~involving the sequencexn8 , nPZ1) we
conclude that no pointzPXøY can lieabovep, and hence we haveXøY,p.

Let zPp and letl be a timelike line throughz. By Proposition 2.2,l intersects one and only
one of the setsX or Y ~sinceR5 X̄ù Ȳ,X), and it follows thatz is in one of the setsX or Y.
Hence we haveXøY5p. Let xPX, and let l x be the isotropic line throughx contained inp.
Every point ofl x must be inX sincel x can contain no point ofY. We conclude that ifxPX, then
X also contains the isotropic linel x throughx contained inp. Similarly we conclude that ify
PY, thenY also contains the isotropic linel y throughy contained inp. From the above it readily
follows that X is a closed union of a set of isotropic lines inp, and thatY is the relative
complement ofX in p, and also a union of isotropic lines.

~4! We finally consider part~c!. Condition II obviously implies Condition I~but the converse
is not true!. Condition III also obviously implies Condition I. We thus assume that Conditio
holds, in which case the scenario in part~b! is clearly ruled out. By Proposition 2.4 we hav
Y5RcùX̃, and sinceX̃ is open, it suffices to show thatRc is open. LetD5D(y8,y9)PD be a
double cone, and letK5Rù( V̄1(y8)ø V̄2(y9)) and Ro5RùK̃. We then haveRo,Dc, and
henceRo

c.D. It follows that Rc5(KøRo)c5KcùRo
c , and henceRcùDo5KcùDo. By Condi-

tion I the setK is compact, and henceKc andRcùDo are open. Since this holds for every doub
coneDo we conclude thatRc is open. This completes the proof.

The above proposition describes the nature of the causal complement of aclosedcausally
complete set. Such a set is not necessarily open, and it can, in fact, be rather ‘‘pathologica
an example of a setY with an empty interior we mention the case whenYc5X is an isotropic line
l contained in a characteristic planep, andY is the relative complement ofl in p. If Y has a
nonempty interior, this does not imply thatY is open, butY then satisfies the relations~2.12! and
~2.13!, which hold trivially for open sets. As an example we mention here the case whenYc5X
is a closed isotropic half-lineh, say,h5$(0,0,l,l)ul>0%. The half-lineh is causally complete.
Its causal complementY5hc5$xuxPM,x4>x3 ,x1

21x2
21x3

22x4
2.0% has a nonempty interior, bu

it is not open.
If S is any~non-empty! opensubset ofM, thenSc is closed. The causal completionScc is not

necessarily open, but by~2.12! we haveScc5((Scc)o), and by~2.13! we haveSc5((Scc)o)c. In a
senseScc is thus ‘‘close’’ to its interior.

We easily see that ifR is anarbitrary causally completeproper subset ofM which contains
an isotropic linel , then bothR andRc are contained in the~unique! characteristic planep which
containsl . Rc is the relative complement ofR in p, and bothR andRc are unions of isotropic
lines inp ~parallel with l ). In this situation every timelike line which intersectsR intersectsR in
J. Math. Phys., Vol. 38, No. 10, October 1997
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a single point. It is somewhat remarkable that the conclusion in part~b! of the above proposition
follows from the seemingly weak condition that there exists at leastone timelike line which
intersectsY in a single point.

The criteria forY to be open, in part~c! of the proposition, decide this question for a lar
variety of ‘‘well-behaved’’ closed causally complete setsYc5X. Condition I is satisfied, and
henceY is open, if eitherX or Ȳ is compact. Condition II is satisfied if eitherX or Y is confined
between two spacelike planes.

In the special case when a causally complementary pair$X,Y% satisfies the condition tha
XøY contains the rim, one can describe the pair in terms of a suitable hypersurface. Th
propositions which follow deal with this case.

Proposition 2.7:Let X andY be two nonempty subsets ofM which form acausally comple-
mentary pair, i.e., X5Yc5Xcc, Y5Xc5Ycc. In addition we assume that

X̄ùȲ,XøY. ~2.18!

Let S be a hypersurface defined by an equation of the form

S5$~x,g~x!!uxPR3%, ~2.19!

whereg(x) is a continuousfunction onR3, and such thatS,XøY. We write SX5SùX and
SY5SùY. Then,

~a! X̄ù Ȳ,S, and specifically

X̄ù Ȳ5S̄XùS̄Y , ~2.20!

~b!

Y5SX
c 5SY

cc , X5SY
c 5SX

cc . ~2.21!

~c! The hypersurfaceSm defined by the particular function

gm~x!5~a~x!1b~x!!/2,

with the functionsa and b defined as in~2.8!, satisfies the above premises. Furthermore,
function gm(x) satisfies the condition

ugm~x!2gm~y!u<ux2yu

for all x,yPR3.
Proof: ~1! Let L0 be the set of all lines parallel with the time axis~relative to the particular

coordinate system considered!, i.e., the set of all timelike lines of the form$(x,t)utPR1%, with
xPR3 arbitrary. WithS given by~2.19! it is trivial that everyl PL0 intersectsS. In view of the
special condition in~2.18!, it follows from part ~e! of Proposition 2.2 that every timelike line
intersects one and only one of the setsX or Y. If a line l PL0 intersectsX̄ù Ȳ, then l intersects
eitherX or elseY in a singlepoint, and this point must then be contained inS. HenceX̄ù Ȳ,S,
which is an important feature of the present scenario. Since a linel PL0 obviously intersectsX if
and only if it intersectsSX and intersectsY if and only if intersectsSY we easily obtain the
equality in ~2.20!, taking into account the continuity ofg(x).

In view of the above, and in view of the results in Proposition 2.2, the assertions in part~c! are
trivial.

~2! We consider part~b!. Let l PLo be such thatl ùX5JÞ0” , and letx8,x9 be the endpoints
of J, with x9P V̄1(x8). SinceSY

c .Yc5X, we haveSY
c .J. We assume that there exists a po
J. Math. Phys., Vol. 38, No. 10, October 1997
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xP l ù V̄1(x9) such thatxPSY
c but x¹X, and we will show that this assumption leads to

contradiction. We writexi5(x1x9)/2, and sincexi¹X we haveYù V̄(xi)Þ0” . SinceJ, V̄2(xi),
and henceYù V̄1(xi)50” , it follows that Yù V̄2(xi)Þ0” . Let yPYù V̄2(xi). By part ~b! of
Lemma 2.3 we conclude thatV̄2(xi) contains a pointziP X̄ù Ȳ, and by the results in step~1! we

then haveziPS̄XùS̄Y . If xÞx9, then the interval@zi ,x# is timelike, and obviously there then
exists a pointy8PSY , sufficiently close tozi , such that the interval@y8,x# is also timelike, but
this entails a contradiction sincexPSY

c . We thus havexi5x5x9, and hencexP X̄. If y

PV2(x) we would haveV̄1(y)ùJÞ0” , which entails a contradiction, and hence we must h
yPYù]V2(x). We note thatyÞx, since l ùXÞ0” . By part ~d! of Lemma 2.3 the isotropic
interval @y,x# contains a pointzP X̄ù Ȳ. By ~2.18! we havezPXøY, and hencezPY, since we
cannot havezPX becausey and z lie on the same isotropic line. Since we also havezPS, it
follows thatzPSY , which entails a contradiction sincexPSY

c . Our assumption that there exis
a point xP l ù V̄1(x9) such thatxPSY

c but x¹X is thus untenable. In a similar fashion w
conclude that if xP l ù V̄2(x8) such that xPSY

c , then xPX. From this we conclude tha
SY

c ,X5Yc, and since we trivially haveSY
c .X5Yc, it follows that SY

c 5X5Yc. Similarly we
haveSX

c 5Y5Xc. This completes the proof.
The condition in~2.18! is a necessary and sufficient condition for the existence of a hy

surfaceS with the stated properties, and hence it isessentialfor the conclusions in~2.21!. This
condition is satisfied in particular if one of the setsX or Y of the causally complementary pair
closed, but it does not obtain generally, as one easily sees by examples.

We note that the ‘‘mid-surface’’Sm depends on the choice of the coordinate system, and
the relationship betweenSm and the setsX andY is not Poincare´ invariant. No two points ofSm

are timelike separated, and for reasonably ‘‘nice’’ setsX andY this hypersurface is everywher
spacelike, but it can happen thatSm contains isotropic intervals. IfX̄ù Ȳ contains an isotropic
interval ~which can happen!, then obviouslyeveryhypersurfaceS which satisfies the premises i
the proposition contains an isotropic interval. Note also that an arbitrary hypersurfaceS which
satisfies the premises of the proposition may very well containtimelikeseparated points.

Proposition 2.8:Let S be a hypersurface inM, defined by

S5$~x,g~x!!uxPR3%

whereg(x) is a continuous function onR3 which satisfies the condition

ug~x!2g~y!u<uux2yu ~2.22!

for all x,yPR3, for some fixedu such that 1.u>0. Let SX be aclosedsubset ofS and letSY

be the relative complement ofSX in S. We defineX,Y,M by X5SX
cc andY5SY

cc .
Then the setX is closed, the setY is open, andX andY form a causally complementary pai

i.e., X5Xcc5Yc, andY5Ycc5Xc.
Proof: ~1! We writeY15SX

c andX5Y1
c5SX

cc , and henceX andY1 form a causally comple-
mentary pair. We haveSX,X, and in view of the relation in~2.22! we haveSY,SX

c 5Y1. Since
XùY150” and S5SXøSY , it follows that SX5XùS, SY5Y1ùS, and S,XøY1. Further-
more we easily see thatX̄ù Ȳ15SXùSY , and sinceSX is closed, we haveX̄ù Ȳ1,X. The pair
$X,Y1% thus satisfies the premises in Proposition 2.7, and we conclude that

Y5SY
cc5SX

c 5Y15Xc, X5SX
cc5SY

c 5Yc.

~2! Let Do be an open double cone. In view of the condition in~2.23! we can then find a
compact set K,M such thatSO5K̃ùS,(Do)c. We then haveY5((XùSO)ø(KùSX))c

5(XùSO)cù(KùSX)c, and sinceDo,(XùSO)c it follows that YùDo5(KùSX)cùDo. The
J. Math. Phys., Vol. 38, No. 10, October 1997
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setKùSX is compact, and henceYùDo is open. Since this holds for any open double coneDo

we conclude thatY is open, and hence thatX is closed. This completes the proof.
The above result is of interest, since the description of a causally complementary pair as

with reference to a suitable subset of a suitable hypersurface inM is quite transparent. This
scenario occurs naturally in the theory of the Klein-Gordon equation, whenS is an ‘‘initial value
hypersurface,’’ as we will discuss further in Section IV. There are many variants of this th
involving modified premises. We have here considered only a particularly simple case,
seems to be of particular physical interest.

As we remarked in the Introduction, the considerations in this Section apply almost wi
change to anyn-dimensional Minkowski-type spaceMn , i.e., a space withn21>1 spatial coor-
dinatesx5(x1 ,x2 ,...,xn21) and one temporal coordinatet. Hence we denote a point inMn by
x5(x,t). The definition of such objects as characteristic planes, isotropic lines, double cone
is entirely analogous to the definition of these objects in four-dimensional Minkowski space
and it is hardly necessary to restate these definitions here forMn .

III. ABOUT CLOSED, CONVEX, CAUSALLY COMPLETE SUBSETS OF MINKOWSKI
SPACETIME

One can say thatconvexsubsets of a space are generally ‘‘better behaved’’ than ‘‘arbitra
subsets, and this also applies to convex subsets of Minkowski spacetime. We now tur
consideration of such sets. We first recall a well-known fact about the separation of convex
any finite-dimensional affine space. IfR andS are two disjoint convex sets, and ifS is open, then
there exists a hyperplane such thatS lies in one of the open half-spaces bounded by the hyp
plane, and such thatR lies in the closure of the other half-space.10,11 In the case of Minkowski
spacetime, we have a separation principle which involves the notion of causal complemen
as follows.

Proposition 3.1:Let R be a nonempty convex subset ofM, and letS be a nonemptyopen
convex subset ofM, such thatS,Rc, and henceR,Sc. There then exists a wedgeWPW such
that S,W andR,Rcc,Wc.

Proof: ~1! Let the setsS1 andS2 be defined by

S15ø$V1~x!uxPS%, S25ø$V2~x!uxPS%.

SinceV1(x), V2(x), andS are open and convex~for any x), it follows thatS1 andS2 are
also open and convex. The setsS1 andS2 do not intersectR, sinceR,Sc. There thus exists a
3-planes8 which separatesR from S1 , and a 3-planes9 which separatesR from S2 , in the
sense described above.

~2! Let s8 and s9 be two particular 3-planes as described above. A timelike line inters
every backward and every forward lightcone, and hences8 ands9 cannot contain any timelike
lines, i.e.,s8 ands9 are either spacelike or characteristic. We can then say thatS2 lies belows9
andS1 lies aboves8. Let xPS. SinceS is open, the setSùV2(x) is nonempty, and ify is a point
in this set we havexPV1(y). It follows that S,S1 , and similarly thatS,S2 . HenceS lies
below s9 and aboves8.

Let S1 be the set of all points inM which lie belows9 and aboves8, and letR1 be the set of
all points which do not lie belows9 and do not lie aboves8. We then haveS,S1 andR,R1.

~3! The 3-planes are obviously not parallel, and hence they intersect in a 2-planev5s8ùs9.
Sinces8 ands9 are either spacelike or characteristic, it follows that the 2-planev is spacelike,
and hence the common edge of two open wedgesW andW̄c in W . One of these, sayW, contains
S1, and we then haveR1,Wc. HenceS,W, R,Wc, and Rcc,Wccc5Wc, and we have thus
proved the assertion.
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



ciple
in

ts of

e.

ristic

or-

e
a

ane.

5060 L. J. Thomas, III and E. H. Wichmann: On the causal structure of Minkowski spacetime

                    
We note that this separation principle is closely related to a well-known separation prin
stated in the monograph by Streater and Wightman.2 ~See the discussion of Theorem 2.12
Chapter 2.!

We next present a general characterization of closed, convex, causally complete subseM.
Theorem 3.2:~a! Let K be a closed, convex, causally complete subset ofM such thatKc has

a nonempty interior. Then

K5ù$W̄uWPW ,W̄.K%5ù$WcuWPW ,W,Kc%, ~3.1!

~Kc!o5ø$WuWPW ,Wc.K%5ø$WuWPW ,W,Kc%, ~3.2!

and

~~Kc!o!c5K.

Furthermore,

~Kc!o5Kc, ~Kc!o5~Kc!o. ~3.3!

The setK has an empty interior if and only if it is contained in some characteristic plan
~b! Let $KauaPA% be a family of subsets ofM which satisfy the premises in part~a!. Then

K5ù$KauaPA% also satisfies the premises in part~a!.
~c! Let F be any family of wedges inW , and letS5ø$WuWPF %. Then K5ù$WcuW

PF %5Sc satisfies the premises in part~a!.
If F is a finite family, then the setKc is open.
~d! Let K be a closed, convex, causally complete subset ofM. ThenKc has an empty interior

if and only if K contains an isotropic line. IfK is apropersubset ofM containing an isotropic line
l , thenK is a closed convex union of a set of isotropic lines, all contained in the characte
planep containingl ~and hence all parallel withl ). The setKc is then the relative~set! comple-
ment ofK in p, and hence the union of all isotropic lines inp which do not intersectK.

Proof: ~1! We consider part~a!. Let xP(Kc)o. There then exists an open convex neighb
hood Nx of x in (Kc)o, and by Proposition 3.1 there thus exists a wedgeWPW such thatx
PNx,W andK,Wc. In view of this we conclude that

ø$WuWPW ,Wc.K%.~Kc!o.ø$WuWPW ,W,~Kc!o%.

The relationK,Wc is equivalent to the relationW,Kc ~sinceW and K are both causally
complete!, and since an open wedgeW is contained inKc if and only if it is contained in (Kc)o,
we conclude that the identities in~3.2! hold. From these identities we obtain, by part~b! of
Proposition 2.1, the identities

~~Kc!o!c5ù$WcuWPW ,W,Kc%5ù$W̄uWPW ,W̄.K%.

By part ~a! of Proposition 2.6 we have~with Kc5Y in the Proposition! ((Kc)o)c5Kcc5K,
and we thus obtain the identities in~3.1!. The identities in~3.3! follow directly from Propositions
2.6 and 2.5.

~2! Suppose now thatK has an empty interior. SinceK is convex,K must be contained in
some 3-planep. K cannot contain two timelike separated pointsx8 andx9PV1(x8), becauseK
would then contain the double coneD(x8,x9) with a nonempty interior, which contradicts th
assumption that the interior ofK is empty.K cannot contain any relatively open subset of
spacelike3-plane, becauseK would then contain the base of some double coneDPD , and hence
containD, which is again a contradiction. IfK has a nonempty relative interior inp, then the
3-plane containingK is unique, and it follows from the above that it must be a characteristic pl
J. Math. Phys., Vol. 38, No. 10, October 1997
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If the relative interior ofK in p is empty, thenK is contained in some 2-planev, and the 3-plane
p is not unique. However, sinceK cannot contain any timelike line segment we easily see thav,
and henceK, must be contained in somecharacteristic3-plane.

~3! We consider part~b!, under the stated premises. The setK is closed and convex, as a
intersection of closed convex sets, and by part~c! of Proposition 2.1 it is causally complete, as
intersection of causally complete sets. For anya in the index setA we haveK,Ka and hence
Kc.Ka

c , and sinceKa
c has a nonempty interior it follows thatKc has a nonempty interior. Henc

the setK satisfies the premises in part~a!.
The first assertion in part~c! now follows readily from the above, since for anyWPW the set

Wc trivially satisfies the conditions on the setK in part ~a!. Suppose thatF is afinite family. The
rim KùK̄c of K is then contained in the union of afinite number of spacelike edges of wedge
and by part~c! of Proposition 2.6 we conclude thatKc is open in this case.

~4! We consider part~d!. Suppose thatK contains an isotropic linel . Let p be the unique
characteristic plane containingl . ThenKc is contained in the relative complement ofl in p, and
hence has an empty interior~in M). To prove the converse, we assume thatKc has an empty
interior. If Kc is empty, thenK5M, andK trivially contains isotropic lines. IfKc is nonempty~but
with an empty interior!, then it follows from part~b! of Proposition 2.6 thatK contains an
isotropic linel , and thatK andKc are relative complements of each other in the planep which
containsl . FurthermoreK andKc are unions of isotropic lines inp parallel withl . It is trivial that
Kc is nonempty if and only ifK is a proper subset ofM. This completes the proof.

As we said in the Introduction, we will be interested in certain subsets of the set of all cl
convex, causally complete subsets ofM, and we now define these subsets.

Definition 3.3:~a! We defineK E as the set of allclosed, convex, causally completesubsetsK
of M which satisfy the condition that there exist four characteristic planesp1 ,p2 ,p3 andp4 in a
general relative position, i.e., the normals of these planes are linearly independent, such thatK lies
belowp1 andp2 andabovep3 andp4. We say that two wedges inW are in ageneral relative
position if and only if the normals of the boundary planes are linearly independent. HenK
PK E if and only if there exist two wedgesW1 ,W2PW in a general relative position such th
K,W1ùW2.

~b! We define the subsetK C of K E as the set of allcompactsetsKPK E , i.e., K C is the
set of all compact, convex, causally completesubsets ofM. We regard the empty set 0” as an
element ofK C,K E .

The four planesp j , with j 51,2,3,4, determine an opencone Cconsisting of all points which
lie belowp1 andp2 and abovep3 andp4, and the apex of the cone is thus the common poin
the four planes. We haveC5W(p3 ,p1)ùW(p4 ,p2)5W(p4 ,p1)ùW(p3 ,p2). An element
KPK E is thus a closed, convex, causally complete subset ofM which is contained in such a cone

The setD of all closed double cones with a nonempty interior is, of course, a subset ofK C .
Note, however, thatK E includes sets with an empty interior, such as compact convex subse
characteristic planes, and in particularK E andK C contain the empty set, and any singleton$x%.

With reference to the physical applications we have in mind, the compact sets inK C are,
perhaps, more interesting than the more general unbounded sets inK E . It turns out, however, tha
what we want to prove about the sets inK C is just as easily proved for the sets inK E , and since
the unbounded sets inK E are not in themselves totally devoid of interest, we consider this la
family of sets. It should be noted thatK E by no means includesall closed, convex, causally
complete subsets ofM. The setK E includes no wedge inW , and does not include any nonemp
intersection of two closed wedges which arenot in a general relative position. Certain rath
‘‘pathological’’ sets, such as isotropic~straight! lines or half-lines, are also not included inK E .
We recall the closed half-lineh5$(0,0,l,l)ul>0% mentioned after the proof of Proposition 2.
It is closed, convex and causally complete, and its causal complementhc5$xuxPM,
x4>x3 ,x1

21x2
21x3

22x4
2.0% has a nonempty interior~but hc is not open!. The conclusions in par

~a! of Theorem 3.2 apply toh, but h is not in K E . The considerations in this paper do not app
J. Math. Phys., Vol. 38, No. 10, October 1997
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as such to the class ofall closed, convex, causally complete subsets ofM. The classK E seems to
be the largest class which can be dealt with in a relatively simple manner. We will now discu
properties of the sets inK E .

Proposition 3.4:~a! Every setKPK E satisfies the premises in part~a! of Theorem 3.2, and
specificallyKc is nonempty andopen.

~b! If K0 is any closed, convex, causally complete subset ofM, then K0ùKPK E if K
PK E , andK0ùKPK C if KPK C .

~c! If F c,K C , thenù$KuKPF c%PK C . If F e,K E , thenù$KuKPF e%PK E , and if at
least one of the elements inF e is in K C , thenù$KuKPF e%PK C .

~d! If KPK E , then there exist twospacelike3-planess8 ands9 such thatK lies belows8
andaboves9.

~e! If KPK E , thenK containsno ~straight! line, andno timelike or isotropic half-line.
Proof: ~1! We first consider part~d!. Let p j , for j 51,2,3,4, be four characteristic planes in

general relative position, and such thatK lies below p1 and p2, and abovep3 and p4. Let
x•uj5qj be the equation for the planep j , where the normalsuj are selected asforward isotropic
vectors. The vectorsv85u11u2 andv95u31u4 are then forward timelike since the normalsuj

are linearly independent. Let q85q11q2 and q95q31q4. If xPK, then
x•v85x•u11x•u2,q11q25q8, andx•v95x•u31x•u4.q31q45q9. Hencex lies below the
spacelike 3-planes85$yuy•v85q8%, and above the spacelike 3-planes95$yuy•v95q9%. This
proves the assertion in part~d!.

~2! We consider part~a!. The setKc is never empty ifKPK E . If K50” , thenKc5M is open.
If KÞ0” , then it follows from part~d! of the present proposition, and from part~c! of Proposition
2.6, thatKc is open.

~3! The assertions in part~b! and in part~c! are trivial, and require no further discussion. W
consider part~e!. It follows at once from part~d! that K cannot contain anyisotropic half-line,
because such a line would necessarily intersect one of the spacelike 3-planess8 or s9. Let p j , for
j 51,2,3,4, be the four planes in step~1! above. We consider an arbitrary~straight! line
l 5$x01lvulPR1%, wherev is a non-zero vector, andx0PM. If l does not intersectp j we must
havev•uj50, but this is not possible for everyj 51,2,3,4, since the four normalsuj spanM.
Hencel intersects at least one of the planesp j , and it follows thatl cannot be included inK. This
completes the proof.

A set KPK E which has an empty interior is necessarily contained in some characte
plane, and the most general such set is a closed convex subset of some characteristic plan
contains no line and no isotropic half-line. One may have doubts about the physical significa
setsK in K E which have an empty interior. As we explained in the Introduction, we have in m
the application of the results in this paper to algebraic quantum field theory. We want to ass
a von Neumann algebraB(K) of local operators with eachKPK C , and it is desirable that this
association should satisfy the ‘‘intersection property’’B(K1)ùB(K2)5B(K1ùK2) for all
K1 ,K2PK C . To have such a structure, the family of sets for which the von Neumann alge
B(K) are defined must be closed under arbitrary intersections, which is the case for the fa
K E or K C , butnot for the familyD of all double cones. Now it can happen thatK1 andK2 have
nonempty interiors, and thatK1ùK2 is nonempty but with an empty interior. By examples~con-
structed from free fields! one can show that the algebraB(K) can be non-trivial ifKPK C is a
subset of a characteristic plane with a nonempty relative interior~as a subset of the plane!, and
hence sets of this kind cannot be dismissed outright as ‘‘unphysical.’’ However, for
KPK E which is contained in a spacelike 2-plane the algebraB(K) is trivial, i.e., it consists only
of multiples of the identity.12

The next proposition deals with the question of when the intersection of a family of~closed!
wedges is inK E .

Proposition 3.5:Let F be a family of wedges inW , and letK5ù$WcuWPF %.
~a! If F satisfies the condition that the normals of the boundary planes of the wedgesF
J. Math. Phys., Vol. 38, No. 10, October 1997
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spanM, and the condition thatF contains at least two wedges with non-parallel upper planes,
at least two wedges with non-parallel lower planes, thenKPK E .

~b! If KPK E , and if K is nonempty, then the familyF satisfies the conditions in part~a!.
~c! If K containsno line, andno isotropic half-line, thenKPK E .
Proof: ~1! The setK is trivially closed, convex, and, by part~c! of Proposition 2.1, causally

complete. We consider part~a! and assume thatF satisfies the stated conditions. LetP8 be the set
of all lower planes, andP9 be the set of all upper planes, of the wedgesWPF . Let U8 be the set
of normals of the planes inP8, and letU9 be the set of normals of the planes inP9. By the
premises the setU8øU9 spansM, and each one of the setsU8 and U9 contains at least two
linearly independent vectors. We want to show that there exists a setU5$u18 ,u28 ,u19 ,u29% of four
linearly independent vectors such thatu18 ,u28PU8 andu19 ,u29PU9. It is immediately obvious that
a setU with the stated properties exists if the span ofU8 or of U9 is eitherfour-dimensional, or
else two-dimensional. Suppose now that the span ofU8 and the span ofU9 are boththree-
dimensional. LetU385$u18 ,u28 ,u38% be a set of three linearly independent vectors inU8, and let
U395$u19 ,u29 ,u39% be a set of three linearly independent vectors inU9. The span ofU38øU39 is M.
One of the vectors inU38 , sayu38 , must be a linear combination of the other vectors in the
U38øU39 , i.e., of the vectors inU55$u18 ,u28 ,u19 ,u29 ,u39%, which thus spansM. We next note that
one of the vectors in the setU39,U5, sayu39 , must be a linear combination of the other vectors
the setU5, i.e., of the vectors inU5$u18 ,u28 ,u19 ,u29%, which thus spansM.

Let U5$u18 ,u28 ,u19 ,u29% be a set with the stated properties. It follows from the definition oK
that for j 51,2 the setK is contained in the closed half-space bounded above by the planp j8
PP8 with normaluj8 , and in the closed half-space bounded below by the planep j9 with normal
uj9 , and with reference to Definition 3.3 we conclude thatKPK E .

~2! We consider part~b! and assume thatKPK E is nonempty. Suppose that the normals
the planes inU8øU9 do notspanM. There then exists a vectoru orthogonal to all the normals
Let xPK. The linel 5$x1tuutPR1% is then contained inK, but this contradicts the result in pa
~e! of Proposition 3.4. Hence the normals must spanM.

Suppose that all the planes inP8 are parallel. Letv8 be the common forward isotropic norma
of these planes. IfxPK, then the half-line$x1tv8ut>0% is included inK, but this contradicts the
result in part~e! of Proposition 3.4. HenceP8 must contain at least two non-parallel planes, a
similarly we conclude thatP9 must also contain at least two non-parallel planes.

~3! We consider part~c!, and assume thatKÞ0” , since there is otherwise nothing to prove. B
the reasoning in step~2! we concluded that if the normals inU8øU9 do not spanM, then K
contains a line, contrary to the premises in~c!. We also conclude that if all the planes inP8 ~or in
P9) are parallel, thenK contains an isotropic half-line, contrary to the premises in~c!. Hence the
premises in~c! imply the premises in~a!, and we haveKPK E . This completes the proof.

We note here that the condition in~b! that K be nonempty is in general necessary for t
conclusion. Suppose thatF consists of two wedgesW15W(p18 ,p19) andW25W(p28 ,p29) such
that the planep18 is parallel with andbelow the planep29 . We then haveK5W1

cùW2
c50” , and

henceKPK E , but the span of the normals isthree-dimensional ifp28 is not parallel withp19 , and
two-dimensional ifp28 andp19 are parallel.

Let KPK E be determined by a familyF of wedges which satisfies the conditions in part~a!
of the above proposition. The family of wedgesF A5$WuWPW ,Wc.K% satisfies the same
conditions and determines the same setK. We have, of course,F ,F A . It is important to realize
that in general the setF can be ‘‘very much smaller’’ than the setF A , and that the subse
ø$WuWPF % of M can likewise be ‘‘very much smaller’’ than the setø$WuWPF A%. The set
F A always contains a pair of wedgesW1 and W2 in a general relative position~in view of the
definition of the classK E), but it can well happen that a ‘‘defining family’’F containsno such
pair. This circumstance causes certain complications in the analysis of the configuratio
interest. It is worthwhile to illustrate these considerations by some examples.
$uj u j 51,2, . . . ,n% be an n-tuplet of unit vectors inR3 which spanR3 ~and hencen>3). We define
J. Math. Phys., Vol. 38, No. 10, October 1997
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a set of 2n characteristic planes byp j85$(x,t)ut2x•uj5pj8%, p j95$(x,t)ut1x•uj52pj9%, and a
setF of n wedgesWj5W(p j8 ,p j9), for j 51,2, . . . ,n. Here thepj8 andpj9 are constants. This se
F satisfies the premises in part~a! of the above proposition, but we easily see thatno two wedges
in F are in a general relative position. If all the constantspj8 and pj9 are positive, thenK has a
nonempty interior which contains the origin 05(0,0) in M. It is not hard to show that in this cas
K is compact if and only if the convex hull of the vectorsuj contains the origin0PR3 in its
interior, which can be the case only ifn>4.

The issues in the proposition which follows are closely related to the issues in Propositio
Proposition 3.6:Let P85$pa8 uaPI 8% and P95$pb9 ubPI 9%, whereI 8 and I 9 are two

index sets, be two families ofcharacteristicplanes inM. For eachaPI 8 andbPI 9, we define
Sa8 as theopenhalf-space boundedbelowby pa8 , and we defineSb9 as theopenhalf-space bounded
aboveby pb9 . We write Sab5Sa8ùSb9 , andSab is thus theopensubset ofM ~possibly empty!
which is bounded below bypa8 and bounded above bypb9 . We define the subsetsS8, S9, S, and
K of M by

S85ø$Sa8 uaPI 8%, S95ø$Sb9 ubPI 9%, ~3.4!

and

S5S8ùS95ø$SabuaPI 8,bPI 9%, K5Sc. ~3.5!

Furthermore we assume thatS is nonempty. Then:
~a! The setK is closed, convex and causally complete, and

S8̃ùS9̃,K. ~3.6!

If P8 andP9 are such that for eachaPI 8 there exists abPI 9 such thatSabÞ0” , and such
that for eachbPI 9 there exists anaPI 8 such thatSabÞ0” , thenK5S8̃ùS9̃.

~b! The setS8̃ is either empty or else a closed convex set equal to a union of closed back
lightcones. The setS8 is open and nonempty, and equal to a union of closed forward lightco
Similarly the setS9̃ is either empty or else a closed convex set equal to a union of closed for
lightcones. The setS9 is open and nonempty, and equal to a union of closed backward lightco

The setS satisfies the condition that ifx8,x9PS, with x9PV1(x8), thenD(x8,x9),S.
~c! If each one of the familiesP8 and P9 contains at least two non-parallel planes, th

Scc5Kc is open, and K5S8̃ùS9̃. If, furthermore, the set of normals of the planes inP8øP9
spansM, thenKPK E .

Proof: ~1! We consider part~a!. It follows from the definitions in~3.5! that K5Sc

5ù$Sab
c ua P I 8,b P I 9%.

Suppose thatP8 contains a planepg8 andP9 contains a planepl9 , such thatpl9 is parallel
with pg8 and liesabovepg8 . The regionSgl is then a nonempty open ‘‘slab-region,’’ and we ha
K5Sc,Sgl

c 50” . Since S8.Sg8 and S9.Sl9 we have S8̃,Sg8̃ and S9̃,Sl9̃ , and hence
S8̃ùS9̃,Sg8̃ùSl9̃50” . Thus the relation in~3.6! holds in this case~as an equality!, andK is trivially
closed, convex and causally complete.

~2! We now consider the case when for every planep8PP8 there existsno planep9PP9
such thatp9 is parallel withp8 and liesabovep8. There may, however, exist a planepg8PP8 and
a planepl9PP9 such thatpg8 andpl9 are parallel, but such thatpl9 does not lie abovepg8 . For
such a pair we haveSgl50” , and hence we have

S5ø$SabuaPI 8,bPI 9,SabÞ0” %.

Since we assumed thatSÞ0” , we haveSabÞ0” for some pair (a,b). With the premises in this step
the planespa8 andpb9 are not parallel ifSabÞ0” , and henceSab5W(pa8 ,pb9 )PW . We then have
J. Math. Phys., Vol. 38, No. 10, October 1997
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K5Sc5ù$W~pa8 ,pb9 !cuaPI 8,bPI 9,SabÞ0” %,

and henceK is closed, convex and causally complete. SinceSab
c 5W(pa8 ,pb9 )c5W̄(pb9 ,pa8 )

5Sb9̃ùSa8̃ we can write

K5ù$Sb9̃ùSa8̃ uaPI 8,bPI 9,SabÞ0” %. ~3.7!

We have

S8̃ùS9̃5ù$Sb9̃ùSa8̃ uaPI 8,bPI 9%, ~3.8!

and from this, and from~3.7!, we obtain the inclusion relation in~3.6!. If P8 andP9 are such that
for eachaPI 8 there exists abPI 9 such thatSabÞ0” , and such that for eachbPI 9 there exists
an aPI 8 such thatSabÞ0” , then the right members in~3.7! and ~3.8! are obviously equal, and
henceK5S8̃ùS9̃. We have thus proved the assertions in part~a!.

~3! We consider part~b!. It can happen thatS85M, in which caseS8̃ is empty. We consider
the case whenS8̃Þ0” . By ~3.4! we haveS8̃5ù$Sa8̃ uaPI 8%, and as an intersection of close
half-spaces the setS8̃ is closed and convex. Since the half-spaces are bounded above b
characteristicplanes inP8, it follows that V̄2(x),S8̃ wheneverxPS8̃, and henceS8̃ is a union
of closed backward lightcones. The setS8 is a union of open half-spaces bounded below by
characteristic planes inP8. HenceS8 is open, and we haveV̄1(x),S8 wheneverxPS8, which
implies thatS8 is a union of closed forward lightcones. The assertions in part~b! aboutS9̃ andS9
follow by similar reasoning. The assertion aboutS in part ~b! then follows trivially.

~4! We consider part~c! and assume the stated premises. For eachaPI 8 there now exists a
planepb9PP9 which is not parallel withpa8 , and we then haveSab5W(pa8 ,pb9 )Þ0” . Similarly,
for eachbPI 9 there exists anaPI 8 such thatSabÞ0” . It follows thatK5S8̃ùS9̃. Since the set
S8̃ is bounded above by the familyP8 of characteristic planes which are not all parallel, it follow
by the same reasoning as in step~1! of the proof of Proposition 3.4 thatK lies below some
spacelike plane. Similarly, we conclude thatK lies above some other spacelike plane, and it th
follows from part ~c! of Proposition 2.6 thatScc5Kc is open. If the normals of the planes
P8øP9 spanM, thenKPK E , by Proposition 3.5. This completes the proof.

We here give an example for whichKÞS8̃ùS9̃. The set P8 consists of the single
planep18 , and the setP9 consists of two planesp19 and p29 , such thatp19 is not parallel with
p18 and such thatp29 is parallel withp18 and lies belowp18 . We then haveK5W̄(p19 ,p18) and
S8̃ùS9̃5KùS29̃ÞK.

We note that a planepa8PP8 such thatSab50” for all bPI 9 is ‘‘irrelevant’’ in the sense that
it has no effect on the setsS and K. Given the familiesP8 and P9 we can define ‘‘reduced’’
families P r8 andP r9 with the sameS by omitting the ‘‘irrelevant’’ planes fromP8 andP9. The
advantage of this is that the inclusion relation in~3.6! becomes an equality for the reduced fami

We conclude this Section with two propositions which are of interest in algebraic qua
field theory.

Proposition 3.7:Let K1 ,K2PK E be such thatK1,K2
c . Suppose furthermore thatK1 andK2

are not both unbounded subsets of the same characteristic plane. There then exists a wedgeW
PW such thatK1,W̄ andK2,Wc.

In particular a wedgeW with the stated property always exists ifK1 ,K2PK C .
Proof: ~1! Let K1 ,K2PK E . We assume thatK1 andK2 are nonempty, since the conclusio

is otherwise trivial. We first consider the case when at least one of the convex setsK1 andK2 has
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



, say

p

t

cts

ne

s

e

plane

ed

s.

5066 L. J. Thomas, III and E. H. Wichmann: On the causal structure of Minkowski spacetime

                    
a nonemptyinterior. Suppose thatK1
oÞ0” . The setK1

o is convex, and we haveK1
o,K2

c andK1
o5K1.

By Proposition 3.1 there then exists a wedgeWPW such thatK1
o,W andK2,Wc, and hence

K15K1
o,W̄, which proves the proposition in this case.

~2! Suppose now thatK1
o50” 5K2

o . We first consider the case when at least one of the sets
K1, is compact. Lett.0, and letD(t) be the double cone with apices (0,2t) and (0,t), with
reference to some standard coordinate system. By Proposition 3.4 the setK2

c is open. Since
K1,K2

c , there then exists a sufficiently smallt.0 such thatx1yPK2
c for all xPK1 and ally

PD(t). We select such at, and consider the setK05$x1yuxPK1 ,yPD(t)%. We then have
K1,K0,K2

c , andK0 is closed and convex, and has a nonempty interior. By the result in ste~1!
there then exists a wedgeWPW such thatK1,K0,W̄ andK2,Wc.

~3! It remains to consider the situation whenK1
o50” 5K2

o and neitherK1 nor K2 is compact.
By Theorem 3.2,K1 is contained in some characteristic planep1 and K2 is contained in some
characteristic planep2, which we assume isdifferentfrom p1, in view of the stated premises. Le
the setsS1 andS2 be defined by

S15ø$V1~x!uxPK1%, S25ø$V2~x!uxPK1%.

The setsS1 and S2 are open and convex. The setsS1 and S2 do not intersectK2, since
K2,K1

c . There thus exists a 3-planes8 which separatesK2 from S1 , and a 3-planes9 which
separatesK2 from S2 . Let s8 ands9 be two such particular 3-planes. A timelike line interse
every backward and every forward lightcone, and hences8 ands9 cannot contain any timelike
lines, i.e.,s8 ands9 are either spacelike or characteristic. We can then say thatS2 lies belows9
andS1 lies aboves8. Furthermore, ifyPK2, theny does not lie belows9 and does not lie above
s8. We obviously haveK1, S̄1 andK1, S̄2 , and henceK1, S̄1ù S̄2 . If xPK1, thenx does
not lie aboves9 and does not lie belows8. It follows that if s8Þs9, thens8 ands9 cannot be
parallel. We consider the case whens8Þs9. These 3-planes then intersect in a 2-pla
v5s8ùs9. Sinces8 ands9 are either spacelike or characteristic, it follows that the 2-planev is
spacelike, and hence it is the common edge of two closed wedgesW̄ andWc for someWPW .
One of these, sayW̄, containsK1, in which caseWc containsK2, and the conclusion thus follow
in this case.

~4! We finally consider the case whens85s9. We then haveK1øK2,s8, and in view of the
stated premisess8 must bespacelike. The convex subsetsK1 andK2 of s8 are disjoint, and hence
there exists a two-dimensional linear submanifoldv in s8 such thatK1 lies in one of the closed
half-spaces~in s8) bounded byv, andK2 lies in the other.11 The linear manifoldv in s8 is a
spacelike2-plane inM, and hence it is the common edge of two closed wedgesW̄ and Wc for
someWPW . One of these, sayW̄, then containsK1, in which caseWc containsK2, and the
conclusion thus follows in this case too. This completes the proof.

We consider an example to show what can happen ifK1 andK2 are both non-compact and li
in the same characteristic plane. Letq.0 and let

K15$~p,s,t,t !up>q,s>utu%, K25$~2p,s,t,t !up>q,s>utu%.

These two sets are closed, convex, non-compact subsets of the characteristic
p05$xuxPM,x35x4%. It is easily seen thatK1 ,K2PK E , and thatK1,K2

c . We then search for
all characteristicplanesp with the property thatK1 lies in one of the closed half-spaces bound
by p andK2 lies in the other. By a simple computation we find that the planep0 above is theonly

such plane, which means that there existsno wedgeWPW such thatK1,W̄ andK2,Wc.
Finally we prove the rather obvious fact that everyKPK C is an intersection of double cone

We first note the following. By Proposition 3.4 we haveK5ù$W̄uWPW ,W̄.K% for every K

PK E . If WiPW we clearly haveW̄i5ù$WuWPW ,W.W̄i%, and it then follows that
J. Math. Phys., Vol. 38, No. 10, October 1997
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K5ù$WuWPW ,W.K% for everyKPK E . Analogously we can represent anyKPK C either
as an intersection of a family ofcloseddouble cones, or as an intersection of a family ofopen
double cones.

Proposition 3.8:Let KPK C , i.e., K is a compact, convex, causally complete subset ofM.
Then

~a!

K5ù$DouDPD ,Do.K%5ù$DuDPD ,D.K%. ~3.9!

~b! If WPW andW.K, then there exists a double coneDPD such thatW.D.Do.K.
Proof: ~1! We consider a compact setK0 included in theopenwedgeWR5$xux3.utu%. We

want to show thatK0 is included in an open double cone which is included inWR . We assume
that K0Þ0” since there is otherwise nothing to prove.

We consider the continuous functionc(x)5x32utu on M. It must assume its infimumm on K0

at some point ofK0, and we thus havec(x)5x32utu>m.0 for all x5(x,t)PK0. SinceK0 is
compact we also havex1

21x2
21x3

2<r2 for all xPK0, for somer.0. For anyl.1, let Dl
o be the

open double cone defined by

Dl
o5$xugl~x,t !,l%, gl~x,t !5Ax1

21x2
21~x32l!21utu11/l.

The apices ofDl
o are the pointsx85(0,0,l,2l11/l) andx95(0,0,l,l21/l), and we thus

haveDl
o5Dl,WR . We easily see that the functiongl(x,t)2l tendsuniformly to the function

utu2x3 on any compact subset ofM when l tends to1`. Since utu2x3<2m for all (x,t)
PK0 , it follows thatK0,Dl

o for every sufficiently largel. The same conclusion naturally hold
for any configuration obtained from the configuration$WR ,K0% by a Poincare´ transformation, i.e.,
for a compact subsetK of any WPW . In particular, this proves the assertion in part~b!.

~2! Suppose now thatKPK C . We want to prove the equality of the first two members
~3.9!. We haveK5ù$WuWPW ,W.K%. From the result in step~1! we conclude that ifW.K,
then there exists an open double coneDW

o such thatW.DW
o .K. Selecting such a double cone fo

eachW which containsK we then haveK.ù$DW
o uWPW ,W.K%.K. HenceK is the intersec-

tion of a family of open double cones, and we conclude thatK5ù$DouDPD ,Do.K%. The
equality between the second and third members in~3.9! is trivial. This completes the proof.

IV. ABOUT ENVELOPES OF UNIQUENESS

In the theory of the Klein-Gordon equation and the wave equation there are two well-k
principles concerning the support of a solution of these equations, which we state here
following form.7

Proposition 4.1:Let f(x) be aC2-solution of the Klein-Gordon equation for massm>0 on
an n-dimensional Minkowski-type spacetimeMn ~with n21>1 spatial dimensions and one tem
poral dimension!. Let N(f) be the null region off(x), i.e., the complement of the support o
f(x). Then we have the following.

~I! If N(f) contains an open timelike segment (x8,x9), thenN(f) contains the open doubl
coneD(x8,x9)o.

~II ! If N(f) contains the base of an open double coneDo, thenN(f) containsDo.
We have stated these principles for ‘‘ordinary’’ solutions of the partial differential equati

but they apply equally well to distribution-valued solutions of the Klein-Gordon equation.
We now define a most important kind of ‘‘envelope’’E(S) of any openS,M. This definition

is motivated by the two principles in Proposition 4.1.
Definition and Proposition 4.2:~a! Let S be anopensubset of Minkowski spacetimeM. There

then exists a uniquesmallestsubsetX of M which satisfies the following three conditions:~I!
J. Math. Phys., Vol. 38, No. 10, October 1997
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X.S. ~II ! If X contains the baseB0 of an open double coneDo,M, thenX containsDo. ~III ! If
X contains the open timelike line segment (x8,x9), then X contains the open double con
Do5D(x8,x9)o with x8 andx9 as apices.

Here, and throughout this paper, we denote this smallest set byE(S), for any open S,M.
~b! The setE(S) is open, and it satisfies the conditionsE(S),(Scc)o,Scc5E(S)cc. If S is

causally complete, thenE(S)5S. Furthermore,E(E(S))5E(S), andE(S1).E(S2) if S1.S2.
~c! If the opensetS contains either the baseB of a closed double coneD5D(x8,x9)PD , or

else the closed timelike line segment@x8,x9#, thenE(S) containsD.
~d! If S1 and S2 are two open subsets ofM such thatE(S1)5S1 and E(S2)5S2, then

E(S1ùS2)5S1ùS2. If S1 andS2 aredisjoint, thenE(S1øS2)5S1øS2.
Proof: We defineE(S) as the intersection of all sets in the family of all setsX,M which

satisfy the above Conditions I–III. It is obvious that this family is closed under intersections
not empty, since it obviously includesScc, and henceE(S) is well-defined and unique. Sinc
E(S)o is clearly also in the above family, we must haveE(S)o5E(S), i.e., E(S) is open.

We haveS,E(S),Scc, and forming the causal completion of all three members we ob
Scc5E(S)cc. The remaining assertions are trivial.

The above considerations apply equally well to an arbitrary Minkowski-type spacetimeMn .
For the applications which we have in mind we are interested in the casen54 ~physical spacetime
M) and the casen55.

The two principles in Proposition 4.1 can now be stated in the form:N(f).E(S) if N(f)
contains the open setS, and in particular we haveE(N(f))5N(f). The setE(S) is an ‘‘envelope
of uniqueness’’ in the sense that the restriction of any solutionf(x) of the Klein-Gordon equation
to S determinesf(x) uniquely onE(S). The notion of the envelopeE(S) has been well under
stood for a long time, but there does not seem to exist any universally accepted term fo
envelope.

We note here the following. LetS,M be open. There then exists a largest open setSe.S
such thateverysolution of the Klein-Gordon equation~for a particular massm) which vanishes
throughoutS also vanishes throughoutSe . By the above we haveSe.E(S), but for certain
subsetsS it can well happen thatSe is larger thanE(S). ~We will give examples in a subseque
paper.!

The facts stated in part~b! of Proposition 4.2 are trivial, but important. We note here that w
Se defined as above, one can show that we always have (Scc)o.Se.E(S).S, for any open
S,M, and hence (Scc)o is an upper bound on the extensionSe . It is thus of obvious interest to
find conditions onS under which we have (Scc)o5E(S). That this equality does not hold gene
ally we see immediately by the following example. LetS be the union of twotimelikeseparated
open double cones, i.e.,S5D(x18 ,x19)

oøD(x28 ,x29)
o, with x28PV1(x19). We then haveE(S)5S,

but Scc5D(x18 ,x29)
o5(Scc)o, and this latter set is strictly larger thanE(S). Another obvious

example is whenS is an open forward~or backward! lightcone. We then haveE(S)5S, but
Scc5M. There are many other kinds of examples of regionsS for which E(S)5S, but for which
(Scc)o is strictly larger thanE(S), and we note here the following special cases of poten
physical interest

Proposition 4.3: ~a! If S is an open half-space bounded by a characteristic plane,
E(S)5S, andScc5M.

~b! If S is the open ‘‘slab-region’’ between two parallel characteristic planes, thenE(S)5S,
andScc5M.

~c! Let p8 and p9 be two parallel characteristic planes, withp9 abovep8, and letp be a
characteristic planenot parallel withp8. Let S be the open set consisting of all pointsx which are
below the planep9 andabove bothof the planesp8 andp. ~We might refer toS as a ‘‘charac-
teristic half-slab.’’! ThenE(S)5S, andScc5W(p,p9).

The proofs are trivial, and hence omitted. In this connection we state a simple result co
ing regions inM bounded by two characteristic planes.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Lemma 4.4:Let x8,x9PM, and letl 85$x82lu8ulPR1% and l 95$x91lu9ulPR1% be two
isotropic lines, whereu8 andu9 are forward isotropic. Letp8 be the unique characteristic plan
which containsl 8, and letp9 be the unique characteristic plane which containsl 9. We write
x8(l)5x82lu8 andx9(l)5x91lu9, and we defineS to be theopenregion ~possibly empty!
boundedaboveby p9 and boundedbelowby p8. ThenS is nonempty if and only if there exist
a l0 such thatx9(l0)2x8(l0) is forward timelike, and if this is the case, then

E~S!5S5ø$D~x8~l!,x9~l!!oul>l1% ~4.1!

for any l1>l0.
Proof: ~1! Suppose thatx9(l0)2x8(l0) is forward timelike for somel0. Then the point

(x9(l0)1x8(l0))/2 lies abovep8 and belowp9, and henceS is not empty.
~2! Suppose thatS is not empty, and thatxPS. We then haveu8•(x2x8).0 and

u9•(x92x).0. For any reall we have

~x2x8~l!!•~x2x8~l!!52lu8•~x2x8!1~x2x8!•~x2x8!,

~x2x9~l!!•~x2x9~l!!52lu9•~x92x!1~x2x9!•~x2x9!.

The vectorsx2x8(l) and x9(l)2x are thus timelike for all sufficiently large positivel, and
since their temporal components are obviously positive for all sufficiently large positivel, it
follows that they are bothforward timelike for suchl. For eachxPS there thus exists alx such
that x2x8(l) andx9(l)2x are forward timelike, and hencex9(l)2x8(l) is also forward time-
like, for all l>lx . We then havexPD(x8(l),x9(l))o wheneverl>lx . This proves that the
right member in~4.1! containsS.

~3! By the above it follows that ifS is not empty, then there exists al0 such that
x9(l0)2x8(l0) is forward timelike. Thenx9(l)2x8(l) is forward timelike for alll>l0, and it
is trivial that the open double coneD(x8(l),x9(l))o then lies abovep8 and belowp9. We
conclude that equality obtains between the second and third members in~4.1!. The regionS is
either a wedge inW ~if p8 and p9 are not parallel!, or else a ‘‘slab-region’’ as in part~b! of
Proposition 4.3, and in either case we haveE(S)5S. This completes the proof.

This lemma, as well as Proposition 4.3, also hold for the Minkowski-type spacetimeM5,
which is of interest in some applications.

The following result, perhaps mildly surprising at first, is closely related to the above.
Proposition 4.5:Let D5D(x8,x9)PD , and letu be a forward isotropic vector. Letp9 be the

unique characteristic plane with normalu which passes throughx9, and letp8 be the characteristic
plane parallel with p9 which passes throughx8. We define the ‘‘tube region’’T by
T5$x1luuxPDo,lPR1%. We then haveTcc5M, andE(T) is the open ‘‘slab-region’’ bounded
above byp9 and bounded below byp8.

Proof: It is trivial that Tcc5M. We writex8(l)5x82lu andx9(l)5x91lu, for any reall.
For l.0 the open line segment (x8(l),x9(l)) is timelike, and contained inT. The conclusion of
the proposition then follows from~4.1! in Lemma 4.4 in the special case whenu85u95u.

We next consider a rather obvious ‘‘construction’’ of the envelopeE(S) of a given open set
S.

Proposition 4.6: For any double coneD5D(x8,x9)PD we denote by Jo(D) the
open line segment (x8,x9), and we denote byBo(D) the base of the open double coneDo.

Let S be an open subset ofM. We define a sequence of open setsSn , nPZ1 , recursively as
follows: ~1! S15S. ~2! S2n5ø$DouDPD ,Jo(D),S2n21%, for all nPZ1 . ~3! S2n115ø$DouD
PD ,Bo(D),S2n%, for all nPZ1 . Then

~a! E(S).Sn11.Sn.S and

E~S!5ø$SnunPZ1%. ~4.2!
J. Math. Phys., Vol. 38, No. 10, October 1997
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~b! If S is timelike convexin the sense thatS contains everytimelikeline segment@x8,x9# for
which x8,x9PS, thenE(S) is also timelike convex. Furthermore, if@x8,x9# is an isotropic line
segment such thatx8,x9PE(S), then@x8,x9#,E(S).

Proof: ~1! As unions of open sets, the setsSn are open for alln. Every pointxPSn is then the
center-pointJo(D)ùBo(D) of some open double coneDo,Sn , and hencexPSn11. We thus
haveSn11.Sn.S15S. We clearly haveE(Sn).Sn11.Sn , and it follows thatE(Sn11)5E(Sn),
and henceE(S)5E(Sn).Sn for all n.

~2! We writeS`5ø$SnunPZ1%. For any double coneD5D(x8,x9)PD we denote byJ(D)
the closed line segment@x8,x9#, and we denote byB(D) the base of the closed double coneD.
Suppose thatDPD is such thatJo(D),S` . Let DiPD be such thatJ(Di),Jo(D). SinceJ(Di)
is compact it follows thatJ(Di) is covered by afinite numberof the setsSk , and hence
Jo(Di),J(Di),S2n21 for some n. We then have Di

o,S2n,S` . Now Do5ø$Di
ouDi

PD ,J(Di),Jo(D)%, and henceDo,S` . We have thus shown thatDo,S` whenever
Jo(D),S` .

~3! Suppose thatDPD is such thatBo(D),S` . Let DiPD be such thatB(Di),Bo(D).
SinceB(Di) is compact, we readily conclude thatBo(Di),B(Di),S2n for somen, and hence
Di

o,S2n11,S` . We haveDo5ø$Di
ouDiPD ,B(Di),Bo(D)%, and henceDo,S` . We have

thus shown that the setS` satisfies the three conditions in Definition 4.2, and since we also h
E(S).S` the equality in~4.2! follows.

~4! We consider part~b!, and assume thatS5S1 satisfies the stated condition of timelik
convexity. Suppose now thatS2n21 is also timelike convex for somen. Let x8,x9PS2n and x9
PV1(x8). There then exist two double conesD(y18 ,y19)

o and D(y28 ,y29)
o in S2n such thatx8

PD(y18 ,y19)
o, x9PD(y28 ,y29)

o, and y18 ,y19 ,y28 ,y29PS2n21. We easily see that the line segme
(y18 ,y29) is timelike, and it follows thatD(x8,x9)o,D(y18 ,y29)

o,S2n . We have thus shown tha
S2n is timelike convex ifS2n21 is timelike convex.

~5! Suppose thatS2n is timelike convex for somen. Let x8,x9PS2n11 andx9PV1(x8). There
then exist two double conesD1 and D2 in S2n11 such that x8PD1

o , x9PD2
o , and

Bo(D1)øBo(D2),S2n . Let l be the timelike line throughx8 andx9, and letz15 l ùBo(D1) and
z25 l ùBo(D2). We have@x8,z1#,D1,S2n11 and @x9,z2#,D2,S2n11. Sincez1 ,z2PS2n , and
since S2n is timelike convex, we have@z1 ,z2#,S2n,S2n11, and it then follows that
@x8,x9#,S2n11. We have thus shown thatS2n11 is timelike convex ifS2n is timelike convex.

~6! From the results in steps~4! and~5! it follows by an obvious argument by induction onn
thatSn is timelike convex for alln. Let x8,x9PE(S), with @x8,x9# timelike. There then exists an
integern such thatx8,x9PSn , and hence@x8,x9#,Sn,E(S), andE(S) is thus timelike convex.

Let x8,x9PE(S), with x9P]V1(x8), i.e., the line segment@x8,x9# is isotropic. Letu be a
forward timelike vector. There then exists ad.0 such thaty85x82du, y95x91duPE(S). The
line segment@y8,y9# is then timelike, and we have@x8,x9#,D(y8,y9),E(S). This completes the
proof.

We now turn to a consideration of the important cases whenE(S)5Scc, and we first state and
prove a useful lemma.

Lemma 4.7:Let S,M be openand timelike convex, in the sense defined in Proposition 4.

and such thatS̄ is compact. ThenScc5E(S), and henceScc is open.

Proof: ~1! Since S̄ is compact, there exists some open double coneDo such thatS,Do, and
henceE(S),Scc,Do. Hence the closures ofE(S) andScc are also compact. SinceS is open, the
setSc is closed, and sinceScc is compact, it follows from part~c! of Proposition 2.6 thatScc is
open. SinceS,E(S),Scc, we haveE(S)cc5Scc, and by Proposition 4.6 the setE(S) is timelike
convex. The setE(S) thus satisfies the same premises as the setS, and to simplify the notation we
might as well assume thatS5E(S), and we shall do so in what follows.

~2! We select a standard coordinate system, and define the subsetX of R3 by X5$xu(x,t)
PS%, i.e., X can be regarded as the orthogonal projection ofS onto the 3-planes05$(x,0)ux
J. Math. Phys., Vol. 38, No. 10, October 1997
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PR3% if we identify this 3-plane withR3. The setX is open inR3, and its closureX̄ is obviously
compact and we haveX̄5$xu(x,t)P S̄%, since S̄ is compact.

~3! Let xP]X. Let t be such thatx5(x,t)P S̄. Such at certainly exists, sinceS̄ is compact.
We shall show that the value oft is unique, and thatx5(x,t)PSc. We consider the possibility
that there exists a pointyP V̄1(x)ùS. SinceS is open, there then exists a pointy0PV1(x)ùS.
We havexPV2(y0), and hence every neighborhood ofx contains points inV2(y0)ùS. If x0

PV2(y0)ùS, thenD(x0 ,y0)o,S5E(S), and sincex0 can be as close tox as we like, it follows
that D(x,y0)o,S. Let l x5$(x,t)utPR%. The intersectionl xùD(x,y0)o, l xùS is nonempty, but
this entails a contradiction since it implies thatx is in the open setX, contrary to the assumption
that xP]X. The assumption thatV̄1(x)ùS is nonempty is thus untenable. By similar reasoni
we conclude that alsoV̄2(x)ùS50” , and hencexPSc. Since we also havexP S̄ it follows thatx
is in the rim of Scc, which implies thatt is unique~since the rim cannot contain two timelik
separated points!.

~4! Let xPX, and letl (x)5$(x,t)utPR%. The intersectionl (x)ùS is an open interval with
endpointsy8(x)5(x,t8(x)) and y9(x)5(x,t9(x)), and the intersectionl (x)ùScc is an open in-
terval with endpointsz8(x)5(x,s8(x)) andz9(x)5(x,s9(x)), wheres9(x)>t9(x).t8(x)>s8(x).
We define the functionsf 1(x) and f 2(x) on X by

f 1~x!5s9~x!2t9~x!, f 2~x!5t8~x!2s8~x!.

We shall show thatf 1(x)505 f 2(x). We consider the possibility that there exists a po
xPX such thatf 1(x)5b.0. Let B be the base of the closed double coneD(ym(x),y9(x)), with
apicesym(x)5(y8(x)1y9(x))/2 andy9(x). We cannot haveB,S since this would imply that
y9(x)PE(S)5S. SinceD(ym(x),y9(x))o,D(y8(x),y9(x))o,S it follows that there must exist a
point xB5(xB ,tB)PBù]V2(y9(x)), which is not in S. The pointxB is obviously in S̄, and we
have tB5(3t9(x)1t8(x))/4,t9(x). We havel (xB)ùD(y8(x),y9(x))oÞ0” , and xB is the upper
endpoint of the intersection. We conclude thatxBPX, and thatxB5y9(xB), with t9(xB),t9(x). It
follows from Proposition 2.2 thatz9(xB)¹V2(z9(x)), i.e., we haves9(xB)>s9(x)2uxB2xu.
Sincet9(xB)5t9(x)2uxB2xu it follows that f 1(xB)>b.

~5! Let Xb be the set of all pointsxPX for which f 1(x)>b, and lett5 inf$t9(x)uxPXb%. The
numbert is finite sinceS is bounded. There then exists an infinite sequencexn , nPZ1 , of points
in Xb,X such that limn→`t9(xn)5t. SinceX̄ is compact, the sequencexn must have a convergen
subsequence, and we can thus assume that the sequence is so chosen that it is converge

lim
n→`

~xn ,t9~xn!!5~x,t!5x

The pointx cannot be inX, because it would then follow from the result in step~4! that there
exists a pointx8PX such thatf 1(x8)>b and t9(x8),t9(x)5t, which is a contradiction. Hence
we havexP]X, and by the result in step~3!, (x,t)5xPSc. The pointsxn5(xn ,t9(xn))5y9(xn)
are in Scc for all n, and so are the points (xn ,t9(xn)1b/2). Since b.0 we conclude that
(xn ,t9(xn)1b/2)P V̄1(x) for all sufficiently largen, which entails a contradiction, sincexPSc.
The assumption thatf 1(x).0 for some pointxPX is thus untenable, and hencef 1(x)50 onX.
By similar reasoning we conclude that alsof 2(x)50 on X. This means thatl (x)ùS5 l (x)ùScc

for all xPX.
~6! Our choice of a standard coordinate system was arbitrary, and hence we conclud

l ùS5 l ùScc for any timelike line l which intersectsS.
Let xPScc. We must haveV̄(x)ùSÞ0” , since otherwisexPSc, and sinceS is open we

actually haveV(x)ùSÞ0” . There thus exists a timelike linel throughx which intersectsS, and
since we then havel ùS5 l ùScc it follows that xPS. HenceS5E(S)5Scc. This completes the
proof.
J. Math. Phys., Vol. 38, No. 10, October 1997
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It is easy to show, through examples, that the conclusion can fail to hold ifS is timelike
convex but not bounded, or ifS is bounded but not timelike convex.

On the basis of this lemma we now obtain the following general result.
Theorem 4.8: ~a! Let S,M be open. Then Scc5E(S) if and only if the following two

conditions hold:~I! E(S) is timelike convex~in the sense that@x8,x9#,E(S) if x8,x9PE(S) and
the interval@x8,x9# is timelike!. ~II ! For every pointxPScc there exists an open double coneD (x)

o

such thatxP(E(S)ùD (x)
o )cc.

The second condition holds ifS has the property that for every pointxPScc there exists an
open double coneD (x)

o such thatxP(SùD (x)
o )cc.

~b! Let S,M beopenandtimelike convex. ThenScc5E(S) if and only if S has the property
that for every pointxPScc there exists an open double coneD (x)

o such thatxP(SùD (x)
o )cc. In

particular we haveScc5E(S) if S̄ is compact.
Proof: ~1! We first prove part~b!, and assume the stated premises.
With reference to some standard Cartesian coordinate system we define the sequencDn

o , n
PZ1 , of open double cones byDn

o5$(x,t)un.uxu1utu% for all nPZ1 . SinceDn
o is convex and

S is timelike convex, it follows thatSùDn
o is timelike convex. By Lemma 4.7 we then hav

E(SùDn
o)5(SùDn

o)cc.
Let Se5ø$E(SùDn

o)unPZ1%. Since E(S).E(SùDn
o).SùDn

o , and since obviously
S5ø$SùDn

ounPZ1%, we have E(S).E(Se).Se.S. Furthermore, we have
Scc.ø$(SùDn

o)ccunPZ1%.
Let x8,x9PSe , with x9PV1(x8), and hencex8,x9PE(SùDn

o)5(SùDn
o)cc for somen. It

follows thatD(x8,x9)o,E(SùDn
o),Se .

Let B be the base of a closed double coneDPD , and suppose thatB,Se . Since B is
compact, it is covered by somefinite union of the setsE(SùDn

o), and henceB,E(SùDm
o ) for

somem. It follows thatD,E(SùDm
o ),Se . From this we readily conclude that ifBo is the base

of an open double coneDo, thenDo,Se if Bo,Se .
The ~open! setSe thus satisfies the three conditions in Definition 4.2, and since we also

E(S).Se , it follows that E(S)5Se .
~2! From the above it follows that

Scc.ø$~SùDn
o!ccunPZ1%5ø$E~SùDn

o!unPZ1%5E~S!. ~4.3!

Let xPScc, and suppose that there exists an open double coneD (x)
o such that x

P(SùD (x)
o )cc. We have D (x)

o ,Dn
o for some n, and hence, in view of ~4.3!, x

P(SùD (x)
o )cc,(SùDn

o)cc,E(S). We conclude that if there exists, for everyxPScc, an open
double coneD (x)

o such thatxP(SùD (x)
o )cc, thenScc5E(S). Conversely, ifScc5E(S) and if x

PScc, thenxP(SùDn
o)cc for somen ~which in general depends onx). We have thus proved par

~b!.
~3! We consider part~a! and assume the stated premises. By Proposition 4.2 we

Scc5E(S)cc andE(E(S))5E(S). With E(S) playing the role ofS we apply the result in part~b!,
and conclude thatE(S)cc5E(E(S)) if and only if Conditions I and II hold. Hence we hav
Scc5E(S) if and only if these conditions hold. The final assertion in part~a! is trivial, since
(E(S)ùD (x)

o )cc.(SùD (x)
o )cc. This completes the proof.

It is instructive to consider the cases in Proposition 4.3 for which we haveSccÞE(S) in the
light of the above theorem. In these cases Condition I holds, but Condition II fails to hold. I
case whenS is the union of two timelike separated open double cones Condition II holds
Condition I fails to hold.

Part~a! of the theorem states the necessary and sufficient condition forScc5E(S), in terms of
the properties ofE(S), for any openS,M. Given an open setS, the determination of eitherE(S)
or Scc can be rather nontrivial, but it is perhaps in general easier to findScc, and part~b! of the
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



,

by

he

the

ne

-

oof.

.

ed in

en

t

5073L. J. Thomas, III and E. H. Wichmann: On the causal structure of Minkowski spacetime

                    
theorem is then of interest since it involves only conditions onS which might be easy to check
without a prior determination ofE(S).

We consider a backward lightconeV2(x0), and we suppose that it is cut into two parts
some hypersurfaceS, such that ‘‘upper part’’ is bounded. IfS is contained in some open setS, it
is intuitively plausible that the ‘‘upper part’’ of the lightcone will then be contained inE(S).
Another plausible result is the following. If the boundary]X of a boundedsetX,M is contained
in an open setS, we expect thatX,E(S). The validity of these expectations is borne out by t
‘‘working lemma’’ which follows.

Lemma 4.9:Let X be aboundedsubset ofM, and letS be anopensubset ofM.

~a! Suppose thatX,V2(x0) for some x0PM, and that V2(x0)ù]X,(Sø X̄)o. Then
X,E(S). In particular this conclusion obtains ifV2(x0)ù]X,S.

~b! Similarly we haveX,E(S) if the inclusion relations in the premises of part~a! hold with
V2(x0) replaced byV1(x0).

Proof: ~1! We consider part~a!. Let X15XùE(S)̃ . We have X̄1, X̄ùE(S)̃ , and X̄1 is
compact sinceX is bounded. To prove the Lemma we thus have to show thatX150” . To do this
we assume thatX1Þ0” , and show that this assumption leads to a contradiction. We define
functiont(x) on M by t(x)5(x2x0)•(x2x0). This function is continuous, and we havet(x).0

for xPV2(x0), andt(x)50 on]V2(x0). SinceX̄1 is compact the restriction of the functiont(x)

to X̄1 ~which is nonempty by our assumption! must assume its supremum at some pointx1P X̄1.
SinceV2(x0).X1Þ0” we havet(x).0 onX1, and it follows thatt(x1).0 andx1PV2(x0). We

then havet(x).t(x1) for every xP V̄2(x1) different from x1, and we conclude thatV̄2(x1)

contains no other point ofX̄1 than the pointx1.

~2! The point x1 is in V2(x0)ùE(S)̃ . In view of the premises in part~a! it cannot be in

V2(x0)ù]X,(Sø X̄)o,S,E(S), and hence we havex1PXo sincex1P X̄. We can then find a
point yPV2(x1) such thatD(y,x1),Xo,X. Let B be the base of the closed double co

D(y,x1). We haveB, V̄2(x1)ùX, and BùXùE(S)̃50” in view of the result in step~1!. We
conclude thatB,E(S), but it then follows thatx1PE(S), which is a contradiction. The assump

tion thatXùE(S)̃Þ0” is thus untenable, and henceX,E(S).
The assertion in part~b! is proved by the same kind of reasoning. This completes the pr
Let X be a bounded subset ofM, and letS be anopenset which contains]X. We selectx0

PM such thatV2(x0). X̄, and by Lemma 4.9 we then conclude thatX̄,E(S), as we expected
Another trivial application is the following. Suppose that an open setS contains the boundary
]V1(x) of a forward lightcone. Letx0PV1(x). By the lemma we then haveD(x,x0)o,E(S),

and it follows readily thatV̄1(x),E(S), which is intuitively rather plausible.
We consider a simple application of the lemma to the kind of configurations present

Proposition 2.8.
Proposition 4.10:Let S be a hypersurface inM defined byS5$(x,g(x))uxPR3%, whereg(x)

is a continuous function onR3 which satisfies the condition thatug(x)2g(y)u<uux2yu for all
x,yPR3, for some~fixed! uP(0,1). LetSo be a relatively open subset ofS ~within S). Let S be
an open subset ofM such thatSo,S,So

cc . ThenE(S)5Scc5So
cc .

Proof: ~1! By Proposition 2.8 the setSo
cc is open, and accordingly there certainly exist op

setsS which satisfy the above premises.
It is obvious that every timelike or isotropic line intersectsS in a single point. The se

V1(S)5ø$V1(y)uyPS% is the set of all pointsaboveS, and the setV2(S)5ø$V2(y)uy
PS% is the set of all pointsbelowS. The setsV1(S), V2(S), andS are disjoint, and their union
equalsM.

~2! Let x be a point inSo
cc . We want to show thatxPE(S), and we assume thatx¹S, since

there is otherwise nothing to prove. We consider the case whenxPV1(S). Let l be any timelike
or isotropic line throughx. It intersectsS, and the intersectionl ùS must be inSo , because the
J. Math. Phys., Vol. 38, No. 10, October 1997
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relative complement ofSo within S is contained in So
c . Hence V̄2(x)ùSo

c50” . Let
X5V2(x)ùV1(S). The setX is obviously bounded, and we haveV2(x)ù]X,S. By Lemma
4.9 it follows thatX,E(S), and from this we conclude thatSo

ccùV1(S),E(S). By similar
reasoning we show thatSo

ccùV2(S),E(S), and hence we haveSo
cc,E(S). Forming the causa

completion of the three members in the inclusion relationSo,S,So
cc we obtainScc5So

cc , and
sinceE(S),(Scc)o we conclude thatE(S)5Scc5So

cc . This completes the proof.
We remark here that the conclusion in the proposition can fail to hold if the above cond

on g(x) is replaced by the conditionug(x)2g(y)u,ux2yu, as one can show by simple example
The above proof can then break down because there might exist isotropic lines which d
intersectS, and the setX might then fail to be bounded.

There are many variants of the above proposition. The assumption thatS is everywhere
spacelike is not essential, but was made for the sake of simplicity.

We will now apply the lemma to the kind of configurations discussed in Proposition 3.6
Theorem 4.11: Let P85$pa8 uaPI 8% and P95$pb9 ubPI 9%, where I 8 and I 9 are two

index sets, be two families ofcharacteristicplanes inM. For eachaPI 8 andbPI 9, let Sab be
theopensubset ofM ~possibly empty! which is bounded below bypa8 and bounded above bypb9 ,
and letS5ø$SabuaPI 8,bPI 9% andK5Sc. The setS is thus the set of all pointsxPM which
lie below at least one of the planes inP9 and lie above at least one of the planes inP8.
Furthermore, we assume~for convenience! that for eachaPI 8 there exists abPI 9 such that
SabÞ0” , and that for eachbPI 9 there exists anaPI 8 such thatSabÞ0” . Then we have the
following.

~a! The premises of Proposition 3.6 are satisfied, and hence all the conclusions in that
sition apply. In particular, the setK5Sc is closed, convex and causally complete.

~b! The following cases can occur:
Case I: KÞ0” , and henceSccÞM. We then have

E~S!5~Scc!o5~Kc!o.

Case II: K50” , Scc5M5E(S).
Case IIIa: K50” , Scc5M, andE(S) is an open half-space bounded below by a character

planep8, in which case all the planes inP8 are parallel withp8.
Case IIIb: K50” , Scc5M, andE(S) is an open half-space bounded above by a character

planep9, in which case all the planes inP9 are parallel withp9.
Case IV: K50” , Scc5M, andE(S) is a nonempty open ‘‘slab-region’’ bounded above by

characteristic planep9 and bounded below by a characteristic planep8 parallel withp9, in which
case all the planes inP8øP9 are parallel with the planesp8 andp9.

~c! If each one of the setsP8 and P9 contains at least two non-parallel planes, th
E(S)5Scc5Kc and Scc is open. If P8 and P9 satisfy theadditional condition that the set of
normals of the planes inP8øP9 spansM, thenKPK E .

Proof: ~1! As in Proposition 3.6 we defineSa8 as theopenhalf-space boundedbelowby pa8 ,
and we defineSb9 as theopenhalf-space boundedaboveby pb9 . We define the subsetsS8andS9
of M by S85ø$Sa8 uaPI 8% andS95ø$Sb9 ubPI 9%, and henceSab5Sa8ùSb9 andS5S8ùS9. We
recall here the important inclusion relation~3.6! in Proposition 3.6. With our slightly stronge
premises in the present theorem we have

S8̃ùS9̃5K. ~4.4!

~2! We first consider the case whenP9 contains two non-parallel planes, and we want to sh
that then S8ù(Scc)o,E(S). Let xPS8ù(Scc)o. If x is also in S9 we have x
PS8ùS95S,E(S), and there is nothing more to prove. We thus consider the case when

exists a pointxPS8ù(Scc)oùS9̃. By part ~b! in Proposition 3.6 we haveV1(x),S9̃, and since
J. Math. Phys., Vol. 38, No. 10, October 1997
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S8ù(Scc)o is open, we can find a pointx0PS8ù(Scc)oùS9̃ùV1(x). Let X5V2(x0)ùS9̃,

Y5V2(x0)ùS8̃, andS05V2(x0)ùS. We trivially haveXùS050” 5YùS0, V2(x0)5S0øXøY,
and the setS0 is open. By assumptionP9 contains two non-parallel~characteristic! planes, and

hence no point ofS9̃ lies below either one of these two planes. It follows that the setX is bounded.

Furthermore, we haveX̄ù Ȳ, V̄2(x0)ùS8̃ùS9̃. In view of ~4.4! this implies that
X̄ù Ȳ, V̄2(x0)ùK50” , since x0PScc5Kc. It follows that V2(x0)ù]X,( X̄øS0)o, and by
Lemma 4.9 we then havexPX,E(S0),E(S), and we conclude thatS8ù(Scc)o,E(S).

By similar reasoning we conclude that ifP8 contains two non-parallel planes, the
S9ù(Scc)o,E(S).

~3! It is convenient to now prove the assertions in part~c!, and we thus assume that each o
of the setsP8 andP9 contains at least two non-parallel planes. By part~c! of Proposition 3.6 the
setScc is open. By the results in step~2! we then have (S8øS9)ùScc,E(S). Forming the~set!
complements of both members in the relation~4.4! we obtainS8øS95K̃.Kc5Scc, and hence
Scc,E(S). SinceE(S),(Scc)o it follows thatE(S)5Scc. Hence either Case I or Case II obtain
depending on whetherKÞ0” or K50” . The remaining assertion in part~c! was proved in Propo-
sition 3.6. In view of this results we now only have to consider the configurations for which a
planes in at least one of the setsP8 or P9 are parallel.

~4! Suppose that all the planes inP8 are parallel, but thatP9 contains two non-parallel planes
ThenS8 is either equal toM, or elseS8 is an open half-space bounded below by a character
planep8, parallel with all the planes inP8. By the results in step~2! we have

S8ù~Scc!o,E~S!,~Scc!o. ~4.5!

We first consider the case whenS85M, and henceS8̃50” . By ~4.4! we haveK50” , and by
~4.5! we haveE(S)5(Scc)o. HenceE(S)5Scc5M and Case II obtains.

We next consider the case whenS8ÞM, andS8 is thus an open half-space bounded below
a characteristic planep8. We haveE(S8)5S8, and sinceS,S8 we haveE(S),E(S8)5S8. In

view of ~4.5! we conclude thatE(S)5S8ù(Scc)o. If K5S8̃ùS9̃50” , and henceScc5(Scc)o5M,

we haveE(S)5S8, and Case IIIa obtains. Suppose instead thatK5S8̃ùS9̃Þ0” . Let xPS8̃ùS9̃.

The forward lightconeV̄1(x) must intersectp8 in some pointy, and sincep8,S8̃, and since

V̄1(x),S9̃, it follows thatyPS8̃ùS9̃5K. The intersectionh15p8ù V̄1(y) is a closed isotropic

half-line with endpointy, and we haveh1,S8̃ùS9̃5K. Now it is easily seen that every poin
belowp8 is timelike separated from some point ofh1 , and it follows that no such point can b
in Kc5Scc. We thus haveS8ù(Scc)o5(Scc)o, and it follows thatE(S)5(Scc)oÞM, and hence
Case I obtains.

Entirely analogous considerations apply when all the planes inP9 are parallel, but whenP8
contains two non-parallel planes. We then encounter the Cases I, II or IIIb, depending on w

S8̃ùS9̃ is empty or not, and on whetherS9 is equal toM, or equal to an open half-space bound
above by a characteristic planep9. We omit the obvious details.

~5! It remains to consider the configurations in which all the planes inP8 are parallel, and all
the planes inP9 are parallel. Each setS8 andS9 may, or may not, be equal toM. If S85S95M,

we haveE(S)5S5M, K50” 5S8̃ùS9̃, and Case II obtains. Suppose thatS8ÞM andS95M. The
set S5S8 is then an open half-space, and we haveScc5M, E(S)5S, and Case IIIa obtains
Similarly we conclude that Case IIIb obtains ifS85M andS9ÞM.

Suppose now thatS8ÞM andS9ÞM, in which caseS8 is an open half-space bounded belo
by a characteristic planep8 andS9 is an open half-space bounded above by a characteristic p
p9. If p8 is not parallel withp9, we haveS5S8ùS95W(p8,p9)PW . HenceScc5S5E(S)
ÞM, and Case I obtains. Ifp8 is parallel withp9, the planep9 must lieabovethe plane, since we
J. Math. Phys., Vol. 38, No. 10, October 1997
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would otherwise haveS50” , contrary to the premises. The regionS5S8ùS9 is then a nonempty
open ‘‘slab-region,’’ and Case IV obtains.

We have now accounted for all the possible configurations consistent with the premises
completes the proof.

We regard the configurations described in part~c! as the most important configurations. A
the other configurations are, in a sense, ‘‘singular’’ sinceall the planes in at least one of the se
P8 or P9 must be parallel.

We conclude this Section with the proof of a certain continuity property of the map
S→E(S) which is of interest in quantum field theory.

Proposition 4.12:Let S,M beopen, and letSn , nPZ1 , be a sequence ofopensubsets ofS
such thatSn11.Sn for all n, andS5ø$SnunPZ1%. ThenE(S)5ø$E(Sn)unPZ1%.

Proof: We write E5ø$E(Sn)unPZ1%. Since E(S).E(Sn).Sn for all n, it follows that
E(S).E.S.

Let D5D(x8,x9)PD be such that@x8,x9#,E. Since@x8,x9# is compact, there then exists a
integern such that@x8,x9#,E(Sn), and it follows thatD,E(Sn),E.

Let DPD , with baseB, be such thatB,E. SinceB is compact, there then exists an integ
n such thatB,E(Sn), and it follows thatD,E(Sn),E.

From the above it follows that the open setE satisfies Conditions I–III in Definition 4.2, an
sinceE(S).E we conclude thatE(S)5E, as asserted.

We note that this result obviously holds for any Minkowski-type spaceMn .

V. ABOUT CONFIGURATIONS OF CAUSAL WEDGES

The discussion throughout this Section refers specifically tofour-dimensional Minkowski
spacetimeM. We recall here the following facts and definitions. We say that four 3-planes a
a general relative positionif and only if their normals are linearly independent~and hence span
M). Four 3-planes are in a general relative position if and only if they have one, and only
point in common. We say that two wedgesW1 ,W2PW are in ageneral relative positionif and
only if their boundary planes are in a general relative position. If this is the case, thenW1ùW2

Þ0” , and the edges of the wedges intersect in a single point which is the common point of th
boundary planes.

In ann-dimensional Minkowski-type spaceMn a causal wedge is a wedge-region bounded
two non-parallel characteristic hyperplanes, i.e., linear manifolds of dimensionalityn21. Four
(n21)-planes cannot have linearly independent normals ifn,4, and hence two causal wedge
cannot be in a general relative position in the above sense inM3 or in M2. There thus exist
configurations of wedges inM5M4 which have no analogs in spaces of lower dimensiona
Likewise there exist configurations of causal wedges inMk for k.4 which have no analogs inM.
Some of the conclusions in this Section do have generalizations to other Minkowski-type s
Mk , with kÞ4, but we are not concerned with this issue here. Note, however, the followin
configuration of causal wedges inM with the special property that all the normals of the bound
plane span athree-dimensional space is of a ‘‘three-dimensional character’’ in the follow
sense. There exists aspacelikevector v orthogonal to the four normals, and the orthogon
projection of the configuration onto the Minkowski-type 3-plane orthogonal tov is a configuration
of causal wedges inM3. Conversely, every configuration of causal wedges inM3 corresponds to a
configuration of causal wedges inM invariant under all translations in a particular spacel
direction. Similar considerations apply to configurations of wedges inM with the special property
that the normals of the boundary planes span atwo-dimensional space.

We first consider configurations of two wedges, and we are particularly interested i
question of when they intersect.

Proposition 5.1:Let W15W(p18 ,p19) and W25W(p28 ,p29) be two wedges inW , and let
uj85(uj8,1) be the forward isotropic normal ofp j8 ~in the standard form!, and letuj95(uj9,1) be the
forward isotropic normal ofp j9, for j 51,2. Then we have the following.
J. Math. Phys., Vol. 38, No. 10, October 1997
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~a! The intersectionsW1ùW2 and W1
cùW2

c are both nonempty if and only if there exists
timelike 3-planet containing the origin such that the pointsu18 and u28 lie in one of the open
half-spaces bounded byt and the pointsu19 andu29 lie in the other open half-space. At least o
of the intersections is empty if and only if there exist two numbersu8, u9P@0,1# such that

u8u181~12u8!u285u9u191~12u9!u29 . ~5.1!

~b! If W1 andW2 are in ageneral relative position, i.e., the four normalsu18 ,u28 ,u19 , andu29
are linearly independent, thenW1ùW2Þ0”. andW1

cùW2
cÞ0” .

~c! If p18 and p28 are parallel, or ifp19 and p29 are parallel, thenW1ùW2Þ0” and W1
cùW2

c

Þ0” .
~d! If the span of the normals$u18 , u19 , u28 , u29% is three-dimensional, then at least one of th

intersectionsW1ùW2 or W1
cùW2

c is nonempty.
~e! W1ùW250” andW1

cùW2
c50” if and only if p18 is parallel withp29 andp28 is parallel with

p19 and such that eitherp18 lies belowp29 andp28 doesnot lie belowp19 , or else such thatp28 lies
belowp19 andp18 doesnot lie belowp29 .

Proof: ~1! We consider part~a!. Let x•uj85qj8 be the equation for the lower planep j8 , and let
x•uj95qj9 be the equation for the upper planep j9 , for j 51,2. Suppose thatW1ùW2Þ0” and
W1

cùW2
cÞ0” . Let yPW1ùW2 andycPW1

cùW2
c . The vectorz5y2yc is then spacelike. Lett be

the ~timelike! 3-plane through the origin with normalz. We havey•uj8.qj8 and yc•uj8<qj8 and
hencez•uj8.0, for j 51,2. Similarly, z•uj9,0, and henceu18 and u28 lie in one of the open
half-spaces bounded byt, andu19 andu29 lie in the other.

To prove the converse we assume that there exists a timelike planet containing the origin and
with normalu, and such thatu•uj8.0 andu•uj9,0, for j 51,2. There then exists a sufficientl
large l.0 such thatlu•uj8.uqj8u and 2lu•uj9.uqj9u, for j 51,2. HenceluPW1ùW2 and
2luPW1

cùW2
c , and the setsW1ùW2 andW1

cùW2
c are thus both nonempty.

~2! If the condition in~5.1! holds it is obvious that there is no 3-plane which separates
pointsu18 andu28 from the pointsu19 andu29 , and hence the condition implies that at least one
the setsW1ùW2 andW1

cùW2
c is empty. Conversely the relation in~5.1! cannot hold if the points

u18 andu28 are separated by a 3-plane from the pointsu19 andu29 , since the closed line segmen
@u18 ,u28# and @u19 ,u29# would then lie on opposite sides of the 3-plane. We have thus proved
assertions in part~a!.

~3! The assertion in~b! is trivial. We consider part~c!, and assume thatp18 andp28 are parallel:
henceu185u28 . If the relation in~5.1! were possible, we would then haveu185u9u191(12u9)u29
for someu9P@0,1#. The sum of two forward isotropic vectors is forward timelike unless
vectors are proportional, and it would follow that eitheru185u19 or u185u285u29 , which is impos-
sible. A relation of the form in~5.1! can accordingly not hold, and it follows that the intersectio
W1ùW2 andW1

cùW2
c are both nonempty ifp18 andp28 are parallel. By similar reasoning we sho

that the same conclusion obtains ifp19 andp29 are parallel.
~4! We consider part~d!, and assume that the span of the normals is athree-dimensional

vector spaceM3. At least one of the sets$u18 ,u19 ,u28% or $u18 ,u19 ,u29% must then spanM3. We
consider the case when the normalsu18 ,u19 , and u28 are linearly independent. The three plan
p18 ,p19 , andp28 then intersect in a~spacelike! line l . This line is orthogonal to the vectorsu18 ,u19 ,
andu28 , and hence also tou29 since the span of the four normals is three-dimensional. This m
that l is parallel with some line in p29 . If l is contained in p29 , then
l ,p18ùp19ùp28ùp29,W1

cùW2
c , and in this case the setW1

cùW2
c is accordingly nonempty. We

thus consider the case whenl is not contained inp29 . Let H1 be the open half-space bounde
below byp28 , and letH̄2 be the closed half-space bounded above byp28 . We easily see that ever
neighborhood of any point ofl contains a point inH1ùW1 and a point inH̄2ùW1

c . If now l lies
belowp29 , then there exists a point inW1ùW2, and if l lies abovep29 , then there exists a poin
in W1

cùW2
c , sinceW2 consists of all points inH1 which lie belowp29 , and sinceW2

c consists of
J. Math. Phys., Vol. 38, No. 10, October 1997
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all points inH̄2 which lie on or abovep29 . In either case at least one of the intersectionsW1ùW2

or W1
cùW2

c is nonempty. The conclusion is the same if we instead start from the assumptio
the normalsu18 ,u19 , andu29 are linearly independent.

~5! We consider part~e!, and assume thatW1ùW250” 5W1
cùW2

c . It follows from parts~b!
and~d! that the span of the four normals must betwo-dimensional, which is possible only if eithe
u185u28 andu195u29 , or elseu185u29 andu195u28 ~sinceu18Þu19 andu28Þu29). In the first case both
intersections are trivially nonempty, sinceW1 is obtained fromW2 by a translation. We are thu
left with the second case, which means thatp18 is parallel withp29 andp19 is parallel withp28 . It
is then easily seen that if both intersections are empty, then we either have the configura
which p18 lies belowp29 andp28 does not lie belowp19 , or else the configuration in whichp28 lies
belowp19 andp18 does not lie belowp29 . Conversely it is trivial that both intersections are emp
for these configurations. This completes the proof.

Proposition 5.2:Let W15W(p18 ,p19) andW25W(p28 ,p29) be two wedges inW , and letuj8
be the normal ofp j8 anduj9 be the normal ofp j9 , for j 51,2. Here~for convenience! the normals
are taken to be forward isotropic vectors in thestandard form u5(u,1), with uuu51. LetU8 be the
set of all unit vectorsuPR3 such that the isotropic vectoru5(u,1) is in the closed positive spa
of the vectors$u18 ,u28 ,2u19 ,2u29%, and similarly, letU9 be the set of all unit vectorsuPR3 such
that u5(u,1) is in the positive span of the vectors$u19 ,u29 ,2u18 ,2u28%. We denote
U85$(u,1)uuPU8% andU95$(u,1)uuPU9%. Then we have the following.

~a! The setsU8 andU9 are nonempty, and in particular we haveu18 ,u28PU8 andu19 ,u29PU9.
~b! If u8PU8 andu9PU9, then there exists a characteristic planep8, with normalu8, and a

characteristic planep9, with normalu9, such that the regionW1
cùW2

c lies in the intersection of the
closed half-space boundedaboveby p8 and the closed half-space boundedbelowby p9, and such
that W1ùW2 lies in the intersection of the open half-space boundedbelowby p8 and the open
half-space boundedabove by p9. In particular, if u8Þu9, then there exists a wedg
W5W(p8,p9)PW such thatu8 is the normal ofp8 andu9 is the normal ofp9, and such that
Wc.W1

cùW2
c , andW.W1ùW2.

~c! If W1 andW2 are in ageneral relative position, i.e., if the normals of the wedges spanM,
then the setsU8 andU9 have nonemptyrelative interiorsas subsets of the unit sphereS2 in R3

~centered at the origin!.
Proof: ~1! Let x•uj85qj8 be the equation for the planep j8 , and letx•uj95qj9 be the equation

for the plane p j9 , for j 51,2. Let u8PU8 and u9PU9. Hence we have
u85p18u181p28u282p19u192p29u29 for some non-negative constantsp18 , p28 , p19 , and p29 subject to
the condition thatu8 is forward isotropic and specifically of the formu85(u8,1). We thus have
p181p282(p191p29)51, and hencep181p28>1.

Similar considerations apply to the vectoru9, and we easily see thatu8 andu9 must be of the
forms

u85~u8,1!5~11l8!~a8u181~12a8!u28!2l8~b9u191~12b9!u29!, ~5.2!

u95~u9,1!5~11l9!~a9u191~12a9!u29!2l9~b8u181~12b8!u28!, ~5.3!

for some constantsl8>0, l9>0, and a8,a9,b8,b9P@0,1#. We note here that the value
l85l950, a850 or 1; a950 or 1; b8 and b9 arbitrary, are always possible values of the
constants, corresponding to the points ofU8 andU9 mentioned in~a! above.

~2! Let u8PU8 and u9PU9. Suppose now thatW1
cùW2

cÞ0” , and thatxPW1
cùW2

c . Hence
x•uj8<qj8 andx•uj9>qj9, for j 51,2, and it follows from~5.2! that

x•u8<~11l8!~a8q181~12a8!q28!2l8~b9q191~12b9!q29!, ~5.4!
J. Math. Phys., Vol. 38, No. 10, October 1997
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and if we denote the right member in~5.4! by q8, then x lies below or on the plane
p85$xux•u85q8%. Hence we conclude thatW1

cùW2
c lies in the closed half-space bounded abo

by p8. The same conclusion holds trivially ifW1
cùW2

c50” .
Suppose thatW1ùW2Þ0” , and thatxPW1ùW2. Hencex•uj8.qj8 andx•qj9,qj9 , for j 51,2,

and it follows that

x•u8.~11l8!~a8q181~12a8!q28!2l8~b9q191~12b9!q29!5q8.

We conclude thatW1ùW2 lies in the open half-space bounded below by the pla
p85$xux•u85q8%. The same conclusion holds trivially ifW1ùW250” .

In a similar fashion we show, with reference to~5.3!, that W1
cùW2

c lies in the closed half-
space bounded below by the planep95$xux•u95q9%, and thatW1ùW2 lies in the open half-
space bounded above byp9, whereq9 is given by

q95~11l9!~a9q191~12a9!q29!2l9~b8q181~12b8!q28!.

If p8 is not parallel withp9, then the wedgeW5W(p8,p9) is such thatW1ùW2,W and
W1

cùW2
c,Wc. We have thus proved the assertions in part~b!.

~3! We consider part~c!. The vectorsu18 ,u28 ,2u19 , and 2u29 are linearly independent, an
their closed positive span is a convex cone~with a nonempty interior! which contains both
spacelike and forward timelike vectors. The intersection of this cone with the boundary]V1 of the
forward lightcone is thus a set which has a nonempty relative interior as a subset of]V1 , and it
follows that the setU8 has a nonempty relative interior as a subset ofS2. Similarly we conclude
that U9 has a nonempty relative interior as a subset ofS2. This completes the proof.

The statements in Propositions 5.1 and 5.2 are special cases in a more general sch
things. In Proposition 5.1 the underlying issue is when a set of half-spaces have a non
intersection. We are, however, interested in the special case of four half-spaces bounded
characteristic planesp18 ,p28 ,p19 , and p29 , given as the boundary planes of the two wedg
W(p18 ,p19) and W(p28 ,p29). We note here that ifp18 is not parallel withp29 , and if p28 is not
parallel with p19 , thenW(p18 ,p19)ùW(p28 ,p29)5W(p18 ,p29)ùW(p28 ,p19). The underlying issue
in Proposition 5.2 is to determine the half-spaces which contain the intersection of some
half-spaces. The special feature in our proposition is that all the half-spaces are bound
characteristic planes. We remark here that the precise ‘‘shapes’’ of the setsU8 and U9 can, of
course, be determined within Analytic Geometry, but we will not do this since they are not o
particular importance. The important point in part~c! ~for our purposes! is that the relative
interiors of the setsU8 and U9 as subsets ofS2 are nonempty when the two wedges are in
general relative position.

In the applications which we have in mind one encountersfamiliesof wedges, and the iden
tification of intersecting pairs of wedges in such a family will be of interest. The proposition
lemmas which follow are relevant for this issue.

Proposition 5.3:Let F be a family of wedges inW such that the set of normals of the
boundary planes spansM. ThenF contains a subsetF s of not more than three wedges such th
the normals of their boundary planes spanM. At least two wedges inF s have a nonempty
intersection.

Proof: ~1! Let W1PF , with u18 as the normal of the lower plane, andu19 as the normal of the
upper plane. Now there may exist another wedgeWPF such thatW and W1 are in a general
relative position, in which caseWùW1Þ0” , by part ~b! of Proposition 5.1. The subse
F s5$W,W1% then satisfies the conclusion in the proposition.

~2! We thus consider the situation when no such wedgeWPF exists. Sinceu18 and u19 are
linearly independent there must then exist two other wedgesW2 andW3 with normalsuj8 of their
lower planesp j8 , and normalsuj9 of their upper planesp j9 , such that the set$uj8 ,uj9u j 51,2,3%
spansM. If any two lower planes, or any two upper planes, of these wedges are parallel, it fo
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



the set
ation

two
-

e

n
e a
later

t
ation
e di-

t
it is

5080 L. J. Thomas, III and E. H. Wichmann: On the causal structure of Minkowski spacetime

                    
by Proposition 5.1 that the corresponding wedges have a nonempty intersection, and hence
F s5$W1 ,W2 ,W3% satisfies the conclusion in the Proposition. We thus consider the situ
when no two upper planes, and no two lower planes, of the wedges inF s are parallel.

~3! Suppose now that no two wedges in the above setF s intersect. With the normals written
in the standardform u5(u,1), with uuu51, we then have, by Proposition 5.1,

uk8ui81~12uk8!uj85uk9ui91~12uk9!uj9 , ~5.5!

where (i , j ,k) is any cyclic permutation of (1,2,3), and whereuk8 ,uk9P@0,1#. Let u be a vector
orthogonal to the three vectorsu18 ,u28 andu38 . By the above we then have

u39~u•u19!1~12u39!~u•u29!50,

u19~u•u29!1~12u19!~u•u39!50, ~5.6!

u29~u•u39!1~12u29!~u•u19!50.

Since the set$uj8 ,uj9u j 51,2,3% spansM, the scalar productsu•uj8 andu•uj9 cannot all equal
zero, and the system of equations in~5.6! must have a non-trivial solution~for the scalar products!.
The determinant of the system isD5u19u29u391(12u19)(12u29)(12u39), and henceD50 only if
one of the numbersu j9 equals zero and another one of these numbers equals 1. Suppose thatu1950
andu2951. By ~5.5! we then have

u18u281~12u18!u385u39 , u28u381~12u28!u185u39 .

Now a sum of two forward isotropic vectors cannot be forward isotropic unless the
vectors are proportional. Sinceu38Þu39 it follows that u285u395u18 , but this contradicts our as
sumption that no two lower planes are parallel. The assumption that no two wedges inF s intersect
thus leads to a contradiction, and hence the setF s5$W1 ,W2 ,W3% satisfies the conclusion in th
proposition. This completes the proof.

We consider a familyF of wedges which satisfies the conditions in part~a! of Proposition
3.5. By the above lemma we can now conclude thatF must contain a subset of not more tha
three wedges with normals which spanM, and that at least two of these wedges must hav
nonempty intersection. This seemingly obvious fact will be of importance in our discussion
in this Section.

In this connection it is worth noting that for any integern>2 it is always possible to find a se
of n wedges inW such that the intersection of every pair of these is empty. Such a configur
is necessarily ‘‘three-dimensional,’’ i.e., invariant under translations in a particular spacelik
rection. We construct an example as follows. Letn>2. We define a set ofn isotropic vectorsuk

by

uk5~uk ,1!5S cosS 2pk

n D ,sinS 2pk

n D ,0,1D
for k50,1,...,n21, and we writeun5u0. Let p.0. We definen wedgesWk , for k50,1,...,n21,
by

Wk5$xux•uk.p,x•uk11,2p%.

We then haveWk
c5$xux•uk<p,x•uk11>2p%, and hence 0PWk

c for all k. The vectoruk5uk8
is the normal of the lower plane ofWk , and uk115uk9 is the normal of the upper plane. Le
n.k. j >0. The pointsuk aren equally spaced points on a unit circle in the (12)-plane, and
J. Math. Phys., Vol. 38, No. 10, October 1997
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not hard to see that there exists a numberuP@0,1# such thatuuk81(12u)uj85(12u)uk91uuj9 .
~This number depends onk2 j .) It then follows from part~a! of Proposition 5.1 thatWjùWk50”
since we have 0PWj

cùWk
cÞ0” .

The lemma which follows may seem somewhat contrived at this point. We will, howe
need this result in the proof of Theorem 5.7 below.

Lemma 5.4:Let $p j8 ,p j9u j 51,2% be four characteristic planes such that no two of these
parallel, and hence we haveW(p j8 ,pk9)PW , for j ,k51,2. LetW(p38 ,p39)PW , and suppose tha
the normals of the six planes$p j8 ,p j9u j 51,2,3% spanM. Then at least two of the five wedge
W(p18 ,p19), W(p18 ,p29), W(p28 ,p19), W(p28 ,p29), or W(p38 ,p39) are in ageneral relative position.

Proof: ~1! For j 51,2,3, letuj85(uj8,1) be the normal ofp j8 anduj9 be the normal ofp j9 . In
the discussion which follows we assume thestandard form u5(u,1), with uuu51, of the normals.
We write U05$u18 ,u28 ,u19 ,u29% and U jk5$uj8 ,uk9 ,u38 ,u39%, for j ,k51,2. To prove the lemma we
have to show that at least one of the five quadruplets of vectorsU0 andU jk , for j ,k51,2, spans
M. We will assume the opposite, and show that this assumption leads to a contradiction.

~2! We thus assume that the vectors in each one of the above quadruplets arelinearly depen-
dent. We write M(0)5span(U0), andM( jk)5span(U jk). By the premises the four normalsu18 ,
u19 , u28 , andu29 are distinct, and the set of vectors$uj8 ,uj9u j 51,2,3% spansM. Since threeisotropic
vectors corresponding to three different directions are necessarily linearly independent, it f
thatM(0) is three-dimensional~since this space was assumed not to be four-dimensional! and that
M(0) is equal to the span of any three of the vectors in the setU0.

SinceM is four-dimensional, the three-dimensional spaceM(0) and the two-dimensional spac
span$u38 ,u39% must contain a common non-zero vectoru5u8u381u9u39PM(0) for some numbers
u8 and u9, not both equal to zero. Since the span of all the six normals is four-dimension
follows thatat mostone of the vectorsu38 or u39 can be inM(0) .

Suppose thatu38¹M(0) , in which case we haveu9Þ0. At least one of the four triplets
$u18 ,u19 ,u%, $u18 ,u29 ,u%, $u28 ,u19 ,u%, or $u28 ,u29 ,u%, must spanM(0) . Without any essential loss o
generality we can assume that the set$u18 ,u19 ,u% spansM(0) . It then follows thatM(11).M(0) , and
sinceu38¹M(0) we then haveM(11)5M, contrary to our assumption that the vectors inU11 are
linearly dependent. We arrive at the same conclusion if we instead assume thatu39¹M(0) . The
assumption that none of the five setsU0, U11, U12, U21, or U22 spansM is thus untenable. This
completes the proof.

The reasoning in the proof shows that this lemma is really a lemma about the existenc
subset of four linearly independent vectors in a set of six~isotropic! vectors, subject to certain
conditions. We have stated the lemma in terms ofwedges, since we need the result in this form

We will now discuss the envelope of uniquenessE(S) for configurations in whichS is a union
of some family of wedges inW . In preparation for this we consider the following lemma.

Lemma 5.5:Let p18 ,p19 ,p28 andp29 be four characteristic planes inM. For each paira,b51,2
we define theopenregionSab as the set of all pointsxPM which lie abovepa8 andbelowpb9 . We
assume that the intersectionS11ùS22 is nonempty. Then

S12ùS21ùS11ùS225S12ùS215S11ùS22Þ0” ~5.7!

and

E~S11øS22!.S12øS21øS11øS22. ~5.8!

Proof: ~1! The identities in~5.7! are trivial. We turn to the proof of the relation~5.8!, and we
write S5S11øS22. Let ua8 be the forward isotropic normal ofpa8 , and letua9 be the forward
isotropic normal ofpa9 , for a51,2. We now want to show thatS12,E(S), and hence the bound
ary planes p18 and p29 are of particular interest. Letx0PS11ùS22, and hence x0

PS12ùS21ùS11ùS22. Let l be atimelike line throughx0, and lety18 be the intersection ofl with
p18 , and lety29 be the intersection ofl with p29 . We then havey29PV1(y18) and the open timelike
J. Math. Phys., Vol. 38, No. 10, October 1997
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interval (y18 ,y29) is contained inS5S11øS22,E(S). Let x18P(y18 ,x0) andx29P(x0 ,y29). We write

x29(l)5x291lu29 and x18(l)5x182lu18 , and we define the closed half-linesh1 and h2 by
h15$x29(l)ul>0% and h25$x18(l)ul>0%. The half-lineh1 lies below the planep29 . For all
sufficiently large values ofl the pointx91lu29 certainly liesabovethe planep28 , and since the
endpoint x29 of h1 also lies above p28 , it follows that h1 lies above p28 . We thus have
h1,S22,E(S), and similarly we conclude thath2,S11,E(S).

~2! For anyl>0 we obviously havex29(l)PV1(x18(l)), since the vectorx29(l)2x18(l) is the
sum of the forward timelike vectorx292x18 and the vectorl(u181u29), which is forward timelike or
forward isotropic for l.0. For l>0 we write J(l)5(x8(l),x9(l)) and
D(l)o5D(x8(l),x9(l))o. Let L be the set of alll>0 such thatJ(l),E(S), and hence
D(l)o,E(S). The setL is not empty, sinceJ(0)5(x18 ,x29),S,E(S). If l1PL̄, then we obvi-
ously haveD(l1)o,ø$D(l)oulPL%, and henceL is closed.

Let lPL, l.0. Since @x18(l),x29(l)#,E(S) we have D(l)5D(x8(l),x9(l)),E(S).
SinceD(l) is compact, and sinceE(S) is open, there exists an open double coneDl

o such that
D(l),Dl

o,E(S). We easily see that there then exists a constantd.0 such that
J(l1t),Dl

o,E(S) whenever utu<d. From this, and from the above, we conclude th
L5$lul>0%, i.e., J(l),E(S), and henceD(l)o,E(S) for all l>0.

~3! Let p̂29 be the characteristic plane passing throughx29 and parallel withp29 , and letp̂18 be
the characteristic plane passing throughx18 and parallel withp18 . We haveh1,p̂29 andh2,p̂18 .
In view of the result in step~2! it follows by Lemma 4.4 thatŜ125ø$D(l)oul>0%,E(S), where
Ŝ12 is the open region bounded below byp̂18 and bounded above byp̂29 . Sincex18 can be selected
as close toy18 as we like, and sincex29 can be selected as close toy29 as we like, we conclude tha
S12,E(S). By similar reasoning we conclude thatS21,E(S). This completes the proof.

From the above we obtain an important result concerning two intersecting wedges, whi
now state.

Proposition 5.6:Let W15W(p18 ,p19) and W25W(p28 ,p29) be two wedges inW such that
W1ùW2Þ0” . We writeS5W1øW2 andK5Sc5W1

cùW2
c . Then we have the following

~a! The setScc5Kc is open, and

E~S!5Scc5Kc.

~b! If p18 is not parallel withp29 , thenW(p18 ,p29),E(S), and if p28 is not parallel withp19 ,
thenW(p28 ,p19),E(S).

~c! If p18 is parallel withp29 , or if p28 is parallel withp19 , thenE(S)5M.
Proof: With the notation in Lemma 5.5 we haveS115W1, S225W2, and the premises of tha

lemma are satisfied. HenceS11øS12øS21øS22,E(S). We have S,Su,E(S),Scc with
Su5S11øS12øS21øS22, and henceScc5Su

cc andE(Su)5E(S). Theorem 4.11 is applicable, an
by part~c! of that theorem we haveE(Su)5Su

cc if p18 is not parallel withp28 andp19 is not parallel
with p29 . If p18 is parallel withp28 , or if p19 is parallel withp29 , then we trivially haveK5Su

c

Þ0” , and it then follows from part~b! of Theorem 4.11 thatE(Su)5(Su
cc)o. By part~c! of Theorem

3.2, Kc5Scc is open. Ifp18 is parallel withp29 , the planep29 must lie above the planep18 , since
W1ùW2Þ0” , and we then haveE(S)5Scc.S12

cc5M. Similarly we conclude thatE(S)5M if p28
is parallel withp19 . This completes the proof.

We remark that it isessentialthat the wedgesW1 andW2 have a nonempty intersection. If thi
is not the case, we can obviously not depend on Lemma 5.5, and the conclusions in the prop
can actually fail to hold. LetW1 and W2 be two wedges inW such thatW1ùW250” , and let
S5W1øW2. We then haveE(S)5S. If W1,W2

c ~which can only happen if the edges ofW1 and
of W2 are parallel!, thenScc5S5E(S). Suppose, however, thatW1 contains a pointx which is
timelikeseparated from a pointyPW2. ~We easily see that such configurations exist.! ThenScc
J. Math. Phys., Vol. 38, No. 10, October 1997
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contains the line segment@x,y# which is not included inS, and henceScc is strictly larger than
E(S).

The above proposition is of interest in its own right, and it is also a tool in the stud
families of more than two wedges. As we will see, the utilization of this tool involves
identification of pairs of wedges with a nonempty intersection within the family.

We are now prepared for one of the main results of this paper.
Theorem 5.7: Let F be a family of wedges inW . We write S5ø$WuWPF % and

K5ù$WcuWPF %.
~a! Suppose thatF contains two wedges in ageneral relative position. ThenK is an element

of the setK E described in Definition 3.3, and we have

E~S!5Scc5Kc.

~b! Suppose instead that the normals of the boundary planes of the wedges inF spanM, and
suppose furthermore thatF contains two wedges such that no two of the boundary planes of t
wedges are parallel. Then the conclusions are the same as in part~a!.

Proof: ~1! Let the family F * ,W be defined byF * 5$WuWPW ,W,E(S)%, and let
Se5ø$WuWPF * %. We haveF * .F , andE(S).Se.S. SinceE(S)cc5Scc by Proposition 4.2
it follows that E(S)cc5Se

cc5Scc and K5Sc5Se
c5ù$WcuWPF * %. Furthermore, since

E(E(S))5E(S), it follows that E(S)5E(Se).
~2! Suppose thatW1 ,W2PF * and W1ùW2Þ0” . By Proposition 5.6 we then hav

E(W1øW2)5(W1øW2)cc. Since W1øW2,Se we conclude thatE(S)5E(Se).E(W1øW2)
5(W1øW2)cc. Let WPW be such thatWc.W1

cùW2
c5(W1øW2)c, and henceW,(W1øW2)cc

,E(S). By the definition of the familyF * we haveWPF * , and we have thus proved that th
family F * satisfies the condition that ifW1 ,W2PF * andW1ùW2Þ0” , thenWPF * whenever
Wc.W1

cùW2
c .

~3! We consider part~a! and we thus assume thatF contains two wedges,Wa andWb , which
are in ageneral relative position, i.e., the normalsua8 , ub8 , ua9 , andub9 , of the upper and lower
planes ofWa andWb spanM. We haveWa ,WbPF * , andF * satisfies the same premises asF .
By the definition ofK E it is trivial that K5Sc5Se

cPK E .
In what follows we assume that all normals of characteristic planes are of the standard

u5(u,1), with uuu51. Let the setsU8,U9, be defined in terms of the normalsua8 ,ub8 ,ua9 , andub9 ,
as in Proposition 5.2. By part~c! of that proposition the setsU8 and U9 then have nonempty
relative interiors, as subsets of the unit sphereS2 in R3.

Let u08PU8, u09PU9, andu08Þu09 . By Proposition 5.2 there exists a wedgeW05W(p08 ,p09),
with u085(u08,1) as the normal ofp08 , and with u095(u09,1) as the normal ofp09 , such that
W0

c.Wa
cùWb

c . By the result in step~2! we then haveW0PF * , and henceW0,Se .
~4! Let W15W(p18 ,p19), W25W(p28 ,p29)PF * , with uj85(uj8,1) as the normal ofp j8 and

uj95(uj9,1) as the normal ofp j9 , for j 51,2. We consider the case whenp18 is not parallel with
p29 , and hence we haveu18Þu29 . We assert that we can find two normalsu085(u08,1) and
u095(u09,1), with u08PU8, u09PU9, andu08Þu09 , such that the four vectors in each one of the th
sets$u18 ,u19 ,u08 ,u09%, $u28 ,u29 ,u08 ,u09%, and $u18 ,u09 ,u08 ,u29% are linearly independent. These cond
tions are equivalent to the conditions that the four points on the unit sphereS2 in R3 in each one
of the three sets$u18 ,u19 ,u08 ,u09%, $u28 ,u29 ,u08 ,u09%, and $u18 ,u09 ,u08 ,u29% are not coplanar. We have
u18Þu19 , u28Þu29 , andu18Þu29 , and since the setsU8 andU9 have nonempty interiors as subsets
S2, we easily see that we can find two pointsu08PU8 andu09PU9, such that the above require
ments are satisfied, and we choose two such points. By the result in step~3! there then exists a
wedgeW05W(p08 ,p09)PF * , with u08 as the normal ofp08 and withu09 as the normal ofp09 . The
wedgesW1 andW0 are then in a general relative position, and hence they intersect. It follow
part ~b! of Proposition 5.6 thatW(p18 ,p09),E(W1øW0),E(S), and henceW(p18 ,p09)PF * .
J. Math. Phys., Vol. 38, No. 10, October 1997
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Similarly we conclude thatW(p08 ,p29)PF * . The wedgesW(p18 ,p09) andW(p08 ,p29) are also in
a general relative position, and it follows thatW(p18 ,p29)PF * , and hence that
W(p18 ,p29),Se,E(S).

~5! Let P8 be the set of all lower planes of the wedges inF * , and letP9 be the set of all
upper planes. Our result in step~4! is that if p8PP8 and p9PP9, and if p8 and p9 are not
parallel, thenW(p8,p9)PF * , and henceW(p8,p9),Se,E(S). To be able to apply Theorem
4.11 we also have to consider the case of a planep18PP8 and a planep29PP9 parallel withp18 .
Let S12 be the open ‘‘slab-region’’ consisting of all points which lie belowp29 and abovep18 . We
have to show thatS12,Se , and we only have to consider the case whenS12Þ0” , and hence we
assume thatp29 liesabovep18 . Let u be the common normal ofp18 andp29 . Since the four normals
ua8,ub8,ua9, andub9 considered in step~3! spanM, it follows that the normals in at least one of th
sets$u,ua8,ua9% or $u,ub8,ub9% must be linearly independent. We conclude that we can find a p
p19PP9, with normalu19 , and a planep28PP8, with normalu28 , such that the normalsu,u19 , and
u28 are linearly independent. We then haveW15W(p18 ,p19)PF * andW25W(p28 ,p29)PF * , and
the normals of the four boundary planes span athree-dimensional subspace ofM. Sincep29 is
parallel withp18 and lies abovep18 , it follows thatW(p18 ,p19)

cùW(p28 ,p29)
c50” . By Proposition

5.1 we then haveW(p18 ,p19)ùW(p28 ,p29)Þ0” . By Proposition 5.6 we conclude tha
E(W1øW2)5M, and henceE(S)5M, F * 5W , andS12,Se5M.

In view of what has been shown the conclusion in part~a! now follows readily by part~c! of
Theorem 4.11.

~6! We consider part~b!. The salient point is now that under the stated premises the la
family F * always contains two wedges in a general relative position, although this might n
the case for the familyF . We thus consider the case whenno two wedges inF are in a general
relative position. By the premises there exist two wedgesW15W(p18 ,p19) andW25W(p28 ,p29) in
F such that the normalsuj8 of the planesp j8 and uj9 of the planesp j9, for j 51,2, are distinct.
Three distinct isotropic vectors~of the standard form! are necessarily linearly independent, a
since the normals$u18 ,u19 ,u28 ,u29% do not span a four-dimensional space~since we assumed that n
two wedges inF are in a general relative position!, it follows that the normals span a three
dimensional spaceM3, and that any three of these normals spanM3. Since the span ofall the
normals of the boundary planes of the wedges inF equalsM by assumption, we can find a wedg
W35W(p38 ,p39)PF such that the normals of the boundary planes ofW1 ,W2 andW3 spanM. Let
u38 be the normal ofp38 ~in the standard form! and letu39 be the normal ofp39 . We consider the
possibility thatu385u18 . The normals in$u38 ,u39 ,u19 ,u28 ,u29% then spanM. By the aboveu19 is a
linear combination ofu185u38 , u28 , andu29 , and it follows that the normals in$u38 ,u39 ,u28 ,u29% span
M, i.e., the wedgesW2 andW3 are in a general relative position, contrary to our assumption.
this kind of reasoning we conclude that neither one of the normalsu38 or u39 can be equal to eithe
one of the normals in$u18 ,u19 ,u28 ,u29%. Hence the normals of the boundary planes ofW1 andW3

are distinct, and span a three-dimensional subspace ofM, and similarly the normals of the bound
ary planes ofW2 andW3 are distinct and span a three-dimensional subspace.

~7! According to Proposition 5.3 at least two of three wedgesW1, W2, andW3 must have a
nonempty intersection if the normals of their boundary planes spanM. In view of the results in
step~6! we can assume thatW1ùW2Þ0” without any essential loss of generality. By Propositi
5.6 we then haveW(p18 ,p29), W(p28 ,p19)PF * . We now depend on Lemma 5.4 which says th
W3 is in a general relative position with respect to at least one of the four wedgesW(p18 ,p19),
W(p18 ,p29), W(p28 ,p19), or W(p28 ,p29). The familyF * thus satisfies the premises of the familyF

in part ~a!, and the conclusion then follows from part~a!. This completes the proof.
The situation when two ‘‘arbitrary’’ wedges arenot in a general relative position is, in a sens

‘‘exceptional’’ ~since the four normals of the boundary planes must then be linearly depen!.
We might thus regard a familyF for which KPK E as ‘‘regular’’ if it contains at least two
wedges in a general relative position, in which case part~a! of the theorem applies. This is why w
stated the assertion in part~a! explicitly, although it is just a special case of the assertion in p
J. Math. Phys., Vol. 38, No. 10, October 1997
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~b!. However, it is easy to find simple examples of familiesF which containno two wedges in a
general relative position, althoughKPK E , and we thus have to deal with this possibility in ord
to have a general result. Specific examples of such configurations were given after the p
Proposition 3.5.

The proposition which follows can be regarded as an elaboration of Theorem 5.7. We
these results in a separate proposition since the premises are somewhat more involve~and,
perhaps, less ‘‘natural’’! than the premises of Theorem 5.7.

Proposition 5.8: Let F be a family of wedges inW . We write S5ø$WuWPF % and
K5ù$WcuWPF %, and we assume thatKÞ0” and thatS is connected.

~a! Suppose thatKPK E . ThenF satisfies the premises in part~b! of Theorem 5.7, and we
haveE(S)5Scc5Kc.

~b! Suppose instead thatF contains at least two wedges with non-parallel lower planes,
at least two wedges with non-parallel upper planes. Suppose furthermore that the normals
boundary planes of the wedges inF spanM. ThenKPK E and the conclusions are as in part~a!.

Proof: ~1! We first note that by Proposition 3.5 the premises in parts~a! and ~b! are equiva-
lent, in view of the assumption thatKÞ0” , and we thus base the discussion on the premises in
~b!. We only have to consider the situation when the premises stated forF in part ~b! of Theorem
5.7 mightnot be satisfied. We thus assume that if$Wj ,Wk% is anypair of wedges inF , then one
of the boundary planes ofWj is parallel with one of the boundary planes ofWk . This means, in
particular, that the normals of the boundary planes ofWj andWk do not spanM. We will show
that this assumption entails a contradiction.

~2! By Proposition 5.3 we can find three wedgesWj5W(p j8 ,p j9), j 51,2,3, inF such that
the normals$uj8 ,uj9u j 51,2,3% spanM, and such thatW1ùW2Þ0” . We assume the standard for
u5(u,1), with uuu51 for all the normals in the discussion which follows. By the assumption
step ~1! two of the normals in$u18 ,u19 ,u28 ,u29% must be equal. By assumption we ha
W1

cùW2
c.KÞ0” , and since alsoW1ùW2Þ0” , we cannot haveu185u29 or u285u19 . If u185u28 and

u195u29 , then the set$u18 ,u19 ,u38 ,u39% must spanM, which contradicts the assumption in step~1!.
Hence we either haveu185u28 andu19Þu29 or elseu195u29 andu18Þu28 .

~3! We consider the case whenu185u28 andu19Þu29 : the reasoning in the other case is ess
tially the same. Ifu38Þu185u28Þu39 , then we must either haveu385u19 andu395u29 , or elseu385u29
and u395u19 , since neither one of the sets$u18 ,u19 ,u38 ,u39% or $u28 ,u29 ,u38 ,u39% can contain four
distinct normals, in view of the assumption in step~1!. This, however, contradicts the conditio
that the set $u18 ,u19 ,u28 ,u29 ,u38 ,u39% spans M. Hence we either have u185u285u38 , with
$u18 ,u19 ,u29 ,u39% spanningM, or else u185u285u39 , with $u18 ,u19 ,u29 ,u38% spanningM. In what fol-
lows we assume that one of these cases obtains~and henceu19Þu29).

~4! We next show that, under the assumptions in step~1!, there exists a wedge
W45W(p48 ,p49)PF such that neitherp48 nor p49 is parallel withp18 . We assume the contrary
which means that every wedge inF either has a lower plane parallel withp18 , or else an upper
plane parallel withp18 . The setF is thus the union of two disjoint sets: the setF l consisting of
all wedges inF with lower planes parallel withp18 , and the setF u consisting of all wedges inF
with upper planes parallel withp18 . The setF u is not empty, because it was assumed thatF

contains at least two wedges with distinct lower planes. Since it was also assumed that
S5ø$WuWPF % is connected, there must exist a wedgeWl5W(p l8 ,p l9)PF l and a wedge
Wu5W(pu8 ,pu9)PF u such thatWlùWuÞ0” . This leads, however, to a contradiction sincepu9 is
parallel withp l8 , and since we also haveWl

cùWu
c.KÞ0” .

~5! We finally show that the existence of the wedgeW4 in step~4! contradicts the result in
step ~3!. Let u48 be the normal ofp48 and let u49 be the normal ofp49 . Each one of the sets
$u18 ,u19 ,u48 ,u49%, $u28 ,u29 ,u48 ,u49%, or $u38 ,u39 ,u48 ,u49% must contain two normals which are equal,
view of the assumption in step~1!. By step ~4! we have u48Þu18Þu49 . In the case when
u185u285u38 it then follows that at least two of the normals in$u19 ,u29 ,u39% must be equal, but this
contradicts the condition that the set$u18 ,u19 ,u29 ,u39% spansM. In the case whenu185u285u39 we
J. Math. Phys., Vol. 38, No. 10, October 1997
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similarly conclude that at least two of the normals in$u19 ,u29 ,u38% must be equal, but this contra
dicts the condition that the set$u18 ,u19 ,u29 ,u38% spansM. We conclude that the assumption in st
~1! is untenable, and hence the premises of the present propositionin fact imply the premises in
part ~b! of Theorem 5.7. This completes the proof.

It is worthwhile to consider some examples which show the necessity of the premis
Proposition 5.8 for the conclusion. Letp8 andp9 be two parallel characteristic planes such th
p8 lies abovep9. Let P be the set ofall characteristic planes which arenot parallel withp9 ~and
p8). We define the family of wedgesF u by F u5$W(p8,pu9)upu9PP%, and similarly we define
the family F l by F l5$W(p l8 ,p9)up l8PP%. We write F 5F uøF l and Su5ø$WuWPF u%,
Sl5ø$WuWPF l%, and henceS[ø$WuWPF %5SuøSl . The setSu is an open half-space
bounded below byp8, and the setSl is an open half-space bounded above byp9, and the setsSu

andSl aredisjoint. The normals of the boundary planes of the wedges in either one of the seF u

or F l trivially span M. We easily see thatE(Su)5Su and E(Sl)5Sl , and that
E(S)5E(Su)øE(S)5SÞM, whereas we haveSu

cc5Sl
cc5Scc5M, and henceK50” . The pre-

mises in Theorem 5.7 are not satisfied for the familyF sinceF contains no two wedges for whic
the four normals of the boundary planes are distinct. Proposition 5.8 does not apply to the
F since S is not connected. The setSu is connected, but the familyF u does not satisfy the
premises in Proposition 5.8 sinceSu

c50” , and sinceF u contains no pair of wedges with non
parallel lower planes.

We feel that the final results in Theorem 5.7 and Proposition 5.8 are rather plausible
basically very simple, although the path to these results is mildly tortuous. Most of the co
cations in the proofs have to do with finding a ‘‘sufficiently tight’’ network of mutually interse
ing wedges, and in this endeavor the fact that two wedges in a general relative position a
intersect is a most useful principle.

A common feature of Theorem 5.7 and Proposition 5.8 is that the normals of the bou
planes of the wedges inF span M. Furthermore, the familyF is such that the se
K5ù$WcuWPF % is an element of the~well-behaved! family K E described in Definition 3.3.
This family is of particular interest for the applications we will discuss in two subsequent pa
If F is a family of wedges such that the normals of the boundary planes do not spanM, but span
a three-dimensional subspace, thenK is not an element ofK E . We will not discuss configura-
tions of this nature further here.
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r D oscillators with arbitrary D>0 and perturbation
expansions with Sturmians

Miloslav Znojil
Ústav jaderne´ fyziky AV ČR, 250 68 Rˇ ež, Czech Republic

~Received 31 March 1997; accepted for publication 14 May 1997!

In contrast to widespread belief the current Rayleigh-Schro¨dinger perturbation
theory may provide an easy description of double well oscillators and/or of the
strongly anharmonic forces with an arbitrary power-law asymptotical growth. One
has only to work in a suitable Sturmian basis. The feasibility and numerical effi-
ciency of the construction is illustrated on a few one-dimensional one-body ex-
amples. ©1997 American Institute of Physics.@S0022-2488~97!01310-8#

I. INTRODUCTION

The routine perturbation expansions1 are easily applied to HamiltoniansH(l)5H $0%1lH $1%

which become exactly solvable in the ‘‘unperturbed’’ limitl→0. Many useful models in physic
fail, unfortunately, to be connected to such al50 approximant. Among them, the nonrelativist
description of heavy quarkonia2 by the funnel-shaped potentials~cf. Figure 1 below! lacks any
obvious zero-order simplification. Quantum chemistry might offer many other~e.g., polynomial3!
examples of a similar non-perturbative type. Their ‘‘locally repulsive’’ special cases with dou
well shape are particularly interesting~cf. Figure 2 below!. Beyond their role in phenomenology o
quasi-degenerate energies4 they may also illustrate the presence of Goldstone bosons in sys
with broken symmetry.5

In our paper, with all this motivation, the formalism of perturbation theory will be revisi
We shall show that after its modification the standard textbook Rayleigh-Schro¨dinger construction
of corrections may be extended to cover unusual and seemingly non-perturbative situation

In the literature, even the strongest anharmonicities are often interpreted as mere pertur
of harmonic oscillators. A very slow convergence or even divergence of the necessary large
perturbation expansions of observables is then not surprising.6 Understandably, the stubborn us
of quadratic approximantsV$0%(x)5v2x2 is strongly motivated by technical simplifications. Th
weight of the ‘‘feasibility’’ argument increases with the growth of spacial dimension or aft
transition to multi-particle systems.7

In practice, the conflict between feasibility and convergence is usually being settled
indirect way. Resummations of divergent perturbation series are often employed and prove
and efficient in simple systems.8 In the more direct approaches, one may change the unpertu
spectrum9 or achieve a very rapid convergence via an order-by-order variation of couplingsv in
the zero-order harmonic oscillator approximants themselves.10 Some difficulties may also be
avoided, via immediate integration of differential equations, in one-dimensional cases.11

In the present paper, a new and most direct strategy will be proposed and analyzed. O
the way towards a broader class of the zeroth-order HamiltoniansH $0%, it will break their practical
reduction to the purely harmonic oscillators. Basically, we are going to show that a certain
used formal transformation of harmonic oscillators~viz., a change of variables in the Schro¨dinger
equation, cf. Section II! extends the class of the eligible zeroth-order HamiltoniansH $0% very
significantly.

Our new recipe is applicable at any number of dimensions and/or particles in principl
details are described in Section III. For the sake of simplicity, our present text will mostly dea
with the simplest, elementary systems. This will facilitate the description of technicalities.
0022-2488/97/38(10)/5087/11/$10.00
5087J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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few numerical illustrative examples of Section IV we shall demonstrate the practical feasibil
the new scheme. Section V is a short summary.

II. SOLUTIONS OF CERTAIN SCHRÖDINGER EQUATIONS AT ZERO ENERGY

The exact and elementary solvability of harmonic oscillator is a core of feasibility of m
constructions in the applied perturbation theory. Once we introduce a quantum numberl with the
meaning of parity (l 521,0 in one dimension! or angular momentum (l 50,1, . . . in three
dimensions!, the harmonic oscillator Schro¨dinger equation

F2
d2

dx2 1
l ~ l 11!

x2 1v2x2Gw~n,l ,x!5v~4n12l 13!w~n,l ,x!, xP~0,̀ !, ~1!

may be assigned the well known, normalized bound-state solutions defined in terms of La
polynomials,

w~n,l ,x!5Anl xl 11expS 2
v

2
x2DLn

a~vx2!, Anl 5A 2va11n!

G~n1a11!
,

~2!

Ln
a~vx2!5

G~n1a11!

n!G~a11! 1F1~2n,a11,vx2!, a5l 11/2.

The integer quantum numbern50,1, . . . counts the nodal zeros.12

In the way discussed, e.g., in ref. 13, we might change variables and transform the har
oscillator ~1! into its two other~viz., Coulomb and Morse! well known and exactly solvable
partners. Such a possibility is not surprising: transformations which change the differential
tion but preserve still its form date back, perhaps, to Liouville.14 We shall only pay attention to
their simplest form

x5r m, w~n,l ,x!5r ~m21!/2vn~r !, ~3!

which would reproduce Coulomb forces atm51/2. At the more general real parameters, 1Þm
Þ1/2, we only arrive at a new Schro¨dinger equation if the energy vanishes and the centrifu
term becomes modified,

F2
d2

dr2 1
L~L11!

r 2
1V2xD2~4mn12L12m11!VxdGvn~r !50,

L1 1
25m~ l 1 1

2! , V5mv, D54 m22, d52 m22, ~4!

vn~r !5Anl r L11expS 2
V

2m
r 2mDLn

aS V

m
r 2mD .

This will be our present starting point: We shall fix the number of nodal zeros,n5n$0%[N , and
reinterpret our transformed oscillator wavefunction as a possible new type of an unperturbed
vN (r )[^r uc$0%&,N >0.

By construction, our new wavefunction satisfies the zeroth-order Schro¨dinger equation~4! at
zero energy,H $0%uc$0%&50 andE$0%50. In the same notation, we now have to study a ‘‘sm
vicinity’’ of this state. In the other words, the perturbed Schro¨dinger equation,

H~l!uc~l!&5E~l!uc~l!&, H~l!5H $0%1lH $1%, ~5!
J. Math. Phys., Vol. 38, No. 10, October 1997
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has to be solved by the ansa¨tze

E~l!5lE$1%1l2E$2%1 . . . ~6!

~notice that, incidentally,E$0%50) and

uc~l!&5uc$0%&1luc$1%&1l2uc$2%&1 . . . ~7!

with ^r uc$0%&5c$0%(r )[vN (r ).

III. THE NOVEL PERTURBATION CONSTRUCTION

The variability of the exponentm in the Liouvillean change of variables~3! generates a family
of the phenomenologically appealing zeroth-order forces,

V$0%~r !52V~4mN 12L12m11!xd1V2r D, D52 d12. ~8!

Their N -nodal wavefunction at zero energy is their only bound state we know and have a
disposal. The remaining functionsvn(r ) with nÞN can only be interpreted as solutions of th
other zeroth-order Schro¨dinger equations with different potentials at eachn,

H $0%vn~r !54m~n2N !Vr dvn~r !, n50,1, . . . . ~9!

This disables us to apply the current perturbation theory of the Rayleigh-Schro¨dinger type without
a modification.

A. The new aproach to corrections

The insertion of ansa¨tze ~6! and ~7! in equation~5! generates the zeroth-order Schro¨dinger
equationH $0%c$0%(r )50 accompanied by the set of its higher-orderO (lk) descendants,

H $0%c$k%~r !1H $1%c$k21%~r !5E$1%c$k21%~r !1E$2%c$k22%~r !1 . . . 1E$k%c$0%~r !. ~10!

At non-zero integersk51,2, . . . , thewell known ‘‘renormalization’’ ambiguity

c$k%~r !→c$k%~r !1const3c$0%~r !

enables us to choose the following normalization postulate:

^c$0%ur duc$k%&50, k51,2, . . . . ~11!

This is a key point of our construction, equivalent, in the light of Appendix A, to the expansio
wavefunctions in terms of Sturmians,

c$k%~r !5 (
mÞN

vm~r !cm
$k% , k51,2, . . . .

Its insertion in eq.~10! should lead us to the explicit recurrent set of definitions of thekth energies
~6! and wavefunctions~7! in terms of their ‘‘already known’’ predecessors collected, for brev
in the functiont(r )5H $1%)c$0%(r ) at k51 and

t~r !5H $1%)c$k21%~r !2E$1%c$k21%~r !2E$2%c$k22%~r !2 . . . 2E$k21%c$1%~r !

at k52,3, . . . . Theenergy corrections themselves become separately eliminated due to th
thogonality of Sturmians~A3!,
J. Math. Phys., Vol. 38, No. 10, October 1997
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E$k%5
^vN ut&

^vN uvN &
. ~12!

This is just a modification of the standard Rayleigh-Schro¨dinger formula. The rest of eq.~10! with
property ~9! gives, after the repeated use of orthogonality~A3!, the less standard formula for
wavefunctions,

cn
$k%5

E$k%^vnuvN &2^vnut&
4 ~n2N !V

, nÞN . ~13!

In a way differing from the textbooks, thekth energy enters it via non-vanishing overlaps
^vnuvN &Þ0 at all nÞN . Our recipe is complete.

B. The calculation of matrix elements

In the spirit of the general theory of convergence of perturbation expansions,15 the ‘‘well
chosen’’ unperturbed potentials have to reproduce, whenever possible, the correctr @1 asymp-
totics. In the present setting, it is very easy to guarantee a sufficiently quick asymptotic growth
our unperturbed approximantsV$0%(r ) for any realistic perturbed potential such thatV(r )'r D,
r @1. The exponentD54m22 may be an arbitrary non-negative real number. From integer
D51,2, . . . , we get thequarter-integerm5(D12)/4. The asymptotically linear quarkonium-type
model of Figure 1 is obtained atm53/4 and a double well shape ofV$0%(r ) develops at allm.1.

FIG. 1. The ground-state wavefunction in potential~8! with d521/2 andD51.
J. Math. Phys., Vol. 38, No. 10, October 1997
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This is an unexpected observation—the double-well potentials are usually considered v
‘‘non-perturbative.’’ Here, inV$0%(r ), a sharp and finite spike in the origin survives up tom53/2.
With the further growth of the exponentsm, d5d(m) andD5D(m), the central barrier looses its
spike, becomes smooth and broadens~cf. Figure 2 atm52). Its double well shape becomes more
and more pronounced~cf. Figure 3 atm53).

In the applications of our formalism to particular examples we shall only be forced to calcu
late the overlaps of the form̂vmuV$1%(r )uvn&. Technically, this is not difficult—the variability of
mÞ1 and applicability of our formulae to a broader class of forces is not paid for by an
unexpected complications. For the power-law perturbationsV$1%(r )5(gkr

k, in full analogy with
the standard perturbation excercises,16 all the necessary integrals~with scaling property
^vmur kuvn&;V (d2k)/2m) may still be evaluated in terms ofG functions.12

The first- and second-order formulae for power-law perturbations necessitate just the cal
lation of matrix elementŝ vnur constuv0&. This is an easy task reducible to the evaluation of
integrals

E
0

`

e2ttbLn
a~ t !dt5

G~b11!

n!
3~a2b!~a2b11!•••@a2b1~n21!#

~cf. Ref. 12, formula 7.414.7!. For a more explicit illustration of this point, Table I displays a few
closed-form matrix elementŝvnur constuv0& for several quartic1 linear oscillators. We may con-
clude that the preparation of matrix elements remains as easy as in the current harmonic-oscilla

FIG. 2. The first excitation ford52 andD56.
J. Math. Phys., Vol. 38, No. 10, October 1997
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or Coulomb-based textbook examples withm51 andm51/2, respectively. The algebra may be
facilitated via computerized symbolic integrations using, e.g., the software package ofMAPLE17!.

IV. QUARTIC OSCILLATORS AS UNPERTURBED HAMILTONIANS

The efficiency of our present scheme has to be tested on examples. For this purpose, let u
choose the quartic interactions

V~r !5c2r 21c4r 4. ~14!

They form one of the most popular methodical laboratories18 and represent also a non-trivial
physics: Their more dimensional versions even play an important role as simplified models of the
so called Higgs fields.19

FIG. 3. The first excitation ford54 andD510.

TABLE I. A few overlaps^v0ur kuv0& at m53/2.

V
k 10 1 1/A40

0 4 pA6 3 A3 20/@3 G(2/3)#2 4 pA6 3 A3 2/@3 G(2/3)#2 4 pA6 3/10/@3 G(2/3)#2

'2.482 '1.152 '0.623
2 A3 2/45/G(2/3) A3 12/@3 G(2/3)# 2 A6 10/@A3 9G(2/3)

'0.2616 '0.5636 '1.0422
J. Math. Phys., Vol. 38, No. 10, October 1997
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For simplicity, we shall only use the ‘‘optimal’’ unperturbed systems with the same grow
V(r ) andV$0%(r ) at r @1. Due to eq.~14!, this fixesD54 andm53/2. The resulting class of the
quartic1 linear zeroth-order interactions

V$0%~r !5c1
$0%r 1c4

$0%r 4, c1
$0%52Ac4

$0%~6N 12L14! ~15!

with precisely the same asymptotics,c4
$0%[V2, supports the elementary eigenstate withN nodal

zeros and with 4L56l 11, i.e.,a51/3,1,5/3,7/3,3, . . . . These functions form our ‘‘menu’’

c$0%~r !5Anl r L11expS 2
V

3
r 3DLN

a S 2V

3
r 3D

of eligible zeroth-order approximations to theN th bound state in our ‘‘perturbed’’ potential~14!.
The simplest, ground-state choice ofN 50 with even-parityL521 gives thel50 example

V$0%~r !522 Ac4r 1c4r 4, ~16!

etc. We have to repeat that this ‘‘most natural’’ choice of potential~16! need not necessarily be th
best approximant for the given perturbed force~14!. Its use provides us, in fact, with quite
stringent test of our formalism.

Various couplings atl51 were chosen in our numerical calculations, with very sim
results. For several cases mentioned already in Table I the first- and second-order predict
our present perturbative formalism are displayed here in Table II.

For the sake of diversity, Table II involves the strongly anharmonic set of couplings I (c251,
c45100) and the purely quartic set II (c250, c451) of Ref. 18, a shallow double well~set III
with c2522 andc451) illustrated by Figure 4 and its very deep alternative~set IV of Figure 5
with c2521 andc451/40, taken also from Ref. 18!. Up to the case III, we recalled the exa
energies of Ref. 18 for comparison while the exactE for set III has been found by an independe
numerical method. Our conclusions are as follows.

In the first three cases I–III, the same pattern of convergence is observed. In spite
differences between ranges of couplings and forms of perturbations, the rate of conve
proves fairly quick.

In contrast to that, the convergence for couplings IV is much slower and document
natural limitations exist for any perturbative analysis. Indicated by Figure 5, the explanation
latter failure is easy: Our quartic wellV$0%(r ) Nr. IV remains very similar to its ordinary
harmonic-oscillator alternative. The bad convergence properties remain shared by both them51
andm53/2 constructions as a consequence.

In the present setting, nevertheless, a better zeroth-order guess is still possible. First, o
try to compensate for the strict pre-determination of our unperturbed energy valueE$0%50 and opt
for its constant shift. Of course, in non-harmonic cases with non-vanishing off-diagonal ove
of Sturmians, a new, non-trivial perturbation becomes introduced in this way.

Another eligible modification of the unperturbed potential might be based on a choic
c4

$0%.c4 and/orm.3/2. In the light of Figure 5, this would equip our approximateV$0%(r ) with a

TABLE II. The sample of convergence of the ground-state energies.

Potentials
Deviation I II III IV

Eexact2E$0% 14.9994 11.0604 10.1378 28.6119
Eexact2E$0%2lE$1% 20.4774 20.0968 20.0411 27.2774
Eexact2E$0%2lE$1%2l2E$2% 10.0490 10.0092 20.0090 25.3906
J. Math. Phys., Vol. 38, No. 10, October 1997
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much more pronounced double-well structure and diminish the perturbation within the most re
evant domain of coordinates. Of course, it would be necessary to analyze the large-order behav
of such a result. Such a study already lies beyond the scope of our present methodical propos

In the conclusion, let us add one more numericaly oriented remark: Due to the sign-changin
character of our computer-generated exact analytic expressions for matrix elements, one must s
keep in touch with the propagation of rounding errors. Their tests are necessary in comput
arithmetics with fixed precision. Table III offers their simple illustration: It displays the check of
convergence of the second-order energy corrections defined, in terms of elemen
P(m,k)5^vmur kuv0&, as the finite sumsE$2%5E$2%(M ),

E$2%~M !52
1

4 VP3~0,0! (
m51

M
$P~m,0!@4V/31c2P~0,2!#2c2P~m,2!P~0,0!%2

m

in the limit M→`. The termination of this summation atM520 has been used to get our final
results in Table II. Table III confirms the consistency of precision of our results after such a
cut-off. Example Nr. III has been omitted as trivial: Due to its ‘‘too weakly perturbed’’ character
~cf. Figure 4!, its sufficient cut-off proved as small asM54.

V. SUMMARY

We have described perturbation expansions for HamiltoniansH(l) not solvable atl50.
Their use has been shown able to enrich the current ‘‘menu’’ of unperturbed Hamiltonians. In ou

FIG. 4. The smallness of perturbation for potential III.
J. Math. Phys., Vol. 38, No. 10, October 1997
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examples, the usual harmonic oscillators have been replaced by their quartic1 linear liouvillean
counterparts with a weakly double-well structure. An easy feasibility of computation of the ne
essary matrix elements has been emphasized, and a nice numerical convergence has been ach
by the second-order perturbation approximants for a few different examples.

Technically, certain ‘‘non-orthogonal non-eigenfunctions’’ known, in the literature, as
‘‘Sturmians’’20 have been introduced and shown tractable without difficulties. Their modified
completeness was shown to preserve~or, in fact, improve! the applicability of the textbook per-
turbation prescriptions.

In contrast to the conventional wisdom our examples which used the quartic interactio
V$0%(r ) and operatorsH $0% did not imply any significant technical difficulties in the perturbative

FIG. 5. The failure of approximationV$0%[V for potential IV.

TABLE III. TheM-dependence of summation over intermediate states.

First differences dM Second differences
E$2%(M )2E$2%(M21) dM2dM21

M I II IV I II IV

16 20.00137 20.00282 20.00165 10.00019 10.00039 10.00025
17 20.00121 20.00250 20.00145 10.00016 10.00032 10.00020
18 20.00108 20.00223 20.00128 10.00013 10.00027 10.00016
19 20.00097 20.00200 20.00114 10.00011 10.00023 10.00014
20 20.00088 20.00181 20.00102 10.00009 10.00019 10.00012
J. Math. Phys., Vol. 38, No. 10, October 1997
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analysis. Formally, one rather encounters a mixture of merits and shortcomings. A non-diag
of certain overlaps in our simple basis of Sturmians exemplifies the latter. Among the math
cal promises, let us mention just the possibility of suppressing perturbations in asymptot
mains, closely connected to the convergence of the whole perturbation series. At this point,
clarified, Ref. 15 should be consulted for more details.

Phenomenologically, our zeroth-order approximantsH $0% have been shown to inherit sever
merits of the current harmonic oscillator usage~an intuitively transparent picture of underlyin
physics, the elementary character and interpretation of the basis states!. It transfers them to the
new physical situations~strongly coupled anharmonicities, double well shapes!. We may express
a hope that within the new approach and language, the conventional Rayleigh-Schro¨dinger per-
turbation prescription did not say its last word yet.
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APPENDIX: BASIS FUNCTIONS

At all the admissible values ofa or l , harmonic oscillators~2! are known to form a complete
and orthonormalized basis in our Hilbert space of quadratically integrable functions,

E
0

`

w~n,l ,x!w~n8,l ,x!dx5dnn8, (
n50

`

w~n,l ,x!w~n,l ,x8!5d~x2x8!. ~A1!

This property does not survive the change of variables~3!. A formal core of our message lie
precisely here: Once we introduce a new set of functions

xn~r !5Amr m21vn~r !, n50,1, . . . , ~A2!

it becomes easy to show that

E
0

`

xn~r !xn8~r !dr5dnn8, (
n50

`

xn~r !xn~r 8!5d~r 2r 8!. ~A3!

The new functions~A2! form a complete basis again. Of course, by construction, they do
represent solutions of our Schro¨dinger equation anymore.
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Mechanical systems with nonholonomic constraints
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Silesian University at Opava, Department of Mathematics and Informatics,
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A geometric setting for the theory of first-order mechanical systems subject to
general nonholonomic constraints is presented. Mechanical systems under consid-
eration are not supposed to be Lagrangian systems, and the constraints are not
supposed to be of a special form in the velocities~as, e.g., affine or linear!. A
mechanical system is characterized by a certainequivalence class of 2-formson the
first jet prolongation of a fibered manifold. The nonholonomic constraints are de-
fined to be asubmanifoldof the first jet prolongation. It is shown that this sub-
manifold is canonicallyendowed with adistribution—this distribution~resp., its
vertical subdistribution! has the meaning of generalized possible~resp., virtual!
displacements. The concept of a constraint force is defined, and a geometric version
of the principle of virtual work is proposed. From the principle of virtual work a
formula for a workless constraint force is obtained. A mechanical system subject
nonholonomic constraints is modeled as adeformationof the original ~uncon-
strained! system. A direct characterization of a constrained system by means of a
class of 2-forms along the canonical distributionis given, and ‘‘constrained equa-
tions of motion’’ in an intrinsic form are found. A geometric definition of regularity
for systems under nonholonomic constraints is provided. In particular, the case of
Lagrangian systems is discussed. Also systems subject to holonomic constraints
and nonholonomic constraints affine in the velocities are investigated within the
range of the general scheme. ©1997 American Institute of Physics.
@S0022-2488~97!01110-9#

I. INTRODUCTION

The dynamics of a mechanical system is usually represented by the motion equations

q̈s5Fs~ t,qn,q̇n!, 1<s<m.

If the system is subject to a holonomic constraintf (t,qn)50 then there arises an additional forc
called theconstraint force, which is proportional to gradf. This means that the ‘‘constraine
equations of motion’’ read

q̈s5Fs~ t,qn,q̇n!1m
] f

]qs , 1<s<m,

where the parameterm is calledLagrange multiplier. For the case ofk constraints of the form
f i(t,qn,q̇n)50, 1< i<k, callednonholonomic constraints, the corresponding equations are co
sidered to be of the form

q̈s5Fs~ t,qn,q̇n!1m i

] f i

]q̇s , 1<s<m ~1.1!

~cf., e.g., Refs. 1, 2, 3!. These equations, together with thek ~first-order! equations of the con-
straintsf i50, represent a system ofm1k differential equations form functionsqs(t) describing
0022-2488/97/38(10)/5098/29/$10.00
5098 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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the motion of the constrained system, andk Lagrange multipliersm i(t). From these equations th
Lagrange multipliers can be extracted, and reduced equations can be obtained where the
mined constraint forces are absent.

Recently, there have appeared a lot of papers discussing geometry of nonholonomic sy
There were considered mostly Lagrangian systems subject to nonholonomic constraints
~resp., affine! in the velocities, i.e., of the formf i(t,qn,q̇n)5bs

i (t,qn)q̇s @resp., f i(t,qn,q̇n)
5bs

i (t,qn)q̇s1bi(t,qn)#. A sample of geometrical approaches has been proposed. For
independent Lagrangian systems the constraints were modeled via a distribution on the c
ration manifold~Ref. 4!, or via a submanifold of the tangent bundle of the configuration mani
~Refs. 5, 6!. For time-dependent Lagrangian systems~where an appropriate underlying structure
a fibered manifold and its jet prolongations! constraints were represented by a connection~Refs.
7–11 and others!, by functions vanishing on some submanifold of the first jet prolongation of
fibered manifold~Refs. 12, 13 and others!, by a distribution on the total space of the fiber
manifold ~Ref. 14 and others!, or by a codistribution~resp., distribution! on the first jet prolonga-
tion ~cf. Ref. 15!. The constrained dynamics of Lagrangian systems were studied; in particu
generalization of the Poincare´–Cartan 2-form to the case of a Lagrangian system subject to a
nonholonomic constraints was proposed~Refs. 8, 9, 10, 11, 14!. In Refs. 10, 11, 14, and 15,
possibility to extend the constructions to the case of Lagrangian systems with general no
nomic constraints was discussed. A more general framework for the study of Lagrangian s
with constraints was presented in Refs. 11, 16. Namely, a mixed system of coupled firs
second-order equations was considered and related connections were investigated.

In this paper, we are interested in mechanical systems in general~i.e., not necessarily coming
from a Lagrangian!, subject to general nonholonomic constraintsf i(t,qn,q̇n)50. The aim is to
provide a geometric characterization of~unconstrained! mechanical systems, to investigate ge
metric structures related with constraints, and to provide a geometric setting for the the
constrained mechanical systems. We adopt a fibered manifoldp:Y→X(dim X51), and its jet
prolongations for the underlying structure.

Our starting point is a geometric framework for study of time-dependent Lagrangian sy
initiated in Refs. 17, 18~see also Refs. 19, 20!, and based on the identification of the Lagrang
system with certain closed 2-form, called theLepagean 2-form, on a jet prolongation of a fibered
manifold.

First, in Sec. II we recall some basic calculus on jet prolongations of fibered manifolds
we generalize it to a ‘‘constraint calculus’’~vector fields and forms on a submanifold, different
forms along a distribution!.

In Sec. III we define the concept of amechanical systemas a certainequivalence class o
2-forms. This approach represents a direct generalization from the ‘‘variational’’ case17,19,20and is
close to the philosophy suggested by thevariational sequence.21–23The dynamics of a mechanica
system is then described by a distribution, calleddynamical distribution, on the first jet prolon-
gation of the fibered manifold. This point of view leads to a geometric definition of aregular
mechanical system: It is simply such a system whose dynamical distribution is of rank one

Section IV is devoted to a geometric study of the concept of nonholonomic constraints
constraints are defined to be a certainsubmanifoldQ of the first jet prolongation of the fibere
manifold. It is shown that the constraints give rise to local distributions, calledconstraint distri-
butions, defined in a neighborhood of the submanifoldQ . Constraint distributions are used t
define the concept of aconstraint force. Within this setting, Lagrange multipliers are interpreted
be horizontal 1-forms on the first jet prolongation of the fibered manifold. As the most impo
result in this section, we have found that every constraint manifold iscanonically endowed with a
distribution, which we called thecanonical distribution. This distribution has its origin in the
constraint distributions, and it is a fundamental object for obtaining an intrinsic geometric de
tion of constrained mechanical systems. The canonical distribution represents a generaliza
the case of arbitrary nonholonomic systems of the classical concept ofpossible displacements; its
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



ni-
riza-
we

omic

ntly

l
how

orm

nomic

h
distri-

qual to

ed in a
arising

tems.

8, 9,
2-form

only if

ent an
sys-

over the
omic

nifold of
ints is

ional
which
ic

e

ntion is
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rank has the meaning of a number ofdegrees of freedomof systems constrained to the subma
fold Q . The vertical subdistribution of the canonical distribution is then a geometric characte
tion of virtual displacementsin the case of general nonholonomic constraints. In this section
also introduce the concept of a constraint force. Stating a geometric~coordinate-free, invariant!
version of theprinciple of virtual work, we can characterizeideal ~i.e., workless! constraints, and
find a formula for the corresponding constraint force. In keeping with a theory of nonholon
systems which goes back to Chetaev1 we call this forceChetaev force.

Section V deals with nonholonomic constraints affine in the velocities, which freque
appear in the literature. We call these constraintssimple nonholonomic constraints. If, in particu-
lar, such constraints areintegrable, we call them~in keeping with the terminology of classica
mechanics! semiholonomic. In contrast to the general case of nonholonomic constraints, we s
that simple nonholonomic constraints can be equivalently modeled by a distribution~resp., codis-
tribution! on Y. This relates our approach to the approach of some other authors.

In Sec. VI we deal with mechanical systems subject to constraints. First, we define adefor-
mationof an~unconstrained! mechanical system by a constraint force and we get an intrinsic f
of the nonholonomic equations of motion@generalized equations~1.1!#. The core of the section is
a direct geometrical characterization of a mechanical system subject to general nonholo
constraints. The key idea is to define such a system as an equivalence class of 2-formsalong the
canonical distributionon the constraint submanifoldQ . We obtain the equations of motion of suc
a system in both the intrinsic and coordinate form, and find the corresponding dynamical
bution which is a subdistribution of the canonical distribution. We then define aregular con-
strained mechanical system to be such that its dynamical distribution is of a constant rank e
one. Accordingly, this distribution can be viewed as a generalization of the concept of~nonlinear!
connectionto the case when constraints are present. A similar connection has been obtain
different way in Refs. 10, 11. It should be stressed, however, that a constrained system
from a regular mechanical system need not be regular.

Finally, we apply results of this section to both regular and nonregular Lagrangian sys
We get a Lagrangian system under constraints characterized by means of aclass of 2-formsalong
the canonical distribution on the constraint submanifold. In this respect we differ from Refs.
10, 11, 14, where the characterization of a constrained Lagrangian system by means of a
~called the constrained Poincare´–Cartan 2-form, or the fundamental 2-form! is proposed. A con-
strained Lagrangian system need not be Lagrangian; we show that it is Lagrangian if and
the corresponding class of 2-forms onQ contains a closed 2-form.

Section VII is devoted to mechanical systems subject to holonomic constraints. We pres
exposition of the topic which is consistent with our approach to nonholonomic constrained
tems. The holonomic case then becomes a particular case in the general scheme. We rec
main ~well-known! properties of such systems, namely that a mechanical system with holon
constraints can be equivalently described as an unconstrained system on a certain subma
the original fibered manifold, and that a Lagrangian system subject to holonomic constra
Lagrangian.

Finally, examples illustrating the constructions and results are given.
It should be pointed out that within the range of the calculus of variations, from the variat

principle one obtains for Lagrangian systems subject to constraints equations of motion
generally differ from~1.1! ~cf. Refs. 3, 24!. Both the sets of equations coincide only for holonom
constraints and for nonholonomic constraints which are linear in the velocities and integrabl~i.e.,
of the form f i5aj

i duj /dt!. For a discussion of this topic we refer to Ref. 25.
Throughout the paper, manifolds and mappings are smooth, and the summation conve

used.
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II. HORIZONTAL AND CONTACT FORMS ON FIBERED MANIFOLDS

In this section we recall briefly fibered manifolds and their jet prolongations, and the re
calculus of horizontal and contact forms. A detailed exposition of this material can be found
in Refs. 26, 27. Further we generalize some concepts of the calculus on fibered manifolds to
fields and formsalong a distribution.

Let p:Y→X be a fibered manifold, dimX51, dim Y5m11. The manifoldsX and Y are
called thebase and the total space, respectively, and the mappingp ~which is a surjective
submersion! is called~fibered! projection. For everyxPX the setYx5p21(x),Y is called the
fiber overx; evidently,Y5øxYx . By the Implicit Function Theorem, ifyPY is a point, we have
a chart (V,c) in a neighborhood ofy and a unique chart (V0 ,c0) in a neighborhood ofx
5p(y) such thatV05p(V) andc+pr15c0+p, wherepr1 :Rm11→R is the standard projection
charts onY of this kind are calledfibered charts. Throughout the paper, fibered coordinates w
be usually denoted by (t,qs), where 1<s<m. A mappingg:X→Y defined on an open subse
U,X is called asectionof the fibered manifoldp if the composite mappingp+g is the identity
mapping of U. In fibered coordinates a sectiong is represented in the formt+g5t, qs+g
5gs(t); we write g5(t,gs).

Two sectionsg1 and g2 of p on U are called 1-equivalentat a point xPU if g1(x)
5g2(x) and (dg1

s/dt)x5(dg2
s/dt)x , 1<s<m. The 1-equivalence class atx containing a section

g is called the 1-jet of g at x and is denoted byJx
1g. The union overxPX of all 1-jets atx is a

manifold, called the 1-jet of the fibered manifoldp, and denoted byJ1Y. The setJ1Y has a fibered
manifold structure; it can be viewed as a fibered manifold overX with the projectionp1 :J1Y→X,
p1(Jx

1g)5x ~called the 1-jet prolongationof the fibered manifoldp!, or as a fibered manifold
overY with the projectionp1,0:J1Y→Y, p1,0(Jx

1g)5g(x). Notice that in the latter case the ba
is (m11)-dimensional. Quite analogously one defines the 2-jet J2Y of p, and the fibered mani-
folds p2 :J2Y→X ~called the 2-jet prolongationof p!, p2,1:J2Y→J1Y andp2,0:J2Y→Y.

The 1-jet prolongation of a sectiong:U→Y of p is a sectionJ1g of p1 , defined by
J1g(x)5Jx

1g for eachxPU. Similarly the 2-jet prolongationJ2g is defined.
Clearly, not every section ofp1 is of the form of prolongation of a section ofp. We say that

a sectiond of p1 is holonomicif there exists a sectiong of p such thatd5J1g.
If ( t,qs) are fibered coordinates onV,Y, there arise the so-calledassociated coordinates

(t,qs,q̇s) on V15p1,0
21V defined byq̇s(Jx

1g)5(dgs/dt)x , and (t,qs,q̇s,q̈s) on V25p2,0
21V de-

fined by q̈s(Jx
2g)5(d2gs/dt2)x , respectively.

Notice that if (V,c), c5(t,qs), and (V̄,c̄), c̄5( t̄,q̄s) are two fiber charts such thatVùV̄
ÞB, we have the following transformation formula onV1ùV̄1 :

t̄5 t̄~ t !, q̄s5q̄s~ t,qn!, qG s5
dt

dt̄
S ]q̄s

]t
1

]q̄s

]qn
q̇nD . ~2.1!

Remark 2.1:Notice that if we suppose that the baseX of a fibered manifoldp:Y→X is
one-dimensional and connected then we have exactly two possibilities,X5R or X5S1. In nu-
merous physical applications one takesX5R andY5R3M , whereM is a manifold of dimension
M . In this caseJ1(R3M ) identifies withR3TM andJ2(R3M ) identifies withR3T2M . The
dynamics onM ~which are given by curvesR→M ! are then equivalently represented by sectio
of the fibered manifoldR3M→R. This setting is suitable for time-dependent as well as tim
independent mechanical systems.

A vector fieldj on Y is calledp-projectableif there exists a vector fieldj0 on X such that
Tp•j5j0+p. If, in particular, j050 then j is called p-vertical. For a p-projectable~resp.,
p-vertical! vector fieldj on Y one has in fibered coordinates
J. Math. Phys., Vol. 38, No. 10, October 1997
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5102 Olga Krupková: Mechanical systems with nonholonomic constraints

                    
j5j0
]

]t
1js

]

]qs , ~2.2!

wherejs are functions of (t,qn), and thej0 depend only ont ~resp.,j050!. The 1-jet prolon-
gation of a p-projectable vector fieldj ~2.2! on Y is a vector fieldJ1j on J1Y,

J1j5j0
]

]t
1js

]

]qs 1 j̃s
]

]q̇s ,

where

j̃s5
djs

dt
2

dj0

dt
q̇s.

Let h be ak-form onJ1Y. We say thath is p1,0-projectable if there exists ak-form h0 on Y
~called thep1,0-projectionof h! such thatp1,0* h05h. Analogously other kinds of projectability
~i.e., with respect to other projections! are defined. Throughout the paper we shall often iden
projectable forms with their projections.

A form h on J1Y is calledp1-horizontalif i jh50 for everyp1-vertical vector fieldj on J1Y,
andp1,0-horizontal if i jh50 for everyp1,0-vertical vector field onJ1Y. From these definitions
we get that a 1-formh is p1-horizontal iff its representation in every fiber chart reads

h5 f ~ t,qs,q̇s!dt,

and a 2-formh is p1,0-horizontal iff its representation in every fiber chart contains only the we
products ofdt anddqs with the components dependent ont,qs,q̇s.

We shall use the following mappingh ~called thehorizontalization!, assigning to every
1-form h on Y ~resp., onJ1Y! a p-horizontal~resp.,p1-horizontal! 1-form hr on J1Y ~resp., on
J2Y!; h is anR-linear mapping, defined by the following formulas:

h f5 f , hdt5dt, hdqs5q̇sdt, hdq̇s5q̈sdt.

If h is a 1-form onJ1Y then

J1g* h5J2g* hh ~2.3!

for every sectiong of p.
A form h on J1Y is calledcontactif J1g* h50 for every sectiong of p. Notice that every

k-form for k.dim X is contact. In particular, a 2-formh is called 1-contact if for every
p1-vertical vector fieldj the 1-formi jh is horizontal, and it is called 2-contactif i jh is contact.

Put

vs5dqs2q̇sdt, q<s<m,
~2.4!

v̇s5dq̇s2q̈sdt, 1<s<m.

The 1-forms~2.4! are obviously contact, and they form a basis of contact 1-forms onJ2Y.
Notice that the formsdt, vs, dq̇s ~resp.,dt, vs, v̇s, dq̈s! form a basis of1-formson J1Y

~resp., onJ2Y!. We shall frequently make use of these bases in our calculations.
Every 1-formh on J1Y admits a unique decomposition into a sum of a horizontal and con

form. In fibered coordinates, whereh5 f dt1 f sdqs1 f̃ sdq̇s this decomposition reads

p2,1* h5~ f 1 f sq̇s1 f̃ sq̈s!dt1 f svs1 f̃ sv̇s.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Similarly, every 2-formh on J1Y admits a unique decomposition into a sum of a 1-contact
2-contact form.

By a distribution on J1Y we shall mean a mappingD assigning to every pointzPJ1Y a
vector subspaceD(z) of the vector spaceTzJ

1Y. A distribution is said to be of aconstant rankif
dim D(z) does not depend onz ~i.e., the mappingz→dim D(z) is constant!. A distribution can
be spanned by a system of~local! vector fields. A distribution is calledcontinuous~resp.,smooth!
if it can be spanned by a system of continuous~resp., smooth! vector fields.

If D is a distribution, we denote byD0 its annihilator, i.e., the set of all 1-formshk on J1Y
such thati ji

hk50 for every vector fieldji belonging toD . In this sense, every distribution can b
defined by a system of~local! 1-forms. For distributions of a constant rank the description
means of vector fields is completely equivalent with that by means of 1-forms. If, however,
D is not constant then a distribution which can be generated by a system of smooth 1-forms
continuous. Recall that a sectiond of p1 is called anintegral sectionof D if for every 1-formh
belonging toD0

d* h50.

A distribution D on J1Y is calledweakly horizontal~Ref. 19! if at each pointzPJ1Y the
vector spaceD(z) is complementary to a subspace of the vector space ofp1-vertical vectors atz.
The weak horizontality property means that at each point there exists a nonvertical vector b
ing to D , or, in other words, that the 1-formdt does not belong toD0. Notice that a distribution
which is not weakly horizontal has no integralsections.

Let M,J1Y be a submanifold. Denote byVp1(x) the vector space ofp1-vertical vectors at
the point xPJ1Y, and putVMp1(x)5Vp1(x)ùTxM . The mappingVMp1 :x→VMp1(x) is a
distribution onM ~generally of a nonconstant rank!. Sections of the projectionVMp1→M will be
called p1-vertical vector fields onM . Notice that if ap1-vertical vector fieldjM on M is a
restriction toM of a vector fieldj on J1Y thenj need not bep1-vertical. However, if a restriction
to M of a p1-vertical vector field onJ1Y is a vector field onM then it isp1-vertical. Similarly the
concept of ap1,0-vertical vector field onM is defined. Now, in analogy with the standard defin
tion for a fibered manifoldp, the concept of ap1-horizontal~resp.,p1,0-horizontal! form onM is
defined with the help of the concept of ap1-vertical ~resp.,p1,0-vertical! vector field onM .

A form on M is called contact if J1g* h50 for every sectiong of p such thatJ1g is a
mapping toM . The concept of a 1-contact, 2-contact, etc., form is then defined in analogy wit
standard definition forp.

Now, let us define the concept of aform on M along a distribution. Consider a distributionD
of a constant rankr on M , rankD<dim M . Let xPM be a point and consider ther -dimensional
vector spaceD(x),TxM . Denote by D* (x) the dual space toD(x) and put D* M
5UxPMD* (x). A sectionh:M→D* M will be called a 1-form alongD . Notice thath(x) is a
linear formD(x)→R. The concept of ap-form alongD is introduced in an analogous way.

From now on, we shall consider a fixed fibered manifoldp:Y→X with dim X51, dim Y
5m11, and its first and second jet prolongations.

III. UNCONSTRAINED MECHANICAL SYSTEMS

Recall that a 2-formE on J2Y is called a dynamical form if it is 1-contact and
p2,0-horizontal.19,20 This means thatE is a dynamical form iff in every fiber chart

E5Es~ t,qn,q̇n,q̈n!dqs∧dt. ~3.1!

A sectiong of p is called apath of E if

E+J2g50.
J. Math. Phys., Vol. 38, No. 10, October 1997
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In fibered coordinates this equation represents a system ofm second-order ordinary differentia
equations

EsS t,gn,
dgn

dt
,

d2gn

dt2 D50

for the componentsgn(t), 1<n<m, of g.
In particular, we shall be interested in 2nd order ODE which areaffine in the second deriva

tives. In this case, in every fiber chart onJ2Y, the components ofE are of the form

Es5As~ t,qn,q̇n!1Bsr~ t,qn,q̇n!q̈r. ~3.2!

We shall denote the set of such forms byLa f
2 (J2Y).

Our aim is to provide a geometric description of the equations for paths ofE in terms of
exterior differential systems onJ1Y. To this purpose we shall assign to the formE ~which is
nontrivially of the second order! a 2-form onJ1Y.

Proposition 3.1: Let EPLa f
2 (J2Y) be a dynamical form. There exists a 2-forma with the

following properties:
~1! a5E1F where F is 2-contact,
~2! a is projectable onto J1Y.
Proof: The first condition means that in every fiber chart

a5~As1Bsnq̈n!vs∧dt1Fsnvs∧vn1Fsn
01vs∧v̇n1Fsn

11 v̇s∧v̇n,

where theFsn andFsn
11 are antisymmetric insn. Applying the projectability condition we get

Fsn
015Bsn , Fsn

1150.

Hence there exists a family of 2-formsa satisfying the two conditions of Proposition 1; they a
all of the form

a5~As1Bsnq̈n!vs∧dt1Fsnvs∧vn1Bsnvs∧v̇n5Asvn∧dt1Fsnvs∧vn1Bsnvs∧dq̇n.
~3.3!

h

Definition 3.1:Each of the 2-formsa satisfying the conditions of Proposition 1 will be calle
a Lepagean 2-form associated to E.

Obviously, Lepagean 2-forms associated toE form an equivalence class with the equivalen
defined as follows:a8 is equivalent witha if a85a1h, whereh is a 2-contactp1,0-horizontal
2-form. We shall denote the class ofa by @a#.

Definition 3.2:For a Lepagean 2-forma put

Da
05span$ i jauj runs over the set of allp1-vertical vector fields onJ1Y%.

Then the corresponding distributionDa is a distribution onJ1Y, it will be called thedynamical
distribution of a.

One can easily see that the dynamical distribution ofa can be generated by means of t
following 1-forms:

As dt12Fsnvn1Bsn dq̇n, Bsnvn. ~3.4!

Notice that this distribution need not be of a constant rank, and that at each point ofJ1Y one has
rank Da>1.

The following is an important property of Lepagean 2-forms.
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



with

of

cal
he

l

E
al

into
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Proposition 3.2:Let EPLa f
2 (J2Y) be a dynamical form.

~1! Let a1 ,a2 be equivalent Lepagean 2-forms associated to E, let Da1 ,Da2 be the corre-
sponding dynamical distributions. Then the holonomic integral sections ofDa1 andDa2 coincide.

~2! The set of holonomic integral sections of any dynamical distribution of E coincides
the set of paths of E.

Proof: The statement follows directly from the fact that for every sectiong of p one has
J1g* vs50, 1<s<m. h

Notice that by the above proposition,a sectiong of p is a path of a dynamical form E if and
only if for everyp1-vertical vector fieldj on J1Y

J1g* i ja50, ~3.5!

wherea is a Lepagean 2-form associated to E.
Definition 3.3: By a first-order mechanical systemwe shall mean the equivalence class

Lepagean 2-forms onJ1Y, associated to a dynamical formEPLa f
2 (J2Y).

A mechanical system will be denoted by@a#, and the class of the corresponding dynami
distributions will be denoted by@Da#. If there is no danger of confusion, we shall use t
notationsa, andDa , respectively, wherea ~resp.,Da! is a representative of the class@a# ~resp.,
@Da#!.

Definition 3.4: A mechanical system@a# will be called regular if there exists a dynamica
distributionDaP@Da# such that rankDa51 on J1Y.

We obtain the following useful characterization of regular mechanical systems:
Proposition 3.3: Let @a# be the mechanical system related to a dynamical form

PLa f
2 (J2Y), E5(As1Bsnq̈n)vs∧dt, and let @Da# be the corresponding class of dynamic

distributions. The following conditions are equivalent:
~1! The mechanical system@a# is regular.
~2! The matrix(Bsv) is everywhere regular.
~3! Each of the dynamical distributions belonging to@Da# has rank one.
~4! All the dynamical distributions belonging to@Da# coincide, and

Da5spanH ]

]t
1q̇s

]

]qs2BsrAr

]

]q̇sJ ,

Da
05span$As dt1Bsn dq̇n,vs,1<s<m%,

where(Bsn) is the inverse matrix to(Bsn).
~5! The equations for paths of E have an equivalent form

q̈s52BsrAr , 1<s<m

along J2g.
Proof: The assertion follows immediately from the definition of regularity if one takes

account generators of the dynamical distributions in the form~3.4!.
h

Remark 3.1:Consider the particular case whenE is locally variational, i.e., in a neighborhood
of every point ofJ1Y there exists a Lagrange functionL(t,qs,q̇s) such that

Es5
]L

]qs2
d

dt

]L

]q̇s .
J. Math. Phys., Vol. 38, No. 10, October 1997
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Then the equivalence class@a# of Lepagean 2-forms ofE contains aunique closed2-form aE ,
called theLepagean equivalentof E. Conversely, if the equivalence class@a# of Lepagean 2-forms
of E contains aclosed2-form thenE is locally variational. A mechanical system related with
locally variational form will be called aLagrangian system.

It should be pointed out that the concept of a Lepagean 2-form is a generalization
concept ofsymplectic formto the general situation~time-dependent, higher-order, not necessa
regular!.

For more details on this subject and its applications to the theory of~generally higher-order!
mechanical systems coming from both regular and singular Lagrangians we refer to Refs.

IV. NONHOLONOMIC CONSTRAINTS AND RELATED GEOMETRIC STRUCTURES

In this section we shall introduce the concept of a system of nonholonomic constraints,
a related constraint force. Constraints will be interpreted as a certain submanifold ofJ1Y canoni-
cally endowed with a distribution.

In what follows,k is an integer, 1<k<m21.
Let Q be a submanifold ofJ1Y, dim Q52m112k. This means that at each pointxPQ

there is a chart (U,x) on J1Y, adapted to the submanifoldQ . Denotex5(xp, f i), 1<p<2m
112k, 1< i<k. ThenQ is on U defined by the equations

f i50, 1< i<k. ~4.1!

In what follows we shall use the notationQU5QùU.
Let (t,qs,q̇s) be fibered coordinates in a neighborhoodW of x; clearly we can suppose tha

W5U.
Definition 4.1:The submanifoldQU of U will be called aconstraint submanifold, or, a local

constraint, if at each point ofU

rankS ] f i

]q̇sD5k. ~4.2!

Equations~4.1! will then be called aa system of k (local) nonholonomic constraints.
The submanifoldQ of J1Y will be called aconstraint submanifold, or, a~global! constraint,

if it can be covered by a family of adapted charts$(U i ,xi)% such that, for everyi, the condition
~4.2! is satisfied onU i .

The above definition has the following intrinsic geometric meaning: A submanifoldQ of J1Y
is a constraint submanifold iff the projectionp1,0:J1Y→Y restricted toQ is a surjective submer
sion. Consequently, there exist local sections of thep1,0uQ , i.e., Eqs.~4.1! can be ‘‘locally solved’’
with respect tok of the functionsq̇s. Without loss of generality one can suppose that it is poss
to express theq̇m2k11,...,q̇m as functions of the (t,qs,q̇1,...,q̇m2k).

Every constraint submanifold of codimensionk can be covered by a collection of adapt
charts$(U i ,xi)% of the form (t i ,qi

s ,q̇i
1,...,q̇i

m2k , f i
1,...,f i

k), where (t i ,qi
s ,q̇i

s) are fibered coor-
dinates onU i . Such coordinates will be calledadapted fibered coordinates. In particular, adapted
fibered coordinates such thatQ is described by the equations

f̂ i[q̇m2k1 i2gi~ t,qs,q̇1,...,q̇m2k!50 ~4.3!

will be callednormal coordinates.
Putting N 5ø iU i we get an open submanifold ofJ1Y envelopingQ ; it will be called a

neighborhoodof Q .
Definition 4.2:Let Q,J1Y be a constraint submanifold. A sectiong of p defined on an open

set I ,X will be called aholonomic path inQ if for every xPI
J. Math. Phys., Vol. 38, No. 10, October 1997
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J1g~x!PQ .

Now, we shall be interested in a geometric description of holonomic paths inQ . More
concretely, one needs to find a distribution on the constraint manifoldQ of minimal possible rank
and such that the motion ofeverymechanical system constrained toQ would be described by a
subdistribution of this distribution. In this sense, such a distribution would have the meaning
‘‘universal covering distribution’’ for all possible dynamical distributions onQ . Its rank then
would represent the number of degrees of freedom of systems constrained toQ . ~In the uncon-
strained case the role of such a distribution is played simply by the tangent distribution toJ1Y.!
To this purpose we shall first introduce in a neighborhood of the constraint manifoldQ a system
of certain~local! distributions such that the holonomic paths ofQ will ~piecewise! coincide with
holonomic integral sections of these distributions.

Let QU be a local constraint defined by the equations~4.1!. Put for 1< i<k,

ws
i 5

] f i

]q̇s , w0
i 5 f i2

] f i

]q̇s q̇s, ~4.4!

and

w i5w0
i dt1ws

i dqs. ~4.5!

Since~4.2! holds, the 1-formsw i , 1< i<k, are linearly independent at each point ofU. Notice
that

hw i5~w0
i 1ws

i q̇s!dt5 f i dt.

Definition 4.3:Put

C̃ U
05span$w i ,1< i<k%,

and

C U
05span$w i ,d fi ,1< i<k%.

In this way we get a distributionC̃ U of a constant rank 2m112k on U, and its subdistribution
C U of rank 2m1122k. These distributions will be calledextended constraint distributionand
constraint distributionrelated to the constraintQU , respectively.

Notice thatC̃ U
0 is spanned byp1,0-horizontal forms, and thatC̃ U and C U are weakly hori-

zontal distributions. They need not be completely integrable. However,C U is completely inte-
grable if and only ifC̃ U is completely integrable.

The distributionC U is a subdistribution of the distribution generated by means of the 1-fo
d fi , 1< i<k which is tangent toQU ~more precisely, which maps every pointxPQU ontoTxQU!.
Therefore, we have

Proposition 4.1: LetQU be a local constraint, C U a related constraint distribution. Then
C U(x),TxQU at each point xPQU , i.e.,C U restricted to the submanifoldQU is a distribution of
corank k onQU .

The holonomic integral sections of the distributionC U obviously coincide with the holonomic
paths inQU . Indeed, they are solutions of the equationsJ1g* w i5J1g* hw i50, J1g* d fi50, 1
< i<k, i.e.,

f i+J1g50,
d fi

dt
+J2g50.
J. Math. Phys., Vol. 38, No. 10, October 1997
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The ‘‘constraint equations’’f i+J1g50 mean that the integral sections lie in the constraint s
manifold. The equations (d fi /dt)+J2g50 play the role of ‘‘prolongations’’ of the constrain
equations.

Remark 4.1:If f̄ i50 are other equations defining the submanifoldQU , we get a different
constraint distributionC̄ U related toQU . However, theholonomic integral sectionsof the distri-
butionsC U and C̄ U coincide. @Trivially, if for all i , f i(Jx

1g)50 then, sinceJx
1gP$zPJ1Yu f̄ i(z)

50 for all i %, we get f̄ i(Jx
1g)50.#

We are ready to get a key result of this section, namely, that constraint distributions giv
to a distribution onQ .

Theorem 4.1:Let Q,J1Y be a constraint submanifold. There exists a distributionC on Q of
corank k ~with respect toQ ! such that the holonomic integral sections of the distributionC

coincide with the holonomic paths inQ .
Proof: Take a cover ofQ by adapted fiber charts$(U i ,xi)%, and consider the related con

straint distributionsC Ui
. We shall show that for everyi, k such thatU iùUkÞB the distributions

C Ui
andC Uk

coincide alongQ ~i.e., that if$hi
r% and$hk

r %, 1<r<2k, are generators ofC Ui

0 and

C Uk

0 , respectively, thenhi
r5(sas

rhk
s for some functionsas

r on UiùUkùQ , 1<r , s<2k!. Sup-

pose thatQ is defined byf i50 and f̄ i50 on U i and Uk , respectively. Then by definition, on
U iùUk , C Ui

0 is spanned by the 1-formsd fi and

w i5 f i dt1
] f i

]q̇s vs,

andC Uk

0 is spanned byd f̄ i and

w̄ i5 f̄ i d t̄1
] f̄ i

]qG s v̄s,

1< i<k. Since at each pointxPQ ~belonging toU iùUk! bothd fi andd f̄ i annihilate the tangen
spaceTxQ , we must have

d f̄ i~x!5aj
i ~x!d f j .

Consequently,@using the transformation formulas~2.1!# we get

S ] f̄ i

]qG sD
x
S ]q̄s

]qn D
x

5aj
i ~x!S ] f j

]q̇nD
x

.

Since

v̄s5
]q̄s

]qn vn,

we get along the constraint submanifold

w̄ i5
] f̄ i

]qG s v̄s5
] f̄ i

]qG s

]q̄s

]qn vn5aj
i ] f j

]q̇n vn5aj
i w j .

Taking into account that the constraint distributions are tangent to the constraint submanifQ ,
we can see that the local 1-forms$wi

i ,d f i
i % ~restricted toQ ! give rise to a distribution onQ ; denote

this distribution byC . Obviously the corank ofC is 2m112k. Now, if g is a holonomic integral
J. Math. Phys., Vol. 38, No. 10, October 1997
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section ofC then it is a holonomic path inQ . Conversely, every holonomic pathg in Q locally
satisfies the equationsf i+J1g50, i.e., it is~locally! an integral section ofC 05span$w i ,d fi%. This
completes the proof. h

Definition 4.4:The distributionC on the constraint submanifoldQ will be called thecanoni-
cal distribution.

Notice that

C 05span$i* w i ,1< i<k%,

wherei:Q→J1Y is the canonical embedding. In particular, if the constraintQ is defined locally
by the equationsq̇m2k1 i5gi , 1< i<k, we have

i* w i52 (
l 51

m2k
]gi

]q̇l v l1dqm2k1 i2gi dt.

We shall see in Sec. VI that the canonical distribution is a fundamental object for gettin
intrinsic geometric description of mechanical systems constrained toQ . From the point of view of
physics, the rank of the canonical distribution has the meaning of the number ofgeneralized
degrees of freedomof systems constrained toQ , and the canonical distribution itself represen
generalized possible displacements. Its p1,0-vertical subdistribution then has the meaning ofgen-
eralized virtual displacements. The p1,0-vertical subdistribution of the canonical distributio
could be called a distribution ofvirtual velocities. Later we shall see that these concepts can
viewed as an extension of the corresponding classical concepts~known for the case of nonholo
nomic constraints linear in the velocities! to the general case of nonholonomic constraints~cf. Sec.
V, Remark 5.1, and Sec. VII!.

Remark 4.2:Let us find vector field generators of a constraint distribution and of the cano
distribution.

Consider a constraint distributionC U , C U
05span$w i ,d fi ,1< i<k%, related toQU . By defi-

nition, onU the condition~4.2! is satisfied. Hence, without loss of generality, one can suppose
the square matrix (] f i /]q̇ j ), where 1< i<k and m2k11< j <m, is regular onU. Denote by
(aj

i ) the inverse matrix. Then one gets local generators ofC U
0 in the following form, called the

normal form:

w̄ i5aj
i w j5aj

i w0
j dt1 (

l 51

m2k

aj
i w l

j dql1dqm2k1 i ,

~4.6!

c i5aj
i d f j5aj

i ] f j

]t
dt1aj

i ] f j

]qs dqs1 (
l 51

m2k

aj
i ] f j

]q̇l dq̇l1dq̇m2k1 i .

By definition, a vector fieldz belongs toC U iff i zr50 for every 1-formr belonging toC U
0.

Taking the generators ofC U
0 in the normal form~4.6! we getC U5span$z0 ,z l ,z̃ l ,1< l<m2k%,

where

z05
]

]t
2(

i 51

k

aj
i w0

j ]

]qm2k1 i 1(
i 51

k S ap
i aj

sw0
j ] f p

]qm2k1s2aj
i ] f j

]t D ]

]q̇m2k1 i ,

z l5
]

]ql2(
i 51

k

aj
i w l

j ]

]qm2k1 i 1(
i 51

k S ap
i aj

sw l
j ] f p

]qm2k1s2aj
i ] f j

]ql D ]

]q̇m2k1 i ,
J. Math. Phys., Vol. 38, No. 10, October 1997
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z̃ l5
]

]q̇l2(
i 51

k

aj
i ] f j

]q̇l

]

]q̇m2k1 i .

Let us express these generators in adapted fibered coordinates (t,qs,q̇1,...,q̇m2k, f i). Since by this
transformation

]

]t
→

]

]t
1

] f i

]t

]

] f i ,
]

]qs→
]

]qs 1
] f i

]qs

]

] f i ,

]

]q̇l→
]

]q̇l 1
] f i

]q̇l

]

] f i ,
]

]q̇ j→
] f i

]q̇ j

]

] f i ,

where 1< l<m2k, m2k11< j <m, we get

z05
]

]t
2(

i 51

k

aj
i w0

j ]

]qm2k1 i , z l5
]

]ql2(
i 51

k

aj
i w l

j ]

]qm2k1 i , z̃ l5
]

]q̇l .

Notice that holonomic paths inQU , are integral sections of vector fields which are of the fo

G5
]

]t
1 (

l 51

m2k

q̇l
]

]ql2(
i 51

k

aj
i ~w0

j 1q̇lw l
j !

]

]qm2k1 i 1 (
l 51

m2k

G l
]

]q̇l

2(
i 51

k

aj
i S ] f j

]t
1 (

l 51

m2k

q̇l
] f j

]ql2(
s51

k

ap
s~w0

p1q̇lw l
p!

] f j

]qm2k1s 1 (
l 51

m2k

G l
] f j

]q̇l D ]

]q̇m2k1 i ,

whereG l are some functions. Such vector fields will be calledconstraint semisprays.
In the adapted fibered coordinates,G takes the form

G5
]

]t
1 (

l 51

m2k

q̇l
]

]ql2(
i 51

k

aj
i ~w0

j 1q̇lw l
j !

]

]qm2k1 i 1 (
l 51

m2k

G l
]

]q̇l .

Notice that innormal coordinates, i.e., whereQ is locally described by the equationsq̇m2k1 i

2gi(t,qs,q̇1,...,q̇m2k)50, the latter formula becomes

G5
]

]t
1 (

l 51

m2k

q̇l
]

]ql 1(
i 51

k

gi
]

]qm2k1 i 1 (
l 51

m2k

G l
]

]q̇l .

A constraint semispray spans a distribution of rank one onU which is a subdistribution of the
constraint distribution. In keeping with the unconstrained case, this distribution will be cal
constraint connection.

Recall that aforce ~of order one! on U,J1Y is defined to be a dynamical form onU ~Ref.
28!.

If Q,J1Y is a constraint then in a neighborhood ofQ there arises a forceF, called a
constraint force. In correspondence with classical mechanics we shall say that the constra
ideal if it does not work on virtual displacements. In the geometric language developed so fa
means that it holds the following:

Principle of virtual work: LetQ,J1Y be a constraint. Consider a cover ofQ by adapted
fibered charts$U i%. The constraint is ideal (workless) iff on each of the open sets Ui ,

i jF50
J. Math. Phys., Vol. 38, No. 10, October 1997
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for everyp1-vertical vector field belonging to the constraint distributionC Ui
.

The following theorem brings a local characterization of workless constraint forces.
Theorem 4.2: Consider constraint submanifoldQU of U, let C U be a related constraint

distribution, C U
0 5span$w i ,d fi%. Then every force satisfying the principle of virtual work is of t

form

F5(
i

w i∧m i5(
i

m0
i ] f i

]q̇s dqs∧dt. ~4.7!

where

m i5m0
i dt, 1< i<k

is a system of horizontal 1-forms on U.
Proof: Let U be fixed. Every constraint force is onU of the form F5h∧dt; where h

5h0 dt1Fs dqs. Thus from the principle of virtual work we get for the contact partph of h

i jph50

for every p1-vertical vector fieldj belonging to the constraint distributionC U . This means,
however, thatph belongs to the annihilator of the vertical subdistribution ofC U which is spanned
by the 1-formsdt,w i ,d fi . Sinceph is contact andp1,0-horizontal, we get

ph5(
i

m0
i pw i ,

wherem0
i are some functions onU. Summarizing the results we getF in the form ~4.7!. h

Definition 4.5:Any of the forcesF ~4.7! will be called (local) Chetaev forcerelated to the
constraint distributionC U .

1-forms m i arising in the definition of a workless constraint force have the meaning
Lagrange multipliers.

The constraint force arising from the principle of virtual work is proportional to
(] f i /]q̇s), i.e., it is determined up tok parameters—the Lagrange multipliers. For a concr
mechanical system constrained toQ the parameters are evaluated with the help of the equation
motion ~cf. Sec. VI!.

Notice that the definition of local Chetaev force does not depend on the choic
p1,0-horizontal 1-forms belonging toC U

0 . Indeed, if w̄ i5w̄0
i dt1w̄s

i dqs, 1< i<k, are other
independent 1-forms belonging toC U

0 , we havew i5( ja
i j w̄ j , where (ai j ) is an everywhere

regular matrix. Hence,F5( iw
i∧m i5( i , ja

i j w̄ j∧m i5( j w̄
j∧m̄ j .

The concept of local Chetaev force can be easily globalized.
Definition 4.6:Consider a constraint submanifoldQ of J1Y. Let $U i% be an open cover ofJ1Y

by adapted fibered charts,$C Ui
% a system of related constraint distributions, and let for everyi, Fi

be a local Chetaev force onU i , related toC Ui
. Let $gi% be a partition of unity subordinate to th

cover$U i%. Putting

FN 5(
i

giFi , ~4.8!

we get a force onN 5ø iU i which will be calledChetaev forcerelated to the constraintQ .
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If FN is a Chetaev force andxPQ is a point, one has a neighborhoodU of x such that only
a finite number of functionsgi are nonzero onU. Let C U be a constraint distribution onU, and
w i , 1< i<k, be independentp1,0-horizontal 1-forms belonging to its annihilatorC U

0 . Then on
UùQ one gets

FN 5(
i

giFi5(
i,i

giwi
i ∧mi

i 5(
i,i , j

giai
i j w j∧mi

i ,

since for everyi and i there are some functionsai
i j such that onUùQ

wi
i 5(

j
ai

i j w j .

Hence,

FN 5(
j

w j∧S (
i,i

ai
i j gimi

i D 5(
j

w j∧m̄ j .

So, we have proved
Proposition 4.2: LetFN be Chetaev force related to a constraintQ . Then every point inQ

has a neighborhood U such thatFN restricted to UùQ is of the form

FN 5(
i

w i∧m i ,

where$w i% are (arbitrary) independentp1,0-horizontal 1-forms belonging to the annihilator of
constraint distributionC U and $m i% are Lagrange multipliers.

Notice that choosing different systems of constraint distributions one gets different Ch
forces defined in a neighborhood ofQ . However, as a direct consequence of the above propos
we get an important assertion:

Theorem 4.3:Let F1 ,F2 be two Chetaev forces defined in a neighborhood ofQ . Then along
Q , F1 and F2 coincide up to Lagrange multipliers. More precisely, ifF15(igi(( iwi

i ∧mi
i ) and

F25(khk(( i w̄k
i ∧m̄k

i ), then one can find Lagrange multipliers such that at each point xPQ ,
F1(x)5F̂2(x), whereF̂25(khk(( i w̄k

i ∧m̂k
i ).

Remark 4.3:Let us discuss an open question related with constraint structures introduc
this section. Recall that an extended constraint distribution was introduced to be defined
system ofk independent local 1-forms

w i5 f i dt1
] f i

]q̇s vs.

However, in principle,any system ofk 1-forms

n i5 f i dt1ns
i vs,

where the matrix (ns
i ) is everywhere of rankk, could be appropriate to define a distribution wi

similar properties as that of extended constraint distribution. Consequently, this would lead~using
the principle of virtual work! to a corresponding workless constraint force defined byF
5( in

i∧m i . On the other hand, one can see immediately that a cover$U i% of Q being given, not
every choice of a subordinate collection of independent systemsn i , 1< i<k, gives rise to a
distribution onQ . In this respect, the formula for the 1-formsw i represents a canonical choic
J. Math. Phys., Vol. 38, No. 10, October 1997
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leading to a distribution onQ ~the canonical distribution defined above!. Notably, this choice
corresponds to the theory of nonholonomic systems proposed by Chetaev.1 It would be interesting
to know whether this choice is unique or not.

It should be stressed that for nonholonomic systems affine in the velocities this chois
unique~see Remark 5.1!.

V. SEMIHOLONOMIC AND SIMPLE NONHOLONOMIC CONSTRAINTS

In this section we shall study constraints admittingp1,0-projectable extended constraint di
tributions.

Definition 5.1: Let Q,J1Y be a constraint submanifold. We say that the nonholono
constraintQ is simpleif every pointxPQ has a neighborhoodU such that there is an extende
constraint distribution related toQU which isp1,0-projectable~i.e., its annihilator can be spanne
by p1,0-projectable 1-forms!. We say thatQ is semiholonomicif every pointxPQ has a neigh-
borhoodU such that there is an extended constraint distribution related toQU which is completely
integrable.

Proposition 5.1: Every semiholonomic constraint is simple.
Proof: Let f i50 be the equations ofQ on an open setU,J1Y, let C̃ U be the related extende

constraint distribution. Suppose thatC̃ U is completely integrable. ThenC̃ U
0 is spanned by the

1-formsw i ~4.5! and complete integrability means that there are functionsui nearx such that

w i[w0
i dt1ws

i dqs5aj
i duj

for some regular matrix (aj
i ). This means that

]ui

]q̇s 50, q< i<k, 1<s<m,

i.e., theui are functions of (t,qs) only. Consequently,dui are generators ofC̃ U
0 which are defined

on an open subset ofY. h

Proposition 5.2: LetQ be a constraint submanifold of J1Y, dim Q52m112k. ThenQ is
simple if and only if there is a cover ofQ by adapted fiber charts(U i ,xi), xi

5(t i ,qi
s ,...,q̇i

m2k , f i
1,...,f i

k) such that for everyi and 1< i<k,

]2f i
i

]q̇i
s]q̇i

n 50, ~5.1!

where 1<s, n<m.
Proof: Suppose thatQ is simple. LetQ be defined by the equationsf i50, 1< i<k on an open

setU. Suppose that the related extended constraint distributionC̃ U is p1,0-projectable. By defi-
nition, the annihilator of this distribution is spanned by the 1-forms

w i5S f i2
] f i

]q̇s q̇sDdt1
] f i

]q̇s dqs. ~5.2!

Hence, thep1,0-projectability condition means that the relation~5.1! is satisfied.
Suppose the converse. Then for everyi, we have onU i the annihilator of the related extende

constraint distribution spanned by the 1-forms

wi
i 5S f i

i 2
] f i

i

]q̇i
s q̇i

sD dt1
] f i

i

]q̇i
s dqi

s .
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Since~5.1! holds, these 1-forms arep1,0-projectable. h

Condition ~5.1! means that a simple nonholonomic constraint submanifold of codimensik
can be locally represented by the equations of the form

f i[bs
i q̇s1bi50, ~5.3!

where the matrix (bs
i ) has rankk, and the functionsbs

i andbi do not depend on the velocitie
q̇1,...,q̇m ~i.e., simple nonholonomic constraints areaffine in the velocities!. Adapted fiber charts
to Q having such property will be callednatural charts. A cover ofQ with natural charts will be
called anatural cover.

We have the following important assertions which show specific properties of simple
holonomic~and semiholonomic! constraints.

Proposition 5.3: LetQ be a constraint submanifold of J1Y, U an open set such thatQU is
defined by the equations (5.3). LetD5span$f i ,1< i<k% be a distribution of corank k defined o
U such that the 1-formsf i are p1,0-projectable and there exists a regular matrix(aj

i ), defined on
p1,0(U), such that

hf i5aj
i f j dt.

ThenD5C̃ U , i.e., D is the extended constraint distribution on U.
Proof: We havef i5f0

i dt1fs
i dqs, where thef0

i andfs
i do not depend on the velocities

andf0
i 1fs

i q̇s5 f i for all i . By assumption,f i are affine in the velocities, i.e., of the form~5.3!.
This gives usfs

i 5aj
i bs

j , f0
i 5aj

i b
8
j , i.e.,

f i5aj
i ~bj dt1bs

j dqs!.

On the other hand, the annihilator ofC̃ U is spanned by the 1-forms

w i5S f i2
] f i

]q̇s q̇sDdt1
] f i

]q̇s dqs5bi dt1bs
i dqs.

Hence,f i5aj
i w j for all i , proving thatD5C̃ U . h

Proposition 5.4: LetQ be a constraint submanifold of J1Y, U,Ū two natural charts,
UùŪÞB, such thatQ is defined by the equations fi50, and f̄i50, 1< i<k, on U and Ū,
respectively. LetC̃ U , resp., C! U be the corresponding extended constraint distributions. Then
UùŪ,

C̃ U5C! U .

Proof: By assumption, bothf i and f̄ i are affine in the velocities, i.e., onUùŪ one must have
f̄ i5aj

i f j for some regular matrix (aj
i ) which does not depend on the velocities. The assertion

the extended constraint distributions now follows directly from the previous proposition.h
Taking into account the construction of constraint forces and the above results, we

prepared everything to get the following basic result on simple nonholonomic~and semiholo-
nomic! constraints.

Theorem 5.1:Let Q be a simple nonholonomic constraint on J1Y. Then in a neighborhood
N of Q there exists

~1! a distribution C̃ such that for any natural chart U, C̃ restricted to U coincides with the
extended constraint distributionC̃ U on U,

~2! a Chetaev forceFN such that for any natural chart U, FN restricted to U is of the form

FN 5(
i

w i∧m i ,
J. Math. Phys., Vol. 38, No. 10, October 1997
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where$w i% are (arbitrary) generators of the annihilator of the distributionC̃ , and $m i% are
Lagrange multipliers.

Notice that alongQ the distributionC̃ ùTQ coincides with the canonical distribution. Oth
erwise speaking, for simple nonholonomic constraints, the canonical distribution can be
tended’’ to a distributionC̃ defined on an open set envelopingQ .

Remark 5.1:By definition used so far, a system of constraints onJ1Y is a certainsubmanifold
of J1Y. We shall show that simple nonholonomic~and semiholonomic! constraints can be equiva
lently defined to be a certaindistribution on Y.

A constraintQ in J1Y naturally defines local distributions in a neighborhood ofQ . In par-
ticular, if on an open setU,J1Y the constraint is defined by the equationsf i50,1< i<k, then for
any system ofk independentp1,0-horizontal 1-formsn i on U such thathn i5 f idt, the holonomic
paths inQ coincide with the holonomic integral sections of the distribution spanned by then i ’s.
Thus ~for all i !

n i5 f i dt1ns
i vs,

wherens
i are arbitrary functions such that the matrix (ns

i ) is of the maximal rankk. @Among these
forms, however, one has the 1-formsw i ~4.5!, ~4.4! spanning the extended constraint distributio
these forms have their contact parts uniquely determined by the constraintQ .# If, in particular,for
some i,n i is p1,0-projectable~i.e., defined on an open subset of the total spaceY! then its contact
part is uniquely determined by its horizontal part, andn i5w i . Consequently,any distribution of
corankk on an open subset ofY defined by the 1-formsn i such thathn i5 f i dt, is the extended
constraint distribution. In other words, thep1,0-projectability condition ensures theuniquenessof
the choice for thew i ’s ~cf. Remark 4.3!.

Summarizing the results—in contrast to general nonholonomic constraints, simple non
nomic, and semiholonomic constraints can be defined also as follows:

A system ofk ~independent! simple nonholonomic constraints~i.e., nonholonomic constraint
affine in the velocities! is a distributionD of a constant corankk on Y. If this distribution is
completely integrable then the constraints are calledsemiholonomic.

Notice that the correspondence between the~local! 1-formsn i ,1< i<m, spanningD0 and the
equations ofQ , f i50,1< i<m, readshn i5 f i dt.

The above definition is used by many authors dealing with geometry of constraints affi
the velocities.

VI. MECHANICAL SYSTEMS WITH CONSTRAINTS

Let @a# be a mechanical system onJ1Y, E the corresponding dynamical form. LetQ,J1Y be
a constraint. IfF is a Chetaev constraint force related toQ and defined in a neighborhoodN of
Q , put

EF5E2F. ~6.1!

In this way we get a first order mechanical system onN , represented by the equivalence cla
@aF# of 2-forms, where

aF5a2F. ~6.2!

Definition 6.1:The dynamical formEF will be called adeformationof the dynamical formE
by the constraint forceF. The dynamical system@aF# will be called adeformationof @a# by F.

Similarly as in Secs. III and IV, denote

E5~As1Bsnq̈n!dqs∧dt
J. Math. Phys., Vol. 38, No. 10, October 1997
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~recall that theA’s andB’s are supposed not to depend on the accelerations!,

a5Asvs∧dt1Fsnvs∧vn1Bsnvs∧dq̇n,

and

F5(
i 51

k

w i∧m i5S (
i 51

k

m0
i ws

i D dqs∧dt,

where

ws
i 5

] f i

]q̇s ,

with f i50 being the equations defining locally the submanifoldQ . Then

EF5S As1Bsnq̈n2(
i 51

k

m0
i ] f i

]q̇sD dqs∧dt ~6.3!

and

aF5S As2(
i 51

k

m0
i ] f i

]q̇sDvs∧dt1Fsnvs∧vn1Bsnvs∧dq̇n. ~6.4!

Obviously, the deformed mechanical system is regular if and only if the original mecha
system is regular.

The corresponding deformed dynamical distributions are defined by means of the 1-fo

S As2(
i 51

k

m0
i ] f i

]q̇sD dt12Fsnvn1Bsn dq̇n, Bsnvn.

Using ~3.5! we immediately get
Proposition 6.1: The deformed dynamics are described by the sectionsg of p satisfying the

constraint equation

f i+J1g50

together with one of the following (equivalent) equations:

J1g* i jaF50 for every p1-vertical vector fieldj on J1Y,

EF+J2g50, As1Bsnq̈n5(
i 51

k

m0
i ] f i

]q̇s along J2g. ~6.5!

The above equations will be calleddeformed equations of motion, related to@a#. They repre-
sent a system ofm1k ODE ~m of them of order 2 andk of order 1! for m1k unknowns
gs(t),m0

i (t).
Remark 6.1:Consider the case of semiholonomic and simple nonholonomic constraints.

the above deformed equations of motion take the form well-known from classical mech
Indeed, if the constraints are simple nonholonomic, i.e., iff i5bs

i q̇s1bi then
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As1Bsnq̈n5(
i 51

k

m0
i bs

i .

If the constraints are semiholonomic, one hasf i5aj
i duj /dt, i.e.,

As1Bsnq̈n5(
i 51

k

m0
i ]ui

]qs .

Our aim now will be to characterize the arising constrained mechanical system directly~i.e.,
as a mechanical systemon the constraint submanifoldQ !.

Let @a# be a mechanical system. LetQ be a constraint onJ1Y, denote byi the embedding of
Q into J1Y. Let @aF# be a deformation of@a# by a Chetaev constraint forceF related withQ . For
aFP@aF# put at each pointxPQ

aQ~x!~z1 ,z2!5aF~i~x!!~z1 ,z2!, ~6.6!

wherez1 ,z2 run over the set of all vector fields belonging to the canonical distribution onQ .
Notice thataQ is a 2-form onQ along the canonical distributionC ; in other words, it is defined
to be i* aF restricted to the canonical distribution onQ .

We shall find a coordinate expression foraQ .
Let us take a fibered chartU, whereQ is given by the equationsf i50, and consider the

related constraint distributionC U . For convenience, let us adopt the notations of Sec. IV, Rem
4.2. Then we haveC U

0 spanned by the 1-formsw̄ i ,c i ~4.6!. Denote for 1< i<k,1< l<m2k,1
<s<m,

w̄0
i 5aj

i w0
j , w̄ l

i5aj
i w l

j ,

c0
i 5aj

i ] f j

]t
, cs

i 5aj
i ] f j

]qs , c̃ l
i5aj

i ] f j

]q̇l 5w̄ l
i .

The forms (dt,v1,...,vm2k,w̄1,...,w̄k,dq̇1,...,dq̇m2k,c1,...ck) form a basis of 1-forms onU.
We shall express the formaF ~6.4! in this basis.

First of all, we have for 1< i<k,

vm2k1 i5w̄ i2S w̄0
i 1 (

s51

m2k

w̄s
i q̇s1q̇m2k1 i D dt2 (

s51

m2k

w̄s
i vs5w̄ i2(

j 51

k

aj
i f j dt2 (

s51

m2k

w̄s
i vs,

dq̇m2k1 i5c i2~c0
i 1cs

i q̇s!dt2cs
i vs2 (

s51

m2k

c̃s
i dq̇s

5c i2(
l 51

k

cm2k1 l
i w̄ l2S c0

i 1cs
i q̇s2 (

j ,l 51

k

cm2k1 l
i aj

l f j D dt

1 (
s51

m2k S (
l 51

k

cm2k1 l
i s̄s

l 2cs
i Dvs2 (

s51

m2k

w̄s
i dq̇s.

Now, we get
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aF5 (
l 51

m2k S Al2(
i 51

k

mo
i w l

i Dv l∧dt1(
l 51

k S Am2k1 l2(
i 51

k

mo
i wm2k1 l

i D S w̄ l2 (
s51

m2k

w̄s
l vsD ∧dt

1 (
l ,s51

m2k

Flsv
l∧vs1 (

l 51

m2k

(
s51

k

2Fl ,m2k1sv
l∧S w̄s2(

j 51

k

aj
sf j dt2 (

r 51

m2k

w̄ r
sv r D

1 (
l ,s51

k

Fm2k1 l ,m2k1sS w̄ l2 (
p51

k

ap
l f p dt2 (

r 51

m2k

w̄ r
l v r D ∧S w̄s2 (

q51

k

aq
s f q dt2 (

j 51

m2k

w̄ j
sv j D

1 (
l ,s51

m2k

Blsv
l∧dq̇s1 (

l 51

m2k

(
s51

k

Bl ,m2k1sv
l∧S cs2(

r 51

k

cm2k1r
s w̄ r

2S c0
s1cs

s q̇s2 (
j ,p51

k

cm2k1 j
s ap

j f pD dt2 (
r 51

m2k S c r
s2(

j 51

k

cm2k1 j
s w̄ r

j Dv r2 (
r 51

m2k

w̄ r
s dq̇r D

1(
l 51

k

(
s51

m2k

Bm2k1 l ,sS w̄ l2 (
p51

k

ap
l f p dt2 (

r 51

m2k

w̄ r
l v r D ∧dq̇s1 (

l ,s51

k

Bm2k1 l ,m2k1s

3S w̄ l2 (
p51

k

ap
l f p dt2 (

r 51

m2k

w̄ r
l v r D ∧S cs2(

r 51

k

cm2k1r
s w̄ r

2S c0
s1cs

s q̇s2 (
j ,p51

k

cm2k1 j
s ap

j f pD dt2 (
r 51

m2k S c r
s2(

j 51

k

cm2k1 j
s w̄ r

j Dv r2 (
r 51

m2k

w̄ r
s dq̇r D .

Using that

w̄m2k1 j
i 5ap

i wm2k1 j
p 5d j

i 5wm2k1p
i aj

p ,
we get for 1< l<m2k,

(
i 51

k

w̄ l
pm0

i wm2k1p
i 5(

i 51

k

m0
i aj

pw l
jwm2k1p

i 5(
i 51

k

m0
i w l

jd j
i 5(

i 51

k

m0
i w l

i .

Hence,

aF5 (
l 51

m2k S Al2 (
p51

k

Am2k1pw̄ l
p2(

s51

k S 2Fl ,m2k1s1 (
p51

k

2Fm2k1s,m2k1pw̄ l
p

2(
j 51

k

Bl ,m2k1 jcm2k1s
j 1 (

j ,p51

k

Bm2k1s,m2k1p~cm2k1 j
p w̄ l

j2c l
p!

1 (
j ,p51

k

Bm2k1r ,m2k1pw̄ l
rcm2k1s

p D aj
sf j2(

s51

k S Bl ,m2k1s2(
j 51

k

Bm2k1 j ,m2k1sw̄ l
j D

3~c0
s1cs

s q̇s!Dv l∧dt1 (
l 51

m2k S (
s51

k S Bm2k1s,l2(
r 51

k

Bm2k1s,m2k1r w̄ l
r D aj

sf j D dq̇l∧dt

1 (
l ,s51

m2k S Fls2(
r 51

k

w̄s
rS 2Fl ,m2k1r2(

j 51

k

Fm2k1 j ,m2k1r w̄ l
j D 1 (

j ,r 51

k

~cm2k1r
j w̄s

r2c j
s!

3S Bl ,m2k1 j2 (
p51

k

Bm2k1p,m2k1 j w̄ l
pD Dv l∧vs1 (

l ,s51

m2k S Bls2(
r 51

k

~Bl ,m2k1r w̄s
r

1Bm2k1r ,sw̄ l
r !1 (

r , j 51

k

Bm2k1 j ,m2k1r w̄s
r w̄ l

j Dv l∧dq̇s1terms containingw̄ i ,c i .
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In this way we get

aQ5 (
l 51

m2k

Al8v
l∧dt1 (

l ,s51

m2k

Fls8 v l∧vs1 (
l ,s51

m2k

Bls8 v l∧dq̇s, ~6.7!

where

Al85FAl2 (
p51

k

Am2k1pw̄ l
p2(

s51

k S Bl ,m2k1s2(
j 51

k

Bm2k1 j ,m2k1sw̄ l
j D ~c0

s1cs
s q̇s!G +i,

Fls8 5FFls2(
r 51

k

w̄s
rS 2Fl ,m2k1r2(

j 51

k

Fm2k1 j ,m2k1r w̄ l
j D

1(
j 51

k S Bl ,m2k1 j2 (
p51

k

Bm2k1p,m2k1 j w̄ l
pD S (

r 51

k

cm2k1r
j w̄s

r2cs
j D G +i, ~6.8!

Bls8 5FBls2(
r 51

k

~Bl ,m2k1r w̄s
r1Bm2k1r ,sw̄ l

r !1 (
r , j 51

k

Bm2k1 j ,m2k1r w̄s
r w̄ l

j G +i.

Notice that the 2-formaQ depends only on the mechanical systema and the constraint
Q—not on Lagrange multipliers. Moreover, we can see that the following proposition holds

Proposition 6.2: LetF be Chetaev constraint force. Then for every xPQ and everyz1 ,z2

belonging to the canonical distributionC ,

aF~i~x!!~z1 ,z2!5a~~i~x!!~z1 ,z2!.

Taking into account~6.7! and ~6.8! we can see that we have proved the following import
property of the 2-formsaQ :

Proposition 6.3: IfaF
1 andaF

2 are equivalent then the corresponding 2-formsaQ
1 andaQ

2 are
equivalent~i.e., aQ

1 2aQ
2 is a 2-contactp1,0-horizontal 2-form onQ !.

Consequently, the equivalence class@aQ# is a mechanical systemon Q .
Definition 6.2:The equivalence class@aQ# of 2-forms onQ will be called theconstrained

systemrelated to the mechanical systema and the~ideal! constraintQ .
Now, in keeping with Sec. III we get
Proposition 6.4: A sectiong of p is a path of the constrained system@aQ# if and only if J1g

is an integral section of the canonical distributionC , and for everyp1-vertical vector fieldjQ on
Q it satisfies the equation

J1g* i jQ
aQ50, ~6.9!

whereaQ is a 2-form belonging to@aQ#.
In adapted fibered coordinates(t,qs,q̇1,...,q̇m2k) on Q the equation of motion of the con

strained system@aQ# becomes the following system of m2k second order ODE, and k first orde
ODE for the componentsg1,•••,gm of g:

f i+J1g50, El8+J2g[FAl81 (
s51

m2k

Bls8 q̈sG +J2g50,

where Al8 and Bls8 are given by (6.8).
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Notice that the above system of equations can be viewed as 2nd order equatio
g1,••• gm2k dependent ont and the parametersqm2k11,...,qm, which have to be determined~as
functions oft, i.e., asgm2k11(t)),•••gm(t) from the first-order ODE of the constraint.

Naturally, a constrained dynamical distributionDaQ
associated to the 2-formaQ will be

defined as a subdistribution of the canonical distributionC , generated by means of the 1-form
i jaQ , wherej runs over allp1-vertical vector fields onQ . Hence, the annihilator ofDaQ

0 is

spanned by the 1-forms

i* w i , Al8 dt12Fls8 vs1Bls8 dq̇s, Bsl8 vs,

where 1< l<m2k.
The equivalence class@aQ# naturally gives rise to the class@DaQ

# of associated constraine
dynamical distributions.

We can see that for allDaQ
P@DaQ

#, rank DaQ
>1. In analogy with the unconstrained cas

the constrained system will be calledregular on an open setV,Q if for some constrained
dynamical distributionDaQ

on V, belonging to the class@DaQ
# corresponding to@a#, rank DaQ

51 on V.
In keeping with Proposition 3.3 and Theorem 4.1 we can see that for a regular mech

system subject to nonholonomic constraints we have also the following.
Proposition 6.5: Let@aQ# be the constrained system related to a mechanical system@a#, and

let @DaQ
# be the corresponding equivalence class of dynamical distributions. Let V,Q be an

open set. The following assertions are equivalent:
~1! The constrained system@aQ# is regular on V.
~2! The (m2k)3(m2k)-matrix Bsl8 is regular at each point of V.
~3! Each of the dynamical distributions of@DaQ

# has rank one on V.
~4! All the dynamical distributions of@aQ# on V coincide; their annihilator is spanned by th

1-forms

i* w i , Al8 dt1Bls8 dq̇s, v l , 1< i<k, 1< l<m2k.

~5! The constrained equations of motion have an equivalent form

q̈l52B8 lsAs8 , 1< l<m2k,

f i50, 1< i<k.

If the constraintQ is defined by equations in a normal formq̇m2k1 i5gi then the generators
of DaQ

0 for a regular system@aQ# take the following form:

dqm2k1 i2gi dt, Al8 dt1Bls8 dq̇s, v l , 1< i<k, 1< l<m2k,

and the constrained equations of motion become

q̈l52B8 lsAs8 , 1< l<m2k,

q̇ j5gm2 j 11, m2k11< j <m.

A constrained system of a regular~resp., singular! mechanical system need not be regu
~resp., singular!. It is easy to find examples showing that under constraints a regular mecha
system can become singular, and conversely, a singular mechanical system can become
~cf. Sec. VIII!.
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Remark 6.2:Let @a# be a Lagrangian system. This means that there exists a 2-formaE

P@a# such thatdaE50. An ideal constraintQ,J1Y being given, the constraint 2-form (aE)Q

need not be closed. Moreover, in general, there is no closed 2-form in the class@(aE)Q#. A
constrained Lagrangian system@aQ# is Lagrangian if and only if there is a closed 2-form belon
ing to the class@aQ# ~cf. Remark 3.1!. Consequently,a constrained system arising from a La
grangian system need not be Lagrangian.

For a Lagrangian system@aE# subject to an ideal constraintQ let us find an explicit expres
sion of the constrained system@(aE)Q#.

For aE one has~3.3!, where

Fsn5
1

4 S ]As

]q̇n 2
]An

]q̇s D .

If l5L dt is a ~possibly local! Lagrangian forE and ul is its Cartan form then~locally! aE

5dul and we get

As5
]L

]qs
2

]2L

]t]q̇s
2

]2L

]qn]q̇s
q̇n, Bsn52

]2L

]q̇n]q̇s
,

and

Fsn5
1

2 S ]2L

]qs]q̇n2
]2L

]qn]q̇sD .

Substituting the above formulas to~6.7!, ~6.8! we get the expression for the 2-form (aE)Q

5(dul)Q . One can see immediately that in general, (dul)QÞi* dul , andd(dul)QÞ0. Notice
that the form (dul)Q is by Proposition 6.2 defined by the formula

~dul!Q~x!~z1 ,z2!5dul~i~x!!~z1 ,z2! ~6.10!

for every xPQ , where z1 ,z2 run over the set of all vector fields belonging to the canoni
distribution onQ . Now, theconstrained Lagrangian systemis the class

@~aE!Q#5@~aE!Q1h#,

whereh is an arbitrary 2-form onQ alongC , which is 2-contact andp1,0-horizontal.
Now, in keeping with Remark 6.2, one gets thata mechanical system@(aE)Q# is Lagrangian

if and only if there exists a 2-contact, p1,0-horizontal 2-form h on Q along C such that
d((aE)Q1h)50.

VII. MECHANICAL SYSTEMS WITH HOLONOMIC CONSTRAINTS

Definition 7.1:Let k,m be an integer. By a system ofk independentholonomic constraints
we shall mean a constraint submanifold of codimensionk in the total spaceY of the fibered
manifold p.

Let Q0,Y be a system ofk holonomic constraints. Then at each pointxPY there is a chart
(U,x), x5(t,q1,...,qm2k,u1,...,uk) such thatQ0 is on U defined by the equations

ui50, 1< i<k,

and the functionsui satisfy the condition
J. Math. Phys., Vol. 38, No. 10, October 1997
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rankS ]ui

]qsD5k. ~7.1!

The submanifoldQ0 of Y prolongs to a submanifoldJ1Q0,J1Y of the codimension 2k. J1Q0 is
locally defined by the equations

ui50,
dui

dt
50, 1< i<k,

i.e., it can be covered by adapted fibered coordinates of the form (t,qj ,ui ,q̇ j , f i), where 1< j
<m2k, 1< i<k, andf i5dui /dt. In this way,J1Q0 is a submanifold of the manifoldQ,J1Y of
codimensionk which is locally defined by the equations

f i50, 1< i<k.

Taking into account~6.1! we can see thatQ is a system ofk independentsemiholonomic con-
straints.

Proposition 7.1: LetQ0,Y be a holonomic constraint, Q the semiholonomic constrain
related withQ0 . Let C be the canonical distribution onQ . Then for every xPJ1Q0 ,

C ~x!5TxJ
1Q0 .

Proof: The canonical distributionC on Q is spanned by the 1-formsdui , i.e., alongJ1Q0 it
coincides with the tangent distribution to the submanifoldJ1Q0 . h

Consequently, the restriction of the canonical distributionC to the submanifoldJ1Q0 is
p1,0-projectable and its projection is the tangent distribution toQ0 . This means that for holonomic
constrained systems one can define the concepts ofdegrees of freedom, possible displacemen,
andvirtual displacementsto be the dimension of the manifoldQ0 , the tangent distribution toQ0 ,
and itsp-vertical subdistribution, respectively.

If a holonomic constraintQ0 in Y is given then the only admissible holonomic paths inQ are
the sectionsg of the fibered submanifoldQ0→X of p, i.e., such thatJ1gPJ1Q0 . This means that
for a mechanical system@a# on J1Y, the corresponding constrained systemaQ can be restricted to
J1Q0 .

Denote byaJ1Q0
the restriction of the 2-formaQ to J1Q0 , and byi0 the canonical embedding

of J1Q0 into J1Y.
As a direct consequence of Proposition 7.1 and Proposition 6.2 we have the following im

tant assertions:
Proposition 7.2: LetQ0 be a holonomic constraint. Consider a mechanical system@a# on

J1Y. Then for the corresponding constrained system@aJ1Q0
# one has

@aJ1Q0
#5@i0* a#.

Corollary 7.1: LetQ0 be a holonomic constraint, and let@a# be a mechanical system on J1Y.
Then the corresponding constrained system is the mechanical system@i0* a# on the fibered sub-
manifoldQ0→X of the fibered manifoldp:Y→X, wherei0 :J1Q0→J1Y is the canonical embed
ding.

Corollary 7.2: LetQ0 be a holonomic constraint. Let@a# be the Lagrangian system on J1Y
related with a dynamical form E. Let aEP@a# be the closed representative of@a#. Then the
corresponding constrained system@i0* a# is Lagrangian, with the closed representativei0* aE , and
its related dynamical form isi0* E. If l is a Lagrangian for E theni0* l is a Lagrangian fori0* E.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Proof: Since daE50, we getdi0* aE5i0* daE50, and since the 1-contact part ofi0* aE

obviously isi0* E, we havei0* aE5ai
0* E . If l is a Lagrangian fora, andul is its Cartan form then

daE5dul , hencei0* aE5i0* dul5di0* ul . Finally, one can easily see thati0* ul5ui
0* l . h

VIII. ILLUSTRATIVE EXAMPLES

Example 1:Consider a ‘‘free particle’’ onR3. This means that we consider a first-ord
mechanical system@a# on the fibered manifoldR3R3→R, related with a dynamical formE
which in the canonical coordinates (t,qi) is expressed by

E5(
i 51

3

mq̈i dqi∧dt5md i j q̈
j dqi∧dt.

Hence,

a5Fi j ~dqi2q̇i dt!∧~dqj2q̇ j dt!1md i j ~dqi2q̇i dt!∧dq̇j .

Suppose that this mechanical system is fort.0 subject to one nonholonomic constraintQ given
by the equation

f ~ t,qi ,q̇i ![t~~ q̇1!21~ q̇2!21~ q̇3!2!2150.

In a neighborhood of the submanifoldQ

rankS ] f

]q̇i D52t~ q̇1,q̇2,q̇3!51,

i.e., the condition~4.2! is satisfied.
Let U,R3R33R3 be the set of all points whereq̇3.0, and consider onU the canonical

coordinates and the adapted coordinates (t,q1,q2,q3,q̇1,q̇2, f ). We haveq̇35g, where

g5S 1

t
2~ q̇1!22~ q̇2!2D 1/2

.

Notice thatg.0 on U.
The annihilator of the extended constraint distribution onU is spanned by the 1-form

w52~ t~~ q̇1!21~ q̇2!21~ q̇3!2!11!dt12t~ q̇1 dq11q̇2 dq21q̇3 dq3!,

and the constraint distributionC U is defined by means of the 1-formsw andd f . A normal form of
the 1-formsw andd f is

w̄5
1

2tq̇3 w, c5
1

2tq̇3 d f .

The local Chetaev constraint force onU related toC U is

F5m0w∧dt5m02t~ q̇1 dq11q̇2 dq21q̇3 dq3!∧dt.

The corresponding deformed mechanical system is the equivalence class of the 2-form

aF52m02t~ q̇1 dq11q̇2 dq21q̇3 dq3!∧dt1Fi j ~dqi2q̇i dt!∧~dqj2q̇ j dt!

1md i j ~dqi2q̇i dt!∧dq̇j ,
J. Math. Phys., Vol. 38, No. 10, October 1997
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and the deformed equations of motion are the following equations:

@mq̈i2m02tq̇i #+J2g50, i 51,2,3

for sectionsg5(t,g i(t)) of R3R3→R satisfying the constraint equationf +J1g50.
The constrained system@aQ# related to the mechanical system@a# and the constraintQ is the

equivalence class of the 2-form

aQ5 (
i 51,2

Ai8v
i∧dt1 (

i , j 51,2
Fi j8 v i∧v j1 (

i , j 51,2
Bi j8 v i∧dq̇j

on Q , where

Ai85mF q̇i

2t~ q̇3!2 ~~ q̇1!21~ q̇2!21~ q̇3!2!G +i5
mq̇i

2~ tg!2 ,

Bi j8 5Fmd i j 1m
q̇iq̇j

~ q̇3!2G +i5mS d i j 1
q̇i q̇ j

g2 D .

The matrix (Bi j8 ) is on QùU equivalent to the matrix

S g21~ q̇1!2

q̇1q̇2
q̇1q̇2

g21~ q̇2!2D ,

hence

S g21~ q̇1!2 q̇1q̇2

0
g2

t
D

which is obviously regular at each point ofQùU. This means that the constrained system@aQ#
is regular on QùU.

The equations of motion of the constrained system onQùU are

F mq̇i

2~ tg!2 1mS d i j 1
q̇i q̇ j

g2 D q̈ j G +J2g50, i 51,2.

Analogous results are obtained if one considers the other adapted charts belonging to a
coveringQ .

Notice that the original mechanical system@a# is a Lagrangian system~the corresponding
closed 2-form isaE5md i j (dqi2q̇i dt)∧dq̇j ). However,the constrained system@aQ# is not a
Lagrangian system, i.e., there do not exist functionsFls8 such that the corresponding 2-formaQ

would be closed. To this end it is sufficient to check that

]B118

]q̇2 Þ
]B128

]q̇1 .

The following are easy examples of a singular mechanical system which subject to a
straint becomes regular, and of a regular mechanical system which becomes singular, respe

Example 2: Consider a singular mechanical system onR3R2, defined by the dynamical form

E5~ q̈11q̈2!dq1∧dt.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Let the constraintQ be given by

f [q̇1q̇250, q̇1Þ0.

Then

w̄52q̇2 dt1
q̇2

q̇1 dq̇11dq̇2

and ~6.8! give

A1850, B118 5S 12
q̇2

q̇1D +i51,

i.e., the constrained system is regular. The equations of motion of the constrained system

q̈1+J2g50, q̇2+J1g50.

Example 3:Consider a regular mechanical system onR3R3, defined by the dynamical form

E5~ q̈1 dq11q̈2 dq21~2q̈11q̈21q̈3!dq3!∧dt.

Let the constraintQ be given by

f [q̇11q̇21q̇350.

Then

w5~ q̇11q̇21q̇3!dt1v11v21v3,

and

A185A2850,

B118 522250, B128 512150, B218 5122521, B228 522151,

i.e., the constrained system@aQ# reads

aQ5v2∧~dq̇22dq̇1!1 (
i , j 51,2

Fi j8 v i∧v j

with Fi j8 arbitrary. Obviously, the constrained mechanical system is singular, and the const
equations of motion are the following:

2q̈11q̈250, q̇352q̇12q̇2.

Notice that the corresponding constraint dynamical distributions are generated by means
1-forms

~ q̇11q̇2!dt1v11v21dq3, v2, F118 v1, 2F218 v12dq̇11dq̇2,

i.e., they are of rank 2 or 3. In this equivalence class there is a unique constraint distribut
rank 2; it corresponds to the choiceF118 Þ0. Its annihilator is spanned by the 1-forms

v1, ,v2, dq̇22dq̇1, ~ q̇11q̇2!dt1dq3.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Casimir free energy of a spherical cavity
in a dielectric medium

Anatol M. Brodsky
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An expression is derived for the Casimir free energy of a spherical cavity in a polar
dielectric medium at finite temperature. In the process of the derivation the general
problem of infinities and their renormalization in calculations of Casimir forces is
analyzed. It is shown that the renormalized Casimir free energy has a minimum at
a finite mesoscopic value of the cavity radiusR5RMin

Cas, with the repulsion forR
,RMin

Cas and the attraction forR>RMin
Cas. The implications of this result for the ex-

planation of cavitation effects are discussed. ©1997 American Institute of Phys-
ics. @S0022-2488~97!03510-X#

I. INTRODUCTION

The present paper reports a calculation of the Casimir free energy of a mesoscopic sph
symmetric cavity in a polar dielectric medium. One of the reasons for launching the study w
interpretation of intriguing results from experiments on the stability and dynamical life of m
scopic bubbles in uniform and nonuniform water and other polar solutions. Among the
standing problems of liquid state theory is the absence of a generally accepted explanation
stabilization and nonlinear dynamics of mesoscopic bubbles in water solutions far from the b
point.1,2 Remarkable unexpected results in bubble physics have been revealed recently by
measurements of coherent sonoluminescence~CSL!3 in which it was found that collapse of
mesoscopic gas bubble trapped in a polar fluid by a strong sound field leads to the emissio
photons in a short time interval of the order of 10 ps. Both the energy of the emitted light q
and the time duration of the emission differ from corresponding characteristics of the imp
sound wave by 6 orders of magnitude. While theoretical arguments based on the macro
classical ‘‘shock wave’’ model provide some interpretation of CSL,3 the physical mechanism o
acoustic energy concentration and light emission remains unclear. In particular this model
explain why CSL critically depends on ambient temperature, pressure and the nature of dis
gases, the reason for the strong isotope effect and ‘‘why water is by far the most friendly flu
CSL’’.3,4 The mentioned failure of the shock wave model to explain the basic experimental
as well as its internal inconsistencies, made it apparent that it is necessary to seek anot
trivial explanation of the sonoluminescence effects.

In his last works, Schwinger5 addressed this problem and suggested that sonoluminesc
can be explained as a dynamical counterpart of the equilibrium Casimir effect. The Casimir
is a manifestation of the changes in the electromagnetic quantum zero point energy and te
ture fluctuations due to the presence of matter. According to Ref. 5, the imaginary~dynamical!
part of the electromagnetic energy averaged over the fluctuations is connected with the
production dynamics in a quantum field tunneling process. Such photon production has
accompanied by a change of the matter distribution. The crucial question about the s
character of matter movements during the CSL was not discussed in Ref. 5. The mostly g
qualitative arguments of Ref. 5 can hardly explain all the puzzling properties of CSL includin
dilemma of high energy concentration.6 However, Schwinger’s works stimulated an interest
evaluating the importance of Casimir interactions in the description of bubbles in polar liq
Such interactions can, in principal, substantially change the laws governing both statistic
0022-2488/97/38(10)/5127/16/$10.00
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dynamics of mesoscopic bubbles. In order to understand at least some aspects of comple
scopic bubble dynamics, it is important to clarify the dependence of the equilibrium Casimi
energy of a small spherical cavity in a polar dielectric medium on temperature, cavity radiu
surface layer structure. Such a cavity can be viewed as the simplest model of a gas bubble
dielectrics. Calculations of the Casimir free energy of a spherical object in a dielectric mediu
also of interest in many other areas of condensed matter physics, ranging from biomem
interactions and the theory of colloid stability to quantum optics and maser theory.7,8

The first attempt of theoretical calculation of the Casimir energy of a spherical object
made in 1968 in an article by Boyer.9 The motivation of Boyer’s calculations was the evaluati
of the possibility of the introduction of stabilization forces into Abraham–Lorentz classical e
tron theory by taking into account the vacuum zero-point electromagnetic fluctuation. S
possibility was hypothesized by Casimir10 and mentioned by Feynman. In his article Boyer h
come to the conclusion that the corresponding effect is of the opposite sign from that necess
stabilization in electron models and correspondingly the idea10 is groundless. At the same tim
Boyer’s result indicates that Casimir forces can explain the observed stabilization of small bu
in liquids due to the compensation of external pressure. In this case the macroscopic Ray
Plesset equation based on Laplace expression for surface pressure, becomes invalid for
scription of mesoscopic bubble dynamics. This dynamics which has to include interactio
bubble oscillations with electronic exitations determine the lows of energy accumulation
external acoustic field and subsequent optical emission from the ‘‘pumped’’ medium.

The task of finding the solution of the Casimir problem for objects finite in all three direct
proves to be one of the most difficult and yet unresolved problems of nonrelativistic qua
mathematical physics. The main difficulties are connected with the complex structure o
asymptotics, which are qualitatively different for small and large object sizes, and with the d
gent character of intermediate calculation results which previously were regularized by the
duction in the nonuniform way of frequency and angular momentum cut-offs.

In this work we calculate Casimir free energy of the spherical cavity in a polar dispe
media at finite temperature. Up to our best knowledge the only related problem considere
viously in literature by Brevik and Clausen11 is the problem of Casimir force acting on a dispe
sive ball in vacuum atT.0 under the conditione(v)m(v)51 with e~v! andm~v! denoting the
spectral permetivity and permeability, respectively. Such a condition is not satisfied in the c
aqueous media where a dielectric constant can be as high as 102 and effects of magnetic propertie
can be disregarded. It is necessary to mention also that there are questionable element
calculations11 where integrals of the function of Bessel functions have been estimated by nu
cal methods. This introduced in calculations uncontrollable errors, especially after the summ
of infinite ~and in fact not convergent atT.0 and only conditionally convergent atT50! series
over angular momenta.

The present calculations are based on the mesoscopic thermodynamical approach intr
by Lifshitz.12 The results of his calculations of Casimir interactions between two infinite cond
ing plates separated by mesoscopic distances have been confirmed by experiments for dist
the order of or larger than 1024 cm. These calculations, which now are included in textboo
clearly demonstrated that the finite result can be achieved only after the subtraction of infi
~renormalization! connected with short distance~microscopic! effects. Another important propert
of the van der Waals and Casimir interactions stressed by Lifshitz is that they are not ad
That means that the corresponding energies are not simply proportional to the volume and
surface of the bodies but depend also on more detailed characteristics of their shape. Th
additivity, as well as the long range character of the corresponding interactions, allows
distinguish their mesoscopic contribution to the free energy from the possibly infinite add
parts corresponding to the short range microscopic interactions. Such nonadditivity effects c
of course, appreciable in condensed phase physics only on mesoscopic distances when t
acteristic dimensions are sufficiently small though still large compared with atomic dimensio
J. Math. Phys., Vol. 38, No. 10, October 1997
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the case of a spherical object, which is more complex than the one-dimensional problem
interacting plates, this means that in the calculation of Casimir energy it is necessary to se
not only the additive microscopic bulk terms proportional to the object volume but also the su
terms depending on microscopic interactions on the surface and on the radiiR.

The convenient starting point for the calculations of Casimir free energy is the genera
mula

FCas52
T

2
ln M1 const., ~1!

whereM is the Fredholm determinant corresponding to the temperature~Matsubara! Green func-
tion of Maxwell electrodynamics. In the linear field theoryM is proportional to the statistica
physics partition function.12 In the next section we will produce the analog of~1! for a spherical
cavity with radiusR in an infinite dielectric medium with time dispersion in the dielectric fun
tion. We expressM through radial Jost functions and show that according to general asymp
properties of these functions the expression~1! leads to finite results only after the proper reg
larization.

It is shown explicitly in Sec. III that the expression forFCas(R) can be regularized by sub
traction of three counter terms

FCas~R!→FCas
Reg~R!5FCas~R!2C02C2R22C3R3 ~2!

with infinite constantsC0,2,3 absorbing, correspondingly vacuum, surface and bulk additive~short
length! effects. The regularization procedure~2! is ‘‘exactly defined’’ and is independent of an
approximations:FCas(R) is presented in the form of infinite sums of the functions of comp
variableR holomorphic at and near the physical values ofR and it was shown that this sum give
a finite result for all physicalR after the subtraction of perfectly defined terms involving only
2, and 3 powers ofR. I have used here the term ‘‘exactly defined’’ procedure with some cau
it means only that the renormalization can be exactly defined, as in all analogous physical th
on the operational level.

It is a nontrivial result that theory is renormalizable, that is all divergences can be swep
the counter terms corresponding to the additive volume and surface atomic scale effects.
the resulting three theoretically undetermined coefficients only one, which can be interpre
effective mesoscopic surface tension, enters in the thermodynamic description of open s
with constant chemical potentials. It is tempting to relate this coefficient directly to value o
macroscopic surface tension but this is not generally quantitatively true.13 However, for numerical
estimations of the range of bubble stability it is enough to suppose that the mesoscopic s
tension is of the same order as the corresponding macroscopic quantity. The important poin
these estimations do not include any cutoffs or other inserted in ad hoc manner paramete

In Sec. IV we analyze approximate analytical expressions for the Casimir energy in the
of small and largeR. The general results and possible generalizations are discussed in the
clusion.

In the Appendix the expression for asymptotics of Bessel function products entering i
expression forFCas(R) is derived. The derivation is based on an integral representation introd
in 1933 by Dixon and Ferrar,14 which provides the mathematical basis for most of the calculati
in the article. This integral representation, exploited previously in Reggistics, allows us to
the application of the almost intractable uniform asymptotics with subtle cancellations i
expressions for bilinear products of Bessel functions entering Jost functions as well as e
numerical integrations used in Refs. 9, 11.
J. Math. Phys., Vol. 38, No. 10, October 1997
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II. GENERAL EXPRESSION FOR THE FREE ENERGY OF A MESOSCOPIC SPHERE IN
AN INFINITE DIELECTRIC

We consider a sphere in an infinite dielectric medium with electromagnetic properties
acterized by the dielectric functione(v;r ) depending on the radiusr and frequencyv. We
suppose that functione(v;r ) has the following form:

e~v,r !ur ,R5e1~v!, e~v;r !ur .R1 l5e2~v!, ~3!

corresponding to the formation of a spherical bubble characterized by the dielectric fun
e1(v), in the solution with bulk dielectric functione2(v). The width l of the transition region
from e1 to e2 ~surface layer! is assumed to be of atomic dimensions and much less than the b
radiusR.

Our goal is to find the expression for the free energyFCas(R) corresponding to the long-wav
transverse electromagnetic fluctuations. According to the Hellmann–Feynman theorem the
in the free energydF due to a small adiabatic change in the permittivity related to the corresp
ing variation of the operator HamiltoniandĤ as follows:12

dF5^dĤ&[Tr~e2Ĥ/TdĤ !
1

Tr e2Ĥ/T
, ~4a!

where angular brackets indicate quantum and statistical averaging taken over Gibbs distr
with the unperturbed HamiltonianĤ. In the case of Maxwell’s Hamiltonian, when changes
magnetic properties are neglected and according to~3! e(v;r ) depends only on one externa
parameterR, the equation~4! leads, after straight forward calculations described in the detai
Ref. 12, to the following expression for the derivative of Casimir free energyFCas(R) with respect
to R:

]FCas~R!

]R
5

1

4p E dv d3r K ]e~v;r !

]R
EC 2~v; r̄ !L

[4pT (
s52`

`

e2 i zstE H ]e~ i uzsu;r !

]R (
i 51

3

Dii
E~ uzsu; r̄ , r̄ !J d3rU

t→10

;

zs52psT; s50,61,62,..., ~4b!

where the Planck~\! and Boltzmann (k) constants are equated to unity~they are restored in the
final expressions and parameter estimations!. We have disregarded in~4b! the contribution con-
nected with the space variation of magnetic permeabilitym(v; r̄ ) since this contribution is minus
cule in the water solution case. The generalization, necessary to include this contribution, ba
introduction of magnetic Green functionDB ~see Ref. 12! is straightforward. The function
Dii

E(uzsu; r̄ , r̄ 8) in ~4b! is the transversal electromagnetic temperature Green function12 which can
be found in the long-wave approximation by the solution of the following differential equati

S curl curl1
zs

2

c2 e~ i uzsu;r ! DDE~ uzsu; r̄ , r̄ 8!54p
zs

2

c2 I•d3~ r̄ 2 r̄ 8!(
i 51

3
]

]r i
e~ i uzsu;r !Dik

E ~ uzsu; r̄ , r̄ 8!

54p
]

]r k
d3~ r̄ 2 r̄ 8! ~5!

with the same boundary conditions as in the case of common retarded Green function
dielectric functione( i uzsu;r ) of the imaginary frequencyi uzsu in ~4b! and ~5! is, according to
J. Math. Phys., Vol. 38, No. 10, October 1997
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general arguments,15 real and decreases to unity asuzsu→`. This function can be constructed from
the imaginery part of ordinary dielectric functione(v;r ) depending on the real frequenciesv with
the help of the dispersion relation15

e~ i uzsu;r !511
1

p E
2`

` v Im e~v;r !dv

v21zs
2 . ~6!

In the following the behavior ofe( i uzsu;r ) at s→` will be important. This behavior can b
inferred from the asymptotics ofv Im e(v,r) at v→`:

v Im e~v,r ! ——→
v→`

const.f ~v!r~r !,

wherer(r ) is the density andf (v) is the local oscillator strength of the medium. It follows fro
sum rules forf (v)16 that

E
0

`

vnf ~v!dv,`, for n521,0,1,2

and correspondingly

v Im e~v i ! ,
v→`

const.

v2
and ~e~ i uzsu;r !21! ,

usu→`

const.

usu3
.

It will be shown that after renormalization~2! it is possible in the case of gas bubbles in
aqueous system to use the approximate expression for the dielectric functione2(v) corresponding
to a damped oscillator and sete1(v) equal to unity:

e2~ i uzsu!511
e021

11uzsut1~ uzsu/v0!2 , e1~ i uzsu!51. ~7!

The expression~7! for e2 is of generalized Debye type witht equal to the Debye dipole relaxatio
time. The nonlinear term in the denominator of the first expression in~7! takes into account the
emergence of the transparency window at frequenciesv.v0 , wherev0 lies in the infrared region
in the case of aqueous systems.

We constructDik(uzsu;r ,r 8) with the help of the following electric (e) and magnetic (m)
multipole solutions of the equations~5! without right-hand terms:

ĒJM
~m!6~ uzsu;r !5

1

r
EJ

~m!6~ uzsu;r !ȲJM
~m!~rC !,

ĒJM
~e!6~ uzsu;r !5

1

e~ i uzsu;r !
curl

ȲJM
~m! ~rC !EJ

~e!6~ uzsu;r !

r

52
1

r e~ i uzsu;r ! H ]EJ
~e!6~ uzsu;r !

]r
ȲJM

~e!6~rC !1
EJ

~e!6~ uzsu;r !J~J11!

r
ȲJM

~o! ~rC !J
J51,2,..., M52J,2J11,•••J, ~8!

whereȲJM
(m,e0) are normalized orthogonal vector spherical harmonics.17 In ~8! the auxiliary scalar

radial functionsEJM
(e,m)6 are defined, up to multiplicative constants, by the following radial eq

tions and boundary conditions:
J. Math. Phys., Vol. 38, No. 10, October 1997
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S d2

dr22
J~J11!

r 2 2
zs

2

c2 e~ i uzsu;r ! DEJ
~m!6~ uzsu;r !50,

S d

dr

1

e~ i uzsu;r !

d

dr
2

J~J11!

e~ i uzsu;r !

1

r 22
zs

2

c2DEJ
~e!6~ uzsu;r !50, ~9!

EJ
~e,m!1 ——→

r→`

0, EJ
~e,m!2 ——→

r→0
0.

The functionsEJ
(1,2) are known in Reggistics as, correspondingly, Jost and regular radial solu

The solutionsEJ
(m,e)6(uzsu,r ) of equations~9! as well as the derivative expressions

dEJ
~m!6~ uzsu,r !

dr
and

1

e~ i uzsu;r !

dEJ
~e!6~ uzsu,r !

dr
~10!

are continuous functions ofr across the boundaryr 5R. The continuity of expressions~10! can be
checked by an integration of~9! over dr in the interval@R2e,R1e# with e→0.

It is not difficult to check directly that the Green functionDik
E (uzsu; r̄ , r̄ 8) is equal to the sum

Dik
E ~ uzsu; r̄ , r̄ 8!54p(

JM

H zs

c2

rr 8

EJ
~m!1~r !EJ

~m!2~r 8!u~r 2r 81r↔r 8

WJ
~m! ~ȲJM

~m!~rC !! i~ȲJM
~m!* ~rC8!!k

2
u~r 2r 8!curli~EJ

~e!1~r !ȲJM
~m!~rC /r !curlk~ĒJ

~e!2~r 8!ȲJM
~m!* ~rC8!/r 8!1 r̄↔ r̄ 8

e~ i uzsu;r !e~ i uzsu;r 8!WJ
~e!

J ,

~11a!

whereu(r 2r 8) is the step function defined as follows:

u~z!5H 1 for z.0
1
2 for z50

0 for z,0
~11b!

andWJ
(e,m) are Wronskians which are independent ofr and are given by the expressions

WJ
~m![WJ

~m!~s,R!5
]EJ

~m!2~ uzsu,r !

]r
EJ

~m!1~ uzs!u,r )2EJ
~m!2~ uzsu,r !

]EJ
~m!1~ uzxu,r !

]r
,

~12!

WJ
~e![WJ

~e!~s,R!5
1

e~ i uzsu;r !
S ]EJ

~e!2~ uzsu,r !

]r
EJ

~e!1~ uzsu,r !2EJ
~e!2~ uzsu,r !

]EJ
~e!1~ uzsu,r !

]r D .

It is convenient to chose the normalization of the functionsEJ
(m,e)7 in ~12! in such a way that for

r→0 the functionsE(m,e)2(r ) do not depend onR. Then the functionsEJ
(m,e)7 can be taken@with

the accuracy of the order of (l /R)2# in the following form:18
J. Math. Phys., Vol. 38, No. 10, October 1997
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EJ
~e,m!2~zs ;r ! 5

r>R
WJ

~e,m!~s!,ArI J11/2S uzsu
c

Ae2r D1O~e2~ uzsu/c!Ae2r !,

~13a!

EJ
~e,m!1~zs ;r ! 5

r>R

ArK J11/2S uzsu
c

Ae2r D ,

and for r<R

EJ
~e,m!2~zs ; r̄ ! 5

r>R

ArI J11/2S uzsu
c

Ae1r D , ~13b!

whereI J11/2,KJ11/2 are modified Bessel functions.19 For the sake of brevity we have introduce
in ~13! the simplified notation

e1[e1~ i uzsu!, e2[e2~ i uzsu!. ~14!

It follows from ~3!, ~5!, ~8!, ~9!, ~10! and ~13! that

]

]R
e~ i uzsu;r !5d~r 2R!~e22e1!;

WJ
~m!~s;R!5H ]ARKJ11/2~~ uzsu/c!Ae2R!

]R
ARIJ11/2S uzsu

c
Ae1RD

2ARKJ11/2S uzsu
c

Ae2RD ]ARIJ11/2~~ uzsu/c!Ae1R!

]R J ; ~15!

WJ
~e!~s,R!5H 1

e2

]ARKJ11/2~~ uzsu/c!Ae2R!

]R
ARIJ11/2S uzsu

c
Ae1RD

2
1

e1
ARKJ11/2S uzsu

c
Ae2RD ]ARIJ11/2~~ uzsu/c!Ae1R!

]R J .

After introduction of~15! into ~4! and integration overdr we find, taking into account~11! and
functional relations between products of Bessel function and their Wronskians, that

FCas~R!54pT (
s52`

`

(
J51

`

~2J11!ln
WJ

~e!~s,R!WJ
~m!~s,R!

WJ
~e!~s,0!WJ

~m!~s,0!
e2 i zstU

t→0

1const., ~16!

where the integration constant does not depend onR. The entering in~16! ratios

WJ
~e,m!~s,R!

WJ
~e,m!~s,0!

are known in the quantum scattering theory17 as normalized Jost functions. Due to relatio
between Jost functions and the Fredholm determinant in spherically symmetric problems17 it is not
difficult to recognize that~16! can be reduced to~1!. The expressions~15! and~16! are correct in
the presence of a smooth transition layer from medium 1 to medium 2 with atomic dimensiol up
to terms with relative order
J. Math. Phys., Vol. 38, No. 10, October 1997
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OS l 2

R2D . ~17!

Note that in the limitl 50, when ~15! is correct, the expression~4b! remains mathematically
defined since, according to~10!–~11!, the function

Dii ~ uzsu; r̄ , r̄ !

is continuous atr 5R and we do not encounter under integral overdr in ~4b! a product of two
discontinuous functions.

To find expressions forWJ
(e,m) , which are convenient for calculations, we use the Dixo

Ferrar integral representations for products of Bessel functions.14 It follows from Ref. 14 after
simple transformations that

KmSAe2

uzsu
c

RD I mSAe1

uzsu
c

RD5
1

2 E
0

`

e2m~q1q0!J0S R
uzsu
c

wDdq,

w25~e21e1!~coshq21!1~e22e1!sinh q,

q05
1

2
ln

e2

e1
. ~18!

After introducing~18! into ~15! we find after some algebra that

WJ
~m!~s,R!

WJ
~m!~s,0!

512
R̃2

2
~e22e1!E

0

` e2~J11/2!q

wR̃
J1~R̃w!dq, ~19a!

WJ
~e!~s,R!

WJ
~e!~s,0!

512
R̃2

2
~e22e1!E

0

` e2~J11/2!q

wR̃
J1~R̃w!F11

w2

e11e2
Gdq

5~19a!2
R̃2

4
~e22e1!E

0

` e2~J11/2!q dq

J11/2
J0~R̄w!Fsinh q1

e22e1

e11e2

coshqG , ~19b!

where we have introduced the notation

R̃5R
uzsu
c

. ~20!

It follows from ~19! ~see the next section! that the leading asymptotics for the terms under the s
over J sign in ~16! has the following structure:

~2J1 l !ln
WJ

~m!~s,R!WJ
~e!~s,R!

WJ
~m!~s,0!WJ

~m!~s,R!
→c1~R,s!1

c2~R,s!

J
1••• for J.

2pkTR

\c
s,

wherec1,2 are positive functions of fixedR ands. This structure follows in fact from very genera
properties of radial Jost functions for finite range potentials and remains correct for much
general forms of transition region frome1(v) to e2(v) than it is supposed in our calculations.
is important that radial Jost functions do not oscillate as functions ofJ in our case of imaginary
J. Math. Phys., Vol. 38, No. 10, October 1997
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time. Such oscillations in the case of real positive energies lead to mutual cancellations o
angular momentum terms in cross sections calculated in short wave approximations of po
scattering theory. Correspondingly the sum overJ without the proper renormalization cannot b
convergent. The same conclusion is valid for the expressions of the electromagnetic stress
which are often used to calculate Casimir forces. At the same time~see the Appendix! the sum
over s in ~16! is finite if

lim s2

s→`

@e2~ i uzsu!2e1~ i uzJu!#,`.

The last condition, which follows also from the well known asymptotic dependence of
functions on the negative energy in the scattering theory,17 is satisfied by the choice~7!.

III. REGULARIZATION

In order to regularize the expression~16! for FCas(R) we first separate the leading terms in t
limit J→` in ~19a! and ~19b! which give an infinite contribution to the sum overJ in ~16!. By
consequent integration by parts overdq we find from ~19! that

~19a!512
~e22e1!R̃2

4~J11/2!
2

~e22e1!R̃4

32~J11/2!22
R̃4~e22e1!2

8~J11/2!2

3E
0

`

dq e2~J11/2!q~coshq!2
J2~R̃w!

~R̃w!2 1OS R̃6~e22e1!3

~J11/2!3 D ; ~21a!

~19b!5~19a!2
R̃2~e22e1!2

4~e11e2!~J11/2!22
R̃2~e22e1!

4

3E
0

` e2~J11/2!q

~J11/2!
J0~R̃w! sinh q dq1OS R̃4~e22e1!2

~J11/2!3 D . ~21b!

In ~21! the omitted integral terms are decreasing with increasing (J11/2) faster than (J
11/2)22 since, for example,

E
0

` e2~J11/21n!q

~J11/2!2

Jm~R̃w!

~R̃w!m dq,E
0

` e2~J11/21n!q

~J11/2!2 UJm~R̃w!

~R̃w!m Udq

,E
0

` e2~J11/21n!q

~J11/2!2 dq5
1

~J11/2!2~J11/21n!
. ~22!

It is not difficult to show by repeating the integrations by part in~21! and using the properties o
Bessel functions that the functions~19! are entire functions of (e22e1)R̃2.

It follows from ~21! and~22! that atJ→` and for every fixed value ofR̃ the following sum
is finite:

(
J51

`

~2J11!H ln
WJ

~m!~s,R!WJ
~e!~s,R!

WJ
~m!~s,0!WJ

~e!~s,0!
1

1

2
R̃2Fe22e1

J11/2
1

~e22e!2

2~e11e2!

1

~J11/2!221G J ,`. ~23!
J. Math. Phys., Vol. 38, No. 10, October 1997
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The asymptotic behavior of~23! at s→` has been found in the Appendix. According to~23!
and ~A6! the following expression for the renormalized Casimir energyFCas

Ren:

FCas
Ren~R!58pT(

s51

` H (
J51

`

~2J11!F ln
WJ

~m!~s,R!WJ
~e!~s,R!

WJ
~m!~s,0!WJ

~e!~s,0!

1
~e22e1!R̃2

2J11 S 11
e22e1

2~e11e2!

1

J11/2D G2C̃3R̃32C̃2R̃22C0J ~24!

with constantsC̃3 and C̃2 defined in the Appendix is finite since the sum overs in ~24! is
absolutely convergent if we introduce the expressions~7! for the dielectric functions. Note tha
renormalization in~24! is the same for all~small and large! positive real values ofR and that the
corresponding terms can be included in macroscopic bulk and surface energy densities. Ph
such regularization means the separation and inclusion into the phenomenological constant
terms, which correspond to high momenta and energies, are microscopic by their natu
correspondingly, can not be described by macroscopic equations~9!.

The expression~24! has a rather complex structure. It can be simplified if we take into acc
that at room and higher temperatures the main contributions to the sums overs and J in the
Casimir free energy come from larges andJ.12 In this case, according to the calculations in t
Appendix, we can presentFCas

Ren(R) in the following form:

FCas
Ren~R!>8pT(

s51

` H ~e22e1!F S 11
e11e2

2 S 2R̃

3 D 2D 3/2

2S 2

3
Ae11e2

2
R̃D 3

21G
1

~e22e1!2

2~e11e2!
R̃2 ln

R̃

s
22R̃2E

0

3/2R̃
x dxS lnFcoshS Ax21@~e11e2!/2#2x

Ax2@~e11e2!/2#
D

2
e22e1

e11e2
sinhS e22e1

e11e2

Ax21@~e11e2!/2#2x

Ax21@~e11e2!/2#
D G D J 1const. ~25!

IV. LIMITING EXPRESSIONS AND NUMERICAL ESTIMATIONS

In futher calculations we use expressions~7! for e1,2 and admit the following estimations o
the values of parameters:

e021;e0;102, t;10212s, v0;1015s21 ~26!

which are characteristic for aqueous systems.
In this case

t,
\

2pkT
,

2pkT

\v0
,1. ~27!

We analyze first the case of smallR̃ when the following sufficient condition is fulfilled:

R̃2~e22e1!,1 for all s ~28!

or in dimensional variables

R,Rc5
c

v0Ae0

;1025 cm. ~28a!
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In this case according to~21!

ln~19a!1 ln~19b!1
~e22e1!R̃2

2J11 S 11
e22e1

e11e2

1

2 j 11D
52

~e22e1!R̃2

4 E
0

` e2~J11/2!q sinh q

J11/2
~@J0~R̃w!21#dq1O@R̃4~e22e1!2# !. ~29!

Introducing~29! into ~24! we find after the summation overJ, that

FCas
Ren~R!52pT(

s51

` H ~e22e1!R̃2E
0

`

e2qFcosh
q

2
J0~R̃w!21GdqJ 1O~R3!

52pT(
s51

` H ~e22e1!R̃2E
0

`

e2q sinh
q

2
J0~R̃w!dqJ 1O~R3!. ~30!

In the last equality~30! we have performed two integrations by parts. According to the Be
function summation theorem19

J0~R̃w!5J0S 2R̃
e11e2

2
sinh

q

2D1O@R̃2~e22e1!#. ~31!

Using ~31! and substituting the integration over

dv5
4pkT

\c
RDs,1

for the summation overs and taking account of~27! and ~29! we find from ~30! that

FCas
Ren~R!>2

4\Rv0
2

c
e0E

0

`

dvE
0

`

dq
ve2q sinh~q/2!

2Rtv0
2/c1v

J0S v sinh
q

2D1OS 1

e0
S Rc

v0
D 2D

52
4\Rv0

2e0

c
1e0S 4R

v0
2

c D 2

\tF ln
2Rtv0

2

c2 2
1

2G1O~R3!. ~32!

In ~32! we have returned to the dimensional units and have used the expression for corresp
Hankel’s transform from Ref. 19.

In the opposite case of largeR, when the sufficient condition

R.RMin
Cas(

\c

2pkTe0
;1025 cm ~33!

holds, the main contribution toFCas
Ren(R) has, according to~24! and ~A6!, the following form:

FCas
Ren~R! >

R̃→`
54pT(

s50

` ~e22e1!2

e11e2
R̃2 ln R̃

s
. ~34!

The sum in~34! can be estimated by substitution of integration for summation overs as follows:

(
s50

`
~e22e1!2

e21e1
zs

2→
1

2
e0

2
\v0

2

2pkT E
0

` v2 dv
~11vtv01v2!25

e0

2

\v0
2

vpkTt S 11OS 1

tv0
D D . ~35!
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It follows from ~34! and ~35! that when inequality~33! is fulfilled

FCas
Ren~R! >

~27!

e0
2

\v0
2

tc2 R2 lnS R
2pkT

\c D . ~36!

The expressions~32! and ~36! correspond to the attraction if

R.RMin
Cas(

a

\c

2pkT
;1025 cm ~37!

and to repulsion if

R,RMin
Cas(

0

\c

2pkT
. ~37a!

The contribution~36! to the full free energy is small in comparison with the macroscopic sur
tension and bulk energy terms at radiiR;0.1 cm. At larger macroscopic radiiR, this contribution
is modified by surface fluctuations and becomes part of a macroscopic surface energy.

V. CONCLUSIONS

To evaluate the importance of Casimir effects in the case of mesoscopic bubbles in
solutions we analyze theR dependence of the grand free energyV(R) in the simplest case whe
only water vapor is present in the bubble and the bulk grand free energies can be taken in th
PV, whereP is pressure andV is the volume of the corresponding phase. In this case of the o
system with constant chemical potential and temperature, the minimum condition for the po
V(R), which includes the contribution of Casimir forces, can be presented in the following f

dV

dR
52~P12P2!•4pR218psR1

]PCas
Ren~R!

]R
50, ~38!

whereP1 andP2 depend onm andT, ands is the effective mesoscopic surface tension which
smaller than macroscopic surface tension which include the contribution of long surface wa13

Comparison of the surface tension term in~38! with the asymptotic~32! shows that the last term
~38! is important in the case of water solutions when the following sufficient conditions are

l ,R&
4\v0

2e0

cs
;1025 cm for s;10

erg

cm2. ~39!

The left inequality in~39! is introduced in order to take into account that~as supposed in the
calculations! the radiusR is larger than atomic distances of the order of the water mole
diameterl;2•1028 cm. The inequalities~39! can be considered as a definition of mesosco
distances in the considered problem.

It follows from ~37! and ~39! and microscopic estimations20–22 that the dependence of gran
free energyV(R) on R has at least two minima atR; l andR5Rmin

Cas with

RMin
Cas;102541026 cm. ~40!

The first minimum atR; l , which is microscopic in its nature, is connected with the increas
free energy with increasingR caused by formation of atomic scale defects.23 The physical reasons
for the appearance of the second minimum can be interpreted as follows. AtR.RMin

Cas the bulk
fluctuation energy in a bubble is bigger than in the bulk water solution, but forR,RMin

Cas a bulk
J. Math. Phys., Vol. 38, No. 10, October 1997
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value of fluctuation energy in a bubble is not yet established and Casimir forces tend to elim
the singularity in field energy by extending the bubble radius. The presence of two minima
to the possibility of nontrivial nonlinear dynamics with drastic effects when relative position
the minima change in external acoustic waves. This can be the reason for the critical depe
of CSL dynamics on changes of the nature and pressure of dissolved gases and temperatu
can change the depth of the free energy minimum atR5RMin

Cas. The interaction between acoust
and electronic degrees of freedom can be connected with the formation of a specific high d
double layer with different water dipole orientations and different equilibrium structure for
ferent R. Such effects were recently discussed in Ref. 18. In this case the continuity con
across the boundary of the functions in~10! should be modified.

We can only speculate here on the specific dynamical mechanism of the transition be
two minima atR>0 and R5RMin in the CSL. There are experimental indications23 that such
transition is a collective effect of optical transitions in pumped media which is an analog of D
superradiance. There are examples in solid state physics24 when the Dicke superradiance effe
can increase the intensity of radiation in an active medium by a factor of;1010. The internal
characteristic time of the bubble singular dynamics is equal to the dipole relaxation time in
t>10212 s.

The presented results allow the interpretation of a number of experimental facts includin
special CSL properties of water solutions. In particular ife0;1 and/orv0,1014 s21 the interval
~39! will be empty.

The expression for the energy per unit surface area

s1
FCas

Reg~R!

4pR2 ~41!

can be considered as an effective radius dependent surface tension. It can be used, at lea
tatively, for description not only of bubbles, but of surfaces of general form withR21 equated to
a local curvature.

An important result is that the free energy of liquids with mesoscopic bubbles bec
dependent on their surface curvature. The optimal bubble shape has to be determined
variation of the grand free energy. That introduces additional variables in the thermodynami
correspondingly changes the conditions of Gibbs’ phase rule. As a result, coexistence con
of different phases in the presence of small voids have changed. This can explain, in particu
spontaneous cavitation effect in thin water solution films between two plates with formatio
vapor bubbles far from a boiling point as discussed recently by Yaminsky and Ninham.7 The
stabilization of small bubbles is also important for the understanding the critical behavio20 of
liquid polar dielectrics including characteristics of phase transitions in water electrolyte solu
where there are unresolved problems21 connected with the interpretation of the observed univ
sality class.

ACKNOWLEDGMENTS

Professor W. Reinhardt is acknowledged for his contribution to this work. The author a
ciates the comments of L. Crum, J. Hunter, and D. Kuhns.

The support of CPAC, the Office for Naval Research and the Department of Ener
gratefully acknowledged.

APPENDIX: ASYMPTOTICS OF WRONSKIANS

In this Appendix we start from the calculation of the WKB asymptotics of the integrals in~19!
for

J@1 and/or s@1. ~A1!
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In these cases the leading asymptotic contributions to~19! come from the stationary points in th
integrands at smallq andw, where

q52
e22e1

e21e1
1AS e22e1

e21e1
D 2

1
2w2

e11e2
1O~~e22e1!q3!. ~A2!

Introducing~A2! in ~19! we find that in the limit~A1!

~19a!>12R̃
e22e1

e11e2
E

0

` dw J1~R̃w!

A~ ~e22e1!/~e21e1!!212w2/~e11e2!

3exp2H S J1
1

2D FAS e22e1

e21e1
D 2

1
2w2

e11e2
2

e22e1

e21e1
G J

5expFe22e1

e21e1
S J1

1

2
2AS J1

1

2D 2

1
e11e2

2
R̃2D G1OS e22e1

~s21R̃2!3/2D ; ~A3a!

19b5~19a!2
R̃2

4~ J1 1
2!

e22e1

2~e21e1!
E

0

` wJ0~wR̃!dw

A~~e22e1!/~e11e2!!212w2/~e11e2!

3H S 11
e22e1

e11e2
DexpF S J2

1

2D S e22e1

e21e1
2AS e22e1

e21e1
D 2

1
2w2

e11e2
D G

2S 12
e22e1

e11e2
DexpF S J1

3

2D S S e22e1

e21e1
D2AS e22e1

e21e1
D 2

1
2w2

e11e2
D G J

5~19a!2
R̃2

2

e22e1

~J1 1
2!A~J1 1

2!
21R̃2~e21e1!/2

expFJ1
1

2
2A~J1 1

2!
21@~e11e2!/2#R̃2G

3H e22e1

e11e2

cosh
e22e1

e21e1
F S 12

J1 1
2

A~J1 1
2!

21R̃2~e11e2!/2
D G

2sinh F e22e1

e21e S 12
J1 1

2

A~J1 1
2!

21R̃2~e11e2!/2
D G J . ~A3b!

In ~A3! we have used the following expressions for Hankel’s transforms:20

E
0

` J1~xy!

~b21x2!1/2 exp@2a~b21x2!1/2#dx

5I 1/2H b

2
@~a21y2!1/22a#J K1/2H b

2
@~a21y2!1/21a#J

5
1

by
$e2ba2exp2@b~a21y2!1/2#%;

E J0~xy!x

~b21x2!1/2 exp@2a~b21x2!1/2#dx5
1

~y21a2!1/2 exp@2b~y21a2!1/2#. ~A4!

After introducing~A3! in ~23! we find that
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~23!52(
J51

` S J1
1

2
D F 2

e22e1

e11e2
F J1

1

2
2AS J1

1

2
D 2

1R̃2
e11e2

2
G

1
~e22e1!R̃2

2~J1 1
2!

1 lnH 11
~e22e1!R̃2

2~J1 1
2!A~J1 1

2!
21@~e11e2!/2#R̃2

3FsinhS e22e1

e11e2

gD 2
e22e1

e11e2

coshS e22e1

e11e2

gD G1
1

2

~e22e1!2R̃2

~e11e2!~J1 1
2!

2J
1OS ~e22e1!

@~J1 1
2!

21@~e11e2!/2#R̃2#2/3D G1const.;

g512
J1 1

2

A~J1 1
2!

21@~e11e2!/2#R̃2
. ~A5!

In the limit ~A1! we have after the substitution of integration for summation overJ

~23!>2R̃3E
3/2R̃

`

x dxH 2~e22e1!R̃S x2Ax21~e11e2!/2

e11e2
1

1

4g D J
12R̃F E

0

`

2E
0

3/2R̃Gx dxH lnS 12
~e22e1!2

2~e11e2!

1

xAx21~e11e2!/2
D 1

~e22e1!2

2~e11e2!

1

x2J
5

~e22e1!2

2~e11e2!
R̃2 ln

R̃

s
1C̃01C̃2R̃21C̃3R̃31OS 1

R̃D , ~A6!

where the constantsC̃0,2,3 can be found by simple integration overdx in ~A6!.
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A model of continuous polymers with random charges
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We study a model of polymers with random charges; the possible shapes of the
polymer are represented by the sample paths of a Brownian motion, and the cumu-
lative charge distribution along a polymer is modeled by a realization of a Brown-
ian bridge. Charges interact through a general positive-definite two-body potential.
We study the infinite volume free energy density for a fixed realization of the
Brownian motion; this is not self-averaging, but shows on the contrary a sample
dependence through the local time of the Brownian motion. We obtain an explicit
series representation for the free energy density; this has a finite radius of conver-
gence, but the free energy is nevertheless analytic in the inverse temperature in the
physical domain. ©1997 American Institute of Physics.
@S0022-2488~97!01710-6#

I. INTRODUCTION

The problem of describing the thermodynamic properties of polymers in random env
ments has received much attention in the theoretical physics literature.1–7 Experimental evidence
suggests that for a wide class of biopolymers~such as proteins! there is no sample-to-sampl
regularity in the distribution of electric charges along the polymer; it is thus natural to view t
charges as random variables. Taking the possible shapes of the polymer to be the sample
some stochastic process, one can then construct a precise mathematical model by specif
interaction between the charges.

Various authors have studied specific models in the above class: Kantor and Kardar3 consider
a one-dimensional model with the following characteristics: the configurations of a finite pol
are described by the paths of a simple random walkwj , j 51,...,N. The local charges along th
polymerqj , j 51,...,N are taken to be realizations ofN independent random variables obtainin
the values61 with equal probability. Finally the interaction has zero range, resulting in
Hamiltonian

HN~w,q!5 (
1< i , j <N

qiqjdwi ,wj
. ~1!

The program consists of studying the thermodynamic properties of this model for a fixed~but
arbitrary! realization of the charges, for instance by calculating the partition function as
conditional expectation

Zn~b!5E@e2bHN~w,q!uq#.

The main questions are:
0022-2488/97/38(10)/5143/10/$10.00
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~1! does the limiting free energyf (b)5 limN→`(1/N)log ZN(b) depend on the realization of th
chargeq?

~2! does the model show a phase transition from a collapsed state to an extended state?

However, it appears that this program is very difficult to carry out, even for the sim
Hamiltonian ~1!; hence a number of variations on the model have been considered by s
authors: in Ref. 4 the charges are regarded as Gaussian random variables; more drastically
6 Derrida and Higgs choose for the polymer configurations those of adirectedsimple random
walk ~meaning that its increments take values 0, 1 instead of61!. This last assumption severel
restricts the self-overlapping structure of the polymer and results in a tractable problem, at l
far as the ground state of the model is concerned.6 Finally, in Ref. 7 Martinez and Petritis
introduce two modifications to the Derrida–Higgs model: first, the charge distribution is mo
by a Brownian bridge; more important, the program outlined above is modified to the exten
the partition function is defined as a conditional expectation over the charge configuration
fixed polymer configuration. The resulting limiting free energy is shown to be independent o
polymer configuration, and no phase transition occurs.

In this article, we elaborate on Ref. 7 in the following way: we describe the polymer con
rations by the paths of a Brownian motion~instead of a directed random walk! and we allow the
interaction between charges to be a general integrable two-body potential. Surprisingly e
we can obtain a fairly explicit representation of the free energy in terms of a series involvin
local time of Brownian motion; in particular, the free energy isnot sample independent~‘‘self-
averaging’’!.

This series converges only for a finite range of temperatures; however, we show that th
energy is an analytic function of the inverse temperatureb for all b<0.

II. THE MODEL

The three ingredients of our model are

~i! a standard Brownian motion Bt , 0<t<1; the polymer configurations at volumeb are
described bybBt ; it may be more usual to take the infinite volume limit by allowing t
parametert to run in@0,a# and lettinga→`, but for Brownian motion the two view points
are equivalent sincebBt5Btb2 ~in distribution!;

~ii ! a standard Brownian bridgea t , 0<t<1; the cumulative charge along the polymer
described byAba t . In other words,Abaa is the total charge carried by the portion
polymer parametrized by 0<t<a. The Brownian bridge boundary conditiona150 en-
sures global neutrality. The idea of using a Brownian bridge to handle a charge con
is borrowed from Ref. 7;

~iii ! a two-body potential h(x) specifying the interaction energy between two unit char
locatedx apart of each other. We will leaveh fairly general, except for the following
assumptions:h is even, bounded, integrable, finite at zero and positive definite. It foll
that h can be written as a convolution: for some square integrable functiong,

h~x!5~g*g!~x!5E
2`

`

g~x2y!g~y!dy.

Our Hamiltonian is then

Hb5
b

2 E
0

1E
0

1

h~b~Bt2Bs!!dasda t . ~2!

Because of the convolution property ofh, this can be rewritten as
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Hb5
b

2 E
2`

`

dxS E
0

1

g~x2bBt!da tD 2

. ~3!

But note that, because of the elementary properties of the Brownian bridgea t ~see Ref. 8!, the
inner integrand,

Jb~x!5E
0

1

g~x2bBt!da t ~4!

is for any fixed sample pathBt(v) a Gaussian process~indexed byx! with zero mean and
covariance

Cb~x,y!5E@Jb~x!Jb~y!uB.#5E
0

1

g~x2bBt!g~y2bBt!dt

2S E
0

1

g~x2bBt!dtD S E
0

1

g~y2bBt!dtD . ~5!

ThusHb is a superposition of squares of Gaussian random variables and the partition func

Zb~b!5E@e2bHbuB.#5~det~11bbCb!!21/2, ~6!

whereCb is the integral operator onL2(R) with kernel~5!. Note thatCb is a trace-class operato
so that the above determinant is well defined and can be evaluated as

det~11bbCb!5exp~Tr log~11bbCb!!.

Consequently, the free energy density is

1

b
log Zb~b!52

1

2b
Tr log~11bbCb!. ~7!

This formula is the basis of our study.

III. A LOCAL TIME REPRESENTATION OF THE FREE ENERGY

Our first step consists in proving that when computing the limit of the free energy~7! as
b→`, one can replace the covarianceCb by the simpler form

Kb~x,y!5E
0

1

g~x2bBt!g~y2bBt!dt. ~8!

The main reason for this is the fact thatKb is a perturbation ofCb by a rank-one operator; indeed
define@as always for a fixed realizationBt(v) of the Brownian motion#

j b~x!5E
0

1

g~x2bBt!dt. ~9!

Then the kernels~5! and ~8! obey

Kb~x,y!2Cb~x,y!5 j b~x! j b~y! ~10!

so that the corresponding operators are related by
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Kb2Cb5i j bi2P, ~11!

where P is the orthogonal projection onto the normalized functionj b(x)/i j bi . Now use the
concavity ofx→ log(11bx) to write for everyx,y:

0< log~11by!2 log~11bx!<b
y2x

11bx
~12!

and thus

0<Tr@ log~11bbKb!2 log~11bbCb!#<bb Tr@~Kb2Cb!~11bbCb!21#. ~13!

Using ~11!, the right-hand side of~13! is

bbi j bi2 Tr~P~11bbCb!21!. ~14!

Evaluating the trace on an orthonormal basis havingj (x)/i j i as its first element,~14! becomes

bb~ j b ,~11bbCb!21 j b!<bbi j bi2. ~15!

In the last step, the fact that the covariance operatorCb is positive definite has been used to inf
that (11bbCb)21<1. So we have just proved:

Lemma 1: For every realization of the Brownian motion Bt ,

0<
1

b
Tr@ log~11bbKb!2 log~11bbCb!#<bi j bi2. ~16!

It remains to prove thati j bi2 tends to zero asb→`. We will in fact prove a much more precis
result using the concept ofBrownian local time:8 L(t,x) is a doubly indexed family of random
variables characterized by the following property: letl :R→R be a Borel function; then for almos
all sample paths of Brownian motion,

E
0

t

l ~Bs!ds5E
2`

`

l ~x!L~ t,x!dx. ~17!

The intuitive interpretation is thatL(t,x)dx represents the total time spent in (x2dx,x1dx) by
Brownian motion up to instantt. In the sequel we will make use only of the local time up
instant 1, so we simplify the notation by puttingL(1,x)5L(x).

Lemma 2: For almost every sample path of Brownian motion,

lim
b→`

bi j bi25S E
2`

`

h~x!dxD S E
2`

`

L2~x!dxD .

Proof:

bi j bi25bE
2`

`

j b
2~x!dx5bE

2`

` S E
0

1

g~x2bBt!dtD S E
0

1

g~x2bBs!dsD dx

5bE
0

1E
0

1

h~b~Bs2Bt!!ds dt.

We now use a generalization of~17!, see Ref. 8 to write the above as
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bE
2`

` E
2`

`

h~b~x2y!!L~x!L~y!dx dy.

Use the change of variablesb(x2y)5z to obtain:

E
2`

` E
2`

`

h~z!L~x!L~x2z/b!dx dz. ~18!

A fundamental property of local time is that it is continuous; hence the integrand ten
h(z)L2(x) asb→`. Moreover it is known that

L* 5sup
xPR

L~x! ~19!

is almost surely finite.8 Hence~18! is bounded by:

L* E2`

` E
2`

`

h~z!L~x!dx dz5L* S E
2`

`

h~z!dzD S E
2`

`

L~x!dxD 5L* E2`

`

h~z!dx. ~20!

The result follows by dominated convergence. h

A trivial consequence of Lemma 2 is thati j bi tends to 0 asb→`. Combining the two
lemmas, we have:

Proposition 1: For almost every realization of Brownian motion,

lim
b→`

1

b
Tr@ log~11bbKb!2 log~11bbCb!#50.

Hence, if the limiting free energy exists for any one of the two covariances Kb , Cb it does for the
other one as well, and the two limits are the same.

So we can now substituteKb for Cb in ~7! and consider

f b~b!52
1

2b
Tr log~11bbKb!52

1

2b (
j 50

`

log~11baj
~b!!, ~21!

where 0<a0
(b)<a1

(b)<a2
(b)<••• are the eigenvalues~repeated according to their multiplicity! of

the compact self-adjoint symmetric operatorbKb on L2(R). Note that for each fixedj the series

f b
~ j !~b!5 log~11baj

~b!!52 (
n51

`
~21!n

n
~aj

~b!!nbn ~22!

converges in the regionubu,(aj
(b))21. Hence for fixedb, all the series~22! have a common

region of convergenceubu,(supjaj
(b))215ibKbi21. Moreover the convergence of( j 51

` f b
( j )(b) is

uniform in b within ubu,r ,ibKbi21 by Weierstrass’s M-test because of the boundu log(1
1 baj

(b))u < Cbaj
(b) < Craj

(b) and of the fact thatbKb has a finite trace@see~24!#. Hence we can
change the order of summation to rewrite~21! as

f b~b!5
1

2b (
n51

`
~21!n

n
bn(

j 50

`

~aj
~b!!n5

1

2b (
n51

`
~21!n

n
bnbn Tr~Kb

n!. ~23!

We analyze now the behavior of~23! asb→`.
Lemma 3: For almost every sample path of the Brownian motion
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lim
b→`

bn21 Tr~Kb
n!5h* n~0!E

2`

`

Ln~x!dx n51,2,...,

where h* n is the n-fold convolution of h with itself (with the convention h* 15h).
Proof: The result is trivial whenn51:

Tr Kb5E
2`

`

Kb~x,x!dx5E
2`

` S E
0

1

g~x2bBt!
2dtD dx5E

0

1

h~0!dt5h~0!. ~24!

For generaln, we use the local time as in lemma 2 to obtain

bn21 Tr~Kb
n!5bn21E

2`

` E
2`

`

•••E
2`

`

Kb~x1 ,x2!Kb~x2 ,x3!•••Kb~xn21 ,xn!

3Kb~xn ,x1!dx1dx2•••dxn

5bn21E
2`

` E
2`

`

•••E
2`

` F E
0

1E
0

1

•••E
0

1

g~x12bBt1
!g~x22bBt1

!g~x22bBt2
!

3g~x32bBt2
!•••g~xj2bBt j

!g~xj 112bBt j
!•••g~xn212bBtn21

!g~xn2bBtn21
!

3g~xn2bBtn
!g~x12bBtn

!dt1dt2•••dtnGdx1dx2•••dxn

5bn21E
0

1E
0

1

•••E
0

1

h~b~Bt1
2Bt2

!!h~b~Bt2
2Bt3

!!•••h~b~Btn
2Bt1

!!dt1dt2•••dtn

5bn21E
2`

` E
2`

`

•••E
2`

`

h~b~x12x2!!h~b~x22x3!!•••h~b~xn2x1!

3L~x1!L~x2!•••L~xn!dx1dx2•••dxn .

Define new variables as follows:

zj5b~xj 212xj !, j 52,3,...,n.

The Jacobian of the change of variables (x1 ,x2 ,x3 ,...,xn)→(x1 ,z2 ,z3 ,...,zn) is b12n and we
obtain:

bn21 Tr~Kb
n!5E

2`

` E
2`

`

•••E
2`

`

h~z2!h~z3!•••h~zn!h~2z22z3•••zn!L~x1!L~x12z2 /b!•••L~x1

2~z21•••1zn!/b!dx1dz2dz3•••dzn . ~25!

By the same dominated convergence argument as in lemma 2, this converges asn→` to

S E
2`

` E
2`

`

•••E
2`

`

h~z2!h~z3!•••h~zn!h~2z22z3•••zn!dz2dz3•••dznD
3S E

2`

`

Ln~x1!dx1D 5h* n~0!E
2`

`

Ln~x!dx.

h

Note that the integral ofLn is almost surely finite for alln>1 since
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E
2`

`

Ln~x!dx<~L* !n21E
2`

`

L~x!dx5~L* !n21.

Moreover since by assumption 0<h(x)<C, we see thath* n(0)<C(*2`
` h(x)dx)n21,`. So

each term of the series~23! converges asb→` to the corresponding term of

1

2 (
n51

`

~21!n
bn

n
h~0!
* nE

2`

`

Ln~x!dx. ~26!

Moreover, convergence also takes place for the series as a whole in the region

ubu,R5@L* lim sup
n→`

~h* n~0!!1/n#21 ~27!

whereL* is defined in~19!. This is because of the uniform upper bound

U~21!n
bn

n
bn21 Tr~Kb

n!U< bn

n
L

*
n21h* n~0! ~28!

which follows easily from~25!.
Note thatR defined by~27! is almost surely finite and positive because 0,L* ,` a.s.~see

Ref. 8! and, because of the positive definiteness ofh

R5~L* lim sup
n→`

~h* n~0!!1/n!215S L* E2`

`

h~x!dxD 21

. ~29!

Moreover,R is the radius of convergence of the series~26! because, by continuity ofL(x)

lim
n→`

S E
2`

`

Ln~x!dxD 1/n

5L* . ~30!

Hence we have just proved:
Theorem 1: For almost every realization of Brownian motion, the free energy (7) conve

as b tends to infinity to the series (26) forb in the range (27).
Remarks

~1! The free energy isnot independent of the spatial configuration of the polymer, in contras
Ref. 7.

~2! Theorem 1 proves the existence of the free energy for a finite range ofb. We will see in Sec.
IV that it exists for allb>0.

~3! Since the series~26! has a finite radius of convergence, it is tempting to conjecture that
model shows a phase transition. However, one must be careful: after all, the series
right-hand side of~23! also has a finite radius of convergence, even thoughf b(b) defined by
~21! is analytic for allb>0; there the finite radius of convergence is associated to a si
larity at b52Rb . Observing that~26! is an alternating series that must have a singularity
2R by Pringsheim’s theorem,9 one is led to suspect that no singularity exists forb.0. This
sort of information could conceivably be extracted from the series representation~26! by
showing that the function ofb that it defines can be extended from (2R,R) to a function on
(0,2R) ~with another series representation!; however, we find it more convenient to take
different starting point~see Sec. IV!.

~4! The inverse temperatureR does, however, have a physical meaning of sorts: suppose tha
interactionh is negative~so that charges of the same sign attract each other!; such a system
J. Math. Phys., Vol. 38, No. 10, October 1997
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would be unstable and collapse at low temperature.3 However, it would exist at high enoug
temperature, namely whenever

b<FL*E2`

`

2h~x!dxG21

. ~31!

IV. ANALYTICITY OF THE FREE ENERGY

The idea behind our proof of the analyticity of the limiting free energyf (b) for b>0 is to
exploit the analyticity off b(b), see~21! and the uniform convergence off b(b) asb→`. For this
purpose we rewritef b(b) as follows:

f b~b!52
1

2 E
0

`

log~11bx!mb~dx!, ~32!

where the measuremb is defined on Borel subsetsA of R1 by:

mb~A!5
1

b
#$ j :aj

~b!PA%. ~33!

In the above formula 0<a0
(b)<a1

(b)<a2
(b)<••• are, as before, the eigenvalues ofbKb .

We will control the behavior off b for large b through that ofmb , or rather the Laplace
transform ofmb ; this will involve only known quantities such asbn21 Tr(Kb

n).
It turns out that it is more convenient to work with the modified measure

m̂b~dx!5
xmb~dx!

h~0!
. ~34!

This is a probability measure because

E
0

`

m̂b~dx!5
1

h~0!
E

0

`

xmb~dx!5
1

h~0!
Tr Kb51. ~35!

The advantage ofm̂b over m is that ~32! is replaced by

f b~b!52
1

2
h~0!E

0

` log~11bx!

x
m̂b~dx!, ~36!

which has a better behaved integrand.
Lemma 4: For every realization of Brownian motion, the measurem̂b converges weakly to a

probability measurem̂ as b→`.
Proof: It suffices to prove that the Laplace transform ofm̂b

Fb~l!5E
0

`

e2lxm̂b~dx! ~37!

converges asb→` for all l>0 to a functionF~l! such that liml→0F(l)51.10 But
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Fb~l!5
1

h~0!
E

0

`

xe2lxmb~dx! ~38!

5
1

h~0!

1

b
Tr~bKbe2lbKb! ~39!

5
1

h~0! (
n50

`
~2l!n

n!
bn Tr~Kb

n11!. ~40!

For the last step, we invoke the same argument as when going from~21! to ~23!. Finally, use
lemma 3 and the estimate~28! to show that~40! converges asb→` to

F~l!5
1

h~0! (
n50

`
~2l!n

n!
h~0!
* ~n11!E

2`

`

Ln11~x!dx. ~41!

The above is analytic inl; in particular

lim
l→0

F~l!5F~0!51.

h

In order to state and prove the main result of this section we move to the complex plab;
this is in order to make use of the special properties of sequences of holomorphic function

Theorem 2: The limit as b tends to infinity of fb(b) exists and is holomorphic in a neigh
borhood of the positive real axis0<b,`. Moreover, all the derivatives of fb(b) converge to
those of the infinite-volume free energy density f(b).

Proof:
Denote the integrand of~36! by

ub~x!5
1

x
log~11bx! ~42!

and letB(b0) be the disk of radiusb0/2 centered atb0 .
Consider anyb0.0. One can prove that both the real and the imaginary parts ofub(x) have

x derivatives which are bounded uniformly inx andb in the regionx.0, bPB(b0).
It follows from this that the family of functionsub is uniformly equicontinuousin that region,

i.e.,

;e.0,'d:uub~x!2ub~y!u,e ;bPB~b0!, ux2yu,d. ~43!

Hence ~36!, which is the expectation ofub with respect to the probability measurem̂b ,
convergesuniformly with respect tob asb tends to infinity to

f ~b!52
1

2
h~0!E

0

`

ub~x!m̂~dx! ~44!

by virtue of the corollary in Chapter VIII.I of Ref. 10. Finally, sincef b(b) converges uniformly
in B(b0) as b tends to infinity we appeal to theorem 7.10.1 of Ref. 9 to conclude thatf (b) is
holomorphic inB(b0). Sinceb0.0 is arbitrary and the neighborhood of the origin is covered
Theorem 1, the result follows. h
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On the second law of thermodynamics for a dissipative
system

M. Chen
Vanier College, 821, Ste. Croix Avenue, St. Laurent, Quebec, H4L 3X9 Canada
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In this paper we consider dissipative fluxes as well as the conserved variables as a
set of independent variables characterizing the thermodynamic state of a nonequi-
librium system. We then generalize the traditional internal energy balance equation
so that contributions due to the dissipative fluxes are taken into consideration. On
the other hand, the second law is formulated in terms of Caratheodory’s inaccessi-
bility condition in conjunction with the assumption that dissipative energy associ-
ated with internal work arising from irreversible processes be semipositive definite.
We show that the second law formulated in this manner is equivalent to Kelvin’s
principle and Clausius’s principle, as well as Clausius’s inequality. ©1997
American Institute of Physics.@S0022-2488~97!00110-2#

I. INTRODUCTION

It is well known that the second law of thermodynamics for an equilibrium system h
rigorous mathematical foundation in terms of Caratheodory’s inaccessibility condition~CIC!.1

However, so far it has not been rigorously demonstrated that the second law for a nonequil
system can also be formulated in terms of the inaccessibility condition. Recently Eu2 reformulated
the second law based on Clausius’s inequality3 and the notion of uncompensated heat. In t
paper the dissipative fluxes as well as the conserved variables are considered as a set of i
dent thermodynamic variables. We first generalize the internal energy balance equation
contributions due to the dissipative fluxes are taken into consideration. Then the second
formulated in terms of CIC. As a consequence of this formulation, a generalized Gibbs re
and a generalized entropy balance equation can be obtained. Finally we show that this form
is equivalent to Kelvin’s principle4 as well as Clausius’s principle5 and Clausius’s inequality.

Consider a system of molecules inr components contained in a regionV,R3 with volumeV
where no chemical reactions take place. Lete be the internal energy density,n5r21 be the
specific volume,ci be the molar fraction of speciesi , p be the hydrostatic pressure, andf i

(a) be
the generalized fluxes. For examplef i

(1)5JY i is the mass flux vector,f i
(2)5pJ i is the traceless

symmetric part of the pressure tensorPJ i , f i
(3)5QY i is the heat flux vector, etc. Here the subscr

i refers to thei th molecular species anda represents the various kinds of fluxes. Except for
case ofa51 anda53, in generalf i

(a) is a tensor function of ordera which is related to the
velocity moments given by Grad or by Eu.6 Let f̂ i

(a)5r21f i
(a) . From a physical point of view we

may include sufficiently many fluxes for an appropriate description of irreversible processes.
extended irreversible thermodynamics we considerf̂ i

(a) as well as the conserved thermodynam
variables e, n, and ci as a set of thermodynamic variables. For convenience we denox
5(x1,x2,...,xn)5(e,n,ci ,...,f̂ r

(k)). Let uP@a, b# be an empirical temperature in an arbitra
scale which can be employed to measure the hotness or the coldness of a nonequilibrium
at a local point (rY,t). At the moment it is difficult to discuss the relationship betweenu andx.
However, in Sec. III we show thatu is a monotonically increasing function of the local therm
dynamic temperatureT which can be considered as aC1 function ofx via the constitutive relation.
Consider the fiber bundleR33R13En with (rY,t)PR33R1 as the base space andEn as the fiber,
whereEn is an n-dimensional space with the fieldsx as local coordinates. The local state of
nonequilibrium system is then specified byx, wherexi :R33R1→R is assumed to be a function o
0022-2488/97/38(10)/5153/14/$10.00
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x of classC1 in V and satisfies the following set of dynamical equations:

dtr52r“•uY , ~1!

rdtci52“•JY i , 1< i<r , ~2!

rdtuY 52“•PJ , PJ5pJ1pbÎ 1pÎ, ~3!

rdte52“•QY 2PJ :“uY , ~4!

rdtf̂ i
~a!5Zi

~a!1L i
~a! , 1< i<r , 1<a<k, ~5!

wheredt5] t1uY •“ is the substantial differential operator,uY is the hydrodynamic velocity,pb is
the bulk viscous pressure~the excess normal stress!, and Î is a unit second rank tensor. Furthe
more, Zi

(a) is a kinematic term depending onf̂ i
(a) as well as the gradients ofe, n, ci , etc. In

addition it contains the term2“•C i
(a) , whereC i

(a) is the flux off̂ i
(a) .7 On the other hand,L i

(a)

is a dissipative term which does not involve the gradients ofx. In generalL i
(a) is a nonlinear

function of x such that the decomposition ofZi
(a) andL i

(a) in ~5! is unique. The detailed expres
sions ofZi

(a) andL i
(a) depend on the specific model under consideration. For example, Jouet al.8

considered the following set of equations for~5!:

rdtpb52t0
21rz“•uY 1t0

21rb8zg“•QY 2t0
21rpb5Zb1Lb, ~6a!

rdtQY 52t1
21rl¹g1t1

21rblg2¹•pJ1t1
21rb8lg¹pb2t1

21rQY 5Zh1Lh, ~6b!

rdtpJ52t2
212rh@¹uY #~2!1t2

212rbhg@¹QY #~2!2t2
21rpJ5Zt1L t, ~6c!

whereLb52t0
21rpb ; Lh52t1

21rQY ; L t52t2
21rpJ ; z, l, andh are the bulk viscosity, therma

conductivity, and shear viscosity, respectively;t0 ,t1 ,t2 are the relaxation times for the fluxespb ,
QY , and pJ , respectively;b8 and b are constants, andg is a positive, monotonically increasin
function of u of classC1 on @a, b#. Later it will be identified with the local thermodynami
temperatureT in absolute temperature scale. Furthermore,@¹uY # (2) represents the traceless sym
metric part of¹uY .

In the next section we consider the local formulations of the first law and the second la

II. LOCAL FORMULATION OF THE FIRST LAW AND THE SECOND LAW

In equilibrium thermodynamics the static pressurep is considered as a force for the volum
change, and the chemical potentialsm i as the generalized forces for the change of matter. Thu
the absence of external forces, the infinitesimal workdw is given bydw52pdn1( i m idci . A
closer examination of~4! shows that the contribution of work due to( i m idci is not included in
~4!. Furthermore, since dissipative fluxesf̂ i

(a) are considered as the~additional! independent
variables in addition toe, n, andci , the classical internal energy balance equation~4! must be
generalized in an appropriate manner so that contributions due to the dissipative fluxes ar
erly taken into consideration. To this end, we multiply~1! by p, ~2! by 2m i and sum overi , and
~5! by Xi

(a) and sum overi and a. Adding these results to~4! yields the following equation
equivalent to~4!:
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rH dte1p dtn2(
i

m i dtci1(
i ,a

Xi
~a! :dtf̂ i

~a!J 52¹•QY 2~pJ1pbÎ !:¹uY 1(
i

m i¹•JY i

1(
i ,a

Xi
~a! :@Zi

~a!1L i
~a!#52¹•QY c1Sd ,

~7!

where

QY c5QY 2(
i

m iJY i1(
i ,a

Xi
~a! :C i

~a! , ~8!

Sd52H ~pJ1pbÎ !:¹uY 1(
i

JY i•¹m i2(
i ,a

C i
~a! :~¹•Xi

~a!!J 1(
i ,a

Xi
~a! :@Zi

~a!1¹•C i
~a!1L i

~a!#.

~9!

Here ‘‘:’’ denotes contraction of tensors, andXi
(a) is the generalized potential conjugate tof̂ i

(a) .
Notice thatZi

(a) contains a term2¹•C i
(a) , which cancels the term¹•C i

(a) in the last term of~9!.
In generalXi

(a) is a nonlinear function ofx. However, ifXi
(a) is linearized in powers off̂ i

(a) , then
Xi

(a) can be written as

Xb52t0~rz!21pb , Xh52t1~rlg!21QY , Xt52t2~r2h!21pJ , ~10!

and so on, whereXb , Xh , andXt are the conjugates ofpb , QY , andpJ respectively.
Since the mass fluxesJY i as well as the tensorial fluxesC i

(a) can also contribute to the hea
flux, QY c is the net heat flux across the surface enclosing the local system centered atrY with volume
elementdrY. The outward normal to the surface is assigned as the positive direction ofQY c . On the
other hand, it is well known that¹uY and ¹m i can be considered as the thermodynamic for
attributable to the viscous flow and diffusion, respectively. Similarly¹•Xi

(a) can also be consid
ered as the generalized thermodynamic forces attributable to the tensorial flowsC i

(a) . Thus the
first three terms ofSd represent dissipative internal work. We therefore callSd the rate of
dissipative energy, which cannot be converted into another form of useful work. Hereaft
assume thatSd is semipositive definite.

In view of ~7! we define the generalized infinitesimal workdw for a nonequilibrium local
system by

dw52pdn1(
i

m i dci2(
i ,a

Xi
~a! :df̂ i

~a! , ~11!

and define the local rate of change of heat per unit massdq/dt by

r
dq

dt
52¹•QY c . ~12!

According to the traditional convention work is considered positive if it is done on the system
negative if it is done by the system. On the other hand, heat is considered positive if it is abs
by the system, and negative if it is liberated by the system.

In terms of~11! and ~12!, the balance equation for the internal energy density per unit m
given by ~7! can be rewritten as
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



. It
tor
the

ible

ra-

rations.
n
a

e

s

5156 M. Chen: Second law of thermodynamics in a dissipative system

                    
de5dq1dw1dqd , ~13!

with dqd5r21Sddt, and dxi5(¹xi)•drY1(] tx
i)dt is the substantial differential forxi

5e,n,ci , andf̂ i
(a) .

Equation~13! is the first law of thermodynamics in local form for a dissipative system
should be remarked thatdq, dw, anddqd in ~13! cannot be interpreted as one-forms in the vec
space∧1(En) of differential forms, since they represent only the infinitesimal changes of
corresponding quantities. In other words, we consider the fiber bundleEn3∧1(En) with En as the
base space and∧1(En) as the fiber. In Secs. II and III we construct the local theory of irrevers
thermodynamics onEn3∧1(En). Denotex̂5(x2,...,xn). Supposep, m i , andXi

(a) areC1 func-
tions of x̂ and u. For convenience we denotê2p,$m i%,2$Xi

(a)%,1< i<r ,1<a<k‰ by
(w2 ,w3 ,...,wn). Define the work one-formv by

v52pdn1(
i

m i dci2(
i ,a

Xi
~a! :df̂ i

~a!5(
j >2

wj~ x̂,u! dxj . ~14!

Let j5de1pdn2( im i dci1( i ,aXi
(a) :df̂ i

(a)5dx12v. We now formulate the local form of the
second law as

j∧dj50, ~15a!

Sd>0; Sd50 at thermodynamic equilibrium. ~15b!

In Sec. III we show that condition~15a! leads to the existence of a local thermodynamic tempe
tureT, while in Sec. IV we show that the global form of~15a! and~15b! is equivalent to Kelvin’s
principle as well as Clausius’s principle.

III. LOCAL THERMODYNAMIC TEMPERATURE T

In the following discussions we generalize the method by Edelen9 for an equilibrium system
to a dissipative system. We remark that the ensuing discussions are based on local conside
Let En be ann-dimensional Euclidean space with coordinatesx, whereu is considered as a froze
parameter which does not participate in the exterior calculus in∧(En). Suppose there exist
function lPC0(En) and a function f PC1(En) such that j5dx12v5ld f . Then N5$x
PEnu f (x)5c5const% is an integral manifold ofj such thatjuN50. Sincel does not vanish onEn

andl(]1f )51, we can solvef (x)5c for x1 in terms of (c,x̂). ThusN is a one-parameter family
of surfaces of dimension (n21). We adoptx̂ as the local coordinates ofN. Notice thatdx1uN

52S j >2 wjdxj .
A vector X5S i 51 v i(x)] i in the tangent spaceT(En) is a characteristic vector field of th

one-form j5S j 51 wjdxj (w1[1) if and only if j(X)5X4j5S i 51(v iwi)(x)50, where
4:T(En)3∧k(En)→∧k21(En) is an inner multiplication or a pull down map. Givenj we can
easily check that$Xj5] j2wj]1 , j >2% is a set of linearly independent vector fields ofj. Since
d f(Xj )5Xj ( f )50 for j >2, Xj is tangent to N, and thus XjPTx(N). Now an
(n21)-dimensional distributionD on En is a map D:x→Dx , where Dx,Tx(En) is an
(n21)-dimensional subspace ofTx(En) for everyxPEn . Consequently the set of vector field
$Xj5] j2wj]1 ; j >2% forms a local basis ofD, andDx5Tx(N). Note that onN, x15x1( x̂) and
xj5xj for j >2.

Next we computedj(Xk ,Xl) for k,l>2. By the definition ofj we have

dj~Xk ,Xl !5 (
i , j >2

~] iwj !$dxi~Xk!dxj~Xl !2dxi~Xl !dxj~Xk!%5]kwl2] lwk .
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On the other hand, sincej(Xj )50 for j >2, it can be shown that

dj~@Xk , Xl # !5Xk„j~Xl !…2Xl„j~Xk!…2j~@Xk , Xl # !52j~@Xk , Xl # !,

where@Xk , Xl #5XkXl2XlXk .
Define @D, D#5$@Xk , Xl #uXk ,XlPD,k,l>2%. Then

]kwl5] lwk⇒dj~Xk ,Xl !50⇒j~@Xk , Xl # !50⇒@D, D#,D.

Conversely

@D, D#,D⇒j~@Xk , Xl # !50⇒dj~@Xk , Xl # !50⇒dj~Xk ,Xl !5dj~Xl ,Xk!⇒]kwl5] lwk .

Hence we have proved the following.
Lemma 1:@D, D#,D if and only if ]kwl5] lwk for all uP@a, b#,k,l>2.
Notice that the condition stated in Lemma 1 is similar to Maxwell’s relations at constau.

Next we consider the implications of~15a!.
Lemma 2: The one-form j5dx11S j >2wj ( x̂,u)dxj has an integral manifoldN5$x

PEnu f (x)5c5const% such thatjuN50 if and only if j∧dj50.
This Lemma is equivalent to the following statements:

~a! j∧dj50.
~b! There exists a one formhP∧1(En) such thatdj5h∧j.
~c! @D, D#,D.
~d! ]kwl5] lwk for all uP@a,b#,k,l>2.

Lemma 2 is the famous Fro¨benius integrability condition.9 In the Appendix we give a brief
proof of these equivalent statements.

So far our discussions above are based on local considerations whereu is a frozen parameter
which does not participate in the exterior calculus in∧1(En). We now considerx̂ and u as
independent variables. By condition~d! there exists aC1 function V( x̂,u) such thatwj52] jV.
Let u52]uV. Then

j5d~x12V!2udu,

dj52du∧du.

On the other hand, condition~a! yields

j∧dj52d~x12V!∧du∧du.

Hence there exists aC1 function h„u( x̂,u),u… such that

x12V5h„u~ x̂,u!,u…. ~16!

Let h15]uhÞ0 andh25]uh. By ~16! j can be rewritten as

j5h1du1~h22u!du, ~17!

while

dj52du∧du5h∧j5h1h∧du1~h22u!h∧du, ~18!

whereh1 , h2 , andh will be determined later.
Set
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h5 f 1~u,u!du1 f 2~u,u!du.

Then

dj52du∧du5@~h22u! f 12h1f 2#du∧du.

Thus we have the constraint forh1 , h2 , f 1 , and f 2 :

h1f 22~h22u! f 151. ~19!

Since (h1sj)∧j5h∧j, we look for some functions5s(u,u) such thath1sj5dr is an exact
one-form. By~19! we obtain

h1sj5~ f 11sh1!du1@ f 21s~h22u!#du5h1
21du1~ f 11sh1!@du1h1

21~h22u!du#5dr.
~20!

It is evident that f 11sh150 with h15g(u) will ensure h1sj an exact one-form. Thusdr
5g21(u)du andj can be rewritten as

j5g~u!du1~h22u!du.

Now

dj5g8du∧du1F]h2

]u
21Gdu∧du52du∧du.

Hence]h2 /]u5g8, andh25g8u1c(u). Consequently,

j5g~u!du1~g821!udu1c~u!du5gudH ln~ uguu!2E g21 duJ 1db~u!, ~21!

wheredb5c(u)du.
By Lemma 2,j5ld f . Hence we choosec(u)[0. Then~20! and ~21! yield

h1sj5h1sgud ln @ uguu#2sgu~g21du!5g21du.

We now determineh ands. Let sgu521. Thens52(gu)21 and

h5u21du1g8g21du.

Therefore we have obtained the following results:

f 15u21, f 25g8g21, h15g, h25g8u, s52~gu!21, ~22!

j5gudH ln@ uguu#2E g21duJ , ~23!

dj5~h1sj!∧j5g21~u!du∧j. ~24!

Equation~24! can be integrated easily. Letc be aC1 function in (u,u). The solution of~24! can
be expressed as

j5Tdc, ~25!
J. Math. Phys., Vol. 38, No. 10, October 1997
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whereT5T0 exp (*g21 du) andT0 is a positive constant. We remark that the results in~23!, ~24!,
andT are unique except for the fact thatg is an arbitrary function ofu. We chooseg.0 for all
uP@a, b#. ThenT85dT/du5g21T.0, andT5T(u) can be inverted to yieldu5u(T), whereT
can be identified as the local thermodynamic temperature,10 and ~25! becomes

j5dx12v5dx11pdn2(
i

m i dci1(
i ,a

Xi
~a! ;df̂ i

~a!5Tdc. ~26!

Proposition 1:Suppose]kwl5] lwk for all uP@a, b#,k,l>2. Then there exist a local ther
modynamic temperatureT and a state functionc defined onEn such that

Tdc5de1pdn2(
i

m i dci1(
i ,a

Xi
~a! :df̂ i

~a!

is the generalized Gibbs relation.
The following corollary is an immediate consequence of~7! and ~26!.
Corollary 1: Suppose]kwl5] lwk for all uP@a,b#,k,l>2. Then c satisfies the following

balance equation,

rdtc1“•~QY cT
21!5Jd , ~27!

whereJd5T21(Sd2QY c•“ ln T), andQY c ,Sd are given by~8! and ~9!, respectively.
Notice that 2QY c•“ ln T represents the internal work due to the net heat flux under

thermodynamic force2“ ln T. Thus2QY c•“ ln T>0, andJd is semipositive definite. In late
discussions we show thatQY cT

21 andJd reduce to the entropy current and entropy producti
respectively. For this reason it appears appropriate to callQY cT

21, Jd , and c the generalized
entropy current, generalized entropy production, and generalized entropy density, respe
Thus ~27! is the generalized entropy balance equation.

Finally we consider the relationship betweenu andc, and the significance ofV( x̂,u). To this
end, we denote

V„x̂,u~T!…5V̄~ x̂,T!,

ū52]TV̄~ x̂,T!.

Thenu52]uV( x̂,u)5g21Tū, or gu5Tū. We can express~23! in terms ofT,ū as

j5Tdc5gudH ln @ uguu#2E g21 duJ 5Tdū.

Thus dū5dc. Without loss of generality, we setu5c. On the other hand, we can rewritej
5d(x12V)2udu as

j5Tdc5de2dV̄2ūdT. ~28!

Combining~26! and ~28! we then obtain

dV̄52cdT2pdn1(
i

m i dci2(
i ,a

Xi
~a! :df̂ i

~a! . ~29!

In analogy with the differential of the Helmholtz potential in equilibrium thermodynamics, we
V̄5V̄( x̂,T) the generalized Helmholtz potential.
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Corollary 2: Suppose]kwl5] lwk for all uP@a,b#,k,l>2. There exists a generalized Helm
holtz potential functionV̄ whose differential is given by~29!.

In the next section we consider the global formulation of the first law and the second l

IV. GLOBAL FORMULATION OF THE FIRST LAW AND THE SECOND LAW

In order to formulate the first law and the second law in global form, we first de
(E,V,miNi ,F i

(a)) by

~E,V,miNi ,F i
~a!!5E drYr~e,n,ci ,f̂ i

~a!!.

Supposef is a function of (r̄ ,t). Let F(t)5*drYr f (rY,t). It can be shown that

dF

dt
5E F ]

]t
~r f !1“•~uY r f !GdrY5E drY rdt f .

Here uY is the hydrodynamic velocitydt5] t1uY •“, and f may be a scalar function, a vecto
function, or a tensor function of any order. Next, let„p* ,m i* ,(Xi

(a))* … be the global variables
conjugate to (V,Ni ,F i

(a)). We definep* , m i* , and (Xi
(a))* respectively by

E drYp~rdtn!5p*
dV

dt
,

E drYm i~rdtci !5m i*
dNi

dt
,

E drYXi
~a! :~rdtf̂ i

~a!!5~Xi
~a!!* :

dF i
~a!

dt
,

where the molecular massmi of species i has been absorbed inm i* . Denote z
5(V,$Ni%,$F i

(a)%)5(z2,...,zn) andz* 5(p* ,$m i* %,$(Xi
(a))* %). Thenzi ’s are the global thermo-

dynamic variables, whilezi* ’s are their conjugate variables. It should be remarked thatT, p, m i ,
and Xi

a are assumed to be functions of the local thermodynamic variablesx. However, these
functions must be determined by phenomenological considerations. Similarlyzi* is a function ofz
constructed according to phenomenological considerations.

The global formulation of the first law and the second law depend on the boundary con
of the material system. For example, if the boundary is only permeable to the mass flows, th
infinitesimal workdW can be written as

dW52p* dV1(
i

m i* dNi .

By the volume integral of~7! we obtain the first law in global form as

dE5dW1dQ1dQd ~30!

with dQd5@*drYSd# dt, and
J. Math. Phys., Vol. 38, No. 10, October 1997
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dQ5dtF E drY~2“•QY c!G5dtF E drYr
dq

dt G ,
dW5dtF E drYrH 2pdtn1(

i
m idtci2(

i ,a
Xi

a :dtf̂ i
~a!J G

dE5dtF E drYrdte G .
Let

V52p* dV1(
i

m i* dNi2(
i ,a

~Xi
~a!!* :dF i

~a!

be the work one-form,11 and set

V̂~ t !5dE2V.

The global form of the second law can be written as

V̂∧dV̂50, ~31a!

Qd>0; Qd50 at thermal equilibrium. ~31b!

Notice that V̂ is the heat one-form ifdQd50, while ~31a! is Caratheodory’s inaccessibilit
condition. As in Sec. III, by~31a! there exist a global thermodynamic temperatureT* (t) and the
generalized entropy functionS(t) such that

V̂5dE2V5T* dS. ~32!

Next we consider Clausius’s inequality for cyclic processes where the material system is in c
with heat baths during the cycles. Supposeg is a closed path in the thermodynamic spaceB with
coordinates (E,V,Ni ,F i

(a)). Let T* be the temperature of the heat reservoir anddQ the amount
of heat exchanged between the system and the reservoir during an infinitesimal portion ofg. Then
Clausius’s inequality can be expressed as

R
g
„~T* !21dQ…~g!<0. ~33a!

It is well known that the path integral in~33a! vanishes at thermodynamic equilibrium. Hence t
maximum value of the path integral is zero. To this end we introduce a semipositive quantityD(t)
such that

R
g
@~T* !21dQ1dD#~g!50, ~33b!

subject to the constraint of the first law given by~30!. Thus we rewrite~33b! in terms of a
Lagrange multiplierl as the following:
J. Math. Phys., Vol. 38, No. 10, October 1997
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R
g
$~T* !21dQ1dD1l@dE2V2dV2dVd#%~g!

5 R
g
$l~dE2V!1„~T* !212l…dQ1~dD2ldQd!%~g!50 ~34!

for all g in B.
SincedQ, dD, anddQd depend on the pathg, the unknownsl andD can be determined if

we set (T* )212l50 and dD2ldQd50. Then l5(T* )21, dQd5T* dD is the dissipative
energy, and~34! reduces to

R
g
~T* !21~dE2V!~g!50 for all g in B.

Consequently there exists a scalar-valued functionS defined onB such that

dS5~T* !21~dE2V!.

Therefore the second law formulated in~31a! and~31b! is equivalent to Clausius’s inequality fo
cyclic processes given by~33a!.

It is interesting to note that there is a dual problem to Clausius’s inequality in local f
Suppose]kwl5] lwk for all uP@a, b# andk,l>2. We look for a scalar functionc defined onEn

with coordinatesx such that

rdtc1¹•~QY cT
21!>0,

subject to the local form of the first law given by~7!. Thus we introduce a semipositive defini
function r and a Lagrange multiplierl such that

$rdtc1¹•~QY cT
21!2r %1l$rdte2rdtw1¹•QY c2Sd%

5r$dtc1l@dte2dtw#%1~T211l!¹•QY c2@r 1T21QY c•¹ ln T2lSd#50.

The unknown functionsl and r can be determined if we set

T211l50 and r 1T21QY c•¹ ln T2lSd50.

Then l52T21, r 5T21(Sd2QY c•¹ ln T)5Jd ~the generalized entropy production!, and dtc
5T21(dte2dtw), which can be recast as the generalized Gibbs relation

Tdc5de1pdn2(
i

m i dci1(
i ,a

Xi
~a! :df̂ i

a .

Finally we prove that~31! is equivalent to Kelvin’s principle and Clausius’s principle. Th
proof is patterned after the proof given by Kirkwood and Oppenheim for equilibr
thermodynamics.12 For reference, Kelvin’s principle and Clausius’s principle are stated in
following:
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~a! Kelvin’s principle: In a cycle of processes, it is impossible to transfer heat from a
reservoir and convert it all into work without at the same time transferring a certain am
of heat from a hotter to a colder body.

~b! Clausius’s principle: It is impossible that at the end of a cycle of processes, heat has
transferred from a colder to a hotter body without at the same time converting a c
amount of work into heat.

~a! Let Ti* 5const, i 51,2, be two hypersurfaces of constant temperatures,Ti* .T2* , in the
thermodynamic space with coordinatesz5(z1,z2,...,zn) given by the global thermodynamic var
ablesE, V, Ni ,... . Let g i be a reversible isotherm onTi* 5const surface. We assume that he
absorbed or liberated by the system along a reversible isotherm outside the phase transition
is a continuous function ofz. Consider an arbitrary initial statez1 on g1 . Let statesz18 andz19 be
further to the left ofz1 such that the heat absorbed by the system fromz19 to z18 and fromz18 to z1

alongg1 respectively be positive~V is increasing fromz19 to z18 and fromz18 to z1!. Through states
z18 and z19 we draw reversible adiabatic paths (DQ50) that intersect isothermg2 at z28 and z29 ,
respectively. Notice that bothF̂i

a andSd vanish along a reversible path. We now prove that
points along the adiabatic pathsz182z28 and z192z29 are accessible from statez1 by an adiabatic
pathV̂50, reversible or irreversible.

Suppose an adiabatic path exists betweenz1 and z28 such thatV̂50(DQ1DQd50) along
z12z28 . Consider the cyclez12z282z182z1 . Denote the heat absorbed by the system from statz18
to statez1 by DQ181 . By ~30! we haveDE5DW1DQ1DQd50 in the cycle. Hence2DW
5DQ181.0, whereDQ181 is the net heat absorbed by the system in the cycle. However, th
impossible, for2DW5DQ181 implies that the net heat absorbed would be converted comple
into work done by the system (DW,0). Similarly no adiabatic path exists betweenz1 andz29 . By
the same reasoning no reversible adiabatic paths can cross each other. Hencez28Þz29 . This implies
that no points betweenz28 andz29 alongg2 can be reached fromz1 by adiabatic path withV̂50,
reversible or irreversible. Next, letg be an isotherm onT* 5const surface,T1* .T* .T2* , such
that it intersects the reversible adiabatic pathsz182z28 andz192z29 at zc andzd , respectively. By the
same reasoning no points alongzc2zd can be reached fromz1 by adiabatic paths~reversible or
irreversible!. As T* is arbitrary, a region of finite volume between the two surfacesT1* andT2* can
be generated which is inaccessible from statez1 by adiabatic paths (V̂50). This region can be
taken arbitrarily close toz1 . This proves the equivalence of~31! and Kelvin’s principle for a
nonequilibrium system.

~b! Let Ti* 5const,i 51,2,3, be hypersurfaces of constant temperatures in the thermodyn
space withT1* .T2* .T3* . Let g i , i 51,2,3, be reversible isotherms onTi* 5const hypersurface
Consider an initial statez1 on g1 . Let z18 andz19 be located further to the right ofz1 such that the
heatDQ118 absorbed by the system alongg1 from z1 to z18 is positive. SimilarlyDQ1819 is also
positive. Throughz18 and z19 we draw reversible adiabatic paths that intersectg2 at z28 and z29 ,
respectively, and intersectg3 at z38 andz39 , respectively. Locate pointsz3 and z̄3 on g3 such that
DQ3385DQ118 andDQ 3̄35DQ119 . We now prove the assertion that no adiabatic path, revers
or irreversible, connects statesz1 andz3 such thatV̂50 alongz12z3 . Furthermore,z3Þ z̄3 .

Suppose there exists an adiabatic path connectingz1 andz3 . Consider the cyclez12z32z38
2z182z1 . By ~30! we haveDE5DW1DQ1DQd50. Since the net heat absorbed by the cycle
DQ5DQ3381DQ1815DQ3382DQ11850, thus2DW5DQ50. However, this is impossible, fo
DW50 implies that the net result of the cycle is to transfer heatDQ338 at T3* to heatDQ118 at
T1* .T3* without converting a certain amount of work into heat at the same time. This is ag
the Clausius’s principle. Hence no adiabatic path, reversible or irreversible, connectsz1 andz3 .
By the same reasoning we can show thatDQ1819ÞDQ3839 . Since DQ 3̄395DQ1192DQ339
5DQ18192DQ3839Þ0, z3Þ z̄3 . Therefore any point alongg3 betweenz3 and z̄3 is inaccessible
from z1 by an adiabatic pathV̂50. Next we locatez2 and z̄2 on g2 such thatDQ2285DQ118 and
J. Math. Phys., Vol. 38, No. 10, October 1997
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DQ 2̄295DQ119 . Similarly any point alongg2 betweenz2 and z̄2 is inaccessible fromz1 by
adiabatic paths. In fact, letT* 5const be an arbitrary temperature hypersurface betweenT1*
5const andT3* 5const. Letg be an isotherm onT* 5const hypersurface which intersects t
reversible adiabatic pathDQ50 betweenz18 andz38 at zc , and intersects the reversible adiaba
path betweenz19 andz39 at zd . Locateza andzb on g by the conditionDQac5DQ118 andDQbd

5DQ119 . Then any point alongg betweenza andzb is adiabatically inaccessible fromz1 . Indeed
a region generated in this manner cannot be connected fromz1 by adiabatic pathsV̂50, reversible
or irreversible. Again we have proven the equivalence of~31! and Clausius’s principle.

V. SOME EXAMPLES

In this section we consider two specific examples that can be deduced from~7!–~9! and~27!.

A. Linear irreversible thermodynamics (LIT)

SetXi
(a)50 andC i

(a)50. Then~8! reduces toQY c5QY 2S im iJY i , while ~27! becomes

rdtc1“•~QY cT
21!5T21~Sd2QY c•¹ ln T!52T21H QY c•¹ ln T1~pJ1pbÎ !:¹uY 1(

i
JY i•¹m i J .

~35!

Equation~35! is the entropy balance equation withc5s as the entropy density andQY cT
21 as the

entropy current, while the right-hand side of~33a! is the entropy productions.

B. EIT by Jou et al .

In the theory of Extended Irreversible Thermodynamics~EIT! by Jou, Casse-Vazquez, an
Lebon, the dissipative fluxespb , QY andpJ are considered as independent variables in additio
the conserved variablese, n, andci . The dynamical equations of the dissipative fluxes are gi
by ~6a!–~6c!, while the entropy currentJY s and the entropy productions respectively are given by

JY s5QY 1~b8pbQY 1bQY •pJ !T; ~36!

s5~zT!21pb
21~lT2!21QY •QY 1~2hT!21pJ :pJ . ~37!

In view of ~6a!–~6c! and ~9!, Jd in ~27! can be written as

Jd52T21~¹•uY !@pb1rzt0
21Xb#2T21@¹uY #~2!:@pJ12rht2

21Xt#2T21¹T

•@T21QY 1rlt1
21Xh#1¹•$T21@XbCb1Xh :Ch1Xt :C t#%

1r$b8@zt0
21Xb¹•QY 1lTt1

21Xh•¹pb#1b@lTt1
21Xh •¹•pJ12ht1Xt :@¹QY #~2!#%

2T21$rt0
21Xbpb1rt1

21Xh•QY 1rt2
21Xt :pJ %. ~38!

We must determineXb , Xh , Xt , Cb , Ch , andC t such that~38! becomes the entropy productio
s given by ~37!. Since“•uY ,@“uY # (2) and“T are functionally independent, we set the first thr
terms of~38! to zero. Then

Xb52t0~rz!21pb , Xh52t1~rlT!21QY , Xt52t2~r2h!21pJ , ~39!

and the last term of~38! becomes

s5~zT!21pb
21~lT2!21QY •QY 1~2hT!21pJ :pJ .
J. Math. Phys., Vol. 38, No. 10, October 1997
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ThusJd reduces to

Jd5s1¹•$T21~XbCb1XhCh1XtC t!2~b8pbQY 1bQY •pJ !%.

It is evident thatJd[s if and only if the divergence term vanishes. Consequently,

Cb52t0
21rb8zTQY , Ch52t1

21rblT2pJ , C t[0, ~40!

and

QY cT
215T21~QY 1XbCb1XhCh1XtC t!5T21QY 1b8pbQY 1bQY •pJ .

HenceQY cT
21[JY s , Jd[s, andc[s if ~39! and ~40! are satisfied.

Therefore, under the approximations of~39! and~40! in conjunction with the specific expres
sions ofZi

(a) andL i
(a) as given in~6a!–~6c!, Jd , QY cT

21 andc reduce to the entropy productio
s, entropy currentJY s , and entropy densitys, respectively.

VI. CONCLUSION

In this paper we consider the dissipative fluxes as well as the conserved variables as a
independent variables characterizing the thermodynamic state of a nonequilibrium syste
then generalize the traditional internal energy balance equation so that contributions due
dissipative fluxes are taken into consideration. The second law of thermodynamics is reform
in terms of Caratheodory’s inaccessibility condition in conjunction with the assumption tha
dissipative energy be semipositive definite. Then a generalized entropy balance equation e
immediately from this approach. In fact, the generalized entropy balance equation can be sh
equivalent to the local form of the second law in~15a! and~15b!. Finally we demonstrate that th
global form of the second law given by~31a! and~31b! is equivalent to the Kelvin’s principle and
Clausius’s principle.
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APPENDIX: PROOF OF LEMMA 2

In this Appendix we prove the following equivalent statements.

~a! The one-form j5de2v5dx11S j >2wj ( x̂,u)dxj has an integral manifoldN5$x
PEnu f (x)5c% such thatjuN50.

~b! j`dj50.
~c! There exists a one-formh such thatdj5h`j.
~d! @D,D#,D.
~e! ]kwl5] lwk for all uP@a, b# and j ,k>2.

Proof: ~i! Assume~a!. Then there existl, f PC1(En) such thatj5ld f . Thus j`dj50,
which is ~b!.

~ii ! Assume~b!. Let $j15j,j2,...,jn% be a local basis of the vector spacè1(En). Then

dj15(
i>2

aij
1`j i1 (

i , j >2
ai j j

i`j j ,

whereai andai j are functions iǹ 0(En).
Now
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j`dj5 (
i , j >2

ai j j
1`j i`j j50.

Since j1`j i`j j is a three-form in`3(En), ai j 50. This impliesdj152S i>2(aij
i)`j15h

`j, with h52S i>2aij
i .

~iii ! Assume~c!. Since @Xk , Xl #4j5Xk4(Xl4dj)5Xk4

(Xl4(h`j))50, thus @Xk , Xl #PD
and consequently@D,D#,D.

~iv! Assume~d!. In Lemma 1 we have proved that~d! and ~e! are equivalent.
~v! Assume~d!. Let $j15j,j2,...,jn% be a basis of̀ 1(En) and $X1 ,...,Xn% be a basis of

T(En) such thatXj4j i5d j
i . ThenXj4j50 for j >2. Now

dj15dj5(
j >2

ajj
1`j j1 (

i , j >2
ai j j

i`j j .

Thus

Xj 4dj52ajj
12(

i>2
ai j j

i , j >2,

and

Xi4~Xj4dj1!52ai j 50.

Hencedj15dj52S j >2ajj
j`j5h`j.

~vi! Assume~c!. It is evident that~c! implies ~b!.
~vii ! Assume ~b!. Since ~a! and ~b! are equivalent,dj5h`j5(h1sj)`j where sP

`0(En). We can chooses such thath1sj5dr is an exact one-form. Thusdj5dr`j, which can
be solved withj5erd f for some f . Set l5er . Then j5ld f . Alternatively, we can solve the
Pfaffian equationj50 by the method of Cartan and show that the solution yieldsj5ld f .13
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Adler–Kostant–Symes construction, bi-Hamiltonian
manifolds, and KdV equations
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~Received 2 April 1996; accepted for publication 8 August 1996!

This paper focuses a relation between Adler–Kostant–Symes~AKS! theory applied
to Fordy–Kulish scheme and bi-Hamiltonian manifolds. The spirit of this paper is
closely related to Casati–Magri–Pedroni work on Hamiltonian formulation of the
KP equation. Here the KdV equation is deduced via the superposition of the
Fordy–Kulish scheme and AKS construction on the underlying current algebra
C`(S1,g^ C@@l##). This method is different from the Drinfeld–Sokolov reduction
method. It is known that AKS construction is endowed with bi-Hamiltonian struc-
ture. In this paper we show that if one applies the Fordy–Kulish construction in the
Adler–Kostant–Symes scheme to construct an integrable equation associated with
symmetric spaces then this superposition method becomes closer to Casati–Magri–
Pedroni’s bi-Hamiltonian method of the KP equation. We also add a self-contained
Appendix, where we establish a direct relation between AKS scheme and bi-
Hamiltonian methods. ©1997 American Institute of Physics.
@S0022-2488~97!00209-0#

I. INTRODUCTION

The Adler–Kostant–Symes~AKS!1–4 scheme allows us to construct integrable Hamilton
systems and their solutions in a systematic way. This AKS method provides us with a P
manifold and a hierarchy of commuting Hamiltonians. Hence this technique can be us
construct a dynamical system with phase spaceO , a coadjoint orbit of the Lie group, and
hierarchy of Hamiltonians given byAd* -invariant functions. When one applies this scheme to
algebra one obtains discrete equation. The simplest system which has been studied in this
the open Toda lattice system. However, the most interesting examples are related to
dimensional Lie algebras or loop algebras as shown by Reyman, Semenov-Tian-Shansk
Frenkel.5–7 Also the method for extending the AKS method to bi-Hamiltonian integrable syste
developed by Reyman and Semenov-Tian-Shansky.

Recently, Casati–Magri–Pedroni~CMP!8,9 proposed a method of studying Sato’s equatio10

andt function from the point of view of a bi-Hamiltonian approach. A bi-Hamiltonian struct
on a Poisson manifold is defined by a pair of Poisson brackets such that the linear their c
nation is also a Poisson bracket.

A system of differential equations is called bi-Hamiltonian if it can be written in Hamilton
form in two distinct ways with respect to two different Poisson structures$.,.%0 and$.,.%1 :

ḟ 5$ f ,H0%05$ f ,H1%1

for some functionsH0 , H1PC`(M ).
Suppose the two Poisson structures are nondegenerate; then these allow us to define

sion operator

R5P1P0
21,

a!Present address: S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Calcutta-700091, India.
0022-2488/97/38(10)/5167/16/$10.00
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whereP0 and P1 are the Poisson tensors associated with the brackets$.,.%0 and $.,.%1 , respec-
tively. This recursion operatorR can be used to construct a family of functions which are fi
integrals to the Hamiltonian system and these functions turn out to be in involution with resp
both Poisson brackets. This suffices to show the integrability in the sense Liouville of the H
tonian system. Bi-Hamiltonian systems were first studied by Magri11 and in his fundamental pape
he deduced the integrability of many soliton equations from the fact that they could be writ
Hamiltonian form in two distinct ways. Many integrable system demonstrate bi-Hamiltonian s
ture. However, recently Brouzet12 constructed a four dimensional nondegenerate completely
grable system which does not admit a bi-Hamiltonian structure. This indicates that there are
global, topological obstructions to the existence of a bi-Hamiltonian structure for a general
pletely integrable Hamiltonian system. Also in the degenerate cases recursion operators
exist and the problem of finding bi-Hamiltonian structures for degenerate cases turn out
completely different from the nondegenerate cases. The connection between bi-Hamiltonian
tures and the Lie pencil ofR matrices has been established by Semenov-Tian-Shansky
Reyman.13 In a recent paper Burroughs14 showed that the KdV bi-Hamiltonian structure is
consequence of the existence of a vector space of classicalr -matrices on the loop algebrag
^ C@@l##. Given any one of these classicalr -matrices AKS scheme provides a family of dynam
cal systems each consisting of a Poisson manifold with a hierarchy of flows generated
Ad* -invariant functions.

Casati–Magri–Pedroni’s motivation behind this study obviously is to understand KdV e
tion more geometrically. In the pseudodifferential approach we somehow loose the geom
picture and because of the abstractness, apparently we loose the relation with classical me

We claim that this method of obtaining the KdV equation is different from the us
Drinfeld–Sokolov method15 and this method is closely related to Casati–Magri–Pedroni’s
Hamiltonian method of Poisson Manifold, which is centered around one important poin
deformation of a Poisson bracket, and of Casimir function. This provides a way of constructi
algebra of function which are in involution. The results of this paper are known from the diffe
approaches, we only derive this result from another approach.

We organize this article in the following way. In Sec. II we give quick reviews of so
preliminary materials concerning Adler–Kostant–Symes construction and bi-Hamiltonian m
folds. In Sec. III we discuss graded algebra and the construction of homogeneous space
Fordy–Kulish reduction.16 In Sec. IV we deduce the KdV equation and discuss the hierar
Finally, we add an Appendix which describes the direct connection between the AKS schem
bi-Hamiltonian manifolds.

Remark about Convention:The KdV equation we obtain here is space–time interchanged
so we will consider ‘‘space flows’’ rather than the time flows in the ordinary cases.

II. PRELIMINARIES

In this section we shall review the basic materials. We lay out this section into two par
the first part we discuss the AKS scheme and in the second part we review bi-Hamiltonia
Poisson pencils from Magri’s different papers.

A. AKS scheme

Let g be the Lie algebra of a semisimple Lie groupG andg* be its dual space,RPEnd g be
a linear operator ong. We consider the orbits ing* which are ofR-matrix type, i.e., which poses
a Poisson pencil generated by the Kirillov–Kostant–Souriau bracket and the so-calledR- bracket

@X,Y#R5 1
2~@RX,Y#1@X,RY# !,

for all X,YPg. This satisfies the Jacobi identity ifR satifies the modified Yang–Baxter equatio
AKS construction uses both the Lie algebra structure ong, ordinary$,% and$,%R . The interaction
J. Math. Phys., Vol. 38, No. 10, October 1997
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of these two Poisson bracket produces a space of functionsker ~$,%! which are in involution with
respect to$,%R and vice versa. The ad-invariant functions are in involution on$,%R defines mutu-
ally commuting flows on the system. A linear operator ing is called an intertwinning operato
A if it commutes with the adjoint representation ofg, i.e.,

A@X,Y#5@AX,Y#5@X,AY#,

whereX,YPg. ThenR+A satisfiesR-bracket and the corresponding Jacobi identity satisfies
modified Yang–Baxter equation. Since the space of intertwinners is a vector space, we o
linear family of r -matrices called a Lie pencil. This basically extends the AKS method
bi-Hamiltonian integrable system. In particular, in the case of loop algebrag^ C@@l## the space of
intertwinners is very interesting and any functionf (l) can be intertwinner.

We asume that the Lie algebrag, as a vector space equiped with a bilinear form and i
presented as a linear sum of two subalgebrasg5k1 l . The dual space has also the decomposit
g* 5k* 1 l * . By means of the bilinear form̂.,.& we can identifyk* ; l' and l * ;k', where

^k',k&5^ l',l &50.

Let VG be the space of the based loop, then its loop algebra is the Laurent polynomials
variablel with coefficients ing:

Vg5g^ C~l,l21!5H X~l!5 (
i 52`

`

xil
i ;xiPgJ .

Here, we can define the projection operator in the following way:

P6X5H X if X5(n>0Xnln

2X if X5(n,0Xnln.

We define an invariant product ong

~X,Y!5E
S1

dx~X~x!Y~x!!

with the help of the inner product.

We want to work on centrally extended loop groupVĜ5VG3R which at the Lie algebra is

Vĝ5Vg% R. This is a centrally extended loop algebra associated with 2-cocyclev(X,Y)
5(X,dY/dx). Loop algebraĝ satisfies the following commutation relation:

@~X,a!,~Y,b!#5S @X,Y#,E
S1

tr ~XY8! D ,

where (X,a),(Y,b)Pĝ. We also define the bilinear form onĝ by

^~X,a!,~Y,b!&5ab1E tr ~XY!.

Corresponding to the 2-cocycle for an ordinary bracket we can also define it forR-bracket.
Definition 2.1: Let (q,R) be a double Lie algebra on which we define two Lie algeb

structure and supposev be a 2-cocycle on g. Then

vR~X,Y!5v~RX,Y!1v~X,RY!
J. Math. Phys., Vol. 38, No. 10, October 1997
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is a 2-cocycle gR.
Using the following identity:

^adR* ~X,a!~U,c!,~Y,b!&1^~U,c!,adR~X,a!~Y,b!&50,

we find
Proposition 2.2: The coadjoint representation of the loop algebra gˆ R on its dual is given by

the following expresion:

adR* ~X,a!~a,c!5~~ad* RX!~a!2cRX8,0!1R* ~ad* X~a!2cX8,0!.

Note that the symbolsad* andadR* stand, respectively, for the coadjoint representations of
algebrasg andgR . The proof of this proposition is fairly easy so we omit it.

V̂g* is usually identified with the space of matrix differential of the form

c
d

dx
1U~x!,

whereUPVg* , cPR. In this space we can write the Lie–Poisson structure:

Definition 2.3: The Lie Poisson structure onVĝ* is given by

$j,x%~U,c!5~@dj,dx#,U !1cv~dj,dx!5E
S1

tr S c
d~dj!

dx
1@dj,dx#,U Ddx.

The coadjoint action leaves the parameterc invariant, so we fix the parameterc51 and

denote the corresponding hyperplane inVĝ* by Vg1̂* .
Lemma 2.4: Suppose H is Ad* -invariant function onVg* then

adR* ~dH~a!,a!~a,1!5~~ad* R~dH~a!!~a!1R~dH!8,0!.

Remarks:~1! The center of theVĝ acts trivially on Vĝ* , the space ofVĝ* is a natural

G-module.~2! Ĝ acts onVĝ* by gauge transformation.
Using all of the above arguments we have come to the following theorem:
Theorem 2.5:The Hamiltonian equations of motion on the hyperplane of gˆ* generated by the

gradient of the Hamiltonian H, the ad-invariant function, have the form

da

dt
5

Rd“H

dx
1@R“H,a#

so it denotes that the connectiona dx1“H dt on a cylinder S1 3 R is flat.
Supposeg is any arbitrary element of the loop group, then

a→gxg
211gag21,

“F→gtg
211g“Fg21

is called a gauge transformation which takes the solution of Lemma~2.4! another equivalence o
solution of that.

Remark: Theorem~2.5! is a zero curvature equation and by constructing out a partic
equation we mean we are tracing out an invariant submanifold for the equation and this le
the orbits of coadjoint representation of the current algebra.
J. Math. Phys., Vol. 38, No. 10, October 1997
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B. Bi-Hamiltonian manifolds

In this section we will review some of the known things of bi-Hamiltonian manifolds mo
from the CMP’s paper and will show connection with the AKS approach. We will show that
ad-invariant functions of the coadjoint orbits are the Casati–Magri–Pedroni’s Casimir func
on the Poisson pencils.

Definition 2.6: Let MP be a Poisson manifold endowed with two Poisson bracket$.,.%0 and
$.,.%1 . We say that MP is a bi-Hamiltonian manifold if the linear combination

$ f ,g%l :5$ f ,g%01l$ f ,g%1

of these brackets satisfies Jacobi identity for any valuel then $.,.%l is called Poisson pencil.
In other words, a bi-Hamiltonian vector field is a vector field which is Hamiltonian w

respect to both the Poisson brackets.
Let us consider the Poisson pencil$.,.%l is the deformation of$.,.%0 and the Casimir function

of $.,.%0 . Let H(l) be the one parameter families of function such that

$H~l!, f %l50.

Let H(l)5(kHkl
2k and supposeG(l) is another Casimir element on the Poisson pencil th

from the recurence relation CMP proved

$Hk ,Gj%15$Hk11 ,Gj%050.

Hence we say that the coefficients of the Laurent expansion of the Casimir function of the
are in involution with respect to both the basis brackets.

We need to find out the existence of a subspace inT* M where the bi-Hamiltonian identity
holds

P1~vk!5P0~vk11!,

whereP1 andP0 are the two Poisson tensors corresponding to$.,.%1 and$.,.%0 , respectively. This
subspace is constructed iteratably.

SupposexPM is a point, we define two nested subspaces in the cotangent space corre
ing to this point:

~1! Xj is orthogonal space ofYj with respect to Poisson tensorP0 ,
~2! Yj 11 is orthogonal space ofK j with respect toP1 .

From the definition these satisfy

K j,K j 11P0~K j !,P1~K j 11!,

L j,L j 11P0~L j !,P1~L j 11!.

Hence there exists some integern such that

Kn5Kn21 , Ln115Ln .

The smallest of these integers is calledRieszindex of the Poisson pencil of the pointx. SoX
andY are the stable subspaces of the Poisson pencil.

The next step is to state a technical and important theorem due to CMP. Let us consid
symplectic leavesF of $.,.%0 and let us foliateF by an integral distributionD on M P generated
J. Math. Phys., Vol. 38, No. 10, October 1997
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by the vector fields$c,.%1 , wherec is the function of the center$.,.%0 . Let us denote the foliation
by E and if E is sufficiently regular then there exist a quotient spaceQ5F /E. Then using the
general bi-Hamiltonian reduction theorem CMP proved the following:

Theorem 2.7: Let H(l) be the Casimir function of the Poisson pencil. The bi-Hamilton
vector fields

ḟ 5$Hk , f %15$Hk11 , f %0

are tangent to the symplectic and are projectable on the quotient space

Q5F /E.

The projected vector fields are bihamiltonian with respect to the reduced Poisson pencil oQ .
Now we come to some specific application. Letg be a simple Lie algebra andM P is the space

of C` maps fromS1 into g. Let us takeg5sl(2,C). Let Z be a typical map fromS1 to g, given
by

Z5S z1 z2

z3 2z1
D .

Here,z1 , z2 , andz3 are the global coordinates of the infinite dimensional manifold. LetZ(t) be
a one parameter curve inM P , then we denoteŻ ~with respect tot! to be the tangent to the curve
The spaceM P inherits a Lie algebra structure fromg and a cocycle

ṽ~ Ż1 ,Ż2!5E
S1

S Ż1 ,
d

dx
Ż2Ddx.

Then we define the following two Poisson brackets onM P :

$ f ,g%0~Z!5^A,@d f~Z!,dg~Z!#&,

$ f ,g%1~Z!5^Z,@d f~Z!,dg~Z!#&1ṽ~d f ,dg!,

whereA is a constant loop andf andg are funtionals onM P . In fact, the Poisson tensors for the
Poisson brackets are

~P0!ZY5@Y,A#,

~P1!ZY5Yx1@Y,Z#.

Combining these two Poisson brackets we get our Poisson pencils.
Definition 2.8: The Casimir functions of the Poisson pencils are the kernels of the pen

Yx1@Y,Z1lA#50.

Given Z and A Casati–Magri–Pedroni solvedY to obtain the KdV equation. They assum
Y(l) has the same spectrum as

S 0 1

l 0D .

Hence by means of the dressing transformations one obtains

Y~l!5D~l!LD~l!21,
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whereD(l) is the dressing operator. Moreover, Casati–Magri–Pedroni proved for every con
matrix AY(l) is an exact form

Y~l!5dC~l!

with potentialC is the Casimir function.
In the next section we will show that the Casimir funtions of the Poisson pencil are

ad-invariant function of the coadjoint orbits.

III. GRADED ALGEBRA AND HOMOGENEOUS SPACES

The method of constructing dynamical systems related to symmetric spaces, one me
based on the notion of the sectional operator given by Fomenko17 and the other one is related t
Fordy, Wojciechowski, and Marshall.18 Here, we suggest another approach and originally it is
to Marshall.19 But Marshall’s approach is confined to dynamical system, we extended to integ
system.20,21

Let g be a semisimple Lie algebra andh be its Cartan subalgebra. In accordance to the gen
theory in the previous section, the corresponding loop algebra associated toḡ is Vg5g

^ C(l,l21) and its centrally extended loop algebra would beVĝ5Vg% R. Also we have a

decomposition of the algebraVĝ into the sum of two subalgebras into negative loops or
algebra of functions which are holomorphic outside the disk and positive loops or the alge
functions which are holomorphic inside the disk which we can express in the following wa

n5S (
i<21

xil
i ,bD ,

k5S (
i>0

xil
i ,oD ,

wherebPR. In accordance to the previous discussion we also have an inner product onVĝ given
by

K S ( xjl
j ,a~l! D ,S ( ykl

k,b~l! D L 5ResFa~l!b~l!1tr E S ( xjl
j D S ( ykl

kDdxG .
Like in the general discussion we have fixed our attention to a specific hyperplanec51. Follow-
ing Marshall we introduce a new term essentially for our convenience. Let us define

P i,k5span$r il
i ur Pg,r i50 for i ,i or i .k%.

Now we are focusing on the orbit ofN in n* ;k'. Fixing an elementLPk' where we can
think L is spanned by polynomial of orderp, i.e., LPP 0,p for somepPZ. Under the coadjoint
action ofN on k', the setN+L5Np+L, whereNp5exp(nùP 2p21,21), still lie in the P 0,p .

Our aim is to find integrable systems related to Hermitian symmetric spaces as an appl
of the Adler–Kostant–Symes scherne. Our main interest is inCP15SU(2)/U(1). In general any
semisimple Lie algebra can be decomposed tog5t1m such thatt is the maximally commutating
subalgebra andm is the complements oft in g.

We can identifym with the tangent space of the homogeneous manifoldG /T , whereG is Lie
group associated tog andT is the subgroup associated tot. When the decomposition satisfies

@ t,t#,t and @ t,m#,m

g is called reductive decomposition.
J. Math. Phys., Vol. 38, No. 10, October 1997
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If in addition to theset, m satisfies one extra condition

@m,m#,t

then it is called symmetric decomposition ofg and the spaceM5G /T is called Hermitian
symmetric space. The Killing form ofg descends down to give metric on this space. In the c
of Hermitian symmetric space, there exists an elementAPt such thatt5Cg(A)5$sPḡu@A,s#
50%. Let h be the Cartan subalgebra ofḡ, the elementA can be chosen to lie inh. We have
m5m1

% m2 given by @A,t#50 and @A,X6#56 lX6 with l being the same value for allX6

Pm6.
In the next section we will derive KdV equation from the AKS scheme applied to hom

neous spaces.

IV. COADJOINT ORBIT AND KdV EQUATION

We break this section into two parts; in the first part we will construct orbit and Lie Poi
structure on it then we will discuss the ad-invariant function. We will show these function
Casimir functions of the bi-Hamiltonian manifold discussed in the earlier section. In the se
part will derive the KdV equation.

A. Orbit and ad-invariant function

We consider for the definiteG5SU(2) and an elementL5l3A with A5 i diag(1,21). Then
a typical member of the orbitO L throughL is given by

g5B21@l3A#B

with

B5~b1l21,eb21l21
!~b2l22,eb2l22

!~b3l23,eb3l23
!~b4l24,eb4l24

!••• .

After an elaborate computation we obtain the following results:

g5l3A1l2Q1lS P2
i

2
@Q2 ,Q1# D1T1@S,Q#,

where

Q5@A,b1#,

P5@A,b2#1 1
2@Q,b1#,

T5@A,b3#1 1
2@@A,b1#,b2#1 1

2@@A,b2#,b1#1 1
6@@Q,b1#,b1#,

S5
i

2
@P12P2#1cQ,

with the explicit form of an element of the orbit throughl3A being known, the hierarchy o
nonlinear equation can be immediately if we constructed if we have the form of the ad inv
functions. Incidentally that the form of the ad-invariant functions in presence of the cocycl
not been widely discussed in the literature of integrable systems. So we are going to discu

Suppose we denote byM any element of the orbit, then the gradient of the ad-invari
function F, in presence of the cocycle must satisfy
J. Math. Phys., Vol. 38, No. 10, October 1997
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@M ,“F#1
]“F

]x
50.

In particular without loss of generality if we take

M5M21lM1 ,

whereM1 is a constant matrix andM2 be an element of theV̂g, then we obtain

]“F

]x
1@M21lM1 ,“F#50.

This is nothing but the kernel of the Poisson pencil of two Poisson brackets induced by ord
bracket andR-bracket of the Lie algebra.

In the absence of any central extension ad-invariant function satisfies

ad
“F* M50

whose immediate solution isF5tr (Lp), wherepPZ1 .
But in order to see the correct result, we expand“F in the powers ofl and set

“F5l2h21lh11h01l21h211l22h221•••

in the above equation and equating various powers ofl to obtain the following recursive relations

@A,h2#50,

@Q,h2#1@A,h1#50,

@Q,h0#1FP2
i

2
@Q2 ,Q1#,h1G1@T1@S,Q#,h2#5

]h2

]x
,

FP2
i

2
@Q2 ,Q1#,h2G1@Q,h1#1@A,h0#50,

and so on. These equations can be solved recursively forhi ’s in terms ofP, Q, A. In our case the
element of the orbitO L throughL is of the form

g5Al31Ql21W1l1W2

andQPm. Then we choose the Hamiltonian such that

H~g!52 1
8tr ~g2l22!

then gradient ofH must be

“H52 1
4gl22.

We apply the theorem from the previous section obviously by looking through the orb
must take the projection along the positive directionP1 . Observe thatP1(“H)5 1

4(Al1Q).
Notice that in our case the gradient of the ad-invariant function does not change in prese
cocycle.

So far what we obtained from our previous discussion, we put down in the following:
J. Math. Phys., Vol. 38, No. 10, October 1997
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Proposition 4.1: Let(O L ,vL) be the symplectic orbit wherevL be the Kirillov two form on
the orbit. Then the Hamiltonian equations of motion corresponding to the Hamiltonian fun
H(g) 5 2 1

2tr (g2l22) generates the system of third order p.d.e inCn.

B. KdV equation

Finally, we are now going to obtain the equation. From the equation~!! we obtain

dg

dt
5@Al1Q,g#1~Al1Q!x .

Setting various coefficients oflm equal to zero we get

Q̇5@A,P#2
i

2
@A,@Q2 ,Q1##.

We now apply the group separation properties oft and m of the Hermitian symmetric space
Observe that@Q2 ,Q1#Pt and we knowA is a constant matrix. So we have

P52
i

2
~Q̇12Q̇2!.

Similarly, after some tedious calculation we obtain the following results:

T52 1
4Q̈1 1

4@Q1 ,@Q2 ,Q1##2 1
4@Q2 ,@Q2 ,Q1##,

S5 1
4~Q̇11Q̇2!1c~Q11Q2!.

Equatingl0 we obtain

Ṫ1@S,Q# t5@Q,T#1@Q,@S,Q##1Qx .

Notice that this is a zero curvature equation. If we choose

Q5S 0 q†

2q 0 D ,

then we can express these two linear pairs of equations are

]xc52
1

4 S q̇†q2q̇q† q̈†12q†qq†

2q̈22qq†q 2qq̇†1q̇q†Dc,

] tc5S 0 q†

2q 0 Dc.

Finally, we obtain the equation

1
4~qttt16qtuqu2!1qx50, ~1!

1
4~qttt

† 16qt
†uqu2!1qx

†50. ~2!
J. Math. Phys., Vol. 38, No. 10, October 1997
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We can decouple this set of equations to obtain the KdV equation straight from here
other words, if we start our earlier formalism from sl~2! and if we use the corresponding loo
algebra then we must arrive at the same conclusion. The equation we obtain is

1
4~qttt16qqt!1qx50.

This is derivable from the compatibility condition of the following linear system of equation

] lc5S 0 1

2q 0Dc52qE21E1 ,

]xc5
1

4 S q̇ 22q

q̈12q2 q̇ Dc.

Remarks:The equation which appears here is basically a space–time interchanged
equation, so in the next section we will consider the ‘‘space flows’’ rather than usual time
treat these space and time coordinates in the same footing.

C. Poisson reduction and Lie–Poisson structure

Let M be the Poisson manifold and the Lie groupG acts onM by Poisson maps. IfM /G is
a smooth manifold then we can endow it with a unique Poisson structure such that the can

p:M→M /G

is a Poisson map. Letf 1 and f 2 be the pair of functions onM /G and let

F15 f 1+p, F25 f 2+p,

we can thinkf 1 and f 2 are theG invariant functions onM such that

$ f 1 , f 2%M /G+p5$F1 ,F2%M .

To show$ f 1 , f 2%M /G is well defined, Marsden and Ratiu22 proved$F1 ,F2%M is G invariant.
We will work with the infinite dimensional version of this theory. By some element

modifications Beffa23 proved that this will work for the infinite dimensional cases also.
We have seen in this section that the space of the operator we have used is of the fol

form:

d

dx
1S 0 1

2q 0D . ~!!

By means of gauge transformation we always transform this operator to

d

dx
1S a 1

2q 2a D .

So modulo the action of the gauge group every operator of this form can be put in the Hill’s
~!!.

Let us considerM to be subset ofVg1̂* given by the differential operators of the Hill’s form
The reason for restricting ourselves to the submanifoldM is that the operator of the Hill’s form
is equivalent to the second order scalar differential operator
J. Math. Phys., Vol. 38, No. 10, October 1997
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L5
d2

dx2 1q.

This operator is called the Hill operator. This is equivalent to the first order matrix operator~Hill’s
form! in the sense thatk is the solution of the equation

Lk50,

then the vector fieldv5(k8,k) is a solution of the differential operator of the Hill’s form. Henc
the reduced space is the space of the Hill operator and it is a dual of Virasoro algebra w
canonical Lie–Poisson structure is the Gelfand–Fuks cocycle

vS a
d

dx
,b

d

dxD5E
S1

a8b9 dx.

D. KdV hierarchy

In this section we will show first that the KdV equation obtained in the last section is not
but the two-dimensional reduction of the SDYM equation. The hierarchy of this reduction an
corresponding KdV equation has been studied by Ablowitzet al.24 Moreover, in one of our earlier
papers25 we have constructed Adler–Kostant–Symes hierarchy and have shown that the
hierarchy is the reduction of SDYM hierarchy. This result is important from the twistor th
point of view, KdV hierarchy follows as an example of this general settings. The main ide
these constructions of hierarchies are based on the old concept of the intertwinning operat
intertwinners transform ‘‘bare or unperturbed’’ auxiliary linear systems into ‘‘perturbed’’ o
and according to the rule of algebraic analysis, these are the formal power series inl21. Let us
sayL5E11lE2 are the bare potential. By means of intertwinning operators we will dress
to obtain actual potential

S 0 1

2q1l 0D 5~2q1l!E21E15Q1 .

We consider an intertwiner of the following form:

T ~ t,l!5T 01 (
n51

`
T n~ t !

ln ,

where

T 05j512 1
2]x

21qE2 .

This satisfies the following dressing operation:

T ~] t2L!T 215] t2Q1

and

T ~]xk
2lk21] t!T 215]xk

2lk21] t2Qk ,

where

Qk5]xk
jj211~lk21f!1 , k>2, f52] tT T 21.
J. Math. Phys., Vol. 38, No. 10, October 1997
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After simple derivation from the first equation we obtain

] tT 5Q1T 2T L,

and from this equationT is determined. The KdV hierarchy is given by

~] t2Q1!c50,

~]xk
2Qk!c50.

These sets can by rewritten as

] tc5Q1c

and

]xk
c5Q̃kc,

where

Q̃k5]xk
jj211~lk21f!11lk21Q15~lk21f̂ !11]xk

jj21.

In fact, ]xk
jj21 is a lower triangular matrix

]xk
jj215S 0 0

2 1
2]x

21qk 0D .

We also write

f̂5T LT 215 (
n521

`
f̂n

ln , f̂15E2 .

Whenk51, we obtain

]x1
c5] tc.

So we can identifyx15t. For k52 we obtain our KdV equation and fork.0 we get the higher
flows of KdV equation.

Now we observe one important fact:
Remark:Sincef̂5T L T 21 andL25lI hence all the even flows are trivially zero.
In the casek52, we get a pair of equations from which we derive KdV equation a

compatibility condition,

] tc5S 0 1

2q1l 0Dc

and

]xc5S 2 1
4q̇

1
2q1l

2 1
2q

22 1
4q̈2 1

2ql1l2 1
4q̇

D c.
J. Math. Phys., Vol. 38, No. 10, October 1997
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V. CONCLUSIONS

The KdV equation has been studied many ways and in many directions; we have rec
another viewpoint in this paper. We have deduced the KdV equation from the point of view o
AKS scheme applied to Fordy–Kulish construction. We have shown that this method is c
related to the bi-Hamiltonian method of Magriet al. We have also shown its connection
Lie–Poisson reduction.
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APPENDIX: BI-HAMILTONIAN PICTURE IN AKS THEORY

This is a self-contained Appendix and establishes the one-to-one correspondences betw
bi-Hamiltonian picture and AKS theory.

Let G be a real semisimple Lie group andg be its Lie algebra. LetLG5C`(S1,G) be the Lie
group of smooth functions on the circle with values inG with pointwise product, its Lie algebra
Lg5C`(S1,g) is called loop algebra and these areg-valued smooth functions on the circle.

We define a nondegenerate bilinear two form onLg with the help of a Killing form ong,
incidentally this Killing form identifiesg with g* ,

~A,B!:5E
0

1

tr ~A~x!B~x!!dx.

Let us recall that an untwisted affine Lie algebraLĝ, a one-dimensional nontrivial central exte
sion of the algebraLg

0→R→Lĝ→Lg→0.

The Lie algebra ofLĝ is given by the relation

@~A~x!,a!,~B~x!,b!#:5~@A,B#~x!,v1~A,B!!,

wherev1(A,B) is the Maurer–CartanR-valued two cocycle

v1~A,B!:5~A,]xB!.

We introduce another cocyclev2 to extendLg, given by

v2~A,B!:5~A,@B,M # !,

whereMPg.
Combining these two cocycles,v1 andv2 , we obtain pencil of cocycles

vl5v11lv2

which satisfy the following closedness condition:

vl~@A,B#,C!1vl~@B,C#,A!1vl~@C,A#,B!50.
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It is hard to see that the affine Lie algebra corresponding to the cocyclevl satisfies

@~A~x!,a!,~B~x!,b!#5~@A,B#~x!,vl~A,B!!.

Proposition 6.1: The co-adjoint representation of the algebra Lgˆ l is given by

ad* ~A,c!~U,e!5S @A,U1lM #1e
dA

dx
,0D ,

where APLg, UPLg* and c, ePR.
Remark 6.2:
~1! q̂* is usually identified with the space of matrix differential operators of the form

2e
d

dx
1U~x!1lM ~x!.

~2! The coadjoint action is simply a gauge action of LGˆ on the space of differential operator
of the above form.

The affine Lie algebra stratifies into Poisson submanifolds; each of them are isomorp
Lg* . Let us fix the parametere51. The coadjoint orbits correspond to the symplectic leaves
the usual Lie–Poisson structures of the algebra, which in these cases are given by the fo
formulas:

$ f ,g%1~U,e!5~@d f ,dg#,U !1v1~d f ,dg!,

$ f ,g%2~U,e!5~@d f ,dg#,U !1v2~d f ,dg!.

The pencil of Poisson brackets$,%11l$,%2 satisfy Jacobi identity. The two Poisson tensors

~P1!V5Vx1@V,U#,

~P2!V5@V,M #.

The Casimir functions of the Poisson pencil are the kernels of the pencil

Vx1@V,U1lM #50.

Definition 6.3: LetM be a manifold endowed with two Poisson brackets$,%1 and $,%2 , we
say thatM is a bi-Hamiltonian manifold if the linear combination

$ f ,g%l :5$ f ,g%11l$ f ,g%2

of these brackets satisfies Jacobi identity.
A formal Casimir of Poisson pencil is a formal seriesf (l)5( j >0 f jl

j satisfying

$•, f ~l!%l50,

where f 0 is the Casimir of the first Poisson bracket and the rest satisfy the Lenard recu
relations

$•, f j%15$•, f j 11%0 .

Definition 6.4: The ad* -invariant function F, in presence of the cocyclevl satisfies

]“F

]x
1@“F,U1lM #50.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Hencead* -invariant functions are the Casimir functions of the Poisson pencils. The
theorem is just the extended version of the theorem proposed by Adler, Kostant, and Sym

Theorem 6.5„AKS…: The Hamiltonian equations of motion on the hyperplane of Lgˆ l* gen-
erated by the gradient of the Hamiltonian H, the ad-invariant function, have the form

]~U1lM !

]x
5

]“H

]x
1@“H,U1lM #,

hence it denotes that the connection(U 1 lM )dx 1 “H dt on the cylinder is flat.
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Hierarchies of evolution equations associated with certain symmetric spaces are
presented. Main examples of such symmetric spaces are Hermitian symmetric
spaces and the obtained evolution equations include generalized nonlinear Schro¨-
dinger equations. Those results are obtained by extending the Lie algebra in the
Ablowitz–Kaup–Newell–Segur scheme from sl~2,C! to more general one.
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I. INTRODUCTION

There exist some general methods such as Sato theory1 and Drinfeld–Sokolov theory2 to
deduce hierarchies of soliton equations. Although the relation between both theories is no
they serve as powerful tools to analyze soliton phenomena. On the contrary it seems th
scheme shown in Ref. 3 has not succeeded in extending Lie algebra from sl~2,C! to more general
one. It has been already shown that the soliton equations such as the vector nonlinear Schr¨dinger
equations and the multicomponent AKNS equations relate to some general Lie algebra
recently their relation to the constrained KP hierarchies have been revealed.4–8 Moreover, soliton
equations associated with Hermitian symmetric spaces have been considered in Ref. 4.
these papers the full hierarchy is not clear because of the nonlocality in the process of ob
successive equations. In this paper we give the hierarchy of evolution equations extending
algebra in Ref. 3 from sl~2,C! to Lie algebras associated with certain symmetric spaces.

The original AKNS hierarchy is defined as follows. Letg5sl(2,C) and

H5S i
0

0
2 i D , P5S 0

r
q
0D ,

wherei 5A21. Let

Q5Q01z21Q11z22Q21z23Q31•••, ~1!

wherez is a spectral parameter andQiPg. We assume thatQ05H andQ15P. Then consider the
following system of differential equations:

]Q

]tn
5@~znQ!1 ,Q#, n51,2,3,..., ~2!

where ( )1 means the part of non-negative powers ofz, i.e.,

~znQ!15znQ01zn21Q11•••1Qn .
0022-2488/97/38(10)/5183/7/$10.00
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Of course, Eq.~2! is a system of ordinary differential equations whose unknown functions are
components ofQi . To deduce evolution equations, we need a further procedure. Let us con
the first flow of ~2!. Settingt15x, we have

Qn,x5@H,Qn11#1@P,Qn#. ~3!

It is shown that Eq.~3! can be solved recursively in such a way that the components ofQn for
n.1 are differential polynomials ofq andr . Then,Qn being considered as above, Eq.~2! defines
the AKNS hierarchy.

We want to extend the Lie algebra from sl~2,C! to a more general one in the above proce
The problem is whether Eq.~3! can be solved in the same way as in the AKNS hierarchy. I
easily seen that the method in Ref. 3 cannot apply to the general case. Nevertheless, we ca
that this is true for Lie algebras associated with certain symmetric spaces. Main examples o
symmetric spaces are Hermitian symmetric spaces and the evolution equations obtained
way include the vector nonlinear Schro¨dinger equation and the multicomponent AKNS equati
Hamiltonian properties of the evolution equations with respect tot2 flow have been discussed i
Ref. 4. But we need further considerations to give Hamiltonian structure to the full hierarchy
is an open problem and will be our future subject.

In the next section we briefly recall the AKNS scheme following Refs. 3 and 9. In Sec. II
prove the above fact.

II. AKNS SCHEME

Let g be a semisimple Lie algebra. Suppose that

g5k % m, @k ,k #,k , @k ,m#,m, @m,m#,k . ~4!

These Lie algebras relate to the symmetric spaces. We further assume that there exists an
H in the center ofk such that

ad H:m{A→@H,A#Pm

is an isomorphism. As in the previous section,Q being defined by Eq.~1!, let us consider Eq.~2!.
It is easy to see thatQ0,tn

50, so that we assume in the followingQ05H. Considering the
coefficient ofz21, we have

Q1,tn
5@H,Qn11#1@Q1 ,Qn#1•••1@Qn ,Q1#5@H,Qn11#.

For APg, let us denote byAk andAm the k component and them component ofA respectively.
Then, sinceH belongs to the center ofk , we know

Q1,l n
k 50.

Therefore, we assumeQ1
k 50.

The Adler–Kostant–Symes theorem asserts that there exists a Hamiltonian structure su
the flows defined by~2! are mutually commuting Hamiltonian flows.3,10–12To deduce evolution
equations, let us consider Eq.~3!. Considering them component of~3!, we have

Qn,x
m 5@H,Qn11

m #1@P,Qn
k #,

whereP5Q1
m . Since adH:m→m is invertible, we know

Qn11
m 5~ad H !21$Qn,x

m 2@P,Qn
k #%. ~5!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Similarly it follows from ~3! wheren is replaced byn11 that

Qn11,x
k 5@P,Qn11

m #. ~6!

Therefore,Qn (n.1) is determined recursively by Eqs.~5! and~6!. Suppose that we can solve E
~6! in such a way that the components ofQn are differential polynomials of the components ofP.
Let us define the standard normalization as follows. Assign weightn to the components ofQn .
The weight ofcPC is 0. Let A be the algebra generated by the components ofQn andAi the
subspace ofA consisting of the elements with weighti . It is easy to see that each differentiatio
with respect totn preserve the weight, i.e.,] tn

Ai,Ai 1n . Let B be the algebra generated by th
components ofP and their derivatives with respect tox. Then, since the components ofQn for
n.1 are differential polynomials of the components ofP,] tn

define mutually commuting deriva
tions onB. This gives the hierarchy of evolution equations.

Strictly speaking, the above is stated as follows: First we note that, in cases considered
paper, the components ofP are differentiably independent inA with respect to the derivation]x .
This means that ifF(P,Px ,Pxx ,•••) is a differential polynomial of the components ofP and
F(P,Px ,Pxx ,•••)50 in A, thenF50 as polynomial. This implies thatB can be considered a
a subalgebra ofA. SetK 5Ker ]x2C. For example, the Hamiltonians of Eq.~2! belong toK .
Then it is easy to see that

BùK 50. ~7!

Therefore, we know thatA/K 5B and the derivations] tn
on B give evolution equations.

In the next section we will show that we can solveQn as a differential polynomial of the
components ofP for certain Lie algebras.

III. EVOLUTION EQUATIONS

In this section we assume in addition to the condition~4! that

~ad H !2521 on m ~8!

and there exists a matrixI such that

Ad I ~A!5 H A,
2A,

APk

APm
, ~9!

where AdI (A)5IAI 21. Main examples satisfying the conditions~4!, ~8!, and~9! are Lie algebras
corresponding to Hermitian symmetric spaces.

First we consider Grassmann type. Denoting by 1a the identity matrix of ordera, we set

I 5 i S 1a

0
0

21b
D .

Let n5a1b. Let g̃1 be the subalgebra of gl(n,C) composed of the following type matrices:

S *
0

0
* D .

Similarly let g̃2 be the subspace of gl(n,C) consisting of the following matrices:

S 0
*

*
0D .
J. Math. Phys., Vol. 38, No. 10, October 1997
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Then g̃1 and g̃2 are the eigenspaces with eigenvalue 1 and21, respectively, of AdI and the
following relations hold:

@ g̃1 ,g̃1#, g̃1 , @ g̃1 ,g̃2#, g̃2 , @ g̃2 ,g̃2#, g̃1 . ~10!

Let

H5
i

n S b1a

0
0

2a1b
D .

ThenH belongs to the center ofg̃1 and (adH)2521 on g̃2 .
The following Lie algebras are examples satisfying the conditions~4!, ~8!, and ~9!. In each

casesk andm defined by

k 5gù g̃1 , m5gù g̃2 ,

andH,I are the same defined above.
Example 1:g5sl(n,C). Notice that, sincek is not compact,g5k 1m is not Hermitian.
Example 2:g5su(n).
Moreover, in the above examples the following relations can be proved by direct calcula

and will be used in the proof of the main theorem:

IP2Pk , IP5@H,P#, and @H,P2#50 for PPm. ~11!

Next let us consider the Lie algebra associated with SO(2n)/U(n). We set

g̃15 H S A
2B

B
ADUA,BPgl~n,R!J ,

g̃25 H S A
B

B
2ADUA,BPgl~n,R!J .

The Lie algebrag̃5 g̃11 g̃2 coincides with gl(2n,R) and Eq.~10! holds. In this case we set

I 5S 0
21n

1n

0 D .

Then g̃1 and g̃2 are the eigenspace with eigenvalues 1 and21, respectively, of AdI . Set H
5 1

2I .
Example 3:g5so(2n), k 5gù g̃1 andm5gù g̃2 . It is easy to see that

k 5 H S A
2B

B
AD UtA52A tB5BJ ,

m5 H S A
B

B
2AD UtA52A, tB52BJ .

k coincides with u(n) considered as a subalgebra of gl(2n,R). By direct calculations we can
prove that Eq.~11! also holds in this case.

The final example is the Lie algebra associated with Sp(n)/U(n). Let us define subspacesg̃1

and g̃2 of gl(2n,C) by

g̃15H S A
0

0

ĀD UAPgl~n,C!J ,
J. Math. Phys., Vol. 38, No. 10, October 1997
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g̃25H S 0

2B̄
B
0 D UBPgl~n,C!J ,

whereĀ means the complex conjugate ofA. The relations of Eq.~10! also hold. Set

I 5 i S 1n

0
0

21n
D

andH5 1
2I . Then, settingg̃5 g̃11 g̃2 , we can easily prove that

I g̃g̃, g̃. ~12!

Example 4:Setg5sp(n), which is considered as a subalgebra of gl(2n,C) as follows:

g5H S A

2B̄

B

ĀD UA* 52A, tB5BJ ,

whereA* 5 tĀ. Setk 5gù g̃1 andm5gù g̃2 . k coincides with u(n) considered as a subalgeb
of gl(2n,C). We can prove that the relations of Eq.~11! also hold.

Let g be one of the Lie algebras listed in the above examples. As before, letA denote the
algebra generated by the components ofQi . First we prove that the components ofP are differ-
entiably independent inA. This is seen as follows: From Eq.~3! we have

]x
nP5~ad H !nQn111...,

where the second and below terms means those consisting of the components ofQr , r ,n11.
Denoting byPi j the (i , j )-component ofP, we know that

]x
nPi j 5ci j

n qi j
n111••• ,

whereci j
n is a constant andqi j

n11 is some component ofQn11
m . For example,ci j

n 561 or 6 i and
qi j

n115(Qn11
m ) i j in Examples 1 and 2. Then that the components ofP are differentiably indepen-

dent is an easy consequence of this fact.
Let us consider Eq.~3!. We prove
Theorem: For n.1 there exists a solutionQnPg of ~3! whose components are differenti

polynomials of the components ofP.
To prove the theorem, let us defineQn inductively as follows:

IQ25~]2P!P, ~13!

IQn115~]22P!Qn2 (
j 52

n21

QjQn112 j for n.1, ~14!

where]5]x . We will show thatQn defined above is a solution of Eq.~3!.
First we have

@H,Q2#5@H,2I ~Px2P2!#52I @H,Px2P2#52I @H,Px#52I 2Px5Px ,

where we used Eq.~11!, @H,I #50 andI 2521. This proves~3! with n51. Suppose that~3! holds
up to n. Differentiating~14! with respect tox, we have
J. Math. Phys., Vol. 38, No. 10, October 1997
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IQn11,x5~]22P!Qn,x22PxQn2 (
j 52

n21

~Qj ,xQn112 j1QjQn112 j ,x!

5~]22P!$@H,Qn11#1@P,Qn#%22PxQn

2 (
j 52

n21

$@H,Qj 11#1@P,Qj #%Qn112 j2 (
j 52

n21

Qj$@H,Qn122 j #1@P,Qn112 j #%.

Since

P@H,Qn11#5@H,PQn#2@H,P#Qn11 and P@P,Qn#5@P,PQn#,

the first term of the above equation is equal to

@H,~]22P!Qn11#12@H,P#Qn111@P,~]22P!Qn#1@Px ,Qn#.

On the other hand, we have the third term1the fourth term

52(
j 52

n

@H,QjQn122 j #1@H,Q2#Qn1Qn@H,Q2#2 (
j 52

n21

@P,QjQn112 j #.

Therefore, we have

IQn11,x5@H,IQn12#1@P,IQn11#12@H,P#Qn11

1@Px ,Qn#22PxQn1@H,Q2#Qn1Qn@H,Q2#.

The first term is equal toI @H,Qn12# and the second term is equal to

I @P,Qn11#22IPQn11 .

Since@H,Q2#5Px , we finally obtain

IQn11,x5I @H,Qn12#1I @P,Qn11#12~@H,P#2IP !Qn115I ~@H,Qn12#1@P,Qn11# !.

This proves~3! with n replaced byn11.
The fact thatQn belongs tog is not clear from Eqs.~13! and ~14!. We can prove this as

follows. First note thatQn belongs tog̃5 g̃11 g̃2 . In Example 4 this follows from Eq.~12!. Then
it follows from Eq. ~11! that Q2 is an element ofg. Suppose thatQ2 ,...,Qn are elements ofg.
Then Eqs.~5! and ~6! also hold provided thatk , m are replaced byg̃1 ,g̃2 . Therefore, the
g̃2-component ofQn11 is in m from ~5!. Sincek is a subalgebra ofg̃1 , k is defined by some
linear equationsFa50 in g̃1 . Let R denote theg̃1-component ofQn11 . Equation~6! means that
](Fa(R))50. Since the components ofQn11 are differential polynomials ofP, Eq. ~7! implies
that Fa(R)50. Therefore,R is also ink . This completes the proof of the theorem.

We will give some examples. In Example 1, let

P5S 0
r

q
0D .

Then, from Eqs.~13! and ~14!, Q2 andQ3 are given as follows:

Q25 i S qr
r x

2qx

2rq D , Q35S 2qrx1qxr
2r xx12rqr

2qxx12qrq
2rqx1r xq

D .
J. Math. Phys., Vol. 38, No. 10, October 1997
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Therefore, the evolution equation associated witht2-flow is given as follows:

qt2
5 i ~2qxx12qrq!, ~15!

r t2
5 i ~r xx22rqr !. ~16!

In Example 2,r 52q* holds. In this case Eqs.~15! and~16! reduce to the generalized nonline
Schrödinger equation whenb51.

In Example 3, let

P5S q
r

r
2qD .

Then we get

Q25S 2r x1rq2qr
qx2q22r 2

qx1r 21q2

r x2qr1rq D ,

Q3
k 5S 2qqx1qxq2rr x1r xr

2qxr 1qrx1r xq2rqx

qxr 2qrx2r xq1rqx

2qqx1qxq2rr x1r xr
D ,

Q3
m5S 2qxx12r 2q22rqr 12q312qr2

2r xx12r 312rq212q2r 22qrq
2r xx12r 312rq212q2r 22qrq
qxx22r 2q12rqr 22q322qr2 D .

Therefore, we have

qt2
52r xx12r 312rq212q2r 22qrq,

r t2
5qxx22r 2q12rqr 22q322qr2.

Remark:There exist irreducible Hermitian symmetric spaces other than the examples
cussed above. One of them is SO(21n)/SO(2)3SO(n). But in this case the formulas~13! and
~14! are not true.
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On solutions of constrained Kadomtsev–Petviashvili
equations: Grammians

Ignace Loris and Ralph Willox
Dienst Theoretische Natuurkunde, Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussel, Belgium

~Received 12 November 1996; accepted for publication 15 July 1997!

We show the existence of Grammian-type solutions for the~vector! k-constrained
Kadomtsev–Petviashvili~KP! equations. To introduce the method we give a novel
proof for the presence of Grammian solutions for the bilinearl -modified KP hier-
archies. ©1997 American Institute of Physics.@S0022-2488~97!03410-5#

I. INTRODUCTION

In a recent publication,1 the authors introduced a new approach to proving the existenc
Wronkian solutions for the bilinear~vector! k-constrained Kadomtsev–Petviashvili~KP! hierar-
chies. This particular ‘‘constraint-procedure’’2,3 was developed some years ago as a way
describing dimensional reductions of the KP hierarchy, obtained in the framework of
theory.4,5

In Sato theory,4–6 one shows that the KP hierarchy can be derived from a single ide
involving a so-called tau-functiont ~a function of infinitely many independent variables!. If we
use the variablestI and eI (l) to denotetI5(x,t2 ,t3 ,...) andeI (l)5(l21,l22/2,l23/3,...) this
identity reads

Resl@t~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50 ;tI,tI8, ~1!

wherej(tI,l)5(n51
` lntn ; the residue is taken atl5`. This relation is called the KP bilinea

identity and is equivalent to an infinite number of partial differential equations for the func
t,4–6 the simplest being

4~ttxt3
2txt t3

!23~tt2t2
2t t2

2 !2~tt4x24txt3x13t2x
2 !50 ~2!

~subscripts are used for partial derivatives!.
The main result in this paper concerns the solutions of the vectork-constrained KP hierarchy

~k positive integer!. The reduction leading to this hierarchy is performed by introducingm
auxiliary tau-functionsr i ands i , satisfying the relations

Resl@l21t~ tI2eI ~l!!r i~ tI81eI ~l!!ej~ tI2 tI8,l!#5t~ tI8!r i~ tI!, i :1,...,m, ~3!

Resl@l21s i~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#5t~ tI!s i~ tI8!, i :1,...,m, ~4!

and by imposing the condition

(
i 51

m

r i~ tI!s i~ tI8!5Resl@lkt~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!# ~5!

on the KP tau-functiont. A description of thisk-constrained KP hierarchy in terms of pseud
differential operators was given in Refs. 2, 3, and 7, whereas the bilinear description~which is
sketched above! can be found in Refs. 3 and 8.

In this paper, we shall be concerned with ‘‘Grammian-type’’ solutions:
0022-2488/97/38(10)/5190/8/$10.00
5190 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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t5det@V i j #1< i , j <N , ~6!

whereV i j is the ‘‘squared eigenfunction potential’’9 associated to solutionsw i(w j* ) of the ~ad-
joint! vacuum linear problem:

w i ,tn
5w i ,nx

w j ,tn
* 5~21!n11w j ,nx* ;n. ~7!

Such a potentialV(w,w* ) is defined by its differential~with respect toall independent variables
x,t2 ,t3 ,...):

dV~w,w* !5ww* dx1~wxw* 2wwx* !dt21••• ~8!

~see Ref. 9 for the general expression forV tn
and the proof of the exactness of this differentia!

and hence is only defined up to some arbitrary additive constant~i.e., independent ofx,t2 ,t3 ,...!.
Since]xV(w,w* )5ww* , this potential is often denoted by*xww* or ]x

21ww* ; a notation we
shall also adopt in various circumstances.

The existence of these solutions to thebilinear KP hierarchy has been explicitly shown on
in the case of the bilinear KP equation~2! itself.10 In general, they can be obtained by iteration
a binary Darboux transformation, i.e., a Darboux transformation on the KP linear problem
lowed by a Darboux transformation on the adjoint KP linear problem.11 In theorem 1 of Sec. II we
shall, however, prove by direct substitution that Grammians of this type are solutions of
l -modified’’ bilinear KP equation, expressed in terms of tau-functionst and t̃:

Resl@l l t̃~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50 ;tI,tI8 ~9!

with l :0,1,2,...@The KP hierarchy~1! can be obtained from Eq.~9! by identifying t̃ with t at l
50#. As such, these results serve to show that it is possible to discuss the existence of so
directly on the bilinear identities. We feel it is important that such a direct proof is availabl
the l -modified KP equations, even more so since this proof will serve as a basis for a desc
of Grammian solutions for the constrained KP equations.

In Ref. 1, the authors already showed the existence of certain Wronskian-type solutions
constrained KP equations. In Sec. III of this article, we shall expand these results t
Grammian-type determinants. Since thek-constrained KP hierarchy is a reduction of the K
hierarchy, one expects certain additional conditions to be satisfied by the functionsw i and w j*
contained in expression~6! for solutions of KP. Such restrictions will be the content of theorem
in Sec. III. The functionsw j* are restricted to exponentials whereas the functionsw i turn out to be
consecutivetk-derivatives ofm functions f 1 ,...,f m .

II. GRAMMIAN SOLUTIONS OF THE KP HIERARCHIES

Before introducing our method for the case of thel -modified KP hierarchy we need som
preliminary results: Equations~1! and ~9! contain the functionst and t̃ evaluated at shifted
argumentstI6eI (l), hence we shall need an expression forV i j (tI6eI (l)). A useful connection
between the functionsw(tI) ~respectively,w* (tI)! and w(tI8) ~respectively,w* (tI8)! will also be
derived.

Lemma 1:If w tn
5wnx andw tn

* 5(21)n11wnx* ;n, andV(tI)5*ww* then

V~ tI2eI ~l!!5V~ tI!1w~ tI! (
n50

`

~21!n11l2n21wnx* ~ tI!, ~10!
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



f

5192 I. Loris and R. Willox: Grammian solutions of constrained KP

                    
V~ tI1eI ~l!!5V~ tI!1w* ~ tI! (
n50

`

l2n21wnx~ tI!. ~11!

Proof: It follows from lemma 2 in Ref. 1 that

w~ tI2eI ~l!!5w~ tI!2l21wx~ tI!, ~12!

w* ~ tI2eI ~l!!5 (
n50

`

~21!nl2nwnx* ~ tI! ~13!

and henceV(tI2eI (l)) becomes

V~ tI2eI ~l!!5*w~ tI2eI ~l!!w* ~ tI2eI ~l!!

5*@~w2l21wx!Sn50
` ~21!nl2nwnx* #

5*@wSn50
` ~21!nl2nwnx* #2l21wSn50

` ~21!nl2nwnx*

1l21*@wSn50
` ~21!nl2nw~n11!x* #

5V~ tI!1wSn50
` ~21!n11l2n21wnx* ,

where we have integrated by parts on the third line. h

The second equality~11! is shown analogously. Formulas~10! and ~11! are special cases o
formulas~3.58! and ~3.59! in Ref. 12 or identical formulas found in Ref. 13.

Similar to lemma 3 in Ref. 1, we have:
Lemma 2:Under the conditionsw tn

5wnx andw tn
* 5(21)n11wnx* ;n one has that

(
m50

`

wmx~ tI8!pm~ tI2tI8!5w~ tI!, ~14!

(
n50

`

~21!nwnx* ~ tI!pn~ tI2tI8!5w* ~ tI8!, ~15!

where the Schur-polynomialspn(tI) are defined by: expj(tI,l)5(i50
` pi(tI)l

i.
In the following, we shall designate functions evaluated attI8 with a prime~e.g., f (tI8)5 f 8!.

The following lemma will be of crucial importance in the proof of theorem 1.
Lemma 3:If w tn

5wnx , w tn
* 5(21)n11wnx* ;n, andV(tI)5*ww* then

(
n50

`

(
m50

`

(
k50

`

2n2m211k50

~21!n11wnx* wmx8 pk~ tI2tI8!5V~ tI8!2V~ tI!. ~16!

Proof: Since 0<m52n211k and as]x
2n21w5(k50

` ]x
2n211kw8pk(tI2tI8), expression~16!

reduces to

]x
21w8w* 82]x

21ww* 5 (
n50

`

~21!n11~]x
nw* !S ]x

2n21w2 (
k50

n

pk~ tI2tI8!]x
2n211kw8D . ~17!

Because of]x
21ww* 5(n50

` (21)n]x
nw* ]x

2n21w ~and a corresponding relation for]x
21w8w* 8!,

expression~17! reduces to
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(
n50

`

~21!n]x
nw* 8]x

2n21w81 (
n50

`

~21!n11~]x
nw* !(

k50

n

pk~ tI2tI8!]x
2n211kw850 ~18!

or equivalently~using lemma 2!

Sn50
` ~21!nSk50

` ~21!kpk~ tI2tI8!~]x
n1kw* !]x

2n21w8

2Sn50
` ~21!n~]x

nw* !Sk50
n pk~ t2t8!]x

2n211kw850. ~19!

The above equation can readily be verified by calculating the coefficient of]x
i w8]x

j w* for arbitrary
i and j . h

We shall now prove a theorem dealing with the Grammian solutions of the bilinearl -modified
KP equations~9!. In the following we shall denote a vector (V i j ) j ~i fixed! by VI i* and the vector
(V i j ) i ~j fixed! by VI j .

Theorem 1: The bilinearl -modified KP hierarchy,

Resl@l l t̃~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2 tI8,l!#50, ~20!

has solutions

t5det@VI 1 ,...,VI N#,

t̃5det@VI 1 ,...,VI N ,wI ,wI x ,...,wI ~ l 21!x#, ~21!

with V i j 5*w iw j* for any w i( i :1,...,N1 l ) and w j* ( j :1,...,N) such thatw i ,tn
5w i ,nx and w j ,tn

* 5

(21)n11w j ,nx* ;n.
Proof: Expressingt ast5det@VI 1* ,...,VI N* # and using lemma 1, we find

t~ tI1eI ~l!!5t~ tI!1(
i 51

N

(
m50

`

l2n21~]x
nw i !uVI 1* ,...,wI * ,...,VI N* u, ~22!

in which the vectorwI * is in the i th column. Using relation~12! we also have that

t̃~ tI2eI ~l!!5S j 50
l ~2l!2 j uVI 1 ,...,VI N ,wI ,...,wI ~ l 2 j 21!xwI ~ l 2 j 11!x ,...,wI lxu

1~2l!2 lS j 51
N Sn50

` ~2l!2n21]x
nw j* uVI 1 ,...,wI ,...,VI N ,wI x ,...,wI lxu. ~23!

Using the expansion of expj(tI2tI8,l)5(k50
` pk(tI2tI8)lk, the residue~20! takes the form:

Resl@~S j 50
l ~21! jl2 j uVI 1 ,...,VI N ,wI ,...,wI ~ l 2 j 21!x,wI ~ l 2 j 11!x ,...,wI lxu

2l21S j 51
N Sn50

` ~2l!2n21~]x
nw j* !uVI 1 ,...,wI ,...,VI N ,wI lx ,wI x ,...,wI ~ l 21!xu!

3~t81S i 51
N Sm50

` l2m21~]x
mw i8!uVI 1* 8 ,...,wI * 8,...,VI N* 8u!

3Sk50
` pk~ tI2tI8!lk1 l # ~24!

or, by explicitly calculating the coefficient ofl21 in expression~24!:

S j 50
l ~21! j uVI 1 ,...,VI N ,wI ,...,wI ~ l 2 j 21!x ,wI ~ l 2 j 11!x ,...,wI lxuS i 51

N Sk50
` ~]x

l 2 j 1kw i8!

3pk~ tI2tI8!uVI 1* 8 ,...,wI * 8,...,VI N* 8u2t8S j 51
N uVI 1 ,...,wI ,...,VI N ,wI lx ,wI x ,...,wI ~ l 21!xu

3Sk50
` ~21!k11~]x

kw j* !pk~ tI2tI8!
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2S j 51
N S i 51

N (
n50

(
m50

`

(
k50

`

2n2m211k50

~21!n11w j ,nx* w i ,mx8 pk~ tI2tI8!

3uVI 1 ,...,wI ,...,VI N ,wI lx ,wI x ,...,wI ~ l 21!xuuVI 1* 8 ,...,wI * 8,...,VI N* 8u. ~25!

Using lemmas 2 and 3, this reduces to

S j 50
l ~21! j uVI 1 ,...,VI N ,wI ,...,wI ~ l 2 j 21!x ,wI ~ l 2 j 11!x ,...,wI lxuS i 51

N w i ,~ l 2 j !xuVI 1* 8 ,...,wI * 8,...,VI N* 8u

1t8S j 51
N w j* 8uVI 1 ,...,wI ,...,VI N ,wI lx ,wI x ,...,wI ~ l 21!xu

2S i 51
N S j 51

N ~V i j8 2V i j !uV1* 8 ,...,wI * 8,...,VN* 8uuV1 ,...,wI ,...,VI N ,wI lx ,wI x ,...,wI ~ l 21!xu, ~26!

which can be rewritten as

S i 51
N uVI 1* 8 ,...,wI * 8,...,VI N* 8u~S j 51

N V i j uVI 1 ,...,wI ,...,VI N ,wI lx ,wI x ,...,wI ~ l 21!xu

1S j 50
l wI i ,~ l 2 j !x~21! j uVI 1 ,...,VI N ,wII ,...,wI ~ l 2 j 21!x ,wI ~ l 2 j 11!x ,...,wI lxu)

1S j 51
N uVI 1 ,...,wI ,...,VI N ,wI lx ,wI ,wI x ,...,wI ~ l 21!xu~t8w j* 8

2S i 51
N V i j8 uVI 1* 8 ,...,wI * 8,...,VI N* 8u!. ~27!

One easily sees that each group of terms enclosed in round brackets in expression~27! equals zero;
the first bracket in expression~27! is the expansion~along the last row! of the determinant
( i :1,...,N)

U VI 1 ,V2 ,...,VI N ,wI ,wI x ,...,wI ~ l 21!x ,wI lx

V i1 ,V i2 ,...,V iN ,w i ,w i ,x ,...,w i ~ l 21!x ,w i ,lx
U. ~28!

This determinant~28! is trivially zero as it contains two identical rows. The second bracket
expression~27! ( j :1,...,N),

w j* 8uVI 1* 8 ,...,VI N* 8u2(
i 51

N

V i j8 uVI 1* 8 ,...,wI * 8,...,VI N* 8u, ~29!

similarly equals

UVI 1* 8 VI 2*
9 ••• VI N* 8 wI * 8

V1 j* 8 V2 j* 8 ••• VN j* 8 w j* 8
U ~30!

and again this determinant is trivially zero. Hence we have shown that the residue~20! is equal to
zero for functions (t,t̃) of expression~21!. h

III. SOLUTIONS TO THE CONSTRAINED KP HIERARCHIES

We are now in a position to prove the existence of a class of Grammian solutions t
constrained KP equations. As the verifications of the bilinear identities~3!, ~4!, and ~5! involve
very similar calculations, we shall only give an explicit treatment for the case of Eq.~5!.

In contrast to the KP case, it will turn out that thew j* need to be restricted to~pure! expo-
nentialsw j* 5expjj* ~with j j* 5(n51

` (21)n11l j
ntn) and that no additive integration constants a

allowed in the definition of theV i j ’s @when w j* is purely exponential, one can prove12,13 that
V(w i ,w j* )5l j

21w j* w i(tI1eI (2l j ))1Ci j , for which this special choiceCi j 50 can be unambigu-
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ously defined#. Throughout the remaining part of this section i.e., in lemma 4 and subsequen
theorem 2, we shall refer to this definition of the constants and suppose thatCi j 50.

The following lemma will simplify the calculations considerably.
Lemma 4:If w tn

5wnx ;n, w* 5expj* ~with j* 5(n51
` (21)n11lntn! then

(
n50

`

(
m50

`

(
l 50

`

2n2m211 l 1k50

~21!n11wnx* wmx8 pl~ tI2tI8!52V~w tk
,w* !2V~w8,w tk

* 8!. ~31!

Proof: This lemma is proven in the same way as relation~16! of lemma 3. h

Theorem 2: The equations~1!, ~3!, ~4!, and ~5!, i.e., thek-constrained KP hierarchy, hav
solutions

t5det@V i j #1< i , j <N ~32!

with V i j 5*w iw j* ~in constrast to the KP case, no additive constants are allowed in the defin
of V i j ; cf. the remarks in the introductory paragraphs of this section!,

wI 5~ f 1 , f 1,tk
,...,f 1,N1tk

, f 2 , f 2,tk
,...,f 2,N2tk

,...,f m ,...,f m,Nmtk
!,

w j* 5exp j j* ~j j* 5Sn51
` ~21!n11l j

ntn!,

where them functionsf i( i :1,...,m) are required to satisfyf i ,tn
5 f i ,nx ;n; furthermore (i :1,...,m):

s i5det@VI 1* ,...,wI * ,...,VI N* #,

i.e., t with columns(5N11N21•••1Ni1 i ) replaced bywI * .

r i5detF VI 1 , ..., VI N , wI
V~w ,tk

,w1* !,...,V~ws,tk
,wN* !,ws,tk

G ~33!

with s5N11N21•••1Ni1 i .
Proof: The proof consists of a direct calculation of the right-hand side of Eq.~5!:

Resl@lkt~ tI2eI ~l!!t~ tI81eI ~l!!ej~ tI2tI8,l!# ~34!

equals~by performing the same manipulations as in the proof of theorem 1!

t~ tI!S i 51
N S l 50

` ~]x
l 1kw i8!pl~ tI2tI8!uVI 1* 8 ,...,w* 8,...,VN* 8u

1t~ tI8!S j 51
N uVI 1 ,...,wI ,...,VI NuS l 50

` ~21! l 111k~]x
l 1kw j* !pl~ tI2tI8!

1S j 51
N S i 51

N (
n50

`

(
m50

`

(
l 50

`

2n2m211 l 1k50

~21!n11w j ,nx* w i ,mx8 pl~ tI2tI8!

3uVI 1 ,...,wI ,...,VI NuuVI 1* 8 ,...,wI * 8,...,VI N* 8u. ~35!

Using lemmas 2 and 4, expression~35! may be cast into the form
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t~ tI!S i 51
N w i ,tk

uVI 1* 8 ,...,wI * 8,...,VI N* 8u1t~ tI8!S j 51
N w j ,tk

* 8 uVI 1 ,...,wI ,...,VI Nu

1S i 51
N S j 51

N ~2V~w i ,tk
,w j* !2V~w i8 ,w j ,tk

* 8 !!

3uVI 1* 8 ,...,wI * 8,...,VI N* 8uuVI 1 ,...,wI ,...,VI Nu ~36!

or ~after rearranging the terms!

S i 51
N uVI 1* 8 ,...,wI * 8,...,VI N* 8u~w i ,tk

t~ tI!2S j 51
N V~w i ,tk

,w j* !uVI 1 ,...,wI ,...,VI Nu!

1S j 51
N uVI 1 ,...,wI ,...,VI Nu~w j ,tk

* 8 t~ tI8!2S i 51
N V~w i8 ,w j ,tk

* 8 !uVI 1* 8 ,...,wI * 8,...,VN* 8u!.

~37!

If one does not allow for the presence of additive constants in the definition of the potentialsV i j ,
it is clear asw j ,tk

* 5(21)k11l j
kw j* , that the second round bracket in formula~37! equals

~21!k11l j
kUVI 1* 8 VI 2* 8 ••• VI N* 8 wI * 8

V1 j* 8 V2 j* 8 ••• VN j* 8 w j* 8
U. ~38!

Since the determinant~38! contains two identical rows, there is no contribution from this brac
in expression~37!. The first round bracket in~37! on the other hand, is the expansion along the
row of the determinant:

U VI 1 , VI 2 ,..., VI N , wI
V~w i ,tk

,w1* !,V~w i ,tk
,w2* !,...,V~w i ,tk

,wN* !,w i ,tk
U. ~39!

SincewI 5( f 1 , f 1,tk
,...,f 1,N1tk

, f 2 , f 2,tk
,...,f 2,N2tk

,...,f m,Nmtk
), expression~39! reduces to zero excep

in m instances (i 5N111,N11N212,...) yielding ther i . Hence expression~37! reduces to

(
i 51

m

r i~ tI!s i~ tI8!, ~40!

by virtue of the expressions~33! for r i ands i . This concludes the proof of relation~5!. Similar
proofs can be given for relations~3! and ~4!. h

IV. CONCLUSIONS

In this paper, we have discussed solutions of the KP and constrained KP hierarchies by
of their bilinear formulations.

First, we have shown the existence of Grammian solutions by direct substitution in the
ear l -modified KP hierachies. We believe such a derivation to be interesting in its own r
although the existence of these solutions has already been established in the past~at least in the
casesl 50,1!.11 One can remark that the solutions ofl -modified KP can be slightly generalized b
interchanging thew andw* @as well as the role oft and t̃ in identity ~9!#.

In Sec. III we dealt with new solutions for the constrained KP hierarchies. These solu
arise as Grammian determinants for the~unconstrained! KP hierarchy where the functionsw i and
w j* appearing in the potentialV i j have to be restricted to consecutivetk derivatives~in the case of
the w i! or exponentials~in the case of thew j* !. The degree to which these solutions present
most general Grammian determinant of constrained KP remains an open problem.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Initial value problem of the linearized Benjamin–Ono
equation and its applications

Y. Matsunoa) and D. J. Kaup
Institute for Nonlinear Studies and Department of Mathematics and Computer Science,
Clarkson University, Potsdam, New York 13699-5815
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We consider the initial value problem of the Benjamin–Ono~BO! equation linear-
ized about theN-soliton solution. By establishing the completeness relation for the
eigenfunctions of the linearized BO equation, we construct the explicit solution to
this problem. As an application of the above result, we investigate the linear sta-
bility of the N-soliton solution. We show that the wave under consideration is
stable against infinitesimal perturbations. Thus we have a direct multisoliton per-
turbation theory for the BO equation without recourse to the inverse scattering
transform. In particular, we can handle the first-order solution beyond the adiabatic
approximation. The completeness relation established here enables us to give a
general scheme for evaluating the first-order correction to the leading-order
N-soliton solution. We also demonstrate that the first-order solution satisfies an
infinite set of conservation laws modified by the perturbations. Finally, in the one-
soliton case, we perform explicit calculations of the first-order corrections for two
different dissipative perturbations that arise in real physical systems and analyze
their large time asymptotics. ©1997 American Institute of Physics.
@S0022-2488~97!00310-1#

I. INTRODUCTION

The Benjamin–Ono~BO! equation is a generic model for the study of weakly nonlinear lo
waves incorporating the lowest-order effects of nonlinearity and nonlocal dispersion. In the
text of water waves, the BO equation describes the unidirectional propagation of internal wa
stratified fluids of great depth,1–3 as well as long waves in a stratified shear flow.4,5 It also models
the long interfacial waves in a two-layer fluid system in which the depth of one layer is infin
deep.6,7

The BO equation may be written in the coordinate system moving with the phase veloc
the linear long wave as

ut12uux1Huxx50, u5u~x,t !, ~1.1a!

whereH is the Hilbert transform operator defined by

Hu~x,t !5
1

p
PE

2`

` u~y,t !

y2x
dy. ~1.1b!

Here, the subscriptst and x appended tou denote partial differentiation and the symbolP
indicates the principal value of the integral. In spite of the nonlocal nature of the dispe
represented by the Hilbert transform, the BO equation shares many properties common
completely integrable PDEs, such as the KdV and nonlinear Schro¨dinger equations. A large
number of works have been devoted to the study of the BO equation. See Ref. 8 for recent

a!Permanent address: Department of Applied Science, Faculty of Engineering, Yamaguchi University, Ube 755
Electronic mail: matsuno@po.cc.yamaguchi-u.ac.jp
0022-2488/97/38(10)/5198/27/$10.00
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Quite recently,9 we solved the initial value problem of the BO equation linearized about
N-soliton solution to investigate the stability characteristics of theN-soliton solution. In the
process of the analysis, the completeness relation was obtained and played an essential rol
states that the eigenfunctions of the linearized BO equation constitute a complete set.

The purpose of this paper is two-fold: In the first part, we provide the full description o
completeness relation obtained in Ref. 9. In striking contrast to the existing proofs of the
pleteness relation for the Zakharov–Shabat eigenvalue problem,10–12our proof will be based on a
purely algebraic procedure, without recourse to the knowledge of the inverse scattering tra
~IST! method. The completeness relation established here enables us to construct the
solution to the Cauchy problem for the linearized BO equation. As an application of this resu
investigate the linear stability of theN-soliton solution of the BO equation and show that the wa
under consideration is stable against infinitesimal perturbations.

In the second part of this paper, we use the completeness relation to construct a
multisoliton perturbation theory for the BO equation. We note that the corresponding perturb
theory has been established, but only within a framework of the adiabatic approximation13 in
which the contribution of the continuous spectra to the deformation of the soliton profile
neglected. Here we derive the time evolution equations of the soliton parameters by employ
method of multiple scales. In the initial stage of the time evolution of each soliton, this app
mation is valid as long as the perturbation remains small. However, the effects of the pertur
are accumulated with time and they will lead eventually to the formation of a tail. Our m
attention here is the first-order correction to solitons. With the use of the completeness rela
is now possible to extend the perturbation analysis developed in Ref. 13 beyond the lowes
adiabatic approximation.

In Sec. II, we briefly summarize the properties of theN-soliton solution of the BO equation
and derive some new algebraic relations related to theN-soliton solution. Then, we construc
particular solutions to the linearized BO equation and its adjoint equation. These solutions a
analogs of the squared eigenfunctions in the one-dimensional Schro¨dinger equation. In Sec. III, we
obtain the completeness relation for the eigenfunctions. Using this result, we construct the e
solution to the Cauchy problem for the linearized BO equation. Subsequently, we analy
linear stability of theN-soliton solution. In Sec. IV, we use the completeness relation to dev
a direct multisoliton perturbation theory for the BO equation. In particular, we give the analy
expression of the first-order correction to the leading-orderN-soliton solution. We also show tha
this correction term satisfies an infinite set of conservation laws modified by the perturba
While the results presented here are applicable to the generalN-soliton problem, we perform
explicit calculations for the two different types of dissipative perturbations in the one-soliton
both of which arise in real physical systems. The time evolution of the soliton paramet
obtained explicitly and the large time asymptotic solution of the correction term is investig
Section V is devoted to the conclusion. In Appendix A, some bilinear identities are proved th
closely related to theN-soliton solution. In Appendix B, an important algebraic relation is deriv
from a system of linear algebraic equations that is used in Sec. III in the process of provin
completeness relation.

II. SOLUTIONS TO THE LINEARIZED BO EQUATION

A. Linearized BO equation and its adjoint equation

The form of Eq.~1.1! linearized about theN-soliton solution may be written as follows:

qt12~uq!x1Hqxx50. ~2.1!

Introducing the new variablec by q5cx , we further transform~2.1! into the form

c t12ucx1Hcxx50. ~2.2!
J. Math. Phys., Vol. 38, No. 10, October 1997
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In the following analysis, we are mainly concerned with Eq.~2.2! and its adjoint equation, which
is given by

c̃ t12~uc̃ !x1Hc̃xx50. ~2.3!

We point out that ifc is a solution of~2.2!, then itsx derivativec̃[cx also satisfies~2.3! under
appropriate boundary conditions. This property of the solution will be used later in constru
the solutions of~2.3!.

Here, we seek particular solutions of~2.2! under the following two classes of the bounda
conditions:~i! c6;e6 i (lr 1l2t), uxu→`; ~ii ! c→0, uxu→`, wherel is a positive spectral pa
rameter. The solutions subjected to the boundary conditions~i! and ~ii ! correspond to the eigen
functions for the continuous and discrete spectra, respectively. In order to construct thes
tions, one must invoke the properties of theN-soliton solution, which we shall now briefly
describe below.

B. Properties of the N-soliton solution

The N-soliton solution of the BO equation~1.1! can be expressed as follows:14,15

u5 i
]

]x
ln

f * ~x,t !

f ~x,t !
, f ~x,t !5)

j 51

N

@x2xj~ t !#, Im xj~ t !.0, ~2.4!

where xj are complex functions oft whose imaginary parts are all positive and the aste
superscript denotes the complex conjugate. The complex polynomialf (x,t) has a simple structure
in the form of a determinant:f 5detM, whereM is anN3N matrix, whose elements are given b

M5~mjk!, mjk5u j2
i

aj
~ j 5k!, mjk52

2i

aj2ak
~ j Þk!. ~2.5!

Here, v j5x2aj t2j j 0 , aj and j j 0 are the amplitude and initial position of thej th soliton,
respectively. It is assumed thataj.0 andajÞak for j Þk. It should be remarked that for larg
time, u can be represented by a superposition ofN algebraic solitons as14

u~x,t→6`!;(
j 51

N
2aj

~aju j !
211

. ~2.6!

This expression shows that the BO algebraic solitons exhibit no phase shift after any co
between them.

While theN-soliton solution~2.4! with ~2.5! has been obtained by solving the bilinear form
the BO equation,14,15 it can also be derived from a system of linear algebraic equations.16 To
demonstrate this, letv j and v j

† be the solutions of the following system of linear algebra
equations:

(
k51

N

mjkvk52 i , ~2.7a!

(
k51

N

mk j* vk
†52 i ~ j 51,2,...,N!, ~2.7b!
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where mjk is the (j ,k) element of the matrixM defined by~2.5!. The v j (v j
†) is an analytic

function in the lower~upper! half-complexx plane, respectively. Using the property~2.5! of mjk ,
one can then show that

(
j 51

N

v j52 i
]

]x
ln f , ~2.8a!

(
j 51

N

v j
†52 i

]

]x
ln f * . ~2.8b!

Combining~2.4! and ~2.8! yields the expression ofu in terms ofv j andv j
† as

u5(
j 51

N

~v j2v j
†!. ~2.9!

Furthermore,v j andv j
† are found to satisfy the following linear PDEs:

iv j ,x
† 1aj~v j2v j

†!/21uv j
†50 ~ j 51,2,...,N!, ~2.10!

v j ,t
† 1ajv j ,x

† 2 iv j ,xx
† 2~u2 iHu !xv j

†50 ~ j 51,2,...,N!. ~2.11!

For later use, we now introduce the functionsc j that are constructed from the system of line
algebraic equations,

S u j2
i

aj
Dc j1 (

k51
~kÞ j !

N
2i

aj2ak
ck51 ~ j 51,2,...,N!. ~2.12!

We note that the coefficient matrix of this linear system is the transposed matrix ofM , so that its
determinant is equal to detM (5 f ). By comparing~2.7b! with the complex conjugate expressio
of ~2.12!, one can see that

v j
†52 ic j* . ~2.13!

Substituting~2.13! into ~2.11! and taking the complex conjugate, we obtain the time evolution
c j as

c j ,t1ajc j ,x1 ic j ,xx2~u1 iHu !xc j50 ~ j 51,2,...,N!. ~2.14!

This time evolution equation will play an important role in constructing the solutionsc6.
Remark 2.1:The equations~2.10! have been verified in Ref. 16. To prove~2.11!, let Qj be the

left-hand side of~2.11! and consider the quantitiesPj[(k51
N mk j* Qk ( j 51,2,...,N). If we use the

explicit form ~2.7b! of mk j* , we can derive the relations

(
k51

N

mk j* vk,t
† 5ajv j

† , ~2.15a!

(
k51

N

mk j* vk,x
† 52v j

† , ~2.15b!
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(
k51

N

mk j* vk,xx
† 522v j ,x

† , ~2.15c!

(
k51

N

mk j* akvk,x
† 52ajv j

†12i (
k51

~kÞ j !

N

vk,x
† . ~2.15d!

Substituting~2.15! into the expression ofPj , one finds thatPj52i ( j 51
N v j ,x

† 1 i (u2 iHu)x . How-
ever, this expression becomes zero identically by virtue of~2.8b! and the relation (u2 iHu)x

52i (ln f* )xx, which is derived from~2.4!. Therefore, we have a system ofN linear algebraic
equationsPj50 for N unknownsQj ( j 51,2,...,N). Since the determinant of the matrixM* does
not vanish for realx and t as seen from~2.4! and ~2.5!, the inverse matrix ofM* exists. Owing
to this fact, we finally arrive at the relationsQj[0 ( j 51,2,...,N).

C. Construction of solutions

1. Solutions c6 and c̃6

We look for particular solutions of Eq.~2.2!. First, we derive the solutionc1 that satisfies the
boundary conditionc1;ei (lx1l2t),uxu→`. For this purpose, we introduce the functionh defined
by the relation

h

f
5(

j 51

N
c j

l1aj /2
. ~2.16!

If we multiply ~2.14! by (l1aj /2)21, sum with respect to j and use the relations
( j 51

N c j ,x5(ln f )xx, (u1 iHu)x522i (ln f )xx, which are obtained with use of~2.4!, ~2.8b!, and
~2.13!, we can transform~2.14! into the following bilinear equation forh and f :

i D th• f 22il Dxh• f 2Dx
2h• f 1 i D x

2f • f 50, ~2.17!

where the bilinear operatorsDt andDx are defined by17

Dt
mDx

nh• f 5S ]

]t8
2

]

]t D
mS ]

]x8
2

]

]xD n

h~x8,t8! f ~x,t !u t85t
x85x

, ~2.18!

for non-negative integersm andn.
Now, we shall show that the solutionc1 can be expressed in the form

c15ei ~lx1l2t !
f 1 ih

f *
. ~2.19!

The above function is analytic in the upper half-complexx plane, as easily confirmed by~2.4! and
~2.16!, which immediately leads to the important relationHc15 ic1. With this fact in mind, we
substitute~2.4! and ~2.19! into ~2.2!. We then find that the resulting equation coincides with
bilinear equation~2.17!, implying that~2.19! is a solution of~2.2!. By the same way, we obtain th
solutionc2 in the form

c25~c1!* , ~2.20!

which represents an analytic function in the lower half-complexx plane. If we put
c5c11c2, this gives a real solution of Eq.~2.2!.
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The solutions of Eq.~2.3! that represent the eigenstates adjoint to~2.19! and~2.20! are simply
expressed in the form

c̃152
i

l

]c1

]x
, ~2.21a!

c̃25
i

l

]c2

]x
, ~2.21b!

where the factors6 i /l are simply normalization constants, but these are indeed important fa
in establishing the completeness relation. The asymptotic forms ofc6 for large time are easily
found from ~2.4!, ~2.12!, ~2.16!, ~2.19!, and~2.20!. They read as

c6;e6 i ~lx1l2t !F11 i (
j 51

N
1

~l1aj /2!~u j7 i /aj !
G)

k51

N
uk7 i /ak

uk6 i /ak
~ t→6`!, ~2.22!

where the sign is ordered vertically. These expression can be thought of as a superpos
single eigenstates found in Ref. 18. It follows from these asymptotics that the wave functionc6

are seen to exhibit no phase shift. It is interesting to observe thatc6 have poles located at th
same locations as theN-soliton solution.

Remark 2.2:The functionsc6 and c̃6 exhibit the following limiting values atl50:

c651, l50, ~2.23!

c̃65O~1!, l→0. ~2.24!

To show~2.23!, we introduce the functionw by the relation

w5(
j 51

N
c j

aj
. ~2.25!

From ~2.9!, ~2.10!, and~2.13!, we find thatw satisfies the ODE of the form

wx1 iuw1
u

2
50. ~2.26!

Using ~2.4!, this equation is easily integrated under the boundary conditionw→0 asuxu→`. The
result is

w52
i

2 S f *

f
21D . ~2.27!

It now follows from ~2.16!, ~2.19!, ~2.25!, and~2.27! that

c1ul505
f

f *
~112iw !51. ~2.28!

By taking the complex conjugate of~2.28! and using ~2.20!, one obtainsc2ul5051. To
derive ~2.24!, we note that c6 are analytic at l50, allowing us to expandc6 as
c6511cl

6ul50l1O(l2). Substituting this expression into the definitions~2.21! of c̃6, the
relations~2.24! follow immediately.
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Remark 2.3:The x derivative ofc1(c2) vanishes at the pole positionsx5xj (x5xj* ) of the
N-soliton solution, i.e.,

]c1

]x U
x5xj

50, ~2.29a!

]c2

]x U
x5x

j*
50 ~ j 51,2,...,N!. ~2.29b!

To derive these relations, we first note from~2.4! thatu can be represented by a pole expansion
the form

u52 i (
j 51

N S 1

x2xj
2

1

x2xj*
D . ~2.30!

If we multiply Eq. ~2.2! for c1 by x2xj , take the limitx→xj , and use~2.30! as well as the
analyticity of c1 in Im x.0, which implies thatc t

1 andcxx
1 take finite values atx5xj , we can

obtain ~2.29a!. The relations~2.29b! follow by the same way or simply by taking the comple
conjugate of ~2.29a!. In the one-soliton case, one can easily confirm~2.29! by a direct
calculation.18

Remark 2.4:If we put l50 in ~2.16! and use~2.25! and ~2.27!, we obtainhul5052 i ( f *
2 f ). Substituting this expression into Eq.~2.17! with l50, it reduces to the bilinear form of th
BO equation,14 i D t f * • f 5Dr

2f * • f .

2. Solutions g j and g̃ j

Next, we seek solutions of Eq.~2.2! subjected to the boundary conditionc→0, uxu→`.
These solutions have already been obtained in the study of the multisoliton perturbation the
the BO equation.13 In fact, the 2N independent solutions satisfying the above boundary condi
are simply expressed in the form

gj5E
2`

x ]u

]aj
dx, ~2.31a!

gj 1N5E
2`

x ]u

]j j 0
dx ~ j 51,2,...,N!, ~2.31b!

where theN-soliton solutionu is parametrized by theN amplitude parameters and theN phase
parameters asu5u(x,t;a1 ,a2 ,...,aN ,j10,j20,...,jN0). Hence,gj andgj 1N are easily calculated
using ~2.4! and ~2.5!. In establishing the completeness relation, however, it is crucial to rew
~2.31! in terms ofc j andc j* as9

gj52~u j2aj t !
c jc j*

aj
2 14i (

k51
~kÞ j !

N c jck* 2c j* ck

~aj2ak!
2aj

~ j 51,2,...,N!. ~2.32!

gj 1N522
c jc j*

aj
~ j 51,2,...,N!. ~2.33!

The proof of ~2.32! and ~2.33! is given in Appendix A. By means of direct calculations usi
~2.10!, ~2.12!, ~2.13!, and ~2.14!, we can confirm that the right-hand sides of~2.32! and ~2.33!
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satisfy Eq.~2.2!. Since theN-soliton solutionu can be regarded as a function ofu j5x2aj t
2 j j 0( j 5 1,2,...,N) @see~2.4! and~2.5!#, one can replace the expression2( j 51

N ]/]j j 0 by thex
derivative. If we sum~2.31b! with j and make this manipulation, we obtain from~2.33! an
important expression ofu in terms ofc j andc j* as

u52(
j 51

N c jc j*

aj
. ~2.34!

This formula explicitly shows that theN-soliton solution is positive definite for allx and t. The
functionsc jc j* are the analogs of the squared eigenfunctions in the eigenvalue problem
one-dimensional Schro¨dinger equation.10–12

The solutions of Eq.~2.3! that are the eigenstates adjoint to the solutions~2.31! are now
simply written in the form

g̃ j52
]gj

]x
52

]u

]aj
, ~2.35a!

g̃ j 1N52
]gj 1N

]x
52

]u

]j j 0
~ j 51,2,...,N!. ~2.35b!

The asymptotic forms ofgj andgj 1N for large time with fixedu j are derived with use of~2.6! and
~2.31!. These are represented by

gj;
2~u j2aj t !

~aju j !
211

~ t→6`!, ~2.36!

gj 1N;2
2aj

~aju j !
211

~ t→6`!. ~2.37!

If we compare~2.6! with ~2.37!, we can observe that in this asymptotic region,2gj 1N represents
the j th component of theN-soliton solution. We also remark thatgj has a component proportiona
to tgj 1N . If we fix u j and take the limitt→`, this term yields a secularity that Chen and Ka
referred to as the secular instability in their linear stability analysis of the BO solitary wave.18 This
term stems from an infinitesimal shift of the soliton velocityaj , as seen from~2.6! and ~2.31a!.
We note that it can be eliminated by an infinitesimal shift of the phasej j 0 of the soliton.

D. Orthogonality relations

In order to prove the linear independence of the solutions obtained in Sec. II C, one
establish the orthogonality relations between them. For this purpose, we define the inner p

^f~x,t,l8!uc~x,t,l!&5E
2`

`

f~x,t,l8!c~x,t,l!dx. ~2.38!

We can prove, by using~2.2! and ~2.3!, that the inner product,̂c̃uc&, is independent oft, i.e.,
]^c̃uc&/]t50. This enables us to evaluate the integral~2.38! in the limit of infinite time by
employing the asymptotics~2.22!, ~2.36!, and~2.37!, thus reducing the integral essentially to th
one-soliton problem. The procedure of the calculation has been given in Appendix A of Re
Hence, we quote only the final results as follows:

^g̃ j 1N~x,t !ugk~x,t !&52^g̃ j~x,t !ugk1N~x,t !&52pd jk ~ j ,k51,2,...,N!, ~2.39!
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^g̃ j~x,t !ugk~x,t !&5^g̃ j 1N~x,t !ugk1N~x,t !&50 ~ j ,k51,2,...,N!, ~2.40!

^c̃1~x,t,l8!uc2~x,t,l!&5^c̃2~x,t,l8!uc1~x,t,l!&52pd~l82l!, ~2.41!

^c̃1~x,t,l8!uc1~x,t,l!&5^c̃2~x,t,l8!uc2~x,t,l!&50, ~2.42!

^c̃6~x,t,l!ugj~x,t !&5^c̃6~x,t,l!ugj 1N~x,t !&50 ~ j 51,2,...,N!. ~2.43!

Here,d jk is Kronecker’s delta andd(l82l) is Dirac’s delta function.

III. COMPLETENESS RELATION AND RELATED PROBLEMS

A. Proof of the completeness relation

Here, we shall prove that the solutions of the linearized BO and its adjoint equations,
structed in Sec. II, constitute a complete set. The completeness relation may be written
form9

E
0

`

@c̃1~x,t,l!c2~y,t,l!1c̃2~x,t,l!c1~y,t,l!#dl1(
j 51

N

@ g̃ j 1N~x,t !gj~y,t !

2g̃ j~x,t !gj 1N~y,t !#52pd~x2y!. ~3.1!

In the following analysis, the time variablet is omitted to simplify the notation. To begin with, w
calculate the quantity

I[E
01

`

c̃1~x,l!c2~y,l!dl. ~3.2!

To this end, we use the following algebraic relation, which is derived with the use of~2.12!:

(
j ,k51

N c j~x!ck* ~y!

~l1aj /2!~l1ak/2!
52 i (

j 51

N
c j~x!

l1aj /2
1 i (

j 51

N c j* ~y!

l1aj /2
2 i ~x2y!

3(
j 51

N c j~x!c j* ~y!

l1aj /2
22l(

j 51

N c j~x!c j* ~y!

aj~l1aj /2!2 . ~3.3!

Now, we substitute~2.20!, ~2.21a!, ~2.16!, and~2.19! into ~3.2! and then use~3.3!. There appear
three different terms in the integrand. The term containing the factor (l1aj /2)22 is integrated by
parts. The resulting expression is written as

I 52 i
]

]x F f ~x! f * ~y!

f * ~x! f ~y! H S 122i ~x2y!(
j 51

N c j~x!c j* ~y!

aj
D

3E
01

` eil~x2y!

l
dl24(

j 51

N c j~x!c j* ~y!

aj
2 J G . ~3.4!

To simplify ~3.4! further, we note the following relation:

4w~x!w* ~y!522iw~x!12iw* ~y!22i ~x2y!(
j 51

N c j~x!c j* ~y!

aj
. ~3.5!
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This readily follows from~3.3! upon puttingl50 and rewriting the resulting expression in term
of w, defined by~2.25!. If we introduce~2.27! into ~3.5!, we obtain a very important relation
which is

122i ~x2y!(
j 51

N c j~x!c j* ~y!

aj
5

f * ~x!

f ~x!

f ~y!

f * ~y!
. ~3.6!

By substituting~3.6! into ~3.4!, one obtains

I 52 i
]

]x F E
01

` eil~x2y!

l
dl24

f ~x! f * ~y!

f * ~x! f ~y! (
j 51

N c j~x!c j* ~y!

aj
2 G . ~3.7!

It follows from ~3.7! and its complex conjugate expression that the completeness relation~3.1! can
be recast, after integrating once with respect tox, into the following form:

2i F f ~x! f * ~y!

f * ~x! f ~y! (
j 51

N c j~x!c j* ~y!

aj
2 2~x↔y!G52(

j 51

N

@gj 1N~x!gj~y!2~x↔y!#, ~3.8!

where the notation (x↔y) indicates the interchange of the variablesx and y in the preceding
expression. Now, it is possible to show from~2.12! that

4~x2y! (
j ,k51

N Fc j~x!c j* ~y!

aj
2

ck* ~x!ck~y!

ak
1~x↔y!G

54~x2y!(
j 51

N c j~x!c j* ~x!c j~y!c j* ~y!

aj
3

28i (
j ,k51
~ j Þk!

N
1

ak
2~ak2aj !

2 @ck~x!ck* ~x!$ck~y!c j* ~y!2ck* ~y!c j~y!%2~x↔y!#

12i (
j 51

N
1

aj
2 @c j~x!c j* ~y!2~x↔y!#. ~3.9!

See Appendix B for a proof. Introducing~2.32! and ~2.33! onto the right-hand side of~3.8! and
using ~3.6! and ~3.9!, one can confirm that the resulting expression coincides with the left-h
side of ~3.8!. This completes the proof of~3.1!.

Remark 3.1:If we divide ~3.6! by y2x, take the limity→x, and use~2.4!, we can reproduce
~2.34!.

Remark 3.2:One can show, with the use of~2.4! and~2.31!, that the relation~3.8! is verified,
provided that the following set of algebraic relations holds:

(
j 51

N F] f ~x!

]j j 0

] f ~y!

]aj
2

] f ~x!

]aj

] f ~y!

]j j 0
G50, ~3.10!

(
j 51

N c j~x!c j* ~y!

aj
2 5

i

2

1

f ~x! f * ~y! (
j 51

N F] f * ~x!

]j j 0

] f ~y!

]aj
2

] f * ~x!

]aj

] f ~y!

]j j 0
G . ~3.11!

These are the purely algebraic identities among theN-soliton solutions. In fact, one can easi
check these identities for the first fewN’s. However, a proof for generalN is still not available.
This is an interesting open mathematical problem.
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B. Initial value problem of the linearized BO equation

In view of the completeness relation, it is now possible to solve the initial value problem~or
the so-called Cauchy problem! of the linearized BO equation~2.2!. Actually, let c(x,0) be the
initial value of c. Then, the temporal evolution ofc(x,t) is readily found from~3.1! as follows:

c~x,t !5E
0

`

@ĉ2~l!c1~x,t,l!1ĉ1~l!c2~x,t,l!#dl1(
j 51

N

@ĉ j 1Ngj~x,t !2ĉ jgj 1N~x,t !#.

~3.12!

Here, the expansion coefficients are determined uniquely from the initial value by

ĉ6~l!5
1

2p
^c̃6~x,0,l!uc~x,0!&, ~3.13!

ĉ j 1N5
1

2p
^g̃ j 1N~x,0!uc~x,0!&, ~3.14!

ĉ j5
1

2p
^g̃ j~x,0!uc~x,0!&. ~3.15!

The solution of the Cauchy problem for Eq.~2.1! is then obtained from the relationq5cx .

C. Linear stability of the N-soliton solution

In order to investigate the stability characteristics of theN-soliton solution, we analyze the
behavior of~3.12! for large time. We first consider the continuous spectrum, which is represe
by the integral. An important point is that the integrand contains no singularities with resp
the spectral parameter. In particular,ĉ6(l) takes on finite values atl50, by virtue of ~2.24!.
Applying the standard method of the stationary phase, one can see that the continuous sp
develops into an oscillating wave train whose amplitude decays liket21/2, so that its temporal
behavior is stable. To analyze the behavior of the bound states, we observe the wave pro
coordinate system moving with thej th soliton, namely with fixedu j . Then due to~2.36!, the
bound stategj 1N is stable while the bound stategj , whose asymptotic form is given by~2.37!,
develops a secular term proportional tot. We note that the same phenomenon occurred in
linear stability analysis of the one-soliton solution of the BO equation.18 As already mentioned in
Sec. II, this secular instability can be removed by simply shifting the phase of the soliton. H
in this sense, the BON-soliton solution is stable against infinitesimal perturbations.9

D. Change in the expansion basis

In the next section, we shall apply the completeness relation to construct solutions
perturbed BO equation. As already pointed out, the basisgj develops a secular term proportion
to t. We can avoid such an undesirable behavior by transforming the expansion basis corre
ing to the bound states. To show this explicitly, we first introduce the soliton parametersj j in
place ofj j 0 , wherej j5aj t1j j 0 and define the new basis by the relations

Gj5E
2`

x ]u

]aj
dx, ~3.16a!

Gj 1N5E
2`

x ]u

]j j
dx ~ j 51,2,...,N!, ~3.16b!
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G̃j52
]Gj

]x
52

]u

]aj
, ~3.17a!

G̃j 1N52
]Gj 1N

]x
52

]u

]j j
~ j 51,2,...,N!, ~3.17b!

where u represents theN-soliton solution, which is now parametrized by the 2N independent
soliton parameters asu5uN(x,t;a1 ,...,aN ,j1 ,...,jN). For completeness, we write the explic
form of Gj andGj 1N as well as their large time asymptotics

Gj52~x2j j !
c jc j*

aj
2 14i (

k51
~kÞ j !

N c jck* 2c j* ck

~aj2ak!
2aj

~ j 51,2,...,N!. ~3.18!

Gj 1N522
c jc j*

aj
~ j 51,2,...,N!, ~3.19!

Gj;
2~x2j j !

@aj~x2j j !#
211

~ t→6`!, ~3.20!

Gj 1N;2
2aj

@aj~x2j j !#
211

~ t→6`!, ~3.21!

where we have used the relationu j5x2j j .
Using ~2.32! and ~2.33!, one can see that this new basis is related to the original basis

gj5Gj1tGj 1N , ~3.22a!

gj 1N5Gj 1N ~ j 51,2,...,N!, ~3.22b!

g̃ j5G̃j1tG̃j 1N , ~3.23a!

g̃ j 1N5G̃j 1N ~ j 51,2,...,N!. ~3.23b!

Substituting~3.22! and ~3.23! into ~3.1!, the completeness relation is rewritten in the form

E
0

`

@c̃1~x,t,l!c2~y,t,l!1c̃2~x,t,l!c1~y,t,l!#dl1(
j 51

N

@G̃j 1N~x,t !Gj~y,t !

2G̃j~x,t !Gj 1N~y,t !#52pd~x2y!. ~3.24!

By means of the transformations~3.22! and ~3.23!, the orthgonality relations~2.39!–~2.43! take
the same forms in whichgj , gj 1N , g̃ j , and g̃ j 1N are replaced byGj , Gj 1N , G̃j and G̃j 1N ,
respectively. If we use~2.1!, ~2.2!, ~2.3!, ~3.22!, and~3.23!, we can see that the new basis satisfi
the following linear PDEs:

LG̃j52G̃j 1N , ~3.25a!

LG̃j 1N50 ~ j 51,2,...,N!, ~3.25b!

L †Gj52Gj 1N , ~3.26a!
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L †Gj 1N50 ~ j 51,2,...,N!, ~3.26b!

Lc̃65L†c650. ~3.27!

Here,L andL † are linear operators defined by

L f 5 f t12~u f !x1H f xx , ~3.28!

L †f 5 f t12u fx1H f xx , ~3.29!

with u being theN-soliton solution. Note how these are the same as the relations for
Zakharov–Shabat squared and derivative states, upon interpretingGj 1N andG̃j 1N as the squared
states andGj andG̃j as the derivative states.10

IV. DIRECT MULTISOLITON PERTURBATION THEORY

In this section, we develop a direct multisoliton perturbation theory for the BO equation
already mentioned in the Introduction, a perturbation theory has been established with
framework of the adiabatic approximation.13 Here we derive the analytical expression for t
first-order solution of the asymptotic expansion of the wave field by employing the metho
multiple scales.

A. Method of multiple scales

We write the perturbed BO equation in the form

ut12uux1Huxx5eR@u#, u5u~x,t !. ~4.1!

Here, eR@u# represents the perturbation ande is a small positive parameter that measures
magnitude of the perturbation. According to the method of multiple scales, we introduc
different time scales,

t j5e j t ~ j 50,1,...!. ~4.2!

The time derivative is then replaced by the expression

]

]t
5(

j 50

`

e j
]

]t j
. ~4.3!

We also expandu into an asymptotic series of the form

u5(
j 50

`

e juj , uj5uj~x,t0 ,t1 ,...!. ~4.4!

Substituting~4.3! and~4.4! into ~4.1! and equating coefficients of like powers ofe, we obtain the
system of equations foruj . The first two members of which read as follows:

u0,t0
12u0u0,x1Hu0,xx50, ~4.5!

Lu15F1 , ~4.6a!

where

Lu1[u1,t0
12~u0u1!x1Hu1,xx , ~4.6b!
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F1[R@u0#2u0,t1
. ~4.6c!

The lowest-order equation~4.5! is nothing but the BO equation, whereas the first-order equa
~4.6! represents an inhomogeneous version of the linearized BO equation~2.1!. In order to solve
the above system of equations, we must specify the initial condition. In studying the perturb
about theN-soliton solution, we can take the initial condition as

u05uN , uj50 ~ j >1!, ~4.7!

whereuN is the exactN-soliton solution given by~2.4!.

B. Expansion of u 1 and F1

Using the completeness relation~3.24!, we can now expand the first-order solutionu1 and the
source termF1 as follows:

u1~x,t !5E
0

`

@ û1
2~ t,l!c̃1~x,t,l!1û1

1~ t,l!c̃2~x,t,l!#dl

1(
j 51

N

@ û1,j~ t !G̃j 1N~x,t !2û1,j 1N~ t !G̃j~x,t !#, ~4.8!

F1~x,t !5E
0

`

@ F̂1
2~ t,l!c̃1~x,t,l!1F̂1

1~ t,l!c̃2~x,t,l!#dl

1(
j 51

N

@ F̂1,j~ t !G̃j 1N~x,t !2F̂1,j 1N~ t !G̃j~x,t !#. ~4.9!

Here, the expansion coefficients are given by

û1
6~ t,l!5

1

2p
^c6~x,t,l!uu1~x,t !&, ~4.10a!

û1,j~ t !5
1

2p
^Gj~x,t !uu1~x,t !&, ~4.10b!

û1,j 1N~ t !5
1

2p
^Gj 1N~x,t !uu1~x,t !&, ~4.10c!

F̂1
6~ t,l!5

1

2p
^c6~x,t,l!uF1~x,t !&, ~4.11a!

F̂1,j~ t !5
1

2p
^Gj~x,t !uF1~x,t !&, ~4.11b!

F̂1,j 1N~ t !5
1

2p
^Gj 1N~x,t !uF1~x,t !&, ~4.11c!

where the variablet stands for (t0 ,t1 ,...). We usethis notation in the following analysis.
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C. Time evolution of the expansion coefficients

In the presence of the perturbations, the soliton amplitudes and the phase constants w
modulated slowly on the time scale of ordere21. Hence, we may assume that

aj5aj~ t1 ,t2 ,...! ~ j 51,2,...,N!, ~4.12!

j j5j j~ t0 ,t1 ,...! ~ j 51,2,...,N!, ~4.13!

where thet0 dependence ofj j is determined by the equationj j ,t0
5aj . Sinceu0 depends ont1

through the soliton parametersaj andj j , we can rewriteu0,t1
as

u0,t1
5

1

2 (
j 51

N

~aj ,t1
G̃j1j j ,t1

G̃j 1N!, ~4.14!

where the definitions~3.17! of G̃j andG̃j 1N have been used. If we introduce~4.6c! into ~4.11! and
use the orthogonality relations, we obtain

F̂1
6~ t,l!5

1

2p
^c6~x,t,l!uR@u0#&, ~4.15a!

F̂1,j~ t !52
1

2
j j ,t1

1
1

2p
^Gj~x,t !uR@u0#&, ~4.15b!

F̂1,j 1N~ t !5
1

2
aj ,t1

1
1

2p
^Gj 1N~x,t !uR@u0#&. ~4.15c!

Last, substituting~4.8! and~4.9! into ~4.6a!, using the time evolution equations for the basis giv
by ~3.25!–~3.27!, and then comparing the coefficients ofc̃6, G̃j , andG̃j 1N on both sides, we find
that the time evolution of the expansion coefficients is governed by the following system of
ODEs:

]û1
6

]t0
5F̂1

6 , ~4.16a!

]û1,j

]t0
1û1,j 1N5F̂1,j ~ j 51,2,...,N!, ~4.16b!

]û1,j 1N

]t0
5F̂1,j 1N ~ j 51,2,...,N!. ~4.16c!

D. Solution to the first-order equation

1. Secularity conditions

The system of equations~4.16! is now easily integrated. In the process, however, the so
terms F̂1,j and F̂1,j 1N are seen to approach constant values in the limit oft0→` when the
perturbation R does not depend ont0 explicitly. In fact, in this limit, the inner product
^Gj (x,t)uR@u0#& on the right-hand side of~4.15b! can be evaluated using the asymptotic forms
u0 andGj that are given, respectively, by~2.6! and~3.20!. Since the space integral can elimina
the t0 dependence, one obtains a constant value independent oft0 . The same manipulation is
applied to the calculation of the inner product^Gj 1N(x,t)uR@u0#& to yield a constant value
Consequently, integrating~4.16b! and~4.16c! with these asymptotics,û1,j 1N is found to grow like
J. Math. Phys., Vol. 38, No. 10, October 1997
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t0 , whereasû1,j behaves liket0
2. If we join these estimates to the nonsecular large time asy

totics of G̃j and G̃j 1N , which are given, respectively, by~3.20! and ~3.11!, we find that the
first-order solution~4.8! would give rise to a uniformly valid asymptotic expansion at the ti
scale of ordere21, provided that the following secularity conditions are imposed onF̂1,j and
F̂1,j 1N :

F̂1,j50, ~4.17a!

F̂1,j 1N50 ~ j 51,2,...,N!. ~4.17b!

These secularity conditions now completely determine the slow time evolution of the so
parameters. Indeed, it readily follows from~4.15b!, ~4.15c!, and~4.17! that

]aj

]t1
52

1

p
^Gj 1N~x,t !uR@u0#& ~ j 51,2,...,N!, ~4.18!

]j j

]t1
5

1

p
^Gj~x,t !uR@u0#& ~ j 51,2,...,N!. ~4.19!

If we use ~4.3! together with the relationsaj ,t0
50 and j j ,t0

5aj , the above equations can b
rewritten in terms of the original time variable as follows:

daj

dt
52

e

p
^Gj 1N~x,t !uR@u0#& ~ j 51,2,...,N!, ~4.20!

dj j

dt
5aj1

e

p
^Gj~x,t !uR@u0#& ~ j 51,2,...,N!. ~4.21!

These equations coincide perfectly with those derived in Ref. 13 in the analysis of the per
BO equation within the framework of the adiabatic approximation.

Remark 4.1:The secularity conditions~4.17a! would work well as long as the large tim
asymptotic of the integral part of~4.8!, which we denote asu1c(x,t0), does not develop a singu
larity of order t0 . To be more specific, the above statement may be represente
limt0→` u1c(x,t0)/t0→0 for fixed x. This condition is indeed satisfied as will be shown later
the explicit examples of dissipative perturbations~see Sec. IV F!.

2. First-order solution

With ~4.17!, we are now ready for integrating the system of ODEs~4.16!. The appropriate
initial conditions for these initial value problems are derived from~4.7!. They read as

û1
6~0,l!50, û1,j~0!5û1,j 1N~0!50 ~ j 51,2,...,N!. ~4.22!

The integration of~4.16! subjected to the boundary conditions~4.22! is now readily performed and
gives the solutions in the form

û1
6~ t,l!5

1

2p E
0

t0
^c6~x,t08 ,l!uR@u0#&dt08 , ~4.23!

û1,j~ t !5û1,j 1N~ t !50 ~ j 51,2,...,N!. ~4.24!

Last, introducing~4.24! into ~4.8!, we obtain the first-order solution,
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u1~x,t !5E
0

`

@ û1
2~ t,l!c̃1~x,t,l!1û1

1~ t,l!c̃2~x,t,l!#dl. ~4.25!

One can see from this expression that the first-order correction to theN-soliton solution is purely
continuous spectra. As already discussed in Sec. III, the integrand in the expression~4.25! has no
singularities with respect tol. In particular, it takes a finite value atl50. This point is in striking
contrast to the first-order solution for the perturbed KdV equation. Actually, in the KdV case
corresponding integrand in the first-order solution has been shown to exhibit a pole atk50, where
k is the spectral parameter.19,20For dissipative perturbations, this leads to the formation of a s
behind the soliton. It turns out that the evolution equation for the KdV soliton position has a
correction term, as a reaction of the shelf on the motion of the soliton. In other words, the
gives rise to a phase shift for the leading-order soliton. In the case of the perturbed BO eq
discussed here, a shelf can be formed by dissipative perturbations, as exemplified below
one-soliton problem. However, this shelf will not affect the motion of the soliton. This means
the equations~4.21! for the soliton positions would be unchanged, even if the shelf appears

E. Modified conservation laws

The BO equation~1.1! exhibits an infinite number of conservation laws,21,22 which we can
write in the form

I n@u#5E
2`

`

qn@u#dx ~n51,2,...!, ~4.26!

whereqn are polynomials ofu, ux , Hu ,... . In thepresence of the perturbation, these quantit
are no longer conserved and their time evolution may be represented by

dIn

dt
5eE

2`

` dI n

du~x,t !
R@u~x,t !#dx, ~4.27!

wheredI n /du denotes the variational derivative of thenth conserved quantity. These correspo
to the modified conservation laws introduced in Ref. 20 in the analysis of the perturbed
equation by means of IST. We now demonstrate that the solutions obtained in Sec. IV C
the above modified conservation laws, up to ordere. For this purpose, we substitute~4.3! and~4.4!
into ~4.26!. Within the order being considered, the relation~4.27! becomes

eF ]I n@u0#

]t1
1

]

]t0
E

2`

` S dI n

du D
u5u0

u1 dxG5eE
2`

` S dI n

du D
u5u0

R@u0#dx1O~e2! ~n51,2,...!,

~4.28!

where we have used the conservation law]I n@u0#/]t050.
For theN-soliton solutionu05uN , one can evaluateI n as22–24

I n@u0#52p(
j 51

N S aj

2 D n21

, ~4.29!

and its variational derivative can be calculated as25

S dI n

du D
u5u0

5~n21!(
j 51

N S aj

2 D n23

c jc j* 52~n21!(
j 51

N S aj

2 D n22

Gj 1N ~n>2!, ~4.30!
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where in the last line,~3.19! has been introduced.
In the case ofn51, one finds thatI 1@u0#52pN and (dI 1 /du)u5u0

51. Hence,~4.28! reduces
to

]

]t0
E

2`

`

u1 dx5E
2`

`

R@u0#dx. ~4.31!

This equation represents the mass balance in the system. It also can be derived dire
integrating~4.6! overx and using the relation*2`

` u0,t1
dx50. It now follows from~2.21!, as well

as the asymptotic formsc6;e6 i (lx1l2t), that

E
2`

`

c̃6~x,t,l!dx52pd~l!. ~4.32!

Integrating~4.25! with x and using~4.32!, one can obtain

E
2`

`

u1~x,t !dx5p$û1
2~ t,0!1û1

1~ t,0!%. ~4.33!

Thus, the left-hand side of~4.31! becomes

]

]t0
E

2`

`

u1 dx5pH ]û1
2~ t,0!

]t0
1

]û1
1~ t,0!

]t0
J . ~4.34!

On the other hand, using~4.15a!, ~4.16a! and ~2.23!, we have

]û1
6~ t,0!

]t0
5

1

2p
^c6~x,t,0!uR@u0#&5

1

2p E
2`

`

R@u0#dx. ~4.35!

Substituting~4.35! into ~4.34!, one can see thatu1 indeed satisfies~4.31!.
For n>2, with use of~4.29! and ~4.30!, ~4.28! yields, in general,

p(
j 51

N

aj
n22 ]aj

]t1
2(

j 51

N

aj
n22 ]

]t0
E

2`

`

Gj 1Nu1 dx52(
j 51

N

aj
n22E

2`

`

Gj 1NR@u0#dx. ~4.36!

It follows from ~4.25! and the orthogonality relations that

E
2`

`

Gj 1Nu1 dx5E
2`

`

@ û1
2~ t,l!^c̃1~x,t,l!uGj 1N&1û1

1~ t,l!^c̃2~x,t,l!uGj 1N&#dx50.

~4.37!

Hence,~4.36! reduces to

p(
j 51

N

aj
n22 ]aj

]t1
52(

j 51

N

aj
n22E

2`

`

Gj 1NR@u0#dx. ~4.38!

This equation holds identically in view of~4.18!. Thus, we have that the solutions of the perturb
BO equation satisfy an infinite set of modified conservation laws.
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F. Examples of dissipative perturbations

Here, we shall perform the explicit calculation of the first-order solution for the one-so
case. We consider the two different types of dissipative perturbations, i.e.,~i! R@u0#52mu0 , ~ii !
R@u0#5mu0,xx , wherem is a positive constant. The first example models the damping of
soliton. In fact, this model equation has been used to investigate the propagation of slowly v
solitary waves in deep fluids.26 Also, it describes the fission of an algebraic internal solitary w
climbing onto a shelf in a two-layer fluid system of infinite depth.27 It is worthwhile to remark that
for this type of perturbation, the area under the soliton profile is not conserved in time sinc
integral on the right-hand side of~4.31! has a nonzero value. The second example is the so-ca
BO–Burgers equation. It describes the propagation of solitons in the dispersive media with
viscosity.28,29 Unlike example 1, the area under the soliton profile is conserved in time.

The leading-order soliton solution is now given by

u05
2a

z211
, z[a~x2j!, ~4.39!

wherea andj are the amplitude and center position of the soliton, respectively. The eigen
tions c6 and c̃6 are calculated from~2.4!, ~2.5!, ~2.16!, ~2.19!, ~2.20!, and~2.21! as

c15ei ~lx1l2t !
z2 ia

z1 i
, ~4.40a!

c25~c1!* , ~4.40b!

c̃15ei ~lx1l2t !
z2 i

z1 i F11 i
12a

z1 i G , ~4.41a!

c̃25~ c̃1!* , ~4.41b!

wherea[(l2a/2)/(l1a/2) and the time variablet0 has been replaced by the original timet.
The expansion coefficients~4.23! are then represented in the form

û1
1~ t,l!5

1

2pa E
0

t

dt8 ei ~lj81l2t8!E
2`

` z2 ia

z1 i
R@u0~z!#eilz/a dz, ~4.42a!

û1
25~ û1

1!* , ~4.42b!

wherej85j(t8). Substituting~4.41! and~4.42! into ~4.25!, one obtains the analytical expressio
for the first-order solution as follows:

u1~z,t !5
1

2pa

z2 i

z1 i E0

`

dl eilz/aS 11 i
12a

z1 i D E
0

t

dt8 exp i Fl2~ t2t8!1lE
t8

t

a~ t9!dt9G
3E

2`

` z81 ia

z82 i
R@u0~z8!#e2 ilz8/a dz81~c.c.!. ~4.43!

Here, the notation~c.c.! denotes the complex conjugate of the preceding expression. We
evaluateu1 for the two different types of dissipative perturbations mentioned above.
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1. R[u 0]52mu 0

It follows from ~3.18! and ~3.19! that

G15
1

a

2z

z211
, ~4.44a!

G252
2a

z211
. ~4.44b!

Using ~4.39! and~4.44! in ~4.20! and~4.21! to calculate the inner product, we immediately obta
the time evolution of the soliton parameters,

da

dt
522ema, ~4.45a!

dj

dt
5a. ~4.45b!

Integrating these equations, one finds

a5a0e22emt, ~4.46a!

j5
a0

2em
~12e22emt!1j0 , ~4.46b!

wherea0 andj0 are the initial values ofa andj, respectively.
Let us now analyze the first-order solution that is given by~4.43!. To this end, we must

evaluate the triple integral. The integral with respect toz8 is easily calculated using the residu
theorem. To perform the integral with respect tot8, we replace the soliton amplitudea by its
lowest-order solution, so that one can approximate the integral* t8

t a(t9)dt9 in the exponential
function by the expressiona0(t2t8)5a(t2t8)1O(e). The total error induced inu1 by this
replacement would be of ordere. After performing the above two integrals,u1 is represented by
the single integral of the form

u1~z,t !5
ma

2

z2 i

z1 i E0

`

eilz/aF11 i
a

~z1 i !~l1a/2!G 12eil~l1a!t

il~l1a!

e2l/a

l1a/2
dl1~c.c.!.

~4.47!

This integral is still difficult to carry out analytically. However, since we are particularly intere
in the large time asymptotic ofu1 , we evaluate~4.47! in this limit. In addition to this, we conside
z within the range2a2t,z, for which a phase factorei @lz/a1l(l1a)t# in the integrand does no
have stationary point. Then, because of the rapidly oscillating factoreil(l1a)t in the integrand, the
major contribution of this integral comes from values ofl nearl50. Hence, we may replace th
factorsl1a andl1a/2 in the integrand bya anda/2, respectively. Thus, in the larget limit, we
can approximateu1 by the following expression:

u1~z,t !;2
2m

a

z2 i

z1 i S 11
2i

z1 i D E0

`

expF i S z

a
1

at

2 Dl2
l

aG sin~atl/2!

l
dl1~c.c.!. ~4.48!

This integral can now be evaluated easily to give the large time asymptotic ofu1 :
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u1~z,t !;2
2m

a Fz416z223

~z211!2
$tan21~z1a2t !2tan21 z%1

4z

~z211!2
ln

~z1a2t !211

z211
G .

~4.49!

From the above expression, one can see that for negativez within the range2a2t!z!21, u1 is
approximated by a constant value22pm/a. This exhibits the formation of a shelf in a tail pa
behind the soliton that is induced by the dissipative perturbation sincez50 corresponds to the
center position of the soliton. The similar result has been reported in an asymptotic analysis
variable-coefficient BO equation.26 One can show from~4.47! that *2`

` u1(z,t)dx522pmt, im-
plying that the length of the shelf increases with time. The same relation is also derived d
from ~4.31!. In the larget limit of order 1/e with fixed z,u1 behaves like ln(1/e). It follows from
this result that lime→0 eu1; lime→0 e ln(1/e)→0, indicating that the expression~4.4! gives a
valid asymptotic expansion for large time up to order 1/e.

2. R[u 0]5mu 0,xx

In this second example, the time evolution ofa andj is found to be as

da

dt
52ema3, ~4.50a!

dj

dt
5a. ~4.50b!

Integration of~4.50! is readily performed to give the solutions

a5
a0

~112ema0
2t !1/2, ~4.51a!

j5
1

ema0
@~112ema0

2t !1/221#1j0 . ~4.51b!

The expression ofu1 corresponding to~4.47! now takes the form

u1~z,t !5 i
m

4

z2 i

z1 i E0

`

eilz/aF11 i
a

~z1 i !~l1a/2!G 12eil~l1a!t

l1a/2
e2l/a dl1~c.c.!. ~4.52!

If we integrate the second term in the brackets by parts, we can transform~4.52! into a more
tractable form,

u1~z,t !5
iamt

2

z2 i

~z1 i !2 E
0

`

expF2
l

a
1 i H lz

a
1l~l1a!tJ Gdl1~c.c.!. ~4.53!

For z within the range2a2t,z, evaluating the integral in the larget limit, one obtains the first
two terms of the asymptotic expansion,

u1~z,t !;2
m

~z211!2

1

s11 Fz~z223!2
3z221

a2t

s13

~s11!2
1O~ t22!G , s[

z

a2t
. ~4.54!

We can observe that the perturbation produces the shelf in the region 1!uzu!a2t. Unlike example
1, however, the height of the shelf is not constant but decreases inversely proportional tot.
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Remark 4.2:For negativez in the rangez,2a2t, the large time asymptotics of~4.47! and
~4.52! are different from those described above. In this case, the phase factor of each int
exhibits a stationary pointl52 1

2(z/a2t11). Applying the method of the stationary phase
evaluate the integrals, one can see thatu1 develops into an oscillating tail with decaying amp
tude.

V. CONCLUSION

In this paper, we have solved the Cauchy problem of the linearized BO equation. The c
step in analyzing this problem lies in the proof of the completeness relation for the eigenfun
of the linearized BO equation. In the presentN-soliton problem, however, the underlying eige
value problem turns out to be essentially time dependent. Hence, the normal mode a
developed in Ref. 18 in the study of the linear stability of the BO one-soliton solution would
been impossible to perform. To overcome this difficulty, we have constructed directly part
solutions of the linearized BO equation under the appropriate boundary conditions and
proved that these eigenfunctions constitute a complete set. We have presented a novel proo
completeness relation by means of a purely algebraic procedure without use of the knowle
IST.

There are several applications of the completeness relation established in this paper.
them, we have been concerned particularly with the linear stability of theN-soliton solution as
well as its time evolution under the action of small perturbations. We have shown tha
N-soliton solution is stable against infinitesimal perturbations. In the perturbation problem
have presented a general scheme for calculating the first-order correction to the leading
N-soliton solution while employing the method of multiple scales. Some explicit calculations
been performed for dissipative perturbations that have their origin in real physical systems
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APPENDIX A: PROOF OF (2.32) AND (2.33)

The proof of~2.32! and~2.33! can be made by using a technique developed in the direct p
of theN-soliton solution of the BO equation.15 We first prove~2.32!. To this end, we introduce the
new determinantf̃ by

f̃ 5(
j 51

N

~ ia j ! f 5det~m̃jk!1< j ,k<N , ~A1!

wherem̃jk is anN3N matrix with elements

m̃j j 5 ia ju j11~ j 5k!, m̃jk5
2aj

aj2ak
~ j Þk!. ~A2!
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Let D̃jk be the cofactor of the elementm̃jk , i.e., D̃jk5] f̃ /]m̃jk . Using the well-known rule for the
differentiation of the determinant with respect to its element, one can rewritegj defined by~2.31a!
in the form

gj5
1

f̃ * f̃ F ~u j2aj t !~ f̃ * D̃j j 1 f̃ D̃ j j* !12i (
k51

~kÞ j !

N
ak

~aj2ak!
2

$ f̃ * D̃jk1 f̃ D̃k j* 2~ f̃ D̃jk* 1 f̃ * D̃k j!%G ,

~ j 51,2,...,N!. ~A3!

Hence, if we can prove the relation

f̃ * D̃jk1 f̃ D̃k j* 5
2

ajak
~ f̃ c̃ j !~ f̃ c̃k!* ~ j 51,2,...,N!, ~A4!

~2.32! follows from ~A3! and ~A4!. Herec̃ j satisfies the system of linear algebraic equations

~ ia ju j11!c̃ j2 (
k51

~kÞ j !

N
2aj

aj2ak
c̃k5 ia j ~ j 51,2,...,N!. ~A5!

Note from ~2.12! and ~A5! that c̃ j5c j .
We now prove~A3! for j 51 andk52. First of all, we define the following matrices:

D5S 0 21 ... 21

1 m11 ... m̂1N

A A � A

1 m̂N1 ... m̂NN

D , ~A6!

D1,15S m̂11 m̂12 ... m̂1N

m̂21 m̂22 ... m̂2N

A A � A

m̂N1 m̂N2 ... m̂NN

D , ~A7!

D1,35S 1 m̂11 m̂13 ... m̂1N

1 m̂21 m̂23 ... m̂2N

1 m̂31 m̂33 ... m̂3N

A A A � A

1 m̂N1 m̂N3 ... m̂NN

D , ~A8!

D2,15S 21 21 21 ... 21

m̂21 m̂22 m̂23 ... m̂2N

m̂31 m̂32 m̂33 ... m̂3N

A A A � A

m̂N1 m̂N2 m̂N3 ... m̂NN

D , ~A9!
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D2,35S 0 21 21 ... 21

1 m̂21 m̂23 ... m̂2N

1 m̂31 m̂33 ... m̂3N

A A A � A

1 m̂N1 m̂N3 ... m̂NN

D , ~A10!

D12,135S m̂21 m̂23 ... m̂2N

m̂31 m̂33 ... m̂3N

A A � A

m̂N1 m̂N3 ... m̂NN

D . ~A11!

In these matrices, the elementsm̂jk are given by

m̂j j 5 ia ju j~ j 5k!, m̂jk5
aj1ak

aj2ak
~ j Þk!. ~A12!

The D j ,k is anN3N matrix constructed from the (N11)3(N11) matrix D by deleting thej th
row and thekth column, respectively, while an (N21)3(N21) matrixD12,13is constructed from
D by deleting the first and second rows and the first and third columns, respectively.

Now, following the procedure developed in Ref. 15, we can show the following relation

f̃ 5det D1,11det D, ~A13!

f̃ * 5~21!N~det D1,12det D !, ~A14!

D̃1252det D12,132det D2,3, ~A15!

D̃21* 5~21!N21~2det D12,131det D2,3!, ~A16!

f̃ c̃152 ia1 det D2,1, ~A17!

~ f̃ c̃2!* 5 i ~21!N21a2 det D1,3. ~A18!

Substituting~A13!–~A18! into ~A4! with j 51 andk52, we find that it reduces to

det D1,1 det D2,32det D1,3 det D2,15det D det D12,13. ~A19!

This relation is Jacobi’s identity for determinants,30 which proves~A4! for j 51 andk52. For
generalj andk, one can reduce~A4! to the special case described above by rearranging the
and columns of the matrices defined by~A6!–~A11!. Thus, this completes the proof of~A4!.
Substituting~A4! and the relationc̃5c into ~A3!, we finally obtain~2.32!.

Let D jk be the cofactor ofmjk , i.e., mjk5] f /]mjk ; then one can see from~A1! that D̃jk / f̃
5D jk /( ia j f ). Introducing this relation as well as the relationc̃5c into ~A4!, we can rewrite it
into the form9

i S f Dk j*

ak
2

f * D jk

aj
D 52

~ f c j !~ f ck!*

ajak
~ j ,k51,2,...,N!. ~A20!

Next, we consider~2.33!. Performing the differentiation with respect toj j 0 in ~2.31b!, gj 1N is
represented in the form
J. Math. Phys., Vol. 38, No. 10, October 1997
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gj 1N5
i

f * f
~2 f D j j* 1 f * D j j ! ~ j 51,2,...,N!. ~A21!

Using ~A20! for k5 j , one can see that~A21! is equal to~2.33!.

APPENDIX B: PROOF OF (3.9)

We begin the proof of~3.9! with an obvious identity,

(
j 51

N c j~x!c j* ~y!

l1aj /2
(
k51

N ck* ~x!ck~y!

l1ak/2

5(
j 51

N c j~x!c j* ~x!c j~y!c j* ~y!

~l1aj /2!2 1 (
j ,k51
~ j Þk!

N
2

ak2aj
S 1

l1aj /2
2

1

l1ak/2
Dc j~x!c j* ~y!ck* ~x!ck~y!.

~B1!

The core of the proof is to modify the second term on the right-hand side of~B1! while employing
the linear system~2.12!. We now multiply~2.12! by (ak2aj )

21c j* (y) and then sum up withj to
obtain the relation

(
j 51

~ j Þk!

N

u j

c j~x!c j* ~y!

ak2aj
2 i (

j 51
~ j Þk!

N c j~x!c j* ~y!

aj~ak2aj !
22i (

j 51
~ j Þk!

N ck~x!c j* ~y!

~ak2aj !
2

12i (
j ,l 51

~ j Þk,l ; lÞk!

N c j~x!c j* ~y!

~ak2aj !~aj2al !
5 (

j 51
~ j Þk!

N c j* ~y!

ak2aj
. ~B2!

We interchange the variablesx andy in ~B2! and then take the complex conjugate. Subtracting
resultant expression from~B2! yields

~x2y! (
j 51

~ j Þk!

N c j~x!c j* ~y!

ak2aj
22i (

j 51
~ j Þk!

N c j~x!c j* ~y!

aj~ak2aj !
22i (

j 51
~ j Þk!

N c j~x!ck* ~y!1ck~x!c j* ~y!

~ak2aj !
2

12i (
j ,l 51

~ j Þk,l ; lÞk!

N c l~x!c j* ~y!

~ak2aj !~ak2al !
5 (

j 51
~ j Þk!

N S c j* ~y!

ak2aj
2

c j~x!

ak2aj
D . ~B3!

Furthermore, we write the fourth term on the left-hand side of~B3! as

2i (
j ,l 51

~ j Þk,l ; lÞk!

N c l~x!c j* ~y!

~ak2aj !~ak2al !
52i (

j ,l 51
~ j Þk,lÞk!

N c l~x!c j* ~y!

~ak2aj !~ak2al !
22i (

j 51
~ j Þk!

N c j~x!c j* ~y!

~ak2aj !
2 ,

~B4!

and modify the first term on the right-hand side of~B4! using ~2.12!. Substituting the result into
~B3!, one obtains

~x2y! (
j 51

~ j Þk!

N c j~x!c j* ~y!

ak2aj
22i (

j 51
~ j Þk!

N akc j~x!c j* ~y!

aj~ak2aj !
2 22i (

j 51
~ j Þk!

N c j~x!ck* ~y!1ck~x!c j* ~y!

~ak2aj !
2
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1
i

2 S uk2
i

ak
D S uk81

i

ak
Dck~x!ck* ~y!5

i

2
, ~B5!

whereuk8[y2akt2jk0 .
Next, we multiply 2(l1ak/2)21ck* (x)ck(y) on both sides of~B5! and sum overk, and add

the resultant expression to its complex conjugate expression. This leads to the relation

2~x2y! (
j ,k51
~ j Þk!

N
2

ak2aj
S 1

l1aj /2
2

1

l1ak/2
Dc j~x!c j* ~y!ck* ~x!ck~y!

54i (
j ,k51
~ j Þk!

N
ak

~l1ak/2!aj~ak2aj !
2 @c j~x!c j* ~y!ck* ~x!ck~y!2~x↔y!#

14i (
j ,k51
~ j Þk!

N
1

~l1ak/2!~ak2aj !
2 @ck~x!ck* ~x!$ck~y!c j* ~y!2ck* ~y!c j~y!%2~x↔y!#

12~x2y!(
j 51

N c j* ~x!c j~x!c j~y!c j* ~y!

aj~l1aj /2!
1 i (

j 51

N
1

l1aj /2
@c j* ~x!c j~y!2~x↔y!#. ~B6!

Last, substituting~B6! into the second term on the right-hand side of~B1!, we arrive at the
following important relation:

~x2y!(
j 51

N c j~x!c j* ~y!

l1aj /2
(
k51

N ck* ~x!ck~y!

l1ak/2

522l~x2y!(
j 51

N c j~x!c j* ~x!c j~y!c j* ~y!

aj~l1aj /2!2

24i (
j ,k51
~ j Þk!

N
ak

~l1ak/2!aj~ak2aj !
2 @c j~x!ck* ~x!c j* ~y!ck~y!2~x↔y!#

24i (
j ,k51
~ j Þk!

N
1

~l1ak/2!~ak2aj !
2 @ck~x!ck* ~x!$ck~y!c j* ~y!2ck* ~y!c j~y!%2~x↔y!#

1 i (
j 51

N
1

l1aj /2
@c j~x!c j* ~y!2~x↔y!#. ~B7!

The relation~3.9! follows from ~B7! upon differentiating it with respect tol and then takingl
50. Note that the second term on the right-hand side of~B7! vanishes identically by this manipu
lation.
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Bifurcation behavior of the generalized Lorenz equations
at large rotation numbers
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The bifurcation structure and periodic orbits of the Lorenz–Stenflo equations at
large rotation numbers are given. It is shown that rotation can lead to a much richer
dynamical behavior than that of the original Lorenz system and can be used to
control or modify the latter’s chaos behavior. Orbits with new topology arising
from the merging and splitting of different periodic windows are observed. Abrupt
changes in the one-dimensional map are pointed out and studied in terms of the
interaction of the interior and exterior boundaries. ©1997 American Institute of
Physics.@S0022-2488~97!03710-9#

I. INTRODUCTION

A paradigm for studying deterministic chaos is the Lorenz model of atmospheric convec1

The model, obtained from the Navier–Stokes’ equations by separating the space and tim
ables and truncating the higher spatial harmonics, consists of three coupled nonlinear o
differential equations. The Lorenz and related equations are also applicable to certain las2 and
plasma3 systems. There exists in the literature a large number of numerical studies and theo
investigations on the model.4 Using the Rayleigh numberr as the control parameter, Sparrow4 and
Froyland and Alfsen5,6 found that backward bifurcations occur. It is shown that asr decreases,
originally symmetric orbits are destroyed by a pitchfork bifurcation. The bifurcation sequ
following this symmetry-breaking bifurcation is of the normal period-doubling type. Howe
when the Prandtl number is used as the control parameter, one finds that not only forward
cation, but also backward bifurcation, can occur. The forward and backward bifurcations b
like mirror images of each other.

Recently, by including the effects of external rotation, Stenflo7 showed that low-frequency
short-wavelength acoustic gravity waves can be described by a system of four coupled no
ordinary differential equations. A new control parameter, the rotation numbers, as well as a new
variableV, describing flow rotation, were introduced. When the rotation number is set to zer
the new variable ignored, the generalized system reduces to that of Lorenz. It has been s8,9

that if the Rayleigh number is taken as the control parameter, with the rotation number kept
then the bifurcation structure of the Lorenz–Stenflo~LS! model is similar to that of Lorenz. On th
other hand, if the rotation number is taken as the control parameter, the forward bifurc
structure exhibits a surprising similarity with that of the one-dimensional logistic map. Thu
introducing a new degree of freedom, not only the physics,7 but also the mathematical behavior
the original system is altered.

In this paper, we study numerically the bifurcation features of the LS model at larges. It is
found that new bifurcation windows appear ass is increased. There is also overlapping~or
interaction in the space of the bifurcation parameter! of the different bifurcation domains, an
0022-2488/97/38(10)/5225/15/$10.00
5225J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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evidence of persistent orbits. Furthermore, orbits with new topology can arise from the me
and splitting of the different periodic windows. Several new phenomena are pointed out
details of orbit overlapping for both periodic and chaotic motion are studied in terms of
dimensional noninvertible maps. It is shown that the complex bifurcation structure is caus
both interior and exterior boundary crises.10 In particular, the behavior at larges is related not only
to the local structures but also to the basins of attraction at smallers values.

II. THE LORENZ–STENFLO SYSTEM

The LS equations for acoustic gravity waves in a rotational system can be written as7

Ẋ52sX1sY1sV, ~1!

Ẏ5~r 2Z!X2Y, ~2!

Ż5XY2bZ, ~3!

V̇52X2sV, ~4!

where the dot denotes the time derivative,r (.0) is the generalized Rayleigh number,s (.0) is
the generalized Prandtl number,s (.0) is the rotation number, andb (.0) is a geometric
parameter. Whens50, the variableV is decoupled from~1!–~3!, and the well-known Lorenz
equations are recovered.

Equations~1!–~4! are invariant under reflection about theZ-axis ~i.e., X→2X, Y→2Y,
Z→Z, and V→2V). Therefore, for every orbit there can exists another which is its reflec
about the Z-axis. The origin, O(0,0,0,0), andC65(Xs

6 ,Ys
6 ,Zs ,Vs

6), where Xs
656@bZs /

(11s/s2)#1/2, Ys
65(11s/s2)Xs

6 , Zs5r 212s/s2, andVs
652Xs

6/s, are three fixed points.
For r ,11s/s there is only one equilibrium point, namely the originO. Whenr increases,

the other two equilibrium points appear in the phase space as a result of a pitchfork bifurc
This can be seen from the eigenvalue equation atO,

@l31~112s!l21~s12s2rs1s2!l1s1~12r !s2#~l1b!50,

which indicates that for 0,r ,min$11s/s2, 21s1s/s,2@11s1s/(11s)#% the origin O is
stable and attracting.8 However, the sign of one root changes from negative to positive ar
increases through 11s/s2. In fact, there is a pitchfork bifurcation atr 511s/s2. The origin then
loses its stability andC6 appear.

The critical value for the occurrence of Hopf bifurcations is9

r c5
2B1AB224AC

2A
, ~5!

where
J. Math. Phys., Vol. 38, No. 10, October 1997
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A5S bs2
b~b11!

11s/s2D S bs1
2bs

11s/s2D ,

B52bs2~b1112s!212S bs1bs222bs2
2bs

s D S bs1
2bs

11s/s2D 2~b1112s!

3F b

11s/s2S bs1bs222bs2
2bs

s D1S s1s12bs1s22
s

s D S bs1
2bs

11s/s2D G , ~6!

and

C 522bs2S 11
s

s2D ~b1112s!22S bs1bs222bs2
2bs

s D
3S s1s12bs1s22

s

s D ~b1112s!1S bs1bs222bs2
2bs

s D 2

.

In Fig. 1 we show the region (r .r c) of Hopf instability. The corresponding critical frequenc
is nc5(a1 /a3)1/2, where a15bs1bs222bs22bs/s1@bs12bs/(11s/s2)#r c and a35b
1112s . Fors50, b58/3 ands510.0,r c'24.7368, which agrees with the well-known critic
value for the Lorenz model.1

FIG. 1. Linear stability curves. Forr .r c , a Hopf instability occurs. Forr ,r c , the two fixed pointsC6 are stable.
J. Math. Phys., Vol. 38, No. 10, October 1997
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III. THE BIFURCATION DIAGRAM IN THE s SPACE

It is known that for the Lorenz equations@s50 in ~1!–~3!# only inverse Hopf bifurcations
occur when the Rayleigh number is treated as the bifurcation parameter. In particular,b
58/3, s510.0, andr .313.69 there appear windows of stable periodic orbits representing
metric solutions.4 The LS equations have similar bifurcation structures. For example, the
saddle-node bifurcation point appears atr'432.45, and the first period-doubling is atr
'315.12 forb58/3, s510.0, ands530.0.9 In fact, one effect of rotation is to move the fir
saddle-node to a higher critical value as the rotation numbers is increased.

For integrating~1!–~4!, a fourth-order Runge–Kutta procedure11 is used, and the solutions i
the range 200,t,400 are recorded. We construct the bifurcation diagramZmax

i , i 51,2, . . . ,
versusthe control parameters, whereZmax

i is the local maximum in the time series ofZ. Further-
more, we setr 5340.0, and following tradition,4 b58/3 ands510.0. For the control paramete
we consider the range 0,s,600, which is within the domain (0,s,655.7) of Hopf instability.

The bifurcation diagram is shown in Fig. 2. The LS model yields a considerably more
plex bifurcation structure than that of Lorenz. We see that there exist two backward pe
bifurcation windows at 376.9.s.332.3 ~the windowD) and 600.s.588.5 (F), and one for-
ward period-1 bifurcation window at 0,s,48.45~ A!. Although the windowsD andF resemble
two inverse copies of the windowA, closer examination easily shows that the bifurcation beha
of the windowF is quite different from that ofD.

The windowsB andC both show period-2 bifurcations which arise from12 the windowsA and
D, respectively. In fact, higher-period windows~probably infinite in number! exist within the
overlapping domains of Hopf instability. Closely examining the orbits in the windowsA andD,
we find that the critical values of symmetry-breaking bifurcation in these windows ares'6.92 and

FIG. 2. The bifurcation diagram ins space forr 5340.0,b58/3, ands510.0. It shows that there exist one forwar
period-1 windowA as well as two backward period-1 windowsD andF.
J. Math. Phys., Vol. 38, No. 10, October 1997
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357.9, respectively. A sequence of period-doubling bifurcations follows each of these symm
breaking bifurcations.

The bifurcation behavior in the region between the windowsD andF is more complicated.
For example, the structure of the windowE is related not only to the windowF but also to the
window D or/and the windowA. In particular, the sharp lower edge~called the exterior
boundary13! of the bifurcation structure in 230&s&350 ~to the right of the windowC) seems to
be a continuation of the fine structure with a sharp upper edge~called aninterior boundary13 is
sometimes referred to as a dark line! originating from a very narrow window~at r'460) at the
right of the windowE. This indicates that there exists an orbit which persists betweenr 5190 and
460, but is forbidden in the windowA ~as well as in the narrower windows within the domain!.
Thus, the fine structure of the bifurcation near~and the orbits in! the windowE can be considered
as a result of interaction12 between the windowsA or/and D and F. Similar overlapping of
structures can be found at several other locations in Fig. 2. Such overlapping behavior
bifurcation diagram could indicate that different nonlinear processes are at work in diff
domains of the bifurcation parameter, and that these processes can be overlapping as
forbidden in certain sub-domains. Furthermore, the windows~both wide and narrow! of periodic
motion are preserved in the overlapping. That is, when a chaotic region is overlapped o
periodic window, the latter does not disappear.

IV. PERIODIC ORBITS

In order to characterize the periodic orbits, we shall represent their projections on theX2Z
plane in terms of the symbolsP1 and P2 , whereP1 stands for a trajectory circling the fixe
point C1 and P2 for one circlingC2. When a trajectory makesn revolutions around the sam
fixed point, we label it with the superscriptn. Furthermore, the subscripts shall be employed to
denote a symmetric orbit andu a nonsymmetric one. Thus any periodic orbit can be represe
by a sequence of symbolsP1 and P2 . Accordingly, the orbits in the~continuous! domains
s:0→6.92→38.89→46.38→•••→48.45 can be denoted by (P1P2)s→(P1P2)u

→(P1P2)u
2→•••→(P1P2)u

2` , respectively. Similar orbits can be found in the windowD,
namely fors:376.9→357.9→337.7→333.5→•••→332.3 ~see Fig. 3!. Here the symmetric orbit
(P1P2)s in Fig. 3a evolves into the nonsymmetric one (P1P2)u in Fig. 3b by the pitchfork
bifurcation at s'357.9. Following the symmetry-breaking bifurcation, a sequence of per
doubling bifurcations takes place, as is displayed in Fig. 3c and Fig. 3d. In Fig. 4, two dau
orbits, (P1

2 P2
2 )s and (P1

3 P2
3 )s , originating from the orbit (P1P2)s , are shown. Comparing Figs

4 a,b,c ~for s55.0, 66.0 and 139.5, respectively! with Figs. 4 d,e,f~for s5360.0, 247.0 and
204.15, respectively!, one sees that the periodic orbits in the windowsA and D are of similar
topological structure.

We now compare the bifurcation structures of the windowF andD. Figure 5 shows that the
window F is a true period-doubling bifurcation window, in which there is no symmetric orbit
that of Fig. 3a. On the other hand, the corresponding orbit~Fig. 5a! in the windowF consists of
only a single loop around the fixed pointC1 ~or C2), while the orbits~in Fig. 4a and Fig. 4d,
respectively! corresponding to the windowsA andD circle around the two fixed pointsC1 and
C2. That is, the pattern~Fig. 4d! in the windowD is differs considerably from that~Fig. 5a! in the
window F.

Some details of such a competitive process can be better understood from Fig. 6,
displays nine typical orbits of various periods in some of the narrow periodic windows o
domain 400&s&480. The right-hand-side of the orbit in Fig. 6a, which corresponds to
period-2 windowE of Fig. 2, resembles that in Fig. 5a, which corresponds to the windowF. In
addition, a structure similar to that in Fig. 3a~corresponding to the windowD) can also be found
in Fig. 6a. Therefore, the period-2 orbit in Fig. 6a can be interpreted as from a merging or m
of the two period-1 orbits in Figs. 3a and 5a. This merging process is more clearly demons
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



d-3

the

5230 Zhou, Lai, and Yu: Chaos in Lorenz–Stenflo system at large s

                    
by an intermediate stage displayed in Fig. 6e, which shows an orbit in a very narrow perio
window ats'413.2 betweenD andE.

Several other peculiarities are shown in Fig. 6. In Figs. 6b and 6h, two odd orbits in
narrow periodic windows abouts5439 ands5476 on the left and right sides of the windowE are

FIG. 3. Orbit projections on theX2Z plane corresponding to windowD. ~a! (P1P2)s . ~b! (P1P2)u . ~c! (P1P2)u
2 . ~d!

(P1P2)u
4 .

FIG. 4. Mother orbits~a! and ~d! and their daughter orbits between windowsA and D. ~a!–~c! are in the domains of
forward bifurcations, and~d!–~e! are in the domains of backward bifurcations.~a! and ~d! (P1P2)s . ~b! and ~e!
(P1

2 P2
2 )s . ~c! and ~f! (P1

3 P2
3 )s .
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shown. They are descendants of the orbit Fig. 5a in the windowF. We note that these odd orbit
remain simple and do not merge with others. In fact, a more detailed study shows that onl
orbits merge with each other and form more complicated ones, a curious phenomenon
cause is yet unknown. Furthermore, both symmetric and antisymmetric orbits can appear fr
merging. Figures 6b, 6e, 6g, and 6h show examples of nonsymmetric orbits. Their corresp
windows support a sequence of period-doubling bifurcations but no symmetry-breaking bi
tion. In short, merging and/or splitting of the different periodic orbits in the LS system can le
the appearance of new and peculiar orbit topology.

V. DOMAIN BOUNDARIES

We recall that a classical pitchfork bifurcation occurs forr 511s/s2 at the originO. For
certain parameter values, the only stable node becomes unstable in one direction~saddle-point!
and simultaneously, the two stable fixed pointsC6 emerge. The original symmetrical pitchfor
bifurcation breaks up for small perturbations. The result is a nonbifurcation branch of the
point solutions.14 Thus, the pitchfork bifurcation is structurally unstable. On the other hand
saddle-point character is maintained for allr .11s/s2. Due to the eigenvalue behavio
Re(l1,2,3),0 and Re(l4).0, it possesses a three-dimensional stable manifold as well
one-dimensional unstable one. When we follow the unstable manifold of the origin numerica
both positive and negative directions, we find that the evolutions are given byC1 and C2,
respectively. However, such detailed analyses~for all the bifurcations discussed here! are beyond
the scope of the present work.

To look into the details of the LS bifurcation structure, we analyze the behavior of the ex
and interior basin boundaries appearing in Fig. 2. By tracking the values of min@Zmax

i # and max
@Zmax

i # ~Fig. 7!, one can easily recognize the boundaries of the different overlapping reg
Although the upper boundary of the bifurcation structure is not well defined, the position o

FIG. 5. Orbits projections corresponding to the windowF. ~a!–~d! describe period-doubling bifurcations. Note the topo
ogy of these orbits is completely different from that of Fig. 3.
J. Math. Phys., Vol. 38, No. 10, October 1997
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periodic windows can nevertheless be given. Comparing Figs. 2 and 7, we see that the
bifurcation structure is determined by the exterior boundaries together with several interior
arising from the lower periodic windows.

We shall concentrate on the bifurcation behavior at larges ~betweenF andD). As s decreases
from 600 to 470.7, the exterior boundaries are given bylines 4and5 in Fig. 7. These two exterior
boundaries form the envelope of the backward bifurcation windowF,so that symmetric periodic
orbits are forbidden in this domain. Ass decreases further, an abrupt qualitative change in
evolution of the chaotic attractors occurs at 470.6. Such a behavior is referred to as acrisis.10 Note
that line 1 is a continuation ofline 3 which originates from the boundary of the forward bifurc
tion window A. In fact, line 2 is also associated with the unstable upper branch of window 2Ps .
On the other hand, one sees from Figs. 2 and 7 that the exterior boundary as well as the
boundaries of the windowDaffect mainly the behavior of the bifurcation structures and orbits
s,440. For example, the appearance of the orbit ats5413.2 (3I u8) is due to the overlapping of the
line 6 and the basin boundary of the unstable branch of the windowF. Thus, a nonsymmetric
period-3~labeled 3I u8 in Fig. 7! orbit ~Fig. 6e! is formed. For the more complicated periodic orb
shown in Fig. 6, the details of orbit merging and splitting can also be related to collisio
different basin boundaries. Consequently, boundary collisions lead to the appearance o
topological orbits and phenomena, including periodic orbits and chaotic attractors, boundary
and interior crisis, etc.

FIG. 6. Periodic orbits lying between the windowsD andF. ~a! A period-2 orbit from windowE. ~b!–~e! represent four
period-3 orbits.~f!–~g! and ~h!–~i! give period-4 and period-5 orbits, respectively. Note that~a!, ~c!, ~d!, ~f!, and~i! are
symmetric orbits. Their corresponding periodic windows first support symmetry-breaking bifurcation.
J. Math. Phys., Vol. 38, No. 10, October 1997
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VI. ONE-DIMENSIONAL MAPS

We recall that the Lorenz attractor can be described in terms of a one-dimensiona
Zmax

n115F(Zmax
n ) ~often called scatter function,15 Poincare´ map,14 or return map4!. For the LS

system, one can also construct such a one-dimensional map in terms of the successive ma
Z. By using continuation techniques, we track the one-dimensional maps in very small step
ns. It is found that these maps show a rich variety of fine structures.

Figure 8 displays three complex maps appearing in the backward bifurcation windowsFand
D as well as in the forward windowA. Here one finds prominent cusps (C1 , C2 , andC3 in Fig.
8a! as well as other fine structures~lines 1 to 4!. It should be pointed out that cusped structu
~but of much simpler types! have also been found15 in the Lorenz system for very smallb/s, and
have been interpreted16 in terms of matched asymptotic expansions fors;r @1 andb;1.

Figures 9–11 show some details of the map evolution. Withs decreasing from 489 to 483.5
there are at least two separate basins of attractors. As shown in Fig. 9~frames5485.2), the map
consists of two branches. Ats'483.5 the latter merge with each other and form a cusp~Fig. 9,
frame s5482.7), corresponding toC1 and line 3 of Fig. 8a. In the domain 470.7<s<600, the
orbits are not affected by other exterior and interior boundaries originating from the windoA
andD. Nevertheless, the bifurcation process is still complicated because of the boundary
and bifurcation processes in the windowF itself. At s'470.6, the size of the attractor in the pha
space abruptly changes, that is, a boundary crisis10 occurs. Following the collision of the unstab

FIG. 7. The effect of the exterior and interior boundaries. The regionsA, D, andF correspond to those of Fig. 2. Solid
lines represent exterior boundaries, and heavy lines~including dotted lines, dashed lines, and dash–dotted lines! denote the
interior boundaries~dark lines! originating from the lower periodic windows. The notationnPs , nIs , andnIs8 represent
symmetric period-n windows appearing in the forward and the two backward bifurcation processes, respectively
notation 3I u8 denotes a nonsymmetric period-3 window, with an orbit as shown in Fig. 6~e!.
J. Math. Phys., Vol. 38, No. 10, October 1997
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periodic orbits with the basin boundary of a chaotic attractor, the near-smooth mappings
5470.7 is abruptly changed to include discontinuous behavior~Fig. 9, framess,470.5)

The splitting of the main peakC1 in Fig. 8 is clearly shown in Fig. 9, framess5469.8 and
s5468.2. Ats5469.8, the new cuspC3 ~Fig. 8a! is complete. Following this process, the sym
metric period-2 window (2I s8 in Fig. 7 orE in Fig. 2! appears. From Fig. 9, we see that the ty
of the map ats5450 is similar to that ats5435. The structure of the chaotic attractors in both
these 2Ps windows is of nearly the same topology. Comparing the map ats5435 with that ats

FIG. 8. One-dimensional mapsZmax
n11 vs Zmax

n for s5380, 220, and 150. These represent the three most complex struc
observed in the backward (F and D) as well as the forward (A) bifurcation regions.~a! The symbolsC1, C2 , andC3

indicates three cusped structures, andlines n (n51→4) arise from boundary effects of different periodic windows.
J. Math. Phys., Vol. 38, No. 10, October 1997
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5400 ~Fig. 9!, we note that another new structure~line 4 in Fig. 8a! appears ats5400. According
to Figs. 7 and 2, one sees that it results from the boundary effects of the backward bifur
window D. In other words, the periodic windowD of Fig. 2 strongly affects the neighborin
chaotic attractors.

Thus, the complexity of the one-dimensional map~Fig. 8a! for large rotational effects is a
result of the merging and splitting of different windows. The latter processes lead to the form
of various periodic orbits as well as complex chaotic attractors.

The structure of the one-dimensional map in the backward (D) and forward (A) bifurcation
windows~in Fig. 2! shall now be discussed. Comparing Fig. 8b with Fig. 8c, we observe tha
global structure fors5220 is similar to that fors5150, showing that the windowD of Fig. 2 is
an inverse near-mirror image of the windowA. However, closely examining the maps at spec
parameter values, we find that there are also some differences in the windowsA andD. According
to Fig. 7, we notice that the exterior boundaryline 3 and a continuation~dotted line in 240,s
,320) of line 2 affect the orbits of windowD, as is clearly shown in Fig. 10. Ass decreases
down to a critical values'319.7, an exterior–interior boundary crisis suddenly appears. Figur

FIG. 9. The evolution of the mapZmax
n11 vs Zmax

n for 378,s,600. The coordinates are the same as in Fig. 8.
J. Math. Phys., Vol. 38, No. 10, October 1997
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~frames5319.6) shows that two new lines~such asline 1 and line 3 of Fig. 8a! are produced.
However, the cusp at the right-hand-side~see, for example, Fig. 10, frames5290) disappears a
s'240, implying that the boundary effects arising from the backward windowF becomes smaller
and smaller, while those originating from the forward windowA continue to exist. Note also tha
~Fig. 11! that the behavior of the windowA is almost not affected by the boundary of windowF.
That is, the structure of orbits~including both periodic and chaotic orbits! at small rotation
numbers may not be dependent on the boundaries originating from regions of larger ro
numbers. On the other hand, the behavior at larges value is related not only to the structure
window F itself but also to the basins of attractors at smalls value. How these complex phenom
ena relates in applications to the reality is still unclear and deserves further investigation.

VII. BIFURCATION DIAGRAM IN r SPACE AT LARGE s VALUE

For small s (530), it has been shown9 that there can appear only backward-bifurcati
windows in the traditionalr space. It is thus of interest to see if the conclusion is also valid
larges. Accordingly, we sets5300.0,b58/3, ands510.0, and obtain the bifurcation diagra
for 150,r ,1500.

FIG. 10. The evolution of map theZmax
n11 vs Zmax

n for 190,s,378. The coordinates are the same as in Fig. 8.
J. Math. Phys., Vol. 38, No. 10, October 1997
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In Fig. 12, we see that for larges both forward and backward bifurcations exist. In fact, the
are two consecutive forward period-1 windows (A andB), and one backward period-1 window
(C). Thus, the bifurcation structure is opposite to that of Fig. 2 for thes space. Examining the
orbit projections on theX2Z plane, we found that there does not exist any symmetry-brea
bifurcation in the windowA, and the topology of the orbits there is similar to that in the wind
F ~Fig. 2!. Furthermore, we found that the pattern of the orbits in the windowsB andC in Fig. 12
are also similar to those in Fig. 4d and Fig. 4a, respectively, and that all the periodic
discussed in Sec. IV are also observed here.

VIII. DISCUSSIONS

It is known that for the Lorenz model, backward Hopf bifurcations occur when the Ray
numberr is taken to be the bifurcation parameter. Whenb/s is sufficiently small, there appea
anomalous periodic orbits.4,6 For the LS system, when the rotation numbers is small, there also
exist only backward bifurcations, and the orbit behavior is completely similar to that of the Lo
system. However, whens large, there appear not only two forward period-1 windows, but als
backward period-1 window. Physically, the appearance of period-unity orbits at both sma
larger whens is sufficiently large implies that relatively simple structures such as low-harm

FIG. 11. The evolution of the mapZmax
n11 vs Zmax

n for 0,s,190. The coordinates are the same as in Fig. 8.
J. Math. Phys., Vol. 38, No. 10, October 1997
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waves and tornados can also occur at large amplitudes if the external flow rotation is suffic
strong, while complex and/or chaotic structures dominate the intermediate values ofs.

Whens is varied with fixedr (5340), we found that two backward period-1 windows as w
as one forward period-1 window occur. It is shown that the interaction of domains of diffe
behavior leads to the appearance of orbits with new~mixed! topology. The details of the comple
interaction are displayed in terms of one-dimensional noninvertible maps. It is found that mu
cusped maps which are much more complex than that of the Lorenz system appear.

Thus, the introduction of a simple external rotation7 leads to a much richer dynamical beha
ior than that of the original Lorenz system. Since the rotation significantly alters the chaos b
ior of the latter system, it can be treated as a means of chaos control17,18 without the use of
external or driven oscillations. Our detailed results from continuation techniques showin
constitution of the complex maps arising from merging and splitting of different basins of per
windows may also be useful for the understanding and theoretical analyses of the comple
linear processes and physics of the LS system.
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FIG. 12. The bifurcation diagram inr space fors5300.0,b58/3, ands510.0. It shows that there exist two forwar
period-1 windowsA andB and one backward period-1 windowC.
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Casimir energy of the massless conformal scalar field
on S-2 by the point-splitting method
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We calculate the Casimir energy of the massless conformal scalar field on the
surface~S-2! of a 3 dimensional Riemann sphere by using the point-splitting, mode
sum and thez-function renormalization methods. We also consider the half space
case with both the Dirichlet and the Neumann boundary conditions. This problem is
interesting since the Casimir energy could be calculated analytically by various
methods, thus allowing us to compare different regularization schemes. ©1997
American Institute of Physics.@S0022-2488~97!02909-5#

I. INTRODUCTION

n 1948, Casimir1 argued that two infinite, uncharged conducting plates should attract
other. This force was due to the quantum vacuum polarizations and followed from the fact t
the presence of boundaries a simple normal ordering is not sufficient to renormalize the div
quantum vacuum energy.2,3 Later, observation of the Casimir effect convinced everybody that
real and hence, should be taken seriously.4–6 Casimir hoped to use this effect to explain th
Poincare stresses in a classical model of the electron. However, Boyer’s calculation of the C
effect in a spherical boundary yielded repulsive rather than attractive forces, thus shatterin
early hopes.7 Boyer’s calculation was done for the electromagnetic fields by the mode-
method and with an exponential cutoff. He encountered quadratic, cubic and quartic diverg
in the cutoff parameter. The quartic divergence was eliminated by subtracting the Minko
result without a boundary and for an equivalent volume, the cubic divergence was can
between the electric and the magnetic field modes, while the quadratic divergence was elim
by enclosing the sphere in yet a larger sphere, whose radius was later allowed to approach
Milton et al.8 verified Boyer’s result by using Green’s functions. They did not have to introd
an artificially chosen cutoff function, and also they did not have to introduce an exterior sp
Mostapanenko and Trunov2 and Plunienet al.3 reviewed Casimir effect calculations for mor
general geometries and conditions.

The Casimir effect has also been considered in curved background spacetimes. In 19759

showed that the Casimir energy of the massless conformal scalar field in an Einstein univ
given by

^r&5
\c

480pa4 , ~1!

wherea is the radius of the universe. He used the mode sum method with an exponential c
In this case the finite renormalized vacuum energy density is due to the closed topology~which
means discrete eigenvalues! of the universe rather than the presence of a boundary. Later, Do
and Critchley10 verified Ford’s result by using the point-splitting method. This method is not o
covariant but also cutoff independent.

In renormalizing the quantum vacuum energy, in general, there are three methods. One
methods used is the so called mode-sum method. This method is implemented with a

a!Electronic mail: bayin@newton.physics.metu.edu.tr
0022-2488/97/38(10)/5240/16/$10.00
5240 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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cutoff function and a cutoff parameter. Usually one prefers to work with an exponential c
function of the forme2awn, wherea is a cutoff parameter used to classify the divergences andwn

are the eigenvalues. Physical motivation behind this method is that in a conducting bounda
energy~frequency! modes will not feel the presence of the boundary~or curvature! and hence
should not be included in the quantum vacuum energy calculation inside the boundary~or in
curved spacetime!. Even though this argument sounds plausible, it fails to do justice to
physical nature of the Casimir effect in the sense that the resulting renormalized vacuum en
usually lower than the lowest nonzero energy eigenvalue. One dimensional box with the pe
boundary condition and the Einstein universe case are two typical examples.9 A weak point of this
method is that it is cutoff dependent.2,3 Another method used is thez-function renormalization.
This method is closely related to the mode-sum method. It is cutoff independent howeve
problems in terms of physical motivation and also does not allow one to see clearly what infi
are being thrown away.11 The third and the most powerful method available is the point-splitt
method.12,13 Physical motivation behind this method originates from the fact that the diver
vacuum energy results from terms likeF2 in the Hamiltonian. Such terms correspond to t
multiplication of two field operators at the same point and hence are meaningless. To elim
this problem one replaces terms likeF2 with F(x)F(x8) ~or better yet with the symmetric
expression 1/2$F(x)F(x8) 1 F(x8)F(x)%! and takes the limitx8→x ~known as the coincidence
limit ! of the energy–momentum tensor at the very end. After a careful analysis and substrac
the infinities one gets finite results for the renormalized quantum vacuum energy–mom
tensor. This method is valuable since it is not only covariant but also cutoff independent an
gives the local values of the energy density inside the boundary~or in curved spacetime!. Its main
handicaps are that it is not always possible to evaluate the required two point function analy
and problems that one encounters at the boundary.

The relation between the point-splitting and the mode-sum method has been discus
detail by Plunienet al.3 Even though the definition of the vacuum energy is equivalent in b
methods, one has to be careful since both methods require inherently different regular
schemes. In particular, the resulting energy momentum tensor from the point-splitting m
~usually! contains local divergences as one approaches the boundary.3 These divergences are no
only nonintegrable but also can not be subtracted away by the usual subtractions used a
parallel plate configuration. The fact that identical results have been obtained for some
~parallel plates and spherical shell in flat spacetime! for the vacuum energy does not change t
fact that one has to be careful with the identification of quantities calculated by diffe
methods.2,3,11–13For this reason it is always valuable to find nontrivial models that could be so
analytically by all three methods.

In this paper we first consider the Casimir energy calculation for the massless conf
scalar field on the surface of a three-sphere~S-2!. The corresponding spacetime is the analogue
the Einstein universe. We calculate the renormalized vacuum energy density by all the
methods available. In Sections II A and II B we briefly present the calculations done b
mode-sum and thez-function techniques. In Section II C we present the calculation done by
point-splitting method. For this problem, all three methods used produce the same value, i.e
for the renormalized quantum vacuum energy density. This agrees with the conclusio
Mamaev and Trunov,14 where they have used the mode-sum method and the Abel–Plana
formula.

In Section III we discuss the Casimir energy calculation for the half space on S-2 both
the Dirichlet and the Neumann boundary conditions. The S-3 version of this~called the half
Einstein universe! has been discussed by various authors.15–18 This case is very interesting in th
sense that despite being in curved background spacetime and with a boundary, it could be
analytically by all the available methods. The result we get by the mode-sum method~with an
exponential cutoff! contains an additional quadratic divergence which could not be eliminate
the usual Minkowski substraction. However, one could introduce a special class of cutoff
J. Math. Phys., Vol. 38, No. 10, October 1997
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tions that will discard both the cubic and the quadratic divergences to give the values6 (1/96a) ~
a is the radius of the sphere! for the renormalized vacuum energy for the Dirichlet and
Neuman boundary conditions, respectively.z-function renormalization again produces the abo
result for the renormalized vacuum energy.

However, the point-splitting method gives the value zero for the renormalized ene
momentum tensor for both types of boundary conditions. This follows from the fact that usin
image method one could write the Green’s function as the sum of two terms. The first
corresponds to the Green’s function for the full space and contains all the divergences,
could be renormalized by simply discarding the usual Minkowski contribution. From the res
our Section II C, the contribution of this piece to the renormalized energy–momentum ten
zero. The second piece to the Green’s function, which is due to the presence of the bound
finite in the coincidence limit and its contribution to the renormalized energy–momentum t
again turns out to be zero for both types of boundary conditions.

Finally, in Section IV we discuss our results and compare various regularization schem

II. CASIMIR ENERGY CALCULATIONS FOR THE SURFACE OF A SPHERE

A. Casimir energy for S-2 with the mode-sum method

We take the spacetime metric as

ds25dt22a2~du21sin2 udf2!. ~2!

The wave equation for the massless scalar field with arbitrary coupling is given as

~h1jR!F50, ~3!

whereR 5 2/a2 and for conformal coupling on S-2 we takez 5 1/8. The solution of Eq.~3! is
obtained as

F~ t,u,f!5c0e2 iwl tYlm~u,f!, ~4!

where

wl5
1

a S l 1
1

2D and m52 l ,...,0,...,l ; l 50,1,2,3,... . ~5!

The degeneracygl is given by

gl5~2l 11!. ~6!

Thus, the divergent vacuum energy becomes

Ē0S 5
1

2 (
l 50

`

wlgl D 5
1

4a (
l 50

`

~2l 11!2. ~7!

Using an exponential cutoff we write Eq.~7! as

Ē05
1

4a (
l 50

`

~2l 11!2e2~2l 11!a/2a, ~8!

wherea is a cutoff parameter. Using the Euler–Maclaurin sum formula which is given as19
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



d
at it
tiable

in
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(
j 50

n

F~ j !5E F~x!dx1
1

2
F~0!1

1

2
F~n!1 (

s51

m21
B2s

~2s!!
~F ~2s21!~n!2F ~2s21!~0!!

1E
0

n B2m2B2m~x2@x# !

~2m!!
F ~2m!~x!dx5F~0!1F~1!1•••1F~n!, ~9!

wherem andn are integers such thatn.0 andm.0 and

F ~2m!~x!5
d2mF~x!

dx2m ~10!

is absolutely integrable over the interval (0,n). Also @x# denotes the integer in the interval (x
21,x#; in consequence, as a function ofx, B2m(x2@x#) is periodic and continuous, with perio
1. B2m are the Bernoulli numbers. Significance of the Euler–Maclaurin sum formula is th
could be used to evaluate a given sum in terms of the integral of a continuous and differen
function, plus some correction terms. For this caseF(x) is naturally taken as

F~x!5~2x11!2e2~2x11!a/2a. ~11!

Defining the renormalized vacuum energy as

E05 lim
a→0

@Ē02Ẽ0#. ~12!

We easily obtainE050, whereẼ052a2/a3 and corresponds to the divergent vacuum energy
(112) dimensional Minkowski spacetime for an equivalent volume.

B. Casimir energy for S-2 with the z-function regularization

The Hurwitzz-function is defined as

z~2n,a!5(
l 50

`

~ l 1a!n, n51,2,3,4,..., ~13!

where

z~2n,a!52
Bn11~a!

~n11!
, ~14!

andBn11(x) are the Bernoulli polynomials. We could now writeS l 50
` ( l 1a)252B3(a)/3, where

B3(x)5x(x21/2)(x21).
Using ~7! we could write the vacuum energy density as

r̄05
1

4pa3 (
l 50

`

~ l 11/2!2. ~15!

Taking a51/2 in Eq. ~14! and using Eq.~15! we obtain thez-function renormalized vacuum
energy density as

r05
1

4pa3 z~22,1/2!50. ~16!
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C. Casimir energy for S-2 with the point-splitting method

Using the eigenfunctions given in Eqs.~4! and ~5! we could write the Green’s function
G(1)(x,x8) as12,13

~G~1 !~x,x8!5 !^0uF~x!F~x8!u0&5
e2 iDt/2a

a (
l 50

`

(
m52 l

l
e2 i l Dt/a

~2l 11!
Ylm~u,f!Ylm* ~u8,f8!.

~17!

Using the addition theorem for spherical harmonics and replacingDt by Dt2 i e and by letting
e→0 at the end, one obtains

^0uF~x!F~x8!u0&5
1

4pa&

1

~cosDt/a2cosDs/a!1/2. ~18!

In the above equation,

Dt5t2t8,

and

cosDs/a5cosu cosu81sin u sin u8 cos~f2f8!. ~19!

Notice that the Hadamard Green’s functionG(1)(x,x8) is related toG(1)(x,x8) through the
relation12,13

G~1!~x,x8!52 ReG~1 !~x,x8!. ~20!

We defineD(x,x8)5 1
2G

(1)(x,x8) and use the relations

cosx2cosy52 sin
x1y

2
sin

y2x

2
, ~21!

sin x5x)
n51

` S 12
x2

n2p2D , ~22!

to express Eq.~20! as the infinite image sum,

D~x,x8!52
1

4pa
expF S (

n52`

21

1 (
n51

` D ln
@~2npa1Ds!22Dt2#1/2

2npa G
•

@Ds22Dt2#1/2

sin Ds/a (
n52`

`
~2npa1Ds!

@Dt22~2npa1Ds!2#
. ~23!

In the coincidence limit, i.e. asDs→0 andDt→0, the only divergent term is then50 term,
which is given as

lim
x8→x

Dn50~x,x8!5
1

4p

1

@Ds22Dt2#1/2. ~24!
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This is identical to the Green’s function in (112) dimensional Minkowski spacetime. Thus, a
invariant regularization could be accomplished by simply dropping this term.10 We now express
the renormalized vacuum energy–momentum tensor as the coincidence limit,12

^Tmn& ren.5
1

8
lim

x8→x

F6“m“n822gmn8g
ls8

“l“s82gmr8“
r8

“n82gn8s“

s
“m

1gmn8~“r“

r1“r8“
r8!2

1

2
~Rm

sgsn81gmr8Rn8
r8!1

1

2
gmn8RGD ren.~x,x8!, ~25!

where

D ren.~x,x8!52
1

4pa
expF S (

n52`

21

1 (
n51

` D ln
@~2npa1Ds!22Dt2#1/2

2npa G •

@Ds22Dt2#1/2

sin Ds/a

3S (
n52`

21

1 (
n51

` D ~2npa1Ds!

@Dt22~2npa1Ds!2#
. ~26!

After some tedious calculations one could obtain

lim
x8→x

H D ren.~x,x8!50,
“0“08D ren.~x,x8!52“0“0D ren.~x,x8!50,
“ i“ j 8D ren.~x,x8!52“ i“ jD ren.~x,x8!50,

~27!

which leads us to the result

^Tmn& ren.50, ~28!

for the massless conformal scalar field on S-2.

III. CASIMIR ENERGY CALCULATIONS FOR THE HALF SPACE ON S-2 WITH BOTH
DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

A. Mode-sum method with an exponential cutoff

We now solve the wave equation Eq.~3! with the following boundary conditions

For Dirichlet, F~x!uu5p/250,

and

for Neumann, F ,a~x!nauu5p/250. ~29!

For the Dirichlet boundary condition eigenvalues and the degeneracy are given by

wl5
1

a S l 1
1

2D , gl5 l , ~30!

wherel 50,1,2,3,... . Using an exponential cutoff the divergent vacuum energy becomes

Ē0,D5
1

4a (
l 50

`

~2l 11!le2a~2l 11!/2a. ~31!

Using the Euler–Maclaurin sum formula Eq.~9! we obtain
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Ē0,D5
a2

a32
a

4a22
1

96a
1@Terms in positive powers ofa#. ~32!

Subtracting the divergent vacuum energy in (112) dimensional Minkowski spacetime~for an
equivalent volume! discards only the first term, thus leaving the problem of the quadratic d
gence unsolved. For the Neumann boundary condition eigenvalues and the degeneracy a
by

wl5
1

2a
~2l 11!, gl5 l 11, where l 50,1,2,... . ~33!

Again using an exponential cutoff (e2awl) and using the Euler–Maclaurin sum formula Eq.~9! we
obtain

Ē0,N5
a2

a3 1
a

4a2 1
1

96a
1@Terms in positive powers ofa#. ~34!

Thus the problematic quadratic divergence is still present even though it has reversed its sig
the case of S-3.18

B. An alternate cutoff

To find a solution to the quadratic divergence problem we may try a general class of
functions that Ford has introduced.20 For the Dirichlet boundary condition we write the vacuu
energy density as

r̄0,D5
1

8pa3 (
l 50

`

l ~2l 11! f ~a,wl ,a!, ~35!

where f (a,wl ,a) is a general cutoff function satisfying certain conditions, i.e.

for aÞ0 lim
wl→`

f ~a,wl ,a!→0,

and

lim
wl→0

f ~a,wl ,a!→1, ~36!

rapidly enough to remove all divergences.
We take f (a,wl ,a) to be defined for all real, positive values ofwl so that the limit is

meaningful. We further restrictf to depend only on certain combinations ofwl anda. Thus,

f 5 f ~a,V~wl ,a!!, ~37!

whereV is a function which is chosen so that the expression to be substracted is an in
Finally, we takef to be sufficiently smooth so that

lim
a→0

S ]nf

]VnD50, n51,2,3,... . ~38!

For the Dirichlet boundary condition we takeV as
J. Math. Phys., Vol. 38, No. 10, October 1997
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d

dl
V~a,v l !5v l

22
1

2a
v l . ~39!

We now apply the Euler–Maclaurin sum formula and renormalize the divergent vacuum e
density by discarding the only divergent term which is now expressed as an integral, i.e.

r0,D5 lim
a→0

@ r̄0,D2 r̃0#, ~40!

wherer̃0 is given as

r̃05
1

8pa E
0

`

f ~a,V!dV. ~41!

This gives us the renormalized vacuum energy density as~or E0,D521/96a!

r0,D52
1

192pa3 . ~42!

A similar procedure for the Neumann boundary condition however, withV chosen as

d

dl
V~a,v l !5v l

21
1

2a
v l , ~43!

leads us to

r0,N5
1

192pa3 , ~44!

as the renormalized vacuum energy density~or E0,N521/96a!.

C. Casimir energy with the z-function method

For the Dirichlet boundary condition the divergent vacuum energy density is given by

r0,D5
1

4pa3 (
l 50

`

l ~ l 11/2!. ~45!

This could be written as

r0,D5
1

4pa3 (
l 50

`

~ l 11/2!22
1

8pa3 (
l 50

`

~ l 11/2!. ~46!

By using Eq.~7! we write

r0,D5r02
1

8pa3 (
l 50

`

~ l 11/2!, ~47!

and by using the definition of the Hurwitzz-function Eq.~13! we obtain

r0,D5r02
8

8pa3 z~21,1/2!. ~48!
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Finally, using Eq.~14! gives

r0,D5r02
1

8pa3 •

~2 !B2~1/2!

2
, ~49!

whereB2(x) is a Bernoulli polynomial defined as

B2~x!5x22x11/6. ~50!

Using Eqs.~16! and ~50! we could now write the zeta-function renormalized vacuum ene
density as

r0,D52
1

192pa3 . ~51!

For the Neumann boundary condition the vacuum energy density which is given by

r0,N5
1

4pa3 (
l 50

`

~ l 11!~ l 11/2!, ~52!

could be written as

r0,N5r01
1

8pa3 (
l 50

`

~ l 11/2!. ~53!

Now thez-function renormalized energy density is given as

r0,N5r01
8

8pa3 z~21,1/2!, ~54!

which leads us to@also using Eq.~16!#

r0,N5
1

192pa3 .

D. Casimir energy for the half space on S-2 via the point-splitting method

The Green’s function that we aim to calculate is defined by

^0uF~x!F~x8!u0&5(
l ,m

F lm~x!F lm* ~x8!, ~55!

whereF(x) is the solution of the wave equation Eq.~3! with the appropriate boundary condition
Eq. ~29!. Finding the solution by the separation of variables method Eq.~55! could be written as

^0uF~x!F~x8!u0&5(
l

(
m

e2 iwlDtC lm~xW !C lm* ~xW8!, ~56!

where

C lm~xW !5c0Ylm~u,f!. ~57!
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Ylm(u,f) are still the spherical harmonics, however only the ones that satisfy the correct bou
conditions Eq.~29! are taken. In Table I we present theN( l ,m) values for the full S-2, where

wl5
N~ l ,m!

a
, N~ l ,m!5S l 1

1

2D ,

and

m52 l ,...,0,...,l ; l 50,1,2,3,4,... . ~58!

In Tables II and III we present theN( l ,m) values for the Dirichlet and the Neumann bounda
conditions, respectively.

We now define the Green’s functions for the Dirichlet and the Neumann boundary condi
respectively, as

^0uFD~x!FD~x8!u0&5D̄, ~59!

^0uFN~x!FN~x8!u0&5N̄. ~60!

We write their sum,

D̄1N̄5(
l 50

`

(
m52 l

l

e2 iwlDtC lm~u,f!C lm* ~u8,f8!, ~61!

where

wl5
1

a S l 1
1

2D and C lm~u,f!5c0Ylm~u,f!. ~62!

c0 is the normalization constant for the half space and is given as

TABLE I. N( l ,m) values for the full space case.

0 1 2 3 4 5 6 ..

0 1/2 3/2 5/2 7/2 9/2 11/2 13/2 .....
61 3/2 5/2 7/2 9/2 11/2 13/2 .....
62 5/2 7/2 9/2 11/2 13/2 .....
63 7/2 9/2 11/2 13/2 ....
64 9/2 11/2 13/2 ....
..... ..... ..... ......

TABLE II. N( l ,m) values for the Dirichlet boundary case.

1 2 3 4 5 6 7 .....

0 3/2 7/2 11/2 15/2 .....
61 5/2 9/2 13/2 .....
62 7/2 11/2 15/2 .....
63 9/2 13/2 ....
64 11/2 15/2 ....
..... ..... ..... ......
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c05
1

awl
. ~63!

With this information we see that

D̄1N̄52D~x,x8!, ~64!

whereD(x,x8)5 1
2G

(1)(x,x8) is the Green’s function for the full space. A factor of 2 is due to
fact that eigenfunctions are normalized with respect to the half space.

To evaluateD̄ and N̄ explicitly we find it convenient to write them as

D̄5D~x,x8!2DB~x,x8!, ~65!

and

N̄5D~x,x8!1DB~x,x8!, ~66!

where

DB5 1
2 ~N̄2D̄ !. ~67!

D(x,x8) was evaluated in Section II C as

D~x,x8!5
1

4pa&

1

~cosDt/a2cosDs/a!1/2. ~68!

Using the information given in Tables II and III we could writeDB defined in Eq.~67! as

DB~x,x8!5
1

a Fe2 iDt/2a

1
~Y0,0~u,f!Y0,0* ~u8,f8!!1

e2 iDt3/2a

3
~Y1,1~u,f!Y1,1* ~u8,f8!

1Y1,21~u,f!Y1,21* ~u8,f8!2Y1,0~u,f!Y1,0* ~u8,f8!!

1
e2 iDt5/2a

5
~Y2,0~u,f!Y2,0* ~u8,f8!1Y2,2~u,f!Y2,2* ~u8,f8!

1Y2,22~u,f!Y2,22* ~u8,f8!2Y2,1~u,f!Y2,1* ~u8,f8!

2Y2,21~u,f!Y2,21* ~u8,f8!!1•••• G . ~69!

Using

TABLE III. N( l ,m) values for the Neuman boundary case.

0 1 2 3 4 5 6 .....

0 1/2 5/2 9/2 13/2 .....
61 3/2 7/2 11/2 .....
62 5/2 9/2 13/2 .....
63 7/2 11/2 ....
64 9/2 13/2 ....
..... ..... ..... ......
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Ylm~p2u,f!5~21! l 2mYlm~u,f!, ~70!

we could now rewrite Eq.~69! as

DB~x,x8!5
1

a (
l 50

`

(
m52 l

l
e2 iwlDt

~2l 11!
Ylm~u,f!Ylm* ~p2u8,f8!. ~71!

Using the addition theorem for spherical harmonics,

Pl~cosg!5
4p

2l 11 (
m52 l

l

Ylm~u,f!Ylm* ~u8,f8!, ~72!

where

cosg5cosu cosu81sin u sin u8 cos~f2f8!, ~73!

we could write

(
m52 l

l

Ylm~u,f!Ylm* ~p2u8,f8!5
2l 11

4p
Pl~cos ḡ !, ~74!

where

cos ḡ52cosu cosu81sin u sin u8 cos~f2f8!. ~75!

Now, DB(x,x8) becomes

DB~x,x8!5
1

4a
e2 iDt/2a(

l 50

`

~e2 iDt/a! l Pl~cos ḡ !. ~76!

The sum in Eq.~76! could be evaluated easily to yield

DB~x,x8!5
1

4pa&

1

~cosDt/a2cos ḡ !1/2, ~77!

where

cos ḡ52cosu cosu81sin u sin u8 cos~f2f8!. ~78!

We could now write the complete Green’s functionsD̄ and N̄ as

D̄5
1

4pa&

1

~cosDt/a2cosDs/a!1/22
1

4pa&

1

~cosDt/a2cos ḡ !1/2, ~79!

N̄5
1

4pa&

1

~cosDt/a2cosDs/a!1/21
1

4pa&

1

~cosDt/a2cos ḡ !1/2, ~80!

where cosDs/a and cosḡ/a are given by Eq.~19! and Eq.~75!, respectively.
We also note that these Green’s functions are naturally identical to the Green’s function

one could get by using the image method, which always works on the double manifold d
by15,16
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Mø]MøM* . ~81!

M is the physical space inside the boundary,]M is the boundary andM* is the dual space
obtained by reflecting the physical space about the boundary. In the image method one
satisfies the boundary conditions Eq.~29! by placing an image charge in the dual space, i.e.

G~x,x8!5D~x,x8!6D~x,x̃ 8!, ~82!

where2~1! refers to the Dirichlet~Neumann! boundary condition,D(x,x8) is the Green’s func-
tion for the double manifold andx̃ 8 is the image ofx8. Notice that in Eq.~79! and Eq.~80! the
first term is the Green’s function for the double manifold, which in this case is the full S-2, an
cosḡ in the second term could be rewritten as

~cos ḡ5 !cosD s̃ /a52cosu cosu81sin u sin u8 cos~f2f8!, ~83!

which could be obtained from cosDs/a by substituting the image ofx8, i.e. by replacingu8 with
p2u8.

In the Green’s functions Eq.~79! and Eq.~80!, in the coincidence limit, only the first term
diverges. It could be renormalized as discussed in section II C, whose contribution to the
malized energy momentum tensor is zero Eq.~28!. After some tedious calculations we also fin
out that the contribution of the second terms in Eq.~79! and Eq.~80! are also zero, thus giving th
renormalized vacuum energy–momentum tensor of the massless conformal scalar field
space S-2 either with the Dirichlet or the Neumann boundary conditions as

^Tmn& ren.50. ~84!

Some useful formulas for this calculation are

lim
x8→x

“f“fD s̃52
a

2
tan u cos 2u, ~85!

lim
x8→x

“f“f8D s̃52
a

2
tan u, ~86!

lim
x8→x

~“ i“
i1“ i 8“

i 8!D s̃5
21

a
tan u, ~87!

lim
x8→x

~“ i¹ s̃“

iD s̃1“ i 8D s̃“

i 8D s̃ !50, ~88!

lim
x8→x

gi j 8
“ i“ j 8D s̃5

csc 2u

a
, ~89!

lim
x8→x

gi j 8
“ i~D s̃!“ j 8~D s̃ !521, ~90!

lim
x8→x

D~x,x̃8!5
1

8pa cosu
. ~91!
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IV. DISCUSSION

In Section II we discussed the quantum vacuum energy problem for the massless con
scalar field in S-2. Mamaev and Trunov14 have obtained the value zero for this problem by us
the mode-sum method with the Abel–Plana sum formula. We show that one also gets the
result by using the Euler–Maclaurin sum formula~with an exponential cutoff!, z-function method,
and also by the point-splitting method. Recently, massless scalar fields with minimal couplin
been studied by Elizalde21 via thez-function method. He obtains

r0520.132548
1

a3 ~a is the radius of the sphere!, ~92!

for the renormalized energy density on S-2. It is interesting that the corresponding calculati
the massless conformal scalar field for S-1 yields negative renormalized vacuum energy de22

while for S-3 ~Einstein universe! one gets positive energy density given by Eq.~1!.
In Section III we discuss the Casimir energy for the half space on S-2 by the Dirichlet an

Neumann boundary conditions. This case is interesting since it is one of the rare cases
boundary and on curved spacetime, and yet could be solved analytically by all the ex
methods. Using the mode-sum method, with an exponential cutoff, the divergent vacuum e
contains both cubic and quadratic divergences, i.e.

Ē0, D5
a2

a32
a

4a22
1

96a
1@Terms in positive powers ofa#, for Dirichlet, ~93!

and

Ē0, N5
a2

a3 1
a

4a2 1
1

96a
1@Terms in positive powers ofa#, for Neumann. ~94!

Notice that the full space result is easily understood by the fact that in this case the vacuum
will be given by the sum of the Eqs.~93! and~94! where the quadratic divergences and the fin
pieces cancel each other. In these equations the cubic divergence could be eliminated by s
ing the equivalent Minkowski energy, however this leaves the problem of quadratic diverg
unsolved.17,18 To solve this problem we tried a general class of cutoff functions with a partic
dependence on certain combinations ofw anda. In this case we obtained the values

r056
1

192pa3 , where2~1! for Dirichlet ~Neumann!, ~95!

for the renormalized energy density. This method is rather ad hoc and highly sensitive
choice ofV and for different problems requires different definitions ofV Eqs.~39! and ~43!.

However, thez-function method seems to conveniently discard all the divergences,
though it does not allow one to see clearly what is being thrown away, to produce the same
When we used the point-splitting method, we obtained the full space result for the renorm
vacuum energy density, i.e., zero for both types of boundary conditions. This result is in line
the ‘‘trend’’ set by the S-1 and S-3 half space cases,17,18,22and it is also interesting by the fact tha
it does not have the local, nonintegrable divergence as the boundary is approached.23

The difference between the conclusions of the point-splitting and the other two me
indicates that in the presence of boundaries one has to be careful in comparing the v
energies obtained by different methods. In particular, in comparing the mode-sum and the
splitting methods one has to notice that even though the definition of vacuum energy in
methods is equivalent, they require inherently different regularization schemes. In the mod
method one calculates the total energy by introducing a cutoff function and the divergenc
J. Math. Phys., Vol. 38, No. 10, October 1997
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classified in terms of a cutoff parameter. For the massless conformal scalar field in a one
sional box and on the surface of Riemann spheres in 2, 3 and 4 dimensions the vacuum
could be easily renormalized by subtracting the Minkowski contribution. However, in thre
mensions with a spherical boundary~Boyer’s problem! there exists cubic and quadratic dive
gences in addition to the quartic divergence which could be eliminated by the Minkowski
traction. To handle the remaining divergences, Boyer had to confine himself to electroma
fields, where the cubic divergence is cancelled between the TE and TM modes. To elimina
quadratic divergence Boyer had to enclose his sphere in yet a larger sphere whose radius w
allowed to go to infinity. In this process, he obtained a finite value for the vacuum energy. A
point of this calculation, besides being cutoff dependent, is that one has to make assum
about the exterior geometry to calculate the vacuum energy inside the boundary.

On the other hand, the point-splitting method which gives the energy distribution~in general
Tmn! can not always be directly compared to the mode-sum method because of the existe
local nonintegrable divergences as the boundary is approached. Local calculation of the B
problem by Olaussen and Ravndal24 demonstrated this fact very clearly. They showed that in or
to get a finite value~Boyer’s result! for the total energy, one has to consider the exterior vacu
to cancel the divergence as the boundary is approached.

It is interesting that half space calculations with the point-splitting method does not have
divergences as the boundary is approached. These are examples of exact Casimir effect
tions in a curved background and yet with a boundary. For the half Einstein universe~S-3!
Kennedy and Unwin16 have shown that the contribution of the boundary to the renormal
energy–momentum tensor vanishes due to the topological aspects of the manifold in the f
multiple scattering, which exactly cancels the local position dependence, thus leaving on
vacuum stresses for the complete Eintein universe.9 The same thing happens in our case as w
In Eq. ~82! if we use the infinite series~image sum! representation ofD(x,x8) given in Eq.~23!
we see that the contributions of then50 and thenÞ0 terms to the energy momentum tensor d
to D(x,x̃8) are equal and opposite in sign. They are given as

^T0
0&n5052^T0

0&nÞ05
1

16pa3 F csc 2u

~p22u!cosu
1

1

~p22u!2 cosu
2

4

~p22u!3 sin u G . ~96!

It is interesting that in neither of these half space cases one needs to consider the exterior
or assume an exterior geometry.

For boundaries of arbitrary size one expects these local divergences~as the boundary is
approached! to reappear and the cure is not simple. This pathology in the point-splitting me
shows up in different places in different forms. A common feature of all such calculations is
boundary is defined as a sharp surface. Even though one could expect to eliminate this prob
introducing a realistic boundary, i.e., with finite thickness and conductivity, divergences
probably reappear in the limit of zero thickness and zero conductivity. One could easily chec
the unrenormalized Green’s functions Eqs.~79!, ~80! satisfy the boundary conditions and the wa
equation in curved spacetime. However, after renormalization@subtracting then50 term in Eq.
~23! which, in the coincidence limit reduces to the Minkowski contribution# the renormalized
Green’s functions fail to satisfy the boundary conditions. In fact, in the coincidence limit
renormalized Green’s functions diverge on the boundary Eqs.~27! and~91!. This is natural since
we deliberately constructed the unrenormalized Green’s functions Eqs.~79!, ~80! to satisfy the
boundary conditions, even whenx→x8. However, in the process of renormalization we ha
subtracted from these a quantity that diverges on the boundary asx→x8. Despite this divergence
on the boundary, one gets finite results for the renormalized energy–momentum tensor in t
space case since it is obtained from the Green’s functions by a complicated process Eq.~25!. A
radical solution to the problem could come from the consideration of quantum boundary flu
J. Math. Phys., Vol. 38, No. 10, October 1997
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tions. A temporary solution could be obtained by taking the point-splitting result as valid up
finite distanced from the sharply defined boundary~which will correspond to the inner edge of th
boundary! and to patch the result to a suitable model for the boundary.

Some recent work on this subject includes Elizalde’s paper, where for the massless scal
with minimal coupling and on S-2 he obtained21

r050.016766
1

r 3 , for Dirichlet,

and

r0520.149314
1

r 3 , for Neumann. ~97!

We have also studied the Casimir energy of the twisted string loops both for uniform and
segment loops by various renormalization techniques.25
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17S. Ş. Bayın and M. Özcan, Class. Quantum Grav.10, L115 ~1993!.
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We shall study spatially homogeneous cosmological models containing a self-
interacting scalar field with an exponential potential of the formV(f)5Lekf. The
asymptotic properties of these models are discussed. In particular, their possible
isotropization and inflation are investigated for all values of the parameterk. A
particular class of models is analyzed qualitatively using the theory of dynamical
systems, illustrating the general asymptotic behavior. ©1997 American Institute
of Physics.@S0022-2488~97!01510-7#

I. INTRODUCTION

Scalar field cosmology is of importance in the study of inflation, an idea popularize
Guth,1 during which the universe undergoes a period of accelerated expansion~see, for example,
Olive2!. One particular class of inflationary cosmological models are those with a scalar fiel
an exponential potential of the formV(f)5Lekf, whereL and k are non-negative constant
Models with an exponential scalar field potential arise naturally in alternative theories of gr
such as, for example, theories based on the Brans–Dicke theory~for example, extended
inflation,3,4 and hyper-extended inflation5!, in the Salam–Sezgin model ofN52 super-gravity
coupled to matter,6 and in theories undergoing dimensional reduction to an effective f
dimensional theory.7 In addition, other theories of gravity, such as, for example, quadratic
grangian theories, are known to be conformally equivalent to general relativity plus a scala
having exponential-like potentials.8,9 Cosmologies of this type have been studied by a numbe
authors, including Halliwell,7 Burd and Barrow,10 Kitada and Maeda11,12 and Feinstein and
Ibáñez.13

Our aim here is to analyze Bianchi cosmologies containing a scalar field with an expon
potential. Since the potential is an exponential function the governing differential equation
hibit a symmetry,14 and when appropriate expansion-normalized variables are defined, the
erning equations reduce to a dynamical system with the following desirable properties:

~1! The resulting dynamical system is polynomial.
~2! The phase space is compact~except in the cases of Bianchi types VII0, VIII and IX, in which

the phase space is closed but unbounded!.15

~3! The differential equation for the expansion decouples from the other equations, there
lowing a reduced system of ordinary differential equations to be analyzed by standard
metric ~dynamical systems! techniques.15–18

~4! In addition, all equilibrium points of the reduced system correspond to self-similar co
logical models.19

In particular, we wish to qualitatively study whether the spatially homogeneous models i
0022-2488/97/38(10)/5256/16/$10.00
5256 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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and/or isotropize, thereby determining the applicability of the so-called cosmic no-hair conje
in homogeneous scalar field cosmologies with an exponential potential. This latter aim
relevance, in part, due to the fact that inflation in such models is of power-law type,10 which is
weaker than in conventional exponential inflation for which no-hair theorems exist.20 Essentially
the cosmic no-hair conjecture asserts that inflation is typical in a wide class of scalar field
mologies. Another motivation for this work is to determine the relevance of the exact solution~of
Bianchi types III and VI! found by Feinstein and Iba´ñez,13 which neither inflate nor isotropize, an
to investigate whether their qualitative properties are typical.

As noted earlier a number of authors have studied such cosmological models. Homog
and isotropic FRW~Friedmann–Robertson–Walker! models were studied by Halliwell7 using
phase-plane methods~see also, for example, Olive2!. Homogeneous but anisotropic models
Bianchi types I and III~and Kantowski–Sachs models! have been studied by Burd and Barrow10

in which they found exact solutions and discussed their stability. Lidsey21 and Aguirregabiria
et al.22 found exact solutions for Bianchi type I models and Aguirregabiriaet al.22 also completed
a qualitative analysis of these models. Bianchi models of types III and VI were studie
Feinstein and Iba´ñez,13 in which exact solutions were found. A qualitative analysis of all Bian
models withk2,2, including standard matter satisfying various energy conditions, was comp
by Kitada and Maeda.11,12 They found that the power-law inflationary solution is indeed
attractor for all initially expanding Bianchi models~except for a subclass of the Bianchi type I
models which will recollapse!.

This paper is organized as follows. In Sec. II, we shall discuss general qualitative featu
homogeneous scalar field cosmologies with an exponential potential, such as, for ex
whether they isotropize or inflate, and we shall determine the relevance of the Feinstein–´ñez
solutions.13 In addition, we will show that all equilibrium points of the ‘‘reduced’’ dynamic
system correspond to self-similar cosmological models. In Sec. III, we will perform a det
qualitative analysis of a particular class of Bianchi models, which includes models of Bia
types I, III, V and VI, and in so doing we will illustrate the general asymptotic propertie
spatially homogeneous models discussed in Sec. II. We shall make some concluding rem
Sec. IV.

II. ISOTROPIZATION AND THE COSMIC NO-HAIR THEOREM

A. Background

It was proven by Wald20 that all initially expanding spatially homogeneous models with
positive cosmological constant~and ordinary matter satisfying both the strong and domin
energy conditions! asymptotically approach the isotropic de Sitter solution~except for a subclass
of the Bianchi type IX models which recollapse!. Following Wald’s20 result, a number of extende
‘‘cosmic no-hair theorems’’ have been proven for Bianchi models. In particular, and essen
using Wald’s approach, Kitada and Maeda11,12 have proven that fork2,2, all initially expanding
spatially homogeneous models containing a scalar field with an exponential potential~and ordi-
nary matter satisfying the energy conditions! locally approach an isotropic, power-law inflationa
solution~in the Bianchi type IX case the models must also satisfy the condition that the ratio o
effective vacuum energy to the maximum three curvature is larger than some critical value!. In the
special casek50, the theorem essentially reduces to Wald’s result,20 and the unique attractor i
the ~exponential inflationary! de Sitter solution.

In related work, Heusler23 proved that all Bianchi models with ordinary matter satisfying t
usual energy conditions and containing a scalar field with a positive, convex potential@with a local

minimum such thatV(f0)50; for example,V(f)5 1
2 mf2], can only approach isotropy at infi

nite times if the underlying Lie group is admitted by a FRW model. This work partially exte
~by including scalar fields! the famous result of Collins and Hawking24 that only a subclass o
measure zero in the space of all homogeneous models can asymptotically approach isotrop
J. Math. Phys., Vol. 38, No. 10, October 1997
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we shall extend Heusler’s result to the case of a scalar field with an exponential potentia
k2.2 ~see also Ref. 25!. In this case the scalar fieldf is generally not bounded an
fV8(f)>V(f) is only satisfied whenf is positive; therefore the conditions in Heusler’s ma
theorem are not met. However, Heusler’s Proposition 1~where nowu→0 andV→0 ast→` if
there exists a timet0 with u(t0)>0) and Proposition 2~which gives necessary conditions in ord
for a homogeneous model which is not among the Bianchi types admitted by a FRW mo
isotropize!, are both true in the case of an exponential potential. Consequently in our calcu
below we effectively replace Heusler’s Proposition 3 with an analogous result on the behav
V/E in the case of an exponential potential.

B. Equations

Cosmological models with a minimally coupled scalar field have a stress-energy tensor
by

Tab5f ;af ;b2gab~
1
2 f ;cf

;c1V~f!!, ~2.1!

where for a homogeneous scalar fieldf5f(t), so thatf ;cf
;c52ḟ2 ~where an over-dot denote

differentiation with respect to the proper time!. In this case we can formally treat the stress-ene
tensor as a perfect fluid with velocity vectorua5f ;a/A2f ;bf ;b, where the energy density and th
pressure are given by

rf[E5 1
2ḟ

21V~f!, ~2.2a!

pf5 1
2ḟ

22V~f!. ~2.2b!

In the models under consideration, the potential of the scalar field is given by

V~f!5Lekf, ~2.3!

whereL ~.0! andk are constants.
From the Einstein field equations we have the Raychaudhuri equation governing the evo

of the expansion

u̇522s22 1
3 u22ḟ21V~f!, ~2.4!

and the generalized Friedmann equation

u253s21 3
2ḟ

213V~f!2 3
2 P, ~2.5!

wheres is the shear scalar,P is the scalar curvature of the homogeneous hypersurfaces, whi
always negative except in the Bianchi IX case,20 and V(f) is given by Eq.~2.3!. The Klein–
Gordon equation for the scalar field with an exponential potential is then

f̈1uḟ1kV~f!50. ~2.6!

Defining c by

c5ḟ1
k

3
u, ~2.7!

and using Eqs.~2.4! and ~2.5!, the Klein–Gordon equation can be written as
J. Math. Phys., Vol. 38, No. 10, October 1997
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ċ1uc1
k

3
P50. ~2.8!

We now introduce new expansion-normalized variables and a new time variable as fol

b5A3
s

u
,

dt

dV
5

3

u
, C5

A6

2

ḟ

u
, F5A3L

ekf/2

u
. ~2.9!

With these definitions, Eqs.~2.4!–~2.6! can be rewritten as

C852C~222b222C21F2!2
A6k

2
F2, ~2.10a!

F852FS 2122b222C21F22
A6k

2
C D , ~2.10b!

where a prime denotes differentiation with respect to the new timeV. The equilibrium points of
the system have eitherF5C50, which corresponds to the massless scalar field case
b21C251,F50, which represents the Kasner-like initial~line! singularity, or else~and in all
cases of interest here! obey the following relation:

F21C252
A6

k
C. ~2.11!

In terms of these new expansion-normalized variables the energy density of the scala
~2.2a! can be written as

E

u2
5

1

3
~C21F2!, ~2.12!

and we have that

C52
k

A6
1

A3

A2

c

u
. ~2.13!

Hence, at the equilibrium points we obtain

E

u2 52
A6

3k
C5

1

3 S 12
3

k

c

u D , ~2.14a!

V

E
5

F2

C21F2 512
k2

6
1

k

2

c

u
. ~2.14b!

C. Isotropization

Following Heusler,23 the necessary conditions for an anisotropic and homogeneous solut
isotropize are:

b50, ~2.15!

and ~Heusler’s Proposition 223!
J. Math. Phys., Vol. 38, No. 10, October 1997
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E

u2
→

1

3
, ~2.16a!

K V

E L >
2

3
, ~2.16b!

where^ & denotes an appropriate time average@Heusler,23 Eq. ~20!#.
Now, using Eq.~2.14a!, Eq. ~2.16a! implies that

c

u
→0. ~2.17!

Using Eq.~2.17! we can now computêV/E& viz.,

K V

EL 512
k2

6
~2.18!

~this replaces Heusler’s Proposition 323!. Hence Eq.~2.16b! implies that

12
k2

6
>

2

3
⇒k2<2. ~2.19!

Therefore, we have shown that if the model is not of Bianchi types I, V, VII, or IX~i.e., is not
one which is admitted by the FRW model!, thenk2<2 is a necessary condition for these mod
to isotropize. Like Heusler,23 we have not completely generalized the Collins and Hawkin24

result that only a subclass of homogeneous models of measure zero can isotropize since w
not explicitly investigated Bianchi models of types VIIh and IX.

The following questions consequently arise concerning the future asymptotic behavior
models whenk2.2:

~1! For those models that may isotropize~namely Bianchi types I, V, VII, and IX!, do they indeed
isotropize?

~2! For those models which cannot isotropize, what is the role of the Feinstein–Iba´ñez solutions13

~since fork2.2 these solutions are neither isotropic nor inflationary!?

The first question is answered in Sec. II E. The second question is addressed in Sec. III.

D. Inflation

For inflation to occur we must have that

2b212C22F2,0, ~2.20!

so that, using Eqs.~2.11!, ~2.13! and ~2.20!, at the equilibrium points the solution will inflate if

~k222!23k
c

u
,0. ~2.21!

Therefore, from Eqs.~2.15! and ~2.17!, for models to inflate and isotropizek2 must be less than
two, a well known result.7,11,12

We have shown thatk2<2 is a necessary condition for the homogeneous models u
consideration to isotropize, and fork2,2 these models will inflate. However, we have not prov
that all such models withk2<2 do isotropize~although we shall explicitly demonstrate that this
J. Math. Phys., Vol. 38, No. 10, October 1997
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the case for a subclass of Bianchi models in Sec. III!. The no-hair theorem of Kitada an
Maeda,11,12 described in Sec. II A, does show that fork2,2 the isotropic, power-law inflationary
FRW solution is the unique attractor for any initially expanding Bianchi model. In addition, t
authors also showed12 that in these models anisotropies always enhance inflation in models
non-positive spatial curvature~over their isotropic counterparts! and generally enhance inflation i
models of Bianchi type IX~however; see the detailed discussion in Kitada and Maeda,12 pp.
720–721!.

E. The Bianchi VII h case

To determine if there exist any spatially homogeneous spacetimes which isotropize
k2.2, we need to consider Bianchi models of type I, V, VII and IX.~See Sec. III for details of the
Bianchi type I and V models.! In the case of the Bianchi type IX models, Kitada and Maed12

showed that for the casek2,2 any initially expanding model will isotropize toward the power-la
solution provided that the ratio of the effective cosmological constant to the maximum t
curvature is larger than some critical value~and that the time derivative of this ratio be positive!.
However, their analysis is incomplete. Fork2.2, it is apparent that there exists an open set
Bianchi IX initial data such that these models isotropize and an open set of initial data suc
these models recollapse. Henceforth, since the Bianchi types VII0, V and I are special classes o
Bianchi models, we shall concentrate on whether the Bianchi VIIh models isotropize.

If the Bianchi VIIh models are to isotropize then they must approach a FRW model as
evolve to the future. If we consider the system of ordinary differential equations describin
evolution of the Bianchi type VIIh models as a dynamical system, then we are able to deter
whether the models isotropize by examining the stability of the isotropic equilibrium points.
has been done in a companion paper by the authors26 in which the particular details of the analys
of the Bianchi type VIIh models can be found. The results are summarized in Table I.

We observe that fork2,2 the zero-curvature, power-law inflationary FRW model is
attractor for the Bianchi VIIh models. On the other hand, ifk2.2, then we find that the attracto
is a negatively curved FRW model. Since the Bianchi VIIh model represents a general class
spatially homogeneous models, we can now assert that~with respect to scalar field cosmologic
models with an exponential potential! there exists a set of initial data~Bianchi VIIh initial data in
particular! of non-zero measure in the space of all spatially homogeneous initial data which
evolve toward an isotropic FRW model to the future.

We note that each of the equilibrium points in Table I also exist as equilibrium points in
Bianchi V phase space~see Sec. III!.

TABLE I. The isotropic equilibrium points of the Bianchi type VIIh models and their stability.a

Equilibrium point Corresponding
(b,C,F) a Values ofk2 Description Stabilityb Eq. in Ref. 26a

(0,0,0) 0,k2 Milne Unstable ~2.16!
(0,61,0) 0,k2 Flat FRW Unstable ~2.18!,~2.20!

S0,2
A6

6
k,A12

k2

6 D 0,k2,2 Power-law inflation Stable ~2.22!

2,k2,6 Flat FRW Unstable
6,k2 DNE

S0,2
A6

3k
,
2A3

3k D 2,k2 Open FRW Stable ~2.24!

0,k2,2 DNE

aThe information given here utilizes the variables defined in Sec. II. Note that different variables were used in Re
bDNE means that the equilibrium point does not exist in this case.
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F. Self-similarity

For an exponential potential the equation for the evolution of the expansion~2.4! decouples
from the ‘‘reduced dynamical system’’ in the new expansion-normalized variables~2.9! @Refs. 15
and 19; see also Eqs.~3.11! in Sec. III#, and consequently at the equilibrium points we must h
that

u5u0t21, ~2.22!

hence the corresponding cosmological models are necessarily self-similar in that they a
homothetic vector27 ~except in the degenerate casek50 in which the right-hand side of Eq.~2.4!
can be zero and the corresponding model is the de Sitter space–time which does not a
homothetic vector!. In particular, the isotropic, power-law inflationary~FRW! attracting solutions
~in the casek2,2) are self-similar models and the Feinstein–Iba´ñez13 solutions ~in the case
k2.2) are also self-similar.

III. A CLASS OF ANISOTROPIC COSMOLOGICAL MODELS

A. Equations

The diagonal form of the Bianchi type VIh metric is given by

ds252dt21a~ t !2dx21b~ t !2e2mxdy21c~ t !2e2xdz2, ~3.1!

wherem5h21. If m51 then the metric is of Bianchi type V, ifm50 then the metric is of
Bianchi type III, and ifm521 then the metric is of Bianchi type VI0 . Thus we are considering
a one-parameter (m) class of Bianchi models which include Bianchi types III (m50), V (m51),
VI0 (m521), and VIh ~all otherm).

The expansion scalar, which determines the volume behavior of the fluid, is given by

u5
ȧ

a
1

ḃ

b
1

ċ

c
~3.2!

~where an over-dot denotes differentiation with respect to the proper time!. The shear tensor,sab ,
determines the distortion arising in the fluid flow leaving the volume invariant. The non-
components of the shear tensor are

s115
a2

3
S 2

ȧ

a
2

ḃ

b
2

ċ

c
D ,

s225
b2e2mx

3
S 2

ḃ

b
2

ȧ

a
2

ċ

c
D , ~3.3!

s335
c2e2x

3
S 2

ċ

c
2

ȧ

a
2

ḃ

b
D ,

and the shear scalar,s2[ 1
2s

absab , is given by

s25
1

3
F S ȧ

a
D 2

1S ḃ

b
D 2

1S ċ

c
D 2

2
ȧḃ

ab
2

ȧċ

ac
2

ḃċ

bc
G . ~3.4!

In the case under consideration here, there is no rotation and no acceleration.
For a scalar field with an exponential potential, the Einstein field equations are
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ä

a
1

b̈

b
1

c̈

c
52ḟ21Lekf, ~3.5a!

ȧ

a
~11m!2m

ḃ

b
2

ċ

c
50, ~3.5b!

ä

a
1

ȧ

a

ḃ

b
1

ȧ

a

ċ

c
2

m211

a2
5Lekf, ~3.5c!

b̈

b
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
2

m21m

a2
5Lekf, ~3.5d!

c̈

c
1

ȧ

a

ċ

c
1

ḃ

b

ċ

c
2

m11

a2
5Lekf. ~3.5e!

From the above equations one obtains the generalized Friedmann equation@see Eq.~2.5!#

u253s21
3

2
ḟ213Lekf1

3

a2
~m21m11!. ~3.6!

Note that the quantitym21m11>3/4.0. The Raychaudhuri equation is@see Eq.~2.4!#

u̇522s22 1
3 u22ḟ21Lekf. ~3.7!

The evolution equation for the shear is

ṡ52su1
~12m!

3A3Am21m11
S u223s22

3

2
ḟ223LekfD . ~3.8!

The Klein–Gordon equation for the scalar field is@see Eq.~2.6!#

f̈52uḟ2kLekf. ~3.9!

The above system of Eqs.~3.6!–~3.9! is invariant under the transformation~see Coley and van
den Hoogen19!,

u→lu, ḟ→lḟ, f→f1
2

k
ln l

~3.10!

s→ls, t→l21t.

This invariance implies that there exists a symmetry in the dynamical system~3.6!–~3.9!.14 With
the change of variables given by Eq.~2.9!, the evolution equations forb, C and F become
independent of the variableu. That is,u decouples from the dynamical system describing
evolution ofb, C andF. The dynamical system can be considered as a reduced dynamical s
for b, C andF together with an evolution equation foru ~see the equations below!.

The system of differential equations in the expansion-normalized variables becomes:
J. Math. Phys., Vol. 38, No. 10, October 1997
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db

dV
5b~q22!1

12m

Am21m11
~12b22C22F2!, ~3.11a!

dC

dV
5C~q22!2

A6k

2
F2, ~3.11b!

dF

dV
5F~11q!1

A6k

2
CF, ~3.11c!

and the decoupled evolution equation for the expansion

du

dV
52u~11q!, ~3.11d!

where the deceleration parameter,q, is defined by

q52 b212 C22F2. ~3.12!

The domain of interest@determined by Eq.~3.6!# is the region defined by

b21C21F2<1, ~3.13!

which describes the surface and interior of a sphere in the~reduced! phase space (b,C,F). We
also note that the above system is invariant under the transformationF→2F, and hence without
loss of generality we restrict ourselves to the set Eq.~3.13! andF>0; i.e., the upper hemispher
of the sphere defined by Eq.~3.13!.

Inflation in the context of this paper is defined to occur whenever the deceleration para
is negative, i.e.,q,0. We easily see from Eq.~3.12! that the inflationary regime describes th
interior of a cone inside the sphere defined by Eq.~3.13!.

B. Qualitative Behavior

1. Equilibrium points

The equilibrium point

H b5
12m

2 Am21m11
, C50, F50J , ~3.14!

satisfies the boundary condition, Eq.~3.13!, for all m, and whenm521 the point is part of the
non-isolated line of equilibrium pointsb21C251 ~which will be discussed later!. The inflation-
ary conditionq,0 is never satisfied and hence this point is non-inflationary. The linear
system in a neighborhood of the equilibrium point has eigenvalues

l15
23~m11!2

2~m21m11!
, l25

23~m11!2

2~m21m11!
, l35

3~m211!

2~m21m11!
. ~3.15!

It is easily seen that this point is a saddle point with a two-dimensional stable manifold. The
solution corresponding to this point is that of a vacuum Bianchi type VIh model or one of its
degeneracies~i.e., if m50 it is type III, and if m51 it is an isotropic Milne model!, with line
element~after a re-coordinatization!
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ds252dt21a0
2~ t2p1dx21t2p2e2mxdy21t2p3e2xdz2!, ~3.16!

where

p151, p25
m21m

m211
, p35

m11

m211
, ~3.17!

so thatp11p21p35p1
21p2

21p3
2.

The equilibrium point

H b50, C52
A6k

6
, F5

A6

6
A62k2J , ~3.18!

does not exist ifk2.6 and is part of the non-isolated line of equilibrium pointsb21C251 when
k256. The point lies on the boundary of the phase spaceb21C21F251 and hence it corre-
sponds to a model with zero curvature. The point is inflationary if

q5
k222

2
,0; ~3.19!

that is, the point represents an inflationary model ifk2,2. The linearized system in a neighbo
hood of the equilibrium point has eigenvalues

l15
k226

2
, l25

k226

2
, l35k222. ~3.20!

If k2,2 the point is therefore a sink, and if 2,k2,6 then the point is a saddle point.~The nature
of this point whenk252 or k256, the bifurcation values, will be discussed later.! For kÞ0 the
exact solution corresponding to this equilibrium point is that of a flat FRW model with
element given by~after a re-coordinatization!

ds252dt21t4/k2
~dx21dy21dz2!, ~3.21!

and if k50 ~the scalar field potential is equivalent to a positive cosmological constant! then the
exact solution is the de Sitter model. The scalar field forkÞ0 is given by

f5f02
2

k
ln t. ~3.22!

The equilibrium point

H b52
~k222!

2

~m21!Am21m11

@~k222!~m21m11!13~m211!#
,

C52
A6k

2

~m211!

@~k222!~m21m11!13~m211!#
,

F5
A6

2

Am211A@~k222!~m11!214~m211!#

@~k222!~m21m11!13~m211!#
J , ~3.23!
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can be shown~after much algebra! to satisfy the boundary condition, Eq.~3.13!, if k2>2 and
satisfies the inflationary conditionq,0 if k2,2. This implies that the corresponding solution
non-inflationary when the point exists inside the physical phase space given by Eq.~3.13!. The
linearized part of the system in a neighborhood of the equilibrium point has eigenvalues

l152
3

2 H 4~m211!1~k222!~m11!2

~k222!~m21m11!13~m211!
J ,

l252
3

4 H ~k222!~m11!214~m211!

~k222!~m21m11!13~m211!
G

1
3

4 H A@~k222!~m11!214~m211!#@4~m211!2~k222!~7m222m17!#

~k222!~m21m11!13~m211!
J , ~3.24!

l352
3

4 H ~k222!~m11!214~m211!

~k222!~m21m11!13~m211!
J

2
3

4 H A@~k222!~m11!214~m211!#@4~m211!2~k222!~7m222m17!#

~k222!~m21m11!13~m211!
J .

It can be shown that ifk2.2, then all three eigenvalues are negative and hence the equilib
point is a stable node. It is also interesting to note that ifk2.214(m211)/(7m222m17), then
the equilibrium point is a focus~i.e., the solution oscillates in a neighborhood of the equilibri
point as it approaches the equilibrium point!. The behavior of the system at the bifurcation val
k252 will be discussed later. The exact solution corresponding to this point is that of a Bi
type VIh model or one of its degeneracies~i.e., if m50 it is of type III and if m51 it is a
negatively curved FRW model!, with line element~after a re-coordinatization!

ds252dt21a0
2~ t2p1dx21t2p2e2mxdy21t2p3e2xdz2!, ~3.25!

where

p151,

p25
2

k2 S 11
~k222!~m21m!

2~m211!
D , ~3.26!

p35
2

k2 S 11
~k222!~m11!

2~m211!
D .

The scalar field in this case is given by

f5f02
2

k
ln t. ~3.27!

For mÞ1, the solution given by Eqs.~3.25!–~3.27! is the exact solution found by Feinstein an
Ibáñez.13 Thus we see that ifk2.2 then the non-isotropic and non-inflationary Feinstein a
J. Math. Phys., Vol. 38, No. 10, October 1997
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Ibáñez13 solution is a stable attractor for the type III and VIh cases. Whenm51, the correspond-
ing isotropic solution represents the future asymptotic attractor for the Bianchi type VIIh models
as well as the asymptotic attractor for the Bianchi type V models.

2. Boundaries

The qualitative behavior of the system on the boundaries can also help to determin
behavior in the interior of the phase space. Each of the boundary setsF50 andb21C21F251
is an invariant set. The invariant setF50 represents models with a massless scalar field wi
zero potential. This invariant set will represent the behavior of the system as the scalar fif
tends to minus infinity. The remaining system of equations forb andC can be directly integrated
to yield

C5CS 2b2
~12m!

Am21m11
D . ~3.28!

These are straight lines emanating from the equilibrium point Eq.~3.14! directed inwards, and thu
in the two-dimensional invariant setF50 the point is a sink. However, in the full three
dimensional phase space the point is a saddle point, and thus we can conclude that the inva
F50 is the two-dimensional stable manifold. Also, it is easy to see that the outer ring desc
by b21C251 is a source~see Figure 1!.

We can also analyze the invariant setb21C21F251, which represents Bianchi type
models with a scalar field and an exponential potential. Again the system of equations c
integrated and the solutions are found to be straight lines emanating from the ring of non-is
equilibrium points given byb21C251 and evolving to the equilibrium point Eq.~3.18! if k2,6.
In the full three-dimensional phase space this equilibrium point Eq.~3.18! is a saddle when
2,k2,6, and consequently in this case the invariant setb21C21F251 is the two-dimensiona
stable manifold.

In the full three-dimensional phase space the ring of equilibrium points (b21C251, F50)
for k2,6 is a global source, and fork2.6 we find that some part of the ring acts like a source a
the remaining part of the ring acts like a saddle~see Figures 2 and 3!. The exact solution corre
sponding to the equilibrium points (b0 ,6A12b0

2, 0) has the form

ds252dt21t2p1dx21t2p2dy21t2p3dz2, ~3.29!

where

FIG. 1. Phase portrait in the invariant setF50.
J. Math. Phys., Vol. 38, No. 10, October 1997
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p15
1

3 S 11
~12m!b0

Am21m11
D ,

p25
1

3 S 12
~21m!b0

Am21m11
D , ~3.30!

p35
1

3 S 11
~112m!b0

Am21m11
D ,

where 21<b0<1. Note thatp11p21p351 but p1
21p2

21p3
25 1

3(112b0); hence in genera
(b0Þ0) these Kasner-like points do not correspond to exact Kasner models.

3. Closed orbits

It is very difficult to prove or disprove the existence of periodic and/or recurrent orbits in
phase space of any of the dynamical systems corresponding to the general Bianchi models
ever, in the Bianchi V case (m51), for example, in which the phase space can be described
number of invariant sets, some results are possible. Recall that the phase space is a hem
described byb21C21F2<1 andF>0. The invariant sets and their dimension, as well a

FIG. 2. Projection of the phase portrait in the invariant setb21C21F251 with k2,6.

FIG. 3. Projection of the phase portrait in the invariant setb21C21F251 with k2.6.
J. Math. Phys., Vol. 38, No. 10, October 1997
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brief description, is given in Table II. Since the dimension of set A is 1, closed orbits cannot
In sets B and C, we are able to find the equations of the orbits explicitly and we find that the
no closed orbits@see the solution given by Eq.~3.28! and Figure 1 and Figures 2 and 3, respe
tively#. The set D which represents the FRW models contain no closed orbits. In the sets E2 and
E1 we have thatdb/dV.0 anddb/dV,0, respectively, and consequently, sinceb is a mono-
tonic function in each invariant set, there do not exist any closed orbits in the interior o
hemisphere.15 Summarizing, there do not exist any closed periodic orbits in the case of the Bi
V (m51) models.

4. Bifurcation values

We shall now concern ourselves with the bifurcation values.28 If k250, it is easily determined
that the critical points and the qualitative behavior is the same as in the case 0,k2,2. However,
the corresponding exact solutions are different.~Note that thek250 case corresponds to the ca
of a positive cosmological constant.! At the bifurcation valuek252, we find that the equilibrium
points Eq.~3.18! and Eq.~3.24! coalesce to become a single equilibrium point. The lineari
system at this point has a zero eigenvalue. However, by using polar coordinates we find t
point is a sink and hence the qualitative behavior of the system is the same as for th
0,k2,2. We thus conclude that the equilibrium point Eq.~3.18! undergoes atrans-critical
bifurcation atk252. At the bifurcation value ofk256, the equilibrium point Eq.~3.18! now
becomes part of the ring of equilibrium points (b21C251, F50). This particular point remains
a saddle point and the rest of the ring of equilibrium points remain sources; however, as the
of k2 is increased past 6 more and more of the ring starts to behave like saddle points. T
some extended sense of the definition, the ring of equilibrium points (b21C251, C50) under-
goes atrans-critical-like bifurcation atk256.

C. Discussion

The qualitative behavior of the class of cosmological models under consideration de
critically on the value ofk and somewhat on the parameterm. The parameterm determines which
Bianchi model we are considering and consequently determines if the model will isotropize
future. However, the parameterk has a profound affect on the qualitative behavior of the mod
For 0<k2,2 all trajectories~that is, all models of Bianchi types I, III, V and the VIh), except for
a set of measure zero, evolve from the ring of equilibrium pointsb21C251, F50 toward the
isotropic and inflationary model corresponding to the equilibrium point given by Eq.~3.18!. For
k252, all trajectories evolve from the ring of equilibrium pointsb21C251, F50 toward the
isotropic model given by Eq.~3.18!; however these models need not inflate. For 2,k2, all

TABLE II. The invariant sets in the Bianchi V phase space.

Label Variables Dimension Description

A F50,b21C251 1 Equator of hemisphere
~Kasner ring!

B F50,b21C2,1 2 Bottom disk of hemisphere
~massless scalar field!

C F.0,b21C21F251 2 Surface of hemisphere
~Bianchi I!

D F.0,b21C21F2,1,b50 2 Half disk in interior of hemisphere
~FRW!

E– F.0,b21C21F2,1,b,0 3 Half of interior of hemisphere
~Bianchi V!

E1 F.0,b21C21F2,1,b.0 3 Half of interior of hemisphere
~Bianchi V!
J. Math. Phys., Vol. 38, No. 10, October 1997
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trajectories in the Bianchi III and VIh phase spaces evolve from some portion of the r
b21C251 toward the equilibrium point given by Eq.~3.24!, which is neither isotropic nor
inflationary. However, in the Bianchi I and V cases for 2,k2,6 all trajectories evolve from som
portion of the ring and isotropize to the future, but they need not inflate. When 6,k2, the Bianchi
V models continue to isotropize to the future while the Bianchi I models fail to do so.

IV. CONCLUSION

In Sec. II, we described a number of results concerning the behavior of spatially homoge
cosmological models with a scalar field and an exponential potential of the formV(f)5Lekf

~whereL is a positive constant!. Summarizing, we found that:

~1! If k50, then all initially expanding Bianchi models~except a subclass of the Bianchi type I
models! will isotropize to the future toward the de Sitter solution.20

~2! If 0 ,k2,2, then all initially expanding Bianchi models~except for a subclass of the Bianc
type IX models! isotropize to the future toward a power-law inflationary solution.11,12

~3! If 0 ,k2,2, then a subclass of the Bianchi type IX models will recollapse.11,12

~4! If 2 ,k2, then the only Bianchi models that can possibly isotropize to the future are tho
Bianchi types I, V, VII and IX.25

~5! If 2 ,k2, then the Bianchi VIIh models do indeed isotropize; and therefore, there exists
open set of initial conditions in the space of all spatially homogeneous initial data for w
the models isotropize to the future.26

In the remainder of the paper a detailed qualitative analysis of a one-parameter fam
Bianchi models~which includes the Bianchi models of types I, III, V, and VIh) was presented
illustrating the validity of the points above. In particular, it was shown that the future asymp
behavior of the Bianchi type III and VIh models is represented by the Feinstein–Iba´ñez solution.13

We note that the Feinstein–Iba´ñez solution13 is a self-similar, non-isotropic and non-inflationa
solution that is stable whenk2.2; hence the cosmic no-hair conjecture is clearly not satisfie
this case. In addition, it was shown that the Bianchi type V models whenk2.2 asymptotically
tend to an isotropic but non-inflationary open FRW model. This does not mean that the mod
not experience inflation, it is the final equilibrium point which is marginally non-inflationary. N
that if k2.8/3, then these Bianchi V models can be shown to experience periods of inflati
they evolve toward the isotropic ‘‘marginally’’ non-inflationary solution.

We note that in our investigation we have not included ordinary matter~satisfying the usual
energy conditions!. Matter can be included in precisely the same way as in Heusler23 and Kitada
and Maeda.11,12 However, the addition of ordinary matter is not expected to change the prim
results.
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25J. Ibáñez, R. J. van den Hoogen, and A. A. Coley, Phys. Rev. D51, 928 ~1995!.
26R. J. van den Hoogen, A. A. Coley, and J. Iba´ñez, Phys. Rev. D55, 1 ~1997!.
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Global existence and exponential decay for hyperbolic
dissipative relativistic fluid theories

Heinz-Otto Kreiss
Department of Mathematics, The University of California, Los Angeles, California 90024
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We consider dissipative relativistic fluid theories on a fixed flat, globally hyper-
bolic, Lorentzian manifold (R3T3,gab). We prove that for all initial data in a
small enough neighborhood of the constant equilibrium states~in an appropriate
Sobolev norm!, the solutions evolve smoothly in time forever and decay exponen-
tially to some, in general undetermined, constant equilibrium state. To prove this,
three conditions are imposed on these theories. The first condition requires the
system of equations to be symmetric hyperbolic, a fundamental requisite to have a
well posed and physically consistent initial value formulation. For the flat space-
times considered here the equilibrium states are constant, which is used in the
proof. The second condition is a generic consequence of the entropy law, and is
imposed on the non-principal part of the equations. The third condition is imposed
on the principal part of the equations and it implies that the dissipation affects all
the fields of the theory. With these requirements we prove that all the eigenvalues
of the symbol associated to the system of equations of the fluid theory have strictly
negative real parts, which, in fact, is an alternative characterization for the theory to
be totally dissipative. Once this result has been obtained, a straightforward appli-
cation of a general stability theorem due to Kreiss, Ortiz, and Reula implies the
results mentioned above. ©1997 American Institute of Physics.
@S0022-2488~97!02006-9#

I. INTRODUCTION

In recent years there has been a substantial improvement of our understanding on
proper description of dissipative fluids can be incorporated in the framework of the theo
relativity. Dissipative relativistic fluid theories satisfying an entropy law and having a well p
~symmetric hyperbolic! and causal initial value formulation have been presented.1–3

An important result on the physical meaning of all these hyperbolic theories was obt
recently.4,5 It was shown that certain constitutive relations between the variables in the hype
fluid theories, which have a clear physical meaning, approach in their time evolution the v
predicted by the simplest covariant generalizations of the Navier–Stokes fields. This re
based on a fundamental hypothesis, namely that the solution of the hyperbolic fluid field equ
exists and remains smooth and small during a long enough time interval, such that the rela
to near Navier–Stokes behavior occurs. This is a very important check for these fluid the
since at microscopic scales they are substantially different from the usual Navier–Stokes th
in the following sense: for the last ones, one expects to have smooth global solutions
smooth initial data sets, as has been proved in lower dimensions,6 while for the former ones, one

a!Current address: Department of Mathematics, UCLA, Box 951555, Los Angeles, CA 90095-1555. Electronic
oortiz@math.ucla.edu

b!Researcher of CONICET.
0022-2488/97/38(10)/5272/8/$10.00
5272 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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expects the developing of discontinuities in the form of shock waves for crispy enough initial
Thus, we can only hope to find a neighborhood of equilibrium data for which global solu
exist and so where the departures from Navier-Stokes are uniformly small.

The purpose of the present work is to look for conditions under which the fundam
hypothesis mentioned above is satisfied. To this end, we apply a theorem7 which is a generaliza-
tion to the case of partial differential equations of the Ljapunov stability theorem for ordi
differential equations. This generalization holds for hyperbolic systems such that the eigen
of their associated symbols have all strictly negative real parts which, as we shall see, is th
for the hyperbolic dissipative fluids.

In order to apply this general stability theorem, three conditions are imposed on the dissi
hyperbolic fluid theories. The first condition requires the symmetric hyperbolicity of the syste
equations, a fundamental requisite to have a well posed and physically consistent initial
formulation. As we shall see, the symmetry is an automatic property of these theories, b
hyperbolicity has to be required. We also include in this condition that the space-time manif
R3T3 with a flat metric; this is the most restrictive assumption, in particular it implies
equilibrium solutions are constant solutions. The other two conditions are of a generic type
sense that all fluid systems, except for very specific and isolated ones, satisfy them. Spec
the second condition requires that the nonprincipal part of the system of equations, wh
responsible for the dissipation, satisfy certain negative-semidefiniteness condition. This con
assures that all perturbations to an equilibrium state, which are not tangent to the equil
submanifold, do dissipate towards equilibrium, and this is manifested by the fact that they m
positive definite contribution to the entropy. The third condition is a requirement on the prin
part of the system of equations, and it means that the presence of dissipation affects all th
of the theory, in the sense of not allowing for a decoupled set of fields with its own evolutio
being driven by dissipation. Both the second and the third conditions have already been re
in the literature with the aim of characterizing the equilibrium states.

These conditions allow us to apply the theorem proved in Ref. 7, which implies not onl
global existence of solutions, but also their exponential decay to constant equilibrium for
data near enough, in some appropriate norm, to constant equilibrium data.

The plan of the paper is as follows: In Sec. II we briefly introduce the fundamental aspe
the fluid theories, and state in detail the character of the conditions we impose on them. In S
we state and prove our main result. Finally, in Sec. IV we present the conclusions.

II. DISSIPATIVE RELATIVISTIC FLUID THEORIES

In this section, following Ref. 3, we introduce the dissipative relativistic fluid theories. A
introducing them, we describe the properties of these fluids needed to prove stability.

We assume that a fluid state is characterized by a finite collection of space-time tensor
Let wA denote these fields, where upper case indices stand for the entire set of tensor
represented in this collection of fields. So we refer towA as a point in the space of fluid statesS .
Lower case indices will denote space-time indices. Repeated indices indicate contraction a
in the abstract index notation. We restrict consideration to the fluid theories in which the
equations take the form

MAB
a ¹awB52I ABwB, ~1!

whereMAB
a and I AB are smooth functions of the fluid fieldswA and the space-time metric.

We say that system~1! is symmetric hyperbolic ifMAB
a 5M (AB)

a and there exists a timelike
future-directedua such thatNAB[2uaMAB

a is positive definite. This is a sufficient condition t
have a well posed initial value formulation.

On physical grounds, to have as maximum speed of propagation the speed of ligh
stronger condition of causality, that is,2uaMAB

a is positive definite for all future-directed timelik
J. Math. Phys., Vol. 38, No. 10, October 1997
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vectorua, is usually required. This means that the characteristic surfaces of system~1! are inside
the null cone given by the space-time metric. To prove global existence and decay only the w
condition of hyperbolicity is needed.

We analyze now the structure of the equilibrium states. Following Refs. 2 and 3 we sa
a fluid statewA, solution of the dynamical system of equations, is astrict equilibrium stateif its
time reverse is also a solution. We denote a strict equilibrium state byw0

A , and assign a subinde
zero to any tensor evaluated at a strict equilibrium state. This definition implies thatI 0ABw0

B50.
More generally, we say thewA is a momentary equilibrium stateif I ABwB50. These states ar
called equilibrium states because their entropy production vanishes, and momentary becaus
condition holds at a certain time, it will not necessarily hold in subsequent times~see Ref. 4!.
Every fluid state can be written aswA5cA1hA, whereI ABcB50, andhA is such thatI ABhB50
implies hA50. We callcA the momentary equilibrium part of the fluid state.

Below we state the three conditions imposed on these fluid theories that will be used to
global existence and exponential decay.

~1! The fluid system of equations~1! is symmetric hyperbolic and the space-time is (R3T3,gab),
whereT3 denotes a three dimensional torus andgab is a flat metric.

~2! The tensorI 0AB must be symmetric and positive semidefinite.
~3! The mapF K :S c→S * defined byF K(cA)[KaM0

a
ABcB is injective for all space-time vec

tors KaÞ0, whereS * denotes the dual of the space of fluid states andS c the subspace o
momentary equilibrium states.

The first condition is the more restrictive and more work has to be done in order to weaken
would be interesting to treat physically relevant boundary conditions and arrive at similar re
The other two conditions are not very restrictive and all fluid systems, except for very specifi
isolated ones, satisfy them.

The second requirement ensures that the effect ofI AB in equation~1! is to dissipate, in the
sense of tending to move nonequilibrium states towards equilibrium as time grows. This is
little stronger than the entropy condition in these fluid theories that requires the entropy sou
be non-negative. This stronger condition was already considered in Ref. 2.

The third requirement is on the principal part of the equations. It implies that dissip
affects all the fields of the theory, in the sense of not allowing the existence of a decoupled
of fields with its own evolution not being affected by dissipation. This requirement turns out
equivalent~see Appendix A!, at least for the case of divergence type fluid theories, to one assu
in the literature2 to characterize equilibrium states. When condition 1 above holds, equilib
states turn out to be constant states.8

III. GLOBAL EXISTENCE AND EXPONENTIAL DECAY

In the theorem below we present our main result about global existence in time and de
strict constant equilibrium.

Theorem 1: Consider the Cauchy problem for system~1!, corresponding to a hyperboli
divergence type fluid theory satisfying conditions 1–3. If the initial data is smooth and
enough in aHp(T3) Sobolev norm (p.5) to the data corresponding to some constant~strict
equilibrium! solution, then the solution is smooth, exists globally in time and decays exponen
to some constant~strict equilibrium! solution in theHp norm.

Proof: We defineNAB52uaMAB
a , NAB

a 52qb
aMAB

b whereqab5gab1uaub is the 3-metric in
each hypersurface orthogonal toua ~assuminguaua521). Assume that the initial data is close
some strict equilibrium constant statew0

A . Then the fluid state iswA5w0
A1dwA. For the variable

dwA, the system~1! becomes

NABua¹adwB5NAB
a ¹adwB2I ABdwB. ~2!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Here the tensorsNAB , NAB
a , andI AB are thought of as functions ofdwA. The condition~1! of Sec.

II on the fluid theories implies that we can choose Cartesian coordinates$t,xj% on the space-time
manifold R3T3 and a constantua such that]/]t5ua¹a . Then the system~2! becomes

NAB

]

]t
dwB5NAB

j ]dwB

]xj 2I ABdwB. ~3!

In order to study solutions neardwA50, it is convenient to introduce a parameter« to control the
smallness of initial data. Thus,dwA(t50)5« f A(xj ) and the solution shall be written a
dwA5«vA. As the tensorsNAB

j and I AB are smooth functions of«vA, they can be written as

NAB
j 5N0AB

j 1«N1AB
j , I AB5I 0AB1«I 1AB .

Notice that the tensorsN0AB
j and I 0AB are constant tensors since they are evaluated at con

states. With this decomposition the Cauchy problem for~3! is

NAB

]vB

]t
5~N0AB

j 1«N1AB
j !

]vB

]xj 1~ I 0AB1«I 1AB!vB, vA~ t50!5 f A~xj !. ~4!

As there are periodic boundary conditions on the space coordinates$xj%, vA can be expanded in
Fourier series,

vA5 (
kj PV

v̂A~kj ,t !eixW•kW,

whereV is the discrete set of Fourier frequencies.
We want to apply the stability theorem proved in Ref. 7 that, for completeness, we st

Appendix B. To prove Theorem 1 we consider the eigenvalues problem

lN0ABŵB5~ ik jN0AB
j 2I 0AB!ŵB. ~5!

Then, as explained in Appendix B, we only need to verify the following conditions.

~i! There is a constantd.0 such that the eigenvaluesl(kj ) satisfy Re$l%<2d for all kj

PV, kjÞ0.
~ii ! For kj50, l(0)<2d or l(0)50.
~iii ! As linear maps, the null space ofI 1AB contains the null space ofI 0AB .

Conditions~ii ! and~iii ! are satisfied for these fluid theories, since the kernel ofI AB is of constant
dimension~see Refs. 2 and 3!, and because condition~2! of Sec. II holds.

To prove~i!, let kj be different from zero. Thenk5Akjkj>const..0. The eigenvalue prob
lem ~5! can be written as

S 2
l

k
N0AB1 i

kj

k
N0AB

j D ĉB5S l

k
N0AB1

1

k
I 0AB2 i

kj

k
N0AB

j D ĥB.

Defining Ka52(l/k)ua1 i (kj /k)qa
j , this can be written as

KaM0AB
a ĉB5S l

k
N0AB1

1

k
I 0AB2 i

kj

k
N0AB

j D ĥB. ~6!

SinceKaM0AB
a is injective, by condition~3!, and a smooth function ofkj /k, there is a constan

c.0 such that
J. Math. Phys., Vol. 38, No. 10, October 1997
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cN0BCĉ̄BĉC<KaM0
aA

BKbM0AC
b c̄̂BĉC.

Then, contracting~6! with itself,

N0BCĉ̄BĉC<
1

c S l̄

k
N0

A
B1

1

k
I 0

A
B1 i

kj

k
N0

j A
BD S l

k
N0AC1

1

k
I 0AC2 i

kj

k
N0AC

j D ĥ̄BĥC.

Perturbation theory of linear operators tells us thatl(kj )/k is uniformly bounded~see Ref. 9!.
Then we get for some positivec8

N0BCĉ̄BĉC<c8N0BCh̄̂BĥC.

This inequality, together with the positive definiteness ofN0AB , implies

N0ABŵ̄AŵB< c̃N0ABĥ̄AĥB, c̃ .0. ~7!

Now, contracting~5! with ŵ̄A and taking the real part,

Re$l%N0ABŵ̄AŵB52I 0ABŵ̄AŵB52I 0ABĥ̄AĥB

<2 d̃N0ABĥ̄AĥB

<2
d̃

c̃
N0ABw̄̂AŵB.

Here,d̃.0 exists because of the negative definiteness ofI 0AB in the direction ofĥA ~by condition
~2!!, and we have used~7! in the last line. We have thus shown that

Re$l~kj !%<2d,0, with d5
d̃

c̃
.0 andkjÞ0,

and Theorem 1 is proved.

IV. CONCLUSIONS

In this work we have proved global existence and exponential decay to constant strict
librium states, for solutions of a generic dissipative relativistic fluid theory. These decaying
tions correspond to initial data in a small enough neighborhood of constant strict equilibriu

This result, in particular, verifies a fundamental hypothesis of previous works,4,5 namely, the
existence of solutions during a long enough time interval. The closeness of initial data to
equilibrium is a natural limitation in the sense that, for large data, shock waves develop, whi
a widely observed phenomena in nature. This occurs because these fluid systems are ge
non-linear.

There are three questions related to the techniques used in this work and the possib
improving on them. One is whether it is possible to extend the present result, or rather the g
theorem used, to the case of non-constant equilibrium states. This is of vital importance if we
to consider non-flat backgrounds or even self-gravitating fluids. We think this is probably the
if we further assume that the theory has, at equilibrium, a conserved energy—which is a p
definite bilinear form in the tangent space of equilibrium states—as is usually the case for th
coming from a Hamiltonian formalism. The second possible extension is towards allowing
J. Math. Phys., Vol. 38, No. 10, October 1997
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compact Cauchy slices. There is another technique, introduced by Matsumura,10 which allows us
to study global existence and stability for some particular cases that range from hyperboli
conduction to relativistic superfluids.11 This technique allows us to treat the case of non-comp
Cauchy slices, but can not be applied to the general systems considered in this work. T
would be important to extend the theorem given in Appendix B to the case of non-com
Cauchy slices. The third extension is in the direction of boundary values problems. It is clea
one would like to use this theory to describe situations where the fluid is in a finite region of s
in which case the equations cease to be hyperbolic outside the region occupied by the fluid,
a boundary value formulation is needed. Since Navier–Stokes fluids behave in a much
amenable way with regards to boundary conditions than perfect fluids, one would expect tha
dissipative fluids will have that property too, making this an interesting, and perhaps trac
problem.
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APPENDIX A: EQUIVALENCE OF ASSUMPTIONS

In this Appendix we prove the equivalence between the requirement~3! of Sec. II and a
condition imposed in Refs. 2 and 3. We do this, for simplicity, in the case of divergence type
theories, and we assume that the reader is familiar with Ref. 2. The condition under consid
allows us to characterize the strict equilibrium states in such a way that they are precisely th
set of equilibrium states found for the standard Eckart theory.

The requirement 3 of Sec. II is the following: The mapF K :S c→S * , defined by
F K(cA)[KaM0

a
ABcB, is injective for all space-time vectorsKaÞ0, whereS * denotes the dua

of the space of fluid states andS c the subspace of momentary equilibrium fluid states.
The equivalence between this condition and the one assumed in Ref. 2 follows fro

following argument. The mapF K is injective, soKaM0
a

ABcB50⇒cA50 wherecA5(c,ca,0).
Due to the definition of indicesA and B, the system of equations above represents a sc
equation, a vector equation, and a symmetric two-index tensor equation.

First, consider the scalar equation, the contraction of the vector equation withza, and the
contraction of the two-index tensor equation withzazb. All this constitutes a linear algebrai
system of three scalar equations for variablesKaca, Kazac, and 2Kazazbcb . The injectivity
implies that the only solution for these three variables is zero and so the determinant
coefficient matrix is different from zero. Conversely, if the determinant of the coefficient matr
different from zero, then we conclude thatc50 andca50 and then the mapF K is injective. By
direct inspection it can be checked that these coefficients are the same found in equation~41!–
~43! in Ref. 2.

Second, consider the vector equation and the contraction of the two-index tensor eq
with za. This constitutes a linear algebraic system of two vector equations for the vari
mentioned in paragraph above, and 2zaK (acb) andKbc. Because of injectivity, the only solution
for all these variables is zero and so the determinant of the coefficient matrix is different
zero. It can be checked, by direct inspection, that these coefficients are the same found in
tions ~45!–~46! in Ref. 2.

Finally, consider the two-index tensor equation. It constitutes a linear algebraic two-
equation for the variables mentioned in the previous paragraph andK (acb) . Because of the
injectivity, the only solution for all these variables is zero and so the determinant of the coeffi
matrix is different from zero. By direct inspection it can be checked that these coefficients a
same found in equations~48! in Ref. 2.
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



d

)

ble

xists an

y

simple
em for

-time is

d

5278 Kreiss et al.: Global existence of relativistic dissipative fluid

                    
APPENDIX B: GENERAL STABILITY THEOREM

Consider the Cauchy problem for a first order system of partial differential equations,

]v
]t

5~A0
j 1«A1

j ~v,«!!
]v
]xj 1~B01«B1~v,«!!v,

~B1!

v~ t50!5 f ~xj !,

wherev:R3Ts→Rn, A1
j (v,«) andB1(v,«) are smooth (C`) functions of their arguments, an

f (x):Ts→Rn is also smooth. LetP denote the projector in the kernel ofB0. For the solutionv of
~B1! we definev (0)5Pv̂(0,t) andw5v2v (0). The stability theorem proved in Ref. 7 states:12

Theorem 2: Suppose that the matrices A0
j , B0, and A1

j are Hermitian, and the system (B1
satisfy the ‘‘relaxed stability eigenvalue condition,’’ i.e., the following conditions hold.

~i! There is a constantd.0 such that the eigenvaluesl(k) of the symbol iA0
j kj1B0

satisfyRe$l%<2d for all kPV, kÞ0.
~ii ! The eigenvalues of B0 satisfy eitherRe$l(0)%<2d or l(0)50.
~iii ! kerB0,kerB1.

Then, for0<«<«0 with «0 small enough, the system (B1) is a contraction for w in a suita
norm, equivalent to a Sobolev norm Hp (p.s12), andv (0)→const.when t→`.

The statement in the above theorem that the system is contraction means that there e
H-norm, equivalent to the normHp, such that

d

dt
iwiH

2 <2~d1O ~«!!iwiH
2 .

This implies that, for« small enough, there exists a global~in time! smooth solution of the Cauch
problem~B1! such that there is an exponentially decaying bound for the SobolevHp norm of the
w-part of its solution, and thev (0) part goes to a constant when the time goes to infinity.

The only difference between the fluid equations~4! and~B1! is the presence ofN in front of
the time derivative. This causes no difficulties, and the theorem above is applicable by a
redefinition of the scalar product used. With this new scalar product, the eigenvalues probl
the fluid equations becomes

det~ iN0
21N0

j kj1N0
21I 02lE!50,

whereE is the identity matrix. Then, the conditions~i!, ~ii !, and~iii ! of Theorem 2 can be verified
as is done in the proof of Theorem 1.
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Stationary rotating matter in general relativity
Mattias Marklunda)

Department of Plasma Physics, Umea˚ University, S-901 87 Umea˚, Sweden

Zoltán Perjésb)

KFKI Research Institute for Particle and Nuclear Physics,
Budapest 114, P.O. Box 49, H-1525 Hungary

~Received 1 May 1997; accepted for publication 10 July 1997!

Stationary rotating matter configurations in general relativity are considered. A
formalism for general stationary space times is developed. Axisymmetric systems
are discussed by the use of a nonholonomic and nonrigid frame in the three-space
of the time-like Killing trajectories. Two symmetric and trace-free tensors are con-
structed. They characterize a class of matter states in which both the interior
Schwarzschild and the Kerr solution are contained. Consistency relations for this
class of perfect fluids are derived. As an example of the application of our proce-
dure, we obtain a solution under the assumption of rigid rotation. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!03810-3#

I. INTRODUCTION

In the past decades, the theory of empty space–times in general relativity has been e
by sophisticated results. Our understanding of interior metrics with matter sources is appa
lagging behind; as though time has stopped at Schwarzschild’s spherically symmetric sol
The technologies available for this research show a corresponding disparity. Spherical sym
is a quite straightforward problem to work with. In addition, vacuum metrics have been tr
with success by coordinate, tetrad and triad approaches, as well as the inverse sc
technique.1 Regrettably, these approaches are less than adequate for successfully treating
times with matter. The list of known differentially rotating fluid metrics is surprisingly sh
consisting probably of nothing else but the unmatched perfect fluid of Chinea,2 obtained by a
tetrad method,3 and the solution of Senovilla.4 The list of matched rotating fluids is equally sho
there is the rigidly rotating disk of dust of Neugebauer and Meinel5 found by the inverse scatterin
method. The difficulty in finding rotating equilibrium solutions is present already in Newto
theory, and general relativity should not be expected to be an easier field.

In this paper, we develop a new technology for stationary space–times with matter sour
Sec. II, we assume the existence of only one Killing vector. We give Einstein’s field equa
with matter in a form referring to the three-manifoldG of the Killing trajectories. In the stationary
case considered here, the Killing vector is time-like and the metricdl2 of G is positive definite.
However, the formalism is valid independently of the signature.

Further, we construct two symmetric and traceless tensors which are related both
Cotton–York tensor and to the Simon tensor. Conformally flat manifolds have the special pro
that the Cotton–York tensor vanishes. This property is not shared by some important
space–times such as the Kerr metric. However, the Kerr metric has a vanishing Simon tens
have these particular situations in mind when we construct our tensors for space–time
matter sources. In doing so, we are guided by two principles. First, we want the two tensors
uniquely determined by the Cotton–York and the Simon tensors in the limit of some kn
solutions of the gravitational equations. Thus we include some new terms in the tensors
vanish in the absence of matter in the state of differential rotation.

a!Electronic mail: mattias.marklund@physics.umu.se
b!Electronic mail: perjes@rmki.kfki.hu
0022-2488/97/38(10)/5280/13/$10.00
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In Sec. III, we consider axisymmetric systems. In Sec. III A, we initiate a new method w
synthesizes the coordinate approach known as ‘‘Ernst coordinates’’6 and the triad methods. Th
Ernst coordinate approach fails in the presence of a differential rotation of the medium fo
simple reason that the Ernst potential then does not exist. The complex 1-form, represented
differential of the Ernst coordinate in the vacuum, can still be introduced although it ceases
exact. Thus we can build up a triad in the generic~rotating! case when the 1-form and its comple
conjugate are linearly independent. Hence we follow the vacuum Ernst coordinate approa
setting up a complex triad in the three space such that the directional derivatives reduce
partial derivatives with respect to the Ernst coordinates in the limit of vanishing matter.

In Sec. III B we find that the coefficients of the extra terms are determined by the require
that the complex invarianta be an analytic function of a complex variable. In Sec. IV we ap
our method for rotating perfect fluids.

II. ONE TIME-LIKE KILLING VECTOR

The metric of a stationary space–time with time-like Killing vectorK5]/]t has the form

ds25r ~dt1v idxi !22r 21dl2 ~ i , j ,...51,2,3!,

wherer 5KmKm is the length square of the Killing vector,v idxi a 1-form, anddl25gi j dxidxj the
metric in the 3-spaceG of Killing trajectories. The Ricci tensor may be decomposed as7

2r 22Roo
~4!5G; i

i 1~Ḡi2Gi !G
i , ~1a!

2 i e i jk r 22Ro
~4!k5Gi ; j2Gj ; i1GiḠj2ḠiGj , ~1b!

r 22@gikgjl R
~4!kl2gi j Roo

~4!#5Ri j 1GiḠj1ḠiGj , ~1c!

where the subscripts ‘‘o’’ denote contractions withK. The complex 1-formG over the 3-space is
defined as

G5
def dr1 ir 2* dv

2r
, ~2!

with * dv5e i jkv j ;kdxi the dual of the exterior derivative of the 1-formv idxi . The space–time is
static when the formv idxi is exact. Furthermore in a static space–time the 1-formG is real.

The Einstein equations are

Emn5
def

Rmn
~4!1kTmn* 50 ~m,n,...50,1,2,3!, ~3!

whereTmn* 5
def

Tmn2 1
2gmnT. With these, Eqs.~1! take the form8

G; i
i 5~G–G!2~G–Ḡ!1kr22Too* , ~4a!

Gi ; j2Gj ; i5ḠiGj2GiḠj1 ikr 22e i jkTo*
k , ~4b!

Ri j 52GiḠj2ḠiGj2kr22~Ti j* 2gi j Too* !. ~4c!

From the Bianchi identities (Rj
i 2 1

2d j
i R) ; i50, in the 3-space, we then get

@r 22~2Tj*
i2d j

i Tk*
k!# ; i1r 22Too; j* 12ir 22e i jk~Gi2Ḡi !To*

k50. ~5!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Equations~4! and ~5! are valid for an arbitrary space–time admitting the Killing vectorK.
An important example to be investigated in this paper is the perfect fluid with the en

momentum tensor

Tm
n 5~m1p!umun2pdm

n ,

wherep is the pressure andm the matter density. The 4-velocityum is normalized byumum51.
This will be written as

uo
22gjkujuk5r . ~6!

The energy-momentum tensor of the stationary perfect fluid becomes

Too* 5~m1p!uo
22 1

2 ~m2p!r , ~7a!

To*
i5~m1p!u0ui , ~7b!

T* i j 5~m1p!uiuj1 1
2 gi j ~m2p!r . ~7c!

The complex tensors: The condition for the 3-space to be conformally flat is that the Cotto
York tensor1

Yi
l5
def

e jkl~Ri @ j ;k#2
1
4 gi [ jR;k] !, ~8!

vanishes. The Cotton–York tensor is symmetric, trace- and divergence-free:

Y@ i j #50, Yi
i50, Yi ; j

j 50.

In addition, we introduce the complex tensor

Si
l5e jkl$2gi j g

rsG[k;ur uGs]22Gk; iGj2 ikr 22e jk
rG( iTor)* %, ~9!

which is similarly symmetric and trace-free both in vacuum and in the presence of matter:

S@ i j #50, Si
i50.

The tensorSi
l is real in a static space–time.In vacuo, Si

l equals the Simon tensor.6,9 Examples of
space–times with a vanishingSi

l are the~vacuum! Kerr metric, the interior Schwarzschild, Krame
and Wahlquist space–times.1,10

In all known examples of static metrics with a vanishing Simon tensor, the Simon te
equals the Cotton–York tensor. However, as can be easily seen by inspecting the form
Cotton–York tensor~8!, this is the case when the energy-momentum terms separately vani

We construct another symmetric and trace-free tensor for stationary space–times with
We adopt the following procedure:

~1! First we rewrite the Cotton–York tensor of a static space–time by use of the field equa
~3! and the decomposition~1c! of the Ricci tensor in terms of the real 1-formG and matter
variables.

~2! We then complexify this tensor for a nonstatic space–time by allowingG to be complex and
separate the tensorSik .

~3! By adding appropriate matter terms we ensure that the complexified tensor is symmetr
trace-free.
J. Math. Phys., Vol. 38, No. 10, October 1997
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From step 1, we get the Cotton–York tensor in the static case,

Yi
l5e jkl$2gi j g

rsG[k;ur uGs]22Gk; iGj1k~r 22D i j ! ;k2kr22gi j GkToo* %,

with

D i j 5
def

Ti j* 2
1

4
gi j Too* 2

1

4
gi j Tr*

r .

After having added compensating terms to ensure that the tensor is trace-free and symmetr
still remains a freedom of adding a symmetric and trace-free tensor which vanishes in the
limit. This latter tensor will be determined in Sec. IV. The matter tensor then reads

Ci
l5e jkl H 2S 1

r 2 D i j D
;k

1
1

2r 2 gi j ~Gk1Ḡk!Too* 1
i

r 2 e ik
r~Gj2Ḡj !Tor* 1

4i

r 2 e ik
r~G( j2Ḡ( j !Tor)* J .

~10!

III. AXISYMMETRY

A stationary axisymmetric space–time is defined by the following properties:

~i! There is a space-like Killing vector]/]w and a time-like Killing vectorK5]/]t along
which all quantities are Lie transported.

~ii ! The metric has the axisymmetric form

ds25r ~dt1vdw!22r 21$e2l@~dx1!21~dx2!2#1%2dw2%,

and the metric functionsr , v, l, and% depend on the coordinates (xA)5
def

(x1,x2). We label the
remaining coordinates ast5x0 andw5x3.

A. A complex basis

From property~i!, L5]/]w is a Killing vector in the 3-space and (G–L )50. In the generic
case, the triad~G,Ḡ,L ! represents a proper frame basis in the tangent 3-space. However, we
use another complex basis11

~e1,e2,L !. ~11!

The vectorse1 ande2 form a complex conjugate pair,e25ē1, and they are defined by a rotation
the ~G,Ḡ! subspace:

G5
1

2r
~ae11be2!, Ḡ5

1

2r
~be11ge2!,

with

a54r 2~G–G!, b54r 2~G–Ḡ!, g5ā.

The metric in this basis reads

@gik#5F a b 0

b g 0

0 0 %22
G , ~12!
J. Math. Phys., Vol. 38, No. 10, October 1997
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where%25(L–L ) is the squared length of the Killing vector. Note that the basis~11! is neither
holonomic, nor is it rigid.

The structure functionsci
jk are defined by the commutator

@ej,ek#5ci
jkei. ~13!

In the absence of matter, the basis~11! is natural and the structure functions vanish.
For the directional derivatives we use the alternative notation with a comma in the sub

For example, from~2! we have

r ,1[e1r 5 1
2 , r ,2[e2r 5 1

2 .

The dual basis reads (u1,u2,u3)5(2rG,2rḠ,%22L). In this basis,G has the components

~G1 ,G2 ,G3!5S 1

2r
,0,0D , ~Ḡ1 ,Ḡ2 ,Ḡ3!5S 0,

1

2r
,0D ,

~G1,G2,G3!5S a

2r
,

b

2r
,0D , ~Ḡ1,Ḡ2,Ḡ3!5S b

2r
,

g

2r
,0D . ~14!

Because we use a frame of nonconstant normalization, we need the structure functions to c
the connection coefficients. A short calculation using

du i52
1

2
ci

jku j∧uk,

and ~4b! in natural coordinates gives the structure functions

c1
jk 52c2

jk 52ikr 21e jkl T0*
l ,

c3
jk 50.

There is only one independent structure function which we denotec1
125

def

«. We have

«5
2ik%

rAD
T0*

w ,

whereD5
def

ag2b2 is an everywhere negative function. We obtain the detailed form of Eq.~4a! by
computing the contracted connection coefficientsG i

ki5ek ln(%D21/2)1ci
ik. With the components

~14! of G, the field equation~4a! takes the form

a ,11b ,22
a

r
1~ae11be2!lnS %

AD
D 2

2k

r
Too* 1~a1b!«50. ~15!

Equations~4b! are now absorbed in the structure equations~13!, and Eqs.~4c! are given in
Appendix A.

Equation~15! reduces to the Ernst equation in vacuum. The imaginary part is equivalent t
integrability condition of the functionv. The triad components of the imaginary part of Eq.~2! are
J. Math. Phys., Vol. 38, No. 10, October 1997
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v ,15
i%

2r 2AD
~g2b!, ~16a!

v ,252
i%

2r 2AD
~a2b!. ~16b!

B. Fields with Si
l50

The two nonvanishing components of the tensorSi
l may be written

Ui5
def

24e i jkL jSklLl , ~17!

where (U–L )50.
Substituting the definition~9! of the tensorSkl in Eq. ~17! and using the field equations~4a!

and ~4b!, we get

Ui522H 22~%2! ,aGaGi12%2F ~G–G!1
k

r 2 Too* GGi2%2@~G–G! ,i12~G–G!Ḡi #

1
2ik

r 2 e i jkGkT0*
l~LlL

j2d l
j%2!J .

The last term contains a projector in the orthogonal complement of the Killing vectorL , thus it
vanishes. Taking the triad components, we obtain

U15
2%2

r 2 F ~ae11be2!ln %2
a

2r
1

1

4
a ,12

k

r
Too* G , ~18a!

U25
%2

r 2 a ,2 . ~18b!

Putting the tensorSik to zero gives, through Eq.~18a!,

~ae11be2!ln %2
a

2r
1

1

4
a ,12

k

r
Too* 50, ~19!

and from Eq.~18a! we get a ,250. We now subtract Eq.~19! from ~15! as to eliminate the
derivatives of%. The equation obtained is then multiplied withb and its complex conjugate with
2a. Adding the results gives

4ab ,123ba ,11ag ,21
2a

r
~b2g!1

4k

r
~b2a!Too* 14D«50, ~20a!

4gb ,223bg ,21ga ,11
2g

r
~b2a!1

4k

r
~b2g!Too* 14D«50. ~20b!

We can also obtain an equation for% ,1 , by simply multiplying ~19! by g and its complex
conjugate by2b and then taking the sum:

D~ ln % ! ,11
1

4
~ga ,12bg ,2!1

g

2r
~b2a!2

k

r
~g2b!Too* 50. ~21!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Combining Eqs.~21! and ~20a! as to eliminate thee2 derivatives we obtain

a~ ln c! ,15F,

where

F5
def k

r
Too* 2b«, ~22!

and the real functionc5
def

D21/2r 21(ag)3/4% is known to be constant in the vacuum case.6 Notice
thatF does not vanish for the interior Schwarzschild space–time. Applying the commutatorc,
we have

aF ,12gF ,25«~g2a!F. ~23!

The functionF may be used to replaceT00* through the definition~22!.
Upon multiplying ~20b! by 21/4 and adding it to~21! we eliminatea ,1 . We then have

D~ ln % ! ,11
1
2 bg ,22gb ,22D«50, ~24a!

D~ ln % ! ,21
1
2 ba ,12ab ,12D«50. ~24b!

By applying the commutator~13! to the field variables, we obtain additional conditions. W
eliminate the function% from what follows by use of Eqs.~24!. For instance, applying~13! on the
functionb, we obtain a second order equation which we use in turn for eliminating the deriv
g ,22. Similarly, from Eq.~23!, we may eliminate the derivativesF ,2 . At this juncture, we find that
the integrability conditions of the function% are satisfied identically. Following this, we use Eq
~20! for the elimination of the derivativesb ,2 andg ,2 . As a result of this, alle2 derivatives of the
variables may be expressed in terms of« ,2 , the e1 derivatives and the variables themselves. W
may proceed to get rid of the remaininge2 derivative by use of the field equations~4c!. This will
enable us to obtain a system of ‘‘ordinary’’ differential equations containing onlye1 derivatives.

The above procedure is valid for an arbitrary medium. In the following, we develop
approach further for a perfect fluid.

IV. PERFECT FLUID

In accordance with property~i!, the pressurep, matter densitym and 4-velocityum of an
axisymmetric stationary perfect fluid depend on the two coordinatesxA. The 3-velocity has the
form u5uwdw ~see Appendix B!, thus it is expansion-free,u; i

i 5(uw),w50. Hence the 4-velocity
is a linear combination of the two Killing vectors.12 The normalization condition~6! for the
4-velocity of the fluid becomes

uo
22%22uw

25r . ~25!

The following relations hold for the components~7! of the energy-momentum tensor:

Tww* 2%2~Too* 22rp !50,

and

r 2D«21k2@2Too* 1~m2p!r #@2Too* 2~m13p!r #50. ~26!

The field equations are given in Appendix B. The Bianchi identities~5! take the form
J. Math. Phys., Vol. 38, No. 10, October 1997
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dp52
~m1p!

2r 2%3 @2ruw~uor%dv2uwd% !1~r%212uw
2 !%dr #. ~27!

Because of the structure of the field equations, there are only two nontrivial components.13 The
integrability condition ofp yields

d@uo~m1p!#`dS v2
uo

ruwD2dS 1

uwD`dm50. ~28!

This generalizes von Zeipel’s theorem in general relativity,14 according to whichuo(m1p)
5constant for a static fluid.15 Some related Hamiltonian structures have been discusse
Stephani and Grosso.16

The matter tensorCi
l @Eq. ~10!# is fully determined by requiring that the components of t

tensor are integrable. The condition that the tensorCi
l vanishes may be integrated to yield

~m1p!uw
2

r 2%
5constant.

The fields with a vanishingSi
l tensor@Eq. ~9!# merit further investigation. We return to thi

subject in Sec. IV A.

A. Incompressible fluid

We eliminate% from the Bianchi identities~27!, using the normalization condition~25!, to
obtain

dp5~m1p!FuodS uo

r D2
uo

2

ruw duw1d ln uw2uwuodvG . ~29!

In the case of an incompressible fluid (dm50), the integrability condition~28! takes on a simpler
form. We use Eq.~29! for substitutingd(m1p). After expanding the terms, we get

d~uwuo!`dS v2
uo

ruwD50.

Hencev has the functional form17

v5
uo

ruw 1C~x!,

whereC is some functional ofx5
def

uouw. Inserting this in~29! gives us

d lnS m1p

uw D1xdC50.

Redefining the functional by

F~x!5
defE x

dC

dx
dx,

enables us to integrate the pressure in an explicit form:
J. Math. Phys., Vol. 38, No. 10, October 1997
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m1p5uwe2F~x!.

Thus for incompressible fluids we may express the pressure in terms of the 4-velocity compo

B. Perfect fluids with Si
l50

We compute the components of the Einstein field equations using the Ricci tensor giv
Appendix A and making the following substitutions:
1. The mixed derivatives ofa are eliminated bya ,1252«a ,1 .
2. The function% disappears after application of Eqs.~24!.
3. Removing the derivativesb ,1 andb ,2 by use of Eqs.~20!, the equationaR112gR2250 for the
Ricci tensor components of the perfect fluid yields

g« ,22a« ,15F S «2
1

2
r 21D ~a2g!1

3

4
~a ,12g ,2!«G . ~30!

This is a pure imaginary equation which we use for eliminating« ,2 . Henceforth we may
obtain the field equations in a form containing onlye1 derivatives by using Eq.~20! for the
elimination ofg ,2 andb ,2 .
4. The derivativeg ,22 is removed by use of the integrability condition ofb.

The Bianchi identities~27! have the only independent complex triad component18

kp,15
1

2r H kp1
1

2
«~b2g!2F2b«1@2r ~F1b«!2k~m13p!r #~ ln % ! ,1J . ~31!

Carrying out the above substitutions in the field equation~A1d!, we get

aa ,112
3
4~a ,1!

254a~2«b ,11b« ,11F ,1!22~3b«12F !a ,114F~2b«1F !

1
4a

r
~b«1rg«21F2kp!. ~32!

We next eliminate terms quadratic in the gravitational constant, by use of Eq.~A1d!, from
Eqs.~A1a! and ~A1b!. The latter equation then takes the form19

F ,11«F5g«21
g

2rD
@k~m13p!b2~ag1b2!«22Fb#. ~33!

Equation~23! is just the imaginary part of this. We now get rid of the terms linear ink, using
~33! in ~A1a!. Simplifying by an overall positive factorm13p, we have

aF ,11~a2b!«F5a«~g2b!S «2
1

2r D2
3

4
b«a ,12ab« ,1 . ~34!

Equation~30! is the imaginary part of Eq.~34!.
The field equations~26!, ~31!, ~32!, ~33! and ~34! describe a rotating perfect fluid with th

tensorSk
i vanishing. They are a set of partial differential equations for the complex variablesa and

g and the real variablesb, p, «, F and r with r ,151/2. These field equations contain the on
derivative operatore1. The right-hand side of Eq.~32! vanishes in vacuum, and we obtain Simon
eikonal equation9 in that limit. The remaining equations of the system contain only matter v
ables, thus they become identities in vacuum.

These equations will be subject to further study in a forthcoming paper.20
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In the next section, we give an example of solving the field equations for the simple case
the functiona is constant.

Solution for constanta: As an illustrative example on how to solve our field equations w
Si

l50, we now obtain an exact solution, starting with the simple assumption that the functa
5a0 is a real constant. Under the assumption thata is real, the field equations imply that thee1
ande2 derivatives of real functions are equal. Thus the differentials of real functions are pr
tional to dr51/2(u11u2). Hence all functions turn out to be functionally dependent onr , indi-
cating the existence of a further symmetry of the space–time.

We next introduce the assumption of rigid rotation («50), thereby makingF5k~m13p!/2.
The differentially rotating fluid problem will be discussed in Ref. 20. With this, Eq.~30! is
satisfied identically. Equations~33! and ~34! take the simple formdF/dr50. HenceF5F0

5constant. We obtain the pressure from Eq.~32!:

kp5F0S 11
rF 0

a0
D ,

and with this, Eq.~31! is satisfied.
Then the remaining equations needed to be solved are~20!, ~24!, and~16!:

db

dr
5~a02b!S 1

r
1

2F0

a0
D , ~35a!

d%

dr
5

%a0

a01b S 1

r
1

2F0

a0
D , ~35b!

dv

dr
52

%

r 2 Ab2a0

b1a0
. ~35c!

Integration of Eqs.~35! yields

b5a01a
e22F0r /a0

r
, %25

b1a0

b2a0
, v5

1

r
,

wherea is a constant.
With 2rG5d(r 1 ic), we obtain the metric

ds25r S dt1
1

r
dw D 2

2
1

r S 2dr2

b1a0
1

2dc2

b2a0
1

b1a0

b2a0
dw2D .

Whena0 is negative, we may redefine our coordinates and functions as

t°A2
a0

2F0
t, r °2

2F0

a0
r , c°A2

2F0

a0
c, w°S 2

2F0

a0
D 3/2

w,

b°2
2F0

a0
b, a°S 2F0

a0
D 2

a.

With these transformations, we obtain one of the solutions found by Kramer.10
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V. CONCLUSIONS

We hope to have demonstrated here the power of our nonholonomic approach to rela
rotating matter. In the last section, we have been able to treat perfect fluids with a van
complex tensorSi

l . Our investigation has led to a system of four first order equations together
one second order equation. This system completely characterizes the class of space–t
which both the Kerr and the interior Schwarzschild are contained.

There remains the freedom of adding a symmetric and trace-free term to the complex
Si

l which vanishes in the static and in the vacuum limits. The only expression with these prop
has the formL ( i(Gk)2Ḡk))Too* . This term, however, contributes to the componentU2, thus in its
presence the functiona ceases to be analytic. This in turn yields complicated expressions, ma
a thorough analysis difficult.
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APPENDIX A: RICCI TENSOR FOR AXISYMMETRY

The inverse of the metric~12! has the form

@gik#5F C 2B 0

2B A 0

0 0 %2
G ,

with

A5
a

D
, B5

b

D
, C5Ā.

The nontrivial components of field equations~4c! become

R1152
k

r 2 ~T11* 2CToo* !, ~A1a!

R1252
k

r 2 ~T12* 2BToo* !2
1

4r 2 , ~A1b!

R2252
k

r 2 ~T22* 2AToo* !, ~A1c!

R3352kr2 ~T33* 2%2Too* !. ~A1d!

The components of the Ricci tensor for this metric areR135R2350, and
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R1152 1
4 $2@~A1B!~ag22b2!«1% ,1a%211% ,2b%21#C,124~g ,1«1« ,1g!~A1B!

14@ 1
2 ~ag2b2!C,21B,2bg2g ,22% ,1b%212% ,2g%211~ab22ag14b2!C«#B,1

1@~ag22b2!C,112~b22g!Bg«12B,1bg22g ,12C,2bg24Ag2«12bgC«24g«#A,1

2~2B,1g2C,1b1C,2g12Bg«12gC«!A,2g22~C,212B«12C«!g ,222~C,1b
22C,2bg

22Bbg«22bgC«12g«!B,214~2b2g!B2g«222~% ,1b%211% ,2%
211Bb2«1b2C«

2b«12g«!C,21~ag22b2!~C,2!
222A,11g2~A,1!

2g224B,12g22b ,1C,212b ,2C,1

22C,22g24% ,11%
2118bABg«224~« ,2g1% ,2g«%21!~B1C!24~B1C!2ag«2

14~2B22A2!g2«2%,

R1252 1
4 $2@~bB12bC21!a«1a«1% ,1a%211% ,2b%212Bb2«12b«#C,214@bBa«

2~ag1b2!A«2B,2ag1b ,22Bb2«1b«#B,12@2~b2g!Bb«12B,1ag22b ,12C,1ab

2C,2b
222% ,1b%2122% ,2g%2124Abg«24b«#A,112~B1A!bC,1a«22@2~B

1C!ag«2C,1ab1C,2ag22b«#B,228bBAb«21~2B,1g2C,1b1C,2g12Bg«

12gC«!A,2b1~A,1!
2bg24Bb2C«212~C,212B«12C«!b ,214~B21C2!ab«214~B

1C!« ,2b28Bb«212A,11b12a ,1C,222a ,2C,114B,12b12C,22b1~C,2!
2ab24% ,12%

21

14A2bg«214~b ,1«1« ,1b1% ,1b«%211% ,2g«%21!~A1B!%,

R2252 1
4 $2@~4B12C!ab«2C,1a

21C,2ab22% ,1a%2122% ,2b%2122Aag«1~ag

2b2!A,1#B,212@2a ,12b ,21aB,1b2 1
2 a~C,1a1C,2b!2~% ,1a1% ,2b!%211~A22B!

3~b21ag!«#A,11@~ag22b2!~C,212B«12C«!22B,1b
212b ,11C,1ab12% ,1b%21

12% ,2g%21#A,214@~Bb22!«1B,2b1Ab«#B,1a22b~B1A!C,2a«14~2bB

1bC!aB«224~B,21A«1B«!a ,122~C,1a
2«12« ,1a12% ,1a«%2112% ,2b«%21!~A

1B!22~C,212B«12C«!a ,21~ag22b2!~A,1!
224~B1C!2a2«218bBAa«224~B

1C!« ,2a22A,11a24B,12a22C,22a2~C,2!
2a224% ,22%

2124A2ag«2%,

R335@~a12b!% ,1«1g% ,2«1 1
2 ~A,1g22B,1b1C,1a!~% ,1a1% ,2b!1 1

2 ~A,2g22B,2b1C,2a!

3~% ,1b1% ,2g!1a ,1% ,11b ,1% ,21b ,2% ,11g ,2% ,212% ,12b1% ,11a1% ,22g#%.

APPENDIX B: PERFECT FLUID EQUATIONS

For an axisymmetric three-space, the Ricci tensor has identically vanishing~1,3! and ~2,3!
components. Hence it follows from the Einstein equations~3! that the 4-velocity of the perfec
fluid has the form

~um!5~uo,0,0,uw!.

We shall also use the componentuw5uw%22.
Einstein’s equations for a perfect fluid are the condition that the following expressions va
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E005~v ,A!2r 41~%r ,A! ,Ar%2~r ,A!2%22ke2l@r%2~m13p!12~m1p!uw
2#,

E125v ,1v ,2r
412~l ,1% ,21l ,2% ,1!r

2%2r ,1r ,2%
222% ,12r

2%,

E335r%S r 2

%
v ,AD

,A

12kuwuoe2l~m1p!,

E15
def

E111E2222r%E35~v ,A!2r 414l ,AAr 2%21~r ,A!2%224ke2l@r%2p1~m1p!uw
2#,

E25
def

E112E22

5@~v ,1!
22~v ,2!

2#r 414@l ,1% ,12l ,2% ,2#r
2%2@~r ,1!

22~r ,2!
2#%222@% ,112% ,22#r

2%,

E35
def

E0
01E3

35% ,AAr 22ke2l%p,

E45
def

E0
02E3

35F r 2

% S %2

r 2 2v2D
,A
G

,A

2
2ke2l

r 2%
~m1p!~2rvuouw2r%222uw

2 !,

where we assume summation over repeated indices. The equationE450 is a linear combination of
the Eqs. forE00, E33 andE3 .
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Fluctuating metrics in one-dimensional manifolds
Ramón Mendoza and Pedro Gómeza)

Departamento de Matema´tica, Universidade Federal de Pernambuco,
50670-901 Recife, PE, Brazil

Fernando Moraes
Departamento de Fı´sica, Universidade Federal de Pernambuco,
50670-901 Recife, PE, Brazil

~Received 11 December 1996; accepted for publication 20 June 1997!

In this work we address the statistical mechanics of fluctuating metrics in two,
simple, one-dimensional, manifolds: the unit interval and the unit circle. Faddeev–
Popov and zeta-function regularization are used to compute explicitly the partition
function without the need of any extra fields in the case of the interval. The addition
of bosonic fields to the fluctuating metric background is necessary in order to
accomplish complete regularization in the case of the circle. ©1997 American
Institute of Physics.@S0022-2488~97!02510-3#

I. INTRODUCTION

Fluctuations of the geometry of space–time seem to be at the core of the quantizat
gravity. In dimensions higher than two, the study of these fluctuations proved to be a form
task. To study the problem in two dimensions one needs to introduce extra fields. In this wo
show that the problem becomes quite simple in one-dimensional manifolds. The reduced
sionality permits a simple, exact computation of the partition function for the only two topo
cally different compact one-dimensional manifolds: the unit interval and the unit circle. Flu
tions of the geometry are accounted for by integration over metrics, a well established pro
in string theory~the interested reader will find an excellent introduction to the subject in Ref!.

Let C denote the set which is the space of all configurations of a given physical system
probability of finding the system at a configurationc at temperatureb21 is then given by the
normalized Boltzmann factor,

P~c,b!5
e2bE~c!

Z~b!
, ~1!

where

Z~b!5 (
cPC

e2bE~c!5E
C
e2bE~c!m ~2!

is the partition function. We are interested in the case whereC5Met(V), the space of all metrics
of a one-dimensional manifoldV that can be either the unit intervalI or the unit circleS1.

In general, it is not an easy task to obtainZ(b) in a meaningful way. Among the few case
where this is known are the famous Polyakov’s Bosonic2 and Fermionic3 strings that require,
respectively, a 26-component Bosonic field or a 10-component Fermionic field. In this wor
deal with two other special cases, the unit interval and the unit circleS1. For the interval,Z(b) is
calculated exactly without recurring to any extra fields. The change in topology fromI to S1

introduces additional complications that are nevertheless resolved by the introduction of an
bosonic field.

a!Present address: Departamento de Matema´tica, Universidade Federal da Paraı´ba, 58051-970 Joa˜o Pessoa, PB, Brazil.
0022-2488/97/38(10)/5293/8/$10.00
5293J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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As in any problem in physics, identification of the symmetries of the system greatly impr
the calculations. In this case it is important to find out whether there exists a groupG that acting
on C leaves the energyE invariant. The identification ofG permits Faddeev–Popo
regularization,4 that is, the functional integral overC in Eq. ~2! may have the volume of the grou
G factored out. This results in a functional integral over a somewhat ‘‘smaller’’ space, the s
of the orbits ofC under the action ofG.

Below, we show how this can be done to a generic Riemannian space, with the help o
basic theorems of analysis:5 Fubini’s and the theorem of the change of variables. Fubini’s theo
implies that

E
C

f ~c!m5E
C/G

F E
@c#

f ~c!mcGm g̃ , ~3!

wherec is a metric onC and g̃ is the corresponding metric onC/G, @c# denotes the orbit ofc
under the groupG; i.e., the set of all elements ofC obtained from the action ofG on the element
cPC.

Now, we want to change the integration over@c# into an integration overG. Let

Ac :G→C,

g°g.c,

be the action ofG on C. Assuming thatAc is a diffeomorphism, the theorem on the change
variables implies that

E
@c#

f ~c!mc5E
G

f ~g.c!FP~c,g!mh , ~4!

whereFP(c,g) is the Faddeev–Popov factor,

FP~c,g!5Adet Ac8* ~g!+Ac8~g!. ~5!

Ac8* (g)5@Ac8#* is obtained from the metricsh on the groupG andG on C, respectively.
From now on we will restrict ourselves to the special case where (i ) the adjoint representation

of G is orthogonal with respect toh and (i i ) G acts onC by isometries with respect toG . In
terms of the Faddeev–Popov factor this implies that

~ i ! FP~c,g!5FP~c,e!,

~ i i ! FP~c,e!5FP~gc,e!,

respectively, wheree is the unit element inG. (i ) and (i i ) allow us to define

FP~@c# !5FP~c,e!. ~6!

Requiring thatf be invariant underG @i.e., f (gc)5 f (c) and property (i )# leads to

E
@c#

f ~c!mc5E
G

f ~gc!FP~c,g!mh5 f ~@c# !FP~@c# !E
G

mh . ~7!

Here it becomes clear the need of the special conditions (i ) and (i i ): they allow us to factor
out the volume of the group, a quantity whose method of calculation is not yet known. In fa
the best of our knowledge, measures on groups of diffeomorphisms are not known—even
J. Math. Phys., Vol. 38, No. 10, October 1997
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case of Diff1(I ) and Diff1(S1), the diffeomorphisms of the unit interval and the unit circ
respectively, that preserve orientation, which we will be studying below. On the other h
Ashtekar and Lewandowski6 recently showed that diffeomorphism invariant theories have w
defined measures on the space of connections hinting that it might be more practical to wor
connections instead of metrics.

With f (c)5e2bE(c) and using~3! and ~7! we define the renormalized partition function as

Zren~b!5E
C/G

e2bE~c!FP~@c# !m g̃ , ~8!

wherem g̃ denotes the volume element ofC/G. In this way the volume*Gmh of the groupG is left
out of Z. This is justified by the fact that usually one is only interested in thermodynamic ave
computed using the probability distribution~1!; i.e.,

Ā5
*CA~c!e2bE~c!

Z~b!
. ~9!

Since all metrics in@c# have the same energy, they will have the same weight in the comput
of the average. That is, the volume of the group appears both in the numerator and denomin
Eq. ~9! cancelling each other. In this way, by keeping*Gmh out of the definition ofZ(b) we mean
that the degeneracies of the energy function have already been taken into account and
purpose of computing thermodynamic averages the space of integration isC/G instead ofC.
Now, each orbit entersZren(b) with a weight precisely defined by the Faddeev–Popov facto

II. METRICS AND DIFFEOMORPHISMS ON THE UNIT INTERVAL

Our configuration space will be the set of all metrics ofI 5@0,1#; that is,

C5$adt^ dtua:I→R1%5Met~ I !. ~10!

The energyE(g) is in fact a function of the length~volume! of the intervall g5* Ivg , wherevg is
the volume element corresponding to the metricg.

The symmetry group ofE is then the groupG5Diff 1(I ), the group of the diffeomorphism
of the intervalI that preserve orientation, since this group keepsl g invariant. In other words,

E~ f * g!5E~g!, ; f PG.

Here f * g denotes the pull-back ofg by the diffeomorphismf . G satisfies conditions (i ) and (i i )
enabling us to use Eq.~8! to compute the partition function. We need now to compute
Faddeev–Popov factor, Eq.~5!.

We start with

Ag8* Ag8 :G0~TI !→G0~TI !5Tid~Diff 1~ I !!, ~11!

whereG0(TI) is the set of sections of the tangent bundle overI that vanish at the boundary ofI
andTid(Diff 1(I )) denotes the tangent space to Diff1(I ) at the identity. In this case we find

Ag8* Ag8~we!54~2Dgw!e, ~12!

wheree is the unit vector field for the metricg. After a few more steps and using the standa
result from z-function regularization,7 detbP̂5bzP̂(0)det P̂, where P̂ is any elliptic self-adjoint
operator, and the well known fact8 about the ordinary Riemann’sz-function thatz~0!52 1

2 and
z8(0)52 1

2 ln 2p, we get
J. Math. Phys., Vol. 38, No. 10, October 1997
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det Ag8* Ag85 l g . ~13!

It follows that

FP~@g# !5 l g
1/2. ~14!

In what follows we describe how to obtainm g̃ . The supermetric on Met(V) induces a metric
on the quotient space obtained by the action of Diff1(V). In fact, Diff1(V) acts isometrically on
the superspace Met(V) with the given supermetric. We are reminded of the definition of sup
metric,

G g~m,n!5E
V

Tr~m̂n̂!vg . ~15!

g is a metric onV, m and n denote bilinear symmetric tensors that are identified with tang
vectors of Met(V) at g. A very peculiar property of the one-dimensional case is the fact tha
orbit space of Met(V) by the action of Diff1(V) is one-dimensional. In fact, if the dimension o
V is greater than one the orbit space is infinite-dimensional. For instance, in the two-dimen
case, we require conformal invariance, in addition to Diff1(V) invariance for getting a finite-
dimensional orbit space.

It can be easily shown that the induced metricg̃ in Met(I )/Diff 1(I ) is independent from the
chosen lift. Then, by considering the curve@( l g1s)2dt2#PMet(I )/Diff 1(I ), the natural lift is
( l g1s)2dt2. It follows that

c* S 4~dt!2

t D5g̃, ~16!

which gives for the volume element,

m g̃5c* S 2dt

At
D , ~17!

wherec denotes the chart that sends@g#° l g and* indicates the pull-back operation on differe
tial forms.

Using now Eqs.~14! and ~17! in ~8! we end up with

Zren~b!52E
0

`

e2bE~ l g!dlg . ~18!

That is, by performing an explicit calculation, we have shown that the problem of fluctu
metrics in the unit interval is tractable, yielding an exact result. If, for instance, we choos
energy to be quadratic inl g ; i.e., E( l g)5 l g

2 then we find

Z~b!5Ap

b
. ~19!

This partition function gives

Ē5 1
2 kBT, ~20!
J. Math. Phys., Vol. 38, No. 10, October 1997
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for the mean energy. Mathematically, it is no surprise that we obtain the one-dimensional cla
ideal gas solution since there is a one-to-one correspondence between the lengthl g and the atomic
velocity. Physically, it is intriguing that there should be any relation between fluctuating metr
the interval and the classical ideal gas.

III. METRICS AND BOSONIC FIELDS ON S1

The system we will study in this section is the space of fluctuating metrics onS1 and a
non-interacting bosonic field withD components. We assume for the energy of a given confi
ration g of the metric andw of the field

E~g,w!5 l g
21 1

2 ^2Dgw,w&, ~21!

where l g is the volume~length! of S1 calculated with the metricg and Dg is the Laplacian
corresponding tog. The partition function for this system is then

Z~b!5E
Met~S1!

mge2b l g
2E

C`~S1,RD!
e2b~~1/2!^2Dgw,w&!dw. ~22!

In Section II above we used the theorem of change of variables as a way of calculatin
Faddeev–Popov factor. This is possible in the case of the interval, because the groupG acts on the
configuration spaceC without fixed points, which is not the case inS1. Here, this has to be don
in a different way.

The adjoint representation ofG acts on its Lie algebra Lie(G) such that a given tangent vecto
@s# is sent to@gsg21#, wheres denotes a smooth curve onG with s(0)5e, the unit inG. There
is a close relation between the adjoint representation and the metric at the identity@i.e., defined on
Lie(G)#: if the adjoint representation is made of orthogonal matrices, the metric is bi-inva
That is, if he is such a metric,

hg~ l gX,l gY!5he~X,Y!5hg~r gX,r gY!,

;X, YPLie(G). Herel ,r denotes the derivatives of left and right translation onG. We introduce
here the notion of stabilizer of an elements of a setS:

Ks5$gPGug•s5s%. ~23!

Ks is a subgroup ofG. In the case of the interval, whereS is the set of all metrics onI , Ks

5$e%. The orbit of an elementsPS is defined by

s̄5$g•sugPG%#S. ~24!

If the adjoint representation ofG is orthogonal, the isomorphism between groups,

Ks→Kg•s , x°gxg21, ~25!

is an isometry. So, the volume element in both sets is the same. In other words, the volume
stabilizer with an induced metric is the same anywhere in the orbit, it depends only on the
orbit: Vol(Ks ,h)5Vol(Kg•s ,h)5Vol(K s̄). In the case of the interval, we have a single point a
the volume is taken to be unitary.

Differently from the interval, when we consider Met(S1), we have thatKg is isomorphic to
SO(2). This implies thatAg8 sends non-zero vectors to zero. Here,Ag8 denotes the linearization o
the map that sendsg to g•s. This makes the determinant in the Faddeev–Popov factor,

FP~s,g!5Adet As8~g!* As8~g!, ~26!
J. Math. Phys., Vol. 38, No. 10, October 1997
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be zero. This can be avoided by restrictingAs8(g) to the (TeKs)
', the space orthogonal to th

kernel ofAs8(e), which is the tangent space toKs at the identityTeKs[Lie(Ks). To simplify the
notation, from now on we representAs8(e)uTeK

s
' by As8(e).

The fact thatG acts isometrically onS implies thatFP(g•s,e)5FP(s,e) as in the interval.
Now, since the adjoint representation ofG is orthogonal, it follows thatFP(s,g)5FP(s,e). With
this we can write for the contribution from the metrics to the partition function,

Z~b!umet[S E
S/;

e2bE~ s̄ !FP~ s̄!
1

uVol~K s̄ !u
m g̃D •S E

G
mhD , ~27!

hereS5Met(S1) andG5Diff 1(S1), m g̃ andmh are the volume elements inS/; andG, respec-
tively. g̃ is the induced metric inS/;. As in Section II above the volume ofG is taken care of by
renormalizing the partition function to

Z~b!uren
met5

Z~b!umet

*Gvh
. ~28!

A detailed calculation gives

FP~ s̄!5 1
2 l s , ~29!

and

uVol~K s̄ !u5 l s
3/2, ~30!

for S1. The volume elementm g̃ is the same as in the interval being given then by Eq.~17!.
Inserting the above results into Eqs.~28! and ~27!, after a simple manipulation we obtain

Z~b!uren
met5E

0

`

e2b l 2l 21dl, ~31!

which is easily integrable in terms of theG function, giving

Z~b!uren
met5 1

2 G~0!b20. ~32!

SinceG~0! diverges this can be renormalized again to

Z~b!uren
met5 1

2 , ~33!

which gives no information whatsoever on the system. This is why we need to introduce
fields. But before we do so, a comment on the above result is deserved. A similar calculati
a generic compact Riemann surface without boundary,S, gives

Z~b!uren
S 5e2bx~S!, ~34!

wherex~S! is the Euler characteristic ofS. It is no surprise then thatZ(b)uren
met5 1

2 for S1 since in
this casex(S)50.

We now turn to the contribution from theD-component bosonic field to the partition functio
Here the group that keeps the energyE(w) invariant is simplyRD. Factoring out this group
implies in taking the volume ofRD, which is infinite, out of the integral. This is the sam
renormalization procedure we used for the metrics inI and inS1. The Faddeev–Popov factor i
dealt with in a way similar to what was done for the metrics, but we should be aware here
zero modes that appear inDg .
J. Math. Phys., Vol. 38, No. 10, October 1997
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The bosonic contribution to the partition function is, from Eq.~22!,

Z~b!uw5E
C`~S1,RD!

e2bE~w!dw5E
C`/;

e2bE~ w̄ !FP~ w̄ !dw̄•Vol~RD!, ~35!

which leads to

Z~b!uren
w 5E

C`/;
e2bE~ w̄!l g

1/2dw̄, ~36!

for each component of the bosonic field. Using thez-function regularization technique7 we get

Z~b!uren
w 5

l g
1/2

det8~2Dg!1/2 b2zg~0!/2, ~37!

where det8 means the determinant without zero modes, its value forDg , in case of a giveng
PMet(S1) is l g

2. Finally, the contribution of all components of the bosonic field to the partit
function is given by

S Al g

Adet8~2Dg!
b2zg~0!/2D D

5S 1

l D
D/2

bD/2, ~38!

where we used the fact thatzg(0)521, for all g. Combining the above equation with Eq.~31! we
obtain the complete renormalized partition function,

Z~b!ren5E
0

`

e2b l 2S 1

l D S 1

l D
D/2

bD/2dl, ~39!

which can be easily integrated to

Z~b!ren5
1

2
b3D/4GS 2

D

4 D . ~40!

SinceG(2D/4) diverges ifD is a multiple of 4 this introduces what might seem to be a restric
on the number of components of the bosonic field used. This constraint is not physically imp
since it comes fromG(2D/4), a constant factor which can be renormalized away. This is just
by the same arguments given in section I@Eq. ~9!# for the exclusion of the volume of the grou
from the partition function. Notice also that forD50 we obtain the previous result, Eq.~33!. For
detailed information on theG andz functions, see Ref. 8.

IV. CONCLUSION

Following the program of calculating partition sums for manifolds with fluctuating met
started by Polyakov,2,3 we obtained an exact expression for the case where the manifold is the
interval I . This was done by the factorization of the configuration spaceC of the system into the
direct product of its symmetry groupG and the set of all unequivalent~underG! configurations
C/G. The exact result was obtained becauseC/G has a finite~one! dimension. We also derived a
exact expression for the partition function of the space of metrics ofS1. But, the change in
topology from I to S1 introduces additional complications that are nevertheless resolved b
introduction of an extra bosonic field. This closes the problem in dimension 1, since there ar
two topologically different compact spaces,I andS1.

A final comment, on canonical quantization, is due here. Although this problem may eq
lently be formulated in the operator formalism, the calculations may not be as simple as th
J. Math. Phys., Vol. 38, No. 10, October 1997
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done in this work for the following reason: in the canonical operator formalism one works w
linear configuration space, Hilbert space; in this problem, our configuration space is the sp
all metrics over a given manifold, which is genuinely non-linear~there is no such a thing as
superposition of metrics!. Therefore, some linearization of the configuration space is neede
order to solve the problem in the canonical formalism. At present, it is not clear to us
linearization should be used in this case.
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Singularity-free static fluid spheres in general relativity
Oleg Yu. Orlyanskya)

Theoretical Physics Department, Dniepropetrovsk State University,
lane Naukoviy 13, 320625 Dniepropetrovsk-10, Ukraine

~Received 8 August 1996; accepted for publication 14 April 1997!

The relations between the metric coefficients, the energy density, the pressure, and
the speed of sound at the center of a perfect fluid sphere which are necessary for
singularity-free static solutions are considered. In order to find exact singularity-
free static solutions and to construct reasonable star models it is suggested that we
modify the known methods of obtaining exact spherically symmetric solutions
using these relations. A known class and the new class of such solutions are ob-
tained and the extreme static star model is constructed. At the center of the sphere
the equation of state is ultrarelativistic and the sound speed is equal to the speed of
light in a vacuum. ©1997 American Institute of Physics.
@S0022-2488~97!01909-9#

I. INTRODUCTION

There are a lot of exact spherically symmetric perfect fluid static solutions of the Ein
equations.1 Some nonstatic solutions have static limits.2–4 However, most of these solutions do n
satisfy various criteria for physically reasonable structures. In particular, the pressurep and the
energy density« have singularities at the center of sphere and the speed of soundv5Adp/d« is
imaginary, equal to zero, or infinity.

The line element for a static spherically symmetric distribution of matter is given by

ds25en~r ! dt22el~r ! dr22r 2~du21sin2 u df2!, ~1!

where the speed of lightc51 andn(r ) andl(r ) are functions ofr alone. The momentum–energ
tensor of perfect fluidTn

m5(«1p)umun2dn
mp has only the four nonzero componentsT0

05« and
T1

15T2
25T3

352p in the static case (u15u25u350). Then the Einstein field equationsRn
m

2 1
2dn

mR58pgTn
m can be written as5

e2lS l8

r
2

1

r 2D1
1

r 2 58pg«,

e2lS n8

r
1

1

r 2D2
1

r 2 528pgp, ~2!

n8~«1p!522p8,

where the third equation of~2! is the equation of hydrostatic support (T1;m
m 50) and is used instead

of the identical equationsR2
22 1

2R58pgT2
2 and R3

32 1
2R58pgT3

3 to simplify the mathematica
analysis.

Expanding the functions of the equation set~2! in power series at the pointr 50 we find that
singularity-free solutions must satisfy the relations

a!Electronic mail: theorph@ff.dsu.dp.ua
0022-2488/97/38(10)/5301/4/$10.00
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l05l085l0-5n085n0-5«085p085p0-50,

l0-824n0-853l09
216n09

226n09l09 , ~3!

8pg«05
3

2
l09 , 8pgp05n092

1

2
l09 , v0

25
p09

«09
5

6n09~n091l09!

5~3l09
22l0-8!

,

whereg is the constant of gravitation, the prime denotes differentiation with respect tor , and the
subscript 0 refers to the value of a variable atr 50. Notice that the values of first, second, thir
and fourth derivations of the metric coefficienten alone~or el alone! and the ratio of the centra
pressure to the central energy densityn5p0 /«0 determine the pressure, the energy density,
the sound speed at the centerv0 :

8pgp05
3nn09

113n
, 8pg«05

3n09

113n
, v0

25
9

5

11n

3~123n!22~113n!n0-8/n09
2 ~4!

or

8pgp05
3

2
nl09 , 8pg«05

3

2
l09 , v0

25
9

10

~11n!~113n!

32l0-8/l09
2 . ~5!

And vice versa, the valuesp0 , «0 , andv0 determine the derivations of the metric coefficients
the center. This allows us to obtain new exact static singularity-free solutions with definite
erties at the center using different known methods. To illustrate the suggested approach we
method of obtaining exact static solutions.6

II. TWO CHOICES OF AN ARBITRARY FUNCTION

The line element considered in Ref. 6,

ds25g2~x! dt22dx22r 2~x!~du21sin2 u df2!, ~6!

may be easily transformed into the form~1!, where en5g2(x) and e2l5(dr/dx)2. Then an
arbitrary functionG(r ), which determines the metrical tensor, the pressure, and the en
density,6 takes the form

G~r !52
r 3

11n8r
.

Hence, the asymptotic behavior ofG(r ) near the center of the sphere (r→0) is

G52r 3
„12n09r

21~n092 1
6n0-8!r 41•••…. ~7!

Using ~4! we can write~7! as follows:

G52r 3F12
113n

3
«0r 21

113n

12 S 11n

5v0
2 1115nD «0

2r 41•••G . ~8!

Satisfying~8! we choose one of the simple forms ofG(r ):

G52r 3
11ar 2

11br 2 ,
J. Math. Phys., Vol. 38, No. 10, October 1997
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where

a5S 11n

5v0
2 2

1

3
1nD «0

4
, b5S 11n

5v0
2 1115nD «0

4
.

Whenv[~b2a!/~2a! is a positive integer, the solutions of the Einstein equations for the g
functionG(r ) can be expressed in terms of elementary functions. The class of the same so
was obtained in Ref. 7 for a line element~1!. It can be simplified as

en5A~11x!v,

e2l5
~11x!2

11~v11!x
1

Bx~11x!22v

~11~v11!x!2/~v11!

2x~11x!22v
v21

~v11!v (
i 50

v21

Cv21
i vv2 i

~11~v11!x! i 21

i 2~v21!/~v11!
, ~9!

wherex5r 2/r 0
2 is a dimensionless variable. HereA, B, andr 0 are arbitrary constants andv is a

positive integer. This class includes such known static exact solutions as the fourth T
solution8 ~v51!, the Adler–Kuchowicz one9,10 ~v52! and the solution11 v53. Another choice of
G(r ),

G52r 3
11ar 21dr 4

11br 21dr 4 ,

allows us to obtain a new class of exact solutions in terms of elementary functions und
52ab23b2:

en5AS 11vx

11sxD k

,

e2l5~11vx!~11sx!K~x!, ~10!

8pgr 0
2p5

112~7k221!x1vsx2

x
K~x!2

1

x
,

8pgr 0
2«5

312~11k223!x13vsx2

x„11~9k221!x…„11~k221!x…

2
314~10k223!x1~250k42172k2118!x2112~6k221!vsx313v2s2x4

x„11~9k221!x…„11~k221!x…

K~x!

where

K~x!5
~11vx!~11sx!

~11~9k221!x!~11~k221!x!3 F112~k221!x1CxS 11sx

11vxD kG
x5r 2/r 0

2. Here v5(3k21)(k11); s5(3k11)(k21); A, C, and r 0 are constants;k is an
integer. Whenk50 andk561 we have the Einstein solution12 and the fourth Tolman solutions,8

respectively. The solutions of this class satisfy the causal principle 0,v2<1 and the energy
dominant principle of the formTm

m5«23p>0 at the center whenk2>5/17.
J. Math. Phys., Vol. 38, No. 10, October 1997
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III. EXTREME STATIC STAR MODEL

It is interesting to consider an extreme static star model in which the equation of sta
matter at the center is ultrarelativistic (n5 1

3) and the sound speed at the center is equal to
speed of light in vacuum. From~4! we immediately find thatn0-8/n09

2523/5. This corresponds to
v55 in ~9! andk56A5/17 in ~10!. Whenv55 the set of equations~9! takes the form

en5A~11x!5,

e2l5
1

112~11x!3 S 1122309x254x228x31
85x

A3 116x
D ,

~11!

8pgr 0
2p5

25

112~11x!4 S 192165x242x228x31
17~1111x!

5A3 116x
D ,

8pgr 0
2«5

301110x2~3111x222x2!8pgr 0
2p

~116x!~1111x!
.

From matching conditions with the exterior Schwarzschild solution at the boundaryr 5R we find
thatA'0.21002,R'0.39185r 0 , andR'1.75127r g , wherer g is the Schwarzschild radius of th
star. With the increase of the radial coordinater , the pressurep, the energy density«, the speed
of soundv, and the ration5p/« monotone decrease. The speed of soundv decreases from the
speed of light in vacuumc at the center of star to 0.83 367c at the boundary. The ratiop/«
decreases from1

3 at the center to 0 at the boundary. Thus the solution~11! can serve as a
reasonable extreme model for a relativistic static star.

1D. Kramer, H. Stephani, M. A. H. MacCallum, and E. Herlt,Exact Solutions of Einstein’s Field Equations~Cambridge
U. P., Cambrige, 1980!.

2B. Mashhoon and E. Glass, Astrophys. J.205, 570 ~1976!.
3B. Mashhoon and H. Partovi, Phys. Rev. D20, 2455~1979!.
4R. A. Sussman, J. Math. Phys.29, 1177~1988!.
5R. C. Tolman,Relativity Thermodynamics and Cosmology~Clarendon, Oxford, 1969!.
6S. Berger, R. Hojman, and J. Santamarina, J. Math. Phys.28, 2949~1987!.
7M. P. Korkina and O. Yu. Orlyansky, inGravitation and Electromagnetism~Minsk U. P., Minsk, 1988!, p. 126.
8R. C. Tolman, Phys. Rev. D55, 364 ~1939!.
9B. Kuchowiez, Acta Phys. Polon.33, 541 ~1969!.

10R. J. Adler, J. Math. Phys.15, 727 ~1974!.
11M. P. Korkina, Russ. J. Phys.5, 81 ~1987!.
12A. Einstein, Sitzungsber. preuss. Akad. Wiss.1, 142 ~1917!.
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Nonlinear spinor field in Bianchi type-I Universe filled
with perfect fluid: Exact self-consistent solutions

B. Sahaa)

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, 141980 Dubna, Moscow region, Russia

G. N. Shikin
Department of Theoretical Physics, Russian Peoples’ Friendship University,
6, Miklukho-Maklay str., 117198 Moscow, Russia

~Received 22 November 1996; accepted for publication 30 April 1997!

Self-consistent solutions to nonlinear spinor field equations in general relativity
have been studied for the case of Bianchi type-I space–time filled with perfect
fluid. The initial and the asymptotic behaviors of the field functions and the metric
one have been thoroughly studied. The absence of initial singularity for some types
of solutions and also the isotropic mode of space–time expansion in some special
cases should be emphasized. ©1997 American Institute of Physics.
@S0022-2488~97!02009-4#

I. INTRODUCTION

The quantum field theory in curved space–time has been a matter of great interest in
years because of its applications to cosmology and astrophysics. The evidence of existe
strong gravitational fields in our Universe led to the study of the quantum effects of material
in external classical gravitational field. After the appearance of Parker’s paper on scalar field1 and
spin-12 fields,2 several authors have studied this subject. Although the Universe seems homog
and isotropic at present, there are no observational data guaranteeing the isotropy in the e
to the recombination. In fact, there are theoretical arguments that sustain the existence
anisotropic phase that approaches an isotropic one.3 Interest in studying Klein–Gordon and Dira
equations in anisotropic models has increased since Hu and Parker4 have shown that the creatio
of scalar particles in anisotropic backgrounds can dissipate the anisotropy as the Unive
pands.

A Bianchi type-I ~B-I! Universe, being the straightforward generalization of the
Robertson–Walker~RW! Universe, is one of the simplest models of an anisotropic Universe
describes a homogenous and spatially flat Universe. Unlike the RW Universe which has the
scale factor for each of the three spatial directions, a B-I Universe has a different scale fa
each direction, thereby introducing an anisotropy to the system. It moreover has the agr
property that near the singularity it behaves like a Kasner Universe, even in the presence of
and consequently falls within the general analysis of the singularity given by Belinskiiet al.5 Also
in a Universe filled with matter forp5g«, g,1, it has been shown that any initial anisotropy
a B-I Universe quickly dies away and a B-I Universe eventually evolves into a RW Unive6

Since the present-day Universe is surprisingly isotropic, this feature of the B-I Universe ma
a prime candidate for studying the possible effects of an anisotropy in the early Univer
present-day observations. In light of the importance of mentioned above, several author
studied linear spinor field equations7,8 and the behavior of gravitational waves~GWs!9–11 in a B-I
Universe. Nonlinear spinor field~NLSF! in external cosmological gravitational field was fir
studied by G. N. Shikin in 1991.12 This study was extended by us for the more general case w
we consider the nonlinear term as an arbitrary function of all possible invariants generated

a!Electronic-mail address: saha@thsunl.jinr.dubna.su
0022-2488/97/38(10)/5305/14/$10.00
5305J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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spinor bilinear forms. In that paper we also studied the possibility of elimination of initial sin
larity especially for the Kasner Universe.13 In a recent paper14 we studied the behavior of self
consistent NLSF in a B-I Universe that was followed by Refs. 15 and 16 where we studie
self-consistent system of interacting spinor and scalar fields. The purpose of the paper is to
our study for more general NLSF in the presence of perfect fluid. In Sec. II we derive fundam
equations corresponding to the Lagrangian for the self-consistent system of spinor and g
tional fields in the presence of a perfect fluid and seek their general solutions. In Sec. III w
a detailed analysis of the solutions obtained for different kinds of nonlinearity. In Sec. IV we s
the role of a perfect fluid and in Sec. V we sum up the results obtained.

II. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS

The Lagrangian for the self-consistent system of spinor and gravitational fields in the pre
of a perfect fluid is

L5
R

2k
1

i

2
@c̄gm¹mc2¹mc̄gmc#2mc̄c1LN1Lm , ~2.1!

with R being the scalar curvature andk being the Einstein gravitational constant. The nonlin
term LN describes the self-interaction of a spinor field and can be presented as some ar
functions of invariants generated from the real bilinear forms of a spinor field having the fo

S5c̄c, P5 i c̄g5c, vm5~ c̄gmc!, Am5~ c̄g5gmc!, Tmn5~ c̄smnc!,

wheresmn5( i /2)@gmgn2gngm#. Invariants, corresponding to the bilnear forms, look like

I 5S2, J5P2, I v5vmvm5~ c̄gmc!gmn~c̄gnc!,

I A5AmAm5~ c̄g5gmc!gmn~c̄g5gnc!, I T5TmnTmn5~ c̄smnc!gmagnb~c̄sabc!.

According to the Pauli–Fierz theorem,17 among the five invariants onlyI andJ are independent a
all others can be expressed by them:I v52I A5I 1J and I T5I 2J. Therefore we choose th
nonlinear termLN5F(I ,J), thus claiming that it describes the nonlinearity in the most genera
its form. Lm is the Lagrangian of perfect fluid.

We choose B-I space–time metric in the form

ds25dt22g i j ~ t !dxidxj . ~2.2!

As it admits no rotational matter, the spatial metricg i j (t) can be put into diagonal form. Now w
can rewrite the B-I space–time metric in the form18

ds25dt22a2~ t !dx22b2~ t !dy22c2~ t !dz2, ~2.3!

where the velocity of light is taken to be unity. Einstein equations fora(t), b(t), and c(t)
corresponding to the metric~2.3! and Lagrangian~2.1! read18

ä

a
1

ȧ

a S ḃ

b
1

ċ

cD 52kS T1
12

1

2
TD , ~2.4!

b̈

b
1

ḃ

b S ȧ

a
1

ċ

cD52kS T2
22

1

2
TD , ~2.5!
J. Math. Phys., Vol. 38, No. 10, October 1997
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c̈

c
1

ċ

c S ȧ

a
1

ḃ

bD 52kS T3
32

1

2
TD , ~2.6!

ä

a
1

b̈

b
1

c̈

c
52kS T0

02
1

2
TD , ~2.7!

where points denote differentiation with respect tot, andT5Tm
m .

The NLSF equations and components of the energy-momentum tensor for the spinor fie
perfect fluid corresponding to~2.1! are

igm¹mc2mc1FI2Sc1FJ2Pig 5c50,
~2.8!

i¹mc̄gm1mc̄2FI2Sc̄2FJ2Pic̄g 550,

whereFI :5]F/]I andFJ :5]F/]J. Here

Tm
r 5

i

4
grn~ c̄gm¹nc1c̄gn¹mc2¹mc̄gnc2¹nc̄gmc!2dm

r Lsp1Tm~m!
r , ~2.9!

while Lsp , on account of spinor field equations, takes the form

Lsp52F1

2 S c̄
]LN

]c̄
1

]LN

]c
c D 2LNG52@2IF I12JFJ2LN#.

HereTm(m)
r is the energy-momentum tensor of a perfect fluid. For a Universe filled with pe

fluid, in the concomitant system of reference~u051, ui50, i 51,2,3! we have

Tm~m!
n 5~p1«!umun2dm

n p5~«,2p,2p,2p!, ~2.10!

where energy« is related to the pressurep by the equation of statep5g«. The general solution
has been derived by Jacobs.6 Hereg varies between the interval 0<g <1, whereasg50 describes
the dust Universe,g51

3 presents radiation Universe,1
3,g ,1 ascribes hard Universe, andg51

corresponds to the stiff matter. In~2.8! and ~2.9! ¹m denotes the covariant derivative of spino
having the form19

¹mc5
]c

]xm2Gmc, ~2.11!

whereGm(x) are spinor affine connection matrices. Thegm(x) matrices are defined for the metr
~2.3! as follows. Using the equalities20,21

gmn~x!5em
a ~x!en

b~x!hab , gm~x!5em
a ~x!ḡa,

wherehab5diag (1,21,21,21), ḡa are the Dirac matrices of Minkowski space andem
a (x) are

the set of tetradic four-vectors, we obtain the Dirac matricesgm(x) of curved space-time:

g05ḡ 0, g15ḡ 1/a~ t !, g25ḡ 2/b~ t !, g 35ḡ 3/c~ t !,

g05ḡ0 , g15ḡ1a~ t !, g25ḡ2b~ t !, g35ḡ3c~ t !.

The Gm(x) matrices are defined by the equality

Gm~x!5 1
4 grs~x!~]med

b eb
r2Gmd

r !gsgd,
J. Math. Phys., Vol. 38, No. 10, October 1997
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which gives

G050, G15 1
2ȧ~ t !ḡ 1ḡ 0, G25 1

2ḃ~ t !ḡ 2ḡ 0, G35 1
2ċ~ t !ḡ 3ḡ 0. ~2.12!

Flat space–time matrices we choose in the form given in Ref. 22.

ḡ 05S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D , ḡ 15S 0 0 0 1

0 0 1 0

0 21 0 0

21 0 0 0

D ,

ḡ 25S 0 0 0 2 i

0 0 i 0

0 i 0 0

2 i 0 0 0

D , ḡ 35S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D .

Defining g 5 as follows,

g 552
i

4
Emnsrgmgngsgr, Emnsr5A2g«mnsr , «012351,

g 552 iA2gg0g1g2g352 i ḡ 0ḡ 1ḡ 2ḡ 35ḡ 5,

we obtain

ḡ 55S 0 0 21 0

0 0 0 21

21 0 0 0

0 21 0 0

D .

We study the space-independent solutions to NLSF equation~2.8!. In this case the first equation o
the system~2.8! together with~2.11! and ~2.12! is

i ḡ 0S ]

]t
1

ṫ

2t Dc2mc1Dc1 i G g 5c50, t~ t !5a~ t !b~ t !c~ t !5A2g, ~2.13!

where we denoteD :52SFI andG :52PFJ . For the componentscr5Vr(t), wherer51,2,3,4,
from ~2.13! one deduces the following system of equations:
J. Math. Phys., Vol. 38, No. 10, October 1997
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V̇11
ṫ

2t
V11 i ~m2D !V12G V350,

V̇21
ṫ

2t
V21 i ~m2D !V22G V450,

~2.14!

V̇31
ṫ

2t
V32 i ~m2D !V31G V150,

V̇41
ṫ

2t
V42 i ~m2D !V41G V250.

Let us now define the equations for

P5 i ~V1V3* 2V1* V31V2V4* 2V2* V4!,

R5~V1V3* 1V1* V31V2V4* 1V2* V4!, ~2.15!

S5~V1* V11V2* V22V3* V32V4* V4!.

After a little manipulation one finds

dS0

dt
22G R050,

dR0

dt
12~m2D !P012G S050, ~2.16!

dP0

dt
22~m2D !R050,

whereS05tS, P05tP, andR05tR. From this system we obtain

S0Ṡ01R0Ṙ01P0Ṗ050,

which gives

S21R21P25C2/t2, C25const. ~2.17!

Let us go back to the system of equations~2.14!. It can be written as follows if one definesWa

5AtVa :

Ẇ11 iFW12G W350, Ẇ21 iFW22G W450,
~2.18!

Ẇ32 iFW31G W150, Ẇ42 iFW41G W250,

whereF5m2D . DefiningU(s)5W(t), wheres5* G dt, we rewrite the foregoing system a

U181 i ~F/G !U12U350, U281 i ~F/G !U22U450,
~2.19!

U382 i ~F/G !U31U150, U482 i ~F/G !U41U250,
J. Math. Phys., Vol. 38, No. 10, October 1997
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where prime~8! denotes differentiation with respect tos.
Let us now solve the Einstein equations. To do it we first write the expressions fo

components of the energy-momentum tensor explicitly. Using the property of flat space
Dirac matrices and the explicit form of covariant derivative¹m , one can easily find

T0
05mS2F~ I ,J!1«, T1

15T2
25T3

352IF I12JFJ2F~ I ,J!2p. ~2.20!

Summation of Einstein equations~2.4!, ~2.5!, and~2.6! leads to the equation

ẗ

t
52kS T1

11T2
21T3

32
3

2
TD5

3k

2
„mS12IF I12JFJ22F~ I ,J!1«2p…. ~2.21!

In the case of the right-hand side of~2.21! being the function oft(t)5a(t)b(t)c(t), this equation
takes the form

ẗ1F~t!50. ~2.22!

As is known, this equation possesses exact solutions for arbitrary functionF~t!. Giving the
explicit form of LN5F(I ,J), from ~2.21! one can find concrete functiont(t)5abc. Once the
value oft is obtained, one can get expressions for componentsVa(t), a51,2,3,4. Let us expres
a, b, c throught. For this we notice that subtraction of Einstein equations~2.4! and~2.5! leads to
the equation

ä

a
2

b̈

b
1

ȧċ

ac
2

ḃċ

bc
5

d

dt S ȧ

a
2

ḃ

bD 1S ȧ

a
2

ḃ

bD S ȧ

a
1

ḃ

b
1

ċ

cD 50. ~2.23!

Equation~2.23! possesses the solution

a

b
5D1 exp S X1E dt

t D , D15const, X15const. ~2.24!

Subtracting Eqs.~2.4!2~2.6! and ~2.5!2~2.6!, one finds the equations similar to~2.23!, having
solutions

a

c
5D2 exp S X2E dt

t D ,
b

c
5D3 exp S X3E dt

t D , ~2.25!

whereD2 , D3 , X2 , X3 are integration constants. There is a functional dependence betwee
constantsD1 , D2 , D3 , X1 , X2 , X3 :

D25D1D3 , X25X11X3 .

Using the equations~2.24! and ~2.25!, we rewritea(t), b(t), andc(t) in the explicit form

a~ t !5~D1
2D3!1/3t1/3 exp F2X11X3

3 E dt

t~ t !G ,
b~ t !5~D1

21D3!1/3t1/3 exp F2
X12X3

3 E dt

t~ t !G , ~2.26!

c~ t !5~D1D3
2!21/3t1/3 exp F2

X112X3

3 E dt

t~ t !G .
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Thus the previous system of Einstein equations is completely integrated. In this process o
gration only the first three of the complete system of Einstein equations have been used. G
solutions to these three second-order equations have been obtained. The solutions con
arbitrary constants,D1 , D3 , X1 , X3 , and two others, that were obtained while solving Eq.~2.22!.
Equation~2.7! is the consequence of the first three Einstein equations. To verify the correctn
obtained solutions, it is necessary to puta, b, c into ~2.7!. It should lead either to the identity o
to some additional constraint between the constants. Puttinga, b, c from ~2.26! into ~2.7! one can
get the following equality:

1

3t F3ẗ22
ṫ2

t
1

2

3t
~X1

21X1X31X3
2!G52kS T0

02
1

2
TD , ~2.27!

which guarantees the correctness of the solutions obtained. In fact we can rewrite~2.21! and~2.27!
as

ẗ

t
5

3k

2
~T0

01T1
1! ~2.28!

and

ẗ

t
2

2

3

ṫ2

t2 1
2

9t2 X 52
k

2
~T0

023T1
1!, ~2.29!

whereX :5X1
21X1X31X3

2. Combining~2.28! and ~2.29! together one gets the solution fort in
quadrature:

E dt

A3kt2T0
01X /3

5t. ~2.30!

Let us note that in our further study we exploit the equations~2.21! to obtaint and ~2.27! to
estimate integration constants.

It should be emphasized that we are dealing with a cosmological problem and our mai
is to investigate the initial and the asymptotic behavior of the field functions and the metric
As one sees, all of these functions are in some functional dependence witht: c;1/At and ai

;t1/3e6* dt/t. Therefore in our further investigation we mainly look fort, though in some par-
ticular cases we write down field and metric functions explicitly.

III. ANALYSIS OF THE SOLUTIONS OBTAINED FOR SOME SPECIAL CHOICE OF
NONLINEARITY

Let us now study the system for some special choice ofLN . First we analyze the system onl
for the NLSF which will be followed by the study when the Universe is filled with perfect flu
However, first of all we study the linear case. The reason for getting the solution to the
consistent system of equations for the linear spinor and gravitational fields is the neces
comparing this solution with that for the system of equations for the nonlinear spinor and g
tational fields that permits clarification of the role of nonlinear spinor terms in the evolution o
cosmological model in question. Using the equation~2.21! one gets

t~ t !5~1/2!Mt21y1t1y0 , ~3.1!

where M5 3
2kmC0 , C05C1

21C2
22C3

22C4
2, and y1 , y0 are the constants. In this case we g

explicit expressions for the components of spinor field functions and metric functions:
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Vt~ t !5~Ct /At!e2 imt, r 51,2; Vl~ t !5~Cl /At!eimt, l 53,4. ~3.2!

a~ t !5~D1
2D3!1/3~ 1

2Mt21y1t1y0!1/3Z2~2X11X3!/3B,

b~ t !5~D1
21D3!1/3~ 1

2Mt21y1t1y0!1/3Z22~X12X3!/3B, ~3.3!

c~ t !5~D1D3
2!21/3~ 1

2Mt21y1t1y0!1/3Z22~X112X3!/3B,

whereZ5(t2t1)/(t2t2), B5M (t12t2), and t1,252y1 /M6A(y1 /M )222y0 /M are the roots
of the quadratic equationMt212y1t12y050. Substitutingt(t) into ~2.27!, one gets

y1
222My05~X1

21X1X31X3
2!/35X /3.0. ~3.4!

This means that the quadratic polynomial in~3.1! possesses real roots, i.e.,t(t) in ~3.1! turns into
zero at t5t1,2 and the solution obtained is the singular one. Let us now study the solu
~3.1!–~3.3! at t→`. In this case we have

t~ t !'
3

4
kmC0t2, a~ t !'b~ t !'c~ t !'t2/3,

which leads to the conclusion about the asymptotical isotropization of the expansion proce
the initially anisotropic B-I space. Thus the solution to the self-consistent system of equatio
the linear spinor and gravitational fields is the singular one at the initial time. In the initial sta
evolution of the field system the expansion process of space is anisotropic, but att→` there
happens isotropization of the expansion process.

Once the solutions to the linear spinor field equations and those corresponding to the
functions are obtained, let us study the nonlinear case.

I . Let us consider the case whenLN5F(I ). It is clear that in this caseG 50. From~2.16! we
find

S5C0 /t, C05const. ~3.5!

As in the considered case whereLN5F depends only onS, from ~3.5! it follows that F(I ) and
FI(I ) are functions oft5abc. Taking this fact into account, integration of the system of eq
tions ~2.14! leads to the expressions

Vt~ t !5~Ct /At!e2 iV, r 51,2, Vl~ t !5~Cl /At!eiV, l 53,4, ~3.6!

whereCt andCl are integration constants andV5*Fdt. Putting~3.6! into ~2.15! one gets

S5~C1
21C2

22C3
22C4

2!/t. ~3.7!

Comparison of~3.5! with ~3.7! givesC05C1
21C2

22C3
22C4

2.
Let us consider the concrete type of NLSF equation withF(I )5lI (n/2)5lSn wherel is the

coupling constant,n.1. In this case fort one gets

ẗ5~3/2!kC0@m1l~n22!C0
n21/tn21#. ~3.8!

The first integral of the foregoing equation takes form

ṫ253kC0@mt2lC0
n21/tn221g2#, ~3.9!
J. Math. Phys., Vol. 38, No. 10, October 1997
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where from~2.27! one determinesg25X /9kC0 . The signC0 is determined by the positivity o
the energy-densityT0

0 of linear spinor field:

T0
05mC0 /t.0. ~3.10!

It is obvious from~3.10! that C0.0. Now one can write the solution to the equation~3.9! in
quadratures:

E t~n22!/2dt

Amtn211g2tn222lC0
n21

5A3kC0t. ~3.11!

The constant of integration in~3.11! has been taken to be zero, as it only gives the shift of
initial time. Let us study the properties of solution to Eq.~3.8! for n.2. From~3.11! one gets

t~ t !u t→`'~3/4!kmC0t2, ~3.12!

which coincides with the asymptotic solution to the equation~3.3!. It leads to the conclusion abou
isotropization of the expansion process of the B-I space. It should be remarked that the
pization takes place if and only if the spinor field equation contains the massive term@cf. the
parameterm in ~3.12!#. If m50, the isotropization does not take place. In this case from~3.11! we
get

t~ t !u t→`'A3kC0g2 t. ~3.13!

Substituting~3.13! into ~2.26! one comes to the conclusion that the functionsa(t), b(t), and
c(t) are different. Let us consider the properties of solutions to Eq.~3.8! when t→0. For l,0
from ~3.11! we get

t~ t !5@~3/4!n2kuluC0
n#1/nt2/n→0, ~3.14!

i.e., solutions are singular. Forl.0, from ~3.11! it follows that t50 cannot be reached for an
value of t as in this case when the denominator of the integrand in~3.11! becomes imaginary. It
means that forl.0 there exist regular solutions to the previous system of equations.14 The
absence of the initial singularity in the considered cosmological solution appears to be con
with the violation forl.0 of the dominant energy condition in the Hawking–Penrose theore18

Let us consider the Heisenberg–Ivanenko equation when in~3.8! n52.23 In this case the
equation fort(t) does not contain the nonlinear term and its solution coincides with that o
linear equation~3.3!. With suchn chosen the metric functionsa, b, c are given by the equality
~3.2!, and the spinor field functions are written as follows:

Vt5~Ct /At!e2 imtZ4ilC0 /B, Vl5~Cl /At!eimtZ24ilC0 /B. ~3.15!

As in the linear case, the obtained solution is singular at initial time and asymptotically isot
as t→`.

We now study the properties of solutions to Eq.~3.8! for 1,n,2. In this case it is convenien
to present the solution~3.11! in the form

E dt

Amt2lt22nC0
n211g2

5A3kC0t. ~3.16!

As t→`, from ~3.16! we get the equality~3.12!, leading to the isotropization of the expansio
process. Ifm50 andl.0, t(t) lies on the interval
J. Math. Phys., Vol. 38, No. 10, October 1997
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0<t~ t !<~g2/lC0
n21!1/~22n!.

If m50 andl,0, the relation~3.16! at t→` leads to the equality

t~ t !'@~3/4!n2kuluC0
n#1/nt2/n. ~3.17!

Substituting~3.17! into ~2.26! and taking into account that att→`

E dt

t
'

n~3kulun2C0
n!1/n

~n22!22/n t22/n11→0

due to22/n11,0, we obtain

a~ t !;b~ t !;c~ t !;@t~ t !#1/3;t2/3n→`. ~3.18!

This means that the solution obtained tends to the isotropic one. In this case the isotropiza
provided not by the massive parameter, but by the degreen in the termLN5lSn. Equation~3.16!
implies

t~ t !u t→0'A3kC0g2t→0, ~3.19!

which means the solution obtained is initially singular. Thus for 1,n,2 there exist only singular
solutions at initial time. Att→` the isotropization of the expansion process of the B-I space ta
place both formÞ0 and form50.

Finally, let us study the properties of the solution to the equation~3.8! for 0,n,1. In this
case we use the solution in the form~3.16!. Since now 22n.1, then with the increasing o
t(t) in the denominator of the integrand in~3.16! the second termlt22nC0

n21 increases faste
than the first one. Therefore the solution describing the space expansion can be possible o
l,0. In this case att→`, for m50 as well as formÞ0, one can get the asymptotic represe
tation ~3.17! of the solution. This solution, as for the choice 1,n,2, provides asymptotically
isotropic expansion of the B-I space. Fort→0 in this case we shall get only the singular soluti
of the form ~3.19!.

II . We study the system whenLN5F(J), which means in the case consideredD50. Let us
note that, in the unified nonlinear spinor theory of Heisenberg, the massive term remains a
and, according to Heisenberg, the particle mass should be obtained as a result of quantiz
spinor prematter24. In the nonlinear generalization of classical field equations, the massive
does not possess the significance that it possesses in the linear one, as it by no means defi
energy~or mass! of the nonlinear field system. Thus without losing the generality we can con
massless spinor field puttingm50 that leads toF50. This assumption metamorphoses~2.16! to
get

P~ t !5D0 /t, D05const. ~3.20!

The system of equations~2.19! in this case reads

U182U350, U282U450,
~3.21!

U381U150, U481U250.

Differentiating the first equation of system~3.21! and taking into account the third one we get

U191U150, ~3.22!

which leads to the solution
J. Math. Phys., Vol. 38, No. 10, October 1997
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U15D1eis1 iD 3e2 is, U35 iD 1eis1D3e2 is. ~3.23!

Analogically for U2 andU4 one gets

U25D2eis1 iD 4e2 is, U45 iD 2eis1D4e2 is, ~3.24!

whereDi are the constants of integration. Finally, we can write

V15~1/At!~D1eis1 iD 3e2 is!, V25~1/At!~D2eis1 iD 4e2 is!,
~3.25!

V35~1/At!~ iD 1eis1D3e2 is!, V45~1/At!~ iD 2eis1D4e2 is!.

Putting ~3.25! into the expressions~2.15! one finds

P52~D1
21D2

22D3
22D4

2!/t. ~3.26!

Comparison of~3.20! with ~3.26! givesD052(D1
21D2

22D3
22D4

2).
Let us now estimatet using the equation

ẗ/t53kl~n21!P2n, ~3.27!

where we choseLN5lP2n. Putting the value ofP into ~3.20! and integrating one gets

ṫ2523klD0
2nt222n1y2, ~3.28!

wherey2 is the integration constant and can be defined from~2.27!: y25X /3.0. The solution to
the equation~3.28! in quadrature reads

E dt

A23klD0
2nt222n1y2

5t. ~3.29!

Let us now analyze the solution obtained here. As one can see the casen51 is the linear one. In
case ofl,0 for n.1, i.e., 222n,0, we get

t~ t !u t→0'@~A3kuluD0
nn!t#1/n

and

tu t→`'A3ky2t.

This means that for the termLN considered withl,0 andn.1, the solution is initially singular
and the space–time is anisotropic att→`. Let us now study it forn,1. In this case we obtain

tu t→0'A3ky2t

and

tu t→`'@~A3kuluD0
nn!t#1/n.

The solution is initially singular as in the previous case, but as far as 1/n.1, it provides an
asymptotically isotropic expansion of the B-I space–time.

III . In this case we studyLN5F(I ,J). Choosing

LN5F~K6!, K15I 1J5I v52I A , K25I 2J5I T , ~3.30!
J. Math. Phys., Vol. 38, No. 10, October 1997
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in the case of massless NLSF we find

D52SFK6
, G 562PFK6

, FK6
5dF/dK6 .

Putting them into~2.16! we find

S0
26P0

25D6 . ~3.31!

ChoosingF5lK6
n from ~2.21! we get

ẗ53kl~n21!D6
n t122n, ~3.32!

with the solution

E tn21 dt

Ag2t2n2223klD6
n

5t, ~3.33!

whereg25X /3. Let us study the case withl,0. For n,1 from ~3.33! one gets

t~ t !u t→0'gt→0, ~3.34!

i.e., the solutions are initially singular, and

t~ t !u t→`'@A~3kuluD6
n !t#1/n, ~3.35!

which means that the anisotropy disappears as the Universe expands. In the case ofn.1 we get

t~ t !u t→0't1/n→0

and

t~ t !u t→`'gt,

i.e., the solutions are initially singular and the metric functionsa(t), b(t), andc(t) are different
at t→`, i.e., the isotropization process remains absent. Forl.0 we get that the solutions ar
initially regular, but it violates the dominant energy condition in the Hawking–Penrose theor18.
Note that one comes to the analogical conclusion choosingLN5lS2nP2n.

IV. ANALYSIS OF THE RESULTS OBTAINED WHEN THE B-I UNIVERSE IS FILLED
WITH PERFECT FLUID

Let us now analyze the system filled with perfect fluid. Let us recall that the ene
momentum tensor of perfect fluid is

Tm~m!
n 5~p1«!umun2dm

n p5~«,2p,2p,2p!. ~4.1!

As we saw earlier the introduction of perfect fluid does not change the field equations, thus le
the solutions to the NLSF equations externally unchanged. Changes in the solutions perform
perfect fluid are carried out through Einstein equations, namely throught. So, let us first see how
the quantities« and p connected witht. In doing this we use the well-known equalityTm;n

n 50,
which leads to

d

dt
~t«!1 ṫp50, ~4.2!
J. Math. Phys., Vol. 38, No. 10, October 1997
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with the solution

ln t52E d«

~«1p!
. ~4.3!

Recalling the equation of statep5j«, 0<j<1, finally we get

T0~m!
0 5«5

«0

t11j , T1~m!
1 5T2~m!

2 5T3~m!
3 52p52

«0j

t11j , ~4.4!

where«0 is the integration constant. Putting them into~2.21! we get

ẗ

t
5

3k

2

~j21!«0

t~j11! , ~4.5!

which shows that for stiff matter~j51! the contribution of fluid to the solution is missing. Let u
now study the system with nonlinearity typeI . In this case we get

E dt

AmC0t2lC0
n/t~n22!1«0t~12j!1g2

56A3kt. ~4.6!

As one can see in the case of dust~j50!, the fluid term can be combined with the massive o
whereas in the case of stiff matter~j51! it mixes up with the constant. Analyzing the equati
~4.6! one comes to the conclusion that the presence of perfect fluid does not influence the
obtained earlier for the nonlinear term typeI . One comes to the same conclusion analyzing
system with perfect fluid for the other types of nonlinear terms considered here. At least b
t→0 and att→` the key role is played by the other terms rather than the term presenting

V. CONCLUSIONS

Exact solutions to the NLSF equations have been obtained for the nonlinear terms
arbitrary functions of the invariantI 5S2 andJ5P2, whereS5c̄c and P5 i c̄g5c are the real
bilinear forms of spinor field, for B-I space–time. Equations with power nonlinearity in sp
field LagrangianLN5lSn, wherel is the coupling constant, have been thoroughly studied. In
case it is shown that the equations mentioned possess solutions both regular and singula
initial moment of time forn.2. Singularity remains absent for the case of a field system w
broken dominant energy condition. It is also shown that if in the NLSF equation the ma
parametermÞ0 andn>2, then att→` isotropization of the B-I space–time expansion tak
place, while form50 the expansion is anisotropic. Properties of the solutions to the spinor
equation for 1,n,2 and 0,n,1 were also studied. It was found that in these cases there
not exist a solution that is initially regular. Att→` the isotropization process of the B-I space
time takes place both formÞ0 and form50. In the case of the nonlinear termLN5lP2n, we
found the solutions are initially singular and the isotropization process of the B-I space
depends on the choice ofn. For LN5l(I 6J)n we obtained the solutions that may be initial
singular or regular, depending on the sign of coupling constantl, but the isotropization proces
depends on the value of powern. It is also shown that the results remain unchanged even in
case when the B-I space–time is filled with perfect fluid.
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In this paper we obtain the orthogonality relations for the supergroupU(mun),
which are remarkably different from the ones for theU(N) case. We extend our
results for ordinary representations, obtained some time ago, to the case of complex
conjugated and mixed representations. Our results are expressed in terms of the
Young tableaux notation for irreducible representations. We use the supersymmet-
ric Harish–Chandra–Itzykson–Zuber integral and the character expansion tech-
nique as mathematical tools for deriving these relations. As a byproduct we also
obtain closed expressions for the supercharacters and dimensions of some particular
irreducibleU(mun) representations. A new way of labeling theU(mun) irreducible
representations in terms ofm1n numbers is proposed. Finally, as a corollary of our
results, new identities among the dimensions of the irreducible representations of
the unitary groupU(N) are presented. ©1997 American Institute of Physics.
@S0022-2488~97!01210-3#

I. INTRODUCTION

In recent times there has been an enormous amount of work devoted to the understan
random surfaces and statistical systems on random surfaces. The range of application o
ideas include noncritical string theory as well as quantum chromodynamics~QCD! in the largeN
limit. Progress in this area has been possible because the mathematical knowledge on
matrices has increased dramatically in the last 15 years.1

An important mathematical concept that appears naturally in the discussion of random
ces is the integration over the unitary group, which basis is well understood in the literatu
distinguished particular case of such integrals, the Harish–Chandra–Itzykson–Zuber~HCIZ!
integral,2,3 has been applied to the solution of the two matrix model3,4 and, more recently, to the
Migdal–Kazakov model of ‘‘induced QCD.’’5 In a different context, it has also been applied
the study of phase transitions in nematic liquids.6 The HCIZ integral can also be considered
powerful alternative tool for deriving results regarding the representation theory of the g
U(N).

Since its discovery, there has been considerable expectation that supersymmetry might
important role in the physical world. This hope has motivated, on one hand, the extension of
important physical ideas to the supersymmetric world.7 A related example of direct interest to u
is the case of random supermatrices and supermatrix models.8 On the other hand, this expectatio
has also contributed to the study and development of the associated mathematical tools:

a!Electronic mail address: jalfaro@lascar.puc.cl
b!Electronic mail address: rmedina@power.ift.unesp.br
0022-2488/97/38(10)/5319/31/$10.00
5319J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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manifolds, differential and integral calculus over a Grassmann algebra, differential geometr
a supermanifold, superalgebras and Lie supergroups among others.9,10 Important applications of
superanalysis occur also in the field of disordered systems and quantum chaos.11

Central to our discussion is the concept of integration over supermanifolds, for which we
the Berezin integration. When the functions to be integrated are not compactly supported,
guities arise under the change of integration variables. The reformulation of the Berezin in
discussed in Ref. 12 allows for the calculation of the correction terms needed in the Bere
transformation law in order to eliminate such ambiguities.

This paper deals with the integration properties of the unitary supergroupU(mun). For our
purposes we will work in a representation of this supergroup given by the set of all (m1n)
3(m1n) supermatricesU5@UAB#, such thatUU†51, endowed with the operation of superm
trix multiplication.

The issue of defining an invariant integral for supergroups has been discussed previo
Refs. 9, 13, and 14, among other references. In Ref. 13 the problem is solved by defini
invariant integral over a Lie supergroup as equal to that over its related Lie group and s
quently using the theory of invariant~Haar! integrals for topological groups.15,16References 9 and
14 are on the line of a physicist approach, by keeping the grassmannian character of the i
tion volume element. We adhere to the last point of view and we introduce an integration me
@dU# based on the Berezin integration properties of the independent elements of the super
As first noted by Berezin9 and also in the paper by Yost in Ref. 8, the unusual property*@dU#
50 will hold, thus making the calculation of the orthogonality relations a much more invo
issue. Orthogonality relations forU(mun) have been previously obtained by Berezin9 and formu-
lated in terms of the classification of the representations of the supergroup via the Cart
proach. Instead, we use the Young tableaux method for classifying the irreducible represen
for U(mun).17 We have not studied the relation between Berezin’s result and our way of pre
ing the orthogonality relations, which are derived using a completely different approach
method of calculation is based on the result obtained for the supersymmetric extension
HCIZ integral,18–20 together with the use of character expansion techniques. Reference 18 r
on the calculation of an averaged version of the supersymmetric HCIZ integral forU(mum). The
full integral for U(mun) was calculated in the first works cited in Refs. 19 and 20.

The paper is organized as follows: Sections II and III are basically a brief review of su
matrices and supergroup representations, respectively, designed to make the presentat
contained and also to introduce our notation and conventions.

Sections IV and V deal with the orthogonality relations for the irreducible representatio
U(mun). Besides the expected product of Kronecker deltas, these relations include a repre
tion dependent coefficienta$t% which calculation, for all three types of representations of
supergroup~ordinary, complex conjugated and mixed!, is the main subject of this section. W
show that in the case of the mixed representations these coefficients can be written in te
those corresponding to the ordinary representations. Some examples are presented in App
The unusual property of the integration measure mentioned above has also the conseque
this coefficient is nonzero only for a class of representations which are completely identified
approach. Some preliminary results regarding this issue were previously presented in R
Here, we have completed the determination of the coefficientsa$t% for the cases that were missin
in Ref. 21 and we also give a more detailed version of our calculation. Closed formulas fo
dimensions and supercharacters of ordinary and complex conjugate representations witha$t%Þ0
are also presented.

The restrictionU(mun)→U(m) correctly reproduces the resulta$t%→1/d$t% in the orthogo-
nality relations, whered$t% is the dimension of the corresponding representation. In this way,
expressions for thea$t% coefficients of the mixed representation in terms of those of the ordin
representations, turn into identities for the corresponding dimensions of theU(m) representations
Up to our knowledge, these identities were not known before and they are presented in S
J. Math. Phys., Vol. 38, No. 10, October 1997
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Some specific examples can be read off in Appendix 5, after the replacementa→1/d is made.
Section VII contains a proposal to label the irreducible representations ofU(mun), in terms of

a finite array ofm1n numbers, not all necessarily independent, instead of giving an arbitrary
array of numbers~that can contain infinite numbers in principle! corresponding to the number o
boxes in the rows of the associated Young tableau. The possible advantages of this relabe
not further explored.

Appendix 1 contains a brief review of the supersymmetric HCIZ integral which result is
basic tool used in our calculations. Also shown are the detailed calculations of some expre
in the main text, together with the statement of useful relations which are also used alon
paper.

Finally, Tables I~II ! in Appendix 4 contain a list of characters and dimensions of repre
tations of the group GL(N) ~supercharacters and dimensions of representations of the super
GL(mun)! which are an extended version of those found in Ref. 3.

II. INTRODUCTION TO SUPERMATRICES

Supergroups can be conveniently represented by matrices acting on a superspace~superma-
trices!. To this end we briefly review some of the basic properties of the linear algebra de
over a Grassmann algebra. This sets the stage for the rest of the paper and also fixes our n
For a more detailed and complete discussion on these matters the reader is referred to Ref

Let us consider a superspace with coordinateszP5(qi ,ua), i 51,...,m, a51,...,n such that the
qi ’s ~ua’s! are even ~odd! elements of a Grassmann algebra. This means thatzPzQ

5(21)e(P)e(Q)zQzP, wheree(P) is the Grassmann parity of the indexP defined bye( i )50,
mod~2!; e(a)51, mod~2!. The above multiplication rule implies in particular that any odd e
ment of the Grassmann algebra has zero square, i.e., it is nilpotent. Also we hav
e(zP1zP2•••zPk)5(e(Pi).

Supermatrices are arrays that act linearly on the supercoordinates leaving invariant the
tion among even and odd coordinates. To be more specific, the supercoordinates can be tho
forming an (m1n)31 column vector with the firstm entries~last n entries! being even~odd!
elements of the Grassmann algebra. In this way, an (m1n)3(m1n) supermatrix is an array
written in the partitioned block form

M5S Am3m

Cn3m

Bm3n

Dn3n
D , ~1!

where the constituent matrices have componentsAi j , Bia , Ca i , and Dab . Besides,Ai j , Dab

(Bia , Ca i) are even~odd! elements of the Grassmann algebra in such a way that the parity
of the supercoordinate vector column is preserved under supermatrix multiplication of that v
The parity of any supermatrix element ise(M PQ)5e(P)1e(Q). The addition and multiplication
of supermatrices according to the rules

~M11M2!PQ5~M1!PQ1~M2!PQ , ~M1M2!PQ5(
R

~M1!PR~M2!RQ ,

is such that it produces again a supermatrix. The inverse of a supermatrix can be constru
block form, in complete analogy with the classical case and it is well defined providedA21 and
D21 exist. The inverse of these even matrices is calculated in the standard way.

The basic invariant of a supermatrix under similarity transformations is the supertrace

Str~M !5Tr~A!2Tr~D !5 (
P51

m1n

~21!e~P!M PP ,
J. Math. Phys., Vol. 38, No. 10, October 1997
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which is defined so that the cyclic property Str(M1M2)5Str(M2M1) is fullfilled for arbitrary
supermatricesM1 , M2 . The above definition of the supertrace leads to the construction o
superdeterminant in the form Sdet(M )5exp@Str(ln M)#, which is explicitly given by the following
two equivalent forms:22

Sdet~M !5
det~A2BD21C!

det~D !
5

det~A!

det~D2CA21B!
. ~2!

The above expression is written only in terms of determinants of even matrices in such a wa
the determinant has its usual meaning. The superdeterminat has the multiplicative pr
Sdet(M1M2)5Sdet(M1)Sdet(M2).

The definition of the adjoint supermatrix follows the usual steps by requiring the ide
(yP* M PQzQ)* 5zP* M PQ

† yQ, for an arbitrary bilinear form in the complex supercoordinatesyP,
where * denotes complex conjugation. Since the usual definition of complex conjugation
Grassmann algebra, (yPyQ)* 5yQ* yP* , reverses the order of the factors without introducing a
sign factor, we have the resultM†

PQ5MQP* as in the standard case.
A Hermitian (m1n)3(m1n) supermatrixM is such thatM†5M and it has (m1n)2 real

independent components. The following properties are also fullfilled:~i! (M†)†5M , ~ii !
(M1M2)†5M2

†M1
† and ~iii ! Sdet(M†)5Sdet(M )* .

A unitary (m1n)3(m1n) supermatrixU is such thatUU†5U†U5I ~whereI is the iden-
tity supermatrix! and also has (m1n)2 real independent components, which have the additio
property that (SdetU)(Sdet U)* 51. The set of all (m1n)3(m1n) unitary supermatrices, unde
the operation of supermatrix multiplication, constitutes the supergroupU(mun). Under very gen-
eral conditions,23 Hermitian supermatrices can be diagonalized by superunitary transforma
thus introducing the corresponding eigenvalues. Our notation is such that the firstm eigenvalues
of an (m1n)3(m1n) Hermitian supermatrixM are denoted byl i , while the remainingn
eigenvalues are denoted byl̄a . Such partition is characterized by the following parity assignm
of the corresponding eigenvector componentsVp , V̄p :e(VP)5e(P), e(V̄P)5e(P)11, which are
called eigenvectors of the first and second class, respectively. Thus a diagonalizable He
supermatrix can be decomposed asM5ULU†, whereU is a unitary supermatrix~which is built
from the eigenvectors ofM ! and

L5S lm3m

0
0

l̄n3n
D , ~3!

is a diagonal supermatrix,lm3m (l̄n3n) being anm3m (n3n) diagonal matrix with component
l i (l̄a).

III. BASIC PROPERTIES OF SUPERGROUP REPRESENTATIONS

Supergroups will be represented by linear operatorsD̃(g) acting on some vector space wit
basis$F I%. Linearity is defined byD̃(g) (F Ia1FJb)5(D̃(g)F I)a1(D̃(g)FJ)b, wherea and
b are arbitrary Grassmann numbers. An alternative choice is produced by having the factors
left.

The action

D̃~g!~F I !5(
J

FJD JI
~ t !~g!, ~4!

defines a representation (t) of the supergroup.
J. Math. Phys., Vol. 38, No. 10, October 1997
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In spite of the use of Grassmann variables in our definition of linearity, the represen
propertyD JI

(t)(g1* g2)5(KD JK
(t) (g1)D KI

(t)(g2) is verified, thus showing that the representation
the supergroup elements in terms of supermatrices respects the multiplication rule of supe
ces.

The above linearity convention applies also to the action of group operators acting
vectors of the space. Let us consider the vectorC5(KFKaK with componentsaK . Then we have

D̃~g!~C!5(
K

D̃~g!~FK!aK5(
K,L

FLD LK
~ t ! ~g!aK , ~5!

which is consistent with the representation of a vector as a column with entriesaK , together with
the representation of the action of a group element upon such vector as the multiplication
corresponding supermatrix by the respective column.

Now, let us recall that there are two fundamental representations ofU(mun): The ordinary
one ~or undotted!, D i j

h(U)5Ui j , and the complex conjugate one~or dotted!, D i j
)(U)5Ū i j

5(21)e i (e i1e j )Ui j* .17 It is a direct calculation to show thatŪ is a unitary supermatrix and als
that (UV)5ŪV̄ for arbitraryU(mun) supermatrices, thus showing that the bar operation con
tutes indeed a representation of the supergroup.

Using the fundamental representations, three types of irreducible representations$t% are built:
ordinary ~undotted! $u%, complex conjugated~dotted! $v̇% and mixed$v̇%u$u%, which we do, in
analogy to theU(N) case, according to the conventions in Ref. 24. In particular we have$u%
5$0̇%u$u% and$v̇%5$v̇%u$0%.

Contrary to what happens in the SU(N) case, the dotted and undotted representations ca
be related through an epsilon symbol,24 so they are not equivalent.

We will label the irreducible representations by means of the Young tableaux notation.
an undotted irreducible representation$t% will be characterized by the non-negative intege
(t1 ,t2 ,...,tk), wheret1>t2>•••>tk are the number of boxes in the corresponding rows of
tableau. For the moment we assume that there is no restriction upon the number oft i ’s charac-
terizing the tableau. Pictorically the tableau will look like

~6!

The supermatrix representationD $t%(g) will then be an (m$t%1n$t%)3(m$t%1n$t%) supermatrix
written in the standard form~1!, consisting of elementsD JI

$t%(g).
So besides the undotted representations pictorically shown in~6! the dotted and mixed one

will look like

~7!

and
J. Math. Phys., Vol. 38, No. 10, October 1997
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. ~8!

Now, we observe that in the case of ordinary groups the determinant det(U) provides a one
dimensional representation which can be constructed as a completely antisymmetrized pro
fundamental representations. In the case of supergroups, the superdeterminant Sdet(U) provides
also a one dimensional representation which, nevertheless, cannot be constructed in term
fundamental representations. This is because the superdeterminant is a nonpolynomial fun
the eigenvalues.

When considering tensor products of the fundamental representations we define

~9!

whereutu represents the number of boxes of the representation$t% ands$t% is a Clebsch–Gordan
coefficient which represents the number of times that the irreducible representation$t% is con-
tained in the above tensor product. It may be calculated using the Young tableaux rules
tensor product of representations in~9! or alternatively using the formula@see Chapter 7, formula
~5.21! of Ref. 25#

s$t%5utu!
D~ t11k21,t21k22,...,tk!

Pp51
k ~ tp1k2p!!

, ~10!

in terms of the tableau labels given in~6!, where

D~ l 1 ,...,l k!5 )
i . j 51

k

~ l i2 l j ! ~11!

is the Vandermonde determinant.
Some values ofs$t% are given in the tables in Appendix 4. In particular, Eq.~9! implies that

~str U !p5 (
$t%,utu5p

s$t%sx$t%~U !, ~12!

where the supercharacter of representation$t% is

sx$t%~U !5str~D $t%~U !!, ~13!

and where we have also used the property that the supercharacter of tensor product of re
tations equals the product of the corresponding supercharacters. It was observed by Balante
Bars26 that the supercharacter formulas for Lie supergroup representations could be direc
tained from the character formulas of the corresponding Lie group representations by just r
ing tracesby supertracesin the algebraic expression for them. Using this fact an explicit form
for sx$t%(U) in terms of supermatrixU has been given in Appendix 4.

Let us emphasize that the Grassmannian character of the supermatrices involved intr
further sign factors with respect to the classical case in the case of tensor products. Let us il
this point with the direct product of two fundamental undotted representations. The correspo
J. Math. Phys., Vol. 38, No. 10, October 1997
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basis vectors areC iF j which are rotated toCk8F l8 by the independent actions of the supergro
Ck85C iUik andF l85F jU jl . Looking for the transformation of the product we have

Ck8F l85~C iUik!~F jU jl !5C iF j~~21!e j ~ek1e i !UikU jl !, ~14!

which identifies

~Dh3Dh! i j ,kl~U !5~21!e j ~ek1e i !UikU jl . ~15!

It is a direct calculation to verify that this assignment constitutes indeed a representation
supergroup.

The expression~15! can be generalized for an arbitrary tensor product

~16!

with I 5$ i 1 ,i 2 ,...,i p%, J5$ j 1 , j 2 ,...,j p%.
As we mentioned before, the construction of the irreducible tensor representations sy

trized according to a specific Young tableau, to which we referred in~6!, ~7!, and~8!, proceeds in
complete analogy to theU(N) case, as stated in Ref. 26.

IV. ORTHOGONALITY RELATIONS FOR U„m zn …

A. Unitary supergroup measure

For finding the orthogonality relations we will make use of the Schur’s lemma, extend
the case of continuous supergroups. We will have to deal with supergroup integration and f
reason we briefly refer to the unitary supergroup measure.

In general, the supergroup measure must be left and right-invariant under the supe
action. In the case ofU(mun) it is defined by

@dU#5m )
P,Q51

m1n

dUPQ dUPQ* d~UU†2I !, ~17!

where thed-function really means the product of (m1n)2 unidimensionald-functions correspond-
ing to the independent constraints set by the conditionUU†5I . The integration over each Gras
mann valued elementdUPQ is defined according to the standard Berezin’s rules. The arbit
non-null constantm will be fixed from the convention adopted for our normalization of t
supersymmetric HCIZ integral. It is important to observe that although the above measure co
odd differentials and odd variables, it has 0 Grasmann parity and therefore behaves as a
Grassmann variable~commutes with everything!.

B. General form of the orthogonality relations

In order to derive the general form of the orthogonality relations we apply Schur’s lemm
the quantityX IL

$s%,$t%5*@dU#D IJ
$s%(U)XJKD KL

$t% (U21), whereXJK is an arbitrary supermatrix
We are assuming sum over repeated indices. Multiplying this expression to the left by the ar
elementD RI

$s%(S) and using the composition property of the representation we obtain

D RI
$s%~S!X IL

$s%,$t%5E @dU#D RJ
$s%~SU!XJKD KL

$t% ~U21!. ~18!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Here we used the fact that@dU# behaves like an even Grassmann variable. Next we rew
D KL

$t% (U21)5D KM
$t% ((SU)21)D ML

$t% (S) and substitute this expression in the previous equat
obtaining

D RI
$s%~S!X IL

$s%,$t%5S E @dU#D RJ
$s%~SU!XJKD KM

$t% ~~SU!21! D D ML
$t% ~S!. ~19!

From the invariance of the measure under left multiplications we realize that the quant
brackets is preciselyX RM

$s%,$t% and therefore we obtain thatD $s%(S)X $s%,$t%5X $s%,$t%D $t%(S). Then,
in analogy with the ordinary case, we have that:~i! if $s%Þ$t% then X $s%,$t%50, and~ii ! if $s%
5$t% thenX $s%,$s% is a multiple of the sd$s%-dimensional identity supermatrix~where sd$s% is the
dimension of the$s% representation!. Thus

X IL
$s%,$t%~X!5E @dU#D IJ

$s%~U !XJKD KL
$t% ~U21!5a$s%~X!d$s%,$t%d IL

$s% , ~20!

where the coefficienta depends upon the arbitrary supermatrixX. We can prove that the abov
equation is invariant under the rotationX85D $s%XD $s%21

, for a given representation$s%, in virtue
of the composition properties of a representation together with the invariance of the measu
respect to right multiplication. This means thata$s%(X) must be an invariant under similarit
transformations, which is linear inX. The only possibility is thata$s%(X)5a$s% str X, wherea$s%

is now a numerical coefficient. So, in~20! we have obtained an equality between two line
expressions of theXIK ’s. Taking care of the Grasmannian character of the indices involved
comparison of the coefficients of the fully independent variablesXIK leads to the general form o
the orthogonality relations

E @dU#D IJ
$s%~U !D KL

$t%* ~U !5~21!eJ
$s%

a$t%d
$s%,$t%d IK

$s%dJL
$t% , ~21!

where (U†) i j 5(U21) i j 5(U* ) j i . Our notation is such that the fundamental representatio
labeled with lower case indicesi 1 ,i 2 ,...,i q and capital letter indices denote a family of lower ca
indices, i.e.,I 5$ i 1 ,i 2 ,...,i p%, for example.

In Eq. ~21! we have restricted ourselves to the supergroupU(mun). Except for the (21)eJ
$s%

factor that appears as a consequence of dealing with Grassmann numbers, the general for
orthogonality relations~21! does not apparently differ from that of theU(N) case. However, as we
will see in the sequel, the determination of thea$t% coefficients will be crucial in stating thei
difference.

C. Null integral over the U„m zn … measure

As opposed to what happens in theU(N) case, the determination of the coefficientsa$t%’s will
be much more involved in our case. The reason for this is the unexpected normalization co
which is used for the determination of these coefficients. In theU(N) case this normalization is
*@dU#51, while in our case it turns out to be

E @dU#50, UPU~mun!. ~22!

Although this result was known before,9 it emerges naturally when we deal with the SUS
HCIZ integral~see Appendix 1!. On one hand, by settingb50 on its definition, we directly obtain
the integral over the measure of the supergroup. On the other hand, using its explicit res
J. Math. Phys., Vol. 38, No. 10, October 1997
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have to calculate limb→0@bmnI (l1 ,l2 ,b)I (l̄1 ,l̄2 ,2b)#, where I (l1 ,l2 ,b) is the standard
HCIZ for U(m). SinceI (l1 ,l2 ,b50)51, we obtain the desired result.

An important application in this work will be the characterization of the undotted and do
representations$s% of U(mun) for which a$s%Þ0. But before going ahead with the determinati
of the a$t%’s we briefly show two immediate consequences of~22!.

~i! Choosing a fixed representation$s% and summing with respect toJ5L in Eq. ~21! we are
left with the constraint

E @dU#505a$s%str I ~m$s%1n$s%!3~m$s%1n$s%!
. ~23!

In particular, this means that all representations witha$s%Þ0 will necessarilly have a null super
trace for the unit supermatrix in the representation$s%.

~ii ! From Eqs.~21! and ~23! we obtain

E @dU#sx$s%~U !sx$t%
* ~U !50, ~24!

even if $s%5$t%, because this relation involves again the supertrace of the corresponding
supermatrix.

D. Determination of the a
ˆt ‰ coefficient for ordinary representations

If we introduce only one supercharacter in the integration of Eq.~21!, we are left with

E @dU#sx$s%~U !D KL
$t%* ~U !5a$t%d

$s%,$t%dKL
$t% , ~25!

which plays the role of the standard orthogonality condition of the characters in the classica
The condition~25! implies the following useful

Lemma:The supercharacterssx$t%(U)[( I(21) e I
$t%

D II
$t%(U) of the representationsD $t%(U)

for which a$t%Þ0 constitute a linearly independent set.
The proof goes as follows: Let us consider a null linear combination of supercharacte

representations witha$s%Þ0:($s%a$s%sx$s%(U)50. Multiplying this equation byD KL
$t%* (U), inte-

grating over@dU# and using Eq.~25! we havea$t%a$t%dkl
$t%50 for each representation$t%, which

shows thata$t%50 provideda$t%Þ0.
The starting point that leads to the determination of the undotted representations$t% which

have non-zero values fora$t% in ~21! is the supersymmetric extension of the HCIZ integral giv
in Refs. 19, 20.

A convenient way of rewriting the standard HCIZ integral@defined in Eq.~A2!# is in terms of
its expansion in characters of the corresponding irreducible representations of the unitary3

I ~l1 ,l2 ;b!5(
$n%

b unu

unu!
s$n%

d$n%
x$n%~l1!x$n%~l2!, ~26!

whered$n% is the dimension of the representation$n% ands$n% andunu were already defined in~9!
and ~10!.

It will prove convenient for our purposes, to obtain the analogous supercharacter expan
the expression given in~A1! for the SUSY HCIZ integral. This we do by using the orthogonal
relations~21!. The construction goes as follows: starting from the SUSY HCIZ integral
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Ĩ ~M1 ,M2 ;b!5E @dU#eb str~M1UM2U†!5E @dU# (
p50

`
bp

p!
~str~M1UM2U†!!p, ~27!

and using the result in~12! we get

Ĩ ~M1 ,M2 ;b!5 (
p50

`
bp

p! ( 8
$t%

s$t%E @dU#sx$t%~M1UM2U†!, ~28!

where the representations that contribute to the above primed sum are the ones for whutu
5p, for a givenp.

Let us now calculate the integral

I $t%~M1 ,M2!5E @dU#sx$t%~M1UM2U†!. ~29!

Using the definition of the supercharacter together with the properties of a representation w

~30!

~31!

Finally, we obtain

I $t%~M1 ,M2!5a$t% (
a,c51

sd$t%

~21!ea~21!ecD aa
$t%~M1!D cc

$t%~M2!

⇒I $t%~M1 ,M2!5a$t%sx$t%~M1!sx$t%~M2!. ~32!

Substituting this last result in Eq.~28! we get the expansion in supercharacters for the SU
HCIZ integral

Ĩ ~M1 ,M2 ;b!5(
$t%

b utu

utu!
s$t%a$t%sx$t%~M1!sx$t%~M2!, ~33!

which contains only undotted representations.
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In virtue of the Lemma proved at the beginning of this section, we see that the represen
which contribute to Eq.~33! have supercharacters that form a linearly independent set.

Up to now, thea$t%’s are still unknowns. Next we identify the representations with nonz
a$t% . The basic expression we use is the character expansion in both sides of Eq.~A5!, which is

(
$t%

b utu

utu!
s$t%a$t%sx$t%~M1!sx$t%~M2!5(

$p%
(
$q%

b upu1uqu1mn

upu! uqu!
s$p%s$q%

d$p%d$q%
~21! uqu( ~l1 ,l̄1!

3x$p%~l1!x$q%~ l̄1!( ~l2 ,l̄2!x$p%~l2!x$q%~ l̄2!,

~34!

where

( ~l,l̄!5)
i 51

m

)
a51

n

~l i2l̄a!. ~35!

Now we analize this equation by considering the following cases:

1. Case ofutu,mn
Before making any further analysis, from~34! we can immediately conclude that

a$t%50, for utu50,1,...,~mn21!. ~36!

This is because in both sides of that equation we have a power series inb, and the right hand side
~RHS! of it starts withbmn while the left hand side~LHS! starts withb0. The proof goes by
assuming that some coefficientsa$t% are nonzero. The linear independence of thesx$t%(M )’s
associated to those representations imply thata$t% must be zero.

2. Case ofutu>mn
As we just said before, Eq.~34! is a power series inb, so for a given powerutu of b we obtain

1

utu! ( 8
$t%

s$t%a$t%sx$t%~M1!sx$t%~M2!5(
$p%

(
$q%

~21! uqu

upu! uqu!
s$p%s$q%

d$p%d$q%
( ~l1 ,l̄1!x$p%~l1!

3x$q%~ l̄1!( ~l2 ,l̄2!x$p%~l2!x$q%~ l̄2!, ~37!

where the sum in the LHS is made for all tableaux having a fixed number of boxesutu, while the
sum over$p% and$q% in the RHS is restricted to

upu1uqu5utu2mn. ~38!

We now want to prove that Eq.~37! necessarily implies that

sx$t%~M !5c$p%,$q%
$t% ( ~l,l̄!x$p%~l!x$q%~ l̄!, ~39!

for some$p% and$q% satisfying~38! and for a certain representation$t% that we will determine.
In order to extract more information from Eq.~37! let us consider an arbitrary supermatr

M2 , while we restrict the supermatrixM15M̃ in such a way that one of itsl-eigenvalues be
equal to one of itsl̄-eigenvalues. Namely, letl j5l̄b , for example. Then, in Eq.~37! we are left
with
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1

utu! (
$t%

s$t%a$t%sx$t%~M̃ !sx$t%~M2!50, ~40!

because((l1 ,l̄1) becomes zero. If we look at this relation as a null linear combination of
supercharacterssx$t%(M2) with coefficients

g$t%5
1

utu!
s$t%a$t%sx$t%~M̃ !, ~41!

we conclude that the coefficientsg$t% are all zero, because the supercharacters appearing in~40!
constitute a linearly independent set. Buts$t% anda$t% are different from zero, so that we are le
with sx$t%(M̃ )50. Recalling thatsx$t%(M ) is a polynomial function of thel i ’s and thel̄a’s, we
conclude from this relation thatsx$t%(M ) must be divisible by (l j2l̄b). That is to say

sx$t%~M !5~l j2l̄b!F j b~l,l̄!, ~42!

whereF j b(l,l̄) is another polynomial function of the eigenvalues. The same reasoning ca
extended to everyl i ( i 51,...,m) andl̄a (a51,...,n), and this implies thatsx$t%(M ) must have the
form

sx$t%~M !5)
i 51

m

)
a51

n

~l i2l̄a!P~l,l̄!5( ~l,l̄!P~l,l̄!. ~43!

In Eq. ~43!, P(l,l̄) must be an homogenous polynomial function of all the eigenvalues, bec
sx$t%(M ) and((l,l̄) are so. The degree of homogeneity ofsx$t%(M ) and((l,l̄) is utu andmn,
respectively. This means that the degree of homogeneity ofP(l,l̄) must beutu2mn. Also, we
know thatsx$t%(M ) and ((l,l̄) are symmetric functions in the eigenvaluesl i , l̄a , separately,
and so should beP(l,l̄). Summing up then,P(l,l̄) is: ~i! an homogeneous polynomial functio
of degreeutu2mn in all the eigenvalues and~ii ! a symmetric function of thel i ’s and thel̄a’s,
separately. Since the charactersx$a%(l) (x$b%(l̄)) are polynomial homogeneous functions of d
greeuau (ubu), which are symmetric in the eigenvaluesl i (l̄a) and constitute a complete linearl
independent set,P(l,l̄) can be written as

P~l,l̄!5 (
$a%,$b%

c$a%,$b%
$t% x$a%~l!x$b%~ l̄!, ~44!

where the sum in$a% and$b% is restricted byuau1ubu5utu2mn. Substituting this last relation in
~43! we have

sx$t%~M !5( ~l,l̄! (
$a%,$b%

c$a%,$b%
$t% x$a%~l!x$b%~ l̄!. ~45!

Using the above expression in the LHS of~37! and comparing both sides of this equation, w
conclude that the RHS of~45! should be saturated only with one coefficient, for a certain table
$t%, which precise form is yet to be determined. That is,

sx$t%~M !5c$p%,$q%
$t% ( ~l,l̄!x$p%~l!x$q%~ l̄!,

where$p% and$q% satisfy ~38!. Thus, we have proved our result in~39!.
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In order to identify the Young tableau corresponding to the representation$t% we will make
use of the fact that the tableaux structure is independent of whether we are dealing with a
or supergroup. Of course, the specific symmetrization~antisimmetrization! properties will be
different in each case. In this way we will identify the tableaux by looking only at the kn
characters of theU(m), U(n) subgroups ofU(mun), in Eq. ~39!.

a. The case of$p%5$q%50.
Here we haveutu5mn and

sx$t%~M !5c$0%,$0%
$t% ( ~l,l̄!. ~46!

In order to proceed with the required identifications, let us consider the particular case whe
only nonzero block of the supermatrixM is them3m block, i.e.,

M5S M 8
0

0
0D . ~47!

Then Eq.~46! reduces to

x$t%~M 8!5c$0%,$0%
$t% S )

i 51

m

l i D n

. ~48!

Using Weyl’s formula for the character of the representations of the unitary group27

x$r %~l!5
det~l i

r j 1n2 j
!

det~l i
n2 j !

~49!

we conclude that the product of eigenvalues in~48! corresponds to the character of the repres
tation $r %5(r 1 ,r 2 ,...,r m) with r i5n of U(m), which we denote by$r %5$mn%. So, pictorially,
$r % will look like

~50!

In this way we have thatx$t%(M 8)5c$0%,$0%
$t% x (n,n,...,n)(M 8), which allows the identification of the

representation$t% as the one given by the tableau corresponding tot15t25•••5tm5n, pictorially
shown in~50!, together withc$0%,$0%

$t% 51. Besides, we identify((l,l̄) as the supercharacter of th
representation referred to above:

~51!

where((l,l̄) is given in ~35!.
b. The case of$p%Þ0,$q%50.
Here we haveutu5upu1mn and sx$t%(M )5 c$p%,$0%

$t% ((l,l̄)x$p%(l). Considering in this ex-
pression the same choice ofM as in ~47!, we havex$t%(M 8)5c$p%,$0%

$t% (P i 51
m l i)

nx$p%(l). Using
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again Weyl’s formula we are able to make the identification (P i 51
m l i)

nx$p%(l)5x$n1p%(l),
where by$n1p% we mean the representation with Young tableau~n1p1 , n1p2 ,...,n1pm!:

~52!

where we have generically drawn

. ~53!

This leads tox$t%(M 8)5c$p%,$0%
$t% x (n1p1 ,n1p2 ,...,n1pm)(l) for this case and we conclude th

c$p%,$0%
$t% 51 with $t% being the representation (n1p1 ,n1p2 ,...,n1pm) of U(mun). Besides, we

identify

sx$t%~M !5( ~l,l̄!x$p%~l!. ~54!

c. The case of arbitrary$p% and $q%.
Now we discuss the main result of this section which states that the undotted represen

of U(mun) with a$t%Þ0 are characterized by the following Young tableaux:

~55!

where$p% is the same as in~53! and$q% is pictorially identified with
J. Math. Phys., Vol. 38, No. 10, October 1997
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~56!

which, after interchanging its rows and columns, giving$q%T, is put in the bottom left of$mn%
3$p%, producing~55!. The representation$q%T is called the conjugate representation of$q%.

Besides identifying the particular representations involved, we are also able to calcula
corresponding non-zero normalization coefficient appearing in the orthogonality relations~21! for
the representation$ t̃%. It is given by

a$ t̃ %5~21! uqu u t̃u!
upu! uqu!

s$p%s$q%

s$ t̃ %

1

d$p%d$q%
. ~57!

Let us also remark that our expression~57! correctly reproduces the result

a$t%5
1

d$t%
~58!

for U(N) ~by makingm5N andn50!. Note that in theU(mun) case, thea$t% coefficient not only
depends on the dimension of the representations involved, but also on the Clebsch-Gorda
ficientss$t% and on the characteristic numberutu.

An important result that leads to the above conclusions is that

sx$ t̃ %~M !5~21! uqu( ~l,l̄!x$p%~l!x$q%~ l̄!. ~59!

This relation is proved in Appendix 2, and after substituting it in Eq.~34!, the result in~57! is
obtained.

None of the results~51!, ~54! and~59! seem to be easily proved by standard methods like
supercharacter general formula~A38! of Appendix 4 or the determinant formulas of Ref. 26. Th
last formula consists in calculating the determinant of a matrix which components are supe
acters of completely symmetric representations. These supercharacters are expressed in
sums which, apparently, cannot be cast in closed form. Thus our method provides an alte
derivation of the compact results already mentioned.

An immediate consequence of our relation~59! is that we can obtain the dimensionsd$t% for
the representations inU(mun) that arise in the supercharacter expansion, in terms of the dimen
d$p% (d$q%) of the U(m) (U(n)) representations, by using the fact thatsd$t% can be calculated a
the supercharacter of representation$t% for the element

M05S I m3m

0
0

2I n3n
D ~60!

as noted in Ref. 26. Then, making this choice forM in ~59! and also observing that

x$p%~l!→d$p% , x$q%~2l̄!→~21! uqud$q% , ( ~l,l̄!→2mn,

we obtain the closed expression

sd$ t̃ %52mnd$p%d$q% , ~61!

for the dimensions of the representations ofU(mun) characterized by the tableaux in~55!.
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Again, it should be possible to derive the general expression~61! for the dimension of the
general tableaux~55! by using the formula developed by Balantekin and Bars26 as a determinan
of the supercharacters of completely symmetric representations. Nevertheless, we have n
able to reproduce the general result~61! in this way.

Before closing this section, let us illustrate the formula~59!. Consider the representation

~62!

whose supercharacter can be obtained with the aid of the character table of the symmetric
S5 and the general expression~A38!, giving

sx$ t̃ %~M !5 1
24 @~str M !512~str M !3 str M224~str M !2 str M326 str M str M4

13 str M ~str M2!214 str M2 str M3#. ~63!

Let us consider the tableau~62! as labeling aU(1u2) representation. So according our notati
~55! we have that

.

Substituting the supermatrixM in its diagonal form,

M5S l1

0
0

0

l̄1

0

0
0

l̄2

D , ~64!

in the supercharacter expression~63! and after some algebra, we obtain

sx$ t̃ %~M !5@~l12l̄1!~l12l̄2!#~l1!~ l̄1l̄2!, ~65!

which, for U(1u2), can be equivalently written as

~66!

Here

are theU(1) and theU(2) characters of the corresponding representations, which can be
from the character table in Appendix 4 and((l,l̄)5(l12l̄1)(l12l̄2). We see, then, that~66!
is in accordance with our general result~59!.

V. DETERMINATION OF a
ˆt ‰ FOR COMPLEX CONJUGATE AND MIXED

REPRESENTATIONS

A. The case of complex conjugated (dotted) representations

We will need the following properties ofŪ:

~str Ū !p5~~str U !* !p, str~Ūp!5~str Up!* , ~67!
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which are just a consequence of the definition ofŪ together with the group property of th
¯ operation. Since the supercharacter corresponding to the representation$ ṗ% has the same
expression as the one corresponding to the representation$p% except thatU is replaced byŪ, the
properties~67! imply

sx$ ṗ%~U !5sx$p%
* ~U !5sx$p%~U†!, ~68!

where the Young tableau of the representation$ ṗ% is the same as that of the representation$p%
except that all boxes are dotted.

We will prove that

a$ ṫ%5a$t% . ~69!

For this purpose we will look for two equivalent expressions for the integral

I $n%~M1 ,M2!5E @dU#sx$n%~M1UM2U†!, ~70!

which we already presented in~29! and whereM1 andM2 are Hermitian supermatrices.
The first expression is Eq.~32!, namely,

I $n%~M1 ,M2!5a$n%sx$n%~M1!sx$n%~M2!.

Before going to our second way of calculating~70! we observe that

sx$n%~~M1UM2U†!†!5sx$n%~UM2U†M1!5sx$n%~M1UM2U†!,

which implies that forB5M1UM2U† we havesx$n%(B
†)5sx$n%(B).

So, using~68! we have thatsx$n%(M1UM2U†)5sx$ṅ%(M1UM2U†) and therefore

I $n%~M1 ,M2!5I $ṅ%~M1 ,M2!5a$ṅ%sx$ṅ%~M1!sx$ṅ%~M2!. ~71!

But for a Hermitian supermatrixM we have thatsx$ṅ%(M )5sx$n%(M ), and therefore

I $n%~M1 ,M2!5a$ṅ%sx$n%~M1!sx$n%~M2!. ~72!

Comparison of~72! and ~32! leads to our desired result in~69!.

B. The case of mixed representations

We now prove the following expression for thea-coefficients for the mixed representations
the orthogonality relations:

a$ ṗ%u$q%5F upu! uqu!
~ upu1uqu!! G

2F 1

s$p%s$q%
G2

( 8
$t%

r$t%
$p%,$q%s$t%

2 a$t% . ~73!

Here, ther$t%
$p%,$q%’s are the Clebsch–Gordan coefficients which appear in the decomposition o

tensor product of representations$p% and$q%

$p% ^ $q%5 % $t%8r$t%
$p%,$q%$t%. ~74!

They are obtained by applying the Young tableaux rules for multiplying irreduc
representations.25 Our notation,($t%8 and % $t%8 , means that the sums are carried only over
representations satisfyingutu5upu1uqu.
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Let us emphasize that all ingredients in our formula~73! are known: thea$t%’s are either null
or given by~57!, ther$t%

$p%,$q%’s are given by~74! and thes$p%’s are given by~10!. Some examples
of the relations~73! are given in Appendix 5.

Now, to prove~73! let us consider

I $p%,$q%~M1 ,M2!5E @dU#sx$ ṗ%u$q%~M1UM2U†! ~75!

and, following the idea of the previous cases, we are going to calculate this expression
different ways. The method that will be subsequently used consists basically in comparing
two expressions as polynomial expansions in (strM1

k1) l 1(str M2
k2) l 2. For our purposes it will be

enough only to consider the highest power term

~str M1! upu1uqu~str M2! upu1uqu.

Since our argument is based only in the comparison of the highest power term (strA) upu1uqu in
the corresponding expressions, we next present the relevant approximations that will produc
terms. To begin with we consider the expansion

sx$ȧ%u$b%~A!5sx$ȧ%~A!sx$b%~A!1..., ~76!

which complete expression can be found in Appendix 3. This is a function of superchar
sx$ ṙ %(A) andsx$s%(A) ~with ur u<uau, usu<ubu!. For our purposes it is enough only to consider t
term written in~76!. The remaining terms will contain the factor (str(AA†) i)

r i, thus lowering the
power of (strA). The next step is to express the corresponding supercharacters in terms of p
of supertraces. Again, what we need is to consider the highest power term

sx$n%~A!5
s$n%

unu! ~str A! unu1••• ~77!

of the full polynomial expression~A38!.
In this way, using~76! and ~77! for the case of a Hermitian supermatrixM , we have that

sx$ȧ%u$b%~M !5
s$a%s$b%

uau! ubu! ~str M ! uau1ubu1..., ~78!

where we have displayed only the highest power term in (strM ). We emphasize that the coeffi
cient of (strM ) uau1ubu written in this last relation is exact.

With the above considerations we now proceed with the calculation. The direct integ
over the supergroup in Eq.~75! gives

I $p%,$q%~M1 ,M2!5a$ ṗ%u$q%sx$ ṗ%u$q%~M1!sx$ ṗ%u$q%~M2!, ~79!

in analogy with~32!. So, the first way of calculating~79! leads to

I $p%,$q%~M1 ,M2!5Fs$p%s$q%

upu! uqu! G2

a$ ṗ%u$q%~str M1! upu1uqu~str M2! upu1uqu1••• , ~80!

where only the term containing the highest power in (strM1)(str M2) has been written.
Now, the second way of calculatingI $p%,$q%(M1 ,M2) consists in using the expansion~76! for

the integrand in~75!
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~81!

and keeping only the highest power term. Next we combine the representations in the RHS
relation

E @dU#sx$p%~M1UM2U†!sx$q%~M1UM2U†!

5E @dU#sx$p% ^ $q%~M1UM2U†! ~82!

and subsequently we use the following Clebsh–Gordan expansion arising from~74!:

sx$p% ^ $q%~A!5( 8
$t%

r$t%
$p%,$q%sx$t%~A!. ~83!

So we have that

E @dU#sx$p%~M1UM2U†!sx$q%~M1UM2U†!

5( 8
$t%

r$t%
$p%,$q%E @dU#sx$t%~M1UM2U†!

5( 8
$t%

r$t%
$p%,$q%a$t%sx$t%~M1!sx$t%~M2!. ~84!

Therefore, substituting~84! in ~81!, we obtain

I $p%,$q%~M1 ,M2!5( 8
$t%

r$t%
$p%,$q%a$t%sx$t%~M1!sx$t%~M2!1..., ~85!

and using~77! we are left with

I $p%,$q%~M1 ,M2!5
1

@~ upu1uqu!! #2 ( 8
$t%

r$t%
$p%,$q%a$t%s$t%

2 ~str M1! upu1uqu3~str M2! upu1uqu1••• .

~86!

This is the result obtained by following the second method of calculation.
Finally we see that comparing the coefficient of the term (strM1) upu1uqu(str M2) upu1uqu of the

two expressions forI $p%,$q%(M1 ,M2), given in~80! and~86!, we obtain the desired result stated
~73! for the a coefficients of the mixed representations.

As a consequence of our results~73! and ~36! we derive the result

a$ ṗ%u$q%50, for upu1uqu,mn, ~87!

which is similar to the one in~36!.
Before closing this section we also observe that

a$ ṗ%u$q%5a$q̇%u$p% . ~88!
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This property can be obtained from the relation~73! together with the fact that the tensor produ
of representations commutes.

VI. IDENTITIES FOR THE DIMENSIONS OF THE U„N… REPRESENTATIONS

The complete procedure already followed for the determination of thea$ ṗ%u$q% coefficients
may be repeated step by step for the case ofU(N), obtaining exactly the same relation~73!, but
with the substitutiona$t%→1/d$t% everywhere@see Eq.~58!# and also with the replacement str→tr.
In this way we obtain the remarkable result

1

d$ ṗ%u$q%
5F upu! uqu!

~ upu1uqu!! G
2F 1

s$p%s$q%
G2

( 8
$t%

r$t%
$p%,$q%

s$t%
2

d$t%
~89!

for the dimensions of the irreducible representations ofU(N). In fact, since these dimensions a
all well known from an independent calculation (d$t%5x$t%(I N3N)), Eq. ~89! provides an identity
relating the dimensions of mixed and undotted representations of this group. Many examp
the identity~89! are shown explicitly, mutatis mutandis, in Appendix 5. Let us illustrate this,
example, in the case of the representation According to Appendix 5~second row! we
have that

~90!

where

~91!

according to the formulas in Table I of Appendix 4. The reader may verify that the identity in~90!
is indeed fulfilled by expressions~91!.

VII. RELABELING OF THE U„m zn … REPRESENTATIONS

The irreducible representations of SU(mun) have been characterized by Bars and Balante
in terms of the Young tableaux notation.24 We referred to this classification in Sec. III, whe
applying it to theU(mun) case. In this notation, to completely specify each representation, a s
numbers (t1 ,...,tk) is required, counting the number of boxes in the corresponding rows of th$t%
tableau. Contrary to what happens in theU(N) (SU(N)) case, where the number of rows of th
undotted tableau should not exceedN((N21)), in the U(mun) (SU(mun)) case there is no
restriction for this number which, in principle, may be as large as wanted.24 So, using the numbe
of boxes on each row as a labeling of theU(mun) representations requires a non definite num
of parameters.

Using our formula~59! we will show that it is possible to choose, at most, (m1n) parameters
in order to completely specify the undotted representations ofU(mun). This is because represen
tations of the type
J. Math. Phys., Vol. 38, No. 10, October 1997
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~92!

do not exist, whenever representation$r % is allowed to be placed there, that is, when ($q%T) i

5n for every r iÞ0 andr 1<pm .
To understand this property from our point of view, let us observe that formula~59! can be

extended for representations$q%T→$q%T$r %. In fact, in Appendix 2 we deal with this formula an
validate it for a$q%T tableau having any number of rows and columns, as long as the Y
tableaux rules are kept obeyed. Then for the representation$t%E ~for which we mean ‘‘Extended’’
$t%! we have that

sx$t%E
~M !5~21! uqu1ur u( ~l,l̄!x$p%~l!x

$r %T
$q% ~ l̄!. ~93!

But anyU(n) tableau having more thann rows is forbidden, i.e.,

x
$r %T
$q% ~ l̄!50,

so that

sx$t%E
~M !50. ~94!

Given that the dimension of a supergroup representation can be calculated assd$t%5sx$t%(M0),
whereM0 is given in~60!, we have that the dimension forU(mun) representations of the type$t%E

is 0 and therefore they do not exist. This fact was already known in the literature,28 but it appears
naturally in our calculations.

The above observation leads us to propose that any legalU(mun) representation can b
completely characterized by

$tis%[~ t1 ,...,tmis1 ,...,sn!, ~95!

in such a way that

~96!
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where (t1 ,...,tm) is a U(m) tableau denoting the number of boxes in the firstm rows of $tis%,
while (s1 ,...,sn) is aU(n) tableau denoting the number of boxes of the firstn columns of$tis%.
These set of numbers completely specifies the existing undotted representations ofU(mun).

If the t i ’s and thesj ’s in ~96! satisfy, respectively,

t i>n,sj>m, ~ i 51,...,m; j 51,...,n!, ~97!

then these numbers are completely independent. In this case$tis% is a tableau of the type$ t̃% in
~55!. But if the t i ’s and thesj ’s do not all obey~97! then they will not be all independent. In fac
if $tis% is such that every box of the tableaux is contained in the$mn% tableau, then knowing al
the t i ’s is completely equivalent to knowing all thesj ’s. Anyway, it is still true that knowing the
m1n numbers (t1 ,...,tm) and (s1 ,...,sn) ~assumed to be given unambiguously and consisten!
is enough to specify anyU(mun) undotted representation.

Now, the analogue happens when considering purely dotted representations. Equation~59! is
also valid for dotted representations since the corresponding derivation can be completely re
for this case~the character and supercharacter expansions of the ordinary and supersym
HCIZ integral may be directly obtained for purely dotted representations!. So following exactly
the same arguments we are led to state that everyU(mun) dotted representation can be complete
specified by the notation$ ṫi ṡ%[( ṫ1 ,...,ṫmi ṡ1 ,...,ṡn). The pictorial tableau would be the same
in ~96! but with all boxes dotted.

In the case of mixed representations, the undotted and the dotted parts will follow sepa
the previously established rules and the tableau will be abbreviated as$ ṗi q̇%u$uiv%.
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APPENDIX

1. The supersymmetric HCIZ integral

The basic tool we have used to determine the integration properties of the supergroupU(mun)
in this work is the supersymmetric extension of the Harish–Chandra–Itzykson–Zuber~SUSY
HCIZ! integral defined by18–20

Ĩ ~M1 ,M2 ;b!5E @dU#eb str~M1UM2U†!, ~A1!

whereM1 andM2 are Hermitian (m1n)3(m1n) supermatrices, the integration is carried ov
the supergroupU(mun) and ‘str’ means the supertrace operation. This extension is mad
complete analogy with the ordinary HCIZ integral which is3

I ~N1 ,N2 ;b!5E @dU#eb tr~N1UN2U†!, ~A2!

where N1 and N2 are N3N Hermitian matrices, and the integration is carried over the gr
U(N).

The calculation of the SUSY HCIZ integral has been made by following analogous ste
those taken by Itzykson and Zuber in the ordinaryU(N) case.19,20 In this approach, the integral i
not calculated directly, but it is found as the solution of a differential equation. In the ordinary
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this procedure is known as ‘‘the diffusion equation method,’’ but in our case it was transform
‘‘the Schrödinger equation method,’’ in which, for convergence reasons we incorporated an im
nary factor ‘‘i ’’ to the diffusion equation.19

The result for the calculation of the SUSY HCIZ integral is

Ĩ ~M1 ,M2 ;b!5( ~l1 ,l̄1!( ~l2 ,l̄2!bmn3~b!2m~m21!/2

3~2b!2n~n21!/2)
p51

m21

p! )
q51

n21

q!
det~ebl1il2 j !

D~l1!D~l2!

det~e2b l̄ 1a l̄ 2b!

D~l̄1!D~l̄2!
, ~A3!

where the diagonal supermatricesL i ( i 51,2) contain the eigenvalues of the respective (m1n)
3(m1n) Hermitian supermatricesMi ( i 51,2) @see~3! for the conventions#.

Here,D is the usual Vandermonde determinant

D~l!5)
i . j

~l i2l j !, D~l̄!5 )
a.b

~ l̄a2l̄b! ~A4!

and the new function that appears is

( ~l,l̄!5)
i 51

m

)
a51

n

~l i2l̄a!.

We observe that the polynomial((l,l̄) is completely symmetric under independent permutati
of the l i ’s and thel̄a’s.

The expression~A3! is completely determined up to a normalization factor related to tha
the measure@dU# of the supergroup. This situation is analogous to the standard IZ case whe
required factor can be fixed directly from the corresponding expression by taking the
L1 ,L2→0 in a convenient way and demanding*@dU#51, for example. This procedure leads
the correct factors in Eq.~3.4! of Ref. 3. In our case, a similar limiting procedure leads to
conclusion that*@dU#[0, precisely due to the appearance of the((l,l̄) functions in the nu-
merator. This is not an unexpected result since we are dealing with odd Grassmann numbe
this reason we have chosen the normalization factor in such a way that

Ĩ ~M1 ,M2 ;b!5( ~l1 ,l̄1!( ~l2 ,l̄2!bmnI ~l1 ,l2 ;b!I ~ l̄1 ,l̄2 ;2b!, ~A5!

where

Ĩ ~L1 ,L2 ;b!: HCIZ integral over U~mun!,

I ~l1 ,l2 ;b!: HCIZ integral over U~m!,

I ~ l̄1 ,l̄2 ;2b!: HCIZ integral over U~n!,

and the HCIZ integral in~A2! is given by

I ~N1 ,N2 ;b!5E @dU#eb tr~N1UN2U†!5b2N~N21!/2)
p51

N21

p!
det~ebl1il2,j !

D~l1!D~l2!
. ~A6!
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We comment that the derivation of the expression~A3! has been performed for purely imag
naryb in order to guarantee the convergence of the method. Since both sides of Eq.~A3! exist for
every complexb we have made an analytic continuation of the result to all theb complex plane.

2. Expression for s x
ˆt ‰„M…

Here we show that the supercharacter of the particular representation

$ t̃%5 $q%T
$mn%$p% , ~A7!

which is pictorically shown in~55!, has the compact expression

sx$ t̃ %~M !5~21! uqu( ~l,l̄!x$p%~l!x$q%~ l̄!. ~A8!

This formula was previously stated in Ref. 21 and we now present the complete proof of i
The basic idea of the proof is to start from Eq.~54!

sx$mn%$p%~M !5( ~l,l̄!x$p%~l!, ~A9!

valid for every representation$p% of U(m), and subsequently to perform an induction process
the number of boxes of the representation$q% of U(n). We will work with the simplified notation
~A7! instead of the one in~55!.

Let $q%T5$v%5(v1 ,...,va) be the tableau which is placed in the bottom left of$mn%$p% in
~A7!. Our proof will go in two steps. The first one consists in making induction in the numbe
boxes of the last row of$v%, that is,va . The second step consists in assuming~A8! to be valid for
$v% and showing that is also valid for$v%8, which is constructed from$v% by adding an extra row
consisting in only one box, that is,$v%85(v1 ,...,va,1). Thus, both proofs imply that the$q%T

5$v% tableau may be as wide and as long as the Young tableaux rules allow.
~i! Here, we perform the induction process in the number of boxes of the last row of$va%. We

assume that~A8! is valid for a tableau$q%T5$v%, with

v i<n ~ i 51,...,a21!

and for va50,...,Va,va21 . ~A10!

Our task consists in showing that it is also valid forva5Va11. Let $v0%5(v1 ,...,va21). We start
by multiplying

sx
$v0%
$mn%$p%~M !5~21! uv0u( ~l,l̄!x$p%~l!x$v0%T~ l̄!, ~A11!

by the expression,26

sx~Va11!~M !5 (
k50

Va11

~21!kx~Va112k!~l!x~k!T~ l̄!, ~A12!

where (s) and (s)T denote the completely symmetric and the completely antisymmetric tab
respectively, both withs boxes. Using the Young tableaux rules for multiplying representat
we have
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sx S $v0%
$mn%$p% D ^ ~Va11!~M !5~21! uv0u( ~l,l̄! (

k50

Va11

~21!kx$p% ^ ~Va112k!~l!x$v0%T^ ~k!T~ l̄!

~A13!

⇒ (
k50

Va11

sx
~$v0% ^ ~k!!

$mn%~$p% ^ ~Va12k!!~M !

5~21! uv0u( ~l,l̄! (
k50

Va11

~21!kx$p% ^ ~Va112k!~l!x$v0%T^ ~k!T~ l̄!.

~A14!

Now, we separate the (Va11)th term in both sides

(
k50

Va

sx
~$v0% ^ ~k!!

$mn%~$p% ^ ~Va112k!!~M !1sx
~$v0% ^ ~Va11!!
$mn%$p% ~M !

5~21! uv0u( ~l,l̄!(
k50

Va

~21!kx$p% ^ ~Va112k!~l!x$v0%T^ ~k!T~ l̄!

1~21! uv0u1Va11( ~l,l̄!x$p%~l!x$v0%T^ ~Va11!T~ l̄!. ~A15!

Using the property ($a% ^ $b%)T5$a%T
^ $b%T and the fact that the representations ($v0% ^ (k)) are

all of the type$v% @for which the hypothesis of induction~A10! is valid#, the sums in both sides
of ~A15! are cancelled, leading to

sx
~$v0% ^ ~Va11!!
$mn%~$p%! ~M !5~21! uv0u1Va11( ~l,l̄!x$p%~l!x~$v0% ^ ~Va11!!T~ l̄!. ~A16!

Using the Young tableaux rules we have that

$v0% ^ ~Va11!5
~Va11!
$v0%

% ( 8
l 1 ,...,l a

~v11 l 1 ,...,va211 l a21 ,l a!, ~A17!

where$v0%(Va11)[(v1 ,...,va21 ,Va11) and the prime means that the sum is restricted toi ! l 1

1•••1 l a5Va11, where all thel i ’s are non-negative integers;i i ! l a<Va and i i i ! v i>v i 11

1 l i 11 , for i 51,•••a21.
Therefore, using~A17! in ~A16! we have that

( 9
l 1 ,...,l a

sx$mn%$p%
~v11 l 1 ,...,va211 l a21 ,l a!

~M !1sx$mn%$p%
$v0%

~Va11!

~M !

5 ( 9
l 1 ,...,l a

~21! uv0u1Va11( ~l,l̄!x$p%~l!x~v11 l 1 ,...,va211 l a21 ,l a!T~ l̄!

1~21! uv0u1Va11( ~l,l̄!x$p%~l!x S ~Va11!

$v0% DT~ l̄!. ~A18!
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Here the double prime means that the summation is further restricted tol a,Va11. In virtue of the
hypothesis of induction the sums that appear in both sides of this equation are equal and
left with

sx$mn%$p%

S $v0%

~Va11! D
~M !5~21! uv0u1Va11( ~l,l̄!x$p%~l!x S $v0%

~Va11!DT~ l̄!, ~A19!

which ends this part of the proof.
~ii ! We will now prove that if~A8! is valid for v i<n ( i 51,•••a), then it is also true that

sx
$mn%$p%
$v%
h

~M !5~21! uvu11( ~l,l̄!x$p%~l!x S $r %
h DT

~ l̄!. ~A20!

We will follow very similar steps to those in~i!. We multiply ~A8! by sxh(M )5xh(l)
2xh(l̄), obtaining

sx
~ $v%

$mn%$p%! ^ h
~M !5~21! uvu( ~l,l̄!x$p$ ^ h~l!x$v%T~ l̄!1~21! uvu11( ~l,l̄!x$p%~l!x$v%T^ h~ l̄!

~A21!

⇒sx
$v%
$mn%~$p% ^ h !~M !1sx

~$v% ^ h !
$mn%$p% ~M !

5~21! uvu( ~l,l̄!x$p% ^ h~l!x$v%T~ l̄!

1~21! uvu11( ~l,l̄!x$p%~l!x~$v% ^ h !T~ l̄!. ~A22!

Considering~A8! for the case$p%→$p% ^ h, the first term in both sides is the same and af
cancelling it we have

sx
~$v% ^ h !
$mn%$p% ~M !5~21! uvu11( ~l,l̄!x$p%~l!x~$v% ^ h !T~ l̄!. ~A23!

Next we use the analogue formula to~A17! which is

$v% ^ h5$h
v % % (-

j 1 ,...,j a

~v11 j 1 ,...,va1 j a!, ~A24!

where the triple prime indicates the restrictions that thej i ’s are non-negative integers satisfyin
j 11•••1 j a51 together withv i>v i 111 j i 11 , (i 51,...,a21). Using~A24! in ~A23! we have that
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(-
j 1 ,...,j a

sx
~v11 j 1 ,...,va1 j a!
$mn%$p% ~M !1sx$mn%$p%

$v%
h

~M !

5 (-
j 1 ,...,j a

~21! uvu11( ~l,l̄!x$p%~l!x~v11 j 1 ,...,va1 j a!T~ l̄!

1~21! uvu11( ~l,l̄!x$p%~l!x S $v%
h DT~ l̄!. ~A25!

In virtue of the hypothesis of induction the sums in both sides are the same and we are le
the desired result.

3. Supercharacter of mixed representations

The general expression for the supercharacter of a mixed representation of the supe
GL(mun) is the complicated expression given by

sx$ȧ%u$b%~A!5 (
l 50

k$a%,$b%

( 9
$m%

( 9
$n%

d~r 112r 21•••1 lr l2 l ! (
r 1 ,...,r l

f l ,$m%,$n%,$r %
$a%,$b%

3)
i 51

l

@~str~AA†! i # r isx$ṁ%~A!sx$n%~A!, ~A26!

where A is an arbitrary (m1n)3(m1n) supermatrix,umu5uau2 l , unu5ubu2 l and k$a%,$b%

5min$uau,ubu%. The coefficientsf l ,$m%,$n%,$r %
$a%,$b% are known for all representations$a% and $b% of

GL(m) and GL(n), respectively. Again, the double prime on each summation is to remind
reader of the constraints over which the summations are performed.

In particular

f0,$a%,$b%,$0%
$a%,$b% 51, ~A27!

which corresponds to the terms in~A26! which do not contain any factor@str(AA†) j # r j . This term
is precisely the one that we consider in Eq.~76!.

The formula~A26! is a generalization of the expression appearing in Ref. 17, which co
spond to the superunitary case whereAA†51

Simple examples of the formula~A26! are the following:

~A28!

~A29!

~A30!

The reader may verify that these expressions coincide with the ones of Ref. 17 whenA is a
unitary supermatrix.
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We are not going to perform here the derivation of~A26!. Instead, we will present a simpl

example which illuminates the general procedure. Let us take the case In

order to construct the result for given in ~A28! we consider

~A31!

The above expression is obtained starting from the fundamental representations

D i j
h~A!5Ai j D i j

)~A!5~21!e i ~e i1e j !Ai j* , ~A32!

and imposing the representation to be irreducible. The representation)3h is given by

D ac,bd
)3h~A!5~21!~ea1ec!~ea1eb!Aba

† Acd , ~A33!

according to the general rule described in section.
The construction of~A31! leads to

~A34!

Calculating the supercharacter we obtain~A28!.

Let us observe that in order to get~A28! we have begun from~A31!, which is the product of
the representations) andh to which we have substracted a similar term with a repeated indee.
This index contraction produces the termAA† in ~A34! and subsequently it becomes str(AA†),
after calculating the supercharacter.

When the same procedure is applied to more complicated cases like that of the represe
we will obtain an expression of the type

~A35!

where the coefficientsa, b, andc take known numerical values. When the same procedur
extended to the general case, one obtains the formula~A26!.

4. Character and supercharacter tables of GL „N… and GL „m zn …

The character of anyU(N) representation may be written in terms of traces of powers of
fundamental ordinary and complex representations,U and Ū.

A general formula for the character of an undotted representation$t% is29

x$t%~U !5
1

utu! (
a1 ,...,autu50

utu

d~a112a21•••1utuautu2utu!h~a!x~a!
$t% )

i 51

utu

~ tr Ui !ai, ~A36!

where thex (a)
$t% coefficients are the characters of the symmetric group of degreeutu, Sutu , and
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h~a!5
utu!

1a1a1!2a2a2! •••utuautuautu!
~A37!

is the order of class$a% of Sutu .
The character of a dotted representation has exactly the same expression~A36!, but replacing

U→U†.
For the character of a mixed representation see Ref. 17 and our Appendix 3, replacing

trace for trace, whenever it is necessary. Table I is constructed with these ingredients.
Replacing the trace by the supertrace,26 we obtain the analog of formula~A36! for the super-

character of the representation$t% of GL(mun)

sx$t%~U !5
1

utu! (
a1 ,...,autu50

utu

d~a112a21•••1utuautu2utu!h~a!x~a!
$t% )

i 51

utu

~str Ui !ai. ~A38!

TABLE II. Supercharacters for some representations of the linear supergroup GL(mun) ~constructed from Refs
3 and 26!.

TABLE I. Characters and dimensions for some representations of the linear group GL(N) ~modified from Ref. 3!.
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Some examples of this formula appear in Table II.

5. a
ˆṗ ‰zˆq ‰

coefficient table

Some examples of the formula~73! are given in the following table.
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Ginsparg, and J. Zinn-Justin, Phys. Rep.245, 1 ~1995!.

2Harish-Chandra, Am. J. Math.79, 87 ~1957!.
3C. Itzykson and J.-B. Zuber, J. Math. Phys.21, 411 ~1980!.
4M. L. Mehta, Commun. Math. Phys.79, 327 ~1981!.
5V. Kazakov and A. A. Migdal, Nucl. Phys. B397, 214 ~1993!.
6B. M. Mulder and Th. Ruijgrok, Physica A113, 145 ~1982!.
7For a review, see, for example, M. F. Sohnius, Phys. Rep.128, 39 ~1985! and P. van Nieuwenhuizen,ibid. 68, 189
~1981!.

8E. Marinari and G. Parisi, Phys. Lett. B240, 375~1990!. J. Gonza´lez and M. A. H. Vozmediano,ibid. 247, 267~1990!;
G. Gilbert and M. J. Perry, Nucl. Phys. B364, 734 ~1991!; L. Alvarez-Gaume and J. L. Man˜es, Mod. Phys. Lett. A6,
2039~1991!; A. D’Adda, Class. Quant. Grav.9, L21, L77 ~1992!; S. A. Yost, Int. J. Mod. Phys. A7, 6105~1992!; Yu.
Makeenko,Applications of Supersymmetric Matrix Models, preprint hep-th/9608172, Aug. 1996. For a recent review s
for example, J. C. Plefka,Supersymmetric Generalization of Matrix Models, preprint hep-th/9601041, Jan. 1996.

9F. A. Berezin,Introduction to Superanalysis, edited by A. A. Kirillov ~Reidel, The Netherlands, 1987!.
10B. DeWitt, Supermanifolds~Cambridge University Press, Cambridge, 1992!.
11K. Efetov, Supersymmetry in Disorder and Chaos~Cambridge University Press, Cambridge, 1996!.
12M. J. Rothstein, Trans. Am. Math. Soc.299, 387 ~1987!.
13D. Williams and J. F. Cornwell, J. Math. Phys.25, 2922~1984!.
14C. Fronsdal and T. Hirai, inEssays on Supersymmetry, edited by C. Fronsdal~Reidel, The Netherlands, 1986!.
15L. Nachbin,The Haar Integral~Van Nostrand, New York, 1965!.
16E. Hewitt and K. A. Ross,Abstract Harmonic Analysis~Springer, Berlin, 1963!.
17A. Balantekin and I. Bars, J. Math. Phys.22, 1810~1981!. For a review of supergroups and their representations see

example, I. Bars, inIntroduction to Supersymmetry in Particle and Nuclear Physics, edited by O. Castan˜os, A. Frank,
and L. F. Urrutia~Plenum, New York, 1984!, p. 107.

18T. Guhr, J. Math. Phys.32, 336 ~1991!.
19J. Alfaro, L. F. Urrutia, and R. Medina, J. Math. Phys.36, 3085~1995!; 37, 3100~1996!.
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21J. Alfaro, L. F. Urrutia, and R. Medina, J. Phys. A28, 4581~1995!.
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Asymptotic equipartition of energy by nodal points
of an eigenfunction

Goong Chen, Stephen A. Fulling, and Jianxin Zhou
Department of Mathematics, Texas A&M University, College Station, Texas 77843

~Received 9 January 1997; accepted for publication 16 June 1997!

The time-reduced form of a partial differential equation in vibration or quantum
mechanics in one space dimension often satisfies a Sturm-Liouville~S-L! equation.
Nodal points of eigenfunctions of the S-L equation form energy barriers. When the
S-L equation has constant coefficients, the energy localized in each nodal interval is
the same. But when the S-L equation has variable coefficients, strict equipartition
of energy by nodal points no longer holds. In this paper, however, we formulate an
asymptotic form of the principle of equipartition of energy by nodal points, show-
ing that the energies stored on connected nodal intervals away from the turning
points or singularities of the governing equation differ at most by an error of order
of magnitude inversely proportion to the frequency. Also, using a numerical ex-
ample, we demonstrate this asymptotic equipartition principle when a potential
barrier is present. In higher dimensions, the formation of nodal lines or nodal
~hyper!surfaces is quite unstable. Therefore, equipartition of energy does not hold
in an approximate or asymptotic sense. ©1997 American Institute of Physics.
@S0022-2488~97!00810-4#

I. INTRODUCTION

The term ‘‘equipartition of energy’’ in physics and applied mathematics refers to certain t
of energy splittingin the average or asymptotic sense. It was first used in statistical mechan
mean that in a system which can be treated by classical physics and which consists of
number of particles, the mean kinetic energy of each particle is the same~and proportional to the
absolute temperature and to the number of degrees of freedom of the particle!, independent of the
mass of the particle~Ref. 1, p. 93!. In the mathematical analysis of wave propagation, it w
pointed out by Lax and Phillips2 that ~in an odd-dimensional space! at large time the kinetic and
potential energies over the entire space are asymptotically equal to half of the total energ
latter being conserved for all times; see also Costa.3 In this paper, we consider another kind
equipartition of energy, this one being by nodal points of an eigenmode of vibration for prob
in one space dimension. Under seemingly rare circumstances, equipartition of energy by
lines or surfaces can occur in higher dimensions.

Example I.1:Recall that a vibrating string of uniform composition with fixed ends is mode
by the 1D wave-equation

H wtt~x,t !2wxx~x,t !50, 0,x,L, t.0,

w~0,t !5w~L,t !50, t.0,

w~x,0!5w0~x!, wt~x,0!5w1~x!, 0,x,L.

~1!

Separation of variables,w(x,t)5e2 ivtf(x), yields the corresponding eigenvalue problem

H f9~x!1v2~x!50, 0,x,L,

f~0!5f~L !50,
~2!

which has normalized eigenfunctions
0022-2488/97/38(10)/5350/11/$10.00
5350 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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fn~x!5S 2

L D 1/2

sin
npx

L
, 0,x,L, n51,2,3, . . . , ~3!

and eigenvaluesvn
25(np/L)2, as solutions. Each eigenfunctionfn in ~3! has n21 internal

nodes,xj5( jL )/n, j 51,2, . . . ,n21, wherefn(xj )50. Each pair of successive nodal pointsxj

andxj 11 forms a nodal intervalI j5(xj ,xj 11). In effect, the two nodal endpoints ofI j serve as
energy barriers, prohibiting exchange of energy of vibration betweenI j with the neighboring
nodal intervalsI j 21 and I j 11, becausefn(xj )50 andfn(xj 11)50 constitute energy-conservin
boundary conditions for wave reflection@see~Ref. 4, Vol. I, Chap. 1!, e.g.# on the intervalI j . The
amount of kinetic energy stored onI j by the eigenmodewn(x,t)5e2 ivntfn(x) is ~proportional to!

E
I j

uwt~x,t !u2 dx5vn
2E

xj

xj 11S 2

L D sin2
npx

L
dx5

np2

L2 , ~4!

and that of potential energy stored onI j is

E
I j

uwx~x,t !u2 dx5E
xj

xj 11S np

L D 2S 2

L D cos2
npx

L
dx5

np2

L2 . ~5!

We see from~4! and ~5! that

kinetic energy of eigenmodee2 ivntfn~x! on I j

5 potential energy of eigenmodee2 ivntfn~x! on I j

5 1
2• total energy of eigenmodee2 ivntfn~x! on I j ,

independent of j, for j 50,1,2, . . . ,n21. ~6!

Therefore, the nodal points of an eigenmode have an effect of ‘‘equipartition of energy’’ fo
vibration of a string, in the sense that the kinetic and potential energies of a given eigen
stored on each nodal interval are equal to one-half of the total energy, which in turn is indepe
of the nodal interval.

If the vibrating string has variable mass densityr(x).0 and tensionT(x).0, then the wave
equation~1! becomes

r~x!wtt~x,t !2@T~x!wx~x,t !#x50, 0,x,L, t.0. ~7!

Quick calculations for some concrete examples show that different nodal intervals contain
ent energies, and strict equipartition of energy with respect to nodal intervals no longer hold
us consider, e.g., the eigenvalue problem involving the Bessel differential equation of orde

~xu8!81v2xu50, u~1!50, v2.0, 0,x,1, ~8!

corresponding to~7! with r(x)[T(x)[x after the usual separation of variables. Then a
J0(v j

(1)x) or Y0(v j
(2)x) is a solution of~8!, where forj 51,2, . . . , v j

(1) andv j
(2) are the succes

sive zeros of the Bessel functions of order zero of the first (J0) and second (Y0) kinds, respec-
tively. We have

~i! The zeros ofJ0(•) are ~Ref. 5, p. 409!

v1
~1!'2.40483,v2

~1!'5.52008,v3
~1!'8.65373,v4

~1!'11.79153,

v5
~1!'14.93092,v6

~1!'18.07106,••• .
J. Math. Phys., Vol. 38, No. 10, October 1997
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The nodal intervals, for example, ofJ0(v6
(1)x) are I j

(1)5@v j
(1)/v6

(1) ,v j 11
(1) /v6

(1)#, j 51,2, . . . ,5.
We have computed the energies on the nodal intervals by quadrature in Table I, according~10!
and ~11! below.

~ii ! The zeros ofY0(•) are ~Ref. 5, p. 410!

v1
~2!'0.89358,v2

~2!'3.95768,v3
~2!'7.08605,v4

~2!'10.22235,

v5
~2!'13.36110,v6

~2!'16.50092, . . .

The nodal intervals ofY0(v6
(2)x) are I j

(2)5@v j
(2)/v6

(2) ,v j 11
(2) /v6

(2)#, j 51,2, . . . ,5. Wehave also
computed the energies on the nodal intervals ofY0(v6

(2)x) by quadrature in Table II.

Tables I and II have shown thatthe differences between energies stored on different no
intervals are often quite small. h

The major contribution of this paper is a theorem, Theorem II.2 showing that throughou
connected interval where the phase-integral approximation uniformly applies~in particular,away
from the singularities and the turning points of the governing differential equation!, the difference
of energies on two nodal intervals isO (v21), wherev2 is the eigenvalue. Thus, naturally, we ca
this property ‘‘asymptotic equipartition of energy by nodal points.’’

The study of higher-dimensional situations more general than Example I.1 is much
difficult. Our knowledge about the formation of nodal lines and the patterns of nodal doma
still very incomplete. However, we argue that the principle of asymptotic equipartition of en
by nodal lines or nodal~hyper!surfaces is largely untrue in higher dimensions.

Since the distribution of nodal points and the profiles of eigenfunctions have been used
extensively in the study ofinverse problems~Hald and McLaughlin,6 e.g.!, we hope the results in
this paper have useful applications to that area.

II. ASYMPTOTIC EQUIPARTITION OF ENERGY BY NODAL POINTS IN ONE-
DIMENSIONAL EIGENVALUE PROBLEMS

We consider the general Sturm-Liouville eigenvalue problem

@p~x!u8~x!#81@v2r~x!2V~x!#u~x!50, a,x,b, a,bPRø$6`%. ~9!

TABLE I. Kinetic energy ofJ0(18.07106x) on nodal subintervals of@0,1#. @The potential energy PE is the same as KE
~12!.#

j 1 2 3 4 5

1

v6
2KE~J0~v6x!,I j

~6!!' 0.984658 0.995092 0.997624 0.998605 0.999084

TABLE II. Kinetic energy ofY0(16.50092x) on nodal subintervals of@0,1#. Note again we have PE5KE.

j 1 2 3 4 5

1

v6
KE~Y0~v6x!,I j

~6!!' 0.960274 0.991978 0.996694 0.998212 0.998882
J. Math. Phys., Vol. 38, No. 10, October 1997
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Throughout this paper, we make the following assumption:
@H#: For xP(a,b), p(x).0 andr(x).0, p andr are twice continuously differentiable, andV is

continuous and real-valued. The eigenvaluev2 satisfiesv2.0, andu is a real-valued solu-
tion to ~9!.

Accompanying~9! usually are some boundary conditions, whose types are not importa
long as@H# is valid. But we note that several common types of selfadjoint boundary condi
will make eigenvalues and eigenfunctions real. It is well known that in those cases all but fi
many of the eigenvaluesv2 are positive and large, fulfilling@H#, and yielding the oscillatory
behavior to which our theory is relevant.

The differential equation~9! may come from the time-reduced form of a 1D dynamic par
differential equation modelling vibration such as~2!, or from a Schro¨dinger equation with a
potential@i.e., V(•) in ~9!# in quantum mechanics. For a given solutionu(x) of ~9!, we define its
kinetic and potential energy on a subinterval (ā , b̄ )#(a,b) to be, respectively,

KE~u;~ ā , b̄ !!5v2E
ā

b̄
r~x!~u~x!!2 dx, ~10!

PE~u;~ ā , b̄ !!5E
ā

b̄
p~x!~u8~x!!2 dx1E

ā

b̄
V~x!~u~x!!2 dx. ~11!

A simple integration by parts from~9! thus gives us

KE~u;~ ā , b̄ !!5 PE~u;~ ā , b̄ !!, provided thatu~ ā !505u~ b̄ !. ~12!

Without loss of generality we may assume thatp(x)[1: Make the change of variable

y5E
x0

x 1

p~j!
dj, ~13!

wherex0 is a suitable point in@a,b#, and define

ũ~y!5u~x~y!!, r̃ ~y!5r~x~y!!p~x~y!!, Ṽ~y!5V~x~y!!p~x~y!!. ~14!

Since we are primarily concerned with the zeros of the eigenfunctionu(x) in the interior, again
without loss of generality we may assume that the endpoints are finite and regular, and
boundary conditions to be zero

H ũ9~y!1@v2 r̃ ~y!2Ṽ~y!# ũ~y!50, yP~a,b!,

ũ~a!50, ũ~b!50,
~15!

for somea,b such thatxa[x(a), xb[x(b), are two zeros ofu.
We drop the tildes and rewrite~15! as

u9~y!1@v2r~y!2V~y!#u~y!50, yP~a,b!, ~16!

u~a!5u~b!50. ~17!

For v2 sufficiently large, equation~16! admits a WKB~phase-integral! expansion through the
Liouville-Green transformation.@This transformation, in effect, converts the functionr(•) into
1.7–9# We state the following.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Theorem II.1: @Olver ~Ref. 8!, ~Ref. 9, Chap. 6!#
In a given finite interval@a,b#, let r~•! be a positive, real, twice continuously differentiab

function, and V~•! a continuous real function. Then on~a,b!, for v2.0 sufficiently large the
differential equation

u9~y!1@v2r~y!2V~y!#u~y!50 ~18!

has twice continuously differentiable solutions of the form

u~y!5Ar21/4~y!FsinS vE r1/2~y!dy1d D1«~v,y!G , yP@a,b#,

S vE r1/2~y!dy1d is an arbitrary antiderivative ofvr1/2~y! D , ~19!

for some A,dPR, such that

u«~v,y!u,
1

2vr1/2~y!
U ]

]y
«~v,y!U<expH V a,y~F !

2v J 21, ~20!

provided thatV a,y(F), the total variation of the function F on the interval~a,y!, is finite for
yP@a,b#, where

F~x![E H 1

r~x!1/4

d2

dx2F 1

r~x!1/4G1
V~x!

r~x!1/2J dx. ~21!

In particular, for v large,

u1~y![Ar21/4~y!sinS vE r1/2~y!dy1d D ~22!

satisfies

u~y!2u1~y!5O ~1/uvu! ~23!

uniformly asymptotically on@a,b#. h

We can now use Theorem II.1 to prove our main theorem.
Theorem II.2: Assume [H]. Let u~•! be an eigenfunction satisfying (16) and (17). Let yj and

yj 11 be two successive zeros of u. Then forv sufficiently large,

KE~u;~yj ,yj 11!!5
A2v

2
@11O ~v21!#, ~24!

PE~u;~yj ,yj 11!!5
A2v

2
@11O ~v21!#, ~25!

where A is the ‘‘amplitude’’ appearing in (19). In particular, the leading term A2v/2 is indepen-
dent of j.

Proof: We use~19! and~20!. For sufficiently largev, the conditionsu(yj )505u(yj 11) then
yield @cf. ~Ref. 9, p. 211!#
J. Math. Phys., Vol. 38, No. 10, October 1997
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vEyj
r1/2~y!dy1d1~21! j sin21@«~v,yj !#5 j p, ~26!

vEyj 11
r1/2~y!dy1d1~21! j 11 sin21@«~v,yj 11!#5~ j 11!p. ~27!

Therefore, by~22! and ~23!,

KE~u;~yj ,yj 11!!5v2E
yj

yj 11
r~y!~u~y!!2 dy

5A2v2E
yj

yj 11
r~y!

•Fr21/2~y!sin2S vE r1/2~y!dy1d D1O ~ uvu21!Gdy.

Make the change of variableh[v*r1/2(y)dy1d, with hk5v*ykr1/2(y)dy1d for k5 j and j
11, to convert the above to

A2vF E
h j

h j 11
sin2 h dh1O ~ uvu21!G ,

which is, by~26!, ~27!, and~20!,

5A2vF E
j p1O ~ uvu21!

~ j 11!p1O ~ uvu21!
sin2 h dh1O ~ uvu21!G

5A2vF E
j p

~ j 11!p

sin2 h dh1O ~ uvu21!G
5

A2v

2
@11O ~v21!#.

For the potential energy on (yj ,yj 11), we have

PE~u;~yj ,yj 11!!5E
yj

yj 11
@~u8~y!!21V~y!~u~y!!2#dy

52E
yj

yj 11
u9~y!u~y!dy1E

yj

yj 11
V~y!~u~y!!2dy

5E
yj

yj 11
v2r~y!u2~y!dy

5
A2v

2
@11O ~v21!#,

by the same calculation. h

We can now revert the system~16!, ~17! back to~9!, ~10! and get the following.
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



uch

and
the
s
int
nd
ervals

and

176

868

5356 Chen, Fulling, and Zhou: Equipartition of energy by nodal points

                    
Corollary II.3: Consider the eigenvalue problem (9) with suitable boundary conditions s
that [H] is valid. Let v.0 be sufficiently large and letV a,y(F) [see (20), (21)] be bounded
throughout an interval containing the successive zeros xi ,xi 11 , . . . ,xk21 ,xk of an eigenfunction
u(x). Then for j5 i ,i 11, . . . ,k21, we have

KE~u;~xj ,xj 11!!5v2E
xj

xj 11
r~x!u2~x!dx5

A2v

2
@11O ~v21!#,

PE~u;~xj ,xj 11!!5E
xj

xj 11
@p~x!~u8~x!!21V~x!u2~x!#dx5

A2v

2
@11O ~v21!#,

for some A.0, and so all the kinetic and potential energies for all theseadjacentnodal intervals
are asymptotically equal. h

Remark II.4:Theorem II.1 obviously is not applicable ifv2r(x)2V(x) is not sufficiently
positive; consequently, Theorem II.2 and Corollary II.3 may not hold. But, will Theorem II.2
Corollary II.3 actually fail? Whenv2r(x)2V(x) becomes negative on some subinterval,
differential equation~18! is said to have aturning point. Beyond the turning point, the solution i
not oscillatory. One cannot expect~24!–~25! to be accurate approximations near the turning po
@where the bound~20! is not uniform# nor in the nonoscillatory region. Even if there is a seco
turning point beyond which the solution is again oscillatory, the energies over the nodal int
in the second oscillatory region~though approximately equal to each other! will generally not be
equal to those in the first region.

In the following, let us offer a numerical example in order to show how Theorem II.2

Corollary II.3 work. In this example, from~29! below, one can easily see that on the interval@0,1
2#,

v2r(x)2V(x) is always positive. The same is true on the interval@ 3
4,1#. So on those intervals the

solution is oscillatory, and equipartition of energy holds on each of those two intervalsseparately,

corresponding to twodifferent energy values. On the interval@ 1
2,

3
4#, turning points exist if

v2r(x)2V(x) becomes negative.
Consider

H u9~x!1@v22V~x!#u~x!50, 0,x,1,

u~0!5u~1!50,
~28!

where the potentialV is given by

V~x!55
0, 0<x,1/2,

32L~x2 1
2!, 1/2<x,17/32,

L, 17/32<x,23/32, L5950,

232L~x2 3
4!, 23/32<x,3/4,

0, 3/4<x<0.

~29!

TABLE III. Eigenvaluesvn
2 for the eigenvalue problem~28!.

n 1 2 3 4 5

vn
2 33.147982 112.541322 132.471015 297.398562 443.244

6 7 8 9 10

525.953965 809.533727 934.359986 1098.769985 1248.369
J. Math. Phys., Vol. 38, No. 10, October 1997
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WhenV(x) is identically zero in~28!, the problem has eigenvaluesv25n2p2, n51,2,3,••• .
We have

n2p2'H 799.4417, n59;

986.9650, n510.

Now, with the presence ofV(x) as given in~29!, the oscillatory behavior ofun(x), the nth
eigenfunction, should be deeply affected byV(x) for n51,2, . . .,5,6, and at least moderatel

affected forn57,8,9, particularly on the subinterval@ 1
2,

3
4#, whereV(x) is distributed. Aftern

510, the oscillatory behavior ofun(x) should become similar to that of sinnpx.
Numerical solutions to~28! were obtained by the finite-element method. More specifically,

used piecewise linear finite elements~‘‘roof’’ functions ! on a uniform mesh and the standa
variational formulation to compute numerical solutions of eigenfunctions and eigenvalues o~28!.
See~Ref. 10, pp. 156–157! or ~Ref. 4, Vol II, § 3.2! for some details. In our computer impleme
tation, 64 roof functions have been used on a uniform mesh on@0,1#. We list the first ten eigen-
values in Table III. The reader is advised to observe the ‘‘tendencies’’ of the displayed num
data and the graphical behavior ofu rather than to take the numerical data too literally, beca
such data normally contain a certain amount of nonnegligible numerical discretization error~for
computations of differential equation eigenvalue problems! considerably larger than those i
Tables I and II~whose computations are based on more exact methods!.

Using the valuesvn
2 in Table III, we see that forn>9, vn

22V(x).0 for all xP@0,1#. Thus
un(x), thenth eigenfunction of~28!, does not have turning points forn>9. But if n,9, then there
exists a pair of turning points. We illustrate this in Fig. 1 foru6, where it can be visually confirmed

that u6(x) has nonoscillatory behavior on a subinterval of@ 1
2,

3
4#.

By numerical quadrature, we have approximated the kinetic and potential energies o

TABLE IV. Computed kinetic and potential energies ofu6, the sixth eigenfunction of~28!, on nodal intervals.

j 1 2 3 4 5 6

KE(u6 ;I j
(6)) 127.127 127.502 127.017 140.872 0.050616 0.050452

PE(u6 ;I j
(6)) 124.204 135.995 124.007 131.541 0.053697 0.049292

FIG. 1. The profile of the sixth eigenfunctionu6(x) for ~28!.
J. Math. Phys., Vol. 38, No. 10, October 1997
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nodal intervals ofu6(x) in Table IV. These numerical values confirm the statements at
beginning of this Remark. h

Finally, let us briefly address what may happen in the higher dimensional case. We nee
look at the eigenvalue problem

H Df j~x1 ,x2!52v j
2f j~x1 ,x2!, on V5$~x1 ,x2!u0,x1 ,x2,p%,

f j u]V50,
~30!

on a squareV with side lengthp. The eigenfunctions and eigenvalues of~30! are

fmn~x!5
2

p
sin mx1•sin nx2 , vmn

2 5m21n2; m,n51,2,3,•••. ~31!

For anyaPR and anym,nPN,

fmn,a~x![fmn~x!1afnm~x!5
2

p
@sin mx1•sin nx21a sin nx1•sin mx2# ~32!

is an eigenfunction. The nodal lines offmn in ~30! form the familiar quilted pattern. However, fo
generica,fmn,a no longer has such a pattern; see, for example, Figs. 2 and 3. These two fi
illustrate the fact that the formation of nodal lines and nodal domains is ‘‘highly unstable.’’
more complicated nodal curves may be found in McDonald,11 McDonald and Kaufman12,13for the
‘‘chaotic’’ stadium shaped domain. Therefore, there is no reason to believe that ‘‘asym
equipartition of energy’’ holds for the eigenvalue problem~30! on a general two dimensiona
domainV.

FIG. 2. Nodal curves of the eigenfunctions~32!, for a51, with m53,n58.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Let u be an eigenfunction ofD with the homogeneous Dirichlet data on a bounded smo
two dimensional domainV, and suppose that two nodal curves intersect transversally at an in
point x0PV. Then ~Ref. 14, p. 234! u(x0)50, and “u(x0)50 ~i.e., x0 is a critical point!.
Uhlenbeck15 has proved that generically intersections of nodal lines do not occur. More prec
within various classes of elliptic operators, the set of operators with an eigenfunction having
as a critical value is a set of first category. Therefore, only by rare coincidence canu(x0)50 and
“u(x0)50 be satisfied simultaneously.

In a generic eigenfunction, saddle points will still occur, but at levels other thanu50. If the
eigenvalue problem is a slight perturbation of a separable one, then the pattern of saddle po
be expected to be a slight displacement of the lattice of nodal intersections of the unper
tensor-product eigenfunction, even though the pattern of nodal curves has been entirely dis
This leads us to speculate that these saddle points can be somehow connected to define a
of V that approximately satisfies equipartition of energy.

Our remarks above, however, remain speculative at this time. More efforts are needed in
to understand the intricacy of higher dimensional situations.
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Integrating singular functions on the sphere
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We obtain rigorous results concerning the evaluation of integrals on the two-sphere
using complex methods. It is shown that for regular as well as singular functions
which admit poles, the integral can be reduced to the calculation of residues
through a limiting procedure. ©1997 American Institute of Physics.
@S0022-2488~97!02209-3#

I. INTRODUCTION

Standard textbooks on mathematical physics state that integrals of regular functions
sphere are easy to compute if one uses the spherical harmonics decomposition. These
however, do not explain what to do if the integrands have singularities since in that cas
functions do not admit an expansion in spherical harmonics.

In this paper we formulate a useful technique to evaluate integrals on the two-sphe
integrands that might possess singular~pole-type! behavior. The method is based on the use of
Stokes theorem to convert the two-dimensional integrals on the complex plane~obtained by the
stereographic projection of the sphere! into line integrals around singular points and then
evaluate the latter by a generalization of the Cauchy Residue Theorem. Our approach is i
in the theory of Residue Currents developed in Ref. 1.

Our main result~stated in Theorem 4.1! is that principal values of integrals in the sphere
~not necessarily integrable! Cn functionsg with poles~cf. Definition 4.1! can be explicitly evalu-
ated as a sum of residue limits of aCn solution with poles of the differential equation (]/] z̄) f
5g/(11zz̄)2. We also show how to construct an explicitCn solution with poles to this equation
~cf. Corollary 4.2!. These results are useful in a wide range of different physical theories. On
apply these techniques to obtain explicit evaluations of Feynman propagators and Fe
graphs, to obtain solutions of differential equations on the sphere, etc.

This paper is organized as follows: In Sec. II we give some mathematical preliminaries n
for the present work. In Sec. III we present the main result for functions that areCn on C except
for a finite number of singularities, and in the last section we apply these results to integrals
sphere.

II. PRELIMINARIES

For later reference we give some standard formulas, and review some results which c
the basic ideas that we shall use throughout this paper~for more details see Ref. 2!.

Let D be a closed disc in the complex planeC, bounded by the circleg. The Cauchy formula

h~z0!5
1

2p i R
g

h~z! dz

z2z0
~1!

gives the value ofh(z0) for any z0 in the interior ofD as an integral alongg with counterclock-
wise orientation whenh is a holomorphic~complex differentiable! function on some open neigh
0022-2488/97/38(10)/5361/10/$10.00
5361J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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borhood ofD. However, ifh is not holomorphic but merely smooth~i.e., its real and imaginary
parts are continuously differentiable in the real sense!, there is a similar formula giving the valu
of h(z0), which shall be given later in this section.

Let us writez5x1 iy , and let

h~z,z̄!5h1~x,y!1 ih2~x,y!,

whereh1 andh2 are the real and imaginary parts ofh, respectively. We say thath is C` (Cn) if
h1 and h2 are C` (Cn) in the usual sense for functions of two real variablesx and y. In other
words, all partial derivatives of any order~all those up to thenth order! of h1 andh2 exist and are
continuous. We writehPCn(D) to mean thath is Cn on some open set containingD.

For such functions we define

]h

]z
5

1

2 S ]h

]x
2 i

]h

]yD and
]h

] z̄
5

1

2 S ]h

]x
1 i

]h

]yD .

Thus, theCauchy–Riemann equationscan be formulated by saying thath is holomorphic if
and only if

]h

] z̄
50. ~2!

Sincez5x1 iy andz̄5x2 iy , aC` or Cn complex function can be described as a function
the complex variables (z,z̄), for which the following complex formulation of the Green–Stok
formula holds.

Green–Stokes formula. Given a regionB,C bounded by a finite number of curves, orient
so that the region lies to the left of each curve, the Green–Stokes formula in the variablez is

E
g
f dz1g dz̄5E

B
S ]g

]z
2

] f

] z̄D dz`dz̄, ~3!

whereg is the boundary ofB, f andg have continuous first partial derivatives,

dz5dx1 idy, dz̄5dx2 idy,

and ~4!

dz`dz̄522idx`dy.

Using ~3!, one can formulate the following version of the Cauchy theorem forC1(D) func-
tions ~see Refs. 2 and 3 for a proof!.

Cauchy theorem for C1
„D… functions. Let h P C1(D) and z0 be a point in the interior of D.

Further, letg be the circle around D with counterclockwise orientation. Then

h~z0 ,z̄0 !5
1

2p i R
g

h

z2z0
dz1

1

2p i ED

]h

] z̄

dz`dz̄

z2z0
. ~5!

It is clear that if h is holomorphic, the double integral disappears, obtaining the stan
Cauchy formula.

In the proof of this theorem the basic ingredient is the evaluation of the improper integ

E
D

]h

] z̄

dz `dz̄

z2z0
5 lim

«→0
E

D«

]h

] z̄

dz`dz̄

z2z0
, ~6!
J. Math. Phys., Vol. 38, No. 10, October 1997
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whereD« is the region obtained fromD by deleting a small disc of radius« centered at the poin
z0 . The boundary of this region,]D«, consists of two curves,g and2g« , where the first one has
counterclockwise orientation and the second one has clockwise orientation.

Remark 2.1: Note that since h is C1, the lhs of (6) exists.
Therefore, using the Stokes formula~3!, we obtain

E
D«

]h

] z̄

dz`dz̄

z2z0
5 R

g«

h

z2z0
dz2 R

g

h

z2z0
dz.

The integral alongg« is evaluated replacingh(z,z̄) by its zeroth-order Taylor expansion in th
variables (z,z̄), which exists sinceh is C1, i.e.,

R
g«

h~z,z̄!

z2z0
5 R

g«

h~z0 ,z̄0!

z2z0
1 R

g«
(

m1 l 51
Gml~z,z̄!~ z̄2 z̄0!m~z2z0! l , ~7!

for some continuous functionsG10 andG01. Taking the limit of~7! when«→0, the second integra
of the rhs of~7! is proved to be zero, and the first one gives us the lhs of~5!.

Considering the special case when the functionh vanishes on the boundary of the disc, t
integral along the circleg is equal to 0, thus the formula~5! becomes

h~z0 ,z̄0!5
1

2p i ED

]h

] z̄

dz`dz̄

z2z0
.

This allows us to recover the values of a function with compact support from its derivative]h/] z̄.
Conversely, one gets the following result~cf. Ref. 3!.

Theorem 2.1: Let hPC1(D) be a C1 function on the closed disc D, with compact supp
contained in the interior of D. Then the function

f ~z,z̄!5
1

2p i ED

h~z,z̄ !

z2z
dz`dz̄

is defined and is C1 on D, and satisfies

] f

] z̄
5h~z,z̄! for zPD.

The proof is essentially a corollary of the Cauchy theorem by means of differentiation u
the integral sign after the change of variableh5z2z.

Remark 2.2: In case h is a function with compact support contained in the interior of D, w
has continuous partial derivatives up to some order n>1, f is also a Cn function on D.

III. SOME RESULTS IN COMPLEX ANALYSIS

In this section we shall extend the Cauchy theorem and Theorem 2.1 to functions that aCn

in an open set obtained by removing a finite number of points inC, with singularities of the
following kind:

Definition 3.1: Let nPN and F be a finite set of points inC, i.e., F 5$zi% i 50
s . We say that a

function fPCn(C2F ) is a Cn function with poles if

~1! For each zi there exists a neighborhoodN i of zi and a Cn function h onN i such that
f (z,z̄)5h(z,z̄)/(z2zi)

m, for some integer m, m<n.
J. Math. Phys., Vol. 38, No. 10, October 1997
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~2! There exists a positive number« and a Cn function h on the ball of radius« around the origin
such that for any z,0,uzu,«, f (1/z,1/z̄)5h(z,z̄)/zm, for some integer m, m<n22.

Remark 3.1: The above definition is in fact concerned with the singular behavior o
one-form f(z,z̄)dz onCø$`%, which may be identified with the two-sphere S2. The subtle point
on the behavior at infinity is that the function h, which is in principle defined in a punctured
around the origin, has in fact a Cn extension to the entire ball.

We now present the tools needed to generalize the Cauchy theorem forCn functions with
poles. This generalization is stated in Theorem 3.2 and its proof is based on the same basic
the proof of the Cauchy theorem forC1(D) functions given in the previous section. Letf be aCn

function with poles such that] f /] z̄ is an integrable function onC. We can then write

E
C

] f

] z̄
dz`dz̄5 lim

R→`
«→0

E
DR

«

] f

] z̄
dz`dz̄, ~8!

where DR
« is obtained by first taking from the discDR , centered at the origin with radiusR

sufficiently large so that the poles off remain insideDR , and then deleting discs of radius«
around the poles.

Remark 3.2: Even if]f/]z̄ is not an integrable function overC, the limit on the rhs of (8) does
exist anyway (cf. Ref. 1).

This Remark justifies the following definition:
Definition 3.2: Let fPCn~C2F !. We define the principal value (PV) of the integral of f ov

C as

PVE
C

f ~z,z̄! dz`dz̄:5 lim
R→`
«→0

E
DR

«
f ~z,z̄! dz`dz̄.

Hence, in order to obtain a formula similar to~5!, we shall evaluate the integral

PVE
C

]

] z̄
f ~z,z̄! dz`dz̄:5 lim

R→`
«→0

E
DR

«

]

] z̄
f ~z,z̄! dz`dz̄,

using the Green–Stokes formula~3! over DR
« :

E
DR

«

]

] z̄
f ~z,z̄! dz`dz̄52E

]DR
«
f ~z,z̄!dz,

where]DR
« is the oriented boundary ofDR

« given by

]DR
« 5ø l~2g«

l !øgR

andg«
l andgR are circles, the first ones centered at the polesz5zl with radius« and the second

one being the boundary ofDR , all with counterclockwise orientation. Therefore,

E
DR

«

]

] z̄
f ~z,z̄!dz`dz̄5(

l
R

g«
l
f ~z,z̄!dz2 R

gR

f ~z,z̄!dz. ~9!

The integrals alongg«
l can be evaluated in the following way. By Definition 3.1, a functi

with a pole of multiplicityn at z0 can be written as
J. Math. Phys., Vol. 38, No. 10, October 1997
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f ~z,z̄!5
h~z,z̄!

~z2z0!n , ~10!

with h(z,z̄)PCn(D) for someD containingz0 .
As h(z,z̄)PCn(D), it has a Taylor expansion up to the (n21)th order. The integral contain

ing the remainder alongg«
l becomes zero at the limit when«→0 and the integral containing th

Taylor polynomial gives rise to the definition of the residue ofCn functions with poles.
The above assertion is proved in the following lemma and its proof is standard~c.f. Ref. 4!.
Lemma 3.1: Let f be a Cn function with poles and write f as in (10) near a pole z0 . Then

lim
«→0

R
uz2z0u5«

f ~z,z̄! dz5
2p i

~n21!!
]z

~n21!h~z0 ,z̄0!.

Proof: Sinceh is a Cn function in a neighborhood ofz0 , we may consider its Taylor expan
sion

h~z,z̄!5 (
0<m1 l ,n

] z̄
m]z

l

m! l !
h~z0 ,z̄0!~ z̄2 z̄0!m~z2z0! l1 (

m1 l 5n
G lm~ z̄2 z̄0!m~z2z0! l ,

whereGml are continuous functions in (z,z̄). It is obvious that

lim
«→0 Ruz2z0u5«

G lm~z,z̄!~ z̄2 z̄0!m~z2z0! l 2n dz50

sinceG lm(z,z̄)( z̄2 z̄0)m(z2z0) l 2n is bounded nearz0 and the length of the path goes to ze
when«→0. Thus

lim
«→0

R
uz2z0u5«

f ~z,z̄! dz5 (
0<m1 l ,n

] z̄
m]z

l

m! l !
h~z0 ,z̄0! lim

«→0
R

uz2z0u5«
~ z̄2 z̄0!m~z2z0! l 2n dz.

~11!

In casem.0, we claim that all the line integrals are zero. In order to see this, consider the in

I «5 R
uz2z0u5«

~ z̄2 z̄0!m~z2z0! l 2n dz.

In polar coordinates this integral can be written as

I «5 i E
0

2p

« l 2n1m11ei ~ l 2n2m11!t dt.

It is clear that I «50 if l 2n2m11Þ0; otherwise l 2n1m1152m which implies that
lim«→0 I «50. Thus, the only nonvanishing terms of~11! are those given by settingm50.

In this case the only nonzero integral is whenl 2n521. Therefore

lim
«→0

R
uz2z0u5«

f ~z,z̄! dz5
2p i

~n21!!
]z

~n21!h~z0 ,z̄0!.

This completes the proof. h

This result gives rise to the definition of local residue forCn functions with poles.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Definition 3.3: Let f be a function with a pole at z0 . We define the residue of f at z0 by the
limit

Res~ f ;z0!:5
1

2p i
lim
«→0

R
uz2z0u5«

f ~z,z̄! dz.

Note that when the function has a holomophic numerator, this definition is the standard o
meromophic functions.

Moreover, we define the following.
Definition 3.4: Given a Cn function with poles, the residue of f at infinity is the limit

Res~ f ;`!:52
1

2p i
lim

R→`
R

gR

f ~z,z̄! dz.

Remark 3.3: Given a Cn function with poles f, similar arguments as in the proof of Lemma
after the change of variable given by the inversion1/z, show that the above limit exists, i.e., th
residue of f at infinity is well defined.

We now generalize the Cauchy theorem toCn functions with poles.
Theorem 3.2: Let f be a Cn function with poles, regular onC2F , whereF 5$z1 ,...,zs%.

Then, the principal value

PVE
C

]

] z̄
f ~z,z̄!dz`dz̄

exists and

PVE
C

]

] z̄
f ~z,z̄!dz`dz̄52p i S (

l
Res~ f ;zl !1Res~ f ;`! D .

Proof: By Eq. ~9!

PVE
C

]

] z̄
f ~z,z̄!dz`dz̄5(

l
lim
«→0

R
g«

l
f ~z,z̄! dz2 lim

R→`
R

gR

f ~z,z̄! dz,

and the limits in the rhs exist by Lemma 3.1 and Remark 3.3, and are equal to 2p i times the
corresponding residues off . The statement follows at once. h

Considering the special case whenf has a simple pole atz0 , i.e.,

f ~z,z̄!5
h~z,z̄!

~z2z0!
, with hPCn~D !

and Res (f ,`)50, Theorem 3.2 gives

h~z0 ,z̄0!5
1

2p i
PV E

C

]

] z̄
h~z,z̄!

dz`dz̄

~z2z0!
.

This allows us to recover the values of the functionh from its derivatives. Conversely, as in th
case ofC1(D) functions with compact support inD, one has the following result.

Theorem 3.3:Let g be a C1(C) function satisfying

lim
uzu→`

uzu11aug~z,z̄!u50, ~12!
J. Math. Phys., Vol. 38, No. 10, October 1997
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for some positivea. Then the function

f ~z,z̄!5
1

2p i EC
g~z,z̄ !

dz`dz̄

~z2z!

is in C1(C! and satisfies (]/]z̄)f5g for zPC.
Proof: Since 1/(z2z) is integrable nearz and tends to 0 foruzu→` andg has the decay given

by ~12!, we deduce the existence of the integral. With the change of variablesh5z2z, the
integral becomes

f ~z,z̄!5
1

2p i EC
g~z1h,z̄1h̄ !

dh`dh̄

h

and, applying]/] z̄ to f , we obtain

]

] z̄
f ~z,z̄!5

1

2p i EC

]

] z̄
g~z1h,z̄1h̄ !

dh`dh̄

h

5
1

2p i EC

]

]z̄
g~z,z̄ !

dz`dz̄

~z2z!
.

Because of the decay ofg, the residue ofg(z,z̄)/(z2z) at infinity is zero. Thus, applying
Theorem 3.2, we obtain (]/] z̄) f 5g. h

This result can be extended to generalCn functions with poles of any order. In this case th
double integral does not necessarily exist, thus we shall use instead the notion of principal

It is not true in general that given aCn function with polesg, the equation (]/] z̄) f 5g has a
Cn solution with poles. For instance,g51 does not have this property. Any solution
(]/] z̄) f 51 is of the form f (z,z̄)5 z̄1p(z), where p is a holomorphic function, and so
zmf (1/z,1/z̄) is not Cn at the origin for anym<n22, i.e., f is not aCn function with poles.

Theorem 3.4: Let g be a Cn function with poles. Suppose moreover that z2̄ g is also a Cn

function with poles. Then, there exists a Cn function f with poles such that~]/]z̄!f5g
Proof: Let F 5$z1 ,...,zs% be the poles ofg in C, and suppose (z2zi)

mig(z,z̄) is a Cn

function around each polezi . Denotep(z):5P i(z2zi)
mi. Then, p•g is a Cn function in the

plane.
Sincez̄ 2 g is aCn function with poles, there exist a positive numberR8.0 and aCn function

h on B2/R8 such thath(z,z̄):52zmg(1/z,1/z̄)/ z̄2, for somem<n22. Consider aC` function c
with support compact contained inB2/R8 which is identically equal to 1 on the ballB1/R8 of radius
1/R8 around the origin. Then, by Remark 2.2 after Theorem 2.1, there exists aCn function H on
B2/R8 such that (]/] z̄)H5c•h(z,z̄). Then, the restriction ofH to B1/R8 is aCn function satisfying
(]/] z̄)H5h(z,z̄). Seth1(z,z̄):5zmH(1/z,1/z̄). Then,h1PCn(uzu.R8) satisfies condition 2 in
the definition ofCn functions with poles. Moreover, (]/] z̄)h152(zm/ z̄ 2)(]/] z̄)(H)(1/z,1/z̄)
5g on uzu.R8.

Let R.R8 and, similarly, take aC` function c with support compact contained in the ba
B2R of radius 2R around the origin, such thatc[1 on the ballBR of radiusR. Again by Remark
2.2 after Theorem 2.1, there exists aCn function H8 on B2R such that (]/] z̄)H85c•p•g. Then,
h2 :5H8/p is aCn function onBR2F which satisfies condition 1 in the definition ofCn functions
with poles, and clearly (]/] z̄)h25g on BR2F .

Then,h22h1 is a holomorphic function on the annulusR8,uzu,R, and therefore admits a
Laurent expansion
J. Math. Phys., Vol. 38, No. 10, October 1997
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h2~z,z̄!2h1~z,z̄!5(
2`

1`

akz
k.

DenoteH2(z):52(1
1`akz

k andH1(z):5(2`
0 akz

k. Observe thatH2 is a Taylor series which is
convergent for points with absolute value greater thatR8 and thus it must be convergent in th
whole ball of radiusR around the origin. Similarly,H1 defines a holomorphic function onuzu
.R8 ~which is also holomorphic at infinity!. Clearly,H11h15H21h2 on the annulus. Then, we
have a well-defined global functionf , f 5H21h2 for uzu,R and f 5H11h1 for uzu.R8, satis-
fying (]/] z̄) f 5g. Moreover,f satisfies both conditions in Definition 3.1, i.e.,f is a Cn function
with poles. h

Corollary 3.5: Let g be a Cn function with poles, regular outside the finite setF , such that
z̄ 2 g is also a Cn function with poles. Then, the function defined inCn2F by

f ~z,z̄!5
1

2p i
PV E

C
g~z,z̄ !

dz`dz̄

~z2z!
~13!

is a Cn function with poles and satisfies that (]/]z̄!f5g for all z¹F .
Proof: Sinceg(z) is aCn function with poles,g(z,z̄)/(z2z) is also aCn function with poles,

which ensures the existence of the principal value. By Theorem 3.4, there exists aCn function
with polesF such that (]/]z̄)F5g. Then,

]

]z̄
S F~z,z̄ !

z2z D 5
g~z,z̄ !

z2z
.

Note that we can deduce from the proof of Theorem 3.4 that the poles ofF in the plane are also
contained inF . For anyzPC2F ,Res (F(z,z̄)/(z2z);z)5F(z,z̄).

By Theorem 3.2 we obtain

f ~z,z̄!5
1

2p i
PV E

C
g~z,z̄ !

dz`dz̄

~z2z!
5 (

zlPF ø$`%
ResS F~z,z̄ !

~z2z!
;zl D 1F~z,z̄!. ~14!

We deduce from Lemma 3.1 that each residue in the above sum is a rational~meromorphic!
function of z ~with poles contained inF ø$`%!. Therefore,f is a Cn function with poles and
(]/] z̄) f 5g. h

Although the main motivation of this paper is to explicitly show how to compute the PV
integrals like~13!, it may be useful to have an integral representation of a solution of the di
ential equation (]/] z̄) f 5g. Note that this solution is not unique since we can always ad
meromorphic function to the functionf defined by~13!.

IV. INTEGRALS ON THE SPHERE

In this section we shall apply the results obtained in Sec. III in order to evaluate integra
the two sphere whose integrands might possess singular behavior. The main result is st
Theorem 4.1.

Let ~u,f! be the usual coordinates of the sphere. The complex stereographic coord
transformationz5eif cot (u/2) entails thatS25Cø$`%.

Now let us assume thatg is an integrable function on the sphere. Using the coordinates (z,z̄)
defined above, we write

E E
S2

g~u,f! sin u dudf52i E
C
g~z,z̄!

dz`dz̄

~11zz̄!2 . ~15!
J. Math. Phys., Vol. 38, No. 10, October 1997
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The orientation that we use in the complex plane is the right-hand orientation, i.e., dz`dz̄
522idx`dy. Note that the rhs of~15! is an improper integral and sinceg is integrable, the
principal value of the integral is the value of the integral.

We now consider functions with a finite number of singularities on the sphere.
Definition 4.1: LetF be a finite set of points in the sphere. We say that function gPCn(S2

2F ) is a Cn function with poles on S2 if the restriction of g to the complex plane is a Cn function
with poles according to Definition 3.1.

Remark 4.1: Consider for instance a C` function g on S2 which coincides with1/z near
infinity. Then, g is regular at infinity, butRes (g;`)Þ0.

Given aCn function g with poles onS2, let DR be a disk centered at the origin, with radiu
R sufficiently large so that the singularities ofg remain insideDR . We write

E E
S2

g dm:52i E
C
g~z,z̄!

dz`dz̄

~11zz̄!2

5 lim
R→`
«→0

2i E
DR

«
g~z,z̄!

dz`dz̄

~11zz̄!2 , ~16!

whereDR
« is the region obtained deleting fromDR discs of radius« around the singularities ofg.

A key observation is that for anyCn function with polesg, the functionG(z,z̄):5g/(1
1zz̄)2 satisfies the additional hypothesis in Theorem 3.4. In fact, givenm and aCn function h
around the origin such thath(z,z̄)5zmg(1/z,1/z̄), zmG(1/z,1/z̄)/ z̄ 25h(z,z̄)z2/(11zz̄)2 is aCn

function near the origin. Therefore, by Theorem 3.4~or Corollary 3.5!, there exists aCn solution
with poles f of the differential equation

]

] z̄
f 5

g

~11zz̄!2 . ~17!

Remark 4.2: We can add to f in~17! an arbitrary rational function w (i.e., an arbitrary
solution with pole singularities of the homogeneous differential equation~]/]z̄!w50!.

Using the Green–Stokes formula~3!, we obtain

E
DR

«

]

] z̄
f ~z,z̄! dz`dz̄5(

l
R

g
«
l
f ~z,z̄! dz2 R

gR

f ~z,z̄! dz, ~18!

whereg«
l andgR are circles, the first ones centered at the singularitiesz5h l with radius« and the

second one is the boundary ofDR , all with counterclockwise orientation.
Thus, the integral~16! becomes

E
S2

g dm5 lim
R→`
«→0

2i E
DR

«

]

] z̄
f ~z,z̄!dz`dz̄

52i (
l

lim
«→0

R
g«

l
f ~z,z̄! dz22i lim

R→`
R

gR

f ~z,z̄! dz. ~19!

As a consequence of Theorem 3.2 we get the following result.
Theorem 4.1:Assume that g is a Cn function with poles on S2 and let f be a Cn function with

poles satisfying~17!. Then the principal value
J. Math. Phys., Vol. 38, No. 10, October 1997
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PV E
S2

g dm52i PV E
C

g~z,z̄!

~11zz̄!2 dz̀ dz̄

exists and

PV E
S2

g dm524pS (
l

Res~ f ;h l !1Res~ f ;`! D ,

whereh l are the poles of f.
The proof follows at once from Theorem 3.2. Besides ifg is integrable,the principal valueis

the value of the integral.
Note that, as we said in Remark 4.2, the functionf is not unique, but the result given abov

is independent of the choice of the solution of~17! since the sum of the residues of a meromorp
function onS2 is zero.

The same ideas as in Corollary 3.5 can be used to present an explicit solution with poles
differential equation~17!.

Corollary 4.2: Let g be a Cn function with poles on S2, regular outsideF 5$z1 ,...,zs%. Then
the function defined in S22F ,

f ~z,z̄!5
1

2p i
PV E

C

g~z,z̄ !

~11zz̄ !2

dz`dz̄

~z2z!
,

is a Cn function with poles on S2 and satisfies that~]/]z̄!f5g/~11zz̄)2 for all zPC, zÞzj , j
51,...,s.

Finally, we exemplify the result given in Theorem 4.1 forg51 and different choices off .
Consider the integral

E E
S2

sin u du df52i E
C

dz`dz̄

~11zz̄!2 ,

and the solutions of~17! f 0(z,z̄)521/z(11zz̄) and f 1(z,z̄)5 z̄/(11zz̄). Then

Res~ f 0 ;0!521 and Res~ f 0 ;`!50.

Thus the contribution to the integral comes from the pole off 0 at zero, whereas the contributio
to the integral usingf 1 comes from the residue at infinity. Note the the functionf 0 has a pole at
z50 whereasf 1 is C`(C), moreoverf 1 is the integral representation given by Theorem 3.3.
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Tensor categories of Coxeter type B and QFT
on the half plane

Reinhard Häring-Oldenburga)

Mathematisches Institut, Bunsenstr. 3-5, 37073 Go¨ttingen, Germany

~Received 31 December 1996; accepted for publication 30 June 1997!

We introduce braided tensor categories which are associated to the braid group of
Coxeter type B. Connected by a reconstruction theorem there is the notion of
B-braided Hopf algebras. These structures show up in quantum field theories de-
fined on the half plane or on the cylinder. ©1997 American Institute of Physics.
@S0022-2488~97!01010-4#

I. INTRODUCTION

Every Coxeter graph defines a braid group that is an infinite covering of its Coxeter grou
tom Dieck initiated in Refs. 1 and 2 the systematic algebraic study of these braid groups an
quotient algebras for all root systems.

The Coxeter group of A-type is the permutation group and its braid group ZAn is Artin’s braid
group. For typeBn the Coxeter group is a semidirect product of the permutation group withZ2

n .
Definition 1: The braid groupZBn of Coxeter type B is generated byt0 ,t1 ,...,tn21 with

relations

t it j5t jt i if u i 2 j u.1, ~1!

t it jt i5t it jt i if i , j >1, u i 2 j u51, ~2!

t0t i5t it0 if i>2, ~3!

t0t1t0t15t1t0t1t0 . ~4!

Generatorst i , i>1 satisfy the relations of Artin’s braid group.
ZBn may be graphically interpreted~cf. Fig. 1! as symmetric braids or cylinder braids: Th

symmetric picture shows it as the group of braids with 2n strands~numbered2n,...,21,1,...,n!
which are fixed under a 180 degree rotation about the middle axis. In the cylinder picture on
a single fixed line~indexed 0! on the left and obtains ZBn as the group of braids withn strands that
may surround this fixed line. The generatorst i , i>0 are mapped to the diagramsXi

(G) given in
Fig. 1. More generally there are tangles~indicated in Fig. 1 by the TLJ tanglesei

(G)! of B-type that
live naturally in a cylinder.

The cylinder interpretation of relation~4! shown in Fig. 2 is the interface to physical app
cations. One should think of each side of this picture as showing two particles which are refl
on a wall. The equality of both sides expresses the independency of these reflections. Th
grability condition for quantum field theories in two dimension is given by the Yang–Ba
equation~YBE! which is a spectral parameter dependend form of~2!. If the QFT lives on a half
plane with reflecting boundary it is known from the work of Cherednik, Sklyanin, Goshal,
Zamolodchikov~see Ref. 3! that the YBE gets augmented by the reflection equation~or boundary
YBE! which is a spectral parameter dependend form of~4!. Solutions of the reflection equatio
can be obtained from tensor representations of quotients of the group algebra of the braid
ZBn by a Baxterization procedure.4 This example inspires our general hypothesis: Whene

a!Electronic mail: haering@cfgauss.uni-math.gwdg.de
0022-2488/97/38(10)/5371/12/$10.00
5371J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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Artin’s braid group ZAn occurs in a low dimensional physical model on a space without boun
then the B-type braid group ZBn occurs if the model is placed on a space with a reflect
boundary. Another illustration of this hypothesis is the fact that the Markov trace on the B
Temperley–Lieb algebra can be used to express the partition function of a Potts mode
boundary interaction.5

This paper studies the categorical structure underlying these cylinder tangle diagram
ultimate goal is to extend the rich theory around ordinary braided tensor categories inc
quantum groups and knot invariants to the braid group of B type. Some results have alread
obtained. Generalizations of Temperley–Lieb algebras,1 Hecke algebras,6 and Birman–Wenzl
algebras7 have been studied along with their associated invariants of torus links~which are ob-
tained by closing cylinder braids!.

The central observation in the search for the categorial structure of the new type of br
is the following: The braid generatort0 ~later onbX in the category! does not satisfy the naturalit
condition with the A-type braidingt1 . Thus, it cannot be a morphisms in a braided ten

FIG. 1. The graphical interpretation of the generators as symmetric tangles~on the left! and as cylinder tangles~on the
right!.

FIG. 2. The cylinder interpretation of relation~4!.
J. Math. Phys., Vol. 38, No. 10, October 1997
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category. We account for this fact by introducing two morphism spaces for every pair of ob
in the category. Local morphism that are natural with respect to A-type braidings and g
morphisms which need not.

We now outline the structure of the paper. After giving the precise definition the p
introduces the category of amplimorphisms of a Hopf algebra as a first example. The next s
introduces Coxeter-B braided Hopf algebras which are related to Coxeter-B categories
Tannaka–Krein style duality. In the sequel the construction of Coxeter-B braided categories
semi-simple quotients of the group algebra of ZBn is discussed. The last section is devoted to
physical application. We show that the localized morphisms of an algebraic quantum field t
on the half plane with reflecting boundary form a Coxeter-B braided category.

It is important to observe that the central equation~4! appears also in other contexts. Mo
important is its fundamental role in Majid’s elaborated theory of braided mathematics.8 There it
appears a commutativity relation between distinct copies of objects that obey braided comm
statistics. Furthermore, the defining relations of Majid’s quantum Lie algebras are of the
form. Naturally one should explore the deeper meaning of these connections in further s
Further topics that have been deferred are the categorial definition of invariants of links
solid torus~compare Ref. 6!, the generalization of evaluation and coevaluation morphisms and
question of invariants of 3-manifolds with boundary.

Preliminaries.We use the language of braided tensor categories~BTC! extensively. Our basic
notation follow that of Majid8 and was used already in Ref. 9. The functorial braid isomorph
is denotedCX,Y :X^ Y→̃Y^ XX,Y*Obj(C ). Dual objects are denoted byX* and we use ev and
coev for the morphisms of rigidity. We use them to defineq̃X :5(evX^ idX** )+(idX* ^ CX** ,X)
+(coevX* ^ idX)PMor(X,X** ). There exists a unique morphismt(X)PMor(X,X) such that
(t(X) ^ idX* )+coevX5CX* ,XCX,X* coevX and evXCX,X* CX* ,X5evX(id^ t(X)). It can be defined
by t(X* )21:5q̃ X* +q̃ X* . A ribbon category has a natural isomorphisms(X)PMor(X,X) such
that s(X)25t(X), s(X) ^ s(Y)5CY,XCX,Ys(X^ Y), s(X* )5s(X)* , f s(X)5s(Y) f ; f
PMor(X,Y).

We now give a short review of the reconstruction theorem from Refs. 8, 9. LetC be a rigid
BTC and F:C→Vec a @~weak! quasi# tensor functor. Then the setH5Nat(F,F) of natural
transformations fromF to F carries the structure of a@~weak! quasi# Hopf algebra and there is

functor G:C→Rep(H) such thatC→
G

Rep(H)→
V

Vec composes toF. In the case of a faithful
functor and a semisimple category,C and Rep(H) are equivalent BTCs.

H:5Nat~F,F !5$h:Obj~C !→EndVecuhXPEnd~F~X!!,

F~ f !+hX5hY+F~ f !;X,YPObj~C !; f PMor~X,Y!%.

H is a vector space by pointwise addition. The multiplication is also defined pointwise: (hg)X :
5hX+gX XPObj(C ),h,gPH. The unit isX°1X5 idF(X) . The coproductD:H→H ^ H is defined
by: D(h)X,Y :5cX,Y

21 +hX^ Y+cX,Y and the counit ise:H→K, e(h):5h1 . The antipode isS(h)X :
5dX* (hX* )* dX*

21, where the isomorphismsdX :F(X)*→F(X* ) with the property
dX+F( f )* 5F( f * )+dY; f PMor(X,Y) exists by definition of a@~weak! quasi# tensor functor.~See
Ref. 9 for more details and the construction of such functors.! If C is a ribbon category then ther
is a ribbon elementvX :5F(s(X)) in H. The vector spacesF(X) are representation spaces ofH.
The representations are%X(h).v:5hX(v) hPH, vPF(X). This induces a functor
G:C→Rep(H).

II. COXETER-B BRAIDED CATEGORIES

As mentioned in Sec. I, the surrounding of the cylinder axis~generatort0 in the braid group
ZBn! does not behave natural with respect to the braidingt1 . Therefore, it can not be represente
by a morphism in a BTC. Nevertheless, we can incorporate it by defining a bigger spa
J. Math. Phys., Vol. 38, No. 10, October 1997
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morphisms that are not bound to satisfy naturality with the ordinary braiding. This seems n
from the physical considerations that we undertake in the last section. From a purely mathem
point of view one should probably prefer to view B-type tangles as a kind of module fo
ordinary tangle category.10

Definition 2: LetC be a rigid BTC. A Coxeter-B braided category overC is an embedding of
C in a rigid monoidal category Cˆ such that the following list of axioms holds. Morphism
Mor(X,Y):5MorC (X,Y) are said to be local and morphismsMor(G)(X,Y):5MorĈ (X,Y) are
said to be global.

Obj~C !5Obj~ Ĉ !, ~5!

' i :Mor~X,Y!→Mor~G!~X,Y! monomorphism, ~6!

;X'bXPMor~G!~X,X! invertible, ~7!

bYf 5 f bX ; f PMor~X,Y!, ~8!

p~bX!5 idX b15 id1 , ~9!

idX^ bY5CY,X~bY^ idX!CX,Y , ~10!

bX^ bY5bX^ YVY,XCX,Y5CY,XCX,YbX^ Y , ~11!

bX* 5s~X* !2bX*
21. ~12!

We say thatĈ has a projection if we have in addition:

'p:Mor~G!~X,Y!→Mor~X,Y! epimorphism, ~13!

p+ i 5 id, ~14!

p~ f ^ g!5p~ f ! ^ g if gPMor~X,Y!. ~15!

The axioms ensure that the two categories are almost equal. They differ only by the exi
of some global morphisms. If needed, one may restrict this extension to a minimum by postu

Mor~G!~X,Y!5$bY
n unPZ%+Mor~X,Y!P$bX

n unPZ%. ~16!

Note thatC is a braiding ofC , not of Ĉ . This makes~10! possible which otherwise would
give a contradiction to naturality ofC.

The graphical idea behind the projection is to simply forget about the cylinder axis.
In some applications it may be more natural to work withbX8 :5s(X)21bX which ful-

fills bX^ Y8 5(s(X)21
^ s(Y)21)C2(bX^ bY)C225bX8 ^ bY8 and bX8* 5bX* s(X)21* 5s(X* )2

3bX*
21s(X* )215(bX* s(X* )21)215(bX*

8 )21.
Lemma 1:

p~ idX^ bY!5CY,XCX,Y , ~17!

CY,X~bY^ idX!CX,Y~bX^ idY!5~bX^ idY!CY,X~bY^ idX!CX,Y , ~18!

evX~bX* ^ idX!CX,X* ~bX^ idX* !5evXCX,X* . ~19!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Proof: ~18! is trivial and ~19! is simply commutativity ofbX^ idY and idX^ bY . We now
prove ~20!

evX~bX* ^ idX!CX,X* ~bX^ idX* !5evX~bX* ^ idX!CX,X* ~bX^ idX* !CX* ,XCX* ,X
21

5evX~bX* ^ bX!CX* ,X
21

5evXbX* ^ XCX,X* CX* ,XCX* ,X
21

5b1evXCX,X*

5evXCX,X* .
h

This structure can be incorporated into the graphical calculus for tensor categories~see, e.g.,
Ref. 8! by extending every diagram by a fixed line on the left and representingb by surrounding
this line as indicated in Fig. 3. The tensor productf ^ g of two global morphisms is obtained by
replacing the fixed line ofg by the whole graph off . The graphical interpretation makes~10!
obvious. To understand the graphical origin of~12! note that bX* 5(evX^ id)(id^ bX^ id)
3(id^coevX). It is shown in the last line of Fig. 3 that this is graphically equivalent to
(evX^ id)(CX,X* CX* ,X^ id)(id^coevX)bX*

21
5(evX^ id)(id^ t(X) ^ id)(id^coevX)bX*

21

5t(X)* bX*
21

5 t(X* )bX*
21

5 s(X* )2bX*
21

Note that the whole construction of Coxeter-B braided BTC was guided by the wish to have
for every XPObj(Ĉ ) a morphism ZBn→End(X^ n) mapping t0°bX^ idX

^ (n21) and
t i° idX

^ ( i 21)
^ CX,X^ idX

^ (n112 i ) .
In this paper we use the above definition but we note that there are applications where it is

convenient to relax some of the axioms or add new ones. One way to relax the axioms is to usebX8
as the fundamental global morphism and replace~11! and ~10! by bX^ Y8 5CY,X(bY8
^ idX)CX,Y(bX8 ^ idY)5(bX8 ^ idY)CY,X(bY8 ^ idX)CX,Y . This defines what we call a restricted
Coxeter-B braided category.

It is possible to define a B-type analog of rigidity. We say that a Coxeter-B braided category
Ĉ is B-rigid if there are global morphisms evX

0PMor(G)(X,1), coevX
0PMor(G)(1,X) such that

p(ev0)5p(coev0)50. One may also wish to postulate (evX
0

^ idX* )coevX5coevX*
0 and

FIG. 3. Graphical calculus for Coxeter-B braided categories.
J. Math. Phys., Vol. 38, No. 10, October 1997
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evX(coevX*
0

^ idX)5evX
0. Furthermore, one may wish to demand evX

0coevX
05 id1. A graphical rep-

resentation of these global morphisms are given in Fig. 3. However, there is no obvious w
draw a picture for idXevY

0. One would need an analog of~10!. Therefore, one may have to give u
the assumption thatĈ is a monoidal category in situations where the graphical calculus of e0 is
essential. Such a situation is studied in detail in Ref. 10.

III. AMPLIMORPHISMS

As a first example we study amplimorphisms. LetH5H(m,1,D,e,S,R,v) be a quasitriangular
ribbon Hopf algebra. An amplimorphism ofH is a monomorphismx:H→H ^ EndVec(Vx),
where Vx is some vector space. The category Amp(H) of amplimorphisms ofH has as ob-
jects the amplimorphisms ofA and as morphisms the sets MorAmp(x1 ,x2):5$TPH
^ MorVec(Vx1

,Vx2
)uTx1(a)5x2T(a);aPH%. The monoidal structure is given on objects b

x1^ x2 :5(x1^ id)x2 and on morphisms byT1^ T2 :5(T1^ id)(x1^ id)(T2), wherex1 is the
source ofT1 .

The counit of H gives rise to a functorD:Amp(H)→Rep(H) with D(x)(a):5(e
^ id)x(a), D(T):5(e ^ id)(T) and the coproduct inducesA:Rep(H)→Amp(H) given byA(%)
3(a):5(id^ %)(D(a)), A(T):51^ T. Obviously one hasDA5Id and A(%1) ^ A(%2)5(id
^ %1^ %2)((D ^ id)D)5A(%1^ %2).

Define RAmp(H) to be the full closure ofA(Rep(H)).
Proposition 2:RAmp(H) is a Coxeter-B braided category with projection overRep(H).
Proof: Inclusion and projection morphismsi , p are induced byA, D. The global braid

morphismsb on an objectx5A(%) is given by

bx :5~ id^ % !~R2,1R!. ~20!

This is a morphism of RAmp becausex(a)bx5(id^ %)(D(a))(id^ %)(R2,1R)5(id^ %)
3(D(a)R2,1R)5(id^ %)(R2,1RD(a))5bxx(a). Note thatD(bx)5 id and thusp(bx)5 id.

We show~10! for amplimorphismsx i5A(% i) in the following calculation

Cx2 ,x1
~bx2

^ id!Cx1 ,x2

5~ id^ ~CVec~%2^ %1!~R!!!~ id^ %2^ id!~R2,1R^ 1!~ id^ ~CVec~%1^ %2!~R!!!

5~ id^ %1^ %2!~R3,2R3,1R1,3R2,3!

5~ id^ %1^ %2!~~D ^ id!~R2,1R!!

5~ id^ %1^ id!~D ^ id!~ id^ %2!~R2,1R!

5~x1^ id!~bx2
!5 idx1

^ bx2
.

Using this we prove~11!

bx1
^ bx2

5~bx1
^ id!~ id^ bx2

!

5~ id^ %1^ %2!~~R2,1R!~R3,2R3,1R1,3R2,3!!

5~ id^ %1^ %2!~R2,1R3,1R3,2R1,2R1,3R2,3!

5~ id^ %1^ %2!~R2,1R3,1R1,3R1,2R3,2R2,3!

5~ id^ %1^ %2!~ id^ D!~R2,1R!~ id^ %1^ %2!~1^ R2,1R!

5bx1^ x2
C%2 ,%1

C%1 ,%2
.
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Equation~12! may also be verified directly. The proof consists of simply repeating the a
ments given above in justifying axiom~12! from its graphical interpretation. h

A similar use of the quantum group elementR2,1R is made in Ref. 11~compare also its role
in the theory of quantum Lie algebras8! where generalized tensor representations of the b
group ZBn are constructed.

IV. COXETER-B BRAIDED HOPF ALGEBRAS

In this section we define generalizations of Hopf algebras that are conected to B-type BT
a Tannaka–Krein style duality.

Definition 3: A [(weak) quasi] Coxeter-B braided Hopf algebra H is a [(weak) quasi] qua
triangular ribbon Hopf algebra with an elementv̄PH such that

1^ v̄5R2,1~1^ v̄ !R, ~21!

e~ v̄ !51, ~22!

D~ v̄ !5~ v̄ ^ v̄ !~R21R!215~R21R!21~ v̄ ^ v̄ !, ~23!

S~ v̄ !5v2v̄21. ~24!

Definition 4: A restricted Coxeter-B braided [(weak) quasi] Hopf algebra H is a [(we
quasi] quasitriangular ribbon Hopf algebra with an elementv̄PH such that

R2,1v̄2Rv̄15 v̄1R2,1v̄2R, ~25!

e~ v̄ !51, ~26!

D~ v̄ !5R21~1^ v̄ !R~ v̄ ^ 1!, ~27!

S~ v̄ !215S~u!21(
j

a j v̄S~b j !. ~28!

Here, we have usedR5( ja j ^ b j , u:5( jS(b j )5a j .
The restricted case is really a restriction:~26! is obvious and~28! is D( v̄)5(R2,1R)21

( v̄ ^ v̄)5R21R2,1
21R2,1(1^ v̄)R( v̄ ^ 1)5R21v̄2Rv̄1 . Equation ~29! follows from the coproduct

and counit formulas

15e~ v̄ !5m~S^ id!D~ v̄ !5(
i , j

m~S^ id!~S~a i !a j v̄ ^ b i v̄b j !5(
i , j

S~ v̄ !S~a j !S
2~a i !b i v̄b j ,

S~ v̄ !215(
j

S~a j !S~u21!v̄b j5(
j

C21S~a j !uv̄b j5(
j

C21S2~a j !uv̄S~b j !

5C21u(
j

a j v̄S~b j !.

The calculations use the facts thatR215(S^ id)(R), R5(S^ S)(R), u215( jb jS
2(a j ), C:

5uS(u) central. In the nonrestricted case~29! can be further simplified to obtain~25! by using the
relation obtained from the application ofm(S^ id) to ~22!.

We have the following Tannaka–Krein style duality between Coxeter B-braided Hopf
bras and B-type tensor categories.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Proposition 3: The representation categoryRep(H) of a Coxeter-B braided [(weak) quasi
Hopf algebra algebra is a B-braided tensor category.

Proof: Let C be the standard representation category ofH as a@~weak! quasi# Hopf algebra
~Ref. 9!. For an objectX which is a representation%X :H→End(VX) one setsbX :5%X( v̄).
Equation~8! is then trivial. The second equation from~9! follows from ~23!. Global morphism
spaces are defined by~17!.

Applying a tensor product representation%X^ %Y to ~22! implies ~10!: idX^ bY5(%X^ %Y)
(R2,1)(idX ^ bY)(%X ^ %Y)(R) 5 C%Y ,%X

(bY ^ idX)C%X ,%Y
. In a similar way one proves~11!

from ~24!: bX^ bY5bX^ YCY,XCX,Y⇔%X( v̄) ^ %Y( v̄)5(%X^ %Y)(D( v̄)R2,1R)5(%X^ %Y)
(D( v̄))(%X^ %Y)(R2,1)CVY ,VX

Vec CVX ,VY

Vec (%X^ %Y)(R)5bX^ YCY,XCX,Y .

Equation ~12! is implied by ~25!: bX* 5%X(S( v̄))* 5%X(v2v̄21)* 5%X(v2)* bX*
21

5s(X* )2bX*
21 h

Restricted Coxeter-B braided Hopf algebras lead only to restricted Coxeter-B braided c
ries.

Proposition 4: If Ĉ is a Coxeter-B braided tensor category and F: Ĉ→Vec is a [(weak)
quasi] tensor functor, then the set of natural transformations from FuC to itself

H:5$h:Obj~C !→EndVecuhXPEnd~F~X!!,

F~ f !+hX5hY+F~ f !;X,YPObj~C !; f PMor~X,Y!%,

carries the structure of a Coxeter-B braided [(weak) quasi] Hopf algebra. If F is a tensor fun
on Ĉ only in the restricted sense that the naturality equation cX,Y(F( f ) ^ F(g))5F( f ^ g)cX,Y

holds only if g is a local morphism then H is a restricted Coxeter-B braided [(weak) quasi] H
algebra.

Proof: This proposition is a corollary to the reconstruction theorem given in Ref. 9. The
thing we have to check here is that we have a suitable elementv̄PH. We setv̄X :5F(bX). We
have v̄PH because; f PMor(X,Y)F( f ) v̄X5 v̄YF( f )⇔F( f bX)5F(bYf ) and this is true be-
cause of naturality ofb with respect to local morphisms. In general,v̄X will not be central.
Equation~23! is equivalent to~9!: e( v̄)5 v̄15F(b1)5F(id1)51.

We first consider the case thatF is a tensor functor for all morphisms. We applyF to ~10!,
expressF(CX,Y)5cCVecRX,Yc21 and multiply from the left withc21 and from the right
with c. Then we obtainc21F(idX^ bY)c5CVecRc21F(bY^ id)cCVecR⇔1^ F(bY)5CVecR
3(F(bY) ^ 1)CVecR⇔ ~22!. We show~24!:

D~ v̄ !X,Y5cX,Y
21 +F~bX^ Y!+cX,Y5cX,Y

21 +F~CX,Y
21 !+cY,X+cY,X

21 +F~CY,X
21 !+cX,Y+cX,Y

21 +F~bX^ bY!+cX,Y

5~~R2,1R!21!X,Y+~F~bX! ^ F~bY!!5~~R2,1R!21~ v̄ ^ v̄ !!X,Y .

We prove~25! by a simple calculation:

S~ v̄ !X5dX* +~ v̄X* !* +dX*
215dX* +F~bX* !* +dX*

215dX* +F~bX*
21s~X!* 2!* +dX*

21

5dX* F~s~X!* !* dX*
21dX* F~s~X!* !* dX*

21dX* F~bX
21* !* dX*

21

5S~v !XS~v !XF~bX
21!5~v2v̄21!X .

Now, we consider the case thatF is only a tensor functor in the restricted sense. Then the ab
proof of ~22! and thus also the proof of~24! break down. Equation~26! is shown by applyingF
to ~19! and expressingF(CX,Y)5cCVecRX,Yc21. To show ~28! we note that bX^ Y

5C22CY,X(bY^ idX)CX,Y(bX^ idY)5CX,Y
21 (bY^ idX)CX,Y(bX^ idY). We applyF and multiply

from the left with c21 and from the right withc to obtain at the left-hand sidecX,Y
21 F(bX^ Y)

3cX,Y5D( v̄)X,Y and at the right-hand sidecX,Y
21 F(CX,Y

21 )F(bY^ idX)F(CX,Y)F(bX^ idY)cX,Y
J. Math. Phys., Vol. 38, No. 10, October 1997
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5RX,Y
21 CVeccY,X

21 F(bY^ idX)F(CX,Y)cX,Y(F(bX) ^ id)5RX,Y
21 CVec(F(bY) ^ id)cY,X

21 F(CX,Y)cX,Y

3(F(bX) ^ id)5RX,Y
21 CVec(F(bY) ^ id)CVecRX,Y(F(bX) ^ id)5(R21(1^ v̄)R( v̄ ^ 1))X,Y . h

Despite the reconstruction theorem we do not yet have examples of Coxeter-B braided
algebras. The amplimorphisms form a Coxeter-B braided category. But we have no~weak! tensor
functor that is also defined on thebX morphism. The next section will present a Coxeter-B braid
category for which a restricted tensor functor is known. In this way we prove the existen
restricted Coxeter-B braided Hopf algebras in an indirect manner. Moreover, one can der
explicit formula for v̄ in the quantum Weyl group~we use notation from 12!.

Proposition 5: The quantum Weyl Group ofsl2 is a restricted Coxeter-B braided Hopf algebr

v̄5wq2H2/8(
m50

`

bmq2Hm/4Ym, ~29!

whereb051, b1 is arbitrary and

ba115~bab11ba21~q2121!q~12a!/2!/@a11#. ~30!

For a proof of this proposition see Ref. 13.
There is another approach that assigns an algebra to the category RAmp(H). In Ref. 9 we

have introduced the notion of ultra weak Hopf algebras and shown that they can be cons
from ultra weak tensor functors. Such functors need not obeyF(1)51. Let x5A(%) be the
amplimorphism of aH representation%:H→End(V). Then we may setF(x):5H ^ V. This
defines an ultra weak tensor functorF:RAmp(H)→Vec. As required for ultra weak tensor func
tors there are functorial epimorphismscx1 ,x2

:F(x1) ^ F(x2)→F(x1^ x2). They are given by

cx1 ,x2
:5(m^ idV1

^ idV2
)(idH ^ CV1 ,H

Vec
^ idV2

). Herem:H ^ H→H is the multiplication map. The

reconstruction from this functor gives an ultra weak Coxeter-B braided Hopf algebra.
The existence of nonrestricted B-braided Hopf algebras remain an open question.

V. CONSTRUCTION OF COXETER-B BRAIDED TENSOR CATEGORIES

Coxeter-B braided categories can be obtained from suitable quotients of the braid groun

in the same way that BTCs can be obtained from quotients of Artin’s braid group.14 The objects
of the category are sequences of idempotents of the braid algebras. MorphismsCX,Y,bX are given
by the images of the cabled versions of braids associated with them in the graphical calcu

To give a precise description we introduce EB˜k,l to be the free module~over some ring!
generated by the B-type tangles betweenk upper andl lower points. They may surround the fixe
strand but are not allowed to touch it. We describe the construction in the cylinder picture
The categoryEB has as objects the numbersN0 and as morphisms the sets EB˜k,l . Compositionf g
is given as usual by puttingg on top of f . The tensor productf ^ g is obtained by replacing the
fixed line of g by f . The resulting category is a Coxeter-B braided category over the catego
A-type ~ordinary! tangles. The morphismbn is given by the picture ofbX in Fig. 3 where the
single line is replaced by an cable. It is tempting to introduce a projectionp as the map induced
by deleting the fixed string. However, this will in general only be a morphism up to some s
factors. The inclusioni is given by adding a fixed string at the left.

In a next step one may impose skein relations to cut down the morphism spaces to
dimension. A semi-simple category may then be obtained by taking as objects finite sequen
idempotents in the endomorphism algebras. If these algebras posess tensor representat
may also easily construct a functor to the vector spaces and hence reconstruct at least a re
Coxeter-B braided Hopf algebra.

We now specialize to the case of the Temperley–Lieb category.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Definition 5: The Temperley–Lieb AlgebraTBn of Coxeter type B over a ring with paramete
c,d is generated by e0 ,e1 ,...,en21 and relations

e1e0e15ce1 , ~31!

eiejei5ei u i 2 j u51,i , j >1, ~32!

eiej5ejei u i 2 j u.1, ~33!

e0
25ce0 , ~34!

ei
25dei . ~35!

This algebra has been introduced and studied by T. tom Dieck in Ref. 1. From this work w
recall that TBn is semi-simple for generic parameters. It has dimension (n

2n) and n11 simple
components. The Bratteli diagram is given by Pascal’s triangle. There are two series of J
Wenzl idempotents recursively defined byf 0 :511(@3#21)21e0 ,g0 :512 f 0 , f m :5 f m21

1@2m21#@2m11#21f m21emf m21 , gm :5gm211@2m23#@2m21#21gm21emgm21 . They sat-
isfy ei f m5 f mei505eigm5gmei505 f mgm; i<m. Furthermore, there is a Markov trace on TBn

that gives rise to a Jones polynomial of B-type. Alternatively it may be calculated from a B
Kauffman bracket.1

Using these facts we can divide the morphisms spaces ofEB by the skein relations given by
the B-type Kauffman bracket to obtain a categoryS B. It is a Coxeter-B braided category ove
Turaev’sS .14 A semi-simple categoryV B is then obtained in just the same way as in Ref. 14.
defer the investigation of the question of whether this category is quasimodular to a subs
paper.

We now construct tensor representations of TBn . Let V be a vector space with basisv i andB
be any nondegenerate form onV^ V. We denote byBi j the matrix ofB and byBi j its inverse.
Then the matrixEi j

kl :5Bi j B
kl defines a mapV^ V→V^ V. We obtain a tensor representation

TBn on V^ n by representingei asE acting on tensor product spacesi ,i 11. The parameter isd
5( i , jBi j B

kl. The generatore0 acts asF ^ id^ ••• , whereF:5c(Bt)21B. The proof is a straight-
forward computation. Tensor representation of TBn associated with the quantum group of s2

where investigated in Ref. 1.
It is obvious that any tensor representation of TBn defines a restricted tensor functor on t

B-braided category in the sense of Proposition 4.

VI. QUANTUM FIELD THEORY ON THE HALF PLANE

Consider a quantum field theory15 specified by a net of local observablesA~O ! living on the
half plane$(x1 ,x2)PR2ux1>0%. We assume that boundary conditions are imposed in such a
that we have reflection at the line~0,R! by letting the full translation groupR2 act on the half
plane. This action is not free and this will lead to global morphisms and hence to the occu
of a Coxeter-B braided tensor category.

Fields shall be localized in double cones. Here, we extend the usual notion of a double
to include all translations of double cones. Thus we also have regions like those in the left o
4. This figure also shows the causal complementO 8 of a double cone. A double cone that does n
touch the boundary shall be called regular. Further we assume isotony and locality an
existence of a vacuum representationp0 which is translation invariant and faithful for all loca
algebrasA~O ! of regular double conesO . Note that in this setup the netA~O ! is directed so that
there exists the inductive limitA.

Now, letO 1 , O 2 be two causally disjoint double cones of equal size as shown in the right
of Fig. 4. Further, letr1 be a transportable morphism localized inO 1 and letr2;r1 be localized
J. Math. Phys., Vol. 38, No. 10, October 1997
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in O 2 . Assume thatr1 ~and thusr2! is irreducible in the sense thatp0+r1 is an irreducible
representation ofA. There are two translations that mapO 1 onto O 2 : A direct one and one that
passes the reflecting boundary. Thus we have two charge transportersU,VPMor(G)(r1 ,r2):
5$TPAuTr1(A)5r2(A)T;APA%. ~Later on, we will occasionally denote them byUr1

,Vr1
to

make their dependence on the morphism clear.! Hence we have a self-intertwinerY:5U21V
PMor(G)(r1 ,r1). However, sincer1 is irreducible, we have~up to a phase which we absorb in
the definition ofV! p0(Y)51. We see that the vacuum representation may not be faithful in th
presence of a boundary.

The localized and transportable morphisms form a Coxeter-B braided tensor category w
projection. We have already given the set of global morphisms. Local morphisms a
Mor(r1 ,r2):5$TPAu'O regular,TPA(O ),p0(T)p0(r1(A))5 p0(r2(A))p0(T);A P A%.
The localized transportable morphisms form a BTC as shown in Refs. 16, 17. The project
p:Mor(G)→Mor is given byp0 . The inclusioni :Mor(G)→Mor exists because we assumedp0 to
be faithful on local algebras of regular double cones. The global morphismbr1

is Y given above.
~Note thatY is independent of the choice ofO 2 because an additional local charge transporterW
would cancel out.! Equation~8! holds: LetTPMor(%,r) be a local morphism. IfT is an isomor-
phism one can setV% :5VrT, U% :5UrT if one choosesO 2 to be casually disjoint to the local-
ization double cones ofr and%. Then one hasTY%5T(UrT)21(VrT)5Ur

21VrT5YrT. If T is
not an isomorphism then one may do an image/kernel splitting~by use of semi-simplicity of the
C* category! r5ra% rb , %5%a% %b in such a way that%a andra are isomorphic by means of
an isomorphismT̂. It is then obvious that all charge transporters split likeUr5Ura

% Urb
. Further

we denote byPa
% ,Pa

r the projection endomorphisms of the indicated objects. Then one ha
T5Pa

rTPa
%5Pa

rT̂Pa
% . Now we can calculate TY%5Pa

rT̂Pa
%(U%a

% U%b
)21(V%a

% V%b
)

5Pa
rT̂Pa

%Pa
%(Ura

T̂% U%b
)21(Vra

T̂% V%b
)5Pa

rT̂Pa
%((Ura

T̂)21
% 0)(Vra

T̂% 0)Pa
%5Pa

r(Ura

21
% 0)

3(Vra
T̂% 0)Pa

%5Pa
r(Ura

21Vra
% 0)T̂Pa

%5YrT.

To show~10! we take another morphism% localised inO 1 . Using our assumptions thatO 1 ,
O 2 are causally disjoint we may express the statistics operatorser1 ,%5%(U21)U, e%,r1

5V21%(V). Thus%(Y)5er1 ,%Ye%,r1
.

A full proof of ~11! seems to be difficult in the general situation. However, we note that~11!

FIG. 4. The half plane with various double cones~on the left! and with the reflecting transportation that leads to global
intertwiners~on the right!.
J. Math. Phys., Vol. 38, No. 10, October 1997
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is established if one can show thatbX^ Y5L(bX^ bY) with some local morphismL: Applying p
and using~18! one obtainsL5C22. Thus it suffices to argue that thebX are unique up to loca
morphisms.

Similar results are obtained for QFT on the circleS4.16 The most important common featur
of these two topologies is that the action of the translation group is not free. Fredenhagen, R
and Schroer already point out that the occurrence of global intertwiners is linked to the exis
of a forbidden direction; a fact that can most clearly be seen in our setup.
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Twisting 2-cocycles for the construction of new
non-standard quantum groups

Andrew D. Jacobs and J. F. Cornwell
Department of Physics and Astronomy, University of St. Andrews, North Haugh,
St. Andrews, Fife, KY16 9SS, Scotland

~Received 5 March 1997; accepted for publication 28 May 1997!

We introduce a new class of 2-cocycles defined explicitly on the generators of
certain multiparameter standard quantum groups. These allow us, through the pro-
cess of twisting the familiar standard quantum groups, to generate new as well as
previously known examples of non-standard quantum groups. In particular we are
able to construct generalisations of both the Cremmer-Gervais deformation of
SL~3! and the so called esoteric quantum groups of Fronsdal and Galindo in an
explicit and straightforward manner. ©1997 American Institute of Physics.
@S0022-2488~97!01410-2#

I. INTRODUCTION

Originally there were two clearly defined types of quantum groups.1–3 They weresingle-
parameterquantisations,Uq(g) andCq@G#, respectively, of dual classical objects: the univer
enveloping algebras of simple Lie algebras,U(g), and the coordinate rings of simple Lie group
C@G#. With their universalR-matrices,R, theseUq(g) are the standard examples of quasitria
gular Hopf algebras, while theCq@G#, together with the corresponding numericalR-matrices, are
the standard examples of what we call co-quasitriangular Hopf algebras.4,5 It soon became appar
ent that there were a number of multiparameter generalisations6–8 of these standard quantum
groups and through the work of Drinfeld,9 followed by Reshetikhin,10 an interpretation emerged
all the multiparameter quantum groups corresponding to a particular standard quantum grou
related, amongst themselves and with the standard quantum group, through Drinfeld’s imp
process of twisting. In fact, the original works of Drinfeld and Reshetikhin were concerned
with quasitriangular Hopf algebras, but their constructions dualise immediately to the ca
co-quasitriangular Hopf algebras. Since the twists act only as similarity transformations on

calledR̂-matrices,3 the different standard quantum groups corresponding to different classica
groups cannot be related to each other by twisting. The picture then is of a number of d
‘twist equivalence classes’. Later, Kempf and Engeldinger11,12 ~see also the work of Khoroshkin
and Tolstoy13! refined Reshetikhin’s work slightly and showed that there were other intere
quantum groups related, through Reshetikhin-type twists, with the standard ones.

From time to time there appeared genuinely non-standard quantum groups, usually defi
terms of non-standard numericalR-matrices. It is natural to investigate whether these define
twist equivalence classes or whether they belong to classes already defined by the s
R-matrices. We will be particularly concerned in this article with the non-standard qua
groups of Cremmer and Gervais14 and Fronsdal and Galindo15,16 which for general theoretica
reasons~see Section IV! may be expected to be twist-equivalent to the standard SL~n! quantum
groups. However, let us be clear thatno twist of the Reshetikhin type is suitable in these cases.
we explain later, the relevant twisting structures are counital 2-cocycles on the quantum g
The problem then is to find the appropriate twisting 2-cocycles, defined on the standa
quasitriangular Hopf algebra,Cq@SL(n)#, which twist this quantum group into the Cremme
Gervais and Fronsdal-Galindo quantum groups.

Recently, Hodges has made significant progress in this area,17 drawing on previous work of
his contained in a series of important papers~Refs. 18–20!. These covered many aspects
0022-2488/97/38(10)/5383/19/$10.00
5383J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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quantum group theory from a ring theoretic perspective. We should mention Ref. 19 in part
where some remarkable aspects of the algebraic structure of Cremmer-Gervais quantum
were revealed. In Ref. 17 Hodges starts from a particular, standard, multiparameter qua
enveloping algebraUp(g). He then identifies a pair ofcommutingsub-Hopf algebras,Up(b1

2) and
Up(b2

1), associated with certain Belavin-Drinfeld triples.21 This gives rise to a Hopf algebr
homomorphism,f:Up(b1

2) ^ Up(b2
1)→Up(g), through the usual multiplication map. Attentio

then shifts to the dual map,f* :Cp@G#→Cp@B1
2# ^ Cp@B2

1#. Hodges proceeds to identify Im(f* ),
in a series of precise and subtle steps, with the image of the tensor product of a pair of ‘ext
Borel subalgebra-like objects, between which there is a skew pairing. This skew pairing lifts
tensor components of Im(f* ). It is well known that such a pairing gives rise to a 2-cocycle,
quintessential example appearing in the twisting interpretation of the quantum double,5,22 and a
2-cocycle is then induced on the quantised function algebraCp@G#. Hodges claims that in the
particular case ofsl3(C) the 2-cocycle coming from his construction generates the Cremm
Gervais deformation ofC@SL(3)#. More generally, he claims that it should also be possible
reach the esoteric quantum groups of Fronsdal and Galindo.15,16 However, Hodges’ approach i
rather technical and does not readily yield 2-cocycles definedexplicitly on the familiarT genera-
tors of standard co-quasitriangular Hopf algebras. We are able to remedy this situation he

Our approach is actually quite distinct from that of Hodges. We work entirely within
framework of co-quasitriangular Hopf algebras coming from solutions of the matrix qua
Yang-Baxter equation~QYBE!. In Section II we recall the definition of a co-quasitriangular Ho
algebra and the basic result on twisting by 2-cocycles. A good reference for this theory, and
more besides, is the book by Majid,22 from which much of our notation is borrowed. Other goo
references are the paper by Larson and Towber23 and the papers of Doi and Takeuchi.4,5 Majid
calls co-quasitriangular Hopf algebras ‘dual quasitriangular Hopf algebras’, but our termin
comes from Refs. 4 and 5. We go on to describe the well known class of 2-cocycles which a
as the dual of the Reshetikhin-type twists. They originate from particular solutions of the Q
The ‘parametrization’ twists originally considered by Reshetikhin10 may be regarded as example
in this class, and using such a twist we have obtained anew3-parameter generalized Cremme
GervaisR-matrix, presented here, which includes as a special case the 2-parameterR-matrix
considered by Hodges in Ref. 19. Details of the derivation of this newR-matrix are given in
Appendix A. The sub-Hopf-algebra-induced twists considered by Engeldinger and Kempf11,12also
belong to this general class of 2-cocycles, and are recalled here.

Section III contains our main new results. We present there a new class of 2-cocycles
no longer emanate from solutions of the matrix QYBE. Instead, they arise from matrices sati
a new, and remarkably simple, system of equations. A number of explicit 2-cocycles belong
our new class are presented, along with the following results:

~i! It is shown explicitly that thenew 3-parameter generalised Cremmer-Gervais quan
group corresponding to GL~3!, already given in Section II, is obtained from a particu
multiparameter standard quantum group through twisting.

~ii ! The 2-cocycle used to obtain the generalised Cremmer-Gervais deformation of GL~3! is an
example of a general class ofsimple root2-cocycles which themselves belong to a mo
general class ofcomposite simple root2-cocycles. These 2-cocycles may all be defined
certain standard, multiparameter, deformations of GL~n!, and consequently generate ne
non-standard quantum groups.

~iii ! A 2-cocycle which can be used to twist a certain multiparameter standard deformat
C@GL(2N21)# to obtain ageneralisationof the quantum groups of Fronsdal and Galin
is presented. ForN52 this 2-cocycle is just the one used to obtain the general
Cremmer-Gervais GL~3! quantum group.

Note that theR-matrix considered by Fronsdal and Galindo is already ‘multiparameter’, invol

N parameters, but we obtain, in Appendix B, anR-matrix which depends on (11 1
2(N21)
J. Math. Phys., Vol. 38, No. 10, October 1997
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3(N12)) parameters. Let us also note that, as was already suggested in Hodges’ work,17 starting
from the original standard quantum groups,Cq@SL(n)#, we need acombination of the
Reshetikhin-type parametrisation twists with our new twists to obtain the Fronsdal-Galindo
tum groups.

In Section IV, we collect some information about the semi-classical objects correspond
theR-matrices which we have been considering in this paper, namely the classicalr -matrices. We
also recall the background, in Drinfeld’s fundamental work, which serves as the on-going
vation in the quest for interesting twists. We end by pointing out a particular problem involv
constructing the Cremmer-Gervais quantum group corresponding to GL~4!, and describe an inter
esting phenomenon involving sub-Hopf-algebra-induced twists. Starting from the standard
parameter quantum group,Cq,p@GL~4!#, we twist, first of all, using a sub-Hopf-algebra-induce
twist. The resulting quantum group may reasonably be called ‘weakly non-standard’ and c
twisted further using a 2-cocycle from our construction. The new, non-standard,R-matrix ob-
tained through this double twist involves a pair of non-standard off-diagonal elements which
not have been added to the originalR-matrix directly, but whichdo appear in the Cremmer
GervaisR-matrix for GL~4!.

II. CO-QUASITRIANGULAR HOPF ALGEBRAS AND RESHETIKHIN TWISTS

We begin with the basic definitions.
Definition 2.1:A bialgebraA is calledco-quasitriangularif there exists a bilinear forms on

A, which we will call anR-form, such that
~1! s is invertible with respect to the convolution product, *, that is, there is another bili

form s21 such that

s~a~1! ,b~1!!s
21~a~2! ,b~2!!5e~ab!5s21~a~1! ,b~1!!s~a~2! ,b~2!!, ~1!

~2! s* m5mop* s, i.e.,

s~a~1! ,b~1!!a~2!b~2!5b~1!a~1!s~a~2! ,b~2!!, ~2!

~3! s(m^ id)5s13 * s23, i.e.,

s~ab,c!5s~a,c~1!!s~b,c~2!!, ~3!

~4! s(id^ m)5s13 * s12, i.e.,

s~a,bc!5s~a~1! ,c!s~a~2! ,b!. ~4!

Remark 2.2:We are employing here a slightly simplified version of the Sweedler notation
coproducts:D(a)5a(1)^ a(2) , with the summation suppressed.

Remark 2.3:It may be useful to briefly recall how we arrive at this definition. Suppose
(H,R) is a quasitriangular bialgebra, withRPH ^ H the universal R-matrixobeying Drinfeld’s
familiar axioms,

~D ^ id!~R!5R13R23, ~ id^ D!~R!5R13R12, ~5!

Dop~h!5R+D~h!+R21, ;hPH. ~6!

In fact, we may be regardR as a mapk→H ^ H, wherek is the ground field. When formulating
the dual notion of co-quasitriangular bialgebra, we then need to consider anR-form s which is
now a mapA^ A→k, whereA can be thought of as dual toH. To formulate the dual axioms
J. Math. Phys., Vol. 38, No. 10, October 1997
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involving s instead ofR, we require the algebra structure on Hom(A^ A,k). This is the convo-
lution algebra provided by the natural tensor product coalgebra structure ofA^ A. Explicitly then,
let us give the details for a particular example,

~s13* s23!~a^ b^ c!5s13~a~1! ^ b~1! ^ c~1!!s23~a~2! ^ b~2! ^ c~2!!

5s~a~1! ,c~1!!e~b~1!!s~b~2! ,c~2!!e~a~2!!

5s~a,c~1!!s~b,c~2!!.

For more on this process of ‘dualising’ we refer the reader to Majid’s book,22 and his paper, Ref
24.

From the definition it is readily seen that the QYBE now manifests itself as

s12* s13* s235s23* s13* s12. ~7!

WhenA is actually a Hopf algebra, with antipodeS, we call it aco-quasitriangular Hopf algebra.
It can then be shown thatS is always invertible, and s21(a,b)5s(S(a),b) and s(a,b)
5s21(a,S(b)).

The FRT ~Faddeev, Reshetikhin, Takhajan! bialgebrasA(R), introduced by the Leningrad
school3 and developed by Majid,25 where R is any matrix solution of the QYBE, fit into the
co-quasitriangular bialgebra framework. Indeed, we define theR-form on the generatorsTi

j as

s~Ti
s ,Tj

t !5Ri j
st , ~8!

or, in the useful ‘matrix notation’, as

s~T1 ,T2!5R12, ~9!

and then extend its domain of definition to the whole ofA(R) by setting

s~T1T2 ,T3!5s~T1 ,T3!s~T2 ,T3!5R13R23, ~10!

s~T1 ,T2T3!5s~T1 ,T3!s~T1 ,T2!5R13R12. ~11!

The QYBE then guarantees consistency with the product relation~2!.
Remark 2.4:To remove any possible doubt about the notation being employed here,

present~10! explicitly, in terms of the generators, as

s~Ti
sTj

t ,Tk
r !5s~Ti

s ,Tk
m!s~Tj

t ,Tm
r !5Rik

smRjm
tr , ~12!

where the summation conventionis being assumed.
Definition 2.5:A bilinear form x on a bialgebraA is called acounital 2-cocycleon A if it is

invertible in the convolution product, and

x~1,a!5e~a!5x~a,1!, ~13!

and

x12* x~m^ id!5x23* x~ id^ m!. ~14!

Remark 2.6:It is a simple matter to show that anyR-form is a counital 2-cocycle. We als
note that for any Hopf algebra on which we can define such a 2-cocycle, which moreover
twines the multiplication as in~2!, the antipode is necessarily invertible.
J. Math. Phys., Vol. 38, No. 10, October 1997
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Remark 2.7:In the more familiar dual version of this definition, we consider an inverti
elementF of H ^ H. Then~13! and ~14! correspond respectively to

~e ^ id!~F !515~ id^ e!~F !, ~15!

and

F 12~D ^ id!~F !5F 23~ id^ D!~F !. ~16!

An elementF satisfying these conditions is then called a counital 2-cocyclefor H.
Remark 2.8:For a general discussion of cocycles for and on Hopf algebras we refer the r

to Section 2.3 of Majid’s book.22

The property of co-quasitriangular Hopf algebras which is of particular interest to us is
given one, we may generate others using these counital 2-cocycles. This important proc
twisting is the dual of Drinfeld’s original quasitriangular quasi-Hopf algebra twist,9 restricted to
the special case of twistingfrom and toco-quasitriangular Hopf algebras. It is not difficult t
dualise Drinfeld’s original quasitriangular quasi-Hopf algebra axioms, and his result on twis
This was probably first carried out explicitly by Majid.24 We obtain the axioms for a co
quasitriangular co-quasi-Hopf algebra and on specialising the twisting result, we obtain th
lowing important theorem.

Theorem 2.9:Let (A,m,h,D,e,s) be a co-quasitriangular bialgebra and letx be a counital
2-cocycle on A. Then there is a new co-quasitriangular bialgebra(Ax ,sx) obtained by twisting
the product and R-form of(A,s) as

mx5x* m* x21, ~17!

sx5x21* s* x21. ~18!

If A is moreover a Hopf algebra with antipode S, then Ax is also a Hopf algebra with twisted
antipode given by

Sx5l* S* l21, ~19!

wherel5x+(id^S)+D.
For the co-quasitriangular bialgebras,A(R), there is a particularly obvious way of construc

ing twisting 2-cocycles. Take any invertible solutionF of the QYBE and define a bilinear formx
by

x~T1 ,T2!5F12, ~20!

x~1,T!5x~T,1!5e~T!, ~21!

x21~T1 ,T2!5F12
21 . ~22!

We then extend this to the whole ofA(R) just as we did for theR-form in equations~10! and~11!,
that is

x~T1T2 ,T3!5x~T1 ,T3!x~T2 ,T3!5F13F23, ~23!

x~T1 ,T2T3!5x~T1 ,T3!x~T1 ,T2!5F13F12. ~24!

However,x must respect the algebra structure already onA(R) so we must also have

x~R12T1T22T2T1R12,T3!50⇔R12F13F235F23F13R12, ~25!
J. Math. Phys., Vol. 38, No. 10, October 1997
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x~T1 ,R23T2T32T3T2R23!50⇔R23F13F125F12F13R23. ~26!

Thus any invertible solutionF of the QYBE which satisfies~25! and ~26! provides a 2-cocycle
twist. Such a twisting system (R,F) may reasonably be called aReshetikhin twist.10

Remark 2.10:In the context of Refs. 10–12, where the approach is dual to ours, an inve
elementF PH ^ H is considered, where (H,R) is a quasitriangular Hopf algebra. It is assumed
satisfy the QYBE,

F 12F 13F 235F 23F 13F 12, ~27!

and the relations

~D ^ id!~F !5F 13F 23, ~28!

~ id^ D!~F !5F 13F 12, ~29!

which correspond respectively to equations~23! and~24!. This F is then a 2-cocycle forH in the
sense of Remark 2.7, and twists thecomultiplication, universal R-matrixand antipode as

DF ~h!5F D~h!F 21, ;hPH, ~30!

RF 5F 21RF 21, ~31!

and

SF ~h!5vS~h!v21, ;hPH, ~32!

where v5m+(id^ S)(F ). This is actually a slight generalisation of the presentation
Reshetikhin,10 due to Kempf and Engeldinger.11,12

We will be particularly interested in the situation pertaining to when we takeR to be the
standard SL(n) type R-matrix given by

~RS! i j
st5H q, i 5 j 5s5t,

1, i 5sÞ j 5t,

~q2q21!, i 5t, j 5s.

~33!

In this case, with the identification of the central quantum determinant,A(R) becomes a Hopf
algebra. Indeed it is the standard quantisation of the coordinate ring of the Lie group Sn),
denotedCq@SL(n)#.

Let us also present here the expressions, in our notation, for the Cremmer-Gervaisn)
R-matrix and the Fronsdal-Galindo GL(2N21) R-matrix. First, the Cremmer-GervaisR-matrix
will be taken to be

~RCG! i j
st55

q, i 5 j 5s5t,

qq22~ j 2s!/n, i 5s, j 5t,

q21q22~ j 2s!/n, i 5s. j 5t,

~q2q21!, i 5t, j 5s,

~q2q21!q22~ j 2s!/n, i ,s, j , and t5 i 1 j 2s,

2~q2q21!q22~ j 2s!/n, j ,s, i , and t5 i 1 j 2s.

~34!
J. Math. Phys., Vol. 38, No. 10, October 1997
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If the R-matrix which appears as equation~46! in the original paper of Cremmer and Gervais14 is
denotedR̃, thenRCG5R̃21 ~with e2 ih there replaced beq here!. A(RCG) again becomes a Hop
algebra, with the identification of the central quantum determinant found in Ref. 19, and will
be denotedCCG,q@SL(n)#.

The Fronsdal-GalindoR-matrix will be considered in the next section. However, we w
present it here so that the reader might easily compare it with the Cremmer-GervaisR-matrix.
Thus, we take the Fronsdal-GalindoR-matrix to be

~RFG! i j
st5

{
q, i 5 j 5s5t,

q, i 5s52N2 j , j 5t, 0, j ,N,

q21, i 5s, j 5t52N2 i , 0, i ,N,

1, i 5s, j 5t, iÞ j , i 1 j Þ2N,

q2q21, i 5t, j 5s,

qk i , 0, i ,N, j 52N2 i , s5t5N,

qk̃ j , 0, j ,N, i 52N2 j , s5t5N,

q21j is , 0, i ,s,N, j 52N2 i , t52N2s,

q j̃ j t , 0, j ,t,N, i 52N2 j , s52N2t,

~35!

where

k̃ i52q2~N2 i !k i , ~36!

j̃ i j 5~12q22!q2~ j 2 i !~k i /k j !, ~37!

j i j 5~12q2!~k i /k j !. ~38!

Clearly, RFG depends onN parameters —q together withk i , 0, i ,N. In this case, if the
R-matrix given in section 5 of Ref. 15~with the q there replaced byq21) is denotedR̃, then
RFG5qR̃21. It will be shown that thisR-matrix is related via twisting toRS . Thus we can say tha
A(RFG) may also be taken to be a Hopf algebra, which is more than is claimed in Refs. 15 a
We will denote this quantum group byCFG,q@GL(2N21)#.

Example 2.11: For the standard deformationCq@SL(n)#, defined by the R-form
sS(Ti

s ,Tj
t )5(RS) i j

st , we define the 2-cocyclex by

x~Ti
s ,Tj

t !5Fi j
st5 f i j d i

sd j
t , ~39!

extended to the whole ofCq@SL(n)# by ~23! and~24!. Note that the summation convention is n
being assumed here and indeed will not be assumed anywhere, unless stated otherwise.
that the conditions~25! and~26! impose no restrictions on thef i j s. The new, twistedR-form then
coming from~18! is

sS,p~Ti
s ,Tj

t !5~RS,p! i j
st , ~40!

whereRS,p is the familiar (11 1
2n(n21))-parameter standardR-matrix given by

~RS,p! i j
st5H q, i 5 j 5s5t,

pi j , i 5sÞ j 5t,

~q2q21!, i 5t, j 5s,

~41!
J. Math. Phys., Vol. 38, No. 10, October 1997
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with pi j 5 f j i f i j
215pji

21 for i , j . The multiparameter Hopf algebra so defined will be deno
Cq,p@GL(n)#, and was first constructed in this way by Kempf in Ref. 11~see also the paper b
Schirrmacher26!. We will often takepii 5q in what follows.

Example 2.12:For the 1-parameter Cremmer-Gervais deformationCCG,q@SL(n)# the situation
is more interesting. We again define a 2-cocyclex in terms of a diagonal matrixFi j

st5 f i j d i
sd j

t .
However, now the compatibility conditions~25! and ~26! do impose restrictions on thef i j s. The
number of independent parameters appearing in the twisted Hopf algebraCCG,q,p@GL(n)# is then
determined by the number of independent combinations of thef i j s which appear in
RCG,p5F21RCGF21. As demonstrated in Appendix A, we are left with just three independ
parameters —q together with a new pair,p and l. Explicitly, the 3-parameter generalised
Cremmer-Gervais R-matrixis given by

~RCG,p! i j
st55

q, i 5 j 5s5t,

pj 2sq, i 5s, j 5t,

pj 2sq21, i 5s. j 5t,

~q2q21!, i 5t, j 5s,

pj 2slst2 i j ~q2q21!, i ,s, j , andt5 i 1 j 2s,

2pj 2slst2 i j ~q2q21!, j ,s, i , andt5 i 1 j 2s.

~42!

We refer the reader to Appendix A for the proof of this result.
Example 2.13:Another type of Reshetikhin twist is the sub-Hopf-algebra-induced twist, s

ied in particular by Engeldinger and Kempf.12 An example of such a twist is given by defining
2-cocycle onCq,p@GL(n)# as

x~Ti
s ,Tj

t !5H f i j , i 5s, j 5t,

q21~q2q21! f hh , i 5t5h, j 5s5h11,
~43!

with the following restrictions on thef i j s to ensure that all the conditions of the twisting syst
are satisfied:

f hh5 f h11,h11 , ~44!

f h,h115q21ph,h11f hh , ~45!

f h11,h5q21ph11,h f hh , ~46!

f i ,h115pi ,h11ph,i f ih , iÞh,h11, ~47!

f h11,i5ph11,i pi ,h f h i , iÞh,h11. ~48!

The newR-form is then given by theR-matrix

~REK! i j
st55

q, i 5 j 5s5t,

p̃ i j , i 5sÞ j 5t,

q2q21, i 5t, j 5s,

2~q2q21!, i 5t5h, j 5s5h11,

q2q21, i 5t5h11, j 5s5h,

~49!
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



twist

istinct

Hopf

n the

roup
s

5391A. D. Jacobs and J. F. Cornwell: Twisting 2-cocycles

                    
where p̃ i j 5pi j f j i f i j
21 . There is no change in the number of independent parameters. The

quoted here actually corresponds to an embedding ofUq(gl2(C)) in Uq(gln(C)). There are many
others, and we refer the reader to Ref. 12 for details.

III. A NEW CLASS OF TWISTING 2-COCYCLES

Our major results all appear as particular examples of a new twisting system, quite d
from that of Reshetikhin, described in the following theorem.

Theorem 3.1:Suppose A(R) is any FRT bialgebra, defined in terms of an n3n R-matrix R.
To any n3n matrix F which satisfies the following conditions,

F12F235F23F12, ~50!

R12F23F135F13F23R12, ~51!

R23F12F135F13F12R23, ~52!

there corresponds a counital2-cocyclex defined on A(R). It is given on the generators of A(R)
by

x~1,T!5x~T,1!5e~T!, ~53!

x~T1 ,T2!5F12, ~54!

and extended to the whole algebra as

x~T1T2 ,T3!5x~T2 ,T3!x~T1 ,T3!5F23F13, ~55!

x~T1 ,T2T3!5x~T1 ,T2!x~T1 ,T3!5F12F13. ~56!

Proof: The fact thatx is consistent with the underlying algebraic structure ofA(R) follows
from ~51! and ~52!, while the defining condition~14! follows easily on using~50! together with
~55!, ~56!, and the fact thatFi j Fkl5FklFi j wheneveri , j , k and l are mutually distinct. h

Remark 3.2:There is of course a dual result to this, which applies to any quasitriangular
algebra (H,R): Given an invertible elementF PH ^ H satisfying

F 12F 235F 23F 12, ~57!

together with

~D ^ id!~F !5F 23F 13, ~58!

~ id^ D!~F !5F 12F 13, ~59!

then (H,RF ) is a new quasitriangular Hopf algebra, with the coproduct, universalR-matrix and
antipode twisted as in~30!, ~31! and ~32!, respectively.

Some of the general features of twists coming from this construction will be explicated i
following example.

Example 3.3: Let us take as our initial object, the multiparameter standard quantum g
Cq,p@GL(3)#, and consider the possibility of defining on it a 2-cocyclex defined on the generator
as

x~Ti
s ,Tj

t !5Fi j
st5H f i j i 5s, j 5t,

m i 51, j 53, s5t52.
~60!
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For F to satisfy~50! we needf i15 f i2 and f 2i5 f 3i for all i 51, . . . ,3. Forx to be compatible with
the algebra structure ofCq,p@GL(3)# we need~51! and~52! to be satisfied, which further require
pi2f i35pi1f i2 and p3i f 2i5p2i f 1i wherepii 5q, for i 51, . . . ,3. Forgenericpi j these equations
have no solution. However, giving up a degree of freedom from the parameter spa
Cq,p@GL(3)# by settingp135qp12p23, they can be solved. As a matrix,F is then given by

F51
q21p32f 0 0 0 0 0 0 0 0

0 q21p32f 0 0 0 0 0 0 0

0 0 p21p32f 0 m 0 0 0 0

0 0 0 f 0 0 0 0 0

0 0 0 0 f 0 0 0 0

0 0 0 0 0 q21p21f 0 0 0

0 0 0 0 0 0 f 0 0

0 0 0 0 0 0 0 f 0

0 0 0 0 0 0 0 0 q21p21f

2 , ~61!

where f 5 f 22. TheR-matrix of Cq,p@SL(3)# with p135qp12p23 then twists toRx , where

Rx51
q 0 0 0 0 0 0 0 0

0 qp 0 q2q21 0 0 0 0 0

0 0 qp2 0 2p2q f21m 0 q2q21 0 0

0 0 0 q21p21 0 0 0 0 0

0 0 0 0 q 0 0 0 0

0 0 0 0 0 qp 0 q2q21 0

0 0 0 0 q f21m 0 q21p22 0 0

0 0 0 0 0 0 0 q21p21 0

0 0 0 0 0 0 0 0 q

2 , ~62!

with p5p12p23. It is clear that on choosingf 52pl21 andm5q21(q2q21), we have obtained
precisely theR-matrix RCG,p for n53.

The 2-cocycle here is an example of a general class ofsimple root2-cocycleswhich are
defined onCq,p@GL(n)# for any pair of integers (k,l ) such that 0,k, l ,n by

x~Ti
s ,Tj

t !5Fi j
st5H f i j i 5s, j 5t,

m i 5k, j 5 l 11, s5k11, t5 l ,
~63!

with the constraints

f i ,k5 f i ,k11 , f l ,i5 f l 11,i , ~64!

and

pi ,kf i ,l5pi ,k11f i ,l 11 , ~65!

pl ,i f k,i5pl 11,i f k11,i , ~66!

for all i 51, . . . ,n. The name comes from the fact that these twists add non-zero elements
R-matrix at points corresponding to the non-zero elements of the matricesG(eak

) ^ G(e2a l
), and
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G(e2a l
) ^ G(eak

), where theeak
are the basis elements corresponding to the simple roots o

Lie algebragln(C), andG is the first fundamental representation. These simple root 2-cocy
may be combined in more generalcomposite simple root2-cocyclesdefined onCq,p@GL(n)# for
each 0,k,n by

x~Ti
s ,Tj

t !5Fi j
st5H f i j i 5s, j 5t,

mm i 5k, j 5m11, s5k11, t5m.
~67!

With the constraints as before, andm now taking all possible values such thatk,m,n, this twist
imparts a whole series of non-standard off-diagonal elements to theR-matrix. Demonstration of
the truth of these statements involves a straightforward verification of the conditions~50!, ~51! and
~52!.

While working on the universalT-matrix, Fronsdal and Galindo15,16 found an interesting
non-standard deformation ofC@GL(2N21)#, which we shall denote byCFG,q@GL(2N21)#, and
which they called ‘esoteric’. We have already introduced theirR-matrix in ~35!. For N52 this is
precisely the generalised Cremmer-Gervais quantum groupCCG,q,p@GL(3)# with p5q21 and
l5q2(k1 /(q2q21)). However, forN.2, their quantum groups do not coincide with those of
Cremmer-Gervais series~c.f. added note in Ref. 16!. In fact, in a sense which we will make mor
precise in the next section, the quantum groupsCFG,q@GL(2N21)# are ‘not as non-standard’ a
those of Cremmer and Gervais. As we shall discuss later, the general Cremmer-Gervais q
group does not seem to be a twisting of a standard quantum group by a 2-cocycle of the ty
are considering here. However, the quantum groups of Fronsdal and Galindoare obtained from
standard-type quantum groups through a 2-cocycle which fits into our general scheme,
presented in the following proposition.

Proposition 3.4: On the quantum groupCq,p@GL(2N21)#, with the parameters constraine
according to

pji 85qpjNpNi8,
pi j

piNpN j
5

pi 8 j 8

pi 8NpN j8

, ~68!

for all 0, i , j ,N and wherei 852N2 i , there is a 2-cocyclexFG defined as

xFG~Ti
s ,Tj

t !5Fi j
st5H f i j i 5s, j 5t,

mk i 5k, j 5k8, s5N, t5N,

lkl i 5k, j 5k8, s5 l , t5 l 8,

~69!

where0,k, l ,N. All the fi j are given in terms of fNN according to

f i j 55
q21pi 8Nf NN 0, i , j <N,

pi 8 j pj j 8 f NN 0, i<N, j ,2N,

f NN 0, j <N, i ,2N,

q21pN j8 f NN N, i , j ,2N.

~70!

Thels are determined in terms of thems by

l i j 5pj 8 j f NN~q2q21!~m i /m j !, ~71!

for all 0, i , j ,N.
Proof: This result is obtained by applying conditions~50!, ~51! and ~52!, with R5RS,p , to

~69!. h
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Remark 3.5: It is not difficult to establish that the number of parameters left

Cq,p@GL(2N21)# after imposing the conditions~68! is (11 1
2(N21)(N12)). This is just the

number of independentpi j s.
Using the 2-cocycle~69! we in fact obtain anR-matrix more general than that of Fronsdal a

Galindo. Details are given in Appendix B, where we obtain thismultiparameter generalised
Fronsdal-Galindo R-matrixand demonstrate explicitly that their originalR-matrix ~35! is a spe-
cial case of the new generalisedR-matrix.

IV. THE CREMMER-GERVAIS PROBLEM FOR GL(4) AND BEYOND

In the semiclassical theory of quasitriangular Lie bialgebras associated with Lie algebg,
and their corresponding Poisson Lie groups~see, for example, the treatment in the book by Ch
and Pressley27!, the fundamental role is played by the classicalr -matrix, r Pg^ g, which com-
pletely specifies the Lie bialgebra. In the case of complex, finite dimensional, simple Lie alg
there is a complete classification of all suchr -matrices, due to Belavin and Drinfeld,21,27 in terms
of ‘admissible’ or ‘Belavin-Drinfeld’ triples, (P1 ,P0 ,t), whereP is the set of simple roots ofg,
P1, P0,P andt:P1→P0 is a bijection. Considering in particular the situation forg5sln(C), we
can distinguish three cases of interest to us. In the standard, or Drinfeld-Jimbo case, the B
Drinfeld triple hasP1 andP0 both empty and the correspondingr -matrix, r S , coincides with the
semiclassical limit of the universalR-matrix, RS , of the familiar quasitriangular quantised un
versal enveloping algebra,Uh(sln(C)). Another r -matrix, this time for sl2N21(C), has17

P15$a1 ,a2 , . . . ,aN21% and P05$aN ,aN11 , . . . ,a2(N21)%, where a1 , . . . ,a2(N21) are the
simple roots ofsl2N21(C). When considered in the first fundamental representation ofsl2N21(C),
this can be seen to correspond to the semiclassical limit of a Fronsdal-Galindo typeR-matrix ~35!,
and so will be denotedr FG . Finally, we have ar -matrix for sln(C), in whichP1 andP0 are as full
as possible,28 with P15$a1 ,a2 , . . . ,an22% and P05$a2 ,an11 , . . . ,an21%, where
a1 , . . . ,an21 are the simple roots ofsln(C). This time, when viewed in the first fundament
representation ofsln(C), we find a correspondence with a Cremmer-Gervais typeR-matrix ~34!,
and so we will write thisr -matrix asr CG . Let us note that, in each of these cases, the elemet
defined ast5r 121r 21 is identical, and is in fact the Casimir element ofsln(C) ^ sln(C).

In a series of fundamental works,9,29,30Drinfeld proved that given any Lie algebra,g, together
with a symmetricg-invariant element,t, there exists a quantisation of the universal envelop
algebra, U(g), as a quasitriangular quasi-Hopf quantised universal enveloping algeb,
(U(g)@@h##,F,eht/2), and that this quantisation isunique up to twisting. An immediate conse-
quence of this result is that the standard quantisation, (Uh(sln(C)),RS) of U(sln(C)), is twist
equivalent, as a quasitriangular quasi-Hopf algebra, to the ‘universal’ quantisation
(U(sln(C))@@h##,F,eht/2). Subsequently,31 Drinfeld formulated a number of unsolved problems
quantum group theory. Among these was the question of whethereveryfinite dimensional Lie
bialgebra admits a quantisation as a quantised universal enveloping algebra. This was r
answered, in the affirmative, by Etingof and Kazhdan.32 Though their result did not provide a
explicit construction, it does tell us that in addition to the well known Drinfeld-Jimbo quasitr
gular quantised universal enveloping algebra, (Uh(sln(C)),RS), we must assume theexistenceof
quasitriangular Fronsdal-Galindo and Cremmer-Gervais quantised universal enveloping al
with corresponding universalR-matricesRFG and RCG respectively. Moreover, by Drinfeld’s
earlier result, we know that these quantised universal enveloping algebras must be twist equ
as quasitriangular Hopf algebras, to (Uh(sln(C)),RS). In particular, the universalR-matrices,
RS , RFG , andRCG , must each be related to each other by twisting in the style of equation~31!.

It is reasonable, we believe, to work under the motivating assumption that the matriceRFG

andRCG , which have been considered in this paper, correspond to the, as yet unknown, un
R-matrices,RFG and RCG , in the first fundamental representation. In this case, the theory
have just outlined implies that in the dual world of co-quasitriangular Hopf algebras, there s
exist 2-cocycles for the construction of the Fronsdal-Galindo quantum groups and the Cre
J. Math. Phys., Vol. 38, No. 10, October 1997
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Gervais quantum groups from the standard quantum groups. Some support for the assump
been provided in this paper, with the explicit construction of a twisting 2-cocycle for the
struction of the Fronsdal-Galindo quantum groups, and the Cremmer-Gervais deformat
GL~3!. However, the problem for the Cremmer-Gervais deformations of GL(n) for n.3 remains
open.

The pair of non-standard off-diagonal elements which appear in the Cremmer-Ge
R-matrix for GL~3! ‘correspond,’ in the sense described above, to the elementea1

`e2a2
of the

corresponding classicalr -matrix, r CG . As we have seen, our twisting construction has no prob
dealing with this case. However, for GL~4! and beyond, the Cremmer-GervaisR-matrix involves
an increasing number of non-simple root combinations—more than appear in the Fro
GalindoR-matrix, and our construction does not appear to be able to deal with this circums
In particular, in the Cremmer-GervaisR-matrix for GL~4!, there are pairs of non-standard matr
elements corresponding to ther -matrix elementsea1

`e2a2
, ea1

`e2a3
, ea2

`e2a3
, andea11a2

`e2(a21a3) . The last term, in particular, causes problems. We finish by explaining how anew

non-standard GL~4! R-matrix may be obtained, which contains a pair of matrix elements co
sponding to this term.

Starting from the standard quantum groupCq,p@GL(4)#, and twisting first using a 2-cocycle o
the kind in ~43!, we obtain a new quantum group given in terms of theR-matrix,

~REK! i j
st55

q, i 5 j 5s5t,

p̃ i j , i 5sÞ j 5t,

q2q21, i 5t, j 5s,

2~q2q21!, i 5t52, j 5s53,

q2q21, i 5t53, j 5s52.

~72!

This quantum group is now amenable to a twist by one of our new 2-cocycles, given by

x~Ti
s ,Tj

t !5Fi j
st5H f i j i 5s, j 5t,

l i 51, j 54, s53, t52,
~73!

with the constraints

f i15 f i3 , f 2i5 f 4i , ~74!

p̃ i1f i25 p̃ i3f i4 , p̃4i f 3i5 p̃2i f 1i , ~75!

for i 51, . . . ,4.Note that the this 2-cocycle could not have been defined on the original stan
R-matrix. TheR-matrix for thisnewnon-standard quantum group may now be written as

~RNS! i j
st55

q, i 5 j 5s5t,

g i j , i 5sÞ j 5t,

q2q21, i 5t, j 5s,

2~q2q21!, i 5t52, j 5s53,

q2q21, i 5t53, j 5s52,

g14%, i 51, j 54, s53, t52,

2qg23%, i 54, j 51, s52, t53,

~76!

where
J. Math. Phys., Vol. 38, No. 10, October 1997
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g i j 5 p̃ i j f j i f i j
21, %52l f 14

21f 32
21, ~77!

and

g12g235qg24, g24g345qg14. ~78!

This newR-matrix depends on 6 parameters. It might be interesting to investigate such d
twists further.

APPENDIX A: THE 3-PARAMETER GENERALISED CREMMER-GERVAIS R-MATRIX

We give here the derivation of the result quoted in Example 2.12. We proceed in two s
obtaining the required result by demonstrating that theR-matrix ~42! is a twist of theR-matrix
~34!.

~1! As explained in Section II, as any diagonal matrixFi j
kl5 f i j d i

kd j
l is a solution of the QYBE,

we can define a twisting 2-cocyclex in terms of it asx(T1 ,T2)5F12 as long as the computability
conditions~25! and ~26! are satisfied. In terms of matrix components, these conditions beco

Ri j
stf sa f ta5 f j a f iaRi j

st , ~A1!

Ri j
stf at f as5 f a i f a jRi j

st , ~A2!

i , j ,a,s,t51, . . . ,n, n>3. Thus the non-zero elements of theR-matrix RCG determine the con-
straints on the elements ofF. It is not difficult to see that the only non-trivial relations which w
get are

f ia f j a5 f sa f ta , i ,s, j , t5 i 1 j 2s, ~A3!

f a i f a j5 f asf at , i ,s, j , t5 i 1 j 2s, ~A4!

i , j ,a,s,t51, . . . ,n, n>3. We will now prove the following lemma.
Lemma: The system of equations~A3! and ~A4!, in n2 unknowns, has a solution spac

completely described in terms of four unknownsx, y, z, w say, as

f i j 5x~ i 22!~ j 22!y2~ i 22!~ j 21!z2~ i 21!~ j 22!w~ i 21!~ j 21!, ~A5!

i , j 51, . . . ,n.
Proof: We use induction. Consider the simplest case,n53, so that we havei 51, s5t52,

j 53 and there are six equations

f 11f 315 f 21
2, ~A6!

f 12f 325 f 22
2, ~A7!

f 13f 335 f 23
2, ~A8!

f 11f 135 f 12
2, ~A9!

f 21f 235 f 22
2, ~A10!

f 31f 335 f 32
2. ~A11!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Only five of these are independent, e.g., combining~A6!, ~A7!, ~A8!, ~A9! and ~A10! yields
~A11!, so the solution space will be in terms of four unknowns. Choosing these to bef 115x,
f 125y, f 215z and f 225w, we find

i f i j i5S x y x21y2

z w z21w2

x21z2 y21w2 xy22z22w4
D , ~A12!

which verifies~A5! for n53. Now suppose that the solution space of the system of equations~A3!
and ~A4! for n5k, k>3 is completely specified by~A5!, and considern5k11. Notice that we
still have all the equations we had forn5k so~A5! holds fori , j 51, . . . ,k. We need to check tha
the new equations appearing consistently specifyf a,k11 and f k11,a according to ~A5! for
a51, . . . ,k11.

From ~A4!, for a51, . . . ,k,

f a,k115 f a i
21f asf at

5x2~a22!~ i 22!1~a22!~s22!1~a22!~ t22!y~a22!~ i 21!2~a22!~s21!2~a22!~ t21!

3z~a21!~ i 22!2~a21!~s22!2~a21!~ t22!w2~a21!~ i 21!1~a21!~s21!1~a21!~ t21!

5x~a22!~2 i 1s1t22!y~a22!~ i 2s2t11!z~a21!~ i 2s2t12!w~a21!~2 i 1s1t21!

5x~a22!~k1122!y2~a22!~k1121!z2~a21!~k1122!w~a21!~k1121!,

as required. Invoking the obvious symmetry between~A3! and ~A4! we deduce the equivalen
result from~A3! for f k11,a , a51, . . . ,k. Replacinga by k11 in the above computation yield
the correct result forf k11,k11. The consistency of these solutions still needs to be checked
follows from the following. Take f a,k115 f asf at f a i

21 from ~A4!, and consider~A3! with
a5k11, i.e.,

f i 8,k11f j 8,k115 f s8,k11f t8,k11 , ~A13!

wherei 8,s8, j 8, andt85 i 81 j 82s8, i 8,s8,t8, j 851, . . . ,k11. Then

LHS 5 f i 8sf i 8t f i 8 i
21f j 8sf j 8t f j 8 i

21

5 f i 8sf i 8t f j 8 i f s8 i
21f t8 i

21f j 8sf j 8t f j 8 i
21

5 f s8sf t8sf s8t f t8t f s8 i
21f t8 i

21

5 f s8,k11f t8,k11

5RHS.

h

~2! We must now consider what combinations of thef i j s actually take part in the twisting
Thus, we consider the matrixRCG,p5F21RCGF21, whose components are given b
(RCG,p) i j

st5 f j i (RCG) i j
stf st

21. Explicitly,
J. Math. Phys., Vol. 38, No. 10, October 1997
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~RCG,p! i j
st55

q, i 5 j 5s5t,

f j i f i j
21qq22~ j 2s!/n, i 5s, j 5t,

f j i f i j
21q21q22~ j 2s!/n, i 5s. j 5t,

~q2q21!, i 5t, j 5s,

f j i f st
21~q2q21!q22~ j 2s!/n i ,s, j , andt5 i 1 j 2s,

2 f j i f st
21~q2q21!q22~ j 2s!/n, j ,s, i , andt5 i 1 j 2s,

~A14!

and we are led to define

qi j 5 f i j f j i
21q22~ i 2 j !/n, i , j 51, . . . ,n, ~A15!

l i jst5 f i j f st
21q22~ i 2s!/n, i ,s, j or j ,s, i and t5 i 1 j 2s. ~A16!

The qi j andl i jst satisfy the following obvious symmetries,

qji 5qi j
21, i , j 51, . . . ,n, ~A17!

l j ist5qji l i jst , i ,s, j and t5 i 1 j 2s, ~A18!

l i j ts5qstl i jst , i ,s, j and t5 i 1 j 2s. ~A19!

Moreover, we see that modulo these symmetries everyl i jst must either be of the forml i j aa ,
when i 1 j is even, orl i j a,a11 , when i 1 j is odd,or be expressible in terms of these as

l i jst5H l i j aa /lstaa , i 1 j even,

l i j a,a11 /lsta,a11 , i 1 j odd.
~A20!

Now, recalling the solution~A5!, we find that qi j 5y2 i 1 j zi 2 jq22(i 2 j )/n, so that on defining
p5y21zq22/n, we have thatqi j 5pi 2 j . Now consider thel i jsts. From~A5! we get

l i j aa5x2~a2 i !2
y~a2 i !~a2 i 11!z~a2 i !~a2 i 21!w2~a2 i !2

q22~ i 2a!/n

5~y21zq22/n!~ i 2a!~x21yzw21!~a2 i !2

5p~ i 2a!~x21yzw21!~a2 i !2
, ~A21!

l i j a,a115x2~a2 i !~a2 i 11!y~a2 i !~a2 i 12!z~a2 i !2
w2~a2 i !~a2 i 11!q22~ i 2a!/n

5~y21zq22/n!~ i 2a!~x21yzw21!~a2 i !~a2 i 11!

5p~ i 2a!~x21yzw21!~a2 i !~a2 i 11!, ~A22!

so that on definingl5x21yzw21, and recalling~A20!, we find that

l i jst5pi 2slst2 i j , i ,s, j and t5 i 1 j 2s. ~A23!

This completes the derivation.
J. Math. Phys., Vol. 38, No. 10, October 1997
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APPENDIX B: THE MULTIPARAMETER GENERALISED FRONSDAL-GALINDO
R-MATRIX

In Proposition 3.4 we presented the 2-cocyclexFG defined on a certain standard quantu
group in terms of a matrixF. To obtain the twisted quantum group we also needxFG

21, which is
defined in terms ofF21,

~F21! i j
st5H f i j

21, i 5s, j 5t,

m̄k , i 5k, j 5k8, s5N, t5N,

l̄ kl , i 5k, j 5k8, s5 l , t5 l 8,

~B1!

where 0,k,N, 0,k, l ,N, and

m̄ i52qqi 2 i 8pii 8 f NN
22m i , 0, i ,N, ~B2!

l̄ i j 52q2~ i 2 j !pii 8pj j 8 f NN
22l i j , 0, i , j ,N. ~B3!

Now we determine the twistedR-matrix, RFG,p , from RFG,p5F21RS,pF21 as

~RFG,p! i j
st55

pi j f j i f i j
21, i 5s, j 5t,

m̄kf k8kpkk8, i 5k, j 5k8,s5t5N,

l̄ kl f k8kpkk8, i 5k, j 5k8,s5 l ,t5 l 8,

mkf NN
21pNN , i 5k8, j 5k,s5t5N,

lkl f l 8 l
21pl 8 l , i 5k8, j 5k,s5 l 8,t5 l ,

~q2q21!, i 5t, j 5s,

~B4!

where 0,k,N and 0,k, l ,N, the pi j s and f i j s are constrained according to~68! and ~70!,
respectively, and all other parameters are given in terms of thems. We can refine the presentatio
of this R-matrix, setting

pi5pii 8, ~B5!

h i j 5pi j pj 8 i , ~B6!

kk5q21f NNm̄k , ~B7!

k̃ k52q2~N2k!kk , ~B8!

jkl5~12q2!~kk /k l !, ~B9!

j̃ kl5~12q22!q2~ l 2k!~kk /k l !. ~B10!

Then the R-matrix becomes themultiparameter generalised Fronsdal-Galindo R-matr,
J. Math. Phys., Vol. 38, No. 10, October 1997
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~RFG,p! i j
st5

{
q, i 5 j 5s5t,

qpi
2, i 5s5 j 8, j 5t, 0, j ,N,

q21pi
2, i 5s, j 5t5 i 8, 0, i ,N,

pj 8, i 5s5N, j 5tÞN,

pi , i 5sÞN, j 5t5N,

pih i j , i 5sÞN, j 5tÞN, iÞ j , i 1 j Þ2N,

q2q21, i 5t, j 5s,

qpik i , 0, i ,N, j 52N2 i , s5t5N,

qpj 8k̃ j , 0, j ,N, i 52N2 j , s5t5N,

q21pipsj is , 0, i ,s,N, j 52N2 i , t52N2s,

qpj 8pt8 j̃ j t , 0, j ,t,N, i 52N2 j , s52N2t.

~B11!

It can be checked that thisR-matrix has (11 1
2(N21)(N12)) parameters.

To identify theR-matrix originally discussed by Fronsdal and Galindo~35!, as a special case
of this R-matrix, consider the particular solution of~68! given by settingpi j 51 for 0, iÞ j ,N,
0, i ,N, j ,2N, andN, iÞ j ,2N.
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Equivalence of isotropic submanifolds and symmetry
S. Janeczko
Institute of Mathematics, Warsaw University of Technology,
Pl. Politechniki 1, 00 661 Warsaw, Poland

~Received 11 June 1996; accepted for publication 12 March 1997!

It is shown that any two generating families of the same isotropic submanifold are
equivalent. Also the singularity theory of symmetric isotropic submanifolds is de-
veloped and the basic classification theorems on prenormal forms, in particular for
Z2 action, are proved. ©1997 American Institute of Physics.
@S0022-2488~97!03209-X#

I. INTRODUCTION

The genesis of this paper lies in theoretical questions in geometrical diffraction theory w
a central role is played by the systems of rays passing through a boundary of an obstacle~aperture!
~cf. Refs. 1,2!. It is explained in Refs. 1,3,4 why the proper isotropic submanifolds of cotan
boundles~phase spaces! do occur in geometrical diffraction and why the symmetry group of th
objects appear as a natural feature of existing optical systems~cf. Refs. 5,6!.

Let F:R23R23X→R, F(x,y,a,b,q1 ,q2 ,q2) be the optical distance function from the wav
front $(x,y,z):z5f(x,y), f~0!50, f8~0!50% in the presence of an aperture parametrized
$(a,b)PR2: f (a,b)>0% to the configurational point (q1 ,q2 ,q3)PX. If the incident ray goes from
the point„x,y,f(x,y)… to the point of an edge$ f (a,b)50% of the aperture, then the diffracte
rays form a cone inX ~cf. Refs. 2,6!. The natural subsystems of diffracted rays form those r
that are straight continuations of the incident rays. The system of incident rays passing thro
edge of the aperture form an isotropic two-dimensional submanifold ofT* X. This submanifold is
described by the following equations:

]F

]aU
$ f 50%

50,
]F

]bU
$ f 50%

50,
]F

]xU
$ f 50%

50,
]F

]yU
$ f 50%

50,

and

pi5
]F

]qi
~x,y,a,b,q!U

$ f 50%

, i 51,2,3, ~q,p!PT!X.

It appears that the typical singularities of the proper~sub-Lagrangian! isotropic submanifolds are
classified mainly by the singularities of functions on varieties.7–9 The general approach to th
classification problem of isotropic submanifolds and the begining of the list of simple no
forms in small dimensions was given by Ref. 1. The complete list of simple normal forms
announced in Ref. 10. In the present paper we generalize this approach to include the sym
with respect to the compact Lie group action, isotropic submanifolds.

The technical content of the paper is rather close to that of Refs. 1 and 4, where the p
singularities of isotropic projections and symmetric Lagrangian projections were listed. In S
the basic notion of the isotropic submanifold was introduced and the generating families fo
submanifolds were constructed. The basic theorem on equivalence of generating families
senting the same isotropic submanifold was shown. The infinitesimal stability condition an
prenormal form theorem for symplectic equivariant equivalence of symmetric isotropic sub
folds was derived in Secs. III and IV. In Sec. V theZ2-symmetry case is explicitly calculated an
the generic singularities of isotropic projections in small dimensions are classified.
0022-2488/97/38(10)/5402/14/$10.00
5402 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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II. CLASSIFICATION OF ISOTROPIC SUBMANIFOLDS

Let I be a stratifable subset of a symplectic manifold (M ,v). We call this subset isotropic i
for each stratum ofI , sayI i ,

vu I i
50.

If I is smooth and dimI 5 1
2 dim M , then I is called Lagrangian~see Ref. 11 for the theory o

Lagrangian singularities!. In this paper we consider proper isotropic subsets, i.e., diI
, 1

2 dim M , and study their local structure, so we assumeM[T!X for some smooth manifoldX.
In what follows we also takeX[Rn(Cn).

In case of smoothI ,T!X the correspondingI -Morse families were introduced in Ref. 1. Th
smooth function germH:(X3RL3RK,0)→R is called anI -Morse family if the smooth map,

X3RK{~q,l!→S ]H

]b i
~q,0,l!,

]H

]l j
~q,0,l! D , 1< i<L, 1< j <K, ~1!

is nonsingular on the stationary set,

SH
I 5H ~q,l!:

]H

]b i
~q,0,l!50,

]H

]l j
~q,0,l!50, 1< i<L, 1< j <KJ .

Then the set

I n2L5H ~q,p!PT!X:'lPRK, pj5
]H

]qj
~q,0,l!,

]H

]b i
~q,0,l!50,

]H

]l I
~q,0,l!50J , ~2!

for 1< i<L, 1< j <n, 1< l<K, is a smooth immersed isotropic submanifold ofT!X.
If H:(X3RL3RK,0)→R is an I -Morse family generating the germ (I n2L,0) then

H̃~q,b,l!5H~q,b,l!1w~q,b,l!, ~3!

where

wPH5^b1 ,...,bL&2E ~q,b,l!1 K ]H

]b1
~q,b,l!,...,

]H

]bL
~q,b,l!L 2

E ~q,b,l!

is also a generating family for the same germ (I n2L,0). HereE (q,b,l) denotes the ring of smooth
function germs andm(q,b,l) denotes its unique maximal ideal. Moreover ifF:(X3RL

3RK,0)→(RL3RK,0) is a smooth family of diffeomorphism germsF(q,•,•) preserving the plane
$(b,l):b i50, i 51,...,L%, then

H̃„q,F~q,b,l!… ~4!

is also a generating family for the initial isotropic germ (I n2L,0).
Let (I n2L,0) be a germ of an isotropic submanifold and byH:(X3RL3RK,0)→R we denote

its generatingI -Morse family. By the reduction procedure~3! and elimination ofl parameters~cf.
Ref. 11!, we get the following minimal form forH:

H~q,b,l!5 f ~q,l!1(
i 51

L

b igi~q,l!,
J. Math. Phys., Vol. 38, No. 10, October 1997
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where f ,giPm(q,l)
2 , and the number ofl parameters is minimal, i.e., (]2f /]l i ]l j )(0)50,

(]gl /]ls)(0)50, 1< l<L, 1<s<K, 1< i , j <K.
The family H is an I -Morse family, so by regularity of~1! we have L1K<n and

det(]2f/]li ]qj)(0)50 for 1< i<K and j PJ, J,$1,...,n%, whereJ hasK elements. Becausepi

5(] f /]qi)(q,l) on I n2L, so we can take the new variables on (X3RL3RK,0),

Q:~X3RL3RK,0!{~q,b,l!→S q,b,
] f

]qJ
~q,l! D ,

which preserve (I n2L,0) in the sense of~4!, @] f /]qJ5(] f /]qi 1
,...,] f /]qi K

),i 1 ,...,i KPJ#. Thus

we came to theI -Morse family H̃5H+Q21. By PJ we denote the coordinate space spanned
$pi 1

,...,pi K
%.

Proposition II.1: Let H1 , H2 : (X3RL3RK,0)→(R,0) be two minimal I-Morse families for
the germ (I n2L,0),T!X. Then there is a family of diffeomorphismsF(q,•,•): (RL

3RK,0)→(RL3RK,0) preserving the plane$b i50%, such that

H1~q,b,l!1w~q,b,l!5H2„q,F~q,b,l!…,

for somewPH.
Proof: By diffeomorphismQ we getH̃1 , H̃2 :(X3RL3PJ,0)→(R,0),

H̃1~q,b,pJ!5H1+Q1
21~q,b,pJ!,H̃2~q,b,pJ!5H2+Q2

21~q,b,pJ!.

The isotropic germ (I n2L,0) is given by the equations

g̃k
l ~q,pJ!5

]H̃ l

]bk
~q,b,pJ!U

$b50%

50, pi5
]H̃ l

]qi
~q,0,pJ!,

]H̃ l

]pj
~q,0,pJ!50,

for l 51 and as well forl 52. So the projection ofI n2L onto X3pJ , represented byS
H̃1

I
, S

H̃2

I
,

give the same germ. Thus we can write the differential

d~H̃12H̃2!u$] f̃ 1 /]pj 50,g̃
k
150,b i50%50,

and we can deduce immediately that, modulo some element fromH u$b50% , we have

f̃ 12 f̃ 2Pm~q,pJ!K ]H̃1

]pJ
L 2

.

Thus by the Tougeron’s implicit function theorem~cf. Ref. 12, p. 206! we get a diffeomorphism,

J~q,pJ!5„q,J̃~q,pJ!…,

such that f̃ 1+J5 f̃ 2 and ^gk
1+J&5^gk

2&. So there exists a diffeomorphism of~b!,
k(b,q,pJ),k(0,q,pJ)[0, such that

F:~q,b,pJ!→„q,k~b,q,pJ!,J̃~q,pJ!…

form the necessary equivalence ofH̃1 and H̃2 . Q.E.D.
It is obvious that instead of minimalI -Morse families we can consider the pairs of function

mappingsf andg5(g1 ,...,gL). The correspondingI equivalence of such pairs is induced by t
above defined equivalence ofI -Morse families. The beginning of the classification procedure
J. Math. Phys., Vol. 38, No. 10, October 1997
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simple normal forms for isotropic submanifolds was done in Ref. 1. The complete list of si
singularities was announced in Ref. 10. Now there is a natural way to generalize the notion
I -Morse family and pass to the generation of no necessary smooth isotropic varieties.

Let H:(X3RN,0)→R be a smooth function germ. We consider an analytic~algebraic! subset
V of (X3RN,0), V5F21(0), and ananalytic mapF:(X3RN,0)→(Rk,0).

Definition II.2: The germ of an isotropic variety I,(T!X,vX) defined by the pair of function
(H,F),

I 5H p̄PT!X;' ~q,l!PV ,pi5
]H

]qi
~q,l!,

]H

]l j
~q,l!50, i 51,...,n, j 51,...,NJ , ~5!

is called the diffractional isotropic variety.p̄5(p,q)PT!X.
Remark II.3:
~1! If V5RN then I is a usual representation of Lagrangian varieties by generating fam

(cf. Refs. 11,13,14). In this case there is no extra condition, which makes I the proper isot.
~2! If V is a smooth submanifold of RN then this case was exploited (see Ref. 1) to gene

all germs of smooth isotropic submanifolds of(T!X,vX). This is a generalization of the standar
notion of the generating family for Lagrangian submanifolds.

~3! The isotropic varieties that we are studying here first appeared in geometrical diffrac
on apertures (see Refs. 6,2) and always are connected to some distance function propert
the geometrical structure of the boundary of an aperture. Diffractional isotropic varieties tha
investigate in this paper, unless otherwise stated, are proper isotropic (not Lagrangian).

~4! To see that (5) is an isotropic variety we consider the stratum of the critical set,

SH,V5H ~q,l!;
]H

]l
~q,l!50,~q,l!PVJ ,

and repeat the standard lines of singularity theory techniques usually applied in symplect
ometry (cf. Ref. 11).

Behind the definition introduced above there is the following construction. LetT 5(T!X
3T!RN,p2

!vRN2p1
!vX) be the product symplectic structure. Let L, T be a Lagrangian sub

manifold of T transversal to the fibers of the fiberingT!(X3RN)→X3RN. Let S be a subset of
T!X then we define the image

L~S!5$m̄PT!RN:' p̄PS~ p̄,m̄ !PL%.

In an analogous way we define the counterimageLt(L̃) of the subsetL̃ of T!RN. The image and
counterimage preserve the symplectic properties ofS and L̃, respectively. Now instead ofL we
take the isotropic intersectionI (L,L)5LùL, whereL5$( p̄,m̄):F(q,l)50%, F:X3RN→Rk. If L
is generated by the function (q,l)→H(q,l) and RN is a zero section ofT!RN, then the pair
(L,L) @or the pair (H,F)# called aL pair defines a diffractional isotropic variety as the symplec
counterimageI (L,L)

t (RN).
Example II.4: A2-type isotropic varieties. A natural class of isotropic varieties are tho

varieties that are critical sets of the Lagrangian projections. These are typically cone-like va
ies described by the following generating families, H:(X3R3RK,0)→R:

H~q,b,l!5 f ~q,l!1b detS ]2f

]l i ]l j
~q,l! D .

To be more concrete let us consider the D5-singular Lagrangian projection in T!R4. Then its
A2-type isotropic variety is generated by
J. Math. Phys., Vol. 38, No. 10, October 1997
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HA2
~q,b,l1 ,l2!5l1

2l21l2
41q1l2

31q2l2
22q3l12q4l21b~6l2

313q1l2
21q2l222l1

2!.

We can continue the above procedure and describe the corresponding sub-Lagrangian Ak ,Dk ,...,
varieties. The A3-singular isotropic variety for D5-Lagrangian projection is generated by th
family

HA3
~q,b1 ,b2 ,l1 ,l2!5l1

2l21l2
41q1l2

31q2l2
22q3l12q4l2

1b1~6l2
313q1l2

21q2l222l1
2!1b2~10l2

314q1l2
21q2l2!.

Example II.5: Another interesting example of an isotropic variety is a so-called C-Lagran
manifold in the Maslov theory of the complex canonical operator.15 If I n[Rn,(C2n,v) is an
isotropic submanifold of a canonical complex symplectic space then we have, for every pPI n,

Tp
cI 5TpI ù~ iTpI !5TpI ù~TpI !L,

where (TpI )L is an v-orthogonal subspace to TpI . Any real (i.e., Tp
cI 50) isotropic (C-

Lagrangian) submanifold In,(C2n,v) can be locally generated by the generating family
Cn3Rn3Ck→C,

F~q,b,l!5 f ~q,l!1(
i 51

n

b igi~q,l!,

where f is holomorphic and gi are real analytic; moreover,$gi50% form a real hypersurface in
the critical setS5$(] f /]l)(q,l)50%.

III. SYMMETRIC ISOTROPIC SUBMANIFOLDS

Let G be a compact Lie group acting smoothly onM . This action extends naturally to
symplectic action ofG on the cotangent bundleT!M , preserving the cotangent bundle structu
Because our considerations are local we may identifyM with Rn and assume that 0PRn is a fixed
point of the action ofG. We also assume that the action ofG on ~Rn,0) is linear and orthogonal
We shall denoteRn with this action ofG by V. We identify T!V with V% V!, whereV! is the
dual ofV. If n denotes a representation ofG in V, then the natural symplectic action ofG on T!V
is given by the symplectic liftingn̄5n % n, i.e.

T!V{~q,p!→ n̄g~q,p!5„ng~q!,ng~p!…PT!V.

If ( I ,0) is a G-invariant isotropic submanifold germ, then the image of the associ
G-invariant isotropic projectionp I5pVu I : (I ,0)→(V,0) is the germ of aG-invariant subvariety
in (V,0) called asymmetric quasicausticof (I ,0). Also KerDp I(0)5T0I ùT0V! is aG-invariant
subspace ofV! ~we identify T0V![V!!. The existance ofG-invariant I -Morse families for
G-invariant isotropic submanifolds is given by the noninvariant existence result~cf. Ref. 1, Propo-
sition 1.2! and the methods of constructing invariant Morse families for Lagrangian submani
used in Ref. 6. We can formulate this result in the following way.

Proposition III.1: Let(I G,0) be a G-invariant isotropic submanifold of T!V. There exists a
smooth G-invariant function-germ of the IG-Morse family,

F:„V3RL3RK,~0,0,0!…→R,

invariant with respect to a component-wise, linear actionk of G on V3RL3RK, k5n%m%r,
such that(I G,0) is defined by (2). Conversely, every such G-invariant function germ genera
G-invariant isotropic submanifold(I ,0).
J. Math. Phys., Vol. 38, No. 10, October 1997
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In all further considerations we assume that anI -Morse family is defined with the presence
minimal number of parametersK, i.e.

S ]2F

]l i ]l j
~0,0,0! D50.

To eachG-invariant isotropic submanifold (I G,0), generated byI G-Morse familyF, we associate
the pair ofG-invariant Lagrangian submanifolds (LG,NG), defined by the correspondingG-Morse
families ~cf. Ref. 1!,

LG: F̃~q,l!5F~q,0,l!,

NG: F̃~q,m!5F~q,m1 ,m2!,

where we denotem5(m1 ,m2). These two manifolds intersect alongI G and define two
G-invariant subspaces ofV!:

WLG
!

5Ker DpLG~0!,

WNG
!

5Ker DpNG~0!.

We see that the invariant subspaceW!5Ker Dp I(0) is an intersection of both of these subspac
If V8 is a representation space ofG that has aG-invariant subspace isomorphic toV, then the

invariantI -Morse familyF:V3RL3RK→R also defines an invariant isotropic submanifoldI 8 of
T!V8.

Let q1 ,...,qn be coordinates on the subspace isomorphic toV and extend these to a syste
q1 ,...,qn8 on V8. Then the equations forI 8 are obtained by supplementing the equations forI by
pj50 for j 5n11,...,n8. We will say that the isotropic submanifoldI 8 is a trivial extensionof I .

We see that the functionsF(q,• ,• ) are only invariant underGq , which is the isotropy
subgroup atq of the action ofG on V. If V(G) denotes the space of fixed points of the action
G, then the restrictionFuV(G)3RL3RK is a family of G-invariant functions onRL3RK. Any
such family can be extended to a family onV3RL3RK. Also, a generic property of the restricte
families can be regarded as a generic property of the full family. As an example, one can
show that the generic invariant quasicaustics do not pass through isolated points of the actioG
on V. In this caseV(G)5$0% and the genericG-invariantI -Morse familiesF has a nondegenerat
critical point at 0, i.e.

detS ]2F

]b ]b

]2F

]b ]l

]2F

]l ]b

]2F

]l ]l

D ~0!Þ0.

IV. SYMPLECTIC EQUIVARIANT EQUIVALENCE

In this section we introduce the equivalence relation that is used to classifyG-invariant
isotropic submanifolds. In the absence of the group action, the corresponding theory was pre
in the preceding section~cf. Ref. 1!.

Definition IV.1: Two G-invariant germs of isotropic submanifolds(I j
G ,0),(T!V,0), (j

51,2) are called equivalent if there exist germs of a G-equivariant symplectomorphismF:
(T!V,0)→(T!V,0) and a G-equivariant diffeomorphismf: (V,0)→(V,0) such that (i) the fol-
J. Math. Phys., Vol. 38, No. 10, October 1997
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lowing diagram commutes:

and
(ii) F(I 1

G),I 2
G.

Let E (q,b,l)
G ~respectively,E q

G! denote the ring of germs ofG-invariant functions onV3RL

3RK ~respectively, onV!. By m(q,b,l)
G we denote the maximal ideal ofE (q,b,l)

G . By
B(q,b,l)

G ,^b1 ,...,bL&E (q,b,l) , we denote the ideal of invariant germs vanishing on the spacV
3$0%3RK. By BD (b,l)

G we denote the space of germs of equivariant diffeomorphisms prese
the subspace

L5$~b,l!:b150,...,bL50%,

in RL3RK.
Definition IV.2: Two G-invariant I-Morse families,

F1,2:~V3RL3RK,0!→R,

are calledb-equivalent (or simply equivalent) if there exist germs of an equivariant diffeom
phism,

F:~V3RL3RK,0!→~V3RL3RK,0!,

F(q,•,•)PBD (b,l)
G and a smooth function germaPB̄(q,b,l)

G , where B̄(q,b,l)
G denotes the space o

invariant function germs belonging tôb1 ,...,bL&2E (q,b,l)
G , such that the following diagram

commutes:

and

F15F2+F1a.

We say thatF1 , F2 areG equivalent if under the conditions introduced above,

aPB̂~q,b,l!
G F1 ,

where B̂(q,b,l)
G F1 , denotes the space ofG-invariant function germs belonging tôb1 ,...,bL&2

E (q,b,l)
G 1^]F1 /]b1 ,...,]F1 /]bL&2E (q,b,l)

G .

Remark IV.3:
J. Math. Phys., Vol. 38, No. 10, October 1997
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~A! If m is trivial then B(q,b,l)
G 5^b1 ,...,bL&2E (q,b,l)

G , and

B̂~q,b,l!
G F15^b1 ,...,bL&2E ~q,b,l!

G 1 K ]F1

]b1
,...,

]F1

]bL
L 2

E ~q,b,l!
G .

~B! Let F: (V3RL3RK,0)→R be an I-Morse family for an isotropic submanifold(I ,0),
codimI 5n1L. Then(I ,0) is an intersection of L11 Laqrangian submanifolds defined by th
following Morse families:

F̄0~q,l!5F~q;l1 ,l2!, l5~l1 ,l2!PRL3RK,

F̄ i~q,m!5F~q;m1 ,...,0
i

,...,mL21 ,...,mL1K21!, i 51,...,L.

The group of equivalences of I-Morse families defined in Ref. 1 keeps all these Lagra
submanifolds identical. This group instead of BD (b,l) contains the space of diffeomorphism
preserving the hyperplanes$(b,l): b i50% and the L-dimensional cornerH5$bPRL:b i>0,
i 51,...,L% in RL3RK. It is a subgroup of the group of equivalences defined above (cf. Defin
IV.2).

One can easily check that the corresponding two isotropic submanifolds define
G-equivalentI -Morse familiesF1 , F2 are identical. Exactly as in the nonequivariant case we
prove the following result.

Proposition IV.4: Two G-invariant I-Morse families Fj : (V3RL3RK,0)→R, ( j 51,2) gen-
erate equivalent G-invariant isotropic submanifolds if and only if there is a G-equivariant dif
morphism germf: (V,0)→(V,0), a G-invariant function germ g:(V,0)→R such that F1
+(f,idRL3RK)1g+p1 and F2 are G equivalent.

The group ofb equivalences will be denoted byI RG
1 . This is an equivalence group we ca

operate with using the standard lines of infinitesimal stability theory~cf. Ref. 11!. Now we
describe the tangent space for this equivalence relation.

Let $a1 ,...,a r% denote a generating set for theE (q,b,l)
G moduleJp2

G consisting of germs of

G-equivariant vector fields along the projectionp2 :V3RL3RK→RL3RK tangent toL. These
areG-equivariant vector fields of the form

(
i 51

L

ai~q,b,l!
]

]b i
1(

j 51

K

bj~q,b,l!
]

]l j
,

with aiPB(q,b,l)
G . Let $g1 ,...,gs% denote a generating set for theE q

G moduleJq
G of germs of

G-equivariant vector fields on (V,0). We will regard the direct sum,

LI RG
15Jp2

G
% Jq

G
% B̄~q,b,l!

G
% E q

G ,

as the Lie algebra of the groupI RG
1 . The first two summands ofLI RG

1 correspond to infini-
tesimal coordinate changesF, f and the two next summands correspond to functionsa andg as
in Definition IV.2 and Proposition IV.4.

For anyG-invariant I -Morse family we define the tangent space,

TG
I ~F !5LI RG

1F5E ~q,b,l!
G $a1F,...,a rF%1E q

G$g1F,...,gsF,1%1B̄~q,b,l!
G .

The first term is the ideal inE (q,b,l)
G generated by$a1F,...,a rF%, the second term is theE q

G

submodule ofE (q,b,l)
G , thought of as theE q

G module, generated by$g1F,...,gsF,1% the third term

is the ideal inE (q,b,l)
G .

We define the infinitesimal stability forG-invariant I -Morse families in the following way.
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Definition IV.5: A G-invariant I-Morse family function germ F:(V3RL3RK,0)→R is infini-
tesimally IRG

1 stable iff

TG
I ~F !5E ~q,b,l!

G .

Let f Pm(b,l) . We define the corresponding analog of the Jacobi ideal off for the group of
equivalences inRL3RK preservingL,

dL,K~ f !5 K b1

] f

]b1
,...,b i

] f

]b j
,...,bL

] f

]bL
,

] f

]l1
,...,

] f

]lK
L E ~b,l! .

We say thatf has a finite codimensionc if

cod~ f !5c5dimR

m~b,l!

dL,K~ f !1^b1 ,...,bL&2E ~b,l!
,`.

If c is finite thenc is the minimal dimension of a versal unfolding off . If g1 ,...,gcPm(b,l) are
polynomial representations of a generating set of

m~b,l!

dL,K~ f !1^b1 ,...,bL&2E ~b,l!
,

then theI R-minimal unfolding of f is written as follows:

H~x,b,l!5 f ~b,l!1(
i 51

c

xigi~b,l!.

We see that iff PE (b,l)
G , thendL,K( f ) is invariant under the natural action ofG on E (b,l) .

Then we have the following result.
Proposition IV.6: If F is an infinitesimally IRG

1 stable I-Morse family, then FuVG3RL3RK is a
RG-versal unfolding of F(0,• ,• ) in m(b,l)

G .
Proof: IRG

1-infinitesimal stability ofF gives us the following surjective mapping:

E q
G$g1F,...,gsF,1%→

E ~q,b,l!
G

E ~q,b,l!
G $a1F,...,a rF%1B̄~q,b,l!

G .

This implies that the mapping,

E q
G$g1F,...,gsF,1%

~mqE ~q,b,l!!
GùE q

G$g1F,...,gsF,1%
~6!

→
E ~q,b,l!

G

E ~q,b,l!
G $a1F,...,a rF%1~mqE ~q,b,l!!

G1B̄~q,b,l!
G ~7!

is also surjective. If$q1 ,...,qn% denote coordinates onVG and f (• ,• )5F(0,• ,• ), then the above
condition can be written in the form

RH ]F

]qi
U

q50
J

i 51,...,a

5
M~b,l!

G

dL,K~ f !G1B̄~b,l!
G ,

which is the infinitesimal criteria ofI RG
1 versality. Q.E.D.
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For G-invariant infinitesimallyI RG
1-stable I -Morse families we have the following usefu

criteria.
Proposition IV.7: Suppose G is a finite group and F: V3RL3RK→R is IRG

1-infinitesimally
stable G-invariant I-Morse family, then the following applies.

~1! FuV3$0%3RK is G-invariantRG
1-infinitesimally stable Morse family (cf. Ref. 4).

~2! Let f̃(0)5F(0,0,• )PEl
G ; f(•,•)5F(0,•,•) is finitely determined. Let

U5
m~b,l!

dL,K~ f !1^b1 ,...,bL&2E ~b,l!
, dim U,`.

U is endowed with the induced action of G. Then there exists a G-invariant unfolding,

F :U3RL3RK→R,

such that for any representation of G with representation space V and any G-invariant unfo
F: V3RL3RK→R of f there exists a G-invariant mapf: (V,0)→(U,0) such that F(q,b,l) is IRG

1

equivalent toF „f(q),b,l….
F is IRG

1-infinitesimally stable if and only if F is IRG
1 equivalent to the unfolding,

F „f~q!,b,l…5F̄ „f~q!,l…1(
i 51

L

b ic i„f~q!,l)…, c iPE ~u,l!
G ,

wheref: (V,0)→(U,0) is an infinitesimallyRG-stable map, F̄ :U3RK→R is a trivial extension of
the G-invariant versal unfolding of f˜ (•) in the spaceEl constructed in Ref. 16.

V. Z2 SYMMETRY

Let G5Z25$1,g% andZ2 acts onV>Rn by

g~x1 ,...,xr ,y1 ,...,ys!5~2x1 ,...,2xr ,y1 ,...,ys!, n5r 1s.

Z2 will also act nontrivially onRL and RK. Let F:V3RL3RK→R be a G-invariant I -Morse
family. The numberK1L will be called corank of theI -Morse familyF ~we already assumed tha
F is minimal!. In what follows we assumeK1L52 and at first we assume thatm is trivial, i.e.,
g(b,l)5(b,2l).

Proposition V.1: The generic corank 2, Z2-invariant I-Morse families on V3R3R with the
trivial m action ofZ2 are equivalent to families of the form

F~x,y,b,l!5bl2k1l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

ya1t21bl2a221(
j 51

t21

f j~x,y!l2 j 21

1 (
b51

k tk

f̄b~x,y!bl2b21, ~8!

where t211min$t,k%<s, k tk5min$t,k11%211d tk , d tk51 if t 5k, d tk50 if tÞk, or

F~x,y,b,l!5l2k1 (
i 51

k21

yil
2i1 (

a51

k

ya1k21bl2a221 (
j 51

k21

c j~x,y!l2 j 211 (
b51

k21

c̄b~x,y!bl2b21,

~9!

where2k21<s andf j , f̄b , c j , c̄b are smooth functions,
J. Math. Phys., Vol. 38, No. 10, October 1997
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f j~x,y!5 (
c51

r

k̃ jc~x,y!xc , f̄b~x,y!5 (
c51

r

k̄bc~x,y!xc ,

~10!

c j~x,y!5 (
c51

r

r jc~x,y!xc , c̄b~x,y!5 (
c51

r

r̄bc~x,y!xc ,

and k̃ jc , k̄bc , r jc , r̄bc are Z2-invariant functions of x and y.
Proof: We know that the restrictionFuVZ23R3R of the genericZ2-invariant I -Morse family

must be a germ ofI RZ2
-versal unfolding off (b,l)5F(0,b,l). Here I RZ2

denotes the group

BD (b,l)
Z2 of Z2-equivariant diffeomorphisms ofR3R. Thus, genericZ2-invariantI -Morse families

of corank 2 will be represented by unfoldings ofK2t
2k : f (b,l)5bl2k1l2t and F2p11 : f (b,l)

5l2p ~simple orbits of the action of the groupBD (b,l)
Z2 in the space ofZ2-invariant functions on

R3R!. By Proposition IV.7 and straightforward calculations they will be equivalent to the fa
lies ~based on the versal unfoldings ofK2t

2k andF2p11!

F~x,y,b,l!5bl2k1l2t1(
i 51

t21

d i~x,y!l2i1 (
a51

min$t,k%

da1t21~x,y!bl2a22

1(
j 51

t21

f j~x,y!l2 j 211 (
b51

k tk

f̄b~x,y!bl2b21, ~11!

wherek tk5min$t,k11%211dtk , and

F~x,y,b,l!5l2p1 (
i 51

p21

g i~x,y!l2i1 (
a51

p

gp211a~x,y!bl2a22

1 (
j 51

p21

c j~x,y!l2 j 211 (
b51

p21

c̄b~x,y!bl2b21, ~12!

wheref j , f̄b , c j , c̄b are expanded in~10! and k jc , k̄bc , r jc , r̄bc , d i , g j are Z2-invariant
functions ofx andy.

Because the restriction ofF to VZ23R3R (VZ25$(0,...,0,y1 ,...,ys)%) is RZ2
versal, hence

the mappingsd andg are submersions. This implies that we can choose coordinates (y1 ,...,ys) so
that d i5yi andg j5yj , in both families~11!, ~12!. Q.E.D.

Using the similar methods and arguments~as we used above!, we can prove the completing
result for the nontrivialm action ofZ2 , g(b,l)5(2b,2l).

Proposition V.2: The generic corank 2, Z2-invariant I-Morse families on V3R3R with the
nontrivial m action ofZ2 are equivalent to families of the form

F~x,y,b,l!5bl2k211l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

f̄a~x,y!bl2a221(
j 51

t21

f j~x,y!l2 j 21

1 (
b51

min$t,k%21

yt211bbl2b21, ~13!

where t221min$t,k%<s, or
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F~x,y,b,l!5l2k1 (
i 51

k21

yil
2i1 (

a51

k

c̄a~x,y!bl2a221 (
j 51

k21

c j~x,y!l2 j 211 (
b51

k21

yb1k21bl2b21,

~14!

where2k22<s andf j , f̄b , c j , c̄b are smooth functions,

f j~x,y!5 (
c51

r

k̃ jc~x,y!xc , f̄b~x,y!5 (
c51

r

k̄bc~x,y!xc ,

~15!

c j~x,y!5 (
c51

r

r jc~x,y!xc , c̄b~x,y!5 (
c51

r

r̄bc~x,y!xc ,

and k̃ jc , k̄bc , r jc , r̄bc are Z2-invariant functions of x and y.
The former Proposition V.1 gives us the prenormal form for genericZ2-invariant I -Morse

families of corank 2. Now, under some additional conditions, we can derive the special infin
mally stable normal forms.

Proposition V.3: If r>s11 then genericZ2-invariant I-Morse families of corank 2 with
trivial m are infinitesimally stable and equivalent to trivial extensions of the following familie

l2k1 (
i 51

k21

yil
2i1 (

a51

k

yk211abl2a221 (
j 51

k21

xjl
2 j 211 (

b51

k21

xk211bbl2b21,

2k21<s, and

bl2k1l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

yt211abl2a221(
j 51

t21

xjl
2 j 211 (

b51

k tk

xt1bbl2b21,

t211min$t,k%<s.
Proof: In the considered caser>t211k tk , s>t211min$t,k%, theZ2-equivariant, infinitesi-

mally RZ2
-stable mappings,

C~x,y!5„y1 ,...,y2k21 ,c1~x,y!,...,ck21~x,y!,c̄1~x,y!,...,c̄k21~x,y!…PR4k23,

and

F~x,y!5„y1 ,...,yt211min$k,t% ,f1~x,y!,...,f t21~x,y!,f̄1~x,y!,...,f̄k tk
~x,y!…

PR2~ t21!1min$t,k%1k tk,

are submersions, and so may be reduced to the standard normal form and plugged into the
of Proposition V.1. Q.E.D.

In the similar way we get the normal forms in the case of nontrivial representationm.
Proposition V.4: If r>s11 then the generic corank 2, Z2-invariant I-Morse families with the

nontrivial m are infinitesimally stable and equivalent to the trivial extension of the follow
families:

bl2k211l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

xt211abl2a221(
j 51

t21

xjl
2 j 211 (

b51

min$t,k%21

yt211bbl2b21,

where t221min$t,k%<s, or
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l2k1 (
i 51

k21

yil
2i1 (

a51

k

xabl2a221 (
j 51

k21

xj 1kl
2 j 211 (

b51

k21

yb1k21bl2b21,

where2k22<s.
Remark V.5: We know that (Ref. 4) the swallowtail (which is a Z2-symmetric set) cannot b

realized as a Z2-symmetric caustic. In contrast, the Whitney’s cross-cap (which is a Z2-symmetric
set illustrated in Fig. 1) can be realized as a Z2-symmetric quasicaustic. Its generating family m
be reduced to the following form:

l31x1b1x2bl2y1l,

with the action (b,l)→(2b,l).
As an interesting illustration (seeFig. 2! in small dimensions, we present the Z2-symmetric

sectionSF5QFù$y15y250% through the quasicaustic of the family,

FIG. 1. Z2-symmetric Whitney’s cross-cap.

FIG. 2. Z2-symmetric sectionSF5QFù$y15y250% through the quasicausticQF of ~16!.
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l41y1l21y2bl1x1b1x2bl21x3l, ~16!

SF5$~x1 ,x2 ,x3!:x152sl2,x25s,x3524l3, ~s,l!PR2%.
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Superintegrability on the two-dimensional hyperboloid
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In this work we examine the basis functions for classical and quantum mechanical
systems on the two-dimensional hyperboloid that admit separation of variables in at
least two coordinate systems. We present all of these cases from a unified point of
view. In particular, all of the special functions that arise via variable separation
have their essential features expressed in terms of their zeros. The principal new
results are the details of the polynomial bases for each of the nonsubgroup bases,
not just the subgroup spherical coordinate cases, and the details of the structure of
the quadratic symmetry algebras. ©1997 American Institute of Physics.
@S0022-2488~97!03610-4#

I. INTRODUCTION

In a previous article1 we have studied the so-called superintegrable Hamiltonian system
two-dimensional Euclidean space and the two-dimensional sphere. In that article we showe
to compute the basis functions for all the bound state wave functions for all the possible coor
systems for which separation was possible. We recall that the notion of a superintegrable
relates to a potential for which the solution via separation of variables is possible in more tha
coordinate system.2–4 In two dimensions there remains the case of the two-dimensional hype
loid. Here we investigate this case, making suitable use of what we already know from Ref
and earlier papers such as Refs. 7–16. The main emphasis will be on those features that a
together with the role that the quadratic algebra has in these computations. There are four
tials listed in Ref. 6 that permit multiple variable separation on the hyperboloid, but we limi
attention to the first three, since the remaining potential does not give rise to bound stat~In
distinction to the case for Euclidean space and the sphere, a complete listing of distinct su
tegrable systems on the two-dimensional hyperboloid has not yet been achieved. For som
tional superintegrable systems, see Ref. 5.! We study each of the three cases systematically.
will consider two examples of expansions relating bases associated to different coordina
tems. In the first example we use the structure of the quadratic algebra relations to comp
expansion; in the second we compute directly.

For each of the superintegrable systems we observe that, for the discrete spectrum
quantum mechanical Hamiltonian, one can consider this operator as acting on a space of
mials in appropriate variables.17 Each eigenvalue is multiply degenerate. However, every se
rable coordinate system gives rise to an orthonormal basis of polynomial eigenfunctions
space and breaks the degeneracy. These bases are characterized as simultaneous eigenfu
second-order symmetry operators for the Hamiltonian.18 We show that under commutation th
symmetry operators close to form a quadratic algebra,11 and we determine the structure of th
algebra. The superintegral systems are of two types: the ‘‘normal type’’ in which the ori
Hamiltonian is diagonalized, and the ‘‘conformal type’’ in which the Hamiltonian is modified
multiplying the eigenvalue equation by a function and considering the energy as fixed
0022-2488/97/38(10)/5416/18/$10.00
5416 J. Math. Phys. 38 (10), October 1997 © 1997 American Institute of Physics
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modified equation is then interpreted as the eigenvalue equation for a Hamiltonian on a con
Euclidean space with a ‘‘charge’’ as the eigenvalue.

II. SOLUTIONS OF THE SCHRÖDINGER EQUATION

The two-dimensional hyperboloid is characterized via the Cartesian coordinatesv1 ,v2 ,v3 ,
wherev1

22v2
22v3

251, v1.1. The notionv1.1 means that we consider only one sheet of
double-sheet hyperboloid. Throughout this paper we will consider the Schro¨dinger equation on the
hyperboloid in the form (\5m51)

HC[~2 1
2DLB1V!C5EC, ~1!

whereV is the potential function and the Laplace–Beltrami operatorDLB can be written as

DLB5K3
21K2

22M1
2 ~2!

HereK3 ,K2 ,M1 generate the Lie algebraso(2,1),18

K35w1]w2
1w2]w1

, K25w1]w3
1w3]w1

, M15v2]v3
2v3]v2

. ~3!

We now consider the potentialsV for which ~1! is superintegrable, see Table I.

TABLE I. Separable coordinates for three superintegrable systems.

PotentialV(v) Coordinate system

Spherical

Equidistant

V1~v!5
a

2

v2
21v3

2

v1
2 1

1

2
Fk2

22
1
4

v2
2 1

k3
22

1
4

v3
2 G

Elliptic

Hyperbolic

Spherical

V252
av1

Av2
21v3

2
1

1

4Av2
21v3

2 S k1
22

1
4

Av2
21v3

21v2

1
k2

22
1
4

Av2
21v3

22v2
D Elliptic–parabolic

Elliptic II

Semihyperbolic

Horicyclic

V35
1

2 F a

~v12v2!2 1V2
114v3

2

~v12v2!42l
v3

~v12v2!3G
Semicircular–parabolic
J. Math. Phys., Vol. 38, No. 10, October 1997
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A. First potential

The first potential considered in the paper6 is the singular oscillator potential,

V15
a

2

v2
21v3

2

v1
2 1

1

2 Fk2
22 1

4

v2
2 1

k3
22 1

4

v3
2 G , ~4!

wherea andk2,3 are constants witha.0, andk2,3.0. The corresponding Schro¨dinger equation
admits separable solutions in four coordinate systems: spherical, equidistant, elliptic, and
bolic. Unlike the corresponding oscillator system on the two-dimensional sphere and Euc
space, the potential~4! on the hyperboloid has a discrete and a continuous spectrum. The b
state solutions can be found as follows.

1. Spherical coordinates

Here,

v15cosht, v25sinh t cosw, v35sinh t sin w ~5!

„t.0,wP@0,2p)… and the potential~4! reads as

V1~t,w!5
a

2
1

1

2
F 1

sinh2 t
S k2

22 1
4

cos2 w
1

k3
22 1

4

sin2 w
D 2

k1
22 1

4

cosh2 t
G , ~6!

wherek15Aa1 1
4. Choosing the wave functionC in the form

C1~t,w!5~sinh t!21/2S~t!F~w!, ~7!

we go to the system of coupled differential equations in the Po¨schl–Teller form

d2S

dt2 1F Ẽ1
k1

22 1
4

cosh2 t
2

l22 1
4

sinh2 t
GS50, ~8!

d2F

dw2 1Fl22S k2
22 1

4

cos2 w
1

k3
22 1

4

sin2 w
D GF50, ~9!

where Ẽ52E1a2 1
4 and l is a spherical separation constant. The solution of the equation~9!

normalized in the regionwP@0,p/2# has the form2

F~w!5Fm
~6k3 ,6k2!

~w!5A2~2m116k26k3!m!G~11m6k21k3!

G~11m6k2!G~11m6k3!

3~sin w!1/26k3~cosw!1/26k2Pm
~6k3 ,6k2!

~cos 2w!,
~10!

with mPN, wherePn
(a,b) is the Jacobi polynomial.19 The separation constant is quantized as

l5~2m6k26k311!. ~11!

The positive sign atk2,3 has to be taken ifk2,3.1/2 and both positive and negative signs must
taken if 0,k2,3,1/2, so the functionF has a finite form.

The second~modified! Pöschl–Teller equation~8! was investigated by Frank and Wolf20 and
Barut et al.21 The bound state wave function is given by
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S~t![Sn
~l,k1!

~t !5Nn
~l,k1!

~sinh t!1/21l~coshl!2n2k111/2
2F1~2n,k12n;11l;tanh2 t!

5
n!G~11l!

G~11l1n!
Nn

~l,k1!
~sinh t!1/21l~cosht!1/22k1Pn

~l,2k1!
~cosh 2t!,

~12!

with n50,1,...@ 1
2(k12l21)# and a bound state solution is possible only fork12l.1. The wave

function Sn
(l,k1)(t) satisfies the orthogonality relation

E
0

`

Sn
~l,k1!

~t !S
n8

~l,k1!
~t !dt5dnn8

and the normalization factor has the form

Nn
~l,k1!

5
1

G~11l!
A2~k12l22n21!G~11l1n!G~k12n!

G~k12l2n!n!
. ~13!

Here, and in the remainder of this paper, the bound state wave functions are normalized
they form an orthonormal set with respect to the invariant measure on the hyperboloid~which in
spherical coordinates is sinht dt dw!.

The normalized total wave functionC1(t,w)[Cnm(t,w;k1 ,6k2 ,6k3) is given by~7!, ~10!,
~12!, and~13!. The quantized energy is

EN52
1

2 F ~2N2k16k26k312!22
1

4G1
a

2
, ~14!

whereN5m1n is the principal quantum number and the bound states occur for

0<N< 1
2~k17k27k322!. ~15!

Each solutionC1(t,w) satisfies the eigenvalue equation

L1C1[FM1
22~v2

21v3
2!S k2

22 1
4

v2
2 1

k3
22 1

4

v3
2 D GC1524S m1

16k26k3

2 D 2

C1 , ~16!

andL1 commutes withH.

2. Equidistant coordinates

Here,

v1cosha coshb, v25cosha sinh b, v35sinh a

@t1,2P(2`,`)# and the potentialV1 has the form

V1~a,b!5
a

2
2

1

2
F 1

cosh2 a
S k1

22 1
4

cosh2 b
2

k2
22 1

4

sinh2 b
D 2

k3
22 1

4

sinh2 a
G .

After putting

C2~a,b!5~cosha!21/2S~a!S~b!, ~17!

we go to the two modified Po¨schl–Teller equations,
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



-

hange

tential

5420 Kalnins, Miller, Jr., and Pogosyan: Superintegrability on the hyperboloid

                    
d2S

da2 1F Ẽ1
m22 1

4

cosh2 a
2

k3
22 1

4

sinh2 a
GS50, ~18!

d2S

db2 1F2m21S k1
22 1

4

cosh2 b
2

k2
22 1

4

sinh2 b
D GS50, ~19!

wherem is the equidistant separation constant. The normalized fora,bP@0,̀ ) bound state wave
functions have the form

S~b![Sn1

~6k2 ,k1!
~b!5A2~k17k22122n1!G~k12n1!n1!

G~k17k22n1!G~16k21n1!

3~sinh b!1/26k2~coshb!1/22k1Pn1

~6k2 ,2k1!
~cosh 2b!, ~20!

S~a![Sn2

~6k3 ,m!
~a!5A2~m7k32122n2!G~m2n2!n2!

G~m7k32n2!G~16k31n2!

3~sinh a!1/26k3~cosha!1/22mPn2

~6k3 ,2m!
~cosh 2a! ~21!

and the separation constant is

m5~k17k222n1!,

with n150,1,...@ 1
2(k17k221)# and n250,1,...@ 1

2(m7k321)#. The bound state energyEN is
given by ~14!, where now the principal quantum numberN is N5n11n2 and satisfies the equa
tion ~15!. The total wave functionC2(a,b)[Cn1n2

(a,b;k1 ,6k2 ,6k3) satisfies

L3C2[F2K3
22~v1

22v2
2!S k1

22 1
4

v1
2 2

k2
22 1

4

v2
2 D GC2524S n11

12k16k2

2 D 2

C2 , ~22!

where@L3 , H#50.
We can introduce also the second equidistant system of coordinates by the interc

v2↔v3 . Then the total bound state wave functionC3(ã,b̃)[C ñ1 , ñ2
(ã,b̃;k1 ,6k2 ,6k3) may be

obtained from~20! and ~21! by the interchangek2↔k3 and satisfies

L2C35F2K2
22~v1

22v3
2! S k1

22 1
4

v1
2 2

k3
22 1

4

v3
2 D GC352S ñ11

12k16k3

2 D 2

C3 , ~23!

where@L2 , H#50.
We can call these three bases that are the eigenfunctions of the Hamiltonian for the po

V1 and of each of the operators (L1 ,L2 ,L3) the fundamental basesfor the potential of a singular
oscillator on the two-dimensional hyperboloid. Note also that

L11L21L352H2~2k1
21k2

21k3
221!. ~24!
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3. Elliptic coordinates of type one

For the remaining elliptic-type coordinates it is convenient to introduce the quantities

s1
25

~m2ej !~n2ej !

~ej2ek!~ej2el !
, i , j ,k51,2,3, and Þ, ~25!

For elliptic coordinates of type one, the coordinates on the hyperboloid are given by

v1
25s1

2, v2
252s2

2, v3
252s3

2,

wheree1,e2,n,e3,m. Rather than express the wave functions in the separable coordinam,
n, we will use a Niven equations approach,22 in which the separated solutions are expressed
Cartesian coordinates and the critical information is the location of the zeros of these solu
The bound state wave functions are

C45~P l 51
3 v l

kl11/2
!P j 51

q F v1
2

u j2e1
2

v2
2

u j2e2
2

v3
2

u j2e3
G , ~26!

where theu j satisfy

k111

u j2e1
1

k211

u j2e2
1

k311

u j2e3
1 (

j Þm

2

um2u j
50.

These solutions satisfy the eigenvalue equations

~e3L31e2L21e1L1!C45S (
i , j ,lÞ

F22ki~ej1el !1eikjkl24eiej~kl11! (
m51

q
1

um2el
G

2
3

2
~e11e21e3!DC4 . ~27!

4. Elliptic coordinates of type two

The coordinates on the hyperboloid are given by

v1
25s2

2, v2
252s1

2, v3
252s3

2,

wheren,e1,e2,e3,m. The bound state wave functions are

C55~P l 51
3 v l

el11/2
!P j 51

q F2
v2

2

u j2e1
1

v1
2

u j2e2
2

v3
2

u j2e3
G , ~28!

wheree15k2 , e25k1 , e35k3 . Theu j satisfy

e111

u j2e1
1

e211

u j2e2
1

e311

u j2e3
1 (

j Þm

2

um2u j
50.

The eigenvalue equation is
J. Math. Phys., Vol. 38, No. 10, October 1997
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~e3L31e2L11e1L2!C55S (
i , j ,lÞ

F22e i~ej1el !1eie je l24eiej~e l11! (
m51

q
1

um2el
G

2
3

2
~e11e21e3!C5 . ~29!

5. Quadratic algebra relations

Here, we define the operatorR by the equality

R5@L1 , L2#5@L3 , L1#5@L2 , L3#, ~30!

and can verify thatR satisfies

@L j ,R#524$L j ,Lm2Ll%18@~ 3
22km

2 !Lm2~ 3
22kl

2!Ll #18~kl
22km

2 !,

where j ,m,l is an even permutation of 1,2,3. In addition,

R25 8
3$L1 ,L2 ,L3%216~12k1

2!L1
2216~12k2

2!L2
2216~12k3

2!L3
21 52

3 ~$L1 ,L2%1$L2 ,L3%

1$L1 ,L3%!1 1
3„~602176k1

2!L11~602176k2
2!L21~602176k3

2!L3…164k1k2k3

148~k1k21k2k31k1k3!1 32
3 ~k11k21k3!, ~31!

where$A,B%5AB1BA and

$A,B,C%5ABC1ACB1BCA1BAC1CAB1CBA.

B. Second potential

The singular Coloumb–Kepler potential is

V252
av1

Av2
21v3

2
1

1

4Av2
21v3

2 S k1
22 1

4

Av2
21v3

21v2

1
k2

22 1
4

Av2
21v3

22v2
D , ~32!

wherea.0 andk1,2.0. The Schro¨dinger equation for this potential can be solved for the bou
state wave functions in four coordinate systems: spherical, elliptic–parabolic, elliptic II, sem
perbolic.

1. Spherical coordinates

In coordinates~5! we have

V2~t,w!52a coth t1
1

8 sinh2 t
S k1

22 1
4

cos2~w/2!
1

k2
22 1

4

sin2~w/2!
D . ~33!

Choosing the wave functions in form,

C15~sinh t!21/2S~t!Fm
~6k2 ,6k1!

~w/2!, ~34!

where the wave functionFm
(6k2 ,6k1)(w/2) normalized forwP@0, p# is given by ~10! and m

PN. After separation of variables we come to the equation
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



tes in

5423Kalnins, Miller, Jr., and Pogosyan: Superintegrability on the hyperboloid

                    
d2S

dt2 1F Ẽ12a coth t2
l22 1

4

sinh2 t
GS50, ~35!

whereẼ52E2 1
4. This equation was first introduced by Manning and Rosen23 to study the vibra-

tions of diatomic molecules.
For the bound state wave function normalized in regiontP@0,̀ ), we have

S~t![Snm~t!

5
2m116k1/26k2/2

G~2m126k11k2!
F ~sN

2 2N2!

N

G~n12m126k16k2!

n!

G~sN1m116k1/26k2/2!

G~sN2m7k1/27k2/2!
G1/2

3~sinh t!m116k1/26k2/2e2t~sN2n!

32F1S 2n,m116
k1

2
6

k2

2
1sN ;2m126k16k2 ;

2

11coth t D ,

wheresN5a/N andN5n1m116k1/26k2/2. The quantisation condition for the energy is

EN52
N22 1

4

2
2

a2

2N2 , ~36!

and the bound states occur for

0<n1m<FAa7
k1

2
7

k2

2
21G . ~37!

The solutionsC1[Cnm(t,w;6k16k2) are eigenfunctions of the symmetry operator

L5M1
22

1

2
Av2

21v3
2 S k1

22 1
4

Av2
21v3

21v2

1
k2

22 1
4

Av2
21v3

22v2
D , ~38!

with eigenvalue2@m11/2(16k16k2)#2.

2. Semihyperbolic coordinates

Here

v15
11xy

A~y221!~x221!
, v25

y2x

A~y221!~x221!
, v35

2Axy

A~y221!~x221!
,

wherex,yP@0,1). @Note that these coordinates are connected with corresponding coordina
Ref. 6 by the transformationm152x/(x221) andm252y/(y221)#. The potentialV2 now has
the form

V2~x,y!52a
xy11

x1y
1

1

8

~x221!~y221!

x1y
S k1

22 1
4

y
1

k2
22 1

4

x
D .

The computation of the bound state wave functions proceeds as follows. The Schro¨dinger equation
has the form
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Ax~x221!
]

]x
Ax~x221!

]C

]x
1Ay~y221!

]

]y
Ay~y221!

]C

]y
1F2ES x

x221
1

y

y221D
1aS x211

x221
1

y211

y221D2
xy21

4
S k1

22 1
4

y
1

k2
22 1

4

x
D GC50. ~39!

Choosing the wave function in the formC2(x,y)5X(x)Y(y), after the separation of variables w
have two equations:

x~x221!Fd2X

dx2 1
1

2 S 1

x
1

1

x21
1

1

x11D dX

dxG
1F1

2
~2a1l!1

2a

x221
2

1

4 S k1
22

1

4D x1
k2

22 1
4

4x
1

2Ex

x221
GX50,

y~y221!Fd2Y

dy2 1
1

2 S 1

y
1

1

y21
1

1

y11D dY

dyG
1F1

2
~2a2l!1

2a

y221
2

1

4 S k2
22

1

4D y1
k1

22 1
4

4y
1

2Ey

y221
GY50,

~40!

wherel is a semihyperbolic separation constant. The first of these equations can be sol
follows. Looking for solutions of the form

X5x~1/2!~1/26k2!~x21!2~1/4!~2p116k16k2!1a~2p126k16k2!21

3~x11!2~1/4!~2p116k16k2!2a~2p126k16k2!21
P j 51

p ~x2j1!, ~41!

we see that the zerosj i satisfy

16k2

j i
1~16k1!j i22(

j Þ i

j ij j21

j i2j j
2

2a

p116k1/26k2/2
50, i 51,...,p. ~42!

A similar solution for the equation iny can be obtained via the substitution

Y5y~1/2!~1/26k1!~y21!2~1/4!~2p116k16k2!1a~2p126k16k2!21

3~y11!2~1/4!~2p116k16k2!2a~2p126k11k2!21
P j 51

p ~y2z i !. ~43!

The zeros satisfy

16k1

z i
1~16k2!z i22(

j Þ i

z iz j21

z i2z j
2

2a

p116k1/26k2/2
50, i 5 i ,...,p. ~44!

The separation constantl has the value
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l52~16k1!~j11•••1jp!24a
p6k2/27k1/2

2p126k16k2

522~16k2!~z11•••1zp!14a
p6k1/27k2/2

2p126k16k2
. ~45!

The equality of these two expressions can be seen by noting that the equations for the zeros
obtained from each other via the substitutionsk1↔k2 ,j i↔1/z i . The symmetry operator with
eigenvaluel is

M52A21
v1v3

2

2Av2
21v3

2 F k1
22 1

4

~Av2
21v3

21v2!2
2

k2
22 1

4

~Av2
21v3

22v2!2G , ~46!

whereA2 is a component of the two-dimensional Runge–Lenz vector,24

Ai5
1

2
$Ki ,M1%1

av i

Av2
21v3

2
, i 52,3.

3. Elliptic parabolic coordinates

Here we have

v15
cosh2 a1cos2 u

2 cosha cosu
, v25

sinh2 a2sin2 u

2 cosha cosu
, v35tanha tan u,

wherea.0, uP(2p/2,p/2). The potential in these coordinates has the form

V2~a,u!52a
cosh2 a1cos2 u

cosh2 a2cos2 u
1

1

2

cosh2 a cos2 u

cosh2 a2cos2 u
S k1

22 1
4

sinh2 a
1

k2
22 1

4

sin2 u
D .

Putting for the wave functionC3(a,u)5S(a)F(u), after separation of variables we get tw
equations in Po¨schl–Teller form:

d2S

da2 1F2m21
n22 1

4

cosh2 a
2

k1
22 1

4

sinh2 a
GS50, ~47!

d2F

du2 1Fm22S b22 1
4

cos2 u
1

k2
22 1

4

sin2 u
D GF50, ~48!

wherem is a elliptic parabolic separation constant and

b5A 1
422~E1a!, n5A 1

422~E2a!.

The separation constant is quantized as

m5~2n11b6k211!5~n7k12122n2!,

and introducing the quantum numberN5n11n2116k1/26k2/2 we go to the energy quantiza
tion ~36! and condition~37! for n11n2 .

The total bound state wave functionC3(a,u)[Cn1n2
(a,u) satisfies the orthogonality relatio
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E
0

`E
0

p/2

Cn1n2
~a,u!Cn

18n
28
~a,u!

cosh2 a2cos2 u

cosh2 a cos2 u
da du5dn1n

18
dn2 ,n

28
,

and has the form

Cn1n2
~a,u!5A sN

2 2N2

~2sN12n122n26k27k1!N
Sn2

~6k1 ,n!
~a!Fn1

~6k2 ,b!
~u!, ~49!

where the wave functionFn1

(6k2 ,b)(u) is given by~10! and

Sn2

~6k1 ,n!
~a!5A2~n7k12122n2!G~n2n2!n2!

G~n7k12n2!G~16k11n2!
~sinh a!1/26k1~cosha!1/22nPn2

~6k1 ,2n!

3~cosh 2a!. ~50!

The elliptic parabolic wave function~49! also satisfies the operator equation,

LCn1 ,n2
5S 2L2M22H2

k1
21k2

22 1
2

2
D Cn1n2

5S sN1n12n26
k2

2
7

k1

2 D 2

Cn1n2
. ~51!

4. Modified elliptic coordinate systems

v15cosh fA~r12a3!~r22a3!

~a32a2!~a32a1!
1sinh fA2

~r12a2!~r22a2!

~a22a1!~a22a3!
,

v25sinh fA~r12a3!~r22a3!

~a32a2!~a32a1!
1cosh fA2

~r12a2!~r22a2!

~a22a1!~a22a3!
,

v35A2
~r12a1!~r22a1!

~a12a2!~a12a3!
,

where

sinh f 5Aa12a2

a22a3
, coshf 5Aa12a3

a22a3
,

anda3,a2,r2,a1,r1 . The solution for the bound state wave functions is facilitated by m
ing the change of variables,

a25a11
1

4
~A11A2!2, a35a11

1

4
~A12A2!2,

r j5a11
1

4
~A1

2 1A2
2 !1

1

4
A1A2S Rj1

1

Rj
D , j 51,2.

In terms of these coordinates, the coordinates on the hyperboloid are given by
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v152
R1R211

2AR1R2

, v252
~A1

2 1A2
2 !~R1R211!12A1A2~R11R2!

2~A1
2 2A2

2 !AR1R2

,

v35
iA~A1R11A2!~A1R21A2!~A2R11A1!~A2R21A1!

~A1
2 2A2

2 !AR1R2

.

The corresponding bound state solutions are

C45~P l 51
3 Ul

kl11/2
!P j 51

g S U1
2

u j1L2
1

U2
2

u j1L1
1

U3
2

u j
D , ~52!

where

U1
25

~R11L2!~R21L2!

L2
2 21

, U2
25

~R11L1!~R21L1!

L1
2 21

, U3
25R1R2 ,

andL15A1 /A2 , L25A2 /A1 . The zerosu j satisfy

k111

um1L2
1

k211

um1L1
1

A1
412~E2a!11

um
1 (

j Þm

2

um2u j
50. ~53!

The symmetry operator characterizing this coordinate system is

L85~L11L2!~2L2H !22~L12L2!M , ~54!

with eigenvalues

m52[L2~k21A1
4 12~E2a!!1L1~k11A1

4 12~E2a!!1@L1k11L2k2#

3A 1
4 12~E2a!#1

3

2
~L11L2!1A1

4 12~E2a!F4L1~k111!

3 (
m51

n
1

um1L2
14L1~k211! (

m51

n
1

um1L1
G24A1

4 12~E2a! (
m51

n
1

um
. ~55!

5. Quadratic algebra relations

The commutation relations for the quadratic algebra with basisL, M , and H are, for R
5@L,M #,

@R,M #5224L213M2116HL1„1024~k1
21k2

2!…L1~k2
22k1

2!M

2„112~k1
21k2

2!…H1 1
2 ~k1

21k2
2!2 1

428a2, ~56!

@R,L#522$L,M %1~k1
22k2

2!L1M1 1
2 ~ 1

4 1a!~k1
22k2

2!,

R25216H2L116L3116L2H2 2
3 $M ,M ,L%18H$L,M %18~k1

21k2
226!L22 11

3 M22 44
3 H2

2 44
3 HL1 44

3 ML1~2~k1
21k2

2!21!$L,M %1~ 41
122

19
3 ~k1

21k2
2!14a224k1

2k2
2!L

1~ 10
3 28~k1

21k2
2!1~k1

22k2
2!~k1

22k2
2!14a2!)H1~2 11

6 1 11
3 ~k1

21k2
2!
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1 88
3 a~k2

22k1
2!!M1a2~2~k1

21k2
2!2 1

3!1 1
2 ~k1

22k2
2!~2~k1

21k2
2!21!a

2 1
16 1 7

12 ~k1
21k2

2!2 3
4 ~k1

41k2
4!2 13

6 k1
2k2

2.

C. Third potential

Here

V35
1

2 F a

~v12v2!2 1V2
114v3

2

~v12v2!42l
v3

~v12v2!3G .
The corresponding Schro¨dinger equation admits separable solutions in two coordinate syste

1. Horicyclic coordinates

v15
x21y211

2y
, v25

x21y221

2y
, v35

x

y
,

wherey.0, xP(2`,`).

2. Semicircular parabolic coordinates

v15
~j12j2!21 1

4

2A2j1j2

, v25
~j12j2!22 1

4

2A2j1j2

, v352
j11j2

2A2j1j2

,

wherej1.0,j2,0.
In the case of horicyclic coordinates for the potentialV3 , we get

V3~x,y!5 1
2@ay21V2y2~y214x2!2ly2x#,

and the Schro¨dinger equation assumes the form

y2S ]2

]x2 1
]2

]y2DC1@2E2ay22V2~y214x2!y21lxy2#C50. ~57!

PuttingC1(x,y)5c1(x)c2(y), we have the separation equations in the form

d2c1

dx2 1~2e1lx24V2x2!c150, ~58!

d2c2

dy2 1F ~e2a!2V2y22
A22 1

4

y2 Gc250, ~59!

wheree is the horicyclic separation constant and 2E5 1
42A2. Solving the first equation we hav

c1~x![cn1
5S 2V

p D 1/4 1

A2n1n1!
e2V~x2l/8V2!2

Hn1SA2VFx2
l

8V2G D ,

and the separation constant is
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e52V~2n111!2
l2

16V2 .

For the second equation we get

c2~y![cn2
~y!5A2

V

n2!G~A11!

G~A!G~11n21A!
~Vy2!A11/2e2~V/2!y2

Ln2

A ~Vy2!,

and

A5
l2

32V32
a

2V
2222N,

where N5n11n2 is the principal quantum number. HereHn(x) is a Hermite polynomial and
Lm

A(z) a Laguerre polynomial.19,25 The discrete spectrum occurs for

0<N<
1

4V S l2

16V22a D .

The total bound state wave functionC1(x,y)[Cn1n2
(x,y) is normalized by the condition

E
2`

`

dxE
0

` dy

y2 Cn1n2
~x,y!Cn

18n
28
~x,y!5dn1n

18
dn2n

28
.

The symmetry operatorL1 with eigenvaluee is

L1Cn1n2
~x,y![F ~K22M1!224V2

v3
2

~v12v2!2 1l
v3

v02v1
GCn1n2

~x,y!

5eCn1n2
~x,y!5F l2

16V222V2~2n111!GCn1n2
~x,y!. ~60!

Let us consider the semicircular parabolic coordinates. For the potentialV3 we obtain

V3~j1 ,j2!52j1j2@8a116l~j11j2!1128V2~j1
21j21j1j2!#.

The Schro¨dinger equation in semicircular parabolic coordinates has the form

2j1j2

j22j1
F S j1

]2

]j1
2 1

1

2

]

]j1
D 2S j2

]2

]j2
2 1

1

2

]

]j2
D GC2j1j2@8a116l~j21j1!

1128V2~j1
21j2

21j2j1!#C5EC. ~61!

Choosing the wave function asC25c1(j1)c2(j2) we obtain the two identical separation equ
tions in the form

j
d2c

dj2 1
1

2

dc

dj
1S m1

E

j
24aj28lj2264V2j3Dc50,

wherec5c1,2, j5j1,2 andm is the separation constant. The symmetry operator with eigenv
m is
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L2C2[
1

j12j2
Fj2S j2

]2

]j2
2 1

1

2

]

]j2
D 2j1S j2

]2

]j2
2 1

1

2

]

]j2
D GC2

1@4a~j11j2!18l~j1j21j1
21j2

2!164V2~j11j2!~j1
22j2

2!#C2

[F4$K3 ,K22M1%22a
v3

v12v2
2l

4v2
311

2~v12v2!224V2
v3~2v3

211!

~v12v2!3 GC25mC2 .

~62!

The bound state solutions to these equations are of the form

C2~j1 ,j2!5expF24V~j2
21j1

2!2
l

2V
~j11j2!G~j2j1!QP j 51

N ~j12bj !~j22bj !, ~63!

whereQ52a/4V1l2/64V32N2 3
4. If we make this substitution, the zerosbj satisfy

(
j Þ l

bl

bl2bj
2224N2

a

V
1

l2

16V32
2l

V
bl232Vbl

250, ~64!

and the eigenvaluesm have the form

m5232V(
l 51

N

bl1
l

2V
2

al

V22
l3

32V4 .

The energy is quantized according to the conditionE52Q(2Q21).

3. Quadratic algebra relations

@L12,L1#528lL1216V2L218al,

@L12,L2#596L1
21128aL118L22256V2H296V2132a2,

L12
2 564L1

31512V2HL118l$L1 ,L2%1128aL1
2116V2L2

2

116alL21704V2L1164a2L1232l2H212L21512aV2,

~65!

whereL125@L1 ,L2#.
The quadratic algebra contains useful information in its relations. Indeed, if we conside

orthonormal bound state wave functionswm and cn that satisfy L1wm5lmwm and L2cp

5rpcp , then the matrix with elementsDmn whereL2wm5(n51
N Dmnwn can readily be determined

as follows. The quadratic algebra relations imply that

~lm2lp!2Dmp5216V2Dmp18l~a2lm!dmp , ~66!

(
s51

N

DspDms~lp1lm22ls!58Dmp1~96lm
2 1128alm2256V2E196V2132a2!dmp ,

~67!

whereln52V(2n11)2(l2/16V2). The first of these conditions implies that the only nonze
components ofDpq areDm,m11 , Dm11,m , andDmm58l(a2lm). The second relation implies

V@Dp21,p
2 2Dp11,p

2 #512lp
2116alp232V2E112V214a218la28llp .
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There is no further information available about the matrix elementsDpq . Indeed, the matrix
elements are essentially determined by these relations. We could also consider the matrixC with
elements defined by

L1cp5 (
k51

N

Cpkck .

The quadratic algebra implies thatC satisfies certain relations, such as

Cnp~rp2rn!2596(
m51

N

CmpCnm1128aCnp1~rn2256V2E196V2132a2!dnp .

One interesting condition we deduce from this is that

96 Tr~C2!1128a Tr~C!1 (
n51

N

rn1N~32a22256V2E196V2!50,

where Tr is the trace function. We can also introduce the matrices that relate the various bas
we are considering viawm5(s51

N Amscs andcm5(s51
N Bmsws . We note, in particular, that

(
p51

N

DmpAps5rsAms, ~68!

i.e., the vectorv (s)5(A1s ,...,ANs) is an eigenvector ofD with eigenvaluesrs . In fact, the
eigenvalues ofD are solutions of the characteristic equation written in continued fraction fo

bN

aN
gN215bN212aN21gN-2]bN222aN22gN23] •••]b22a2g1 /b1 , ~69!

wherean5Dnn21 , bn5Dnn2r, andgn5Dnn11 .

III. A DIRECT INTERBASIS EXPANSION

As an example of a direct interbasis expansion we consider the singular oscillator~4!. For a
fixed value ofEN , we can write the equidistant wave function~17! in terms of the spherical wave
function ~7! as

Cn1n2
5 (

m50

n11n2

Wn1n2

nm ~k1 ,6k2 ,6k3!Cnm , ~70!

wheren11n25n1m. The connection between the equidistant (a,b) and spherical~t,w! coordi-
nates is

sinh a5sinh t, sinhb5
tanht cosw

A12tanh2 t cos2 w
. ~71!

Using spherical coordinates on the left side of expansion~70!, then, considering the limitt→` in
the so-obtained equation and the formula

lim
x→1

2F1~2n,a;b;x!→
G~b!G~b2a1n!

G~b2a!G~b1n!
, ~72!
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we see that dependence ont cancels on both sides of~70!. Now using the orthogonality condition
of the angular wave function~10!, we find the following expression for the interbasis coefficie
Wn1n2

nm :

Wn1n2

nm 5~21!mAG~k12n!G~11m6k26k3!m!n1!

G~11m6k2!G~11m6k3!n2!n!
An1n2

nm Bn1n2

nm , ~73!

where

An1n2

nm 5A~k17k22122n1!~2m6k26k311!G~k17k2212n222n1!

3A G~k12n1!G~k17k27k3212n222n1!G~k17k27k3212n22m!

G~k16k31n2!G~k17k22n1!G~k16k21n1!G~21n12m6k26k3!

and

Bn1n2

nm 5
1

2 E
0

p/2

~sin w!112n26k3~cosw!16k2Pn1

~k16k22122n1 ,6k2!
~cos 2w!Pm

~6k3 ,6k2!
~cos 2w!dw.

~74!

The integralBn1 ,n2

nm can be evaluated by means of25

E
21

1

~12x!t~11x!bPn
~a,b!~x!Pm

~r,b!~x!dx

5
2b1t11G~a2t1n!G~b111n!

m!n!G~11r!G~a2t!

G~11m1r!G~11t!

G~21n1b1t!

34F3S 2m,11m1b1r,11t,11t2a
11r,21n1b1t,12n1t2a U1D .

We thus obtain

Wn1n2

nm 5
~21!mG~k17k27k3212n2m!

G~21n1m6k26k3!G~16k3!
A~k17k22122n1!~2m6k26k311!

G~k17k27k3212n222n1!

3AG~11n16k2!G~k12n1!G~11n26k3!G~k17k27k3212n22m!

3A G~k17k2212n222n1!G~11m6k26k3!G~11m6k3!G~k12n!

G~k17k22n1!G~21n11n21m6k26k3!G~11m6k2!n1!n2!n!m!

34F3S 2m,11m6k26k3,11n26k3,21n212n16k26k32k1

16k3,21n11n26k26k3,21n11n26k26k32k1
U1D , ~75!

a closed form expression for the interbasis expansion coefficients. Note that the hypergeo
function 4F3 is of the Saalschutzian type.19,26
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On the algebraic structure of differential calculus
on quantum groups

O. V. Radko and A. A. Vladimirov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Moscow region 141980, Russia

~Received 7 March 1997; accepted for publication 10 April 1997!

Intrinsic Hopf algebra structure of the Woronowicz differential complex is shown
to generate quite naturally a bicovariant algebra of four basic objects within a
differential calculus on quantum groups—coordinate functions, differential
1-forms, Lie derivatives, and inner derivations—as the cross-product algebra of two
mutually dual graded Hopf algebras. This construction, properly taking into ac-
count Hopf-algebraic properties of Woronowicz’s bicovariant calculus, provides a
direct proof of the Cartan identity and of many other useful relations. A detailed
comparison with other approaches is also given. ©1997 American Institute of
Physics.@S0022-2488~97!03309-4#

I. INTRODUCTION

Noncommutative differential calculus on quantum groups initiated and thoroughly worke
by Woronowicz1 is up to now a subject of active discussions and development. Though me
some problems2–6 with nonclassical dimensionalities of spaces of higher-order differential fo
~which, in its turn, stimulated very interesting alternative approaches5,7–9!, original Woronowicz’s
construction remains highly attractive due to both its rich algebraic structure and useful ap
tions. Probably, the best known realization of this scheme is bicovariant differential calcul
the GLq(N) quantum groups.3,10,11

Closely related but somewhat parallel to Woronowicz’s construction is another project3,7,12,13

that, in particular, has produced a bicovariant algebra of four types of elements: functions
quantum group, differential forms, Lie derivatives along vector fields, and inner derivations
exact analogy with classical differential geometry. However, this scheme, as it is, does no
to be fully motivated by the Hopf-algebraic nature of noncommutative differential calculus.

In the present paper, we suggest an extension of Woronowicz’s axiomatics which na
involves Lie derivatives and inner derivations in a way that respects the Hopf algebra struct
the whole scheme. Actually, in the framework of Woronowicz’s noncommutative differe
calculus1,11 one deals with the differential complex

A→
d

G→
d

G2→••• , ~1!

whereA is a Hopf algebra~of functions on a quantum group!, G is its bicovariant bimodule,G2

[G∧G is its second wedge power, and so on. Exterior differential mapd:Gn→Gn11 is assumed
to obey the Leibniz rule

d~ab!5~da!b1adb ~2!

and the nilpotency conditiond+d50. Brzezinski14 has shown that

G∧8A% G % G2
% ••• ~3!

also becomes a~graded! Hopf algebra with respect to~wedge! multiplication and natural defini-
tions of coproduct and antipode. In what follows, we want to demonstrate how this Hopf stru
0022-2488/97/38(10)/5434/13/$10.00
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can be used to build an associative noncommutative bicovariant algebra containing fun
differential forms, Lie derivatives and inner derivations. Similar algebras have been introd
and studied by several authors3,12,13,15~and the idea to use a cross-product for constructing b
variant differential calculus is due to Ref. 7!. Probably, the closest to ours is the approach
Schupp.15 However, some of our results and, especially, starting points appear to be differen
we propose the construction described below as entirely Hopf-algebra motivated~and, we believe,
natural! new approach to the problem.

II. CROSS-PRODUCT OF DUAL HOPF ALGEBRAS

Notions of mutually dual Hopf algebras and their cross-product will actively be used thro
out this paper. Let us recall the corresponding terminology and basic definitions.7,16–19Let A be a
Hopf algebra with associative multiplication, coassociative coproduct

D:A→A^ A, D~a!8a~1! ^ a~2! , D~ab!5D~a!D~b!, ~4!

@we will use the notation

a~1! ^ a~2! ^ a~3!8~D ^ id !+D~a!5~ id ^ D!+D~a!, ~5!

and so on, for multiple coproducts#, a counit

e:A→C, e~ab!5e~a!e~b!, e~a~1!!a~2!5a~1!e~a~2!!5a, ~6!

and an invertible antipode

S:A→A, S~ab!5S~b!S~a!, D~S~a!!5S~a~2!! ^ S~a~1!!,

e~S~a!!5e~a!, S~a~1!!a~2!5a~1!S~a~2!!5e~a!. ~7!

AlgebraA* is a Hopf dual ofA with ^•,•&:A* ^ A→C being a duality map, if

^xy,a&5^x^ y,D~a!&, ^x,ab&5^D~x!,a^ b&,

^x,1&5e~x!, ^1,a&5e~a!, ^S~x!,a&5^x,S~a!&. ~8!

Here and belowa,bPA, x,yPA* .
One can define left and right covariant actionsA* xA andAvA* by

xxa5a~1!^x,a~2!&, avx5a~2!^x,a~1!&. ~9!

As usual, left and right actions imply

~xy!xa5xx~yxa!, av~xy!5~avx!vy, ~10!

whereas the covariance~or generalized differential property! means

xx~ab!5~x~1!xa!~x~2!xb!, ~ab!vx5~avx~1!!~bvx~2!!, ~11!

i.e., theA* -actions respect multiplicative structure ofA, or, in other words,A is a left ~right!
A* -module algebra.

One can use~e.g., left! action ~9! of A* on A to define on their tensor productA^ A* the
cross-product algebraA’A* .7,16,19 This is an associative algebra with the cross-multiplicat
rule given by
J. Math. Phys., Vol. 38, No. 10, October 1997
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xa5~x~1!xa!x~2![^x~1! ,a~2!&a~1!x~2! ~12!

~multiplication insideA and A* does not change!. A cross-product is not a Hopf algebra b
exhibits remarkableA* -module andA-comodule properties.7,20

First, A’A* is covariant under the rightA* -action of the following form:

right A* 2action: avx5a~2!^x,a~1!&, yvx5y^x,1&[e~x!y, ~13!

to be extended on arbitrary products inA’A* by the covariance condition

~pq!vx5~pvx~1!!~qvx~2!!, p,qP~A’A* !. ~14!

Surely, this needs to be consistent with Eq.~12!. Let us check it:

~ya!vx5~yvx~1!!~avx~2!!5e~x~1!!y^x~2! ,a~1!&a~2!5^x,a~1!&ya~2!

5^x,a~1!&^y~1! ,a~3!&a~2!y~2!5e~x~2!!^x~1! ,a~1!&^y~1! ,a~3!&a~2!y~2!

5^y~1! ,a~2!&~a~1!vx~1!!~y~2!vx~2!!5~^y~1! ,a~2!&a~1!y~2!!vx. ~15!

It is known19 that a covariant right actionFvH of a Hopf algebraH on an algebraF implies
a covariant left coactionF→H* ^ F of the Hopf dualH* on F. The correspondence is defined b

f vh5^h, f ~1!& f ~0!, ~16!

where a coaction is assumed to bef→ f (1)
^ f (0) with hPH, f (1)PH* , f , f (0)PF. For coactions,

‘‘covariant’’ still means ‘‘respecting multiplication.’’ This is expressed by

~ f g!→ f ~1!g~1!
^ f ~0!g~0!. ~17!

In our case, the leftA-coaction dual to Eq.~13! is

left A-coaction: a→D~a![a~1! ^ a~2! , y→1^ y. ~18!

The very last relation explains why the elements ofA* are called left-invariant in this situation
Further,A’A* is covariant under a leftA* -action and also under its dual rightA-coaction.

Explicit form of theA* -action is taken to be the well-known Hopf adjoint,

xx
ad

p5x~1!pS~x~2!!, pPA’A* , ~19!

which is evidently covariant:

xx
ad

~pq!5x~1!pqS~x~2!!5x~1!pS~x~2!!x~3!qS~x~4!!5~x~1!x
ad

p!~x~2!x
ad

q!. ~20!

Moreover, forp5aPA one shows7,21 that

xx
ad

a[x~1!aS~x~2!!5a~1!^x~1! ,a~2!&x~2!S~x~3!!5e~x~2!!a~1!^x~1! ,a~2!&5a~1!^x,a~2!&5xxa,
~21!

i.e., we recover the left action~9! and can rewrite Eq.~19! as

left A* -action: xxa5a~1!^x,a~2!&, xxy5x~1!yS~x~2!!. ~22!
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The corresponding dual rightA-coaction is deduced from the general rule19 analogous to Eq.~16!,
which relates left actionHxF with right coactionF→F ^ H* :

hxg5^h,g~1!&g~0!, g→g~0!
^ g~1!, hPH, g~1!PH* , g,g~0!PF, ~23!

and is explicitly given by7

right A-coaction: a→D~a![a~1! ^ a~2! , y→~eax
ad

y! ^ ea , ~24!

where$ea%, $ea% are dual bases inA andA* . Note that in both Eqs.~18! and~24! the coaction on
the A-part of A’A* is just a coproduct.

Being the covariant~co!actions, Eqs.~13!, ~18!, ~22!, and ~24! characterizeA’A* as a left
~right! ~co!module algebra. It is in this sense that the cross-product algebraA’A* may be called
bicovariant.7,20 Of course, this bicovariance is merely a reflection of the underlying Hopf alg
structure ofA.

III. WORONOWICZ’S DIFFERENTIAL COMPLEX AS A HOPF ALGEBRA

Let us now recall the basic definitions of the Woronowicz noncommutative differe
calculus.1,11 First, a basis$v i% of left-invariant 1-forms should be chosen in the bimoduleG in Eq.
~1!. Any elementrPG can be uniquely represented asr5aiv

i , aiPA. Next, one specifies
commutation relations between functions and differential forms,

v ia5~ f j
i xa!v j , ~25!

the coalgebra structure ofG,

D~v i !51^ v i1v j
^ r j

i , ~26!

and a differential mapd: A→G,

da5~x ixa!v i . ~27!

Herea is arbitrary element ofA, r j
i PA, x i and f j

i belong toA* . The Hopf-algebra consistency~or
bicovariance! conditions of the calculus are

~D ^ id !+D5~ id ^ D!+D⇒D~r j
i !5r i

k
^ r k

j , ~28!

v~ab!5~va!b⇒D~ f j
i !5 f k

i
^ f j

k , ~29!

D~va!5D~v!D~a!⇒~ f i
jxa!r k

i 5r i
j~av f k

i !, ~30!

d~ab!5~da!b1adb⇒D~x i !5x j ^ f i
j11^ x i , ~31!

D+d5~d^ 111^ d!+D⇒avx i5~x jxa!r i
j , ~32!

supplemented by the formulas

e~ f j
i !5d j

i , e~r j
i !5d j

i , S~ f k
j ! f i

k5d i
j , S~r i

k!r k
j 5d i

j , ~33!

which are obtained from the properties of counit and antipode. Woronowicz’s theory asser
every set of elements$r i

j , f i
j ,x i% obeying Eqs.~28!–~33! gives us an example of a bicovaria

differential calculus on the Hopf algebraA.
J. Math. Phys., Vol. 38, No. 10, October 1997
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For illustration, let us derive Eq.~32! ~cf. Ref. 22!,

D~da!5D~~x ixa!v i !5^x i ,a~3!&~a~1! ^ a~2!!~v j
^ r j

i 11^ v i !

5a~1!v
j
^ ~x ixa~2!!r j

i 1a~1! ^ ~x ixa~2!!v
i , ~34!

da~1! ^ a~2!1a~1! ^ da~2!5~x ixa~1!!v
i
^ a~2!1a~1! ^ ~x ixa~2!!v

i

5a~1!^x i ,a~2!&v
i
^ a~3!1a~1! ^ ~x ixa~2!!v

i

5a~1!v
i
^ ~a~2!vx i !1a~1! ^ ~x ixa~2!!v

i . ~35!

Independence of$v i% yields

a~1! ^ ~x ixa~2!!r j
i 5a~1! ^ ~a~2!vx j !. ~36!

Acting on both sides of this equation bye ^ id, we come to Eq.~32!.
Consider now the graded Hopf algebra~differential complex! G∧ given by Eqs.~1!, ~3! jointly

with its dual (G∧)* :

A →
d

G →
d

G2
→
d

...

l l l

A* ←
d*

G* ←
d*

G2* ←
d* ...

~37!

~vertical arrows indicate nonzero duality brackets implied by grading!. Analogously to Eq.~12!, an
associative algebraG 5G∧

’(G∧)* can be introduced using the cross-product construction@here
(G∧)* 5A* % G* % ...#. We placeG in the center of our approach. It means that we assume
following guiding principle:

All cross-commutation relations among functions, forms, Lie derivatives, and inner de
tions are to be chosen according to the rules~12! of a cross-product algebra. In other words
given Woronowicz’s calculus (and, hence, the Hopf algebraG∧), we then have to use only stan
dard Hopf-algebra techniqueG∧⇒(G∧)* ⇒G∧

’(G∧)* to construct the whole algebra of thes
four types of elements.

The resulting algebra is bicovariant by construction. Its bicovariance in the sens
Woronowicz’s left and right covariance1 is implied by the Hopf-algebra nature ofG∧,14 whereas
its bicovariance in the sense of Schupp, Watts, and Zumino,7,20 expressed by Eqs.~13!, ~18!, ~22!,
and~24!, proves to be an inherent feature of the cross-product~see Sec. II!, and stems, at the ver
end, from the same Hopf structure ofG∧.

IV. EXPLICIT FORM OF COMMUTATIONAL RELATIONS

It only remains to put all the relevant objects in the corresponding ‘‘boxes.’’ We already k
that functions and 1-forms are situated inA and G, respectively. Owing to Eq.~18!, one may
considerA* ~acting onA from the left! as an algebra of left-invariant~andA’A* —of general!
vector fields on a quantum groupA. It is generally accepted3,7,12,23that Lie derivativesLh along
a ~left-invariant! vector fieldhPA* must be related with its action on arbitrary elements ofG ,

Lh8hx
ad

, ~38!

which, due to Eq.~21!, reduces to ordinary left action~9! hxr for rPG∧.
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It seems also natural to relate inner derivations with elements ofG* .15 We propose the
following definition.24 Let g iPG* be determined by fixing its duality bracket with a gene
element ofG,

^g i ,av j&5e~a!d i
j , ~39!

and ^g i ,r&50 for rPA,G2,G3,... . Then we can define a basis of inner derivations$i i% as
follows:

i i8g ix
ad

~40!

@the same comment as for Eq.~38! applies#. Here we make no attempt to associate someih

PG* with any hPA* , for it looks unnatural in the context of our approach~see, however, Refs
12 and 25 for a discussion of such a possibility!.

The cross-product algebra we are seeking for, i.e., an algebra which includes four ty
differential-geometric objects,a, v i , Lh , andi i , is implicitly contained in the above definitions
In order to make it more transparent, we employ these definitions for obtaining a set of h
relations.

To begin with, the dual differential mapd* is introduced by

^d* u,r&8^u,dr&, rPG∧, uPG∧* . ~41!

It commutes with elements ofA* ,

d* +h5h+d* , i.e., d* ~hu!5hd* u, hPA* , ~42!

and transformsg i to x i ,

x i5d* g i . ~43!

Both formulas are derived via duality:

^d* ~hu!,r&5^hu,dr&5^h^ u,D~dr!&5^h,r~1!&^u,dr~2!&5^h,r~1!&^d* u,r~2!&

5^h^ d* u,D~r!&5^hd* u,r& ~44!

@we used̂ h,dr (1)&50#, and

^d* g i ,a&5^g i ,da&5^g i ,~x jxa!v j&5e~x ixa!5e~a~1!!^x i ,a~2!&5^x i ,a&. ~45!

Further, to verify that the coproduct ofg i is given by

D~g i !51^ g i1g j ^ f i
j ~46!

it suffices to compute its bracket with a general element inA^ G1G ^ A,

^D~g i !21^ g i2g j ^ f i
j ,a^ bvk1cvk

^ e&

5^g i ,abvk1cvke&2e~a!^g i ,bvk&2^g j ,cvk&^ f i
j ,e&

5^g i ,c~ f m
k xe!vm&2e~c!^ f i

k ,e&

5e~c!e~ f i
kxe!2e~c!^ f i

k ,e&50, ~47!
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where a,b,c,ePA. A comparison of Eq.~46! with Eq. ~26! displays a ‘‘left appearance’’ of
D(g i). Nevertheless, unlike thev i-case~26!, we prefer not to use the words ‘‘left invariance
here, to avoid confusion with the left invariance underA-coaction~18! appropriate to any objec
in G∧* . However, a similarity of Eqs.~46! and~26! enables one to show in a way quite analogo
to Ref. 1 that any elementuPG* is uniquely represented in the formu5hig i , hiPA* .

Now we are in a position to derive 10 commutation relations amongaPA, v iPG, x i

PA* , andg iPG* . Three of them are already present in the original Woronowicz theory. T
are internal multiplication rule inside the algebraA, Eq. ~25!, and the recipe how to~wedge!
multiply v i . The latter is unambiguously fixed in the framework of Woronowicz’s scheme1 but
generally cannot be written down in a closed form.2,11,13Another four,

x ia2ax i5~x jxa! f i
j , ~48!

g ia2ag i50, ~49!

x iv
j2v jx i5Clk

j v l f i
k , Clk

j 8^xk ,r l
j&, ~50!

g iv
j1v jg i5 f i

j , ~51!

are immediately obtained by applying the cross-product rule~12! to G∧
’(G∧)* . The remaining

commutation relations require the use of the duality arguments. Let us first derive a formu

g ih5~r i
jxh!g j[^h~2! ,r i

j&h~1!g j . ~52!

We have

^g ih,avk&5^g i ^ h,a~1! ^ a~2!v
k1a~1!v

j
^ a~2!r j

k&5^g i ,a~1!v
j&^h,a~2!r j

k&

5d i
je~a~1!!^h~1! ,a~2!&^h~2! ,r j

k&5^r i
kxh,a&5^r i

jxh,a~1!&e~a~2!!d j
k

5^r i
jxh,a~1!&^g j ,a~2!v

k&5^~r i
jxh!g j ,avk&. ~53!

Using Eqs.~42! and ~43!, we come to an analogous formula forx i ,

x ih5~r i
jxh!x j[^h~2! ,r i

j&h~1!x j . ~54!

This can be also proved by a direct calculation,

^x ih,a&5^x i ,a~1!&^h,a~2!&5^h,avx i&5^h,~x jxa!r i
j&5^h~1! ,x jxa&^h~2! ,r i

j&

5^h~1! ,a~1!&^x j ,a~2!&^h~2! ,r i
j&5^r i

jxh,a~1!&^x j ,a~2!&5^~r i
jxh!x j ,a&. ~55!

It is worth mentioning that the same technique leads to a helpful formula

f i
jh5~r i

kxhvS21~r m
j !! f k

m[^h~1! ,S21~r m
j !&h~2! f k

m^h~3! ,r i
k&, ~56!

which can be used, in conjunction with Eq.~54!, to deduce the structure relations of bicovaria
differential calculus in the form given in Refs. 11 and 26,

x ix j2s i j
lkx lxk5Ci j

k xk , s i j
kl8^ f j

k ,r i
l&, ~57!

s i j
mnf k

i f l
j5skl

i j f i
mf j

n , ~58!

xkf l
n5skl

i j f i
nx j , ~59!
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Cmn
i f j

mf k
n1 f j

i xk5s jk
mnxmf n

i 1Cjk
m f m

i . ~60!

Now we can list the remaining three commutational relations. One of them is Eq.~57!, and the
other two are as follows:

g ix j2s i j
lkx lgk5Ci j

k gk , ~61!

^g ig j ,avmvn&5e~a!~s i j
mn2d i

md j
n!. ~62!

Equation~61! stems from Eq.~52!, whereas Eq.~62! is verified by a straightforward calculation
Thus, we have completed the explicit construction of the cross-product algebra genera

a, v i , x i andg i .

V. CARTAN IDENTITY

Remarkably, this quantum algebra exhibits some features which exactly correspond
well-known classical relations. First, the Lie derivatives commute with exterior differentiatio

Lh+d5d+Lh , hPA* . ~63!

Really, prove it foraPA,

hxda5da~1!^h,a~2!&5d~hxa!. ~64!

Then, from

hx~db1•••dbn!5~h~1!xdb1!•••~h~n!xdbn!5d~h~1!xb1!•••d~h~n!xbn! ~65!

and the Leibniz rule it follows that

hx~d~adb1•••dbn!!5d~hx~adb1•••dbn!!, ~66!

which is exactly Eq.~63!.
Furthermore, the Cartan identity in the classical form can be shown to be valid,

Lx i
5d+i i1i i+d. ~67!

One needs to verify that

x ixr5d~g ixr!1g ix~dr!, rPG∧. ~68!

For r5aPA Eq. ~68! is almost trivial and follows from

g ixa50, g ixda5x ixa. ~69!

Let r5adb (a,bPA). To show that

x ix~adb!5d~g ixadb!1g ix~dadb!, ~70!

we calculate each term separately,

x ix~adb!5a~1!db~1!^1^ x i1x j ^ f i
j ,a~2! ^ b~2!&5a~x ixdb!1~x jxa!~ f i

jxdb!, ~71!

d~g ix~adb!!5da~x ixb!1ad~x ixb!, ~72!
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g ix~dadb!52da~x ixb!1~x jxa!~ f i
jxdb!, ~73!

and then use Eq.~64!.
At last, consider the general caser5adbB, B5dc1•••dcn , a,b,••• ,ciPA,

x ix~adbB!5adb~x ixB!1a~x jxdb!~ f i
jxB!1~xkxa!~ f j

kxdb!~ f i
jxB!, ~74!

g ix~adbB!52adb~g ixB!1a~x jxb!~ f i
jxB!, ~75!

d~g ix~adbB!!52dadb~g ixB!1a~x jxdb!~ f i
jxB!1adbd~g ixB!1da~x jxb!~ f i

jxB!

1a~x jxb!d~ f i
jxB!, ~76!

g ix~dadbB!5dadb~g ixB!2da~x jxb!~ f i
jxB!1~xkxa!~ f j

kxdb!~ f i
jxB!. ~77!

After summing this up, it remains to prove that

adb~x ixB!5adbd~g ixB!, ~78!

or

x ix~dc1•••dcn!5d~g ix~dc1•••dcn!!, ~79!

that is the same problem at a lower level. Thus, the proof is completed by induction.
To conclude this section, we compare the duality^G* ,G& used above~‘‘vertical’’ duality in

Eq. ~37! between 1-forms and inner derivations! with a duality ^^A* ,G&& between vector fields
PA* and differential 1-formsPG. The latter is a natural generalization of ordinary classi
duality, and is also assumed as a basis of construction of a bicovariant differential calculus
Hopf algebras in Ref. 23. It is easily seen that the dual differential mapd* establishes a direc
relation between these two dualities in the following way:

^^d* u,r&&5^u,r&, uPG* , rPG. ~80!

VI. COMPARISON WITH OTHER APPROACHES

Now the above results@mostly, the commutation relations~48!–~51!, ~57!, ~61!, and~62!# are
to be compared with other approaches known in the literature.3,12,13,15 To achieve this, it is
convenient to chose another set of generators for theG∧* -part of our cross-product algebra. W
switch fromx i ,g i to x̃ i ,g̃ i defined by

da5v i~ x̃ ixa!, ~81!

^g̃ i ,v ja&5e~a!d i
j , ^g̃ i ,r&50, rPA,G2,G3,... . ~82!

Introducing alsow j
i PA* via

av j5v i~w i
jxa! ~83!

and proceeding by complete analogy with Secs. III and IV, we obtain

w i
j5S21~ f i

j !, g̃ i5smk
m jg jw i

k , x̃ i5w i
jx j5d* g̃ i , ~84!

D~w j
i !5w j

k
^ wk

i , D~g̃ i !5g̃ i ^ 11w i
j
^ g̃ j , D~x̃ i !5x̃ i ^ 11w i

j
^ x̃ j . ~85!
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As for commutational relations, in the$a,v%-sector they remain unchanged, those betw
a,v andx,g follow directly from Eq.~12!,

x̃ ia2~w i
jxa!x̃ j5x̃ ixa, ~86!

g̃ ia2~w i
jxa!g̃ j50, ~87!

x̃ iv
j2s̃ ik

j l vkx̃ l5C̃ki
j vk, ~88!

g̃ iv
j1s̃ ik

j l vkg̃ l5d i
j , ~89!

where

s̃ j l
ki8^w j

i ,r l
k&5~s21! j l

ki , C̃jk
i 8^x̃k ,r j

i &5Csl
i ~s21!k j

sl , ~90!

and those inside$x,g% look like

g̃ i x̃ j2s̃ j i
klx̃ l g̃k5C̃i j

k g̃k , ~91!

x̃ i x̃ j2s̃ j i
klx̃ l x̃k5C̃i j

k x̃k , ~92!

^g̃ i g̃ j ,vmvna&5e~a!~2s̃ j i
mn1d j

md i
n!. ~93!

Formulas~91!, ~92! are obtained with the use of

x̃ ih5~hvr i
j !x̃ j , g̃ ih5~hvr i

j !g̃ j , ~94!

that can be derived similarly to Eqs.~52!, ~54!.
The resulting cross-commutation algebra conforms to Schupp’s paper.15

VII. R-MATRIX FORMULATION OF DIFFERENTIAL CALCULUS ON GL q„N…

To compare our formulas with analogous relations in Ref. 3, we consider a sp
realization10 of Woronowicz’s differential calculus in case of the quantum group GLq(N), and use
the matrix representations for all generators. HereA, A* will be the dual Hopf algebras27 de-
scribed by the relations

R12T1T25T2T1R12, D~T!5T^ T, e~T!51, ~95!

R12L2
6L1

65L1
6L2

6R12, R12L2
1L1

25L1
2L2

1R12, ~96!

D~L6!5L6
^ L6, e~L6!51, ~97!

^T1 ,L2
1&5R12, ^T1 ,L2

2&5R21
21, ~98!

^T1 ,S~L2
1!&5R12

21, ^T1 ,S~L2
2!&5R21 ~99!

~generatorst i
jPA and l i

6 jPA* form matricesT and L6, respectively!, where R is a special
numerical matrix related to GLq(N) ~see Ref. 27! which obeys the Yang–Baxter

R12R13R235R23R13R12 ~100!

and Hecke
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Rpq
i j 5~R21!qp

ji 1ldq
i dp

j ~l5q2q21! ~101!

conditions. Let us also introduce a numerical matrixD by

D j
i 8R̃jm

mi , Rpn
m jR̃mq

in 5R̃pn
m jRmq

in 5dp
i dq

j , ~102!

and fix the differential mapd:A→G via

dT5TV ~103!

in terms of left-invariant Maurer–Cartan formsV. Then the Woronowicz bicovariant differentia
calculus on GLq(N) is produced by the following choice10,11,13of the elementsr , f , x:

r k j
l i 5S~ tk

i !t j
l , f jk

il 5 l k
2 i

S~ l j
1 l

!, xk
l 5

1

l
@~D21!k

l 2~D21! i
j f jk

i l #, ~104!

which serve to define the Hopf and differential structure of the calculus as follows~note doubling
the indices due to the matrix format used!,

D~V j
i !51^ V j

i 1V l
k

^ r k j
l i , ~105!

V j
i tn

m5~ f jk
il xtn

m!V l
k , ~106!

dtn
m5~xq

pxtn
m!Vp

q5tk
mVn

k ~107!

~the last equation implieŝxq
p ,tn

m&5dn
pdq

m). From Eqs.~84! and ~104! we get

w jk
i l 5 l j

1 l
S21~ l k

2 i
!, x̃k

l 5
1

l
@~D21! j

i w ik
j l 2~D21!k

l # ~108!

and can now write down all commutational relations in the matrix form.
If, before doing so, we perform one more redefinition,

J52g̃D, X52x̃D, Y512lX, ~109!

so that

Yj
i 5 l k

1 i
S~ l j

2k
!, ~110!

we end up with a complete set of commutation relations in terms ofT, V, Y andJ,

R12T1T25T2T1R12, ~111!

V1T25T2R12
21V1R21

21, ~112!

V1R21
21V2R2152R21

21V2R12
21V1 , ~113!

Y1T25T2R21Y1R12, ~114!

V1R12Y2R215R12Y2R21V1 , ~115!

J1T25T2R21J1R12, ~116!
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V1R12J2R211R12J2R21V15
1

l
~12R12R21!, ~117!

Y1R12Y2R215R12Y2R21Y1 , ~118!

J1R12Y2R215R12Y2R21J1 , ~119!

J1R12J2R2152R21
21J2R21J1 . ~120!

Several comments are in order. In this specific realization of the Woronowicz calcul
proves possible to present multiplication relations forV in a closed form~113!. The commutation
rule ~118! for Y is often called thereflection equation,28–30 and the related formula forX,

X1R12X2R212R12X2R21X15l21~X1R12R212R12R21X1! ~121!

—thequantum Lie algebra,1,7,31–33because it generalizes classical commutator in the Lie alg
of left-invariant vector fields. In terms ofT andY, the left and rightA-coactions in Eqs.~18! and
~24! take the form

left: t j
i→tk

i
^ t j

k , Yj
i→1^ Yj

i , ~122!

right: t j
i→tk

i
^ t j

k , Yj
i→Yl

k
^ S~ tk

i !t j
l . ~123!

This means that algebraA* proves to be left-invariant and right-coadjoint-covariant.
Algebra ~111!–~120! is exactly the GLq(N) bicovariant differential algebra found in Ref.

and discussed further in Ref. 13. We have shown that it is produced just by application
cross-product recipe to the original Woronowicz differential complex, whose Hopf-algebra
erties account for bicovariance of the algebra.
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10B. Jurcǒ, Lett. Math. Phys.22, 177 ~1991!.
11P. Aschieri and L. Castellani, Int. J. Mod. Phys. A8, 1667~1993!.
12P. Schupp, P. Watts, and B. Zumino~preprint NSF-ITP-93-75, 1993!.
13A. P. Isaev, Fiz. Elem. Chast. At. Yad.28, 685 ~1997!.
14T. Brzezinski, Lett. Math. Phys.27, 287 ~1993!.
15P. Schupp, inQuantum Groups and Their Applications in Physics, edited by L. Castellani and J. Wess~IOS, New York,

1996!, p. 507.
16M. E. Sweedler,Hopf Algebras~Benjamin, New York, 1969!.
17E. Abe,Hopf Algebras~Cambridge University, Cambridge, 1980!.
18V. Chari and A. Pressley,A Guide to Quantum Groups~Cambridge University, Cambridge, 1994!.
19S. Majid, Int. J. Mod. Phys. A5, 1 ~1990!.
20P. Schupp, Ph.D. thesis, University of California, Berkeley, LBL-34942, 1993.
21S. Majid, J. Algebra130, 17 ~1990!.
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



5446 O. V. Radko and A. A. Vladimirov: Differential calculus on quantum groups

                    
22F. Bonechi, R. Giachetti, R. Maciocco, E. Sorace, and M. Tarlini, Lett. Math. Phys.37, 405 ~1996!.
23P. Aschieri and P. Schupp, Int. J. Mod. Phys. A11, 1077~1996!.
24A. A. Vladimirov, Czech. J. Phys.47, 131 ~1997!.
25P. Schupp and P. Watts~preprint LBL-33655, 1994!.
26D. Bernard, Phys. Lett. B260, 389 ~1991!.
27L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, Alg. Analiz1, 1, 178~1989!; Leningrad. Math. J.1, 1, 193

~1990! ~English translation!.
28P. P. Kulish and E. K. Sklyanin, J. Phys. A25, 5963~1992!.
29P. P. Kulish and R. Sasaki, Prog. Theor. Phys.89, 741 ~1993!.
30S. Majid, J. Math. Phys.34, 1176~1993!.
31S. Majid, Commun. Math. Phys.156, 607 ~1993!.
32G. W. Delius and A. Hu¨ffmann, J. Phys. A29, 1703~1996!.
33V. Lyubashenko and A. Sudbery, q-alg/9510004, 1995.
J. Math. Phys., Vol. 38, No. 10, October 1997

                                                                                                                



e

ced by

                    
Erratum: ‘‘Prepotentials of N52SU„2… Yang–Mills
theories coupled with massive matter multiplets’’
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As most readers can easily find, there is an error in Eq.~5.4!. In that expression, we hav
proposed the formula for massive prepotentials, clarifying theirNf dependence

F Nf
5 i

ãNf

2

p FNf21

4
lnS ãNf

LNf

D 2

1•••G ,

where we have omitted miscellaneous terms in the brackets. However, this should be repla

F Nf
5 i

ãNf

2

p F42Nf

4
lnS ãNf

LNf

D 2

1•••G ,

while the omitted terms are the same.

a!Current address.
0022-2488/97/38(10)/5447/1/$10.00
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A closed expression of the Euclidean Wilson-loop functionals is derived for pure
Yang–Mills continuum theories with gauge groups SU(N) and U(1) and space-
time topologiesR13R1 and R13S1. ~For the U(1) theory, we also consider the
S13S1 topology.! The treatment is rigorous, manifestly gauge invariant, manifestly
invariant under area preserving diffeomorphisms and handles all~piecewise ana-
lytic! loops in one stroke. Equivalence between the resulting Euclidean theory and
and the Hamiltonian framework is then established. Finally, an extension of the
Osterwalder–Schrader axioms for gauge theories is proposed. These axioms are
satisfied in the present model. ©1997 American Institute of Physics.
@S0022-2488~97!00911-0#

I. INTRODUCTION

Although the literature on Yang–Mills theories in 2 space–time dimensions is quite ri
number of issues have still remained unresolved. The purpose of this paper is to analyze thr
issues. The paper is addressed both to high energy theorists and mathematical physicists
fore, an attempt is made to bridge the two sets of terminologies, techniques and conc
frameworks.

The first issue concerns the expectation values of traces of holonomies of the conn
around closed loops in the Euclidean domain, i.e., the Wilson loop functionals. The trac
holonomies are, arguably,thecentral observables of the~pure! Yang–Mills theory. In the classica
regime, they constitute a natural set of~over!complete gauge invariant functions of connectio
with rich geometrical and physical content. Hence, their Euclidean vacuum expectation valu
the naturalgauge invariantanalogs of the expectation valuesx( f ):5^exp i*dnx f(x)f(x)& in scalar
field theories which determine all then-point ~i.e., Schwinger! functions~via repeated functiona
differentiation with respect tof ). From theoretical physics considerations, therefore, one exp
the Wilson loop functionals to completely determine the theory. From a mathematical ph
perspective, the quantum theory is completely determined if one specifies the underlying m
dm—the rigorous analog of the heuristic expression ‘‘exp2S@A#DA’ ’ — on the space of Euclid-
ean paths. The expectation values of products of traces of holonomies determine the ‘‘mom
of the measuredm. Hence, one expects them to determine the measure completely.
0022-2488/97/38(11)/5453/30/$10.00
5453J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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Over the years, these considerations inspired a number of authors to devise imaginativ
to explore properties of the Wilson loop functionals. For example, Makeenko and Migdal1 for-
mulated differential equations that these functions have to satisfyon the space of loopsand then
introduced physically motivated ansa¨tze to solve them.~See also Refs. 2, 3.! Similarly, Gross and
co-authors4 have used stochastic methods to obtain closed expressions for non-overlapping W
loops. While these methods have yielded a wealth of insights, to the best of our knowle
closed expression for generic Wilson loops has not yet appeared in the literature.~At best the
compuations performed provide us with an expression which is exact but only implicit in the
that there have still to be done non-trivial computations for each case at hand; see, e.g., R!.
The first purpose of this paper is to provide such an expression for SU(N) @and U~1!# gauge
theories assuming that the underlying Euclidean space–time has a topology ofR13R1, or R13S1.
~In the U(1) case, we also allow the topology to beS13S1.) The final expression is explicit up to
a trivial contraction of group indices for a matrix which we have computed for the general

The second issue treated here is the relation between the Euclidean description in te
functional integrals and the canonical description in terms of a Hilbert space and a Hamilt
For scalar field theories, there exists a general framework that ensures this equivalence~see, e.g.,
Ref. 6!. We extend it to gauge theories and explicitly establish the equivalence between th
descriptions in the case when the Euclidean topology isR13R1 or R13S1. While the extension
involved is rather straightforward, it is quite illuminating to see how the Euclidean framewo
which, a priori, does not know that the system has only a finite number of true degree
freedom—reduces to the Hamiltonian framework which, from the very beginning, exploits th
that this is a quantum mechanical system, disguised as a quantum field theory.

Our third goal is to suggest an extension of the axiomatic framework of Osterwalde
Schrader. In that framework, one assumes from the very beginning that the underlying sp
paths is linear, and can be identified with the distributional dualS 8 of the Schwartz spaceS of
smooth test functions of rapid decrease~see, e.g., Ref. 6!. The axioms are restrictions on th
measurem on S 8,formulated as conditions on the functionalx( f )5*dm„exp i*dnx f(x)f(x)…,
introduced above, now interpreted as the Fourier transform of the measurem. Now, in gauge
theories, it is natural to regard each gauge equivalence class of connections as a distinct p
path. The spaceA/G of paths is then a genuinely non-linear space and the standard axiom
not even be stated unless one introduces, via gauge fixing, an artificial linear structure onA/G .
~In higher dimensions, due to Gribov ambiguities, such a gauge fixing does not exist.! We will
suggest a possible extension of the standard framework to encompass gauge theories in
festly gauge invariant fashion and show that the axioms are in fact satisfied in the two-dimen
Yang–Mills theories discussed in sections II–IV. We would like to emphasize, however, that
is a key difference between the status of the first two sets of results and the third. In the fir
cases, we deal only with two-dimensional Yang–Mills theory and the results are definitive.
third part, the general framework is applicable to gauge theories in any space–time dimensi
the discussion is open-ended; it opens a door rather than closing one. In particular, relative t
attempts7 in the literature, our approach is still very much in the preliminary stage.

The main ideas behind our approach can be summarized as follows.~For a more detailed
discussion, see Refs. 8, 9.! First, we will maintain manifest gauge invariance in the sense tha
will work directly on the spaceA/G . No attempt will be made to impose a vector space struc
by gauge-fixing; we will face the non-linearities ofA/G squarely. Now, it is well-known that, in
quantum field theory, smooth fields make a negligible contribution to the path integrals; phys
interesting measures tend to be concentrated on distributions. Therefore, in the case of
theories, we need to allow generalized connections. Fortunately, a suitable completionA/G of
the spaceA/G of smooth physical paths has been available in the literature for some time10,11

Furthermore, this space carries11–13a rigorously defined, uniform measurem0 which can serve as
a fiducial measure—the analog of the heuristic measureDA. The idea is to construct the phys
cally relevant measure by ‘‘multiplyingdm0 by exp2S,’’ where S is the Yang–Mills action.
J. Math. Phys., Vol. 38, No. 11, November 1997
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As in all constructive quantum field theories, this task is, of course, highly non-trivial.
proceed in the following steps. First, we consider Wilson’s lattice-regularized versionSW of S.
Now, it turns out that exp2SW is an integrable function with respect to the measuredm0 and,
furthermore, products of traces of holonomies,Ta1

••• Tak
, around loopsa1 , ...,ak are integrable

on A/G with respect to the measure exp2SW dm0. We compute these expectation values a
function of the lattice spacing, used in the Wilson regularization, and then show that the res
expressions have a well-defined limit as the spacing goes to zero. These are the required
loop functionals in the continuum. General theorems10–12 from integration theory onA/G guar-
antee that there exists a genuine, normalized measuremYM on A/G such that the integrals o
products of traces of holonomies with respect tomYM are the Wilson loop functionals compute
by the regularization procedure. This provides a concrete proof of the existence of a con
Euclidean theory.

The techniques we use were first developed in the context of a non-perturbative appro
general relativity.14 Therefore, our emphasis is often different from that in the literature of Ya
Mills theories. For instance, we arrive at the final, closed expressions of Wilson loops by a
computation of the functional integrals, rather than through differential equations these funct
satisfy on the loop space. In this sense, our approach is similar to that followed in the math
cal physics literature. However, in these rigorous approaches, one often tries to exploit m
which have been successful in kinematically linear theories and, to do so, introduces a
space structure ofA/G through gauge fixing. As mentioned above, we work directly on
non-linear spaceA/G and thus avoid gauge fixing in conceptual considerations. Also, our me
respects the invariance of the theory under area preserving diffeomorphisms. In particula
Wilson loop functionals — and hence the final, physical measure for the continuum theory —
manifestly invariant under the action of this group.

The plan of the paper is as follows. In section II, we review the relevant notions from cal
on A/G . In section III, we reformulate lattice gauge theory in a manner that makes the an
computation of Wilson loop functionals easier. This formulation constitutes the basis o
discussion of the continuum theory in section IV. Here, we first derive the general form o
Wilson loop functionals with ultraviolet and infrared cut-offs provided by the lattice regulariza
and then show that the functionals admit well-defined limits as the cut-offs are removed.
mathematical physics terminology, these limits are the generating functions for the phy
Yang–Mills measure onA/G . For simple loops, we recover the well-known area law which
generally taken to be the signature of confinement. More generally, if we suitably restric
choices of loops, our general results reduce to those obtained previously in the mathem
physics literature. Section IV reviews the Hamiltonian quantization of Yang–Mills fields in c
when the underlying Lorentzian space–time has the topology of a 2-plane or a 2-cylinder. Th
of section V is threefold. We begin with a brief review of the Osterwalder–Schrader frame
for kinematically linear theories and, using the machinery developed in sections II–IV, propo
extension to handle gauge theories. We then show that our two-dimensional model, trea
section IV, satisfies these axioms. Finally, we show that the Hamiltonian framework review
section IV can be systematically recovered from the Euclidean framework. Section VI summ
the main results, compares them with the results available in the literature and suggest
directions for further work.

A number of technical topics are covered in appendices. Specifically, Young tableaux
are needed in certain computations of Sec. IV are discussed in Appendix A and the details
Euclidean U(1) theory on a torus are presented in Appendix B.

Finally, we wish to emphasize that in most of this paper we have restricted ourselv
non-compact space–times since it is only in this case that a direct comparison with the H
tonian theory is possible. In particular, all our results in the non-Abelian case pertain to s
time topologiesR3R andS13R and it is only in these cases that we have obtained a comp
solution. In recent years, there has been extensive work on Euclidean Yang–Mills theor
J. Math. Phys., Vol. 38, No. 11, November 1997
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compact Riemannian surfaces~see, e.g., Refs. 15–17! which has led to a variety of interestin
results.~For reviews, see, e.g., Refs. 18, 19.! Similarly, interest in the largeN limit of two-
dimensional Yang–Mills theories and coupling to fermions in this limit has also been renew
the last few years.~See, e.g., Refs. 20–22.! However, all these developments lie outside the sc
of the present paper.

II. PRELIMINARIES

In this section, we will review the basic notions from Refs. 10–13, 23~and references therein!
which will be used in this paper. This material will provide the necessary background fo
discussion of the mathematical aspects of functional integration, axiomatic formulation of g
theories and the relation between Euclidean and Hamiltonian formulations. A reader w
interested primarily in the computation of the Wilson loop functionals can skip this materia
go directly to sections III and IV.

By a loop we will mean a piecewise-analytic embedding ofS1 into the ~Euclidean! space–
time manifoldM . For technical convenience, we will only consider based loops, i.e., loops pa
through a fixed pointp in M . Denote the set of these loops byLp . As indicated already, ou
structure group will be either SU(N) ~where N>2) or U(1). Fix any one ofthese groups,
consider a trivial Principal fibre bundleB on M and denote byA the space of smooth connection
on B. Given anyAPA, we can associate with everyaPLp an element of SU(N) by evaluating
the holonomy,

ha~A!:5P expS 2 R
a
AD , ~II.1!

at the base pointp ~where, as usual,P stands for ‘‘path ordered’’!. Let us introduce an equiva
lence relation onLp : two loops a1 ,a2PLp will be said to be holonomically equivalen
a1;a2 , iff ha1

(A)5ha2
(A);APA. Each of these holonomically equivalent loops will b

called ahoop. It is straightforward to verify that the spaceHG of hoops has a natural grou
structure. We will call it theHoop group. For notational simplicity, in what follows we will no
distinguish between a hoop and a loop in the corresponding equivalence class.

Denote byG the group of smooth, local gauge transformations~i.e., of smooth vertical
automorphisms ofB). Of special interest are theG -invariant functionsTa of connections obtained
by taking traces of holonomies:

Ta~A!:5
1

N
tr~ha~A!!, ~II.2!

where the trace is taken with respect to theN-dimensional fundamental representation of t
structure group. As is well known, the functionsTa suffice to separate points ofA/G in the sense
that given all theTa , we can reconstruct the smooth connection modulo gauge transformatio24

This is significant because, in the classical theory, physical paths are represented by elem
A/G .

To go over to the quantum theory, we need to extend this space of paths appropriately
the set of smooth paths is, typically, of zero measure in physically interesting theories
possible extension has been carried out in the literature.10,11 ~For motivational remarks, see Re
8.! This extension,A/G , can be characterized in three complementary ways, each emphasi
different set of its properties. SinceA/G will play a fundamental role in the quantum theory —
in our approach it represents the space of gauge invariant, physical paths in the Euclide
proach — we will now sketch all these characterizations:
J. Math. Phys., Vol. 38, No. 11, November 1997
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~i! Perhaps the simplest characterization is the following:A/G is the space ofall homomor-
phisms from the hoop groupHG to the structure group SU(N) or U(1), ~modulo the
adjoint action of the structure group at the base pointp). It is obvious that, given a smoot
connection, the holonomy map of~II.1! provides such a homomorphism. However, it
easy to construct11 examples of more general homomorphisms which, for example, w
correspond to ‘‘distributional connections.’’ In relation to the more familiar scalar fi
theories,HG will play a role which in some ways is similar to that played by the spaceS

of test functions andA/G is analogous to the spaceS 8 of Schwartz distribution. In
particular, just asS 8 is the space of paths for scalar fields,A/G will serve as the space o
paths for gauge theories. The ‘‘duality’’ betweenHG andA/G is non-linear. However,
just as elements ofS serve as labels for cylindrical functions onS 8, elements ofHG will
serve as labels for cylindrical functions onA/G .

~ii ! The second characterization brings out the topological structure ofA/G . Recall first that
in any of the standard Sobolev topologies onA/G , the functionsTa are continuous.
Furthermore, for gauge groups under consideration, they are bounded. Hence, the!-algebra
they generate is a sub-algebra of theC!-algebraC0(A/G ) of all continuous bounded
functions onA/G . Denote the completion of this!-algebra byHA. This is an Abelian
C!-algebra with identity and is called theholonomy algebra. Now, the Gel’fand represen
tation theory guarantees thatHA is naturally isomorphic with theC!-algebra of all con-
tinuous functions on a compact Hausdorff space. This space — the Gel’fand spectr
HA — is our A/G . Thus, the topology onA/G is the coarsest one which makes t
Gel’fand transforms of the traces of holonomies continuous. Finally, sinceHA suffices to
separate points ofA/G , it immediately follows thatA/G is densely embedded inA/G .

~iii ! The last characterization is in terms of projective limits.25 One begins with two projective
families labelled by graphs, each consisting of compact Hausdorff manifolds. The pr
tive limit of the first yields a completionĀ of the spaceA of smooth connections while
the projective limit of the second provides a completion of the the spaceG of smooth
gauge transformations. One then shows thatA/G 5Ā/Ḡ . This characterization is bes
suited for analyzing the~surprisingly rich! geometric structure ofA/G .12,26

Finally, we note thatA/G admits11–13a natural, normalized, Borel measurem0 which, in our
approach, will play the role that ‘‘DA’’ plays in heuristic considerations. We will conclude b
indicating how this measure is defined.

To begin with, let us consider the family of all piecewise analytic, oriented graphsG in M .
Denote byp1(G) the fundamental group of the graphG. Choose a system of generatorsb1 , ...,bn

of p1(G) wheren:5dim„p1(G)… is the number of independent generators of the fundame
group. With this machinery at hand, we can define the notion of ‘‘cylindrical functions,’’ wh
will be the simplest functions onA/G that we will be able to integrate. Note first that, given a
graphG, we have a natural projection map,

pG :A/G→Gn A→„hb1
~A!, ...,hbn

~A!…, ~II.3!

from A/G to Gn, whereG is the structure group@i.e., SU(N) or U(1)] under consideration
Cylindrical functions are obtained by pull-backs of smooth functions onGn under this map. Thus
given any smooth functionf G on Gn, f 5(pG)* f G is a cylindrical function.

The measurem0 on A/Ḡ can now be introduced via:

E
A/Ḡ

dm0~A! f ~A!:5E
Gn

dmH~g1!..dmH~gn! f G~g1 , ...,gn!. ~II.4!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The proof that this condition does indeed define an infinite dimensional, (s-additive! regular,
normalized Borel measurem0 on A/G is given in Ref. 23.

III. LATTICE GAUGE THEORY

In this section, we will recast the standard description of lattice gauge theory in a form t
better suited for our discussion of the continuum limit in section IV.

Consider finite square latticesG(a,Lx ,Ly) in M with spacinga and lengthLx andLy in the
x andy directions. This lattice contains (Nx11)(Ny11) vertices, whereNxa:5Lx , Nya:5Ly .
Note that the use of such a lattice for quantum field theory implies both an infra-red regulato~the
finite volume defined by theLx andLy) and an ultra-violet regulator~defined by the lattice spacin
a). Our strategy will be to construct a regulated quantum theory in this section and then re
the regulators in the next section.

Let us denote the open path along an edge~link! of the lattice from a vertexi to an adjacent
vertex j by

l 5 l i→ j

so that we may define the plaquette loops

h ~x,y! :5 l ~x,y!→~x,y11!
21 + l ~x,y11!→~x11,y11!

21 + l ~x11,y!→~x11,y11!+ l ~x,y!→~x11,y! . ~III.1!

That is, each plaquette loop starts at the bottom left corner and our convention is such th
coordinate directions define positive orientation. Here the coordinatesx,y are taken to be integers
For the planeM5R3R, all of these links are distinct while for the cylinder,M5R3S1, we
identify l (1,y)→(1,y11)[ l (Nx11,y)→(Nx11,y11) . On the torus, we also identifyl (x,1)→(x11,1)

[ l (x,Ny11)→(x11,Ny11) .
Next, we introduce a set of closed loops which can serve as generators, i.e., in terms of

any loop inG based atp can be expressed via composition:
~i! Let rx,y be an open path inG from p to the point (x,y). The loops

bx,y :5bh~x,y!
:5rx,y

21+h ~x,y!+rx,y ~III.2!

generate all loops on the plane.
~ii ! On the cylinder, we need an additional loop. We will take it to be the ‘‘horizontal’’ lo

gx :5 l ~Nx ,Ny11!→~1,Ny11!+ l ~Nx21,Ny11!→~Nx ,Ny11!+•••+ l ~1,Ny11!→~2,Ny11! . ~III.3!

~iii ! Similarly, on the torus we need an additional loop,

gy :5 l ~1,Ny!→~1,1!+ l ~1,Ny21!→~1,Ny!+•••+ l ~1,1!→~1,2! . ~III.4!

However, the loops$bx,y ,gx ,gy% are not independent as the loopgy
21+gx

21+gy+gx can be written
as a composition of thebx,y . ~An intuitive notion of independence will suffice for our work her
For a careful definition, see Ref. 11.! This constraint will lead to an ‘‘interacting’’ U(1) theory fo
the torus in contrast to the plane and the cylinder.

With these preliminaries out of the way, let us now summarize the standard formulation
lattice gauge field theory by Wilson.27 For each of the links in the lattice, introduce oneG-valued
degree of freedom~the ‘‘parallel transport along the link’’!. Let the ‘‘lattice Yang–Mills action’’
be given by the Wilson expression

SW :5(
h

F12
1

N
R tr~hh!G , ~III.5!
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherehh denotes product of link variables around the plaquetteh andR tr is the real part of the
trace. Also, letdmW be the Haar measure onGNl, whereNl is the number of links in the graph
The regulated Wilson-loop functional is now given by

^Ta1
•••Tak

&:5
1

Z~a;Lx ,Ly!
E

GNl

dmW e2bSWTa1
•••Tak

, ~III.6!

wherea1 , ...,ak are loops inG5G(a;Lx ,Ly); the ‘‘inverse temperature’’ is given by

b5
1

g0
2a42d

~III.7!

(d52 being the dimension ofM ); and whereg05g0(a) is the bare coupling constant. Th
partition functionZ5Z(a;Lx ,Ly) is defined througĥTp•••Tp&51 wherep denotes the trivial
loop at p. From a mathematical physics perspective, these Wilson loop functionals can a
regarded as the characteristic functional of the regulated measure. To emphasize this dua
pretation, using the standard notation for characteristic functionals, we will set:

x~a1 , ...,ak ;a;Lx ,Ly!:5^Ta1
•••Tak

&. ~III.8!

For our purposes, it will turn out to be more convenient to re-express the characte
functional in terms of integrals over the independentloopsin the graphG. To do so, we make use
of the fact that, whenever it is used to integrate gauge invariant functions, the measuredmW may
be replaced by the Haar measure onGN, whereN is the number of independent loop generato
of the graphG. This fact follows immediately from the results of Refs. 13, 26.~In the language of
these works, it is contained in the statement thatĀ/Ḡ 5A/G and that the Haar measure onĀ

projects unambiguously to yield the Haar measure onA/G .) Thus, we may write the regulate
characteristic functional as:

x~a1 , ...,ak!5
1

ZEGN)h dmH~gh!exp~2bSW!5 )
i 51

k

tr a i~gh! :on R2

E
G

dmH~gx!)
i 51

k

tr a i~gh ,gx! :on R13S1

,

~III.9!

where dmH is the Haar measure onG and a i(gh) is the expression fora i in terms of the
generatorsbx,y with each generatorbx,y replaced by the integration variablegx,y @similarly for
a i(gh ,gx)]. The corresponding expression for the torus will appear at the end of this section
idea of the next section will simply be to evaluate the above integrals for any givena,Lx ,Ly and
then take the limits to remove the ultra-violet and infra-red regulators.

To conclude this section, we will introduce some definitions and collect a few facts a
loops inG. These will be useful in section IV.

Definition III.1: A loop is said to be simple iff there is a holonomically equivalent loop wh
has no self-intersections.

Note that any simple loop which is homotopically trivial~in space–time! divides space–time into
two regions: an interior which is topologically a 2-disk and an exterior. This is just the Jo
curve theorem.

Definition III.2: On the torus, we define the surface enclosed by a simple homotopically t
loop to lie on the left as one follows the loop counterclockwise (when the torus is represen
a two-dimensional rectangle with the standard identifications.)
J. Math. Phys., Vol. 38, No. 11, November 1997
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Definition III.3: Two distinct simple homotopically trivial loops are said to be no
overlapping iff the intersection of the surfaces that they enclose has zero area. The homoto
non-trivial loopsbx and by will both be said not to overlap any other loop.

So, for example, all the loopsbx,y are simple since they lie in the same hoop class as
plaquette loopsh (x,y) . Non-overlapping distinct simple loops are allowed to share whole
ments whence the plaquette generators of our graph~lattice! are mutually non-overlapping.

It will turn out that the following two simple lemmas govern the form of the characteri
functional in two space–time dimensions.

Lemma III.1: Every simple, homotopically trivial loopa on G can be written as a particular
composition of the generatorsbh contained in the surface enclosed bya, with eachbh appear-
ing once and only once.

It is readily checked that when two homotopically trivial loopsa1 anda2 ~enclosing disksD1 and
D2) are non-overlapping and such thatD1øD2 is also a disk, then eithera1a2 or a1a2

21 ~or, on
the torus, perhaps the inverse of one of these loops! enclosesD1øD2 . Since every disk is a finite
union of plaquettes, Lemma III.1 follows immediately. h

This Lemma allows us to write a simple expression for the generating functional on the
Note that, after ‘ungluing’ the torus to make a rectangle, the loopgx+gy+gx

21+gy
21 is simple and

homotopically trivial, enclosing the entire area of the torus. As a result, it may be written
product of the plaquette loopsbh in which eachbh appears once and only once. We m
therefore pick any one of these loops~sayb (0,0)) and write it as a function of the other plaquet
loops and the loopsgx ,gy . Alternatively, we find a productC of holonomies along all the loop
bh ,gx ,gy which is the identity inG. Inserting ad distribution onG enforcing the constrain
C51N we find for the generating functional on the torus

x~a1 , ...,ak!5
1

ZEGN)h dmH~gh!dmH~gx!dmH~gy!exp~2bSW!)
i 51

k

tr a i~gh ,gx ,gy!

5
1

ZEG
)
h

dmH~gh!dmH~gx!dmH~gy!d~C,1N!exp~2bSW!

3)
i 51

k

tr a i~gh ,gx ,gy!. ~III.10!

Finally, we have:
Lemma III.2: Every loop can be written as a composition of simple non-overlapping loo

This follows from the fact that thebh ~together withbx ,by on S13R and T2) are simple and
non-overlapping and that they generate the graphG. h

IV. CONTINUUM THEORY

In this section we will derive a closed expression for the Wilson loop functionals — i.e.
the characteristic functional of the measure — for the continuum theory when the unde
manifold M is either a 2-plane or a cylinder.~For the torus, we have been able to carry out
computation to completion only for the Abelian case,G5U(1), andthis theory is discussed in
detail in Appendix B.!

In section IV A, we will discuss U(1) theories and in section IV B, SU(N) theories. In both
cases, we will show that the lattice-regulated characteristic functional admits a well-defined
as the ultra-violet and infrared cut-offs are removed. Furthermore, we will be able to rea
certain qualitative properties of these functionals. However, the explicit expression invol
group-dependent constant. This is evaluated in section IV C.
J. Math. Phys., Vol. 38, No. 11, November 1997
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A. Abelian case „U„1……

Let us first note that, in the U(1) case, products of functionsTa can be reduced to a singleTa8
in the obvious fashion. Therefore, we need to consider only single loops. Fix a loopa and
consider its decomposition into non-overlapping simple loops. LetkI be the effective winding
number of the simple homotopically trivial loopa I , I 51, ...,n and letl x ,l y be winding numbers
of the homotopically non-trivial loopsbx ,by in this decomposition. Defineua I u to be the number
of plaquettes enclosed by the simple loopa I . We can then write the characteristic functional
follows @with G5U(1)]:

x~a!5
1

ZE )
h

F E
G

dmH~gh!exp~2b„12R~gh!…!)
I 51

n S )
hPa I

ghD kIG
3E

G
dmH~gx!gx

l xE
G

dmH~gy!gy
l ydS)

h
gh,1D e

,

where we could neglect the precise ordering of plaquette variables~that occurred in the decom
position of a in terms of bh ,bx ,by) because the gauge group is Abelian. In this form
l x5 l y50 on the plane andl y50 on the cylinder ande50 for the plane and the cylinder whil
e51 for the torus. Now, forG5U(1), wehave*GdmH(g)gn5d(n,0). Hence, it follows imme-
diately that the characteristic functional is non-zero if and only ifl x5 l y50. Therefore, we will
focus on this case in the sequel.

Now, let us consider the partition function,Z. For the plane and the cylinder, differen
plaquette contributions decouple and we obtain:

Z5F E
G

dmH~g!exp„12R~g!…GNxNy

. ~IV.1!

For the torus, on other the hand, decoupling does not occur and we are left with

Z5E )
h

dmH~gh!exp~2„12R~gh!…!dS)
h

gh,1ND . ~IV.2!

Thus, even in the Abelian, U(1) case, the Euclidean theory in two space–time dimensio
interactions! We will continue the discussion of this case in Appendix B.

Collecting these results, for the plane and the cylinder, we can now reduce the expres
x(a) to:

x~a!5)
I 51

n F*GdmH~g!exp~2b„12R~g!…!gkI

*GdmH~g!exp~2b„12R~g!…! G ua I u

~IV.3!

in case whenl x50 ~and x(a)50 otherwise.! We now want to take the continuum limit. Th
ultra-violet limit corresponds to letting lattice spacing go to zero, i.e.,b→`, and the infrared limit
corresponds to letting the lattice size go to infinity, i.e.,Lx→` andLy→`.

Let us set

Jn~b!:5E
G

dmH~g!exp~2b„12R~g!…!gn. ~IV.4!

Now, since g is simply a complex number of modulus one it is obvious that the frac
Jn(b)/J0(b) in ~IV.3! is a real number of modulus less than or equal to one. Now observe
ua I u5g0

2bA(a I), whereA(a I) is the Euclidean area enclosed bya I . In the limit, b→`, the
J. Math. Phys., Vol. 38, No. 11, November 1997
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integrand of both numerator and denominator become concentrated atg51, whence we have an
expansion of the formJn /J05„12c(1,n)/b…„11O(1/b2)…, wherec is positive becauseJn /J0

approaches the value 1 from below. Thus, it is easy to see that

lim
b→`

x~a!5expS 2g0
2(

I 51

n

c~1,kI !A~a I !D ~IV.5!

for l x50 and zero otherwise. We will calculate the coefficientsc(1,n) in section IV C. Finally,
note that the infra-red limit is trivial sincex(a) is independent ofLx ,Ly , ~assuming of course tha
they are large enough for the region under consideration to contain the loop!.

To summarize, we can arrive at the continuum characteristic functions as follows. Give
piecewise analytic loopa8 in M , we first consider a sufficiently fine and sufficiently large latti
and approximatea8 by a loopa lying in the lattice. Then, we expressa as a product of non-
overlapping simple loops and compute the regulated characteristic functionx(a) directly. Finally,
we take continuum limit to arrive at the final expression~IV.5!.

We will conclude this sub-section by pointing out that the Abelian case has been discus
the literature extensively~see, e.g., Ref. 5 for an early treatment! and is included here mainly fo
completeness.

B. Non-Abelian case (SU „N…)

Let us now consider the technically more difficult non-Abelian case. As indicated befor
this discussion, we will restrict ourselves to the plane and the cylinder.

For SU(N), the trace identities only enable one to express traces of products of matric
linear combinations of traces of products ofr :5N21 or fewer matrices. Hence, unlike in th
Abelian case, the productTa1

•••Tan
can not be reduced to a singleTa ; we can no longer confine

ourselves to single loops. Fix a multi-loop — i.e., a set ofr loops —a1 , ...,a r and consider its
decomposition into simple, non-overlapping loops. Suppose that, in this decomposition, the
n homotopically trivial loopsâ I andc homotopically nontrivial loopsg i ~clearly,c50 or c51).
Let uâ I u be the number of plaquettes enclosed byâ I and letkI

6 andl i
6 be the number of times tha

â I and g i occur ~respectively! with positive or negative power in this decomposition. Thu
altogether, there areb5( I 51

n @kI
11kI

2#1( i 51
m @ l i

11 l i
2# factors of holonomies around theâ I ,g i

and their inverses involved in the expansion of the productTa1
•••Tar

. These may occur in
arbitrary order, depending on the specific loopsa i , i 51, ...,r .

It is then easy to see that we can now writeTa1
•••Tar

explicitly as a product of matrices
representing holonomies around simple loops, with an appropriate contraction of matrix-in

NrTa1
•••Tar

5)
I 51

n F )
m51

kI
1

~hâ I
!

B
m
I 1

Am
I 1

)
m51

kI
2

~hâ I

21
!

B
m
I 2

Am
I 2G)

i 51

c F )
n51

l i
1

~hg i
!

D
n
i 1

Cn
i 1

)
n51

l i
2

~hg i

21!
D

n
i 2

Cn
i 2G)

k51

b

dFp~k!

Ek .

~IV.6!

Here, we have the following relation between indices that are being contracted:

~E1 , ...,Eb![~A1
11 , ...,Ak

1
1

11
,A1

21 , ...,Ak
2
1

21
, ...,A1

n1 , ...,Ak
n
1

n1
,

A1
12 , ...,Ak

1
2

12
,A1

22 , ...,Ak
2
2

22
, ...,A1

n2 , ...,Ak
n
2

n2
,

C1
11 , ...,Cl

1
1

11
,C1

21 , ...,Cl
2
1

21
, ...,C1

n1 , ...,Cl
n
1

c1
,
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C1
12 , ...,Cl

1
2

12
,C1

22 , ...,Cl
2
2

22
, ...,C1

n2 , ...,Cl
n
2

c2
!, ~IV.7!

and similarly with the exchangesE↔F, A↔B, C↔D; and p is an element of the symmetri
group ofb elements that depends on the loopsa i and defines the specific contraction involved
Ta1

,•••Tar
.

To evaluate the expectation values of this product of traces of holonomies, we need to e
out the inverses of matrices that appear in~IV.6! explicitly. This can be done easily using the fa
that the matrices in question are all uni-modular. We have:

~hâ I

21
!

B
m
I 2

Am
I 2

5
1

~N21!!
eAm

I 2Em,1
I •••Em,N21

I
eBm

I 2Fm,1
I •••Fm,N21

I
~hâ I

!
E

m,1
I

Fm,1
I

•••~hâ I
!

E
m,N21
I

Fm,N21
I

5:E
B

m
I 2F

m,1
I •••F

m,N21
I

Am
I 2Em,1

I •••Em,N21
I

~hâ I
!

E
m,1
I

Fm,1
I

•••~hâ I
!

E
m,N21
I

Fm,N21
I

,

and similarly for the inverse of hg i
. Finally, if we define nI :5kI

11(N21)kI
2 ,

ci :5 l i
11(N21)l i

2 we can rewrite~IV.6! using a tensor-product notation as:

NrTa i
•••Tar

5)
I 51

n

~ ^
nIha I

!
B

1
I 1•••B

kI
1

I 1
E

1,1
I •••E

1,N21
I •••E

kI
2,1

I
•••E

kI
2 ,N21

I

A1
I 1 •••A

kI
1

I 1
F1,1

I •••F1,N21
I •••F

kI
2,1

I
•••F

kI
2 ,N21

I

3)
i 51

c

~ ^
cihg i

!
D

1
i 1 •••D

l i
1

i 1
G

1,1
i •••G

1,N21
i •••G

l i
2,1

i
•••G

l i
2 ,N21

i

C1
i 1•••C

l i
1

i 1
H1,1

i •••H1,N21
i •••H

l i
2,1

i
•••H

l i
2 ,N21

i

3)
k51

b

dFp~k!

Ek )
I 51

n

)
m51

kI
2

E
B

m
I 2F

m,1
I •••F

m,N21
I

Am
I 2Em,1

I •••Em,N21
I

)
i 51

c

)
n51

l i
2

E
D

n
i ,2H

n,1
i •••H

n,N21
i

Cn
i 2Gn,1

i •••Gn,N21
i

. ~IV.8!

Next, let us examine the contributions from homotopically trivial loops. Chooseh:5â I for some
I and consider the expression

~ ^
nhh!B1 •••Bn

A1 •••An. ~IV.9!

Label the plaquette loops enclosed byh from 1 to uhu:5m; thushh5g1•••gm , wheregk :5hhk
.

Then the above expression becomes

@~g1!C1,1

A1 ~g2!C1,2

C1,1•••~gm!B1

C1,m21#•••@~g1!Cn,1

An ~g2!Cn,2

Cn,1•••~gm!Bn

Cn,m21#

5@ ^
ng1#C1,1•••Cn,1

A1•••A2 @ ^
ng2#C1,2•••Cn,2

C1,1•••Cn,1•••@ ^
ngm#B1•••Bn

C1,m21•••Cn,m21

5~@ ^
ng1#@ ^

ng2#•••@ ^
ngm# !B1•••Bn

A1•••An ~IV.10!

where, in the last step we have used the product rule for tensor products of matrices.
With these explicit expressions at hand, we can now consider the functional integral

yields the Wilson loop functionals. In this evaluation, each of then-fold tensor products in~IV.10!
has to be integrated with the measure

dm~g!5dmH~g!exp„b/NR tr~g!…. ~IV.11!

To carry out this task, we will use the representation theory reviewed in Appendix A.
According to Appendix A, we have:
J. Math. Phys., Vol. 38, No. 11, November 1997
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E
G

dm~g! ^
ng5 % $m% %

i 51

f $m%
~n! E

G
dm~g!@p$m%,i

~n!
^

ng#

5 % $m% %
i 51

f $m%
~n!

@p$m%,i
~n!

^
n1N#

1

d$m%
E

G
dm~g! tr~@p$m%,i

~n!
^

ng# !

5 % $m%@ %
i 51

f $m%
~n!

@p$m%,i
~n!

^
n1N##

1

d$m%
E

G
dm~g!x$m%~g!

5 % $m%@p$m%
~n!

^
n1N#

1

d$m%
E

G
dm~g!x$m%~g!

5 % $m%@p$m%
~n!

^
n1N#J$m%~b,N!. ~IV.12!

Here, in the first step, we have decomposed the matrix^
ng into a direct sum of irreducible

representations, withi labeling the orthogonal equivalent representations andm labeling the
equivalence classes of inequivalent representations, andp$m%,i

(n) are the Young symmetrizers; in th
third step, we have used the fact that the trace is a class function (x$m% being the character of the
representation$m%); and, in the last step we have simply defined

J$m%~b,N!:5
1

d$m%
E

G
dm~g!x$m%~g!. ~IV.13!

Finally, using the orthogonality of the projectorsp$m%
(n)

^
n1N we find that the integral over~IV.9!

becomes

S (
$m%

@p$m%
~n!

^
n1N#@J$m%~b,N!# uhu D

B1•••Bn

A1•••An

. ~IV.14!

The integral over the homotopically non-trivial loops is quite similar, the main difference b
that the measure there is the Haar measure and that each of these loops involves just
integration variable. According to Appendix A we find that the integral over^

ng with the Haar
measure is given by

@p0
~n!

^
n1N#,

wherep0
(n) is the projector on the trivial representation.

Collecting these results, we can write the vacuum expectation value ofTa1
,...,Tar

as follows.
Set

J0~N,b!:5E
G

dm~g!. ~IV.15!

Then,
J. Math. Phys., Vol. 38, No. 11, November 1997
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Nrx~a1 , ...,a r !5)
I 51

n S (
$m%

FJ$m%

J0
G uâ I u

@p
$m%
~nI ! ^

nI1N# D
B

1
I 1•••B

kI
1

I 1
E

1,1
I •••E

1,N21
I •••E

kI
2,1

I
•••E

kI
2 ,N21

I

A1
I 1 •••A

kI
1

I 1
F1,1

I •••F1,N21
I •••F

kI
2,1

I
•••F

kI
2 ,N21

I

3)
i 51

m

~@p0
~mi ! ^

mi1N# !
D

1
i 1 •••D

l i
1

i 1
G

1,1
i •••G

1,N21
i •••G

l i
2,1

i
•••G

l i
2 ,N21

i

C1
I 1 •••Ci 1 l i

1H1,1
i •••H1,N21

i •••H
l i
2,1

i
•••H

l i
2 ,N21

i

3)
k51

b

d Fp~k!

E1 )
I 51

n

)
m51

kI
2

E
B

m
I 2F

m,1
I •••F

m,N21
I

Am
I 2Em,1

I •••Em,N21
I

)
i 51

m

)
n51

l i
2

E
D

n
i ,2H

n,1
i •••H

n,N21
i

Cn
i 2Gn,1

i •••Gn,N21
i

. ~IV.16!

This is the closed expression for the regulated Wilson loops. Although it seems complica
first, its structural form is rather simple.~A more elegant derivation of~IV.16! uses the notion of
a loop-network state,9 however, since products of traces of the holonomy are more familia
gauge theorists we have refrained from introducing the associated mathematical apparatu!
First of all, the lattice spacing and the coupling constant enter this expression only throughJ$m% .
The rest is all an explicit contraction of indices of a product of afinite number of matrices. For any
given groupG5SU(N), the matrices depend only on the decomposition ofTa1

,...,Tar
in terms of

then holonomies around the homotopically trivial, simple loops and them holonomies around the
homotopically non-trivial simple loops.

To establish the existence of the continuum limit, therefore, we only need to show
@J$m%(b)/J0(b)# ua I u converges to a finite value asa→0. Let us begin by noting that

uJ$m%~b,N!u<E
G

dm~g!Ux$m%~g!

d$m%
~n! U<J0~b,N!.

This estimate implies thatuJ$m% /J0u is always a number between 0 and 1 for finiteb. Moreover,
we have

lim
b→`

J$m%

J0
5 lim

b→`

*GdmH exp~2b„121/NR tr~g!…!
tr„p~g!…

dim~p!

E
G

dmH exp~2b„121/NR tr~g!…!

51

since for b→` the measure in both numerator and denominator becomes concentrated
identity for which both integrand are equal to the number one. Therefore, we have an asym
expansion of the form

J$m%~b,N!

J0~b,N!
5S 12

c~N,$m%!

b D „11O~1/b2!…,

where the first order coefficientc(N,$m%) must benon-negativesinceJ$m% /J0 approaches unity
from below. Finally, observing thatua I u5bg0

2A(a I), we find that the continuum limit of~IV.16!
is given by replacing the@J$m% /J0# ua I u by

lim
b→`

FJ$m%~b,N!

J0~b,N! G ua I u

5exp„2c~N,$m%…g0
2A~a I !!. ~IV.17!
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This establishes the existence of the continuum limit. To obtain the explicit formula for the W
loops, it only remains to evaluate the constantsc(N,$m%). We will carry out this task in the nex
sub-section.

We will conclude this sub-section with a few remarks.~Some of these observations have be
made in the context of other approaches but are included here for completeness.!

~i! The explicit expression of the Wilson loop functionals~or the characteristic functional fo
the Yang–Mills measure onA/G ) is rather complicated. Note however that the computation o
involves complicated traces and can be performed by algebraic manipulation program
quickly. Furthermore, some of the qualitative features can be easily read-out. Note first tha
have a single, simple loopa0 , the matrix factors in~IV.16! disappear and the expectation val
collapses to simply:

^Ta0
&[x~a0!5e2cg0

2A~a0!, ~IV.18!

where 2c is the value of the first SU(N) Casimir on its fundamental representation~see the next
subsection! and whereA(a0) is the Euclidean area enclosed by the loopa0 . Thus, the area law —
generally taken to be the signal of confinement — holds. Note that the loop does not have
large; the expression is exact. Finally, note from section IV A that this law holds also fo
Abelian theory. Thus, the continuum limit of the lattice U(1) theory provides us the confi
phase of the theory which is different from the phase described by the standard Fock repr
tion.

~ii ! More generally, if one restricts oneself tonon-overlappingloops a1 , ...,an , our closed
expression~IV.16! yields

^p1~a1! ^ ••• ^ pn~han
!&5^p1~ha1

!& ^ ••• ^ ^pn~han
!& ~IV.19!

with ^p(ha)&5p(1N)e2c(N,p)g0
2A(a) of ~IV.17!, where as beforep is the irreducible representa

tion. This result is agreement with the results obtained by Bralic,5 Grosset al.4 and Klimeket al.
and Kazakov.28 However, even for this special case, our method of arriving at the resu
different. As explained in the Introduction, we do not break gauge invariance to pass to a ‘
matically linear’’ case nor do we use stochastic differential equations.

~iii ! Note that, as in the Abelian theory, the infra-red limit is trivial since the continu
expression of the Wilson loop functionals does not depend onLx or Ly at all ~provided of course
the lattice is chosen large enough to encompass the givenr loops!.

~iv! It is interesting to note that we did not have to renormalize the bare coupling constag0

in the process of taking the continuum limit. This is a peculiarity of two dimensions. Indee
higher dimensions, the bare coupling constant does not have the correct physical dimens
allow for an area law which suggests that renormalization would be essential.

~v! In the classical theory in higher dimensions, the Yang–Mills action depends on the s
time metric and is thus invariant only under the action of the finite dimensional isometry gro
the underlying space–time@the Poincare´ ~respectively, Euclidean! group, if the space–time is
globally Minkowskian~Euclidean!#. In two space–time dimensions, on the other hand, one n
only an area element to write the Yang–Mills action. Thus, the symmetry group is conside
enlarged; it is theinfinite dimensional group of area preserving diffeomorphisms. A natural q
tion is whether the Wilson loop functionals are also invariant under this larger group. Our ex
expression makes it obvious that it is. Thus, the infinite-dimensional symmetry is carried
in-tact to the quantum theory. This property is not obvious in many other approaches whic
gauge-fixing to endowA/G a vector space structure and then employ the standard~space–time
metric dependent! Gaussian measures in the intermediate steps. In these approaches, spec
somewhat elaborate calculations are needed to verify invariance under all area preserving
morphisms.
J. Math. Phys., Vol. 38, No. 11, November 1997
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~vi! As one can explicitly check, if one performs theN→` limit of our continuum theory on
the plane or the cylinder using the above expression then one does not encounter a phas
tion. This seems to contradict certain results29 obtained in a two-dimensional finite, planar lattic
theory. However, there is no contradiction because in two dimensions on the plane or the c
the appearance of theN→` phase transition is a lattice artefact. In Ref. 17 the authors obse
third order phase transition in the limitN→` also in the continuum. However, those autho
consider the case that the two-dimensional manifold is a sphere rather than a plane or a c
so that again there is no contradiction.

C. Determination of the coefficients c „N,ˆm ‰…

The main idea behind the calculation is the following; Since forb→`, the integrand of
J$m%(b) is concentrated at the identity, it is sufficient to calculate the integrand in Eq~IV.13!
~definingJ$m%) in a neighborhood of the identity.

To that effect, writeg5eA, whereA5t It IPL(G) is in the Lie algebra ofG and t I are real

parameters in a neighborhood of zero. We thus have upon insertingg51N1A1 1
2A

21o(A3)

12
1

N
R tr~g!52

1

2N
tr~A2!1o~A3!5

1

2 (
I 51

dim~G!

~ t I !21o~A3!, ~IV.20!

where the term of first order inA vanishes because it is either purely imaginary@the Abelian
sub-ideal ofL(G)] or trace-free@the semi-simple sub-ideal ofL(G)] and where we have used th
normalization tr(t ItJ)52Nd IJ . Similarly, we have an expansion for the$m%th irreducible rep-

resentation ofG given byp$m%(g)51$m%1X1 1
2X

21o(X3), whereX5t IXI is the representation
of the Lie algebra elementA in the $m%th irreducible representation. Then we have

x$m%~g!5d$m%1t I tr~XI !1 1
2 t I tJ tr~XIXJ!1o~X3!. ~IV.21!

Now, according to the Baker–Campbell–Hausdorff formula30 we have:

etIt IesIt I5er I ~s,t !t I, where r I~s,t !5sI1t I2 1
2 f I

JKsJtK1o~s2,t2,s3,s2t,st2,t3! ~IV.22!

and wheref JK
I are the structure constants of the semi-simple sub-ideal ofL(G) which therefore

are completely skew. Finally, the Haar measure can be written30

dmH~etIt I !5
ddim~G!t

detS ]r I~s,t !

]sJ D
s50

5
ddim~G!t

11o~ t2!
~IV.23!

since det(]r /]s)s505det(11 1
2t

IRI1o(t2))511 1
2 tr(t IRI)1o(t2)511o(t2),where (RI)K

J 5 f J
IK

is theI th basis vector of the semi-simple sub-ideal ofL(G) in the adjoint representation which i
trace-free.

We are now ready to carry out the required estimate. There exists a subsetU0,Rdim(G) which
is in one-to-one correspondence withG via the exponential map. LetU be the closure ofU0 in
Rdim(G). The setU is compact inRdim(G) becauseG is compact and so the setU0 must be
bounded. Furthermore, since the group under consideration has only a finite number of con
components~namely, one!, there are also only a finite number of corresponding connected c
ponents ofU0 and therefore the setU2U0 has at most dimension dim(G)21. It follows that
U2U0 has Lebesgue measure zero, that is, we can replace the integral overU0 with respect to
ddim(G)t by an integral overU. For instance, for U(1) the setU is just given by the interval
@2p,p# while U0 could be chosen as@2p,p). Likewise, for SU(2) the setU is the set of points
J. Math. Phys., Vol. 38, No. 11, November 1997
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t1
21t2

21t3
2<p while U0 is the set of pointst1

21t2
21t3

2,p plus one arbitrary additional point o
radiusp corresponding to the element212 . Inserting~IV.19!, ~IV.20! and ~IV.22! into ~IV.13!
we can therefore write an expansion in 1/Ab

d$m%@J$m%~b!2J0~b!#5E
U

ddim~G!t

11o~ t2!
expS 2b

1

2 (
I 51

dim~G!

~ t I !21bo~ t3!D
3F t I tr~XI !1

1

2
t I tJ tr~XIXJ!1o~ t3!G

5
1

bdim~G!/211EAbU

ddim~G!t

11o~ t2/b!
expS 2

1

2 (
I 51

dim~G!

~ t I !21o~ t3/Ab!D
3FAbt I tr~XI !1

1

2
t I tJ tr~XIXJ!1o~ t3/Ab!G

5
1

bdim~G!/211ERdim~G!
ddim~G!t expS 2

1

2 (
I 51

dim~G!

~ t I !2D
3FAbt I tr~XI !1

1

2
t I tJ tr~XIXJ!1o~ t3/Ab!G , ~IV.24!

where in the last step the expansion of the scaled domainAbU, U a compact subset ofRdim(G) to
all of Rdim(G) also is correct up to a further order in 1/Ab. Now the terms of odd order int vanish
due to the symmetry of the exponential under reflection. Therefore, we have:

d$m%@J$m%~b!2J0~b!#5
1

b
J0~b!

1

2
trS (

I 51

dim~G!

~XI !2D 1o~1/b2!. ~IV.25!

But ( I(XI)
252l$m%1$m% is the Casimir invariant andl$m% is its eigenvalue. Therefore we arriv

finally at

c~N,$m%!5 1
2 l$m% . ~IV.26!

It is well-known31 that the Laplace–Beltrami operator2D has eigenvaluesl$m% on its complete
system of conjugation invariant eigenfunctionsx$m%(g). These functions are parametrized byr
discrete quantum numbers, according to the rank ofG.

V. THE HAMILTONIAN FORMALISM

In this section, we will recall the standard Hamiltonian formulation of Lorentzian Yang–M
theory in 111 dimensions.~For details, see, e.g., Refs. 32–34!. Here we will only consider
topologiesM5R2 andM5S13R since the Lorentzian metric, obtained by analytic continuati
on the torusS13S1 has closed time-like curves. This discussion will be used in section V C
show the equivalence of our Euclidean framework with the standard Hamiltonian descriptio

The canonical form of the Yang–Mills actions is given by

S5E
R
dtE

S
dxF ȦIE

I2F2L IG I1
g0

2

2
EIEI G G , ~V.1!
J. Math. Phys., Vol. 38, No. 11, November 1997
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whereS5R or S1 and a dot~prime! denotes a derivative with respect tot (x). HereA5Ax is the
the x-component of theG connection andE5 (1/g0

2)(] tAx2]xAt1@At ,Ax#) is its electric field.
The indicesI ,J, K run 1, ...,dim(G)and are raised and lowered with respect to the Cartan Kil
metric. Note that time componentAt

I5L I of the connection acts as a Lagrange multiplier, enfo
ing the Gauss constraint

G I5EI81@A,E# I . ~V.2!

Because the magnetic fields vanish in one spatial dimension, the Hamiltonian takes the fo

H5E
S
dx

g0
2

2
EIEI . ~V.3!

However, multiplying the Gauss constraint byEI yields

1
2 ~EIEI !850

so that the Hamiltonian density must be a constant. Thus, the energy on the plane is infinite
that constant is zero. This enforces the new first class constraintsEI50. The motions generated b
these constraints are transitive on the whole configuration space of theAI and soAI is identified
with the trivial connectionAI50. The reduced phase space forM5R2 is therefore zero-
dimensional, it consists only of one point, (0,0), say.

Remark:A more interesting theory results if we weaken the boundary conditions to a
non-zero electric fields at infinity. For definiteness, let us consider the SU(2) theory and defi
phase space as follows: (AI ,EI) belong to the phase space ifAI5O(1/x2) and EI°Eov̂ I as
x°6`, whereEo is an arbitrary constant andv I is a fixed internal vector. It is easy to check th
the symplectic structure is well-defined on this phase space. Physically, the boundary con
ensure that we have ‘‘an external electric field.’’~The previous arguments do imply that the to
Hamiltonian of the system is infinite but the energy per unit length is finite.! The Gauss law again
generates gauge transformations which are asymptotically identity. We can partially fix this
freedom by demanding that the electric field be everywhere parallel tov I . Then the Gauss con
straint itself implies thatEI5Eov I everywhere and thatAI is also parallel tov I . The remaining
gauge freedom can be exhausted by bringingAI to a standard form:AI5Aof (x)v I , wheref (x) is
a fixed function and the value of the constantAo is determined by the holonomy of the give
connectionAI(x). This exhausts the gauge freedom and solves the Gauss law. The true d
thus captured in the pairs (Ao ,Eo); the reduced phase space is topologicallyR2. @For the SU(N)
theory, it isR2r .] We will not treat these cases in any detail here, however, because the m
cations needed to incorporate these ‘‘external fields’’ in the Euclidean description is beyon
scope of this work~as well as of other mathematical physics treatments that we are aware!.

On the cylinder, the theory is analogous to the more general case discussed above
Hamiltonian is now finite. It is given by

H5
g0

2Lx

2
~EIEI !. ~V.4!

By a gauge transformation,34 we may takeA,E to be constant. By means of a constant gau
transformation we achieve thatA lies in a Cartan subalgebra. Since in that gauge the G
constraint implies thatA,E commute, it follows that there is a gauge in whichA,E both lie in a
J. Math. Phys., Vol. 38, No. 11, November 1997
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Cartan subalgebra. Letr be the rank ofL(G); then the maximal Cartan subalgebra has dimens
r and the reduced phase space has dimension 2r . The reduced phase space is then the quotie34

of R2r by a discrete set of residual gauge transformations.
In the quantum theory on a cylinder, the Hamiltonian becomes the Laplace Beltrami op

on the Cartan subgroupGC
31

H52
g0

2Lx

2
D ~V.5!

and physical states correspond to conjugation invariant functions onG. The corresponding inne
product is theL2 inner product given by the Haar measure onGC . As a result, the character
x$m%(A) with $m%5$m1 , ...,mr% with m1>m2>•••>mr>0 provide a complete set of eigen
states ofH ~with eigenvaluesg0

2Lxl$m%/2). For comparison with the classical theory, recall th
the charactersx$m% depend only on the Cartan subgroup ofG.

VI. AXIOMATIC FRAMEWORK AND RELATION TO THE HAMILTONIAN THEORY

In scalar field theories, the Osterwalder–Schrader axiomatic framework provides a co
formulation of what is often referred to as ‘‘the main problem.’’ Consequently, the framew
plays a central role in constructive quantum field theory. However, as mentioned in the Intr
tion, this framework is geared to ‘‘kinematically linear’’ theories because a basic premise o
axioms is that the space of paths is a vector space, generally taken to be the spaceS 8 of tempered
distributions. In this section, we will use the material presented in sections II and IV to sugg
possible generalization of the Osterwalder–Schrader framework to gauge theories, using
space of physical paths the non-linear spaceA/G .

The section will be divided into three parts. In the first, we briefly review the aspects o
Osterwalder–Schrader framework that are relevant for our discussion. In the second, we p
an extension of the key axioms and verify that they are satisfied by the continuum SU(N) Yang–
Mills theories. In the third part we show that the axioms suffice to demonstrate the equiva
between the Euclidean and the Hamiltonian frameworks.

A. Kinematically linear theories

As mentioned in the Introduction, the basic idea of the Euclidean constructive quantum
theory6 is to definea quantum field theory through the measurem on the space of pathsF—the
rigorous analog of ‘‘exp2S(F)DF. ’ ’ In the Osterwalder–Schrader framework, the space
paths is taken to be the spaceS 8 of tempered distributions on the Euclidean space–timeRd, and
conditions on permissible measuresm on S 8 are formulated as axioms on their Fourier transfor
x( f ), defined via

x~ f !:5^exp~ i F̄@ f # !&:5E
S 8

dm~F̄!exp~ i F̄@ f # !. ~VI.1!

Here f are test functions in the Schwartz spaceS , the over-bar is used to emphasize that the fie

are distributional andF̄@ f #5*Rd ddxF̄(x) f (x) denotes the canonical pairing between distrib
tions and test functions. The generating functionalx( f ) determines the measure complete
Furthermore, sinceS is a nuclear space, Minlos’ theorem25 ensures that if we begin withany
continuous, positive linear functionalx on S , there exists a regular measurem on S 8 such that
~VI.1! holds.

In the Osterwalder–Schrader framework, then,a quantum field theory is a normalized me
sure m on S 8, or, equivalently, a continuous, positive linear functionalx on S satisfying the
following axioms:
J. Math. Phys., Vol. 38, No. 11, November 1997
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~OS-I! Analyticity.This assumption ensures that the measurem has an appropriate ‘‘fall-off.’’
It requires thatx(( i 51

n zi f i) is entire analytic onCn for every finite dimensional subspace spann
by the linearly independent vectorsf iPS .

~OS-II! Regularity.These are technical assumptions which, roughly speaking, allow on
construct Euclidean field operators such that its Schwinger distributions

S~x1 , ...,xn!:5^F̄~x1!, ...,F̄~xn!&

are tempered— rather than less well-behaved — distributions. We will not display them he
~OS-III! Euclidean invariance.This condition ensures Poincare´ invariance of the Wick-

rotated theory. Ifg f is the image of a test functionf under the action of an elementg of the full
Euclidean groupE in d dimensions then, one requires:

x~g f !5x~ f !.

Here the test functions are considered as scalars, that is (g f)(x):5 f (gx).
~OS-IV! Reflection positivity.This is perhaps the key axiom because it enables one to re

mulate the theory in terms of more familiar concepts by providing a notion of time, a Hi
space, and a Hamiltonian. The precise condition can be formulated as follows. Choose an a
hyper-plane inRd which we will call the time zero plane. Consider the linear space, denoteV,
generated by finite linear combinations of the following functions onS 8

C$zi %,$ f i %
:S 8→C; F̄→(

i 51

n

zi exp~F̄@ f i # !,

where ziPC, f iPS with support only in the ‘‘positive time’’ part of the space–tim
(supp(f i)5$x5(x0,xW )PRd; x0.0%). Next, let Q(x0,xW )5(2x0,xW ) denote the time reflection
operator (QPE). Then, one requires that

~C,J!:5^QC,J&:5E
S 8

dm~F̄!~QC@F̄#!!J@F̄#>0 . ~VI.2!

~OS-V! Clustering.This axiom ensures uniqueness of the vacuum. It requires that the me
has the cluster property, that is,

lim
t→`

1

t E0

t

dŝ CT~s!J&5^C&^J&

for all C,J in a dense subspace ofL2(S 8,dm). HereT(s) is a representation onL2(S 8,dm) of
the one-parameter semi-group of time translations defined byT̂(s)exp„iF( f )…:5exp„i F̄(T(s) f …

and extended by linearity and„T(s) f …(x0,xW ):5 f (x01s,xW ) for all f PS .
With these axioms at hand, one can construct a Hilbert spaceH of quantum states, a Hamil

tonianH and a unique vacuum vectorV ~annihilated byH) as follows:

~1! Consider thenull spaceN of norm zero vectors inV with respect to the bilinear form~,!
introduced in~VI.2! and Cauchy-complete the quotientV/N . ThenH:5V/N with scalar
product~,!.

~2! The most important theorem now is that, given a probability measurem satisfying reflection
positivity and Euclidean invariance, the time translation operatorT(s) acting onV factors
through the quotient construction referred to~1!, that is, it leaves the null spaceN invariant.
This means that we can represent it onH and standard Hilbert space techniques now ens
that T(t) has a positive self-adjoint generatorH such thatT(t)5exp(2tH) @note that~due to
J. Math. Phys., Vol. 38, No. 11, November 1997
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Euclidean invariance! T(t) is unitary with respect tô,& but symmetric with respect to~,! due
to the additional time reflection involved; this shows thatT(t) provides a symmetric contrac
tion semi-group#.

~3! The vacuum state turns out to be just the projection toH of the function 1 onS 8.

B. A proposal for gauge theories

The discussion of section II suggests that, in certain gauge theories, it is natural to useA/G

as the space of physical paths. Thus, we are led to seek an extension of the Osterwalder–S
framework in which the linear spaceS 8 is replaced by the non-linear spaceA/G . At first this
goal seems very difficult to reach because the standard framework uses the underlying line
almost every step. However, we will see that one can exploit the ‘‘non-linear duality’’ betw
connections and loops — or, more precisely, betweenA/G and the hoop groupHG — very
effectively to extend those features of the standard framework which are essential to the p
equivalence between the Euclidean and the Hamiltonian frameworks.

Let us consider a gauge theory ind Euclidean space–time dimensions with a compact
group G as the structure group. The proposal is to useA/G as the space of Euclidean path
~Even though we are now working in an arbitrary dimension and with more general stru
groups, this space can be again constructed using any one of the three methods discu
section II.! SinceA/G is compact, it admits normalized, regular Borel measures. Furtherm
the Riesz-Markov theorem~together with the Gel’fand theory! ensures10 that each of these mea
suresm is completely determined by the ‘‘characteristic functional’’x(a1 , ...,an), defined by:

x~a1 , ...,an!:5E
A/G

dm Ťa1
•••Ťan

, ~IV.3!

where,Ťak
denotes Gel’fand transform ofTak

, the trace of the holonomy around the closed lo
ak . ~There is also a theorem35 that ensures the converse, i.e., which states that given a funct
x of multi-loops satisfying certain conditions, there exists a regular measurem on A/G such that
x can be reconstructed via~VI.3!. However, since one has to introduce more technical machin
to state this theorem properly and since this converse is not logically necessary for the co
tions that follow, we will not discuss it here.! Comparing~VI.3! and~VI.1!, we see thatA/G now
plays the role ofS 8 and multi-loops, the role of test functions, and traces of holonomies, the
of exp iF̄(f). Thus, we have extended the Fourier transform~VI.1! to a non-linear space by
exploiting the fact that the loops and connections can be regarded as ‘‘dual objects’’ i
expression of the trace of the holonomy. Our strategy now is to introduce a set of axiom
measuresm through their characteristic functionalsx.

Let us begin with an observation. The discussion of the previous section brings out th
that while all five axioms are needed to ensure that the resulting theory is complete and
pathologies, it is the last three axioms — the Euclidean invariance and the reflection positiv
that play the central role in the reconstruction of the Hamiltonian theory. We will therefore b
with these axioms.

A quantum gauge field theory is a probability measurem on A/G satisfying the following
axioms:

~I! Euclidean invariance.m is invariant under the full Euclidean group if the space–tim
topology isRd, and under the full isometry group of the flat Euclidean metric in more gen
context. In terms of characteristic functionx, we thus have:

x~ga!5x~a!, ~IV.4!
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherea stands for a generic multi-loop (a1 , ...,an) andga denotes the image ofa under the
action of an isometryg.

~II ! Reflection positivity.Choose, as before, an arbitrary ‘‘hyper-plane’’ and regard it as
time-zero slice. Consider the linear spaceV generated by finite linear combinations of functiona
on A/G of the form

C$zi %,$a I i %
:A/G→C; Ā→(

i 51

n

zi)
I 51

r

Ťa I i
~ Ā!,

where the loopsa I i have support in the positive half space. Then we must have:

~C,J!:5^QC,J&:5E
A/G

dm~ Ā!~QC@ Ā# !!J@ Ā#>0 , ~VI.5!

where, as beforeQ is the time-reflection operator.
~III ! Clustering.The requirement is the same in formulae as for the kinematically linear

theories, namely,

lim
t→`

1

t E0

t

dŝ CT~s!J&5^C&^J&

for all C,J in a dense subspace ofL2(A/G ,dm). HereT(s)Ta1
•••Tar

5TT(s)a1
•••TT(s)ar

, where

„T(s)a…

0(t):5a0(t)1s,„T(s)aW )(t…:5aW (t) andt is a parameter along the loop.
We will see in the next section that these axioms suffice to reconstruct the Hamiltonian th

However, this set of axioms is clearly incomplete~see e.g. reference 7!. We will now indicate how
one might impose additional conditions and point out some subtleties.

Let us begin with the analyticity axiom of Osterwalder and Schrader. In that case, we
take complex linear combinations(zi f i because the spaceS of test functions is a vector space. I
the present case, we can only compose loops~or, more precisely, hoops! to obtain

a5a1
n1+•••+an

nn , i 51 ••• r ,

with integer winding numbersnj , and, more generally, a full subgroup of the hoop group gen
ated by a finite number of independent hoops~the notion of ‘‘strong independence,’’11 of hoops
being the substitute for ‘‘linear independence’’ of test functionsf i .) One could also include
complex winding numbers and this may lead us to the notion of ‘‘extended loops.’’36 In any case,
it may be natural to require that

x~$a i%!

be ‘‘in some sense analytic’’ in the winding numbersni j ~we will leave a more precise formulatio
of this notion for future work!. Recall, however, that in the Osterwalder–Schrader framework
analyticity axiom is needed to ensure the existence of Schwinger functions. In the present c
the other hand, since the analogs^A(x1), ...,A(xn)& of the Schwinger functions fail to be gaug
invariant, from our perspective, it is unnatural to require that they be well-behaved in the qua
theory. So, at this stage of our understanding, theraison d’etreof the analyticity condition is not
as compelling in our framework. Therefore, a definitive formulation of this axiom must a
further development of the framework.

The situation with the Regularity axiom is similar. In the Osterwalder Schrader framewo
prescribes certain bounds on the characteristic functionx( f ) which are needed to ensure that t
Schwinger functions can be continued analytically to obtain the Wightman functions in
J. Math. Phys., Vol. 38, No. 11, November 1997
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Lorentzian regime. In the present context, neither the Schwinger nor the Wightman functio
gauge invariant. Nonetheless, suitable regularity conditionsare needed to ensure that the Loren
zian Wilson loopsare well-defined. The precise form of these conditions will become clear
after the issue of analytic continuation of Wilson loops is explored in greater detail.

Finally, the spaceA/G is very large: In a well-defined sense, it serves as the ‘‘unive
home’’ for measures in theories in which the traces of holonomies are well-defined opera8

From general considerations, one would expect that the measures that come from phy
interesting gauge theories should have a much smaller support~provided, of course, that traces o
holonomies are measurable functions!. A further investigation of this issue would suggest ad
tional restrictions on the characteristic functions.

To conclude this section, let us consider the key question that any set of axioms mus
Are they consistent? That is, do they admitnon-trivial examples? Fortunately, results in section
immediately imply that the answer is in the affirmative. To see this, let us takeM to be either a
2-plane or a 2-cylinder and the structure group to be SU(N) or U(1). Thecharacteristic functiona
is then given by~IV.16!. Let us begin with Euclidean invariance. Since the characteristic fu
tionals depend only on the areas of the various loops involved, they are invariant under a
preserving diffeomorphisms and, in particular, under the isometry groups of the underlying s
times. Reflection positivity is also satisfied because, as we will see in the next sub-section
dividing by N we obtain a scalar product which is positive definite. Furthermore, since
measure is non-interacting, clustering is immediate~see next subsection!. Finally, we can also tes
if the ‘‘obvious’’ restrictions of analyticity and regularity are met. By inspection, the character
functionals~IV.16! are formally analytic inkI

6 and l i
6 . Since the winding numbersnj are linear

combinations of these, the generating functions are formally analytic in the winding numbe
well. Finally, the generating functionals are bounded~by 1).

C. Reconstruction of the Hamiltonian theory

Let us now construct a Hilbert space, a Hamiltonian and a vacuum via the Osterw
Schrader algorithm6 and verify that, for cases treated in sections IV, this description is equiva
to the one obtained directly using Hamiltonian methods in section V. Since this algorithm us
essence, only reflection positivity, it is directly applicable to our formulation of gauge theor

The first step is to construct the null spaceN in V. Let us fix one of theC ’s considered in
axiom ~II !. Then we have

~C,C!5 (
i , j 51

n

zi
!zjE

A/G

dm~ Ā! )
I ,J51

r

~ ŤQ~a I i !
21@ Ā# !~ ŤaJ j

@ Ā#…,

wherem is the physical measure obtained by taking the continuum limit of~IV.16!, and where we
we have used the fact that, sinceG is unitary, (Ťa)!5Ťa21, where! denotes complex conjuga
tion.

We now need to express this equation in terms ofx. Let us begin by considering the decom
position of a multi-loop$a1 , ...,as%, s<r . In this decomposition, it is convenient to separate
homotopically trivial loops from the non-trivial ones. In the caseM5R3R, there is no homo-
topically non-trivial loop. On the cylinder we can choose the horizontal loopg at t50 as the
fiducial non-trivial loop and write every homotopically non-trivial looph occurring in the multi-
loop $a1 , ...,as% as h5@h+g21#+g, where the loop in brackets is homotopically trivial. Th
result will be a multi-loopã1 , ...,ã s̃ whose homotopically trivial contribution comesonly from
g. Finally write ) I 51

s Ta I
as a linear combination of terms of the form@as in ~IV.6!#

tr„g$m%~ â1 , ...,â s̃!p$m%~hg!), ~VI.6!
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherep$m% is the $m%th irreducible representation ofG andg$m% is some matrix which depend
only on the homotopically trivial loopsâ i and which is projected from both sides byp$m%(1N),
that is,g$m%p$m%(1N)5p$m%(1N)g$m% . Loopsa î arise fromã i by taking the simple loop decom
position ofa ĩ as in ~IV.6! and taking out theg ’s and its inverses. Since every multi-loop fun
tional can be so expanded, it is sufficient to consider the scalar product among these func
which we will now write as

F $m%~b!:5F $m%~b1 , ...,bs!:5tr„g$m%~b1 , ...,bs!p$m%~hg!…, ~VI.7!

where b i are homotopically trivial and enclose surfaces in the positive half-space. Note
QF $m%(b)5F $m%(Qb) sinceQg5g. We can therefore alternatively writeC in the form

C5(
$m%

z$m%F $m%~b$m%!. ~VI.8!

Now, using the formula37

E
G

dmH~g!p̄AB~g! ^ pCD8 ~g!5
dp,p8
dp

pAC~1!pBD~1! ~VI.9!

we find

E
A/G

dm F̄ $m%~Qb$m%!F $m8%~b$m8%!5
d$m%,$m8%

d$m%
E

A/G

dm ḡ $m%~Qb$m%!ABg$m%~b$m%!BA

5
d$m%,$m8%

d$m%
trS F E

A/G

dm ḡ $m%~b$m%!GF E
A/G

dmg$m%~b$m%!G D
5

d$m%,$m8%

d$m%
2 U E

A/G

dm tr~p$m%~1N!g$m%~b$m%!!U2

. ~VI.10!

Here, in the third step we have used the fact thatb$m% ,Qb$m8% are supported in disjoint domain
of space–time, the time reflection invariance of the measure and its maximal clustering prop
the measure~non-overlapping loops are non-interacting!. In the last step we used the fact that t
integral overg$m%(b$m%)AB results in a constant matrix,MAB say, which, by inspection of~IV.12!
is a linear combination of projectors onto representation spaces of irreducible represent
partially contracted as to match the index structure ofp$m% . So M is a linear combination of
matrices of the formsAB8 5sC,A;C,B(1N), wheres is an irreducible projector. Now using the fa
thats8p$m%(1N)5p$m%(1N)s8, thatp$m% is irreducible and that the contraction of tensor produ
of Kroneckers is again proportional to a tensor product of Kroneckers it follows thatM5p$m%
3(1N)tr(M )/d$m% .

Formula~VI.10! says that

C2(
$m%

z$m%

1

d$m%
F E

A/G

dm tr„p$m%~1N!g$m%~b$m%!…Gx$m%~hg! ~VI.11!

is a null vector. Therefore, our Hilbert spaceH is the completion of the linear span of the stat
x$m%(hg) with respect to the Haar measuredmH . On the plane, since there is no homotopica
non-trivial loopg, the only state is the constant functionC51 which corresponds precisely to th
J. Math. Phys., Vol. 38, No. 11, November 1997
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trivial quantum theory as obtained via the Hamiltonian formalism. On the cylinder we o
H5L2„C(G),dm̃H…, whereC(G) is the Cartan subgroup ofG and m̃H is the corresponding
effective measure onC(G) induced by the Haar measuremH .

Finally, note that, in the final picture, the loopg probes the connectionĀ at time t50 only.
This is is completely analogous to the corresponding construction for the free massless
field6 where the Hilbert space construction can be reduced to the fields at time zero.

Having constructed the Hilbert space, let us now turn to the Hamiltonian. As indicate
section VI A, the Hamiltonian can be obtained as the generator of the Euclidean time trans
semi-group. Denote byg(t):5T(t)g the horizontal loop at timet. Now let a(t):5g(t)+g21,
then we have by the representation property

x$m%~hg~ t !!5tr„p$m%~ha~ t !!p$m%~hg!… ~VI.12!

so that according to~IV.16! we have that

x$m%~hg~ t !!5F E
A/G

dm x$m%„a~ t !…Gx$m%~hg!

d$m%
. ~VI.13!

Hence, according to~IV.14!

„x$m8% ,T~ t !x$m%…5exp~2 1
2 l$m%g0

2Lxt !d$m8%,$m%

!
5

„x$m8% ,exp~2tH !x$m%…

and the completeness of thex$m% allows us to conclude that

H52
g0

2

2
LxD ~VI.14!

is the configuration representation of the Hamiltonian.
Finally, let us consider the vacuum state. By inspection, it is given byV51. It is the unique

vector annihilated by the Hamiltonian. We therefore expect that the measure is clustering~see Ref.
6, Theorem 19.7.1!. Indeed, notice first that finite linear combinations of products of traces o
holonomy around loops form a dense setD in L2(A/G ,dm) by construction ofA/G . Now recall
once again that the measure is not interacting in the sense that ifC,J are two elements ofD
defined through multi-loops lying in disjoint regions of the plane or the cylinder then it foll
immediately from~IV.16! that ^CJ&5^C&^J&. Even if C,J are defined through multi-loop
which intersect or overlap then there exists a time parametert0 such that the multi-loops involved
in C andT(t)J lie in disjoint regions of the plane or the cylinder for allt>t0 . It then follows
from the invariance of the measure under time translations that fort.t0 we have

E
0

t

dŝ CT~s!J&5E
0

t0
dŝ CT~s!J&1^C&^J&~ t2t0!

and since the first term is finite, clustering is immediate.
Thus, as in scalar field theories, Euclidean invariance and reflection positivity have enab

to construct the Hamiltonian description from the Euclidean. Furthermore, from sections IV a
it follows that for SU(N) and U(1) Yang–Mills theories onR3Rl andS13Rl, the Hamiltonian
theory constructed through this procedure isexactly the same as the standard one, construc
ab-initio via canonical quantization.
J. Math. Phys., Vol. 38, No. 11, November 1997
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VII. SUMMARY

The new results of the present paper can be summarized as follows:
~1! We successfully employed the new integration techniques developed in Refs. 11–

compute a closed expression for the Wilson loop functionals for Yang–Mills theory in
Euclidean dimensions.

~2! We proposed an extension of the Osterwalder–Schrader framework for gauge theori
showed how to recover the Hilbert space, the Hamiltonian and the vacuum for the Lore
theory starting from our Euclidean framework. For two-dimensional Yang–Mills theories
R3R and onS13R, the resulting quantum theory completely agrees with the one obtaine
canonical quantization. Therefore, two-dimensional Yang-Mills theory constitutes another m
theory in the framework of constructive quantum field theory.

~3! Our results are manifestly gauge-invariant, geometrically motivated, require only si
mathematical techniques and the resulting quantum theory is manifestly invariant under th
sical symmetry generated by area-preserving diffeomorphisms.

How do these results compare with those available in the literature? Let us begin wi
Makeenko–Migdal approach. While they formulated differential equations that the Wilson
have to satisfy, we have derived a general expression for Wilson loops themselves by d
computing the functional integrals. In the intermediate steps we used a lattice regulariz
However, in contrast to the more common practice~in lattice gauge theories! of seeking fixed
points of the renormalization group, our results for the continuum theories were then obtain
explicitly taking the limits to remove the regulators. Indeed, our general procedure is rather s
to that used in constructive quantum field theory: we began with a fiducial measurem0 on our
spaceA/G of Euclidean paths, introduced an infra-red and an ultraviolet cutoff, evaluated
characteristic functional of the measure and then removed the regulators. Thus, in the e
were able to show rigorously that the theory exists in the continuum. In particular, our mathe
cal framework guarantees the existence of the physical measure for the continuum theo~for
which the ‘‘fixed point’’ arguments of numerical lattice theory do not suffice.!

While the spirit of our approach is the same as that of the mathematical physics literatu
the subject, there are some differences as well. Most of these approaches mimic techniqu
have been successful in scalar field theories. Thus, generally, one fixes gauge right in the
ning to introduce a vector space structure onA/G ~see, e.g., Ref. 4!. Gauge fixing also brings
considerable technical simplifications. However, proofs of invariance of the final expres
under gauge transformations and area preserving diffeomorphisms are then often long. A
most of this literature, the Wilson loops are computed for non-overlapping loops. Our resul
perhaps closest to those of Klimek and Kondracki.28 Their framework is also manifestly invarian
under gauge transformations and area preserving diffeomorphisms. Furthermore, their res~as
well as those of the second paper in Ref. 4! imply that their expressions of Wilson loops in th
non-overlapping case admit consistent extensions to all loops. However, they restrict them
to the structure group SU(2) and the relation to lattice gauge theory — and hence to the c
tional Yang–Mills theory — is somewhat obscure.

There are several directions in which our results can be extended. We will conclud
mentioning some examples. First, now that closed expressions for Wilson loops are availa
would be very interesting to check if they satisfy the Makeenko–Migdal equations rigoro
Second, our axiomatic framework is incomplete and it would be very desirable to supplem
e.g., with techniques from Ref. 7. Another direction is suggested by the fact that, for the
discussed here in detail, we expect that the support of the final physical measure is signifi
smaller than the full spaceA/G with which we began. Rigorous results that provide a go
control on the support would be very useful in refining our axiomatic framework. Finally, it wo
be interesting to extend our Euclidean methods to closed topologies and compare the re
framework with the gauge fixed framework of Sengupta.38
J. Math. Phys., Vol. 38, No. 11, November 1997
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APPENDIX A: YOUNG TABLEAUX

In the main text we encountered the following issue: We had to integrate a tensor prod
group factors^

ng with a measuredm5dmH(g)exp(b/NR tr(g)) which is invariant under con-
jugation. The representation ofG corresponding to then-fold tensor product of the fundamenta
representation is not irreducible, so let us decompose it into irreducibles

^
ng5 % ip i

~n!~g!

which is possible sinceG is compact. Now we have that

p~h!F E
G

dm~g!p~g!G5F E
G

dm~g!p~hgh21!Gp~h!5F E
G

dm~g!p~g!Gp~h!

so the integral overp(g) commutes with the representation~we have used conjugation invarianc
of the measure in the last step!. Accordingly, by Schur’s lemma, we conclude that the integra
proportional to the identity sincep was supposed to be an irreducible representation. We
compute the constant of proportionality by taking the trace. Therefore we conclude that

E
G

dm~g!p~g!5
p~1N!

d~p!
E

G
dm~g!x~g!, where x~g!5tr„p~g!… ~A1!

is the character of the representation. This simplifies the group integrals significantly sin
only need the character integrals.

Note that what we are doing here is different from what is usually done in the literature30,40

Because we want to evaluate the integral non-perturbatively, we cannot use the stronger p
of translation invariance of the Haar measure. In case of the Haar measure we simply hav30

E
G

dmH~g!p~g!5dp,0p~1N!, ~A2!

where 0 denotes the trivial representation.
The solution to the problem of how to decompose an arbitrary tensor product of fundam

representations of SU(N) into irreducibles can be found, e.g., in Ref. 39 and we just recall
necessary parts of the theory.

Given ann-fold tensor product of the fundamental representation of a groupG, consider all
possible partitions$m% of n into positive integers of decreasing value,

n5m11m21•••1ms , where m1>m2>•••>ms.0 .
J. Math. Phys., Vol. 38, No. 11, November 1997
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Such a partition defines a so-calledframeY ~Young diagram! composed of s horizontal rows wit
mi boxes in thei th row.

Associated with each frame we construct a certain operator acting on the n-fold tensor p
representation as follows: Fill the boxes arbitrarily with numbersB1 ,B2 , ...,Bn where Bi

P$1,2, ...,N%. Such a filling of the frame is called atableau. Let P denote the subset of th
symmetric group of n elementsSn which only permutes the indicesi of the labelsBi of each row
among themselves and similarly Q denotes the subgroup ofSn permuting only the indices in eac
column among themselves of the given frame. The relevant operator is now given by

e$m%,i
~n! :5 (

qPQ
sgn~q!q̂ (

pPP
p̂,

wherei labels the filling and sgn(q) denotes the sign of the permutationq. The action ofp̂, say,
is

p̂gB1

A1•••gBn

An5gBp~1!

A1 •••gBp~n!

An ,

that is, it permutes theindices of the subscript labels Bi . Because of the complete ant
symmetrization in the columns, no diagram has a row longer thanN boxes,s<N.

It turns out39 that each of thesesymmetrizerscorresponds to an irreducible representation
GL(N), U(N), and SU(N). Symmetrizers corresponding to different frames give rise to inequ
lent representations all of those that correspond to different fillings of the same frame are e
lent. However, not all of the symmetrizers for a given frame are linearly independent, a lin
independent set of tableaux, the so-calledstandard tableauxcan be constructed as follows: let th
indicesi of a filling always increase in one row from left to right and in each column from to
bottom. The number of these standard tableaux is given by the formula~if s51, replace the
numerator of the fraction by 1!

f $m%
~n! :5n!

P1< i ^ j <s~ l i2 l j !

P i 51
s ~ l i ! !

, where l i :5mi1s2 i , i 51, ...,s ~A3!

and it is the number of times that the$m%th irreducible representation occurs in the decomposit
of ^

ng into irreducibles. Now let

e$m%
~n! :5(

i 51

f $m%
~n!

e$m%,i
~n! ~A4!

i.e., the sum of the symmetrizers corresponding to the standard tableaux. This object is ca
Young symmetrizerof the frame$m%. One can show that the standard symmetrizers obey
following ~quasi! projector property:

@e$m%,i
~n!

^
n1N#@e

$m8%, j
~n!

^
n1N#5d i , jd~$m%,$m8%!

n!

f $m%
~n!

e$m%,i
~n! ,

that is, the sum in~A4! is actually direct and

p$m%,i
~n! :5

f $m%
~n!

n!
e$m%,i

~n! andp$m%
~n! :5

f $m%
~n!

n!
e$m%

~n!
J. Math. Phys., Vol. 38, No. 11, November 1997
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are projectors onto the representation space of thei th of the equivalent irreducible standar
representations given by the frame and on their direct sum, respectively.

In particular we have the resolution of the identity

^
n1N5 % $m%@p$m%

~n!
^

n1N#. ~A5!

Let us focus on the unitary groups from now on. For the groups SU(N) we have the following
formula for the dimension of the$m%th irreducible representation40

d$m%5
P1< i , j <N~ki2kj !

P I 51
N21~ I ! !

, where ki5mi1N2 i , mi :50 for i .s. ~A6!

APPENDIX B: U(1) ON THE TORUS

According to the formulas developed in sections III and IV A it is easy to see that
characteristic functional simply becomes

x~a!5
*PhdmH~gh!dmH~gx!dmH~gy!exp~2b(h@12R~gh!#!Ta~gh ,gx ,gy!d~Phgh,1!

*PhdmH~gh!exp~2b(h@12R~gh!#!d~Phgh,1!

5d l x,0d l y,0 lim
N→`

(
n52N

N S I n

I 0
D NxNy

)
I 51

k S I n1kI
/I 0

I n /I 0
D ua I u

(
n52N

N S I n

I 0
D NxNy

, ~B1!

where we have employed in the second step the Dirichlet formula41

d~g,1!5 (
n52`

`

gn ~B2!

and we could interchange the processes of taking the limit and integration since the Wilson
satisfies all the regularity assumptions for the application of that form
I n(b)5*2p

p df/(2p)eb cos(f)1inf is thenth modified Bessel function.
Let us writeNxNy5bg0

2Vandua I u5bg0
2A(a I) (V is the volume or total area of the torus an

AI5A(a I) are the areas of the simple non-overlapping homotopically trivial loops of whicha is
composed! and use the well-known asymptotic properties of the modified Bessel functions42 in
taking the continuum limitb→`. The result is

x~a!5d l x,0d l y,0 lim
N→`

(
n52N

N

expS 2
g0

2

2 Fn2V2(
I 51

k

AI~@n1kI #
22n2!G D

(
n52N

N

expS 2
g0

2

2
Vn2D

5d l x,0d l y,0e
2

g0
2

2 F(
I 51

k

AIkI
22

1

V S (
I 51

k

kIAI D 2G (
n52`

`

expS 2
Vg0

2

2 S n1
( I 51

k AIkI

V D 2D
(

n52`

`

expS 2
Vg0

2

2
n2D .

~B3!
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Note that the series in numerator and denominator converge absolutely and uniformly to
vanishing limit.

Formula~B3! is the exact and complete result. If we could replace the sums by integrals
the real axis then the fraction involved in~C3! would give just the number 1 and we would be le
with the exponential factor only. Note that becauseV2AI>(J5” IAJ , exponent in the exponentia
is non-negative:

V(
I

AIkI
22S (

I
kIAI D 2

> (
I ,J5” I

kI
2AIAJ22(

I ,J
kIkJAIAJ5(

I ,J
AIAJ~kI2kJ!

2>0 ~B4!

so that this pre-factor alone could possibly be the generating functional of a positive me
~According to the Riesz-Markov theorem one needed to verify that it is a positive linear funct
on HA).

The characteristic functional~B3! has several interesting features, for example:

~1! While the non-interacting measures had exponents that were linear in the areas of the
loops, for the interacting theory on the torus we obtain a quadratic dependence on th
thusviolating the area law! It is an interesting speculation that the interactive nature of
measure is related to the fact that functional integrals with compact time direction are
posed to describe finite temperature field theories. The interaction then comes from the
ground heat bath and the characteristic functional is the free energy of a canonical ens

~2! The interactive nature of the continuum measure for compact two-dimensional manifolds
as the torus considered here lets us expect that one would observe a phase transition a
17 in the limit N→`. However, the largeN limit of ~B3! is beyond the scope of the prese
paper and we leave a corresponding analysis for future research.

~3! Notice that expression~B4! is invariant under taking complements~that is,A→V2A) if there
is only one simple loop, otherwise the simple loop decomposition of the compleme
surfaces is different from the original one.
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Open perturbation and the Riccati equation: Algebraic
determination of the quartic anharmonic
oscillator energies and eigenfunctions

N. Bessis and G. Bessis
Laboratoire de Physique des Lasers, U.R.A. 282 du C.N.R.S., Universite´ Paris-Nord,
avenue J. B. Clement, 93430 Villetaneuse, France

~Received 8 April 1997; accepted for publication 14 July 1997!

An algebraic procedure is proposed for the analytical solution of Schro¨dinger equa-
tions that can be viewed as a factorizable equation with an additional potential
V(x). Once V(x) has been expanded in a series of suitablex-basis functions
u5u(x), which are specific to each factorization type, the solution of the Riccati
equation associated with the given equation is performed by means of an open
perturbation technique, i.e., at each order of the perturbation, an additional balance
u-dependent term is introduced so that the resulting equation becomes solvable.
Since the unperturbed potential involves the whole given potential and since the
balance term is expected to be small, improved results are expected at low orders of
the perturbation, even at the zeroth order. The procedure, well adapted to the use of
computer algebra, is applied to the solution of thegx4-anharmonic oscillator equa-
tion: by means of very simple algebraic manipulations, the trend of the exact values
of the energies is rather well reproduced for a large range of values of the coupling
constant~g50.002 tog520000!. © 1997 American Institute of Physics.
@S0022-2488~97!03910-8#

I. INTRODUCTION

Many equations of current interest in quantum physics, particularly in atomic and mole
physics, can be viewed as an unperturbed equation with potentialU(x,m) leading to a
Schrödinger–Infeld–Hull1,2 factorizable equation together with an additional potentialV(x). In a
recent paper,3 an algebraic procedure has been proposed for an analytical solution of Schro¨dinger
equations with such a potential functionW(x,m)5U(x,m)1V(x), whereV(x) is assumed to be
a perturbation. This procedure relies on the solution of the Riccati equation associated w
given eigenequation and the expansion of the perturbation in a series of suitablex-basis functions
u5u(x), which are specific to each factorization type. For any given state, simple alge
manipulations provide, at the same time, analytical expressions of the perturbed eigenvalu
perturbed eigenfunctions, without having to compute any matrix elements or to perform
integration. This perturbation procedure is well adapted to the use of software systems s
MATHEMATICA 4 and allows the computation to be carried out up to high orders of the perturba
Nevertheless, very often, the results are not at all as rewarding as expected, owing to the f
the unperturbed kernel potential cannot reproduce well the main features of the total po
and/or that the perturbation series are divergent.

In the present paper, a different approach is proposed for the analytical solution of none
solvable Schro¨dinger equations with total potential functionW(x,m). Once the suitablex-basis
functionsu5u(x) associated withU(x,m) have been chosen for expandingV(x) ~see Table I!,
the Riccati equation associated with the given Schro¨dinger equation is solved by means of an op
perturbation technique: we introduce, at the successive orders of the perturbation, an ad
balanceu-dependent term so that the resulting Riccati equation becomes exactly solvable a
order. Of course, the balance term generated at a given order is cancelled by the new one
following order. Purposely, the unperturbed kernel potential now involves the whole given p
0022-2488/97/38(11)/5483/10/$10.00
5483J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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tial W(x,m) together with an additional term and, consequently, improved results, or even
rate results, are expected at low orders of the perturbation.

Among many possible applications, the solution of the quartic anharmonic oscillator equ
with potential functionW(x)52x222gx4 deserves a particular interest for molecular physic
as well as for field theorists, because of the analogy between this model and one-dime
quantum field theories.5 Interest in such a model stems mainly from the fact that, if one consi
the anharmonicitygx4 as a perturbing operator, then the Rayleigh–Schro¨dinger perturbation ex-
pansion for the eigenvalues diverges,6 for every value ofg. Consequently, several methods ha
been used to calculate the quartic anharmonic oscillator eigenvalues and eigenfunctions. W
being exhaustive, we may recall variational methods,7–9 WKB methods,10–11Hill determinant,12,13

or Riccati–Hill determinant14 methods, perturbative methods using summability techniques
as the Stieljes, Pade´, and Borel methods.15–20 Let us also mention the hypervirial perturbatio
method of Fernandez and Castro,21 which can be viewed as a generalization of the Killingbe
method,22 and an alternative method of the same authors,23 which, using the Riccati equation an
a variant of the Killingbeck method,24 yields upper and lower bounds to the exact ground s
eigenvalues. We may also quote the recent calculation of Lay,25 which relies on the fact that the
quartic oscillator eigenequation is a specific triconfluent case of Heun’s differential equ
Then, it appears challenging to apply our method, using both the solution of the Riccati eq
and an open perturbation technique in order to avoid the failure of the usual perturbation se
the solution of the quartic anharmonic oscillator equation.

After giving the main features of the method~Sec. II!, the procedure is applied to the dete
mination of analytical expressions of thegx4-anharmonic oscillator energies and eigenfunctio
~Sec. III!.

II. METHOD

After appropriate transformation of variable and function, one-dimensional Schro¨dinger equa-
tions can be written in the standard form

H d2

dx2 1W~x,m!1LyJ Cy~x!50, ~2.1!

associated with the boundary conditions

uC~x1!u25uC~x2!u250; E
x2

x1
uC~x!u2 dx51;

TABLE I. Infeld–Hull potentials and associatedu5u(x) basis.

Type U(x,m) u5u~x!

A 2
a2@m~m11!1d21~2m11!d cosax#

sin2 ax
tanSax

2 D
B 2a2d2e2ax1a2(2m11)deax eax

C 2
m~m11!

x2 2b2x21b~2m11! x

D 2b2x21b(2m11) x

E 2
a2m~m11!

sin2 ax
22aqcotax cotax

F 2
m~m11!

x2 2
2q

x
x
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m andy are quantum numbers labeling the eigenvalues and eigenfunctions.
When settingdC/dx5F(x)C(x), the given eigenequation~2.1! is readily transformed into

the following Riccati equation:

dFy

dx
1@Fy~x!#21W~x,m!1Ly50. ~2.2!

Let us assume thatW(x,m) can be conveniently written asW(x,m)5U(x,m)1V(x), where
V(x) is an additional potential andU(x,m) is a kernel potential that corresponds to an exac
solvable eigenequation and can be related to a factorizable equation~noted type A–F within the
Infeld and Hull nomenclature2!. Using the perturbation framework with a parameterh, we con-
sider the solution of the following Riccati equation:

dFy

dx
1@Fy~x!#21W~x,m!2~12h!xy~x!1Ly50, ~2.3!

where

Ly5Ly
~0!1hLy

~1!1h2Ly
~2!1••• ,

Fy~x!5
Ry

~0!~x!1hRy
~1!~x!1h2Ry

~2!~x!1•••

Sy
~0!~x!1hSy

~1!~x!1h2Sy
~2!~x!1•••

, ~2.4!

xy~x!5xy
~0!~x!1hxy

~1!~x!1h2xy
~2!~x!1••• ,

and thexy
(0)(x),xy

(1)(x),xy
(2)(x),...,xy

(N)(x), are suitable additional functions to be generated
the successive orders of the perturbation so that, at each order, the Riccati equation~2.3! becomes
exactly solvable.

When substituting forFy(x), Ly , andxy(x) from Eq.~2.4! into the Riccati equation~2.3! and
equating to zero the coefficients ofhk, we obtain the following equations to be solved at t
successive orders (N50,1,2,3,...) of the perturbation.

At the zeroth order (N50) of the perturbation, we get

~Ry
~0!!21Sy

~0!
dRy

~0!

dx
2Ry

~0!
dSy

~0!

dx
1~Sy

~0!!2@W2xy
~0!1Ly

~0!#50. ~2.5!

At the first order (N51) of the perturbation, we get

2Ry
~0!Ry

~1!1Sy
~0!

dRy
~1!

dx
1Sy

~1!
dRy

~0!

dx
2Ry

~0!
dSy

~1!

dx
2Ry

~1!
dSy

~0!

dx

1~Sy
~0!!2@xy

~1!1Ly
~1!#12Sy

~0!Sy
~1!@W2xy

~0!1Ly
~0!#50. ~2.6!

At the second order (N52) of the perturbation, we get

~Ry
~1!!212Ry

~0!Ry
~2!1Sy

~0!t
dRy

~2!

dx
1Sy

~1!
dRy

~1!

dx
1Sy

~2!
dRy

~0!

dx
2Ry

~0!
dSy

~2!

dx
2Ry

~1!
dSy

~1!

dx
2Ry

~2!
dSy

~0!

dx

1~Sy
~0!!2@xy

~2!1Ly
~2!#12Sy

~0!Sy
~1!@xy

~1!1Ly
~1!#1@~Sy

~1!!212Sy
~0!Sy

~2!#@W2xy
~0!1Ly

~0!#50.

~2.7!

At the third order (N53) of the perturbation, we get
J. Math. Phys., Vol. 38, No. 11, November 1997
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2Ry
~0!Ry

~3!12Ry
~1!Ry

~2!1Sy
~0!

dRy
~3!

dx
1Sy

~1!
dRy

~2!

dx
1Sy

~2!
dRy

~1!

dx
1Sy

~3!
dRy

~0!

dx
2Ry

~0!
dSy

~3!

dx
2Ry

~1!
dSy

~2!

dx

2Ry
~2!

dSy
~1!

dx
2Ry

~3!
dSy

~0!

dx
1~Sy

~0!!2@xy
~3!1Ly

~3!#12Sy
~0!Sy

~1!@xy
~2!1Ly

~2!#

1@~Sy
~1!!212Sy

~0!Sy
~2!#@xy

~1!1Ly
~1!#1@2Sy

~0!Sy
~3!12Sy

~1!Sy
~2!#@W2xy

~0!1Ly
~0!#50, ~2.8!

... and so on.
These equations are solved recursively, i.e., at each orderN under consideration, theRy

(n) and
Sy

(n) functions of the preceding orders (n50,1,...,N21) are known. Hence, it is easily seen tha
once the zeroth-order functionsRy

(0) , Sy
(0) , and the eigenvalueLy

(0) have been found from the
solution of the Riccati equation~2.5!, at the following ordersN51,2,..., the determination of th
perturbed eigenvaluesLy

(N) , as well as the perturbed functionsRy
(N) and Sy

(N) , can be achieved
from the solution of linear equations.

Since our determination procedure mainly relies on the use of power series of thex-basis
functions u5u(x) of Table I, let us remark that, for each of the six factorization types,
potential functionU(x,m) involves only powers of theu5u(x) functions. This is obvious for the
factorization types B, C, D, and F. For types A and E, it is easily checked that the pot
functionsU(x,m) can be conveniently written again.

For type A,

U~x,m!52
a2@~m1d11!~m1d!12~d21m~m11!!u21~m2d11!~m2d!u4#

4u2 . ~2.9!

For type E,

U~x,m!52a2m~m11!~11u2!22aqu. ~2.10!

Then, we assume thatV(x) can be expanded in a series of thex-basis functionsu5u(x), and we
set

V~x!5(
s51

bsu
s,

Ry
~N!~x!5(

s51
cs

~N!us; Sy
~N!~x!5(

s51
ds

~N!us. ~2.11!

When substituting forRy
(N)(x), Sy

(N)(x), andV(x) from Eqs.~2.11! successively into the equation
~2.5!, ~2.6!,..., and equating to zero the coefficients ofuk, we obtain systems of equations, whic
provided a convenient choice of thex (N)(u) functions, allow the determination of thecs

(N) and
ds

(N) coefficientsLv
(N) in terms of the given expansion coefficientsbs of V(x).

As an illustrative example, let us focus our attention on the solution of the quartic anharm
oscillator eigenequation.

III. QUARTIC ANHARMONIC OSCILLATOR ENERGIES AND EIGENFUNCTIONS

Let us consider thegx4-anharmonic oscillator eigenequation (2`,x,1`),

H d2

dx22x222gx412EyJ Cy~x!50, ~3.1!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The associated Riccati equation is

dFy

dx
1@Fy~x!#22x222gx412Ey50. ~3.2!

Note that, wheng→0, the eigenequation~3.1! reduces to the harmonic oscillator equation,
that

Ey
~0!→ey5y1 1

2 ,

Cy
~0!~x!→Fy~x!'Hy~x!exp~2x2/2!, ~3.3!

Fy
~0!~x!→ f y~x!52x22y@Hy21~x!/Hy~x!#,

whereHy(x) is a Hermite polynomial of degreey.

A. Ground state „y50… energies and eigenfunctions

We have first to obtain the solutionsRy50
(0) (x) andSy50

(0) (x) of the zeroth-order Riccati equa
tion ~2.5!, where W5W(x)52x222gx4. Owing to the presence of the termgx4, we are
prompted to set

Fy50
~0! ~x!5Ry50

~0! ~x!5c10x1c30x
3; Sy50

~0! ~x!51. ~3.4!

When substituting these expressions~3.4! of Ry50
(0) (x) andSy50

(0) (x) into the Riccati equation~2.5!,
the balance termxy

(0)(x) is generated so that, equating to zero the coefficients of the powersx,
we get a system of equations allowing the determination ofc10, c30 andLy50

(0) ,

xy
~0!~x!5c30x

6,
~3.5!

c101Ly50
~0! 50; c10

2 13c302150; 2c30c1022g50.

Solving this system, we obtain

Ly50
~0! 52Ey50

~0! 52c10; c305
1
3~12c10

2!, ~3.6!

wherec10 is a root of the cubic equation,

c10
3 2c1013g50. ~3.7!

For g.0, this cubic equation has always one unique real negative root. Thus, we choos
negative rootc10 and, using Eq.~3.6!, we obtain, at the same time, the values of the ground s
energies and the expansion coefficients of theFy50

(0) (x) function. Values of the ground stat
energies have been reported in the first column of Table II, in comparison with previous val
Hioe and Montroll,26 who have developed rapidly converging algorithms, using the Barg
representation, and have obtained high accurate values, for a large range of values og ~g
50.002 to g520000!. Note that, forg50, a suitable root of the cubic equation~3.7! is c10

521: the energyEy50
(0) reduces toey5051/2 andFy50

(0) (x) reduces tof y50
(0) (x)52x.

At the following orders (N51,2,...) of the perturbation, we set successively,
J. Math. Phys., Vol. 38, No. 11, November 1997
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Fy50
~1! 5Ry50

~1! 5c11x1c31x
31c51x

5,

Fy50
~2! 5Ry50

~2! 5c12x1c32x
31c52x

51c72x
7, ~3.8!

Fy50
~3! 5Ry50

~3! 5c13x1c33x
31c53x

51c73x
71c93x

9,

..., and so on.
When substituting successively forRy50

(1) , Ry50
(2) ,..., from Eqs.~3.8! into the equations~2.6!,

~2.7!,..., settingSy50
(N) 51, and using the results of the preceding orders, at each orderN, suitable

balance termsxy50
(N) (x) are generated and we obtain linear systems of equations allowing

determination of the perturbed eigenvaluesLy50
(N) 52Ey50

(N) and of theckN coefficients. Values of
the energiesEy505Ey50

(0) 1Ey50
(1) 1Ey50

(2) 1•••1Ey50
(N) have been reported in Table II, up to th

fourth order (N54) of the perturbation. They are found to be rather well in accordance with
Hioe and Montroll’s exact values, even at low orders of the perturbation and high valuesg.
Note that, since the coefficientsckN are known, the perturbed functionsFy50

(N) (x) are obtained in
the same batch.

B. Excited states „y51,2,3,...… energies and eigenfunctions

When considering the determination of the energy and eigenfunction of the first excited
(y51), we set, at the successive orders of the perturbation,

Fy51
~0! ~x!5

1

x
1d10x1d30x

3, ~3.9!

Fy51
~1! ~x!5d11x1d31x

31d51x
5,

~3.10!

Fy51
~2! ~x!5d12x1d32x

31d52x
51d72x

7,

... and so on.
At the zeroth order of the perturbation, when substituting the expressionsRy51

(0) 511d10x
2

1d30x
4 andSy51

(0) (x)5x into the Riccati equation~2.5!, we get

Ly51
~0! 52Ey51

~0! 523/d10; d305g/d10, ~3.11!

TABLE II. gx4-harmonic oscillator ground state energies (y50).

g N50 N51 N52 N53 N54 Exact26

0.002 0.501 493 3 0.501 489 6 0.501 489 6 0.501 489 6 0.501 489 6 0.501 48
0.006 0.504 440 6 0.504 409 1 0.504 409 7 0.504 409 7 0.504 409 7 0.504 40
0.010 0.507 337 6 0.507 253 7 0.507 256 3 0.507 256 2 0.507 256 2 0.507 25
0.050 0.533 961 5 0.532 512 1 0.532 661 6 0.532 639 2 0.532 643 5 0.532 64
0.100 0.562 709 3 0.558 654 4 0.559 241 6 0.559 123 5 0.559 152 6 0.559 14
0.300 0.650 368 2 0.635 703 9 0.638 550 8 0.637 830 5 0.638 043 7 0.637 99
0.500 0.715 563 5 0.692 357 1 0.697 150 9 0.695 886 1 0.696 270 5 0.696 17
0.700 0.768 995 6 0.738 830 2 0.745 220 6 0.743 508 6 0.744 032 6 0.743 90
1 0.835 849 9 0.797 164 2 0.805 504 2 0.803 248 7 0.803 940 5 0.803 770
2 1 0.941 406 2 0.954 259 3 0.950 758 1 0.951 828 6 0.951 568

50 2.688 012 8 2.459 820 8 2.510 263 5 2.496 570 8 2.500 674 7 2.499 708
200 4.236 923 7 3.866 139 5 3.948 061 0 3.925 847 4 3.932 488 9 3.930 931

1000 7.222 803 8 6.582 322 8 6.723 792 4 6.685 451 1 6.696 902 1 6.694 22
8000 14.428 274 13.142 245 13.426 270 13.349 310 13.372 284 13.366 90

20 000 19.578 595 17.832 135 18.217 841 18.113 331 18.144 529 18.137 22
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



y
the

r

n

onex-
ation
nd the

is the

5489N. Bessis and G. Bessis: gx4-anharmonic energies via Riccati equation

                    
whered10 is the negative root~d10→21 asg→0! of the cubic equation

d10
32d1015g50. ~3.12!

At the higher orders of the perturbation (N51,2,...), after substituting for theFy51
(N) (x)5Ry51

(N) (x)
functions, their expressions~3.10! successively into the equations~2.6!, ~2.7!,..., the requireddkN

coefficients, withNÞ0, are obtained from the solution of linear systems of equations.
When using a software system such asMATHEMATICA ,4 the determination of the energiesEy

(N)

and of the expansion coefficients of theRy
(N)(x) andSy

(N)(x) functions is easily performed for an
value of y and up to any orderN of the perturbation. After substituting the expressions of
zeroth-order functionsRy

(0)(x) andSy
(0)(x) into the Riccati equation~2.5!, one obtains the cubic

equation to be solved for the determination of the zeroth-order energiesEy
(0) and associated

function Fy
(0)(x). Then, using successively the equations~2.6!, ~2.7!,..., together with suitable

expansions for theRy
(N)(x) and Sy

(N)(x) functions, the excited states energiesEy
(N) , and the ex-

pansion coefficients of the associated functionsFy
(N)(x) are obtained from the solution of linea

systems of equations.
As a matter of fact, the only data that is needed when usingMATHEMATICA are the equations

~2.3! and~2.4! together with the expressions ofW(x,m) and of theRy
(N)(x) andSy

(N)(x) functions
in a series of powers ofx.

For y52, convenient expressions are

Fy52
~0! ~x!5

a10x1a30x
31a50x

5

b001x2 ,

Fy52
~1! ~x!5a11x1a31x

31a51x
51a71x

71a91x
9, ~3.13!

Fy52
~2! ~x!5a12x1a32x

31a52x
51•••1a11,2x

111a13,2x
13,

... and so on.
For y53, convenient expressions are

Fy53
~0! ~x!5

h001h20x
21h40x

41h60x
6

t10x1x3 ,

Fy53
~1! ~x!5

h011h21x
21h41x

41h61x
61h81x

81h10,1x
10

r 11x
, ~3.14!

Fy53
~2! ~x!5

h021h22x
21h42x

41•••1h12,2x
121h14,2x

14

r 12x
,

... and so on.
Energies of thegx4-anharmonic oscillator excited states (y51,2,3) have been reported i

Tables III–V, respectively. The expansion coefficients of theFy
(N)(x) functions are obtained by

the same token.

IV. CONCLUSION

An algebraic perturbative procedure has been proposed for the analytical solution of n
actly solvable Schro¨dinger equations. This procedure relies on the solution of the Riccati equ
associated with the given eigenequation by means of an open perturbation technique a
expansion of the potential in a power series of suitable functionsu5u(x). In order to test the
capabilities of the method, a short and challenging application has been chosen, which
J. Math. Phys., Vol. 38, No. 11, November 1997
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solution of the quartic anharmonic oscillator equation. As already known, in that case, the
use of the standard Rayleigh–Schro¨dinger perturbation expansion fails to obtain reliable values
the energies, even when using a scaling device,27–30i.e., incorporating into the unperturbed kern
potential a part of the perturbation in a homogeneous way in order to improve the quality
unperturbed kernel potential. For the case of thegx4-anharmonic oscillator, such a scaling devi
should be to consider, in the mean,x4[2^x2&x21@x422^x2&x2# and, therefore, it leads to
first-order corrected g-dependent energy,Ey5b̃(y1 1

2)12g$(3/2b̃2)@(y1 1
2)

21 1
4#2(2/b̃)(y

1 1
2)

2%, whereb̃5@114g(y1 1
2)#1/2. Finally, we may say that the present algebraic perturba

method improves well the quality of the unperturbed kernel: the trend of the exact values
energies is rather well reproduced, since the zeroth order of the perturbation and even fo
values ofg ~see Tables II–V!. Moreover, the expressions of the eigenfunctions are obtained in
same batch. Let us remark that our expressions of theFy(x) functions@see Eqs.~3.8!, ~3.9!, and
so on# correspond to quartic anharmonic eigenfunctionsCy(x) that can be compared, in the form
to the Fernandez and Castro23 functions rather than to the trial linear combinations of harmon
oscillator eigenfunctions of Bazley and Fox7 and Graffi and Grecchi,9 or to the postulatedC(x)

TABLE III. gx4-anharmonic oscillator first excited state energies (y51).

g N50 N51 N52 N53 N54 Exact26

0.002 1.507 444 4 1.507 419 2 1.507 419 3 1.507 419 4 1.507 419 4 1.507 4
0.006 1.522 013 1 1.521 800 7 1.521 805 8 1.521 805 6 1.521 805 7 1.521 8
0.010 1.536 180 5 1.535 628 7 1.535 649 3 1.535 648 2 1.535 648 3 1.535 6
0.050 1.660 739 8 1.652 663 3 1.653 550 2 1.653 415 1 1.653 440 5 1.653 4
0.100 1.787 231 8 1.767 058 7 1.769 957 9 1.769 399 8 1.769 529 4 1.769 5
0.300 2.146 690 7 2.085 738 3 2.096 619 6 2.094 123 7 2.094 795 0 2.094 6
0.500 2.400 897 8 2.310 709 6 2.327 554 6 2.323 559 5 2.324 660 7 2.324 4
0.700 2.604 787 6 2.491 784 3 2.513 293 6 2.508 123 8 2.509 561 5 2.509 2
1 2.856 241 8 2.715 981 8 2.743 049 1 2.736 482 3 2.738 318 7 2.737 89
2 3.463 361 0 3.260 802 3 3.300 494 0 3.290 769 8 3.293 501 6 3.292 86

50 9.528 776 1 8.798 028 2 8.943 168 4 8.907 351 3 8.917 410 3 8.915 09
200 15.049 999 8 13.870 113 9 14.104 585 4 14.046 713 6 14.062 959 9 14.059 2

1000 25.678 889 4 23.646 374 2 24.050 363 1 23.950 646 0 23.978 634 1 23.972 2
8000 51.313 898 5 47.237 183 8 48.047 548 2 147.847 521 2 47.903 659 4 47.890 7

20 000 69.634 604 7 64.099 226 7 65.199 554 7 64.927 953 6 65.004 178 3 64.986 6

TABLE IV. gx4-anharmonic oscillator second excited state energies (y52).

g N50 N51 N52 N53 N54 N55 N56 Exact26

0.002 2.519 31 2.519 20 2.519 20 2.519 20 2.519 20 2.519 20 2.519 20 2.519 2
0.006 2.556 87 2.555 97 2.555 97 2.555 97 2.555 97 2.555 97 2.555 97 2.555 9
0.010 2.593 12 2.590 86 2.590 85 2.590 85 2.590 85 2.590 85 2.590 85 2.590 8
0.050 2.901 87 2.875 39 2.874 12 2.874 00 2.873 98 2.873 98 2.873 98 2.873 9
0.100 3.202 10 3.144 41 3.139 61 3.138 86 3.138 69 3.138 65 3.138 62 3.138 6
0.300 4.014 50 3.872 87 3.852 42 3.847 58 3.846 01 3.845 40 3.844 86 3.844 7
0.500 4.568 61 4.372 87 4.341 99 4.333 49 4.330 44 4.329 14 4.327 91 4.327 5
0.700 5.005 96 4.770 40 4.730 77 4.719 25 4.714 82 4.713 00 4.711 10 4.710 3
1 5.539 39 5.257 37 5.207 34 5.192 13 5.186 18 5.183 46 5.180 70 5.179 29
2 6.810 09 6.423 84 6.350 25 6.326 52 6.316 75 6.312 09 6.307 17 6.303 88

50 19.1871 17.9101 17.6407 17.5462 17.5044 17.4833 17.4601 17.436 9
200 30.3673 28.3207 27.8854 27.7317 27.6635 27.6289 27.5906 27.551 4

1000 51.8606 48.3464 47.5964 47.3309 47.2129 47.1528 47.0863 47.017 3
8000 103.669 96.6295 95.1250 94.592 94.3547 94.2339 94.1000 93.960 6

20 000 140.690 131.133 129.090 128.367 128.044 127.880 127.698 127.508 8
J. Math. Phys., Vol. 38, No. 11, November 1997
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5exp(2x2/2)(n50cnx2n functions of Biswaset al.12 Once given the expressions of theFy(x), the
same process provides together the eigenvalues and eigenfunctions without having to dist
between small and large values ofg, and increasing the order of the perturbation does not im
special difficulty since the perturbed contributions merely follow from the solution of a lin
system of equations of small order. We may recall that Hill determinants of orders as hi
1003100 are required12 for large values ofg (g'50) and that, when applying summation
procedures, the calculation becomes more and more cumbersome asg increases, because of th
strong divergence of the coefficients in the Rayleigh–Schro¨dinger expansion. Of course, th
present method can easily be extended to the solution of other symmetric anharmonic os
equations. The procedure requires only simple algebraic manipulations and, thus, a simple
MATHEMATICA .4

Although we have limited ourselves to one illustrative example, the range of application o
method is rather large. Let us recall that, for instance, the hydrogenic radial functions, as w
the Dirac hydrogenic functions, the spherical harmonic functions, the Morse oscillator, the i
pic harmonic oscillator,31 the Pöschl and Teller32 functions, and, more generally, the confluent a
Gauss hypergeometric functions, are~or are amenable to! the solutions of eigenequations wit
potential functionsU(x,m) belonging to Table I. After extracting from the given physical mod
potential a kernel potentialU(x,m), the ingredients for the computation are fixed: the additio
potentialV(x) has to be expanded in a power series of the specificu5u(x) functions so that the
required balance termx (N)(u) can be generated at the successive orders of the perturbation
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2L. Infeld and T. E. Hull, Rev. Mod. Phys.23, 21 ~1951!.
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g N50 N51 N52 N53 N54 N55 N56 Exact26

0.002 3.537 14 3.536 74 3.536 74 3.536 74 3.536 44 3.536 74 3.536 74 3.536 7
0.006 3.609 41 3.606 20 3.606 19 3.606 19 3.606 19 3.606 19 3.606 19 3.606 1
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Reconstruction of secular polynomials for Hubbard model
from energy perturbation series for weak and strong
coupling cases

Paul Bracken
Centre de Recherches Mathe´matiques, Universite´ de Montreal,
Montréal, Quebec H3C 3J7, Canada

Jiri Čı́žeka)

Lehrstuhl für Theoretische Chemie, Universita¨t Erlangen-Nu¨rnberg,
D-91058 Erlangen, Germany

~Received 6 March 1997; accepted for publication 30 May 1997!

An interpolation technique which is based on the strongly and weakly correlated
cases of the one-dimensional Hubbard model is proposed. The input information
consists of the perturbation expansions which are obtained from the Lieb–Wu
equations in both limits. The Hubbard model is used to describe cyclic polyene
rings, and for the case ofN56 sites, this would correspond to benzene. The
technique has been applied to several symmetries of the model. It has been shown
that the exact secular problem can be reconstructed for these symmetries, and the
results forN56 agree exactly with the results which have been obtained in a
different way, that is, by using a full configuration interaction calculation. ©1997
American Institute of Physics.@S0022-2488~97!01111-0#

I. INTRODUCTION

The Hubbard model in one dimension is a lattice spin model which produces a rea
representation of electrons in materials that are of interest to both physicists and chemis
Hubbard model is a limiting case of the Parisier–Parr–Pople~PPP! model, and has given man
useful applications to quantum chemistry.1 There has been a recent resurgence of interes
particular by theoretical physicists, in Hubbard models on account of the discovery of
temperature superconductivity.1 The localization induced by correlations seems to play a role
high-Tc superconductivity. The Hubbard model has been quite successful at interrelatin
different areas of condensed matter physics and theoretical chemistry. Moreover, it ha
emphasized by Heilmann and Lieb2 that the Hubbard model is one of the few points of cont
between physics and chemistry. In this paper, both physical and chemical points of vie
considered. The Lieb–Wu formulation tends to be taken by physicists, whereas the CI appro
usually used by chemists.

In this paper, we propose to make a connection between these two separate areas. F
perspective, the treatment of molecular systems can be based on a full configuration inte
analysis with respect to a particular Hamiltonian, such as the Hubbard Hamiltonian.2 The use of
configuration interaction is rather difficult because it is necessary to make trial wave func
adapted to space symmetry, spin symmetry, quasi-spin symmetry, and special para
dependent symmetry of the Hubbard model. Full use of symmetry~space, spin, and quasi-spin! in
CI is relatively complicated, since there is one quasi-Abelian~space! and two non-Abelian~spin,
quasi-spin! symmetries. This procedure has been given from the CI point of view3 for theA1g

2 state

a!Permanent address: Quantum Theory Group, Department of Applied Mathematics, Faculty of Mathematics, Unive
Waterloo, Waterloo, Ontario, Canada N2L 3G1, and Guelph-Waterloo Centre for Graduate Work in Chemistry, U
sity of Guelph and University of Waterloo, and at Faculty of Mathematics and Physics, Charles University, Ke K
3, 12116 Prague 2, Czech Republic. Also at Quantum Theory Project, Department of Chemistry and Physics, Un
of Florida, Gainesville, FL 32611.
0022-2488/97/38(11)/5493/12/$10.00
5493J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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of the Hubbard model. On the other hand, the use of all three symmetries is inherently bui
the Lieb–Wu formalism. Even with this quasi-diagonalization, when calculations are don
systems with more than six sites, one obtains matrices which become extremely large.4 It should
be noted that to construct the matrix would lead to a nonlinear problem, while construct
secular polynomial is linear. However, in the latter case, the equations are ill conditioned, wh
integer arithmetic, one has no trouble.

On the other hand, the approach of physicists is to employ the Bethe ansatz techniqu5,6 at
least on the one-dimensional version of the model. In this way, one can obtain a closed
solution to the eigenvalue problem in the form of a set of coupled transcendental equations,
were first derived in the context of the Hubbard model by Lieb and Wu.7 This is relatively
straightforward for the ground state. Asymptotic analysis can be done both for strong and
correlation.8 This is relatively uncomplicated for the strongly correlated case, but rather diffi
for the weakly correlated case, or Hu¨ckel limit.

The evaluation of the matrix elements of a particular operator in quantum mechanics
respect to a given basis generates a matrix eigenvalue problem. LetM be such ann3n matrix
generated by the evaluation of matrix elements. A scalarl is called an eigenvalue ofM if there is
a nonzero vectorx such thatMx5lx. The vectorx is called an eigenvector ofM corresponding
to l. The importance of this as far as physics is concerned is that the eigenvalues generated
way represent physical quantities. In this case, they represent energies of a set of states.
quently, an eigenvalue ofM is a scalarl such that det (lI2M )50. The equation det (lI2M )
50 is called the characteristic equation ofM . For finite cycles, the size of the determinant is fini
and it can be expanded out. The resulting polynomial is called the characteristic polynomialM .
By determining the roots of the polynomial, physically one is calculating the energies w
correspond to the Hamiltonian operator. This is largely the relevance of the secular polynom
physics.

In this paper, it will be shown how to construct secular polynomials which correspond, o
equivalent to, these CI matrices for the caseN56. The technique provides a procedure f
producing an approximate reconstruction of the Hamiltonian matrix. We have proposed a
nique of interpolation between the strongly and weakly correlated case in which the input
mation consists of the perturbative expansions which are obtained from the Lieb–Wu equat
both limits. There is the great advantage here, in that all possible symmetries are built in a n
way into the Lieb–Wu equations. The primary objective of this technique is to find relat
small approximative secular polynomials which should give an approximation to the energy
state. This technique is not limited to the Hubbard model, and one of the primary objective
eventually apply the method to the PPP model. It should also have applications to the
dimensional Hubbard model. We have been able to construct CI matrices for all relevant sy
tries of the Hubbard model applied to the system with six sites. A physical example of s
system is the benzene ring. In fact, one has presented3 trial functions adapted to space symmet
and spin symmetry. It was necessary to do adaptation to quasi-spin symmetry, and a
parameter-dependent symmetry of benzene. The size of these matrices is not extremely la
highest order is 16316 for a six-member system. The first several coefficients for the small
large beta expansions for three different symmetries, which are used in the reconstructio
given in Tables I and II.

It was realized that, if we continue far enough, by means of effective secular polynomial
exact secular problem can be reconstructed. This was done for five of the basic symme
benzene, and, in all cases, a complete reconstruction of the exact CI secular polynomial
sible. The approach is interesting in that one obtains an algebraic equation which determi
energies based on the asymptotic properties of the ground state. For example, in thermody
this would be useful, since excitation energies are required. The size of the secular polynom
N56, which corresponds to benzene, is qualitatively smaller than for the cyclic polyene
which hasN510 members. At the present time, it has not been possible to obtain secular
J. Math. Phys., Vol. 38, No. 11, November 1997
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nomials forN510 particles because of the size of the problem.4 One other possible disadvantag
of this procedure is that it can be rather unstable. It should be carried out with a large num
digits, or in terms of rational arithmetic.

However, in spite of the size of the matrices, or equivalently, the polynomials, forN larger
than 6, it has been found possible to construct smaller polynomials in terms of the energy,
give extremely accurate values when solved for the energy. Although they are not exact
structions for the physical problem, they provide an extremely useful method for calcu
energies for larger physical systems.

Finally, let us stress the physical meaning of our results. The idea of a secular polynom
been outlined, and, moreover, that one way the secular matrix can be obtained is by the me
configuration interaction. The basic idea of CI is to diagonalize theN-electron Hamiltonian in a
basis ofN-electron functions, or Slater determinants. One represents the exact wave functio
linear combination ofN-electron trial functions and uses the variational method. If the basis w
complete, one would obtain the exact energies not only of the ground state but also of all e
states of the system. Although CI provides an exact solution of the many-body proble
practice only a finite set ofN-electron trial functions can be handled.

Due to reasons of symmetry, as far as the caseN56 sites is concerned, the size of the mat
is greatly reduced from what it might be. This is reflected by the size of the polynomials in T
III–V. It has been found possible to calculate them in two different ways. One way is throu
direct CI approach which yields the secular matrix from which the secular polynomial is c
lated. In addition, it will be shown here that these same polynomials can be reconstructed d
from the perturbative series which can be obtained from the Lieb–Wu solution8 in the form of
expansions relevant to both small and large coupling constant. As mentioned, these polyn
are in agreement with the results of the full CI calculation, and their eigenvalues are the phy
relevant energies of the system.

TABLE I. First three coefficients of small beta series for the statesA1g
2 ,

B2u
2 , andE2g

2 of the formE5( i 51
` a2ib

2i for N56.

A1g 2S25 A1312Db21S 122

1625
A131

34

125Db42S 35058

528125
A131

6

25Db6

B2u 2
12
5

b21
36
125

b41
108
3125

b6

E2g 2
8
5

b21
4
25

b42
144
3125

b6

TABLE II. First three coefficients of large beta series for the statesA1g
2 ,

B2u
2 , and E2g

2 which have the structureE5b0b1C1( i 51
` b2i 21b2(2i 21)

for N56.

A1g 28b1
15
2

2
725

288b
2

1784375
5971968b3 1

13371734375
61917364224b5

B2u 26b1
15
2

2
475
96b

1
626875

221184b32
13421875

3145928b5

E2g
2 25b1

15
2

2
275
48b

1
94375

13824b32
5517546875

143327232b5
J. Math. Phys., Vol. 38, No. 11, November 1997
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5496 P. Bracken and J. Čı́žek: Reconstruction of secular polynomials for Hubbard

                    
II. ONE-DIMENSIONAL HUBBARD MODEL AND LIEB–WU EQUATIONS

To make the discussion self-contained, an introduction to the one-dimensional Hubbard
will be presented. Cyclic polyene rings will be described by the one-dimensional Hubbard m
These rings are composed ofN54n12 sites or atoms, each of which contributes one electro
the molecular system. For many-electron systems, described by the one-dimensional H
model with N atomic sites, and satisfying cyclic boundary conditions, the Hamiltonian has
following form:

H52b (
i 51

s5↑↓

N

~ci ,s
† ci 11,s1ci ,s

† ci 21,s!1U(
i 51

N

ni ,↓ni ,↑ .

In this operator,ni is the number operator

ni5ni↓ni↑ .

All indices are taken moduloN, with cN11,s5c1,s , and b designates the so-called resonan
transfer integral. HereU5g00 is the one-center Coulomb repulsion integral. The first term inH
represents a kinetic energy term, so that the model describes electrons that can hop b
neighboring sites. The second term represents an interaction term such that the particles
attract if two of them occupy the same site.

Relying on the Bethe ansatz,5,6 the eigenvalue problem can be transformed into a system
equations given in terms of the unknown momentaki , which characterize the wave function, an
the variablesta , which characterize the spin state. These equations were given by Lieb an
in the context of the Hubbard model7 as follows:

Nkj52paj22 (
b51

M

tan21 2~d sin kj2tb!, j 51,...,Ne , ~1!

2(
i 51

Ne

tan21 2~ta2d sin kj !52pda12 (
g51
gÞa

M

tan21~ta2tg!, a51,...,M . ~2!

TABLE III. Characteristic polynomial forA1g
2 state forN56. These energies are scaled by

5
2 from usual CI energies.

CP5~811216d213600d414608d6136864d8!

1~234225064d2241536d42176640d62466944d82262144d10!E2

1~559110928d2167168d41224768d61167936d8!E4

1~243627632d2232320d4236352d6!E6

1~15911656d213088d4!E8

1~2222104d2!E10

1E12

TABLE IV. Characteristic polynomial forB2u
2 state forN56. These ener-

gies are scaled by 2 from usual CI energies.

CP5~214062511125000d222250000d4!

1~11875160000d2190000d4!E2

1~227521000d2!E4

1E6
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The variableskj andta depend implicitly on the parameterd, where

d5
2b

U
. ~3!

Here,Ne denotes the number of electrons, andM is the number of spin down electrons. As we
tan21 x designates the branch of the arctangent given by2p/2,tan21 x,p/2. The parametersaj

andda are sets of quantum numbers that determine a specific state.

III. INITIALIZATION AND EXPANSION OF UNKNOWNS FROM LIEB–WU EQUATIONS

The fundamental method which will be described for the reconstruction of these se
polynomials is based on the use of perturbative solutions for the energy of a given state.
expansions can be done in the small region of the coupling parameter in the Hamiltonian a
as the large region. The energy is a function of thekj variables which appear in~1! and ~2!, and
in order to obtain these, perturbative solutions for both thekj variables as well as theta variables
must be obtained. Typical coefficients are given in Tables I and II.

In order to obtain the perturbative solutions for these variables in the Lieb–Wu equatio
is necessary to initialize the expansions about a point in the region of validity of the expan
There are two regions of interest, the region aboutb50 for smallb and the region aboutb5` for
largeb. The solution to the coupled system~1! and~2! about the pointb50 is very interesting in
its own right, since the pair of equations becomes decoupled and~2! in fact describes the variable
which govern the isotropic Heisenberg model. The study of these simpler models is a
problem in its own right. In the process, equations are produced which can be solved to
values for the variablesta aboutb50. This is relatively easy to do for theA1g

2 state; however, for
the states in which a pair ofta are complex, in particular, for theE2g

2 state, it turns out to be bette
to obtain much more sophisticated methods for obtaining the required results.

To construct the formal expansions for the variables in~1! and ~2!, it is necessary to realize
that the variableskj andta are determined implicitly as functions of the couplingb, and may be
written as expansions as follows:

kj5(
i 50

`

kji b
i , ta5(

i 50

`

ta,2ib
2i .

If the values of the set of variableskj 0 andta0 at b50 can be calculated, the remaining coef
cients in these expansions can be determined in a straightforward way as follows. Substit
expansions back into the system of equations and expand the resulting equations in poweb.
When coefficients of equal powers ofb are extracted, these coefficients at each order inb are
found to be equations in the unknownskji andta i that can be solved order by order. Essentia

TABLE V. Characteristic polynomial forE2g
2 state forN56. These energies are scaled by

5
2 from usual CI energies.

CP5~2102400d14117920d12294864d10111432d821409d61533d4121d229!

1~272896d121101408d101104584d8111972d611079d41346d2155!E2

1~2254352d102157256d8261638d6211550d421661d22141!E4

1~101144d8169956d6119390d412764d21195!E6

1~218881d6211111d422101d22155!E8

1~1659d41698d2169!E10

1~267d2215!E12

1E14
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the same procedure is applied to the largeb region as well, except the initialization of th
variables about the expansion point is more difficult, especially for the complex states.

The crucial question which remains is the discussion of the initialization of the varia
Consider how one may obtain expansions aboutb50. From the system~1! and ~2! it is easy to
obtain the following simple solution for thekj by substitutingb50 into ~1!:

Nkj~0!52paj .

This determines the set ofkj (0) once the quantum numbersaj have been given. Substitutingb50
into the system~2! gives the following more complicated set of equations for theta variables at
b50:

2Ne tan21 2ta52pda12 (
g51
gÞa

M

tan21~ta2tg!.

Again theda are quantum numbers which are determined by the state. If these equations
solved for theta variables, for example, numerically, all the information will be at hand
initialize all of the required series expansions. The solution of a similar type of problem has
treated in Ref. 9, however it uses a special technique which applies to the ground state and
been generalized to other symmetries.

Although the problem of solving the above equations is not extremely difficult when all thta

variables are real, in the Hubbard model, it is only possible to describe some of the sta
particular, theB2u

2 andE2g
2 states, by requiring a pair of theta variables to be complex valued

such that they are complex conjugates of one another:

2t65j6 ih.

Here, the real and imaginary parts are functions of the coupling. There is an ionic state
Hubbard model which also requires such a description; however, physically ionic states pre
different physical situation, and will be considered elsewhere. This substitution modifies th
tem of equations~1! and ~2! in such a way that a set of functions results which is much m
complicated. The exact form of these equations has been already discussed.8 The momenta for
example atb50 are given by the equation

kj~0!5
2paj8

N
1

2p

N2 (
a51

M22

da

up to a phase. The reader is referred to Ref. 8 for a more extensive discussion of the form
equations which give theta as well asj and h. The total momentum for these states can
written in terms of the quantum numbers forE2g

2 as follows forN56:

p5
2p

N
~2!.

In fact, a technique has been developed that allows one to convert the equations that de
theta variables into a set of rational functions of theta that can be solved much more easily a
completely. The technique leads to the direct calculation of secular polynomials in the ener
the simpler spin systems.10 Also an additional symmetry has been found in the perturbation se
for the ta variables in theE2g

2 state which likely holds for half-filled shells and singlets, and
very useful in simplifying calculations of these variables in larger systems.11,12

The large coupling region is more difficult to develop. However, a technique has been d
oped for calculating perturbative expansions of the variables in~1! and ~2!. The procedure for
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



n be

e

ow be
ions,

ese

for

e

the

t

me
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doing this is somewhat involved and we will present only an outline here. More details ca
found in the references.8 Numerically, it can be shown that theta grow like a linear power ofd
for large d and so it is convenient to replaceta by d•ta so that a newta will appear in the
equations which has been scaled by a linear factor ofd. For the ground state, for example, th
required initialization quantities for the expansion are just the Hu¨ckel values, which we will
present here as an example. Ifb5`, the values of the momenta are designatedkj

(0) and are given
as follows:

kn11
~0! 50, kn12i

~0! 5kn12i 11
~0! 5

2p

N
i ,

wherei 51,...,n. The limiting values of thetn111a asb becomes very large are given by

tn111a
~0! 5sinS 2p

N
a D .

The formal power series expansions for the variables in the Lieb–Wu equations can n
written down. It is found that a new variable must be introduced to carry out the expans
namely, we introduce the variables25d21. Thuss is related to the reciprocal square root ofb,
and the expansions of the variables will contain all powers ofs. In terms of the variables, the
momenta andt variables are to be expanded in powers ofs as follows:

kn1 i5kn1 i
~0! 1 (

m51

`

an1 i
~m! sm, tn111a5tn111a

~0! 1 (
m51

`

tn111a
~m! sm.

The same method that worked for the smallb expansions can be applied here. Substitute th
expansions into the Lieb–Wu equations, and then expand the equations is powers ofs. From the
expansions, it is found possible to solve for the coefficientsan1 i

(m) and thetn111a
(m) one order at a

time in terms of the values obtained at lower orders. This procedure will givekn11 andtn111a as
power series ins. The power series for thekn1 i can be used to calculate a series representation
the energy in powers of the variables.

As in the small coupling region, theE2g
2 state is much more difficult. A numerical techniqu

has been developed for solving the system~1! and~2! that allows one to calculate solutions to~1!
and ~2! for kj andta which hold out to very large values of the coupling constantb.

For example, let us present some results forN56 for all three of these states about each of
expansion points. For the ground state there are threeta such thatt152t3 andt250 with

t5S 2A1325

12 D 1/2

.

The same symmetry properties hold at the large end and, in that case,

t5sin
p

3
5
)

2
.

For B2u
2 the complext are quite simple,t656 i . The remaining realt is zero and this holds a

both endpoints.
As has been mentioned, theE2g

2 state is much more difficult to treat; however, there are so
additional simplifications which result due to an additional symmetry that has been found.

About b50, the following values are obtained for the variables
J. Math. Phys., Vol. 38, No. 11, November 1997
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5500 P. Bracken and J. Čı́žek: Reconstruction of secular polynomials for Hubbard

                    
t~0!5
~12g2/3!

6g1/3 , j~0!52
~12g2/3!

6g1/3 , h~0!52
~g2/311!)

6g1/3 ,

in terms ofg59)12A61. Moreover, aboutb5`, one obtains

t~0!52sin S 2p

6 D , j~0!5sin S 2p

6 D , h~0!521.0183501544.

Note thatt (0)1j50 for all values of the coupling constant. It will be mentioned that the follo
ing relationship holds forE2g

2 for all values of the coupling:

( t i1j50. ~4!

This additional symmetry has been found to hold for the coefficients of the expansions as w
all higher orders that we have been able to calculate thus far.

IV. PERTURBATION THEORY AND POLYNOMIAL RECONSTRUCTION

The following method will be described which has been used for the reconstruction of
plete secular polynomials. It is based on the use of perturbative expansions for the energy
state which respectively pertain to the small and large regions of the coupling constan
appears in the Hamiltonian. The series that have been used here use the resonance transfe
as expansion parameter. Although perturbation theory could be applied directly to obtain
series, we have been able to develop techniques that allow one to calculate many terms
given series using the Lieb–Wu system~1! and ~2! directly. For the case of the one-dimension
model, the system~1! and ~2! determines all of the variables in the problem once the quan
numbers$aj% and$da% have been specified. The energy for the one-dimensional model is giv
terms of only thekj variables by the equation

E522b(
j 51

N

coskj . ~5!

One has the perturbative series for thekj andta variables from the Lieb–Wu system. Substitutin
the kj into ~4! and expanding, one obtains the required expansion for the energy.

By first obtaining perturbative solutions for thekj in terms of the couplingb from ~1! and~2!,
it is possible to obtain a perturbative solution for the energy in terms of powers of the cou
constantb. It should also be stressed that the main ideas that are presented here are not re
to this type of model. They should have application to many models provided that perturb
expansions which contain a relevant coupling constant can be determined using the genera
ods that are applicable in quantum mechanics.

The structure of the perturbation series that is required for the calculation will depe
general on the particular symmetry of the state in question. For the states here, the energ
about smallb consists of even powers ofb and takes the form

E5(
i 50

`

a2ib
2i . ~6!

This holds for the ground state symmetryA1g
2 and for two of the excited state symmetriesB2u

2 and
E2g

2 . All of the coefficientsa2i 21 vanish in the energy series. It has been possible for us to s
that the series for the ionic states in fact contain all powers ofb.
J. Math. Phys., Vol. 38, No. 11, November 1997
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It has also been shown that perturbative series for largeb can also be calculated for all o
these states.8 The general structure of the series which is valid for largeb is of the form

E5b0b1C1(
i 51

`

b2i 21b2~2i 21!. ~7!

For the states that are considered here,A1g
2 , B2u

2 , andE2g
2 , only odd powers of inverseb appear

in ~7!. For the ionic states, this is somewhat different in that all powers of inverseb appear.
Although these series have a relatively small radius of convergence, they can be made t
information well beyond this point when a suitable summation technique is applied. In this s
the method of reconstruction that has been developed may be regarded as a summation te
Before discussing how the reconstruction is carried out with the perturbative series, the calc
of the exact secular polynomials for these three states using the results of a full CI calculat
the six-member system will be outlined. This provides independent confirmation that w
developing the correct results.13

All information is taken from the lowest lying state in a given symmetry. In fact, this is
very sophisticated because relatively simple information such as Hu¨ckel energies or Coulomb
energies of an excited state atb50 can be easily obtained. This would lead to stabilization or g
conditioning of linear equations which determine the coefficients of the secular polynomial. T
ideas will be pursued in a future paper where systems that have less symmetry will be cons
Here this condition is not important at all because we use integer arithmetic.

V. CONFIGURATION INTERACTION CALCULATIONS FOR N56

The full set of CI matrix elements for thep-electronic model of benzene in terms of bas
semi-empirical parameters of the Parisier–Parr–Pople Hamiltonian, using all available symm
in order to achieve maximal factorization, has been calculated in detail.3,14 As noted in the Intro-
duction, this has been adapted to quasi-spin for the stateA1g

2 . The Hartree–Fock molecula
orbitals that are determined here by symmetry for the model are fully determined by its sym
and may be written as

u j &5S 1

A6
D (

m50

5

exp ~2p i j m/6!, j 50,...,5.

In calculating the full CI energies and wave functions, it is immaterial which basis one us
constructing all possible configurations, as long as it may be obtained by a unitary transform
of the chosen atomic orbital basis.

It is possible, with symbolic manipulation,13,14 to take the matrix elements for a given sta
which have been calculated,3 and explicitly construct the relevant CI matrix for the state. Once
matrices have been constructed, it is relatively straightforward to calculate the complete s
polynomial corresponding to a given state.

There are a number of reasons for doing this. First of all, the maximum degree o
polynomial will be obtained, as well as the symmetry structure of the exact secular polynom
terms of powers of energy and coupling. This is quite useful when it comes to reconstru
since one would like to obtain a reconstructed polynomial which has the correct symmetry
erties that are required of the state.

Also for the caseN56, the exact polynomials provide a check and a means of comparin
results of the approximate polynomials with the exact polynomials. For example, we can cal
energies directly by solving the CI polynomial as a function ofb for its roots. For systems tha
J. Math. Phys., Vol. 38, No. 11, November 1997
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contain more than 6 atoms, the full CI matrix is extremely large.4 Any reconstruction of secula
polynomials in these cases will be only approximate. However, the accuracy of the resu
practical purposes is found to be excellent.

VI. RECONSTRUCTION USING PERTURBATION THEORY

Consider the calculation of a secular polynomial of a given degree and symmetry in
variables, the energyE, which takes the role of the eigenvalue in a secular matrix, and
coupling constant,b, which appears in the Hamiltonian. The repulsion parameterU here is kept
fixed at a constant value. The coefficients of this polynomial are initially unknowns and are
determined. If the polynomial was calculated directly from the Hamiltonian, these coeffic
would be seen to depend on the matrix elements of the energy operator. The ideas that
developed here do not rely on calculating matrix elements directly. The unknown coefficie
the polynomial are calculated using the formal power series for the energy of the state
function of small and large coupling constants.

The general form that the polynomials take will be written down in terms of unknown c
ficients f i

j and the two physical variablesE andb. For the symmetries of states that we consid
here, only even powers ofE andb appear, that is, it is an even function ofE andb. If M is an
even integer, the general polynomial takes the form

P~b,E!5EM1 (
j 50

M /221 S (
i 50

M /221

f 2i
2 jb2i DE2 j . ~8!

The determination of the exact size of this polynomial for a given ring size is a complic
problem in itself.14 However, for the system which has six sites, the maximum degree o
polynomial is fixed by dynamical symmetry considerations and is relatively small for the stat
discuss here. For larger values ofN, the size of the exact polynomial can be quite large, and
simply calculates an approximate polynomial.

This type of polynomial~8! has been used to reconstruct not only the ground stateA1g
2 , but

also to describe theB2u
2 andE2g

2 states of the Hubbard model, as well. The formal power series
the ionic states that can be obtained from the Lieb–Wu equations are qualitatively quite diff
Both even and odd powers of the coupling appear. Consequently, these are fit to a polynom
contains both even and odd powers of energy, which is confirmed by the CI calculation.

The technique for calculating the unknown constantsf j
i is relatively straightforward, once th

ak and bk coefficients in the perturbation series~6! and ~7! have been determined. A secul
polynomial with the structure given in~8! can be generated by using symbolic manipulation.13 To
do this, one calculates a system of linear equations, given in terms of thef j

i appearing in the
secular polynomial, which determine these coefficients. To obtain this system, one replac
energy variableE in the secular polynomial with the formal perturbative series for smallb, or the
asymptotic series expansions for the energy which hold for largeb. After these substitutions, th
resulting polynomial expression is expanded out in powers ofb, and it is found that the coeffi-
cients of successive powers ofb give the necessary equations in the unknown coefficientsf j

i .
If the coefficients are then selected and equated to zero, a system of linear equat

obtained. When these expansions are carried out sufficiently far in powers ofb, it is found to be
possible to obtain as many equations as there are unknown constants in the given secul
nomial. The number of unknown coefficients depends, of course, on the degree of the
secular polynomial that is being constructed.

Moreover, one has the flexibility of being able to choose a varying number of equations
either the smallb region or from the large coupling regions. Of course, the main restriction is
the equations form a linearly independent set, and that there are as many equations as t
unknowns to be determined.
J. Math. Phys., Vol. 38, No. 11, November 1997
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When the variables are scaled in the right way, it has been found possible to calcula
coefficientsf i

j as integers using integer arithmetic.12 The procedure ‘‘isolve’’ solves the equation
over the integers. It solves for all of the indeterminates occurring in the equations. Afte
system of equations has been solved, the coefficientsf i

j can be substituted back into the polyn
mial in symbolic form to give a final polynomial in which onlyE andb remain as variables. The
energiesE of the state are then determined as the root system of this polynomial as a funct
b.

VII. CONCLUSIONS

By evaluating secular polynomials in quantum mechanics, physically one is calculatin
energies which correspond to the Hamiltonian operator. It has been shown that when the H
model is applied to a cyclic six-member system, which could represent benzene, the charac
polynomial for the energy of the covalent statesA1g

2 , B2u
2 , andE2g

2 , which are usually obtained
by the configuration interaction technique, can also be obtained directly from the Lieb–Wu
tions. In the event that we use the Lieb–Wu equations, space, spin, and isospin symme
automatically taken into account. However, in a CI approach, this is a complicated and te
problem.15 For the caseN56, which is the case considered here, due to reasons of symmetr
size of the eigenvalue problem is greatly reduced. It has been shown here that these polyn
can be calculated from CI, and, in addition, these polynomials can be exactly reconstructe
perturbative series which are calculated from the Lieb–Wu equations about small and larg
pling. It should also be mentioned that, from the physical standpoint, the ideas which have
developed here should be applicable to other problems described by perturbative series. O
be able to obtain a partial or complete reconstruction of a Hamiltonian matrix using
techniques.16 A related technique which is based on the asymptotic behavior of all levels wi
proposed for systems with less spatial symmetry than benzene.
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The operator algebra of the quantum relativistic oscillator
Ion I. Cotăescu and Gheorghe Drăgănescu
The West University of Timis¸oara, V. Pârvan Ave. 4, RO-1900 Timis¸oara, Romania

~Received 5 March 1997; accepted for publication 13 June 1997!

The operator algebras of a new family of relativistic geometric models of the
relativistic oscillator@I. I. Cotăescu, Int. J. Mod. Phys. A12, 3545 ~1997!# are
studied. It is shown that, generally, the operator of number of quanta and the pair of
shift operators of each model are the generators of a nonunitary representation of
the so~1,2! algebra, except for a special case when this algebra becomes the stan-
dard of the nonrelativistic harmonic oscillator. ©1997 American Institute of
Physics.@S0022-2488~97!00411-8#

I. INTRODUCTION

In general relativity, the geometric models play the role of kinematics, helping us to u
stand the characteristics of the classical or quantum free motion on a given background. On
simplest~111! geometric models is that of the~classical or quantum! relativistic harmonic oscil-
lator ~RHO!. Based on phenomenological1 and group theoretical2,3 arguments, this has been d
fined as a free system on the anti-de Sitter static background. There exists a~311! anti-de Sitter
static metric1 which can be restricted to the~111! metric given by the line element

ds25
1

12v2x2 dt22
1

~12v2x2!2 dx2. ~1!

This metric reproduces the classical equation of motion of the nonrelativistic harmonic osc
~NRHO! of the frequencyv. Moreover, the corresponding quantum model, represented by a
scalar massive quantum field, has an equidistant discrete spectrum with a ground state
larger, but approachingv/2 in the nonrelativistic limit~in natural units\5c51!.4 In a previous
article5 we have generalized this model to the family of models depending on a real paraml
which has the metrics given by

ds25g00dt21g11dx25
11~11l!v2x2

11lv2x2 dt22
11~11l!v2x2

~11lv2x2!2 dx2. ~2!

Here, the parametrization has been defined in order to obtain the exact anti-de Sitter metric~1! for
l521. We have shown5 that the quantum models withl.0 have mixed energy spectra, with
finite discrete sequence and a continuous part, while forl<0 these spectra are countable. Ho
ever, in spite of their different relativistic behavior, all these models have the same nonrelat
limit, namely the NRHO of the frequencyv. For this reason we shall use the name relativis
oscillators~RO! for all the models withlÞ21, understanding that the RHO is only that of t
anti-de Sitter metric.

In this article, we intend to study the operator algebra of the quantum RO with coun
energy spectra. For these modelsl<0 and, therefore, it is convenient to denote

l52e2, v̂5ev, ~3!
0022-2488/97/38(11)/5505/10/$10.00
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and to rewrite our previous results in this new notation. We takee>0 so that the pure anti-de Sitte
RHO will havee51.

The energy spectra of our quantum models depend on only one quantum number.5 Therefore,
we will have one operator of number of quanta and a pair of shift~i.e., raising or lowering!
operators. Our main objective is to identify the algebra which is linearly generated by
operators. To this end, first we show that there exists a natural~holonomic! frame where the
relativistic energy eigenfunctions coincide with those of the nonrelativistic Po¨schl–Teller~PT!
system.6,7 By using their known properties, we shall construct the main operators which act o
one-particle wave functions, giving special attention to the three mentioned ones. The result
for all the RO withe.0, including the RHO, these are the generators of the so~1,2! algebra which
have as Casimir operator just the Klein–Gordon equation. In the limite→0 the so~1,2! algebra
degenerates in the standard algebra of the NRHO.

We start, in the second section, with a short review of the properties of the Hilbert spa
one-particle states of the free quantum scalar massive field in the coordinate representation
next section we briefly present our previous results concerning the RO, giving the energy
and the energy eigenfunctions with their normalization factors. In Sec. IV we show that, i
special frame where the metric is the conformal transformation of the Minkowski flat metric
RO represents a relativistic PT problem for which the shift operators of the energy bas
known.7 Starting with these results we analyze, in the next section, the operator algebra
models withe.0, obtaining a nonunitary representation of the so~1,2! algebra which is equivalen
to an unitary one. The case ofe50 is studied in Sec. VI.

II. PRELIMINARIES

Let us consider a static background with the natural frame (t,x) in which the metric isgmn(x),
with m,n50,1. We shall assume that this is symmetric with respect tox50 and we shall denote
g5det(gmn). The domain,D, of the free motion observed by an observer situated atx50 is that
bounded by the observer’s event horizon. In general, this isD5(2xe ,xe), where6xe are either
the finite points where the metric is singular or6` in the case of the regular metrics. On th
domain, we shall define the scalar fieldf of the massm, supposing that this is minimally couple
with the gravitational field.8 In the case of static backgrounds the energy is conserved. There
the Klein–Gordon equation

1

A2g
]m~A2ggmn]nf!1m2f50, ~4!

admits a set of fundamental solutions~of positive and negative frequency! of the form

fE
~1 !5

1

A2E
e2 iEtUE~x!, f~2 !5~f~1 !!* . ~5!

These must be orthogonal with respect to the relativistic scalar product8

~f,f8!5 i E
D

dxA2gg00f* ]J0f8, ~6!

which, in fact, reduces to the following scalar product of the wave functionsU,

~U,U8!5E
D

dxm~x!U* ~x!U8~x!, ~7!

where
J. Math. Phys., Vol. 38, No. 11, November 1997
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m5A2gg00. ~8!

Now we observe that, according to~5!, the one-particle state space,H, coincides to that of the
antiparticle. In the coordinate representation this is the spaceL2(D,m) of the square integrable
functions with respect to the scalar product~7!. All these functions must satisfy the condition

lim
x→6xe

U~x!50, ~9!

which is obvious forxe5`. Moreover, whenxe is finite, then the metric as well as the weig
function m are singular at6xe and, consequently, the condition~9! is also necessary. A set o
wave functions,Un , n50,1, ... , represents a countable basis inH if these are orthonormal,

~Un ,Un8!5dn,n8 , ~10!

and satisfy the completeness relation

(
n

Un* ~x!Un~x8!5
1

m~x!
d~x2x8!. ~11!

The linear operators onH will be denoted using boldface. They can be defined either by giv
their matrix elements in a countable basis or as differential operators in the coordinate rep
tation. The most general differential operator we shall use here will have the form

~DU !~x!5 i F f ~x!
d

dx
1h~x!GU~x!, ~12!

depending on two arbitrary real functionsf andh. Its adjoint with respect to the scalar product~7!
is

D15D1 i F 1

m

d~m f !

dx
22hG1, ~13!

where1 is the unit operator. Hereby, we see that forh5]x(m f )/2m the operatorD is self-adjoint.
In general, any~111! static background admits a special natural frame, (t,x̂), in which the

metric is a conformal transformation of the Minkowski flat metric. This new frame can be
tained by changing the space coordinate

x→ x̂5E dxm~x!1const, ~14!

so that

ĝ00~ x̂!52ĝ11~ x̂!5A2ĝ~ x̂! ~15!

and m̂( x̂)51. Then, from~13! it results that the momentum operator; i ] x̂ is self-adjoint. The
state spaceH is represented now byL2(D̂) whereD̂ is the domain of the new space coordina
corresponding toD. It is obvious that both the spacesL2(D,m) andL2(D̂) come from the same
coordinate representation of the spaceH since the change of the continuous parameter o
generalized basis changes only the normalization scale.
J. Math. Phys., Vol. 38, No. 11, November 1997
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III. RELATIVISTIC OSCILLATORS

Let us first discuss the general case ofe.0 and then turn to the limite→0. In the frames
(t,x), the metrics are given by~2! where we have to change the parameters according to~3!. For
the models withe.0 these metrics are singular at61/v̂ so thatD5(21/v̂,1/v̂).

The Klein–Gordon equation can be put in the form

S 2~12v̂2x2!
d2

dx2 1v̂2x
d

dx
1

m2

e2

v̂2x2

12v̂2x2D U~x!5~E22m2!U~x!, ~16!

while the weight function which defines the scalar product~7! is

m~x!5
1

A12v̂2x2
. ~17!

Since the energy spectrum is countable, the energy eigenfunctions are the square integrab
tions of ~16!. These can be written in terms of hypergeometric functions as5

Un~x!5Nns ,s~12v̂2x2!k/2xsF~2ns ,k1s1ns ,s1 1
2,v̂

2x2!, ~18!

where the parameter

k5
1

2 F11A114
m2

e2v̂2G.1 ~19!

is the positive solution of the equation

k~k21!5
m2

e2v̂2
. ~20!

The quantum numbers,ns50,1,2, ... ands50,1, can be embedded into the main quantum num
n52ns1s. This will take even values ifs50 and odd values fors51. Hence, the functions
Un(x) are real polynomials of the degreen in x, with the factor (12v̂2x2)k/2, which assures the
condition~9!. The normalization factors can be easily calculated in terms of Jacobi polynom9

The result is

Nns ,s5~21!ns
~v̂ !s11/2

Ans!
S s1

1

2D
ns

F ~k1s12ns!G~k1s1ns!

G~ns1s1 1
2!G~ns1k1 1

2!
G1/2

, ~21!

where we have used the notation (z)n5z(z11)•••(z1n21). Notice that the normalized energ
eigenfunctions can also be written in terms of associated Legendre polynomials.7

The energy levels result from the quantization condition,5

En
22m2S 12

1

e2D 5v̂2~k1n!2, ~22!

which gives

En
25m21v̂2@2k~n1 1

2!1n2#, n50,1,2, ... ~23!
J. Math. Phys., Vol. 38, No. 11, November 1997
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for eÞ1, and

En5v~k1n! ~24!

in the case of the RHO,4 whene51.
We can conclude that our RO withe.0 are systems of massive scalar particles confine

wells. Their properties are determined by three parameters,m, v, ande. This last one is our new
parameter which gives the desired well width, 2/ev, when the frequencyv is fixed. It is interesting
that all these parameters are concentrated in the expression ofk so that the eigenfunctions~18!

depend only onv̂5ev and k while the energies~23! involve all of them. Thus there is a
possibility to have RO with different energy spectra but having the same energy eigenfunc

IV. THE RELATIVISTIC PÖSCHL–TELLER PROBLEM

Now we shall change the space coordinate according to~14! wherem is given by~17!. We
obtain

x̂5
1

v̂
arcsinv̂x. ~25!

In the new frame (t,x̂) the line element is

ds25S 11
1

e2 tan2 v̂ x̂D ~dt22dx̂2! ~26!

and D̂5(2p/2v̂,p/2v̂). The Klein–Gordon equation takes the form

S 2
d2

dx̂2 1
m2

e2 tan2 v̂ x̂DUn~ x̂!5~En
22m2!Un~ x̂!. ~27!

The second term of its left-hand side can be rewritten, by using~20!, as

VPT~ x̂!5k~k21!v̂2 tan2 v̂ x̂. ~28!

This will be called the relativistic~symmetric! PT potential since the solutions~18! in the new
variablex̂,

Un~ x̂!5Nns ,sv̂
2s cosk v̂ x̂~sins v̂ x̂!F~2ns ,k1s1ns ,s1 1

2,sin2 v̂ x̂!, ~29!

coincide with those given by the nonrelativistic PT potentialVPT/2m. Of course, the energies, a
well as the significance of the parameters, differ from those of the nonrelativistic case.

On the other hand, we know that the functions~29! represent a complete set of orthonorm
functions inL2(D̂). This means that the setUn , n50,1, ... is a countable basis inH, namely the
energy basis. Its shift operators7

~A~1 !Un!~ x̂!5
1

v̂A2k
F2cos v̂ x̂

d

dx̂
1v̂~sin v̂ x̂!~k1n!GUn~ x̂!, ~30!

~A~2 !Un!~ x̂!5
1

v̂A2k
Fcos v̂ x̂

d

dx̂
1v̂~sin v̂ x̂!~k1n!GUn~ x̂! ~31!
J. Math. Phys., Vol. 38, No. 11, November 1997
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have the action

A~1 !Un5Cn
~1 !Un11 , A~2 !Un5Cn

~2 !Un21 , ~32!

where

Cn
~1 !5

1

A2k
S ~2k1n!~k1n!

k1n11 D 1/2

An11, ~33!

Cn
~2 !5

1

A2k
S ~2k1n21!~k1n!

k1n21 D 1/2

An. ~34!

We note that according to~13! the shift operators are not related between them through Herm
conjugation, i.e.,A(6)

1 ÞA(7) .

V. ALGEBRA

A. The differential operators

Let us consider the position and momentum self-adjoint operators,

~X̂U !~ x̂!5 x̂U~ x̂!, ~P̂U !~ x̂!5 i
dU~ x̂!

dx̂
, ~35!

in the frame (t,x̂), with the commutation rule

@P̂,X̂#5 i1. ~36!

Then, from~27! we see that the energy squared operator is

E25m211P̂21
m2

e2 tan2 v̂X̂. ~37!

Its form suggests that we introduce the pair of adjoint operators10

ã5
1

v̂A2k
~2 i P̂1kv̂ tan v̂X̂!, ~38!

ã15
1

v̂A2k
~ i P̂1kv̂ tan v̂X̂!, ~39!

which satisfy the commutation relation

@ ã,ã1#511
1

2k
~ ã11ã!2, ~40!

and allow us to write

E25m2112kv̂2S ã1ã1
1

2
1D . ~41!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The commutation relations ofE2 with X̂ andP̂ can also be calculated from~36! and~37!. Another
exercise is to replace the position operator by the effective position operator

X̂e f5
1

v̂
tan v̂X̂ ~42!

in order to recover the familiar formulas,

X̂e f5
1

v̂A2k
~ ã11ã!, P̂52 i v̂Ak

2
~ ã12ã!. ~43!

B. The nondifferential operators

However, there are other operators which are not differential. The analysis of their stru
can be done by using the operators of the standard oscillator algebra,a, a1 ~with @a,a1#51! and
N5a1a, which can be defined in the energy basis as follows:

a1Un5An11Un11 , aUn5AnUn21 , NUn5nUn . ~44!

They allow us to write the quantization condition~22! as

E25v̂2@~N1k1!21~e221!k~k21!1#, ~45!

and to put the shift operators in the form

A~1 !5~cos v̂X̂!ã11
1

A2k
~sin v̂X̂!N, ~46!

A~2 !5~cos v̂X̂!ã1
1

A2k
~sin v̂X̂!N. ~47!

Furthermore, from Eqs.~32!–~34! it results that these operators can be expressed in terms ofa and
a1 as

A~1 !5a1w~1 !~N!, A~2 !5w~2 !~N!a, ~48!

where

w~1 !~N!5w~2 !~N!
N1k1

N1k111
5F ~N12k1!~N1k1!

2k~N1k111! G1/2

. ~49!

Hereby, we obtain the commutation relations

@A~2 ! ,A~1 !#511
1

k
N, @N,A~6 !#56A~6 ! , ~50!

and the identity

2kA~1 !A~2 !5N@N1~2k21!1#, ~51!

which is nothing else than the operator form of the Klein–Gordon equation, as it results from~30!,
~31!, and~45!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let us observe now that the operatorsA2kA(1) , A2kA(2) , andN1k1 are the generators o
a nonunitary representation of the so~1,2! algebra. This is~nonunitary! equivalent with the unitary
representation of the lowest weightk, which has the generators

K ~1 !5K11 iK25A2k~N1k1!1/2A~1 !~N1k1!21/25a1~N12k1!1/2, ~52!

K ~2 !5K12 iK25A2k~N1k1!1/2A~2 !~N1k1!21/25~N12k1!1/2a, ~53!

K35N1k1. ~54!

The Casimir operator

K3
22K1

22K2
25k~k21!1 ~55!

is an alternative form of the Klein–Gordon operator~51!.

Finally we must specify that the operatorsX̂ andP̂ can be expressed in terms ofa anda1 by
using the Eqs.~30!, ~31!, and~48!. However, we can introduce other coordinate and momen
operators corresponding to all the natural frames we desire to choose. Obviously, all these
tors are analytic functions ofX̂(a,a1) andP̂(a,a1). Thus it results that the whole operator algeb
of the RO is freely generated bya anda1 only.

VI. THE LIMIT e˜0

The case ofe50 can be solved separately.5 Here we havex5 x̂ and xe→` so that, in the
coordinate representation,H will appear asL2(R). The solutions of the Klein–Gordon equatio

2
d2Un

0

dx2 1m2v2x2Un
05~En

22m2!Un
0, ~56!

coincide with the familiar energy eigenfunctions of the NRHO, while the energy spectrum is
by

En
25m212mv~n1 1

2!, n50,1,2, ... . ~57!

On the other hand, we have shown5 that the solutions of our RO are continuous ine50 in the
sense that the limit of the energy eigenfunction~18! for e→0, calculated up to the normalizatio
factors, gives just the solutions of~56!. Now we can convince ourselves that the normalizat
factors ~21! also behave correct in the limite→0, giving the usual normalization factors of th
NRHO energy eigenfunctions,Un

0, which should satisfy (Un
0,Un8

0 )5dn,n8 . Indeed, by taking into

account that in this limit we havev̂→0, k→` but e2k→m/v, and by using the asymptotic form
of the functionsG(z) for largez,9 we find that

lim
e→0

Un~x!5S mv

p D 1/4 ~21!ns~s11!

2ns1s/2ns!
A~2ns1s!! e2mvx2/2~Amvx!sFS 2ns ,s1

1

2
,mvx2D

5S mv

p D 1/4 1

An!2n
e2mvx2/2Hn~Amvx!5Un

0~x!,

whereHn are the Hermite polynomials andn52ns1s as defined above. We note that this res
justifies the choice of the phase factor (21)ns of ~21!.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



in the
that

s

tivistic

al

of the
istic

lein–
tation.
first

f the
ld be
m
f
e
clude

veral
d spe-
at our
s differ
e
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The behavior of the energy eigenfunctions suggests that we derive the operator algebra
case ofe50 as the limit of the algebra obtained in the previous section. We observe
w(6)(N)→1 whene→0 so that

lim
e→0

A~1 !5 lim
e→0

ã15a1, lim
e→0

A~2 !5 lim
e→0

ã5a. ~59!

Furthermore, from~30! and~31! we see that the operatorsa anda1 become differential operator
of the form

~aU !~x!5
1

A2mv
S d

dx
1mvxDU~x!, ~60!

~a1U !~x!5
1

A2mv
S 2

d

dx
1mvxDU~x!. ~61!

This means that the position and the momentum operators can be written as in the nonrela
case,

X5
1

A2mv
~a11a!, P52 iAmv

2
~a12a!. ~62!

Hence, the conclusion is that the so~1,2! algebra of the models withe.0 degenerates in the usu
NRHO algebra whene→0. Simultaneously, the Klein–Gordon operator~51! becomesa1a5N.
Thus, fore50 the energy eigenfunctions as well as the shift operators are the same as those
NRHO. The unique difference is the formula of the energy levels which gives the relativ
energy squared operator

E25m2112mv~N1 1
21!, ~63!

and new commutation rules forE2 with X or P.

VII. COMMENTS

In this article we have studied the properties of the fundamental solutions of the K
Gordon equations of the RO by using the traditional methods of the coordinate represen
This allowed us to study the form of the energy eigenfunctions in two natural frames. The
one, (t,x), is important since here the classical equations of motion of the RO look like that o
NRHO. This indicates that the physical meaning of the relativistic behavior of the RO cou
better pointed out in this frame. The other frame, (t,x̂), offers the advantage of the simplest for
of the Klein–Gordon equation~27!. We have shown that fore.0 this is the relativistic version o
the PT system. Moreover, we have seen that in the limite→0 both these frames coincide while th
solutions of the Klein–Gordon equation become just those of the NRHO. Thus we can con
that, at least in the frame (t,x̂), the space behavior of the RO remains very closed to that of se
nonrelativistic systems. However, the operators of physical interest have new properties an
cific and consistent, although quite complicated, commutation relations. We must specify th
results concerning the commutation rules of the energy, position, and momentum operator
from those predicted in the algebraic approach of the RHO.3 What is remarkable here is that w
have recovered in another way the so~1,2! algebra, for all the RO withe.0, so that the Klein–
J. Math. Phys., Vol. 38, No. 11, November 1997
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Gordon operator should be just its Casimir operator. As mentioned, all these systems
massive scalar particles confined to wells having the width 2/ev in the frame (t,x) or p/ev in the
frame (t,x̂).

Finally we note that the results we have obtained could be the starting point of the con
tion of the quantum field theory of the scalar fieldf. This must be defined onH with values in the
field operator algebra by introducing suitable creation and annihilation operators. Moreover,
operators we have discussed here will generate the one-particle operators of the quantu
theory. Then the physical meaning of these operators will be better understood because
possibility of analyzing their time evolution with the help of the Hamiltonian operator. In
opinion, in this way one could obtain new answers to some sensitive problems such as that
to the definition of the relativistic position and momentum operators.
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W`-covariance of the Weyl–Wigner–Groenewold–Moyal
quantization

T. Dereli
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey

A. Verçin
Department of Physics, Faculty of Sciences, Ankara University, 06100 Ankara, Turkey
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The differential structure of operator bases used in various forms of the Weyl–
Wigner–Groenewold–Moyal~WWGM! quantization is analyzed and a derivative-
based approach, alternative to the conventional integral-based one is developed.
Thus the fundamental quantum relations follow in a simpler and unified manner.
An explicit formula for the ordered products of the Heisenberg–Weyl algebra is
obtained. TheW`-covariance of the WWGM-quantization in its most general form
is established. It is shown that the group action ofW` that is realized in the
classical phase space induces on bases operators in the corresponding Hilbert space
a similarity transformation generated by the corresponding quantumW` which
provides a projective representation of the formerW` . Explicit expressions for the
algebra generators in the classical phase space and in the Hilbert space are given. It
is made manifest that thisW`-covariance of the WWGM-quantization is a genuine
property of the operator bases. ©1997 American Institute of Physics.
@S0022-2488~97!02710-2#

I. INTRODUCTION

The Weyl–Wigner–Groenewold–Moyal~WWGM! quantization1 that is usually called the
phase space formulation of quantum mechanics has gained wide popularity in many differen
of physics including statistical mechanics,2 quantum optics,3 collission theory,4 and classically
chaotic nonlinear systems.5,6 This quantization scheme can be simply stated as an associ
between classical observables~c-number functions defined on a classical phase space! and quan-
tum observables~operators acting in the corresponding Hilbert spaceH). In mathematical litera-
ture it is developed as the theory of pseudodifferential operators where thec-number functions
determined by the WWGM-quantization are referred to as the symbols of the correspo
Hilbert space operators.7 In fact all the existing methods of quantization can be seen as assoc
processes obeying certain rules.8 Therefore, the search for possible covariances and hence
invariance properties that these associations may possess are of fundamental importance. T
say, when a member of the associated pair is transformed, determination of the transformat
of the other one in a well defined manner must be the first step of a systematic investigation
context of WWGM-quantization it is unfortunate that only a very restricted class of covari
properties are specified so far. The main goal of the present paper is to uncover the cov
properties of the WWGM-quantization in its as general form as possible.

The WWGM-quantization associates the usual product of two operatorsF̂1F̂2, not with the
usual commutative product of functionsf 1f 2, but rather with an associative star productf 1! f 2 that
is in general noncommutative, wheref 1 and f 2 are thec-number functions corresponding und
the WWGM-quantization to the operatorsF̂1 and F̂2, respectively. Henceforth operators an
functions of operators will be denoted by a hatˆ over letters. Associativity of the! product is
inherited from the associativity of the usual product of the operators. This in turn means tha
not the Poisson brackets~PB!, but its unique\ ~Planck’s constant! deformation,9
0022-2488/97/38(11)/5515/16/$10.00
5515J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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~ i\!21$ f 1 , f 2%MB5~ i\!21~ f 1! f 22 f 2! f 1!5$ f 1 , f 2%PB1O~\!, ~1!

called the Moyal brackets~MB! that corresponds to the Lie bracket of operators under
WWGM-association. Due to the associativity of the! product MB obeys Jacobi identity. Henc
WWGM-quantization sets up a Lie algebra isomorphism between the Lie algebra of qua
observables and the resulting Lie algebra of classical observables with respect to MB.
precisely, the association depends on a certain rule of the ordering of functions of noncomm
operators.10,11For this reason the star product and therefore the corresponding MB must be la
with a parameter specifying the chosen rule of ordering. TheO(\) terms in Eq.~1! that are called
‘‘quantum corrections’’ can be computed to any desired order of\ within the classical regime
Hence, the quantization itself can be understood as a deformation of classical observables
any need for introducing a Hilbert space on which the operators act. This leads to the fact th
can define a ‘‘pseudomechanics’’ which has the star product and MB as its principle ingre
which reduces to classical mechanics in the limit\→0.9,12 In this case the dynamics of a classic
observablef associated with a classical Hamiltonian system described by the Hamilton functiH
is governed by the ‘‘equation of motion,’’

d f

dt
5~ i\!21$H, f %MB . ~2!

The WWGM-quantization has a ‘‘simple covariance’’ with respect to affine canonical~i.e., inho-
mogeneous symplectic! transformations.13–15 This affine canonical covariance follows from th
structure of the automorphism group of the Heisenberg–Weyl~HW! groupW1 and the Stone–von
Neumann theorem7 which in essence states that, up to a central element generated by th
element of the HW-algebra every irreducible representation ofW1 is unitarily equivalent to the
Schrödinger representationD̂ @given by Eq.~3! below#. On the other hand, in addition to the inn
automorphisms, the automorphism group ofW1 contains the inhomogeneous symplectic gro
ISp(2) which is the semidirect product of the translation group and the symplectic group S~2!.
Thus, we can combineD̂ with an elementfPISp(2) to obtain another representationD̂+f which
is unitarily equivalent to the Schro¨dinger representation. This unitary equivalence provide
double-valued metaplectic representation ofISp(2). The affine canonical covariance of th
WWGM-quantization is a simple consequence of this fact.

To the best of our knowledge, the only known covariance of the WWGM-quantization i
above mentioned metaplectic covariance. Even this is investigated only for particular ca
WWGM-quantization. In the following we prove that this quantization scheme has an infini
covariances described by the recently foundW` algebra andW` group.16 We wish to warn that
there are twoW`’s here. The first one describes the Lie algebra of deformed classical cano
diffeomorphisms and it is explicitly realized in the tangent space of the phase space. The oth
that acts in the corresponding Hilbert space with the usual commutator is the Lie algeb
ordered monomials of the HW-algebra generators. Let us call these the classicalW` and quantum
W` , respectively. Just as it is in the case of the metaplectic covariance, it should be emph
that this is also a direct consequence of theW`-covariance of the operator bases that are par
etrized Schro¨dinger displacement operatorsD̂ and their Fourier transforms@see Eqs.~4!–~6!
below#.

We consider only systems with one degree of freedom for the sake of simplicity. Howeve
structure of the underlying algebra~HW-algebra! allows a straightforward generalization to sy
tems with finite or denumerably infinite number of degrees of freedom. Our approach h
distinct from the conventional one in that the differential structure of the bases are given pr
status and are investigated in detail. As an alternative to the integral-based conventional ap
we suggest to call this approach the derivative-based approach. Except for those that occu
J. Math. Phys., Vol. 38, No. 11, November 1997
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definitions integrals rarely occur in our investigation. Wherever they do occur integrals shou
understood as double integrations over the whole phase space that is topologically equiva
R2.

The organization of the paper is as follows. In Section II a review of the WWGM-quantiza
and the definition of ordered products are given. In this section we fix the notation and in
formulas and definitions needed for the subsequent analyses. In Section III the differential
ture of the Weyl basis is obtained and an explicit formula for the ordered products is deve
Parametrized Bopp operators are introduced. Section IV contains the differential structure
generalized Wigner basis and the corresponding Bopp operators. The announcedW`-covariance
of the Weyl and Wigner bases are explicitly established in Section V. Quantum deformation
canonical diffeomorphisms is also found and the generalized star product and Moyal brack
obtained. The final Section VI contains a summary of results.

II. THE WWGM QUANTIZATION AND ORDERED PRODUCTS

Let us consider the Schro¨dinger representation of the HW-algebra:@ q̂,p̂#5 i\ Î , whereq̂ and
p̂ are the Hermitian position and momentum operators, respectively. In terms of boson an
tion (â) and creation (â†) operators defined byâ5(a0\A2)21(\q̂1 ia0

2p̂), the defining commu-
tation relation is@ â,â†#5 Î . † stands for the Hermitian conjugation and in terms of a frequencv
and massm a length constanta05(\/mv)1/2 is used. The identity operatorÎ of the algebra
generates aU(1) group that is the center ofW1. Then the so called displacement operators,

D̂~j,h!5exp i ~jq̂1h p̂!; D̂~z,z̄!5exp~zâ†2 z̄â!, ~3!

which act irreducibly inH are the representatives of the coset spaceW1 /U(1) in the real (j,h)
and complex (z,z̄) parametrization of the group spaceW1, respectively.z̄ denotes the complex
conjugation ofz52(a0A2)21(\h2 ia0

2j). The displacement operators, or their suitable para
etrizations form complete operator bases, in the sense that any operator obeying certain co
can be expanded in terms of them.10,11 Each basis is closely connected with the ordering
noncommutingq̂ and p̂ ~or â and â†) in the expansion of operators. Therefore, not only
symbols thus obtained but also the resulting phase spaces are distinct. In essence, the W
quantization comes into play by considering the parameters of the group space as the coo
functions of a phase space. In this sense, the basis elements play a dual role. On the one h
are operators parametrized by the coordinate functions of a phase space and acting inH, and on
the other hand they behave as operator-valuedc-number functions defined on the same pha
space.

A unified approach to different quantization rules is achieved by usings-parametrized
(sPC) displacement operators,10,17

D̂~s!5e2 i\sjh/2D̂~j,h!; D̂~z,s!5esuzu2/2D̂~z,z̄!, ~4!

and their Fourier transforms,

D̂qp~s!5~\/2p!E E e2 i ~jq1hp!D̂~s!djdh, ~5!

D̂Z~s!5~p!21E E e2~z Z̄2 z̄Z!/a0A2D̂~z,s!d2z, ~6!

wherezR andzI being the real and the imaginary parts ofz, d2z5dzRdzI , andZ5q1 i (a0
2/\)p,

Z̄ are the complex coordinates for the (q,p) phase space. TheD̂(s) operators are called th
s-parametrized displaced parity operators.
J. Math. Phys., Vol. 38, No. 11, November 1997
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It is easy to verify the following trace and unitarity properties:

D̂†~s!5D̂†~0!ei\jh s̄ /25D̂21~ s̄!, ~7!

D̂†~z,s!5D̂†~z!es̄ uzu2/25D̂21~z,2 s̄!, ~8!

Tr@D̂~s!#5~2p/\!d~j!d~h!, ~9!

Tr@D̂~z,s!#5pd2~z!. ~10!

Another important property, which is independent ofs, is the so called displacement property,

D̂~s! f̂ ~ q̂,p̂!D̂21~s!5 f̂ ~ q̂1\h,p̂2\j!, ~11!

D̂~z,s! f̂ ~ â,â†!D̂21~z,s!5 f̂ ~ â2z,â†2 z̄ !. ~12!

Making use of the relations given above and the definitions~5! and ~6! one can easily obtain

E E D̂qp~s!dqdp5h5h~2pa0
2!21E E D̂Z~s!d2Z, ~13!

Tr@D̂qp~s!#515Tr@D̂Z~s!#, ~14!

D̂qp
† ~s!5D̂qp~2 s̄ !, D̂Z

†~s!5D̂Z~ s̄ !. ~15!

Now, two large class of associations can be defined as follows:

F̂~ q̂,p̂!5h21E E f ~2s!~q,p!D̂qp~s!dqdp, ~16!

Ĝ~ â†,â!5~2pa0
2!21E E g~2s!~Z, Z̄ !D̂Z~s!d2Z, ~17!

whose inverse transformations are

f ~2s!~q,p!5Tr@ F̂D̂qp~2s!#, ~18!

g~2s!~Z, Z̄ !5Tr@ĜD̂Z~2s!#, ~19!

respectively, where Tr stands for the trace. For the special valuess51,0,21, Eqs.~16! and ~18!
are known as the standard, Weyl, and antistandard rules of associations, respectively. On th
hand, Eqs.~17! and~19! are known as the normal, Weyl, and antinormal rules of association
s51,0,21, respectively. If the density operatorr̂ of a quantum mechanical system is mapped
Eqs.~18! and ~19!, the resultingc-number functions,

Wr~q,p,2s!5Tr@ r̂D̂qp~2s!#, Wr8~Z, Z̄,2s!5Tr@ r̂D̂Z~2s!#, ~20!

are called, generically, the quasiprobability distribution functions~qdf!. They enable us to carry
out quantum mechanical calculations in a classical manner in the corresponding phase spac6,18 In
the real parametrization, the qdf’s corresponding tos50 ands571 are called the Wigner and th
Kirkwood qdf’s, respectively. In the case of complex parametrization, the qdf correspondi
s51 ands521 are known as the Glauber–Sudarshan P-functions and Q-functions. There
J. Math. Phys., Vol. 38, No. 11, November 1997
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5519T. Dereli and A. Verçin: W`-covariance of the WWGM quantization

                    
more special association defined by

F̂~q̂,p̂!5~\/2p!E E f ~j,h!D̂21~j,h!djdh,

f ~j,h!5Tr@ F̂D̂~j,h!#.

This is known as the alternative Weyl association~or quantization!, and the above mentione
Wigner quantization is simply the Fourier transform of it. The phase space resulting from Eq~12!
and having (j,h) as canonically conjugate coordinates, is also known as the Weyl phase spa
the case of complex parametrization the alternative Weyl association takes the form

F̂~ â†,â!5p21E E f ~z, z̄ !D̂21~z, z̄ !d2z; f ~z, z̄ !5Tr@ F̂D̂~z, z̄ !#. ~22!

By using the properties of theD̂ basis it can be easily verified that the Hilbert–Schmid no
of an operator defined byiF̂i5(Tr@ F̂†F̂#)1/2 is equal to the usual Hilbert space nor
i f i5(^ f u f &)1/2 of the correspondingc-number function. Thus, the alternative Weyl quantization
a norm preserving 121 association between the space of bounded operators and the sp
square integrable functions. Except for some particular values ofs that may give rise to
singularities,10 the other associations are norm preserving 121 associations as well.

The parametrized bases operators were for the first time, introduced by Cahill and Gla10

in order to interpolate among various types of orderings. Thus, thes-ordered products
ŷnm

(s)[$(â†)n(â)m%s and t̂ nm
(s)[$(q̂)n( p̂)m%s are defined as follows:

ŷnm
~s!5]z

n]~2 z̄ !
m D̂~z,s!uz50 , ~23!

t̂ nm
~s!5~2 i !n1m]j

n]h
mD̂~s!uj505h , ~24!

where, and henceforth, the notation]x[]/]x. will be used. By writing

D̂~z,s!5e~s2s8!uzu2/2D̂~z,s8!; D̂~s!5e2 i\~s2s8 !jh/2D̂~s8 !, ~25!

and differentiating, we obtain

ŷnm
~s!5 (

k50

~n,m!

22kb~k,n,m!@2~s2s8!#kŷn2k,m2k
~s8! , ~26!

t̂ nm
~s!5 (

k50

~n,m!

22kb~k,n,m!@ i\~s2s8!#kt̂ n2k,m2k
~s8! , ~27!

where (n,m) denotes the smaller of the integersn and m, and (k
n)5n! @(n2k)!k! #21 being a

binomial coefficient we set

b~k,n,m!5S k
nD S k

mD k!. ~28!

These relations express an arbitrarys-ordered product in terms of a polynomial ins8-ordered
products wheres8 is also arbitrary. Note that the minus sign in@2(s2s8)# in Eq. ~20! and i\ in
Eq. ~21!. These are the remnants of the commutators of the corresponding operators there
J. Math. Phys., Vol. 38, No. 11, November 1997
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III. DIFFERENTIAL STRUCTURE OF THE WEYL BASIS

The embedding of orderings in a continuum provides a natural context for viewing
differences and interrelationships in a continuous manner and enable us to carry out the
analyses in the most general form. However, the definitions~23! and ~24! are quite implicit in
contrast with the simple notion of ordering as a prescription about the arrangement of ope
Moreover, some complicated and long formulas that may be encountered in the formulation
WWGM-quantization can be traced back to this implicit definition of ordering. The derivative
the basesD̂(s) andD̂(z,s) with respect to the phase space coordinates and explicit formula fo
ordered products which initiated the main observations of this paper will be derived in this se

First, the following relations can be easily obtained from~11! and ~12!:

jD̂~s!5\21@ p̂,D̂~s!#; hD̂~s!52\21@ q̂,D̂~s!#, ~29!

zD̂~z,s!5@ â,D̂~z,s!#; z̄ D̂~z,s!5@ â†,D̂~z,s!#. ~30!

They can be generalized as follows:

jnhmD̂~s!5~2\21adq̂!m~\21adp̂!nD̂~s!; zmz̄nD̂~z,s!5~adâ†!n~adâ!mD̂~z,s!, ~31!

where adÂ denotes the adjoint action ofÂ: adÂB̂[@Â,B̂#. Note that@adq̂ ,adp̂#5ad[ q̂,p̂]50. The
same relation remains valid if the pair (q̂,p̂) is replaced by (â†,â). Thus, the ordering of ad
operations in Eq.~31! is inessential.

By taking the derivatives of the various factorizations ofD̂(s) and D̂(z,s) implied by the
Baker–Campbell–Hausdorff~BCH! formula we obtain the following identities:

]jD̂~s!5 i ~ q̂1hs2!D̂~s!5 iD̂ ~s!~ q̂2hs1!5~ i /2!@ q̂2 1
2 \hs,D̂~s!#1,

~32!

]hD̂~s!5 i ~ p̂2js1!D̂~s!5 iD̂ ~s!~ p̂1js2!5~ i /2!@ p̂2 1
2 \js,D̂~s!#1,

]zD̂~z,s!5@ â†2~ z̄s2/\!#D̂~z,s!5D̂~z,s!@ â†1~ z̄s1/\!#

5~1/2!@ â†1 1
2 z̄s,D̂~z,s!#1, ~33!

]~2 z̄ !D̂~z,s!5@ â2~zs1/\!#D̂~z,s!5D̂~z,s!@ â1~zs2/\!#5~1/2!@ â2 1
2 zs,D̂~z,s!#1 ,

where@ ,#1 denotes the anticommutator and

s75 1
2 \~17s!. ~34!

By making use of the Leibniz rule,

]n~uv !5 (
k50

n

~k
n!~]ku!~]n2kv !, ~35!
J. Math. Phys., Vol. 38, No. 11, November 1997
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it is possible to obtain generalizations of Eqs.~32!–~33! in several ways. That is, depending on t
way the derivatives are taken, the definitions~23! and ~24! may not yield the desireds-ordered
product, but an equivalent one. In this sense the definitions~23! and ~24! are implicit. The dual
role played by the bases operators allows us to have the opposite sides of Eqs.~29! and ~30!
contain quantities living in different spaces. On the other hand Eqs.~32!–~33! are not written in
the same way. The implicit nature of the above formulas is due this fact. Equations~32!–~33! can
be rewritten in such a way that the quantities appearing on the opposite sides of the equalit
in different spaces. This we may achieve in two ways:~i! by taking the terms proportional to
hD̂(s), jD̂(s), zD̂(z,s), and z̄ D̂(z,s) to the left, hence leaving all the Hilbert space quantities
the right, or~ii ! by replacing\hD̂(s), \jD̂(s), zD̂(z,s), and z̄ D̂(z,s) in view of Eqs.~29!–~30!
by 2adq̂ , adp̂ , adâ , and adâ†, respectively. The first way leads to the introduction
s-parametrized Bopp operators that we are going to investigate at the end of this sectio
second way allows us to rewrite Eqs.~32!–~33! in the following unique form:

]jD̂~s!5~ i /2!T̂[ q̂] ~s!
D̂~s!; ]hD̂~s!5~ i /2!T̂[ p̂] ~2s!

D̂~s!, ~36!

]zD̂~z,s!5~1/2!T̂[ â†] ~s!
D̂~z,s!;]~2 z̄ !D̂~z,s!5~1/2!T̂[ â] ~2s!

D̂~z,s!, ~37!

where we define the Hilbert space operation

T̂[ Â] ~s!
5~11s!L̂ Â1~12s!R̂Â . ~38!

HereL̂ Â andR̂Â are, respectively, the multiplication from left and from right byÂ. In fact T̂[ Â] (2s)

is ans-deformation ofT̂[ Â] 1
[L̂ Â1R̂Â . It is equal to 2L̂ Â , T̂[ Â] 1

, and 2R̂Â for s51, s50, and

s521, respectively. We observe that for an arbitrary operatorB̂,

@ T̂[ q̂] ~s!
,T̂[ p̂] ~2s!

#B̂505@ T̂[ â†] ~s!
,T̂[ â] ~2s!

#B̂, ~39!

which simply follows from]j]h5]h]j and the relations Eqs.~36!, ~37!. It can also be directly
verified. Then we generalize Eqs.~36!,~37! as follows:

]j
n]h

mD̂~s!5~ i /2!n1mT̂[ q̂] ~s!

n T̂[ p̂] ~2s!

m D̂~s!, ~40!

]z
n]~2 z̄ !

m D̂~z,s!522~n1m!T̂[ â†] ~s!

n T̂[ â] ~2s!

m D̂~z,s!. ~41!

In view of Eq.~39!, these can be rewritten in finitely many different looking but equivalent for
We substitute Eqs.~40! and ~41! in the definitions~23! and ~24! to obtain

t̂ nm
~s!522~n1m!T̂[ q̂] ~s!

n T̂[ p̂] ~2s!

m Î 522~n1m!T̂[ p̂] ~2s!

m T̂[ q̂] ~s!

n Î , ~42!

ŷnm
~s!522~n1m!T̂[ â†] ~s!

n T̂[ â] ~2s!

m Î 522~n1m!T̂[ â] ~2s!

m T̂[ â†] ~s!

n Î . ~43!

By making use of the binomial formula,

T̂
[ Â] ~s!

n
[@~11s!L̂ Â1~12s!R̂Â#n5(

j 50

n

~ j
n!~11s! j~12s!n2 j L̂

Â

j
R̂

Â

n2k
, ~44!

we can rewrite expressions in~44! more explicitly as
J. Math. Phys., Vol. 38, No. 11, November 1997
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t̂ nm
~s!522n(

j 50

n

~ j
n!~11s! j~12s!n2 j q̂ j p̂mq̂n2 j , ~45!

522m(
k50

m

~k
m!~12s!k~11s!m2kp̂kq̂np̂m2k. ~46!

A similar relation holds forŷnm
(s) if the pair (q̂,p̂) is replaced by (â†,â) in these relations. In view

of Eq. ~39!, it is possible to write many equivalent forms of the above relations. But for later
we have written only two of them. From these we get fors561,

t̂ nm
~1!5L̂ q̂

nR̂p̂
mÎ 5q̂np̂m; t̂ nm

~21!5L̂ p̂
mR̂q̂

nÎ 5 p̂mq̂n, ~47!

and fors50,

t̂ nm
~0!522n(

j 50

n

~ j
n!q̂ j p̂mq̂n2 j , ~48!

522m(
k50

m

~k
m! p̂kq̂np̂m2k. ~49!

The expressions~47! exhibit the standard and antistandard rules of ordering while~48! and ~49!
yield the two well known expressions for symmetrically~or Weyl! ordered products. In fact the
usual expression known for the Weyl ordered form oft̂ nm

(0) is a totally symmetrized produc
containing n factors ofq̂ and m factors ofp̂, normalized by dividing by the number of terms in th
symmetrized expression. In the literature19 the equivalence of these three Weyl ordered forms
said to be verified by using the usual commutation relations. This requires long and te
computations. In our formulation on the other hand, not only the above mentioned equival
but also explicit expressions for many forms of the Weyl ordered products arise naturally
corollary to Eq.~39!.

As an application, let us consider the traces of Eqs.~40! and ~41! for s50. By noting that
TrD̂5(2p/\)d(j)d(h), TrD̂(z)5pd2(z) where D̂[D̂(0); the well known Weyl associations
follow:

2p

\
]j

nd~j!]h
md~h!↔~ i !n1mt̂nm

~0! , ~50!

p]z
n]

~2 z̄ !

m d2~z!↔ ŷnm
~0!. ~51!

These expressions cannot be so easily obtained in other approaches.
We propose that the relation~45! @or alternatively~46!# can be given as the definition of th

s-ordered product. There are several reasons that support this suggestion:~i! These expressions ar
simpler and more explicit than the definitions given by~23! and ~24!. Neither the phase spac
coordinates nor the basis operators appear in these expressions.~ii ! The ordered products ofâ† and
â can be treated on an equal footing. In fact, the disappearance of\, or any multiple of it, in these
expressions implies that all the relations and the remarks given above are valid for any a
having@Â,B̂#5 il Î ;lPC.20 A physical application may be the algebra of velocity operators o
charged particle moving in an external electromagnetic field.~iii ! These definitions may be ex
tended to the case when one or both of the integersn andm are negative. Furthermore, by usin
these relations the Hermiticity of a generals-ordered product can be easily decided. From~45! and
J. Math. Phys., Vol. 38, No. 11, November 1997
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~46! it follows that @ t̂ nm
(s) #†5 t̂ nm

(2 s̄ ) . Thus, for every pair of integersn,m, t̂ nm
(s) are Hermitian,

provided s̄52s. In particular, the Weyl ordered productst̂ nm
(0) are Hermitian. In the case ofâ,â†

we have, from~45! and ~46!, @ ŷnm
(s) #†5 ŷmn

( s̄ ) . Hence, thes-ordered productsŷnm
(s) are Hermitian if

and only if m5n, and s̄5s. For generals P C one can find combinations such as

k̂nm~s!5a t̂ nm
~s!1 ā t̂ nm

~2 s̄ ! , k̂nm8 ~s!5a ŷnm
~s!1 ā ŷmn

~ s̄ ! ~52!

(a P C) that are Hermitian.
We now consider the alternative way of writing the derivatives inD̂(s) so that the quantities

appearing at opposite sides belong to different spaces as

~2 i ]j2s2h!D̂~s!5q̂D̂~s!, ~2 i ]j1s1h!D̂~s!5D̂~s!q̂,
~53!

~2 i ]h1s1j!D̂~s!5 p̂D̂~s!, ~2 i ]h2s2j!D̂~s!5D̂~s! p̂.

By defining thes-parametrized Bopp operators,

QL~s!52 i ]j2s2h, QR~s!52 i ]j1s1h,
~54!

PL~s!52 i ]h1s1j, PR~s!52 i ]h2s2j,

we can generalize Eqs.~46!:

QL
n~s!D̂~s!5q̂nD̂~s!, QR

n~s!D̂~s!5D̂~s!q̂n,
~55!

PL
n~s!D̂~s!5 p̂nD̂~s!, PR

n~s!D̂~s!5D̂~s! p̂n.

Being defined in the tangent space of the (j,h)-phase space, thes-parametrized Bopp operator
obey the commutation relations

@QL~s!,PL~s!#52 i\52@QR~s!,PR~s!#, ~56!

with all the other commutators equal to zero. These relations indicate that thes-parametrized Bopp
operators provide a concrete coordinate realization of the direct sum of two copies of the
algebra, and for reals they are Hermitian on the Lebesque space defined on the (j,h)-phase
space.

In the case of complex coordinates Eqs.~37! yield

QL8
n~s!D̂~z,s!5~ â†!nD̂~z,s!, QR8

n~s!D̂~z,s!5D̂~s!~ â†!n

~57!

PL8
n~s!D̂~z,s!5~2â!nD̂~z,s!, PR8

n~s!D̂~z,s!5D̂~z,s!~2â!n,

where we have defined thes-parametrized complex Bopp operators,

QL8~s!5]z1 z̄~s2/\!, QR8 ~s!5]z2 z̄~s1/\!,
~58!

PL8~s!5] z̄2z~s1/\!, PR8 ~s!5] z̄1z~s2/\!.

The nonvanishing commutation relations they satisfy are

@QL8~s!,PL8~s!#52I 52@QR8 ~s!,PR8 ~s!#. ~59!
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We note that the complex Bopp operators are related with a coordinate realization of the b
annihilation and creation operators. We wish also to remark in passing that Eqs.~55! and ~57!
resemble eigenvalue equations.

The Bopp operators were originally defined only for the Wigner~s50! quantization.18,21They
play an important role in the derivative-based approach that we are using. So we generaliz
for any quantization rule.

IV. DIFFERENTIAL STRUCTURE OF THE WIGNER BASIS

Differential structure of theD̂(s) bases are formally the Fourier transform of that obtained
the preceding sections for theD̂(s) bases. To put it more simply, they can be derived from
definitions~5!, ~6! by elementary calculations. Indeed, making use of Eqs.~29! and~30!, it is easy
to verify that

]qD̂qp~s!52
i

\
@ p̂,D̂qp~s!#, ]pD̂qp~s!5

i

\
@ q̂,D̂qp~s!#,

~60!

]ZD̂Z~s!5
1

a0A2
@ â†,D̂Z~s!#, ] Z̄D̂Z~s!52

1

a0A2
@ â,D̂Z~s!#,

and from~36! and ~38! it follows that

qD̂qp~s!5 1
2T̂[ q̂] ~s!

D̂qp~s!, pD̂qp~s!5 1
2T̂[ p̂] ~2s!

D̂qp~s!,
~61!

ZD̂Z~s!5
a0

A2
T̂[ â] ~2s!

D̂Z~s!, Z̄D̂Z~s!5
a0

A2
T̂[ â†] ~s!

D̂Z~s!.

This is the only place where we need partial integration. Recalling the commutation relations~39!,
the above expressions may be generalized as follows:

qnpmD̂qp~s!522~n1m!T̂[ q̂] ~s!

n T̂[ p̂] ~2s!

m D̂qp~s!,
~62!

Z̄nZmD̂Z~s!5S a0

A2
D n1m

T̂[ â†] ~s!

n T̂[ â] ~2s!

m D̂Z~s!.

As an example, by taking the traces of both sides of Eqs.~62! we obtain

qnpm5Tr@ t̂ nm
~s! D̂qp~2s!#,

~63!

Z̄nZm5~a0A2!n1mTr@ ŷnm
~s! D̂Z~2s!#.

Alternatively, taking the integrals of both sides of the same equations we are led to

t̂ nm
~s!5h21E E qnpmD̂qp~s!dqdp,

~64!

ŷnm
~s!5~2pa0

2!21~a0A2!2~n1m!E E Z̄nZmD̂Z~s!d2Z.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Equations~63! and ~64! explicitly show that thes-quantization of the monomialsqnpm and
Z̄nZm(a0A2)2(n1m) are nothing but thes-ordered productst̂ nm

(s) and ŷnm
(s) , respectively. In our

approach these well known results concerning the WWGM-quantization are obtained with e
a unified manner.

From Eqs.~60! and ~61! we have

QDL~s!D̂qp~s!5q̂D̂qp~s!, QDR~s!D̂qp~s!5D̂qp~s!q̂,

PDL~s!D̂qp~s!5 p̂D̂qp~s!, PDR~s!D̂qp~s!5D̂qp~s! p̂, ~65!

where

QDL~s!5q2 is2]p , QDR~s!5q1 is1]p ,
~66!

PDL~s!5p1 is1]q , PDR~s!5p2 is2]q ,

are thes-parametrized Bopp operators for theD̂qp(s) bases. The only nonvanishing commutato
for them are

@QDL~s!,PDL~s!#52 i\52@QDR~s!,PDR~s!#. ~67!

We also give thes-parametrized complex Bopp operators,

QDL8 ~s!5221/2F Z̄

a0
1a0~12s!]ZG , QDR8 ~s!5221/2F Z̄

a0
2a0~11s!]ZG ,

~68!

PDL8 ~s!5221/2F Z

a0
2a0~11s!] Z̄G , PDR8 ~s!5221/2F Z

a0
1a0~12s!] Z̄G .

Their action on bases can be obtained from~60! and ~61! as

QDL8n ~s!D̂Z~s!5~ â†!nD̂Z~s!, QDR8n ~s!D̂Z~s!5D̂Z~s!~ â†!n,
~69!

PDL8n ~s!D̂Z~s!5~ â!nD̂Z~s!, PDR8n ~s!D̂Z~s!5D̂Z~s!~ â!n.

In the complex case the nonvanishing commutators are

@QDL8 ~s!,PDL8 ~s!#5152@QDR8 ~s!,PDR8 ~s!#. ~70!

We will finish this section by another important observation that generalizes a well kn
relation between the Wigner (s50) association and arbitrarys-association. It follows immediately
from

t̂ nm
~r ! D̂qp~s!5$QDL

n ~s!PDL
m ~s!%2rD̂qp~s!,

~71!

D̂qp~s! t̂ nm
~r !5$QDR

n ~s!PDR
m ~s!%rD̂qp~s!,

by taking a trace of both sides and making use of Eqs.~14!, ~45!, ~46!, and~65!,

Tr@ t̂ nm
~r ! D̂qp~s!#5$QDL

n ~s!PDL
m ~s!%2r I 5$QDR

n ~s!PDR
m ~s!%r I . ~72!

Thus for any arbitraryr ands, thec-number function corresponding to anr -ordered product via
the s-rule of association can be obtained by the action of ther -ordereds-parametrized Bopp
J. Math. Phys., Vol. 38, No. 11, November 1997
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operators on the phase space identity operatorI . The extension of these observations to the cas
complex coordinates and by linearity to arbitrary functions of operators that can be expande
series of ordered products is straightforward.

V. W`-COVARIANCE OF THE BASES OPERATORS

By following the same lines leading to Eqs.~71! from ~45! @or ~46!# and ~55! we obtain

Tnm
~r ! ~s!D̂~s!5@ t̂ nm

~r ! ,D̂~s!#, ~73!

where

Tnm
~r ! ~s![$QL

n~s!PL
m~s!%2r2$QR

n~s!PR
m~s!%r . ~74!

Equation~73! reveals the important fact that eachr -ordered product ofq̂’s and p̂’s generates an
infinitesimal transformation in the Weyl basisD̂(s) in the Hilbert spaceH. This transformation
corresponds to an infinitesimal transformation of the basis in the Weyl phase space that is b
in terms ofr - and2r -ordered Bopp operators. The exponentiation of these transformations
to

Vnm~r ,s!D̂~s!5Ûnm~r !D̂~s!Ûnm
21~r !, ~75!

wheregnm P C are the transformation parameters and

Vnm~r ,s![exp~ ignmTnm
~r ! ~s!!, Ûnm~r ![exp~ ignmt̂ nm

~r ! !. ~76!

Ûnm
21(r ) denotes the operator inverse ofÛnm(r ). Equation~73! at the algebra level and Eq.~75! at

the group level explain what we mean in its full generality byW`-covariance of the Weyl basis
Here we have twoW` algebras~and groups!: The first one is generated by the ordered produ
t̂ nm
(r ) ;n,m>0 and is acting inH. The second is generated byTnm

(r ) (s);n,m>0 and is realized in the
Weyl phase space.

Let s50 and multiply both sides of Eqs.~73! and ~75! by an arbitrary bounded operato
F̂(q̂,p̂). Then take the trace of the resulting equations. We thus obtain

Tnm
~r ! f ~j,h!5Tr~@ F̂~ q̂,p̂!, t̂ nm

~r ! #D̂ !, ~77!

Vnm~r ,0! f ~j,h!5Tr$@Ûnm
21~r !F̂~ q̂,p̂!Ûnm~r !#D̂%, ~78!

where f 5Tr@ F̂D̂#, Tnm
(r )[Tnm

(r ) (0). These two equations describe theW`-covariance of the Weyl
quantization both at the algebra level@Eq. ~77!# and at the group level@Eq. ~78!#. In other words,
if F̂ is the Weyl quantization of ac-number functionf , then theW` transform ofF̂,

F̂85Ûnm
21~r !F̂Ûnm~r !, ~79!

is the Weyl quantization of thec-number function,

f 8~j,h!5Vnm~r ,0! f ~j,h!. ~80!

For the sake of brevity, in the case of complex coordinates we write out only the
equations:

Tnm8~r !~s!D̂~z,s!5@ ŷnm
~r ! ,D̂~z,s!#,
~81!
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Vnm8 ~r ,s!D̂~z,s!5Ûnm8 ~r !D̂~z,s!Ûnm821~r !,

and

Tnm8
~r!f~z, z̄!5Tr$@ F̂~ â†,â!,ŷnm

~r ! #D̂~z!%

Vnm8 ~r ,0! f ~z, z̄ !5Tr$@Ûnm821~r !F̂~ â†,â!Ûnm8 ~r !#D̂~z!%. ~82!

These expressions describe theW`-covariance of theD̂(z,s) basis and of the Weyl quantization
respectively. Here we used the abbreviations (anm P C),

Tnm8~r !~s![$QL8
n~s!PL8

m~s!%2r2$QR8
n~s!PR8

m~s!%r ,

Vnm8 ~r ,s![exp~ ianmTnm8~r !~s!!, ~83!

Ûnm8 ~r ![exp~ ianmŷnm
~r ! !,

andTnm8(r )[Tnm8(r )(0).
From Eq.~71! we have

Gnm
~r ! ~s!D̂qp~s!5@ t̂ nm

~r ! ,D̂qp~s!#, ~84!

where

Gnm
~r ! ~s!5$QDL

n ~s!PDL
m ~s!%2r2$QDR

n ~s!PDR
m ~s!%r . ~85!

It is straightforward to verify that in the case of complex coordinates the corresponding rela
are the following:

Gnm8~r !~s!D̂Z~s!5@ ŷnm
~r ! ,D̂Z~s!#,

~86!

Gnm8~r !~s!5$QDL8n ~s!PDL8m~s!%2r2$QDR8n ~s!PDR8m~s!%r .

Exponentiating the actions~84! and ~86! we are led to

Vnm
D ~r ,s!D̂qp~s!5Ûnm~r !D̂qp~s!Ûnm

21~r !,
~87!

Vnm8D~r ,s!D̂Z~s!5Ûnm8 ~r !D̂ZÛnm821~r !,

where

Vnm
D ~r ,s![exp~ ignmGnm

~r ! ~s!!, Vnm8D~r ,s![exp~ ianmGnm8~r !!.

These expressions exhibit both at the algebra and at the group level, theW`-covariance of the
Wigner (s50) and the Kirkwood (s561) bases. SupposeF̂(q̂,p̂) andĜ(â†,â) are two arbitrary
bounded operators, and letF̂85Ûnm

21(r )F̂Ûnm(r ) and Ĝ85Ûnm821(r )ĜÛnm8 (r ) be their
W`-transforms. Then from Eqs.~87! we get

Vnm
D ~r ,s! f ~s!~q,p!5Tr@ F̂8D̂qp~s!#,

~88!

Vnm8D~r ,s!g~s!~Z, Z̄ !5Tr@Ĝ8D̂Z~s!#,
J. Math. Phys., Vol. 38, No. 11, November 1997
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where f (s)(q,p)5Tr@ F̂D̂qp(s)# and g(s)(Z, Z̄)5Tr@ĜD̂Z(s)# are the correspondingc-number
functions. The infinitesimal version of~84! is

Gnm
~r ! ~s! f ~s!~q,p!5Tr~@ F̂, t̂ nm

~r ! #D̂qp~s!!,
~89!

Gnm8~r !~s!g~s!~Z, Z̄ !5Tr~@Ĝ,ŷnm
~r ! #D̂Z~s!!.

Thus, the completeW`-covariance of the WWGM-quantization is achieved. Explicit expressi
giving the algebra generators forn,m<2 are presented below:

t̂00
~0!5 Î , G00

~0!~s!50

t̂10
~0!5q̂, G10

~0!~s!52 i\]p ,

t̂01
~0!5 p̂, G01

~0!~s!5 i\]q ,
~90!

t̂11
~0!5 1

2 ~ q̂p̂1 p̂q̂!, G11
~0!~s!5 i\~q]q2p]p!,

t̂20
~0!5q̂2, G20

~0!~s!522i\q]p1s\2]p
2,

t̂02
~0!5 p̂2, G02

~0!~s!52i\p]q2s\2]q
2.

In order to see the connection between the algebra of canonical diffeomorphisms an
W`-algebra found above in a different bases, we consider the relation22

Gnm
~s! ~2s! f ~q,p!5~qnpm!! ~2s! f ~q,p!2 f ~q,p!! ~2s!~qnpm!5$qnpm, f ~q,p!%MB

~2s! , ~91!

where f is an arbitraryc-number function and thes-parametrized star product! (2s) is defined to
be

! ~2s!5exp1
2 i\@~12s!]p

L]q
R2~11s!]q

L]p
R#, ~92!

]L and ]R denote partial derivatives acting to the left~L! and to the right~R!, respectively. We

have in particular exp(2i\]q
L]p

R) for s51, exp(12i\(]p
L]q

R2]q
L]p

R)) for s50, and exp(i\]p
L]q

R) for
s521. Thus the above definition unifies the different expressions given in the literature fo
star product and Moyal brackets and generalizes them for an arbitrarys-ordering. Thes-Moyal
brackets of two arbitrary functions can also be written as

$ f 1 , f 2%MB
~2s!52i f 1@exp2 1

2 i\s~]p
L]q

R1]q
L]p

R!#sin@ 1
2 \~]p

L]q
R2]q

L]p
R!# f 2 , ~93!

which reduces to the well known Moyal form whens50.
Writing out the first three terms explicitly, the expansion of thes-Moyal brackets is

$ f 1 , f 2%MB
~2s!5 i\$ f 1 , f 2%PB1

1

2!
~ i\/2!24s@~]q

2f 1!~]p
2 f 2!2~ f 1↔ f 2!#1

1

3!
~ i\/2!3

3$@~12s!31~11s!3#~]p
3 f 1!~]q

3f 2!26~12s2!~]q]p
2 f 1!~]p]q

2f 2!2~ f 1↔ f 2!%1•••,

~94!
J. Math. Phys., Vol. 38, No. 11, November 1997
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where PB denotes the Poisson brackets. This formula generalizes to arbitrary values os the
expansions for some discrete values ofs that previously appeared in the literature. In particular
would like to note that in the case of Wigner quantization (s50), the leading order correction t
the PB is proportional to\2, while in all the other cases (s Þ 0) the leading term is proportiona
to \.

Taking F̂ to be t̂ kl
(s) in Eq. ~89! and using~91! we obtain

Gnm
~s! ~2s!~qkpl !5Tr$@ t̂ kl

~s! , t̂ nm
~s! #D̂qp~2s!%5$qnpm,qkpl%MB

~2s! . ~95!

The last equality sets up a Lie algebra isomorphism between the quantumW` , that is the algebra
generated bys-ordered products under the usual Lie bracket action, and the algebra genera
the monomialsqnpm for n,m>0 under thes-MB action. Since (i\)21$,%MB

(2s)→$,%PB as\→0, the
essence of the full quantumW` can be captured on the classical phase space by simply defor
the Poisson brackets tos-Moyal brackets. On the other hand we have another infinite alg
generated by the operatorsGnm

(r ) (s);n,m>0 indexed by two ordering parametersr ,s and built up
by the product of the Bopp operators, that are concretely realized in the tangent space ofR2. This
is the algebra that we referred to as the classicalW` in the Introduction. As is seen from~95!, or
more readily from

@Gnm
~r ! ~s!,Gkl

~r !~s!#D̂qp~s!52@@ t̂ nm
~r ! , t̂ kl

~r !#,D̂qp~s!#, ~96!

the above mentioned isomorphic quantumW`-algebras are central extensions of this class
W` . The vanishing of the right hand side of~95! @or ~96!# requires by the completeness of th
basis, thatt̂ nm

(r ) ~or @ t̂ nm
(r ) , t̂ kl

(r )#) has to be proportional toÎ , while the vanishing of the left hand sid
requiresGnm

(r ) ~ or @Gnm
(r ) (s),Gkl

r (s)#) to be zero. Note that, as is apparent from Eq.~96!, there is an
overall sign difference between the structure constants of the classical and quantumW`-algebras.
This can be remedied by a simple redefinition of the generators. Thus, the group generated
quantumW` provides a projective representation of the classicalW` .

On the other hand, it is known that16 the space of monomialstnm[qnpm;n,m>0 form the Lie
algebra of canonical diffeomorphisms of a phase space, that is topologically equivalentR2,
under the usual Poisson brackets. This algebra is known asw` , or since the area element and th
symplectic form coincides in two dimensions, as the algebra of area preserving diffeomorp
Diff AR2. The W`-algebras discussed above are the quantum~or,\) deformation of this classica
w` . The one called the quantumW` provides an implementation of the general canonical tra
formations at the quantum level.

VI. CONCLUSION

We have developed a derivative-based approach to the WWGM-quantization as an alte
to the integral-based conventional one. This enabled us in particular to obtain some funda
associations in a unified way easily and to derive an explicit formula for thes-ordered products
that led to further observations. It is argued that this formula can also be used for any p
operators. In the case of operators belonging to a nilpotent algebra such as the Heisenber
algebra, seemingly different but equivalent expressions of a given ordered product can
tained.

In a given association the primary issue is to determine how a member of the assoc
transforms when the other one is transformed in a well defined way. We have explicitly s
that the WWGM-quantization in its most general form has aW`-covariance which includes th
known metaplectic covariance as a subset. Equation~90! contains forn,m<2 the generators o
the metaplectic algebraIsp(2) in the classical phase space and its central extension inH.
Moreover, we emphasize that like the metaplectic covariance, theW`-covariance we had shown i
J. Math. Phys., Vol. 38, No. 11, November 1997
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a genuine property of the complete operator bases used. An important group theoretical o
of this construction is that we have obtained a projective representation of the classicW`

realized in the tangent space of the related phase space.
W`-algebras are currently the subject of active investigations in two dimensional grav16

conformal field theories,23 and in connection with the quantum Hall effect in condensed ma
physics~see Ref. 24 and the references therein!. For example, the notion of incompressibilit
which plays a fundamental role in the theoretical understanding of the quantum Hall effe
been related to the existence of theW`-symmetry. These exciting developments suggest that
structure of the Landau levels, or more generally the quantum Hall effect, could also be in
gated in the framework of the WWGM-quantization. We plan to take up a systematic stu
these problems in our forthcoming papers.
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Geometro-stochastically quantized fields with internal
spin variables

W. Drechslera)

Max-Planck-Institut fu¨r Physik, Föhringer Ring 6, 80805 Mu¨nchen, Germany

~Received 25 October 1996; accepted for publication 10 June 1997!

The use of internal variables for the description of relativistic particles with arbi-
trary mass and spin in terms of scalar functions is reviewed and applied to the
stochastic phase space formulation of quantum mechanics. Following Bacry and
Kihlberg a four-dimensional internal spin spaceS̄ is chosen possessing an invariant
measure and being able to represent integer as well as half integer spins.S̄ is a
homogeneous space of the group SL(2,C ) parametrized in terms of spinorsa
PC 2 and their complex conjugatesā . The generalized scalar quantum mechanical
wave functions may be reduced to yield irreducible components of definite physical

mass and spin@m,s#, with m>0 ands50,1
2,1,32, . . . , with spin described in terms

of the usual (2s11)-component fields. Viewed from the internal space description
of spin this reduction amounts to a restriction of the variablea to a compact
subspace ofS̄, i.e., a ‘‘spin shell’’ Sr 52s

2 of radiusr 52s in C 2. This formulation
of single particles or single antiparticles of type@m,s# is then used to study the
geometro-stochastic~i.e., quantum! propagation of amplitudes for arbitrary spin on
a curved background space–time possessing a metric and axial vector torsion
treated as external fields. A Poincare´ gauge covariant path integral-like representa-
tion for the probability amplitude~generalized wave function! of a particle with
arbitrary spin is derived satisfying a second order wave equation on the Hilbert
bundle constructed over curved space–time. The implications for the stochastic
nature of polarization effects in the presence of gravitation are pointed out and the
extension to Fock bundles of bosonic and fermionic type is briefly mentioned.
© 1997 American Institute of Physics.@S0022-2488~97!01910-5#

I. INTRODUCTION

Spin appeared in physics as a typical property of quantum mechanical states determin
multiplet structure of atomic spectra. The concept of a nonrelativistic quantum mechanical
function had to be broadened to be able to account for the presence of spin yielding the
unified description for orbital as well as spin motion formulated with the help of group theore
methods,1 or, more precisely, treated in terms of the representation theory of the rotation g
SO~3!.2,3 Extending this nonrelativistic theory to a formulation in accord with special relativ
within a Lorentz and translation invariant formalism for free particles, leads to Wigner’s4 identi-
fication of elementary particles observed in nature with the unitary irreducible represent
~UIR! of the Poincare´ group,P 5ISO(3,1), characterized by mass and spin@m,s#, with real m

>0 ands50,1
2,1,32,2, . . . .

Relativistic particles with definite mass and spin are in this scheme described in ter
multicomponent fields,ca(x);a51 . . .n, x5(xm;m50,1,2,3), defined over Minkowski space
time M4, which transform as vectors underP or, in the half integer spin cases, as spinors un
the universal covering groupP̄ 5ISO(3,1)5T4^ sSL(2,C ), where ^ s denotes the semidirec
product. The interaction between various different fields is then usually formulated as a Lo

a!Electronic mail: wdd@mppmu.mpg.de
0022-2488/97/38(11)/5531/28/$10.00
5531J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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invariant coupling of these multicomponent fields, for example, likeec̄ (x)gmc(x)Am(x) in the
case of QED or likegc̄N(x)g5tcN(x)f(x) as, for example, for the pseudoscalar pion nucle
interaction.5 Writing the interaction between different elementary particle fields in this man
freezes the spin content of the fields to their free field values and thus forces the spin deg
freedom to play an undynamical role in the theory.

When the Regge theory of strong interaction was en vogue in particle physics it was obs
from the data on high energy collisions that the effective spin of the exchanged particle med
the strong interaction, for example ther-meson or the pion, depended on the momentum tran
t̄ between the collision partners taking part in the process and wasnot a constant given by the
fixed spin value of the free field. There was a so-called trajectory relation involved connectin
scattering states fort̄ ,0 and continuously variable effective spin with a family of Regge rec
rences fort̄ 5ms

2.0 and discrete physical integer or half integer spin valuess of certain observed
resonant states, i.e., excited states of strong interaction. This showed that in going ‘‘off
shell’’ with the invariant energy or momentum transfer variable of an analyticS-matrix element
one had in strong interaction physics also to go ‘‘off spin shell’’ and analytically continue in
spin variable, i.e., one had to allow for a dynamical role of spin.6

In this context one intended in the sixties to replace the elementary fields for particl
definite mass and spin by so-called spin-tower-fields with built-in trajectory relation between
and spin~compare, for example, Bacry and Nuyts7!. At the same time the question was ask
whether it would be appropriate to represent a particle with spin not by a vector- or spinor-v
function over Minkowski space–time with a fixed number of components but by a scalar fun
defined over a higher dimensional space, in particular, a homogeneous space of the und
kinematic symmetry groupP , i.e., to consider fields in particle physics as scalar-valued funct
defined onP /H whereH is a closed subgroup ofP .6,8,9 In order to consider homogeneous spac
of the Poincare´ group which contain Minkowski space–time, i.e., being of the typeM43S, with
S playing the role of a spin space, one regardsH to be a subgroup of the Lorentz group contain
in P yielding thereby for the spaceS a homogeneous space of the Lorentz group.

All the homogeneous spaces of the Poincare´ group of this type were listed by Finkelstein8 and
by Bacry and Kihlberg,9 and the existence of an invariant measure onP /H as well as the
suitability of these spaces for the description of half integer spins were investigated. The a
of Ref. 9 came to the conclusion that the lowest dimensional homogeneous space with in
measure suitable for the description of a half integer as well as integer spins is eight-dimen
with four internal variables for the representation of spin,S5‘‘ @4#’’ in Finkelstein’s notation,
yielding thereby a generalized scalar wave function,c(X), for the description of a particle with
spin, withX5(xm,yi)PP /H wherexmPM4 andyiPS, i 51,2,3,4.

If one wants to have fields with a fixed mass valuem and a definite spins it is required that
the fieldc(X) takes sharp values for the two Casimir operators of the Poincare´ group, i.e.,

P̂mP̂mc~X!5m2c~X!, ~1.1!

ŴmŴmc~X!52m2s~s11!c~X!, ~1.2!

with P̂m denoting the momentum operator and with

Ŵm5 1
2 «mnrlP̂nŜrl ~1.3!

being the Pauli–Lubanski operator, whereŜrl52Ŝlr is a set of spin operators satisfying the L
algebra of SO~3,1! which are expressed as differential operators in the additional internal
variables,yi , with the coordinatesyi parametrizing the spaceS5SO(3,1)/H. @SO(3,1) is used
here to denote the proper orthochronous Lorentz groupO(3,1)11.#
J. Math. Phys., Vol. 38, No. 11, November 1997
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However, it was pointed out by Bacry and Kihlberg9 that in order to reduce the descriptio
completely to an irreducible one in the Wigner sense, two additional conditions on the scalar
functions for the quantized description of spin had to be introduced. These could most ea
expressed by using a two-dimensional spinor formulation of the internal spin space,

S̄5SL~2,C !/H̄, ~1.4!

whereH̄ ~being the universal covering group ofH) is a subgroup of SL(2,C ) determining the
space defined by Eq.~1.4!.10 The spaceS̄ could thus be parametrized by spinor variab
aA, A51,2, given by9

a15e1/2 tei1/2 ccos1
2 uei1/2 w, a25e1/2 tei1/2 csin1

2 ue2 i 1/2 w, ~1.5!

and their complex conjugatesā Ȧ; Ȧ51̇,2̇. Here2`,t,`; 0<u<p, 0<w,2p, and22p
<c,2p. This shows that the internal spin space with the four real variablest, c, u, w and the
Lorentz invariant measure,

dms5e2tdtdcdcosudw, ~1.6!

is isomorphic to a two-dimensional complex spaceC 2 with measuredadā5da1da2dā 1̇dā 2̇

being invariant because of the unimodularity ofSL(2,C ). From this point of view one would
represent the wave function for a relativistic particle with arbitrary spin as a scalar fun
c(x,a,ā ) with x5(xm;m50,1,2,3), denoting a point in Minkowski space, and witha5(aA;A
51,2) and its complex conjugateā5( ā Ȧ;Ȧ51̇,2̇) denoting a point in the internal spin spaceC 2

and its complex conjugate, respectively.c(x,a,ā ) would have to satisfy the Klein–Gordon equ
tion in x which is essentially Eq.~1.1! with the velocity of light taken to bec51.

In parentheses we would like to remark already at this place that due to the impossibi
localizing a relativistic particle in Minkowski space in terms of projector-valued~PV! measures
providing a system of imprimitivity of the Poincare´ group in Mackey’s sense on the Hilbert spa
of states,11,12 we shall present below astochastic phase spacedescription of relativistic particles
as advocated strongly by Prugovecˇki,13–15 and construct a system of covariance of the Poinc´
group in terms ofpositive operator-valued~POV! measures on a Hilbert space for particles w
arbitrary spin. This yields a stochastic phase space description of relativistic particles as pr
by Prugovecˇki which is extended in this paper to nonzero spin by using a homogeneous
description of the Poincare´ group for the spin degrees of freedom—or rather aC 2-description as
mentioned above—leading to a fully covariant formalism for the kinematics and localiz
properties of free relativistic particles with definite mass and spin in terms of scalar function
a later stage of this investigation we shall study in a separate paper the implications of the in
space description of spin for the coupling of fields describing interactions among several pa
with nonzero~dynamical! spin, i.e., couple several general spin fields together in using the inte
spinorial variables introduced and investigated here.

In the present paper we shall show in using the internal spin variables that one is able to
states with arbitrary fixeds which reduce to the familiar (2s11) component states of definit
spin, labelled conventionally by (s,s3), provided additional constraints are imposed~see below!.
Furthermore, the use of scalar wave functions for arbitrary spin depending on the add
internalC 2-variables allows, without too much technical complications, a path integral form
tion for the probability amplitudes to be given for particles with nonzero spin. Also, the inclu
of gravitation is facilitated in this context by studying the propagation of scalar sections o
appropriate Hilbert bundle for fixeds raised over a Riemann–Cartan background space–
geometry as shown in detail in Sec. IV below.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Returning now to the scalar wave functionc5c(x,a,ā ) with internal spinorial variablesa
and ā transforming under the fundamental representationsD (1/2,0)(L) and D (0,1/2)(L) of
SL(2,C ), respectively, one demands, following Bacry and Kihlberg,9 for the states ofdefinitespin
s that the following two constraining equations are satisfied:

D̂c5aA
]c

]aA
52sc, ~1.7!

and

]

]ā Ȧ
c50. ~1.8!

If Eqs. ~1.7! and ~1.8! are obeyed,c is a homogeneous polynomial of degree 2s in the undotted
spinor variablesa1 anda2 fixing the spin to the integer or half integer values with no dependence
of c on the dotted spinor variablesā 1̇ and ā 2̇. We call Eq.~1.7! @with the summation convention
used for the spinor indices# thehomogeneity conditionreducing the wave functionc for arbitrary
spin to a particular spin values; and we call Eq.~1.8! theholomorphicity conditionyielding thus
a spin description in terms of holomorphic functions of the variablesaPC 2.

It follows from Ref. 9 that if Eqs.~1.7!, ~1.8!, and ~1.1! are satisfied byc also the Casimir
operator appearing on the l.h. side of Eq.~1.2! possesses a sharp eigenvalue forc given by
2m2s(s11) and the description reduces to an irreducible one in the Wigner sense.

It is interesting to remark that Eqs.~1.7! and ~1.8! are instructive also from another point o
view. In the course of investigating the geometric quantization of constrained Hamiltonian
tems describing particles with nonzero spin one proceeds by giving a classical phase sp
scription of spin in extending the symplectic geometry, i.e. the phase space geometry, to i
the spin degrees of freedom which—after quantization—yield discrete integer values for 2s and
transform irreducibly under SU~2!, in the nonrelativistic case, or under SL(2,C ), in the relativistic
case~compare Woodhouse18!. Classically, the subspace ofC 2 appropriate for the description of
definite spins is the two-sphere,Sr 52s

2 5Sr 52s
3 /U(1) obtained as a factorization byU(1) of the

three-sphereSr 52s
3 of radiusr 52s, i.e. the ‘‘spin shell’’ given by

pAȦaAā Ȧ5 r̄ 5mcr, ~1.9!

where pAȦ5(1p01sp)AȦ , with the Pauli matricess5(s1 ,s2 ,s3), is the spinor form of the
4-momentumpm5(p0,p). Here theU(1) degree of freedom (aA,ā Ȧ)→(eixaA,e2 ixā Ȧ), with
realx, defines an equivalence class for which Eq.~1.9! remains unchanged. After quantization th
yields through Eqs.~1.7! and ~1.8! a description in terms of a momentum anda-dependent
reducedwave functionc̃ (s)(p,a), with a defined on a sphereSr 52s

2 of radiusr 52s, with integer
r , contained inC 2. The two-spheresSr 52s

2 of nonzero integer radiusr 52s define anintegral orbit
spacerepresenting the coadjoint orbits of the rotation group in Kirillov’s terminology.19

It appears from Eqs.~1.7! and ~1.8! that only half of the phase space variablesa1,a2 and
ā 1̇,ā 2̇ are relevant for a quantized description of physical spin and that the spin space fo
noninteracting particles is essentially a two-sphere. A two-sphereS2 may be regarded, on the on
hand, as the homogeneous space SU(2)/U(1) or, on the other hand, as the homogeneous sp
SL(2,C )/ P̃ whereP̃ is the subgroup of SL(2,C ) of complex triangular matrices of the form

S r 0

h r21D

J. Math. Phys., Vol. 38, No. 11, November 1997
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with r,hPC ~see Ref. 20!. The universal covering group SL(2,C ) of the Lorentz group acts
transitively on the two-sphere in this latter form; it acts onS25SU(2)/U(1) through the Wigner
rotation6R̄(p,L)PSU(2) related to the Lorentz transformationLPSO(3,1) carrying a momen
tum eigenstate with momentump into one with momentumLp, i.e.,

L5LLpR~p,L!Lp
21, ~1.10!

where Lp is the boost,p5Lp p° , taking the rest momentump° 5(mc,0) into p5(po,p), and
6R̄(p,L) above is the element of SU~2! corresponding to the SO~3! rotationR(p,L) in ~1.10!.

As viewed from the original spaceC 2, the reduction involved in the quantized description
arbitrary spin in terms of a functionc̃(p,a,ā ) depending ona and its complex conjugate to
function c̃ (s)(p,a) for definite spin defined on a two-sphere inC 2 may be regarded also in th
following way. One may view the spaceC 2 as a GL(1,C )-bundle overS2,

C 25P~S2,GL~1,C !!, ~1.11!

with GL(1,C )5C !5C \$0% being isomorphic to the complex numbers without the origin. F
lPC ! the GL(1,C ) transformations give rise to an equivalence relation provided by (aA,ā Ȧ)
;(laA, l̄ ā Ȧ). The two-sphereS2 may thus be regarded as the spaceC 2 modulo this equivalence
relation describing dilatations byl.21 Hence, the reduction originating from the imposition of Eq
~1.7! and ~1.8! implies a corresponding reduction given by a projection in the principal bu
~1.11! from the bundle space to its base.

The key observation in the context of the present paper, however, is that in contradisti
to the vector-type representations for spin appearing in Refs. 22 and 17 based on Wigner ro
spin can, indeed, be given a formulation in terms of scalar functions defined on a four-dimen
homogeneous space of the Lorentz group possessing an invariant measure with the interna
rial variables transforming under SL(2,C ). This description reduces, as mentioned, to an irred
ible one corresponding to a definite massm and spins for free physical particles if, besides~1.1!,
the constraints~1.7! and~1.8! are required to be satisfied. In this case results similar to those o
and Prugovecˇki22 are obtained, where, in our presentation, a joint description for integer as w
half integer spins is given. This is due to the fact that even in the reduced case the intern
variables may be considered to transform under SL(2,C ) although we know that the internal spi
space, in fact, reduces to a subspace ofC 2, i.e., to a two-sphere~a compact space! and the
transformation group may be considered to reduce to the group of Wigner rotations, i.e.,
transformations of the compact subgroupSO(3) of the Lorentz group or its covering group SU~2!.

In the phase space framework which we are aiming at in this paper both the (q,p) variables
as well as the spin variables (a,ā ) of the original internal spin spaceC 2 and its complex
conjugate are regarded asphase space variablestransforming all, except for the translation
affecting onlyq, in a similar manner under Poincare´ transformations (b,L). This property will be
used in Sec. II to define a one-particle resolution kernel Hilbert space,H h̃

(s) , for free particles of
massm and arbitrary integer or half integer spins possessing physically reasonable relativis
localization properties, which are described in terms of scalar functions,c (s)(q,p,a), obeying
Eqs. ~1.1!, ~1.7!, and ~1.8! and transforming irreducibly under a unitary phase space repres
tion, U (s)(b,L), of the Poincare´ group. In Sec. III we extend this description to a first quantiz
soldered Hilbert bundleH@m,s# over a curved Riemann–Cartan space–time baseU4 in order to
include and investigate influences due to gravity. The bundleH@m,s# is associated to the affin
spin frame bundleP(U4 ,Ḡ5P̄ ). In Sec. IV we then study the quantum propagation onH@m,s#

and define a generalized path integral formula for particles with spin. Finally, Sec. V is devo
some concluding remarks.
J. Math. Phys., Vol. 38, No. 11, November 1997
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II. ONE-PARTICLE STOCHASTIC PHASE SPACE DESCRIPTION INCLUDING SPIN

In this section we develop the stochastic phase space representation ofP for particles of
arbitrary spin by using the internal spinor variablesa and ā introduced in the introduction. To
define the notation, we begin by briefly reviewing the spin zero case treated in detail in Re
and then investigate an extended framework for the stochastic phase space description
particle states possessing arbitrary but unspecified spin. We then reduce this representat
irreducible components to yield a description for free relativistic particles of a definite phy

spin,s50,1
2,1,32, . . . , and afixed mass valuem.

A. The spin-zero case

The aim is to construct a unitary irreducible phase space representation of the Poincare´ group
in terms of generalized quantum mechanical wave functions,c(q,p), which represent a relativ
istic spin-zero particle~or antiparticle! with stochastic localization properties in the configurati
space variableq5(qm;m50,1,2,3) as well as in the momentum space variablep5(pm;m
50,1,2,3), withpmpm5m2c2, wherem is the mass of the particle. The reason for introducing
stochastic phase space variables (q,p) for the description of particles in high energy physics is t
impossibility of localizing relativistic particles in terms of PV-measures on Borel sets over
figuration space alone, with the operators transforming under a unitary irreducible represe
of P acting in the respective Hilbert space of states carrying this system of imprimitivity.
however, possible to construct ageneralized system of imprimitivity~called a system of covari
ance! in terms of POV-measures on Borel sets over Minkowski spaceand momentum space
realized on a Hilbert spaceH h̃ of states transforming under a stochastic phase space repres
tion U(b,L) of P . This is achieved by defining irreducibly transforming one-particle states
relativistic stochastic phase space, constructed in terms of a resolution generatorh̃5h̃ l for the
particle in question, withh̃ l being parametrized by an elementary length parameterl . Thereby
Wigner’s 1932 phase space formulation of quantum mechanics23 is turned into~i! a fully relativ-
istic formulation, and~ii ! a formalism possessing a probability interpretation for the descrip
based on the stochastic variablesq andp. The outcome of this endeavor is the construction o
resolution kernel Hilbert space,H h̃ , carrying a unitary irreducible spin-zero phase space re
sentation,U(b,L), of the Poincare´ group, and containing statesC with physically reasonable
~stochastic! localization properties in the variablesq and p. For a detailed description of thi
whole approach we refer to the extended work of Prugovecˇki ~see Refs. 13, 14, and the referenc
quoted there! as well as to the review paper by Ali.17

To define the notation we introduce the relativistic one-particle phase space,

Mm
65M43Vm

6 , ~2.1!

whereM45R1,3 denotes Minkowski space–time having the metric tensorhmn5diag(1,21,21,
21), and Vm

6 is the positive energy (Vm
1 with p0.0) or negative energy (Vm

2 with p0,0)
hyperboloid in momentum space,pmpm5m2c2, possessing the Lorentz invariant measure

dVm~p!5
d3p

2p0
. ~2.2!

The momentum space wave function for a spin-zero particle of massm will be denoted byĉ(k),
with ĉ(k)PL2(Vm

6), kPVm
6 , being square integrable with respect to the measure~2.2!. The

spaceL2(Vm
6) carries a unitary irreducible representationÛ(b,L) of the Poincare´ group:

~Û~b,L!ĉ!~k!5e~ i /\!b•kĉ~L21k!, ~2.3!
J. Math. Phys., Vol. 38, No. 11, November 1997
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leaving the scalar product

^ĉ1uĉ2&V
m
65E

Vm
6

ĉ1* ~k!ĉ2~k!dVm~k!, ~2.4!

invariant. The notation used implies that both states with momentum wave functionsĉ1(k) and
ĉ2(k) refer either to a particle~integration overVm

1) or to an antiparticle~integration overVm
2).

The next step is the construction of an isometric map, calledW h̃ , between the Hilbert spac
L2(Vm

6) and a Hilbert spaceL2(Sm
6) defined over relativistic phase space, whereSm

65s
3Vm

6,Mm
6 , with s being a space-like hypersurface in Minkowski space, and with the Poin´

invariant measure onSm
6 being given by

dSm~q,p!52«~p0!pmdsmd~p22m2c2!d4p. ~2.5!

This is achieved with the help of the map

W h̃ :L2~Vm
6!→L2~Sm

6!, ~2.6!

defined by the following integral transform:

c~q,p!5~W h̃ĉ !~q,p!5E
Vm

6
h̃q,p* ~k!ĉ~k!dVm~k!, ~2.7!

where theh̃q,p(k) denote a set of coherent states, obtained from the resolution generatorsh̃(k)
PL2(Vm

6) with the help of the Poincare´ transformationÛ(q,Lp), involving a translation byq and
a Lorentz boost withv5p/m denoted byLp . Using ~2.3! one has

h̃q,p~k!5~Û~q,Lp!h̃ !~k!5e~ i /\!q•kh̃~Lp
21k!. ~2.8!

Here h̃(k) is the resolution generator, beingSO(3) invariant, i.e. obeying, withRPSO(3) and

L~R!5S 1 0

0 RD ,

h̃~L~R!k!5h̃~k!. ~2.9!

It is easy to show that~2.9! implies thath̃(Lp
21k)5h(p•k) with real h5h l ~compare Ref. 13,

Chapter 2; we suppress the suffixl in the sequel!.
Equation~2.8! defines a set of generalized coherent states inL2(Vm

6) parametrized in terms o
the cosetP /SO(3). So wemay, finally, write the integral transformW h̃ introduced in~2.7! as

c~q,p!5~W h̃ĉ !~q,p!5E
Vm

6
e2~ i /\!q•kh* ~p•k!ĉ~k!dVm~k!, ~2.10!

where the complex conjugation symbol onh is, actually, unnecessary but we keep it for the la
generalization of Eq.~2.10!. By construction the right-hand side of~2.10! satisfies the Klein–
Gordon equation in the variableq.

Mapping the coherent states~2.8! into L2(Sm
6), i.e., defining
J. Math. Phys., Vol. 38, No. 11, November 1997
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fq,p~q8,p8!5~W h̃h̃q,p!~q8,p8!5E
Vm

6
h̃q8,p8

* ~k!h̃q,p~k!dVm~k!5^h̃q8,p8uh̃q,p&V
m
6,

~2.11!

yields the result, because of the isometry property of the mapW h̃ , that the overlap between th
coherent states computed inL2(Vm

6) may be expressed as

fq,p~q8,p8!5^h̃q8,p8uh̃q,p&V
m
65^fq8,p8ufq,p&S

m
6, ~2.12!

which is identical to the propagator inL2(Sm
6) given by

K h̃ ~q8,p8;q,p!5^fq8,p8ufq,p&S
m
65E

Sm
6

fq8,p8
* ~q9,p9!fq,p~q9,p9!dSm~q9,p9!, ~2.13!

where the second equality defines the scalar product inL2(Sm
6). Using the fact that the statesfq,p

allow the following resolution of the identity inL2(Sm
6),

E
Sm

6
ufq,p&dSm~q,p!^fq,pu516, ~2.14!

we see thatK h̃ (q8,p8;q,p) obeys the following reproducing and reality relations implied
~2.13!:

K h̃ ~q8,p8;q,p!5E
Sm

6
K h̃ ~q8,p8;q9,p9!K h̃ ~q9,p9;q,p!dSm~q9,p9!, ~2.15!

and

K h̃
* ~q8,p8;q,p!5K h̃ ~q,p;q8,p8!5fq8,p8

* ~q,p!. ~2.16!

Any stateCPH h̃[L2(Sm
6) may now be decomposed in terms of the statesfq,p providing a

coherent state basis inH h̃ . The result is

C5E
Sm

6
c~q,p!fq,pdSm~q,p!, ~2.17!

wherec(q,p)5^fq,puC&S
m
6 is a generalized one-particle relativistic quantum mechanical w

function ~a scalar field on stochastic phase space! transforming under Poincare´ transformations
(b,L) in the following manner:

~U~b,L!c!~q,p!5c~L21~q2b!,L21p!. ~2.18!

Equation~2.18! is easily proven by applying~2.3! in ~2.10! and making use of the invariance o
the measure~2.2!. Thus W h̃ is an intertwining operator for the representationsÛ(b,L) and
U(b,L) obeying

U~b,L!W h̃5W h̃Û~b,L!. ~2.19!

Using ~2.13! and~2.14! in the definition ofc(q,p) given above one easily derives the followin
propagation formula:
J. Math. Phys., Vol. 38, No. 11, November 1997
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c~q8,p8!5E
Sm

6
K h̃ ~q8,p8;q,p!c~q,p!dSm~q,p!. ~2.20!

The phase space representationU(b,L) of P defined by~2.10! and~2.18! leaves invariant the
following scalar product inH h̃ obtained from~2.13! and ~2.17!:

^c1uc2&S
m
65E

Sm
6

5s3Vm
6

c1* ~q,p!c2~q,p!dSm~q,p!. ~2.21!

Equation~2.21! may also be written as

^c1uc2&S
m
65

i\

Zh̃
E E c1* ~q,p!]Jmc2~q,p!dsm~q!dVm~p!, ~2.22!

with ]m5]/]qm, and with

Zh̃5~2p\!3E
Vm

6
uh~p•k!u2dVm~p!, ~2.23!

being a constant independent ofk. For a particular choice of the resolution generatorh this yields
an irreducible unitary representationU(b,L) on H h̃ describing spin-zero particles of massm ~see
Refs. 13 and 14!. In our context it is essential to observe that the resolution generator introd
a particular smearing in the variablesq and p ~in accordance with Heisenberg’s uncertain
relations! which is parametrized here in terms of a fundamental length parameterl for the par-
ticular type of particles involved with@m,s#5@m,0#. The actual value ofl , i.e., whether it is of
order of 10216 cm, i.e., well below the charge radius of a nucleon, or even equal to the P
length;10232 cm is not essential in the present context. The main point is the regularizing e
this length parameter has in the stochastic phase space formalism. Taking, however, th
point limit l→0 leads to the appearance of singularities in Eqs.~2.22! and~2.23! ~compare Refs.
13 and 14!. This is reminiscent of the situation prevailing in the conventional relativistic quan
field theory based onq-space fields obtained by ordinary Fourier transformation from thep-space
fields. The stochastic phase space description introduced in Refs. 13, 14, and 17 was just p
in order to avoid the singularities of the conventional formalism. We shall thus assum
fundamental length parameterl to have a small but finite fixed value.

Our task now is to extend the spin-zero formalism reviewed above to the case of a p
with arbitrary spins. This will be done in the following subsection by using the internal spin sp
variablesa and ā for a homogeneous space description of spin as described in the Introdu

B. The nonzero spin case

In view of the discussion presented in the Introduction we represent a relativistic particle
arbitrary but unspecified spin and definite massm by a scalar wave functionĉ(k,a,ā ) defined on
momentum and spin space,Vm

63C 2, with the invariant measure~2.2! on Vm
6 and the invariant

measuredadā on C 2
24 @compare the remarks made after~1.6! above#.

As regards the transformation rule for the spinor variablesa5(a1,a2) and ā5( ā 1̇,ā 2̇)
introduced in Sec. I we observe that, conventionally, a spinor with a lower undotted spinor
A is taken to transform with theSL(2,C ) matrix D (1/2,0)(L), while an upper dotted spinor inde
Ȧ transforms with the matrix@D (1/2,0)(L21)#†5D (0,1/2)(L) ~compare, for example, Carruthers25!.
This leads for our spinor variablesa,ā with only upper indices to the following transformatio
rules ~written as matrix operation from the left and withT denoting the transpose!:
J. Math. Phys., Vol. 38, No. 11, November 1997
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a85D~L!a, with D~L!5@D ~1/2,0!~L21!#T, ~2.24!

ā85D̄~L!ā , with D̄~L!5D ~0,1/2!~L!. ~2.25!

The generalization of Eq.~2.3! in the presence of spin described through the internal sp
variablesa,ā now reads

~Û~b,L!ĉ!~k,a,ā !5e~ i /\!b•kĉ~L21k,D~L21!a,D̄~L21!ā !, ~2.26!

where, of course,Û(b,L) is not an irreducible representation here. Before we discuss the re
tion of the functionĉ(k,a,ā ) to one describing a particle with definite spin values we also
generalize the scalar product defined in~2.4! to functions defined onVm

63C 2:24

^ĉ1uĉ2&V
m
63C 2

5E
Vm

6
3C 2

ĉ1* ~k,a,ā !ĉ2~k,a,ā !dVm~k!dadā . ~2.27!

Due to ~2.26! and the invariance of the measure onVm
63C 2 this is a Poincare´ invariant scalar

product if it exists. We shall assume here that the momentum space wave functionĉ(k,a,ā ) of a
spinning particle is, indeed, square-integrable overVm

6 and C 2 requiring that the high spin state
contained inĉ ~see the reduction described below! are sufficiently damped to compensate for t
exponential factore2t in the measure~1.6! when expressed in the variables (t,c,u,w). In the
conventional formulation~compare Ref. 22! a decomposition of the original Hilbert spaceĤ into
an infinite direct sum of irreducible subspacesĤ(s)5L2(Vm

6) ^ Ks , with Ks being a spin space o
dimension 2s11, is considered, i.e.

Ĥ5(
s50

`

% Ĥ~s!, ~2.28!

where arbitrary large spin valuess are involved. In the present context we shall identifyĤ with
the Hilbert spaceL2(Vm

63C 2) defined by~2.26! and ~2.27! assumingĉ(k,a,ā ) to be square-
integrable with respect to the measuredVm(k)dadā .

Before we go on to construct the analogue of the mapW h̃ in the present case yielding a
irreducible subspaceH h̃

(s) of the Hilbert spaceL2(Sm
63C 2) introduced below, let us reduce th

generalC 2-description of spin by demanding homogeneity and holomorphicity in the sp
variables as expressed by Eqs.~1.7! and ~1.8!. As described in the Introduction, this amounts
the following restrictions:

ĉ~k,a,ā ! →
~1.7!,~1.8!

ĉ~s!~k,a!, C 2→
~1.9!

Sr 52s
2 . ~2.29!

The reduction to a definite spin value will thus be governed by the equations

D̂ĉ~k,a,ā !52sĉ~k,a,ā !, ~2.30!

]

]ā Ȧ
ĉ~k,a,ā !50 ; Ȧ51̇,2̇, and ~2.31!

kAȦaAā Ȧ5mcr; with r being an integer. ~2.32!
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A scalar momentum space wave function satisfying~2.30!–~2.32! will be denoted, according to
~2.29!, by ĉ (s)(k,a). Here D̂5aA]/]aA represents an invariant operator which commutes w
Û(b,L) as defined in~2.26!; the same is true for the invariant operator appearing on the l.h.
of ~2.32!. Using Eqs.~1.5! and their complex conjugates, Eq.~2.32! may be written as

et~ko1n–k!5mcr, ~2.33!

wheren is a unit vector given by

n5~sin u cosw, sin u sin w, cosu!. ~2.34!

In the derivation of~2.33! the anglec has disappeared in accordance with the remarks concer
the U(1) degree of freedom made around Eq.~1.9! in the Introduction. In the rest system of th
particle we thus have in the reduced case from~2.33! that

et5r 52s5 fixed integer . ~2.35!

This constrains the integration over theC 2 variables, for example, in~2.27! and in analogous
equations derived below in the reduced case where Eqs.~2.30!–~2.32! are to be satisfied. Let u
now decomposeĉ (s)(k,a) in view of ~2.30! into a homogeneous polynomial of degree 2s in a1

anda2 yielding @compare Eqs.~1.5!#

ĉ~s!~k,a!5(
s3

ĉs3

~s!~k!r s
~a1!s1s3~a2!s2s3

A~s1s3!! ~s2s3!!
, ~2.36!

where the sum overs3 runs froms352s to s351s. Moreover, we have written thet-dependence
explicitly as (et)s5r s and denoted the angular part depending onc,u, andw by boldface spinor
components. Following Edmonds3 we call the appearing normalized homogeneous polynom
u(s,s3), i.e.

u~s,s3!5
~a1!s1s3~a2!s2s3

A~s1s3!! ~s2s3!!
, ~2.37!

possessing the following well-known behavior underSO(3)-rotationsRa,b,g ~compare also Ref.
2, pp. 163–165!:

U~Ra,b,g!u~s,s3!5u8~s,s3!5(
s38

u~s,s38!Ds
38 ,s3

s
~a,b,g!, ~2.38!

where u8(s,s3) is the expression~2.37! computed with the rotated spinor componentsa8A; A
51,2, andDs

38 ,s3

s
(a,b,g) are the WignerDs-functions.

We now consider Eq.~2.26! for the reduced functionĉ (s)(k,a). Using the decomposition
~2.36! yields

(
s3

~Û~b,L!ĉs3

~s!!~k!r su~s,s3!5(
s3

e~ i /\!b•kĉs3

~s!~L21k!r su8~s,s3!, ~2.39!

where hereu8(s,s3) is constructed, according to~2.24! and ~2.35!, in terms of the spinor

a85D~L21!a, with a5e2t/2a, a85e2t/2a8. ~2.40!
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Thusu8(s,s3) differs from u(s,s3) by a rotation associated with the transition fromk to L21k.
This is the Wigner rotation@compare~1.10!#

R21~k,L21!5Lk
21LLL21k . ~2.41!

Using this rotation in~2.38! and inserting the resulting expression foru8(s,s3) into the r.h. side of
~2.39! we conclude — taking, moreover, the orthonormality of theu(s,s3) into account — that the
following transformation rule forĉ (s)

s3
(k) must hold:

~Û ~s!~b,L!ĉs3

~s!!~k!5e~ i /\!b•k(
s38

Ds3 ,s
38

s
~Lk

21LLL21k!ĉs
38

~s!
~L21k!. ~2.42!

This is the typical transformation law for the momentum eigenstate of a free particle of spins and
spin projections3, derived here from Eq.~2.26! for a definite integer or half integer spin values.
Moreover, in~2.42! we have denoted byÛ (s)(b,L) the irreducible action ofÛ(a,L) in the (2s
11)-dimensional vector space defined byĉs3

(s)(k).

Considering now the square of the wave functionĉ (s)(k,a) according to~2.27!, and taking
recognition of the constraint~2.32! by introducing ad-function,

dS 1

mc
kAȦaAā Ȧ2r D , with integerr 52s, ~2.43!

into theC 2-integration, yields with the help of~2.35!,

^ĉ~s!uĉ~s!&V
m
63C 2

5E
Vm

6
3C 2

@ĉ~s!~k,a!#* ĉ~s!~k,a!dS 1

mc
kAȦaAā Ȧ2r DdVm~k!dadā .

~2.44!

This may be written in terms of the coordinates (t,c,u,w) in using~1.5!, ~1.6! together with~2.36!
as

^ĉ~s!uĉ~s!&V
m
63C 2

5E
Vm

6
dVm~k!E (

s3s38
@ĉs

38
~s!

~k!#* ĉs3

~s!~k!r 2s@u~s,s38!#* u~s,s3!

3d~et2r !e2tdtdcsinududw. ~2.45!

Here u(s,s3), defined in~2.37!, is expressed in terms ofa A(c,u,w);A51,2. We can use Eq
~2.38! to write u(s,s3) in terms ofDs-functions, i.e.,

u~s,s3!5(
s38

u° ~s,s38!Ds
38s3

s
~c,u,w!, ~2.46!

whereu° (s,s3) is the homogeneous polynomial constructed witha151 anda250 being different
from zero only fors5s3. With the help of the familiar result,3

1

8p2E0

2pE
0

pE
0

2p

D
m

18m1

j 1* ~c,u,w!D
m

28m2

j 2 ~c,u,w!dc sinududw5dm
18m

28
dm1m2

d j 1 j 2

1

2 j 111
,

~2.47!

as well as the normalization of theu° (s,s3), one finally obtains
J. Math. Phys., Vol. 38, No. 11, November 1997
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^ĉ~s!uĉ~s!&V
m
63C 2

5
8p2

2s11
r 2s11E

Vm
6(s3

uĉ~s!
s3

~k!u2dVm~k!. ~2.48!

Here we could now absorb the constants appearing in front of the integral into the normali
of the wave functionsĉs3

(s)(k); s352s•••1s, for each particular spin values5 1
2,1,32,2, . . . .

Summing up we may say that the reduction to a definite spin values governed by Eqs.~2.29!–
~2.32! thus leads to wave functionsĉs3

(s)(k) being elements of the Hilbert spaceĤ (s)5L2(Vm
6)

^ Ks . As regards spin they transform irreducibly under the representation ofSL(2,C ) usually
denoted byD (s,0).

In defining now, in the presence of spin, a mapW̃ h̃ from L2(Vm
63C 2) to L2(Sm

63C 2), and
constructing a unitary reducible phase space representation for particles with arbitrary s
terms of scalar functions on generalized phase space, we make the following observation c
ing the variablesa and ā . In fact, the pair (a,ā ) may be regarded as phase space variables
spin in analogy to (q,p) being the phase space variables for the kinematic localization of spin-
particles. Quantum mechanically the momentum operators~for the phase space representation! are
constructed with the operatorsi\]/]qm producing the eigenvaluepm , while the spin operator~or
‘‘spin measuring operator’’! \D̂, producing the eigenvalue 2s\, is constructed in terms o
\]/]aA. So one could regardaA as a position-type variable for spin andā Ȧ as the corresponding
conjugate momentum-type variable for spin.~Of course, we already know from the discussi
presented above that in a quantized theory describing free particles of definite spin theā variables
disappear and only half the spin variables remain to describe a particle of definite spin.! Hence, in
defining the integral transformW̃ h̃ in the presence of spin~and prior to the reduction!, an
invariant integration over momentum-type variables must be involved—with spin included!
would therefore expect—provided the mentioned analogy between ordinary phase space va
and spin variables is indeed correct—that an integration overā is involved in generalizing Eq.
~2.7! to the nonzero spin case. We thus propose the following integral transform to
c(p,q;a,ā ):

c~q,p;a,ā !5~W̃ h̃ĉ !~q,p;a,ā !5
1

NEVm
6
E

ā8
@ h̃q,p~k,a,ā8!#* ĉ~k,a,ā8!dVm~k!dā8,

~2.49!

where the coherent state basis for nonzero spin is, in analogy to~2.8! and in view of~2.26!,

h̃q,p~k,a,ā !5~Û~q,Lp !h̃ !~k,a,ā !5e~ i /\!q•kh̃~Lp
21k,D~Lp

21!a,D̄~Lp
21!ā !. ~2.50!

The measuredā8 in ~2.49! is P̄ -invariant due to the unimodularity of the group SL(2,C ). N in
~2.49! is a normalization constant associated with the integration overā8.

It is now essential to remark that the resolution generatorh̃(k,a,ā ) in ~2.50! is again as-
sumed to be SO~3!-invariant, i.e., generalizing Eq.~2.9! the following relation holds:

h̃~L~R!k,D~R!a,D̄~R!ā !5h̃~k,a,ā !, ~2.51!

whereD(R) denotes the SL(2,C ) matrix corresponding to a rotationRPSO~3!, with D(R) and
D̄(R) denoting thusequivalentrepresentations ofSU(2) as is well-known.

It is easy to show using~2.26! and the rotation invariance~2.51! of h̃ that the intertwining
relation ~2.19! for W̃ h̃ is again valid withU(b,L) acting on the statesc(q,p;a,ā ) in the
following way:
J. Math. Phys., Vol. 38, No. 11, November 1997
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~U~b,L!c!~q,p;a,ā !5c~L21~q2b!,L21p;D~L21!a,D̄~L21!ā !. ~2.52!

In order to establish~2.52!, using~2.49!, the spinorD(Lp
21)a appearing in the argument ofh̃ in

W̃ h̃Û(b,L)ĉ is written as

D~Lp
21!a5D~R21~p,L21!!D~LL21p

21
!D~L21!a, ~2.53!

with R21(p,L21) as given by~2.41!. In the argument ofh̃ the Wigner rotation may however b
dropped due to the SO~3!-invariance~2.51!. This has the consequence that the spinor variable
h̃ ‘‘feel only the boosts,’’ acting ininequivalentways ona and ā , establishing thus, finally, Eq
~2.52!.

A Poincaré-invariant scalar product for the phase space wave functionsc(q,p;a,ā ) satisfy-
ing ~2.52! may now be written down generalizing Eq.~2.21!:

^c1uc2&S
m
63C 2

5E
Sm

6
3C 2

@c1~q,p;a,ā !#* c2~q,p;a,ā !dSm~q,p!dadā . ~2.54!

Let us next investigate Eqs.~2.49! and~2.50! in the reduced case assuming Eqs.~2.29!–~2.32! to
hold true. In this case theā8 dependence ofh̃ and ĉ disappears and the integration overdā8

5e1/2tdā8 represents, in view of~2.35!, an angular integration which can be carried out. Adju
ing the constantN appropriately this yields

c~s!~q,p;a,ā !5~W̃ h̃ĉ~s!!~q,p;a,ā !

5E
Vm

6
e2~ i /\!q•k@ h̃~s!~Lp

21k,D~Lp
21!a!#* ĉ~s!~k,a!dVm~k!, ~2.55!

whereĉ (s)(k,a) is the homogeneous polynomial ina given in ~2.36!. Let us immediately remark
that c (s)(q,p;a,ā ) defined by~2.55! does seem to develop now anā -dependence through th
complex conjugation of the expression in the square brackets under the integral provid
resolution generatorh̃ (s) does, indeed, depend on the spinor variablesa. This is, however, not the
case, and the r.h. side of~2.55! will, in fact, define a quantityc (s)(q,p;a) independent ofā .

To see thath̃ (s)(Lp
21k,D(Lp

21)a) cannot depend ona we note that theSL(2,C ) matrix for
a rotation free boost,

D ~1/2,0!~Lp!5
1

A2mc~p01mc!
@mc11p011s–p#, ~2.56!

changes the real length factoret/2 of a @compare~1.5!#. On the other hand, fixing the spin to th
value s restricts this factor toAr 5A2s @integrality condition~2.35!#. This contradiction can, in
view of the rotation invariance~2.51!, only be avoided ifh̃ (s) does not depend ona at all. Since
in this caseD̂h̃ (s)50, it does not depend ons either, and we can replace the resolution genera
appearing in~2.55! by the one describing the spin-zero case in Eq.~2.7!, i.e.,

h̃ ~s!~Lp
21k!5h~p•k!. ~2.57!

We may thus, finally, rewrite~2.55!, remembering thath(p•k) is real, as
J. Math. Phys., Vol. 38, No. 11, November 1997
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c~s!~q,p;a!5~W h̃ĉ~s!!~q,p;a!5E
Vm

6
e2~ i /\!q•kh~p•k!ĉ~s!~k,a!dVm~k!, ~2.58!

where we have denoted the integral transformW̃ h̃ by the same symbol as in the spinless case
Eq. ~2.10! above. Applying the operatorD̂ to both sides of this equation it is clear thatD̂
commutes with the mapW h̃ , i.e.,

D̂W h̃5W h̃ D̂. ~2.59!

One can now again decomposeĉ (s)(k,a) according to Eq. ~2.36! and define
(2s11)-dimensional vector-valued phase space functionscs3

(s)(q,p) in terms of momentum spac

wave functionsĉs3

(s)(k), with (s,s3); s352s•••1s, taking values in the spin spaceKs of dimen-

sion 2s11. We thus see that the correspondence~2.49! yields, for the reduced states of defini
spin s, an isometric map~2.58!—constructed in the same manner as in the spin-zero ca
relating the Hilbert spacesL2(Vm

6) ^ Ks[Ĥ (s) @compare~2.48!# and L2(Sm
6) ^ Ks[H h̃

(s) . To
have a condensed notation at our disposal one can, however, express the relations under
first in terms of the scalar fieldsc (s)(q,p;a) andĉ (s)(k,a) and then go over at a later stage to t
(2s11)-dimensional vector-valued fields by making ana-expansion in terms of homogeneou
polynomials of degree 2s.

Mapping the coherent state basis for the case of definite spins,

h̃q,p
~s! ~k!5h̃q,p~k!5e~ i /\!q•kh~p•k!, ~2.60!

into L2(Sm
6) as in Eq.~2.11! yields again

fq,p~q8,p8!5~W h̃h̃ q,p
~s! !~q8,p8!5^h̃q8,p8uh̃q,p&V

m
65^fq8,p8ufq,p&S

m
65K h̃ ~q8,p8;q,p!.

~2.61!

This implies that the stochastic phase space propagatorK h̃
(s)(q8,p8;q,p) for a free particle of spin

s is the same as that for a spin-zero particle defined in~2.13!. Hence, freezing the spin content o
the fields to any physical values does not alter the phase space kinematics of free stoch
propagation.

Introducing the resolution of the identity for the subspace of definite spins50,1
2,1,32, . . . , in

L2(Sm
63C 2) by ~2.14! — derived above fors50 only but due to~2.60! and ~2.61! being valid

generally — one can write down the following expansion for a state vectorC(s)(a) of definite
integer or half integer spin belonging to the Hilbert spaceH h̃

(s) :

C~s!~a!5E
Sm

6
c~s!~q,p;a!fq,pdSm~q,p!, ~2.62!

with aPSr 52s
2 ,C 2 and

c~s!~q,p;a!5^fq,puC~s!~a!&S
m
6. ~2.63!

The wave functionc (s)(q,p;a) obeys the same propagation rule on stochastic phase space a
the spin-zero wave functionc(q,p) which is expressed by Eq.~2.20!.

By constructionc (s)(q,p;a) is a solution of the equations~1.1!, ~1.2!, ~1.7!, and~1.8! char-
acterized by@m,s#. H h̃

(s) carries the UIR of the Poincare´ group denoted byU (s)(b,L), and the
J. Math. Phys., Vol. 38, No. 11, November 1997
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generalized scalar one-particle phase space functionc (s)(q,p;a) for a free particle~or antipar-
ticle! of massm and definite spins transforms irreducibly under Poincare´ transformationsU (s)

(b,L) according to@compare~2.52!#

~U ~s!~b,L!c~s!!~q,p;a!5c~s!~L21~q2b!,L21p;D~L21!a!, ~2.64!

with the invariant scalar product inH h̃
(s) given by @compare~2.44!#

^c1
~s!uc2

~s!&S
m
63C 2

5E
Sm

6
3C 2

@c1
~s!~q,p;a!#* c2

~s!~q,p;a!dS 1

mc
pAȦaAā Ȧ2r DdSm~q,p!dadā .

~2.65!

Decomposingc1
(s)(q,p;a) andc2

(s)(q,p;a) into homogeneous polynomials ina1 anda2 as
in Eq. ~2.36! and carrying out thea-integrations yields@compare~2.48!#

^c1
~s!uc2

~s!&S
m
63C 2

5NsE
Sm

6(s3

@c1,s3

~s! ~q,p!#* c2,s3

~s! ~q,p!dSm~q,p!, ~2.66!

with Ns58p2r 2s11/(2s11) andr 52s according to~2.35!.
To conclude this section we define a system of covariance of the Poincare´ group ~a general-

ized system of imprimitivity! for free particles of definite massm and arbitrary integer or hal
integer spins described by the wave functionc (s)(q,p;a), defined in~2.58!, transforming under
the irreducible unitary phase space representationU (s)(b,L) of P @or rather P̄ as far as the
a-variable is concerned; see Eq.~2.64!# realized on the Hilbert spaceH h̃

(s) constructed above.
Due to the independence on the spin variables of Eqs.~2.60!, ~2.61! as well as the resolution

of the identity obtained after the reduction to a definite integer or half integer spin@compare
~2.14!#, one has for anyD j belonging to a family of Borel setsB on relativistic stochastic phase
space16 the following operators: A positive operator-valued~POV! measure,E(D j ), on H h̃

(s)

together with a UIR of the Poincare´ group,U (s)(b,L)5U (s)(g), on H h̃
(s) obeying

E~D j !5E* ~D j !>0; with E~B !50, ~2.67!

E~ø j 51
` D j !5(

j 51

`

E~D j !, for D iùD j5B; i 5” j , ~2.68!

and

U ~s!~g!E~D j !U
~s!~g!†5E~gD j !, ~2.69!

where, for brevity, we have denoted the element (b,L) of P by g. The operatorE(D j ) in
~2.67!–~2.69! is given, independently of the spin values, by

E~D j !5E
D j

ufq,p&dSm~q,p!^fq,pu, ~2.70!

whereD j,Sm
65s3Vm

6 with E(Sm
6)516.

The POV property~2.67! implies that for every normalized stateC(s)PH h̃
(s) the expression

Pc~D j !5^C~s!uE~D j !C~s!&5E
D j 3C 2

uc~s!~q,p;a!u2dS 1

mc
pAȦaAā Ȧ2r DdSm~p,q!dadā

~2.71!
J. Math. Phys., Vol. 38, No. 11, November 1997
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computed according to~2.65! yields the probability of finding the~free! particle ~or antiparticle!
with massm and spins within the domainD jPB of stochastic phase space.~For a detailed
discussion we refer to Ref. 16.! The last equality in~2.71! is obtained from~2.70! together with
~2.63!. The r.h. side of~2.71! finally yields, remembering~2.66! for a normalized state,

Pc~D j !5NsE
D j
(
s3

ucs3

~s!~q,p!u2dSm~q,p!, ~2.72!

with

Ns5F E
Sm

6(s3

ucs3

~s!~q,p!u2dSm~q,p!G21

. ~2.73!

III. HILBERT BUNDLE OVER CURVED SPACE–TIME WITH FIBER H h̃
„s …

In the previous section we have developed an internal space description for spin lead
the reduced case when Eqs.~1.7! and~1.8! are satisfied, to a quantum mechanical formulation
the kinematics of free particles with massm and integer or half integer spins in terms of scalar
wave functions,c (s)(q,p;a), realized on a one-particle Hilbert spaceH h̃

(s) carrying a unitary
irreducible phase space representation of the Poincare´ group. Fromc (s)(q,p;a) the usual (2s
11)-dimensional vector representation of the spin degrees of freedom may easily be reco
However, for many investigations it is simpler to use the scalar functionsc (s)(q,p;a) directly
together with their Poincare´ transformation rule~2.64! and their invariant scalar product~2.65!
characterizing the irreducible resolution kernel Hilbert spaceH h̃

(s) .
In this section we would like to describe free quantum particles of massm and arbitrary but

definite physical integer or half integer spins in the presence of gravitation. We aim at a form
lation in terms of generalized wave functions defined on a first quantized~i.e., one-particle or
one-antiparticle! Hilbert bundle,H@m,s# , raised over a curved Riemann–Cartan space–timeU4

possessing a pseudo-Riemannian metric and a metric compatible torsion. The standard
H@m,s# is the one-particle Hilbert spaceH h̃

(s) constructed above carrying an irreducible pha
space representation,U (s)(b,L), of the Poincare´ group characterized in the Wigner sense
@m,s#. The group action onH@m,s# is given in terms ofU (s)(b,L)5U (s)(g). The basic properties
of the Hilbert spaceH h̃

(s)
~for fixed physical@m,s#) as resolution kernel Hilbert space wit

resolution generatorh̃ are determined by the Hilbert spaceH h̃5H h̃
(s50) . The spin description

for free noninteracting particles of massm and nonvanishing spins in flat space adds only an
‘‘inessential complication’’ described, as mentioned, by (2s11)-component fieldscs3

(s)(q,p),

or—more concisely and before performing a decomposition in terms of homogeneous polyn
in the variablea—described by the scalar fieldc (s)(q,p;a) depending on the internal spino
variablea5(a1,a2), obeying, because of~2.58! and ~2.59!,

D̂c~s!~q,p;a!52sc~s!~q,p;a!. ~3.1!

The use of theC 2-variablesa,ā for a general description of spin prior to the reduction to

particular values50,1
2,1

3
2 , . . . , for free~asymptotic! physical particles, which would be consid

ered in connection with a dynamical coupling of several general spin fields in a theory inc
rating a dynamical role of spin, will be investigated elsewhere. Here we want to concentrate
formulation of thekinematics of free quantum particleswith definite mass and arbitrary~but
specified! physical spin, i.e.,@m,s# fixed, in terms ofreducedfields transforming as phase spa
representations of the Poincare´ group which is realized in the local fibers of a bundle ov
J. Math. Phys., Vol. 38, No. 11, November 1997
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space–time in the presence of gravitational and possibly torsion fields, i.e., being given as s
on the Hilbert bundleH@m,s# over a Riemann–Cartan space–timeU4 defined by

H@m,s#5H~U4 ,F 5H h̃
~s! ,U ~s!~g!!. ~3.2!

The bundleH@m,s# is associated to the Poincare´ frame bundle overU4 with structural groupG
5ISO(3,1)[P , i.e.,

P5P~U4 ,P !, ~3.3!

or, rather, to the corresponding spin frame bundleP̄5 P̄(U4 ,P̄ ) with structural groupP̄ as far as
the transformation of the internal spinor variablesa1,a2 are concerned. We add in parenthes
that we shall assume a spin structure to exist on space–time, i.e., we shall assume thatP is a trivial
bundle possessing global sections so that the homomorphism betweenP̄ andP carries over to a
corresponding homomorphism between the bundlesP̄ andP.

A further bundle associated toP is the one-particle phase space bundle for zero spin,

Ẽ5Ẽs505Ẽ~U4 ,F̃5Mm
6 ,P !, ~3.4!

with structural groupP and standard fiberMm
65M43Vm

6 . Ẽ is a soldered bundle26 with first
order contact of the space–time base and the fiber overx, Mm

6(x), for eachxPU4. The contact
between base space and fiber is made inẼ through the local subspaceM4.Tx of Mm

6(x). The
affine tangent bundleTA(U4 ,F5M4 ,P ), with the Minkowski fiber viewed as an affine spa
with group of motionP , is in a natural manner submanifold ofẼ. Disregarding spin, an atlas o
the bundleẼ provides the concrete kinematical localization and momentum variables (x;q,p) on
which the generalized wave functions, defined onH@m,s# , depend. HerexPU4 is a classical
space–time variable and (q,p)PMm

6 are local stochastic phase space variables correspondin
meanpositionqPTx(U4) andmeanmomentumpPVm

6 . ~For a detailed account of the geometr
stochastic formalism and the basic fuzziness encoded in this description in the fiber va
(q,p) and the corresponding resolution generator depending on a length parameterl we refer to
Refs. 13, 14, and 16.!

We now want to extend the geometro-stochastic~g-s! description for quantized one-particl
states on curved space–time to the bundleH@m,s# for arbitrary physical spin by including the
spinor variablesaA. These latter variables will, however, at firstnot play the role of stochastic
variables for the description of spin. In this respecta is different from the pair (q,p) in the
geometro-stochastic formalism. From the later discussion of the quantum propagation onH@m,s#

in the presence of gravitation, which is discussed in Sec. IV below, we shall however find th
spin polarization of states does finally also acquire a stochastic nature. We thus first gen
~3.4! to the classical phase space bundleẼs associated toP̄ for single particles of type@m,s#, i.e.,
define

Ẽs5Ẽs~U4 ,F̃s5Mm
63Sr 52s

2 ,P̄ !, ~3.5!

where the SL(2,C ) part contained inP̄ acts on the two-sphere,Sr 52s
2 , as described in the

Introduction, and withP ~the homomorphic image ofP̄ ) acting onMm
6 in the usual way as in

~3.4!, i.e. for g5(b,L)PP :g(q,p)5(Lq2b,Lp). @Compare Eqs.~3.8! and ~3.9! below.# The
soldered bundleẼs provides the local variables (q,p;a) at the pointx of the base on which the
generalized geometro-stochastic wave functions for arbitrary physical mass and spin, which
be defined onH@m,s# , will depend.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let us now first choose a~global! gauge onP and denote it bysP(x). The corresponding
coherent state base in the local fiberH h̃

(s)(x) of H@m,s# is, for any spin and for arbitraryxPU4,
given by

s̄ ~x!: Fq,p
s̄ ~x!→fq,p , ~3.6!

where we have denoted the map inH@m,s# corresponding tosP by the symbols̄ , i.e., with a bar
in order to discriminate it from the space-like surfaces inMm

6(x) which are denoted bys(x)

@compare~2.5! and~2.21!#. The states denoted byFq,p
s̄ (x) provide alocal coherent quantum frame

basisof H h̃
(s)(x) and yield a corresponding resolution of the identity in the fiber overxPU4 in

H@m,s# independently of the value fors :

E
Sm

6
~x!

uFq,p
s̄ ~x!&dSm~q,p!^Fq,p

s̄ ~x!u51x
6 . ~3.7!

HereSm
6(x) denotes a subspace ofMm

6(x) given by the direct product of a space-like hypers
face s(x) in Tx(U4) and the hyperboloidVm

6(x). It is easy to show that a change of secti
sP(x)→sP8 (x) on P corresponds to anx-dependent Poincare´ transformation for sections on
H@m,s# in the following manner~compare Ref. 27!:

s̄8~x!5U ~s!~g~x!!s̄~x!5U ~s!~b~x!,L~x!!s̄~x!, ~3.8!

with g(x)5(b(x),L(x)) acting on the local affine frame (a(x),ej (x)) in the gaugesP(x) on P,
with a(x)52ak(x)ek(x) denoting its origin, yielding the local affine frame (a8(x),ek8(x)) in the
gaugesP8 (x) on P with a8(x)52a8k(x)ek8(x) denoting the new origin. The relations between t
primed and unprimed frames are given in components by

a8k~x!5@L~x!#k
ja

j~x!1bj~x!; ek8~x!5ej~x!@L21~x!# j
k , ~3.9!

where repeated local Lorentz indices are summed over 0, 1, 2, 3. Moreover,U (s)(g(x)) leaves
~3.7! invariant, where, in fact, only thes50 part is involved for anys as mentioned in Sec. I
above.

A state of a particle of type@m,s# in the Hilbert bundle description onH@m,s# is represented
by a smooth section,

x→Cx
~s!~a!PH h̃

~s!
~x!, ~3.10!

involving a state vectorCx
(s)(a), with aPSr 52s

2 (x), to be defined in each local fiber ofH@m,s#

above the base pointxPU4. In analogy to Eq.~2.62! the state vectorCx
(s)(a) may be decomposed

with respect to the local quantum frame basisFq,p
s̄ (x) according to

Cx
~s!~a!5E

Sm
6

~x!
cx

~s!~q,p;a!Fq,p
s̄ ~x!dSm~q,p!, ~3.11!

where

cx
~s!~q,p;a!5^Fq,p

s̄ ~x!uCx
~s!~a!&S

m
6~x! ~3.12!

is the corresponding gauge dependentgeneralized one-particle geometro-stochastic (g-s) w
functiondefined onH@m,s# which transforms under a change of section~3.8!, i.e., under Poincare´
gauge transformations, as
J. Math. Phys., Vol. 38, No. 11, November 1997
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@cx
~s!~q,p;a!#85~U ~s!~b~x!,L~x!!cx

~s!!~q,p;a!

5cx
~s!~L21~x!~q2b~x!!,L21~x!p,D~L21~x!!a!. ~3.13!

For ease of writing we have suppressed a labels̄ (x) on cx
(s) in the equations above.

There is again a Poincare´ gauge-invariant scalar product defined onH@m,s# constructed as in
Eq. ~2.65!, however now written with the smoothx-dependent sectionsc1,x

(s)(q,p;a) and
c2,x

(s)(q,p;a) defined onH@m,s# and involving invariant integration overSm
63C 2 at the pointx of

the space–time base.
The internal spinor variablea is now a localSL(2,C ) gauge variable comparable to the loca

kinematic Poincare´ variables~i.e., the stochastic variables! q andp. However, the reducing prop-
erty of the generalized wave functionscx

(s)(q,p;a) for a free particle of type@m,s# is independent
uponx, i.e. Eq.~3.1! is valid for cx

(s)(q,p;a) at any pointx on the base ofH@m,s# with the same
relation ~3.1! being satisfied also by the state vectorCx

(s)(a).
The covariant derivative of the generalized scalar g-s wave functioncx

(s)(q,p;a) is given by

Dcx
~s!~q,p;a!5@d1 iG~x!#cx

~s!~q,p;a!, ~3.14!

with d5uk]k , where uk; k50,1,2,3 is a base of the cotangent spaceTx* (U4) at xPU4 and,
correspondingly,D5ukDk . Furthermore, we denote by (ũ k(x),ṽ i j (x)) a connection onP pulled
back to the base under the mapsP , where

ũ k~x!5uk1“ak~x! ~3.15!

are the soldering forms defining the translational part of the connection on the Poincare´ bundle
~3.3! with “ak(x) denoting the covariant derivative of thek-th component of the translational par
of the affine frame field (a(x),ej (x)) taken with respect to the Lorentz part of the connection
~3.3! given by

ṽ i j ~x!52ṽ j i ~x!5ukG̃ki j~x!, ~3.16!

with coefficientsG̃ki j (x). In ~3.14! G(x) may now be defined as~compare Refs. 26 and 28!

G~x!52 ũ k~x!P̃k1 1
2ṽ i j ~x!M̃ i j 1 1

2ṽ i j ~x! S̃i j . ~3.17!

HereP̃k ,M̃ i j ~with the indicesi , j lowered using the Minkowski metrich ik) are the generators of
the phase space representationU (s50)(b,L) constructed in terms of differential operators in th
variablesqk and pk , and S̃i j are the corresponding operators of the spin-dependent part of
representationU (s)(b,L), for s50, given as differential operators in the spin space variablesaA,
ā Ȧ for definites which are related to the generators of the SL(2,C ) transformationsD(L) and
D̄(L) in Eqs.~2.24! and ~2.25! ~compare Ref. 9!.

IV. QUANTUM PROPAGATION ON H [m ,s ]

We are interested in the geometro-stochastic propagation, called quantum propagation,
bundleH@m,s# of a generalized reduced wave function~section! cx

(s)(q,p;a), defined in~3.12! and
~3.13!, describing a single particle~or antiparticle! of definite physical mass and spin@m,s#. The
phase probability amplitudeassociated with the sectioncx

(s)(q,p;a) on H@m,s# is given by~com-
pare the discussion presented in Refs. 27, 29, and 30!:

c~s!~x,p;a!5cx
~s!~q52a~x!,p;a!. ~4.1!
J. Math. Phys., Vol. 38, No. 11, November 1997
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Here q52a(x) denotes thepoint of contactof Tx(B),Mm
6(x) with the space–time baseB

5U4 on the bundleẼs in any Poincare´ gauge onP. This point will be identified with the pointx
of the base. Furthermore,pPVm

6(x) andaPSr 52s
2 (x) in ~4.1! @compare Eq.~3.5!#.

The particle is described quantum mechanically and is considered to be free except fo
ences of gravity described through the curvature of the base ofH@m,s# which is treated as an
external field. No back reaction of the quantum particle onto the underlying geometry is
considered. Clearly, the propagation onH@m,s# conserves the mass and spin value; hence
quantum propagator forcx

(s)(q,p;a) and the associated probability amplitude~4.1! has to com-
mute withD̂ and with the Casimir operatorsP̂mP̂m andŴmŴm. Moreover, we found in Sec. III B
above that the stochastic phase propagatorK h̃

(s)(q8,p8;q,p) describing the propagation of a pa
ticle of spins in the local fibers ofH@m,s# is independent ofs.

On H@m,s# the generalized one-particle wave functioncx
(s)(q,p;a) should be a solution of a

second order wave equation,

~hH@m,s#
1b!cx

~s!~q,p;a!50, ~4.2!

where the invariant second order differential operator is

hH@m,s#
5gmnD̄mDn5

1

A2g
DmA2ggmnDn2gmnKmn

rDr , ~4.3!

with Dn as defined in~3.14!, usingDn5ln
k(x)Dk , where theln

k(x) are the vierbein fields, and
with gmn(x)5lm

i (x)ln
k(x)h ik being the covariant metric tensor in the base ofH@m,s# , and corre-

spondingly for the contravariant metric tensorgmn. @Tensor components referring to a natur
basis,]m ;m50,1,2,3, are labeled with Greek indices.# D̄m in ~4.3! is the Poincare´ gauge-covariant
and U4-covariant derivative, andKmn

r denotes the torsion tensor.@For axial vector torsion, con-
sidered below, the last term on the r.h. side of Eq.~4.3! is absent due to the antisymmetry of th
Kmnr in this case.# In Eq. ~4.2! b is an invariant of dimensionL22 (L5 length!, depending onm
and possibly ons, which characterizes the wave motion onH@m,s# . To what extentb contains a
U42 ~or, in the absence of torsion aV42) curvature invariant characterizing the geometry of t
base, as discussed in conformally invariant theories,31 will not be made explicit here; compare
however, in this context the work of Buchdahl for higher spin fields in Riemannian spaces32 and
the remarks made in Sec. V below.

We are aiming at a path integral-like solution of~4.2!, valid for arbitrary integer or half
integer spin, which is constructed in analogy to Feynman’s path integral representation
nonrelativistic wave function satisfying the Schro¨dinger equation.33

In Ref. 27 a careful study was undertaken to show that a formula conjectured by Prugoˇki
~compare Ref. 29 as well as Ref. 30! for the quantum propagation onH@m,s# for spinless particles
is indeed Poincare´ gauge covariant~i.e., is Poincare´ gauge invariant except for endpoint transfo
mations!, it is curvature and hence path-dependent~i.e., is sensitive to the metric curvature of th
base!, and yields the correct special relativistic expression in the flat space limit. In this
integral-like formula for the propagation on the Hilbert bundle one considers a particular foli
of the space–time base into space-like hypersurfacess(t) with evolution parametert and regards
the surfacess(t) through the pointx0PB for t5t0 andx5xNPB for t5tN after N iterations,
n51•••N. The geometro-stochastic propagator for the probability amplitude of a spinless ma
particle is now defined by consideringall polygonal paths betweenx0 andx composed of free-fall
segments, i.e. constructed with geodesic arcs of the underlying metric between points o
adjacent foiless(tn21) ands(tn) of the foliation. One considers thus parallel transport onH@m,s#

between adjacent pointsxn21Ps(tn21) andxnPs(tn) using different starting conditions regard
ing the stochastic momentum variable in each step. The computation—assumed to apply t
J. Math. Phys., Vol. 38, No. 11, November 1997
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space–time distances—is unrestricted by classical causality arguments, and integration in
caré gauge-invariant manner over thefull intermediate space-like surfaces of the foliation
carried out like in relativistic Feynman path integral formulations in Minkowski space ,34,35 i.e.,
without restricting the construction to the propagation along broken paths composed of tim
segments only. The quantum propagator for the amplitude, finally, results in the limitN→`, i.e.,
by making the geometro-stochastic averaging involving broken polygonal paths finer and fi

Before we continue our construction of a g-s propagator in the presence of gravitation,
inject here some brief remarks concerning the so-called Einstein causality, observed to h
macroscopic distances in space–time, arising in the present context as the result of the s
sition and destructive interference of probability amplitudes originating from classically forbi
space–time regions. The property of stochastic microcausality in the framework of the stoc
phase space formulation of quantum mechanics has been investigated in detail by Greenwo
Prugovecˇki36 using the concept of ‘‘asymptotic causality,’’37 i.e., the causal features arising in th
limit t→`. Let us, however, first mention that the stochastic phase space propagatoK h̃ l

5K h̃(q8,p8;q,p) in flat space—or, more exactly, inMm
65M43Vm

6—which was defined in Eq.
~2.13!, is, for small stochastic smearing characterized by the fundamental length parameterl @see
Sec. II A#, indeed ‘‘close’’ to the Feynman propagatoriDF(q82q) which is known to be nonzero
for space-like separation of the pointsq8 andq ~compare the discussion presented in Ref. 36!. For
finite ~small! nonzerol the stochastic phase space description using generalized wave functi
formulated in terms ofspread out quantum events~at the scale ofl ) and, correspondingly, the
propagation of wave functions describing such events is only ‘‘stochastically causal’’ an
deterministically causal in the strict sense as in the yes–no manner realized in classical rela
physics with strictly zero influences on points outside the future light cone of an idealized p
like event localized atq. In the stochastic setting used here one has the result, obtained first f
flat space case in Ref. 36, that the probability for a particle of propagating outside the future
cone of a certain point tends to zero witht→`. Thus no events violating Einstein causality d
occur in the infinite futurein this stochastic formalism. This property has been calledasymptotic
stochastic microcausality. Hence also in the presence of gravitation, i.e., for a curved baseB, the
causal features of quantum propagation will be stochastic in nature with Einstein causality
approached for infinitely separated~stochastic! events.

Continuing now our construction of a quantum propagator onH@m,s# by means of parallel
transport along broken paths composed of geodesic segments, we may also consider
quantum particle would be measured by a certain localization device with a given resolut
between the initial and final pointsx0 and x, respectively, and with their stochastic localizatio
given at these and at the intermediate points in terms of the respective fiber variables. The c
possible broken paths composed of geodesic arcs would then have to be narrowed to a
corridor in the sense of Mensky.38 We shall, however, not discuss problems of this kind in
present paper and sum overall intermediate broken trajectories. But even if the quantum part
is not followed by continuous measurement with a certain resolution it is assumed that it ke
identity with respect to its mass and spin value. Hence one has to postulate, as mentioned
that the quantum propagator, which is path-dependent for a curved base, does commute w
Casimir operators defined in~1.1! and~1.2! and with the spin operatorD̂. While g-s propagation
is required to conserve the spin values it will, however, affect the spin projections3, i.e. the
polarization of the state considered~see below!.

In the works cited above the geodesic arcs and path dependences were computed u
Levi-Civita connection embedded into the Poincare´ framework used here by putting the affin
vector fieldak(x) in ~3.15! equal to zero and considering the pull back of a connection onP given
by the one-forms (uk,ṽ i j (x)). However, nowṽ i j (x) may contain torsion effects for the bas
being a Riemann–Cartan space–timeU4, i.e., ṽ i j (x)5v̄ i j (x)1t i j (x), wherev̄ i j (x) is the purely
metric part andt i j (x) is the torsion addition witht i j (x)5ukKki j (x). For axial vector torsion@i.e.,
for a completely antisymmetric torsion tensor fieldKki j (x)# no effects on the geodesics would b
J. Math. Phys., Vol. 38, No. 11, November 1997
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possible. Since the role of torsion in this whole context is not yet clear and since no s
equations for the determination of torsion—supposed to be induced in the underlying geome
a feed-back mechanism involving the quantum fields—has been discussed in this paper,39 we shall
assume that torsion is not affecting the geodesics entering the definition of the quantum pr
tor, i.e., we shall use (uk,v̄ i j (x)) as connection one-forms in a particular gauge onP and regard
the background metricgmn(x) as determined by the solution of Einstein’s equations with giv
classical sources.41 The quantum propagator for thec-field is then the ‘‘free’’ g-s propagator fo
a quantized test particle field under the influence of a classical background metric and po
also in the presence of an external axial vector torsion field. Our aim here is to exten
kinematic description to quantum particles of arbitrary integer or half integer spins by using the
internal spin variables investigated in the previous sections.

To this end we first quote the result fors50 using~with a slight change! the notation of Ref.
27 for the operatorKs̄(x8,q8,p8;x,q,p) of quantum propagation onH@m,0# ~compare also Refs
29 and 30!:

Ks̄~x8,q8,p8;x,q,p!5 lim
N→`

E Kg~x8,xN21!

s̄
~x8,q8,p8;xN21 ,q̂N21 ,p̂N21!

3 )
n5N21

1

Kg~xn ,xn21!
s̄ ~xn ,q̂n ,p̂n ;xn21 ,q̂n21 ,p̂n21!dSm~xn ,p̂n!. ~4.4!

Here we have replaced the complex variablez of Ref. 27 by the pair (q,p) and denoted the gaug

by s̄ instead ofs in order not to confuse it with the spin variable.Kg(xn ,xn21)
s̄ represents the

parallel transport operator~in the gauges̄ ) for parallel transport from the pointxn21 to the point
xn along the geodesic arcg(xn ,xn21) in the base anddSm(x,p̂) is the ‘‘contact point phase spac
measure’’~compare Ref. 27! given by the measure defined in the local fiber of the bundleẼ,
introduced in~3.4!, restricted to the point of contact of base space and fiber, i.e., evaluate
q(x)52a(x)PTx(B), which is identified with the pointx of the space–time baseB. This pro-
cedure allows a Poincare´ gauge-invariant measure to be associated with the leaves of a foliati
the space–time base. Correspondingly, the intermediate fiber variables (q̂n ,p̂n), for n51, . . . (N
21), are given by

q̂n52a~xn!, identified withxnPs~tn!,B,

p̂n5p~xn! PVm
6~xn!. ~4.5!

In ~4.4!, moreover,x05xPs(t0) with (q̂0 ,p̂0)5(q,p)PMm
6(x0), and xN5x8Ps(tN) with

(q̂N ,p̂N)5(q8,p8)PMm
6(x8).

It was shown in Ref. 27 that with this interpretation of the measuredSm(xn ,p̂n)
5dSm(2a(xn),p(xn)) and integration over the intermediate variables (xn ,p(xn))Ps(tn)
3Vm

6(xn) for n51, . . . (N21), the definition ~4.4! of a spin-zero quantum propagato
Ks̄(x8,q8,p8;x,q,p) is, indeed, Poincare´ gauge covariant~i.e., is Poincare´ gauge invariant excep
for transformations at the endpointsx and x8 of the paths! and has the correct flat space lim

where in a global Lorentz gauge existing in that limit one can identifyKg
s̄ ~being path-independen

in the flat space case! with the stochastic phase propagatorK h̃ defined in~2.13!. As a short-hand
notation we shall denote the domain of integration fort5tn , i.e., the hypersurfaces(tn)

3Vm
6(xn), by S̃ m

6(xn).
It is now straight forward to generalize the expression~4.4! for spin zero to arbitrary physica

values of spin by introducing the internal spin variablesa5a(x) characterizing—together with
J. Math. Phys., Vol. 38, No. 11, November 1997
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the pair (q,p)—a point in the local fiber atxPB in the bundleẼs defined in~3.5! and restrict for
the associated probability amplitude~4.1! in the description onH@m,s# the q-value in the local
tangentTx(B),Mm

6(x) to the point of contact, given in an arbitrary Poincare´ gaugesP on P, by
q52a(x), and identify, as mentioned, this point with the base pointx.

However, before we discuss the generalization of Eq.~4.4! let us remark that, since th
parallel transport onH@m,s# is path-dependent for a curved space–time base affecting forsÞ0
also the spin variablea @compare Eqs.~3.14! and ~3.17!#, one would expect that starting with
generalized decomposed wave functioncs3 ,x

(s) (q,p), obtained fromcx
(s)(q,p;a) in analogy to

~2.36!, having a sharp spin projection values3 at a certain pointxPs(t0),B, there will appear
— as a result of the g-s propagation involvingdifferent intermediate paths—a spread in th
s3-distribution of the spin projection value at the endpoint of the paths. Hence, as the result
quantum propagation in the presence of gravitation, i.e., for a metrically curved base, th
projections3 of a certain state will become unsharp and develop a distribution of values c
sponding to a mixed state with unsharp~stochastic! spin polarization. Such an effect of gravity o
polarized spin states should in principle be measurable at particle accelerators provided it
disentangled from electromagnetic effects.

We now define the probability amplitude~4.1! for definite physical mass and spin atx8PB
@corresponding toq(x8)52a(x8)# which results from the quantum propagation onH@m,s# from
the amplitude prepared fort5t0 on the hypersurfaces(t0),B @with xPs(t0) corresponding to
q(x)52a(x)# by

cKx8x

~s! ~x8,p8;a8!5E
S̃m

6
~x!3C 2~x!

Ks̄ ,~s!~x8,q8,p8,a8;x,q,p,a!c~s!~x,p;a!

3dS 1

mc
pAȦaAā Ȧ2r DdSm~x,p!dadā , ~4.6!

where @compare~4.5!# p85p(x8)PVm
6(x8) and p5p(x)PVm

6(x); q85q̂852a(x8) @identified
with x8PB# and q5q̂52a(x) @identified with xPB#; a85a(x8)PC 2(x8) and a5a(x)
PC 2(x). The d-function in ~4.6! guarantees, as in Eq.~2.65!, that the integrations over th
internal spin spaces, i.e., here theC 2-fibers atx for all xPs(t0), are restricted to the sphereSr 52s

2

with radius r 52s corresponding to the spin values of the reduced probability amplitud
c (s)(x,p,a) at x. We denote the amplitude for spins of a state prepared atx on the hypersurface
s(t0) and propagated to the pointx8 on the hypersurfaces(t8), for t85tN , by cKx8x

(s)

(x8,p8;a8). @Since we intend to construct a solution of Eq.~4.2! we may later drop the suffix
Kx8x .# Finally, Ks̄ ,(s)(x8,q8,p8,a8;x,q,p,a) in ~4.6! is the quantum propagator for the probab
ity amplitude in the presence of spin given by the following expression:

Ks̄ ,~s!~x8,q8,p8,a8;x,q,p,a!5 lim
N→`

E Kg~x8,xN21!

s̄ ,~s!
~x8,q8,p8,a8;xN21 ,q̂N21 ,p̂N21 ,aN21!

3 )
n5N21

1

Kg~xn ,xn21!
s̄ ,~s! ~xn ,q̂n ,p̂n ,an ;xn21 ,q̂n21 ,p̂n21 ,an21!

3dS 1

mc
@ p̂n#AȦan

Aān
Ȧ2r DdSm~xn ,p̂n!dandān . ~4.7!

Equation~4.7! is analogous to~4.4! and the same notation is used for the variables (q̂,p̂) as given
in ~4.5!. Moreover,a5a05a(x0)PC 2(x0) and a85a(x8)PC 2(x8) and analogously for the
intermediate internal spin variablesan5a(xn)PC 2(xn);n51 . . . (N21), and their complex con-
J. Math. Phys., Vol. 38, No. 11, November 1997
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jugates. The intermediate integrations in~4.7! run over S̃ m
6(xn)3C 2(xn);n51•••(N21), i.e.,

involve, due to thed-functions, the hypersurfacess(tn)3Vm
6(xn)3Sr 52s

2 (xn).
Clearly,Ks̄ ,(s) is s-dependent and is defined in a Poincare´ gauge-invariant manner except fo

endpoint transformations of the variables@q(x)52a(x),p(x),a(x)# at the endpointsx andx8 of
the paths composed of geodesic arcs in the base. Here the pointq(x)52a(x), which is identified
with the pointx in the base, and analogously the pointq(x8)52a(x8), identified withx8, remain
unaffected by the gauge transformations. The arguments proving the Poincare´ gauge covariance o
the expression forKs̄ ,(s) are the same as those presented in Ref. 27 except for the addi
internal spin variablesa appearing in~4.7! together with their Poincare´ gauge-invariant integra

tions with the measuredadā constrained by thed-functions. The propagatorKg(xn ,xn21)
s̄ ,(s) in Eq.

~4.7!, finally, is the free fall propagator onH@m,s# for the motion of a particle along the geodes
arc g(xn ,xn21) from xn21 to xn , which is obtained as the solution of the differential equat
Dcx

(s)(q,p,a)50 @compare~3.14! and ~3.17!# for parallel transport inH@m,s# alongg(xn ,xn21)
determining thus the propagator onH@m,s# for the infinitesimal step fromxn21Ps(tn21) to xn

Ps(tn) of the motion along the geodesic arcg(xn ,xn21) in the base.
The path integral expression forcKx8x

(s) (x8,p8;a,) constructed with ‘‘free fall segments,’’ i.e.

with parallel shift along geodesic arcs of the underlying metric, as defined by Eqs.~4.6! and~4.7!,
obeyingDmc (s)50 for any segment, is a solution of the second order wave equation~4.2! pro-
vided theb-term in ~4.2! is zero by itself. This requirement has the consequence that the m
and spin-dependent terms~if the latter is really there! must appear in such a way that the
compensate the curvature terms which might also be present in theb-term. Hence a phenomeno
which may be called the ‘‘Archimedes’ principle’’ must be at work setting mass and spin
correspondence with an invariant curvature expression balancing thus these two effects
one another: matter properties@m,s#, on the one side, and properties of the embedding geom
on the other side. The role played by torsion in this context is still unclear and needs further
However, it is apparent that torsion must play the main part in this balancing since it is to
which is—ultimately—considered to be induced in the underlying geometry as the ‘‘footprint
the quantum fields. In the present paper, however, we investigate only thekinematicsof suppos-
edly free ~except for gravitation! spinning quantum particles and regard torsion as an exte
field. We thus cannot see this effect in detail without discussing field equations for torsion
same time. Moreover, we should remember that torsion has been severely restricted cons
only an axial vector type~totally antisymmetricKmnr).

V. DISCUSSION AND CONCLUSION

Following an idea proposed by Lurc¸at6 several decades ago, we discussed in this paper the
of internal spin variables for a quantum mechanical description of particles with real positive

m and arbitrary integer or half-integer spins50,1
2,1,32,2, . . . , interms ofscalar functions. These

generalized wave functions,c(q,p;a,ā ), are defined over an extended phaseMm
63C 2 in order

to describe particles of massm but arbitrary unspecified spin, whereMm
65M43Vm

6 is the
one-particle ~1! or one-antiparticle (2) phase with qPM4 and pPVm

6 , p25m2c2, 6
5sign p0, and a denotes a point in the internal spin space being a homogenous space
Lorentz group of the typeS̄5SL(2,C )/H̄ characterized by the subgroupH̄ of SL(2,C ) as
explained in the Introduction. Following Bacry and Kihlberg9 in choosing the lowest-dimensiona
internal spin space possessing a measure and being capable of representing integer as we
integer spins, we used a four-dimensional internal spin space parametrized in terms of
variablesaPC 2 with ā denoting the corresponding complex conjugate spinor~dotted spinor!
varying in the complex conjugate spin space.

The one-particle wave functionc (s)(q,p;a) representing a particle (p0.0) or anti-particle
(p0,0) of definite mass andfixed integer or half-integer spin,@m,s#, are then obtained by
J. Math. Phys., Vol. 38, No. 11, November 1997
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requiring that Eqs.~1.1!, ~1.7!, and ~1.8! be satisfied yielding thereby—as far as the variab
(q,p) are concerned@playing the role of stochastic variables in this context#—an irreducible
element of a resolution kernel Hilbert space with resolution generatorh̃5h̃ l , and—as far as the
spin variables (a,ā ) are concerned—an irreducible element depending ona only ~without de-
pendence onā ) with a varying on a two-sphereSr 52s

2 implying, as a consequence of demandi
the homogeneity condition~1.7!, that c (s)(q,p;a) is a homogenous polynomial of degree 2s in
the undotted spinor variablesaA;A51,2 with no dependence on the dotted spinor variab
ā Ȧ; Ȧ51̇,2̇. The functionc (s)(q,p;a) may be decomposed with respect to a basis transform
under the representationD (s,0) of SL(2,C ) to yield the familiar (2s11)-dimensional vector
representation of spin,cs3

(s)(q,p);s352s•••1s, leading thus, ultimately, to a stochastic pha

space description for free particles~or antiparticles! of definite mass and physical spin,@m,s#,
transforming irreducibly under the Poincare´ group @compare Eqs.~2.42!, ~2.58!, and~2.64!# and
possessing stochastic localization properties as far as the variables (q,p) are concerned. Thes
functions are elements of the HilbertH h̃

(s)
5L2(Sm

6)3Ks carrying an irreducible representation

the covering group of the Poincare´ group, P̄ , characterized bym and s. This one-particle~or
one-antiparticle! stochastic phase space formulation for free particles of type@m,s# in flat space
was then generalized to a formulation on a Hilbert bundleH@m,s# with fiber H h̃

(s) , being associ-
ated to the Poincare´ spin frame bundle over a curved Riemann–Cartan space–time base po
ing metric and torsion~the latter restricted to an axial vector type! both treated as external fields
The aim was to derive a path integral-type expression for the geometro-stochastic propaga
fields for arbitrary physical mass and spin defined on the soldered Hilbert bundleH@m,s# con-
structed over a curved classical space–time base. Our result for the quantum propagation
by Eqs. ~4.6! and ~4.7! containing besides the Poincare´ gauge-invariant integrations over th
intermediate phase space variables (x,p) with measuredSm(x,p(x))5dSm(q(x)52a(x),p(x))
the Poincare´ gauge-invariant integrations over the intermediate internal spin variables with
suredadā . The integrations over the spin variables are constrained by delta functions—cou
momentum and spin variables—restricting the integrations to a particular ‘‘spin shell,’’Sr 52s

2 , for
a particle with spins in analogy to the momentum integrations restricted to the ‘‘mass shell,’’Vm

6 ,
for a particle of massm. In this framework the stochastic localization properties as well as the
properties are described by means of the local fibers of the bundleH@m,s# .

It was pointed out in Sec. IV that, although in the beginning only (q,p) were stochastic
variables while the spin variables (a,ā ) were not of this type, withs ands3 taking sharp values
for a certain quantum state describing a particle of spins and spin projection~polarization! s3, the
quantum propagation of such states on a curved space–time background~i.e., in the presence o
gravitation! leads, according to Eqs.~4.6! and~4.7!, to a stochastic nature also for the polarizati
of the statescKx8x

(s) at x8 when decomposed at that point, i.e., leads to a stochastic nature of th

projection s3. To investigate this result, let us use an analyzing~or detection! field at x8
Ps(t8),B and denote it bycD

(s)(x8,p8;a8) corresponding to a certain sharps3-value when
decomposed~representing, say, a state filtered by a Stern–Gerlach magnet which is oriente
certain way!. Then the invariant matrix element measuring the overlap atx8 between the originally
prepared sharp spin state ons(t) with, say,s5s3, propagated tox8, and a sharp detection fiel
with various settings ofs3 at x8 is given by

^cD
~s!~x8,p8;a8!ucKx8x

~s! ~x8,p8;a8!&S
m
6~x8!3C 2~x8! . ~5.1!

Sloppily stated the measuring procedure is the following: Produce a pure measuring or de
state atx8 on the hypersurfaces(t8) and let it interfere with the state propagated tox8 from all
x on the hypersurfaces(t). The analyzing or detection fieldcD

(s)(x8,p;a8) may then be varied
with respect to thes3-polarization involved and thes3-spectrum ofcKx x

(s) (x8,p8;a8) be measured

8

J. Math. Phys., Vol. 38, No. 11, November 1997
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in this way in order to determine what effect the quantum propagation on a curved base had
originally pure spin state, i.e., how gravitation affected the propagation of the pure state pre
on the hypersurfaces(t).

As was also discussed in the previous section, the quantum propagation onH@m,s# is not
causal in a classical sense~Einstein causality! but is ‘‘stochastically causal.’’36 Furthermore, we
remarked at the end of the section that the path integral representation of the probability am
associated with a section onH@m,s# ~a generalized geometro-stochastic one-particle or o
antiparticle wave function! satisfies a certain invariant second order wave equation onH@m,s# with
certain restrictions imposed on the curvature invariants appearing in the term denoted byb: The
b-term in~4.2! had to vanish by itself compensating thus mass- and possibly spin-dependent
against invariant curvature contributions. This we called ‘‘Archimedes’ principle’’ expecting
torsion plays the dominant role in it. Let us point out again that torsion was severely restric
this context by allowing only axial vector torsion from the beginning.

We did not discuss coupled first order spinor equations for arbitrary spin which, historic
are known to develop inconsistencies fors> 3

2 when the minimal electromagnetic coupling
introduced42 or when these equations are generalized from flat to curved space–time~possibly
with torsion!. To make these equations consistent usually various supplementary condition
to be imposed, i.e., auxiliary fields must be introduced which render the resulting expression
complicated and difficult to handle. Instead we give here an analytic description of spin in
of internal variables for scalar functions based, as mentioned, on Lurc¸at’s idea that spin should b
described in terms of variables defined on a homogeneous space of the underlying kin
symmetry group, i.e., the Poincare´ group. In fact, also in curved space–time the Poincare´ group
may be considered, namely as the gauge or structural group of a soldered bundle raise
space–time, acting there on the local phase space fiber variables@used there to describe th
~stochastic! localization of quantized states# as well as on the internal spin variables. It is th
indeed possible to give a general formulation of one-particle states for arbitrary mass and
terms of scalar functions and project out the conventional (2s11)-component vector states whe
ever necessary. However, for the understanding of the quantum propagation of such fields
presence of gravitation it may be preferable to use the original generalized scalar wave fun

In concluding we remark that the stochastic phase space description for single free rela
particles of arbitrary spin on a Hilbert bundle over curved space–timeB, which we studied in this
paper, may easily be generalized to the many-particle case by considering Fock bundle
space–time for particles of type@m,s#. The standard fiber of these bundles are tensor produc
one-particle and one-antiparticle Hilbert spacesH h̃

(s)(1) and H h̃
(s)(2) , respectively, whereH h̃

(s)

5H h̃
(s)(1)

% H h̃
(s)(2) with (6) denoting the sign of the energy. In order to be in accord with

Pauli principle one has to introduce Fock bundlesF @m,s# possessing a fiber which is a sum
symmetrizedproducts for integer spin~bosonic case!, i.e.,

F sym
~s! 5S (

n51

`

^ sym
n

H h̃
~s!~1 !D ^ S (

n851

`

^ sym
n8 H h̃

~s!~2 !D , for s50,1,2, . . . , ~5.2!

and which is a sum ofantisymmetrizedproducts for half integer spin~fermionic case!, i.e.,

F anti
~s! 5S (

n51

`

^ anti
n

H h̃
~s!~1 !D ^ S (

n851

`

^ anti
n8 H h̃

~s!~2 !D , for s5
1

2
,
3

2
,
5

2
,. . . . ~5.3!

The Fock bundle of type@m,s# associated toP̄ @compare Eq.~3.3!# is thus

F @m,s#5F ~B5U4 , F sym/anti
~s! , U ~s!~g!!, ~5.4!

with standard fiber~5.2! for 2s being even, and with standard fiber~5.3! for 2s being odd. It is
implied here that there exists a local vacuum stateuO&x , for everyxPB, which is invariant under
changes of sections onF @m,s# provided by Poincare´ gauge transformations.
J. Math. Phys., Vol. 38, No. 11, November 1997
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N52 structures in string theories
José M. Figueroa-O’Farrill
Department of Physics, Queen Mary and Westfield College, Mile End Road,
London E1 4NS, United Kingdom

~Received 12 November 1996; accepted for publication 20 May 1997!

The BRST cohomology of any topological conformal field theory admits the struc-
ture of a Batalin–Vilkovisky algebra, and string theories are no exception. Loosely
speaking, we say that two topological conformal field theories are cohomologically
equivalent if their BRST cohomologies are isomorphic as Batalin–Vilkovisky al-
gebras. In this paper we argue that any string theory~regardless of the matter
background! is cohomologically equivalent to some twistedN52 superconformal
field theory. We discuss three string theories in detail: the bosonic string, the NSR
string and theW3 string. In each case the way the cohomological equivalence is
constructed can be understood as coupling the topological conformal field theory to
topological gravity. These results lend further supporting evidence to the conjecture
that any topological conformal field theory is cohomologically equivalent to some
topologically twistedN52 superconformal field theory. We end the paper with
some speculative comments on Massey products in topological conformal field
theories. ©1997 American Institute of Physics.@S0022-2488~97!00111-4#

I. INTRODUCTION

Generic string theories are theories of two-dimensional quantum gravity coupled to conf
matter. Since two-dimensional gravity has no propagating degrees of freedom, it is not surp
that one can make progress in its study by studying two-dimensional topological quantum
theories. The study of these theories in turn benefits from the study of those theories wh
addition possess conformal invariance; just as in the non-topological theories, topological c
mal field theories~TCFTs! can be deformed to study the space of topological field theories.
study of two-dimensional TCFTs is therefore of great relevance. A large class of topologica
theories can be constructed starting from anyN52 superconformal field theory by the twistin
procedure of Witten1 and Eguchi–Yang.2 However one soon realizes that this procedure can
generalized and that the existence of a twistedN52 superconformal algebra is not a prerequis
to having a TCFT. Indeed, two other classes of TCFTs are known to exist: string theorie
those obtained by twisting the Kazama algebra.3 As shown in Ref. 4~see also Ref. 5! this latter
class contains the TCFTs obtained from theG/G gauged WZW model.6

In Ref. 7 we conjectured, based on some preliminary investigations of the bosonic strin
sense which was made precise there and which will be at the heart of the present paper, th
string TCFTs and Kazama TCFTs yield nothing new with respect to the class of TCFTs whic
be obtained via twistingN52 superconformal algebras. It is of course well-known, thanks
Refs. 8 and 9, that some string theories~e.g., the noncritical strings, or any string with an Abeli
current in the matter sector! can be understood as twistedN52 superconformal algebras, in th
sense that in the BRST complex of the string one can embed anN52 superconformal algebra
However, the chiral ring of thisN52 superconformal algebra is generically not isomorphic to
BRST cohomology ring as graded rings. They are of course isomorphic as vector spaces an
as rings, but the gradings do not correspond, because whereas theU(1) charge of theN52
superconformal algebra receives a contribution from the ‘‘momentum’’ of the Abelian curre
the matter~or gravity! sector of the string theory, in the BRST cohomology theU(1) charge is the
ghost number. What we do in this paper is to show that, given a string theory, we can
topologically twistedN52 superconformal field theory whose chiral ring is isomorphic a
0022-2488/97/38(11)/5559/17/$10.00
5559J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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Batalin–Vilkovisky algebra~see below! to the BRST cohomology of the string theory. Furthe
more, this can be done regardless of the matter background of the string. Taking into acco
similar result which exists for the TCFTs constructed from the Kazama algebra,10 we find that no
counterexamples remain to the conjecture in Ref. 7.

The fact that all TCFTs can be obtained from the twisting procedure is not just a curiosit
can also have important practical applications. It is very often desirable to compare TCFTs
have different descriptions: for exampleG/G theories and noncriticalW-string theories. Until now
comparisons of this kind are alwaysa posteriori results; that is, after computing the BRS
cohomologies. However, in practice this method is impracticable due to the difficulty in com
ing the BRST cohomology of theories with complicated matter sectors. Having a fixed non
algebraic structure beforehand facilitates the comparison in those cases when the cohomo
hard to compute. With the results of this paper, this method is actually feasible even thou
conjecture remains unproven. The point is that the way by which the twistedN52 superconformal
field theory is constructed is uniform and~almost! algorithmic. The details may vary with eac
theory, but the method is the same. Moreover the results in this paper might have some b
towards the actual computation of the BRST cohomology. Recent work of Semikhatov11 and
Semikhatov and Tipunin12,13suggests that in those theories where the BRST complex has a h
N52 superconformal symmetry, the BRST cohomology is intimately related to the sin
vectors of theN52 superconformal algebra. Clearly, exhibiting a hiddenN52 superconformal
symmetry in all topological conformal field theories~and string theories in particular! would offer
the possibility of applying this method to compute the BRST cohomology.

This paper is organized as follows. In Section II we set the notation by defining what we
by a topological conformal algebra~TCA! and review the algebraic structure inherited by t
BRST cohomology of any TCA. In Section III we give examples of TCAs and introduce
simplest such TCA: the Koszul TCA, a twistedN52 superconformal algebra which is cohom
logically trivial, but which will play a very important role in the ensuing sections. In Sections
V, and VI, we discuss three string theories: the bosonic string, the NSR string and theW3-string,
respectively, and we show how to turn them into twistedN52 superconformal algebras. I
Section VII we briefly talk about other string theories and in particular theN52 string. In Section
VIII we summarize the paper and offer some speculative comments concerning Massey pr
in the cohomology of TCFTs.

II. (TOPOLOGICAL) CONFORMAL ALGEBRAS

We start by reviewing the algebraic formulation of a two-dimensional topological confo
field theory. Just like conformal field theories, topological conformal field theories also e
holomorphic factorization and we will restrict ourselves only to the holomorphic sector. A
formal algebra is to a conformal field theory as a topological conformal algebra is to a topolo
conformal field theory. In this section we will not attempt to make this statement any more pr
but rather we will define what we mean by a~topological! conformal algebra. The reader is urge
to use this statement either to motivate the ensuing axiomatics, or to gain an idea of what we
by these notions. Many of the ideas in this section can be found in a variety of different co
tions in Refs. 14–17. We follow most closely the formalism in the appendix to Ref. 18 o
Closely related ideas but of a more geometrical flavor can be found in Refs. 15, 19, and 2

A. Conformal algebras

From our point of view, the definition of a conformal algebra is nothing more than
axiomatic characterization of the operator product expansion and of the conformal propertie
two-dimensional conformal field theory. More precisely, a conformal algebra consists o
following data:
~C1! A complex vector spaceV admitting two compatible gradings: aZ2-grading~fermion parity!
J. Math. Phys., Vol. 38, No. 11, November 1997
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V 5V 0̄
% V 1̄ , and aZ-grading ~conformal weight! V 5 % nPZV n . If APV is homogeneous

under theZ2 grading, we shall denote its degree byuAu. Moreover the compatibility means thatV

is actually bigraded:

V 5 %

nPZ
ı̄ 50̄ ,1̄

V n
ı̄ ,

whereV n
ı̄ 5V ı̄ ùV n

~C2! A linear mapV →EndV @@z,z21##, written A°A(z), which associates to everyAPV h a
family $An% of operators inV defined byA(z)5SnAnz2n2h.
~C3! A linear map]:V h→V h obeying (]A)(z)5der zA(z).
~C4! An operator product expansion

A~z!B~w!5 (
n!`

@AB#n~w!

~z2w!n ;

or equivalently a family of bilinear products@2,2#n :V ^ V →V , for nPZ, such that for every
A, BPV , @AB#n50 for sufficiently largen, and subject to the following axioms:

Identity: There exists an identity element1PV 0 such that]150, and such that for allA
PV ,

@1A#n5 HA,
0,

for n50,
otherwise.

Commutativity: For allA, BPV ,

@BA#n2~2 !n1uAuuBu@AB#n5~2 !n1uAuuBu(
l>1

~2 ! l

l !
] l@AB#n1 l .

Associativity: For allA, B, CPV ,

@@AB#mC#n5(
l>0

~2 ! l S m21
l D ~@A@BC#n1 l #m2 l1~2 !m1uAuuBu@B@AC# l 11#m1n2 l 21!, ~1!

where (l
a)[a(a21)•••(a2 l 11)/l !.

~C5! An elementTPV 2 such that for allAPV h , @TA#25hA and @TA#15]A, and such that
@TT#.450 and@TT#45 1

2 c1 for some real numberc. Notice that this implies that the fieldT(z)
generates a Virasoro algebra with central chargec.
The above data (V ,],1,T,@2,2#n) subject to the above axioms define what we mean b
conformal algebra. As useful consequences of these axioms we list the following properties,
are easy to prove:
~P1! The derivative] is a derivation over all the brackets@2,2#n , and obeys

@]AB#n5~12n!@AB#n21 and @A]B#n5]@AB#n1~n21!@AB#n21 .

~P2! For m.0,

@A@BC#n#m5 (
l 50

m21 S m21
l D @@AB#m2 lC#n1 l1~2 ! uAuuBu@B@AC#m#n .
J. Math. Phys., Vol. 38, No. 11, November 1997
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Notice that for anyA, @A,2#1 is a ~super! derivation over all the other brackets@2,2#n .
~P3! The brackets@2,2#n have conformal weight2n:

@2,2#n :V i ^ V j→V i 1 j 2n .

We shall abbreviate the normal-ordered product@AB#0 simply by (AB). It follows from ~P3!
above that it is a graded product, but notice that it is neither associative nor commutative. I
it follows from the commutativity axiom that

~AB!2~2 ! uAuuBu~BA!5(
l>1

~2 !11 l

l !
] l@AB# l ; ~2!

and instead of associativity, it obeys the following important rearrangement lemma:

~A~BC!!2~2 ! uAuuBu~B~AC!!5~~AB!C!2~2 ! uAuuBu~~BA!C!. ~3!

We will often suppress the parentheses when writing multiple normal-ordered products. Th
is that the normal-ordered product associates to the left, which means that (ABC•••) stands for
(A(B(C•••))).

It follows from ~P1! above that the@2,2#>0 imply the rest of the brackets. This explains wh
in practice one usually defines conformal algebras by writing down a set of generating field
specifying the singular terms in their OPEs; equivalently the brackets@2,2#.0 . ~Of course, not
all such brackets are independent, since they are subject to the commutativity and assoc
axioms above.! The vector spaceV is then spanned by the generating fields, their derivatives,
normal-ordered products thereof.

B. Topological conformal algebras

The holomorphic sector of any conformal field theory~without logarithmic singularities and
assuming for simplicity that only fields of integer conformal weight are present! has the structure
of a conformal algebra as we have defined it above. Similarly, the holomorphic sector o
topological conformal field theory admits the structure of a topological conformal algebra~TCA!.
More precisely, a TCA is a conformal algebra which enjoys in addition the following axiom
~T1! There exists a second integer grading~fermion number! V 5 % nPZV n compatible with the
conformal weight and extending theZ2-grading in the sense that the fermion parity is the reduct

modulo 2 of the fermion number; that is,V 0̄5 % nPZV 2n and V 1̄5 % nPZV 2n11; and there
exists an elementJPV 1

0 such thatAPV q if and only if @JA#15qA.
~T2! There existsG1PV 1

1 such that the operatord[@G1,2#1 :V →V is square-zero:d250. We
shall calld the BRST operator. Notice thatd:V h

n→V h
n11. We denote its cohomology byHd

• .
~T3! T has zero central charge and there existsG2PV 2

21 such thatT5dG2. It is customary in a
TCA to change the notation and refer to the~topological! energy-momentum tensor asT top instead
of T. We will adhere to this convention. In addition to these axioms, all known topolog
conformal field theories obey an extra postulate:
~T4! The operator@G2,2#2 induces an operationD in BRST cohomology such thatD250.

For the present purposes we define a topological conformal algebra as the
(V ,J,G6,T top), where V is a conformal algebra and where the above axioms~T1!–~T4! are
obeyed.

Two remarks are in order. First of all, it is essential in order to have a nontrivial TCFT tha
topological central charge be zero. Indeed, if that were not the case, then for everyA such that
dA50,
J. Math. Phys., Vol. 38, No. 11, November 1997
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cA52@@T topT top#4A#0 by ~C5!

52@@@G1G2#1T
top#4A#0 by ~T3!

52@@G1@G2Ttop#4#1A#0 using ~P2!

52@G1@@G2Ttop#4A#0#1 using ~P2! again

[A5d~ 2
c @@G2Ttop#4A#0!,

whence the cohomology would be empty. The second remark concerns the postulate~T4!. Under
some further assumptions about the generators of the TCA, it can be proven that~T4! follows from
the other axioms. This would be the case, for instance, ifG2 were a topological primary field~see
below!. We believe that, in fact,~T4! is superfluous, but so far we have no proof.

C. Operations in BRST cohomology

The BRST cohomologyHd
• of a topological conformal algebra inherits several algebr

operations. First of all notice that because the BRST operator acts like a derivation over
brackets @2,2#n , these descend to brackets in cohomology. Indeed, ifdA5dB50, then
d@AB#n50 for all n. Similarly, if in addition eitherA or B is BRST-exact, then so is@AB#n for
all n. We will focus on the normal-ordered product, since the other brackets are trivial for a
We will prove that the normal-ordered product induces a graded associative and comm
multiplication. The first thing to notice is that ifA is BRST-invariant, then]A is BRST-exact:

]A5@TtopA#1 by ~C5!

5@@G1G2#1A#1 by ~T3!

5@G1@G2A#1#1 using ~P2!

[]A5d~@G2A#1!. ~4!

Using this fact we can now prove that the normal-ordered product is commutative in cohom
More concretely, ifdA5dB50, then (AB)2(2) uAuuBu(BA) is BRST-exact. Indeed, using~2! it
follows that

~AB!2~2 ! uAuuBu~BA!5(
l>1

~2 !11 l

l !
] l@AB# l ~5!

5]S (
l> l

~2 !11 l

l !
] l 21@AB# l D ~6!

5dS (
l> l

~2 !11 l

l !
] l 21@G2@AB# l #1D , ~7!

where we have used~4! and ~P1!. The commutativity of the normal-ordered product actua
implies its associativity. But before proving this, let us introduce a useful piece of notation.A
andB are BRST-invariant, we will use the expressionA;B whenever their difference is BRST
exact. Now, notice that from~3! and from the commutativity, the first of the following identitie
follows:
J. Math. Phys., Vol. 38, No. 11, November 1997
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~A~BC!!;~2 ! uAuuBu~B~AC!!

;~2 ! uAu~ uBu1uCu!~B~CA!! by ~7!

;~2 ! uAu~ uBu1uCu!1uBuuCu~C~BA!! by ~8!

;~2 !~ uAu1uBu!uCu~C~AB!! by ~7!

;~~AB!C!. by ~7! again ~8!

That is, the normal-ordered product defines a commutative associative graded multiplicatio

•:Hd
p

^ Hd
q→Hd

p1q .

This is not all the algebraic structure that the BRST cohomology inherits; the postulate~T4! lends
it further structure. First let us see that the operationD of ~T4! is well-defined in cohomology. Le
APV h be BRST-invariant; hence

d~@G2A#2!5@G1@G2A#2#1

5@TtopA#2 by ~P2!

5hA, by ~C5!

which shows, first of all, that ifhÞ0, thenA is BRST-exact, whence all the cohomology resid
in the sector of the theory with zero topological conformal weight. Therefore we can choos
any BRST cohomology class a representative BRST-invariant field with zero topological co
mal weight. The above result, forh50, then shows that@G2A#2 is BRST-invariant and hence
defines a class in BRST cohomology. The resulting operator in cohomology taking the clasA
to the class of@G2A#2 is calledD. The postulate~T4! says that the mapD:Hd

•→Hd
•21 obeys

D250. It follows from the results in Ref. 21 that (Hd
• ,•,D) is a Batalin–Vilkovisky ~BV!

algebra.14–17

Let us pause to prove that~T4! follows if we takeG2 to be a topological primary field. This
proof was obtained in collaboration with Takashi Kimura; a slightly different proof was obta
independently by Fu¨sun Akman.17 Let A be any BRST-invariant field. Then,

D2A5@G2@G2A#2#2

5@@G2G2#1A#31@@G2G2#2A#2

2@G2@G2A#2#2 , by ~P2!

[2A5 1
2 @@G2G2#1A#31 1

2 @@G2G2#2A#2 .

But by ~2!,

@G2G2#25
1

2 (
l>1

~2 ! l 11

l !
] l@G2G2#21 l .

Since ~P1! implies that for anyA and B, @]2AB#250, only the first term in the above sum
contributes:
J. Math. Phys., Vol. 38, No. 11, November 1997
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@@G2G2#2A#25 1
2 @]@G2G2#3A#2

52 1
2 @@G2G2#3A#1 ; using ~P1! again

whence

D2A5 1
2 @@G2G2#1A#32 1

4 @@G2G2#3A#1 . ~9!

This is a general result, which does not depend on any conformal properties ofG2 nor onA being
BRST-invariant. Now, the first thing to notice is that ifG2 is a topological primary, then both
@G2G2#1 and @G2G2#3 are BRST-invariant. First notice that

d@G2G2#35@T topG2#32@G2T top#3

52@T topG2#31(
l> l

~2 ! l

l !
] l@T topG2#31 l , using ~2!

which vanishes ifG2 is a primary, since@T topG2#>350. Similarly, using~2!, ~C5! and the fact
that G2 has topological conformal weight 2, we find that

d@G2G2#15@T topG2#12@G2T top#1

5(
l>2

~2 ! l

l !
] l@T topG2#11 l ,

which is again zero forG2 a topological primary. But now@G2G2#1 and @G2G2#3 are BRST-
invariant fields with nonzero topological conformal weights~3 and 1, respectively!, hence by the
previous discussion they are BRST-exact. SinceA is BRST-invariant, then both@@G2G2#3A#1

and @@G2G2#1A#3 are BRST-exact, and hence so is their sum. This proves thatD250 in coho-
mology, and hence~T4!. Notice that this result is in some sense stronger than what was ne
since it is only the rhs of~9! that need be BRST-exact and not each term separately. This pro
means thatG2 need not be assumed primary for~T4! to hold.

Let us end this section with the following definition. We say that two TCAs are cohomo
cally equivalent if there is a morphism between them which induces an isomorphism of
BRST cohomologies as BV algebras. The extent to which cohomological equivalence cha
izes the topological conformal field theory described by the TCA will be briefly discussed in
concluding section.

III. SOME EXAMPLES

In this section we look at some examples of TCAs. There are three main categor
examples: the twistedN52 superconformal algebras, the TCAs arising in string theory, and
TCA constructed by Kazama in Ref. 3.

A. Twisted N52 superconformal algebras

The simplest example of a TCA, as the notation suggests, is the twistedN52 superconformal
algebra, which is generated by the fieldsJ, G6, andT top subject to the following operator produc
expansions:

G6~z!G6~w!5reg, ~10!
J. Math. Phys., Vol. 38, No. 11, November 1997
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G1~z!G2~w!5
d

~z2w!3 1
J~w!

~z2w!2 1
T top~w!

z2w
1reg, ~11!

J~z!G6~w!5
6G6~w!

z2w
1reg. ~12!

These are not all the nontrivial OPEs in the twistedN52 superconformal algebra, but the othe
follow from these.18,22 In this case the BRST cohomology is known as the chiral ring. Differ
realizations of the twistedN52 superconformal algebra will give rise to different chiral rings

The simplest nontrivial chiral ring comes from the following realization. We take our con
mal algebra to be the one generated by two BC systems: one fermionic (b,c) and one bosonic
~b,g!, subject to the usual OPEs:

b~z!c~w!5
1

z2w
and b~z!g~w!5

1

z2w
. ~13!

The TCA is defined by the following fields

GK
1 5bg, ~14!

GK
2 5l]cb1~l21!c]b, ~15!

JK5~12l!bc1lbg, ~16!

T K
top5l~b]g2b]c!1~l21!~]bg2]bc!, ~17!

which, for anyl, satisfy a topologically twistedN52 superconformal algebra. Whenl52, there
is a deformation of this realization which consists of adding toGK

2 a termmb, for any m. For
l52 the Koszul TCA is also the semi-infinite Weil complex of the Virasoro algebra and pla
crucial role in the coupling of topological conformal field theories to topological gravity.15

All these realizations~for any l and m! share the same chiral ring, since in fact the BR
operator remains unmodified. It is not hard to prove~using, for example, the Kugo–Ojima mech
nism! that the chiral ring of this twistedN52 superconformal algebra is actually

Hd
n>HC1,

0,
n50,

otherwise.

Hence it is in some sense the simplest example of a topological conformal field theory. W
call this TCA a Koszul TCA.

Notice that if T 5(V ,J,G6,T top) and T 85(V 8,J8,G68,T top8) are two TCAs, so is their
tensor productT ^ T 85(V ^ V 8,J1J8,G61G68,T top1T top8). Since the BRST charge of th
tensor product theory is the sum of the BRST charges, the Ku¨nneth theorem says that the BRS
cohomology of the tensor product theory is the tensor product of the BRST cohomologies
thermore it is not hard to prove that the isomorphism is one of BV algebras. In particular, ifT is
any TCA andK is a Koszul TCA, thenT is cohomologically equivalent toT ^ K . This fact will
be very useful in what follows.
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. The Kazama TCA

Not all TCAs are twistedN52 superconformal algebras, however. As counterexamples
may state the TCA constructed by Kazama in Ref. 3 and the TCAs appearing in many
theories. We shall have more to say about the string theories in the sections to come, so
subsection we will only offer some comments on the Kazama TCA.

The search for TCAs which would generalize the twistedN52 superconformal algebra le
Kazama3 to the following conformal algebra. It is generated by fieldsT top, G6, J, F, andF subject
to the following OPEs:

G1~z!G1~w!5reg

G~z!G2~w!5
d

~z2w!3 1
J~w!

~z2w!2 1
T top~w!

z2w
1reg,

J~z!G6~w!5
6G6~w!

z2w
1reg,

G2~z!G2~w!5
22F~w!

z2w
1reg,

G1~z!F~w!5
F~w!

z2w
1reg,

J~z!F~w!5
23F~w!

z2w
1reg.

As in the twistedN52 superconformal algebra, there are more nonzero OPEs but the
uniquely characterized by these.10 The Kazama algebra appears naturally in the context of
G/G gauged WZW model4,5 and, more generally, there exists a construction in terms of Ma
pairs.10 Notice that if we putF(z)5F(z)50, then the Kazama algebra reduces to anN52
superconformal algebra; but even for nonvanishingF(z) andF(z), the Kazama algebra is actuall
a topological conformal algebra. To see this it is enough to notice that~T1!-~T3! are manifestly
true; and since~as can be deduced from the above OPEs! G2 is a topological primary, by the
discussion at the end of the last section,~T4! follows.

Nevertheless, despite the fact that, in general, the Kazama TCA is not a twistedN52 super-
conformal algebra, it is a by-product of Ref. 10 that it is cohomologically equivalent to
Indeed if, following Getzler one tensors the Kazama TCA with a~l52, m51! Koszul TCA, it
then becomes possible to modify the fields (J,G6,T top) in such a way that~12! is obeyed.
Explicitly,

G1°G11GK
1 ,

G2°G21GK
2 1b1cF2gF,

J°J1JK ,

T top°T top1T K
top.
J. Math. Phys., Vol. 38, No. 11, November 1997
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From the form ofG1 it follows that the BRST cohomology does not change, and from the f
of G2 it is clear that the action ofG2 on the cohomology is impervious to the deformation, sin
the extra terms all involve the Koszul fields which act like zero on the cohomology. In o
words, the BRST cohomologies are isomorphic as BV algebras.

C. Some prefatory remarks about string theories

What about string theories? Are they also cohomologically equivalent toN52 superconfor-
mal field theories? It has been known for some time8 that the TCA arising from noncritica
bosonic string theories can be modified to a topologically twistedN52 superconformal algebra
Similar results for most~but not all! string theories appeared in Ref. 9. All these results, howe
share one thing in common. Whereas that BRST charge in the string TCA and in theN52
superconformal algebra agree, so that the cohomologies are isomorphic, the cohomolog
graded differently in both cases. The reason is that in the string description the cohomol
graded by ghost number, whereas in the twistedN52 description the cohomology is graded b
the U(1) charge which receives contributions from the Abelian current in the gravity or m
sector of the string. For the noncritical string theory, for instance, the grading of the cohom
in theN52 description is a linear combination of the Liouville momentum and the ghost num
Thus the results in Refs. 8 and 9 do not provide us with cohomological equivalences.

In Ref. 7 we used the embedding of the bosonic string into the NSR string23–25 to prove that
any bosonic string theory is cohomologically equivalent to a twistedN52 superconformal field
theory. Unraveling the construction revealed a general method of constructing cohomol
equivalences which makes no reference to string embeddings and which can be unders
coupling to topological gravity, although this is not essential. We therefore conjectured th
TCAs are cohomologically equivalent to some twistedN52 superconformal algebra. The rest
the paper is devoted to providing ample evidence in support of this conjecture. We will con
in detail three string theories: the bosonic string, the NSR string and theW3-string. The strategy
in all cases will be the same. We will tensor the string TCA with a Koszul TCA—which we
to be a cohomological equivalence—and we will then deform the generators in the tensor p
theory to satisfy~12!. In all cases, the construction works for any value of the weightl of the
Koszul TCA, but when we takel52 we can interpret the construction as coupling to topolog
gravity. ~Of course, when actually computing the spectrum of the coupled theory we would
to compute the equivariant BRST cohomology.15!

IV. THE BOSONIC STRING

In this section we discuss the topological conformal algebra defined by the bosonic strin
we describe how to turn it into a twistedN52 superconformal algebra by tensoring it with
Koszul TCA, as described in the previous section.

Matters of manifest space–time interpretation aside, any conformal field theory with c
chargecM526 is a consistent bosonic string background. To quantize the theory we intro
fermionic ghosts (b̃, c̃ ) of weights (2,21) and we define the following composite fields:

GN50
1 5TMc̃1b̃c̃] c̃1 3

2 ]2c̃, ~19!

GN50
2 5b̃, ~20!

JN5052b̃c̃, ~21!

T N50
top 5TM22b̃] c̃2]b̃c̃, ~22!
J. Math. Phys., Vol. 38, No. 11, November 1997
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where TM is the energy-momentum tensor describing the string background. The above
generate the topological conformal algebra of the bosonic string, which closes upon addin
more fieldsc̃ and c̃] c̃. It suffices to notice that the OPE of the BRST currentGN50

1 with itself is
not regular and to conclude that this topological conformal algebra is not a twistedN52 super-
conformal algebra. Since the BRST current is defined only up to a total derivative, one may
‘‘improve’’ it to cancel the singular part of the OPE, but it is easily shown that this is imposs
with only the fields that we have available:TM , c̃, andb̃, that is, for generic background. In fac
we have already added an improvement term to the naive BRST current in order to cancel t
order pole~equivalently, to make it a primary field!. Of course, as is well-known, for specia
backgrounds there may be ways to improve the BRST current and theU(1) currentJN50 to make
a twistedN52 superconformal algebra. This is the case, for example, for noncritical strin8,9

whereTM has a Liouville part.
In Ref. 7 we showed how by embedding theN50 string into the NSR string, one can actua

improve the above fields to make them obey~12! and hence define an honestN52 superconfor-
mal algebra. We also showed how these fields could be conjugated via an automorphism
underlying conformal algebra to fields whose forms suggest tensoring with a Koszul TCA. In
the conjugated fields are given by

G15GN50
1 1GK

1 2]X, ~23!

G25GN50
2 1GK

2 , ~24!

J5JN501JK1~bc2bg!1]~ c̃cb!, ~25!

T top5T N50
top 1T K

top, ~26!

whereX is given by

X5 c̃~bc2bg!1bcc̃] c̃,

and where the fields generating the Koszul TCA algebra can be read off from~18!. Notice that the
value ofl in ~18! is still arbitrary.

Notice that sinceG1 only gets deformed by a total derivative, the BRST charge is the sam
in the tensor product (N50)^ K . Similarly all the other algebraic structures remain as in
tensor product (N50)^ K , except for theU(1) charge which receives a correction in the Kosz
sector. However, this sector is cohomologically trivial, and so this correction is invisibl
cohomology. But now the tensor product (N50)^ K is cohomologically equivalent to the TCA
of theN50 string. Hence we conclude that the topological conformal algebra~22! of any bosonic
string is cohomologically equivalent to the above twistedN52 superconformal algebra~26!.

V. THE NSR STRING

In this section we prove that the topological conformal algebra defined by the NSR str
cohomologically equivalent to a twistedN52 superconformal algebra. This fact has already b
established by Marcus in Ref. 26 by untwisting the embedding of the NSR string into anN52
string.23 This result depends crucially on the bosonization of the superconformal ghosts. I
section we prove this simply by tensoring with a Koszul TCA, just like we did for theN50 string
in the last section. This avoids having to bosonize anything, but does of course introduc
fields. However, this is in step with the general method to construct cohomological equival
advocated in this paper and in Ref. 7.

Any N51 superconformal algebra generated by (TM ,GM) with cM515 is a consistent back
ground for the NSR string. In order to describe the BRST complex of the NSR string, we
J. Math. Phys., Vol. 38, No. 11, November 1997
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5570 José M. Figueroa-O’Farrill: N52 structures in string theories

                    
duce two ghost systems: one fermionic (b̃,c̃) and one bosonic (b̃,g̃), with OPEs givenmutatis
mutandisby ~13!. The fermionic BC system has weights (2,21), whereas the bosonic BC syste
has weights (3/2,21/2). The topological conformal algebra of the NSR string is defined by
following fields:

GN51
1 5TMc̃1GMg̃1b̃c̃] c̃2b̃g̃ 21b̃g̃ c̃2 1

2 b̃g̃] c̃1 1
2 ]2c̃2 1

2 ]~b̃g̃ c̃ !, ~27!

GN51
2 5b̃, ~28!

JN5152b̃c̃1b̃g̃, ~29!

T N51
top 5TM22b̃] c̃2]b̃c̃1 3

2 b̃]g̃1 1
2 ]b̃g̃, ~30!

where as in the bosonic string we have already improved the BRST current to make it a p
field. As in the bosonic string, for generic background (TM ,GM) it is impossible to improve the
above fields without modifying the BRST cohomology in such a way that (JN51 ,GN51

6 ,T N51
top )

generate a twistedN52 superconformal algebra—at least without employing nonstand
bosonization techniques as in Ref. 26. Of course, for some backgrounds~including noncritical
N51 strings! this is possible.9

We will now show that the topological conformal algebra defined by~30! is cohomologically
equivalent to a twistedN52 superconformal algebra. We first tensor by a Koszul TCA w
arbitraryl, and we then deform the fields in a suitable fashion. The following fields,

G15GN51
1 1GK

1 2]Y,

G25GN51
2 1GK

2 ,

J5JN511JK1 1
2 ~bc2bg!1 1

2 ]~ c̃cb!,

T top5T N51
top 1T K

top,

whereY is given by

Y5 c̃ ~bc2bg!1bc~ c̃] c̃2g̃ 2!,

can be shown to satisfy the defining OPEs~12! for a twistedN52 superconformal algebra.
As in the previous section, notice that all the fields are essentially as in the tensor produN
51)^ K , except for theU(1) charge assignments. But this difference does not affect the c
mology since it involves only the cohomologically trivial Koszul sector. Since the tensor pro
(N51)^ K is cohomologically equivalent to theN51 TCA, we have shown that any NSR strin
is cohomologically equivalent to a twistedN52 superconformal algebra.

VI. THE W3-STRING

As our final example of a string theory, we discuss the BRST complex of the~critical!
W3-string. Given any realization (TM ,WM) of the W3 algebra withcM5100, we can construct a
consistentW3-string theory and therefore an associated topological conformal algebra. This
bra is embedded in the conformal algebra generated by the fields (TM ,WM ,b̃1 ,c̃1 ,b̃2 ,c̃2), where
(b̃i ,c̃i) are fermionic BC systems of conformal weights (l i ,12l i), with l152 andl253. They
obey the usual OPE for fermionic BC systems~see the first OPE in~13!!. On the other hand
(TM ,WM) obey theW3 algebra withcM5100. We refrain from writing it down explicitly. The
generators of the topological conformal algebra of theW3-string are given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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GW3

1 5TMc̃11WMc̃21b̃1c̃1] c̃123c̃1b̃2] c̃222c̃1]b̃2c̃2

1 8
261 TMb̃1c̃2] c̃21 25

522 ]b̃1c̃2]2c̃21 125
1566 b̃1c̃2]3c̃21]U,

GW3

2 5b̃1 ,

JW3
52b̃1c̃12b̃2c̃2 ,

T W3

top5TM22b̃1] c̃12]b̃1c̃123b̃2] c̃222]b̃2c̃2 ,

whereU is given by

U5 c̃1b̃2c̃21 25
174 ]b̃1c̃2] c̃21 25

522 b̃1c̃2]2c̃2 ,

and has been so chosen to make@GW3

1 ,GW3

1 #150 or, equivalently, to makeGW3

1 a topological

primary field.
As in the other string theories analyzed in the previous sections, the above TCA can

improved~while keeping the BRST cohomology intact! in such a way that it becomes a twiste
N52 superconformal algebra. Nevertheless this becomes possible after tensoring it with a
TCA ~for any l!. Indeed, let us define the following fields,

G15GW3

1 1GK
1 2]V,

G25GW3

2 1GK
2 ,

J5JW3
1JK13~bc2bg!1]Z,

T top5T W3

top1T K
top,

whereV andZ are given by

V5~3c̃11 25
261 b̃1c̃2] c̃2!~bc2bg!1 25

87 c̃2] c̃2bb~c]g2]cg!

2~3] c̃1c̃12 49
261 Tc̃2] c̃21 175

522 ] c̃2]2c̃22 275
1566 c̃2]3c̃2!cb

2 25
261 ~]~ b̃1c̃1c̃2] c̃2!22b̃1] c̃1c̃2] c̃2!cb1 50

87 c̃2] c̃2bc]cb

1 ~3] c̃1c̃2] c̃22 c̃1c̃2]2c̃2!c]cbb

and

Z53c̃1cb1 25
261 b̃1c̃2] c̃2cb2 25

87 b2c]cc̃2] c̃2 ,

and where the Koszul fields can be read off from~18!, wherel is still arbitrary.
One can then prove~after some tedious calculation, even with the computer! that the above

fields obey~12!, whence they obey a twistedN52 superconformal algebra. The same argume
as for theN50 and NSR strings imply that this twistedN52 superconformal algebra is cohom
logically equivalent to the tensor product (W3) ^ K , which as shown in Section III is itsel
cohomologically equivalent to the (W3) TCA. Hence we conclude that anyW3-string is cohomo-
logically equivalent to some twistedN52 superconformal algebra.
J. Math. Phys., Vol. 38, No. 11, November 1997
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VII. OTHER STRING THEORIES

In the previous sections we have discussed what could be considered the three mos
sentative string theories, but these are not all the string theories in existence. It is believe
given anyW-algebra, there is an associatedW-string theory, but BRST operators have only be
found for the simplestW-algebras. Ignoring for the moment the so-called ‘‘generalized’’ str
theories,27 there are string theories based on higherW-algebras, e.g.,W4 , and also strings with
N.1 superconformal symmetry, e.g., theN52 string. How about these string theories? Are th
also cohomologically equivalent to twistedN52 superconformal field theories?

There is little or no reason to expect that the situation for otherW-strings would be any
different than for theW3-string, only that the precise details of the equivalence are bound t
messier as the complexity of the algebra increases. However, if the conjectured equivale
string theories andG/G topological conformal field theories is true, the result would follow fro
the ‘‘untwisting’’ of the G/G TCFT discussed previously. For superstrings with extendedN.1
supersymmetry, the situation is actually much simpler than for the strings discussed in this
Indeed, these string theories are cohomologically equivalent to a twistedN52 superconformal
algebra without the need for new fields.28,29

As a convincing example, let us briefly discuss theN52 string. These results were obtaine
in Ref. 28. We will let (JM ,GM

6 ,TM) denote ac56 realization of theN52 superconformal
algebra—it provides a consistent background for theN52 string. In order to define the theory w
introduce the relevant ghost systems: two fermionic BC systems (b1 ,c1) and (b2 ,c2), and two

bosonic BC systems (b1,g1) and (b2,g2) of weights ~1,0!, (2,21), (3
2,2

1
2), and (32,2

1
2),

respectively. The following fields generate the topological conformal algebra of theN52 string:

GN52
1 5c1JM1c2TM1g1GM

11g2GM
21b2c2]c22c1~b1g12b2g2!

1c2~2b1]c11 3
2 b1]g11 1

2 ]b1g1
3
2 b2]g21 1

2 ]b2g2!

2b2g1g21 1
2 b1~g1]g22]g1g2!,

GN52
2 5b2 ,

JN5252b1c12b2c21b1g11b2g2 ,

T N52
top 5TM2b1]c122b2]c22]b2c21 3

2 b1]g1

1 1
2 ]b1g11 3

2 b2]g21 1
2 ]b2g2 .

These fields don’t quite obey~12!, but one can easily find a deformation of these currents wh
does. In fact, all we have to do is to add toGN52

1 a term2]W, where

W5c2JN525c2~2b1c11b1g11b2g2!. ~31!

Notice that the improved fields obey~12! and since all we have done is add a total derivative to
BRST current, the cohomology remains unchanged, even as a BV algebra. Hence theN52 string
is cohomologically equivalent to a twistedN52 superconformal algebra. Notice that the u
twisted N52 superconformal algebra has zero central charge as well; that is,JN52 is a null
current. This was the crucial observation in Ref. 28.

Let us end this section with a curious fact. A little more work reveals that there is a
parameter family of such twistedN52 superconformal algebras. Indeed, let us define the foll
ing fields:
J. Math. Phys., Vol. 38, No. 11, November 1997
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G15GN52
1 2]W1l]~c2~JM2b1g11b2g2!1b1g1g2!,

G25GN52
2 ,

J5JN522l~JM2b1g11b2g2!,

T top5T N52
top ,

where W is still given by ~31!. These fields obey~12! with zero ~untwisted! central charge.
However we cannot claim that for all values of the parameterl we have a cohomological equiva
lence with theN52 string. The reason is that the cohomology is graded differently for diffe
values ofl, and only forl50 does the grading agree with the original one by ghost numbe

VIII. SUMMARY

To summarize, we have shown what we believe to be incontrovertible evidence that any
theory is cohomologically equivalent to some topological conformal field theory obtaine
twisting an underlyingN52 superconformal algebra; that is, that given any string theory th
exists some twistedN52 superconformal field theory whose chiral ring coincides with the ph
cal spectrum of the string, not just as a~graded! vector space but indeed as a Batalin-Vilkovis
algebra. We have seen this explicitly for theN<2 and W3 strings, but there is no doubt in ou
mind that this is true in general. Together with the similar result for the Kazama topolo
conformal algebra, we are left with no counterexamples to the conjecture7 that all TCFTs are
cohomologically equivalent to~topologically twisted! N52 superconformal field theories. Th
crucial point is to notice that tensoring a given topological conformal algebra with the Ko
TCA of ~18! is a cohomological equivalence. This then gives us sufficient freedom to modif
generators to make them obey the operator product expansions~12! of a topologically twisted
N52 superconformal algebra. Notice that this method can be interpreted as coupling to top
cal gravity. In this sense, this situation is very reminiscent of ordinary conformal gravity:
generally covariant theory in two dimensions may be coupled to Liouville theory in order to o
a conformal invariant theory. In this sense, the Koszul TCA is toN52 superconformal symmetry
what Liouville theory is to conformal symmetry.

We conclude the paper with a brief discussion of the extent to which a TCFT is determin
the BV algebra structure in cohomology. A topological analogy might prove useful. In clas
topology one may ask the following question: To what extent is a manifold characterized by
Rham cohomology ring? One might hope that the de Rham cohomology ring would charac
the manifold topologically, but it is easy to see that it is a weaker invariant, since it is actua
~real! homotopy invariant. At best, then, we could characterize the real homotopy type o
manifold. But even this is not the case: there are examples of manifolds of different real hom
type that nevertheless have the same cohomology ring. One might be tempted to answ
question in the negative; but there is some subtlety. The cohomology as a commutative ass
algebra does not distinguish between these manifolds, but there exist higher algebraic str
which can and do distinguish them. These higher algebraic structures take the form ofn-ary
products called Massey products, which can in principle be computed from a knowledge of
Rham complex, if not the de Rham cohomology ring. In fact, the algebraic structure in coh
ogy which derives from the Massey products is called a commutative strongly homotopy as
tive algebra.

Do these structures find their analogues in the context of topological conformal field the
Presumably yes. Although no explicit examples have been constructed, there is little rea
assume that Massey products do not exist in the present context—after all, they do exist
algebra cohomology and, in many cases, the BRST cohomology of a topological conforma
J. Math. Phys., Vol. 38, No. 11, November 1997
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theory is the semi-infinite cohomology of some Lie algebra. In fact, the BRST complex
topological conformal algebra admits the structure of a homotopyBV algebra.30
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5575José M. Figueroa-O’Farrill: N52 structures in string theories

                    
23N. Berkovits and C. Vafa, ‘‘On the Uniqueness of String Theory,’’ hep-th/9310170, Mod. Phys. Lett. A9, 653–664
~1994!.

24J. M. Figueroa-O’Farrill, ‘‘On the Universal String Theory,’’ hep-th/9310200, Phys. Lett. B321, 344–348~1994!.
25H. Ishikawa and M. Kato, ‘‘Note onN50 string asN51 string,’’ hep-th/9311139, Mod. Phys. Lett. A9, 725–728

~1994!.
26N. Marcus, ‘‘TheN51 superstring as a topological field theory,’’ hep-th/9405039, Phys. Rev. Lett.73, 1071–1074

~1994!.
27H. Lu, C. N. Pope, and X. J. Wang, ‘‘On higher spin generalisations of string theory,’’ hep-th/9304115, Int. J.

Phys. A9, 1527~1994!; J. M. Figueroa-O’Farrill, C. M. Hull, L. Palacios, and E. Ramos, ‘‘GeneralisedW3 strings from
free fields,’’ hep-th/9409129, Mod. Phys. Lett. A10, 515–524~1995!.

28J. Gomis and H. Suzuki, ‘‘N52 string as a topological conformal algebra,’’ hep-th/9111059, Phys. Lett. B278, 266–270
~1992!.

29A. Giveon and M. Rocˇek, ‘‘On the BRST Operator Structure of theN52 String,’’ hep-th/9302049, Nucl. Phys. B400,
145–160~1993!.

30T. Kimura, A. A. Voronov and G. J. Zuckerman, ‘‘Homotopy Gerstenhaber algebras and topological field the
q-alg/9602009, inOperads: Proceedings of Renaissance Conferences, edited by J. L. Loday, J. Stasheff, and A. A
Voronov, Contemp. Math.~American Mathematical Society, Providence, RI, 1996!.

31K. Thielemans, ‘‘A Mathematica package for computing operator product expansions,’’ Int. J. Mod. Phys. C2, 787–798
~1991!; ‘‘An algorithmic approach to operator product expansions,W-algebras andW-strings,’’ hep-th/9506159.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



in
were

, which
logical

larger
exis-

ahm
the

rdinary
tion
cently
m data

per we
o study

al
nding
that

poles
. The
mono-

                    
SU(N) monopoles and Platonic symmetry
Conor J. Houghtona)
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We discuss the ADHMN construction for SU(N) monopoles and show that a
particular simplification arises in studying chargeN21 monopoles with minimal
symmetry breaking. Using this we construct families of tetrahedrally symmetric
SU(4) and SU(5) monopoles. In the moduli space approximation, the SU(4) one-
parameter family describes a novel dynamics where the monopoles never separate,
but rather, a tetrahedron deforms to its dual. We find a two-parameter family of
SU(5) tetrahedral monopoles and compute some geodesics in this submanifold
numerically. The dynamics is rich, with the monopoles scattering either once or
twice through octahedrally symmetric configurations. ©1997 American Institute
of Physics.@S0022-2488~97!00811-6#

I. INTRODUCTION

Bogomolny-Prasad-Sommerfield~BPS! monopoles are static solitons occurring in certa
~311!-dimensional gauge field theories. They have attracted interest continually since they
discovered over two decades ago. The simplest BPS monopoles are SU(2) monopoles
have an associated integer referred to as the topological charge. Monopoles with topo
chargek are calledk-monopoles, and their total energy is proportional tok. For any givenk there
arek-monopole solutions which resemblek well-separated 1-monopoles.

It is interesting, but often difficult, to examine monopoles associated with gauge groups
than SU(2). Such monopoles have features not found in the SU(2) case, for example, the
tence of spherically symmetric multi-monopoles.1

There is a powerful approach to monopoles; the Atiyah–Drinfeld–Hitchin–Manin–N
~ADHMN ! construction. To perform this construction a nonlinear differential equation, called
Nahm equation, must be solved and its solution, the Nahm data, used to define a linear o
differential equation. This linear equation, which we shall refer to as the ADHMN construc
equation, must then be solved. Its solutions yield the fields via an integration procedure. Re
Platonic symmetries have been exploited to construct Nahm data and these symmetric Nah
have been used to examine some particular examples of SU(2) monopoles. In this pa
discuss two cases where the same Platonic Nahm data, slightly modified, can be used t
monopoles associated with larger gauge groups.

Section II is an introduction to SU(N) Nahm data and monopoles. We show that for minim
symmetry breaking the Nahm data for some multi-monopoles is simpler than the correspo
SU(2) Nahm data. This allows us, in a simple way, to modify known SU(2) Nahm data so
it is SU(N) Nahm data. It is possible to use SU(2) Nahm data to produce SU(2) mono
embedded in an SU(N) theory. Such embedded monopoles behave like SU(2) monopoles
modification we consider is more radical than a simple embedding and the corresponding
poles behave quite unlike the way SU(2) monopoles do.

a!Electronic mail: C.J.Houghton@damtp.cam.ac.uk
b!Electronic mail: P.M.Sutcliffe@ukc.ac.uk
0022-2488/97/38(11)/5576/14/$10.00
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In Section III we use charge three Nahm data with tetrahedral symmetry to constr
one-parameter family of SU(4) monopoles with tetrahedral symmetry. The dynamics of
moving monopoles is approximated by geodesic motion in the moduli space of solutions.2 Since
the one-parameter family of solutions described in Section III is the fixed point set of the act
the tetrahedral group, it must be a geodesic. Thus the one-parameter family described in
III is an example of a pathological scattering process in which the monopole never separat
distinct objects.

In Section IV we use charge four Nahm data with tetrahedral symmetry to construct a
parameter family of SU(5) monopoles with tetrahedral symmetry. This two-parameter fam
totally geodesic in the whole moduli space. Under the assumption that the transformation be
the metric on the space of Nahm data and the metric on the moduli space of monopole
isometry, we undertake a numerical study of the low energy dynamics of SU(5) tetrah
monopoles. We find an exotic dynamics involving both single and double scatterings th
configurations with octahedral symmetry.

II. MONOPOLES AND NAHM DATA

The BPS SU(N) monopoles are topological solitons in an SU(N) Yang-Mills-Higgs gauge
theory with no Higgs self-coupling. They are finite energy solutions to the Bogomolny equa

DiF52
1

2
e i jkF jk , ~2.1!

whereDi5]/]xi1@Ai ,.# is the covariant derivative withAi an su(N)-valued gauge potential.F jk

is the gauge field.F is an su(N)-valued scalar field, called the Higgs field. Non-trivial asympto
conditions are imposed on the Higgs field, which are responsible for the existence of topol
soliton solutions to the theory. It is required that, asr 5uxu approaches infinity,F takes values in
the gauge orbit of the matrix

M5 i diag~m1 ,m2 , . . . ,mN!. ~2.2!

By convention it is assumed thatm1<m2< . . . <mN . SinceF is tracelessm11m21 . . . 1mN

50. This M is the vacuum expectation value forF and the symmetry group ofM under gauge
transformation is called the residual, or unbroken, symmetry group. Thus, for example, if a
mp are different, the residual symmetry group is the maximal torus U(1)N21. This is known as
maximal, or generic, symmetry breaking. The soliton solutions are associated withN21 integers;
this is because the boundary condition onF implies a map,F` , from the large sphere at infinity
into the quotient group

F` :S2→ orbitSU~N!M5SU~N!/U~1!N21 ~2.3!

and

p2~SU~N!/U~1!N21!5p1~U~1!N21!5ZN21. ~2.4!

In contrast, this paper concerns the minimal symmetry breaking case, in which all but one
mp are identical, so the residual symmetry group is U(N21). It is convenient to choosem15
2(N21) andmp51 for p52, . . . ,N. Since

p2~SU~N!/U~N21!!5Z, ~2.5!
J. Math. Phys., Vol. 38, No. 11, November 1997
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there is only one topological integer associated with solutions. Nonetheless, a given soluti
N21 integers associated with it. These arise in the following way: careful analysis of the b
ary conditions indicates that there is a choice of gauge such that the Higgs field for larger , in a
given direction, is given by

F~r !5 i diag~m1 ,m2 , . . . ,mN!2
i

2r
diag~k1 ,k2 , . . . ,kN!1O~r 22!. ~2.6!

In the maximal symmetry breaking case the topological charges are given by

mp5 (
q51

p

kq . ~2.7!

In the case of minimal symmetry breaking only the first of these numbers,m1, is a topological
charge. Nonetheless, the remainingmp constitute an integer characterization of a solution. T
characterization is gauge invariant up to reordering of the integerskp . The mp are known as
magnetic weights, with the matrix diag(k1 ,k2 , . . . ,kN) often called the charge matrix.

There are some obvious ways of embedding su(2) in su(N); for example,

S a b

2 b̄ 2a D �S �

a . . . b

A � A

2 b̄ . . . 2a

�

D . ~2.8!

Important SU(N) monopoles can be produced by embedding the SU(2) 1-monopole fields, w
are known su(2)-valued fields, in su(N). Some care must be taken in producing these embed
monopoles to ensure that the asymptotic behavior is correct; the SU(2) monopole may nee
scaled and it may be necessary to add a constant diagonal field beyond the plain emb
described by~2.8! ~details may be found in Refs. 3 and 4!. Obviously there is an embedding of th
form ~2.8! for each choice of two columns in the target matrix. The embedded 1-monopoles
a singlekp51 and anotherkp521; the rest are zero. The choice of columns for the embedd
dictates which twokp are non-zero. Recall that in the case of minimal symmetry breaking
choice of order of thekp is a gauge choice. In fact, in the case of minimal symmetry breaking
embedded 1-monopole is unique up to position and gauge transformation. Solutions withk15k
havek times the energy of this basic solution and so it is reasonable to call thesekp5k monopoles
k-monopoles. There are of course different types of suchk-monopoles corresponding to differen
magnetic weights.

Consider SU(3) monopoles with minimal symmetry breaking. Fork52 there are two distinct
types of monopoles, those withm250 and those withm251. Them252 case is equivalent to th
m250 case;m2 can be changed from 0 to 2 by reorderingk2 andk3. If m250, the monopoles are
all embeddings of su(2) 2-monopoles and this case is not interesting as an example of
2-monopoles. Them251 case has been studied by Dancer5 and by Dancer and Leese,6 by con-
sidering Nahm data.

There is an equivalence between Nahm data and BPS monopoles. In the case ofN)
monopoles the Nahm data are triplets of anti-Hermitian matrix functions (T1 ,T2 ,T3) of s over the
intervals (mp ,mp11). The size of the matrices depends on the corresponding values ofmp ; the
matrices (T1 ,T2 ,T3) are mp3mp matrices in the interval (mp ,mp11). They are required to be
non-singular in each region and to satisfy the Nahm equation
J. Math. Phys., Vol. 38, No. 11, November 1997
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dTi

ds
5

1

2
e i jk@Tj ,Tk#. ~2.9!

There are complicated boundary conditions prescribed between the Nahm data in abutting
vals, which are detailed in Nahm’s original paper.7 We will follow Hurtubise and Murray’s
formulation of the Nahm data boundary conditions for distinctmp ~Ref. 8! and then take the limit
of coincidentmp to describe the minimal symmetry breaking case.

For ease of notation we shall describe the case wheremp21>mp ~i.e., kp<0 for p.1) since
a similar result holds after a reordering if this is not satisfied.

Monopoles are constructed from their corresponding Nahm data by first solving a first
differential equation in which the Nahm data appear as coefficients. This is the ADHMN
struction equation. Rather than describe it in full generality, it will be described below in
particular form required. The matching and boundary conditions on Nahm data are desig
ensure that the ADHMN construction equation has the correct number of solutions requi
yield the correct type of monopole fields. Define the function

k~s!5 (
p51

N

kpu~s2mp!, ~2.10!

whereu(s) is the usual Heaviside function. In the interval (mp ,mp11) k(s)5mp . It is a rectilin-
ear skyline whose shape depends on the charge matrix of the corresponding monopole.k(s)
nearmp is

then ass approachesmp from below we require

Ti~s!5S 1

z
Ri1O~1! O~z~ ukpu21!/2!

O~z~ ukpu21!/2! Ti81O~z!
D , ~2.11!

wherez5s2mp and where

Ti~s!5Ti81O~z! ~2.12!

ass approachesmp from above.
It follows from the Nahm equation~2.9! that theukpu3ukpu residue matrices (R1 ,R2 ,R3) in

~2.11! form a representation of su(2). Theboundary conditions require that this representation
the unique irreducibleukpu-dimensional representation of su(2).

In summary, at the boundary between two abutting intervals, if the Nahm matrice
mp213mp21 on the left andmp3mp on the right, anmp3mp block continues through the
boundary and there is an (mp212mp)3(mp212mp) block simple pole whose residues form a
irreducible representation of su(2). The boundary conditions formp215mp are given in, for
example, Ref. 8. While these boundary conditions are involved, their function is simply o
limiting the number of solutions to the ADHMN construction equation.
J. Math. Phys., Vol. 38, No. 11, November 1997
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The 1-dimensional representations of su(2) are trivial. Thus, ifkp521 for all p.1, k(s) is

and the Nahm data has only one pole~it is at s5m1!. It seems reasonable to suppose that t
result holds in the limit of coincidentmp . Thus, if we fixm152(N21) andmp5” 151, we expect
that theN3N Nahm data whose sole pole is ats52(N21), satisfying the Nahm equations an
having acceptable residues, are the Nahm data of SU(N) monopoles with minimal symmetry
breaking. For this to be the case it is only required that the ADHMN construction equation
the correct number of solutions over the interval. This index calculation is easily performed
the methods of Ref. 8. The topological charge of the corresponding monopole solution
necessity,k15N21, since thekp must add to zero. The magnetic weights are each one less
the proceeding one. We say that the magnetic weights are distinct. It has recently been pro
Nakajima thatall monopoles of this type can be constructed from the described Nahm data9

The Nahm data for su(2)k-monopoles arek3k anti-Hermitian matrix solutions of the Nahm
equation. They have poles ats521 ands51. It is obvious that this Nahm data,

can be used to generate Nahm data for SU(k11) k-monopoles with distinct weights

In examples where the chargek SU(2) data is known, the SU(k11) data is generated by
translation and rescaling ofs so that a pole occurs ats5m1 but the second pole is moved outsid
the intervalsP@m1 ,mN#, i.e., it is lost from the Nahm data. The 2-monopole Nahm data is kn
exactly, and was used by Dancer in Ref. 5 to construct SU(3) monopoles. This is the sim
application of the above procedure. Platonic symmetry groups have previously been used to
higher charge Nahm data, and in this paper we discuss the corresponding SU(k11) monopoles.

III. SU(4) MONOPOLES WITH TETRAHEDRAL SYMMETRY

In the previous Section we discussed the Nahm data for SU(k11) monopoles with minimal
symmetry breaking, chargek and distinct magnetic weights. For the remainder of the paper it
be convenient to perform a translations°s2m1, so that a pole in the Nahm data always occu
at s50. In this Section we describe some aspects of the ADHMN construction, which calcu
the monopole fields (F,Ai) from the Nahm data. We then go on to apply this construction
obtain a one-parameter family of monopoles withk53, which have tetrahedral symmetry.

Given Nahm data (T1 ,T2 ,T3) for a k-monopole we must solve the ADHMN constructio
equation, forsP@0,k11#,
J. Math. Phys., Vol. 38, No. 11, November 1997
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S 12k

d

ds
11k^ xjs j1 iT j ^ s j D v50 ~3.1!

for the complex 2k-vector v(s), where 1k denotes thek3k identity matrix, s j are the Pauli
matrices andx5(x1 ,x2 ,x3) is the point in space at which the monopole fields are to be calcula
Introducing the inner product

^v1 ,v2&5E
0

k11

v1
†v2ds, ~3.2!

then the solutions of~3.1! which we require are those which are normalizable with respect to~3.2!.
It can be shown that the space of normalizable solutions to~3.1! has~complex! dimensionk11.
If v̂1 ,...,v̂k11 is an orthonormal basis for this space, then thei j th matrix element, (F) i j , of the
Higgs field is given by

~F! i j 5 i ^~s2k!v̂i ,v̂j&. ~3.3!

A similar expression exists for the gauge potential, but the energy density,E , may be computed
without calculating the gauge potential by using the formula

E5n tr~F2!, ~3.4!

wheren denotes the Laplacian onR3.
For most of the examples considered in this paper the Nahm data is sufficiently compl

that the matrix linear differential equation~3.1! can not be solved analytically in closed form.
these cases we use a numerical implementation of the ADHMN construction which inv
solving the ordinary differential equations using a standard fourth order Runge-Kutta metho
numerical implementation is similar to that introduced by the authors in Ref. 10, but is simp
by the fact that the Nahm data we consider here has a pole at only one end of thes interval. This
eliminates the need for the shooting part of the numerical algorithm described in Ref. 10.

In references 10–12 it is explained how Platonic symmetry~that is, tetrahedral, octahedral o
icosahedral symmetry! may be applied to Nahm data for SU(2) monopoles of chargek. We use
these, as explained in the previous Section, to easily obtain the solutions to Nahm’s equat
SU(k11) monopoles.

From Ref. 10 we have that the Nahm data for tetrahedrally symmetric monopoles wk
53 has the form

T15F 0 0 0

0 0 2z

0 z̄ 0
G , T25F 0 0 2 z̄

0 0 0

z 0 0
G , T35F 0 z 0

2 z̄ 0 0

0 0 0
G , ~3.5!

where

z5
v`8~vs!

2`~vs!
1

A3v

`~vs!
, v5eip/6k, ~3.6!

and` is the Weierstrass function satisfying

`8254`324, ~3.7!

where8 denotes differentiation with respect to the argument.
J. Math. Phys., Vol. 38, No. 11, November 1997
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For SU(2) monopoles the boundary condition requires that the Nahm data has a simp
at s52 which determinesk to be

6k5k05
G~1/6!G~1/3!

12Ap
. ~3.8!

For SU(4) monopoles the corresponding boundary condition is less restrictive, namely th
require the Nahm data to have no poles forsP(0,4#. Given the SU(2) result this implies thatk
must satisfy the condition

2k0/2,k,k0/2. ~3.9!

It is a simple task to show that the remaining requirements for Nahm data are satisfied, and
we have proved the existence of a one-parameter family of SU(4) monopoles with tetra
symmetry. The one-parameter family is given byk in the above interval and the correspondi
family of spectral curves is

h31 i36k3z~z421!50. ~3.10!

Note thatk50 gives the spectral curveh350, which is the spectral curve of a 3-monopo
with spherical symmetry. Such a spherically symmetric monopole was constructed severa
ago1 by using a spherically symmetric ansatz in the field equations. We shall now see ho
solution arises in the ADHMN construction by explicitly calculating the Higgs field in this c

Taking the limitk→0 and using the property that

`~u!;u22 as u→0 ~3.11!

gives

z521/s ~3.12!

in this limit.
Since the monopole with this Nahm data is spherically symmetric, we only need to cons

ing the Higgs field along an axis. Setting (x1 ,x2 ,x3)5(0,0,r ) the linear equation~3.1! becomes

dv

ds
13

~r 21/s! 0 0 0 0 0

0 2~r 21/s! 2A2/s 0 0 0

0 2A2/s r 0 0 0

0 0 0 2r 2A2/s 0

0 0 0 2A2/s ~r 11/s! 0

0 0 0 0 0 2~r 11/s!

4 v50. ~3.13!

Clearly the first and last components ofv decouple and are elementary to solve. The remain
four equations may be decoupled into two pairs, which can then be converted into two s
order equations and solved by a Laplace transform. The full regular solution is
J. Math. Phys., Vol. 38, No. 11, November 1997
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v53
c1se2rs

c2A2S cosh~rs!

rs
2

sinh~rs!

r 2s2 D
c2S sinh~rs!

r 2s2
2e2rsS 11

1

rsD D
c3S 2

sinh~rs!

r 2s2
2ersS 12

1

rsD D
2c3A2S cosh~rs!

rs
2

sinh~rs!

r 2s2 D
c4sers

4 ~3.14!

wherec1 ,c2 ,c3 ,c4 are arbitrary constants. If we select the orthonormal basisv̂i wherev̂i has only
ci non-zero, then the Higgs field will be diagonal. Performing the required integrals~3.3! gives the
result

~F!1152 i
6r 231e28r~64r 3148r 2118r 13!

2r ~12e28r~32r 218r 11!!
,

~3.15!

~F!335 i
e8r~24r 13!2384r 3164r 2240r 261e28r~128r 31128r 2144r 13!

e8r~24r 11!1128r 328r 221e28r~128r 3164r 2112r 11!
,

with (F)22 and (F)44 obtained by the replacementr °2r in (F)11 and (F)33, respectively. It is
a simple task to verify that indeed this solution has the correct asymptotic behavior, i.e.,

F→ i diag~23,1,1,1! as r→`. ~3.16!

To compute the Higgs field for non-zero values ofk is a much more difficult task, since all th
components of the vectorv become coupled together. Thus we turn to the numerical implem
tation of the ADHMN construction. In Figure 1 we display the results in the form of th
dimensional plots of surfaces of constant energy density for the valuesk/k0520.25,
20.10,0.00,10.10,10.25. As the parameterk increases from zero, the spherical monopole
forms into a tetrahedral monopole. Ask→6k0/2, the monopole approaches the embedded SU
tetrahedral 3-monopole asymptotically. In fact, even for the valuek52k0/4 @Figure 1~1!# the
energy density looks very similar to that of the SU(2) tetrahedral 3-monopole.10 Note that chang-
ing the sign ofk gives a monopole corresponding to the dual tetrahedron.

In the moduli space approximation2 the dynamics ofk monopoles is approximated by geod
sic motion on thek-monopole moduli spaceMk . From the spectral curve approach it is clear th
having fixed an orientation and center of mass, we have constructed the unique one-pa
family of tetrahedrally symmetric SU(4) 3-monopoles. Since the fixed point set of a group a
gives a totally geodesic submanifold, this one-parameter family is a geodesic inM3. Hence,
within the moduli space approximation, this family of monopoles may be interpreted as desc
the low energy dynamics of three deforming monopoles. Using this interpretation we see
J. Math. Phys., Vol. 38, No. 11, November 1997
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Figure 1 that during the course of the motion a tetrahedron gets smoothed out into a sphere
then deforms back into the dual tetrahedron. This gives an example of dynamics in whic
monopoles never become separated.

It is known in the case of SU(2) monopoles that there are closed geodesics.13–15 In the
geodesics approximation such geodesics correspond to periodic monopole motions during
the monopoles never separate. That is not the case here. Here the motion is not periodic
geodesic is not closed; it runs between points on the asymptotic boundary of the moduli
which do not correspond to separated monopoles.

Obviously the method applied in this Section to tetrahedral SU(4) 3-monopoles can eas
carried over to construct SU(k11) k-monopoles, given the Nahm data for an SU(2)k-monopole.
In general, given ap-dimensional family of SU(2) monopoles there will be a correspondingp
11)-dimensional family of SU(k11) monopoles. Thus, for example, it is a simple task to c
struct the Nahm data for the one-parameter family of octahedrally symmetric SU(5) 4-mono
which derive from the unique octahedrally symmetric SU(2) 4-monopole.11 However, it is more
interesting to consider geodesic motion in the two-dimensional moduli space of SU(k11) mono-
poles derived from a one-parameter family of SU(2) monopoles corresponding to a geod
the SU(2) moduli space. Physically, this will allow us to examine how the dynamics of Sk
11) monopoles compares with the dynamics of SU(2) monopoles. We shall do this i
following Section, for the case of SU(5) 4-monopoles with tetrahedral symmetry.

IV. SU(5) MONOPOLES WITH TETRAHEDRAL SYMMETRY

After fixing the orientation and center of mass, there is a one-parameter family of tetrahe
symmetric charge four SU(2) monopoles.10 The associated Nahm data takes the form

FIG. 1. Tetrahedral scattering of an SU(4) 3-monopole.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ti~s!5x~s!Xi1y~s!Yi1z~s!Zi , i 51,2,3, ~4.1!

where the tetrahedrally symmetric Nahm triplets are

~X11 iX2 ,X3!5S 2F 0 0 0 0

2A3 0 0 0

0 22 0 0

0 0 2A3 0

G ,F 3i 0 0 0

0 i 0 0

0 0 2 i 0

0 0 0 23i

G D ,

~Y11 iY2 ,Y3!54S F 0 0 0 25

A3 0 0 0

0 23 0 0

0 0 A3 0

G ,F i 0 0 0

0 23i 0 0

0 0 3i 0

0 0 0 2 i

G D , ~4.2!

~Z11 iZ2 ,Z3!5A3S 2F 0 i 0 0

0 0 0 0

0 0 0 2 i

0 0 0 0

G ,F 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

G D .

The reduced equations for the three real functionsx,y,z can be solved to yield

x~s!5
k

5 S 22A`~ks!1
1

4

`8~ks!

`~ks! D , ~4.3!

y~s!5
k

20SA`~ks!1
1

2

`8~ks!

`~ks! D , ~4.4!

z~s!5
ak

2`~ks!
. ~4.5!

Here` is the Weierstrass function satisfying

`8254`324`112a2, ~4.6!

with prime denoting differentiation with respect to the argument.
The spectral curve for tetrahedrally symmetric 4-monopoles has the form

h41 iahz~z421!1b2~z8114z411!50, ~4.7!

wherea andb are real constants. The relation between these constants and those appearin
above Nahm data is given by

a536ak3, b253k4. ~4.8!

In the SU(2) case, the requirement that the Nahm data has a second pole ats52 means that
k must be taken to be half the real period of the elliptic function~4.6!. Thus,k is determined given
the parametera, and we have the required one-parameter family. Furthermore,a is restricted to lie
in the intervalaP(2ac ,ac), with ac5325/4A2. The elliptic function becomes rational ata5
6ac , with infinite real period so that there is no second pole, and hence there is no corresp
SU(2) monopole.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Applying the boundary conditions for SU(5) monopoles is a different story: we now req
no singularities of the Nahm data forsP(0,5#. If we consideraP(2ac ,ac), then the result is
similar to that of the previous Section. The range ofk is now restricted,kP(2k0 ,k0) where 5k0

is the real period of the elliptic function~4.6!. Using the formula~4.8! this determines a domain in
the (a,b) plane of the spectral curve coefficients. Fora56ac , there is no second pole of th
elliptic function, so the value ofk is unrestricted. This case corresponds to two curves in
(a,b) plane, which pass through the origin and continue off to infinity.

To examine the caseuau.ac we need to consider some properties of elliptic functions.16 For
uau,ac the discriminant of the elliptic curve determined by~4.6! is positive and the period lattice
is rectangular. The elliptic function has poles on the real axis, but no zeros. However, fouau
.ac the character of the elliptic function changes since the discriminant is now negative
period lattice is rhombic and, in addition to having poles on the real axis, the elliptic function
has zeros on the real axis. From equations~4.3!–~4.5! we see that a zero of the elliptic functio
also corresponds to singular Nahm data. Thus, in this case, there is a restriction onk given by

kP(2 k̃0 , k̃0) where 5k̃0 is the smallest real root of the elliptic function~4.6!, that is,`(5k̃0)
50. This defines a second domain in the (a,b) plane which matches smoothly onto the first, w
the joining boundary being the curves determined bya56ac .

We now have no restriction on the parametera, so we must also consider the limita→`. In

this limit it can be shown thatk̃0→0, but in such a way that the combinationak̃ 0
3 is finite, though

it can be non-zero. In terms of the spectral curve constants this limit corresponds to mon
with b50, buta restricted only to lie in some finite range. We refer to such monopoles as p
tetrahedral, since the octahedral term in the spectral curve is absent. This is an interesting
since no such purely tetrahedral charge four monopoles occur in the SU(2) theory. Of c
given the existence of purely tetrahedral monopoles it is simple to study the reduced
equations directly in the caseb50 and obtain the same result as above without the need for
taking.

From the above analysis it is seen that in order to compute the Nahm data and calcul
domain of definition in the (a,b) plane, numerical algorithms must be employed to compute
only elliptic functions and their derivatives but also their periods and elliptic logarithms. In
SU(2) case this task was much easier, since for a rectangular period lattice the required c
tations can be performed using Jacobi elliptic functions with real arguments. However,
rhombic case this is not true, and it is better to work directly with the Weierstrass func
Standard algorithms are used which are based upon the AGM method and truncated serie17

In Figure 2 we plot~dashed lines! the boundary of the spectral curve coefficients in the (a,b)
plane foraP@22,2#. Note that we allowb to be negative, even though the points (a,b) and
(a,2b) give the same spectral curve and are hence gauge equivalent. The reason is t
coefficient of the octahedral term in the spectral curve is non-negative, so thatb2 is the correct
parametrization, rather than, say,b. This arises since a cube is inversion symmetric, whereas
tetrahedron is not and would lead to a change of sign in the spectral curve coefficient. Th
analogue of the SU(4) tetrahedral geodesic of the last Section, where the tetrahedron defo
a sphere and out through the inverted tetrahedron, is the SU(5) octahedral geodesic along
a50, where a cube deforms into a sphere (a,b)5(0,0) and out through the inverted cube~which
is gauge equivalent!.

It should be stressed that our X-shaped representation of the moduli space is not a re
of any metric properties of the moduli space. As mentioned above, we know that the linea50 is
a geodesic~by symmetry!, but in order to determine more general geodesics we must first com
the metric on this two dimensional moduli space, and then solve the geodesic equations of m
We shall do this using numerical techniques, though we must also make an assumpt
follows.

For SU(2) monopoles it is known that the transformation between the monopole moduli
metric and the metric on Nahm data is an isometry.18 However, for general SU(N) gauge groups
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



lieved
ads to
e.
etric on
SU(3)

r
xactly

erical
e the

s are

5587C. J. Houghton and P. M. Sutcliffe: SU(N) monopoles and Platonic symmetry

                    
it has not yet been proved that this transformation is an isometry, although this is widely be
to be true. There is also circumstantial evidence, for example, assuming this result le
monopole metrics which reproduce conjectured metrics based upon asymptotic knowledg19 To
make progress we shall assume that this transformation is an isometry, and compute the m
the Nahm data. This assumption was also made in previous studies on the dynamics of
monopoles.6

The scheme to compute the metric is similar to the SU(2) case,20 to which we refer the reade
for a more detailed discussion. Note that recently this SU(2) metric has been computed e
and in closed form.21 This was then used to demonstrate the excellent accuracy of the num
algorithm.20 It is likely that the method of Ref. 21 could also be used in this case to calculat
SU(5) metric exactly, if required.

The tangent space is computed by solving the linearized Nahm equation

dVi

ds
5e i jk@Tj ,Vk#, i 51,2,3, ~4.9!

for the tangent vector (V1 ,V2 ,V3) corresponding to the point with Nahm data (T1 ,T2 ,T3). Given
two tangent vectorsVi ,Wi , the metric on Nahm data is

^Vi ,Wi&52E
0

5

(
i 51

3

tr~ViWi !ds. ~4.10!

From the tetrahedral symmetry of the Nahm data it follows that the tangent vector
tetrahedrally symmetric so we may write

Vi5q1Xi1q2Yi1q3Zi , i 51,2,3, ~4.11!

FIG. 2. Five geodesics for SU(5) tetrahedral monopoles.
J. Math. Phys., Vol. 38, No. 11, November 1997
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whereq5(q1 ,q2 ,q3) t is an analytic real 3-vector function ofsP@0,5#. In terms ofq equation
~4.9! is

q̇5Mq, where M5F 4x 296y 212z/5

26y 216y26x 26z/5

24z 232z 24x232y
G . ~4.12!

This ordinary differential equation has a regular-singular point ats50. Analysis of the initial
value problem ats50 reveals that there is a two dimensional family of solutions which
normalizable forsP@0,5#. They are given by the two-parameter,c5(c1 ,c2), family of initial
conditions

q;~0,c1s3,c2s2! t as s;0. ~4.13!

Using the asymptotic properties of the Weierstrass function we find that the Nahm da
the behavior

y;
b2s3

120
, z;

as2

72
as s;0. ~4.14!

Hence to compute the tangent vector]/]a dual to the coordinatea requires the choicec
5(0,1/72), whereas to compute the tangent vector]/]b dual to the coordinateb requiresc
5(b/60,0). The metric can then be computed as

g15 K ]

]a
,

]

]a L ,

g25 K ]

]b
,

]

]b L , ~4.15!

g35 K ]

]a
,

]

]b L , ~4.16!

with corresponding Lagrangian

L5g1S da

dt D
2

1g2S db

dt D
2

12g3S da

dt D S db

dt D . ~4.17!

The metric is computed numerically by solving equation~4.12! using a fixed-step fourth-orde
Runge-Kutta method, with the integrations required in equation~4.10! calculated via a composite
Simpsons rule. The geodesic equations which follow from the Lagrangian~4.17! are solved using
a variable-step Runge-Kutta method, with the derivatives of the metric approximated by
differences. The accuracy of our scheme was such that energy was conserved to four sig
figures for all computed geodesic trajectories.

Note from the above that the metric componentsg2 andg3 both vanish forb50, which is a
reflection of our choice ofb2 as the spectral curve coefficient and implies that all geodesics w
cross thea-axis are parallel to theb-axis at the point of crossing. Thus from the numerical po
of view we work with the coordinateb2 when computing geodesics, since it is better behaved
b.

In Figure 2 we show five geodesics~solid lines!, three of which pass through the poin
(a,b)5(1.0,0.4) and the remaining two pass through the point (a,b)5(0.0,0.1). Many other
geodesics were also computed, but the qualitative features are captured by those shown. B
J. Math. Phys., Vol. 38, No. 11, November 1997
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the results show two kinds of scattering that take place. The first kind is similar to the S
scattering and occurs when the geodesic does not stray too far away from the SU(2) emb
boundary. The four monopoles approach from infinity on the vertices of a large contra
tetrahedron, scatter through a cubic monopole, that is, cross theb-axis, and emerge on the vertice
of an expanding tetrahedron dual to the incoming one. We show one geodesic of this kind
upper half plane. The second kind of scattering is more exotic and involves a double sca
through a cubic monopole. The remaining four geodesics are all of this kind, with three asso
with monopoles which approach from infinity witha positive and one witha negative. In each
case the geodesic first crosses theb-axis ~a cubic scattering! and then crosses thea-axis, instan-
taneously forming a purely tetrahedral monopole, after which it recrosses theb-axis ~the second
cubic scattering! and goes off to infinity gauge equivalent to the incoming configuration.

The two types of scattering described above were the only ones found; no geodesic
found with, for example, no cubic scatterings or more than two cubic scatterings. In fact the r
in this case are similar in spirit to those seen in the study of SU(3) 2-monopole dynamics,6 where
it was found that up to two 90° scatterings could take place. It would therefore seem tha
phenomenon of multiple scatterings is the generic situation for general SU(N) monopoles with
minimal symmetry breaking.
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Can a quantum process be oblivious to observation?
Marek Kanter
1216 Monterey Avenue, Berkeley, California 94707

~Received 19 February 1997; accepted for publication 23 June 1997!

In this paper time is indexed by a ‘‘time group’’G that may be either the real line
or the integers. A quantum process is a homomorphic representation ofG via
unitary operators on a Hilbert spaceL, with the usual continuity restrictions if time
is indexed by the reals. Consider a quantum process subject to nonselective obser-
vation at all points in time via an observation operator with purely discrete eigen-
values and corresponding simple eigenvectors. Suppose that the process evolves in
such a way that the results of observation at a given time are the same, whether or
not there have been previous observations. Suppose further thatL is spanned by the
set of vectors invariant modulo phase under the quantum evolution. If the time
group is the integers, then the process is observed to evolve in a classical manner.
If the time group is the real line, then the process is never observed to undergo a
change of state. The results of this paper are essentially a corollary of von Neu-
mann’s mean ergodic theorem. ©1997 American Institute of Physics.
@S0022-2488~97!02311-6#

I. OVERVIEW OF THE PAPER

A. Introduction

It is generally accepted that the development in time of a quantum mechanical syst
disturbed if the system is observed or measured.~We shall use the two terms interchangeabl!
Nevertheless, there has been some interest in studying quantum models where previous o
tions do not affect the results of later observations, i.e. quantum processes that are ‘‘oblivio
measurement. Such studies have been carried out in the context of ‘‘ideal selective’’ observ1

and in the context of the ‘‘consistent histories’’ approach2 to ‘‘nonselective’’ observations.~See
Ref. 1 for the distinction between selective, ideal selective, and nonselective measuremen!

In this paper we will, to some extent, confirm the usual supposition that a quantum pr
cannot be oblivious to observation unless it is fundamentally classical in nature. This will be
by analyzing closed quantum systems in a mathematically rigorous way. We will work in
context of nonselective observations, and our results will impose somea priori limitations to what
may be achieved via the consistent histories approach to quantum mechanics.

We formally define a quantum process as a group of unitary operators$Ut:tPG% acting on
some separable complex Hilbert spaceL. ~ThusG is a group and the mappingt→Ut is a group
homomorphism fromG into the group of unitary operators onL.! The parametert shall represent
time, soG will either be the integers~denoted byZ! or the real numbers~denoted byR!. If G
5R we shall always assume that the mapt→Utf is a continuous function fromR into L for all
fPL.

Let J be a countable set that indexes a particular orthonormal basis$f j : j PJ% for L, consist-
ing of the eigenvectors of a quantum observable with a simple, purely discrete spectrum~The
eigenvalues of this observable will play no role in our work, hence we may effectively identif
observable with$f j : j PJ%.! We shall call this basis themeasurement basisfor L. If the quantum
process is in the pure statef with ifi51 just before measurement, thenu^fuf j&u2 is the prob-
ability that the process is in the pure statef j just after measurement.~Note that the probabilities
sum to 1, and that we have just described nonselective measurement via$Qj : j PJ%, whereQj

5f j&^f j is the projection operator onto the one-dimensional subspace spanned byf j . Selective
0022-2488/97/38(11)/5590/15/$10.00
5590 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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measurement occurs if we restrict the outcome of an observation to a proper subset of$f j : j
PJ%.!

In between measurements the pure statef evolves according to the equationf(t)5Utf for
tPG. We shall make use of the spectral representation,

^f~ t !uf&5E
V
eitv dmf~v ! ~ for tPG!, ~1.1!

whereV is the dual group ofG andmf is a probability measure onV. ~ThusV5R if G5R, and
V equals the circle group@2p,p# with end points identified ifG5Z.! We shall discuss~1.1! more
fully in the Appendix.~As usual^cuf& is linear inf and conjugate linear inc.!

Our results concern the doubly stochastic matricesPjk(t) defined by

Pjk~ t !5u^f j~ t !ufk&u2 ~ for j ,kPJ,tPG!. ~1.2!

We say the quantum process$Ut:tPG% is oblivious to observationvia $f j : j PJ% if

Pab~s1t !5(
j PJ

Pa j~s!Pjb~ t ! ~ for a,bPJ;s,tPG1!, ~1.3!

whereG1 stands for the set oft in G with t>0. According to~1.3!, a nonselective measureme
made in the interior of a time interval inG1 does not affect the probabilities associated w
measurement at the end points. Equivalently,~1.3! are the defining equations for a Markov proce
with values inJ and time indexG1.

Let Jc stand for the subset ofJ consisting of thosej for which the spectral measure corr
sponding tof j in ~1.1! is continuous. We shall show thatj PJc if and only if ^f j uf&50 for all
f in L that evolve according to the equationf(t)5eitvf for somevPV. Let Jd stand forJ
2Jc, the set theoretic complement ofJc in J. We shall prove that if a quantum process$Ut:t
PG% with measurement basis$f j : j PJ% is oblivious to observation, then there exists a funct
F from G3Jd into R and a permutations of Jd, such that

f j~ t !5eiF ~ t, j !fs t~ j ! ~ for tPG, j PJd!. ~1.4!

@Heres t( j )5 j for all tPG and j PJd, if G5R. In the other case, ifG5Z, the permutations t of
Jd is defined by the equations

s t11~ j !5s„s t~ j !… ~ for tPG, j PJd!, ~1.5!

and the initial conditions0( j )5 j for all j .# The exact form ofF is given in Sec. III.
According to~1.4! the condition thatJd5J ensures that the evolution of a quantum proc

satisfying~1.3! is essentially classical ifG5Z and is essentially trivial ifG5R. It will be shown
that Jd5J if J is finite. Thus, it remains to explore if the conditionJd5J is necessary for our
result whenJ is infinite. We shall show that this unresolved question may without loss of ge
ality be studied in the context of a Hilbert spaceL with the property that allf in L have
continuous spectral measuremf in ~1.1!.

B. Relation to previous work

Our work can be considered as a ‘‘no-go’’ result in the study of consistent histories init
by Griffiths. ~See Ref. 2.! To put our work in his context writeQj (t)5U2tQjU

t for tPG, where
Qj5f j&^f j , and let
J. Math. Phys., Vol. 38, No. 11, November 1997
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Q~B,t !5 (
j PB

Qj~ t ! ~ for tPG,B,J!. ~1.6!

SupposeA andC are non-negative definite operators onL such thatA has finite trace Tr(A) and
t is the vector (t1 ,...,tn)PGn. Define

PAC~B1 ,...,Bn ;t!5Tr„B̂* ~ t1 ,...,tn!AB̂~ t1 ,...,tn!C…, ~1.7!

whereB1 ,...,Bn are subsets ofJ, D* denotes the adjoint of an operatorD, and

B̂~ t1 ,...,tn!5Q~B1 ,t1!Q~B2 ,t11t2!•••Q~Bn ,t11•••1tn!. ~1.8!

The historiesB̂(t1 ,...,tn) are consistent if for all 1<m<n,

PAC~B1 ,...,Bm ,...,Bn ;t!5 (
j PBm

PAC~B1 ,...,$ j %,...,Bn ;t!, ~1.9!

for all B1,J,...,Bn,J and all tP(G1)n.
We note that~1.9! is a stronger consistency condition than~1.3!, in that the sum in~1.9! is

over an arbitrary subsetBm of J, rather than all ofJ. In particular,~1.9! reduces to~1.3! if m
51, n52, t15s, t25t, A5Qa , B15J, B25$b%, andC is the identity operator onL. It thus
follows from our work that if the historiesB̂(t1 ,...,tn) are consistent and ifJ5Jd, then~1.4! must
also hold. This result limits the variety of quantum processes with consistent histories define
an infinite time interval.~Note that Griffiths uses a general collection of disjoint projection ope
tors summing to the identity operator corresponding to general nonselective observation, in
of the one-dimensional projections$Qj : j PJ%. Thus, our results only apply to ‘‘complete’’ con
sistent histories defined by one-dimensional projections as above.!

The paper by Gell-Mann and Hartle,3 in the vein of the consistent histories approach
quantum mechanics, contains a specific result similar in intent to~1.4!. Supposer is a density
matrix @i.e., r is a non-negative definite operator onL with Tr~r!51#. We define the evolution of
r via

r~ t !5UtrU2t ~ for tPG!. ~1.10!

@Thusr5r~0!.# Suppose that~1.9! holds for fixedt1 ,...,tn in G and allB1,J,...Bn,J, with the
key assumption thatA5C5r. Then Gell-Mann and Hartle show

^f j ur~s!ufk&50 ~ for j ,kPJ, with j Þk!, ~1.11!

where s5t11•••1tm and 1<m<n. They also argue that ifG5R and ~1.11! holds for all s
P(r ,t) with r ,t, thenr(t)5r for all tPG. @In fact, their proof does not use the full power
~1.9! and works if only~1.3! is assumed.#

When G5R, the present study is related to our previous work4 regarding the effect of
continuously performed continuous measurements on a quantum process$Ut:tPR%. In that paper
we studied the limit

P̄~ t !5 lim
n→`

P~n!~ t/n! ~ for tPR1!, ~1.12!

wheren ranges over positive integers andP(n)(t/n) stands for then-fold matrix product of the
doubly stochastic matrixP(t/n) defined in~1.2!. ~Pjk

(n)(t/n) is the probability that a quantum
system is observed in statefk at time t, if it is prepared in statef j at time 0 andn21 nonse-
J. Math. Phys., Vol. 38, No. 11, November 1997
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lective measurements are performed at equally spaced times in@0,t#.! Upon imposing a compli-
cated regularity condition called the ‘‘approximation’’ hypothesis we proved that there exists
$l j : j PJ% of non-negative real numbers, such that

P̄jk~ t !5d jke2l j t ~ for tPR1!, ~1.13!

whered jk51 if j 5k and 0 otherwise.@Note

P~n!~ t/n!5P~ t ! ~ for n>1 and tPR1! ~1.14!

if ~1.3! holds, whenceP(t)5 P̄(t) in that case. ThusP(t) must be the identity matrix for allt
PR1 if ~1.3! holds in conjunction with the ‘‘approximation’’ hypothesis, sinceP(t) is then
simultaneously diagonal and doubly stochastic by~1.13!.#

When G5R, the present study is also related to previous work by Williams5 and Sinha,6

which can be found in Exner.7 Williams and Sinha present their results in the context of selec
measurement, but their work has applications to nonselective measurement as well. We sum
their main result as Theorem 1.1.

Theorem 1.1:Let $Ut:tPR%be a strongly continuous group of unitary operators on L. LetT

be a proper projection operator on L, such that

T UsT UtT 5T Us1tT ~ f or s,tPR1!. ~1.15!

If there exists a Borel set B0,Rwith positive Lebesgue measure such thatmf(B0)50 for all
fPL, then

UtT 5T Ut ~ f or tPR!. ~1.16!

We shall show that Theorem 1.1 has the following consequence for nonselective me
ment.

Theorem 1.2: Let the quantum process$Ut:tPG% be oblivious to measurement via$f j : j
PJ% and let G5R. If for all f in L the spectral measuremf in (1.1) is purely discrete, then (1.4
holds with F(t, j ) of the form t f( j ).

We note that the condition on the spectral measuresmf in Theorem 1.2 is far stronger than th
condition thatJd5J. ~The latter condition asserts only that the spectral measures correspond
$f j : j PJ% all have a nontrivial discrete part.! We shall show thatJd5J if and only if L is spanned
by the set off that evolve according to the equationf(t)5eivtf for somevPV ~see the end of
Sec. III!.

C. Summary of other sections

The rest of this paper is divided into four sections. In Sec. II we will study the evolution
single density matrix oblivious to observation. In Sec. III we will derive our main results regar
~1.3!, using the case of finiteJ as a stepping stone to handle the case of infiniteJ. In Sec. IV we
discuss whether our results should be regarded as obvious and whether our work has p
implications. Section V contains the Appendix. In this section we summarize von Neum
mean ergodic theorem in the form we need it, since that theorem plays a key role in this
This section also contains the brief argument deriving Theorem 1.2 from Theorem 1.1.

II. THE CASE OF A SINGLE DENSITY MATRIX

In this section we will consider the evolution~1.10! of a density matrixr, subject to the
restriction that the evolution ofr is oblivious to nonselective observation. This analysis will pro
useful in deriving our main results.
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Definition 2.1:Let r be a density matrix onL. We say that the evolution ofr is oblivious to
observation via$f j : j PJ% if for all kPJ,

rkk~s1t !5(
j PJ

r j j ~s!Pjk~ t ! ~ for s,tPG1!, ~2.1!

wherer jk(t)5^f j ur(t)ufk& for all tPG and all j , kPJ.
We shall often simply say thatr ~or $Ut:tPG%! is oblivious to observation ifr satisfies~2.1!

~or $Ut:tPG% satisfies~1.3!!, respectively.
Definition 2.2: Given a bounded operatorr on L with r(t) defined as in~1.10!, let r jk

5r jk(0), anddefine the off-diagonal part ofr with respect to$f j : j PJ% by

r̃5r2(
j PJ

r j j Qj . ~2.2!

Furthermore, letr̃(t) stand for the off-diagonal part ofr(t).
Remark 2.1:If r is a density matrix, then it follows from~1.10! that

r~s1t !5Utr~s!U2t ~ for s,tPG!. ~2.3!

For a, bPJ, rewrite ~2.3! as

rab~s1t !5 (
j ,kPJ

Ua j~ t !r jk~s!Ukb~2t ! ~ for s,tPG!, ~2.4!

whereU jk(t)5^f j (t)ufk&. If r̃50, sets50 in ~2.4! and relabel indices to get

r j j ~ t !5 (
aPJ

raaPa j~ t ! ~ for j PJ,tPG1!. ~2.5!

Suppose further that~1.3! holds. We may then substitutes1t for t in ~2.5! and relabel indices to
conclude that forkPJ,

rkk~s1t !5 (
a, j PJ

raaPa j~s!Pjk~ t ! ~ for s,tPG1!. ~2.6!

Finally, note that~2.1! follows from ~2.5! and ~2.6!. In short, the condition that$Ut:tPG% is
oblivious to observation implies that the evolution of any density matrixr with r̃50 is oblivious
to observation.

Remark 2.2:If the evolution of the density matrixr is oblivious to observation then it follows
by settingb5a in ~2.4! that

(
j Þk

Ua j~ t !r jk~s!Uka~2t !50 ~ for s,tPG1,aPJ!, ~2.7!

where the sum on the left is taken over allj , kPJ with j Þk. Equivalently, we can write

^f j uUtr̃~s!U2tuf j&50 ~ for s,tPG1, j PJ!. ~2.8!

We note that~2.8! doesnot imply that

Utr̃~s!U2t5 r̃~s1t ! ~ for s,tPG1!. ~2.9!

In particular, it is not true thatr̃50 impliesr̃(s)50 for sPG1 if r is oblivious to measurement
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



sis

va-
)

the

5595Marek Kanter: Can a quantum process be oblivious to observation?

                    
We can extend the scope of~2.7! under the condition that there exists an orthonormal ba
$cm :mPM % for L and a countable subsetV05$vm :mPM % of V, such that

Utf5 (
mPM

eitvm^cmuf&cm ~ for tPG,fPL !. ~2.10!

Lemma 2.1: Suppose thatr is a density matrix on L whose evolution is oblivious to obser
tion via $f j : j PJ%. If there exists an orthonormal basis$cm :mPM % satisfying (2.10), then (2.7
holds for sPG1, tPG.

Proof: Given j PJ andsPG1, define forB,V3V the quantity

u~B!5 (
~vm ,vn!PB

^f j ucm&^cmur̃~s!ucn&^cnuf j&, ~2.11!

where the dependence ofu(B) on j ands is suppressed for simplicity. Noting that

Tr„r̃~s!2
…5 (

m,nPM
u^cmur̃~s!ucn&u2, ~2.12!

it follows from the Cauchy–Schwartz inequality that

uu~B!u2<Tr„r̃~s!2
…~n j ^ n j !~B!, ~2.13!

wheren j is the finite discrete measure onV defined by

n j~V8!5 (
vnPV8

u^f j ucn&u2 ~ for V8,V!. ~2.14!

It follows that u is a finite, discrete, complex-valued measure onV3V. @It is discrete since its
support isV03V0 . It is finite since its total variation norm is bounded by (Tr„r̃(s)2

…)1/2.]
It follows from ~2.11! that ~2.8! can be rewritten as

E
V3V

eit ~v2w! du~v,w!50 ~ for tPG1!. ~2.15!

This can be further simplified as

E
V
eitx dū~x!50 ~ for tPG1!, ~2.16!

whereū is the finite discrete measure onV defined by

ū~V8!5u~$~v,w!:vPV,wPV,v2wPV8%!, ~2.17!

for V8,V. It then follows from the version of von Neumann’s ergodic theorem given in
Appendix thatū is a continuous measure.~See Remark 5.2.! Thus ū is the zero measure onG.
This proves that~2.7! holds for allsPG1, tPG. h

The next lemma elaborates some known facts. IfP5(Pjk : j ,kPJ) is a doubly stochastic
matrix andyP l 2(J), we definePyP l 2(J) via

~Py! j5(
kPJ

Pjkyk . ~2.18!
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@Note that l 2(J) stands for the set of square summable complex-valued sequences (yj : j PJ)
equipped with the usual inner product.#

Lemma 2.2: If P5(Pjk : j ,kPJ) is a doubly stochastic matrix then (2.18) defines a linear m
P from l2(J) into itself satisfying

iPyi<iyi „f or yP l 2~J!…. ~2.19!

If J is finite then equality holds in (2.19) for a given yP l 2(J) if and only if

~Py! j5ys~ j ! ~ f or j PJ!, ~2.20!

for all s in the nonempty set of permutations on J satisfying

Pjk.0 „i f k5s~ j !…. ~2.21!

Proof: We start by duplicating the known8 proof of ~2.19!. In fact,

(
j

u~Py! j u2<(
j

S (
k

PjkD S (
k

Pjkuyku2D , ~2.22!

using the Cauchy–Schwartz inequality. Now the right-hand side of~2.22! is equal toiyi2 by
virtue of the hypotheses onP. This proves~2.19!.

The condition for equality in the Cauchy–Schwartz inequality entails that equality hold
~2.22! if and only if there exists$b j• j PJ,b jPR,b jÞ0%, such that

~Pjk!1/25b j~Pjk!1/2yk ~ for kPJ!. ~2.23!

Now rewrite ~2.23! as

yk5b j
21 ~ if Pjk.0!. ~2.24!

It follows from ~2.24! that

~Py! j5 (
Pjk.0

Pjkb j
215b j

21, ~2.25!

where the sum in~2.25! is taken overk such thatPjk.0. Use~2.24! once again to get

~Py! j5yk ~ if Pjk.0!. ~2.26!

Suppose now thatJ is finite. It is then well known that there exists a permutations on J
satisfying ~2.21!. ~See, e.g., Marcus and Minc.9! For such a permutation~2.20! follows from
~2.26!. Conversely, if~2.20! is satisfied for some permutations, then clearly equality holds in
~2.19!. h

We can now present the main result of this section.
Theorem 2.1:Let J be finite and letr be a density matrix on L whose evolution is oblivio

to observation via$f j : j PJ%. Let y(t, j )5r j j (t) for tPG and jPJ. Then for sPG1 there exists a
permutationss of J such that

y~s, j !5y„0,ss~ j !… ~ f or j PJ!. ~2.27!
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Proof: SinceJ is finite, the spectral theorem for unitary groups on finite-dimensional ve
spaces10 entails that the conditions of Lemma 2.1 are met. It follows that~2.7! holds forsPG1

and tPG. Letting a5b in ~2.4!, it follows that ~2.1! holds forsPG1 and tPG. Let t52s in
~2.1! and use~2.5! to conclude that

(
a, j PJ

raaPa j~s!Pjk~2s!5rkk ~ for sPG1,kPJ!. ~2.28!

Now let yP l 2(J) be defined byyj5r j j for j PJ. It follows from ~2.19! that iP* (s)yi
<iyi , whereP* (s) stands for the adjoint ofP(s). Lettingz5P* (s)y, it follows from ~2.19! and
~2.28! that iyi5iP* (2s)zi<izi . Thus

iyi5iP* ~s!yi . ~2.29!

If we now choose a permutationss on J satisfying~2.21! with P* (s) substituted forP, it follows
from ~2.20! that ~2.27! holds. h

III. MAIN RESULTS

In this section we will explore the consequences of~1.3!, progressing from the case whenJ is
finite to the case whenJ is infinite. We will end with a simple characterization of the setJc and
the condition thatJd5J.

Theorem 3.1: Suppose that J is finite and the quantum process$Ut:tPG% is oblivious to
observation via$f j : j PJ%. Then (1.4) holds and Jd5J. Furthermore, F(0,j )50 for all j in J and
there exists a function f from J to R such that

F~ t11,j !5F~ t, j !1 f „s t~ j !… ~ f or tPG, j PJ!. ~3.1!

Proof: If r5Qj , then its evolution is oblivious to observation by Remark 2.1. Lets51 in
~2.27! to see thatrkk(1)51 if and only if s1(k)5 j . On the other hand,rkk(1)5Pjk(1) by ~2.5!,
henceu^f j (1)ufk&u51 if and only if k5s1( j ). Thus,u^fs( j )(1)uf j&u51 for all j in J, wheres
stands for the permutations1

21. It follows that

f j~1!5ei f ~ j !fs~ j ! ~ for j PJ!, ~3.2!

for some functionf from J to R. ~f is not unique.! Now iterate~3.2! to conclude~1.4! and~3.1!
when G5Z. Furthermore,Jd5J, since J is finite and ~2.10! holds by the finite-dimensiona
spectral theorem for unitary groups.~See Ref. 10, p. 234 and p. 383.!

If G5R, set r5Qj as before. Applying Theorem 2.1, it follows thatr(t)5Qh(t) , where
h(t)5s t( j ). Furthermore, it is clear from~2.10! that r(t) must be a continuous function fromR
into the space of linear operators on a finite-dimensional vector space. SinceJ is discrete and
h(0)5 j , this continuity property impliesh(t)5 j for all t in R. Now remember~2.5! to conclude
that u^f j (t)uf j&u51 for all t in R. In other words,

f j~ t !5ei f j ~ t !f j ~ for tPR!, ~3.3!

where f j is a function fromR into R. Using ~2.10! it follows that f j (t)5t f ( j ) for some function
f from J into R. Thus~1.4! and ~3.1! hold in this case too. h

To remove the restriction thatJ be finite, it is convenient to rewrite~1.3! as

(
j Þk

^f j ufa~s!&^fa~s!ufk&^fkufb~2t !&^fb~2t !uf j&50, ~3.4!
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for a, bPJ ands, tPG1, where the double sum is taken over allj , k in J with j Þk. @Note that
if the double sum in~3.4! is unrestricted, then the result isPab(s1t).#

Definition 3.1:Let H(L) stand for the Hilbert space of Hilbert–Schmidt operatorsQ on L,
with norm

iQiHS5„Tr~QQ* !…1/2
„for QPH~L !…, ~3.5!

whereQ* stands for the adjoint ofQ. Let HI(L) stand for the closed subspace ofH(L) consisting
of all operatorsQ, satisfying

U2tQUt5Q ~ for tPG!. ~3.6!

Given QPH(L), let PI(Q) stand for the projection ofQ onto the linear subspaceHI(L).
Lemma 3.1: Let the quantum process$Ut:tPG% be oblivious to observation. Given aPJ and

TPG, TÞ0, let

Q̄a~T!55 uTu21 (
T`0<t,T~0

Qa~ t ! ~ i f G5Z!,

uTu21E
@T`0,T~0#

Qa~ t !dt ~ i f G5R!.

~3.7!

Then Q̄a(T) converges in the norm (3.5) to a limit Qa(`) as uTu→`. Furthermore, Qa(`)
5PI(Qa) and Q̃a(`)50.

Proof: Consider the group$Wt:tPG% of unitary operators onH(L) defined by

Wt~Q!5U2tQUt
„for tPG,QPH~L !…. ~3.8!

It is clear thatWt(Qa)5Qa(t) for aPJ. Applying von Neumann’s mean ergodic theorem
$Wt:tPG% yields the desired convergence ofQ̄a(T) to PI(Qa). ~See the Appendix for a stateme
of von Neumann’s theorem.!

To prove thatQ̃a(`)50, assumeT.0 andG5Z for notational simplicity. Now use~3.4! to
write

(
j Þk

(
s,t50

T21

T22^f j uQa~s!ufk&^fkuQa~2t !uf j&50. ~3.9!

Let T→1` to get

(
j Þk

^f j uQa~`!ufk&^fkuQa~`!uf j&50. ~3.10!

h

Remark 3.1:Note thatQa(`) is the limit of non-negative definite operators, henceQa(`) is
also non-negative definite.~I.e., ^fuQa(`)uf&>0, for all fPL.!

We shall henceforth considerJ as a locally compact Hausdorff space,11 all of whose subsets
are open. Thus, any function defined onJ is automatically continuous.

Definition 3.2:Let C`(J) stand for the set of all real-valued functionsq on J that vanish at
infinity. @I.e., for alle.0, there exists a finite setJe,J such thatuq( j )u,e for j ¹Je .# If J is finite
then all real-valued functions onJ are inC`(J).

Definition 3.3: We let SI(L) stand for the set of bounded self-adjoint operatorsQ on L
satisfying~3.6! and Q̃50 ~recall definition 2.2!. For QPSI(L), we defineD(Q) to be the real-
valued functionq on J, specified by
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q~ j !5^f j uQuf j& ~ for j PJ!. ~3.11!

We defineCI(J) to be the set of functionsq in C`(J) such thatq5D(Q) for someQPSI(L).
Remark 3.2:If QPHI(L) andQ is self-adjoint, then clearlyD(Q)PC`(J). In particular, it

follows that

D„Qj~`!…PCI~J! ~ for j PJ!. ~3.12!

Definition 3.4:Given j , k in J, write j ;k if q( j )5q(k) for all qPCI(J). This defines an
equivalence relation onJ. ForkPJ, let @k# stand for the set of allj PJ with j ;k. Define@`#,J
by

@`#5$ j : j PJ,q~ j !50, for all qPCI~J!%. ~3.13!

Lemma 3.2: Suppose qPC`(J) vanishes on@`# and satisfies

q~ j !5q~k! ~ f or j ,kPJ with j;k!. ~3.14!

Then qPCI(J).
Proof: It suffices to show thatq can be represented as a member ofCI(J) on the complement

of @`#; hence we may assume without loss of generality that@`# is empty. Let@J# stand for
$@ j #: j PJ%. We may consider@J# as a locally compact Hausdorff space, all of whose subsets
open. Let@C`(J)# stand for the set of functionsq in C`(J) that satisfy~3.14!, considered as
functions on@J#; define@CI(J)# similarly. Note that@C`(J)# is a real algebra of functions on@J#.
The lemma will follow if we can show that@CI(J)#5@C`(J)#. It is easy to verify that all
elements of@C`(J)# vanish at infinity, thus our lemma will follow from the Stone–Weierstra
theorem for locally compact Hausdorff spaces12 if we can show that@CI(J)# is a uniformly closed
subalgebra of@C`(J)# that separates points in@J#. In fact, @CI(J)# separates points in@J# by the
definition of the equivalence relation.

To prove that@CI(J)# is uniformly closed it suffices to show thatCI(J) is uniformly closed.
Consider the linear operatorQL mappingCI(J) to SI(J), defined by

QL~q!5(
j PJ

q~ j !Qj „for qPCI~J!…. ~3.15!

QL satisfies the inequality

iQL~q!fi<~supj uq~ j !u!ifi ~ for fPL !. ~3.16!

It follows that if qn in CI(J) converges uniformly toq` , then q`PC`(J) and QL(qn)f
converges toQL(q`)f for all f in L, whereQL(q`)PSI(J) is defined as in~3.15!. SinceQL(qn)
satisfies ~3.6! and Q̃L(qn)50 for all n, the same is true forQL(q`). Furthermore,q`

5D„QL(q`)…, henceq`PCI(J) andCI(J) is uniformly closed.
Finally SI(L) is a commutative algebra of self-adjoint operators, henceCI(J) is an algebra of

real functions onJ. @For example, note thatD(PQ)5D(P)D(Q) for P,Q in SI(L).# It follows
that @CI(J)# is a subalgebra of@C`(J)#. h

Definition 3.5:For kPJ we let uku stand for the number of elements in@k#.
Lemma 3.3: Suppose the quantum process$Ut:tPG% is oblivious to observation via$f j : j

PJ%. Then

Jc5$ j : j PJ,Qj~`!50%. ~3.17!

Furthermore, for k in Jd, uku is finite and Qk(`)5uku21Q@k# , where
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Q@k#5 (
j P@k#

Qj . ~3.18!

Proof: Letting U jk(t)5^f j (t)ufk&, note that

Tr„Qj~0!Qj~ t !…5uU j j ~ t !u2 ~ for tPG!. ~3.19!

It follows that

Tr„Qj~0!Qj~ t !…5E
V
eitvd~m j* m̃ j !~v ! ~ for tPG!, ~3.20!

wherem j is defined by settingf5f j in ~1.1! and m̃ j is defined by settingm̃ j (B)5m j (2B) for
any Borel setB,V. ~Here* denotes convolution.! Now j PJc is equivalent tom j* m̃ j ($0%)50.
Furthermore,

~m j* m̃ j !~$0%!5iPI~Qj !i2 ~ for j PJ!, ~3.21!

by ~A5! in the Appendix.@Let $Wt:tPG% in Theorem 5.1 be specified as in~3.8!, and letv50 in
~A5!.# This proves~3.17!, sincePI(Qj )5Qj (`) is clearly inSI(L)ùHI(L).

We now know thatQk(`) is the unique element ofSI(L)ùHI(L) specified by minimizing

ek~Q!5~ iQk2QiHS!2, ~3.22!

over Q in SI(L)ùHI(L). Sinceqk5D„Qk(`)…PCI(J), we can write

ek„Qk~`!…5u12qk~k!u21~ uku21!uqk~k!u21 (
j ¹@k#

uqk~ j !u2. ~3.23!

Clearly the right-hand side of~3.23! is minimized if the last term is 0. Thus, the lemma w
follow if kPJd implies thatuku is finite andQ@k#PSI(L)ùHI(L). @Note that the functionf (q)
5u12qu21(uku21)uqu2, defined forqPR, is minimized ifq5uku21.#

Now note thatuku is finite from ~3.23!. @Use ~3.17! and ~3.23! to concludeqk(k)Þ0 as a
preliminary step.# Furthermore,D(Q@k#)PCI(J) by Lemma 3.2, andQ@k# is obviously inHI(L)
when uku is finite. ThusQ@k#PSI(L)ùHI(L). h

Definition 3.6:Given any subsetS,L, we letS', the orthogonal complement ofS in L, stand
for the set of all vectorsf in L orthogonal to all vectorsc in S. Clearly S' is always a closed
linear subspace ofL.

Lemma 3.4: Suppose the quantum process$Ut:tPG% is oblivious to observation via$f j : j
PJ%. Given kPJd, let Lk stand for the closed linear subspace of L spanned by$f j : j P@k#%. Then
Lk and Lk

' are invariant under Ut for tPG.
Proof: It follows from Lemma 3.3 thatQ@k# satisfies~3.6!. ThusLk is invariant underUt for

tPG, sinceQ@k# is the projection operator onto the subspaceLk . It follows immediately thatLk
'

is also invariant underUt for all tPG. h

Theorem 3.2: Suppose the quantum process$Ut:tPG% is oblivious to observation via
$f j : j PJ%. Let L(Jd) and L(Jc) be defined, respectively, as the closed linear span of$f j : j
PJd% and $f j : j PJc%. Then L(Jd) and L(Jc) are invariant under Ut for all t PG, and L can be
orthogonally decomposed as

L5L~Jd! % L~Jc!. ~3.24!

Furthermore, there exists a permutations of Jd onto itself such that (1.4) and (3.1) hold for
PJd, and such that
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s~ j 1!;s~ j 2! ~ f or j 1 , j 2PJd, with j1; j 2!. ~3.25!

Proof: GivenkPJd, let J2@k# stand for the complement of@k# in J. ClearlyLk
' is the closed

linear subspace ofL spanned by$f j : j PJ2@k#%. It follows from Lemma 3.4 that the quantum
process$Ut:tPG% on the Hilbert spaceLk ~on the Hilbert spaceLk

'! is oblivious to measuremen
via $f j : j P@k#% ~via $f j : j PJ2@k#%!, respectively. Applying Theorem 3.1 to$Ut:tPG% re-
stricted toLk , it follows that there exists a permutations of @k# such that~1.4! and~3.1! hold for
j P@k#.

If there exists an elementi PJd2@k#, thenLk
' can be orthogonally decomposed as

Lk
'5Li % Lki

' , ~3.26!

where Lki stands for the closed linear subspace ofL spanned by$f j : j P@k#ø@ i #%. Applying
Lemma 3.4 to$Ut:tPG% restricted toLk

' , it follows that Li and Lki
' are invariant under$Ut:t

PG%. Applying Theorem 3.1 to$Ut:tPG% restricted toLk% Li , it follows that there exists a
permutations of the finite set@k#ø@ i # such that~1.4! and~3.1! hold whenJ5@k#ø@ i #. To prove
~3.25! whenJ5@k#ø@ i #, it suffices to show thats(@k#)5@k#. In fact, for tPG,

UtQjU
2t5Qs t~ j ! ~ for j P@k#ø@ i # !, ~3.27!

using ~1.4!. It follows that

UtQ@k#U
2t5 (

j P@k#
Qs t~ j ! ~ for tPG!. ~3.28!

SinceQ@k# satisfies~3.6!, the above equation can be rewritten as

(
j P@k#

Qj5 (
j P@k#

Qs t~ j ! ~ for tPG!. ~3.29!

This proves thats t(@k#)5@k# for tPG.
The validity of ~3.25! established so far shows that the permutations of @k#ø@ i # correspond-

ing to $Ut:tPG% restricted toLk% Li can be made to agree on@k# with the permutations
corresponding to$Ut:tPG% restricted toLk . Thus, we may apply the above arguments ind
tively to finish the proof of the theorem, since the permutations can be extended consistently
each stage.@Relabelling indices at thenth stage, we decomposeL orthogonally as

L5L1% ••• % Ln% L1•••n
' , ~3.30!

where $1,...,n%,Jd and L1•••n5L1% ••• % Ln is the closed linear subspace ofL spanned by
$f j : j Pøm51

n @m#%.# If the induction terminates atn finite, then we are done. Otherwise it is ea
to show that

Lc~J!5 ù
n51

`

L1•••n
' . ~3.31!

We get~3.24! by combining~3.30! and ~3.31!. h

Theorem 3.2 is our main result. However, it is helpful for expository purposes to prese
alternate way of characterizing the setJc and the condition thatJd5J.

Definition 3.7:Let Lc stand for the set of all vectorsf in L whose associated spectral measu
mf in ~1.1! is continuous. LetLI stand for the set ofc in L such that the projection operatorQ
5c&^c satisfies~3.6!.

Lemma 3.5: Lc is a closed linear subspace of L satisfying
J. Math. Phys., Vol. 38, No. 11, November 1997
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Lc5LI
' . ~3.32!

Proof: Note thatc&^c satisfies~3.6! if and only if c(t)5Utc is of the form

c~ t !5eivtc ~ for tPG!, ~3.33!

for somevPV. @If c&^c satisfies~3.6! thenc(t)5h(t)c for some functionh from G into the set
of complex numbers of modulus 1. Thus, the linear space spanned byc is invariant under
$U(t):tPG% and~2.10! holds by the spectral theorem for unitary groups in one dimension.# Now
use~A5! in the Appendix to verify thatfPLI

' if and only if mf($v%)50 for all vPV. h

Remark 3.3:It is now clear that

L~Jc!,Lc, ~3.34!

sinceLc is a linear subspace ofL and f jPLc for all j PJc. It is also clear from the proof of
Lemma 3.5 that we can characterizeJc as the set ofj in J such thatf j is orthogonal to any vecto
c in L that satisfies~3.33!. ThusJd5J if and only if L5L(Jd).

Remark 3.4:We conclude from~3.34! that any counterexample to the conjecture that~1.4!
holds for all quantum processes$Ut:tPG% oblivious to observation should be sought within t
context of a Hilbert spaceL, all of whose elementsf have continuous spectral measuremf .

Remark 3.5:The set inclusion~3.34! can be strict since it is possible that a nontrivial line
combination of vectors inL(Jd) will have a continuous spectral measure.~Remember that forj
PJd the spectral measure corresponding tof j may have a continuous component as well a
discrete component.!

IV. CONCLUDING REMARKS

Can we regard the results summarized in Theorem 3.2 as obvious? If we can, then it
also be obvious that nonclassical consistent histories cannot exist over an infinite time p
Furthermore, the restrictionj PJd in Theorem 3.2 should be unnecessary. However, it does
seem to be an easy mathematical task to remove this restriction, even if~1.3! is strengthened as in
~1.9!. @The argument in Ref. 3 deriving~1.11! from ~1.9! or ~1.3! imposes the extra nonobviou
condition that the state of the system should be the same at the initial and final times
condition remains nontrivial if the time interval is extended to infinity.# Thus, accepting the abov
arguments, it does not seem that the results we have presented are mathematically o
Nevertheless, our results may be physically obvious, at least to a physicist. In that case ou
has no new physical implications. On the other hand, if it turns out that Theorem 3.2 is
outside ofJd, then our work has physical implications, since physical intuition will have b
proved wrong.

APPENDIX: BACKGROUND MATERIAL AND LOOSE ENDS

In this section we will briefly summarize von Neumann’s mean ergodic theorem, as w
demonstrating the implication from Theorem 1.1 to Theorem 1.2. We shall phrase our argu
in the context of various Hilbert spaces:L, H(L), or even a general separable Hilbert spaceH that
is free to represent eitherL or H(L). The groupsG andV are defined as before.

Theorem 5.1 „Von Neumann’s Mean Ergodic Theorem…: Let $Wt:tPG% be a quantum
process on H. ForvPV let Hv stand for the closed linear subspace of H consisting of th
vectors h, such that

Wth5eitvh ~ for tPG!. ~A1!

Given TPG, TÞ0, and hPH, let
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ev~T,h!55 uTu21 (
T`0<t,T~0

e2 i tvWth ~ i f G5Z!,

uTu21E
@T`0,T~0#

e2 i tvWth dt ~ i f G5R!.

~A2!

Let Pv stand for the projection operator from H onto Hv . Then

lim
uTu→`

Ev~T,h!5Pv~h! ~ f or hPH !. ~A3!

Furthermore, if we define the finite measureah via

^Wthuh&5E
V
eitw dah~w! ~ f or tPG!, ~A4!

thenah is a non-negative measure and

ah~$v%!5iPv~h!i2. ~A5!

Remark 5.1:The fact thatah is a non-negative measure follows from Bochner’s theorem.~See
Ref. 10, p. 385.! Furthermore,~A3! and~A5! can be derived from Bochner’s theorem via Ston
theorem.~Ref. 10, pp. 383–390.! An elegant direct proof of~A3! is also available.13 ~See Ref. 10,
pp. 407–408 for the caseG5Z.!

Remark 5.2:It should be stressed that the quantityEv(T,h) has the same limit whethe
T→1` or T→2` in ~A3!. Thus, if ^Wthuh&50 for tPG1, then the measureah is continuous.
This fact was used in Lemma 2.1.

To complete the paper we will sketch how to derive Theorem 1.2 from Theorem 1.1. T
done by applying Theorem 1.1 in the context of the Hilbert spaceH(L) defined in Sec. III. We
replace the unitary group$Ut:tPR% with the unitary group$Wt:tPR% defined in~3.8!. Further-
more, we replaceT with the projectionT D , where

T D~Q!5(
j PJ

QjQQj „for QPH~L !…. ~A6!

Now apply Stone’s spectral representation theorem for continuous unitary groups~Ref. 10, p.
383! to see that the hypotheses of Theorem 1.2 entail the existence of a countable
$vm :mPM %,V and an orthonormal basis$cm :mPM % for L, such that

Tr„Q* Wt~Q!…5(
m,n

eit ~vn2vm!u^cmuQucn&u2, ~A7!

for tPR. Compare~A7! with ~1.1!, and apply Theorem 1.1 inH(L) with

B05$v:vPR,vÞvn2vm ,for n,mPM %. ~A8!

ClearlyB0 satisfies the conditions of Theorem 1.1 in the context ofH(L); hence we may rewrite
~1.16! as

WtS (
j PJ

QjQQj D 5(
j PJ

QjW
t~Q!Qj ~ for tPR!. ~A9!

It is now easy to argue that
J. Math. Phys., Vol. 38, No. 11, November 1997
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Wt~Qk!5Qs t~k! ~ for tPR,kPJ!, ~A10!

wheres t is a permutation onJ for eachtPR. Applying the same reasoning used to derive~3.3!,
we conclude that~1.4! holds and thatF(t, j )5t f ( j ) for some functionf from J into R.
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Quantized Kronecker flows and almost periodic quantum
field theory

Sławomir Klimek
Department of Mathematics, IUPUI, Indianapolis, Indiana 46205

Andrzej Leśniewski
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
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We define and study the properties of the infinite-dimensional quantized Kronecker
flow. This C* -dynamical system arises as a quantization of the corresponding flow
on an infinite-dimensional torus. We prove an ergodic theorem for a class of quan-
tized Kronecker flows. We also study the closely related, almost periodic quantum
field theory of bosonic, fermionic, and supersymmetric particles. We prove the
existence and uniqueness of KMS and super-KMS states for theC* -algebras of
observables arising in these theories. ©1997 American Institute of Physics.
@S0022-2488~97!01911-7#

I. INTRODUCTION

In this paper, we introduce and study the properties of quantized infinite-dimensional
necker flows. Very much like its classical counterpart, a quantized Kronecker flow is defin
terms of an infinite sequenceV of frequencies satisfying certain genericity assumptions. We de
a naturalC* -algebra of observables and show that it can be identified with an infinite te
product of standard Toeplitz algebras. A quantized Kronecker flow is a one-parameter gro
automorphisms of thisC* -algebra.

Our work has been inspired by a recent preprint.1 The structures studied in Ref. 1 can b
interpreted as an example of a quantized Kronecker flow with the set of frequenciesV equal to
$log p:p prime number%.

The infinite tensor product of standard ToeplitzC* -algebras referred to above arises natura
when one quantizes the infinite-dimensional Kronecker flow on a Bohr compactificationR.
Even though there is no parameter in this theory which would play the role of Planck’s con
one can introduce a natural concept of the classical limit.2–4 We prove that, under additiona
assumptions onV, the classical limit of the quantized Kronecker flow exists. The proof of
theorem relies on an Ingham-type Tauberian theorem. Furthermore, we study the ergodic
ties of that quantum Kronecker flow. We show that whenever the classical limit exists, the
tized Kronecker flow is quantum ergodic in the sense of Zelditch.4

Infinite-dimensional Kronecker flows lead to models of free quantum field theory in one s
dimension. In these field theories, the field operators are almost periodic functions of the
coordinatex. There is a natural notion of a mean in the theory of almost periodic functions
Bohr mean, which plays the role of the integral. Using it, we carry over much of the formalis
quantum field theory to the almost periodic setup. The construction of an almost periodic
theory requires ‘‘doubling’’ the Hilbert space of the Kronecker flow. On this Hilbert space
define the field and momentum operators, which are fundamental objects in canonical qu
field theory. It turns out that the dynamics of the quantum Kronecker flow and the almost pe
wave equation are essentially the same. We focus our discussion on the theory of free
Interacting~i.e., nonlinear! field theories exhibit some new striking phenomena and will be
cussed in a future publication.

Furthermore, we extend the construction of almost periodic field theory to incorporate f
onic and supersymmetric~i.e., Z2-graded! fields. The supersymmetric extension leads to a nat
0022-2488/97/38(11)/5605/21/$10.00
5605J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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construction of a Fredholm module over the algebra of observables associated with the
periodic quantum field and the corresponding super-KMS functional. Super-KMS function5,6

appear naturally in theZ2-graded entire cyclic cohomology theory, but have been studied
intensively than their nongraded antecedents, namely KMS states. We prove the uniquenes
super-KMS functionals for the supersymmetric model of an almost periodic quantum field th

The paper is organized as follows. In Sec. II we introduce the notation and recall basic
from the theory of almost periodic functions. We then study the ergodic properties of the
tized almost periodic Kronecker flow. The main technical input is a variant of Ingham’s Taub
theorem proved in Appendix A. As it turns out, ergodicity of the quantized Kronecker
depends on the growth properties of the setV. Examples of ergodic Kronecker systems are giv
in Appendix B. We start Sec. III with a discussion of the canonical formalism of the alm
periodic classical field theory and illustrate it with an analysis of the almost periodic wave e
tion. Then we show how to formulate the quantum version of the almost periodic wave equ
Free fermionic and supersymmetric models are introduced in Sec. IV. Finally, in Sec. V, we
the uniqueness of the super-KMS functionals for the free supersymmetric almost periodic qu
field theory.

II. KRONECKER FLOWS

In this section we introduce the central concept of this paper, namely the infinite-dimen
Kronecker flow. After a brief summary of the classical theory, we present its quantum-versio
study the properties of the resulting dynamics.

A. Almost periodic functions

First, we review some facts from the theory of almost periodic functions onR and fix our
notation.

Definition II.1: A countable ordered subsetV of R is called aKronecker systemif it satisfies
conditions~1!–~4! below.

~1! 0¹V.
~2! Let V5V1øV2 , whereV1 andV2 are the subsets of positive and negative elements oV,

respectively. ThenV is even, i.e.,V252V1 .
~3! Let vn , n51,..., be the elements ofV1 listed in increasing order. Thenvn→`, asn→`.
~4! The elements ofV1 are algebraically independent overZ.

Two natural examples of a Kronecker system arise as follows.
Example 1:Let K be an algebraic number field andB the the set of its prime ideals. Set

V5$6 log NP:PPB%,

where NP denotes the norm ofP. Then V is a Kronecker system. In particular, the uniq
factorization property of ideals implies thatV1 consists of numbers algebraically independe
over Z. This example is taken from Refs. 1 and 7–9.

Example 2:Let m be a transcendental real number, and let

V5$6An21m2:nPN%.

Then V is a Kronecker system. This example is motivated by two-dimensional quantum
theory.

Let V̄,R be the set of linear combinations of elements ofV with coefficients inZ. In other
words,V̄ is the free Abelian group generated byV1 :

V̄5Z@V1#.
J. Math. Phys., Vol. 38, No. 11, November 1997
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We will use the notationAP ~V! for the vector space of continuous almost periodic functions
R with frequencies inV. This means that a functionf PAP (V) has the following uniformly
convergent Fourier expansion:

f ~x!5 (
vPV

f veivx.

Likewise, AP (V̄) will denote the space of continuous almost periodic functions onR with
frequencies inV̄. Unlike AP ~V!, the spaceAP (V̄) forms a unital commutativeC* -algebra.
This C* -algebra can be identified with theC* -algebra of continuous functions on the followin
Bohr compactification ofR.

Let R̄V denote the infinite Cartesian product of unit circles,R̄V5PvPV1
S1, equipped with

the Tikhonov topology. The embedding

R{x→ )
vPV1

exp ivxP )
vPV1

S1 ~II.1!

induces an isomorphismC(R̄V).AP (V̄) ~see Ref. 10!.
The product of Lebesgue measures onS1 defines an integral*ap on C(R̄V) and, consequently

on AP (V̄). Explicitly, in terms of Fourier series we have

E
ap

(
hPV̄

f heihx dx5 f 0 . ~II.2!

For later reference, we note that the almost periodic Dirac’s delta distributiondV defined by

dV~x!5 (
vPV

eivx ~II.3!

is the Schwartz kernel of the projection

AP ~V̄!{ f→E
ap

dV~x2y! f ~y! dyPAP ~V!.

This projection ‘‘forgets’’ all terms in the Fourier series whose frequencies are not inV.
The embedding~II.1! defines a Kronecker-type flowa t on R̄V given by

a tS )
vPV1

eixvD 5 )
vPV1

eixv1 i tv. ~II.4!

As a consequence of our assumptions onV, this flow is ergodic.

B. Quantum Kronecker flow

We will now construct a quantization of the classical dynamical system„AP (V̄),a t…, and
study the ergodic properties of the resulting quantum Kronecker flow. The quantization w
given in terms of an algebra of operators on a Hilbert space, the ‘‘algebra of observables.

Set H15 l 2(V1), and consider the bosonic Fock spaceF bH1 defined as the symmetri
tensor algebra overH1 ,
J. Math. Phys., Vol. 38, No. 11, November 1997
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F bH15 %

n50

`

SnH1 ,

where SnH1 is the nth symmetric tensor power ofH1 ~with S0H15C!. The vectorv0

5(1,0,0,...)PF bH1 is called thevacuum. The Hilbert spaceF bH1 can be naturally identified
with l 2(N@V1#), whereN@V1# is the non-negative cone in the latticeZ@V1#. In the example of
an algebraic number fieldK, the setN@V1# can be identified with the set of all ideals ofK.

Alternatively, there is a natural isomorphism ofF bH1 with an infinite tensor product

F bH1. ^

vPV1

l 2~N@v#!. ~II.5!

In von Neumann’s terminology, ifen(v), n50,1,2,..., is the canonical basis inl 2(N@v#), then the
above tensor product is the incomplete tensor product associated with the sequence of
„e0(v),e0(v),e0(v),...…. Furthermore, the Fourier transform allows us to identify the sp
l 2(Z@V1#) with L2(R̄V), and the Fock spaceF bH1. l 2(N@V1#) with the closed subspac
L1

2 (R̄V) of L2(R̄V) consisting of functions with non-negative frequencies.
Let P be the orthogonal projection ontoL1

2 (R̄V),L2(R̄V). Every f PC(R̄V) defines a
Toeplitz operator T( f ) on L1

2 (R̄V).F bH1 by

T~ f !5PM~ f !P,

whereM ( f ) is the operator onL2(R̄V) of multiplication by f . Recall thatT( f ) is continuous inf ,
iT( f )i<i f i` , wherei f i` denotes the sup norm off .

Let A1 be theC* -algebra generated by the Toeplitz operators. It is not difficult to see
A1 coincides with the~reduced! C* -algebra of the semigroupN@V1#. For hPN@V1#, let e(h)
denote the canonical basis element inl 2(N@V1#).F bH1 . Let H1 be an unbounded, self
adjoint operator inF bH1 defined by

H1e~h!5he~h!, ~II.6!

and let U(t)5eitH 1 be the corresponding one-parameter group of unitary operators. The
„A1 ,U(t)… is a quantization of„C(R̄V),a t… which we call thequantum Kronecker flow.

Recall that the standard ToeplitzC* -algebraI is theC* -algebra generated by a single ge
eratoru satisfying the relationu* u5I . The following proposition can be proved by the meth
used in the proofs of Propositions 7 and 8 in Ref. 1.

Proposition II.2. (1) TheC* -algebraA1 is an infinite tensor product of ToeplitzC* -algebras
Iv ,

A15 ^

vPV1

Iv ,

whereIv is generated by the unilateral shift uv5T(eixv).
(2) For everyb.0 there exists a unique KMSb state for„A1 ,U(t)….

C. Ergodic theorem

We will show now that the quantum dynamical system constructed above is in fact a q
zation of the classical Kronecker flow. Even though there is no Planck’s constant in this th
one can still introduce a natural concept of itsclassical limit. Such a construction of the classic
limit was originally proposed in Refs. 2–4, and consists in the following. Ifa is an operator on
F bH1 andE.0, we set
J. Math. Phys., Vol. 38, No. 11, November 1997
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tE~x!:5
1

N~E! (
N@V1#Ph<E

„e~h!,ae~h!…, ~II.7!

whereN(E) is the number of eigenvalues ofH1 less than or equal toE. The theorem which we
are about to formulate describes the classical limit of„A1 ,U(t)….

We will need additional assumptions on the setV1 to guarantee the existence of the classi
limit. Specifically, assume that for everys.0,

u~s!:5 (
n51

`

e2svn,`. ~II.8!

This implies that the followingz-type function,

zV~s!:5 )
n51

`

~12e2svn!21, ~II.9!

converges for alls.0. Expanding each term ofzV(s) in a power series and multiplying out th
terms, we can expresszV(s) as the following Lebesque–Stietljes integral:

zV~s!511E
0

`

e2sx dN~x!,

where, as above,N(x) is the counting function for the eigenvalues ofH1 . Equivalently, we can
write this formula as

ef~s!511E
0

`

e2sx dN~x!, ~II.10!

where f(s):52(n51
` log (12e2svn). In Appendix A we study~II.10! recast in the following

form:

ef~s!

s
5E

0

`

e2sx
„N~x!11… dx. ~II.11!

Theorem II.3: In addition to the assumptions above, letf(s) satisfy conditions (1)–(3) and
(a)–(g) of Appendix A. Then,

(1) For every fPC(R̄V),

lim
E→`

tE„T~ f !…5E
ap

f ~x! dx.

(2) For every f,gPC(R̄V),

lim
E→`

tE„T~ f !T~g!2T~ f g!…50.

(3) For every aPA1 , the limit

lim
E→`

tE~a!5:t~a!.

exists.
J. Math. Phys., Vol. 38, No. 11, November 1997
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(4) Let pt be the GNS representation ofA1 with respect to the statet. Then,

pt~A1!.C~R̄V!,

and for every aPA1 we have

pt„U~ t !aU~2t !…5a t„pt~a!….

Proof: We first introduce some notation. As before,uv5T(eixv) denotes the unilateral shift
We set

uv~n!:5H uv
n , if n>0,

~uv* !2n, if n,0.

It is easy to verify that

U~ t !uv~n!U~2t !5einvtuv~n!. ~II.12!

If f PC(R̄V) is a trigonometric polynomial,

f S) eixvD5 (
$nv%

f nv
einvxv,

then the corresponding Toeplitz operatorT( f ) is explicitly given by

T~ f !5(
nv

f nv
uv~nv!.

It follows that for anyh,

„e~h!,T~ f !e~h!…5 f 05E
ap

f ~x! dx.

This and the continuity ofT( f ) in f prove part~1! of Theorem II.3.
For later reference, notice also that as a consequence of~II.12!,

U~ t !T~ f !U~2t !5T„a t~ f !…. ~II.13!

The structure of the standard Toeplitz algebra implies that operatorsT( f )T(g)2T( f g) gen-
erate the commutator idealI of A1 . The quotientA1 /I is isomorphic toC(R̄V), and the
quotient mapp:A1→C(R̄V) is called the symbol map. We claim that

t~a!5 lim
E→`

tE~a!5E
ap

p~a!~x! dx, ~II.14!

for all aPA1 . In other words, the statet is trivial on the commutator ideal, and it coincides wi
the Lebesgue integral on the abelian quotient. Parts~2! and~3! of Theorem II.3 are straightforward
consequences of~II.14!. Formula ~II.14! implies also thatpt(A1) is isomorphic the algebra
C(R̄V). The last statement of the theorem follows now from~II.13!.

To prove~II.14!, it is enough, in view of part~1! of Theorem II.3, to show that

lim
E→`

tE~a!50, if aPI .
J. Math. Phys., Vol. 38, No. 11, November 1997
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The structure of the standard Toeplitz algebraI implies thatI is generated by the operators of th
form

a5av1
^ av2

^ ••• ^ avN
^ I ^ I •••, ~II.15!

where at least one of the operatorsav1
...avN

, sayavk
, is compact. By a density argument, it is n

loss of generality to assume thatavk
is a finite rank operator whose range is spanned by fini

many elements of the canonical basis. LetP be the orthogonal projection onto this subspace. T

tE~a!<
iai

N~E! (
N@V1#{h<E

„e~h!,Pe~h!….

Since the spectrum ofH1 is the set$( nvv:nv>0%, we have to show that for any integerM ,

#$nv>0,nvk
<M :( nvv<E%

#$nv>0:( nvv<E%
→0, as E→0. ~II.16!

The numerator of the lhs of~II.16! is equal toN(E)2N„E2vk(M11)…, and so we have to show
that

N~E!2N„E2vk~M11!…

N~E!
→0, as E→0.

Formula ~II.11! and Corollary A.3 yieldN(E11)5N(E)(11o(1)). Consequently,~II.16! fol-
lows, and the theorem is proved. h

Remark:If V15$ log p:p prime number%, then it is easy to see thatN(E);eE and ~II.16! is
not true. It would be interesting to determine the classical limit in this case. Note also tha
prime number theorem implies thatf(s) is divergent fors<1, and so the Tauberian theorem
Appendix A does not apply.

It follows now from the general results in Ref. 4 that the quantum Kronecker flow„A1 ,U(t)…
is quantum ergodic in the following sense.

Theorem II.4: Under the assumptions of Theorem II.3, for every aPA1 ,

lim
M→`

1

M E
0

M

U~ t !aU~2t ! dt5t~a!I 1A,

where A is in the weak closure ofA1 , and

lim
E→`

tE~A* A!50.

In other words, the time average of a quantum observable is equal to its spatial average
correction which vanishes in the classical limit.

III. ALMOST PERIODIC BOSE FIELD

In this section we define the free almost periodic quantized field. It arises as the res
canonical quantization of the classical almost periodic wave equation. Using Bohr’s mea
propose a canonical formulation of the latter, and apply the standard quantization procedu
resulting quantum dynamical system is a ‘‘double’’ of the Kronecker dynamics studied in
previous section.
J. Math. Phys., Vol. 38, No. 11, November 1997
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A. Wave equation

We first introduce some notation. For a smooth functionH:AP (V)→C we let ¹ fH denote
the Frechet derivative ofH in the direction of f PAP (V). The functional derivative
dH(f)/df(x) is, by definition, the distribution onAP ~V! such that

“ fH~f!5E
ap

dH~f!

df~x!
f ~x! dx.

The canonical complex structure onAP ~V! defines a symplectic structure onAP ~V! for which
positions are real functions and momenta are purely imaginary functions. The respective c
nates will be denoted byf(x) andp(x) so thatdH(f,p)/df(x) is the functional derivative in
the real direction, anddH(f,p)/dp(x) is the functional derivative in the imaginary directio
The symplectic spaceAP ~V! is the phase space for almost periodic field theory.

Every smooth functionH:AP (V)→R defines a Hamiltonian flow onAP ~V! by

df~x,t !

dt
5

dH

dp~x!
,

dp~x,t !

dt
52

dH

df~x!
. ~III.1!

The Poisson bracket of two functionsF andG on AP ~V! is defined by

$F,G%5E
ap

S dF

df~x!

dG

dp~x!
2

dF

dp~x!

dG

df~x! D dx,

and so the flow~III.1! can be written as

dF„f~ t !,p~ t !…

dt
5$F,H%. ~III.2!

A straightforward calculation shows that

$f~x,t !,p~y,t !%5dV~x2y!, $f~x,t !,f~y,t !%50, $p~x,t !,p~y,t !%50. ~III.3!

We will now formulate the almost periodic free field theory. The dynamics is given by
wave equation,

]2f

]t2 2
]2f

]x2 50. ~III.4!

Equation~III.4! can be written in the form~III.1! with the Hamiltonian

H~f,p!5
1

2 E
ap

~p~x!21„]xf~x!…2! dx.

For this Hamiltonian, Eqs.~III.1! read

df

dt
5p,

dp

dt
5]x

2f, ~III.5!

and lead to~III.4!. The most general solution of~III.5! can be written in the following form:

f~x,t !5 (
vPV

~f1,veiv~x1t !1f2,veiv~x2t !!,

~III.6!
J. Math. Phys., Vol. 38, No. 11, November 1997
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p~x,t !5 (
vPV

iv~f1,veiv~x1t !2f2,veiv~x2t !!.

The reality condition impliesf̄1,v5f1,2v andf̄2,v5f2,2v . In quantum field theory it is conve
nient to parametrize the above solutions slightly differently. We set

av5A2uvu1/23H f1,2v if v.0,

f2,2v if v,0.

The new variablesav have the following Poisson brackets:

$av ,āv8%5dv,v8 , $av ,av8%5$āv ,āv8%50. ~III.7!

Equations~III.6! can then be recast in the following form:

f~x,t !5
1

A2
(

vPV
uvu21/2~ āveit uvu1a2ve2 i t uvu!eivx,

~III.8!

p~x,t !5
1

A2
(

vPV
uvu1/2~ āveit uvu2a2ve2 i t uvu!eivx.

B. Quantum bosonic field

We shall now describe a quantization of the algebra of functionsAP ~V! and of the dynamics
~III.5!. We will follow the procedure of canonical quantization which is adopted in quantum
theory.

The standard rule of quantization consists in replacing classical observables by operato
Poisson brackets by (1/i )3commutators. For simplicity we set\51. More precisely, quantization
of the almost periodic wave equation proceeds as follows. We find almost periodic, Herm
operator-valued distributionsf(x,t) and p(x,t) such that~III.5! is satisfied. Furthermore, w
require that@see~III.3!#

@f~x,t !, p~y,t !#5 idV~x2y!,

@f~x,t !, f~y,t !#50, @p~x,t!, p~y,t!#50. ~III.9!

The quantum HamiltonianHb determines the time evolution of the field operators given by
Heisenberg equations of motion,

df

dt
5

1

i
@f, Hb#,

dp

dt
5

1

i
@p, Hb#. ~III.10!

We construct operatorsav andav* as in ~III.8!, satisfying the commutation relations

@av , av8
* #5dv,v8 , @av , av8#5@av* , av8

* #50, ~III.11!

and such thatav* is the Hermitian conjugate ofav . Operatorsav andav* are called annihilation
and creation operators, respectively.

If one additionally assumes the existence of a cyclic vectorv0 such thatavv050 and some
natural domain restrictions, it is known that the algebra~III.11! has a unique representation
terms of a Fock space which we will describe now.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let H5 l 2(V) and consider the bosonic Fock spaceF bH. As before, the vectorv0

5(1,0,0,...)PF bH is called the vacuum. The Hilbert spaceF bH can be naturally identified with
l 2(N@V#), whereN@V# is the set of non-negative, integer, finite combinations of elements oV.
Alternatively,

F bH. ^

vPV

l 2~N@v#!, ~III.12!

as in ~II.5!.
Let e(h), hPN@V#, be the canonical orthonormal basis inl 2(N@V#).F bH. The setN@V#

is, in a natural way, a semigroup with respect to addition. Writing

N@V#{h5( nvv, vPV,

where almost all numbersnv are zero, we define the creation operatorsav* by

av* e~h!5Anv11e~h1v!. ~III.13!

The field operatorsf(x,t) andp(x,t) are then defined by means of formula~III.8!.
The Hamiltonian of the free almost periodic quantum field theory is given by the fam

expression

Hb5 (
vPV

uvuav* av5
1

2 E
ap

:~p~x!21„]xf~x!…2!: dx, ~III.14!

where : : means Wick ordering. The canonical basis$e(h)% is the basis of eigenvectors forHb ,

Hbe~h!5S ( nvuvu De~h!. ~III.15!

Let D be the dense subspace ofF bH consisting of finite linear combinations of the bas
elementse(h). It is an invariant domain forav andav* , and is a core forHb .

Proposition III.1: With the above definitions, the operator-valued distributionsf~x,t! and
p~x,t!, and the Hamilton operator Hb satisfy Eqs. (III.5), (III.9) and (III.10) onD .

Proof: The proof is a direct calculation following essentially the similar argument in stan
quantum field theory,~see, e.g. Ref. 11!. h

The quantum dynamics described in this section is very closely related to the quantum
necker flow. Indeed, denotingH2 :5 l 2(V2), we have a natural decomposition

F bH.F bH2 ^ F bH1 .

With respect to this decomposition, the HamiltonianHb can be split into the positive and negativ
frequency parts:

Hb5 (
vPV

uvuav* av5 (
vPV2

uvuav* av1 (
vPV1

vav* av5H21H1 .

SinceH2 is unitarily equivalent toH1 , the almost periodic free field theory is a double of t
quantum Kronecker flow.

Consider the family of operatorsUv(t) andVv(s), s,tPR, vPV, defined as

Uv~ t !5eit ~av1av* !, Vv~s!5es~av2av* !.
J. Math. Phys., Vol. 38, No. 11, November 1997
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TheC* -algebra generated byUv(t) andVv(s) is an example of a CCR algebra.12 It is a nonsepa-
rableC* -algebra which is usually studied in quantum field theory. It is, however, not well su
for our purposes and, following Ref. 1, we define the bosonic algebra of observablesAb to be the
C* -algebra generated by the canonical unilateral shifts in each factor of~III.12!. The Hamiltonian
Hb defines a dynamicss t

b on Ab by

s t
b~A!5eitH bAe2 i tH b, APAb .

We have the following analog of Proposition II.2.
Proposition III.2: (1) TheC* -algebra Ab is an infinite tensor product of standard Toepli

C* -algebrasIv :

Ab5 ^

vPV

Iv ,

whereIv is generated by the canonical unilateral shift in l2(N@v#).
(2) For everyb.0, there exists a unique KMSb state on(Ab ,s t

b).
Proof: This follows from Propositions 7 and 8 of Ref. 1. h

IV. ALMOST PERIODIC FERMIONS

In this section we will define the almost periodic fermionic quantum free field.

A. Quantum fermionic field

Let, as before,H5 l 2(V), and consider the fermionic Fock spaceF fH. The Hilbert space
F fH is defined as

F fH5 %

n50

`

`nH,

where`nH is thenth exterior power ofH with `0H5C. The vectorv05(1,0,0,...)PF fH is
called the vacuum. The Hilbert spaceF fH can be naturally identified withl 2(Z2@V#), whereZ2

is the group$0,1% with addition modulo 2.
Let f (h), hPZ2@V#, be the canonical orthonormal basis inl 2(Z2@V#).F fH. The set

Z2@V# has a natural group structure with respect to addition modulo 2. Writing

Z2@V#{h5 (
vPV

nvv,

where almost all numbersnv are zero, we define the creation operatorsbv* and the annihilation
operatorsbv by

bv* f ~h!5A~nv11!mod 2f ~h1v!,

bv f ~h!5Anv f ~h2v!.

It easy to verify the following anticommutation relations:

@bv , bv8
* #15dv,v8 , @bv , bv8#15@bv* , bv8

* #150, ~IV.1!

where@x, y#1 :5xy1yx is the anticommutator. Unlike in the bosonic case, the operatorsbv are
bounded. LetA f be theC* -algebra generated by the fermionic creation and annihilation op
tors. This algebra is called in the literature the CAR algebra.12

Fermionic field operatorsc1(x) andc2(x) at time 0 are then defined by
J. Math. Phys., Vol. 38, No. 11, November 1997
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c1~x!5 (
vPV

„U~v!bv* 1U~2v!b2v…e2 ivx,

~IV.2!

c2~x!5 i (
vPV

„U~2v!bv* 1U~v!b2v…e2 ivx,

whereU is the Heaviside function. One can directly verify the following anticommutation r
tions:

@c i~x!, c j~y!#152d i j dV~x2y!.

The fermionic almost periodic free HamiltonianH f is then given by

H f5 (
vPV

uvubv* bv ,

so that

H f f ~h!5S (
vPV

nvuvu D f ~h!.

It defines a dynamicss t
f on A f by

s t
f~A!5eitH fAe2 i tH f , APA f .

B. Supersymmetry

The supersymmetric almost periodic quantum free field theory is defined as the tensor p
of bosonic and fermionic field theories. This means that the Hilbert space of that theory
tensor productF bH ^ F fH with the naturalZ2 gradingG5I ^ (21)F, where

F f ~h!5S (
vPV

nvD f ~h!.

The relevantC* -algebraA is then the tensor productA5Ab^ A f . The supersymmetric Hamil
tonianH is defined by

H5Hb^ I 1I ^ H f ,

and the corresponding dynamics onA is denoted bys t . The new feature of the supersymmetr
theory is the existence of a supercharge, namely a self-adjoint operatorQ which is odd under the
Z2 grading, and has the property thatQ25H. The operatorQ can be defined in the following way

Q5
1

A2
E

ap
c1~x!~„p~x!2]xf~x!…1c2~x!„p~x!1]xf~x!…! dx

5 (
vPV

Auvu~av* bv1avbv* !. ~IV.3!

The system (A,G,s t ,Q) is an example of a quantum algebra to be discussed in the next se
J. Math. Phys., Vol. 38, No. 11, November 1997
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V. SUPER-KMS STATES

In this section we construct and prove the uniqueness of super-KMS functionals for th
supersymmetric almost periodic quantum field theory. Super-KMS functionals areZ2-graded
counterparts of KMS states and play an important role in index theory.

A. Super-KMS functionals

We will recall the definitions of quantum algebras and the super-KMS states on qua
algebras.5,6

Definition V.1: A quantum algebrais a quadruple (A,G,s t ,d) satisfying conditions~1!–~4!
below.

~1! A is a C* -algebra.
~2! G is aZ2 grading onA, i.e., a* -automorphism ofA such thatG251. ForaPA we denote

aG:5G(a).
~3! s t :A→A is a continuous, one-parameter group of even, bounded automorphisms ofA. s t

do not have to be*-automorphisms.
~4! Let Aa be the subalgebra ofA such that for everyaPAa the functiont→s t(a) extends to

an entireA-valued function. It is known thatAa is norm dense. OnAa we set

D:52 i
ds t

dt U
t50

.

Hered is a superderivation onAa , i.e.,

dG52d, d~ab!5dab1aGdb,

such thatd25D.
In the theory of the previous section setda:5@Q, a#s , andDa:5@H, a#s , where@a, b#s is

the supercommutator, i.e.,@a, b#s5@a, b#, if at least one of the operatorsa,b is even, and
@a, b#s5@a, b#1 , if both are odd. Then (A,G,s t ,d) is a quantum algebra. In the following, th
quantum algebra will be referred to as thealmost periodic quantum algebra.

Definition V.2: Let (A,G,s t ,d) be a quantum algebra. A continuous linear functionalm:
A→C is called a super-KMSb functional if for a,bPAa ,

~1! m(da)50,
~2! m(ab)5m„bGs ib(a)….

If, for a Z2-gradedC* -dynamical system (A,G,s t), a linear continuous functionalm satisfies only
the condition~2! above, then it is called apre-super-KMSb functional.

Unlike for KMS states, no positivity assumptions are or can be made for super-KMSb func-
tionals. It follows from the definition that a super-KMSb functionalm: A→C satisfies

m„s t~a!…5m~a!, mG5m, m~a db!5m~da bG!.

In our example of the almost periodic quantum algebra, assuming additionally that tr (e2bH)
,`, set

mb~a!:5Str ~ae2bH!, ~V.1!

where Str is the supertrace, i.e., Str (a)5tr (Ga). It is then easy to verify thatmb is a super-
KMSb functional.
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Uniqueness theorem

The remainder of this section is devoted to the proof of the uniqueness of the super
functional for the almost periodic quantum algebra. We start with two propositions of indepe
interest.

Proposition V.3: Let V be a finite-dimensional Hilbert space, G aZ2-grading on V, Q an odd
self-adjoint operator on V, H:5Q2, and A:5L(V) the algebra of linear operators on V. Fo
aPA, we set da:5@Q,a#s ands t(a):5eitHae2 i tH . Then, for everyb.0, there is a unique, up to
a multiplicative constant, pre-super-KMSb functionalmb on (A,G,s t) given by

mb~a!5Str ~ae2bH!.

Moreover,mb is automatically a super-KMSb functional on(A,G,s t ,d).
Proof: Let mb be any pre-super-KMSb functional on (A,G,s t ,d). Consider m̃b :

5mb(GaebH). Using condition 2 of Definition V.2, one easily verifies thatm̃b(ab)5m̃b(ba),
and som̃b is proportional to the trace and the claim follows. h

Proposition V.4: Let(Ai ,G i ,s t
i),i 51,2 be twoZ2-gradedC* -dynamical systems which hav

unique, up to a multiplicative constant, pre-super-KMSb functionals mb
i . Then mb

1
^ mb

2 is a
unique, up to a multiplicative constant, pre-super-KMSb functional on the tensor product(A1

^ A2,G1
^ G2,s t

1
^ s t

2).
Proof: Let mb be any pre-super-KMSb functional on the tensor product. The statement f

lows easily from the fact that for anybPA2 the following functional onA1:

mb,b~a!:5mb~a^ b!

is a pre super-KMSb functional. h

The following theorem can now be easily deduced from Proposition V.3, Proposition V.4
Proposition 8 of Ref. 1.

Theorem V.5: For everyb.0, there exists a unique, up to a multiplicative constant, sup
KMSb functional on the almost periodic quantum algebra(A,G,s t ,d).

Proof: We are going to prove that there is a unique pre-super-KMSb functional on the
Z2-gradedC* -dynamical system (A,G,s t). It will follow from the construction that functional is
in fact, a super-KMSb functional.

It follows from Proposition III.2 and the structure theorems forA f ~see Ref. 12! that the
C* -algebraA is isomorphic with the following infinite tensor product:

A5 ^

vPV

Iv ^ Uv ,

whereIv is the Toeplitz algebra andUv is generated by the fermionic creation and annihilat
operatorsbv* , bv , and is isomorphic withM2(C), the algebra of 232 matrices. Additionally, both
the gradingG and the dynamicss t factor with respect to the above decomposition,

G5 ^

vPV

Gv , s t5 ^

vPV

s t,v .

It is easy to verify thatGv is trivial on Iv , so thatGv5I ^ Gv
f . The generator ofs t,v is the

supersymmetric harmonic oscillator HamiltonianHv5uvu(av* av1bv* bv), and so we have a fur
ther decomposition:s t,v5s t,v

b
^ s t,v

f . The system (Uv ,G f ,s t,v
f ) is finite dimensional, and thus

by Proposition V.3 it has a unique pre-super-KMSb functional. The uniqueness of a pre-supe
KMSb functional on (Iv ,Gb5I ,s t,v

b ) follows from Proposition 8 of Ref. 1 since the proof of th
proposition does not require any positivity assumptions on the functional. Moreover, any
super-KMSb functional onIv ^ Uv is proportional to
J. Math. Phys., Vol. 38, No. 11, November 1997
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a→Str ~ae2bHv!,

and consequently is a super-KMSb functional. The theorem now follows from Proposition V.4.h
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APPENDIX A: AN INGHAM-TYPE TAUBERIAN THEOREM

In this Appendix we prove a technical result used in Sec. II to establish the quantum e
icity of the quantized Kronecker dynamics. This result is a variant of Ingham’s Tauberian the
~Ref. 13, see also Ref. 14!, and differs from the original theorem in some of the hypotheses.

Let N(x) be a nondecreasing function of bounded variation satisfying the following ass
tions:

~1! N(x)50, for all x<0;
~2! for all s.0, *0

`e2sx dN(x),`;
~3! for all s5s1 i t , s.0, tPR, the functionf(s) defined by

ef~s!5E
0

`

e2sx dN~x! ~A1!

is holomorphic.
The functionf(s) will play a fundamental role in the following analysis. Ingham’s origin

theorem requires detailed knowledge of the asymptotic off(s) ass approaches 0 within an angle
Such an asymptotic is usually difficult to obtain. Somewhat different assumptions onf(s) lead to
a result which is well tailored for our purposes. Specifically, we require that

~a!

2sf8~s!↗`, and s2f9~s!↗`, as s↘0; ~A2!

~b!

Usf-~s!

f9~s!
U5O~1!, as s↘0; ~A3!

~g! for any D.0, there iss0.0 such that the triangle

T~D,s0!5$s1 i t :0,s,s0 ,utu,Ds%

does not contain nonreal roots of Imf8(s).
We can now formulate the main result of this Appendix.
Theorem A.1: Under the above assumptions (1)–(3) and (a)–(g),

N~E!5„2psE
2f9~sE!…21/2esEE1f~sE!

„11o~1!…, as E→`, ~A4!

wheresE is the unique solution to the equation

f8~s!1E50. ~A5!

Proof: The existence and uniqueness of the solution of~A5! follows from assumption~a!.
Integrating by parts on the right-hand side of~A1! we obtain the identity
J. Math. Phys., Vol. 38, No. 11, November 1997
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ef~s1 i t !

s1 i t
5E

0

`

e2~s1 i t !xN~x! dx. ~A6!

Let g be an integrable function. Multiplying~A6! by eE(s1 i t )g(t) and integrating overt we obtain,
after a change of the order of integration,

E
2`

` ecE~s1 i t !

s1 i t
g~ t ! dt5A2pE

2`

`

es~E2x!ĝ~x2E!N~x! dx, ~A7!

where we have set

cE~s!5f~s!1Es. ~A8!

Shifting the integration variable on the right-hand side of~A7! we rewrite~A7! as the following
basic identity:

1

2p E
2`

` ecE~s1 i t !

s1 i t
g~ t ! dt5

1

A2p
E

2`

`

e2sxĝ~x!N~x1E! dx. ~A9!

We take the functiong to be of the formg(t)5 f (t/T), where f is continuous in the interval
@21, 1# and zero outside it,f (0)51, and whereT.0 is a number which will be chosen shortly
We let L(s) denote the left-hand side of~A9!, i.e.,

L~s!5
1

2p E
2T

T ecE~s1 i t !

s1 i t
f ~ t/T! dt.

For 0,d,T, we decomposeL(s) into two parts,

L~s!5
1

2p E
utu<d

ecE~s1 i t !

s1 i t
f ~ t/T! dt1

1

2p E
d,utu,T

ecE~s1 i t !

s1 i t
f ~ t/T! dt[L ~1!~s!1L ~2!~s!,

and analyze them separately.
So far the considerations have been quite general, and we will now start making sp

choices. Pick anyD.0 ~which we will eventually want to make arbitrarily large!, and choose
s0.0 such that the triangleT(D,s0) defined in assumption~g! does not contain nonreal roots o
Im f8(s). TakeE sufficiently large so thatsE,s0 . To simplify the notation,sE will be denoted
by s throughout the remainder of this proof. Furthermore, takeE large enough so that

D

As2f9~s!
<1, ~A10!

which is possible by assumption~a!. SetT5sD. The choice ofd will be made shortly.
To analyzeL (1)(s) we expandcE(s) arounds5s ~in the following the subscriptE in cE

will be suppressed!:

c~s1 i t !5c~s!21/2f9~s!t221/6f-~u!i t 3,

for a u belonging to the line segment which joinss2 id ands1 id. By assumption~b! we have

uf-~u!tu<Usf-~s!

f9~s!
Uds f9~s!5o~1!f9~s!,
J. Math. Phys., Vol. 38, No. 11, November 1997
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if d/s5o(1), asE→`. We now make the following choice ofd :

d5S s2

f9~s! D
1/4

. ~A11!

Then, by assumption~a!, d/s5„s2f9(s)…21/45o(1), and, consequently,

c~s1 i t !5c~s!21/2f9~s!„11o~1!…t2.

Therefore,

L ~1!~s!5
1

2p E
2d

d 1

s
f ~0!ec~s!e21/2f9~s!„11o~1!…t2

5
ec~s!

2pAs2f9~s!
E

2d„f9~s!…1/2

d„f9~s!…1/2

e21/2„11o~1!…t2 dt„11o~1!….

However, d„f9(s)…1/25„s2f9(s)…1/4→`, as E→`, and so the Gaussian integral above b
comes an integral over entireR in this limit. As a result,

L ~1!~s!5„2ps2f9~s!…21/2ec~s!
„11o~1!….

We now turn to the analysis ofL (2)(s). We wish to show that this term is much smaller th
the previous one. Indeed,

uL ~2!~s!u<T sup u f ~ t/T!u
1

s
sup

d,utu,T
uec~s1 i t !u5O~1!D sup

d,utu,T
eRe c~s1 i t !.

Assumption~g! implies that the above supremum is attained atutu5d. To see this, we consider th
function

t→Re c~s1 i t !5Re f~s1 i t !1Es.

The critical points of this function satisfy

05
d

dt
Re „f~s1 i t !1Es…5Im f8~s1 i t !.

Hence there are no critical points in the intervald,utu,T5sD, and the function attains its
maximum value at an endpoint. Consequently, using a Taylor expansion as in the analy
L (1)(s),

uL ~2!~s!u<O~1!DeRe c~s6 id!5O~1!Dec~s!21/2f9~s!d2
„11o~1!….

It is easy to see that, with our choices ofd andD, we have

De21/2f9~s!d2
!„s2f9~s!…21/2

and soL (2)(s)5o(1)L (1)(s). This concludes the analysis of the left-hand side of~A9!.
The asymptotic behavior ofL(s) turns out to be independent of the choice of functionf . In

the following we study the right-hand side of~A9! which will be denoted byR(s). We shall make
suitable choices off in order to get bounds onN(E) from above and from below.

Lemma A2: Define
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ñ~E!:5„2ps2f9~s!…21/2esE1f~s!. ~A12!

Then

Ñ„E1O~1!/s…5Ñ~E!„11o~1!….

Proof: Let s1 be the unique solution of the equation2f8(s1)5E1O(1)/s. Taylor expand-
ing f8 arounds yields

s15s1
O~1!

sf9~s!
,

since 1/sf9~s!!s. It then follows readily thats15s„11o(1)…. In a similar fashion, we conclude
that f9(s1)5f9(s)„11o(1)…, and c(s1)5c(s)1o(1). Inserting these expressions into th
definition of Ñ„E1O(1)/s… completes the proof. h

Choice 1:Set

f ~ t !5H 12utu, if utu<1,

0, otherwise.

The Fourier transform off is

f̂ ~x!5
1

A2p
S sin ~x/2!

x/2 D 2

,

and thus the right-hand side of~A9! is

R~s!5
T

2p E
R
e2xsS sin ~Tx/2!

Tx/2 D 2

N~E1x! dx. ~A13!

The integrand of~A13! is positive and so, for anyL,

R~s!>
T

2p E
2L

L

e2xsS sin ~Tx/2!

Tx/2 D 2

N~E1x! dx>N~E2L!e2sL
1

2p E
2TL

TL S sin ~x/2!

x/2 D 2

dx,

where we have used the monotonicity ofN(x). Now takeL51/(sAD). With this choice,sL
51/AD, and the exponential term in the above formula tends to 1, asD→`. Similarly, TL
5AD and the integral over (2TL,TL) tends to the integral~equal to 1! over all ofR. This yields
the inequality

R~s!>N~E2L!„11o~1!….

ReplacingE by E2L and using Lemma A.2, we conclude that

N~E!<Ñ~E!„11o~1!….

Choice 2:Set

f 1~ t !5H 1

2im
~eimutu2e2 imutu!, if utu<1,

0, otherwise,
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



e

he as-

to

5623S. Klimek and A. Leśniewski: Kronecker flows

                    
wherem52kp, 0,kPZ. Let

f 2~ t !5H 12utu, if utu<1,

0, otherwise,

and takef 5 f 11 f 2 . The Fourier transform off is

f̂ ~x!5
1

A2p
S sin ~x/2!

x/2
D 2 m2

m22x2
,

and sof̂ (x),0, for uxu.m. Consequently,

R~s!<
T

2p
E

uTxu<m
e2xsS sin ~Tx/2!

Tx/2
D 2 m2

m22x2 N~E1x! dx

<N~E1m/T!ems/T
1

2p
E

2m

2mS sin ~x/2!

x/2
D 2 m2

m22x2 dx,

by monotonicity. Now takek to be the integer part of@AD#. With this choice, the integral abov
tends to 1, asD→`. Also, ms/T;D21/2→0 and the exponential term tends to 1. Sincem/T
;1/sAD, we can use Lemma A.2 to replaceE by E1m/T. This yields

N~E!>Ñ~E!„11o~1!…,

and concludes the proof of the theorem. h

Corollary A.3: With the above assumptions we have

N„E1O~1!…5N~E!„11o~1!….

Proof: This follows directly from Theorem A.1 and Lemma A.2. h

APPENDIX B: SOME EXAMPLES OF KRONECKER SYSTEMS

The theorem below provides a source of examples of Kronecker systems satisfying t
sumptions of Theorem A.1.

Theorem B.1: Let vn5Ana(11mn), where A.0 and a>1 are constant, and wheremn

5o(1), as n→`. Thenf(s) satisfies the assumptions of Theorem A.1.
Proof: Assumptions~1!–~3! of Appendix A are clearly satisfied, and so it is sufficient

verify assumptions~a!–~g!.
Assumption~a! is a consequence of the following equalities:

2sf8~s!5 (
n51

`

f ~svn!, s2f9~s!5 (
n51

`

f ~svn!,

where the functionsf andg are given by

f ~x!5
xe2x

12e2x , g~x!5
x2e2x

~12e2x!2 .

Since bothf (x) andg(x) increase monotonically 1 asx↘0, the claim follows.
To prove~b!, we note that
J. Math. Phys., Vol. 38, No. 11, November 1997
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2s3f-~s!<u~s!,

and

s2f9~s!>Ceu„~12e!s…, for some 0,e,1,

whereu~s! is defined in~II.8!. Sincevn5Ana(11mn) implies thatu(s)5Cs21/a
„11o(1)…, as

s→0, we conclude that

Usf-~s!

f9~s!
U<O~1!

u~s!

u„~12e!s…

5O~1!,

ass→0.
Finally, assumption~g! is verified in the following lemma. h

Lemma B.2: Under the assumptions of Theorem B.1,

Im f8~s1 ixs!5CA,as2bx„h~x!1o~1!…, ~B1!

for xPR, ass→0, uniformly inuxu<D. Hereb511a21
, and h~x! is a function such that h~x!Þ80,

for all xPR.
Proof: Explicitly,

Im f8~s1 ixs!5 (
n>1

lne2sln sin ~xsln!

11e22sln22e2sln cos~xsln!
. ~B2!

We will analyze this expression in two steps.
Step 1:Assume first thatln5Ana, and setun5(As)1/an. Then

Im f8~s1 ixs!5A21/as2bx(
n>1

c~un ,x!Dun , ~B3!

where

c~u,x!5
1

2s

ua sin ~xua!

coshua2cosxua , ~B4!

and whereDun5un2un215(As)1/a. The sum in~B3! is a Riemann sum of the integral

1

s E
0

` ua sin ~xe2ua
ua!

11e22ua
22e2ua

cos~xua!
du5CA,ah~x!, ~B5!

whereCA,a5a21G(b)z(b), and where

h~x!5~11x2!b/2
sin ~b arctanx!

x
. ~B6!

Note thath(x)Þ0, if a>1. We claim that the difference of the Riemann sum in~B3! and the
integral ~B5! is o(1), ass→0. Indeed, this difference can be written as

(
n>1

E
un21

un
„c~un ,x!2c~u,x!… du,

which can readily be bounded by
J. Math. Phys., Vol. 38, No. 11, November 1997
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A1/asb (
n>1

max
un21<u<un

U ]

]u
c~u,x!U. ~B7!

Using the fact that, uniformly inx,

U ]

]u
c~u,x!U<H O~1!u21, if 0,u<1;

O~1!e2~12e!u, if u.1
~B8!

~with 0,e,1!, we can bound~B7! by

O~1!sb (
1<n<~As!21/a

~As!21/an211O~1!sb (
n.~As!21/a

e2~12e!~As!1/an

5O~1!s log ~As!21/a1O~1!s5o~1!,

and our claim follows.
Step 2:In the general case, we writesln5un(11mn), with un as before. We now claim tha

the difference

(
n>1

~c„un~11mn!,x…2c~un ,x!!Dun ~B9!

is o(1), ass→0. Indeed, using~B8! we can bound~B9! by

(
n>1

unumnuDun max
uP@un21 ,un#

U ]

]u
c~u,x!U

<O~1!s1/a (
1<L

11O~1!s2/a (
n.L

mnne2~12e!~As!1/anO~1!s1/aL1O~1! sup
n.L

mn ,

whereL.0 is arbitrary. Choosing, e.g.,L5s21/(2a), we conclude that the above expression
o(1), ass→0. h
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The Kirkwood–Buckingham variational method and the
boundary value problems for the molecular
Schrö dinger equation

V. I. Pupyshev,a) A. V. Scherbinin, and N. F. Stepanov
Laboratory of Molecular Structure and Quantum Mechanics, Department of Chemistry,
Moscow State University, Moscow 119899, Russia

~Received 5 August 1996; accepted for publication 1 August 1997!

The approach based on the multiplicative form of a trial wave function within the
framework of the variational method, initially proposed by Kirkwood and Buck-
ingham, is shown to be an effective analytical tool in the quantum mechanical study
of atoms and molecules. As an example, the elementary proof is given to the fact
that the ground state energy of a molecular system placed into the box with walls of
finite height goes to the corresponding eigenvalue of the Dirichlet boundary value
problem when the height of the walls is growing up to infinity. ©1997 American
Institute of Physics.@S0022-2488~97!01711-8#

I. INTRODUCTION

The representation of a wave functionc in the form f w, wherew is known andf should be
found, is rather convenient in a large variety of quantum mechanical problems, especially in
connected with the use of the geometrical methods.1–3 An analogous approach was applied
evaluating the molecular radiation characteristics.4–6 Another field where the above representati
is also used concerns the quantum mechanical investigations of atoms and molecules
cavities and under pressure.7–11

Perhaps it is not well known that this kind of approximation exists since at least
1930s,12–16when the variational methods with factorized trial wave functions were applied fo
first time by Kirkwood13,14 and Buckingham.15,16 However, the approach never seemed to
examined in detail and its explicit formulation has not been given anywhere.

In the present work, the Kirkwood–Buckingham approach and some of its applications
quantum mechanics of atoms and molecules are briefly reviewed. In Sec. II the basic relatio
derived, and some of their applications are listed. In Sec. III the Kirkwood–Buckingham app
to the study of encapsulated atomic and molecular systems is discussed on the basis
boundary value problem formalism. In particular, a simple proof is given to the fact tha
ground state eigenvalue of the problem, corresponding to a molecule or an atom surround
finite height barrier, converges to the lowest eigenvalue of the Dirichlet eigenvalue problem
zero boundary condition, when the height of the barrier is growing up to infinity.

Let us introduce the basic notations which will be used throughout the paper. Symbol^•u•&
andi•i denote the inner product and norm in the spaceL2(Rn) of square-integrable functions o
Rn; if some bounded regionV,Rn is considered, the corresponding notations for theL2(V)
space arê•u•&V andi•iV , respectively. Further,C0

`(V) denotes a set of infinitely differentiabl
functions with a compact support inV ~hereV may coincide withRn!. Unless otherwise specified
H denotes the Hamiltonian of a quantum system, i.e., a self-adjoint operator inL2(Rn) defined by
a formal expressionH5T1U, where T52 1

2D is the kinetic energy operator,D is the
n-dimensional Laplacian, and the potential energy termU is a linear combination of some Cou
lomb potentials. The HamiltonianH may correspond to a free~i.e., nonconfined! atom or mol-
ecule, either within the adiabatic approximation or not.

a!Electronic mail address: vip@moleq.chem.msu.su
0022-2488/97/38(11)/5626/8/$10.00
5626 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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We denote the domain of the HamiltonianH as D(H),L2(Rn). Along with H itself, the
corresponding sesquilinear formH(w,c) is introduced,

H~w,c!5 1
2^“wu“c&1^wuUuc&, ~1.1!

where“ is the n-component gradient symbol. The domain of the formH(w,c) is denoted as
Q(H), and this set is wider thanD(H). In fact, due to some special properties of the Coulo
potentialU,17,18Q(H) is the completion ofC0

`(Rn) in the normi“ci1ici, i.e., the Sobolev spac
H1(Rn).17

The energy functionalE~c! can be defined as

E~c!5
H~c,c!

^cuc&
, cPQ~H !. ~1.2!

The following statements are well known:17,18

~i! if cPD(H) andwPQ(H), thenH(w,c)5^wuHuc&;
~ii ! if E0 is the lowest eigenvalue~the ground state energy! of H, then

E05 inf
cPQ~H !

E~c!,

and the corresponding lower bound is reached on the eigenfunctionw0 , which in fact belongs to
D(H), not toQ(H) only.

II. THE KIRKWOOD–BUCKINGHAM VARIATIONAL METHOD AND ITS APPLICATIONS

It was already mentioned that the main feature of the Kirkwood–Buckingham method
trial wave function having the formf w, wherew is a known function andf is the factor to be
optimized. The following discussion is based on the simple statement~see also Ref. 3!:

Lemma 2.1:Let w, cPQ(H) and f be a real-valued piecewise smooth bounded function w
bounded first-order derivatives. Then

H~ f w, f c!5 1
2„H~ f 2w,c!1H~w, f 2c!…1 1

2^wu~¹ f !2uc&. ~2.1!

Proof: Let w andc be infinitely differentiable functions with compact supports@that is,w and
c are fromC0

`(Rn)#, and let f be the function mentioned above. Then the relation

¹~ f w!* ¹~ f c!5 1
2„“~ f 2w!* “c1“w* “~ f 2c!…1w* ~¹ f !2c ~2.2!

is easily verified. As the setQ(H) is the completion ofC0
`(Rn) in the normi“wi1iwi ~see the

Introduction!, it is sufficient to integrate both sides of~2.2! over Rn and then pass to the limit in
the above norm, taking into account the restrictions put onf . Q.E.D.

Of course, the conditions of Lemma 2.1 are only sufficient but not necessary in genera
they are rather convenient for our purposes.

Relations~2.1! and ~1.2! give the following one:

E~ f w!5E1
^wu~¹ f !2uw&
2^wu f 2uw&

, ~2.3!

provided thatw is an eigenfunction ofH with the eigenvalueE. In deducing this relation one
should only mention that thoughwPD(H), f 2w is not from D(H) in general, but stillf 2w
PQ(H) and it follows from~i! of the Introduction that

H~ f 2w,w!5^ f 2wuHuw&5E^ f 2wuw&.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Equation~2.3! is the basic formula for the Kirkwood–Buckingham variational method. So
of its immediate consequences are given below.

First of all, let us mention the inequality

E~ f wn!>En , ~2.4!

which follows straightforward from~2.3! provided thatEn is the nth eigenvalue andwn is the
corresponding eigenfunction ofH. Surprisingly, this inequality is valid not only for the groun
state, but for any excited state, too, though no orthogonality conditions or minimax techniqu
needed to establish it. It is also clear that both sides in~2.4! become equal if and only iff [1 @see
~2.3!#.

As an illustration, let us prove the following statement concerning zeros of the w
functions:19

Statement:Suppose thatwn andwk are eigenfunctions of the HamiltonianH with the eigen-
valuesEn andEk , respectively. Suppose also thatwn is positive both inside and at the bounda
of some areaV, while wk equals zero at this boundary. ThenEk.En .

Proof: Put f 5wk /wn inside V and f 50 outsideV. Using trivial transformations and th
Green’s formula, we see that

E~ f wn!5^wkuwk&V
21S 1

2 E
V

“wk* “wk dx1E
V

wk* Uwk dxD
5^wkuwk&V

21XE
V

wk* S 2
1

2
D Dwkdx1E

V
wk* Uwk dxC5^wkuHuwk&V /^wkuwk&V5Ek ,

aswk is the eigenfunction ofH in an ordinary sense~i.e., the solution of the differential equatio
Hwk5Ekwk in V!. On the other hand,E( f wn).En by ~2.4! ~recall thatf Þ1!, and the inequality
Ek.En is proved. Q.E.D.

Below some other applications of relation~2.3! are briefly reviewed, starting with the classic
works by J. G. Kirkwood and R. A. Buckingham.

Let V be a perturbation ofH andẼ be the lowest eigenvalue of the HamiltonianH1V. If E
andw are the ground state eigenvalue and eigenfunction of the unperturbed HamiltonianH andw
is known, one may estimate the wave function of the perturbed system asw̃5 f w, where f is a
factor to be found. Relation~2.3! together with the standard variational inequality gives

Ẽ<Ẽ~ f w!5E1
1/2̂ wu~¹ f !2uw&1^wu f 2Vuw&

^wu f 2uw&
, ~2.5!

whereẼ is the energy functional of the perturbed system. Minimizing the right-hand side of~2.5!
with respect tof leads to the Euler equation:

2 1
2 div ~w2

“ f !1Vw2f 5lw2f , ~2.6!

where l is an estimate for the differenceẼ2E. One may note that the information on th
unperturbed system is contained in~2.6! throughw only.

Equation~2.6! was initially used by Slater and Kirkwood12 and then by Cusachs20 for the
investigation of 1/R-expansion of intermolecular interaction energy~though in these worksf w
wasa priori suggested to be the exact eigenfunction of the perturbed problem!. Kirkwood13,14also
applied relation~2.5! when estimating the polarizability of hydrogen atom, representingf as
11lV and then optimizing the value ofl. Buckingham15,16 studied similar problems using th
same approach~he supposedf to be 11k and derived the equation fork!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Since all the estimations were treated in the linear approximation inV, the approach of
Kirkwood and Buckingham was often regarded as a variety of the Hirschfelder’s variat
perturbative method21 and was applied mainly to typically perturbational problems,22,23 e.g., to
variational solutions of the first-order perturbation theory equations for the wave function.24 For
this reason the use of factorized trial wave functions in treating atoms and molecules with
framework of the variational approach was essentially rediscovered.

However, we aim to show that formula~2.3! is also an effective analytical tool that can b
applied to solving different problems. First of all, we would like to note that numerous rela
similar to ~2.1! were considered in many works, e.g., the formula

(
i

H~ f iw, f ic!5H~w,c!1 1
2 ^wu(

i
~¹ f i !

2uc& ~2.7!

was treated,1–3 where eachf i(x) belongs to a set of smooth real-valued functions such that~i! for
any x only a finite number of them are not zero;~ii ! ( i f i

2[1; and ~iii ! ( i(¹ f i)
2 is uniformly

bounded~this construction is close to the well-known unity decomposition!. Relation~2.7!, which
follows immediately from~2.1!, was used in the study of negative ions3 and intermolecular
interactions2 with w5c.

Another example of this kind of relation is the following one:

H~ f w,gw!5 1
2„H~ f g* w,w!1H~w, f * gw!…1 1

2^wu~“ f * ,“g!uw&, ~2.8!

wherewPQ(H) is a real-valued function andf andg are smooth enough bounded functions w
bounded first-order derivatives. To verify~2.8!, one should note that for differentiable functionsf ,
g, w, andc the following identity is valid:

¹~ f w!* “~gc!5 1
2„“~ f g* w!* “c1“w* “~ f * gc!…1w* ~“ f !* ~“g!c

2 1
2~“ f * g2 f * “g!~“w* c2w* “c!,

which transforms into~2.2! if f 5g and is real valued, and then uses the same arguments as
proof of Lemma 2.1. In Ref. 5 commutation relations formed the basis for obtaining the form
similar to ~2.8!, which were further applied5,6 to study the molecular radiation characteristic
Relation ~2.8! implies, in particular, that~2.3! is also valid for the complex-valued functionf
provided thatw is real valued.

Formula~2.8! can also be generalized to the Hamiltonians with a kinetic term of the for

T52
g

2 (
i , j

]

]Qi
g21t i j ~Q!

]

]Qj
,

typical to vibrational molecular problems, where the real-valued coefficients obey the sym
conditionst i j 5t j i andg is the determinant of the matrix composed oft i j .

III. THE KIRKWOOD–BUCKINGHAM METHOD IN QUANTUM MECHANICAL TREATMENT
OF CONFINED MOLECULAR SYSTEMS

From the mathematical point of view, the encapsulation of the molecular system into
with impenetrable walls is equivalent to setting the Dirichlet boundary conditions on the
function, and this section is devoted to applications of the Kirkwood–Buckingham techniq
these particular problems.

Since the general theory of the boundary value problems for differential operators is a
known topic and there is a lot of literature on it,19,25–27it is sufficient to formulate the problem o
interest and introduce the necessary notations. We consider anN-particle molecular system local
J. Math. Phys., Vol. 38, No. 11, November 1997
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ized inside some bounded regionv,R3; the corresponding wave functionw is considered within
the regionV5v3v3•••3v ~N times!, V,R3N, and it should be equal to zero at the bounda
]V. In the following the regionV is supposed to have a regular enough boundary.

It is more preferable to formulate the problem as an eigenvalue problem for the self-a
operatorHV acting inL2(V) space:

HVw5E~V!w, ~3.1!

such that the domain ofHV consists of functions, straightforwardly satisfying the Dirichlet boun
ary conditionw50 on]V ~in the trace sense!. We can treat the problem~3.1! as a consequence o
the variational principle for the energy functional,

E~c,V!5
HV~c,c!

^cuc&
, cPQ~H,V!, ~3.2!

whereHV(•,•) is the sesquilinear form corresponding toHV andQ(H,V),L2(V) is the domain
of the form, defined as the completion ofC0

`(V) in the normi“wiV1iwiV , i.e., the Sobolev
spaceH0

1(V).17 Besides, it is easy to generalize both Lemma 2.1 and relation~2.3! to the case of
the boundary value problems.

The problem~3.1! with HV being the molecular or atomic Hamiltonian is a very nontriv
one, and many approximate methods of solving it were derived~see Remark 4 at the end of th
section!. The main trouble rises from the impossibility of the adaptation of well-advanced num
cal methods and routines, generally employed in the quantum mechanical investigations
lecular systems, to the case when a boundary condition is imposed. However, this problem
avoided to some extent if one simulates the strict boundary condition by modification o
original HamiltonianH, corresponding to the free~nonconfined! system.

The modification ofH consists, e.g., in adding some perturbationV that effectively contracts
the system inside the desired area of space. In terms of physics, this construction means
perturbationV forms a potential barrier of some profile and finite height at the boundary of
area, thus preventing the particles from leaking out, whereas the original problem~3.1! formally
corresponds to the infinitely high barrier.

Further we are going to show that such a simple tool as formula~2.3! allows us to prove that
the mentioned approach to approximate solutions of~3.1! is analytically correct. One should not
that similar problems have already been studied in the literature within the framework o
ympthotic methods and pseudoresolvent technique.28,29

Let us consider a sequence of HamiltoniansHl5H1lV, acting inL2(R3N), whereH is the
Hamiltonian introduced in Sec. I,l>0 is a real number, andV is a potential such that

~i! V(x)>0 on R3N;
~ii ! V(x)50 for all xPV;
~iii ! V(x) is a bounded function onR3N;
~iv! for any d.0 there exists a constanta(d).0 such thatV(x)>a(d) for all x¹Od(V)

~hereafterOd(V) is thed-vicinity of V!.

Here V is the above-mentioned perturbation ofH. For example, asV the characteristic
function of the setR3N\V may be chosen. Evidently,V cannot have the form like sin2 (uxu) outside
V, according to the latter condition. The conditions~i! and ~ii ! are clear, whereas the role o
conditions~iii ! and~iv! will be cleared up during the following discussion. Due to~iii !, the domain
of Hl and its formHl(•,•) coincide with those ofH andH(•,•), respectively,18 and operatorHl

is semibounded from below as well asH.
Note that at least forl large enough the discrete spectrum ofHl is not empty~see Remark 2

following Lemma 3.2 below!. We denote the lowest discrete eigenvalue and the correspon
J. Math. Phys., Vol. 38, No. 11, November 1997
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normalized eigenfunction ofHl as El and wl , respectively. We would like to show tha
El→E(V), l→1`, whereE(V) is the lowest eigenvalue of the problem~3.1!.

First of all, we need a unique variational formulation for the problem~3.1! and the eigenvalue
problem for the operatorH in L2(R3N). For this reason, along with a functionw defined on some
regionV,R3N, we consider its continuation to allR3N which equals zero outsideV. The same
notationw for this continuation should not lead to any ambiguity. Then the following embedd
are trivial:

L2~V1!,L2~V2!, C0
`~V1!,C0

`~V2!, Q~H,V1!,Q~H,V2!,

if V1,V2,R3N. The relation

HV1
~w,c!5HV2

~w,c!

is also true ifw, cPQ(H,V1). It means that the formHV1
(w,c) can be considered as a restri

tion of HV2
(w,c) onto Q(H,V1).

Now let V15V andV25R3N. ThenHV(c,c)5Hl(c,c) for any cPQ(H,V) @recall that
V(x)[0 insideV#. Hence, by the variational principle,

El5 inf
Q~H !

Hl~c,c!

^cuc&
< inf

Q~H,V!

Hl~c,c!

^cuc&
5E~V!

for any l. On the other hand, sinceV(x)>0, the variational principle shows thatEl is a nonde-
creasing function inl. Therefore, we have proved the following statement:

Lemma 3.1:There exists liml→1` El5E` , andE`<E(V).
It is intuitively clear thatwl→0 outsideV whenl→1`.
Lemma 3.2:Within the suppositions~i!–~iv!

^wlulVuwl&→0, l→1`.

Proof: Put El(c)5Hl(c,c)/^cuc&. Due to the variational principle,

El/2<El/2~wl!5El~wl!2 1
2^wlulVuwl&5El2 1

2^wlulVuwl&,

and, hence,

^wlulVuwl&<2~El2El/2!→0, l→1`,

according to Lemma 3.1 and the Cauchy criterion. Q.E
Corollary: For anyd.0,

^wluwl&R3N\Od~V!→0, l→1`. ~3.3!

Proof: Due to the properties~i! and ~iv! of V,

^wlulVuwl&>^wlulVuwl&R3N\Od~V!>la~d!^wluwl&R3N\Od~V! ,

and relation~3.3! follows immediately from Lemma 3.2. Q.E.D
Remark 1: In fact, this lemma and its corollary show that the value^wluwl&R3N\Od(V) goes to

zero at least aso(l21) whenl→1`. Moreover, more detailed treatment19 shows thatwl is of
order exp (2l1/2) outsideOd(V).

Remark 2: A simple modification of Lemma 3.2 and the Rellich theorem~see, e.g., Ref. 26!
allow us to prove thatEl is a point of the discrete spectrum ofHl at least forl large enough.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Now we can formulate the sufficient conditions under which the relationE`5E(V) is true.
Theorem 3.1: If the above conditions~i!–~iv! on V hold andV is a region for whichE(V)

varies continuously under small deformations of its boundary, thenE`5E(V), i.e., El→E(V)
whenl→`.

Remark:The continuity ofE(V) under deformations of]V was established for a class o
areas in Ref. 18.

Proof: Let us fix somed.0 and denoteOd(V) asV1 andO2d(V) asV2 for simplicity. Let
f (x) be a function fromC0

`(V2), such that 0< f (x)<1 andf (x)[1 for all xPV1 . According to
the variational principle, relation~2.3!, and the conditionV>0, we have

E~V2!<E~ f wl ,V2!<El~ f wl!5El1
^wlu~¹ f !2uwl&
2^wlu f 2uwl&

.

Due to the properties off and the fact thatiwli51,

^wlu f 2uwl&>^wluwl&V1
512^wluwl&R3N\V1

.

Hence, for some constantB that majoratesu¹ f u outsideV1 , we have

E~V2!2El<
B2

2

^wluwl&R3N\V1

12^wluwl&R3N\V1

. ~3.4!

The right-hand side of~3.4! goes to zero whend is fixed andl→1` due to ~3.3!, so that the
following inequality is true:

E~V2!<E` .

Besides,E`<E(V) by Lemma 3.1. Since the distance between the boundaries]V and]V2 equals
to 2d, the differenceE(V)2E(V2) can be made as small as necessary, i.e.,E`5E(V). Q.E.D.

Numerical examples illustrating Theorem 3.1 may be found, e.g., in Ref. 30. Explici
ympthotic estimates for the differenceE`2El were obtained28 in the one-dimensional caseV
5(a,b).

Remark 1:Theorem 3.1 can be generalized to any number of excited states, e.g., by usi
approach of Katriel.31

Remark 2:Taking into account the Eckart inequality,32 one can also prove that, within th
suppositions of Theorem 3.1,iwln

2wi→0 andi“wln
2“wi→0, n→`, wherew is the eigen-

function of the problem~3.1!, continued outsideV as equal to zero, and$ln% is any monotonically
increasing unbounded sequence of numbers. These relations are true provided that~i! E(V) and
Eln

are the ground state eigenvalues ofHV andHln
, respectively, and~ii ! the phase factors o

functions wln
and wV are chosen consistently. Similar results can be also established fo

excited states~see the previous remark!, though in this case the possible degeneration of eig
values should be taken into account, which leads to a very cumbersome and complicated
lation.

Remark 3:Theorem 3.1 provides a legal basis for the method of finding approximate solu
of the Dirichlet problem~3.1! for the molecular Schro¨dinger equation, which has been describ
at the beginning of this section. The essential feature of this method is the substitution
Hamiltonian of theHl type for the HamiltonianHV . The eigenvalue problem with the Hami
tonianHl is much more convenient in applications than that withHV , for in this case one may
use the well-known techniques typical to quantum chemistry, including the variational me
with standard basis sets. This idea has been previously applied to the investigation of energ
of the potassium atom in a spherical cavity.33
J. Math. Phys., Vol. 38, No. 11, November 1997
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Remark 4:The Kirkwood–Buckingham technique has been implicitly used as the basis fo
so-called direct variational method of finding approximate solutions of the Dirichlet prob
~3.1!,7–11 where the representationf c for the solutionw of ~3.1! is utilized, with c being the
ground state eigenfunction of the free system andf being the ‘‘cut-off’’ factor, equal to zero
outsideV. The basic equation forf , derived in Refs. 7–9, is in fact the Euler equation cor
sponding to the energy functional represented by Eq.~2.3!.
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Transformation bracket for 2D hyperspherical harmonics
and its applications to few-anyon problems
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The transformation bracket of hyperspherical harmonics with different sets of hy-
perspherical coordinates as arguments has been derived for an arbitrary number of
particles with arbitrary masses in two space dimensions. The solution of the four-
anyon problem is given as an example to illustrate its applications. ©1997
American Institute of Physics.@S0022-2488~97!00611-7#

I. INTRODUCTION

Few-body problems in low space dimensions are recently more and more attractive. Th
cally, particles in two dimensions are allowed to have fractional angular momentum and
fractional statistics.1 It is believed that quasiparticles created from the excitation of Laughlin liq
are anyons; exchange of the two of which yields a phase factor exp (igp) with g to be any value
between 0~bosons! and 1~fermions!.2,3 Anyons can be conceived as charged fermions or bos
carrying magnetic flux.2–6 Even for anyons to bef ree in the classical sense, there is a gau
interaction which produces no Lorentzian force but a particle moving around will acquire a p
through A2B effect, as exactly required by the statistics. This complicated situation prev
complete, analytical solutions toN>3 systems. Another area where the few-body problem
important is quantum dots, a disklike atomic system fabricated in semicond
heterojunctions.7–11 In a quantum dot, the confinement strength, electron-electron interaction
kinetic energy are typically of the same order. The mean-field approximations and pertur
theory do not work well. The interaction must be treated exactly to some level.

The motivation of using the hyperspherical approach to the above mentioned areas lies
the fictitious statistical gauge interaction among anyons is proportional to the inverse-squ
hyperradius; as for the quantum dots, the effective electron-electron interaction, which is of c
a Coulomb force in empty space, is modified considerably by the existence of image cha
adjacent layers and the finite thickness of real systems. The inverse-square type of potentiab/r 2,
has also been extensively used in quantum dots.12 The introduction of hyperspherical coordinat
will thus result in significant simplification. Some of the qualitative features~i.e., the appearance
of magic numbers! are independent of the details of interaction. Even calculations with Coul
interaction have shown that some of the states of few-electron systems are characterized
breathing mode.13 The adiabatic approximation assuming a separation or quasi-separation
hyperradial wavefunction from the hyperangular wavefunction may thus be proven to be go
these states.

This paper is devoted to the derivation of the transformation bracket from one set of J
coordinates to another set for hyperspherical harmonics. The bracket is a necessity while
hyperspherical harmonics as basis functions to diagonalize the few-body problems. This w

a!Electronic mail: phwyruan@scut.edu.cn
0022-2488/97/38(11)/5634/9/$10.00
5634 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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discussed by Raynal and Revai forN53 in three space dimensions for atomic and nucl
calculations,14 where the bracket forN.3 is extremely difficult to derive and the bracket for a
arbitraryN is not available. The difficulty is rooted mostly in the non-Abelianity of theO3 group
and multiplicity in choosing the hyperangles.15 Fortunately, the transformation bracket is with
our reach for an arbitraryN in two space dimensions. The following section is devoted to
derivation of the bracket. An example is given in Section III to illustrate its applications.

II. DERIVATION OF THE BRACKET

A. Hyperspherical harmonic functions

Let us consider anN-body quantum-mechanical system with arbitrary masses. Lethi ( i
51, . . . ,N21) be a Jacobi coordinate. The reduced mass associated withhi is denoted bym i .
We define

ji5Am i

M
hi , ~1!

whereM is the total mass. We further define the hyperradiusj and hyperanglesf1 , . . . ,fN22

which are related to the norm ofj i by

j i5jS )
k50

i 21

sin fkD cosf i . ~2!

In this expression,f0[p/2 andfN21[0 are understood.
With hyperspherical coordinates, the relative Schrodinger equation forN particles in two

dimensions in a harmonic well isHrelc5Erelc, with Hrel given by

Hrel52
\2

2M S 1

j2N23

]

]j
j2N23

]

]j
2

L2~V!

j2 D 1
1

2
Mv2j2, ~3!

whereL2(V) is the grand orbital operator, defined by

L2~V!5 (
i 50

N23

K ~ i !~fN222 i !2 (
j 51

N21
l̂ 2~ ĵ j !

~ )k50
j 21sin2 fk!cos2 f j

~4!

K ~ i !~fN222 i !5
1

)k50
N232 isin2 fk

3H ]2

]fN222 i
2

1F ~112i !
cosfN222 i

sin fN222 i
2

sin fN222 i

cosfN222 i
G ]

]fN222 i
J , ~5!

whereV denotes a set of 2N23 hyperspherical variablesf1 , . . . ,fN22 ,ĵ1 , . . . ,ĵN21 ( ĵ i is the
polar angle ofj i) and l̂ ( ĵ j ) is the orbital angular momentum operator associated withj j . Setting
C5R(j)Y(V), then we have

F2
\2

2M S 1

j2N23

d

dj
j2N23

d

dj
2

L2~V!

j2 D 1
1

2
Mv2j2GR~j!5ErelR~j!, ~6!

L2~V!Y~V!5l~l12N24!Y~V!. ~7!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The eigenvalue of eq.~6! is Erel5\v(2n1l1N21), n50,1,2, . . . . Theassociated eigenfunc
tion is

Rnl~j!5NnlS j

j0
D l

Ln
l1N22S j2

j0
2D e2j2/2j0

2
, ~8!

wherej0
25\(Mv)21, Nnl5(2)nA2n!/G(n1l1N22) is the normalization constant, andLn

m is
a Laguerre polynomial. The regular~with integral angular momentum! eigenfunction of eq.~7! is
a hyperspherical harmonic function in two space dimensions, given by

Y@k#~V!5F )
i 51

N22

Pi ,ni

l i 11 ,l i~f i !G @F l 1
~ ĵ1! . . . F l N21

~ ĵN21!#L , ~9!

where @k# denotes a set of quantum numbersn1 , . . . ,nN22 ,l 1 , . . . ,l N21 ;lN215u l N21u, l i

52ni1l i 111u l i u,l152n11l21u l 1u;l5( i 51
N21l i ,L5( i 51

N21l i ,

Pi , j
l i 11 ,l i~f!5u j

l i 111~N222 i !,l i (
m50

j

~2 ! j 2mCm
j 1l i 111~N222 i !

3Cj 2m
j 1u l i u~cosf!2m1u l i u~sin f!2~ j 2m!1l i 11, ~10!

whereu j
l ,l 85A2(2j 1 l 1u l 8u11) j !( j 1 l 1u l 8u)!/ @( j 1 l )!( j 1u l 8u)! # is the normalization constan

such that

E dVY@k#
* ~V!Y@k8#~V!5d@k#,@k8# , ~11!

wheredV5) i 51
N22@(sinfi)

2(N2i)23cosfidfi#) j51
N21dĵj .

Since there are many equivalent sets of Jacobi coordinates available, and each associa
a set hyperspherical variables according to eq.~2!, we introduce an additional superscripta in j i

a ,
f i

a , Va to distinguish these different sets. Two sets of Jacobi coordinates are related with
other by an orthogonal transformation,

j i
a5(

j
ai j

abj j
b ,

~12!

(
i

ai j
abai j 8

ab
5d j j 8.

Under this transformation, the hyperradiusj, the Hamiltonian and the total angular momentu
operator are invariant. Hence, we have

L2~Va!5L2~Vb!, ~13!

Ł~Va!5Ł~Vb!. ~14!

Consequently,Y@k#(V
a) can be expanded byY@k#(V

b),

Y@k#~Va!5(
@k8#

Z
@k8#

@k#
~N,ab!Y@k8#~Vb!, ~15!
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where the summation is limited to a (l,L)-subspace. The coefficient

Z
@k8#

@k#
~N,ab!5E dVbY

@k8#
* ~Vb!Y@k#~Va! ~16!

is just the transformation bracket that we are going to derive.

B. Some auxiliary formula

~a! Since thePi ,n
ll 8(f) defined in eq.~10! forms a complete set in the domain (0<f<p/2), we

have

sink fcosk8 f5(
n

f il l 8n
kk8 Pi ,n

ll 8~f!, ~17!

where the expansion coefficient

f i l l 8n
kk8 5E

0

p/2

df~sin f!2~N2 i !1k23~cosf!k811Pi ,n
ll 8~f!

5un
l 1~N2 i 22!,l 8 (

m50

n

~2 !n2mCm
n1 l 1~N2 i 22!Cn2m

n1u l 8u

3I 2~N1n2m2 i !1 l 1k23,2m1u l 8u1k811 , ~18!

I i ,i 85e i i 8

~ i 21!!! ~ i 821!!!

~ i 1 i 8!!!
, ~19!

e i i 85H p

2
, for evenl 1 and l 18 ,

1, otherwise.

~b! Let us define the transformation coefficientA through

)
i 51

N21 S (
j 51

N21

ai j
abxj D Ki

5(
K̄1

. . . (
K̄N21

A~$ai j
ab%;K1 , . . . ,KN21 ;K̄1 , . . . K̄N21!x1

K̄1 . . . xN21
K̄N21 .

~20!

The explicit expression forA can be found in Ref. 16.
~c! Let ẑi5j i exp@iĵi#/j. Then eq.~9! can be rewritten as

Y@k#~V!5 (
m150

n1

. . . (
mN2250

nN22

(
s1

. . . (
sN21

D~@k#;m1 . . . mN21!A~$hi j %;n12m1 , . . . ,nN23

2mN23,0,0;s1 , . . . ,sN21!ẑ1
J1 . . . ẑN21

JN21~ ẑ1* ! J̄ 1 . . . ~ ẑN21* ! J̄ N21, ~21!

D~@k#;m1 . . . mN21!5 )
i 51

N21

$uni

l i 111~N222 i !,l i~2 !ni2miCmi

ni1l i 111~N222 i !Cni2mi

ni1u l i u%, ~22!

hi j 5 H1, for j . i and 1< i<N23,
0, otherwise,
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which will be more convenient for our purpose.J1 , . . . ,JN21 ; J̄ 1 , . . . ,J̄ N21 are related to@k#,
m1 , . . . ,mN21 ands1 , . . . ,sN21 through

J11 J̄ 152~m11s1!1u l 1u,
~23!

. . .

JN221 J̄ N2252~mN221sN22!1u l N22u,

JN211 J̄ N2152~nN222mN221sN21!1u l N21u,

and

Ji2 J̄ i5 l i ~ i 51, . . . ,N21!. ~24!

C. The transformation bracket

Using eq.~12! and eq.~20!, we have

~ ẑ1
a!J1 . . . ~ ẑN21

a !JN21~ ẑ1
a* ! J̄ 1 . . . ~ ẑN21

a* ! J̄ N21

5(
t1

. . . (
tN21

(
t̄ 1

. . . (
t̄ N21

A~$ai j
ab%;J1 , . . . ,JN21 ;t1 , . . . ,tN21!A~$ai j

ab%;

J̄ 1 , . . . ,J̄ N21 ; t̄ 1 , . . . , t̄ N21!~ ẑ1
b! t1 . . . ~ ẑN21

b ! tN21~ ẑ1
b* ! t̄ 1 . . . ~ ẑN21

b* ! t̄ N21

5(
t1

. . . (
tN21

(
t̄ 1

. . . (
t̄ N21

A~$ai j
ab%;J1 , . . . ,JN21 ;t1 , . . . ,tN21!A~$ai j

ab%;

J̄ 1 , . . . ,J̄ N21 ; t̄ 1 , . . . , t̄ N21! )
i 51

N22

@~sin f i
b!ki~cosf i

b! k̄ i# )
j 51

N21

F l
j9
~ ĵ j

b!, ~25!

where

ki5 (
j 5 i 11

N21

~ t j1 t̄ j !; k̄ i5t i1 t̄ i ~ i 51, . . . ,N22! ~26!

and

l i95t i2 t̄ i ~ i 51, . . . ,N21!. ~27!

Making use of eq.~17!, we finally obtain the explicit expression for the transformation brack
J. Math. Phys., Vol. 38, No. 11, November 1997
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Z
@k8#

@k#
~N,ab!

5 (
m150

n1

. . . (
mN2250

nN22

(
s1

. . . (
sN21

(
t1

. . . (
tN21

(
t̄ 1

. . . (
t̄ N21

D~@k#;m1 . . . mN21!A~$hi j %;

n12m1 , . . . ,nN232mN23,0,0;s1 , . . . ,sN21!A~$ai j
ab%;

J1 , . . . ,JN21 ;t1 , . . . ,tN21!A~$ai j
ab%; J̄ 1 , . . . ,J̄ N21 ; t̄ 1 , . . . , t̄ N21!

3S )
i 51

N22

f
il

i 118 l
i8n

i8

ki k̄ i D S )
j 51

N21

d l
j9 ,l

j8D . ~28!

III. EXAMPLE OF APPLICATIONS

Consider the motion ofN anyons in a harmonic well. We adopted that they are bosons
a statistical gauge interaction. Then the problem is to solve the eigenequationHC5EC,

H5(
i 51

N F 1

2m
~pi1gA i !

21
1

2
mv2r i

2G , ~29!

Ai5 ẑ3\(
j Þ i

N r i j

r i j
2

, ~30!

whereg is the statistical parameter as we have discussed in the introduction, andẑ is a unit vector
in the vertical direction. ForN53,4, Sporreet al. have solved eq.~29! by expanding the varia-
tional wavefunction in terms of harmonic oscillator functions. Here we use a different app
which allows us to solve the problem analytically on the radial part. Noting that expansion o
~29! includes the two-body terms and three-body terms; we eliminate the latter through th
lowing similarity transformation,

H→H85F)
i . j

~r i j /j!gG21

HF)
i . j

~r i j /j!gG , ~31!

C→F5F)
i . j

~r i j /j!gG21

C, ~32!

such that

H8F5EF. ~33!

The introduction of c.m. coordinates and relative Jocobian coordinates separate eq.~33! into
HcmFcm5EcmFcm , andHrel8 F rel5ErelF rel , whereHcm continues to be the Hamiltonian of a
2D harmonic oscillator. The introduction of hyperspherical coordinates further separates th
tive equation into a hyperradial equation identical to eq.~6! ~but with a fractionall), and a
hyperangular equation similar to eq.~7! but with a modified grand orbital operatorL̃2(V),

L̃2~V!5L2~V!12gU~V!1l0~l012N24!, ~34!
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



-

llow-

r-
be
er-

5640 W. Y. Ruan and C. G. Bao: Transformation bracket for 2D harmonics

                    
wherel05N(N21)g/2. The eigenenergy was given byErel5\v(2n1l1N21) as before~see
the following part of eq.~7!!. U(V) is a sum of two-body terms. If we chooseN(N21)/2
different setsof Jacobi coordinates such that eachj1

( i )( i 51, . . . ,N(N21)/2) connects the posi
tions of a different pair of particles, thenU(V) can be expressed as

U~V!5 (
i 51

N~N21!/2 S l̂ 1
~ i !

cos2 f1
~ i !

2tgf1
~ i !

]

]f1
~ i !D . ~35!

Thus with hyperspherical coordinates, the anyon problem is finally ascribed to solving the fo
ing hyperangular eigenequation

L̃ 2~V!G~V!5l~l12N24!G~V! ~36!

by expandingG(V) in terms of hyperspherical harmonics.
In the following, we consider the caseN54 only. One set of Jacobi coordinates for a fou

particle system is depicted in Fig. 1. SinceG(V) is symmetric, the basis functions have to
symmetrized. LetŜ5(PaPS4

Pa/4! be the symmetrization operator. A symmetrized 2D hyp
spherical harmonics withl 1 ,l 25even is then given by

ŜY@k#~V~1!!5(
@k8#

T~@k8#;@k# !Y@k8#~V~1!!, ~37!

TABLE I. Number of bosonic~fermionic! states for a given (l,L).

L50 L51 L52 L53 L54 L55 L56

l50 1~0!
l51 0~0!
l52 0~0! 1~0!
l53 1~0! 1~0!
l54 2~1! 1~1! 2~0!
l55 2~1! 1~1! 1~0!
l56 3~3! 4~2! 2~2! 3~1!
l57 4~3! 4~2! 3~2!
l58 7~8! 5~5! 6~4! 3~3!
l59 7~9! 7~6! 6~4!
l510 9~9! 11~8! 8~8! 9~6!

FIG. 1. Jacobi coordinates for a four-body system.
J. Math. Phys., Vol. 38, No. 11, November 1997
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T~@k8#;@k# !5
1

6 (
i 51

6

^Y@k8#~V~1!!uuY@k#~V~ i !!&. ~38!

The summation in eq.~37! is limited to a (l,L)-subspace where@k# belongs to. It is worth
noticing that a set of symmetrized functions obtained from eq.~37! are, in general, linearly
dependent. An additional procedure of orthonormalization is required. In Table I, we lis
number of linearly independent basis functions in a (l,L)-subspace. In our diagonalizations, mo
(l,L)-subspaces have been included than listed there in order to obtain results with appr
accuracy. With symmetrized basis functions, the analytical expression for the matrix eleme
L̃ 2(V) can be obtained straightforwardly, since each bracket in eq.~35! makes the same contri
bution.

Figure 2 presents thel-spectrum for four anyons in a harmonic well. To check the correctn
and accuracy of our results, both boson and fermion representations of anyons have been
the practical calculations.

In Fig. 2,ls appears as smooth functions of the statistical parameter. Eachl, when coupled to
the radial part, gives an infinite set of solutions to the problem.~This is why some of the state
obtained in Ref. 17 show the sameg dependence.! There are complicated splittings and crossin
of the levels. The splittings followsDl566, 64, 62, or 60.

To conclude, the hyperspherical approach provides a more suitable framework for
problems than using the harmonic oscillator functions where the trivial hyperradial part
included in the diagonalization.17,18 It is impossible to show all the applications of the transfo
mation bracket for hyperspherical harmonics within this paper. However, its applications to
few-body systems such as quantum dots and biexcitons in two space dimensions will b
forthcoming work.
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On tracial operator representations of quantum
decoherence functionals
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A generalquantum history theorycan be characterized by the space of histories and
by the space of decoherence functionals. In this note we consider the situation
where the space of histories is given by the lattice of projection operators on an
infinite dimensional Hilbert spaceH. We study operator representations for deco-
herence functionals on this space of histories. We first give necessary and sufficient
conditions for a decoherence functional being representable by a trace class opera-
tor on H^ H, an infinite dimensional analogue of the Isham–Linden–
Schreckenberg representation for finite dimensions. Since this excludes many de-
coherence functionals of physical interest, we then identify the large and physically
important class of decoherence functionals which can be represented, canonically,
by bounded operators onH^ H. © 1997 American Institute of Physics.
@S0022-2488~97!00711-1#

I. INTRODUCTION

The consistent histories approach to quantum mechanics has attracted much interest in
years. The consistent or decoherent histories approach to quantum theory is a fresh, novel
to formulate a substantial generalization of standard quantum mechanics which, as far
mathematical machinery is concerned, stays remarkably close to ordinary Hilbert space qu
mechanics. It introduces new concepts into quantum mechanics and is structurally differen
all other approaches to quantum mechanics. It has enriched and deepened our understa
non-relativistic quantum mechanics quite generally and in particular of the interpretation of
dard Hilbert space quantum mechanics.

There is also the hope that physical general quantum history theories may be constru
terms of the concepts of the histories approach, which generalize standard Hilbert space q
mechanics.

The consistent histories approach to non-relativistic quantum mechanics was inaugurat
seminal paper by Griffiths.1 In this paper Griffiths introduced histories mainly as a tool
formulating a novel interpretation of non-relativistic quantum mechanics. This so-called ‘‘consis-
tent histories interpretation’’ has been further developed and brought to its present form
Omnès.2–5

According to Griffiths and Omne`s, the consistent histories interpretation is a ‘‘realisti
interpretation of quantum mechanics.1–5 The word ‘‘realism’’ is used with several different mean
ings in the physical literature. Griffiths and Omne`s use it in a weak but general sense and one
to be careful not to misinterpret the meaning of the word ‘‘realism’’ as used by Griffiths
Omnès who basically assert that quantum theory as such is arepresentationof reality.

Here we do not want to become involved into the controversial and, from a physical po
view, unrewarding debate about the use of the word ‘‘realistic,’’ but refer the interested rea
the extensive discussion of this point in Omne`s’ book, in particular to Section 12.18 in Ref. 5 an
0022-2488/97/38(11)/5643/10/$10.00
5643J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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to the references given there and—since this is by and large a matter of individual judgm
leave it to the reader to decide whether the term ‘‘realistic’’ is an appropriate adjective fo
consistent histories interpretation or not.

In the consistent histories interpretation it is furthermore asserted that quantum mec
provides a ‘‘realistic’’ description of individual quantum mechanical systems, regardles
whether they are open or closed and regardless of whether there is an external observer
Probabilities are associated withcompletehistories and are thought of as measures ofpropensities
or tendencies inherent in the quantum system in question. The assignment of probabili
histories in a certain set is only admissible when this set of histories carries the structur
Boolean lattice and satisfies an additional so-called consistency condition.

In a series of publications Gell-Mann and Hartle6–11have studied quantum cosmology and t
path integral formulation of relativistic quantum field theory in terms of the concepts of
histories approach.

However, all the above mentioned authors have stuck to the usual Hilbert space formali~or
to the usual path integral formulation! of Hamiltonian quantum mechanics or Hamiltonian qua
tum field theory and have in essence considered only histories which are time-sequen
single-time events~or—in the path integral formulation—classes of Feynman paths!.

Further important developments and results can be found in the work of Dowker
Kent.12,13 Specifically, Dowker and Kent showed that certain hopes of the original Gell-Ma
Hartle program cannot be fulfilled and that some incidental claims to be found in the
literature of the consistent histories approach cannot be upheld.

The investigation here is not affected by the negative results due to Dowker and Kent.
In an ingenious work Isham14 has broadened both the scope and the mathematical frame

of the consistent histories approach to quantum mechanics. Isham has formulated a natur
braic generalization of the consistent histories approach.

In his approach a general quantum history theory is characterized by the space of histo
the one hand and by the space of decoherence functionals on the other hand. In Isham’s a
histories are identified with the general temporal properties of the quantum system or in a
what different language with thetemporal events. In general these temporal events or histories
more general objects than simply time-sequences of single-time events, but must be rega
events intrinsically spread out in time. Histories are regarded as fundamental entities in the
right.

Isham’s approach has subsequently become the subject of intense study. The reader is
to the original articles by Isham and Linden,15–17 by Isham, Linden, and Schreckenberg,18 by
Schreckenberg,19–21 by Isham,22 by Pulmannova´,23 and by the present authors.24–27

Dual to the notion of history is the notion of decoherence functional. The decoherence
tional determines the consistent sets of histories in the theory and the probabilities assig
histories in the consistent sets. More specifically, a decoherence functionald maps every ordered
pair of historiesh,k to a complex number denoted byd(h,k). The numberd(h,k) is interpreted
in physical terms as a measure of the mutual interference of the two historiesh andk. A consistent
set of histories consists of histories whose mutual interference is sufficiently small, such th
diagonal valued(h,h) can be interpreted as the probability of the historyh in this consistent set

In standard quantum mechanics the state of some quantum mechanical system comp
probabilistic predictions of quantum mechanics for the system in question. This idea of the
of the state can be carried over to general quantum history theories: it is in this sens
decoherence functionals can be said to represent thetranstemporal statesof a system described b
a quantum history theory.

To get insight into the possible structure of general quantum history theories it is worth
to study the structure of the space of decoherence functionals for general quantum history t
in some detail. In particular it is of some interest to find operator representations for decoh
functionals. In the present work we consider the situation where the space of histories is
J. Math. Phys., Vol. 38, No. 11, November 1997
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sented by the set of projection operators on some, in general, infinite dimensional Hilbert
This choice can be motivated by appealing to the history formulation of standard quantum
chanics as given by Isham.14

Let B(H) be the space of all bounded operators on a Hilbert spaceH and letP (H) be the
lattice of projections inB(H) ~hereP (H) is interpreted as the set of histories!. Then adecoher-
ence functional forH is a complex valued functiond:P (H)3P (H)→C, defined on all ordered
pairs of projections inP (H), such that

~i! Hermiticity: d(p,q)5d(q,p)* for eachp andq in P (H). ~Here* denotes complex con
jugation.!

~ii ! Positivity: d(p,p)>0 for eachpPP (H).
~iii ! Normalization: d(1,1)51.
~iv! Orthoadditivity: d(p11p2 ,q)5d(p1 ,q)1d(p2 ,q) wheneverp1PP (H) and p2PP (H)

are perpendicular andqPP (H) is an arbitrary projection.
There are stronger notions of orthoadditivity which are useful:

~iv!8 Countable Additivity:A decoherence functional is said to becountably additiveif, when-
ever $pi% i PN is a countable collection of pairwise orthogonal projections, for eacq
PP (H),

dS (
i 51

`

pi ,qD 5(
i 51

`

d~pi ,q!.

Here the series on the right hand side is rearrangement invariant and hence is abs
convergent.

~iv!9 Complete Additivity:A decoherence functional is said to becompletely additiveif, when-
ever$pi% i PI is an infinite collection of pairwise orthogonal projections,

dS (
i PI

pi ,qD 5(
i PI

d~pi ,q!,

for eachqPP (H). Here the convergence is always absolute.

WhenH is finite dimensional and of dimension greater than two, it follows from Isham, Lin
and Schreckenberg18 that for each bounded decoherence functionald on P (H)3P (H) there is a
canonical operatorX on H^ H such that, for allp,qPP (H)

d~p,q!5trH^ H~~p^ q!X!. ~1!

The properties~i!, ~ii ! and ~iii ! of decoherence functionals imply:

~i! trH^ H((p^ q)X)5trH^ H((q^ p)X* );
~ii ! trH^ H((p^ p)X)>0;
~iii ! trH^ H(X)51.

Conversely, given any operatorX on the finite dimensional spaceH^ H which satisfies~i!, ~ii !,
and ~iii !, there is a unique decoherence functional given by~1! ~see Ref. 18!.

Our aim here is to investigate to what extent the representation~1! remains valid whenH is
infinite dimensional. If~1! is to hold for all p and q in P (H), then X must be a trace clas
operator. Moreoverd must be bounded and completely additive. It would be pleasing if th
conditions were sufficient to imply the existence of a trace class operator which satisfie~1!.
Unfortunately this is false, since there are physically natural examples of ‘‘well-behaved’’ d
herence functionals for which~1! fails. On the other hand, we shall show that it is possible
generalize the representation~1! to infinite dimensions precisely whend satisfies a sufficiently
strong boundedness condition~tensor boundedness!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Since many decoherence functionals of physical interest are not tensor bounded and he
representable by trace class operators, we then identify the large and physically important c
decoherence functionals which can be represented, canonically, by bounded operators onH^ H.
These are thetracially boundeddecoherence functionals. We shall see that to each trac
bounded decoherence functionald there corresponds a unique bounded linear operatorM on
H^ H such that, wheneverp andq are projections with finite dimensional range,

d~p,q!5trH^ H~~p^ q!M!. ~2!

In general,M is not of trace class and the formula~2! has no meaning for projections of infinit
dimensional range. But, whend is also countably additive andH is separable,~2! can be used to
calculated. For, givenp and q in P (H), each of them can be written as a countable sum
orthogonal projections of finite rank,p5( i pi andq5( jqj , and we find that

d~p,q!5dS (
i

pi ,(
j

qj D 5(
i 51

`

(
j 51

`

trH^ H~~pi ^ qj !M!. ~3!

WhenH is not separable analogous results hold ifd is completely additive.
Throughout this work we denote the inner product on a Hilbert spaceH by ^•,•& and we adopt

the convention that the inner product^•,•& is linear in the first variable and conjugate linear in t
second variable.

II. BOUNDED DECOHERENCE FUNCTIONALS

A decoherence functionald:P (H)3P (H)→C is said to beboundedif the set of real num-
bers$ud(p,q)u:pPP (H),qPP (H)% is bounded.

In the sequel we will make use of the following theorem which is a special case of a
general result proved by Wright.24

Theorem 2.1: Let H be a Hilbert space which is either infinite dimensional or of fin
dimension greater than two. LetP (H) be the lattice of projections onH. Then a decoherence
functional d can be extended (uniquely) to a bounded bilinear formD :B(H)3B(H)→C if, and
only if, d is bounded.

By settingQ(x,y)5D (x,y* ) we can replace bilinear forms onB(H)3B(H) by sesquilin-
ear forms onB(H). An immediate consequence of Theorem 2.1 is that bounded decohe
functionals forH ~whereH is not of dimension 2! are in one-to-one correspondence with tho
bounded Hermitian formsQ on B(H) for which Q(1,1)51 andQ(p,p)>0 for all projectionsp
~see Ref. 24!.

III. BILINEARITY AND LINEARITY: ISHAM–LINDEN–SCHRECKENBERG
REPRESENTABILITY

Let H be a Hilbert space and letK (H) be the ideal of compact operators inB(H). Then
K (H)5B(H) if, and only if, H is finite dimensional.

We shall need some basic facts on tensor products of operator algebras. For a part
elegant account, from first principles, of tensor products ofC* -algebras see Wegge-Olsen28 and,
for a more advanced treatment, see Kadison and Ringrose.29

Let us recall that ifH is a Hilbert space, the algebraic tensor productH^ algH can be equipped
with an inner product such that^h1^ f 1 ,h2^ f 2&5^h1 ,h2&^ f 1 , f 2&. The completion ofH^ algH

with respect to this inner product is the Hilbert space tensor productH^ H. Whenx and y are
bounded operators onH, then there is a unique operator inB(H^ H), denoted byx^ y, such that
(x^ y)(h^ f )5x(h) ^ y( f ) for all h and f in H.

Let A and B be C* -algebras of operators acting onH. Then thealgebraic tensor product
A•B can be identified with the* algebra, acting onH^ H, which consists of all finite sums o
J. Math. Phys., Vol. 38, No. 11, November 1997
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operators of the formA^ B, with APA andBPB. The norm closure ofA•B is theC* -tensor
product ofA andB and is denoted byA^ B. @This is also called the spatialC* -tensor product
to distinguish it from other possibleC* -tensor products~see Ref. 28!.# WhenA andB are von
Neumann algebras of operators acting onH, then the closure ofA•B in the weak operator
topology ofB(H^ H) is thevon Neumann tensor product ofA and B, denoted byA^̄ B.

The algebraic tensor productK (H)•K (H) embeds naturally intoB(H)•B(H) which, in
turn embeds naturally intoB(H) ^̄ B(H)5B(H^ H) ~see for instance, Ref. 29, Chapter 11.2!.
This embedding of K (H)•K (H) in B(H^ H) induces a ~unique! pre-C* -norm on
K (H)•K (H). The~spatial! C* -tensor productK (H) ^ K (H) is the closure ofK (H)•K (H) in
B(H^ H) with respect to this pre-C* -norm and can be identified withK (H^ H).

Let d be a bounded decoherence functional forH, whereH is not of dimension two. Then, by
Theorem 2.1,d has a unique extension to a bounded bilinear formD :B(H)3B(H)→C such that
d(p,q)5D(p,q) for all p andq in P (H).

Let DK be the restriction ofD to K (H)3K (H). Then, by the fundamental property of th
algebraic tensor product there is a unique linear functionalb:K (H)•K (H)→C such that

b~x^ y!5DK~x,y!5D~x,y!, ~4!

for all x,yPK (H). In particulard(p,q)5b(p^ q) for all projectionsp andq in K (H).
Definition: The decoherence functional d is said to betensor bounded if the associated

functionalb is bounded onK (H)•K (H), whenK (H)•K (H) is equipped with its unique pre
C* -norm.

Lemma 3.1: LetH be an arbitrary Hilbert space. Letf be a bounded linear functional on
K (H). Then (1) there exists a unique trace class operator T inB(H) such that, for each
zPK (H),

f~z!5trH~zT!.

Furthermore, (2) there is a unique extension off to an ultraweakly continuous functionalf̃ on
B(H) such that, for each zPB(H),

f̃~z!5trH~zT!.

Proof: For ~1! see Ref. 30, page 63, or Ref. 31, page 48, Theorem 3, and for~2! see Ref. 29,
Vol. II, page 749. h

Theorem 3.2: Let H be a Hilbert space which is not of dimension two. Let d be a boun
decoherence functional forH. Then d is tensor bounded if, and only if, there exists a trace c
operatorX on H^ H such that

d~p,q!5trH^ H~~p^ q!X! ~5!

for all projections p and q inK (H).
Proof: Let D be the bounded bilinear form corresponding tod and letb be the associated

linear functional on the algebraic tensor productK (H)•K (H).
Let X be a trace class operator which implements~5!. Let f(z)5trH^ H(zX) for

zPK (H)•K (H). Thenf(x^ y)5D(x,y) for all x,yPK (H). Since, by the fundamental prop
erty of the algebraic tensor product,b is the unique functional with this property, it coincides wi
f. Sob is bounded.

Conversely, suppose thatd is tensor bounded. Then, by definition,b is bounded so it has a
unique extension to a bounded linear functionalb̃ on K (H^ H), the norm closure of
K (H)•K (H). By Lemma 3.1~1! there exists a trace class operatorX on H^ H such that
J. Math. Phys., Vol. 38, No. 11, November 1997
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d~p,q!5D~p,q!5b~p^ q!5trH^ H~~p^ q!X!,

for all projectionsp,qPK (H). h

Corollary 3.3: LetH be a Hilbert space which is not of dimension two. Let d be comple
additive. There exists a trace class operatorX on H^ H such that

d~p,q!5trH^ H~~p^ q!X!, ~6!

for all projections p,q inB(H) if, and only if, d is tensor bounded.
Proof: When there exists a trace class operatorX such that~6! holds, then, by Theorem 3.2

d is tensor bounded.
Conversely, whend is tensor bounded, the existence ofX such that~6! holds for all projec-

tions of finite rank is guaranteed by Theorem 3.2. By appealing to the complete additivity ofd and
the ultraweak continuity of the mapz°trH^ H(zX), it is straightforward to establish~6! for arbi-
trary projections. h

Corollary 3.4: LetH be a Hilbert space which is not of dimension two. There is a one-to-
correspondence between completely additive, tensor bounded decoherence functionals d foH and
trace class operatorsX on H^ H according to the rule

d~p,q!5trH^ H~~p^ q!X!, ~7!

for all projections p,qPK (H) with the restriction that

~i! trH^ H((p^ q)X)5trH^ H((q^ p)X* );
~ii ! trH^ H((p^ p)X)>0;
~iii ! trH^ H(X)51.

Proof: Straightforward. h

Remark:The Isham–Linden–Schreckenberg Theorem follows immediately since, whenH is
finite dimensional,K (H)•K (H)5K (H) ^ K (H)5B(H) ^̄ B(H)5B(H^ H), which is finite
dimensional, and every linear functional on a finite dimensional normed space is bounded

This paper is concerned with how far the Isham–Linden–Schreckenberg Theorem c
extended to infinite dimensions. Letd be a bounded decoherence functional forH whereH has
dimension greater than two. Let us calld Isham–Linden–Schreckenberg-representable~or, more
shortly, ILS-representable! if there exists a trace class operatorXPB(H^ H) such that

d~p,q!5b~p^ q!5trH^ H~~p^ q!X!,

for all projectionsp,qPP (H). It follows from the results given above that a completely addit
decoherence functionald is ILS-representable if, and only if, it is tensor bounded.

It would be pleasing if all countably additive decoherence functionals forH ~for H separable
and infinite dimensional! were ILS-representable. This is very far from the truth. The follow
example shows that there are very natural, ‘‘well-behaved’’ decoherence functionals which a
ILS-representable.

Example 3.5: LetH be a separable, infinite dimensional Hilbert space. Letc be a unit vector
in H. Let Bc :B(H)3B(H)→C be defined by

Bc~x,y!:5^xc,y* c&

and let dc be the (bounded) countably additive decoherence functional obtained by restrictinc

to pairs of projections inB(H). Then dc is not ILS-representable.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Proof: As remarked above, there is a unique linear functionalbc :K (H)•K (H)→C such that
Bc(x,y)5bc(x^ y) for eachx andy. By Proposition 0 in Ref. 32bc is not bounded. Thusd is
not tensor bounded and sod is not ILS-representable. h

It was shown in Ref. 32 that, for eachSPK (H)•K (H),

bc~S!5(
i 51

`

^S~c ^ c i !,c i ^ c&,

where$c i% i PN is an orthonormal basis forH with c15c. Let U be the unitary onH^ H which
mapsc i ^ c j to c j ^ c i , for eachi , j . Let P be the projection onH^ H whose range is spanned b
$c ^ c i : i 51,2, . . .%. Then bc(S)5( i 51

` ( j 51
` ^SPU(c i ^ c j ),(c i ^ c j )&. Hence, whenS is of

trace class,bc(S)5trH^ H(SPU). So ~see Ref. 30, p. 320!, whenS is positive,

ubc~S!u<iPUi trH^ H~S!.

It follows that bc is bounded on the rank one projections inK (H)•K (H).
Remark:Although( i 51

` ( j 51
` ^PU(c i ^ c j ),(c i ^ c j )& converges and has the value one,PU is

not of trace class becausePU(PU)* 5P, whereP is a projection of non-finite rank.

IV. TRACIALLY BOUNDED DECOHERENCE FUNCTIONALS

In this section we consider a much larger class of decoherence functionals than those
are ILS-representable. As before,H is a Hilbert space of dimension~finite or infinite! greater than
two. Let d be a bounded decoherence functional defined onP (H)3P (H). Let
D :B(H)3B(H)→C be the unique bounded bilinear form which extendsd. Let b be the unique
linear functional onK (H)•K (H) such that

b~x^ y!5D~x,y!

for all x andy in K (H).
Before defining tracial boundedness, we introduce some notation. LetV be a Hilbert space

and j be a unit vector inV. Then the~rank one! projection fromV onto the one dimensiona
subspace spanned byj will be denoted bypj . Thuspj(h)5^h,j&j for eachhPV. We observe
that if a,g are inH, thenpa ^ g5pa ^ pg . We may identifyH^ algH with the dense subspace o
H^ H consisting of those vectors which are finite sums of elementary tensors. Whenj is in
H^ algH, thenpj is in K (H)•K (H).

Definition: The decoherence functional d is said to betracially bounded if it is bounded and,
whenb is the corresponding linear functional onK (H)•K (H), there exists a constant C suc
that, for each unit vectorj in H^ algH, ub(pj)u<C.

It is clear that the decoherence functionaldc considered in Example 3.5 is tracially bounde
Hence tracial boundedness is a strictly weaker condition than tensor boundedness.

The following technical lemma must be well known but, since we do not know of a co
nient reference, an argument is supplied for the convenience of the reader.

Lemma 4.1: LetL be a bounded operator onH^ H such that, for alla,bPH,

^L~a ^ b!,a ^ b&50.

ThenL50.
Proof: Let F(a,b,g,d)5^L(a ^ b),g ^ d&. So F is linear in the first two variables an

conjugate linear in the third and fourth variables and

F~a,b,a,b!50 for all a,bPH. ~i!
J. Math. Phys., Vol. 38, No. 11, November 1997
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On replacinga in ~i! by a1a8 and expanding, using the linearity in the first variable and
conjugate linearity in the third variable, we obtain, after applying the identity~i! to two of the
terms,

F~a,b,a8,b!1F~a8,b,a,b!50. ~ii !

On replacinga by ia in ~ii ! we obtain

iF~a,b,a8,b!2 iF~a8,b,a,b!50.

So

F~a,b,a8,b!50. ~iii !

We replaceb by b1b8 in ~iii !, expand, and apply~iii ! to two of the terms, obtaining

F~a,b8,a8,b!1F~a,b,a8,b8!50. ~iv!

On replacingb8 by ib8 in ~iv!, dividing by i and subtracting the result from~iv! we obtain

05F~a,b,a8,b8!5^L~a ^ b!,a8^ b8&.

Hence^Lj,h&50 for all j,h in H^ algH. SinceL is bounded, this implies thatL50. h

Proposition 4.2: Let H be a Hilbert space of dimension greater than two and
d:P (H)3P (H)→C be a bounded decoherence functional forH. Then there exist families o
trace class operators$Xi% i PI and $Yi% i PI on H, where, for each x and y inK (H),
( i PI utrH(xXi)u2 and ( i PI utrH(yYi)u2 are convergent and, for all SPK (H)•K (H),

b~S!5(
i PI

trH^ H~S~Xi ^ Xi* 2Yi ^ Yi* !!, ~8!

where the infinite series is absolutely convergent.
Proof: This is an easy consequence of Theorem 6 in Ref. 32. h

In the following we shall now suppose thatH is separable. All our results can be extended
general Hilbert spaces but the notation becomes simpler and more transparent whenH is sepa-
rable.

Let d,b be as in Proposition 4.2 and letj be a unit vector inH^ algH. Soj is a finite sum of
simple tensorsa i ^ b i , where eacha i andb i is in H. Then Proposition 4.2 implies that

b~pj!5(
i 51

`

trH^ H~pj~Xi ^ Xi* 2Yi ^ Yi* !!

5(
i 51

`

^~Xi ^ Xi* 2Yi ^ Yi* !j,j&. ~9!

Let us now assume thatd is tracially bounded. Then, using~9! and polarisation, we find that ther
exists a constantC such that

U(
i 51

`

^~Xi ^ Xi* 2Yi ^ Yi* !j,h&U<Cuujuu uuhuu

for all j,h in H^ algH.
J. Math. Phys., Vol. 38, No. 11, November 1997
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It follows from this that there is a bounded linear operatorM on H^ H such that

^Mj,h&5(
i 51

`

^~Xi ^ Xi* 2Yi ^ Yi* !j,h&

for all j,h in H^ algH. In particular, fora andg unit vectors inH,

b~pa ^ pg!5b~pa ^ g!5^M~a ^ g!,a ^ g&5trH^ H~Mpa ^ g!5trH^ H~M~pa ^ pg!!.

Hence, by orthoadditivity, whenp andq are projections of finite rank onH

d~p,q!5b~p^ q!5trH^ H~M~p^ q!!.

Proposition 4.3: Let the decoherence functional d be tracially bounded. Then there ex
unique bounded linear operatorM on H^ H such that

d~p,q!5trH^ H~M~p^ q!! ~10!

whenever p and q are finite rank projections onH.
Proof: The preceding argument establishes the existence ofM with the required properties. I

M̂ also satisfies~10!, then, for alla andb in H,

^~M2M̂!~a ^ b!,a ^ b&5trH^ H~~M2M̂!pa ^ b!50.

Hence, by Lemma 4.1,M2M̂50. h

Let us recall that each projection inB(H) is the sum of an orthogonal family of rank on
projections.

Theorem 4.4:Let d be a countably additive, tracially bounded decoherence functional foH,
whereH is separable and of dimension greater than two. Then there exists a unique bo
linear operatorM on H^ H such that, whenever p and q are projections inP (H) and $pn%nPN
and $qn%nPN are, respectively, orthogonal families of finite rank projections with p5(nPNpn and
q5(nPNqn , then

d~p,q!5(
i 51

`

(
j 51

`

trH^ H~~pi ^ qj !M!. ~11!

Proof: The countable additivity ofd and Proposition 4.3 imply the existence of a uniq
bounded linear operatorM satisfying~11!. h

When H is infinite dimensional, it follows from Ref. 25 that whenH is separable every
countably additive decoherence functional onP (H) is bounded and, whenH is not separable,
every completely additive decoherence functional onP (H) is bounded. By contrast, unbounde
~‘‘countably additive’’! decoherence functionals exist onP (H) wheneverH is of finite dimension
greater than one.25

When H is not separable, then, providedd is completely additive, the obvious analogue
~11! holds.
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Covariant path integrals on hyperbolic surfaces
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DeWitt’s covariant formulation of path integration@B. De Witt, ‘‘Dynamical theory
in curved spaces. I. A review of the classical and quantum action principles,’’ Rev.
Mod. Phys.29, 377–397~1957!# has two practical advantages over the traditional
methods of ‘‘lattice approximations;’’ there is no ordering problem, and classical
symmetries are manifestly preserved at the quantum level. Applying the spectral
theorem for unbounded self-adjoint operators, we provide a rigorous proof of the
convergence of certain path integrals on Riemann surfaces of constant curvature
21. The Pauli–DeWitt curvature correction term arises, as in DeWitt’s work. In-
troducing a Fuchsian groupG of the first kind, and a continuous, bounded,G-
automorphic potentialV, we obtain a Feynman–Kac formula for the automorphic
Schrödinger equation on the Riemann surfaceG\H. We analyze the Wick rotation
and prove the strong convergence of the so-called Feynman maps@K. D. Elworthy,
Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by
Seifert, Clarke, and Rosenblum~Reidel, Boston, 1983!, pp. 47–90# on a dense set
of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner,
‘‘The path integral on the Poincare upper half plane and for Liouville quantum
mechanics,’’ Phys. Lett. A123, 319–328~1987!. © 1997 American Institute of
Physics.@S0022-2488~97!00211-9#

I. INTRODUCTION

Let X be a hyperbolic surface; its Riemannian metric^,& defines an action on smooth curvesg
by S(g)5m*0

t (^ġ,ġ&/2)dt. ~Note that the action isnot reparametrization invariant.! The ‘‘critical
points’’ dS(g)50 of this functional are geodesics onX. We view this as the description of
classical~nonrelativistic! particlem exhibiting ‘‘free’’ motion on a surface of constant curvatu
21. Such dynamical systems are the subject of much research, particularly whenX has finite area.
~In this case, the geodesic flow is highly nonintegrable.!

The quantum analog of this classical system is given by the time-dependent Schro¨dinger
equation,

ih
]c

]t
52

h2

2m
Dc,

whereD represents the Laplacian onL2(X). Connections between classical and ‘‘quantum m
chanics’’ onX are of particular interest. A Feynman integral representation for the fundam
solution of the Schro¨dinger equation is a step in this direction.

The construction of Feynman integrals on curved spaces begins with DeWitt@D#. He sug-
gests the semiclassical, or WKB approximation,

WKB~ t,x,y!5A 1

Ag~x!
det

]2Scl

]x]y

1

Ag~y!
e~ i /h!Scl~ t,x,y!

be used to define the Feynman integral, provided one makes sense ofScl and the so-called
‘‘Van-Vleck’’ determinant appearing in this expression. HereScl(t,x,y) represents the value o
0022-2488/97/38(11)/5653/10/$10.00
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the classical action on a trajectory traveling fromx to y in time t. Assuming that this trajectory
exists, and is unique for eachx andy, the above expression makes sense. This local coordi
expression~modulo the choice of square root! turns out to be covariant. It represents an intrin
object onX; such objects were studied in great detail by Maslov.

Maslov’s canonical operator, with kernel (m/2p i th)AJei /hScl, is a geometric extension of th
celebrated WKB method.1 Taking J as the inverse Jacobian of the mapTx* X→X given by the
classical equations of motiondS50 ~the metric determines volume forms on these Lagrang
submanifolds! yields the relation

2
m2

~2pth!2 J~x,y!5
1

Ag~x!
det

]2S

]x]y

1

Ag~y!
.

Physically,J5J(g) is interpreted as the energy ‘‘transported’’ along a classical solutiong ema-
nating fromx. In our situation, the solutions satisfy¹ġġ50, where¹ is the Levi–Civita connec-
tion induced by the hyperbolic metric. The aforementioned map is essentially the exponentia
and 1/J is its Jacobian.~In our notation, Maslov’s determinant is 1/J). The subtleties of this
approach associated with caustics~i.e., places where 1/J50! are not encountered in our cas
sinced2S,0 along geodesics. This means that the geodesics ‘‘spread-out’’ as they evolv
thus the energy transported along a geodesic diminishes.

In the simply-connected caseX5H, we can formally construct a Feynman integral as follow
With Vn(z,w,t) defined as

H v:@0,t#→
cont

HUg~0!5z,g~ t !5w, and ¹ġġ~t!50 for tÞ
kt

n
,0,k,nJ ,

the natural parametrization ofVn by the (n21)-fold product ofH-planes defines a measu
dn21v on V. Extending the definition ofJ to these ‘‘broken’’ geodesics by taking the product
the Jacobians for each geodesic segment, consider the formal expression

S mn

2p i th D nE
Vn~z,w,t !

AJ~g!ei ~m/h!*0
t
~^v̇,v̇&/2!dtdn21v.

By expanding the integrand, one sees directly that this is simply ann-fold convolution of
Maslov’s kernel. The mathematical difficulties surrounding a rigorous treatment of this expre
and its limit asn→` are well known.2 It is customary at this point to ‘‘go Euclidean’’-replacin
it by t and obtaining convergent expressions fort.0 ~this procedure is referred to as a Wic
rotation in the physics literature!. In order to simplify the discussion, we will puth51 andm
51/2, so our Wick-rotated Schro¨dinger equation is now the heat equation

]c

]t
5Dc.

Path-integral representations for solutions of this equation on a compact Riemannian manif
known.2–4 In this paper, we exploit the methods of harmonic analysis onH to get similar results.
We compile the necessary ingredients in Sec. II.

SinceH is a rank-one symmetric space, the analysis boils down to a study of small per
tions of the heat kernel onR of the form (e2u2/4t/A4pt)e t(u/A4pt). Similar investigations can
be traced back to Fourier himself. In fact, the Fourier transform of the above express
ht(r )5*2`

` e t(u)e2 iurA4pte2pu2
du. Using this, we can compute the effect of an infinitesim

variation ė0(u) on the heat kernel. In our cases of interest,ė0 turns out to be an even polynomia
of degree<4. This is done in Secs. III and IV.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Our method is rather specialized, but it has some advantages. One benefit is that it p
investigation into the role that an ‘‘arbitrary amplitude’’J plays in the limit. With 0,u,p/2,
define Q5Q(u)5$reia:r .0,uau,u%. SupposeJ:R→R1 extends to an entire even functio
which satisfies

e2aRj<uJ~j!u<eaRj, for each jPQ.

Herea.0 is some fixed constant. In this case, we sayJ satisfiesthe usual conditions. In Sec. IV,
we prove the following:

Theorem 1: LetG,SL(2,R) be trivial or a Fuchsian group of the first kind, and let V be
continuous, bounded,G-automorphic function onH. If J satisfies the usual conditions, the kerne

kt/n* n~r~z,w!!5S n

4pt D
nE

Vn~z,w,t !
AJ~v!e2~1/2!*0

t
~^v̇,v̇&/2!1V~v~ t !!dtdn21v

define a sequence of operators that converge strongly to et(D2V/21J9(0)12/3) on L2(G\H).
Since a hyperbolic surfaceX of finite area can be written asG\H for some Fuchsian groupG

of the first kind, this theorem handles the cases of interest mentioned above, in which the cl
flow is ergodic.

The polar coordinate expression of the hyperbolic metricds25dr21sinh2 r du2 directly
provides a computation of Maslov’s inverse JacobianJ5r/sinhr5121/6r21O(r4). Clearly J
satisfies the usual conditions for any 0,u,p/2. 1/J can be computed alternately by zeta-functi
regularization of detd2Son infinitesimal variations which are normal to the geodesic connectiz
and w, and which vanish at the end points. This well-known result allows us to interpre
Maslov operator as a ‘‘stationary phase’’ approximation to the kernel of DeWitt’s modified Sc¨-
dinger equation.5 As expected, the Pauli–DeWitt curvature correction~which in our units5R/6,
whereR522 is the scalar curvature! appears in this equation as an effective potential.

Corollary: Let J5r/sinhr, a50,1,2.Then forG and V as above, the path-integral

lim
n→`

S n

4pt D
nE

Vn~z,w,t !
AJa~v!e2~1/2!*0

t
~^v̇,v̇&/2!1V~v~ t !!dtdn21v

converges strongly to the semigroup generated by the equation

]c

]t
5Dc2S V

2
1

~22a!R

6 Dc,

for cPL2(G\H).
The casea50,1 is first discussed in Ref. 5 anda52 is analyzed in Refs. 3 and 4. Thea52

case is closely related to the methods of stochastic development, which is explained in de
Ref. 6.

A further advantage of our approach is that we can keep track of the Wick rotation.
upshot is that we can rotate back, provided we restrict our attention to a dense set of state
Vn(z,t) the space ofn-broken geodesics emanating fromz, anddnv its measure induced from
Hn, we obtain the following:

Theorem 2: If J5r/sinhr and cPL2(H) has a compactly supported spectral measure, th

lim
n→`

S n

4p i t D
nE

Vn~z,t !
AJa~v!e2 i ~1/2!*0

t
~^v̇,v̇&/2!dtc~v~ t !!dnv5e2 i t ~D1~22a!R/6!c~z!,

where the limit is in the L2-sense.
J. Math. Phys., Vol. 38, No. 11, November 1997
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The proof of this theorem is in Sec. IV. We apply our methods to conclude with a new p
of some results in Ref. 7.

II. PRELIMINARIES

The following theorem is taken verbatim from Ref. 6, p. 262.

A. Spectral theorem (functional calculus form)

Let A be a self-adjoint operator onH. Then there is a unique mapF from the bounded Bore
functions onR into L~H! so that

~a! F is an algebraic* -homomorphism;
~b! F is norm continuous, that is, iF(h)iL(H)<ihi` ;
~c! let hn(r ) be a sequence of bounded Borel functions with hn(r ) ——→

n→`
r for each r and

uhn(r )u<ur u for all r and n. Then, for anycPD(A), limn→`F(hn)c5Ac.
~d! If hn(r )→h(r ) pointwise and if the sequenceihni` is bounded, thenF(hn)→F(h)

strongly.
In addition:

~e! if Ac5lc, thenF(h)c5h(l)c;
~f! if h>0, thenF(h)>0.

We use mainly~d! and a slight improvement over part~b!.
Fact: Suppose furthermore that h is continuous. Then

sup
r Ps~A!

uh~r !u5iF~h!i .

B. Harmonic analysis on H

To fix ideas, we take the upper half plane model of hyperbolic space-H5$x1 iy uy.0%. The
metric is given byds25(dx21dy2)/y2; the volume form is (dxdy/y2). The hyperbolic Laplacian
is D5y2@(]2/]x2)1(]2/]y2)#.

Let k be a smooth even function onR satisfyingiemr(dnk/drn)i`,` for any non-negative
integersm andn. Following Ref. 8, we define theAbel TransformA by

Ak~u!,A2E
uuu

` k~r!sinh r

Acoshr2coshu
dr.

It is readily shown thatA is an isomorphism on the space of suchk’s.8 As such, the Abel
transform of a smooth, even function is also smooth and even, sowe may restrict our attention to
non-negative u. We do so from now on without further mention.

This transformation is used to analyze operators of the form*Hk(r(z,w))c(z)(dxdy/y2).
These operators commute with the isometric action ofG5SL(2,R) on H by fractional-linear
transformations. All kernels appearing in this note are of this form. The heat kernelpt is one such
example,etDc(v)5*Hpt(r(z,w))c(z)(dxdy/y2), and

Apt~u!5
e2u2/4t2t/4

A4pt
.

The Abel transform is the analog of the Radon transform inRn. With

f̂ ~r !,E
2`

`

f ~u!e2 irudu,
J. Math. Phys., Vol. 38, No. 11, November 1997
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and interpretingy1/22 ir as a plane wave moving upward with ‘‘momentum’’r , the equation

E
H
k~r~x1 iy ,i !!y1/22 ir

dxdy

y2 5Ak̂~r !

represents this fact. In fact, takingA5A2D21/4, andh holomorphic with sufficient decay, the
operatorF(h) given by the spectral theorem has kernelk(r), which satisfies

h~r !5Ak̂~r !.

These results are in Refs. 8–12, etc.

III. ANALYSIS

A. Useful lemma

Lemma 1: LetQ and X be metric spaces, with Xs-compact, and letm a Borel measure on X
satisfyingm(K),` for every compact K,X. Suppose Fn :Q3X→C is a sequence of continuou
functions converging to F uniformly on compact subsets ofQ3X. If uFn(z,x)u<A(z)B(x) for
some non-negative functions APC(Q) and BPL1(X,m), then

f n~z!,E
X
Fn~z,x!dm~x!

defines a sequence of continuous functions which converge uniformly on compact subsetsQ to
f (z),*XF(z,x)dm(x).

Moreover, ifQ,C is open, and for each n,x, the map z°Fn(z,x) is holomorphic, then f is
holomorphic onQ as well.

Remarks:It follows immediately from the definition thatu f (z)u<A(z)*XB(x)dm(x). In our
applications of the lemma, (X,dm) will be either (R1,r21/2e2pr2

dr), or (R,e2pu2
du).

Proof: The hypothesized bound implies thatf and thef n’s are well-defined, and their conti
nuity is an obvious consequence of dominated convergence. For uniform convergence, takeC,Q
compact. For any compactK,X, observe that

E
X

sup
zPC

uFn2Fu~z,x!dm~x!< sup
~z,x!PC3K

uFn2Fu~z,x!m~K !12sup
zPC

A~z!E
X\K

B~x!dm~x!.

Fixing e.0, chooseK so that the second term on the right-hand side is,e/2; then takeN(K) large
enough that the first term on the right-hand side is,e/2 as well, providedn.N(K). Since this
dominates supzPCu f n2 f u(z), we are done with the first part. The holomorphy off is a conse-
quence of Goursat’s theorem, if we can change the order of integration. This is justified b
bound onf referred to in the remark.

B. Main formulas

For 0,u,p/2, defineQ5Q(u)5$reia:uau,u%. SupposeJ:R→R1 extends to an entire
even function which satisfies

e2aRj<uJ~j!u<eaRj, for each jPQ,

for some fixeda.0. In this case, we sayJ satisfiesthe usual conditions. For uPQ andt.0, put
J. Math. Phys., Vol. 38, No. 11, November 1997
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e t~u!,A2E
0

`AJ~~u1r!A4pt !sinh2~~u1r!A4pt !

cosh~~u1r!A4pt !2cosh~uA4pt !
e2pr~r12u!dr, ~1!

with the square root defined by its principal branch. Thate t is well-defined is contained in the
proof of the following lemma.

Lemma 2: Suppose J satisfies the usual conditions. Withe t defined by (1),e t→1 as t→0
uniformly on compact subsets ofQ(u). In fact, there are positive constantsa, C so thatue t(u)u
<CeaRu, provided t,1.

Proof: Set F(j,h)5sinh2 j /(coshj2coshjh). For jPQ, an easy computation usinguej

21u>Rj produces

uF~j,h!u<
2e3Rj~Rj!2

cos2 u~~Rj!22~R~jh!!2!
.

With

j5A4pt~u1r!, h5
u

u1r
,

we have

uJ~j!F~j,h!u<
2e~a13!A4pt~r1Ru!~r1Ru!2

cos2 ur~r12Ru!
<

2e~a14!A4p~r1Ru!

cos2 ur
,

where the last inequality usest,1. Now apply Lemma 1 withA(u)52e(a14)ApRu/cos2 u, B(r)
5e(a14)Apr, and (X,dm)5(R1,r21/2e2pr2

dr). The bound follows automatically, and sinc
J(0)51, we conclude that

lim
t→0

e t~u!5E
0

` 2~r1u!

Ar~r12u!
e2pr~r12u!dr51.

This completes the proof.
We compute]F/]j5FG, where

G~j,h!5
sinh j1~h22!sinh~jh!24@sinh2~j~h21!/2!/sinh j#

coshj2cosh~jh!

is entire in bothj,h, and of exponential type. In particular,G(0,h)50 anduGu<KeAuju uniformly
in uhu<1. With j,h as above, we have

ė t~u!5Ap

2 E
0

`
AJ~j!F~j,h!S G~j,h!

At
1

J8~j!

J~j!At
D ~u1r!e2pr~r12u!dr.

Observing thatJ8/J has similar properties, a similar analysis results in the next lemma. We
the details.

Lemma 3: Suppose J satisfies the usual conditions ande t is defined by (1). Thenė t converges
uniformly on compact subsets ofQ to a holomorphic function. In fact, for any 0,d,u, there are
positive constantsa, C so thatu ė t(u)u<CeaRu on Q(u2d), provided t,1. Denoting this limit by
ė0 , we have
J. Math. Phys., Vol. 38, No. 11, November 1997
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ė0~u!5S J9~0!1
1

3Dpu21
J9~0!

2
1

1

4
. ~2!

In particular, ifJ(r)5r/sinh(r)5121/6r21O(r4), theu2 coefficient vanishes.
We continue to develop the main formulas now. Witht,1, e t as above,dm5e2pu2

du, and
r PC, suppose

ht~r !5E
2`

`

e t~u!e2 iurA4ptdm. ~3!

Lemma 2 shows that this integral converges absolutely, moreoverht converges to 1 uniformly on
compactum ast→0. Differentiating with respect tot gives

ḣt~r !5E
2`

`

ė t~u!e2 iurA4ptdm1 ir E
2`

`

e t8~u!
sin~urA4pt !

A4pt
dm2r 2ht~r !. ~4!

We are interested in limt→0 ḣt . It is a consequence of lemma 2 and the Cauchy Inte
Formula that

~i! e t8→0 uniformly on compact subsets ofQ, and
~ii ! e2aue t8(u) is bounded foru.1, t,1 ~the a is from lemma 2!.

An integration by parts shows that limt→0 *21
1 e t8(u)@sin(urA4pt)/A4pt#dm50. Combining

these facts with our earlier lemmas, we see that the following proposition holds.
Proposition: As t→0,

ḣt2E
2`

`

ė0~u!dm2r 252r 22
1

4
1J9~0!1

2

3
. ~5!

Therefore, we have shown that

lim
n→`

ht/n
n ~r !5et~2r 221/41J9~0!12/3!,

and the convergence is uniform on compact subsets.

IV. APPLICATIONS

We summarize our results of Sec. II. Witht,1, aJ satisfying the usual conditions defines a
operatorKt :L2(H)→L2(H) with kernel

kt~r!5AJ
e2~1/2!Scl

4pt
5

1

4pt
AJ~r~z,w!!e2r2~z,w!/4t.

Herer5r(z,w) is the hyperbolic distance betweenz andw. Now kt has Abel transform

Akt~u!5
e2u2/4t

A4pt
e t~u/A4pt !,

where e t(u) is given by ~1!. The Fourier transform ofAkt gives the spectral functionht(A)
5ht(A2D21/4)5Kt , as in~3!. Thus then-fold convolutionkt/n* n is the kernel ofKt/n

n and thus
J. Math. Phys., Vol. 38, No. 11, November 1997
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has spectral functionht/n
n -this limit is evaluated in~5!. Establishing a bound foriht/n

n i`5iKt/n
n i

will enable us to apply the spectral theorem and conclude that the strong limit of our opera
as advertised.

A. Feynman–Kac formula

Theorem 1: LetG,SL(2,R) be trivial or a Fuchsian group of the first kind, and let V be
continuous, bounded,G-automorphic function onH. With J satisfying the usual conditions, th
kernels

kt/n* n~r~z,w!!5S n

4pt D
nE

Vn~z,w,t !
AJ~v!e2~1/2!*0

t
~^v̇,v̇&/2!1V~v~ t !!dtdn21v

define a sequence of operators that converge strongly toe t(D2V/21J9(0)12/3) on L2(G\H).
It is clearly sufficient to establish the theorem fort,1. TheG5e, V50 case follows from the

spectral theorem, once we proveht/n
n is uniformly bounded.

Proposition: iKt/n
n i is bounded by a sequence converging to et(J9(0)12/3).

Proof: Fix cPL2(H), and for the moment, let (r ,u) be polar coordinates centered atz. Since
(1/4pt)e2r 2/4t represents the Euclidean heat kernel onR2, Cauchy–Schwartz supplies the follow
ing estimate:

U E
0

2pE
0

`

c~r ,u!AJ~r !
e2r 2/4t

4pt
sinh rdrduU2

<E
0

2pE
0

`

uc~r ,u!u2J~r !
sinh r

r

e2r 2/4t

4pt
sinh rdrdu.

We must now integrate this expression overzPH. Switching the order and performing firs
the z integration decouples the integrals. We obtain

iKtci2<ici2E
0

2pE
0

`

J~r !S sinh r

r D 2 e2r 2/4t

4pt
rdrdu5ici2S 112S J9~0!1

2

3D t1O~ t2! D .

The proposition follows from this, just as in~4!.
Now let G be a Fuchsian group of the first kind. By summing over the Fuchsian group

kernels become automorphic and thus project toG\H. The same mapF described above extend
to this case as well, with some minor modifications. The Hilbert space is nowL2(G\H), and the
spectral measure of our operatorA is different. In the caseG is cocompact, the spectrum is just
discrete subset ofR together with a finite number of points on the imaginary axis added for
eigenvalues of2D below 1/4. The cofinite case is basically the same, with a superimp
finite-multiplicity continuous spectrum corresponding to the number of cusps or ‘‘routes to i
ity’’ in G\H. Our previous convergence results apply to these cases just as well.8,12

Finally, let V:H→R be bounded, continuous, andG- automorphic. The Wick-rotated classic
action becomes

S~v!52E
0

t ^v̇,v̇&
2

1V~v~ t !!dt.

Since V is bounded and continuous, we can apply Chernoff’s work13 generalizing the Trotter
product formula. We therefore conclude that the sequence of operators defined by the ker

S n

4pt D
nE

Vn~z,w,t !
AJ~v!e2~1/2!*0

2
~^v̇,v̇&/2!1V~v~ t !!dtdn21v
J. Math. Phys., Vol. 38, No. 11, November 1997
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converge strongly to the operatoret(D2V/21J9(0)12/3). This completes the proof of Theorem 1.
Now let dP(r ) be the projection-valued measure associated toA5A2D21/4 onL2(H). A

statecPL2(H) has an associated spectral measuredmc(r )5d^P(r )c,c&.6 If this measure has
compact support, we sayc has acompactly supported spectral measure. This property is shared
by a dense set of states. In this section, we prove

Theorem 2: If J5(r/sinhr) andcPL2(H) has a compactly supported spectral measure, th

lim
n→`

S n

4p i t D
nE

Vn~z,t !
AJa~v!e2 i ~1/2!*0

t
~^v̇,v̇&/2!dtc~v~ t !!dnv5e2 i t ~D1~22a!R/6!c~z!,

where the limit is in the L2-sense.
Proof: First supposetPR1 and putu5p/3. Apply Lemmas 2 and 3 to obtainC,a. Note that

we obtain these bounds by pointwise estimation ofJ,J8,F,G at jPQ. ~Recall the definitions of
j,F, andG in Sec. II.! Hence, the bounds obtained only depend onJ, u, and Rj.

TakinguPQ(p/12), the Wick rotation will keepzPQ~p/3! throughout, and hence the anal
sis of Sec. II applies withC,a as above. These arguments yield

lim
n→`

hit /n
n ~r !5eit ~2r 221/41J9~0!12/3!,

where the convergence is uniform on compact subsets. The main problem is that we no
have the uniform bounds necessary to apply part~d! of the spectral theorem. In fact, it is no
obvious from this discussion thatihit i`,`. In particular, it is unclear whether these kerne
define bounded operators onL2(H).

One way around this is to restrict attention to the image of*2R
R dP(r ). Here we do have

uniform bounds, and thus the spectral theorem gives our desired result. Since this space is
the set of states with spectral measure supported in@2R,R#, the proof is complete.

B. Grosche and Steiner’s lattice approximation

A different approach to defining a path integral on the upper half plane is described in R
Using the replacement rulesy2(t)°yiyf , ẋ°(xf2xi)/t ~similarly for ẏ!, they replaceS by the
lattice-approximation,

S5E
0

t ^ġ,ġ&
2

dt5E
0

t ẋ21 ẏ2

2y2 dt°
1

2t

uxf2xi u21uyf2yi u2

yiyf
.

The last expression is known to be the point-pair invariant 2~coshr 21!. Hence, their approxima
tion to the heat kernel is

kt~r!,
e2@2~coshr 21!/4t#

4pt
.

This is an eigenfunction for the Abel Transform with eigenvalueA4pt,

Akt~u!5
e2@2~coshu 21!/4t#

A4pt
5

e2u2/4t

A4pt
e t~u/A4pt !,

where

e t~u/A4pt !5e~21/2t !(n52
`

@u2n/~2n!! #5e~21/2t !~u4/4!1O~u6!!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Henceihti`<1, and holdingr fixed, a Taylor expansion int aboutt50 gives

e t~u!5e~21/2t !~u4~4pt !2/4!1O~u6~4pt !3!!512
u4p2

3
t1Ou~ t2!.

Plugging into Eq.~4!, we get~the rapid decay ofe t justifies this!

lim
t→01

ḣt~r !5E
2`

` 2p2u4

3
dm2r 252

1

4
2r 2.

This is precisely the generator of the heat equation. The argument in Ref. 7 is differen
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A combinatorial approach to diffeomorphism invariant
quantum gauge theories

José A. Zapataa)

Center for Gravitational Physics and Geometry, Department of Physics, The Pennsylvania
State University, 104 Davey Laboratory, University Park, Pennsylvania 16802

~Received 25 March 1997; accepted for publication 7 May 1997!

Quantum gauge theory in the connection representation uses functions of holono-
mies as configuration observables. Physical observables~gauge and diffeomor-
phism invariant! are represented in the Hilbert space of physical states; physical
states are gauge and diffeomorphism invariant distributions on the space of func-
tions of the holonomies of the edges of a certain family of graphs. Then a family of
graphs embedded in the space manifold~satisfying certain properties! induces a
representation of the algebra of physical observables. We construct a quantum
model from the set of piecewise linear graphs on a piecewise linear manifold, and
another manifestly combinatorial model from graphs defined on a sequence of
increasingly refined simplicial complexes. Even though the two models are differ-
ent at the kinematical level, they provide unitarily equivalent representations of the
algebra of physical observables inseparableHilbert spaces of physical states~their
s-knot basis is countable!. Hence, the combinatorial framework is compatible with
the usual interpretation of quantum field theory. ©1997 American Institute of
Physics.@S0022-2488~97!01411-4#

I. INTRODUCTION

Quantum gauge theories can be described using the holonomies along the edges of a
lattice as basic configuration observables. This idea was introduced by Wilson1 in the 1970s and
is now the basis of the modern lattice gauge theory. In diffeomorphism invariant gauge th
~like gravity using Ashtekar variables2 or Yang–Mills coupled to gravity!, the use of Wilson loops
as primary observables of the theory led to the discovery of an interesting relation be
quantum gauge theories and knot theory.3

Twenty years after the early works, the notion of Wilson loops was extended and serve
rigorous foundation of quantum gauge field theory.4 The modern approach rests on the followin
idea: Begin by considering ‘‘the family of all the possible lattice gauge theories’’ defined
graphs whose edges are embedded in the base space. Then use a projective structure to
the repeated information from graphs that share edges. For a manageable theory, the
definition of ‘‘the family of all the possible lattice gauge theories’’ had to avoid situations wh
two different edges intersect each other an infinite number of times. The first solution to
problem5 led to the framework referred to in this article as the analytic category; by restrictin
set of allowed graphsGv to contain only graphs with piecewise analytic edges, one acquir
controllable theory. In the analytic category the diffeomorphisms are restricted to be an
accordingly. After a subtle analysis, it was possible to sacrifice part of the simplicity of the re
of the analytic case and extend the theory to the smooth category.6

While the foundations were solidifying, the theory also produced its first kinematical re
for quantum gravity~the canonical quantization of gravity expressed in terms of Ashtekar v
ables!. Regularized expressions for operators measuring the area of surfaces and volume
gions were developed.7 These operators were also diagonalized and their eigenvectors were

a!zapata@phys.psu.edu
0022-2488/97/38(11)/5663/19/$10.00
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to be labeled by spin networks~one-dimensional objects!. In other words, a picture of polymer
like geometry arises from quantum gravity.8 A polymer-like geometry is predicted from a theo
whose foundations require space to be an analytic manifold. This peculiar situation was the
motivation for the work presented in this article.

In this article we present two quantum models: the combinatorial and the piecewise
~PL! categories. The intention is to keep a simple framework that minimizes background str
and is suited to a polymer-like geometry, but that can still recover the classical macros
theory. Both models are based on the projective techniques used for the analytic and s
categories; again, the difference relies on the family of graphsG considered and the correspondin
‘‘diffeomorphisms.’’

In the piecewise linear category we fix a piecewise linear structure in the space manif
specify the elements of the family of graphsGPL that define the Hilbert space. A piecewise line
structure on a manifoldS can be specified by a division of the manifold into cells with a fix
affine structure~flat connection!. Also it can be specified by a triangulation, that is, a fix
homeomorphismw:S→S0 whereS0,R2n11 is an n-dimensional polyhedron with a fixed de
composition into simplices. An element ofGPL is a graph whose edges are piecewise lin
according to the fixed PL structure. This seems to be far from a background-free situation
PL structure is much weaker than an analytic structure; the same PL structure can be spec
any refinement of the original triangulation. Furthermore, we will prove that in three~or less!
dimensions different choices of PL structures yield unitarily equivalent representations o
algebra of physical observables. This result is of particular interest for 311 (211 or 111)
quantum models of pure gravity or of gravity coupled to Yang–Mills fields. To avoid confus
we stress that the piecewise linear spaces used in this approach are not directly related to t
used in Regge calculus. In simplified theories of gravity, like 211 gravity and BF theory, the
lattice dual to the one induced by one of our piecewise linear spaces can be successfully re
a Regge lattice.9 On the other hand, our approach contains a treatment based in cubic lattice
particular case; the difference with the usual lattice gauge theory is that the continuum li
taken by considering every lattice instead of just one.

The manifestly combinatorial model has two main ingredients: simplicial complexes
describe geometry in combinatorial fashion, and a refinement mechanism that makes it cap
describe field theories. If we use a simplicial complex as the starting point of our combina
approach, the resulting model would be appropriate to describe topological field theories, b
want to generate a model for gauge theories with local degrees of freedom. A way to achie
goal is to replace physical space~the base space! with a sequence of simplicial complexe
K0 ,K1 , . . . that are finer and finer. Our combinatorial model for quantum gauge theory is b
in the family of graphs defined using our combinatorial representation of space.

Even though the PL and the combinatorial categories are closely related, the resulting
matical Hilbert spacesHkinPL

andHkinC
are dramatically different. While the combinatorial Hi

bert spaceHkinC
is separable~admits a countable basis!, HkinPL

~like the Hilbert space constructe
from the analytic category! is much bigger.

Physically, what we need is a Hilbert space to represent physical~gauge and ‘‘diffeomor-
phism’’ invariant! observables; such a Hilbert space can be constructed by ‘‘averaging’’ the s
of the kinematic Hilbert space to produce physical states. An encouraging result is that th
models produce unitarily equivalent representations of the algebra of physical observables
naturally isomorphic separable Hilbert spacesHdiffPL

,HdiffC
. Separability in the combinatoria

case is no surprise, and that both spaces of physical states~PL and combinatorial! are isomorphic
follows from the fact that every knot-class of piecewise linear graphs has a representative t
in our combinatorial representation of space.

Two aspects of the loop approach to gauge theory are enhanced in its combinatorial v
On the mathematical-physics side, other approaches to quantum gravity coming from topo
quantum field theory10 are much closer to the combinatorial category than they are to the ana
J. Math. Phys., Vol. 38, No. 11, November 1997
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or smooth categories. On the practical side, the loop approach to quantum gauge theory is
as attractive; a powerful computational technique comes built into this approach. Given an
in the Hilbert space of the continuum we can express it, to any desired accuracy, as a finite
combination of states that come from the Hilbert space of a lattice gauge theory. Therefo
matrix elements of every bounded operator can be computed, to any desired accuracy,
Hilbert space of a lattice gauge theory. In this respect, the combinatorial picture presented
article is favored because it is best suited for a computer implementation.

We organize this article as follows. Section II reviews the general procedure to constru
kinematical Hilbert space in the continuum starting from a family of lattice gauge theories. T
in Section III, we carry out the procedure in the combinatorial and PL frameworks. In Sectio
we construct the physical Hilbert space. We treat separately the PL and combinatorial cate
Then we prove that the combinatorial and PL frameworks provide unitarily equivalent repr
tations of the algebra of physical observables. We also prove that the mentioned alge
physical observables is independent of the background PL structure when the dimension
space manifold is three or less. A summary, an analysis of some problems from the combin
perspective and a comparison with the analytic category are the subjects of the concluding s

II. FROM QUANTUM GAUGE THEORY IN THE LATTICE TO THE CONTINUUM VIA THE
PROJECTIVE LIMIT: A REVIEW

A connection on a principal bundle is characterized by the group element that it assig
every possible path in the base space. Historically, this simple observation led to view the
holonomies for all the loops of the base space as the basic configuration observables
promoted to operators.

Now we start the construction of a kinematical Hilbert space for quantum gauge theorie
avoid extra complications, we only treat cases with a compact base spaceS and we restrict our
atention to trivializable principal bundles overS with the gauge groupG being a compact con
nected Lie group. For convenience, we start with a fixed trivialization. In the modern app
~Baez, Ashtekaret al.5! the concept of paths or loops has been extended to that of graphsg,S
whose edges, in contrast with their predecessors, are allowed to intersect.

A graphg is, by definition, afinite setEg of oriented edges and a setVg of vertices satisfying
the following conditions:

~i! ePEg implies e21PEg .
~ii ! The vertex set is the set of boundary points of the edges.
~iii ! The intersection set of two different edgese1 ,e2PEg (e1Þe2 ,e1Þe2

21) is a subset of the
vertex set.

Generally an edgeePEg is considered to be an equivalence class of not self-intersec
curves, under orientation preserving reparametrizations. Formally,e:5@e8(I ),S# such that
e8(I )'I , where we denoted the unit interval byI 5@0,1#. Composition of edgese, f is defined if
they intersect only at the final point of the initial edge and the initial point of the final e
e8(I )ù f 8(I )5e8(1)5 f 8(0). Then the composition is defined byf +e:5@ f 8+e8(I )#; and, given an
edge e:5@e8#, the edge defined by paths with the opposite orientation is denoted bye21:
5@e821#.

The idea of considering ‘‘every possible path’’ in the base space to construct the spa
generalized connections has to be made precise. Different choices in the class of edges th
the family of graphs considered lead to the different categories—analytic, smooth, PL
combinatorial—of this general approach to diffeomorphism invariant quantum gauge theorie
denote a generic family of graphs byG, and the analytic, smooth and combinatoric families
Gv ,G` , GPL andGC .

A connection on a graph assigns a group element to each of the 2N1 graph’s edges. Therefore
J. Math. Phys., Vol. 38, No. 11, November 1997
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we can identify the space of connectionsAg of graph g with GN1. An elementAPAg is
represented by (A(e1),A(e1

21)5A(e1)21, . . . ,A(eN1
),A(eN1

21)5A(eN1
)21), whereA(ei)PG.

The collection of the spacesAg for every graphgPG gives anover-completedescription of
the space of generalized connections in the category specified byG. For example,Gv determines
the analytic category andGC specifies the combinatorial category.

It is possible to organize all the repeated information by means of a projective structur
say that graphg is a refinement of graphg8 (g>g8) if the edges ofg8 are ‘‘contained’’ in edges
of g; more precisely, ifePg8, then eithere5e1 or e5e1+ . . . +en for somee1 , . . . ,enPg. Given
any two graphs related by refinementg>g8 there is a projectionpg8 g :Ag→Ag8,

~A~e1!,A~e2!, . . . ,A~eN1
!!→

pg8g

~A8~e1!5A~e2!A~e1!,A8~e2!, . . . ,A8~eN1
!!, ~2.1!

wheree5e1+e2, ePg8, e1 ,e2Pg.
The projection map and the refinement relation have two properties that will allow us to d

Ā as ‘‘the space of connections of the finest lattice.’’ First, we can easily check thatpg g8
+pg8 g95pg g9. Second, equipped with the refinement relation ‘‘>,’’ the set G is a partially
ordered, directed set; i.e., for allg, g8 andg9 in G we have

g>g; g>g8 and g8>g⇒g5g8; g>g8 and g8>g9⇒g>g9; ~2.2!

and, given anyg8,g9PG, there existsgPG such that

g>g8 and g>g9. ~2.3!

This last property, thatG is directed, is the only nontrivial property; it will be proved for the P
and the combinatorial categories in the next section. Theprojective limitof the spaces of connec
tions of all graphs yields the space ofgeneralized connectionsĀ:

Ā:5H ~Ag!gPGP )
gPG

Ag : g8>g⇒pg g8Ag85AgJ . ~2.4!

That is, the projective limit is contained in the cartesian product of the spaces of connections
graphs inG, subject to the consistency conditions stated above. There is a canonical projectpg

from the spaceĀ to the spacesAg given by

pg : Ā→Ag , pg~~Ag8!g8PG!:5Ag . ~2.5!

With this projection, functionsf g defined on the spaceAg can be pulled back to Fun(Ā). Such
functions are calledcylindrical functions. The sup norm

uu f uu`5 sup
APAg

u f ~A!u ~2.6!

can be used to complete the space of cylindrical functions. As result we get the AbeliaC*
algebra usually denoted by Cyl(Ā); to simplify the notation, in the rest of the article we wi
denote this algebra by Cylh , whereh5v,`,PL,C labels the family of graphs defining the spa
of cylindrical functions considered.

The uniform generalized measurem0 :Cylh→C, sometimes called the Ashteka
Lewandowski measure,11 is induced inĀ by the uniform ~Haar! measure on the spacesAg

5GN1. Other gauge invariant measures are available; when they are diffeomorphism inv
J. Math. Phys., Vol. 38, No. 11, November 1997
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they induce ‘‘generalized knot invariants’’~see Ref. 12!. Finally, we define the kinematical Hilber
space to be the completion of Cyl(Ā) on the norm induced by the~strictly positive! generalized
measurem0:

Hkin :5L2~Ā,dm0!. ~2.7!

This construction yields a cyclic representation of the algebra of cylindrical functions, th
calledconnection representation. Given a function defined on a latticeg, for example, the trace o
the holonomyTa along a loopa contained ing, the corresponding operatorT̂a will act by
multiplication on statesCgPHkin :

~ T̂a•Cg!~ Ā!:5Ta~ Ā!Cg~ Ā!. ~2.8!

A complete set of Hermitian momentum operators on the Hilbert spaceL2(Ge ,dmHaar) of a graph
with a single edgee come from the leftLe( f ) and right invariantRe( f ) vector fields onGe as
labeled byf PLie(Ge). These momentum operators are compatible with the projective structu13

thus, the set of momentum operators

Xa,e~ f !5H Le~ f ! if edge e goes out of vertexa,

2Re~ f ! if edge e comes into vertexa,
~2.9!

is a complete set of Hermitian momentum operators onHkin when we use the generalized me
surem0. In regularized expressions of operators involving the triad, the place of the triad is
by the vector fieldsX; therefore, the measurem0 incorporates the physical reality conditions.

Our main goal is to construct a Hilbert space where we can represent the algebra of ph
~gauge and diffeomorphism invariant! observables. Because it is customary we will proceed
steps; in this section we deal with the issue of gauge invariance and in the next with th
diffeomorphism invariance. If we had chosen to generate the space of states invariant und
symmetries simultaneously, we would arrive at the same result.

A finite gauge transformation takes the holonomyAe1
to g(a)Ae1

g(b)21 ~where edgee1 goes
from vertexa to vertexb). Then a quantum gauge transformation is given by the unitary tr
formation

G~g!Cg~Ae1
, . . . ,Aen

!:5Cg~g~a!Ae1
g~b!21, . . . ,g~m!Aen

g~n!21!. ~2.10!

Gauge transformations are just generalizations of right and left translations in the group
implies that they are generated by left and right invariant vector fields. Given a graphg, Ca( f )
generates gauge transformations at vertexa. Therefore gauge invariance ofCg

5Cg(Ae1
, . . . ,Aen

) at vertexa means that it lies in the kernel of the Gauss constraint

Ca~ f !•Cg :5 (
e→a

Xe
I
•Cg50, ~2.11!

where the sum is taken over all the edgese that start at vertexa. Because it is a real linea
combination of the momentum operators~2.9!, the Gauss constraint is essentially self-adjoint
Hkin .

We could construct the space of connections modulo gauge transformations of a
Ag /G g . Then, using the same projective machinery, we could construct the Hilbert s
L2(A/G ,dn0). It is easy to see that the space of gauge invariant functions ofL2(Ā,dm0) is
naturally isomorphic toHkin8 5L2(A/G ,dn0) if the measuren0 is the one induced bym0. The
spaceHkin8 of gauge invariant functions is spanned by spin network states. Spin network stat
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



-

n-
defined

h the
asure
ame
nve-
ial

bove.
lly
he PL
y
torial
rt space
s, in
ates

L
a
ture
ism
es.
ded in
n

,
s
t

it

s
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cylindrical functionsSgW , j (e),c(v)(A) labeled by anoriented graph~a graphg plus a choice of either

ePEg or e21PEg , for every edge ing, to belong to the oriented graphgW ) whose edges and
vertices are colored. The ‘‘colors’’j (e) on the edgesePEg assign a nontrivial irreducible repre
sentation of the gauge group to the edges. And the ‘‘colors’’c(v) on the verticesvPVg assign to
each vertex a gauge invariant contractor~intertwining operator! that has indices in the represe
tations determined by the colored edges that meet at the vertex. The spin network states is
by

SgW , j ~e!,c~v !~A!5 )
ePEgW

p j ~e!@A~e!#• )
vPVgW

c~v !, ~2.12!

where ‘• ’ stands for contraction of all the indices of the matrices attached to the edges wit
indices of the intertwiners attached to the vertices. In the inner product that the uniform me
m0 induces inHkin8 two spin network states are orthogonal if they are not labeled by the s
~unoriented! graph or if their edge’s colors are different. For calculational purposes it is co
nient to choose an orthonormal basis forHkin8 by normalized spin network states with spec
labels of the intertwining operators assigned to the vertices; see Ref. 14.

III. PL AND COMBINATORIAL CATEGORIES

In this section we construct two quantum models using the general framework outlined a
First the family of piecewise linear~PL! graphs is introduced. Then we prove that it is a partia
ordered, directed set. As a result, the algebra of functions of the connection defined by t
graphs has a cyclic representation in the Hilbert spaceHkinPL

. The second subsection briefl
reviews some elements of combinatorial topology while constructing the family of combina
graphs. In this case, the resulting algebra of functions is represented in the separable Hilbe
HkinC

. While at this level the two quantum models yield completely different Hilbert space
the section IV we will prove that the corresponding spaces of ‘‘diffeomorphism’’ invariant st
are naturally isomorphic.

A. The PL category

To specify the elements of the family of graphsGPL that define the Hilbert space of the P
category we need a fixed piecewise linear structure on spaceS. A piecewise linear structure on
manifold S can be specified by a division of the manifold into cells with a fixed affine struc
~flat connection!. Also it can be specified by a triangulation, that is, a fixed homeomorph
w:S→S0 whereS0 is ann-dimensional polyhedron with a fixed decomposition into simplic
To be more explicit, we can use the fact that every n-dimensional polyhedron can be embed
R2n11 and consider from the beginningS0,R2n11. ThenS0 can be decomposed into a collectio
of convex cells~geometrical simplices!. A geometric simplexin R2n11 is simply the convex
region defined by its set of vertices$s0 , . . . ,sk%, siPR2n11,

D~$s0 , . . . ,sk%!5H s5(
i 50

k

t isiJ , ~3.1!

where t iP@0,1# and ( i 50
kt i51. The triangulation ofS0 fixes an affine structure in its cells

namely, a PL structure. Using the local affine coordinate systemst i , we can decide which curve
are straight lines inside any cell. Then a piecewise linear curve inS0 is a curve that is straigh
inside every cell except for afinite set of points; in this set of points and in the points where
crosses the boundaries of the cells the curve bends, but is continuous.

A piecewise linear graphgPGPL is a graph~according to the definition given in the previou
section! such that every edgeePEg is piecewise linear.
J. Math. Phys., Vol. 38, No. 11, November 1997
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In the previous section we gave a natural partial order~‘‘refinement relation,’’>) for any
family of graphs. Our task is now to prove that the partially ordered setGPL is a projective family;
once we prove this property, the general procedure outlined in the previous section gives
Hilbert space of the PL category.

The only nontrivial property to prove is that the family of graphsGPL is directed. For instance
according to the definition of a graph given in last section, the family of all the graphs
piecewise smooth edges is not directed. In this case, two edges of different graphs can inte
infinite number of times; such two graphs would only accept a common refinement with an in
number of edges, that according to our definition is not a graph.

We will construct a graphg3 that refines two given graphsg1 andg2.
A trivial property of PL edges lies in the heart of our construction; due to its importance,

stated as a lemma.
Lemma 1: Given two edges of different graphs e1Pg1 and e2Pg2, we know that e1ùe2 has

finitely many connected components. These connected components are either isolated p
piecewise linear segments.

Now we start our construction. First we note that every graphg is refined by a graphg8
constructed fromg simply by adding a finite number of verticesvPV8 in the interior of its edges
~and by splitting the edges in the points where a new vertex sits!.

Because of lemma 1, we know that given two graphsg1 ,g2PCPL we can refine each of them
trivially by addingfinitely manynew vertices to form the graphsg18>g1 ,g28>g2 that satisfy the
following property. Every edgee1PEg

18
falls into one of the three categories given below:

~i! e1 does not intersect any edge ofg28 .
~ii ! e1 is also an edge ofg28 ; e1PEg

28
.

~iii ! e1 intersects an edgee2 of g28 at vertices~one or two! of both graphse1ùe2,Vg
18
,

e1ùe2,Vg
28
.

A direct consequence of these properties is the following:
Lemma 2: The graphg3 defined by Eg3

5Eg
18
øEg

28
and Vg3

5Vg
18
øVg

28
is a refinement ofg18

andg28 . By the properties of the partial ordering relation it follows thatg3 is also a refinement o
the original graphsg3>g1 ,g3>g2; thus the family of piecewise linear graphsGPL is a projective
family.

In the light of lemma 2, the rest of the construction is a simple application of the ge
framework described in the previous section. There is a canonical projectionpg from the space of
generalized connectionsĀPL to the spaces of connectionsAg on graphsgPGPL given by

pg : ĀPL→Ag , pg~~Ag8!g8PGPL
!:5Ag . ~3.2!

This projective structure is the main ingredient that yields the Hilbert space of the conne
representation in the PL category. Below we state our result concisely.

Theorem 1: The completion (in the sup norm) of the family of functions pg* f g( Ā), defined by
graphsgPGPL , is an Abelian C* algebra CylPL . A cyclic representationof CylPL is provided
by the Hilbert space

HkinPL
:5L2~ĀPL ,dm0!. ~3.3!

that results after completing CylPL in the norm provided by the Ashtekar-Lewandowski meas
m0.
J. Math. Phys., Vol. 38, No. 11, November 1997
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In the manner described in the previous section we can also consider the space of
invariant states and obtainHkinPL

8 that is spanned by spin network states labeled by piecew

linear graphs.

B. The combinatorial category

In this subsection we introduce the family of combinatorial graphs that leads to a mani
combinatorial approach to quantum gauge theory. The construction of combinatorial graph
as a corner stone the same stone that serves as the combinatorial foundation of topology. T
construction provides a quantum/combinatorial model for physical space, the space where p
processes take place.

Simplicial complexes appear first as the combinatorial means of capturing the topolo
information of a topological spaceX. By definition, asimplicial complex Kis a set of finite sets
closed under formation of subsets, formally:

xPK andy,x ⇒ yPK. ~3.4!

A member of a simplicial complexxPK is called ann-simplex if it hasn11 elements;n is the
dimension ofx. Generically, the set of which all simplices are subsets is called the vertex se
denoted byL. Some examples of simplicial complexes are given in figure 1.

Given an open coverU(L)5$Ul :lPL% of a topological spaceX the information about the
relative position of the open setsU1 ,U2 , . . .PU(L) is the combinatorial information that th
nerve K(L) of U(L) casts. The simplicial complexK(L) is the set of all finite subsets ofL such
that

ù
lPL

UlÞB. ~3.5!

Using the information encoded in theK(L) one can often recover the topological spaceX. More
precisely, every open coverU(L) of X admits a refinementU8(L8) such that the geometric

FIG. 1. ~a! Geometrical representations of a zero-dimensional simplexx5$p% and a one-dimensional simplexx5$p,q%.
The simplices are the sets; in the figure, what we draw are the geometric realizationsDx of the abstract simplicesx. ~b! A
two-dimensional complex is a set of simplices of dimension smaller or equal to two. In this case the compK
5$$p%,$q%,$r %,$s%,$p,q%,$q,r %, $r ,p%,$s,p%,$s,q%,$s,r %,$p,q,r %,$p,q,s%,$q,r ,s%,$r ,p,s%,$p,q,r ,s%% represents a spher
S2. ~b! is the geometric realizationiK1i of the one-dimensional subcomplex ofK given by K1

5$$p%,$q%,$r %,$s%,$p,q%,$q,r %,$r ,p%,$s,p%,$s,q%,$s,r %%. ~c! The vertices of the barycentric subdivisionSd(K) are the
simplices ofK. For example, ifK5$$p%,$q%,$p,q%%, thenSd(K)5$$$p%%,$$p,q%%,$$q%%,$$p%,$p,q%%,$$p,q%,$q%%%.
J. Math. Phys., Vol. 38, No. 11, November 1997
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realization~to be defined below! of its nerve is homeomorphic toX, uK(L8)u'X. This is the sense
in which simplicial complexes constitute a combinatorial foundation of topology.

A simplicial complex stores topological information combinatorially, but the same infor
tion can be encoded in a geometric fashion~see Ref. 15!. The geometric realizationuKu of a
simplicial complexK5K(L) is the subset ofRL given by uKu:5øxPKDx whereDx is a geo-
metrical simplex represented as a segment of a plane of codimension one, embedded inRx; more
precisely,

Dx :5H s:5~sl :lPj!PI x: (
lPx

sl51J , ~3.6!

where I 5@0,1# is the unit interval. The topology ofuKu is determined by declaring all its geo
metrical simplicesDx to be closed sets.

Our main purpose is to find a combinatorial analog of a generalized connection. We n
find the appropriate concept of the space of all combinatorial graphs; then a generalized c
tion will be an assignment of group elements to the edges of the graphs. We could fix a sim
complex K to represent the base space and consider that a combinatorial graph is a
dimensional subcomplexg,K. The resulting model would properly describe topological fie
theories, but we want to generate a model for gauge theories with local degrees of freedo
achieve our goal, we replace physical space~the base space! with a sequence of simplicial co
plexesK0 ,K1 , . . . that are finer and finer.

The concept of barycentric subdivision give us the option of generating finer and finer
plicial complexes. Given a simplicial complexK its barycentric subdivision Sd(K) is defined as
the simplicial complex constructed by assigning a vertex to every simplex ofK, L5K. Then, the
simplices ofSd(K) are the finite subsetsX,L that satisfy

x,yPX⇒x,y or y,x. ~3.7!

A geometric representation of the operation barycentric subdivisionSd is given in figure 1.
Our approach to quantum gauge theory replaces the base spaceS with a sequence of simpli-

cial complexes$K,Sd(K), . . . ,Sdn(K), . . . % such thatuKu'S0, whereS0 is a compact Haus-
dorff three-dimensional manifold. This concept of space leads to the definition of combina
graphs.

A combinatorial graphgPGC is simply a graph, according to the definition given in t
previous section, where the set of verticesVg and the set of edgesEg are restricted to be subse
of the set of pointsV(K) and the set of oriented pathsE(K).

In the combinatorial representation of space, a pointpPV(K) is represented by an equiva
lence class of sequences of the kind$pn ,pn115Sd(pn),pn125Sd2(pn), . . . % of zero-
dimensional simplicespnPSdn(K), pn11PSdn11(K), etc. Noteably one single element of th
sequence determines the whole sequence. Two sequences$pn ,pn115Sd(pn), . . . % $qm ,qm11

5Sd(qm), . . . % are equivalent if all their elements coincide,ps5qsPSds(K) for all s
>max(n,m).

The definition of oriented paths follows the same idea, but is a little more involved. Firs
will define paths, then oriented paths, and composition of oriented paths. A pathePP(K) is an
equivalence class of sequences$en ,en115Sd(en), . . . % of one-dimensional subcomplexe
en,Sdn(K) such that the geometric realizations of its elements are homeomorphic to the
interval uenu'I . Again, two sequences$en ,en115Sd(en), . . . %,$ f m , . . . % are equivalent if all
their elements coincidees5 f sPSds(K) for all s>max(n,m).

An oriented pathePE(K) is a pathe8PP(K) and a sequence of relations that order t
vertices16 of each of the one-dimensional subcomplexesen8 in the path. We denote the initial poin
of a path bye(0)PV(K) and it is defined by the class of the sequence of initial verticese(0)
5@$en(0),en11(0)5Sd(en(0)), . . .%#PV(K); the final point of a combinatorial path is denote
J. Math. Phys., Vol. 38, No. 11, November 1997
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by e(1)PV(K). Composition of two oriented pathse, f PE(K) is possible if they intersect only a
the final point of the initial path and the initial point of the final pa
@$enù f n ,en11ù f n11 , . . . %#5e(1)5 f (0); it is denoted byf +ePE(K) and is defined by

f +e5@$~ f +e!n5 f nøen ,~ f +e!n115Sd~~ f +e!n!, . . . %# ~3.8!

and the obvious sequence of ordering relations.
Given an oriented pathePE(K) its inversee21PE(K) is defined by the same pathe8

PP(K) and the opposite orientation. Notice that the composition relation is not defined fore and
e21; it is possible to define combinatorial curves that behave like usual curves, but it i
necessary for the purpose of this article.

Once the set of edgesE is endowed with the composition operation, the rest of our const
tion is almost a simple application of the general framework reviewed in the previous section
only gap to be filled is proving that the family of combinatorial graphsGC is directed.

To prove the directedness in the PL case we used the finiteness property stated in lemm
adapted statement of this same property holds trivially in the combinatorial case.

Lemma 3: The intersection of two one-dimensional subcomplexes en , f n,Sdn(K), defining
the paths e, f PP(K), respectively, has finitely many connected components. These conn
components are either isolated zero-dimensional simplices or one-dimensional subcomple
meomorphic to the unit interval. That is,

enù f n5S ø
i 51

N

p~ i !nD øS ø
j 51

M

g~ j !nD , ~3.9!

where p( i )n,Sdn(K) is a zero-dimensional simplex and I'g( i )n,Sdn(K). In addition,
p( i )nùp( j )n5p( i )nùg( j )n5g( i )nùg( j )n5B for all i Þ j .

By defining the appropriate notion of union and intersection of classes of sequences w
state the result as

eù f 5S ø
i 51

N

p~ i ! D øS ø
j 51

M

g~ j ! D , ~3.10!

where p( i )PV(K), g( j )PP(K), and p( i )ùp( j )5p( i )ùg( j )5g( i )ùg( j )5B for all i Þ j .
Therefore, the construction of a graphg3PGC that refines two given graphsg1 ,g2PGC is just

an adaptation of the construction given for the piecewise linear case.
Using lemma 3 it is easy to prove that given two graphsg1 ,g2PCC we can refine each o

them trivially by addingfinitely manynew vertices; forming graphsg18>g1 ,g28>g2 such that
every edgee1PEg

18
falls in one of the three categories~III A !, ~III A !, ~III A ! itemized in the

previous subsection.
From the previous construction the following lemma is evident.
Lemma 4: Let g3 be the graph defined by Vg3

:5Vg
18
øVg

28
,V(K) and Eg3

:

5Eg
18
øEg

28
,E(K).

g3 is a refinement ofg18 and g28 . By the properties of the partial ordering relation it follow
that g3 is also a refinement of the original graphsg3>g1 ,g3>g2; thus the family of combina
torial graphsGC is a projective family.

Following the general framework described in the previous section we will complete
construction of our combinatorial/quantum model for gauge theory. There is a canonical p
tion pg from the space of generalized connectionsĀC to the spaces of connectionsAg on graphs
gPGC given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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pg : ĀC→Ag , pg~~Ag8!g8PGC
!:5Ag . ~3.11!

These projections are the key ingredient that yields the Hilbert space of the connection rep
tation in the combinatorial category. Below we state our result concisely.

Theorem 2: The completion (in the sup norm) of the family of functions pg* f g( Ā), defined by
graphsgPGC , is an Abelian C* algebra CylC . A cyclic representation of CylC is provided by
the Hilbert space

HkinC
:5L2~ĀC ,dm0! ~3.12!

that results after completing CylC in the norm provided by the Ashtekar-Lewandowski meas
m0.

As described in the previous section we can consider the space of gauge invariant sta
get HkinC

8 that is is spanned by spin network states labeled by combinatorial graphs.

The constructions, given in this and the previous subsection, of the Hilbert spaces f
piecewise linear and the cobinatoric categories were similar. Despite the parallelism, the re
Hilbert spaces are completely different. A property that marks the difference is the size of
Hilbert spaces.

Theorem 3: The Hilbert spaceHkinC
8 is separable.

Proof: We will prove that the spin network basis is countable in the combinatorial case
We did not describe precisely the spin network basis, but we stated that two spin ne

statesSgW , j (e),c(v)
1 (A), SdW , j (e),c(v)

2 (A) are orthogonal ifgÞd or if their edges’ colors are different

Let Lg, j (e) be the space spanned by all the spin network states with labelsgW , j (e). Our task is
to determine a bound forn5dim(Lg, j (e)). We know thatn is less than the number of labels th
we would get by assigning not one integer but three integers to the graphs’ edges. The first
j (e) labels the irreducible representation assigned toe, and the other twomL(e),mR(e) determine
basis vectors in the vector space selected byj (e). With these basis vectors sitting at both ends
every edge we can label any set of~generally non-gauge invariant! contractors for the vertices.

Thus, the spin network basis is countable if the set of finite subsets of

E~K !3N ~3.13!

is countable. Then to prove the theorem we just have to show that the setE(K) is countable,
which in turn reduces to proving that the set of pathsP(K) is countable.

A path ePP(K) is determined by a sequence of one-dimensional subcomplexes that a
related by barycentric subdivision. Therefore, a pathePP(K) can be specified by just one one
dimensional subcomplex of an appropriateSdn(K). A particular one-dimensional subcomplex ca
be described by specifying which of the one-dimensional and zero-dimensional simplices b
to it. We can use the set$0,1% to specify which simplex belongs or does not belong to a partic
subcomplex.

Therefore, there is an onto map

M :øn51
` Sdn~K !3$0,1%→P~K !, ~3.14!

and since a countable union of finite sets is countable and eachSdn(K) is finite, we have proved
that P(K) is countable. h

IV. PHYSICAL OBSERVABLES AND PHYSICAL STATES

In this section we construct the Hilbert space of physical states of our model for qua
gauge theory; there we can represent the algebra of physical~gauge and ‘‘diffeomorphism’’
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



nalytic

ints to

and
ysical
ace of

s Cyl

this

as

ates is
of the

e not
if-

re we

group

group
ions

two ho-
f
graph

al
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invariant! observables. Our quantization procedure follows the same steps as in the a
category; that is, it follows~a refined version of! the algebraic quantization program.17 When we
deal with theories with extra constraints, like gravity, we need to solve these extra constra
find the space of physical states.

Since the issue of ‘‘diffeomorphism’’ invariance acquires quite different faces in the PL
combinatorial categories, we tackle it first for the PL category. Then we find the space of ph
states of the combinatorial category and prove that it is separable and isomorphic to the sp
physical states of the PL category.

A. ‘‘Diffeomorphism’’ invariance in the PL category

Any operator can be defined by specifying its action on the space of cylindrical function
and then using continuity to extend it to the whole Hilbert spaceHkin . This is what we did to
define the unitary operators induced by the gauge symmetry and it is what we will do in
section to define quantum ‘‘diffeomorphisms.’’

Our piecewise linear framework is based on the family of graphsGPL selected by a fixed
piecewise linear structure inS. Therefore, the role of ‘‘diffeomorphisms’’ is played bypiecewise
linear homeomorphisms. It is important to note that the space of such maps can be defined

HomPL~S!:5$hPHom~S!:h~GPL!5GPL%. ~4.1!

The unitary operatorÛh :HkinPL
→HkinPL

induced by a piecewise linear homeomorphismh is
determined by its action on cylindrical functions

Ûh•Cg~ Ā!:5Ch21~g!~ Ā!. ~4.2!

In contrast with our treatment of gauge invariance, the space of diffeomorphism invariant st
not the kernel of any Hermitian operator; the reason is that the one-dimensional subgroups
diffeomorphism group induce one-parameter families of unitary transformations that ar
strongly continuous in our Hilbert space.5 Another important difference is that the space of ‘‘d
feomorphism’’ invariant states cannot be made a subspace of the Hilbert spaceHkinPL

, the
solutions are true distributions, i.e., they lie in a subspace of the topological dual of CylPL .

A distribution f̄PCylPL* is ‘‘diffeomorphism’’ invariant if

f̄@Ûh+c#5f̄@c# ; hPHomPL~S! and cPCylPL . ~4.3!

We can construct such distributions by ‘‘averaging’’ over the group HomPL(S). The infinite
size of HomPL(S) makes a precise definition of the group average procedure very subtle. He
follow the procedure used for the analytic category.5

An inner product for the space of solutions is given by the same formula that defines the
averaging; therefore, a summation over all the elements of HomPL(S) would yield states with
infinite norm. In this sense, prescribing an adequate definition for the averaging over the
HomPL(S) involves ‘‘renormalization.’’ The issue is resolved once the following two observat
have been made: First, the inner product between two states based on graphsg,dPGC must be
zero unless there is a homeomorphismh0PHomPL(S) such thatg5h0d. Second, our construction
of generalized connections assigns group elements to unparametrized edges. Therefore,
meomorphisms restricted to a graphg are equal except for a reparametrization of the edges og
and should be counted only once in our construction of group averaging of states based on
g. Thus, we define a maph:CylPL→CylPL* that transforms any given gauge invariant cylindric
function into a ‘‘diffeomorphism’’ invariant distribution. We defineh acting on spin network
J. Math. Phys., Vol. 38, No. 11, November 1997
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states. Then, byantilinearity, we can extend its action to any gauge invariant cylindrical funct
Averaging a spin network stateSgW , j (e),c(v) produces an s-knot states@gW #, j (e),c(v)5h(SgW , j (e),c(v))
PCylPL* defined by

s@gW #, j ~e!,c~v !@SdW 8, j ~e!,c~v !#:5d@g#@d#a~@g#! (
@h#PGS~g!

^SUh•h0
gW , j ~e!,c~v !uSdW 8, j ~e!,c~v !&, ~4.4!

whered@g#@d# is nonvanishing only if there is a homeomorphismh0PHomPL(S) that mapsg to d,
a(@g#) is a normalization parameter, andhPHomPL(S) is any element in the class of@h#
PGS(g). The discrete group GS(g) is the group of symmetries ofg; i.e., elements of GS(g) are
maps between the edges ofg. The group can be constructed from subgroups of HomPL(S) as
follows: GS(g)5Iso(g)/TA(g) where Iso(g) is the subgroup of HomPL(S) that mapsg to itself,
and the elements of TA(g) are the ones that preserve all the edges ofg separately.

The Hilbert space of physical statesHdiffPL
is obtained after completing the space spanned

the s-knot statesh(CylPL) in the norm provided by the inner product defined by

~F,G!5~h~ f !,h~g!!:5G@ f #. ~4.5!

Define the algebraAdiffPL
8 to be the algebra of operators onHkinPL

satisfying the following

two properties: First, forOPAdiffPL
8 , bothO andO† are defined on CylPL and map CylPL to itself.

Second, bothO andO† are representable inHdiffPL
by means of

r PL~Ô!F5r PL~Ô!h~ f !:5h~Ôf !. ~4.6!

AdiffPL
is the analog of the algebra of weak ‘‘observables.’’ Different weak observables ca

weakly equivalent; in the same way, many operators ofAdiffPL
8 are represented by the sam

operator inHdiffPL
. For example,r PL(Ûh)5r PL(1)51. We can define the algebra of classes

operators ofAdiffPL
8 that are represented by the same operator inHdiffPL

; this algebra is faithfully

represented inHdiffPL
and is called the algebra of physical operatorsAdiffPL

.17 Even more, it is
easy to prove that every operator onHdiffPL

is in the image ofr PL(AdiffPL
). The algebra of strong

observables~Hermitian operators invariant under gauge transformations and ‘‘diffeomorphism!
sits inside ofAdiffPL

~with the commutator as product!; then it is representable inHdiffPL
faithfully.

Since~4.6! maps any observable to a Hermitian operator inHdiffPL
, this representation imple

ments the reality conditions. In particular~when the space manifold is three-dimensional and
gauge group isSU(2)), theconstruction provides a ‘‘quantum Husain-Kucharˇ model’’18 that has
local degrees of freedom.5

An interesting feature of the quantum Husain-Kucharˇ model ~and of any other diffeomor-
phism invariant quantum gauge theory defined over a compact manifoldS with dim(S)51,2,3
following our general framework! is that the choice of background structure is not reflected in
resulting quantum theory. To be precise, fix a piecewise linear structure PL0 on S and construct
the algebra of physical operatorsAdiffPL0

~acting on HdiffPL0
) that it induces. Given anothe

piecewise linear structure PL1 on S and a piecewise linear homeomorphism connecting both
structures h1 :SPL0

→SPL1
, we get a representation ofAdiffPL0

in HdiffPL1
by r PL1

(O)

5Ûh1

21OÛh1
. In fact, r PL1

:AdiffPL0
→AdiffPL1

is onto and it is independent ofh. Thus we can label

the operators ofAdiffPL1
by the elements ofAdiffPL0

. UsingAdiffPL0
as a fiducial abstract algebra

the independence of the background PL structure onS may be stated as follows.
Theorem 4: Any piecewise linear structurePL1 on a fixed manifoldS of dimension

dim(S)51,2,3 defines a representation rPL1
(AdiffPL

) of AdiffPL
. This representation is indepen
0 0
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dent of the piecewise linear structure, in the sense that, given any two piecewise linear stru
PL1 and PL2 on S, the representations rPL1

(AdiffPL0
) and rPL2

(AdiffPL0
) are unitarily equivalent.

Proof: In dimensions dim(S)51,2,3 it is known19 that any two PL structures PLi and PL0 are
related by a piecewise linear homeomorphismhi :SPL0

→SPLi
. This implies thatr PLi

(AdiffPL0
)

defined above is a representation ofAdiffPL0
. That the representations induced by PL1 and PL2 are

equivalent is trivial.Uh
2
21+h1

:HdiffPL1
→HdiffPL2

. Uh
2
21+h1

is the required unitary map and it in

duces an algebra isomorphism. h

B. Physical observables and physical states in the combinatorial category

Now our task is to find the analog of knot-classes of combinatorial graphs. In section I
reviewed how it is that a simplicial complexK encodes combinatorially topological informatio
and how this information can be displayed in its geometric realizationuKu. Then, to decide
whether or not two combinatorial graphsg,dPGC belong to the same knot-class we are going
display them in the same space and compare them.

To this end, we fix the sequence of piecewise linear maps

Mn :uSdn~K !u→uKu ~4.7!

defined by successive application of the canonical mapM1 :uSd(K)u→uKu that maps the vertices
of uSd(K)u to the baricenter of the corresponding simplex inuKu. Then, we map every represen
tative $gn ,cn115Sd(gn), . . . % of the combinatorial graphg in to a sequence

$Mn~ ugnu!,Mn11~ ucn11u!5Mn~ ugnu!, . . . % ~4.8!

that assigns the same geometric graphugu:5Mn(ugnu) to every integer. Using these maps we a
going to define that the combinatorial graphsg,dPGC are ‘‘diffeomorphic’’ if their corresponding
geometrical graphsugu,udu are related by a piecewise linear homeomorphism.

One method in implementing the above idea is to use the sequence of mapsMn to induce a
map that links the kinematical Hilbert spaces of the combinatorial and PL categories. The
M :CylC→CylPL is defined by

M ~ f g!:5 f Mn~ ugnu!5 f ugu . ~4.9!

Now the map h:CylPL(A/G )→CylPL* (A/G ) induces a new maphC :CylC(A/G )
→CylC* (A/G ),

hC :5M* +h+M :CylC→CylC* , ~4.10!

that produces ‘‘diffeomorphism’’ invariant distributions in the combinatorial category. Again
characterize the averaging map by the s-knot statess@gW #C , j (e),c(v)PCylC* induced by the combina
torial spin network statesSgW , j (e),c(v)

s@gW #C , j ~e!,c~v !@SdW 8, j ~e!,c~v !#5hC~SgW , j ~e!,c~v !!@SdW 8, j ~e!,c~v !#:5s@ uguW #, j ~e!,c~v !@SuduW 8, j ~e!,c~v !#.
~4.11!

As follows from the above formula, the label@gW #C of the s-knot states is an equivalence class
oriented combinatorial graphs, wheregW and dW are considered equivalent if there ish
PHomPL(uKu) such thath(uguW )5uduW .
J. Math. Phys., Vol. 38, No. 11, November 1997
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Just as in the PL case,the Hilbert space of physical statesHdiffC
is obtained after completing

the space spanned by the s-knot stateshC(CylC(A/G )) in the norm provided by the inner produc
defined by

~F,G!5~hC~ f !,hC~g!!:5G@ f #. ~4.12!

It may seem odd that we are constructing the space of ‘‘diffeomorphism’’ states witho
family of unitary maps called ‘‘diffeomorphisms.’’ The reason for this peculiarity is behind
very beginning of our construction. We chose to represent space combinatorially with a seq
generated by the simplicial complexK, and we did not consider the sequence generated by an
complex, sayL, even if it had the same topological informationuKu'uLu. If we had done that, we
would have ended with a kinematical Hilbert space that would be made of two copies of th
that we defined here, and these two copies would be linked by ‘‘diffeomorphisms.’’ What w
was to construct everything above the minimal kinematical Hilbert space. A relevant questio
by shrinking the kinematical Hilbert space, we also shrank the space of physical states. Belo
will prove that this is not the case.

Now we state two important characteristics of the spaces of physical states of the com
torial and PL models.

First, we constructed the spaceHdiffC
using the maphC ; the same map can be restricted

give an onto map from the spin network basis ofHkinC
8 to the basis ofHdiffC

. Since the kine-

matical Hilbert space is separable, we have the following physically interesting result.
Theorem 5: The Hilbert spaceHdiffC

is separable.

Second, the mapM* :CylPL* →CylC* can be extended by continuity to link the spaces of phy
cal states of the PL and combinatorial categories. Using this map we can compare the
spaces.

Theorem 6: The spaces of physical states in the PL and combinatorial categories are
rally isomorphic,HdiffPL

'HdiffC
.

Proof: If gPL
W5uguW , then M* identifies the s-knot states that they generate by averagin

other words,M* (s@ ugPLuW #, j (e),c(v))5s@gW #C , j (e),c(v) . From the definition of the inner products and th
definition of the combinatorial s-knot states it follows immediately thatM* is an isometry.

Since the spaces of physical states were constructed by completing the vector spaces
by the s-knot states, the theorem is a consequence of the following lemma, which will be p
in the appendix.

Lemma 5: In any knot-class of PL oriented graphs@gPL
W # there is at least one representativ

that comes from the geometric representation of a combinatorial oriented graphuguWP@gPL
W #. h

Now we proceed to construct a representation of the algebra of physical operators
combinatorial category. As in the PL category, we define the algebraAdiffC

8 to be the algebra of

operators onHkinC
that satisfy the following two conditions: First, forOPAdiffC

8 , bothO andO†

are defined on CylC and map CylC to itself. Second, bothO andO† are representable inHdiffC
by

means of

r C~Ô!F5r C~Ô!hC~ f !:5hC~Ôf !. ~4.13!

We are interested in the algebra of classes of operators ofAdiffC
8 that are represented by the sam

operator inHdiffC
; this algebra is faithfully represented inHdiffC

and is called the algebra o
physical operatorsAdiffC

.17 In contrast with the PL case, in the combinatorial framework
‘‘diffeomorphism group’’ does not have a natural action; for this reason the notion of st
observables can not be intrinsically defined. However, it is easy to prove that in the PL ca
subset ofAdiffPL

consisting of Hermitian operators is, in fact, the algebra of strong observa
J. Math. Phys., Vol. 38, No. 11, November 1997
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~with the commutator as product!. Therefore, in the combinatorial category we can regard
algebra of Hermitian operators inAdiffC

as the algebra of strong observables; this algebr
naturally represented inHdiffC

.
Since ~4.13! maps any observable to a Hermitian operator inHdiffC

, this representation
implements the reality conditions. In particular~when the space manifold is three-dimensional a
the gauge group is SU~2!!, the construction provides another ‘‘quantum Husain-Kucharˇ model.’’18

A natural question is whether the PL and combinatorial models are physically equivalent o
We saw that the algebraAdiffC(K)

is represented inHdiffC(K) by r C(K) ; it is also natural to give the

representationdK(AdiffC(K)
) on HdiffPL(u Ku )

by dK(Ô)FPL5dK(Ô)(h+M f C):5h+M (Ôf C). This
two representations are identified by the isomorphism exhibited in theorem 6, more precis

Theorem 7: The representations rC(K)(AdiffC(K)
) on HdiffC(K) and dK(AdiffC(K)

) on

HdiffPL(u Ku )
of the algebraAdiffC(K) are unitarily equivalent. In addition, ifdim(S)51,2,3, this

algebra does not depend on K but only on the topology ofuKu'S; the combinatorial and PL
frameworks (based on the choice of the Ashtekar-Lewandowski measurem0 on Hkin) provide
unitarily equivalent representations of the abstract algebraAdiffS

.
Proof: The unitary equivalence ofr C(K)(AdiffC(K)

) anddK(AdiffC(K)
) is given by the unitary

mapM* :HdiffPL(u Ku )
→HdiffC(K) .

dK(AdiffC(K)
) mapsAdiffC(K) onto the algebra of operators onHdiffPL(u Ku )

and the representa
tion is faithful; the same thing happens for the combinatorial model based on a different sim
complexL. From theorem 4 we know that if dim(S)51,2,3 for any two simplicial complexe
K,L such thatuKu'uLu'S, the Hilbert spacesHdiffPL(u Ku )

, HdiffPL(u Lu )
and the algebras of opera

tors on them areidentified~unambiguously! by a unitary map. SincedK(AdiffC(K)
), dL(AdiffC(L)

),
dK(AdiffPL(u Ku )

) and dL(AdiffPL(u Lu )
) label the operators onHdiffPL(S )

, there is an unambiguou
invertible mapidentifyingthese algebras. Thus the family of all these equivalent algebras ma
regarded as the abstract algebraAdiffS

and the combinatorial and PL frameworks are procedu
that yield unitarily equivalent representations of this abstract algebra. h

From the theorems it follows that the PL and combinatorial frameworks are physically eq
lent. They yield representations of the algebra of physical observables in separable Hilbert s
hence maintaining the usual interpretation of quantum field theory.20

V. DISCUSSION AND COMPARISON

In this paper we have presented two models for ‘‘diffeomorphism’’ invariant quantum g
field theories. We proved that the two models represented the algebra of physical observa
separable Hilbert spacesHdiffPL

and HdiffC
; furthermore, we proved that the two models whe

physically equivalent in the sense that they gave rise to unitarily equivalent representations
algebra of physical observables. The equivalence of the two models is a good feature, but w
still ask if by choosing a different background structure~like a different PL structure for our bas
space manifold! we could have arrived at a physically different model. In fact, this problem
been thoroughly studied~see, for example, Ref. 19!. For example, in dimensions dim(S)51,2,3,
any two PL structures, like any two differential structures, of a fixed topological manifoldS are
known to be equivalent in the sense that they are related by a PL homeomorphism~diffeomor-
phism!. Then, if the base space is three-dimensional~like in canonical quantum gravity!, all the
different choices of background structure would yield unitarily equivalent representations o
algebra of physical~gauge and diffeomorphism invariant! observables~the unitary map given by
a quantum ‘‘diffeomorphism’’!.

Our quantum models are not equivalent to the ones created in the analytic categor5 for
instance, in the analytic category the physical Hilbert space is not separable. The reason
size difference is not that the family of piecewise analytic graphs is too big; the kinematic H
J. Math. Phys., Vol. 38, No. 11, November 1997
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space of the PL category is also not separable. In a separate paper21 we show that the concept o
knot-classes that should be used in the piecewise analytic category is with respect to the g
maps defined by

Pdiffv~S!:5$hPHom~S!:h~Gv!5Gv%. ~5.1!

In the appendix we show how to adapt the proof of lemma 5 to show that every~modified!
knot-class of piecewise analytic graphs has a representative induced by a combinatorial
Then, theorem 6 and theorem 7 have analogs proving that the Hilbert space of physical st
the piecewise analytic category is also separable and that the representation of the alg
physical observables given by the piecewise analytic category is unitarily equivalent to th
provided by the combinatorial framework.

We can expect~the author does! that a more satisfactory understanding of field theory m
arise from this combinatorial picture of quantum geometry. The bridge between three-dimen
quantum geometry and a smooth macroscopic space-time is the missing ingredient to co
this picture of quantum field theory. Three unsolved problems prevent us from building
bridge. Dynamics in quantum gravity is only partially understood.22 The emergence of a four
dimensional picture from solutions to the constraints has just begun to be explored.23 And the
statistical mechanics needed to find the semi-classical/macroscopic behavior of the the
quantum geometry is also at its developing stage.24
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APPENDIX: COMPLETENESS OF COMBINATORIAL GRAPHS

First we will prove Lemma 5 and then indicate how the proof can be extended to link
models and the refined version of the analytic category that was mentioned in section V.

Given an oriented PL graphgW PL,uKu we will construct an oriented combinatorial graphgW and
a piecewise linear homeomorphism~PL map! h:uKu→uKu such thath(ugW u)5gW PL . The construc-
tion has five steps.

~1! Let gW PL8 be a refinement ofgW PL such that for everyD(xn)PuKu, ePEg
PL8 implies that

eùD(xn) is empty or linear according to the affine coordinates given byD(xn).
~2! Find n such thatMn(uSdn(K)u) separates the vertices ofgPL8 to lie in different geometric

simplicesMn(D(xn)), whereD(xn)PuSdn(K)u. Namely, we chosen as big as necessary t
accomplish a fine enough refinement ofuKu, where v1 ,v2PMn(D(xn)) for two different
vertices of the PL graphv1 ,v2PVg

PL8 does not happen.

~3! Let h1 :uKu→uKu be the PL map that fixes the vertices ofMn(uSdn(K)u) and sends the new
verticesMn11(v(D(xn))) of Mn11u(uSdn11(K)u) to
~a! vPVg

PL8 if v lies in the interior ofMn(D(xn)) @symbolically,vP(Mn(D(xn))#°, and

~b! the baricenter ofMn(D(xn)) if there is novPVg
PL8 such thatvP(Mn(D(xn)))°.
J. Math. Phys., Vol. 38, No. 11, November 1997
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~4! Find m such thath1(Mn1m(uSdn1m(K)u)) separates the edges ofgPL . Stated formally, find
m>1 such thatgPLùh1(Mn1m(D(xn1m)))° has oneconnected component or it is empty.

~5! Let h5h2+h1 :uKu→uKu, where h2 is the PL map that fixes the vertices o
h1(Mn1m(uSdn1m(K)u)) and sends the new verticesh1(Mn1m11(v(D(xn1m)))) of
h1(Mn1m11u(uSdn1m11(K)u)) to
~a! the baricenter ofgPLùh1(Mn1m(D(xn1m))) if gPLù(h1(Mn1m(D(xn1m))))°ÞB, and
~b! the baricenter ofh1(Mn1m(D(xn1m))) if gPLù(h1(Mn1m(D(xn1m))))°5B.

From the construction of h+Mn1m :uSdn1m(K)u→uKu it is immediate that (h
+Mn1m)21(gPL)5ugn1mu if gn1m,Sdn1m(K) is defined by the following.

~i! The zero-dimesional simplexpPSdn1m(K) belongs togn1m if ( h+Mn1m)21(gPL)ùupu
ÞB.

~ii ! The one-dimesional simplexePSdn1m(K) belongs togn1m if ( h+Mn1m)21(gPL)ùueu°
ÞB.

Then the obvious orientation ofgn1m defines the oriented combinatorial graphgW and the pairh,
gW satisfies

h~ ugW u!5gW PL . ~A1!

h

To link the combinatorial and the analytic categories we need to fix a mapN0 :uKu→SPv that
assigns a piecewise analytic curve inSPv to every PL curve ofuKu. Then the mapN:CylC→Cylv
defined by

N~ f g!:5 f N0+Mn~ ugnu!5 f N0~ ugu! ~A2!

links the kinematical Hilbert spaces, and the mapN* :Cylv*→CylC* links the spaces of physica
states of the analytic and combinatorial categories. As it was argued in section IVN* is an
isometry betweenHdiffv

andHdiffC
, which means that the two Hilbert spaces are isomorphi

every knot-class of piecewise analytic graphs@gv# has at least one representative that comes fr
a combinatorial graphN0(ugu)P@gv#.

An extension of the lemma proved in this appendix solves the issue. Given a piec
analytic graphgv,SPv we can construct a combinatorial graphg and a piecewise analytic ma
f such thatf+N0(ugu)5gv . First find a refinementgv8 of gv such that its edges are analyt
according to the domains of analycity ofSPv . Then, define a graph inuKu by a5N0

21(gv8 ) and
do steps~2!, ~3! and ~4! using a instead ofgPL . At this momentN0+h1+Mn1m(uSdn1m(K)u)
separates the edges ofgv8 ; we only need to find a replacement for step~5!. Our strategy is to find
a map of the formf5f2+N0+h1 to solve the problem. This would be achieved if the piecew
analytic diffeomorphismf2 fixes the mesh given byN0+h1+Mn1m(uSdn1m(K)u) and at the same
time matches the mesh given byN0+h1+Mn1m11(uSdn1m11(K)u) and the graphgv8 . The mapf2

needs to send every cellN0+h1+Mn1m(D(xn1m)) to itself and match the graph with analyt
edges. An explicit construction would be cumbersome, but the existence of such apiecewise
analytic map is clear. After this is completed, the construction of the combinatorial graph fo
the instructions given above to link the combinatorial and PL categories.
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It is shown that the elliptic Ruijsenaars–Schneider model can be obtained from the
cotangent bundle over the two-dimensional current group by means of the Hamil-
tonian reduction procedure. ©1997 American Institute of Physics.
@S0022-2488~97!02308-6#

I. INTRODUCTION

In our recent paper1 we have shown that the elliptic Ruijsenaars–Schneider~RS! model2 can
be obtained by means of the Poisson reduction technique from the affine Heisenberg doub
aim of the present note is to derive the same RS model from the cotangent bundle ov
two-dimensional centrally extended current groupGL(N)(z,z̄) applying this time the Hamiltonian
reduction procedure.3–8 It is worthwhile to note that the cotangent bundle over the centr
extendedsl current algebra was used in Refs. 9 and 10 to obtain the elliptic Calogero–M
model. In this short note we shall not discuss the state of affairs in the problem, see Ref.
references therein.

The plan of the paper is as follows. In the second section we briefly describe an in
dimensional phase space, which can be regarded as the cotangent bundle over the two-dim
centrally extended current group. Then we fix the momentum map, corresponding to the n
action of the group and characterize the reduced phase space. The resultingL-operator appears to
be equivalent to theL-operator of the RS model. In the third section we calculate the Poi
bracket of the reduced phase space variables and prove that it coincides with the one of
model. The reduction procedure leads to the dynamicalr matrix which just as in our previous
paper is equivalent to the one obtained in Ref. 11.

II. COTANGENT BUNDLE OVER GL „N…„z,z̄…

The cotangent bundleT over the two-dimensional centrally extended current gro
GL(N)(z,z̄) is a straightforward generalization of the cotangent bundle over affineGL(N)̂ . The
Poisson structure onT is defined as follows. LetA(x,y)5(Amne

imx1 iny and g(x,y)
5(gmne

imx1 iny be formal Fourier series in variablesx andy with values ingl(N) andGL(N),
respectively. It is convenient to use variablesz5x1(D/2p)y and z̄5x1(D̄/2p)y, whereD is a
modular parameter with ImD.0. In what follows we shall often use the notationA(x,y)[A(z)
andg(x,y)[g(z). The matrix elementsAmn andgmn can be regarded as generators of the alge
of functions onT . In close analogy withT* GL(N)̂ the Poisson structure can be written as

$A1~z!,A2~w!%5 1
2@P,A1~z!2A2~w!#d~z2w!2kP

]

] z̄
d~z2w!,

$g1~z!,g2~w!%50,
0022-2488/97/38(11)/5682/8/$10.00
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$A1~z!,g2~w!%5g2~w!Pd~z2w!, ~2.1!

wherek is a ~fixed! central charge andd(z) is the two-dimensionald function. Here, we use a
standard tensor notation andP is the permutation operator.

The action ofGL(N)(z,z̄) on T

A~z!→T21~z!A~z!T~z!1kT21~z!]̄T~z!,

g~z!→T21~z!g~z!T~z!

is the Hamiltonian one. Thereby, we can consider the Hamiltonian reduction ofT over the action
of GL(N)(z,z̄).

The momentum map taking value ingl(N)(z,z̄)* looks as follows:

M ~z!5k]̄g~z!g21~z!1A~z!2g~z!A~z!g21~z!.

It is easy to check thatM (z) does generate the action of the current group. We fix the valu
M (z) as

M ~z!52
k

2 Im D
h12p ikde~z!

12e2 ix

i
K. ~2.2!

Here,h ande are arbitrary complex numbers,

de~z!5
2p

Im D
de~x!d~y!,

de~x!5
1

e S uS x1
e

2D2uS x2
e

2D D5
1

2p i e (
n52`

n51`
1

n
~ein~e/2!2e2 in~e/2!!einx,

and K is a constant matrixK5e^ et, where e is the N-dimensional vector with entriesei

51/AN.
To obtain a finite dimensional reduced phase space one has to consider the limit whene goes

to zero. To treat this limit we employ the same strategy as in Ref. 1. We multiply the both
of Eq. ~2.2! by g(z), that gives

k]̄g~z!1A~z!g~z!2g~z!A~z!1
k

2 Im D
hg~z!52p ikde~z!K

12e2 ix

i
g~z!. ~2.3!

The l.h.s. of this equation does not have any explicit dependence one. As to the r.h.s., whene
tends to zero,de(z) becomes proportional tod(x)d(y) and the r.h.s. is well defined only if th
function @(12e2 ix)/ i #g(x,0) is well defined at x50. In this case lime→0 de(z)@(1
2e2 ix)/ i #g(z)5d(z)Z, whereZ5@(12e2 ix)/ i #g(x,0)ux50 .

So we define the constraint surface as being the solution of the equation

k]̄g~z!1A~z!g~z!2g~z!A~z!1
k

2 Im D
hg~z!52p ikd~z!KZ ~2.4!

and in the following we shall explore solutions of this equation.
We start with the following differential equation:
J. Math. Phys., Vol. 38, No. 11, November 1997
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k]̄g~z!1Dg~z!2g~z!D1
k

2 Im D
hg~z!52p ikd~z!Y, ~2.5!

where D is a constant diagonal matrix andY is an arbitrary constant matrix. It is useful t
introduce a function of two complex variables

W~z,s!5
s~z1s!

s~z!s~s!
e2~z~p!/p!zseis@~z2 z̄ !/~D2D̄ !#. ~2.6!

Here,s(z) andz(z) are the Weierstrasss andz functions with periods equal to 2p andD. This
function is the only doubly periodic solution of the following equation:

]̄W~z,s!1 i
s

D2D̄
W~z,s!52p id~z!. ~2.7!

In terms ofW, Eq. ~2.5! can be solved as

g~z!5(
i j

s~z1si j !

s~z!s~si j !
e2~z~p!/p!zsi j eisi j @~z2 z̄ !/~D2D̄ !#Yi j Ei j 5(

i j
W~z,si j !Yi j Ei j . ~2.8!

Here, we introduce the notationsi j 5qi2qj1h, qi5@(D2D̄)/ ik#Di .
Now we turn to the momentum map equation~2.4!. By using a generic gauge transformatio

one can diagonalize the fieldA. Then Eq.~2.4! takes the form of Eq.~2.5!

k]̄g8~z!1Dg8~z!2g8~z!D1
k

2 Im D
hg8~z!52p ikd~z!K8Z8, ~2.9!

where

A~z!5T~z!DT21~z!2k]̄T~z!T21~z!, g~z!5T~z!g8~z!T21~z!

for someT andZ85xg8(x,0)ux50 . We also have

K85T21~0!KT~0!5T21~0!e^ etT~0!5 f ^ v t, ^ f ,v&51,

i.e., f 5T21(0)e andetT(0)5v t. According to Eq.~2.8! we find

g8~z!5(
i j

W~z,si j !~K8Z8! i j Ei j .

Taking the value ofxg8(x,0) at the pointx50 we arrive at the compatibility condition

Z85K8Z85 f ^ v tZ8, ^ f ,v&51.

The solution of this equation isZ85 f ^ ct, wherec is an arbitrary vector. Now it is easy to fin
Z:

Z5T~0!Z8T21~0!5T~0! f ^ ctT21~0!5e^ ctT21~0![e^ bt.

Thus we get

k]̄g~z!1A~z!g~z!2g~z!A~z!1
k

2 Im D
hg~z!52p ik~e^ et!~e^ bt!d~z!. ~2.10!
J. Math. Phys., Vol. 38, No. 11, November 1997
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To summarize, Eq.~2.4! has a solution for any fieldA and for any fieldg, such that
xg(x,0)ux50 is of the forme^ bt. For a fixed fieldA and a vectorb this solution is unique. Note
that, in general,̂b,e&Þ1. The form of the r.h.s. of Eq.~2.10! shows that the isotropy group of thi
equation is

Gisot5$T~z!,G~z,z̄!uT~0!e5le,lPC%.

This group transforms a solution of Eq.~2.10! into another one, so the reduced phase spac
defined as

P red5
all solutions of Eq.~2.4!

Gisot
.

The groupGisot is large enough to diagonalize the fieldA and hence we can parametrize t
reduced phase space by the section (D,L), whereL is a solution of Eq.~2.4! with A5D. One can
easily see thatP red is finite dimensional and it’s dimension is equal to 2N, i.e., N coordinates of
D plus N coordinates of the vectorb. Due to Eq.~2.8! the correspondingL operator has the
following form:

L~z!5(
i j

s~z1si j !

s~z!s~si j !
e2~z~p!/p!zsi j eisi j ~z2 z̄ /D2D̄ !eibjEi j 5(

i j
W~z,si j !Yi j Ei j . ~2.11!

L(z) and theL operator obtained in Ref. 1 are related by the gauge transformation with

diagonal matrixe2 i @(z2 z̄ )/(D2D̄)#q and the shift of the spectral parameter:z→z2(D/2).
The standardL operator of the elliptic Ruijsenaars–Schneider model can be obtaine

multiplying L(z) by the function

s~z!s~h!

s~z1h!
e~z~p!/p!zh2 ih@~z2 z̄ !/~D2D̄ !#

and performing the gauge transformation by means of the diagonal m

e(z(p)/p)z2 i @(z2 z̄ )/(D2D̄)#q:

LRui j~z!5
s~z!s~h!

s~z1h!
e~z~p!/p!zh2 ih@~z2 z̄ !/~D2D̄ !#e~z~p!/p!z2 i @~z2 z̄ !/~D2D̄ !#q

3L~z!e2~~z~p!/p!z2 i ~z2 z̄ /D2D̄ !!q. ~2.12!

III. THE POISSON STRUCTURE ON THE REDUCED SPACE

Our goal in this section is to examine the Poisson structure on the reduced phase spa
should calculate the Poisson brackets for the coordinatesD andb. Following the general Dirac
procedure one should find aGisot invariant extension of functions on the reduced phase sp
P red to a vicinity of P red and then calculate the Dirac bracket.

The bracket for the coordinatesDi and bi can be extracted from the bracket forD and
L(z). The simplest gauge invariant extension forD andL(z) looks as follows:

D→D@A#5T21~z!A~z!T~z!1kT21~z!]̄T~z!, ~3.13!

L~z!→L@A,g#~z!5T21~z!g~z!T~z!. ~3.14!

Some comments are in order. Equation~3.13! is a solution of the factorization problem fo
A(z). Generally this solution is not unique but we fix the matrixT@A# by the boundary condition
J. Math. Phys., Vol. 38, No. 11, November 1997
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T@A#(0)e5e that kills the ambiguity up to the action of the Weil group~see, e.g., Ref. 10! and
makes Eq.~3.13! to be correctly defined. It is obvious that onP red:T@A#51 and L@A,g#(z)
5L(z).

The most interesting is the bracket forL(z) andL(w) defined by Eq.~3.14!. At the end of
the section we shall comment on the contribution from the second class constraints to the
bracket. By definition, one has

$L1 ,L2%P red
5~$T1 ,T2%L1L22L2$T1 ,T2%L12L1$T1 ,T2%L21L1L2$T1 ,T2%

2$T1 ,g2%L12$g1 ,T2%L21L2$g1 ,T2%1L1$T1 ,g2%!uP red
. ~3.15!

Here, we took into account thatT@A#uP red
51.

Let us first calculate

$gi j ~z!,Tkl~w!%5(
m,n

E d2z8$gi j ~z!,Amn~z8!%
dTkl~w!

dAmn~z8!
.

Performing the variation of the both sides of Eq.~3.13!, we get

X~z!5t~z!D2Dt~z!2k]̄t~z!1d, ~3.16!

whereX(z)5dA(z), t(z)5dT(z) andd5dD.
The general solution of Eq.~3.16! is

t~z!5Q2
1

2p ik (
i , j

E d2w W~z2w,qi j !Xi j ~w!Ei j . ~3.17!

Here,Q is some constant diagonal matrix and the functionW(z,0) should be understood as

W~z,0!5 lim
e→0

S W~z,e!2
1

e
D 5z~z!2

z~p!

p
z1 i

z2 z̄

D2D̄
.

This function solves the equation

]̄W~z,0!52p id~z!2
i

D2D̄
.

The solutiont(z) obeying the conditiont(0)e50 has the following form:

t~z!5
1

2p ik (
i , j

E d2w~W~2w,qi j !Xi j ~w!Eii 2W~z2w,qi j !Xi j ~w!Ei j !. ~3.18!

Performing the variation of Eq.~3.18! with respect toXmn(w) one gets

dTkl~z!

dAmn~w!
U

P red

[Qmn
kl ~z,w!5

1

2p ik
~W~2w,qkn!dkldkm2W~z2w,qkl!dkmd ln!.

By using the Poisson bracket~2.1! we get

$gi j ~z!,Tkl~w!%ured52Lin~z!Qjn
kl ~w,z!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Substituting$g,T% and $T,g% brackets into Eq.~3.15! we can rewrite the$L,L% bracket in the
following form:

$L1~z!,L2~w!%ured52L1~z!L2~w!k1~z,w!2k2~z,w!L1~z!L2~w!

1L1~z!s2~z,w!L2~w!1L2~w!s1~z,w!L1~z!, ~3.19!

where

k2~z,w!52$T1~z!,T2~w!%,

k1~z,w!5v~z,w!2Pv~w,z!P2$T1~z!,T2~w!%,

s2~z,w!5v~z,w!2$T1~z!,T2~w!%,

s1~z,w!52Pv~w,z!P2$T1~z!,T2~w!%,

andv i jkl (z,w)5Qji
kl(w,z).

It is easy to check thatPk6(z,w)P52d(z2w)2k6(w,z) and Ps6(z,w)P56s7(w,z).
We also have one more important identity

k1~z,w!1k2~z,w!5s1~z,w!1s2~z,w!.

To complete the calculation we need the bracket$Ti j (z),Tkl(w)% on the reduced space. Th
straightforward manipulation leads to a divergent result. By this reason we define this brac
follows:

$Ti j ~z!,Tkl~w!%5 1
2 lim
e→0

~$Ti j ~z!,Tkl
e ~w!%1$Ti j

e ~z!,Tkl~w!%!,

whereTkl
e (z) is defined as a solution of the factorization problem with the boundary cond

T(e)e5e.
A simple calculation gives the following result for the bracket$T,T%:

2p ik$Ti j ~z!,Tkl~w!%5S S z~qik!2
z~p!

p
qikD ~12d ik!1~z~z2w!1z~w!

2z~z!!d ikD d i j dkl1~W~z2w,qik!d i l d jk1W~w,qki!d i l d i j

2W~z,qik!d jkdkl!~12d ik!.

By using this formula we get the following expression for the coefficients:

2p ikki j kl
2 ~z,w!52z~qik!d i j dkl~12d ik!2~z~z2w!1z~w!

2z~z!!d i j d ikd i l 2~W~z2w,qik!d i l d jk1W~w,qki!d i l d i j

2W~z,qik!d jkdkl!~12d ik!1
z~p!

p
qikd i j dkl ,

2p ikki j kl
1 ~z,y!5S z~z2w!2

z~p!

p
~z2w!1 i

z2w2 z̄1w̄

D2D̄
D d i j d ikd i l

1~W~z2w,qik!d jkd i l 2z~qik!d i j dkl!~12d ik!1
z~p!

p
qikd i j dkl ,
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2p iksi j kl
2 ~z,w!52S z~w!2

z~p!

p
~w!1 i

w2w̄

D2D̄
D d i j d ikd i l 2~W~w,qki!d i j d i l

1z~qik!d i j dkl!~12d ik!1
z~p!

p
qikd i j dkl ,

2p iksi j kl
1 ~z,w!5S z~z!2

z~p!

p
~z!1 i

z2 z̄

D2D̄
D d i j d ikd i l

1~W~z,qik!d jkdkl2z~qik!d i j dkl!~12d ik!1
z~p!

p
qikd i j dkl .

One can easily verify that the last lines in the expressions obtained fork’s and s’s do not
contribute to the bracket$L,L%.

To proceed further, let us note that@see Eq.~2.11!#

Lii ~z!5
1

AN
W~z,h!bi , ~3.20!

so the bracket$bi ,bj% follows from the$Lii ,L j j % bracket only. Just as in the case of the Heise
berg double one can check that the bracket ofL i i with the constraint~2.3! vanishes onP red for
any value ofe. Thus, there is no contribution from the Dirac term to the$Lii ,L j j % bracket.

Performing the same calculations as in Ref. 1 we arrive at

2p ik$bi ,bj%5bibj~2z~qi j !2z~qi j 1h!2z~qi j 2h!!. ~3.21!

The bracket$L,D% and $D,D% can be found by a similar device as was used above.
Dirac terms do not contribute as well. The final result reads

$D@A#1 ,D@A#2%ured50, ~3.22!

2p~D2D̄!$L~z!1 ,D@A#2%ured52(
i , j

L i j ~z!Ei j ^ Ej j . ~3.23!

Now for the reader’s convenience we list the Poisson brackets obtained in terms
coordinates onP red

$qi ,qj%50,

2p ik$qi ,bj%5bjd i j ,

2p ik$bi ,bj%5bibj~2z~qi j !2z~qi j 1h!2z~qi j 2h!!, ~3.24!

this is just the Poisson structure of the elliptic Ruijsenaars–Schneider model.
Just as in Ref. 1 the bracket for the operatorLRui j defined by Eq.~2.12! being calculated by

using Eqs.~3.19! and~3.23! reproduces the bracket obtained in Ref. 11. It means that there
contribution from the Dirac term even for the nondiagonal matrix elementsLi j .
J. Math. Phys., Vol. 38, No. 11, November 1997
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IV. CONCLUSION

In this paper we have pointed out that the elliptic Ruijsenaars–Schneider model c
obtained by means of the Hamiltonian reduction procedure from the cotangent bundle ov
two-dimensional current group. As compared to the scheme proposed in our previous pap1 this
one possesses a number of advantages. First of all in this scheme the calculations are dr
simplified. Then, it explains why the contribution from the trigonometricr matrix which defines
the Poisson structure on the Heisenberg double drops out from the final result.

It seems to be interesting to examine the Poissonian reduction of the Heisenberg double
two-dimensional current group. In this case one could expect to obtain some generalization
RS model.

It is known that the elliptic Calogero–Moser model is related to the Chern–Simons th
Hence it is an interesting problem to find a field-theoretical formulation of the elliptic RS mo
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An exactly solvable two-body problem with retarded
interactions and radiation reaction in classical
electrodynamics

R. Rivera and D. Villarroel
Departamento de Fı´sica, Universidad Te´cnica Federico Santa Marı´a,
Casilla 110-V, Valparaı´so, Chile

~Received 9 July 1996; accepted for publication 29 July 1997!

An exactly solvable two-body problem dealing with the Lorentz–Dirac equation is
constructed in this paper. It corresponds to the motion of two identical charges
rotating at opposite ends of a diameter, in a fixed circle, at constant angular veloc-
ity. The external electromagnetic field that allows this motion consists of a tangen-
tial time-independent electric field with a fixed value over the orbit circle, and a
homogeneous time-independent magnetic field that points orthogonally to the orbit
plane. Because of the geometrical symmetries of the charges’ motion, in this case it
is possible to obtain the rate of radiation emitted by the charges directly from the
equation of motion. The rate of radiation is also calculated by studying the energy
flux across a sphere of a very large radius, using the far retarded fields of the
charges. Both calculations lead to the same result, in agreement with energy con-
servation. ©1997 American Institute of Physics.@S0022-2488~97!01511-9#

I. INTRODUCTION

Classical electrodynamics is one of the most fundamental theoretical frameworks in ph
Nevertheless, the problem of the correct equation of motion for a charge when radiation re
is considered is still a matter of controversy. The most natural and widely accepted equa
motion is the Lorentz–Dirac.1 This equation has been discussed mainly in connection with
case of one charge in a given external electromagnetic field.2,3 However, the application of the
Lorentz–Dirac equation to the study of the motion of more than one charge has received
attention. This is due in part to the mathematical complications associated both with the non
character of this equation and the retarded nature of the interaction between the charges.

Using a numerical approach, Huschilt and Baylis4,5 studied the collision of two charges alon
a straight line, both in the repulsive and attractive cases. In the repulsive case they found t
trajectories of the charges are physically reasonable and satisfy energy conservation. How
the attractive case, these authors found only unphysical runaway solutions that radiated an
amount of energy. This complication goes back to Eliezer,6 who studied the rectilinear motion o
a point charge attracted towards a fixed infinitely massive point charge, and concluded th
Lorentz–Dirac equation has only unphysical solutions for this problem. Eliezer’s result gav
to a long controversy about the validity of the Lorentz–Dirac equation.5–9 This controversy was
solved only recently by Comay,10 who showed that the unphysical solutions arise because
stepwise approach forward in time is an unstable solution method for solving the non
Lorentz–Dirac equation. In order to build up the correct physical solution that fulfills en
conservation, Comay replaced the fixed point charge of Eliezer by a uniformly charged sph
shell, and used the technique of backward integration in time.

Another problem for more than one charge was worked out by Comay.11 By means of nu-
merical techniques, this author studied a system ofn,16 identical point-charges. The charges a
fixed and equally spaced over the circumference of a disk of insulating material that rota
constant angular velocity, by means of a mechanical device. Comay showed that the net tan
0022-2488/97/38(11)/5690/17/$10.00
5690 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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force over each charge decreased at the same time as the number of charges increased, a
had a value consistent with energy conservation.

The only previous attempt at presenting an exactly solvable problem for more than one c
in connection with the Lorentz–Dirac equation was done by Briggs.12 This author studied the
motion of two equal-mass particles with charges of equal absolute value but opposite sign
motion is such that the charges rotate at constant angular velocity in a fixed circle at opposit
of a diameter. According to Briggs, the Lorentz–Dirac equation admits this motion as an
solution for a specific radius and velocity of the charges, which in the case of the elec
positron system is about two classical electron radii and four-tenths of the velocity of
respectively. Since there is no external field, and the charges are certainly radiating ener
escapes to infinity, Briggs’ solution clearly violates energy conservation. If Briggs’ solution
assumed correct, it would represent a serious objection to the validity of the Lorentz–
equation. As shown below, this is indeed not a solution.

The geometry of the motion considered by Briggs, with two charges rotating with con
angular velocity at the end of a diameter, is, perhaps, the simplest motion of two charge
plane, so it seems natural to inquire as to what extent we can still obtain it as a solution
Lorentz–Dirac equation. We find that this is indeed the case, if the two charges are identic
appropriate external electromagnetic fields are present. The external fields consist of an e
static field tangent to the orbit circle with a fixed value on it, and a homogeneous time-indepe
magnetic field orthogonal to the orbit circle. The magnitudes of these fields are uniquely
mined in terms of the mass, charge, velocity, and the orbit radius of the charges.

Our solution is exact, allowing a detailed study of its consistency with energy conservatio
order to carry out such a study we derive an exact formula for the energy radiated away by t
charges starting from the far retarded fields of the charges. On the other hand, due to the s
tries of this motion, it is easy to obtain an expression for the energy radiated away, starting d
from the Lorentz–Dirac equation. It turns out that both expressions coincide for any orbit r
and any velocity of the charges, which means that this solution is in perfect agreement with e
conservation.

The construction of exact solutions of the Lorentz–Dirac equation is important because
allow a check on the consistency of this equation with fundamental principles like energy co
vation. The verification of energy conservation is not a trivial matter, since the Lorentz–D
equation is derived with the help of a mass renormalization procedure, which involves th
nipulation of the divergent self-energy of a point charge.

This paper is focused on the study of our analytical solution from a fundamental poi
view. Thus, perfectly well-defined trajectories and arbitrarily small distances are relevant
framework of classical electrodynamics, so it is pertinent to investigate the physical consiste
the Lorentz–Dirac equation in such situations, even if they are not of experimental or pra
relevance. For example, the present solution is such that the Lorentz–Dirac equation is con
with energy conservation for an arbitrarily small radius of the orbit, even less than a cla
electron radius. But, of course, we are not implying that our solution can describe a real ph
system of such dimensions. Also, the electrostatic field that we introduce in order to counter
the energy radiated away is sufficiently simple to allow an exact solution, but it is not intend
be of any practical interest. Indeed, the electric field that compensates the loss by radiatio
storage ring is very different from the one considered here.

The consistency of our solution with energy conservation, like other author’s results,4,10,11

corroborates the validity of the Lorentz–Dirac equation as the correct equation of motio
charged particles in classical electrodynamics.

The contents of this paper are presented in the following order: In Sec. II, we define a s
that generates an electrostatic field that is tangential to a given circumference, and has a
trarily fixed value at any point of the circumference. In addition to this field, we will nee
homogeneous magnetic field that points orthogonally to the orbit plane. Then, we show th
J. Math. Phys., Vol. 38, No. 11, November 1997
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these external fields, the Lorentz–Dirac equation admit as a solution the motion of two ide
charges rotating at a constant angular velocity at opposite ends of a diameter. Section III
with a brief discussion of the description of the radiation emitted by a system of charges. I
section, we also present a power series representation for the rate of radiation in the pa
b5v/c up to terms of orderb12, for the two charges performing the motion under study. Fina
in the same section, we derive for this motion an exact radiation rate formula, which holds
for charge velocities near the velocity of light. With the help of this formula, we can verify
our exact solution satisfies energy conservation for any orbit radius and velocity of the cha

II. THE EXACT SOLUTION

A. External fields

The use of cylindrical coordinates~r, w, z! is the most appropriate for studying the motio
under consideration, which takes place on the planez50. The external electrostatic field neede
can be generated by the following sources: a charge density that vanishes everywhere
time-dependent charge current densityJ given by

J~x,t !52Atd~r2b!ŵ, ~2.1!

whereA andb are positive numbers,d is the usual Dirac delta function, andŵ denotes the unit
vector tangent to a circle with a fixedr, pointing in the direction in whichw increases. In terms o
the step functionu~r!, the electric and magnetic fields generated by the sources are

E~x,t !5
2Ap

c2 H r2u~r2b!S r2
b2

r D J ŵ,

~2.2!

B~x,t !52
4Ap

c
t$12u~r2b!%k̂,

and it is easily shown that these fields are a solution to Maxwell equations:

“–E50, “3E1~1/c!
]B

]t
50,

~2.3!

“–B50, “3B2~1/c!
]E

]t
5~4p/c!J.

The proof that~2.2! is indeed an everywhere solution of~2.3! is more easily carried out in
cylindrical coordinates, either by using the standard procedure with step and delta functions
means of the distribution theory.

The fields in~2.2! will be needed only in the regionr.b, in which case they are reduced

E~x,t !5
2Apb2

c2r
ŵ,

~2.4!

B~x,t !50.

The magnitude of the tangential electrostatic fieldE can take any value in a given circle b
choosing appropriate values for parametersA andb.

Besides the electrostatic field~2.4!, an external homogeneous time-independent magnetic
Bext, pointing in the the negative direction of axisZ, will be needed.
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Retarded fields

The electric field generated by a charge under an arbitrary motion is given by the Lien
Wiechert formula13

E~x,t !5eF ~ n̂2b!~12b2!

k3R2 G1
e

c F n̂3$~ n̂2b!3ḃ%

k3R
G , ~2.5!

wheren̂ is the unit vector that points from the retarded positionr (t8) of the charge to the pointx
where the field is being considered at timet; R is the distance from the retarded position of t
charge to pointx, that is,R5ux2r (t8)u; b and ḃ are defined by (1/c)„dr (t8)/dt8… anddb/dt8,
respectively, and are both evaluated at the retarded timet8, implicitly defined by
t5t81ux2r (t8)u/c; andk is the positive number

k512n̂–b. ~2.6!

The magnetic fieldB(x,t) is given by

B~x,t !5n̂3E~x,t !. ~2.7!

Formulas~2.5! and~2.7! will be applied to the specific case of two chargese1 ande2 rotating
at constant angular velocityv at the ends of a diameter in theX–Y plane, as shown in Fig. 1. Eve
if both charges are identical, i.e., they have an equal massm and a positive chargee, in the
following analysis it is useful to name the charge at pointA at timet ase1 , and the charge at poin
B at the same timet ase2 .

In this section, fields~2.5! and~2.7! will be needed only at points on the charges’ orbit. Mo
specifically, we will evaluate the fields generated bye2 at the location of chargee1 at timet, and
the fields generated bye1 at the position ofe2 at time t. In Fig. 1, A and B denote the actua
positions of chargese1 ande2 , respectively, and the angle between diameterAB and theX axis
is vt. Point B̃ denotes the retarded position of chargee2 , which determines the field over charg
e1 at timet. Now, since chargese1 ande2 are rotating at the same constant angular velocityv, the
retarded positionÃ of chargee1 , which determines the fields overe2 at time t, is defined by the
same retarded timet8 that determines the retarded positionB̃ of e2 . That is, the retarded position
Ã and B̃ of e1 ande2 , respectively, are on the diameter forming an anglevt8 with the X axis.

Let 2c be the angle between the actual and the retarded positions of the charge
2c5vt2vt8. Then, as can be easily seen in Fig. 1, the retarded distances between the c
areR15R252a cosc, wherea is the orbit radius. Now, the condition that the time needed
chargee1 to go from Ã to A is the same time that the light takes to go fromB̃ to A leads to

c5b cosc. ~2.8!

From this equation we obtain

db

dc
5

11b sin c

cosc
, ~2.9!

which for 0,c,p/2 implies a one-to-one relationship between the velocity of the charges
anglec. Since 0,b,1, anglec is such that 0,c,ccrit50.739. It is then possible to use eith
b or c to determine the velocity of the charges. Parameterb is, of course, directly determined b
~2.8!, if c is known. However, there is no simple formula to determinec out of b. In fact, for a
given b, c is implicitly determined by the functional equation~2.8!, which links retarded time to
actual time. As will be shown below, our solution can be expressed in terms of known func
only by using parameterc.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let us evaluate the retarded electric field generated by chargee2 at the positionA of charge
e1 , by using their radial and tangential componentsEr5r̂–E andEw5ŵ–E, respectively. As is
obvious from~2.5!, the retarded electric field has a zero component along theZ axis. The unit
vectorsr̂ andŵ are given in terms of the unit vectorsî and ĵ along theX andY axis, respectively,
by

r̂5 î cosvt1 ĵ sin vt, ŵ52 î sin vt1 ĵ cosvt. ~2.10!

The following relations will be needed to evaluate the tangential and radial components o
retarded fields:

ŵ–n̂252sin c, r̂–n̂25cosc, ŵ–b252b cos 2c,

FIG. 1. Two chargese1 ande2 rotating counterclockwise in a circular orbit of radiusa, at a constant angular velocityv.
The orbit is centered at the origin and contained in theX–Y plane. At the observation timet, the charges are located atA

andB, respectively; correspondingly,Ã andB̃ represent their positions at the retarded timet8. The dynamic variables of
each charge at the retarded timet8 are also shown.
~2.11!

J. Math. Phys., Vol. 38, No. 11, November 1997
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r̂–b252b sin 2c, ŵ–ḃ252~cb2/a! sin 2c, r̂–ḃ25~cb2/a! cos 2c.

By using these equations and Eq.~2.8!, from ~2.5! we obtain the following expressions forEr and
Ew :

Er5S e

4a2D ~cosc1c sin c!23$~c sin 2c1cos2 c!

3~11c2 cos 2c sec2 c!22c2~11c tan c!cos 2c%, ~2.12!

Ew5S e

4a2D ~cosc1c sin c!23$~c cos 2c2sin c cosc!

3~11c2 cos 2c sec2 c!12c2~11c tan c!sin 2c%. ~2.13!

The radial component~2.12! is the same as the one quoted by Briggs,12 but instead of the plus
sign that appears in front of the second term inside the parenthesis$ % of the tangential componen
~2.13!, Briggs has a minus sign. This difference arises because Briggs usesŵ–ḃ25ḃ sin 2c
5(cb2/a)sin 2c instead of the correct one, which isŵ–ḃ252ḃ sin 2c52(cb2/a)sin 2c, as
can be easily seen from Fig. 1.

Let us examine in more detail the sign of the quantity (4a2/e)Ew for relevant values of the
parameterc, that is, for 0,c,ccri,p/4. The quantity inside the bracket$ % in ~2.13! can be
written as follows:

c2~4c2sin 4c!/~4 cos2 c!1~2c2 sin 2c1c cos 2c2sin c cosc!,

where the first term is obviously positive, while the second vanishes atc50 and has a positive
derivative in 0,c,ccri . Therefore, (4a2/e)Ew is positive for all relevant values ofc. Similarly,
it is possible to show that (4a2/e)Er is also positive.

The retarded magnetic induction of chargee2 at the same pointA is given by

Bz5Ew cosc1Er sin c. ~2.14!

The retarded electric field due toe1 at point B, has, of course, the same magnitude as
retarded electric field ofe2 at point A, with tangential components pointing in the direction
which w increases. On the other hand, the retarded magnetic inductions atA andB are identical,
and point in the positive direction of theZ axis.

C. The solution

The Lorentz–Dirac equation for a particle of massm1 and chargee1 moving in an external
field Fext

ma reads as follows:

m1a1
m5~e1 /c!Fext

mav1a1~e1/c!F2ret
ma v1a1~2e1

2/3c3!„ȧ1
m2~1/c2!a1

lal
1v1

m
…. ~2.15!

The equation for chargee2 is the same, but with indices 1 and 2 interchanged. The notation in
~2.15! is the following:v1m anda1m denote the four-velocity and four-acceleration of chargee1 ,
respectively;c is the velocity of light; andȧ1m is the proper time derivative ofa1m . Moreover,
Greek indices range from 0 to 3 and the diagonal metric of Minkowski space is (21,11,11,
11).

The first term on the right-hand side in~2.15! is Lorentz’s force due to the external field. Th
second term links chargee1 with e2 by means of a purely retarded interaction, and represents
only mutual interaction between the two charges. The retarded fieldF2ret

ma is, of course, evaluated
J. Math. Phys., Vol. 38, No. 11, November 1997
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at the position of chargee1 . The last term in~2.15! arises from the charge’s own field, and it
made up of two parts, namely: the ‘‘Schott term,’’ involving the third derivative of the positio
the charge, and the nonlinear ‘‘Larmor term,’’ which involves the square of the acceleratio

It will be shown herein that for any radiusa and constant velocityv5av of the two identical
charges in Fig. 1, there are both a perfectly well-definedEw

ext in ~2.4!, and a homogeneous extern
magnetic fieldBext52 k̂Bext, such that the motion shown in this figure is a solution to Loren
Dirac equation~2.15!.

From Eqs.~2.12!–~2.14! it follows that the retarded force overe1 has a vanishing componen
along theZ axis. This property is also valid for the external fields~2.2!. In other words, the
equation withm53 in ~2.15! is identically satisfied for a motion of the two charges in theX–Y
plane.

The Cartesian components of the motion of chargee1 are given by

x15a cosvt, y15a sin vt. ~2.16!

By introducing these expressions in the components of~2.15! associated withm51 andm52, and
by combining these equations in order to write them in terms of radial and tangential compo
we obtain

ŵ$eEw1eEw
ext2~2e2/3a2!b3g4%5r̂$2mav2g2eEr2ebBz1ebBext%, ~2.17!

whereEr , Ew , andBz are given by~2.12!, ~2.13!, and~2.14!, respectively, andg is defined as

g5~12b2!21/2. ~2.18!

For particles of equal charge and mass the equation for chargee2 is also Eq.~2.17!. This
equation means thatEw

ext must necessarily have the following value:

eEw
ext5~e2/a2! f ~c!, ~2.19!

where functionf (c) is given by

f ~c!5~2/3!c3 cosc~cos2 c2c2!222~a2/e!Ew . ~2.20!

The situation is completely different in the case considered by Briggs, in which the ch
have opposite signs. In this case the equations for the charges are different, and inconsiste
nonvanishing external field. This reflects the fact that for such a system a solution of this k
not feasible, since the external electric field affects the motion of the charges in opposite w

Briggs studied the caseEw
ext[0, in which~2.19! is reduced tof (c)50. However, for charges

of opposite sign, the expression forf (c) is that in ~2.20! with a plus sign in front of the term
(a2/e)Ew , and since (a2/e)Ew is positive, as well as the first term on the right-hand side of~2.20!,
the equationf (c)50 does not have any solution. In particular then, the Lorentz–Dirac equa
does not admit Briggs’ solution.

The first term on the right-hand side of~2.20! corresponds to the radiation reaction force in t
case of one charge in circular motion. Since in~2.20! Ew.0, the retarded component of the forc
due to the other charge tends to help the motion of the charges, as opposed to the ra
reaction force.

Detailed analysis proves thatf (c) is a strictly increasing positive function ofc. Thus, for any
orbit radius and any velocity of the charges, Eq.~2.19! determines a perfectly well-defined valu
for Ew

ext. The external field’s dependence on the orbit radiusa and parameterc of the charges is
qualitatively the same as in the one-charge case. Thus,Ew

ext increases, either when the velocity
increased and the radius is kept fixed, or when the radius is decreased and the velocity
J. Math. Phys., Vol. 38, No. 11, November 1997
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constant. In Sec. III, we will show that the dependence of~2.19! on orbit radius and velocity of the
charges is not only as expected, but that Eq.~2.19! is also in agreement with the energy radiat
by the system of two charges.

The value of the external magnetic fieldBext obtained from~2.17! is as follows:

Bext5B1p1Bret, ~2.21!

where

B1p5~e/ar0!c~cos2 c2c2!21/2, ~2.22!

and

Bret5c21$~c cosc!Ew1~cosc1c sin c!Er%, ~2.23!

with r 05e2/mc2. B1p is the part ofBext needed to allow a circular orbit of radiusa of a single
relativistic particle of massm, chargee, and velocityv. On the other hand,Bret is the part ofBext

needed to counteract the retarded repulsive interaction between the charges. The depend
Bext on the velocity of the charges and orbit radius is somewhat more complicated tha
dependence of the external electric field on the same parameters; but for a given massm, charge
e, ‘‘velocity’’ c, and radiusa, the above formula certainly determines a unique value ofBext. For
a large enough radius (a@r 0) and a velocity not too close to zero,Bret can be ignored. This is the
case in circular accelerators or storage rings, where the bending magnetic field and the ac
tion electric field are basically calculated by considering the motion of a single charge.

As the velocity of the charges tends to be near zero, the influence of the other ch
retarded field becomes very significant indeed. In this case, the external magnetic field m
large enough to compensate the repelling electric force between the charges. A Cooper pa
theory of superconductivity is a physical system where the contribution ofBret may be a relevant
one. A Cooper pair is a kind of bound state formed by two electrons, where one electron is
with one of opposite momentum. This is precisely what happens with the motion of the
charges considered here. Therefore, at least in a certain approximation,~2.21!–~2.23! may be of
interest in connection with Cooper pairs. In order to have an idea about the size of the fiel
us evaluate the magnitude ofB1p andBret in the case of transition metal superconductors as w
as nontransition metal superconductors. To this end, we identify radiusa of the orbit in Fig. 1 with
the typical size of a Cooper pair, and the velocityv with the corresponding Fermi velocityvF . For
an electron we havee54.8310210 statcoulombs,m59.1310228 g, andr 052.8310213 cm. In a
transition metala'531027 cm, andvF5106 cm/s; thus, from~2.22! and ~2.23!, we obtain
B1p51.13105 Ga, andBret51.43107 Ga, respectively. Therefore, for transition metals, we ha
Bret@B1p . On the other hand, for nontransition metals,a'1024 cm, vF'108 cm/s, and then,
B1p55.73104 Ga andBret53.6 Ga. So, in contradistinction with transition metals, we have n
B1p@Bret. We can also estimate the ratio between the tangential reaction force and the
bending force due toB1p for both types of superconductors. This ratio is equal to 1.2310211 for
transition metals and 6.2310212 for nontransition metals. So, in both cases, the radiation reac
force is completely negligible with respect to the bending magnetic force. We will go no fu
in the applicability of the motion under study as a model for a Cooper pair, but let us point ou
the value ofBext quoted before cannot, of course, be confused with the mesurable magnetic
present in superconductors.

Figure 2 shows the graphs for (4ar0 /e)Bext, (4ar0 /e)B1p , and (4ar0 /e)Bret in the case
a5r 0 . Graphs for (4ar0 /e)Bext and (4ar0 /e)B1p in the case ofa5103r 0 are also shown in this
figure; in this last case the graph for (4ar0 /e)Bret is not shown since it almost coincides with th
axes of coordinates.
J. Math. Phys., Vol. 38, No. 11, November 1997
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FIG. 2. The magnitudes of the dimensionless quantities (4ar0 /e)Bext, (4ar0 /e)B1p , and (4ar0 /e)Bret as functions ofc
for two different values of the orbit radiusa. The external magnetic field (4ar0 /e)Bext is shown as a solid line, while the
magnetic field for a circular motion of one particle (4ar0 /e)B1p and the magnetic field to counteract the repulsive retarded
interaction (4ar0 /e)Bret are shown as dotted and dashed lines, respectively. Parameterc ranges in the interval 0<c
,0.739, corresponding to 0<b,1. Note that for a given ratioa/r 0 , the graphs are independent of the specific values of
parametersa, e, andm. Nevertheless, the external magnetic fieldBext certainty depends ona, e, andm.
J. Math. Phys., Vol. 38, No. 11, November 1997
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For the motion described by~2.16!, the component in Eq.~2.15! representing the energ
conservation law (m50) is reduced to

ev–Eext5~2e2c/3a2!b4g42evEw . ~2.24!

For a single charge in circular orbit,Ew[0 and Eq.~2.24! is reduced to the case consider
by Rohrlich.14 In this case, in accordance with the energy conservation law, the external el
field’s supply of power to the charge coincides with the rate of radiation given by the La
formula in the case of a circular motion, which is (2/3)(e2c/a2)b4g4. Besides this Larmor term
Eq. ~2.24! shows the power supplied to chargee1 by the retarded electric field due to chargee2 .
The minus sign comes from the fact that the direction of the tangential component of the re
electric fieldEw opposes the Larmor radiation reaction force’s direction. Let us point out
except for one factor, Eq.~2.24! is identical to Eq.~2.19!.

Energy equation for chargee2 is also~2.24!, and 2ev–Eext corresponds to the rate at which th
external field supplies energy to the system composed of the two charges. Now the kinetic
of the charges remains unchanged in this motion. Moreover, the energy stored in the charge
remains unchanged as well, since no distinction can be made between the positions of the
at two different times. We emphasize that there is no need to focus on the precise definition
concept of energy stored in the charges’ field, since, according to the motion’s symmetr
energy—whichever it may be—is time independent. Thus, according to the energy conser
law, all the power supplied by the external electric field to the system of two charges mu
radiated away. This means that the right-hand side of~2.24! multiplied by 2 corresponds to th
total rate of radiation emitted by the two charges. Now, the total rate of radiation consid
Larmor term for each charge, plus an interference term that mixes the fields of the two ch
Therefore, if we write the interference term in the form2(4/3)(e2c/a2)b4g(c), the function
g(c) is given by

g~c!5~3/8!~c1c2 tan c!233$~c cos 2c2cosc sin c!

3~11c2 cos 2c sec2 c!12c2 sin 2c~11c tan c!%. ~2.25!

The Larmor terms in the rate of radiation can be directly written as functions of parameb.
Unfortunately though, the interference term can be expressed in terms of known functions o
using the parameterc defined in~2.8!. This occurs because Eq.~2.8! determinesc in terms ofb
only by means of a functional equation.

III. THE RATE OF RADIATION

A. Radiation due to a system of charges

The radiation emitted by a system of charges has been described essentially in two w
previous literature. Both start from the energy conservation equation:

]u

]t
1“–S52J–E, ~3.1!

where J is the source charge-current density, andu and S are given in terms of the retarde
electric fieldE and the retarded magnetic inductionB by

u5~1/8p!~E21B2!, ~3.2!

S5~c/4p!~E3B!. ~3.3!

By integrating~3.1! all over the space, it becomes
J. Math. Phys., Vol. 38, No. 11, November 1997
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E
S
S–n̂ dS52E J–E d3x2

d

dt E u d3x, ~3.4!

whereS is the surface of a sphere centered at an arbitrary point inside the charge distrib
whose radiusR tends to infinity; andn̂ is the outer normal unit vector toS.

The first approach to the calculation of the rate of radiation is the study of the surface in
in ~3.4!. Since the retarded fields have no singularities over the surfaceS, the evaluation of the
surface integral presents no ambiguity. Furthermore, sinceS is the surface of a sphere with a ve
large radiusR, only the far fields contribute to the integral. Therefore, the flux of energy detac
from the system of charges and escaping to infinity is perfectly well defined by the surface in
in ~3.4!. Unfortunately, the electromagnetic field retarded character renders calculation, in ge
complicated. This difficulty is not present in the one-charge case, where the evaluation
surface integral in~3.4! leads to Larmor formula15 for radiated power:

P~ t !5 2
3~e2g6/c!@ḃ22~b3ḃ!2#. ~3.5!

Equation~3.5! is remarkably simple, given thatb andḃ are evaluated at the same laborato
time asP(t). This simplification is closely related to the local characterization of the radia
emitted by the point charge. The evaluation of the surface integral of~3.4! in the general case
presents such technical difficulties that no formula similar to~3.5! can be found in the literature fo
the rate of radiation for more than one charge—not even for a special type of motion o
charges. However, an approximate nonrelativistic expression is known for the surface inte
~3.4!.16

The second approach to the calculation of radiated power involves the study of the righ
side of~3.4!. Nevertheless, this procedure is not free from ambiguities. In fact, the integral o
energy density is divergent, for it contains the point charges self-energy. Besides this, the i

2E J–Eret d3x ~3.6!

has no precise meaning either. In order to see this, it suffices to consider the case of on
charge, for which the current density is

J~x,t !5ev~ t !d„x2r ~ t !…, ~3.7!

wherer (t) is the trajectory of the charge andv5dr /dt. In this case,~3.6! is divergent, since it is
proportional to the retarded electric field evaluated at the charge position. Schwinger,17 in his
well-known work on synchrotron radiation, started precisely from~3.6!, avoiding the above dif-
ficulty by replacing the retarded fields by half the difference between the retarded and adv
fields. This combination of retarded and advanced fields, first introduced by Dirac1 in his defini-
tion of the radiation field, is not singular at the charge position. However, due to the introdu
of advanced fields, the replacement of~3.6! by

2
1

2 E J–~Eret2Eadv! d3x ~3.8!

makes the physics somewhat obscure. In particular,~3.8! now includes acceleration-depende
energy terms, such as the total time derivative appearing in Eq.~3.4!. Schwinger showed that by
discarding these terms, Eq.~3.8! correctly reproduces the Larmor formula~3.5! in the one-charge
case. Schwinger’s famous formula on synchrotron radiation has been derived in an elegan
using only the far retarded fields, by Jackson.18 In spite of its non-covariance, Schwinger’s trea
ment of radiation is closely related to Dirac’s work on the equation of motion.1 This is so, since,
J. Math. Phys., Vol. 38, No. 11, November 1997
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as in Dirac’s paper, Eqs.~3.6! and~3.8! deal with the fields in the vicinity of the charges; strict
speaking, at the charges positions. If we consider the case of two point-chargese1 and e2 , Eq.
~3.6! reads

2E J1–E1ret d3x2E J2•E2ret d3x2E J1–E2ret d3x2E J2–E1ret d3x. ~3.9!

According to Schwinger’s procedure, each of the first two integrals represents the Larmor r
the corresponding charge, while, because of Eq.~3.7!, the contributions of the third and fourt
integrals are given by

2e1v1–E2ret2e2v2–E1ret. ~3.10!

In particular then, for the motion of the charges in Fig. 1, Eq.~3.9! gives for the rate of
radiation the same value we obtained in Sec. II starting from the Lorentz–Dirac equation.
ever, we cannot use this coincidence as proof of energy conservation for our solution, no
because Dirac’s and Schwinger’s treatments are basically the same, but mainly becau
involve the manipulation of divergent quantities, thus leading to ambiguities. The ambig
associated with the derivation of the Lorentz–Dirac equation~2.15! have been thoroughly studie
by Tabensky.19 Thus, in order to provide a conclusive proof of energy conservation in our s
tion, we must study the energy flux that escapes to infinity, i.e., the surface integral in~3.4!.

B. The rate of radiation for low velocities

In this as well as in the next section, we will address the rate of radiation of the charges i
1 by studying the energy flux across the surface of a sphere of a very large radiusr centered at the
origin. The surface integral in~3.4! can be evaluated in an approximate way for an arbitr
motion of a set of charges by using a power series inb. To this end, the charges’ retarded tim
may be expressed in terms of the present timet by means of a power series expansion in 1/c. As
r tends to infinity, the electric field for a group of point charges can be represented b
following formula.16

E5 (
n51

`

En5 (
n51

` H 1

rc2

1

~n21!!

1

cn21

dn

dtn S (
s

es~ r̂–r s!
n21vsD 3r̂ J 3r̂ ~3.11!

and the far magnetic field isB5 r̂3E. In these formulae,r s and vs denote the position and th
velocity of the chargees at the present timet, respectively, andr̂ is the unit vector defined by
r̂5 î sinu cosw1ĵ sinu sinw1k̂ cosu, with u, w the usual spherical angles.

For the motion under consideration, we have

r1~ t !5 îa cosvt1 ĵa sin vt,
~3.12!

r2~ t !52 îa cosvt2 ĵa sin vt.

For this motion, we have computed the series~3.11! up to the powerc210. Application of this
formula makes calculation of energy flux across the surface of a sphere a straightforward
The result is
J. Math. Phys., Vol. 38, No. 11, November 1997
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dWrad

dt
5

2

3

e1
2c

a2 b4$112b213b414b615b81•••%

1
2

3

e2
2c

a2 b4$112b213b414b615b81•••%

2
4

3

e1e2c

a2 b4H 12
14

5
b21

53

7
b42

18556

945
b61

515591

10395
b81•••J . ~3.13!

The first two series correspond to power series expansions of the Larmor term for each c
The last series represents that part of the rate of radiation associated with the interference
fields of both charges. The first two terms of the interference part were previously kno20

Unfortunately, a power series inb for the rate of radiation is useless for a highly relativis
motion, i.e., forb close to 1, given that a large number of terms would be needed in this ca
the following section, we will derive an exact formula for the rate of radiation, valid even
velocities of charges close to the velocity of light.

C. An exact formula

If we call E1 andE2 the retarded electric fields generated by the chargese1 ande2 in Fig. 1,
andB1 andB2 the corresponding retarded magnetic inductions, then the surface integral in~3.4!
can be split as

c

4p E
S
~E13B1!• r̂ dS1

c

4p E
S
~E23B2!• r̂ dS1

c

4p E
S
~E13B21E23B1!• r̂ dS.

~3.14!

In principle, the surfaceS corresponds to a sphere having a very large radius, but, as wi
shown below, each of the integrals in~3.14! is independent of the radiusr of the sphere, provided
r .a. Henceforth,S is the surface of a sphere with an arbitrary radiusr .a, centered at the origin
of the coordinates system in Fig. 1.

In the following paragraphs, we deal mainly with the last integral in~3.14!, the most prob-
lematic of all. This integral represents the part of the radiation rate associated with interfere
the fields of the two charges. To evaluate the integral, we will first consider the surface in
over the ribbon between anglesu andu1du:

E
0

2p

~E13B21E23B1!• r̂ dw. ~3.15!

Figure 3 shows the position of the charges at three different times, namely, at timest, t1 , and
t2 , where t is the time at which the flux across the ribbon is calculated;t1 corresponds to the
retarded time of chargee1 associated with pointP and timet, andt2 is the retarded time of charg
e2 associated with pointP and timet. PointP is defined using spherical coordinates~r , u, w!, that
is x¢5 îr sinu cosw1ĵ r sinu sinw1k̂r cosu.

Since the time intervalt2t1 needed by chargee1 to travel from its retarded positionB1 to its
actual positionA1 is the same time light takes to travel fromB1 to P, we have

t2t15~a/c!j21$11j222j sin u cos~w2vt1!%1/2, ~3.16!

wherej is the parameter given by

j5a/r ,1. ~3.17!
J. Math. Phys., Vol. 38, No. 11, November 1997
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Analogously, the time intervalt2t2 needed by chargee2 to travel from its retarded position
C2 to its actual positionA2 is the same time that light takes to travel fromC2 to P, and thus we
have

t2t25~a/c!j21$11j212j sin u cos~w2vt2!%1/2. ~3.18!

Equations~3.16! and~3.18! are functional equations that determine, in a unique way, the retard
timest1 andt2 , respectively, as functions of the parameterst, r , u, andw. Instead of working with
retarded timest1 and t2 , it is useful to introduce the following variables:

x5w2vt1 , ~3.19!

y5w2vt2 . ~3.20!

In integral ~3.15!, the parameterst, r , andu are fixed. Then Eq.~3.16! determinest1 as a
function of anglew and, therefore, variablex defined in Eq.~3.19! has a unique value for eachw
in the interval 0,w,2p. This property allows us to carry out integral~3.15! as an integral in
variablex. In order to see this clearly, let us first note that the correspondence between varia
x andy in Eqs.~3.19! and ~3.20! is one-to-one. In fact, from Eqs.~3.16! and ~3.18!, we get the
following relationship betweenx andy:

y2x5bj21$~11j212j sin u cosy!1/22~11j222j sin u cosx!1/2%, ~3.21!

FIG. 3. The location of chargese1 ande2 at three different times: the observation timet ~positionsA1 andA2!; retarded
time t1 ~positionsB1 andB2!; and retarded timet2 ~positionsC1 andC2!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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where b5av/c. Taking the derivative with respect tox in Eq. ~3.21!, we obtain
dy/dx5(k1 /k2).0 with k factors defined in~2.6!. This proves that the correspondence betwe
x andy is one-to-one. This property holds true for any timet, radiusr , and angleu.

Let us now consider the integral~3.15!, where timet, radiusr , and angleu remain fixed. By
taking the derivative with respect tow of Eqs.~3.16! and ~3.19! and combining them, we obtain
dx/dw5(1/k1).0. Now then, equationdw/dx5k1.0 tells us thatw is a strictly increasing
function of x. Thus, integral~3.15! can be written in the form

E
a

2p1a

~E13B21E23B1!• r̂k1 dx, ~3.22!

where parametera is given bya52vt1(w50)52vt1(w52p), and depends on timet, radius
r , and the angleu of the band. When the integrand in~3.22! is explicitly evaluated by using the
electric field~2.5! and the magnetic induction~2.7!—with the corresponding expressions forE2

andB2—it can be shown that variablesx andy appear only as sinx, cosx, siny, and cosy. By
using the fact thaty is an implicit function ofx, the integrand of Eq.~3.22! is, strictly speaking,
a function only of the variablex. Furthermore, it is easy to show that the correspondence betw
x andy is such that, ify is the value associated withx, theny12p is the value associated wit
x12p. Hence, the integrand of~3.22! is a periodic function ofx, with period 2p. This property
implies that integral~3.22! does not depend on the value of parametera, and, therefore, we can
takea50. In particular, then, the energy flux across the band does not depend on the value
time at which it is evaluated. However, integral~3.15! depends on radiusr and angleu. The time
independence of integral~3.15! holds for any band over the surface of the sphere having radiur ;
therefore, the energy flux across the whole surface of the sphere is also time independent

A similar analysis shows that the first and second integrals in~3.14!, as well as the field
energy contained between two spheres of radiir and r 1dr, respectively, are time independen
The latter implies that the surface integrals in~3.14! are also independent of the radiusr of surface
S. In order to prove this property, let us consider two concentric spherical surfaces,S1 andS2 ,
having radiir 1 andr 2 , respectively, such thatr 1.r 2.a, centered at the origin of the coordinat
shown in Fig. 1. Since the volumeV bounded between the two spherical surfaces is free
charges, we haveJ50, and therefore the integration of Eq.~3.1! over V yields

E
S1

~S–r̂ !dS12E
S2

~S–r̂ !dS25
d

dt EV
u~x,t !d3x. ~3.23!

According to what was stated in the previous paragraph, the field energy contained inV is
time independent and, therefore, from~3.23! it follows that

E
S
~S–r̂ !dS ~3.24!

is independent both of the radius of sphereS and of time. Let us point out that, at any fixed poi
inside volumeV, the field energy densityu(x,t) depends, of course, on time. However, in spite
this, the total field energy contained inV is time independent. This time independence, as wel
that of flux~3.24!, are rather obvious from the symmetries of the motion of the two charges in
1. In fact, when we consider spherical surfaces centered at the origin of the coordinates sy
Fig. 1, there is no privileged position for the charges at any particular time.

Since integral~3.24! is independent of radiusr , the total energy flux that escapes to infini
can be calculated over a sphere of an arbitrary radiusr .a. Thus, a reminiscence of the loca
characterization of the radiation21,22 still survives for the special type of motion of two charges
Fig. 1.
J. Math. Phys., Vol. 38, No. 11, November 1997
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If, instead of the Poynting vector associated with the fields of both charges, we consid
Poynting vector of just one charge in circular motion, integral~3.24! is also independent ofr .
Therefore, by using ther independence of the total flux energy~3.24!, we can say that the las
term in ~3.14!,

~c/4p!r 2E
0

p

sin u duE
0

2p

~E13B21E23B1!• r̂k1 dx, ~3.25!

is independent ofr . The integrand of Eq.~3.25! contains a great number of terms for any fin
value of r , and Eq.~3.21!, which links variablesx andy, is also complicated for an arbitraryr .
Taking the limit whenr tends to infinity leads to strong simplifications both in the integrand
~3.25! and in the functional relation~3.21!. We emphasize the fact that, due to the independe
of the interference rate of radiation on radiusr , the limit presents no complication, being perfec
well defined. In this limit, Eq.~3.21! reduces to

y2x5b sin u~cosy1cosx!. ~3.26!

In the limit when r goes to infinity, the interference rate of radiation~3.25! becomes
2(4e1e2c/3a2)b4I (b), with I (b) given by

I ~b!5
3

4p E
0

p/2

sin u duE
0

2p $%dx

~12b sin u sin x!2~11b sin u sin y!3 ~3.27!

with

$%5cos2 u cosx cosy1sin x sin y1b sin u~sin x2sin y!2b2 sin2 u. ~3.28!

Equation ~3.27! is an exact formula for the part of the radiation rate associated with
interference between the charge’s fields. Sincey is not an explicit function ofx, the integrals of
~3.27! cannot be carried out in a straightforward manner.

In order to prove that the exact solution presented in Sec. II is in agreement with e
conservation, it must be shown that~3.27!, considered as a function ofc through the replacemen
b5c/cosc, gives the sames values that functiong(c) defined in Eq.~2.25!. This objective can
be easily achieved through the computation of~3.27! by means of numerical techniques.23 A
detailed study shows that~3.27! coincides with~2.25! for all the allowed values ofc, that is,
0,c,ccrit , and therefore energy conservation is fulfilled for any radius and velocity of
charges.

The coincidence between~2.25! and ~3.27! suggests that the integrations in~3.27! can be
carried out exactly by an analytic procedure in terms of parameterc. Note, however, that function
g(c) cannot be expressed in a closed analytic form in terms ofb. The procedure to analytically
perform ~3.27! deserves a detailed study that we will carry out in a forthcoming paper.
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Divergences in the solutions of the plasma screening
equation
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Classical kinetic theory using Boltzmann statistics shows that the potential distri-
butionf(r ) in the screening cloud surrounding a single test charge at rest within a
plasma is governed by a three-dimensional spherically symmetric plasma screening
equation¹2f(r )5A„exp(1af)2exp(2bf)…, rÞ0, whereA54pn0e, a5e/Te ,
b5e/Ti , e5electronic charge,Te5electron temperature,Ti5ion temperature, and
n05electron and ion density at large distances from the chargeQ. In this paper it
is proved rigorously that any nontrivial solution of the screening equation must
have the following property: Iff(r )5potential at a radial distancer and
limr→` f(r )50, then, for any positive integern, as r→0 eitherr nf→1` and
r nf8→2` or r nf→2` and r nf8→1`. © 1997 American Institute of Phys-
ics.
@S0022-2488~97!03511-1#

I. INTRODUCTION

Suppose a single test chargeQ is placed at rest within a plasma, and consider the problem
determining the electric potentialf~r ! at a positionr from Q. Standard texts1 contend that the
behavior off~r ! for rÞ0 is governed by thescreening equation, which is essentially Poisson’
equation and is established by arguing that2A(e1af2e2bf) is the charge density according t
equilibrium Boltzmann statistics. Defining the Debye lengthlD5(le

221l i
22)21/2, where le,i

5(Te,i /4pn0e2)1/2, and assuming thatf~r !→0 as r 5ur u→`, it is shown thatf}1/r exp
(2r/lD) for large r , where af~r ! and bf~r ! are !1. The constant of proportionality is the
identified asQ by asserting thatat locations very close tor50, the potential must be essential
the bare Coulomb potential Q/r. However, this assertion is inconsistent with the screening
tion itself, which, in fact, forces the limitslimr→0 r nf56` and limr→0 r n(df/dr)57` for any
positive n, so thatf and its derivative diverge faster than any positive power of 1/r as r→0. Thus,
if the screening equation is the correct model of the specified physical situation, then the po
near the chargeQ cannot in any way be considered to be even remotely Coulombian.

That catastrophic divergences occur in the classical Debye–Huckel theory of a gas o
charges is a fact that has long been recognized. Higher-order classical corrections and q
statistical modifications of the theory have been discussed in the literature.2,3 The object of the
present paper is to provide a rigorous examination of the precisefunctionalnature of the short-
range divergence off~r !, as predicted by the above screening equation derived from Boltzm
statistics.

The nature of the divergence of the potential and the field points to an inherent flaw o
screening equation. The physical situation demands that the two boundary cond
limr→` f(r )50 and limr→0 r 2 df/dr52Q, be satisfied by the correct potential profile~this
being a consequence of spherical symmetry and Gauss’ Theorem in electrostatics!. However, in
this paper it is proved that limr→0 r 2 df/dr56` for any solution of the screening equation fo
which limr→` f(r )50. The screening equation is therefore inconsistent with the physical s
tion and is not an adequate model of the potential distribution.

a!Also at 10, Raja Dinendra Street, Calcutta 700 009, India.
0022-2488/97/38(11)/5707/4/$10.00
5707J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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The nature of the divergence off andf8 is established in Theorem 2.7.

II. DIVERGENCE OF THE POTENTIAL AND THE FIELD

By spherical symmetry, the screening equation becomes

1

r 2 ~r 2f8!85f91
2

r
f85A~e1af2e2bf!, rÞ0,

with primes denotingd/dr. Note thatA, a, b are, by definition,nonzero and strictly positive.
Henceforthf denotes any solution of the screening equation that is not identically zero.
possibility thatf and all its derivatives are zero at somer is thus excluded. Also, the symbolr
denotes a nonzero value ofr .

Proposition 2.1:

~a! (r 2f8)8, f91(2/r )f8 and f are simultaneously1ve., 2ve., or 0.
~b! Suppose a.0, f(a).0 andf8(a)<0. Thenf8(r ),0 for all r ,a. Hencef(r ) increases

monotonically as r→0 from a and sof(r ).0 for all r,a.
~c! Suppose limr→` f(r )50. Thenf(r ) is everywhere strictly positive,f8(r ) is everywhere

strictly negative, andf(r ) increases monotonically as r→0.

Proposition 2.2:limr→0 r 2f8(r )ÞL for any nonzero finite L.
Proof: Suppose that limr→0 r 2f8(r )5L for someL, such that 0,uLu,`. Select a positive

e,uLu. Then there exists anR.0, such thatL2e,r 2f8(r ),L1e for all r<R. These inequali-
ties imply

uR2f8~R!2r 2f8~r !u,2e,

for all r<R, and they also ensure thatf(r ).F21q/r if L,0 andf(r ),F12q/r if L.0,
where F65f(R)6(uLu2e)/R and q5uLu2e.0. Now integration of the screening equatio
from r to R yields

uR2f8~R!2r 2f8~r !u5AU E
r

R

r 2~e1af2e2bf!drU.
Since the left-hand side of the equation is,2e, the proof will be complete by contradiction if i
can be shown that the right-hand side diverges asr→0. Now it can be shown that ifL,0 then

E
r

R

r 2~e1af2e2bf!dr.
1

3!
a3q3eaF2 lnS R

r D2
1

3
e2bF2~R32r 3!,

and that ifL.0 then

E
r

R

r 2~e2bf2e1af!dr.
1

3!
b3q3e2bF1 lnS R

r D2
1

3
eaF1~R32r 3!,

Thus, in either caseu* r
Rr 2(e1af2e2bf)dru→1` as r→0 and the proof is complete.

Proposition 2.3: Supposef(a).0 and f8(a)<0 for some a.0.

~a! limr→0 r 2f8(r )52`.
~b! Let M.0. Then there exists a finite U5U(M ) and an R,a such thatf(r ).U1M /r for

all r <R.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Proof: ~a! Propositions 2.1~a! and 2.1~b! imply that r 2f8(r ) is 2ve for all r ,a and that it
decreases monotonically asr→0. So if r 2f8(r ) remains bounded from below asr→0 then it
must approach some limitL where2`,L,0. But this is impossible by Proposition 2.2. Hen
limr→0 r 2f8(r )52`. ~b! is a direct consequence of part~a!.

Notation 2.4: For allx,L,n.0 let

@x,n,L;<#5$r P~0,x!ir nf8~r !u<L% and @x,n,L;.#5$r P~0,x!ir nf8~r !u.L%.

Proposition 2.5: Letf(a).0 and f8(a)<0 for some a.0. Let n, L.0 and suppose tha
inf@a,n,L;<#50. Then there exists an R,0,R,a, such that„r nf8(r )…8.0 for all r P@R,n,L;
<#.

Proof: First observe that the screening equation can be written as

rf9

f8
5

Ar

f8
~e1af2e2bf!22.

Observe also that 1/uf8u>r n/L for all r P@a,n,L;<#. By Propositions 2.1~a! and 2.1~b!, f(r )
.0, f8(r ),0, andf9(r ).0 for all r ,a. Proposition 2.3~b! ensures the existence of aU and an
R̄,a such thatf(r ).U1L/r for all r ,R̄. Hence ifr P@R̄,n,L;<# then

urf9/f8u>UAr

f8
~e1af2e2bf!U22,

and it can be shown that this leads to

urf9/f8u.FAeaUan12Ln11

~n12!!
$12e2~a1b!~U1L/r !%G1r 22.

Now since inf@a,n,L;<#50, therefore@R̄,n,L;<#ÞB and inf@R̄,n,L;<#50. It follows that
there exists anR<R̄ such thaturf9/f8u.n for all r P@R,n,L;<#ÞB. Hencerf9/f8,2n, i.e.,
rf9/f81n,0 and so (r nf8)85r n21f8$rf9/f81n%.0 for all r P@R,n,L;<#.

Proposition 2.6: Letf(a).0 and f8(a),0 for some a.0. Let n.0. (a) limr→0 r nf8(r )
52`. (b) limr→0 r nf(r )51`.

Proof: ~a! By Proposition 2.1~b!, f8(r ),0 for all r ,a. Hence for anyL.0, @a,n,L;<#
5$r P(0,a)ur nf8(r )>2L% and @a,n,L;.#5$r P(0,a)ur nf8(r ),2L%. Now suppose that the
proposition is false so that inf@a,n,L;<#50 for someL.0. Then there exist three possibilitie

~ I! @a,n,L;.#5B,

~ II ! @a,n,L;.#ÞB and inf@a,n,L;.#.0,

~ III ! @a,n,L;.#ÞB and inf@a,n,L;.#50.

The proof is completed by arriving at a contradiction in each case. Letb5a in case~I! and b
5 inf@a,n,L;.#Þ0 in case ~II !. Then b<a and 2L<r nf8(r ),0 for all r ,b. Hence
limr→0 r n11f8(r )50, i.e., given ane.0 there exists ac,b<a such thatr n11uf8(r )u<e for all
r ,c. Thus @c,n11,e;<#5(0,c) and inf@c,n11,e;<#50. Now f(c).0 and f8(c),0 by
Proposition 2.1~b!. Hence, by Proposition 2.5 there exists anR,c such that„r n11f8(r )…8.0 for
all r P(0,R). The contradiction is that„r n11f8(r )…8,0 also for somer ,R. To arrive at this
contradiction select an arbitraryr 1,R and note thatr 1

n11f8(r 1),0. Then limr→0 r n11f8(r )
50 ensures that it is possible to choose anr 2,r 1 such thatr 1

n11f8(r 1),r 2
n11f8(r 2),0. The

Mean Value Theorem of the Differential Calculus now ensures that„r n11f8(r )…8,0 for some
J. Math. Phys., Vol. 38, No. 11, November 1997
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r P(r 2 ,r 1) and thus eliminates cases~I! and ~II !. Now suppose~III ! is the case. Then by Propo
sition 2.5 there exists anR,a such that„r nf8(r )…8.0 for all r P@R,n,L;<#. Here again the
contradiction is that„r nf8(r )…8<0 for some r P@R,n,L;<#. To establish this contradiction
observe first that inf@a,n,L;.#50 implies@R,n,L;.#ÞB. Sincer nf8(r ) is a continuous func-
tion, therefore@R,n,L;.# is an open subset of the real line and is hence a union of disjoint o
intervals. Let (x,y) be any one of these intervals. Thenr nf8(r ),2L for all r P(x,y). Moreover,
x,R andx¹@R,n,L;.#; this impliesxP@R,n,L;<# so thatxnf8(x)>2L. Hencer nf8(r ) is
nonincreasing asr increases fromx. It follows that„r nf8(r )…r 5x8 <0. This establishes the contra
diction and thereby completes the proof.

~b! Let L.0. By part ~a! of this Proposition, there exists anR.0 such thatf8(r )
,2Lr 2(n12) for all r ,R, and it can be shown that this implies

r nf~r !.r nH f~R!2
L

~n11!Rn11J 1
L

n11

1

r
.

Hencer nf(r )→1` as r→0.

Theorem 2.7:Supposelimr→` f(r )50. Let n.0.
~a! Suppose f is strictly positive somewhere. Thenlimr→0 r nf(r )51` and

limr→0 r nf8(r )52`.
~b! Suppose f is strictly negative somewhere. Thenlimr→0 r nf(r )52` and

limr→0 r nf8(r )51`.
Proof: ~a! is a consequence of Propositions 2.1~c! and 2.6.~b! Let c(r )52f(r ). Then

¹2c5A(e1bc2e2ac), and this has the same form as the screening equation itself. The ap
tion of part ~a! now completes the proof.

Remark 2.8:The requirementbÞ0 has been used explicitly in the proof of Proposition 2.2
handle the caseL.0. In caseb is taken to be 0, the proof, as it stands, still remains valid forL,0
~sinceaÞ0!, but fails for the caseL.0. This in turn restricts Theorem 2.7 to only part~a!.
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We show that the dynamical system characterized by the~complex! equations of
motion q̈ j1 iVq̇ j5(k51,kÞ j

n q̇ j q̇kf (qj2qk), j 51,...,n, with f (x)52l`8(lx)/
@`(lx)2`(lm)#, is Hamiltonian and integrable, and we conjecture thatall its
solutionsqj (t), j 51,...,n are completely periodic, with a period that is a finite
integral multiple ofT52p/V. Here n is an arbitrarypositive integer, V is an
arbitrary ~nonvanishing! real constant,̀ (y)[`(yuv,v8) is the Weierstrass func-
tion ~with arbitrary semiperiodsv,v8!, andl,m are two arbitrary constants; special
cases are f (x)52l coth(lx)/@11r2 sinh2(lx)#, f (x)52l coth(lx), f (x)
52l/sinh(lx), f (x)52/@x(11l2x2)#, and of coursef (x)52/x. These findings, as
well as the conjecture~which is shown to be true in some of these special cases!,
are based on the possibility to recast these equations of motion in the modified Lax
form L=̇ 1 iVL= 5@L= ,M= # with L= andM= appropriate (n3n)-matrix functions of then
dynamical variablesqj and of their time-derivativesq̇ j . © 1997 American Insti-
tute of Physics.@S0022-2488~97!00910-9#

I. INTRODUCTION

Some time ago Ruijsenaars and Schneider1 introduced a remarkable class of integrable d
namical systems, whose equations of motion can be cast in the following neat form:2

q̈ j5 (
k51,kÞ j

n

q̇ j q̇kf ~qj2qk!, j 51,...,n, ~1.1!

with f (x) an appropriate class~see below! of odd functions,

f ~2x!52 f ~x!. ~1.2!

These dynamical systems are Hamiltonian@for any arbitrary odd function f (x)#. Indeed the
Hamiltonian equations of motion

q̇ j5]H~qI ,pI ;s!/]pj , ṗ j52]H~qI ,pI ;s!/]qj , j 51,...,n, ~1.3!

with

H~qI ,pI ;s!5(
j 51

n

hj~pj ,qI ;s!, ~1.4a!

hj~pj ,qI ;s![hj~spj ,qI !5expFspj1 (
k51,kÞ j

n

F~qj2qk!G , j 51,...,n, ~1.4b!

a!On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva
Rome. Present address: via della Lungara 10, 00165 Roma, Italy; electronic mail: calogero@sci.uniromal.it
0022-2488/97/38(11)/5711/9/$10.00
5711J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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clearly yield

q̇ j5shj~pj ,qI ;s!, j 51,...,n, ~1.5!

ṗ j5 (
k51,kÞ j

n

@hk~pk ,qI ;s!F8~qk2qj !2hj~pj ,qI ;s!F8~qj2qk!#, j 51,...,n, ~1.6a!

hence, using~1.5!,

ṗ j5s21 (
k51,kÞ j

n

@ q̇kF8~qk2qj !2q̇ jF8~qj2qk!#, j 51,...,n. ~1.6b!

But logarithmic differentiation of~1.5! yields, via~1.4b!,

q̈ j /q̇ j5sṗj1 (
k51,kÞ j

n

~ q̇ j2q̇k!F8~qj2qk!, j 51,...,n, ~1.7!

namely, via~1.6b!, precisely~1.1! with

f ~x!52@F8~x!2F8~2x!#, ~1.8!

which of course entails~1.2!.
It is easily seen that the two HamiltoniansH(qI ,pI ;s) andH(qI ,pI ;2s) are in involution~Pois-

son commute!, hence any linear combination of them is also in involution. Clearly each of the
HamiltoniansH(qI ,pI ;s) and H(qI ,pI ;2s) yields the ~same! ‘‘Newtonian’’ equations of motion
~1.1! with ~1.8!, which are in fact independent of the ‘‘scale’’ constants. The ‘‘relativistic’’
Hamiltonian introduced by Ruijsenaars and Schneider and extensively investigate
Ruijsenaars1 readsHR(qI ,pI )5@H(qI ,pI ;s)1H(qI ,pI ;2s)#/2, and it yields insteaddifferent equa-
tions of motion~contrary to what is stated in Ref. 2!.

Hereafter we focus on the Hamiltonian~1.4! and we set, without loss of generality, the sca
constants to unity, s51.

The equations of motion~1.1! can be cast2 into the Lax form

L=̇ 5@L= ,M= #, ~1.9!

L jk5d jkq̇ j1~12d jk!~ q̇ j q̇k!
1/2a~qj2qk!, ~1.10a!

M jk5d jk (
l 51,lÞ j

n

q̇lb~qj2ql !1~12d jk!~ q̇ j q̇k!
1/2g~qj2qk!, ~1.10b!

provided

f ~x!52l`8~lx!/@`~lx!2`~lm!#, ~1.11a!

where `(y)[`(yuv,v8) is the Weierstrass function~for definition and properties see, for in
stance, the Appendix of Ref. 3!. Here and belowl, m, v, v8 are four arbitrary~complex! constants
~of coursev andv8 must not have the same phase; and note that we always assume the dyn
variablesqj to be complex!. The corresponding expressions ofa(x),b(x),g(x) are2

a~x!5exp~rlx!$s~lm!s@l~x1n!#%/$s~ln!s@l~x1m!#%, ~1.11b!

b~x!5l$c2z~lm!1~1/2!`8~lm!/@`~lx!2`~lm!#%, ~1.11c!
J. Math. Phys., Vol. 38, No. 11, November 1997
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g~x!5la~x!$r2c1z@l~x1n!#2z~lx!%. ~1.11d!

Here r, n and c are three additional arbitrary constants which can be chosen largely at
convenience (nÞ0), ands(y)[s(yuv,v8) and z(y)[z(yuv,v8) are the Weierstrass sigma
function and zeta-function, respectively~for definitions and properties see, for instance, the A
pendix of Ref. 3!.

Note that in generalf (x) has a simple pole with residue 2 atx50. The following special case
are particularly interesting@in each case we report an appropriate corresponding choice o
functionsa(x),b(x),g(x), as well as the corresponding constants, which, when optional,
been chosen so as to simplify the resulting expressions#.

Case (i):

f ~x!52/x, ~1.12a!

a~x!51, ~1.12b!

b~x!50, ~1.12c!

g~x!521/x, ~1.12d!

r50, c50, lÞ0, m5`, n5`. ~1.12e!

Case (ii):

f ~x!52/@x~11l2x2!#, ~1.13a!

a~x!51/~11 ilx!, ~1.13b!

b~x!52 il/~11l2x2!, ~1.13c!

g~x!521/@x~11 ilx!#, ~1.13d!

r50, c50, m52 i /l, n5`. ~1.13e!

Case (iii):

f ~x!52l coth~lx!, ~1.14a!

a~x!5cosh~lx!, ~1.14b!

b~x!50, ~1.14c!

g~x!52l/sinh~lx!, ~1.14d!

r511l~n2m!/3, c512lm/3, m→`, n5 ip/~2l!. ~1.14e!

Case (iv):

f ~x!52l̃/sinh~ l̃x!, ~1.15a!

a~x!51/cosh~ l̃x/2!, ~1.15b!

b~x!50, ~1.15c!
J. Math. Phys., Vol. 38, No. 11, November 1997
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g~x!52~ l̃/2!/sinh~ l̃x/2!, ~1.15d!

r5211l~n2m!/3, c52lm/3, n→`, m5 ip/~2l!, l5l̃/2. ~1.15e!

Case (v):

f ~x!52l coth~lx!/@11r 2 sinh2~lx!#, ~1.16a!

a~x!5 i /$r sinh@l~x1m!#%5sinh~lm!/sinh@l~x1m!#, ~1.16b!

b~x!52l~12r 2!1/2/@11r 2 sinh2~lx!#52l coth~lm!/@11r 2 sinh2~lx!#, ~1.16c!

g~x!52 il coth~lx!/$r sinh@l~x1m!#%, ~1.16d!

r5211l~n2m!/3, c52lm/3, n→`, sinh~lm!5 i /r . ~1.16e!

To obtain the first two cases, one setsv52 iv85`, which entailss(y)5y, z(y)5y21, `(y)
5y22; to get the last three, one setsv5`, v85 ip/2, which entailss(y)5sinh(y)exp(2y2/6),
z(y)52y/31coth(y), `(y)51/31@sinh(y)#22.

Note thatcases (ii), (iii), (iv)and(v) all go into case(i) for l50 ~andr finite!, while case (v),
goes intocase (ii)~up to a trivial notational change! if l→0, r→`, lr 5l̃ finite, and it goes into
case (iv)for r 561.

The Lax matrix L= for case (i) is however too trivial to provide any information on th
integrability of the corresponding equations of motion@namely,~1.1! with ~1.12a!#, in fact, it is
easily seen that the time-independence of the eigenvalues ofL= implied by the Lax equation~1.9!
entails in this case the existence of only one constant of integration,

P5(
j 51

n

q̇j , ~1.17!

whose time independence is in any case an immediate consequence of~1.1! with ~1.2!. Indeed it
is easily seen that, foranyarbitraryodd function f (x) the equations of motion~1.1! can be cast in
the Lax form~1.9! via the ‘‘trivial’’ choice

L jk5d jkq̇ j1~12d jk!~ q̇ j q̇k!
1/2, ~1.18a!

M jk5~1/2!~d jk21!~ q̇ j q̇k!
1/2f ~qj2qk!. ~1.18b!

This is, however, a ‘‘fake’’ Lax pair,4 which only yields the single constant of motion~1.17!.
On the other hand the fact that~1.1! with ~1.12a! is integrable indeed solvable has been kno

for a long time;5 indeed this model gives rise to an interesting solvable many-body problem i
plane.6

Likewise, the Lax pair corresponding tocase (iii) also features aseparableLax matrix,

L jk5~ q̇ j q̇k!
1/2 cosh@l~qj2qk!#5cjck2sjsk , ~1.19a!

cj5~ q̇ j !
1/2 cosh~lqj !, sj5~ q̇ j !

1/2 sinh~lqj !, j 51,...,n, ~1.19b!

@see~1.10a! and~1.14b!#, whose multiple traces are clearlyall expressible in terms of only thre
constants of motion,
J. Math. Phys., Vol. 38, No. 11, November 1997
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C5(
j 51

n

cj
2, S5(

j 51

n

sj
2, B5(

j 51

n

cjsj , ~1.20!

as follows:

Trace@L= #5C2S5P, ~1.21a!

Trace@L= 2#5C222B21S2, ~1.21b!

Trace@L= 3#5C323CB213SB22S3, ~1.21c!

and so on. But in this case as well the integrability indeed solvability of the equations of mo
namely of~1.1! with ~1.14a!, is a foregone conclusion.5

Hence, it appears justified to state that the entire class of Hamiltonian systems charac
by the equations of motion~1.1! with ~1.11a!, including all the special cases~1.12a!, ~1.13a!,
~1.14a!, ~1.15a! and~1.16a!, are integrable; although to prove this rigorously one should also s
that then constants of motion entailed by the Lax equation~1.9! ~namely, then eigenvalues or
multiple traces ofL= ! are in involution ~this has actually been proven for the HamiltonianHR

1!.
The purpose and scope of this paper is to present a generalization of these Hamiltonian s
which are likewise integrable; as tersely detailed in the following section, this finding is bas
the possibility to generalize in a simple manner the Lax equation~1.9!. As explained below, this
yields a generalized class of Hamiltonian systems which arepresumablynot only integrable, but
in fact characterized by solutions all of which arecompletely periodic.

II. A RESULT AND A CONJECTURE

In the preceeding section we reported2 an explicit expression of the Lax pair, namely~1.10!
with the subsequent explicit expressions of the three functionsa(x),b(x),g(x), and we stated
that, with those expressions of the trioa(x),b(x),g(x), the matrix Lax equation~1.9! is equiva-
lent to the equations of motions~1.1!, of course with the appropriate expression off (x) as
explicitly indicated in each case.

Our main result is based on the following simple observation: the findings reported a
remain true, if the Lax equation~1.9! is generalized to read

L=̇ 1 iVL= 5@L= ,M= #, ~2.1!

and the equations of motion~1.1! are generalized to read

q̈ j1 iVq̇ j5 (
k51,kÞ j

n

q̇ j q̇kf ~qj2qk!, j 51,...,n, ~2.2!

with no other change. This can be easily proven following the treatment of Ref. 2, na
adopting the sameansatzfor the Lax pair as given there and noting that, via~2.1! and ~2.2!, it
leads exactly to the same~functional! equations as given there.

It is moreover easily seen, following the treatment of the preceding section, that these
tions of motion,~2.2!, obtain as above from the generalized~explicitly time-dependent! Hamil-
tonian

H̃~qI ,pI ,t !5exp~2 iVt !(
j 51

n

hj~pj ,qI !, ~2.3a!
J. Math. Phys., Vol. 38, No. 11, November 1997
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with hj (pj ,qI ) defined as above, namely by~1.4b! ~with s51!; so that the new Hamiltonian~2.3!
is merely the previous Hamiltonian~1.4a! multiplied by the factor exp(2iVt). And the same
equations of motion,~2.2!, obtain as well from the~time-independent! Hamiltonian

Ĥ~qI ,pI !5(
j 51

n

@hj~pj ,qI !1 iVqj #, ~2.3b!

again withhj (pj ,qI ) defined as above. The possibility to introduce this time-independent Ha
tonian,~2.3b!, was pointed out to me by J.-P. Franc¸oise. It is also easily seen that the more gene
Hamiltonian

H9 ~qI ,pI !5(
j 51

n

@hj~pj ,qI !1wj~qj !#, ~2.4a!

yields the equations of motion

q̈ j1wj8~qj !q̇ j5 (
k51,kÞ j

n

q̇ j q̇kf ~qj2qk!. ~2.4b!

Clearly the generalized Lax equation~2.1! implies the formula

d~L= m!/dt1 imVL= m5@L= m,M= #, m51,2,... . ~2.5a!

Hence for the traces

Tm5Trace@L= m#, m51,2,..., ~2.6!

we obtain the formula

Ṫm1 imVTm50, m51,2,..., ~2.7a!

entailing

Tm~ t !5Tm~0!exp~2 imVt !, m51,2,... . ~2.7b!

It is therefore seen that, ifV is real andnonvanishing~as we are assuming!, all the quantitiesTm ,
m51,...,n, are periodic with periodT52p/V. This is the basis for conjecturing thatall the
solutionsqj (t), j 51,...,n, of ~2.2! @with f (x) belonging to the class identified in the precedi
section#, are alsocompletely periodic, with a period which might be a~finite integer! multiple of
T. Note however that this conjecture is motivated by intuition~wishful thinking?! rather than by
a really cogent reasoning: forV50 all the quantitiesTm , m51,...,n, are time independent
~‘‘constants of motion’’!, hence they area fortiori periodic~for any period!!; yet in thisV50 case
we certainly do not expectall solutions to be periodic! But in the following section we show th
this conjecture is indeed true in the twospecial cases (i)and(iii) as identified above@see~1.12a!
and~1.14a!#; and the mechanism whereby it comes true seem to us to justify our expectatio
this conjecture be as well true in the general case.

III. TWO SPECIAL EXAMPLES

In this section we present the explicit solution of the equations of motion~1.1! in the two
special ‘‘solvable’’ cases in which the functionf (x) is given by ~1.12a! ~case (i)! and ~1.14a!
~case (iii), respectively!.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



-

o
ed

lution

y

that
ider
logous

paper,
is
ian

r
his
tion of

f the
l
t
H.

stic
d

5717F. Calogero: Integrable Hamiltonians with periodic solutions

                    
In case (i), the solutionqj (t), j 51,...,n, with initial conditionsqj (0), q̇ j (0), is given by the
following rule:5 qj (t), j 51,...,n, are then ~complex! roots of the following algebraic~complex!
equation inq:

(
j 51

n

$q̇ j~0!/@q2qj~0!#%5 iV/@12exp~2 iVt !#. ~3.1!

Note that this is in fact a polynomial equation inq of degreen.
Since this equation is periodic int with periodT52p/V ~let us recall that we assumeV to be

real and nonvanishing!, the trajectoriesqj (t), j 51,...,n, given by this rule are obviously com
pletely periodic with period~at most! T̃5n!T: indeed, after a time-intervalT then ~complex! qj ’s
are then zeros of thesamepolynomial of degreen, hence they are thesamequantities, up to
permutations; and there are at mostn! permutations ofn objects. Note that the above rule als
entails that to a given set of then ~complex! rootsqj (t) there corresponds a uniquely determin
set ofn ~complex! ‘‘velocities’’ q̇ j (t).

Let us recall that this motion in the complex plane can also be neatly interpreted as so
of a plane ~of course,real! n-body problem.6

Likewise, in case (iii), the solutionqj (t), j 51,...,n, with initial conditionsqj (0), q̇ j (0), is
given by the following prescription:qj (t), j 51,...,n, are then ~complex! roots@of course defined
mod(ip/l)# of the following ~complex! transcendental equation inq @polynomial in exp(lq)#:

(
j 51

n

$q̇ j~0!coth@l$q2qj~0!%#%5 i cotH F ~l/V!(
j 51

n

q̇j~0!G @12exp~2 iVt !#J (
j 51

n

q̇j~0!.

~3.2!

A proof of this formula is given in the Appendix.
Hence the same argument given above implies that in this case as wellall solutions are

periodic with period~at most! T̃. Note that this result applies for real as well as for imaginarl
~in fact, even for complexl; of course, forl50 ~3.2! reduces to~3.1!!.

IV. OUTLOOK

A detailed analysis of the solutions of the integrable equations of motion~2.2! in the general
case~1.11a! will be needed, in order to prove or disprove the conjecture mentioned above. In
context a comparison with the integrable ‘‘relativistic’’ models of Ruijsenaars and Schne1

shall also be appropriate, as well as with other solvable many-body problems having ana
structure and also featuring elliptic functions.7

An interesting open problem is the quantal treatment of the systems considered in this
and especially of the simplest case~1.12a! for which an interesting physical interpretation
available in terms of motion in the plane.6 Such a treatment can now be based on the Hamilton
formulation given above. The complete periodicity of the classical motion~as demonstrated, fo
this special case, above as well as in Ref. 6!, justifies the conjecture that a quantal version of t
model exists, with a spectrum which is discrete and equispaced, as it is the case for a collec
equal harmonic oscillators.

Let us end by mentioning that the reason why the simple integrable deformation o
equations of motion~1.1! considered in this paper@namely, the addition of the simple ‘‘externa
potential’’ represented by the last term on the right-hand side of~2.3b!, entailing the replacemen
of ~1.1! with ~2.2!#, was not included in the investigation of ‘‘integrable external potentials’’ by
Schneider8 and by J. F. van Diejen,9 is presumably because they focused on the relativi
Hamiltonian HR , see above, without considering the~simpler! case introduced in Ref. 2 an
treated in this paper@namely, the Hamiltonian~1.4! yielding the equations of motion~1.1!#.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Note added in proof:After this paper had been submitted for publication two relevant de
opments occurred.~i!. While working in collaboration with J.-P. Franc¸oise I noticed that the
simple change of dependent variableqj (t)5q̃ j (t), t5( i /V)@exp(2iVt)21# transforms the equa
tions of motion ~2.2! into ~1.1! @of course withqj (t) replaced byq̃ j (t), q̇ j (t) replaced by
q̃ j8(t)[dq̃j (t)/dt, and so on#.10 This of course strengthens the plausibility of the conject
advanced in Section II of this paper.~ii ! This conjecture has now been~partially! proven by
solving explicitly all the reducedcases (i–v).11 Work to prove it also in the general case~1.11a!,
as well as to prove the conjecture advanced in Section IV above~for the quantal case! is in
progress.11
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APPENDIX: PROOF OF (3.2)

The results of Ref. 5~see in particular Section 3.6! imply that, if then quantitiesqj (t) evolve
according to~1.1! with ~1.14a!, the functionc(q,t),

c~q,t !5)
j 51

n

sinh$l@q2qj~ t !#%, ~A1!

evolves according to thelinear partial differential equation

c tt~q,t !1 iVc t~q,t !1F~ t !c~q,t !50, ~A2!

with

F~ t !52l2@Q̇~ t !#2, ~A3!

where

Q~ t !5(
j 51

n

qj~ t !, ~A4!

and

Q̈~ t !1 iVQ̇~ t !50. ~A5!

Hence

Q~ t !5Q~0!1~ i /V!@exp~2 iVt !21#Q̇~0!, ~A6a!

Q̇~ t !5Q̇~0!exp~2 iVt !, ~A6b!

F~ t !52l2@Q̇~0!#2exp~22iVt !, ~A7!

and, as can be easily verified,

c~q,t !5c~q,0!cos$@lQ̇~0!/V#@12exp~2 iVt !#%1c t~q,0!@ ilQ̇~0!#21

3sin$@lQ̇~0!/V#@12exp~2 iVt !#%, ~A8a!
J. Math. Phys., Vol. 38, No. 11, November 1997
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namely,

c~q,t !/c~q,0!5cos$@lQ̇~0!/V#@12exp~2 iVt !#%1@c t~q,0!/c~q,0!#

3@ ilQ̇~0!#21 sin$@lQ̇~0!/V#@12exp~2 iVt !#%. ~A8b!

On the other hand, logarithmic differentiation of~A1! yields, for t50,

c t~q,0!/c~q,0!52l(
j 51

n

q̇j~0!coth$l@q2qj~0!#%, ~A9!

while we see, again from~A1!, that, for q5qj (t) mod(ip/l), c(q,t) vanishes. Hence, forq
5qj (t) mod(ip/l), the left-hand side of~A8b! vanishes; the corresponding vanishing of t
right-hand side of this equation yields, via~A9!, precisely~3.2!. Q.E.D.
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In this paper we find an explicit formula for the most general vector evolution of
curves onRPn21 invariant under the projective action of SL(n,R). When this
formula is applied to the projectivization of solution curves of scalar Lax operators
with periodic coefficients, one obtains a corresponding evolution in the space of
such operators. We conjecture that the formula we have found gives another alter-
native definition of the second KdV Hamiltonian evolution under appropriate con-
ditions. In other words, both evolutions are identical provided that the vector dif-
ferential invariant characterizing the SL(n,R)-invariant evolution on the space of
projectivized curves is identified with the coefficients of the Hamiltonian pseudo-
differential operator. We prove the above facts forn<6, and further simplify both
evolutions in appropriate coordinates so that one can attempt to prove the equiva-
lence for arbitraryn. © 1997 American Institute of Physics.
@S0022-2488~97!02111-7#

I. INTRODUCTION

In an attempt to generalize the bi-Hamiltonian character of the Korteweg–deVries~KdV!
equation, Adler1 defined a family of second Hamiltonian structures with respect to which
generalized higher-dimensional KdV equations could also be written as Hamiltonian sys
Jacobi’s identity for these brackets was proved by Gel’fand and Dikii in Ref. 2. These Po
structures are calledsecond Hamiltonian KdV structuresor Adler–Gel’fand–Dikii brackets.Since
the original definition of Adler was quite complicated and not very intuitive, alternative definit
have been subsequently offered by several authors, most notably by Kupershmidt and Wi
Ref. 3, and by Drinfel’d and Sokolov in Ref. 4. Once higher-dimensional KdV equations
proved to be bi-Hamiltonian, their integrability was established via the usual construction
sequence of Hamiltonian structures with commuting Hamiltonian operators. The second H
tonian Structure in the hierarchy of KdV brackets coincides with the usual second Poisson b
for the KdV equation, that is, the canonical Lie–Poisson bracket on the dual of the Vira
algebra. This is the only instance in which the second KdV bracket is linear.

A subject apparently unrelated to the Hamiltonian structures of partial differential equatio
the theory of Klein geometries and differential and geometric invariants. This theory had its
point in the last century before the appearance of Cartan’s approach to differential geomet
it is closely related to equivalence problems. Namely, one poses the question of equivale
two geometrical objects under the action of a certain group, that is, when can one of those
be taken to the other one using a transformation belonging to the given group? For example
two curves on the plane, when are they equivalent under an Euclidean motion? Or, when a
the same curve, up to parametrization?, etc. One answer can be given in terms ofinvariants,
namely, expressions that depend on the objects under study and that do not change un
action of the group. If two objects are to be equivalent, they must have the same invaria
these invariants are functions on some jet space~for example, if they depend on the curve and
0022-2488/97/38(11)/5720/19/$10.00
5720 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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derivatives with respect to the parameter!, then they are called differential invariants. In the ca
of curves on the Euclidean plane under the action of the Euclidean group, the basic diffe
invariant is known to be the Euclidean curvature. Within the natural scope of the study of eq
lence problems and their invariants lies also the description of invariant differential equa
symmetries, relative invariants, etc. For example, recently Olveret al.5 used these ideas to cha
acterize all scalar evolution equations invariant under the action of a subgroup of the proj
group in the plane, a problem of interest in the theory of image processing. See Olver’s boo6 for
an account of the state of the subject.

In this paper we establish a connection between the foregoing two theories while tryi
answer the following question. LetL(t,u) be a family of scalar differential operators with period
coefficients following an evolution~in t! which is Hamiltonian with respect to the Adler
Gel’fand–Dikii bracket. Consider a family of solution curvesj(t,u) associated toL(t,u). Is there
a simple and explicit way to describe the evolution ofj(t,u)? The importance of studying th
space of solutions ofL was pointed out by Wilson in Ref. 7. Also in Ref. 8, from a different po
of view than the one presented here, a description of this evolution was given and proven
SL(n,R) invariant. These curves are also used to provide a discrete invariant of the Po
bracket, one of the two invariants which classify the symplectic leaves.9 Here, we aim to show tha
the evolution of the solution curves is of relevance in itself, and can be described using the
of differential invariants. We will see that the evolution of the projectivizationf(t,u) of a
solution curve is invariant under the projective action of SL(n,R). Following Olver’s approach,6

we will write explicitly the most general~vector! evolution of curves on real (n21)-dimensional
projective spaceRPn21 of the form

f t5F~f,fu ,fuu ,...!

which is invariant under the SL(n,R) projective action. Moreover, under certain conditions th
we will state precisely in the paper, we conjecture that every SL(n,R)-invariant evolution of
curves onRPn21 must correspond to an Adler–Gel’fand–Dikii Hamiltonian evolution in t
space of time-dependentnth order scalar differential operators with periodic coefficients. T
correspondence, which provides an alternative definition of the Adler–Gel’fand–Dikii bra
will be described in detail and shown to be true for many fixed values ofn. Unfortunately, we
haven’t succeeded in proving the general case, which is considerably more involved. W
nevertheless guide the reader in simplifying the proof in the general case, so that he or s
attempt to prove the conjecture for any particular value ofn.

II. NOTATION AND BASIC FACTS

In this Section we will set the notation used in the rest of the paper, and recall some el
tary properties of the projectivized solution curves of scalar Lax operators. Denote byAn the
infinite-dimensional manifold of scalar differential operators~or Lax operators! with T-periodic
coefficients of the form

L5
dn

dun 1un22

dn22

dun22 1•••1u1

d

du
1u0 , ~2.1!

and letjL5(j1 ,...,jn) be a solution curve associated toL the Wronskian of whose componen
equals one. Due to the periodicity of the coefficients ofL, there exists a matrixMLPSL(n,R),
called the monodromy ofL, such that

jL~u1T!5MLjL~u!, for all uPR.

~ML is defined by the Floquet matrix of the differential equation.! This same property holds for it
~non-degenerate! projection on then21 sphereSn21 ~ĵL5(jL /ujLu), where u•u represents the
J. Math. Phys., Vol. 38, No. 11, November 1997
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5722 González-López, Heredero, and Beffa: Invariant equations and the AGD bracket

                    
norm onRn!, and is also shared by the projective coordinates of this projection, wheneve
consider the actions of SL(n,R) on the sphere and on projective space, respectively. Observe
the monodromy is not completely determined by the operatorL, but by its solution curves
Namely, if one chooses a different solution curve, its monodromy won’t be equal toML in
general, but it will be the conjugate ofML by an element of GL(n,R). That is,L only determines
the conjugation class of the monodromy. Of course, this problem does not exist once the s
curve has been fixed.

Conversely, letf:R→RPn21 be a curve onRPn21. Assume that the curvef is non-
degenerate and right-hand oriented, that is the Wronskian determinant of the components of
derivativef8 is positive.~This is equivalent to the Wronskian of the components of~1,f! being
positive; for example, the curve would be convex and right-hand oriented in the casen53.!
Assume also thatf satisfies the followingmonodromy property:

f~u1T!5~Mf!~u!, for all uPR, ~2.2!

for a givenMPSL(n,R). HereMf represents the usual action of SL(n,R) on RPn21, induced
by the action of SL(n,R) on Rn. One can associate tof a differential operator of the form~2.1!
in the following manner: We liftf to a curve onRn, say tof (u)(1,f). We choose the factorf so
that the Wronskian of the components of the new curve equals 1. There is a unique choicf
with such a property~up to perhaps a sign!, namely

f 5W~1,f1 ,...,fn21!21/n5W~f18 ,...,fn218 !21/n,

wheref5(f1 ,...,fn21) andW represents the Wronskian determinant.
It is not very hard to see that the coordinate functions of the lifted curve are solutions

unique differential operator of the form~2.1!. Such an operator defines an equation for an
known y of the form

U y ff0 ... f fn21

y8 ~ f f0!8 ... ~ f fn21!8

A A � A

y~n! ~ f f0!~n! ... ~ f fn21!~n!

U50; f051, 85
d

du
. ~2.3!

Equation~2.3! can be written in the usual manner as a system of first order differential equa
dX/du5NX, where

N5S 0 1 0 ... 0

0 0 1 ... 0

A A � � A

0 0 ... 0 1

2u0 2u1 ... 2un22 0

D
and X is a fundamental matrix solution associated to the differential equation~2.3!. From this
formulation and the monodromy condition it is trivial to see thatN5(dX/du)X21 is a periodic
matrix and so are the coefficients of the operator defining~2.3!.

A short comment is due at this point: ifM is the monodromy matrix associated tof, for even
n the monodromy matrix associated toL could be eitherM or 2M , depending on whether th
first component ofM (1,f) is positive or negative. Hence, it would be more correct to talk ab
the action of PSL(n,R), the space obtained from SL(n,R) by identifying M and2M . Since this
choice makes no difference in what follows, we will keep SL(n,R) for the sake of simplicity.
J. Math. Phys., Vol. 38, No. 11, November 1997
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III. THE EVOLUTION EQUATIONS ON An

The Adler–Gel’fand–Dikii bracket.We start by describing one of the Hamiltonian evolutio
on the manifoldAn , the well known Adler–Gel’fand–Dikii bracket, or second KdV Hamiltonia
structure.

Given a linear functionalH on An , one can associate to it a pseudo-differential operato

H5(
i 51

n

hi]
21, ]5

d

du
,

such that

H~L !5E
S1

res~HL !du,

where res selects the coefficient of]21 and is called theresidueof the pseudo-differential operato
~see Ref. 1 or 2!. To anyH we can associate a~Hamiltonian! vector fieldVH defined as

VH~L !5~LH !1L2L~HL !1 ,

where by (•)1 we denote the non-negative~or differential! part of the operator. The mapH→VH

is astructure mapdefining a Poisson bracket on the manifoldAn . If l̂ is the matrix of differential
operators defining the structure map, the Poisson bracket is defined as

$H,F %~L !5E
S1

res~ l̂ ~H !F !du, ~3.1!

cf. Refs. 1, 2 or 10. The original definition of the bracket was given by Adler,1 in an attempt to
make generalized KdV equations bi-Hamiltonian systems. Gel’fand and Dikii proved Jac
identity in Ref. 2. In the casen52, this bracket coincides with the Lie–Poisson structure on
dual of the Virasoro algebra. Two other equivalent definitions of the original bracket were f
in Refs. 3 and 4. The original definition is rather complicated, so we will explain and use th
in Ref. 3.

The Kupershmidt-Wilson bracket. In a very interesting paper,3 Kupershmidt and Wilson gave
an equivalent but rather simpler definition of the bracket~3.1!. ConsiderL to be an operator of the
form ~2.1!. Assume that the operatorL factors into a product of first-order factors

L5~]1yn21!~]1yn22!•••~]1y1!~]1y0!,

where

yk5vkv11v2kv21•••1v~n21!kvn21 , 0<k<n22; v5e2p i /n, ~3.2!

and yn2152( i 50
n22yi . The variablesv i , 1< i<n21, are what Kupershmidt and Wilson calle

‘‘modified’’ variables. Even though the factorization is not unique~and so some reduction had t
be involved in the proof of Ref. 3!, one can find a unique factorization once a solution curve
been fixed, as we will see later.

Assume that the coefficientsui , 0< i<n22, of L evolve following a Hamiltonian evolution
with respect to the second KdV Hamiltonian structure. The result in Ref. 3 then states th
corresponding ‘‘modified’’ coordinatesv i evolve following a Hamiltonian evolution with respec
to a Poisson bracket defined by the structure map
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



s of the
ple

flow
matrix
d have
iscrete
of the

udy
ikii
ns of

rty
ion
is
e

f
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l 52
1

n
]J, ~3.3!

where

J5S 0 ... 0 1

0 ... 1 0

A � � A

1 0 ... 0

D .

That is,

Du

Dv
l S Du

Dv D *
5 l̂ , ~3.4!

whereDu/Dv5(Dui /Dv j ),

Dui

Dv j
5 (

k50

n21
]ui

]v j
~k! ]k

being the Fre´chet derivative ofui with respect tov j . Also, by * we denote the adjoint matrix
operator, the transposed of the matrix whose entries are the adjoint operators of the entrie
original matrix. Thus, the original Adler–Gel’fand–Dikii bracket arises from a very sim
bracket defined on the space of ‘‘modified’’ variablesv.

Many facts are known about this Hamiltonian structure. Since it is Poisson~degenerate!, the
manifold An foliates into symplectic leaves, maximal submanifolds where the Hamiltonian
always lies. These leaves are classified locally by the conjugation class of the monodromy
associated to the operators lying on the leaf. In other words, if two operators are close an
conjugate monodromies, there is a Hamiltonian path joining them. There exists another d
invariant that classifies the leaves globally, cf. Ref. 9, based on topological properties
projection of the solution curves on the sphereSn.

IV. INVARIANT EVOLUTION EQUATIONS ON C n

The duality betweenAn andC n described in the previous sections makes it natural to st
evolution equations on the spaceC n whose associated flow leaves the Adler–Gel’fand–D
symplectic leaves invariant. In other words, we are interested in partial differential equatio
the form

f t5F~u,f,fu ,fuu ,...!, f:R2→RPn21, ~4.1!

for a functionf(u,t), with the property that, if the initial condition has a monodromy prope
~2.2!, then every solutionf(•,t) of ~4.1! has also a monodromy property, and the conjugat
class of the monodromy matrix is independent oft. The simplest evolution equations having th
property are those of the form~4.1! with F independent ofu which are also invariant under th
standard projective action of SL(n,R) on the dependent variablesf5(f1 ,...,fn21). In other
words, we are dealing with equations of the form

f t5F~f,fu ,fuu ,...!, f:R2→RPn21, ~4.2!

such that wheneverf(u,t) is a solution of~4.2! so is (Mf)(u,t), for all MPSL(n,R). To see
that the monodromy class of the solutionsf(•,t) of an equation~4.2! invariant under the action o
J. Math. Phys., Vol. 38, No. 11, November 1997
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SL(n,R) is indeed preserved under the evolution, note that~4.2! is also invariant under transla
tions of the independent variableu. Hence, if the initial conditionf~•,0! of ~4.2! has a matrix
MPSL(n,R) as monodromy, and we consider a different curve in the flowf(•,t), we have that
f(u2T,t) is also a solution. If~4.2! is SL(n,R)-invariant,Mf(u2T,t) will also be a solution of
~4.2!. Applying uniqueness of solutions of~4.2! ~whenever possible!, Mf(u2T,t)5f(u,t), so
that f(•,t) has the same monodromy asf~•,0!. If there is no uniqueness of solutions, bo
Hamiltonian and invariant evolutions are obviously much more complicated; we won’t deal
those cases in this paper.

Remark:note that the evolution associated to an SL(n,R)-invariant equation~4.2! preserves
exactly the monodromy~not just the monodromy class! of its solutions.

In this paper we conjecture that the Adler–Gel’fand‘–Dikii evolution onAn and the
SL(n,R)-invariant evolution~4.2! on C n are identical under the identification described in t
Introduction, provided that the coefficients of the HamiltonianH ~the pseudo-differential operato
describing the differential of the functionalH! are equal to a vector differential invariant of th
projective action. We will find the most general SL(n,R)-invariant evolution of the form~4.2!,
showing then how the conjecture can be proved for a number of values ofn and where the main
problem lies in the proof of the general case.

The most general evolution equation of the form~4.2! invariant under the projective action

f~u,t !°~Mf!~u,t !

of SL(n,R) can be found using the general infinitesimal techniques described in Refs. 10, 6
of all, the infinitesimal generators of the projective SL(n,R) action are easily found to be th
following vector fields onR3R3RPn21:

vi5
]

]f i
, vi j 5f i

]

]f j
, wi5f i (

j 51

n

f j

]

]f j
; 1< i , j <n21. ~4.3!

The vector fields~4.3! are a basis of a realization of the Lie algebrasl(n,R). Note that all these
vector fields are independent of the variables (u,t), and they are also ‘‘vertical,’’ i.e., theiru and
t components vanish.

If v5S i 51
n21h i(u,t,f)]/]f i is a vertical vector field, its prolongation is the vector field pv

defined by

pr v5v1 (
j >1
k>0

(
i 51

n21

~Dt
kD jh i !

]

]~] t
kf i

~ j !!
, ~4.4!

wheref i
( j )5] jf i , D is the total derivative operator with respect tou

D5]1(
j >0

(
i 51

n21

f i
~ j 11!

]

]f i
~ j ! ,

and

Dt5] t1(
j >0

(
i 51

n21

~] tf i
~ j !!

]

]f i
~ j ! ~4.5!

is the total derivative operator with respect tot. In general, the vector field prv is defined on the
infinite-dimensional jet spaceJ`(R3R,RPn21) with local coordinatesu,t,] t

kf i
( j ) (1< i<n

21;k, j >0). However, when prv is applied to a function~like F! independent of the coordinate
] t

kf i
( j ) (k>1) involving explicitly t-derivatives,~4.4! reduces to the vector field
J. Math. Phys., Vol. 38, No. 11, November 1997
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pr v5v1(
j >1

(
i 51

n21

~D jh i !
]

]f i
~ j ! , ~4.6!

defined on the infinite-dimensional jet spaceJ`[J`(R,RPn21) with local coordinatesu, f i
( j )

(1< i<n21, j >0). Following Ref. 10, we can express the necessary and sufficient conditio
~4.2! to be invariant under the action of SL(n,R) ‘‘infinitesimally’’ as follows:

pr v~F !5Dthuf t5F , for all v5 (
i 51

n21

h i~f!
]

]f i
Psl~n,R!. ~4.7!

Note that, although both prv, D andDt are formally defined on infinite-dimensional jet spaces
practice they will always act on functions depending on a finite number of the local coordin
Finally, using the fact thath is a function off only and ~4.5!, equation~4.7! can be further
simplified as follows:

pr v~F !5
]h

]f
F, ~4.8!

where]h/]f is the (n21)3(n21) matrix with (i , j ) entry ]h i /]f j . In other words,F is a
relative vector differential invariantof the Lie algebrasl(n,R) given by ~4.3!, whose associated
weight is the matrix]h/]f. Using standard techniques~cf. Ref. 6!, we can give the following
characterization of the general solution of~4.8!:

4.1 Theorem:The most general solution F of equation (4.8) is of the form

F5mI ,

where the(n21)3(n21) matrix m5(m1m2•••mn21) is any matrix with non-vanishing deter
minant and whose columnsm i are particular solutions of (4.8), andI 5(I k)k51

n21 is an arbitrary
absolute~vector! differential invariantof the algebra (4.3), i.e., a solution of

pr v~I i !50, for all vPsl~n,R!, i 51,...,n21.

The problem of calculating the most general absolute differential invariantI of a given Lie
algebra of vector fields is a classical one,11–13 whose solution in a modern formulation can b
found in Ref. 6. The general result asserts that their existn functionally independent differentia
fundamental invariants J0 ,J1 ,...,Jn21 , such that any differential invariant is a function of theJi ’s
and their ‘‘covariant derivatives’’D kJi , whereD5(DJ0)21D. Since in our case the generato
~4.3! are independent ofu, we can takeJ05u, so that the operatorD reduces toD in this case.
Therefore, we can state the following Theorem:

4.2 Theorem:The most general (u-independent) absolute differential invariant of thesl(n,R)
Lie algebra (4.3) is a function of n21 fundamental differential invariants Ji(f,...,f (m)) and
their total derivatives with respect tou.

For n52, it is straightforward to compute the fundamentalsl(2,R) invariantJ1 . The result is
the classicalSchwartzian derivative S(f) of f:

J15
f-
f8

2
3

2

f92

f82 . ~4.9!

In this case, the matrix]h/]f is just a function, which makes a simple matter to find a particu
vector differential invariant of weight]h/]f. The simplest such invariant isf8[fu ; therefore,
Theorem 4.2 implies the following:
J. Math. Phys., Vol. 38, No. 11, November 1997
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4.3 Theorem: For n52, the most general evolution equation (4.2) invariant under the p
jective action ofSL(n,R) is

f t5fuI ~S,DS,...,DlS!,

where S is the Schwartzian derivative off(•,t), and I is an arbitrary (smooth) function.
Even for the casen53, it is not an easy matter to find then21 fundamental differential

invariants of~4.3! and a particular matrix relative differential invariant of weight]h/]f from
scratch. Fortunately, however, the differential invariants of the projective action of SL(n,R) have
been the object of considerable study in classical projective differential geometry.14 From this
viewpoint, the differential invariants of a projective curve describe the properties of the c
invariant under the group of motions of projective space, or in other words the properties
curve independent of the particular system of projective coordinates used to represent
intrinsic description of a projective curve must therefore be done in terms of itssl(n,R) differ-
ential invariants. It is not hard to see~as we will explain in the following section! that the
coefficients of the operatorL defined by a projective curvef as in~2.3! are a set of functionally
independent differential invariants. Obviously, they determine the curve up to a projective
formation; this was already known to Wilczynski14 and it is a generalization of the well know
result in Euclidean geometry that the curvatures of a curve in Euclidean space, expres
functions of the Euclidean-invariant arclength, uniquely characterize the curve up to an Euc
motion. We shall explain in the following sections how this equivalence between fundam
differential invariants and coefficients of the operatorL is the key to the duality of evolutions.

V. THE EXPLICIT FORMULA FOR THE SL „n ,R… INVARIANT EVOLUTION

In this section we will describe a complete set of independent differential invariants fo
projective action of SL(n,R), and we will give the explicit expression of the relative invaria
~4.8! with the required weight, for arbitraryn. The complete set of differential invariants wa
already found by Ref. 14 and is precisely given by the coefficients of the operatorL determined by
the curvef, as mentioned in the Introduction.

5.1 Theorem:Let f be a non-degenerate and right-hand oriented curve onRPn21, and let

L5
dn

dun 1un22

dn22

dun22 1•••1u1

d

du
1u0

be the differential operator determined byf through the relation (2.3). Then the coefficients ui ,
0< i<n22, form a complete set of functionally independent differential invariants for
SL(n,R) action onRPn21.

Proof: Using the form of equation~2.3! one can easily see that the coefficient ofdk/duk is
given by uk52Dk , where Dk is the determinant obtained from the Wronskian determin
W( f , f f1 ,...,f fn21)51 when we substitute the (k11)th row by the nth derivative row
( f (n),( f f1)(n), ...,(f fn21)(n)). Thus, the coefficients ofL are functions of the components of th
curve f and their derivatives. From this it follows that the coefficients of the operatorL are
functionally independent functions. Indeed, if there were a functional relation among these
tions one could choose an operator whose coefficients did not satisfy this relation. The pro
ization f of the solution curve of such an operator would then have coefficientsuk(f), k
50,...,n22, not satisfying the functional relation, and we would get a contradiction.

The coefficientsui are easily shown to be invariants. Indeed, letMPSL(n,R) and letMf be
the image of the curvef under the projective action ofM . If we lift f to a solution curve ofL,
say (f , f f), and we also lift the curveMf, we see that the latter is simplyM•( f , f f) ~the dot
denoting matrix multiplication!. SinceM•( f , f f) represents a non-degenerate linear combina
J. Math. Phys., Vol. 38, No. 11, November 1997
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of the solution curve (f , f f), both lifted curves are solutions of the same operator and he
uk(f)5uk(Mf) for all k. Q.E.D.

Next, we will find the explicit expression forn independent relative vector invariants, sol
tions of~4.8! for all vector fieldsv5S i 51

n21h i(f)]/]f iPsl(n,R). That is, we want to find a matrix

m5~m1m2...mn21! ~5.1!

each of whose columnsm i is a solution of equation~4.8!, and such that the determinant ofm does
not vanish.

Before going into the details of how one finds this matrix, we need several prelim
definitions and results:

5.2 Definition: For i1 ,...,i k>0 and 1<k<n21, let us denote

wi 1i 2 ...i k
5Uf1

~ i 1! f2
~ i 1! ... fk

~ i 1!

f1
~ i 2! f2

~ i 2! ... fk
~ i 2!

A A � A

f1
~ i k! f2

~ i k! ... fk
~ i k!

U
and

Wk5w12...k .

We definethe homogeneous variablesqi 1i 2 ...i k
by

qi 1i 2 ...i k
5

wi 1i 2 ...i k

Wk
.

Finally, for k51,2,...,n the variables qn
k are defined as follows:

qn
k5q12...k̂...n ,

where the notation kˆ means that the index k is to be omitted.
The following statements follow easily from elementary properties of determinants:

5.3 Lemma:
~i! For any k, i 1 ,...,i r>0 and 1<s,r<n21 we have the following identities:

qkqi 1i 2 ...i r
5qi 1

qki2 ...i r
1qi 2

qi 1ki3 ...i r
1•••1qi r

qi 1 ...i r 21k ,
~5.2!

qi 1i 2 ...i sk
qi 1i 2 ...i r

5qi 1 ...i si s11
qi 1 ...i skis12 ...i r

1qi 1 ...i si s12
qi 1 ...i s11

ki s13 ...i r
1•••1qi 1 ...i si r

qi 1 ...i r 21k .

~ii ! If we define qm
0 50 for all m>2, then the following identity holds:

qn
k5qn21

k qn
n212qn21

k qn21
n222~qn21

k !81qn21
k21, 1<k,n.

Note thatqn
n51 by definition. Theaffine algebrais the subalgebra of thesl(n,R) algebra~4.3!

generated by the vector fieldsvr andvrs , 1<r ,s<n21. The corresponding group of transform
tions is the affine group, i.e., the semidirect product of the translation group with the general
group in the variables (f1 ,...,fn21).

5.4 Lemma: If au-independent functionc : J`[J`(R,RPn21)→R is invariant under the
action of the affine algebra, thenc necessarily depends only on the affine coordinates qn

r , r
51,...,n21, and their derivatives.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Proof: Consider the prolonged action of the affine algebra on thekth jet spaceJk

[Jk(R,RPn21), whose infinitesimal generators are thekth prolongations~i.e., the truncations of
the prolongations~4.6! at differential orderk!

pr~k!vr5vr , pr~k!vrs5(
j 50

k

f r
~ j !

]

]fs
~ j ! , 1<r ,s,n21. ~5.3!

For k<n21, at a generic point ofJk the n(n21) vector fields ~5.3! span the
(k11)(n21)-dimensional subspace of the tangent space ofJk whose elements are the ‘‘vertical’
vector fields~whose component along]/]u vanishes!. By Frobenius theorem, this implies tha
there are no affine differential invariants of differential order between 1 andn21, and the only
zeroth order invariant is clearly~a function of! the coordinateu. It is also immediate to check tha
for k>n21 the vector fields~5.3! are linearly independent at a generic point. Hence the max
dimension of the span of these vector fields stabilizes fork5n21. Olver’s general results, cf. Re
6, imply that the affine algebra hasn21 fundamental invariants of ordern, and that an arbitrary
differential invariant can be expressed as a function ofu, the fundamental invariants, and the
derivatives with respect to the zeroth order invariantu. Since then21 functionsqn

r , 1<r<n
21, all have differential ordern, and are clearly functionally independent and invariant un
general affine transformations of the variables (f1 ,...,fn21) by their definition, they can be take
as then21 fundamental invariants. Q.E.D

5.5 Lemma: The variables qr
s(r .s>1) can be written in terms of the functionally indepe

dent functions qk
k21(k>2) and their derivatives. We will call the latter functionsbasic homoge-

neous variables.
Proof: We will prove the lemma by induction onr 2s. For r 2s51, the lemma holds trivi-

ally. Assume now that the functionsqr 8
s8 with r 82s8,m can be expressed in terms of the fun

tions qk
k21 and their derivatives. Letqr

s be such thatr 2s5m. From ~ii ! of Lemma 5.3 we have
that

qr
s5qr 21

s qr
r 212qr 21

s qr 21
r 222~qr 21

s !81qr 21
s21,

so that by the induction hypothesisqr
s can be written in terms of the functionsqk

k21 and their
derivatives if, and only if, the same is true forqr 21

s21. Repeating this arguments22 times, we see
thatqr

s will be a function of theqk
k21 and their derivatives, if and only if this is the case forqm11

1 ,
with m5r 2s.0. Again from~ii ! in Lemma 5.3, we have that

qm11
1 5qm

1 qm11
m 2qm

1 qm
m212~qm

1 !8

which, by the induction hypothesis, proves the lemma. Q.E
We are now going to make an ansatz for the matrixm. Namely, we will look among matrices

m of the form

m5F~ Id1A!, ~5.4!

where

F5S f18 f19 ••• f1
~n21!

f28 f29 ••• f2
~n21!

A A � A

fn218 fn219 ••• fn21
~n21!

D , ~5.5!
J. Math. Phys., Vol. 38, No. 11, November 1997
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Id is the identity matrix, andA is a strictly upper triangular matrix to be determined. Obvious
a matrixm of this form will have a nonvanishing determinant.

5.6 Theorem:An invertible matrixm of relative invariants with weight]h/]f is given by a
matrix of the form (5.4)–(5.5), with A5(ai

j ) defined by

ai
j5H ~21! j 2 i~ j

i !

~ j - i
n !

qn
n2 j 1 i , i , j

0, i>j

. ~5.6!

Proof: We only need to show that each one of the columns ofm is a particular solution of
equation~4.8!. Assume thatm5(m1...mn21) is of the form~5.4!–~5.5!, so thatm i5(m j

i ) j 51
n21 is a

column given bym j
i 5f j

( i )1Sk51
i 21 ak

i f j
(k) . Assume also thatv5S i 51

n21h i(f)]/]f iPsl(n,R). We
can then write equation~4.8! as

pr v~m j
i !5 (

k51

n21
]h j

]fk
mk

i . ~5.7!

Obviously, it suffices that~5.7! hold for all the basic vector fields~4.3!. We will therefore consider
the following three cases:

~a! If v5vr5]/]f r , then prv5v and~5.7! trivially holds, since both sides of the equalit
vanish.

~b! If v5vrs5f r(]/]fs), then its prolongation is given by prvrs5Sk>0f r
(k)(]/]fs

(k)).
Substituting in~5.7!, we obtain the equivalent equation

(
k51

i 21

f j
~k!pr vrs~ak

i !50, 1< i , j ,r ,s<n21.

In matrix notation the latter equation becomes

Fpr vrs~A!50, r ,s51,2,...,n21,

and sinceF is invertible for all projective curves under consideration this is equivalent to

pr vrs~A!50, r ,s51,2,...,n21. ~5.8!

~By pr vrs(A) we mean the matrix obtained when we apply the vector field prvts to each of the
entries of the matrixA.! Since the matrixA in ~5.6! depends only on the affine invariant coord
natesqn

r , 1<r<n21, by Lemma 5.4 we deduce that~5.8! holds for this matrix.
~c! If v5wr5f rSk51

n21fk(]/]fk), its prolongation is given by the formula

pr wr5(
j >0

(
k51

n21

~f rfk!
~ j !

]

]fk
~ j ! .

Substituting this formula into~5.7!, we easily arrive at the matrix equation

Fpr wr~A!5F̂r~ Id1A!, r 51, 2,...,n21,

where

~F̂r ! j
i 5f rf j

~ i !1f jf r
~ i !2~f jf r !

~ i !.
J. Math. Phys., Vol. 38, No. 11, November 1997
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5731González-López, Heredero, and Beffa: Invariant equations and the AGD bracket

                    
The productF21 F̂r can be easily rewritten in a nice way. In fact, the (j ,i ) entry of this product
is given by

2 (
k51

n21

f j
k(
l 51

i 21 S i
l Dfk

~ l !f r
~ i 2 l ! ,

wheref j
k is the (j ,k) element ofF21. Now, sinceSk51

n21f j
kfk

( l )5d j
l , the (j ,i ) entry of the product

F21F̂r equals zero ifj > i and2( j
i )f r

( i 2 j ) wheneverj , i . Therefore, the infinitesimal invarianc
condition in case~c! is given by

pr wr~A!52G r~ Id1A!, r 51, 2,...,n21, ~5.9!

where

G r5S 0 S 2
1Df r8 S 3

1Df r9 ••• S n21
1 Df r

~n22!

0 0 S 3
2Df r8 ••• S n21

2 Df r
~n23!

A A � � A

0 � 0 0 S n21
n22Df r8

0 ... 0 0 0

D .

To complete the proof, we only need to check that~5.9! is satisfied whenA is given by~5.6!. What
follows are straightforward calculations.

First of all, one can easily see that

pr wr~w12...k̂...n!5(
j 51
j Þk

n

f rw12...k̂...n1 (
j 51

k21

~21! j 21f r
~ j !w01...ĵ ...k̂...n1 (

j 5k11

n

~21! jf r
~ j !w01...k̂... ĵ ...n

1 (
j 5k11

n S j
kD ~21! j 2k11f r

~ j 2k!w12...ĵ ...n .

Using formula~5.2! we obtain

f rqn
k5 (

j 51

k21

~21! j 21f r
~ j !q01...ĵ ...k̂...n1 (

j 5k11

n

~21! jf r
~ j !q01...k̂... ĵ ...n ,

so that

pr wr~w12...k̂...n!5nf rw12...k̂...n1 (
j 5k11

n S j
kD ~21! j 2k11f r

~ j 2k!w12...ĵ ...n .

Applying Leibniz’s rule we finally obtain

pr wr~qn
k!5 (

j 5k11

n S j
kD ~21! j 2k11f r

~ j 2k!qn
j .
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If we substitute in~5.9! the value ofA given in the Theorem and use the expression of prwr (qn
k)

derived above~5.9! becomes

~21! j 2 i
~ i

j !

~ j 2 i
n ! (

l 5n2 j 1 i 11

n S l
n2 j 1 i D ~21! l 2n1 j 2 i 11f r

~ l 2n1 j 2 i !qn
l

52 (
l 5 i 11

i S l
i Df r

~ l 2 i !~21! j 2 l
~ l

j !

~ j 2 l
n !

qn
n2 j 1 l , 1< i , j <n21.

This equation will hold provided that

~ i
j !~ l 2 i

n1 l 2 j !

~ j 2 i
n !

5
~ i

l !~ j
l !

~ j 2 l
n !

,

which is indeed an identity, since both sides equal

j ! ~n1 l 2 j !!

i !n! ~ l 2 i !!
.

This concludes the proof of the Theorem. Q.E.
As an immediate consequence we obtain the following corollary:
5.7 Corollary: The most general equation for the evolution of curves onRPn21 which is

invariant under the projective action ofSL(n,R) is given by

f t5F~ Id1A!I , ~5.10!

whereF and A are given by~5.5! and ~5.6!, and I is any vector differential invariant for the
action.

VI. THE EQUIVALENCE OF EVOLUTIONS

The SL~2,R! case. We will describe the casen52 first to illustrate the procedure to b
followed in general. In this caseAn[A2 is the manifold of Hill’s operators of the form

d2

du2 1u, ~6.1!

andC n[C 2 is the space of curves on the projective line such thatdf/du5fuÞ0. By Theorem
4.3, the most general evolution onC 2 invariant under the SL~2,R! action is given by the equation

f t5fuI . ~6.2!

HereI is a differential invariant of the action, that is, a function ofS(f) and its derivatives with
respect tou, whereS(f) is the Schwartzian derivative off given by ~4.9!.

Given a curvef on C 2 with a monodromyM , there is a unique operator of the form~6.1!
such thatj5(j1 ,j2)5(f821/2,f821/2f) is its solution curve. Once the solution curve is fixed o
can factorL5(]2v)(]1v) in a unique fashion so that (]1v)j150 and (]2v)(]1v)j250.
More precisely,

v52
~f821/2!8

f821/2 5
1

2

f9

f8
.
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5733González-López, Heredero, and Beffa: Invariant equations and the AGD bracket

                    
Assume now thatf is evolving according to equation~6.2!. Then, due to its dependence onf, v
will be evolving following the equation:

v t5
Dv
Df

~f8I !52
D~~f821/2!8/f821/2!

Df
~f8I !

52]S 1

f821/2

D~f821/2!

Df D ~f8I !

5
1

2
]S 1

f8
] D ~f8I !5

1

2
]~]12v !I .

On the other hand, the evolution ofv according to the Kupershmidt–Wilson definition is given

v t52
1

2
]

dH

dv
, ~6.3!

for some Hamiltonian functionalH depending onv and its derivatives.
Two comments are due at this point. First of all, letdH/dv be the variational derivative ofH

with respect tov, and letdĤ/du denote the corresponding variational derivative with respec
the variablesu, expressed in terms ofv. Then the following equality holds:

dH

dv
5S Du

Dv D * dĤ

du
.

The proof of this statement can be found in Ref. 3, p. 420.
The second comment is as follows: notice thatdH/du is a differential invariant, since it

depends on the coefficientsu and their derivatives, which are themselves independent differe
invariants. This was pointed out throughout Sections III and IV. On the other hand, the latter
doesn’t hold for the Fre´chet derivative with respect tov, since the coefficients of the first-orde
factors are not invariant with respect to the action of SL(n,R). Thus, in order to find the equiva
lence of evolutions, we must write the Adler–Gel’fand–Dikii evolution ofv in terms of the
Hamiltonian as a function ofu. That is, the proper correspondence is between thef-evolution and
the u-evolution, since the coefficientsu are invariants of the SL(n,R) action. We are using the
variablesv to simplify calculations, since the original definition of the Adler–Gel’fand–Di
bracket in terms of theu coordinates is too complicated. These two comments are obviously
in the general case and not only forn52.

Returning to~6.3!, we can rewrite this equation as

v t52
1

2
]S Du

Dv D * dĤ

du

But u52v21v8 in this case, so that (Du/Dv)* 52(]12v), and we have thus shown that th
evolution due to the dependence ofv on f is identical to the Adler-Gel’fand-Dikii evolution
provided that

I 5
dH

du
.

By Helmholtz’s theorem, an SL(n,R)-invariant evolution ~6.2! is associated to an Adler–
Gel’fand–Dikii Hamiltonian evolution~6.3! if and only if its differential invariantI has self-
adjoint Fréchet derivative.

The general case. The proof for other values ofn follows the same ideas that we showed
the casen52. The main practical problem is, of course, the complication of the calculat
involved. Our goal is to show that whenever a non-degenerate right-hand oriented projective
J. Math. Phys., Vol. 38, No. 11, November 1997
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f follows the evolutionf t5F(Id1A)I , then the corresponding coefficients of its associa
operator follow the Adler-Gel’fand-Dikii evolution provided the vector differential invariantI is
related todH/du in a suitable way. For this to be the case,I must satisfy a condition coming
from Helmholtz’s theorem analogous to the one at the end of the last section. In this secti
will simplify the problem and establish a closer connection between both evolutions befor
plaining where the main problem lies. In any case, using this simplified version it is relatively
to establish the equivalence of both evolutions for a fixed value ofn.

6.1 Proposition: A choice of modified variablesv can be expressed in terms of the bas
homogeneous variables asv5V21y, where

y05
1

n
qn

n21, yi5qi
i 212qi 11

i 1
1

n
qn

n21, 1< i<n22, ~6.4!

q1
050 by definition, andV is the Vandermonde matrix defined by

V5S 1 1 ... 1

v v2 ... vn21

A A � A

vn22 v2~n22! ... v~n21!~n22!

D .

Proof: It suffices to show that the we can factorL5]n1un22]n221•••1u1]1u0

5(]1yn21)•••(]1y0) uniquely so that the coefficientsy are given by~6.4!. Let us lift f to a
solution ofL. The solution is given uniquely byj5(j1 ,j2 ,...,jn)5Wn21

21/n(1,f1 ,f2 ,...,fn21).
We choosey so thatj i is a solution of

~]1yi 21!•••~]1y1!~]1y0!j i50, i 51,...,n.

It is not hard to show that there is a unique choice fory, namely,

yi5
v i 218

v i 21
2

v i8

v i
, i 51,2,...,n, ~6.5!

wherev i5W(j1 ,...,j i 11). Indeed, notice thaty01y11•••1yi 21 is the coefficient of] i 21 in
(]1yi 21)•••(]1y1)(]1y0). On the other hand, ifj1 ,...,j i are the independent solutions of th
operator, then the coefficient of] i 21 is given by2v i 218 /v i 21 , cf. ~2.3!, from which ~6.5! easily
follows. From the form ofj we get thatv i5Wi /Wn21

( i 11)/n . Substituting in~6.5! we get~6.4! for
i>1 straightforwardly. The formula fory0 is an immediate consequence of the equat
(]1y0)j15(]1y0)Wn21

21/n50, while the relationshipv5V21y is simply the definition~3.2! of v.
Q.E.D.

We want to see next under what conditions the evolution ofv

v t5
Dv
Df

f t5
Dv
Df

F~ Id1A!I ~6.6!

induced by the SL(n,R)-invariant evolution off coincides with the Adler–Gel’fand–Dikii
Hamiltonian evolution

v t52
1

n
]JS Du

Dv D * dĤ

du
, ~6.7!
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wheredĤ/du is defined as in the casen52. We are going to simplify both equations befo
proceeding with further calculations. Using the previous proposition, we can write~6.6! as

v t5V21S
Dq

Df
F~ Id1A!I ,

where

S5S 0 0 0 ... 0 1/n

21 0 0 ... 0 1/n

1 21 0 ... 0 1/n

0 � � � A A

A � 1 21 0 1/n

0 ... 0 1 21 1/n

D
and q5(qk

k21)k52
n . Since qk

k215Wk218 /Wk21 , we have Dqk
k21/Df5]((1/Wk21)

(DWk21 /Df)). Thus, the equality of the evolutions~6.6! and~6.7! will be proved once we show
that

V1SS 1

W

DW

Df DF~ Id1A!I 52
1

n
JS Du

Dv D * dĤ

du
, ~6.8!

where by (1/W)(DW/Df) we mean the matrix whose (i , j ) entry is given by (1/Wi)(DWi /Df j ).
Straight-forward multiplication of matrices shows that~6.8! becomes

1

W

DW

Df
F~ Id1A!I 5RS Du

DyD * dĤ

du
, ~6.9!

where

R52
1

n
S21V J V t5S 21 1 0 0 ... 0

22 1 1 0 ... 0

23 1 1 1 ... 0

A A � � � A

2~n22! 1 ... 1 1 1

2~n21! 1 ... 1 1 1

D .

We conjecture~6.9! to be true whenever

dH

du
5TMI ,

where
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



nt

nd

ve

l
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T51
0 ... 0 0 0 0 1

0 ... 0 0 0 1 ]

0 ... 0 0 1 S 2
1D ] ]2

0 ... 0 1 S 3
1D ] S 3

2D ]2 ]3

A � � � � � A

0 1 S n23
1 D ] S n23

2 D ]2 S n23
3 D ]3 ... ]n23

1 S n22
1 D ] S n22

2 D ]2 S n22
3 D ]3 ... S n22

n23D ]n23 ]n22

2
andM is a certain upper triangular matrix of the form

M5S 1 0 m1
1 m1

2 ... m1
n23

0 1 0 m2
2 ... m2

n23

A � � � � A

0 ... 0 1 0 mn23
n23

0 ... 0 0 1 0

0 ... 0 0 0 1

D ,

whose matrix elementsmi
j are all functions of the coefficientsui and their derivatives. On the

other hand, ifHu5(k51
n hk]

2k, the vector (h1 ,...,hn21) is easily seen to be related to the gradie
of H through the matrixT, exactly the same wayMI is. ~The coefficienthn of Hu is determined
by the other coefficients, from the condition that the associated Hamiltonian vector fieldVHu

be
tangent toAn .! That is, ~6.9! will hold provided that a certain linear combination ofI with
differential invariant coefficients coincides with the coefficients (h1 ,...,hn21) of the pseudo-
differential operatorHu defining the evolution ofu. As in the previous section, the necessary a
sufficient condition for this to be true is thatTMI have self-adjoint Free´chet derivative with
respect tou.

One can see this relation betweenI and Hu from a different point of view. Any relative
invariant is the product of the particular solutionm of ~4.8! given by ~5.4!, times an invertible
matrix of differential invariants, such asM. That is, we conjecture that one can find a relati
invariant of the formm̃5F(Id1A)M21 such that the invariant evolutionf t5m̃I is equivalent
to the Adler–Gel’fand–Dikii evolution wheneverTI has self-adjoint Fre´chet derivative with re-
spect tou, so thatI is equal to the coefficients ofHu for a certain Hamiltonian pseudo-differentia
operatorH. This gives aHamiltonian interpretation ofsl(n,R) differential invariantssatisfying
the above integrability condition.

There exists an ansatz for the explicit expression ofM which proves the conjecture up to
n56. Forn52 and 3M is the identity. Forn54

M5S 1 0 2 1
2 u2

0 1 0

0 0 1
D ,

and forn55
J. Math. Phys., Vol. 38, No. 11, November 1997
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M5S 1 0 2 7
10 u3

3
5 u22u38

0 1 0 2 2
5 u3

0 0 1 0

0 0 0 1

D .

But for higher dimensionsM involves more complicated expressions of the coefficientsu which
can be explicitly generated by induction.

Finally, ~6.9! becomes the following equality of matrices:

1

W

DW

Df
F~ Id1A!5RS Du

DyD *
TM. ~6.10!

Let us analyze this equation. The matrix (1/W)(DW/Df)F is easily calculated to have as (i , j )
entry the expression( r 51

i (s50
r (s

r)q1...r 1 j 2s...i]
s, where r 1 j 2s is in the r th place. Thus, the

left-hand side of~6.10! does not represent a major problem. With respect to the right-hand
we can write this expression in terms ofq’s. There are old formulas14 relatingu’s to q’s which, in
our notation, become

um5 (
i 50

n2m

~21!n2m2 i S m1 i
i DL iqn

m1 i , 0<m<n22, ~6.11!

whereqn
050 by definition,L051, L15(1/n)qn

n21, andL i is given by the following recurren
formula:

L i5 (
k50

i 21 S i 21
k DLk~L1!~ i 212k!. ~6.12!

In particular, observe that theL i ’s are all functions ofqn
n21 and its derivatives. Using formula

similar to these and Lemma 5.3 skillfully enough, one should expect to be able~although this is by
no means trivial! to simplify that part of the equation also. The main trouble lies on the choic
variables; notice how it would be very difficult to explicitly write both sides of the equation
terms of basic homogeneous variables and their derivatives, even after trying to use Lem
and similar expressions. Also, since all the homogeneous expressionsqn

k have very involved
relationships with each other, the chances of using another obvious group of variables amon
in an effective way are very small. The goal would be to find a different set of variables ma
the equivalence between the Adler–Ge’lfand–Dikii and the SL(n,R)-invariant evolutions totally
transparent.
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Coupled Korteveg–de Vries hierarchy with sources
and its Newton decomposition

Krzysztof Marciniaka)

Department of Mathematics, Linko¨ping University, S 581-83 Linko¨ping, Sweden

~Received 7 October 1996; accepted for publication 2 May 1997!

A Lax representation for the equations of the coupled Korteveg–de Vries~cKdV!
hierarchy with sources is derived from the energy-dependent Schro¨dinger spectral
problem. It is proved that each stationary flow of the cKdV hierarchy with sources
can be reparametrized as a system of Newton equations with velocity-independent
forces. These Newton systems have a Lagrangian formulation and are completely
integrable. The developed decomposition techniques lead to construction of new
infinite families of integrable classical mechanical systems. ©1997 American
Institute of Physics.@S0022-2488~97!02008-2#

I. INTRODUCTION

The energy-dependent Schro¨dinger spectral problem1,2 contains two hierarchies of integrab
equations: the coupled KdV~cKdV! and the coupled Harry–Dym~cHD! hierarchy.3 In the ap-
proach of Ref. 3 one obtains at the same time evolution equations of the hierarchy togethe
a set of independent Euler–Lagrange derivatives of Hamiltonians. These derivatives are o
with the help of a recursion relation, which can be solved under additional conditions. Spe
tion of these conditions fixes the hierarchy~either cKdV or cHD!.

This paper begins with generalizing the ideas of Ref. 3 in order to obtain a Lax formul
for the cKdV and cHD hierarchieswith sources. This can be done by assuming a rational dep
dence of the cKdV/cHD Lax pair on the spectral parameterl. We consider the stationary reduc
tions of both hierarchies. These reductions constitute systems of high-order ordinary diffe
equations~ODE’s! which do not have any direct physical interpretation. Developing the te
niques from Ref. 4 we present a decomposition of all stationary flows of the cKdV hierarchy
sources into systems of Newton equations with velocity-independent forces. This result i
sented first for the stationary KdV hierarchy~decomposition theorem in Sec. III! and then gener-
alized to the case of flows with sources. These Newton systems have a Lagrangian formu
They are also completely integrable, as they should be, since they are reparametrized sta
flows of integrable hierarchies. It can be also proved directly, by constructing their Lax pairs~Sec.
IV !. These systems are closely related to the restricted flows of the cKdV hierarchy.5

The decomposition theorem leads to infinite families of integrable classical mechanica
tems. We demonstrate it in Sec. V, particularly concentrating on the two-field case. Most of
systems are new.

II. THE SPECTRAL PROBLEM

Let us consider the energy-dependent Schro¨dinger spectral problem

05~]21u!C[L C ~2.1!

~where]5]/]x!, together with an auxiliary linear problem of the form

a!On leave of absence from Department of Physics, A. Mickiewicz University, Poznan`, Poland.
Electronic mail: krmar@mai.liu.se
0022-2488/97/38(11)/5739/17/$10.00
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C t5~ 1
2P]1Q!C[AC. ~2.2!

Here u depends polynomially on the spectral parameterl: u5u(l)5(k50
N uk(x,t)lk, wherex

and t are independent variables andP andQ are differential functions ofu and functions of the
spectral parameterl: P5P@u,l# andQ5Q@u,l#. Here and in what follows the subscriptsx and
t denote partial derivatives with respect to variablesx and t.

The compatibility condition for~2.1! and ~2.2! has the form (L t1LA)C50. After substi-
tuting ~2.1! and~2.2! into it and usingLC50 ~in order to reduce the compatibility condition t
a first-order equation! we obtain

Pxx14Qx50, ut2Pxu2 1
2Pux1Qxx50.

Elimination of Q leads to

ut5@ 1
4]

31 1
2~u]1]u!#P5

def

JP. ~2.3!

or more explicitly

(
k50

N

lkuk,t5F1

4
]31 (

k50

N S uk]1
1

2
ukxDlkGP5

defS (
k50

N

Jkl
kD P. ~2.4!

The left-hand side of~2.4! is a polynomial of theNth order inl. The dependence of the right-han
side onl follows from further, more specific assumptions aboutP. The polynomial dependence o
P on l ~i.e., P5(k50

m Pkl
m2k! leads to the coupled Korteveg–de Vries~cKdV! and to the

coupled Harry–Dym~cHD! hierarchies, with the terms at powers ofl higher thanN on the
right-hand side of~2.4! constituting a recursion relation for functionsPr . It allows us to express
these functions throughu and its derivatives.

Here we assume thatP is a meromorphic function of the spectral parameter

P5 (
k50

m

Pm2kl
k1(

r 51

n
qr

l2j r
, ~2.5!

wherej r are poles ofP. After substituting~2.5! into ~2.4! we obtain the following system o
equations: the evolution equations

ur ,t5J0Pm2r1•••1Jr Pm2 (
k50

r

JkS (
i 51

n
qi

j i
r 112kD , r 50,...,N, ~2.6!

the recursion relations,

JNP050,

JN21P01JNP150,

A
~2.7!

JN2kP01JN2k11P11•••1JNPk50,

A

JN2m11P01JN2m12P11•••1JNPm2150
J. Math. Phys., Vol. 38, No. 11, November 1997
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~here we use the conventionJi50 for i ,0!, and the square eigenfunction relations at the po
j i ,

~J01J1j i1J2j i
21•••1JNj i

N!qi50, i 51,...,n. ~2.8!

Observe that the double sum in the last of equations~2.6! is due to~2.8! equal to zero.
The functionsPm can be calculated recursively~starting fromP0! from the recursion relation

~2.7! but only up toPm21 , with Pm undetermined, sincePm does not enter~2.7!. The functionPm

can be calculated from the last equation of~2.6! by assuming thatuN5const, say,uN521, which
leads to the cKdV hierarchy with sources. Alternatively, we can assume thatPm2( i 51

n qi /j i

P) r 50
N kerJr , since thenPm does not enter~2.7!. It also impliesu052a, a.0. This choice of

Pm leads to the Harry–Dym hierarchy with sources. Elimination of any otherui leads to an
integro-differential expression forPm . In both casesm enumerates systems inside the hierarc

The equations~2.8! involving the source variablesqi are differential consequences ofn
replicas~for n different j i! of the spectral problem~2.1!. More precisely, when we act on thi
problem with the differential operatorsCk]13Ckx , we getJ(jk)Ck

250, which are exactly~2.8!
for Ck

25qk . It makes the stationary flows of~2.6! 2 ~2.8! equivalent to the restricted flows5 of the
cKdV/cHD hierarchies.

It is easy to see that the differential functionsPk@u# can be calculated from the forma
recursion relationJP 50, whereJ is the differential operator defined in~2.3!, andP is the formal
power seriesP 5(k50

` Pkl
2k. The additional assumption onu mentioned above~either uN5

21 or u052a, a.0! yields exactly the same set ofPk’s as the one obtained by the sam
specification from~2.7!.

Let us summarize the structure of the cKdV hierarchy with sources in the following defin
Definition 2.1: The coupled Korteveg–de Vries~cKdV! hierarchy with sources is the se

quence of systems of partial differential equations~PDEs!

F u0

A
uN21

G
t

5BN~P~m!2S~0!!, ~2.9!

~J01J1j r1...1JNj r
N!qr50, r 51,...,n ~2.10!

(m50,1,...),where

P~m!5~Pm2N11 ,...,Pm!T, S~0!5S (
i 51

n

qij i
2N ,...,(

i 51

n

qij i
21D T

,

BN is anN3N Hamiltonian operator

BN5F J0

J0 J1

• A

J0 • • JN21

G , ~2.11!

and wherePk are determined by the recursion relation

05F1

4
]31S (

k50

N21

ukl
k2lND ]1

1

2 (
k50

N21

uk,xl
kGP ~2.12!
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with P 5(k50
` Pkl

2k. Pk50 for k,0.
The standard cKdV hierarchy is obtained by setting in the above definitionqi50 for all i ~no

source case!. The stationary version of the above hierarchy originates by replacing the left-
side of ~2.9! by zero.

III. NEWTON DECOMPOSITIONS

The equations of the stationary cKdV hierarchy are systems of high-order ODEs which
no obvious reference to known mechanical systems. It can be shown that they have an Ost
sky Hamiltonian representation,6 but this form is not physically meaningful either. Below w
formulate and prove the main theorem of this paper, which gives a uniform formula for turnin
stationary cKdV hierarchy into a set of Newton equations, i.e., second-order equations w
first-order terms. More precisely, we prove the equivalence of the stationary cKdV hierarchy
a set of equations of the form

akr kxx5Fk~r 1 ,...,r p!, k51,...,p,

where p5max(m,N) in the notation of the previous section and whereak50,1. Forak50 the
equation is an equation of constraints. Such form of equations allows for the use of many
known techniques from the analytical mechanics in order to analyze trajectories and to solve

A. Decomposition theorem for the stationary cKdV hierarchy

In order to formulate the mentioned theorem we introduce the following notation. IfQ de-
notes a formal Laurent series inl: Q5(k52`

` qkl
2k, then Res@Q #5q1 denotes its residuum an

@Q #>b denotes this part of the seriesQ which contains only the powers ofl larger or equal tob,
that is,@Q #>b5(k52`

2b qkl
2k.

Theorem 3.1:The integrated mth stationary flow of the cKdV hierarchy

05BNP~m!

(m50,1,...) is, after the substitution

u52@lNR24#>0 , ~3.1!

equivalent to the following set of second-order ODEs:

05ResFla~Rxx1uR1lNR23!1
1

4 S ]u

]r m2a
D ~2lmR22cuûu21/2!G , ~3.2!

where a52N1min (m,N),2N1min (m,N)11,...,m21, R5(k50
` r kl

2k, r 051, û5l2Nu, c
5(k51

N ckl
2k (c1 ,...,cN are integration constants), and u is expressed through r-variables

(3.1).
The equations (3.2) have the Lagrangian formulation

05
dLN,m

dr a
, a5m1N,m1N21,...,1,

with the Lagrangian

LN,m5 1
2 Res@lmRx

22ulmR21lm1NR222lNcuûu1/2#. ~3.3!

The structure of the equations~3.2! is enlightened by the following lemma.
Lemma 3.2: Let M5max(m,N). In the notation of Theorem 3.1
J. Math. Phys., Vol. 38, No. 11, November 1997
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]

]r M1p
ResXlm2k~uR1lNR23!1

1

4 S ]u

]r k
D ~2lmR22cuûu21/2!C50

for k51,...,M and for all pPN.
Proof: We begin with the first term in the above lemma:

]

]r M1p
Res~lm2kuR!5Res~lm2k2p2Mu!52Res~lN1m2k2p2MR24!, ~3.4!

where in the first equality we used the fact thatu5u(r 1 ,...,r N) and thatN<M . The second
equality is a consequence of~3.1!.

The second term in Lemma 3.2 immediately yields

]

]r M1p
Res~lm2k1NR23!523 Res~lN1m2k2p2MR24!. ~3.5!

The last term of Lemma 3.2 can be calculated as follows:

1

4

]

]r M1p
ResS ]u

]r k
D ~2lmR22cuûu21/2!5ResS lm2M2pR

]u

]r k
D

54 Res~@lN2kR25#>0lm2M2pR!

54 Res~lN1m2k2p2MR24!, ~3.6!

where the first equality is again due to the fact thatu5u(r 1 ,...,r N) with N<M , the second
follows from ~3.1! @see~3.21!#, and the third one follows from Res(@lN2kR25#,0lm2M2pR)
50, which in turn follows from the fact thatm<M , p is a natural number, and thatR has only
nonpositive powers ofl.

Adding ~3.4!–~3.6! we get the result. h

Since Res(lm2kRxx) contains fork51,...,max(m,N) the derivatives ofr 1 ,...,r max(m,N) only,
this lemma shows that~3.2! is an autonomous system of max (m,N) Newton equations for
r 1 ,...,r max(m,N) . In spite of the fact that in both parts of the series~3.2! there are present variable
r 1 ,...,r m1N , the variablesr max(m,N)11,...,rm1N cancel.

Let us now turn to the proof of Theorem 3.1. We present it in few steps.
According to Definition 2.1 themth flow of the cKdV hierarchy~without sources! is a system

of PDEs of the form

F u0

A
uN21

G
t

5BNP~m!. ~3.7!

It can be proved3 that ~3.7! can be written inN11 equivalent ways.
Lemma 3.3: The mth flow of the cKdV hierarchy admits N11 Hamiltonian formulations

F u0

A
uN21

G
t

5BNP~m!5BN21P~m11!5•••5B0P~m1N! ~3.8!

with

P~k!5~Pk2N11 ,...,Pk!
T ~3.9!
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and with the Hamiltonian operators Bk given by

Bk53
J0

J0 J1 0

A

J0 J1 ... Jk21

2Jk11 ... 2JN21 2JN

A

0 2JN21 2JN

2JN

4 . ~3.10!

Using this lemma we can write themth equation of the stationary cKdV hierarchy as

05B0P~m1N!. ~3.11!

The advantage of this form is thatB0 is a first-order operator which can be integrated once.
Lemma 3.4: The mth stationary flow of the cKdV hierarchy05B0P(m1N) can be integrated

once, and after this integration it acquires the form

Pm1a5Res@la21cuûu21/2#, a51,...,N, ~3.12!

where c anduûu are as in Theorem (3.1).
Proof: The equations~3.11! explicitly read as

JNPm1150,

JNPm121JN21Pm1150,

A

JNPm1N1JN21Pm111•••1J1Pm1150,

and they can be rewritten in a polynomial inl form as

@ J̃F#>050,

where J̃5u]1 1
2ux is the part of J not containing the 1

4]
3 term, and F5Pm11l211•••

1Pm1Nl2N. Thus, the firstN of the equations inJ̃F50 reproduce~3.11!. However, J̃F50
implies (û]1 1

2ûx) F50, whereû5l2Nu, which can be integrated to

F5c~l!uûu21/2 ~3.13!

with c(l)5c1l211c2l221••• . It follows that the firstN of equations~3.13!, with c(l)
5c1l211•••1cNl2N ~lower powers are not necessary!, yield the integrated form of~3.11!. By
extracting the successivePm1k from ~3.13! we arrive at the formula~3.12!.

Multiplication of both sides ofJ̃F50 by l2N in the above proof~in order to produceû! leads
to a convenient form~3.13! of F, sinceuûu21/2 can be represented as a power series expans
J. Math. Phys., Vol. 38, No. 11, November 1997
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uûu21/25u12~l2Nu01l2n11u11•••1l21uN21!u21/2

512 1
2~l2Nu01•••1l21uN21!2 3

8~l2Nu01•••1l21uN21!22••• .

We can rewrite~3.12! with the help of the formal seriesP 5(k50
` Pkl

2k as

05Resla21@lmP 2cuûu21/2#, a51,...,N. ~3.14!

The recursion formula~2.12! after multiplication of both sides byP can also be integrated
once, yielding

uP 21 1
2P P xx2

1
4P x

25C~l!, ~3.15!

and we chooseC(l)524lN, which impliesP052 and which makes the successivePk to have
the simplest form.

Now we perform a change of variables.
Lemma 3.5: The formal substitution

P 52R2, R5 (
k50

`

r kl
2k, r 051, ~3.16!

for every fixed pPN defines a point transformation between variables P1 ,...,Pp and r1 ,...,r p .
The recursion formula (3.15) after the change of variables (3.16) takes the form

Rxx1uR1lNR2350. ~3.17!

Proof: The firstp equations in the formula~3.16! read explicitly as

P154r 1 ,

P254r 212r 1
2,

P354r 314r 1r 2 , ~3.18!

A

Pp54r p14r 1r p2114r 2r p221...1 H 2r p/2
2 , p even,

4r ~p11!/2r ~p21!/2 , p odd,

so in the successive equationsPk depends linearly onr k and therefore~3.18! defines a bijection
betweenP1 ,...,Pp and r 1 ,...,r p . An easy differentiation turns the recursion formula~3.15! into
~3.17!. h

Observe that~3.17! does not contain any first-order derivatives, which is a key fact makin
possible to turn the stationary cKdV hierarchy into a set of Newton equations with the help
above change of variables.

The equations~3.17! naturally split into two families: those at non-negative powers ofl and
the remaining ones~infinitely many! at the negative powers ofl. Those at non-negative powers o
l can be written in a concise way as

u52@lNR24#>0 , ~3.19!

which is exactly~3.1!. They constitute a point transformation~i.e., not involving derivatives!
between variablesu0 ,...,uN21 and r 1 ,...,r N . The equations at negative powers ofl ~infinitely
many! have the form
J. Math. Phys., Vol. 38, No. 11, November 1997
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05r axx1ga~r 1 ,...,r N1a21!24r N1a , a51,2,...,

wherega are polynomial functions ofr 1 ,...,r N112a . They define recursively variablesr N1a ,
a51,2,..., asfunctions ofr 1 ,...r N1a21 and of their derivatives.

The substitution~3.16! turns ~3.14! into

05Resla21@2lmR22cuûu21/2#, a51,...,N. ~3.20!

The equations~3.20! become after the substitution~3.19! a system of constraints on th
variablesr 1 ,...,r N1m defined by~3.17!. They constitute the integratedmth stationary flow of the
cKdV hierarchy in the variablesr 1 ,...,r N1m .

We are now in position to prove the equivalence of~3.20! @with r k-variables defined by the
recursion~3.17!# and the equations~3.2!. Suppose first that~3.20! is satisfied, with the variablesr k

defined by~3.17!. Due to~3.19! the derivatives]u/]r k , k51,...,max(m,N), are polynomials inl.
The right-hand sides of~3.2! are thus linear combinations of the right-hand sides of~3.20! added
to the left-hand sides of~3.17!, so they must be equal to zero.

Suppose now that the equations~3.2! are satisfied. The equations~3.1! imply that

]u

]r k
54@lN2kR25#>05H 0, k.N,

4, k5N,

Þ0, k,N .

~3.21!

It follows that ~3.1!, together with~in the casem>N! the first m2N equations out of those in
~3.2! which contain the second-order terms, define variablesr 1 ,...,r max(m,N) exactly in the same
way as the recursion~3.17! does. There are no higher variables in~3.2!, as Lemma 3.2 shows
However, if we definer max(m,N)11,...,rm1N according to~3.17! and insert them into~3.2!, we obtain

05
1

4
ResF S ]u

]r a
D ~2lmR22cuûu21/2!G , a5N,N21,...,1. ~3.22!

Due to ~3.21! the first equation in~3.22! is identical to the first equation in~3.20!, since
]u/]r N54. ]u/]r N2154l220r 1 , so the second equation in~3.22! is a linear combination of the
first two equations in~3.20!, so since~3.22! implies the first of equations~3.20! alone, it also
implies the second. In general, whenk decreases by one, the degree of the polynomial]u/]r k

increases by one, so the (k11)-th equation in~3.22! contains precisely one of the equations~3.20!
more than thekth equation in~3.22!. Since the firstk equations in~3.22! implies the firstk
equations of~3.20!, the (k11)-th equation in~3.22! implies the (k11)-th equation of~3.20!.

We have thus shown that the system~3.2! of max (m,N) Newton equations forr 1 ,...,r max(m,N)

is equivalent to~3.20! with the variablesr 1 ,...,r m1N defined by the firstm1N terms of the
recursion series~3.17!. This completes the proof of equivalence of~3.2! and the integratedmth
stationary flow of the cKdV hierarchy.

The Lagrangian form of~3.2! follows by formal derivation of~3.3!, since operationsd/dr a

and Res commute. It completes the proof of Theorem 3.1.
In order to illustrate the decomposition theorem 3.1 we present below an example.
Example 3.6:Them52 equation of the stationary three-field (N53) cKdV hierarchy accord-

ing to Lemma 3.3 has the form

05B0P~5!5F 2J1 2J2 2J3

2J2 2J3 0

2J3 0 0
G F P3

P4

P5

G
with
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P35u01 3
2u1u21 5

8u2
3,

P45 1
4u2xx1

3
2u0u21 3

4u1
21 35

64u2
41 15

8 u1u2
2,

P55 1
4u1xx1

3
2u0u11 15

8 u0u2
21 15

8 u1
2u21 35

16u1u2
31 63

128u2
51 5

16u2x
2 1 5

8u2u2xx ,

and explicitly reads as

05 1
4u1xxx1u0u1x1 1

2u0xu11 3
2u2xu2xx1

1
2u2u2xxx1

3
2u0u2u2x1 3

8u0xu2
2,

05 1
4u2xxx1u0u2x1 1

2u0xu21 3
2u1u1x1 3

2u1u2u2x1 3
8u1xu2

2,

05u0x1 3
2u1u2x1 3

2u1xu21 15
8 u2

2u2x .

The above system of three stationary cKdV equations has, according to Theorem 3.1, the
ing Newton decomposition:

054r 314r 1r 22c1 ,

05r 1xx14r 1r 3280r 1
2r 2135r 1

4112r 2
213c1r 12c2 , ~3.23!

05r 2xx14r 2r 31140r 1
2r 2280r 1r 2

2221r 1
513c2r 113c1r 226c1r 1

22c3 ,

where the variablesr 1 , r 2 , and r 3 are defined through the formulas~3.1!: u054r 3220r 1r 2

120r 1
3, u154r 2210r 1

2, and u254r 1 . Observe that the first of the above equations does
contain a second-order termr 3xx . This always happens whenm,N, and in such case there ar
preciselyN2m equations of constraints which do not contain derivatives. It is then possib
eliminater m11 ,...,r N ~in this exampler 3! from the equations without changing the order of t
system. We shall consider it more closely in Sec. V.

The Lagrangian for the system~3.23! is

L3,25r 1xr 2x22r 3
224r 1r 2r 3140r 1

2r 2
2235r 1

4r 21
7

2
r 1

624r 2
3

1c3r 11c2r 21c1r 32
3

2
c2r 1

223c1r 1r 212c1r 1
3.

B. Newton decomposition of the stationary cKdV hierarchy with sources

Let us formulate a lemma similar to Lemma 3.3.
Lemma 3.7: The right-hand side of the equation (2.9) has N11 equivalent representations

BN~P~m!2S~0!!5BN21~P~m11!2S~1!!5•••5B0~P~m1N!2S~N!!

with S(k)5(( iqij i
k2N ,...,( iqij i

k21).
Proof: It is enough to show that

BkS
~N2k!5Bk11S~N2k21!, k50,...,N21, ~3.24!

since then the result follows from Lemma 3.3. Notice, that both the cKdV hierarchy and the c
hierarchy with sources have the same set ofPk’s defined by~2.12!.

The explicit form of~3.24! is
J. Math. Phys., Vol. 38, No. 11, November 1997
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3
J0

A 0

J0 ... Jk21

2Jk11 ... 2JN

0 A

2JN

4 3
(

i
qij i

2k

A
.

A

(
i

qij i
N2k22

(
i

qij i
N2k21

4 53
J0

A 0

J0 ... Jk

2Jk12 ... 2JN

0 A

2JN

4
33

(
i

qij i
2k21

A
.
A

(
i

qij i
N2k23

(
i

qij i
N2k22

4
and can be proved by careful comparison of both sides. For example, the (k11)-th row of the
left-hand side of the above equation reads

2Jk11(
i

qi2Jk12(
i

qij i2•••2JN(
i

qij i
N2k21

while the corresponding row of the right-hand side is

J0(
i

qij i
2k211J1(

i
qij i

2k1•••1Jk(
i

qij i
21,

so their difference

(
i

j i
2k21~J01J1j i1...1JNj i

N!qi

is zero, since every term in the above sum is zero due to~2.10!. h

Thus, similarly as in the source-free case, instead of integrating 05BN(P(m)2S(0)) we can
integrate 05B0(P(m1N)2S(N)). This is fairly easy, sinceB0 is a first-order operator.

Lemma 3.8: The mth stationary flow of the cKdV hierarchy with sources

05B0~P~m1N!2S~N!!,

05J~j i !qi , i 51,...,n,

can be integrated once, and after this integration it acquires the form

Pm1a5Res@la21~Qn1cuûu21/2!#, a51,...,N,

~3.25!
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05wkxx1u~jk!wk1dkwk
23, k51,...,n,

where Qn5(k51
` l2k( j 51

n qjj j
k21, qk5wk

2, u(jk)5( r 50
N21 urjk

r 2jk
N and dk , k51,...,n, are in-

tegration constants.
The proof is similar to the proof of Lemma 3.4.

The reparametrizationP 52R2 transforms~3.25! to

05Resla21@2lmR22Qn2cuûu21/2#, a51,...,N. ~3.26!

Since the formula~3.26! differs from ~3.20! only on the termQn , Theorem 3.1 can easily b
generalized to the case of the stationary cKdV hierarchy with sources.

Corollary 3.9: The integrated mth stationary flow(m50,1,...) of the cKdV hierarchy with
sources

05B0~P~m1N!2S~N!!,

05J~j i !qi , i 51,...,n,

after the substitution u52@lNR24#>0 , qi5wi
2, i 51,...,n, is equivalent to the system of equ

tions

05ResFla~Rxx1uR1lNR23!1
1

4 S ]u

]r m2a
D ~2lmR22Qn2cuûu21/2!G , ~3.27!

05wixx1u~j i !wi1diwi
23, i 51,...,n, ~3.28!

where a52N1min(m,N),2N1min(m,N)11,...,m21, Qn5(k51
` l2k( i 51

n wi
2j i

k21, dk , k
51,...,n, are integration constants, andR, û, and c are the same as in Theorem 3.1.

The equations (3.27) have the Lagrangian

LN,m,n5 1
2 Res@lmRx

22u~lmR22 1
2Qn!1lm1NR222lNcuûu1/2#2

1

4 (
i 51

n

~wix
2 1diwi

22!.

~3.29!

The proof is analogous to the proof of Theorem 3.1. The Lagrangian form of~3.27! and~3.28!
is proved by differentiating~3.29!.

Example 3.10:For N53, m52, andn51 the above formulas restrict to~cf. Example 3.6!

054r 314r 1r 22c12w2,

05r 1xx14r 1r 3280r 1
2r 2135r 1

4112r 2
213c1r 12c215r 1w22w2j,

05r 2xx14r 2r 31140r 1
3r 2280r 1r 2

2221r 1
513c2r 113c1r 226c1r 1

22c3

15r 2w2215r 1
2w215r 1w2j2w2j2,

05wxx1u~j!w1dw23,

where u(j)54r 3220r 1r 2120r 1
21(4r 2210r 1

2)j14r 1j22j3.
The Lagrangian for the above system is
J. Math. Phys., Vol. 38, No. 11, November 1997
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L3,2,15r 1xr 2x22r 3
224r 1r 2r 3140r 1

2r 2
2235r 1

4r 21 7
2r 1

624r 2
31c3r 11c2r 21c1r 32 3

2c2r 1
223c1r 1r 2

12c1r 1
32 1

4wx
22 1

4dw221r 3w225r 1r 2w215r 1
3w21r 2w2j2 5

2r 1
2w2j1r 1w2j22 1

4w
2j3.

All techniques of this section can be applied to the case of the cHD hierarchy which adm
Newton decomposition analogous to~3.2!.

IV. LAX REPRESENTATIONS FOR STATIONARY FLOWS

The equations~2.1! and ~2.2! can be written in a well-known matrix form

Fx5B̄~l!F, F t5M̄ ~l!F, ~4.1!

with F5(C,Cx)
T, and

B̄~l!5F 0 1

2u 0G , M̄ ~l!5F Q 1
2P

2 1
2Pu1Qx Q1 1

2Px
G . ~4.2!

The compatibility conditionFxt5F tx for ~4.1! reads explicitly as

B̄~l! t2M̄ ~l!x5@M̄ ~l!,B̄~l!#,

thus yielding the zero curvature representation for the compatibility condition of~4.1!. By setting
ut50 we obtain the equation

M̄ ~l!x5@B̄~l!,M̄ ~l!#. ~4.3!

After substituting~2.5!, the equation~4.3! becomes a matrix Lax representation of the station
cKdV ~for uN521! or of the stationary cHD~for u052a, a.0! hierarchies with sources. In th
case of the cKdV hierarchy with sources the change of variablesP 52R2 leading to Newton
variables transforms the Lax pair~4.2! into the Lax pair of the system in Corollary 3.9.
nontrivial procedure of turning~4.2! into the Lax pair of themth stationary cKdV flow has been
presented in Ref. 7, where we have considered a source-free, one-field case.

Example 4.1:For N51, m53, and for arbitrarynPN the Lax pair~4.2!, expressed through
the Newton variables determined byP 52R2, specifies to

M̄5F 2r 1xl
22l~r 2x1r 1r 1x!2r 3x2r 1r 2x2r 2r 1x2

1

2 (
i 51

n
wiwix

l2j i

A

l312r 1l21l~2r 21r 1
2!12r 312r 1r 21

1

2 (
i 51

n wi
2

l2j i

r 1xl
21l~r 2x1r 1r 1x!1r 3x1r 1r 2x1r 2r 1x1

1

2 (
i 51

n
wiwix

l2j i

G ,

B̄5F 0 1

l24r 1 0G ,
where

A5l422r 1l31l2~22r 213r 1
2!1l~22r 316r 1r 224r 1

32r 1x
2 !15r 1

414r 2
2
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18r 1r 3212r 1
2r 222r 1xr 2x2c1

1

2 (
i 51

n S wi
21

wi
22di2wix

2

l2j i
D

and the Lax equationM̄x1@M̄ ,B̄#50 reproduces the Newton decomposition of them53 station-
ary flow of the KdV hierarchy with sources. The algebraic invariant1

2 Tr (M̄2) of M̄ provide us
with a number of integrals of motion sufficient for this system to be completely integrable in
Liouville sense.

V. TWO-FIELD NEWTON SYSTEMS

Corollary 3.9 provides us with a large variety of integrable Newton systems which for the
m,N contain also equations of constraints. These constraints can be eliminated which
‘‘pure,’’ nonconstrained Newton systems. In this section we present an infinite family o
two-field integrable Newton systems originating in this way.

The system~3.27! and ~3.28! constitutes a system of max (m,N)1n equations for variables
r 1 ,...,r max(m,N) ,w1,...,wn . In the casem,N, the first N2m equations in~3.2! do not contain
second-order terms and are equivalent to a system of equations of constraints of the form

c11(
j 51

n

wj
254r m1114r 1r m1•••1 H 2r m11/2

2 , m odd,
4r ~m/211!r m/2 , m even,

c212c1r 11(
j 51

n

wj
2j j54r m1214r 1r m111•••1 H 2r ~m/211!

2 , m even,
4r ~m11!/2 r ~m13!/2 , m odd,

~5.1!

cN1hN~r ,c!1(
j 51

n

wj
2j j

N2154r N14r 1r N211•••1 H 2r N/2
2 , N even,

4r ~N11!/2 r ~N21!/2 , N odd,

wherehN(r ,c)5hN (r 1 ,...,r N21 ,c1 ,...,cN21), while the remainingm1n equations of the sys
tem ~3.27! and ~3.28! have the form

05r jxx1 f j~r 1 ,...,r N ,w1 ,...,wn!, j 51,...,m, ~5.2!

05wixx1u~j i !wi1diwi
23, i 51,...,n. ~5.3!

Due to the structure of~5.1! it is possible to expressr m11 ,r m12 ,...,r N as polynomial functions of
r 1 ,...,r m and to eliminater m11 ,...,r N from ~5.2! and ~5.3!. After such elimination we obtain a
system ofn1m Newton equations without constraints, i.e., every equation of the system a
the formyixx1 f (y)50. Moreover, the obtained system is Lagrangian, and its Lagrangian ca
obtained from the Lagrangian~3.29! of ~3.27! and ~3.28! by insertingr m11 ,...,r N as calculated
from ~5.1! into ~3.29!, as it is always the case with constrained Lagrangian systems. Thus
system~3.27! and ~3.28! gives rise to a system ofm1n constraints-free Newton equations fo
r 1 ,...,r m , w1 ,...,wn . If N<m, then~3.27! and ~3.28! has already no constraints.

Consider the family of allp-field constraints-free Newton systems which can be obtained
the described procedures. This family containsp11 separate classes of systems, every cl
corresponding to a solution in integers of the equationm1n5p (m50, n5p; m51, n5p
21;...;m5p, n50). In the classm5k, n5p2k (0<k<p) the systems~3.27! and~3.28! with
N51,...,k are already constraints-free, while forN5k11, k12,..., we have to perform the
elimination of r k11 ,...,r N in order to obtain a constraints-freep-field Newton system.

In what follows we shall illustrate this in the casep52. All two-field Newton systems split
into three classes:~m50, n52!, ~m51, n51!, and~m52, n50!. First let us consider the clas
~m50, n52!. For N51, the equations~3.27! and ~3.28! specify to
J. Math. Phys., Vol. 38, No. 11, November 1997
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054r 12w1
22w2

22c1 ,

05w1xx1~4r 12j1!w11d1w1
23,

05w2xx1~4r 12j2!w21d2w2
23,

with the Lagrangian

L52 1
4w1x

2 2 1
4w2x

2 22r 1
21r 1~w1

21w2
2!2 1

4w1
2j12 1

4w2
2j21c1r 12 1

4d1w1
222 1

4d2w2
22. ~5.4!

The eliminationr 151/4 (w1
21w2

22c1) yields a two-field system

05w1xx1w1
31w1w2

21~c12j1!w11d1w1
23,

05w2xx1w2
31w2w1

21~c12j2!w21d2w2
23,

with the Lagrangian obtained by the elimination ofr 1 from ~5.4!

L52 1
4w1x

2 2 1
4w2x

2 1 1
8w1

41 1
8w2

41 1
4w1

2w2
22 1

4w1
2j12 1

4w2
2j21 1

4c1~w1
21w2

2!2 1
4d1w1

222 1
4d2w2

22.

For N52, the equations~3.27! and ~3.28! read as

054r 12w1
22w2

22c1 ,

054r 2218r 1
22w1

2j12w2
2j215r 1~w1

21w2
2!13c1r 12c2 ,

05w1xx1~4r 2210r 1
214r 1j12j1

2!w11d1w1
23,

05w2xx1~4r 2210r 1
214r 1j22j2

2!w21d2w2
23,

and the elimination

r 15 1
4~w1

21w2
21c1!,

4r 2210r 1
252 1

4 ~w1
21w2

21c1!~3w1
213w2

21c1!1w1
2j11w2

2j21c2 ,

yields the two-field system

05w1xx1@2 1
4~w1

21w2
21c1!~3w1

213w2
21c1!12w1

2j11w2
2~j11j2!1c22c1j12j1

2#w1

1d1w1
23,

05w2xx1@2 1
4~w1

21w2
21c1!~3w1

213w2
21c1!12w2

2j21w1
2~j11j2!1c22c1j22j2

2#w2

1d2w2
23.

By taking largerN we obtain the successive systems of this class.
The class~m51, n51! starts forN51 with the system

05r 1xx112r 1
22w22c1 , 05wxx1~4r 12j!w1dw23 ~5.5!

~no elimination necessary!. The Lagrangian is

L5 1
2r 1x

2 2 1
4wx

21r 1w224r 1
32 1

4w
2j1c1r 12 1

4dw22.
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Observe that the mapw5 iq2 , r 5q1 /&, and i 2521 transforms this system to

q1xx526&q1
22&q2

21&c1 ,

q2xx2jq2522&q1q22dq2
23,

which is the KdV integrable case of the~generalized! Henon–Heiles system~see, for example,
Ref. 8!.

For N52 we obtain

054r 212r 1
22w22c1 ,

05r 1xx14r 1r 2230r 1
31~5r 12j!w213c1r 12c2 ,

05wxx1~4r 2210r 1
214r 1j2j2!w1dw23,

with the Lagrangian

L5 1
2r 1x

2 2 1
4wx

222r 2
222r 1

2r 21 15
2 r 1

41~r 22 5
2r 1

2!w21r 1w2j2 1
4w

2j21c2r 11c1r 22 3
2c1r 1

22 1
4dw22.

The elimination ofr 251/4(22r 1
21w21c1) produces a two-field Newton system

05r 1xx232r 1
31~6r 12j!w214c1r 12c2 ,

~5.6!

05wxx1w31~212r 1
21c114r 1j2j2!w1dw23,

with the Lagrangian

L5 1
2r 1x

2 2 1
4wx

21 1
8w

418r 1
423r 1

2w21 1
4c1w21r 1w2j2 1

4w
2j21c2r 122c1r 1

22 1
4dw22.

It is worth noticing that the rescalingw→ iw and r→r /& transforms the principal part of th
above Lagrangian to

2 1
4~r 1x

2 1wx
2!2 1

8~w4112r 1
2w2116r 1

4!,

thus reproducing the well-known 1:12:16 quartic integrable potential.9

For a generalN the systems of this class originate through elimination ofN21 variables and
through inserting them into~3.27! and ~3.28!.

The last two-field class is the class~m52, n50! ~a source-free case!. The first two systems of
this class are merely particular cases of the formula~3.2!. For N51 it reads

05r 1xx110r 1
224r 2 , 05r 2xx120r 1r 2210r 1

32c1 , ~5.7!

with the Lagrangian

L5r1xr 2x210r 1
2r 212r 2

21 5
2r 1

41c1r 12c2/2,

and the mapr 152q1 andr 2522(q1
21q2

2) transforms it again into the KdV integrable case of t
Henon–Heiles system

q1xx5224q1
224q2

2, q2xx528q1q22aq2
23, ~5.8!

provided thatc1 transforms asc1528Eg(q,qx ,a), where
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Eg~q,qx ,a!5
1

2
~q1x

2 1q2x
2 !14q1q2

218q1
31

a

2q2
2

is the Hamiltonian of~5.8!. It also means that~5.7! is equivalent~after some choice of constants!
to ~5.5!.

For N52 we get

05r 1xx124r 1r 2220r 1
32c1 ,

~5.9!

05r 2xx112r 2
2260r 1

2r 2115r 1
413c1r 12c2 ,

with the Lagrangian

L5r 1xr 2x212r 1r 2
2120r 1

3r 223r 1
51c1r 21c2r 12 3

2c1r 1
22c3/2,

and it can be shown that this system can be transformed again into the system with 1:12:16
potential, and thus also into the~modification of! system~5.6!. One can ask whether it is alway
possible to obtain our systems with sources from the source-free systems. The answer is ye
system with sources can be parametrized as a linear combination of stationary flows
hierarchy. In order to avoid unnecessary complications let us consider the KdV case. ForN51 the
system from Corollary 3.9 attains the form

05B0Pm112B0(
i 51

n

wi
2, ~5.10!

05~B12j iB0!wi2, i 51,...,n. ~5.11!

Applying n times the recursion operatorB1B0
21 to both sides of~5.10! and using the square

eigenfunction relation~5.11! we obtain the system ofn equations:

05B0Pm1k2B0(
i 51

n

j i
k21wi

2, k51,...,n.

By elimination ofwi
2 we get

05B0(
k51

n

gkPm1k5 (
k51

n

gkKm1k@u#

~with some constantsgk!, i.e., a linear combination of stationary KdV flows. Similar consid
ations apply also in the cKdV case. To perform this operation systematically in the frame o
Newton variables is a nontrivial task, but not lying in the scope of this paper.

Finally, let us present the next system of the class~m52, n50! given byN53.
For N53 we obtain

054r 314r 1r 22c1 ,

05r 1xx14r 1r 3280r 1
2r 2135r 1

4112r 2
213c1r 12c2 ,

05r 2xx14r 2r 31140r 1
3r 2280r 1r 2

2221r 1
513r 2c126c1r 1

213c2r 12c3 ,

with the Lagrangian
J. Math. Phys., Vol. 38, No. 11, November 1997
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L5r 1xr 2x22r 3
224r 1r 2r 3140r 1

2r 2
2235r 1

4r 21 7
2 r 1

624r 2
31c3r 1

1c2r 21c1r 32 3
2 c2r 1

223c1r 1r 212c1r 1
3.

The elimination ofr 35c1/42r 1r 2 from the above system gives

05r 1xx284r 1
2r 2135r 1

4112r 2
214c1r 12c2 ,

05r 2xx284r 1r 2
21140r 1

3r 2221r 1
514c1r 226c1r 1

213c2r 12c3 .

This system has the Lagrangian

L5r 1xr 2x142r 1
2r 2

2235r 1
4r 21 7

2 r 1
624r 2

31c3r 11c2r 224c1r 1r 22 3
2 c2r 1

212c1r 1
3.

Again, for largerN after elimination ofr m11 ,...,r N we obtain ‘‘higher’’ systems of this class.

VI. CONCLUDING REMARKS

In this paper we have considered the stationary reductions of the coupled Korteveg–de
hierarchy with sources. We have shown that these systems of ODEs can be decompos
systems of Newton equations with velocity-independent forces. These decompositions all
the use of very well developed methods of classical mechanics in order to analyze and to
these equations. It is important to stress the fact that the decomposition theorem formulated
III is a source of infinite families of integrable potentials. Most of these are new. We
illustrated it in Sec. V by presenting two-field integrable Newton systems originating from
theorem. The procedures considered here can also be applied to other soliton hierarch~as
coupled Harry–Dym!, thus being a powerful tool for the constructive approach to a great we
of integrable mechanical systems.
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Miura and auto-Ba¨cklund transformations for the cKP
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We construct the Miura and auto-Ba¨cklund transformations for the cKP and cmKP
hierarchies. Both the eigenfunctions and the adjoint eigenfunctions of the hierar-
chies are used to trigger the transformations. The canonical properties of the con-
structed Miura and auto-Ba¨cklund transformations are also investigated. ©1997
American Institute of Physics.@S0022-2488~97!00311-3#

I. INTRODUCTION

The Kadomtsev-Petviashvili~KP! hierarchy1–3 has played an important role in modern solito
theory.4 It is Sato who made a remarkable contribution to our understanding of the alge
structures of the KP hierarchy. He developed the theory of the KP hierarchy using a g
pseudo-differential operator (CDO! of the form

LKP5]1U]211U2]221U3]231••• ~1.1!

and imposing the evolution equations

dLKP

dtn
5@~LKP

n !1 ,LKP#, ~1.2!

]f

]tn
5~~LKP

n !1f!0 ,
]f̄

]tn
52~~LKP

n !1* f̄ !0 , ~1.3!

wheref andf̄ are called eigenfunction and adjoint eigenfunction, respectively.@Notations: (A)6

denote the differential part and the integral part of theCDO A, respectively, (A)0 denotes the
zeroth order term, and * stands for the conjugate operation: (AB)* 5B* A* , ]* 52],
f (x)* 5 f (x)]. If we eliminateU2, U3,... from ~1.2!, the remaining equations for the functionU in
~1.2! represents the KP equation

4Ut3
5Uxxx112UUx13]x

21Ut2t2
~1.4!

and its higher flows. Note that the subscripts mean partial differentiations with respect
indicated variables and]x

21f [*xf .
There are many mathematical and physical problems associated with the KP hierarchy

ever, the most important one may be finding the soliton solutions of the KP equation a
hierarchy. If we can find a set of functions$U,U2 ,U3 ,...% satisfying ~1.2!, then we have a

a!Electronic mail address: mhtu@phys.nthu.edu.tw
0022-2488/97/38(11)/5756/18/$10.00
5756 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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solution to the KP hierarchy. However, it has been shown~see, for example Refs. 2–4! that any
such set of$U,U2 ,U3 ,...% can be generated from a single functiont(t), the so-called tau-
function, such that

U5~ lnt!xx , ~1.5!

U25 1
2 @~ lnt!xt2

2~ lnt!xxx#, ~1.6!

etc. Thus we can alternatively represent a solution to the KP hierarchy by its correspo
tau-function.

Among several methods to solve the KP hierarchy, the gauge transformation method ha
intensively discussed in the literature.5–15 For example, the KP hierarchy can be put into a diff
ent Lax representation by using the gauge transformation

L85f21LKPf ~1.7!

5]1V1V1]211]22V21•••. ~1.8!

In terms ofL8, ~1.2! becomes

dL8

dtn
5@~L8n!>1 ,L8#, ~1.9!

which is the modified Kadomtsev-Petviashvili~mKP! hierarchy6–9 ~also called Kupershmidt’s
nonstandard hierarchy!. If we eliminate V1, V2,... from ~1.9!, the remaining equations for th
function V in ~1.9! represent the mKP equation

4Vt3
5Vxxx26V2Vx13]21Vt2t2

16Vx]x
21Vt2

~1.10!

and its hierarchy flows. However, the KP equation~1.4! can be related to the mKP equation~1.10!
via the following transformation:16

U5 1
2 ]21Vt2

2 1
2 V22 1

2 Vx . ~1.11!

Namely, if the functionV obeys the mKP equation, then the functionU obeys the KP equation
Equation ~1.11! is nothing but the ~211!-dimensional generalization of the Miur
transformation.17 In general, this transformation scheme can be lift to the level of the hiera
equations~see Sec. II!.

On the other hand, the auto-Ba¨cklund transformation which maps the KP hierarchy into its
has also been obtained10,11 by using the gauge transformation:

LKP→LKP8 5f]f21LKPf]21f21, ~1.12!

which transforms thet-function of the KP hierarchy in a simple way:

t→t85ft. ~1.13!

The gauge transformations described above~~1.7! and ~1.12!! are all associated with the eigen
functions of the KP hierarchy. However, it seems that not only the eigenfunctions but als
adjoint eigenfunctions associated with the Lax operator have to be taken into account. S
recent works have been devoted to this more general approach.11–14
J. Math. Phys., Vol. 38, No. 11, November 1997
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Recently, the so-called constrained KP~cKP! hierarchy has been proposed and studied.18–28

The cKP hierarchy is the KP hierarchy restricted toCDO of the form

LcKP5~LN
KP!11f]21f̄

5]N1uN22]N221•••1u1]1u01f]21f̄, ~1.14!

where all coefficientsU,U2 ,U3 ,... in ~1.1! can be expressed as differential expressions of
coefficientsuN22 ,..., u0 , f, f̄ of LcKP . Apart from the cKP hierarchy, the constrained modifi
KP ~cmKP! hierarchy can also be defined from the Lax operator~1.14! using the gauge transfor
mation ~1.7!.23 The transformed Lax operator looks like

LcmKP5]N1vN21]N211•••1v1]1v01]21c̄ , ~1.15!

which satisfies the Lax equations~1.9!. The bi-Hamiltonian structure of the cmKP hierarchy h
been given23 and the gauge transformation~1.7! which maps the cKP hierarchy to the cmK
hierarchy has been proven to be canonical.23

The purpose of this paper is to use the gauge transformation method to derive the Miu
auto-Bäcklund transformations for the cKP and cmKP hierarchies. Both the eigenfunctions an
adjoint eigenfunctions of the hierarchies are used to construct the gauge transformations.
over, the canonical properties of the Miura and auto-Ba¨cklund transformations are also inves
gated.

Our paper is organized as follows. In Sec. II, we briefly review the work13 for constructing the
Miura transformations between the KP hierarchy and mKP hierarchy. It turns out that the
two types of elementary Miura transformations. One of them is associated with the eigenfun
the other one is associated with the adjoint eigenfunctions. In Sec. III, we show that the
transformations constructed for the KP and mKP hierarchies are also applicable to the cK
cmKP hierarchies from the point of view of preserving the form of the Lax operators. We
construct the auto-Ba¨cklund transformations, both for the cKP and cmKP hierarchies, via
combinations of these Miura transformations. In the end, we give an example to illustrate
Miura and auto-Ba¨cklund transformations. In Sec. IV, we show that all~anti-! Miura transforma-
tions are canonical in the sense that the bi-Hamiltonian structure of the cKP hierarchy is m
to the bi-Hamiltonian structure of the cmKP hierarchy and vice versa. Conclusions are pre
in Sec. V.

II. KP AND mKP HIERARCHIES

In this section we will review a further study13 on the Miura and auto-Ba¨cklund transforma-
tions for the KP and mKP hierarchies in the formulation of Konopelchenko and Oevel.7 There are
two main improvements in Ref. 13. The first is to supply some new Miura and auto-Ba¨cklund
transformations which have been missing in Refs. 7–9 by utilizing the adjoint eigenfun
associated with the hierarchies, in addition to the eigenfunctions already considered in Ref
The second is to identify the truly elementary transformations, and make up some useful
listing the results of each elementary transformation. We will slightly modify their notation
improve clarity.

According to Sato’s construction, the KP hierarchy can also be in terms of dressing ope
i.e.,

LKP5W]W21, ~2.1!

where the dressing operatorW is defined by
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



chy is

rip-
ectly

–9.

h

5759J.-C. Shaw and M.-H. Tu: Miura and auto-Backlund transformations

                    
W511w1]211w2]221••• ~2.2!

and satisfies the following dynamics equation:

]W

]tn
52~LKP

n !2W52~W]nW21!2W. ~2.3!

Analogous to the case of the KP hierarchy, the dressing operator for the mKP hierar
defined by

LmKP5Z]Z21, ~2.4!

whereZ is given by

Z5z01z1]211z2]221•••~z0
21 exists!. ~2.5!

Then the Lax equation~1.9! is transformed into

]Z

]tn
52~LmKP

n !<0Z52~Z]nZ21!<0Z. ~2.6!

Given a solutionZ of the mKP hierarchy, any prescription that directly convertsZ into an
explicit solutionW of the KP hierarchy will be call a Miura transformation. The reverse presc
tion will be called an anti-Miura transformation. On the other hand, a prescription that dir
converts a givenZ into a newZ, or a givenW into a newW, will be called an auto-Ba¨cklund
transformation.

Several examples of Miura and auto-Ba¨cklund transformations have been given in Refs. 7
However, after a detail analysis and consulting previous work11 on the auto-Ba¨cklund transfor-
mations for the KP hierarchy, it was pointed out13 that, givenZ5z01z1]211z2]1•••, the
following two particular Miura transformations~calledm- andn-transformations! are the elemen-
tary ones:

Z→
m

W[z0
21Z, ~2.7!

Z→
n

W[z0
21]Z]21. ~2.8!

For the m-transformation,~2.6! implies thatz0
21 is an eigenfunction of the KP hierarchy wit

dressing operatorW defined by~2.7!. However, for then-transformation,~2.6! implies thatz0 is
an adjoint eigenfunction of the KP hierarchy with dressing operatorW defined by~2.8!. Using
these facts, it is straightforward to verify that the rhs of each of~2.7! and~2.8! is indeed a solution
of the KP hierarchy. Furthermore, it is easy to show that under them-transformation~2.7!,
eigenfunctionf and adjoint eigenfunctionf̄ for the newly generatedW can be directly con-
structed from those for the givenZ:

TABLE I. Elementary Miura transformations mKP→KP ~given Z,c,c̄ ).

Z→W W5 T5 f5 f̄5

m z0
21Z z0

21 z0
21c z0c̄

n z0
21]Z]21 z0

21] z0
21cx z0*xc̄
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f5z0
21c, f̄5z0c̄ , ~2.9!

and, similarly, under then-transformation~2.8!

f5z0
21cx , f̄5z0Ex

c̄ . ~2.10!

In fact, we can treat the Miura transformations~2.7! and ~2.8! from Lax operator point of view.
From the definitions~2.1! and ~2.4!, we have

LmKP→
m

LKP5TLmKPT21, T5z0
21, ~2.11!

LmKP→
n

LKP5TLmKPT21, T5z0
21]. ~2.12!

It will be clear later on that the above expression is more convenient for the formulation. We
collect all the results~2.7!–~2.12! for the elementary Miura transformationsm andn into Table I.
It can be shown13 that the elementary Miura transformationm contains the relation~1.11! as a
subset. Hence, the gauge transformation method provides a convenient way to derive the
transformations between the KP hierarchy and the mKP hierarchy.

It is natural to invert the elementary Miura transformationsZ→W to obtain the elementary
anti-Miura transformationsW→Z. However, to make up an anti-Miura transformation requi
choosing arbitrarily an eigenfunctionf ~and possibly also other eigenfunctionsf iÞf), or an
adjoint eigenfunctionf̄ ~and possibly also other adjoint eigenfunctionsf̄ iÞf̄) of the KP hierar-
chy. Thus, while an elementary Miura transformation determines a uniqueW from a givenZ, an
elementary anti-Miura transformation does not fix a uniqueZ from a givenW, since thisZ will
also depend on the choice off or f̄. The results are summarized in Table II.

Now we can put together various elementary Miura and anti-Miura transformations to g
elementary auto-Ba¨cklund transformations, both forW→W8 and forZ→Z8. The results are listed
in Tables III and IV. Notice that the two nontrivial elementary auto-Ba¨cklund transformations
W→W8 for the KP hierarchy~i.e., ‘‘n followed by m ’’ and ‘‘ m followed by n ’’ in Table III !
correspond exactly to those discussed in Ref. 11, where they were referred to as the diffe
type and the integral type gauge transformations for the KP hierarchy.

TABLE II. Elementary anti-Miura transformations KP→mKP ~given

W,f,f̄,f1 ,f̄1).

W→Z Z5 T5 c5 c̄5

m f21W f21 f21f1 ff̄
n ]21f̄W] ]21f̄ *xff̄ (f̄21f̄1)x

TABLE III. Elementary auto-Ba¨cklund transformations KP→KP ~given W,f,f̄,f1 ,f̄1).

W→W8 W85 T5 f85 f̄85

m followed by m W 1 f1 f̄
n followed by m f̄21]21f̄W] f̄21]21f̄ f̄*x(ff̄) f̄(f̄1 /f̄)x

m followed by n f]f21W]21 f]f21 f(f1 /f)x f21*x(ff̄)
n followed by n W 1 f f̄1
J. Math. Phys., Vol. 38, No. 11, November 1997
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In fact, many different types of solutions of the KP hierarchy or the mKP hierarchy ca
easily generated from the vacuum solution via Miura or auto-Ba¨cklund transformations. All one
needs is a judicious choice of the vacuum~adjoint! eigenfunctions. Several examples have be
illustrated in Ref. 13. Moreover, this solution-generating scheme also works for other hiera
of integrable equations which can be formulated in the form of~2.3! and ~2.6!.7–9

III. cKP HIERARCHY AND cmKP HIERARCHY

In this section, we want to extend the previous results to the cKP hierarchy and c
hierarchy. In general, the cKP hierarchy is the ordinary KP hierarchy restricted toCDO of the
form:

LcKP5]N1uN22]N221•••1u1]1u01f]21f̄. ~3.1!

The evolution of the system is described by

]LcKP

]tn
5@~LcKP

n/N !1 ,LcKP#, ~3.2!

]f

]tn
5~~LcKP

n/N !1f!0 ,
]f̄

]tn
52~~LcKP

n/N !1* f̄ !0 . ~3.3!

Therefore,f and f̄ are eigenfunction and adjoint eigenfunction of the cKP hierarchy. It can
shown that~3.2! is consistent with~3.3!.

Apart from the cKP hierarchy, Oevel and Strampp23 have also introduced the cmKP hierarch
The Lax operator of the cmKP hierarchy is defined by

LcmKP5]N1vN21]N211•••1v1]1v01]21c̄ ~3.4!

and the hierarchy flows are described by

]LcmKP

]tn
5@~LcmKP

n/N !>1 ,LcmKP#, ~3.5!

] c̄

]tn
52~~LcmKP

n/N !>1* c̄ !0 . ~3.6!

As presented in Sec. II, the gauge transformations of the underlying Lax operators provi
Miura transformations between the KP hierarchy and the mKP hierarchy. It is quite natural
whether there are similar transformations between their constrained partners. We find th
elementary Miura and anti-Miura transformations constructed in Sec. II are still applicable

TABLE IV. Elementary auto-Ba¨cklund transformations mKP→mKP ~given Z,c,c̄ ,c1 ,c̄1).

Z→Z8 Z85 T5 c85 c̄ 85

m followed by m c21Z c21 c21c1 cc̄
n followed by m cx

21]Z]21 (cx)
21] (cx)

21c1x cx*
xc̄

m followed by n ]21c̄Z] ]21c̄ *xcc̄ ( c̄1 / c̄ )x

n followed by n ]21(*xc̄ )]Z ]21(*xc̄ )] c*xc̄2*x(cc̄ ) (*xc̄1 /*xc̄ )x
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cKP hierarchy and the cmKP hierarchy. So givenLcKP5]N1uN22]N221•••1u1]

1u01f]21f̄, which satisfies~3.2! and ~3.3!, the following two Miura transformations are th
elementary ones:

LcKP→
m

LcmKP5TLcKPT21, T5f21, ~3.7!

LcKP→
n

LcmKP5TLcKPT21, T5]21f̄. ~3.8!

It is easy to show that the rhs of each~3.7! and ~3.8! indeed satisfies the Lax equations~3.5!.
Furthermore, under them-transformation,~3.7!, the newly generated Lax operatorLcmKP has the
form ~3.4! with

vN215N~ lnf!x , v05~ lnf! tN
, c̄5ff̄. ~3.9!

The other coefficient functionsvN22 ,...,v1 are in terms of differential expression off and the
functionsuN22 ,...,u0 parametrizingLcKP . Similarly, under then-transformation,~3.8!, we have

vN2152N~ lnf̄ !x , v052~ lnf̄ ! tN
, c̄5ff̄1~ lnf̄ !x,N . ~3.10!

We collect these results into Table V. Note that from~3.5!, theN21 differential order of theNth
flow gives

~vN21 /N! tN
5v0,x . ~3.11!

Thus, Eqs.~3.9! and ~3.10! provide a consistent check.
On the other hand, givenLcmKP5]N1vN21]N211•••1v1]1v01]21c̄ satisfying~3.5! and

~3.6!, them- andn-transformations are the Miura transformations from the cmKP hierarchy to
cKP hierarchy, i.e.,

LcmKP→
m

LcKP5TLcmKPT
21, T5z0

21, ~3.12!

LcmKP→
n

LcKP5TLcmKPT
21, T5z0

21], ~3.13!

TABLE V. Elementary Miura transformations cKP→cmKP ~given LcKP).

LcKP→LcmKP T5 vN215 v05 c̄5

m f21 N(lnf)x (lnf)tN ff̄
n ]21f̄ 2N(lnf̄)x 2(lnf̄)tN

ff̄1(lnf̄)xtN

TABLE VI. Elementary Miura transformations cmKP→cKP ~given
LcmKP).

LcmKP

→LcKP T5 f5 f̄5 z05

m z0
21 z0

21
z0c̄ e2*x(vN21 /N)

n z0
21] z0

21( c̄1(vN21 /N) tN
) z0 e2*x(vN21 /N)
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where z05exp(2*x(vN21 /N)) by demanding that the next-leading coefficient functionuN21 in
~3.1! is equal to zero. It can be checked that the transformed Lax operators of each of~3.12! and
~3.13! satisfies~3.2!. We summarize the transformed results in Table VI.

After establishing the Miura and anti-Miura transformations between the cKP hierarchy
the cmKP hierarchy, now let us combine these transformations to obtain the auto-Ba¨cklund trans-
formations, both for cKP→cKP and cmKP→cmKP. The results are listed in Tables VII and VII
We find that the two nontrivial auto-Ba¨cklund transformations in Table VII are the same as
case for the KP hierarchy. That is the reason why we have used them to construct the Wro
type and binary-type solutions for the cKP hierarchy.28

For the cmKP hierarchy, the situation is quite different from the case for the mKP hiera
There are only two rather than four nontrivial auto-Ba¨cklund transformations for the cmKP hie
archy. The reason is the following: For the Miura transformations from the cKP hierarchy t
cmKP hierarchy, the choice off or f̄ for the gauge transformation is unique due to the pres
vation of the form of the Lax operator~3.4!. This implies that them-transformation is the inverse
of the m-transformation and vice versa. Similarly, then-transformation is the inverse of th
n-transformation and vice versa. Hence both Tables VII and VIII contain two identity a
Bäcklund transformations. Moreover, we would like to remark that the factorc̄1(vN21 /N) tN

in
Table VIII can be expressed ascx , wherec is an eigenfunction of the cmKP hierarchy. Fro
~3.11!, we have

~ c̄1~vN21 /N! tN
!5~ c̄1v0,x!5S Ex

c̄1v0D
x

. ~3.14!

Then setc[*xc̄1v0. Differentiating it with respect totn , one obtains23

]c

]tn
5~~LcmKP

n/N !>1c!0 . ~3.15!

Finally, let us consider the simplest case, that is,N51, to illustrate the results discusse
above.

TABLE VIII. Elementary auto-Ba¨cklund transformations cmKP→cmKP ~given LcmKP).

LcmKP→LcmKP8 T5 vN218 5 c̄ 85

m followed by m 1 vN21 c̄
vN211

n followed by m ( c̄1(vN21 /N) tN
)21] N(ln(c̄1(vN21 /N)tN

))x c̄1(vN21 /N) tN

c̄2

m followed by n ]21c̄ vN212N(lnc̄)x (vN21 /N) tN
1(lnc̄)xtN

n followed by n 1 vN21 c̄

TABLE VII. Elementary auto-Ba¨cklund transformations cKP→cKP ~given
LcKP).

LcKP→LcKP8 T5 f85 f̄85

m followed by m 1 f f̄

n followed by m f̄21]21f̄ f̄21 f̄((lnf̄)xtN
1ff̄)

m followed by n f]f21
f((lnf)xtN

1ff̄) f21

n followed by n 1 f f̄
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For N51, the Lax operator of the cKP hierarchy is given by

LcKP5]1f]21f̄. ~3.16!

The first nontrivial Lax equations associated with~3.16! are given by

d

dt2 S f

f̄
D 5S fxx12f̄f2

2f̄xx22ff̄2
D , ~3.17!

d

dt3 S f

f̄
D 5S fxxx16f̄ffx

f̄xxx16ff̄f̄x

D , ~3.18!

which are the first equations in the AKNS hierarchy.
On the other hand, the Lax operator of the cmKP hierarchy forN51 is given by

LcmKP5]1v01]21c̄ ~3.19!

and the first nontrivial Lax equations are given by

d

dt2 S v0

c̄
D 5S ~v0x12c̄1v0

2!x

~2 c̄ x12v0c̄ !x

D , ~3.20!

d

dt3 S v0

c̄
D 5S ~v0xx13v0v0x1v0

316v0c̄ !x

~ c̄ xx23v0c̄ x13v0
2c̄13c̄2!x

D , ~3.21!

where~3.20! is just the Kaup-Broer system discussed in Refs. 29 and 30.
From ~3.3!, the eigenfunctionf has a trivial solution:f50. Then~3.16! becomesLcKP5]

and the adjoint eigenfunctionf̄ satisfies

]f̄

]tn
5~21!n11~]nf̄ !0 , ~3.22!

which are generally solved by
J. Math. Phys., Vol. 38, No. 11, November 1997
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f̄5E E
c
dk`d k̄g~k, k̄ !e2j~ k̄ ,t !, ~3.23!

where

j~ k̄ ,t ![ k̄ t11 k̄ 2t21 k̄ 3t31••• ~3.24!

andg(k, k̄ ) is arbitrary. In the following we will only need to use a special form of the adjo
eigenfunction, which is

f̄5(
i

gie
2j~ki ,t !. ~3.25!

If we choose a specific form of the adjoint eigenfunction

f̄5e2j~p,t !1de2j~q,t !~d.0!, ~3.26!

and use the Miura transformationn listed in Table V, we have

v05q1
p2q

11def
,

~3.27!

c̄5
~p2q!2def

~11def !2
,

where f [j(p,t)2j(q,t). It is easy to check that~3.27! satisfies the Kaup-Broer hierarchy flo
equations~3.20! and~3.21!. Moreover, as shown in Ref. 31, the Kaup-Broer system~3.20! can be
transformed into a trilinear form through the following dependent variable transformations:

c̄5~ lnr!xx , ~3.28!

v0c̄5
1

2
~~ lnr!xt2

1~ lnr!xxx!. ~3.29!

Thus, comparing~3.27! with ~3.28! and ~3.29!, we obtain

r5f̄5e2j~p,t !~11def !, ~3.30!

which is a solution of the trilinear form equation.32

Furthermore, we can use the auto-Ba¨cklund transformation ‘‘n followed bym ’’ listed in Table
VII to obtain a nontrivial soliton solution for the cKP hierarchy from~3.26!. The result is given as
follows:

f85
ej~p,t !

11def
,

~3.31!

f̄85
~p2q!2de2j~q,t !

~11def !2, ~3.31!
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



,

cord-

w of
rarchy

P and
at the
struc-
of the

amil-

evel

5766 J.-C. Shaw and M.-H. Tu: Miura and auto-Backlund transformations

                    
which satisfies the AKNS-hierarchy flow equations~3.17! and ~3.18! as well. On the other hand
from ~1.6!, the tau-function associated with the Lax operator~3.16! is given by

ff̄5~ lnt!xx . ~3.32!

Thus the auto-Ba¨cklund transformation for the present case generates a new tau-function ac
ing to

t85f̄t. ~3.33!

IV. MIURA TRANSFORMATIONS AS POISSON MAPS

In the previous section, we have studied the Miura transformations from the point of vie
preserving the Lax operators. However, these Miura transformations also preserve the hie
flow equations. Therefore if one can construct the Hamiltonian structures, both for the cK
cmKP hierarchies, then the Miura transformations should be canonical in the sense th
Hamiltonian structures associated with the cKP hierarchy are mapped to the Hamiltonian
tures associated with the cmKP hierarchy and vice versa. Once the canonical property
~anti-! Miura transformations have been verified, the canonical property of the auto-Ba¨cklund
transformations will be automatically satisfied. Therefore, it is important to understand the H
tonian nature of the Miura transformations.

The compatible bi-Hamiltonian structure for the cKP hierarchy has been worked out by O
and Strampp.23 The first Hamiltonian structureV1(L,f,f̄) associated with the Lax operator~3.1!
is given23 by

V1 :S dH

dL

dH

df

dH

df̄

D →S F S dH

dL D
1

,LG2S FdH

dL
,L G D

1

2f]21
dH

df
1

dH

df̄
]21f̄

S dH

df̄
f D

0

1
dH

df̄

2S S dH

dL D *
f̄ D

0

2
dH

df

D , ~4.1!

wheredH/dL is a CDO defined by

dH

dL
5]2N11

dH

duN22
1]2N12

dH

duN23
1•••, ~4.2!

whereasdH/df, dH/df̄ are functions.
The second Hamiltonian structureV2(L,f,f̄) introduced in Ref. 23 is foruN21Þ0. How-

ever, to setuN2150, one can use their result and Dirac procedure to modifyV2 as
J. Math. Phys., Vol. 38, No. 11, November 1997
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V2 :S dH

dL

dH

df

dH

df̄

D
→S S L

dH

dL D
1

L2LS dH

dL
L D

1

2f]21
dH

df
L1L

dH

df̄
]21f̄1

1

NFL,E xS resFL,
dH

dL G1f
dH

df
2f̄

dH

df̄
D G

S L
dH

dL
f D

0

2fE xS f
dH

df D1fE xS f̄
dH

df̄
D 1S L

dH

df̄
D

0

1
1

N
f̄E xS resFdH

dL
,L G2f

dH

df
1f̄

dH

df̄
D

2S L* S dH

dL D *
f̄ D

0

1f̄E xS f
dH

df D2S L*
dH

df D
0

2f̄E xS f̄
dH

df̄
D 2

1

N
f̄E xS resFdH

dL
,L G2f

dH

df
1f̄

dH

df̄
D D .

~4.3!

On the other hand, the bi-Hamiltonian structure for the cmKP hierarchy associated wi
Lax operator~3.4! is given23 as follows:

Q1 :
dH

dL
→F S dH

dL D
>1

,LG2S FdH

dL
,LG D

>21

, ~4.4!

Q2 :
dH

dL
→S L

dH

dL D
1

L2LS dH

dL
L D

1

2F S L
dH

dL D
0

,LG
2S FdH

dL
,L G D

21

L1F Ex

resS FdH

dL
,L G D ,LG . ~4.5!

Note that in~4.4! and ~4.5!, the integral part (A)2 should be realized as (A)25( i ,0] iai and
res(A)5a21.

Oevel and Strampp have shown23 that the Miura transformationm, ~3.7!, is indeed a canonica
map. Hence if all the~anti-! Miura transformations between the cKP hierarchy and the cm
hierarchy are truly elementary, we have to show that they are all canonical maps. For the s
completeness, we also sketch the proof for them-transformation in this section. Let us describe t
strategy as follows:

To prove that the Miura transformationG maps the bi-Hamiltonian structure of the cK
hierarchy given byV1 andV2 to the bi-Hamiltonian structure of the cmKP hierarchy given byQ1

andQ2, respectively, we have to show

Q1~ L̃ !5G8V1~L,f,f̄ !G8† ~4.6!

and

Q2~ L̃ !5G8V2~L,f,f̄ !G8†. ~4.7!
J. Math. Phys., Vol. 38, No. 11, November 1997
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HereG can be

Gm :S L
f

f̄
D→ L̃5f21Lf ~4.8!

for m-transformation or

Gn :S L
f

f̄
D→ L̃5]21f̄Lf̄21] ~4.9!

for n-transformation, andG8 andG8† denote the linearized map and its transposed map res
tively, and satisfy

trS BG8S A
f
g
D D 5K G8†B,S A

f
g
D L ~4.10!

for any CDOs A, B and functionsf , g. Here the trace operation is defined33 by

tr~A![E res~A! dx ~4.11!

and the duality bracket̂ & is defined by

^~A, f ,g!,~A8, f 8,g8!&5 tr~AA8!1E ~ f f 8!1E ~gg8!. ~4.12!

m-transformation . From ~4.8!, the linearized mapGm8 can be extracted from its infinitesima
transformation and is given23 by

Gm8 :S A
f
g
D→f21Af1@ L̃ ,f21f #, ~4.13!

whereA, f , andg are the small deformations ofL, f, andf̄, respectively. Note that the rhs o
~4.13! seems independent ofg. In fact, g can be in terms ofA and f . To see this, let us calculat
the rhs of~4.13! from d L̃ as follows:

f21Af1@ L̃ ,f21f #5d L̃5d~f21Lf!. ~4.14!

Using df5 f , df̄5g, and taking the residue on both sides of~4.14!, we have

g5f21~res~A!2 f f̄ !. ~4.15!

Moreover, using~4.8! and ~4.10!, we have

Gm8
†:B→S fBf21

f21res~@B, L̃ # !

0
D . ~4.16!
J. Math. Phys., Vol. 38, No. 11, November 1997
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After establishing Gm8 and Gm8
†, it is straightforward to verify ~4.6! and ~4.7! for the

m-transformation.
n-transformation . For this case, the linearized mapGn8 can be extracted from its infinitesima

transformation and is given by

Gn8:S A
f
g
D→]21f̄Af̄21]1@]21gf̄21], L̃ #. ~4.17!

As before,f can be obtained in a similar way and is given by

f 5f̄21~res~P!1~P!0x2fg!, ~4.18!

whereP[d L̃5]21f̄Af̄21]1@]21gf̄21], L̃ #. Moreover, from~4.10! and ~4.17!, we have

Gn8
†:B→S f̄21]B]21f̄

0

f̄21res~]@ L̃ ,B#]21!
D . ~4.19!

Using ~4.17! and ~4.19!, we can prove~4.6! and ~4.7! rigorously ~see the Appendix!.
Next we want to show that the anti-Miura transformations are also canonical maps, i.e

want to verify that

H8Q1~ L̃ !H8†5V1~L,f,f̄ ! ~4.20!

and

H8Q2~ L̃ !H8†5V2~L,f,f̄ !, ~4.21!

whereH can be

Hm : L̃→S z0
21L̃z0

z0
21

z0c̄
D ~4.22!

for the m-transformation or

Hn : L̃→S z0
21] L̃]21z0

z0
21~ c̄1~vN21 /N! tN

!

z0

D ~4.23!

for then-transformation. HereH8 andH8† are the linearized map and its transposed map, res
tively. To show~4.20! and ~4.21!, the most convenient way is to show thatH8 andH8† are the
inverses ofG8 andG8†, respectively. However, due to the definition~4.10!, we only need to show
that H8 is the inverse ofG8. Let us consider them-transformation first.

m-transformation . From~4.22!, the linearized mapHm8 can be obtained from its infinitesima
transformation and is given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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Hm8 :B→S z0
21S B2F L̃ ,

1

NE
x

bN21G D z0

z0
21

N Ex

bN21

z0S b212
c̄

NE
x

bN21D D , ~4.24!

whereB is a small deformation ofL̃ and is defined by

B5bN21]N211•••1b01]21b21 . ~4.25!

Combining~4.13! and ~4.24!, we have

Gm8 Hm8 B5B. ~4.26!

On the other hand, we have

Hm8 Gm8 S A
f
g
D 5Hm8 B, ~4.27!

where

B5f21Af1@ L̃ ,f21f #. ~4.28!

Now from ~4.15!, ~4.25! and ~4.28!, it is easy to show that

bN215~Nz0f !x ~4.29!

and

b215res~B!5res~A!5 f f̄1gf. ~4.30!

Inserting~4.29! and~4.30! into ~4.24! and using the transformationm listed in Table VI, we have

Hm8 Gm8 S A
f
g
D 5S A

f
g
D , ~4.31!

This result together with~4.26! implies thatHm8 is the inverse ofGm8 and vice versa. Hence the
m-transformation is a canonical map. For then-transformation, we can prove it in the same wa
as we did for them-transformation, thus we omit it here.

V. CONCLUSIONS

In conclusion, we have identified two elementary Miura transformations from the cKP h
archy to the cmKP hierarchy. One of them is associated with the eigenfunction, the other o
associated with the adjoint eigenfunction. The anti-Miura transformations were constructed
similar way. After combining these elementary Miura and anti-Miura transformations, we ob
the elementary auto-Ba¨cklund transformations, both for the cKP hierarchy and the cmKP hie
chy. These auto-Ba¨cklund transformations are useful to construct the nontrivial soliton soluti
J. Math. Phys., Vol. 38, No. 11, November 1997
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from the trivial ones. Moreover, we have shown that all the Miura and anti-Miura transforma
described in this paper are canonical, and hence all the auto-Ba¨cklund transformations are canon
cal as well.

ACKNOWLEDGMENTS

This work was supported by the National Science Council of the Republic of China u
Grant No. NSC-85-2112-M-007-030. We would like to thank Dr. M-C. Chang for reading
manuscript.

APPENDIX: PROOF OF (4.6) AND (4.7)

In this appendix we present the proof of~4.6! and ~4.7! for the n-transformation~4.9!. From
~4.1! and ~4.19!, we have

V1Gn8
†B5S ~ i !

d

~ i i !
D , ~A1!

where

~ i !5@~f̄21]B]21f̄ !1 ,L#2~@~f̄21]B]21f̄,L# !11f̄21res~]@ L̃ ,B#]21!]21f̄, ~A2!

~ i i !52~~f̄21]B]21f̄ !* f̄ !0 , ~A3!

andd stands for an irrelevant term. Then~4.17! implies that

Gn8V1Gn8
†B5]21f̄~ i !f̄21]1@]21~ i i !f̄21], L̃ #. ~A4!

Putting ~A2! and ~A3! into ~A4!, we have

]21f̄~ i !f̄21]5@]21~]B]21!1], L̃ #1]21~]@ L̃ ,B# !1 ~A5!

and

@]21~ i i !f̄21], L̃ #52@]21~B!0], L̃ #. ~A6!

Hence

Gn8V1Gn8
†B5@~B!>1 , L̃ #2~@B, L̃ # !>215Q1B. ~A7!

On the other hand, from~4.3! and ~4.19!, we have

V2Gn8
†B5S ~ I !

d

~ II !
D , ~A8!

where

~ I !5~Lf̄21]B]21f̄ !1L2L~f̄21]B]21f̄L !11Lf̄21res~]@ L̃ ,B#]21!]21f̄, ~A9!

~ II !5~L* ~f̄21]B]21f̄ !* f̄ !02f̄Ex

~res~]@ L̃ ,B#]21!!. ~A10!
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Therefore, after some algebra, we have

]21f̄~ I !f̄21]5~ L̃B!>1L̃1]21~ L̃B!0] L̃2 L̃ ~BL̃!>12 L̃]21~BL̃!0]1 L̃ ~@ L̃ ,B# !0

2 L̃]21~@ L̃ ,B# !0]1 L̃ ~@ L̃ ,B# !21 ~A11!

and

@]21~ II !f̄21], L̃ #52@]21~BL̃!0], L̃ #2@]21~@ L̃ ,B# !0], L̃ #2F Ex

res~@ L̃ ,B# !, L̃ G
1@~@ L̃ ,B# !21 , L̃ #.

~A12!

Finally, combining~A11! with ~A12!, we obtain

Gn8V2Gn8
†B5]21f̄~ I !f̄21]1@]21~ II !f̄21], L̃ #

5~ L̃B!1 L̃2 L̃ ~BL̃!11@ L̃ ,~ L̃B!0#2~@B, L̃ # !21L̃

1F Ex

res~@B, L̃ # !, L̃ G
5Q2B. ~A13!
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Shear-free null quasi-spherical space–times
Robert Bartnika)

School of Mathematics and Statistics, University of Canberra,
Belconnen, ACT 2616, Australia

~Received 15 January 1997; accepted for publication 21 May 1997!

We study the residual gauge freedom within the null quasi-spherical~NQS! gauge
for space–times admitting an expanding shear-free null foliation. By constructing
the most general NQS coordinates subordinate to such a foliation, we obtain both a
clear picture of the geometric nature of the residual coordinate freedom, and an
explicit construction of nontrivial NQS metrics representing some well-known
space–times, such as Schwarzschild, accelerated Minkowski, and Robinson–
Trautman. These examples will be useful in testing numerical evolution codes. The
geometric gauge freedom consists of an arbitrary boost and rotation at each coor-
dinate sphere—and this freedom may be used to normalise the coordinate to an
‘‘inertial’’ frame. © 1997 American Institute of Physics.
@S0022-2488~97!01011-6#

I. INTRODUCTION

The recently introduced1–4 null quasi-spherical~NQS! coordinate condition provides a ne
approach to the study of the Einstein equations in exterior regions admitting an expandin
foliation. The NQS gauge is described by the metric ansatz

dsNQS
2 522u dz~dr1vdz!1~r dq1b1 dr1g1 dz!21~r sin q dw1b2 dr1g2 dz!2, ~1!

where (q,w) are the usual polar coordinates onS2, u.0 andv are real-valued functions, and

b5b1]q1b2 cscq]w , g5g1]q1g2 cscq]w , ~2!

may be considered either as vectors tangent to the spheres (z,r )5const. or, using a complex
formalism, as spin-1 fields.

The advantages of the gauge, and its generality, are discussed in Ref. 4. The purpose
paper is to analyze the gauge freedoms remaining within the NQS gauge condition, for the
of space–times admitting a shear-free (b50) null foliation. We explicitly describe the construc
tion of such foliations in Schwarzschild, Minkowski and Robinson–Trautman space–times

The examples will also be useful as test data for numerical solvers, since they involve
trary functions but are still simple to describe explicitly. This remark applies both to characte
and 311 codes—the class of boosted Schwarzschild metrics should be particularly appropr
test data.

The NQS gauge is best understood by comparison with other popular conditions us
describe the metric on a null foliation, due to Bondi5 and Newman and Unti.6 The Newman–Unti
radial coordinater is determined by a choice of affine parameter along each of the null gener
the Bondi radius is defined by the condition that the spatial volume form sinq dq`dw have length
(r 2 sinq)21. In both cases the angular coordinates (q,w) are transported along the null gener
tors. Both coordinate systems are determined by labelling and normalization conditions at ju
transverseS2 in a null hypersurface and therefore have gauge freedom corresponding to fun
on a singleS2 ~in each null hypersurface!.

a!Electronic-mail: bartnik@ise.canberra.edu.au
0022-2488/97/38(11)/5774/18/$10.00
5774 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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By contrast, the NQS radial functionr has level sets isometric to standard spheres of radiur .
Although it is possible to then determine the angular coordinates (q,w) as labelling the outgoing
null generators~as in Refs. 5 and 6!, it seems more geometrically natural to use the (q,w)
determined by the isometry withS2 with metric r 2(dq21sin2 q dw2).

Since the metric spheres at each radius are not unique within the null hypersurface~at least,
this is the case for the standard Minkowski null cone!, there is an additional coordinate freedo
within the NQS gauge, consisting of a choice of Lorentz transformation at each sphere
freedom does not have an analogue in the Bondi and Newman–Unti gauges.

The vector fieldb is referred to as theshear; that this terminology does not conflict with th
accepted usage of ‘‘shear’’ is seen by noting that the~usual! shear of the null generatorl 5] r

2r 21b of the NQS metric Eq.~1! is given in the Newman–Penrose notation7 by sNP5r 21Zb,
whereZ is theeth operator on the standardS2 and we identifyb;(1/A2) (b12 ib2) with a spin-1
field on S2. Consequently, vanishing shear vectorb implies vanishingsNP; conversely ifsNP

50 thenb consists purely ofl 51 spin-1 spherical harmonics.8 The role played by thel 51
spin-1 spherical harmonics is discussed in greater detail in the following section. In the App
we show that any shear-free, expanding and twist-free metric admits NQS coordinates wb
50—this was shown in Refs. 9 and 10 for vacuum metrics.

The metric form~1! with b50, when restricted to a coordinate null hypersurfaceC , becomes

dsC
2 5r 2~dq21sin2 q dw2!.

By identifying C with the future null cone at the origin inR3,1, we can see that this form i
invariant under the Lorentz group SO0(3,1) — and the Lorentz transformation may also vary w
r , since invariance only requires that each quasi-spherer 5const. is mapped isometrically. Thu
our main idea is to use explicit representations of the Lorentz group acting on the standa
cone C 05$t5uxu% in Minkowski spaceR3,1 to describe the general transformation leaving
form dsC

2 invariant.
Note that the problem of finding general quasi-spherical foliations of a null hypersu

which is not shear-free and expanding is considerably more difficult, since the explicit mod
the standard cone and its associated Lorentz deformations is no longer available. Howev
earization arguments suggest strongly that the gauge freedoms of the shear-free case are
in the more general setting, provided the shear is not too large. Thus we expect that the des
here of the shear-free NQS freedom will provide some insight into the more general case.

At least in the shear-free case, we will show that the NQS condition has gauge fre
consisting of an SO0(3,1)-valued function of the radius~on each null hypersurface!; this is func-
tionally less rigid than the Bondi and NU gauges, since it has freedom inr which is lacking in
these gauges. This Lorentz transformation freedom may be viewed as providing a cho
‘‘inertial frame’’ normalization at each radius, and may be used to normalise certain o
remaining metric coefficients, as described below.

This interpretation is supported by a comparison11 between the Robinson–Trautman metri
and the NU form12 of the Minkowski metric in coordinates using null cones with base po
describing a timelike curve. This comparison may also be made in the NQS coordinate
supports both the interpretation of Robinson–Trautman space–times as describing an acc
black hole rapidly settling down to a Schwarzschild black hole in uniform motion, and the i
pretation of the NQS freedom as representing a choice of reference frame at each radius an

In section II we study the metric and NQS freedom of the model coneC 0, by constructing the
most general quasi-spherical~QS! foliation of C 0. The resulting metric has shear vectorb con-
sisting solely ofl 51 spherical harmonics, and we show conversely that any null surface
such shear vector is gauge-equivalent to the standard cone. In section III we describe the m
general NQS coordinates on a space–time admitting a shear-free null foliation. Section
J. Math. Phys., Vol. 38, No. 11, November 1997
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scribes the application of these results to the specific examples of Schwarzschild, Minkows
Robinson–Trautman space–times. Basic results on shear-free expanding null hypersurfa
collected in the Appendix.

The computations are presented in slightly more detail than is strictly necessary, in or
facilitate the use of the example NQS metrics in benchmarking numerical codes, and
interpretation of general NQS numerical results.

II. MODEL CONE C 0

Let C 05$(x,t)PR3,1:t5uxu% be the standard future null cone based at the origin
Minkowski space. We may usexPR3 as a coordinate onC 0; instead a polar representation

x5ru, r 5uxu, u5x/r 5~xi /r !PS2 ~3!

will be very useful, where we identifyS25$xPR3:uxu51% and we use the direction cosinesu
5(u1 ,u2 ,u3), uuu51 to parameterizeS2. The polar coordinates onC 0 will usually be denoted by
(r ,u) or (r,z).

The parameterization (u i) of S2 leads to a representation of tangent vector fields toS2 as
3-vector fields on the unit sphereS2,R3 which are tangent toS2. This will prove more convenien
than using the polar coordinate basis (]q ,]w). Thus, a vector fieldY5Y(u;l), depending onu
PS2 and other parametersl ~e.g.,l5(z,r )), may be represented as the 3-vectorY5(Yi) satis-
fying uTY(u,l)5u iYi50.

Throughout we use latin indicesi , j , ..., with range 1,..., 3 and thesummation convention on
repeated indices, not necessarily raised and lowered.

The Minkowski metric induces the rank-2 degenerate bilinear form

dsC 0

2 5r 2uduu25r 2(
i 51

3

~du i !
2 ~4!

on C 0. Note thatuduu2 is the standard metric onS2, and uduu25( i , j 51
3 Q i j dxi dxj , whereQ is

the projection matrix

Q5I 2uuT, Q i j 5d i j 2u iu j , ~5!

anduT represents the transpose~row! vector.
A quasi-sphereof radiusr PR1 in C 0 is an orientation preserving embeddingF r :S2→C 0

such that

F r* ~dsC 0

2 !5r 2uduu2,

and we sayF r is a quasi-spherical map.
Every quasi-sphere inC 0 is determined by a unique time and space orientation preser

Lorentz transformationLPSO0(3,1) via the compositionF r5L+ i r with the inclusioni r :S2→C 0,
u°@ruT,r #T,

F r :uPS2°

i r F ru

r GPC 0°
L

LF ru

r GPC 0 , ~6!

and we now exploit this basic description.
The Lorentz transformationLPSO0(3,1) admits a unique boost/rotation decompositionL

5RB with
J. Math. Phys., Vol. 38, No. 11, November 1997
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R5R~R!5FR 0

0 1G , RPSO~3!, ~7!

B5B~w!5F W w

wT b G , wPR3, ~8!

whereb5A11uwu2>1 andW is the 333 matrix

W5I 1
1

b11
wwT. ~9!

It is easily checked thatB preserves the Minkowski metrich, h5BThB. The quasi-spherica
mapF r may be described explicitly by

F r~u!5LF ru

r G5F rRu1r S 11
uTw

b11DRw

r ~b1uTw!
G , ~10!

whereuTw5wTu is the usual inner product between column 3-vectors. In terms of the rectan
R3,1 parameterization of the targetC 0 we haveF r(u)5@r(r ,u)z(u)T,r(r ,u)#T, where we define

f ~u!5 f ~u;w!:5b1uTw5A11uwu21uTw, ~11!

r~r ,u!5r~r ,u;w!:5r f ~u!, ~12!

z~u!5z~u;w,R!:5 f 21RS u1S 11
uTw

b11DwD5 f 21R~w1Wu!. ~13!

Here and elsewhere we adopt the convention that (r,z) denotes polar coordinates on the ran
~target! C 0 of F r , which leads to the descriptionF r(u)5(r(r ,u),z(u)) of F r in polar coordi-
nates. The metricdsC 0

2 on the target coneC 0 in polar coordinates (r,z) is just r2udzu2 and we

may verify the quasi-spherical conditionF r* (dsC 0

2 )5r 2uduu2 by direct computation as follows.

We define the angular gradient operatorDu5(Du i
) as the projection tangent to the unit sphe

S2 of the ordinary gradient inR3. Explicitly, let he(x):5h(x/uxu), xPR3 be the homogeneou
degree 0 extension of anyhPC1(S2) and defineDu i

h5]he /]xi . It follows thatu iDu i
h50 by the

homogeneity condition, andDu i
u j5Q i j . Then F r* (r2udzu2)5r(r ,u)2uz ,uduu2, where (z ,u) i j

5Du j
z i with

Du j
z i5Du j

„~b1uTw!21Rik~wk1Wklu l !…

5 f 21Rik„2 f 21~wk1Wklu l !Q jmwm1WkmQm j…5 f 21RikAkmQm j , ~14!

and we have introduced the very useful matrix

A:5I 2 f 21~u1~b11!21w!wT. ~15!

By exercising a certain amount of care we may convert to a matrix notation. We adop
convention that 3-vector quantities such asu i , du i , wi , are to be treated as column vectors~of
1-forms, functions, etc.! and that row vectors usually will be indicated by the transpose nota
exceptthat we regardDu , Dz and their associated gradients asrow vectors.

For example, with these conventions the computation~14! may be summarized as
J. Math. Phys., Vol. 38, No. 11, November 1997
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z ,u5 f 21RAQ ~16!

and the chain rule forhPC`(S2,R) appears as

dh5h,udu,

d~h+z!5h,zz ,udu,

~h+z! ,u5 f 21h,zRAQ,

where both sides of the final identity are row vectors.
The matrixA satisfies several useful identities,

ATA5I 2 f 21~wuT1uwT!, ~17!

QATAQ5Q, ~18!

A215I 1„u1~b11!21w…wT5W1uwT, ~19!

which may be used to show thatF r is quasi-spherical:

F r* ~r2udzu2!5r 2f 2u f 21RA duu25r 2 duT ATRTRA du5r 2 duT ATA du5r 2uduu2,

sinceRTR5I and uT du50, so du5Q du. This confirms thatF r is quasi-spherical and als
conformal, sinceF r* (udzu2)5 f 22uduu2. Note that from Eqs.~13!,~19! we have

z~u!5 f 21RA21Tu, ~20!

whereA21T is the inverse transpose matrix.
Having described a single quasi-sphere, we may now consider the effects ofr -dependence: a

map F:C 0→C 0 is said to bequasi-sphericalif F r5F+ i r is a quasi-spherical map for eachr
.0, and if r °F r is at least continuously differentiable inr—although for simplicity we shall
consider only smooth maps. Equivalently,F(r ,u)5L(r )+ i r(u), where the Lorentz transforma
tions L(r )5R(R(r ))B(w(r )) are described by boost and rotation mapswPC`(R1,R3), R
PC`(R1,SO(3)).Note that we do not require thatF be a diffeomorphism, and this does n
follow from the conditionF* (dsC 0

2 )5r 2uduu2 since dsC 0

2 is degenerate. Note also thatF21,

when defined, is not usually quasi-spherical; neither is the composition of two quasi-sph
maps usually again quasi-spherical.

The general quasi-spherical mapF:C 0→C 0 is thus described by

F~r ,u!5R~R~r !!B~w~r !!F ru

r G5Fr~r ,u!z~r ,u!

r~r ,u!
G ,

where the functionsr(r ,u),z(r ,u) are defined by Eqs.~12!,~13! with w,R now depending onr .
The pull-back metric is then

F* ~dsC 0

2 !5r~r ,u!2uz ,u du1z ,r dru25r2uz ,u duu212r2 duT z ,u
T z ,r dr1r2uz ,r u2dr2,

wherez ,r denotes the column vector of partial derivatives (]/]r ) z. Note that we are taking the
liberty of using r,z to denote both the coordinatesr,z on C 0 and their pullbacksr(r ,u)
5F* (r), z(r ,u)5F* (z), which are functions determining the mapF—this ambiguity should
not lead to any serious confusion.

We have already checked thatr2uz ,u duu25r 2uduu2, and we compute from Eq.~20!
J. Math. Phys., Vol. 38, No. 11, November 1997
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f A21R21z ,r5A21R21R,rA
21Tu1A21

]

]r
~A21T!u2 f 21f ,r~ATA!21u. ~21!

The first term on the right hand side is simplified by introducing the antisymmetric matrix

S1 :5WR21R,rW, ~22!

and equals~bearing in mind the formulasA21W215I 1b21uwT, W215I 2b21(b11)21wwT)

S1u1b21QS1w.

After some computation, we find that the second and third terms of Eq.~21! may be combined into

QW21w,r1
1

b11
u3~w,r3w!,

wherea3b5(e i jkajbk) is the usual cross product inR3. Defining the 3-vectorss1 ,t1 ~depending
on r but independent ofu)

s1 :5* S11
1

b11
w,r3w, ~23!

t1 :5b21S1w1W21w,r , ~24!

where *S:5( 1
2e i jkSjk), and the (r ,u)-dependent vectorb

b:5rQt11ru3s1 , ~25!

we have the identity

rz ,r5RAb. ~26!

This may be used to simplifyF* (dsC 0

2 ):

r2 duT z ,u
T z ,r dr5r duT ATRTRAb dr5r duTAT Ab dr5r duT b dr,

sinceuTb50. Similarly we find

r2uz ,r u25bTATRTRAb5ubu2,

and it follows thatF* (dsC 0

2 )5ur du1b dru2, which is in quasi-spherical form with shear vect

b.
To summarize:
Proposition 1:SupposeF:C 0→C 0 is aC` quasi-spherical map. ThenF satisfies Eq.~10! for

some Lorentz boost parameterwPC`(R1,R3) and spatial rotationRPC`(R1,SO(3)). In the
rectangular-polar coordinates (r ,u) on C 0 we have

F* ~dsC 0

2 !5ur du1b dru2, ~27!

where the shear vectorb is defined in terms ofw andR by Eqs.~22!,~23!,~24!,~25!.
The angular vector fieldb consists solely of spin-1l 51 spherical harmonics. This follow

from Eq. ~25!, since for any constant vectortPR3, the angular vector fieldsQt5t2(uTt)u and
u3t satisfy
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Qt5gradS2~uTt !, ~28!

u3t5J gradS2~uTt !, ~29!

where the complex structureJ:TS2→TS2 is defined by anticlockwise rotation with respect to t
outer normalu to S2,R3. Now if e1 ,e2 is an oriented orthonormal frame onS2 ~so e13e2

5u), we define the spin-1 projection of a vector fieldX5X1e11X2e2 by

X;j5
1

A2
~X12 iX2! ~30!

~noteJX5u3X52X2e11X1e2;2 ij), and the operatoreth by

Z5
1

A2
~“e1

2 i¹e2
!, ~31!

where¹ is the standard covariant derivative onS2. Note that as so defined,j and Z are frame
dependent, hence the use of;. Defining the basis vectore5 1/A2 (e12 ie2), we could instead
write the equalityX5 j̄ e1j ē and then considerj as the coefficient of the representation ofX as
a section of a spin-1 complex line bundle, with respect to the basis vectore.

If f,cPC1(S2,R) then

Z~f1 ic!5
1

A2
~f ,11c ,21 i~c ,12f ,2!!,

where the subscripts (•) ,a for a51,2 denote directional derivatives with respect to the ba
vectorse1 ,e2, and the vector field correspondence is

gradS2 f2J gradS2 c;Z~f1 ic!.

In particular, for any constants,tPR3 we have the correspondence

Qt1u3s;Z~uT~ t2 is!!, ~32!

and the identity

DS2~uTt !522 uTt ~33!

completes the identification ofQt1u3s as a spin-1l 51 spherical harmonic.
We also derive from Eq.~33! that

DS2~~uTt !22 1
3 utu2!526~~uTt !22 1

3 utu2! ~34!

and thusuTtuTs2 1
3t

Ts is an l 52 spherical harmonic for anys,tPR3.
The relations~23!,~24! betweens1 ,t1 andS1 ,w,r may be inverted, since by direct comput

tion we have the following lemma.

Lemma 2:Supposes,t,w,w̃,sPR3 and letb:5A11uwu2 andW215I 2 @1/b(b11)# wwT.
The equations

t5b21w3s1W21w̃
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s5s1
1

b11
w̃3w ~35!

are equivalent to

w̃5bt1s3w
~36!

s5bW21s1
b

b11
w3t.

Applying this lemma withs5s1, t5t1, w̃5w,r , s5* S1 and assuming~23!,~24! gives the
ordinary differential equations

w,r5bt11s13w, ~37!

R,r5RW21
„b* ~W21s1!1

b

b11
* ~w3t1!…W21, ~38!

where for any vectort we define the matrix *t5(e i jk tk). ~So the two star operations interchan
vectors with antisymmetric matrices.! Consequently, we have the following reconstruction resu

Proposition 3:Supposes1 ,t1PC`(R1,R3) are given functions. Given initial conditions

w~r 0!5w0PR3,

R~r 0!5R0PSO~3!, ~39!

there is a unique quasi-spherical mapF:C 0→C 0 with parameterswPC`(R1,R3), R
PC`(R1,SO(3)) satisfyingw(r 0)5w0, R(r 0)5R0 and such that the shear vectorb satisfies

b~r ,u!5Qt1~r !1u3s1~r !.

Proof: With s1 ,t1 given functions ofr andb5A11uwu2, Eq. ~37! gives an ordinary differ-
ential equation forw, with initial conditionw(r 0)5w0. Since forr P@r 0 ,r 1#

ub~r !t1~r !1s1~r !3w~r !u<2~ uw~r !u11! sup
@r 0 ,r 1#

~ ut1u1us1u!,

by Gronwall’s inequality the solution of Eq.~37! is locally bounded and may be continued to
r PR1. Substitutingw(r ) into Eq. ~38! gives an ode forR(r )PSO(3) with initial condition
R(r 0)5R0, which similarly has a global solutionRPC`(R1,SO(3)). Thequasi-spherical map
defined by the solutionsw(r ),R(r ) via Eq. ~10! has the required shear vectorb by previous
computations.F is the unique map satisfying the initial conditions atr 0 since any quasi-spherica
map may be put into the form~10! and the parameters are then uniquely determined by the in
value problem~37!,~38!,~39!. Q.E.D.

Corollary 4: Supposeurdu1bdru2 is a quasi-spherical form onC 0, with shear vectorb
consisting solely ofl 51 spherical harmonics~i.e., b may be expressed in the form Eq.~25!!.
Then there is a quasi-spherical mapF:C 0→C 0, F(r ,u)5(r,z), such that

F* ~r2udzu2!5ur du1b dru2. ~40!

Furthermore,F is unique up to a rigid Lorentz transformation ofC 0: if F̃:C 0→C 0 is any map
satisfying Eq.~40!, then there isL0PSO0(3,1) such thatF̃5L0+F.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



by

m

quasi-

e.
space-
tech-

ns of

rd
is

r

the
rs

5782 Robert Bartnik: Shear-free null quasi-spherical space–times

                    
Proof: Sinceb is purel 51, the l 51 spherical harmonic coefficient functionss1(r ),t1(r )
are uniquely determined by Eq.~25!, and an appropriate quasi-spherical mapF may be con-
structed using Proposition 3 and initial conditionsw(r 0)50, R(r 0)5I at some radiusr 0. If
F̃:C 0→C 0 also satisfies Eq.~40! thenF̃ is quasi-spherical and hence may be parameterized
Lorentz transformationsL̃ (r ), with parameter functionsw̃(r ) and R̃(r ). Let w05w̃(r 0) andR0

5R̃(r 0) and let L0 be the corresponding Lorentz transformation. BecauseL0* (r 2uduu2)
5r 2uduu2, the mapL0+F is also quasi-spherical satisfying Eq.~40!, and has parametersŵ(r ),
R̂(r ) satisfying the initial conditionsŵ(r 0)5w0, R̂(r 0)5R0. Since the parameterss1 ,t1 are
determined uniquely fromb in Eq. ~40!, uniqueness of the solution of the initial value proble
Eqs.~37!,~38!,~39! implies F̃5L0+F as required. Q.E.D.

Note thatw̃(r ), R̃(r ) can be computed in terms ofw(r ), R(r ) andw0 ,R0 from the identity

L̃5R~R̃!B~w̃!5R~R0!B~w0!R~R!B~w!.

However, it is not true in general that the composition of quasi-spherical maps is again
spherical—L̃ in this identity defines a quasi-spherical map only whenw0, R0 are constant.

III. DEFORMATION OF SPACE–TIME METRICS

We consider now those space–times whose metric can be placed in the form

dsSF
2 522U dz~dr1V dz!1ur du1G dzu2, ~41!

whereG5G(z,r ,u) is an angular vector field, soG satisfiesuTG50. We may verify that the null
congruence defined by the coordinate tangent vector] r is expanding, shear-free and twist-fre
This class includes the Schwarzschild, Robinson–Trautman and accelerated Minkowski
times, and will be further discussed in the following section. For the present, we use the
niques of the previous section to study the effect of quasi-spherical Lorentz deformatio
metrics of the form~41!.

We regarddsSF
2 as defined on~a subset of! R3C 0, and then the metric induces the standa

form r 2uduu2 on C 0. The form~41! is in fact the most general metric form compatible with th
property and such that the coordinatez is null ~characteristic!. Extending previous definitions, fo
any domainV,R3R1 with coordinates (z,r ), we say thatF:V3S2→R3C 0 is quasi-spherical
if the restrictionsF (z,r ) mapS2→C 0 and are quasi-spherical, for each (z,r )PV. As previously,
we shall assumeF is C`.

In order to compute the pullbackF* (dsSF
2 ) using the above techniques, we first rename

polar coordinates in Eq.~41! from (r ,u) to (r,z). Thus we now regard the metric paramete
U,V,G as functions of the coordinates (z,r,z) on the rangeR3C 0 of F, and we reserve (z,r ,u)
for coordinates on the domainV3S2.

The map F may be described using the Lorentz boost and rotation functionsw
PC`(V,R3), RPC`(V,SO(3)) via

F~z,r ,u!5~z,r,z!5„z,r~z,r ,u!,z~z,r ,u!…, ~42!

where as before,

r~z,r ,u!5r f ~u;w~z,r !!5r ~A11uwu21uTw!, ~43!

z~z,r ,u!5z~u;w~z,r !,R~z,r !!5 f 21R~w1Wu!. ~44!

To compute the pullbackF* (dsSF
2 ) we use Eq.~37! and the definitions Eqs.~22!, ~23!, ~24!, ~25!:
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r ,r5
]r

]r
5 f 1r ~u1b21w!Tw,r

5 f 1r ~u1b21w!T~bt11s13w!

5 f 1rwT~Qt11u3s1!1r ~b1wTu!uTt1

5 f ~11ruTt1!1wTb. ~45!

Defining the 3-vector quantitiess0 ,t0 ,ĝ by

S0 :5WR21R,zW ~46!

s0 :5* S01
1

b11
w,z3w ~47!

t0 :5b21S0w1W21w,z5b21~w,z2s03w! ~48!

ĝ:5r ~Qt01u3s0!, ~49!

we similarly find

r ,z5r f ,z5r f uTt01wTĝ ~50!

and thus

F* ~dr!5~ f ~11ruTt1!1wTb!dr1~r f uTt01wTĝ !dz1rwT du. ~51!

Using the identities Eqs.~16!, ~26! and the analogous

rz ,z5RAĝ, ~52!

we also have

F* ~dz!5z ,r dr1z ,z dz1z ,u du5r21RA~b dr1ĝ dz1r du!. ~53!

We denote the pullbacks of the metric functionsU,V,G by a tilde, so, for example,Ũ
5F* (U) andŨ(z,r ,u)5U(z,r(z,r ,u),z(z,r ,u)). Substituting Eqs.~51!, ~53! into Eq.~41! with
coordinates (r,z) replacing (r ,u) as already mentioned, gives

F* ~dsSF
2 !522Ũ~ f ~11ruTt1!1wTb!dz dr22Ũ~ Ṽ1r f uTt01wTĝ !dz222rŨwT du dz

1uRA~r du1b dr1~ ĝ1A21RTG̃ !dz!u2. ~54!

Now recall thatG5G(z,r,z) is angular with respect to the (r,z) coordinates, and note tha
the pullback ofzTG50 simplifies using Eq.~20! to

05 f 21uTA21RTG̃ ,

whereG̃5F* (G)5G(z,r(z,r ,u),z(z,r ,u)). This shows that the vectorA21RTG̃ is purely angu-
lar in the (r ,u) coordinates, and the final term of Eq.~54! becomes
J. Math. Phys., Vol. 38, No. 11, November 1997
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ur du1b dr1~ ĝ1A21RTG̃ !dzu2.

Note also by Eq.~18! that

A21RTG̃5QA21RTG̃5QATAQA21RTG̃5QATRTG̃ . ~55!

Introducing the angular vector

g:5ĝ1A21RTG̃2ŨQw5ĝ1Q~ATRTG̃2Ũw! ~56!

and noting thatwTA215 f wT, the pullback metric becomes

F* ~dsSF
2 !5ur du1b dr1g dzu222Ũ f ~11ruTt1!dr dz

22Ũ~ Ṽ1r f uTt01 1
2ŨuQwu22 f wTRTG̃ !dz2. ~57!

Comparing this metric with the general NQS metric Eq.~1!, which may be written in 3-vector
notation as

dsNQS
2 522u dz~dr1vdz!1ur du1b dr1g dzu2, ~58!

we obtain the main transformation result for shear-free metrics.
Proposition 5: SupposeFPC`(V3S2,R3C 0) for some domainV,R2 and F is quasi-

spherical with respect to the expanding shear-free NQS metricdsSF
2 given by Eq.~41!, with null

coordinatez. Then F is described by Eq.~42! with Lorentz boost and rotation functionsw
PC`(V,R3), RPC`(V,SO(3)), and thepullbackF* (dsSF

2 ) is given by Eq.~57!. Defining the

pullbacksŨ5F* (U), Ṽ5F* (V), G̃5F* (G) and the derived vectorss0 ,s1 ,t0 ,t1 in terms of
w,R via Eqs. ~22!,~23!,~24!, and ~46!,~47!,~48!, the NQS parametersu,v,b,g of the metric
F* (dsSF

2 ) are given explicitly by

u5Ũ f ~11ruTt1! ~59!

uv5Ũ~ Ṽ1r f uTt01 1
2ŨuQwu22 f wTRTG̃ !, ~60!

b5rQt11ru3s1 , ~61!

g5rQt01ru3s01A21RTG̃2ŨQw. ~62!

Moreover,F is a diffeomorphism if the vectort1(z,r ) defined by Eq.~24! satisfies

r ut1u,1, ;~z,r !PV. ~63!

Proof: BecausedsSF
2 is non-degenerate~by assumption!, F will be a diffeomorphism iff the

pullback is also non-degenerate, and this holds exactly whenu, the coefficient ofdz dr in

F* (dsSF
2 ), is non-zero. ButŨÞ0 by assumption, andf 5A11uwu21uTw.0 for all wPR3, u
J. Math. Phys., Vol. 38, No. 11, November 1997
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PS2, so the condition reduces to 11ruTt1.0. Clearly this holds for alluPS2 if and only if Eq.
~63! is satisfied. All other statements of the proposition follow from previous computations.

Q.E.D.

IV. EXAMPLES

A. Spherically symmetric space–times

The metric form

dsSS
2 522U dz~dr1V dr!1r 2uduu2, ~64!

with U,V functions of (z,r ) only, includes the Schwarzschild metric as the special caseU51,
V5 1

2(122M /r ), MPR. The geometric mass functionm5 r /2 (12gabr ,ar ,b) for the general
metric ~64! is given by

2m~z,r !5r ~122V/U !. ~65!

Again switching from (r ,u) to (r,z) coordinates in Eq.~64!, Proposition 5 describesdsSS
2 in

general Lorentz transformed NQS coordinates, with in particularG̃50 and

Ũ~z,r ,u!5U~z,r~z,r ,u!!, Ṽ~z,r ,u!5V~z,r~z,r ,u!!, ~66!

wherer(z,r ,u)5r f (u;w(z,r ))5r (b1uTw), b5A11uwu2. In general the angular dependence
u anduv will be rather complicated, due to the effects ofr-dependence ofŨ,Ṽ in Eq. ~66!.

In the special case of the Schwarzschild metricŨ51, 2Ṽ5122M /r, and the fieldsb,g

given by Eqs.~61!, ~62! with G̃50 are both purel 51 spin-1 spherical harmonics, andu,v satisfy

u5~b1uTw!~11ruTt1!5 f ~11ruTt1!, ~67!

2uv52
2M

r ~b1uTw!
1~b1uTw!~b2uTw12ruTt0!. ~68!

If the boostwPR3 is constant andR5I , then we obtain the rather simple NQS metric parame
b50, g52Qw,

u5b1uTw, 2v5b2uTw2
2M

r ~b1uTw!2
, ~69!

which describe the Schwarzschild space–time in rigidly boosted coordinates.
Since in general the functionsw(z,r )PR3, R(z,r )PSO(3) are arbitrary, subject only t

smoothness and the size condition Eq.~63!, in order to construct challenging exact solutions f
numerical relativity benchmarking, we might choosew,R in any reasonable manner, keepingw
50 andR5I in regions where we wish the solution to remain explicitly equal to the stan
Schwarzschild metric. Note that asymptotic decay conditions may also be readily determine
example the natural conditions

w,r5O~r 22! w,z5O~r 21!

and similarly forR, give boundedu,v andg with b→0 asr→`.
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B. Accelerated Minkowski metric

By moving the base point of the standard future light cone along a timelike curv
Minkowski space, we may construct another class of shear-free NQS metrics. The Mink
metric associated with an accelerated null cone foliation was discussed in Ref. 12, using a
choice of affine parameter on the null rays to determine the radius function. Letz°(p(z),t(z))
PR3,1 be a future-timelike curve in Minkowski space and denote the tangent vector by (ṗ,ṫ), with

(2̇) indicating d/dz. Two possible normalizations forz are ṫ51 and ṫ5A11u ṗu2. Define
C:R3,1→R3,1 by

C~z,r ,u!5FX

TG5Fp~z!1ru

t~z!1r G , ~70!

where (z5t2r ,r ,u) are null-polar coordinates and (X,T) are rectangular coordinates onR3,1.
Note that C maps the future null conez5const. to the future null cone based at (x,t)
5(p(z),t(z)). The accelerated Minkowski metricdsAM

2 :5C* (2dT21udXu2) may be written

dsAM
2 52~ ṫ dz1dr !21u ṗ dz1u dr1r duu2

522~ ṫ2uTṗ!dz~dr1 1
2 ~ ṫ1uTṗ!dz!1ur du1Q ṗ dzu2, ~71!

which is a metric in the shear-free NQS form~41!, with coefficient functions

U5U~z,u!5 ṫ~z!2uTṗ~z!, ~72!

V5V~z,u!5 1
2 ~ ṫ~z!1uTṗ~z!!, ~73!

G5G~z,u!5Q ṗ~z!. ~74!

Note that the timelike conditionṫ.u ṗu ensures thatU,V are both strictly positive.
Proposition 5 gives the NQS coefficients for the Lorentz-transformed metricF* (dsAM

2 ) ~with
dsAM

2 written in (z,r,z) as before!, and we may simplify as follows. The shearb is given simply

by Eq. ~61! and becauseQATRTG̃5QATRTṗ, we find that

g5r ~Qt01u3s0!1Q~2 ṫw1WRTṗ!. ~75!

Since f z5R(w1Wu)5RA21Tu, we have

Ũ5 ṫ2zTṗ5 ṫ2 f 21~w1Wu!TRTṗ

and

Ṽ5 1
2 ~ ṫ1zTṗ!5 1

2 „ṫ1 f 21~w1Wu!TRTṗ…

and G̃5(I 2zzT) ṗ. This gives immediately that

u5~11ruTt1!~ f ṫ2~w1Wu!TRTṗ…, ~76!

and after some computations,
J. Math. Phys., Vol. 38, No. 11, November 1997
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2v5
1

11ruTt1

„~b2uTw!ṫ2~w2Wu!TRTṗ12ruTt0…. ~77!

Notice that the spherical harmonic decompositions ofu,uv contain terms withl 50,1,2 whereas
b,g are both purel 51.

The coordinate system constructed in Ref. 12 corresponds to an NQS metric constructe
the choicesR5I , w5 ṗ(z), with proper time normalization of„p(z),t(z)…. The metric Eq.~12! in
Ref. 12 may be transformed to NQS form with NQS parametersṫ5b, u51, b50, 2v51
12ruTt0, g5rQt01ru3s0, wheret05W21p̈, s05(b11)21p̈3 ṗ. Thus if the accelerationp̈ is
non-zero then bothv,g will be unbounded asr→`. The transformation between the NU and NQ
coordinates amounts to redefining the angular variables~the null cones and quasi-spheres a
unchanged!, and has the effect of moving the conformal isometryP ~cf. Eq.~13! of Ref. 12! to the
NQS fieldg.

Alternatively, the choicew5RTṗ, ṫ5b, with Ṙ5 @1/(b11)# ( ṗp̈T2 p̈ṗT)R gives a Fermi–
Walker transported spatial frame. In this case we have *S05 @b/(b11)# RT( ṗ3 p̈), s050, t0

5W21RTp̈, andu51, 2v5112ruTt0, b50, g5rQt0. I am indebted to Andrew Norton for this
computation. Note that in this case, the parameters (t,p) and (w,R) may be recovered from the
metric datat0(z) by solvingẇ5bt0, Ṙ5(b11)21R(wt0

T2t0wT) and ṗ5Rw, with initial condi-
tions w(z0)50, R(z0)5I andp(z0)50 corresponding to an initial frame at rest.

C. Robinson–Trautman metrics

It was shown by Robinson and Trautman9 that vacuum space–times which contain a n
geodesic congruence which is hypersurface-orthogonal, expanding and shear-free have
larly simple structure. A coordinate transformation10 brings such metrics to the NQS form

dsRT
2 522U dz~dr1 1

2 ~D0U1U22MU22/r !dz!1ur du2U ,u
T dzu2, ~78!

where MPR is constant,D05DS2 is the standard metric Laplacian onS2 and U5U(z,u) is
independent ofr . The vacuum Einstein equations are satisfied bydsRT

2 if U satisfies the nonlinea
parabolic equation

12M
]U

]z
1U3D0K50, ~79!

whereMÞ0 andK5U2(D0 log U11) is the Gauss curvature of the metricU22 ds0
2 conformal to

the standard metricds0
2 on S2. If M50 then the metric reduces to the accelerated Minkow

metrics considered above.9 A global existence theorem for Eq.~79! has been given by Chrus´ciel.13

The RT metric has NQS parametersU, V5 1
2(D0U1U12MU22/r ), b50 andG52U ,u

T ,
and after changing Eq.~79! over to (z,r,z) coordinates, Proposition 5 describes the effect o
general Lorentz deformation of the coordinates. In particular, sinceG̃(z,r ,u)5
2U ,z

T (z,z(z,r ,u)), using the identity

Ũ ,u5DuU~z,z!5 f 21U ,zRAQ

and Eq.~55!, we may simplify terms involvingG̃ :

QATRTG̃52 f Ũ ,u
T ,

f wTRTG̃5wTA21RTG̃52 f wTŨ ,u
T .
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Thus in the RT case Eqs.~60!,~62! become

uv5Ũ~ Ṽ1r f uTt01 1
2ŨuQwu22 f wTŨ ,u

T !, ~80!

g5rQt01ru3s02~ f Ũ ! ,u
T , ~81!

andu5 f Ũ(11ruTt1), b5rQt11ru3s1.
Note that if the Lorentz deformation preservesb50 thenw5w(z), R5R(z) andu5 f Ũ, and

g will remain independent ofr only if s05t050. This requires thatw,R are constant, and the
transformed metric will again be in the explicit RT form of Eq.~78!. This global Lorentz trans-
formation may be used to normalise to zero thel 51 spherical harmonic components
limz→`u(z,u) ~or equivalently, of limz→`g(z,u))—this transformation may be interpreted
defining an asymptotic rest frame for the RT space–time.13,14

V. DISCUSSION

In the case of vanishing shearsNP50 ~and assuming non-zero expansionrNPÞ0 and spheri-
cal sections!, we have seen that the null hypersurfaces are isometric to the standard coC 0

~Proposition 8!, and the residual freedom in the NQS gauge consists precisely of a Lo
transformation at each quasi-sphere. The transformed metric has NQS shearb consisting purely of
l 51 spherical harmonics, and conversely, ifb is pure l 51 then there is an inverse quas
spherical map which transforms the metric into NQS form withb50. Thus thel 51 spherical
harmonic components of the NQS shearb are pure gauge.

Generalized Lorentz transformations preserving the conditionb50 have parameters (w,R)
depending only onz, since Eq.~61! combined with Eqs.~37!,~38! show thatw,r and R,r must
vanish. This remaining gauge freedom may be used to set thel 51 components ofg to zero at

one fixed radiusr 0 as follows. The sixl 51 coefficients of the termsQ(ATRTG̃2Ũw) of g ~cf.
Eq. ~62!! form a nonlinear functional ofw,R, so Lemma 2 may be used to solve forw,z ,R,z from
s0 ,t0, giving a system of ordinary differential equations

d

dz
„w~z,r 0!,R~z,r 0!…5F~z,r 0 ;w,R!,

whereF(z,r 0 ;w,R) is linearly bounded inw. Consequently, there exists a solution which is glo
in z, which in turn ensures~after applying the resulting Lorentz transformation! that g(z,r 0) has
vanishingl 51 components at eachz.

Alternatively, it might be possible to use the gauge freedomw(z),R(z) to normalize thel
51 components ofu(z,r 0) using Eq.~59!, since f 5b1uTw is pure l 50,1 andt150 by the
condition b50. Note that this remaining freedom is similar to that available in the Bondi
Newman–Unti gauges. In any case, it is a plausible conjecture that the gauge freedom rem
in the general NQS metric~1! may be used to eliminate thel 51 components ofb, and that the
freedom remains to make a rigid Lorentz transformation on each null hypersurface.

The interpretation ofl 51 spherical harmonic components as gauge terms has also
noted in the construction of the Regge–Wheeler–Zerilli equations for linearized perturbatio
Schwarzschild.15–17 The gauge-invariant quantities satisfying the RWZ equations are constru
from l >2 components of the metric perturbations. Furthermore, one quantity constructed
the l 51 components represents~non-dynamic! angular momentum17,2 arising from the Kerr
perturbation of the Schwarzschild metric—this quantity corresponds to the linearized limit o
odd~rotational! l 51 component of]z(b/r )2] r(g/r ), and vanishes for the pure gauge variatio
constructed above.
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APPENDIX: SHEAR-FREE SPACE–TIMES

Let N be a null hypersurface in some space–time, with induced~degenerate! metric dsN
2

5gN . An adapted null frameon N is a pair of vector fields (l ,m), where l is a degeneracy
vector fordsN

2 , mPTN ^ C, and (l ,m1m̄, i(m2m̄)) form a real basis forTN , such that

gN ~m,m!5gN ~ l ,l !5gN ~ l ,m!50, gN ~m,m̄!51.

Using¹ to denote the ambient space–time covariant derivative, we define the shear and exp
of dsN

2 ~with respect to the null adapted frame (l ,m)) by

shear5sNP52g~¹mm,l !, ~A1!

expansion5rNP52g~¹mm̄,l !. ~A2!

Although we use the Newman–Penrose notation, the importance of the shear and expans
null geodesic congruence was known prior to Ref. 7—see Ref. 18, for example.

Lemma 6:Let (l ,m) be an adapted null frame forN , then the shear and expansion depe
only on (l ,m) anddsN

2 . In particular we have

sNP52gN ~m,@ l ,m# !, ~A3!

rNP52 1
2 ~gN ~m,@ l ,m̄# !1gN ~m̄,@ l ,m# !!, ~A4!

where@ l ,m# is the Lie bracket.
Proof: The identities~A3!,~A4! are easily verified since@ l ,m#, being the Lie bracket of vecto

fields tangent to the hypersurfaceN , is again tangent toN . Q.E.D.
Lemma 7:Suppose (l 8,m8) is a null adapted frame which presents the same orientation oN

and the null generators as (l ,m). There are real functionsa,l,mPC`(N ) such that

m85eilm1a l , l 85eml , ~A5!

and the shear and expansion satisfy

sNP8 5em12ilsNP, ~A6!

rNP8 5emrNP. ~A7!

Consequently, the conditions ‘‘rNPÞ0, sNP50 everywhere onN ’’ are independent of the
choice of adapted null frame, and we may considersNP /rNP as a section of a spin-2 complex lin
bundle overN .

Proof: The representation~A5! for the frame change follows directly from the orientation a
orthogonality conditions. The formula

@m8,l 8#5em1 il~@m,l #1Dmm l 2 iDllm!1em~aDlm2Dla!l ,

whereDl ,Dm are the directional derivative operators, leads directly to Eqs.~A6!,~A7!. Q.E.D.
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Using the foliation ofN by null generating curves, we may introduce adapted coordin
(r,x3,x4) by requiring (x3,x4) to be constant along the null generators, and then allowingr to be
any parameterization of the null generators. In such coordinates the metric becomes

dsN
2 5hab dxa dxb,

where the indicesa,b have range 3,4 andhab5hab(r,x3,x4). A natural choice of null frame is
l 5]r andm5ma]a , where]r ,]3 ,]4 are the coordinate tangent vectors. Introducing the co
gent vectorma dxa, where thema ,a53,4 are defined by the requirementsmama50, m̄ama51,
we have

hab5mam̄b1m̄amb .

Direct computation using@ l ,m#5]r(ma)]a gives the following expressions for the shear a
expansion with respect to the coordinate-based null framing (l ,m):

sNP5ma]r~ma!5 1
2 mamb]rhab, ~A8!

rNP5 1
2 „m̄a]r~ma!1ma]r~m̄a!…5 1

4 hab]rhab , ~A9!

where@hab#5@hab#
215mam̄b1m̄amb.

If N is shear-free and expanding then the metric onN may be brought into explicitly NQS
form. It should be possible to extend this result to allow some non-zero shear, but the proo
be considerably more difficult.

Proposition 8:SupposeN is a null 3-manifold with everywhere vanishing shear and n
zero expansion, and having spatial cross-sections which are topological spheres. Then the
polar coordinates (r ,q,w) on N .R3S2 such thatdsN

2 5r 2(dq21sin2 q dw2). Note that the
following argument may be easily adapted in case the spatial sections are not spheres.

Proof: Let l 5]r , m5ma]a be a coordinate-based null frame forN . By Eq. ~A8! and the
shear-free condition we have

mamb]rhab50.

Now ]rhab may be decomposed

]rhab5A~mam̄b1m̄amb!1Bmamb1 B̄m̄am̄b ,

whereA is real-valued andB is complex-valued. The shear-free condition shows thatB50 and
the resulting equation]rhab5Ahab may be integrated along each null generator to give

hab~r,x!5expS E
r0

r

A~s,x!dsD hab
0 ~x!,

where hab
0 (x)5hab(r0(x),x) is a fixed metric onS2. Now the Riemann Uniformization

Theorem19 shows there is a diffeomorphismF:S2→S2, x°(q(x),w(x)), and a functionf
PC`(S2,R1) such thathab

0 dxa dxb5f2(x)F* (dq21sin2 q dw2). Using the coordinates (q,w)
to label the null generators gives the representation

dsN
2 5expS Er

ADf2~dq21sin2 q dw2!.

r0
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Now define the positive functionr 5r (r,q,w) by r 5exp(12*r0

r A)f. Since 4rNP5hab]rhab52A, it

follows that

]r

]r
5rrNP.0,

hencer is a valid coordinate, anddsN
2 takes the required form in the coordinates (r ,q,w). Q.E.D.
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Axially symmetric metrics from Laplace’s seed by inverse
scattering method

S. Chaudhuria)

Department of Physics, Gushkara Mahavidyalaya, Gushkara, Burdwan (WB), India

K. C. Das
Department of Physics, Katwa College, Katwa, Burdwan, India
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Two-soliton solutions of axially symmetric Einstein field equations are presented
using two different Laplace’s solutions as seed. The derived stationary solutions
reduce to some well-known solutions such as Schwarzschild, Kerr, Kerr–
Newman–Unti–Tamburino, and Kerns–Wild. The surface geometry of the metrics
namely, the location of singularities, event horizon, infinite red shift surface, sur-
face area of the horizon, and Gaussian curvatures are studied. Finally, the generated
two-soliton solutions are compared with our previous solutions@Pramana, J. Phys.
40, 277 ~1993!#, which was obtained by the method of Gutsunaev–Manko@Gen.
Relativ. Gravit.20, 327 ~1988!# for the same set of Laplace’s solutions as seed.
The comparison shows that the solutions generated from the Inverse Scattering
Method of Belinskii–Zakharov@Sov. Phys. JETP48, 985 ~1978!; 50, 1 ~1979!# is
more general than the solutions obtained from the method of Gutsunaev–Manko
@Pramana, J. Phys.40, 277 ~1993!#. © 1997 American Institute of Physics.
@S0022-2488~97!04010-3#

I. INTRODUCTION

Einstein field equations for a stationary axially symmetric metric are highly nonlinea
nature and only simple solutions are obtained by a conventional method. Several transfor
techniques are thus developed that give new solutions from the old. Among the many meth
vogue, is the inverse scattering method discovered by Belinskii and Zakharov.1,2 In the inverse
scattering method~ISM!, the nonlinear differential equations are reduced to a linear eigenv
problem with an explicit eigenfunction and the unknown functions of the original nonlinear e
tions are included as the potential terms in the linear eigenvalue equations. Several author
as Letelier,3–5 Verdaguer,6 Alekseev,7 Das,8 and others, extended the above method to incl
various cases and obtained a series of new axially symmetric stationary solutions. Some o
deserve special interest in astrophysics.

The other elegant method, known as HKX transformation, was discovered by Hoense
Kinnersley, and Xanthopoulos.9 Recently, Gutsunaev and Manko10 published a simple method o
obtaining axially symmetric stationary solutions of Einstein equations from Laplace’s
Quevedo11 also presented a similar method. Both the method bears its genesis in the HKX
theoretic approach.12 Cosgrove13 pointed out a formal similarity between the ISM and gro
theoretic method from a general point of view. The similarity/dissimilarity is well exposed w
one obtains a solution of Einstein field equations by applying both the methods separately
the same seed. In this paper, we obtain a set of axially symmetric stationary solutions of E
field equations by ISM and compare them with our previous solutions14 obtained by the
Gutsunaev–Manko method. It is observed that two-soliton solutions obtained from ISM are
general than the solutions obtained by the Gutsunaev–Manko method.

In Sec. II, we present two sets of two-soliton solutions obtained from two sets of Lapl

a!Address for correspondence: c/o B. Konar, 6 Chaudhuri Lane, R. K. Palli, Badamtala, Burdwan~W.B.!, India.
0022-2488/97/38(11)/5792/15/$10.00
5792 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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seed. These solutions are new and reduce to our previous solutions,14 when the constant param
eters are properly adjusted. Further adjustment of the constants reduce the metric to
Newman–Unti–Tamburino~NUT!,15 Kerr,16 and hence to the Schwarzschild metric, where
another set reduces to the Kerns–Wild metric17 and, therefore, is more general than the Kern
Wild solution.

The geometrical structures of our newly constructed metrics are studied in Sec. III
surface area of the event horizon and the Gaussian curvatures of the metrics are calcula
their variations with the strength of the superposing field are discussed.

In Sec. IV, the results obtained in the present paper are compared with the results
previous paper,14 where the same two sets of Laplace’s solutions are used for obtaining solu
of axially symmetric stationary vacuum metrics by the method developed by Gutsunaev–Ma10

A brief discussion on the nature of newly constructed metrics is also given in the Conclu

II. TWO-SOLITON SOLUTIONS (DIAGONAL SEED)

In this section, two sets of two-soliton solutions are presented that are constructed fro
different Laplace’s seed. The derived solutions in set 1 are found to be physically well beha
spatial infinity, whereas the solutions presented in set 2 are not asymptotically flat, due
particular choice of the seed. On imposing some restrictions on the constants appearing
solutions, some well-known metrics such as Schwarzschild, Kerr, Kerr–NUT, and Kerns–
are reproduced.

The stationary axially symmetric metric can be written in the form

ds25gAB dxA dxB1en~dr21dz2!, ~2.1!

where the indicesA,B take the values 1, 2 andt, f5x1, x2. ThegAB andn are functions ofr and
z only.

The Einstein equations for the metric~2.1! can be written in the matrix form as2

Ur1Vz50, ~2.2!

n r52r 211~4r !21 Tr~U22V2!, ~2.3!

nz5~2r !21 Tr~UV!, ~2.4!

where

U5rgrg
21 and V5rgzg

21. ~2.5!

The subscriptsr andz denote partial differentiations. The metric coefficientn can be determined
from Eqs. ~2.3! and ~2.4! and soliton solutions are obtained by solving the following line
eigenvalue equations:

S ] r1
2lr

l21r 2 ]lDV5
rU 1lV

l21r 2 V, ~2.6!

S ]z2
2l2

l21r 2 ]lDV5
rV2lU

l21r 2 V, ~2.7!

wherel is a complex parameter and the eigenfunctionV is a two-dimensional matrix that reduce
to g(r ,z) when the spectral parameterl is set equal to zero, i.e.,

V~r ,z,l!ul505g~r ,z!. ~2.8!
J. Math. Phys., Vol. 38, No. 11, November 1997
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Once the eigenfunctionV is known, physically realisticgAB
ph can then be calculated and new met

coefficients are thus determined.
For physically realistic solutions, we have the subsidiary condition

det g52r 2, ~2.9!

whereg is a 232 matrix associated togAB .
The derived metric coefficients are obtained from the following relations:

gAB8 5~g0!AB2 (
k,l 51

N NA
~ l !~G21! lkNB

~k!

mkm l
, ~2.10!

Gkl5
mC

~k!~g0!CAmA
~ l !

mkm l1r 2 , ~2.11!

mA
~k!5mOC

~k! @V21~r ,z,l5mk!#CA , ~2.12!

NA
~k!5mB

~k!~g0!BA , ~2.13!

mk5vk2z6@~vk2z!21r 2#1/2, ~2.14!

wheremOC
(k) andvk are arbitrary constants,V21(r ,z,l) is the inverse of the matrixV(r ,z,l) and

either of the ‘‘plus’’ or ‘‘minus’’ sign in ~2.14! is allowed. HereN is the number of solitons, i.e.
the number of poles that appears in the scattering matrix.

The new metric coefficientgAB8 given in Eq.~2.10! is a solution to~2.2!, but, in general, it
does not satisfy Eq.~2.9!. Physically realisticgAB

ph are thus defined by

gAB
ph 52r ~2det g8!21/2gAB8 , ~2.15!

where

det g85~21!Nr 2NS )
k51

N
1

mk
2D det g0 . ~2.16!

For generalN-soliton solutions then function is given by4

nN5n01 lnF r 2N2/2S )
k51

N

mkD N11

)
k,l 51
k. l

N

~mk2m l !
22 det GklG1 ln CN , ~2.17!

whereCN are arbitrary constants andn0 is then function of the static metric.
We now consider the diagonal axially symmetric metric in the form

ds25en0~dr21dz2!1r 2e2c df22ec dt2, ~2.18!

where n0 and c are functions ofr and z only, c is a solution of Laplace’s equation, andn0

satisfies the relation

n0~c!52c1
1

2 E r @~c r
22cz

2!dr12c rcz dz#. ~2.19!

The metric functiong0 corresponding to metric~2.18! is given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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g05S 2ec 0

0 r 2e2cD . ~2.20!

We further assume that the eigenfunction,

V5S 2eFk 0

0 ~r 222lz2l2!e2Fk
D . ~2.21!

where

Fk5Fk~r ,z,l!

and

Fk~r ,z,l!ul505c~r ,z!. ~2.22!

Thus, if Fk and the Laplace’s solutionc are known, the stationary metric~2.1! can be solved
completely. In the soliton technique, as one requires the solutions along the pole trajectol
5mk ; Fk depends on the values ofmk .

In prolate spheriodal coordinates (x,y), defined by

r 25K2~x221!~12y2!,

z5z11Kxy,
~2.23!

z1 andK are constants; for two-soliton solutionsmk8s are given by

m15K~x11!~12y!, ~2.24!

m25K~x21!~12y!. ~2.25!

The equations for calculatingF1 andF2 , in prolate spheroidal coordinates, are

F1,x5
~12y!

2~x2y!
@~x21!cx1~12y!cy#, ~2.26!

F2,x5
~11y!

2~x1y!
@ ~x11!cx1~12y!cy#, ~2.27!

F1,y5
~x21!

2~x2y!
@~11y!cy2~x11!cx#, ~2.28!

F2,y5
~x11!

2~x1y!
@~11y!cy2~x21!cx#, ~2.29!

where the subscripts 1, 2 refer to different values ofFk for different values ofmk and the
subscriptsx,y denote partial differentiations.

We have taken two sets of Laplace’s solutionc and constructed two sets of stationary a
symmetric solutions of Einstein field equations.

Set 1:We take the Laplace’s solution

c5a0~x1y!21, ~2.30!
J. Math. Phys., Vol. 38, No. 11, November 1997
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a0 being a constant.
From ~2.26!–~2.29!, it is found that

F15 1
2 a0~11y!~x1y!21, ~2.31!

F25 1
2 a0~11y!~x11!~x1y!22. ~2.32!

From ~2.10!–~2.21!, one thus obtains, after some calculations,

g11
ph52ea0 /~x1y!

1

L1
@c1

2~12y2!e2k11c2
2~12y2!e22k1

2c3
2~x221!e22k22c4

2~x221!e2k212c1c2~x22y2!#, ~2.33!

g22
ph5K2~x221!~12y2!e2a0 /~x1y!

1

L1
Fc1

2 ~11y!3

~12y!
e2k1

1c2
2 ~12y!3

~11y!
e22k12c3

2 ~x21!3

~x11!
e2k22c4

2 ~x11!3

~x21!
e2k212c1c2~x22y2!G , ~2.34!

g12
ph52K

1

L1
@~x1y!$c1c3~x21!~11y!ek32c2c4~x11!~12y!e2k3%

2~x2y!$c1c4~x11!~11y!ek42c2c3~x21!~12y!e2k4%#, ~2.35!

n25n02 ln@64K6~12y!2~x221!~x22y2!#1n281 ln c28 , ~2.36!

n285 ln@4K4~x221!~12y!2L1#, ~2.37!

n052
a0

~x1y! F11
a0

2
~x221!~12y2!~x1y!23G , ~2.38!

where

L15c1
2~11y!2e2k11c2

2~12y!2e22k11c3
2~x21!2e22k21c4

2~x11!2e2k222c1c2~x22y2!,
~2.39!

k15
a0~y212xy11!

2~x1y!2 , ~2.40!

k25
a0~12y2!

2~x1y!2 , ~2.41!

k35k12k2 , ~2.42!

k45k11k2 , ~2.43!
J. Math. Phys., Vol. 38, No. 11, November 1997
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c15
m02

~1!m02
~2!

4v1v2
, c25m01

~1!m01
~2! ,

c352
m02

~1!m01
~2!

2v1
, c452

m02
~2!m01

~1!

2v2
,

~2.44!

such thatc1c25c3c4 .
Now by proper adjustment of the constantsc1 , c2 , c3 , c4 , anda0 , the constructed solution

~2.33!–~2.35! can be reduced to some familiar metrics. For example, we have the following
~i! If one takesa050, c15c25c350, Eq. ~2.33! assumes the form

g11
ph5S x21

x11D .

This is Schwarzschild’s solution.
~ii ! With a050 and redefining the constants as

c32c45K, c31c452m, c11c25a,

and

c12c25q, such thatK21a22q25m2, ~2.45!

one obtains from~2.33!,

g11
ph5

K2x21a2y22~m21q2!

~Kx1m!21~ay1q!2 . ~2.46!

This is a Kerr–NUT solution with NUT parameterq.
~iii ! The Kerr solution can be obtained from~2.46! on substituting the NUT parameterq

50 ~i.e., c15c2! andg11
ph becomes

g11
ph5

u2x21v2y221

~ux11!21v2y2 , ~2.47!

whereK5mu anda5mv, such thatu21v251.
~iv! When no restrictions are imposed on the constantsa0 , c1 , c2 , c3 , andc4 , the solutions

given by ~2.33!–~2.35! may be interpreted as a nonlinear superposition of a Kerr metric with
arbitrary gravitational field exp@a0(x1y)21#. Our solution~2.33! thus includes the Schwarzschild
Kerr, and Kerr–NUT solutions.

The asymptotic expansion ofg11
ph becomes

g11
ph511

1

n1
~2n21a0n1!

1

x
1

1

n1
2 @n52n1~2n31a0n1!y#

1

x2 1••• , ~2.48!

where
J. Math. Phys., Vol. 38, No. 11, November 1997
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n15~c32c4!2, n25c3
22c4

2,

n35c1
22c2

2, n45~c11c2!2,

n554n2
222n1~n11n4!12a0n1S n21

a0n1

4 D .

~2.49!

The constantsc1 , c2 , c3 , andc4 are given in~2.44!. The solution~2.48! is asymptotically flat at
x→` and contains the monopole, dipole, and other higher mass multipoles. Withc15c25c3

50, a050 one obtains the corresponding Schwarzschild expression.
Set 2:Let us take another Laplace’s solution,

c5a0xy, ~2.50!

and proceed to calculate the metric functions. In this caseF1 andF2 are found to be

F15
a0

2
~x1xy2y!, ~2.51!

F25
a0

2
~x1xy1y!. ~2.52!

From ~2.10!–~2.21!, one obtains

g11
ph52ea0xy

1

L2
@c1

2~12y2!e2a0x1c2
2~12y2!e22a0x2c3

2~x221!e22a0y

2c4
2~x221!e2a0y12c1c2~x22y2!#, ~2.53!

g22
ph5K2~x221!~12y2!e2a0xy

1

L2
Fc1

2 ~11y!3

~12y!
e2a0x1c2

2 ~12y!3

~11y!
e22a0x

2c3
2 ~x21!3

~x11!
e22a0y2c4

2 ~x11!3

~x21!
e2a0y12c1c2~x22y2!G , ~2.54!

g12
ph52K

1

L2
@~x1y!$c1c3~x21!~11y!ea0~x2y!2c2c4~x11!~12y!e2a0~x2y!%

2~x2y!$c1c4~x11!~11y!ea0~x1y!2c2c3~x21!~12y!e2a0~x1y!%#, ~2.55!

n25n02 ln@64K6~x221!~12y!2~x22y2!#1n281 ln c28 , ~2.56!

n285 ln@4K4~x221!~12y!2L2#, ~2.57!

n052a0Fxy1
a0

4
~x221!~12y2!G , ~2.58!

where the constantsc1 , c2 , c3 , c4 are defined in~2.44! andL2 is given by

L25c1
2~11y!2e2a0x1c2

2~12y!2e22a0x1c3
2~x21!2e22a0y1c4

2~x11!2e2a0y22c1c2~x22y2!.
~2.59!
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When the constantsa0 , c1 , c2 , c3 , and c4 , are adjusted as in Set 1, one obtains
Schwarzschild, Kerr–NUT, and Kerr solutions from~2.53!.

With a0Þ0, c15c25c350,

g11
ph5S x21

x11Dea0xy, ~2.60!

which is the Kerns–Wild metric.17 This according to Kerns and Wild is the Schwarzschild me
embedded in a gravitational field.

When a0Þ0 and the constantsc1 , c2 , c3 , c4Þ0, the solutions given in~2.53!–~2.59! as-
sumes its general form. The generated metric thus contains Schwarzschild, Kerns–Wild, Ke
Kerr–NUT metrics. The solutions~2.53!–~2.59! can then be interpreted as the nonlinear super
sition of a Kerr metric with a gravitational field represented by the termea0xy. The parametera0

is a measure of the strength of the superposing field.

III. SURFACE GEOMETRY

In this section, the structure of our derived metrics for two-soliton solutions is investig
The event horizon, the infinite red shift surface, and the location of singularities are investi
The surface area of the event horizon and the Gaussian curvatures of the metrics for two
@Eqs.~2.30! and~2.50!# are evaluated and the variations of these parameters witha0 are discussed

In prolate spheroidal coordinates (x,y), the generated stationary metric assumes the form

ds25K2en2~x22y2!F dx2

x221
1

dy2

12y2G1g22
ph df212g12

ph dt df2g11
ph dt2; ~3.1!

Set 1: In this case c5a0~x1y!21. ~2.30!

The metric with Laplace’s seed given in~2.30! has two important surfaces, namely, the eve
horizon and the infinite red shift surface. The event horizon, which, according to Penrose,18 is a
null hypersurface and is the boundary of the asymptotic region, from which time-like curves
escape to infinity. There may be one or more event horizons. The event horizon of our metri~3.1!
is atx5xh51. The infinite red shift surface~i.r.s.! is obtained by puttingg11

ph50. It is found from
Eq. ~2.33! that xi.r.s.5x(y) and, in general,xi.r.s..xh . However, at the poles,y561 ~i.e., at
u50,p!, the event horizon and the infinite red shift surface touches each other. Thus the
horizon is always covered by the infinite red shift surface and the ergosphere, the reg
between the event horizon and the infinite red shift surface, has Kerr-like properties.

A preliminary investigation shows thatg11
ph given by~2.33! is singular atx561, y561, and

the space–time region exterior to the hypersurfacex51 is not free from singularities. Although
there exists a singularity atx51, y521, but this does not restrict the surfacex51 to be an event
horizon, because the true nature of the singularities may be compactified by the coordinate
at the poles. Moreover, the superposition of multipole moments may give rise to finitely m
singular points on the event horizon, while there are portions thereof left that remain regu
such a way that the event horizon is not singular everywhere.19 The seed function is singular a
x1y50, and this singularity also exists in the derived metric~2.33!. On the equatorial plane, i.e
at y50, at least one singular point exists forx.1. This is justified by a computer calculation. Th
exact position of the singularity, however, depends on the values ofc1 , c2 , c3 , c4 , anda0 .

An investigation using computer shows that with fixed values ofc1 , c2 , c3 , c4 , andy>0, but
for different values ofa0 , singular points shifts to different locations, and the variation in
positions of singular points differ appreciably witha0 . The x coordinate of the singular poin
increases with the increment ofa0 . It is also noticed that with an increasing value ofy ~i.e., 1
.y.0! the positions of the singularities come closer to thex51 value. Further, when the value
J. Math. Phys., Vol. 38, No. 11, November 1997
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of c3 and c4 are interchanged, a considerable variation in the location of the singular po
noticed, while with the interchange of the values ofc1 andc2 , the location of the singular point
also shifts, but not as prominent as in the former. It may, therefore, be concluded that the lo
of singular points depend primarily on the values ofc3 andc4 , as compared toc1 andc2 . This is
found to be true for all values ofy>0.

With proper adjustment of the constantsc1 , c2 , c3 , c4 , anda0 , the metric~2.33! reduces to
the Kerr metric. The Kerr metric singularities are also investigated for different sets of value
are found to coincide with the prior investigations on Kerr.

Although the event horizonx51 remains intact for all values ofa0 , the infinite red shift
surface covering the event horizon is distorted for different values ofa0 . Even a choice of
c1 ,c2 ,c3 ,c4 (c3,c4) corresponding to the Kerr metric, give rise to a dumb-bell-shaped struc
of the infinite red shift surface witha0Þ0. This becomes more prominent for a greater value
a0 . An interpretation of the distorted structure of the infinite red shift surface is a subje
further work.

At the event horizon, i.e., atx51 and t5const, the metric~3.1! can be treated as a two
dimensional line element given by

ds25K2en2 dy21g22
ph df2. ~3.2!

Heren2 andg22
ph are to be taken atx51.

Under a coordinate transformation,y5cosu, the metric~3.2! can be written in the form

ds25guu du21gff df2, ~3.3!

where

guu5
K2

~c42c3!2 H1e2a0 /~11cosu!. ~3.4!

gff5
16K2c4

2

H1
sin2 ue2a0 cosu/~11cosu!, ~3.5!

and

H15@c1~11cosu!ea0/22c2~12cosu!e2a0/2#214c4
2e2a0~12cosu!/~11cosu!. ~3.6!

The surface area of the event horizon can be derived in the following manner:20

S5E
0

2pE
0

p
Aguugffdu df, ~3.7!

516pK2
c4

~c42c3!
e2a0/2. ~3.8!

With a050 andc350, one arrives at the Schwarzschild expression,S54pR0
2, whereR052m

andm5K.
The Gaussian curvature is a measure of the geometry intrinsic to the horizon itself and

case of metric~3.3! it can be derived from the relation21

C52
1

2EG

d

du S 1

EG

dG2

du D , ~3.9!
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where

E~u!5Aguu and G~u!5Agff. ~3.10!

After some algebera, it is found that

C52
~c42c3!2

2K2 ea0FB4

B1
2

1

B1
2 ~2B3B51B2B6!1

2

B1
3 B2B5

2G , ~3.11!

where

B15c812c5 cosu1c7 cos2 u14c4
2ea0~12cosu!/~11cosu!,

B25sin2 ue2a0 cosu/~11cosu!,

B352@2 cosu1a0~12cosu!/~11cosu!#ea0 cosu/~11cosu!,
~3.12!

B45F2H a0

~11cosu!221J 1
a0

~11cosu!2 H 2 cosu1
a0~12cosu!

~11cosu! J Ge2a0 cosu/~11cosu!,

B552c512c7 cosu28a0

c4
2

~11cosu!2 e2a0~12cosu!/~11cosu!,

B652c7116a0c4
2 ea0~12cosu!/~11cosu!

~11cosu!3 116a0
2c4

2 ea0~12cosu!/~11cosu!

~11cosu!4 ,

and

c55c1
2ea02c2

2e2a0, c65c1
2ea01c2

2e2a0,

c75c612c1c2 , c85c622c1c2 .
~3.13!

On substitutinga050 andc15c25c350, Eq.~3.11! reduces to the corresponding Schwarzsch
expression,CS51/R0

2, whereR052K.
The curvature at the poleu50, becomes@from ~3.11!–~3.12!#

cu505
~c42c3!2ea0/2

4~c1
2ea01c4

2!K2 F S a0

2
11D ~c4

22c1
2ea0!22c1c2G . ~3.14!

When

S a0

2
11D ~c4

22c1
2ea0!52c1c2 , ~3.15!

the curvature becomes zero. The region, where the above condition~3.15! is satisfied, looks like a
plane.

A zone of negative curvature develops around the poleu50, if the values ofa0 , c1 , c2 , and
c4 satisfy the following condition:

S a0

2
11D ~c4

22c1
2ea0!,2c1c2 , ~3.16!
J. Math. Phys., Vol. 38, No. 11, November 1997
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andc4
2.c1

2ea0. If c4
2,c1

2ea0 and both the constantsc1 andc2 are either positive or negative, the
the curvature would always be negative. The negative curvature regions cannot be visu
because these regions cannot be globally embedded in a flat Euclidean 3-space. Thus, de
on the values ofa0 , c1 , c2 , and c4 , geometrically one can classify the metric~3.1! into two
categories. One is a distorted sphere having positive curvature with which we are accusto
in the familiar three-dimensional Euclidean space and the other is a sphere having regi
negative curvature.

As there exists a singularity of our derived metric atx51, y521, it is very difficult to obtain
an expression for curvature at the pole 05p.

The curvature at the equator, i.e., atu5p/2, is found to be

Cu5p/25
~c42c3!2ea0

2K2P1
3 FP1

2S 12a02
a0

2

2 D 1P1~R122a0Q1!24Q1
2G , ~3.17!

where

P15C814c4
2ea0,

Q15c524a0c4
2ea0,

R15c718a0~a011!c4
2ea0.

~3.18!

From ~3.17!–~3.18! it is very difficult to predict the exact nature ofCu5p/2 directly. However,
when analyzed using a computer, it is found that for an arbitrary set of values of the constanc1 ,
c2 , c3 , andc4 , the curvature at the equator is an increasing function ofa0 . A zone of negative
Gaussian curvature is observed only whena0 becomes negative.

Set 2: In this case c5a0xy. (2.50)

The event horizon corresponding to metric~3.1! is atx5xh51, and the infinite red shift surface i
obtained by equating~2.53! to zero. As in set 1, it is also found thatxl.r.s..xh and the event
horizon is always covered by the infinite red shift surface. These two surfaces touch at the
This is anologous to the Kerr metric.

The derived metric~2.53!–~2.55! is not asymptotically flat. At the poles, i.e., aty561 and
x561, there exists a singularity and on the equatorial planey50, at least one singular poin
exists.

At an even horizon, i.e. atx51, t5const, and under the coordinate transformationy
5cosu, the metric~3.1! takes the form

ds25guu du21gff df2, ~3.19!

where

guu5
K2

~c42c3!2 H2e2a0 cosu, ~3.20!

gff5
16K2c4

2

H2
sin2 uea0 cosu, ~3.21!

and

H25@c1~11cosu!ea02c2~12cosu!e2a0#214c4
2e2a0 cosu. ~3.22!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The surface area of the event horizon becomes

S516pK2
c4

~c42c3!
. ~3.23!

The surface area thus remains constant in this case. The corresponding Schwarzschild’s ex
is obtained on substitutingc350 in ~3.23!.

The Gaussian curvature of the metric~3.19! is found to be

C52
~c42c3!2

2K2 FB48

B18
2

1

B18
2 ~2B38B581B28B68!1

2

B18
3 B28B58

2G , ~3.24!

where

B185c7812c58 cosu1c68 cos2 u14c4
2e2a0 cosu,

B285sin2 uea0 cosu,

B385~a0 sin2 u22 cosu!ea0 cosu,
~3.25!

B485@a0
2 sin2 u22~2a0 cosu11!#ea0 cosu,

B5852c5812c68 cosu18a0c4
2e2a0 cosu,

B6852c68116a0
2c4

2e2a cosu,

and

c585c1
2e2a02c2

2e22a0, c685~c1ea01c2e2a0!2, c785~c1ea02c2e2a0!2. ~3.26!

Equation~3.24! agrees with the corresponding Schwarzschild expression when one puts,a050
andc15c25c350.

The curvature at the poleu50 becomes~assumingc1.c4!

Cu505
~c42c3!2b2

2e23a0

4K2b1
4 F ~2a021!e2a02

2b3

b2
2 G , ~3.27!

where

b1
25c1

21c4
2, b2

25c1
22c4

2, b35c1c2 . ~3.28!

The curvature decreases as the value ofa0 increases. When (2a021)e2a052b3 /b2
2, the curva-

ture is zero, i.e., the surface becomes a plane. A zone of negative curvature develops aro
pole, if the values ofa0 , c1 , c2 , andc4 are such that they satisfy the following condition:

~2a021!e2a0,
2b3

b2
2 . ~3.29!

However, whenc4.c1 , the expression for curvature at the poleu50 is somewhat different from
~3.27! and becomes
J. Math. Phys., Vol. 38, No. 11, November 1997
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Cu505
~c42c3!2b4

2e23a0

4K2b1
4 F ~122a0!e2a02

2b3

b4
2 G , ~3.30!

where

b4
25c4

22c1
2.

The curvature also decrease with the increases ina0 . The condition for obtaining negative cur
vature, in this case, becomes

~122a0!e2a0,
2b3

b4
2 . ~3.31!

At the other pole, i.e., atu5p, the curvature becomes (c4.c2)

Cu5p5
~c42c3!2b6

2e3a0

4K2b5
4 F ~2a011!e22a02

2b3

b6
2 G , ~3.32!

where

b5
25c2

21c4
2, b6

25c4
22c2

2. ~3.33!

Thus, with the increase in the value ofa0 , the curvature increases, and vice versa. A nega
curvature region develops around the poleu5p, if the following condition is satisfied:

~2a011!e22a0,
2b3

b6
2 . ~3.34!

From ~3.27!–~3.31!, it may be concluded that at the poleu50, a zone of negative Gaussia
curvature develops for eitherc4,c1 or c4.c1 . However, to maintain the negative curvatu
intact for the said two cases, some restrictions on the values ofa0 are imposed automatically
Whenc4.c1 , the curvature atu50 is negative fora0< 1

2, irrespective of the inequality in~3.29!,
as long as bothc1 and c2 are either positive or negative. When eitherc1 or c2 is negative and
a0, 1

2, the condition for obtaining a negative curvature would be (2a021)e2a0.2b3 /b2
2. When

a0> 1
2 and eitherc1 or c2 is negative, the curvature will then always be positive. On the o

hand, whenc4.c1 @Eq. ~3.30!#, the restriction on the value ofa0 for obtaining a negative
curvature isa0> 1

2, andc1 andc2 are both positive or negative. But if eitherc1 or c2 is negative
anda0< 1

2, the curvature is positive, and fora0. 1
2 the condition for obtaining negative curvatu

will be (122a0)e2a0.2b3 /b4
2. However, at the other poleu5p, as long as bothc1 andc2 are

either positive or negative, the curvature is found to be negative ifc4.c2 , and Eq.~3.34! is
obeyed. Whenc2.c4 , the curvature is always negative.

The curvature at the equatoru5p/2 becomes

Cu5p/25
~c42c3!2

2K2P2
3 @P2

2~22a0!12P2~R212a0Q2!28Q2
2#, ~3.35!

where

P25c7814c4
2, Q25c5814a0c4

2, R25c6818a0
2c4

2. ~3.36!

It is a hard task to find the variations ofCu5p/2 with a0 . However, a preliminary compute
analysis shows that for a fixed set of values of the constantsc1 , c2 , c3 , andc4 , the curvature at
J. Math. Phys., Vol. 38, No. 11, November 1997
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the equator increases for small values ofa0 . If the value ofa0 is continuously increased, th
curvature first enters into the negative zone and then becomes positive again. The extensio
negative zone is different for different cases.

IV. COMPARISON WITH THE GUTSUNAEV–MANKO METHOD

Gutsunaev and Manko10 presented a method of obtaining axially symmetric stationary s
tions of Einstein’s field equations from Laplace’s seed. Later, Manko and his co-workers
extended the above method. For details of their procedure see Refs. 10, 22, 23, and 24.

We, in a paper,14 used two sets of Laplace’s solutions~2c! @i.e., 2c5a0(x1y)21 and 2c
5a0xy# as seeds and obtained solutions of stationary axially symmetric metrics by
Gutsunaev–Manko method.10 The derived metric functionf , in a simplified form, is given by the
following:

~i! Set 1: 2c5a0~x1y!21, ~4.1!

f 52ea0 /~x1y!

3
@a2~12y2!e2k11a2~12y2!e22k12~x221!e2k22a4~x221!e22k212a2~x22y2!#

@a2~11y!2e2k11a2~12y!2e22k11~x11!2e2k21a4~x21!2e22k222a2~x22y2!#
,

~4.2!

wherea is a new constant andk1 andk2 are given by~2.40!–~2.41!:

~ii ! Set 2: 2c5a0xy, ~4.3!

f 52ea0xy

3
@a2~12y2!e2a0z0x1a2~12y2!e22a0z0x2~x221!e2a0z0y2a4~x221!e22a0z0y12a2~x22y2!#

@a2~11y!2e2a0z0x1a2~12y!2e22a0z0x1~x11!2e2a0z0y1a4~x21!2e22a0z0y22a2~x22y2!#
.

~4.4!

z0 is another constant.
Since the same two sets of Laplace’s solutions are used as seeds in both the metho

results obtained in the present paper may now be compared with that obtained by the me
Gutsunaev and Manko. Comparing Eqs.~2.33! and~4.2!; ~2.53! and~4.4!, one finds that the metric
functionsg11

ph and f obtained by two different methods, starting from the same seed, are simi
nature. The only difference lies in the number of constants and their combinations, which,
ever, can be readjusted to make the metrics look the same without affecting the nature of m
For example, if one assumesc15c25Ac35a, c451, andz051, Eqs.~2.33! and~4.2!; ~2.53! and
~4.4! become identical. Further, it has been shown that the well-known Schwarzschild, the
and Kerns–Wild metrics can also be reproduced from the solutions obtained by each of the
methods. Thus, the method developed by Gutsunaev–Manko10 is related to the inverse scatterin
method of Belinskii and Zakharov1,2 for two-soliton solutions only. The solution~2.33! obtained
by the ISM, in addition to Schwarzschild and Kerr solutions, contains the Kerr–NUT solu
while the solution~4.2! obtained by the method of Gutsunaev–Manko with the same Lapla
solution as seed contains only the Schwarzschild and Kerr solutions due to the absence of th
parameter.

V. CONCLUSION

In this paper, we presented two-soliton solutions of Einstein field equations using two d
ent Laplace solutions as seed in the general static axially symmetric metric. It is found that
J. Math. Phys., Vol. 38, No. 11, November 1997
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1, the solutions@Eqs.~2.33!–~2.35!# become asymptotically flat at spatial infinity and by suitab
adjustment of the constants, the derived solutions can be reduced to the Schwarzschild
NUT, and Kerr metrics. It is thus a new metric and can be interpreted as the nonlinear su
sition of Kerr metric with an arbitrary gravitational field represented by the term exp@a0(x
1y)21#. The singularities of the solutions were studied and it was found that the space coord
of the singular points depend on the values of the constantsc1 , c2 , c3 , c4 and on the strength o
the superposing fielda0 . It was also noted that the singular points depend primarily on the va
of c3 andc4 as compared toc1 andc2 . With the variations in the value ofa0 , the infinite red shift
surface becomes distorted and assumes a dumbbell-shaped structure, especially for large v
a0 . This is perhaps due to a fission into two or more Kerr objects. In set 2, the stationary m
@Eqs. ~2.53!–~2.55!# after some readjustment of the constants, reduces to the Schwarzs
Kerr–NUT, Kerr, and Kerns–Wild metrics. However, the metric is not asymptotically flat bec
the seed solution is not spatially well behaved at infinity. It can be interpreted as the stat
generalization of the Kerns–Wild metric. The Gaussian curvatures of our derived metrics ar
evaluated. When certain restrictions are imposed on the values ofa0 and on the constant
c1 ,c2 ,c3 ,c4 , zones of negative curvature develop around the polar and equatorial regions

Finally, in Sec. IV, our derived metrics obtained by ISM are compared to our prev
solutions@Eqs.~4.2! and~4.4!# obtained by the method of Gutsunaev and Manko, using the s
sets of Laplace’s solutions as seed. The results obtained by both the methods were foun
similar in nature and restrictions on the constants cause them to look alike.
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Flat wormholes from cosmic strings
Gérard Clémenta)

Laboratoire de Gravitation et Cosmologie Relativistes, Universite´ Pierre et Marie Curie,
CNRS/URA769, Tour 22-12, Boıˆte 142, 4 place Jussieu, 75252 Paris cedex 05,
France

~Received 5 February 1997; accepted for publication 9 June 1997!

We describe the analytical extension of certain cylindrical multi-cosmic string met-
rics to wormhole spacetimes with only one region at spatial infinity, and investigate
in detail the geometry of asymptotically Minkowskian wormhole spacetimes gen-
erated by one or two cosmic strings. We find that such wormholes tend to lengthen
rather than shorten space travel. Possible signatures of these wormholes are briefly
discussed. ©1997 American Institute of Physics.@S0022-2488~97!02110-5#

I. INTRODUCTION

It has long been recognized that the equations of general relativity carry information no
about the local geometry of spacetime, but also about its possible global topologies. Early w
wormholes1–4 was motivated by the hope that they might provide a way to evade the prob
associated with point singularities in particle physics. A quite different motivation was prov
by the analysis of Morris and Thorne, who first investigated in some detail the possibility of
traversable wormholes to travel in space,5 as well as in time.6

Traversable wormholes may occur as solutions to the Einstein field equations with su
sources violating the weak energy condition. When explicit solutions are discussed in the
ture, these are usually static spherically symmetric Einstein–Rosen wormholes connectin
regions at space-like infinity.7 More relevant for the purpose of interstellar travel are Wheel
Misner wormholes,2 with only one region at spatial infinity. Exact solutions of the time-symme
initial-value problem of general relativity with such a topology have been constructed,3,4 but these
nonstatic wormholes are not traversable.5 In a recent paper,8 Schein and Aichelburg have con
structed a static Wheeler–Misner wormhole by matching, along two spherical shellsS1 andS2 , an
outer Majumdar–Papapetrou spacetime to an inner Reissner–Nordstro¨m spacetime; this is travers
able only one way, fromS1 to S2 .

Static Wheeler–Misner wormholes may be obtained by suitably extending a procedur
scribed by Visser, to construct models of flat Einstein–Rosen wormholes.9 Remove from Euclid-
ean spaceR3 a volumeV. Take a second, identical copy ofR32V, and identify these two excise
spaces along the boundaries]V. The spacetime obtained by factoring the resulting space with
time axisR is a geodesically complete Einstein–Rosen wormhole~or multi-wormhole if V has
several connected components!, flat everywhere except on]V, where the stress-energy is conce
trated. To similarly construct a Wheeler–Misner wormhole, remove fromR3 two nonoverlapping
volumes V and V8 which are the image of each other under the involution (x,y,z)
→(2x,y,z), and identify the boundaries]V, ]V8 ~Fig. 1! ~the diffeomorphismV→V8 must
reverse orientation if the resulting manifold is to be orientable10!. In a further extension of this
procedure, the boundaries]V, ]V8 are not identified, but connected by a cylindrical tube carry
equal energy per unit length and longitudinal tension~if the surface]V is compact and simply
connected, it follows from the Gauss–Bonnet theorem that the energy per unit tube len
1/2G!. The geometry, as viewed by an ‘‘external’’ observer~in R32V2V8!, does not depend on
the ‘‘internal’’ distance~through the tube! between the two ‘‘mouths’’]V, ]V8, which may be
arbitrarily large, so that the advantage for space travel is not so obvious.

a!Electronic mail: gecl@ccr.jussieu.fr
0022-2488/97/38(11)/5807/13/$10.00
5807J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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In the case where]V is a cylinder, the internal tube as well as the external space, is flat.
curvature is then concentrated on the two wormhole mouths, each of which carries~again by the
Gauss–Bonnet theorem! a mass per unit length and a longitudinal tension both equal tom
521/4G. For instance, the static conical Einstein–Rosen wormholes generated by a c
cylindrical source11 may thus, in the case of a vanishing deficit angle, be extended to Whe
Misner wormholes with zero tube length, which may easily be generalized to the case
arbitrary tube length.

Let us now discuss the case whereV is a polyhedron. Visser showed4 that in this case the
curvature of the boundary]V is concentrated on the edges, which each carry an equal energ
unit length and tension. A particular case of Visser’s polyhedral wormholes is obtained in the
of cylindrical polyhedra, i.e., configurations ofp parallel cosmic strings of tensionmi , with
( imi521/2G. Following the procedure described above, these Einstein–Rosen wormhole
be straigthforwardly extended to Wheeler–Misner wormholes generated byp straight cosmic
strings in the case of zero tube length, or 2p cosmic strings for an arbitrary tube length.

The purpose of this paper is to investigate in more detail the construction and geometry
cylindrical wormholes generated by straight cosmic strings, following an analytical me
complementary to the geometrical method outlined above. In the second section we sho
special multi-cosmic string metrics may be analytically extended12,13 to Einstein–Rosen or
Wheeler–Misner multi-wormhole, multi-cosmic string metrics. Because our spacetime is lo
approximately Minkowskian, we shall be specially interested in asymptotically Minkows
spacetimes. In the third section, we study in detail the topology and geometry of asympto
Minkowskian, flat Wheeler–Misner wormholes generated by one or two straight cosmic st
Geodesic paths through such wormholes are discussed in the fourth section, with applicat
space travel and geometrical optics. Our results are summarized and discussed in the last s14

II. WORMHOLES FROM COSMIC STRINGS

We start from the well-known multi-cosmic string metric15–17

ds25dt22ds22dz2, ~2.1!

where the 2-metric

ds25)
i

uz2ai u28Gmi dz dz* ~2.2!

(z[x1 iy) may locally be transformed to the Cartesian form

ds25dw dw* 5du21dv2 ~2.3!

FIG. 1. Construction of almost everywhere flat wormholes:~a! Einstein–Rosen wormholes;~b! Wheeler–Misner worm-
holes.
J. Math. Phys., Vol. 38, No. 11, November 1997
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(w[u1 iv) with

dw5)
i

~z2ai !
24Gmi dz. ~2.4!

The spacetime of metric~2.1! is therefore flat outside the worldsheets of the cosmic stringz
5ai @the conical singularities, with deficit angle 8pGmi , of the surface~2.2!#, which carry an
energy per unit length and a tension both equal tomi,1/4G ~for mi>1/4G the singularityz
5ai is at spatial infinity!. The metric~2.2! is also generically singular at the point at infinity in th
complexz-plane, with deficit angle 8pG( imi . This last singularity is at infinite geodesic distan
if

(
i

mi<1/4G. ~2.5!

In the generic case, the conical singularities of the metric~2.2! are logarithmic branch points
which become branch points of ordern for 4Gmi51/n ~n integer!. The conformal factor in~2.2!
is analytical in the complexz-plane with cuts extending from the various branch points to infin
Consider now the special case of the bicone withm15m251/8G,

ds25
dz dz*

uz22b2u
. ~2.6!

By choosing the cut to be the segment connecting the two branch pointsz56b, we can analyti-
cally extend this bicone to a geodesically complete surface: a cylinder. To show this,13 pinch the
cylinder along a parallel. We thus obtain two identical bicones with deficit anglesp at the two
vertices and 2p at infinity, joined along the pinch. These two bicones are diffeomorphic to the
sheets of the Riemann surface of the metric~2.6! with the cut indicated~Fig. 2!. The diffeomor-
phism is implemented by the transformation

z5b coshw ~2.7!

@by integration of~2.4!#, which maps the cut into the circleu50 @v is an angular variable from
~2.7!#, and the two sheets into the two halvesu.0 andu,0 of the cylinder.

The cylinder with its two circles at infinity is the basic building block for Einstein–Ro
wormholes in two space dimensions. The general one-wormhole flat metric is obtained by
plying the right-hand side of~2.6! by an arbitrary conformal factor assumed to be regular az
56b. In the simplest case,

FIG. 2. A cylinder is pinched into two bicones, which are mapped to the two sheets of a Riemann surface. Au5const.
geodesic~circling the cut! and av5const. geodesic~crossing the cut! are shown.
J. Math. Phys., Vol. 38, No. 11, November 1997
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ds25
uz2cu28Gm

uz22b2u
dz dz* , ~2.8!

take the cut to be the geodesic segment connecting the two branch pointsz56b; analytical
continuation across this cut then leads to a surface with two symmetrical asymptotically c
sheets smoothly connected along a cylindrical throat, and two conical singularities—one in
sheet—atz5c. The corresponding spacetime~2.1! is therefore a two-cosmic string Einstein
Rosen wormhole. Note that the masses per unit lengthm of the sources are different from th
‘‘total’’ masses per unit lengthM determined from the asymptotic behavior of the metric at eit
region at spatial infinity,18,13

M5
1

4G
1m, ~2.9!

the difference 1/4G being the topological contribution of the wormhole. For the spatial section
be open (M<1/4G), m must be negative or zero.

In the special casem521/4G,

ds25
uz2cu2

uz22b2u
dz dz* , ~2.10!

the cosmic string and wormhole contributions to the total mass balance@for this reason we shal
refer to the metric~2.10! as the ‘‘dipole’’ metric#, so that the flat metric~2.1! is asymptotically
Minkowskian. In Fig. 3 we show schematically the pattern of geodesicsu5const. and
v5const. for the dipole geometry~2.10! ~in the caseb andc real, ubu,ucu!. The critical geodesic
u50 which hits the singularity atz5c divides thez-plane in three regions. The geometry of th
‘‘left’’ region ( u,0) is that of a half-plane. In the ‘‘inner’’ region (u.0), the geodesic cutu
5L is surrounded by concentric closed geodesicsu5const. with equal perimeter 2pc, until the
geodesic segmentu50 connecting the conical singularity with itself is reached; this region is
map of a truncated cylinder. Finally, the ‘‘right’’ region (u.0) is again the map of a half-plane
however, the geodesic distance between two distant geodesicsv5D andv52D is smaller in the
‘‘right’’ region than in the ‘‘left’’ region by a length 2l , with l 5pc.

We thus arrive at the following geometrical construction for thet5const.,z5const. sections
of the dipole wormhole:~1! Remove from the (u,v) plane the semi-infinite stripu.0, 2 l ,v
, l , and glue together the edges~u.0, v5 l ! and~u.0, v52 l !. This yields a flat surface which

FIG. 3. Some u- and v-geodesics of the dipole geometry; the critical geodesicsv56 l bissect the angles formed by th
self-intersecting critical geodesicu50.
J. Math. Phys., Vol. 38, No. 11, November 1997
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is the union of the ‘‘left’’ and ‘‘right’’ regions discussed above, and has a closed boun
geodesicG of length 2l @the segment~u50, 2 l<v< l ! connecting the singularity~u50, v5
6 l ! to itself#. ~2! Take a second identical surface with boundaryG8, and glue together the two
boundariesG, G8 to the two ends of a truncated cylinder of perimeter 2l and length 2L, with

L5Ac22b22c log@~c1Ac22b2!/b#. ~2.11!

The resulting flat surface has the Einstein–Rosen wormhole topology, is asymptotically Euc
with two conical singularities, and is mapped on the two-sheetedz-plane by the analytical exten
sion of~2.10! described above. In the limitL→0 (c→b), the two singularities coalesce to a sing
conical singularity; this wormhole can be viewed as a very special case of Visser’s polyh
wormholes, a monohedron with one edge~the straight cosmic string! bounding one face (G
3R) connecting the two sheets.

The generaln-wormhole metric is obtained by first making on the cylinder metric~2.6! the
conformal transformationz→Pn(z), wherePn is a polynomial of ordern, then multiplying the
resulting n-cylinder metric by a conformal factor regular at the zeroes ofPn(z)7b. Multi-
wormholes generated by a sigma-model field coupled repulsively to gravity are discussed
13. The metric for a flatn-wormhole spacetime generated byp cosmic strings is~2.1! with

ds25
P i 51

p uz2ci u28Gmi

uzn
22b2nu

dz dz* , ~2.12!

where

zn5)
j 51

n

~z2aj !. ~2.13!

Various extensions of this metric across then cuts are possible. In the symmetrical extension,
Riemann surface is made of two sheets joined along then-component cut. The resulting spacetim
is ann-wormhole Einstein–Rosen spacetime, withp cosmic strings in each sheet, and total ma
per unit length

M5
n

4G
1(

i 51

p

mi , ~2.14!

in accordance with the Gauss–Bonnet theorem.13

The simplest case aftern51 is n52, p50:

ds25
l 4 dz dz*

u~z22a2!22b4u
. ~2.15!

Then,M51/2G, so that the two-dimensional spatial sections of genus 1, orientable by con
tion, are compact and regular, i.e., are toriT15S13S1. To recover the symmetrical Rieman
surface, pinch the torus along two opposite circles; this yields two tetracones with deficit anp
at each vertex, joined along the two pinches, which correspond to the two cuts of the Rie
surface. The flat metric~2.3! on the torus, withu andv periodical, is transformed to the metri
~2.15! by

z~w!5Aa21b2snSAa21b2

l 2
w,kD ~2.16!

@with k25(a22b2)/(a21b2)#, where sn is a biperiodical Jacobi function.
J. Math. Phys., Vol. 38, No. 11, November 1997
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However, the metric~2.15! admits a more economical analytical extension to a topologic
nontrivial Riemann surface with only one sheet. Such a possibility derives from the observa13

that the torus may be pinched only once into a single tetracone joined to itself by an identifi
of the two edges. This identification corresponds to an identification of the two cuts, leading
identification of the two sheets, of the Riemann surface for the complex variablez(w), the point
z in the first sheet of the symmetrical extension being identified with the point2z in the second
sheet~other possible identificationsz→6z* between the two sheets would lead to the nonorie
able manifoldU2!. A large circle geodesicv5const. is thus mapped into a line connecting the t
cuts either in the upper or in the lower half-plane of thez-plane, so that a particle going around t
torus along this geodesic falls into, e.g., the left-hand cut to come out again from the right
cut ~Fig. 4!.

Such a one-sheeted extension is possible whenever the distribution of both then cuts and the
p conical singularities of the flat metric~2.12! is invariant under the isometryz→2z, so that the
two sheets of the symmetrical extension may be identified together. In the casen52 the resulting
surface—a topological torus with a point at infinity~provided M,1/4G! and p conical
singularities—is a Wheeler–Misner wormhole. In fact, our construction is the three-dimens
counterpart of Lindquist’s4 reinterpretation of a four-dimensional Einstein–Rosen manifold w
two identical spherical bridges as a single Wheeler–Misner wormhole by identifying corres
ing points on the two sheets of the Einstein–Rosen manifold. In the next section we investig
various possible geometries for asymptotically Minkowskian (M50) Wheeler–Misner worm-
holes withp51 or 2.

III. TWO-STRING AND ONE-STRING ASYMPTOTICALLY MINKOWSKIAN
WHEELER–MISNER WORMHOLES

The Wheeler–Misner wormhole generated by two cosmic strings is the one-sheeted ext
of a symmetricaln5p52 metric ~2.12!. In the asymptotically Minkowskian case, this metric

ds25
uz22c2u2

u~z22a2!22b4u
dz dz* ~3.1!

depends on three complex parametersa, b, c. According to the relative values of these para
eters, the nonextended geometrical configuration may belong to one of three possible gener
DD, AA, or Q.

~1! Dipole–dipole~DD!. The sequences of closed ‘‘u-geodesics’’ surrounding each of the
symmetrical geodesic cuts terminate in two disjoint geodesic segments, each connecting on
singularities with itself. A single v-geodesic segment, bissecting the angles formed by the
tinuations of these critical u-geodesics, connects the two singularities together. An instance
case isa,b,c real, a2.b21c2 @Fig. 5~a!#. The analytical extension of this geometry to t
Riemann surface obtained by identification of the two cuts, as described in the previous s
leads to the DD wormhole geometry. The geometrical construction of this wormhole@Fig. 5~b!#
follows closely that of the dipole Einstein–Rosen wormhole, except that the two copies o

FIG. 4. A torus is pinched into a tetracone, mapped to a one-sheeted Riemann surface with two cuts identified u
involution P8→P.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



ed of
e
r-

ts
sur-

desic
ts con-

s we

cuts
e two

are
the
he
he
the

sner

5813Gérard Clément: Flat wormholes from cosmic strings

                    
(u,v) plane deprived of a semi-infinite strip are replaced by a single Euclidean plane depriv
a rectangular strip. Two opposite edges, of length 2d, of this rectangle are glued together, whil
the other two edges, of length 2l , are glued to the two ends of a truncated cylinder of circumfe
ence 2l and length 2L.

~2! Antidipole–antidipole~AA !. In this type again, two disjoint critical u-geodesic segmen
connecting each of the two singularities with itself enclose concentric closed u-geodesics
rounding a cut. However, the two singularities are now connected by two symmetrical v-geo
segments, bissecting the two angles formed by a critical closed u-geodesic segment and i
tinuation to infinity @Fig. 6~a!, drawn for a, b, c real, b2,a2,c22b2#. The corresponding
Wheeler–Misner wormhole geometry turns out to be equivalent to that of the Q wormhole, a
shall presently explain.

~3! Quadrupole~Q!. In this case the sequences of closed u-geodesics surrounding the two
terminate in two contiguous geodesic contours made from three u-segments connecting th
singularities together@Fig. 6~b!, drawn for a and b real with b2,a2, and c imaginary#. The
critical v-geodesics bissecting the two angles formed by this self-intersecting u-geodesicv
5d and v52d, where 2d is the geodesic distance between the two singularities along
‘‘external’’ segments of the u-geodesicu50. The distance between the two singularities along t
‘‘central’’ segmentu50 is 2(l 2d), wherel is again the perimeter of the closed u-geodesics. T
geometrical construction of the Q Wheeler–Misner wormhole resulting from identification of

FIG. 5. The DD Wheeler–Misner wormhole:~a! u- and v-geodesies;~b! geometrical construction.

FIG. 6. The comparison of the AA~a! and Q~b! geometries leads to the equivalence of the corresponding Wheeler–Mi
wormholes.
J. Math. Phys., Vol. 38, No. 11, November 1997
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two cuts is shown in Fig. 7. The Euclidean plane is incised along a segmentAB of length 2d. A
torus of ‘‘small’’ perimeter 2l ( l .d) and ‘‘large’’ perimeter 2L is also incised along a matchin
segmentA8B8 ~length 2d! of a small circle. Finally, the torus and the plane are glued toge
along the two edges of the cutsAB, A8B8. These two edges correspond to the two exter
geodesic segmentsu50 in Fig. 6~b!; the complementary small-circle segment connectingA8 and
B8 is mapped into the central segmentu50 in Fig. 6~b!, while the antipodal small circle on th
torus is mapped into the two identified cuts of the complex plane.

Now we show the equivalence of the Wheeler–Misner analytical extensions of the AA a
metrics of Fig. 6, by showing that they correspond to two dual maps for the same basic geo
in Fig. 7. Instead of cutting the torus along the antipodal small circle@which leads to the Q map
of Fig. 6~b!#, cut it along the large circle through O in Fig. 7. In the Q map, this large circle is
all large circles, a v-geodesic connecting together the two identified cuts of Fig. 6~b!. In the AA
map, the same large circle now corresponds to the two identified cuts of Fig. 6~a!, which are
connected together by a sequence of small circles—now v-geodesics—terminating in the tw
v56 l of the segmentA8B8 (AB); the two critical geodesicsv56d of Fig. 6~b!—large circles
going throughA8 andB8—correspond to the two critical geodesicsu56d of Fig. 6~a!. In other
words, the AA and Q maps are transformed into each other under the dualityu↔v exchanging the
two circles ofS13S1.

Asymptotically Minkowskian wormholes generated by a single cosmic string may be obt
from the two-cosmic string case by taking limits such that the two cosmic strings~the two
singularities in the two-dimensional spatial sections! coincide. Two inequivalent geometries ma
result, DD0 or 8. Consider first the DD wormhole geometry, Fig. 5~b!, and take the limitL→0.
The resulting ‘‘DD0’’ geometry may be directly obtained from the Euclidean plane deprived
rectangular strip by gluing together, first two opposite edges of the rectangle, then the oth
edges. Clearly, by construction the singularity is connected to itself by only two geodes
lengths 2d and 2l . A metric which leads to this geometry after a one-sheeted analytical exte
is ~3.1! with a,b,c real,a25b21c2.

Taking the limitd→0 in the DD geometry of Fig. 5~b! is obviously equivalent to taking the
limit d→ l in the Q geometry of Fig. 7. The resulting ‘‘8’’ geometry~Fig. 8! is obtained by
incising the Euclidean plane along a segment of length 2l , bringing together the two vertices s
that the two edges make a figure 8, then gluing these two edges to the two ends of a tru
cylinder of circumference 2l and length 2L. The singularity is connected to itself by (21N)
geodesics, two geodesics of length 2l ~the two edges just mentioned!, and a denumerable family

of geodesics of length 2AL21n2l 2 going from one end of the cylinder to the other while windin

FIG. 7. Geometrical construction for the Q wormhole.
J. Math. Phys., Vol. 38, No. 11, November 1997
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n times around it. Two examples of metrics~3.1! leading to this geometry are given by re
parametersa, b, c with b2,a2, and eitherc250 or ~because of the equivalence AA↔Q! c2

5a21b2.
The two preceding one-cosmic string geometries depend on two parameters. By taki

further limit d50 in the DD0 geometry, orL50 in the 8 geometry, we obtain the ‘‘I ’’ geometry,
which corresponds simply to a plane with two points identified. A single geodesic, of lengtl ,
connects the resulting conical singularity to itself. This limiting geometry may be obtained
the one-sheeted extension of the metric

ds25
uzu2

uz22 l 2u
dz dz* . ~3.2!

IV. SPACE TRAVEL AND GEOMETRICAL OPTICS

Because our wormhole spacetimes are~almost everywhere! flat, as well as asymptotically
Minkowskian, they do not classically scatter test particles or light rays. A test particle g
through a wormhole will emerge with a worldline parallel to its ingoing worldline. However,
outgoing worldline will generically be shifted, in space as well as in time. Shifts in space le
nontrivial geometrical optics effects, while shifts in time might be relevant for, e.g., intergal
travel. We first consider shifts in time, with a view to address the question, raised in the
duction, whether traversable wormholes are really advantageous for long distance space
Because of the simple form of our spacetime metric~2.1!, time shifts only depend on the three
velocity of the test particle and on the geodesic distance travelled in two-dimensional sectt
5const.,z5const. So we consider some given two-dimensional geodesic as ‘‘start’’ line,
another, parallel geodesic as ‘‘finish’’ line, and compare the geodesic distance between the
lines along two paths, one which ‘‘goes through the wormhole,’’ and another which does n
through the wormhole.

First we have to give a workable definition of ‘‘going through the wormhole.’’ These qu
tions are usually addressed in the context of Einstein–Rosen wormholes, where a path whic
from one point at spatial infinity to the other obviously ‘‘goes through the wormhole.’’ M
generally, consider a spaceE with N points at spatial infinity. We compactify this space to

FIG. 8. Geometrical construction for the 8 wormhole.
J. Math. Phys., Vol. 38, No. 11, November 1997
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closed topological spaceĒ, and define a ‘‘path going through a wormhole’’ as a path, going fr
spatial infinity to spatial infinity, which is not homotopic to zero. This definition covers in p
ticular both the case of the Einstein–Rosen wormhole, a topological sphere with two poi
infinity ~paths connecting these two points are trivially noncontractible!, and that of the Wheeler–
Misner wormholes of the previous section, topological tori with one point at infinity~closed paths
are non-contractible if they wind around one or both circles!.

For simplicity, we first deal with the case of one cosmic string. Figure 9 shows two pa
geodesics 1 and 2 going through a DD0 wormhole of parameters (l ,d); an effect of the shifts in
space mentioned above is that geodesic 1 comes in to the right of geodesic 2 but comes o
left. These geodesics cannot be deformed to the spectator geodesics 3 or 4 without cross
singularity. Both are shorter than the spectator geodesics, the path being shorter by 2d cosu for
geodesic 1, and by 2l sinu for geodesic 2~u is the incidence angle of geodesic 1!. So we have
here a model of a one-cosmic string wormhole which does indeed shorten space travel. Th
however, a hazard: A moving object, such as a spaceship, assumed to have a size of the
the dimensionsl , d of the wormhole, and to be light enough so as not to affect the geom
would be cut in four pieces by the cosmic string.

Consider now the case of the 8 wormhole~Fig. 8!. Obviously a geodesic hitting, under th
incidenceu, one edge of the incision in the Euclidean plane then goes the full lengthL of the
cylinder, while winding a number of times around it before emerging from the other, contig
edge. So travel through the wormhole will always be longer in this case. We find that the
excess is, for a geodesic path,

D52L cosu12nl sin u, ~4.1!

wheren5@(L/ l )tanu# is the winding number of the path, i.e., the integer part of the numbe
turns inside the cylinder. This number increases without limit as the incidence angleu nearsp/2,
so that

D.
2L

cosu
for u→p/2 ~4.2!

becomes arbitrarily large. Finally, the I wormhole can be obtained as a limit of both the DD0 and
the 8 wormholes so that, while technically a wormhole according to our general definition
without effect on space travel.

Now for the two-cosmic string wormholes. In the DD geometry of Fig. 5~b! there are, as in the
DD0 case, two kinds of paths through the wormhole, corresponding to the two circlesS1

FIG. 9. Geodesics through the DD0 wormhole.
J. Math. Phys., Vol. 38, No. 11, November 1997
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3S1. Geodesic paths crossing once the two identified segments of length 2d in Fig. 5~b! are
‘‘shorter’’ ~than they would be in Euclidean space! by 2l sinu. Geodesic paths crossing once t
two circular junctions of length 2l may windn times around the cylinder; they can be shorter
L,d, but are always longer ifL.d, the path excess being given in terms of the winding num
by

D52~L2d!cosu12nl sin u. ~4.3!

Paths through the Q wormhole of Fig. 7 are those which enter the torus through one e
the incisionAB and emerge through the other edge after windingN times around the large circle
andn times around the small circle. The path excess for a geodesic path of incidenceu is now

D52NL cosu12nl sin u, ~4.4!

with the relation

n5@N~L/ l !tan u# ~4.5!

between the two winding numbers. The probabilityp of a random geodesic exiting the torus aft
one turn around the large circle is proportional to the width of the gateA8B8, p5d/ l , leading to
the mean number of turns around the large circle,

N̄5
l

d
. ~4.6!

So the path excess becomes very large in the limit of a very small gatewidth (d! l ) or of a grazing
incidence~u.p/2!; when both limits are taken, we obtain from Eqs.~4.4!–~4.6!

D.
2NL

cosu
.

2Ll

d cosu
. ~4.7!

Light rays from one geometrical point~e.g., a galactic sourceS! to another~e.g., an observer
O! may similarly follow a variety of homotopically inequivalent optical paths~geodesics!, leading
to an array of geometrical imagesS8. From Fig. 9, the DD0 wormhole behaves as a rectangu
prism of infinite refractive index, and thus gives two images of a point source. The 8 worm
behaves rather as a parallel plate with partially reflecting faces, multiple reflections being re
by multiple turns around the cylinder; the result is that a point source gives rise to a

FIG. 10. A Q wormhole gives a two-dimensional array of imagesS8 of a point sourceS.
J. Math. Phys., Vol. 38, No. 11, November 1997
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dimensional periodical array of images. In the case of the DD geometry, the observer would
single ‘‘near’’ image@due to light rays crossing the two identified segments of length 2d in Fig.
5~b!, equivalent to a parallel plate of infinite index# together with a one-dimensional array
increasingly distant images~due to light rays winding around the cylinder!. Finally, in the case of
the Q wormhole, the possibility of light rays winding around both the large circle and the s
circle of the torus leads to a two-dimensional array of imagesS8, as shown in Fig. 10~where the
observer and source are assumed to be in the same planez5const.

V. CONCLUSION

We have shown that certain analytical maps may be extended to describe Wheeler–
wormholes~with only one region at spatial infinity! which are everywhere flat except for parall
cosmic string singularities. We have used these analytically extended maps to investiga
asymptotically Minkowskian one-wormhole geometries generated by two cosmic strings~these are
either of the DD or Q type!, or by a single cosmic string~of the DD0 or 8 type!. As anticipated in
the Introduction, it appears that such wormholes would have on the mean the effect of lengt
rather than shortening space travel.

Because of this lengthening, which could be arbitrarily large, and of the unpleasant c
quences of accidentally hitting one of the cosmic strings, a space traveler might wish to
these wormholes altogether. The presence of such hypothetical wormholes as well as the
could, in principle, be inferred from the pattern of images of a source viewed through the w
hole. The DD0 wormhole ~the only one to always shorten space travel! would give only two
images, while other wormholes~which generically lengthen space travel! would give one- or
two-dimensional arrays of images. Such a characterization is incomplete: most of the image
be too faint to be detected, or hidden behind other objects. A wave-optics treatment should
possible a better characterization. One anticipates nontrivial effects arising both from diffra
by the topological defects~cosmic strings! and resonance due to periodicity conditions in t
cylinder ~or torus!.

Our construction of static wormholes generated by straight cosmic strings could be ext
in two directions. A first extension should be to construct wormholes generated by nonp
moving straight cosmic strings, along the lines of the analytical construction19 of spacetimes
generated by multiple moving crossed cosmic strings, and to investigate the causal struc
these spacetimes.

Another possible extension would be to investigate wormholes generated by closed c
strings or rings. As pointed out by Visser,9 the polyhedronV mentioned in the Introduction can b
collapsed to a dihedron, or an irregular two-sided disk connecting two copies ofR3. The resulting
Einstein–Rosen wormhole is generated by the cosmic ring circumscribing the disk. Som
ago, Zipoy20 constructed analytical static solutions to the vacuum Einstein equations with
cular ring singularity and a double-sheeted topology. More recently, Bronnikov and co-work21

have similarly constructed static Einstein–Rosen wormhole solutions toD-dimensional gravity
with a circular ring singularity. However, the analytical construction of Wheeler–Misner
wormholes has not yet been attempted. Hopefully, this problem could be addressed along th
followed here for straight cosmic strings.
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Development of the method of potentials for the problems
of gravitation-electromagnetic conversion

Irene P. Denisova and Mahavir Dalal
Department of Applied Mathematics, Moscow State Aviation Technological University,
Petrovka 27, Moscow, 103767, Russia

~Received 31 December 1996; accepted for publication 24 July 1997!

In this work, the problem of generation of electromagnetic waves by gravitational
wave propagating in external stationary electromagnetic field has been studied. It is
shown that the equation of this process can be transformed into much simpler
equations for superpotentials of electromagnetic field. The exact solutions for the
superpotentials in the case of plane and spherical gravitational waves have been
found. © 1997 American Institute of Physics.@S0022-2488~97!00511-2#

I. INTRODUCTION

One of the most wonderful predictions of Einstein’s general relativity,1 as known, is that of
gravitational waves. The possibility of propagation of the perturbation of metric tensor in the
of waves, in this theory, is the outcome2 of the hyperbolic types of Einstein equations in unsi
plified nonlinear form and also of the linear equations1 obtained in the first order of perturbatio
theory. According to these equations, any material object whose time dependent part
energy-momentum tensor does not possess axial symmetry should emit gravitational wave

However, all attempts to register gravitational waves or their manifestations were unsu
ful for quite a long time. This is why scientific literature sometimes raised doubts regardin
existence of gravitational waves.

But the situation has changed completely since the observations of binary pulsar PSR
116, which started in 1975. These observations showed3 that the system loses its energy due
radiation of gravitational waves according to the predictions of Einstein’s general relativity.
important result brought the 1994 Nobel Prize in physics to Hulse and Taylor.

Thus, the existence of gravitational waves is no longer doubted, and the next step is to r
them on Earth. However, due to a considerably small value of the constant of gravita
interaction, it is very difficult to do so. That is why, one of the major tasks of the gravitation th
currently, is to theoretically analyze the processes leading to the radiation and registrat
gravitational waves. Such works are being carried out systematically, beginning from the w
Weber.4

Historically, the systems first considered as the sources and detectors of gravitational
were mechanical in nature. These systems5 are characterized by very small frequency of radiat
and very large wavelength. On the basis of calculations, the radiation intensity of gravita
waves emitted by binary stars and other astrophysical objects was estimated.

Also, quadrupole-massive detectors were built, which at present are used to search for
tational wave sources of low frequency in various laboratories all over the world.

Along with mechanical systems, systems electromagnetic in nature were also develo
radiators and detectors of gravitational waves, in which a mutual conversion of gravitationa
electromagnetic waves occurs.

As known, in the process of propagation of gravitational waves through external electro
netic fields, the electromagnetic waves are evolved. This process, at present, is considered
the fundamental processes by which the registration of high frequency gravitational waves
carried out in laboratory and in astrophysical conditions. As shown by the results, in the ran
high frequency gravitational waves, these types of detectors are more effective than mec
systems. Therefore, the perspective of developing the radio, VHF, and optical ranges of g
0022-2488/97/38(11)/5820/13/$10.00
5820 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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tional waves depends on how successful the development of electromagnetic types of de
and radiators of gravitational waves are.

The problem of conversion of gravitational waves into electromagnetic waves has rarely
worked out mathematically, and as a result, the study of such conversion has been carried o
for the cases possessing simplest topographies of stationary electromagnetic fields: Coulom
tric field6,7 and dipole fields.8 This is first due to the fact that the equations to be solved
extremely complex and second, the general methods of solutions for such problems~as in elec-
trodynamics!, do not exist.

That is why the solutions cannot be found in an explicit form for all types of topographie
stationary electromagnetic fields.

Moreover, as remarked by Galtsov,7 the results found earlier by various authors9–11 for the
same problem did not coincide even in the classical limit of\v!mc2. This noncoincidence of the
results, from our point of view, was due to lack of a general, mathematically strict method fo
solution of such problems. The necessity to work out such a method is also stimulated by pr
needs; by choosing a corresponding topography of the stationary electromagnetic field, the
ing of the resultant electromagnetic waves can be achieved. This article is dedicated to som
aspects of this problem.

II. THE BASIC EQUATIONS OF GRAVITATIONAL-ELECTROMAGNETIC CONVERSION

From the mathematical point of view, the problem of the interaction of gravitational w
with electromagnetic fields boils down to solving the general covariant Maxwell equations

F ;k
ik5

1

A2g

]

]xk @A2gFik#52
4p

c
j i ,

~1!

Fik;m1Fkm; i1Fmi;k50

in the pseudo-Riemannian space–time, whose metric tensorgik contains the wave partF ik(r ,t),

gik5gik
~0!1F ik~r ,t !, ~2!

wheregik
(0) is the metric tensor of background space–time, and the semicolon denotes the co

derivatives in pseudo-Riemannian space–time.
If the four-vector potential is introduced using the relationship

Fik5Ak; i2Ai ;k[Ak,i2Ai ,k ,

where comma denotes partial derivatives with respect to the corresponding coordinates, t
second equation of system~1! will be satisfied.

Then the first equation of~1! can be written as

1

A2g

]

]xkFA2ggimgklS ]Al

]xm2
]Am

]xl D G52
4p

c
j i . ~3!

Now, we need to find out the expressions for the contravariant components and the de
nant of the metric tensor in terms of its covariant components~2! and substitute them in Eq.~3!.
Usually, such expressions are obtained as infinite series. For calculating the coefficients
series, one frequently has to solve a fairly complex system of linear algebraic equations.

However, all these calculations can be carried out in a compact tensor form if the the
about the powers of second rank tensor in the arbitraryN-dimensional pseudo-Riemannian spac
time is applied. This theorem12 can be applied to our problem in the following way.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let in theN-dimensional pseudo-Riemannian spaceRp,N2p
N , i.e., the space whose signature

metric tensorgik
(0) containsp plus signs andN-p minus signs, be given a certain covariant tens

of second rankBik(x).
We definewth powerBik

(w)(x) of tensorBik(x) inductively by

Bik
~0!~x!5gik

~0!~x! for w50,

Bik
~w!~x!5Bim~x!g~0!mn~x!Bnk

~w21!~x! for w>1.

The contraction of the indices in this expression will give invariant ofwth power of this
tensor,

B~w!5Bml
~w!~x!•g~0!ml.

In the work12 it has been shown that theNth power of any tensor of second rank in theRp,N2p
N

space is the linear combination of the lower powers of this tensor,

Bml
~N!~x!52 (

w51

N

Bml
~N2w!Y~w!, ~4!

where, the coefficientsY(w) are defined by the recurrent equation

Y~w!52
1

w (
k50

w21

B~w2k!Y
~k!, w51,2,...,N ~5!

andY(0)51. The determinant of the tensorBik(x) is expressed through the coefficientY(N),

detiBlmi5~21!N
•g~0!

•Y~N!, ~6!

whereg(0) is the determinant of the tensorgik
(0) .

If the tensorBik(x) is nondegenerate (detiBikiÞ0), then the tensor inverse to it,Ckm(x), can
also be defined in conformity with the equation,

Bik~x!•Ckm~x!5d i
m .

From expression~4! it follows, that the tensorCkm(x) in spaceRp,N2p
N has the form,

Ckm~x!52
1

Y~N! (
w50

N21

B~N2w21!
km Y~w!. ~7!

For the particular caseN54, these relationships are simplified.12,13In fact, for the determinant
of tensorBik(x) from relationships~5! and ~6! we get

detiBiki5
g~0!

24
@B~1!

4 13B~2!
2 18B~1!B~3!26B~4!26B~2!B~1!

2 #. ~8!

The fourth power tensorBik in this case takes the form,

Bml
~4!5

1

24
$24Bml

~3!
•B~1!112Bml

~2!
•@B~2!2B~1!

2 #14Bml•@2B~3!1B~1!
3 23B~1!B~2!#

1gml
~0!

•@6B~4!23B~2!
2 28B~1!B~3!16B~2!B~1!

2 2B~1!
4 #. ~9!
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Finally, from the relationship~7!, for the tensor inverse to the nondegenerate tensorBik(x),
we can get the following expression:

Ckm5$4g~0!km@2B~3!23B~1!B~2!1B~1!
3 #212Bkm@B~1!

2 2B~2!#124B~2!
kmB~1!224B~3!

km%

3@B~1!
4 13B~2!

2 18B~1!B~3!26B~4!26B~2!B~1!
2 #21. ~10!

Using these equalities, we write down the expressions ofg and gik in terms of the powers of
tensorF ik and its invariants for the case when the metric tensorgik is given by the expression~2!.
By denotingBik5gik

(0)1F ik , we shall have

Bik
~2!5gik

~0!12F ik1F ik
~2! , Bik

~3!5gik
~0!13F ik13F ik

~2!1F ik
~3! ,

B~1!5F~1!14, B~2!5F~2!12F~1!14, B~3!5F~3!13F~2!13F~1!14,

B~4!5F~4!14F~3!16F~2!14F~1!14, ~11!

whereF (1) , F (2) , F (3) , andF (4) are invariants of the corresponding powers of tensorF ik in the
background space–time.

From expression~8! we find thatg5g(0)Q, where,g(0) is the determinant of the metric tenso
gik

(0) of background space–time, and

Q5
1

24
@241F~1!

4 14F~1!
3 112F~1!

2 124F~1!26F~1!
2 F~2!212F~1!F~2!

212F~2!18F~1!F~3!13F~2!
2 18F~3!26F~4!#. ~12!

Thus the determinant of metric tensor~2! in space–timeR1,3
4 can be written in terms of relatively

simple combination of invariants of the first four powers of the tensorF ik . From equalities~10!
and ~11!, we get compact and explicit tensor expressions for contravariant components of
tensor,

gkm52
1

24Q
$24F~3!

km224F~2!
km

•@11F~1!#112Fkm
•@212F~1!1F~1!

2 2F~2!#

24g~0!km
•@616F~1!13F~1!

2 23F~2!23F~1!F~2!12F~3!1F~1!
3 #%. ~13!

By putting expressions~2! and~13! in equalitygik(x)gkm(x)5d i
m , it can be easily shown that i

is satisfied by virtue of Eq.~9!. Thus, contravariant components of metric tensor~1! of pseudo-
Riemannian space–time and the determinant of this tensor can be expressed as finite exp
of first four powers of the tensorF ik , their invariants and the metric tensorgik

(0) of background
space–time.

For weak gravitational waves propagating in the background of flat space–time,F ik is usually
a known function of coordinate and time andg(0)521. In this case expressions~12! and~13! can
be expanded as a series along the small parameterC0!1, which is the amplitude of the wea
gravitational wave,F ik5C0Sik .

It should be noted that by virtue of the TT-gauge of the gravitational wave and by
conditions of the Hilbert–Fock, tensorSik satisfies the relationship

Si
i50, S0k50,

]Sik

]xk 50.

The four-vector of current is analogically expanded,
J. Math. Phys., Vol. 38, No. 11, November 1997
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j i5 j ~0!
i 1C0 j ~1!

i 1C0
2 j ~2!

i 1... , ~14!

where j (0)
i is the initial nonperturbed four-vector of current,C0

Pj (P)
i is the correction to the

four-vector of current in thePth order of approximation, caused by the effect of the gravitatio
wave on the motion of the current source.

The four-potential in this case should also be found as an expansion along the small p
eter,

Ai5Ai
~0!1C0Ai

~1!1C0
~2!Ai

~2!1... , ~15!

whereAi
(0) is the four-potential of the initial nonperturbed electromagnetic field,C0

PAi
(P) is the

correction to the four-potential in thePth order of perturbation theory, resulting due to the act
of gravitational waves.

Substituting the expansions~14!–~15! into Eq.~3!, and decomposing the obtained relationsh
into the power series ofC0 and equating the expressions which play the role of coefficient
zero, we get the Maxwell equation inPth order approximation.

Limiting to the approximation of first order in terms ofC0 , we shall have

hA~0!
m 52

4p

c
j ~0!
m , ~16!

hA~1!
m 52

4p

c
j ~1!
m 2 j int

m , ~17!

where the following symbols have been introduced:

j int
0 52div P, j int5

]P

]x0 1rot M ,
~18!

Pa5FabEb
~0! , Ma5FabHb

~0! .

By writing the components of the four-vector of currentj int
i in this form, it can be seen that in th

presence of gravitational waves, the Maxwell equations become equivalent to the equa
electrodynamics of the material medium with the dielectric permittivity and magnetic permea
depending upon the coordinates and time.

Thus, to calculate the interaction of weak gravitational waves with electromagnetic fields
first of all necessary from Eq.~16! to determine the initial unperturbed electromagnetic fieldEb

(0)

and Hb
(0) from the given distributions of charges and currents in the absence of gravita

waves. Further, using the obtained solution and also the correction to the four-vector of c
which is linear with respect toC0 , the linear correctionA(1)

i to the four-potential, resulting due t
the action of gravitational waves on the system, can be determined from Eq.~17!.

In order to find a unique solution of Eqs.~16! and~17!, it is necessary to set the correspondi
initial and boundary conditions. In electrodynamics, the conditions of these types usually us
the radiation conditions of Sommerfeld14 and the conditions at the boundary of two mediums

Et
I 5Et

II , BN
I 5BN

II ,

@N~HI2HII !#5
4p

c
isur, ~19!

DN
I 2DN

II 54prsur,
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wheret denotes the tangential components,N, the normal components of the vectors.
The directional diagram of the electromagnetic radiation, resulting from the action of g

tational wave on electromagnetic field, can be analyzed through the usual formula,

dI

dV
5 lim

r→`

cr2

4p
E~1!

2 5 lim
r→`

cr2

4p
H~1!

2 ,

wheredI is the intensity of electromagnetic radiation through the solid angledV.
The peculiarity of the problem of conversion of the gravitational wave in the external sta

ary electromagnetic field is that the sources~18! on the right-hand side of the equation have
sufficiently complex form, and are given in the whole space, i.e., the linear dimensionsL of the
region, occupied by the sources, are unlimited (L→`). Therefore in such problems, the sma
parameterL/r , often used in mathematical physics to carry out multipole decomposition o
exact solution, does not exist.

That is why, the standard methods for the solution of the problems of electromagnetic
tion, in the given case cannot be applied.

III. POTENTIAL METHOD FOR THE PROBLEMS WITH PLANE GRAVITATIONAL
WAVES

As known, for the solution of problems of classical electrodynamics the potential meth
widely used. According to this method, the vectors of intensity of electric and magnetic field
written through the partial derivatives of coordinates and time of a few auxiliary unknow
potentials of electromagnetic field. The use of potentials in the problems of electrodyn
allows us to simplify the form of equations and considerably reduces the number of unk
functions which are determined from the field equations. After finding the potentials from
equations, the intensity of electric and magnetic fields are found through a simple differen
of the potentials.

This method has been explained in detail in mathematical and physical literature, and i
in the case of constant fields~method of scalar potential! and in the problems of radiation an
propagation of electromagnetic waves14 in different media and waveguides~Hertz’ potential
method!.

The potential method is especially important in the problems of conversion of gravitat
waves in to the electromagnetic waves. But this method requires it to be worked out.

Let us consider a typical problem of radiation of electromagnetic waves which results d
the passage of plane gravitational wave through the region having an electromagnetic field
is initially unperturbed, whose intensity vectors depend only upon the spatial coordinates

Eb
~0!5Eb

~0!~r !, Hb
~0!5Hb

~0!~r !, ~20!

and whose potentials satisfy Eq.~16!.
It is assumed that the gravitational wave incident upon the unperturbed electromagneti

~20! is monochromatic. Then orienting the coordinate system in such a way that the gravita
wave is propagated along thez-axis, its components in the TT-gauge can be written in the fo

F1152F225C0 cos 2b exp@ i ~kz2vt !#,
~21!

F125 iC0 sin 2b exp@ i ~kz2vt !#,

wherev is the frequency,k5v/c, and angleb characterizes the polarization of the gravitation
wave.

The quantitytg(2b) measures the degree of polarization of the wave. Iftg(2b)56` or
tg(2b)50, then the wave is linearly polarized; forutg(2b)u51, the wave will be circularly
J. Math. Phys., Vol. 38, No. 11, November 1997
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polarized. For other values of angletg(2b), the wave is elliptically polarized, and depending
whether the value oftg(2b) is positive or negative, the wave will be right or left polarize
respectively.

We substitute expressions~20! and~21! into Eq.~17!. Since the calculation of contribution t
the four-potentialA(1)

i due to perturbation of the four currentj (1)
i is not so complex, and the

corresponding expression can always be added to the obtained solution, we from now on s
that j (1)

i 50, and will concentrate on the influence of the interaction currentj int
i .

We express components of the four-potentialA(1)
i 5$w (1) ,A(1)%, resulting from the interaction

of the gravitational wave~21! with the electromagnetic field~20!, through electricP and magnetic
Z Hertz potentials,

w~1!52div P, A~1!5
1

c

]P

]t
1rot Z. ~22!

Putting these expressions in Eq.~17!, we shall have

hPa52Fab~r ,t !Eb
~0!~r !, hZa52Fab~r ,t !Hb

~0!~r !. ~23!

Considering that the components of a plane gravitational wave~21! can be expressed in th
form,

Fab~r ,t !5F̂ab exp@ i ~kz2vt !#,

whereF̂ab is the matrix whose elements do not depend upon the coordinates and time.
By expressing the Hertz potentials in an analogical form,

Pa5F̂abUb , Za5F̂abVb ,

from Eqs.~23! we get the equations for the auxiliary vectorsUb andVb ,

hUb52Eb
~0!~r !exp@ i ~kz2vt !#, hVb52Hb

~0!~r !exp@ i ~kz2vt !#. ~24!

However, even these equations for the general case are difficult enough to solve since the
on the right-hand side have a very complex form and do not equate to zero in all space. T
why we consider that the unperturbed electromagnetic field~20!, created by a point source locate
at point r5r1 , can always be expressed in the form,

Eb
~0!5L̂bn

~xn2x1
n!

ur2r1u3 , Hb
~0!5L̂bn

~xn2x1
n!

ur2r1u3 , ~25!

where L̂bn and L̂bn are the differential operators of coordinates of pointr5r1 , whose explicit
form depends upon the concrete distribution of charges and currents which creates the
electromagnetic fieldEb

(0) , Hb
(0) .

In particular, the electric field of point chargeq can be found if we putL̂bn5qdbn , L̂bn

50, where at the same time the magnetic field of dipolem corresponds toL̂bn50, L̂bn

5mn]/]x1
b . Such a notion is not by accident, but has a deep physical meaning reflectin

properties of stationary electromagnetic field in Maxwell electrodynamics; any solution of sta
ary Maxwell equations outside the point source, as known, can be found from the fundam
solution 1/ur2r1u by differentiating it along the coordinates of vectorr1 a particular number of
times depending upon the multipoles of fieldsEb

(0) , Hb
(0) .

Under this circumstance, Eq.~24! can be further simplified. Indeed, if auxiliary vectorsUb

andVb are to be expressed in terms of the superpotentialWn according to the relationship
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ub5L̂bnWn, Vb5L̂bnWn,

then, for Eq.~24! to be satisfied, it is necessary that superpotentialWn should satisfy the equation

hWn52
~xn2x1

n!

ur2r1u3 exp@ i ~kz2vt !#. ~26!

Thus, the source on the right-hand side of Eq.~26! for superpotentialWn is a much simpler
function than the source of the initial Eq.~17!.

As a result, the components of the electric and magnetic Hertz potentials for electroma
waves, resulting in the propagation of the gravitational wave through the external electroma
field ~25!, can be found by a simple differentiation of superpotentialWn along the coordinates o
radius-vectorr1 according to expressions

Pa5F̂abL̂bnWn, Za5F̂abL̂bnWn. ~27!

It should be especially noted that for getting the electric and magnetic Hertz vectors
sufficient to find any nonsingular partial solution of Eq.~26!. After that, by putting expression~27!
into the relationship~22!, we get partial solution of the nonhomogeneous Eq.~17!. The vectors of
the electromagnetic field would satisfy the initial and boundary conditions~19! by correspondingly
choosing the general solution of homogenous equationhA(1)

i 50, as usually is the case.
Thus the main difficulty in calculating the electromagnetic radiation, resulting due to

action of plane gravitational wave, lies in finding the partial nonsingular solution of Eq.~26!.
Section V deals with the solution of this equation.

IV. METHOD OF POTENTIAL FOR THE PROBLEMS WITH THE PARTICIPATION OF
SPHERICAL GRAVITATIONAL WAVES

The condition for the wave to be considered as a plane, as known, is the smallness
linear dimensions of the region of space in which the processes are studied, as compare
radius of curvature of the wave front. So, in the case when the unperturbed electromagnet
decreases rapidly with the increase in distance from its source and the distance between th
of weak gravitational waves and the source of unperturbed electromagnetic field is suffic
great, the incident gravitational wave can be considered as a plane wave.

But in the general case, the incident gravitational wave in the background of the ps
Euclidean space–time should be considered as spherical, whose amplitude decreases
increase of distance from the source and whose surface of constant phase is a sphere.

Let us assume that the source of the weak spherical gravitational wave is located at a
with radius-vectorr5r0 . Then, the components of this wave can be written as

Fab5Ĉab
exp@ i ~kur2r0u2vt !#

ur2r0u
, ~28!

whereĈab are the differential operators along the coordinates of the pointr05$x0 ,y0 ,z0%.
The explicit form of these operators depends upon the multipolarity of the gravitat

radiation, its polarization, and the orientation of the directional diagram.
In the simplest case of gravitational radiation, these operators have the form,

Ĉ1152
2C0

k4

]3

]x0]y0]z0
, Ĉ125

C0

k4 F ]3

]z0
3 1

]3

]x0
2]z0

G ,
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Ĉ135
C0

k4 F ]3

]y0]x0
22

]3

]z0
2]y0

G , Ĉ2352
C0

k4 F ]3

]x0
3 1

]3

]x0]z0
2G , ~29!

Ĉ3352Ĉ11, Ĉ2250.

Thus, even for the simplest physical case the expressions on the right-hand side of E~17!
have a very complex form.

It should be noted that it is not accidental that the gravitational wave is presented in the
~28!, but is due to two circumstances.

First, as follows from mathematical physics,14 the fundamental solution of the d’Alembert’
equation for the monochromatic point source located at pointr5r0 has the form,

f 5
exp@ i ~kur2r0u2vt !#

ur2r0u
. ~30!

Second, as required by the conditions of TT-gauge and that of Hilbert–Fock, the compone
any gravitational wave emitted by a monochromatic point source, can be obtained by diffe
ating the functions~30! along the coordinates of vectorr5r0 .

In the coordinate system, whose origin is placed at pointr5r0 , the directional diagram of
gravitational radiation has the form,

dI

dV
5

c5C0
2

32pG

@x21z2#2

r 4 . ~31!

So, the radiation is maximum in thexoz plane and is absent in the direction of they-axis. For
r052r 0ez and r 0@r , expression~28! becomes that of the plane gravitational wave.

Let the spherical gravitational wave~28! propagate in an external stationary electromagn
field, whose componentsEb

(0) and Hb
(0) are defined by the relationship~25!. In this case, the

potentialsw (1) , A(1) of the resulting electromagnetic wave satisfy Eq.~17! in the first order of
perturbation theory.

Introducing electricalPa and magneticZa Hertz vectors according to expression~22!, and
acting analogically as in Sec. III, we express these vectors in terms of the superpotenSn

according to the equalities,

Pa5ĈabL̂bnSn, Za5ĈabL̂bnSn. ~32!

Then, for Eq.~17! to be satisfied, the sufficient requirement is that the superpotentialSn satisfy the
following equation:

hSn52
~xn2x1

n!

ur2r1u3

exp@ i ~kur2r0u2vt !#

ur2r0u
. ~33!

Thus, even for this case, the expression on the right-hand side of the equations can be sim
considerably. We think that because the expressions~18! on the right-hand side of Eq.~17! are
very complex, many problems on the radiation of electromagnetic waves, resulting due
propagation of the spherical gravitational wave through the external electromagnetic field
not been solved until the present time.

It should be noted that in more complex situations, the operatorĈab contains partial deriva-
tives of coordinates of vectorr0 , not of third order as in expressions~29!, but of still higher
orders. In this case, the directional diagram of gravitational radiation becomes more comple
the one in relationship~31!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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However, the method developed by us is used without any change for such cases and
to a much simpler Eq.~33!. Moreover, the effectiveness of the above method increases cons
ably, for, the source term in the initial Eq.~17! in this case has a very complex form and it
practically not possible to solve these equations in a straightforward way.

V. SOLUTION OF EQUATIONS FOR SUPERPOTENTIALS

Thus, by introducing the superpotentials of the electromagnetic field, Eqs.~26! and~33! to be
solved in the problem of conversion of the gravitational wave into the electromagnetic wave
out to be considerably simpler than the initial Eq.~17!.

Let us now find the partial solution of Eqs.~26! and ~33!. We start from Eq.~26! for super-
potentialWn which results when a plane gravitational wave propagates in the constant el
magnetic field.

First of all we simplify the right-hand side of this equation. For this purpose, we perfo
coordinate transformationr5R1r1 , which corresponds to the displacement of the origin
coordinates to pointr5r1 . In this coordinate system, Eq.~26! takes the form,

hW52
R

R3 exp@ i ~kZ2vt1kz1!#, ~34!

whereR5$X,Y,Z%. In order to find the partial solution of this equation, we write vectorWp in the
form,

Wp5G~R!exp@ i ~kZ2vt1kz1!#.

Putting this expression into Eq.~34!, we get

DG12ik
]G

]Z
52

R

R3 .

It is not difficult to check that the solution of this equation is the function,

G5
i

2kF R2ReZ

R~R2Z!G .
Thus, the partial solution of Eq.~34! can be expressed as

Wp5
i

2kF R2ReZ

R~R2Z!Gexp@ i ~kZ2vt1kz1!#.

Since this expression possesses a singularity on the positiveZ axis, we add to it the partial solutio
of homogenous equationhW050,

W052
i

2kF R2ReZ

R~R2Z!Gexp@ i ~kR2vt1kz1!#.

As a result, we obtain a nonsingular partial solution of Eq.~34!,

W5
i

2kF R2ReZ

R~R2Z!G$exp ikZ2exp ikR%exp@ i ~kz12vt !#. ~35!

Reverting back to the original coordinate system through the reverse transformation of
dinatesR5r2r1 , this expression becomes
J. Math. Phys., Vol. 38, No. 11, November 1997
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W5
i

2kH r2r12ur2r1ueZ

@ ur2r1u22~z2z1!ur2r1u#J $exp ik~z2z1!2exp ikur2r1u%exp@ i ~kz12vt !#.

~36!

It should be noted that expression~36! is the retarded solution

W~r ,t !5
1

4p E dV8~r 82r1!exp i @~kz82vt !#

ur 82r1u3ur2r 8u
exp ikur2r 8u

of Eq. ~26!. This can be confirmed by carrying out considerably lengthy calculations.
The remaining algorithm of our problem is as follows: putting the expression~36! into the

relationship~27! and by carrying out the required differentiation of expression~36!, the partial
solution for the four-potentialA(1)

i of the electromagnetic wave, resulting due to the conversio
plane gravitational wave in electromagnetic field~25!, can be found out. Later, adding the gene
solution of the homogenous equationh A(1)

i 50, to the obtained result, and taking into account
initial and boundary conditions~19! for vectorsEb

(1) andHb
(1) , we get the final expression for th

resultant electromagnetic waves formed from the conversion of the gravitational wave.
Now we go over to solving Eq.~33! for the superpotential generated by the spherical gra

tational wave propagating in the stationary electromagnetic field. In a manner analogical as
we perform the transformation of the origin of the coordinate system,r5R1r1 . As a result, Eq.
~33! takes the form,

hS52
R

R3uR2R0u
exp@ i ~kuR2R0u2vt !#, ~37!

whereR05r02r1 .
Presenting the vectorS asS5Sp1S0 , and considering that

Sp5F~R!exp@ i ~kuR2R0u2vt !#,

from Eq. ~37! we get

DF12ikS R2R0

uR2R0u
“ DF1

2ik

uR2R0u
F52

R

R3uR2R0u
.

It is not difficult to confirm that the partial solution of this nonhomogeneous equation ha
form

F5
i @RR01R0R#

2kRR0@RR01~RR0!#
.

Therefore,

Sp5
i @RR01R0R#

2kRR0@RR01~RR0!#
exp@ i ~kuR2R0u2vt !#.

Since this expression possesses a singularity when the vectorsR0 andR are antiparallel, we
add to it the partial solution of the homogeneous equationhS050 in such a way that the fina
expression forS becomes nonsingular,

S5
i

2k

@RR01R0R#

RR0@RR01~RR0!#
@exp ikuR2R0u2exp ik~R1R0!#exp~2 ivt !.
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Reverting back to the original coordinate system, we finally get

S5
i

2kFR0

R0
1

r2r1

ur2r1uG H exp ikur2r0u2exp ik~R01ur2r1u!
@R0ur2r1u1~rR0!2~r1R0!# J exp~2 ivt !, ~38!

where, as beforeR05r02r1 .
Thus, even in the case of spherical gravitational wave, the partial solution of the nonh

geneous Eq.~17! can be found by differentiating the expression~38!. Adding to this partial
solution the general solution of the homogenous equationhA(1)

i 50 and choosing it in a form so
as to fulfill the initial and boundary conditions~19!, we get the unique solution of the give
problem.

VI. SOLUTION OF THE PROBLEM FOR THE CASE OF EXTENDED SOURCES

In the above considered problems we have assumed that the sources of unperturbed
magnetic field are point sources. If the source of the stationary electromagnetic field is not a
source, but is an extended one and occupies volumeV1 , then the expression~25! for the initial
stationary field will not be applicable inside the regionV1 . In this case, it is better to write dow
the vectors of the electromagnetic fieldEb

(0) andHb
(0) in continuous form,

Eb
~0!5Ebpoint

~0! 2EbV
~0!1Eb ins

~0! ,
~39!

Hb
~0!5Hbpoint

~0! 2HbV
~0!1Hb ins

~0! ,

where,Ebpoint
(0) andHbpoint

(0) are the electromagnetic fields defined according to the expressions~25!,
and is not equal to zero in all space;EbV

(0) andHbV
(0) are the same asEbpoint

(0) , andHbpoint
(0) , but are

equal to zero outsideV1 ; Eb ins
(0) andHb ins

(0) is the electromagnetic field which exists insideV1 , and
whose expression can differ from that of Eq.~25!.

The physical essence of the above equations is quite simple; algebraic sumsEbpoint
(0) 2EbV

(0) and
Hbpoint

(0) 2HbV
(0) are equal to zero insideV1 and give the electromagnetic field outside this volum

Eb ins
(0) andHb ins

(0) give expressions for the electromagnetic field inside the volumeV1 .
Substituting expressions~39! into the relationship~18!, we obtain the four-vector of interac

tion current also as an algebraic sum,

j int
i 5 j point

i 2 j V
i 1 j ins

i ,

where the range and physical meaning of each term is analogical to that in expression~39!.
Hence it is convenient to write the components of the resultant electromagnetic waveA(1)

i in
the form,

A~1!
i 5A~1!point

i 2A~1!V
i 1A~1!ins

i 1A~1!homog
i ,

whereA(1)point
i is determined according to the algorithm described in Secs. II–IV,A(1)V

i is the part
of the four-potential created byj V

i which is located insideV1 ,

A~1!V
i ~r ,t !5

1

4p E
V

dV8 j V
i ~r 8,t2ur2r 8u/c!

ur2r 8u
,

A(1)homog
i is the solution of the homogenous equationhA(1)homog

i 50, and

A~1!ins
i ~r ,t !5

1

4p E
V

dV8 j ins
i ~r 8,t2ur2r 8u/c!

ur2r 8u
.
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Since in the expressions forA(1)V
i (r ,t) andA(1)ins

i (r ,t) the integration is carried out over th
compact regionV1 , all those approximate methods of retarded potentials which have been w
out in classical electrodynamics are applicable to them.
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Applications of the Ashtekar gravity to four-dimensional
hyperkä hler geometry and Yang–Mills instantons
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The Ashtekar–Jacobson–Smolin–Mason–Newman equations are used to construct
the hyperka¨hler metrics on four-dimensional manifolds. These equations are closely
related to anti-self-dual Yang–Mills equations of the infinite-dimensional gauge
Lie algebras of all volume-preserving vector fields. Several examples of hyper-
kähler metrics are presented through the reductions of anti-self-dual connections.
For any gauge group anti-self-dual connections on hyperka¨hler manifolds are con-
structed using the solutions of both Nahm and Laplace equations. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!01811-2#

I. INTRODUCTION

Four-dimensional hyperka¨hler geometry has been studied extensively in connection with
eral issues: gravitational instantons, supersymmetric nonlinears models, and compactifications o
superstrings.1–3 A hyperkähler manifold is a Riemannian manifold equipped with three covaria
constant complex structuresJa (a51,2,3) which obey the conditionJaJb52dab2eabcJ

c. In four
dimensions, a Riemannian manifold is hyperka¨hler if and only if its Ricci curvature is zero and it
Weyl curvature is either self-dual or anti-self-dual, namely, the metric is the solution of~anti!
self-dual Einstein equation.

It is known that all asymptotically locally Euclidean~ALE! hyperkähler manifolds are clas-
sified by Dynkin diagrams of ADE types. These spaces are constructed as hyperka¨hler quotients of
flat Euclidean spaces.4

On the other hand, in the Hamiltonian approach for general relativity, Ashtekar–Jacob
Smolin and Mason–Newman~AJSMN! reduced the problem of finding hyperka¨hler metrics to
that of finding linearly independent four-vector fieldsVm ~m50,1,2,3! and a volume formv on a
four-dimensional manifoldX that satisfy the following two conditions:5–7

~a! volume-preserving condition:

LVm
v50, ~1!

~b! half-flat condition

1
2h̄ mn

a @Vm , Vn#50, ~2!

whereh̄ mn
a (a51,2,3) are the ’t Hooft matrices satisfying the relations

h̄ mn
a 52h̄ nm

a , h̄ mn
a h̄ ms

b 5dabdns1eabch̄ ns
c . ~3!

a!Electronic mail: hashimot@sci.osaka-cu.ac.jp
b!Electronic mail: yasui@sci.osaka-cu.ac.jp
c!Electronic mail: miyagi@sci.osaka-cu.ac.jp
d!Electronic mail: ootsuka@sci.osaka-cu.ac.jp
0022-2488/97/38(11)/5833/7/$10.00
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The hyperka¨hler metric onX is given by g(Vm ,Vn)5fdmn with f5v(V0 ,V1 ,V2 ,V3) ~we
choose the sign ofv such thatf is positive.!. Then three complex structuresJa are expressed by

Ja~Vm!5h̄ nm
a Vn . ~4!

Conversely the pair (Vm ,v) can be locally constructed from any hyperka¨hler structure (g,Ja)
as follows:7,8 for a harmonic functiont and the volume formvg with respect tog, the vector fields
Vm are defined by

V05f gradt, ~5!

Va52Ja~V0!, a51,2,3, ~6!

where f5g(gradt,gradt)21. Then Vm preserve the volume formv5f21vg and satisfy the
half-flat condition. We can choose the local coordinates such thatV05]/]t, and then~2! reduces
to the Nahm equation,

]Va

]t
5 1

2eabc@Vb , Vc#, ~7!

whereVa (a51,2,3) are volume-preserving vector fields on a three-ball. This form was give
Ashtekar, Jacobson, and Smolin.5,6

In this paper we present an explicit construction of hyperka¨hler metrics based on~1! and~2!.
We also give a new construction of anti-self-dual Yang–Mills connections on hyperka¨hler mani-
folds generalizing the multi-instanton ansatz of ’t Hooft, Jackiw–Nohl–Rebbi,9 and further
Popov.10–12

II. REDUCTIONS OF THE AJSMN EQUATIONS

We start with the construction of four vector fieldsVm corresponding to the Gibbons
Hawking metrics. We use the standard coordinates (x0,x1,x2,x3) and the volume formv5dx0

`dx1`dx2`dx3 for the underlying space–timeR4. Let f andc i ( i 51,2,3) be smooth functions
and define13

V05f
]

]x0 , ~8!

Vi5
]

]xi 1c i

]

]x0 . ~9!

Then the volume-preserving condition implies that the functionsf, c i are independent ofx0 and
the half-flat condition implies

* df5dc, ~10!

wherec5( i 51
3 c i dxi and * denotes the Hodge operator on the three-dimensional subspacR3

5$(x1,x2,x3)%. These conditions are identical to the ansatz used by Gibbons and Hawki
construct hyperka¨hler metrics with a triholomorphic U~1! symmetry.14

Remark 2.1:The Gibbons–Hawking ansatz is characterized by the following Lie algebragGH.
Let gGH be the Lie algebra generated by the Gibbons–Hawking vector fieldsVm . ThengGH is
given by the extension of the two Abelian Lie algebras^] If]/]x0& and R3. ~] If denotes the
multiple partial differentiation off with respect tox1, x2, andx3.! In other words the following
sequence is exact:
J. Math. Phys., Vol. 38, No. 11, November 1997
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0→K ] If
]

]x0L→gGH→R3→0. ~11!

We note that̂ ] If]/]x0& is a left D-module for

D5RF ]

]x1
,

]

]x2
,

]

]x3G Y XS ]

]x1D 2

1S ]

]x2D 2

1S ]

]x3D 2C. ~12!

We now describe an approach which allows us to obtain the vector fieldsVm satisfying the
conditions~1! and~2! from ~anti! self-dual Yang–Mills connections of infinite-dimensional gau
groups. LetS (n) (n51,2,3,4) be an-dimensional manifold equipped with a volume formv (n).
Then we assume that the gauge Lie algebra is the Lie algebrasdi f f(S (n)) of all volume-
preserving vector fields onS (n). Connections on Euclidean spaceR45$(x0,x1,x2,x3)% may be
explicitly expressed by one-forms onR4 valued in sdi f f(S (n)). We write these one-forms a
Amdxm ~m50,1,2,3! and require the following conditions:

~a! Am areRn invariant with respect to the coordinates (x0,...,xn21).
~b! Am are anti-self-dual connections, namely, the covariant differentiationsDm5]/]xm

1Am satisfy the equation

1
2h̄mn

a @Dm , Dn#50. ~13!

~c! Am (0<m<n21) are linearly independent at each point onS (n).
We then define the four vector fieldsVm on S (n)3R42n as follows:

Vm5H Am , 0<m<n21,

Dm , n<m<3.
~14!

These vector fields evidently preserve the volume formv5v (n)`dxn`•••`dx3 and satisfy the
half-flat condition~2! and hence induce a hyperka¨hler metric onS (n)3R42n.

We note the previous Gibbons–Hawking vector fields can be obtained by applying the
construction to the caseS (1)5R. @In the cases ofS (4) andS (3), we simply recover the equation
~1!, ~2!, and~7!.#

We now concentrate our attention on the explicit construction of hyperka¨hler metrics in the
case ofX5S3R2, where (S,vS) is a two-dimensional symplectic manifold. Let us assume t
the R2-invariant connectionsAm are the Hamiltonian vector fieldsXf m

alongS3$(x2,x3)% asso-
ciated with some functionsf m ~m50,1,2,3! on S3R2. Then~14! becomes

V05Xf 0
, ~15!

V15Xf 1
, ~16!

V25
]

]x2 1Xf 2
, ~17!

V35
]

]x3 1Xf 3
. ~18!

Thus our problem consists in finding the four functionsf m satisfying the anti-self-dual condition
~13!:
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$ f 0 , f 1%1
] f 3

]x2
2

] f 2

]x3
1$ f 2 , f 3%50, ~19!

$ f 0 , f 2%2
] f 0

]x2
1

] f 1

]x3
1$ f 3 , f 1%50, ~20!

$ f 0 , f 3%2
] f 0

]x3
2

] f 1

]x2
1$ f 1 , f 2%50. ~21!

We will not attempt to answer this question in any generality, but consider three exam
below.

~i! Let f m(m50,1,2) bex2 independent andf 350. Then~19!–~21! yield the Ward equation15

] f 0

]x3
5$ f 1 , f 2%,

] f 1

]x3
5$ f 2 , f 0%,

] f 2

]x3
5$ f 0 , f 1%, ~22!

where $,% denotes the Poisson bracket onS induced by the symplectic structurevS . These
equations~but with Poisson brackets replaced by commutators of matrices of some fi
dimensional Lie algebra! arose in Nahm’s construction of monopole solutions in Yang–M
theory.16,17

The group SL~2,R! acts onS5R2, H ~the complex upper half-plane! and SU~2! acts onS
5S2 preserving the standard volume form for each case. So we can construct hyperka¨hler metrics
on S3R3I ~I is an open interval! from the solutions of the Nahm equation valued in sl~2,R! or
su~2!. For example, we can express such solutions by Jacobi elliptic functions as follows:

~a! sl~2,R!

f 05k sn ~x3,k!h0 , ~23!

f 15k cn ~x3,k!h1 , ~24!

f 25dn ~x3,k!h2 , ~25!

~b! su~2!

f 05ns ~x3,k!ĥ0 , ~26!

f 15ds ~x3,k!ĥ1 , ~27!

f 25cs ~x3,k!ĥ2 , ~28!

wherekPR\$0% and

h05$h1 ,h2%, h152$h2 ,h0%, h252$h0 ,h1%,

ĥ052$ĥ1 ,ĥ2%, ĥ152$ĥ2 ,ĥ0%, ĥ252$ĥ0 ,ĥ1%.

Some explicit solutions of the Nahm equations valued in finite-dimensional Lie algebras
constructed in Refs. 15, 18, and 19.

~ii ! We consider the hyperka¨hler metric with one rotational Killing symmetry preserving on
complex structure but not triholomorphic.20 We takeS5R2 with the coordinates (y0,y1) and
introduce ay0-independent functionc(y1,x2,x3). Let us assume the form
J. Math. Phys., Vol. 38, No. 11, November 1997
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f 0522ec/2 cos
y0

2
, ~29!

f 152ec/2 sin
y0

2
, ~30!

f 252Ey1 ]c

]x3 dy1, ~31!

f 35Ey1 ]c

]x2 dy1. ~32!

Then the functionsf m satisfy~19!–~21!, if c is a solution of the three-dimensional continual To
equation:

S ]

]x2D 2

c1S ]

]x3D 2

c1S ]

]y1D 2

ec50. ~33!

This solution leads to a hyperka¨hler metric with the Killing vector field]/]y0, which is known as
the real heaven solution in the Pleban´ski formalism.21

~iii ! Using the solutions of both Nahm and Laplace equations, Popov presented a const
of self-dual Yang–Mills connections onR4.10 We may apply the same method to our case, i
R2-invariant Yang–Mills connections of the gauge Lie algebrasdi f f(S). Let Ta(t) (a51,2,3)
andu(x2,x3) be solutions of the Nahm equation associated with the Lie algebrasdi f f(S) and the
Laplace equation onR2, respectively:

]Ta

]t
5

1

2
eabc$T

b,Tc%, a,b,c51,2,3, ~34!

(
m52

3 S ]

]xmD 2

u50. ~35!

Then we obtain the solutionsf m ~m50,1,2,3!:

f m5 (
n52

3

h̄mn
a ]u

]xn Ta~u!. ~36!

Remark 2.2: We note that the ansatz for the vector fields~15!–~18! is similar to that in Refs.
22–24, which should be regarded as the ansatz for the vector fields on a complex four-dime
manifold, so that it is not so obvious whether the corresponding metrics satisfy the reality c
tion. However, our construction manifestly satisfies such a condition.

III. YANG–MILLS INSTANTONS ON HYPERKÄ HLER MANIFOLDS

Now we present a construction of anti-self-dual Yang–Mills connections of arbitrary g
Lie algebrag on a hyperka¨hler manifoldX. As mentioned above, Popov has obtained a form
for self-dual Yang–Mills connections onR4. We generalize his construction to the case of fo
dimensional hyperka¨hler manifolds by using Ashtekar variables.

SupposeX is a hyperka¨hler manifold expressed by linearly independent four-vector fieldsVm

and a volume formv as mentioned in~1! and ~2!.
Proposition 3.1:The g-valued connectionA on X given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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A~Vm!5h̄mn
a ~Vnu!Ta~u! ~37!

satisfies the anti-self-dual condition if and only if the set ofg-valued functionsTa (a51,2,3) on
R is a solution of the Nahm equation:

dTa

dt
5

1

2
eabc@Tb, Tc#, ~38!

and the functionu on X is a solution of the equation:

(
m50

3

~VmVm!u50. ~39!

Proof: Using the identities~3!, we calculate the anti-self-dual part of the curvatureFmn

5F(Vm ,Vn) as follows:

1

2
h̄mn

a Fmn5
1

2
h̄mn

a $Vm„A~Vn!…2Vn„A~Vm!…2A~@Vm , Vn#!1@A~Vm!, A~Vn!#%

52(
s

~VsVsu!Ta2(
s

~Vsu!~Vsu!H dTa

dt
2

1

2
eabc@Tb, Tc#J

2
1

2
A~ h̄mn

a @Vm , Vn#!.

It follows from ~2! and our assumptions~38! and ~39! that the above quantity vanishes.h
Remark 3.2: The equation~39! is identical to the Laplace equation associated with the hyp

kähler metric. So we can choose the harmonic functions asu in ~39!. For example, if the solutions
of ~2! are the Hamiltonian vector fields for functionsf m on a symplectic four-dimensional man
fold, then f m are harmonic.

Remark 3.3: In the above proof we do not use the volume-preserving condition for the ve
fields Vm . Hence it is not necessary thatX is a four-dimensional hyperka¨hler manifold. The
restriction for ann-dimensional manifoldX we require is simply the existence of the linear
independentn vector fieldsVm such that12h̄mn

a @Vm , Vn#50 with the relations~3! for the matrices
h̄mn

a .25
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Groupoid approach to noncommutative quantization
of gravity
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We propose a new scheme for quantizing gravity based on a noncommutative
geometry. Our geometry corresponds to a noncommutative algebraA5Gc

`(G,C)
of smooth compactly supported complex functions~with convolution as multipli-
cation! on the groupoidG5EvG being the semidirect product of a structured
spaceE of constant dimension~or a smooth manifold! and a groupG. In the
classical caseE is the total space of the frame bundle andG is the Lorentz group.
The differential geometry is developed in terms of aZ(A)-submoduleV of deri-
vations ofA and a noncommutative counterpart of Einstein’s equation is defined.
A pair (A,Ṽ), whereṼ is a subset of derivations ofA satisfying the noncommu-
tative Einstein’s equation, is called an Einstein pair. We introduce the representa-
tion of A in a suitable Hilbert space, by completingA with respect to the corre-
sponding norm change it into aC* -algebra, and perform quantization with the help
of the standardC* -algebraic method. Hermitian elements of this algebra are inter-
preted as quantum gravity observables. We introduce dynamical equation of quan-
tum gravity which, together with the noncommutative counterpart of Einstein’s
equation, forms a noncommutative dynamical system. For a weak gravitational
field this dynamical system splits into ordinary Einstein’s equation of general rela-
tivity and Schro¨dinger’s equation~in Heisenberg’s picture! of quantum mechanics.
Some interpretative questions are considered. ©1997 American Institute of Phys-
ics. @S0022-2488~97!02810-7#

I. INTRODUCTION

In our previous work1 we have employed methods of noncommutative geometry to ana
space–times with singularities in general relativity. It has turned out that even the most ma
singularities~strong curvature singularities! can be analyzed in terms of representations o
certain noncommutative algebraA, encoding information about a given relativistic space–ti
~with singularities!, in a Hilbert spaceH. The fact that in this approach typically general relat
istic structures~Lorentz metric, frame bundle, connection! nicely interact with typically quantum
mechanical structures~bounded operators on a Hilbert space! has suggested a strategy which cou
lead to the unification of relativistic and quantum mechanical methods, and consequently
quantization of gravity. In the present paper we elaborate this strategy in the strict mathem
way. There are several works dealing with the theory of gravity within the framework of
commutative geometry.2 The common feature of these works is an attempt to construct a
commutative counterpart of space–time, whereas in our approach we entirely give up the c

a!Correspondence address: ul. Powstan´ców Warszawy 13/94, 33-110 Tarno´w, Poland; mheller@wsd.tarnow.pl
0022-2488/97/38(11)/5840/14/$10.00
5840 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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of space–time, and recover it only in the process of transition to the classical case. The ma
is the following. LetG5EvG be a groupoid, whereE is a structured space~called also differ-
ential space! of constant dimension3 ~or a manifold! and G a group~the choice of this group is
discussed in Sec. II!. We define the differential algebra (A,V), whereA5Cc

`(G,C) is a non-
commutative algebra of compactly supported smooth complex valued functions onG ~with con-
volution as multiplication! andV is aZ(A)-submodule of all derivations DerA of A. Now, we
develop differential geometry in terms ofV ~as a counterpart of vector fields!. This allows us to
formulate noncommutative Einstein’s equation. The pair (A,Ṽ), where Ṽ is the
Z(A)-submodule ofV consisting of derivations which satisfy the noncommutative Einste
equation, is called theEinstein pair. Now, following Connes,4 we find a representation ofA in a
suitable Hilbert space. The completion of this algebra with respect to the corresponding
changes it into aC* -algebra which we callEinstein algebra@by slightly abusing the language
since Einstein’s equation restricts theZ(A)-module Ṽ rather than the algebraA itself#. This
allows us to use the standardC* -algebra quantization methods. As it should be expected,
conceptually transparent scheme is involved in many technical problems. In the present pa
test our approach with the help of simplified~but mathematically rigorous! models. To change it
into the full physical theory would require more work consisting mainly in elaborating suit
computational methods.

Our approach is not necessarily rival with respect to other known methods of quan
gravity. For instance, there are some indications that the canonical quantization method
recovered from our approach by suitably restricting the algebraA.

In Sec. II we briefly review these aspects of our paper on the noncommutative struct
classical singularities1 which give motivation and conceptual framework for the present work
Sec. III we develop differential geometry based on the algebra (A,V). The noncommutative
counterpart of Einstein’s equation is introduced and discussed in Sec. IV; it is also demon
that, for the classical case, this equation reduces to the ordinary Einstein equation of g
relativity. In Sec. V we show how to changeA into a C* -algebra and construct the quantu
theory of gravity in terms of this algebra. When the gravitational field is weak equations o
theory go to the correct quantum mechanical case. Some interpretative questions and futu
spectives are touched upon in Sec. VI.

We are far from claiming that the proposed approach is the final unification of ge
relativity and quantum physics, although we hope it could be a step in the right direction.

II. FROM CLASSICAL SINGULARITIES TO QUANTUM GRAVITY

Let M̄5Mø]bM be a space–timeM with its singularities organized into theb-boundary
]bM of M .5 We can typically think ofM as of the space–time of the closed Friedman wo
model. It has been demonstrated by Bosshard6 and Johnson7 that the initial and final singularities
of this model are of a particularly malicious type: they make theb-boundary]bM collapse to the
single point which is not Hausdorff separated from the rest of space–time. In Ref. 1 we emp
methods of noncommutative geometry to analyze this situation. Our strategy was the follo
Let OM be the Cauchy completed total space of the fibre bundle of orthonormal frames ovM̄ .
It can be easily seen that the semidirect productG5OMvO(3,1) is a groupoid~see Ref. 1, p.
5667!. G is smooth in the sense of the structured space theory. In fact,G is a structured space o
constant dimension.3 The ‘‘desingularization process’’ consists in considering the line bun
t: V1/2→G where V1/25øgPG Vg

1/2 with

Vg
1/25$r:`

k Tg~Gp! ^ `
k Tg~Gq!→C:

r~ln!5ulu1/2r~n!,lPR,nP`
k Tg~Gp! ^ `

k Tg~Gq!%,
J. Math. Phys., Vol. 38, No. 11, November 1997
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for gPG, and

Gp5$~p,g!:gPO~3,1!%, Gq5$~qg21,g!:gPO~3,1!%,

for pPOM. The line bundlet : V1/2→G is trivial and its trivial structure is preserved at sing
larities. In fact, the setsGp and Gp are smooth manifolds@even if p is the ‘‘frame’’ over the
singularitypPp21(x0) wherex0P]bM ].

It can be shown that the space of sectionsCc
`(G,V1/2) with compact support of the line

bundle t : V1/2→G is an involutive algebra if the multiplication of sections is defined as
convolution (s* t)(g)5*Gq

s(g1)t(g2), wheres,tP Cc
`(G,V1/2), g5g1+g2 , and the involution

ass°s* by s* (g)5s(g21). It has been proved by Connes~in Ref. 8, pp. 114–116! that for every
qPOM̄ the formula

~pq~s!j!g5E
Gq

s~g1!j~g1
21g!, ~1!

gPGq ,jPL2(Gq),sP Cc
`(G,V1/2), defines an involutive nondegenerate representation of

algebraCc
`(G,V1/2) in the Hilbert spaceL2(Gq) of the square integrable functions on the ma

fold Gq . The completion of this algebra with respect to the norm

isi5supqPOM̄ipq~s!i ~2!

is a C* -algebra. Formula~1!, for qPp21(x0) wherex0P]bM , represents the singularity as a
algebra of bounded operators on the Hilbert spaceL2(Gq). The fact that singularities in genera
relativity can be analyzed in terms of the typically quantum mechanical mathematical structu
suggested to us the following proposal to quantize gravity.

Let E be a structured space of constant dimension@we could think ofE as of the total space
of the frame bundle over space–time~with singularities!, especially when considering the classic
case#. We could also assume thatE is a smooth manifold, but by doing so we lose on general
in such a case, when changing to classical physics, we obtain space–time without singular
fact, major parts of differential geometry carry over from manifolds to structured spaces of
stant dimension almost automatically.3 We form a semidirect productG5EvG whereG should
be a suitably chosen Lie group@for instance a representation of the Lorentz group such as SO~3,1!
or SL~2,C!#. The choice ofG should be made on physical grounds; in the present work,
generality reasons, we leaveG unspecified. By proceeding as above, we obtain the involu
algebraCc

`(G, V1/2) of compactly supported cross sections of the line bundlet : V1/2→G. To
facilitate our work and make the theory more similar to the theory of structured spaces we
use the following lemma.

Lemma 2.1: There exists an isomorphismF between the involutive algebra
(Cc

`(G, V1/2),1,* ,* ) and (Cc
`(G,C),1,* ,* ) where Cc

`(G,C) is the family of all compactly
supported complex valued functions onG. In general, these algebras are noncommutative.j

Proof: Sincet : V1/2→G is a trivial bundle we have the correspondences° s̃ , where s̃ is
the cross section ofG3Ṽg

1/2, Ṽg
1/2 being the typical fibre oft : V1/2→G. SinceṼg

1/2 is a one-
dimensional space with the basisr0, we have a diffeomorphismf:Ṽg

1/2→C given by
f(lr0)5l15lPC, andF:Cc

`(G,V1/2)→Cc
`(G,C) given by F(s)5f+pr2+ s̃ establishes the

isomorphism between the algebras. Forf ,gPCc
`(G,C) we define f * g5F(F21( f )* F21(g)),

and f * 5F(F21( f )* ). h

The first stage of our program consists of developing differential geometry in terms o
algebraA5Cc

`(G,C), and defining a noncommutative algebraic counterpart of Einstein’s
equation. In the second stage we extend this algebra to aC* -algebra and carry out the quantizatio
by adapting the standardC* -algebraic methods to the specific character of gravity.
J. Math. Phys., Vol. 38, No. 11, November 1997
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III. NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON THE GROUPOID G5EvG

A. Differential algebra „A,V…

There are several methods of generalizing differential geometry to the noncommutative
ceptual framework~see, for instance, Refs. 4, 9–13!. In this section we adapt our ow
approach14,15 to the structure of the groupoidG5EvG. Since in fact we are interested in th
underlying product structure ofG we shall writeG5E3G, and denoteG̃p5$p%3G for pPE,
andG̃g5E3$g% for gPG. We have two obvious isomorphisms:ig :E→G̃g andip :G→G̃p given
by ig(p)5(p,g) and ip(g)5(p,g), respectively.

By thedifferential algebrawe understand the pair (A,V); in our caseA5Cc
`(G,C), and we

assume thatV, DerA is a freeZ(A)-submodule of DerA. For vPV we define the following
mappings: vE,g :C`(E)→C`(E) by vE,g(w)5ig* (v(w+prE)), and vG,p :C`(G)→C`(G) by
vG,p(a)5ip* (v(a+prG), wherewPC`(E),aPC`(G) ~bothw anda with compact support!, prE

and prG being the obvious projections. Both mappings determine the families of deriva
v°(vE,g)gPG and v°(vG,p)pPE , respectively. To define derivations on the productG5E3G
we introduce two further mappings:vE :A→A by vE( f )(p,g)5vE,g( f +ig)(p), andvG :A→A

by vG( f )(p,g)5vG,p( f +ip)(g) for f PA, (p,g)PE3G. A derivationvPV is said to beparallel
to E if, for any aPC`(G), one hasv(a+prG)50; the set of all such derivations will be denote
by VE . A derivation vPV is said to beparallel to G if, for any wPC`(E), one hasv(w
+prE)50; the set of all such derivations will be denoted byVG . We additionally assume tha
V5VE% VG .

SinceG is a structured space of constant dimension, we can assume that there is a metrg on
G and the metric connection¹ on theZ(A)-moduleV. For anyu,vPVE we define the metric

gE~u,v !~p,h!5g~uE,h ,vE,h!~p!,

for pPE, hPG, and the connection

~¹uv
E

!E,h :5¹uE,h
vE,h .

Analogously foru,vPVG ,

gG~u,v !~p,h!:5g~uG,p ,vG,p!~h!,

and

~¹uv
G

!G,p :5¹uG,p
vG,p .

Now, we shall develop the geometry of the differential algebra (A,V) whereA5C`(E3G)
and V5VE% VG is a freeZ(A)-module. We assume that in theZ(A)-module V there is a
~semi-!Riemannian metricg:V3V→A defined by

g5prE* gE1prG* gG , ~3!

whereprE :E3G→E and prG5E3G→G are the obvious projections. We easily check tha
uPVE andvPVG theng(u,v)50. Let us notice that if the metricsgE andgG are nondegenerate
the metricg is also nondegenerate. If the metricg is degenerate we could develop the different
geometry onE3G by using methods presented in Ref. 16; however, in the present work we
assume thatg is nondegenerate. Now, we shall briefly present differential geometry base
derivations by summarizing Ref. 15.

First, we define thepreconnection¹* :V3V→V* with the help of the usual Koszul formula
J. Math. Phys., Vol. 38, No. 11, November 1997
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~¹u* v !~x!5 1
2 @u~g~v,x!!1v~g~u,x!!2x~g~u,v !!

1g~x,@u,v# !1g~v,@x,u# !2g~u,@v,x# !#,

for u,v,xPV. Let us define the mappingCg :V→V by Cg(u)(v)5g(u,v), u,vPV. The above

preconnection serves to defineconjugated connection¹̃* :V13V1→V* , whereV1:5ImFg are
‘‘invertible forms,’’ by

¹̃* ab5¹ Fg
21~a!

* Fg
21~b!,

for a,bPV1. In our case,Fg is an isomorphism and all forms are ‘‘invertible.’’ Finally, w
definelinear connection¹:V3V→V by

¹uv5 Fg
21~¹u* v !.

Analogously, we first define thecurvature of the conjugated connection¹̃* as an operator
R̃:(V13V13V1)→V* by

R̃~a,b!g5 ¹̃* a ¹̃* bg2 ¹̃* b ¹̃* ag2 ¹̃* [a,b]g,

where@a,b#:5Fg@ Fg
21(a), Fg

21(b)#.
The curvature of the linear connection¹ is the operatorR:V3→V defined by17

R~u,x!y5¹u¹xy2¹x¹uy2¹ [u,x]y.

SinceV is a freeZ(A)-module we can choose a basis in it and, for any linear oper
T:V→V, define thetrace of T in the usual way, trT5( i 51

k Ti
i . For any fixed pairx,yPV we

define the family of operatorsRxy :V→V by Rxy(u)5R(u,x)y, and consequently theRicci cur-
vature ric :V3V→Z(A) is given byric (x,y)5trRxy . By putting ric (u,v)5g(R(u),v) we ob-
tain theRicci operatorR:V→V. Now, we have all geometric tools to construct a noncommuta
version of general relativity.~A noncommutative version of some basic aspects of general
tivity were presented in works quoted in Ref. 2.!

B. Example: The group algebra of a finite group and its geometry

In this subsection we shall discuss, as a simple example, the geometry of a finite group.
consider the setC(G) of formal linear combinations of all elements of the groupG with complex
coefficients. This set, with the usual addition and convolution as multiplication, is an algebr
so-calledgroup algebraof G.18,19 There exists an isomorphism,

T:C~G!→)
j 51

k

Mnj
~C!,

whereMnj
(C) arenj3nj matrices with complex elements, such thatT(w* c)5T(w)•T(c) with

a dot denoting the usual matrix multiplication. One has

DerC~G!5T21S Der)
j 51

k

Mnj
~C!D .

In the linear spaceV:5DerMn(C) there exists a basisv15adA1 , . . . ,vk5adAk , k5n221,
where AjPMnj

(C) ~see, Ref. 9, p. 40!. V is a freeZ(A)-module, the centerZ(A) being
isomorphic withC.
J. Math. Phys., Vol. 38, No. 11, November 1997
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We can define a metricgG :V3V→Z(A) by gG(v i ,v j )5gG,i j I wheregG,i j 5gG, j i , (gG,i j )
PGL(k,C).

In agreement with Ref. 15, we defineV* 5HomZ(A)(V,A) and FgG
:V→V* by FgG

(u)
3(v)5gG(u,v) for u,vPV. The mappingFgG

is a substitute of the usual lowering of indices
Proposition 3.1:FgG

is an isomorphism. j

Proof: To show thatFgG
is an epimorphism we choose a basis inV and the dual basis inV* ,

and use the Cramer formulae to solve the resulting set of linear equations. To show thatFgG
is a

monomorphism one easily demonstrates that (FgG
(u)50)⇒(u50). h

The above proposition allows us to define thepreconnection
G

¹* :V3V→V* with the help of
the Koszul formula which in our case reduces to

~
G

¹* uv !~x!5 1
2 @gG~x,@u,v# !1gG~v,@x,u# !2gG~u,@v,x# !#,

for u,v,xPV, and theconnection
G

¹:V3V→V as
G

¹5FgG

21+
G

¹* .

V is a Lie algebra, i.e.,@v i ,v j #5ci j
mvm ~Einstein’s summation convention!!, ci j

mPZ(A), and
one easily computes the Christoffel symbols,20

G i jk5~
G

¹v i
* v j !~vk!5 1

2 ~gG,kmci j
m1gG, jmcki

m2gG,imcjk
m !I .

One defines the curvature tensor and the Ricci tensor in the usual way. Since a b
available, there are no problems with the definition of trace.~For details see Ref. 15, Sec. 6.!

Now, we construct the geometry of the algebra (C(G),1,*). This algebra is isomorphic with
the algebra of the direct productA5) i 51

k Mni
(C) of ni3ni matrices with complex elements

wheren1 , . . . ,nk are dimensions of irreducible, pairwise nonequivalent, representations ofG. The
operations of addition and multiplication are given by the usual pairwise matrix addition
multiplication, respectively. The inverse of (A1 , . . . ,Ak) is (A1

21 , . . . ,Ak
21) for those Ai

PMni
(C) which are invertible. The center ofA is Z(A)5$(c1In1

, . . . ,ckInk
):c1 , . . . ,ckPC%.

Let vPV:5DerA. It is of the form v5(v1 , . . . ,vk) such that v(A1 , . . . ,Ak)
5(v1(A1), . . . ,vk(Ak)). We can define the metricg:V3V→Z(A) by

g~~v1 , . . . ,vk!,~u1 , . . . ,uk!!5~g1~v1 ,u1!, . . . ,gk~vk ,uk!!PZ~A!,

and develop geometry by working with every component separately.
The above approach can be generalized to thegeometry of an infinite direct product of matri

algebras.Let A5) j PJMnj
(C). If APA, then A5(Aj ) j PJ whereAjPMnj

(C). The algebraic
operations are given byA1B5(Aj1Bj ),A•B5(Aj•Bj ), and I5(Inj

). Z(A)5) j PJZ(Aj ). v

PDerA means thatv5(v j ) j PJ ,v jPDerAj . Let AlPMnl
(C), for a fixedl , and letĀ j :5(Bj ) j PJ

whereBj5Al if j 5 l , andBj50 if j Þ l . Thenv jPDerAj is defined byv j (Aj )5pr jv( Ā j ) where
pr j is the canonical projection. One can assumeg5(gj ) j PJ as a metric and develop geometry
in Ref. 15.

IV. NONCOMMUTATIVE GENERAL RELATIVITY

A. Einstein algebra

The standard way to obtain a noncommutative general relativity in our conceptual frame
would be to define the generalized Einstein–Hilbert action on the groupoidG5EvG. This re-
quires elaboration of calculus of variations on structured spaces such as the groupoidG.21 We
shall do this in a subsequent paper. For the time being, we propose to directly define a no
mutative counterpart of Einstein’s equation by postulating the following two assumptions:~1! the
J. Math. Phys., Vol. 38, No. 11, November 1997
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noncommutative Einstein equation should formally have the same shape as the usual E
equation on space–time;~2! in a classical case it should reduce to the usual Einstein’s equa
Motivation for ~2! is obvious. To argue for~1! let us notice that sinceE is a smooth structured
space of constant dimension~which behaves very much as a smooth manifold!, G is a smooth
manifold ~as a Lie group!, and the setsGp andGq behave regularly even ifp andq are ‘‘frames’’
in the maliciously singular fibers, there is no reason to expect new terms in generalized Ein
equation. It should also be noticed that our model works well if one assumes thatE is a smooth
manifold. The vast generalization of the usual geometry consists in the transition from the
mutative framework to the noncommutative one. And after all, equations of any physical t
are postulated and subsequently verified by their consequences.

We have the differential algebra (A,V), whereA5Cc
`(G,C), andV is the set of derivations

of A as discussed in Sec. III A. We postulate the following operator equation:

R2
1

2a
r I1LI5kT, ~4!

wherea5trI ,r 5trR, L andk are constants~related to the cosmological constant and Einstei
gravitational constant!, and T:V→V is a suitably generalized energy–momentum operator~to
guarantee the correct classical limitT must satisfy certain invariance property; see below Pro
sition 4.5!. To solve this equation means to find kerG whereG[R2(1/2a)r I1LI2kT. It is
clear that kerG is a submodule of theZ(A)-module V. One could also consider the abov
equation withL50, but because of some suggestions that the cosmological constant could
role at the fundamental level~and for the sake of generality! it seems better to keepL in the
equation.

If T50, Eq. ~4! reduces to

R50, ~5!

for L50 and to

R522L, ~6!

for LÞ0. In Sec. V we shall assume that there are Eqs.~5! or ~6! that should be postulated in th
quantum gravity regime rather than Eq.~4!. Our philosophy is that at the fundamental level~below
the Planck threshold! there is only ‘‘pure noncommutative geometry’’ with no heterogene
elements such as the energy–momentum operatorT. In the next subsection we shall show th
Eqs.~4!–~6! lead the correct classical case.

The pair (A,Ṽ), where A5Cc
`(G,C) andṼ5kerG,DerA ~G can be taken withL50 or

T50), will be called theEinstein pair.14,22

In fact, A is here an involutive algebra with the involution given bys* (g)5s(g21), and the
convolution (s* t)(g)5*Gq

s(g1)t(g2), s,tP A,g1+g25gPG, as multiplication. As we know
from Sec. II, for everypPE, formula ~1! defines an involutive nondegenerate representa
pq :A→EndL2(Gq) of A in the Hilbert spaceL2(Gq), and the completion ofA with respect to
norm ~2! changesA into a C* -algebra which will be called C* -Einstein algebra~or simply
Einstein algebraand denoted byE ; we shall also use the termE-algebra~for details see Ref. 8 and
Ref. 1, theorem 4.1!.

The following example shows that our construction ofE-algebras is not empty.
Example 4.1:Let OM be the total space of the orthonormal frame bundle over the space–

M of the closed Friedman world model. We form the groupoidG5OMvSO(3,1), construct the
involutive algebra A5Cc

`(G,C), and complete it to theC* -algebra. The differential algebr
(A,kerG), where kerG ,Der A, should be regarded as determining a solution of general
Einstein’s equation~4! ~for simplicity we assumeL50); in fact, it is an Einstein pair. This
J. Math. Phys., Vol. 38, No. 11, November 1997
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algebra is strongly Morita equivalent to the~commutative! algebraC`(M ) of smooth functions on
the closed Friedman space–timeM ~strong Morita equivalence plays the role of isomorphism
the theory ofC* -algebras4!. We should notice that, in this case the Einstein pair (A,kerG) cannot
be regarded as a classical limit of our noncommutative general relativity~the classical case will be
studied in the next subsection! since being noncommutative it loses information about individ
points in space–timeM @of course, the algebraC`(M ) contains this information#. Instead, it
informs us about the ‘‘states’’ of this world model, understood as constant time sections ofM .23

If we repeat this construction withM replaced by itsb-completion M̄5Mø]bM we obtain
another Einstein pair which should be interpreted as determining a solution of the gener
Einstein equation~4! describing the closed Friedman space–time with its singularities~see Sec.
II !.

B. Classical case

To discuss how our generalized Einstein’s theory leads to the classical case let us first a
that the groupG is compact.

The set of functionsf PA5Cc
`(G,C) constant along fibersG̃p , for all pPE, will be denoted

by Aconst. It can be checked thatAconst,Z(A). Indeed, a functionf PA is said to be a
central functionif f (g1)5 f (gg1g21) for all g1 , gPG̃p , pPE. Simple calculations show tha
central functions belong toZ~A!, and of course everyf PAconst is a central function.

Let G̃p andG̃q , p,qPE, be two fibers. They are said to be equivalent,G̃p;G̃q , if there is
gPG such thatq5pg. A function is said to beprojectible if it is constant on equivalence classe
of this relation; the set of all such functions will be denoted byApro j . It is evident that if f
PApro j then f PAconst ~but notvice versa!, and consequentlyApro j,Z(A). Because of this
inclusion it can be easily seen that iff ,hPApro j , thenf * h becomes commutative, and in the ca
of a normed Haar measure onG, the convolutionf * h reduces to the usual multiplication. A
derivation vPDerA is said to beprojectible if Apro j is invariant with respect to it, i.e., if
v(Apro j),Apro j ; the set of all such derivations will be denoted by Derpro jA ~or by Vpro j).
Other projectible objects are defined similarly. For instance, a metricg is said to beprojectible if
v,uPDerpro jA implies g(u,v)PApro j .

The proof of the following proposition is immediate.
Proposition 4.2:Every projectible functionf is symmetric@i.e., f (g)5 f (g21) for gPG];

and if f is also Hermitian@i.e., if f * (g)5 f (g21)], it is real valued. h

Of course bothAconst andApro j are commutative algebras@as subsets ofZ(A)]. This fact,
together with proposition 4.2, tells us that by restricting an involutive algebraA to the Hermitian
elements ofApro j we recover the usual commutative~space–time! geometry@it is worthwhile to
remember that ifG is the Lorentz group, identifying fibers under the equivalence relation; is the
same~up to the isomorphism! as taking the quotientE/G which gives us the space–timeM ]. With
one important proviso: ifE is not a manifold but a structured space, thenE/G is a space–time with
singularities.1

It remains to be checked whether the geometry constructed by us in the previous sectio
correct projectibility properties.

Proposition 4.3:Metric ~3! is projectible if gE is G-invariant, i.e., ifu,vPX G(E) implies
gE(u,v)PCG

`(E) whereCG
`(E) denotes the algebra ofG-invariant functions onE, andX G(E)

denotes theCG
`(E)-module of derivations invariant with respect to the action of the groupG on E.

j

Proof: Let u,vP Derpro j A. We have the unique decompositionu5uE1uG andv5vE1vG

whereuE ,vEP DerE A anduG5vG50. Let us observe thatprEuE ,prEvEPX G(E). We easily
compute

g~u,v !5~prE* gE!~u,v !5gE~prEuE ,prEvE!+prE .
J. Math. Phys., Vol. 38, No. 11, November 1997
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SincegE is G-invariant,gE(prEuE ,prEvE)PCG
`(E). Therefore,g(u,v)P Apro j . h

Let us notice that we could also assume a metric different from~3!; however, in such a cas
we should postulate the followingweak degeneracy condition:

;vPDerpro j A:~~;uPDerpro j A:g~u,v !50!⇒~;sP Apro j :v~s!50!!.

This condition guarantees nondegeneracy of the corresponding metric onM .
Proposition 4.4:If g is a projectible metric on DerA, then its preconnection¹* is pro-

jectible. j

Proof: It is enough to notice that the commutator of projectible derivations is projectible
to look at the Koszul formula. h

Since geometry ‘‘parallel toG ’’ does not participate in the projectible geometry, it is clear th
there is a local basis in Derpro jA, and consequently the mappingFg,pro j :
Derpro jA→(Derpro jA)* is an isometry. Therefore, we have the projectible connection¹pro j

5Fg,pro j
21 +¹pro j* , and by a simple analysis of the corresponding formulae~of Sec. III A! we easily

prove the following proposition.
Proposition 4.5:Generalized Einstein’s operatorG5R2 (1/2a) I1LI2kT is invariant with

respect to Derpro jA, i.e., if vPDerpro jA thenG(v)PDerpro jA, provided thatT is projectible.h
This is another way of saying that if Eqs.~4!–~6! are restricted to projectible fields~deriva-

tions!, they change to the usual field equation of general relativity in space–time.
If G is a noncompact group it can be easily seen thatApro j5$0% and A is a nonunital

algebra. The transition to the classical case is done in the following way. We restrictA to its
centerZ(A) ~which is of course a commutative algebra with respect to convolution as m
plication!, and by using the Gel’fand representation ofZ(A) we obtain the functional algebr
~with the usual multiplication!, the spectrum of which~the set of all its maximal ideals! can be
identified with G. By forming the quotient spaceG/G we obtainE, and by formingE/G we
recover the space–timeM . During the last procedure singularities can appear. The case of
compact groupG will be fully discussed in a forthcoming paper.

V. QUANTUM GRAVITY

A. Postulates

Having expressed the fundamental idea of general relativity in terms ofC* -algebras it is
natural trying to quantize this theory with the help of the algebraic method based on cla
works by Jordan, von Neumann, Wiener, Segal, Haag, and Kastler24 and now extensively used in
quantum mechanics and in quantum field theory.25 Our proposal to quantize gravity closely fo
lows this method. The first three postulates are rather straightforward.

Postulate 1:Let E be aC* -Einstein algebra, andEH the set of all its Hermitian elements.E

represents a quantum gravitational system, and the elements ofEHù Z(E) its observables. The
spectrum of such an element represents possible measurement results of the correspon
servable.

Hermitian elements of an Einstein algebraE can be divided into two classes: Hermitia
elements ofEHù Z(E), and others. Only those belonging toEHù Z(E) deserve the name
‘‘observables’’ ~or ‘‘observables in principle’’ if we take into account the fact that enormo
energies, not available in the foreseeable future, are required to directly measure quantum
effects!. Hermitian elements which do not belong toZ(E) leave no traces in the macroscop
world. If G is a compact group, the observables are represented by projectible Hermitian ele
of A. Let us notice that only projectible Hermitian elements, being constant functions on su
equivalence classes~see Sec. IV B!, are invariant with respect to the action of the groupG.
Nonprojectible Hermitian elements do not share this property. Since claiming that measur
results are notG-invariant would be highly unphysical, it seems reasonable, in the caseG
compact, to identify observables as projectible Hermitian elements ofA.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Postulate 2:Let S denote the set of states of theE-algebra, i.e., the set of positive linea
functionalsw on E such thatiwi51 ~for definitions see, for instance, Ref. 25 or 26!. Elements of
S represent states of the system; pure states ofS represent pure states of the system.

Postulate 3:If sPEHù Z(E) andwPS thens(w) is the expectation value of the observab
s when the system is in the statew.

Representation~1! of theE-algebra in the Hilbert spaceL2(Gq) gives us the connection of th
above three postulates with the standard formulation of quantum mechanics in terms of bo
operators on the Hilbert space. For a givenqPE our ‘‘phase space’’ is the space of squa
integrable functions~wave functions! on the Lorentz groupG or some of its representations (Gq

is in fact the manifold ofG; see Ref. 1, lemma 3.2!, anduc(g)u2, for cPL2(Gq),gPG, should be
interpreted as the probability density of the Lorentz rotationg to occur. Any operatorpq(s) on the
Hilbert spaceL2(Gq) is of the form*Gq

s(g1)c(g1
21g), cPL2(Gq). The global character of suc

an operator~typical for noncommutative geometry! is self-evident.
There exists a well known correspondence between representationspq of theE-algebra in the

Hilbert spaceL2(Gq) and the states of this algebra; if a representation is irreducible the c
sponding state is pure.26 The direct sump5 % qPEpq is a representation of theE-algebra onH,
andH5 % qPE L2(Gq) can be regarded as the ‘‘total phase space’’ of our theory.

No physical theory is completed without dynamical equations. In the noncommutative co
the usual Hamiltonian time evolution is excluded~there is no time!.27 The only possibility that
seems to be left open is to model dynamics of operators in terms of derivations of theE-algebra.
This leads us to the analogue of the Schro¨dinger equation in the Heisenberg picture of the ordin
quantum mechanics.

Postulate 4:Let (E ,kerG), G5R12L, be aC* -Einstein algebra andpq :E→EndL2(Gq)
the representation ofE given by formula~1!. Dynamical equation of the quantum gravitation
system described by this algebra is

i\pq~v~s!!5@pq~s!,Fq#, ~7!

for every qPE. This equation should be solved forsPE , and we postulate thatvPkerG. F is
here a Fredholm operator, i.e., an operator acting on a Hilbert space such that the dimensio
kernel and cokernel are finite. The symbolFq should be understood as denoting the fam
(Fq)qPE which is constant, and the indexq allows one to formally distinguish the operator actin
on the particular fiber. Some further comments are indispensable.

~1! The Planck constant\ appears in Eq.~7! as a measure of noncommutativity of o
E-algebra. It is also needed to obtain the usual quantum mechanics in the limit when gravity
to zero.

~2! The concrete form of Fredholm operator in Eq.~7! should be specified on physical groun
when the concrete group is selected@one possible choice could be the group Spin~n! andF related
to the Dirac operator#. This is left for the future development of the theory. To obtain the cor
transition to the quantum mechanical case, forG compact, we additionally postulate the followin
invariance property forF: F(E pro j),Epro j ~see below subsection V B!.

~3! Although Eq.~7! is formally similar to the equationd f5@ f ,F# defining the differential in
Connes’ quantized calculus,4,28,29 it is not a definition but an equation to be solved forsPE .
However, this similarity opens the possibility to explore the connection between our approac
Connes’ theory; in particular to connect our quantum gravity with the Connes–Lott geome
tion of the standard model.4,29,30

~4! By the fact thatvPkerG, Eq. ~7! unifies the gravitational dynamics with the quantu
mechanical dynamics. In fact, Eq.~7! together with Eqs.~5! or ~6! could be regarded as a sing
noncommutative dynamical system.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



orre-
ssed in
ity we
If

l

n

p-

n

re

antum
B.

e
tivity,

5850 Heller, Sasin, and Lambert: Noncommutative quantization of gravity

                    
B. Quantum mechanical case

Since our theory unifies general relativity with quantum mechanics it should have the c
spondence with both these theories: the correspondence with general relativity was discu
Sec. IV B, now we shall discuss the correspondence with quantum mechanics; for simplic
shall deal with the case whenG is a compact group. Let us introduce the following notation:
sPA andvPDerA, we shall writeŝ for pq(s) andv(s)̂ for pq(v(s)), respectively. We shal
use similar notation for other objects as well.

Let us suppose thatsPE pro j . This implies thatsPZ(A). In such a case, the commutator o
the right hand side of Eq.~7! vanishes and we obtainv(s)̂50. Since the representationpq is
nondegenerate, this givesv(s)50, the generalized Einstein’s equation reduces toR(v)50 ~for
simplicity we assumeL50), the usual Einstein’s equation@since we are inZ(A)] in the empty
space-time, and Eq.~7! reduces to the identity 0[0. In this way general relativity decouples from
quantum mechanics. In considering Eq.~7!, in the case ofG compact, we should drop the assum
tion thatvPkerG and if vPVpro j then we can writev5wm (]/]xm) wherewmPVpro j(Domwm),
]/]xm being a projectible local basis onG5E3G which is obtained by lifting the local basis o
space–timeM5E/G in the correspondence with the classical case~Sec. IV B!. We easily com-
pute

v~s!̂5
] ŝ

]xm
+ŵm,

which reduces Eq.~7! to

i\
] ŝ

]xm
ŵm5@ ŝ,Fq#. ~8!

Because of theApro j-invariance property postulated for the Fredholm operatorFq in the preced-
ing subsection, and by assuming that the zero component ofFquApro j is a Hamilton operator, the
zero-component of Eq.~8! (m50) gives the usual Schro¨dinger equation in the Heisenberg pictu
of quantum mechanics.

C. The finite group example of the groupoid scheme for quantum gravity

In this subsection we construct, as an example, a simple model of our approach to qu
gravity in whichG is a finite group. It is a continuation of the example presented in Sec. III

We chose metric~3! with gG

a
:Va3Va→Z(A), Va :5DerAa ,Aa5Mna

(C), given by

g
a

~v i ,v j !5gi j Ina

a
.

With this metric generalized Einstein’s equation~5! assumes the form

RE% RG50, ~9!

whereRE andRG are Ricci operators parallel toE and toG, respectively. Let us notice that th
E-part of this equation gives the generalized sourceless field equation of general rela
whereas theG-part is responsible for quantum effects. In this case Eq.~7! assumes the form

i\pq
T~vT~sT!!5@pq

T~sT!,Fq
T#, ~10!
J. Math. Phys., Vol. 38, No. 11, November 1997
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where the superscriptT denotes the matrix representation of the corresponding magnitude~see
Sec. III B!; for example,pq

T(sT) is an endomorphismPa51
k Mna

(C)→Pa51
k Mna

(C). We assume
that v satisfies Eq.~9!.

Remembering that

pq
T~vT~sT!!~• !5ad~V1 , . . . ,Vk!~S1 , . . . ,Sk!~• !,

after simple manipulations, Eq.~10! @with the argument (B1 , . . . ,Bk)] can be written in the form
of the following system of equations:

i\@Vi ,Si #•Bi5Si•
i

Fq
T~Bi !2

i

Fq
T~Si•Bi !,

i 51, . . . ,k, where
i

Fq
T5(

i

Fq
T , . . . ,

k

Fq
T).

In agreement with the general discussion of the correspondence with previous theories~Secs.
IV B and V B!, metric ~3!, for projectible elements, givesguṼpro j3Ṽpro j5prE* gE which, when
taken into account in Eq.~9!, gives

RG[0,

and reduces the equation

RE50,

to the standard sourceless field equation of general relativity. We see that in this case qu
gravity effects become insignificant.

VI. INTERPRETATION

The fundamental role in our construction is played by the groupoid spaceG5EvG.31 Ele-
ments of this space are ‘‘fundamental symmetries’’ of our approach given by the elementsG
acting onE. The correct choice of the groupG will be crucial for the future development of thi
theory. As we have seen in Sec. V A, the phase space of our theory~for the pq-representation of
an Einstein algebraE ) is L2(Gq), whereGq is in fact a ‘‘copy’’ of G, and to change our presen
rather schematic approach into the fully working physical theory one would have to us
harmonic analysis on the groupG. For instance, in the case of a compact groupG the basis in the
corresponding Hilbert spaceL2(Gq) is given by the Peter–Weyl theorem and the change of b
@the change of representation ofL2(Gq)] amounts to performing a generalized Fourier analysis
G.32

The characteristic feature of our approach is that ‘‘it does not happen in space–time’’ w
emerges only in the process of the transition to classical physics. Could this fact help us to
problems connected with localization in which other approaches to quantum gravity are invo
Let E pro j* be a dual algebra to the Einstein subalgebraEpro j ~if, for simplicity, G is a compact
group!. We introduce the norm ofvPE pro j* in the standard way,

ivi5supf PEpro j
$uv~ f !u<1%.

A state onEpro j is equivalent to the probabilistic measure on the spaceE/G. If the statev is pure,
the measure is the Dirac measure concentrated on a pointxPE/G; we can writevx( f )5 f (x) ~see
Ref. 9, p. 70!. This is how the points of space–timeE/G are recovered. For theE-algebra in
general, as the consequence of its noncommutativity, such Dirac measures do not appe
aspect of the theory is worthwhile to be investigated because of its consequences for the p
of divergences in quantum gravity.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Our approach to quantization of gravity resembles noncommutative modifications of th
ditional Kaluza–Klein theory,33 if we regard the fibersGp ,pPE of the groupoidG as ‘‘internal
spaces’’ over space–time pointsxPp(p),xPM . We insist, however, that we should not start wi
the a priori given space–timeM , but rather with a groupoidG5E3G, whereE is an ~abstract!
structured space~of constant dimension! andG a suitable group, such that space–timeM could be
derived in the process of changing from the quantum gravity regime to classical physics.

The hope is often expressed that the theory of quantum gravity will finally eliminate si
larities from relativistic cosmology and relativistic astrophysics. In our approach this is not
essarily so. Any noncommutative Einstein algebra, which is not strongly Morita equivalent t
algebra of continuous functions on a smooth manifold, describes a highly pathological~from our
macroscopic point of view! space. The picture that is suggested by our formalism is the follow
Below the Planck threshold we have a noncommutative ‘‘singular geometry’’~with no localization
in space and time!, and only when passing through the Planck threshold — essentially by res
ing our noncommutative Einstein algebra to its center~a kind of a new symmetry breaking!—the
usual space–time manifold emerges, possibly with its singular boundary as a relic of the p
dial phase.

At the end we would like to once more emphasize that a lot of work has to be done to c
our proposal to the full theory of quantum gravity, and of course the result is nota priori
guaranteed. In the present work we have demonstrated that our scheme to unify general re
and quantum mechanics is mathematically consistent, but concrete computations, for v
choices of the groupG and the Fredholm operatorF, can be difficult and pose many technic
problems. It even might turn out that our proposal is too narrow~especially when combined with
other field theories! to include all physically necessary degrees of freedom. In such a case
think, it would be possible to enlarge it by elaborating its version based on quantum grou
superspaces.34 But even in its present form the program presented here seems to be worthw
be further developed. Some work is in progress.
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Incorporation of space–time symmetries in Einstein’s
field equations

Elias Zafiris
Theoretical Physics Group, Imperial College, The Blackett Laboratory,
London SW7 2BZ, United Kingdom

~Received 13 March 1997; accepted for publication 10 April 1997!

In the search for exact solutions to Einstein’s field equations the main simplification
tool is the introduction of space–time symmetries. Motivated by this fact, we
develop a method to write the field equations for general matter in a form that fully
incorporates the character of the symmetry. The method is being expressed in a
covariant formalism using the framework of a double congruence. The basic notion
on which it is based is that of the geometrization of a general symmetry. As a
special application of our general method we consider the case of a space-like
conformal Killing vector field on the space–time manifold regarding special types
of matter fields. New perspectives in General Relativity are discussed. ©1997
American Institute of Physics.@S0022-2488~97!00710-X#

I. INTRODUCTION

In recent years there has been a lot of research work in symmetries in General Rela
Originally, the motivation was the need to simplify Einstein’s field equations in the searc
exact solutions, and the introduction of symmetries or collineations served as the basic too

The types of symmetries dealt with are those that arise from the existence of a Lie alge
vector fields on the space–time manifold that are invariant vector fields of certain geome
objects on this manifold. The symmetries can be expressed in relations of the formLjW5Y,
whereW andY are two geometrical objects on the space–time manifold andja is the vector field
generating the symmetry.1

The most important and common symmetries are those for whichW and Y are one of the
fundamental tensor fields of Riemannian geometry, namely

gab , Ga
bc , Rab , Rabcd.

A diagram defining these symmetries and giving their relative hierarchy is given in Ref. 2.
The most extensively studied symmetries in the context of General Relativity are the K

vectors and the Conformal Killing vectors.3–7 Some work has also been done on Affin
collineations,8–10 curvature collineations,2,11,12 and contracted Ricci collineations.13–15 The latter
symmetries are much more difficult to be studied, because besides the metric they involve
geometrical objects that obey concrete conditions, which make the handling and the interpr
of the equations difficult. A unified approach to all these symmetries from a purely differe
geometric point of view has been recently given in Ref. 16.

It seems to us that although the motivation to study all the above-mentioned symmetrie
the simplification of Einstein’s equations in the search for exact solutions, this initial aim has
partially unfulfilled. More concretely, there does not seem to appear in the literature, as far
know, a general framework that permits the incorporation of a symmetry of every possible k
Einstein’s equations for general matter.

Toward this direction we develop a method to write the field equations for general mat
a form that fully incorporates the character of the symmetry. Our method is based on the no
geometrization of a general symmetry, that is, we employ the description of it as necessa
sufficient conditions on the geometry of the integral lines of the vector field that generate
0022-2488/97/38(11)/5854/24/$10.00
5854 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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symmetry. Attempts toward this direction have been done for time-like Conformal Ki
vectors,17,18 using the theory of time-like congruences,19–23 for space-like Conformal Killing
vectors,24 using the theory of space-like congruences,25,26 and recently a step toward a genera
zation of this idea has been presented in Ref. 27.

The most important aspect of the ‘‘geometrization’’ method to study symmetry is tha
symmetry is expressed in a form that it is suited to the simplification of the field equations
direct and inherent way.

The method we develop may be outlined as follows.
The introduction of a symmetry is most conveniently studied if we consider the Lie deriv

of the field equations with respect to the vectorja that generates the symmetry. After doing th
we obtain an expression, which on the left-hand side contains the Lie derivative of the
tensor, and on the right-hand side contains the Lie derivative of the energy momentum t
Eventually, we obtain the field equations as Lie derivatives along the symmetry vector o
dynamical variables. TheLjRab can be calculated directly from the symmetry in terms ofja;b . If
we employ the corresponding theory of congruences, we can express theja;b in terms of the
kinematical quantities~expansion, voriticity, shear! that characterize the congruence generated
the symmetry vector. The next step is to use the expression of a general symmetry as an eq
set of conditions on the kinematical quantities characterizing the congruence, namely, we
the geometrization of a symmetry. If we substitute these conditions into the general express
LjRab , we manage to write directly the field equations, for any type of matter, in a way that
inherit the symmetry ofja .

In this work we compute theLjTab using the most general form of the energy–moment
tensorTab , and the method is being demonstrated, assuming only thatja is a space-like vector
orthogonal to the 4-velocityua of the observers. This choice is justified by the fact that we w
to keep the length of the equations as short as possible and at the same time exhibit all th
of the method in an entirely transparent manner. Although we work with a space-like sym
vector it is plausible that our approach can be applied to an arbitrary~non-null! ja , tilted with
respect toua. ~We note that the case in whichja is time-like is much simpler.!

Having considered the general matter, it is evident that all the studies referring to va
simplified types of matter like perfect fluids, charged fluids, anisotropic fluids, and so on, co
of special cases of our general scheme, and they offer the ground to check the validity
results. Thus, we finally manage to recover and extend the results of the current literatu
example, those of Refs. 28–31.

The structure of the paper is as follows.
In Sec. II we introduce the double congruence covariant framework permitting the intro

tion of arbitrary reference frames. In Sec. III we present the generic formulation of symmetr
General Relativity and then we study the geometrization of space–time symmetries. Th
formal results of the paper are contained in Sec. IV, where we construct the symme
incorporated Einstein’s field equations for general matter. Section V shows how these resu
used in the situation of a space-like Conformal Killing vector symmetry discussing the pe
fluid case. Finally, we summarize and conclude in Sec. VI, discussing further avenues of res
The applications considered here are taken just far enough to demonstrate and provide a
context for the techniques developed in this paper. I expect to return in later papers to th
applications that these techniques make possible.

The notation will be the usual one.M will denote the space–time manifold with metricg of
Lorentz signature~2,1,1,1!, which is assumed to be smooth. The Riemann and Ricci tensor
denoted byRabcd, and Rab , respectively, while a semicolon denotes a covariant derivativ
comma a partial derivative, andL is the Lie derivative. Round and square brackets will denote
usual symmetrization and skew-symmetrization of indices. Latin indices take the values 0
and units are used for which the speed of light and Einstein’s gravitational constant are both
J. Math. Phys., Vol. 38, No. 11, November 1997
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II. THE DOUBLE CONGRUENCE FRAMEWORK

In order to develop our method, we are going to use the most general approach
description of reference frames, namely the theory of congruences. This approach is ex
general covariant at each step, permitting use of an abstract representation of tensor quan

A. Time-like congruences

The notion of reference frames is considered in the scope of classical physics, namely,
assumption that the observation and measurement procedures do not disturb the space–
ometry. This means that the reference bodies are test ones and the only limitation on their
is due to the relativistic causality principle: since a reference body represents an idealiza
sets of measuring devices and local observers, its’ points world lines should be time-like. T
fore we shall assume that the motion of a reference body is described by a congruence of tim
world lines.

It is also obviously possible to an observer to move together with a frame of reference, l
or in a space–time region~globally!. When an object moves together with a reference frame,
geometrically identified with the latter, so that the world lines of its mass points form a con
ence. Such a congruence presents a complete characterization of the reference frame, and
reference frame a conceptual object~thus a test one! of the above type can be associated, which
called the body of reference. Since it models a set of observers and their measuring devices
photons, the reference frame congruence should be time-like.

We conclude that in the space–time region where such a reference frame is realize
consider a congruence of integral curves of a unit time-like vector field, which is naturally i
preted as a field of 4-velocities of local observers, or equivalently of the world lines of par
forming a reference body. Every local observer represents such a test particle.

It is important to note that the congruence concept is essential, because for the s
regularity of the mathematical description of the frame, these lines have not mutually inters
and they must cover completely the space–time region under consideration, so that at ever
point one has to find one and only one line passing through it. The simplest way to desc
reference frame is to identify the congruence of local observers with a congruence of the
coordinate lines, which should be time-like.32

Thus, all the tensor quantities, as well as all the differential operators, defined on the s
time manifold, can be projected onto the physical time direction of a frame of reference a
local three-space with the help of appropriate projectors.

Let us assume thatu is a future pointing unit time-like vector field (uaua521) representing
the 4-velocity field of a family of test observers filling the space–time or some open subma
of it.

The observer-orthogonal decomposition or@113# decomposition of the tangent space, and,
turn, of the algebra of space–time tensor fields, is accomplished by the temporal proj
operatorv(u) along u and the spatial projection operatorh(u) onto the orthogonal local res
space, which may be identified with mixed second rank tensors acting by contraction,

da
b5v~u!a

b1h~u!a
b , ~1!

where

v~u!a
b52uaub , ~2!

h~u!a
b5da

b1uaub . ~3!

These satisfy the usual orthogonal projection relations,

v~u!25v~u!, h~u!25h~u!, ~4!
J. Math. Phys., Vol. 38, No. 11, November 1997
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and

v~u!h~u!5h~u!v~u!50. ~5!

If S is a general tensor, then the ‘‘measurement’’ ofS by the observer congruence is th
family of spatial tensor fields that result from the spatial projection of all possible contractio
S by any number of factors ofu. For example, ifS is a ~1,1! tensor, then its measurement,

Sa
b→„uducS

c
d ,h~u!a

cu
dSc

d ,h~u!d
aucS

c
d ,h~u!a

ch~u!d
bSc

d…, ~6!

results in a scalar field, a spatial vector field, a spatial 1-form, and a spatial~1,1!-tensor field. It is
exactly this family of fields that occur in the orthogonal decomposition ofS with respect to the
observer congruence,

Sa
b5@v~u!a

c1h~u!a
c#@v~u!d

b1h~u!d
b#Sc

d5@uducS
c
d#uaub1•••1h~u!a

ch~u!d
bSc

d . ~7!

The reference frame generated byua is described in the theory of time-like congruences
the introduction of its kinematical quantities,

sab , vab , u, u̇a ,

which are defined by the irreducible decomposition or ‘‘measurement’’ of the covariant deriv
ua;b with respect toua,22,23

ua;b5sab1vab1 1
3uhab2u̇aub , ~8!

where u̇a denotes the acceleration vector of reference frame;u the volume rate of expansio
scalar;sab is the rate of shear tensor, with magnitude

s25 1
2sabs

ab,

andvab is the vorticity tensor. It is convenient to define a vorticity vector,

va5 1
2h

abcdvbcud ,

denoting the angular velocity vector of frame of reference, wherehabcd is the totally skew-
symmetric permutation tensor.

We note that that an overdot over a kernel letter means a derivation with respect toua , hence
u̇a5ua;bub.

These concepts were borrowed by the reference frame theory from hydrodynamics,
they play an important role. They all are also important in the theory of null congruences,
used in the classification of gravitational fields by principal null directions~the Petrov types! and
also the generation of exact Einstein–Maxwell solutions.33

Finally, we note that a partial splitting of space–time based only on a time-like congru
~splitting off time alone! is referred as the congruence or ‘‘time plus space’’ or@113# decom-
position, whereas a space-like slicing of space–time~splitting off space alone! is referred to as the
hypersurface splitting or ‘‘space plus time’’ or@311# decomposition.34–36 The two formalisms
coincide in the case of the observer-orthogonal decomposition of the tangent space of the
time manifold.

If we had chosen the vector field generating a space–time symmetry to be time-like, th
covariant formalism provided by the theory of time-like congruences would be enough to de
our method. Instead, we have chosen the more complicated case in which we have a sp
symmetry vector. In this case a more sophisticated covariant formalism is needed and
naturally led to use the concept of a double congruence.
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Double congruences

For our purposes we consider a double congruence that involves two vector fields: a tim
vector fieldua representing the 4-velocity of a family of test observers and a space-like v
field ja, which corresponds to a physical observable vector field, for example, electric fie
magnetic field. We demonstrate the previous point by considering the electromagnetic
strength tensorFab5F @ab# .

Then

Ea5Fa
bub and Ha5 1

2h
abcdubFcd .

Hence

Eaua5Haua50,

and both the electric and magnetic field as measured by the observersua have a space-like
character.

We setja5jha, whereha is a unit space-like vectorhaha51 normal to the 4-velocity vecto
ua.

To observe the given space-like curves generated byh in the vicinity of the space–time poin
P, we introduce, at that point, an observer moving with a 4-velocityua. We further suppose tha
the space-like curveC is orthogonal toua at the pointP; then

uaha50.

It is important to emphasize that given a space-like vector there is not a unique, ortho
time-like unit vector associated with it. We may add to the vectorua any vectorta, such that

wa5ua1ta,

whereta satisfies the conditions

taua50 and tata12taua50.

This freedom in our choice of an observer is essential in the covariant character of the the
In what follows we shall restrict attention to the observer moving with a 4-velocityua.

Furthermore, for the purpose of observation this observer erects a screen orthogonal to the
like curveC at P. That is, the congruence of curves passes perpendicularly through the sc

Except at the given pointP, the motions of the observers employed along the curveC have
still to be specified. We require that the 4-velocitiesua of the observers used alongC are related
by

pa
cuc* 5pa

cḣ
c, ~9!

~uaua!* 50, ~uaha!* 50, ~10!

where an asterisk denotes the derivation with respect toha, hence

uc* 5ua;bhb.

The above ensures thatua is always a unit vector orthogonal toha alongC. Equations~9! and
~10! are equivalent to the single condition

ua* 5ḣa1~ ḣbub!ua2~hb* ub!ha, ~11!
J. Math. Phys., Vol. 38, No. 11, November 1997
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which we call the Greenberg’s transport law forha.25

The decomposition with respect to the double congruence (u,h) or @11112# decomposition
of the tangent space, and, in turn, of the algebra of space–time tensor fields, is accomplis
the temporal projection operatorv(u) alongu, the spatial projection operators(h) alongh, and
the screen projection operatorp(u,h) that projects normally to both (u,h) onto an orthogonal
two-dimensional space, called the screen space.

All the above projection operators may be identified with mixed second rank tensors acti
contraction,

da
b5v~u!a

b1s~h!a
b1p~u,h!a

b , ~12!

v~u!a
b52uaub , ~13!

s~u!a
b5hahb , ~14!

p~u,h!a
b5da

b1uaub2hahb5ha
b2hahb . ~15!

The covariant derivativeha;b can be decomposed with respect to the double congrue
(u,h) as follows:

ha;b5Aab1ha* hb1ua@h tut;b1~h tu̇t!ub2~h tut* !hb#, ~16!

where

Aab5pc
apd

bhc;d . ~17!

We decomposeAab further into its irreducible parts with respect to the orthogonal group:

Aab5T ab1Rab1 1
2 Epab~u,h!, ~18!

whereT ab5T ba ,T a
a50 is the traceless part ofAab , andRab is the rotation ofAab . We have

the relations

T ab5pc
apd

bh~c;d!2
1
2Epab , ~19!

Rab5pc
apd

bh@c;d# , ~20!

E5pcdhc;d5ha
;a1ḣaua . ~21!

The tensorsRab , T ab and the scalarE are defined as the kinematical quantities of t
space-like congruence and have the following physical significance:Rab represents the scree
rotation,T ab the screen shear, andE the screen expansion.

It is easy to show that in~16! theua term in parentheses can be written in a very useful fo
as follows:

2Nb12v tbh t1pt
bḣ t ,

where

Nb5pa
b~ ḣa2ua* !. ~22!

On using~22!, Eq. ~16! takes the form

ha;b5Aab1ha* hb1pc
bḣcu

a1~2v tbh t2Nb!ua . ~23!
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The vectorNa, which is called Greenberg’s vector, is of fundamental importance in the th
of double congruences. Geometrically the conditionNa50 means that the congruencesua andha

are two-surface forming. Kinematically, it means that the fieldha is ‘‘frozen in’’ along the
observersua.

We show in this work that the role of Greenberg’s vector is more general and establis
connection between the field equations and the symmetries at the kinematical level.

Using ~16! we can also prove the following useful identities that the Lie derivatives of
projection tensorspab andhab obey and that we are going to use later,

1

j
Ljpab52FT ab1

1

2
EpabG22u(aNb) , ~24!

1

j
Ljhab52FT ab1

1

2
EpabG22u(aNb)12~ log j!(,ahb)12h (a* hb) . ~25!

III. GEOMETRIZATION OF SPACE–TIME SYMMETRIES

The types of symmetries we are going to deal with, in what follows, are those that arise
the existence of a Lie algebra of vector fields on the space–time manifold that are invariant
fields of certain geometrical objects on this manifold.

In Riemannian geometry the building block is the metric tensorgab , in the sense that all the
important geometrical objects of this geometry are expressed in terms ofgab .

Following the standard literature,2,16,27we define the generic form of a symmetry to be

Ljgab52Cgab1Hab , ~26!

whereC is a scalar field andHab is a symmetric traceless tensor field. Both of the fields satis
unique set of conditions specific to each particular symmetry and lead to a unique decomp
of Ljgab . As special examples we mention that the Killing symmetries are characterized b

C5Hab50,

the Homothetic symmetries by

C5f5const and Hab50,

the Conformal symmetries by

C5v~xa! and Hab50,

whereas the affine symmetries byC, Hab , such that

C ;c50 and Hab;c50.

The generic form of a space–time symmetry permits us to treat all of them in a uni
manner and is essential to our approach.

The geometrization of space–time symmetries is managed if we describe it as necess
sufficient conditions on the geometry of the integral lines of the vector field that generate
symmetry. For our purposes we are going to study the geometrization of a general spac
symmetry generated by a space-like vector fieldja5jha using the framework of the doubl
congruence (u,h) developed in Sec. II.

In the above framework the geometrization of a a space–time symmetry is established throu
the following theorem.

Theorem: The vector fieldja5jha is a solution of
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ljgab52cgab1Hab ,

if and only if

T ab5
1

2j S pc
apd

b2
1

2
pcdpabDHcd , ~27!

ḣaua5
1

j
~2C!1

1

2j
H11, ~28!

ha* 52uaF2 loġ j1
1

j
H21G1pabF2~ log j! ,b1

1

j
Hb2G , ~29!

j* 5c1 1
2 H22, ~30!

E5
2c

j
1

1

2j
pabHab , ~31!

Na522vabh
b1

1

j
pb

aHb1 , ~32!

where we use the notational convention

Z•••a•••ua5Z•••1••• and Z•••a•••ha5Z•••2••• ,

for every tensor fieldZ.
Proof: The equation

Ljgab52Cgab1Hab ,

can be written equivalently in the form

j~ha;b1hb;a!1j ,ahb1j ,bha52Cgab1Hab . ~33!

We decompose the above equation with respect to the double congruence (u,h). This can be done
by contracting~26! with uaub, uahb, uapb

c , hahb, hapb
c , andpa

cp
b

d , respectively.
We obtain, in turn,

uaub: ḣaua5
1

j
~2C!1

1

2j
H11, ~34!

uahb: ha* ua52 loġ j1
1

j
H21, ~35!

uapb
c : jpa

c~ ḣa1hb;aub!5pa
cHa1 , ~36!

hahb: j* 5C1 1
2 H22, ~37!

hapb
c : pb

chb* 5pb
cF2~ log j! ,b1

1

j
Hb2G , ~38!
J. Math. Phys., Vol. 38, No. 11, November 1997
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pa
cp

b
d : T cd1

1

2
Epcd5

1

2j
pa

cp
b

dHab1
1

j
Cpcd . ~39!

In Eq. ~36! the first term of the lhs can be written in the form

jpa
c~ ḣa1hb;cu

b!5jpa
c~ ḣa2ua* 1ua;bhb2ub;ahb!5jNc1jpa

c~ua;b2ub;a!hb

5jNc12jpa
cvabh

b. ~40!

Substituting~40! in ~36! and using

pb
avbch

c5vach
c,

we obtain

Na522vabh
b1

1

j
pb

aHb1 . ~41!

Equations~35! and~38! give us the components ofha* alongua and on the screen space
ha, ua. It is possible to combine them into a single equation,

ha* 52uaF2 loġ j1
1

j
H21G1pabF2~ log j! ,b1

1

j
Hb2G . ~42!

Next, we consider the trace and the traceless part of~39! and we obtain, correspondingly,

Trace: E5
2C

j
1

1

2j
pabHab , ~43!

Traceless part: T ab5
1

2j S pc
apd

b2
1

2
pcdpabDHcd . ~44!

The converse of the theorem is proved as follows.
We consider the tensor

j~a;b!2Cgab2 1
2 Hab5jh~a;b!1j (,ahb)2Cgab2 1

2 Hab . ~45!

Contracting this withuaub, uahb, uapb
c , hahb, hapb

c , andpa
cp

b
d , respectively, and applying

relations~27!–~32!, we prove that this tensor vanishes. The above completes the proof o
theorem.

The above theorem is of major importance to our approach because if we use it the sym
is expressed in a form that is possible to be incorporated in Einstein’s field equations in a
and, inherent way.

Besides, the theorem can be used in other ways depending on the information supplie
example, if information is available on the vector fieldja that generates the symmetry, one c
investigate what type of symmetry the given vector field can generate. Conversely, if inform
is available on the scalar and tensor fieldsc, Hab one can use the theorem to obtain informati
on the vector fieldja that generates the symmetry.
J. Math. Phys., Vol. 38, No. 11, November 1997
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IV. THE SYMMETRIES-INCORPORATED EINSTEIN’S EQUATIONS

The Einstein field equations with a nonzero cosmological constant can be written as

Rab5Tab1S L2
T

2Dgab , ~46!

whereL is the cosmological constant andT is the trace of the energy–momentum tensorTab .
We wish to incorporate a general space–time symmetry into Einstein’s field equations. T

desirable because one can effectively eliminate the symmetry from the field equations an
solutions that will by construction comply with the symmetry.

The effects of the symmetries at the dynamical level are obtained by the Lie derivation
Einstein field equations,

LjRab5LjFTab1S L2
T

2DgabG . ~47!

Eventually we obtain the field equations as Lie derivatives along the symmetry vecto
assume that the symmetry vectorja is space-like orthogonal to the 4-velocityua of the observers.

First of all, we express the energy–momentum tensorTab in terms of its constituent dynami
cal variables by irreducibly decomposing it with respect to the double congruence (u,h). Next,
we compute the rhs of~47! in terms of the Lie derivatives of the dynamical variables. The n
step is to compute theLjRab directly from the generic form of the symmetry in terms ofja;b .
Employing the (u,h) double congruence framework we use the expression ofja;b in terms of the
kinematical quantities, namely, we use the geometrization of the symmetry, applying the th
proved in Sec. III. Thus, we finally manage to write the field equations in a way that they
incorporate the character of a space–time symmetry.

A. †11112‡ irreducible decomposition of Tab

It is well known from the literature that the irreducible decomposition of the energy mom
tum tensorTab with respect to the four-velocityua of observers, defines the dynamical variab
of space–time,22,23

Tab5muaub1phab12q(aub)1pab , ~48!

wherem andp denote the total energy density and the isotropic pressure,qa is the heat flux vector,
and pab is the traceless anisotropic stress tensor. These quantities include contributions
sources, for example, by an electromagnetic field. In particular,qa represents processes such
heat conduction and diffusion as well as the electromagnetic flux.

We can further decompose irreducibly the quantitiesqa andpab using the double congruenc
framework, since—except the time-like congruence of observers—there is also defined a
like congruence on space–time, representing covariantly a physical observable field as wel
character of the symmetry vector,

qa5vha1Qa, ~49!

pab5g~hahb2 1
2 pab!12P(ahb)1Dab , ~50!

where

v5qaha , Qa5pa
bqb , g5pabh

ahb,

Pa5pa
bpb

ch
c, Dab5~pc

apd
b2 1

2 pabp
cd!pcd .
J. Math. Phys., Vol. 38, No. 11, November 1997
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The tensorsQa, Pa, Dab are on the screen space of (u,h) andDab is traceless.
The dynamical variables are constrained to obey the conservation equations

Tab
;b50, ~51!

which result from the identityGab
;b50, whereGab denotes the Einstein tensor. The above eq

tions can be irreducibly decomposed in the double congruence (u,h) framework into the follow-
ing system of equations, which consist of the conservation laws that the dynamical variab
space–time have to satisfy,

ṁ1~m1p!u1qa
;a1qau̇a1pabsab50, ~52!

~m1p!~ u̇aha!1~p;c1q̇c1pb
c;b!hc1u~qaha!1qbub* 22~pc

bqb!vbth
t50, ~53!

~m1p!u̇apac1~p;
a1q̇a1pba

;b!pac1uqapac1qbua
;bpac50. ~54!

B. †11112‡ irreducible decomposition of the rhs of Einstein’s field equations

1. Computation of L jRab using the field equations

We are going to compute the Lie derivative of the Ricci tensor using the field equations
field equations for general matter~46! using ~48! can be written in the form

Rab5~m1p!uaub1 1
2 ~m2p12L!gab12q(aub)1pab . ~55!

We study the case in whichja5jha, corresponding toja space-like and orthogonal to th
4-velocity of the observers. We decompose the above equation with respect to the double c
ence (u,h). This is achieved by contracting the Lie derivative of the Ricci tensor withuaub,
uahb, uapb

c , hahb, hapb
c , and pa

cp
d

b , respectively. If we denote by (1/j)LjRab@uu#,
(1/j)LjRab@uh#, (1/j)LjRab@up#, (1/j)LjRab@hh#, (1/j)LjRab@hp#, (1/j)LjRab@pp# the in-
dependent projections correspondingly, we obtain

1

j
LjRab@uu#5F1

2
~m13p!* 1~m13p22L!~ u̇chc!22~qchc!~ loġ j!

22~qcNc!12~qchc!~ud* hd!Guaub , ~56!

1

j
LjRab@uh#522F2

1

2
~m2p12L!~uc* hc!2~qchc!* pcdh

c~ud* 2ḣd!1~qchc!~ ḣdud!

1
1

2
~m2p12L12pcdh

chd!~ loġ j!2~qchc!~ log j!* Gu(ahb) , ~57!

1

j
LjRab@up#522F1

2
~m2p12L!Nd1~m13p22L!vcdh

c2pcep
c
d~ue* 2ḣe!2qcAcd

2qc* pcd1pc
dqc~ ḣeue!2~qchc!p

e
d~ log j! ;e1hepc

dpec~ loġ j!Gu(apd
b) ,

~58!

1

j
LjRab@hh#5F1

2
~m2p12pcdh

chd!* 1~m2p12L12pcdh
chd!~ log j!* Ghahb , ~59!
J. Math. Phys., Vol. 38, No. 11, November 1997
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1

j
LjRab@hp#52F1

2
~m2p12L!pcdh

c* 1pc
d~pceh

e!* 1pc
eh

eAcd12~qth
t!vdch

c

1hcpe
dpce~ log j!* 1

1

2
~m2p12L12pceh

che!pf
d~ log j! , f Gh (apd

b) ,

~60!

1

j
LjRab@pp#5F ~m2p12L!S T cd1

1

2
EpcdD1

1

2
~m2p!* pcd1pe

f~Aecpd
f1Aedpc

f !

1pe f* pecpf d14qcp
e
(cvd) fh

f12hepe fpc
( f pt)

d~ log j! ,tGpc
(apd

b) . ~61!

The above projections of the Lie derivative of the Ricci tensor have been obtained, takin
account the irreducible decomposition of the symmetric~0,2! tensor Tab with respect toua.
However, sinceja is space-like, we have further irreducible decompositions of the tensor fi
Concretely, if we use Eqs.~49! and~50! we express the Lie derivative of the Ricci tensor in ter
of the irreducible parts of the dynamical variables. Then the projections obtain the follo
irreducible form:

1

j
LjRab@uu#5F1

2
~m13p!* 1~m13p22L!~ u̇chc!22QcNc22v@~ loġ j!1hc* uc#Guaub ,

~62!

1

j
LjRab@uh#522F1

2
~m2p12L12g!@~ loġ j!1hc* uc#

1PcNc2v* 2v@~ log j!* 2ḣcuc#Gu(ahb) , ~63!

1

j
LjRab@up#522F1

2
~m2p12L2g!Nc1~m13p22L!vdch

d1Pc@~ loġ j!1hc* uc#

1DdcN
d2vpd

c@hd* 1 log j ,d#1Qc~ ḣdud!2QdAd
c2pd

cQd* Gpc
(aub) , ~64!

1

j
LjRab@hh#5

1

2
@~m2p12g!* 1~m2p12L12g!~ log j!* #hahb , ~65!

1

j
LjRab@ph#52FpdcP* 1

1

2
~m2p12L12g!pd

c@hd* 1~ log j! ,d#

1Pd@Adc1~ log j!* pcd#22vvdch
dGpc

(ahb) , ~66!

1

j
LjRab@pp#5

1

2
@~m2p2g!* 1~m2p12L2g!E #pab1pc

apd
bDcd* 12Ac(bDc

a)

1~m2p12L2g!T ab14Q(avb)ch
c12P(apc

b)@hc* 1~ log j! ,c#. ~67!
J. Math. Phys., Vol. 38, No. 11, November 1997
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2. Incorporation of symmetries

Using the theorem proved in Sec. III we reexpress the Lie derivative of the Ricci tens
terms of the quantitiesC, Hab that characterize the generic form of a space–time symmetry. T
we finally obtain the independent projections of the Lie derivative of the Ricci tensor alon
symmetry generating vector in terms of the fields characterizing the symmetryC, Hab and the
irreducible dynamical variables in the following form:

1

j
LjRab@uu#5F1

2
~m13p!* 1~m13p22L!S C

j
2

1

2j
H11D2

2v
j

H2122QcNcGuaub ,

~68!

1

j
LjRab@uh#522F 1

2j
~m2p12L12g!H211PcN

c2v* 2v
1

2j
~4C1H222H11!Gu(ahb) ,

~69!

1

j
LjRab@hh#5F1

2
@~m2p12L!12g#* 1@~m2p12L!12g#~ log j!* Ghahb , ~70!

1

j
LjRab@pu#522F1

2
@~m2p12L!12g#Nc1~m13p22L!v tch

t2Qt* pt
c2

v
j

Ht2pt
c

2QtHtc1DtcN
t1

1

j
H21Pc2QtRtc2QcS 2C

j
1

1

4j
pe fHe f2

1

2j
H11D Gpc

(aub) ,

~71!

1

j
LjRab@ph#52Fpd

cPd* 1PcS 2C

j
1

1

4j
pe fHe f1

1

2j
H22D1PdHd

c1PdRd
c

1
1

2j
@~m2p12L!12g#pd

cHd222vhdvdcGpc
(ahb) , ~72!

1

j
LjRab@pp#5

1

2
~m2p2g!* pab1@~m2p12L!12g#FHab1

1

4j
pcdHcdPab1

C

j
pabG

12Dc(aRc
b)1EDab12Dc(aHb)

c1pc
(apd

b)Dcd* 1
2

j
P(apc

b)Hc214Q(avb)th
t.

~73!

C. [1 1112] irreducible decomposition of the lhs of Einstein’s field equations

We consider the generic form of a space–time symmetry,

Ljgab52Cgab1Hab ,

where

Ha
a50 and Hab5Hba .

The Lie derivative of the connection coefficients in terms of the Lie derivative of the m
tensor is expressed as follows:4

LjG
a

bc5
1
2 gad@~Ljgdb! ;c1~Ljgdc! ;b2~Ljgbc! ;d#. ~74!
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Combining Eqs.~26! and ~74!, we obtain directly

LjG
a

bc5
1
2 gad@2C ;cgbd12C ;bgdc22C ;dgb1Hdb;c1Hdc;b1Hbc;d#. ~75!

Equation~75! is equivalent to the following:

LjG
a

bc5C ;cd
a

b1C ;bda
c2C ;

agb
c1 1

2 @Hdb;c1Hdc;b1Hbc;d#. ~76!

Furthermore, it is easy to obtain

LjG
a

ab54C ;b . ~77!

In order to calculate the Lie derivative of the Ricci tensor, we apply the relation

LjRab5~LjG
s
ab!;s2~LjG

s
as!;b. ~78!

Hence, we obtain

LjRab5@C ;ads
b1C ;bds

a2C ;
sgab1 1

2 ~Hs
a;b1Hs

b;a2Hab;
s!# ;s24C ;a

5~c ;ab1Cb;a2c ;
s
sgab24C ;ab!1 1

2 ~Hs
a;bs1Hs

b;as1Hab;
s
s!. ~79!

Equivalently, we obtain

LjRab522C ;ab2hcgab1 1
2 ~Hs

a;bs1Hs
b;as1Hab;

s
s! ~80!

or

LjRab522C ;ab2hcgab1 1
2 Lab , ~81!

where

Lab5Hs
a;bs1Hs

b;as1Hab;
s
s . ~82!

Next, we decomposeC ;ab with respect to the double congruence (u,h) framework into its
irreducible parts:

C ;ab5lCuaub22kCh (aub)22sC(aub)1gChahb12pC(ahb)1DCab1 1
2 aCpab , ~83!

where

lC5C ;abu
aub, kC5C ;abh

(aub), sCa5pa
bC ;bcu

c,

gC5C ;abh
ahb, 2pCa5pa

bC ;bch
c,

DCab5~pa
cpb

d2 1
2 pabp

cd!C ;cd , aC5C ;abp
ab.

Moreover, we have

gabC ;ab52lC1gC1aC .

Thus, the sum22C ;ab2hcgab is decomposed irreducibly as
J. Math. Phys., Vol. 38, No. 11, November 1997
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22C ;ab2hcgab5~23lC1gC1aC!uaub14kCh (aub)14sC(aub)1~lC23gC2aC!hahb

24pC(ahb)22DCab1~lC2gC22aC!pab . ~84!

Similarly, the tensorLab defined by Eq.~82! is decomposed irreducibly as follows:

1
2 Lab5lLuaub22kLh (aub)22sL(aub)1gLhahb12pL(ahb)1DLab1 1

2 aLpab . ~85!

Thus the lhs of Einstein’s equations is decomposed irreducibly as follows:

1

j
LjRab@uu#5

1

j
~lL23lC1gC1aC!uaub , ~86!

1

j
LjRab@uh#5

1

j
„22~kL22kC!…h (aub) , ~87!

1

j
LjRab@up#5

1

j
@22~sLc22sCc!#pc

(aub) , ~88!

1

j
LjRab@hh#5

1

j
@~gL23gC!1~lC2aC!#hahb , ~89!

1

j
LjRab@hp#5

1

j
@2~pLc22pCc!#pc

(ahb) , ~90!

1

j
LjRab@pp#5

1

j FDLab22DCab1S lC2gC22aC1
1

2
aLD pabG . ~91!

D. The symmetries-incorporated field equations for the irreducible dynamical
variables

Our purpose is to construct the field equations for general matter that the dynamical va
m, p, g, v, Qa, Pa, Dab of space–time satisfy, in such a way that the information of any partic
space–time symmetry imposed, is directly incorporated in the form of the equations. As a fir
we equate the results we have obtained previously for the rhs and the lhs of Einstein’s equ

F1

2
~m13p!* 1~m13p22L!S C

j
2

1

2j
H11D2

2v
j

H2122QcNcG5
1

j
~lL23lC1gC1aC!,

~92!

F1

2
@~m2p12L!12g#* 1@~m2p12L!12g#S C

j
1

1

2j
H22D G5

1

j
„~gL23gC!1~lC2aC!…,

~93!

F 1

2j
~m2p12L12g#H211PcN

c2v* 2v
1

2j
~4C1H222H11!5

1

j
~kL22kC! , ~94!

F1

2
@~m2p12L!2g#Nc1~m13p22L!v tch

t2Qt* pc
t 2

v
j

Ht2pc
t 2QtHtc1DtcN

t1
1

j
H21Pc

2QtRtc2QcS 2C

j
1

1

4j
pe fHe f2

1

2j
H11D G5

1

j
~sLc22sCc!, ~95!
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Fpc
dPd* 1PcS 2C

j
1

1

4j
pe fHe f1

1

2j
H22D1PdHd

c1PdRc
d1

1

2j
@~m2p12L!12g#pc

dHd2

22vhdvdcG5
1

j
~pLc22pCc!, ~96!

~m2p2g!* 1m2p12L2g)S 1

2j
pe fHe f1

2C

j D2DcdHcd1
2

j
PcHc214Qcvcth

t

52S lC2gC22aC1
1

2
aLD , ~97!

pa
cpb

dDcd* 1EDab1~m2p12L2g!Hab12Dc(aRb
c)12~p(a

c pb)
d 2 1

2 pabp
cd!~DecHd

e

12Q(cvd)th
t!5DLab22DCab . ~98!

The above system of equations can give us the irreducible equations that each of the d
cal variables of space–time obey, if we manage to disentangle it through appropriate alg
manipulations.

Equations~92!, ~93!, and~97! can be written equivalently as follows correspondingly:

m* 1~m1L!S 2C

j
2

1

j
H11D13„p* 1~p2L!…S 2C

j
2

1

j
H11D

5
2

j
~lL23lC1gC1aC!1

4v
j

H2114QcN
c, ~99!

m* 1~m1L!S 2C

j
1

1

j
H22D2Fp* 1~p2L!S 2C

j
1

1

j
H22D G12Fg* 1gS 2C

j
2

1

j
H22D G

5
2

j
@lC2aC1~gL23gC!#, ~100!

m* 1~m1L!S 2C

j
1

1

2j
pe fHe fD2Fp* 1~p2L!S 2C

j
1

1

2j
pe fHe fD G2Fg* 1gS 2C

j

1
1

2j
pe fHe fD G524Qcvcth

t1
2

j S lC2gC22aC1
1

2
aLD22DcdHcd2

2

j
PcHc2 .

~101!

Moreover, we note that

gabHab50 or pabHab5H112H22.

Hence, Eq.~101! can be written in the form

m* 1~m1L!F2C

j
1

1

2j
~H112H22!G2Fp* 1~p2L!S 2C

j
1

1

2j
~H112H22! D G2Fg* 1gS 2C

j

1
1

2j
~H112H22! D G524Qcvcth

t1
2

j S lC2gC22aC1
1

2
aLD22DcdHcd2

2

j
PcHc2 .

~102!
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Next, if ~102! is multiplied by a factor of 2 and added to~100! gives

m* 1~m1L!S 2C

j
1

1

3j
H11D2S p* 1~p2L!S 2C

j
1

1

3j
H11D D1gS 1

j
H222

1

3j
H11D

5
1

3j
~6lC210aC12gL210gC12aL!2

8

3
Qcvcth

t2
4

3
DcdHcd2

4

3j
PcHc2 . ~103!

Furthermore, we multiply~103! by a factor of 3 and we add to~99!,

m* 1~m1L!
2C

j
2~p2L!

1

j
H111

1

4j
g~3H222H11!

5
1

2j
@lL1gL1aL24gC24aC#1

v
j

H211QcN
c22Qcvcth

t2DcdHcd2
1

j
PcHc2 .

~104!

Next, we consider the difference of~99! and ~103!,

p* 1~p2L!S 2C

j
2

2

3j
H11D2

1

4j
gS H222

1

3
H11D2

1

3j
~m1L!H11

5
1

6j
~3lL2gL2aL18aC18gC212lC!1QcN

c1
2

3
Qcvcth

t

1
1

3
DcdHcd1

1

3j
PcHc21

v
j

H21. ~105!

Finally, we subtract~102! from ~100! and we obtain

Fg* 1gS 2C

j
1

1

6j
H111

1

2j
H22D G1~m1L!

1

2j S 2
1

j
H111H22D1~p2L!

1

2j S 1

j
H112H22D

5
2

3j S gL2
1

2
aL22gC1aCD1

2

3
DcdHcd1

2

3

1

j
PcHc21

4

j
Qcvcth

t. ~106!

Thus, the final irreducible form of the symmetries-incorporated Einstein field equations fo
dynamical variables resulting from the decomposition of the energy–momentum tensor for g
matter is described from the following system of equations:

1. Symmetries-incorporated field equations for m, p , g

m* 1~m1L!
2C

j
2~p2L!

1

j
H111

1

4j
g~3H222H11!

5
1

2j
@lL1gL1aL24gC24aC#1

v
j

H211QcN
c22Qcvcth

t2DcdHcd2
1

j
PcHc2 ,

~107!
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p* 1~p2L!S 2C

j
2

2

3j
H11D2

1

4j
gS H222

1

3
H11D2

1

3j
~m1L!H11

5
1

6j
~3lL2gL2aL18aC18gC212lC!1QcN

c1
2

3
Qcvcth

t

1
1

3
DcdHcd1

1

3j
PcHc21

v
j

H21, ~108!

Fg* 1gS 2C

j
1

1

6j
H111

1

2j
H22D G1~m1L!

1

2j S 2
1

j
H111H22D1~p2L!

1

2j S 1

j
H112H22D

5
2

3j S gL2
1

2
aL22gC1aCD1

2

3

1

j
PcHc21

4

j
Qcvcth

t1
2

3
DcdHcd . ~109!

2. Symmetries-incorporated field equations for v , Qa, Pa, Dab

v* 1v
1

2j
~4C1H222H11!5F2

1

2j
~m2p12L12g!GH211PcN

c2
1

j
~kL22kC!,

~110!

Qt* pt
c1QtHtc1QtRtc1QcS 2C

j
2

1

4j
~H111H22! D

52
1

j
~sLc22sCc!2F1

1

2
~m2p12L!2gGNc1~m13p22L!v tch

t

2
v
j

Ht2pt
c1DtcN

t1
1

j
H21Pc , ~111!

pd
cPd* 1PcF2C

j
1

1

4j
~H111H22!G1PdHd

c1PdRd
c

52
1

2j
@~m2p12L!12g#pd

cHd212vhcvdc1
1

j
~pLc22pCc!, ~112!

pc
apd

bDcd* 1EDab12Dc(aRc
b)12~pc

(apd
b)2

1
2 pabp

cd!DecH
e
d

5DLab22DCab2~m2p12L2g!Hab24Q(cvd)th
t~pc

(apd
b)2

1
2 pabp

cd!. ~113!

The system of equations~107!–~113! provide the desirable irreducible decomposition of E
stein’s equations for general matter when an arbitrary symmetry has been introduced in s
time, such that the information regarding the symmetry is explicitly contained in the field e
tions.

This system of equations provides the key formal results of the paper and generalizes
previous attempts to attack the problem, in an elegant and unifying manner. Moreover, it g
enlarges the scope of previous works since it can be applied to all types of symmetries as
to all types of matter. Thus, it consists of the unified geometrical framework that we have to
into account when discussing Einstein’s equations in space–times with general symmetries
from elegance and covariance properties it provides the direct link among separate appr
discussing particular symmetries and matter fields.
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It is evident that the exact physical significance of the various parameters involved i
equations is provided by the special type of symmetry and matter that somebody considers
ing the formalism. It is also expectable that the system of the symmetries-incorporated E
equations will reduce to familiar forms when applied to well-studied specific matter fields as
as symmetries. Even in this case there are some new insights to be gained from seeing th
calculations in the new general setting.

In the following section we demonstrate how these formal results are used in the cas
space-like Conformal Killing vector symmetry, discussing the perfect fluid case. We expe
explore the applications of the symmetries-incorporated Einstein equations in the situat
Affine and Curvature collineations for various types of matter in later papers.

V. APPLICATION: THE CASE OF A SPACE-LIKE CONFORMAL KILLING VECTOR
SYMMETRY

A. Kinematical level

A space-like conformal Killing vectorja5jha(haua50) satisfies the equation

Ljgab52Cgab . ~114!

We note that in this case thatHab50.
From the theorem proved in Sec. III, the geometrization of this particular symmetry is

scribed by the following set of conditions:

T ab50, ~115!

ha* 1~ log j! ,a5 1
2 Eha , ~116!

ḣaua52 1
2 E , ~117!

pb
b~ ḣb1uth t;b!50. ~118!

The conformal factorC reads as

C5 1
2 jE5j* . ~119!

Due to the conditionuaha50, Eq. ~118! can be written in the form

Na522vabh
b. ~120!

Moreover, the decomposition of the covariant derivative of the space-like vector fieldha is
written as

ha;b5Aab1ha* hb2ḣaub1pc
bḣcua , ~121!

from which we immediately obtain

Ljh
a52cha. ~122!

Moreover, using~120! we easily find

Lju
a52Cua2jNa. ~123!

From ~24! and ~25! we can also compute
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ljpab52Cpab22ju(aNb) , ~124!

Ljhab52Chab22ju(aNb) . ~125!

If Na50 then (u,h) span a two-dimensional surface in space–time. The screen space
orthogonal complement to this surface. The screen space admitsja as a space-like conforma
Killing vector with conformal factorC, and its metric is defined bypab(u,h). The rest space o
the observers is the three-dimensional space normal toua. The rest space admitsja as a space-like
conformal Killing vector with conformal factorC, and its metric is defined byhab(u).

Finally, for a conformal Killing vector we have from~80! the following further equations:

LjRab522C ;ab2gabhC, ~126!

LjR522CR26hC. ~127!

B. Dynamical level

We use the set of equations~107!–~113! in the special case we study and the results from
kinematical level. It is straightforward to obtain the following field equations:

m* 1~m1L!E52
2

j
~aC1gC!12QaNa, ~128!

p* 1~p2L!E5
2

3j
~2aC12gC23lC!1

2

3
QaNa, ~129!

g* 1gE52
4

3j S gC2
1

2
aCD2

2

3
QaNa, ~130!

v* 1vE5
2

j
kC1PaNa, ~131!

pd
cQ

d* 1EQc5
2

j
sCc1S m1p2

1

2
g DNc1Ddc2QdRd

c , ~132!

pd
cPd* 1EPc52

2

j
PCc1vNc2PdRd

c , ~133!

pc
apd

bDcd* 1EDab52
2

j
DCab22Rc(aDc

b)12S pc
apd

b2
1

2
pcdpabDQ(cNd) . ~134!

The dynamics is fully specified if, in addition to the field equations, we consider the co
vation equations~52!–~54!, which, if expressed in terms of their ireducible parts, read as

ṁ1S m1p2
g

2D u1v* 12vE1pabQa;b1Qa~ log j! ;a12Qau̇a

1 3
2 g~ loġ j!12sabP

ahb1sabD
ab50, ~135!

~p1g!* 1 1
2 ~m1p14g!E1 v̇1v@u1~ loġ j!#1pabPa;b1Pa~ u̇a2ha* !50, ~136!
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pc
a@~m1p2g/2!u̇c1p;c1Q̇c1 4

3 uQc1scdQ
d12vscdh

d

1Pc* 1RcdP
d1EPc1Dc

d
;d2 3

2 g~ log j! ;c2 1
2 g ;c#50. ~137!

The system of equations~128!–~137! characterize completely the dynamics induced by
Einstein equations when a space-like Conformal Killing vector symmetry exists in space–
Thus, it is possible if we specify a concrete type of matter field, and after introducing appro
systems of coordinates to obtain solutions that by construction comply with this symmetry.

Since all the dynamical information is contained in~128!–~137! all of the propositions or
no-go theorems that can arise in the above setting, and gradually have appeared in the li
using various methods, are contained implicitly in the system we have constructed. In or
clarify this point, in what follows, we specialize our discussion in the case of a perfect
space–time.

C. The perfect fluid case

In the case of a perfect fluid the following relations hold:

c ;ab5lCuaub1gChab1j~m1p!N(aub) , ~138!

hC53gC2lC , ~139!

LjRab53~gC2lC!uaub1~25gC1lC!hab22j~m1p!N(aub) , ~140!

LjR522CR26~3gC2lC!. ~141!

The general field equations in the case of a perfect fluid when a conformal Killing ve
symmetry is introduced take the form

m* 1~m1L!E52
6

j
gC , ~142!

p* 1~p2L!E5
2

j
~2gC2lC!, ~143!

~m1p!Na52
2

j
sCa , ~144!

05kC5PCa5DCab , ~145!

aC52gC . ~146!

The conservation equations become

p* 1 1
2 ~m1p!E50, ~147!

~m2p12LC!54gC12lC , ~148!

~m1p!pb
au̇b1pc

ap,c50. ~149!

Using the above sets of equations we can recover all the theorems that have been prove
literature in a large series of publications using other methods, quite easily. Since the
majority of these theorems are well known, we are not going to state all of them, but we
J. Math. Phys., Vol. 38, No. 11, November 1997
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restrict ourselves to mentioning two examples of propositions of this kind, so as to prov
increased flexibility of our formalism in familiar situations, and at the same time to gain
insights by their embedding in a unified geometrical framework.

Proposition: Let ja be a proper homothetic space-like Killing vector orthogonal to the
velocity of observers of a perfect fluid space–time~C ;a50, CÞ0!. Thenp2L5m1L, namely
matter, is stiff and the currentj a:5j@a;b#;b vanishes.

Proof: If ja is a conformal Killing vector we can easily obtain that the vector fieldC ;a obeys
the following identity:

C ;a52 1
3 ~m1p!~utj

t!ua1 1
6 ~p2m22L!ja2 2

3 q(aub)j
b2 1

3 pabj
b2 1

3 j a. ~150!

The above identity results if we apply the Ricci identity and use the expression of the
tensor in terms of the dynamical variables from the field equations.

Since we refer to a perfect fluid space–time the above equation reads as

~2gC2lC!ja5C~3C ;a1 j a!. ~151!

Next we use~143!, ~147! and we immediately see that the conditionC ;a50 implies thatp
2L5m1L, or else matter is stiff and the currentj a:5j@a;b#;b vanishes.

Proposition:Let ja be a space-like conformal Killing vector orthogonal to the 4-velocity
observers of a perfect fluid space–time. Then ifL50, m1p50 and the dominant energy cond
tion holds, space–time is a de Sitter space–time with constant positive curvature andja reduces to
a Killing vector.

Proof: From conservation equations we find thatm5const and from our assumptions
positive sincem1p50. Field equations~142! and~143! imply gC52lC and field equation~144!
that sCa

50. From these results we have

C ;ab5gCgab , ~152!

LjRab52gCgab , ~153!

LjR522CR224gC. ~154!

From Einstein’s field equations we find in this case

Rab5mgab , ~155!

R54m5const. ~156!

Thus space–time is a de Sitter space–time. Moreover, Eqs.~155! and ~156! give

mC523gC . ~157!

Applying Ricci’s identity to the vectorC ;a , we findRabC ;a50, which upon replacingRab from
~155! we obtainmC ;a50. But we havem.0, hence the above givesC ;a50 or gC50. Thus from
~157! we conclude thatC50, henceja reduces to a Killing vector.

VI. SUMMARY AND DISCUSSION

The basic tool to simplify Einstein’s field equations, in the search for exact solutions, has
the introduction of space–time symmetries. The latter form Lie algebras of vector fields o
space–time manifold, which are invariant vector fields of certain geometrical objects on
manifold.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Related to the initial motivation, it would be very desirable to have in hand a general fr
work permitting the incorporation of a symmetry of every possible kind in Einstein’s equation
general matter. There lacks in the literature a unified approach that will apply to all the symm
and also to general matter. We have presented a general method to handle the field equa
general matter when a space–time symmetry is introduced in its work.

Our method has been expressed in a covariant formalism, using the framework of a d
congruence (u,h), permitting the introduction of arbitrary reference frames and eventually
tems of coordinates. The basic notion on which it is based is that of the geometrization
general symmetry, namely the description of it as an equivalent set of conditions on the kin
cal quantities characterizing the congruence of the integral lines of the vector field that gen
the symmetry.

Using the above notion we finally manage to write the field equations that the dyna
variables obey for any type of matter, in a way that they inherit the symmetry of the gene
vector.

The method has been applied in the case of a space-like Conformal Killing vector sym
recovering completely the existing literature. Further applications have been considered re
ing results obtained by other methods in the case of a perfect fluid space–time.

Thus, we finally generalize and extend the results of the current literature in the form o
symmetries-incorporated Einstein’s field equations for general matter.

The usefulness of such a construction lies in the following facts.
First, the field equations for general matter obtain an irreducible form with respect t

covariant congruence framework and specify completely the evolution of the space–time dy
cal variables inheriting, at the same time, the symmetry of the vector that generates it.

Second, the system of the symmetries-incorporated Einstein equations give us the oppo
to eliminate the symmetry from the field equations trivially and find exact solutions that wil
construction, comply with the symmetry.

Third, the set of the symmetries-incorporated field equations can be also used in a
perspective equally significant. That is, the above set of equations can be considered as a
of integrability conditions for the existence of a space–time symmetry of a particular kin
space–time, when a concrete form of the energy–momentum tensor is specified. Converse
possible, imposing a space–time symmetry to examine what types of matter can be pre
space–time. Related to the above remark, the existing literature, using other methods, give
information that some of the discussed symmetries are either absent or tightly restricte
specific form of the energy momentum tensor is given. For example, affine and conformal
fields cannot exist in vaccum space–times and affines are also forbidden when we have a
fluid with 0<pÞr.0 and are also severely restricted for Einstein–Maxwell space–times16,37

Curvature symmetries are also heavily restricted in a similar way.38 Along these lines research i
in progress, using the formalism developed in this paper.

We finally wish to mention a short remark, which shows another fruitful direction in the s
framework.

The method presented in this paper can also be used to study the symmetry inheritan
kinematical or dynamical variable. This concept has been defined in the literature29,31,39to mean
that in the presence of a space–time symmetry a kinematical or dynamical variableX satisfies an
equation of the form

LjX1kcX50,

wherek is a constant depending on the tensorial character ofX. It is an appealing idea because
relates the symmetry with all the variables kinematical and dynamical, making full use of the
equations.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Transformation of general curve evolution to a modified
Belavin–Polyakov equation
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We show that the general evolution of the tangent to a curve in three-dimensional
space can be transformed to a modified form of the Belavin–Polyakov equation.
Using this, we find a rich variety of exact instanton and twist solutions for several
classes of evolution. Certain physical applications are also discussed. ©1997
American Institute of Physics.@S0022-2488~97!02410-9#

I. INTRODUCTION

Many problems in physics can be modeled in terms of curves in three-dimensional spa
vortex filament in a fluid,1 a particle trajectory, and a polymer chain are obvious example
space curves. Less obvious an example is the magnetic moment vector along a classical m
spin chain, where the magnetic moment can be regarded as defining the tangent to som
curve.2 The study of the evolution of a space curve is therefore useful in many physical ap
tions. Several years ago, Lamb3 analyzed the equations for a moving curve represented by two
of Frenet–Serret equations4 for the tangent, normal, and binormal vectors to the curve. On
posing compatibility conditions on these vectors, coupled nonlinear partial differential equa
for the curvature and torsion of the curve can be obtained. He showed that under certain con
these turn out to be integrable, soliton-bearing equations5 such as the nonlinear Schro¨dinger
equation, sine-Gordon equation, etc., indicating that the underlying curve evolution is also
grable. In such cases, a method proposed by Sym6 can be used in principle to obtain the solutio
to the curve evolution, using the Lax pair of the corresponding soliton equation. In ge
though, the reconstruction of a three-dimensional evolving curve using the solutions for th
responding curvature and the torsion is a nontrivial task. In recent years, there has been r
interest in such geometric connections and their various ramifications.7

In this paper, we adopt a different approach to this problem. Instead of analyzing the
ability of the coupled~scalar! equations for the curvature and torsion, we ask under what co
tions the fundamental~vector! equations of curve evolution~viz., the two sets of Frenet–Serre
equations! can themselves be reduced to a solvable form. The advantage of this approach
the moving three-dimensional curve can be constructeddirectly from the known solution of the
evolving tangent vector. We first show that for a wide class of evolutions, amodifiedform of the
Belavin–Polykov equation8 for the tangent arises in a natural fashion. Using this result,
proceed to analyze new special classes of evolution kinematics. In particular, we find t
transformed coordinates the solution for the tangent vector takes on the form of instanton an
solutions. Physical applications to the kinematics of a polymer chain and the dynamics
inhomogeneous antiferromagnetic chain are discussed.

II. GENERAL CURVE EVOLUTION EQUATIONS

Let us consider a curve embedded in three-dimensional space, described in parametr
by a position vectorr5r (s), s being the usual arclength variable.4 Let t5r s be the unit tangent

a!Present address: Cambridge Hydrodynamics, P.O. Box 1403, Princeton, New Jersey 08542.
0022-2488/97/38(11)/5878/11/$10.00
5878 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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vector along the curve. We denote byn andb, respectively, the principal normal and binormal
the curve. The triad of unit vectors~t,n,b! represents a locally orthonormal system that is kno
to satisfy the Frenet–Serret equations,4

ts5Kn, ns52Kt1tb, bs52tn, ~2.1!

where the subscripts denoted/ds. The curvatureK and the torsiont are given by

K5~ ts•ts!
1/2, t5t–~ ts3tss!/K

2. ~2.2!

We now consider the evolution of this curve with timeu, so thatr5r (s,u). The evolution of the
triad ~t,n,b! can be written quite generally in a form similar to the Frenet–Serret set~2.1!:

tu5gn1hb, nu52gt1t0b, bu52hn2t0n. ~2.3!

The scalarsg, h, andt0 along with appropriate boundary conditions completely determine
dynamics of the curve. Note that in the time evolution oft there is an additional term in theb
direction. The reason for the absence of such a term in the space derivatives is that one
freedom to alignts in the direction of the normaln, but once this is done, the time derivative ca
in general, have bothn andb components. In the following discussion we shall limit ourselves
nonstretching curves, requiring that the unit triad satisfy the compatibility conditions

tus5tsu , nus5nsu , and bus5bsu .

With straightforward manipulations, these conditions can be shown to lead to the following
tions between the above scalars:

Ku5gs2th, tu5~t0!s1Kh, hs5~Kt02tg!. ~2.4!

The three Eqs.~2.4! relate the five ‘‘curvatures’’K, t, g, h, andt0 , suggesting that only two o
these scalar functions are independent. Indeed, we shall see below that, in order to spe
evolution of the tangent vectort, all we need is two combinations of the quantitiesg, K, andh.
We now note that Eqs.~2.1!–~2.3! imply quite generally, the following vector relation:

ts3tu5Kht. ~2.5!

Taking the cross product of~2.5! from the left with ts , and recalling that we havet–ts5t–tu50
~becauseutu251!, we obtain

~ ts–tu!ts2~ ts–ts!tu5Kh~ ts3t!. ~2.6!

From Eqs.~2.1! and ~2.3!, we identify

ts–tu5Kg, ts–ts5K2, tu–tu5g21h2. ~2.7!

Substituting relations~2.7! in ~2.6!, and excluding the trivial caseK50, we have

gts2Ktu5h~ ts3t!. ~2.8!

Taking the cross product of Eq.~2.8! with t twice in succession yields the two equations

ts5~btu2ats!3t,
~2.9!

tu5„atu2@~a211!/b#ts…3t,
J. Math. Phys., Vol. 38, No. 11, November 1997
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where a5g/h, b5K/h. Here h is assumed to be nonzero.~The special caseh50 is treated
separately below.! Although the second equation in~2.9! is obtained directly from the first and i
therefore not independent, we write it down explicitly to simplify later manipulations. Thus,
one of the relations~2.8! and ~2.9! describes the general evolution of an arbitrary curve in th
dimensions and is in effect the starting point of our analysis.

Before getting down to the analysis of the general case, we first discuss two special ca
which exact solutions can be obtained. These cases are not only of interest in their own rig
are also of help in understanding the more general treatment to follow.

III. SPECIAL CASES AND THE MODIFIED BELAVIN–POLYAKOV EQUATION (MBPE)

Case (i):Suppose for allu, the space–curve evolution is such that

h50; K,gÞ0.

In this case, Eq.~2.8! yields

tu5~g/K !ts . ~3.1!

We now observe that if the scalar functiong/K is separable, namely,

g/K5G~u!/F~s! ~3.2!

whereF andG are arbitrary integrable functions, then Eq.~3.1! becomes alinear equation fort:

tu85 ts8 , ~3.3!

where the functionss8(s) and u8(u) are defined bys85*sF(s)ds and u85*uG(u)du. It is
evident that, in this case, the components oft can be any arbitrary functions of the variablez
5s81u8. Differently interpreted, any initial form oft„s8(s),u8(u50)… on the curve with the
parametrizations8 moves with~transformed! time along the curve without changing its shape w
a dimensionless velocity equal to21. Now, sincet is a unit vector, it can be written in spheric
polar coordinates as

t5~sin u cosf, sin u sin f, cosu!, ~3.4!

whereu andf are the polar and azimuthal angles. For illustration, let us examine the nont
caseF(s)5sx and G(u)5uy, say, wherex,y are odd integers.1. Suppose further that atu
50, t had the~arbitrarily chosen! form

cosu 5 exp~2s82/2s2!, f5coss8,

wheres is a constant determining the width of the Gaussian. Here, the curve is a straight l
s→6`(u5p/2), and as one approachess50 the tangent vector tends asymptotically to t
upward direction (u→0). The curve is also turning periodically ins8, which means that in the rea
space coordinates the pitch decreases as a power,x11, of the distance froms50. At any later
time the angles will develop according to

cosf 5 exp$2@sx11/~x11!1uy11/~y11!#2/2s2%,

f 5 cos@sx11/~x11!1uy11/~y11!#.
~3.5!

Thus, the initial maximum in cosu moves along the curve at a velocity that is position-depend
(;s12x/y). In addition to this longitudinal sliding, the tangent continuously turns along the c
in the perpendicular plane, viz., at any given location along the curve the tangent rotate
J. Math. Phys., Vol. 38, No. 11, November 1997
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function of time with the rotation frequency increasing as a power,y11, of time. This exotic
solution is but one example of a family of solutions that can be realized in this case.

Case (ii): Now suppose that for allu the curve evolution is such that

g50; K,hÞ0.

Equations~2.9! become

ts5~1/f !~ tu3t!, tu5 f ~ t3ts!, ~3.6!

where f 5(1/b)5(h/K). We call equations of the forms in~3.6! the modified Belavin–Polyakov
equation~MBPE!, owing to the resemblance to the known Belavin–Polyakov equation~BPE!, as
will become clear shortly. We have not succeeded in solving~3.6! for any general form of the
scalar functionf . Special cases, however, can be solved explicitly, as we proceed to demon
Assuming, for example, thatf is a separable function ofu ands, sayG(u)/F(s), Eq. ~3.6! takes
on the form of the usual BPE,8

tu85t3ts8 , ~3.7!

in terms of transformed variablesu85*uG(u)du ands85*sF(s)ds. This equation first appeare
in the context of the nonlinear sigma model8 and subsequently in magnetic systems for the c
h5K, s85s, andu85u. It is known to support exact instanton8 solutions and twist9 solutions.
More recently, it has also been found to support a hierarchy of multitwist10 solutions.

For illustration, let us analyze two particular solutions of Eq.~3.7! for an open-ended curve
A single instanton and the single twist. The single instanton8,9 of typical size l centered at
(s08 , u08) has the form

cosu 5 @~s82s08!21~u82u08!22l2#/@~s82s08!21~u82u08!21l2#,

f 5 arctan~u82u08!/~s82s08!.
~3.8!

A single twist9 of width 1/k and velocityv/k is given by

cosu 5 tanh~ks82vu8!, f 5 ~vs81ku8!. ~3.9!

Equations~3.8! and ~3.9! give t(s,u) for the evolving instanton and twist curves, respective
Sincet5]r /]s, the curve profile at any instant of timeu is obtained by integratingt with respect
to s. The results of these integrations are given in Figs. 1 and 2.

It is instructive to derive explicitly the curvatures and torsions of the instanton (I ) and the
twist (T) curves from Eqs.~2.3!, ~3.8!, and~3.9!. A short calculation yields

KI52l/@~s82s08!21~u82u08!21l2#,

t I52~u82u08!/@~s82s08!21~u82u08!21l2#,
~3.10!

and

KT5Ak21v2 sech~ks82vu8!, tT5v tanh~ks82vu8!. ~3.11!

For the case (h/K)5C5constant, we recover the usual BPE, once again with a rescaled
u→u85Cu. The dynamics of the curve are distinctly different for the instanton and the twist.
qualitative behavior of the curve for the two cases is obtained from Eqs.~3.10! and ~3.11! as
follows.
J. Math. Phys., Vol. 38, No. 11, November 1997
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For the instanton curve both the curvature and the torsion vanish asu tends to6`, and the
curve is a straight line. At some intermediate time, the torsion is negative everywhere alo
curve, increases as time goes on, vanishes atu5Cu0 , and turns positive thereafter. The curvatu
is always finite and reaches its maximum everywhere along the curve atCu0 . In other words, an
initially nonplanar curve with a given curvature becomes planar with a high curvature that go
1/@(s2s0)21l2# at Cu0 and then turns in the opposite nonplanar direction while its curva
decreases as the inverse square of the time. The single-twist solution describes a kink tha
along the curve with velocityv/k. As u increases, the torsion changes from2v to v. The
curvature vanishes exponentially fast at the end of the curve, while it reaches its maximal
Ak21v2 at s5vk/u. This qualitative description is borne out quantitatively in Figs. 1 and 2

More general forms ofF and G strongly modify the evolution of the curve. For examp
consider an exotic case whereF(s)5A sins (A.0) andG(u)51, leading tos85A coss and
u85u. The one-instanton solution reads as

KI52l/@A2~coss2coss0!21~u2u0!21l2#,

t I52~u2u0!/@A2~coss2coss0!21~u2u0!21l2#.
~3.12!

FIG. 1. The evolution of the one-instanton curve described by Eq.~3.8!. The parameters ares0850.49, u0850.1, andl
51.

FIG. 2. The evolution of the one-twist curve described by Eq.~3.9!. The parameters arek53 andv52.
J. Math. Phys., Vol. 38, No. 11, November 1997
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At any given time the curvature and torsion oscillate with the position along the curve
amplitude diminishing with time. The sign oft I;(u2u0) persists throughout the curve, as b
fore. Also as before, the curve approaches a straight line asu→6`.

The single-twist solution for an open-ended curve becomes, in this instance,

KT5Ak21v2 sech~Ak coss2vu!,

tT5v tanh~Ak coss2vu!.
~3.13!

For early timesu,2u052Ak/v, there is no twist along the curve since the argument of
hyperbolic function has no zero. As time exceeds2u0 , a twist suddenly appears and is repea
periodically along the curve. The location of the twist within one period changes with time
at u5u0 the twist disappears as suddenly as it appeared. Thus, this solution has a partic
character, but in thetime domain.

It must be borne in mind that the form ofG/F depends on the physics that governs t
dynamics of the curve. In other words, one still needs a physical argument to supply the eq
of motion of the scalar functionf .

IV. TRANSFORMATION OF GENERAL CURVE EVOLUTION TO THE MBPE

Having covered the above special cases, a natural question that arises is whether the
evolution can be reduced to the MBPE. We now proceed to show that this is indeed so, an
the evolution ofany arbitrary curve can be described by this equation. We believe that this
significant result, in that it reduces the evolution equation of the tangent vector to a rela
compact form, many of whose solutions are known exactly.

We start by seeking a particular transformation from the variabless andu, to a new coordi-
nate system,j(s,u) andh(s,u):

ts5tjjs1thhs ; tu5tjju1thhu . ~4.1!

Substituting~4.1! into ~2.9! and simplifying, we get

j tj5@jshs1~ajs2bju!~ahs2bhu!#~ tj3t!1@hs
21~ahs2bhu!2#~ th3t! ~4.2!

and

j th5@js
21~ajs2bju!2#~ t3tj!1@jshs1~ajs2bju!~ahs2bhu!#~ t3th!, ~4.3!

where

j [jshu2juhs5
]~j,h!

]~s,u!

is the Jacobian of the transformation, which, for legitimacy, should not vanish. We now re
that the transformation satisfies the condition

jshs1G~j!G~h!50, ~4.4!

whereG(m)5(ams2bmu). Implementing this condition and using a little algebra, Eqs.~4.2! and
~4.3! reduce to

th5 f 1~ t3tj!, ~4.5!

where the scalar functionf 1 is given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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f 1[A js
21G2~j!

hs
21G2~h!

. ~4.6!

Note that with the above definition, the Jacobian is

j 5@hsG~j!2jsG~h!#.

Thus, with the class of transformations (s,u)→(j,h) that satisfy condition~4.4!, the general
curve evolution~2.8! is indeed reduced to the MBPE, Eq.~4.5!. As in the old coordinate system
th and tj are also orthogonal tot in the new coordinate system. This can be seen by writ
t–ts5t–tu50 and expanding in terms ofj andh. Alternatively, this follows from the fact thatt is
a unit vector in any coordinate system.

As mentioned earlier, in spite of the attractive compact form of Eq.~4.5! we are unable at
present to solve this equation for an arbitrary form off 1 . However, if f 1 is separable, f 1

5G1(h)/F1(j), with F1 and G1 some arbitrary integrable functions, then we can recast
evolution equation in the BPE form exactly as in case~ii ! discussed above, by defining th
following variables:

j8~s,u!5E j

F1~j!dj, h8~s,u!5Eh
G1~h!dh. ~4.7!

The resulting equation in the new variables has the BPE form

th85t3tj8 ,

whose solutions have been discussed previously~see Sec. III!. When translated to the origina
coordinates, these solutions can be written in terms of a new variable10 c5 1

2 ln@(12cosu)/(1
1cosu)# as

cosu5tanhc„j8~s,u!,h8~s,u!…,

f5f„j8~s,u!,h8~s,u!….
~4.8!

c andf can be shown10 to satisfy Cauchy–Riemann relations in thej8h8 plane, so that they are
harmonic functions ofj8 andh8: c is the harmonic potential, whilef is the conjugate stream
function. Unlike in usual two-dimensional Laplacian problems, they candiverge anywhere~in
particular at the boundaries! in the present context, without losing physical relevance. The rea
is that the physical variable cosu 5 tanhc continues to be finite, remaining in the allowed ran
@21,1#, even if c→6`. Thus solutions comprising polynomials of arbitrary degree
allowed10 for open-ended curves. Similarly, the solutions for the anglef can also diverge and ye
remain physical, as it is onlyf mod 2p that is relevant to the curve.

For a closed loop, the boundary conditions are periodic and the solutions must con
periodic, harmonic functions in the variables. The u variable need not be periodic, and ifj8
increases monotonically withu, the generic solutions forc andf are combinations of oscillating
harmonic modes with hyperbolic functions, e.g., (sinks8 coshku8). If, however,u8 is a periodic
function of u, we have an interesting situation where the terms are periodic in boths and u,
corresponding to toroidal solutions.

V. APPLICATIONS

In this section, we discuss two physical applications of the curve evolution formalism d
oped above.
J. Math. Phys., Vol. 38, No. 11, November 1997
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A. Local kinematics of an evolving space curve and its physical realizations

Interfaces, polymer chains, etc. are physical applications of space curves whose equa
motion can be either local or nonlocal. In many cases these equations take the form of a firs
ODE for the local velocity of the curve, namely,

ru5v~x,y,z!. ~5.1!

For instance, this can correspond to viscosity-dominated dynamics. We can write the righ
side of this equation explicitly in terms of the local triad system~t, n, b!:

ru5Un1Vb1Wt. ~5.2!

To relate the velocitiesU, V, W to the curvatures discussed above, we recall thatt5r s and use the
same compatibility conditions that led to Eqs.~2.4!. These yield the following three relations:

05Ws2KU, g5Us2Vt1WK, h5Vs1Ut. ~5.3!

We recall that only two of the ‘‘curvatures’’K, t, g, andh are independent@the rest are related
through Eqs.~2.4!#, and therefore these three relations give, in principle, the velocitiesU, V, W,
say, in terms of the curvatureK and torsiont, and vice versa. Eliminating any two of the velocitie
in favor of the third yields a linear third-order ODE ins. For example, for case~ii ! of Sec. III, with
g50 andh5K, we find after a short calculation that the velocitiesV andW satisfy, respectively,

@$@~Vs2K !/t#s1tV%/K#s1~Vs2K !~K/t!50,

$@~Ws /K !s1WK#/t%s1~t/K !Ws2K50.

~5.4!

Although the above ODEs have complicated forms, it is clear that knowing the expressionsK
andt allows one to solve forV, W, andU5Ws /K, either analytically or numerically. We thu
have the state of the curve at any timeu. This establishes the connection between the kinema
of the physical curve, which can be observed and measured in the laboratory, and the qu
defined in the preceding analysis. This connection should prove useful in several applicatio
instance,~a! when one has a physical model for the local motion motion of the curve~which must
be recast in the form of moving curve equations to find the global dynamics!, or ~b! when one
might wish to obtain curves of particular shapes as a function of time, for example, to engin
specific type of linking of a biological molecular chain or a polymer.

As an example of the above analysis, consider again the conditions of case~ii ! above,g50
and h5K. For clarity, let us focus on the single twist solution@Eq. ~3.11!# with k50 andv
Þ0:

KT5v sechvu, tT5v tanhvu. ~5.5!

The curvature and the torsion areindependentof s and take on a particular value for a givenu. At
u52`, KT50 and the curve profile is a straight line along thez axis. For finiteu,0, we have
KT(.0) and tT(,0) constant along the curve for each fixedu, giving a helical curve. This
profile gets flattened to a circle asu→0 ~KT5v, tT50!. It then unwinds in the opposite directio
for increasingu.0, with KT.0, tT.0, and finally points along the2z axis foru→`. Thus, the
special casek50 simulates the unwinding and straightening of a curve~a polymer, say! that was
initially coiled up in a circle, atu50. The ODE satisfied byU in this case is simple to write down
from Eqs.~5.3!, sincets5Ks50 and (K21t2)5v2. It is

Uss1v2U5K~u!t~u!, ~5.6!
J. Math. Phys., Vol. 38, No. 11, November 1997
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which, with the given boundary conditions, can then be integrated to yieldU(s,u) as a function of
v, K, andt. We find

U~s,u!5~U02V0 /v2!cos~vs!1~V0 /v2!sin~vs!1@K~u!t~u!/v2#, ~5.7!

whereU05U(s50, u) andV05Us(s50, u) are the boundary conditions at the instantu. The
explicit local kinematics of the unwinding and straightening of a helical polymer chain woul
useful in several biological applications.

B. The inhomogeneous antiferromagnetic chain

The spin evolution equation for the homogeneous case9 has been derived in earlier work i
another context. Here, we wish to concentrate on the new insight that the present analys
vides, for the inhomogeneous case.

Consider the classical inhomogeneous antiferromagnetic chain described by the Hami

H52(
i

JiSi–Si11 , ~5.8!

whereSi5(Si
x ,Si

y ,Si
z) represents the classical spin vector of constant magnitudeS at the sitei and

Ji is the site-dependent exchange interaction. The equation of motion forSi is found by using the
Poisson bracket relationdSl

d/dt5$Sl
d ,H%5( ieabg(]Sl

d/]Si
a)(]H/]Si

b)Si
g . SinceJi, 0 for all

i , the nearest neighbor spin vectors will tend to align in antiparallel directions for low ener
Hence, it is convenient to study the problem by writing down the evolution of the spin vectoS2i

at an even site andS2i 21 at an odd site as follows:

dS2i /dt5S2i3~J2iS2i 111J2i 21S2i 21!,

dS2i 21 /dt5S2i 213~J2i 21S2i1J2i 22S2i 22!.
~5.9!

In the continuum approximation,S2i→Se(x), S2i 21→So(x2a); J2i 2n→J(x2na), n50, 1, 2,
wherea is the nearest neighbor separation. Note that the Taylor expansion parameter is 2a for the
sublattice spin vectors~because of nearest neighbor antiparallelism! anda for the interactionJ,
which is assumed to vary smoothly along the chain to allow for the continuum approxima
Thus, using

S2i 11→So~x2a!12a~]So /]x!, S2i 22→Se~x!22a~]Se /]x!

and

J2i 2n→J~x!2na~]J/]x!,

in Eqs.~5.9!, we get

Se,t5Se3@J~x!~S012aSo,x!1~J~x!2aJx!So#,

So,t5So3@~J~x!22aJx!Se1~J~x!22aJx!~Se22aSe,x!#,
~5.10!

where the subscriptsx and t stand for partial derivatives. WhenJ(x)5J5const, these reduce t
the equations for thehomogeneousantiferromagnetic chain.9 For the inhomogeneous case, w
define two vectorsP andQ as follows:
J. Math. Phys., Vol. 38, No. 11, November 1997
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@Se~x!2So~x2a!#52SP,

@Se~x!1So~x2a!#52SQ.
~5.11!

Combining Eqs.~5.10! and using the definitions~5.11!, a short calculation yields

Qt52J~x!Sa~P3Q!x22aSJx~P3Q!,

Pt54S~J~x!2aJx!~P3Q!12J~x!Sa@~Q3Qx!2~P3Px!#.
~5.12!

For the antiferromagnetic chain, it is clear that for low energies,uQu is much smaller thanuPu.
Furthermore, note thatQ50 is a possible exact solution for Eq.~5.12!. In this case, Eq.~5.12!
simplifies considerably and does not contain derivatives ofJ(x) anymore. This solution represen
dimer-like locked spin pairs along the chain, withP5Se /S becoming a unit vector in this limit.
Rescaling variablesx/2a→s, St→u, andP→t, the second of Eqs.~5.12! becomes

tu5J~s!~ t3ts!. ~5.13!

This equation has the form of the MBPE@Eq. ~3.6!#. Defining a new variable
s85*sds/J(s) andu85u, this takes on the simpler BPE form@Eq. ~3.7!#. The solutions for the
polar angleu and the azimuthal anglef of t are given in Eqs.~3.8! for the instanton class, and i
Eqs. ~3.9! for the twist class. Thus, we see that the above formalism and solutions apply
inhomogeneousantiferromagnetic spin chain, the requirement being that 1/J(s) is an integrable
function.

VI. CONCLUDING REMARKS

Moving space curves can be represented by two sets of Frenet–Serret equations that d
the spatial (s) and temporal (u) evolution of the vector triad~t,n,b!, by specifying the curvatures
K, g, andh and the torsionst andt0 . All these quantities are, in general, functions ofs andu.
If compatibility conditions are imposed on the vectors, then coupled nonlinear partial differe
equations for the curvatures and the torsions are obtained. For certain special choices o
evolution, it is possible to obtain3 certain well-known completely integrable equations with solit
solutions. While such a result implies that the underlying evolution oft is also completely inte-
grable, finding its explicit solution is a nontrivial task, in practice. In this paper we have stu
the problem of moving curves from a different angle and demonstrated that for a fairly large
the evolution oft can be reduced to a solvable form, enabling us to write down its solu
explicitly.

We have used the following strategy: We start by casting the general evolution oft in the
form Ktu5@gts2h(ts3t)# @Eq. ~2.8!#. Using this, first we show that ifh50 and (g/K) is a
separable function ofs andu, t satisfies alinear solvable equation with unidirectional travelin
wave solutions. Next, we show that ifg50 and (h/K) is a separable function,t satisfies the
well-known BPE equation, which is anonlinearexactly solvable equation. In both these cases,
corresponding equations are in terms of transformed variables, which are functions ofs andu. It
is interesting that we are able to generalize this latter result to the case whenboth g and h are
nonvanishing, to obtain once again a BPE in terms of appropriate transformed variable
results demonstrate how a large class of curve evolutions with appropriate curvatures and t
can be effectively mapped to the BPE. This equation supports exact instanton and twist sol
If Figs. 1 and 2, we have displayed the curve evolutions corresponding to the single instant
the single twist. Multi-instanton solutions are well known. We have recently found multi-tw10

solutions for the BPE. These and the associated curve evolutions will be reported else
Application to the kinematics of curve motion shows interesting results for the time evolutio
the local velocity components on the curve. As a second application, we find that the dynam
J. Math. Phys., Vol. 38, No. 11, November 1997
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the inhomogeneous antiferromagnetic chain can be mapped to a BPE curve evolution in te
a transformed spatial variable, which can be expressed in terms of the interaction betwe
spins on the chain.
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Linear connections on graphs
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In recent years, discrete spaces such as graphs have attracted much attention as
models for physical spacetime or as models for testing the spirit of noncommutative
geometry. In this work, we construct the differential algebras for graphs by extend-
ing the work of Dimakiset al. and discuss linear connections and curvatures on
graphs. Especially, we calculate connections and curvatures explicitly for the gen-
eral nonzero torsion case. There is a metric, but no metric-compatible connection in
general except the complete symmetric graph with two vertices. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!02610-8#

I. INTRODUCTION

In the last few years, there has been a rapid increase of interest in noncommutative geo
Noncommutative geometry is the geometry of quantum spaces, which are generalized
replacing classical smooth manifolds.1 A quantum space is an associative algebra, usually n
commutative, with possibly more structures on it.1,2 Even though noncommutative geometry
developed usually for noncommutative algebras, however, there can be interesting comm
quantum spaces such as discrete sets, which we are mainly concerned with in this work.
discrete spaces attract much attention in recent years as models for physical spacetim
models for testing the spirit of quantum spaces.3–6 Differential calculi on commutative algebra
have already been investigated by some authors.6–8

One of the motivations for studying quantum spaces is to understand the small scale st
of spacetime and quantum gravity. There are some efforts to try to understand gravity
framework of the noncommutative version of Riemannian geometry~see, e.g., Refs. 9, 10!. How-
ever, noncommutative Riemannian geometry is not a straightforward extension of the ordina
and several definitions of a connection have been considered. In particular, definitions of a
connection which make use of the bimodule structure of differential forms have been sug
for projective modules11 and for differential calculi based on derivations.12,13For discrete sets, one
can define a linear connection using a group structure supplied to the discrete sets.14 Recently, a
more general definition has been proposed by Mourad15 of a linear connection, which is also ou
main concern in this work.

In this work, we shall extend the formulation of Dimakiset al.6 on graphs in order to make
them suitable for calculation of linear connections proposed by Mourad and curvatures. In S
we shall have a review of the universal differential algebra necessary in the sequel. And
ential caculi on a graph6 is extended toward the construction of the differential algebra for
graph. In Sec. III, we shall calculate explicitly Mourad’s linear connections and curvature
graphs. Nonzero torsion connections, bilinear curvatures and metrics shall be discussed.

II. DIFFERENTIAL ALGEBRAS FOR GRAPHS

A. Universal differential algebra

Let A be an associative algebra with 1 over the fieldC of complex numbers. Let a direct sum
of vector spacesV5 % n50

` Vn be a differential complex so that there are homomorphismsd’s
0022-2488/97/38(11)/5889/16/$10.00
5889J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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•••→Vn21→
d

Vn→
d

Vn11→••• ~1!

such thatd250. The homomorphismd is usually called the differential operator of the compl
V. If there is a gradation-respecting multiplication• in V so thatV is an algebra overC and the
homomorphismsd’s satisfy the Leibniz rule

d~v•v8!5~dv!•v81~21!nv•dv8, ~2!

wherevPVn, then the algebra is called a differential algebra overC.
There is an important example for a differential algebra, which is constructed from an

ciative algebraA with 1 overC as follows~see, e.g., Refs. 16, 17!. Let G be anA-bimodule. Let
d:A→G be a linear map such that for anya, bPA, d(ab)5(da)b1a db. If every element ofG
is of the form(kak dbk whereak , bkPA, then (G,d) is said to be a 1st order differential calculu
over A. We have a special 1st order differential calculus overA. Let m:A^ CA→A be the
multiplication map inA such thatm(a^ b)5ab. Let V1[ker m and let d:A→V1 be a map
defined byda[1^ a2a^ 1. ThenV1 is an A-bimodule and (V1,d) is a 1st order differential
calculus overA. SinceA^ CA also carries anA-bimodule structure and the multiplication ma
m:A^ CA→A is a bimodule homomorphism, we have an exact sequence of bimodule hom
phisms

0→V1→
i

A^ CA→
m

A→0. ~3!

It is well known that the 1st order differential algebra (V1,d) over A is universal, i.e., if there is
another 1st order differential calculus~G,d! overA, then there exists a uniqueA-bimodule homo-
morphismf:V1→G such that

d5f+d. ~4!

Every 1st order differential calculus~G,d! over A is isomorphic, asA-bimodules, to a quotient o
V1 by theA-submodule kerf.

We can extend the 1st order differential calculusV1 to higher orders: LetVn[$rPA
^ C••• ^ CA[A^ C(n11)umir50 for all i 51,...,n%, wheremi is the multiplication acting in thei ,
( i 11)th place. ThenVn is anA-bimodule andVn5span$a0 da1^ ••• ^ danuaiPA%5V1

^ A•••
^ AV1[(V1) ^ An. ~We shall use the same notation̂ for the two kinds of tensor productŝC ,
^ A if there is no confusion.! From theseVn’s, we can construct a differential algebra. L
V(A)[ % n50

` Vn, whereV0[A. And we define a multiplication• in V(A) as follows:
~i! Let a0 da1^ da2••• ^ dan[(a0 ,a1 ,a2 ,...,an) and define a multiplication of two elemen

in Vn andVm21 to get an element inVn1m21 by

~a0 ,a1 ,...,an!•~an11 ,...,an1m!5(
i 50

n

~21!n2 i~a0 ,a1 ,...,aiai 11 ,...,an ,an11 ,...,an1m!.

~5!

~ii ! Extend this multiplication to the whole ofV(A) using the distributive rule in an obviou
manner.

~iii ! Extendd to the whole spaceV(A) as follows:

d~a0 ,a1 ,...,an![~1,a0 ,a1 ,...,an! ~6!

and
J. Math. Phys., Vol. 38, No. 11, November 1997
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d~1,a0 ,a1 ,...,an![0. ~7!

ThenV(A) is a differential algebra. This differential algebra is universal. It is straightforwar
see that ifaiai 1150 for i 50,1,...,n21, then

~a0, a1 , . . . ,an!5a0^ ••• ^ an, ~8!

~a0 ,a1 ,...,an!•~an11 ,...,an1m!5~a0 ,...,an21 ,anan11 ,an12 ,...,an1m! ~9!

and

d~a0 ,a1 , . . . ,an!5 (
q50

n11

~21!qa0^ a1^ ••• ^ aq21^ 1^ aq^ ••• ^ an . ~10!

B. Differential algebras on graphs

Let V be a set ofN pointsx1 ,...,xN(N,`). As in Ref. 6, letA be the algebra of complex
functions onV with ( f g)(xi)5 f (xi)g(xi). Let eiPA be defined by

ei~xj !5d i j . ~11!

Then it follows that

eiej5d i j ei , (
i

ei51 ~12!

and eachf PA can be written asf 5( i f ( i )ei , wheref ( i )5 f (xi)PC. It is obvious thatA is not
only a commutative algebra with 1 but also anN-dimensional complex vector space.

Now let us introduce the universal differential algebraV(A) and the differential operatord as
in the previous section. Then the differentials satisfy the following relations:

ei dej52~dei !ej1d i j dei ~13!

and

(
i

dei50, d150. ~14!

The universal 1st order differential calculusV1 is generated byB[$ei dej u i , j 51,2,...,N( i
Þ j )% as anA-bimodule. In this work, we note thatV1 is a finite-dimensional complex vecto
space with having the generatorsB as a basis.

Similarly, for n>2, Vn is not only anA-bimodule generated by$ei 1
dei 2

^ ••• ^ dei n11
u i k

51,2,...,N( i kÞ i k11)% but also a complex vector space with having the generators as a basis.
universal differential algebraV(A) of A, the multiplication in• in Eq. ~9! yields

~ei 1
dei 2

^ ••• ^ dei r
!•~ej 1

dej 2
^ ••• ^ dej s

!

5ei 1
dei 2

^ ••• ^ d~ei r
ej 1

! ^ ••• ^ dej s

5d i r j 1
ei 1

dei 2
^ ••• ^ dei r 21

^ dej 1
^ dej 2

^ ••• ^ dej s
. ~15!

Thus, effectively, the multiplication• is the same as the tensor product^ A , which is crucial in the
sequel together with the fact that the differential operatord satisfies Eq.~10!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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A graph is a set of vertices which are interconnected by a set of edges.18 Graphs are assume
to be connected, i.e., two arbitrary vertices can be connected by a sequence of consecutive
A complete graph is a graph for which every pair of distinct vertices is connected by one ed
some applications, it is natural to assign a direction to each edge of a graph. Diagrammatica
direction of each edge is represented by an arrow. A directed graph~or digraph! is a graph
augmented in this way. A symmetric digraph is a digraph in which any connected pair of di
vertices is connected in both directions. In this work, we shall be concerned only with dig
and hence every graph is a digraph unless otherwise stated.

Now let us regard the pointsxi of V as vertices and a generatorei dej ( iÞ j ) in B as an
arrow fromxi to xj . Then we can associate a graph with a setV of points and a subsetS of B.
From now on, we shall denote a graph by (A,K1), whereK1 is anA-bimodule generated by th
subsetS . Accordingly, (A,V1) represents a complete symmetric graph since the generatorsB

correspond to all arrows connecting any two vertices. In this case, the graph (A,K1) is said to be
a subgraph of (A,V1). A subgraph (A,K1) is obtained by deleting some of the arrows in
complete symmetric graph (A,V1). It is obvious thatV1 is the direct sum ofK1 and its comple-
ment which is anA-bimodule generated by the setB –S . We define anA-bimodule homomor-
phismf1 :V1→K1 to be the projection map. If we define a mapd:A→K1 by d5f1+d, then it is
straightforward to see that (K1,d) is a 1st order differential calculus overA with an observation
ei dej5f1(ei dej )5eif1(dej )5eidej for ei dejPK1.

Now we shall construct a differential algebra fromK1. We defineKn to be the quotient spac

Kn[
Vn

^d~ker fn21!&
~16!

for n52,3,4,..., wherefn21 is the projection map fromVn21 to Kn21 and the bracket̂X& means
the A-bimodule generated by the setX. So ^d(ker fn21)& is the A-bimodule generated by th
subspaced(ker fn21) of Vn, and kerfn5^d(ker fn21)&. We define d:Kn→Kn11 by x
1^d(ker fn21)&°fn11(dx) for xPVn and for n51,2,••• . This is well-defined since ifx
1^d(ker fn21)&5y1^d(ker fn21)&, then d(x2y)P^d(ker fn)& and hence d(x
1^d(ker fn21)&)5d(y1^d(ker fn21)&).

Now let us investigate the form of generators for kerfn (n>2) since it is an essentia
ingredient in the sequel. Letei dejPker f1 . From Eq.~10!, we have

d~ei dej !51^ ei ^ ej2ei ^ 1^ ej1ei ^ ej ^ 1.

By multiplying ek (kÞ i ) to the left of d(ei dej ), we obtain generatorsek^ ei ^ ej5ek dei

^ dej . Similarly, by multiplying ek (kÞ j ) to the right of d(ei dej ), we obtain generatorsei

^ ej ^ ek5ei dej ^ dek . Thus the remaining termei ^ (12ei2ej ) ^ ej of d(ei dej ), which is of
the form ei de1^ dej1ei de2^ dej1•••1ei deN^ dej with two termsei dei ^ dej and ei dej

^ dej being deleted, is a generator of kerf2 . At present, we do not have to worry about th
possibility of decomposing the generator further into simpler ones. We note that each term
generator begins withei and ends withdej . It is straightforward to proceed further in a simila
manner. This leads us to the following lemma.

Lemma 1:For n>2, kerfn (Þ0” ) can be generated by either single elementsei 1
dei 2

^ •••

^ dei n11
or elements of the forme Iei 1

dei 2
^ ••• ^ dei n11

1eJej 1
dej 2

^ ••• ^ dej n11
1•••

1eKek1
dek2

^ ••• ^ dekn11
with ei 1

5ej 1
5•••5ek1

and ei n11
5ej n11

5•••5ekn11
, where

e I ,eJ ,...,eK56.
The coefficients61 originate from the alternating sign in Eq.~10!.
Lemma 2:Let xPVm and letuPker fn for m>0, n>1. Thenx^ u, u^ xPker fn1m .
Proof: It is trivial for m50. Let mÞ0 and let ua be either a single element generat

ei 1
dei 2

^ ••• ^ dei n11
or a generator of the forme Iei 1

dei 2
^ ••• ^ dei n11

1eJej 1
dej 2

^ •••
J. Math. Phys., Vol. 38, No. 11, November 1997
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^dejn11
1•••1eKek1

dek2
^•••^dekn11

for ker fn ~ua is a single element generator forn51!. Then

for anyei dejPV1, ei dej ^ ua5d j i 1
ei duaPker fn11 andua ^ ei dej5(21)n11d i i n11

(dua)ej

Pker fn11 . SinceVm5(V1) ^ Am, the proof is completed by the induction. QE
The existence of generators for kerfn with such specific forms as in Lemma 1 gives

A-bimodule which is a complement of kerfn in Vn for n>2. Let $ei 1
dei 2

^ ••• ^ dei n11
u i k

51,2,...,N( i kÞ i k11)% be a basis forVn. Let Si j be theA-subbimodule ofVn generated by all
basis elements ofVn with i 15 i and i n115 j . Then we have

Vn5 % i , jSi j . ~17!

By Lemma 1, we have generators of kerfn , each of which belongs toSi j for somei , j . Let Si j
(1)

be the subspace ofSi j spanned by the generators of kerfn in Si j . Then it is clear that

ker fn5 % i j Si j
~1! . ~18!

Now let Si j
(2) be a complement ofSi j

(1) in Si j and define

Qn5 % i j Si j
~2! . ~19!

ThenQn is not only a complement of kerfn in Vn but also anA-bimodule. In fact, if we letv
PQn, v may be written asv5( i j v i j , wherev i j is in Si j

(2) . Let f PA. Since f ( i ) is a complex
number, bothf v5( i j f ( i )v i j andv f 5( i j f ( j )v i j belong toQn.

By construction, we have a splitting exact sequence ofA-bimodules

0→ker f1→V1→
f1

K1→0. ~20!

The splitting map1 :K1→V1 is just the inclusion map. Now we can also have a splitting ex
sequence ofA-bimodules forn>2. It is clear that the mapfn restricted toQn is anA-bimodule
isomorphism. Thus if we define a splitting mapn :Kn→Vn to be the inverse (fnuQn)21, we have
the following lemma.

Lemma 3:For n>1, the exact sequence ofA-bimodules

0→ker fn→Vn→
fn

Kn→0

is split.
Proof: It is enough to show thatn is an A-bimodule homomorphism forn>2. Let j

5ei 1
dei 2

^ ••• ^ dei n11
be a generator ofVn. Since Si 1i n11

5Si 1i n11

(1)
% Si 1i n11

(2) , j is expressed

uniquely asu1v for uPSi 1i n11

(1) and vPSi 1i n11

(2) . Thus sincen(j1ker fn)5vPSi 1i n11

(2) , it fol-

lows that for any f PA, n( f (j1ker fn))5n( f ( i 1)j1ker fn)5 f ( i 1)n(j1ker fn)5 f n(j
1ker fn). Similarly, n((j1ker fn) f )5n(j1ker fn) f ( i n11)5n(j1ker fn) f . QED

Let us putK05A andf0505 id.
Proposition 1:The following diagram:

A
↓f0

A

→
d

→
d

V1

↓f1

K1

→
d

•••→
d

→
d

•••→
d

Vn21

↓fn21

Kn21

→
d

→
d

Vn

↓fn

Kn

→
d

→
d

Vn11

↓fn11

Kn11

→
d

•••

→
d

•••

commutes andd250.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Proof: The commutativity of the diagram is a consequence of the definition ofd. For anyn
51,2,..., let uPKn21. Then dn21u5nv1w for some vPKn and wPker fn . Now dw
Pd(ker fn),ker fn11 , and dnv5n11v11v2 for somev1PKn11 and v2Pker fn11 . Thus
from d2n21u50, it follows that n11v11v21dw50. But n11v152v22dw50 since
n11Kn11ùker fn115$0%. Henced2u5v150. QED

Let us definePn,m :Kn
^ AKm→Kn1m, v ^ v8°v•v8, to be Pn,m[fn1m+(n^ m) for

n,m>0. Note that the multiplication inV(A) is implicitly incorporated from Eq.~15!. The map
Pn,m is well-defined. In fact, it is trivial for the cases wheren50 andm50. Otherwise, let us take
any splitting maps̃n and ̃m . Then nv ^ mv82 ̃nv ^ ̃mv85nv ^ (mv82 ̃mv8)1(nv
2 ̃nv) ^ ̃mv8. Since mv82 ̃mv8Pker fm and nvPVn, etc., nv ^ mv82 ̃nv ^ ̃mv8 be-
longs to kerfn1m by Lemma 2. Thusfn1m(nv ^ mv8)5fn1m( ̃nv ^ ̃mv8). Also, by the
A-bilinearity of the splitting maps,Pn,m(v f ^ v8)5Pn,m(v ^ f v8) for any f PA.

Moreover,Pn,m is associative.
Lemma 4:Let vPKn, v8PKm andv9PKl for n,m,l>0. Then

~v•v8!•v95v•~v8•v9!.

Proof: For n5m5 l 50, it is just the associativity ofA. Otherwise, we have

~v•v8!•v95Pn1m,l~~v•v8! ^ v9!5fn1m1 l@n1m~fn1m~nv ^ mv8!! ^  lv9#

5fn1m1 l@nv ^ m1 l~fm1 l~mv8^  lv9!!#

5Pn,m1 l~~v ^ ~v8•v9!!5v•~v8•v9!.

The third equality comes from the fact that

n1m~fn1m~nv ^ mv8!! ^  lv92nv ^ m1 l~fm1 l~mv8^  lv9!!

5@n1m~fn1m~nv ^ mv8!!2nv ^ mv8# ^  lv9

2nv ^ @m1 l~fm1 l~mv8^  lv9!!2mv8^  lv9#,

which is in kerfn1m1 l by Lemma 2 sincen1m(fn1m(nv ^ mv8))2nv ^ mv8Pker fn1m

and lv9PV l , etc. QED
Lemma 5:fn1m5Pn,m(fn^ fm) for n,m>0.
Proof: It is trivial for n5m50. Otherwise, leta ^ bPVn

^ AVm5Vn1m.

Pn,m~fn^ fm!~a ^ b!5~fn1m+~n^ m!!~fna ^ fmb!5fn1m~nfna ^ mfmb!.

Now nfna ^ mfmb2a ^ b5nfna ^ (mfmb2b)1(nfna2a) ^ b, which is in kerfn1m

by Lemma 2. Hencefn1m(nfna ^ mfmb)5fn1m(a ^ b). QED
Now we are ready to show the fact that the operatord satisfies the Leibniz rule asd in Eq. ~2!.
Proposition 2:Let vPKn andv8PKm for n,m>0. Then

d~v•v8!5~dv!•v81~21!nv•dv8.

Proof: For n,m>0, it follows that

d~v•v8!5dPn,m~v ^ v8!5dfn1m~n^ m!~v ^ v8!5fn1m11d~nv ^ mv8!

5fn1m11~dnv ^ mv81~21!nnv ^ dmv8!

5Pn11,m~fn11 dnv ^ fmmv8!1~21!nPn,m11~fnnv ^ fm11 dmv8!

5~dv!•v81~21!nv•dv8,
J. Math. Phys., Vol. 38, No. 11, November 1997
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where the fifth equality comes from Lemma 5. QE
Thus we have proved the following.
Proposition 3: K(A)5A% K1

% K2
% ••• is a differential algebra.

It is well known6 that ^dVn&5Vn11. The same relation holds ford. In fact,
Kn11.fn11(^dnKn&). To showKn11,fn11(^dnKn&), we first observe that any element
Vn11 is expressed~not necessarily uniquely! as a sum of an element in^d ker fn& and an element
in ^dnKn& sinceVn115^dVn&. Thus if we letvPKn11, we haven11(v)5v11v2 for some
v1P^d ker fn& and v2P^dnKn&. Then v5fn11n11(v)5fn11(v11v2)5fn11(v2)
Pfn11(^dnKn&). Thus Kn115fn11(^dnKn&). On the other hand, fn11(^dnKn&)
5^fn11 dnKn&5^dKn& since fn11 is an A-bimodule homomorphism. Thus we have^dKn&
5Kn11.

From now on, we shall writeei 1i 2••• i n
for ei 1

dei 2
^ ••• ^ dei n

for simplicity, according to Ref.
6, with the convention thatei 1i 2••• i n

50 if i k5 i k11 for somek. Also we shall often writev for
x1ker fn of Kn if n(x1ker fn)5v for a given splitting mapn .

Example 1:Let V be a set$x1 ,x2 ,x3% of three points. If we letK1 be the space generated b
$e12,e23,e13%, then kerf15^$e21,e32,e31%&. From this, it follows that kerf2 is generated by
V22^$e123%&, andK25^e123& with the obvious splitting map2 . Moreover,Kn50 for n>3.

Similarly, if we let K1 be the space generated by$e12,e21,e23,e32%, then kerf1

5^$e13,e31%& and kerf2 is generated by V22^$e121,e212,e232,e323%&. Also K2

5^$e121,e212,e232,e323%&, etc.
Example 2:Let V be a set$x1 ,x2 ,x3 ,x4% of four points and letK1 be the space generated b

V12^$e14,e41%&. Then kerf15^$e14,e41%& and kerf2 is generated by the following 12 ele
ments:

e141,e142,e143,e214,e241,e314,e341,e412,e413,e414,e1241e134,e4211e431.

Note that the two elementse1241ker f2 ande1341ker f2 are not linearly independent inK2 since
e1241e134 belongs to kerf2 . Rather,e12452e134 modulo kerf2 .

In the case of the universal differential algebraV(A), it is known that the sequence

A→
d

V1→
d

V2→
d

•••→
d

Vn→
d

••• . ~21!

is exact.6 However, this is not true ford. The counter-example can be seen in the following.
Example 3:Let V be a set$x1 ,x2 ,x3% of three points and letK1 be the space generated b

$e12,e23,e31%. Then kerf15^$e21,e32,e13%&. It is straightforward to see that kerf25V2. Hence
Kn50 for n>2. We note that there is an element, saye12^ e235e123, which is inK1

^ AK1, but
not in K2.

From the fact that the dimensions of bothA and K1 are the same in the sequen

A→
d

K1→
d

K250, the mapd:A→K1 is an isomorphism if the sequence is exact. But this con
dicts the fact thatd150. Thus the sequence is not exact.

III. LINEAR CONNECTIONS ON GRAPHS

A. Linear connections

Let A be an associative algebra andE be anA-bimodule. One may impose a reality conditio
once A is given as a* -algebra.12 Let (V* ,d) be a differential calculus overA. If V1 is an
A-bimodule, we can define a left and a right connection onE. A left connection onE is defined
to be a linear map

D:E→V1
^ AE ~22!
J. Math. Phys., Vol. 38, No. 11, November 1997
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satisfying

D~ f v!5d f ^ v1 f Dv ~23!

for any f PA andvPE. One can also define a right connection onE to be a linear map

D:E→E^ AV1 ~24!

satisfying

D~v f !5~Dv! f 1v ^ d f . ~25!

In Ref. 15, a definition of a bimodule connection is proposed. A bimodule connection onE is
a left connectionD such that for anyf PA andvPE, D(v f ) is of the form

D~v f !5~Dv! f 1s~v ^ d f !, ~26!

wheres is a map fromE^ AV1 to V1
^ AE generalizing the permutation. In particular, if we ta

E5V1, the bimodule connection is called a linear connection, which we are mainly conce
with in this work.

Let V2 be theA-bimodule of two-forms and letp:V1
^ AV1→V2 be a linear map satisfying

p(v ^ v8)5v•v8, where• is the multiplication map between forms. For the consistencey of
definition of a linear connection, the maps:V1

^ AV1→V1
^ AV1 is assumed to beA-bilinear,

i.e., for f PA andv,v8PV1,

s~ f v ^ v8!5 f s~v ^ v8!, s~v ^ v8 f !5s~v ^ v8! f . ~27!

Moreover,s is assumed to satisfy the following:

p+~s11!50. ~28!

The relation in Eq.~28! is a necessary and sufficient condition for the torsionT of the connection
D, defined byT5d2p+D, to beA-bilinear ~more precisely, rightA-linear!.

A linear connectionD can be extended to two linear mapsD1 :V1
^ AV1→V2

^ AV1, and
D2 :V1

^ AV1→V1
^ AV1

^ AV1, respectively, satisfying

D1~v ^ v8!5dv ^ v82p12~v ^ Dv8! ~29!

and

D2~v ^ v8!5Dv ^ v81s12~v ^ Dv8! ~30!

for v,v8PV1, wherep125p ^ 1 ands125s ^ 1.
It is easy to see that the linear mapD1+D is a left A-linear. Alsop12D2+D is a left A-linear

if the torsionT50. For the rightA-linearity of D1+D and p12D2+D, there is not yet a widely
accepted prescription even though it seems to be an essential property for the conce
curvature. However, one prescription to obtain anA-bilinear curvature has been propos
recently,19 which we shall use in this work. Especially, sinceV1 is free for graphs, one can
construct the curvature invariants from the linear connection.19 In the next subsections, we sha
calculate linear connections and curvatures explicitly on graphs with respect to the natura
for the general nonzero torsion case. There are some other models20–23 for which linear connec-
tions and curvatures are calculated mostly without torsion.
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Linear connections on complete symmetric graphs

Let A be the associative algebra of complex functions on a setV of N points and letV(A) be
the universal differential algebra, which corresponds to a complete symmetric graph, introdu
Sec. II B. Sincep51 for the universal differential algebraV(A), we takes521 from Eq.~28!
for the A-bilinearity of the torsionT. Thus a linear connection is given by a linear m
D:V1→V1

^ AV1 satisfying

D~ f v!5d f ^ v1 f Dv, D~v f !5~Dv! f 2v ^ d f ~31!

for any f PA andvPV1. Moreover,D1 andD2 satisfy

D1~v ^ v8!5dv ^ v82v ^ Dv8, D2~v ^ v8!5Dv ^ v82v ^ Dv8. ~32!

In this case, we haveD15D21T^ 1.
SinceV1

^ AV15V2 is a vector space with a basis$ei jk u i , j ,k51,2,...,N ~iÞ j , j Þk!%, we
may put

D~ei j !5 (
k,l ,m

G i j
klmeklm ~33!

for some numbersG i j
klm’s. Here, let us putG i j

klm50 if i 5 j or k5 l or l 5m.
Now from the following two expressions ofD(ei j ):

D~ei j !5D~ei dej !5dei ^ dej1eiD~dej !5(
a

~eai j2eia j1ei ja !1 (
m,b,c

~Gm j
ibc2G jm

ibc!eibc

~34!

and

D~ei j !5D~ei dej !52D~dei ej !52D~dei !ej1dei ^ dej

5(
a

~eai j2eia j1ei ja !2 (
m,a,b

~Gmi
ab j2G im

ab j!eab j , ~35!

we haveG i j
abc50 except for

G i j
i ja51 ~aÞ j !,

~36!

G i j
ai j51 ~aÞ i !

with G i j
ia j (aÞ i , j ) undetermined. From these values ofG i j

klm’s, we obtain the following lemma.
Lemma 6:For anyi , j ( iÞ j ) D(ei j ) andT(ei j ) are of the following forms:

D~ei j !5dei ^ dej1(
a

~11G i j
ia j !eia j ,

T~ei j !52(
a

~11G i j
ia j !eia j .

Thus it is obvious that the torsionT5d2D is 0 if and only ifG i j
ia j521 for all i , j ( iÞ j ) and

a(Þ i , j ). Moreover, if the torsionT is 0, the curvaturesD1+D5D2+D50 in a complete symmet
ric graph, which is already known~see, e.g., Ref. 23!. However, we shall calculate curvatures f
the nonvanishing torsionT.
J. Math. Phys., Vol. 38, No. 11, November 1997
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We can have a general form of the curvatureD1+D for any linear connectionD obeying Eq.
~33!

D1Dei j 52 (
k,l ,m

D1~G i j
klm dek^ el dem!

5 (
k,l ,m

G i j
klm dek^ D~el dem!

5 (
a,b,c,d

(
l ,m

~G i j
blmG lm

bcd2G i j
almG lm

bcd!eabcd5 (
a,b,c,d

V i j
abcdeabcd, ~37!

where

V i j
abcd5(

l ,m
~G i j

blmG lm
bcd2G i j

almG lm
bcd!. ~38!

Using G i j
klm5d i

kd j
l 1d i

ld j
m1G i j

klmd i
kd j

m in Eq. ~36!, we obtainD1Dei j . Also, D2Dei j can be
obtained from Lemma 6 and the following observations:

D~dej !5(
a

(
mÞ j

@~11Gm j
ma j!ema j2~11G jm

jam!ejam#, ~39!

and foraÞ i , j ,

dei ^ dea^ dej5(
l

~elia j 2eila j 1eial j 2eia j l !. ~40!

The results are as follows.
Proposition 4:

D1Dei j 52(
lÞ i

~11G i j
i l j !ei j l j 1(

lÞ j
~12G i j

i l j G l j
l i j !eili j 2(

lÞ j
(
mÞ i

~G i j
im j1G i j

i l j G l j
lm j!eilm j

2(
l

(
mÞ j

~11G jm
j lm!ei j lm2(

l
(
m

~11G i j
i l j !eil jm ,

and

D2Dei j 52(
lÞ i

~12G i j
i l j G i l

i j l !ei j l j 1(
lÞ j

~12G i j
i l j G l j

l i j !eili j 1(
lÞ j

(
mÞ i

~G i j
im jG im

ilm2G i j
i l j G l j

lm j!eilm j

2(
l

(
mÞ j

~11G jm
j lm!ei j lm1(

lÞ i
(
m

~11G l i
lmi!elmi j .

If D1+D is A-bilinear, the torsionT should vanish, i.e., allG jm
j lm521 from the vanishment of

the ei j lm or eil jm term in D1Dei j . Similarly for D2+D. We thus have
Corollary 1: Let the torsionT be A-bilinear on a complete symmetric graph. Then the n

essary and sufficient condition forD1+D to beA-bilinear isT50. Similarly for D2+D.
One prescription to get anA-bilinear curvature for the nonzero torsionT is to factor out all

those elements that do not satisfy the desired condition. We refer to Ref. 19 for a recent disc
about this prescription. Thus if we factor out the termsei j lm and eil jm of D1Dei j , we have an
J. Math. Phys., Vol. 38, No. 11, November 1997
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A-bilinear curvature, denoted byCurv1 , since the remaining terms belong to theA-bimoduleSi j .
Similarly, we have anA-bilinear curvature denoted byCurv2 from p12D2Dei j 5D2Dei j .

Corollary 2: For all i , j ( iÞ j ),

Curv1~ei j !52(
lÞ i

~11G i j
i l j !ei j l j 1(

lÞ j
~12G i j

i l j G l j
l i j !eili j 2(

lÞ j
(
mÞ i

~G i j
im j1G i j

i l j G l j
lm j!eilm j ,

and

Curv2~ei j !52(
lÞ i

~12G i j
i l j G i l

i j l !ei j l j 1(
lÞ j

~12G i j
i l j G l j

l i j !eili j

1(
lÞ j

(
mÞ i

~G i j
im jG im

ilm2G i j
i l j G l j

lm j!eilm j .

Now let us consider an interesting special case where

G i j
klm5G%~ i !%~ j !

%~k!%~ l !%~m! ~41!

for any permutation% on the setV of N points. This is motivated by the fact that a comple
symmetric graph (A,V1) is invariant under the permutations% on V in the sense that the trans
formed bases$e%( i )% for A and$e%( i )%( j )% for V1 are equivalent respectively to the original on
since the graph (A,V1) is complete and symmetric. In this special case, let us put 11G i j

ia j5g for
all i , j ( iÞ j ) and a(Þ i , j ). Then the curvatures in the above can be written immediately
follows.

Corollary 3: For all i , j ( iÞ j ),

D1Dei j 5gH 2(
lÞ i

ei j l j 1~22g!(
lÞ j

eil i j 1~12g!(
lÞ j

(
mÞ i

eilm j2(
l

(
mÞ j

ei j lm2(
l

(
m

eil jm J ,

Curv1~ei j !5gH 2(
lÞ i

ei j l j 1~22g!(
lÞ j

eil i j 1~12g!(
lÞ j

(
mÞ i

eilm j J ,

and

D2Dei j 5gH ~g22!(
lÞ i

ei j l j 1~22g!(
lÞ j

eil i j 2(
l

(
mÞ j

ei j lm1(
lÞ i

(
m

elmi j J ,

Curv2~ei j !5g~g22!H(
lÞ i

ei j l j 2(
lÞ j

eil i j J .

The parameterg determines a connection and hence curvatures. These one-parameter fa
of connections and curvatures on a graph are closely analogous to those on matrix geom20

and those on the ordinary quantum plane.23 However, the torsion is not zero in general in th
work. In fact, the torsion also depends on the parameter sinceTei j 52g(aeia j from Lemma 6. A
surprising result thatCurv15Curv2 arises wheng51 for complete symmetric graphs.

We define a metricg:V1
^ AV1→A on (A,V1) to be anA-bilinear nondegenerate map. B

nondegenerate, we meang(v ^ v8)50 for all vPV1 implies v850 andg(v ^ v8)50 for all
v8PV1 impliesv50. Then we haveg(ei j ^ ejk)5m ieid ik for some constantm i . From the same
motivation as that for Eq.~41!, we assume thatm i ’s are the same, saym. Now if we define a
metric-compatible connection to be a linear connection satisfyingd+g5(1^ g)+D2 as usual,20–23
J. Math. Phys., Vol. 38, No. 11, November 1997
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then it is straightforward to see thatdg(ei j i )5m dei and (1̂ g)D2(ei j i )5m(dei ei2ei dej ).
Hence there is no metric-compatible connection in general except theN52 case. This fact tells us
that a metric in this sense is not so useful for graphs.

From the connections and curvatures of a complete symmetric graph, we can induce th
subgraphs. We shall do this in the next subsection.

C. Linear connections on graphs

Let (A,K1) be a subgraph of (A,V1). Now we define a linear connection“:K1→K1
^ AK1

on a graph (A,K1) by the composite map“[(f1^ f1)+D+1 , where1 :K1→V1 is the splitting
map andf1^ f1 :V1

^ AV1→K1
^ AK1 is the projection map. We also define a generalized p

mutation t:K1
^ AK1→K1

^ AK1 by t[(f1^ f1)+s+(1^ 1). Let D[V1
^ A ker f11ker f1

^ AV1. Then we have
Proposition 5:For f PA andvPK1,
~1! “( f v)5d f ^ v1 f “v and
~2! “(v f )5(“v) f 1t(v ^ d f ) if s preservesD, i.e., s(D),D.
Proof: ~1! “( f v)5(f1^ f1)(d f ^ 1v1 f D1v)5f1d f ^ f1(1v)1 f (f1^ f1)(D1v)

5d f ^ v1 f “v. ~2! “(v f )5(f1^ f1)((D1v) f 1s(1v ^ d f ))5(“v) f 1(f1^ f1)s(1v
^ 1d f 11v ^ u) for some uPker f1 since f1(d f21d f )50. By assumption, (f1

^ f1)s(1v ^ u)50. QED
Let p:K1

^ K1→K2 be the multiplication mapP1,15f2+(1^ 1) andp125p^ 1. We extend
“ to “1 and “2 , respectively, by defining“1[(f2^ f1)+D1+(1^ 1) and “2[(f1^ f1

^ f1)+D2+(1^ 1).
Proposition 6:Let f PA, v, v8PK1, andt125t ^ 1. Then
~1! “1(v ^ v8)5dv ^ v82p12(v ^ “v8) and
~2! “2(v ^ v8)5“v ^ v81t12(v ^ “v8), if s preservesD.
Proof: ~1! First, we observe thatf25p(f1^ f1) from Lemma 5 andp51 for the universal

differential algebraV(A).

“1~v ^ v8!5~f2^ f1!~d1v ^ 1v8!2~f2^ f1!~1v ^ D1v8!

5dv ^ v82p12~f1^ f1^ f1!~1v ^ D1v8!5dv ^ v82p12~v ^ “v8!.

~2!“2~v ^ v8!5~f1^ f1^ f1!D2~1^ 1!~v ^ v8!

5~f1^ f1^ f1!~D1v ^ 1v81s12~1v ^ D1v8!!

5“v ^ v81~f1^ f1^ f1!s12~1v ^ D1v8!

5“v ^ v81~f1^ f1^ f1!s12~1v ^ ~1^ 1!“v811v ^ u!

for someuPV1
^ AV1 such that (f1^ f1)(u)50 since (f1^ f1)(D1v82(1^ 1)“v8)50.

Now let us show thatuPD. Let u5( ixi ^ yi for xi ,yiPV1. Now we can writexi uniquely as
xi5xi

(1)11xi
(2) for xi

(1)Pker f1 and xi
(2)PK1. Similarly for yi . Thenu5( i1xi

(2)
^ 1yi

(2)1a
for someaPD. From (f1^ f1)(u)50, ( ixi

(2)
^ yi

(2)50. Henceu5aPD. Now thats(D),D,
s12(V

1
^ D),V1

^ AV1
^ A ker f11D ^ AV1. Thus (f1^ f1^ f1)s12(1v ^ u)50. QED

If we define the torsion of“ by T
“

5d2p+“, it is easy to see that the necessary a
sufficient condition forT

“

to beA-bilinear is thatp(11t)50 in the case wheres preservesD.
From now on, let us keep theA-bilinearity of T as in the previous subsection. Thuss521. Then
t521 andT

“

is alsoA-bilinear. In this case, we have“15p12“21T
“

^ 1. If T50, T
“

5f2

+d+12p+(f1^ f1)+D+15(f22p+(f1^ f1))+d+150. Now let us calculate explicitly connec
tions “ and curvatures“1+“, “2+“ on graphs for the general nonzeroA-bilinear torsion case.

As D1+D for complete symmetric graphs,“1+“ is left A-linear and not rightA-linear. We
note thatD1ei j 5dei ^ dej1(a(11G i j

ia j )eia j for ei j PK1 from Lemma 6. Then it follows that
J. Math. Phys., Vol. 38, No. 11, November 1997
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“ei j 5~f1^ f1!D1ei j 5~f1^ f1!S dei ^ dej1(
a

~11G i j
ia j !eia j D

5H(
k

f1~eki2eik!1(
aÞ j

~11G i j
ia j !f1~eia!J ^ (

l
f1~el j 2ejl !. ~42!

For simplicity, we shall consider examples for the case where 11G i j
ia j5g for all i , j ( iÞ j ) and

all a(Þ i , j ). Thus

“ei j 5H(
k

f1~eki2eik!1g(
aÞ j

f1~eia!J ^ (
l

f1~el j 2ejl !. ~43!

Example 4:Let V be a set$x1 ,x2% of two points as in the Connes–Lott’s model.3 If K1

5V1, D1D5D2D50 from Corollary 3. IfK1 is the space generated by$e12%, K1
^ AK150 since

e12^ e1250. Thus“1“5“2“50. The graph of two points seems to be too simple to hav
nonzero curvature.

Example 5:Let V be a set$x1 ,x2 ,x3% of three points and letK1 be the space generate
by $e12,e21,e23,e32%. Then kerf15^$e13,e31%&, ker f25^$e123,e131,e132,e213,e231,
e312,e313,e321%& and K25^$e121,e212,e232,e323%& with the obvious splitting map. We note tha
de125f2d1e125e1211e2125de21, andde235e2321e3235de32. Moreover,

“e125~e212e12! ^ ~e121e322e212e23!5e1211e1231e212,

“e215~e121e322e212e231ge23! ^ ~e212e12!5e1211e2121e321.

We can also calculate“e23,“e32 in the same way.“e235e1231e2321e323 and “e325e232

1e3211e323.
Now we have

“1“e125“1~e12^ e211e21^ e121e12^ e23!

5de12^ e212p12~e12^ “e21!1de21^ e122p12~e21^ “e12!1de12^ e232p12~e12^ “e23!

5~e21212e1212!1~e12122e21212e2123!1e212350,

and

“1“e215“1~e12^ e211e21^ e121e32^ e21!

5de12^ e212p12~e12^ “e21!1de21^ e122p12~e21^ “e12!1de32^ e212p12~e32^ “e21!

5~e21212e1212!1~e12122e21212e2123!1e23215e23212e2123.

On the other hand,“1“e235e21232e2321 and“1“e3250. If we factor out the second terms from
“1“e21 and “1“e23, we obtain anA-bilinear curvatureCurv1(e21)5e2321 and Curv1(e23)
5e2123 with Curv1(e12)5Curv1(e32)50.

Now we make use of the following equation:

“2~ei jk !5“ei j ^ ejk2ei j ^ “ejk

to obtain the curvature“2+“

“2“e1252e12321e321252“2“e32,

“2“e2152e21231e232152“2“e23.
J. Math. Phys., Vol. 38, No. 11, November 1997
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If the unwanted terms are factored out fromp12“2“ei j , we haveA-bilinear curvatures:

Curv2~e12!50, Curv2~e21!5e2321

Curv2~e32!50, Curv2~e23!5e2123.

If we adde31 to K1, not only the symmetry between the vertices 1 and 3 is broken but als
curvature depends on the parameterg as seen in the next example.

Example 6:Let V be a set$x1 ,x2 ,x3% of three points and letK1 be the space generate
by $e12,e21,e23,e31,e32%. Then kerf25^$e123,e131,e132,e213,e313%& and K25^$e121,
e212,e231,e232,e312,e321,e323%&. We note that

de125e1211e2121e312, de215e1211e3212e2311e212, de235e3231e2311e232,

de315e2312e3211e312, de325e2322e3121e3211e323,

and

“e125e2121e3121e1211e123, “e215e1211e3211e2122e2311ge231,

“e235e1231e3231e2321e231, “e315e2312e3211e3121ge321,

“e325e2321e3211e3232e3121ge312.

Then it follows that

“1“e1250, “1“e2152e21232ge23121g~22g!e2321,

“1“e235e21232g~e23121e2321!,

“1“e3152e31232ge31211g~22g!e32312ge3212,

“1“e3252g~e32311e32121e31211e3123!.

Thus by factoring out the unwanted terms, we obtain anA-bilinear curvature.

Curv1~e12!50, Curv1~e21!5g~22g!e2321,

Curv1~e23!5e2123, Curv1~e31!52ge31211g~22g!e3231,

Curv1~e32!52ge3212.

Similarly, we have

“2“e1252e12321g~e23121e32122e1231!,

“2“e2152e21231ge31211g~22g!e2321,

“2“e235e21231g~e31232e23122e2321!,

“2“e315e12312e31231g~g22!e31211g~22g!e3231,

“2“e325e12322ge32312ge3212

and
J. Math. Phys., Vol. 38, No. 11, November 1997
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Curv2~e12!50, Curv2~e21!5g~22g!e2321, Curv2~e23!5e2123,

Curv2~e31!5g~g22!e31211g~22g!e3231, Curv2~e32!52ge3212.

We have one-parameter family of connections even on a subgraph of a complete sym
graph. It is worthy to notice thatCurv15Curv2 for g51 in the above examples as in comple
symmetric graphs. We note that even though the torsionT is free on a complete symmetric grap
~and henceT

“

50!, curvatures do not vanish in general on its subgraphs as expected.

IV. CONCLUSIONS

Quantum spaces arise as models for the description of the small scale structure of spa
In this work, we have treated graphs as quantum spaces and constructed their differential a
by extending the formulation of Dimakiset al.6 in such a manner that the calculation of conne
tions and curvatures can be done. We have shown explicitly the form of linear connection
curvatures of a given complete symmetric graph for the general nonzero torsion case
A-bilinear curvatures have been obtained for graphs by factoring out the unwanted terms
curvatures which are notA-bilinear. An interesting question for further study is whether or
Curv15Curv2 wheneverg51 for any graphs.

There is one-parameter family of connections. This fact parallels those for other models
as quantum planes and matrix geometries. There is a metric, but no metric-compatible con
in general except the complete symmetric graph with two vertices. Even though the to
vanishes and hence the curvature is zero on a complete symmetric graph, a subgraph o
from it by deleting some arrows can have a nonzero curvature in general as expected.
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SU(N) meander determinants
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We propose a generalization of meanders, i.e., configurations of non-self-
intersecting loops crossing a line through a given number of points, to SU(N). This
uses the reformulation of meanders as pairs of reduced elements of the Temperley–
Lieb algebra, a SU~2!-related quotient of the Hecke algebra, with a natural gener-
alization to SU(N). We also derive explicit formulas for SU(N) meander determi-
nants, defined as the Gram determinants of the corresponding bases of the Hecke
algebra. ©1997 American Institute of Physics.@S0022-2488~97!03411-7#

I. INTRODUCTION

In this paper we propose various generalizations of the concept of meander.1–5 The original
meander problem consists in counting the numberMn of meanders of ordern, i.e., of topologi-
cally inequivalent configurations of a closed non-self-intersecting loop crossing an infinite
through 2n points. One can also define the corresponding multicomponent meander proble
demanding that the loop be replaced by a given number of nonintersecting loops~connected
components!. The meander problem probably first arose in the work of Poincare´ about differential
geometry, then reemerged in various contexts, such as the classification of 3-manifolds,6 or the
physics of compact polymer folding.7

In the present paper, we extend the purely algebraic approach advocated in Ref. 8,
relates multicomponent meanders topairs of reduced elements of the Temperley–Lieb algeb9

~see also Martin’s book10 for an elementary introduction!, or ideals thereof. The idea is to defin
generalized multicomponent meanders aspairs of reduced elements of the SU(N) quotients of the
Hecke algebra,11 which generalize the Temperley–Lieb SU~2! quotient, or of ideals thereof. Th
notion of ‘‘component’’ for generalized meanders still awaits a good combinatorial interpreta
We trade it in the present approach for a piece of information on any given generalized me
provided by the Markov trace of the corresponding product of reduced elements. Given a re
basis of the above Hecke algebra quotients or ideals, this information is summarized by the
matrix of the basis. The aim of this work is to compute explicitly the ‘‘meander determinan
namely, the determinants of these Gram matrices.

The paper is organized as follows. In Sec. II, we recall basic definitions and summariz
results obtained in Refs. 8 and 12 for the SU~2! meander determinant, in the form of an explic
determinantal formula. We also present the SU(N) quotients of the Hecke algebra, generalizi
the Temperley–Lieb algebra. In Sec. III, we focus our attention on the SU~3! case. We are led to
the natural definition of SU~3! meanders, as pairs of elements of the reduced basis of a ce
idealI 3n

(3)(b) of the SU~3! quotientH3n
(3)(b) of the Hecke algebra. This basis is labeled by clos

paths of length 3n on the Weyl chamber ofsl(3), the SU~3! walk diagrams. We then compute th
corresponding Gram determinant, by direct orthogonalization of the basis. We obtain an e
formula for the SU~3! meander determinant. This result is generalized to SU(N) in Sec. IV, where
we also establish a duality relation between the idealsI Nk

(N)(b) andI Nk
(k)(b), relating the SU(N)

and SU(k) meander determinants. In Sec. V, we derive a determinant formula for the Gram m
of a reduced basis of the whole SU(N) quotientHn

(N)(b) of the Hecke algebra. This coincide
with the meander determinant only in the SU~2! case, and suggests another possible generaliza
of meanders. We gather a few concluding remarks in Sec. VI.
0022-2488/97/38(11)/5905/39/$10.00
5905J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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II. MEANDERS AND SU(2)

A. Definitions

The meander problem of order 2n is that of enumerating the topologically inequivalent co
figurations of a planar nonintersecting closed road~loop! crossing a river~line! through 2n distinct
bridges. A meander is therefore represented as a non-self-intersecting loop crossing a line
2n distinct points. The line cuts the meander into an upper and a lower part, which are both
of n non-intersecting arches~pieces of the loop! connecting the 2n bridges by pairs. Such an uppe
~or lower! configuration of a meander is called an arch configuration of order 2n. The set of arch
configurations of order 2n,A2n , has cardinal equal to the Catalan number,

cn5
~2n!!

~n11!!n!
, ~2.1!

readily proved by induction. The first few Catalan numbers are listed in Table I.
A multicomponent meander of order 2n is the superposition of two arbitrary upper and low

arch configurationsa,bPA2n . This resultsa priori in a configuration ofk different nonintersect-
ing roads crossing the river through a total of 2n bridges:k is called the number of connecte
components of the meander, also denoted byk5k(a,b).

We choose to adopt an alternative description of meanders in terms of SU~2! walk diagrams
as follows. A SU~2! walk diagram of order 2n is a closed path of length 2n on the semi-infinite
line $1,2,3,...% identified with the Weyl chamber of thesl(2) Lie algebra. More precisely, a wal
diagram is a sequence$h( i ), i 50,1,2,...,2n% of positive integer ‘‘heights,’’ such that

h~ i 11!2h~ i !P$1,21%, h~0!5h~2n!51. ~2.2!

A pictorial representation for a walk diagram is presented in Fig. 1: it consists of the graph
corresponding functioni→h( i ), whose points are joined by consecutive segments. We deno
W2n

(2) the set of walk diagrams of order 2n @here and in the following, the superscript~2! stands for
SU~2!#.

The walk diagrams of order 2n are in one-to-one correspondence with the arch configurat
of order 2n. Starting from an arch configuration of order 2n let us label by 0,1,2,...,2n, respec-
tively, the portions of river to the left of the leftmost bridge, between the first and second,...,
right of the rightmost bridge along the river. We define the mapi→h( i ) by assigning to the
portion of river labeledi the numberh( i ) of arches passing above it, plus one. This is sligh
different from the conventions of Refs. 8 and 12, in whichh( i )>0 rather than 1. Our presen
choice is motivated by the form of the forthcoming SU(N) and Hecke generalizations.

FIG. 1. A sample walk diagram of order 10.

TABLE I. The Catalan numbers forn51,2,...,10.

n 1 2 3 4 5 6 7 8 9 10

cn 1 2 5 14 42 132 429 1430 4862 16 79
J. Math. Phys., Vol. 38, No. 11, November 1997
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The constraints~2.2! are satisfied byh, hence we have constructed a walk diagram for e
arch configuration; the process is clearly bijective, as an arch configuration is entirely deter
by the numbersh( i 11)2h( i ), with the value11 if an arch originates from the left bridge of th
portion i of river and passes above it, and the value21 if an arch terminates at the left bridge o
the portioni of river ~and therefore does not pass over it!.

A multicomponent meander of order 2n is therefore equivalently given by a couple (a,b) of
walk diagrams of order 2n, and we still denote byk(a,b) its number of connected components
road.

B. Temperley–Lieb algebra

The link between the above arch configuration and walk diagram pictures is provided b
Temperley–Lieb algebra, as well as a direct interpretation of the quantityk(a,b), for a,b
PW2n

(2) .
The Temperley–Lieb algebra TLn(b) is defined by generators 1,e1 ,e2 ,...,en21 and relations

ei
25bei , for i 51,2,...,n21,

eiej5ejei , for u i 2 j u.1, ~2.3!

eiei 61ei5ei , for i 51,2,...,n21.

An element of this algebra is said to be reduced if it is written as a product of generators,
minimal number of them@‘‘reduction’’ is achieved by repeated use of the relations~2.3!#.

For reasons that will become clear later, we will work with a certain left ideal of
Temperley–Lieb algebra TL2n(b), which is, however, isomorphic to TLn(q). We denote by
I 2n

(2)(b) the left ideal generated by the elemente1e3e5•••e2n21 of TL2n(b).
There is a one-to-one correspondence between the reduced elements of the idealI 2n

(2)(b) and
the walk diagrams of order 2n. To best see this, let us first reconsider the walk diagrams of o
2n. We start from the ‘‘fundamental’’ walk diagrama0

(2)PW2n
(2) , such that

h~1!5h~3!5•••5h~2n21!52 and h~0!5h~2!5•••5h~2n!51. ~2.4!

This is the walk with the smallest values of the heighth( i ). Now any other walk diagram of orde
2n may be constructed by successive ‘‘box additions’’ ona0

(2) . By box addition on a walk
diagrama at positioni , which we denote bya1L i , we mean the following transformation. Fo
the box addition to be possible,a must have a minimum at the positioni , namely h( i 11)
5h( i 21)5h( i )11. The box addition then simply amounts to transform this minimum int
maximum, namely changeh( i )→h( i )12, without altering the other values ofh. By successive
box additions ona0

(2) , it is easy to describe all the sets of walk diagrams of order 2n. Note that
a given walk diagram may be obtained by distinct sequences of box additions ona0

(2) , but all of
them will consist of the same total number of box additions. We are now in a position to con
a mapw from W2n

(2) to a basis of reduced elements ofI 2n
(2)(b). We start with

w~a0
~2!!5e1e3•••e2n21 , ~2.5!

and proceed recursively, using box additions, by setting

w~a1L i !5eiw~a!. ~2.6!

The map is well defined, as two distinct sequences of box additions leading to the same
diagram correspond to different products of the same commutingei ’s @at each step, if two distinc
J. Math. Phys., Vol. 38, No. 11, November 1997
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box additions are possible, they take place at positionsi and j with u j 2 i u.1, hence the corre-
spondingei andej commute, due to~2.3!#. It exhausts all the reduced elements ofI 2n

(2)(b), which
has the dimensioncn ~2.1! as a vector space.

A meander is therefore equivalently given by a pair of reduced elements ofI 2n
(2)(b). The

Temperley–Lieb algebra TLn(b) is endowed with a natural scalar product attached to the Mar
trace, denoted by Tr. The latter is defined by the normalization Tr(1)5bn, and the Markov
property that for any elementE(e1 ,e2 ,...,ej 21) involving only ei ’s with i , j , we have

Tr„E~e1 ,e2 ,...,ej 21!ej…5hTr„E~e1 ,e2 ,...,ej 21!…. ~2.7!

The standard choice for TLn(b) for the constanth is

h5
1

b
. ~2.8!

The trace extends linearly to any element of TLn(b). We also need to define the transposedet of
an elementePTLn(b), as 1t51, ei

t5ei for i 51,2,...,n, and (e f ) t5 f tet for any two elementse,
f PTLn(b); again, the definition extends to any element by linearity. This leads to the s
product

~e, f !5Tr~e ft!. ~2.9!

Remarkably, when restricted to the idealI 2n
(2)(b), and when expressed between two reduc

elements, sayw(a) andw(b), a, b two walk diagrams of order 2n, this scalar product reads a

„w~a!,w~b!…5bk~a,b!1n, ~2.10!

thus making the contact with our initial road/river picture of meanders. Defining the norma
reduced basis elements (a)15b2n/2w(a) ~this basis is referred to as basis 1 in the following!, we
have

„~a!1 ,~b!1…5bk~a,b!. ~2.11!

C. Meander determinant

The meander determinantD2n
(2)(b) is defined as the determinant of the Gram matrix of

basis 1 above, namely thecn3cn matrix G 2n
(2)(b) with entries

@ G 2n
~2!~b!#a,b5bk~a,b!, ~2.12!

which therefore carries information about the multicomponent meanders.
In Refs. 8 and 12, we have derived an exact formula forD2n

(2)(b) based on the explicit
Gram–Schmidt orthogonalization of the matrixG 2n

(2)(b). The formula reads

D2n
~2!~b!5 )

m51

n

@Um~b!#am,n
~2!

, ~2.13!

whereUm(b) are the Chebyshev polynomials of the first kind, with

Um~2 cosu!5
sin~m11!u

sin u
~2.14!

and
J. Math. Phys., Vol. 38, No. 11, November 1997
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am,n
~2! 5C2m11

~2n! 2C2m13
~2n! , ~2.15!

whereC2m11
(2n) counts the number of paths of length 2n on the half-line, starting from the origin

(h(0)51) and terminating at height 2m11 (h(2n)52m11), easily computed as

C2m11
~2n! 5S 2n

n2mD2S 2n
n2m21D , ~2.16!

and, in particular,C1
(2n)5cn of ~2.1!. The first few values ofam,n

(2) are displayed in Table II.

D. Generalizations

The remainder of this paper consists of various generalizations of this determinant for
The above discussion is strongly related to thesl(2) Lie algebra. Apart from the fact that w
considered paths on the Weyl chamber ofsl(2) ~the half-line!, the Temperley–Lieb algebra i
known to be a certain quotient of the Hecke algebraHn(b). The latter is defined by generators
e1 ,e2 ,...,en21 and relations

ei
25bei , for i 51,2,...,n21,

eiej5ejei , for u i 2 j u.1, ~2.17!

eiei 11ei2ei5ei 11eiei 112ei 11 , for i 51,2,...,n22.

This algebra is usually defined through the generators

Ti5q1/2~q1/22ei !, ~2.18!

whereb5q1/21q21/2, as a deformation of the symmetric group algebra~in particular, the three-
term relation reads simply asTiTi 11Ti5Ti 11TiTi 11!. In terms of these latter generators, t
quantitieseiei 11ei2ei , by which we have to quotient the algebra to recover TLn(b) @see~2.3!#,
are simply the generalized Young antisymmetrizers of order 3, namely

A~Ti ,Ti 11!512q21Ti2q21Ti 111q22TiTi 111q22Ti 11Ti2q23TiTi 11Ti , ~2.19!

easily reexpressed in terms of theei ’s as

Y~ei ,ei 11!5q3/2A~Ti ,Ti 11!5eiei 11ei2ei . ~2.20!

TABLE II. The powersam,n
(2) of Um in the meander determinant of order 2n, D2n

(2)(b), for n51,2,...,10.

m\n 1 2 3 4 5 6 7 8 9 10

1 1 2 4 8 15 22 0 2208 21326 26460
2 1 4 13 40 121 364 1092 3264 9690
3 1 6 26 100 364 1288 4488 15 504
4 1 8 43 196 820 3264 12 597
5 1 10 64 336 1581 6954
6 1 12 89 528 2755
7 1 14 118 780
8 1 16 151
9 1 18

10 1
J. Math. Phys., Vol. 38, No. 11, November 1997
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Requiring the vanishing of~2.19! bears a strong analogy with the SU~2! representations~allowing
only for Young tableaux with at most two lines!, which can actually be made very precise, and
will return to it in later sections. Actually, the special SU(N) quotients of the Hecke algebra w
will consider are also known as the commutants of the quantum enveloping algebras Uq„sl(N)…,11

and appear in the definition of theAN21 RSOS models of Ref. 13.
For the moment, we will content ourselves with the natural generalizations@to SU(N)# of the

Temperley–Lieb algebra by performing quotients of the Hecke algebra by the generalized Y
antisymmetrizer of orderN11, A(T1 ,T2 ,...,TN)[A(e1 ,...,eN)

A~e1 ,e2 ,...,eN!5 (
wPSN11

~2q!2 l ~w!Tw , ~2.21!

and its shifted versions underej→ej 1 i 21 , for j 51,2,...,N21. In ~2.21!, the sum extends over a
the permutations ofN11 objects,l (w) is the length of the permutation@the number of factors in
any minimal expression ofw as a product over transpositions of neighbors (i ,i 11)#, and Tw

5Ti 1
Ti 2

•••Ti l (w)
if w5( i 1 ,i 111)(i 2 ,i 211)•••( i l (w) ,i l (w)11) ~note that this expression is inde

pendent of the particular minimal decomposition ofw, thanks to the relationTiTi 11Ti

5Ti 11TiTi 11!. We will denote byHn
(N)(b) the corresponding SU(N) quotient of the Hecke

algebra. In particular, we have TLn(b)5Hn
(2)(b).

In terms of the Murphy operators,14,15 defined as

Lm5q21Tm211q22Tm22Tm21Tm221•••1q2m11T1T2•••Tm22Tm21Tm22•••T2T1 ,
~2.22!

for m>2, L150, it is possible to write compact expressions for the Young antisymmetrize
orderN:

A~e1 ,e2 ,...,eN21!5 )
m52

N

~12Lm!. ~2.23!

In the following, we will use the various following versions of the Young antisymmetrizer of o
N, which are all proportional toA ~2.21!:

y~e1 ,...,eN21!5 )
m52

N
12Lm

11q211•••1q2m11 ,

~2.24!

E~e1 ,...,eN21!5 )
m52

N

q~m21!/2~12Lm!.

The antisymmetrizery(e1 ,...,eN21) is idempotent,y25y. As mentioned before, the argume
(e1 ,...,eN21) of A,y,E may be shifted into (ei ,...,ei 1N22), and the corresponding functions ma
be expressed through analogous products, by performing the same shifts inLm . Finally, we will
also use the following version of the Young antisymmetrizer, which has the advantage of
simply expressed in terms of theei ’s through a recursion~see Ref. 10!, starting withY(ei)5ei ,
and

Y~ei ,ei 11 ,...,ei 1p!5Y~ei ,...,ei 1p21!~ei 1p2mp!Y~ei ,...,ei 1p21!, ~2.25!

for all i ,p>1, where we have introduced the quantities

mp[mp~b!5
Up21~b!

Up~b!
, ~2.26!
J. Math. Phys., Vol. 38, No. 11, November 1997
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in terms of the Chebyshev polynomials~2.14!, for all p>1. In particular, we have

Y~ei ,ei 11!5ei~ei 112m1!ei5eiei 11ei2ei , ~2.27!

asm15b21 andei
25bei . The three antisymmetrizersy,E,Y are proportional toA. In particular,

we have

y~ei ,...,ei 1N22!5aNE~ei ,...,ei 1N22!,
~2.28!

y~ei ,...,ei 1N22!5gNY~ei ,...,ei 1N22!,

where we have introduced the proportionality constants,

aN5 )
i 51

N21

~m i !
N2 i , gN5 )

i 51

N21

~m i !
2N2 i 21

, ~2.29!

with aN11 /aN5m1m2•••mN , andgN11 /(gN)25mN . The second relation of~2.28! is proved by
induction onN, by first showing that

~12LN11!~eN2q21/2!5~eN2q1/2!~12LN!1q21/2 ~2.30!

~also valid for any shift of thee’s!, and finally deducing that

y~ei ,...,ei 1N21!5mNy~ei ,...,ei 1N22!~ei 1N212mN21!y~ei ,...,ei 1N22!. ~2.31!

As y is idempotent, we also have the relation

Y~ei ,...,ei 1N22!25gN
21Y~ei ,...,ei 1N22!. ~2.32!

In the following, we suggest a generalization of meanders into pairs of SU(N) walk diagrams
~see definitions below!, and the meander determinant will be generalized into the Gram dete
nant of the basis of some ideal of the SU(N) quotientHNn

(N)(b) of the Hecke algebra, the bas
elements being in one-to-one correspondence with SU(N) walk diagrams. For the sake of sim
plicity, we will start with a detailed study of the SU~3! meanders, before going to the generalN
case.

III. SU(3) MEANDER DETERMINANT

In this section, we generalize the concept of meander to SU~3! through the walk diagram
picture. A generalized meander is a couple of closed paths~or walk diagrams! starting and ending
at the origin of the Weyl chamber for thesl(3) Lie algebra. The bilinear form is provided by th
standard scalar product of the Hecke algebra. The SU~3! meander determinant is obtained by
explicit Gram–Schmidt orthogonalization of the walk-diagram basis of a certain ideal of the S~3!
quotient of the Hecke algebra.

A. SU(3) walk diagrams

Let us denote byL5(l1 ,l2) the elements of the weight latticeP of the sl(3) Lie algebra,
namely, the linear combinationsL5l1v11l2v2 , l1 , l2PZ, of the two fundamental weights
v1 ,v2 , with v1

25v2
25 2

3 and v1•v25 1
3. The Weyl chamberP1 is the quotient of the weigh

lattice by the Weyl group, generated by the reflections wrt the wallsl150 andl250. A repre-
sentative is given by

P15$~l1 ,l2!PP, such thatl1 ,l2>1%. ~3.1!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The Weyl chamber is made into a simplexP1 by adding three types of oriented bonds linking t
weights~see Fig. 2!, along the vectors,

e15v1 , e25v22v1 , e352v2 , ~3.2!

subject to the relatione11e21e350. Analogously,P can be made into a simplexP by the same
procedure. We define the origin ofP1 to be the apex~1,1!.

A SU~3! walk diagram of order 3n is an oriented closed path of length 3n on P1 , starting
and ending at the origin. It is uniquely determined by either of the following data.

~i! The sequence of its 3n11 ‘‘weights’’ in P1 : L05(1,1),L1 ,...,L3n21 ,L3n5(1,1), such
thatL i 112L iP$e1 ,e2 ,e3% for i 50,1,2,...,3n21. The indexi is referred to as the position of th
weight L i in the sequence.

~ii ! The sequence of its 3n ‘‘step’’ vectors: v15e1 ,v2 ,...,v3n21 ,v3n5e3 with v i

P$e1 ,e2 ,e3% and (1,1)1v11v21•••1v iPP1 for all i 51,2,...,3n21, andv11•••1v3n50.

The two representations are equivalent, as the stepsv i can be interpreted asv i5L i2L i 21 in
the sequence of weights of the walk.

It will be useful to have a two-dimensional pictorial representation of SU~3! walk diagrams, in
the same spirit as for the SU~2! walk diagrams of the previous section~see Fig. 1!. We choose to
represent the three possible directions taken from each weight by three different links, wi
following correspondence:

~3.3!

The walk diagrams are then represented as the corresponding succession of these links, s
left to right ~see the example of Fig. 3!. We denote byW3n

(3) the set of SU~3! walk diagrams of
order 3n.

As a simple exercise, let us count the numberc3n
(3) of SU~3! walk diagrams of given order 3n.

To do that, it is instructive to first count the numberD (l1 ,l2),(m1 ,m2)
(N) of paths of lengthN on P,

starting at (l1 ,l2) and ending at (m1 ,m2). As we are dealing with paths onP, there is no
restriction other than that each step has to be taken amonge1 ,e2 ,e3 . Suppose we are taking a tota
of p stepse1 , q stepse2 , andr stepse3 ; then we must have

n15m12l15p2q, n25m25l25q2r , p1q1r 5N; ~3.4!

FIG. 2. The simplexP1 . The three oriented links correspond, respectively, toe1 ~right!, e2 ~up, left!, ande3 ~down, left!.
We have also indicated the origin~1,1!.
J. Math. Phys., Vol. 38, No. 11, November 1997
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hence

p5
N12n11n2

3
, q5

N2n11n2

3
, r 5

N2n122n2

3
, ~3.5!

only valid for N12n11n250 mod 3~there is no such path otherwise!. The number of paths is
therefore equal to the number of choices of thesep,q,r vectors amongN, hence

D ~l1 ,l2!,~m1 ,m2!
~N! 5

N!

S N12n11n2

3 D ! S N2n11n2

3 D ! S N2n122n2

3 D !

, ~3.6!

wheren15m12l1 , n25m22l2 . Note that by translational invariance ofP,

D ~l1 ,l2!,~m1 ,m2!
~N! 5D ~0,0!,~n1 ,n2!

~N! [D ~n1 ,n2!
~N! , ~3.7!

where we drop the origin~0,0! in the last shorthand notation. Let us now compare the path
lengthN53n, from ~1,1! to itself, onP1 and onP. On the latter simplex, the paths can free
cross the walls of the Weyl chamber; hence there are many more of them than onP1 . But the
latter are obtained by reflecting any path onP wrt the walls of the Weyl chamber, in order to brin
it back in P1 . Multiple reflections may be needed to achieve this. This will eventually lead
surjective map from the paths onP to those onP1 . To enumerate thec3n

(3) paths onP1 , we have
to start from those onP, then subtract those that cross the walls of the Weyl chamber. Den
by s1 ands2 the reflections wrt the wallsl250 andl150, we have

s1~l1 ,l2!5~l11l2 ,2l1!,

s2~l1 ,l2!5~2l2 ,l11l2!,

s2s1~l1 ,l2!5~l1 ,2l12l2!, ~3.8!

s1s2~l1 ,l2!5~2l12l2 ,l2!,

s1s2s1~l1 ,l2!5~2l2 ,2l1!,

which, together with the identity, form the six elements of the Weyl group ofsl(3) ~identified
with the permutation group of three objectsS3!. Hence the six possible reflections of the orig
~1,1! read as

~1,1!~21,2!~2,21!~1,22!~22,1!~21,21!. ~3.9!

FIG. 3. A sample walk diagram of order 9. We have indicated by dots the successive weights visited by the p
J. Math. Phys., Vol. 38, No. 11, November 1997
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The correct subtraction formula reads as

c3n
~3!5 (

sPS3

~21! l ~s!Ds~1,1!,~1,1!
~3n! 5D ~0,0!

~3n!2D ~2,21!
~3n! 2D ~21,2!

~3n! 1D ~3,0!
~3n!1D ~0,3!

~3n!2D ~2,2!
~3n!

52
~3n!!

~n12!! ~n11!!n!
, ~3.10!

where the alternate sum@l (s) is the length of the permutations, counting the number of reflec
tions wrt walls# accounts for the subtraction of all the paths crossing the wallsl250 andl1

50, avoiding oversubtracting. The formula forc3n
(3) is a direct generalization of that for the Catala

numbers~2.1!, which count the number of SU~2! walk diagrams of order 2n. The first few
numbersc3n

(3) are listed in Table III.
For later use, let us also derive a formula for the numbersC(l1 ,l2)

(N) of paths ofN steps onP1 ,

starting at the origin~1,1! and ending at the weight (l1 ,l2)PP1 . It is clear thatC(l1 ,l2)
(N) vanishes

unlessN12l11l250 mod 3. The computation is strictly analogous to that ofc3n
(3)5C(1,1)

(3n) : we
must subtract from the corresponding paths onP, D (1,1),(l1 ,l2)

(N) 5D (l121,l221)
(N) , the ones that cross

the walls of the Weyl chamber, resulting in

C~l1 ,l2!
~N! 5 (

sPS3

~21! l ~s!Ds~1,1!,~l1 ,l2!
~N! 5D ~l121,l221!

~N! 2D ~l111,l222!
~N!

2D ~l122,l211!
~N! 1Dl113,l2)

~N! 1D ~l1 ,l213!
~N! 2D ~l111,l211!

~N!

5
l1l2~l11l2!N!

S N12l11l2

3
11D ! S N2l11l2

3
11D ! S N2l122l2

3
11D !

. ~3.11!

B. SU(3) quotient and ideal of the Hecke algebra

As mentioned above, we will now concentrate on the SU~3! quotient of the Hecke algebra
obtained by adding to the relations~2.17! the vanishing of all Young antisymmetrizers of order
which take the simple form

Y~ei ,ei 11 ,ei 12!5Y~ei ,ei 11!~ei 122m2!Y~ei ,ei 11!50, ~3.12!

for i 51,2,...,n23. Noting that

Y~ei ,ei 11!25~m1
2m2!21Y~ei ,ei 11! ~3.13!

@see~2.32!#, the vanishing of~3.12! translates into

~eiei 11ei 122ei 122ei !Y~ei ,ei 11!50, ~3.14!

for all i 51,2,...,n23.

TABLE III. The numbersc3n
(3) of SU~3! walk diagrams of order 3n, for n51,2,...,8.

n 1 2 3 4 5 6 7 8

c3n
(3) 1 5 42 462 6006 87 516 1 385 670 23 371 63
J. Math. Phys., Vol. 38, No. 11, November 1997
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The notion of a reduced element has to be slightly generalized forHn
(3)(b) and the higher

Hecke quotients. Indeed, the relations~2.17! and ~3.14! can be used repeatedly to reduce a
element ofHn

(3)(b) to a linear combination of ‘‘reduced elements,’’ which take the form
products ofei ’s with the smallest possible number of factors. However, if we try to enume
these reduced elements, we find nontrivial vanishing linear combinations between them
instance, due to~2.17!, we haveeiei 11ei2ei1ei 112ei 11eiei 1150. It turns out that the notion o
a reduced element is better~and usually! defined in terms of the generatorsTi5q1/2(q1/22ei)
mentioned above, thanks to the relationTiTi 11Ti5Ti 11TiTi 11 , as the products ofTi ’s with the
smallest numbers of factors. This alternative description replaces the above unwanted linea
binations by identities between various reduced elements, which can therefore be easily e
ated. However, in view of the SU~2! case, we must insist here on working with theei ’s instead of
theTi ’s, and we will construct a basis ofHn

(3)(b) made only of reduced elements in theei ’s ~this
will be done in all generality in Sec. V!.

Our immediate task, however, is not to construct a general basis ofHn
(3)(b) but rather of a

particular ideal ofH3n
(3)(b). By analogy with the SU~2! case, let us consider the left ide

I 3n
(3)(b) of H3n

(3)(b) generated by the element

Y3n
~3!5Y~e1 ,e2!Y~e4 ,e5!•••Y~e3n22 ,e3n21!. ~3.15!

Let us now construct a basis of reduced elements of this ideal using the SU~3! walk diagrams of
order 3n. By a reduced element we mean here a product ofei ’s times Y3n

(3) , with the smallest
number of factors.

Like in the SU~2! case, let us first reexpress the walk diagrams ofW3n
(3) in terms of box

additions. We start from the fundamental SU~3! walk diagrama0
(3) , with weights

L05~1,1!5L35•••5L3n ,

L15~2,1!5L45•••5L3n22 , ~3.16!

L25~1,2!5L55•••5L3n21 .

This is the most compact path of length 3n on P1 . In the above-mentioned pictorial represen
tion, a0

(3) reads as

~3.17!

For a general walkaPW3n
(3) , we define three types of box additions at positioni , still denoted by

a→a1L i , according to the configuration of the weightsL i 21 , L i , L i 11 of a at positionsi
21, i and i 11.

~i! L i 112L i5e1 and L i2L i 215e2 . A box addition at positioni transformsL i→L i

1e12e2 and leaves all the other weights unchanged.
~ii ! L i 112L i5e1 and L i2L i 215e3 . A box addition at positioni transformsL i→L i

1e12e3 and leaves all the other weights unchanged.
~iii ! L i 112L i5e2 and L i2L i 215e3 . A box addition at positioni transformsL i→L i

1e22e3 and leaves all the other weights unchanged.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Pictorially, this is summarized by the following box additions, according to the case at h

~3.18!

If the weights ofa are not in one of the three cases~i!–~iii ! above, the box addition cannot b
performed at the positioni . For instance, on the fundamental walka0

(3) , box additions can be
performed only at positions 3,6,9,...,3n23, and fall in the case~ii !. This construction gives a
procedure to describe any SU~3! walk diagram as a sequence of box additions on the fundame
walk a0

(3) . This description is, however, not unique, as different sequences may lead to the
walk diagram. The order in which the box additions are made is not a problem, the only diffi
here is the occurrence of hexagons in the box decomposition ofa @i.e., the filling of the space
betweena0

(3) anda with boxes of type~i!–~iii !#, because there are two different ways of filling
hexagon with boxes, namely

~3.19!

To fix this ambiguity, we simply forbide any box addition ona that would create a hexagon of th
second type in~3.19!, namely, we do not allow the following box addition at positioni :

~3.20!

With this latter rule, each walk diagramaPW3n
(3) has a unique box decomposition, namely

nonordered sequence of box additions to be performed ona0
(3) leading toa. Such a box decom-

position can be pictorially represented by filling the space betweena0
(3) and a with the corre-

sponding boxes.
We are now ready to establish a mapw between W3n

(3) and the reduced elements o
I 3n

(3)(b). We start with the fundamental walk,

w~a0
~3!!5Y3n

~3! , ~3.21!

defined in~3.15!, and construct all the other reduced elements by induction on box addit
namely

w~a1L i !5eiw~a!, ~3.22!

for all aPW3n
(3) . This expression is well defined, as at each step the various box additions th

be performed, say at positionsi and j on a diagrama, satisfyu j 2 i u.1, hence the correspondin
ei andej commute: the order of their left multiplication does not matter. Moreover, we have t
care of the hexagon ambiguities by forbiding~3.20!. With this choice, the only hexagons appea
ing in the box decomposition of anyaPW3n

(3) are of the form of the first hexagon of~3.19!. We
could have decided to make a more symmetric choice forw, namely by associating the combina
tion Y(ei ,ei 11) instead ofeiei 11ei to each of these hexagons~which would then be represente
empty, without their inner box decomposition!. This, however, would not affect the final value o
the meander determinant, allowing us to stick to our nonsymmetric choice. The symmetric c
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



same

e
he
e

funda-

l

oc-
the

5917P. Di Francesco: SU(N) meander determinants

                    
would have the only advantage of putting the hexagons in the box decomposition on the
footing as those over which the walk rests~i.e., forming the productY3n

(3) , defining the ideal!. This
leads to the definition of the basis 1 ofI 3n

(3)(b), with elements

~a!15~m1
2m2!n/2w~a!, aPW3n

~3! . ~3.23!

~The choice of the normalization factor will become clear below.! As an immediate consequenc
the vector spaceI 3n

(3)(b) has dimensionc3n
(3) ~3.10!. Let us stress that this basis is distinct from t

standard basis of Refs. 14 and 15, when restricted to the idealI 3n
(3)(b). The latter uses indeed th

generatorsTi ~2.18!. Our nonstandard choice finds its justification in the SU~2! case, in which
meanders are recovered.

Let us illustrate this construction with the casen52. There arec6
(3)55 walk diagrams, and the

basis 1 ofI 6
(3)(b) reads as

~3.24!

where we have represented, for each walk diagram, the box additions performed on the
mental one~the box decompositions!. It is instructive to recover the basis~3.24! by a direct study
of the left idealI 6

(3)(b)5H6
(3)(b)Y6

(3) , with Y6
(3) as in ~3.15!. Noting that

eiY~ei ,ei 11!5ei 11Y~ei ,ei 11!5bY~ei ,ei 11!, ~3.25!

we see that the only new element ofI 6
(3)(b) obtained by acting with oneei on the fundamenta

one Y6
(3) is e3Y6

(3) , confirming the fact that the only possible box addition ona0
(3) here is at

position i 53. Acting with two extraei ’s, we easily find the only other elementse2e3Y6
(3) ,

e4e3Y6
(3) , and e2e4e3Y6

(3) . This exhausts all reduced elements ofI 6
(3)(b), as e3e2e4e3Y6

(3)

5„be31(e21e4)e322…Y6
(3) . Note that we still have not met here any hexagon ambiguity,

curring only for n>3. For completeness, we list below the box decompositions relevant to
n53 case, withc9

(3)542 walk diagrams:

~3.26!
J. Math. Phys., Vol. 38, No. 11, November 1997
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Note that the third diagram in the first line of~3.26! is nothing but the box decomposition of th
sample walk of Fig. 3. Note also that only hexagons of the first type of~3.19! appear in the above
box decompositions.

A SU~3! meander is now identified as a pair (a)1 ,(b)1 of basis 1 elements forI 3n
(3)(b).

Following the SU~2! example, we may attach to each meander the quantity„(a)1 ,(b)1…

5Tr„(a)1(b)1
t
…. Here, the Markov trace onH3n

(3) ~still denoted by Tr! is normalized so that

Tr~1!5U2~b!3n5~b221!3n, ~3.27!

and still defined by induction through the relation~2.7!, but with a different constanth, namely

h5m25
b

b221
. ~3.28!

Let us consider the Gram matrix of the basis 1, with entries

@G 3n
~3!~b!#a,b5„~a!1 ,~b!1…. ~3.29!

As an example, the Gram matrix forn52 reads@with the same ordering of the basis elements
in ~3.24!# as

G 6
~3!~b!5b2~b221!S b221 b b2 b2 b3

b b2 2b 2b b212

b2 2b 2b2 b212 b~b212!

b2 2b b212 2b2 b~b212!

b3 b212 b~b212! b~b212! b2~b212!

D . ~3.30!

C. SU(3) meander determinant: Main result

We define the SU~3! meander determinantD3n
(3)(b) as the determinant of the Gram matr

~3.29! of the basis 1 ofI 3n
(3)(b). The aim of this section is to prove the following formula for th

determinant:

D3n
~3!~b!5 )

m51

n11

@Um~b!#am,n
~3!

, ~3.31!

where

am,n
~3! 5 (

sPS3

~21! l ~s!C~m11,m11!2s~1,1!
~3n!

5C~m,m!
~3n! 2C~m12,m21!

~3n! 2C~m21,m12!
~3n! 1C~m13,m!

~3n! 1C~m,m13!
~3n! 2C~m12,m12!

~3n! , ~3.32!

for m>2 and

a1,n
~3!5C~4,1!

~3n!1C~1,4!
~3n!2C~3,3!

~3n! , ~3.33!

in terms of the numbersC(l1 ,l2)
(N) of paths of lengthN on P1 starting from the origin~1,1! and

terminating at (l1 ,l2), computed in~3.11! @it is understood thatC(l1 ,l2)
(3n) vanishes unless

(l1 ,l2)PP1#. The first few values of the powersam,n
(3) of Um in the SU~3! meander determinan

D3n
(3)(b) are listed in Table IV.
J. Math. Phys., Vol. 38, No. 11, November 1997
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The formula~3.31! exhibits a remarkable feature: the numbersam,n
(3) are obtained from theC’s

by the same addition/subtraction formula as that giving theC’s in terms of theD ’s, namely
between the numbers of paths onP1 and those onP @see~3.11!#. This feature was already prese
in the SU~2! case, if we note that Eqs.~2.13! and ~2.16! translate into

C2m11
~2n! 5D2m

~2n!2D2m12
~2n! ,

~3.34!

am,n
~2! 5C2m11

~2n! 2C2m13
~2n! ,

where we have introduced the numbersD2m
(2n)5(n2m

2n ) of paths of 2n steps from 0 to 2m on the
integer lineZ, identified with the weight latticeP of SU~2!.

The validity of ~3.31! is readily checked in the casen52, where we find~see also Table IV!,
by direct computation of the determinant of~3.30!,

D6
~3!~b!5U1

6U2
6U3

4, ~3.35!

in agreement withC(1,1)
(6) 5C(5,2)

(6) 5C(1,4)
(6) 55, C(4,1)

(6) 510, C(2,2)
(6) 516, C(2,5)

(6) 50, andC(3,3)
(6) 59.

The formula~3.31! is proved below, by the explicit Gram–Schmidt orthogonalization of
basis 1, namely the construction of a new basis~which we call basis 2!, still indexed by the walk
diagramsaPW3n

(3) , and such that

~a!25 (
bPW3n

~3!

b,a

Pa,b~b!1 , ~3.36!

where the sum extends over the walk diagramsb ‘‘included’’ in a, namely such thata can be
obtained fromb by box additions. The basis 2 is orthonormal wrt the scalar product~ , !, namely,
„(a)2 ,(b)2…5da,b for any a,bPW3n

(3) .

D. The orthonormal basis

The orthonormal basis 2 is constructed as follows. We start with the fundamental elem

~a0
~3!!25~m1

2m2!n/2~a0
~3!!15~m1

2m2!nY3n
~3!5y~e1 ,e2!y~e4 ,e5!•••y~e3n22 ,e3n21!, ~3.37!

with Y3n
(3) as in ~3.15!. The last line of~3.37! is a reexpression in terms of the indempote

antisymmetrizers of order 3 of~2.28! and ~2.29!. The normalization factor in~3.37! ensures that
(a0

(3))2 has norm 1, as„(a0
(3))1 ,(a0

(3))1…5Tr(Y3n
(3))5(m1

2m2)2n, by immediate application of the
Markov property~2.7!. The other basis 2 elements are constructed by box additions on the
damental one, through the recursion relation

TABLE IV. The powersam,n
(3) of Um in the SU~3! meander determinant of order 3n, D3n

(3)(b), for n51,2,...,8.

m 1 2 3 4 5 6 7 8

1 1 6 42 297 1430 214 586 2764 218 221 246 940
2 1 6 63 814 11 583 175 032 2 762 942 45 108 888
3 4 42 506 7306 119 340 2 098 208 38 571 368
4 21 374 5707 89 352 1 495 490 26 803 832
5 121 3276 65 790 1 218 356 22 809 287
6 728 27 336 701 879 15 622 750
7 4488 218 994 6 931 694
8 28 101 1 701 678
9 177 859
J. Math. Phys., Vol. 38, No. 11, November 1997
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~a1L i ,m!25Amm11

mm
~ei2mm!~a!2 , ~3.38!

wherem is the ‘‘height’’ of the box, defined as

m5L i•~L i 111L i 2122L i !, ~3.39!

in terms of the weightsL i 21 , L i , L i 11 of a with respective positionsi 21, i , i 11, for all 1
< i<3n21 @note that the effect of the box addition at positioni is to changeL i→L i 111L i 21

2L i in all cases~i!–~iii ! of ~3.18!#. Note that as~3.38! depends explicitly on the heightm of the
box addition, we have added the subscriptm to the box symbolL i ,m . For simplicity, we will
denote by (L i ,m) the element of the Hecke algebra, which multiplies (a)2 in ~3.38!. The funda-
mental property of~3.38! is that it resolves the hexagon ambiguity, namely the two ways~3.19! of
building a hexagon by these box additions are equivalent, i.e.,

~ei2mm!~ei 112mm1p11!~ei2mp!5~ei 112mp!~ei2mm1p11!~ei 112mm!, ~3.40!

where m5L•(e12e2)21 and p5L•(e22e3)21 and L denotes the weight of the leftmos
vertex of the hexagons. Equation~3.40! is easily proved by using the definition~2.26! for m and
the recursion relation for the Chebyshev polynomialsUm115bUm2Um21 , together with the
Hecke algebra relations~2.17!. The equation~3.40! takes the form of the celebrated Yang–Bax
equation for the so-called trigonometric limit of theA2 RSOS model of Ref. 13.

We also note that, upon definingm050, the box additions~3.38! enable us to rewrite each o
the building blocksY(ei ,ei 11) of the fundamental element (a0

(3))2 as the hexagonal result of thre
box additions on an empty walk diagram. For each such hexagon, the equivalence~3.40! simply
amounts toY(ei ,ei 11)5Y(ei 11 ,ei). In this way, any basis 2 element can be seen as the resu
box additions on the vacuum diagram@identified with the unit 1 ofH3n

(3)(b)# as well.
In the examplen52 of ~3.24!, we have the basis 2 elements,

~3.41!

The basis 2, determined by~3.37! and ~3.38!, coincides up to normalization factors with th
so-called seminormal basis (a)sn ~still indexed by the walk diagramsaPW3n

(3)! of Refs. 14 and 15
when restricted to the idealI 3n

(3)(b) @identified with the top Specht module ofH3n
(3)(b)#. The

seminormal basis elements (a)sn for I 3n
(3) satisfy stronger relations, namely, that

~a!sn
t ~b!sn50, unlessa5b. ~3.42!
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let us assume the analogous relations for the basis 2 elements, and verify that all the (a)2 have
norm 1. Let us rewrite the quantity (a1L i)2

t (a1L i)2 , by ‘‘moving the box’’ from the left
factor to the right: this amounts to an extra left multiplication by (ei2mm) t5(ei2mm) on (a)2 ,
namely

~a1L i !2
t ~a1L i !25~a!2

t mm11

mm
~ei2mm!2~a!25~a!2

t mm11

mm
„~m1

2122mm!~ei2mm!

1mm~m1
212mm!…~a!25S 1

Ammmm11

2Ammmm11D ~a!2
t ~a1L i !2

1~a!2
t ~a!25~a!2

t ~a!2 , ~3.43!

where we have first usedei
25bei5m1

21ei ; then the recursion relationm1
212mm5mm11

21 . We
have dropped the term proportional to (a)2

t (a1L i)250 by the application of~3.42!. Now eq.
~3.43!, enables us to prove by induction on the box additions that ((a)2 ,(a)2)51 for all a
PW3n

(3) , as„(a0
(3))2 ,(a0

(3))2…51. This fixes the prefactor in~3.38!.
The relation~3.42! for basis 2 elements, namely

~a!2
t ~b!250, unlessa5b, ~3.44!

can be directly proved by induction on the number of boxes, denoted byuau and ubu in the box
decompositions ofa andb, in the same spirit as for the SU~2! case~see Ref. 12!. Let us give a
brief description of this proof for completeness. The aim is to prove by induction on the intek
the following property:

P k :~a!2
t ~b!250, for any aÞbPW3n

~3! , with uau5k<ubu. ~3.45!

Assume thatP k21 is true for somek>1. Let us consider a paira, b of walk diagrams withuau
5k andubu>k, bÞa. We write the walka with k boxes as the result of a box addition on som
a8, at positioni , with heightl , namely,a5a81L i ,l , andua8u5uau215k21. We then rewrite
the product (a)2

t (b)25(a81L i ,l)2
t (b)2 by letting this box act on (b)2 by left multiplication.

Three situations may occur, according to the configuration of the weightsL i 21 , L i , L i 11 of b at
respective positionsi 21, i , i 11. SettingL i2L i 215e r and L i 112L i5es , we have the three
possibilities.

~i! b has a minimum at positioni , namely, (r ,s)5(2,1), ~3,2!, or ~3,1!. Let m5L i•(es

2e r) be the height of the box to be added onb at positioni ; we simply rewrite

~L i ,l !5Am l 11

m l
~ei2m l !5Am l 11mm

m lmm11
~L i ,m!1Am l 11

m l
~mm2m l !, ~3.46!

hence (a)2
t (b)2 can be reexpressed as a linear combination of (a8)2

t (b1L i ,m)2 and (a8)2
t (b)2 .

~ii ! b has a maximum at positioni , namely, (r ,s)5(1,2), ~2,3!, or ~1,3!. Using the equiva-
lence~3.40!, we can always arrange for (b)2 to be the result (b81L i ,m)2 of a box addition on
someb8, with ub8u5ubu21 @we also write (b8)25(b2L i ,m)2#. Hence the element (b8)2 is
multiplied from the left by

~L i ,l !~L i ,m!5Am l 11

m l
~m l 11

21 2mm!~L i ,m!1Am l 11mm

m lmm11
, ~3.47!

and (a)2
t (b)2 is expressed as a linear combination of (a8)2

t (b)2 and (a8)2
t (b8)2 , with ub8u5ubu

21.
J. Math. Phys., Vol. 38, No. 11, November 1997
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~iii ! b has a slope at positioni , namely,r 5s51, 2 or 3. Without loss of generality, we ma
assume thatb contains the two boxesf 5(L i 21,m11)(L i ,m). The left multiplication by (L i ,l)
consists of two terms: one proportional toei f , and the other proportional tof . The former is
proportional to

ei~ei 212mm!~ei2mm21!5Y~ei 21 ,ei !2mm21eiei 215~ei 21~ei2m1!2mm21ei !ei 21 ;
~3.48!

henceei has commuted through the two boxes, creating a left factor ofei 21 . Now we can repeat
this process, until we meet the bottom of the diagramb. Several cases have to be inspected; le
simply give one example: we are left, say, with the left multiplication ofej with the bottom boxes
(L j 21,1)(L j 22,2)Y(ej 21 ,ej ), which gives

ej~ej 212m1!~ej 222m2!Y~ej 21 ,ej !5m1Y~ej 21 ,ej !~ej 222m2!Y~ej 21 ,ej !50, ~3.49!

where we usedY(ej 21 ,ej )5m1ejY(ej 21 ,ej ), commutedej throughej 22 , and finally used the
vanishing condition of the fourth-order antisymmetrizer~3.12! in H3n

(3)(b). To summarize, in all
cases~i!–~iii ! above, we have been able to rewrite (a)2

5(b)2 as a linear combination of terms of th
form (a8)2

t (b9)2 , whereb95b1L i , b or b2L i . In all cases, we haveua8u5uau215k21, and
ub9u>ubu21>k21. Moreover,b9Þa8: otherwise, one would have been necessarily in the c
~ii ! with b95b2L i5a85a2L i , hencea5b, which contradicts the hypothesis. Henceb9
Þa8 and we may apply to each pair (a8,b9) the induction hypothesisP k21 , hence (a8)2

t (b9)2

50 in all cases at hand, andP k follows. There remains to proveP 0 . We havea5a0
(3) , the only

walk with 0 boxes. We simply have to act on the left of (b)2 with the hexagonsY(ei ,ei 11)
forming (a)2

t 5(a)2 . The result vanishes for allbÞa0
(3) , as at least one of these hexagons, s

Y(ej ,ej 11) has a right factorej or ej 11 , whose position corresponds to a slope ofb @the result of
the left multiplication of (b)2 by this yields zero, like in the case~iii ! above#, or yields directly
zero by the vanishing of the antisymmetrizers of order 4. This completes the proof ofP k for all
k>0, and~3.44! follows.

As a final remark, the property~3.36! follows directly from the recursive definition~3.38!.
Indeed, the process of box addition only involves walk diagrams included ina for the construction
of (a)2 , hence the change of basis 1→2 is triangular.

E. SU(3) meander determinant: The proof

Using ~3.36!, we can easily reexpress the SU~3! meander determinant as

D3n
~3!~b!5 )

aPW3n
~3!

Pa,a
22, ~3.50!

as the basis 2 is orthonormal, and the change of basis 1→2 is triangular, with normalization
factorsPa,a on the diagonal. The quantitiesPa,a

2 are easily computed by induction. First we hav
from ~3.37!,

Pa
0
~3! ,a

0
~3!

2
5~m1

2m2!n, ~3.51!

and from~3.38!,

Pa1L i ,m ,a1L i ,m

2 5
mm11

mm
Pa,a

2 , ~3.52!
J. Math. Phys., Vol. 38, No. 11, November 1997
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for all aPW3n
(3) . Each termPa,a

2 is therefore expressed as a product over all the box additi
leading froma0

(3) to a

Pa,a
2 5~m1

2m2!n )
box additions

from a0
~3! to a

mm11

mm
, ~3.53!

wherem stands for the height of the box addition.
In the n52 example of~3.24! and ~3.41!, the five walks have respective values ofPa,a

2 ,

m1
4m2

2, m1
4m2m3 , m1

3m2
2m3 , m1

3m2
2m3 , m1

2m2
4m3 , ~3.54!

leading immediately to~3.35!, using~3.50!.
The product in~3.53! can be further simplified, by noting that the powers ofm can be

redistributed to each of the individual stepsn i5L i2L i 21 forming a. For each such step, sa
from L5(l1 ,l2) to L85(l18 ,l28), let us define a weight function,

w~L,L8!5H Aml1
ml11l2

,

Aml2
ml

18
,

Aml
28
ml

181l
28
,

if L82L5e1 ,
if L82L5e2 ,
if L82L5e3 .

~3.55!

Now, by inspection of the three possible box additions~3.18!, we see that the weights exact
follow the rule ~3.38!, namely that

)
aPW3n

~3!
Pa,a

2 5 )
steps v in all

walks aPW3n
~3!

w~v !. ~3.56!

This enables us to identify the total poweram,n
(3) of mm in the product~3.56!. Indeed, a factor

mm
1/2 will appear whenever in a step with valuee1 , e2 , or e3 we will have, respectively,l15m or

l11l25m, l25m or l185m, l285m or l181l285m. Counting all these occurrences involv
counting the number of walksaPW3n

(3) that have a fixed step (Lp , Lp11). These paths are mad
of two pieces.

~i! The portionL0 ,L1 ,...,Lp , which goes from the originL05(1,1) toLp on P1 . There
areCLp

(p) such paths@see~3.11!#.

~ii ! The portionLp11 ,Lp12 ,...,L3n5(1,1), which can be thought of as the ‘‘reverse’’ pa
L085L3n

t 5(1,1), L185L3n21
t ,...,L3n2p218 5Lp11

t of 3n2p21 steps, from the origin to
Lp11

t @the superscriptt means (l1 ,l2) t5(l2 ,l1)# obtained by ‘‘reversing’’ the direc-
tions of all the steps, namely exchange alle1↔e3 . There areC

L
p11
t

(3n2p21)
such paths@see

~3.11!#.

Hence, the number of paths with a specified step (Lp ,Lp11) is CLp

(p)C
L

p11
t

(3n2p21)
. We are now

ready to express the total number of occurrences ofmm in ~3.56!, namely
J. Math. Phys., Vol. 38, No. 11, November 1997
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am,n
~3! 5

1

2 (
p,l

C~m,l!
~p! C~l,m11!

~3n2p21!1
1

2 (
p,l

C~l,m2l!
~p! C~m2l,l11!

~3n2p21! 1
1

2 (
p,l

C~l,m!
~p! C~m11,l21!

~3n2p21!

1
1

2 (
p,l

C~m11,l21!
~p! C~l,m!

~3n2p21!1
1

2 (
p,l

C~l,m11!
~p! C~m,l!

~3n2p21!1
1

2 (
p,l

C~l,m112l!
~p! C~m2l,l!

~3n2p21! ,

~3.57!

where the sums extend overp50,1,...,3n21 andl>1, such that the weights stay inP1 , and
each line corresponds to the terms coming from each line of~3.55!. The summations in~3.57! can
be rearranged into

am,n
~3! 5(

p,l
@C~m,l!

~p! C~l,m11!
~3n2p21!1C~l,m2l!

~p! C~m2l,l11!
~3n2p21! 1C~l,m!

~p! C~m11,l21!
~3n2p21! #. ~3.58!

It is then a straightforward though tedious exercise in combinatorics to prove that

am,n
~3! 5C~m,m!

~3n! 2C~m12,m21!
~3n! 2C~m21,m12!

~3n! 1C~m11,m11!
~3n! , ~3.59!

for m>2, by use of the definition~3.11! of the C’s in terms ofD ’s. For m51, we only have

a1,n
~3!5C~2,2!

~3! . ~3.60!

Finally, we write

D3n
~3!~b!5 )

m51

n

~mm!2am,n
~3!

, ~3.61!

and the result~3.31! follows from the definition ofmm ~2.26!, with am,n
(3) 5am,n

(3) 2am11,n
(3) , which

amounts to~3.32!.

IV. SU(N) MEANDER DETERMINANT

In this section, we present the generalization to SU(N) of the notion of meander, through pai
of walk diagrams, in one-to-one correspondence with reduced elements of a particular
I Nn

(N)(b) of the SU(N) quotientHNn
(N)(b) of the Hecke algebraHNn(b), in which all antisymme-

trizers of orderN11 vanish. The orthonormalization of a basis of this ideal yields a formula
the corresponding generalized meander determinant.

A. SU(N) walk diagrams

Let us denote byL5(l iv i5(l1 ,...,lN21), l iPZ, the elements of the weight lattice of th
sl(N) algebra, generated by the fundamental weightsv1 ,v2 ,...,vN21 in RN21, with the scalar
products

v i•v j5
i ~N2 j !

N
, ~4.1!

for 1< i< j <N21. The Weyl chamberP1,P is defined as the set of weights,

P15$~l1 ,...,lN21!, such thatl i>1, for all i %. ~4.2!

The Weyl group of sl(N) is the group generated by the reflectionssi wrt the walls of the Weyl
chamber, i.e., the hyperplanesl i50. It is isomorphic to the permutation groupSN of N objects.
The Weyl chamber is nothing but the quotient of the weight lattice by the action of this gro
J. Math. Phys., Vol. 38, No. 11, November 1997
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The weight lattice and Weyl chamber are made into simplices, respectively, denoted byP and
P1 , by the adjunction of oriented links between the weights, along the vectors

e i5v i2v i 21 , i 52,3,...,N21, ~4.3!

and e15v1 , eN52vN21 , with the property thatSe i50. Let us denote byr5(1,1,...,1) the
origin ~apex! of the Weyl chamberP1 .

An SU(N) walk diagram of orderNn is a closed path ofNn steps onP1 starting and ending
at r. It is uniquely determined by a sequenceL05r, L1 ,...,LNn21 ,LNn5r of weights inP1 ,
satisfying

L i2L i 21P$e1 ,e2 ,...,eN%, ~4.4!

for all i 51,2,...,Nn. As before, the indexi in L i is referred to as the position of the weightL i in
the walk diagram. The set of SU(N) walk diagrams of orderNn is denoted byWNn

(N) . We can still
represent the SU(N) walk diagrams pictorially in the plane, by replacing each stepe i by an edge
of unit length, making an angle of (p/2N)(N22i 11) with the horizontal axis, and connecting th
successive edges of each walk diagram. For illustration, the SU~4! edges read as

~4.5!

We also define the fundamental SU(N) walk diagrama0
(N) with the successive weightsL i 1N j

2L i 1N j215e i , for i 51,2,...,N and j 50,1,...,n21.
To count the numbercNn

(N) of SU(N) walk diagrams of orderNn, let us first compute the
numberDL

(M ) of paths ofM steps onP from the origin~0,0,...,0! to a fixed weightL. Assume this
path is made ofn1 stepse1 , n2 stepse2 ,...,nN stepseN , then we must haveL5(1< i<Nnie i , and
n11n21•••1nN5M . This is easily inverted into

ni5e i•L1
M

N
, ~4.6!

for i 51,2,...,N. Theni are integers only ifM2( il i50 modN, otherwise there is no path ofM
steps from~0,0,...,0! to L (DL

(M )50). The paths are then obtained by arbitrarily choosing theni

stepse i , resulting in

DL
~M !5

M !

P i 51
N ~M /N1e i•L!!

. ~4.7!

The numbercNn
(N) of SU(N) walk diagrams ofNn steps is now obtained by subtracting fro

the number of closed paths onP from the originr to itself, the number of paths that cross th
walls of the Weyl chamber, namely, the hyperplanesl i50, i 51,2,...,N21. This is done by the
following alternate sum over the images of the originr of P1 under the action of the Weyl grou
of sl(N) ~isomorphic toSN!, generated by the reflections wrt the walls of the Weyl chamber

cNn
~N!5 (

sPSN

~21! l ~s!Dr2s~r!
~Nn! 5~Nn!! )

i 50

N21
i !

~n1 i !!
, ~4.8!

which gives a natural SU(N) generalization of the Catalan numbers~2.1!. The first few general-
ized Catalan numberscNn

(N) are displayed in Table V.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Similarly, the numberCL
(M ) of paths ofM steps onP1 from the originr to a given weightL

is obtained by subtracting from the corresponding number of paths onP, Dr,L
(M )[DL2r

(M ) , the
number of those that cross the walls of the Weyl chamber, namely

CL
~M !5 (

sPSN

~21! l ~s!DL2s~r!
~M ! 5M !

P1< i , j <N„~e i2e j !•L…!

P i 50
N21

„M /N1e i•~L2r!1 i …!
, ~4.9!

where the second line follows from the celebrated Weyl character formula. Again, the nu
CL

(M ) vanishes unlessM2( i (l i21)50 modN.

B. Hecke algebra SU( N) quotient and ideal

We now concentrate on the quotientHNn
(N)(b) of the Hecke algebraHNn(b) ~2.17!, by the

generalized Young antisymmetrizers of orderN11, namely defined by the conditions~2.17!,
supplemented by

Y~ei ,ei 11 ,...,ei 1N21!50, ~4.10!

for i 51,2,...,N(n21). We now consider the left idealI Nn
(N)(b), generated by the element

YNn
~N!5 )

i 50

n21

Y~eiN11 ,eiN12 ,...,eiN1N21!. ~4.11!

There is a one-to-one correspondence between the SU(N) walk diagrams of orderNn and the
reduced elements ofI Nn

(N)(b). To properly construct it, we first need to express the SU(N) walk
diagrams as the results of successive box additions on the fundamental diagrama0

(N) . Given a
walk diagramaPWNn

(N) , the process of box addition at positioni on a, producing a diagramb
5a1L i , is allowed only ifa has a minimum ati , namelyN>r .s>1, if L i 112L i5es and
L i2L i 215e r . The box addition amounts to replacingL i→L i1es2e r , i.e., exchanging the two
stepse r and es in the corresponding path onP1 . In the above pictorial representation, a b
addition amounts to adding toa a parallelogram~the ‘‘box’’ !, with edges corresponding to th
vectorse r andes . This gives rise toN(N21)/2 different types of boxes. It is clear that any wa
aPWNn

(N) can be obtained from the fundamental onea0
(N) by successive box additions. As in th

SU~3! case, the box decomposition of a given walka is not unique, due to all possible hexago
ambiguities. Indeed, for any three integersN> i . j .k>1, there are two possibilities to chang
the succession of steps (e i ,e j ,ek) into (ek ,e j ,e i) by three successive box additions:

TABLE V. The numberscNn
(N) of SU(N) walk diagrams of orderNn, with 1<n, N<6. The symmetryN↔n will be

interpreted later as some general duality property.

N 1 2 3 4 5 6

2 1 2 5 14 42 132
3 1 5 42 462 6006 87 516
4 1 14 462 24 024 1 662 804 140 229 804
5 1 42 6006 1 662 804 701 149 020 396 499 770 810
6 1 132 87 516 140 229 804 396 499 770 810 1 671 643 033 734 96
J. Math. Phys., Vol. 38, No. 11, November 1997
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~4.12!

To resolve these ambiguities, we forbide all the box additions of the form

~4.13!

for all N> i . j .k>1. With this last rule, each walkaPWNn
(N) has a unique box decomposition

represented as the set of boxes inbetweena0
(N) and a. For illustration, we display in Fig. 4 a

sample SU~4! walk diagram of order 12, together with its box decomposition.
We can now construct the mapw from WNn

(N) to the set of reduced elements ofI Nn
(N)(b),

through

w~a0
~N!!5YNn

~N! , ~4.14!

with YNn
(N) as in ~4.11!, and the recursion on box additions, for anyaPWNn

(N) ,

w~a1L i !5eiw~a!. ~4.15!

This produces exactly once all the reduced elements ofI Nn
(N)(b). For illustration, the walk

diagram of Fig. 4 has the following image underw: e4e5e6e2e3e5e6e7e4e8

3Y(e1 ,e2 ,e3)Y(e5 ,e6 ,e7)Y(e9 ,e10,e11) as a result of ten box additions on the fundamen
diagram. As before, we introduce the basis 1, with elements

~a!15~aN!2n/2~gN!nw~a!, ~4.16!

where aN and gN are defined in~2.29!. The normalization, somewhat arbitrary, is chosen
reasons that will become clear later.

The SU(N) meanders are defined as pairs of walks (a,b)PWNn
(N) , or equivalently of elements

of this basis 1. To the latter, we attach the quantity„(a)1 ,(b)1…, where the scalar product i
attached to the Markov trace Tr onHNn

(N)(b), defined by the normalization Tr(1)5(UN21)Nn and
the recursion~2.7!, with h5mN215UN22(b)/UN21(b). This leads to thecNn

(N)3cNn
(N) Gram ma-

trix G Nn
(N)(b), with entries

FIG. 4. A sample SU~4! walk diagrama of order 433512 is represented by a thick line. It is made of a succession
steps of the form~4.5!. We have indicated its box decomposition in thin lines, leading from the fundamental diagrama0

(4)

of order 12 toa, after a total ofuau510 box additions.
J. Math. Phys., Vol. 38, No. 11, November 1997
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@G Nn
~N!~b!#a,b5„~a!1 ,~b!1…, ~4.17!

for a,bPWNn
(N) .

C. SU„N… determinant

The main result of this section is the following formula for the determinantDNn
(N)(b) of the

Gram matrix~4.17!:

DNn
~N!~b!5 )

m51

n1N22

@Um~b!#am,n
~N!

, ~4.18!

where am,n
(N) are some integers, defined as follows. We first introduce the vectorsu05v05ū0

5 v̄050, and

uj5 j e12~e j1e j 111•••1eN21!,

v j52 j eN1~e21e31•••1e j 11!,
~4.19!

ū j5 j ~e12eN!2uN212 j ,

v̄ j5 j ~e12eN!2vN212 j ,

for j 51,2,...,N22 ~see Fig. 5 for an illustration in the caseN54!. We define the following
difference operatorsDN , andD̄N acting on any functionf (a), of aPP by the alternate sums

@DNf #~a!5 (
i , j >0

i 1 j <N22

~21! i 1 j f „a1~ui1v j !…,

~4.20!

@D̄Nf #~a!5 (
i , j >0

i 1 j <N22

~21! i 1 j f „a2~ ūi1 v̄ j !….

FIG. 5. The set of 12 vectors forming the difference operator definingam,n
(N) in terms ofCL

(Nn) , for N54. We have indicated
the vectorse i , j[e i2e j linking the dots, representing (m21,1,m21)1uk1v l on the left half ~D4 operator!, and (m
12,1,m12)2ūk2 v̄ l on the right half~D̄4 operator!. The terms with a filled black circle come witha1; those with an
empty circle witha2 in the final difference operator.
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We also defineDN* as the same expression as forDN , except that the pointi 5 j 50 is excluded
from the sum~4.20!. Now, we use the functionf (L)5CL

(Nn) , LPP1 , andCL
(Nn) as in ~4.9!, to

write the integersam,n
(N) as

am,n
~N! 5DNf „r1~m2N12!~e12eN!…2D̄Nf „r1~m11!~e12eN!…, ~4.21!

for any integermÞN22 and

aN22,n
~N! 5DN* f ~r!2D̄Nf „r1~N21!~e12eN!…. ~4.22!

We have already noticed in the casesN52 and 3 that the numbersam,n
(N) take the form of an

alternate sum over the Weyl group. Here we see that the correct generalization~4.21! is not an
alternate sum over the Weyl group, but only over a set ofN(N21) shifted weights, represented i
Fig. 5 for N54. In this latter case, the corresponding 12-term relation reads as

am,n
~4! 5C~m21,1,m21!

~4n! 2C~m,2,m22!
~4n! 2C~m22,2,m!

~4n! 1C~m12,1,m22!
~4n! 1C~m22,1,m12!

~4n! 1C~m21,3,m21!
~4n!

2C~m13,1,m21!
~4n! 2C~m21,1,m13!

~4n! 2C~m,3,m!
~4n! 1C~m12,2,m!

~4n! 1C~m,2,m12!
~4n! 2C~m12,1,m12!

~4n! ,

~4.23!

for mÞ2, and

a2,n
~4!5C~1,3,1!

~4n! 2C~5,1,1!
~4n! 2C~1,1,5!

~4n! 2C~2,3,2!
~4n! 1C~4,2,2!

~4n! 1C~2,2,4!
~4n! 2C~4,1,4!

~4n! . ~4.24!

The first few values for the integersam,n
(N) are given in Table VI~a!,~b! for the casesN54,5,

respectively.
The formula~4.18! is proved by direct orthogonalization of the basis 1, namely, the cons

tion of a basis 2, with elements

TABLE VI. ~a! The powersam,n
(4) of Um in the SU~4! meander determinantD4n

(4)(b), for n51,2,...,6.~b! The powersam,n
(5)

of Um in the SU~5! meander determinantD5n
(5)(b), for n51,2,...,5.

m\n 1 2 3 4 5 6

1 1 20 627 24 024 831 402 28 498 776
2 1 15 572 36 036 2 922 504 274 085 526
3 1 22 880 48 048 3 375 996 291 900 268
4 13 550 36 036 2 910 876 265 913 626
5 341 24 024 1 951 566 192 203 088
6 12 012 1 372 104 139 085 738
7 492 252 85 314 636
8 22 064 130

m\n 1 2 3 4 5

1 1 69 10 582 2 494 206 701 149 02
2 1 44 6435 2 065 908 1 051 723 53
3 1 58 10 712 3 275 220 1 402 298 04
4 1 76 12 311 3 740 340 1 752 872 55
5 41 8736 3 036 846 1 402 298 04
6 5278 1 953 504 1 051 723 530
7 1 170 552 701 149 020
8 350 574 510
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~a!25 (
bPWNn

~N!

b,a

Pa,b~b!1 , ~4.25!

where the inclusionb,a means thata can be obtained fromb by box additions, and such tha
„(a)2 ,(b)2…5da,b . The basis 2 is constructed as follows. We start with

~a0
~N!!25~aN!n/2~a!1 , ~4.26!

with aN as in ~2.29!. This element has norm 1, due to~2.32!, and the property

Tr„Y~e1 ,...,eN21!…5gN
21, ~4.27!

where the trace is taken overHN
(N)(b). This is readily proved by use of the recursion of theY’s

~2.25!. We finally get Tr„(gNY)2
…51.

The other basis 2 elements are defined through the recursion relation, for anyaPWNn
(N) ,

~a1L i ,m!25Amm11

mm
~ei2mm!~a!2 , ~4.28!

wherei denotes as usual the position of the box addition, andm stands for the ‘‘height’’ of the box
addition, defined as

m5L i•~L i 111L i 2122L i !, ~4.29!

in terms of the weightsL i 21 , L i and L i 11 of respective positionsi 21, i and i 11 on a. The
basis 2 coincides with the restriction toI Nn

(N)(b) of the seminormal basis of Refs. 14 and 15, a
as such satisfies the condition

~a!2
t ~b!250, unlessa5b. ~4.30!

Assuming ~4.30!, with exactly the same reasoning as in~3.43!, it is easy to check that the
normalization prefactor in~4.28! ensures that all the basis 2 elements have norm 1. This chan
basis resolves the hexagon ambiguities, in the form of a straightforward generalization of~3.40!,
to all the possible hexagons~4.12!.

As before, the SU(N) meander determinant reads as

DNn
~N!~b!5 )

aPWNn
~N!

Pa,a
22, ~4.31!

with P as in ~4.25!. In turn, we have

Pa
0
~N! ,a

0
~N!

2
5S )

i 51

N21

~m i !
N2 i D n

, ~4.32!

as a direct consequence of~4.25! and ~4.26! @(a0
(N))2 has norm 1#, and the recursion relation

Pa1L i ,m ,a1L i ,m

2 5
mm11

mm
Pa,a , ~4.33!

for all aPWNn
(N) , solved as
J. Math. Phys., Vol. 38, No. 11, November 1997
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Pa,a
2 5~m1

N21m2
N22•••mN21!n )

all boxes
of a

mm11

mm
. ~4.34!

As in the SU~3! case, we rearrange them factors into edge weights. More precisely, to each ed
(L,L8) of a, corresponding to a stepL82L5e i , we attach the weight

w~L,L8!5S )
l 5 i 11

N

mL•~e i2e l !)k51

i 21

mL8•~ek2e i !D 1/2

, ~4.35!

in terms of which~4.34! is rewritten as

Pa,a
2 5 )

all steps
v of a

w~v !. ~4.36!

This is easily proved by induction on box additions, as the rhs of~4.36! satisfies both~4.32! and
~4.33!. Indeed, the box additiona→a1L i ,m transforms the sequence of weights
a (L i 21 ,L i ,L i 11), with say L i2L i 215es and L i 112L i5e r , into the sequence
(L i 21 ,L i8 ,L i 11) with L i82L i 215e r ; we then check that the edge weights satis
w(L i 21 ,L i8)w(L i8 ,L i 11)/@w(L i 21 ,L i)w(L i ,L i 11)#5mm11 /mm , with m5L i•(e r2es),
hence~4.33! follows. After substitution of~4.36! into ~4.31!, we are left with an expression of th
form

DNn
~N!~b!5 )

m51

N1n21

m
m

2am,n
~N!

. ~4.37!

To computeam,n
(N) , we have to enumerate the walks containing edges, whose weight con

a mm . According to the definition~4.35!, such an edge is of the form (L,L8), L82L5e i , with
either L8•(ek2e i)5m for somek, i or L•(e i2e l)5m for some l . i . To proceed, we mus
count the number of edges of walks ofWNn

(N) with specified ends (L,L8), at positions, sayp and
p11. This edge cuts the walka into two portions:

~i! a path ofp steps from the originr to L on P1 . There areCL
(p) such paths@see~4.9!#.

~ii ! A path ofNn2p21 steps fromL8 to r on P1 . Upon reversal of all the orientations of it
links ~namely exchanginge i↔eN112 i!, it can be viewed as the reversed path ofNn2p
21 steps fromr to L8t @where (l1 ,l2 ,...,lN21) t5(lN21 ,lN22 ,...,l1)#. There are
CL8t

(Nn2p21) such paths@see~4.9!#.

We may now compute the numbersam,n
(N) of ~4.37!, with the result

am,n
~N! 5 (

p50

Nn21

(
1< i , l<N

(
LPP1

L•~e i2e l !5m

CL
~p!C~L1e i !

t
~Nn2p21! , ~4.38!

where we have assembled all the contributions from the weight factorsw(L,L1e i) as well as
those fromw(L82eN112 i ,L8), by noting that (L81e i)

t5L82eN112 i .
The final formula~4.18! follows from the definition~2.26! of mm andam,n

(N) 5am,n
(N) 2am11,n

(N) .
Let us first compute the numbersam,n

(N) ~4.38!. We can use the expression~4.9! for theC’s in terms
of theD ’s, which are multinomial coefficients, to evaluate the various sums in~4.38!. This finally
leads to the following result. We will use the definition~4.20! for the difference operatorDN . Let
us also define the vectorsw050 and
J. Math. Phys., Vol. 38, No. 11, November 1997
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wj5e212e31•••1~ j 21!e j 211 j ~e j1e j 111•••1eN!, ~4.39!

for j 51,2,...,N. Then, using the functionf (L)5CL
(Nn) , the integeram,n

(N) reads as

am,n
~N! 5 (

p>0
2p<N22

DN22pf „r1~m2N12!~e12eN!1wp…, ~4.40!

for m>N21. When 1<m<N22, we simply have to omit the termi 5 j 50 in DN . After sub-
stitution of ~4.20!, the alternate sum on the rhs of~4.40! extends overN(N221)/6 terms of the
form CL

(Nn) , L5r1(m2N12)(e12eN)1ui1v j1wp , 0< i , j <N22, 0<2p<N22, hence,
forming a ‘‘pyramid’’ of weights. The result~4.21! for the numbersam,n

(N) 5am,n
(N) 2am11,n

(N) then
follows from many cancellations between the pyramids of terms of~4.40! pertaining tom and
m11, leaving us eventually with onlyN(N21) terms~see Fig. 5!. Equation~4.22! corresponds to
the omission of the termi 5 j 50 in ~4.40! for m51,...,N22.

D. Duality

In this section, we describe a duality relation between the SU(N) and the SU(k) meanders of
same orderNk. This results in a duality formula for the corresponding meander determinan

The compact definitions~4.26! and ~4.28! for the basis 2 elements ofI Nn
(N)(b) lead us to a

simple formula, relating the SU(N) meander determinant of orderNk to the SU(k) meander
determinant of the same order, namely,

DNk
~N!~b!DkN

~k!~b!5~FN,k!
cNk

~N!
, ~4.41!

where,FN,k is symmetric ink↔N, and fork<N,

FN,k5 )
m51

k21

~Um!m11 )
m5k

N21

~Um!k )
m5N

N1k22

~Um!N1k212m, ~4.42!

in terms of the Chebyshev polynomials~2.14!. Note also that from the definition~4.8!,

cNk
~N!5~Nk!! S )

i 51

k21

i ! )
i 51

N21

i ! Y )
i 51

N1k21

i ! D 5cNk
~k! , ~4.43!

which makes the rhs of~4.41! symmetric underk↔N.
The duality formula~4.41! gives a number of combinatorial identities relating the numb

am,k
(N) andam,N

(k) ~4.21!, ~4.22!, namely that, fork<N,

am,k
~N!1am,N

~k! 5H ~m11!cNk
~N!

kcNk
~N!

~N1k2m21!cNk
~N!

~ if m,k!,
~ if k<m,N!,

~ if N<m,N1k21!,
~4.44!

including the cases~4.22! whenm5N22 or k22.
As an example, let us takeN53 andk52, in which cases we have~see Tables II and IV!

D6
~3!5U1

6U2
6U3

4,

D6
~2!5U1

4U2
4U3 , ~4.45!

respectively, from~3.35! and ~2.13!, with C3
(6)5(2

6)2(1
6)59, C5

(6)5(1
6)2155, C7

(6)51. We
check that
J. Math. Phys., Vol. 38, No. 11, November 1997
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D6
~3!D6

~2!5~U1
2U2

2U3!5, ~4.46!

which amounts to~4.41!, ~4.42!, with c6
(3)5c6

(2)55 andF3,25U1
2U2

2U3 . More generally, we can
check the above duality relation on the various Tables II, IV, and VI~a!,~b!, by using also the
Table V for the numberscNn

(N) .
A simple consequence of~4.41! is that the ‘‘self-dual’’ determinants, withk5N, read as

DN2
~N!

~b!5~FN,N!c
N2
~N!

/25~U1
2U2

3•••UN22
N21UN21

N UN
N21•••U2N23

2 U2N22!c
N2
~N!

/2, ~4.47!

which is considerably simpler than~4.18!, ~4.21!. This is readily checked forN52,3,4,5 on Tables
II, IV, and VI~a!,~b!.

The duality formula~4.41! is a consequence of the existence of a duality mapd between the
basis 2 elements ofI Nk

(N)(b) and I Nk
(k)(b), or equivalently between their labelsWNk

(N) and WNk
(k) .

The mapd is defined as follows. First we need to define themaximalwalk diagramamax
(k) PWNk

(k) , as
the walk withN stepse1 , followed byN stepse2 ,..., followed byN stepsek . In other words, the
weights of this walk are

LNi1 j5N~e11e21•••1e i !1 j e i 11 , ~4.48!

for i 50,1,...,k21 andj 51,2,...,N. This walk is maximal wrt box additions, as it has no minimu
hence no extra box can be added to it. We also need to define the concept of box subtrac
elements of the basis 2: we will say that (b)2 is the result of a box subtraction at positioni and
heightm on (a)2 , and write that (b)25(a2L i ,m)2 , if ( a)25(b1L i ,m)2 is the result of a box
addition at positioni and heightm on b @cf. ~4.28!#. We will use the same terminology for th
corresponding walk diagrams.

The duality mapd:WNk
(N)→WNk

(k) is defined by

d~a0
~N!!5amax

~k! , ~4.49!

and the recursion relation

d~a1L i ,m!5d~a!2L i ,m . ~4.50!

In other words, the recursion adds successive boxes ona0
(N) , which it subtracts accordingly from

amax
(k) . To prove thatd is well defined, we must simply check that each minimum ona is a

‘‘maximum’’ on d(a), i.e., a position at which a box can be subtracted. This is clear ona0
(N) and

its image, as thek21 minima ofa0
(N) lie at positionsi 5N,2N,...,(k21)N, equal to the positions

of the maxima onamax
(k) , namely the transitions between the stepse i→e i 11 , i 51,2,...,k21. The

recursion then makes it clear that whenever a minimum is created ona by a neighboring box
addition, the corresponding box subtraction onb creates a maximum. Moreover, asuWNk

(N)u
5cNk

(N)5cNk
(k)5uWNk

(k)u ~4.43!, d is a bijection.
The computation of the determinantsDNk

(N)(b) andDNk
(k)(b) involves a product over the quan

tities Pa,a
22 defined by~4.32!, ~4.33!. By a slight abuse of notation, we will denote indifferently b

Pa,a the matrix elements for both SU(N) and SU(k) cases, simply distinguished by the fact th
aPWNk

(k) or WNK
(k) . Let us prove that, for allaPWNk

(N) ,

Pa,a
2 Pd~a!,d~a!

2 5Pa
0
~N! ,a

0
~N!

2
Pa

max
~k! ,a

max
~k!

2
. ~4.51!

This is readily done by induction on box additions ona, as
J. Math. Phys., Vol. 38, No. 11, November 1997
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Pa1L i ,m ,a1L i ,m

2 Pd~a1L i ,m!,d~a1L i ,m!
2 5Pa1L i ,m ,a1L i ,m

2 Pd~a!2L i ,m ,d~a!2L i ,m

2

5
mm11

mm
Pa,a

2 mm

mm11
Pd~a!,d~a!

2 5Pa,a
2 Pd~a!,d~a!

2 , ~4.52!

where we have successively used the recursive definition~4.50! of d and the recursion~4.33! for
both Pa1L,a1L

2 andPb1L,b1L
2 , with b5d(a)2L. Equation~4.51! follows.

Therefore, the product of meander determinants reads as

DNk
~N!~b!DNk

~k!~b!5 )
aPWNk

~N!
Pa,a

22 )
bPWNk

~k!
Pb,b

225 )
aPWNk

~N!
Pa,a

22Pd~a!,d~a!
22 5~Pa

0
~N! ,a

0
~N!

22
Pa

max
~k! ,a

max
~k!

22
!cNk

~N!
,

~4.53!

as uWNk
(N)u5cNk

(N) . The formula~4.41! follows from ~4.53!, with FN,k
215Pa

0
(N) ,a

0
(N)

2
Pa

max
(k) ,a

max
(k)

2
. The

first factor ~4.32! is known. The second reads, from~4.36!,

Pa
max
~k! ,a

max
~k!

2
5 )

all steps

v amax
~k!

w~v !, ~4.54!

with the weightsw as in~4.35! for N→k andn→N, and the steps as in~4.48!. Assembling all the
powers ofm, we find

Pa
max
~k! ,a

max
~k!

2
5)

j 51

N

)
i 5 j

j 1k22

~m i !
k1 j 112 i , ~4.55!

hence finally, fork<N,

FN,k5 )
m51

N21

~mm!2k~N2m!)
j 51

N

)
i 5 j

j 1k22

~m i !
i 2~k1 j 11!

5 )
m51

k21

~mm!@m~m11!/22Nk#

3 )
m5k

N

~mm!k@m2N2~k21!/2# )
m5N11

N1m22

~mm!~m2k2N!~k1N2m21!/2. ~4.56!

Using the definition~2.26!, this is easily translated into the final result~4.42!.

E. Duality and Young tableaux

This duality is yet another manifestation of the level-rank duality of the affine Lie alge
sl(n)̂k↔sl(k)̂n ,16 through which integrable representations, attached to Young tableaux
mostn rows andk columns„sl(n)̂k… are mapped onto the dual~transposed! ones, with at mostk
rows andn columns„sl(k)̂n…. A direct way to understand this duality, is provided by the stand
formulation14,15 of the basis 2, namely by the use of a mapping between the basis 2 elemen
the standard Young tableaux, which have the shape of a rectangle ofN rows byk columns@basis
of I Nk

(N)(b)# sent by transposition to the standard Young tableaux having the shape of a rec
of k rows byN columns@basis ofI Nk

(k)(b)#.
A standard Young tableau of given shapeS, S a Young tableau ofM boxes~i.e., an arrange-

ment of sayr rows of respectively,l 1 , l 2 ,...,l r square boxes, withl 1> l 2>•••> l r>1 and l 1
J. Math. Phys., Vol. 38, No. 11, November 1997
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1l21•••1lr5M!, consists of the tableauS, together with a labeling~marking! of the boxes ofS,
using exactly once each of the integers 1,2,...,M , and such that the labels are strictly increasi
along the rows~from left to right! and along the columns~from top to bottom!.

In the particular case of a rectangular shapeS with r 5N, l 15 l 25•••5 l N5k, the setSN,k of
the corresponding standard tableaux is in bijection with the set of SU(N) walk diagrams of order
Nk. Indeed, let us define the mapf :SN,k→WNk

(N) , by sending any standard tableau withN rows
andk columns to the walk with successive stepsv i , i 51,2,...,Nk, defined by

v i5e r ~ i ! , ~4.57!

where r ( i ) denotes the number of the row of the box markedi in the standard tableau. Fo
instance, the tableau whose marks are entered by successive columns (1,2,...,N), (N11,N
12,...,2N),...,„(k21)N,(k21)N11,...,kN… is sent to the fundamental walka0

(N) , whereas the
tableau whose marks are entered by successive lines (1,2,...,k), (k11,k12,...,2k),...,„(N21)k
11,(N21)k12,...,Nk… is sent to the maximal oneamax

(N) .
The mapf is clearly invertible, as we may fill the rectangular shape as we move along

walk a, the i th mark corresponding to thei th step, sayv i5e j , and being made in the leftmos
available~unmarked! box of the j th row, thus filling eventually the whole tableau, as there is
equal total numberk of steps of each kinde1 ,...,eN .

The process of box addition at positioni on a is interpreted in the standard tableauf 21(a) as
the interchange of the markingsi and i 11 if i 11 is in a strictly earlier row thani @with r ( i
11),r ( i )#, this being only possible if the ordering of rows and columns is preserved by
interchange: this corresponds exactly to the situation where the original walk has minim
position i .

Now we see that the duality mapd has the simple interpretation as transposition, nam
interchange of rows and columns, in the standard tableau picture, namelyf 21

„d(a)…5 f 21(a) t, for
all aPWNK

(N) . Hence the mapf 21+d+ f is nothing but the tableau transposition, which ma
SN,k→Sk,N . The dual correspondence~4.50! between box additions and subtractions becom
clear with the above interpretation: the interchange between the marksi andi 11 has the effect of
a box addition on a standard tableau iff it has the effect of a box subtraction on the trans
tableau.

V. HECKE DETERMINANTS

In this section, we present determinant formulas for the natural generalization of me
determinants to the whole SU(N) quotient Hn

(N)(b) of the Hecke algebra. This provides y
another direction of generalization of meanders.

A. Bases of the Hecke algebra

The standard basis14,15,17of the Hecke algebraHn(b) is indexed by pairs (s1 ,s2) of standard
tableaux ofn boxes with the same shapeS, whereS describes the set of Young tableaux ofn
boxes. As already mentioned, this basis uses the description of the Hecke algebra~2.17! in terms
of the generatorsTi ~2.18!. The restriction of this basis to the quotientHn

(N)(b) is simply obtained
by restricting the shapesS to the tableaux with, at most,N rows.

Let us present now a slightly different basis ofHn
(N)(b), which we call basis 1 by analog

with the previous sections. This basis 1 will be indexed by pairs ofopenwalk diagrams, rather
than standard tableaux; the two objects are, however, in one-to-one correspondence.

For any given weightLPP1 , an openwalk diagram of ordern ending atL is a path ofn
steps onP1 , starting at the originr and ending atL. In particular, we must haven2( i (l i

21)50 modN, if L5(l1 ,...,lN21). Let us denote byWL
n the set of open SU(N) walk dia-

grams of ordern, ending atL. Writing
J. Math. Phys., Vol. 38, No. 11, November 1997
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L5r1(
i 51

N

l ie i , n5(
i 51

N

l i , ~5.1!

easily inverted intol i5(L2r)•e i1n/N @see ~4.6!#, we may identify each walk diagrama
PWL

n with a standard tableau whose shape is the Young tableau withl i boxes in thei th row, 1
< i<N. Indeed, the marking of the boxes corresponding toa is performed as one moves along th
path; say when thei th step is made, withv i5e j , we mark with the integeri the leftmost available
~nonmarked! box in thej th row. We have already computed in~4.9! the numberCL

(n) of open walk
diagrams of ordern ending atL.

The open walks ofWL
n can be generated by box additions on the fundamental one, den

a0
(n,L) , with steps

vNi1 j5e j , for H i 50,1,...,l N21,
j 51,2,...,N,

vNlN1~N21!i 1 j5e j , for H i 50,1,...,l N212 l N21,
j 51,2,...,N21,

~5.2!

••• •••

vNlN1~N21!~ l N212 l N!1...12~ l 22 l 3!1 i 115e1 , for i 50,1,...,l 12 l 221

@with l i defined by~5.1!#, which corresponds to entering the successive marks of the assoc
Young tableau by columns. A box addition at positioni P$1,2,...,n21% on aPWL

n , denoted by
a→a1L i , is defined in the same way as before~see Sec. IV B!, and we still resolve the hexago
ambiguities by forbidding the box additions of the form~4.13!. This permits us to construct all th
walks of WL

n by successive box additions on the fundamentala0
(n,L) .

We are now ready to define the basis 1 elements ofHn
(N)(b). They are labeled by pairs (a,b)

of open walk diagrams belonging to the same setWL
n , whereL runs overP1 . We start with the

fundamental element

~a0
~n,L! ,a0

~n,L!!15 )
i 50

l N21

E~eNi11 ,eNi12 ,...,eNi1N21! )
i 50

l N212 l N21

E~eNlN1~N21!i 11 ,...,

3eNlN1~N21!i 1N22)••• )
i 50

l 22 l 321

E~eNlN1~N21!~ l N212 l N!1•••13~ l 32 l 4!12i 11!,

~5.3!

where the antisymmetrizerE is defined in~2.24!, and related toY through ~2.28!, ~2.29!. This
product form corresponds to the column-preserving antisymmetrizer of Refs. 14 and 17.

The other basis 1 elements are defined recursively using box additions on either walk di
of the pair (a,b)PWL

n , namely

~a1L i ,b!15ei~a,b!1 , ~a,b1L j !15~a,b!1ej . ~5.4!

We will call left ~resp., right! box additions those pertaining to the first~resp., second! line of
~5.4!. Note that the forbidden additions~4.13! make the box decompositions of botha and b
unique, and so is (a,b)1 .

For illustration, let us describe the basis 1 forH3
(3) . There are three types of open wa

diagrams of three steps, namely those that end at the SU~3! weights ~1,1!, ~2,2!, or ~4,1!, with
J. Math. Phys., Vol. 38, No. 11, November 1997
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uW(1,1)
3 u51, uW(2,2)

3 u52, anduW(4,1)
3 u51. With E(e1 ,e2)5Y(e1 ,e2) and E(e1)5e1 , the basis 1

elements read, respectively, as

~5.5!

Note that the basis 1 forH3
(2) is simply obtained by imposing the vanishing of the antisymmetri

of order 3, namely, by erasing the first line in~5.5!: it consists of the five elementse1 , e2e1 , e1e2 ,
e2e1e25e2 , and 1.

As an immediate consequence, we get a formula for the dimension ofHn
(N)(b) as a vector

space, namely

dim„Hn
~N!~b!…5 (

LPP1

~CL
~n!!2, ~5.6!

by enumerating all the pairs of open SU(N) walk diagrams of ordern. The first few of these
dimensions are displayed in Table VII.

The Gram matrixH n
(N)(b) of the basis 1 ofHn

(N)(b) reads as

@H n
~N!~b!#~a,b!,~c,d!5„~a,b!1 ,~c,d!1…, ~5.7!

for (a,b) and (c,d)PøLPP1
(WL

n )2. We wish to compute the determinant of this matrix exac
In the casen535N of ~5.5!, this Gram matrix reads as

TABLE VII. The dimensions dim„Hn
(N)(b)… of the SU(N) quotients of the Hecke algebraHn(b), with 2<N<6 and 1

<n<10.

N\n 1 2 3 4 5 6 7 8 9 10

2 1 2 5 14 42 132 429 1430 4862 16 796
3 1 2 6 23 103 513 2761 15 767 94359 586 590
4 1 2 6 24 119 694 4582 33 324 261 808 2 190 688
5 1 2 6 24 120 719 5003 39 429 344 837 3 291 590
6 1 2 6 24 120 720 5039 40 270 361 302 3 587 916
J. Math. Phys., Vol. 38, No. 11, November 1997
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H3
~3!~b!5~b221!S b2~b221! b2 b3 b3 b4 b

b2 b2~b221! b3 b3 2b2 b~b221!

b3 b3 b4 2b2 2b3 b2

b3 b3 2b2 b4 2b3 b2

b4 2b2 2b3 2b3 2b4 b3

b b~b221! b2 b2 b3 ~b221!2

D . ~5.8!

The seminormal basis of the Hecke algebra presented in Refs. 14 and 15 restricts
normalization factors to the orthonormal basis 2 wrt the scalar product~ , !. In our language, the
basis 2 is constructed as follows. For eachLPP1 , we introduce the fundamental element

~a0
~n,L! ,a0

~n,L!!25S )
all steps

v of a0
~n,L!

w~v !D gLEL~e1 ,e2 ,...,en21!, ~5.9!

wheregL is a normalization constant andEL are the orthogonal idempotents of the seminorm
basis,14,15 defined as follows, in terms of the Murphy operatorsLm ~2.22!. We have

EL5 )
m52

n

)
2m,p,m

pÞ0, if m52,3

Lp2@p#q

@r L~m!#q2@p#q
, ~5.10!

where @p#q511q1q21•••1qp21 and @2p#q52(q211q221•••1q2p) for p.0, and @0#q

50, andr L(m)5J 2 i if

l 11 l 21•••1 l i 21,m< l 11 l 21•••1 l i , ~5.11!

for l i as in~5.1!, andj 5m2( l 11•••1 l i 21). In the standard tableau formulation ofL ~with marks
entered by successive columns!, i and j are, respectively, the numbers of the row and column
which the markm occurs. Moreover, in~5.9!, the normalization constantgL will eventually ensure
that the basis 2 element has norm 1. Let us comment briefly on this normalization now.

Note first the existence of the ‘‘inclusion’’ order onWL
n , which we now denote bya<b iff

a,b, namely, if b can be obtained froma by some box additions. Moreover, this order
extended to all open walk diagrams by deciding thatWL

n <WL8
n ~we also writeL<L8! iff the

weight L8 can be obtained fromL by successive ‘‘pushes’’pi , j , N> i . j >1, defined as

pi , j~L!5L1e i2e j , ~5.12!

allowed only if the result is still inP1 . In the Young tableau formulation ofL, this amounts to
‘‘pushing’’ the rightmost box in thej th row to thei th row, and is allowed only if the result is stil
a Young tableau. This gives an order< on all open walk diagrams. The change of basis 1→2 will
be triangular with respect to<, namely,

~a,b!25 (
c<a,d<b

P~a,b!,~c,d!~c,d!1 . ~5.13!

The normalizationgL is chosen so that

gLEL5~a0
~n,L! ,a0

~n,L!!11 (
L8<L
L8ÞL

(
a,bPW

L8
n

nL,L8
~a,b!

~a,b!1 , ~5.14!
J. Math. Phys., Vol. 38, No. 11, November 1997
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for some coefficientsnL,L8
(a,b) . The condition~5.14! will enable us to orthogonalize the Gram matr

H n
(N)(b) by the Gram–Schmidt procedure, through a triangular redefinition of its lines

columns. The value ofgL can be found for instance in Ref. 15, and reads as

gL5~aN!2 l N~aN21! l N2 l N21•••~a2! l 32 l 2, ~5.15!

in terms of the numbersa j ~2.29! and the integersl j ~5.1!.
The other basis 2 elements are obtained by~left and right! box additions on the fundamenta

elements~5.9!, according to the following recursions:

~a1L i ,m ,b!25Amm11

mm
~ei2mm!~a,b!2 ,

~5.16!

~a,b1L j ,l !25Am l 11

m l
~a,b!2~ej2m l !,

wherem and l denote the heights of the box additions~4.29!. The normalization of the basis
elements to unity is a consequence of their orthogonality, in the same way as before@see~3.43!#.

In the case ofH3
(3) , the normalized idempotentsgLEL read, in terms of theei , as

g~1,1!E~1,1!5Y~e1 ,e2!,

g~2,2!E~2,2!5e12m1m2Y~e1 ,e2!5m2e1~12m1e2!e1 , ~5.17!

g~4,1!E~4,1!5~12m1e1!~12m2e2!~12m1e1!,

and we have the basis 2 elements,

~5.18!

where we have applied the box addition rules~5.16!.

B. Hecke determinants

In this section, we compute the determinantQn
(N)(b) of the Gram matrixH n

(N)(b) ~5.7! of
the basis 1 ofHn

(N)(b). The result takes the form
J. Math. Phys., Vol. 38, No. 11, November 1997
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Qn
~N!~b!5 )

m51

n11

~Um! tm,n
~N!

, ~5.19!

wheretn,m
(N) are integers derived below.

In view of Eqs.~5.13! ~5.14!, we deduce that, in terms of the matrix elements ofP, the desired
determinant reads as

Qn
~N!~b!5 )

LPP1

)
a,bPWL

n
P~a,b!,~a,b!

22 . ~5.20!

The diagonal termsp (a,b)[P(a,b),(a,b) in ~5.13! satisfy the double recursion relation,

p~a1L i ,m ,b1L j ,l !
2 5

mm11m l 11

mmm l
p~a,b!

2 , ~5.21!

and we have the fundamental elements

p
~a0

~n,L! ,a0
~n,L!

!

2
5S )

all steps

v of a0
~n,L!

w~v !D 2

. ~5.22!

It is easy to solve~5.21! and ~5.22! as

P~a,b!,~a,b!
2 5 )

all steps
v,v8 of a,b

w~v !w~v8!5Pa,a
22Pb,b

22, ~5.23!

where, in the last line we have recognized the matrix elements of the change of basis 1→2 for the
SU(N) case~4.36!, with w as in ~4.35!.

We are now ready to compute the determinant~5.20!, by use of the definition~4.35!. Assem-
bling all the contributions pertaining tomm , we find

Qn
~N!~b!5 )

m51

n11

~mm!2um,n
~N!

, ~5.24!

where

um,n
~N! 5 (

p50

n21

(
L8PP1

(
1< i , l<N

(
LPP1

L•~e l2e i !5m

CL
~p!CL1e i ,L8

~n2p21!CL8
~n! . ~5.25!

This summarizes all the possible occurrences ofmm in ~5.20!. We have denoted byCL,L8
(r ) the

number of paths ofr steps onP1 , from L to L8, which reads as

CL,L8
~r !

5 (
sPSN

~21! l ~s!DL82s~L!
~r ! , ~5.26!

where the necessary reflections~additions/subtractions! have been performed on the paths onP
from L to L8. The combination ofC’s in ~5.25! stands for the total number of pairsa,b
PWL8

n , with one specified edge (L,L1e i). The edge indeed separates one of the walksa or b
J. Math. Phys., Vol. 38, No. 11, November 1997
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into two parts:~i! the portion betweenr andL, of lengthp ~a total ofCL
(p) paths!; ~ii ! the portion

betweenL1e i andL8, of lengthn2p21 ~a total ofCL1e i ,L8
(n2p21) paths!. The extra factor account

for the uWL8
n u5CL8

(n) possibilities for the other walk.
The desired formula~5.19! then follows from the definition~2.26!, with tm,n

(N) 5um,n
(N) 2um11,n

(N) .
The first few numberstm,n

(N) are listed in the case ofN53 in Table VIII.

VI. CONCLUSION

A. Generalized meanders

In this paper, we have investigated two possible directions of generalization of the not
meander. The first direction, developed in Secs. III and IV, defines the SU(N) meanders of order
Nn as pairs (a,b) of SU(N) walk diagrams ofNn steps; to these objects we have associated
quantity„(a)1 ,(b)1…, namely, the scalar product of the two corresponding basis 1 elements o
ideal I Nn

(N)(b). This quantity, however, has a simple combinatorial interpretation only in
SU~2! case, where it relates directly to the number of connected components of the meand@see
Eq. ~2.11!#. Unfortunately, we have not yet been able to find a good combinatorial interpret
for N>3, such as formulations as~polymer or membrane! folding problems, for instance. We
intend to return to this aspect in a later publication.

The second possible direction, developed in Sec. V, would rather define meanders as p
couplesof open SU(N) walk diagrams ofn steps ending at some weightLPP1 , the Weyl
chamber of sl(N). Remarkably, the two pictures coincide forN52, thanks to the existence of a
isomorphism between the left idealI 2n

(2)(b)5H2n
(2)(b)e1e3•••e2n21 and the Temperley–Lieb

algebraHn
(2)(b). Schematically, this is due to the two equivalent formulations of a walk diag

of order 2n as a pathaPW2n
2 from the origin 1 to itself, or the pair formed by its first and seco

halves~respectively, a path ofn steps, say from the origin 1 to the weightm, and from the weight
m to the origin 1!, which, up to reversal of the second half, form a pair (a8,b8)PWm

n . This breaks
down for N>3, as in the pair (a8,b8)PWL

n the ‘‘return path’’ b8 has to be described in th
reverse order, fromL t to r t5r, and we cannot identify the pair with a walk diagram of 2n steps,
starting and ending at the originr ~there will be, in general, a necessary jump fromL to L t, or
alternatively a necessary reversal of all directions onP1 for the return path!.

The results of Secs. III and IV, however, seem to suggest that the first generalization
good one, as the results for the meander determinants take simple generalized forms, wh
could not find for the second generalization of Sec. V.

TABLE VIII. The powerstm,n
(3) of Um in the Hecke meander determinantQn

(3)(b), for n51,2,...,10. The determinant of th
matrix H3

(3)(b) of ~5.8! is read in the third column to beQ3
(3)(b)5U1

5U2
6U3

5U4 .

m\n 1 2 3 4 5 6 7 8 9 10

1 0 1 5 21 85 331 1155 2688 27872 2196 425
2 1 2 6 26 136 774 4599 28 080 174 951 1 108 158
3 1 5 22 102 521 2933 17 872 115 344 774 396
4 1 10 69 424 2528 15 184 93 537 595 602
5 1 17 171 1395 10 305 72 513 499 291
6 1 26 358 3746 33 889 281 728
7 1 37 666 8666 94 096
8 1 50 1137 17 952
9 1 65 1819

10 1 82
11 1
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Generalized semimeanders

The study of the whole Hecke quotientHn
(N)(b) has the advantage of offering a better fram

work to generalize the notion of semimeander, introduced in Refs. 7, 8, and 18. The or
~multicomponent! semimeander problem is that of enumerating the topologically inequiva
configurations of a~several! non-self-intersecting loop~s!, crossing a half-line throughn given
points. Any such configuration is called a~multicomponent! semimeander of ordern. In compari-
son with the meander case, the novelty is that loops can freely wind around the origin
half-line. The winding number is then defined as the minimal number of intersections that w
be created by replacing the half-line with a line, plus one~this one was not added in the definitio
of the winding used in Ref. 7; it permits us, however, to present a more unified notion
discussing generalizations!. Considering that the line separates the semimeander into an uppe
lower ‘‘open’’ arch configuration, it is easy to interpret any semimeander with windingm as a pair
of open walk diagrams of ordern ending at the weightm, or equivalently with a basis 1 elemen
of the Temperley–Lieb algebraHn

(2)(b), corresponding to a walk diagram of order 2n with
middle weightln5m.

This suggests the following generalization of semimeanders. We will call SU(N) semimean-
der of ordern with winding LPP1 any pair of open walk diagramsa,bPWL

n . The semimeande
matrix for ordern and windingL is then defined, using the basis 1 ofHn

(N)(b) described in Sec.
V, as the Gram matrix with entries

@H L
~n!~b!#a,b5Tr„~a,b!1…, a,bPWL

n . ~6.1!

Note that whenL5r ~only possible if the ordern is of the formNk for some integerk!, this
matrix is identical to the SU(N) meander matrix~4.17!, which suggests the interpretation of
semimeander with windingr as a meander. This is, of course, a consequence of the identific
Wr

Nk.WNk
(N) between the open walk diagrams ending at the origin and the walk diagrams o

same order.
In Ref. 12, we have derived a simple formula for the determinant of these matrices,

N52. The strategy used was again a direct orthogonalization of the basis 1 of the corresp
vector space, leading to a basis 28 strictly distinct from the restriction of the basis 2 ofHn

(2)~b!. In
the generalN>3 case, we expect the determinant of~6.1! to still be given by some simple produc
formula involving the Chebyshev polynomials~2.14!.
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Higher symmetries and exact solutions of linear
and nonlinear Schro ¨ dinger equation

W. I. Fushchycha) and A. G. Nikitin
Institute of Mathematics, National Academy of Sciences of Ukraina,
3 Tereshchenkivska Street, Kyiv-4, Ukraina

~Received 13 June 1995; accepted for publication 14 July 1997!

A new approach for the analysis of partial differential equations is developed which
is characterized by a simultaneous use of higher and conditional symmetries.
Higher symmetries of the Schro¨dinger equation with an arbitrary potential are
investigated. Nonlinear determining equations for potentials are solved using re-
ductions to Weierstrass, Painleve´, and Riccati forms. Algebraic properties of higher
order symmetry operators are analyzed. Combinations of higher and conditional
symmetries are used to generate families of exact solutions of linear and nonlinear
Schrödinger equations. ©1997 American Institute of Physics.
@S0022-2488~97!03110-1#

I. INTRODUCTION

Higher order symmetry operators~SOs! have many important applications in modern ma
ematical physics. These operators correspond to hidden symmetries of partial differential
tions, including Lie–Ba¨cklund symmetries,1,2 as well as super- and parasupersymmetries.3–7

Higher order SOs can be used to construct new conservation laws which cannot be fo
the classical Lie approach.3,8 These operators are applied to separate variables.9 Moreover, one
should use SOs whose order is higher than the order of the equation whose variab
separated.10

In the present paper we investigate higher order SOs of the Schro¨dinger equation, which are
‘‘non-Lie symmetries.’’8,11 The simplest non-Lie symmetries are considered in detail and
related SOs are explicitly calculated. The potentials admitting these symmetries are fou
solutions of the corresponding nonlinear compatibility conditions. It is shown that the higher
SOs extend the class of potentials which were previously obtained in the Lie symmetry an

Algebraic properties of higher order SOs are investigated and used to construct exact so
of the linear and related nonlinear Schro¨dinger equations. We propose a new method to gene
extended families of exact solutions by using both the conditional symmetries8,12–14 and higher
order SOs.

The Schro¨dinger equation with a time-independent potentialV5V(x) is studied mainly.
Time-dependent potentialsV5V(t,x) are discussed briefly in Sec. VI. By this, we recover the
result15 connected with the Lax representation for the Boussinesq equation, and generate
other nonlinear equations admitting this representation.

The distinguishing feature of our approach is that coefficients of symmetry operators a
corresponding potentials are defined as solutions of differential equations which can eas
generalized to the case of multidimensional Schro¨dinger equation contrary to the method
inverse scattering problem.

This paper continues~and in some sense completes! our works16–18where non-Lie symmetries
of the Schro¨dinger equation were considered. A detailed analysis of higher symmetries of m
dimensional Schro¨dinger equations will be a subject of our subsequent paper.

a!Deceased.
0022-2488/97/38(11)/5944/16/$10.00
5944 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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II. SYMMETRY OPERATORS OF THE SCHRÖDINGER EQUATION

Let us formulate the concept of higher order SO for the Schro¨dinger equation

LC~ t,x!50, L5 i ] t2H,
~2.1!

H5 1
2~2]x

21U~x!!, ] t[
]

]t
, ]x[

]

]x
.

In every sense of the word, a SO of equation~2.1! is any ~linear, nonlinear, differential,
integro-differential, etc.! operatorQ transforming solutions into solutions. Restricting ourselves
linear differential operators of finite ordern we representQ in the form

Q5(
i 50

n

~hi•p! i , ~hi•p! i5$~hi•p! i 21 ,p%, ~hi•p!05hi , ~2.2!

wherehi are unknown functions of (t,x), $A,B%5AB1BA, p52 i ]x .
Operator~2.2! includes no derivatives w.r.t.t which can be expressed as1

2(p21U) on the set
of solutions of Eq.~2.1!.

Definition:8 Operator~2.2! is a SO of ordern of equation~2.1! if

@Q,L#50. ~2.3!

Remark:The more general invariance condition3 @Q,L#5aQL, whereaQ is a linear operator,
reduces to relation~2.3! if L and Q are operators defined in~2.1!, ~2.2!. Terms proportional to
i (]/]t) cannot appear as a result of commutation ofQ andL; hence, without loss of generality
aQ50.

For n51,2 SOs~2.2! reduce to differential operators of the first order and can be interpr
as generators of the invariance group of the equation in question. Forn.2 these operators~which
we call higher order SO! correspond to non-Lie8,11 symmetries.

The Lie symmetries of equation~2.1! were described in Refs. 19-21 The general form
potentials admitting nontrivial~i.e., distinct from time displacements! symmetries is as follows:

U5a01a1x1a2x21
a3

~x1a4!2 , ~2.4!

where a0 ,...,a4 are arbitrary constants. No other potentials admitting local invariance gr
exist.

Group properties of equation~2.1! with potentials~2.4! were used to solve the equatio
exactly, to establish connections between equations with different potentials, to separate va
etc.9 Unfortunately, all these applications are valid for a very restricted class of potentials giv
formula ~2.4!.

The class of admissible potentials can be essentially extended if we require that equatio~2.1!
admits higher order SOs.17 The problem of describing such potentials~and the corresponding SOs!
reduces to solving operator equations~2.2!, ~2.3!. Evaluating the commutators and equating t
coefficients for linearly independent differentials we arrive at the following system of determ
equations~which is valid forarbitrary n!:5
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]xhn50, ]xhn2112] thn50,

]xhn2m12] thn2m112Sk50
~n22!/2~21!k

2~n2m1212k!!

~2k11!! ~n2m11!!
hn2m12k12]x

2k11U50,
~2.5!

] th01Sp50
~n21!/2~21!p11h2p11]x

2p11U50,

wherem52,3,...,n, and@y# is the entire part ofy.
Formulas~2.5! define a system of nonlinear equations inhi and U. For n52 the general

solution forU is given by formula~2.4!.
Let us consider the casen53, which corresponds to the simplest non-Lie symmetry, in m

detail. The corresponding system~2.5! reduces to

h3850, h2812ḣ350, 2ḣ21h1826h3U850, ~2.6a!

2ḣ11h0824h2U850, h˙02h1U81h3U-50, ~2.6b!

where the dots and primes denote derivatives w.r.t.t andx, respectively.
Excludingh0 from ~2.6b! and using~2.6a! we arrive at the following equation:

F~a,b,c;U,x![aU992~2äx216aU1c22ḃx!U926~2äx1aU82ḃ!U8

212äU22~2] t
4ax222b̂x1 c̈!50, ~2.7!

wherea,b,c are arbitrary functions oft.
Equation~2.7! is nothing but the compatibility condition for system~2.6!. If the potentialU

satisfies~2.7! then the corresponding coefficients of the SO have the form

h35a, h2522ȧx1b, h15g116aU,
~2.8!

h052
4

3
âx312b̈x222ċx24ȧw14~b22ȧx!U1d,

where

g152äx222ḃx1c, w5*U dx, u5w8, d5d~ t !. ~2.9!

III. EQUATIONS FOR POTENTIAL

Equation~2.7! was obtained earlier17 ~see Ref. 22! and, moreover, particular solutions forU
were found.17 Here, we analyze this equation in detail.

First of all, let us reduce the order of equation~2.7!. Integrating it twice w.r.t.x and choosing
the new dependent variablew defined in~2.9! we obtain

a@w-23~w8!2#2~g1w!85 1
3] t

4ax42 2
3b̂x31 c̈x21dx1e. ~3.1!

Using the fact thatw depends onx only while a,b,c,d, e are functions oft, it is possible to
separate variables in~3.1!. Indeed, dividing any term of~3.1! by aÞ0, differentiating w.r.t.t and
integrating overx we obtain the following consequence:

ġ1a2g1ȧ

a2 w5] t

1

a S 1

15
] t

4ax52
1

6
b̂x41

1

3
c̈x21

1

2
dx21ex1 f D . ~3.2!
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Consider equation~3.2! separately in two following cases:

ġ1a2g1ȧÞ0, ~3.3a!

ġ1a2g1ȧ50. ~3.3b!

Let condition~3.3a! be valid. Then dividing the l.h.s. and r.h.s. of~3.2! by ] t(g1 /a) we come
to the following general expression forw:

w5a3x31a2x21a1x1a05
a4

x1a5
1

b1x1b2

x21gb3x1b4
, ~3.4!

wherea0 ,...,a5 , b1 ,...,b4 are constants.
It is possible to verify by a straightforward but cumbersome calculation that relation~3.4! is

compatible with~3.1! only for b15b250. We will not analyze solutions~3.4! inasmuch as they
correspond to potentials~2.4! and to SOs which are products of the usual Lie symmetries.19–21

If condition ~3.3a! is valid, we obtain from equation~3.2!

ä5ak1 , ḃ5k2a, c5k3a, ~3.4!

wherek1 ,k2 ,k3 are arbitrary constants. The corresponding equation~3.1! reduces to

w-23~w8!22~G9w!852k1G1k4x1k5 , ~3.5!

where

G5 1
6k1x42 1

3k2x31 1
2k3x2, G95g152k1x222k2x1k3 , ~3.6!

k4 andk5 are constants.
Let us prove that, up to equivalence, equation~3.5! can be reduced to one of the followin

forms:

U923U213v150, ~3.8a!

U923U228v2x50, ~3.8b!

~U923U2!822v3~xU812U !50, ~3.8c!

w-23~w8!222v4~x2w!85
1

3
v4

2x41v5 , U5w8, ~3.8d!

wherev1 ,...,v5 are arbitrary constants. Indeed, by using invertible transformations

w→w1C1x1C2 , x→x1C3 , ~3.9!

whereCk(k51,2,3) are constants, it is possible to simplify the r.h.s. of~3.5!. These transforma-
tions cannot change the order of polynomialG, and so there exist four nonequivalent possibiliti

k150, k250, k450, ~3.10a!

k150, k250, k4Þ0, ~3.10b!

k150, k2Þ0, ~3.10c!
J. Math. Phys., Vol. 38, No. 11, November 1997
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k1Þ0. ~3.10d!

Setting in~3.9!

C152 1
6k3 , C25C350, k52 1

12k3
25v1 , ~3.11a!

C152 1
6k3 , C250, C352

k5

k4
1

k3
2

12k4
, k458v2 , ~3.11b!

C15
k4

4k2
, C25

k5

2k2
1

3k4
2

32k2
3 1

k3k4

8k2
2 , C35

k3

2k2
1

3k4

4k2
2 , k252v3 , ~3.11c!

C152
1

6
k31

k2
2

12k1
, C252

k4

4k1
2

k2k3

6k1
1

k2
3

24k1
2 ,

C35
k2

2k1
, k15v4 , k52

k3
2

12
1

k2k4

2k1
1

k2
2k3

3k1
2

k2
4

16k1
2 5v5 , ~3.11d!

for cases~3.10a!–~3.10d! correspondingly, we reduce~3.5! to one of the forms,~3.8a!–~3.8d!
respectively.

From ~2.2!, ~2.8!, ~3.4!, ~3.9!–~3.11! we find the corresponding symmetry operators

Q5p31 3
4$U,p%[2pH1 1

2Up1 i
4U8, ~3.12a!

Q5p31 3
4$U,p%2v2t, ~3.12b!

Q5p31
3

4
$U,p%1v3~ tH2 1

4$x,p%!, ~3.12c!

Q65
1

A24
Fp36

i

4
v$$x,p%,p%1

1

4
$3w82v2x2,p%6

i

2
vS w12xw82

v2

3
x3D Gexp~6 ivt !,

v5A2v4, ~3.12d!

whereU andw are solutions of~3.2! andH is the related Hamiltonian~2.1!.
Thus, the Schro¨dinger equation (2.1) admits a third-orderSO if potential U satisfies one o

the equations (3.8). The explicit form of the corresponding SOs is present in~3.12!.

IV. ALGEBRAIC PROPERTIES OF SOs

Let us investigate algebraic properties of SOs defined by relations~3.12!. We shall see that
these properties are predetermined by the type of equations~3.8! satisfied byU. By direct calcu-
lations, using~2.3!, ~2.1!, and~3.12!, we find the following relations:

@Q, H#50, ~4.1a!

Q258H32
3

2
v1H2

C

8
~4.1b!

if the potential satisfies equation~3.8a!. @C is the first integral of equation~3.8a!, refer to~5.1!#;

@Q, H#5 iv2I , @Q, I #5@H, I #50 ~4.2!
J. Math. Phys., Vol. 38, No. 11, November 1997
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if the potential satisfies equation~3.8b!;

@Q, H#52 iv3H ~4.3!

if the potential satisfies equation~3.8c!, and

@H, Q6#56vQ6 , ~4.4a!

@Q1 , Q2#5vS H21
1

48
~2v21v5! D ~4.4b!

if the potential satisfies~3.8d!.
It follows from ~4.1!–~4.3! that non-Lie SOsQ and HamiltoniansH form consistent Lie

algebras which can have rather nontrivial applications.
Formula~4.1b! presents an example of the general theorem23,24 stating that commuting ordi-

nary differential operators are connected by a polynomial algebraic relation with constant c
cients. In Sec. VII we use relations~4.1! to integrate the related equations~2.1!.

Relations~4.2! define the Heisenberg algebra. The linear combinationsa65(1/&)(H6 iQ)
realize the unusual representation of creation and annihilation operators in terms of third
differential operators.

In accordance with~4.3!, Q plays a role of dilatation operator which continuously chang
eigenvalues ofH. Indeed, let

HCE5ECE , ~4.5!

then the functionC85exp(ilQ)CE ~wherel is a real parameter! is also an eigenvector of th
HamiltonianH with the eigenvaluelE.

It follows from ~4.4! that for v4,0 the operatorsQ1 and Q2 are raising and lowering
operators for the corresponding Hamiltonian. In other words, ifCE satisfies~4.5! thenQ6CE are
also eigenfunctions of the Hamiltonian which, however, correspond to the eigenvaluesE6v

H~Q6CE!5~E6v!~Q6CE!. ~4.6!

Relations~4.6! are typical for creation and annihilation operators of the quantum oscilla
This observation shows a way for constructing exact solutions of the Schro¨dinger equation whose
potential satisfies relation~3.8d!. Moreover, relations~4.4a! allow Q to be interpreted as a cond
tional symmetry;8,12 such symmetries are of particular interest in the analysis of partial differe
equations.14,25,26 Thus third-order SOs of equation~2.1! generate algebras of certain intere
Moreover, algebraic properties of these SOs are the same for wide classes of potentials de
by one of equations~3.8!.

V. REDUCTION OF EQUATIONS FOR POTENTIALS

Let us consider equations~3.8! in detail and describe the corresponding classes of poten
A solution of some of these nonlinear equations is a complicated problem which, however, c
simplified by using reductions to other well-studied equations.

A. The Weierstrass equation

Formula ~3.8a! defines the Weierstrass equation whose solutions are expressed via
elementary functions or via the Weierstrass function, depending on values of the parameterv1 and
the integration constant. Here, we represent these well-known solutions~refer, e.g., to the classic
monograph of Whittaker and Watson27! in the form convenient for our purposes.

Multiplying the l.h.s. of~3.8a! by U8 and integrating we obtain
J. Math. Phys., Vol. 38, No. 11, November 1997
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1
2~U8!22U313v1U5C, ~5.1!

whereC is an integration constant which appeared above in~4.1b!. Then by changing roles o
dependent and independent variables it becomes possible to integrate~5.1! and to findU as an
implicit function of x. We will distinguish five qualitatively different cases

C224v1
350, C.0, ~5.2a!

C224v1
350, C,0, ~5.2b!

C5v150, ~5.2c!

C224v1
3,0. ~5.3a!

C224v1
3.0. ~5.3b!

For ~5.2a!–~5.2c!, solutions of~5.1! can be expressed via elementary functions, while~5.3a,b!
generate solutions in elliptic functions.

For our purposes, it is convenient to transform~5.1! to another equivalent form. Using th
substitution

U5V2
m

2
, ~5.4!

wherem is a real root of the cubic equation

m323v1m1C50, ~5.5!

we obtain

1
2~V8!22V32v̄0V214v̄1V18v̄0v̄150, ~5.6!

wherev̄05 3
2m and v̄15 3

4(v12m2) are arbitrary real numbers.
The substitution~5.4!, ~5.5! transforms conditions~5.2!, ~5.3! to the following form:

v̄1~v̄12v̄0
2!250, v̄0,0, ~5.7a!

v̄1~v̄12v̄0
2!250, v̄0.0, ~5.7b!

v̄1~v̄12v̄0
2!250, v̄050, ~5.7c!

v̄1~v̄12v̄0
2!Þ0, v̄1.0, ~5.8a!

v̄1~v̄12v̄0
2!Þ0, v̄1,0. ~5.8b!

If relations~5.7a! are satisfied, thenv̄15v̄0
2 or v̄150. Moreover, the corresponding solution

for V differ by a constant shift:V→V12v̄0 , v̄0→v̄0/2. Without loss of generality we restric
ourselves to the former case, then solutions of equation~5.6! corresponding to conditions~5.7a–c!
have the following forms:

V5n2@2 tanh2~n~x2k!!21#, v̄052 1
2n

2, v̄15 1
4n

4, ~5.9a!

V5n2@2 coth2~n~x2k!!21#, v̄052 1
2n

2, v̄15 1
4n

4, ~5.9a8!
J. Math. Phys., Vol. 38, No. 11, November 1997
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V5n2@2 tan2~n~x2k!21!#, v̄05 1
2n

2, v̄15 1
4n

4, ~5.9b!

V5
2

~x2k!2 . ~5.9c!

Here,k andn are arbitrary real numbers.
For the cases~5.8! the general solution of~5.1! has the form

V52`~x2k!1 1
2m ~5.10!

where` is a two-periodic Weierstrass function, which is meromorphic on all the complex p
The invariants of this function areg252 4

3(v̄0
213v̄1) andg352 4

27v̄0(v̄0
229v̄1). Moreover, if

condition ~5.8a! holds, the corresponding solutions are bounded and can be expressed v
elliptic Jacobi functions

V5B cn2~Dx1k!1F, ~5.11a!

where

B5~e32e2!, D5A~e12e3!/2, F5e2 ~5.11b!

e1.e2.e3 are real solutions of the cubic equation from the r.h.s. of~5.6!.
We note that formulas~5.9! present the set of well-known potentials which correspond to

exactly solvable Schro¨dinger equations.28 In accordance with the above, these equations ad
extended Lie symmetries.

B. Painlevé and Riccati equations

Relation~3.8b! defines the first Painleve´ transcendent. Its solutions are meromorphic on all
complex plane but cannot be expressed via elementary or special functions.

Equation~3.8c! is more complicated. However, by using the special change of variables
applying the Miura29 ansatz, we shall reduce it to the Painleve´ form also. Indeed, making the
following change of variables:

U52A3 v3
2

6
V, x52A3 1

6v3
y, ~5.12!

we obtain

V-1VV82 1
3xV82 2

3V50, V85]V/]y. ~5.13!

The ansatz

V5W82 1
6W

2 ~5.14!

reduces~5.13! to

~]y2 1
3W!~W-2 1

6W
2W82 1

3yW82 1
3W!50.

Equating the expression in the second brackets to zero and integrating it we come
second Painleve´ transcendent

W95 1
18W

31 1
3yW1K, ~5.15!

whereK is an arbitrary constant.
J. Math. Phys., Vol. 38, No. 11, November 1997
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To make one more reduction of equation~3.8c! we takeU5w8. Then, integrating the result
ant equation, we obtain

w-23~w8!222v3~xw!85C. ~5.16!

Then, defining

w52A3 2v3j1
1

4
y21

C

2v3
, y5A3 2v3x,

Ŵ5j82j22
1

2
y, j85

]j

]y
~5.17!

we represent~5.16! as

Ŵ924j8Ŵ12jŴ82yŴ50. ~5.18!

The trivial solutions of~5.18! correspond to the following Riccati equation forj:

j82j22 1
2y50. ~5.19!

It follows from the above that any solution of equations~5.15! or ~5.19! generates a potentia
U defined by relations~5.12!, ~5.14!, or ~5.17!. The corresponding Schro¨dinger equation admits a
third-order SO.

The last of the equations considered, i.e., equation~3.8d!, is the most complicated. The chang

w52 f 2 1
3v4x3 ~5.20!

reduces it to the following form:

f-26~ f 8!214v4~ f 8x22x f !5v41 1
2v5 . ~5.21!

Multiplying ~5.21! by f 9 and integrating we obtain the first integral

1
2~ f 9!222~ f 8!312v4~ f 2x f8!22~v41 1

2v5! f 85C ~5.22!

which is still a very complicated nonlinear equation.
Let us demonstrate that~5.21! can be reduced to the Riccati equation. To realize this

rewrite ~5.21! as follows:

F912 f F824 f 8F5 1
2v52v4 , ~5.23!

where

F5 f 82 f 22v4x2.

Choosingv552v4 we conclude that any solution of the Riccati equation

f 85 f 21v4x2 ~5.24!

generates a solution of equation~3.8d!, given by relation~5.20!.
One more possibility in solving of equation~3.8d! consists in its reduction to the Painlev´

form. Making the change of variablesw5A2w4x, x5(1/A2v4)y and differentiating equation
~3.8d! w.r.t. y, we obtain
J. Math. Phys., Vol. 38, No. 11, November 1997
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~Ũ923Ũ2!91~6Ũ16xŨ812Ũ9!54x2, ~5.26!

whereŨ5(]x/]y)52(1/v4)U.
Using the following generalized Miura ansatz.

Ũ52V81V212Vy1y221, ~5.27!

we reduce equation~5.26! to the form

]y~]y22V22y22!~V-26V2V824V2212yVV824yV24V8y222V8!50.

Equating the expression in the right brackets to zero, integrating and dividing it by 2V, we
come to the fourth Painleve´ transcendent

V95
V82

2V
1

3

2
V318yV21~2y221!V1

b

V
. ~5.28!

We note that the double differentiation and consequent change of variables

w852Av4

3 S F1
1

6
y2D , x5

1

A4 4v4

y

transform equation~3.8d! to the form

]4F1F9F1F8F82 1
3~8F1x2F917xF8!50

which coincides with the reduced Boussinesq equation.3,14 The procedures outlined above reduc
the equation either to the fourth Painleve´ transcendent~5.28! or to the Riccati equation~5.24!.

Thus, the third-order SOs are admitted by a very extended class of potentials described
We should like to emphasize that in general the corresponding Schro¨dinger equation does no
possesses any nontrivial~distinct from time displacements! Lie symmetry.

VI. EQUATIONS FOR TIME-DEPENDENT POTENTIALS

Consider briefly the case of time-dependent potentialsU5U(x,t). The determining equation
~2.6! are valid in this case also. Moreover, the compatibility condition for system~2.6! takes the
form

F~a,b,c;x,U !112aÜ24~b22ȧx!U̇850 ~6.1!

whereF(a,b,c;x,U) is defined in~2.7!.
Equation~6.1! is much more complicated than~2.7! due to the time dependence ofU, which

makes it impossible to separate variables. For any fixed set of functionsa(t), b(t), and c(t),
formula ~6.1! defines a nonlinear equation for potential. Moreover, any of these equations a
the Lax representation

@H, Q#5 i
]Q

]t
, ~6.2!

cf. ~2.3!. Refer to Refs. 30, 31 for the general results connected with arbitrary ordinary differe
operators satisfying~6.2!.

We will not analyze equations~6.1! here, but present a few simple examples concern
particular choices of arbitrary functionsa, b, andc.
J. Math. Phys., Vol. 38, No. 11, November 1997
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a5const,b5c50:

212Ü1U9926~UU8!850; ~6.3!

a,b are constants,c50:

12Ü2~4bU̇2U-16UU8!850; ~6.4!

ȧ5c50, ḃ5v3a:

12Ü24~v3t22x!U̇81~U923U2!912v3~xU812U !850; ~6.5!

a5exp(t), b5c50:

12Ü18xU̇81~U92U2!9212~Ux!822x2U924x250. ~6.6!

Formula~6.3! defines the Boussinesq equation. The Lax representation~6.2! for this equation
is well known.15 Formulas~6.4!–~6.6! present other examples of nonlinear equations admit
this representation and arise naturally under the analysis of third-order SOs of the Schro¨dinger
equation.

VII. EXACT SOLUTIONS

Let us regard the case of potentials satisfying~3.8a! or ~5.4!, ~5.6!. Taking into account
commutativity of the corresponding SO~3.12a! with Hamiltonian~2.1! it is convenient to search
for solutions of the Schro¨dinger equation in the form

C~ t,x!5exp~2 iEt !c~x!, ~7.1!

wherec(x) are eigenfunctions of the commuting operatorsH andQ

Hc~x!5Ec~x!, ~7.2a!

Qc~x!5lc~x!. ~7.2b!

Using ~7.2a!, ~3.12a!, and~5.4! we reduce~7.2b! to the first-order equation

S 2E1
V

2
1v̄0Dc85S 1

4
V81 il Dc ~7.3!

whose general solution has the form

c5AAV14E12v̄0 expS 2ilE dx

V14E12v̄0
D , ~7.4!

whereA is an arbitrary constant. Then, expressingc8 via c in accordance with~7.3! and using
~5.6!, we reduce~7.2a! to the followingalgebraic relation forE andl @compare with~4.1b!#:

l258E2~E1v̄0!. ~7.5!

Thus there exists a remarkably simple way to integrate the Schro¨dinger equation which admits
a third-order SO. The integration reduces to the problem of solving the first-order ordinar
ferential equation~7.3! and algebraic equation~7.5!.
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



s

ily

,

d in

-

il the

5955W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions

                    
Let us show that the existence of a third-order SO for the linear Schro¨dinger equation enable
one to find exact solutions for the followingnonlinearequation:

i ] tC̃5
1

2
p2C̃1

1

2A2 ~C̃* C̃!C̃. ~7.6!

Indeed, ifl2.0, solutions~7.1!, ~7.4! satisfy the following relations:

C* C5A2~V14E12v̄0!. ~7.7!

Using ~7.2a! and ~7.7! we make sure that the functions

C̃5exp~ i et !c~x!, e523E2v̄0 ~7.8!

@wherec(x) are functions defined in~7.4!# are exact solutions of~7.6!.
Thus we obtain a wide class of exact solutions of the nonlinear Schro¨dinger equation, which

depend on arbitrary parameterse, v̄0 , v̄1 , k @see~7.8!, ~7.4!, ~5.6!, ~5.8!#. Properties of these~and
some more general! solutions are discussed in the following section.

VIII. LIE SYMMETRIES AND GENERATION OF SOLUTIONS

It is well known that equation~7.6! is invariant under the Galilei transformations~refer, e.g.,
to Refs. 2, 3!

x→x85x2vt,

C~ t,x!→C8~ t,x8!5expF i S vx2
v2

2
1w0D GC~ t,x!, ~8.1!

wherev andw0 are real parameters. Using~8.1! it is possible to generate a more extended fam
of solutions starting with~7.8!

C̄5AAV~x2k2vt !14E12v̄0

3 expH i F ~2e2v2!
t

2
1vx1w012lE

0

x2k2vt dy

V~y!14E12v̄0
G J . ~8.2!

Here,V is an arbitrary solution of equation~5.6!, v, v̄0 , v̄1 , k, w0 andE are real parameters
l ande are defined in~7.5!, ~7.8!.

In order forl to be real we requiree>0, other parameters are arbitrary.
Solutions~8.2! are qualitatively different for different values of free parameters enumerate

~5.7!. If v̄0 and v̄1 satisfy ~5.7a! or ~5.7c!, possibleV are given by formulas~5.9a!, ~5.9a8! or
~5.9c!. Solutions~8.2!, ~5.9a! are bounded for anyx and t, whereas solutions~8.2!, ~5.9a8! and
~8.2!, ~5.9c! are singular atx2k2vt50. For v̄0 and v̄1 satisfying ~5.7b! the modulus of the
complex function~8.2!, ~5.9b! is periodic and singular atx2k2vt5(2n11)p/2n. All the above
mentioned singularities are simple poles. Ifv̄0 andv̄1 satisfy relations~5.8a!, the solutions~8.2!
are expressed via the two-periodic Weierstrass function` @refer to ~5.10!# and are, generally
speaking, unbounded. But if we restrict ourselves to solutions~5.11! for potential, the correspond
ing solutions~8.2! are periodic and bounded.

To inquire into a physical content of the obtained solutions let us consider in more deta
cases~8.2!, ~5.9a! and ~8.2!, ~5.11!.

For potentials~5.9a! the corresponding relation~7.5! reduces to
J. Math. Phys., Vol. 38, No. 11, November 1997
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l254E2e, e52E2n2, ~8.3!

and the integral in~8.2! can be easily calculated. This enables us to represent solutions~8.2!,
~5.9a! as follows:

C̃5
An

cosh@n~x2k2vt !#
expH i F S n22v2

2 D t1vx1w0G J , E50; ~8.4!

C̃5A$n tanh@n~x2k2vt !#6 iAe%expH i F S n22v2

2
23ED t1~v7Ae!x1w0G J , EÞ0, e>0.

~8.5!

For potentials~5.11! we obtain from~8.2!

C̃5C̃15AAB cn@D~x2vt !1k#exp@ i f 1~ t,x!#, E50; ~8.6!

C̃5C̃25AAB cn2@D~x2vt !1k#1F exp~ i f 2~ t,x!#, E1v̄050, ~8.7!

where

f 1~ t,x!5 f 2~ t,x!1
3

2
Ft5S F2

v2

2 D t1vx1w0 ,

B, D, andF are parameters defined in~5.11b!.
For other values ofE solutions~8.2!, ~5.11! are also reduced to the form~8.7! where the phase

f 2(t,x) is expressed via elliptic integrals.
Formula~8.4! presents a fast decreasing one-soliton solution.31 Relation~8.5! defines a soliton

solution whose behavior atx→` is typical of solitons with a finite density. Formulas~8.6!, ~8.7!
describe ‘‘cnoidal’’ solutions for the nonlinear Schro¨dinger equation.

IX. CONDITIONAL SYMMETRY AND GENERATION OF SOLUTIONS

Let us return to the linear Schro¨dinger equation~2.1! with the potentialU satisfying~3.8a!.
Generally speaking it possesses no nontrivial~distinct from time displacements! Lie symmetry.
Nevertheless, its solutions can be generated within the framework of the concept of cond
symmetry.2,3,12,14,32Indeed, these solutions satisfy~7.7!, and equation~2.1! with the additional
condition~7.7! is invariant under the Galilei transformations~8.1! @i.e., condition~7.7! extends the
symmetry of equation~2.1!#.

This conditional symmetry enables us to generate new solutions. Starting with~7.1!, ~7.4! and
using ~8.1! we obtain

C5AAV~x2k2vt !14E12v̄0

3expH i F2~2E1v2!
t

2
1vx1w012lE

0

x2k2vt dy

V~y!14E12v̄0
G J . ~9.1!

Functions~9.1! satisfy the Schro¨dinger equation with a potentialV(x2k2vt), whereV(x) is
a solution of equation~5.6!. In the particular caseE52v̄0/2 these functions are reduced
solutions~8.2! of the nonlinear equation~7.6!.

One more generation of solutions can be made using a third-order SO. Inasmuch asV(x)
satisfies~5.6!, thenV(x2vt) satisfies the Boussinesq equation~6.3!. It means that the correspond
ing linear Schro¨dinger equation admits a third-order SO. In accordance with~2.2!, ~2.6! this SO
can be represented in the form
J. Math. Phys., Vol. 38, No. 11, November 1997
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Q5p31 1
4$3V12v̄016v2,p%1 3

2vV

[2pH1 1
2~V12v̄016v2!p1 3

2vV1 i
4V8. ~9.2!

Formula~9.2! generalizes~3.12a! to the case of time-dependent potential.
Acting by operator~9.2! on C in ~9.1! we obtain a new family of solutions

C85QC5ac1 iv2C1 , ~9.3!

wherea5l14Ev1v̄0v24v3, C is the initial solution~9.1!,

C15
V814il

2~4E1V12v̄0!
C. ~9.4!

We note that ifC is a soliton solution

C5
nA

cosh@n~x2vt !#
expF i S 2

v2

2
t1vx1w0D G ~9.5!

@the corresponding potential is present in~5.9a!#, then~9.4! is a soliton solution too:

C15
n2A sinh@n~x2vt !#

cosh2@n~x2vt !#
expF i S 2

v2

2
t1vx1w0D G . ~9.6!

Starting with the potential~5.11! we obtain from~9.1! a particular solution

C5AAB cn2z1F expF i S 2
v2

2
t1vx1w0D G , z5D~x2vt !. ~9.7!

The corresponding generated solution~9.4! reads

C152
ABD cn z sn z dn z

B cn 2z12F
expF i S 2

v2

2
t1vx1w0D G . ~9.8!

and is also bounded.
Acting by SO~9.2! on solutions~9.3!, ~9.8! we again obtain new solutions. Moreover, th

procedure can be repeated. In particular, in this way it is possible to construct multisoliton
tions of the linear Schro¨dinger equation.

We see that higher order SOs present efficient possibilities for solving equations of m
and generating new solutions starting with known ones.

X. CONCLUSION

Higher order SOs present a powerful tool for analyzing and solving the Schro¨dinger equation.
The concept of higher symmetries enables us to extend the class of privileged potentials~2.4! and
to investigate invariance algebras of the equations whose potentials satisfy one of relation~3.8!.

We note that potentials~5.9! can be represented in the formV5W21W8, where W
5n tanh@n(x2k)# for solution ~5.9a! ~superpotentialsW for solutions~5.9a!–~5.9c! can also be
easily calculated#. Moreover, the corresponding superpartnersṼ5W22W8 reduce to constants
therefore it is possible to integrate easily the Schro¨dinger equation with potentials~5.9! using the
Darboux transformation.33

It is worth noting that invariance condition~2.3! for operators~2.1!, ~3.12! can be treated as
zero curvature condition for equations associated with the eigenvalue problem for operatorQ, or
J. Math. Phys., Vol. 38, No. 11, November 1997
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as the Lax condition where a role of the Lax operatorL is played by a SO, refer to~6.2!. The
reasons stimulating our research of such a well-studied subject and distinguishing features
approach are the following:

~1! The main goal of our paper is to present a constructive description of potentials fo
Schrödinger equation which admit higher symmetries. In this way we extend the fundam
results19–21 connected with the search for potentials admitting usual Lie symmetries.

To solve the deduced determining equations for potentials we use direct reductions
Painlevéor Riccati forms. The obtained results can be used for analysis and solution o
Schrödinger equation as well as for construction of exact solutions of the Boussinesq equatio
item 5 in the following.

In the method of inverse problem, description of pairs of operators~2.1!, ~2.8! satisfying the
Lax condition~6.2! is reduced to the Gelfand-Marchenko-Levitan equations34 or to the Riemann
problem15,31 which can be solved explicitly for a restricted class of potentials.

~2! We use non-Lie symmetries of the Schro¨dinger equation for construction and generati
of exact solutions. Moreover, we are interested not so much in findingnew solutionsas in devel-
oping anew methodof their derivation, which consists in simultaneous using of higher order
conditional symmetries. Nevertheless, the cnoidal solutions~9.7!, ~9.8! and ~8.6!, ~8.7! for the
linear and nonlinear Schro¨dinger equations can be of interest for physicists as well as infi
series of soliton and cnoidal solutions generated by a repeated application of the proced
scribed in Sec. IX.

We believe that the combination ‘‘higher order symmetries1conditional symmetries’’ may be
used effectively in the investigations and analysis of other equations of mathematical phys

~3! Our approach admits a direct generalization to multidimensional Schro¨dinger equations.
Note that higher symmetries of the three-dimension Schro¨dinger equation were investigated
Refs. 18, 35 for particular potentials.

~4! Algebraic relations~4.1!–~4.4! are valid for extended classes of potentials. They o
additional possibilities in the application of algebraic methods to investigate the Schro¨dinger
equation, in particular, the use of raising and lowering operators for this equation with pote
satisfying~3.8d!. We note that relations~3.8d! are valid also for time-independent operatorsQ̃6

5exp(7ivt)Q6 , whereQ6 are given by relations~3.12d!.
~5! Equations~3.8! which describe potentials that admit third-order symmetries are equiva

to the reduced versions of the Boussinesq equation, which appear under the similarity redu36

@this is the case for~3.8a,d!# and the reduction with using symmetries14,25,26@the last is valid for
~3.8b,c!#. Thus the results obtained in Sec. V can be used to construct exact solutions
Boussinesq equation.

A systematic study of higher symmetries of multidimensional Schro¨dinger equations is
planned to be carried out elsewhere.
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An R-matrix pair (R,Z) solving a system of Yang–Baxter-type equations is needed
to define a quantized braided~matrix! group @L. Hlavaty, J. Math. Phys.35, 2560
~1994!#. It is found that a series of such kind of R-matrix pairs (R(n),Z) (n50,
61,62, . . . ) can beconstructed from a known pair (R,Z), and a series of real-
izations of the quantized braided~matrix! bialgebras A(R(n),Z) in
V(R(n11)) ^ V* (R(n)) can be obtained. Some covariant quantized braided linear
algebras and their transformation properties under the braided coactions of the
quantized braided groupA(R,Z) are considered. Some examples are presented.
© 1997 American Institute of Physics.@S0022-2488~97!02210-X#

I. INTRODUCTION

In quantum theory there are two main sources of noncommutativity: the quantization an
statistics of fields~usually bose or fermi!. Correspondingly, in some sense, the group theory
generalized in two ways in recent years; resulting in the theories of quantum groups1,2,3 and
braided groups,4,5 respectively. Some relations between the quantum groups and braided g
were considered by Majid.6,7 However, Hlavaty8 recently introduced a kind of more gener
algebraic structures called quantized braided groups~QBGs!, which unify the quantum groups an
braided groups and so enable us to study the above mentioned two kinds of noncommutativ
a unified way. In fact, we can say that the QBG is a generalization of the quantum supergro9 by
generalizing the super statistics to the braid statistics.

It is well known that the related linear algebras of the classical and quantum groups are
important for physics and geometry. In this paper, we study the quantized braided linear al
relating to Hlavaty’s matrix QBGsA(R,Z) @here we use the symbolA(R,Z) to take the place of
B(R,Z) in Ref. 8#. We give a kind of realization ofA(R,Z) and discussA(R,Z)-comodule
algebras and the matrix descriptions of their transformation properties. These generalize th
of quantum superspaces and unify the corresponding results associated to the quantum gro
the braided groups.10

In Sec. II, we first give some preliminary concepts about so-called quasi-Hopf algebras
recall the main formulas and symbols of the~matrix! QBGs.8 These are useful later. AnR-matrix
pair (R,Z) solving a system of Yang–Baxter-type equations is needed to defineA(R,Z).8 In Sec.
III, we give a method to construct a series of suchR-matrix pairs (R(n),Z) (n50,61,62, . . . )
from a known pair (R,Z) and then obtain a series of realizations ofA(R(n),Z) in
V(R(n11)) ^ V* (R(n)). In Sec. IV, we first state, in the spirit of Majid,10 the equivalence betwee
the abstract mathematical way of describing braided coactions, etc., and the matrix no
preferred by

a!Address for correspondence.
0022-2488/97/38(11)/5960/8/$10.00
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physicists. Then we consider some covariant quantized braided linear algebras and discu
transformation properties under the braided coactions of the~matrix! QBG A(R,Z). Section V
gives some simple examples and finally, Sec. VI contains some conclusions and discussio

II. QUANTIZED BRAIDED GROUPS

As in the theories of braided groups~see, e.g., Refs. 5, 6, 10!, when studying the QBGs an
their covariant algebras@~co!representations#, etc., we also need the braidingsCA,B :A^ B→B
^ A, . . . between the related algebrasA, B, C, . . . , which obey the rules

CA,B^ C5CA,CCA,B , CA^ B,C5CA,CCB,C ~1!

and the quantum Yang–Baxter equation~the QYBE!

CB,CCA,CCA,B5CA,BCA,CCB,C . ~2!

In general, we haveC2Þ id. The structure of the tensor product algebraA^ B involves the
braidings in such a way that

mA^ B5~mA^ mB!~ id ^ CB,A^ id !, ~3!

wherem is the product in the corresponding algebra. Furthermore,C commutes with maps in the
sense

CA,C +~ id ^ f!5~f ^ id !+CA,B , ;f:B→C. ~4!

Now consider an algebraA over a fieldk such that (A,D,},C) forms a bialgebra with coproduc
D:A→A^ A and co-unit}:A→k, whereA^ A has the tensor product algebra structure with
braidingC satisfying Eqs.~1!–~4!, ~hereB5C5A!, we call such a bialgebraA a quasi-bialgebra.
If, in addition, there exists an antipodeS in A which obeys

Sm5mC~S^ S! ~5!

and the usual axioms such as

m~S^ id !D5h}5m~ id ^ S!D, ~6!

then we callA a quasi-Hopf algebra. In Eq.~4!, h is the unit of algebraA.
We can consider the above bialgebraA as living in some braided monoidal category,11 but

now it, in general, is not necessarily braided-commutative or braided-cocommutative even
with the weaker notion described in Refs. 4, 6, 7. In this sense, the quasi-Hopf algebras intro
above can be thought of as some kind of quantization of the braided groups. So, follo
Hlavaty,8 we also callA a quantized braided group. The more general structures of q
bialgebras~or quasi-Hopf algebras! and their~co!representations in terms of the category theo
will be investigated elsewhere. In the present paper, we focus our attention on the most imp
class of QBGs, i.e.,A(R,Z) introduced by Hlavaty8 and their related linear algebras.

For use later, we recall here the concrete definition and related properties of the
A(R,Z).8 Let T5$Tj

i % i , j 51
N be a matrix ofN2 elementsTj

i and R,ZPMN^ MN be two regular
solutions of the QYBEs

R12R13R235R23R13R12, Z12Z13Z235Z23Z13Z12, ~7!

in addition, we also require thatR, Z obey the compatible condition

R12Z13Z235Z23Z13R12, ~8a!
J. Math. Phys., Vol. 38, No. 11, November 1997
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or equivalently

Z12Z13R235R23Z13Z12, ~8b!

then the quantized braided~matrix! groupA(R,Z) is defined as follows:
~1! A(R,Z) is a bialgebra generated byT j

i and 1 with the algebra relations

R12Z12
21T1Z12T25Z21

21T2Z21T1R12, ~9!

coproduct and co-unit

D~Tj
i !5T k

i
^ T j

k , }~T j
i !5d j

i , ~10!

and the braidings

Z12
21T1Z12T2 :5C~Z12

21T1Z12T2!5T2Z12
21T1Z12. ~11!

Here we have used the concise and convenient notations about the braidings used by Majid
10, i.e., omit writing the tensor product and use ‘‘:5’’, ‘‘ 5:’’ to stand for the braidingC and the
inverse braidingC21, respectively. We will use these notations throughout this paper and
their rationality in Sec. IV.

~2! There is an antipodeS obeying the usual axioms such as@in Eq. ~6!#

S~T!T5TS~T!5I , S~1!51 ~12!

and extending from the generators by the rule~5!.
If A(R,Z) satisfies only the condition~1!, we call it a quantized braided matrix bialgebra.
The above mentioned QBGs contain the ordinary quantum groups and braided groups

kinds of special cases:8 WhenZ5I or Z5R while R is any regular solution of the QYBE,A(R,Z)
is reduced to the ordinary quantum group or braided group, respectively.

III. SERIES OF R-M PAIRS AND REALIZATIONS OF THE RELATED QBGs

From Sec. II, it can be seen~for details, see Ref. 8! that a pair ofR-matrices (R,Z) obeying
the set of Yang–Baxter-type equations~7! and~8! is very important for constructing and studyin
the theory of QBGs. This is just as aR-matrix in the theory of quantum groups.

Definition 1: Let R,Z be two matrices satisfying the set of equations~7! and ~8!, then the
ordered pair (R,Z) is called an R-M pair if bothR andZ are regular.

However, we find that, if we have an R-M pair (R,Z), then we can obtain a series of R-M
pairs.

Lemma 1:If ( R,Z) is an R-M pair andR(n)5(ZP)nR(Z21P)n, then (R(n),Z) is also an R-M
pair for each integern50,61,62, ... . WhereP is the usual permutation matrix.

Proof: We first prove that (R(1),Z) and (R(21),Z) both are R-M pairs. Since the fact tha
under the condition of the lemma, bothPR(1)P andPR(21)P are solutions of the QYBE has bee
pointed out by Hlavaty in Ref. 8, here we only need to prove that (R(21),Z) and (R(21),Z) both
satisfy Eq.~8!. This can be done by using Eqs.~7!, ~8!, and their equivalent forms. For exampl
from Eq. ~8a! and the regularity ofZ we have

Z21R12Z13Z235Z21Z23Z13R12⇒~Z12R21Z21
21!Z21Z23Z135Z12Z13Z23R21⇒~Z12R21Z21

21!Z13Z23Z21

5Z23Z13Z12R21⇒R12
~1!Z13Z235Z23Z13R12

~1! .

The others are similar.
Repetitions of the above process give the conclusion of the Lemma. h
J. Math. Phys., Vol. 38, No. 11, November 1997
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By using Lemma 1, from a known R-M pair (R,Z), we can obtain a series of R-M pair
(R(n),Z) and then construct a series of quantum braided matrix bialgebras~or groups! A(R(n),Z).
Now we give a kind of related realizations ofA(R(n),Z). To do this, recall that8 for a QBG
A(R,Z), the quantized braided covector and vector spaces

V* ~ f 8~R̂!!5k^xi& i 51
N /$x1x22x1x2~ f 8~R̂!!12%,

~13!

V~ f 9~Ř!!5k^vi& i 51
N /$v1v22~ f 9~Ř!!12v1v2%

are covariant under the coactions ofA(R,Z) with the braidings

T1x1 :5x2Z12
21T1Z12, Z12

21T1Z12v2 :5v2T1 . ~14!

Where f 8(R̂)2I and f 9(Ř)2I are singular nonzero polynomials ofR̂5PR and Ř5RP,
respectively.13 To construct directly realizations ofA(R,Z), we selectf 8(t)5 f 9(t)5lt(lPk,
lÞ0), and denoteV* (R)[V* (lR̂), V(R)[V(lŘ), and so

V* ~R~n!!5k^xi
~n!& i 51

N /$x1
~n!x2

~n!2x2
~n!x1

~n!lR12
~n!%,

V~R~n!!5k^v~n!i& i 51
N /$v1

~n!v2
~n!2lR12

~n!v2
~n!v1

~n!%. ~15!

From these spaces we have
Theorem 1: The assignmentT(n)5v(n11)x(n) ~i.e., Tj

(n) i5v(n11)ixj
(n)! with braidings

x1
~n!x2

~m! :5x2
~m!x1

~n!Z12, v1
~n!v2

~m!:5Z12v2
~m!v1

~n!,
~16!

x1
~n!Z12v2

~m!:5v2
~m!x1

~n!, v1
~n!x2

~m!:5x2
~m!Z12

21v1
~n! n,m50,61,62, . . .

is a realization of the quantized braided matrix bialgebraA(R(n),Z), i.e., gives an algebra homo
morphism A(R(n),Z)→V(R(n11)) ^ V* (R(n)) for any n50,61,62,... . Here ^ denotes the
braided tensor product with braidings in~16!.

Proof: The braidings in~16! are consistent with the other related structures due to the fact
every R-M pair (R(n),Z), n50,61,62,... has the sameZ. The realization can be verified a
follows: From Eqs.~15! and ~16! we have

R12
~n!Z12

21v1
~n11!x1

~n!Z12v2
~n11!x2

~n!:5R12
~n!Z12

21v1
~n11!v2

~n11!x1
~n!x2

~n!

5R12
~n!Z12

21l21~R21
~n11!!21v2

~n11!v1
~n11!x2

~n!x1
~n!lR12

~n!

5R12
~n!Z12

21~Z21R12
~n!Z12

21!21v2
~n11!v1

~n11!x2
~n!x1

~n!R12
~n!

5:Z21
21v2

~n11!x2
~n!Z21v1

~n11!x1
~n!R~n!.

Moreover, from Eqs.~16! and~1!, the braidings betweenv(n11)x(n), V* (R(n)), V(R(n)) are fully
consistent with Eqs.~11! and ~14!. h

Thus, from a series ofV* (R(n)), V(R(n)), we obtain a related realization series ofA(R(n),Z).
WhenZ5I , or Z5R, the relations betweenR(n) andR become trivial and the result of Theore
1 is reduced, respectively, to the realizations of the ordinary~unbraided! quantum groups or
~unquantized! braided groups given by Majid in Ref. 10.

IV. QUANTIZED BRAIDED LINEAR ALGEBRAS AND THEIR TRANSFORMATIONS

In this section, we consider the transformation properties of so-called quantized braided
algebras under the braided coactions of the matrix QBGsA(R,Z); we give the matrix description
J. Math. Phys., Vol. 38, No. 11, November 1997
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which is preferred by physicists. First, we state the equivalence between the standard mat
cal way of describing braided coactions, etc., and the matrix notations. Following the sp
Majid,10 we have~without proofs!

Lemma 2:Let A be an algebra withN2 generators~written as a matix! T5(Ti
j ) and 1.

Suppose that}(Ti
j )5d i

j extends multiplicatively to a map}:A→k. Let DTi
j5Ti

k^ Tj
k and

d(1)51^ 1 with braiding relationsC(TI
^ TJ)5CJ

K
I
LTK

^ TL. Where the capital lettersI , J,
etc., stand for double indices, i.e.,I 5( i 0 ,i 1), TI5Ti 0

i 1
, etc., as in Ref. 5,CJ

K
I
LPk, and the

braided tensor productA^ A has the algebra structure as in Eq.~3!. Then (A,},D) is a quasi-
bialgebra~defined in Sec. II! is equivalent to the statement: IfT, T8 are two identical sets o
generators ofA with relationsT8ITJ5CJ

K
I
LTKT8L, thenT95TT8 is also a realization ofA. h

Lemma 3:~a! Let A be a matrix quasi-bialgebra as in Lemma 2, andV* an algebra withN
generatorsx5(xi) and 1. Defineb(xi)5xj ^ Tj

i and b(1)51^ 1 with braiding relationsC (1)

3(TI
^ xj )5C (1)

l
j
I
Kxl ^ TK, whereC (1)

l
j
I
KPk. Thenb makingV* a ~braided! comodule algebra

is equivalent to the statement: WheneverT is a copy of the generators ofA, x a copy of those of
V* with relationsTIxj5C (1)

l
j
I
KxlT

K, thex85xT5(xjT
j
i) is a realization ofV* .

~b! Let A be a matrix quasi-Hopf algebra~as in Lemma 2 but with an antipodeS, cf., Sec. II!
andV an algebra generated byN generatorsV5(vi) and 1. WriteT215S(T) and defineb(vi)
5C (2)(T

21i
j ^ vj ), b(1)51^ 1, where the braidingC (2) is C (2)(T

21I
^ vk)5C (2)l

k
J
I vl

^ T21J,
C (2)lJ

kIPk. Then,b makingV a right ~braided! comodule algebra is equivalent to the stateme
WheneverT is a copy of the generators ofA, v a copy of those ofV with relations vkT21I

5(C (2)
21)k

l
I
JT

21Jvl , thenv85T21v is a realization ofV.
~c! Let A be a matrix quasi-Hopf algebra~as above! and B an algebra generated byN2

generatorsb5(bi
j ) and 1. Defineb(bi

j )5C (3)(T
21

k
i
^ bk

l)(1^ Tl
j ) andb(1)51^ 1 with braid-

ing relationsC (3)(T
I
^ bJ)5C (3)

J
K

I
LbK

^ TL, C (3)
J
K

I
LPk. Considering Eqs.~4!–~6!, then b

makesB a right ~braided! comodule algebra iff the following holds: WheneverT is a copy of the
generators ofA, b a copy of those ofB with relationsTIbJ5C (3)

J
K

I
LbKTL, thenb85T21bT is

a realization ofB. h

Now we consider the case ofA5A(R,Z)—the Hlavaty’s QBGs with R-M pair (R,Z)’s. Ref.
8 contains two typical and important examples of~braided! A(R,Z)-comodule algebras given b
Eqs.~13! and~14!, which are, respectively, of typeV* andV of Lemma 3~a!, ~b!. In the following,
we give an example of typeB of Lemma 3~c!, which combines the above mentioned two examp
in some sense.

Proposition 1:Define algebraB( f (R)) to be generated by generatorsU5(Ui
j ) and 1 obeying

relations

f ~Ř!12U1R12U25U1R12U2f ~R̂!12, ~17!

where f (t) is a polynomial of its independent variablet, then the assignmentU85T21UT with
braidings

Z12
21T1Z12U2 :5C~3!~Z12

21T1Z12U2!5U2Z12
21T1Z12 ~18!

makesB( f (R)) into a right ~braided! A(R,Z)-comodule algebra as in Lemma 3~c!.
Proof: First, Eq.~9! and the relationP f(Ř)5 f (R̂)P give

f ~R̂!12Z12
21T1Z12T25Z12

21T1Z12T2f ~R̂!12,
~19!

f ~Ř!12Z21
21T2Z21T15Z21

21T2Z21T1f ~Ř!12.

In addition, we noted that the meaning ofT21UT is preciselyC (3)(T
21U)T by definition ~cf.,

Ref. 10! and becauseT, U live in different algebras, there is no danger of confusingC (3) with
C (3)

21. Thus, for simplicity, we further suppress the :5distinction and have
J. Math. Phys., Vol. 38, No. 11, November 1997
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f ~Ř!12U18R12U285 f ~Ř!12T1
21U1T1R12T2

21U2T2

5 f ~Ř!12T1
21U1Z21

21T2
21Z21R12Z12

21T1Z12U2T2

5 f ~Ř!12T1
21Z21

21T2
21Z21U1R12U2Z12

21T1Z12T2

5T1
21Z21

21T2
21Z21f ~Ř!12U1R12U2Z12

21T1Z12T2

5T1
21Z12

21T2
21Z21U1R12U2f ~R̂!12Z12

21T1Z12T2

5T1
21Z12

21T2
21Z21U1R12U2Z12

21T1Z12T2f ~R̂!12

5T1
21U1Z21

21T2
21Z21R12Z12

21T1Z12U2T2f ~R̂!12

5T1
21U1T1R12T2

21U2T2f ~R̂!125U18R12U28 f ~R̂!12,

therefore,U8 is a realization ofB( f (R)). In the above calculations we have used Eqs.~9!, ~17!,
~18!, ~4!, ~5!, ~6!, and ~19! to the underlined parts in each expression to obtain the next exp
sion. h

When takingf (t)5t, the cases ofZ5I andZ5R of the proposition are reduced to the resu
of Eqs. 10 about the ‘‘similarity’’ coaction of quantum groupA(R) on the braided matrix algebr
and the adjoint coaction of the matrix braided group on itself, respectively.

V. EXAMPLES

In this section, we give some simple examples of realizations and covariant algeb
A(R,Z) in the two-dimension case.

For a suitable normalization, we take an R-M pair (R,Z) as8:

R5S 1 0 0 0

0 p 12pq 0

0 0 q 0

0 0 0 1

D , Z5S r 0 0 0

0 u 0 0

0 0 v 0

0 0 0 w

D . ~20!

From Eqs.~9! and ~11!, the correspondingA(R,Z) generated by

T5S a b

c dD
obeys the algebra relations

ab5p
v
r

ba, ac5q
r

v
ca, pda5pad1~12pq!

r

v
cb,

~21!

p
w

u
bc5q

r

v
cb, qdb5

w

u
bd, pdc5

u

w
cd,

and the braiding relations

C~e^f!5f^e, C~f^e!5e^f, if eP$a,d%, f P$a,b,c,d,%,

~22!
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C~b^b!5
rw

uv
b^b, C~b^c!5

uv
rw

c^b, C~c^b!5
uv
rw

b^c, C~c^c!5
rw

uv
c^c.

In the following, we denote this concrete quantized braided matrix bialgebra byA1(R,Z).

A. Realization

From Eqs.~15! ~with l51!, V* (R) andV(R(1)) are generated byx5(x1,x2) and

V~1!5S v~1!1

v~1!2D
with algebra relations

x1x25px2x1, v~1!1v~1!25
u

v
qv~1!2v~1!1, ~23!

respectively. According to Theorem 1, we obtain a realization ofA1(R,Z) in V(R(1)) ^ V* (R) as

S a b

c dD 5S v~1!1x1 v~1!1x2

v~1!2x1 v~1!2x2
D ~24!

with braiding relations

x1x1:5rx1x1, x1x2:5ux2x1, x2x1:5vx1x2, x2x2:5wx2x2,

v~1!1v~1!1:5rv~1!1v~1!1, v~1!1v~1!2:5uv~1!2v~1!1, v~1!2v~1!1:5uv~1!1v~1!2,

v~1!2v~1!2:5wv~1!2v~1!2, x1v
~1!1:5r 21v~1!1x1, x1v

~1!2:5u21v~1!2x1,

x2v
~1!1:5v21v~1!1x2, x2v

~1!2:5w21v~1!2x2, v~1!1x1:5r 21x1v
~1!1,

v~1!1x2:5u21x2v
~1!1, v~1!2x1:5v21x1v

~1!2, v~1!2x2:5w21x2v
~1!2.

By using Eqs.~3! and~1!, it can be verified directly that the realization~24! is fully consistent with
Eqs.~21!, ~22!, and~14!.

B. The A 1„R,Z…-comodule algebra B „R…

From Eqs.~17! ~with f (t)5t! and ~20!, ~18!, the correspondingB(R) generated by

U5S h k

m nD
obeys algebra relations

hk5pqkh, mh5pqhm, nh5hn, nk5kn1~12pq!hk,
~25!

mk1~12pq!hn5km1~12pq!h2, mn5nm1~12pq!mh,

and braiding relations withA1(R,Z):

ef:5fe, if eP$a,d%, fP$h,k,m,n,%, or fP$h,n%,eP$a,b,c,d%,

~26!
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bk:5
rw

uv
kb, bm:5

uv
rw

mb, ck:5
uv
rw

kc, cm:5
rw

uv
mc.

Now suppose that there is an antipodeS in A1(R,Z) and denote

SS a b

c dD 5S ã b̃

c̃ d̃
D

~there is no need for the concrete expressions a,̃ b̃, c̃, d̃ here!; then from Eqs.~1!, and~3–6!, we
can verify directly that

S h8 k8

m8 n8
D 5S ã b̃

c̃ d̃
D S h k

m nD S a b

c dD 5S ãha1ãkc1b̃ma1b̃nc ãhb1ãkd1b̃mb1b̃nd

c̃ha1c̃kc1d̃ma1d̃nc c̃hb1c̃kd1d̃mb1d̃nd
D

is consistent with Eqs.~25! and ~26!.

VI. CONCLUSIONS AND DISCUSSIONS

For Hlavaty’s quantized braided matrix bialgebraA(R,Z), we have given its realization
A(R,Z)→V(R(1)^ V* (R) and, furthermore, the realizationsA(R(n),Z)→V(R(n11)) ^ V* (R(n))
via a series of R-M pairs (R(n),Z) obtained from (R,Z). Then we studied various covarian
algebras ofA(R,Z) such asV* ( f 8(R̂)), V( f 9(Ř)) andB( f (R)) @especiallyB( f (R))# and some
properties of theirs. These unify and generalize the corresponding results of the quantum
and braided groups.10 More general and more abstract structures and properties of the QB
terms of category theories will be considered in further works.

The examples in Sec. V are some simple applications of the results given in the pre
sections. Other kinds of examples corresponding to diagonalZ and specifiedR(q) have been
considered in detail in Ref. 13.
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The Darboux system: Finite-rank constraints and Darboux
transformations

Francisco Guil and Manuel Mañasa)

Departamento de Fı´sica Teo´rica, Universidad Complutense, E28040-Madrid, Spain

~Received 3 January 1997; accepted for publication 7 May 1997!

The exponential solutions of the Darboux equations for conjugate nets is consid-
ered. It is shown that rank-one constraints over the right derivatives of invertible
operators on an arbitrary linear space give solutions of the Darboux system, which
can be understood as a vectorial Darboux transformation of the exponential back-
ground. The method is extended further to obtain vectorial Darboux transforma-
tions of the Darboux system. ©1997 American Institute of Physics.
@S0022-2488~97!00210-7#

I. INTRODUCTION

This paper is devoted to the analysis of the Darboux equations for conjugate nets a
relation with certain finite-rank constraints on elements in the group GL(V). The exponential
solutions of these equations are deformed, through the mentioned connection, to new soluti
a byproduct we obtain vectorial Darboux transformations for the Darboux equations for con
nets.

In the context of differential geometry the Darboux equations describe conjugates nets
N-dimensional surface as is explained in Ref. 1. This fact explains its relevance in this disc
and its appearance in classical texts on the subject; see, for example, Refs. 2 and 3. In int
system theory a matrix version of it was proposed and solved by Zakharov and Manakov i
4. The Darboux equations for conjugate nets appear also as the first flow in theN-component
Kadomtsev–Petviasvili hierarchy. The Darboux equations are associated with theN-wave inter-
action~see Ref. 5! and, in particular, for triply orthogonal systems, to the equations describing
resonant interaction of three waves6–10 which has been widely applied in the context of flu
dynamics, nonlinear optical phenomena,11 and plasma physics12 ~see Refs. 13 and 14!.

Given N(N21) functions$pi j % i , j 51,...,N
iÞ j

depending onN curvilinear coordinatesx1 ,...,xN ,

the Darboux system is

]kpi j 1pikpk j50, for distinct i , j ,k51,...,N, ~1!

where] i :5]/]xi . These equations are the compatibility conditions for the linear system

] jFi1pi j F j50, for iÞ j , ~2!

or for the dual linear system forF̃ i , i 51,...,N,

] j F̃ i1pji F̃ j50, for iÞ j . ~3!

Equations~1! have two obvious symmetries. First, we consider changes in the amplitude
action in the moduli space is

pi j ~x1 ,...,xN!°exp „ai~xi !2aj~xj !…pi j ~x1 ,...,xN! ~4!

a!Electronic mail: manuel@dromos.fis.ucm.es
0022-2488/97/38(11)/5968/8/$10.00
5968 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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for arbitrary functionsai(xi), i 51,2,...,N. Another symmetry is a scaling transformation defin
by any set of nonzero numbers$si% i 51,2,...N as

pi j ~x1 ,...,xN!°sisj pi j ~x1 /s1
2,...,xN /sN

2 ! ~5!

that provides an action on the solution space.
In this paper a special role will be played by the exponential solutions of the Dar

equations~1!,

pi j
~0!~x1 ,...,xN!5l i j expS 2(

kÞ i
xkmki1(

kÞ j
xkmk j D , ~6!

wherel i j andm i j are subject to

l i j ~mki2mk j!5l iklk j , ~7!

for i , j ,k51,...,N and different.
Observe that there is a compatibility condition over the amplitudesl i j , namely

l i j l jklki1l iklk jl j i 50, ~8!

for all i , j ,k different, and if thel’s do not vanish this equation itself gives the possiblel’s that
when plugged into Eq.~7! give the differencesmki2mk j . That only the differences are fixed is
consequence of the symmetry of the Darboux system defined in~4!. Indeed, given an exponentia
solution with parameters$l i j ,m i j %, then the set$l i j ,m i j 1ai% defines another possible expone
tial solution @here we have taken the functionsai(xi)5aixi#. Observe also that Eqs.~7! are
invariant under the substitution$l i j ,m i j %°$sisjl i j ,si

2m i j %, a consequence of the symmetry tran
formation ~5!.

The motivation of this paper comes from our previous work.15–18 The main idea in it is to
consider rank-one constraints on the right derivatives of certain invertible operators. Thi
done in Ref. 15 for the Kadomtsev–Petviashvili equation and extended to the Davey–Stew
equations in Refs. 16 and 18. In Ref. 17 we studied a deformation of the dromion solution o
arising naturally from our method. In connection with this we mention Refs. 19–22, where
torial Darboux transformations for the Davey–Stewartson, nonlinear Schro¨dinger, multidimen-
sional quadrilateral lattices, and Manin–Radul super Korteweg–de Vries equation were
respectively; in Ref. 23 the Wronskian scheme, appearing as a byproduct of our work on D
Stewartson II, was used to give a detailed analysis of interesting novel solutions of this equ

Section II is devoted to the study of these rank-one constraints, which in this case ar
nected with the exponential solutions of~1!. Next, in Sec. III we show that the solutions obtain
in Sec. II generalize to a deformation of the exponential solutions. This motivates a fu
extension in Sec. IV where a vectorial Darboux transformation for the Darboux system is g
For any solution we consider vector solutions of the associated Lax pairs in terms of whic
construct Grammian-type determinants that allow us to give large families of new solutions

II. RANK-ONE CONSTRAINTS AND THE DARBOUX SYSTEM

In this section we shall show how invertible operators can give solutions to the Dar
system given by Eqs.~1!. Consider a functionc(x1 ,...,xN) of the N variables$x1 ,...,xN% taking
values on GL(V), the set of invertible operators on some complex linear spaceV. On this function
we impose some differential constraints, namely its right derivatives are of the following fo

] ic•c215Ai1ei ^ a i , i 51,...,N, ~9!
J. Math. Phys., Vol. 38, No. 11, November 1997
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whereAi are constant operators onV, e1 ,...,eN are N independent constant vectors onV, and
a i(x1 ,...,xN) takes values on the set of linear functionals overV, the dual space of covectors,V* .
Now, we must take care of the compatibility conditions for Eqs.~9!. In order to have a set o
closed conditions we require the following.

~i! The operatorsAi must commute among them.
~ii ! The image of the operatorAi when acting on the vectorej , iÞ j , must be expanded byei

andej :

Aiej5l i j ei1m i j ej , iÞ j .

The coefficientsl i j and m i j are not completely free, indeed there is a further compatib
condition:@Ai , Aj #ek50 for i , j ,k different. This condition is just Eq.~7!. Concrete realizations o
such operators are easily constructed in any spaceV although we do not need the explicit form o
them. The compatibility conditions arising from the rank-one constraints for the right deriva
of c are

~] j2m j i !a i1p i j a j1a iAj50, ~10!

where

p i j :5l i j 1^a i ,ej&.

The contraction of Eq.~10! with the vectorek , kÞ i , j , gives

~] j1m jk2m j i !p ik1p i j p jk50,

and these equations can be simplified by defining

pi j :5exp S 2(
kÞ i

xkmki1(
kÞ j

xkmk j Dp i j ,

to obtain Eqs.~1! for the functionspi j .
Therefore, we have shown how rank-one constraints over the right derivatives of an inve

operator give rise to solutions of the Darboux system which in turn implies that solving
constrained system allows us to find solutions of the Darboux.

To construct suitable operatorsc we introduce the following linear functionals onV:

b i :5exp S 2(
kÞ i

xkmkiDa ic,

so that (] i2Ai)c5exp ((kÞi xkmki)ei ^bi and the compatibility conditions@] i2Ai ,] j2Aj #c50
read

] jb i1pi j
~0!b j50, iÞ j , ~11!

with pi j
(0) as given in Eq.~6!.

We also introducec0 :5exp ((ixiAi), w:5c0
21

•c, and

bi :5exp S (
kÞ i

xkmkiDc0
21ei .

Then, the rank-one conditions~9! on the right derivatives ofc determine that
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



in the

5971F. Guil and M. Mañas: The Darboux system and finite-rank constraints

                    
] iw5bi ^ b i . ~12!

Conversely, given operatorsAi as prescribed before and the related objectsc0 andbi , as well
as solutionsb i to Eq. ~11!, we can integrate Eq.~12! and then obtainc5c0•w as required.

Summarizing, we can construct solutions of the Darboux system~1! as follows:
Theorem 1: Given N commuting operators A1 ,...,AN on a complex linear space V,N inde-

pendent linear vectors e1 ,...,eN , such that

Aiej5l i j ei1m i j ej , iÞ j ,

for iÞ j , wherel i j andm i j satisfy

~mki2mk j!l i j 5l iklk j ,

with i, j ,k51,...,N different, we define the N vector functions

bi5exp S (
kÞ i

xkmkiDc0
21ei , i 51,...,N,

wherec05exp ((ixiAi) and the linear covector functionsb i , i 51,...,N, subject to

] jb i1pi j
~0!b j50, iÞ j ,

with pi j
(0)5l i j exp (2(kÞi xkmki1(kÞj xkmkj). If we define an invertible operatorw by the compat-

ible equations

] iw5bi ^ b i ,

then the functions

pi j :5pi j
~0!1^b i ,w21bj& ~13!

solve the Darboux system

] j pik1pi j pjk50.

Notice the different role played by theb’s and theb’s. Theb i are simply solutions of Eq.~11!
while the definition of thebi is given in terms of theAi and the vectorsei . Nevertheless, both
need the coefficients$l,m% defined by Eqs.~7!. However, one can show that in fact theb’s do
satisfy analogous equations to those defining theb’s, namely

] jbi1pji
~0!bj50, ~14!

which can be considered adjoint to~11!.
We can also seek wave functions solving the Lax pair or its dual for the solutions given

previous theorem:
Proposition 1: The functions

Fi5b iw
21,

F̃ i5w21bi ,

satisfy Eqs. (2) and (3), respectively, where the expression for pi j is given in (13).
The proof is just a simple check. First take the derivative with respect toxj to Fi
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] jFi5~] jb i !w
212Fi~] jw•w21!,

then use Eqs.~11! and~12! to evaluate the derivatives ofb i andw and to obtain Eq.~2! with pi j

defined in~13!. For F̃ i we proceed in an analogous manner:

] j F̃ i52~w21
•] jw!F̃ i1w21] jbi ,

but now we need Eqs.~14! and ~12!.

III. DEFORMATIONS OF THE EXPONENTIAL SOLUTIONS FOR THE DARBOUX
SYSTEM

Equations~14! do not characterize theb’s, but one can easily show that in order to constr
solutions of the Darboux system we only need solutions of the linear Eqs.~14! and~11!. Suppose
that we havebi , i 51,...,N, vector functions satisfying Eqs.~14!; b i , i 51,...,N, linear functionals
that are solutions of Eqs.~11!; w a solution of~12!; and definepi j as in ~13!. Then, we can
evaluate the derivative ofpi j with respect toxk to obtain

]kpi j 5~2mki1mk j!l i j exp S 2(
kÞ i

xkmki1(
kÞ j

xkmk j D
1^]kb i ,w21bj&2^b i ,w21~]kw!w21bj&1^b i ,w21]kbj&,

and, using Eqs.~7!, ~11!, ~14!, and~12!, we find out

]kpi j 52pik
~0!pk j

~0!2pik
~0!^bk ,w21bj&2pk j

~0!^b i ,w21bk&2^b i ,w21bk&^bk ,w21bj&52pikpk j ,

as desired.
Moreover, we can construct wave functions and its adjoints as before.
Summarizing,
Theorem 2: (i) Given $l i j ,m i j % i , j 51iÞ j ,..., N,C subject to

~mki2mk j!l i j 5l iklk j , i , j ,k51,...,N and distinct,

the exponential solutions of the Darboux system (1) are

pi j
~0!5l i j exp S 2(

kÞ i
xkmki1(

kÞ j
xkmk j D .

~ii ! Deformations of the exponential solutions are constructed as follows: Take vector
tions bi(x1 ,...,xN)PV, i 51,...,N, where V is a complex linear space, solutions of

] jbi1pji
~0!bj50,

define covectorsb i(x1 ,...,xN)PV* , i 51,...,N, subject to

] jb i1pi j
~0!b j50, iÞ j ,

and integrate the compatible equations

] iw5bi ^ b i .

Then the set of functions
J. Math. Phys., Vol. 38, No. 11, November 1997
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pi j :5pi j
~0!1^b i ,w21bj&

solves

] j pik1pi j pjk50.

The functions Fi5b iw
21, which are V* -valued, and F̃i5w21bi , which are V-valued functions

satisfy the linear equations

] jFi1pi j F j50,

] j F̃ i1pji F̃ j50,

the Lax pairs (2) and (3), respectively.
The solution shown in part~ii ! is a deformation of the exponential solutionspi j

(0) of ~i! because
they are a particular case ofpi j when bi50 and b i50, i 51,...,N. Thus, these exponentia
solutions can be considered as the starting solutions we dress in terms of which we obt
families of solutions described above, and hence as our vacuum solutions.

Observe that in the previous section we found explicit solutions, theb’s for the associated
linear system. Theb’s can be taken in a similar way. This is quite convenient if one want
compute the deformation of the exponential background. The solutions to the linear syste
already provided, which is the main drawback of Darboux transformations to solve the asso
linear system for nonzero backgrounds.

IV. VECTORIAL DARBOUX TRANSFORMATIONS FOR THE DARBOUX SYSTEM

Darboux transformations were first considered by Moutard and Darboux.24,25 Here we extend
the results of Darboux to a vectorial Darboux transformation of the Darboux system.

For a given solutionpi j of Eqs. ~1! and a complex linear spaceV we consider solutions
bi(x1 ,...,xN)PV, i 51,...,N, andb i(x1 ,...,xN)PV* , i 51,...,N, of

] jbi1pji bj50,

] jb i1pi j b j50.

By virtue of the previous linear systems the following equation holds:

] j~bi ^ b i !5] i~bj ^ b j !.

This implies the existence of a local potential, sayw, such that

] jw5bi ^ b i .

As the operatorw is defined up to a constant, we suppose that it can be chosen to be inve
w(x1 ,...,xN)PGL(V). With this operator we construct new functionsb̂i and b̂ i as follows:

b̂i :5w21bi and b̂ i :5b iw
21, i 51,...,N.

If we define now

p̂i j :5pi j 1^b i ,b̂ j&5pi j 1^b̂ i ,bj&5pi j 1^b i ,w21bj&5pi j 1^b̂ i ,wb̂ j&,

we immediately see that
J. Math. Phys., Vol. 38, No. 11, November 1997
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] j b̂i1 p̂ j i b̂ j50,

] j b̂ i1 p̂i j b̂ j50

so thatp̂i j is a solution again
Theorem 3: Let pi j be a solution of Eqs. (1) and define bi andb i as solutions of the linear

systems

] jbi1pji bj50,

] jb i1pi j b j50,

with bi , i 51,...,N, taking values in some complex linear space, andb i , i 51,...,N, in its dual. If
w is an invertible solution of the compatible equations

] iw5bi ^ b i ,

then

p̂i j 5pi j 1^b i ,w21bj&

is another solution of Eqs. (1).
Proof: The result follows from the considerations previous to the theorem. Neverthele

direct check is easy:

]kp̂i j 5]kpi j 1^]kb i ,w21bj&2^b i ,w21~]kw!w21bj&1^b i ,w21]kbj&

52pikpk j2pik~ p̂k j2pk j!2~ p̂ik2pik!~ p̂k j2pk j!2pk j~ p̂ik2pik!

52 p̂ikp̂k j .
h

This theorem allows us to deform a given solution by solving the associated linear pro
We see that the solutions are expressed in terms of Grammian determinants of theb’s andb’s.
The functionw can be expressed as

w~x1 ,...,xN!5C1E
g
S (

i 51,...,N
]xibi ^ b i D ,

whereC is any constant operator inV andg is an adequate path inCN with end pointx1 ,...,xN ,
such thatw has a nonvanishing determinant andt5detw is the principal tau function. If we define
the operatorsw i j :5w1bj ^ (b i2d iw), with d i(x1 ,...,xN)PV* such that̂ d i ,bj&5d i j , and de-
note their determinants byt i j 5detwij , the associated tau functions, we arrive at the express
pi j 5t i j /t.

Let us mention that this vectorial Darboux transformation can be obtained through a
V-step interation of a corresponding binary Darboux transformation, this last one being a c
sition of two standard Darboux transformations. For the three-wave resonant interaction a
result can be found in Ref. 26 under the name of Kaup system.
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20M. Mañas, J. Phys. A29, 7721~1996!.
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An explicit construction of Casimir operators
and eigenvalues. I

H. R. Karadayia) and M. Gungormez
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80626, Maslak, Istanbul, Turkey

~Received 3 October 1996; accepted for publication 15 July 1997!

We give a general method to construct a complete set oflinearly independent
Casimir operators of a Lie algebra with rankN. For a Casimir operator of degreep,
this will be provided by an explicit calculation of its symmetric coefficients
gA1 ,A2 ,...,Ap. It is seen that these coefficients can be described by some rational
polynomials of rankN. These polynomials are also multilinear in Cartan sub-
algebra indices taking values from the setI 0[$1,2,...,N%. The crucial point here is
that for each degreeone needs, in general, more than one polynomial. This in
fact is related to an observation that the whole set of symmetric coefficients
gA1 ,A2 ,...,Ap is decomposed into some sub-sets which are in one-to-one correspon-
dence with these polynomials. We call these sub-setsclusters and introduce some
indicators with which we specify different clusters. These indicators determine all
the clusters whatever the numerical values of coefficientsgA1 ,A2 ,...,Ap are. For any
degreep, the number of clusters is independent of rankN. This hence allows us to
generalize our results to any value of rankN. To specify the general framework,
explicit contructions of fourth and fifth order Casimir operators ofAN Lie algebras
are studied and all the polynomials which specify the numerical value of their
coefficients are given explicitly. ©1997 American Institute of Physics.
@S0022-2488~97!03210-6#

I. INTRODUCTION

For a classical or exceptional Lie algebraG, the problem of finding explicit expressions fo
Casimir operators and their eigenvalues is of principal importance both in physics and in
ematics. A Casimir operatorI ~p! of degreep can be expressed by

I ~p![ (
A1<A2<•••<Ap

gA1 ,A2 ,...,Ap sym~TA1
TA2

•••TAp
! ~I.1!

where the sum is over indices taking values from the set

S[$1,2,...,dimG%. ~I.2!

The coefficientsgA1 ,A2 ,...,Ap, can be assumed to be completely symmetric and hencesym~•••!
means complete symmetrization with weight1 for the generatorsTA of G. For aD-dimensional
representation, corresponding eigenvalues can then be expressed by

1

D
Trace„I ~p!…. ~I.3!

The expression~I.1! is in principle due to the Poincare´–Birkhoff–Witt ~PBW! theorem while
~I.3! is a result of the Schur lemma.1 One must note here that~I.1! has an abstract meaning whic

a!Electronic mail: karadayi@sariyer.cc.itu.edu.tr
0022-2488/97/38(11)/5976/15/$10.00
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is valid for any representation ofG whereas~I.3! must be calculated for each representat
separately. In physics literature, there are several works2 dealing with appropriate descriptions o
these two expressions. We also emphasize the works of Okubo and Patera3 concerning a study of
fourth and fifth order Casimirs which we now consider as preliminaries to our work. Extensio
superalgebras are made in some relatively recent works4 and there are recent efforts for genera
zations toq-superalgebras.5 For affine Kac–Moody algebras, an extension of the general
second order Casimir element to higher orders has also been accomplished.6

On the other hand, the results of all these efforts find applications in string theorie
spectacular example is the well-known anomaly cancellation mechanism7 which is based on some
very special nonlinear relationships among eigenvalues~I.3! of operators~I.1!. These were for the
days of first string revolution. In the present days of second string revolution,8 it is seen that all
Casimir invariants are involved in a highly nontrivial way. For instance, the relevant operato
N52 supersymmetric models9 can be expressed in terms of Casimir operators.

Beside applications, it is known2 that a complete knowledge for a Lie algebra can be obtai
with a complete knowledge for all its independent Casimir operators and their eigenvalues. H
for all irreducible representations, an actual calculation of~I.3! is a worthwhile task in principle as
well as in practical applications. To this end, one of the essential problems is to calcula
multiplicity of weights participating in representations and this problem is also at the root of W
character formulas or recursive multiplicity formulas which are due to Freudenthal and Ko
Explicit calculation of traces could still be complicated for irreducible matrix representa
having higher dimensions. This will be considered in the second part of our work which is b
on the mechanism presented in a previous article.10

Another problem appears in the determination of the relationships which are known to
among different Casimir operators of the same Lie algebra. This is indeed a natural problem
one considers that Casimir elements are generally defined on the universal enveloping
with a PBW basis. As is known,1 a PBW basis is formed by monomials constructed from multi
products of Lie algebra generators. It is therefore natural to ask some relationships among
ent Casimir elements if one wants only a finite number of them. One can think such relation
in two ways:

~i! Nonlinear dependences among Casimir elements of different orders,
~ii ! Linear dependences among Casimir elements of the same order.

Due to illuminating works of Borel and Chevalley11 and possibly some others working on grou
cohomologies, the problem~i! has been solved with the calculation ofBetti numbers of topo-
logical spaces formed by group manifolds. These Betti numbers are known, in the same ti
beexponentswhich specify the degrees of Racah invariants.12 The Racah invariants also provid
us a way to determine the Casimir operators which are independent nonlinearly. Grube
O’Raifertaigh13 show us a generalization of these invariants. It is, however, well-known tha
these constructions are not unique, i.e., there could always be some other choices and cle
has to do with~ii !. If one recalls, on the contrary of our choice in~I.1! that Casimir elements ar
in general nonhomogeneous superpositions of PBW monomials, it is seen that this last p
has also some basic features. In two successive works, we will give a unified picture for
problems. ForAN Lie algebras, a general solution to~i! is as in the following.

Let k(p) be the number of linearly independent Casimir operators expressed in thehomoge-
neousform of ~I.1!. Then,

k~p!5the number of partitions of p into all positive integers except 1.

Some examples will be instructive here:

~i! k(4)52 due to 45212,
~ii ! k(5)52 due to 55312,
J. Math. Phys., Vol. 38, No. 11, November 1997
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~iii ! k(6)54 due to 654125313521212,
~iv! k(7)54 due to 755125413531212.

Our solutions for the numerical values of coefficientsgA1 ,A2 ,...,Ap, have the generic form for
p54,5

P parameter~1!1Q parameter~2!. ~I.4!

As will be shown in the following sections, the choice of two free parameters in~I.4! will be made
as being in line with the partitions 45212 or 55312. The coefficientsP and Q are rational
polynomials of rankN and they are also multilinear in Cartan subalgebra indicesi 1 ,i 2 ,...,i p

taking values from the setI0[$1,2,...,N%. It is crucial to note here thatwe always need severalP
and Q polynomials in order to describe the whole set of coefficients gA1,A2,...,Ap. To this end,
we introduce two novel concepts:clusters and indicators. The clusters are defined to be subs
of coefficientsgA1 ,A2 ,...,Ap with the same numerical value and the whole set of these coeffic
has a direct sum decomposition in terms of these clusters. It is seen that a unique polynomiP or
Q can be assigned only to a cluster and hence we need in general more than one polynom
the whole set of coefficients. The indicators, on the other hand, are defined in such a way th
take different values on different clusters and hence they count the number of different clu
The procedure which is introduced by the clusters and indicators works in an independen
from the rankN and this allows us to extend our results for all values of the rankN.

Within the scope of this work, we expose only the results forp54,5. The generalizations
beyondp57 begin to be difficult because the number of indicators increases and at prese
can not be able to find a systematic procedure to determine all the indicators completely.

In Sec. II, we will give some useful notation and introduce some generalized scalar pro
with which we define indicators. Our results for degreesp54,5 will be given respectively in Secs
III and IV. Some features will also be emphasized in the last section.

II. CLUSTERS AND INDICATORS

Let us begin with a detailed description of the generator basisTA for a Lie algebraG
([AN) which is defined by

@TA ,TB#5FAB
C TC . ~II.1!

FAB
C ’s here are structure constants and indicesA,B,C take values from the setS, as in~I.2!. We

assume it has a triangular decompositionS[S1 % S2 % S0 in such a way that

~i! S1[$1,2...12N(N11)%,
~ii ! S2[ 1

2N(N11)% S1 ,
~iii ! S0[N(N11)% I 0 .

For i PI 0 , the generators which correspond to simple rootsa i can be chosen by

ea i
[Ti , f a i

[Ti 1
1
2N~N11! , ha i

[@ea i
, f a i

#5Ti 1N~N11! . ~II.2!

and explicit matrix representations are always exist so that the set$ea i
, f a i

,ha i
,% forms aCheval-

ley basis. For the whole set of generators, one has a similar triangular decompositionG[G1

% G2 % G0 , whereG0 is a Cartan subalgebra andG1 % G0 one of its Borel subalgebras. For th
and other relevant techniques of Lie algebras, we will refer the excellent book of Humphr14

For any irreducible representation specified by a dominant weightL, trace operations can be fixe
by
J. Math. Phys., Vol. 38, No. 11, November 1997
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Trace~TATB!5c2~L!gAB , ~II.3!

wheregAB is Killing–Cartan metric having the explicit matrix formg5diagonal(X,K). Here,X
is a N(N11)3N(N11) dimensional symmetric sub-matrix with non-zero eleme
Xa,a1N(N11)/251 for aPS1 % S2 andK is just the Cartan matrix.c2(L) here is sometimes calle
the second indexand it is normalized by

c2~l i !5Binomial~N21,i 21! ~II.4!

for elementary representations ofAN Lie algebras. Elementary representations are defined t
the ones characterized byfundamental dominant weightsl i which are duals of simple rootsa i .
They consist of only one Weyl orbit and hence exhibit no complications due to multipl
problems encountered in their explicit matrix constructions. The numerical values of stru
constantsFAB

C are also fixed by

FAC
D FBD

C [2~N11!gAB . ~II.5!

Now and then, summation is adopted over the repeated indices. All these completely determ
normalizations for which we use in the explicit construction of matrix representations.

The starting point now is

FAB
$C1gC2•••Cp21%B50 ~II.6!

which is the result of invariance property of Casimir operators. Two-indexed solutions of~II.6! is
just the inversegAB

21[gAB of Killing–Cartan metric. The following properties of coefficien
gA1 ,A2 ,...,Ap would be quite helpful before solving~II.6! explicitly for p>4:

Invariance: gA1 ,A2 ,...,Ap’s are nonzero only for

aA1
1aA2

1•••1aAp
50

wherea I[0 for I PS0 ,
Parity: gA1 ,A2 ,...,Ap[gP(Ap),P(Ap21),...,P(A1), whereaP(A)[2aA ,

Duality: gA1 ,A2 ,...,Ap[(21)sgA1* ,A2* ,...,Ap* , whereaA* is just the conjugate ofaA under dia-
gram automorphism ofAN Lie algebras ands is a real phase which will be specified later,

Weyl symmetry:Let us consider the action of Weyl groupW:Q(aa)[au(a) for all QPW.
Note thatQ is also an automorphism of subsetS1 % S2 . This will give us the possibility to extend
Weyl reflections over the coefficientsga1 ,a2 ,...,ap as in the following natural way:

Q~ga1 ,a2 ,...,ap![gu~a1!,u~a2!,...,u~ap!, a1 ,a2 ,...,apPS1 % S2 . ~II.7!

It could be useful to explain all the notation here with an example. For this, let us con
say,A5 Lie algebra. As is defined above, the generator indices take values from the sets

~i! S1[$1,2,...,15% for positive nonzero roots,
~ii ! S2[$16,17,...,30% for negative nonzero roots,
~iii ! S0[$31,32,...,35% for zero roots.

One has a lexicographical ordering for the composite roots in terms of simple rootsa i( i
51,...,5):

a65a11a2 , a75a21a3 , a85a31a4 , a95a41a5 ,

a105a11a21a3 , a115a21a31a4 , a125a31a41a5 ,

~II.8!
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a135a11a21a31a4 , a145a21a31a41a5 ,

a155a11a21a31a41a5 .

It will be instructive to show here that how invariance, parity, duality and Weyl-symmetry p
erties reduce the number of coefficients before solving them from~II.6!. It is clear, for instance,
that g1,2,3,25fulfills the invariance property while its equivalents are

g1,2,3,25;g10,16,17,18, g1,2,3,25;g3,4,5,27,

due, respectively, to parity and duality properties. It has also several equivalents under the
of Weyl-symmetry. With respect to simple roots ofA5 , its equivalents will be, respectively,

g1,2,3,25;g3,6,16,26, g1,2,3,25;g6,7,17,25,

g1,2,3,25;g1,7,18,21, g1,2,3,25;g1,2,8,28, g1,2,3,25;g1,2,3,25,

due to Weyl-symmetry.
All these properties restrict to some extent the number of coefficientsgA1 ,A2 ,...,Ap which are

unknowns of the equations~II.6! but it is readily seen that there are still a huge number of f
parameters which simply made the generalizations difficult. It is therefore clear that the exi
of clusters formed out of the coefficientsgA1 ,A2 ,...,Ap having the same numerical valueis of
fundamental importance here and our main observation is that they can be determined by
properly chosen indicators. In order to define these indicators for degreesp54,5, we need two
kinds of scalar productsk1 andk2 . First one of these is the usual one

k1~a,b![~aa ,ab!, a,bPS1 % S2 . ~II.9!

For root or weight lattices of classical and exceptional Lie algebras, such a scalar produ
always defined on simple rootsa i by Cartan matrix elementsKi j [2(a i ,a j )/(a j ,a j ). This can
then be extended to the whole root or weight lattice when one recalls that roots areZ-linear and
weights areQ-linear combinations of simple roots.

Our second scalar product is defined by

k2~ i ,a j1•••1a j 1k!5n2 , i , j

k2~ i ,a j1•••1a j 1k!5n0 , j < i< j 1k ~II.10!

k2~ i ,a j1•••1a j 1k!5n1 , i . j 1k.

n1 ,n0 ,n2 here represent three different numbers. A choicen2521, n052, n151 will be made
in following chapters.

III. FOURTH ORDER SOLUTIONS

In Secs. III and IV, we assumea1 ,a2 ,...PS1 % S2 , I 1 ,I 2 ,...PS0 and i 1 ,i 2 ,...PI 0 . It is
now useful to study the whole set of coefficientsgA1 ,A2 ...Ap in the following four sub-classes:

~T~0!! ga1 ,a2 ,a3 ,a4, ~T~1!! ga1 ,a2 ,a3 ,I 1,
~III.1!

~T~2!! ga1 ,a2 ,I 1 ,I 2, ~T~4!! gI 1 ,I 2 ,I 3 ,I 4.

It would be helpful to recall here that indicesa1 ,a2 ,... are fornon-zero roots whileI 1 ,I 2 ,...
correspond to zero roots. Such a classification could therefore be considered to be suita
J. Math. Phys., Vol. 38, No. 11, November 1997
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cause, as we emphasized above, for the numerical values of coefficientsgA1 ,A2 ,...,Ap we expect
some polynomials which are rational inN and also multi-linear in indices coming from the ze
roots only. Within such a framework, it is natural to expect one polynomial for each one o
sub-classes in~III.1!. This is trivial for T(4) but the more will be seen below for the oth
sub-classes. It will be seen that each sub-classT(s) is a direct sum of their clusters and each clus
is represented by a different polynomial. To specify the clusters, following definition of indica
seem to be the most convenient ones:

IND~T~0!![S0„k1~a1 ,a2!,k1~a1 ,a3!,k1~a1 ,a4!,k1~a2 ,a3!,k1~a2 ,a4!,k1~a3 ,a4!…,

IND~T~1!![S1„k2~ I 1 ,aa1
!,k2~ I 1 ,aa2

!,k2~ I 1 ,aa3
!…, ~III.2!

IND~T~2!![S2~G„k2~ I 1 ,aa1
!,k2~ I 1 ,aa2

!…,G„k2~ I 2 ,aa1
!,k2~ I 2 ,aa2

!…!.

Let us first study the action of these indicators onT(0). It is sufficient to make this in theA5

example given above because the results are independent of rankN. A set of appropriately chosen
representatives is now

g1,1,16,16,g1,2,3,25,g1,2,16,17,g1,3,16,18PT~0! ~III.3!

on which the indicators act as

IND~g1,1,16,16!5S0~22,22,22,22,2,2![S0~1!,

IND~g1,2,3,25!5S0~21,21,21,21,0,0![S0~2!,
~III.4!

IND~g1,2,16,17!5S0~22,22,21,21,1,1![S0~3!,

IND~g1,3,16,18!5S0~22,22,0,0,0,0![S0~4!.

The quantitiesS are assumed to be completely symmetrical in their indices. Calculations ca
made with the aid of simple FORTRAN-programs for all other elements ofT0 and for anyAN

other thanA5 . The results then show us that there are nothing else other thanS0(k)’s for k
51,2,3,4. We outline this fact by saying thatthe indicators receive four different values on the
sub-classT0. The following result reflects the relevance here:

For anyAN , any two elementsg(1),g(2)PT0 have the same numerical value on conditi
that

IND„g~1!…5IND„g~2!….

This is the main observation which reveals us the existence of sub-sets which we would like
clusters.

The similar analysis shows us that indicators take 4 and 6 different values onT(1) andT(2),
respectively. To see this, it is sufficient to consider the representatives

g1,2,21,31, g1,2,21,32, g2,3,22,31, g1,2,21,33PT~1!,
~III.5!

g2,17,31,31, g2,17,31,32, g2,17,31,33, g1,16,31,31, g1,16,32,32, g1,16,31,32PT~2!,

with corresponding actions
J. Math. Phys., Vol. 38, No. 11, November 1997
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IND~g1,2,21,31!5S1~1,2,2![S1~1!,

IND~g1,2,21,32!5S1~21,2,2![S1~21!,
~III.6!

IND~g2,3,22,31!5S1~1,1,1![S1~2!,

IND~g1,2,21,33!5S1~21,21,21![S1~22!,

and

IND~g2,17,31,31!5S2~1,1![S2~1!,

IND~g1,16,32,32!5S2~21,21![S2~21!,

IND~g2,17,31,32!5S2~1,2![S2~2!,
~III.7!

IND~g1,16,31,32!5S2~21,2![S2~22!,

IND~g2,17,31,33!5S2~21,1![S2~3!,

IND~g1,16,31,31!5S2~2,2![S2~4!.

It is seen here that we need to define an extra generatorG with the following values on sub-clas
T(2):

G~1,1![G~1!, G~21,21![G~21!, G~2,2![G~2!. ~III.8!

As a result of this discussion, for any one of the coefficientsgA1 ,A2 ,A3 ,A4 of the fourth order
Casimir we have one of the following polynomials:

ga1 ,a2 ,a3 ,a4[g4~N!yk~N!, k51,...,4,

ga1 ,a2 ,a3 ,I 1[g4~N!yk~ i 1 ,N!, k51,2,
~III.9!

ga1 ,a2 ,I 1 ,I 2[g4~N!yk~ i 1 ,i 2 ,N!, k51,...,4,

gI 1 ,I 2 ,I 3 ,I 4[g4~N!y~ i 1 ,i 2 ,i 3 ,i 4 ,N!.

A point which is important especially for higher order Casimirs is the fact that the coeffic
gA1 ,A2 ,A3 ,A4 are in general rational polynomials of the rankN. It is therefore crucial to know here
that

g4~N![
1

N~N21!~N22!
. ~III.10!

Before attempting to solve~II.6!, one must also recall that the number of coefficients with diff
ent numerical values is further reduced by the aid of the properties mentioned in Sec. II. T
end, it is important to notice, in view of decompositions~III.9!, that duality properties can be give
most conveniently as in the following:

y2k~ i 1 ,N!5~21!1yk~N112 i 1 ,N!, k51,2,

y2k~ i 1 ,i 2 ,N!5~21!2yk~N112 i 2 ,N112 i 1 ,N!, k51,4, ~III.11!

y~ i 1 ,i 2 ,i 3 ,i 4 ,N!5~21!4y~N112 i 4 ,N112 i 3 ,N112 i 2 ,N112 i 1 ,N!.
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Having all these in mind, we can easily solve equations~II.6! for only a highly reduced
number of unknown coefficients. This can be repeated for several values of rankN which make
the following generalizations possible. For this, it will be useful to define some auxiliary pol
mials r r(N) (r 50,...,4) with the following definitions:

r0~N!5~N21!u~1!2Nu~2!,

r1~N!52~N21!~2N21!u~1!23N2u~2!,

r2~N!52~N21!~N222N13!u~1!1N~N22N11!u~2!,
~III.12!

r3~N!522~N21!~N212!u~1!1N~2N21N12!u~2!,

r4~N!5~N21!~N22!„~2N210!u~1!23Nu~2!….

The two free parametersu(1) andu(2) here are chosen with the following values of the uniq
polynomial representing elements of the subsetT(4):

y~1,1,1,1,N![u~1!, y~1,1,2,2,N![u~2!. ~III.13!

Note here that the choices~III.13! is in correspondence with partitions 45212. As a result, the
polynomials representing fourth order Casimir ofAN Lie algebras are obtained in the followin
forms:

y1~N!52 1
3r4~N!, y2~N!5 1

6~N11!r1~N!,
~III.14!

y3~N!52 1
6r4~N!, y4~N!5r2~N!

for subsetT(0),

y1~ i 1 ,N!5 1
6r1~N!~N1123i 1!

~III.15!

y2~ i 1 ,N!52 1
2r1~N!i 1

for subsetT(1),

y1~ i 1 ,i 2 ,N!5 i 1„~N11!i 2r0~N!1r2~N!…,

y2~ i 1 ,i 2 ,N!5 1
2i 1„2~N11!i 2r0~N!1r3~N!…,

~III.16!

y3~ i 1 ,i 2 ,N!52~N11!i 1~N112 i 2!r0~N!,

y4~ i 1 ,i 2 ,N!5 1
6„6~N11!r0~N!i 1i 213r3~N!i 123r1~N!i 212~N11!r1~N!…,

for subsetT(2),

y~ i 1 ,i 2 ,i 3 ,i 4 ,N!5 i 1~N112 i 4!~„3i 2i 32~N11!~2i 21 i 3!…r0~N!1r1~N!! ~III.17!

for subsetT(4).

IV. FIFTH ORDER SOLUTIONS

In this section we summarize our solutions to equations~II.6! for p55. As in the former
section, we study the whole set of coefficientsgA1 ,...,A5 in the following five sub-classes:
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~T~0!! ga1 ,a2 ,a3 ,a4 ,a5, ~T~1!! ga1 ,a2 ,a3 ,a4 ,I 1,
~IV.1!

~T~2!! ga1 ,a2 ,a3 ,I 1 ,I 2, ~T~3!! ga1 ,a2 ,I 1 ,I 2 ,I 3, ~T~5!! gI 1 ,I 2 ,I 3 ,I 4 ,I 5.

There should be no confusion between~IV.1! and~III.1! because the notations are clear. We n
want to show that these sub-classes have the following direct sum decompositions in their c

T~0![ %

k51

4

T~0!~k!, T~1![ %

k527

13

T~1!~k!,

~IV.2!

T~2![ %

k524

6

T~2!~k!, T~3![ %

k524

6

T~3!~k!.

On each particular sub-class, we define the indicators act in the following ways:

IND~T~0!![S0„k1~a1 ,a2!,k1~a1 ,a3!,k1~a1 ,a4!,k1~a1 ,a5!,k1~a2 ,a3!,k1~a2 ,a4!,

k1~a2 ,a5!,k1~a3 ,a4!,k1~a3 ,a5!,k1~a4 ,a5!…,

IND~T~1!![S1~G11„k1~a1 ,a2!,k1~a1 ,a3!,k1~a1 ,a4!,k1~a2 ,a3!,k1~a2 ,a4!,k1~a3 ,a4!…,

G12„k2~ I 1 ,aa1
!,k2~ I 1 ,aa2

!,k2~ I 1 ,aa3
!,k2~ I 1 ,aa4

!…!,

IND~T~2!![S2~G2„k2~ I 1 ,aa1
!,k2~ I 1 ,aa2

!,k2~ I 1 ,aa3
!…,

G2„k2~ I 2 ,aa1
!,k2~ I 2 ,aa2

!,k2~ I 2 ,aa3
!…!,

IND~T~3!![S3~G3„k2~ I 1 ,aa1
!,k2~ I 1 ,aa2

!…,G3„k2~ I 2 ,aa1
!,k2~ I 2 ,aa2

!…,

G3„k2~ I 3 ,aa1
!,k2~ I 3 ,aa2

!…!. ~IV.3!

It is seen that in all these actions the scalar products are just the same as in the 4th orde
reflects the similarity in the construction of 4th and 5th order Casimir operators ofAN Lie alge-
bras. As will be explained elsewhere, for sixth and seventh order Casimirs we know that one
an additional scalar productk3 to define corresponding indicators.

Note also that we need to introduce severalG-generators in~IV.3!. Explicit calculations show
that they take the following different values:

G11~22,22,22,22,2,2![G11~1!,

G11~21,21,21,21,0,0![G11~2!,
~IV.4!

G11~22,22,21,21,1,1![G11~3!,

G11~22,22,0,0,0,0![G11~4!,

G12~1,1,1,1![G12~1!,

G12~1,1,2,2![G12~2!,

G12~2,2,2,2![G12~3!,
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G12~21,1,2,2![G12~4!, ~IV.5!

G12~21,21,1,1![G12~5!,

G12~21,21,21,21![G12~21!,

G12~21,21,2,2![G12~22!,

G2~1,2,2![G2~1!,

G2~1,1,1![G2~2!,
~IV.6!

G2~21,2,2![G2~21!,

G2~21,21,21![G2~22!,

G3~1,1![G3~1!,

G3~2,2![G3~2!,
~IV.7!

G3~21,21![G3~21!.

Both G andS-generators are assumed to be completely symmetrical in their indices.
We can continue now in theA5 example again. By using above values ofG-generators, one

can easily show that indicators take the following values on chosen elements of corresp
sub-classes:

IND~g1,1,2,16,21!5S0~22,22,21,21,21,21,21,1,1,2![S0~1!,

IND~g1,2,3,4,28!5S0~21,21,21,21,21,0,0,0,0,0![S0~2!,
~IV.8!

IND~g1,2,3,16,22!5S0~22,21,21,21,21,21,0,0,1,1![S0~3!,

IND~g1,2,4,19,21!5S0~22,21,21,21,0,0,0,0,0,0![S0~4!,

IND~g1,1,16,16,32!5S1~1,1![S1~1!,

IND~g1,2,3,25,34!5S1~2,1![S1~2!,

IND~g1,2,16,17,33!5S1~3,1![S1~3!,

IND~g1,3,16,18,34!5S1~4,1![S1~4!,

IND~g1,2,3,25,33!5S1~2,2![S1~5!,

IND~g1,2,16,17,32!5S1~3,2![S1~6!,

IND~g1,3,16,18,33!5S1~4,2![S1~7!,

IND~g1,1,16,16,31!5S1~1,3![S1~8!,
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IND~g2,10,21,22,32!5S1~2,3![S1~9!,

IND~g1,6,16,21,31!5S1~3,3![S1~10!,

IND~g2,10,17,25,32!5S1~4,3![S1~11!,

IND~g1,2,3,25,32!5S1~2,4![S1~12!,

IND~g1,3,16,18,32!5S1~4,5![S1~13!,

IND~g1,2,21,32,32!5S2~1,1![S2~1!,

IND~g1,2,21,32,33!5S2~2,1![S2~2!,

IND~g1,2,21,33,33!5S2~2,2![S2~3!,

IND~g2,3,22,31,33!5S2~22,1![S2~4!,

IND~g1,2,21,31,32!5S2~21,1![S2~5!,

IND~g2,3,22,31,34!5S2~22,2![S2~6!,

IND~g1,16,32,32,32!5S3~1,1,1![S3~1!,

IND~g2,17,31,32,32!5S3~21,2,2![S3~2!,

IND~g2,17,31,33,33!5S3~21,1,1![S3~3!,
~IV.9!

IND~g1,16,31,32,32!5S3~1,1,2![S3~4!,

IND~g1,16,31,31,31!5S3~2,2,2![S3~5!,

IND~g2,17,31,32,33!5S3~21,1,2![S3~6!.

As in the fourth order calculations, to factor out their rational parts is crucial to obtain polyno
expressions for coefficientsgA1 ,A2 ,A3 ,A4 ,A5. This is provided by the following appropriate assum
tions:

ga1 ,a2 ,a3 ,a4 ,a5[g5~N!yk~N!, k51,...,4,

ga1 ,a2 ,a3 ,a4 ,I 1[g5~N!yk~ i 1 ,N!, k51,...,13,

ga1 ,a2 ,a3 ,I 1 ,I 2[g5~N!yk~ i 1 ,i 2 ,N!, k51,...,6, ~IV.10!

ga1 ,a2 ,I 1 ,I 2 ,I 3[g5~N!yk~ i 1 ,i 2 ,i 3 ,N!, k51,...,6,

gI 1 ,I 2 ,I 3 ,I 4 ,I 5[g5~N!y~ i 1 ,i 2 ,i 3 ,i 4 ,i 5 ,N!,

where
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g5~N![
1

N~N21!~N22!~N23!
. ~IV.11!

Note here that there should be no confusion betweeny-polynomials defined in expressions~III.9!
and~IV.10!. In all expressions above someS-generators come also together with their conjuga
having negative arguments. For instance,S1(1) has a conjugateS1(21) whereas there is no nee
to introduce a conjugate forS1(13). This is effect is due to transformations properties of coe
cients under duality transformations mentioned in section II. These properties are prope
flected by the following expressions:

y2k~ i 1 ,N!5~21!1yk~N112 i 1 ,N!, k51,...,13,

y2k~ i 1 ,i 2 ,N!5~21!2yk~N112 i 2 ,N112 i 1 ,N!, k51,...,6,
~IV.12!

y2k~ i 1 ,i 2 ,i 3 ,N!5~21!3yk~N112 i 3 ,N112 i 2 ,N112 i 1 ,N!, k51,...,6,

y~ i 1 ,i 2 ,i 3 ,i 4 ,i 5 ,N!5~21!5y~N112 i 5 ,N112 i 4 ,N112 i 3 ,N112 i 2 ,N112 i 1 ,N!.

As in ~III.12!, it would also be useful here to define some auxiliary polynomialst r(N) (r
50,...,8):

t0~N!52~5N29!v~1!15Nv~2!,

t1~N!5~N22!~N23!„~N27!v~1!22Nv~2!…,

t2~N!5~N11!„~11N2223N16!v~1!210N2v~2!…,

t3~N!5~N322N212N23!v~1!2N~N211!v~2!,

t4~N!5~N319N2221N13!v~1!2N~N2110N11!v~2!, ~IV.13!

t5~N!5~3N315N2217N23!v~1!2N~N13!~3N11!v~2!,

t6~N!52~3N3116N2240N13!v~1!1N~3N2120N13!v~2!,

t7~N!5~9N327N225N221!v~1!2N~9N2110N19!v~2!,

t8~N!52~6N32N2211N212!v~1!12N~3N215N13!v~2!,

for which the two free parametersv(1) andv(2) are chosen by

y~1,1,1,1,1,N![v~1!, y~1,1,1,2,2,N![v~2!. ~IV.14!

Note here that the choices~IV.14! are compatible with partitions 55312. As a result, the poly-
nomials assigned to sub-classesT(s) will thus be given as in the following:

y1~N!52 1
12~N11!t1~N!,

y2~N!5 1
24~N11!t2~N!,

~IV.15!

y3~N!52 1
24~N11!t1~N!,

y4~N!52 1
2~N11!t3~N!
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for subsetT(0).

y1~ i 1 ,N!5 1
3i 1t1~N!,

y2~ i 1 ,N!52 1
6i 1t2~N!,

y3~ i 1 ,N!5 1
6i 1t1~N!,

y4~ i 1 ,N!52i 1t3~N!,

y5~ i 1 ,N!5 1
24~N1124i 1!t2~N!,

y6~ i 1 ,N!52 1
24~N1124i 1!t1~N!,

y7~ i 1 ,N!52 1
2~N1124i 1!t3~N!,

~IV.16!

y8~ i 1 ,N!52 1
6~N1122i 1!t1~N!,

y9~ i 1 ,N!5 1
12~N1122i 1!t2~N!,

y10~ i 1 ,N!52 1
12~N1122i 1!t1~N!,

y11~ i 1 ,N!52~N1122i 1!t3~N!,

y12~ i 1 ,N!5 1
12~N1122i 1!t2~N!,

y13~ i 1 ,N!52~N1122i 1!t3~N!,

for subsetT(1),

y1~ i 1 ,i 2 ,N!5 1
24„12i 1i 2t4~N!12~N1122i 2!t2~N!24i 1~N11!t5~N!…,

y2~ i 1 ,i 2 ,N!5 1
12„6i 1i 2t4~N!22i 1~N11!t5~N!…,

y3~ i 1 ,i 2 ,N!5 1
4„2i 1i 2t4~N!22i 1~N11!t3~N!,

~IV.17!

y4~ i 1 ,i 2 ,N!5 1
6~N112 i 2!~t2~N!23i 1t4~N!…,

y5~ i 1 ,i 2 ,N!5 1
48~24i 1i 2t4~N!12„3~N11!24i 2…t2~N!18i 1~N11!t6~N!!,

y6~ i 1 ,i 2 ,N!52 1
2i 1~N112 i 2!t4~N!

for subsetT(2),

y1~ i 1 ,i 2 ,i 3 ,N!5 i 1i 2i 3~N11!t0~N!2 i 1~N1124i 222i 3!t3~N!,

y2~ i 1 ,i 2 ,i 3 ,N!5 1
6~N112 i 3!„3i 1~N1122i 2!~N11!t0~N!12t2~N!23i 2t4~N!…,

y3~ i 1 ,i 2 ,i 3 ,N!52~N112 i 3!„i 1i 2~N11!t0~N!12i 1t3~N!…,
~IV.18!

y4~ i 1 ,i 2 ,i 3 ,N!5 1
2~2i 1i 2i 3~N11!t0~N!2 i 1„3~N11!24i 3…t3~N!1 i 1i 2t7~N!!,

y5~ i 1 ,i 2 ,i 3 ,N!52 1
24~12i 1i 3~N1122i 2!~N11!t0~N!22„3~N11!24i 3…t2~N!212i 2i 3t4~N!
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24i 2~N11!t6~N!212i 1i 2t7~N!28i 1~N11!t8~N!!,

y6~ i 1 ,i 2 ,i 3 ,N!5 1
2i 1~N1122i 2!~N112 i 3!~N11!t0~N!

for subsetT(3).

y~ i 1 ,i 2 ,i 3 ,i 4 ,i 5 ,N!5 i 1~N112 i 5!„~4i 2i 3i 42~N11!~3i 2i 312i 2i 41 i 3i 4!…t0~N!1t2~N!

2 i 4t4~N!2~2i 21 i 3!t5~N!!. ~IV.19!

for subsetT(5).

V. CONCLUSIONS

In Secs. III and IV, our general framework is outlined to construct themost generalopera-
torial forms of fourth and fifth order Casimir elements ofAN Lie algebras. The most general he
means that everything is expressed in terms of two free parameters which are specified in~III.13!
for p54 and in~IV.14! for p55. We have obtained some generalizations forp56 one interesting
feature of which is that an additional scalar productk3 is also necessary. This procedure could
proceeded step by step beyond sixth order but we do not know at present how many new
tors will be needed as the degree of Casimir operators increases.

The second point which we would like to emphasize here is for the sub-classT(0) of Casimir
coefficientsga1 ,a2 ,a3 ,a4. As we point out in Sec. III, it has the form

T~0!5T~0!~1! % T~0!~2! % T~0!~3! % T~0!~4!

in terms of its clustersT(0)(k), k51,2,3,4. For a given value of rankN, T(0) contains totally

dim~T~0!!5 1
2~N11!N~3N225N16!

number of elements while its clusters have the following dimensions:

dim~T~0!~1!!51 Binomial~N11,2!,

dim~T~0!~2!!53 Binomial~N11,3!,

dim~T~0!~3!!56 Binomial~N11,4!,

dim~T~0!~4!!53 Binomial~N11,4!.

Let us note here that these numbers are calculated in view only ofinvariance property of
coefficientsga1 ,a2 ,a3 ,a4.

A similar calculation gives the following results forga1 ,a2 ,a3 ,a4 ,a5:

dim~T~0!~1!!5N32~N11!,

dim~T~0!~2!!5 1
5~N525N415N315N226N15!,

dim~T~0!~3!!524 Binomial~N11,4!,

dim~T~0!~4!!520 Binomial~N11,5!,

with

dim~T~0!!5 1
30~N11!N~N21!~11N2225N136!
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number of elements totally. For any one of these numbers, there is a coincidence with dime
of some Weyl orbits ofAN Lie algebras. This however could not only be a coincidence bec
each particular clusterT(0)(k) forms an irreducible sub-space ofT(0), that is

Q~T~0!!~k![T~0!~k!, k51,2,3,4.

under Weyl reflections

Q~ga1 ,a2 ,a3 ,a4![gu~a1!,u~a2!,u~a3!,u~a4!, a1 ,...,a4PS1 % S2

or

Q~ga1 ,a2 ,a3 ,a4 ,a5![gu~a1!,u~a2!,u~a3!,u~a4!,u~a5!, a1 ,...,a5PS1 % S2

One can therefore say that indicators which are defined in expressions~III.2! and~IV.3! are to be
naturally assigned to subsetsT(0) if one recalls here that the scalar productk1 is Weyl invariant.
As will be considered in another publication, this leads us to ask some more fundamenta
metry underlying all the picture here.

As a final remark, we point out that Casimir elements of other Lie algebras can be hand
terms of their most appropriateAN sub-algebras. Following examples areA2 , A5 , A7 , A8 for
respectivelyG2 , E6 , E7 , E8 . An exception is seem to beF4 which is studied in terms ofB4

15

more conveniently.
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An explicit construction of Casimir operators
and eigenvalues. II

H. R. Karadayia) and M. Gungormez
Department of Physics, Faculty of Science, Technical University of Istanbul,
80626, Maslak, Istanbul, Turkey

~Received 19 November 1996; accepted for publication 8 May 1997!

We provide a way of computing Casimir eigenvalues for Weyl orbits as well as for
irreducible representations of Lie algebras. Ak(s) number of polynomials of rank
N are obtained explicitly forAN Casimir operators of orders wherek(s) is the
number of partitions ofs into positive integers except 1. It is also emphasized that
these eigenvalue polynomials prove useful in obtaining formulas to calculate
weight multiplicities and in explicit calculations of the whole cohomology ring of
classical and also exceptional Lie algebras. ©1997 American Institute of Physics.
@S0022-2488~97!03310-0#

I. INTRODUCTION

In a previous paper,1 which we refer to as~I! throughout this work, we establish themost
generalexplicit forms of fourth and fifth order Casimir operators ofAN Lie algebras. By starting
from this point, we want to develop a framework which makes it possible to calculate, fo
irreducible representations ofAN Lie algebras, the eigenvalues of Casimir operators in any or
Extensions are also possible to any other classical or exceptional Lie algebra because a
algebra has always an appropriate subalgebra of typeAN .

For a Casimir operatorI (s) of degrees, the eigenvalues for aD-dimensional representatio
are known to be calculated in the following form:

1

D
Trace„I ~s!…. ~I.1!

A direct calculation of~I.1! could become problematic in practice as the dimension of repre
tation grows high. Additionally to the ones given in~I!, we give here some further works2 dealing
with this problem.

A second essential problem arisen here is due to the fact that one must also calculate
multiplicities for representations comprising more than one Weyl orbit. This latter proble
known to be solved by formulas which are due to Kostant and Freudenthal3 and it is at the root of
Weyl–Kac character formulas.4 Although they are formally explicit, these two formulas are
recursive character and hence they exhibit problems in practical calculations. One could th
prefers to obtain afunctional formulain calculating weight multiplicities. This will be dealt with
in a subsequent paper.

It is known, on the other hand, thattrace operationscan be defined5 in two equivalent ways,
one of which is nothing but the explicit matrix trace. An expression like~I.1! could therefore not
means for a Weyl orbit,in general. We instead want to extend the concept of Casimir eigenva
to Weyl orbits. As we have introduced in an earlier work,6 we replace~I.1! with the following
formal definition:

a!Electronic mail: karadayi@sariyer.cc.itu.edu.tr
0022-2488/97/38(11)/5991/17/$10.00
5991J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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chs~P![ (
mPP

~m!s, ~I.2!

whereP is a Weyl orbit and the sum is over all weightsm included withinP. The powers of
weights in~I.2! are to be thought of ass-times products

Note here that~I.2! is defined not only for Weyl orbits or representations but it means also for
collection of weights. We will mainly show in what follows how~I.2! gives us a way to obtain
eigenvalues of a Casimir operator. Due to a permutational lemma given in Sec. II, the proc
works out especially forAN Lie algebras. It will however be seen in a subsequent paper that
generalized to any classical or exceptional Lie algebra. In Sec. III, we will give a general for
of calculatingchs(P) by the aid of this permutational lemma. An efficient way of using t
formula is due to reduction rules which are explained in Sec. IV and the polynomials repres
Casimir eigenvalues will be given in Sec. V and also in Appendix B. We will show in Sec. VI
the two formula~I.1! and ~I.2! are in fact in coincidence.

II. A PERMUTATIONAL LEMMA FOR A N WEYL ORBITS

In this section, we give, forAN Lie algebras, a permutational lemma which says that,modulo
permutations, there is one-to-one correspondence between the Weyl chamber and the Tits.7

As will be explained below, such a correspondence appears only when one reformulates
thing in terms of the so-calledfundamental weights.

For an excellent study of Lie algebra technology we refer the book of Humphreys.8 We give,
however, some frequently used concepts here. In describing the wholeweight latticeof a Lie
algebra of rankN, the known picture will be provided bysimple rootsa i and fundamental
dominant weightsl i where indices likei 1 ,i 2 ,... take values from the setI 0[$1,2,...,N%. Any
dominant weightL1 can then be expressed by

L15(
i 51

N

r il i , r iPZ1, ~II.1!

whereZ1 is the set of positive integers including zero. We know that a Weyl orbitP is stable
under the actions of Weyl group of Lie algebra. This means that all weights within a Weyl
are equivalent under the actions of Weyl group and they can be obtained from any one of th
performing Weyl conjugations one-by-one. We thus obtain a description of the whole w
lattice of which any weight is given by

m5m1l11m2l21•••1mNlN , 6miPZ1. ~II.2!

Our way of thinking of a Weyl orbit is, on the other hand, based on the fact thatWeyl
reflections can be replaced by permutationsfor AN Lie algebras. It is seen in the following tha
essential figures for this arefundamental weightsm I which we introduced9 some 15 years ago:

m1[l1

m i[m i 212a i 21 , i 52,3,...,N11. ~II.3!

Indices likeI 1 ,I 2 ,... take values from the setS0[$1,2,...,N,N11%. Recall here that the weight
defined in~II.3! are nothing but the weights of (N11)-dimensional fundamental representatio
J. Math. Phys., Vol. 38, No. 11, November 1997
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of AN Lie algebras. To prevent confusion, note here that some authors prefer to calll i ’s funda-
mental weights. Though there areN11 number of fundamental weightsm I , they are not com-
pletely linear independent due to the fact that their sum is zero. The main observation is, ho
that ~II.2! replaces with

m5q1m I 1
1q2m I 2

1•••1qN11m I N11
~II.4!

when one reformulates in terms ofN11 fundamental weights. The conditions

I 1ÞI 2Þ•••ÞI N11 ~II.5!

must be taken into account for each particular weight~II.4! and one can always assume that

q1>q2>•••>qN11>0. ~II.6!

~II.6! receives here further importance in the light of following lemma:
Let P(N) be the weight lattice ofAN Lie algebra. A dominant weightL1PP(N) has always

the form of

L15q1m11q2m21•••1qN11mN11 ~II.7!

and hence the whole Weyl orbitP(L1) is obtained by permutations of~II.7! over N11 funda-
mental weights. In the basis of fundamental weights all weights of the Weyl orbitP(L1) are thus
seen in the common form~II.4! where all indicesI k take values from the setS0 together with the
conditions~II.5!.

Although it is not in the scope of this work, demonstration of lemma is a direct result o
definitions~II.3!. It will be useful to realize the lemma further in terms of (N11)-tuples which
re-define~II.7! in the form

L1[~q1 ,q2 ,...,qN11!. ~II.8!

Then every elementsmPP(L1) corresponds to a permutation ofqi8s:

m5~qI 1
,qI 2

,...,qI N11
!.

To this end, let us choose a weight

2l112l22l31l41l52l61l7 ~II.9!

which is expressed in the conventional form~II.2!. By taking inverses

l i[m11m21•••1m i , i PI 0 ~II.10!

of ~II.3!, we can re-express~II.9! as

2m113m21m312m41m51m7 ~II.11!

which says us that

2l112l22l31l41l52l61l7PP~l11l31l6!.

It is obvious that this last knowledge is not so transparent in~II.9!.
One must further emphasize that the lemma allows us to know the dimensions of Weyl

directly from their dominant representatives. For this and further use, let us reconsider~II.1! in the
form
J. Math. Phys., Vol. 38, No. 11, November 1997
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L1[u1l i 1
1u2l i 2

1•••1usl i s
, usPZ120 ~II.12!

with

i 1< i 2<•••< i s , s51,2,...,N. ~II.13!

Then, it is seen that the number of weights within a Weyl orbitP(L1) is

dim P~L1!5
~N11!!

j~L1!~N112 i s!!
~II.14!

where

j~L1![)
j 51

s

~ i j2 i j 21!!, i 0[0. ~II.15!

We therefore assume in the following that dimP~L! is always known to be a polynomial of ran
N.

III. EIGENVALUES FOR WEYL ORBITS

As is mentioned above, eigenvalues are, in fact, known to be defined for representati
representationR(L1) is, on the other hand, determined from itsorbital decomposition:

R~L1!5P~L1!1 (
l1PSub~L1!

m~l1,L1!P~l1!, ~III.1!

where Sub(L1) is the set of all subdominant weights ofL1 andm(l1,L1)’s are multiplicities
of weightsl1 within the representationR(L1). Once a convenient definition of eigenvalues
assigned toP(l1) for l1PSub(L1), it is clear that this also means for the wholeR(L1) via
~III.1!. In the rest of this section, we then show how definition~I.2! can be used to obtainorbit
eigenvaluesasN-dependent polynomials.

Let us now make some definitions which are used frequently for description ofsymmetric
polynomialsencountered in the root expansions which take place heavily in the recently st
electromagnetically dual supersymmetric theories.10 These will, of course, be given here in term
of fundamental weightsm I . The essential role will be played bygenerators

m~s![ (
I 51

N11

~m I !
s, s51,2,... ~III.2!

and their reductive generalizations

m~s1 ,s2 ,...,sk![ (
I 1 ,I 2 ,...,I k51

N11

~m I 1
!s1~m I 2

!s2•••~m I k
!sk. ~III.3!

For ~III.3!, the conditions

s1>s2>•••>sk ~III.4!

are always assumed and no two of indicesI 1 , I 2 ,...,I k shall take the same value for eac
particular monomial. Note also thatm(s,0,0,..0)5m(s).
J. Math. Phys., Vol. 38, No. 11, November 1997
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As the first step, we now make the suggestion, in view of~I.2!, that orbit eigenvalues can b
conveniently calculated by decomposingchs(P) in terms of quantities defined in~III.3! and this
provides us with the possibility to calculate orbit eigenvalues with the same ability regardle

~i! the rankN of algebra,
~ii ! the dimension dimR(L1,N) of irreducible representation,
~iii ! the orders of Casimir element.

To give our results below, we will assume that the set

s/k[$s1 ,s2 ,...,sk% ~III.5!

represents, via~III.4!, all partitions

s5s11s21•••1sk , s>k

of positive integers to k-number of positive integerss1 , s2 ,...,sk . It is useful to remark here tha
each particular partition participating within as/k gives us a dominant weight inP(N) and the
whole subdominant chain Sub(sl1) is in one-to-one correspondence with the partitions withi
s/k. This must always be kept in mind in the following considerations.

On the other hand, instead of~II.1!, it is crucial here to use~II.7! in the form

L1[(
i 51

s

qim i , ~III.6!

wheres51,2,...,N11. Note here that this is another form of~II.12!. Due to permutational lemma
given above, we now know that all weights of a Weyl orbit are specified with the same param
qi , (i 51,2,...,s). It is only of this fact which allows us to obtain the following formula
expressing orbital eigenvalues:

Vs~q1 ,q2 ,...,qs ,N!5
1

~N112s!! (
k51

s

~N112k!! j~s/k!Factors~s/k!, ~III.7!

where we define, for all possible partitions (s/k),

Factors~s/k![M ~s1 ,s2 ,...,sk!q~s1 ,s2 ,...,sk!m~s1 ,s2 ,...,sk! ~III.8!

and the multinomial

M ~s1 ,s2 ,...,sk![
~s11s21•••1sk!!

s1!s2! •••sk!

together with the condition that

M ~s1 ,s2 ,...,sk![0 for s,k. ~III.9!

j(s/k) here is defined as in~II.15! because, as we remark just above, any permutation within as/k
determines a dominant weight. As in exactly the same way in~III.3!, we also define

q~s1 ,s2 ,...,sk![ (
s1 ,s2 ,...,sk51

s

~qI 1
!s1~qI 2

!s2•••~qI k
!sk. ~III.10!

After all, one obtains a direct way to compute~I.2! in the form
J. Math. Phys., Vol. 38, No. 11, November 1997
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chs~L1,N!5
1

j~L1!
Vs~q1 ,q2 ,...,qk ,N! ~III.11!

for all q1>q2>•••>qk . For cases which we consider in this work, we will give in Appendix
some exemplary expressions extracted from~III.7!.

IV. REDUCTION FORMULAS

Although it has an explicit form, the simplicity of formula~III.7! is not so transparent to a
experienced eye looking for its advanced applications. This point can be recovered by recu
reducing the quantities~III.9! up to generatorsm(s) defined in~III.2!. We call these reduction
rules. We will only give the ones which we need in the sequel. It would however be use
mention about some of their general features. As is known, elementary Schur functionsSk(x) are
defined by expansions

(
kPZ1

Sk~x!zk[exp (
k51

`

xkz
k ~IV.1!

with the following explicit expressions:

Sk~x!5 (
k112k213k31•••5k

x1
k1

k1!

x2
k2

k2!
..., k.0. ~IV.2!

The complete symmetric functionshk(m1 ,m2 ,..mN) are defined, on the other hand, by

)
i 51

N
1

~12zm i !
[(

k>0
hk~m1 ,m2 ,...,mN!zk. ~IV.3!

It can be easily shown that the known equivalence

hk~m1 ,m2 ,...,mN![Sk~x! ~IV.4!

is now conserved by the reduction rules with the aid of a simple replacement

m~s!→sxs .

A simple but instructive example concerning~IV.4! for k54 is

h4~m1 ,m2 ,m3 ,m4!5m~4!1m~3,1!1m~2,2!1m~2,1,1!1m~1,1,1,1! ~IV.5!

with the corresponding reduction rules

q~1,1,1,1!5 1
24q~1!42 1

4q~1!2q~2!1 1
8q~2!21 1

3q~1!q~3!2 1
4q~4!,

q~2,1,1!5 1
2q~1!2q~2!2 1

2q~2!22q~1!q~3!1q~4!,

q~3,1!5q~1!q~3!2q~4!,

q~2,2!5 1
2q~2!22 1

2q~4!.

~IV.6!

For other cases of interest, the reduction rules will be given in Appendix A, respectively, fo
partitions of 5, 6, and 7.
J. Math. Phys., Vol. 38, No. 11, November 1997
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V. EXISTENCE OF EIGENVALUE POLYNOMIALS

After all these preparations, we are now in the position to bring out the most unexpecte
of work. This is the possibility to extend~III.11! directly for irreducible representations as well
Weyl orbits. We will show in a subsequent work that this gives us the possibility to ob
infinitely many functional formulas to calculate weight multiplicities and also to make exp
calculations of nonlinear cohomology relations which are known to be exist11 for classical and
exceptional Lie algebras.

In view of the fact thatm(1)[0, one can formally decompose~III.11! in the form

chs~L1,N![(
s/k

Qs1s2 ,...,sk
~L1,N!m~s1!m~s2!•••m~sk!. ~V.1!

This expression can be considered as the definition of coefficientsQs1 ,s2 ,...,sk
(L1,N) and allows

us to define a number of polynomials

Ps1 ,s2 ,...,sk
~L1,N![

Qs1 ,s2 ,...,sk
~L1,N!

Qs1 ,s2 ,...,sk
~lk ,N!

dim R~lk ,N!

dim R~L1,N!
Ps1 ,s2 ,...,sk

~lk ,N!. ~V.2!

Note here that

Qs1 ,s2 ,...,sk
~l i ,N![0, i ,k, ~V.3!

and also

dim R~l i ,N!5M ~N11,i !, i 51,2,...,N. ~V.4!

To proceed further, we will work on the explicit example of 4th order for which~V.1! and
~V.2! give

ch4~L1,N![Q4~L1,N!m~4!1Q22~L1,N!m~2!2, ~V.5!

P4~L1,N![
Q4~L1,N!

Q4~l1 ,N!

dim R~l1 ,N!

dim R~L1,N!
P4~l1 ,N!, ~V.6!

and

P22~L1,N![
Q22~L1,N!

Q22~l2 ,N!

dim R~l2 ,N!

dim R~L1,N!
P22~l2 ,N! ~V.7!

N dependences are explicitly written above. The main observation here is to change the va
r i of ~II.1!:

11r i[u i2u i 11 ~V.8!

and to suggest the decompositions

P4~L1,N!5k4~1,N!U~4,L1,N!1k4~2,N!U~2,L1,N!21k4~3,N!U~3,L1,N!

1k4~4,N!U~2,L1,N!1k4~5,N! ~V.9!

and
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P22~L1,N!5k22~1,N!U~4,L1,N!1k22~2,N!U~2,L1,N!21k22~3,N!U~3,L1,N!

1k22~4,N!U~2,L1,N!1k22~5,N!. ~V.10!

As in ~III.2! or ~III.10!, we also define here the generators

U~s,L1,N![ (
i 51

N11

~u i !
s. ~V.11!

It is seen then that~V.9! and ~V.10! are the most general forms compatible withU(1,L1,N)
[0. What is significant here is the possibility to solve equations~V.6! and ~V.7! in view of
assumptions~V.9! and ~V.10! but with coefficientsk4(a,N),k22(a,N) which are independentof
L1 for a51,..,5. By examining for a few simple representations, one can easily obtain
following nonzerosolutions for these coefficients:

k4~1,N!5
720

g4~N!
~N212N12!k4~5,N!,

k4~2,N!52
720

g4~N!~N11!
~2N214N21!k4~5,N!,

~V.12!

and

k22~1,N!52
1440

g22~N!
~2N214N21!k22~5,N!,

k22~2,N!5
720

g22~N!~N11!
~N414N328N113!k22~5,N!,

k22~4,N!52
120

g22~N!
~N22!~N21!~N11!2~N13!~N14!k22~5,N!,

~V.13!

where

g4~N![ )
i 522

4

~N1 i !,

g22~N![g4~N!~5N2110N111!.

~V.14!

The calculations goes just in the same way for orders 5, 6, and 7 and hence we direct
our solutions in Appendix B.

VI. CONCLUSIONS

In ~I!, we have obtained the most general formal operators representing fourth and als
order Casimir invariants ofAN Lie algebras. By comparing with the ones appearing in literatu
they are the most general in the sense that both are to be expressed in terms of two free
eters. As is shown in~I!, all coefficient polynomials of fourth order Casimir operators are
pressed in terms ofu(1) andu(2) while those of fifth order Casimirs arev(1) andv(2). As is
also emphasized there, the existence of two free parameters for both cases can be thoug
related with the partitions 45212 and 55312. Recall here the polynomialsP4 andP22. This
gives us the possibility to calculate the trace forms~I.1! directly in any matrix representation ofAN
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Lie algebras. These trace calculations are straightforward and show that eigenvalues of
order Casimir operators have the form of an explicit polynomial which depends on the rankN and
two free parametersu(1) andu(2). It is thus seen that there are always appropriate choice
parametersu(1) andu(2) in such a way that this same polynomial reproducesP4(L1,N) or
P22(L

1,N) as given in~V.9! and~V.10!. The same is also true for fifth order Casimirs. With t
appropriate choice

k4~5,N![
1

6!
~N11!2~N12!~N13!~N14! ~VI.1!

in ~V.9! it is sufficient to take

u~1!51, u~2!5
3N28

3N
~VI.2!

in order to reproduce

1

D
Trace„I ~4!…[P4~L1,N!

with dim R(L1,N)5D. The data for other cases of interest are

k22~5,N![
1

6!
~5N2110N111!~N11!~N12!~N13!~N14!,

u~1!51, u~2!5
2

3

2N21N12

N~N11!

~VI.3!

for

1

D
Trace„I ~4!…[P22~L1,N!,

and

k5~2,N![25
~N11!~N212N21!

N~N21!~N22!~N23!
,

v~1!51, v~2!5
2N25

2N
,

~VI.4!

for

1

D
Trace~ I ~5!![P5~L1,N!,

and

k32~5,N![2
1

12

~N11!3~N14!~N15!

N~N21!
,

v~1!51, v~2!5
~11N15!~N21!

10N~N11!
,

~VI.5!
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for

1

D
Trace„I ~5!…[P32~L1,N!.

Now it is clear that, this would be adirect evidencefor equivalence between the forma
expressions~I.1! and ~I.2!. In result, it is seen that one can obtaink(s) number of different
polynomialsPs1 ,s2 ,...,sk

(L1,N) representing eigenvalues ofAN Casimir operatorsI (s) of orders,
with k(s) is the number of partitions ofs to all positive integers except 1. As is known from (I ),
this is just the number of free parameters to describe the most general form ofI (s).

APPENDIX A

In this work, we consider the calculation of eigenvalues forAN Casimir operators of order
s54,5,6,7. It is, however, apparent that all our results are to be accomplished as in exac
same way and with the same ability for all orders. The following applications of the formula~III.7!
will be instructive for all other cases of interest:

V4~q1 ,N!5
1

~N1121!!
„1!~N1121!! M ~4!q~4!m~4!…, ~A.1!

V4~q1 ,q2 ,N!5
1

~N1122!!
„1!~N1121!! M ~4!q~4!m~4!

11!~N1122!! M ~3,1!q~3,1!m~3,1!

12!~N1122!! M ~2,2!q~2,2!m~2,2!…,

~A.2!

V4~q1 ,q2 ,q3 ,N!5
1

~N1123!!
„1!~N1121!! M ~4!q~4!m~4!

11!~N1122!! M ~3,1!q~3,1!m~3,1!12!~N1122!!

3M ~2,2!q~2,2!m~2,2!12!~N1123!!

3M ~2,1,1!q~2,1,1!m~2,1,1!…,

~A.3!

and fork>4

V4~q1 ,q2 ,...,qs ,N!5
1

~N112s!!
„1!~N1121!! M ~4!q~4!m~4!11!~N1122!!

3M ~3,1!q~3,1!m~3,1!12!~N1122!! M ~2,2!q~2,2!m~2,2!

12!~N1123!! M ~2,1,1!q~2,1,1!m~2,1,1!

14!~N1124!! M ~1,1,1,1!q~1,1,1,1!m~1,1,1,1!….

~A.4!

On the other hand, for an effective application of~III.7!, it is clear that one needs to reduce t
generatorsq(s1 ,s2 ,...,sk) in terms ofq(s)’s. Following ones are sufficient within the scope
this work. Together with the condition thatm(1)[0, the similar ones are valid also fo
m(s1 ,s2 ,...,sk)’s:
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q~4,1!5q~1!q~4!2q~5!,

q~3,2!5q~2!q~3!2q~5!,

q~3,1,1!5 1
2„q~1!2q~3!2q~2!q~3!22q~1!q~4!12q~5!…,

q~2,2,1!5 1
2„q~1!q~2!222q~2!q~3!2q~1!q~4!12q~5!…,

q~2,1,1,1!5 1
6„q~1!3q~2!23q~1!q~2!223q~1!2q~3!15q~2!q~3!16q~1!q~4!26q~5!…,

q~1,1,1,1,1!5
1

120
„q~1!5210q~1!3q~2!115q~1!q~2!2120q~1!2q~3!

220q~2!q~3!230q~1!q~4!124q~5!….

~A.5!

Beyond order 5, we will give the rules recursively as in the following:

q~ i 1 ,i 2!5q~ i 1!q~ i 2!2q~ i 11 i 2! i 1. i 2 ,

q~ i 1 ,i 1!5 1
2„q~ i 1!22q~ i 11 i 1!…,

q~ i 1 ,i 2 ,i 2!5q~ i 1!q~ i 2 ,i 2!2q~ i 11 i 2 ,i 2! i 1. i 2 ,

q~ i 1 ,i 1 ,i 2!5 1
2„q~ i 1!q~ i 1 ,i 2!52q~ i 11 i 1 ,i 2!2q~ i 11 i 2 ,i 1!… i 1. i 2 ,

q~ i 1 ,i 2 ,i 3!5q~ i 1!q~ i 2 ,i 3!2q~ i 11 i 2 ,i 3!2q~ i 11 i 3 ,i 2! i 1. i 2. i 3 ,

q~ i 1 ,i 1 ,i 1!5 1
3„q~ i 1!q~ i 1 ,i 1!2q~ i 11 i 1 ,i 1!…,

q~ i 1 ,i 2 ,i 2 ,i 2!5q~ i 1!q~ i 2 ,i 2 ,i 2!2q~ i 11 i 2 ,i 2 ,i 2! i 1. i 2 ,

q~ i 1 ,i 1 ,i 1 ,i 2!5 1
3„q~ i 1!q~ i 1 ,i 1 ,i 2!2q~ i 11 i 2 ,i 1 ,i 1!… i 1. i 2 ,

q~ i 1 ,i 1 ,i 2 ,i 2!5 1
2„q~ i 1!q~ i 1 ,i 2 ,i 2!2q~ i 11 i 2 ,i 1 ,i 2!… i 1. i 2 ,

q~ i 1 ,i 2 ,i 3 ,i 3!5q~ i 1!q~ i 2 ,i 3 ,i 3!2q~ i 11 i 2 ,i 3 ,i 3!2q~ i 11 i 3 ,i 2 ,i 3! i 1. i 2. i 3 ,

q~ i 1 ,i 1 ,i 1 ,i 1!5 1
4„q~ i 1!q~ i 1 ,i 1 ,i 1!2q~ i 11 i 1 ,i 1 ,i 1!…,

q~ i 1 ,i 2 ,i 2 ,i 2 ,i 2!5q~ i 1!q~ i 2 ,i 2 ,i 2 ,i 2!2q~ i 11 i 2 ,i 2 ,i 2 ,i 2! i 1. i 2 ,

q~ i 1 ,i 1 ,i 2 ,i 2 ,i 2!5 1
2„q~ i 1!q~ i 1 ,i 2 ,i 2 ,i 2!2q~ i 11 i 2 ,i 1 ,i 2 ,i 2!… i 1. i 2 ,

q~ i 1 ,i 1 ,i 1 ,i 1 ,i 1!5 1
5„q~ i 1!q~ i 1 ,i 1 ,i 1 ,i 1!2q~ i 11 i 1 ,i 1 ,i 1 ,i 1!…,

q~ i 1 ,i 2 ,i 2 ,i 2 ,i 2 ,i 2!5q~ i 1!q~ i 2 ,i 2 ,i 2 ,i 2 ,i 2!2q~ i 11 i 2 ,i 2 ,i 2 ,i 2 ,i 2! i 1. i 2 ,

q~ i 1 ,i 1 ,i 1 ,i 1 ,i 1 ,i 1!5 1
6„q~ i 1!q~ i 1 ,i 1 ,i 1 ,i 1 ,i 1!2q~ i 11 i 1 ,i 1 ,i 1 ,i 1 ,i 1!…,

q~ i 1 ,i 1 ,i 1 ,i 1 ,i 1 ,i 1 ,i 1!5 1
7„q~ i 1!q~ i 1 ,i 1 ,i 1 ,i 1 ,i 1 ,i 1!2q~ i 11 i 1 ,i 1 ,i 1 ,i 1 ,i 1 ,i 1!….

APPENDIX B

In Sec. V we show the way of extracting two eigenvalue polynomials which are shown
valid in 4th order. We repeat here the analysis in orderss55,6,7 and we give our solutions
respectively, for
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~1! the 4 eigenvalue polynomials in order 7 (55125413531212)

k7~1,N!5
k7~4,N!

14~2N214N215!
~N414N3141N2174N1120!,

k7~2,N!52
k7~4,N!

2~N11!~2N214N215!
~N414N3117N2126N296!,

k7~3,N!52
k7~4,N!

2~N11!~2N214N215!
~N414N315N212N160!,

P7~L1,N!5k7~1,N!Q~7,L1,N!1k7~2,N!Q~5,L1,N!Q~2,L1,N!

1k7~3,N!Q~4,L1,N!Q~3,L1,N!1k7~4,N!Q~3,L1,N!Q~2,L1,N!2, ~B.1!

k43~1,N!52
8640k43~5,N!

~N11!g43~N!
~N21!N~N12!~N13!~N414N315N212N160!,

k43~2,N!5
8640k43~5,N!

~N11!2g43~N!
~N21!~N13!~6N6136N5113N42188N32N21470N1840!,

k43~3,N!5
720k43~5,N!

~N11!2g43~N!
~N21!~N13!~N818N7116N6216N5

1681N412980N32986N228060N28400!,

k43~4,N!52
720k43~5,N!

~N11!g43~N!
~N21!~N13!~2N6112N51121N41404N32957N222690N

14200!,

P43~L1,N!5k43~1,N!Q~7,L1,N!1k43~2,N!Q~5,L1,N!Q~2,L1,N!

1k43~3,N!Q~4,L1,N!Q~3,L1,N!1k43~4,N!Q~3,L1,N!Q~2,L1,N!2

1k43~5,N!Q~3,L1,N!, ~B.2!

k52~1,N!52
24k52~6,N!

g52~N!
~N23!~N22!~N21!N~N12!~N13!~N14!~N15!

3~N414N3117N2126N296!

k52~2,N!5
12k52~6,N!

5g52~N!~N11!
~N23!~N22!~N21!~N13!~N14!~N15!

3~N818N7132N6180N51515N411676N311648N2172N210080!
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



6003H. R. Karadayi and M. Gungormez: Casimir operators and eigenvalues. II

                    
k52~3,N!5
24k52~6,N!

g52~N!~N11!
~N23!~N22!~N21!~N13!~N14!~N15!

3~6N6136N5113N42188N32N21470N1840!

k52~4,N!52
12k52~6,N!

g52~N!
~N23!~N22!~N21!~N13!~N14!~N15!~N616N526N4264N3

1281N21706N2840!

k52~5,N!52
k52~6,N!

5g52~N!
~N25!~N24!~N23!~N22!~N21!N~N11!2~N12!~N13!~N14!

3~N15!~N16!~N17!~N212N16!

P52~L1,N!5k52~1,N!Q~7,L1,N!1k52~2,N!Q~5,L1,N!Q~2,L1,N!

1k52~3,N!Q~4,L1,N!Q~3,L1,N!1k52~4,N!Q~3,L1,N!Q~2,L1,N!2

1k52~5,N!Q~5,L1,N!1k52~6,N!Q~3,L1,N!Q~2,L1,N! ~B.3!

k322~1,N!5
34560k322~7,N!

g322~N!
~N21!N~N11!~N12!~N13!~2N214N215!,

k322~2,N!52
8640k322~7,N!

g322~N!
~N21!~N13!~N616N526N4264N31281N21706N2840!,

k322~3,N!52
1440k322~7,N!

g322~N!
~N21!~N13!~2N6112N51121N41404N32957N222690N

14200!,

k322~4,N!5
720k322~7,N!

g322~N!~N11!
~N21!~N13!~N818N723N62130N51109N411452N3

15113N216890N24200!,

k322~5,N!5
720k322~7,N!

g322~N!
~N25!~N24!~N21!N~N11!~N12!~N13!~N16!~N17!~N2

12N21!,

k322~6,N!52
120k322~7,N!

g322~N!
~N25!~N24!~N21!N~N12!~N13!~N16!~N17!~N414N3

16N214N125!,

P322~L1,N!5k322~1,N!Q~7,L1,N!1k322~2,N!Q~5,L1,N!Q~2,L1,N!

1k322~3,N!Q~4,L1,N!Q~3,L1,N!1k322~4,N!Q~3,L1,N!Q~2,L1,N!2

1k322~5,N!Q~5,L1,N!1k322~6,N!Q~3,L1,N!Q~2,L1,N!

1k322~7,N!Q~3,L1,N!, ~B.4!
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where

g7~N![ )
i 525

7

~N1 i !,g52~N!5~N212N21!g7~N!,

g43~N!5~N11!g7~N!,g322~N!5~5N2110N111!g7~N!.

~2! The 4 eigenvalue polynomials in order 6 (54125313521212)

k6~1,N!52
30240k6~5,N!

g6~N!
~N414N3121N2134N124!,

k6~2,N!5
181440k6~5,N!

g6~N!~N11!
~N21!~N13!~N212N16!,

k6~3,N!5
30240k6~5,N!

g6~N!~N11!
~3N4112N317N2210N172!,

k6~4,N!52
211680k6~5,N!

g6~N!
~N212N26!,

P6~L1,N!5k6~1,N!Q~6,L1,N!1k6~2,N!Q~4,L1,N!Q~2,L1,N!1k6~3,N!Q~3,L1,N!2

1k6~4,N!Q~2,L1,N!31k6~5,N!, ~B.5!

k33~1,N!52
3024k33~5,N!

g6~N!
~3N4112N317N2210N172!,

k33~2,N!5
45360k33~5,N!

N~N11!~N12!g6~N!
~N616N515N4220N3220N2116N196!,

k33~3,N!5
1008k33~5,N!

N~N11!~N12!g6~N!
~N818N72112N51127N4

11404N31580N222032N23840!

k33~4,N!52
12096k33~5,N!

N~N12!g6~N!
~4N4116N3235N22102N1180!,

P33~L1,N!5k33~1,N!Q~6,L1,N!1k33~2,N!Q~4,L1,N!Q~2,L1,N!

1k33~3,N!Q~3,L1,N!21k33~4,N!Q~2,L1,N!31k33~5,N!, ~B.6!
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k42~1,N!5
483840k42~8,N!

g42~N!
~N21!~N13!~N212N16!,

k42~2,N!52
60480k42~8,N!

g42~N!N~N11!~N12!
~N21!~N13!

3~N212N16!~12012N15N214N31N4!,

k42~3,N!52
1209600k42~8,N!

g42~N!N~N11!~N12!
~N616N515N4220N3220N2116N196!,

k42~4,N!5
60480k42~8,N!

g42~N!N~N12!
~N21!~N13!~2N418N3225N2266N1360!,

k42~5,N!5
5040k42~8,N!

g42~N!
~N24!~N23!~N11!2~N15!~N16!~N212N12!,

k42~6,N!52
5040k42~8,N!

g42~N!
~N24!~N23!~N11!~N15!~N16!~2N214N21!,

k42~7,N!52
84k42~8,N!

g42~N!
~N24!~N23!~N22!~N21!~N11!2

3~N13!~N14!~N15!~N16!,

P42~L1,N!5k42~1,N!Q~6,L1,N!1k42~2,N!Q~4,L1,N!Q~2,L1,N!1k42~3,N!Q~3,L1,N!2

1k42~4,N!Q~2,L1,N!31k42~5,N!Q~4,L1,N!1k42~6,N!Q~2,L1,N!2

1k42~7,N!Q~2,L1,N!1k42~8,N!,

~B.7!

k222~1,N!52
483840k222~8,N!

g222~N!
~N212N26!,

k222~2,N!5
51840k222~8,N!

N~N11!~N12!g222~N!
~N21!~N13!~2N418N3225N2266N1360!,

k222~3,N!5
276480k222~8,N!

N~N11!~N12!g222~N!
~4N4116N3235N22102N1180!,

k222~4,N!52
8640k222~8,N!

N~N11!2~N12!g222~N!
~N818N727N62154N5279N41860N311777N2

11338N23240!,

k222~5,N!52
4320k222~8,N!

g222~N!
~N24!~N23!~N15!~N16!~2N214N21!,
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k222~6,N!5
2160k222~8,N!

~N11!g222~N!
~N24!~N23!~N15!~N16!~N414N328N113!,

k222~7,N!52
36k222~8,N!

g222~N!
~N24!~N23!~N22!~N21!~N13!~N14!

3~N15!~N16!~5N2110N111!,

P222~L1,N!5k222~1,N!Q~6,L1,N!1k222~2,N!Q~4,L1,N!Q~2,L1,N!

1k222~3,N!Q~3,L1,N!21k222~4,N!Q~2,L1,N!31k222~5,N!Q~4,L1,N!

1k222~6,N!Q~2,L1,N!21k222~7,N!Q~2,L1,N!1k222~8,N!, ~B.8!

where

g6~N![ )
i 524

6

~N1 i !,

g42~N!5~7N2114N147!g6~N!,

g222~N!5~5N2110N123!g6~N!.

~3! The 2 eigenvalue polynomials in order 5 (5312)

k5~1,N!52
k5~2,N!

5~N212N21!
~N11!~N212N16!,

P5~L1,N!5k5~1,N!Q~5,L1,N!1k5~2,N!Q~3,L1,N!Q~2,L1,N!, ~B.9!

k32~1,N!5
72k32~3,N!

g5~N!~N11!
~N21!N~N12!~N13!~N212N21!,

k32~2,N!52
12k32~3,N!

g5~N!~N11!2 ~N21!N~N12!~N13!~N414N316N214N125!,

P32~L1,N!5k32~1,N!Q~5,L1,N!1k32~2,N!Q~3,L1,N!Q~2,L1,N!1k32~3,N!Q~3,L1,N!,
~B.10!

where

g5~N![ )
i 523

5

~N1 i !.
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On the construction of a Dirac spinor that generates
a specified tetrad

Patrick L. Nasha)

Division of Earth and Physical Sciences, The University of Texas at San Antonio,
San Antonio, Texas 78249-0663

~Received 21 April 1997; accepted for publication 26 June 1997!

It is well known that a complex four-component Dirac spinor defines an orthonor-
mal tetrad on flat Minkowski spacetime. For example, a spinor solution to the Dirac
equation determines the four-velocity and Pauli-Lubanski spin vector, comprising
the timelike and first spacelike members of the particle’s tetrad, as well as two
other spacelike members that are rarely discussed. Also, of particular note is the
complex null tetrad formalism that provides a map from a two-component SL
(2, C) spinor and its complex conjugate to a tetrad. The inverse problem is studied
here. Given a tetrad, a complex Dirac spinor valued function of the tetrad is ex-
plicitly defined in such a way that certain sums of bilinear products of the compo-
nents of this spinor exactly reproduce the tetrad. This spinor may be used in the
Feynman propagator representation of the solution to the Dirac equation to generate
a Dirac wave spinor with desired initial properties. The mappings studied here
represent a new class of nonlinear mappings SO(3,1)1

↑ →SO(3,1). © 1997
American Institute of Physics.@S0022-2488~97!01211-5#

I. INTRODUCTION

We study an invertible relationship between a complex four-component Dirac spinor a
tetrad on flat Minkowski spacetimeM4. By tetrad we mean a globally defined real orthonorm
frame E(m)

a on M4 that has the canonical orientationeabn E(1)
a E(2)

b E(3)
m E(4)

n 51 and satisfies
E(4)

4 >1. Since a Dirac spinor may be regarded as the direct sum of a two-component SLC)
spinor and its complex conjugate, the mapping from Dirac spinor to tetrad is clearly equival
the complex null tetrad formalism formulated onM4.1–3 We are mainly concerned in this pap
with the investigation of the map that goes from tetrad to spinor: given a tetradE(m)

a on M4, we
determine a complex Dirac spinor whose components are functions of theE(m)

a . The specific sums
of bilinear products of the components of this spinor given by Eqs.~19!–~22! exactly reproduce
the given tetrad. This result is new. Of course, the mapping from spinor to tetrad is very ol
has been discussed by many workers.1–4

This result may be combined with the Feynman propagator representation of the solu
the Dirac equation to generate a Dirac wave spinor that at a given initial time has desired
spin and momentum expectation values. In addition, these relations may prove useful in st
some dynamical problems that produce gravitational radiation. The work itself is motivated
cross-disciplinary study into smooth interpolation of spacetime rotations for use in quantita
accurate computer simulations of quasi-rigid body dynamics. In this study a Dirac spinor p
etrizes a sequence of Lorentz rotations. The results of this paper are needed to specify ini
terminal values for the spinor.

Let SO(3,1)1
↑ denote the proper orthochronous subgroup of S0(3,1). Since every tetrad oM4

is a proper orthochronous Lorentz transform~that may depend onxa) of the canonical frame
EC(m)

a 5d (m)
a , the mappingf°E(m)

a may be regarded as a mapping from~a six-dimensional
subspace of! complex Dirac space to the proper orthochronous subgroup SO(3,1)1

↑ . This six-

a!Electronic mail address: nsh@susan.ep.utsa.edu
0022-2488/97/38(11)/6008/10/$10.00
6008 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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dimensional subspace of complex Dirac space is an orbit ofSO(3,1). A number of the relation
discussed in this paper represent a new class of nonlinear mappings in the reverse direc
(3,1)1

↑ →SO(3,1).

II. CONVENTIONS AND GEOMETRICAL PRELIMINARIES

For the reader’s convenience, some of the less well known properties of real Dirac s
algebra will be summarized. Units are used in which the speed of light is one. The Minko
spacetime metric ishab5diag(1,1,1,21), where Greek indices run from one to four~four is used
instead of zero in order to comply with Dirac’s 1963 notation,5 which is adopted in this paper!.
Following Dirac, tilde denotes transpose.

Dirac4,5 has given a real 434 irreducible representation ofSO(3,3) that we shall employ here
Let D4 denote the real four-dimensional vector space that carries this irreducible representa
SO(3,3), and letD4* denote the vector space that is dual toD4.

The elementslPD4 are called~real! contravariant spinors, and have~real! spinor components
denoted byla, wherea,b, . . . 51, . . . ,4. AnelementjPD4* of the dual space is called a~real!
covariant spinor, and has components denoted byja . jala5jl5tr(lj) andjg5l5tr(g5lj) are
invariant underSO(3,1), and reflect the standard matrix notation used in this paper. We not
(l,j)PD4% D4* define a split octonion.6

The symplectic forme on D4 is invariant underSO(3,1): ifSPSO(3,1), thenS̃eS5e under
the action ofSO(3,1).e ~resp.e21) is used to lower~resp. raise! spinor indices according to

l̃↔lb5laeab ~1!

and

2e21 j̃↔ja5eabjb . ~2!

This implies thateabebc52dc
a .

An arbitrary complex four-component Dirac spinorf can be expressed asf5l2 ig5e21 j̃ ,
which may be used to definel andj givenf. For simplicity, we shall calculate primarily withl
andj and not explicitly withf.

Dirac5 has labeled the 15~real, 434, linearly independent, traceless! generators of his irre-

ducible representation ofSO(3,3) as2 1
2 gAB, whereA,B, . . . 51, . . . ,6. In thepresent paper

Dirac’s gamma matrices arega5ga6 andg55g56. The generators ofSO(3,1) are

Sab52 1
4@ga,gb#52 1

2g
ab. ~3!

A familiar identity

gagb5habg022Sab ~4!

holds, whereg0 is Dirac’s notation for the unit matrix. We shall make frequent use of

g̃ a e52ega, g̃ 5e5eg5, S̃ abe52eSab ~5!

in explicit calculations.
Before constructing the tetrad fromf we make the following remark. The onlySO(3,1)

scalars that can be formed from an arbitrary contravariant spinorlPD4 are functions ofl̃ el and
l̃ eg5l. However, both of these scalars vanish because of the skew-symmetry ofe and eg5.
Therefore
J. Math. Phys., Vol. 38, No. 11, November 1997

                                                                                                                



g

cts of

ace

6010 Patrick L. Nash: Mapping from tetrad to Dirac spinor

                    
na5 l̃ egal ~6!

must satisfynana50 and hence must be a null~lightlike! vector.e is chosen so thateg45g0

[ unit matrix, which makesna future-pointing.
Similarly, given an arbitrary covariant spinorjPD4* one can construct the future-pointin

null vector

ma52jgae21 j̃ . ~7!

Using the identity4

galjga5g0jl1g5jg5l1e21 j̃ l̃ e1g5e21 j̃ l̃ eg5 ~8!

one may show that

mana522N2, ~9!

where

N25N0
21N5

2 ~10!

and

N05jl5j1l11j2l21j3l31j4l4,
~11!

N55jg5l52j2l11j1l21j4l32j3l4

areSO(3,1) scalars. In the last equation we have used the concrete real 434 irreducible repre-
sentation ofSO(3,3) discussed in Ref. 4.

If N2Þ0, thenma andna are linearly independent. In this case

ua5E~4!
a 5 1

2~ma1na! ~12!

is the timelike four-velocity. Also

Sa5E~3!
a 5 1

2~ma2na! ~13!

is spacelike and is the Pauli-Lubanski spin vector. Since the Lorentz invariant scalar produ
ma andna with the spin vector are6N2, ma andna have opposite helicities.

The tetrad is completed byE(1)
a 5jgag5l and E(2)

a 5jgal. The tetrad verifies
habE(m)

a E(n)
b 5h (m)(n)N

2.7

For future reference, we letD6 denote the six-dimensional subspace of complex Dirac sp
>D4% D4* defined by the set of (l,j)PD4% D4* that satisfy the constraintsjl5N050 and
jg5l5N551.

Finally, we shall need the following operators. Let

g5g0N02g5N5 ~14!

and

t15gaE~1!
a , t25gaE~2!

a ,
~15!

T15g t1 , T25g t2 .
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let us restrict our attention to theN251 subspace ofD4% D4* . Since E(1)
a and E(2)

a are
orthogonal to each other,$t1 ,t2%50 and @2g5T1 ,T2#50. In addition, because of the ant
commutation relations of thega matrices and the normality of the frame,t1

25g05t2
2, so thatt1

andt2 have eigenvalues61. Sinceg5 anti-commutes with eachga and has square equal to2g0,
(T1)25N2g05g05(T2)2, so that T1 and T2 have eigenvalues61. Lastly, we see tha
(g5T1)25g0, so that2g5T1 also has eigenvalues61.

III. SO„3,1… MAPPINGS

In order to simplify some of the algebra we restrict our attention to the canonical
dimensional subspaceD6 of complex Dirac space defined above. Additional justification for t
is that the constraintsN050 andN551 are physically revelant constraints for elementary ferm
ons. To see this, consider the free-field Dirac equation may be written as (\51)

~ igapa1m!f50. ~16!

Using the relationf5l2 ig5e21 j̃ , and the standard definitionf̄5f†g452f†e52 l̃ e1 i jg5,
one finds thatf̄f52iN5 and f̄g5f522iN0. For plane wave solutions to the free-field Dira
equation,mf̄f52 i f̄gapafÞ0 andmf̄g5f52 i f̄g5gaf pa50 sincef̄gaf522E(4)

a }pa ,
i f̄g5gaf52E(2)

a andpaE(2)
a 50. One sees thatN050 andN5Þ0.

Also, we employ the concrete real 434 irreducible representation ofSO(3,3) discussed in
Ref. 4. Clearly the calculation is possible using an abstract 434 irreducible representation of th
algebra, but that would require the introduction of several new geometrical objects whose
erties are unfamiliar and whose investigation would take us away from the focus of this pa
Theorem 1: A and B are equivalent:

A: Let lPD4, jPD4* andN25N0
21N5

251. For simplicity we further assume thatN050 and
N551, i.e., (l,j)PD6. An M4 tetradE(m)

a verifying habE(m)
a E(n)

b 5h (m)(n) is defined as follows:7

ma52jgae21 j̃ 5S 2 j3j122 j4j2

2 j4j112 j3j2

j1
21j2

22j3
22j4

2

j1
21j2

21j3
21j4

2

D , ~17!

na5 l̃ egal5S 22 l3l112 l4l2

22 l4l122 l3l2

2~l1!22~l2!21~l3!21~l4!2

~l1!21~l2!21~l3!21~l4!2

D , ~18!

where

2ua52E~4!
a 52jgae21 j̃ 1 l̃ egal5ma1na, ~19!

2Sa52E~3!
a 52jgae21 j̃ 2 l̃ egal5ma2na, ~20!

E~1!
a 5jgag5l5S j2l11j1l21j4l31j3l4

2j1l11j2l22j3l31j4l4

j4l12j3l22j2l31j1l4

2j4l11j3l22j2l31j1l4

D , ~21!
J. Math. Phys., Vol. 38, No. 11, November 1997
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E~2!
a 5jgal5S j1l12j2l22j3l31j4l4

j2l11j1l22j4l32j3l4

2j3l12j4l22j1l32j2l4

j3l11j4l22j1l32j2l4

D . ~22!

The canonical frameEC(m)
a 5d (m)

a is given byja5da
1 andla5d2

a , but, obviously, other values
of j andl also giveEC(m)

a .
B: Let E(m)

a denote an arbitrary tetrad onM4 that verifieshabE(m)
a E(n)

b 5h (m)(n) . Real Dirac

spinorslPD4 andjPD4* that satisfy the constraintsjl5N050 andjg5l5N551 are given by
the following formulas:

zl15u2S12u1S21E~2!
1 2E~1!

2 ,

zl25u4S32u3S41E~1!
1 1E~2!

2 11,
~23!

zl35u4S22u2S41u3S22u2S32E~2!
3 2E~2!

4 ,

zl45u1S32u3S11u1S42u4S11E~1!
3 1E~1!

4 ,

zj15u3E~1!
1 2u1E~1!

3 1u4E~1!
1 2u1E~1!

4 1u4E~2!
2 2u2E~2!

4 1u3E~2!
2 2u2E~2!

3 1S31S41u31u4,

zj25u3E~1!
2 2u2E~1!

3 1u4E~1!
2 2u2E~1!

4 1u1E~2!
3 2u3E~2!

1 1u1E~2!
4 2u4E~2!

1 ,
~24!

zj35u3E~1!
4 2u4E~1!

3 1u1E~2!
2 2u2E~2!

1 1S11u1,

zj45u2E~1!
1 2u1E~1!

2 1u3E~2!
4 2u4E~2!

3 1S21u2,

where

z254un5u ~25!

andn5 is given by

n55u4E~1!
1 2u1E~1!

4 1u3E~1!
1 2u1E~1!

3

1u4E~2!
2 2u2E~2!

4 1u3E~2!
2 2u2E~2!

3 1S31S41u31u4. ~26!

Equations~23!–~26! define a map SO(3,1)1
↑ →(l,j)PD65D4% D4* uN050,N551,SO(3,1). We

note that the canonical frameEC(m)
a 5d (m)

a gives ja5da
1[jCa and la5d2

a[lC
a . An arbitrary

(l,j)PD6 is contained in the same orbit ofSO(3,1) as (lC ,jC)PD6. Using
X2g5Xg51e21X̃e2g5e21X̃eg55g0tr(X)2g5tr(Xg5),4 where X is an arbitrary 434 matrix
that transforms likelajb underSO(3,1), it can be shown that theSPSO(3,1) that transforms
(lC ,jC) into (l,j) is given byS5(g̃/N2)(ljC2g5ljCg51e21 j̃ l̃Ce2g5e21 j̃ l̃Ceg5).

We must emphasize that Eqs.~23!–~26! have other equivalent realizations because of
identity

ea1a2abE
~m!

a1 E
~n!

a2 5e~m!~n!~m1!~m2!Ea
~m1!Eb

~m2! , ~27!

as well as other more complex identities. These relationships are out of the main line of de
ment of this paper, and are not discussed here.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Remark 1:Equation~23! for l is the simultaneous solution of2g5T1l5l andT2l5l. This
ensures thatlPD4 does indeed transform as aSO(3,1) contravariant spinor.

Remark 2: Equation ~24! is obtained from substitution of Eq.~23! for l into
2e21 j̃ 5(1/N2)g galua, and simplifying. This definition givesj the correctSO(3,1) transfor-
mation properties. We shall see below how this relationship arises.

Remark 3:Equations~25! and~26! are obtained by substituting forl andj @using Eqs.~23!
and ~24!# into (zj)g5(zl)5z2jg5l5z2 and simplifying. Hence by constructionN551. More-
over, direct evaluation shows thatN050 wheng5g0N02g5N552g5.

Proof: A ⇒ B. We multiply Eq.~21! on the left withgal and then sum overa. This gives
galE(1)

a 5gal(jgag5l)5(galjga)g5l5(g0jl1g5jg5l1e21 j̃ l̃ e1g5e21 j̃ l̃ eg5)g5l, us-
ing Eq. ~8!, 5 g̃g5l, since l̃ el[0[l̃eg5l. Multiplying by g on the left gives
ggalE(1)

a 5N2g5l5g5l. We find that

2g5T1l5l. ~28!

Similarly, multiply Eq. ~22! on the left bygal, summing overa and using Eq.~8! gives

T2l5l. ~29!

Thereforel is a simultaneous eigenvector of2g5T1 andT2 with eigenvalue 1 for both operators
An analogous result clearly holds forj.

Next we multiply Eq.~19! on the left with2gal, sum overa, and use Eq.~8!. This gives

2e21 j̃ 5
1

N2
g galua. ~30!

Similarly multiplying Eq.~20! on the left yields

2e21 j̃ 5
1

N2
g galSa. ~31!

Analogous results, with an additional6, hold for l.
Eliminating j from the previous two equations yields another eigenvalue const

gaSagbubl5l for l, but this yields no new independent information because of Eq.~27!.
Equation~23! follows from solving the eigenvalue problems~28! and ~29! for l, up to a

normalizing factor. The appendix contains an outline of the Maple program used to solv
eigenvalue problem forl.

Equation~24! for j follows upon substituting forl into Eq. ~30! and simplifying. The nor-
malizing factorz is found by requiring thatN551, henceN551 by construction. The constrain
N050 is satisfied automatically when the eigenvalue problems are solved withg set equal to2g5

becauseN0 5 jl5 l̃ j̃ 52 l̃ eg galua and this is zero wheng52g5 sincel̃ eg5gal5 trans-
pose(l̃ eg5gal)52 l̃ eg5gal[0.

Clearly other mappingsE(m)
a °(l,j) exist. For example, one could define and solve eig

value problems forj and then substitute intol̃ e5(1/N2)uajgag to determinel.
B ⇒ A. Direct substitution forl using Eq.~23! and forj using Eq.~24! into the definitions

~19!–~22! yields, after a rather lengthy calculation, the identityE(m)
a [E(m)

a . A perhaps simpler
approach is to first verify thatl given by Eq.~23! is a simultaneous eigenvector of2g5T1 andT2

with unit eigenvalue, as claimed, and that2e21 j̃ 5(1/N2)g galua. Direct calculation next
proves that N551 and N050. Then left multiplication of Eq. ~29! with jga yields
jgaggblE(2)

b 5jgal. But gaggb5 g̃gagb5 g̃ (habg022Sab) so that jgal5j g̃ (habg0
J. Math. Phys., Vol. 38, No. 11, November 1997
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22Sab)lEb(2)5(N0
21N5

2)E(2)
a 22jg5SablEb(2) 5 N2E(2)

a 22jg5SablEb(2) . We substitute for
j using Eq.~30! in the second term of the last expression. This produces a term 2umLm

abEb(2) ,
where the tensorLm

ab5 l̃ egmSabl. To evaluate this tensor we useLm
ab5 transpose(Lm

ab)
52 l̃ S̃abgm̃el52 l̃ eSabgml52 l̃ e@gmSab1gadm

b2gbdm
a#l using the commutation relation

betweenSab and gm . Therefore 2Lm
ab5nbdm

a2nadm
b . Since ubE(2)

b 50, the second term in
2jgag5gblE(2)

b containing 2umLm
abEb(2) reduces to uanbE(2)

b . However, l5T2l

5ggaE(2)
a l, so that nbE(2)

b 50. This follows from consideration ofnbE(2)
b 5 l̃ egb(l)E(2)

b

5 l̃ egb(ggaE(2)
a l)E(2)

b 5 l̃ e g̃gbgalE(2)
a E(2)

b 5 l̃ e g̃ (hba22Sba)lE(2)
a E(2)

b 50 sincel̃ e g̃l[0
and because of the fact thatl̃ e g̃Sbal is antisymmetric in (b,a) while E(2)

a E(2)
b is symmetric,

whencel̃ e g̃SbalE(2)
a E(2)

b [0. Hencejgal5N2E(2)
a 5E(2)

a .
The remaining three relationships, Eqs.~19!–~21!, may be deduced using quite similar m

nipulations.

IV. CONCLUSION

Eqs.~23!–~26! may be used in conjunction with the Feynman propagator representation o
solution of the interacting Dirac equation to generate a Dirac wave spinor that at a given
time has desired momentum, vector spin,E(1)

a andE(2)
a expectation values. This is to be contrast

with the use of an eigenspinor of, say, momentum or spin, as an initial value for an in ge
different, solution.

The symmetry group of Eqs.~23!–~26! remains to be investigated. As previously remark
(l,j)PD4% D4* define an element of the~split! octonion algebra.6 Preliminary work has sug-
gested that Eqs.~19!–~22! as well as Eqs.~23!–~26! may be most symmetrically formulated i
terms of octonions and their~mildly! non-associative multiplication. Investigation is proceed
from this point of view.

APPENDIX: MAPLE PROGRAM FOR SOLUTION OF EIGENVALUE PROBLEM

This appendix contains an outline of the Maple program used to solve the eigenvalue pr
for l. It is included only for those who wish to solve the problem at a computer while actu
using Maple. Other readers should not be discouraged if the program logic is not readily
parent.

.with~linalg!:

.g:5evalm~diag~1,1,1,21!!:#5METRIC TENSORhab

SETUP FOR REPRESENTATION OF DIRAC’S GAMMA MATRICES
.id:5evalm~array~identity,1..4,1..4!!:#5g0

LEVI-CIVITA TENSOR:
.ep:5array~antisymmetric,1..4,1..4,1..4,1..4!:ep@1,2,3,4#:51:
.g3:5evalm~diag(1,1,21)):
.SelfDualAntiSymmetric:5
.(h,p,q)2.eval((2ep@h,p,q,4#2 id@p,h#* id@q,4#1 id@p,4#* id@q,h#)):
.AntiSelfDualAntiSymmetric:5
.(h,p,q)2.eval((2ep@h,p,q,4#1 id@p,h#* id@q,4#2 id@p,4#* id@q,h#)):
.for h from 1 to 3 do f.h:5~p,q!-¿SelfDualAntiSymmetric~h,p,q! od:
These are 3 self-dual anti-symmetric gamma matrices:
.for h from 1 to 3 do s@h# :5 evalm~matrix~4,4,f.h!! od:
.for h from 1 to 3 do f.h:5~p,q!-¿AntiSelfDualAntiSymmetric~h,p,q! od:
These are 3 anti-self-dual anti-symmetric gamma matrices:
.for h from 1 to 3 do t@h# :5 evalm~matrix~4,4,f.h!! od:
IN THIS FORMALISM, g552t@3#
These are 9 symmetric gamma matrices:
J. Math. Phys., Vol. 38, No. 11, November 1997
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.for h from 1 to 3 do for k from 1 to 3 do

.G@h,k# :5 evalm(scalarmul(t@h#& * s@k#,2g3@h,h#* g3@k,k#)) odod:

.G@1,4#:5evalm(t@2#) : G@3,4#:5evalm(2t@3#):G@2,4#:52t@1#:
DIRAC’S GAMMA MATRICES5ga5(2G@1,1#,2G@1,2#,2G@1,3#,2G@1,4#

52t@2#)
TETRAD E(m)

a

.E1 :5vector~4! : E2 : 5vector~4! : S :5vector~4! : u :5vector~4! :
CONSTRAINTS
CONSTRAINTS: NORMALIZATION
.E12:5evalm~transpose(E1)&* g& * E1) : E22 :5evalm~transpose(E2)&* g& * E2) :
.s2:5evalm~transpose(S)&* g&* S) :u 2 :5evalm~transpose(u)&* g&* u) :
CONSTRAINTS: ORTHOGONALITY
.E1E2:5evalm~transpose(E1)&* g&* E2) : E1E3 :5evalm~transpose(E1)&* g&* S) :
E1E4:5evalm~transpose(E1)&* g&* u) :
.E2E3:5evalm~transpose(E2)&* g&* S) : E2E4 :5evalm~transpose(E2)&* g&* u) :
uS:5evalm~transpose(S)&* g&* u):
CROSS PRODUCTS
.for h from 1 to 4 do e4@h#:5
sum~sum~sum~’2g@h,h#*ep@k1,k2,k3,h#*E1@k1#*E2@k2#*S@k3#’, ’k3’ 51..4!,’k2’ 51..4!,’k1’

51..4! od:
.for h from 1 to 4 do e3@h#:5
sum~sum~sum~’g@h,h#*ep@k1,k2,h,k4#*E1@k1#*E2@k2#*u@k4#’, ’k4’ 51..4!,’k2’ 51..4!,’k1’

51..4! od:
.for h from 1 to 4 do e1@h#:5
sum~sum~sum~’g@h,h#*ep@h,k1,k3,k4#*E2@k1#*S@k3#*u@k4#’, ’k4’ 51..4!,’k3’ 51..4!,’k1’

51..4! od:
.for h from 1 to 4 do e2@h#:5
sum~sum~sum~’g@h,h#*ep@k1,h,k3,k4#*E1@k1#*S@k3#*u@k4#’, ’k4’ 51..4!,’k3’ 51..4!,’k1’

51..4! od:
OPERATORSga Ea~m!
.qT:5(x)2.evalm(2(G@1,1#* x@1#1G@1,2#* x@2#1G@1,3#* x@3#2G@1,4#* x@4#)):
SEE EQUATIONS@15# FOR DEFINITIONS OF FOLLOWING:
.t1:5qT(E1):t2:5qT(E2) :
SOLVE EIGENVALUE PROBLEM FORl
2g5gt1l5l
gt2l 5 l

LET x 5 l;
.x:5vector(4):y1:5evalm(t1&* x1x):y2:5evalm(t@3#&* t2&* x2x) :
PRELIMINARY SOLUTION TO THE EIGENVALUE PROBLEM FORl:
.x21 :5solve(y2@1#, x@1#) :
.X23:5solve(subs(x@1#5x21, y2@3#), x@3#) :
.X21:5simplify(subs(x@3#5X23, x21)) :
.x11:5solve(y1@1#, x@1#) :
.X13:5solve(subs(x@1#5x11, y1@3#), x@3#) :
.X11 :5simplify~subs(x@3#5X13, x11)) :
.x4 :5solve(X235X13, x@4#) :x4d:5denom(x4) : x4n :5numer(x4) :
.x3 :5simplify~subs(x@4#5x4, X13)) :
.x1 :5simplify~subs(x@4#5x4, X11)) :
.X2 :5denom(x3) : x2:5x@2# :
SIMPLIFY PRELIMINARY SOLUTION FORl
J. Math. Phys., Vol. 38, No. 11, November 1997
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. BREAK UP INTO SMALLER PIECES AND SIMPLIFY :

.for h from 1 to 4 do X.h:5simplify~subs~x@2#5X2,x.h!! od:

.qX2:5simplify((X22E2@1#* (E1221))/E1@2#);
qX2:5E1@1#E2@2#1E1@1#1E2@2#112E2@1#E1@2#
.qX3:5simplify(X3/E1@2#);
qX3 :5 2E2@3#E1@1#2E2@4#E1@1#1E2@1#E1@3#2E2@4#1E2@1#E1@4#2E2@3#
.qX4 :5simplify((X42(E2@4#1E2@3#)* (E1221))/E1@2#);
qX4 :5 E1@3#E2@2#1E1@3#1E1@4#E2@2#1E1@4#2E2@3#E1@2#2E2@4#E1@2#
.qX1 :5simplify~X1/E1@2#1E1E2);
qX1 :5E2@1#1E1@4#E2@3#2E1@3#E2@4#2E1@2#
.list1:5:for h from 1 to 4 do list1:5list1 union E1@h#5e1@h# od:
.qqX4a : 5simplify~subs~list1,E1@4#* E2@2#2E1@2#* E2@4#)) :
.qqqX4a:5simplify(qqX4a2E2E3* (E2@1#* u@3#2E2@3#* u@1#)1E2E4*
(S@3#* E2@1#2S@1#* E2@3#)2(E2221)* (S@3#* u@1#2S@1#* u@3#));
qqqX4a :5 S@3#u@1#2S@1#u@3#
.qqX4b :5simplify~subs~list1,E1@3#* E2@2#2E2@3#* E1@2#)) :
.qqqX4b:5simplify(qqX4b2E2E3* (E2@1#* u@4#2E2@4#* u@1#)
1E2E4* (S@4#* E2@1#2S@1#* E2@4#)2(E2221)* (S@4#* u@1#2S@1#* u@4#));
qqqX4b:5S@4#u@1#2S@1#u@4#
.qqX2a:5simplify~subs~list1,E1@1#* E2@2#2E2@1#* E1@2#)) :
.qqqX2a :5simplify(qqX2a1E2E3* (E2@3#* u@4#2E2@4#* u@3#)
(qqX2a1E2E3* (E2@3#* u@4#2E2@4#* u@3#)2E2E4* (S@4#* E2@3#
2E2E4* (S@4#* E2@3#2S@3#* E2@4#)1(E2221)* (S@4#* u@3#2S@3#* u@4#));
qqqX2a :5 2S@4#u@3#1S@3#u@4#
.qqX1a :5simplify~subs~list1, E1@4#* E2@3#2E1@3#* E2@4#)) :
.qqqX1a :5simplify(qqX1a1E2E3* (E2@1#* u@2#2E2@2#* u@1#)
2E2E4* (S@2#* E2@1#2S@1#* E2@2#)1(E2221)* (S@2#* u@1#2S@1#* u@2#));
qqqX1a :5 2S@2#u@1#1S@1#u@2#
.qqX3a :5simplify~subs~list1,2E2@3#* E1@1#1E2@1#* E1@3#)) :
.qqqX3a :5simplify(qqX3a1E2E3* (E2@2#* u@4#2E2@4#* u@2#)
2E2E4* (S@4#* E2@2#2S@2#* E2@4#)1(E2221)* (S@4#* u@2#2S@2#* u@4#));
qqqX3a :5 2S@4#u@2#1S@2#u@4#
.qqX3b :5simplify~subs~list1,2E2@4#* E1@1#1E2@1#* E1@4#)) :
.qqqX3b :5simplify(qqX3b1E2E3* (E2@2#* u@3#2E2@3#* u@2#)
2E2E4* (S@3#* E2@2#2S@2#* E2@3#)1(E2221)* (S@3#* u@2#2S@2#* u@3#));
qqqX3b :5 2S@3#u@2#1S@2#u@3#
SOLUTION TO THE EIGENVALUE PROBLEM FORl:
.lambda:5 vector(4,@qqqX1a1E2@1#2E1@2#, qqqX2a1E1@1#1E2@2#11,qqqX3a
1qqqX3b2E2@4#2E2@3#,qqqX4a1qqqX4b1E1@3#1E1@4#]);
l :5 @2S@2#u@1#1S@1#u@2#1E2@1#2E1@2#,
2S@4#u@3#1S@3#u@4#1E1@1#1E2@2#11,
2S@4#u@2#1S@2#u@4#2S@3#u@2#1S@2#u@3#2E2@4#2E2@3#,
S@3#u@1#2S@1#u@3#1S@4#u@1#2S@1#u@4#1E1@3#1E1@4#]
NEXT CALCULATE y 5 j :
.y :5map~simplify,evalm(t@3#& * t@2#& * T4&* lambda)) :
.Y1 :5simplify(y@1#1uS* (2u@3#2u@4#)1(u211)* (S@4#1S@3#));
Y1 :5 u@3#1u@4#1S@3#1S@4#1u@3#E1@1#1u@3#E2@2#
2u@1#E1@3#2u@1#E1@4#2u@2#E2@3#2u@2#E2@4#1u@4#E1@1#1u@4#E2@2#
.Y2 :5simplify(y@2#);
Y2 :5 2u@3#E2@1#1u@3#E1@2#2u@4#E2@1#1u@4#E1@2#1u@1#E2@4#
1u@1#E2@3#2u@2#E1@3#2u@2#E1@4#
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.Y3 :5simplify(y@3#2uS* u@1#1(u211)* (S@1#)2E1E4);
Y3 :5 2u@2#E2@1#1u@1#E2@2#1u@1#1u@3#E1@4#2u@4#E1@3#1S@1#
.Y4 :5simplify(y@4#2uS* u@2#1(u211)* (S@2#)2E2E4);
Y4 :5 2u@1#E1@2#1u@2#E1@1#1u@2#1u@3#E2@4#2u@4#E2@3#1S@2#
SIMPLIFIED EXPRESSION FORj :
.xi :5vector(4,@Y1,Y2,Y3,Y4#);
j :5 @u@3#1u@4#1S@3#1S@4#1u@3#E1@1#1u@3#E2@2#
2u@1#E1@3#2u@1#E1@4#2u@2#E2@3#2u@2#E2@4#1u@4#E1@1#
1u@4#E2@2#,
2u@3#E2@1#1u@3#E1@2#2u@4#E2@1#1u@4#E1@2#
1u@1#E2@4#1u@1#E2@3#2u@2#E1@3#2u@2#E1@4#,
2u@2#E2@1#1u@1#E2@2#1u@1#1u@3#E1@4#2u@4#E1@3#1S@1#,
2u@1#E1@2#1u@2#E1@1#1u@2#1u@3#E2@4#2u@4#E2@3#1S@2#]
LASTLY, SIMPLIFY jg5l5N5 andn5 :
.N5q :5simplify~evalm~transpose~xi!& * t@3#& * lambda)) : #524n5

.N5qq :5simplify(N5q1uS* (u@3#1u@4#2S@3#2S@4#)1(s221)* (u@3#1u@4#)
1~u211)* (2S[3] 2S[4]) 1(u[3] 1u[4]) * (E121E2222)12* (e3[4]2S[4] 1e3[3]2S[3
1E1E4* (2E1@3#2E1@4#)1E2E4* (2E2@3#2E2@4#)2u@1#* (e1@4#2E1@4#)
2u@1#* (e1@3#2E1@3#)1u@4#* (e1@1#2E1@1#1e2@2#2E2@2#)2u@2#* (e2@4#2E2@4#
1e2@3#2E2@3#)1u@3#* (e1@1#2E1@1#1e2@2#2E2@2#)) :
.N5qqq :54* ((u@2#* E2@4#2u@4#* E2@2#)1(u@1#* E1@4#2u@4#* E1@1#)
1(u@1#* E1@3#
2u@3#* E1@1#)1(u@2#* E2@3#2u@3#* E2@2#)2u@3#2u@4#2S@3#2S@4#) :
.2N5qqq/4; #5n5

u@3#1u@4#1S@3#1S@4#1u@3#E1@1#1u@3#E2@2#2u@1#E1@3#2u@1#E1@4#2u@2#
E2@3#2u@2#E2@4#1u@4#E1@1#1u@4#E2@2#
.

1E. T. Newman and R. Penrose, ‘‘An approach to gravitational radiation by a method of spin coefficients,’’ J. Math
3, 566 ~1961!; erratum4, 998 ~1962!.

2S. Chandrasekhar,The Mathematical Theory of Black Holes~Clarendon, Oxford, 1983!.
3R. M. Wald,General Relativity~U. Chicago, Chicago, 1984!.
4P. L. Nash, ‘‘Identities satisfied by the generators of the Dirac algebra,’’ J. Math. Phys.25, 204 ~1984!.
5P. A. M. Dirac, ‘‘A remarkable representation of the 31 2 de Sitter group,’’ J. Math. Phys.4, 901 ~1963!.
6P. L. Nash, ‘‘On the structure of the split octonian algebra,’’ Nuovo Cimento B105, 31 ~1990!.
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Colored quantum universal enveloping algebras
C. Quesnea)

Physique Nucle´aire Théorique et Physique Mathe´matique, Universite´ Libre de Bruxelles,
Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

~Received 4 September 1996; accepted for publication 24 April 1997!

We define some new algebraic structures, termed colored Hopf algebras, by com-
bining the coalgebra structures and antipodes of a standard Hopf algebra setH,
corresponding to some parameter setQ , with the transformations of an algebra
isomorphism groupG , herein called color group. Such transformations are labeled
by some color parameters, taking values in a color setC . We show that various
classes of Hopf algebras, such as almost cocommutative, coboundary, quasitrian-
gular, and triangular ones, can be extended into corresponding colored algebraic
structures, and that colored quasitriangular Hopf algebras, in particular, are char-
acterized by the existence of a colored universalR-matrix, satisfying the colored
Yang–Baxter equation. The present definitions extend those previously introduced
by Ohtsuki, which correspond to some substructures in those cases where the color
group is Abelian. We apply the new concepts to construct colored quantum uni-
versal enveloping algebras of both semisimple and nonsemisimple Lie algebras,
considering several examples with fixed or varying parameters. As a by-product,
some of the matrix representations of colored universalR-matrices, derived in the
present paper, provide new solutions of the colored Yang–Baxter equation, which
might be of interest in the context of integrable models. ©1997 American Insti-
tute of Physics.@S0022-2488~97!03409-9#

I. INTRODUCTION

Since its introduction, the parametrized~quantum! Yang–Baxter equation~YBE!1 plays a
crucial role in nonlinear integrable systems in physics, such as exactly solvable statistical m
ics models and low-dimensional integrable field theories.2 Its constant form is also important i
knot theory, where it is connected with braid groups.3

In addition, the YBE has inspired the development of quantum groups and quantum alge4

essentially appearing in the literature in two different forms.
In the Faddeev–Reshetikhin–Takhtajan~FRT! formulation,5 to any invertible matrix solution

R of the constant YBE, one associates two bialgebrasA(R) andU(R) that under certain condi
tions can lead to two dual Hopf algebras. For both of them, the constant YBE is a suffi
condition for associativity.

In the Drinfeld and Jimbo~DJ! approach,6 one considers one-parameter deformations Uq(g)
of the universal enveloping algebras@or quantum universal enveloping algebras~QUEA’s!# of
simple Lie algebrasg. Such quantizations are quasitriangular Hopf algebras, that is, there ex
universalR-matrix, which is an invertible element of Uq(g) ^ Uq(g), and which among othe
properties, satisfies the YBE.

The DJ approach has been completed for nonsemisimple Lie algebras by applying v
procedures, such as contractions of QUEA’s of simple Lie algebras,7,8 and by introducing multi-
parametric deformations.9,10

A link has been established between the FRT and DJ formulations by considering forR the
matrix representing the operatorR in the fundamental representation ofg ~see, e.g., Ref. 11!. In
such a case, the generators of U(R) can indeed be expressed in terms of those of Uq(g). The

a!Directeur de recherches FNRS; Electronic mail: cquesne@ulb.ac.be
0022-2488/97/38(11)/6018/22/$10.00
6018 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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algebraA(R), associated with U(R), is then related to the quantized functions on the correspo
ing Lie groupG, or quantum group,Funq(G)5Gq .

In recent years, some integrable models with nonadditive-type solutionsRl,mÞR(l2m) of
the YBE have been discovered.12,13 The corresponding YBE,

R12
l,mR13

l,nR23
m,n5R23

m,nR13
l,nR12

l,m ~1.1!

is referred to in the literature as the ‘‘colored’’ YBE, the nonadditive~in general multicomponent!
spectral parametersl, m, n being considered as ‘‘color’’ indices.14

Constructing solutions of Eq.~1.1! by starting from some quantum algebra has then becom
topic of active research. Various approaches have been used for such a purpose.15–22Among them,
one should mention a recent work of Bonatsoset al.22 on a nonlinear deformationAq

1(1) of
su~2!, distinct from the DJ one, wherein the color parameter is related with an involutive a
morphism of the algebra, and serves to distinguish between the irreducible representations w
same dimension.

Extending the definitions of quantum groups and quantum algebras by connecting th
colored R-matrices, instead of ordinary ones, is an interesting problem, which so far ha
received much attention in the literature.

The generalization of the FRT approach has been discussed by Kundu and Basu-Mallick19,20,23

for some quantizations of U@gl~2!# and Gl~2!. Such colored extensions are characterized by g
eralized algebraic structures, but coalgebra structures identical with those of standardA(R) and
U(R) algebras.

In the context of knot theory, Ohtsuki24 has introduced colored quasitriangular Hopf algebr
which are characterized by the existence of a colored universalR-matrix, and he has applied hi
formalism to colored representations of Uq@sl(2)# for q a root of unity. A rather similar, but
nevertheless distinct generalization has been independently considered by Bonatsoset al.22 for the
above-mentionedAq

1(1) algebra, which has been endowed with a two-color quasitriangular H
structure.

In the present paper, we extend the DJ formulation of QUEA’s to colored ones by elabo
on the results of Bonatsoset al.22 For such a purpose, in the next section we define colored H
algebras in a way that generalizes Ohtsuki’s first attempt. In Secs. III and IV, we demonstra
present definition generality and usefulness by reviewing various examples of colored QU
then summarize and comment on prospects in Sec. V.

II. COLORED HOPF ALGEBRAS

Let (Hq ,1,mq ,iq ,Dq ,eq ,Sq ;k) ~or in shortHq! be a Hopf algebra over some fieldk ~5C
or R!, depending upon some parametersq. Here mq :Hq^ Hq→Hq , iq :k→Hq ,
Dq :Hq→Hq^ Hq , eq :Hq→k, andSq :Hq→Hq denote the multiplication, unit, comultipli
cation, counit, and antipode maps, respectively.25 Wheneverq runs over some setQ , called
parameter set, we obtain a set of Hopf algebrasH5$HquqPQ%. In the examples given in Secs
III and IV, we shall distinguish between two cases, according to whetherQ contains a single
element~fixed-parameter case! or more than one element~varying-parameter case!.

Let us assume that there exists a set of one-to-one linear mapsG 5$sn:Hq→Hqnuq,qn

PQ ,nPC %, defined for anyHqPH. They are labeled by some parametersn, called color
parameters, taking values in some setC , called color set. The latter may be finite, countabl
infinite, or uncountably infinite. Two conditions are imposed on thesn’s
J. Math. Phys., Vol. 38, No. 11, November 1997
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~i! Every sn is an algebra isomorphism, i.e.,

sn+mq5mqn+~sn
^sn!, sn+iq5iqn; ~2.1!

~ii ! G is a group~calledcolor group! with respect to the composition of maps, i.e.,

;n,n8PC ,'n9PC :sn95sn8+sn:Hq→Hqn95Hqn,n8, ~2.2!

'n0PC :sn0
5 id:Hq→Hqn05Hq , ~2.3!

;nPC ,'n8PC :sn85sn[~sn!21:Hqn→Hq . ~2.4!

In Eqs.~2.2! and ~2.4!, n9 andn8 will be denoted byn8+n andn i , respectively.
H, C , andG can be combined into the following definition:
Definition II.1: The mapsDq,n

l,m :Hqn→Hql ^ Hqm, eq,n :Hqn→k, and Sq,n
m :Hqn→Hqm,

defined by

Dq,n
l,m[~sl

^ sm!+Dq+sn , eq,n[eq+sn , Sq,n
m [sm+Sq+sn , ~2.5!

for any qPQ , and anyl, m, nPC , are called colored comultiplication, counit, and antipod
respectively.

It is easy to prove the following proposition:
Proposition II.2: The colored comultiplication, counit, and antipode maps, defined in

(2.5), transform under the color groupG as

~sa
l

^ sb
m!+Dq,n

a,b5Dq,n
l,m5Dq,g

l,m+sn
g ,

eq,a+sn
a5eq,n , ~2.6!

sa
m+Sq,n

a 5Sq,n
m 5Sq,b

m +sn
b ,

and satisfy generalized coassociativity, counit, and antipode axioms,

~Dq,l
a,b

^ sm
g !+Dq,n

l,m5~sl8
a

^ Dq,m8
b,g

!+Dq,n
l8,m8 ,

~eq,l ^ sm
a !+Dq,n

l,m5~sl8
a

^ eq,m8!+Dq,n
l8,m85sn

a , ~2.7!

mqa+~Sq,l
a

^ sm
a !+Dq,n

l,m5mqa+~sl8
a

^ Sq,m8
a

!+Dq,n
l8,m85iqa+eq,n ,

as well as generalized bialgebra axioms,

Dq,n
l,m+mqn5~mql ^ mqm!+~ id^ t ^ id!+~Dq,n

l,m
^ Dq,n

l,m!,

Dq,n
l,m+iqn5iql+iqm,

~2.8!

eq,n+mqn5eq,n ^ eq,n ,

eq,n+iqn51k .

Here sm
l is the element ofG defined by
J. Math. Phys., Vol. 38, No. 11, November 1997
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sm
l [sl+sm , ~2.9!

t is the twist map, i.e.,t(a^ b)5b^ a, 1k denotes the unit of k, and no summation is implied o
repeated indices.

Proof: The various results are obtained by combining standard Hopf algebra axioms25 with
Definition II.1, and Eqs.~2.1!–~2.4!. Consider for instance the first equation in Eq.~2.7!. The map
on the left-hand side, (Dq,l

a,b
^ sm

g )+Dq,n
l,m :Hqn→Hql ^ Hqm→Hqa ^ Hqb ^ Hqg, can be proved

to be identical with that on the right-hand one, (sl8
a

^ Dq,m8
b,g )+Dq,n

l8,m8 :Hqn→Hql8

^ Hqm8→Hqa ^ Hqb ^ Hqg, as follows:

~Dq,l
a,b

^ sm
g !+Dq,n

l,m5~~~sa
^ sb!+Dq+sl! ^ ~sg+sm!!+~~sl

^ sm!+Dq+sn!

5~~~sa
^ sb!+Dq! ^ sg!+Dq+sn

5~sa
^ sb

^ sg!+~Dq^ id!+Dq+sn

5~sa
^ sb

^ sg!+~ id^ Dq!+Dq+sn

5~sa
^ ~~sb

^ sg!+Dq!!+Dq+sn

5~~sa+sl8! ^ ~~sb
^ sg!+Dq+sm8!!+~sl8^ sm8!+Dq+sn

5~sl8
a

^ Dq,m8
b,g

!+Dq,n
l8,m8 . j

From Proposition II.2, it is straightforward to obtain
Corollary II.3: If Eqs. (2.1)–(2.4) are satisfied, then for any qPQ , any nPC , and qn[qn i

,
(Hq ,1,mq ,iq ,Dqn ,n

n,n ,eqn ,n ,Sqn ,n
n ;k) is a Hopf algebra over k with comultiplicationDqn ,n

n,n ,

counit eqn ,n , and antipode Sqn ,n
n , defined by particularizing Eq. (2.5).

Remark:In particular, forn5n0, we get back the original Hopf structure ofHq .
Generalizing the result contained in Corollary II.3, we are led to introduce
Definition II.4: A set of Hopf algebrasH, endowed with colored comultiplication, counit, an

antipode mapsDq,n
l,m , eq,n , Sq,n

m , as defined in Eq. (2.5), is called colored Hopf algebra, a
denoted by any one of the symbols(Hq ,1,mq ,iq ,Dq,n

l,m ,eq,n ,Sq,n
m ;k,Q ,C ,G ), ~H, C , G !, or

Hc.
As in standard Hopf algebras, the coloured antipodeSq,n

m satisfies some additional propertie
Proposition II.5: The colored antipode Sq,n

m of a colored Hopf algebraHc fulfils the relations,

Sq,n
m +mqn5mqm+t+~Sq,n

m
^ Sq,n

m !, Sq,n
m +iqn5iqm, ~2.10!

~Sq,l
a

^ Sq,m
b !+Dq,n

l,m5t+Dq,g
b,a+Sq,n

g , eq,m+Sq,n
m 5eq,n . ~2.11!

Proof: Equation~2.10! @resp.~2.11!# is obtained by combining Eqs.~2.1!–~2.5! with the first
~resp. second! line in the following equation:

Sq+mq5mq+t+~Sq^ Sq!, Sq+iq5iq ,

~Sq^ Sq!+Dq5t+Dq+Sq , eq+Sq5eq ,

expressing the fact thatSq is an algebra~resp. coalgebra! antiautomorphism. j

Let us now assume that the members of the Hopf algebra setH are almost cocommutative
Hopf algebras,25 i.e., for anyqPQ there exists an invertible elementRqPHq^ Hq ~completed
tensor product!, such that
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t+Dq~a!5RqDq~a!Rq
21 ~2.12!

for any aPHq .
We may then introduce
Definition II.6: Let Rc denote the set of elementsRq

l,mPHql ^ Hqm , defined by

Rq
l,m[~sl

^ sm!~Rq!, ~2.13!

where q runs overQ , and l, m over C .
The following result can be easily obtained:
Proposition II.7: If the Hopf algebrasHq of H are almost cocommutative, thenRq

l,m , as
defined in Eq. (2.13), is invertible with(Rq

l,m)21 given by

~Rq
l,m!215~sl

^ sm!~Rq
21!, ~2.14!

and

t+Dq,n
m,l~a!5Rq

l,mDq,n
l,m~a!~Rq

l,m!21 ~2.15!

for any aPHqn. If in addition, the almost cocommutative Hopf algebras(Hq ,Rq) are (i)
coboundary, (ii) quasitriangular, or (iii) triangular, thenRq

l,m also satisfies the relations

~i!

Rq,12
a,b ~Dq,l

a,b
^ sm

g !~Rq
l,m!5Rq,23

b,g ~sl8
a

^ Dq,m8
b,g

!~Rq
l8,m8!,

Rq,21
l,m [t~Rq

m,l!5~Rq
l,m!21, ~2.16!

~eq,l^eq,m!~Rq
l,m!51k ,

~ii !

~Dq,l
a,b

^sm
g!~Rq

l,m!5Rq,13
a,g

Rq,23
b,g ,

~2.17!

~sl
a

^Dq,m
b,g!~Rq

l,m!5Rq,13
a,g

Rq,12
a,b ,

~iii !

~Dq,l
a,b

^sm
g!~Rq

l,m!5Rq,13
a,g

Rq,23
b,g ,

~sl
a

^ Dq,m
b,g!~Rq

l,m!5Rq,13
a,g

Rq,12
a,b , ~2.18!

Rq,21
l,m 5~Rq

l,m!21,

respectively.
Hence we have
Definition II.8: A colored, almost cocommutative Hopf algebra is a pair(H c,Rc), where

Hc is a colored Hopf algebra, Rc5$Rq
l,muqPQ ,l,mPC %, and Rq

l,m , defined in Eq. (2.13),
satisfies Eqs. (2.14) and (2.15). A colored, almost cocommutative Hopf algebra(Hc,Rc) is said
to be coboundary, quasitriangular, or triangular ifRq

l,m satisfies Eqs. (2.16), (2.17), or (2.18
respectively. In the case of a colored quasitriangular Hopf algebra, the setRc is called the
colored universalR-matrix of (Hc,Rc).

The terminology used forRc in Definition II.8 is justified by the following proposition:
Proposition II.9: Let(Hc,Rc) be a colored quasitriangular Hopf algebra. Then
J. Math. Phys., Vol. 38, No. 11, November 1997
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Rq,12
l,m

Rq,13
l,n

Rq,23
m,n 5Rq,23

m,n
Rq,13

l,n
Rq,12

l,m ,

~eq,l ^ sm
a !~Rq

l,m!5~sl8
a

^ eq,m8!~Rq
l8,m8!51qa, ~2.19!

~Sq,l
a

^ sm
b !~Rq

l,m!5~sl8
a

^ ~Sq,b
m8 !21!~Rq

l8,m8!5~Rq
a,b!21,

where 1qa denotes the unit element ofHqa, and (Sq,n
m )21:Hqm→Hqn is given by(Sq,n

m )21

5sn+Sq
21+sm .

Remarks:~1! The first equation in~2.19! shows that the elements of the colored univer
R-matrix satisfy the colored YBE, as given in Eq.~1.1!. ~2! Following common use for standar
Hopf algebras, we shall also callRc colored universalR-matrix if its elements satisfy Eq.~2.15!
and the colored YBE.

In those cases where the color groupG is Abelian, one can always transform the col
parameters so as to make them additive. Let thereforen(p) be such thatn8(p8)+n(p)
5(n8+n)(p1p8), n(0)5n0, n(2p)5n i(p), and let us denoteHqn(p) by Ap . The colored
comultiplication, counit, antipode, and universalR-matrix, introduced in Definitions II.1 and II.6
can then be written asDq,n(p3)

l(p1),m(p2)
, eq,n(p) , Sq,n(p2)

m(p1)
, andRq

l(p1),m(p2) , respectively. By special-

izing the results obtained in Eqs.~2.7!, ~2.15!, and~2.17!, we obtain
Proposition II.10: If (Hc,Rc) is a colored quasitriangular Hopf algebra with an Abelia

colour group G , then the maps Dp1p2
[Dq,(l+m)(p11p2)

l(p1),m(p2) :Ap11p2
→Ap1

^ Ap2
, e

[eq,n(0) :A0→k, Sp[Sq,n(p)
n(2p) :Ap→A2p , and the invertible elementsRp1p2

[Rq
l(p1),m(p2) of

Ap1
^ Ap2

satisfy the defining relations of an Ohtsuki’s colored quasitriangular Hopf algebr24

i.e.,

~Dp1p2
^ id!+Dp11p2 ,p3

5~ id^ Dp2p3
!+Dp1 ,p21p3

,

~e ^ id!+D0,p5~ id^ e!+Dp,05 id,

mp+~S2p^ id!+D2p,p5mp+~ id^ S2p!+Dp,2p5ip+e,
~2.20!

t+Dp2p1
~a!5Rp1p2

Dp1p2
~a!Rp1p2

21 ,

~Dp1p2
^ id!~Rp11p2 ,p3

!5Rp1p3,13Rp2p3,23,

~ id^ Dp2p3
!~Rp1 ,p21p3

!5Rp1p3,13Rp1p2,12,

with mp[mqn(p), ip[iqn(p), and aPAp11p2
. Hence the latter is a substructure of(Hc,Rc).

Remark:As opposed to Ohtsuki’s colored Hopf algebras, those considered in the pr
paper are also valid for non-Abelian color groups. Such a generalization is significant as it w
shown in the next two sections that colored Hopf algebras with such color groups can inde
constructed.

III. EXAMPLES OF COLORED QUEA’S WITH FIXED PARAMETERS

In the present section, we construct various examples of coloured quasitriangular Hop
bras, for which the underlying Hopf algebra setH reduces to a single elementHq ~henceQ

5$q% andqn5q!, which is some QUEA Uq(g).
J. Math. Phys., Vol. 38, No. 11, November 1997
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A. The standard quantum algebra U q [sl(2)]

We begin by considering the simplest case of QUEA, namely the standard DJ deformat
U@sl~2!#,6 i.e., Uq @sl~2!# where k5C and q5exp(h)PC\$0%, whose universalR-matrix was
obtained in Ref. 26. Although this example might look oversimple, it nevertheless serves
important purposes: to illustrate the fact that any QUEA can be easily transformed into a c
one, to show that this can be achieved in various ways, and to demonstrate that some of the
involve a non-Abelian color group.

1. The color group G 5S2

The quantum algebra Uq@sl(2)# is generated by three operatorsJ3 , J6 , satisfying the com-
mutation relations

@J3 ,J6#56J6 , @J1 ,J2#5@2J3#q5
sinh~2hJ3!

sinh~h!
, ~3.1!

where@x#q[(qx2q2x)/(q2q21).
Such relations are left invariant under the transformations(J3)52J3 , s(J1)5J2 , s(J2)

5J1 . Hence, definingC 5$11,21%, we get a finite, Abelian color groupG 5$s15 id, s2

5s%, isomorphic to the symmetric groupS2 . The action ofsn, n561, on the generators can b
written in compact form as

sn~J3!5nJ3 , sn~J6!5J6n . ~3.2!

By using the results of Refs. 6, 26, and Definitions II.1 and II.6 of the present paper, we o
the following colored comultiplication, counit, antipode, and universalR-matrix:

Dq,n
l,m~J3!5~ln!J3^ 11~mn!1^ J3 ,

Dq,n
l,m~J6!5J6ln ^ qmJ31q2lJ3^ J6mn ,

eq,n~X!50, XP$J3 ,J6%, ~3.3!

Sq,n
m ~J3!52mnJ3 , Sq,n

m ~J6!52q6nJ6mn ,

Rq
l,m5q2lmJ3^ J3(

n50

`
~12q22!n

@n#q!
qn~n21!/2~qlJ3Jl!n

^ ~q2mJ3J2m!n,

where@n#q![@n#q@n21#q ...@1#q for nPN1, and@0#q![1.
The matrix representation of the colored universalR-matrix in any finite-dimensional repre

sentation of Uq@sl(2)# provides us with a matrix solutionRq
l,m of the colored YBE~1.1!, corre-

sponding to discrete color parametersl, m561. For instance, in the two-dimensional represen
tion of Uq@sl(2)#,

D~J3!5
1

2 S 1 0

0 21D , D~J1!5S 0 1

0 0D , D~J2!5S 0 0

1 0D , ~3.4!

we get a~renormalized! 434 coloredR-matrix Rq
l,m[q1/2(D ^ D) (Rq

l,m), whose components ar
given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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Rq
1,15~Rq

2,2! t5Rq5S q 0 0 0

0 1 q2q21 0

0 0 1 0

0 0 0 q

D ,

~3.5!

Rq
1,25~Rq

2,1! t5S 1 0 0 q2q21

0 q 0 0

0 0 q 0

0 0 0 1

D ,

wheret stands for matrix transposition.

2. The color group G 5Gl(1,C)

The commutation relations~3.1! are also left invariant under the transformations

sn~J3!5J3 , sn~J6!5n61J6 , ~3.6!

wherenPC 5C\$0%. Sincen8+n5n8n, n051, n i5n21, the color groupG is now isomorphic to the
Abelian Lie group Gl~1,C!.

The corresponding colored quasitriangular Hopf algebra is defined by Eq.~3.1! and

Dq,n
l,m~J3!5J3^ 111^ J3 , Dq,n

l,m~J6!5S l

n D 61

J6 ^ qJ31S m

n D 61

q2J3^ J6 ,

eq,n~X!50, XP$J3 ,J6%,
~3.7!

Sq,n
m ~J3!52J3 , Sq,n

m ~J6!52S mq

n D 61

J6 ,

Rq
l,m5q2J3^ J3(

n50

`
~12q22!n

@n#q!
qn~n21!/2~lqJ3J1!n

^ ~m21q2J3J2!n.

In the two-dimensional representation~3.4! of Uq@sl(2)#, we obtain a 434 matrix solution of
the colored YBE,

Rq
l,m[q1/2~D ^ D !~Rq

l,m!5S q 0 0 0

0 1 lm21~q2q21! 0

0 0 1 0

0 0 0 q

D , ~3.8!

depending upon continuous color parametersl, mPC\$0%. Similar results can be derived for othe
finite-dimensional representations.

3. The color group G 5Gl(1,C) s S2

The automorphisms, considered in Secs. III A 1 and III A 2, can be combined by defi
sn[s (n1 ,n2)[s (n1 ,1)+s (1,n2), wheres (n1 ,1) ands (1,n2) are given by Eqs.~3.6! and~3.2!, respec-
tively. Hence the color set is the Cartesian productC 5~C\$0%!3$11,21%,
J. Math. Phys., Vol. 38, No. 11, November 1997
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sn~J3!5n2J3 , sn~J6!5n1
6n2J6n2

, ~3.9!

and n8+n[(n18 ,n28)+(n1 ,n2)5(n18n1
n28,n28n2), n05(1,1), n i5(n1

2n2,n2). The color groupG is
non-Abelian, and is a semidirect product group, Gl(1,C)sS2 . The subgroup Gl~1,C! is indeed

invariant, whereas S2 is not, since n8+(n1 ,1)+n8 i5(n
1
n28,1), but n8+(1,n2)+n8 i

5((n18)
12n2,n2).

Equations~3.7! and ~3.8! are now replaced by

Dq,n
l,m~J3!5~l2n2!J3^ 11~m2n2!1^ J3 ,

Dq,n
l,m~J6!5l1

6l2n2n1
71J6l2n2

^ qm2J31m1
6m2n2n1

71q2l2J3^ J6m2n2
,

eq,n~X!50, XP$J3 ,J6%,
~3.10!

Sq,n
m ~J3!52m2n2J3 , Sq,n

m ~J6!52m1
6m2n2n1

71q6n2J6m2n2
,

Rq
l,m5q2l2m2J3^ J3(

n50

`
~12q22!n

@n#q!
qn~n21!/2~l1

l2ql2J3Jl2
!n

^ ~m1
2m2q2m2J3J2m2

!n,

and

Rq
~l1 ,1 !,~m1 ,1 !

5~R
q
~l1

21,2 !,~m1
21,2 !! t5S q 0 0 0

0 1 l1m1
21~q2q21! 0

0 0 1 0

0 0 0 q

D ,

~3.11!

Rq
~l1 ,1 !,~m1 ,2 !

5~R
q
~l1

21,2 !,~m1
21,1 !! t5S 1 0 0 l1m1~q2q21!

0 q 0 0

0 0 q 0

0 0 0 1

D ,

respectively. The 434 matrices defined in Eqs.~3.5!, ~3.8!, and ~3.11! are known five-vertex
solutions of Eq.~1.1!.13

B. The two-parameter quantum algebra U q,s [gl „2…]

The next example deals with the two-parameter deformation of U@gl~2!#,9 whose universal
R-matrix was given in Ref. 27. Such an example is quite significant since Uq,s@gl(2)# and its
corresponding quantum group have played an important role both in generating some
solutions of the colored YBE,17,19 and in constructing a colored extension of the FR
formalism.19,20,23

The quantum algebra Uq,s@gl(2)#, for which k5C and q, sPC\$0%, is generated by four
operatorsJ3 , J6 , Z, with commutation relations

@J3 ,J6#56J6 , @J1 ,J2#5@2J3#q , @Z,J3#5@Z,J6#50, ~3.12!

and coalgebra and antipode depending upon both parametersq ands ~henceQ5$(q,s)%!.
Equation~3.12! is left invariant under the transformations
J. Math. Phys., Vol. 38, No. 11, November 1997
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sn~J3!5J3 , sn~J6!5J6 , sn~Z!5nZ, ~3.13!

wherenPC 5C\$0%. As in Sec. III A 2, the color group is thereforeG 5Gl~1,C!. The colored maps
and universalR-matrix are easily obtained as

Dq,s,n
l,m ~J3!5J3^ 111^ J3 , Dq,s,n

l,m ~Z!5
l

n
Z^ 11

m

n
1^ Z,

Dq,s,n
l,m ~J6!5J6 ^ qJ3S s

qD 6mZ

1q2J3~qs!6lZ
^ J6 ,

eq,s,n~X!50, XP$J3 ,J6 ,Z%, ~3.14!

Sq,s,n
m ~J3!52J3 , Sq,s,n

m ~Z!52
m

n
Z, Sq,s,n

m ~J6!52q61s72mZJ6 ,

Rq,s
l,m5q2~J3^ J32lZ^ J31mJ3^ Z! (

n50

`
~12q22!n

@n#q!
qn~n21!/2~qJ3~qs!2lZJ1!n

^ S q2J3S s

qD mZ

J2D n

.

By considering for instance the matrix elements ofRq,s
l,m in the 232 defining representation o

Uq,s@gl(2)#, given by Eq.~3.4! and

D~Z!5S 1 0

0 1D , ~3.15!

we obtain the following 434 matrix solution of the colored YBE,

Rq,s
l,m[q1/2~D ^ D !~Rq,s

l,m!5S q12l1m 0 0 0

0 ql1m ~q2q21!s2l1m 0

0 0 q2l2m 0

0 0 0 q11l2m

D . ~3.16!

The latter coincides with the coloredR-matrix previously derived by Burdı´k and Hellinger17 by
considering 232 representations of Uq,s@gl(2)# characterized by different eigenvaluesl, m of Z.

C. The three-parameter quantum algebra U q,s 1 ,s 2
[sl „3… % u„1… % u„1…]

Similar considerations to those in Sec. III B can be carried through for some other mult
metric QUEA’s of nonsemisimple Lie algebras. As an example, let us consider the t
parameter deformation ofU@sl(3)% u(1)% u(1)#, constructed by Burdı´k and Hellinger.17 It is
generated by eight operatorsHi , Xi

6 , Zi , i 51, 2, with relations

@Hi ,Xi
6#562Xi

6 , @Hi ,Xj
6#57Xj

6 ~ iÞ j !,

@Xi
1 ,Xj

2#5d i j @Hi #q , @X1
6 ,X2

6#50,
~3.17!

q21/2X1
6X3

62q1/2X3
6X1

65q1/2X2
6X3

62q21/2X3
6X2

650,

@Zi ,H j #5@Zi ,Xj
6#50,
J. Math. Phys., Vol. 38, No. 11, November 1997
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whereX3
6[q1/2X1

6X2
62q21/2X2

6X1
6 . Herek5C and Q5$(q,s1 ,s2)%, whereq, s1 , s2PC\$0%,

ands1 , s2 make their appearance only in the coalgebra structure and the antipode.
Equation~3.17! is left invariant under the transformations

sn~Hi !5Hi , sn~Xi
6!5Xi

6 , sn~Zi !5n iZi , ~3.18!

wheren[(n1 ,n2)PC 5(C\$0%)3(C\$0%). Hence the color groupG is a direct product group
Gl~1,C!^Gl~1,C!.

The colored maps and universalR-matrix are given by

Dq,s1 ,s2 ,n
l,m ~Hi !5Hi ^ 111^ Hi , Dq,s1 ,s2 ,n

l,m ~Zi !5
l i

n i
Zi ^ 11

m i

n i
1^ Zi ,

Dq,s1 ,s2 ,n
l,m ~Xi

6!5Xi
6

^ qHi /2~qsi !
6m iZi /21q2Hi /2S si

q D 6l iZi /2

^ Xi
6 ,

eq,s1 ,s2 ,n~X!50, XP$Hi ,Xi
6 ,Zi%, ~3.19!

Sq,s1 ,s2 ,n
m ~Hi !52Hi , Sq,s1 ,s2 ,n

m ~Zi !52
m i

n i
Zi , Sq,s1 ,s2 ,n

m ~Xi
6!52q61si

7m iZiXi
6 ,

Rq,s1 ,s2

l,m 5q( i , j ai , j
21

~l iZi ^ H j 2m jHi ^ Zj 1Hi ^ H j !Eq22~ae1
l

^ f 1
m!Eq22~2ae3

l
^ f 3

m!Eq22~ae2
l

^ f 2
m!,

wherea[12q22, Ex(A) is theq-exponential

Ex~A!5 (
n50

`
x2n~n21!/4

@n#x1/2!
An, ~3.20!

a is the Cartan matrix of sl~3!, a21 its inverse,

a5S 2 21

21 2 D , a215 1
3S 2 1

1 2D , ~3.21!

and

ei
l5qHi /2S si

q D 2l iZi /2

Xi
1 , f i

m5q2Hi /2~qsi !
m iZi /2Xi

2 ,
~3.22!

e3
l5e1

le2
l2q21e2

le1
l , f 3

m5 f 1
m f 2

m2q21f 2
m f 1

m .

In the 333 defining representation of Uq,s1 ,s2
@sl(3)% u(1)% u(1)#, the colored universalR-

matrix, given in Eq.~3.19!, gives rise to a 939 matrix solution of the colored YBE. As it coincide
with the matrix given in Eqs.~28! and ~29! of Ref. 17, we shall not reproduce it here.

IV. EXAMPLES OF COLORED QUEA’S WITH VARYING PARAMETERS

The examples considered in the present section differ from those constructed in Sec. III
fact that the parameter setQ now contains more than one element and the transformations o
color groupG in general change the parameters~henceqnÞq!. Although we simultaneously dea
with elementsa belonging to different Hopf algebrasHqn of the setH, we denote them in the
J. Math. Phys., Vol. 38, No. 11, November 1997
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same way in order not to overload notation by adding an extra index referring to the correspo
algebra, or color parameter. This should cause no confusion since, from the context, it is a
clear to which Hopf algebraa belongs.

A. The nonstandard quantum algebra U h[sl „2…]

We begin by considering the nonstandard~Jordanian! deformation of U@sl~2!#,28 known as
Uh@sl(2)#, hPC\$0%, which can be obtained by contracting the standard DJ deforma
Uq@sl(2)#.29 Its universalR-matrix was derived in Refs. 30,31.

Uh@sl(2)# is generated by three operatorsH, J6 , satisfying the commutation relations,28

@H,J1#52
sinh~hJ1!

h
, @J1 ,J2#5H,

~4.1!

@H,J2#52J2cosh~hJ1!2cosh~hJ1!J2 .

Its universalR-matrix assumes a very simple form31 provided one chooses another basis, wh
generatorsA, A6 are defined in terms of the old ones by

A5ehJ1J3 , A15J1 , A25ehJ1S J22
h

4
sinh~hJ1! D . ~4.2!

Equation~4.1! is then transformed into

@A,A1#5
e2hA121

h
, @A,A2#522A21hA2, @A1 ,A2#5A. ~4.3!

Such relations are left invariant under the transformations

sn~A!5A, sn~A1!5nA1 , sn~A2!5n21A2 , ~4.4!

where nPC 5C\$0%, with the proviso thath becomeshn5nh ~henceQ5C\$0%!. The sn’s are
therefore isomorphic mappings from Uh@sl(2)# to Uhn@sl(2)#, and define a color group
G 5Gl~1,C!. The corresponding coloured maps and universalR-matrix are given by the relation

Dh,n
l,m~A1!5

l

n
A1 ^ 11

m

n
1^ A1 , Dh,n

l,m~A!5A^ e2mhA111^ A,

Dh,n
l,m~A2!5

n

l
A2 ^ e2mhA11

n

m
1^ A2 ,

eh,n~X!50, xP$A,A6%, ~4.5!

Sh,n
m ~A1!52

m

n
A1 , Sh,n

m ~A!52Ae22mhA1, Sh,n
m ~A2!52

n

m
A2e22mhA1,

Rh
l,m5exp$2lhA1 ^ A%exp$mhA^ A1%.

The two-dimensional defining representation of Uh@sl(2)# is still given by Eq.~3.4!, where
D(H)52D(J3), thence32

D~A!5S 1 2h

0 21D , D~A1!5S 0 1

0 0D , D~A2!5S h 2h2/4

1 0 D . ~4.6!
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From Eq.~4.5!, it is straightforward to obtain

Rh
l,m[~D ^ D !~Rh

l,m!5S 1 mh 2lh ~l2m1lm!h2

0 1 0 lh

0 0 1 2mh

0 0 0 1

D . ~4.7!

To the best of our knowledge, this 434 matrix solution of the colored YBE is new. Highe
dimensional solutions of the latter could be obtained in a similar way by considering other fi
dimensional irreducible representations of the quantum algebra Uh@sl(2)#.31,33

B. The standard quantum oscillator algebra U z
„s …[h „4…]

The next example is the standard deformation Uz
(s)@h(4)# of the oscillator algebra U@h(4)#,

which was first derived by contracting Uq@gl(2)#,7 then recently obtained in a more convenie
basis34 by using the Lyakhovsky and Mudrov formalism.35 This quantum algebra has been used
construct a solution of the colored YBE connected with some link invariants.18

Uz
(s)@h(4)# is generated by four operatorsN, M , A6 , satisfying the commutation relations

@N,A6#56A6 , @A2 ,A1#5
sinh~zM!

z
, @M ,N#5@M ,A6#50. ~4.8!

Here we assumek5C and zPQ5C\$0%. The algebra defining relations~4.8! are left invariant
under the transformations

sn~N!5N, sn~M !5n1n2M , sn~A1!5n1A1 , sn~A2!5n2A2 , ~4.9!

wheren[(n1 ,n2), providedz is changed intozn5n1n2z. Hence the color set is the Cartesia
product C 5~C\$0%!3~C\$0%!, and the color group is the direct product groupG 5Gl(1,C)
^ Gl(1,C).

The corresponding colored maps and universalR-matrix are given by

Dz,n
l,m~N!5N^ 111^ N, Dz,n

l,m~M !5
l1l2

n1n2
M ^ 11

m1m2

n1n2
1^ M ,

Dz,n
l,m~A1!5

l1

n1
A1 ^ 11

m1

n1
e2l1l2zM

^ A1 ,

Dz,n
l,m~A2!5

l2

n2
A2 ^ em1m2zM1

m2

n2
1^ A2 ,

~4.10!

ez,n~X!50, XP$N,M ,A6%,

Sz,n
m ~N!52N, Sz,n

m ~M !52
m1m2

n1n2
M , Sz,n

m ~A6!52
m6

n6
A6e6m1m2zM,

Rz
l,m5exp$2l1l2zM^ N%exp$2m1m2zN^ M %exp$2l2m1zA2 ^ A1%.

In the 333 matrix representation of Uz
(s)@h(4)# defined by
J. Math. Phys., Vol. 38, No. 11, November 1997
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D~N!5S 0 0 0

0 1 0

0 0 0
D , D~M !5S 0 0 1

0 0 0

0 0 0
D ,

~4.11!

D~A1!5S 0 0 0

0 0 1

0 0 0
D , D~A2!5S 0 1 0

0 0 0

0 0 0
D ,

the colored universalR-matrix is represented by the 939 matrix

Rz
l,m[~D ^ D !~Rz

l,m!5S 13 2l2m1zD~A1! 2l1l2zD~N!

03 132m1m2zD~M ! 03

03 03 13

D , ~4.12!

where 13 and 03 denote the 333 unit and null matrices, respectively.
Remarks:~1! Since in physical applications,A1 ~resp.A2! is interpreted as a creation~resp.

annihilation! operator, andN as a number operator, one actually deals there with a real form
Uz

(s)@h(4)#, corresponding to the star operation~Hermitian conjugation!

N†5N, M†5M , A6
† 5A7 , ~4.13!

and to real or imaginary values ofz. Equation~4.13! restrictsn6 in Eq. ~4.9! to values satisfying
the conditionn25n1, where the bar denotes complex conjugation. Hence, in such a
C 5C\$0%, and G 5Gl~1,C!. ~2! It is easy to endow Uz

(s)@h(4)# with a colored Hopf structure
corresponding to a non-Abelian color group by combining transformations~4.9! with the elements
of S2 , defined bys15 id, ands2(N)52N, s2(M )52M , s2(A6)5A7 ~implying z65z!.
This can be done along the same lines as in the example discussed in Sec. III A 3.

C. The one-parameter nonstandard quantum oscillator algebra U z
„n …[h „4…]

Instead of the standard deformation of the oscillator algebra, dealt with in Sec. IV B
consider here the one-parameter nonstandard typeI 1 deformation of the same, constructed in R
34, and denoted there by Uz

(n)@h(4)#. For such an algebra, Eq.~4.8! is replaced by

@N,A1#5
ezA121

z
, @N,A2#52A2 , @A2 ,A1#5MezA1,

~4.14!

@M ,N#5@M ,A6#50,

where we choosezPQ5C\$0%.
The defining relations~4.14! are left invariant under the transformations

sn~N!5N, sn~M !5nM , sn~A1!5nA1 , sn~A2!5A2 , ~4.15!

providedz is changed intozn5nz. HenceC 5C\$0%, andG 5Gl~1,C!.
The counterparts of Eqs.~4.10! and ~4.12! are now
J. Math. Phys., Vol. 38, No. 11, November 1997
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Dz,n
l,m~N!5N^ emzA111^ N, Dz,n

l,m~M !5
l

n
M ^ 11

m

n
1^ M ,

Dz,n
l,m~A1!5

l

n
A1 ^ 11

m

n
1^ A1 ,

Dz,n
l,m~A2!5A2 ^ emzA111^ A21mzN^ MemzA1,

ez,n~X!50, XP$N,M ,A6%, ~4.16!

Sz,n
m ~N!52Ne2mzA1, Sz,n

m ~M !52
m

n
M , Sz,n

m ~A1!52
m

n
A1 ,

Sz,n
m ~A2!52A2e2mzA11mzNMe2mzA1,

Rz
l,m5exp$2lzA1 ^ N%exp$mzN^ A1%,

and

Rz
l,m[~D ^ D !~Rz

l,m!5S 13 03 03

03 131mzD~A1! 2lzD~N!

03 03 13

D , ~4.17!

respectively, whereD is again defined by Eq.~4.11!.
Remarks:~1! Equation ~4.14! is not compatible with the star operation~4.13!. ~2! In Eq.

~4.15!, we could multiply bothM andA2 by some extra parameter, but this would not modify t
colored universalR-matrix, as given in Eq.~4.16!.

D. The three-parameter nonstandard quantum oscillator algebra U q,b1 ,b2

„IIn … [h „4…]

Similar results can be obtained for more complicated deformations of the oscillator algeb
the present section, we consider the three-parameter nonstandard deformation constructed
34, where it is denoted by Uq,b1 ,b2

(IIn ) @h(4)#. The algebra defining relations are

@N,A1#5A12b2V~2q!, @N,A2#52A22b1V~q!,
~4.18!

@A2 ,A1#5M , @M ,N#5@M ,A6#50,

where

V~x![
1

x2 ~exM212xM!, ~4.19!

and we assume (q,b1 ,b2)PQ5(C\$0%)3(C\$0%)3(C\$0%).
The transformations

sn~N!5N, sn~M !5n1n2M , sn~A1!5n1A1 , sn~A2!5n2A2 , ~4.20!

where n[(n1 ,n2), leave Eq.~4.18! invariant, providedq, b1 , b2 are changed intoqn

5n1n2q, b1
n 5n1

2 n2b1 , b2
n 5n1n2

2 b2 , respectively. HenceC 5~C\$0%!3~C\$0%!, and
G 5Gl~1, C!^Gl~1,C!.

The counterparts of Eqs.~4.10! and ~4.12! are now
J. Math. Phys., Vol. 38, No. 11, November 1997
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Dq,b1 ,b2 ,n
l,m ~N!5N^ 111^ N1

l1b1

q
A1 ^ ~12e2m1m2qM !1

l2b2

q
A2 ^ ~12em1m2qM !,

Dq,b1 ,b2 ,n
l,m ~M !5

l1l2

n1n2
M ^ 11

m1m2

n1n2
1^ M ,

Dq,b1 ,b2 ,n
l,m ~A6!5

l6

n6
A6 ^ e7m1m2qM1

m6

n6
1^ A6 ,

eq,b1 ,b2 ,n~X!50, XP$N,M ,A6%, ~4.21!

Sq,b1 ,b2 ,n
m ~N!52N2

m1b1

q
A1~12em1m2qM !2

m2b2

q
A2~12e2m1m2qM !,

Sq,b1 ,b2 ,n
m ~M !52

m1m2

n1n2
M , Sq,b1 ,b2 ,n

m ~A6!52
m6

n6
A6e6m1m2qM,

Rq,b1 ,b2

l,m 5exp$2l1l2M ^ ~qN1m1b1A11m2b2A2!%

3exp$m1m2~qN1l1b1A11l2b2A2! ^ M %,

and

Rq,b1 ,b2

l,m [~D ^ D !~Rq,b1 ,b2

l,m !

5S 13 l2m1m2b2D~M ! 2l1l2~qD~N!1m1b1D~A1!1m2b2D~A2!!

03 131m1m2qD~M ! l1m1m2b1D~M !

03 03 13

D ,

~4.22!

respectively, whereD is again defined by Eq.~4.11!. Equation~4.22!, as well as Eq.~4.17!,
provide new matrix solutions of the colored YBE.

Remark:The real form of Uq,b1 ,b2

(IIn ) @h(4)#, corresponding to the star operation~4.13!, is

obtained forq52q̄, andb252b1. The color parameters are then restricted by the condi
n25n1, so that we are left withC 5C\$0%, andG 5Gl~1,C!.

E. The standard three-dimensional quantum Euclidean algebra U w[e„3…]

In the present section, we consider the three-dimensional quantum Euclidean a
Uw@e(3)#, which was obtained by contracting the standard DJ deformation of so~4!.8

A basis of Uw@e(3)# is made of six operatorsJ3 , J6 , P3 , P6 , generating rotations and
translations in thew→0 limit, respectively, and satisfying the commutation relations

@J3 ,J6#56J6 , @J1 ,J2#52J3 cosh~2wP3!,

@J3 ,P6#5@P3 ,J6#56P6 , @J6 ,P7#56
sinh~2wP3!

w
, ~4.23!

@J3 ,P3#5@J6 ,P6#5@P3 ,P6#5@P1 ,P2#50.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Here we assumek5R, andwPQ5R\$0%, which is compatible with the star operation usua
imposed on U@e(3)#, namely,

J3
†5J3 , J6

† 5J7 , P3
†5P3 , P6

† 5P7 . ~4.24!

The algebra defining relations~4.23! are left invariant under the transformations

sn~J3!5J3 , sn~J6!5J6 , sn~P3!5nP3 , sn~P6!5nP6 , ~4.25!

wherenPR\$0%, providedw is changed intown5nw. Hence the color set and the color group a
C 5R\$0%, andG 5Gl~1,R!, respectively.

The colored comultiplication, counit, antipode, and universalR-matrix are easily found to be
given by

Dw,n
l,m~J3!5J3^ 111^ J3 , Dw,n

l,m~P3!5
l

n
P3^ 11

m

n
1^ P3 ,

Dw,n
l,m~J6!5J6 ^ emwP31e2lwP3^ J61w~lP6 ^ emwP3J32me2lwP3J3^ P6!,

Dw,n
l,m~P6!5

l

n
P6 ^ emwP31

m

n
e2lwP3^ P6 ,

ew,n~X!50, XP$J3 ,J6 ,P3 ,P6%, ~4.26!

Sw,n
m ~J3!52J3 , Sw,n

m ~P3!52
m

n
P3 ,

Sw,n
m ~J6!52~J662mwP6!, Sw,n

m ~P6!52
m

n
P6 ,

Rw
l,m5exp$2w~lP3^ J31mJ3^ P3!%exp$Bl,m arcsinh~2wAl,m!/~wAl,m!%

3~114w2~Al,m!2!21/2,

where

Al,m[wQ1
l

^ Q2
m ,

Bl,m[w~L1
l

^ Q2
m 1Q1

l
^ L2

m !2w2~2Q1
l

^ Q2
m 1Q1

l
^ J3Q2

m 2J3Q1
l

^ Q2
m !, ~4.27!

L6
l [e6lwP3J6 , Q6

l [le6lwP3P6 .

The quantum Euclidean algebra Uw@e(3)# admits the 434 matrix representation

D~J3!52 ie121 ie21, D~J6!57e132 ie236e311 ie32,
~4.28!

D~P3!5e34, D~P6!5e146 ie24,

whereei j denotes the matrix with entry 1 in rowi and columnj , and zeros everywhere else.
such a representation, the colored universalR-matrix is represented by the 16316 matrix
J. Math. Phys., Vol. 38, No. 11, November 1997
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Rw
l,m[~D ^ D !~Rw

l,m!5S 14 22imwD~P3! 22mwD~P2! 2lwD~J2!

2imwD~P3! 14 22imwD~P2! 2ilwD~J2!

2mwD~P2! 2imwD~P2! 14 2lwD~J3!

04 04 04 14

D ,

~4.29!

which is a new solution of the colored YBE.
Remark:Similar results can be obtained for the two-dimensional quantum Euclidean alg

Uw@e(2)#,7 but in such a case no colored universalR-matrix is known.

F. Null-plane D-dimensional quantum Poincare ´ algebras U z[iso „D21,1…]

As a last example, we consider the null-plane deformations Uz@ iso(D21,1)# of the Poincare´
algebras inD52,36 D53,37 and D54 dimensions.38 Since the results look quite similar fo
different D values, we only list here those forD54.

The quantum algebra Uz@ iso(3,1)# is generated by ten operatorsK3 , J3 , P1 , P2 , P1 , P2 ,
E1 , E2 , F1 , F2 , which, in thez→0 limit, go over into the following combinations of Poincar´
algebra generators in the usual physical basis,Ji ~rotations!, Ki ~boosts!, and Pm ~translations!,
where i 51, 2, 3, andm50, 1, 2, 3: P65(P06P3)/2, E15(K11J2)/2, E25(K22J1)/2, F1

5(K12J2)/2, F25(K21J1)/2. Their nonvanishing commutators are given by

@K3 ,P1#5
e2zP121

2z
, @K3 ,P2#52P22zP1

22zP2
2,

@K3 ,Ei #5Eie
2zP1, @K3 ,Fi #52Fi22zK3Pi ,

@J3 ,Pi #52e i j 3Pj , @J3 ,Ei #52e i j 3Ej , @J3 ,Fi #52e i j 3F j ,
~4.30!

@Ei ,Pj #5d i j

e2zP121

2z
, @Fi ,Pj #5d i j ~P21zP1

21zP2
2!,

@Ei ,F j #5d i j K31e i j 3J3e2zP1, @P1 ,Fi #52Pi ,

@F1 ,F2#52z~P1F22P2F1!, @P2 ,Ei #52Pi ,

wherei , j run over 1, 2. Here we assumek5R, andzPQ5R\$0%.
The algebra defining relations~4.30! are left invariant under the transformations

sn~K3!5K3 , sn~J3!5J3 , sn~P1!5n1n2P1 , sn~P2!5n1n2
21P2 ,

~4.31!

sn~Pi !5n1Pi , sn~Ei !5n2Ei , sn~Fi !5n2
21Fi ,

where n[(n1 ,n2)PC 5(R\$0%)3(R\$0%), providedz is changed intozn5n1n2z. The corre-
sponding color group isG 5Gl~1,R!^Gl~1,R!.

The colored maps and universalR-matrix are found to be given by
J. Math. Phys., Vol. 38, No. 11, November 1997
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Dz,n
l,m~J3!5J3^ 111^ J3 , Dz,n

l,m~P1!5
l1l2

n1n2
P1 ^ 11

m1m2

n1n2
1^ P1 ,

Dz,n
l,m~P2!5

l1n2

l2n1
P2 ^ e2m1m2zP11

m1n2

m2n1
1^ P2 ,

Dz,n
l,m~Pi !5

l1

n1
Pi ^ e2m1m2zP11

m1

n1
1^ Pi , Dz,n

l,m~Ei !5
l2

n2
Ei ^ 11

m2

n2
1^ Ei ,

Dz,n
l,m~F1!5

n2

l2
F1^ e2m1m2zP11

n2

m2
1^ F12

2l1m2n2

l2
zP2 ^ E1e2m1m2zP1

22l1n2zP2^ J3e2m1m2zP1,

Dz,n
l,m~F2!5

n2

l2
F2^ e2m1m2zP11

n2

m2
1^ F22

2l1m2n2

l2
zP2 ^ E2e2m1m2zP1

12l1n2zP1^ J3e2m1m2zP1,

Dz,n
l,m~K3!5K3^ e2m1m2zP111^ K322l1m2zP1^ E1e2m1m2zP122l1m2zP2^ E2e2m1m2zP1,

ez,n~X!50, XP$K3 ,J3 ,P6 ,Pi ,Ei ,Fi%, ~4.32!

Sz,n
m ~J3!52J3 , Sz,n

m ~P1!52
m1m2

n1n2
P1 , Sz,n

m ~P2!52
m1n2

m2n1
P2e22m1m2zP1,

Sz,n
m ~Pi !52

m1

n1
Pie

22m1m2zP1, Sz,n
m ~Ei !52

m2

n2
Ei ,

Sz,n
m ~F1!52

n2

m2
~F112m1m2zP2E112m1m2zP2J3!e22m1m2zP1,

Sz,n
m ~F2!52

n2

m2
~F212m1m2zP2E222m1m2zP1J3!e22m1m2zP1,

Sz,n
m ~K3!52~K312m1m2zP1E112m1m2zP2E2!e22m1m2zP1,

Rz
l,m5exp$2l2m1zE2^ P2%exp$2l2m1zE1^ P1%exp$22l1l2zP1 ^ K3%

3exp$2m1m2zK3^ P1%exp$22l1m2zP1^ E1%exp$22l1m2zP2^ E2%.

The quantum Poincare´ algebra Uz@ iso(3,1)# admits the 535 matrix representation

D~K3!5e141e41, D~J3!5e232e32, D~P1!5 1
2 ~e101e40!,

D~P2!5e102e40, D~P1!5e20, D~P2!5e30,
~4.33!

D~E1!5 1
2~e121e212e241e42!, D~E2!5 1

2~e131e312e341e43!,

D~F1!5e121e211e242e42, D~F2!5e131e311e342e43,
J. Math. Phys., Vol. 38, No. 11, November 1997
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where rows and columns are labeled by 0, 1, 2, 3, 4, andei j has the same meaning as in Sec. IV
In such a representation, the colored universalR-matrix gives rise to the following new 25325
matrix solution of the colored YBE,

Rz
l,m[~D ^ D !~Rz

l,m!

5S 15 05 05 05 05

2l1l2zD~K3! 15 l2m1zD~P1! l2m1zD~P2! 2m1m2zD~P1!

22l1m2zD~E1! l2m1zD~P1! 15 05 2l2m1zD~P1!

22l1m2zD~E2! l2m1zD~P2! 05 15 2l2m1zD~P2!

2l1l2zD~K3! 2m1m2zD~P1! l2m1zD~P1! l2m1zD~P2! 15

D .

~4.34!

Remark:The k-deformations Uk@ iso(D21,1)# of the D-dimensional Poincare´ algebras39 can
be transformed into colored Hopf algebras along the same lines as Uz@ iso(D21,1)#, but in such
a case no colored universalR-matrix is known.

V. CONCLUSION

In the present paper, we did introduce some new algebraic structures, termed colore
algebras, by combining the coalgebra structures and antipodes of a standard Hopf algebra
the transformations of an algebra isomorphism group, called color group. We did show
various classes of Hopf algebras, such as almost cocommutative, coboundary, quasitriangu
triangular ones, can be extended into corresponding colored structures, and that colored q
angular Hopf algebras, in particular, are characterized by the existence of a colored un
R-matrix, satisfying the colored YBE.

Finally, we did apply the new concepts to QUEA’s of both semisimple and nonsemisi
Lie algebras, and did prove by means of examples that the color group may be chosen as
or infinite, Abelian or non-Abelian group. Through such constructions, we did demonstrate
the colored Hopf algebras defined here significantly generalize those previously introduc
Ohtsuki,24 because the latter are restricted to Abelian color groups, in which case they red
substructures of the former.

It is worth noting that some of the matrix representations of colored universalR-matrices
constructed in the present paper, as well as those that would be obtained in higher-dime
representations, provide new solutions of the colored YBE, which might be of interest i
context of integrable models.

It is also important to stress that the applicability of the colored Hopf algebra new conc
not confined to QUEA’s of Lie algebras. As we plan to show elsewhere, QUEA’s of Lie su
algebras may also provide a suitable starting point for constructing colored Hopf algebras.

Other types of Hopf algebras might be used as well, such as those arising in the FRT f
ism. The resulting colored algebraic structures would significantly differ from those previo
constructed by Kundu and Basu-Mallick,19,20,23since the latter have the same coalgebra struc
as the original Hopf algebras, whereas for the former it is the algebra structure that would
unchanged. Further investigation of possible relationships between both types of colored alg
structures would be highly desirable.

In the examples considered in the present paper, no effort has been made to determ
maximal color group—hence the maximal colored Hopf structure—compatible with a given
algebra set. Similarly, the restrictions on the color parameters imposed by considering a giv
form of a complex Hopf algebra have not been systematically investigated. Solving such pro
might be interesting topics for future study.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Generalizing to colored algebraic structures the duality relationship between pairs of
algebras Uq(g) and Gq , as highlighted in the universalT -matrix formalism,40 might also be a
promising direction for future investigation.
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18C. Gómez and G. Sierra, J. Math. Phys.34, 2119~1993!.
19B. Basu-Mallick, Mod. Phys. Lett. A9, 2733~1994!.
20A. Kundu and B. Basu-Mallick, J. Phys. A27, 3091~1994!.
21A. Kundu and B. Basu-Mallick, J. Phys. A25, 6307~1992!.
22D. Bonatsos, C. Daskaloyannis, P. Kolokotronis, A. Ludu, and C. Quesne, J. Math. Phys.38, 369 ~1997!; D. Bonatsos,

P. Kolokotronis, C. Daskaloyannis, A. Ludu, and C. Quesne, Czech. J. Phys.46, 1189~1996!.
23B. Basu-Mallick, Int. J. Mod. Phys. A10, 2851~1995!.
24T. Ohtsuki, J. Knot Theor. Its Rami.2, 211 ~1993!.
25S. Majid, Int. J. Mod. Phys. A5, 1 ~1990!; V. Chari and A. Pressley,A Guide to Quantum Groups~Cambridge

University, Cambridge, 1994!.
26A. N. Kirillov and N. Yu. Reshetikhin, inInfinite-Dimensional Lie Algebras and Groups, edited by V. G. Kac~World

Scientific, Singapore, 1989!, p. 285.
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Erratum: ‘‘Algebraic proof of a sum rule occurring
in Stark broadening of hydrogen lines’’
[J. Math. Phys. 38, 3435–3445 (1997)]

Roberto Casini
High Altitude Observatory, National Center for Atmospheric Research, P. O. Box 3000,
Boulder, Colorado 80307-3000

~Received 18 July 1997; accepted for publication 21 July 1997!

@S0022-2488~97!02211-1#

When the paper was already in press, the author became aware that the algebra
expressed by Eq.~1! was first proposed by Stehle´ for the coefficientknm @cf. Ref. 1, Eq.~16!#, in
relation to the calculation of the halfwidth of Stark-broadened lines of one-electron ions in
density plasmas.

The author also wants to take advantage of the opportunity offered by this rectificati
correct a few typos in the paper, which had escaped the proof-correction stage, and which
be fixed for a correct understanding of the paper.
~1! Equation preceding Eqs.~7!: the second condition should read ‘‘forl 5n21’’.
~2! Page 3438: seventh line from the bottom should read ‘‘We note that only three of
terms...’’.
~3! Page 3442: seventh line from the top should read ‘‘application of Eqs.~A6! and ~A3!...’’.

1C. Stehle´, in Spectral Line Shapes, edited by A. D. May, J. R. Drummond, and E. Oks~American Institute of Physics,
New York, 1995!, Vol. 8, pp. 36–57.
0022-2488/97/38(11)/6040/1/$10.00
6040 J. Math. Phys. 38 (11), November 1997 © 1997 American Institute of Physics
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The twisted Heisenberg algebra Uh ,w„H„4……

Boucif Abdesselama)

Centre de Physique The´orique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

~Received 26 November 1996; accepted for publication 23 May 1997!

A two parametric deformation of the enveloping Heisenberg algebraH~4! that
appears as a combination of the standard and a nonstandard quantization given by
Ballesteros and Herranz is defined and proved to be Ribbon Hopf algebra. The
universalR matrix and its associated quantum group are constructed. A new so-
lution of the Braid group is obtained. The contribution of these parameters in
invariants of links and the Wess–Zumino–Witten~WZW! model are analyzed.
General results for twisted Ribbon Hopf algebra are derived. ©1997 American
Institute of Physics.@S0022-2488~97!02712-6#

I. INTRODUCTION

An enveloping Lie algebraU~G ! has many quantizations (>2): The first one is called the
Drinfeld–Jimbo quantization,1,2 whereas the other ones are called the nonstandard quantizat3

In the case ofU„sl(2)…, the nonstandard quantization4 was obtained as a contraction of th
Drinfeld–Jimbo one~see Ref. 5!. The universalR matrix of the nonstandard algebraUh„sl(2)…
was obtained.6,7 Recently there is much interest in studies relating to various aspects o
nonstandard quantizations.

The standardq-Heisenberg algebras and their universalR matrices8 has recently attracted
wide attention. The use ofq-Heisenberg algebras to describe composite particles,9 the description
of certain classes of exactly solvable potentials in terms of aq-Heisenberg dynamical symmetry,10

the link between deformed oscillator algebras and superintegrable systems,11,12 and the relations
between these deformed algebras andq-orthogonal polynomials13 are the most attractive ex
amples. In Ref. 14, the quasitriangularq-oscillator algebra has been found to be related to Yan
Baxter systems and link invariants.

The Heisenberg algebras also has many nonstandard quantizations. Recently, the cob
Lie bialgebras and their corresponding Poisson–Lie structures has been constructed
Heisenberg algebra. The quantum nonstandard Heisenberg algebras are derived from the
gebras by using the Lyakhovsky and Mudrov formalism and for some cases, quantizations
algebras, and group levels have been obtained, including their universalR matrices.15

Let us mention that the combination of some nonstandard quantizations to the standar
permits us to equip the enveloping algebras with multiparameter quantizations. Followin
way, we define a new two parametric quantization of the Heisenberg algebrasUh,w„H(4)… by a
combination of the standard and nonstandard quantization given in Ref. 15. This type of def
bosons can be expected to build up@h,w# boson realizations of a possible two paramet
Uh,w„sl(2)… algebra that does not exist in the literature to our knowledge.

One of the instances in which both the parameters of the nonstandard Heisenberg a
become relevant is in the context of the reflection equation,

R12K1R21K25K2R12K1R21. ~I.1!

It was introduced in Ref. 16 in the study of two-particle scattering on a half-line, where the m
K described the reflection of a particle at the end point. It is also known17 to have other applica-
tions, such as a generalization of the inverse scattering method to the case of nonult

a!Electronic mail: boucif@orphee.polytechnique.fr
0022-2488/97/38(12)/6045/16/$10.00
6045J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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commutation relations and a lattice regulatized version of Kac–Moody algebras. The refl
algebra is closely connected to the quantum group and the matrixK may be realized18 from the
knowledge of the Lax operatorsL6:

K5S~L2!L1. ~I.2!

One viewpoint advocated by Majid19 is the ‘‘transmutation procedure’’ converting the quantu
groups to the braided groups, which may be looked at simply as a generalization of the
groups with6 Bose–Fermi statistics being replaced by braid statistics. There are indications20 that
particles of braid statistics arise in low-dimensional field theory. As the construction of the a
braided algebra can be done for any regular invertibleR matrix, it is particularly relevant to study
the deformed Heisenberg algebras, which are closely connected to the statistics problem.

From the knowledge of the universalR matrix of Uh,w„H(4)…, we can construct the Lax
operatorsL6, which, as a consequence of~I.2!, generates the reflection operatorK. This neces-
sarily depends on both deformation parameters (h,v) and, in the limitv→0 limit, yields theK
operator of theUh„H(4)… algebra. In the present context we would just like to point out tha
the braid statistics problem, which appears for a chain of (h,v)-deformed oscillators, both defor
mation parameters are physically important.

The algebraUh,w„H(4)… can also be interpreted as a two-parametric deformation o
extended (111)-Poincare´ algebra. Other interesting applications related to braid groups and
cial functions theory of our two parametric quantization can be found.

The main purpose of this work is fourfold.
~i! To provide the enveloping Heisenberg algebras with a two-parametric deformation

appear as a combination of the standard quantization and a nonstandard one.15

~ii ! We derive its universalRh,w matrix; we use it to make an explicit connection with th
formalism of matrix quantum pseudogroups due to Woronowicz21,22 and to define the Hopf alge
bra of the representative elements.

~iii ! Using the results obtained in Ref. 14, this two-parametric deformation is proved to
ribbon algebra. General results for a twisted ribbon Hopf algebra are also derived.

~iv! We give a new solution of the braid groupBm and we analyze briefly the contribution o
these two parameters in the WZW model and in invariants of links.

This paper is organized as follows: In Sec. II, we give the definitions of the standard
nonstandard quantizations of the Heisenberg algebra, their central elements, and their univeR

matrices. In Sec. III, we introduce the two-parametric deformation and its quasitriangular
structure. A new solution of the braid groupBm and the contribution of these parameters in t
theory of invariants of links is also discussed. In Sec. IV, we determine the infinitesimal gene
of the matrix pseudogroup and we calculate both commutation relations, coproducts, couni
antipodes. The two-parametric deformation is proved to be a ribbon Hopf algebra in Se
General results are also established. Some comments concerning the WZW model are a
sented. Finally, we conclude with some remarks and perspectives in Sec. VI.

II. STANDARD AND NONSTANDARD HEISENBERG ALGEBRAS AND THEIR
UNIVERSAL R MATRICES

In this paper,h and w are arbitrary complex numbers. We denote byn, e, a1, anda the
generators of the Heisenberg algebraH~4! that satisfy the commutation relations

@a,a1#5e, @n,a#52a, @n,a1#5a1, @e,•#50, ~II.1!

and denote byU„H~4!… the enveloping algebra ofH~4!. The Heisenberg group is denoted b
H(4). Let

r 5a^ a12e^ n ~II.2!
J. Math. Phys., Vol. 38, No. 12, December 1997
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and introduce the notationr i j , 1< i , j <3, wherer 125( iai ^ bi ^ 1, r 235( i1^ ai ^ bi and r 13

5( iai ^ 1^ bi , if r 5( iai ^ biPU„H(4)…^ U„H(4)…. The element~II.2! solves the classica
Yang–Baxter equation~CYBE!,

@r 12,r 13#1@r 12,r 23#1@r 13,r 23#50, ~II.3!

and it is called a classicalr matrix. The quantum Hopf algebraUh„H(4)… that quantizes the
standard bialgebra generated by the classicalr matrix ~II.2! is defined as the following.

Definition 1: The quantum standard algebraUh„H(4)… is the unital associative algebra with
the generators N, E, A1, A, and the relations

@A,A1#5
sinh~hE!

h
, @N,A1#5A1, @N,A#52A, @E,•#50. ~II.4!

The algebraUh„H(4)… admits a Hopf structure with coproducts, counits, and antipodes de
mined by

Dh~N!5N^ 111^ N,
Dh~E!5E^ 111^ E,
Dh~A1!5A1

^ 111^ A1,
Dh~A!5A^ ehE1e2hE

^ A,

Sh~N!52N,
Sh~E!52E,
Sh~A1!52A1,
Sh~A!52A,

eh~N!50,
eh~E!50,
eh~A1!50,
eh~A!50.

~II.5!

In this point of view, the generators N, E, and A1 are primitive elements.
There exists another element belonging to the center of the algebraUh„H(4)… given by

Ch5N
sinh hE

h
2

1

2
~A1A1AA1!. ~II.6!

From the relations~II.5!, we haveSh
25 id. The quantum Hopf algebra~II.4! and~II.5! is equivalent

to the structure defined by Celeghiniet al.8 The coproductDh , couniteh , and antipodeSh ~II.5!
are related to the Celeghiniet al. coproductDc , counit ec , and antipodeSc by

Dh5A21 DcA, eh5ec , Sh5Sc , ~II.7!

whereA5e2(h/2)(E^ N2N^ E). The classicalr matrix associated to the quantum structure defin
in Ref. 8 is given by

r 5a^ a12 1
2 ~e^ n1n^ e!. ~II.8!

Recall that a quasitriangular Hopf algebra is a pair~U,R!, whereU is a Hopf algebra andR
is invertible element obeying the following axioms:

RD~u!R215s+D~u!, uPU, ~II.9!

~D ^ id!~R!5R13R23, ~ id^ D!~R!5R13R12, ~II.10!

where, if R5( iai ^ biPU^ U, we denoteR125( iai ^ bi ^ 1PU^ U^ U, R135( iai ^ 1
^ bi , R235( i1^ ai ^ bi ands is the flip operators(a^ b)5b^ a. The relation~II.9! indicates
that R being an intertwining operator on the coproductD. R is called a universalR matrix and
satisfies the quantum Yang–Baxter equation~QYBE!

R12R13R235R23R13R12. ~II.11!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Now, given a quasitriangular Hopf algebra~U,R! and an invertible elementF PU^ U

satisfying the following conditions:

~Dh^ id!~F !F 125~ id^ Dh!~F !F 23, ~II.12!

F 12
21~Dh^ id!~F 21!5F 23

21~ id^ Dh!~F 21!, ~II.13!

~eh^ id!~F !5~ id^ eh!~F !, ~II.14!

~eh^ id!~F 21!5~ id^ eh!~F 21!, ~II.15!

one can form a new quasitriangular Hopf algebraUF by twisting U:23 UF retains the vector
space and multiplication ofU while its quasitriangular Hopf structure is given by

DF [F 21 DF , eF 5e, SF 5v21Sv, R F 5F 21
21

RF , ~II.16!

where the elementv and its inverse are obtained from the invertible elementF PU^ U as
follows:

v5m~S^ id!~F !, v215m~ id^ S!~F 21!. ~II.17!

If S25 id, the twisted quasitriangular Hopf algebraUF thus does not conserve the same prope
namely,

SF
2 ~a!5v21S~v !aS~v21!v. ~II.18!

Proposition 1: Let~U,R! be a quasitriangular Hopf algebra and an elementF PU^ U

satisfying the conditions (II.12)–(II.15). The elementv defined in (II.17) has the following prop
erties:

e~v !51, D~v !5~S^ S!~F 21
21!~v ^ v !F 21, ~II.19!

and, for the elementv21S(v), we have

D„v21S~v !…5F ~v21S~v ! ^ v21S~v !…~S2
^ S2!~F 21!. ~II.20!

If S25 id, the relation (II.20) reads as

DF „v21S~v !…5v21S~v ! ^ v21S~v !. ~II.21!

Proof: The equations~II.19! arise by direct calculations. The relations~II.20! and ~II.21! are
derived using~II.19!. j

Proposition 2: The Hopf algebraUh„H(4)… is quasitriangular. The universalR matrix has
the following form:

Rh5exp~22h E^ N!exp~2h ehEA^ A1! ~II.22!

and satisfies the Quantum Yang–Baxter equation (II.11).
Proof: Similar to the proof given in Ref. 8~see proposition II.9!. The R matrix ~II.22! is

related to theR-matrix given in Ref. 8 by the following twist:

Rh5A21
21

RcA. j ~II.23!

Now, let us consider the nonstandard classicalr matrix,
J. Math. Phys., Vol. 38, No. 12, December 1997
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r 5n^ a12a1
^ n, ~II.24!

which solves the classical Yang–Baxter equation~II.3!. The quantum Hopf algebra that quantiz
the nonstandard bialgebra generated by the classicalr matrix ~II.24! was given by Ballesteros an
Herranz.15

Definition 2: The quantum nonstandard algebraUw„H(4)… is the unital associative algebra
generated by N, E, A1, and A, satisfying the commutations relations

@A,A1#5EewA1
, @N,A1#5

ewA1
21

w
, @N,A#52A, @E,•#50. ~II.25!

The algebraUw„H(4)… has the following Hopf structure:

Dw~N!5N^ ewA1
11^ N, Sw~N!52Ne2wA1

, ew~N!50,

Dw~E!5E^ 111^ E, Sw~E!52E, ew~E!50, ~II.26!

Dw~A1!5A1
^ 111^ A1, Sw~A1!52A1, ew~A1!50,

and

Dw~A!5A^ ewA1
11^ A1wN^ EewA1

, Sw~A!52Ae2wA1
1wNEe2wA1

, ew~A!50.
~II.27!

The generators E and A1 are primitives.
We will not consider here the other nonstandard deformations. The Casimir eleme

Uw„H(4)… is given by15

Cw5NE1
e2wA121

2w
A1A

e2wA121

2w
. ~II.28!

Proposition 3: The Hopf algebraUw„H(4)… is quasitriangular. The universalR matrix has
the following form:15

Rw5exp~2wA1
^ N!exp~wN^ A1!, ~II.29!

and satisfies the quantum Yang–Baxter equation (II.11).
In passing, let us mention thatRw5F 21

21
F , with F 5exp(wN^A1) and Dw5F 21D0F ,

where D0 is the coproduct of the enveloping algebraU„H~4!…, extended toU„H(4)…@@w##,
namely

D0~N!5N^ 111^ N, D0~E!5E^ 111^ E,

D0S 12e2wA1

w
D 5S 12e2wA1

w
D ^ 111^ S 12e2wA1

w
D ,

D0~A!5A^ 111^ A.
~II.30!

F appear as an element that deforms the coproductD0 of U„H~4!… to the coproductDw of
Uw„H(4)…. Furthermore, the antipodes and counits are
J. Math. Phys., Vol. 38, No. 12, December 1997
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S0~N!52N, S0~A!52A, S0S 12e2wA1

w
D 52S 12e2wA1

w
D ,

e0~N!5e0~A!5e0S 12e2wA1

w
D 50.

~II.31!

Let us just mention that there exist others solutions of the classical Yang–Baxter eq
given by

r ~m,n!5m~a^ e2e^ a!1n~a1
^ e2e^ a1!, m,nPC. ~II.32!

The quantum Hopf algebra that quantizes the nonstandard bialgebra generated by the clar
matrix r (m,0) can be obtained as contraction limit fromUh„sl(2)…^ u(1). Another interesting
solution will be the subject of the following section.

III. A TWO-PARAMETRIC DEFORMATION OF U„H„4…… AND LINKS INVARIANTS

In this section, we analyze the algebra that corresponds to a combination of the sta
deformation~II.4! and the nonstandard one~II.25!. Let us consider the element

r ~h,w!52h~a^ a12e^ n!1w~n^ a12a1
^ n!, h,wPC, ~III.1!

which satisfies the classical Yang–Baxter equation~II.3!. In this case, the quantum Hopf algeb
Uh,w„H(4)… that quantizes the bialgebra generated by ther (h,w) matrix ~III.1! will be charac-
terized by two parametersh and w associated, respectively, to the standardr matrix r (h,0)
52h(a^ a12e^ n) and to the nonstandardr matrix r (0,w)5w(n^ a12a1

^ n).
Proposition 4: The two-parametric deformed algebraUh,w„H(4)… is an associative algebra

over C generated by N, E, A1, and A, satisfying the commutations relations

@A,A1#5
sinh~hE!ewA1

h
, @N,A1#5

ewA1
21

w
, @N,A#52A, ~III.2!

where E is still central. The algebra (III.2) admit the following Hopf structure:

Dh,w~N!5N^ ewA1
11^ N, Sh,w~N!52Ne2wA1

, eh,w~N!50,

Dh,w~E!5E^ 111^ E, Sh,w~E!52E, eh,w~E!50, ~III.3!

Dh,w~A1!5A1
^ 111^ A1, Sh,w~A1!52A1, eh,w~A1!50,

and

Dh,w~A!5A^ ehEewA1
1e2hE

^ A1we2hEN^
sinh~hE!

h
ewA1

, eh,w~A!50,

Sh,w~A!52Ae2wA1
1wN

sinh~hE!

h
e2wA1

. ~III.4!

Proof: All the Hopf algebra axioms can be verified by direct calculations. The elementsE and
A1 are primitives. j

The Heisenberg subalgebra generated byE, A1, andA is not a Hopf subalgebra. The Casim
element of the quantum algebraUh,w„H(4)… is given by
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



licit

ula

6051Boucif Abdesselam: The twisted Heisenberg algebra Uh,w(H(4))

                    
Ch,w5N
sinh hE

h
1

e2wA121

2w
A1A

e2wA121

2w
. ~III.5!

When h is equal to zero,C h,w correspond to the central element given in Ref. 15. The exp
expression ofN in terms ofA, A1, andE is given by the series

N[S 12e2wA1

w
DAFsinh~hE!

h G21

52hS 12e2wA1

w
DA(

k50

`

e2~2k11!hE. ~III.6!

The elementsEi(A1) jNkAl , where (i , j ,k,l )PN3N3N3N build a Poincare´–Birkhoff–Witt
basis ofUh,w„H(4)….
Proposition 5: Each infinite-dimensional irreducible representationpe,n of Uh,w„H(4)… is la-
beled by two parameters e and n. A generic representationpe,n is defined as follows:

Aur &5S sinh~he!

h D 1/2

Ar ur 21&,

A1ur &5 (
k50

`
wk

~k11! S sinh~he!

h D ~k11!/2A~r 1k11!!

r !
ur 1k11&,

S 12e2wA1

w
D ur &5S sinh~he!

h D 1/2

Ar 11ur 11&,

Eur &5eur &, Nur &5~r 1n!ur &, ~III.7!

where$ur &%r 50
` is a orthonormal basis of the module Ve,n .

The invertible elementF 5ewN^ A1
satisfies the relations~II.12!–~II.15! on the enveloping

algebraUh„H(4)…. Now, Let us turn to the universalR matrix of Uh,w„H(4)….
Proposition 6: The Hopf algebraUh,w(H(4)) is quasitriangular. The universalR matrix

has the following form:

Rh,w5~s+F !21
•Rh

•F , ~III.8!

where

F 5ewN^ A1
, ~III.9!

Rh5e22hE^ N expS 2hehEA^ S 12e2wA1

w
D D . ~III.10!

The universalR matrix (III.8) solves the quantum Yang–Baxter equation (II.11).
Proof: The relations ~II.9! are verified using the Campbell–Baker–Hausdorff form

~III.11!

Recall that F satisfies the relations~II.12!–~II.15!. Let us check that (Dh,w^ id)(Rh,w)
5R13

h,w
R23

h,w . This equation reduces to
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



o

6052 Boucif Abdesselam: The twisted Heisenberg algebra Uh,w(H(4))

                    
F 31
21

R13
h

F 13F 23
21

R23
h

F 235F 12
21~Dh^ id!~F 21

21!~Dh^ id!~Rh!~Dh^ id!~F !F 12,

5F 12
21~Dh^ id!~F 21

21!R13
h

R23
h ~Dh^ id!~F !F 12,

5F 12
21~Dh^ id!~F 21

21!R13
h

R23
h ~ id^ Dh!~F !F 23,

namely,

F 12
21~Dh^ id!~F 21

21!R13
h 5F 31R13

h
F 13F 23

21~ id^ Dh8!~F 21!, ~III.12!

whereDh85s+Dh . Applying the flips23 to both sides, the preceding equation is equivalent t

F 13
21s23~Dh^ id!~F 21

21!R12
h 5F 21R12

h
F 12F 23

21~ id^ Dh!~F 21!5F 21
21

R12
h ~ id^ Dh!~F 21!,

namely,

F 13
21s23~Dh^ id!~F 21

21!5F21~Dh8^ id!~F 21!. ~III.13!

It is easy to see that applyings12 to the left-hand side of the preceding equation givesF 23
21(id

^ Dh)(F 21), and applying it to the right-hand side givesF 12
21(Dh^ id)(F 21). So the result

follows on using~II.13! once again. The relation (id̂Dh,w)(Rh,w)5R13
h,w

R23
h,w is verified using

the same method. j

The element~III.10! correspond to theRh matrix ~II.22! of the algebra~II.4! generated byN,
E, A, and (12e2wA1

)/w @the generatorA1 is replaced by (12e2wA1
)/w#, whereasF 21 is the

twist that deforms the coproducts~II.5! to the coproducts~III.3!–~III.4!, namely

Dh,w5F 21 DhF . ~III.14!

Furthermore,

eh,w~• !5eh~• !, Sh,w~• !5v21Sh~• !v, ~III.15!

wherev is the invertible element given by

v5 (
k50

`
~21!kwk

k!
Nk~A1!k, v215 (

k50

`
1

k!
Nk

„ln~22e2wA1
!…k, ~III.16!

which satisfies the following relation:

v21Sh~v !5ewA1
. ~III.17!

From the universalR matrix, by standard techniques, we can readily deduce a newR matrix
depending on a continuous parameteru. In fact, defining the operatorTu by its action,

TuA15e2uA1, Tuw5euw, Tuh5h,

TuA5euA1, TuE5E, TuN5N,
~III.18!

we can define

Rh,w~u!5~Tu^ 1!Rh,w5e2wA1
^ Ne22hE^ N expS 2heuehEA^ S 12e2wA1

w
D D ewN^ A1

,

~III.19!
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and as a result of direct calculations, the matrixRh,w(u) defined in~III.19! satisfies the Yang–
Baxter equation,

R12
h,w~u!R13

h,w~u1v !R23
h,w~v !5R23

h,w~v !R13
h,w~u1v !R12

h,w~u!. ~III.20!

The classicalr (u) matrix corresponding to the universalRh,w(u) matrix ~III.19!, depending on
the parameteru, is the following:

r ~u!5w~n^ a12a1
^ n!12h~eua^ a12e^ n!, ~III.21!

and solves the parameter-dependent classical Yang–Baxter equation,

@r 12~u!,r 13~u1v !#1@r 12~u!,r 23~v !#1@r 13~u1v !,r 23~v !#50. ~III.22!

Now, consider the infinite-dimensional irreducible representationspe,n with the condition
e2heÞ1. Evaluates the intertwiner matricesR(e1 ,e2)[e2he1n2s(pe1 ,n1

^ pe2 ,n2
)Rh,w:Ve1 ,n1

^ Ve2 ,n2
→Ve2 ,n2

^ Ve1 ,n1
and R21(e1 ,e2)[e22he2n1(pe1 ,n1

^ pe2 ,n2
)@Rh,w#21s:Ve1 ,n1

^ Ve2 ,n2
→Ve2 ,n2

^ Ve1 ,n1
, we obtain

@R# r 1 ,r 2

r 18 ,r 28~e1 ,e2!5wr 181r 282r 12r 2S ehe12e2he1

2h D ~r 282r 1!/2S ehe22e2he2

2h D ~r 182r 2!/2S r 18! r 28!

r 1! r 2! D
1/2

3 (
s5sup~r 12r 28,0!

inf~r 1 ,r 182r 2! S r 1

s Df r
182r 22sf̄ r

282r 11s~ehe12e2he1!seh~s22r 18!e1, ~III.23!

@R21# r 1 ,r 2

r 18 ,r 28~e1 ,e2!5wr 181r 282r 12r 2S ehe12e2he1

2h D ~r 282r 1!/2S ehe22e2he2

2h D ~r 182r 2!/2S r 18! r 28!

r 1! r 2! D
1/2

3 (
s5sup~r 22r 18,0!

inf~r 2 ,r 282r 1!

~21!sS r 181s
s Df r

182r 21sf̄ r
282r 12s~ehe22e2he2!seh~s12r 1!e2,

~III.24!

with

f r
182r 26s5 (

k50

r 182r 26s f
k

r 182r 26s2k

k!
~r 11n1!k, f̄ r

282r 16s5 (
k50

r 282r 16s ~21!kf
k

r 282r 16s2k

k!
~r 181n2!k,

where

f k
s5H 1, if k50,

(
i 11 i 21•••1 i k5s

1

~ i 111!~ i 211!•••~ i k11!
if k>1.

~III.25!

Taking w50, the relations~III.23! and ~III.24! reduces to the results obtained by Gomez a
Sierra in Ref. 14, namely
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@Rg# r 1 ,r 2

r 18 ,r 28~e1 ,e2!5d r
181r

28 ,r 11r 2
S r 1

r 28
D 1/2S r 18

r 2
D 1/2

e2h~r 181r 2!e1@~ehe12e2he1!~ehe22e2he2!#~r 182r 2!/2,

@Rg
21# r 1 ,r 2

r 18 ,r 28~e1 ,e2!5d r
181r

28 ,r 11r 2
S r 2

r 18
D 1/2S r 28

r 1
D 1/2

~21!r 22r 18eh~r 281r 1!e2

3@~ehe12e2he1!~ehe22e2he2!#~r 22r 18!/2. ~III.26!

Recall that a braid groupBm is an abstract group generated by the elementss i , 1< i<m
21 satisfying the relationss is j5s js i if u i 2 j u>2, s is i

215s i
21s i51 and s is i 11s i

5s i 11s is i 11 if 1< i<m22. In colored braid groups cases,s i contain different nontrivial pa-
rameters called the string variables. TheR matrix ~III.23! build a new infinite-dimensional repre
sentationrm of the colored braided groupBm via

rm :Bm→End~ ^ i 51
m Vei ,ni

!

s i° id^ ~ i 21!
^ Rei ,ei 11^ id^ ~m2 i 21!, ~III.27!

which satisfies

Ri
e2 ,e3Ri 11

e1 ,e3Ri
e1 ,e25Ri 11

e1 ,e2Ri
e1 ,e3Ri 11

e2 ,e3. ~III.28!

The noncolored version correspond to takee15e25•••5em5e.
Now, let us concentrate in noncolored case. The noncolored braid group represen

~NCBG! admits an extension a` la Turaev,24 if there exists an isomorphismm:Ve,n→Ve,n that
transforms the basis$ur &%r 50

` into $m r ur &%r 50
` satisfying the following three conditions:

~m im j5mkm l !Ri , j
k,l~e,e!50, ~III.29!

(
j

Ri , j
k, j~e,e!m j5d i

kab, ~III.30!

(
j

@R21# i , j
k, j~e,e!m j5d i

ka21b, ~III.31!

wherea,b are constants. The Turaev conditions~III.29!–~III.31! hold if

m5 id, a5ehe, b5e2he. ~III.32!

Let z:Bm→Z such that z(s i
61)561, z(xy)5z(x)1z(y). Then, the link invariant

P:Pm>2Bm→C associated to the enhanced Yang–Baxter operator~EYB operator!
(R, id,ehe,e2he) is

P~x!5qe~2z~x!1m! Tr@rm~x!#, ;xPBm , ~III.33!

which is invariant under the two Markov movesP(xy)5P(yx), x,yPBm ~type I! and
P(xsm

61)5P(x), xPBm , smPBm11 ~type II!. Let us state the following.

~i! The combination of the standard and nonstandard quantizations permit us to build
infinite-dimensional representation of the colored braided groupBm .

~ii ! The link invariant ~III.33! is equal to the one obtained in Ref. 14. The link invaria
obtained for a structure defined as combination of the standard and nonstandard qu
tions are exactly equal to those calculated for the standard quantization separatel
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invariants~III.33! are polynomials only in the variableqhe. Its easy to see that the non
standard parameterw have no contribution in~III.33! @see the results~III.23! and~III.24!#.

~iii ! These comments are true for the colored braiding version.~See Ref. 14 for more details!.

IV. THE TWO-PARAMETRIC HEISENBERG GROUP Hh,w„4…

A 333-dimensional representationp3 of the two parametric deformed Heisenberg alge
Uh,w„H(4)… is given by

p3~A!5S 0 1 0

0 0 0

0 0 0
D , p3~A1!5S 0 0 0

0 0 1

0 0 0
D ,

p3~E!5S 0 0 1

0 0 0

0 0 0
D , p3~N!5S 0 0 0

0 1 0

0 0 0
D .

~IV.1!

This representation remains undeformed. Correspondingly, theR matrix ~III.8! is represented by
the 939 matrix,

Rp3

h,w5~p3^ p3!~Rh,w!5S I 3 2hp3~A1! 22hp3~N!

0 I 31vp3~A1! 2wp3~N!

0 0 I 3

D , ~IV.2!

I 3 being the 333 identity matrix. We shall now present the quantum groupH(4) as a matrix
quantum group a` la Woronowicz.21,22 Let us consider a 333 matrix of the following form:

T5eb ^ p3~E!ed ^ p3~A1!eg ^ p3~N!ea ^ p3~A!5S 1 a b

0 eg d

0 0 1
D , ~IV.3!

where the matrix elementsa, b, g, andd generate the algebra of functions on the quantum gr
F h,w„H(4)…. The matrix elementsa, b, g, andd of T satisfies the relation

Rp3

h,wT1T25T2T1Rp3

h,w , ~IV.4!

where,T15T^ 1 andT251^ T. The algebraF h,w„H(4)… can be endowed with a Hopf algebr
by defining a comultiplicationD and counite as

D~T!5T^̇T, e~T!51, ~IV.5!

where ^̇ denotes matrix multiplication and the tensor product of theC* -algebras of noncommu
tative representative functions. The inverse matrix then defines the antipode, namely

S~T!5T21. ~IV.6!

Proposition 7: (i) The relations between the generatorsa, b, g, and d are the following:

@a,b#52ha1wa2,
@a,d#5waeg,
@b,d#5@a,g#50.

@g,d#5w~eg21!,
@b,g#52wa, ~IV.7!
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(ii) The generatorsa, b, g, and d with the relations specified in (IV.7) have coproduc
counits, and antipodes given by

D~a!5a ^ eg11^ a,
D~b!5b ^ 111^ b1a ^ d,
D~eg!5eg

^ eg,
D~d!5d ^ 11eg

^ d,

S~a!52e2ga,
S~b!52b1e2gad,
S~eg!5e2g,
S~d!52e2gd,

e~a!50,
e~b!50,
e~g!50,
e~d!50.

~IV.8!

Proof: The relations~IV.7! arises from the relation~IV.4!. The Hopf structure ofF h,w„H(4)…
reads as from the equations~IV.5! and ~IV.6!, namely

T215S 1 2e2ga 2b1e2gad

0 e2g 2e2gd

0 0 1
D ~IV.9!

and

T^̇T5S 1^ 1 a ^ eg11^ a b ^ 111^ b1a ^ d

0 eg
^ eg d ^ 11eg

^ d

0 0 1^ 1
D . ~IV.10!

j

When the parameterh is equal to zero,F h,w„H(4)… is reduced to the algebraF w„H(4)…
obtained by Ballesteros and Herranz:15

@a,b#5wa2,
@a,d#5waeg,
@a,g#5@b,d#50.

@g,d#5w~eg21!,
@b,g#52wa, ~IV.11!

Whereas, ifw50, the algebraF h„H(4)… being the standard ones~according to the algebra ob
tained in Ref. 8, we takeg50!, i.e.

@a,b#52ha, @a,d#5@b,d#50, ~IV.12!

and

D~a!5a ^ 111^ a,
D~b!5b ^ 111^ b1a ^ d,
D~d!5d ^ 111^ d,

S~a!52a,
S~b!52b1ad,
S~d!52d,

e~a!50,
e~b!50,
e~d!50.

~IV.13!

The relations~IV.13! are obtained in Ref. 8. The algebra~IV.12! is slightly different from the
algebraF h„H(4)… obtained in Ref. 8.

V. THE RIBBON HOPF ALGEBRA Uh ,w„H„4……

Any quasitriangular Hopf algebra~U,R! has an invertible element, usually calledu, with the
property that

S2~a!5uau21, ;aPU. ~V.1!

The elementu and its inverseu21 can be obtained from the universalR matrix as follows:

u5m~S^ id!~R21!, u215m~S21
^ id!~R21

21!. ~V.2!
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The elementu anduS(u) satisfies the relations25

e~u!51, D~u!5~R21R!21~u^ u!5~u^ u!~R21R!21,

D„uS~u!…5~R21R!22~u^ u!.
~V.3!

The elementuS(u)5S(u)u is central inU. The elementsu andS(u) of U do not, in general,
commute with the other elements ofU, however,u andS(u) are central ifS25 id.

Recall that a Ribbon Hopf algebra~U,R,u! is a quasitriangular Hopf algebra with a centr
elementu satisfying

u25uS~u!,
D~u!5~R21R!21~u ^ u!,

S~u!5u,
e~u!51. ~V.4!

Proposition 8: Let~U,R! be a quasitriangular Hopf algebra andF an invertible element of
U^ U satisfying (II.12)–(II.15). The uF element of the twisted quasitriangular Hopf algebraUF

is

uF 5v21S~v !u5v2uS21~v !, ~V.5!

wherev and its inverse are given by (II.17). The element uF has the property that

SF
2 ~a!5uF auF

21, aPUF , ~V.6!

eF ~uF !51, ~V.7!

DF ~uF !5~R 21
F

R F !21~uF ^ uF !5~uF ^ uF !~R 21
F

R F !21. ~V.8!

Proof: For the proof, we chooseF 5( ( f ) f 1^ f 2 , F 215( (g)g1^ g2 , R5( (r )r 1^ r 2 , u
5( (r )S(r 2)r 1 , v5( ( f )S( f 1) f 2 and v215( (g)g1S(g2). The elementuF is obtained from the
universalRF matrix as follows:

uF 5m~SF ^ id!~R 21
F !,

5m~v21
^ id!~S^ id!~F 21R21F 21!~1^ v !,

5(
~ f !

(
~g!

(
~r !

v21S~ f 2!S~r 2!S~g1!vg2r 1f .

From the relationm(S^ id)(F F 21)51, we obtain that( (g)S(g1)vg251. Now, the preceding
relations reads as

uF 5(
~ f !

(
~r !

v21S~ f 2!u f15(
~ f !

(
~r !

v21S~ f 2!S2~ f 1!u. ~V.9!

So the result follows on using the elementv ~II.17!. The equations~V.6! and~V.7! are verified by
direct calculations. The relations~V.8! arise as follows:
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



6058 Boucif Abdesselam: The twisted Heisenberg algebra Uh,w(H(4))

                    
DF ~uF !5F 21D„v21S~v !u…F ,

5F 21D„v21S~v !…D~u!F ,

5„v21S~v ! ^ v21S~v !…„~S2
^ S2!F 21

…D~u!F ,

5„v21S~v !u^ v21S~v !u…F 21~R21R!21F ,

DF ~uF !5~uF ^ uF !~R 21
F

R F !21.
~V.10!

j

Proposition 9: Let~U,R,u! be a ribbon Hopf algebra andF an invertible element ofU^U

satisfying (II.12)–(II.15). The twisted algebraUF is a ribbon Hopf algebra withuF 5u and the
relations

S F ~uF !51, eF ~uF !51, DF ~uF !5~R21
F

RF !21~uF ^ uF !. ~V.11!

Proof: The results~V.11! arise fromuF
2 5uF SF (uF )5uS(u), namely,uF 5u. j

In the particular case of the universalRh matrix ~II.22! of the Heisenberg algebraUh„H(4)…
we obtain from Proposition 9 and Ref. 14,

uh5(
l>0

~21! l~2h! l

l !
e2hlE~A1! lAle2hEN,

uh
215(

l>0

~2h! l

l !
ehlE~A1! lAle22hEN.

~V.12!

For the standard Heisenberg algebraUh„H(4)…, we have, from~II.5!, that S25 id so thatuh is
central. Similarly,Sh(uh) is also central, and we have

Sh~uh!5e22hEuh . ~V.13!

Gomez and Sierra have proved thatUh„H(4)… is a Ribbon Hopf algebra withuh5e2hEuh .14 For
the two-parametric Heisenberg algebraUh,w„H(4)…, theuh,w element and its inverse reads as

uh,w5ewA1

(
l>0

~21! l~2h! l

l !
e2hlES 12e2wA1

w
D l

Ale2hEN,

uh,w
21 5(

l>0

~2h! l

l !
ehlES 12e2wA1

w
D l

Ale22hENe2wA1
,

~V.14!

and

Sh,w~uh,w!5e22hEe2wA1
uh,w . ~V.15!

For the representationpe,n , we obtain

uh,wur &5e2nhe(
l>0

wl S t2t21

2h D l/2S ~r 1 l !!

r ! D 1/2

ur 1 l &,

uh,w
21 ur &5e22nheur &2wt22nS sinh~he!

h D 1/2

Ar 11ur 11&.

~V.16!
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Proposition 10: The quasitriangular Hopf algebra(Uh,w„H(4)…,Rh,w) is a Ribbon Hopf
algebra with

uh,w5e2hE(
l>0

~21! l~2h! l

l !
e2hlES 12e2wA1

w
D l

Ale2hEN,

uh,w
21 5ehE(

l>0

~2h! l

l !
ehlES 12e2wA1

w
D l

Ale22hEN,

~V.17!

which in the irreducible representationpe,n takes the value

uh,wur &5e~2n21!heur &, uh,w
21 ur &5e2~2n21!heur &. ~V.18!

Finally, let us state the following.
~i! The eigenvalue of the central elementuh,w and its inverse depend only on the standa

parameterh.
~ii ! The value ofuh,w in a given irreducible representationpe,n contains some interestin

information of the corresponding conformal field theory.~CFT! associated to the quantum algeb
Uh,w„H(4)…. In the cases of a semisimple algebraG it was shown that the conformal weightDa

of a primary field of the WZW modelĜ k is related to the valueua by26

ua5e2p iDa, ~V.19!

whereua is the value ofu on the irreducible representationa of Uq1 ,...,qj
(G ) associated to the

primary fielda. If the formula~V.19! holds true for the quantum Heisenberg algebraUh,w„H(4)…
it would imply that

e~2n21!he5e2p iDe,n. ~V.20!

The conformal weightDe,n dependsonly on the standard parameterh. The nonstandard paramete
w has no contribution in the WZW model.

VI. CONCLUSIONS AND PERSPECTIVES

Let us remark that the combination of the standard and nonstandard deformations in th
of the enveloping Heisenberg algebra is possible because the invertible elementF satisfies the
axioms~II.12!–~II.15! on the standard algebraUh„H(4)…. The parameter arising from the non
standard quantization did not appear in the conformal weightDe,n of the primary field of the
WZW modelĜ k and in the link invariants. The parameters that play relevant roles arise from
standard quantization. In the case of the quantum algebraUq„sl(2)…, the analog two parametric
deformation cannot be defined because the twistD does not obey the axioms~II.12!–~II.15!.

Using the annihilator and creator operators of the infinite Heisenberg algebraUh,w„H(`)…
and the Sugawara construction, the two-parametric deformation can be extended to V
algebra. The two parametric deformation of the Galilei group obtained by contraction can a
used to study the magnetic chain following the approach developed in Ref. 27. These pro
will be studied elsewhere.
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Upper limit of the discrete hydrogen-like wave functions:
Expansion in the inverse principal
quantum number n 21

Bruno Blaive and Michel Cadilhac
CNRS, Ecole Nat. Sup. Chimie, Faculty of St-Jerome, 13397 Marseille Cedex 20, France

~Received 28 May 1997; accepted for publication 3 September 1997!

We have expanded the Schro¨dinger hydrogen-like wave functionscnlm of the
discrete spectrum, with respect to the inverse principal quantum numbern21, for
fixed values of the quantum numbersl ,m. The Laguerre polynomialsLn

a(x/n) are
expanded with respect ton21 into a sum of Bessel functions multiplied by powers
r k of the distance from the origin. The coefficients of the expansion are a family of
polynomialssq,k( l ) of the variablel , which can be computed with a recursion
formula. The development, which converges rapidly, can be truncated after a few
terms, even for low levelsn. © 1997 American Institute of Physics.
@S0022-2488~97!01012-8#

I. INTRODUCTION

In atomic or molecular quantum calculations, orbitals are commonly expanded into a s
Several basis sets of atomic orbitals are used: hydrogen-like, or Gaussian,1,2 Slater’s,3,4

reduced-Bessel,5,6 spherical Bessel,7 Bessels’sZn ,8 Bessel–Fourier expansion,9 etc. In the litera-
ture, cases are also encountered in which a definite hydrogen-like orbitalcnlm needs to be ex-
panded into a series. Such expansions may be useful not only in multicenter calculations10 but
also at the zero energy limit of the spectrum, a case which will be considered in this pape

A hydrogen-like wave functioncnlm belonging to the discrete spectrum involves, in its rad
part, a Laguerre polynomialLn2 l 21

2l 11 , or equivalently a confluent hypergeometric function,

Ln2 l 21
2l 11 S 2r

naD5S n1 l
2l 11DFS 2n1 l 11,2l 12,

2r

naD ~1!

~cf. the Glossary at the end of the paper!. For large values of the principal quantum numbern, the
high number of terms often precludes complete analytical calculations. The Laguerre polyn
cannot be truncated, because it is an alternating sum, which ‘‘converges’’ slowly11 ~Appendix A!.

At the upper limitn→` of the discrete spectrum, corresponding to a zero energy, the
guerre polynomial is equivalent to an expression involving a Bessel function:12

lim
n→`

Fn2aLn
aS x

nD G5x2a/2Ja~2Ax!. ~2!

This limit is better understood when the rhs of Eq.~1! is expanded13,14 into

FS 2n1 l 11,2l 12,
2r

naD512
n2 l 21

2l 12

2r

na
1

~n2 l 21!~n2 l 22!

~2l 12!~2l 13! S 2r

naD 2 1

2!
1••• ~3!

→n→`~2l 11!! ~2r /a!2 l 21/2J2l 11~2A2r /a!. ~4!
0022-2488/97/38(12)/6061/11/$10.00
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Multiplied by a suitable factor, the rhs of Eq.~2! can be considered as the first term of t
expansion ofcnlm with respect ton21. In the present article we shall look for the following term
of this expansion. On the example of thes andp states of the hydrogen atom, we shall exam
the convergence of this expansion, for various values ofn.

II. EXPANSION OF cnlm IN n 21, FOR FIXED l ,m

In spherical coordinates (r ,u,w), the wave functioncnlm is written15 as

cnlm~r ,u,w!5a23/2NnlS 2r

naD l

e2 r /na~n1 l !!Ln2 l 21
2l 11 S 2r

naDYl
m~u,w!. ~5!

The spherical harmonicsYl
m , which is independent ofn, will remain unchanged in this paper. Th

coefficientNnl is defined by

Nnl[
2

n2
A~n2 l 21!!

~n1 l !! 3
. ~6!

A Laplace transformf (x)→L (L f )(p) and an inverse Laplace transform will be applied to t
Laguerre polynomial,

Ln2 l 21
2l 11 ~x![ (

k50

n2 l 21

~21!kS n1 l
2l 111kD xk

k!
. ~7!

Setting

x[
2r

a
~8!

in ~7!, and applying property~9! of L,

Ln2 l 21
2l 11 S x

nD→L n@LLn2 l 21
2l 11 #~np!, ~9!

to the Laplace transform

@L Ln2 l 21
2l 11 #~p!52p2l (

k50

n2 l 21 S n1 l
2l 111kD S 21

p D 2l 111k

, ~10!

we obtain

L FLn2 l 21
2l 11 S x

nD G52p2ln2l 11F S 12
1

npD n1 l

2 (
q50

2l S n1 l
q D S 21

np D qG . ~11!

The first term

D[S 12
1

npD n1 l

, ~12!

can be expanded into powers ofn21. Firstly we expand inn21 its logarithm,
J. Math. Phys., Vol. 38, No. 12, December 1997
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ln D52
1

p
2 (

k51

`
ak~p!

nk
, ~13!

with the definition

ak~p![
l

kpk
1

1

~k11!pk11
. ~14!

Then, the exponential of~13! is

D5e21/pF11 (
m51

`
~21!m

m! S (
k51

`
ak~p!

nk D mG ~15!

5e21/pS 11 (
q51

`
Sq~p!

nq D , ~16!

where we have introduced the coefficientSq ,

Sq~p![ (
m51

q
~21!m

m! (
J

)
i 51

m

aj i
~p!, ~17!

where

J[~ j 1 , j 2 , . . . ,j m!, with j 11 j 21•••1 j m5q.

In Eq. ~17!, J is a sequence, of variable lengthm (m>1), of strictly positive integersj 1 , . . . ,j m

~some of them can be equal!. Sq(p) is a polynomial in 1/p. In a product, each factoraj i
comprises

terms in 1/pj i and 1/pj i11. Therefore the monomials in 1/pk which constitute the product hav
their exponentsk comprised between( j i5q and(( j i11)5q1m<2q, and we can writeSq(p)
in the form

Sq~p!5 (
k5q

2q
sq,k

pk
~q>1!. ~18!

The coefficientssq,k , defined by Eqs.~17!, ~18!, are rational numbers which depend on t
quantum numberl , but not onn. Substitution of~18! for D in ~11! leads to the sought expansio
of L L in 1/n:

L FLn2 l 21
2l 11 S x

nD G5n2l 11H e21/pF2p2l2 (
q51

`
1

nq (
k5q

2q
sq,k~ l !

pk22l G1 (
q50

2l S 21

n D qS n1 l
q D p2l 2qJ .

~19!

An inverse Laplace transform can now be applied to~19!, to obtain then21 expansion of
Ln2 l 21

2l 11 (x/n). Considered as a generalized function, each termpke21/p in ~19! has an inverse
Laplace transform,16 which is ~Appendix B!

L 21~e21/ppk!5~21!k11Fx2 ~k11!/2Jk11~2Ax!Y~x!2 (
q50

k

~21!q
d ~q!

~k2q!! G ~20!
J. Math. Phys., Vol. 38, No. 12, December 1997
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@k is any positive or negative integer; with the convention that 1/(k2q)! is zero for strictly
negative values ofk2q#. The Heaviside functionY(x) can be omitted in Eq.~20!, sincex is
positive inL 21 ~19!. We also have

L 21pk5d~k! ~k>0!. ~21!

L 21(19) is a function, which implies that the delta distribution and its derivatives, arising f
~20! and ~21!, must cancel inL 21(19). Finally, we obtain the expansion inn21 of the wave
function:

cnlm~r ,u,w!5
2

a3/2n3/2F )k51

l S 12
k2

n2D 21/2Ge2 x/2nFx21/2J2l 11~2Ax!

2 (
q51

`
1

nq(k5q

2q

sq,k~ l !x~k21!/2Jk22l 21~2Ax!GYl
m~u,w!, ~22!

wherex is defined byx[2r /a, and the coefficientssq,k( l ) by ~14!, ~17!, ~18!. To obtain~22! we
have used

nl 21A~n2 l 21!!

~n1 l !!
5n23/2)

k51

l S 12
k2

n2D 21/2

. ~23!

If necessary, to complete the expansion~22!, the product) and the exponentiale2 r /na can be
replaced by their expansions inn21. Expansions connected with Eq.~22!, but different from it, are
given by Tricomi.17

III. THE POLYNOMIALS Sq,k„l … „q<k<2q …

To facilitate the use of expansion~22!, let us establish now a few properties of the coefficie
sq,k( l ) which appear in this equation. For this, let us considerSq(p) as a function of

t[
1

p
, ~24!

i.e., the function

Gq~ t ![Sq~p!5(
k

sq,k tk. ~25!

Equating the rhs of~12! and ~16!, we obtain

11 (
q51

`

Gq~ t !zq5expF t1S 1

z
1 l D ln~12tz!G S with z[

1

nD . ~26!

We can consider nonintegral values ofn, and derive Eq.~26! with respect tot, which gives after
rearrangements,

~ tz21! (
q51

`

Gq8~ t !zq5~ l 1t !zF11 (
q51

`

Gq~ t !zqG . ~27!

The coefficients ofzq on both sides of Eq.~27! are equal:

2G18~ t !5 l 1t, ~28!
J. Math. Phys., Vol. 38, No. 12, December 1997
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and

tGq218 ~ t !2Gq8~ t !5~ l 1t !Gq21~ t ! ~q>2!. ~29!

Equation~29! is equivalent to

d

dt
@ tGq21~ t !2Gq~ t !#5~ l 111t !Gq21~ t !. ~30!

Integration of Eqs.~28! and ~30! over t yields

G1~ t !52S l t 1
t2

2 D1G1~0!, ~31!

and

Gq~ t !5tGq21~ t !2E
0

t

dt~ l 111t!Gq21~t!1Gq~0! ~q>2!, ~32!

with

Gq~0!50 ~q>1!, ~33!

as can be seen in Eq.~26!.
Since sq,k is the coefficient oftk in Gq , Eqs. ~31! and ~32! lead to the simple recursion

formula

s1,152 l , s1,252
1

2
, ~34!

sq,k5S 12
l 11

k D sq21,k212
1

k
sq21,k22 . ~35!

sq,k( l ) is a polynomial inl of degree 2q2k. In section II we have seen that

sq,k50, for k,q or k.2q. ~36!

For k5q or 2q, we have

sq,q5 lim
t→0

Gq~ t !

tq
5~21!qS l

qD ~37!

and

sq,2q5
~21!q

2qq!
. ~38!

Equation~38! can be established by recursion. Equation~37! is obtained whenz5w/t is inserted
into Eq. ~26!. It shows that the sum(k in Eq. ~22! begins atk5q11 instead ofq for q. l .

If we come back to the definition~17!, ~18! of sq,q , we incidentally notice that Eq.~37!
implies

(
m51

q
~21!m

m! (
J

l m

j 1 j 2 . . . j m
5~21!qS l

qD ~39!
J. Math. Phys., Vol. 38, No. 12, December 1997
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@as in Eq.~17!, J is a sequence (j 1 , . . . ,j m) of strictly positive integersj i whose sum is equal to
q#.

Using the recursion formula~35!, we obtain forq51,2,3,

s1,152 l , s1,252
1

2
,

s2,25
l ~ l 21!

2
, s2,35

3l 22

6
, s2,45

1

8
, ~40!

s3,352
l ~ l 21!~ l 22!

6
, s3,452

3l 227l 13

12
, s3,55

423l

24
, s3,652

1

48
.

IV. s AND p STATES

For the statesl 50 andl 51 of the hydrogen atom, Eq.~22! is written as

cns[cn,0,m5
a23/2

Apn3/2
e2 r /naH x21/2J1~2Ax!2 (

q51

`
1

nq (
k5q11

2q

sq,k~0!x~k21!/2Jk21~2Ax!J
~41!

and

cnp[cn,1,m5
2a23/2

n3/2 S 12
1

n2D 21/2

e2 r /nax21/2FJ3~2Ax!1
1

2n
xJ3~2Ax!

2 (
q52

`
1

nq (
k5q11

2q

sq,k~1!xk/2Jk23~2Ax!GY1
m~u,w!; ~42!

in Eq. ~42! we have used12

z@Jk21~z!1Jk11~z!#52kJk~z! . ~43!

Table I lists the first coefficientssq,k( l 50) andsq,k( l 51) appearing in Eqs.~41! and ~42!.
On Figs. 1 and 2, the wave functionscns and cnp are compared with expansions~41! and

~42!, respectively.

TABLE I. Values of the first coefficientssq,k( l ) appearing in expansion
~22!, for s andp states.

l 50

q k51 2 3 4 5 6
1 0 21/2
2 0 21/3 1/8
3 0 21/4 1/6 21/48

l 51

q k51 2 3 4 5 6
1 21 21/2
2 0 1/6 1/8
3 0 1/12 1/24 21/48
J. Math. Phys., Vol. 38, No. 12, December 1997
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V. CONCLUSION

For any value ofl , we have expanded the hydrogen-like wave functionscnlm in powers of
n21 @Eq. ~22!#. The coefficientssq,k( l ) of the expansion are polynomials ofl , which can be
computed with the help of the recursion formula~35!. From a mathematical point of view, ex
panding a finite sum~the Laguerre polynomial! into an infinite series of Bessel functions~which
themselves are infinite series! seems to be a complication. However, for physical purposes,
series can be truncated after a few terms, even for small values ofn (n;6), because the devel
opment converges rapidly. Even though the expansion was not written explicitly, such expa
have been used implicitly in the past, for example to compute integrals like~A1!.18,19

Equation~22! must not be confounded with expansion~44! of the radial confluent hypergeo
metric functionF into Bessel functions:20

~kr ! lexp~2 ikr !F~ i /k1 l 11,2l 12,2ikr !5~2l 11!!! (
q5 l

`
bq

kq21
A p

2kr
Jq11/2~kr !, ~44!

FIG. 1. Comparison between thecns wave function of the hydrogen atom and its expansion~22![~41! for n56 ~curves
1, 2! and n59 ~curves 3, 4, almost superimposed!. The following radial functions are drawn: Curves 1,
2n25/2exp(2 x/2n)Ln21

1 (x/n), with x[2r /a. Curves 2, 4: 2nd order expansion~41! ~termsq50,1,2).
J. Math. Phys., Vol. 38, No. 12, December 1997
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where the constantsbq depend onn,l , andq.
The first term of expansion~22! remains valid for the continuous spectrum, i.e. the hydrog

like wave functions are continuous at the energyE50. Indeed, we have

lim
E→02

~n3/2cnlm!52a23/2x21/2J2l 11~2Ax!Yl
m~u,w! ~45!

and

lim
E→01

cElm5a23/2A2a

r
J2l 11~2Ax!Yl

m~u,w!. ~46!

Equation ~45! devolves from Eq.~2!, and is the first term of expansion~22!; Eq. ~46! is Eq.
~4!14,21,22written for F( in1 l 11,2l 12,2ikr ). Apart from a factorn23/2, the rhs of Eqs.~45! and

FIG. 2. Comparison between thec7p (n57) wave function of the hydrogen atom and its expansion~22![~42! to order
0,1,2. The following radial functions are drawn: Curve 1:n23x exp(2 x/2n)Ln22

3 (x/n), with x[2r /a. Curve 2: 2nd order
expansion~42! (q50,1,2). Curve 3: 1st order expansion (q50,1). Curve 4: 0th order expansion (q50).
J. Math. Phys., Vol. 38, No. 12, December 1997
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~46! are equal. This factor is due to the normalization of the continuum wave functionscE with
respect toE instead ofn. In fact, letcE8 be cE normalized with respect to the numbern defined
by E511/(2n2)ua. We have

E dEucE&^cEu5E dnucE8 &^cE8 u ~47!

and

dE52
dn

n3
, ~48!

hence

cE85 i
cE

n3/2
. ~49!

APPENDIX A: CONVERGENCE OF THE LAGUERRE POLYNOMIAL L

The matrix elements,

^n0suxunp&[E E E d3x cn0s* ~x! x cnp , ~A1!

of the positionx[x/a of the electron in the hydrogen atom, provide a simple example showing
low convergence ofL. Forc2s (n052,l 050,m050) andc11p (n511,l 51,m50) integral~A1! is
the real vector,

^2suxunp&5e32103161131321451/2111/25e30.1105076898369629, ~A2!

wheree3 is the axis of thep orbital. The relative contributions to~A1! of the monomials of the
Laguerre polynomial inc11p shows slow convergence and important difference effects~Table II!.

TABLE II. Contribution to integral~A1! of the monomials 0 to 9 of the
Laguerre polynomialL9

3 composing the radial part of the wave function
c11p . The values of column 2 have been calculated starting from analytic
formulas, with a computer program handling rational numbers. Therefore,
they contain no integration error. The value~A2! is equal to the sum in
Table I, multiplied by a suitable constant.

Monomial Relative contribution to~A1!

0 23.561253561253561E-005
1 1.555602517140979E-004
2 22.774345969612242E-004
3 2.723216196133811E-004
4 21.647096916870384E-004
5 6.430749590464425E-005
6 21.631911077675350E-005
7 2.608268132694789E-006
8 22.391078502088424E-007
9 9.605187145141535E-009

Sum 4.921976642026033E-007
J. Math. Phys., Vol. 38, No. 12, December 1997
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For high values ofn (n.6), accurate values of~A1! are obtained when expansion~22! is re-
stricted to its first three terms (q50,1,2).18,19

In the case of integral~A1!, the reverse Laplace transform utilized in this section can
avoided. In fact,~A1! involves an integration overr which is itself a Laplace transform~the
integrand comprises a factor of the forme2ar). As a consequence, the expansion inn21 is
straightforward.

APPENDIX B: INVERSE LAPLACE TRANSFORM OF p ke21/p : THE DERIVATION OF EQ.
„20…

For a negative exponent2k of p, we have23

L 21~p2ke21/p!5x~k21!/2Jk21~2Ax!Y~x! ~k>1!. ~B1!

Changingk into 2k in Eq. ~B1!, and using the identity

J2k21~z!5~21!k11Jk11~z!, ~B2!

we see that Eq.~B1! coincides with Eq.~20!, written for k<21.
For k>0, let us demonstrate Eq.~20! by recursion. We start fromk521, for which Eq.~B1!

[~20! is valid. Now, let us assume that Eq.~20! holds for a fixedk21>0, i.e.

~21!kFx2k/2Jk~2Ax!Y~x!2 (
q50

k21

~21!q
d ~q!

~k212q!! G→L e21/ppk21. ~B3!

The derivation property,

T8→L p~L T!~p!, ~B4!

of the Laplace transform of a generalized functionT, applied to~B3!, yields

~21!kH x2k/2F2
k

2
x21Jk~2Ax!1x21/2Jk8~2Ax!GY1ad2 (

q50

k21

~21!q
d~q11!

~k212q!! J→L e21/ppk,

~B5!

with

a[ lim
x→01

@x2k/2Jk~2Ax!#5
1

k!
. ~B6!

The Bessel functions satisfy the recursion formula12

2Jk1152
k

z
Jk1

dJk

dz
. ~B7!

Substituting~B6! and ~B7! into ~B5!, we obtain Eq.~20! for k.

APPENDIX C: GLOSSARY

a Bohr radius
d (k) k-th derivative of the Dirac distributiond
F(a,b,z) confluent hypergeometric or Kummer function17

Jn(z)5(z/2)n(k50
` (21)k@(z/2)2k#/@k!(n1k)! # Bessel function13
J. Math. Phys., Vol. 38, No. 12, December 1997
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Ln
a(x)5(k50

n (21)k(n2k
n1a)xk/k! Laguerre polynomial@this definition12 is the definition of Ref. 15

divided by (n1a)!].
L Laplace transform (L f )(p)5*0

`dxe2pxf (x)
Y(x) Heaviside function@Y(x)50 for x,0, 1 for >0]
Yl

m(u,w) spherical harmonics.
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Gamow-Jordan vectors and non-reducible density
operators from higher-order S-matrix poles

A. Bohm,a) Mark Loewe,b) S. Maxson,c) P. Patuleanu,a) and C. Püntmanna)

The University of Texas at Austin, Austin, Texas 78712

M. Gadella
Faculdad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain

~Received 6 May 1996; accepted for publication 18 June 1997!

In analogy to Gamow vectors that are obtained from first-order resonance poles of
the S-matrix, one can also define higher-order Gamow vectors which are derived
from higher-order poles of the S-matrix. An S-matrix pole ofr -th order atzR

5ER2 iG/2 leads tor generalized eigenvectors of orderk50,1,...,r 21, which are
also Jordan vectors of degree (k11) with generalized eigenvalue (ER2 iG/2). The
Gamow-Jordan vectors are elements of a generalized complex eigenvector expan-
sion, whose form suggests the definition of a state operator~density matrix! for the
microphysical decaying state of this higher-order pole. This microphysical state is
a mixture of non-reducible components. In spite of the fact that thek-th order
Gamow-Jordan vectors has the polynomial time-dependence which one always
associates with higher-order poles, the microphysical state obeys a purely exponen-
tial decay law. ©1997 American Institute of Physics.@S0022-2488~97!02012-4#

I. INTRODUCTION

The singularities of the analytically continued S-matrix that have attracted most of the
tion in the past are the first-order poles in the second sheet. They were associated with res
that decay exponentially in time.1 In conventional Hilbert space quantum theory it was not cl
what those resonance ‘‘states’’ were, since a vector description of a resonance state w
possible within the framework of the Hilbert space.2 Higher-order poles, in particular doubl
poles, have also been mentioned, but it has long been believed that they somehow lea
additional polynomial time dependence of the decay law.3 However, precise derivations were n
possible due to the lack of a vector space description.

This changed when the first-order poles were associated with vectorscG

5A2pGuER2 iG/22& in a rigged Hilbert space~RHS!,4–7 called Gamow vectors. They possess
the properties that one needs to describe decaying states or resonances: These Gamow vecG

are eigenvectors of a self-adjoint Hamiltonian8 with complex eigenvalueszR5ER2 iG/2 ~energy
and width!. They evolve exponentially in time, and they have a Breit-Wigner energy distribu
They also obey an exact Golden Rule, which becomes the standard Golden Rule if one re
cG with its Born approximation. The existence of these vectors allows us to interpret reson
as autonomous physical systems~which one cannot do in standard quantum mechanics!. It also
puts quasibound states~i.e., resonances! and anti-bound~or virtual! states6 on the same footing
with the bound states~eigenvectors with real energy!, which have both a vector description and
S-matrix description. Mathematically, Gamow vectors are a generalization of Dirac kets~describ-
ing scattering states!, i.e., they are also eigenkets. But whereas Dirac kets are associated w
value of the continuous Hilbert space spectrum of the self-adjoint HamiltonianH, the Gamow kets
are not, but have complex eigenvalues.

a!Center for Particle Physics.
b!Microelectronics Research Center.
c!Current address: Department of Physics, University of Colorado at Denver, Denver, CO 80217-3364.
0022-2488/97/38(12)/6072/29/$10.00
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Using the entirely different theory of finite dimensional complex matrices, decaying s

~like theK02K̄0 system! have been phenomenologically described as eigenvectors of an effe
Hamiltonian matrix with complex eigenvalues. One usually assumes that these complex Ha
nians are diagonalizable.9 However, unlike Hermitian matrices which have real eigenvalues, n
Hermitian finite dimensional matrices cannot always be diagonalized, but can only be broug
a Jordan canonical form.10 Finite dimensional matrices consisting of non-diagonalizable Jor
blocks have been mentioned in connection with resonances numerous times in the past,11–15 and
they have been used for discussions of problems in nuclear14 and in hadron15 physics. Jordan
blocks have also been obtained in prototypes of mixing systems,13 and the appearance of so-calle
‘‘irreducible’’ non-diagonalizable blocks in the density matrix has been sought after for some
in connection with irreversible thermodynamics and the approach to equilibrium.16 That irreduc-
ible non-diagonalizable Jordan blocks may shed light on the idea of quantum chaos ha
mentioned by Bra¨ndas and Dreismann.12 Also important for the understanding of quantum cha
and of the statistical properties of nuclear spectra are accidental degeneracies and level c
which in the past had been almost exclusively restricted to stable systems driven by Her
Hamiltonians.17 Based on a finite dimensional phenomenological expression for the S-mat18

Mondragón et al.14 extended these discussions to resonance states described by a Jordan b
rank 2.

In the present paper we shall show that the Jordan blocks emerge naturally for the
elements(k)^2zRuHuc2& of a self-adjoint8 Hamiltonian H between Gamow vectorsuzR

2& (k) of
orderk51,2,. . . ,r 21. From the generalized basis vector expansion derived here it follows
theser -dimensional blocks are a truncation of the infinite dimensional exact theory in the R

The higher-order Gamow vectorsuzR
2& (k) have been derived in a recent unpublished prep

by Antoniou and Gadella.19 The derivation is a generalization of the method by which the Gam
vector ~of orderk50! was derived from the first-order poles of the S-matrix.5 Starting from an
r -th order pole of the S-matrix element at complex energyz5zR , they derivedr Gamow vectors
of higher order,uER2 iG/22& (k), k50,1,•••r 21, as functionals in a rigged Hilbert space. The
higher-order Gamow kets are also Jordan vectors belonging to the eigenvaluezR .

In the present paper we generalize the RHS theory of the Gamow vectors associate
first-order S-matrix poles, which we call Gamow vectors of order zero, to poles of ordr .
Quasistationary states in scattering experiments~i.e., states formed if the projectile is temporari
captured by the target! can be shown to appear not only as first-order poles, but as poles o
orderr 51,2, . . . ~Ref. 3!. In section II, we will start from the expression for the unitary S-mat
of a quasistationary state of finite orderr and energyER , given in Ref. 4, sect. XVIII.6, and obtain
from it r Gamow vectors of orderk50,1, . . . ,r 21 which are also Jordan vectors of degreek
11. After a review of the caser 51 in section III, we derive in section IV the generalize
eigenvector expansion, which contains the Gamow-Jordan vectors as basis vectors. Wit
basis vectors we can give a matrix representation ofH and of e2 iHt which contains the
r -dimensional Jordan blocks. In section V, we start from the pole term of ther -th order S-matrix
pole and conjecture the state operator for the hypothetical microphysical system associate
this pole. Thisr -th order Gamow state operator consists of non-diagonalizable blocks which
a purely exponential decay law. This unexpected result is in contrast to the belief3 that higher-
order poles must lead to an additional polynomial time dependence.

At the present time there is little empirical evidence for the existence of these higher-
pole ‘‘states’’ in nature. This is in marked contrast to the fact that first-order pole states des
by ordinary Gamow vectors have been identified in abundance, e.g., through their Breit-W
profile in scattering experiments and through their exponential decay law.

Now that our results have obliterated the prime empirical objection of non-exponent
against the existence of higher-order pole states, one can continue to look for them. The fir
in this direction is to use these higher-order state operators in the exact Golden Rule4 and obtain
J. Math. Phys., Vol. 38, No. 12, December 1997
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the decay probability and the decay rate, including the line widths. We plan to do this
forthcoming paper.

II. POLES OF THE S-MATRIX AND GAMOW-JORDAN VECTORS

Since the new~hypothetical! states are to be defined by ther -th order pole of the S-matrix, we
consider a scattering system. The S-matrix consists of the matrix elements20

~cout,fout!5~cout~ t !,fout~ t !!5~cout,Sf in!5~V2cout~ t !,V1f in~ t !!5~c2~ t !,f1~ t !!

5~c2,f1!5E
spectrumH

dE^c2uE2&S~E1 i0!^1Euf1&. ~2.1!

Since we are interested only in the principles here, in equation~2.1! ~and in subsequent equation!
we choose to ignore all other labels of the basis vectorsuE6& and uE& except the energy labelE,
which can take values on a two-sheeted Riemann surface. Nothing principally new will be g
if we retain the additional quantum numbersb5b2 ,b3 ,...,bN in the basis system
uE6&⇒uE,b6&5uE,b2 ,b3 ,...,bN

6 &, and in place of the integral over the energy we would j
have some additional sums~or integrals in the case that some of theb’s are continuous! over the
quantum numbers b. For instance, if one chooses the angular momentum b
uE6&⇒uE,l ,l 3 ,h6&, whereh are some additional~polarization or channel! quantum numbers~cf.
Ref. 4, sect. XX.2, XXI.4!, then~2.1! would read in detail

~c2,f1!5 (
l ,l 3 ,h

(
l 8,l 38 ,h8

E E dEdE8^c2uE8,l 8,l 38 ,h82&^2E8,l 8,l 38 ,h8uE,l ,l 3 ,h1&

3^1E,l ,l 3 ,huf1&. ~2.2!

Restricting ourselves to one initialh5hA and one finalh85hB channel~e.g.,hB5hA for elastic
scattering! we obtain

^2E8,l 8,l 38 ,hBuE,l ,l 3 ,hA
1&5^E8,l 8,l 38 ,hBuSuE,l ,l 3 ,hA&5d~E82E!d l

38 l 3
d l 8 l^hBiSihA&,

~2.3!

where

^hBiSihA&5Sl
hB~E! ~2.4!

is the l -th partial S-matrix element for scattering from the channelhA into one particular channe
hB ~e.g., the elastic channel,hB5hA!. If we consider thel -th partial wave of thehB-th channel,
then theS(E) in ~2.1! is given by this matrix elementS(E)5Sl

hB(E), e.g., if we consider a mas
point in a potential barrier, thenuE6&5uE,l ,l 3

6& is the angular momentum basis of the mass po
and, depending on the shape and height of the barrier, one or several resonances can exis
concrete examples have been studied where one can see how first-order resonance pzRi

5ERi
2 iG i /2 move as a function of the potential parameters.21 We want to consider just one pole

and in the present paper we are mainly interested in a higher-order pole atzR . Whether physical
systems exist that are described by higher order poles is not clear, but a few examples of s
order poles have been discussed in the past.3,14

With the above simplifications to one channelhB and one partial wavel , the notation in~2.1!
is standard in scattering theory. The standard scattering theory uses the same Hilbert spacH for
both the set of in-statesf1 and the set of out-‘‘states’’c2. The RHS formulation allows us to us
two RHS’s for the set$f1% defined by the initial conditions and the set$c2% defined by the final
J. Math. Phys., Vol. 38, No. 12, December 1997
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conditions. To explain this we subdivide the scattering experiment into a preparation stage a
registration stage, as explained in detail in Ref. 22. Figure 1 depicts these different stages
trating the idealized process: The in-statef1 ~precisely the state which evolves from the prepare
in-statef in outside the interaction region whereV5H2H0 is zero! is determined by the accel-
erator. The so-called out-statec2 ~or cout! is determined by the detector;ucout&^coutu is therefore
the observable which the detector registers and not a state. In the conventional formulation
describes both thef in and thecout by any vectors of the Hilbert space. In reality thef in ~or f1!
and cout ~or c2! are subject to different initial and boundary conditions and are therefore d
scribed by different sets of vectors belonging to different rigged Hilbert spaces. The RHS for
Dirac kets is denoted by

F,H,F3, ~2.5!

whereF is the space of the ‘‘well-behaved’’ vectors~Schwartz space!, and the Dirac kets~scat-

FIG. 1. The preparation-registration procedure in scattering experiment.
J. Math. Phys., Vol. 38, No. 12, December 1997
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tering states! uE6& and uE& are elements ofF3. The in-state vectorsf1(t)5eiHt /\f1 evolve
from the prepared in-statef in(t)5(V1)21f1(t), t,0, and the out-observable vectorsc2(t)
5eiHt /\c2 evolve into the measured out-statecout(t)5(V2)21c2(t), t.0.23

We denote the space of$f1% by F2 and the space of$c2% by F1 . Then,F5F21F1 ,
whereF2ùF1Þ0” . In place of the single rigged Hilbert space~2.5!, one therefore has a pair o
rigged Hilbert spaces:

f1PF2,H,F2
3 for in-states of a scattering experiment which are prepared by a

preparation apparatus, ~2.6a!

c2PF1,H,F1
3 for observables or out-‘‘states’’ which are registered by a detecto

~2.6b!

The Hilbert spaceH in ~2.5!, ~2.6a!, and ~2.6b! is the same, butF1 and F2 are two distinct
spaces of ‘‘very well-behaved’’ vectors. The spacesF1 andF2 can be defined mathematically i
terms of the spaces of their wave functions^1Euf1& and ^2Euc2&, respectively. This is the
realization of these abstract spaces by spaces of functions, in very much the same way
Hilbert spaceH is realized by the space of Lebesgue square-integrable functionsL2@0,̀ ). The
spaceF2 is realized by the space of well-behaved Hardy class functions in the lower half-p
of the second energy sheet of the S-matrixS(E), and the spaceF1 is realized by the space o
well-behaved Hardy class functions in the upper half-plane. Thus, the mathematical definit
the spacesF1 andF2 is

c2PF1 iff ^Eucout&5^2Euc2&PS ùH1
2 uR1 ~2.7!

and

f1PF2 iff ^Euf in&5^1Euf1&PS ùH2
2 uR1. ~2.8!

Here S denotes the Schwartz space andH6
2 is the space of Hardy class functions from abov

below. This mathematical property of the spacesF1 andF2 can be shown to be a consequen
of the arrow of time inherent in every scattering experiment.22

Being Hardy class from below means that the analytic continuation^c2uz2& of ^c2uE2&
5^2Euc2&, and the analytic continuation̂1zuf1& of ^1Euf1&, and therewith alsôc2uz2&
3^1zuf1&, are analytic functions in the lower half-plane which vanish fast enough on the lo
infinite semicircle.~For the precise definition, see Refs. 7 and 24!. The values of a Hardy clas
function in the lower half-plane are already determined by its values on the positive real a25

From ~2.7! and ~2.8! it follows that

^c2uE2&^1Euf1&PS ùH 2
p , p51, ~2.9!

and so are all its derivatives

~^c2uE2&^1Euf1&!~n!PS ùH 2
p ; p51, n50,1,2,..., ~2.10!

because the derivation is continuous inS .
With the above preparations one can derive the vectors that are associated with ther -th order

pole of the S-matrix for any value ofr , in complete analogy to the derivation of the vecto
associated with the first order poles,r 51.5 We shall see that there arer generalized vectors o
order k50,1,...,r 21 associated with anr -th order pole. We call these vectors the higher-or
Gamow vectors, or Gamow-Jordan vectors~since they also have the properties of Jord
J. Math. Phys., Vol. 38, No. 12, December 1997
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vectors10!. Their first derivation from ther -th order pole was given in Ref. 19. Here we give
alternative derivation and discuss their properties and applications in the generalized basis
expansion.

We consider the model in which the analytically continued S-matrixS(v) has oner -th order
pole at the positionv5zR (zR5ER2 iG/2) in the lower half-plane of the second sheet~and
consequently there is also oner -th order pole in the upper half-plane of the second sheet av
5zR* !. In this paper we will not discuss the pole atzR* . It leads tor growing higher-order Gamow
vectors and the correspondence between the growing and decaying vectors is just the sam
the caser 51. The model that we discuss here can easily be extended to any finite numb
finite-order poles in the second sheet below the positive real axis.

The unitary S-matrix of a quasistationary state associated with anr -th order pole atzR5ER

2 iG/2 is represented in the lower half-plane of the second sheet by~Ref. 4, sect. XVIII.6!

SII~v!5e2ir arctan~G/2~ER2v!!e2ig~v!5S v2ER2 iG/2

v2~ER2 iG/2! D
r

e2ig~v!5S 11
2 iG

v2~ER2 iG/2! D
r

e2ig~v!.

~2.11!

Here,dR(v)52ir arctan(G/2(ER2v)) is the rapidly varying resonant part of the phase shift, a
g~v! is the background phase shift, which is a slowly varying function of the complex energv.
We have restricted ourselves to the case that ther -th order pole is the only singularity of th
S-matrix. Below we will mention how this can be generalized to the case of a finite numb
finite-order poles.~Note that phenomenologically only a finite number of first-order poles h
been established, but there is no theoretical reason that would prevent other isolated singu
on the second sheet below the real axis.!

For our calculations we have to write~2.11! in the form of a Laurent series:

SII~v!5 (
l 52r

1`

Cl~v2zR! l5
C2r

~v2zR!r 1
C2r 11

~v2zR!r 21 1•••1C01C1~v2zR!1 . . . .

~2.12!

Therefore we expand the bracket in~2.11!:

SII~v!5S (
l 50

r S r
l D ~2 iG! l

~v2zR! l D e2ig~v!5e2ig~v!1(
l 51

r S r
l D ~2 iG! l

~v2zR! l e2ig~v!5e2idR~v!e2ig~v!.

~2.13!

We insert this into~2.1! and deform the contour of integration through the cut along the spec
of H into the second sheet, as shown in Fig. 2~a!. Then one obtains

~c2,f1!5E
C 2

dv^c2uv2&SII~v!^1vuf1&1 (
n50

r 21 R
‚

dv^c2uv2&
e2ig~v!a2n21

~v2zR!n11 ^1vuf1&

~2.14a!

5E
0

2` II
dE^c2uE2&SII~E!^1Euf1&1~c2,f1!P.T.. ~2.14b!

In here, Imv,0 on the second sheet, and

a2n21[S r
n11D ~2 iG!n11. ~2.15!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The first integral does not depend on the pole and may be called a ‘‘background term.’
contourC 2 can be deformed into the negative axis of the second sheet from 0 to2` II . We shall
set this background integral aside for the moment. For the second term on the right-hand
~2.14!, the higher-order pole term (c2,f1)P.T., we obtain using the Cauchy integral formula
r

�
@ f (v)/(v2zR)n11#dv5(2p i /n!) f (n)(z)uz5zR

, where f (n)(z)[dnf (z)/dzn:

~c2,f1!P.T.[ (
n50

r 21 R
‚

dv^c2uv2&
e2ig~v!a2n21

~v2zR!n11 ^1vuf1&

5 (
n50

r 21 S 2
2p i

n! Da2n21~^c2uv2&e2ig~v!^1vuf1&!v5zR

~n! . ~2.16!

In here,( . . . )v5zR

(n) means then-th derivative with respect tov taken at the valuev5zR . Since

the ketsuv2& are ~like the Dirac ketsuE2&! only defined up to an arbitrary factor or, if the
‘‘normalization’’ is already fixed, up to a phase factor, we absorb the background phasee2ig(v)

into the ketsuv2& and define new vectors

uvg&[uv2&e2ig~v!. ~2.17!

~Note that the phase is not trivial since, e.g.,uE2&e2id(E)5uE1&.! For the case that the slowl
varying background phaseg~v! is constant, theuvg& are up to a totally trivial constant phas
factor identical withuv2&; but in general~2.17! is a non-trivial gauge transformation. For the ca
of a first-order resonance pole,n5r 2150 in ~2.16!, the phase transformation~2.17! is also
irrelevant, because forn50 no derivatives are involved in~2.16!. Using the phase transforme
vectors ~2.17! we can proceed in the same way as if we were using theuv2& with g(v)
5constant.

Taking the derivatives, we rewrite~2.16! as

~c2,f1!P.T.5 (
n50

r 21 S 2
2p i

n!
a2n21D (

k50

n S n
kD ^c2uzR

g&~k! ~n2k!^1zRuf1&. ~2.18!

In here, we denote bŷc2uzg& (n) the n-th derivative of the analytic function̂c2uzg&, and with
^c2uzR

g& (n) its value at z5zR . Since ^c2uE2&PS ùH 2
2 , it follows that ^c2uz2& (n) and

FIG. 2. The contours in the two sheeted Riemann surface.~a! displays the contourC 2 that results from extending the

spectrum of the Hamiltonian Sp(H̄)5R1 into the lower half-plane of the second Riemann sheet and that yields the
term in Eq.~2.14! at the positionzR5(ER2 iG/2). ~b! displays the extension of the contour into the upper half-plane of
second sheet with pole atzR* , which we shall not discuss here any further; it leads to the growing higher-order Ga
vectors.
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^c2uzg& (n) are also analytic functions in the lower half-plane of the second sheet, whose bou
values on the positive real axis have the property^c2uEg& (n)PS ùH 2

2 .
Analogously, we denote by(n)^1zuf1& then-th derivative of the analytic function̂1zuf1&.

Again, (n)^1zuf1& is analytic in the lower half-plane with its boundary value on the real a
being(n)^1Euf1&PS ùH 2

2 .
The caser 51 ~and thereforen50 andk50 in ~2.18!! is the well-known case of the first

order pole term, which led to the definition of the ordinary Gamow vectors for Breit-Wig
resonance states.4–7 We shall review its properties in section III. In section IV we shall th
discuss the generalr -th order pole term and the generalized vectorsuzR

g& (k), k51,2,. . . ,r 21.
These vectors we call Gamow vectors of orderk or Gamow-Jordan vectors of degreek11, for
reasons that will become clear in section IV.

III. SUMMARY OF THE CASE r 51

For the caser 51 we obtain from~2.16! and ~2.18!

~c2,f1!P.T.5E
2` II

1`

dE^c2uE2&^1Euf1&
e2ig~E!a21

E2~ER2 iG/2!

522p ia21^c
2uzR

2&e2ig~zR!^1zRuf1&

52e2ig~zR!2pG^c2uzR
2&^1zRuf1&. ~3.1!

The integral in~3.1! is obtained from the integral in~2.16! by deforming the contour of integratio
into the real axis of the second sheet plus the infinite semicircle and omitting in~2.16! the integral
over the infinite semicircle in the lower half-plane of the second sheet, because it is zero. Eq
~3.1! is a special case of the Titchmarsh theorem. The value atz5zR of the analytic function
^c2uz2&e2ig(z) defines a continuous antilinear functionalF(c2)[^c2uzR

2&e2ig(zR)5^c2uzR
g&

over the spaceF1{c2, and this functional establishes the generalized vectoruzR
g&

5uzR
2&e2ig(zR)PF1

3 .
We can rewrite~3.1! by omitting the arbitraryc2PF1 and write it as an equation for th

functional uzR
2&PF1

3 ,

uzR
2&5

i

2p E
2` II

1`

dEuE2&
^1Euf1&

^1zRuf1&

1

E2~ER2 iG/2!
52

1

2p i E2` II

1`

dEuE2&
1

E2zR
, ~3.2!

over allc2PF1 . Or we can rewrite~3.1! as an equation for the operator fromF2 ~preparation!
to F1 ~registration! by omitting the arbitraryc2PF1 and the arbitraryf1PF2 :

uzR
2&^1zRu5

i

2p E
2` II

1`

dE
uE2&^1Eu

E2~ER2 iG/2!
. ~3.3!

The notation for the vectorsuzR
2& derives from the Cauchy theorem:^c2uzR

2& is the value of the
function ^c2uv2& at the positionv5zR . The definition~3.2! of the Gamow vector is, like~3.1!
and~3.3!, just another example of the Titchmarsh theorem. From the above derivation, one c
why we defined the Gamow vectors: They are the vectors associated with the pole term
S-matrix element. The ‘‘normalization’’ of the vectorsuzR

2& is a consequence of the ‘‘normaliza
tion’’ of the Dirac ketsuE2&, and we can define Gamow vectorscG with arbitrary normalization
and phaseN(zR):
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cG5uzR
2&N~zR!. ~3.4a!

A normalization that we shall use here is

cG[uzR
2&~2e2ig~zR!!A2pG. ~3.4b!

The constant phase factor2e2ig(zR), which we introduced in~3.4b!, is arbitrary and of no signifi-
cance here, and the ‘‘normalization’’ factorA2pG is also a matter of convention~Ref. 4, sect.
XXI.4!.

The notationuzR
2& has a further meaning: It can be shown4,7 that this vector is a generalize

eigenvector of the self-adjoint8 HamiltonianH with eigenvaluezR5ER2 iG/2:

^c2uH3cG&[^Hc2ucG&5zR^c2ucG&, ;c2PF1 , ~3.5!

whereH3 is the conjugate operator inF3 of the operatorH in F. This one is written as

H3cG5zRcG or also H3uzR
2&5zRuzR

2&, ~3.6!

or, following Dirac’s notationHuE2&5EuE2&,

HcG5zRcG or also HuzR
2&5zRuzR

2&

if the operatorH is essentially self-adjoint. If one takes the complex conjugate of~3.5!, one
obtains

^cGuHuc2&5^cGuc2&S ER1 i
G

2 D , ~3.7!

which one can write in analogy to~3.6! as

^cGuH5zR* ^cGu or ^2zRuH5zR* ^2zRu. ~3.8!

It has also been shown4,7 that in the RHS~2.6b! the time evolution is given by a semigrou
operator

U1
3~ t ![U~ t !uF1

3 [~eiHt uF1
!3[e1

2 iH 3t for t>0. ~3.9!

~A similar semigroup time evolution operatore2
2 iH 3t , defined however only fort<0, also exists

in the RHS~2.6a! and has similar properties.! And it has been shown that this time evolutio
operator~3.9! acts on the Gamow vectorscG ~or on theuzR

2&PF1
3! in the following way:

^c2ue1
2 iH 3tuzR

2&[^eiHtc2uzR
2&5e2 iERte2~G/2!t^c2uzR

2&, ~3.10!

or for the complex conjugate

^2zRueiHt uc2&5eiERte2~G/2!t^2zRuc2& for every c2PF1 and for t>0. ~3.11!

Omitting the arbitraryc2PF1 , this is also written in analogy to~3.6! as
J. Math. Phys., Vol. 38, No. 12, December 1997
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e1
2 iH 3tcG5e2 iERte2~G/2!tcG ~3.12a!

or

^cGueiHt5e1 iERte2~G/2!t^cGu for t>0. ~3.12b!

One of the most important features of the Gamow vectors is that they are basis vecto
basis system expansion. To explain this we start with the Dirac basis vector expansio~the
Nuclear Spectral Theorem of the rigged Hilbert space! which states that

f5E
0

1`

dEuE1&^1Euf1&1(
m

uEm)~Emuf! for every fPF. ~3.13!

In here, uEm) are the discrete eigenvectors of the exact HamiltonianH5K1V, describing the
bound states,HuEm)5EmuEm), and uE1& are the generalized eigenvectors~Dirac kets! of H,
describing scattering states.23 The integration extends over the continuous spectrum ofH:0<E
,`.

Instead of the basis vector expansion~3.13! which uses Dirac kets that correspond to t
~continuous! spectrum ofH, one can use a basis system that contains Gamow vectors, an
obtains the so-called ‘‘complex basis vector expansion’’ which states: For everyf1PF2 ~a
similar expansion holds also for everyc2PF1!, one obtains for the case of a finite number
first-order~resonance! poles at the positionszRi

, i 51,2,. . . ,N, the following basis system expan
sion:

f15E
0

2` II
dEuE1&^1Euf1&2(

i 51

N

uzRi

2 &2pG ie
2ig~zRi

!^1zRi
uf1&1(

m
uEm)~Emuf1!

for f1PF2 , ~3.14!

where2uzRi

2 &A2pGe2ig(zR)5cGiPF1
3 are Gamow vectors representing decaying states. The

integral in~3.14! comes from the ‘‘background term’’ of equation~2.14!. This background integra
is omitted in the phenomenological theories with a complex effective Hamiltonian.9,26 The inte-
gration in~3.14! is along the negative real axis in the second sheet or along an equivalent co
The third term will be absent if there is no bound stateuEm), which we shall assume from now on
The expansion~3.14! follows directly from~2.14! for r 51 ~if one assumes that the S-matrix h
no other singularities in the lower half-plane besides theN first-order poles at the positionszRi

,
which is a realistic assumption if one excludes higher-order poles27!.

The matrix representation ofH in the basis of~3.13! is given by

S ^cuH3uE1!

^cuH3uE2!

A
^cuH3uEN!

^cuH3uE6&

D 5S E1 0 ••• ••• 0

0 E2 0

A � A

A EN 0

0 0 ••• 0 ~E!

D S ^cuE1!

^cuE2!

A
^cuEN!

^cuE6&

D , 0<E,1`, ~3.15!

for all cPF335F. In ~3.15!, the operatorH3 is represented by a finite or an infinite diagon
submatrix~for a finite or an infinite number of bound states! and a continuously infinite diagona
submatrix, indicated by (E), whereE takes the values 0<E,1`. If we consider only the case
J. Math. Phys., Vol. 38, No. 12, December 1997
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where there are no bound states~meaning we omit the submatrix of theEm!, then the matrix
representation corresponding to the basis system expansion~3.13! is simply given by the diagona
continuously infinite real energy matrix:

~^HcuE6&!5~^cuH3uE6&!5~E!~^cuE6&!; cPF, 0<E,1`. ~3.16!

On the other hand, the complex basis vector expansion~3.14! ~again without bound states!
leads to a matrix representation of the self-adjoint semibounded HamiltonianH in the following
form:

S ^Hc2uzR1

2 &

^Hc2uzR2

2 &

A
^Hc2uzRN

2 &

^Hc2uE2&

D 5S ^c2uH3uzR1

2 &

^c2uH3uzR2

2 &

A
^c2uH3uzRN

2 &

^c2uH3uE2&

D 5S zR1 0

zR2 0

� A

zRN
0

0 0 ... 0 ~E!

D S ^c2uzR1

2 &

^c2uzR2

2 &

A
^c2uzRN

2 &

^c2uE2&

D ,

c2PF1,F, 2` II,E<0. ~3.17!

The same HamiltonianH with N resonances atzRi
, i 51,2,...,N, can thus be represented either

a continuous infinite matrix~3.16! in the basis of~3.13!, or by ~3.17! in the basis of~3.14!. The
later alternative is of more practical importance if one wants to study the resonance properti
if one can makêc2uE2& small. The basis vector expansion~3.14! is an exact representation o
f1PF2 and the matrix representation~3.17! is an exact representation of the self-adjoint Ham
tonian. In the phenomenological descriptions by complex effective Hamiltonians, one u
truncation of~3.14! and~3.17!, omitting the background integral in~3.14! and the whole continu-
ously infinite diagonal matrix (E) ~and sometimes even some of thezRi

! in ~3.17!. In this approxi-
mation one represents the Hamiltonian by theN3N dimensional diagonal complex submatrix
the upper left corner of~3.17!. For example, if one considers only two resonances atzR1

5zS ,
zR2

5zL , one then has the complex energy matrix:

S ^c2uH3uzS
2&

^c2uH3uzL
2& D 5S zS 0

0 zL
D S ^c2uzS

2&
^c2uzL

2& D . ~3.18!

This truncated matrix representation is only an approximation, corresponding to the approxim
of omitting the integral in~3.14!. How good this approximation is depends upon the particu
choice of thec2 ~or the choice of thef1!, but it can never be exact.

IV. HIGHER-ORDER POLES OF THE S-MATRIX AND GAMOW-JORDAN VECTORS

We shall now discuss the possibility of extending the definition of one generalized eige
tor uzR

2& (0) to r generalized eigenvectors of ordern50,1,2,. . . ,r 21 for an S-matrix pole of order
r .28 The equations~2.16! and ~2.18! for the pole term are rewritten~omitting on the right-hand
side the integral over the infinite semicircle in the lower half-plane of the second sheet! as
J. Math. Phys., Vol. 38, No. 12, December 1997
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i

2p
~c2,f1!P.T.5 (

n50

r 21
i

2p E
2` II

1`

dE^c2uE2&
e2ig~E!a2n21

~E2zR!n11 ^1Euf1&

5 (
n50

r 21
1

n!
a2n21

dn

dvn ~^c2uvg&^1vuf1&!v5zR

5 (
n50

r 21
1

n!
a2n21(

k50

n S n
kD ^c2uzR

g&~k! ~n2k!^1zRuf1&

5 (
n50

r 21
i

2pn! E2` II

1`

dE
~^c2uE2&e2ig~E!a2n21^

1Euf1&!~n!

E2zR
. ~4.1!

SinceG2(E)5^c2uE2&^1Euf1&PS ùH 2
1 , its (n11)-st order derivatives are also elements

S ùH 2
1 , and ~4.1! is an application of the Titchmarsh theorem in two different versions,

G2(E)5^c2uE2&^1Euf1& and forG2(E)5(^c2uE2&^1Euf1&)(n).
The value atz5zR of the analytic functionŝ c2uzg& (k) ~k-th derivatives of the analytic

function ^c2uzg&! defines again a continuous antilinear functionalFk(c2)[^c2uzR
g& (k) over the

space F1{c2. The antilinearity follows from the linearity of the differentiation (^ac1
2

1bc2
2uz&)(k)5a* ^c1

2uz& (k)1b* ^c2
2uz& (k). The continuity follows because taking thek-th de-

rivative Dk is a continuous operation with respect to the topology in the spaceS ùH 2
2

{^c2uEg& and becausêc2uzR
g& (k) is a continuous functionalF. ThusFk[Dk+F is the product of

two continuous maps and therefore also continuous. The continuous functionals^c2uzR
g& (k) define

thus the generalized vectorsuzR
g& (k)PF1

3 , k50,1,. . . ,r 21. The r -th order pole is therefore by
~4.1! associated with the set ofr generalized vectors

uzR
g&~0!,uzR

g&~1!,••• ,uzR
g&~k!,••• ,uzR

g&~n!. ~4.2!

Of the different representations of the pole term on the right-hand side of~4.1! we shall use in this
paper only the second and third line and will come back to the integral representations wh
discuss the Golden Rule for the higher-order Gamow states.

We insert the values~2.15! of the coefficientsa2n21 into ~4.1! and obtain

~c2,f1!P.T.52 (
n50

r 21 S r
n11D ~2 i !n

n!

dn

d~v/G!n ~^c2uvg&2pG^1vuf1&!v5zR

52 (
n50

r 21 S r
n11D ~2 iG!n

n!
2pG(

k50

n S n
kD ^c2uzR

g&~k! ~n2k!^1zRuf1&. ~4.3!

The generalized vectors~4.2! have all different dimensions, namely (energy)21/22k. If one uses
the dimensionless variablev/G as indicated in the first line of~4.3!, one is led to the new
normalization of the generalized vectors

uzR
gs ~k!5

1

k!
uzR

g&~k!Gk and ~ l !a1zRu5G l ~ l !^1zRu
1

l !
. ~4.4!

These vectors have for all values ofk50,1,2,. . . ,r 21 the same dimension (energy)21/2, like the
Dirac kets. We have in addition introduced the factor 1/k! so that these higher-order Gamo
vectors become Jordan vectors with the standard normalization. The quantity^c2uz2s (n)

[(Gn/n!) ^c2uz2& (n) is the value of the functionaluz2s (n)PF1
3 at c2PF1 . However, unlike
J. Math. Phys., Vol. 38, No. 12, December 1997
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^c2uz2& (n), which is then-th derivative of^c2uz2&PS ùH 1
2 , the ^c2uz2s (n) is not then-th

derivative of^c2uz2s (0); the standard Jordan vectorsuz2s (k) are connected with the ‘‘deriva
tives’’ uz2& (k) by ~4.4!. Therefore when we want to compare our results with the standard re
in the theory of finite dimensional complex~non-diagonalizable! matrices10 we need to convert
from the uz2& (k) to the uzR

2s (k).
With the convention~4.4! we obtain from~4.3!

~c2,f1!P.T.52 (
n50

r 21 S r
n11D ~2 i !n~2pG!(

k50

n

^c2uzR
gs ~k! ~n2k!a1zRuf1&

522pG (
n50

r 21 S r
n11D ~2 i !n^c2uWg ~n!uf1&, ~4.5!

where we have defined the operator

WP.T.
~n! 5 (

k50

n

uzR
2s ~k! ~n2k!a1zRu and WP.T.

g~n!5 (
k50

n

uzR
gs ~k! ~n2k!a1zRu. ~4.6!

HereWP.T.
g(n) is just an abbreviation for the right-hand side of~4.6!, and in section V we will discuss

its interpretation. WhereasWP.T.
g(n) depends also upon the background phase shifts through~2.17!,

WP.T.
(n) is just given by the S-matrix pole.

We now return to the complete S-matrix element~2.14! and insert the pole term~4.5! into
~2.14b!:

~c2,f1!5E
0

2` II
dE^c2uE2&SII~E!^1Euf1&2 (

n50

r 21 S r
n11D ~2 i !n2pG

3 (
k50

n

^c2uzR
gs ~k! ~n2k!a1zRuf1&. ~4.7!

Omitting the arbitraryc2PF1 and rearranging the sums in the second term, we obtain
complex basis vector expansion for an arbitraryf1PF2 :

f15E
0

2` II
dEuE1&^1Euf1&1 (

k50

r 21

uzR
gs ~k!S ~22pG!(

n5k

r 21 S r
n11D ~2 i !n ~n2k!a1zRuf1& D .

~4.8!

This complex basis vector expansion is the analogue of~3.14! if instead ofN S-matrix poles of
order one~and bound statesuEm)! we have one S-matrix pole of orderr . To compare~4.8! with
~3.14!, we write ~3.14! also for the case of one S-matrix pole of order one. Then using the s
phases~3.1! as in ~4.3! and omitting all bound states and all resonances but one, we obtai
~3.14!

f15E
0

2` II
dEuE1&^1Euf1&2uzR

g&2pG^1zRuf1&, ~4.9!

which agrees with what we obtain from~4.8! for r 51. Comparing~4.8! with ~4.9! or ~3.14! we see
the similarities and the differences: For a first-order pole there is one generalized vector
J. Math. Phys., Vol. 38, No. 12, December 1997
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complex basis vector expansion; for anr -th order pole there arer basis vectors in the comple
basis vector expansion. Apart from the arbitrary phase-normalization factor22pG, the coeffi-
cient of the first-order Gamow vector,uzR

g&5uzR
2&e2ig(zR), has the simple form̂1zRuf1& which

resembles the component^1Euf1& of the vectorf1 along the basis vectoruE1&. In contrast, the
coefficients of the higher-order Gamow vectorsuzR

gs (k) are given by the complicated expressio

bk5~22pG!(
n5k

r 21 S r
n11D ~2 i !n ~n2k!a1zRuf1&. ~4.10!

The difference between~4.8! and ~3.14! also foretells that the role of dyadic products lik
uEn)(Enu ~or also ofuzR

2&^2zRu!, which have been prominently used for pure states, will proba
be unimportant for states associated with higher-order poles. In section V, we will see th
higher-order Gamow states there is no meaning to being pure.

Since the general expressions~4.8! and ~4.7! are not very transparent, we want to special
them now to the case of a double pole,r 52:

f15E
0

2` II
dEuE1&^1Euf1&2uzR

gs ~0!2pG~2~0!a1zRuf1&2 i ~1!a1zRuf1&)

1uzR
gs ~1!2pG i ~0!a1zRuf1&. ~4.11a!

If as a generalization of~3.4b! we define the differently normalized Gamow vectors

cG~k!5~21!k11uzR
gs ~k!A2pG5~21!k11

Gk

k!
uzR

g&~k!A2pG, ~4.12a!

then the basis vector expansion~4.11a! for the caser 52 reads

f15E
0

2` II
dEuE1&^1Euf1&1cG~0!A2pG~22~0!^1zRuf1&1~2 i !~1!^1zRuf1&!

1cG~1!A2pG i ~0!^1zRuf1&. ~4.11b!

Note that according to~4.12a! and ~2.17! we have

cG~1!5G~ uzR
2&~1!1uzR

2&2ig8~zR!)e2ig~zR!A2pG, ~4.12b!

and only for constant background phase shiftg (n)(z)50, n51,2,. . . , cG(1) ~or cG(k)!, given by
uzR

2& (0) ~or uzR
2& (k)!. One can insert~4.12b! into ~4.11b! and expandf1 in terms of the basis

vectorsuzR
2& and uzR

2& (1), and one can repeat the same procedure for arbitraryk to expressf1 in
~4.8! in terms of

uzR
2&~0!,uzR

2&~1!,••• ,uzR
2&~k!,••• ,uzR

2&~n!. ~4.13!

Whether the phase convention in the definition~4.12! will turn out to be convenient cannot be sa
at this stage.

The basis vector expansion can be generalized in a straightforward way to the case
arbitrary finite number of poles at the positionszRi

, i 51,2, . . . ,N, of arbitrary finite orderr i in the
same way as it was done in~3.14! for r i51. This complex generalized basis vector expansio
the most important result of our irreversible quantum theory~as is the Dirac basis vector expa
J. Math. Phys., Vol. 38, No. 12, December 1997
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sion for reversible quantum mechanics!. It shows that the generalized vectors~4.2! ~functionals
over the spaceF1! are part of a basis system for thef1PF2 and form together with the ket
uE1&,2` II,E<0, a complete basis system. The vectors~4.2! span a linear subspaceMzR

,F1
3

of dimensionr :

MzR
5H jUj5 (

k50

r 21

uzR
2&~k!ck , ckPCJ ,F1

3 . ~4.14!

If there areN poles atzRi
of orderr i , then for every pole there is a linear subspaceMzRi

,F1
3 .

Since the generalization toN poles of orderr i at energyzRi
is straightforward, we continue ou

discussions for the case of one pole of orderr .
Note that by the procedure described in this section a new labelk was introduced for the basi

vectors in the expansion~4.8!, uzR
2s (k)5uzR ,b2 ,b3 , . . . ,bN

2 s (k). Usually basis vector labels ar
quantum numbers associated with eigenvalues of a complete system of commuting obse
That means that if in addition toH there are theN 21 operatorsB2 ,B3 , . . . ,BN with eigenval-
ues $b2 ,b3 , . . . ,bN %[$b%5spectrum(B2 ,B3 , . . . ,BN ), then the Dirac kets are labelled b
uE,b2&5uE,b2 ,b3 , . . . ,bN

2 & and in addition to the sum and integral in~3.13! and~4.8!, there is a
sum and/or an integral over all the values of the degeneracy quantum numbersb2 ,b3 , . . . ,bN ,
which we suppress here for the sake of simplicity. The labelk of the higher-order Gamow vector
uzR ,b2& (k), which has appeared in~4.8!, is not associated with a conventional quantum num
and is there in addition to the labelsb connected with the eigenvalues of the set of commut
observablesB2 ,B3 , . . . ,BN . The quantum numberszR ,b2 ,b3 , . . . ,bN can be observed and hav
an experimentally defined physical meaning. It is not clear that the labelk will have a similar
physical interpretation. This means that~if a higher-order S-matrix pole has at all a physic
meaning! the different vectorsuzR

2& (k) in the subspaceMzR
have no separate physical meani

~unlessk can be given a physical interpretation!.
Now that~4.8! has established the generalized vectors~4.2! or the generalized vectors~4.13!

as members of a basis system~together with theuE1&; 0>E.2` II! in F1
3 , we can obtain the

action of the operatorH by the action of the operatorH3 on these basis vectors and we can wr
the operatorH in terms of its matrix elements with these basis vectors. This can also be do
the same way for any of the operatorsf * (H), wheref (z) is any holomorphic function such tha

f * ~H !:F1→F1 is a tF1
-continuous operator ~4.15!

~e.g., f * (H)5eiHt , f (H3)5e1
2 iH 3t for the real parametert>0 only, since for t,0 f * (H)

5eiHt is not a continuous operator inF1!. For this purpose we replace the arbitraryc2PF1 in
~4.3! by c̃25 f * (H)c2, which is again an element ofF1 , becausef * (H) is a continuous
operator inF1 ~by assumption~4.15!!. Then we obtain by comparing powers ofG

(
k50

n S n
kD ^ f * ~H !c2uzR

g&~k! ~n2k!^1zRuf1&5
dn

dvn ~ f ~v!^c2uv2&e2ig~v!^1vuf1&!v5zR
,

n50,1, . . . ,r 21, ~4.16!

where we have used~2.17! and

^ f * ~H !c2uv&5^c2u f ~H3!uv2&5 f ~v!^c2uv2&, ~4.17!

which follows from ~4.15!. The function
J. Math. Phys., Vol. 38, No. 12, December 1997
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G~z![ f ~z!^c2uz2&^1zuf1&e2ig~z! ~4.18!

is an element ofS ùH 2
2 , since ^c2uz2&^1zuf1&PS ùH 2

2 and e2ig(z) as well asf (z) are
holomorphic. Therefore we can take the derivativesG(z)(n) of any order:

G~z!~n!5 (
k50

n S n
kD ~ f ~z!^c2uzg&!~k! ~n2k!^1zuf1&. ~4.19!

Inserting this into~4.16! we obtain

(
k50

n

~^c2u f ~H !uzR
g&~k!2~ f ~z!^c2uzg&!z5zR

~k! !S n
kD ~n2k!

^1zRuf1&50, n50,1, . . . ,r 21.

~4.20!

Since this has to hold for everyf1PF2 ~i.e., for everŷ 1Euf1&PS ùH 2
2 ), it follows that the

coefficients of each derivative(n2k)^1zRuf1&5(d(n2k)/dz(n2k))^1zuf1&uz5zR
must vanish. Thus,

^c2u f ~H3!uzR
g&~k!5~ f ~z!^c2uzg&!z5zR

~k! for k50,1,2,. . . ,n and all c2PF1 . ~4.21!

By a similar argument, just comparing the coefficients of (e2ig(z)^1zuf1&)z5zR

(n2k) rather than of

(^1zuf1&)z5zR

(n2k) , one can show that the same equation holds for theuzR
2& (k) ~with any nice

function for g(z)!:

^c2u f ~H3!uzR
2&~k!5~ f ~z!^c2uz2&!z5zR

~k! . ~4.22!

This permits us to calculate the action off (H3) on the generalized vectorsuzR
2& (k)PF1

3 for
every f (H3) that fulfills the condition~4.15!. The same calculation applies to the generaliz
vectorsuzR

g& (k) due to ~4.21!. Therefore we write the following equations foruzR
g& (k) though the

same holds foruzR
2& (k).

We first choosef (H3)5H3. Then we obtain

^Hc2uzR
g&~k![^c2uH3uzR

g&~k!5zR^c2uzR
g&~k!1S k

1D ^c2uzR
g&~k21!, ~4.23!

which can also be written as a functional equation overF1 as

H3uzR
g&~k!5zRuzR

g&~k!1kuzR
g&~k21!, k50,1, . . . ,r 21. ~4.24!

If we use the normalization of the basis vectors defined in~4.4!, and write~4.24! out in detail,
then we obtain

H3uzR
2s ~0!5zRuzR

2s ~0!,

H3uzR
2s ~1!5zRuzR

2s ~1!1GuzR
2s ~0!,

A

~4.25!

J. Math. Phys., Vol. 38, No. 12, December 1997
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H3uzR
2s ~k!5zRuzR

2s ~k!1GuzR
2s ~k21!,

A

H3uzR
2s ~r 21!5zRuzR

2s ~r 21!1GuzR
2s ~r 22!

~and the same foruzR
gs (k)!. This means thatH3 restricted to the subspaceMzR

is a Jordan
operator of degreer ~in the standard notation the operator (1/G)H3 is the Jordan operator o
degreer !, and the vectorsuzR

gs (k), k50,1,2,. . . ,r 21, are Jordan vectors of degreek11.10 They
fulfill the generalized eigenvector equation28

~H32zR!k11uzR
2s ~k!50. ~4.258!

We write the equations~4.25! again in the form~4.23! and arrange them as a matrix equatio
Since the basis system includes, according to~4.8!, in addition to theuzR

gs (k), k50,1,2,. . . ,
r 21, also theuE2&, 2` II,E<0, we indicate this by a continuously infinite diagonal mat
equation which we write as

„^Hc2uE2&…5„^c2uHuE2&…5„E…„^c2uE2&…, ~4.26!

where (̂ c2uE2&) indicates a continuously infinite column matrix. Then~4.25! and~4.26! together
can be written in analogy to~3.17! as

S ^Hc2uzR
2s ~0!

^Hc2uzR
2s ~1!

A
A

^Hc2uzR
2s ~r 21!

^Hc2uE2&

D 5S ^c2uH3uzR
2s ~0!

^c2uH3uzR
2s ~1!

A
A

^c2uH3uzR
2s ~r 21!

^c2uH3uE2&

D
5S zR 0 0 ... 0 0

G zR 0 ... 0

0 G zR ... 0 A

A A � � A

0 0 ... G zR 0

0 ... 0 ~E!

D S ^c2uzR
2s ~0!

^c2uzR
2s ~1!

A
A

^c2uzR
2s ~r 21!

^c2uE2&

D . ~4.27!

In this matrix representation ofH3, the upper leftr 3r submatrix associated with the comple
eigenvaluezR is a ~lower! Jordan block of degreer . We have chosen the Jordan vectors with
normalization of~4.4! in order to obtain the Jordan block in a form closest to the standard f
but with G’s in place of 1’s on the subdiagonal.

It is instructive also to write down the adjoint~i.e., transposed complex conjugate! of the
matrix equation~4.27! because it will clarify the notation and display the upper Jordan blo
Taking the transposed and complex conjugate of~4.27! we obtain
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ ~0!a2zRuHuc2&, . . . ,~r 21!a2zRuHuc2&,^2EuHuc2&)

5~ ~0!a2zRuc2&, . . . ,~r 21!a2zRuc2&,^2Euc2&)

3S zR* G 0 ••• 0 0

0 zR* G 0

0 0 zR* � A A

A A � G

0 0 0 ••• zR* 0

0 ••• 0 ~E!

D . ~4.28!

With the derivation of~4.8! and ~4.27! we have reduced the problem of finding the vectors~and
their properties! associated with the higher-order poles of the S-matrix to the spectral theo
finite dimensional~non-normal! complex matrices, which is well documented in the mathemat
literature.10 If in addition to ther -th order pole atzR there are otherr i-th order poles atzRi

, then
for each of these poles we have to add another Jordan block of degreer i to the matrix in~4.27!.

We could now refer for further results to the mathematics literature ofr 3r complex matrices,
but we can also obtain these results easily from~4.21! and ~4.22!.

Applying to the right-hand side of~4.21! the Leibniz rule we obtain

^c2u f ~H3!uzR
g&~k!5 (

n50

k S k
n D @ f ~n!~z!~^c2uzg&!~k2n!#z5zR

, ~4.29!

where f (n)(z) is the n-th derivative of the holomorphic functionf (z) with respect toz and
^c2uzg& (k2n)[(^c2uzg&)(k2n) is the (k2n)-th derivative of^c2uzg&. We now insert~4.4! on
both sides of~4.29! and obtain

k!

Gk ^c2u f ~H3!uzR
gs ~k!5 (

n50

k
k!

n! ~k2n!!
f ~n!~zR!^c2uzR

gs ~k2n!
~k2n!!

Gk2n . ~4.30!

From this we obtain

^c2u f ~H3!uzR
gs ~k!5 (

n50

k
Gn

n!
f ~n!~zR!^c2uzR

gs ~k2n!, ~4.31!

or, as a functional equation,

f ~H3!uzR
gs ~k!5 (

n50

k
Gn

n!
f ~n!~zR!uzR

gs ~k2n!. ~4.32!

~Note in this calculation that̂c2uz2s (n) is not the n-th derivative of ^c2uz2s (0), whereas
^c2uz2& (n) is then-th derivative of^c2uz2&PS ùH 1

2 . Therefore it is better to work with the
uz2& (k) than with theuz2s (k).!

In the theory of finite dimensional Jordan operators,10 the equality~4.32! is often called the
Lagrange-Sylvester formula and is written as a matrix equation~using lower Jordan blocks forH3

as in ~4.27!!:
J. Math. Phys., Vol. 38, No. 12, December 1997
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S ^c2u f ~H3!uzR
2s ~0!

^c2u f ~H3!uzR
2s ~1!

A
A

^c2u f ~H3!uzR
2s ~r 21!

D
51

f ~z! 0 ... ... 0

G

1!
f ~1!~z! f ~z! 0 ... 0

G2

2!
f ~2!~z!

G

1!
f ~1!~z! � � A

A A � f ~z! 0

G r 21

~r 21!!
f ~r 21!~z!

G r 22

~r 22!!
f ~r 22!~z! ...

G

1!
f ~1!~z! f ~z!

2
z5zR

3S ^c2uzR
2s ~0!

^c2uzR
2s ~1!

A
A

^c2uzR
2s ~r 21!

D . ~4.33!

The r 3r submatrix equation of~4.27! is a special case of this forf (H3)5H3. Equation~4.33! is
not the complete matrix representation off (H3), because the infinite diagonal submatrix due
the first term in~4.8!,

„^ f * ~H !c2uE1&…5„E…„^c2uE1&…, 2` II,E<0, ~4.34!

has been omitted. Equation~4.33! gives the restriction off (H3) to the r -dimensional subspac
MzR

,F1
3 .

The function of H3 that we are particularly interested in is the time evolution opera

f (H3)5e1
2 iH 3t . It can be defined inF1

3 only for those values of the parametert for which
eiHt :F1→F1 is a tF1

-continuous operator. This is the case fort>0, but not for t<0. ~For

^c2uE2&PS ùH 2
2 , the function^eiHtc2uE2&5e2 iEt^c2uE2& is an element ofS ùH 2

2 only
for t>0.! Thus, for t>0, we can use~4.32! with f (z)5e2 izt and f (n)(z)5(2 i t )ne2 izt, and we
obtain the following functional equation inMzR

,F1
3 :

e2 iH 3tuzR
gs ~k!5e2 izRt (

n50

k
Gn

n!
~2 i t !nuzR

gs ~k2n!. ~4.35!

In terms of the vectorsuzR
g& (k) this can be written~using ~4.4!!

e2 iH 3tuzR
g&~k!5e2 izRt (

n50

k S k
n D ~2 i t !nuzg&~k2n!, ~4.36a!

or, taking the complex conjugate~in analogy to going from~3.12a! to ~3.12b!!,

~k!^gzRueiHt5eizR* t (
n50

k S k
n D ~ i t !n ~k2n!^gzRu. ~4.36b!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



t

trix
s not
ey are

-
e
on

6091Bohm et al.: Gamow-Jordan vectors

                    
The vectorsuzR
g& (k) in the above equations can be replaced by the vectorsuzR

2& (k).
It is important to note that the time evolutione2 iH 3t transforms between differentuzR

2s (k),
k51,2,...,n, that belong to the same pole of orderr at z5zR , but the time evolution does no
transform out ofMzR

. On the basis vectorsuE1& of the first term in~4.8! the time evolution is
diagonal:

e2 iH 3tuE1&5e2 iEtuE1&. ~4.37!

The equations~4.35! and~4.36! can be written as a matrix equation on the subspaceMzR
,F1 :

S ^c2ue2 iH 3tuzR
2s ~0!

^c2ue2 iH 3tuzR
2s ~1!

A
A

^c2ue2 iH 3tuzR
2s ~r 21!

D
51

e2 izRt 0 ... ... 0

~2 i tG!

1!
e2 izRt e2 izRt 0 ... 0

~2 i tG!2

2!
e2 izRt

~2 i tG!

1!
e2 izRt

� � A

A A � e2 izRt 0

~2 i tG!r 21

~r 21!!
e2 izRt

~2 i tG!r 22

~r 22!!
e2 izRt ...

~2 i tG!

1!
e2 izRt e2 izRt

2
3S ^c2uzR

2s ~0!

^c2uzR
2s ~1!

A
A

^c2uzR
2s ~r 21!

D . ~4.38!

As an example let us consider the special case of a double pole,r 52, k50,1. The formula~4.35!
for the zeroth-order Gamow vector is then

e2 iH 3tuzR
2s ~0!5e2 iERte2~GR/2!tuzR

2s ~0!, t>0, ~4.39!

and for the first-order Gamow vector it is

e2 iH 3tuzR
2s ~1!5e2 izRt~ uzR

2s ~1!1~2 i tG!uzR
2s ~0!!. ~4.40!

It has been known for a long time3 that a double pole and in general all higher-order S-ma
poles lead to a polynomial time dependence in addition to the exponential. However, it wa
clear what the vectors were that have such a time evolution. Here we have seen that th
Jordan vectors of degreer or less, and that they are Gamow vectors,uzR

gs (k)PF1
3 . We have also

shown that the time evolution operator is not diagonal in the basis~4.2! but transforms a Gamow
Jordan vector of degree (k11) into a superposition~4.35! of Gamow-Jordan vectors of the sam
and all lower degrees with a time dependencetn in addition to the exponential that depends up
the degrees of the resulting Gamow-Jordan vectors.
J. Math. Phys., Vol. 38, No. 12, December 1997
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V. POSSIBLE PHYSICAL INTERPRETATIONS OF THE GAMOW-JORDAN VECTORS

In the previous section we defined the higher-order Gamow vectorsuzR
2& (k)PF1

3 from ther -th
order pole term of a unitary S-matrix. We showed that they are the discrete members of a co
basis system for the vectorsf1PF2 , ~4.8!, and we derived their mathematical properties:
~4.24! and~4.25!, we showed that they are Jordan vectors of degreek11, and in~4.33! and~4.38!,
we obtained the Lagrange-Sylvester formula and the time evolution.

The mathematical procedure that we used for ther -th order pole term is a straightforwar
generalization of the definitions and derivations that had been used for an ordinary, zeroth
Gamow vector and first-order poles of the S-matrix.5

Gamow states of zeroth order with their empirically well-established properties~exponential
time evolution, Breit-Wigner energy distribution! have been abundantly observed in nature
resonances and decaying states. Theoretically, there is no reason why the other quasist
states~i.e., states that also cause large time delay in a scattering process~Ref. 4, sect. XVIII.6! and
are associated with integersr .1 in ~2.11!! should not exist. However, no such quasistation
states have so far been established empirically. One argument against their existence was
polynomial time dependence, which was always vaguely associated with higher-order pole3 has
not been observed for quasistationary states.

The question that we want to discuss in this section is, whether there is an analogous p
interpretation for the higher-order Gamow vectors as for the ordinary Gamow vectors, nam
states which decay~for t.0! or grow ~for t,0! in one preferred direction of time~‘‘arrow of
time’’ ! and obey the exponential law. Since we have now well-defined vectors associated w
r -th order pole, we can attempt to define physical states which have well-defined propertie
can be tested experimentally.

In this section we are dealing with physical questions about hypothetical objects asso
with ther -th order pole. We therefore have first to conjecture the higher-order Gamow state b
we can derive their properties. We start with the known cases.

In von Neumann’s definition of a pure stationary state one uses a dyadic productW5u f &^ f u of
energy eigenvectorsu f & in Hilbert space. In analogy to this, microphysical Gamow states c
nected with first-order poles have been defined as dyadic products of zeroth-order G
vectors:4,29

WG5ucG&^cGu5uzR
2&^2zRu[W~0!. ~5.1!

~Since for the generalized vectorsucG&5A2pGuzR
2& or uzR

2& we cannot talk of normalization in
the ordinary sense, it is not important at this stage whether or not to use the ‘‘normaliza
factor of 2pG in WG.!

The time evolution of the Gamow state~5.1! is then given according to~3.12! by

WG~ t ![e2 iH 3tucG&^cGueiHt5e2 izRtucG&^cGueizR* t5e2 i ~ER2 i ~G/2!!tucG&^cGuei ~ER1 i ~G/2!!t

5e2GtWG~0!, t>0. ~5.2!

Mathematically, the equation~5.2! is to be understood as a functional equation like~3.10! and
~3.11!:

^c1
2uWG~ t !uc2

2&5e2Gt^c1
2uWGuc2

2& ~5.3a!

or

^c2uWG~ t !uc2&5e2Gt^c2uWGuc2& ~5.3b!

for all c2, c1
2 , c2

2PF1 and t>0.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The mathematical form~5.3! of the time evolution ofWG shows how important it is in our
RHS formulation to know what question one wants to ask about a Gamow state when one
the hypothesis~5.1!. The vectorsc2PF1 represent observables defined by the detector~regis-
tration apparatus!. The operatorWG represents the microsystems that affects the detector. Th
fore the quantitŷ c2uWGuc2& is the answer to the question: What is the probability that
microsystems affects the detector?

If the detector is triggered at a later timet, i.e., when the observable has been time transla

uc2&^c2u→eiHt uc2&^c2ue2 iHt5uc2~ t !&^c2~ t !u, ~5.4!

then the same question fort>0 has the answer: The probability that the microsystems affects
detector att.0 is

^c2~ t !uWGuc2~ t !&5^e2 iHtc2uWGueiHtc2&5^c2ue2 iH 3tWGeiHt uc2&5e2Gt^c2uWGuc2&.
~5.5!

This means that~5.5! is the probability to observe the decaying microstate at timet relative to the
probability ^c2uWGuc2& at t50 ~which one can ‘‘normalize’’ to unity by choosing an approp
ate factor on the right-hand side of~5.1!!.

The question that one asks in the scattering experiment of Fig. 1 is different. There th
term ~P.T.! of ~3.1! describes how the microsystems propagates the effect which the prepa
apparatus~accelerator, described by the statef1! causes on the registration apparatus~detector,
described by the observablec2!.

In conventional orthodox quantum theory one only deals with ensembles and with obser
measured on ensembles. Their mathematical representations, e.g.,uf&^fu for the state of the en-
semble anduc&^cu for the observable, are from the same spaceF, i.e., f, cPF. ~And if one is
mathematically precise, then one chooses forF the Hilbert space,F5H.! On this level, one
cannot talk of single microsystems, and there are no mathematical objects in orthodox qu
mechanics to describe a single microsystems. Still, it is intuitively attractive to imagine tha
effect by which the preparation apparatus acts on the registration apparatus is carried by
physical entities, the microphysical systems.30

These are not states one can prepare with a macroscopic apparatus, but something
experimentalist imagines that he has seen when he observes a track in the cloud or
chamber, and this is something that he imagines has arrived at the chamber when he hears
This is also what he imagines has traveled from a target, where at the timet50 the decaying state
has been produced, to the decay vertex, where at the timet5m•d/p ~t being the time in the
restframe of a relativistic particle of massm and momentum component along the beam linep!
this microphysical particle has decayed after traveling the distanced in the labframe from the
target to the decay vertex. To each decay vertex one associates a microphysical expon
decaying state and measures the decay rateR(t)5R(d,p) as a function of the~proper! time t by
counting the number of decay vertices that are the distanced apart from the target. In this way on
measuresR(t) as the counting rate of a large number of microphysical decaying states.

According to the physical interpretation of the RHS formulation, ‘‘real’’ physical entities
connected with an experimental apparatus, like the statesf defined by the preparation apparatus
the propertyc defined by the registration apparatus, and are assumed to be elements ofF, but
states and observables are distinct. In particular, states and observables of a scattering exp
are distinct and described byF2 of ~2.6a! and F1 of ~2.6b!. However, mathematical entitie
describing microphysical systems are not assumed to be inF. The energy distribution for a
microphysical system does not have to be a well-behaved~continuous, smooth, rapidly decreasin!
function of the physical values of the energyE, like the functionŝ Euc& describing the energy
resolution of the detector, or the functions^Euf& describing the energy distribution of the beam
Hence, for the hypothetical entities connected with microphysical systems, like Dirac’s ‘‘sc
J. Math. Phys., Vol. 38, No. 12, December 1997
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ing states’’up& or Gamow’s ‘‘decaying states’’uE2 iG/2&, the RHS formulation uses elements
F3, F1

3 , andF2
3 .22,29The time evolution of the ‘‘state’’ vectors for the decaying microphysi

systems, e.g.,~3.12! or ~5.2!, can be obtained from the well-established time evolution of
quantum mechanical observable~5.4! using the definition of the conjugate operator as in~3.10!.

Because of the difference betweenc2PF1 for the observables andf1PF2 for the pre-
pared states one needs a different mathematical description for the same microphysica
depending upon the question one is asking. If one asks the question with what probabil
microphysical state affects the detectorc2(t), then the microphysical state is described by~5.1!.
In a resonance scattering experiment of Fig. 1 one asks another question: What is the pro
to observec2(t) in a microphysical resonance state of a scattering experiment with the pre
in-statef1?

In distinction to a decay experiment, where one just asks for the probability ofc2PF1 , in
the resonance scattering experiment one asks for the probability that relatesc2PF1 to f1

PF2 via the microphysical resonance state. Therefore the mathematical quantity that de
the microphysical resonance state in a scattering experiment cannot be given byuzR

2&^2zRu of
~5.1!, but must be given by something likeuzR

2&^1zRu.
The probability to observec2 in the prepared statef1, independently of how the effect o

f1 is carried to the detectorc2, is given by the S-matrix element~2.14!, u(c2,f1)u2. The
probability amplitude that this effect is carried by the microphysical resonance state is then
by the pole term (c2,f1)P.T., Eq. ~2.18!.

In analogy to~5.5! one can now also compare these probabilities at different times. For
purpose one translates the observablec2 in the pole term~3.1! in time by an amountt>0,

c2→c2~ t !5eiHtc2; t>0 ~5.6!

~which corresponds to turning on the detector at a timet>0 later than forc2!. One obtains

~c2~ t !,f1!P.T.522pG^eiHtc2uzR
2&^1zRuf1&522pG^c2ue2 iH 3tuzR

2&^1zRuf1&

522pGe2 izRt^c2uzR
2&^1zRuf1&

5e2 iERte2Gt/2~c2,f1!P.T.. ~5.7!

This means that the time dependent probability, due to the first-order pole term, to measu
observablec2(t) in the statef1 is given by the exponential law:

u~eiHtc2,f1!P.T.u25e2Gtu~c2,f1!P.T.u2. ~5.8!

This is as one would expect it if the action of the preparation apparatus on the regist
apparatus is carried by an exponentially decaying microsystems~resonance! described by a
Gamow vector.

Therewith we have seen that there are two ways in which a resonance can appear in
ments and therefore there should be two forms of representing the decaying Gamow state~for the
caser 51 so far!:31

by uzR
2&^1zRu in a scattering experiment, ~5.9a!

and by uzR
2&^2zRu in a decay experiment. ~5.9b!

The first representation is the one used in the S-matrix when one calculates the cross sect
second representation is the one used when one calculates the Golden Rule~decay rate!. For the
case of an ordinary decaying Gamow state,r 51, given by the state operator~5.9b!, the Golden
Rule has been derived in the past, e.g., section 6 of Ref. 29 and references thereof. F
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higher-order Gamow state,r .1, we shall suggest below a state operatorW which is a generali-
zation of ~5.9b!. In a forthcoming publication we shall obtain the Golden Rule for this n
reducible higher-order Gamow state and compare it with the decay rate of two interfering
order resonance states.32

In contrast to von Neumann’s formulation where a given state~representing an ensemb
prepared by the preparation apparatus! is always described by one and the same density oper
W, the representation of the microphysical state in the RHS formulation depends upon the
tion one asks, i.e., upon the kind of experiment which one wants to perform. That a theory
microsystems must include the methods of the experiments has previously been emphas
Ref. 30.

After this preparation we are now ready to conjecture the mathematical representatio
higher-order Gamow state~a quasistationary state withr .1!.

In analogy to the correspondence between~5.9a! and~5.9b! we conjecture that for the case o
generalr we have also two distinct representations of the Gamow state. The one for reso
scattering is already determined as in the case forr 51 by the~negative of the! pole term~4.5!,
and is therefore given by

WP.T.522pG (
n50

r 21 S r
n11D ~2 i !n

Gn

n! (
k50

n S n
kD uzR

2&~k! ~n2k!^1zRu

522pG (
n50

r 21 S r
n11D ~2 i !nWP.T.

~n! , ~5.10a!

where we have used the operator defined in~4.6!:

WP.T.
~n! 5

Gn

n! (
k50

n S n
kD uzR

2&~k! ~n2k!^1zRu5 (
k50

n

uzR
2s ~k! ~n2k!a1zRu. ~5.11a!

In analogy to~5.9b! we would then conjecture that ther -th order microphysical decaying sta
is described by the state operator

W52pG (
n50

r 21 S r
n11D ~2 i !n

Gn

n! (
k50

n S n
kD uzR

2&~k! ~n2k!^2zRu52pG (
n50

r 21 S r
n11D ~2 i !nW~n!

~5.10b!

~up to a normalization factor which will have to be determined by normalizing the overall p
ability to 1!. Since~5.9b! is postulated to be the zeroth-order Gamow state representing a
nance,~5.10b! is conjectured to be ther -th order Gamow state.33

Whether the microphysical state of the~hypothetical! quasistationary microphysical system
always represented by the mathematical object~5.10b! or whether also each individual

W~n!5
Gn

n! (
k50

n S n
kD uzR

2&~k! ~n2k!^2zRu5 (
k50

n

uzR
2s ~k! ~n2k!a2zRu, n50,1, . . . ,r 21,

~5.11b!

has a separate physical meaning, is not clear. So far it is not even certain that higher-orde
of the S-matrix describe anything in nature~though there are no theoretical reasons that excl
these isolated singularities of the S-matrix.! But if these hypothetical objects do exist, ther -th
order pole is associated with a mixed state~5.10b! whose irreducible components are given
~5.11b!, e.g., for the caser 52 ~second-order pole atzR! we have
J. Math. Phys., Vol. 38, No. 12, December 1997
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W~0!5uzR
2&~0! ~0!^2zRu ~5.12!

and

W~1!5G~ uzR
2&~0! ~1!^2zRu1uzR

2&~1! ~0!^2zRu! ~5.13!

and

W52pG~ uzR
2&~0! ~0!^2zRu22iG~ uzR

2&~0! ~1!^2zRu1uzR
2&~1! ~0!^2zRu!!. ~5.14!

This means that the conjectural physical state associated with ther -th order pole is a mixed stat
W, all of whose componentsW(n), except for the zeroth componentW(0), cannot be reduced
further into ‘‘pure’’ states given by dyadic products likeuzR

2& (k) (k)^2zRu. This is quite consisten
with our earlier remark that the labelk is not a quantum number connected with an observa
~like the suppressed labelsb2 , . . . ,bn!. Therefore a ‘‘pure state’’ with a definite value ofk, like
uzR

2& (k) (k)^2zRu, k>1, does not make sense physically. A physical interpretation could onl
given to the wholer -dimensional spaceMzR

, ~4.14!. The individualW(n), n50,1,2,. . . ,r 21, act

in the subspacesMzR

(n),MzR
which are spanned by Gamow vectors of order 0,1,. . . ,n ~Jordan

vectors of degreen11, i.e., (H32zR)n11MzR

(n)50!. There the question is whether there could

a physical meaning to eachW(n) separately, or whether only the particular mixtureW given by
~5.10b! can occur physically.

Though the quantitiesuzR
2& (k) (k)^2zRu will have no physical meaning, even if higher-ord

poles exist, they have been considered19 and their time evolution is calculated in a straightforwa
way from ~4.35!:

e2 iH 3tuzR
2s ~k! ~k!a2zRueiHt5e2Gt(

l 50

k

(
m50

k
1

l !

1

m!
~2 i tG! l~ i tG!muzR

2s ~k2 l ! ~k2m!a2zRu.

~5.15!

This time dependence~as well as the time dependence in~4.35!! is reminiscent of eq.~4.9! in the
reference of M. L. Goldberger and K. M. Watson.3

It shows the additional polynomial time dependence, which has always been conside
obstacle to the use of higher-order poles for quasistationary states. A polynomial time depe
of this magnitude~of the order oft51/G! should have shown up in many experiments.

We now derive the time evolution of the microphysical state operator defined in~5.11b! using
the time evolution obtained for the Gamow-Jordan vector in~4.36!. It will turn out that this
operator, whose form was conjectured in analogy to the pole term~5.11a!, will have a purely
exponential time evolution. This was quite unexpected.

Inserting~4.36a! and ~4.36b! into

W~n!~ t !5e2 iH 3tW~n!eiHt5
Gn

n! (
k50

n S n
kDe2 iH 3tuzR

2&~k! ~n2k!^2zRueiHt ~5.16!

we calculate
J. Math. Phys., Vol. 38, No. 12, December 1997
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W~n!~ t !5e2 izRteizR* t
Gn

n! (
k50

n

(
l 50

k

(
m50

n2k S n
kD S k

l D S n2k
m D ~2 i t !k2 l~ i t !n2k2muzR

2&~ l ! ~m!^2zRu

5e2Gt
Gn

n! (
m50

n

(
l 50

n2m

(
k5 l

n2m S n
kD S k

l D S n2k
m D ~2 i t !k2 l~ i t !n2k2muzR

2&~ l ! ~m!^2zRu

5e2Gt
Gn

n! (
m50

n

(
l 50

n2m

(
k5 l

n2m S n
mD S n2m

l D S n2m2 l
k2 l D ~2 i t !k2 l~ i t !n2k2muzR

2&~ l ! ~m!^2zRu

5e2Gt
Gn

n! (
m50

n S n
mD (

l 50

n2m S n2m
l D uzR

2&~ l ! ~m!^2zRu (
k5 l

n2m S n2m2 l
k2 l D ~2 i t !k2 l~ i t !n2k2m.

~5.17!

In going from the second to the third line, the order of summation has been changed, by k
the same terms, as displayed in Fig. 3 for the casen53. In going from the third to the fourth line
one uses the identity

S n
kD S k

l D S n2k
m D5S n

mD S n2m
l D S n2m2 l

k2 l D , ~5.18!

where (n
k)[n!/k!(n2k)! are binomial coefficients. Since the indices labeling the Gamow-Jo

vectors do not depend uponk, the sum overk may be performed using the binomial formula:

(
k5 l

n2m S n2m2 l
k2 l D ~2 i t !k2 l~ i t !n2k2m5~ i t 2 i t !n2m2 l5 H1 for l 5n2m

0 for lÞn2mJ 5d l ,n2m .

~5.19!

FIG. 3. For the casen53, the summation terms labeled by the parametersk, l , andm are displayed as dots in the diagra
to show that the summations of lines 2 and 3 of~5.17! both contain the same terms.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



r
the
dic
n.

me

onen-

state

ts on

s

ate of a

ave a
s the
in the
omous
s.
gests a
gher-

6098 Bohm et al.: Gamow-Jordan vectors

                    
Inserting~5.19! into the fourth line of~5.17! and performing the sum overl then gives

W~n!~ t !5e2Gt
Gn

n! (
m50

n S n
mD uzR

2&~n2m! ~m!^2zRu5e2GtW~n!~0!, t>0. ~5.20!

This means that the complicated non-reducible~i.e., ‘‘mixed’’ ! microphysical state operato
W(n) defined by ~5.11b! has a simple purely exponential semigroup time evolution, like
zeroth-order Gamow state~5.9b!. This operator is probably the only operator formed by the dya
productsuzR

2& (m) ( l )^2zRu with m,l 50,1,...,n, which has a purely exponential time evolutio
ThusW(n) of eq. ~5.11b! is distinguished from all other operators inMzR

(n) .

The microphysical decaying state operator associated with ther -th order pole of the unitary
S-matrix is according to its definition~5.10b! a sum of theW(n). Because of the simple form
~5.20! ~independence of the time evolution ofn! this sum has again a simple and exponential ti
evolution

W~ t ![e2 iH 3tWeiHt5e2GtW, t>0. ~5.21!

Thus we have seen that the state operator which we conjecture from ther -th order pole term
describes a non-reducible ‘‘mixed’’ microphysical decaying state which obeys an exact exp
tial decay law.

We can return to the question that we started with when we set out to conjecture the
operator for the~hypothetical! microphysical state associated with ther -th order S-matrix pole:
What is the probability to register at the timet the decay productsuc2&^c2u ~or in generalL
[( i uc i

2&^c i
2u) if at t50 the microphysical state was given byW of ~5.10b!? From~5.21! we

obtain

PL~ t !5Tr~LW~ t !!5e2GtTr~LW!5e2GtPL~0!, ~5.22!

or, in the special case ofL5uc2&^c2u,

Pc2~ t !5^c2uW~ t !uc2&5e2Gt^c2uWuc2&. ~5.23!

This is exactly the same result as the result~5.3b! for the microphysical stateWG associated with
the first-order pole of the S-matrix and the result which is in agreement with the experimen
the decay of quasistationary states. It is, however, important to note that in our derivation of~5.20!
and~5.23! we proceeded in a very specific order. We first derived~5.20! from ~4.36a! and~4.36b!
and then calculated the matrix elements withc2 and not vice versa in order to avoid problem
with the analyticity.

VI. CONCLUSION

Vectors that possess all the properties that one needs in order to describe a pure st
resonance have been known for two decades. These Gamow vectorscG are eigenvectors of a
self-adjoint Hamiltonian with complex eigenvaluesER2 iG/2 ~energy and width!, they are asso-
ciated with resonance poles of the S-matrix, they evolve exponentially in time, and they h
Breit-Wigner energy distribution. They also obey an exact Golden Rule, which become
standard Golden Rule in the limit of the Born approximation. The existence of these vectors
rigged Hilbert space allows us to interpret exponentially decaying resonances as auton
microphysical systems, which one cannot do in standard Hilbert space quantum mechanic

The mathematical procedure by which these Gamow vectors had been introduced sug
straightforward generalization to higher-order Gamow vectors which are derived from hi
order S-matrix poles. We have shown in this paper that ther -th order pole of a unitary S-matrix
J. Math. Phys., Vol. 38, No. 12, December 1997
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leads tor generalized eigenvectors of orderk50,1,...,r 21. Thesek-th order Gamow vectors ar
Jordan vectors of degree (k11) with complex eigenvalueER2 iG/2. They are basis elements o
a generalized eigenvector expansion, but their time evolution has in addition to the expon
time dependence also a polynomial time dependence, which is excluded experimentally. Ho
the generalized eigenvector expansion suggests the definition of a state operator for microp
decaying states of higher order. These state operators cannot be expressed as dyadic pro
generalized vectors, but these state operators have a purely exponential time evolution.

There has been a lot of interest in the Jordan blocks for various applications~see, e.g., Refs
11–16, and 19!. Here it has been shown that Jordan blocks arise naturally from higher-
S-matrix poles and represent a self-adjoint Hamiltonian8 by a complex matrix in a finite dimen
sional subspace contained in the rigged Hilbert space. Although higher-order S-matrix pol
not excluded theoretically, there has been so far very little experimental evidence for their
tence, because they were always believed to have polynomial time dependence. Since w
shown here that their non-reducible state operator evolves purely exponential in time th
reason to hope that these mathematically beautiful objects will have some application in ph
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Integrability of the quantum adiabatic evolution
and geometric phases
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We show that the cyclic adiabatic evolution of a quantum system is completely
integrable as a classical Hamiltonian system. In this context the Berry phases arise
naturally as cohomology of the invariant tori. ©1997 American Institute of Phys-
ics. @S0022-2488~97!02812-0#

I. INTRODUCTION

In order to present the physical context of our work, we briefly recall the framework o
adiabatic quantum evolution at an intuitive, non-rigorous, level. Let us consider a quantum s
with a time dependent Hamiltonian

H~ t !5 (
k51

`

Ek~ t !Pk~ t !

with a pure point spectrum andtP@0,T#, whereT.0 represents the time duration of the evol
tion. We assume that the eigenprojectionsPk(t) and the eigenvaluesEk(t) areT-periodic func-
tions satisfying the no-crossing condition

Ek~ t !ÞEk8~ t ! ;tP@0,T#,kÞk8.

The adiabatic theorem in quantum mechanics1 states that, in theadiabatic limit T→`, we can
approximate the physical evolution determined byH(t) with the one determined by theadiabatic
Hamiltonian

HA~ t !5H~ t !1K~ t !,

where

K~ t !5
i

2(
k51

`

@Pk8~ t !,Pk~ t !#

is the self-adjoint operator introduced by Kato. The time evolutionUA(t) determined byHA(t) is
completely characterised by the following twoadiabaticproperties:

Pk~ t !UA~ t !5UA~ t !Pk~0!, ~1!

~f,HA~ t !f!5Ek~ t !ifi2 fP range~Pk~ t !!. ~2!

The advantage of the adiabatic Hamiltonian is that in most cases one can calculate ex
UA(t) that has a particularly simple expression. In fact, if the projectionsPk(t) are finite dimen-
sional, one can compute the unitary evolutorV(t), determined by theHamiltonian K(t), by
solving a finite dimensional linear problem.2 Moreover, defining theBerry phase operator Sby
eiTS5V(T), one can show that there is a Hilbert basis$ek j% such that
0022-2488/97/38(12)/6101/18/$10.00
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Pk~0!ek j5ek j ,

Sek j5bk jek j ,

wherek51, . . . ,̀ and j 51, . . . ,dimPk(0)5mk . Letting, for eachtPR, the basis

ek j~ t !5V~ t !ek j ,

one shows that

UA~ t !5 (
k51

`

e2 i*0
t Ek~t!dt(

j 51

mk

~ek j ,• !ek j~ t !.

Hence, fort5T,

UA~T!5 (
k51

`

e2 i*0
TEk~t!dt(

j 51

mk

eiTbk j~ek j ,• !ek j ,

where (2*0
TEk(t)dt) is the usualdynamical phaseand (Tbk j) is the geometric phase, first

discovered by Berry in his seminal paper.3

In this paper we deal with the problem of clarifying thegeometricrole of the phasesbk j , that
is, of the operatorS. In order to do this we can ignore the physical HamiltonianH(t) ~giving rise
only to the dynamical phases! in the adiabatic HamiltonianHA(t). In other words, we can con
sider a fictitious quantum system with thegeometricHamiltonianK(t) and study the correspond
ing dynamical evolutionV(t).

From a mathematical point of view, the geometric evolutionV(t) can be characterised i
terms of the following two conditions:

Pk~ t !V~ t !5V~ t !Pk~0!, ~3!

S V~ t !f,
d

dt
V~ t !f D50 fP range~Pk~0!!. ~4!

The first property refers to the fact thatV(t) is adiabatic, as well asUA(t), see Eq.~1!, and the
second one is equivalent to the assumption that the dynamical phases are zero, see Eq.~2!.

The first interpretation of the geometric phases has been found by Simon in his paper4 where
they are seen as holonomy of a connection and Eq.~4! is exactly the condition of parallel transpo
for the vectorV(t)f in the eigensubspacePk(t). We propose a different point of view and
different interpretation. We associate to the quantum system an equivalent classical Hami
one and we show that the classical evolution is completely integrable~in the spirit of the Arnold-
Liouville theorem!. In this way we obtain an integral representation of the Berry phase operaS
in terms of the periods of a closed form on the invariant tori. The idea of connecting the geom
phases to symplectic geometry can be traced back to Ref. 5.

In the finite dimensional case the action variables associated to the classical Hamil
system could also be expressed in terms of the ‘‘geometric angles’’ introduced by Refs. 6 an
a different context. This fact suggests the possibility of a further investigation of the rel
between the approaches of the present paper and of Ref. 7.

The paper is organised in the following way. In Sec. II we state precisely the mathem
framework of the paper and we define the classical Hamiltonian system associated to the q
adiabatic evolution. In particular, we suppose that the classical flow, determined by the qu
HamiltonianK(t), is sufficiently smooth; sinceK(t) depends only on the family (Pk(t))k>1 we
express all the hypotheses in terms of the family (Pk(t))k>1 . Moreover, to simplify the notation
J. Math. Phys., Vol. 38, No. 12, December 1997
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we assumeT52p. In Sec. III we propose a new definition of complete integrability for a class
Hamiltonian system, since the usual notion in terms of action-angle variables does not work
present case, having our system an infinite number of degrees of freedom. In the final sec
prove that the classical system defined byK(t) is completely integrable and we obtain the integ
representation ofS. This result is the central core of the paper. In the Appendix we collect
proofs of the various statements.

II. THE CLASSICAL HAMILTONIAN SYSTEM

Let H be a complex separable Hilbert space with the scalar product denoted by (•,•). Let

R{t°~Pk~ t !!k51
`

be a family of 2p-periodic projection valued measures~PVM! on H, that is, for alltPR,

Pk~ t !Pn~ t !50 kÞn k,n>1

s-(
k

Pk~ t !5I ,

Pk~ t12p!5Pk~ t ! k>1,

where we denote with s- the convergence in the strong operator topology. In the sequel w
to this topology onL(H) as SOT. The SOT-derivative of a mapR{t°A(t)PL(H) will be
denoted byA8(t) while the derivative of mappingsR{t°f(t)PH will be denoted by
df/dt (t).

We say that an SOT-differentiable map

R{t°V~ t !PL~H!

is a geometric evolution~with respect to the family (Pk(t))k51
` ) if, for all tPR, V(t) is unitary,

V(0)50 and

Pk~ t !V~ t !5V~ t !Pk~0!, ~5!

~V~ t !f,V8~ t !f!50 fP range~Pk~0!!. ~6!

The following assumptions on the familyt°(Pk(t))k>1 are equivalent to the existence of a
SOT-C2-geometric evolution, that is enough to assure that the Hamiltonian function an
classical flow will be C1.

H1: For all k>1 the mapt°Pk(t) is SOT-C2.

H2: For all tPR the series
i
2

s-(k@Pk8(t),Pk(t)# converges to a~self-adjoint, bounded! opera-

tor K(t) and the mapt°K(t) is SOT-continuous.

H3: For all tPR the series
i
2

s-(k@Pk9(t),Pk(t)# converges to a~self-adjoint, bounded! opera-

tor K1(t) and the mapt°K1(t) is SOT-continuous.
We have
Proposition 1: If the conditions H1, H2, and H3 hold, then there is a unique SOT-C2 geo-

metric evolution

R{t°V~ t !PL~H!

with respect to the family (Pk(t))k51
` .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Moreover, the following properties hold:
1. t°V(t) is the unique solution of the Cauchy problem

H iV8~ t !5K~ t !V~ t !

V~0!5I ;
~7!

2. V(t12p)5V(t)V(2p) ;tPR;
3. the mapt°K(t) is SOT-C1 with derivativeK1(t);
4. the Hilbert dimension of the range ofPk(t) does not depend ont and will be denoted bymk

~possiblymk5`).
On the other hand:
Proposition 2:Suppose thatR{t°V̂(t)PL(H) is an SOT-C2 geometric evolution, then

H1, H2 and H3 hold andV̂(t) is the geometric evolutionV(t) defined by Proposition 1.
From now on we assume that H1, H2 and H3 hold and we consider the quantum evo

given by the Schro¨dinger equation

i
d

dt
c~ t !5K~ t !c~ t !.

Following Chernoff and Marsden,8 we can define an Hamiltonianfunction on H such that the
corresponding Hamilton equations are the Schro¨dinger equation for the quantum evolution. How
ever, in this way the Hamiltonian function is time-dependent. With a standard trick we pas
time-independent classical Hamiltonian system; to this aim we enlarge the phase space intro
two fictitious degrees of freedom corresponding to energy and time. In order to discus
complete integrability of the system we force the time coordinate to be 2p-periodic; this is
possible sinceK(t) is periodic.

We recall thatH is in a natural way a real symplectic manifold with respect to the differen
structure ofH as a real Banach space and to the symplectic 2-form

vf~c1 ,c2!522 Im~c1 ,c2! f,c1 ,c2PH.

Moreover,v is exact sincev5du, with

uf~c!5Im~c,f! f,cPH.

Let (M,V,h) be the Hamiltonian system given by

M5H3R3T ,

V5v2dE`dt,

h~f,E,t !5~f,K~ t !f!2E,

whereT is the one dimensional torus@0,2p# with 0 and 2p identified and we denote by (f,E,t)
the points ofM. We slightly abuse of the notation since the 1-formdt is closed, but not exact on
the torusT . The 2-form V is exact sinceV5dQ, with Q5u2Edt. We collect the main
properties of (M,V,h) in the following proposition.

Proposition 3: The functionh is C1 and its Hamilton equations are

i
df

dh
~h!5K~ t~h!!f~h!,
J. Math. Phys., Vol. 38, No. 12, December 1997
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dE

dh
~h!5

]h

]t
~~f~h!!,E~h!,t~h!!,

dt

dh
~h!51.

The corresponding flowF:R3M→M exists globally and is C1, that is
• for all hPR, Fh :M→M is C1;
• for all mPM, Fm :R→M is C1.
We notice that there is a one to one correspondence between the solutions of the c

Hamiltonian equations with the initial conditions

f~0!5f0 ,

E~0!5~f0 ,K~0!f0!,

t~0!50,

and the solutions of the Schro¨dinger equation

i
df

dt
~ t !5K~ t !f~ t !

with the initial condition

f~0!5f0 .

III. THE COMPLETE INTEGRABILITY

We are going to prove that the Hamiltonian system defined in the previous section iscom-
pletely integrable.

We recall that a finite dimensional Hamiltonian system is completely integrable on an op
O if there exists a system ofaction-anglevariables defined onO such that the Hamiltonian is a
function of the action variables only, see, for example, Ref. 9. It is a well known fact, see
example, Ref. 10 and references therein, that one has problems in using this notion of co
integrability when the manifold is infinite dimensional.

The following example shows which kind of difficulties arise in the case we are dealing
Example 1: Consider the Hilbert spacel C

2 as a real, symplectic Hilbert manifold with respe
to the 2-form

vx~y1 ,y2!522 Im~y1 ,y2! x,y1 ,y2Pl C
2.

Let (n i)k>1 be a bounded real sequence andh be the C` real function onl C
2

h~x!5(
i>1

n i uxi u2 x5~xi !k>1Pl C
2.

It is clear that (l C
2,v,h) is a system of aninfinite number of independent, harmonic oscillators.

is natural to require that this system is completely integrable with respect to a good definit
complete integrability. Nevertheless the corresponding action-angle variables are globally
fined. In fact, defining the real canonical coordinates

pi~x!5A2 Im xi ,
J. Math. Phys., Vol. 38, No. 12, December 1997
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qi~x!5A2 Re xi ,

one has

h5(
i>1

n i

pi
21qi

2

2
,

where the series converges pointwise onl C
2 . Each harmonic oscillator (pi ,qi) defines a corre-

sponding couple of action-angle variables

I i5
pi

21qi
2

2
,

tan w i5
qi

pi
.

For eachi>1 the coordinatew i is well defined in the open set

$xPl C
2:xiÞ0%,

but the intersection of all these setsis not openin l C
2 , contrary to the finite dimensional cas

M5Cn.
This example shows that the problem in using the classical notion of action-angle variab

not at a fundamental level, but is due to topological difficulties that are present in the in
dimensional case. We propose an alternative definition of integrability that does not suffer
these problems.

First of all we observe that, ifm is a Radon measure onR, L2(m) is a symplectic manifold
with respect to the two form

Vf
c ~c1 ,c2!522 Im *c1c2dm,

that is exact sinceVc5duc, where

uf
c ~c!5Im*c̄fdm.

Let G be the group~with respect to pointwise multiplication!

G5$uPL`~m!:uu~x!u51 m2a.e.%.

RegardingG as a submanifold of the Banach spaceL`(m), it is an abelian Lie group whose Lie
algebra is

Lie~G!5$ f PL`~m!: f ~x!PR m2a.e.%5L`~m,R!.

G acts onL2(m) by multiplication of functions

G3L2~m!{~u,f!°ufPL2~m!.

The definition we propose is the following.
Definition 1: A classical Hamiltonian system (M,v,h) is completely integrableon an open

setO,M if there exists a Radon measurem on R and a C1 diffeomorphism

D:O→L2~m!
J. Math. Phys., Vol. 38, No. 12, December 1997
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from O onto D(O), open inL2(m), such that

~1! D is symplectic, i.e.,D* (Vc)5v;
~2! for all uPG

uD~m!PD~O! ;mPO,

h+D21~uf!5h+D21~f! ;fPD~O!.

In this case we say thatD is a system ofgeneralised action-angle variablesfor the Hamiltonian
system (M,v,h).

Our definition extends the notion of action-angle variables in the sense that the set$uD(m)
3(x)u2,arg(D(m)(x))%xPR plays the role of the action-angle variables at the pointm. To show
this fact we apply the classical method of reduction of phase space with symmetry d
Souriau11 and to Marsden and Weinstein.12

The mapD defines a symplecticC1-action of the Abelian Lie groupG on the open setO,
namely,

u@m#5D21~uD~m!! mPO,uPG. ~8!

The groupG plays the role of the phase groupT N in the N dimensional case.
The two formv is exact onO sincev5dD* (uc); hence the action~8! admits thecomomen-

tum map

Ĵ:Lie~G!→C1~O!

f °^D* ~uc!,Xf&

whereXf is the vector field onO associated tof by the action~8!. A simple calculation shows tha

Ĵ~ f !~m!5E D~m!~x! f ~x!D~m!~x!dm~x!. ~9!

The correspondingmomentum mapis given by

J:O→Lie~G!*

m°uD~m!u2, ~10!

whereuD(m)u2 is theL1(m,R) function

R{x°uD~m!~x!u2PR,

regardingL1(m,R) as a subspace ofL`(m,R)* .
For all f PL1(m,R), let

M f5J21~ f !5$mPO:uD~m!~x!u25 f ~x!m2a.e.%.

G acts transitively onM f and (uD(m)(x)u2)xPR labels the different orbitsM f ~in the finite
dimensional case the orbits are tori!.

We are going to show that the characteristic functions of the Borel sets ofR play the role of
action variables. In fact, letB be a Borel subset ofR, thenxB is an element of Lie(G). The flow
FB generated by the corresponding vector fieldXB is given by

FB~ t,m!5D21~e2 itxBD~m!! mPO,tPR
J. Math. Phys., Vol. 38, No. 12, December 1997
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and is 2p periodic

FB~ t,m!5FB~ t12p,m! mPO,tPR.

It follows that, if mPM f , the curveC

@0,2p#{t°FB~ t,m!PO

is closed and lies onM f . HenceC defines acycleon the torusM f . SinceFB leaves invariant
its Hamiltonian function Ĵ(xB), we have

2p Ĵ~xB!~m!5E
0

2p

Ĵ~xB!~FB~h,m!!dh5E
0

2p

^D* ~uc!,XB&FB~h,m!dh5E
C

D* ~uc!.

This formula shows thatĴ(xB) can be interpreted as ageneralised action variable, denoted simply
by I B , explicitly

I B~m!5E
B
uD~m!~x!u2dm~x!5

1

2pEC

D* ~uc!. ~11!

Fixed f PL1(m,R), let Sf be the support off , then the stabilizerGf ~the same for all points lying
on M f) is

Gf5$uPG:u~x!51 for almost all xPSf%.

Gf has the property that the quotient groupG/Gf is in fact the subgroup ofG

$uPG:u~x!51 for almost all x¹Sf%.

Moreover if we define the origin of the orbitM f as the point

m05D21~Af !PM f ,

for all mPM f we can interpret the only elementumPG/Gf,G such thatum@m0#5m as the set
of angle variables ofm, labelled by the indexx running onSf ~we notice that, ifx¹Sf , the
correspondinganglevariable is ill defined!. Explicitly, we obtain

um~x!5
D~m!~x!

uD~m!~x!u
for almost all xPSf .

Finally, due to the second condition in Definition 1, the dynamical flowF of the Hamiltonian
function commutes with the action ofG. For eachf PL1(m,R) the flow leaves invariant the orbi
M f ; so there is a uniqueuf(t)PG/Gf,G such that

uf~ t !@m#5F~ t,m! ;mPM f tPR.

Moreover, the one parameter groupt°uf(t) defines an elementhfPLie(G) for the dynamics on
the orbit. The elementhf is anL`-function onR andhf(x) is the frequency of theanglevariable
corresponding to the indexxPSf on the orbit.

The usual definition of action-angle variables in the finite dimensional case is a special c
the one given above. In fact letm be the counting measure on the set$1, . . . ,N%, then

L2~m!5CN,
J. Math. Phys., Vol. 38, No. 12, December 1997
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G5T N.

If D defines a generalised system of action-angle variables forM, we denote

O85$mPM:~D~m!!kÞ0 1<k<N%

and we define onO8 the C1 functions

I k~m!5u~D~m!!ku2,

fk~m!52arg~D~m!!k

for all 1<k<N. A standard computation shows that (I k ,fk)k>1 is a set of action-angle variable
for M on O8. Conversely let (I k ,fk)k>1 be a set of action-angle variables forM. Choosing
m0PM, there exists an open setO,M andCPR such that

I k~m!.C mPO, 1<k<N.

DefineD from O to CN as

D~m!5 (
k51

N

AI k~m!2C e2 ifk~m!ek ,

where (ek)k>1 is the canonical basis ofCN. It is straightforward to show thatD is a system of
generalised action-angle variables forM on O.

IV. THE COMPLETE INTEGRABILITY OF THE QUANTUM ADIABATIC EVOLUTION

The principal object of study of this section is the Berry phase operatorS which is defined as
the unique bounded selfadjoint operator onH with spectrum contained in@0,1@ such that

V~2p!5ei2pS.

Due to Eq.~5!, for all k>1, @V(2p),Pk(0)#50 and

@S,Pk~0!#50.

Our aim is to obtain an integral representation ofS. This goal will be achieved by proving that th
classical Hamiltonian system (M,V,h), equivalent to the quantum adiabatic evolution, ha
system of generalised action-angle variables.

Roughly speaking, the idea is the following. Let us suppose for the moment thatH is finite
dimensional. The fact that the quantum evolutionV(t) satisfies the intertwining property~5! gives
a natural set of first integrals for the system. In fact, let (ek j)k>1,1< j <mk

be a Hilbert basis ofH
such that

Pk~0!ek j5ek j ,

Sek j5bk jek j .

We define the C1 functions f k j from M to R as

f k j~f,E,t !5u~f,V~ t !ek j!u2 ~12!
J. Math. Phys., Vol. 38, No. 12, December 1997
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~note that they are well defined sinceV(t12p)ek j5ei2pbk jV(t)ek j). Due to the fact that theek j

are orthogonal, the functionsf k j are in involution and the properties ofV(t) guarantee that they
are first integrals. In this way the set

S 5$ f k j%ø$h%

is a maximal, involutive set of first integrals and its elements are linearly independent on the
set

$~f,E,t !PM: f k j~f,E,t !.0%.

Moreover the common level surfaces of these first integrals are compact inM ~we use here the
periodicity of the time coordinate!. It follows from this that we can apply the Arnold-Liouville
theorem to get the action-angle variables and the equivalence with our definition in ord
determine the mapD. In the general case we need some preliminary steps.

For all hPR, let G(h) be the unitary operator onH

G~h!5V~h!e2 ihS

whose properties are summarised below.
1. h°G(h) is SOT-C1;
2. h°G(h) is the unique solution of the Cauchy problem

H iG8~h!5g~h!G~h!

G~0!5I

where, for allhPR

g~h!5K~h!1V~h!SV~h!21

is a self-adjoint bounded operator;
3. for all hPR and for allk>1

G~h12p!5G~h!,

g~h12p!5g~h!,

G~h!Pk~0!5Pk~h!G~h!;

4. h°g(h) is SOT-C1.

Due to the spectral theorem, there is a Radon measuren on R with compact support such thatH

is isomorphic toL2(n) andS, under this isomorphism, goes to the multiplicative operator by
functionsPL`(n). In the sequel we will identifyH with L2(n). Let x0¹suppn andm5n1dx0

.
Given bPR, let Ob be the open set inM

Ob5$~f,E,t !PM:~f,g~ t !f!2E.b%

andD:Ob→L2(m) be the map defined by

D~f,E,t !~x!5H ~G~ t !21f!~x! xÞx0

A~f,g~ t !f!2E2b e2 it x5x0 .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Theorem 1: The classical Hamiltonian system(M,V,h) is completely integrable on Ob with
respect to the system of generalised action-angle variablesD. Moreover, D* (uc)5Q2bdt.

We now show that the complete integrability of the adiabatic evolution provides a
geometric interpretation of the Berry phases. To obtain this result we use the methods
reduction of phase spaces with symmetry as explained in Sec. III.

Using Eq.~10!, the momentum mapJ from Ob to Lie(G)* is given by

J~f,E,t !~x!5H u~V~ t !21f!~x!u2 xÞx0

~f,V~ t !SV~ t !21f!1h~f,E,t !2b x5x0 .

The level surfaces~invariant tori! are labelled by the functionsf PL1(m,R) and are explicitly
given by

M f5H ~f,E,t !POb :
u~V~ t !21f!~x!u25 f ~x! xÞx0

E5~f,g~ t !f!2b2 f ~x0!
J .

Using Eq.~11!, we now compute the generalised action variablesI B . Let B be a Borel subset o
R, x0¹B, then

I B~f,E,t !5E
B
u~V~ t !21f!~x!u2dn~x! ~f,E,t !POb

whereas, ifB5$x0%

I 0~f,E,t !5~f,V~ t !SV~ t !21f!1h~f,E,t !2b ~f,E,t !POb . ~13!

If H is N-dimensional,n is the counting measure on$1, . . . ,N%. Let B5$ i % with 1< i<N, the
corresponding action variableI i is precisely one of theN first integrals~12! that characterise the
adiabatic intertwining condition~5!.

Let us look more accurately at the formula~13! that gives the action variableI 0 associated to
x0 . This will lead to the integral representation of the Berry operator.

Let (f,0,0)PM with fP rangePk(0). If we chooseb,0, since S>0, then (f,0,0)
POb . We denote byF the flow corresponding to the vector fieldXxx0

, by C f the closed curve

@0,2p#{h°F~h;f,0,0!PM.

A simple calculation shows thatF(h;f,0,0)5(G(h)f,0,h). Finally, sinceD* (uc)5Q2bdt
and, due to Eq.~6!, h(f,0,0)50, we obtain, comparing Eq.~11! and Eq.~13!,

Proposition 4:The Berry phase operatorS is completely characterised by the following tw
properties:

SPk~0!5Pk~0!S,

~f,Sf!5
1

2pEC f

Q fPPk~0!H.

The last relation shows that the action ofS on the range ofPk(0) is expressed as integral of th
form Q, defining the symplectic structure ofM, over the cyclesC f with fP rangePk(0). The
cyclesC f lie on the level surfaceMJ(f,0,0) and the pull-back ofQ on MJ(f,0,0) is closed. This
shows that the Berry phase operatorS is computed in terms of the periods ofQ on the invariant
tori defined by the adiabatic evolution. This is the central result of the paper.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



f the

with

et

6112 Cassinelli, De Vito, and Levrero: Classical integrability and geometric phases

                    
Moreover we notice that we also obtain an expression ofS by means of an integral onH. In
fact, if Df is the projection ofC f on H, we get for allfPPk(0)H,

~f,Sf!5
1

2pEC m

~u2Edt!5
1

2pEDm

u2
1

2pE0

2p

E~h!dh5
1

2pEDm

u

sinceE(h)50 for all h.
In particular if b is an eigenvalue ofS, let f be a corresponding eigenvector ofS belonging

to somePk(0)H ~this is always possible sinceS andPk(0) commute! then

2pb5E
Df

u,

whereDf is the closed curve

@0,2p#{t°G~ t !fPH.

The projection ofDf on the set of pure states is the quantum adiabatic cyclic evolution o
initial stateP@f# and 2pb is the corresponding Berry phase of the vector statef.

APPENDIX: PROOFS OF TECHNICAL RESULTS

For reader’s convenience we recall some standard facts on the differential calculus
respect to the strong operator topology that we are going to use freely in the sequel.

Lemma 1:
• If R{t°A(t)PL(H) is SOT-continuous, thent°iA(t)i is bounded on any compact s

of R.
• If R{t°A(t)PL(H) is SOT-C1, then it is continuous in the operator norm topology.
• If R{t°A(t),B(t)PL(H) are SOT-C1, thent°A(t)B(t) is SOT-C1 and

~AB!8~ t !5A8~ t !B~ t !1A~ t !B8~ t !.

• If R{t°U(t)PL(H) is SOT-C1 andU(t) is unitary, thent°U(t)21 is SOT-C1 and

~U21!8~ t !52U~ t !21U8~ t !U~ t !21.

In order to show Proposition 1 and Proposition 2 we need a technical lemma.
Lemma 2:Let R{t°(Pk(t))k51

` be a family of projection valued measures~PVM! on H

such that H1, H2 and H3 hold, then for alltPR andk>1 we have

Pk8~ t !5 i@Pk~ t !,K~ t !# ~A1!

Pk~ t !K~ t !Pk~ t !50 ~A2!

i@Pk9~ t !,Pk~ t !#5K1~ t !Pk~ t !1Pk~ t !K1~ t !1 i@Pk~ t !,K~ t !2#. ~A3!

Proof: To simplify the notation, we drop out the dependence on the timet. Differentiating the
relationPkPn5dknPk , we obtain that

Pk8Pn52PkPn8 kÞn ~A4!

Pk85PkPk81Pk8Pk . ~A5!

Using these relations, we compute
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i@Pk ,K#52
1

2
s-(

n
@Pk ,@Pn8 ,Pn##

5
1

2
s-(

n
~Pn8PnPk2PnPn8Pk2PkPn8Pn1PkPnPn8!

5
1

2 S Pk8Pk1PkPk82s-(
n

~PnPn8Pk1PkPn8Pn! D
5

1

2 S Pk8Pk1PkPk81 s-(
nÞk

~Pn
2Pk81Pk8Pn

2! D
5

1

2
s-(

n
~PnPk81Pk8Pn!5Pk8 ,

so Eq.~A1! is proven. Summing from 1 ton and passing to the SOT-limit, we obtain that

s-(
k

Pk850. ~A6!

From Eq.~A5! and Eq.~A6!, we deduce that

K5 i s-(
k

Pk8Pk , ~A7!

K52 i s-(
k

PkPk8 . ~A8!

Moreover, by direct computation, we deduce Eq.~A2! and

PkK1Pk50. ~A9!

It remains to be shown Eq.~A3!. Differentiating Eq.~A4! and Eq.~A5!, we have that

Pi9Pj12Pi8Pj81Pi Pj95d i j Pi9 .

Multiplying on the right byPj or on the left byPi , we deduce that

Pi9Pj12Pi8Pj8Pj1Pi Pj9Pj50 iÞ j , ~A10!

Pi Pi9Pj12Pi Pi8Pj81Pi Pj950 iÞ j , ~A11!

Pi Pi9Pi522Pi8Pi8Pi522Pi Pi8Pi8 . ~A12!

In this way, we compute
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i@Pk ,K1#52
1

2
s-(

n
@Pk ,@Pn9 ,Pn##

5
1

2
s-(

n
~Pn9PnPk2PnPn9Pk2PkPn9Pn1PkPnPn9!

5
1

2 S Pk9Pk1PkPk922PkPk9Pk2 s-(
nÞk

~PnPn9Pk1PkPn9Pn! D ,

using in the third addendum Eq.~A12!, in the fourth one Eq.~A11! with i 5n, j 5k and in the fifth
one Eq.~A10! with i 5k, j 5n, it follows that

i@Pk ,K1#5
1

2
~Pk9Pk1PkPk912Pi8Pi8Pi12Pi Pi8Pi8!

1
1

2 S s-(
nÞk

~2PnPn8Pk81PnPk912Pk8Pn8Pn1Pk9Pn! D
5

1

2
s-(

n
~PnPk91Pk9Pn12Pk8Pn8Pn12PnPn8Pk8!,

eventually, taking into account Eq.~A7! and Eq.~A8!, we deduce

i@Pk ,K1#5 1
2 ~Pk91Pk922iPk8K12iKPk8!5Pk92 i@Pk8 ,K#,

that is

Pk95 i@Pk8 ,K#1 i@Pk ,K1#. ~A13!

Using Eq.~A13! and Eq.~A1!, we compute

i@Pk9 ,Pk#52 i@@@Pk ,K#,K#,Pk#2@@Pk ,K1#,Pk#

5 i~PkK
22PkKPkK2PkKPkK1PkK

2Pk2PkK
2Pk!

1 i~KPkKPk1KPkKPk2K2Pk!22PkK1Pk1PkK11K1Pk

5 i@Pk ,K2#1K1Pk1PkK1 ,

where in the last equality we used Eq.~A9! and Eq.~A2!. This ends the proof of the lemma.
Proof of proposition 1:Let f from R3H to H be the map

f ~ t,f!52 iK~ t !f fPH,tPR;

sinceK(t) is SOT-continuous by hypothesis H2,f is continuous and satisfies the Lipschitz co
dition in the variablef locally in the variablet. Using the classical theorem of Cauchy-Lipschit
Picard, we have that for allfPH, there is a uniqueC1 mapR{t°cf(t)PH, global solution
of the Cauchy problem
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H d

dt
cf~ t !5 f ~ t,cf~ t !!

cf~0!5f.

~A14!

We define for alltPR, V(t) from H to H as

V~ t !f5cf~ t !.

Sincef° f (t,f) is linear andK(t) is selfadjoint,V(t) is a linear, unitary operator. Moreover, b
construction,t°V(t) is SOT-C1 and is the unique solution of the Cauchy problem~7!, since Eq.
~7! is equivalent to Eq.~A14!.

Now we show that Eq.~5! holds. Letk>1, fPH andc1 ,c2 be the maps fromR to H

c1~ t !5Pk~ t !V~ t !f,

c2~ t !5V~ t !Pk~0!f.

c1 andc2 areC1 and satisfyc1(0)5c2(0). Taking the derivative and using Eq.~A1!, we have
that

dc1~ t !

dt
5~Pk8~ t !2 iPk~ t !K~ t !!V~ t !f52 iK~ t !Pk~ t !V~ t !f5 f ~ t,c1~ t !!

and

dc2~ t !

dt
52 iK~ t !V~ t !Pk~0!f5 f ~ t,c2~ t !!.

By unicity of the solution of the Cauchy problem~A14!, we have thatc1(t)5c2(t) for all
tPR and this proves Eq.~5!.

The relation~6! is a simple consequence of Eq.~5!, Eq. ~7! and Eq.~A2!. The unicity ofV(t)
is the content of the Proposition 2.

Observing thatf (t12p,•)5 f (t,•), we deduce thatV(t12p)5V(t)V(2p).
Now we prove thatK(t) is SOT-C1 and its derivative isK1(t). Since K1(t) is SOT-

continuous by hypothesis H3, this amounts to show that for allfPH and tPR

K~ t !f5K~0!f1E
0

t

K1~s!f ds.

Given tPR and,fPH, let f and f n , n>1, be the maps from@0,t# to H

f ~s!5
i

2(
k51

`

@Pk9~s!,Pk~s!#f,

f n~s!5
i

2(
k51

n

@Pk9~s!,Pk~s!#f.

Using hypothesis H1, we have thatf n are continuous and the sequence (f n)n>1 converges point-
wise to the continuous mapf by hypothesis H3. Moreover, using Eq.~A3!, we have that
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2i f n~s!i5i(k51
n ~K1~s!Pk~s!1Pk~s!K1~s!1 i@Pk~s!,K~s!2# !fi

<iK1~s!2 iK~s!2ii(k51
n Pk~s!fi1i(k51

n Pk~s!~K1~s!1 iK~s!2!fi

<2~ iK1~s!i1iK~s!i2!ifi<Ct,f ,

whereCt,f is a suitable constant depending ont andf.
The above inequality shows that we can apply the dominated convergence theorem;

way we obtain that

E
0

t

f ~s!ds5 lim
n→`

E
0

t

f n~s!ds5
i

2(
k51

` E
0

t

@Pk
9~s!,Pk~s!#ds

5
i

2(
k51

` E
0

t d

ds
~@Pk8~s!,Pk~s!# !ds

5
i

2(
k51

`

@Pk8~s!,Pk~s!#u0
t 5K~ t !f2K~0!f.

From Eq.~5!, we have that the dimension of the range ofPk(t) does not depend ont and this ends
the proof of the proposition. h

Proof of proposition 2. From Eq.~5!, we have that

Pk~ t !5V̂~ t !Pk~0!V̂~ t !21,

so thatt°Pk(t) is SOT-C2.
Let K̂(t)52 iV̂8(t)V̂(t)21. Sincet°V̂(t) is SOT-C2, t°K̂(t) is SOT-C1.
Moreover, differentiating Eq.~5!, we obtain

~Pk8~ t !2 iPk~ t !K̂~ t !!V̂~ t !52 iK̂~ t !V̂~ t !Pk~0!;

using again Eq.~5!, we conclude that

Pk8~ t !5 i@Pk~ t !,K̂~ t !#. ~A15!

Hence, we obtain that, for alln>1,

i

2(
k51

n

@Pk8~ t !,Pk~ t !#52
1

2(
k51

n

@@Pk~ t !,K̂~ t !#,Pk~ t !#

5
1

2(
k51

n

~Pk~ t !K̂~ t !22Pk~ t !K̂~ t !Pk~ t !1K̂~ t !Pk~ t !!

5
1

2(
k51

n

Pk~ t !K̂~ t !1K̂~ t !Pk~ t !,

where in the last equality we used Eq.~6!. Passing to the SOT-limit, we have that hypothesis
holds andK(t)5K̂(t); hence in the following we will not distinguish any longer betweenK(t)
and K̂(t) and will use only the notationK(t).

Differentiating Eq.~A15!, we obtain~dropping out the dependence ont)

Pk95 i@Pk8 ,K#1 i@Pk ,K8#52@@Pk ,K#,K#1 i@Pk ,K8#52KPkK2PkK
22K2Pk1 iPkK82 iK8Pk .

~A16!

Moreover, differentiating Eq.~6! and using Eq.~A15!, we have that
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PkK8Pk52Pk8KPk2PkKPk852 i~PkK
2Pk2KPkKPk1PkKPkK2PkK

2Pk!50, ~A17!

since we have Eq.~6!.
Using Eq.~A16! and Eq.~A15!, we conclude that

i@Pk9 ,Pk#5 i~2PkK
2Pk2K2Pk1PkK

21PkK
2Pk!1K8Pk1PkK85 i@Pk ,K2#1K8Pk1PkK8,

where we used Eq.~6! and Eq.~A17!.
Summing from 1 ton and passing to the SOT-limit, we have that

i

2
s-(

k
@Pk9~ t !,Pk~ t !#5K8~ t !,

so the hypothesis H3 holds.
Now both t°V̂(t) and t°V(t) satisfy the Cauchy problem~7! and V̂(0)5V(0)5I . Hence

V(t)5V̂(t) for all tPR and this ends the proof.
Proof of proposition 3: The maph is well defined sinceK(t) is 2p-periodic. By the fact that

K(t) is SOT-C1, it follows thath is C1. We defineF from R3M to M as

F~h;f,E,t !5~V~ t1h!V~ t !21f,E~h!,t1h!,

whereE(h)5E1(V(t1h)V(t)-1f,K(t1h)V(t1h)V(t)-1f)2(f,K(t)f). It is immediate that
F is a flow and, using the fact thatt°V(t) is continuous in the norm operator topology a
SOT-C1, we have that it is C1. A simple calculation shows that

dF

dh
~h;f,E,t !5Xh~F~h;f,E,t !!,

whereXh is the vector field corresponding todh under the isomorphism defined by the symplec
2-form V. The Hamilton equations easily follow.

Proof of theorem 1:We denote byi n and i 0 the immersions ofL2(n).H andL2(dx0
).C

into L2(m) andPn andP0 the corresponding projections. Hence

D5 i n+Dn1 i 0+D0 ,

where

Dn~f,E,t !5G~ t !21f,

D0~f,E,t !5A~f,g~ t !f!2E2b e2 it.

We split the proof in various steps.
1. D is C1. SinceG(t) is continuous in norm and SOT-C1, the mapDn is C1. Moreoverg

is SOT-C1 so thatD0 is C1 on Ob . The thesis follows observing thati n and i 0 are obviously C`.
2. D is bijective onto

D~Ob!5$cPL2~m!:c~x0!Þ0%.

It is evident thatD(f,E,t)(x0)Þ0 for all (f,E,t)POb . Define~with abuse of notation!

D21:$cPL2~m!:c~x0!Þ0%→M

c°~f~c!,E~c!,t~c!!,
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where

t~c!52argc~x0!PT ,

f~c!5G~ t~c!!Pnc,

E~c!5~f~c!,g~ t~c!!f~c!!H2uc~x0!u22b.

A simple calculation shows thatD21(c)POb for all c such thatc(x0)Þ0 and thatD21+D is the
identity onOb andD+D21 is the identity on$cPL2(m):c(x0)Þ0%.

3. D is a C1 diffeomorphism fromOb to D(Ob), open inL2(m). D(Ob) is open since it is the
inverse image of an open set with respect to the continuous functionc°c(x0)5*xx0

cdm. By
arguments similar to those ofD, one verifies thatD21 is C1.

4. u(D(Ob)),D(Ob) and h+D21(uc)5h+D21(c) for all cPD(Ob) and uPG. The first
property is immediate and, by direct computation, one has

h+D21~c!5b1uc~x0!u22E
$xÞx0%

c̄ ~x!s~x!c~x!dn~x!,

that is clearly invariant for the action ofG.
5. D* (uc)5Q2bdt. One can easily compute that, if (f,E,t)POb and (c,e,t)PT(f,E,t)

3(M), then

TD~f,E,t !~c,e,t!~x!5H G~ t !21~c1 itg~ t !f! xÞx0

e2 it
2Re~f,g~ t !c!1t~f,g8~ t !f!22itA2e

2AA
x5x0

whereA5(f,g(t)f)2E2b. Now

D* ~uc!~f,E,t !~c,e,t!5uD~f,E,t !
c ~TD~f,E,t !~c,e,t!!

5Im~G~ t !21~c1 itg~ t !f!,G~ t !21f!

1 1
2Im~2Re~f,g~ t !c!1t~f,g8~ t !f!22itA2e!

5Im~c,f!2~E1b!t

5~Q2bdt!~f,E,t !~c,e,t!.

6. D is symplectic. It is a consequence of the previous point. h
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Condition on the symmetry-breaking solution
of the Schwinger–Dyson equation
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Heifei, Anhui, 230026, People’s Republic of Chinaa!
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We derive a condition for a nontrivial solution of the Schwinger–Dyson equation
to be accompanied by a Goldstone bound state. It implies that, for quenched planar
QCD, although chiral symmetry breaking occurs when there is a cutoff, the con-
tinuum limit fails to exist. © 1997 American Institute of Physics.
@S0022-2488~97!00812-8#

I. INTRODUCTION

Dynamical chiral symmetry breaking1 ~DCSB! has been extremely useful in a wide variety
topics in physics, from the success of low-energy theorems in current algebra, to the const
of composite models of the Higgs boson. There are two aspects in the mechanism of DCS
mass generation of fermions and the existence of the Goldstone boson.2 More concretely, chiral
symmetry breaking occurs when the self-consistent Schwinger–Dyson~SD! equation for the fer-
mion mass develops a nontrivial solution as the coupling constant reaches a critical valu3 In
addition, for the same coupling constant, there must also exist a bound state solution
Bethe–Salpeter~BS! equation, with vanishing 4-momenta, corresponding to the massless ps
scalar Goldstone boson. When both of these conditions are met, the self-energy solution s
called a symmetry-breaking solution. We should also mention that Maskawa and Nakajima4 had
proposed an equivalent condition for the existence of the symmetry-breaking solution.
condition is that the self-energy solution has to satisfy the Ward–Takahashi identity.

For definiteness, we will concentrate on QED in the massless, quenched p
approximation,5 which is a well-known model in the study of DCSB. It is simple enough fo
detailed study on its properties, yet it is also rich in structure, which suggests general ph
features in other models. Thus, with the incorporation of a running coupling constant, it c
easily extended to QCD in the large-N approximation.6 In addition, results gleaned from studies
this model have been used in the construction of realistic models in the context of technicol7 t t̄
condensation,8 etc.

In the study of the quenched planar QED, an important question concerns the cutoff.
Maskawa and Nakajima established the existence of a critical coupling constantac in the solution
of the SD equation with a cutoff,L. When a.ac , a nontrivial solution of the SD equatio
emerges that signals the advent of chiral symmetry breaking. A natural question is whethe
exists a limit,ac(`)5 limL→` ac(L), corresponding to the existence of a spontaneously bro
phase in the continuum limit.3 That such an ultraviolet fixed point exists is often accepted with
close examinations. In this work we will study this important question in detail. To this end
consider the BS equation with the quantum numbersl P502 and vanishing 4-momentum. Th
mass in the fermion propagator contained in the BS equation is identified with the self-mass
nontrivial solution of the SD equation. A symmetry-breaking solution of the SD equation mu

a!Mailing address.
0022-2488/97/38(12)/6119/7/$10.00
6119J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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one that is associated with a pseudoscalar bound state solution of the BS equation.
It can be established that the bound state wave function is related to the self-energy fu

Thus, the normalization condition of the bound state wave function is converted into one f
self-energy function. In this way, we find a necessary and sufficient condition for the nont
solution of the SD equation to be symmetry breaking. When we apply this result to the q
planar QED, we find that the critical point does not have a limit. Thus, the ultraviolet fixed p
cannot exist in quenched planar QED in the continuum limit, although DCSB is established
case with a cutoff.

II. SCHWINGER–DYSON AND BETHE–SALPETER EQUATIONS

From the Goldstone theorem, it is well known that a massless boson appears when
generator of a global continuous symmetry group is broken spontaneously. The quantum n
of this particle corresponds to that of the operator of the current that is broken. For ma
quenched QED, the broken current is the electromagnetic axial current so that the Gol
particle is a pseudoscalar boson. We associate this to the bound state solution of the BS e
in which the fermion mass will be identified with the dynamically generated mass from th
equation. This approach has a number of advantages in quenched planar QED. First, in the
approximation, unitarity in elastic scattering is restored and the problem of abnormal sta
alleviated.9 Second, the approximation in the SD and BS equations are self-consistent. La
not least, the requirement that the Goldstone boson accompany the fermion mass gener
ladder QED is satisfied automatically when the condition for a symmetry-breaking solution is
In the following our discussions will be in this framework and we will deduce the condition for
SD self-energy solution to be symmetry breaking.

The renormalized fermion propagator will be written as

Sf
21~p!5g•pa~p2!2b~p2!. ~1!

The SD equation for the fermion self-energy is

Sf
21~p!5Sf

021~p!1
ie2

~2p!4 E d4qDmn~p2q!Gm~p,q!Sf~q!gn . ~2!

In the quenched planar approximation, we have

Dmn~p2q!'
1

~p2q!2 F2gmn1~12j!
~p2q!m~p2q!n

~p2q!2 G ~3!

and

Gm~p,q!'gm , ~4!

where j is a gauge parameter, withj50 and j51 corresponding to the Landau and Feynm
gauges, respectively. Substituting Eqs.~3!, ~4!, and~1! into ~2!, after the Wick rotation and taking
trace on both sides, we obtain

b~p2!5
e2

~2p!4 E d4q
42~12j!

~p2q!2

b~q2!

q2a2~q2!1b2~q2!
. ~5!

Similarly, with the multiplication ofg•p, we have

a~p2!511
e2

~2p!4

1

p2 E d4q
1

~p2q!2

a~q2!

q2a2~q2!1b2~q2!
J. Math. Phys., Vol. 38, No. 12, December 1997
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3 F2p•q1~12j!H 2@p•~p2q!#@q•~p2q!#

~p2q!2 2p•qJ G . ~6!

Equations~5! and ~6! determine the self-energy of the fermion in massless quenched Q
The trivial solution,b(p2)50 anda(p2)5finite ~51, in the Landau gauge!, corresponds to tha
of the symmetric vacuum. But it is certainly true that not all of the nontrivial solutions si
spontaneous symmetry breaking. The criterion that a nontrivialb(p2) does trigger DCSB is tha
there must be an accompanying Goldstone boson. That is to say, there must be a boun
solution of the BS equation, with the appropriate quantum numbers and at the same co
constant.

For a bound state composed of the fermion antifermion pair~A andB̄!, in the ladder approxi-
mation in QED, the wave function is determined by10

Sf
A21S k

2
1pDxk~p!Sf

B21S k

2
2pD5

ie2

~2p!4 E d4q Dmn~p2q!Gm
A~p,q!xk~q!gn

B . ~7!

Here, k/25(p11p2)/2 and p5(p12p2) are the center-of-mass 4-momentum and relative
momentum of the bound state, respectively.xk(p) is its wave function. If the massless fermion
A andB are the same and acquire dynamically generated masses, we have

F S k

2
1pD •ga~p2!2b~p2!Gxk~p!F S k

2
2pD •ga~p2!1b~p2!G

5
ie2

~2p!4 E d4q Dmn~p2q!Gm~p,q!xk~q!gn . ~8!

Taking the same approximation as in the case of the SD equation and putting Eqs.~3! and~4! into
Eq. ~18!, the BS equation reads as

F S k

2
1pD •ga~p2!2b~p2!Gxk~p!F S k

2
2pD •ga~p2!1b~p2!G

5
ie2

~2p!4 E d4q
1

~p2q!2 F2gmn1~12j!
~p2q!m~p2q!n

~p2q!2 Ggmxk~q!gn . ~9!

This is the form of the BS equation in quenched planar QED.
Since the Goldstone state hasl P502 and vanishing mass, the wave functionxk(p) is spheri-

cally symmetric. Takingk50, we write

xk~p!5x0
P~p2!3g5 . ~10!

Substituting Eq.~10! into Eq. ~9! and taking trace after Wick rotation, we obtain the BS equat
for the Goldstone boson:

@a2~p2!p21b2~p2!#x0
P~p2!5

e2

~2p!4 E d4q
42~12j!

~p2q!2 x0
P~q2!. ~11!

III. CONDITION FOR A SYMMETRY-BREAKING SOLUTION OF THE SD EQUATION

For any physical bound state, the wave function must satisfy a normalization condition
the Goldstone boson wave function, Eq.~11!, there were several approaches with equival
results.11 We shall quote the normalization condition in the following form,12 which is valid for a
fermion–antifermion system in ladder QED:
J. Math. Phys., Vol. 38, No. 12, December 1997
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E d4q Tr H x̄k~q!F S k

2
1qD •ga~q2!2b~q2!Gxk~q!F S k

2
2qD •ga~q2!1b~q2!G J 5l

dMB

dl
.

~12!

Here,MB is the mass of the bound state andl is the coupling constant,l5a/4p.
For a bound state with vanishing mass, vanishing total angular momentum, and ne

parity, Eq.~12! becomes

E d4q@a2~q2!q21b2~q2!#ux0
P~q2!u25 f inite. ~13!

This is the condition forx to be the wave function of a physical Goldstone boson that accompa
the nontrivial solution of the SD equation.

Due to the spherical symmetry, we can integrate Eqs.~11!, ~13!, ~5!, and~6! with respect to
the angular variables in the four-dimensional Euclidean space. They are then simplified in
following set of equations:

@p2a2~p2!1b2~p2!#x0
P~p2!5

a

4p3 E
e

L

dq2 Kb~p2,q2!q2x0
P~q2!, ~14!

E
e

L

dq2 q2@a2~q2!q21b2~q2!#ux0
P~q2!u25 f inite, ~15!

b~p2!5
a

4p3 E
e

L

dq2 Kb~p2,q2!
q2b~q2!

q2a2~q2!1b2~q2!
, ~16!

a~p2!511
a

4p3 E
e

L

dq2 Ka~p2,q2!
q2a~q2!

q2a2~q2!1b2~q2!
. ~17!

The wave functionx0
P(p2) is determined by Eq.~14!, with the normalization condition, Eq

~15!. Equations~16! and~17!, which determine the self-energy functionsa(p2) andb(p2), have
been written with explicit ultraviolet and infrared cutoffs. The continuum limit correspond
L→` ande→0. In these equations, we have also defineda5e2/4p. Lastly, the kernelsKa and
Kb are given by

Ka~p2,q2!5
2p

p2 E
0

p

dv sin2 v
1

~p2q!2 F2p•q1~12j!S 2p•~p2q!q•~p2q!

~p2q!2 2p•qD G ,
~18!

Kb~p2,q2!52pE
0

p

dv sin2 v
42~12j!

~p2q!2 5~31j!p2Fu~p22q2!

p2 1
u~q22p2!

q2 G . ~19!

If we introduce the function

c~p2!5@p2a~p2!1b2~p2!#x0
P~p2!, ~20!

then Eq.~14! becomes

c~p2!5
a

4p3 E
e

L

dq2 Kb~p2,q2!
q2c~q2!

q2a2~q2!1b2~q2!
. ~21!
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Also, the normalization condition reads as

E
e

L

dq2
q2

q2a2~q2!1b2~q2!
uc~q2!u25 f inite. ~22!

In order for spontaneous symmetry breaking to occur, Eq.~16! must have a nontrivial solution
b(p2)Þ0. However, this is a necessary, but not a sufficient condition. Forb(p2) to be symmetry
breaking, it must satisfy an additional normalization condition. For the clarity of presentation
now state this result in the form of the following theorem.

Theorem: The necessary and sufficient condition for a nonvanishing solutionb(p2) of Eq.
~16! to be symmetry breaking is that it must satisfy, together with the solutiona(p2) of Eq. ~17!,
the condition

E
e

L

dq2
q2

q2a2~q2!1b2~q2!
ub~q2!u25 f inite. ~23!

Proof: If, for some coupling constanta5a i , there are nonvanishing solutions of Eqs.~16!
and~17!, a(p2) andb(p2), which satisfy the condition Eq.~23!, then we have a solution of Eq
~21!, with

c~p2!5cb~p2!, ~24!

for an arbitrary constantc. It also satisfies Eq.~22! and is thus a bound state solution. This prov
that Eq.~23! is a sufficient condition. To show that it is also necessary, we need to make sur
the Goldstone boson wave function is nondegenerate, so that the solution in Eq.~24! is unique.
The nondegeneracy of the Goldstone mode follows from the fact that it comes from the bre
of the generator of an Abelian group.1 This unique solution must satisfy the normalization con
tion Eq. ~15!, which, in turn, implies Eq.~22!. This means that forb(p2) to be symmetry
breaking, it must satisfy Eq.~23!.

IV. AN APPLICATION

The results obtained above will now be applied to QED in the quenched planar appro
tion. In the Landau gauge,j50. Then Eq.~18! yields13 Ka50 anda(p2)51. This is a property
of the quenched planar approximation so that there is no wave function renormalization,Z251,
implying Z151, from Z15Z2 . Also, in the quenched approximation there are no photon s
energy and coupling constant renormalizations,Z351. Thus, within this model, renormalizatio
does not arise. It is obviously interesting and important to address this problem. Howeve
beyond the scope of the present work.

Let us now concentrate on the functionb(p2), with a(p2)51 and using Eq.~19!, Eq. ~16!
reads as

b~p2!5
3a

4p E
e

L

dq2Fu~p22q2!

p2 1
u~q22p2!

q2 G q2b~q2!

q21b2~q2!
. ~25!

Even for this simplified equation, one does not have an analytic solution. However, for the pu
of determining the points of phase transition, we can make use of the bifurcation theory. It
that nontrivial solutions of nonlinear equations such as Eq.~25! branch off from the trivial solution
at critical values of the coupling constant,a5a i . Such bifurcation points correspond to pha
transition points and can be found by linearization. That is, taking Frechet derivative or, eq
lently, making an expansion aroundb50. The Frechet derivative of Eq.~25! is
J. Math. Phys., Vol. 38, No. 12, December 1997
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db~p2!5
3a

4p E
e

LFu~p22q2!

p2 1
u~q22p2!

q2 Gdb~q2!. ~26!

To look for branch points of Eq.~25!, there are two useful theorems in bifurcation theory.~1!
For a i to be a critical point of Eq.~25!, it must be an eigenvalue of Eq.~26!. ~2! If the operator
of the Frechet derivative is compact and ifa iÞ0 is one of its eigenvalues with odd multiplicity
thena i is a branch point of Eq.~25!. Thus, to find the bifurcation points of Eq.~25!, one need only
to solve the eigenvalue problem of Eq.~26!, for which general solutions were studied by a numb
of authors. In particular, converting it into a differential equation, Kondoet al.14 found the solu-
tion

b~p2!5H Ap2112s1Bp2122s, 0,l,lc , ~27!

p21~C1D ln p2!, l5lc , ~28!

Ep211 i2r1Fp212 i2p, lc,l, ~30!

where

s5
1

2
A12

l

lc
, r5

1

2
A l

lc
21, l5

a

4p
, ac5

p

3
.

They will have to satisfy boundary conditions atp25e andp25L, which are determined by the
integral equation, Eq.~25!. These conditions determine the coefficientsA,B,..., up to amultipli-
cative constant together with the constraints:

F S 1

2
1s D 2

2S 1

2
2s D 2S e

L D 2sG Y F12S e

L D 2sG50, 0,l,lc ; ~30!

1

4 H 11
4

@ ln~L/e!#J 50, l5lc ; ~31!

S H np1arctanFrY S r22
1

4D G J Y r D5 ln
L

e
, lc,l. ~32!

In the physically interesting situation, whene/L is small it is seen that Eqs.~30! and~31! can
never be satisfied. However, Eq.~32! has a sequence of solutions,l5l i . They are dependent o
e/L. Also, it can be shown that these solutions are nondegenerate. Thus, for quenched plan
with given e andL, the solutionsl5l i signal the onset of dynamical symmetry breaking.

But this conclusion is not valid in the continuum limit,e→0 andL→`. Here, one needs to
examine the normalization condition, Eq.~23!, that the solutionb(p2) must satisfy. A straight-
forward calculation shows that the solutions obtained above do not satisfy Eq.~23!, whene→0
andL→`. We conclude that actually there does not exist a value ofl for which quenched plana
QED, in the continuum limit, undergoes dynamical symmetry breaking.

V. CONCLUSIONS

Nontrivial solutions of the self-energy SD equation have long been associated with dyna
symmetry breaking. However, true DCSB also requires the existence of the Goldstone bos
will take this to mean that the nontrivial solution of the SD equation must be associated w
solution of the BS equation, which has appropriate quantum numbers and zero 4-moment
this case, the solution of the SD equation will be called symmetry breaking, which is the con
for the occurrence of DCSB.
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In this work, we studied in detail the symmetry-breaking solution of the SD equatio
quenched planar QED. Chiral symmetry breaking occurs when a nontrivial solution of SD
tion is associated with al P502 Goldstone bound state solution of the BS equation. It turns
that the self-energy function of the SD equation is related to the bound state wave function
BS equation. Thus, the normalization condition on the bound state wave function turns
constraint equation on the self-energy function through Eq.~20!. We applied this constraint to th
known solutions of quenched planar QED, and found that, although DCSB occurs when c
are present, the continuum limit does not exist.

In the study of dynamical symmetry breaking, it is important to have a criterion for estab
ing whether a nontrivial solution of the SD equation does signal symmetry breaking. We
found an explicit condition for quenched planar QED. We are now investigating the proble
other models and it should be useful in the general study of phase transitions, such as wa
using the bifurcation theory.15 We hope to present these results in the future.
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Exact semiclassical expansions for one-dimensional
quantum oscillators
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A set of rules is given for dealing with WKB expansions in the one-dimensional
analytic case, whereby such expansions are not considered as approximations but as
exact encodings of wave functions, thus allowing for analytic continuation with
respect to whichever parameters the potential function depends on, with an exact
control of small exponential effects. These rules, which include also the case when
there are double turning points, are illustrated on various examples, and applied to
the study of bound state or resonance spectra. In the case of simple oscillators, it is
thus shown that the Rayleigh–Schro¨dinger series is Borel resummable, yielding the
exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets
a simple and rigorous justification of the Zinn-Justin quantization condition, and of
its solution in terms of ‘‘multi-instanton expansions.’’ ©1997 American Institute
of Physics.@S0022-2488~97!02911-3#

I. INTRODUCTION

The time-independent one dimensional Schro¨dinger equation,

2\2
d2f

dq2 1~V~q!2E!f50, ~0!

has always been a reservoir of useful models in quantum physics. In most such mode
potential functionV is analytic ~e.g., a polynomial!, enticing physicists into making analyti
continuations in the complexq plane, a technique they are especially fond of. This is espec
true for problems pertaining to semi-classical asymptotics, where analytic continuation of
expansions allows one to travel between ‘‘classically allowed’’ regions where the wave h
oscillatory behaviour@E.V(q), so that the classical momentump5(E2V(q))1/2 is real# and
‘‘classically forbidden’’ regions (E,V(q)) where tunnelling takes place. But it is well know
that analytic continuation of such divergent expansions as~1.1! should not be performed care
lessly, because of Stokes phenomena.

Stokes phenomena have been much written about, and remain a controversial subject~cf. for
instance the very lucid comments of Dingle in Ref. 1!. One source of miscomprehension is the fa
that most physicists work with WKB expansions as they would work with true functions~or
almost so!, whereas most modern mathematicians insist on considering them as asympto
pansions in the sense of Poincare´, i.e., broad equivalence classes of functions~modulo all fastly
decreasing functions of\, for instance!. The latter viewpoint makes it difficult to keep track o
small exponential effects, i.e. tunnelling. The former leaves place to doubts as to the valid
operations to be performed on formal power series: consider for instance how Bender an2

guessed the singularity structure of the energy levels of the anharmonic oscillator, in the co
plane of the coupling constant; after presenting a nice zeroth-order semiclassical argumen
felt compelled to pursue in a completely different way, writing the following:
0022-2488/97/38(12)/6126/59/$10.00
6126 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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We did not use the above argument on grounds of rigor. It is not clear what is meant
‘‘approximate zeroth-order analytic continuation.’’

In this paper we provide tools for making such arguments rigorous, allowing for ana
continuations with respect to the variableq and whichever parameters equation~0! depends on,
with an exact control of small exponentials to all orders. The underlying mathematics
elaboration of ideas of Balian and Bloch,3–5 pushed further in the one dimensional case
Voros,6,7 and set on a firm mathematical basis using Ecalle’s theory of resurgent function8–12

AssumingV to be an arbitrary~possibly complex! polynomial function~in fact, most of what we
shall say would still hold true whenV is an entire function ‘‘sufficiently well behaved at infin
ity’’ !, it can be shown that WKB expansions, if ‘‘well normalized’’ as explained hereafter,
resurgent functions of the scale parameter 1/\. What this means precisely is explained in t
introductory section of Ref. 12. For our present purpose all the reader needs to understan
following practical implication of that statement: well normalized solutions of the Schro¨dinger
equation can be exactly encoded by certain linear combinations of WKB expansions~which we
call WKB symbols!, thanks to resummation procedures of divergent series which generaliz
well known Borel resummation procedure. But in contradistinction to the Borel case we d
have one resummation operation but two such, the so-called right and left resummation ope
which generally differ by small exponential terms~the case when they coincide is the Bor
resummable case!. A given wave function~i.e., a solution of the Schro¨dinger equation! can thus,
if suitably normalized, be encoded by two different WKB symbols, its right~resp., left! symbol,
from which the function is recovered by right~resp., left! resummation. These two symbols diffe
only by smaller exponential terms, and the former can be recovered from the latter by a f
operation which we call the Stokes automorphism, and which we denote byG. Analytic continu-
ation of WKB symbols is possible along all paths of the complexq plane which avoid the
so-called turning points, whereV(q)5E. But our encoding~whether right or left! of wave func-
tions by WKB symbols is discontinuous across special lines called Stokes lines. Stokes
divide the complexq plane into simply connected regions called Stokes regions, and the wa
right ~resp., left! symbol of a wave function changes from one Stokes regionR to another oneR8
is given by what we call the right~resp., left! connection isomorphismC R8R

1 ~resp., C R8R
2 !.

Decomposing the spaces of WKB symbols into their direct summands corresponding to th
possible determinations of the momentum, we can writeC R8R

6 as a 232 matrix of operators,
whose entries will be called the ‘‘connection operators’’ fromR to R8: more precisely the con
nection operator from (R,p) to (R8,p8) will be the entry corresponding to the initial determin
tion p and the final determinationp8 of the momentum.

The encoding of a wave function by its right or left symbol has the awkward feature o
preserving reality properties~the right and left symbol of a real wave function are comp
conjugate to each other, so that except in the Borel resummable case none of them is real!. When
one is keen on keeping track of reality properties it is therefore convenient to replace right
resummation by Ecalle’s median resummation, kind of a ‘‘geometrical mean’’ between the
Explicit computations of median symbols will be presented in this article, along with the c
sponding computations of right and left symbols.

The rules for computing the Stokes automorphism and the connection isomorphisms ar
simple to state, without knowing anything of resurgence theory: we shall present them as k
a ‘‘do it yourself’’ kit, which the reader can use in a great variety of situations.

In section II we deal with generic values of the energy, for which all turning points are sim
in that case we know from Ref. 11 that the connection isomorphisms are given by combinati
analytic continuations along suitable paths of the complexq plane, which we shall describ
explicitly by simple pictograms.

In section III our pictographic rules are extended~using the results of Ref. 12! to the case
when there are double turning points. The corresponding WKB expansions now involve s
J. Math. Phys., Vol. 38, No. 12, December 1997
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prefactors~which are not just power series of\!, and in section IV we show how to deal with the
prefactors in the computations.

In the concluding section V we deal with the problem of solving the quantization conditio
bound states~or resonances! with respect to the energy parameter: from the results of the prev
sections we can thus obtain exact~resurgent! expressions for the energy levels, yielding rigoro
justifications of such results as the Zinn–Justin ‘‘multi-instanton expansions’’~see Refs. 13, 14 for
instance!, or the Bender and Wu complex branch point structure of the energy levels o
symmetrical quartic oscillator~cf. Refs. 2, 15–17!. We study the latter problem in detail in Re
18.

One should emphasize that, in the spirit of Ecalle’s resurgence theory,19–23a lot of interesting
results can be obtained without ever computing explicitly the WKB expansions we are spe
about: they can be treated as implicit objects, the main interest of which lies in the small
nentials they generate through the ‘‘resurgence’’ process~which is completely described by ou
pictograms!.

On the other hand our methods can also be used by computation lovers: examples o
formal computations are given in sections IV and V. The question immediately arises of h
deduce numerical information from these purely formal computations. The best answer we
is the ‘‘hyper-asymptotic’’ procedure of Berryet al.,24–26which gives wonderfully efficient ways
of extracting very precise numerical information from divergent series, knowing the resurg
properties of these series.

A. Basic formal ingredients of complex WKB calculus

Following Voros,6 we shall denote byĊ the punctured complexq-plane ~with the turning
points deleted! and by Ċ2 its two-fold covering @i.e., the Riemann surface ofp(q)5(E
2V(q))1/2#. Locally on that covering, complex WKB expansions read27 as

w~q!5~w0~q!1w1~q!\1w2~q!\21••• !e~ i /\!S~q!, ~1.1!

whereS ~the complexified action function! is a primitive ofp ~i.e., dS/dq5p!, and the expansion
in front of the exponential is a formal power series in\. The fact that~1.1! should be a formal
solution of the Schro¨dinger equation characterizes this series up to an arbitrary normaliz
factor ~an invertible formal power series in\, with constant coefficients!. A possible choice of
normalization is

w~q!5P~q,\2!21/2e~ i /\!*q0

q P~q8,\2!dq8

(1.2)q0

~Ref. 28! where the formal power series,

P~q,\2!5p~q!1p1~q!\21p2~q!\41••• ,

is defined as the even part~in \! of the solution of the Riccati equation,

Y22 i\Y85E2V~q!

@this Riccati equation is deduced from equation~0! by the change of unknown functionf
5exp(i/\*Y). Formally solving it, and separating even and odd parts~in \!, one checks that
Yodd5 i\/2(Yeven8 /Yeven)#.

Such expansions will be called well normalized atq0 (q0PĊ2); of course they are multival-
ued analytic onĊ2 , because the integral in the exponential depends on the homotopy class
integration path. For our purposes it will be more convenient to work with slightly diffe
normalization conventions, which read as
J. Math. Phys., Vol. 38, No. 12, December 1997
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w~q!5P~q,\2!21/2e~ i /\!*`
q

~P~q8,\2!2p~q8!!dq8)e~ i /\!S~q!,
(1.2)̀

whereS is as in~1.1! ~we have used the fact thatP2p is integrable at infinity!; such expansions
will be called well normalized at infinity~here again, of course, the precise meaning of t
expression depends on the homotopy class of the integration path!.

Whichever way WKB expansions are normalized, their multivaluedness can be describ
the following way. Letg be a cycle, i.e. a path inĊ2 starting from some pointq and getting back
to the same pointq with the same determination of the momentump. Then it immediately follows
from the above formulae that analytic continuation alongg transformsw into sgn(g)agw, where
ag is the Voros multiplier of the cycleg, defined by

ag5e~ i /\!*gP~q,\2!dq), ~1.3!

and sgn(g)561 is the ‘‘signature’’ of g, given by sgn(g)5(21)n(g)/2, where n(g) is the
‘‘index’’ of g, i.e. the number of times it encircles the turning points~counting them with their
multiplicities, when they are not simple!. Notice thatn(g) is an even integer, because of o
requirement thatg should not change the determination of the momentum.

Recalling thatP5p1O(\2), we can rewrite the Voros multiplier as

ag5age~ i /\!vg, ~1.4!

with

vg5E
g
pdq ~1.5!

and

ag5ei /\*g~P~q,\2!2p~q!!dq511O~\!

~a formal series of integral powers of\!.
Of courseag depends only on the homology class of the cycleg in the complex hyperelliptic

curvep25E2V(q). Furthermore

ag1g85agag8.

B. Wave interpretation of Stokes phenomena

It should be emphasized that in resurgence theory the meaning of such terms as Stoke
Stokes regions,... etc., is the same as in Dingle1 ~and as in Stokes’ original article!!: Stokes lines
are not the places where two exponentials~corresponding to two opposite determinations ofp!
‘‘exchange their dominance,’’ but the places where one of them is ‘‘maximally dominant’’ o
the other~this is the natural point of view when WKB expansions are understood not as
‘‘asymptotic expansions’’ in the Poincare´ sense, but as exact encodings of true functions thro
resummation procedures!.

Locally in Ċ ~the complexq plane minus the turning points! the space of WKB symbols split
into two subspaces, depending on which determination is chosen for the square
p5(E2V(q))1/2 in formula ~1.1!.

Stokes lines can be characterized as those places inĊ where the Stokes automorphismG is
not diagonal with respect to this splitting, so that speaking of ‘‘a wave function with momen
p’’ would be meaningless~do we mean a wave function with only components of momentump in
J. Math. Phys., Vol. 38, No. 12, December 1997
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its right symbol, or in its left symbol?!. This is why careful distinction should be made, in readi
what follows, between those notions which concern symbols~i.e., formal objects: e.g., the notion
of ‘‘dominant’’ and ‘‘recessive’’ symbols in Sec. I B 2! and those which concern wave function
~i.e., true solutions of the Schro¨dinger equation: e.g., the notion of an ‘‘L-decaying’’ wave func-
tion in Sec. I B 2!.

1. Canonical decomposition of a wave inside a Stokes region

Inside a Stokes region the Stokes automorphismG is diagonal with respect to the abov
mentioned direct sum decomposition into opposite determinations of the momentum: if th
symbol of a wave in some Stokes region belongs to the subspace with givenp, the same is true for
its right symbol and conversely. It therefore follows that inside a Stokes regionR the property of
‘‘having a given determination of the momentum’’ is not just a property of formal WKB exp
sions, it also has a meaning for true solutions of the Schro¨dinger equation. As an importan
example, letq belong to a classically allowed segment of the real axis~we consider here the ‘‘rea
case,’’ whereV is real valued andE is real!. Such a segment cannot coincide with a Stokes li
Let us restrict it so that it lies inside a Stokes region. By the above decomposition any
function in such a segment can be written as a sum of two waves: one with only positivep terms
in its symbol, which we can interpret as a wave propagating right; one with only negativep terms
in its symbol, which we can interpret as a wave propagating left.

Scattering through or above a potential barrier can be analyzed by comparing this dec
sition far right and far left along the real axis: letf be a wave function which forq real !0
propagates left in the above sense~this property defines it unambiguously, up to normalizatio!;
let f5f11f2 be forq real @0 its decomposition into components of positive and negativep:
for q real@0 we can interpretf2 as the incident wave andf1 as the reflected wave whereasf,
for q real !0, is the transmitted wave.

2. Comparing decompositions across an unbounded Stokes line

In the real case the classically forbidden segments of the real axis do not lie inside S
regions: they are examples of Stokes lines.

Comparing the canonical decompositions~Sec. I B 1! in two Stokes regionsR, R8 separated
by a Stokes line is especially interesting~and easier! along unbounded Stokes lines, which conn
infinity to a turning point. Along such a Stokes lineL the two possible determinations of th
momentump correspond, respectively, to waves which ‘‘fade into the turning point’’~resp., ‘‘fade
away at infinity’’!: by this we mean that moving alongL towards the turning point~resp., away
from it! is the fastest way for the exponential exp(i/\*pdq) to decrease. WKB symbols with th
corresponding determination of the momentum will be called dominant alongL ~resp., recessive
along L!; we denote by WKBL ~resp., WKBL! the space of WKB symbols nearL which are
dominant~resp., recessive! alongL.

Although the Stokes automorphismG is not diagonal with respect to the decompositi
WKB5WKBL % WKBL, the subspace WKBL of recessive symbols turns out to be stable underG.
In other words, the property for a wave of having a recessive symbol does not depend on w
the right or left symbol is considered. Such a wave will be called anL-decaying wave. In the
two-dimensional vector space of solutions of the Schro¨dinger equation,L-decaying waves are th
one-dimensional subspace of those solutions which decay exponentially at infinity alon
Stokes lineL. Such a solution can be normalized so that its symbol is Borel resummable, for
q on L ~this is the case for WKB expansions which are ‘‘well normalized at infinity’’ alongL, in
the sense of Sec. I A!.

Reflection against an infinite wall is a case where the present analysis applies near one
the real axis~the classically forbidden one, which is a unbounded Stokes lineL2! and analysis
~Sec. I B 1! near the other end~the classically allowed one!: by computing the connection operato
J. Math. Phys., Vol. 38, No. 12, December 1997
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from WKBL2
to either one of the two WKB components on the classically allowed end, we ge

symbols of the incident and reflected wave, as compared to that of the~decaying! transmitted
wave.

3. Search for bound states and resonances

Searching for bound states in a confining potentialV ~where both ends of the real axis a
classically forbidden! amounts to finding those values of the energyE for which W 2`

dec , the
subspace of wave functions decaying at2`, coincides withW 1`

dec , the subspace of wave func
tions decaying at1`.

Similarly, searching for resonances in a scattering problem of the kind considered in
I B 1, or in a reflection problem of the kind considered in Sec. I B 2, amounts to finding t
~complex! values of the energy for which the reflected component of the wave will van
Assuming that the incident wave comes from the right, this amounts to finding those values
energyE for which W 2` coincides withW 1`

2 ~the subspace of waves with negative moment
near1`!, where we have denoted byW 2` the following subspace:

W 2`5H W 2`
dec ,

W 2`
2 ,

if 2` is classically forbidden,
if 2` is classically allowed.

Setting in similar fashion,

W 1`5H W 1`
dec ,

W 1`
2 ,

if 1` is classically forbidden,
if 1` is classically allowed,

we thus see that the bound state or resonances energies can be defined in every case
values of the energy for whichW 2`5W 1` . This amounts of course to the vanishing of t
obvious operator,

J :W 2`→W /W 1` ,

which we shall call the Jost operator. To express this condition in a less abstract way, let us
some basis (f,f!) of the two dimensional vector spaceW , depending analytically onE in the
interval under concern, such that for everyE in that interval,

~1! fPW 2` ,
~2! f!¹W 1` ~so thatf! generatesW mod. W 1`!.

Such a basis will be called a Jost basis. Then one can write

f5J~E!f! mod W 1` ,

whereJ(E) is an analytic function of the energy, which we call the Jost function. The value
E we are looking for are just the zeros of this function.

II. SOLVING THE CONNECTION PROBLEM FOR GENERIC ENERGIES

We shall assume here thatE is a non critical value of the energy, so that all turning points
simple.

For any choiceR,R8 of Stokes regions we shall give an explicit ‘‘pictographic’’ description
the connection isomorphismsC R8R

1 and C R8R
2 as finite sums of analytic continuation operato

along suitable paths ofC.
In Subsection II A we will deal with the ‘‘simple pattern’’ case where all Stokes lines

unbounded. ThenC R8R
1

5C R8R
2 (5:C R8R).
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



eans

tokes

ning

6132 Delabaere, Dillinger, and Pham: Exact semiclassical expansions

                    
In Subsection II B we will reduce the general case to the simple pattern case~a different
reduction forC R8R

1 andC R8R
2 !.

In both cases we shall give explicit computations for explicit examples.

A. Connection isomorphisms for simple patterns

Each turning point is tied to three Stokes lines, and the ‘‘simple pattern’’ hypothesis m
that these Stokes lines come from infinity.

In this case, as shown in Ref. 12, the property of being Borel resummable in some S
regionR is preserved by analytic continuation to another Stokes regionR8. Accordingly, the right
and left connection isomorphisms are equal and we denote them simply byC R8R .

1. The elementary connection isomorphisms C L and C L
21

Let us consider a Stokes lineL, the Stokes regionR on the right side ofL, andR8 on its left
side as shown in Fig. 1~our convention is to orient unbounded Stokes lines toward the tur
point!. We shall callC L :5C R8R the elementary connection isomorphism acrossL.

With the convention that WKBL(R) @resp., WKBL(R)# is the summand of WKB(R) consist-
ing of all symbols which are dominant~resp., recessive! on L,C L is given by its restrictions:

C LuWKBL~R!5L1dL and C LuWKBL~R!5L,

whereL means analytic continuation acrossL, and

FIG. 1. Elementary connection operator acrossL.

FIG. 2. Inverse elementary connection operator acrossL.
J. Math. Phys., Vol. 38, No. 12, December 1997
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dL :WKBL~R!→WKBL~R8!

is the so-called elementary connection operator acrossL, which we shall now compute.
Proposition II.1.1:The elementary connection operatordL is the analytic continuation opera-

tor aroundL from R to R8 as shown in Fig. 1.
Proof (the idea of this proposition comes from Voros6): Just compare, forc in WKBL(R), the

two expressions ofC R8Rc obtained first by crossingL clockwise and secondly by crossingL9
thenL8 anticlockwise~for the details, cf. Ref. 11; See also Refs. 29, 30!. h

Consequence:In the same way one can describeC L
21:5C RR8 as follows:

C L
21

uWKBL~R8!5L1 d̄L , C L
21

uWKBL~R8!5L,

whered̄L is the analytic continuation operator aroundL from R8 to R as shown in Fig. 2.

Pictograms ofC L and C L
21: It will be useful to describe the elementary connection isomor-

phismsC L andC L
21 by simple pictograms as shown on Fig. 3: the arrows on the base level of

triangle are carrying WKBL symbols while those on the summit carry WKBL ones.

FIG. 3. Pictograms for elementary connection operators.

FIG. 4. The two kinds of Stokes regions.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



g a
ne in-
d
in-
y WKB

s
Stokes

unded

hose

a

tokes
und a

6134 Delabaere, Dillinger, and Pham: Exact semiclassical expansions

                    
The diagrams on the right of the picture can be read in the following way: followin
horizontal arrow without changing level means analytic continuation across the Stokes li
volved~L operator!. Climbing down~resp., up! a triangle is allowed only from base to summit an
represents an operatordL ~resp.,d̄L!; it means analytic continuation around the Stokes line
volved. The number of arrows on each segment helps us to remember how many elementar
symbols are carried by this segment.

2. The connection isomorphism C R8R

For any two Stokes regionsR andR8 the connection isomorphismC R8R can be computed a
the product of successive elementary connection isomorphisms along any chain of adjacent
regions. Our aim here is to exhibit such a chain which is canonical.

Global topological properties:
~1! In the simple case we are interested in here, each turning point is tied to three unbo
Stokes lines coming from infinity.
~2! One can distinguish only two kinds of Stokes regions as shown in Fig. 4.

The first property is a simple remark. The second one is due to the following result, w
proof is given in Ref. 31~see also Ref. 32!:

Lemma II.1.1:The action functionS maps conformally each Stokes region either onto
half-plane~first kind! or onto a strip~second kind!.

Vocabulary:Two Stokes regions will be called adjacent when they have a common S
line in their boundary; conversely, two Stokes lines will be called successive when they bo
common Stokes region.

FIG. 5. The canonical sequence of Stokes regions and Stokes lines.

FIG. 6. Two canonical sequences for the harmonic oscillator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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First elementary property of successive Stokes lines:For two successive Stokes linesL andL8
bounding a common Stokes regionR of the first kind one has WKBL(R)5WKBL8(R) or, equiva-
lently WKBL(R)5WKBL8(R).

A canonical way of connecting two given Stokes regions R and R8: The three Stokes lines tied
to a turning point divideC into three connected components, among which one or two contain
neitherR nor R8. After shading all such components for every turning point, we are left with a
finite sequenceR15R,2, . . . ,Rn115R8 of successively adjacent Stokes regions separated by
finite sequenceL1, L2, . . . , Ln of successive Stokes lines, as illustrated by Fig. 5.Remark:All
Stokes regionsRi betweenR andR8 in the above sequence are of the second kind.

The canonical sequence thus yields a canonical way to go fromR to R8.
Proposition II.1.2:The canonical way is the only way to go fromR to R8 across Stokes lines

all tied to different turning points.
Proof of the proposition:Let l be a connectingR to R8 as described in the proposition. One

easily checks that the shaded regions in the above construction are exactly those whichl does not
cross.

Corollary II.1.1: For any choiceR,R8 of Stokes regions, the connection isomorphismC R8R is
canonically given by the product

C R8R5C Ln

enC L~n21!

e~n21! •••C L1

e1 ,

where L1 ,L2 ,...,Ln is the canonical sequence ande i511 ~resp., 21! if the path l of the
proposition above crossesLi from right to left ~resp., from left to right!.

Definition II.1.1: Two successive Stokes lines in the canonical sequence are called para
~resp., antiparallel! if the canonical way to cross them is the same~resp., opposite!.

FIG. 7. Pictograms for the connection isomorphisms of Fig. 6.

FIG. 8. The harmonic oscillator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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For instance, in Fig. 5 above,L1 , L2 andL3 , L4 are antiparallel whileL2 , L3 are parallel.
Second elementary property of successive Stokes lines:If two successive Stokes linesL and

L8 bound a common Stokes regionR of the second kind and are not tied to the same turning poin
then the following properties are equivalent:
~1! L andL8 are parallel.
~2! L andL8 have the same asymptotic direction.
~3! WKBL(R)5WKBL8(R).

A direct consequence of these properties is the following:
Proposition II.1.3:In the simple pattern case, the composition of our canonical sequence

elementary connection isomorphisms can be described pictographically by pasting side by sid
successive pictograms of Sec. II A 1, Fig. 3.

For instance, the connection isomorphisms corresponding to the two Stokes patterns of F
are described by the two pictograms on Fig. 7.

Proof of the proposition:The only thing to understand here is the fact that the conventions o
Fig. 3, whereby dominant and recessive WKB symbols are distinguished according to the leve
the corresponding horizontal arrows, are compatible from one elementary pictogram to the n
one. Since all Stokes lines in the canonical sequence are tied to different turning points,
compatibility property follows from the second elementary property of the successive Stokes li
above. h

3. The harmonic oscillator

TakingV(q)5q2 for our potential function~Fig. 8!, we get the Stokes patterns shown on Fig.
9. The corresponding connexion isomorphisms are shown on Fig. 10.

FIG. 9. Stokes patterns for the harmonic oscillator.

FIG. 10. Pictograms of the connection isomorphisms of Fig. 8.
J. Math. Phys., Vol. 38, No. 12, December 1997
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4. The cubic barrier (subcritical case)

Let us consider a cubic barrier and a valueE of the energy as shown on Fig. 11.
The corresponding Stokes pattern is thus given by Fig. 12.
Following the scheme announced in Sec. I B, we shall analyze our wave functionf in terms

of incoming, reflected and transmitted waves.
Since the transmitted wave must decay atq52`, we can takef(q)PW 2`

dec to be the Borel
sum for q,q1 of some recessive WKB expansionw, well normalized at2`. The connection
isomorphismC R1R2

then gives

C R1R2
~w!5w inc1w ref ,

wherew inc andw ref are the analytic continuations ofw indicated on Fig. 13, whose Borel sums c
be interpreted as an incoming wavef incPW 1`

2 and a reflected wavef refPW 1`
1 ~whereW 1`

1

is the subspace of waves with positive classical momentum near1`!.
Graphical conventions for connection paths:Here and in the sequel, we use full lines f

those portions of path following the realq-axis with a positive real determination ofp ~wave
travelling rightwards! or a positive imaginary determination ofp ~wave decaying leftwards!.

B. Connection isomorphisms in the presence of bounded Stokes lines

Although they are ‘‘non-generic,’’ bounded Stokes lines often occur as a result of the
metries of the potential function: for instance, if the potential is real, symmetry by com

FIG. 11. The cubic barrier.

FIG. 12. The Stokes pattern for a cubic barrier.
J. Math. Phys., Vol. 38, No. 12, December 1997
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conjugation implies that all classically forbidden segments of the real axis are Stokes lines,
all ‘‘tunnel segments’’ are bounded Stokes lines. Of course this is true only because of our s
way of choosing the ‘‘resummation direction’’ in the ‘‘Borel plane’’~the plane of the complex
variablej, dual to 1/\!, taking it to be the positive real direction argj50. Replacing this direction
by argj56e, with e a small enough positive number, results in splitting the Stokes pattern in
simple one~with only unbounded Stokes lines!. As shown in Ref. 12, one gets the connecti
isomorphismC R8R

1 ~resp.,C R8R
2 ! by applying the algorithm~Sec. II A! to this simple argj51e

~resp., argj52e! pattern.
The topology of this ‘‘split’’ pattern depends on the sign of argj. One gets it by rotating each

Stokes line anticlockwise (argj.0) or clockwise (argj,0) around its turning point, as illustrate
by the examples below.

1. The parabolic barrier (subcritical case)

Let V(q)52q2 be our potential function, and letE,0 ~Fig. 14!.
Since the ‘‘tunnel’’ segment@q1 ;q2# carries a bounded Stokes line, the corresponding Sto

pattern is singular as shown on Fig. 15.
Splitting this singular pattern gives the two simple patterns drawn on Fig. 16 and ther

two canonical sequences (L1
1 ;L2

1) and (L1
2 ;L2

2) of Stokes lines betweenR andR8.
The connection isomorphismsC R8R

1 andC R8R
2 can be computed explicitly as the products

C R8R
2

5C L
2
2

21
C L

1
2, C R8R

1
5C L

2
1C L

1
1

21
,

FIG. 13. Connection paths relating the symbols of the transmitted, incident and reflected waves.

FIG. 14. The subcritical parabolic barrier.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



no

e

of

ion

23.

6139Delabaere, Dillinger, and Pham: Exact semiclassical expansions

                    
and pictographically represented by Fig. 17.
Being interested here in transmission and reflection of a wavef coming from the right, we

assume that along the left end of the real axis its canonical decomposition Sec. I B 1 has
positive p terms~no component ‘‘coming from the left’’!. This amounts saying that it is expo-
nentially decreasing along the Stokes lineL1

2 , and the simplest way to ensure this is to take its
symbol w to be well normalized alongL1

2 : thereforew is Borel resummable onL1
2 and in the

adjacent Stokes regions~including the left end of the real axis!, where its Borel sum can be
assumed to be exactlyf ~this assumption amounts to suitably choosing the normalization of the
transmitted wave!.

From the pictogram ofC R8R
2 ~say! we thus infer that along the right end of the real axis the left

symbol off is the sum of the two analytic continuations ofw shown on Fig. 18, which we have
denoted byw inc andw ref because they can be interpreted, respectively, as the left symbol of th
incoming, resp., reflected wave~working with right symbols would have given a more compli-
cated decomposition, with four terms instead of two; we leave it to the reader to check which
the four belong to the incident wave, and which to the reflected wave!.

2. The parabolic barrier (overcritical case)

Let againV(q)52q2, but assume nowE.0 ~Fig. 19!. Here again the turning pointsq1 ,q2

~which are now complex conjugate! are tied by a bounded Stokes line as shown on Fig. 20.
Figures 21 and 22 show the corresponding split patterns, and the pictograms of the connect

isomorphisms. Now the transmitted wave is exponentially decreasing alongL1
1 , and the incoming

and reflected waves are most easily described by their right symbols, which are shown on Fig.

FIG. 15. The Stokes pattern of a subcritical parabolic barrier.

FIG. 16. Left splitting and right splitting of the singular pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 17. Pictograms of left and right connection isomorphisms.

FIG. 18. Connection paths relating left symbols~the graphical conventions have been explained at the end of subsection
II A !.

FIG. 19. The overcritical parabolic barrier.

FIG. 20. The Stokes pattern of an overcritical parabolic barrier.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 21. Left splitting and right splitting of the singular pattern.

FIG. 22. Pictograms of left and right connection isomorphisms.

FIG. 23. Connection paths relating left symbols.

FIG. 24. The cubic barrier and the energy levelE.
J. Math. Phys., Vol. 38, No. 12, December 1997
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3. The cubic barrier (resonance case)

Let us now consider a cubic barrier and a valueE of the energy as on Fig. 24. The corre-
sponding Stokes pattern~Fig. 25! is singular~the ‘‘tunnel segment’’@q2 ;q3# carries a bounded
Stokes line!. Splitting this singular pattern leads to the two simple patterns drawn on Fig. 26, an
therefore to two canonical sequences (L1

1 ;L2
1 ;L3

1) and (L1
2 ;L2

2 ;L3
2) of Stokes lines betweenR

andR8.
The connection isomorphismsC R8R

1 andC R8R
2 are explicitly given by the products

C R8R
2

5C L
3
2

21
C L

2
2C L

1
2, C R8R

1
5C L

3
1C L

2
1

21
C L

1
1,

and pictographically represented by Fig. 27.
For the same reason as in Sec. II A we can assume that our wave functionf is, for large

negativeq, the Borel sum of a WKB expansionw well normalized at2` along the real axis.
The right, resp., left symbol of the reflected wave is deduced fromw by the right, resp., left

Jost connection operatorJ 1, resp.,J 2, which can be read directly on the pictograms of Fig. 27.
One thus finds

J 15l11gl21m,

J 25l11l2 ,

wherel1 , l2 , m denote analytic continuation along the paths shown on Fig. 28.
Notice that any two of these paths differ only by a cycle onĊ2 , i.e. a path coming back where

it started with the same determination of the momentum. For instance,

l2l1
215gosc,

FIG. 25. The singular Stokes pattern for a cubic barrier.

FIG. 26. Left and right splitting.
J. Math. Phys., Vol. 38, No. 12, December 1997
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ml2
215g tun,

wheregosc and g tun are the ‘‘oscillator’’ and ‘‘tunnel’’ cycles represented on Fig. 29. We thus
deduce from Sec. II A~noticing that these cycles have zero index, and therefore positive signatur!
the following rewriting of the Jost connection operators:

J 15~11agosc1agoscag tun!l1 ,

J 25~11agosc!l1 .

Remembering thatf has been defined for large negativeq as the Borel sum ofw, let us define
f* for large positiveq as the Borel sum ofl1w ~the latter symbol is indeed Borel resummable,
becausel1 crosses no bounded Stokes line, i.e. it does not cross the tunnel cycle!. One thus gets
a Jost basis (f,f* ) such that the right and left Jost symbols~i.e., the symbols of the Jost function!
read as

J1511agosc1agoscag tun,

J2511agosc.

Notice that the action period of the oscillator cycle is positive real, whereas the action period
the tunnel cycle is positive imaginary, so thatagosc has modulus 1 whereasag tun is exponentially
small.

Remark:Comparison ofJ1 andJ2 shows that

Gagosc5~11ag tun!agosc,

FIG. 27. Pictograms of left and right connection isomorphisms.

FIG. 28. Connection paths involved in the construction of the Jost connection operator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereG is the Stokes automorphism~which transforms the left symbol of a function into the right
symbol of the same function!. This result is just a special case of theorem 3.1 in Ref. 11~one
immediately sees on Fig. 29 that the intersection numberg tun•gosc is 11!. By the same theorem,
one has

Gag tun5ag tun,

so that it is easy to compute the median symbolJmed5G1/2J25G21/2J1,

Jmed511agosc~11ag tun!1/2511agosc1
1

2
agoscag tun1••• .

4. The double well oscillator

Let us consider a double well potentialV for a generic value of the energy~Fig. 30!. The
corresponding Stokes pattern is singular, because the tunnel segment@q2 ;q3# carries a bounded
Stokes line.

Being interested in the behavior of the solutions of the Schro¨dinger equation at infinity on the
real axis, and since the half-linesL5] 2`;q1] andL85@q4 ;1`@ are Stokes lines, we have to use
either the right or the left resummation process. Splitting the singular picture above thus yields
two generic Stokes patterns drawn on Figs. 31 and 32.

On each of these pictures, the Stokes regionR, resp.,R8 near2`, resp.,1` has been chosen
to be that one which contains the real axis. Actually, this choice is of no consequence if one
only interested in computing the Jost connection operator, i.e. the operator connecting reces
symbols at2` and dominant symbols at1`.

Reading the corresponding part of the pictogram ofC R8R
1 , resp.,C R8R

2 we thus find that the
right, resp., left Jost connection operator is given by

J 15l211l121l221l111n1 ,

FIG. 29. The oscillator and tunnel cycles.

FIG. 30. A double well oscillator and its singular Stokes pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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resp.,

J 25l211l121l221l111n2 ,

where the paths of analytic continuations are those shown on Fig. 33.
Introducing the oscillator cyclesg l , g r and the tunnel cycleg of Figs. 34, 35, we have

g l5l11l21
21 , g r5l11l12

21 , g5n1l11
21 ,

and noticing that

l22l11
21 52g r2g l

~the minus sign in front ofg r and g l indicates that the opposite orientation has been cho
Whereas the composition of pathsl i is denoted multiplicatively, as a composition of operato
the cycles make up a commutative group which we denote additively.!, we get

J 15~~11ag l !~11a2gr !1ag lag!l21 ,

J 25~~11ag l !~11a2gr !1a2grag!l21 .

Let us define a Jost basis (f,f* ) as follows

~1! f is the Borel sum, for large negativeq, of a WKB expansionw well normalized at2`;
~2! f* is the right or left sum, for large positiveq, of l21w.

FIG. 31. Right splitting of the singular pattern.

FIG. 32. Left splitting of the singular pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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What makes such a choice convenient is the fact thatl21 does not cross the tunnel segment~the
only bounded Stokes line in this case!, so that the right and left sums ofl21w coincide modulo
W 1` ~they do not exactly coincide because the positive real axis is a Stokes line!.

With these conventions, the right, resp., left Jost symbol reads as

J15~11ag l !~11a2gr !1ag lag,

J25~11ag l !~11a2gr !1a2grag.

Notice that the action periods of the oscillator cyclesg l ,g r are positive real, whereas the actio
period of the tunnel cycleg is positive imaginary, so that the ‘‘tunnel’’ contribution in the abo
expressions is exponentially small, as expected.

C. The principal part of the Jost symbol

The above results are easily generalized to any polynomial potential function. Assumin
the energy is so chosen that the real axis crosses at least one well, it can be readily seen
corresponding pictogram that each of the oscillator cyclesg i appearing in the~right, left or
median! Jost symbol has index 0, so that this symbol reads as

FIG. 33. Connection paths for the double well oscillator.

FIG. 34. The oscillator cycles~index l , resp.,r stands for left, resp., right!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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where the ‘‘principal part’’ involves all the oscillator cyclesg1 ,...,gk , whereas the exponentiall
small correction is the contribution of cyclesg with T vg.0 ~such as ‘‘tunnel cycles,’’ or cycles
tied to complex turning points!.

III. SOLVING THE CONNECTION PROBLEM FOR CRITICAL ENERGIES

A. Rescaling E near a critical value

Studying the spectrum of the Schro¨dinger equation requires understanding how WKB exp
sions depend onE.

For non critical energies, i.e. as long as all turning points remain simple, this dependenc
course analytic. Even better, it is regular in the sense of Ref. 12, and this means that al
operations on functions such as substitution, etc. can be performed without spoiling the resu
properties. Therefore the results of Sec. I not only apply whenE in equation~0! is a given
constant: one can also substitute toE any resurgent expansion,

E5E01E1\1E2\21...,

and make the corresponding substitution in the WKB expansions~the resulting Stokes lines ar
those of theE5E0 case!.

This nice behaviour may break down in the critical cases, i.e. when confluence of tu
points occurs. More precisely, well normalized WKB expansions will be singular for those v
of the energy for which the normalization pathl ~used for defining the ‘‘good normalization’’: cf
Sec. I A! is ‘‘pinched’’ by the confluence of some turning points. Of course near a given cri
energyEcrit it is always possible to choose a basis of WKB expansions such that their norm
tion paths are not pinched, so that their dependence onE is again regular in the above sense. B
among all paths of analytic continuation in theq-plane which are involved in solving the conne
tion problem, some will be pinched, so that regular dependence onE is not preserved by the
connection isomorphisms.

The aim of the present section is to solve the connection problem in such critical c
Allowing E in equation~0! to be a resurgent expansion in\ as indicated above, we shall assum
it to be ‘‘infinitely close’’ to a quadratic critical value of the potential, i.e.E5Ecrit10(\), where
Ecrit5V(qcrit), qcrit being a quadratic critical point ofV ~i.e., a double zero ofEcrit2V). It will
turn out that no generality is lost by assuming the 0~\! term to be linear, i.e.

E5Ecrit1Er\.

In fact, treatingEr as a free parameter~the ‘‘rescaled’’ energy!, our solution of the connection
problem will be built~via explicit special functions! from ‘‘simple’’ WKB expansions which will
depend regularly on the rescaled energyEr throughout the whole complex plane, allowing a
further resurgent substitutionsEr5Er(\).

The following terminology will be used throughout this section. By the rescaled Schro¨dinger
equation we mean the Schro¨dinger equation withE replaced byEcrit1Er\.

FIG. 35. The tunnel cycle.
J. Math. Phys., Vol. 38, No. 12, December 1997
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By a rescaled WKB expansion we mean any formal solution of the rescaled Schro¨dinger
equation.

We shall start with so-called simple rescaled WKB expansions~‘‘simple’’ refers to the simple
dependence on\. Non simple expansions will be met in Sec. III C, Thm. III.3.1.!, i.e. expansions
of the form

w~q!5~w0~q!1w1~q!\1w2~q!\21...!e~ i /\!Scrit~q!,

whereScrit(q) is a primitive of

pcrit~q!5~Ecrit2V~q!!1/2.

Such rescaled WKB expansions can be obtained from the usual ones by mere substituE
5Ecrit1Er\, provided the normalization path of our ‘‘usual’’ WKB expansion is not pinched
the confluence of turning points.

Lemma III.1.1:The leading coefficientw0 of a simple rescaled WKB expansion reads as

w05pcrit
21/2eiEr t,

where the ‘‘time coordinate’’t5t(q) satisfies

dt5
dq

2pcrit

~the latter equation characterizest up to an additive constant, ‘‘the origin of time;’’ rewriting it a
pcrit51/2(dq/dt) shows why it deserves being called a ‘‘time’’!.

Proof: Just solve the rescaled Schro¨dinger equation.
One may also look at the effect of the rescaling on a~usual! WKB expansion~assuming its

normalization path is not pinched!. RescalingS(q,E)5*q0

q p(q8,E)dq8 gives

S~q,Ecrit1Er\!5S~q,Ecrit!1\Er

]S

]E
~q,Ecrit!10~\2!,

with

]S

]E
~q,Ecrit!5E

q0

q dq8

2pcrit~q8!
5t.

h

B. The monodromy exponent „s… of a double turning point

We analyze here the behaviour of WKB expansions near a double turning point.
For E close toEcrit ~but different from it! the double turning point splits into two simple one

and drawing a cut between them splits locallyĊ2 ~the Riemann surface ofp! into two copies of a
cut disc, glued along the cut. Let us choose one of these copies, i.e. one determination ofp, and
let g be a cycle in that cut disc, encircling the cut anticlockwise; we can draw it as close to th
as we like, so that forE5Ecrit it becomes a circle of arbitrary small radius. We callg the
vanishing cycle associated to the chosen determination ofp. Given any WKB expansion with tha
determination ofp, analytic continuation alongg multiplies it by e2ips, where

s5s~E,\!5
1

2p\
Vg~E,\2!2

1

2
,

J. Math. Phys., Vol. 38, No. 12, December 1997
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Vg~E,\2!5E
g
P~q,E,\2!dq5vg~E!10~\2!

~cf. the notations of subsection I A!.
We calls the monodromy exponent of the double turning point~for the chosen determinatio

of p!. Notice that choosing the opposite determination ofp would result in changing the sign o
Vg ~this amounts to reversing the orientation of the vanishing cycle!, so that the two possible
determinations ofp define two monodromy exponentss1 , s2 , related bys11s2521.

Now comes the main point:
all the above~resurgent! expansions in\ depend regularly onE nearEcrit ~this comes from the fac
that the vanishing cycle is not pinched by the confluence of the turning points; in particularvg is
holomorphic atE5Ecrit!.

This property allows us to perform the substitutionE5Ecrit1Er\, thus obtaining the rescale
monodromy exponent~a resurgent series in\, depending regularly onEr in the whole complex
plane!. To the lowest order in\, it reads as

sresc~Er ,\!52
1

2
1

ErTg

2p
10~\!,

whereTg is a non zero constant, the ‘‘time period’’ of the vanishing cycleg, defined by

Tg5
dvg

dE
~Ecrit!5E

g

dq

2pcrit

~an integral easily computable by the residue formula, sincepcrit has a simple zero atqcrit!.
N.B.- In the sequel the same notations will be used for the monodromy exponent, wheth

rescaled or not.
Computation of rescaled monodromy exponents:Our aim here is to describe a simple alg

rithm for computing rescaled monodromy exponents to all orders in\.
Considering a simple rescaled WKB expansionw in a neighborhood of a double turning poin

qcrit , let us denote by (i /\)Y its logarithmic derivative; thenY(q,Er ,\) is a formal solution of the
following rescaled Riccati equation:

Y22 i\
d

dq
Y5pcrit

2 1\Er .

Setting

Y~q,Er ,\!5Y0~q!1 (
k>1

Yk~q,Er !\
k,

one gets theYk’s by iteration;

Y05pcrit ,

Y15
1

2Y0
S Er1 i

d

dq
Y0D ,

for n>1, Y~n11!5
1

2Y0
S i

d

dq
Yn2 (

1<k<n
YkY~n2k!D .

We deduce the behaviour of theYk’s in a neighborhood ofqcrit : for k>1:
J. Math. Phys., Vol. 38, No. 12, December 1997
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Yk is Hpolar of order at most 2k21 on qcrit ,
polynomial with respect toEr of degree at mostk.

As a consequence we get that locally in a neighborhood ofqcrit ,

d

dq
ln~w!5

i

\
Y5

s~\,Er !

q2qcrit
1k~q,Er ,\!,

with k uniform in a neighborhood ofqcrit , without a simple pole, whereas the monodrom
exponents of w reads as

s~\,Er !5s0~Er !1s1~Er !\1s2~Er !\
21...,

with sk(Er) polynomial with respect toEr of order at mostk11.
Observing now that the rescaled Schro¨dinger equation~or the corresponding rescaled Ricca

equation! is invariant under the involution (Er ,\)→(2Er ,2\), and furthermores0(2Er)
52s0(Er)21, we deduce that

s~2Er ,2\!52s~Er ,\!21.

Putting pieces together this means that

~1! s0(Er)11/2 is an odd polynomial of order 1.
~2! for k>1, s2k21(Er) is an even polynomial of order at most 2k.
~3! for k>1, s2k(Er) is an odd polynomial of order at most 2k11.

C. The elementary connection operator

The pattern of Stokes lines in the critical case is obtained by writingE5Ecrit : it does not
depend on the rescaled energyEr .

Whereas each simple turning point is tied to three Stokes lines, each double turning p
tied to four Stokes lines. With the same notations as in section II, the elementary conn
isomorphismC L :5C R8R across any unbounded Stokes lineL ~coming from infinity! is given by
its restrictions:

C LuWKBL~R!5L1dL and C LuWKBL~R!5L,

whereL means analytic continuation acrossL, and

dL :WKBL~R!→WKBL~R8!

is the elementary connection operator acrossL.
In the case of a simple turning point, nothing has to be changed in the description o

elementary connection operator given in section II~Prop. II.1.1!.
Consider now the case of a double turning point~Fig. 36!.
Let w rescbe a simple rescaled WKB expansion defined in a neighborhood of a simple S

line L fading into a double turning pointqcrit . Assumew resc to be dominant onL. The following
proposition describes how the elementary connection operator attached toL acts onw resc.

Theorem III.3.1: Denoting bys5s(Er ,\) the ~rescaled! monodromy exponent ofw resc at
qcrit ~cf. Sec. III B!, one has

dLw resc5
A2p

G~2s!
\s11/2dL

redw resc,
J. Math. Phys., Vol. 38, No. 12, December 1997
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whered L
redw resc is another simple rescaled WKB expansion~depending regularly onEr! whose

action exponentScrit
! (q) is deduced from the action exponentScrit(q) of wcrit by the symmetry of

centerScrit(qcrit) ~the value of the action at the turning point!.
The important feature of this theorem~the proof of which is given in Ref. 12; see also Re

33, 34, 35, 36! is the fact that the connection operatordL spoils ~or may spoil! two properties of
our rescaled WKB expansions:
–the factor\s11/2 spoils the simple character of WKB expansions.
–the denominatorG(2s) may spoil ~when s0 is a natural integer! the invertibility property of
WKB expansions; this failure of invertibility will play a crucial role in sectionV, when we shall
examine the quantization condition.

The numerical factorA2p is there just for later convenience.
Definition III.3.1: The operatord L

red is called the ‘‘reduced’’ elementary connection operat
How to computed L

redw resc: the ‘‘exact matching’’ method:The idea is to start from a non
critical valueE of the energy~close toEcrit!, for which the connection operator can be compu
as in section II; factoring outA2p/G(2s)\s11/2 ~expanded by means of Stirling’s formula! yields
a WKB expansion which turns out to depend regularly onE nearEcrit ~this fact, which is proved
in Ref. 12, provides us with a rigorous interpretation of the formal computations below!; from it,
d L

redw resc is obtained by the rescalingE5Ecrit1Er\.
Notice that generic values ofE nearEcrit are of two kinds, corresponding, respectively, to t

two Stokes patterns of Fig. 9~the harmonic oscillator can be viewed as the universal local mo
for the splitting of a double turning point!: in one of these patterns our given ‘‘critical’’ Stokes lin
L splits in two, attached to either turning points; in the other pattern it does not split, rema
tied to one turning point only. This second way of choosingE is the most convenient for com
puting the connection operator, because we only have one Stokes lineL to cross, so that Propo
sition II.1.1 directly applies, yieldingdL as the analytic continuation operator along a loopl q ~with
base pointq! around the relevant simple turning point.

Let us illustrate this strategy by exhibiting the leading term ofd L
redw resc ~examples of compu-

tations to higher order in\ will be given in section IV!. Let

w~q,E!5p~q,E!21/2e~ i /\!S~q,E!~110~\!!

be the WKB expansion~depending regularly onE! from which w resc is obtained by rescaling
Analytic continuation along the loopl q multiplies p21/2 by 2 i , and acts onS as the symmetry of
centreDS where

DS~E!5E
l q0

p~q8,E!dq8.

FIG. 36. Stokes lines and elementary connection operator acrossL.
J. Math. Phys., Vol. 38, No. 12, December 1997
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WhenE tends toEcrit this term is singular, because the loopl q0
is pinched by the confluence o

turning points: more precisely, denoting byg the corresponding vanishing cycle, oriented in su
a way thatRvg.0 ~our generic choice ofE ensures thatRvgÞ0, otherwise the two turning
points would be tied by a bounded Stokes line!, one has

DS~E!52vg~E!
ln vg~E!

2p i
1hol~E!,

where the function hol(E) is holomorphic forE nearEcrit . Now it turns out that factoring out
A2p/G(2s)\s11/2 just cancels out the singular part: more precisely, noticing that with the ab
choices2s'vg/2p\2 1

2 has a positive real part which goes to infinity as\→0 ~for fixed E!,
Stirling’s formula gives

A2p

G~2s!
\s11/25~2\s!s11/2e2s~110~\!!5S vg

2p D 2vg /2p\

evg /2p\~110~\!!.

Factoring out this expression indLw52 ip21/2ei /\(2S1DS)(110(\)) thus amounts to replacing
the singular termDS(E) by the ‘‘renormalized’’ expression

D renS~E!5DS~E!2
\

i
lnS A2p

G~2s!
\s11/2D'DS~E!1

vg~E!

2p i F ln
vg~E!

2p
21G

FIG. 37. Crossing a double turning point.

FIG. 38. Basic relations between the ‘‘connection paths’’ across a double turning point.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~the quantities inside the logarithms have positive real parts, and ln must be understood
principal determination of the logarithm, which is real on the positive real axis!, which is holo-
morphic indeed forE'Ecrit . SubstitutingEcrit1Er\ for E in the renormalized expression thu
gives the leading term ofd L

redw resc, as stated in the following lemma.
Lemma III.3.1:With the above notations one has

d L
redw resc52 ipcrit

21/2eiEr t* e~ i /\!Scrit* ~q!~110~\!!,

where the time coordinatet* of dL
redw rescis deduced from the time coordinatet of w resc~cf. Lemma

III.1.1! by

t* 1t5 lim
E→Ecrit

F E
l q0

dq8

2p~q8,E!
1

Tg

2p i
ln

vg~E!

2p G ,

whereTg stands for the time period of the vanishing cycle~cf. Sec. III B!. h

Remark: The higher order terms in\ can be computed by the same strategy, using
expanded Stirling formula.

D. Local relations between connection operators

Relations between elementary connection operators:Among the four Stokes regions inciden
to a double turning pointqcrit , let R andR8 be two ‘‘opposite’’ ones, as on Fig. 37.

FIG. 39. Pictorial representation of the connection operator~3.1!.

FIG. 40. Redrawing of relation~3.2!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Assuming that all four Stokes lines incident toqcrit are unbounded, letw resc be a simple
rescaled WKB expansion, dominant onL1 ~say!. Then, using the same notations as in Sec. II, o
has

C R8R~w resc!5dL2
dL1

~w resc!1L2L1~w resc!1L2dL1
~w resc!

~crossL1 thenL2!, but also

C R8R~w resc!5L22L21~w resc!1 d̄L22
L21~w resc!

~crossL21 thenL22!. Comparing both formulas yields

L2dL1
~w resc!5 d̄L22

L21~w resc!, ~3.1!

dL2
dL1

~w resc!1L2L1~w resc!5L22L21~w resc!. ~3.2!

Representing elementary connection operatorsdL , d̄L by the same pictograms as in Sec.
Fig. 3, we can transcribe these equations pictorially as on Fig. 38 by considering connection
~see Ref. 12, Sec. 2.3 for a precise definition!.

It will be convenient to have a common pictorial representation for both sides of~3.1!, as
shown on Fig. 39. On this picture, the arrow ‘‘threaded through the~double! turning point’’ can be
understood as representing the connection operator from WKBL in

, the space of WKB symbols

FIG. 41. The connection operator across a double turning point.

FIG. 42. Singular and split Stokes patterns ofV(q)5q21q4 for the critical energyE50.
J. Math. Phys., Vol. 38, No. 12, December 1997
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which are recessive on the ‘‘ingoing’’ Stokes lineL in ~hereL21!, to WKBLout the space of WKB
symbols which are dominant on the ‘‘outgoing’’ Stokes lineLout ~hereL2!.

Using that convention, relation~3.2! can be drawn as shown on Fig. 40. The connection
operatorC R8R can be drawn as shown on Fig. 41.

Application: The Jost connection operator through the bottom of a simple well:Let our
critical energy correspond globally to a strict minimum of the real valued potential functionV, say
at q50 @V(q).V(0) for qÞ0; of course we assumeV9(0)Þ0#.

Proposition III.4.1:In this situation the right and left Jost connection operators are equal, and
given by

Proof: This easily follows from the above considerations, taking forL in the negative real axis
and forLout the positive real axis. h

FIG. 43. Pictograms for connection operators through a double turning point.

FIG. 44. The bottom of a cubic well and its Stokes pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Notice that since 0 is a strict minimum ofV bothL in andLout are unbounded Stokes lines. B
it is not necessary to assume that the two other~complex conjugate! Stokes lines tied to 0 are als
unbounded. Consider for instance the case whenV is even, and has a pair of complex conjuga
zeros on the imaginary axis, e.g.V(q)5q21q4. The Stokes pattern has two complex conjug
bounded Stokes linesL, L̄ ~cf. Fig. 42, middle!. Replacing this singular pattern by its right and le
split patterns~Fig. 42, right and left!, one immediately sees that as far as the Jost connec
operator is concerned one can completely forget about the Stokes lines tied to the other
points.

E. Composing connection operators

Let R andR8 be two Stokes regions. We shall assume here that the Stokes pattern is
~no bounded Stokes lines!, so that

C R8R5C R8R
1

5C R8R
2

~the case when the Stokes pattern is singular can be reduced to this one by the ‘‘splitting
rithm’’ sketched in Sec. II B, yielding two different right and left connection isomorphismsC R8R

1

andC R8R
2 !.

Here again~for the same reasons as in Sec. II! there exists a ‘‘canonical way’’ of computing
the connection isomorphism betweenR andR8, as described by the following algorithm.
• Consider one simple~resp., double! turning point and the three~resp., four! unbounded Stokes
lines linked to this turning point. These Stokes lines split the complex plane into three~resp., four!
connected regions. Shade those regions which contain neitherR nor R8.
• Do the same for all turning points. We thus get a finite ordered sequence of~distinct! turning
points q1 ,q2 ,...,qn and a finite ordered sequence of~distinct! Stokes regions R
5R1 ,R2 ,...,Rn115R8 such that for any couple of successive Stokes regionsRi ,Ri 11 ,
–eitherRi , Ri 11 are separated by a unique Stokes lineLi linked to qi .
–or Ri , Ri 11 lie opposite with respect to a double turning pointqi .
• Then draw a pathl running successively throughR1 , R2 ,...,Rn11 ; if Ri , Ri 11 are mutually

FIG. 45. Split pattern and canonical sequence.

FIG. 46. Pictogram of the right connection operator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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‘‘opposite’’ with respect to a double turning pointqi , we shall drawl through that turning point
qi , and interpret the crossing ofqi as the connection isomorphism described in Sec. III D~Fig.
41!.
• The global connection isomorphismC R8R is described by a pictogram analogous to those of S
II, simply obtained by pasting together the elementary pictograms described hereafter: wh
Stokes regionsRi , Ri 11 are separated by a~unbounded! Stokes line, the pictographic represe
tation for C Ri 11,Ri

can be taken to be the same as in Sec. II A 1~fig. 3!, irrespective of the simple
or double character of the concerned turning point; whenRi , Ri 11 lie ‘‘opposite’’ with respect to
a double turning point we shall use the conventions shown on Fig. 43.

F. Metastable equilibrium: The bottom of a cubic well

The splitting algorithm forC R8R
1 , with R andR8 as on Fig. 44, yields the split pattern draw

on Fig. 45 with the canonical sequence obtained by an algorithm~Sec. III E!. This leads imme-
diately to the pictogram of the connection operatorC R8R

1 ~Fig. 46!.
The pictogram drawn on fig. 46~right! shows that the right Jost connection operatorJ 1 reads

as

J 15l1m,

wherel andm are the ‘‘connection paths’’ represented on Fig. 47.
Similarly, fig. 46 ~left! shows that the left Jost connection operatorJ 2 reads as

J 25l,

wherel is the same connection path as before.

G. Two-state equilibrium: The bottom of a double well

Consider the case of Fig. 48. The splitting algorithm yields the generic Stokes pattern
on Fig. 49 and the corresponding canonical sequences related to a choice of two Stokes reR
andR8.

FIG. 47. Connection paths at the bottom of a cubic well.

FIG. 48. The bottom of a double well and its Stokes pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 49. Right splitting and left splitting.

FIG. 50. Pictogram forC R8R
1 . Pictogram forC R8R

2 .

FIG. 51. Connection paths at the bottom of a double well.

FIG. 52. The top of a double well and its Stokes pattern.

FIG. 53. Canonical sequence.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Let us describe for example the isomorphismsC R8R
6 restricted to the subspace WKB2` of

those WKB expansions which are recessive on the Stokes line coming from2`. Translating the
previous canonical sequences leads immediately to the pictograms drawn in Fig. 50.

Using these pictograms we see that the right, resp., left Jost connection operator is given b

J 65l1n6 .

Herel andn1 are the ‘‘connection paths’’ represented on Fig. 51, andn2 is the path deduced
from n1 by complex conjugation.

As a consequence, notice that

G~l1n2!5l1n1 mod. WKB1` ,

where the equality holds only modulo the space of recessive symbols at1`, because the pathsl
andn6 end along the real axis which is a Stokes line.

H. The top of a double well

Consider the top of a double well. The corresponding Stokes pattern is non singular~Fig. 52!.
Figure 53 shows the canonical sequence related to the choice of the two Stokes regionsR andR8.

Here again we shall focus on the isomorphismC R8R restricted to the subspace WKB2` of
those WKB expansions which are recessive on the Stokes line coming from2`. Translating the
previous canonical sequence leads immediately to the pictograms drawn in Fig. 54.

It follows from the pictogram ofC R8R that the Jost connection operator is given by a sum of
four connection paths:

J 5l211l121m11m2 ,

drawn on Fig. 55.

FIG. 54. Pictogram forC R8R .

FIG. 55. Connection paths at the top of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Notice that this collection of connection paths is globally stable under complex conjuga
this property is a consequence of the fact that the symbols corresponding to these four con
paths are Borel resummable.

IV. COMPUTING JOST SYMBOLS FOR CRITICAL ENERGIES

The aim of this section is to give formulae for Jost symbols in critical cases, exhibiting
singular behaviour in a way which will be useful in the next section.

Recall that the definition of the Jost function depends on the choice of a ‘‘Jost basis’’ (f,f* ),
wherefPW 2` ~cf. Sec. I B 3!. The first elementf of that basis can be taken for large negati
q to be the Borel sum of a well normalized WKB expansionw ~well normalized at2` along the
left end of the real axis, when the latter is classically forbidden!. The second elementf. can be
chosen to be the~right, left or median! sum, for large positiveq, of some WKB symbol deduced
from w in a natural way, e.g. analytic continuation along some path ofĊ2 , when possible~in
critical casesĊ2 is not always connected!!. With such choices off., the only difference with the
generic case is the more complicated form of the Voros multipliersag of the ‘‘connection cycles’’
g going through double turning points~what we mean by a ‘‘connection cycle’’ is any connectio
path ending at the same place where it started, with the same determination of the mome!.
Such Voros multipliers read as

ag5S P
A2p

G~2s!
\s11/2D areg

g ,

where the product runs over all the double turning points involved~s being their monodromy
exponents!; areg

g is a simple resurgent expansion,

areg
g 5~a01a1\1a2\21...!ei /hvg~aiPC!,

which can be exactly computed by the ‘‘exact matching method’’ explained in subsection
starting from a non critical valueE of the energy~close toEcrit!, the problem can be reduced t
computing the Voros multiplier of a cycle of the type considered in section II, and factoring
the singular factors, via the~expanded! Stirling formula.

Let us illustrate the above ideas on the examples of the previous section.

A. The bottom of a cubic well

The basic ingredients for constructing Jost symbols will be the monodromy exponents of the
double turning point, and the Voros multipliera@L# of the connection cycle@L# drawn on Fig. 56,
right ~denoting byL the bounded Stokes line between the two turning points,@L# is the ‘‘con-
nection cycle associated withL, ’’ in the terminology of Ref. 12!.

Whenever~as is the case here! a double turning pointqcrit corresponds to the bottom of a wel
we shall use for defining its monodromy exponent that determination ofp such that
limq→qcrit

(p/(q2qcrit)) is positive imaginary. The monodromy exponent is a resurgent po

FIG. 56. Connection cycles at the bottom of a cubic well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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expansion in\, with real coefficients~this can be easily deduced from the algorithm described
Sec. III B!, depending regularly on the rescaled energyEr , and starting like this:

s52
1

2
1

T0

2p
Er10~\!,

whereT0 ~a positive real number! is the time period of the corresponding ‘‘vanishing oscillat
cycle’’ g0 .

The Voros multipliera@L# is also real, and reads as

~4.1!

whereuL ~a positive real number! is 1/i times the action integral along the tunnel cycle, where
a(\,Er) is a simple resurgent expansion depending regularly onEr ; c is a positive constant with
the dimension of an action, which we call the critical action multiplier; using the ‘‘exact matc
method’’ explained in subsection III C~looking at leading terms only!, we find the following
formula for c:

c5 lim

E→
.

Ecrit

S vg0~E!

2p
e2p i @T~E!/T0#D , ~4.2!

where vg0(E)5*g0(E)pdq is the action integral along the ‘‘vanishing oscillator cycle’’g0(E),
whereasT(E)5*g(E)dq/2p is the ~positive imaginary! time period of the tunnel cycleg(E);
notice that whenE→Ecrit one hasvg0(E);T0(E2Ecrit), whereasT(E) tends to infinity like
(T0/2p i )ln vg0(E) , so that the above limit is a finite number.

Example:We consider the general cubic oscillator,

V~q!52q31aq,

wherea is assumed to be real positive. Rescaling the energy near the bottom of this cubi
(E5(2/3))a3/21Er\), one gets

a@L#5
A2p

G~s11! S c

\ D s11/2

e2uL\a~a,Er ,\!,

where

uL~a!5
8

5
31/4a5/4,

whereas

c~a!560uL~a!

is the ‘‘critical action multiplier.’’ The ‘‘quasi-homogeneity’’ property of the~rescaled! Schrö-
dinger equation allows us to write
J. Math. Phys., Vol. 38, No. 12, December 1997
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s~a,Er ,\!5sS 1,
Er

a1/4,
\

a5/4D and a~a,Er ,\!5aS 1,
Er

a1/4,
\

a5/4D .

Now the ‘‘exact matching method’’ leads to the following results~see Ref. 12, Sec. 5!:

s~1,Er ,\!1
1

2
5

33/4

6
Er1S 7

576
33/41

5

192
31/4Er

2D\1S 455

18432
31/4Er1

385

55296
33/4Er

3D\2

1S 119119

10616832
31/41

95095

5308416
33/4Er

21
85085

10616832
31/4Er

4D\31O~\4!,

while a(1,Er ,\):5exp(2D(1,Er ,\)) with

D~1,Er ,\!5S 77

1152
33/41

47

384
31/4Er

2D\1S 15911

110592
31/4Er1

11947

331776
33/4Er

3D\21O~\3!.

Computation of Jost symbols:Let us now come back to the connection pathsl andm of Fig.
46, from which the right and left connection operators were built~Sec. III E 1!. They are related
by l5aLm, whereL is the connection cycle represented on Fig. 56~left!. By relation~3.2! of
Sec. III D ~fig. 40!, aL is related toa@L# by

aL1@L#5aLa@L#512e22ips.

This allows us to rewrite the right and left connection operators as follows:

J 15l1m5S 12e22ips

a@L#
11D m,

J 25l5
12e22ips

a@L#
m.

To define the Jost functionJ we shall choose the following Jost basis (f,f!):
~1! let f be the Borel sum, for large negativeq, of a WKB expansionw well normalized at

2`;
~2! let f! be the right sum, for large positiveq, of mw.
Proposition IV.1.1:With the above conventions the right, left and median symbols of the

function, respectively, read as

J15
12e22ips

a@L# 11, ~4.3!1

J25~11a@L#!
~12e22ips!

a@L# , ~4.3!2

Jmed5~11a@L#!1/2S ~12e22ips!

a@L# 1
~11a@L#!1/221

a@L# D . ~4.3!med

Proof: The formula forJ1 is an immediate consequence of the formula forJ 1. Computation
of J2 requires more care, because the pathm intersects the tunnel cycle@L# with a non zero index,
so that the left symbol off! is not equal to its right symbolmw. By Theorem 2.5.1 of Ref. 12
~using the fact that this intersection index is equal to11!, we find that the Stokes automorphis
acts in the following way:

Gmw5~11a@L#!mw mod WKB1` ,
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereas

Ga@L#5a@L#,

so that modulo WKB1` the left symbol off! is equal to (11a@L#)21mw, and formula (4.3)2

immediately follows.
Another way of proving it consists in deducingJ2 from J1 by J25G21J1, noticing that

Ge2ips5~11a@L#!e2ips ~4.4!

~this again follows from Theorem 2.5.1 of Ref. 12, remembering that2e2ips is ag0, the Voros
multiplier of the vanishing cycleg0!.

Similarly, formula (4.3)med is easily proved by computingJmed5G1/2J2 ~or G21/2J1!. h

B. The bottom of a double well

The basic ingredients will now be the monodromy exponentss1 , s2 of the two well bottoms,
and the Voros multipliera@L#, where@L# is the connection cycle associated to the bounded Sto
line L shown on Fig. 57.

As was the case in subsection IV A, the monodromy exponents are resurgent expansio
real coefficients, depending regularly on the rescaled energyEr ,

s152
1

2
1

T1

2p
Er10~\!, s252

1

2
1

T2

2p
Er10~\!,

whereT1 ~resp.,T2! is a positive number, the time period of the bottom of the first~resp., second!
well.

By the same reasoning as in subsection IV A, one finds that the Voros multipliera@L# has the
following form:

a@L#5
2p

G~s111!G~s211! S c

\ D ~s11s211!

e2uL /\a~\,Er !, ~4.5!

whereuL ~a positive real number! is 1/i times the action integral along the tunnel cycle, where
a(\,Er) is a simple resurgent expansion depending regularly onEr ; c is a positive constant with
the dimension of an action, the critical action multiplier, defined by

c5 lim

E→
.

Ecrit

F S vg1~E!

2p
D T1 /~T11T2!S vg2~E!

2p
D T2 /~T11T2!

e2p i @T~E!/~T11T2!#G , ~4.6!

FIG. 57. The ‘‘connection cycle’’@L# for the bottom of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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wherevg i (E) ( i 51,2) is the action integral along the ‘‘vanishing oscillator cycle’’g i(E), whereas
T(E)5*g(E)dq/2p is the ~pure imaginary! time period of the tunnel cycleg(E) @here again the
factor in front of the exponential vanishes asE→Ecrit , in such a way as to cancel the divergen
of T(E)#.

Example:Considering the symmetrical quartic oscillator,

V~q!5q42aq2,

for a real positivea and rescaling the energy near the bottom of this double well (E52a2/4
1Er\), one getss15s2 :5s and

a@L#5
2p

G2~s11! S c

\ D 2s11

e2uL /\a~a,Er ,\!,

where

uL~a!5
2&

3
a3/2,

whereas

c~a!56uL~a!

is the ‘‘critical action multiplier.’’ Now the~rescaled! Schrödinger equation presents a ‘‘quas
homogeneity’’ property which allows to write

s~a,Er ,\!5sS 1,
Er

a1/2,
\

a3/2D and a~a,Er ,\!5aS 1,
Er

a1/2,
\

a3/2D .

Applying the ‘‘exact matching method’’ we get~see Ref. 12, Sec. 5!:

s~1,Er ,\!1
1

2
5

1

2&
S Er1S 1

4
1

3Er
2

8 D\1S 25Er

32
1

35Er
3

64 D
3\21S 175

256
1

735Er
2

256
1

1155Er
4

1024 D\31O~\4! D ,

anda(1,Er ,\):5exp(2D(1,Er ,\)) with

D~1,Er ,\!5
1

8&
S S 19

3
1

17Er
2

2 D\1S 187Er

4
1

227Er
3

16 D\21O~\3! D .

Computation of Jost symbols:Let us now come back to the Jost connection operatorsJ 6: in
Sec. III E 2 they were expressed in terms of the connection pathsl, n1 , n2 , the last two of which
are invertible operators; remembering that these two are complex conjugate to each oth
noticing that they are related by

n15e2ip~s11s2!n2 ,

it is convenient to factor out inJ 6 the real connection path,

n05e2 ip~s11s2!n15eip~s11s2!n2 .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proposition IV.2.1:One has

J 65S 2
4 sin~ps1!sin~ps2!

a@L#
1e6 ip~s11s2!D n0 .

Proof: Denoting byL the connection cycle represented on Fig. 58, we obviously havl
5aLn1 , so that

J 15~15aL!n1 .

But the basic relations of Sec. III D~fig. 40! easily yield

aL1@L#5aLa@L#5~12e22ips1!~12e22ips2!,

from which the proposition immediately follows. h

Besides being real, the invertible connection pathn0 enjoys the nice property of being ‘‘in
variant under the Stokes automorphismG, modulo exponentially decreasing functions at1`. ’’

Lemma IV.2.1:

Gn05n0 mod WKB1` .

Proof: By Theorem 2.5.1 in Ref. 12 one has

Gn15~11a@L#!n1 , mod WKB1` ,

Gn25~11a@L#!21n2 , mod WKB1` ,

whereas

Ga@L#5a@L#,

Ge2ips15~11a@L#!e2ips1,

Ge2ips25~11a@L#!e2ips2.
h

To define the Jost functionJ we shall choose the following Jost basis (f,f!).

~1! Let f be the Borel sum, for large negativeq, of a WKB expansionw well normalized at2`;
~2! let f! be, for large positiveq, the right or left sum ofn0w.

By the above lemma, choosing forf! the right or left sum ofn0w makes no difference in the
definition of the Jost functionJ, and Proposition IV.2.1 can be re-expressed by saying that
right and left symbols of this function read as

FIG. 58. The connection cycleL for the bottom of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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J652
4 sin~ps1!sin~ps2!

a@L#
1e6 ip~s11s2!.

(4.7)6

Addenum: The median symbol of the Jost function:With the above conventions the Jo
function is real, so that its right and left symbols are complex conjugate to each other. If one
to keep track of reality properties it is convenient to replace right and left symbols by the m
symbol, defined by

Jmed5G1/2J25G21/2J1.

Lemma IV.2.2:One has

Jmed52
4 sin~ps1!sin~ps2!

a@L# 1
2 cos~p~s11s2!!

11~11a@L#!1/2 .

4.7med

Proof: Given that the automorphismG leavesa@L# invariant, and multiplieseips1 andeips2 by
(11a@L#), the lemma follows by a straightforward computation. h

C. The top of a double well

Consider now the situation of Sec. III F 3. All symbols in that case are Borel resummable
the Jost connection operator is the sum of the four connection paths shown on Fig. 55. T
these four are invertible, namelyl21 and l12 , and this allows us to define the followin
connection cycles:
the right oscillator cycleg r5m1l12

21 ;
the left oscillator cycleg l5m1l21

21 ;
~cf. Fig. 59!, which we call that way because they follow, respectively, the right and left
component of the~critical! classical trajectory in the (p,q)-plane; notice that these cycles are
oriented that the corresponding ‘‘critical action integrals,’’

v r5*gr
pcrit~q!dq,

v l5*g l
pcrit~q!dq ~pcrit5~Ecrit2V~q!!1/2!,

are positive real numbers.
Notice also that the corresponding~critical! Voros multipliers are related to each other by

FIG. 59. The right and left oscillator cycles at the top of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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agr5ag le~ i /\!~vr2v l !.

To prove it, notice thatg r5g l1l21l12
21 , check that the cycleg5l21l12

21 is homologous to a
large circle~cf. Fig. 60!, and apply the residue theorem at infinity.

Besides these two oscillator cycles it is also natural to introduce their complex conju
defined by

g r5m2l21
21 , g l5m2l12

21 .

By the basic relations of Sec. III D~fig. 40!, they are related to the previous ones by

agragr5ag lag l511eU,

whereU is a real resurgent expansion in\, depending regularly onEr , defined by

U5
1

i\
Vg0

~Ecrit1Er\!S 5Er

T0

i
10~\! D ,

whereg0 is the vanishing cycle around the double turning point, associated to that determin
of p for which (dvg0 /dE)(Ecrit)5T0 is positive imaginary~when using the basic relations of Se
III D one should remember that the monodromy exponent of the double turning points
5 iU /2p21/2!.

Proposition IV.3.1:One has

agr5
A2peU/4

GS 1

2
1 i

U

2p D S c

\ D i ~U/2p!

eivr /\a~\,Er ! ~4.8!

~and a similar equation forag l, with v r replaced byv l!, wherea(\,Er)5110(\) is a simple
resurgent function depending regularly onEr ; the ‘‘critical action multiplier’’ c ~a positive real
number with the dimension of an action! is defined by

c5 lim
.

E→Ecrit

S vg0~E!

2p i
e2p i @T~E!/T0#D , ~4.9!

FIG. 60. The cycleg5l21l12
21 ~top!, and a homologous one~bottom!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereT(E) is the~positive real! time period of the real trajectory forE real.Ecrit ; recall thatT0

is positive imaginary, and thatvg0(E);T0•(E2Ecrit .)
Proof: This again follows from Proposition III.3.1. The ‘‘exact matching method’’ of S

III C gives the announced expression forc by matching leading terms only, and the full expansi
of a(\,Er) by matching higher order terms.

Example:Considering the symmetrical quartic oscillator

V~q!5q42aq2,

wherea is real positive, we get

agr5ag l5
A2peU/4

GF1

2
1 i ~U/2p!G S c

\ D i ~U/2p!

eiv/\a~a,Er ,\!.

The periodsv r5v l :5v(a) are proportional toa3/2,

v~a!5
2

3
a3/2,

while the ‘‘critical action multiplier’’ c is given by

c~a!512v~a!.

Now the ‘‘quasi-homogeneity’’ property of the~rescaled! Schrödinger equation induces th
equalities

U~a,Er ,\!5US 1,
Er

a1/2,
\

a3/2D and a~a,Er ,\!5aS 1,
Er

a1/2,
\

a3/2D .

The ‘‘exact matching method’’ leads to the following results, as proved in Ref. 12, Sec. 5:

U~1,Er ,\!5pS Er1S 3

8
2

3Er
2

8 D\1S 2
85Er

64
1

35Er
3

64 D
3\21S 2

1995

1024
1

2625Er
2

512
2

1155Er
4

1024 D\31O~\4! D ,

while a(1,Er ,\):5exp(iD(1,Er ,\)/2p) with

D~1,Er ,\!5
p

16 S S 2
67

3
117Er

2D\1S 671Er

8
2

227Er
3

8 D\21O~\3! D .

Computation of Jost symbols:Let us now come back to the Jost connection operator,

J 5l211l121m11m2 .

Factoring outl21 yields

J 5~11ei /\~v l2vr !1ag l1a ḡ r !l21 .

Factoring outl12 yields
J. Math. Phys., Vol. 38, No. 12, December 1997
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J 5~e~ i /\!~vr2v l !111agr1a ḡ l !l12 .

If one likes to keep track of the reality property ofJ , it is more convenient to factorize the re
connection cyclel0 defined by

l05e~ i /\!@~v l2vr !/2#l215e~ i /\!@~vr2v l !/2#l12 .

Taking Proposition IV.3.1 into account, one thus gets the following result.
Proposition IV.3.2:One hasJ 5Jl0 , whereJ is the real valued, Borel resummable symb

J52 cos
v r2v l

2\
1a~\,Er !e

U/4F A2p

GS 1

2
1 i

U

2p D S c

\ D i ~U/2p!

e~ i /\!@vr1v l /2#1complex conj.G .

h

Taking the Borel sum ofl0w for our generator ofW mod. W 1` , we obtain the correspondin
Jost function as the Borel sum of the above symbol.

V. BOUND STATE SPECTRUM AND RESONANCES

From the symbol of the Jost function we shall now derive information on the zeros of
function, which are the bound state or resonance energies~cf. Sec. I B 3!. Our main tool will be
the implicit function theorem, and more precisely its resurgent version presented in Refs. 3
22.

A. Quantization of simple oscillators

1. The generic case

Consider now a range of generic energies such that the real axis crosses only one we
Fig. 61 ~‘‘stable case’’!, or in Fig. 24~‘‘metastable case,’’ where tunnelling occurs!.

We shall denote byg0 the corresponding ‘‘oscillator cycle’’ and byvg0
5*g0

pdq its period
~a positive real number, increasing withE!.

Proposition V.1.1:In any such energy range there is a uniquely defined analytic chang
variable~this idea of ‘‘changing the energy variable’’ was suggested to us by Colin de Verdi`re!,

E°V~E!5vg0
~E!1O~\!,

such that in this new variableV the zeros of the Jost function are given by the ‘‘exact Boh
Sommerfeld quantization rule,’’

FIG. 61. A simple oscillator~generic, stable case!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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V5~n1 1
2!2p\,

wheren runs over all natural integers such that the corresponding values ofE stay in the energy
range considered.

In the stable case this change of variable is real analytic, and increasing. In the metastab
it is almost so, up to exponentially small imaginary corrections.

Proof: The idea is to rewrite the Jost function under the form

J511e~ i /\!V,

whereV5V(E,\) is an analytic function with the above properties, depending analytically on
small parameter\, such that

dV

dE
5

dvg0

dE
1O~\!.

We shall explain the construction in detail in the special case of the cubic barrier, from w
the idea of the general construction will be clear~this case is more instructive than the stable ca
because of tunnelling effects!. The construction will be made on symbols, which we could cho
to be the right or left symbols. Here we shall work with the median symbols, which will pro
us with more readable information on the imaginary part of the energy levels~resonance widths!.
As we have seen in Sec. II B 3, the median symbol of the Jost function reads as

Jmed511ag0~11ag!1/2,

whereg05gosc, g5g tun. Settingu51/i *gpdq~a positive real number, decreasing withE!, one
has

ag05ag0
e~ i /\!vg0, ag5age2u/\,

whereag0
andag are resurgent series with regular dependence onE, of the form 110(\). Setting

Vmed5vg1
\

i S ln ag0
1

1

2
ln~11ag! D ,

one gets a resurgent symbol with regular dependence onE, such that

Jmed511e~ i /\!Vmed
.

Defining V as the median resummation of this symbol, we therefore get the announced for
the Jost function, and there only remains to prove that the functionV(E) has a non zero deriva
tive, a fact which is easily checked on its symbol. Let us do it in detail here, so as to precis
the reality properties of the functions involved. One has

dVmed

dE
5

dvg0

dE
1

\

i S d

dE
ln ag0

2« D ,

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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e5
1

2

d

dE
ln~11ag!5

1

2
~11ag!21

d

dE
ag;2

1

2

du

dE
e2u\,

is a strictly positive, exponentially small quantity. Sincedvg0
/dE is a positive real, appreciably

large quantity~the time periodTg0 of the oscillator cycle!, this ends the proof of the proposition.h

Furthermore it easily follows from formula~1.3! in subsection I A that for any well cycleg0

the term lnag0 is pure imaginary, so that the imaginary part ofdVmed/dE is just 2\e. Since
median resummation commutes with complex conjugation, we thus see that

T
dV

dE
52e,

so thatdV/dE is a complex number close toTg0
, slightly below the positive real axis. It follows

that the resonance energies are slightly above the real axis, as could be expected from p
considerations~recall that with our conventions the time dependence of the wave function
e( i /\)Et!.

2. Stable equilibrium

Let now the energy be close to an absolute~quadratic! minimum of the potential function.
Rescaling the energy as explained in Section III, let

s52
1

2
1

T0

2p
Er10~\!

be the monodromy exponent of the well bottom.
For every natural integern the equation

s~Er ,\!5n ~5.1!

obviously has a unique formal power series solution,

En~\!5
2p

T0
S n1

1

2D1En,1\1En,2\
21••• ~5.2!

~the Rayleigh–Schro¨dinger series!.
Theorem V.1.1: The Rayleigh–Schro¨dinger series is Borel resummable, and its Borel s

~defined whenn is not too large compared with 1/\! gives then-th energy level.
Proof: Let (f,f!) be some Jost basis such that
~1! f is the Borel sum, for large negativeq, of a simple WKB expansion well normalized a

2`;
~2! f! is the right or left~or median! sum, for large positiveq, of another simple WKB

expansion, well normalized along some path which crosses no bounded Stokes line.
Then it immediately follows from Proposition III.4.1 that the corresponding Jost symb

Borel resummable. By Theorem III.3.1 it reads as

J5
A2p

G~2s!
\~s11/2!c~Er ,\!, ~5.3!

wherec(Er ,\) is an invertible resurgent power series in\, depending regularly onEr .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Since the monodromy exponents5s(Er ,\) is also a resurgent power series in\ depending
regularly onEr , the formal operation of substituting any resurgent power series toEr in the right
hand side of~5.3! can be interpreted as an operation on true functions: all one has to do is re
all formal objects by their right sum~or by their left sum, if one prefers!. Since c(Er ,\) is
invertible, the only way to get the zero functionJ50 is to chooseEr5Er

n(\) in such a way that
s(Er ,\)5n, a natural integer. Formally speaking this determines the series~5.2! unambiguously,
and by the implicit resurgent function theorem this series is indeed resurgent.

We can thus conclude that the right~say! sum of the Rayleigh–Schro¨dinger series~5.2! is the
n-th zero of the Jost function. But since the same reasoning holds for the left sum, it the
follows that the Rayleigh–Schro¨dinger series is Borel resummable. h

Remark:From the fact that the symbol~5.3! is Borel resummable one should not infer th
each individual factor in the right-hand side of~5.3! is Borel resummable. This holds only in th
simple pattern case~Ref. 12, Sec. 2.5.1!, because in that cases is Borel resummable. In the
singular pattern case it is easily checked thats is not Borel resummable: more precisely, b
Theorem 2.5.1 of Ref. 12 one has

Ge2ips5~11a@L#!22e2ips,

where @L# is the connection cycle associated to the bounded Stokes lineL of Fig. 42 ~or its

complex conjugateL̄, yielding the same Voros multipliera@ L̄ #5a@L#!. Taking logarithms of both
sides, one gets

Gs5s2
1

ip
ln~11a@L#!, ~5.4!

showing thats is not Borel resummable.
But since the cycle@L# ‘‘goes through’’ the double turning point, similar arguments as th

of section IV show thata@L# contains a@A2p/G(2s)#\ (s11/2) factor, which vanishes when th
Rayleigh–Schro¨dinger series is substituted toEr . This explains the apparent ‘‘paradox’’ that th
solution of equation~5.1! is Borel resummable, although the equation itself is not.

Computation of the Rayleigh–Schrödinger series:For every givennPN, the implicit equa-
tion s(\,Er)5n can be formally solved by the following algorithm~in the same spirit see als
Ref. 38!:

We construct the formal series

En~\!5 (
k>0

En,k\
k,

jointly with the formal seriesY(q,Er ,\) introduced in Sec. III B~computation of the monodromy
exponent!, by demanding that the residue ofiY at the double turning pointqcrit should equaln.

The first coupleY1(q,Er), En,0 is given by the equation

Y15
1

2Y0
S En,01 i

d

dq
Y0D ,

whereiY1 is required to have residuen at qcrit . Then for everyl>1 the coupleYl 11(q,Er), En,l

is given by the equation

Y~ l 11!5
1

2Y0
S En,l1 i

d

dq
Yn2 (

1<k< l
YkY~ l 2k! D ,

whereiYl 11 is required to have residue 0 atqcrit .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Of course it is enough to work with the Laurent expansions of theYl ’s. For everyl>1, since
Yl has a pole of order~at most! (2l 21) in qcrit , computingEn,l requires computing the (2l
11) first terms of the Laurent expansions of each of theYk’s, 1<k< l .

It follows from this analysis that eachEn,l5El(n) is a polynomial inn, of degree~at most!
( l 11), with real coefficients~and even rational coefficients if the Taylor expansion ofpcrit at qcrit

has rational coefficients!.
Besides, relations(2Er ,2\)11/252s(Er ,\)21/2 implies that the expansionEn(\)

5E(n,\) satisfies the functional relation

E~m2 1
2 ,\!52E~2m2 1

2 ,2\!,

so that for everyl>0,

El~m2 1
2!5Pl~m!,

wherePl is an odd~resp., even! polynomial of degree~at most! ( l 11) if l is even~resp., odd!.
Example: The simple anharmonic oscillator:We consider after Bender and Wu2 the following

simple anharmonic oscillatorV(q)51/4(q21q4). The preceding algorithm implemented und
Maple yields the following result where we have setm5n11/2:

En5m1S 3

2
m21

3

8D\2S 17

4
m31

67

16
m D\21S 375

16
m41

1707

32
m21

1539

256 D\3

2S 10689

64
m51

89165

128
m31

305141

1024
m D\41O~\5!.

Coming back to then variable, this gives

En5S n1
1

2D1S 3

2
n21

3

2
n1

3

4D\2S 17

4
n31

51

8
n21

59

8
n1

21

8 D\2

1S 375

16
n41

375

8
n31

177

2
n21

1041

16
n1

333

16 D\3

2S 10689

64
n51

53445

128
n41

71305

64
n31

80235

64
n21

111697

128
n1

30885

128 D\41O~\5!.

The casen50 corresponds to the case of the ground state, already computed by Bender an2

In the same article Bender and Wu have estimated numerically the asymptotic growth
sequence ofE0,k for largek,

E0,k;~21!k11S 6

p3D 1/2

GS k1
1

2D3k,

a result proven afterwards by Harrel and Simon39 ~see also Refs. 40, 13!.
Let us show how resurgence theory yields another rigorous proof of this result, and

generally of the following largek asymptotic formula for then-th energy level,

En,k;~21!k11S 6

p3D 1/2

12n
G~n1k1 1/2!

G~n11!
3k.

The idea is to analyze the singularities of the Borel transform of the monodromy exponents, and
then use Ecalle’s ‘‘alien calculus’’ to deduce from it the singularities of the Borel transform
J. Math. Phys., Vol. 38, No. 12, December 1997
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En . Using again Theorem 2.5.1 of Ref. 12 it is easily checked that the Borel transform ofs has
singularities in two directions only: the positive real direction, where they are described by
mula ~5.4!, and the negative real direction, where they are given by a similar formula,

G~p!s5s1
1

ip
ln~11aL!, ~5.48!

where the connection cycleL bears the same relationship with@L# of fig. 42 as the cycle of fig.
58 does with that of fig. 57: one thus has

aLa@L#5e2ips21,

with

a@L#5
A2p

G~2s! S 4

\ D 2~s11/2!

e2uL /\~11O~\!!

~hereuL51/3!. Translating equation~5.48! in terms of alien derivatives~cf. for instance Ref. 12!
yields

Ḋ2 luL
s5

~21! l 11

ip l
~aL! l~ l 51,2,...!.

Taking alien derivatives of equations(En ,\)5n,

Ḋ2 luL
s~Er ,\!uEr5En

1~Ḋ2 luL
En!

]

]Er
s~Er ,\!uEr5En

50,

we thus get in particular~for l 51!,

Ḋ2uL
En52

1

ip

aL

]

]Er
s~Er ,\!

uEr5En
52

1

ip

A2p

G~n11! S 4eip

\ D ~n11/2!

euL /\~11O~\!!. ~5.5!

In other words the Borel transform ofEn has its closest singularity at2uL ~recall that it has no
singularity along the positive real axis, by the above remark!, and the nature of this singularity ca
be read on formula~5.5!; from this ‘‘resurgence formula’’ in the sense of Ecalle we immediat
get what Berry and Howls24,25 call a ‘‘resurgence formula in the sense of Dingle:’’

En,k;2
1

2ip

~21!k11GS n1k1
1

2D
uL

n1k11/2

1

ip

A2p

G~n11!
4~n11/2!,

a formula equivalent to the announced one. Remark here that this strategy could be explo
double wells, thus giving an answer to a question of Simon.40

The knowledge on the asymptotic growth of theEn,k’s yields a precise numerical computatio
by ‘‘resummation to the least term.’’ Actually many formal and numerical procedure for res
mation are available, see for instance Ref. 42. In this way it would be interesting to compa
numerical computations based on Pade´ approximants,41,40 with the powerful hyperasymptotic
methods of Refs. 25 and 26.
J. Math. Phys., Vol. 38, No. 12, December 1997
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3. Resonance energies near a metastable equilibrium

Looking now near the bottom of a ‘‘cubic well’’~subsections III F and IV A!, we expect the
zeros of the Jost function to be complex, and interpretable as resonance energies.

Working with left symbols will make the formulas look very similar to those of the previ
subsection: using formula~4.1! for the Voros multipliera@L#, it is easily seen on formula (4.3)2

~using Euler’s reflection formula! that the left Jost symbolJ2 equals 1/G(2s) times an invertible
factor. The quantization condition for left symbols therefore reads as

s~\,Er !5n ~a natural integer!, ~5.6!

exactly as in Sec. V A 2, and for the same reason it admits a unique formal solution,

En
2~\!5

2p

T0
S n1

1

2D1En,1\1En,2\
21... ~5.7!

~the Rayleigh–Schro¨dinger series! which is resurgent, and whose left-sum is a zero of the J
function. Since this zero reads (2p/T0)(n11/2)10(\), it can be interpreted as the rescal
energy of then-th resonance level.

Now the big difference with Sec. V A 2 is the fact that this~real valued! resurgent series is no
Borel resummable~if it were, its Borel sum would be real, contradicting physical expectatio!.
To understand the mathematical reason for that difference, notice that by equation~4.4! one has

Gs5s1
1

2ip
ln~11a@L#!,

a formula looking like formula~5.4!, with the important difference thata@L# no longer vanishes for
s5n, because formula~4.1! for a@L# now contains a 1/G(s11) factor instead of a 1/G(2s) factor
~the connection cycle@L# of fig. 56 crosses the double turning point on the opposite sh
compared to that of fig. 42!.

Another way of understanding this is to compare the result of the above computation
what we would get by solving equationJ150. Using equation~4.3!1, the vanishing of the right
Jost symbolJ1 is easily seen to be equivalent to the equation

2
A2p

G~2s!
e2 ip~s11/2!5e~\,Er !, ~5.8!

where

~5.9!

Since e is exponentially small this condition can be satisfied only fors.n, a natural integer.
Noticing that the left-hand side of~5.8!, considered as a function ofs, has a simple zero ats
5n, with coefficient2 iA2pn!, we have

]

]Er
@ left-hand side of~5.8!#u

\50
Er5En

2
~\!

52 iA2pn!
T0

2p
Þ0,

thus warranting the existence of a unique formal solution of equation~5.8!, of the form
J. Math. Phys., Vol. 38, No. 12, December 1997
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En
1~\!5En

2~\!1(
>1

En
~k!~\!en

k , ~5.10!

with

en5S c

\ D n11/2

e2uL /\,

whereasEn
(k)(\) is a polynomial of degree (k21) in ln \ @this polynomial dependence on ln\

stems from the fact that the power series expansion of (c/\)s11/2 with respect toEr has a ln\
factor in every term of positive degree#, with integral power series of\ as its coefficients; in
particular,En

(1)(0)5( i /A2pn)(2p/T0).
Remembering that both sides of equation~5.8! depend regularly onEr , the implicit resurgent

function theorem~in its extended form shown in appendix 2! allows us to conclude that the forma
expansion~5.9! is a ‘‘regular’’ resurgent symbol, and that the right-sum of this symbol is a zer
the Jost functionJ, which is nothing of course but the rescaled energy of then-th resonance level

In other words,En
2 @eq. ~5.7!# andEn

1 @eq. ~5.10!# are, respectively, the left and right symb
of the~rescaled! n-th resonance level. More readable information on the real and imaginary p
the energy can be seen on the median symbol, which can be computed in completely ana
fashion, solving the equationJmed50: using formula (4.3)med one easily checks that the ‘‘me
dian’’ quantization condition can be written in the same form as eq.~5.8!, with e replaced by

yielding for En
med an expression similar to~5.10!,

En
med~\!5En

2~\!1 (
k>1

En
med~k!~\!en

k , ~5.11!

with En
med(k)(\) a polynomial of degree (k21) in ln \ with an integral power series of\ as its

coefficients; in particular,En
(1)(0)5( i /2A2pn!)(2p/T0), yielding the principal part of the reso

nance width.
Example:We consider the cubic oscillatorV(q)52q31q. According to the results of Sec

IV A, Example, we get

E0
2~\!531/42

11

48
\2

155

2304
33/4\22

39709

331776
)\31O~\4!,

e05S 96
31/4

\ D 1/2

e2~8/5!~31/4/\!,

E0
~1!~\!5

i&

Ap
S 31/42

169

192
\1O~\2! D

E0
~2!~\!52

31/4

p S ~ ip1g!~11O~\!!1 lnS 96
31/4

\ D ~11O~\!! D ,

whereg is the Euler’s constant, whereas
J. Math. Phys., Vol. 38, No. 12, December 1997
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E0
med~1!~\!5

i&

2Ap
S 31/42

169

192
\1O~\2! D ,

E0
med~2!~\!52

31/4

4p S ~2ip1g!~11O~\!!1 lnS 96
31/4

\ D ~11O~\!! D .

B. Quantization of double oscillators „proof of the Zinn-Justin conjecture …

Let us go back to the results of Sec. IV B which described the right, left and median
symbols for a double absolute minimum~two quadratic wells at the same level, separated b
‘‘tunnel’’ !: finding bound states amounts to equating to zero these Jost symbols; using E
reflection formula and formula~4.5! for the Voros multipliera@L#, one easily see that the quant
zation condition for right and left symbols are complex conjugated and read as

2p

G~2s1!G~2s2!

1

e6 ip~s11s2! 5e~\,Er !,

(5.126)

where651 for the right symbols and652 for the left symbols, whereas

~5.13!

One shall recover the reality properties of the energy by working with median symbols
quantization condition near a two-fold absolute minimum is therefore equivalent to the equ

1

cosp~s11s2!

2p

G~2s1!G~2s2!
5emed~\,Er !, ~5.14!

with

~5.15!

i.e.

«med~\,Er !

S c

\ D ~s11s211!

e2uL /\a

5 (
n50

` ~21!nGS n1
1

2
D

ApG~n12!
S 2pS c

\ D ~s11s211!

e2uL /\a

G~s111!G~s211!
D n

.

Generically the monodromy exponentss1 ands2 differ: since« ~or «med! is exponentially small,
each bottom of well will contribute, in the principal part of the spectral symbols, a factor an
gous to the simple absolute minimum case, corresponding tos1;n or s2;n, wheren is a natural
integer. Choosing one of them, say
J. Math. Phys., Vol. 38, No. 12, December 1997
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s152
1

2
1

T0

2p
Er10~\!;n,

we thus define a sequence of simple formal real resurgent functions (En
(0)(\))nPN ,

En
~0!~\!5

2p

T0
S n1

1

2D1En,1
~0!\1En,2

~0!\21...,

which we call the principal values of energy levels in the corresponding well~the Rayleigh–
Schrödinger series!.

For the spectral symbols to vanish exactly we must add to those principal values su
exponentially small corrections, yielding the ‘‘multi-instanton expansions.’’ Special attention
to be taken near those values of the potential where boths1 ands2 are similar to natural integer
for some values of the energy, leading to the so-called ‘‘avoided crossing phenomena’’~cf. Ref.
18!. For the sake of simplicity we shall focus only on the symmetrical double well.

Symmetrical double well:In that case the monodromy exponents are equal,s15s25s. Equa-
tion (5.126) then factorizes to give the Zinn-Justin formula,43–45,13,14

A2p

G~2s!

1

e6 ips 5e~\,Er !,

(5.166)

where

~5.17!

whereas sgn56. The same factorization occurs with equation~5.14! as well, leading to the
following equality for median symbols:

1

Acos 2ps

A2p

G~2s!
5emed~\,Er !, ~5.18!

with

emed~\,Er !5sgnA«med~\,Er !,

that is

~5.19!

i.e.
J. Math. Phys., Vol. 38, No. 12, December 1997
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emed~\,Er !

sgnS c

\ D ~s11/2!

e2uL/2\a1/2

512
1

8

2p~c/\!~2s11!e2uL /\a

G2~s11!
1

7

128 S 2p~c/\!~2s11!e2uL /\a

G2~s11! D 2

1... .

Equations (5.166) and ~5.18! are quite similar to equation~5.8! and can be solved in the sam
way: noticing that

]

]Er
@ left-hand side of~5.166!#uEr5E

n
~0!~\!5

]

]Er
@ left-hand side of~5.18!#uEr5E

n
~0!~\!

and

]

]Er
@ left-hand side of~5.16! or ~5.18!#u

\50
Er5En

~0!
~\!

52A2pn!
T0

2p
Þ0,

we thus deduce the existence of a unique formal solution of equation~5.16!, of the form~see also
Ref. 13!

En
6~\!5En

~0!~\!1 (
k>1

En
~6k!~\!en

k ,
(5.206)

whereEn
1 ~resp.,En

2! stands for right~resp., left! symbols, with

en5sgnS c

\ D n11/2

e2uL/2\, ~5.21!

and similarly the existence of a unique formal solution of equation~5.18!, of the form

En
med~\!5En

~0!~\!1 (
k>1

En
~med k!~\!en

k . ~5.22!

TheEn
(6k)(\) andEn

(med k)(\) are polynomials of degree (k21) in ln \ with integral power series
of \ as its coefficients. As a remark notice the reality of the seriesEn

(61)(\); furthermore the
following equality holds:

En
~11!~\!5En

~21!~\!5En
~med 1!~\!

~this result, which follows from the above computation, can be also directly deduced b
analysis of the resurgence structure!, and in particular,

En
~61!~0!5En

~med 1!~0!52
1

A2pn!

2p

T0
.

Now the regularity onEr of both equations~5.16! and ~5.18! allows us to conclude that th
formal expansion (5.206) and ~5.22! are regular resurgent symbols, as a consequence o
~extended! implicit resurgent function theorem~cf. appendix 2!. The right-sum-resp., left-sum
resp., median-sum- of the formal expansion (5.201)-resp., (5.202), resp.,~5.22!-is the rescaled
energy of then-th bound state level. Remark here that the choice of the sign sgn in~5.21!
determines the parity of the corresponding eigenfunction. We have thus proved a conjec
Zinn-Justin.43–45,13,14

Numerical example:Let us consider the following quartic oscillatorV(q):
J. Math. Phys., Vol. 38, No. 12, December 1997
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V~q!5q42q2.

Following the results of Sec. IV B, example, we get

En
~0!~\!5~2n11!&2~3n213n11!\2

&

8
~34n3151n2135n19!\2

2S 375

16
n41

375

8
n31

99

2
n21

417

16
n1

89

16D\31O~\4!,

and

en5sgnS 4&

\ D n11/2

e2&/3\,

while for instance,

E0
~61!~\!52

2

Ap
S 12

71&

48
\ D1O~\2!

and

E0
~12!~\!5

&

p S ip1g1 lnS 4&

\ D D1O~\!.

APPENDIX: RESURGENT FUNCTIONS DEFINED BY IMPLICIT EQUATIONS

1. Implicit equations in rings of formal power series

Given a~commutative! ring R, one denotes byR@@X1 ,...,Xn## the ring of formal power series
in n indeterminatesX1 ,...,Xn , with coefficients inR. This ring is naturally ‘‘filtered’’ by the
‘‘order’’ of its elements, the order of a formal power series being defined as the smallest deg
its constituent monomials; in particular the elements of order 0 are those with non van
constant term; those of strictly positive order will be called the small elements.

A sequence (gn)n50,1,2,... of elements ofR@@X1 ,...,Xn## is said to converge formally to an
elementgPR@@X1 ,...,Xn## if lim n→`ord(g2gn)5`. In that caseg is of course unique. The
following obvious statement is a formal version of the Cauchy convergence criterion:

for a sequence (gn)n50,1,2,... to converge formally inR@@X1 ...,Xn##, it is necessary and
sufficient that limn→`ord(gn112gn)5`.

The invertible elements ofR@@X1 ,...,Xn## are those elements of order 0 whose constant t
is invertible inR. In particular whenR is a field~e.g.,R5R or C! the invertible elements are a
elements of order 0~except 0, which by convention has arbitrary order but is of course
invertible!. In the applications we have in mind the ringR of coefficients will either be a field, or
a ring of formal power series over a field: e.g., we can writeC@@X,Y##5R@@Y## with R
5C@@X##; in such a case one should carefully distinguish the filtration inR@@Y## ~whereX is
considered as a ‘‘constant’’! from the so-called total filtration~where ord X5ord Y51!.

An important example of formal convergence is provided by the operation of substitut
small element to the indeterminateY of a ring of formal power series: letR be a ring of formal
power series~say, inn indeterminatesX1 ,...,Xn!, and let f PR@@Y##, whereY is another inde-
terminate; then any small elementuPR can be substituted toY in f , yielding an element ofR
which will be denoted byf (u)PR.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Example:For any smalluPR, the inverse of 12u in R can be obtained by substitutingu to
Y in the formal power seriesf 511Y1Y21...PR@@Y##.

With the same hypothesis onR, we have the following~see Refs. 37, 22!.
Implicit function theorem: Let f 5 f 01 f 1Y1 f 2Y21...PR@@Y## be such thatf 0 is small,

and f 1 is invertible. Then there exists a unique small elementuPR such thatf (u)50.
Proof: The equationf (Y)50 can be rewritten as a ‘‘fixed point problem,’’

Y52
f 0

f 1
2

f 2

f 1
Y21...,

which can be solved formally by iteration~formal convergence inR being insured by the hypoth
esis thatf 0 is small!. h

Example A.1.1:Consider the implicit equation forEr ,

s~\,Er !5n,

whose formal solution is the Rayleigh–Schro¨dinger series~cf. Sec. V A 2!. SettingR5C@@\##]
~or R@@\##!, and changing the unknownEr to Y5Er2(n11/2)(T0/2p), we are exactly under the
hypotheses of the implicit function theorem.

Example A.1.2:More generally, consider the quantization condition~5.8! of Sec. V A 3.
Settinge5(c/\)n11/2/e2u/\ ~here we denote for short bye what was denoted in Sec. V A 3 b
en!, define the new unknownY by

Er5ERS1eY,

whereERSPR5C@@\## is the Rayleigh–Schro¨dinger series. Expandings(\,Er) in powers ofeY,

s~\,Er !5n1 1
2 1a1~\!eY1a2~\!e2Y21...,

one gets an expansion,

S c

\ D s11/2

e2u/\5ee~a1eY1a2e2Y21...!ln~c/\!

5eS 11a1e lnS c

\ DY1S a2e2 lnS c

\ D1
a1

2

2!
e2 ln2S c

\ D DY21...D
5e~11a!,aP ẽ YR@@e,ẽ,Y##,

where we have used the notation

ẽ5e ln
c

\
.

Treating\, e, ẽ as independent variables~which they are, from a formal algebraic point of view!,
one easily checks that the quantization condition satisfies the hypotheses of the implicit fu
theorem, yielding a unique formal solution,
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



wer

wer

rom a

nt

g of

on is

tions

al

6182 Delabaere, Dillinger, and Pham: Exact semiclassical expansions

                    
YPeR@@e,ẽ ##5eC@@\,e,ẽ ##.

Taking the relation betweene and ẽ into account, one can expand this solution as a formal po
series ine,

Y5e(
k50

`

Yk~\, ln \!ek, ~!!

whereYk is a formal power series in (\, ln \), polynomial of degree<k in ln \.

2. Resurgent version of the above results

Resurgent power series in\ make up a subringR,C@@\##. Similarly, we shall denote by
R(u) the subring ofC@@\,u1 ,...,un## consisting of the resurgent power series in\ which depend
regularly on the parameteru5(u1 ,...,un) ~in a neighbourhood of 0PCn!.

The property of being resurgent~resp., resurgent with regular dependence onu! is stable by
all formal operations considered in the Appendix, Sec. 1, i.e.
~1! Invertibility: The inverse of a formally invertible resurgent series is again resurgent~and
regular dependence on parameters is preserved!.
~2! Substitution:Let f 5 f (\,u,y)PR(u,y) ; then the operation of substituting toy a small element
of R(u) yields an elementf (\,u,y(\,u))PR(u) .
~3! Implicit function theorem:Let f 5 f (\,u,y)PR(u,y) be such thatf uu5y50 is small, and
] f /]yuu50 is invertible. Then the equationf (\,u,y)50 has a unique small solutiony5y(\,u)
PR(u) .

Furthermore, all the above operations are compatible with~right, left, median! resummation,
yielding the corresponding operations on true functions of\,u,y ~for small enough\,u,y!.

Example A.2.1:The Rayleigh–Schro¨dinger series~cf. Example A.1.1! is resurgent.
Extensions of the above results:Everything which has just been said about resurgent po

series still holds true for the more general notion of ‘‘formal resurgent function’’~cf. Ref. 12 Sec.
0.2!, allowing us to build resurgent objects of a more general nature. For instance, starting f
resurgent power series in\ depending regularly on a parameterl, and performing the substitution
l5 ln \, we get a formal resurgent function which is a formal power series in\ and ln\; the set
of all power series in\ and ln\ obtained in this way is a subring of the ring of all formal resurge
functions, which we shall hereafter denote byR̃.

Still more general than ‘‘formal resurgent functions’’ are resurgent symbols~cf. Ref. 12, Sec.
0.4!, which are essentially formal combinations of exponentials with coefficients in some rin
resurgent series.

Example A.2.2:Consider again Example A.1.2.
• When the parameterse, ẽ are treated as independent variables, the quantization conditi

easily seen to depend regularly on these parameters, so that its solutionY belongs toR(e, ẽ ) .
• Now regular dependence on the parameters allows us to make the suitable substitue

5e(\), ẽ5 ẽ(\) ~tending to zero when\→0!.
First performing the substitutionẽ5e ln(c/\), we can thus considerY as an element ofR̃(e)

@this means not only that each coefficientYk in the expansion~!! belongs toR but that the
dependence on the parametere is regular#.

Finally remembering whate actually stands for, we thus see thatY5Y(\) is a resurgent
symbol. But it is a resurgent symbol of a very peculiar kind, built from an element ofR̃(e) by
substituting a small exponential to the parametere: the important feature to remember is the initi
J. Math. Phys., Vol. 38, No. 12, December 1997
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regular dependence one, which we shall summarize by saying thatY(\) is a regularly built
resurgent symbol. This implies that for every small enough\ not only are all theYk’s in ~!! ~right,
left, and median! resummable, but that replacing all of them by their~right, left or median!-sums
yields a convergent series, whose sum is an exact solution of the~right, left or median! resummed
implicit equation.
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On the geometric quantization of Jacobi manifolds
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The geometric quantization of Jacobi manifolds is discussed. A natural cohomol-
ogy ~termed Lichnerowicz–Jacobi! on a Jacobi manifold is introduced, and using it
the existence of prequantization bundles is characterized. To do this, a notion of
contravariant derivatives is used, in such a way that the procedure developed by
Vaisman for Poisson manifolds is naturally extended. A notion of polarization is
discussed and the quantization problem is studied. The existence of prequantization
representations is also considered. ©1997 American Institute of Physics.
@S0022-2488~97!01212-7#

I. INTRODUCTION

The quantization of a classical system comes back to Dirac, and consists of associatin
each classical observablef on the phase space a Hermitian operator on some Hilbert space, in
a way that the Poisson bracket of two observables is associated~up to some constants! with the
commutator of the operators. The geometric quantization theory is just a geometrization
procedure. It was developed by Kostant1 and Souriau2 for symplectic manifolds, and it was late
extended to Poisson manifolds by Vaisman.3 In an algebraic context, the geometric quantization
Poisson manifolds appears as a particular case of the quantization of Poisson algebras de
by Huebschmann.4

The geometric theory proceeds in two steps. First, one associates to a symplectic maniM
a prequantization bundle, that is, a complex line bundleK overM . Next, one needs to restrict th
space of observables, and one represents it irreducibly on a suitable Hilbert space w
constructed fromK. The condition for the existence of a prequantization bundle is that
cohomology class of the symplectic form be integral. Indeed, the prequantization formula
that there exists a covariant derivative“ on the prequantization bundle such that the curvature
“ is ~modulo some constants! the symplectic form. We refer to Refs. 5,6,7 as standard referen
and to Ref. 8 for a recent survey.

For Poisson manifolds, Vaisman discovered that a more convenient geometric framewo
to consider contravariant derivatives instead of covariant as in the case of symplectic form
reason is very clear, Poisson structures are defined by contravariant two-vectors instead
forms. So, Vaisman3 characterized the existence of prequantization bundles of a Poisson ma
M by means of a natural cohomology of multivectors defined by Lichnerowicz,9 and termed
Lichnerowicz–Poisson cohomology ofM . This cohomology can be obtained as the cohomolo
of a subcomplex of the Chevalley–Eilenberg complex associated to the Lie algebra of fun
C`(M ,R).

The purpose of this paper is to extend these results to the context of Jacobi manifolds
well-known ~see Refs. 10–12!, Jacobi structures are the natural generalization of Poisson s

a!Electronic mail: mdeleon@pinar1.csic.es
b!Electronic mail: jcmarrer@ull.es
c!Electronic mail: mepadron@ull.es
0022-2488/97/38(12)/6185/29/$10.00
6185J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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tures and in particular of symplectic, cosymplectic and Lie–Poisson structures. However
interesting manifolds like contact and locally conformal symplectic~l.c.s.! manifolds are also
Jacobi and they are not Poisson. A Jacobi bracket$,% on a manifoldM is in fact the most genera
local bilinear operator on the space of real functionsC`(M ,R) which is skew-symmetric and
satisfies Jacobi’s identity. Alternatively, a Jacobi structure on a manifoldM can be defined by a
pair (L,E), whereL is a two-vector andE is a vector field onM such that@L,L#52E`L and
@E,L#50. The link between both approaches is the formula$ f ,g%5L(d f ,dg)1 f E(g)
2gE( f ), for two functions f and g on M . In this paper we discuss first the prequantizat
problem in terms of an adequate cohomology~the Lichnerowicz–Jacobi cohomology!, and later
the quantization problem. It should be noticed that the problem of quantizing Jacobi manifold
physical interest since the relation between them and BV-algebras~see Refs. 13–16!.

The paper is organized as follows. In Sec. II we discuss some generalities on Jacobi
folds. The main examples are given, and the characteristic foliationF is defined. Let us recall tha
if ( M ,L,E) is a Jacobi manifold with Jacobi bracket$,% then for every pointxPM , F x is
generated for all the Hamiltonian vector fields evaluated atx. Since the Hamiltonian vector field
associated with the functionf is Xf5#(d f)1 f E, where #:V1(M )→X(M ) is the
C`(M ,R)-linear mapping induced byL, we getF x5#x(Tx* M )1^Ex&. We have that the even
dimensional leaves ofF are l.c.s. manifolds, and the odd dimensional ones are contact mani
both with the induced Jacobi structure~see Ref. 10!. We recall in this section the relationshi
between regular Jacobi manifolds and quantizable Poisson manifolds given in Ref. 17. T
algebroid structure on the jet bundleJ1(M ,R)>T* M3R of a Jacobi manifoldM introduced in
Ref. 18 is also considered.

In a Jacobi manifold (M ,L,E) with Jacobi bracket$,%, there are two different representatio
of the algebra of functionsC`(M ,R) on the moduleC`(M ,R). The first one is defined by the
Jacobi bracket, say (f ,g)°$ f ,g% and it leads to the usual Chevalley–Eilenberg cohomology. T
cohomology has been studied by Lichnerowicz.12 The second one is defined by means of t
Hamiltonian vector fields, say (f ,g)°Xf(g). For a Poisson manifold, they coincide, but for a
arbitrary Jacobi manifold the second representation yields the so-calledH –Chevalley–Eilenberg
cohomology~H for Hamiltonian!, which is discussed in Sec. III. The corresponding subcomp
of 1-differentiable cochains provides the Lichnerowicz–Jacobi cohomology, which can be i
fied with the cohomologyHLJ* (M ) of the complex (V * (M ) % V * 21(M ),s), whereV * (M )
5 % kV k(M ), V k(M ) is the space ofk-vectors onM and

s~P,Q!5~2@L,P#1kE`P1L`Q,@L,Q#2~k21!E`Q1@E,P# !,

for (P,Q)PV k(M ) % V k21(M ). The cohomology provided by the subcomplex of (V * (M )
% V * 21(M ),s) consisting of pairs (P,0) with P invariant byE was previously studied in Refs
19–21. An alternative way to introduce the Lichnerowicz–Jacobi cohomology which wil
useful to introduce the Jacobi–Chern class of a complex line bundle over a Jacobi manifold
following. Using the Lie algebroid structure onJ1(M ,R) we can define a representation of the L
algebra (V1(M )3C`(M ,R), $,%! on the (V1(M )3C`(M ,R))-moduleC`(M ,R). The cohomol-
ogy of the subcomplex consisting of theC`(M ,R)-linear cochains is isomorphic to th
Lichnerowicz–Jacobi cohomology. The relationship with the de Rham cohomology is also s

and we obtain a linear homomorphism #˜:HdR* (M )→HLJ* (M ) given by #̃(@a#)5@(#(a),
2#(i Ea))#.

In Sec. IV we introduce the notion of Jacobi–Chern class of a complex line bundleK over a
Jacobi manifold (M ,L,E) ~see also Ref. 22!. To do this, we first extend the concept of contr
variant derivative given by Vaisman for Poisson manifolds to Jacobi manifolds. A contrava
derivative D is defined as a derivation of sections with respect to pairs (a, f ) consisting of a
1-form a and a functionf . We also define the curvatureCD of D. The curvatureCD defines a
J. Math. Phys., Vol. 38, No. 12, December 1997
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cohomology classjc(K,L,E)PHLJ
2 (M ), which is called the real Jacobi–Chern class ofK. The

Jacobi–Chern class is related with the usual real Chern classc(K,R) of K by the formula

#̃(c(K,R))5 jc(K,L,E).
Section V is devoted to a discussion on the prequantization of Jacobi manifolds. We sa

a Jacobi manifold (M ,L,E) is quantizable if there exists a complex line bundlep:K→M overM
such that

$ f ,ĝ%5 f̂ +ĝ2ĝ+ f̂ , f ,gPC`~M ,R!

with f̂ PEndc(G(K)) defined bysPG(K)° f̂ (s)5D j 1fs12p i f s5D (d f, f )s12p i f s. Here,G(K)
is the space of cross sections ofp:K→M and D is a contravariant derivative onK. The main
result of this section is a necessary and sufficient condition for a Jacobi manifold to be qu
able:

Theorem V.2: Let (M ,L,E) be a Jacobi manifold. Then, M is quantizable if and only if the
exist a vector field A, a real differentiable function f and a closed 2-formV which represents an
integral cohomology class of M such that

~i! #̃(V)5s(A, f ).
~ii ! If x is a point of M and Ex50 then f(x)51.
~iii ! If x is a point of M andv is a 1-form at x such that ExÞ0 and #x(v)5Ex then f(x)

5v(Ax)11.

For a Poisson manifold we recover the result obtained by Vaisman.3 In particular, if M is a
symplectic manifold with symplectic 2-formF, we deduce thatM is quantizable is and only ifF
represents an integral cohomology class ofM ~see Refs. 1–3!. These examples and many othe
are discussed in Sec. VI. We study the case of Jacobi manifolds with l.c.s. characteristic fo
and conclude that a l.c.s. manifold is quantizable if and only if it is a quantizable symp
manifold. For Jacobi manifolds with contact characteristic foliation, we deduce that the
always quantizable, so, in particular, every contact manifold is. The particular case of a r
Jacobi manifold and some interesting examples of Jacobi manifolds with mixed leaves~with
nonpure characteristic foliation in our terminology! are also discussed.

The space of sectionsG(K) of the quantum bundleK of a quantizable Jacobi manifol
(M ,L,E) is usually too big for quantization purposes, so that we have to introduce a polariz
in order to reduce it. In Sec. VII we define a polarization ofM as a subspaceP of V1(M ) ^ C such
that P 3$0% is a subalgebra of ((V1(M )3C`(M ,R)) ^ C,$,%) andL~a,b!50, for a,bPP . Here,
the bracket$,% is the natural extension of the bracket onV1(M )3C`(M ,R). The subalgebra of
the straightforwardly quantizable observables is thenP(P )5$ f PC`(M ,R)/$(d f , f ),(a,0)%PP

3$0%, for all aPP %. If we choose a Hermitian metrich on K and a quantization Hermitian
contravariant derivativeD, we can extendD to the space of sectionsG(K ^ D) of K ^ D , where
D is the complex line bundle of complex half-densities ofM . If M is compact, and we denot
H05$vPG(K ^ D)/ for everyaPP , D (a,0)v50%, thenH0 can be made a pre-Hilbert space wi
the scalar product

^s1^ %1 ,s2^ %2&5E
M

h~s1 ,s2!%1%̄2 ,

where the bar denotes complex conjugation. Moreover, iff̂ :G(K ^ D)→G(K ^ D) is the operator

given by f̂ (s^ %)5D (d f, f )(s^ %)12p i f (s^ %) then$ f ,ĝ%(s^ %)5( f̂ +ĝ2ĝ+ f̂ )(s^ %) and if, in

addition, f PP(P ) then f̂ (H0)#H0 and the operatori f̂ :H0→H0 is Hermitian. The noncom-
pact case is also considered. The obtained results in both cases extend those by Vais
J. Math. Phys., Vol. 38, No. 12, December 1997
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Poisson manifolds.3 We end the section by discussing several examples of contact manifold
Jacobi manifolds with nonpure characteristic foliation. We omit the case of symplectic man
since there exists a large literature on the subject.

In Sec. VIII we discuss the existence of~1-differentiable! prequantization representations f
complex line bundles on Jacobi manifolds in terms of contravariant derivatives and of th
Jacobi–Chern class. The existence of these representations has been studied by Vaism3 but
using covariant derivatives. Our results extend the previous ones obtained by Urwin23 for sym-
plectic manifolds and by Vaisman for Poisson manifolds.3

Finally, it should be noticed that an alternative approach to the quantization of Po
manifolds was developed by Karasev24 and Weinstein25 by using the notion of symplectic
groupoid~see also Refs. 26,27!. The extension of the theory for Jacobi manifolds is a matte
obvious interest. Some work has been done by Dazord28 by introducing the notion of contac
groupoid.

II. JACOBI AND POISSON MANIFOLDS

All the manifolds considered in this paper are assumed to be connected.

A. Local Lie algebras and Jacobi manifolds

A Jacobi structureon am-dimensional manifoldM is a pair (L,E), whereL is a 2-vector
andE a vector field onM satisfying the following properties:

@L,L#52E`L, LEL5@E,L#50. ~1!

Here @,# denotes the Schouten–Nijenhuis bracket27,29 and L is the Lie derivative operator. The
manifold M endowed with a Jacobi structure is called aJacobi manifold. A bracket of functions
~the Jacobi bracket! is defined by

$ f ,g%5L~d f ,dg!1 f E~g!2gE~ f !, for all f ,gPC`~M ,R!. ~2!

The Jacobi bracket$,% is skew-symmetric, satisfies the Jacobi identity and

support$ f ,g%#~supportf !ù~supportg!.

Thus the spaceC`(M ,R) of C` real-valued functions onM endowed with the Jacobi bracket isa
local Lie algebrain the sense of Kirillov~see Ref. 30!. Conversely, a structure of local Lie algeb
on C`(M ,R) defines a Jacobi structure onM ~see Refs. 11,30!. If the vector fieldE identically
vanishes then$,% is a derivation in each argument and, therefore,$,% defines aPoisson bracketon
M . In this case,~1! reduces to@L,L#50 and (M ,L) is a Poisson manifold. Jacobi and Poisson
manifolds were introduced by Lichnerowicz9,12 ~see also Refs. 29,31, and 27!.

B. Examples of Jacobi manifolds

Examples of Poisson structures are symplectic and Lie–Poisson structures~see Refs. 9 and
32!. Other examples of Poisson manifolds are the cosymplectic manifolds.

A cosymplectic manifold~see Refs. 33,34,35 and 17! is a triple (M ,F,h), whereM is an odd
dimensional manifold,F is a closed 2-form andh is a closed 1-form onM such thathLFm is a
volume form, with dimM52m11. If [:X(M )→V1(M ) is the isomorphism of
C`(M ,R)-modules from the space of the vector fieldsX(M ) on M onto the space of 1-forms
V1(M ) defined by[(X)5 i xF1( i xh)h, then the vector fieldj5[21(h) is called theReeb
vector fieldof M . The Reeb vector fieldj is characterized by the relationsi jF50 andi jh51. In
particular,LjF50 andLjh50. A 2-vectorL on M is defined by

L~a,b!5F~[21~a!,[21~b!!5F~[21~a2a~j!h!,[21~b2b~j!h!!,
J. Math. Phys., Vol. 38, No. 12, December 1997
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for all a,bPV1(M ). Thus (M ,L) becomes a Poisson manifold. Moreover,LjL50. In canoni-
cal coordinates$q1,...,qm,pi ,...,pm ,z%, we have33,35

F5(
i 51

m

dqi`dpi , h5dz, j5
]

]z
, L5(

i 51

m
]

]qi `
]

]pi
.

Other interesting examples of Jacobi manifolds, which are not Poisson manifolds, are the c
manifolds and the locally conformal symplectic manifolds which we will describe below. LeM
be a (2m11)-dimensional manifold andu a 1-form onM . We said thatu is a contact 1-form if
u`(du)mÞ0 at every point. In such a case (M ,u) is termed acontact manifold~see, for example,
Refs. 31, 33, and 34!. A contact manifold (M ,u) is a Jacobi manifold. In fact, we define th
2-vectorL on M by

L~a,b!5du~[21~a!,[21~b!!, ~3!

for all a,bPV1(M ), where[:X(M )→V1(M ) is the isomorphism ofC`(M ,R)-modules given
by [(X)5 i X du1u(X)u. The vector fieldE is just the Reeb vector fieldj5[21(u) of (M ,u).
It is characterized by the relationsi ju51 andi j du50. Moreover, around every point ofM there
exist canonical coordinates (t,q1,...,qm,p1 ,...,pm) such that~see Refs. 12, 33, and 34!

u5dt2(
i

pi dqi , L5(
i

S ]

]qi 1pi

]

] l D`
]

]pi
, E5

]

]t
.

An almost symplectic manifoldis a pair (M ,F), whereM is an even dimensional manifold andF
is a nondegenerate 2-form onM . An almost symplectic manifold is said to belocally conformal
symplectic (l.c.s.)if for each pointxPM there is an open neighborhoodU such thatd(e2sF)50,
for some functions:U→R ~see, for example, Refs. 11, 17, and 36!. So, (U,e2sF) is a symplec-
tic manifold. If U5M thenM is said to be aglobally conformal symplectic (g.c.s.)manifold. An
almost symplectic manifold (M ,F) is l.~g.!c.s. if and only if there exists a closed~exact! 1-form
v such thatdF5v`F. The 1-formv is called theLee 1-formof M . It is obvious that the l.c.s
manifolds with Lee 1-form identically zero are just the symplectic manifolds.

In a similar way that for contact manifolds, we define a 2-vectorL and a vector fieldE on M
which are given by

L~a,b!5F~[21~a!,[21~b!!, E5[21~v!,

for all a,bPV1(M ), where[:X(M )→V1(M ) is the isomorphism ofC`(M ,R)-modules defined
by [(X)5 i xF. Then (M ,L,E) is a Jacobi manifold. Notice that

v~E!50, LEv50, LEF50.

Using the classical theorem of Darboux, around every point ofM there exist canonical coordinate
(q1,...,qm,p1 ,...,pm) and a local differentiable functions such that

F5es(
i

dqi`dpi , v5ds5(
i

S ]s

]qi dqi1
]s

]pi
dpi D ,

L5e2s(
i

S ]

]qi `
]

]pi
D , E5e2s(

i
S ]s

]pi

]

]qi2
]s

]qi

]

]pi
D .
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Finally, a very simple but interesting Jacobi structure is that provided by a vector fieldE on a
manifold M . That is, the Jacobi structure is given by (L50, E). It should be remarked that thi
structure is closely related with Virasoro algebras~see Ref. 37!.

C. The characteristic foliation of a Jacobi manifold

Let (M ,L,E) be a Jacobi manifold. Define a mapping #:V1(M )→X(M ) by

~#~a!!~b!5L~a,b!, ~4!

for a,bPV1(M ). This mapping can be extended to a mapping, which we also denote by #,
the space ofk-forms Vk(M ) on M onto the space ofk-vectorsV k(M ) by putting

#~ f !5 f , #~a!~a1 ,...,ak!5~21!ka~#~a1!,...,#~ak!!, ~5!

for all f PC`(M ,R), aPVk(M ) anda1 ,...,akPV1(M ).
In the particular case of a cosymplectic manifoldM with Reeb vector fieldj, we have that

#(a)52[21(a)1a(j)j for aPV1(M ). For a contact manifold with Reeb vector fieldj, we
also deduce that #(a)52[21(a)1a(j)j. For a l.c.s. manifold, we obtain that #52[21.

If f is a C` real-valued function on a Jacobi manifoldM , the vector fieldXf defined by

Xf5#~d f !1 f E ~6!

is called theHamiltonian vector fieldassociated withf . It should be noticed that the Hamiltonia
vector field associated with the constant function 1 is justE. A direct computation proves that~see
Refs. 12 and 38!

@Xf ,Xg#5X$ f ,g% . ~7!

Now, for everyxPM , we consider the subspaceF x of TxM generated by all the Hamiltonia
vector fields evaluated at the pointx. In other words,F x5#x(Tx* M )1^Ex&. SinceF is involu-
tive, one easily follows thatF defines a generalized foliation, which is called thecharacteristic
foliation in Ref. 10. Moreover, the Jacobi structure ofM induces a Jacobi structure on each le
In fact, if L is the leaf over a pointx of M andEx¹Im#x thenL is a contact manifold with the
induced Jacobi structure. IfExPIm#x , L is a l.c.s. manifold~for a more detailed study of the
characteristic foliation of a Jacobi manifold we refer to Ref. 10!. If M is a Poisson manifold then
from ~4! and~6!, we deduce that the characteristic foliation ofM is just thecanonical symplectic
foliation of M ~see Refs. 9 and 32!.

D. Regular Jacobi manifolds and quantizable Poisson manifolds

A Jacobi manifold (M ,L,E) is said to beregular if the vector fieldE is complete,EÞ0 at
every point and the 1-dimensional foliation defined byE is regular in the sense of Palais.39 In such
a case, the space of leavesM̄5M /E has a structure of differentiable manifold and the canon
projection p:M→M̄ is a fibration ~surjective submersion!. Moreover, we can define onM̄ a
2-vectorL̄ by

L̄~ ā,b̄ !+p5A~p* ā,p* b̄ !, ;ā,b̄PV1~M̄ !.

Notice that, from~1!, L̄ is well-defined and (M̄ ,L̄) is a Poisson manifold~see Ref. 10!. Next, we
will relate the regular Jacobi manifolds with the quantizable Poisson manifolds~see Ref. 17!.

We first recall the characterization of quantizable Poisson manifolds given by Vaisma3 A
Poisson manifold (M̄ ,L̄) is quantizableif and only if there exist a vector fieldA and an integral
closed 2-formV̄ on M̄ such that
J. Math. Phys., Vol. 38, No. 12, December 1997
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L̄2L ĀL̄5#̄~V̄!, ~8!

where #̄:V2(M̄ )→V 2(M̄ ) is the homomorphism given as in~4! and ~5!.
Now, suppose that (M̄ ,L̄) is a quantizable Poisson manifold and thatĀ,V̄ are a vector field

and an integral closed 2-form onM̄ , respectively, satisfying~8!. From the results of Ref. 40, ther
exists a principal circle bundlep:M→M̄ over M̄ with connection formu such thatV̄ is the
curvature for the connectionu, that is,p* V̄5du.

In Ref. 17 we have proved that onM there exists a Jacobi structure (L,E) such that (M ,L,E)
is a regular Jacobi manifold and the corresponding quotient Poisson manifoldM /E is just (M̄ ,L̄).
Moreover,

u~E!51, LEu50. ~9!

In fact, E is the infinitesimal generator of the action ofS1 on M andL is given by

L5L̄H1E`ĀH, ~10!

whereL̄H ~respectively,ĀH! is the horizontal life toM of L̄ ~respectively,Ā! ~see Remark II.1
below!.

A converse of the above result is also proved. Namely, a compact regular Jacobi ma
(M ,L,E) endowed with a 1-formu satisfying~9! is the total space of a principal circle bund
over a quantizable Poisson manifold~see Ref. 17!.

Remark II.1:Let p:M→M̄ be a principal circle bundle over a manifoldM̄ endowed with a
connection formu. If P̄ is a k-vector onM̄ , k>1, we define thehorizontal lift of P̄ to M as the
k-vector P̄H on M characterized by the following conditions:

P̄H~p* ā1 ,...,p* āk!5 P̄~ ā1 ,...,āk!+p, i uP̄H50, ~11!

for all ā1 ,...,ākPV1(M̄ ).

E. Lie algebroid of a Jacobi manifold

A Lie algebroid structureon a differentiable vector bundlep:K→M is a pair that consists o
a Lie algebra structure$,% on the spaceG(K) of the global cross sections ofp:K→M and a
homomorphism ofC`(M ,R)-modules%:G(K)→X(M ) such that

~i! %:(G(K),$,%)→(X(M ),@ ,#) is a Lie algebra homomorphism.
~ii ! For all f PC`(M ,R) and for alls1 , s2PG(K) one has

$s1 , f s2%5 f $s1 ,s2%1~%~s1!~ f !!s2 .

A triple (K,$,%,%) is calleda Lie algebroid over M~see Refs. 27 and 41!.
Let (M ,L,E) be a Jacobi manifold. In Ref. 18, the authors obtain a Lie algebroid structu

the jet bundleJ1(M ,R) as follows. It is well-known that ifT* M is the cotangent bundle ofM , the
spaceJ1(M ,R) can be identified with the product manifoldK5T* M3R in such a sense that th
spaceG(K) of the global cross sections of the vector bundleK5T* M3R→M can be identified
with V1(M )3C`(M ,R). Now, we consider onV1(M )3C`(M ,R) the bracket$,% given by~see
Ref. 18!

$~a, f !,~b,g!%5 j 1~L~#~a!1 f E!g2L~#~b!1gE! f 2L~a,b!!1~~L~#~a!1 f E!2 i Ea!~b2dg!

2~L~#~b!1gE!2 i Eb!~a2d f !,0!5~L#~a!b2L#~b!a2d~L~a,b!!1 f LEb

2gLEa2 i E~a`b!,a~#~b!!1#~a!~g!2#~b!~ f !1 f E~g!2gE~ f !!, ~12!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



at

ual

of
ctor

y–
cobi
d

s. A

e

6192 de León, Marrero, and Padrón: On the geometric quantization of Jacobi manifolds

                    
where j 1:C`(M ,R)→V1(M )3C`(M ,R) is theprolongation mappingdefined by

j 1~ f !5~d f , f !.

We have~see Ref. 18!
Theorem II.2: Let (M, L, E) be a Jacobi manifold and$,% the bracket onV1(M )3C`(M ,R)

defined by (12). Then, the triple(T* M3R,$,%,(#,E)) is a Lie algebroid over M, where
(#,E):V1(M )3C`(M ,R)→X(M ) is the homomorphism of C`(M ,R)-modules given by

~#,E!~a, f !5#~a!1 f E. ~13!

Moreover, if we consider on C`(M ,R) the Jacobi bracket then the prolongation mapping

j 1:C`~M ,R!→V1~M !3C`~M ,R!, f→ j 1f 5~d f , f ! ~14!

is a Lie algebra homomorphism.
Remark II.3:~i! If XH(M ) is the Lie algebra of the Hamiltonian vector fields, it is clear th

(#,E)( j 1(C`(M ,R)))5XH(M ).
~ii ! In the particular case whenM is a Poisson manifold we recover, by projection, the us

Lie algebroid structure on the vector bundlep:T* M→M ~see Refs. 29, 42, 43!.

III. H –CHEVALLEY–EILENBERG COHOMOLOGY OF A JACOBI MANIFOLD

Let (M ,L,E) be a Jacobi manifold and$,% the Jacobi bracket. We consider the cohomology
the Lie algebra (C`(M ,R),$,%) relative to the representation defined by the Hamiltonian ve
fields, that is, to the representation given by

C`~M ,R!3C`~M ,R!→C`~M ,R!, ~ f ,g!→Xf~g!.

This cohomology is denoted byHHCE* (M ) and it is called theH–Chevalley–Eilenberg cohomol-
ogyassociated toM ~see Refs. 20,21!. In fact, if CHCE

k (M ) is the real vector space of thek-linear
skew-symmetric mappingsck:C`(M ,R)3••• (k•••3C`(M ,R)→C`(M ,R) then

HHCE
k ~M !5

ker$]H :CHCE
k ~M !→CHCE

k11 ~M !%

Im$]H :CHCE
k21 ~M !→CHCE

k ~M !%
,

where]H :CHCE
r (M )→CHCE

r 11 (M ) is the linear differential operator defined by

~]Hcr !~ f 0 ,...,f r !5(
i 50

r

~21! iXf i
~cr~ f 0 ,...,f̂ i ,...,f r !!

1(
i , j

~21! i 1 j cr~$ f i , f j%, f 0 ,...,f̂ i ,...,f̂ j ,...,f r ! ~15!

for crPCHCE
r (M ) and f 0 ,...,f rPC`(M ,R).

Notice that for a Poisson manifold,HHCE* (M ) is theChevalley–Eilenberg cohomologyof the
Lie algebra (C`(M ,R),$,%) ~see Ref. 9!. However, for arbitrary Jacobi manifolds the Chevalle
Eilenberg cohomology~which is defined with respect to the representation given by the Ja
bracket12! does not coincide in general with theH –Chevalley–Eilenberg cohomology define
above.

Now, we will study the cohomology of the subcomplex of the 1-differentiable cochain
k-cochainckPCHCE

k (M ) is said to be 1-differentiable if it is defined by a linear differential
operator of order 1. IfV r(M ) is the space ofr -vectors onM then we can identify the spac
J. Math. Phys., Vol. 38, No. 12, December 1997
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V k(M ) % V k21(M ) with the space of all 1-differentiablek-cochainsCHCE21diff
k (M ) as follows

~see, for instance, Ref. 9!: define j k :V k(M ) % V k21(M )→CHCE
k (M ) the monomorphism given

by

j k~P,Q!~ f 1 ,...,f k!5P~d f1 ,...,d fk!1 (
q51

k

~21!q11f qQ~d f1 ,...,d fq̂,...,d fk!. ~16!

Then, j k(V k(M ) % V k21(M ))5CHCE12diff
k (M ) which implies that the spacesV k(M )

% V k21(M ) andCHCE12diff
k (M ) are isomorphic.

On the other hand, ifP̃PCHCE12diff
k (M ) then ]HP̃PCHCE12diff

k11 (M ). Thus, we have the
corresponding subcomplex (CHCE12diff* (M ),]HuC

HCE12diff* (M )) of the H –Chevalley–Eilenberg

complex whose cohomologyHHCE12diff* (M ) will be called the 1-differentiable H–Chevalley–
Eilenberg cohomologyof M . Moreover, using~15!, ~16! and the properties of the Schouten
Nijenhuis bracket, we can prove that

]H~ j k~P,Q!!5 j k11~s~P,Q!!, ~17!

where

s~P,Q!5~2@L,P#1kE`P1L`Q,@L,Q#2~k21!E`Q1@E,P# !. ~18!

The last equation defines a mappings:V k(M ) % V k21(M )→V k11(M ) % V k(M ) which is in
fact a differential operator that verifiess250. Thus we have a complex (V * (M ) % V * 21(M ),s)
whose cohomology will be called theLichnerowicz–Jacobi cohomology (LJ-cohomology)of M
and denoted byHLJ* (M ). This cohomology is a generalization of the Lichnerowicz–Jacobi co
mology introduced in Refs. 19–21. In fact, the former one is the cohomology of the subcom
of the pairs (P,0), whereP is invariant byE. For this reason, we retain the name.

Notice that the mappingsj k :V k(M ) % V k21(M )→CHCE
k (M ) given by ~16! induce an iso-

morphism between the complexes (V * (M ) % V * 21(M ),s) and (CHCE12diff* (M ),
(]H)C

HCE12diff* (M )) and therefore the corresponding cohomologies are isomorphic.

Remark III. 1: If s̃ denotes the cohomology operator in the 1-differentiable Chevall
Eilenberg subcomplex then~see Ref. 12!

ŝ~P,Q!5~2@L,P#1~k21!E`P1L`Q,@L,Q#2~k22!E`Q1@E,P# !,

for (P,Q)PV k(M ) % V k21(M ). Thus, from ~18!, we deduce that the 1-differentiabl
H –Chevalley—Eilenberg cohomology~that is, the LJ-chomology! does not coincide in genera
with the 1-differentiable Chevalley–Eilenberg cohomology.

Now, we define a natural structure of (V1(M )3C`(M ,R))-module onC`(M ,R) putting

~a, f !g5~#,E!~a, f !~g!,

where (#,E):V1(M )3C`(M ,R)→X(M ) is the homomorphism given by~13!. If $,% is the
bracket on V1(M )3C`(M ,R) defined by ~12! then, since (#,E):(V1(M )
3C`(M ,R),$,%)→(X(M ),@ ,#) is a Lie algebra homomorphism~see Theorem II.2!, we have a
representation of the Lie algebra (V1(M )3C`(M ,R),$,%) onto the moduleC`(M ,R), and we
can define the corresponding differential complex and the corresponding cohomology. I
complex thek-cochains are theR-linear skew-symmentric mappingsR̂:(V1(M )3C`(M ,R))k

→C`(M ,R) and the cohomology operator]̃ is given by
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ ]̃ R̃!~~a0 , f 0!,...,~ak , f k!!5(
i 50

k

~21! i~#,E!~a i , f i !~R̃~~a0 , f 0!,...,~a i , f î !,...,~ak , f k!!!

1(
i , j

~21! i 1 j R̃~$~a i , f i !,~a j , f j !%,

~a0 , f 0!,...,~a i , f î !,...,~a i , f ĵ !,...,~ak , f k!!. ~19!

We can consider the subcomplex of those cochains which areC`(M ,R)-linear. The cohomology
of this subcomplex is also isomorphic to theLJ-cohomology. An isomorphism is induced by th

mapping (P,Q)°(P,Q̃), where (P,Q)PV k(M ) % V k21(M ) and (P,Q̃):(V1(M )
3C`(M ,R))k→C`(M ,R) is theC`(M ,R)-linear mapping defined by

~P,Q̃!~~a t , f 1!,...,~ak , f k!!5P~a1 ,...,ak!1 (
q51

k

~21!q11f qQ~a1 ,...a q̂...,ak!. ~20!

In fact, we can prove that

]̃~P,Q̃!5s~P,Q̃!. ~21!

Finally, we will show the relation between the de Rham cohomology and the LJ-cohomo
Denote by #:Vk(M )→V k(M ) the homomorphism ofC`(M ,R)-modules defined in~4! and~5!.
We have~see Refs. 19–21!:

LE~#~a!!5#~LEa!, 2@L,#~a!#1kE`#~a!52#~da!1#~ i Ea!`L, ~22!

for all aPVk(M ). Using these results and~18!, we deduce

Theorem III.2: Let (M ,L,E) be a Jacobi manifold and#̃ :Vk(M )→V k(M ) % V k21(M ) the
homomorphism of C`(M ,R)-modules given by

#̃~a!5~#~a!,2#~ i Ea!! ~23!

for all aPVk(M ). Then #̃ induces a homomorphism of complexes#̃ :(V* (M ),d)→(V * (M )
% V * 21(M ),2s). Thus if HdR* (M ) is the de Rham cohomology of M, we have the correspon

homomorphism in cohomology#̃ :HdR* (M )→HLJ* (M ).
Remark III.3: If ( M ,L) is a Poisson manifold we can define the linear differential oper

s̃:V k(M )→V k11(M ) by s̄(P)52@L,P#. Since s̄250, s̃ defines a cohomology which i
called theLichnerowicz–Poisson cohomology (LP-cohomology)for the Poisson manifoldM ~see
Ref. 9!. We will denote byHLP* (M ) the LP-cohomology. Using~22!, we obtain thats̃+#52#
+d and therefore we have an induced homomorphism in cohomology #:HdR* (M )→HLP* (M ). On
the other hand, from~18!, we deduce that the LP-cohomology ofM is isomorphic to the coho-
mology of the subcomplex of the LJ-complex consisting of the pairs (P,0). Consequently, using
Theorem III.2 we obtain the following commutative diagram:
J. Math. Phys., Vol. 38, No. 12, December 1997
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,

wherei * is the induced homomorphism by the canonical inclusionP°(P,0).

IV. JACOBI–CHERN CLASS OF A COMPLEX LINE BUNDLE OVER A JACOBI
MANIFOLD

Let (M ,L,E) be a Jacobi manifold andp:K→M a complex line bundle overM . Denote by
G(K) the space of cross sections ofp:K→M and, byEndc(G(K)) the space of theC-linear
endomorphisms ofG(K).

Definition IV.1: A contravariant derivative D onp:K→M is a mapping D:V1(M )
3C`(M ,R)→Endc(G(K)) which satisfies the following conditions:

D ~a1b, f 1g!5D ~a, f !1D ~b,g!, D ~ga,g f !5gD~a, f ! ,
~24!

D ~a, f !gs5gD~a, f !s1~#,E!~a, f !~g!s,

for all aPV1(M ), f, gPC`(M ,R) and sPG(K).
This definition is a natural extension of the one given by Vaisman for Poisson manifolds~see

Ref. 3, 27!. In fact, if (M ,L) is a Poisson manifold andD:V1(M )3C`(M ,R)→Endc(G(K)) is
a contravariant derivative on a complex line bundlep:K→M , then the mapping

D̃:V1~M !→Endc~G~K !! D̃a5D ~a,0!

defines a contravariant derivative in the sense of Vaisman. Conversely
D̃:V1(M )→Endc(G(K)) is a contravariant derivative in the sense of Vaisman then the map

D:V1~M !3C`~M ,R!→Endc~G~K !! D ~a, f !5D̃a

satisfies~24!.
Let (M ,L,E) be a Jacobi manifold andh a Hermitian metric on the complex line bund

p:K→M . A contravariant derivativeD on p:K→M is said to beHermitian (or compatible with
h) if

~#,E!~a, f !~h~s1 ,s2!!5h~D ~a, f !s1 ,s2!1h~s1 ,D ~a, f !s2!, ~25!

for all aPV1(M ), f PC`(M ,R) ands1 ,s2PG(K).
For instance, if“ is a usual~Hermitian! covariant derivative onp:K→M and we put

D (a, f )5¹ (#,E)(a, f ), we obtain a~Hermitian! contravariant derivative. This remark shows th
~Hermitian! contravariant derivatives always exist.

Next, we will introduce the definition of curvature of a contravariant derivative.
Definition IV.2: Letp:K→M be a complex line bundle over a Jacobi manifold M and D

contravariant derivative onp:K→M . The curvature of D is the mapping CD :(V1(M )
3C`(M ,R))3(V1(M )3C`(M ,R))3G(K)→G(K) given by

CD~~a, f !,~b,g!!~s!5~D ~a, f !+D ~b,g!2D ~b,g!+D ~a, f !2D $~a, f !,~b,g!%!s ~26!
J. Math. Phys., Vol. 38, No. 12, December 1997
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for all (a, f ),(b,g)PV1(M )3C`(M ,R) and sPG(K).
Using ~24!, ~26! and Theorem II.2, we deduce thatCD is trilinear overC`(M ,R) and

CD~~a, f !,~b,g!!~s!52CD~~b,g!,~a, f !!~s!.

Thus, from the results in Sec. III, we have that there exist a globally defined complex 2-v
PCD

5P11 iP2 and a globally defined complex vector fieldYCD
5Y11 iY2 such that

CD~~a, f !,~b,g!!~s!5~~PCD
,YCD̃

!~~a, f !,~b,g!!!s, ~27!

where (PCD
,YCD̃

)5(P1 ,Y1̃)1 i (P2 ,Y2̃) and (Pi ,Yĩ) are defined by~20!.
Now, let s be the LJ-cohomology operator~see~18!!. If P5P11 iP2 ~respectively,Q5Q1

1 iQ2) is a complexk-vector~respectively, (k-1)-vector! then we can defines(P,Q) by linearity
as follows

s~P,Q!5s~P1 ,Q1!1 is~P2 ,Q2!.

It is clear thats250 and, therefore, we obtain the corresponding cohomology which wil
denoted byHCLJ* (M ). Moreover, we prove the following.

Theorem IV.3: Let p:K→M be a complex line bundle over a Jacobi manifold M. Supp
that D is a contravariant derivative onp:K→M with curvature CD . Then:

~i! The pair (PCD
,YCD

) defines a cohomology class in HCLJ
2 (M ).

~ii ! The cohomology class@(PCD
,YCD

)# does not depend of the contravariant derivative D.
~iii ! If h is a Hermitian metric onp:K→M and D is a Hermitian contravariant derivative the

PCD
and YCD

are purely imaginary.

Proof: ~i! Let $e% be a local basis ofG(K). From ~20! and~24! we deduce that there exist
local complex vector fieldXD5X11 iX2 and a local complex functiongD5g11 ig2 such that

D ~a, f !e5~~XD ,gD̃!~a, f !!e ~28!

for (a, f )PV1(M )3C`(M ,R), where (XD ,gD̃)5(X1 ,g1̃)1 i (X2 ,g2̃). Thus, using~19!, ~21!,
~24!, ~26! and ~27!, we have that

s~XD ,gD!5~PCD
,YCD

! ~29!

which implies thats(PCD
,YCD

)50.

~ii ! Assume thatD̄ is another contravariant derivative onp:K→M and thatXD̄ andgD̄ are
the corresponding local complex vector field and the corresponding local complex function
~i!. We obtain~see~29!!

~PCD̄
,YCD̄

!5~PCD
,YCD

!1s~XD̄2XD,gD̄2gD!. ~30!

On the other hand, if we define the mapping

D̄2D:~V1~M !3C`~M ,R!!3G~K !→G~K !, ~~a, f !,s!°D̄ ~a, f !s2D ~a, f !s,

then, from~24! and the results of Sec. III, we conclude that there exists a globally defined com
vector fieldX(D̄2D) and a globally defined complex functiong(D̄2D) such that

~D̄2D !~~a, f !,s!5~~X~D̄2D ! ,g~D̄2D !
˜ !~a, f !!s. ~31!
J. Math. Phys., Vol. 38, No. 12, December 1997
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But in the overlapping we have

X~D̄2D !5XD̄2XD and g~D̄2D !5gD̄2gD . ~32!

Consequently, by using~30!, we prove~ii !.
~iii ! If $e% is a local orthonormal basis ofG(K) then ~see~25!!

05h~D ~a, f !e,e!1h~e,D ~a, f !e!5~XD,gD̃!~a, f !1~XD,gD̃!~a, f !, ~33!

for all (a, f )PV1(M )3C`(M ,R), where the bar denotes complex conjugation. Takingf 50 in
~33!, we deduce thata(XD)1a(X̄D)50 for all a. Therefore,XD is purely imaginary which, by
~33!, implies thatgD is also purely imaginary. Since (PCD

,YCD
)5s(XD ,gD), we deduce the

result.
h

Theorem IV.3 suggests us to introduce the following definition.
Definition IV.4: Letp:K→M be a complex line bundle over a Jacobi manifold(M ,L,E).

Suppose that D is a contravariant derivative with curvature CD such that PCD
and YCD

are purely

imaginary. Then, the cohomology class@(( i /2p)PCD
,(i /2p)YCD

)# in HLJ
2 (M ) is called the real

Jacobi–Chern class of the complex line bundlep:K→M and it is denoted by jc(K,L,E).
Next, we will show the relation between the usual real Chern class and the real Jacobi–

class of a complex line bundle over a Jacobi manifold.
Let p:K→M be a complex line bundle over a differentiable manifoldM . If h is a Hermitian

metric onp:K→M and“ a Hermitian covariant derivative then there exists a purely imagin
closed 2-formV¹ such that

V̄¹~X,Y!~s!5V¹~X,Y!~s! ~34!

for all X,YPX(M ) andsPG(K), whereV̄¹ is the curvature of the connection“, i.e.,

V̄¹~X,Y!~s!5~“X+“Y2“Y+“X2“ @X,Y#!~s!.

The real Chern classc(K,R)PHdR
2 (M ) is just the integral cohomology class@( i /2p)V¹# ~see

Ref. 1!.
Theorem IV.5: Let p:K→M be a complex line bundle over a Jacobi manifold(M ,L,E). If

c(K,R) and jc(K,L,E) are the real Chern class and the real Jacobi–Chern class, respectively, o
p:K→M then

#̃~c~K,R!!5 jc~K,L,E!,

where #̃ :HdR
2 (M )→HLJ

2 (M ) is the induced homomorphism between the de Rham cohomo
and the LJ-cohomology.

Proof: If “ is a Hermitian covariant derivative and$e% is a local basis ofG(K), we have

“Xe5u~X!e ~35!

for all XPX(M ), whereu is the local connection 1-form. Moreover, ifV5( i /2p)V¹ we deduce
that locally ~see Ref. 1!

22p iV5V¹5du. ~36!

Now, let D be the Hermitian contravariant derivative given byD (a, f )5“ (#,E)(a, f ) . Denote byXD

andgD the local complex vector field and the local complex function which satisfy~28!. Using
~35!, it follows that
J. Math. Phys., Vol. 38, No. 12, December 1997
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2 #̃~u!5~2#~u!,u~E!!5~XD ,gD!. ~37!

Thus, from~29!, ~36!, ~37! and Theorem III.2, we conclude that

#̃~V!5S i

2p
PCD

,
i

2p
YCDD ~38!

which proves our result. h

Remark IV.6:Let (M ,L) be a Poisson manifold and #:HdR* (M )→HLP* (M ) the canonical
homomorphism between the de Rham cohomology ofM and the LP-cohomology~see Remark
III.3!. If p:K→M is a complex line bundle overM , Vaisman3 defined thePoisson–Chern class
pc(K,L) of p:K→M as a LP-cohomology class of order 2 so that #(c(K,R))5pc(K,L). Thus,
using Remark III.3 and Theorem IV.5, we obtain that

i * ~pc~K,L!!5 jc~K,L,0!,

where jc(K,L,0) is the Jacobi–Chern class ofp:K→M and i * :HLP* (M )→HLJ* (M ) is the ca-
nonical homomorphism between the LP-cohomology and the LJ-cohomology.

V. PREQUANTIZATION

Let (M ,L,E) be a Jacobi manifold andD a coutravariant derivative on the complex lin
bundlep:K→M . Suppose thatx is a point ofM and thatv is a 1-form atx. If Kx5p21(x) is the
fibre overx, we define the linear mappingDv :G(K)→Kx by

Dv~s!5~D ~ṽ,0!s!x ,

whereṽ is a 1-form onM such thatṽx5v. Using ~24!, we deduce thatDv does not depend on
the extensionṽ, i.e., if v̄ is another 1-form onM such thatv̄x5v then

~D ~v̄,0!s!x5~D ~v̄,0!s!x .

We will assume that all the contravariant derivatives considered in this section satisfy the fo
ing conditions:

~C1! If Ex50 then (D (0,1)s)x50 for all sPG(K).
~C2! If ExÞ0 and there exists a 1-formv at x such that #x(v)5Ex then

Dvs2~D ~0,1!s!x50

for all sPG(K).
Note that if“ if a usual covariant derivative onp:K→M , then the contravariant derivativ

D (a, f )5¹ (#,E)(a, f ) satisfies the above conditions.
Definition V.1: We say that a Jacobi manifold(M ,L,E) is quantizable if there exists a

complex line bundlep:K→M over M such that

$ f ,ĝ%5 f̂ +ĝ2ĝ+ f̂ f ,gPC`~M ,R! ~39!

with f̂PEndc(G(K)) defined by

sPG~K !° f̂ ~s!5D j 1fs12p i f s5D ~d f, f !s12p i f s, ~40!

where D is a contravariant derivative onp:K→M .
For the sake of simplicity and following Refs. 1 and 3, we have forgotten about the P

constant in the definition of quantizable Jacobi manifold.
J. Math. Phys., Vol. 38, No. 12, December 1997
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If CD is the curvature ofD, from ~2!, ~24!, ~26!, ~40! and Theorem II.2, we deduce that th
condition ~39! is equivalent to

CD~~d f , f !,~dg,g!!~s!522p iL~d f ,dg!s522p i ~~L,0̃!~~d f , f !,~dg,g!!!s,

for all sPG(K). Thus using the fact thatCD is trilinear overC`(M ,R) and its skew-symmetric
character we obtain that

CD~~a, f !,~b,g!!~s!522p i ~~L,0̃!~~a, f !,~b,g!!!s, ~41!

for all (a, f ),(b,g)PV1(M )3C`(M ,R) andsPG(K). This implies that~see~27!!

S i

2p
PCD

,
i

2p
YCDD5~L,0!. ~42!

Hence (M ,L,E) is quantizable if and only if there is a complex line bundlep:K→M that
possesses a contravariant derivativeD satisfying ~42!. In particular, we must have (PCD

,YCD
)

purely imaginary which suggests looking forK together with a Hermitian contravariant derivativ
Also, sinces(0,1)5(L,0) ~s being the LJ-cohomology operator, see~18!!, we deduce that the
real Jacobi–Chern class ofp:K→M is null ~see Definition IV.4!. Moreover, if

#̃ :Vk(M )→V k(M ) % V k21(M ) is the homomorphism ofC`(M ,R)-modules given by~23!, we
obtain:

Theorem V.2: Let (M ,L,E) be a Jacobi manifold. Then, M is quantizable if and only if the
exist a vector field A, a real differentiable function f and a closed 2-formV which represents an
integral cohomology class of M such that

~i! #̃(V)5s(A, f ).
~ii ! If x is a point of M and Ex50 then f(x)51.
~iii ! If x is a point of M andv is a 1-form at x such that ExÞ0 and #x(v)5Ex then f(x)

5v(Ax)11.

Proof: Suppose that (M ,L,E) is quantizable. Then, there is a complex line bundlep:K→M
over M and a contravariant derivativeD on p:K→M with curvatureCD satisfying~42!.

Now, let h be a Hermitian metric onp:K→M and “ a Hermitian covariant derivative
Denote byV̄¹ the curvature of“ and byV¹ the 2-form given by~34!. ThenV5( i /2p)V

“

is a
closed real 2-form which represents an integral cohomology class ofM . In fact, the real Chern
classc(K,R) is just @V# ~see Sec. IV!.

We consider the contravariant derivativeD̄ defined byD̄ (a, f )5“ (#,E)(a, f ) . From ~18!, ~38!,
~42! and Theorem IV. 3, we obtain that there exist a complex vector fieldX(D̄2D) and a complex
function g(D̄2D) such that

#̃~V!5~L,0!1sS i

2p
X~D̄2D ! ,

i

2p
g~D̄2D !D5sS i

2p
X~D̄2D ! ,

i

2p
g~D̄2D !11D .

Thus we have

#̃~V!5s~A, f !,

whereA and f are the real vector field and the real function, respectively onM given by

A5
21

2p
Im~X~D̄2D !!, f 5

21

2p
Im~g~D̄2D !!11.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~Here Im(X(D̄2D) and Im(g(D̄2D)) denote the imaginary parts ofX(D̄2D) andg(D̄2D) , respectively!.
This proves~i!.

~ii ! and ~iii ! follows using~28!, ~32! and the fact thatD andD̄ satisfy the conditions~C1! y
~C2!.

Conversely, assume thatA, f andV are a vector field, a real function and an integral clos
2-form on M which satisfy the conditions~i!, ~ii ! and ~iii !. Then, it is well-known~see, for
instance, Ref. 1! that there exists a complex line bundlep:K→M over M , endowed with a
Hermitian metrich, such that22p iV is the curvature form of a certain Hermitian covaria
derivative“ on p:K→M .

Define the Hermitian contravariant derivativeD:V1(M )3C`(M ,R)→EndC(G(K)) by

D ~a,g!s5“ ~#,E!~a,g!s12p i ~a~A!1~ f 21!g!s. ~43!

A direct computation, using~ii ! and ~iii !, proves thatD satisfies the conditions~C1! and ~C2!.
Finally, from ~18!, ~28!, ~30!, ~32! and ~38!, we conclude that

S i

2p
PCD

,
i

2p
YCDD5~L,0!.

Remark V.3:The condition~i! of Theorem V.2 is equivalent to

#~V!5 f A2LAL1E`A and 2#~ i EV!5#~d f !1LEA.

Using Theorems III.2 and V.2, we deduce the following
Corollary V.4: Let(M ,L,E) be a Jacobi manifold and HdR* (M ) the de Rham cohomology o

M. Suppose that HdR
2 (M )5$0%. Then, M is quantizable if and only if there exists a 1-cocy

(A, f )PX(M )3C`(M ,R) in the LJ-cohomology such that:
(i) If x is a point of M and Ex50 we have that f(x)51.
(ii) If x is a point of M andv is a 1-form at x such that ExÞ0 and #x(v)5Ex then f(x)

5v(Ax)11.

VI. EXAMPLES

Example VI.1: [Poisson, symplectic and Lie–Poisson structures.]Let (M ,L) be a Poisson
manifold. Using Theorem V.2, we obtain thatM is quantizable as a Jacobi manifold if and only
there exist a vectorA and a closed 2-formV that represents an integral cohomology class ofM
which satisfy~8!. Thus,M is quantizable as a Jacobi manifold if and only ifM is quantizable as
a Poisson manifold in the sense of Vaisman.3

In particular, if M is a symplectic manifold with symplectic 2-formF, we deduce thatM is
quantizable if and only ifF represents an integral cohomology class ofM ~see Refs. 1, 2 and 3!.
On the other hand, since for the Lie–Poisson structure of a coadjoint Lie algebra the P
2-vector is exact in the LP-cohomology, we have that these Poisson structures are always
tizable ~see Ref. 3!.

Example VI.2: [Jacobi manifolds with l.c.s. characteristic foliation.]Let (M ,L,E) be a Ja-
cobi manifold and suppose that there exists a closed 1-forma such that

E52#~a! ~44!

and

Ex50, for xPM⇒ax50. ~45!
J. Math. Phys., Vol. 38, No. 12, December 1997
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In particular, this implies thatM has l.c.s. characteristic foliation, i.e., all the leaves of
characteristic foliation ofM are l.c.s. manifolds with the induced Jacobi structure~see Sec. II C!.

Assume thatM is quantizable.
Using ~44!, ~45! and Theorem V.2, we obtain that there exist an integral closed 2-formV and

a vector fieldA such that

#~V!5A2LAL1E`A2a~A!A, ~46!

2#~ i EV!52#~d~a~A!!!1@E,A#. ~47!

From ~44!, ~46! and sincea is closed, we deduce that

#~ i EV!5 i a~#~V!!52E2 i a~LAL!52E2@E,A#1#~LAa!52E2@E,A#1#~d~a~A!!!.

Thus, using~47!, we have thatE50, i.e.,M is a Poisson manifold. On the other hand, ifM is a
l.c.s. manifold with Lee 1-formv then, v is closed,E52#(v) and Ex50 if and only if vx

50 ~see Secs. II B and II C!. Therefore, we can apply the above results and conclude that a
manifold is quantizable if and only if it is a quantizable symplectic manifold.

Example VI.3: [Jacobi manifolds with contact characteristic foliation.]Let (M ,L,E) be a
Jacobi manifold with contact characteristic foliation, i.e., all the leaves of the characteristic
tion are contact manifolds with the induced Jacobi structure. This condition is equivalent t
Ex¹Im#x , for all xPM ~see Sec. II C!. In particular, a contact manifold is trivially a Jaco
manifold with contact characteristic foliation.

We will prove that a Jacobi manifoldM with contact characteristic foliation is always qua
tizable.

For this purpose, we consider the trivial complex line bundlep:K5M3C→M . It is clear
that, in this case,G(K) can be identified with the spaceC`(M ,C) of C` complex-valued functions
on M . Under this identification, we define the contravariant derivativeD by

D ~a, f !s5~#~a!1 f E!s22p i f s, ~48!

for all aPV1(M ), f PC`(M ,R) andsPC`(M ,C). If h is the usual Hermitian metric onp:M
3C→M thenD is compatible withh. Moreover, from~40! and ~48!, we deduce that

f̂ ~s!5Xf~s!. ~49!

Thus, it is obvious that

$ f ,ĝ%5 f̂ +ĝ2ĝ+ f̂ .

Notice that the fact that a Jacobi manifold with contact characteristic foliation to be quanti
also follows directly from Theorem V.2.

Remark VI.4: (i)If M is a Jacobi manifold with contact characteristic foliation andXH(M ) is
the Lie algebra of the Hamiltonian vector fields, the mapping

C`~M ,R!→XH~M !, f→Xf

is a Lie algebra isomorphism.
~ii ! In Ref. 44, Vaisman discussed some basic ideas on geometric quantization under

general aspect. In that paper, geometric quantization was regarded as a theory of represent
Lie algebras of vector fields on manifolds rather then of Poisson algebras of functions. Co
line bundles and covariant derivatives were used. The symplectic case was studied an
J. Math. Phys., Vol. 38, No. 12, December 1997
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classical results were recovered. Moreover, another new situation was also discussed: the
a contact manifold. In particular, Vaisman proved that a contact manifold is always quant
and, as in our scheme, a flat complex line bundle was used.

Example VI.5: [Regular Jacobi manifolds.]Let (M̄ ,L̄) be a quantizable Poisson manifold an
Ā,V̄ a vector field and an integral closed 2-form onM̄ which satisfy~8!.

Suppose thatp:M→M̄ is the principal circle bundle overM̄ corresponding to the 2-formV̄,
that is, there exists a connection formu on p:M→M̄ with curvature formV̄. Denote by (L,E)
the associated Jacobi structure onM ~see Sec. II D and Ref. 17!.

Now, assume that there exists a 1-formā on M̄ such that

Ā5 #̄~ ā !. ~50!

In such a case, we will prove that (M ,L,E) is a Jacobi manifold with contact characteris
foliation which implies thatM is quantizable.

Let x be a point ofM . We will see thatEx¹Im #x . Suppose that there exists a 1-formv at x
such that #x(v)5Ex . Then, using~10! and ~11!, we deduce that

i vL̄x
H50 and v~Āx

H!521.

On the other hand, from~10!, ~11! and ~50!, we obtain thatĀH5#(p* ā). Thus w(Āx
H)

52(p* ā)x(#x(w))52(p* ā)x(Ex)50, which is a contradiction. Two particular cases of t
above situation are the following:

~i! If ( M̄ ,L̄) is a quantizable symplectic manifold with symplectic 2-formF̄ thenF̄ represents
an integral cohomology class ofM̄ and we can takeĀ50. In this case, the correspondin
Jacobi manifoldM is a contact manifold~see Ref. 17!.

~ii ! If ( M̄ ,F̄,h̄) is a cosymplectic manifold of dimension 2m11 and the closed 2-formF̄

represents an integral cohomology class ofM̄ then, using that #̄(F̄)5L̄, we have thatM̄
is quantizable and we also can takeĀ50. In this case, the leaves of the characteris
foliation of the Jacobi manifoldM are contact manifolds of dimension 2m11 ~for more
details, see Ref. 17!.

If the vector fieldĀ does not belong to the space #(̄V1(M̄ )) then, in general, the Jacob
manifold (M ,L,E) is not quantizable as the next example proves. Let (M̄ ,F̄,h̄) be a cosymplectic
manifold with Reeb vector fieldj̄. Suppose that the closed 2-formF̄ represents an integra
cohomology class ofM̄ . As in ~ii !, M̄ is quantizable. But, sinceL z̄ L̄50, we can takeĀ5 j̄
~instead ofĀ50!. In this case, it is proved in Ref. 17 thatM with the Jacobi structure (L,E) is
a l.c.s. manifold. Therefore,M is not quantizable~see Example VI.2!.

Example VI.6: [Jacobi manifolds with nonpure characteristic foliation.]We say that a Jacob
manifold hasnonpure characteristic foliationF if there exist leaves ofF of odd and even
dimension, i.e., contact and l.c.s. leaves.

Next, we will give four examples of Jacobi manifolds with nonpure characteristic foliat
The first and second examples are not quantizable. However, the two remaining examp
quantizable.

Example VI.6.1:Let sb~2,C! be the 3-dimensional real Lie algebra of 232 traceless uppe
triangular complex matrices with real diagonal elements. A basis$e1 ,e2 ,e3% of sb~2,C! is given
by

e15S 1 0

0 21D , e25S 0 1

0 0D , e35S 0 i

0 0D .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Suppose thatsb~2,C!* is the dual space ofsb~2,C! and that$e1,e2,e3% is the dual basis of
$e1 ,e2 ,e3%. Denote by (t,q,p) the induced global coordinates onsb(2,C)* >R3 by the basis
$e1,e2,e3%. In these coordinates, the Lie–Poisson structureL on sb~2,C!* is given by

L5
]

]t
`S q

]

]q
1p

]

]pD .

This structure is related to the quantum SU~2! group of Woronowicz~see Ref. 45; see also Ref
46, 47!. The Poisson manifold~sb~2,C!* ,L! is quantizable~see Example VI.1!.

Now, we consider onsb~2,C!* the Jacobi structure (L,E), whereE is the vector field

E5
]

]t
.

The leaves of the characteristic foliation of (sb(2,C)* ,L,E) are the following submanifolds:

~i! 2-dimensional symplectic leaves: the family of open half planes with boundary the
l :q50, p50.

~ii ! 1-dimensional contact leaves: the linel .

Hence, all the leaves are quantizable.
On the other hand, in the open subsetU5sb(2,C)* 2 l we have

E5#~a!,

wherea is the 1-form onU defined by

a5
21

~q21p2!
~qdq1pdp!.

ThusU with the induced Jacobi structure is not quantizable~see Example VI.2!. Therefore, using
Theorem V.2 and Corollary V.4, we conclude that the Jacobi manifold (sb(2,C)* ,L,E) is not
quantizable.

Example VI.6.2:Let su~2,C! be the Lie algebra of the special unitary group SU~2!,

su~2,C!5$APgl~2,C!/Āt52A, trace A50%.

If s1 , s2 ands3 are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

andej52 is j , j 51,2,3 then$e1 ,e2 ,e3% is a basis ofsu~2,C!. Denote by$e1,e2,e3% the dual basis
of the dual spacesu~2,C!* and by (x,y,z) the induced global coordinates onsu(2,C)* >R3.

On the product manifoldsu~2,C!*3R, we consider the Jacobi structure (L,E) given by

L5z
]

]x
`

]

]y
1x

]

]y
`

]

]z
1y

]

]z
`

]

]x
1t

]

]t
`S x

]

]x
1y

]

]y
1z

]

]zD ,
~51!

E5t
]

]t
,

wheret is the usual coordinate onR.
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Notice that (L,E) induces a Poisson structure on the submanifoldsu~2,C!*3$0%>su~2,C!* .
This structure is just the usual Lie–Poisson structure onsu~2,C!* .

The leaves of the characteristic foliation of the Jacobi manifold (su(2,C)* 3R,L,E) are the
following submanifolds:

~i! 4-dimensional g.c.s. leaves: the open subsets
U15~su~2,C!* 2$~0,0,0!%!3R1, U25~su~2,C!* 2$~0,0,0!%!3R2,

R1 ~respectively,R2! being the space of positive~respectively, negative! real numbers.
~ii ! 2-dimensional symplectic leaves:S2(r )3$0%, with r .0 and S2(r ) the 2-dimensional

sphere of radiusr in su(2,C)* >R3.
~iii ! 1-dimensional contact leaves:$(0,0,0)%3R1 and$(0,0,0)%3R2.
~iv! 0-dimensional symplectic leaves:$~0,0,0!%3$0%.

The leaves of dimension 4 are not quantizable~see Example VI.2!. Moreover, from~51!, we
deduce that the induced symplectic form on the leafS2(r )3$0% is integer if and only if 4pr 3 is
an integer number. Thus the leafS2(r )3$0% is quantizable if and only if 4pr 3 is an integer
number~see Example VI.1!.

Finally, in the open subsetU5(su(2,C)* 2$(0,0,0)%)3R we have that

E5#S 2
1

~x21y21z2!
~x dx1y dy1z dz! D .

Therefore, proceeding as in Example VI.6.1, we conclude that the Jacobi manifold (su(2,C)*
3R,L,E) is not quantizable.

Example VI.6.3:On R2m11 we consider the Jacobi structure (L,E) defined by

L5(
i 51

m S ]

]qi 1~pit !
]

]t D`
]

]pi
,

~52!

E5t
]

]t
,

(t,q1,...,qm,p1 ,...,pm) being the usual coordinates onR2m11.
The leaves of the characteristic foliation of the Jacobi manifold (R2m11,L,E) are the follow-

ing submanifolds:

~i! 2m11-dimensional contact leaves: the open subsets
U15R13R2m, U25R23R2m.

Notice that the diffeomorphisms
F1 :R2m11→U1 , ~ t,q1,...,qm,p1 ,...,pm!°~et,q1,...,qm,p1 ,...,pm!

F2 :R2m11→U2 , ~ t,q1,...,qm,p1 ,...,pm!°~2et,q1,...,qm,p1 ,...,pm!

are contact transformations, that is,F1* (h1)5h andF2* (h2)5h, whereh, h1 andh2 are
the contact 1-forms onR2m11, U1 andU2 , respectively.

~ii ! 2m-dimensional symplectic leaves:$0%3R2m>R2m. We remark that the induced symple
tic structure on$0%3R2m is just the usual symplectic structure onR2m.

From the above results, we deduce that the Jacobi structure (L, E) on R2m11 can be consid-
ered as an adequate combination of the usual contact structure ofR2m11 and of the usual sym-
plectic structure ofR2m. It is clear that all the leaves are quantizable.

Now, we denote bys the LJ-cohomology operator onR2m11 and byA the vector field given
by
J. Math. Phys., Vol. 38, No. 12, December 1997
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A52(
i 51

m

pi

]

]pi
.

A direct computation, using~52!, proves thats(A,1)50. Therefore, from Corollary V.4, we
conclude that the Jacobi manifold (R2m11,L,E) is quantizable.

Example VI.6.4:Let M be a differentiable manifold andE a vector field onM . We consider
on M the Jacobi structure (L50,E) ~see Sec. II B!. The leaves of the characteristic foliation a
the maximal integral curves ofE. Thus if Ex50 the leafF x over x is the 0-dimensional sym
plectic manifoldF x5$x% and, if ExÞ0 thenF x is a 1-dimensional contact manifold. Moreove
in this case,s~0,1!5~0,0! ~see~18!!. Therefore, using Theorem V.2, we have that (M ,L,E) is a
quantizable Jacobi manifold.

Remark VI.7:There exist examples of quantizable Poisson manifolds with nonquantiz
symplectic leaves. This is the case for the Lie–Poisson structure of a coadjoint Lie algebr~see
Ref. 3,27; see also Ref. 48 for a discussion about the relations between the geometric quan
of a Poisson manifold and of its symplectic leaves!. Now, in this direction and in our context, a
interesting problem is to obtain examples of quantizable Jacobi manifolds with nonpure c
teristic foliation and with nonquantizable symplectic leaves.

VII. QUANTIZATION

The space of sectionsG(K) is usually too big for quantization purposes. So, a polarization
to be introduced in order to reduceG(K) ~see, for instance, Refs. 5 and 6!. In this section, we will
discuss the notion of polarization in the context of Jacobi manifolds and we will see that ifM is
a quantizable Jacobi manifold andP is a polarization onM then, usingP , we can construct a
quantum Hilbert space.

Let (M ,L,E) be a Jacobi manifold and$,% the associated Jacobi bracket. If we also denote
$,% the natural extension to the space (V1(M )3C`(M ,R)) ^ C>(V1(M ) ^ C)3C`(M ,C) of the
bracket onV1(M )3C`(M ,R) given by~12!, we will define apolarizationto be a subspaceP of
V1(M ) ^ C such thatP 3$0% is a subalgebra of ((V1(M )3C`(M ,R)) ^ C,$,%) and

L~a,b!50,

for all a,bPP .
We remark that if a,bPV1(M ) ^ C and L~a,b!50 then $(a,0),(b,0)%P(V1(M ) ^ C)

3$0%. Usually, one takes a maximal subspaceP . But we prefer not to do this here.
Notice that if f PC`(M ,R) andaPV1(M ) ^ C then$(d f , f ),(a,0)%P(V1(M ) ^ C)3$0% ~see

~12!!. Thus, we can consider the subalgebra of (C`(M ,R),$,%) given by

P~P !5$ f PC`~M ,R!/$~d f , f !,~a,0!%PP 3$0%, for all aPP %. ~53!

P(P ) is called the subalgebra of thestraightforwardly quantizable observablesof M . A direct
computation, using~12!, proves that the above definitions extend those given by Vaisman3 for
Poisson manifolds.

On the other hand, letD be the complex line bundle of complex half-densities of a differ
tiable manifold M , which is defined by transition functions that are the square roots of
absolute values of the Jacobians of the coordinate transformationsx̃ i5 x̃ i(xj ), i.e., u]xj /] x̃ i u1/2.
The cross-sections% of D are calledhalf-densitiesof M and the Lie derivativeL of such objects
can be defined as for tensors.44,49

Let (M ,L,E) be a Jacobi manifold which is quantizable. We considerp:K→M the quanti-
zation complex line bundle endowed with a Hermitian metrich andD a quantization Hermitian
J. Math. Phys., Vol. 38, No. 12, December 1997
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contravariant derivative. We remark that ifM is a quantizable Jacobi manifold then we can cho
always a Hermitian metrich on p:K→M and a quantization Hermitian contravariant derivati
~see the proof of Theorem V.2!.

Using ~24! and the properties ofL, we can extend the contravariant derivativeD to G(K
^ D) by

D ~a,g!~s^ % !5D ~a,g!s^ %1s^ L~#,E!~a,g!%, ~54!

for all (a,g)P(V1(M )3C`(M ,R)) ^ C. Thus for everyf PC`(M ,R) we can definef̂ :G(K
^ D)→G(K ^ D) by

f̂ ~s^ % !5D ~d f, f !~s^ % !12p i f ~s^ % !. ~55!

Notice that if we add~54! to ~55! we have

f̂ ~s^ % !5 f̂ ~s! ^ %1s^ LXf
%, ~56!

for all f PC`(M ,R) ands^ %PG(K ^ D).
Using ~7!, ~56! and the properties of the Lie derivative we obtain that

$ f ,ĝ%~s^ % !5~ f̂ +ĝ2ĝ+ f̂ !~s^ % !.

On the other hand, from~26!, ~40!, ~41!, ~54!, ~56! and Theorem II.2 we deduce that

D ~a,g! f̂ ~s^ % !5 f̂ D ~a,g!~s^ % !2D $~d f, f !,~a,g!%~s^ % !12p igE~ f !~s^ % !, ~57!

for all (a,g)P(V1(M )3C`(M ,R)) ^ C, f PC`(M ,R) ands^ %PG(K ^ D). Set

H05$vPG~K ^ D !/D ~a,0!v50, for all aPP %. ~58!

If f PP(P ) andvPH0 then, using~57!, we obtain thatf̂ (v)PH0 . Thus f̂ uH0
:H0→H0 is well

defined. Hence we can useH0 as aquantization spacefor P(P ).
A difficulty of this scheme is that it is unclear thatH0Þ0 ~a Bohr–Sommerfeld condition!. In

what follows, we will assume that this condition holds. Now, ifM is compact thenH0 can be
made a pre-Hilbert space with the scalar product

^s1^ %1 ,s2^ %2&5E
M

h~s1 ,s2!%1%̄2 , ~59!

where the bar denotes complex conjugation.
Moreover, using~25!, ~40!, ~56! and ~59! and the density version of Stokes’ theorem44,49 we

obtain that the operationsf̂ defined in~55! are anti-Hermitian, i.e.,

^ f̂ ~s1^ %1!,s2^ %2&1^s1^ %1 , f̂ ~s2^ %2!&5E
M

LXf
~h~s1 ,s2!%1%̄2!50.

If we get the operatorsi f̂ then we obtain Hermitian operators. Finally, if we want a Hilbert spa
we will just take the completation ofH0 .

Remark VII.1:If ( M ,L) is a Poisson manifold a direct computation, using Definition V
proves that the mapping

D̃:V1~M !→EndC~G~K !!, aPV1~M !°D̃a5D ~a,0!
J. Math. Phys., Vol. 38, No. 12, December 1997
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is a quantization Hermitian contravariant derivative in the sense of Vaisman3 ~notice that in this
case, from the condition~C1!, we have thatD (0,1)s50, for all sPG(K)). Furthermore,

H05$vPG~T^ D !/D̀av50, for all aPP %.

Thus, the above construction of the pre-Hilbert space (H0 ,^,&) for compact quantizable Jacob
manifolds extends the one given by Vaisman for compact quantizable Poisson manifolds~see Ref.
3!.

If the Jacobi manifoldM is not compact, we will postulate a special regularity condition.
P 0 be the subspace ofV1(M ) defined byP 05P ùV1(M ). The complexification ofP 0 is P ùP̄

andP 03$0% is a subalgebra of (V1(M )3C`(M ,R),$,%). We also have that

L~a,b!50,

for all a,bPP 0 . Moreover, we will assume that #(P 0) defines a regular foliationF of M which
fibersM over a Hausdorff manifoldN5M /F . Notice that, in such a case, iff PP(P ) then, from
~53! and Theorem II.2, we deduce that the Hamiltonian vector fieldXf projects onto a vector field
X̃f on N and we have

f̂ ~s^ t* %̃ !5 f̂ ~s! ^ t* %̃1s^ LXf
~t* %̃ !5 f̂ ~s! ^ t* %̃1s^ t* ~L X̄ f

%̃ !, ~60!

for all sPG(K) and %̃ a complex half-density ofN, wheret:M→N5M /F is the canonical
projection. Thus, for the definition ofH0 , instead of using half-densities ofM we will use
F -transversal half-densities% obtained by lifting half-densities ofN to M . It is clear that ifa
PP 0 , we have thatL#(a)(t* %̃)50. Using this fact,~54! and ~58!, we can prove that ifsi

^ t* %̃ iPH0 , i 51,2, then

h~s1 ,s2!~t* %̃1!~t* %̄̃2!

projects to a complex 1-density ofN. Generally, one may expect to have a nonzero subspaceH 0
c

of H0 , such that for allvPH 0
c , its support projects onto a compact subset ofN. Then~59! with

M replaced byN yields a pre-Hilbert structure onH 0
c . Furthermore, iff PP(P ) and f̂ is the

corresponding operator~see~60!! then, proceeding as in the case whenM is compact, we conclude
that

^ f̂ ~s1^ t* %̃1!,s2^ t* %̃2&1^s1^ t* %̃1 , f̂ ~s2^ t* %̃2!&5E
N

LXf
%̃50,

where%̃ is the complex 1-density ofN on which projectsh(s1 ,s2)(t* %̃1)(t* %̃2).
Remark VII.2: The above construction extends the one given by Vaisman for Poi

manifolds.3

Next, we will study the quantization of some examples of Jacobi manifolds.
Example VII.3:Let u be the usual contact structure onM5R2m11>R3Cm given by

u5dt2(
j

pj dqj5dt1
i

4 (
j

~zj2 z̄j !~dzj1dz̄j !,

where (t,q1,...,qm,p1 ,...,pm) are the usual coordinates onR2m11, zj5qj1 ip j and z̄j5qj

2 ip j . Then the associated Jacobi structure (L,E) is defined by

L5(
j

S ]

]qj 1pj

]

]t D`
]

]pj
522i(

j

]

]zj
L

]

] z̄j
1

1

2 (
j

~zj2 z̄j !
]

]t
`S ]

]zj
2

]

] z̄j
D ,
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E5
]

]t
.

We have proved in Example VI.3 that (M ,L,E) is a quantizable Jacobi manifold and that t
trivial complex line bundlep:K5M3C→M is the quantum bundle.

A convenient complex polarization isP 15span$dzj% j 51
m , and then we see thatP(P 1) con-

sists of the functionsf PC`(M ,R) such that

~#~dzj !!~ f !5hj
f+pr2 ,

for j P$1,...,m%, wherepr2 :M5R3Cm→Cm is the canonical projection onto the second fac
andhj

f :Cm→C is a complex analytic function onCm. Notice thatP 1ùP̄ 15$0%.
On the other hand, the bundleD of complex half-densities overM is also trivial and it has a

basis that can be written formally as

g5ubu1/2,

where

b5dt`dq1`•••`dqm`dp1`•••`dpm5S i

2D m

dt`dz1`•••`dzm`dz̄1`•••Ldz̄m .

Then, if vPG(K ^ D), v can be seen asv51^ wg, wherew is a complex-valued function onM .

Now, if we denote byD the Hermitian contravariant derivative given by~48!, D can be extended
to G(K ^ D) as in ~54!. Then, we obtain

D ~dzj ,0!~1^ wg!51^ L#~dzj !
~wg!.

Therefore, using the fact thatLXg5( 1
2div X)g ~see, for instance, Ref. 44!, it follows that

D ~dzj ,0!~1^ wg!50

if and only if

~#~dzj !!~w!522i
]w

] z̄j
2

1

2
~zj2 z̄j !

]w

]t
50.

Hence the quantization spaceH0 can be identified with the space

H05H wPC`~M ,C!Y 2i
]w

] z̄j
1

1

2
~zj2 z̄j !

]w

]t
50J .

On the other hand, iff PP(P 1) andwPH0 then, using~49! and ~56!, we deduce that

f̂ ~w!5Xf~w!1 1
2w~div Xf !.

Moreover, the scalar product of two functionsw1 ,w2PH0 with compact support is

^w1 ,w2&5E
M

w1w̄2b.

Now, we consider the real polarizationP 25span$dqj% j 51
m .
J. Math. Phys., Vol. 38, No. 12, December 1997
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In this case, aC` real-valued functionf belongs to the subalgebraP(P 2) if and only if f is
an affine function in the coordinatespj of the form

f 5(
j 51

m

f j~q1,...,qm!pj1h~ t,q1,...,qm!,

with f jPC`(Rm,R) andhPC`(Rm11,R).
We have that (P 2)05P 2ùV1(M )5P 2 and that #(P 2)0 defines a regular foliationF of M

generated by the vector fields$]/]pj% j 51
m .

Moreover, the space of leavesN5M /F can be identified withRm11 and under this identifi-
cation the canonical projectiont:M→M /F >Rm11 is the mapping given by

t~ t,q1,q2,...,qm,p1 ,...,pm!5~ t,q1,...,qm!.

If we denote byD̃ the bundle of half-densities overN and byg̃ the basis of this bundle, then w
obtain

D ~dqj ,0!~1^ wt* ~ g̃ !!5~#~dqj !!~w!~1^ t* ~ g̃ !!, ~61!

whereD is the extension of the contravariant derivative defined in~54! to the sections of the form
1^ wt* (g̃), w being a complex-valued function onM .

Using ~61! we conclude that 1̂ wt* (g̃)PH0 if and only if ]w/]pj50. HenceH 0
c can be

identified with the space ofC` complex-valued functions onRm11 with compact support. Fur-
thermore, the scalar product of two functionsw1 ,w2PH 0

c is given by

^w1 ,w2&5E
Rm11

w1w̄2 dt dq1•••dqm.

Example VII.4:Let (L,E) be the quantizable Jacobi structure onM5R2m11 given by ~52! ~see
Example VI.6.3!. Using the identificationR2m11>R3Cm we have

L522i(
j

]

]zj
`

]

] z̄j
1

t

2 (
j

~zj2 z̄j !
]

]t
`S ]

]zj
2

]

] z̄j
D ,

where (t,q1,...,qm,p1 ,...,pm) are the usual coordinates onR2m11, zj5qj1 ip j and z̄j5qj

2 ip j .
Clearly, the quantum bundle is the trivial complex line bundlep:K5M3C→M and the

quantization contravariant derivativeD on p:M3C→M is defined by~see~43!!

D ~a,g!s5~#~a!1gE!~s!12p ia~A!,

whereA is the vector field

A52(
j

pj

]

]pj
52

1

2 (
j

~zj2 z̄j !S ]

]zj
2

]

] z̄j
D .

Now, we consider the polarizationP 5span$dzj% j 51
m . Then, P(P ) consists of the functionsf

PC`(M ,R) such that

~#~dzj !!~ f !5hj
f+pr2 ,

for j P$1,...,m%, wherepr2 :M5R3Cm→Cm is the canonical projection onto the second fac
andhj

f :Cm→C is a complex analytic function onCm.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proceeding as in the above example, the sections of the complex line bundleK ^ D can be
seen asv51^ wg, wherew is a complex-valued function onM andg is a basis of the bundle o
half-densitiesD over M .

Since

D ~dzj ,0!~1^ wg!5~~#~dzj !!~w!2w~zj2 z̄j !~ ip1 1
4!!~1^ g!,

the spaceH0 can be identified with

H05H wPC`~M ,C!Y 2i
]w

] z̄j
1~zj2 z̄j !S wS ip1

1

4D1
t

2

]w

]t D50J .

Then, if f PP(P ) andwPH0 , the quantum operatorf̂ is defined by

f̂ ~w!5w~2p iA~ f !12p i f 1 1
2div Xf !1Xf~w!

and the scalar product of two functionsw1 ,w2PH0 with compact support is

^w1 ,w2&5E
M

w1w̄2 dt dq1•••dqm dp1•••dpm .

As in the above example, we also can consider the real polarizationP 5span$dqj% j 51
m and obtain

similar results.
Remark VII.5: (i)A complex foliationF on a (2m11)-dimensional contact manifold (M ,u)

is said to beSasakianif F ùF̄ 5$0%, ^F ,u&50 and dimC F 5m. There is a close relation
between Sasakian foliations and a particular class of contact manifolds, the Sasakian ma
~for the definition and properties of Sasakian manifolds we refer to Ref. 34!. This relation justifies
the name of Sasakian foliation. In fact, it can be proved50 that a Sasakian manifold admits
Sasakian foliation. The Sasakian foliations play the same role in contact geometry that the¨hler
polarizations in symplectic geometry. We remark that in Example VII.3,F 15#(P 1) is a Sasakian
foliation.

~ii ! A real foliation F on a (2m11)-dimensional contact manifold (M ,u) is said to be
Legendreif ^F ,u&50 and dimR F 5m or equivalently, if the leaves ofF are Legendre submani
folds of M ~see Refs. 31,34,51!. The Legendre foliations play the same role in contact geom
that the Lagrangian foliations in symplectic geometry. We remark that in Example VII.3,F 2

5#(P 2) is a Legendre foliation.
~iii ! In a next paper50 we will discuss the geometric quantization of a contact manifold

which there exists a Sasakian or Legendre foliation.

VIII. PREQUANTIZATION REPRESENTATIONS

In Ref. 3~see also Ref. 27!, Vaisman have extended to Jacobi manifolds Urwin’s definition
~1-differentiable! prequantization representations for complex line bundles over symplectic m
folds ~see Ref. 23!. Vaisman has discussed the existence of such representations using co
derivatives.

In this section, we will characterize the existence of~1-differentiable! prequantization repre
sentations for Jacobi manifolds in terms of contravariant derivatives and of the real Jacobi–
class. We recall the definition of prequantization representation~see Refs. 3,27!.

Let (M ,L,E) be a Jacobi manifold with Jacobi bracket$,% and p:K→M a complex line
bundle overM . A prequantization representationof (C`(M ,R),$,%) is a Lie algebra homomor
J. Math. Phys., Vol. 38, No. 12, December 1997
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phismQ of the algebra (C`(M ,R),$,%) into the algebra of the first order differential operators
G(K) with the usual commutator as product such that for allf PC`(M ,R) one has that thesymbol
of Q( f ) is Xf .

Remember that an operatorQ( f ) as requested is one which acts onsPG(K) as follows: if e
is a local basis of cross sections ofK then s5ge for a complex valued funtiong and Q( f )(s)
5(X(g)1wg)e, whereX is a vector field andw is a function. The vector fieldX does not change
if e is changed toẽ5ue hence,X is global onM , and it is called the symbol ofQ. If p:K→M
is a complex line bundle over a Jacobi manifold (M ,L,E), h is a Hermitian metric onp:K→M
andD is a Hermitian contravariant derivative, it follows that the symbol ofD (d f, f ) is exactlyXf

~see~24!!. Thus, if Q is a prequantization representation,Q must be of the form

Q~ f !~s!5D j 1fs12p im~ f !s5D ~d f, f !s12p im~ f !s, ~62!

wherem( f ) is given by aR-linear mappingm:C`(M ,R)→C`(M ,C). SinceQ is a Lie algebra
homomorphism then

Q~$ f ,g%!5@Qf ,Qg#

@,# being the usual commutator on the first order differential operators onG(K).
This commutation condition, using~15!, ~24!, ~26!, ~62! and Theorem II.2, becomes

i

2p
CD~~d f , f !,~dg,g!!~s!5Xf~m~g!!s2Xg~m~ f !!s2m~$ f ,g%!s5~]Hm!~ f ,g!s, ~63!

where CD is the curvature ofD and ]H is the H–Chevalley–Eilenberg cohomology operat
Since the right-hand of~63! is real~D is a Hermitian contravariant derivative!, the imaginary part
of m is a H–Chevalley–Eilenberg 1-cocycle. Thus, ifm5m11 im2 and j 2 :V 2(M ) % V 1(M )
→CHCE

2 (M ) is the monomorphism given by~16!, we have that~see~20! and ~27!!

]Hm15 j 2S i

2p
PCD

,
i

2p
YCDD , ]Hm250. ~64!

Therefore, modulo 1-cocycles in the H–Chevalley–Eilenberg cohomology, it suffices to fin
real solutionm5m1 .

The prequantization representationQ is said to be 1-differentiable if the mapping
m1 :C`(M ,R)→C`(M ,R) is a 1-differentiable H–Chevalley–Eilenberg 1-cochain, that is, th
exists a vector fieldA on M and a functionw such that

m1~ f !5 j 2~A,w!~ f !5A~ f !1w f , ~65!

for all f PC`(M ,R).
Notice that, from~31!, we deduce that this definition only depends of the prequantiza

representationQ, i.e., it does not depend of the Hermitian contravariant derivativeD.
Denote by j * :HLJ

2 (M )→HHCE
2 (M ) the induced homomorphism in cohomology b

j 2 :V 2(M ) % V 1(M )→CHCE
2 (M ). Then, in the following theorem, we characterize the existe

of ~1-differentiable! prequantization representations.
Theorem VIII.1: Let (M ,L,E) be a Jacobi manifold. A complex line bundlep:K→M has

prequantization representations if and only if

j ~ jc~K,L,E!!50,
*
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where j* is the homomorphism defined above and jc(K,L,E) is the real Jacobi–Chern class.
Moreover, K admits 1-differentiable prequantization representations if and only if jc(K,L,E)
50.

Proof: The first part of this theorem follows from~64! and Definition IV.4. Now, if we have
a 1-differentiable prequantization representation then, using~17!, ~64! and ~65!, we obtain that
there existAPX(M ) andwPC`(M ,R) such that

S i

2p
PCD

,
i

2p
YCDD5s~A,w!, ~66!

where D is a Hermitian contravariant derivative ands is the LJ-cohomology operator. Henc
jc(K,L,E)50.

Conversely, ifjc(K,L,E)50 andD is a Hermitian contravariant derivative, then there exi
(A,w)PX(M )3C`(M ,R) satisfying ~66!. Define m5m1 :C`(M ,R)→C`(M ,R) by m
5 j 2(A,w). From ~66!, we deduce that

Q~ f !~s!5D ~d f, f !s12p im~ f !s

is a 1-differentiable prequantization representation.
Remark VIII.2:Let (M ,L) be a Poisson manifold. In this case, the H–Chevalley–Eilenb

cohomology ofM is just the Chevalley–Eilenberg cohomology and we have a homomorp
l * :HLP* (M )→HCE* (M ) between the LP-cohomology and the Chevalley–Eilenberg cohomol
In fact, l * 5 j * + i * where i * :HLP* (M )→HLJ* (M ) is the canonical homomorphism between t
LP-cohomology and the LJ-cohomology~see Remark III.3!. Thus, using Remark IV.6 and Theo
rem VIII.1, we deduce that a complex line bundlep:K→M has prequantization representations
and only if l * (pc(K,L))50, pc(K,L) being the Poisson–Chern class ofp:K→M . Moreover,K
admits 1-differentiable prequantization representations if and only ifi * (pc(K,L))5 jc(K,L,0)
50, that is~see~18!!, if pc(K,L)5@ f L# with f a Casimir function, i.e., #(d f)50. This result is
just the one obtained by Vaisman in Ref. 3~see also Ref. 27!.
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Self-dual solitons in N 52 supersymmetric Chern-Simons
gauge theory
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The low energy effective theory of planar QED with a non-local four-fermion
interaction including Gross–Neveu and Thirring terms is shown to be equivalent to
a Chern–Simons–Higgs model of special characteristics. We study the restrictions
imposed by self-duality and supersymmetry, finding in both cases a plethora of
~some new! topological and non-topological solitons. The non-relativistic limit of
our model generalizes the effective Ginzburg–Landau theory for the fractional
quantum Hall effect such that our solitons would be the relativistic version of
quasi-particle and quasi-hole excitations. ©1997 American Institute of Physics.
@S0022-2488~97!02811-9#

I. INTRODUCTION

Since the discovery of self-dual vortices and solitons in both relativistic and non-relativ
abelian Chern–Simons theories,1,2 much work has been devoted to the subject; there is eve
sound monography on this five-year old topic.3 The statistics of the quantum Chern–Simo
solitons is anyonic, a physical feature widely believed to lie at the core of such important
nomena as high temperature superconductivity and the fractional quantum Hall effect. We
fore expect that, one way or another, the theory of highTc superconductivity and the FQHE wil
be related to Chern–Simons~211!-dimensional gauge models. In fact, there is a fairly convinc
phenomenological Ginzburg–Landau theory of this kind for the FQHE.4 In this paper we conside
a two-dimensional relativistic gas of charged fermions with dynamics governed by the acti

S5E d3xH 2
1

4
FmnFmn1 c̄ ~ igmDm2m!cJ 1E d3xE d3y$c̄~x!c~x!Vs~x2y!c̄~y!c~y!

1 c̄ ~x!gmc~x!Vmn
v ~x2y!c̄~y!gnc~y!%,

i.e., ~211!-dimensional QED plus non-local Gross–Neveu and Thirring terms that can be ad
to, respectively, describe the spin-independent and spin-dependent parts of the interaction
electrons mediated by the crystalline structure. By introducing one scalar and a single
auxiliary real fields,r andBm , the modified action

S85S2E d3x$g1@ c̄c2r2#21g2@ c̄gmc2Bm#2%

describes the same dynamics asS. By going to the short-range interaction lim
Vs(x2y)5g1d(x2y), Vmn

v (x2y)5g2gmnd(x2y) and imposing the constraint that the vect
(1/r2) Bm2eAm should be a pure gauge]mx ~a sort of London condition!, we obtain the gauge
invariant action

S85E d3xH 2
1

4
FmnFmn1 c̄ ~ igmDm2m!c2g1~f* f!212g1c̄f* fc
0022-2488/97/38(12)/6214/16/$10.00
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1g2c̄gmc@~Dmf!* f2f* Dmf#2g2f* f~Dmf!* ~Dmf!J
with the complex scalar field defined byf5reix. Although S plus the constraint is dinamically
equivalent toS8, the diagrammatic structure is different in each case. The change in the fermion
vertices is shown in Fig. 1. The quantum partition function,S8 being quadratic in the Fermi fields,
can be computed by Berezin integration to yield:

Z5E DAmE Df* E Df eiSeff[f,f* ,Am]

Seff@f,f* ,Am#5E d3xH 2
1

4
FmnFmn2g2ufu2Dmf* Dmf2g1~ ufu2!2J

2 iTr lnH 11
2g1f* f2egmAm1g2gmJm

ign]n2m
J ,

whereJm is the bosonic current. In the low energy regime one can trust the semi-classical a
proximation and at this limit the trace inSeff is the sum of all the Feynman diagrams with a
fermionic loop. The prototype of such kind of diagrams is shown in Fig. 2. Keeping terms in th

FIG. 1. ~a! Fermion-fermion interaction vertices coming from S.~b! Fermion-boson vertices read fromS8. Solid, dashed
and wiggly lines represent, respectively, propagation of fermions, scalar bosons and photons.

FIG. 2. A typical Feynman graph contributing to the effective action to one-loop order.
J. Math. Phys., Vol. 38, No. 12, December 1997
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momentum expansion up to first order in the gauge field and second order in the Higgs fie
dominant at low energies, Lorentz symmetry and gauge invariance lead to a final outcome of

Seff5E d3xH k

4
«abgAaFbg1H~ ufu2!Dmf* Dmf2U~ ufu2!J .

The radiative corrections due to the diagrams of type a! in Fig. 3 are the origin of the Chern–
Simons term. The other two terms come from diagrams of type b! and c! whereas in the low
wavelength regime the Maxwell and higher derivative terms in the scalar field can be droppe
H(ufu2) andU(ufu2) area priori arbitrary, the renormalization criterion being of no use because
we consider the model as describing an effective theory valid only at low energy.

It is interesting to note at this point that our approach provides a theory for the phenomen
logical action proposed in reference 15, where both the Chern–Simons parameter and the coup
to an external current are taken as spacetime dependent functions. We would reach a similar mo
by including the contribution of two specific graphs in the effective action:

~1! The diagram with two photon-fermion e-vertices and one scalar-fermiong1-vertex modifies
the effective action by a term:

Leff }
f* f

4
«abgAaFbg1•••.

~2! Simili modo, one graph with one scalar-fermiong1-vertex, one scalar-fermiong2-vertex and
one photon-fermion e-vertex, induces a term:

Leff }eg2f* fJmAm1•••.

Therefore, an effective theory arises where the CS coefficient and the gauge coupling are spa
time dependent via the scalar field. This is a physical picture of a two-dimensional gas of fermio
influenced microscopically by sites in neighboring planar layers. Even though there is a sou
formulation of such complex theory, see reference 15, we shall not consider that possibility he

We shall stick to the traditional view of gauge invariance and therefore are led to study
generalization of the CSH model of the kind proposed some time ago by Lohe5 for the abelian
Higgs model that permits the coefficient of the covariant derivatives in the lagrangian to vary as
functionH(ufu2) of the scalar field. Two guiding principles should help us in the choice ofH and
U: self-duality and supersymmetry. By self-duality we understand the ability to admit first orde
field equations prompting a Bogomolnyi bound. In the next section we shall analyze the mo
relevant features of the generalized CSH model and shall study the general conditions for

FIG. 3. The graphs giving the effective action defined in~1!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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self-dual character to exist. For a particular choice ofH andU, we shall see that the solutions o
the self-duality, first-order, equations are the solitons/anyons of reference 9.

Supersymmetry, on the other hand, is indeed very powerful and restrictive. In Section I
incorporate fermions to the model in a supersymmetric way. We also show that, as in other m
giving rise to topological defects,6 self-duality appears to be a consequence of extended su
symmetry. We explore all the possibilities of the most economic supersymmetrization allowin
central charges, i.e., N52 supersymmetry. There are only two: the well known N52 supersym-
metric CSH model, see reference 5 and another, which we present as a novelty in this pape
latter,H is quadratic inufu andU is of eighth order. In Section IV we study the N52 supersym-
metric algebra generated by the charges of this new model and show that it also has solito
vortices, hitherto unknown, with features that make them good candidates for quasi-ho
quasi-particle excitations of the FQHE. Finally, in Section V we close the paper with some
comments.

II. THE GENERALIZED SELF-DUAL MODEL

The dynamics of our model is governed by the action

S5E d3xH k

4
«abgAaFbg1H~ ufu2!Dmf* Dmf2U~f* f!J , ~1!

where the metric tensor isgmn5diag(1,21,21), H andU are non-negative functions and natur
units \5c51 are assumed. We get rid of the gauge coupling constante by rescaling
eAm→2Am ,k→e2k so that the covariant derivatives areDm5]m2 iAm . The action is invariant
against the localU(1) transformationf→eiLf, Am→Am1]mL.

Each minimum of the potentialU gives rise to a different phase of the theory. IfU has one
U(1)-symmetry preserving zero atf50, the quadratic expansion of the action around it is

S5E d3xH k

4
«abgAaFbg1H~0!]mf* ]mf2U8~0!ufu2J ,

where a prime denotes derivation with respect toufu2. Therefore, in this symmetric phase th
vector field does not propagate and the particle spectrum is formed by only two scalar bos
massmf5AU8(0)/H(0) . Minima for ufuÞ0 produce symmetry breaking and the Higgs mec
nism gives rise to a massive vector mode: IfU(v2)50 the quadratic action built aroundf5v
reads thus in the unitary gauge:

S5E d3xH k

4
«abgAaFbg1H~v2!v2AmAm1H~v2!]mf1]mf122U9~v2!v2f1

2J
showing that the asymmetric phase includes one scalar particle of mass

mf1
5A2U9~v2!v2

H~v2!

and one polarized vector boson with massmA5 2v2H(v2)/k. The Euler–Lagrange equations fo
the action~1! are:

k

2
«abgFbg52Ja, ~2!

Dm~HDmf!5f$H8Daf* Daf2U8%, ~3!
J. Math. Phys., Vol. 38, No. 12, December 1997
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where the conserved current isJa5 iH (ufu2)@f* Daf2fDaf* #. The time component of~2!

kF1252 iH ~ ufu2!@f* D0f2fD0f* # ~4!

is the Chern–Simons–Gauss law for this particular model, whose integral formQ52kFM im-
plies a link between the total chargeQ5*d2x J0 and the magnetic fluxFM5*d2x F12 of all
solutions of the theory. As a consequence, the Aharonov–Bohm effect occurs: When a loc
excitation of chargeQ makes a counterclockwise closed loop around another identical excit
in the configuration space, the wave function of the system acquires a phaseeiQ2/k. We must
therefore interpret such configurations, at least in the nonrelativistic limit, see reference
anyons of fractionary statisticsn5 Q2/2p k.

The energy-momentum tensor of the generalized CSH model is

Tmn5H~ ufu2!@Dmf* Dnf1DmfDnf* #2gmn@H~ ufu2!DafDaf* 2U~ ufu2!#. ~5!

Notice that the Chern–Simons term, being of topological character, does not contribute toTmn.
The energy and momentum are

P05E d2x$H~ ufu2!@D0f* D0f1Dkf* Dkf#1U~ ufu2!%, ~6!

Pk5E d2x$H~ ufu2!@D0f* Dkf1Dkf* D0f#%. ~7!

In particular, for time-independent configurations, we can use the static version of the C
Simons Gauss law

A052
kF12

2ufu2H~ ufu2!

and write these magnitudes as

V[P05E d2xH k2

4ufu2H~ ufu2!
F12

2 1H~ ufu2!Dkf* Dkf1U~ ufu2!J , ~8!

Pk52E d2xH kF12 Jk

2ufu2H~ ufu2!
J . ~9!

As shown by equation~8!, at the static limit, our model coincides with a generalized Abel
Higgs model; it is a mixture of Lohe‘s generalization in reference 5 and the model propos
reference 17. The configuration space

C 5$~f~xW !, Ak~xW !!/f.eiaf, Ak.Ak1]ka, V,1`%

is the set of continuous Higgs and gauge fields taken at fixed time such that

lim
uxW u→`

f~xW !PV , lim
uxW u→`

H1/2~ ufu2!Dkf~xW !50, lim
uxW u→`

F12

ufuH1/2~ ufu2!
50, ~10!

whereV is the set of zeroes ofU. It is understood that the values of the limits in~10! are reached
when uxW u→` at a rate that guarantees the condition of integrabilityV,1`. Standard lore in the
J. Math. Phys., Vol. 38, No. 12, December 1997
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soliton theory of Yang–Mills–Higgs systems tells us that the topology ofC is determined by the
topology ofV : If d is the spatial dimension of the system, the first non-trivial homotopy grou
C is given by a related homotopy group ofV ,

Pk~C !5Pk1d21~V !. ~11!

Higher homotopy groups are also related but in a more subtle way.8 In our abelian CSH general
ized model the situation is essentially the same with two caveats:

~1! In view of ~8!, zeroes ofU which are poles ofH or zeroes ofufu2H may cause problems.
~2! In the standard Chern–Simons–Higgs model,V is not a connected manifold as in conve

tional gauge theories but rather the disconnected sum of a point and a circle. We shall a
here the same situation, i.e., thatU only vanishes forf50 andufu5v so thatV 5$•%øS1.
The necessary conditions for finite energy are thus classified by the homotopy clas
Maps(S`

1 ,$•%øS1), where S`
1 5]R2, the boundary of R2 at infinity. Then P0(C )

5P1($•%øS1)5e% Z.

Therefore,C splits first into two disconnected piecesC 5C 0øC v according to the behavior off
at spatial infinity: if limuxW u→`f(xW )50 we are inC 0; when limuxW u→`uf(xW )u5v, we are inC v . A
topological chargeQ1

T5ufuu]R2 is conserved and labels the two different pieces ofC . C v itself is
also a disconnected sum of infinite pieces; as many as there are integers. There is a
topological charge, this time of cohomological nature,Q2

T5 FM/2p, which labels the different
sectors inC v . Due to the asymptotic conditions~10!, the total magnetic flux takes values o
FM52pn in C v , n being the winding number of the mapfu]R2:]R2→V . In C 0, however,Q2

T

is non-restricted and may take any real value. Therefore,Q2
T is conserved only inC v and we

receive the following topological structure:

C 5C 0ønPZC v~n!, Q1
T@C 0#50, Q1

T@C v#5v, Q2
T@C v~n!#5n. ~12!

Solitons are minima ofV in C and fall into two categories: topological if they belong toC v(n),
nÞ0, and non-topological if they live inC 0. Topological solitons are always vortices in th
model; the vorticity of the vector fieldAi is preciselyn, while non-topological solitons may hav
vorticity or not.

Searching for solitons, stationary points of the functionalV in C , we write the energy~8! in
the form

V5VSD7T,

where

VSD5E d2xH 1

2
Q~ ufu2!FF126A2U

Q G2

1H~ ufu2!uD1f6 iD 2fu2J , ~13!

T5E d2x$A2QUF121 iH«k jDkf* D jf#%, ~14!

with

Q~ ufu2!5
k2

2ufu2H~ ufu2!
.
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This strategy is extremely powerful whenT becomes a boundary term constant over each disc
nected sector ofC , because then the Bogomolnyi boundV>uTu ensures that the absolute minim
of V are the configurations for whichVSD50, i.e., the solutions of the first order equations:

F1257A2U

Q
, D1f6 iD 2f50. ~15!

In this case, we say that the model is self-dual and the identities~15! are termed self-duality or
Bogomolnyi equations from the fact that analogous first order equations in the Abelian H
model or in the BPS limit of the ’t Hooft-Polyakov monopole come from a dimensional reduc
of the self-dual instanton equations. We can now prove that, despite the unconventional fo
~14!, for a specific choice of the potential the generalized CSH model at stake is self-dua
using the identities

A2QUF125«k j]k$A2QUAj%1F d

dufu2
A2QUG«k jAk] j ufu2,

iH«k jDkf* D jf52 i«k j]kH j~ ufu2,0!

ufu2
f] jf* J 2F d

dufu2
j~ ufu2,v2!G«k jAk] j ufu2,

wherej(ufu2,u)5*u
ufu2dt H(t), we realize that if we take the potential to be

U~ ufu2!5
1

2Q~ ufu2!
j2~ ufu2,v2!5

1

k2
ufu2H~ ufu2!j2~ ufu2,v2!. ~16!

T reduces to a contour integral

T5E d2x «k j]kH j~ ufu2,v2!Aj2
i

ufu2
j~ ufu2,0!f] jf* J

5@j~ ufu`
2 ,v2!2j~ ufu`

2 ,0!# R
uxW u5`

Ai dxi ~17!

with ufu`5 limuxW u→`ufu(xW ). T is proportional to the magnetic flux, thus constant, and different
each disconnected sector ofC v , but can take any real value onC 0. One can check that for the
critical relation~16! betweenU andH the masses of the scalar and vector particles of the bro
phase are equal:mf15mA. This fact is a common feature for all the self-dual theories.

The Bogomolnyi bound is

V>u@j~ ufu`
2 ,v2!2j~ ufu`

2 ,0!#FMu ~18!

and the self-duality equations take the form

F1257
2

k2
ufu2H~ ufu2!j~ ufu2,v2!, ~19!

D1f6 iD 2f50. ~20!

Even in the non-topologicalC 0 sector, in which the magnetic flux can vary continuously, so
tions of ~19!,~20! fulfill the static version of the Euler–Lagrange equations~2!,~3!. This can be
J. Math. Phys., Vol. 38, No. 12, December 1997
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seen from the following argument: solutions of the static EL equations are extrema of the
with respect to variations vanishing at infinity faster than 1/uxW u; hence, they leave the magnetic flu
unchanged. For such variationsdV5dVSD and because the self-dual configurations are minima
VSD , the conclusion follows.

We have shown that the key property for a generalized CSH model to be self-dual
relation~16! betweenH andU. In the intelligence of the model as a low energy effective the
for a two-dimensional relativistic gas of interacting charged fermions as described in the
duction, H(ufu2) and U(ufu2) are defined by series expansions inufu corresponding to the
summation of the appropriate graphs in Fig. 2. The coefficients in the expansion are the ef
coupling constants which, because there are divergent graphs, must be defined in terms o
renormalization parameters, e.g., Pauli–Villars fermion masses. Therefore, the Chern–S
coefficient, the gauge-coupling constant, the self-couplings of the Higgs field with and wi
derivatives, become dependent on the effective mass of the electron and the mass of the reg
kR5k(M ), eR5e(M ), lR

(n,k)5l (n,k)(M ) andlR
(n)5l (n)(M ), whereM collectively includes the

masses of the electrons and the regulators. We are dealing in fact with a family of gene
CSH models parametrized by a manifold of parameters, which in turn depend on renormal
prescriptions. In the space of generalized CSH models self-duality appears as a very speci
of the renormalization group flow: just at the pointM5MSD where the expansions

H~ ufu2;M !5 (
n50

`

l~n,k!~M !ufu2n U~ ufu2;M !5 (
n50

`

l~n!~M !ufu2n

are given by coefficientsl (n,k)(MSD),l (n)(MSD), leading to the relation~16! betweenH andU.
As an illustration we briefly consider a specific choice ofH corresponding to a model tha

exhibits exactly solvable self-dual non-topological vortices of the kind found in reference 9 fo
Chern–Simons gauged non-linear Schrodinger equation. TakeH(ufu2)5 a/2 (v22ufu2)21/2 with
a>0, ufu,v. The action

S5E d3xH k

4
«abgAaFbg1

a

2
~v22ufu2!2 1/2Dmf* Dmf2

a3

2k2
ufu2~v22ufu2!1/2J ~21!

describes a self-dual generalized model because~16! is satisfied. Since the lagrangian is singu
for ufu5v, only the symmetric phase is consistent; the quantum ground state can be d
perturbatively only aroundf50 and hence the particle spectrum is formed by two scalar bo
of massmf5 av/k. However, configurations that asymptotically reach the asymmetric vac
are admissible if at the same timeDifu]R250 and the spaceC has precisely the structure show
in ~12!.

The energy is immediately written in the self-dual form and from~17! T5avFM : the topo-
logical term is the magnetic flux times the mass of the scalars multiplied byk. The Bogomolnyi
equations are

F1256
a2

k2
ufu2, ~22!

D1f6 iD 2f50. ~23!

Puttingf5eu/21 i (V/2) , we recast the system~22!,~23! in the form

Ak5 1
2 ~]kV6«k j] ju!, ~24!
J. Math. Phys., Vol. 38, No. 12, December 1997
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¹2u52
2a2

k2
eu ~25!

which is valid outside the singularities ofV. In particular, the second of the equations in t
system is the Liouville equation, whose solutions are well known.9 There are no solutions suc
that ufu`Þ0 and therefore the only self-dual solitons are the non-topological ones belongi
C 0. The most general, non singular, radially symmetric solution of~24!–~25! is explicitly of the
form

f~r ,u!5
2nk

ar F S r

r 0
D n

1S r

r 0
D 2nG21

e6 i ~n21!u, Ar50, Au56
2nr2n

r 2n1r 0
2n

, ~26!

where polar coordinates have been used,n is a positive integer and, to ensureufu,v, the inte-
gration constantr 0 has to be chosen such that

r 0.
2k

av
nF S n21

n11D ~11n!/2n

1S n21

n11D ~12n!/2nG , if n.1,

r 0.
2k

av
if n51.

These solutions describe assemblies ofn non-topological vortices superimposed at the origin
coordinates. Their energy, charge and magnetic flux are the following:

FM564pn, Q574pkn, V54pavn. ~27!

Solutions of the Liouville equation corresponding to separated vortices are also known, se
erence 9 for details. It is intriguing that the Liouville equation~25! is conformally invariant even
though the full self-dual model is not. The solution~26!, therefore enjoys more symmetry tha
expected, a situation sometimes termed partial dynamical symmetry.10

III. N52 SUPERSYMMETRIC CHERN–SIMONS–HIGGS SYSTEMS

From the seminal work of Olive and Witten6 it is known that the existence of self-duality
related to the possibility of generalizing the system to some extended supersymmetric vers
this section we shall analyze the general form ofH allowing for a N52 supersymmetric version
of the model. We find that there are only two possibilities: the N52 supersymmetric CSH mode
explored in reference 11 and a new one, to be developed here, which admits a new man
self-dual solitons. Three dimensional N52 SUSY gauge theory comes from a dimensional red
tion of N51 SUSY gauge theory in four dimensions; simili modo N52 four dimensional SUSY
gauge theory leads by dimensional reduction to N54 three dimensional SUSY gauge theor
However, in this case there is no room for the superpotential and it therefore seems tha54
supersymmetry is of no use in looking for~211!-dimensional models with self-dual solitons.

We thus study the N52 supersymmetric extension of the generalized CSH model along
lines put forward in reference 11 for the standard CSH model. We shall show that the c
charge of the SUSY algebra is precisely the topological contour integral of Section II, a
important feature of similar models. We expect that the supersymmetric algebra will be pres
by the quantization procedure in such a way that there should be no quantum corrections
central charge; this ensures that the Bogomolnyi bound will be satisfied by the quantum
built around the self-dual classical solitons.
J. Math. Phys., Vol. 38, No. 12, December 1997
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We first work in the superfield formalism over a N51 superspace. Besides the Higgs a
gauge fields, we introduce supersymmetric partners which, in the classical limit, are
component spinors taking values in a Grassman algebra. On the spinor fieldsc5(ca), indices are
raised and lowered by means of the totally antisymmetric tensor«ab ,«1251 as follows:
ca5cb«ba , ca5«abcb . We choose Dirac matricesg05s2,g15 is1,g252 is3 in such a way
that they are the generators of the Clifford algebraC(2,1):$gm,gn%52gmn. Special to three di-
mensions is the identitygmgn5gmn2 i«mnrgr . Given a spinorc, we definec̄5 ic* Tg05(ca* )
and in our representation the charge conjugate coincides with the complex conjugate. The
space coordinates are (xm,Qa); here, Q is a Majorana spinor which is a natural choice f
Lorentzian SUSY models in three dimensions because such models are related to the real n

R, which is the first division algebra. We use the notationQ̂5 1
2Q

aQa . The superderivative is
Da5 ]/]Qa1 i (gm)abQ

b]m .
The matter content of the theory is assembled in a complex scalar superfield

F~x,Q!5f~x!1Qbcb~x!2Q̂F~x!

which includes the Higgs fieldf(x), a complex spinor fieldc(x), the higgsino, and an auxiliary
complex scalar fieldF(x). There is also a real spinor superfieldGa(x,Q) which in the Wess-
Zumino gauge reads

Ga~x,Q!5 iQb~gm!baAm~x!22Q̂la~x!,

whereAm(x) is the gauge field of the previous section andla(x) is a Majorana spinor field, the

photino. The spinorial superfield strength is defined byWa5 1
2D

bDaGb so that the Bianchi identity
DaWa50 holds; explicitly

Wa~x,Q!5la~x!2 1
2 Qb~gmgn!baFmn~x!2 i Q̂~gm!a

b]mlb~x!.

Each superfield forms a representation of the supersymmetric transformations genera
Qa5 i (]/]Qa)1(gm)abQ

b]m . The SUSY chargesQa close the SUSY algebra

$Qa ,Qb%52~ igm!ab]m

together with the energy-momentum generatorsPm .
The superspace action

S5E d3x d2uH k

4
GaWa2

1

2
H~F* F!¹aF* ¹aF1W~F* F!J , ~28!

where ¹aF5DaF2 iGaF is the covariant superderivative, is invariant under the superga
transformations

F→eiKF, Ga→Ga1DaK

if K(x,Q) is a real scalar superfield.
The action~28! is also invariant with respect to the supersymmetric transformations

becauseQa does not respect the Wess–Zumino gauge, the need arises to supplement the a
the SUSY charges with supergauge transformations in order to preserve the gauge
Namely, we shall take

dh
WZF5 ihbQbF1 iKF, dh

WZGa5 ihbQbGa1DaK ~29!

with the supergauge parameter given by
J. Math. Phys., Vol. 38, No. 12, December 1997
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K~x,Q!5 iQb~gm!bah
aAm~x!2Q̂hala~x!

as the supergauge-SUSY transformations.
In components, the action~28! has the form

S5E d3xH k

4
«abgAaFbg1H~ ufu2!Dmf* Dmf1 iH ~ ufu2!c̄gmDmc2

k

2
l̄ l

2 iH ~ ufu2! l̄ ~c* f2cf* !1H~ ufu2!F* F2 1
4c̄cH9~ ufu2!@ c̄c* f21 c̄* cf* 2#

1 1
2 H8~ ufu2!$ i c̄gmc@f* Dmf2fDmf* #2~ c̄c* fF1 c̄* cf* F* !%2 1

2 ufu2H9~ ufu2!

3~ c̄c!21W8~ ufu2!~F* f1f* F2 c̄c!2 1
2 W9~ ufu2!@2ufu2c̄c1 c̄c* f21 c̄* cf* 2#J

~30!

and the supersymmetric transformation reads

dh
WZf5 h̄c, dh

WZc52 igmhDmf1hF, dh
WZAm52 i h̄gml. ~31!

In ~30! there are no derivatives of the fieldsF,l. The Euler–Lagrange equations

F5
1

2

H8~ ufu2!

H~ ufu2!
c* cf* 2

W8~ ufu2!

H~ ufu2!
f, ~32!

l52 i
H~ ufu2!

k
@c* f* 2cf* # ~33!

are constraints. The feed back of~32!, ~33! in ~30! yields the ‘‘on-shell’’ supersymmetric action

S5SB1SF ,

SB5E d3xH k

4
«abgAaFbg1H~ ufu2!Dmf* Dmf2

ufu2

H~ ufu2!
@W8~ ufu2!#2J , ~34!

SF5E d3xH 1 iH ~ ufu2!c̄gmDmc1F 1

k
H2~ ufu2!2W8~ ufu2!2ufu2W9~ ufu2!G c̄c

1
1

2 F ufu2

2H~ ufu2!
~H8~ ufu2!!22H8~ ufu2!2ufu2H9G ~ c̄c!21

1

2
H8~ ufu2!i c̄gmc@f* Dmf

2fDmf* #2
1

2 F1

2
H9~ ufu2!c̄c1W9~ ufu2!1

1

k
H2~ ufu2!2

H8~ ufu2!W8~ ufu2!

H~ ufu2!
G

3@ c̄c* f21 c̄* cf* 2#J . ~35!

To extend the transformations~31! to N52 supersymmetry, we allow the parameterh to become
complex. Complexh transformations yield phase rotations in the fermionic variables: fermio
J. Math. Phys., Vol. 38, No. 12, December 1997
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number non-conserving terms in the Lagrangian are thus non-invariant under N52 SUSY trans-
formations. Therefore, the theory is N52 supersymmetric if and only if the last line in~35!
vanishes, i.e.,

H~ ufu2!W9~ ufu2!1
1

k
H3~ ufu2!2H8~ ufu2!W8~ ufu2!50, ~36!

H9~ ufu2!50. ~37!

Condition ~36! is satisfied by

W8~ ufu2!52
1

k
H~ ufu2!j~ ufu2,v2! ~38!

which guarantees that the pure bosonic actionSB is self-dual: The potential term is

U~ ufu2!5
ufu2

H~ ufu2!
@W8~ ufu2!#25

1

k2
ufu2H~ ufu2!j2~ ufu2,v2!

exactly of the form~16!. The second constraint,~37!, is much more restrictive:

H~ ufu2!5aufu21g. ~39!

If a50 we obtain the N52 supersymmetric extension of the conventional abelian Che
Simons–Higgs model with potential and superpotential

U~ ufu2!5
g3

k2
ufu2~ ufu22v2!2 W~ ufu2!5

g2

3k
ufu~ ufu223v2!.

There is only one other possibility for having a CSH model with N52 supersymmetry: If botha
and g are different from zero, by substituting~39! in ~38! we obtain the most general N52
supersymmetric extension of the generalized CSH model. The bosonic sector is of the g
self-dual form albeit the functionH is at most linear inufu2. N52 supersymmetry strongly forbid
other possible choices ofH. It seems that the restriction has to do with renormalizability. In
previously known casea50, the potential is of sixth order inufu, i.e. the model is renormalizabl
in ~211!-dimensions. In the more general situation that we present h
j(ufu2,v2)5 (a/2) @(ufu21b2)22(v21b2)2# with b25 g/a. Thus, the potential is:

U~ ufu2!5
a3

4k2
ufu2~ ufu21b2!@~ ufu21b2!22~v21b2!2#2, ~40!

i.e., of eighth order inufu. Even though the pure bosonic sector is not renormalizable by n¨ve
power counting, we expect that its supersymmetric extension would be renormalizable, p
even finite, because the divergence structure of supersymmetric models is always milder th
occurring in their bosonic counterparts. A final comment to this section: N51 supersymmetry is
compatible with self-duality for very general choices ofH.

IV. N52 SUPERSYMMETRIC ALGEBRA AND SELF-DUAL SOLITONS

In this section we focus on the N52 SUSY generalized Higgs model. First, we compute
conserved Noether supercurrent. Special care is needed due to the double origin of the
J. Math. Phys., Vol. 38, No. 12, December 1997
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invariance of the lagrangian; one takes into account not only the supersymmetric transform
but also thatdh

WZ includes a supergauge transformation that changes the Chern–Simons ter
divergence. Bearing this in mind, one has that

~Jm!a5H~ ufu2!~gngmc!aDnf* 1 if* W8~ ufu2!~gmc!a2
i

4
fH8~ ufu2!c̄c* ~gmc!a

2
i

4
f* H8~ ufu2!c̄* c~ c̄gm!a ~41!

and therefore the conserved supercharge is:

Qa5E d2xH H~ ufu2!~gng0c!aDnf* 1 if* W8~ ufu2!~g0c!a2
i

4
fH8~ ufu2!c̄c* ~g0c!a

2
i

4
f* H8~ ufu2!c̄* c~ c̄g0!aJ . ~42!

Using the canonical quantization rules

@f~x0,xW !,P~x0,xW8!#5 id~xW2xW8!, @Aj~x0,xW !,Ak~x0,xW8!#5
i

k
« jkd~xW2xW8!,

~43!

$~ c̄g0!a~x0,xW !,cb~x0,xW8!%5
1

H~ ufu2!
da

bd~xW2xW8!,

whereP5H(ufu2)D0f* 1 ( i /2) f* H8(ufu2) c̄g0c, one easily verifies thatQa takes the role of
generator of the transformations~31! in the quantum theory: In fact

dh
WZL~x!5 i @ h̄aQa,L~x!#1 i @Q̄aha,L~x!#

for L5f, c or Aj .
Explicit computation of the algebra generated by the supercharges is somewhat length

skip the details and give the final result

$Qa,Q̄b%5~gm!b
aPm1db

aT̃, ~44!

wherePm are the energy and momentum of the bosonic sector given by~6!,~7! and the central
charge is

T̃5E d2xH iH ~ ufu2!« jkD jf* Dkf2 i
1

k
H~ ufu2!j~ ufu2,v2!@f* D0f2fD0f* #J . ~45!

Plugging the Chern–Simons–Gauss law~4! into T̃, we find that

T̃5E d2x$ iH ~ ufu2!« jkD jf* Dkf1j~ ufu2,v2!F12%5T,

the central charge being the topological termT in ~14!. As a direct consequence of~44!, the
Bogomolnyi bound is also valid in the quantum domain: left-multiplication of~44! by 1

2(16g0)
plus taking traces in the spinorial indices imply the equations
J. Math. Phys., Vol. 38, No. 12, December 1997
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P05Tr$Q 6 ,Q 6
† %7T ~46!

with Q 65 1
2(16g0)Q. The expectation values on a quantum state of both members in~46! satisfy

the inequality

^P0&>u^T&u ~47!

because the anticommutator of an operator and its adjoint is positive definite.
In a second step, we look for self-dual solitons in the bosonic sector of the N52 extended

model, whose potential is given in~40!. There is a symmetric phase in which the particle spectr
is composed of two scalar bosons of massmf5 (av2/2k) (v212b2) and an asymmetric phas
aroundf5v that contains one scalar particle and one vector boson, both of the same
mf1

5mA5 (2av2/k) (v21b2). N52 supersymmetry, unbroken in the vacuum sectors, requ
that the masses of the particles belonging to the same SUSY multiplet are equal. Thus, the
of the scalar and vector particles as well as the higgsino and photino masses coincide.

The space of finite energy stationary configurations is exactly the spaceC described in~12!.
From ~17!, the topological term is proportional to the magnetic flux and to the mass of the s
bosons of the symmetric phase,T52 (av2/2) (v212b2)FM , and the Bogomolnyi equations fo
radially symmetric configurations are

1

r

da

dr
5K~g!g2~g221!, ~48!

dg

dr
5

ag

r
, ~49!

wheref(r ,u)5vg(r )einu, Ar50, Au5n2a(r ) and

K~g!5
av8

k2 S g21
b2

v2 D S g212
b2

v2
11D .

Notice that we have taken the upper sign~self-duality! in ~19!-~20!. The boundary conditions
required by regularity at the origin and finiteness of energy are

ng~0!50, a~0!5n,

g~`!51 or 0, a~`!50 or 2J ~50!

with J.0. The similarity between~48!,~49!,~50! and the equations of the conventional Cher
Simons–Higgs system allow us to give an account of the radially symmetric solutions bas
the results of reference 12:

• In the sectorC 0 there are two kind of solutions:

~1! If n50, necessarily 0,g(0),1, because ifg(0).1 a and g grow in such a way that the
boundary conditions at infinity cannot be met. For 0,g(0),1, g decreases withr and
reaches zero asymptotically. We expect a family of non-topological solitons parametriz
g(0) with magnetic flux, electric charge and energy given by

FM52pJ, Q522pkJ, V5apJv2~v212b2!. ~51!

~2! If nÞ0, g(r ).gnr n for r .0 andg grows more rapidly whengn is large. Ifgn is too big the
valueg51 is reached for finiter andg(r ) grows without limit. Thus, for eachn, there is a
J. Math. Phys., Vol. 38, No. 12, December 1997
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family of non-topological vortices parametrized by 0,gn,ĝn such that for them:

FM52p~n1J!, Q522pk~n1J!, V5ap~n1J!v2~v212b2!. ~52!

• In the sectorC v(n) there are topological vortices whose behavior atr .0 is precisely
g(r ).ĝnr n. Their physical properties are

FM52pn, Q522pkn, V5apnv2~v212b2! ~53!

which make them the relativistic cousins of the quasi-hole or quasi-particle excitations o
FQHE, see reference 4.

We close this section by noticing that the quantum states corresponding to self-dual qu
solitons break the N52 supersymmetry to N51. The Bogomolnyi bound at the quantum level

^SDuP0uSD&5^SDuVuSD&5^SDu T̃uSD&

means that

Tr^SDu~Q 2
†

Q 21Q 2Q 2
† uSD&50

andQ 2uSD&50 so thatQ 2 is a bona fide supersymmetric generator in the corresponding se
Q 1 , however is another story. From~46! we see that

Tr^SDu~Q 1
†

Q 11Q 1Q 1
† uSD&52^SDu T̃uSD&

andQ 1uSD&Þ0. Accordingly, the SUSY transformation generated byQ 1 is spontaneously bro
ken because of the action on the self-dual quantum solitons.

V. CONCLUDING REMARKS

We have elaborated on a theory that generalizes the CSH model while preserving a se
character; the non-relativistic limit might be useful as an effective Ginzbug–Landau model fo
fractionary quantum Hall effect. Supersymmetric extensions have been considered and som
ticular solutions of soliton type found. It is interesting to note that the model enjoying the ex
solvable first order equations of Section II and the generalized N52 supersymmetric CSH mode
of Section IV are related; the functionH(ufu2) of the second model is equal to the series exp
sion of H(ufu2) in the first model truncated to first order inufu2.

It is very puzzling that self-duality in the sense considered in this work has been found
non-abelian CSH model coupled to a gravitational field also for a potential of eighth orde
explained in reference 16. This suggests that a supergravity CSH model might encompa
systems: the flat metric limit of the Sugra CSH model, plus some abelianization, would be
the system under study in this paper, while the bosonic sector could be related to the
analyzed in reference 16.

Finally, we mention several other issues that deserve further study. In the first place, it
be worthwhile to solve the system~48!, ~49! numerically to see the way in which the intriguin
lower bound in the magnetic flux of non-topological solutions present in the conventional
model generalizes to our case. A second open point is the computation of the dimension a
description of the general structure of the moduli space of the solitonic solutions of the mod
means of an adequate modification of the techniques used in references 12, 13. Last, ther
question of the low energy dynamics of multivortex configurations, a very interesting matte
for Chern–Simons theories has proven to be specially involved.14
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Quantum mechanics in classical dynamics
Andrew C. Millard
Physics Department, Jadwin Hall, Princeton University, Princeton, New Jersey 08544

~Received 26 February 1996; accepted for publication 19 December 1996!

Quantum mechanics over an associative ring with a conjugation operation can be re
in a form familiar as a classical dynamical system. The generators of transformation
the classical phase space are the expectation values of anti-self-adjoint operators an
closed under a Poisson bracket that is in direct correspondence with the quantum
chanical commutator. A prescription also exists for determining when a classical flow
equivalent to a quantum mechanical evolution. ©1997 American Institute of Physics.
@S0022-2488~97!02803-X#

I. INTRODUCTION

The relationship between quantum mechanics and classical dynamics has been the su
considerable discussion. Bohr’s correspondence principle and the Ehrenfest Theorem1 leave no
doubt that there is a relationship and there have been numerous attempts2 to determine it exactly.
One approach, as investigated by Strocchi,3 Rowe, Ryman and Rosensteel,4 Heslot,5 and Jones,6 is
to rewrite Schro¨dinger’s equation in terms of the evolution of ‘‘coordinates’’ which are the r
and imaginary parts of the expansion coefficients of the wave function over an orthonormal
rewritten in this way, there is a striking resemblance to a classical Hamiltonian system, wi
‘‘coordinates’’ playing the role of phase space coordinates, and with the Hamiltonian fo
classical dynamics being the expectation value of the quantum mechanical Hamiltonian op
This paper generalizes this procedure to the case of quantum mechanics formed using
general algebra than that of the complex numbers. After an example exhibiting how the pro
works for quantum mechanics using complex numbers, the more general algebraic framew
defined and the nature of the wave function considered; it is then shown how, for such a s
the quantum evolution may be rewritten in classical form and a classical Poisson bracket w
the expected properties is found; finally, the converse problem, of when classical dynamics m
recast in the form of quantum mechanics, is addressed and an answer developed.

The following is used by Heslot5 and serves to make the relationship clear in the cas
quantum mechanics using complex numbers. Schro¨dinger’s equation is

i
d

dt
uC&5ȞuC&,

whereȞ is a self-adjoint Hamiltonian operator. Expand the wave function over an orthono
basis,

uC&5(
r

uf r&c r ,

and write the expansion coefficients in terms of their real and imaginary parts as

c r5~qr1 ipr !/A2.

In terms of theqr and thepr and the real quantity

H5^CuȞuC&,
0022-2488/97/38(12)/6230/19/$10.00
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Schrödinger’s equation can be written

i ~ q̇r1 i ṗ r !/A25
1

A2 S ]H

]qr
1 i

]H

]pr
D

or, separating into real and imaginary parts,

q̇r5
]H

]pr
, ṗr52

]H

]qr
,

which are the classical dynamical equations for a phase space with canonical coordinatesqr and
pr and a Hamiltonian functionH.

II. THE ALGEBRA

The subject matter of this paper will be that of the deterministic time evolution of a w
function as given by the Schro¨dinger equation, while the issue of measurement will not be c
sidered. This section sets out the algebraic basis7 for this and is the foundation for the constructio
of quantum states and the wave function in the next section.

The algebras that will be considered in this paper are rings that are modules overR, the reals,
under multiplication from both sides. For a particular algebraG , it is assumed that there is a s
G of generators, such that any elementcPG , or ring-valued quantity, may be written as a line
combination of generators with coefficients that are elements ofR; that is,

c5(
k

xkgk ,

where thegk are the elements ofG and thexk are elements ofR. At this stage, it is useful to
consider examples of such algebras; they may be categorised according to whether the m
cation is commutative and/or associative, and also according to whether each element exce
a multiplicative inverse, in which case the ring is a division algebra. Some examples of these
are:

~1! The reals, represented byR, generated by$1% and the complex numbers, represented byC ,
generated by$1,i % form commutative and associative division rings.

~2! The quaternions, represented byH, generated by$1,i , j ,k% form an associative division ring
that is not commutative.

~3! The octonions, represented byO , form a division ring that is neither commutative nor ass
ciative.

~4! Clifford algebras,8 which includeR, C , and H but not O , are associative rings that ar
generally neither commutative nor division algebras.

Thus stands the general ring. To it is added a linear anti-automorphism which is its
inverse and will therefore be termedconjugation; it will be denoted by an asterisk, so

~c* !* 5c.

In the usual way,real9 and imaginary10 quantities are defined as those which are self-conjug
that is, unchanged under conjugation, or anti-self-conjugate, that is, it is multiplied by21 under
conjugation, respectively. Any element can then be separated into a real part and an ima
part,

c5 1
2~c1c* !1 1

2~c2c* !5Re c1Im c.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Some clarification of terminology is probably in order at this point. A ring-valued quantit
a general element of the ring, while areal-valuedquantity is an element that is formed only fro
1, the multiplicative identity ofG ; since the set of such quantities is also a ring and a module
R, a real-valued quantity is essentially an element ofR. While real-valued quantities are rea
since the multiplicative identity must be self-conjugate, the converse is not necessarily
Similarly, central, or totally commuting, quantities are not necessarily real, and vice-vers
real-valued. To illustrate this point, consider the ringC ^H generated by$1,i , j ,k,I i ,I j ,Ik,I %,
whereI is the complex unit imaginary andi , j andk are the quaternion unit imaginaries, whic
commute with I ; define conjugation to be simultaneous complex conjugation and quate
conjugation; then, elements that are formed only from 1,I i , I j and Ik are real, being unchange
under conjugation, while those formed only from 1 andI are central, since they commute wit
everything; it is just the elements that are formed only from 1, however, that are real-value

The inner product of ordered sets of ring-valued quantities,$c1p% and $c2p%, with the same
number of elements, is then written using conjugation as

(
p

c1p* c2p .

Consider an infinitesimal transformation on such ordered sets,

cp°cp1(
q

Gpqcqde,

where theGpq are ring-valued; to first order, the inner product is transformed

(
p

c1p* c2p°(
p

c1p* c2p1(
pq

@c1p* ~Gpqc2q!1~c1p* Gpq* !c2q#de.

As usual, such a transformation is unitary if it preserves the inner product; ifG is an associative
algeba, this means that

Gpq* 52Gqp , ~1!

and quantities which satisfy this equation areanti-self-adjoint. Associativity has been used here
a desirable property that leads quickly to a simple relationship amongst theGpq , a relationship
which is independent of any specific sets of ring-valued quantities. For the formulation of qua
mechanics, however, associativity is necessary, not just desirable. Adler12 shows how quantum
mechanics cannot be formulated over the octonions since, in at least two instances, associa
needed for the existence of Hilbert space; similar arguments can be extended to other no
ciative algebras. In the light of this, this section will close with the requirement thatG be
associative.

III. THE WAVE FUNCTION

Given a ring as detailed in the previous section, quantum states can now be considere
standard assumptions will be made, namely, that the set of statesVG is a group under addition an
a module under right multiplication by elements ofG ; VG is also assumed separable a
complete.11 To each state inVG there is an associated adjoint state; these adjoint states also
a group under addition and a module under left multiplication by conjugate elements ofG . At this
stage, the usual Dirac bra and ket notation may be employed, with kets used to represent st
bras used to represent adjoint states,

^fu5uf&†; ~ uf&c)†5c* ^fu.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The inner product of two statesuf& and uf8& is, as usual, a map from those states to an elemen
G and is written

^fuf8&5^fuuf8&.

The norm of a state is its inner product with itself, and is real. It should be noted, though, th
norm of a state is not necessarily nonzero if the state is nonzero; if the norm is nonzero, it
necessarily real-valued; if it is real-valued, it is not necessarily positive. However, it is ass
that there is a set$ufp&% of states such that no state in that set can be written as a li
combination~with coefficients inG ! of the others and such that

^fpufq&5dpq .

It is further assumed that any state inVG may be written as a linear combination with coefficien
in G of these basis states,

uC&5(
p

ufp&cp , ~2!

where thecp are ring-valued quantities, being the usual expansion coefficients of the stateuC&,

cp5^fpuC&,

over this basis. The inner product of any two states can then be written as the inner product
respective sets of expansion coefficients

^C1uC2&5(
p

c1p* ^fpu(
q

ufq&c2q5(
p

c1p* c2p .

As is normally the case, the states ofVG form a module under left multiplication by operator
which are here assumed linear,

Ǎ~ uC1&1uC2&)5ǍuC1&1ǍuC2&,

and ring linear,13

Ǎ~ uC&x)5~ǍuC&)x,

for all statesuC& and ring-valued quantitiesx. There is the usual correspondence between op
tors and their matrix elements,

Apq5^fpuǍufq& and Ǎ5(
pq

ufp&Apq^fqu,

and a complete set of orthonormal basis states satisfies

1̌5(
p

ufp&^fpu.

By means of this completeness relation, any expression in operators and states can be co
into an expression involving ring-valued quantities, and operator multiplication is seen
equivalent to matrix multiplication as normal. Operators also have adjoints, and the adjoint
form a module under right multiplication by adjoint operators,
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ǍuC&)†5^CuǍ†,

and the matrix elements of an adjoint operator are the transpose conjugate matrix element
operator,

^fpuǍ†ufq&5Aqp* .

As with conjugation, an operator, and equivalently its matrix elements, can be separate
self-adjoint and anti-self-adjoint parts,

Ǎ5 1
2~Ǎ1Ǎ†!1 1

2~Ǎ2Ǎ†!,

Apq5 1
2~Apq1Aqp* !1 1

2~Apq2Aqp* !.

While individually neither conjugation nor transposition are generally antiautomorphisms o
trix multiplication,14 the operation of combined conjugation and transposition is an antiauto
phism, which can be seen as follows:

~ǍB̌!†[~~ǍB̌!†!pq5~ǍB̌!qp* 5S (
r

AqrBrpD *
5(

r
Brp* Aqr* 5(

r
~B̌†!pr~Ǎ†!rq[B̌†Ǎ†.

Again, consider an infinitesimal transformation,

uC&°uC&1ǦuC&de;

to first order, the inner product is transformed

^C1uC2&°^C1uC2&1^C1u~Ǧ†1Ǧ!uC2&de.

As before, if this is to be a unitary transformation, the generator must be anti-self-adjoint,

Ǧ†52Ǧ.

This is in obvious correspondence with Eq.~1!. Whereas in quantum mechanics using comp
numbers, self-adjoint and anti-self-adjoint operators are interchangeable, by the insertion
moval of a factor ofi , this is not true for a general ring.15 However, the natural way to combin
generators is through the commutator, and the commutator of two anti-self-adjoint opera
itself anti-self-adjoint, so it is not necessary to rewrite anti-self-adjoint operators as self-a
operators.

Returning to a general state expanded over a complete orthonormal basis@Eq. ~2!#, write the
expansion coefficients as functions of a set of real-valued coordinates$xm%16 such that

]cp

]xm 5Lpm .

If the number of ring generators isng and the number of basis states isnf , then the number of
real-valued coordinates~the dimension of the corresponding phase space, when appropria! is
ngnf . A general state then has a set of tangent kets which, in terms of the orthonormal bas

uC ,m&5
]

]xm uC&5(
p

ufp&
]cp

]xm 5(
p

ufp&Lpm .

The coefficientsLpm are ring-valued and satisfy
J. Math. Phys., Vol. 38, No. 12, December 1997
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Lpm,n5Lpn,m ~3!

by the commutativity of partial derivatives with respect to the real-valued coordinates. It w
necessary later on to use quantities inverse to theLpm , and these are constructed in what follow
Write theLpm as combinations with real-valued coefficients of the ring generators,

Lpm5(
k

Gpkmgk ,

where theGpkm are real-valued. Observe the indices of these quantities: each is specified b
basis state index (p), one ring generator index (k) and one coordinate index~m!. However, the
number of coordinates is the product of the number of basis states and the number o
generators, so that with a suitable ‘‘wrapping,’’ theGpkm may be arranged into the elements of
square matrix. If this matrix is invertible, its inverse can then be ‘‘unwrapped’’ to yield quant
Gpk

21m that satisfy

Gpk
21mGqlm5dpqdkl .

Furthermore, if the ring generators are invertible~which is the case if the ring is a divisio
algebra17!, then it is possible to construct quantities

Lp
21m5

1

ng
(

k
Gpk

21mgk
21

which satisfy

Lp
21mLqm5

1

ng
(

k
Gpk

21mgk
21(

l
Gqlmgl5

dpq

ng
(

k
gk

21gk5dpq

and, similarly,

LpmLq
21m5dpq .

IV. THE DYNAMICS

As stated at the beginning of Sec. II, this paper is concerned with the dynamics of
functions as determined by the action of operators. In particular, the transformations of in
will be unitary transformations and so the operators to be studied are anti-self-adjoint.

For a given system, suppose that the parameters determining the wave function, tha
expansion coefficients or, equivalently, the real-valued coordinates of which the expansion
ficients are functions, are dependent on an independent time variable. Given that the norm
wave function is preserved as the system evolves,

Axiom 1: The evolution of a wave function with respect to time is determined by an ant
adjoint operator, Ȟ,

uĊ&52ȞuC&. ~4!

This evolution operator is called the Hamiltonian. Following a similar path to that used in He
example, consider the imaginary quantity

H5^CuȞuC&
J. Math. Phys., Vol. 38, No. 12, December 1997
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~which is the expectation value of the Hamiltonian for the state if the wave functio
normalized18!. The derivative of this quantity with respect to one of the real-valued coordinat

H ,m5^CuȞuC ,m&1^C ,muȞuC&,

which, using Eq.~4! and

uĊ&5uC ,m&ẋm

gives19

H ,m5~^C ,nuC ,m&2^C ,muC ,n&!ẋn5smnẋn, ~5!

where

smn52^C ,muC ,n&1^C ,nuC ,m&; ~6!

with a certain amount of foresight,smn will be called the symplectic metric.
Lemma 1: The symplectic metric is imaginary:

smn* 52smn .

Lemma 2: The symplectic metric is anti-symmetric in its indices:

smn52snm .

The symplectic metric may also be expressed using the tangent ket expansion coefficients
previous section as

smn5(
p

~2Lpm* Lpn1Lpn* Lpm!522 Im (
p

Lpm* Lpn . ~7!

~Associated quantities are the real, though not necessarily real-valued,

gmn52 Re(
p

Lpm* Lpn ~8!

so that

^C ,muC ,n&5(
p

Lpm* Lpn5 1
2~gmn2smn!.

More will be said about thegmn later.! Differentiating and using Eq.~3!,
Lemma 3: The symplectic metric is closed:

smn,l1snl,m1slm,n50. ~9!

Suppose there exist quantitiessmn inverse to the symplectic metric, that is, such that

smnsnl5slkskm5dl
m . ~10!

Since the symplectic metric is imaginary and antisymmetric in its indices, the conjugate of th
term in Eq.~10! is
J. Math. Phys., Vol. 38, No. 12, December 1997
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~smnsnl!* 5slnsmn* ;

comparing with the second term in Eq.~10!, this means that

smn* 5snm.

However, the inverse symplectic metric is generally neither imaginary nor anti-symmetric
indices. Then,

Theorem 1: If the inverse symplectic metric exists, the change in the real-valued coordin
due to the action of an anti-self-adjoint operator Gˇ on the wave function,

ǦuC&de52udC&52uC ,m&dxm, ~11!

is given by

dxm5smnG,nde52G,nsnmde, ~12!

where

G5^CuǦuC&. ~13!

For example, if the operator were the Hamiltonian, thende is dt and the transformation would b
time evolution. The proof follows by construction. Proceeding as in the case for the Hamilt
above gives

G,mde5smndxn.

Using lemma 2 and Eq.~10!, this may be rewritten to give Eq.~12!, proving the theorem.
Furthermore, sincede anddxm are real-valued,

Lemma 4: The quantities

G,m5smnG,n52G,nsnm

are real-valued and hence central.
Any functionG for which this is true is anadmissablefunction. From the development abov

it can be seen that an anti-self-adjoint operator will always produce an admissable fun
although it will be seen in Sec. VI that the converse is not necessarily true, and it will be se
the next section that admissable functions are the function space of the Poisson bracket
maps two admissable functions into a third.

A large part of this section has relied upon the existence of thesmn, but it is not clear if there
are any simple criteria for determining whensmn is invertible. In the absense of a pathologic
choice of real-valued coordinates, the existence of the inverse is presumably dependent
nature of the ring. For example, the usual parametrization for complex numbers,fp 5 x2p11

1 ix2p12, gives a simple block diagonal symplectic metric that may be easily inverted~although
Rowe, Ryman, and Rosensteel4 do not address this issue!. However, for a ring only slightly less
simple, the ring generated byC3 , the symplectic metric is not invertible, and this appears to
due to the fact that there are an odd number of ring generators—an example usingC3 , and other
examples that show that the action of conjugation must also figure in the criteria for invertib
may be found in the Appendix.

V. THE POISSON BRACKET

Given that quantum mechanics can be written in classical form, it is natural to turn to
sideration of the Poisson bracket; this is defined20 as follows.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Definition 1: Given a set of quantities, X, the Poisson bracket is a map from two quantit
the set to a third,

$F,G%PX ;F,GPX.

It is antisymmetric in its arguments,

$F,G%52$G,F%,

and vanishes if one of the arguments is a constant,

$F,C%50;

it is also distributive over addition,

$F,G11G2%5$F,G1%1$F,G2%,

and is a derivation,

$F,G1G2%5$F,G1%G21G1$F,G2%,

that is, it obeys the Leibnitz product rule. The Poisson bracket also satisfies the Jacobi ide,

$$F,G%,H%1$$G,H%,F%1$$H,F%,G%50 ;F,G,HPX.

Theorem 2: There is a natural Poisson bracket,

$F,G%5smnF ,mG,n

defined on the set of quantities

G5^CuǦuC&,

where Ǧ is an anti-self-adjoint operator, that represents the classical dynamical principle
complete correspondence with the quantum mechanics of anti-self-adjoint operators und
commutator.

This is proved by constructing the Poisson bracket and showing that it exhibits the req
properties. Using Eq.~12!, Eq. ~11! can be rewritten in the form

ǦuC&52uC ,m&G,m; ~14!

similarly,

^CuǦ5G,m^C ,mu. ~15!

Consider, then, for anti-self-adjoint operatorsF̌ andǦ, the quantity

^Cu@ F̌,Ǧ#uC&,
J. Math. Phys., Vol. 38, No. 12, December 1997
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~which is the expectation value of the commutator in the stateuC& if the wave function is normal-
ized!. Using Eqs.~14! and ~15!, and then Eq.~6!,

^Cu@ F̌,Ǧ#uC&5~^CuF̌ !~ǦuC&!2~^CuǦ!~ F̌uC&!

52F ,m^C ,muC ,n&G
,n1G,n^C ,nuC ,m&F ,m

5smnF ,mG,n,

where lemma 4 has been used in the third equality to order theF ,m and theG,n to the right. The
last line is in the form of a classical Poisson bracket,21 and has the form given in the statement
the theorem,

$F,G%5smnF ,mG,n;

it will now be verified that it possesses all the necessary properties. Using the definition
F ,m and theG,n as given in lemma 4 together with Eq.~10!, the Poisson bracket can be written
various forms, as will be used in the following. The properties of this Poisson bracket follow
those of the commutator:22 Its arguments are admissable functions and, since the commutat
two anti-self-adjoint functions is another anti-self-adjoint function, the Poisson bracket of
admissable functions is also admissable by construction. The other properties can be v
explicitly as follows.

The Poisson bracket is anti-symmetric in its arguments,

$F,G%5smnF ,mG,n5smnG,nF ,m52snmG,nF ,m52$G,F%,

where the second equality uses lemma 4 and the third equality uses lemma 2. If one
arguments is a constant, its derivatives with respect to the real-valued coordinates vani
hence the Poisson bracket also vanishes. Furthermore, since the operations of differentiati
respect to the real-valued coordinates and of ring multiplication are both distributive over add
the Poisson bracket is also distributive over addition. Writing the Poisson bracket in the fo

$F,G%5F ,mG,m ,

it can be seen that since, by lemma 4,F ,m is central and since differentiation with respect to t
real-valued coordinates is a derivation, the Poisson bracket as a whole is a derivation. To
that the Jacobi identity holds, it is necessary to be able to differentiate the Poisson bracket
this, first write the Poisson bracket in the form

$F,G%52F ,msmnG,n ; ~16!

the ordering here is important since the terms will not generally commute with one anothe
also useful to use Eq.~10! twice to find that the derivatives of the inverse symplectic metric

s ,l
mn52smasab,lsbn.

Then, for anyF, G, andH formed from anti-self-adjoint operatorsF̌, Ǧ, andȞ,

$$F,G%,H%1$$G,H%,F%1$$H,F%,G%

5~F ,msmnG,n! ,lslkH ,k1~G,nsnkH ,k! ,lslmF ,m1~H ,kskmF ,m! ,lslnG,n

5F ,mlsmnG,nslkH ,k1F ,ms ,l
mnG,nslkH ,k1F ,msmnG,nlslkH ,k1G,nlsnkH ,kslmF ,m

1G,ns ,l
nkH ,kslmF ,m1G,nsnkH ,klslmF ,m1H ,klskmF ,mslnG,n1H ,ks ,l

kmF ,mslnG,n
J. Math. Phys., Vol. 38, No. 12, December 1997
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1H ,kskmF ,mlslnG,n

5F ,mlG,mH ,l1F ,asab,lG,bH ,l2G,lnH ,lF ,n1G,nlH ,nF ,l1G,bsbg,lH ,gF ,l

2H ,lkF ,lG,k1H ,klF ,kG,l1H ,gsga,lF ,aG,l2F ,lmG,lH ,m

5F ,aG,bH ,g~sab,g1sbg,a1sga,b!,

which vanishes by virtue of Eq.~9!, so the Poisson bracket satisfies the Jacobi identity.
Poisson bracket thus has the necessary properties, completing the proof of the theorem. Gi
the Poisson bracket exists,

Lemma 5: The space charted by the real-valued coordinates is entitled to be describe
phase space, and the real-valued coordinates are phase space coordinates.

The Poisson bracket can be extended in a limited way to the case where only one
arguments is admissable. Using Eq.~12!, the change in any ring-valued functionA of the real-
valued coordinates under an infinitesimal transformation generated by an anti-self-adjoint op
Ǧ is

dA5A,mdxm5A,msmnG,nde52$A,G%de, ~17!

where the form of the Poisson bracket as given in Eq.~16! has been used. It is still anti-symmetr
even whenA is not admissable sinceG is admissable

$A,G%52A,msmnG,n52A,mG,m52G,mA,m52$G,A%,

where the third equality uses the centrality of theG,m. With this in mind, the small change in th
function A will be written

dA5$G,A%de5G,mA,mde;

for instance, the time development of a function is given by

Ȧ5$H,A%5H ,mA,m .

It should be noted that the change inA arises because the points in phase space have shifte
expressed in the first line of Eq.~17!, according to the evolution dictated by the action ofǦ on
uC&.

Since G is admissable, the derivation property also carries over to the case of the
argument being a general ring-valued function. To write this out explicitly,

$G,AB%5G,m~AB! ,m5G,m~A,mB1AB,m!5~G,mA,m!B1A~G,mB,m!5$G,A%B1A$G,B%,

whereA andB are any ring-valued functions that are, along with their derivatives, not assum
have any particular commutativity properties.

If the action of the Poisson bracket is restricted to be on admissable functions, it c
expressed in another form that has appeared in the literature on this subject. Using Eq.~2!, Eq.
~13! may be written

G5(
p,q

cp* ^fpuǦufq&cq5(
p,q

cp* Gpqcq ,

where

Gpq5^fpuǦufq& ~18!
J. Math. Phys., Vol. 38, No. 12, December 1997
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are the usual matrix elements of the operator. Then, differentiation with respect tocp andcp* can
be defined as

]G

]cp*
5(

q
Gpqcq ,

]G

]cp
5(

q
cq* Gqp .

Using Eqs.~18! and ~2! and then Eqs.~15! and ~14!, these are23

(
q

Gpqcq5^fpuǦuC&52^fpuC ,m&G,m52LpmG,m,

(
q

cq* Gqp5^CuǦufp&5G,m^C ,mufp&5G,mLpm* ,

so that the Poisson bracket can be also written

$F,G%5F ,msmnG,n5(
p

~2F ,mLpm* LpnG,n1G,nLpn* LpmF ,m!5(
p

S ]F

]cp

]G

]cp*
2

]G

]cp

]F

]cp*
D

which is the form used by Strocchi and by Weinberg24 and is known as the Weinberg bracke
Applicability of this form for functions that are not admissable is limited for general rings du
the difficulty of extending thecp andcp* derivatives25 beyond the formal definitions used abov

VI. THE GENERATOR

So far, this paper has shown that for quantum mechanics based on an algebra as desc
Sec. II, anti-self-adjoint operators correspond to admissable functions, for which lemma 4 i
which generate flows in phase space, as expressed in Eq.~12!, and which are the objects on whic
the Poisson bracket acts, as discussed in the previous section. To state this more briefly, it h
shown how quantum mechanics, in the form developed here, can be rewritten as a cl
dynamical system. This begs the question of the converse problem, specifically, when d
admissable function correspond to an anti-self-adjoint operator?

It can be seen that not all admissable functions will correspond to anti-self-adjoint oper
as a consequence of which, although the flow will be symplectic, arising from a classical eq
of motion, it might not be unitary, arising from a quantum equation of motion. As a sim
example of this, consider quantum mechanics using complex numbers. Any real-valued fu
of the phase space coordinates, as could be used in the normal application of Hamiltonian d
ics to a classical system, can be converted into a suitable~imaginary! admissable function by
multiplying by i . While generating a perfectly valid symplectic flow, this will not necessarily
the expectation value of an anti-self-adjoint operator and hence will not generate a unitary fl
required for quantum mechanics. In this case of quantum mechanics using complex numb
nf basis states, any admissable function is a generator for Sp(2nf) while only those arising from
anti-self-adjoint operators are generators for U(nf)—Jones26 uses the group identity

U~nf!5Sp~2nf!ùO~2nf!

to argue that imposing a complex structure~requiring that transformations are also orthogonal! on
the phase space leads to quantum mechanics as a special class of classical dynamics. Fo
general algebra, this split of a unitary transformation can also be performed, the symplect
preserving the symplectic metric and the ‘‘orthogonal’’ part preserving the realgmn of Eq. ~8!—
this is the same as the split of an inner product into imaginary~antisymmetric! and real~symmet-
J. Math. Phys., Vol. 38, No. 12, December 1997
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ric! parts, which can be seen as follows. At some point with wave functionuC&, make two small
displacements corresponding to changes in the wave function ofuD1C& and uD2C&. The inner
product of these is

^D1CuD2C&5(
p

D1xmLpm* LpnD2xn5 1
2gmnD1xmD2xn2 1

2smnD1xmD2xn,

or the sum of ‘‘orthogonal’’ and symplectic products.
Consider, then, under what conditions the admissable function that determines a classic

arises from an anti-self-adjoint operator.27

Theorem 3: An admissable function G in a classical dynamical system with a ring-va
symplectic metricsmn and real-valued phase space coordinates xm corresponds to an anti-self
adjoint operator Ǧ in a quantum mechanical system with ring-valued expansion coeffic
cp($xm%) over a complete orthonormal basis$ufp&% such that theLpm5cp,m are invertible
and yield the symplectic metric as expressed in Eq. (7)if the quantities Gpq

(k) and Gpq
(b) necessary

for the equalities

(
q

Gpq
~k!cq52LpmG,m ~19!

and

(
q

cq* Gqp
~b!5G,mLpm* ~20!

are coordinate independent28 and equal,

Gpq
~k!5Gpq

~b!5Gpq ,

in which case

Ǧ5(
pq

ufp&Gpq^fqu.

This will again be proved by construction. First, consider the extraction of theGpq
(k) andGpq

(b) from,
respectively, the ‘‘ket’’ Eq.~19! and the ‘‘bra’’ Eq.~20!. As stated in the premise of the theorem
the Lp

21m as defined in Sec. III exist, so assuming that theGpq
(k) are independent of thexm,

2~LpmG,m! ,nLq
21n5S (

r
Gpr

~k!c r D
,n

Lq
21n5(

r
Gpr

~k!L rnLq
21n5(

r
Gpr

~k!d rq5Gpq
~k! ;

similarly,

~Lp
21n!* ~G,mLqm* ! ,n5Gpq

~b! .

Given that theG,m are such that these are independent of thexm, the above calculations ar
consistent. If theGpq

(k) and theGpq
(b) are equal, an operator is then defined as in the theorem, an

operator is anti-self-adjoint since

Gpq52~LpmG,m! ,nLq
21n52@~Lq

21n!* ~G,mLpm* ! ,n#* 52~Gqp!* .
J. Math. Phys., Vol. 38, No. 12, December 1997
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It then remains to check if the operatorǦ generates the same flow as the original admissa
G. Now

G85^CuǦuC&5(
pq

cp* Gpqcq

will be an admissable function since it arises from the anti-self-adjoint operatorǦ; hence the
results of Sec. V may be used. In particular,

]G8

]cp*
5(

pq
Gpqcq52LpmG8,m,

which is Eq. ~19! with G replaced byG8, and similarly for Eq.~20!. Hence, the operatorǦ
generates the same flow, proving the theorem.

VII. CONCLUSION

After defining the properties of an associative ring with a conjugation operation that was
as an algebra to construct quantum mechanics, it was seen how a set of quantities can b
which, if they can be inverted, play the role of the symplectic metric in the classical dynam
analogue of the quantum mechanical system. In this classical system, admissable functio
the role of phase space flow generators, being the expectation values, for a normalized
function, of the anti-self-adjoint generators for the flows, and form a closed set under a P
bracket which is directly equivalent to the quantum mechanical commutator. It was shown
the reverse correspondence may hold, with an anti-self-adjoint operator for quantum mec
being found from the admissable function that generates a given classical flow, given that
criteria are met by the flow.
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APPENDIX: EXAMPLES

The following are examples demonstrating the methods developed in this paper and ill
ing when these methods are not applicable.

Example 1: The complex numbers

It is worth considering an example of quantum mechanics using complex numbers in or
demonstrate that this paper’s subject matter is applicable to ‘‘standard’’ quantum mechanics
otherwise it would be of little interest. Consider a system of column vectors with two com
components with~anti-self-adjoint! SU~2! generatorsm̌1 , m̌2 and m̌3 , which have the usua
multiplication rule

m̌im̌j52
1

2
d i j 1

1

2 (
k

e i jkm̌k .

Write the wave function as
J. Math. Phys., Vol. 38, No. 12, December 1997
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uC&5
1

A2 S x11 ix2

x31 ix4
D

and choose a matrix representation for them̌i that is2 1
2i times the usual Pauli matrices. Then29

m152 1
2i ~x1x31x2x4!, m252 1

2i ~x1x42x2x3!,

m352 1
4i ~x1

21x2
22x3

22x4
2!,

where

mi5^Cum̌i uC&.

The symplectic metric is

S 0 2 i 0 0

i 0 0 0

0 0 0 2 i

0 0 i 0

D ,

and the inverse symplectic metric has the same form; the derivatives of themi give

m1
,m5S 2 1

2x4

1
2x3

2 1
2x2

1
2x1

D , m2
,m5S 1

2x3

1
2x4

2 1
2x1

2 1
2x2

D , m3
,m5S 2 1

2x2

1
2x1

1
2x4

2 1
2x3

D ,

which are manifestly real-valued. Evaluating the Poisson brackets, the expression

$mi ,mj%5(
k

e i jkmk

can be verified, in agreement with the multiplication rule.

Example 2: The ring generated by C3

As mentioned at the end of Sec. IV, a ring that is a little less simple than the complex num
is that generated byC3 , and it is instructive to consider it given that it fails to allow an invertib
symplectic metric.C3 is the cyclic group of order three,30

C35$e,c,c2%,

and conjugation will be defined such that

e°e, c°c2, c2°c.

The identity,e, is real whilec andc2 can be rewritten as a pair of real and imaginary eleme

c15~c1c2!/A2, c25~c2c2!/A2.

Writing the expansion coefficients of a general wave function over a basis as
J. Math. Phys., Vol. 38, No. 12, December 1997
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cp5xp0p
e1xp1p

c11xp2p
c2 ,

the symplectic metric consists of blocks along the leading diagonal of the form

S 0 0 2c2

0 0 A2c2

22c2 2A2c2 0
D ;

however, this cannot be inverted: it is degenerate, that is, there are states which are annihil
the symplectic metric, for instancexp0p

51, xp1p
52A2 andxp2p

50 with all other coefficients
vanishing. Hence,C3 cannot be used to construct quantum mechanics, at least using this ‘‘ca
cal’’ form for the expansion coefficients. Consider other ways of parametrizing the phase
coordinates in the expansion coefficients using the ring generators. For instance, in the ca
two sets of ring generators are split over three expansion coefficients, one of the sets of exp
coefficients will only involve real ring generators, so its entries in the symplectic metric
vanish, and the symplectic metric is again degenerate. Another way would be to rechoo
imaginary generator so that its square is exactly2e, and let the expansion coefficients on
depend on this new imaginary and the identity; the symplectic metric for this phase sp
invertible, of course, but it is effectively equivalent toC , so there is nothing new here. Heslo5

notes that the pairing of real and imaginary parts in quantum mechanics using complex nu
ensures the even number of real-valued coordinates—the even dimensionality—of phase
that is necessary for it to carry a Poisson bracket structure: As Arnold21 states it, ‘‘an odd-
dimensional manifold cannot admit a symplectic structure.’’ Certainly the ring overC3 , with its
odd number of generators, cannot guarantee an even-dimensional phase space.

Example 3: The quaternions

The only rings which are associative, division algebras and modules over the reals a
reals themselves, the complex numbers and the quaternions, and it is therefore natural to c
quantum mechanics using the quaternions; Adler12 has brought together much information an
many references on this subject, along with references concerning the aforementioned
status ofR, C , andH. For the purposes of this example, choose for the orthonormal basis th
of eigenstates of the Hamiltonian, rerayed31 such that

Ȟufp&5ufp& iEp .

Write the expansion coefficients of a general wave function over this basis as

cp5~x0p
1 ix1p

1 jx2p
1kx3p

!/A2;

then

Lp0p
51/A2, Lp1p

5 i /A2, Lp2p
5 j /A2, Lp3p

5k/A2

and the symplectic metricsmn consists of blocks along the leading diagonal of the form

S 0 2 i 2 j 2k

i 0 k 2 j

j 2k 0 i

k j 2 i 0

D ,
J. Math. Phys., Vol. 38, No. 12, December 1997
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which can be inverted to givesmn, again consisting of blocks along the leading diagonal of
form

1

3 S 2 2 i 2 j 2k

i 2 k 2 j

j 2k 2 i

k j 2 i 2

D . ~A1!

Also,

H5^CuȞuC&5(
p

1

2
Ep@ i ~x0p

2 1x1p

2 2x2p

2 2x3p

2 !12 j ~x1p
x2p

2x0p
x3p

!12k~x0p
x2p

1x1p
x3p

!#

so that theH ,m are of the form

S ix0p
2 jx3p

1kx2p

ix1p
1 jx2p

1kx3p

2 ix2p
1 jx1p

1kx0p

2 ix3p
2 jx0p

1kx1p

D Ep ;

multiplying this on the left by matrix A.1 gives theH ,m as

S x1p

2x0p

x3p

2x2p

D Ep

which is real-valued in agreement with lemma 4.

Example 4: A Clifford algebra

As mentioned in Sec. II, another characterisation ofR, C , andH, but not limited to them, is
that they are Clifford algebras. This example concerns the Clifford algebra ofR2, which is based
on two unit vectorse1 ande2 satisfying

ei–ej5d i j ; ~A2!

the generators of the ring are then 1,e1 , e2 and thebivector quantity e1 ` e2 which, since the
vectors are orthogonal by Eq.~A2!, will be writtene1e2 . Under the obvious parametrisation of th
wave function, the expansion coefficients are

cp5
1

A2
~x0p

1x1p
e11x2p

e21x3p
e1e2!.

The natural conjugation for a Clifford algebra isreversionwhich simply reverses the order of a
products;32 hence, 1 and the vectors are real under this conjugation while the bivector is im
nary. The symplectic metric then consists of blocks along the leading diagonal of the form
J. Math. Phys., Vol. 38, No. 12, December 1997
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S 0 0 0 2e1e2

0 0 2e1e2 0

0 e1e2 0 0

e1e2 0 0 0

D ;

just as for the complex case, the inverse symplectic metric has the same form. Another co
tion which could be used isinversion, where as well as products being reversed, vectors33 have an
additional sign change; under this conjugation, only 1 is real while the vectors and the bivec
imaginary. Again, the symplectic metric consists of blocks along the leading diagonal of the

S 0 2e1 2e2 2e1e2

e1 0 e1e2 e2

e2 2e1e2 0 2e1

e1e2 2e2 e1 0

D ,

and the inverse symplectic metric consists of blocks along the leading diagonal of the form

1

3 S 2 e1 e2 2e1e2

2e1 22 e1e2 2e2

2e2 2e1e2 22 e1

e1e2 e2 2e1 2

D .

These bear a certain resemblance to the metrics for the quaternionic case considered abov
is to be expected since the generator multiplication tables are the same up to signs; howev
Clifford algebra has quite a different structure to the quaternions, which is especially notable
existence of quantities like (16e1)/2 which behave as projection operators:

1
2~16e1! 1

2~16e1!5 1
2~16e1!;

1
2~16e1! 1

2~17e1!50.

Since with either reversion or inversion acting as conjugation the simplectic metric is inver
quantum mechanics, in the form considered here, could be formulated using this Clifford al

1See, for example, B. H. Bransden and C. J. Joachain,Introduction to Quantum Mechanics~Longman Scientific and
Technical, Harlow, 1989!.

2For a survey of two approaches other than that presented here, see S. Bugajski, ‘‘Classical frames for a q
theory—A bird’s-eye view,’’ Int. J. Theoret. Phys.32, 969 ~1993!. A recent development in one of these approache
given in E. G. Beltrametti and S. Bugajski, ‘‘A classical extension of quantum mechanics,’’ J. Phys. A28, 3329~1995!.

3F. Strocchi, ‘‘Complex coordinates and quantum mechanics,’’ Rev. Mod. Phys.38, 36 ~1966!.
4D. J. Rowe, A. Ryman, and G. Rosensteel, ‘‘Many-body quantum mechanics as a symplectic dynamical system
Rev. A 40, 2362~1980!.

5A. Heslot, ‘‘Quantum mechanics as a classical theory,’’ Phys. Rev. D31, 1341~1985!.
6K. R. W. Jones, ‘‘Classical mechanics as an example of generalised quantum mechanics,’’ Phys. Rev. D45, 2590~1992!.
7In the interest of brevity, and since this material is not the subject of this paper, the terms used will not be define
but the reader is referred to, for instance, S. MacLane and G. Birkhoff,Algebra~MacMillan, New York, 1979!. Unlike
some definitions of rings, here it will not be assumed at the outset that the algebra’s multiplication is associativ

8A good introduction to Clifford algebras and their many applications in physics is contained in B. Jancewicz,Multivec-
tors and Clifford Algebra in Electrodynamics~World Scientific, Singapore, 1989!.

9The termreal is used instead ofself-conjugatefor the sake of brevity and because it is already familiar in this mean
It is important to note thatreal is not the same asreal-valued, a term which will be introduced shortly.

10With this definition, if a complex numberz5x1 iy , with x and y elements ofR, the imaginary part isiy , not
just y.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



. A set of

ten

mation
expand

an

namical
It is not,
cessarily

roc. R.

onical
ons.’’
r
pen-

e

e ring

tor
reraying,
e same
ch that

, a blade

dition to

6248 Andrew C. Millard: Quantum mechanics in classical dynamics

                    
11A set of states is separable if there is a dense sequence of states that arbitrarily closely approximates any state
states is complete if every Cauchy sequence of states has a limit which is also a state.

12S. L. Adler,Quaternionic Quantum Mechanics and Quantum Fields~Oxford University Press, New York, 1995!.
13This paper will only concern itself with such ring linear operators, and so ‘‘ring linear’’ will not be explicitly writ

every time.
14For a commutative algebra, transposition is also an antiautomorphism.
15Adler ~Ref. 12! discusses this in the case of quantum mechanics using quaternions.
16It should be noted that Greek indices will refer to the real-valued coordinates and will obey the Einstein sum

convention. Indices from the second half of the Roman alphabet will refer to the orthonormal basis being used to
a general wave function, while indices from the first half will refer to the ring generators.

17The converse statement is not generally true. For example, the Clifford algebra inR1,1, generated from$1,e0 ,e1%, where
e0

251 ande1
2521, is not a division algebra—(e01e1) and (e02e1) square to zero—even though each generator has

inverse.
18In this treatment of quantum mechanics, it is nowhere necessary to normalize wave functions, since it is the dy

aspects that are of primary concern and not the issue of measurement via the usual statistical interpretation.
therefore, a problem that, in cases where the ring is not a division algebra, the norm of a nonzero state is not ne
nonzero.

19Rowe, Ryman, and Rosensteel~Ref. 4! obtain the analogous result~in quantum mechanics using complex numbers! for
a self-adjoint Hamiltonian, using a variational principle due to Dirac, that also leads to Eq.~4!.

20See, for example, L. D. Landau and E. M. Lifshitz,Mechanics, Course of Theoretical Physics, Vol. 1~Pergamon,
Oxford, 1976!.

21See, for example, V. I. Arnold,Mathematical Methods of Classical Physics~Springer-Verlag, New York, 1978!.
22It is generally assumed that thequantumPoisson bracket is~up to a constant factor! the commutator as part of the

correspondence principle—see, for example, P. A. M. Dirac, ‘‘Fundamental equations of quantum mechanics,’’ P
Soc. London, Ser. A114, 642 ~1925!.

23Note that, using the form of the Poisson bracket given in Eq.~16!, the derivatives are, respectively,$cp ,G% and$G,cp* %.
24S. Weinberg, ‘‘Testing quantum mechanics,’’ Ann. Phys.194, 336 ~1989!.
25See, for example, A. Sudbery, ‘‘Quaternionic analysis,’’ Math. Proc. Camb. Philos. Soc.85, 199 ~1979!.
26K. R. W. Jones, ‘‘The Schro¨dinger equation from three postulates,’’ Mod. Phys. Lett. A~to appear!.
27Heslot~Ref. 5! obtains the analogous result~in quantum mechanics using complex numbers! for a real functionG arising

from a self-adjoint operatorǦ and uses this to define observables as real ‘‘regular functions of the state whose can
transformations they generate are automorphisms of the whole quantum structure, i.e., are unitary transformati

28The transformation corresponding to the flow must be linear~the matrix elements could still depend on time, howeve!.
L. P. Horwitz ~private communication! raises the possibility of the matrix elements being equal and coordinate inde
dent along some Hamiltonian flow but depending on thexm elsewhere.

29Substitutingx for x1 , px for x2 , y for x3 and py for x4 , these are2
1
2i times the constants of motion for th

two-dimensional isotropic harmonic oscillator—see, for example, J. Pollett, O. Me´plan, and C. Gignoux, ‘‘Elliptic
eigenstates for the quantum harmonic oscillator,’’ J. Phys. A28, 7287~1995!.

30This can be thought of as the set of cube roots of unity; however, no formal identification of the elements of th
generated byC3 should be made with the complex numbers.

31Adler ~Ref. 12! shows that~in quantum mechanics using quaternions! the eigenstates of an anti-self-adjoint opera
divide into mutually orthogonal eigenclasses, such that all of the eigenstates in a given eigenclass are related by
that is, by multiplying on the right by a quaternionic phase. Since, for the quaternions, all unit imaginaries are in th
automorphism class, it is possible to pick, for a given anti-self-adjoint operator, a particular ray representative su
the eigenvalues are all dependent on the same unit imaginary.

32An element of the Clifford algebra generated by a set of basis vectors$ei% which can be written in the form
Ai 1i 2••• i n

ei 1
`ei 2

`•••`ei n
is known as ablade, wheren is its grade. A general element of the Clifford algebra, orcliffor,

is then a sum of blades with various grades. Given that the wedge product is associative and anti-commutative
of graden picks up a factor of (21)(1/2)n(n21) under reversion.

33In Clifford algebras generated by more than two basis vectors, all blades of odd grade have a sign change in ad
that from reversing the order of products.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Two-dimensional boson and W-symmetry in the quantum
Hall effect

Yun Soo Myung
Department of Physics, Inje University, Kimhae 621-749, Korea

~Received 13 December 1996; accepted for publication 12 June 1997!

We perform consistently the Gupta–Bleuler–Dirac quantization for a two-
dimensional boson with parameter~a! on the circle, the boundary of the circular
droplet. Fora51, we obtain the chiral~holomorphic! constraints. Using the rep-
resentation of Bargmann–Fock space and the Schro¨dinger picture, we construct the
holomorphic wave function. In order to interpret this function, we construct the
coherent state representation by using the infinite-dimensional translation (W`)
symmetry for each Fourier~edge! mode. Thea51 chiral wave function explains
the neutral edge states for integer quantum Hall effect very well. In the case ofa
521, we obtain a new wave function which may describe the higher modes~radial
excitations! of edge states. The charged edge states are described by theuauÞ1
wave function. Finally, the application of our model to the fractional quantum Hall
effect is discussed. ©1997 American Institute of Physics.
@S0022-2488~97!02511-5#

I. INTRODUCTION

The (111)-dimensional boson theory plays an important role in understanding the qua
Hall effect. The relevant one is the Floreanini–Jackiw model for a chiral boson.1 The quantization
procedure of a chiral boson is not an easy matter, and has been beset with difficulties
Lagrangian formulation.2 After the quantization, it could be used to explain the edge dynamic
the quantum Hall fluid. In this direction, we have several schemes such as Dirac b
quantization,3 Faddeev–Jackiw~FJ! sympletic method,4 Gupta–Bleuler quantization,5 and BFF
method.6 It was shown that Dirac quantization is very restrictive and thus not appropriate
explaining the edge dynamics. Also it turns out that the FJ method is not suitable for the
physics. In this paper, we will show that Gupta–Bleuler–Dirac quantization of a two-dimens
boson on the circle provides us a desirable result in the quantization as well as in the desc
of edge dynamics. Our model in~1! may be considered as a single scalar version of Q
~Nakanishi–Lautrup formalism!, which is very appropriate for Gupta–Bleuler quantization. F
ther this includes a chiral boson as well as the other cases.

It is well known that the chiral boson can describe the gapless boundary excitations~edge
states! of the integer quantum Hall state.7 In the system with boundaries, as in the disk geome
a droplet of the two-dimensional electron gas in the quantum Hall regime is an effectively in
pressible and irrotational fluid. The classicalw`-algebra~area-preserving diffeomorphisms! de-
scribes the dynamics of a classical incompressible fluid. The quantization of this symmetry i
known in physics as the nonsingular part ofW11` ~Ref. 8! and also arises in string theories
two-dimensional gravity.9 This infinite symmetry describes the nonsingular area-preserving d
mations of the quantum droplet. These deformations are directly related to edge excit
Actually the possible low-energy excitations reside only on the edge of the droplet. That is,
should live in one space dimension (S1), the boundary of the circular droplet. They are also ch
due to the direction of external magnetic field. TheW11` is thus the underlying symmetry of th
edge excitations. The dynamics of edge states is mainly based on the relation of Chern–
gauge theories and conformal field theory.

Here the dynamics of edge states is described by a two-dimensional boson theory w
0022-2488/97/38(12)/6249/16/$10.00
6249J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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quantization parametera. It is emphasized that different values ofa describe different physica
systems. We first quantize this boson theory witha on the circle using the Gupta–Bleuler metho
followed by a Dirac procedure. The quantization provides us a lot of holomorphic, antiholo
phic ~antichiral!, and zero-mode constraints. Applying the Bargamann–Fock space represen
and Schro¨dinger picture to this system, one can obtain the holomorphic, antiholomorphic
zero-mode wave functions. In order to interpret these wave functions, we construct the co
state representation by using the infinite-dimensional translation (W`) symmetry for each Fourie
mode. This step is very important to relate a two-dimensional boson to the edge dynam
quantum Hall states. Then one can explain edge states of the IQHE~integer quantum Hall effect!
in terms of thea51 chiral wave function. In the case ofa521, we obtain a new wave function
which may describe the higher modes~radial excitations! of edge states. The charged edge sta
are described by theuauÞ1 wave functions. In many respects, both the IQHE and FQHE~frac-
tional quantum Hall effect! share very similar underlying, physical characteristics and conce
On the other hand, they encompass different physical principles and ideas. It is evident th
IQHE is described by a free electron theory~a free boson theory! but we need the interaction
between electrons in the lowest Landau level to describe the FQHE.10,11 At the end of the paper
we show how our results can be extended to accommodate the edge dynamics of the FQ

The organization of this paper is as follows. In Sec. II we review the results of the D
quantization and FJ-symplectic method. Using the Gupta–Bleuler method followed by a
procedure, we quantize the Lagrangian of a two-dimensional boson on the boundary of the c
droplet in Sec. III. We classify this model according to the value ofa. In Sec. IV we construct the
W`-coherent state by using the infinite-dimensional translation symmetry for the Fourier~edge!
modes. Section V is devoted to describing the neutral, charged, and higher modes of edge s
terms of the various wave functions. Finally we discuss our results in Sec. VI.

II. DIRAC AND FJ QUANTIZATIONS

We start with the Lagrangian for a two-dimensional boson theory3,12

L5 1
2~~ḟ !22~f8!2!1l~ḟ2f8!1 1

2al2, ~1!

wherel is a Lagrangian multiplier anda is a quantization parameter. Here the overdot~prime!
mean the differentiations w.r.t. time~space!. Basicallya plays a crucial role in further study. On
gets different Lagrangian/Hamiltonian for differenta. It seems thata is related to the charge o
edge states for the quantum Hall state~see Sec. IV B!. Dirac quantization shows us only tw
distinct cases such as a chiral boson (a51) and a free boson (aÞ1). On the other hand, the
FJ-sympletic method gives us the chiral boson fora51 as well as the other models foraÞ1. As
we will see later, this is suitable for all kinds of the quantization for a two-dimensional boson
corresponding Hamiltonian (H5pfḟ2L) is given by

H5 1
2~pf

2 1~f8!21~12a!l2!2l~pf2f8!, ~2!

wherepf5ḟ1l is the canonical momentum off. Denotingpl as the canonical momentum fo
l, we obtain the primary constraint

V15pl'0. ~3!

By requiring the persistence of the primary constraint in time, one finds the secondary con

V25pf2f81~a21!l'0. ~4!

Now we wish to classify this model according to the value ofa.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



ints

a

of its
entum.

e

ltonian

uld
me

ugh we
e

.
shows

nd, the

ion to

straints
of the
o

by
s not

6251Yun Soo Myung: Two-dimensional boson and W-symmetry

                    
A. a51

In this case, the persistence of time evolution of~4! ($V2 ,H%[V3'0) leads to a crucial
constraint,

V35l'0. ~5!

The initial degrees of freedom~DOF! are four in the phase space, while the number of constra
is three (V1 ,V2 ,V3'0). The true DOF is only one in phase space. This means thatpf is
proportional tof itself. Using the Dirac brackets,3 we can easily obtain the commutators for
chiral boson and the self-duality condition (pf5ḟ5f8).

In the FJ quantization, thel-field cannot be transported into the canonical sector because
linear dependence in the Lagrangian. Thus it cannot have the corresponding canonical mom
They have two degrees of freedom and one constraint (pf2f8'0). The Lagrangian~1! with this
constraint leads to the Floreanini–Jackiw model for a chiral boson1 as

LF-J5f8ḟ2~f8!2. ~6!

B. aÞ1

In this case, we have two second-class constraints (V1 ,V2'0). Using the Dirac brackets, on
has the nonzero commutator for a free boson (@f(x),pf(y)#5 id(x2y)). According to the FJ-
sympletic formalism, one finds that this system has two degrees of freedom. Since the Hami
is not linear inl, the determinant ofHaÞ1 upon differentiating with respect tol is not zero. Then
a superficial constraint in~4! (V2'0) exists and one can eliminatel in the Lagrangian by using
this. As a result, the final Hamiltonian takes the form

HaÞ15
1

4
J1

2 1
1

4

a11

a21
J2

2 , ~7!

whereJ15pf1f8 andJ25pf2f8. Note that fora.1 or a<21, the Hamiltonian is positive
definite. For21,a,1 includinga50, the Hamiltonian is not positive and thus this case sho
be discarded. In the limits ofa→6`, we recover the usual free boson theory. This sche
indicates that the true physical DOF is two because one has no true constraint. Even tho
extend the phase space by introducing the Lagrange multiplier~l!, this does not contribute to th
physical DOF.

The Dirac quantization shows that only the case ofa51 leads to the chiral boson theory
Otherwise, this model corresponds to the free boson. This means that the Dirac quantization
us only two distinct cases such as a chiral boson and a free boson. On the other ha
FJ-sympletic method gives us the chiral boson fora51, as well as the other models foraÞ1.
However, these methods do not provide us with the way how to exploit the self-dual condit
understand the edge states of quantum Hall effect.

The BFF quantization has, as a main purpose, the transformation of second-class con
into first-class ones. This is achieved by introducing the auxiliary fields. However, the use
BFF method in quantizing a chiral boson~with a51! leads to a nonlocal Wess–Zumin
Lagrangian6 as

LW2Z5f8ḟ2~f8!21c~f82ḟ !2 1
4c

21 1
4ċE dy u~x2y!c~y!,

wherec is an auxiliary~constrained! field. This is also found when one treats a chiral boson
means of Fourier mode expansions. This gives rise to some difficulties. Especially it i
J. Math. Phys., Vol. 38, No. 12, December 1997
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transparent how to find the physical states within the BFF scheme because it has internal s
tries in the presence of first-class constraints. It would be better to find another method wh
appropriate for describing the edge states.

III. GUPTA–BLEULER–DIRAC QUANTIZATION

In the Gupta–Bleuler method, one first quantizes and then selects the holomorphic
antiholomorphic constraints. Considering the space-time geometry (M5S1

^ R1), one can always
make Fourier expansions off andl on the circle (S1)5,12

f~u,t !5
1

A2p
(

j 52`

`

f j~ t !ei j u ~8!

and

l~u,t !5
1

A2p
(

j 52`

`

l j~ t !ei j u. ~9!

With L(t)5*2p
p

L du, substituting~8! and ~9! into ~1! leads to

L~ t !5(
j 51

`

@ḟ j ḟ j* 2 j 2f jf j* 1l j~ḟ j* 1 i j f j* !1~ḟ j2 i j f j !l j* 1al jl j
#

1 1
2 ~ḟ0

21al0
212l0ḟ0!, ~10!

where f j* 5f2 j and l j* 5l2 j , due to the Hermitian properties off and l. Introducing the
canonical momenta off j , l j aspj , p j , one can define the quantum theory by the commuta
relations

@f j ,pk#5 id jk , @f j* ,pk* #5 id jk , @f0 ,p0#5 i ,

@l j ,pk#5 id jk , @l j* ,pk* #5 id jk , @l0 ,p0#5 i .
~11!

The corresponding Hamiltonian is given by

H~ t !5(
j 51

`

@pj pj* 1 j 2f jf j* 2l j~pj1 i j f j* !2~pj* 2 i j f j !l j* 1~12a!l jl j* #

1 1
2 ~p0

21~12a!l0
222l0p0!. ~12!

The primary constraints areV j
(1)5p j'0 andV j*

(1)5p j* '0. Here we select both the holomo
phic and zero mode constraints~V j*

(1)5p j* '0, j >0!. From now on, we introduce the Dira
quantization procedure. Requiring that the primary constraints be preserved during the tim
lution, one finds the secondary constraints

V j*
~2!5pj* 2 i j f j1~a21!l j'0, j >0. ~13!

The time evolution ofV j*
(2) leads to

V j*
~3!52~a11! j l j'0, j >1. ~14!
J. Math. Phys., Vol. 38, No. 12, December 1997
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We have to make our further study according to the parametera, since the structure of constrain
depends crucially on it. This implies that for each differenta, one gets a different physical system

A. a51

In this case we have the full holomorphic constraints

V j*
~1!5p j* '0, V j*

~2!5pj* 2 i j f j'0, V j*
~3!5l j'0, j >1. ~15!

The constraints of the zero modes are given by

V0*
~1!5p0* '0, V0*

~2!5p0* '0. ~16!

Using ~15! and ~16!, the Hamiltonian~12! is given by

Ha515(
j 51

`

@ i j f j pj1 j 2f jf j* #. ~17!

In order to find the wave functions through the Schro¨dinger picture, one has to find the represe
tation for the commutation relations~11!. We introduce here the inner product of Bargmann–Fo
space as

~ f ,g!5E f * ~z,z̄!g~z,z̄!dz dz̄ ~18!

with z[$zj% andz̄[$z̄j%. In a similar way, the inner product for (h,h̄) can be introduced. We ca
then express all canonical variables in terms of (z,z̄,h,h̄) as

pj52 iAj
]

]zj
, pj* 52 iAj

]

] z̄j
, f j5

zj

Aj
, f j* 5

z̄j

Aj
, ~19!

and

p j52 iAj
]

]h j
, p j* 52 iAj

]

]h̄ j
, l j5

h j

Aj
, l j* 5

h̄ j

Aj
. ~20!

For the zero mode representation, we use the formulas without the factorA j in ~19! and ~20!.
Before we proceed, let us define two sets of creation and annihilation operators as

aj5
1

&

H zj1
]

] z̄j
J , aj

†5
1

&

H z̄j2
]

]zj
J ~21!

and

bj5
1

&

H z̄j1
]

zj
J , bj

†5
1

&

H zj2
]

] z̄j
J . ~22!

These satisfy the following commutation relations:

@aj ,ak
†#5d jk , @bj ,bk

†#5d jk . ~23!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Hereaj ,bj are the annihilation operators andaj
† ,bj

† are the creation operators for thej th Fourier
mode. As we will see later, these operators are fundamental to construct theW`-coherent state.
Now we impose the constraints~15! to obtain the wave functions. We require only thef-mode
constraints (V j*

(2)'0) to find the chiral wave function, since thel-mode cannot be transporte
into the true canonical sector in the case ofa51. With ~19! this implies

H zj1
]

] z̄j
J Ca5150, j >1. ~24!

The above can be rewritten asajCa5150. In the language of the FQHE, this corresponds to
constraint of the lowest Landau level. The solution to~24! leads to the form

Ca515cg~z,z̄!c~z!, cg~z,z̄!5expH 2(
j 51

`

uzj u2J , ~25!

wherecg(z,z̄)(c(z)) are the ground state wave function~the unknown chiral function!. In order
to determine this chiral wave function, we have to use the Schro¨dinger equation. The Hamiltonian
is given by

Ha515(
j 51

`

jzj H z̄j1
]

]zj
J . ~26!

This can be expressed in terms of operators asHa515( j 51
` j (aj1bj

†)bj . We note that
@Ha51 ,aj #50. The Schro¨dinger equation is

Ha51Ca515e8Ca51 , ~27!

wheree8[( j 51
` e j8 is the total eigenvalue. We note that this Hamiltonian commutes withaj . The

above equation is solved to yield

c~z!5)
j 51

`

~zj !
nj , nj5

e j8

j
. ~28!

This chiral wave function will be used to explain the neutral edge states.

B. zazÞ1

Here the first-class constraints of~15! as well as the zero mode constraints should be ta
into account for obtaining the total Hamiltonian (H uauÞ1). The latter is given by

V0*
~1!5p0* '0, V0*

~2!5p0* 1~a21!l0'0. ~29!

We cannot use directly the above to obtain the wave function, since these belong to the s
class constraints. Instead, one can determine the form of the zero mode using the Schr¨dinger
picture. Applying the holomorphic constraints to the wave function, one finds

C uauÞ15expH 2(
j 51

`

uzj u2J c~z,z0!. ~30!

In order to determine the form ofc(z,z0), one uses the total Hamiltonian

H uauÞ15Ha511H uauÞ1
0 , ~31!
J. Math. Phys., Vol. 38, No. 12, December 1997
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where the first one is given by~17! and the last is

H uauÞ1
0 5 1

2~p0
21~12a!l0

222l0p0!. ~32!

Sincel0 is an auxiliary mode, one can eliminate it by using the constraint~29! as

H uauÞ1
0 5

1

2

a

a21
p0

2. ~33!

Considering bothc(z,z0)5c(z)c0(z0) and total energy (e5e81e0), the wave function of the
zero mode is determined as

c0~z0!5exp$ in0z0%, n05A2~a21!

a
e0. ~34!

Therefore, the total wave function is given by

C uauÞ15exp$ in0z0%expH 2(
j 51

`

uzj u2J )
j 51

`

~zj !
nj ~35!

which is suitable for describing the charged edge states. Here we wish to point out the mea
the parametera with respect to the edge state of quantum Hall effect. As we will see in Sec. I
it is related to the quantized charge on the edge.

C. a521

This case is a special one as can be seen from~14!. We note that it does not satisfy the usu
Poincare invariance in the Dirac quantization.3 In the beginning, from~13! and ~14! one cannot
find the holomorphic constraints (pj* 2 i j f j'0) or the antiholomorphic constraints (pj1 i j f j*
'0). Hence we have to construct the wave function only by using the Schro¨dinger picture. We
need both the holomorphic constraints

V j*
~1!5p j* '0, V j*

~2!5pj* 2 i j f j22l j'0, ~36!

and the antiholomorphic constraints

V j
~1!5p j'0, V j

~2!5pj1 i j f j* 22l j* '0. ~37!

Also the zero mode constraints

V0*
~1!5p0* '0, V0*

~2!5p0* 22l0'0 ~38!

are needed. Using the above constraints, thel-mode in~12! can be eliminated. The Hamiltonia
is then expressed as

Ha5215(
j 51

`

@pj* 1 i j f j #@pj2 i j f j* #1
1

4
p0

2. ~39!

This can be rewritten as

Ha5215(
j 51

`

Ha521
j 1H a521

0 , ~40!
J. Math. Phys., Vol. 38, No. 12, December 1997
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where

Ha521
j 5 j $bj

†bj1
1
2% ~41!

is the Hamiltonian for thej th Fourier mode in the lowest Landau level and

H a521
0 5 1

4p0
2 ~42!

is the zero mode Hamiltonian. Note here that@Ha521 ,aj #50. Using the analogy of 2D simple
harmonic oscillators, the wave function may be constructed as

Ca5215ca521
0 ~z0!ca52~z,z̄! ~43!

with the zero mode wave function

ca521
0 5exp$ in0z0%, n052Ae0. ~44!

From the ground state condition (bjca521
g (z,z̄ )50), we find the ground state wave function

ca521
g ~z,z̄ !5expH 2(

j 51

`

uzj u2J . ~45!

Further, we assume that

ca5215expH 2(
j 51

`

uzj u2J c~z,z̄!, ~46!

wherec(z,z̄ ) is an unknown, nonchiral wave function. As it stands, one cannot find the for
c(z,z̄ ) with bjc(z,z̄ )Þ0 andajc(z,z̄ )Þ0. However, introducing the coherent representati
one can determinec(z,z̄ ).

D. a56`: Free boson

In these limits, the secondary constraints (V j*
(2) ,V j

(2) ,V0
(2)'0) reduce to (l j ,l j* ,l0'0).

Substituting these into~12! leads to the free boson Hamiltonian,

Ha56`5(
j 51

`

@pj* pj1 j 2f jf j* #1
1

2
p0

2. ~47!

This can be rewritten in terms ofaj ,bj ,aj
† ,bj

† as

Ha56`5(
j 51

`

Ha56`
j 1H a56`

0 , ~48!

where

Ha56`
j 5 j $aj

†aj1bj
†bj11% ~49!

is the Hamiltonian for the nonchiralj th mode and

H a56`
0 5 1

2p0
2 ~50!
J. Math. Phys., Vol. 38, No. 12, December 1997
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is the zero mode Hamiltonian. Here~49! does not commute withaj . We are not interested in thi
case, since this corresponds to the free boson theory and thus is irrelevant to the edge dy

IV. W`-COHERENT STATE

Up to now, we constructed various Hamiltonians and their wave functions according t
values ofa. It is not clear that these describe the edge states of quantum Hall effect well. I
section we rederive all wave functions by introducing the coherent representation of the
space. We explain, in the next section, why the Hamiltonians and their solutions are suita
understanding the quantum Hall system. One can construct theW`-algebra easily from the cocycl
~translation! symmetry of (211)-dimensional fermions in the presence of a magnetic field.13 This
infinite-dimensional algebra is realized as the algebra of the unitary transformations whic
serve the lowest Landau level condition and the particle number. Instead, we here defi
generators of the translation transformations for thej th mode~not a particle! in the lowest Landau
level as

C
j, j̄

bj
5exp~jbj

†2 j̄bj !, ~51!

wherej and j̄ are complex variables. Using the relations

eAeB5eA1Be@A,B#/2, eAeB5eBeAe@A,B#, ~52!

one finds

@C
j, j̄

j
,Ch,h̄

j #52 sinhS jh̄2 j̄h

2 DC
j1h, j̄ 1 h̄

j
522i sin~jxhy2jyhx!Cj1h, j̄ 1 h̄

j
. ~53!

For the case ofjx52pp1 /k, jy52pp2 /k, hx52pq1 /k andhy52pq2 /k, one has the relations
j52p(p11 ip2)/k[2pp/k, j̄[2p p̄/k, h[2pq/k andh[2pq̄/k. From ~53! one recovers the
W`

bj-algebra

@Cp, p̄
j ,Cq, q̄

j #522i sin
2p

k
~p1q22p2q1!Cp1q, p̄1 q̄

j ~54!

which is just the FFZ algebra for thej th mode.14 By using thisW`
bj-symmetry, one can construc

the corresponding coherent state. We first introduce the ground stateu0& j which satisfies

aj u0& j50, bj u0& j50. ~55!

Then we obtain theW`
bj-coherent state for thej th Fourier mode in the lowest Landau level as

C
j, j̄

j u0& j5e21/2uju2ejbj
†
u0& j5 (

n50

`

e21/2uju2 jnj

Anj !
unj&[u j̃ & j , unj&5

~bj
†!nj

Anj !
u0& j . ~56!

This coherent state is just an eigenstate of the annihilation operator (bj ) for the j th mode,

bj u j̃ & j5ju j̃ & j . ~57!

For the creation operator (bj
†), we have an eigenvalue equation

bj
†u j̃ & j5S ]

]j
1

1

2
j̄ D u j̃ & j . ~58!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The W`
bj-coherent state also satisfies the completeness relation:

p21E d2ju j̃ & j^j̃ u51. ~59!

One useful property is orthogonality. TheW`
bj-coherent states are not orthogonal,

^hu j̃& j5(
m,n

S h̄m

Am!
D S jn

An!
D expH 2

1

2
~ uju21uhu2!J ^mun&5expH 2

1

2
~ uju21uhu2!1h̄jJ ,

~60!

andu^hu j̃& j u25exp(2uh2ju2). Here we see that, if the magnitudeuh2ju is much larger than unity,
the statesu j̃ & j and u j̃ & j are nearly orthogonal to each other. The degree to which these

functions overlap each other determines the size of the inner product (^hu j̃& j ) for the j th mode in
the lowest Landau level. In a similar way, one can construct the coherent stat
W`

$a%
^ W`

$b%-symmetries which include all Fourier modes (j )

uz,z̄ &5exp$z1a1
†1z2a2

†1z3a3
†•••1 z̄1b1

†1 z̄2b2
†1 z̄3b3

†1•••%u0&, ~61!

provided we choose the Gaussian measure as

d2m5d2z expH 2(
j 51

`

uzj u2J ~62!

on the physical Hilbert spaceHz, z̄ . Here u0& is the ground state defined byaj u0&50 andbj u0&
50, for all Fourier modesj . We note thatzj and z̄j are treated as independent parameters in
coherent formalism. Then the bracket states have the properties

aj uz,z̄ &5zj uz,z̄ &, aj
†uz,z̄ &5

]

]zj
uz,z̄ &, ^z,z̄ uaj

†5^z,z̄ uz̄j , ^z,z̄ uaj5^z,z̄ u
]

] z̄j
,

~63!

and

bj uz,z̄ &5 z̄j uz,z̄, bj
†uz,z̄ &5

]

] z̄j
uz,z̄ &, ^z,z̄ ubj

†5^z,z̄ uzj , ^z,z̄ ubj5^z,z̄ u
]

]zj
. ~64!

Choosinĝ z,z̄u0&51, one can easily find the relationship between the coherent representatio
the ground-state wave function for a two-dimensional boson. This is given by

^z̃,z̄ u0&5expH 2(
j 51

`

uzj u2J ^z,z̄u0&5cg~z,z̄!. ~65!

When we consider a system with infinitely many degrees of freedom~modes!, it is usually more
convenient to use the Fock space~the occupation-number description! rather than the Hilbert
space. The annihilation and creation operators in~21! and~22! provide a basis for all operators i
the Fock space. The general eigenstates of the Hamiltonian are constructed by applyingaj

† andbj
†

to u0& as

un1 ,n2 ,n3 ,...;n̄1 ,n̄2 ,n̄3 ,...&5)
j 51

`
~bj

†!nj

Anj !

~aj
†! n̄ j

An̄ j !
u0&. ~66!
J. Math. Phys., Vol. 38, No. 12, December 1997
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This means that the creation operators generate the entire Fock space by repeated actio
vacuum. As an example, the above is an eigenstate fora521 and the corresponding eigenvalu
equation is given by

(
j 51

`

Ha521
j un1 ,n2 ,n3 ,...;n̄1 ,n̄2 ,n̄3 ,...&5(

j 51

` H e j81
j

2J un1 ,n2 ,n3 ,...;n̄1 ,n̄2 ,n̄3 ,...& ~67!

with e j85 jn j . Furthermore we emphasize that the coherent states provide another basis
Fock space. Although this is not an orthonormal basis, it spans the whole Fock space. Tha51
holomorphic wave functionc(z) in ~28! is given by the coherent representation of the Fock sp

c~z!}^z,z̄un1 ,n2 ,n3 ...;0,0,0,...&. ~68!

Of course, we haveaj un1 ,n2 ,n3 ,...;0,0,0,...&50 andbj un1 ,n2 ,n3 ,...;0,0,0,...&Þ0. Thea521
wave functionc(z,z̄ ) in ~46! takes the form

c~z,z̄!}^z,z̄un1 ,n2 ,n3 ,...,n̄1 ,n̄2 ,n̄3 ,...&})
j 51

~zj !
nj )

k51
~ z̄k!

n̄k. ~69!

Furthermore, theuauÞ1 zero mode wave function in~34! is given by

c0~z0!5^z0 ,z̄0uein0b0
†
u0&. ~70!

Therefore all wave functions in Sec. III are rederived from the coherent representation of the
space. We observe here that differenta mean different Hamiltonian and~different! Fock spaces.
Further we state that theW` algebra is a symmetry of the quantum Hall effect. Let us ask
which a the Hamiltonian commutes with the generators of theW` . Considering thatajC50
corresponds to the constraint of the lowest Landau level, we chooseC

z, z̄

aj 5exp(zaj
†2z̄aj) as the

generator. Then as can be seen in Sec. III, only the Hamiltonian~49! of free boson does no
commute with the generators of theW`

$a% .

V. EDGE STATES IN TERMS OF A TWO-DIMENSIONAL BOSON

A. Ca51 : Neutral edge states

Now we are in a position to construct an isomorphism between the wave functions fo
bulk and the edge states. This is an important problem for the quantum Hall effect. In
respects, both the integer and the fractional quantum Hall effects share very similar structure
ground states of both the IQHE (n51) and the FQHE~n51/m, m53,5,...! are described by
Laughlin’s first-quantized wave function,15

CFQHE
m ~Z!5)

i , j

N

~Zi2Zj !
m expH 2 (

k51

N

uZku2J , ~71!

whereZj5Xj1 iY j is the complex coordinate for the location of thej th electron. Here the con
vention is 1/4l 251 ~l : magnetic length!. From now on, it is very important to distinguish thezj

~the coordinate of thej th collective mode in theS1 boundary! and theZj ~the location of thej th
electron of the fermion description in the disk!. That is,$zj% denote the mode basis, whereas$Zj%
represent the coordinate basis. When the number of electrons (N) is large,~71! describes a drople
of a fluid with very uniform density filling a disk of sizepR25N/r. The edge of this droplet can
be described in terms of either the fermionic excitations of a Fermi surface or bosonic ripp16

Let us first compare our one-dimensional wave functionCa51 in ~25! with the corresponding
wave function of a two-dimensional circular Hall droplet. For this purpose, Haldane17 pointed out
J. Math. Phys., Vol. 38, No. 12, December 1997
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that the charge-zero~neutral! edge modes of FQH states are generated by multiplying a symm
polynomialP$r %(Z) to CFQHE

m (Z) asC$r %
bulk5P$r %(Z)CFQHE

m (Z). Here$r % denotes a set of occupa
tion numbers$r 1 ,r 2 ,r 3 ...%, where the non-negative integerr p represents the occupation numb
of the pth mode. SettingP$r %(Z)51 produces the wave function with the lowest angular mom
tum state—Laughin’s wave function itself. All otherC$r %

bulk’s have higher angular momentum an
describe deformed and/or inflated liquid droplets. SinceCFQHE

m represents the droplet with th
smallest radius, it should have the lowest energy. The excited statesC$r %

bulk have angular momen
tum M01K ~M0 : angular momentum forCFQHE

m and K5(p51
` prp! and energyK(dE/dM)

~assumingE(M0)50!. Here we assume that the total energy of the system is a single-va
smooth function ofM . Such a state is called aKth level excited state. The number of states at
Kth level is given by

NK5(
$r %

dS (
p51

`

prp2K D . ~72!

Although an apparent discrepancy between the bulk~two-dimensions! and edge~one-dimension!
is given, one can find some isomorphism between the two corresponding sets of wave fun
As shown in~25! and~68!, the excited edge states (Ca51) are defined by the coherent represe
tation for the Fock space of many oscillators. The energy of a state (un1 ,n2 ,n3 ,...;0,0,0,...&) is
given byKv/R, whereK5( j 51 jn j5e8 andv/R is the angular velocity of edge excitations. W
again call such a state aKth level state. The number ofKth level states in our approach is give
by the same formular as in~72!. Because ofdE/dM5v/R, theKth level FQH states andKth level
states of the chiral boson have the same energy. Hence we find that both the droplet wave f
C$r %

bulk and the edge wave functionCa51 give us the same Fock space and the same Hamilto
for low-lying neutral edge modes.

In addition, all the low-energy wave functions for the IQHE have been explicitly constru
in Ref. 18. Stone showed that the low-energy state with occupation numbers$r % corresponds to
the wave function

C$r %
bulk,m515P$r %

m51cFQHE
m51 ~Z! with P$r %

m515Pp51~Sp!r p. ~73!

In this case, considering the map between the mode basis~bosonic basis! and coordinate basis
~fermionic basis!

Sj5(
i 51

N

~Zi !
j→zj , r j→nj , ~74!

our chiral wave functions (c(z)5P j 51(zj )
nj}^z,z̄un1 ,n2 ,n3 ,...;0,0,0,...&) exhaust the low-

energy edge excitations for incompressible IQH states. This means that thea51 chiral wave
function explains the neutral edge states for the IQHE very well. The above boson-fe
mapping is a unitary rewriting for the Hilbert space of the neutral excitations of a chiral D
system as a chiral boson system. In other words, this amounts to the Fermi–Bose equiv
Hence the map of~74! corresponds to an isomorphism between these two bases.19

B. C zazÞ1 : Charged edge states

The edge excitations considered so far do not change the total charge of the system an
are neutral. The low-energy charged excited states arise when adding~or subtracting! electrons to
the edge. Those charged excitations carry integer charges and are created~annihilated! by the
electron operatorsC†(C). The two-dimensional boson theory is also able to describe the int
charged edge states. The physical Fock space of our boson theory withuauÞ1 is generated by
bothbj

† and exp$in0b0
†%. The operator exp$in0b0

†% generates the charged excited states. Actually
J. Math. Phys., Vol. 38, No. 12, December 1997
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operatorb0
† is related to the zero mode (r0) of the total charge-density operator.20 When n0 is

quantized asn05AmI ~integer!, m52(a22)/a and I 5Ae0, then the operator exp$iAmIb0
†%

createsm electrons.

C. Ca521 : Higher edge states

In this case, the wave function is

c~z,z̄ !})
j 51

~zj !
nj )

k51
~ z̄k!

n̄ k. ~75!

Because ofajc(z,z̄ )Þ0 andbjc(z,z̄ )Þ0, the above is neither a holomorphic wave function n
an antiholomorphic one. We note that a chiral boson~f! can be used to explain the fluctuation
charge density at the edge through the relationr(u)52(1/2pR)]uf(u). This can in turn be
expressed in terms of the Fourier modes ‘‘j ’’ on the edge. According to Ref. 20, the subleadin
correctionsO (1/R) are given by the higher-spinW11` generators. These measure the rad
fluctuations of the electron density (r5C†C). If the Hamiltonian is changed to accommodate t
short-range interaction, one can find the above subleading corrections.

Here the radial modes may be constructed from the wave function~75!. In the case thatnj

5n̄ j , the functionc(z,z̄ ) can take the form

c radial~z,z̄ !})
j 51

~ uzj u2!nj . ~76!

Since this has no angular momentum which denotes the Fourier mode, it may describe the
fluctuations of charge density at the edge. Hence the state

un1 ,n2 ,n3 ...;n1 ,n2 ,n3 ,...&5)
j 51

~bj
†aj

†!nj u0& ~77!

may be used to understand the higher modes~radial modes! of edge states.

VI. DISCUSSION

We perform three kinds of quantization for a two-dimensional boson theory with a param
a. In general, for differenta one gets different physical systems. The Dirac quantization show
only two distinct cases such as the chiral boson (a51) and the free boson (aÞ1). In the former
case, one finds the strong chiral constraint (ḟ2f8'0). One may try to obtain the physical wav
function (Ca51) by demanding that (ḟ2f8)Ca5150. But this is so strong that one cannot slo
this constraint. The FJ-sympletic quantization provides us the chiral boson fora51 as well as the
other models foraÞ1. Further, use of the BFF method in quantizing a chiral boson leads
nonlocal Wess–Zumino Lagrangian. This is also found when one treats a chiral boson by
of Fourier mode expansions. Although the BFF quantization is suitable for a chiral boson
finds an unwanted nonlocal term. This causes some difficulties. Especially, it is not trans
how to obtain the physical states within the BFF quantization. The BRST-BFV formalism sh
be further applied to this scheme in order to find the physical states.6

Here we introduce the Gupta–Bleuler–Dirac quantization for a two-dimensional b
theory. We make Fourier mode expansions for a boson on the boundary of the disk. Then w
a lot of constraints~holomorphic, antiholomorphic constraints and including the zero-mode
straints!. According to the Gupta–Bleuler approach, one first chooses one set of cons
(V* (1)5p j* '0, j .0!, and then quantizes these by the Dirac procedure. We then obtai
holomorphic constraints~pj* 2 i j f j'0, l j'0, j .0!. These correspond to the physical constrai
and they amount to half of the original chiral constraints: (ḟ2f8)1Ca5150, l1Ca5150. Here
J. Math. Phys., Vol. 38, No. 12, December 1997
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the superscript1 represents all of the holomorphic constraints. This is the key result of Gu
Bleular–Dirac quantization. We note that it is easy to choose the physical constraints with
method. We construct the various wave functions by using the representation of Bargmann
space and the Schro¨dinger picture. The coherent representation is introduced to interpret
functions. In order to construct the coherent wave function, we use an infinite-dimensional
metry (W`) which arises as a result of translational transformations~unitary transformations! of
each Fourier modej . We observe that differenta mean the different Hamiltonian and~different!
Fock spaces. Thea51 chiral wave function describes the neutral edge states very well.
charged edge states are also described by theuauÞ1 wave functions. In the case ofa521, we
find the wave function which may describe the higher modes of edge states. This show
Gupta–Bleuler–Dirac quantization for a two-dimensional boson on the circle describes su
fully the edge modes of a droplet for the IQHE.

Finally we comment on the edge states of the FQHE. Both, the integer and the frac
quantum Hall effects share very similar structures. On the other hand, they encompass d
physical principles and ideas. It was noted that the IQHE is described by a free electron the~a
free boson theory! but we need the interaction between electrons in the lowest Landau lev
describe the FQHE. According to Ref. 11, the creation and annihilation operators for thj th
electron (Aj

† ,Bj ) must be modified to describe the fractional filling fraction~odd denominator! in
the lowest Landau level. The modified operators are given by

Aj
†52

]

]Zj
1

Z̄j

2
1~m21!(

iÞ j

1

Zi2Zj
~78!

and

Bj5
]

]Zj
1

Z̄j

2
2~m21!(

iÞ j

1

Zi2Zj
, ~79!

wherem is the inverse of the filling factor (n51/m). For m51 one recovers the original defin
tion for these operators. Defining the generators of theW11` for the FQHE as

Lm,n5(
i 51

N

~Bi
†!m11~Bi !

n11, n,m>21 ~80!

they satisfy the same commutation relations as in the IQHE,

@Lm,n ,Lk,l #5@~m11!~k11!2~n11!~ l 11!#Lm1k,n1 l1~••• !Lm1k21,n1 l 211••• ~81!

up to terms involving delta functions. The direct relation between the generatorsC
j, j̄

bj of Sec. IV

andLm,n is obscure, because the map~74! between the mode and coordinate bases is nontriv
But both sets yield the same algebraic structure.

The delta functions do not contribute, since the wave function has to approach ze
Zi→Zj , iÞ j in the case of fermions which must respect the Pauli exclusion principle. Cons
ing ~64!, one can rewrite the operatorsBj andBj

† in the lowest Landau level such that they a
only on the holomorphic part as21

Bj5
]

]Zj
2~m21!(

iÞ j

1

Zi2Zj
, Bj

†5Zj . ~82!

Therefore, the delta functions will not occur in the lowest Landau level. Setting then-th Fourier
mode of a spins-field asW n

(s)5Ln1s22,s22 , one finds
J. Math. Phys., Vol. 38, No. 12, December 1997
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W n
~s!CFQHE

m ~Z!50, for 2s,<21. ~83!

This means that the Laughlin wave function is a highest weight state of the quantized alge
nonsingular area-preserving diffeomorphisms. Here we note that~83! is a common formula for
both the IQHE (n51) and the FQHE~n51/m, m53,5,...!. This implies that although the funda
mental operators for the FQHE are modified in the coordinate basis, one can use a co
formula for both the IQHE and FQHE in the mode basis. For this point, we remind the reade
all of our calculations are carried out in the mode basis. We emphasize that the transfer fro
coordinate basis~where interaction terms between the attached flux quanta of the electrons s
be introduced to describe the FQHE! to the mode basis seems to transform the problem to a
one. Jain developed the composite fermion theory which could describe the IQHE and FQ
a common principle attaching to each electron an even number of magnetic flux quanta.22 Our
result makes Jain’s original idea very clear.

We note that form51, (Aj
† ,Aj ) and (Bj

† ,Bj ) are Hermitian conjugate pairs. However th
subtlety we wish to point out is that the pairs (Aj

† ,Aj ) and (Bj
† ,Bj ) for the fractional quantum Hal

effect are no longer Hermitian conjugate pairs, unless the measure of the inner product is c
as follows. We take the inner product as

^C1uC2&5E C1
†mC2 , ~84!

wherem is given by

m~Z!5)
i , j

N

uZi2Zj u22~m21!. ~85!

Using this inner product,Bj andBj
† become hermitian conjugate to each other. That integer

fractional quantum Hall effects are different despite their common formal description by thW`

in ~81!, is due to this fact.
Moreover, from a view of conformal field theory, we have a close relationship betwee

IQHE with n51 and the FQHE withn51/m. All these can be described byc51 Gaussian
models which are conformal field theories of a free boson compactified on a circle with radiuAm.
These are the edge theories, corresponding to the bulk Chern–Simons theories. But they h
nice property that their correlation functions yield the bulk wave functions through analytic
tinuation. If one relates our model to thec51 conformal field theories, the chance to describe
FQHE in terms of our scheme will be enhanced. At least, it is possible to give the generali
of the isomorphism~74! to the FQHE case.
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Justification of the zeta function renormalization
in rigid string model

V. V. Nesterenkoa)
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A consistent procedure for regularization of divergences and for subsequent renor-
malization of the string tension is proposed in the framework of the one-loop
calculation of the interquark potential generated by the Polyakov–Kleinert string.
In this way, a justification of the formal treatment of divergences by analytic
continuation of the Riemann and Epstein–Hurwitz zeta functions is given. A spec-
tral representation for the renormalized string energy at zero temperature is derived,
which enables one to find the Casimir energy in this string model at nonzero
temperature very easy. ©1997 American Institute of Physics.
@S0022-2488~97!00112-6#

I. INTRODUCTION

A consistent method to treat the divergences in quantum field theory is known to b
following.1 Divergent expressions must at first be regularized, for example, by the Pauli–W
method, then subtractions justified by transition to physical~observable! parameters of the theor
should be done. After that the regularization is to be removed.

Together with this approach there are widely used methods that do not apply explicit
larization and renormalization but which nevertheless give finite answer. First of all, it is the
function technique. The main idea of this approach is the following.2–4 One assumes that th
divergent sum(n vn of the eigenvalues of the operator determining the dynamics in the m
under consideration5 is equal to the value of the zeta function for this operator,z(s), when
s→21. At first the functionz(s) is defined by the formulaz(s)5(n vn

2s for Res.1, and then
it is analytically continued to Res<1 possibly save for isolated points. In the case of the Dirich
boundary conditions for the two-dimensional Laplace and Helmholtz operators this functio
pears to be the Riemannz-function or the Epstein–Hurwitzz-function, respectively. These func
tions are widely used in calculations of the Casimir energy in field4,6 and string models.7

Undoubtedly such a formal method to treat divergences needs justification in each par
case.8,9 Moreover, there are examples when analytic continuation leads to ambiguities.10 To justify
this approach, it is necessary to show that it gives the same results as the standard renorm
procedure with regularization and subtraction. It is this problem that will be considered i
present paper in the framework of one-loop calculation of the interquark potential~or the Casimir
energy! in the rigid string model. This model is chosen because here both the Rieman
Epstein–Hurwitzz-functions are employed.

The interquark potential generated by a rigid string was studied in a number of pape
making use of the perturbation theory and variational estimation of the functional integral~see, for
example, Ref. 11 and papers cited therein!. These results are well known. Therefore attention w

a!Electronic mail: nestr@thsun1.jinr.dubna.su
b!Electronic mail: pirozhen@thsun1.jinr.dubna.su
0022-2488/97/38(12)/6265/16/$10.00
6265J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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be basically paid to development of the consistent procedure of renormalization and to jus
tion, on this basis, of the results obtained by thez-function method.

The layout of the paper is as follows. In Sec. II the interquark potential generated by a
string is calculated in the one-loop approximation, the standard method of analytic continua
the Riemann and Epstein–Hurwitzz-functions being used. In Sec. III the consistent regularizat
of the divergences and the string tension renormalization are carried out. Unlike thez-function
method, the finite expression for the string potential is derived here uniquely. Moreover, i
approach the renormalized string energy at zero temperature is obtained in terms of the s
representation that can be directly generalized to a finite temperature. In the Conclusion~Sec. IV!,
the obtained results are discussed in short. Auxiliary material concerning the details of the
lations is given in Appendices A and B.

II. INTERQUARK POTENTIAL GENERATED BY A RIGID STRING IN ONE-LOOP
APPROXIMATION

We consider the most simple example of the application of the Riemann and Epstein–H
z-functions. This is the calculation of the interquark potential generated by the Polyakov–Kl
string12,13in the one-loop approximation.14 In spite of its simplicity, this example demonstrates t
main features of the approach.

For our purpose the quadratic approximation to the Polyakov–Kleinert string action is
cient:

Sb5M0
2E

0

b

dtE
0

R

drF11
1

2
uS 12

a

M0
2 D D ~2D!uG . ~2.1!

Here M0
2 is the string tension,u(t,r )5„u1(t,r ),u2(t,r ),...,uD22(t,r )… are the transverse strin

coordinates inD-dimensional space–time,a is a dimensionless parameter characterizing the st
rigidity, a.0, andR is the distance between quarks connected by string, i.e., the string le
The Euclidean action is considered, therefore the operatorD in ~2.1! is the two-dimensional
Laplace operatorD5]2/]t21]2/]r 2. The ‘‘time’’ variable t ranges in the interval 0<t<b,
whereb51/T is the inverse temperature.

The action~2.1! should be completed by boundary conditions for string coordinates a
points r 50 andr 5R. Usually a string with fixed ends is considered:

u~ t,0!5u~ t,R!50. ~2.2!

This corresponds to the static interquark potential. The string potentialV(R) is defined in a
standard way,

exp@2bV~R!#5E @Du#exp$2Sb@u#%, b→`. ~2.3!

The functional integral in~2.3! is taken over string coordinatesu(t,r ) that satisfy periodic con-
ditions in the time variablet:

u~ t,r !5u~ t1b,r !. ~2.4!

Inserting~2.1! into ~2.3! one obtains after the functional integration

V~R!5M0
2R1

D22

2b
Tr ln~2D!1

D22

2b
Tr lnS 12

a

M0
2 D D , b→`. ~2.5!
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For calculating the traces in~2.5! the eigenvalues of the operators (2D) and@12(a/M0
2)D# with

the boundary conditions~2.2! and the periodicity conditions~2.4! are needed:

~2D!fnm5lnmfnm , S 12
a

M0
2 D Dckl5jklckl . ~2.6!

Using the Fourier expansion we find14

lnm5Vn
21vm

2 , jnk5Vn
21ṽ k

2, ~2.7!

whereVn52pn/b, n50,61,62,..., are the Matsubara frequencies,vm5mp/R, m51,2,..., are
positive roots of the equation

sin~vR!50, ~2.8!

and ṽk5A(kp/R)21M0
2/a, k51,2,..., are those of the equation

sin~RAṽ22M0
2/a!50. ~2.9!

Summation over the Matsubara frequenciesVn can be accomplished by making use of the kno
methods.14 Upon taking the limitb→`, the potential generated by the string assumes the fo

V~R!5M0
2R1~D22!~EC

~1!1EC
~2!!, ~2.10!

whereEC
(1) i EC

(2) are the Casimir energies corresponding to both the modes of the rigid s
oscillations

EC
~1!5

p

2R (
n51

`

n, ~2.11!

EC
~2!5

p

2R (
n51

`

An21a2, a25
M0

2R2

ap2 . ~2.12!

Summation of the divergent series~2.11! and ~2.12! by analytic continuation of thez-function is
now commonly used. Nevertheless we review the main steps of this approach in short.

We begin with the first sum~2.11!. According to the scheme outlined in the Introduction, w
first have to consider the function

z~s!5 (
n51

`

n2s, Res.1, ~2.13!

and then to continue it analytically to the region Res,1. In this casez(s) is the Riemann
z-function. Analytic continuation of the function~2.13! to the rest of the complex planes, with the
exception of the points51, is performed by the contour integral15

z~s!52
G~12s!

2p i E
C

~2z!s21

12e2z dz, ~2.14!

where the contourC is shown in Fig. 1. This contour should avoid the pointsz562np i (n
51,2,3,...) because of the multiplierG(12s) in ~2.14!. The Riemannz-function has a simple pole
at s51 with the residue equal to 1,
J. Math. Phys., Vol. 38, No. 12, December 1997
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z~s!5
1

s21
1g1••• , ~2.15!

whereg is the Euler constant

g5 lim
N→`

S (
n51

N
1

n
2 ln ND . ~2.16!

The z-function defined by integral~2.14! satisfies the reflection formula15

z~12s!52~2p!2s cosS ps

2 DG~s!z~s!. ~2.17!

According to the scheme outlined above we have to attribute the valuez(21) to the sum of
the divergent series~2.11!. For s521 the integral representation~2.14! gives

z~21!5
1

2p i EC

~2z!dz

z3~12e2z!
. ~2.18!

Since the integrand is single valued in the planez, the integration contour in Fig. 1 can be close
As a result,z(21) is equal to the integrand residue atz50. To find the residue, we can use th
definition of Bernoulli numbers15

t

et21
512

1

2
t1B1

t2

2
2B2

t4

4!
1••• ,

whereB151/6, B251/30,... . Thus we obtain

z~21!52B1

1

2
52

1

12
. ~2.19!

Finally we attribute to the sum of the divergent series~2.11! the value

EC
~1!5

p

2R (
n51

`

n5
p

2R
z~21!52

p

24R
. ~2.20!

In the theory of divergent series16 this summation of the series~2.11! is referred to as theRa-
manujan summation. Obviously, this method is not universal. For example, it cannot be app

FIG. 1. ContourC used in analytic continuation of the Riemann zeta-function.
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directly to a divergent series(n51
` n21 because the zeta-function has a pole at the points51 @see

Eq. ~2.15!#. Admitting the convention about the rejection of the pole singularity, as it is usu
done in the analytic regularization method,17 we get

(
n51

`
1

n
5g.

From ~2.15! and ~2.16! it follows that the pole of the Riemannz-function at the points51 is
responsible for the logarithmic divergences.

Summarizing, we arrive at the conclusion that the Riemannz-function method enables one t
obtain the finite value of the Casimir energy~2.11! without explicit regularization, pole singularit
rejection, and explicit renormalization. However, in the case of divergent series~2.12!, the analytic
continuation technique requires additional assumptions.

To sum the series~2.12!, we have to consider the Epstein–Hurwitz zeta-functionzEH(s,p)
defined by the formula

zEH~s,a2!5 (
n51

`

~n21a2!2s, ~2.21!

wheres.1/2. Let us review briefly how to accomplish an analytic continuation of this serie
the regions<1/2.

Using the integral representation for the Euler gamma function15

~n21a2!2sG~s!5E
0

`

ts21e2~n21a2!t dt, ~2.22!

we can replace each term in series~2.21! by the integral

zEH~s,a2!5
1

G~s!
E

0

`

ts21(
n51

`

e2t~n21a2! dt. ~2.23!

The Jacobiu-function appearing in~2.23!, u(t)5(n51
` e2n2t, has the property15

u~ t !52
1

2
1

1

2
Ap

t
1Ap

t
u~p2/t !. ~2.24!

Substituting~2.24! into ~2.23! we obtain

zEH~s,a2!52
~a2!2s

2
1

ApG~s21/2!

2G~s!
~a2!2s11/21

Ap

G~s! (
n51

` E
0

`

ts23/2 expS 2ta22
p2n2

t Ddt.

~2.25!

The multiplier exp (2ta22p2n2/t) ensures the convergence of the integral in~2.25! for all s. Then
this integral is expressed in terms of the modified Bessel functionKn(z) having the integral
representation18

E
0

`

xn21 expS 2
g

x
2dxDdx52 S g

d D n/2

Kn~2Agd!,

~2.26!

K2n~z!5Kn~z!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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In the case under consideration,g andd are positive quantities:g5p2n2 andd5a2. Now we can
rewrite formula~2.25! as follows

zEH~s,a2!52
~a2!2s

2
1

ApG~s21/2!

2G~s!
~a2!2s11/2

1
2ps

G~s!
~a2!2s/211/4(

n51

`

ns21/2Ks21/2~2pnAa2!. ~2.27!

The series obtained converges for alls as the modified Bessel function has the asymptotics18

Kn~z!; S p

2zD
1/2

e2z, uzu→`. ~2.28!

Therefore, the singularities of the functionzEH(s,a2) are due to the singularities ofG(s21/2) in
~2.27!, i.e., zEH(s,a2) has first-order poles at the points

s5
1

2
,2

1

2
,2

3

2
,... . ~2.29!

Thus formula~2.27! affords an analytic continuation of~2.21! to the regions<1/2 except for the
points ~2.29!. SincezEH(s,a2) has a pole ats521/2, function~2.27! can be used for obtaining
only the regularized Casimir energyEC

(2)reg:

EC
~2!reg52M0H 1

4Aa
1

M0R

8pa
G~21!1

1

2pAa
(
n51

`

n21K1 S 2nM0R

Aa
D J . ~2.30!

In order for the regularization to be removed, the first and second terms on the right-hand s
~2.30! should be omitted~see, for example, Refs. 19–22!:

EC
~2!ren52

M0

2pAa
(
n51

`

n21K1 S 2nM0R

Aa
D . ~2.31!

Rejection of the first term in~2.30! proportional toG(21) is natural in the analytic continuatio
method.23,24 As for the second term2M0 /(4Aa), its rejection seems to be rather arbitrar
Usually this is motivated by the fact that this term is independent ofR and, as a consequence, do
not contribute to the Casimir force. However, this argument does not explain the rejection
R-independent term in the interquark potential, i.e., inEC

(2)(R). In the general case those term
may be essential for the description of quark–quark interaction inside hadrons. Only the con
renormalization with preliminary regularization and subsequent subtraction can justify the
tion of both the first and second terms on the right-hand side of~2.30!. This will be demonstrated
in the next section.

III. RENORMALIZATION OF THE STRING TENSION AND REMOVAL OF THE
DIVERGENCES

Let us calculate the interquark potential~2.5! and~2.10! applying the standard renormalizatio
technique. The initial model includes two parameters: the string tensionM0

2 and a dimensionless
constanta characterizing the string rigidity. In the one-loop approximation, only the string ten
is renormalized.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The renormalized string potential at large distances should coincide with its clas
expression25

Vren~R!uR→`5M2R, ~3.1!

whereM2 is the renormalized string tension, whose explicit expression will be obtained fur
Starting with~2.10! and taking into account the necessity to regularize all the divergent ex
sions, we representVren(R) as

Vren~R!5M0
2R1~D22!@EC

~1!reg~R,L!1EC
~2!reg~R,L!#uL→`5M0

2R1~D22!

3$@EC
~1!reg~R,L!1EC

~2!reg~R,L!#2@EC
~1!reg~R→`,L!1EC

~2!reg~R→`,L!#%uL→`

1~D22!@EC
~1!reg~R→`,L!1EC

~2!reg~R→`,L!#uL→`

5M2R1~D22!@EC
~1!ren~R!1EC

~2!ren~R!#, ~3.2!

whereL is a regularization parameter;M2 is the renormalized value of the string tension;

M25M0
21

D22

R
@EC

~1!reg~R→`,L!1EC
~2!reg~R→`,L!#uL→` ; ~3.3!

andEC
( i )ren, i 51,2, are the renormalized Casimir energies~2.11! and ~2.12!:

EC
~ i !ren~R!5@EC

~ i !reg~R,L!2EC
~ i !reg~R→`,L!#uL→` , i 51,2. ~3.4!

To regularize divergent series~2.11! and~2.12!, we substitute them by finite sums that can
represented in terms of the Cauchy integrals15

1

2p i R
C

z
f 8~z!

f ~z!
dz5(

k
nkak2(

l
plbl . ~3.5!

Here f (z) is an analytic function having, in a region surrounded by contourC, zeroes of ordernk

at pointsz5ak and poles of orderpl at pointsz5bl . As a functionf (z) we substitute into~3.5!
the right-hand sides of frequency equations~2.8! and~2.9! and choose the contourC in such a way
to includeN first positive roots of the corresponding equations. Functions~2.8! and ~2.9! have
zeroes of the first order on the real axis and have no poles. Therefore only the first sum
nk51 remains on the right-hand side of~3.5!.

First, we obtain the regularized Casimir energy~2.11!,

EC
~1!reg~R!5

R

4p i R
C

v
cos~vR!

sin~vR!
dv, ~3.6!

where the contourC is shown in Fig. 2. All the singularities of the integrand in~3.6! being situated
on the real axis, it is possible to deform the contourC to C8 continuously~see Fig. 2!. Now the
regularization parameter is the radiusL of the semicircle entering into the contourC8.

To determine the counterterms according to~3.1!–~3.4!, it is necessary to find the asymptotic
of EC

(1)reg(R) for R→` and fixedL. On the semicircle of radiusL ~Fig. 2! the asymptotics of the
integrand forR→` is the integrand itself because of its oscillating character. Consequently
result of integration along this part of the counterC8 is completely absorbed by the counterter
and does not give any finite contribution toEC

(1)ren(R). Now let us turn to the integral along th
interval (2 iL,iL) on the imaginary axis

EC
~1!reg~R,L!52

R

4p E
2L

L

y
cosh~Ry!

sinh~Ry!
dy. ~3.7!
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To find the asymptotics needed, we integrate in~3.7! by parts:

EC
~1!reg~R,L!52

1

4p E
2L

L

yd„lnusinh~Ry!u…52
L

2p
ln@sinh~LR!#1

1

2p E
0

L

dy ln@sinh~Ry!#.

WhenR→`

EC
~1!reg~R→`,L!52

L

2p
ln@sinh~LR!#1

1

2p E
0

L

~Ry2 ln 2! dy. ~3.8!

Inserting~3.8! into ~3.4! we obtain the finite value for the renormalized Casimir energy~2.11!:

EC
~1!ren~R!5

1

2p E
0

`

ln~12e22Rv!dv52
R

p E
0

` v dv

e2Rv21
. ~3.9!

The last formula is derived by integrating by parts. It is interesting to note that~3.9! is expressed
in terms of the value of the Riemannz-function at the points52. Really,

E
0

` v dv

eav21
5E

0

` ve2av

12e2av dv5 (
n51

` E
0

`

ve2anv dv5
G~2!

a2 (
n51

` 1

n2 5
1

a2 z~2!. ~3.10!

In view of this, Eq.~3.9! can be rewritten as

FIG. 2. Transformation of the contour in integral~3.6!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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EC
~1!ren~R!52

1

4pR
z~2!. ~3.11!

Thus, under consistent renormalization, the sum of divergent series~2.11! is also defined through
the Riemannz-function, but now another range of its definition is used, namely, the regions
.1. Herez(s) is defined by convergent series~2.13!.

With the help of the Riemann reflection formula~2.17! the value ofz-function at s52
entering into~3.11! can be expressed throughz(21):

z~2!522p2z~21!. ~3.12!

A final renormalized formula for the Casimir energy~2.11! assumes the same form as th
obtained by analytic continuation of the Riemannz function @see Eq.~2.20!#:

EC
~1!ren~R!5

p

2R
z~21!5

p

2R S 2
1

12D52
p

24R
. ~3.13!

Thus, there is a complete agreement between two outlined approaches to the calculation
finite value ofEC

(1) .
Before we turn to consideration of the series~2.12!, let us make a short remark concernin

formula ~3.9!. Discarding the minus sign, the integrand in~3.9! has a form of the Planck energ
distribution in the spectrum of one-dimensional black-body with temperature 1/2R.

The renormalized value of the Casimir energyEC
(2) @see Eqs.~2.12! and~3.4!# can be obtained

in the same way as it was done above. Substitution of the frequency equation~2.9! into ~3.5! gives

EC
~2!reg~R,L!5

R

4p i
R

C

cos~Av22v0
2!

sin~Av22v0
2!

v2

Av22v0
2

dv, ~3.14!

wherev0
25M0

2/a. When choosing the contourC one has to take into account the branch points
the integrandv56v0 . To select the single-valued branch of this function, we make a
connecting the branch points along the real axis. After that the contour can be chosen as sh
Fig. 3. Again integration along the semicircle of radiusL contributes only to the counterterm. Th
integrals along the edges of the cut are mutually cancelled, and the contributionI 1 of integration
around the branch pointv5v0 is equal to2v0/452M0 /(4Aa) ~see Appendix A!. It should be
noted thatI 1 is exactly equal to the first term in formula~2.30! for EC

(2)reg. The sum of integralI 2

along the interval (2 iL,iL) of the imaginary axis andI 1 is

EC
~2!reg~R,L!52

L

2p
ln@sinh~RAL21v0

2!#1
1

2p
E

0

L

dy ln@sinh~RAy21v0
2!#2

v0
2

4
.

~3.15!

Integration by parts is already done here. Formula~3.4! requires an asymptoticsEC
(2)reg(R→`,L).

From ~3.15! it follows that

EC
~2!reg~R→`,L!52

L

2p
ln@sinh~RAL21v0

2!#1
1

2p
E

0

L

dy~RAy21v0
22 ln 2!2

v0
2

4
.

~3.16!

The constant term2v0
2/4 is preserved here to satisfy condition~3.1! which defines the behavior o

the string potential at infinity. Otherwise this term would appear on the right-hand side of~3.1!,
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but that is physically unacceptable. At large distances string potential should be determined
classical value only. Inserting~3.16! and ~3.17! into ~3.4! we find for i 52

EC
~2!ren~R!5

1

2p
E

0

`

dv ln~12e22RAv21v0
2
!52

R

p
E

0

` v2 dv

Av21v0
2

1

e2RAv21v0
2
21

.

~3.17!

It is interesting to compare the formula derived with an analogous expression forEC
(1)ren(R)

@see Eq.~3.9!#. Formula~3.17! can be obtained by changing the variable frequency in~3.9! to
Av21v0

2. This completely corresponds to the fact that Eq.~3.10! deals with oscillations of the
massless~two-dimensional! scalar field on the segment@0, R# while Eq. ~3.17! treats oscillations
of the same field but with the mass equal tov05M0 /Aa @see field equations~2.6!#.

At first sight, the expression obtained forEC
(2)ren(R) by making use of the consistent reno

malization of the string tension does not coincide with that derived by analytic continuation o
Epstein–Hurwitz zeta-function@see formula~2.31!#. This is not true, however. Equations~3.17!
and ~2.31! are completely equivalent. To show this, let us expand the logarithm in~3.17!:

EC
~2!ren~R!52

1

2p (
n51

`

n21E
0

`

dv e22nRAv21v0
2
. ~3.18!

By changing the variablev5v0 sinht, the integral is reduced to the tabular one:18

FIG. 3. Contour used for summing the roots of Eq.~2.9!.
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Kn~z!5E
0

`

e2z cosht cosh~nt !dt

with z52nv0R. Finally we deduce the series~2.31! from ~3.17!,

EC
~2!ren~R!5

1

2p
E

0

`

dv ln~12e22RAv21v0
2
!52

v0

2p
(
n51

`

n21K1~2nv0R!, ~3.19!

wherev05M0 /Aa. Thus we found an integral representation for the series~2.31!. This series is
convenient for investigating the behavior of the Casimir energyEC

(2)ren(R) at large distances
Taking into consideration~2.28! we get

EC
~2!ren~R!uR→`.2

1

4 S v0

pRD 1/2

e22v0R. ~3.20!

The integral representation~3.17! enables one to study the asymptotics ofEC
(2)ren(R) at smallR.

From ~3.18! it follows that EC
(2)ren(R) has a singularity whenR50. For smallR the main contri-

bution to this integral is given by largev, therefore one can neglect here the dependence onv0 .
This immediately gives the asymptotics ofEC

(2)ren(R) for R→0:

EC
~2!ren~R!uR→0.

1

2p E
0

`

dv ln~12e2vR!52
p

24R
. ~3.21!

Thus, consistent regularization of the divergent series~2.12! and subsequent renormalizatio
of the string tension justify the rejection of the singular~pole! term andR-independent constant in
Eq. ~2.30! when analytic continuation of the Epstein–Hurwitzz-function is used. It is worthwhile
to emphasize an important advantage of the proposed regularization by contour integrati
subsequent subtraction. In this way we obtain the spectral representation for string energy
temperature@see Eqs.~3.9! and ~3.17!# in contrast to analytic continuation ofz-functions @Eqs.
~2.20! and ~2.31!#. Proceeding from this spectral representation one can immediately deriv
string free energy at finite temperature. To this end one must pass from integration to sum
over the Matsubara frequenciesVn52pnT, n50,61,62,.... Practically it is done by the subst
tution

dv→2pTdv (
n50

`

8d~v2Vn!, ~3.22!

whereT is the temperature~see Appendix B!. The prime of the sum sign means that the term w
n50 should be multiplied by 1/2.

For either quantityEC
( i )(R), i 51,2, we have obtained two integral representations@see Eqs.

~3.10! and ~3.18!#. Substitution~3.22! in these formulas with logarithmic functions gives usthe
free energyat finite temperature~Appendix B!. For example,

F ~2!~R,T!52T(
n50

`

8 ln~12e22RAVn
2
1v0

2
!. ~3.23!

Taking the limit v0→0 in ~3.23! one can obtain the energyF (1)(R,T) that diverges due to the
term with n50 ~see Appendix B!. Making the substitution~3.22! in the second version of the
spectral representations~3.9! and ~3.17! we arrive at theinternal energyat temperatureT:
J. Math. Phys., Vol. 38, No. 12, December 1997
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U ~1!~R,T!524pRT2(
n50

`

8
n

exp~4pnRT!21
, ~3.24!

U ~2!~R,T!528p2RT3(
n50

`

8
n2

AVn
21v0

2

1

exp~2RAVn
21v0

2!21
. ~3.25!

Both the energies,U ( i )(R,T), i 51,2, are well defined. The last two equations prove to be c
venient for investigating the behavior of the internal energies at large and smallT. Let us dem-
onstrate this using Eq.~3.24!. At largeT the main contribution to~3.24! comes from the first term
with n50:

U ~1!~R,T→`!52
T

2
. ~3.26!

At small T the Euler–Maclaurin formula

(
n50

`

8 f ~n!5E
0

`

f ~x!dx2
1

12
f 8~0!1••• ~3.27!

can be used. In the case under consideration,

f ~x!5
x

exp~4pTRx!21
and f 8~0!52

1

2
. ~3.28!

As a result, we obtain for smallT

U ~1!~R,T!'2
p

24R
2

pT2R

6
. ~3.29!

IV. CONCLUSION

The experience of treating the divergences shows that a correct result can be obtai
applying practically any regularization and renormalization procedures provided that the pre
tions are properly modified. Therefore, when evaluating such methods, those should be pr
which are closer to the quantum field theory. Only in the framework of this approach one suc
in formulation of a consistent renormalization procedure. Besides, quantum field formalism
vides a clear and simple transition from zero temperature calculations to those at
temperature.26 In view of this, contour integration has an obvious advantage. At first it
proposed as a simple method, compared with quantum field theory formalism,27 for calculating the
van der Waals forces between dielectrics28 ~see also Refs. 14, 19, 29, and 30!. However, its
relation to the formalism of the Green’s functions is not elucidated properly, and this probl
undoubtedly worth investigating.
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APPENDIX A: INVESTIGATION OF THE CONTOUR INTEGRAL DETERMINING
EC

„2…reg
„R,L…

Let us consider integral~3.14! for individual parts of contourC shown in Fig. 3. Integration
along the semicircle of radiusL contributes only to the counterterm, therefore we do not ana
it here. When going from the upper edge of the cut to the lower one, the integrand doe
change. As a result, integrals along these two parts of the contourC are cancelled mutually due t
opposite directions of integration. Only integration around the branch point and along the in
of the imaginary axis (2 iL,iL) lead to finite contributions. While integrating around the bran
point v5v0 we introduce usual variablesv2v05reif with r→0. In terms of those we have

v22v0
25(v1v0)(v2v0).2v0reif, cos(RAv22v0

2).1, and sin(RAv22v0
2).RAv22v0

2.
Taking this into account we deduce

I 152
R

4p i E0

2p v0
2reifidf

2v0reifR
52

v0

4
52

M0

4Aa
. ~A1!

The integralI 1 is exactly equal to the first term in~2.30! which is independent ofR. When
integrating along the imaginary axis, trigonometrical functions in~3.14! become hyperbolic ones

I 25
R

4p i
E

L

2L ~2y2!idy

iAy21v0
2

cosh~RAy21v0
2!

sinh ~RA~y21v0
2!

dy52
1

2p
E

0

L

yd@ ln sinh~RAy21v0
2!#.

~A2!

Adding up ~A1! and ~A2! and integrating by parts one arrives at formula~3.15!.

APPENDIX B: TRANSITION TO FINITE TEMPERATURE IN AN INFINITE SYSTEM OF
NONINTERACTING OSCILLATORS

Let us consider an infinite system of noninteracting oscillators with eigenfrequenciesvn , n
51,2,..., determined by the equation

f ~v,R!50. ~B1!

The roots of this equation are assumed to be situated on the real axis in the complex planev. This
set of oscillators arises, for example, in quantization of a scalar field defined on the line se
@0, R#. Boundary conditions imposed on this field result in frequency equation~B1!. Without loss
of generality, for a relatistically invariant system one can admit that the functionf satisfies the
condition

f ~2v,R!5 f ~v,R!. ~B2!

The free energy of this system is given by

F~R,T!5 (
n51

` Fvn

2
1T ln~12e2vn /T!G . ~B3!

At zero temperature this formula obviously turns into the energy of zero point oscillationEC

5(n51
` vn/2.
In the general case sum~B3! diverges, therefore to obtain the finite value for the free ene

we have to use the renormalization procedure discussed in Sec. III. First, the infinite sum
be represented as a contour integral
J. Math. Phys., Vol. 38, No. 12, December 1997
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(
n51

`

g~vn!5
1

2p i R
C

g~z!
f 8~z,R!

f ~z,R!
dz, ~B4!

where

g~v!5
v

2
1T ln~12e2v/T!5

v

2
2T(

n51

`
1

n
e2nv/T.

The contourC, as in Sec. III, surrounds the firstN roots of Eq.~B1!.
As shown in Sec. III, only integration along the imaginary axis gives a finite contributio

the free energy

F reg~R,L!52
1

2p i E2L

L S iy

2
2T(

n51

`
1

n
e2 iny/TD d ln@ f ~ iy ,R!#. ~B5!

On integrating by parts we obtain

F reg~R,L!5
1

2p E
2L

L

dyS 1

2
1 (

n51

`

e2 iny/TD ln@ f ~ iy ,R!#

5
1

2p E
2L

L

dyH 1

2
1 (

n51

` FcosS ny

T D2 i sinS ny

T D G J ln@ f ~ iy ,R!#. ~B6!

The off-integral terms are omitted in~B6! because they contribute only to the counterterm. Tak
into account~B2! we can drop terms with sine functions:

F reg~R,L!5
1

p E
0

L

dyF1

2
1 (

n51

`

cosS ny

T D G ln@ f ~ iy ,R!#. ~B7!

The renormalized free energy is obtained by the subtraction

F ren~R,T!5@F reg~R,L!2F reg~R→`,L!#uL→`5
1

p E
0

`

dyF1

2
1 (

n51

`

cosS ny

T D G lnF f ~ iy ,R!

f ~ iy ,`!G .
~B8!

With allowance for the Fourier series representation of thed-function

pT (
n52`

`

d~y22pnT!5
1

2
1 (

n51

`

cosS ny

T D ,

integration in~B8! can be done to produce

F ren~R,T!5T (
n52`

`

lnF f ~2p inT,R!

f ~2p inT,`!G52T(
n50

`

8 lnF f ~2p inT,R!

f ~2p inT,`!G . ~B9!

Now we apply formula~B9! to the models considered in Sec. III. In the case of a scalar fi
with massv0 on the segment@0, R# we have

f ~v,R!5sin~RAv22v0
2!,

and Eq.~B9! gives
J. Math. Phys., Vol. 38, No. 12, December 1997
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F ~2!~R,T!52T(
n50

`

8 ln~12e22RAVn
2
1v0

2
!, ~B10!

where Vn52pnT. The same result was obtained in Sec. III by transition from the inte
representation for the Casimir energy at zero temperature to summation over the Matsuba
quencies@see Eq.~3.23!#. Proceeding from~B10! one can derive theinternal energyof the system
under consideration applying the thermodynamic rules

U ~2!~R,T!52T2F ]

]T

F ~2!~R,T!

T
G528p2RT3(

n50

`

8
n2

AVn
21v0

2

1

exp~2RAVn
21v0

2!21
.

~B11!

This equation was derived in Sec. III by a simple substitution@see Eq.~3.25!#. In the case of a
massless scalar field (v0→0) the term withn50 in ~B10! diverges

F ~1!~R,T!52T(
n50

`

8 ln~12e24pnRT!52T lim
n→0

(
k51

`
exp~24pnkRT!

k
12T(

n51

`

ln~12e24pnRT!

52T(
k51

`
1

k
12T(

n51

`

ln~12e24pnRT!. ~B12!

This divergence is a manifestation of the well-known infrared instability of a massless scala
in two-dimensional space-time. In Sec. II some reasons were given to attribute to the sum
divergent series(k51

` k21 the Euler constant value,g. Finally we obtain finite expression for th
free energy of the massless scalar field on the segment@0, R#:

F ~1!~R,T!52gT12T(
n51

`

ln~12e24pnRT!. ~B13!

It should be noted that this treatment of infrared divergences in the problem in question is
lutely formal and it needs the physical justification.

However, the internal energy of this field is well defined. Puttingv050 in ~B11! we get

U ~1!~R,T!524pRT2(
n50

`

8
n

exp~4pnRT!21
. ~B14!

In Sec. III the same formula has been derived by a formal substitution@see Eq.~3.24!#.
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de Rham cohomology of SO „n … by supersymmetric
quantum mechanics

Kazuto Oshima
Gunma College of Technology, Maebashi 371, Japan

~Received 31 December 1996; accepted for publication 4 September 1997!

We study supersymmetric quantum mechanics on SO(n) to examine Witten’s
Morse theory concretely. We give a simple instanton picture of the de Rham co-
homology of SO(n). We show how the reflection symmetries of the theory select
the true vacuums. The number of selected vacuums agrees with the de Rham
cohomology of SO(n), at least forn<5. © 1997 American Institute of Physics.
@S0022-2488~97!01912-9#

I. INTRODUCTION

Witten proposed a physical interpretation of Morse theory in his pioneering work in 191

Witten considered supersymmetric quantum mechanics on a manifold with a potential d
from a Morse functionh. His idea is to identify true vacuums with de Rham cohomology.
each critical point ofh one classical vacuum exists. One selects true vacuums from the
examining instanton effects between adjacent classical vacuums. The number of classical v
is not smaller than that of true vacuums, which explains the Morse inequalities.

To our knowledge Witten’s program has been carried out only for a few examples. The
manifold SO(n) is interesting, because it has many pairs of adjacent critical points and inst
effects can be seen. Some years ago, Yasuiet al.2 investigated SO~3!. Recently, the author ha
tackled SO~4!,3 and has shown how reflection symmetries are useful to extract true vacuum
purpose of this paper is to give a generalization to SO(n). We give an elementary derivation of th
de Rham cohomology of SO(n) based on an instanton picture.

In Sec. II we introduce supersymmetric quantum mechanics on SO(n). The classical vacuum
of the theory are described in the third section. In Sec. IV we show how reflection symmetrie
to a selection rule for SO(n); this is used in Sec. V to compute the instanton effects. The re
are summarized in the last section.

II. SUPERSYMMETRIC QUANTUM MECHANICS ON SO„n …

The supersymmetric Hamiltonian on a manifold with Morse functionh is given by

Ĥ52 1
2~dhdh

†1dh
†dh!, ~1!

wheredh5e2hdeh, dh
†5ehd†e2h, d is the exterior derivative, andd† is its adjoint operator. In

~any! coordinates$xm%, the exterior multiplicationedxm and the interior multiplicationi ]/]xm can be
identified with the fermion creation operatorĉ* m and the annihilation operatorĉm and we have

d5ĉ* m¹m , d†5g21/2¹mg1/2gmnĉn , ~2!

whereg is the determinant of the metric tensorgmn and¹m is the covariant derivative

¹m5
]

]xm2Gmn
l ĉ* nĉl . ~3!

The HamiltonianĤ @~1!# takes the form
0022-2488/97/38(12)/6281/6/$10.00
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2Ĥ52g21/2¹mg1/2gmn¹n1Rmnstĉ
sĉ* tĉ* nĉm1gmn

]h

]xm

]h

]xn 1Hmn@ĉ* m,ĉn#, ~4!

whereRmnst is the Riemann tensor, andHmn is the Hessian matrix

Hmn5~]m]n2Gmn
l ]l!h. ~5!

The corresponding Lagrangian is

L5
1

2
gmn

dxm

dt

dxn

dt
1

1

2
gmn

]h

]xm

]h

]xn 1c* mS d

dt
cm2Gmn

l cl

dxn

dt D1Hmnc* ncm

1
1

4
Rmnstc

mcnc* sc* t. ~6!

The gradient flow equation of~6! is

dxm

dt
56gmn

]h

]xn . ~7!

A relevant instanton solution satisfies~7! and connects adjacent critical points.
Let A5(ai j ) be a group element of SO(n). For coordinates on SO(n) we will use ‘‘gener-

alized Euler angles’’x1,x2,...,xk, k5n(n21)/2, defined by4

A5exn~n21!/2E12•••ex6E12ex5E23ex4E34ex3E12ex2E23ex1E12, ~8!

where Ei j represents a fundamental generator of a rotation in the (i , j ) plane. The SO(n) bi-
invariant metric is given by

gmn5
1

2
tr

]At

]xm

]A

]xn . ~9!

III. CLASSICAL VACUUMS

Fix real numbersc1 ,c2 ,...,cn with ci.2ci 11.0. Then

h5(
i 51

n

ciaii ~10!

is a Morse function5 on SO(n) with critical pointsP( l ),

P~ l !5diag~e1 ,e2 ,...,en!, e i561, )
i

e i51. ~11!

Around each critical point,h has the expansion

h5(
i

e ici1(
i , j

~l i j j i j
2 1m i j h i j

2 !, ~12!

where

l i j 52
e j2e i

4
~cj2ci !, j i j 5ai j 1aji , ~13!
J. Math. Phys., Vol. 38, No. 12, December 1997
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m i j 52
e j1e i

4
~cj1ci !, h i j 5ai j 2aji . ~14!

Witten showed that there is one classical vacuum for each critical point. More specifically
each critical point whose Hessian matrix hasl negative eigenvalues there is a vacuum st
corresponding to anl -form:

u l &5)
i , j

)
e i5e j 51

ĉh i j
* )

e i.e j

ĉj i j
* u0&, ~15!

wherel represents the number of the excited fermions.
The true vacuums are determined by the quantum tunneling between adjacent classica

ums ~15!. According to Witten,1 one has

^ l 11udhu l &5(
g

nge2„h~P~ l 11!!2h~P~ l !!… ~16!

whereng is an integer assigned for each instanton pathg from P( l ) to P( l 11). If a stateu l & does not
couple with any adjacent classical vacuums, that is ifdhu l &50 and^ l udh50, u l & is a true vacuum.

IV. REFLECTION SYMMETRIES AND TRUE VACUUMS

The Morse function~10! and the HamiltonianĤ admit a large group of symmetries. One s
of symmetries is generated by then21 transformations that change the signs of all the o
diagonal elements with a given subscript. Thus for 2< i<n we have a transformation

ai j→2ai j and aji→2aji , j Þ i . ~17!

In terms of the Euler angles, this is a reflectionxm→2xm for certainm. We refer to the super-
symmetric extension as@ i #:

@ i #:$xm,ĉ* m,ĉm% i→$2xm,2ĉ* m,2ĉm% i , ~18!

where$ % i means that suitable indicesm should be chosen to realize~17!.
Under the transformation~17!, tr AtA is invariant andgmn andgmn reverse their signs asxmxn.

Subsequently,¹m has the same transformation properties as]m . Thus, d5ĉ* m¹m and d†

5g21/2¹mg1/2gmnĉn are invariant under~18!. Accordingly,dh , dh
† , andĤ are also invariant.

We obtain one last invariant transformation by transposing the matrixA. This transformation
exchanges some pairs of the Euler angles. We refer to its supersymmetric extension as@ t#:

@ t#:$xm,ĉ* m,ĉm% t↔$xn,ĉ* n,ĉn% t . ~19!

To be precise some combinations of the transformations@ i # may be added to~19! to represent
A→At. Under the transformation@ t#, the metric ~9! transforms asgmm↔gnn , gmn↔gmn ,
gml↔gln for a pair of indicesm andn in $ % t and an indexl that does not belong to$ % t ; as for
the covariant derivatives we see¹m↔¹n and¹l→¹l . Thusdh , dh

† , andĤ are invariant under
@ t#.

The aboven transformations generate 2n symmetry transformations. Under the transformati
@ i # @~18!#, ĉh lm

* , andĉj lm
* reverse their signs ifl 5 i or m5 i . Under the transformation@ t#, ĉh lm

*

reverse their signs andĉj lm
* are invariant. Thus, the classical vacuums have definite parities u

the symmetry transformations. If the parities of the classical vacuumsu l & andu l 11& are different
for one of the symmetry transformations, the matrix element^ l 11udhu l & vanishes. Conversely, i
J. Math. Phys., Vol. 38, No. 12, December 1997
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the process is not forbidden by the symmetries, we can see that the matrix element is non
follows. There are two instantons that contribute to this matrix element~see Appendix B!. Cor-
respondingly, we split the matrix element into two piecesT1 and T2 , respectively. Because th
Morse functionh is bounded,T1 , as well asT2 , is nonzero. Let us consider the reflectio
transformation that interchanges the two instantons~a reflection transformation that does n
interchange the two instantons imposes no restriction on the amplitude!. In terms of the trans-
formed variables,T1 takes the form ofT2 ~which is written by the original variables! up to an
overall sign. If the parities of the classical vacuums are the same, we see thatT15T2 and the
matrix element does not vanish. Thus we can select true vacuums and the number of s
vacuums will be in agreement with the de Rham cohomology of SO(n). In Appendix A we
examine SO~5! as an example. We see that our selection rule works well.

V. INSTANTON EFFECTS

In this section we discuss instanton effects between the classical vacuums. For a p
adjacent classical vacuums there are a pair of instanton paths:

1
e1

�

e i 21

cosu 7sin u

6e sin u e cosu

e i 12

�

en

2 , ~20!

where e561. In Appendix B we show that there are no other relevant instanton paths.
reflection transformation either interchanges these two paths or leaves them invariant. The
paths give a pair of instanton solutions of~7! with the coordinates other thanu are constants. Since
guu5guu51, the gradient flow equation~7! for u is

du

dt
52~ci1eci 11!sin u. ~21!

Its instanton solution is

cosu5tanh„~ci6ci 11!t1a…, ~22!

wherea is an arbitrary constant.
An instanton solution causes a nonzero instanton effect between the corresponding

classical vacuums. However, a pair of instanton effects can cancel each other. From the ar
in the previous section, we can determine whether the quantum effects of a pair of inst
cancel each other or add up. If the matrix element^ l 11udhu l & vanishes, we see that the tw
instanton effects cancel each other. If the process is not forbidden by the symmetries, we s
the two instanton effects add up and the corresponding classical vacuums cease to be va

VI. SUMMARY

For the particular Morse function~10! on SO(n), we have identified all the classical vacuum
all the instantons, and all the true vacuums of Witten’s supersymmetric quantum mech
J. Math. Phys., Vol. 38, No. 12, December 1997
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Between each pair of adjacent classical vacuums there are exactly two instanton solutio
reflection symmetries of the theory determine whether these cancel each other or add. T
vacuums correctly give the de Rham cohomology of SO(n) for n<5.
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APPENDIX A: AN EXAMPLE—SO „5…

There are 16 classical vacuums

u0&,~21,21,21,21,1!;

u1&,~21,21,21,1,21!; u2&,~21,21,1,21,21!;

u3A&,~21,21,1,1,1!; u3B&,~21,1,21,21,21!;

u4A&,~21,1,21,1,1!; u4B&,~1,21,21,21,21!;

u5A&,~21,1,1,21,1!; u5B&,~1,21,21,1,1!;

u6A&,~21,1,1,1,21!; u6B&,~1,21,1,21,1!;

u7A&,~1,21,1,1,21!; u7B&,~1,1,21,21,1!;

u8&,~1,1,21,1,21!; u9&,~1,1,1,21,21!;

u10&,~1,1,1,1,1!,

where for exampleu4A&;ĉj23
* ĉh24

* ĉh25
* ĉh45

* u0&. In Table I we list their parities. From the selectio

rule we see thatu0&, u3A&, u7B&, andu10& are true vacuums. The other classical vacuums ceas
be vacuums owing to quantum effects. This result is in agreement with the de Rham cohom
H* „SO(5)…>∧(x3 ,x7).

APPENDIX B: INSTANTON SOLUTIONS

In this Appendix we show that all relevant instanton solutions are given by~20!. Let us
consider an instanton path from diag(21,1,1,...) to diag(1,21,1,...) ~the discussion below applie
to an arbitrary pair of adjacent critical points!. From~13! and~14! we see thatj2i or h2i are stable

TABLE I. Parities of the classical vacuums. We abbreviated even and odd as e and o, respectively.

0 1 2 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8 9 10

@2# e e e e o o o o o o o o e e e e
@3# e e e e o o o o o o o o e e e e
@4# e o o e o e o e e o e o e o o e
@5# e o o e o e o e e o e o e o o e
@ t# e e e o e o e o o o o o o o o e
J. Math. Phys., Vol. 38, No. 12, December 1997
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modes att52`. Correspondingly,h2i or j2i are unstable modes att5`. This implies thatj2i

[h2i[0 anda2i[ai2[0 (i 53,...,n) in this process. SinceAPSO(n) anda22 is not a constant,
we easily find that a1i[ai1[0 (i 53,...n). Thus in this process SO(n) is reduced to
SO~2!%SO(n22).

It is easy to see that the elements in SO(n22) are constants. Let us introduce Euler angles
SO(n22) as

3 •••

3 S cosb •••

A �

DA
. ~B1!

Sincegbb51 andgbm50, the gradient flow equation forb is

db

dt
52„c31c~ t !… sin b, ~B2!

wherec(t) is given by a linear combination ofc4 ,...,cn and uc(t)u,c3 . Sincec31c(t).0, Eq.
~B2! has a stable point,b50, and an unstable point,b5p. If b50 at t52`, we seeb[0, and
if b5p at t5`, we seeb[p, and we obtaina3i[ai3[0 (i 54,...,n). Thus, we can fix all the
elements in SO(n22) inductively. Thus all instanton paths have the form~20!.

1E. Witten, J. Diff. Geom.17, 661 ~1982!.
2T. Hirokane, M. Miyajima, and Y. Yasui, J. Math. Phys.34, 2789~1993!.
3K. Oshima, Prog. Theor. Phys.96, 1237~1996!.
4M. Böhm and G. Junker, J. Math. Phys.28, 1978~1987!.
5I. Yokota, Manifold and Morse Theory~Gendai Suugakusha, Kyoto, 1978! ~in Japanese!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Dynamical entropy of generalized quantum Markov chains
over infinite dimensional algebras

Yong Moon Parka)

Department of Mathematics and Institute for Mathematical Sciences, Yonsei University,
Seoul 120-749, Korea

Hyun Hye Shinb)

Department of Mathematics, Ehwa Women’s University, Seoul, 11-1, Korea

~Received 22 July 1997; accepted for publication 18 August 1997!

We compute the dynamical entropy in the sense of Connes, Narnhofer, and
Thirring of generalized quantum Markov chain over infinite dimensional algebras.
For the case in which the transition expectation is defined by a set of conditional
density amplitudes, we show that the dynamical entropy is equal to the mean
entropy. Thus we extend the result of Park@Lett. Math. Phys.32, 63–74~1994!# to
non-AF type quantum Markov chains. We employ the main method developed in
Park@Lett. Math. Phys.32, 63–74~1994!# with necessary modifications. ©1997
American Institute of Physics.@S0022-2488~97!02312-8#

I. INTRODUCTION

In Ref. 1, Connes, Narnhofer, and Thirring~CNT! extended the notion of dynamical entrop
of classical dynamical systems introduced by Kolmogorov and Sinai to the case of automorp
of C* -algebra invariant with respect to a given state.2,3 The motivation was to find a qualitativ
characterization to distinguish some automorphisms.4 Thereafter there have been many concept
and computational studies on the subject.5,3,6–14 Also there have been other proposals f
C* -dynamical entropy. See Ref. 15 and references therein.

In this paper we compute the CNT entropy of generalized quantum Markov chains~GQMC!
over infinite dimensional algebras. The notion of generalized quantum Markov chains~GQMC!
were introduced by Accardi and Accardi and Frigerio,16,17 and it has been extensively studied b
many authors~Ref. 8 and references therein!. As the classical counter-part, GQMC should pl
important roles in quantum probability theory.

In Ref. 5 one of us computed the CNT entropy of shift automorphisms of GQMC for the
in which the one-site algebra is finite dimensional, and showed that the CNT entropy is eq
the mean entropy. For earlier entropic results and additional informations on quantum M
chains~QMC!, we refer to chapter 11 of Ref. 8. In this paper we want to extend the result of
5 to the case in which the one-site algebra is infinite dimensional. We shall prove that fo
GQMC defined via a set of conditional density amplitudes the CNT entropy is equal to the
entropy. We use the method developed in Ref. 5 with necessary modifications. It should be
to mention that up to now the most entropy computations were done for approximately finite~AF!
C* -dynamical systems with a few exceptions.5,3,6–14Thus the method we develop in this pap
can be considered as one example of computational methods of dynamical entropy for n
C* -dynamical systems.

We organize the paper as follows: In Sec. II, we recall the definition of GQMC and
describe the class of GQMC we consider in this paper.17 In Sec. III, we review the dynamica
entropy ofC* -algebras and then state our main theorem~Theorem 3.2!. In Sec. IV, we prove

a!Electronic mail: ympark@bubble.yonsei.ac.kr
b!Post-doctoral fellow, supported by the Korea Research Foundation.
0022-2488/97/38(12)/6287/17/$10.00
6287J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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Theorem 3.2 for GQMC defined via a single conditional density amplitude. In Sec. V, we p
Theorem 3.2 for general case.

Before closing this Introduction, we apologize that Ref. 5 contained erroneous expres
That is, the definition ofW̃0 andK̃ in ~4.15! of Ref. 5 is incorrect. We state correct expressions
W̃0 and K̃ in Remark 5.3 in this paper.

II. GENERALIZED QUANTUM MARKOV CHAIN

Let us recall the definition of generalized quantum Markov chains.16,17 For eachi PZ, let us
associate identical copies of a separable Hilbert spaceH and aC* -subalgebraM0 of B~H!
whereB~H! is the algebra of bounded operators onH:

H$ i %5H,

A$ i %5M0,B~H!, for each i PZ. ~2.1!

We assume that any minimal projection inM 0 is one dimensional.
For any boundedL,Z, let

AL5 ^

i PL

M0 ,

A5S ø
LøZ

L:finite

ALD 2, ~2.2!

where the bar denotes the norm closure. For eachi PZ, let Ji be the canonical injection ofM0 to
the i -th component ofA. For eachL,Z we identify AL as a subalgebra ofA.

The basic ingredients in the construction of a stationary generalized quantum Markov ch
the sense of Accardi and Frigerio consist of a completely positive unital map~c.p.u. map! E,17

called a transition expectation:

E:M0^ M0→M0 ,

E~1^ 1!51, ~2.3!

and a statef0 on M0 , satisfying the following condition:

f0~E~1^ x!!5f0~x!, xPM0 . ~2.4!

For anyL5@ i ,k#[$ i ,i 11,...,k%,Z andxjPM0 , i< j <k, one then defines

vL~xi ^ xi 11^ ...^ xk!5f0~E~xi ^ E~xi 11^ E~xi 12^ ••• ^ E~xk^ 1!••• !!!!. ~2.5!

Notice that the family of local states$vL :LPZ% satisfies a compatible condition by~2.3! and
~2.4!, and the statev defined byvL , LPZ, is stationary.

Definition 2.1 (Refs. 16 and17!: ~a! Let E be a transition expectation satisfying~2.3! and let
f0 be a state onM0 satisfying~2.4!. Then (f0 ,E) is called a Markov pair.

~b! The statev on A defined by the sequence$v@2n,n#%n>1 is called a stationary generalize
quantum Markov state. The dynamical system (A,a,v) is called a generalized quantum Martko
chain ~GQMC!, wherea is the shift map inA,a~Jn(a))5Jn11(a).

Notice that by~2.4! the statev is invariant with respect to the shifta.
Remark 2.2:If the transition expectation satisfies the additional condition.

E~x^ y!5E~x^ E~y^ 1!!, x,yPM0 , mod$f0 ,E%,
J. Math. Phys., Vol. 38, No. 12, December 1997
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then the corresponding dynamical system is called a Quantum Markov Chain.17

In this paper we consider the generalized quantum Markov chain~GQMC! defined by a set
$K(x)%xPX of conditional density amplitudes.16,17We first consider the generalized quantum Ma
kov chain defined via a single conditional density amplitude. LetTr be the trace onM0 which
takes the value 1 at each minimal projection, and letTr̃ be the trace onM0^ M0 . Denote byTr̃ ( i ),
i 51,2, the partial traces defined by

Tr̃ ~1!~a^ b!5Tr~a!b Tr̃~2!~a^ b!5Tr~b!a. ~2.6!

Let W0PM0 be a density matrix inM0 @W0>0 and Tr(W0)51# and let KPM0^ M0 be an
operator satisfying

Tr̃ ~2!~KK* !51, Tr̃ ~1!~K* ~W0^ 1!K !5W0 . ~2.7!

A positive operatorKPM0^ M0 satisfying~2.7! is called a conditional density amplitude.16,17

For given conditional density amplitudeK, one can define a transition expectationE by

E~x!5Tr̃ ~2!~KxK* !, xPM0^ M0 . ~2.8!

Let f0 be the state onM0 defined by the density matrixW0 . Then it follows from~2.6! and~2.7!
that (f0 ,E) is a Markov pair generated by the pair (W0 ,K). For a conditional density amplitud
K, and for i , k, nPZ, let

K @n,n11#5~Jn^ Jn11!~K !,

K @ i ,k11#5K @ i ,i 11#K @ i 11,i 12# ...K @k,k11# , i<k. ~2.9!

We write that

W@ i ,k11#5K @ i ,k11#
* Ji~W0!K @ i ,k11#. ~2.10!

It then follows from~2.5! and ~2.8! that

v@ i ,k#~xi ^ xi 11^ ...^ xk!5Tr~W@ i ,k11#~xi ^ xi 11^ ...^ xk^ 1!!, ~2.11!

whereTr is the trace onA@ i ,k11# .
The above construction of transition expectation can be generalized as follows: Let (X,M,m)

be a measure space wherem has a countable base, i.e., there exists a family of measurable
$An%nPN,M such that for givenBPM and anye.0, there isAn satisfying m(AnDB),e.
Notice thatL2(X,dm) is separable.

Let $K(x)%xPX be a set of the Hilbert–Schmidt operators inM0^ M0 satisfying

iK~• !iPL2~X,dm!,

E
X
Tr̃ ~2!~K~x!K~x!* !dm~x!51,

E
X
Tr̃ ~1!~K~x!* ~W0^ 1!K~x!!dm~x!5W0 , ~2.12!

whereW0PM0 is a density matrix. Then the most general transition expectation has the fo17
J. Math. Phys., Vol. 38, No. 12, December 1997
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E~A!5E
X
Tr̃ ~2!~K~x!AK~x!* !dm~x!, APM0^ M0 . ~2.13!

The set$K(x)%xPX,M0^ M0 satisfying the conditions in~2.12! will be called a set of conditiona
density amplitudes.

Next let us consider the mean entropy. For a given statev on A and finiteI ,Z, let S(vuAI
)

be the entropy of the statev on AI ,1,8 wherevuAI
is the state onAI defined by the restriction o

v on AI . If vuAI
is given by normalized density matrixr I (Tr(r I)51), then

S~vuAI !52Tr~r I ln r I !. ~2.14!

By the subadditivity ofS(vuAI
),4 the limit

s~v!5 lim
n→`

1

n11
S~vuA@0,n#

! ~2.15!

exists. The quantitys(v) is called the mean entropy of the statev on A.

III. DYNAMICAL ENTROPY AND MAIN RESULT

As a preparation, we collect some entropy results which we are needed in the sequel.
general definition of the CNT entropy and related results we refer to Refs. 1, 8. Let (A,a,v) be
a C* -dynamical system, whereA is a quasi-local algebra indexed by the bounded setsL,Z, a
is an automorphism onA andv is a state onA which is invariant with respect toa.

For a given statev on A andkPN, let $v i 1i 2 ...i k
: i jPN, j 51,...,k% be a finite decomposition

of the statev:

v5 (
i 1i 2 ...i k

v i 1i 2 ...i k
.

Let h be the function on@0,1# defined byh(x)52x ln x if x.0 andh(0)50. We write

v i l
~ l !5 (

i 1i 2 ...i k
i l :fixed

v i 1i 2 ...i k
and v̂ i l

~ l !5v i l
~ l !/v i l

~ l !~1!. ~3.1!

For given finite dimensional subalgebrasA1 ,A2 ,...,Ak,A, put

Hv~A1 ,A2 ,...,Ak!5 sup

( v i 1i 2 ...i k
5v

F (
i 1i 2 ...i k

h~v i 1i 2 ...i k
~1!!2(

l 51

k

(
i l

h~v i l
~ l !~1!!

1(
l 51

k

(
i l

S~vuAl
uv̂ i l

~ l !uAl
!v i l

~ l !~1!G , ~3.2!

whereS(vuv̂ i l
( l )) is the relative entropy,1,8 and the sup is taken over finite decompositions ofv.

For any finite dimensional subalgebraN ,A, let

hv,a~N !5 lim
k→`

1

k
Hv~N ,a~N !,...,ak21~N !!. ~3.3!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Let hv(a) be the dynamical entropy defined as in Refs. 1, 8. For an AF-algebraA

5(øn51
`

An)2 with 1PA1,A2 ... finite dimensional, it turned out that the equality,

hv~a!5 lim
n

hv,a~An!, ~3.4!

holds ~Ref. 1, Corollary V.4!. Also see Ref. 18 for tracial states. This Kolmogorov-Sinai ty
theorem has been extended to the setting of quasi-local algebras in quantum statistical mec9

We state the result in the form applicable to GQMC~Ref. 9, Theorem 3.2!.
For a givenL,Z, put HL5 ^ i PLH. Let l i , i 51,2,..., be the eigenvalues of the dens

matrix rL listed in decreasing order~counting multiplicities!, and letHL,n be the subspace ofHL

spanned by the eigenvectors corresponding to eigenvaluesl1 ,l2 ,...,ln . Denote byPL,n the
projection operator fromHL to HL,n . We remark that, sincerLPAL , PL,nPAL . Put

AL,n[PL,nALPL,n% C•PL,n
' , ~3.5!

wherePL,n
'512PL,n . It follows from Theorem 3.2 of Ref. 9 that the equality,

hv~a!5 lim
L↑Z

lim
n→`

hv,a~AL,n!, ~3.6!

holds. Here the convention that the subalgebraAL,n is standing for the inclusion mapAL,n→A

has been used.
For later use we collect some entropic results from Ref. 1.
Lemma 3.1 (Ref. 1, Proposition III.6):~a! If Ai8,Ai , i 51,...,n, then

Hv~A18 ,A28 ,...,An8!<Hv~A1 ,A2 ,...,An!.

~b! Hv(A1 ,A2 ,...,An) depends only upon the set$A1 ,A2 ,...,An%5X.
~c! The inequalities,

max$Hv~X!,Hv~Y!%<Hv~XøY!<Hv~X!1Hv~Y!,

hold with the notation in~b!.
The above results are consequences of general results in Ref. 1.
In order to state our main result, we need additional notations. Let (A,a,v) be a generalized

quantum Markov chain defined via a density matrix~operator! W0PM0 and a set$K(x)%xPX of
conditional density amplitudes. LetA$0% be the one-site local algebra, i.e.,A$0%5J0(M0). De-
note by S(vuA$0%

) the corresponding entropy defined as in~2.14!. Let W05( i 51
` l iqi be the

spectral decomposition where for eachi PN, qi is a minimal projection inM0 . Let B0 be the
abelianC* -algebra generated by$q1 ,q2 ,...,%,M0 , and letS(vuB0

) be the~classical! entropy of
B0 with respect tov.

Let $ f n%nPN be an orthonormal basis ofL2(X,dm). Put

Ki[E
X
K~x! f i~x!dm~x!, i PN. ~3.7!

For eachi PN we define

W0
~ i ![Tr̃M0^ M0

~1! ~Ki* ~W0^ 1!Ki !, ~3.8!

W~ i ![(
j 51

`

Tr̃M0^ M0

~2! ~K j* ~W0
~ i !

^ 1!K j !. ~3.9!
J. Math. Phys., Vol. 38, No. 12, December 1997
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In Sec. V we shall show that( i PNW0
( i )5W0 andr$0%5( j 5NW( j ) be the density matrix of the loca

statevuA$0%
. We define

S̃$0%[2(
i 51

`

Tr~W~ i ! ln W~ i !!. ~3.10!

The following is our main result.
Theorem 3.2: Let W0PM0 and $K(x)%xPX,M0^ M0 be a density matrix and a set o

conditional density amplitudes satisfying~2.12! and let ~A,a,v! be the generalized quantum
Markov chain ~GQMC! constructed fromW0 and $K(x)%xPX . Under the assumption tha
S(vuA$0%

), S(vuB$0%
), andS̃$0% are finite, the equality,

hv~a!5s~v!,

holds, wheres(v) is the mean entropy.
Remark 3.3:~a! In Ref. 5, the above result has been obtained for GQMC for the case in w

M0 is finite dimensional and the transition expectation is defined by a set$K1 ,K2 ,...,Kl% of
conditional density amplitudes. Thus Theorem 3.2 is an extension of the result of Ref. 5
quantum Markov chain$A,a,v%, whereA is a non-AF algebra.

~b! By the subadditivity ofS(vuAI
), the finiteness ofS(vuA$0%

) implies the finiteness of the

mean entropys(v). We shall need the finiteness ofS(vuB$0%
) and S̃$0% in the proof of Theorem

3.2.

IV. PROOF OF MAIN THEOREM: A SINGLE CONDITIONAL DENSITY AMPLITUDE

We shall produce the proof of Theorem 3.2 in this section and the next section. We sha
the methods similar to those employed in Ref. 5 with suitable modifications. Since the on
algebraM0 is infinite dimensional, non-trivial modifications are needed to obtain dimens
independent estimates and also to control several limiting procedures.

In this section we first derive the upper boundhv(a)<s(v) and then prove the lower boun
s(v)<hv(a) for the case in which GQMC is defined by a single conditional density amplitudK.
The proof of the lower bound for the general case will be postponed to the next section
following is the upper bound for the dynamical entropy.

Proposition 4.1:Let hv(a) and s(v) be the dynamical and mean entropies. For GQM
~A,v,a!, the bound

hv~a!<s~v!

holds.
Proof: From ~3.6!, it follows that

hv~a!5 lim
L↑Z

lim
n→`

hv,a~AL,n!,

where

hv,a~AL,n!5 lim
k→`

1

k
Hv~AL,n ,a~AL,n!,...,ak21~AL,n!!. ~4.1!

We remark that the definition of the entropy functionalHv(A1 ,A2 ,...,Ak21) given in ~3.2!
can be extended to the case in which the algebrasAi , i P@1,k21#, are not necessarily finite
dimensional. Futhermore, using the monotonicity of relative entropy~Ref. 8, Theorem 5.3! and the
J. Math. Phys., Vol. 38, No. 12, December 1997
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methods in the proof of Proposition III.6 of Ref. 1, it can be checked that Lemma 3.1 also
in this case. Also see the proof of Theorem 10.1 of Ref. 8. Thus it follows from Lemma 3.1
for L5@2L,L#,

Hv~AL,n ,a~AL,n!,...,ak21~AL,n!!<Hv~AL ,a~AL!,...,ak21~AL!!

5Hv~A@2L,L1k#!<S~vuA@2L,L1k#
!,

where we have used the fact thatH(AL)<S(vuAL
) for anyL,Z.2 The proposition follows from

~4.1! and the above bound. j

The rest of the paper is devoted to proving the lower boundhv(a)>s(v). For @1,n#
5$1,2,...,n%, let $A@1,n#

(M ) % be an increasing sequence~net! of finite dimensional unital subalgebra o
A@1,n# such that

~ø
M

A@1,n#
~M ! !95A@1,n# . ~4.2!

For givenk, n, MPN, it follows from Lemma 3.1~c! that

Hv~A@1,n#
~M ! ,a~A@1,n#

~M ! !,...,ank~A@1,n#
~M ! !!>Hv~A@1,n#

~M ! ,A@n11,2n#
~M ! ,...,A@n~k21!11,nk#

~M ! !. ~4.3!

Notice that

hv,a~A@1,n#
~M ! !5 lim

k→`

1

nk
Hv~A@1,n#

~M ! ,...,ank~A@1,n#
~M ! !!. ~4.4!

In order to show the main idea of the proof more clearly, we first consider GQMC define
a single conditional density amplitudeK as in~2.8!. To obtain the lower bound we have to choo
an optimal decomposition of the statev. For given@ l ,m#,Z, let $xJ%,A@ l ,m#

1 be a finite decom-
position of unity:

(
J

xJ51, xJ>0, xJPA@ l ,m# .

For @ l ,m#,@ i 11,k21#, define states onA@ i ,k# by

v@ i ,k#~y![Tr~K @ i ,k11#
* xJJi~W0!K @ i ,k11#y!, yPA@ i ,k# . ~4.5!

Notice thatxJ andJi(W0) commute. It follows from~2.10!, ~2.11!, and~4.5! that

v@ i ,k#5(
J

v@ i ,k#,J .

One may check that the family of states$v@ i ,k#,J : i< l ,m<k% is compatible. LetvJ be the state on
A which is the extension of$v@ i ,k#,J%. Then we have

(
J

vJ5v.

Thus from a decomposition of unity$xJ% we obtain a decomposition of the statev.
Next we choose a decomposition of unity explicitly. As in Sec. III, letW05( i 51

` l iqi be the
spectral decomposition whereqi is a minimal projection inM0 . Notice that by the assumption o
M0,B(H), qi is a rank one projection.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Denote

H Pi5qi , for 1< i<N21,

PN512S (
i 51

N21

qi D .
~4.6!

For givenk, n, NPN, let I be the multi-indices given by

I 5$J5~J1 ,J2 ,...,Jk!:JlP$1,2,...,N%n%. ~4.7!

For eachJl5( i 1 ,i 2 ,...,i n)P$1,2,...,N%n, put

PJl
5Jn~ l 21!11~Pi 1

!Jn~ l 21!12~Pi 2
!...Jnl

~Pi n
!, ~4.8!

and for givenJ5(J1 ,J2 ,...,Jk)PI , we write

PJ5PJ1
PJ2

...PJk
. ~4.9!

Then from the above definitions we have

(
JPI

PJ51, for PJl
5 (

J:
Jl :fixed

PJ . ~4.10!

Let $vJ%JPI be the decomposition ofv from the decomposition of unity$PJ%JPI :

v@1,nk#,J~y!5Tr~K @1,nk11#
* PJJ1~W0!K @1,nk11#y!, for yPA@1,nk# . ~4.11!

Notice thatJ1(W0) andPJ, JPI , are commuted.

From ~3.22!, ~4.10! and the shift invariance ofv we have

Hv~A@1,n#
~M ! ,A@n11,2n#

~M ! ,...,A@n~k21!11,nk#
~M ! !> lim

N→`
F (JPI

h~vJ~1!!2k (
IP$1,2,...,N%n

h~v I~1!!

2k (
I P$1,2,...,N%n

S~vuA
@1,n#
~M ! uv̂ I uA

@1,n#
~M ! !v I~1!G ,

~4.12!

whereS(vuv̂) is the relative entropy.8

Let I 85$J85(J18 ,J28 ,...,Jk8):J185( i 1 ,...,i n)PNn% be multi-indices. As in~4.7!–~4.9!, we
write that

PJ85PJ
18
•••PJ

k8
,

PJ
l8
5Jn~ l 21!11~qi 1

!•••Jnl
~qi n

!. ~4.13!

Sinceh is concave and relative entropy is jointly convex,8 h and relative entropy are mono
tone with respect to a subdivision of state decomposition. Hence they are monotone onN and so
the limit on N in ~4.12! exists. Thus we conclude that

~4.12!> (
J8PI 8

h~vJ8~1!!2k (
I 8PNn

h~v I 8~1!!1k (
I 8PNn

S~vuA
@1,n#
~M ! uv̂ I 8uA

@1,n#
~M ! !v I 8~1!.
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We divide both sides of~4.12! by nk and takek to infinity. Then~4.4! and the above bound
yields that for anynPN,

hv,a~A@1,n#
~M ! !> lim

k→`

1

nk H (
J8PI 8

h~vJ8~1!!2k (
I 8PNn

h~v I 8~1!!J
1

1

n (
I 8PNn

S~vuA
@1,n#
~M ! uv̂ I 8uA

@1,n#
~M ! !v I 8~1!. ~4.14!

Next, we use Corollary 5.12 of Ref. 8 and the monotone convergence theorem, to obta

(
I 8PNn

S~vuA
@1,n#
~M ! uv̂ I 8uA

@1,n#
~M ! !v I 8~1!→ (

I 8PNn
S~vuA@1,n#

uv̂ I 8uA@1,n#
!v I 8~1!, as M→`.

~4.15!

Notice that

(
I 8PNn

S(vuA@1,n#
uv̂ I 8uA@1,n#

v I 8~1!5S~vuA@1,n#
!2 (

I 8PNn
v I 8~1!S~v̂18A@1,n#

!. ~4.16!

The above results imply that

ha~v!>sup
n

sup
M

hv,a~A@1,n#
~M ! !> lim

n→`

lim
k→`

1

nk H (
J8PI 8

h~vJ8~1!!2k (
I 8PNn

h~v I 8~1!!J
1 lim

n→`

1

n H S~vuA@1,n#
!2 (

I 8PNn
v I 8~1!S~v̂ I 8uA@1,n#

!J .

~4.17!

The main idea to obtain the lower bound is to show that 1/n( I 8PNnv I 8(1)S(v̂ I8uA@1,n#) tends
to zero asn tends to infinity.

Proposition 4.2:Assume that the transition expectation is defined by a single conditi
density amplitude. Then there exists a constantc independent ofnPN and I 8PNn such that the
bound

(
I 8PNn

v I 8~1!S~v̂ I 8uA@1,n#
!<c

holds uniformly inn and I 8. We postpone the proof of the above result. Now Theorem 3.2 f
single conditional density amplitude is a consequence of Proposition 4.2.

Proof of Theorem 3.3 (for single conditional density amplitude):Let B0 be the Abelian
C* -algebra generated by$q1 ,q2 ,...%,M0 andB5( ^ B0)Z. As in Sec. II, put

B@ l ,m#5 ^

i 5 l

m

Ji~B0!,

for any @ l ,m#,Z. Define a staten on B by

n~PJ!5vJ~1!, PJPB@ l ,m# ,

where forJPN@ l ,m#, PJ5Jl(qi l
)...Jm(qi m

). Then it follows that
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(
JPN@ l ,m#

h~vJ~1!!5Sn~B@ l ,m#!,

whereSn(B@ l ,m#) is the classical entropy. By the subadditivity of the classical entropy and
finiteness ofS(vuB$0%

), Sn(B@ l ,m#) is finite for any@ l ,m#,N. Since the classical mean entrop
exists, we have

lim
n→`

lim
k→`

1

nkF (JPĨ

h~vJ~1!!2k (
I PNn

h~v I~1!!G50 ~4.18!

Thus Theorem 3.2 follows from~4.17!, ~4.18! and Proposition 4.2. This completes the proof of t
main theorem for the single conditional density amplitude. j

Next we prove Proposition 4.2. We first need the following lemma.
Lemma 4.3 (Ref. 5, Lemma 4.2.):For given minimal projectionPPM0 andAPM0 , put

Q5APA* /Tr~APA* !.

ThenQ is a minimal projection inM0 .
Proof: Since any minimal projection inM0 is a rank one projection, the proof of this lemm

is same as the proof of Lemma 4.2 in Ref. 5. j

Proof of Proposition 4.2:Recall the definition ofv I 8:

v I 8~y!5Tr~K @1,n11#
* PI 8J1~W0!K @1,n11#y!, yPA@1,n# .

We denote byv I 8
8 the positive linear functional onA@1,n11# defined by the above relation fory

PA@1,n11# :

v I 8
8 ~y!5Tr~K @1,n11#

* PI 8J1~W0!K @1,n11#y!, yPA@1,n11# . ~4.19!

Notice thatv I 8
8 uA@1,n#

5v I 8uA@1,n#
. For I 8PNn, let v̂ I 8,i

8 be states onA@1,n11# defined by

v̂ I 8,i
8 ~x!5

1

N
Tr~K @1,n11#

* PI 8Jn11~qi !J1~W0!K @1,n11#x!, ~4.20!

where N is the normalizing constant. Thenv̂ I 8
8 5(u51

` l I 8,i v̂̂ I 8,i
8 , ( i 51

` l I 8,i51. Thus one can
apply the triangle inequality and the convexity relation~Ref. 19, Proposition 6.2.25! for entropies
to obtain

S~v̂ I 8uA@1,n#
!5S~v̂ I 8

8 uA@1,n#
!<S~v̂ I 8

8 uA@1,n11#
!1S~v̂ I 8

8 uA$n11%
! ~4.21!

and

S~v̂ I 8
8 uA@1,n11#

!<(
i 51

`

l I 8,iS~v̂ I 8,i
8 uA@1,n11#

!1(
i 51

`

h~l I 8,i !,

respectively. Sincev̂ I 8,i
8 are pure states by Lemma 4.3,S(v̂ I 8,i

8 uA@1,n11#
)50 for all I 8,i .

From concavity ofh,
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(
I 8

v I 8~1!S (
i 51

`

h~l I 8,i !D<(
i 51

`

hS (
I 8

v I 8~1!l I 8,i D
5(

i 51

`

hS (
I 8

Tr~K @1,n11#
* PI 8Jn11~qi !J1~W0!K @1,n11#!D

5(
i 51

`

h~Tr~K @1,n11#
* Jn11~qi !J1~W0!K @1,n11#!!

5(
i 51

`

h~v~qi !!, by ~2.7!

5S~B$0%!,

whereB$0% is the Abelian algebra generated by$qi% i PN . Thus

(
I 8

v I 8~1!S~v̂ I 8
8 uA$1,n11%

!<S~B$0%!. ~4.22!

Also by concavity and the shift invariance ofv we have

(
I 8

v I 8~1!S~v̂ I 8
8 uA$n11%

!<S~vuA$n11%
!5S~vuA$0%

!. ~4.23!

Hence by~4.21!, ~4.22!, and~4.23!,

(
I8

v I 8~1!S~v̂ I 8uA$1,n%
!<S~B$0%!1S~A$0%!.

By the assumption in Theorem 3.2, the right hand side of the above expression is finite
proves the proposition completely. j

V. PROOF OF MAIN THEOREM FOR THE GENERAL CASE

In this section we will prove the lower bounds(v)<hv(a) for GQMC defined by the se
$K(x)%xPX of conditional density amplitudes. We first show that it is sufficient to consider GQ
defined by a countable set$Ki% i PN of conditional density amplitudes. We then construct GQM
$Ã,a,ṽ% such that it is generated by a density matrixW̃0 and a single conditional densit
amplitudeK̃, and such that~A,a,v! is a sub-dynamical system of$Ã,a,v̂%. Then the method
used in Sec. IV can be applied.

As in Section II, let$ f n%nPN be an orthonormal basis ofL2(X,dm). Let $en%nPN be a maximal
family of minimal projections such thatenf n5 f n for all nPN.

For eachi PN, let Ki be defined as in~3.7!. Then

Ki* 5E
X
K~x!* f i~x!dm~x!. ~5.1!

Lemma 5.1:Let $Ki% i PN be defined as in~3.7!. Then for anyAPM0^ M0 , the equality

(
i 51

`

KiAKi* 5E
X
K~x!AK~x!* dm~x! ~5.2!
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holds.
Proof: Since anyAPM0^ M0 can be written as complex linear combination of non-nega

elements, one may assume thatA>0. Let $fn%nPN be an orthonormal basis ofH ^ H. For any
cPH ^ H, by Parseval’s identity and the monotone convergence theorem one has

(
i 51

`

~c,KiAKi* c!5(
i 51

`

~A1/2Ki* c,A1/2Ki* c!

5(
i 51

`

(
n51

`

~fn ,A1/2Ki* c!~fn ,A1/2Ki* c!

5 (
n51

`

(
i 51

`

~fn ,A1/2Ki* c!~fn ,A1/2Ki* c!. ~5.3!

For givenf, cPH ^ H, denote byF(f,c)PL2(X,dm),

F~f,c!~x!5~f,A1/2K~x!* c!, xPX. ~5.4!

Notice that

~fn ,A1/2Ki* c!5E
X

f i~x!~fn ,A1/2K~x!* c!dm~x!5~ f i ,F~fn ,c!!L2~X,dm! . ~5.5!

Thus from~5.3!, ~5.5! and Parseval’s identity it follows that

(
i 51

`

~c,KiAKi* c!5 (
n51

`

~F~fn ,c!,F~fn ,c!!L2~X,dm!

5 (
n51

` E
X
~fn ,A1/2K~x!* c!~fn ,A1/2K~x!* c!dm~x!

5S c,E K~x!AK~x!* dm~x!c D .

The lemma follows from the above result and the polarization identity. j

Corollary 5.2: Let $Ki% i PN be defined as~3.7!. Then

(
i 51

`

Tr̃ ~2!~KiKi* !51M0
, (

i 51

`

Tr̃ ~1!~Ki* ~W0^ 1!Ki !5W0

and

E~A!5E
X
Tr̃ ~2!~K~x!* AK~x!!dm~x!5(

i 51

`

Tr̃ ~2!~Ki* AKi !

hold.
Proof: The corollary is a consequence of~2.12! and Lemma 5.1. j

Corollary 5.2 implies that it is sufficient to consider GQMC defined by a countable se
conditional density amplitudes$Ki% i PN .

For the proof of Theorem 3.2 for the general case, we first construct a generalized qu
Markov chain (Ã,a,ṽ) such that it is generated by a density matrixW̃0 and a single conditiona
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density amplitudeK̃, and such that (A,a,v) is a sub-dynamical system of (Ã,a,ṽ), i.e. ṽuA

5v. We then apply the method in the proof in Sec. IV. Let us enlarge the algebraA as follows.
Let D0 be the Abelian algebra generated by$e1 ,e2 ,...%. In fact, D0 is isomorphic tol `(C).

Put

M̃05M0^ D0 . ~5.6!

Denote byÃ the C* -algebra generated by the one-site algebraM̃0 . For given density matrix
W0PM0 and a countable set of conditional density amplitudes$Kl% l 51

` ,M0^ M0 which satisfy
the relations in Corollary 5.2, we write that

W̃05(
i 51

`

Tr̃M0^ M0

~1! ~Ki* ~W0^ 1M0
!Ki ! ^ ei ~PM̃0!,

K̃5(
i 51

`

Ki ^ ~1D0
^ ei ! ~PM̃0^ M̃0!. ~5.7!

Remark 5.3:In Ref. 5, incorrect expressions ofW̃0 andK̃ have been used. The definitions
W̃0 and K̃ in ~4.15! of Ref. 5 should be replaced by

W̃05(
l

Tr̃M0^ M0

~1! ~Ki* ~W0^ 1M0
!Ki ! ^ ei ~PM̃0!,

K̃5(
i 51

l

Ki ^ ~1D0
^ ei ! ~PM̃ ^ M̃0!.

The rest of the proof in Ref. 5 is the same as in Ref. 5.
A direct computation yields that

S~ṽuD0
!5S̃$0% , ~5.8!

where S̃$0% has been defined in~3.10!. Let Ki , i PN, be defined as in~3.7!. Then we have the
following result.

Lemma 5.4:~a! Relations

Tr̃ ~2!~K̃K̃* !51M̃0
,

Tr̃ ~1!~K̃* ~W̃0^ 1!K !5W̃0 , ~5.9!

hold.
~b! The equality

E~A!5Tr̃
M̃0^ M̃0

~2!
~K̃~A^ ~1D0

^ 1D0
!!K̃* !5(

i 51

`

Tr̃M0^ M0

~2! ~KiAKi* ! ^ 1D0
, APM0^ M0 ,

~5.10!

holds.
Proof: ~a! Using the facts thateiej5d i j ej andTrD0

(ej )51 for any i , j PN, one obtains from
~5.7! and Corollary 5.2 that
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Tr̃
M̃0^ M̃0

~2!
~K̃K̃* !5(

j 51

`

@ T̃r M0^ M0

~2! ~K jK j* ! ^ 1D0
#51M0

^ 1D0
51M̃0

~5.11!

and

Tr̃
M̃0^ M̃0

~1!
~K̃* ~W̃0^ 1!K !5(

j 51

`

@Tr̃
M̃0^ M̃0

~1!
~~~K j* ^ 1D0

!~W̃0^ 1D0
!K j ^ 1D0

! ^ ej !#

5(
j 51

` F(
i 51

`

Tr̃M0^ M0

~1! ~K j* ~Tr̃M0^ M0

~1! ~Ki* ~W0^ 1M0
!Ki ! ^ 1M0

!K j ! ^ ej G
5(

j 51

`

@Tr̃M0^ M0

~1! ~K j* ~W0^ 1M0
!K j ! ^ ej #5W̃0 . ~5.12!

~b! An inspection yields that

Tr̃
M̃0^ M̃0

~2!
~K̃~A^ ~1D0

^ 1D0
!!K̃* !5(

j 51

`

Tr̃M0^ M0

~2! ~K jAKj* ! ^ 1D0
.

This proves the lemma completely. j

Lemma 5.5:

ṽuA5v.

Proof: Notice that

Tr̃D0
~W̃0!5(

i 51

`

Tr̃M0^ M0

~1! ~Ki* ~W0^ 1!Ki !5W0 .

Thus the lemma follows from Lemma 5.4~b! and the above result. j

In the remainder of this section we shall prove our main result of Theorem 3.2 by usin
above lemmas. Let (Ã,a,ṽ) be the generalized quantum Markov chain constructed from the
(W̃0 ,K̃). For any subalgebraN of A, let g:N →Ã be the embedding map. Then the followin
inequality:

Hv~A@1,n#
~M ! ,A@n11,2n#

~M ! ,...,A@n~k21!11,nk#
~M ! !

>H ṽ~g~A@1,n#
~M ! !,g~A@n11,2n#

~M ! !,...,g~A@n~k21!11,nk#
~M ! !!, ~5.13!

holds.1,8

We introduce a decomposition of the stateṽ similar to that in ~4.5!–~4.10!. For fixed
k,n,N,m>1, let Ĩ be the multi-indices given by

Ĩ 5$J̃5~ J̃1 ,J̃2 ,...,J̃k!: J̃lP~$1,2,...,N%3$1,2,...,m%!n%.

Define

Ẽj5H ej , 1< j <m21,

(
j 5m

`

ej , j 5m.
~5.14!
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For eachJ̃l5(( i 1 , j l),...,(i n , j n))P($1,2,...,N%3$1,2,...,m%)n, put

P̃ J̃ l
5Jn~ l 21!11~Pi 1

^ Ẽj 1
!...Jnl

~Pi n
^ Ẽj n

!, ~5.15!

and for givenJ̃5( J̃1 ,...,J̃n) we write

P̃ J̃ 5 P̃ J̃1
P̃ J̃2

. . . P̃ J̃n
. ~5.16!

For the index setĨ , let

(
J̃PĨ

ṽ J̃5ṽ ~5.17!

be the decomposition of the stateṽ obtained by replacingW0 , K, and J by W̃0 , K̃, and J̃,
respectively, in~4.5!–~4.8!. It then follows that

~5.13!5(
J̃PĨ

h~ṽ J̃~1!!2k (
ĨP~$1,2,...,N%3$1,2,...,m%!n

h~ṽ Ĩ ~1!!

1k (
ĨP~$1,2,...,N%3$1,2,...,m%!n

S~ṽug~A
@1,n#
~M ! !u v̂̃ Ĩ ug~A

@1,n#
~M ! !!~ ṽ Ĩ ~1!!. ~5.18!

Let Ĩ 85$J̃85( J̃18 ,J̃28 ,...,J̃k8): J̃l8P(N3N)n% be multi-indices,

PJ̃85PJ̃
18
...PJ̃

k8

PJ̃
l8
5Jn~ l 21!11~qi 1

^ ej 1
!...Jnl

~qi n
^ ej n

!. ~5.19!

By the arguments used in Sec. IV~monotonicities ofh and relative entropy!, we conclude that

~5.18!> (
J̃8PĨ 8

h~ṽ J̃8~1!!2k (
Ĩ 8P~N3N!n

h~ṽ Ĩ 8~1!!1kS~ṽug~A@1,n#!
!

2k (
Ĩ 8P~N3N!n

ṽ Ĩ 8~1!S~ v̂̃ Ĩ 8ug~A@1,n#!
!. ~5.20!

The following is the result analogous to Proposition 4.2.
Proposition 5.6:There exists a constantc independent ofnPN andĨ 8P(N3N)n such that the

bound

(
Ĩ8P~N3N!n

ṽ Ĩ 8~1!S~ v̂̃ Ĩ 8ug~A@1,n#!
!<c

holds uniformly inn and Ĩ 8.
Now the proof of Theorem 3.2 for the general case follows from~5.13!, Proposition 5.6 and

the method used in the proof of Theorem 3.2 for a single conditional density amplitude. We
note thatS(ṽug(A@1,n#)

)5S(vuA@1,n#
) and leave the detailed proof to the reader.

Proof of Proposition 5.6:Let ṽ
Ĩ8
8 be the positive linear functional onÃ@0,n11# defined by a

relation analogous to that in~4.19!. Notice thatṽ
Ĩ
8 ug(A@1,n#)

5ṽ Ĩ 8ug(A@1,n#)
.

8

J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



6302 Y. M. Park and H. H. Shin: Dynamical entropy of GQMC

                    
For Ĩ 8P(N3N)n,i , j PN, let v̂̃ Ĩ 8,i , j be states onÃ@1,n11# defined by

v̂̃ Ĩ 8,i , j~x!5
1

Ñ
Tr~K̃ @1,n11#

* P Ĩ 8Jn11~qi ^ ej !J1~W0!K̃ @1,n11#x!, ~5.21!

whereÑ is the normalizing constant. Thenv̂
Ĩ 8
8 5( i , jl Ĩ 8,i , j v̂̃ Ĩ 8,i , j , ( i , jl Ĩ 8,i , j51. Thus one can

apply the triangle inequality and the convexity relation~Ref. 19, Proposition 6.2.25! for entropies
to obtain

S~ v̂̃ Ĩ 8ug~A@1,n#!
!5S~ v̂̃ Ĩ 8ug~A@1,n#!

!<S~ v̂̃
Ĩ 8
8 ug~A@1,n11#!

!1S~ v̂̃
Ĩ 8
8 ug~A$n11%!

! ~5.22!

and

S~ v̂̃
Ĩ 8
8 ug~A@1,n11#!

!< (
i , j 51

`

l Ĩ 8,i , jS~ v̂̃
Ĩ 8,i , j
8 ug~A@1,n11#!

!1(
i , j

h~l Ĩ 8,i , j !,

respectively.
Notice that

Ã@1,n11#5A@1,n11# ^ D @1,n11# ,

whereDI5 ^
nPI

Jn(D0) is an Abelian algebra for eachI ,Z. Sincev̂̃
Ĩ 8,i , j
8 is pure inÃ@1,n11# and

D @1,n11# is Abelian, there exist pure statesr I ,i , j
1 andr I ,i , j

2 on A@1,n11# andD @1,n11# , respectively,
such that

v̂̃ I ,i , j8 5r I ,i , j
1

^ r I ,i , j
2 . ~5.23!

ThusS( v̂̃
Ĩ 8,i , j
8 ug(A@1,n11#)

)5S(r I ,i , j
1 )50 for all Ĩ 8,i , j . From concavity ofh,

(
Ĩ8

ṽ Ĩ 8~1!S (
i , j

h~l Ĩ 8,i , j ! D<(
i , j

hS (
Ĩ

8 ṽ Ĩ 8~1!l Ĩ 8,i , j D
5(

i , j
hS (

Ĩ8

Tr~K̃ @1,n11#
* P Ĩ 8Jn11~qi ^ ej !J1~W̃0!K̃ @1,n11#!D

5(
i , j

h~Tr~K̃ @1,n11#
* Jn11~qi ^ ej !J1~W̃0!K̃ @1,n11#!!

5(
i , j

h~Tr~~qi ^ ej !~W̃0!!!, by ~2.7!

5S~B̃$0%!,

whereB̃$0% is the Abelian algebra generated by$qi ^ ej%( i , j )PN3N . Thus

(
Ĩ8

ṽ Ĩ8~1!S~ v̂̃
Ĩ8
8 ug~A@1,n11#!

!<S~ B̃^0&!.
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By the subadditivity of the mean entropy,

S~B̃$0%!<S~vuB$0%
!1S~ṽuD0

!,

which is finite by the assumption in Theorem 3.2.
Also by concavity,

(
Ĩ 8

ṽ Ĩ 8~1!S~ v̂̃
Ĩ 8
8 ug~A

ˆn11‰

!!<S~ṽug~A$n11%
!5S~ṽug~A$0%!

! ~5.25!

So the proposition follows from the argument similar to that used in the proof of Proposition
This completes the proof of Proposition 5.6. j
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Infinite degeneracy for a Landau Hamiltonian with Poisson
impurities

J. V. Puléa),b) and M. Scrowstonc)

Department of Mathematical Physics, University College Dublin,
Belfield, Dublin 4, Ireland

~Received 10 February 1997; accepted for publication 6 September 1997!

We consider a single-band approximation to the random Schro¨dinger operator in an
external magnetic field. The random potential consists of delta functions of random
strengths whose positions have a Poisson distribution. We prove that if the mag-
netic field is sufficiently high compared to the density of scatterers, then with
probability one there exists an infinitely degenerate eigenenergy coinciding with the
first Landau level in the absence of a random potential. ©1997 American Insti-
tute of Physics.@S0022-2488~97!02212-3#

I. INTRODUCTION

In the last decade there has been much interest in the study of random Schro¨dinger operators
in the presence of magnetic fields, mainly because of its relation to the theory of the Quantu
Effect. In 1987, Kunz1 showed that the fact that the conductivity does not vanish in Landau b
is inconsistent with having all states finitely degenerate and exponentially localized w
bounded localization length. In the theory of the Quantum Hall Effect, it seems to be w
accepted that in each Landau band, all eigenenergies except for one energy,Ec say, in the center
of the band, correspond to exponentially localized wave functions and the localization lengthj(E)
diverges likeuE2Ecu2n, with n.0, atEc . But, of course, this is not the only picture consiste
with a nonvanishing conductivity.

The localization of states with energies at the edges of the Landau bands has now
rigorously established for several models,2–5 and interest has shifted to the nature of the spectr
in the interior of the band.

Let us consider a two-dimensional infinite system of noninteracting electrons moving
uniform magnetic field of strengthB and a random potentialV. In the symmetric gauge the vecto
potential is given byA(x)5„2(B/2)x2 ,(B/2)x1…, x5(x1 ,x2)PR2 and the Hamiltonian is

H5„2 i“2A~x!…21V~x!. ~1.1!

The effect of the random potential is to broaden the Landau levels into bands. When the ma
field is strong compared to the potential, these bands do not overlap, and it is reasona
consider only the projections of the Hamiltonian onto each Landau level and to neglect the
terms. The Hamiltonian restricted to thenth level is

Hn5B~2n11!Pn1PnVPn , ~1.2!

wherePn denotes the projection onto the level. The termB(2n11)Pn comes from the decom
position of the purely kinetic part of~1.1! and can be dropped as it modifies the energy only b
constant. This model has been studied in Refs. 6 and 7 in the case when the random p
consists of point scatterers, delta functions, situated on the sites of a regular square lattic

a!Electronic mail: jpule@ollamh.ucd.ie
b!Research Associate, School of Theoretical Physics, Dublin Institute for Advanced Studies.
c!Electronic mail: mscrows@ollamh.ucd.ie
0022-2488/97/38(12)/6304/11/$10.00
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random strengths given by independent, identically distributed variables. In Refs. 6 and 7
shown that in the regime when the magnetic field is large compared to the density of sca
there exists an infinitely degenerate eigenenergy that coincides with the first Landau level
absence of a random potential. In Ref. 7 it was also proved that the whole spectrum is pur
and that the eigenfunctions corresponding to energies not coinciding with the first Landau le
localized in the following sense. For every 0,g,1, if the magnetic field is sufficiently high
depending ong, they decay faster than exp(2muxug) for all m.0, independent of the energy. I
Ref. 8 the authors considered random scatterers, each of which has a distribution center
lattice point. They argued, by taking expectations, that there should exist extended states as
6 for this random distribution of the impurities. Of course, all the results mentioned above
hold for the higher Landau levels.

Our aim in this paper is to prove that when the positions of the impurities have a ran
Poisson distribution and their strengths are identically independently distributed random var
if the magnetic field is large compared to the density of scatterers, then with probability one
exists an infinitely degenerate eigenenergy coinciding with the first Landau level in the abse
a random potential. The precise hypotheses on the probability distribution are stated in S
Note that the resulting Hamiltonian is a random integral operator instead of a differential op
and that the kernels ofPn are known explicitly. For simplicity, in this paper, we restrict ourselv
to the casen50 but the casenÞ0 can be treated similarly.

The paper is organized as follows. In Sec. II we set up precisely the model Hamiltonia
in Sec. III we prove the results indicated above.

II. THE HAMILTONIAN

Let vn , nPN0 , be independent identically distributed~i.i.d.! random variables representin
the strengths of the impurities. We shall assume that their distribution is given by a proba
measurem whose support is a compact intervalX5@a,b#,R containing the origin. We letV1

5XN0 andP15Pn50
` m.

Let (V2 ,P2) be the probability space corresponding to the distribution of the impurities in
complex plane, which are distributed according to a Poisson distribution with rater. We shall
denote the elements ofV2 by z5(z0 ,z1 ,z2 ,...), where thezn’s are ordered so that 0,uz0u
<uz1u<uz2u<••• . If A is a Borel subset ofC andN(A,z)5#$n:znPA%, then

P2~N~A,z!5N!5e2ruAu ~ruAu!N

N!
,

whereuAu denotes the Lebesgue measure ofA. Let V5V13V2 andP5P13P2 . For zPC let tz

be the measure preserving automorphism ofV corresponding to translation byzPC:

tz~v,z!5„~vn0
,zn0

1z!,~vn1
,zn1

1z!,~vn2
,zn2

1z!,...…, ~2.1!

where (znk
) is the same asz reordered so that 0,uzn0

1zu<uzn1
1zu<uzn2

1zu<... . The group

$tz :zPC% is ergodic for the probability measureP.
Let H5L2(C) and letH0 be the eigenspace corresponding to the lowest eigenvalue~first

Landau level! of the kinetic part of the Hamiltonian defined in~1.1! and letP0 be the orthogonal
projection ontoH0 . The Hamiltonian for our model is the operator onH0 given formally by

H~v,z!5
p

2k
P0V„•,~v,z!…5

p

2k
P0V„•,~v,z!…P0 , ~2.2!

where (v,z)PV and
J. Math. Phys., Vol. 38, No. 12, December 1997
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V„z,~v,z!…5 (
n50

`

vnd~z2zn!. ~2.3!

Note thatH coincides withH0 in ~1.2! up to the termBP0 and a multiplicative constant and tha
the lowest Landau energy is now shifted to zero. The projectionP0 is an integral operator with
kernel;

P0~z,z8!5
2k

p
exp@2kuz2z8u222ikz∧z8#, ~2.4!

wherek5B/4 andz∧z85RzI z82I zRz8, Rz andI z being the real and imaginary parts ofz,
respectively. Note that ifcPH then cPH0 if and only if c(z)5 f (z)e2kuzu2, where f (z) is
entire. Using~2.4! we can write the Hamiltonian in the form

H5 (
n50

`

vnf zn
^ f zn

,

where, forzPC,

f z~z!5A p

2k
P0~z,z!5A2k

p
exp@2kz̄z2k~ uzu21uzu2!#. ~2.5!

Note thati f zi51, (f z , f z8)5Ap/2k f z8(z) and thatH is an integral operator with kernel,

H~z,z8!5 (
n50

`

vnf zn
~z! f zn

~z8!. ~2.6!

Unlike the Hamiltonian in Ref. 7, where the impurities are on a fixed lattice, our Hamiltonia
not bounded because the impurities can be arbitrarily close to each other. However, we ca
that on a suitable domain it is essentially self-adjoint. FormPN0 , let

um~z!5~pm! !21/2~2k!~m11!/2 zme2kuzu2. ~2.7!

$um :mPN0% is an orthonormal basis forH0 . Let D0 be the space spanned by this orthonorm
set; we shall show that almost surely theum’s are analytic vectors forH and thus by Nelson’s
Analytic Vector Theorem~Ref. 9, Theorem X.39!, H is essentially self adjoint onD0 .

Lemma 2.1: The Hamiltonian H(v,z) is almost surely essentially self-adjoint onD0 .
Proof: By Nelson’s Analytic Vector Theorem it suffices to prove that, for almost all~v,z!,

(
k50

` i~Hkum!i
k!

tk,`, ~2.8!

for somet.0. To prove~2.8! we use the fact that ifF(v,z) is a positive function of~v,z! with
E„F(v,z)…,`, thenF(v,z),` for almost every~v,z!. By the Cauchy–Schwarz inequality w
haveE(iAkumi)<„E(iAkumi2)…1/2 and we will show that, for somet.0,

(
k50

`
„E~ iHkumi2!…1/2

k!
tk,`. ~2.9!

Now, we have that
J. Math. Phys., Vol. 38, No. 12, December 1997
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iHkumi25~um ,H2kum!5 (
n1 ,n2 ,...n2k

~um , f zn1
!~ f zn2k

,um!P0~zn1
,zn2

!P0~zn2
,zn3

!•••

3P0~zn2k21
,zn2k

!vn1
vn2

•••vn2k
. ~2.10!

By using the bounduvn1
vn2

•••vn2k
u<M2k, where M5max(uau,ubu) and the Cauchy–Schwar

inequality, we get

iHkumi2<M2k (
n1,...,n2k

u~um , f zn1
!uu~ f zn2k

,um!uuP0~zn1
,zn2

!u•••uP0~zn2k21
,zn2k

!u

5M2k
p

2k (
n1,...,n2k

E dzE dz8uum~z!uuum~z8!uuP0~z,zn1
!uuP0~zn1

,zn2
!u•••uP0~zn2k

,z8!u.

~2.11!

Now, we need to take the expectation of this. LetAs
r be the set of all partitions of the setJr

5$1,2,...,r % into s disjoint subsetsA1 ,A2 ,...,As with ø i 51
s Ai5Jr , where 1<s<r . Then we have

that

ES (
n1 ,...,nr

a~zn1
,...,znr

! D 5(
s51

r

(
A5$A1 ,...,As%PAs

r
rsE dh1•••dhs ãA~h1 ,...hs!, ~2.12!

where ãA(h1 ,...,hs) is obtained froma(z1 ,...,z r) by putting z i equal toh j wheneveri PAj .
Now, the number of terms on the right-hand side of~2.12! is equal toB(r )5(s51

r #As
r . B(r ) is

known as the Bell number~Ref. 10, p. 105!, given by the formulaB(r )51/e(s50
` sr /s! , and is

bounded byCrr for some constantC. From ~2.11! and ~2.12! we have

E~ iHkumi2!<M2k
p

2k (
s51

2k

(
A5$A1 ,...,As%PAs

2k
rsE dz dz8dh1 ...dhs ãA~z,z8,h1 ,...,hs!,

~2.13!

where againãA(z,z8,h1 ,...,hs) is obtained from

uum~z!uuum~z8!uuP0~z,z1!uuP0~z1 ,z2!u•••uP0~z2k21 ,z2k!uuP0~z2k ,z8!u, ~2.14!

by puttingz i equal toh j wheneveri PAj . Note that

uP0~z,z8!u5
2k

p
exp@2kuz2z8u2#.

In order to prove~2.9!, we want to obtain a bound on the integrals in~2.13!, which we denote by
I A . We first relabel theh j ’s according to their order of appearance in the product inãA from left
to right. Then starting on the left we keep the Gaussian factors only when a newh j appears for the
first time and bound the others by one. We thus obtain an upper bound on the integrals of th

I A<~2k/p!2k11E dz dz8 dh1•••dhsuum~z!uuum~z8!u

3e2kuz2h1u2e2kuh12h2u2e2kuh282h3u2e2kuh382h4u2•••e2kuhs218 2hsu
2
e2kuhs82z8u2, ~2.15!
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereh j8 can be any of the variables$h1 ,h2 ,...,h j%. We then use the Cauchy–Schwarz inequ
ity for the integral involvingz8 to get

I A<~2k/p!2k11/2E dz dh1•••dhsuum~z!ue2kuz2h1u2e2kuh12h2u2e2kuh282h3u2•••e2kuhs218 2hsu
2
.

~2.16!

Integrating overhs ,hs21 ,...,h1 and finallyz in that order we obtain

I A<~2k/p!1/2iumi1~2 max„1,~k/p!…!2k. ~2.17!

Thus

E~ iHkumi2!<iumi1B~2k!A2k<iumi1C~2kA!2k<iumi1C~k! !2~2Ae!2k, ~2.18!

whereA52M max(1,r)max„1,(k/p)…. Thus, the series

(
k50

`
~E~ iHkumi2!!1/2

k
tk

converges ift,1/(2Ae) and thus the vectorsum are analytic. h

III. INFINITE DEGENERACY

In this section we shall examine the eigenstates with energy in the middle of the first La
band, but first we shall show that with probability one the spectrum ofH is the whole real line.
The proof is not standard becauseH is an integral operator.

Let $Uz :zPC% be the family of unitary operators onH corresponding to the magnetic tran
lations:

~Uzf !~z8!5e2ikz∧z8 f ~z1z8!.

Then we have that

UzH~v,z!Uz
215H„tz~v,z!…. ~3.1!

Note that @P0 ,Uz#50 for all zPC, so thatUzH0,H0 . Also Uz1
Uz2

5e2ikz2∧z1Uz11z2. The
ergodicity of $tz :zPC% and Eq.~3.1! together imply that the spectrum ofH(v,z) and its com-
ponents are nonrandom~Ref. 13, Theorem V.2.4!.

Lemma 3.1: With probability one,

s„H~v,z!…5R.

Proof: It is sufficient to prove that for eachEPR and for alld.0, there existsV8,V with
P(V8).0 andcPH0 with ici51, such that for all (v,z)PV8, i(H(v,z)2E)ci,d.

For nPN0 , let Rn5uznu and Xn5p(Rn
22Rn21

2 ). The Xn’s are then i.i.d. random variables
exponentially distributed with rater ~Ref. 11, p. 147!. By the Strong Law of Large Numbers,12 it
follows that if

SN5X11•••1XN5p~RN
2 2R0

2!, ~3.2!

then with probability oneSN /N→1/r asN→`. Since

uzn2z0u>Rn2R05ASn /p1R0
22R0 ,
J. Math. Phys., Vol. 38, No. 12, December 1997
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the series(n50
` e2kuzn2z0u2 converges almost surely. LetEPR and chooseN1 such thatE/N1

PX and r such that 12e22kr 2
,d2/32E2. For NPN0 , let

V2
N5H zPV2 :uznu,r , for n50,...,N121, (

n5N

`

e2kuzn2z0u2,d/4M J ,

whereM5max(uau,ubu). Then

ø
N50

`

V2
N5H zPV2 : (

n50

`

e2kuzn2z0u2,`, uznu,r , for n50,...,N121J ,

and thus

e2rpr 2 ~rpr 2!N1

N1!
,P2~$zPV2 :uznu,r for n50,...,N121%!

5P2S H zPV2 : (
n50

`

e2kuzn2z0u2,`,uznu,r ,

for n50,...,N121J D
< (

N51

`

P2~V2
N!.

Consequently there existsN0 , such thatP2(V2
N0).0. Let

V1
N05$vPV1 : max

n,N1

uvn2E/N1u,d/4N1 , max
N1<n,N0

uvnu,d/4~N02N1!%.

SinceE/N1,0Psuppu, P1(V1
N0).0, and therefore if

V8[V1
N03V2

N05$~v,z!:zPV2
N0, max

n,N1

uvn2E/N1u,d/4N1 , max
N1<n,N0

uvnu,d/4~N02N1!%,

thenP(V8).0. Now

~H f z0
2E fz0

!~z!5 (
n50

`

vn~ f zn
, f z0

! f zn
~z!2E fz0

~z!

5~E/N1!S (
n50

N121

~ f zn
, f z0

! f zn
~z!2N1f z0

~z!D 1 (
n50

N121

~vn2E/N1!~ f zn
, f z0

! f zn
~z!

1 (
n5N1

N021

vn~ f zn
, f z0

! f zn
~z!1 (

n5N0

`

vn~ f zn
, f z0

! f zn
~z!

5I 11I 21I 31I 4 .

We have
J. Math. Phys., Vol. 38, No. 12, December 1997
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i I 1i25~E/N1!2S (
n50

N121

(
n850

N121

~ f zn
, f z0

!~ f zn8
, f z0

!22N1 (
n50

N121

u~ f zn
, f z0

!u21N1
2D

<~E/N1!2S 2N1
222N1 (

n50

N121

u~ f zn
, f z0

!u2D<2E2~12e22kr 2
!,d2/16.

Now

I 25A p

2k (
n50

N121

~vn2E/N1! f zn
~z! f z0

~zn!,

and therefore for all (v,z)PV8,

i I 2i<A p

2k (
n50

N121

uvn2E/N1i f z0
~zn!u,d/4.

Similarly, for all (v,z)PV8,

i I 3i<A p

2k (
n5N1

N021

uvni f z0
~zn!u,d/4

and

i I 4i<MA p

2k (
n5N0

`

u f z0
~zn!u,d/4.

Therefore for all (v,z)PV8,

iH f z0
2E fz0

i,d.

h

We now show thatN (H), the null space ofH, is equal to

Mz5$c:cPH0 ,c~zn!50, for all nPN0%, ~3.3!

and thatMz is infinite dimensional.
Theorem 3.2:There existsk1.0 such that fork.k1 , almost surely, Mz is infinite dimen-

sional andMz5N (H).
Proof: If cPH0 , then fornPN0 , c(zn)5(P0c)(zn)5Ap/2k( f zn

,c). ThuscPMz if and
only if ( f zn

,c)50 for all nPN0 . ThereforeMz,N (H). We shall next prove thatMz is infinite
dimensional. Let

E~z,p!5~12z!expS (
i 51

p
zi

i ! D . ~3.4!

From the Strong Law of Large Numbers applied to the random variablesXn as in Lemma 3.1, we
see that forb.2, (n50

` uznu2b converges with probability 1. Thus, almost surely the infin
product,
J. Math. Phys., Vol. 38, No. 12, December 1997
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)
n50

`

ES z

zn
,2D , ~3.5!

is convergent and defines an entire function that vanishes at eachzn . However we cannot ensur
that this product, when multiplied bye2kuzu2, defines a function inH0 . To do this we need the
convergence of the series(n50

` zn
22 and a bound onn(r ), the number ofzn’s with uznu<r .

Let un5argzn . Then theun’s are i.i.d. random variables, independent of theRn’s, uniformly
distributed on~0,2p!. It follows from this that if we let

Yn5e22iunRn
22, ~3.6!

then

E~YnuY1 ,...,Yn21!50.

Therefore if

Um5 (
n52

m

Yn , ~3.7!

for m>2, thenUm is a Martingale. We also know thatRn has density

2~rp!n11r 2n11e2rpr 2
/n! ~3.8!

~Ref. 11, p. 147!: therefore, for allm>2,

E~ uUmu2!< (
n52

`

E~ uYn
2u!5 (

n52

`

ES 1

Rn
4D 5 (

n52

`
1

n! E 2~rp!n11r 2n11e2rpr 2
r 24 dr

5 (
n52

`
~rp!2

n~n21!
,`. ~3.9!

Using the Martingale Convergence Theorem,12 we can then deduce that the series

(
n52

`
1

zn
2 5 (

n52

`

Yn ,

converges almost surely.
Let r8.r. Again, using the Strong Law of Large Numbers, almost surely there existsN0(z),

such that for alln.N0 ,

puznu2

n
.

1

r8
.

Thereforen(r ),max(r8p r2,N0). Thus, if R(z) is chosen such thatr8pR2.N0 , then for all r
.R(z), n(r ),r8pr 2.

Now chooseN1(z) such that for allN.N1 ,

U (
n5N1

N
1

zn
2U,1.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



6312 J. V. Pulé and M. Scrowston: Infinite degeneracy for the Landau Hamiltonian

                    
Let N2(z)5max(N1,min$n:Rn.R%) and for eachz define the functionf z by

f z~z!5 (
n5N2~z!

`

ES z

zn
,2D . ~3.10!

Let N(z,z)5max$n:Rn<uzu%. Following Boas,14 we use the identity

ES z

zn
,2D5expS z2

2zn
2D ES z

zn
,1D , ~3.11!

to write

f z~z!5expS 1

2
uzu2 (

n5N2

N~z,z!
1

zn
2D )

n5N2

N~z,z!

ES z

zn
,1D )

n5N~z,z!11

`

ES z

zn
,2D . ~3.12!

Using Lemmas 2.6.6 and 2.6.7 in Ref. 14, we get

lnu f z~z!u<
1

2
uzu2U (

n5N2

N~z,z!
1

zn
2U1 (

n5N2

N~z,z!

lnUES z

zn
,1D U1 (

n5N~z,z!11

`

lnUES z

zn
,2D U

<
1

2
uzu21Auzu (

n5N2

N~z,z!
1

Rn
1Auzu3 (

n5N~z,z!11

`
1

Rn
3 ,

whereA is a constant that is independent ofz andz. Thus

lnu f z~z!u<
1

2
uzu21Auzu E

~R,uzu#

dn~r !

r
1Auzu3E

~ uzu,`!

dn~r !

r 3

<
1

2
uzu21Auzu E

R

uzu n~r !dr

r 2
1Auzu3E

uzu

` n~r !dr

r 4

<
1

2
uzu21Apr8uzu E

0

uzu
dr1Apr8uzu3E

uzu

` dr

r 2

<S 1

2
12Apr8D uzu25k0uzu2,

wherek0 is independent ofz. Let

cz~z!5 )
n50

N221 S 12
z

zn
D f z~z!; ~3.13!

then we have foruzu sufficiently large,

ucz~z!u<ek1uzu2, ~3.14!

wherek15k011.
If we let fz

(k)(z)5zkcz(z)e2kuzu2 for k>0, then ifk.k1 thefz
(k)’s are inMz . Moreover, if

( j 51
N ajfz

(kj )50, then( j 51
N ajz

kj50 for z¹$zn%. Therefore
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(
j 51

N

ajz
kj[0,

and theaj ’s are zero. Thus, thefz
(k)’s are independent andMz is infinite dimensional.

Finally, we show thatN (H),Mz . SupposeHc50. Since

Hc5 (
n50

`

vn~ f zn
,c! f zn

5A p

2k (
n50

`

vnc~zn! f zn
, ~3.15!

we have

~Hc!~z!5S (
k50

`

ckz
kD e2kuzu2, ~3.16!

where

ck5
~2k!k

k! (
n50

`

anz̄n
k , ~3.17!

with

an5vnc~zn!e2kuznu2. ~3.18!

Using uc(zn)u5A2k/pu( f zn
,c)u<A2k/pici and uznuk<@A(k13)!/(2k)(k13)/2#

(1/uznu3)ekuznu2, we get

(
n50

`

uanuuznuk<
A~k13!!

~2k!~k12!/2 M ici S (
n

1

uznu3D<
CA~k13!!

~2k!k/2 . ~3.19!

For n8PN0 we let

cz
~n8!~z!5 )

nÞn8
EN2 ,nS z

zn
D , ~3.20!

where

Em,n~z!5 H12z,
E~z,2!,

if n,m,
if n>m. ~3.21!

The functioncz
(n8) is an entire function with zeros at all$zn% exceptzn8 , and as forcz , there

existsR1 such that foruzu.R1 , ucz
(n8)(z)u<ek1uzu2. Let

cz
~n8!~z!5 (

k50

`

bk,n8z
k.

Then Cauchy’s Inequality15 gives

ubk,n8u< sup
uzu>R1

ek1uzu2

uzuk
<

~2k1!k/2ek/2

kk/2 , ~3.22!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



the
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for k sufficiently large. Since(n50
` ānzn

k50 for kPN0 , we have

(
k50

`

bk,n8(
n50

`

ānzn
k50. ~3.23!

Now using the bounds~3.19! and ~3.22!, we see that

(
k50

`

ubk,n8u (
n50

`

uanuuznuk,`,

for k.k1 . Hence, fork.k1 we can interchange the summations in~3.23! to get

ān8cz
~n8!~zn8!5(

n
āncz

~n8!~zn!50.

Since almost surelyvnÞ0 for all n, c(zn)50 for all n with probability one.
Thus we have proved thatN (H),Mz almost surely. h
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The q -phase-difference operator and two-mode q -coherent
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In this paper, we introduce unitary and Hermitian phase-difference operators for the
two modes of the electromagnetic field in theq-deformed case. Theq-creation and
annihilation operators of phase-difference quanta are given, and the algebraic prop-
erties of some operators in phase space are discussed. The phase-difference prop
erties of two-modeq-coherent states are investigated. ©1997 American Institute
of Physics.@S0022-2488~97!00512-4#

I. INTRODUCTION

A correct definition in quantum mechanics of the phase variable has been the subject o
investigations. Dirac1,2 was the first to introduce a Hermitian phase operatorF̂, and suggested tha
the number operator and the phase operator should satisfy a canonical commutation r
@N,F̂#52 i . Louisell3 and Susskind and Glogower4 showed that the number–phase commutat
relation is not consistent with the existence of a Hermitian phase operator defined by
Susskind and Glogower proposed exponential operatorsêiF andê2 iF,4 which are not functions of
a common phase operatorF̂. The well-known Susskind and Glogower~SG! phase operator ha
been applied to various problems,5,6 but it is also not unitary. Recently, a very important dev
opment has been made by Pegg and Barnett.7–13 They were able to construct a Hermitian pha
operator and a unitary exponential phase operator in a finite-dimensional but arbitrarily
Hilbert space. The Pegg–Barnett formalism has been applied in a variety of problems in qu
optics,14–23 but one must take the infinite-dimensional limit at the end of calculating expecta
value. Lius and Sanchez-Soto have introduced a unitary operator representing the expone
the phase difference between two modes of the electromagnetic field.24–26 In the past few years
the q-deformed harmonic oscillator was introduced in search of the representation of qua
algebra,27–30 and theq-deformed SG phase operator andq-coherent state in infinite-dimensiona
Hilbert space are also constructed.27,31,32Theq-phase operator and phase properties ofq-coherent
states in infinite-dimensional Hilbert space are discussed.19,33,34In the present paper, we introduc
unitary and Hermitianq-phase-difference operators in infinite-dimensional Hilbert space.
q-creation and annihilation operators of phase difference quanta are given, and theq-raising and
lowering operators in phase space are also constructed with the help of pseudo-phase op
The algebraic properties of these operators and phase-difference properties of two
q-coherent states are discussed.

II. THE UNITARY AND HERMITIAN q-PHASE-DIFFERENCE OPERATORS

Let us consider two independentq-oscillators.ai
1 , ai , and Ni( i 51,2) are the creation

annihilation, and number operators, which obey the following relations:

a!Mailing address.
0022-2488/97/38(12)/6315/13/$10.00
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@Ni , ai
1#5ai

1 ,

@Ni , ai #52ai , i 51,2, ~1!

aiai
12qai

1ai5q2Ni.

The number statesun1 ,n2& are orthonormal:

^n1 ,n2um1 ,m2&5dn1,m1
dn2,m2

, (
n1 ,n250

`

un1 ,n2&^n1 ,n2u51. ~2!

Now let us define a unitary exponentialq-phase-difference operatorei F̂12 through the following
polar decomposition:

a1a2
15ei F̂12R~N1 ,N2!, ~3!

whereR(N1 ,N2) is the amplitude part ofa1a2
1 , that is,

R~N1 ,N2!5A@N1#@N211#. ~4!

Here@x#5(qx2q2x)/(q2q21), andx is a number or an operator. From the commutation relat
@a1a2

1 , N11N2#50, we can obtain

@ei F̂12, N11N2#A@N1#@N211#50, ~5!

that is to say, forn1.0,

@ei F̂12, N11N2#un1 ,n2&50. ~6!

We may suppose that

@ei F̂12,N11N2#u0,n2&50, ~7!

so the operatorei F̂12 commutes with the total number operatorN5N11N2 . It is consistent with
the fundamental Poisson bracket of the action and phase variable, so there are common eig

of exponential phase-difference operatoreF̂12 and total number operatorN. It is well known that
the total Hilbert spaceH1^ H2 can be expressed as direct sum of the subspacesHn , which are
constructed through the eigenstatesuk,n2k& (k50,1,...,n) of N with eigenvaluesn. Suppose that

ei F̂12u0,n&5 (
k50

n

Ck
~n!uk,n2k&, ~8!

so, from Eq.~3! and Eq.~8! it can be obtained that

ei F̂125 (
n51

`

(
k51

n

uk21,n2k11&^k,n2ku1 (
n50

`

(
k50

n

Ck
~n!uk,n2k&^0,nu. ~9!

From the unitary requirement forei F̂12 we have

Cn
~n!5eif~n!

, ck
~n!50, kÞn. ~10!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Here f (n) are real numbers. The unitary exponentialq-phase-difference operatorei F̂12 can be
written as

ei F̂125 (
n51

`

(
k51

n

uk21,n2k11&^k,n2ku1 (
n50

`

eif~n!
un,0&^0,nu. ~11!

The eigenstatesuu r
(n)& of q-phase-difference operatorei F̂12 with eigenvalueseiur

(n)
are

uu r
~n!&5

1

An11
(
k50

n

eikur
~n!

uk,n2k&, ~12!

in which u r
(n)5@f (n)/(n11)#1@2pr /(n11)#5u0

(n)1@2pr /(n11)#, (r 50,1,2,...,n). The
phase-difference statesuu r

(n)& are orthonormal

^u r
~m!uu t

~n!&5dm,nd r ,t , (
n50

`

(
r 50

n

uu r
~n!&^u r

~n!u51. ~13!

In phase space the unitary exponentialq-phase-difference operator is

eF̂125 (
n50

`

(
n

r 50

eiur
~n!

uu r
~n!&^u r

~n!u, ~14!

and the Hermitianq-phase-difference operatorF̂12 can be defined as

F̂125 (
n50

`

(
r 50

n

uu r
~n!&u r

~n!^u r
~n!u

5 (
n50

` S u0
~n!1

np

n11D (
k50

n

uk,n2k&^k,n2ku

1 (
n50

`
2p

n11 (
kÞk8

n
ei ~k2k8!u0

~n!

ei2p~k2k8!/~n11!21
uk,n2k&^k8,n2k8u. ~15!

Notice that Eqs.~11!–~15! are q independent. Using the above definitions, we can obtain
following commutation relations:

F F̂12,
N12N2

2 G5 (
n50

`
2p

n11 (
kÞk8

n
~k82k!ei ~k2k8!u0

~n!

ei2~k2k8!p/~n11!21
uk,n2k&^k8,n2k8u, ~16!

FeF̂12,
N12N2

2 G5ei F̂122 (
n50

`

ei ~n11!u0
~n!

~n11!un,0&^0,nu. ~17!

III. SOME OF THE q-OPERATORS IN PHASE SPACE

A. The q -creation and annihilation operators of q -phase-difference quanta

In the subspace, which is spanned by (n11) number statesuk,n2k& (k50,1,2,...,n), the
number states are the eigenstates of total number operator with eigenvaluen. From Eq.~11! we

can see that the unitary exponentialq-phase-difference operatorei F̂12 plays the role of a step
operator with respect to the number states:
J. Math. Phys., Vol. 38, No. 12, December 1997
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ei F̂12uk,n2k&5uk21,n2k11&, k.0,

eF̂12u0,n&5eif~n!
un,0&,

~18!

e2 i F̂12uk,n2k&5uk11,n2k21&, k,n,

e2 i F̂12un,0&5e2 if~n!
u0,n&.

Analogously, in the subspace, which is spanned byn11 phase-difference statesuu r
(n)& (r

50,1,...,n), the statesuu r
(n)& are the eigenstates of phase-difference operatorF̂12 with eigenvalue

u r
(n) . We can also find that there is the operator2e2 ip(N12N221)/(N11N211), which plays the role

of a step operator with respect to the phase-difference statesuu r
(n)&:

2e2 ip~N12N221!/~N11N211!uu r
~n!&5uu r 21

~n! &, r .0,

2e2 ip~N12N221!/~N11N211!uu0
~n!&5uun

~n!&,
~19!

2eip~N12N221!/~N11N211!uu r
~n!&5uu r 11

~n! &, r ,n,

2eip~N12N221!/~N11N211!uun
~n!&5uu0

~n!&.

So the operator2e2 ip(N12N221)/(N11N211) takes the following form in phase-difference sta
basis:

2e2 ip~N12N221!/~N11N211!5 (
n51

`

(
r 51

n

uu r 21
~n! &^u r

~n!u1 (
n50

`

uun
~n!&^u0

~n!u, ~20!

which is similar to Eq.~11! in form. Furthermore, we can define theq-creation andq-annihilation
operatorsr̂1 and r̂ as follows:

r̂152A@F̂12#e
ip~N12N221!/~N11N211!, r̂52e2 ip~N12N221!/~N11N211!A@F̂12#. ~21!

Obviously

@F̂12#5 r̂1r̂, ~22!

and

r̂15 (
n51

`

(
r 51

n

A@u r
~n!#uu r

~n!&^u r 21
~n! u1 (

n50

`

A@u0
~n!#uu0

~n!&^un
~n!u,

~23!

r̂5 (
n51

`

(
r 51

n

A@u r
~n!#uu r 21

~n! &^u r
~n!u1 (

n50

`

A@u0
~n!#uun

~n!&^u0
~n!u.

The commutation relations are

@F̂12, r̂ #52
2p

N11N211
r̂12p (

n50

`

@u0
~n!#uun

~n!&^u0
~n!u,
J. Math. Phys., Vol. 38, No. 12, December 1997
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@F̂12, r̂1#5
2p

N11N211
r̂122p (

n50

`

@u0
~n!#uu0

~n!&^un
~n!u,

~24!

r̂r̂12q2p/~N11N211!r̂1r̂5F 2p

N11N211Gq2F̂121 (
n50

`

~@u0
~n!#2@u0

~n!12p#!uun
~n!&^un

~n!u,

r̂ r̂12q22p/~N11N211!r̂1r̂5F 2p

N11N211GqF̂121 (
n50

`

~@u0
~n!#2@u0

~n!12p#!uun
~n!&^un

~n!u.

If the r̂1 actsm times on the phase-difference vacuum stateuu0
(n)&, from the above relations

we have

~ r̂1!muu0
~n!&5S )

j 51

n

@u j
~n!# D 1/2

uum
~n!&, m,n11,

~25!

~ r̂1!muu0
~n!&5S )

j 50

n

@u j
~n!# D s/2S )

j 51

l

@u j
~n!# D 1/2

uu l
~n!&, m5~n11!s1 l .

If u0
(n) is taken to be zero, Eqs.~22!–~24! can be written as

r̂5 (
n51

`

(
r 51

n

A@u r
~n!#uu r 21

~n! &^u r
~n!u,

r̂15 (
n51

`

(
r 51

n

A@u r
~n!#uu r

~n!&^u r 21
~n! u,

@F̂12, r̂ #52
2p

N11N211
r̂,

@F̂12, r̂1#5
2p

N11N211
r̂1,

r̂ r̂12q2p/~N11N211!r̂1r̂5F 2p

N11N211Gq2F̂122@2p# (
n50

`

uun
~n!&^un

~n!u,

r̂ r̂12q22p/~N11N211!r̂1r̂5F 2p

N11N211GqF̂122@2p# (
n50

`

uun
~n!&^un

~n!u,

~ r̂1!muu0
~n!&5S )

j 51

m

@u j
~n!# D 1/2

uum
~n!&, m,n11,

~ r̂1!muu0
~n!&50, m.n.

B. q -raising and lowering operators in phase space

In number state space we can define the generators of quantum algebra suq(2) as follows:

J15a1
1a2 , J25a1a2

1 , J05 1
2~N12N2!, ~26!
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which satisfy the following relations:

@J0 , J1#5J1 , @J0 , J2#52J2 , @J1 , J2#5@2J0#. ~27!

They can be expressed through projection operators in number state basis:

J15 (
n50

`

(
k50

n21

A@k11#@n2k#uk11,n2k21&^k,n2ku,

J25 (
n50

`

(
k50

n21

A@k11#@n2k#uk,n2k&^k11,n2k21u, ~28!

J05 (
n50

`

(
k50

n21 S k2
n

2D uk,n2k&^k,n2ku,

andJ1 , J2 , andJ0 are theq-raising, lowering and weight operators in number state space.
can also find the following relations:

J15ei F̂12AJ1J2, J25AJ1J2e2 i F̂12. ~29!

Similarly, we can define theq-raising and lowering operators in phase space:

s152A@F̂1#F F̂21
p

N11N211Geip~N12N221!/~N11N211!,
~30!

s252e2 ip~N12N221!/~N11N211!A@F̂1#F F̂21
p

N11N211G ,
whereF̂1 andF̂2 are pseudo-phase operators, and in phase-difference state basis take the
projection operators,

F̂15 (
n50

`

(
r 50

n

u r
1~n!uu r

~n!&^u r
~n!u, u r

1~n!5u0
1~n!1

pr

n11
,

~31!

F̂25 (
n50

`

(
r 50

n

u r
2~n!uu r

~n!&^u r
~n!u, u r

2~n!5un
2~n!1

p~n2r !

n11
,

whereu0
1(n) andun

2(n) are arbitrary, and satisfy the relationu0
1(n)2un

2(n)5u0
(n)1np/(n11). This

is to say

F̂125F̂12F̂2 . ~32!

The q-raising and lowering operators can be rewritten in phase-difference state basis:

s15 (
n51

`

(
r 51

n A@u r
1~n!#Fu r

2~n!1
p

n11G uu r
~n!&^u r 21

~n! u1 (
n50

`

A@u0
1~n!#@un

2~n!1p#uu0
~n!&^un

~n!u,
~33!

s25 (
n51

`

(
r 51

n A@u r
1~n!#Fu r

2~n!1
p

n11G uu r 21
~n! &^u r

~n!u1 (
n50

`

A@u0
1~n!#@un

2~n!1p#uun
~n!&^u0

~n!u.
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The commutation relations for these operators are

@F̂12, s1#5
2p

N11N211
s122p (

n50

`

A@u0
1~n!#@un

2~n!1p#uu0
~n!&^un

~n!u,

@F̂12, s2#5
22p

N11N211
s212p (

n50

`

A@u0
1~n!#@un

2~n!1p#uun
~n!&^u0

~n!u, ~34!

@s1 , s2#5F p

N11N211G@F̂12#2@p# (
n50

`

@u0
1~n!2un

2~n!#uu0
~n!&^un

~n!u.

If the operators1 actsk times on theq-phase-difference vacuum stateuu0
(n)&, we can obtain

~s1!kuu0
~n!&5S )

j 51

k

@u j
1~n!#Fu j

2~n!1
p

n11G D 1/2

uuk
~n!&, k,n11,

~35!

~s1!kuu0
~n!&5S )

j 50

n

@u j
1~n!#Fu j

2~n!1
p

n11G D s/2S )
j 51

m

@u j
1~n!#Fu j

2~n!1
p

n11G D 1/2

uum
~n!&,

k5~n11!s1m.

In general, (s1)kuu0
(n)&Þ(s1)muu0

(n)&. If u0
1(n) and un

2(n) are taken to be zero or2p, then
Eqs.~32!–~34! can be rewritten as

s15 (
n51

`

(
r 51

n A@u r
1~n!#Fu r

2~n!1
p

n11G uu r
~n!&^u r 21

~n! u,

s25 (
n51

`

(
r 51

n A@u r
1~n!#Fu r

2~n!1
p

n11G uu r 21
~n! &^u r

~n!u,

@F̂12, s1#5
2p

N11N211
s1 ,

@F̂12, s2#5
22p

N11N211
s2 ,

@s1 , s2#5F p

N11N211G@F̂12#,

~s1!kuu0
~n!&5S )

j 51

k

@u j
1~n!#Fu j

2~n!1
p

n11G D 1/2

uuk
~n!&, k,n11,

~s1!kuu0
~n!&50, k.n.

Furthermore, we define operatorsS1 , S2 , andS0 as follows:

S152AFN11N211

p
F̂1GFN11N211

p
F̂211Geip~N12N221!/~N11N211!,
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S252e2 ip~N12N221!/~N11N211!AFN11N211

p
F̂1GFN11N211

p
F̂211G , ~36!

S05
N11N211

2p
F̂12,

which satisfy

@S0 , S1#5S1 , @S0 , S2#52S2 , @S1 , S2#5@2S0#, ~37!

Therefore they are the generators of suq(2), and inphase-difference state basis can be expres
as

S15 (
n51

`

(
r 51

n

A@r #@n112r #uu r
~n!&^u r 21

~n! u,

S25 (
n51

`

(
r 51

n

A@r #@n112r #uu r 21
~n! &^u r

~n!u, ~38!

S05 (
n51

`

(
r 50

n F r 2
n

2G uu r
~n!&^u r

~n!u

and

S252e2 ip~N12N221!/~N11N211!AS1S2, S152AS1S2eip~N12N221!/~N11N211!. ~39!

C. The others

The number stateuk,n2k& in subspaceHn can be translated to one in subspaceHn11 through
the action of creation operatorsa1

1 anda2
1 , and the number stateuk,n2k11& in subspaceHn11

can be also translated to one in subspaceHn through the action of annihilation operatorsa1 and
a2 . We show the action of operatorsa1

1 , a2
1 , a1 , a2 in Fig. 2~a!. In phase space there are th

FIG. 1. ~a! The action ofq-raising and lowering operatorss1 , s2 in phase space.~b! The action ofq-raising and
lowering operatorsJ1 ,J2 in number state space.~c! The action of operatorsS1 ,S2 .
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similar operators, which play the similar role between these subspaces:

s1
15AFN11N211

p
F̂1G (

n50

`

(
r 50

n

uu r 11
~n11!&^u r

~n!u, s15~s1
1!1,

~40!

s2
15AFN11N211

p
F̂2G (

n50

`

(
r 50

n

uun2r
~n11!&^un2r

~n! u, s25~s2
1!1.

In Fig. 2~b! we show the action of the above operators in phase space. In addition, we can
the following relations:

FN11N211

p
F̂1 , s1

1G5s1
1 ,

FN11N211

p
F̂1 , s1G52s1 ,

FN11N211

p
F̂2 , s2

1G5s2
1 ,

~41!

FN11N211

p
F̂2 , s2G52s2 ,

FIG. 2. ~a! The action of operatorsa1
1(↗),a1(↙),a2

1(↘),a2(↖) in number state space.~b! The action of raising and
lowering operatorss1

1(↗),s1(↙),s2
1(↘),s2(↖) in phase space.
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s1s1
12qs1

1s15q2@~N11N211!/p#F̂1,

s2s2
12qs2

1s25q2@~N11N211!/p#F̂2.

IV. THE TWO-MODE q-COHERENT STATES

The two-modeq-coherent statesua1 ,a2& are defined as the eigenstates of annihilation ope
tors a1 anda2 of q-harmonic oscillators:

a1ua1 ,a2&5a1ua1 ,a2&, a2ua1 ,a2&5a2ua1 ,a2&. ~42!

Herea1 anda2 are complex numbers,a15ua1ueu1, anda25ua2ueu2. In the number-state basi
it can be written as

ua1 ,a2&5~eq
ua1u2eq

ua2u2
!21/2 (

n1,n250

` a1
n1a2

n2

A@n1#! @n2#!
un1 ,n2&, ~43!

whereeq
x are q-exponential functions,eq

x5(n50
` (xn/@n#!). The q-coherent states are not on

complete, but also overcomplete.31

For two-modeq-coherent state, we have

j 15^a1 ,a2uJ1ua1 ,a2&5a1* a25ua1uua2uei ~u22u1!,
~44!

j 25^a1 ,a2uJ2ua1 ,a2&5a1a2* 5ua1uua2uei ~u12u2!,

and

j 15ei ~u22u1!ua1uua2u5Aj 1 j 2e2 i ~u12u2!,
~45!

j 25ua1uua2uei ~u12u2!5ei ~u12u2!Aj 1 j 2.

It can be seen that the quantum analog of separation of the complex amplitude into a phas
and a real amplitude part is just Eq.~28!. The number distributionPn1 ,n2

phase-difference distri-

bution P(u r
(n)) of the two-modeq-coherent stateua1 ,a2& is given by

Pn1 ,n2
5u^n1 ,n2ua1 ,a2&u25~eq

ua1u2eq
ua2u2

!21
ua1u2n1ua2u2n2

@n1#! @n2#!
,

~46!

P~u r
~n!!5u^u r

~n!ua1 ,a2&u2

5~eq
ua1u2eq

ua2u2
!21H (

k50

n ua1u2kua2u2~n2k!

~n11!@k#! @n2k#!
1

2

n11

3 (
k.k8

n ua1uk1k8ua2u2n2~k1k8!

A@k#! @k8#! @n2k#! @n2k8#!
cos~k2k8!~u r

~n!2u11u2!J ,

and the normalization conditions are

(
n1 ,n2

`

Pn1 ,n2
51, (

n50

`

(
r 50

n

P~u r
~n!!51. ~47!
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For some special cases, we can obtain

if ua1u5ua2u50, Pn1 ,n2
5dn1,0dn2,0 , P~u r

~n!!5dn,0d r ,0 ;

if ua1u50, ua2uÞ0, Pn1 ,n2
5dn1,0~eq

ua2u2
!21

ua2u2n2

@n2#!
, P~u r

~n!!5~eq
ua2u2

!21
ua2u2n

~n11!@n#!
;

if ua1uÞ0, ua2u50, Pn1 ,n2
5dn2,0~eq

ua1u2
!21

ua1u2n1

@n1#!
, P~u r

~n!!5~eq
ua1u2

!21
ua1u2n

~n11!@n#!
.

We can calculate the mean value of phase-difference operator and the phase-difference unc
in the two-modeq-coherent state

^a1 ,a2uF̂12ua1 ,a2&

5~eq
ua1u2eq

ua2u2
!21(

n50

` H S u0
~n!1

np

n11D (
k50

n ua1u2kua2u2~n2k!

@k#! @n2k#!
1

p

n11

3 (
kÞk8

n ua1uk1k8ua2u2n2~k1k8!

A@k#! @k8#! @n2k#! @n2k8#!

sin~k2k8!~ u0
~n!2u11u22 p/~n11!!

sin @~k2k8!p/~n11!# J ,

^a1 ,a2uF̂12
2 ua1 ,a2&5~eq

ua1u2eq
ua2u2

!21(
n50

` HS ~u0
~n!!21

2np

n11
u0

~n!1
2n~2n11!

3~n11!2 p2D
3 (

k50

n ua1u2kua2u2~n2k!

@k#! @n2k#!
2

2p

n11 (
k.k8

n ua1uk1k8ua2u2n2~k1k8!

A@k#! @k8#! @n2k#! @n2k8#!

3H ~u0
~n!1~n21!p/~n11!!cos~k2k8!~u0

~n!2u11u2!

sin2@~k2k8!p/~n11!#

2
~u0

~n!1p!cos~k2k8!~u0
~n!2u11u222p/~n11!!

sin2@~k2k8!p/~n11!#
J J, ~48!

^a1 ,a2u~DF̂12!
2ua1 ,a2&5^a1 ,a2uF̂12

2 ua1 ,a2&2~^a1 ,a2uF̂12ua1 ,a2&!2.

We set

u0
~n!5u12u22

np

n11
. ~49!

Using Eqs.~48! and ~49!, we find that

^a1 ,a2uF̂12ua1 ,a2&5u12u2 ,

~50!
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^a1 ,a2u~DF̂12!
2ua1 ,a2&5~eq

ua1u2eq
ua2u2

!21(
n50

` H p2n~n12!

3~n11!2 (
n50

` ua1u2kua2u2~n2k!

@k#! @n2k#!

1
4p2

~n11!2 (
k.k8

n ua1uk1k8ua2u2n2~k1k8!

A@k#! @k8#! @n2k#! @n2k8#!

3
~21!k2k8 cos~k2k8!@p/~n11!#

sin2@~k2k8!p/~n11!# J .

Generally, let us consider the states of the formua,b&5(n1 ,n2

` an1
bn2

ei (n1u11n2u2)un1 ,n2&, where

an1
bn2

are real and positive. The two-modeq-coherent state is a special example of this w

an5(eq
ua1u2)21(ua1un/A@n#!), bn5(eq

ua2u2)21(ua2un/A@n#!). If u0
(n) is taken to be u12u2

2np/(n11), the expectation value of phase-difference operator in the stateua,b& is u12u2 . It
is a general and very important result.

Furthermore, whenua1u→`, ua2u→0 or ua1u→0, ua2u→`, we can obtain

^a1 ,a2u~DF̂12!
2ua1 ,a2&5p2/3. ~51!

The uncertainty relation for phase-difference and number-difference operators is

^u~DF̂12!
2u&^u~D~N12N2!!2u&> 1

4u^u@F̂12,N12N2#u&u2. ~52!

For the two-modeq-coherent states, we have

^a1 ,a2u~D~N12N2!!2ua1 ,a2&5~eua1u2!21H (
n50

` ua1u2nn2

@n#!
2~eua1u2!21S (

n50

` ua1u2nn

@n#! D 2J
1~eua2u2!21H (

n50

` ua2u2nn2

@n#!
2~eua2u2!21S (

n50

` ua2u2nn

@n#! D 2J ,

(53)

^a1 ,a2u@F̂12,N12N2#ua1 ,a2&5~eq
ua1u2eq

ua2u2
!21(

n50

`
24p i

n11 (
k.k8

n ua1uk1k8ua2u2n2~k1k8!

A@k#! @k8#! @n2k#! @n2k8#!

3
~21!k2k8~k82k!

sin@~k2k8!p/~n11!#
.

In general, the equality in the uncertainty relation~52! does not hold. It means that the two-mod
q-coherent states are not the minimum uncertainty states except for some special cases,
ample,ua1u5ua2u50, etc.
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Frequency domain wave-splitting techniques for plane
stratified bianisotropic media

George N. Borzdov
Department of Theoretical Physics, Byelorussian State University, Fr. Skaryny avenue 4,
220050 Minsk, Belarus

~Received 12 March 1997; accepted for publication 15 May 1997!

A plane harmonic electromagnetic wave obliquely incident on a plane stratified
bianisotropic medium with multiple discontinuities in the parameters is considered.
A covariant wave-splitting approach, based on the use of the formula of integration
by parts for multiplicative integrals and the impedance concept, is presented. It
encompasses various types of decomposition of the total internal field into two
waves propagating in opposite directions, including the physical and vacuum wave
splittings treated earlier in the literature, and provides a convenient means for both
analytical investigation and numerical calculation of evolution operators~Green’s
functions! and impedance tensors of split waves as well as characteristic matrices
and reflection and transmission tensors of stratified bianisotropic media. The po-
tentialities of the approach are illustrated by its application to the problems of
reflection, transmission, and guided propagation, and by generalizing the method of
multiple reflections to the case of stratified bianisotropic media. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!00212-0#

I. INTRODUCTION

In recent years, considerable attention has been focused on direct and inverse sc
problems for plane stratified media.1–36 These problems have many important applications to b
natural media~the atmosphere, sea water, stratified ground! and artificial composite materials.32–37

Extensive lists of references on research in the field of bianisotropic, biisotropic, and chiral
and their applications can be found in a bibliography35 and a review.36 Bianisotropic media is the
most general class of linear media in electromagnetics, in which the electric inductionD and the
magnetic field strengthH depend on both the electric field strengthE and the magnetic induction
B.38–45 The concept of bianisotropic medium is applicable to both motionless and unifo
moving linear media.23–25,38–48A moving medium is bianisotropic in the laboratory frame, even
it is isotropic and nonchiral in its rest frame. In this article we consider time-harmonic ele
magnetic fields in motionless plane stratified bianisotropic media. In this case, it is conveni
use the constitutive relations, whereD and B are expressed in terms ofE and H, since the
tangential components ofE andH are continuous across the interfaces. The interrelations betw
various forms of the constitutive relations and the properties of material parameters of bian
pic media are discussed in many details in Refs. 38–45 and 49–55.

There exists a variety of techniques for analysis of wave propagation in stratified medi
for solving direct and inverse scattering problems for such media,1,5,6,10–36,43–47,56–88in particular,
the characteristic matrix method,1,16,22–25,58–61covariant impedance methods,16–25,46,47,59–65,88

the vector circuit theory,66–68 Green’s functions ~evolution operators! tech-
niques,6,15–31,33,34,46,47,59–65,69WKB,13,16,70–74uniform75 and tensor eikonal76,77approximations, the
multiple reflections method,16,20,25,70,72,78 invariant imbedding, and wave-splittin
approaches.17–25,27–34,69,70,78–87The wave splitting, i.e., the decomposition of the total field in
two components propagating in opposite directions~the downgoing wave and the upgoing wave!,
can be very useful both in the time domain15,27,28,80,81,83–85and the frequency domain.16–22,25,30–34

A plane harmonic wave obliquely impinging on a stratified linear medium excites the int
field which is governed by a system of ordinary differential equation~ODE system! with a 4
0022-2488/97/38(12)/6328/39/$10.00
6328 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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34 matrix of coefficients.1,16,22–25In a multilayered system, i.e., piecewise homogeneous
dium, these coefficients are constant within each layer. If the matrix of coefficientsM does not
have multiple eigenvalues, either of the two split waves in a homogeneous layer has a
dimensional amplitude subspace and consists of two eigenwaves. This type of wave split
used for example in Refs. 1, 16–19, 22–25, and 32, 34; it is called34 the physical wave splitting.
To describe the down~up!-going wave with the two-dimensional amplitude subspace, it is c
venient to use the covariant methods of surface impedance tensors and evolution operators16,20–25

In Refs. 22, 25, and 46 it was shown thatM may have a two-, three-, and fourfold eigenvalue, a
the impinging wave may excite a wave with respectively linear, quadratic, and cubic coord
dependence of amplitude.22,25,46,59–61The described physical wave splitting is inapplicable in t
case.

The stratified media with continuous and sectionally continuous coordinate depende
parameters are still insufficiently investigated. In such media, closed-form solutions of the
system are in general not available, and the direct numerical integration turns out to be inad
in many cases, especially if wavelengths are much less than the thickness of a stratified st
Therefore, it is advantageous, by making a change of variables, to obtain an ODE system
best suited to the analytical or numerical solution. In particular, in the framework of the vac
splitting,33,34 the eigenwaves in vacuum are used as a basis for the internal field instead
tangential components of the total fieldsE and H. There also exist alternative wave-splittin
approaches based, for example, on the use of impedance and normal refraction tensors,16,19,22–25

and the concept of multiple reflection.16,20,25,70,72,78

The purpose of this article is threefold:

~i! to present a covariant wave-splitting technique based on the use of multiplicative~product!
integrals89 and the impedance and normal refraction tensors, which makes possib
compare different types of the wave splitting from the standpoint of their suitability
analytical and numerical analysis of bianisotropic stratified media;

~ii ! to illustrate this technique by applying it to the problems of reflection, transmission,
guided propagation in continuous and sectionally continuous stratified bianisotropic m

~iii ! to generalize the method of multiple reflections on the general case of a plane str
bianisotropic medium.

The outline of the article is as follows. In the next section, basic covariant equations
time-harmonic electromagnetic field in a plane stratified bianisotropic medium are derived
some properties of multiplicative integrals and pseudoinverse operators, which have a wide
the article, are outlined. In Sec. III, the covariant wave-splitting technique is presented, and
peculiarities of its application to multilayered structures, continuous and sectionally contin
media, as well as its interrelations with other wave-splitting techniques in the frequency do
are discussed. In Sec. IV, the suggested technique is applied to the problems of reflection
mission, and guided propagation. In Sec. V, the generalized method of multiple reflectio
presented.

II. BASIC EQUATIONS

At oblique incidence onto a plane stratified linear medium with the unit interface normaq, a
plane harmonic wave

W in~r ,t !5W in~0!exp@ i ~k–r2vt !# ~1!

excites a field

W~r ,t !5W~z!exp@ i ~k0b–r2vt !#, ~2!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



e

ium

e

r

s

faces

6330 George N. Borzdov: Frequency domain wave-splitting techniques

                    
wherez5q–r , k05v/c, c is the velocity of light in vacuum,b5m2q(q–m) is the tangential
component of the refraction vector43 m5k/k0 , andW can be any of the following quantities: th
electric~magnetic! field strengthE~H!, the electric~magnetic! inductionD~B!, the six-dimensional
vector such as col~E,H!, and so on. In this article, we consider a bianisotropic stratified med
which, at frequencyv, is characterized by the constitutive equations39–45,55

D5«E1aH, B5bE1mH, ~3!

where«5«(z), m5m(z), a5a(z), and b5b(z) are sectionally continuous functions. In th
general case, the dielectric permittivity tensor«, the magnetic permeability tensorm, and the
pseudotensors of gyrotropya andb are assumed to be complex and nonsymmetric.

For the field under study, Maxwell’s equations reduce to16,21,22,25

d

dz
W~z!5 ik0M~z!W~z!, ~4!

where

W5S Ht

q3ED , M5S A B

C DD , ~5!

A5qx~«q^ v11aq^ v31aI !1b^ v3 , ~6!

B5qx~«q^ v21aq^ v42«qx!1b^ v4 , ~7!

C5I ~bq^ v11mq^ v31mI !2a^ v1 , ~8!

D5I ~bq^ v21mq^ v42bqx!2a^ v2 , ~9!

v15@q~aqm2mqa!I 1mqa#/d, ~10!

v25@q~mqe2aqb!qx1aqb#/d, ~11!

v35@q~bqa2«qm!I 2bqa#/d, ~12!

v45@q~«qb2bq«!qx2«qb#/d, ~13!

d5«qmq2aqbq , «q5q«q, mq5qmq, aq5qaq, bq5qbq, ~14!

and Ht5IH is the tangential component ofH, I 512q^ q52(qx)2 is the projection operato
onto the plane normal toq(q251), 1 is the unit tensor,qx is the antisymmetric tensor dual toq,
a5bxq[b3q, and ^ is the tensor product. With givenW ~5!, we can calculate the field vector
E andH as follows:16,21,22,25

V[S E
H D5S q^ v1 q^ v22qx

q^ v31I q^ v4
DW. ~15!

It is essential thatW ~5! is continuous across any interface even though«, m, a, b and, hence,E,
H, D, andB may be discontinuous across the interface. Instead of Eqs.~4!–~14!, one can also use
other equivalent equations with different physical meaning of the oscillating quantityW ~see, for
example, Refs. 1, 22, 25, and 34!.

It follows from Eqs.~6!–~13! that q•vi50, i 51,2,3,4,qA5qB5qC5qD50, andAq5Bq
5Cq5Dq50. Because of this, in the Cartesian coordinate system related with the inter
J. Math. Phys., Vol. 38, No. 12, December 1997
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(q5e3 , I 5e1^ e11e2^ e2 , qx5e2^ e12e1^ e2), Eq. ~4! reduces to a system of four ordinar
differential equations for the tangential componentsH1 , H2 , E2 , and2E1 , andM ~5! reduces
to a 434 block matrix composed of 232 matricesA, B, C, andD. In this article, such block
matrices composed of planar tensors are denoted by capital script letters.

In a nonabsorbing bianisotropic medium, the material parameters satisfy
conditions36,40,41,43

«†5«, m†5m, a†5b, ~16!

where the symbol† stands for Hermitian conjugation. In such a medium, at real values ofb we
have

B†5B, C†5C, D†5A, ~17!

M†5J MJ , J 5S 0 I

I 0D . ~18!

It is well known89 that the general solution of Eq.~4! can be written in the form

W~z!5F ~z,z0!W~z0!, ~19!

where the evolution operatorF ~it is also known as principal matrix solution, matriciant, Cauc
matrix, and Green’s function! can be expressed in terms of a series

F ~z,z0!5E1 ik0E
z0

z

M~z1! dz11~ ik0!2E
z0

z

M~z1! dz1E
z0

z1
M~z2! dz21••• , ~20!

and a multiplicative integral~product integral!

F ~z,z0!5E
⇐

z0

z

@E1 ik0M~z! dz#[ lim
Dzk→0

@E1 ik0M~zn!Dzn#•••@E1 ik0M~z1!Dz1#

[ lim
Dzk→0

exp@ ik0M~zn!Dzn#••• exp@ ik0M~z1!Dz1#. ~21!

On the right-hand side of Eq.~21!, z1 ,z2 ,...,zn21 are arbitrary intermediate points splitting th
interval @z0 , z# into n parts,Dzk5zk2zk21 ~k51,2,...,n; zn5z!. The evolution operator satisfie
the equations

]

]z
F ~z,z0!5 ik0M~z!F ~z,z0!, F ~z0 ,z0!5E[S I 0

0 I D . ~22!

From Eq.~21! it immediately follows that

F ~z,z0!5F ~z,z1!F ~z1 ,z0!, ~23!

F 2~z,z0!5F ~z0 ,z!, ~24!

wherez1 is any intermediate point of the interval@z0 , z#, andF 2 is the pseudoinverse operato
(F 2F 5F F 25E ).

It should be noted that the pseudoinverse tensorA2 for a planar tensorA ~qA50, Aq50! is
defined by17–19
J. Math. Phys., Vol. 38, No. 12, December 1997
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A2A5AA25I , ~25!

A25~AtI 2A!/Āt[2qxÃqx/Āt , ~26!

whereAt is the trace ofA, Āt is the trace of the adjoint tensorĀ, andÃ is the transposed tenso
In the Cartesian coordinate system for whiche35q, we have Ai35A3i5Āi35Ā3i50 (i
51,2,3),At5A111A22, Āt5A11A222A12A21, and the numerical calculation ofA2 reduces to the
inversion of 232 matrix:

S A11
2 A12

2

A21
2 A22

2 D 5S A11 A12

A21 A22
D 21

5
1

Āt
S A22 2A12

2A21 A11
D . ~27!

Similarly, in this system, the pseudoinversion of a block matrix@for instance,M ~5!#, composed
of planar tensors, reduces to the inversion of a 434 matrix. Alternatively, one can use th
Frobenius formula89

M25S A B

C DD 2

5S A21A2BH2CA2 2A2BH2

2H2CA2 H2 D , H5D2CA2B, ~28!

and its modifications which can readily be obtained from Eq.~28! and the identities

S A B

C DD 2

5J S B A

D CD 2

5S C D

A BD 2

J 5J S D C

B AD 2

J , ~29!

J 25E , EM5ME5M. ~30!

By making use of the pseudoinversion, the formula of integration by parts for multiplica
integrals89 can be written respectively for planar tensorsA(z), B(z), and block matricesG andH

composed of planar tensors as follows:

E
⇐

z0

z

@ I 1~B1DzA! dz#5A~z!E
⇐

z0

z

~ I 1A2BA dz!A2~z0!, ~31!

E
⇐

z0

z

@E1~H1DzG !dz#5G ~z!E
⇐

z0

z

~E1G 2HG dz!G 2~z0!, ~32!

where

DzA5
dA

dz
A2, DzG 5

dG

dz
G 2, ~33!

are the multiplicative derivatives.89 In fact, Eq.~21! and its analog for planar tensors and Eqs.~31!
and ~32! provide the main methods for numerical and analytical calculations of the evolu
operators under study in this article. If, however, within the limits of some layer, the values o
function M(z) ~5! at two arbitrary pointsz1 and z2 commute among themselves, i.e
M(z2)M(z1)5M(z1)M(z2) for any z1 and z2 from the interval@z0 , z#, then the evolution
operatorF (z,z0) ~21! reduces to the exponential
J. Math. Phys., Vol. 38, No. 12, December 1997
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F ~z,z0!5expS ik0E
z0

z

M~z1!dz1D . ~34!

For a homogeneous layer, it reduces to

F ~z,z0!5exp@ ik0~z2z0!M#. ~35!

Properties of such exponential evolution operators are investigated in some detail in Refs.
25.

III. WAVE SPLITTING

For definiteness sake, let the stratified bianisotropic structure under study be located
region@0, l #. Let the waveW in ~1! be incident on it from the half-spacez,0. Consider a change
of variables defined by

W~z![S Ht~z!

q3E~z! D5G ~z!U~z!, ~36!

U~z![S u1~z!

u2~z! D5G 2~z!W~z!, ~37!

whereG is some block matrix function (EG 5G E5G ), andG 2 is the pseudoinverse matri
~G 2G 5G G 25E , EG 25G 2E5G 2!, hence,u1 andu2 are some tangential fields, i.e.,q
•u15q•u250. We assume here thatG 2(z) exists at any pointzP@0, l #, so that Eqs.~36! and
~37! specify a one-to-one correspondence betweenU(z) andW(z). The evolution operatorL for
the fieldU@U(z)5L(z,z0)U(z0)# is related withF ~19! as follows:

F ~z,z0!5G ~z!L~z,z0!G 2~z0!, ~38!

L~z,z0!5G 2~z!F ~z,z0!G ~z0!. ~39!

Even in the case of stratified medium with multiple discontinuities,W(z) ~36! is continuous.
Consequently, ifG (z) is continuous,U(z) ~37! is continuous as well. Consider in more det
some types of such transformations.

A. Differentiable function G „z…

Let G (z) ~36! be a differentiable matrix function ofz. SubstitutingF ~21! into Eq. ~39! and
using Eq.~32!, we find

L~z,z0!5E
⇐

z0

z
~E1 ik0N dz!, ~40!

where

N 5G 2MG 1
1

ik0
DzG 2, ~41!

DzG 25
dG 2

dz
G 52G 2

dG

dz
. ~42!

If G is z independent, i.e.,DzG [0, Eq. ~41! reduces to
J. Math. Phys., Vol. 38, No. 12, December 1997
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N 5G 2MG , ~43!

i.e., the integrands of the multiplicative integralsF ~21! and L ~40! are related by a similarity
transformation.

If the medium outside the stratified structure is an isotropic medium with the relative pe
tivity « and the relative permeabilitym, it is convenient to use the matrix

G 5S I I

g 2g D , ~44!

where

g5
1

h S mI 2
1

«
a^ aD ~45!

and 2g are the surface impedance tensors16,19 of the incident and reflected waves (q3Ein,r

56gHt
in,r) andh5q–m5A«m2b2 is the normal component ofm. In this case, we have

G 25
1

2 S I g2

I 2g2D , ~46!

g25
1

h S «I 2
1

m
b^ bD , ~47!

W~z![S Ht~z!

q3E~z! D5S Ht1~z!1Ht2~z!

gHt1~z!2gHt2~z! D , ~48!

U~z![S Ht1~z!

Ht2~z! D5
1

2 S I g2

I 2g2D S Ht~z!

q3E~z! D , ~49!

i.e., the total field in the stratified structure is treated as a superposition of two coupled
Ht1(z) andHt2(z) with the impedance tensorsg ~45! and2g, respectively. It is essential that th
split fieldsHt1(z) andHt2(z) are continuous even thoughM(z) may be discontinuous at som
points of the interval@0, l #. Assume that the incident wave propagates in the half-spacez,0.
Then,Ht1 andHt2 satisfy the following boundary conditions:

Ht1~0!5Ht
in~0!, Ht2~0!5Ht

r~0!, ~50!

Ht1~ l !5Ht
d~ l !, Ht2~ l !50, ~51!

whereHt
in(0), Ht

r(0), andHt
d( l ) are the amplitudes of the incident, reflected, and transmi

waves. Naturally, the same split waves can also be described in terms of the tangential c
nentsEt1 andEt2 of their electric fieldsE1 andE2 .32–34The wave splitting outlined above wa
suggested by Norgren and He.32–34 Its main characteristic feature is that it is not related to
media which make up the composite structure, but is based on the use of the surface imp
tensorg ~45! of the isotropic medium~or vacuum! outside the composite structure. In the frame
this concept the so-called invariant imbedding method79 for calculation of reflection and transmis
sion coefficients of composite structures was developed.33,34 In Ref. 34 it was applied to solve th
inverse problem for a stratified bianisotropic medium.

It is well known89,90 that the similarity transformation can be used to bring a matrix i
diagonal form or, in the general case, into Jordan form. In an inhomogeneous medium, u
J. Math. Phys., Vol. 38, No. 12, December 1997
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z-independent matrixG , the matrixN ~43! cannot be brought into this form for allz from the
region@0, l #, but can readily be brought to it at any preassigned point. IfM(z) is differentiable
in some region@z1 , z2#, there exists a differentiable matrix functionG (z) such thatN 0(z)
5G 2(z)M(z)G (z) has the diagonal~or Jordan! form in the whole region@z1 , z2#. With such
transformation, the integrandN is defined by Eq.~41!, i.e., the smaller the medium inhomog
neity is, the lessN (z) differs from the diagonal~Jordan! matrix functionN 0(z).

Naturally, to avoid the differentiability restriction onM(z), one can use a differentiabl
function G (z) that bears little or no relation to the values of material parameters in the re
@0, l #. It is unlikely that this approach can result in a much-simplified integrand in the ge
case, still it can be useful in some individual cases. In particular, it was applied in Ref.
compute the scattered and internal fields due to a transversely polarized electromagneti
normally incident on a stratified biisotropic slab with multiple discontinuities. In a biisotro
medium,« andm are scalars anda5x1 ik andb5x2 ik are pseudoscalars, so that Eqs.~6!–~9!
reduce to

A5aqx2
b

d
b^ a, B5«I 2

«

d
b^ b, ~52!

C5mI 2
m

d
a^ a, D52bqx2

a

d
a^ b, ~53!

whered5«m2ab5«m2x22k2, k is the chirality parameter, andx is the nonreciprocity pa-
rameter. In the case of normal incidence~a5b50, Et[E, Ht[H! from Eqs.~4!, ~5!, ~15!, ~52!,
and ~53! we obtain~see also Ref. 30!

d

dz
V5 ik0MVV, ~54!

where

V5S E
H D , MV5S ~2x1 ik !qx 2mqx

«qx ~x1 ik !qxD . ~55!

To solve this equation, in Ref. 30 a change of variablesF5T1V has been suggested, where t
matrix T1 is that which provides the diagonalization of the matrix

MVux505S ikqx 2mqx

«qx ikqx D ~56!

describing a reciprocal chiral medium. It is essential thatT1 does not depend30 on the chirality
parameterk. It makes it possible to use this change of variables for nonreciprocal chiral med
which « andm are differentiable, butk andx have multiple discontinuities.30

B. Sectionally continuous and continuous sectionally differentiable functions G „z…

Assume now that the stratified bianisotropic structure under study consists ofn21 continu-
ously inhomogeneous slabs~see Fig. 1!. Let their boundaries be specified by the equationsr–q
5zk ~k51,...,n; z150, zn5 l !. Consider the change of variables~36! defined by the block matrix

G 5S I I

g1 g2
D , ~57!
J. Math. Phys., Vol. 38, No. 12, December 1997
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where tensor functionsg15g1(z) andg25g2(z) are differentiable at all interior points of th
slabs~zk,z,zk11 , k51,2,...,n21!, but may be discontinuous at their boundaries. We ass
here that, for all interior points,g1 andg2 satisfy the conditions

qg650, g6q50, ~58!

~g12g2! tÞ0, ~59!

so that the pseudoinverse block matrixG 2 has the form

G 25S 2~g12g2!2g2 ~g12g2!2

~g12g2!2g1 2~g12g2!2D , ~60!

where the pseudoinverse planar tensor (g12g2)2 is given by the expression~26! @see also Eq.
~27!#.

The above-mentioned restrictions on the properties ofg1 andg2 are sufficient to useG ~57!
for the wave splitting. In this case, from Eqs.~36!, ~37!, ~41!, ~42!, ~57!, and~60! we obtain

W~z![S Ht

q3ED5S Ht11Ht2

g1Ht11g2Ht2
D , ~61!

U[S Ht1

Ht2
D , Ht656~g12g2!2~q3E2g7Ht!, ~62!

FIG. 1. A stratified bianisotropic structure.
J. Math. Phys., Vol. 38, No. 12, December 1997
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N 5G 2S A1Bg1

C1Dg1 2
1

ik0

dg1

dz

A1Bg2

C1Dg22
1

ik0

dg2

dz
D . ~63!

Hence, the total field inside a slab is treated as the superposition of two coupled wavesHt1 and
Ht2 with impedance tensorsg1 andg2 , respectively, i.e.,

q3E6~z!5g6~z!Ht6~z!. ~64!

To simplify the calculation of the multiplicative integralL ~40!, it is advantageous to reduc
its integrandN ~63! to a block diagonal form. To this end, consider the interior of thekth slab
(zk,z,zk11) and assume thatg1 andg2 are arbitrary solutions of the Riccati tensor equati

1

ik0

dg

dz
1g~A1Bg!2C2Dg50, ~65!

satisfying the conditions~58! and ~59!. Under these assumptions, Eqs.~40! and ~63! become

L~z,z0!5S L1~z,z0!

0
0

L2~z,z0! D , ~66!

N 5S N1 0

0 N2
D , ~67!

where

N65A1Bg6 ~68!

L6~z,z0!5E
⇐

z0

z

~ I 1 ik0N6 dz!, ~69!

andz0 andz are arbitrary points from the interval@zk , zk11#. In this case, the total fieldW ~61!
in the slab is treated as the superpositionW5W11W2 of two independent waves

W65S Ht6

q3E6
D5S Ht6

g6Ht6
D , ~70!

where

Ht6~z!5L6~z,z0!Ht6~z0!, ~71!

and L6 ~69! are the evolution operators~Green’s functions! for the tangential componentsHt6

5IH6 of the magnetic field strengthsH1 and H2 of these two waves. Unlike the split field
discussed above, each of the wavesW1 and W2 satisfies Eq.~4! by itself. This can be easily
verified by directly substituting ofW6 ~70! into Eq.~4! followed by taking into account Eqs.~65!,
~68!, ~69!, and~71!.

TensorsN6 ~68! andL6 ~69! have the following properties:

qN65qL650, N6q5L6q50, ~72!
J. Math. Phys., Vol. 38, No. 12, December 1997
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]

]z
L6~z,z0!5 ik0N6~z!L6~z,z0!, L6~z0 ,z0!5I . ~73!

In some particular cases~for example, see Sec. III C.3! the solutionsg1 andg2 of Eq. ~65! can
be chosen so that, for the whole interval@zk , zk11#, the real parts of nonzero eigenvaluesh11 ,
h21 andh12 , h22 of N1 andN2 are positive and negative, respectively. Then, the wavesW1

andW2 may be thought of as propagating in the positive and negativez directions, respectively
or as downgoing and upgoing waves. However, for a field excited in a continuously inhom
neous slab at oblique incidence, this type of terminology is a very conventional one. If, at soz,
M(z) ~5! has a threefold or fourfold eigenvalue~see Refs. 22, 25, 46, and 59–61!, this terminol-
ogy simply makes no sense. It is more advantageous to chose the branchesg1 andg2 in such a
way as to facilitate numerical calculations of the tensor functionsL65L6(z,z0) and g6

5g6(z) as well ~see below!.
In line with our assumptions,g6 may be discontinuous across the interfaces of slabs. Letgk6

andgk68 be the values ofg6 at thekth boundary:

gk65g6~zk20!5 lim
z→zk20

g6~z!, ~74!

gk68 5g6~zk10!5 lim
z→zk10

g6~z!. ~75!

SinceW ~61! is continuous across any interface@W(zk10)5W(zk20)#, from Eqs.~36!, ~37!,
~57!, and~60!–~62! we obtain the following boundary conditions for the split wavesU ~62!:

U~zk10!5BkU~zk20!, U~zk20!5Bk
2U~zk10!, ~76!

where

Bk5G 2~zk10!G ~zk20!5S s1 s2

s3 s4
D , ~77!

s15~gk18 2gk28 !2~gk12gk28 !, s25~gk18 2gk28 !2~gk22gk28 !, ~78!

s35~gk18 2gk28 !2~gk18 2gk1!, s45~gk18 2gk28 !2~gk18 2gk2!. ~79!

The pseudoinverse block matrixBk
25G 2(zk20)G (zk10), describing the transition across th

kth boundary into the negativez direction, is defined by the similar expressions which can
obtained by interchanging of primed and unprimed values in Eqs.~78! and ~79!.

By multiplicating the propagation matricesL ~66! and the boundary transition matricesBk

~77! or Bk
2 , one can find the evolution operatorL ~39! relating values of the split fieldU ~62! at

any points of the stratified structure with multiple discontinuities. In particular, the trans
matricesT 5L( l 10,20) andT 25L(20,l 10) of the whole structure are defined by

T 5BnL~ l 20, zn2110!•••B2L~z220,10!B1 , ~80!

T 25B1
2

L~10, z220!B2
2•••L~zn2110, l 20!Bn

2 . ~81!

In Sec. IV B we use them to find the scattered waves.
The wave-splitting based on the use of a continuous sectionally differentiable functionG (z)

~57! can be treated as a special case, for whichgk68 5gk65g6(zk), Bk5E , k51,2,...,n. In this
case,g6 andL6 ~69! are continuous andN6 ~68! are sectionally continuous in the interval@0, l #.
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In particular, such continuous functionsg6(z) can be obtained by integrating the Riccati equat
in the interval@0, l #, provided that the boundary valuesg6(0) or g6( l ) are given~for example,
see Sec. IV C.2!.

C. Calculation of g, N, and L in a homogeneous slab

In a homogeneous slab, tensor coefficientsA, B, C, andD in Eq. ~65! are z independent.
Hence, it is convenient to use the wave splitting specified byz-independent solutionsg1 andg2

of this equation, even though it has, of course, solutions depending onz as well. In this case, from
Eqs.~65! and ~68! we obtain

A1Bg5N, C1Dg5gN, ~82!

gBg1gA2Dg2C50, ~83!

N22PN2Q50, ~84!

where

P5A1BDB2, Q5B~C2DB2A!. ~85!

Each solutionN of Eq. ~84! describes a wave with the exponential evolution operator@see Eq.
~69!#

L~z,z0!5exp@ ik0~z2z0!N# ~86!

and the surface impedance tensor

g5B2~N2A!. ~87!

This wave can be written, in view of Eqs.~2! and ~64!, as

Ht~r ,t !5Ht~z!exp@ i ~k0b–r2vt !#, ~88!

Ht~z!5exp~ ik0zN!Ht~0!, q3E~z!5gHt~z!. ~89!

1. Three types of N and L

Let us consider the physical meaning ofN. A nondegenerate tensorN, i.e., N with different
eigenvalues of multiplicity 1, can be written in the form

N5h1t11h2t2 , ~90!

whereh1 andh2 are the eigenvalues ofN, and

t15
N2h2I

h12h2
, t25

N2h1I

h22h1
~91!

are the projection operators~dyads! with the following properties:

t i
25t i , ~t i ! t51, qt i50, t iq50, i 51,2, ~92!

t1t25t2t150, t11t25I . ~93!

Substitution ofN ~90! into Eqs.~86!, ~88!, and~89! results in
J. Math. Phys., Vol. 38, No. 12, December 1997
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L~z,0!5exp~ ik0zN!5t1 exp~ ik0zh1!1t2 exp~ ik0zh2!, ~94!

Ht~r ,t !5Ht1 exp@ i ~k0m1•r2vt !#1Ht2 exp@ i ~k0m2•r2vt !#, ~95!

where

mi5b1h iq, Ht i5t iHt~0!, i 51,2. ~96!

In these expressions, we have taken into account the properties~72! and the definition~69!. Note
that, in line with the latter, the first term in the power series expansion of exp(ik0zN) is the
projective operatorI instead of the unit tensor 1. At numerical calculations, this makes it pos
to use 232 matrices instead of 333 matrices. Thus, the nondegenerate tensorN ~90! and the
evolution operatorL ~94! describe the superposition of two eigenwaves with the refraction vec
m1 andm2 ~the wave vectorsk15k0m1 andk25k0m2! and the complex vector amplitudesHt1

andHt2 specified by the polarization projective operatorst1 andt2 . Since the eigenvaluesh1 and
h2 of N ~NHt i5h iHt i , i 51,2! specify the normal components of the refraction vectorsm1 and
m2 , N is termed the tensor of normal refraction.16

If N has the double eigenvalueh1 with the one-dimensional eigensubspace, i.e.,

N5h1I 1h^ g, h–g5q–h5q–g50, ~97!

the evolution operatorL ~86! takes the form

L~z,0!5exp~ ik0zN!5~ I 1 ik0zh^ g!exp~ ik0zh1! ~98!

and describes the Fedorov–Petrov wave22,25,43,46,61,91–93

Ht~r ,t !5@Ht~0!1 ik0zh„g–Ht~0!…#exp@ i ~k0m1–r2vt !#. ~99!

This wave can be considered as a limit case (h2→h1) of the waveHt ~95!. Conditions for
initiation and properties of such waves in bianisotropic media has been studied in some de
Refs. 22, 25, 46, and 61. It is worth noting that the more complex types of inhomogeneous
which can be excited in anisotropic slabs, namely, the waves with quadratic22,25,59,61 and
cubic22,25,60,61z dependence of amplitude, are described by respectively threefold and fou
degenerate evolution operatorF ~35!, respectively, instead ofL ~86!. Such waves cannot b
described in terms ofz-independent tensorsg andN.

At last, if N has the double eigenvalueh1 with the two-dimensional eigensubspace, i.e.,N
5h1I , Eqs.~86! and ~88! reduce to

L~z,0!5exp~ ik0zh1!I , ~100!

Ht~r ,t !5Ht~0!exp@ i ~k0m1•r2vt !#. ~101!

These relations describe the wave propagating along an isotropic axis.43 Along such an axis any
polarization state travels unchanged. The refraction vectorm1 of this wave satisfies the following
tensor equation:16

mx«1
21mx5~mx2mxa1mx!

m! 1

mm1m
~mx1mxb1mx!, ~102!

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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S «1
21 a1

b1 m1
21D 5S « a

b m D 21

, ~103!

«15«2am21b, a152«21a~m2b«21a!21, ~104!

b152m21b~«2am21b!21, m15m2b«21a. ~105!

The relations~104! and ~105! can be obtained from the Frobenius formula~28! by using the
inverse tensors instead of the pseudoinverse ones.

The equation~102! can be derived as follows. By eliminatingE andH from the eigenwave
equations

D52mxH, B5mxE, ~106!

and the constitutive equations

E5«1
21D1a1B, H5b1B1m1

21D, ~107!

we obtain

~12mxa1!B5mx«1
21D, ~108!

~11mxb1!D52mxm1
21B. ~109!

SinceD andB lie in the phase plane (m–D5m–B50) with the projection operator

I m512m^ m/m252mxmx/m2, ~110!

i.e., I mD5D, I mB5B, by making use of the pseudoinversion, we can eliminateB as well:

B52~mxm1
21I m!2~11mxb1!D, ~111!

@mx«1
21I m1~12mxa1!~mxm1

21I m!2~11mxb1!I m#D50. ~112!

For the wave propagating along an isotropic axis, Eq.~112! is satisfied identically, i.e., the tenso
in square brackets is equal to zero. By multiplicating this tensor bymx from the right and by
calculating the pseudoinverse tensor@see Eqs.~25! and ~26!, where q and I are replaced by
m/Am2 andI m , respectively#, we finally arrive at Eq.~102!. In a nongyrotropic medium, it take
the form

mx«21mx5
mxm! mx

mmm
. ~113!

The equations~102! and~113! specify both the directions of isotropic optic axes and the refrac
indices for these directions. By way of illustration let us consider the well-known special ca
the nonmagnetic nongyrotropic biaxial crystal. In this case,«21 can be written in the axial form43

«215
1

«2
11

1

2 S 1

«3
2

1

«1
D ~c1^ c21c2^ c1!, ~114!

where« i ( i 51,2,3) are the eigenvalues of«, andc1 andc2 are some unit vectors. Substituting«21

~114! andm51 into ~113! results in the equation
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1

2 S 1

«3
2

1

«1
Dmx~c1^ c21c2^ c1!mx5S 1

m2
2

1

«2
D mxmx. ~115!

Thus we obtain immediately the solutionsm156A«2c1 andm256A«2c2 .
From the preceding text it is seen that there are the different types ofz-independent tensors o

normal refraction and the corresponding exponential evolution operators@see Eqs.~94!, ~98!, and
~100!#. However, Eqs.~94!, ~98!, and~100! are the particular cases of the more general form

exp~ ik0zN!5exp~ ik0zh0!Fcos~k0zR!I 1
i

R
sin~k0zR!~N2h0I !G , ~116!

where

h05~h11h2!/25Nt/2, ~117!

R5~h12h2!/25A~Nt/2!22N̄t. ~118!

It can readily be derived by making use of the expansion

exp ~ ik0zN!5I 1 (
n51

1`
~ ik0z!n

n!
Nn ~119!

and the Hamilton–Cayley identity,89 which, for the planar tensorN @see Eqs.~72!#, has the form

N22NtN1N̄tI 50, ~120!

whereNt is the trace ofN andN̄t is the trace of the adjoint tensorN̄. The tensorsN ~90! andN
~97!, N5h1I have the invariantsNt5h11h2 , N̄t5h1h2 , RÞ0, andNt52h1 , N̄t5h1

2, R50,
respectively, and thus from the formula~102! we obtain immediately Eqs.~94!, ~98!, and~100!.

2. Eigenvalues of the normal refraction tensor N

From Eqs.~3! and ~106! we have

@«1~mx1a!m21~mx2b!#E50. ~121!

If the determinant of the tensor in square brackets vanishes, i.e., the refraction vectorm satisfies
the dispersion equation

u«1~mx1a!m21~mx2b!u50, ~122!

Eq. ~121! has a nonzero solutionE. The eigenvalues ofN ~86!, being the normal components o
the refraction vectors of eigenwaves excited in the slab (m5b1hq), are specified by the roots o
the quartic equation

uah21bh1cu[a4h41a3h31a2h21a1h1a050, ~123!

where

a5qxm21qx, ~124!

b5~bx1a!m21qx1qxm21~bx2b!, ~125!

c5«1~bx1a!m21~bx2b!, ~126!
J. Math. Phys., Vol. 38, No. 12, December 1997
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a05ucu, a15~bc̄ ! t , a25~cb̄! t1~ac̄ ! t , ~127!

a35ubu1~abc! t1~acb! t1atbtct2at~bc! t2bt~ca! t2ct~ab! t , ~128!

a45~cā ! t1~ab̄! t , ~129!

The expressions~127!–~129! are obtained by expansion of the determinant~123! in powers ofh
with the use of the identities43

ua1bu5uau1~ab̄! t1~bā! t1ubu, ~130!

ā t12ā5a~a t12a!, ~131!

which are valid for any three-dimensional tensorsa andb.
Instead of Eq.~123!, one can use an equivalent equation

h42h3Pt1h2~ P̄t2Qt!1h@PtQt2~PQ! t#1Q̄t50, ~132!

which follows from Eq.~84!. Really, multiplying Eq.~84! by an eigenvectorHt of N (NHt

5hHt), we obtain

xHt50, x5h2I 2hP2Q. ~133!

Since we also havexq50, x is a dyad, i.e.,x̄50, x25x tx, and (x2) t5(x t)
2. The latter relation

immediately results in Eq.~132! @see also Eqs.~131! and ~133!#. There exist also some othe
equations equivalent to Eqs.~123! and ~132! ~see, for example, Refs. 22, 25, and 46!.

3. Calculation of N 6 and g6

Let the eigenvaluesh1 andh2 of N be found from Eq.~123! or ~132!. SinceNt5h11h2 and
N̄t5h1h2 , from Eqs.~82!–~85! we obtain

N5@~h11h2!I 2P#2~h1h2I 1Q!, ~134!

g5@~h11h2!B2AB2BD#2@BC1~A2h1I !~A2h2I !#. ~135!

Sorting out different pairs of roots of Eq.~123! or ~132! and substituting them ash1 andh2 into
Eqs. ~134! and ~135!, one can find all branches of solutionsN and g of Eqs. ~83! and ~84!. In
particular, if all the roots are different and hence single, we can enumerate them~h i , i 51,2,3,4!
so thatN15N(h1 ,h2) ~134! and N25N(h3 ,h4) will describe the waves propagating in th
positive and negativez directions, respectively. In this case, the wave splitting in the sla
defined byz-independent impedance tensorsg15g(h1 ,h2) ~135! and g25g(h3 ,h4), and L

~66! takes the form

L~z,z0!5S L1~z,z0!

0
0

L2~z,z0! D5S exp@ ik0~z2z0!N1#
0

0
exp@ ik0~z2z0!N2# D . ~136!

It should be emphasized that, in the case of degeneracyh25h1 , the previous expressions sti
stand. Ifm15b1h1q satisfies Eq.~102! or, in other terms,h1

2I 5h1P1Q @see Eq.~84!# andN
5h1I , these expressions describe the wave propagating along an isotropic axis; otherwis
describe the Fedorov–Petrov wave.

In some homogeneous slabs, instead of the splitting of the total field into the downgoin
upgoing waves, it is much more advantageous to use the splitting into immobile~with respect to
J. Math. Phys., Vol. 38, No. 12, December 1997
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the z axis! waves. The biisotropic slab is a good example. Substitution of Eqs.~52! and ~53! in
Eqs.~85! and ~132! gives a biquadratic equation with the rootsh6 and2h6 defined by

h65A~n6k!22b2, n5A«m2x2. ~137!

Settingh15h6 andh252h6 , from Eqs.~52!, ~53!, ~85!, ~116!, ~134!, and~135! we obtain

g65G6qx, G65~2x6 in!/«, ~138!

N65 i F ~k6n!qx2
b^ a

k6nG , ~139!

L6~z,0!5exp~ ik0zN6!5cos~k0zh6!I 1
i

h6
sin ~k0zh6!N6 . ~140!

In this case, each immobile split waveH1 or H2 consists of two downgoing and upgoin
circularly polarized~in terms of bothH6 and E6! eigenwaves with the refractive indexn65n
6k, and the refraction vectorsm165b1h6q and m265b2h6q, respectively. Naturally, in
terms of the tangential vectorHt5IH, these eigenwaves are elliptically polarized. The split wa
H6 has the internal impedanceG6(E65G6H6) and the surface impedanceg6(q3E6

5g6Ht6).
In the case of near normal incidence~i.e., at small magnitudeubu! of the waveW in ~1! onto a

bianisotropic slab with small values of the gyrotropy parametersa andb, the norms ofA ~6! and
D ~9! are much less than the norms ofB ~7! andC ~8!. By the norm of a tensorA is meant the sum
iAi5(AA†) t5Ai j Ai j* , where the summation is taken over all components ofA, and the symbol*
denotes the complex conjugation. In this case, to findN andg, one can use the following iterativ
formulas@see Eqs.~82!–~85!#.

N~k11!5~Q1PN~k!!1/2, ~141!

g~k11!5B2@B~C1Dg~k!2g~k!A!#1/2, ~142!

wherek50,1,2,..., and the square roots of planar tensors are defined by

B1/25
AB̄tI 1B

ABt12AB̄t

. ~143!

The latter formula can readily be derived from the Hamilton–Cayley identity@see Eq.~120!#. By
choosing various branches of the square roots on the right-hand side of Eq.~143!, one can find all
four branches ofB1/2. We do not consider here the special caseB5lI , wherel is a scalar, in
which there exists94 an infinite set of square rootsB1/25AlI 1/2 with zero trace@(I 1/2) t50# in
addition to the rootsB1/256AlI specified by Eq.~143!. There must be no changing of th
branches during the iterative procedure, since they predetermine which of the roots of Eq.~83! or
~84! will be found. Considering thatN5A1Bg, it is sufficient to use either of two equation
~141! and~142!. As the starting point, one can takeN(0)50 org (0)50. Our numerical calculations
have shown that, even with such rough initial approximations, the suggested iterative schem
rapidly converge to a solution.

D. Calculation of g, N, and L in a continuously inhomogeneous slab

The relations presented in Sec. III C can be used as a basis for the numerical calcula
tensor functionsg6(z) ~64!, N6(z) ~68!, andL6(z,z0) ~69!. To this end, it is necessary:
J. Math. Phys., Vol. 38, No. 12, December 1997
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~i! using the boundary values«(z0), m(z0), a(z0), andb(z0) of the material tensors and th
relations ~5!–~14! and ~135! or ~142!, to calculateg6(z0) or, alternatively, to set the
boundary values of the impedance functionsg1 andg2 in any different way compatible
with the conditions~58! and ~59!;

~ii ! starting from the pointz0 , to calculateg6 by numerical integration of the Riccati equatio
~65!;

~iii ! substitutingg6(z) ~68! in N6 , to calculate the multiplicative integralL6(z,z0) ~69!.

To find this integral, one can use the definition@see also Eqs.~20! and ~21!#

L6~z,z0!5E
⇐

z0

z
~ I 1 ik0N6 dz!5 lim

Dzk→0
exp@ ik0N6~zn!Dzn#•••exp@ ik0N6~z1!Dz1# ~144!

in combination with the formula~116!. In some cases, prior to numerical calculations it would
well to integrate by parts this multiplicative integral as follows@see Eq.~31!#

L6~z,z0!5expS ik0E
z0

z

h06 dzD E
⇐

z0

z
~ I 1 ik0N68 dz!, ~145!

where

N68 5N62h06I , ~N68 ! t50, h065~N6! t/2. ~146!

Since the trace of the integrandN68 is zero at any point, in the exponential factorization of t
multiplicative integral~145!, one can use expressions of the form~140! instead of more genera
ones~116!–~118!. More importantly, the scalar exponential factor in Eq.~145! depends on the
half-sumh065(h161h26)/2 of eigenvaluesh16 andh26 of N6 , whereas the integrandN68 has
eigenvaluesR65(h162h26)/2 and2R6 . If the branchesg6 can be chosen~see above! so that
the conditionuR6u!uh06u is satisfied for allz, L6 ~145! becomes the product of the scal
exponent with strong~‘‘fast’’ ! z dependence and the multiplicative integral with weak~‘‘slow’’ !
z dependence. Hence, at numerical calculations of the latter, one can use much larger steDzk ,
when compared to the similar stepsDzk for the integral~144!.

A reduction of the number of necessary intermediate points facilitates minimizing of a
mulating errors. Exactly these errors make direct numerical integration of Eq.~4!, i.e., calculation
of the evolution operatorF from the formula~21!, difficult or even, in some cases, impractica
This is the case especially in a thick inhomogeneous slab. In the optical region, the thickne
slab may be several orders of magnitude greater than the wavelengthl052p/k0 . Even though the
variations of the components ofM ~5! over distances comparable tol0 may be small compared
with the values of the components themselves, the functionF (z,z0) ~21! oscillates very rapidly.
In a sufficiently small neighborhood of a pointzk these oscillations are described by the expon
tial exp@ik0(z2zk)M(zk)# @see Eq.~21!# with the eigenvalues exp@ik0(z2zk)hj#, where h j ( j
51,2,3,4) are the eigenvalues ofM(zk). Therefore, when using the factors@E

1 ik0M(zk)Dzk#, the integration steps must satisfy the conditionsuDzku!l0 /uh j u, j 51,2,3,4.
Clearly, a scheme based on multiplication of a very large number of 434 matrices is impractical.
One can increase the integration stepsDzk by using the exponential factors exp@ik0M(zk)Dzk#
@see Eq.~21!# but, taken alone, the calculation of exponentials of 434 matrices is a rathe
complicated problem. It is much more involved compared with the straightforward calculati
exponential of 232 matrices from Eq.~116!.

It should be emphasized that the integration steps forF ~21! cannot be increased by th
separation of a scalar exponential factor dependent on the traceM t5At1Dt of M ~5!, since
usually uM t/4u is far less thanuh j u. The fact is that the total field in a sufficiently thin layer ca
J. Math. Phys., Vol. 38, No. 12, December 1997
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be treated as the superposition of two downgoing waves with the refraction vectorsmj5b
1h jq, j 51,2, and two upgoing waves with the refraction vectorsmj5b1h jq, j 53,4. That is
why the modulus of the traceM t5h11h21h31h4 is typically less then the moduli of the
eigenvaluesh j themselves. Moreover, in biisotropic media@see Eqs.~52! and ~53!#, reciprocal
bianisotropic media in the case of normal incidence@«5 «̃, m5m̃, b52ã, b50, see Eqs.
~5!–~13!#, and in some other special cases as well, the traceM t5At1Dt , vanishes identically.

The wave-splitting technique described in Sec. III B and in the beginning of the cu
subsection appears to have much more promise then the direct calculation of the evolution
tor F ~21!. It makes it possible to reduce this evolution operator for a continuously inhom
neous bianisotropic slab to the block matrixL ~66!. Its two nonzero blocksL1 andL2 ~69! can
be found by the multiplicative integration of the planar tensor functionsN1 andN2 ~68!, i.e., by
the numerical integration of 232 matrices. This integration can be facilitated considerably
using Eq.~145!.

It should be noted that the wave-splitting based on the use ofz-independent impedance tenso
~see Sec. III A! is devoid of these advantages. In an inhomogeneous slab it gives no w
reducing the evolution operatorF ~21! to a diagonal or block diagonal form. Of course, this ty
of splitting allows for using 232 matrices in numerical calculations by replacing each 434
matrix by four 232 matrices, but this hardly can decrease the volumes of necessary calcul
or magnitudes of accumulating errors. At last, the similarity transformation~43! leaves the eigen-
valuesh j ( j 51,2,3,4) invariant, hence it gives no way of increasing the integration steps.

IV. REFLECTION, TRANSMISSION, AND GUIDED PROPAGATION

A. Interface of two bianisotropic media

Consider the interface of two homogeneous or continuously inhomogeneous bianiso
media. Let us assume that the surface impedance tensorsg in, g r , and g d of the incidentH in,
reflectedH r , and refractedHd waves are found as described in Secs. III C and III D. In the c
of continuously inhomogeneous media,g in, g r , and g d are the boundary values of the corr
sponding impedance tensor functions.

Using the definition of the surface impedance tensor~q3E5gHt , qg5gq50! and the
pseudoinversion@see Eq.~25!#, from the boundary conditions

Ht
in1H t

r5Ht
d , q3~Ein1E r2Ed!50, ~147!

we obtain

Ht
r5rHt

in , Ht
d5dHt

in , ~148!

where

r 5~g d2g r !2~g in2g d!, d5I 1r 5~g d2g r !2~g in2g r ! ~149!

are the reflection and transmission tensors of the interface. These general relations are vali
types of the incident, reflected, and refracted waves, including the Fedorov–Petrov wave~see
Sec. III C!.

If g d andg r satisfy the condition

~g d2g r ! t50, ~150!

the pseudoinverse tensor in Eqs.~149! does not exist. Equation~150! is the compatibility condition
for the equations

Ht
r5Ht

d , ~g d2g r !Ht
d50, ~151!
J. Math. Phys., Vol. 38, No. 12, December 1997
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which follow from Eqs.~147! in the absence of the incident waveH in. In other words, Eq.~150!
is the dispersion equation for surface waves~surface polaritons95!. At given frequencyv, this
equation defines the spectrum of admissible values of the tangential vector parameterb @see Eq.
~2!#. The equation~151! specifies the polarization state of the surface wave.

B. Reflection and transmission tensors of a stratified bianisotropic structure

1. General relations

Consider now the stratified bianisotropic structure described in Sec. III B. Assume that w
H1 andH2 with the same value ofb @see Eq.~2!# are incident on the structure from the regio
z,0 andz. l , respectively. The waves leaving the structure from the first and the last interf
i.e., H2 for z,0, andH1 for z. l , and the internal field in it have the same dependence on
tangential componentI r of the radius vectorr as the both incident waves, namely, exp(ik0b–r ).
The internal field is governed by the equations considered in Secs. II and III.

In line with Eqs.~5!, ~19!, and ~64!, the characteristic matrixC 5F ( l ,0) relates the ampli-
tudes ~the boundary values of the tangential componentsHt5IH of H-fields! of the incident
waves and the waves leaving the structure as follows

S Ht11Ht2

g1Ht11g2Ht2
D

z5 l 10
5C S Ht11Ht2

g1Ht11g2Ht2
D

z520
. ~152!

Hence we have

S Ht1~ l 10!

Ht2~ l 10! D5T S Ht1~20!

Ht2~20! D , ~153!

where

T 5S I I

gn18 gn28
D 2

C S I I

g11 g12
D , ~154!

andg165g6(20), gn68 5g6( l 10) ~see Fig. 1!. The transmission matrixT and the pseudoin-
verse matrixT 2 are determined by the expressions~80! and ~81!. If the stratified structure is
confined between two similar isotropic media,g165gn68 56g ~45!.

From Eq.~153! we immediately obtain

Ht1~ l 10!5d1Ht1~20!1r 2Ht2~ l 10!, ~155!

Ht2~20!5r 1Ht1~20!1d2Ht2~ l 10!, ~156!

where the transmissiond6 and reflectionr 6 tensors of the structure can be expressed in term
both T ~80! andT 2 ~81! as follows:

d25F ~0 I !T S 0
I D G2

, r 25~ I 0!T S 0
d2

D , ~157!

r 15~0 2d2!T S I
0D , d15~ I 0!T S I

r 1
D , ~158!

d15F ~ I 0!T 2S I
0D G2

, r 15~0 I !T 2S d1

0 D , ~159!
J. Math. Phys., Vol. 38, No. 12, December 1997
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r 25~2d1 0!T 2S 0
I D , d25~0 I !T 2S r 2

I D . ~160!

Besides, by using Eqs.~57!, ~60!, and~154!, these tensors can also be expressed16,21,22in terms of
the characteristic matricesC 5F ( l ,0) andC 25F (0,l ), but, as it follows from the discussion i
Sec. III D, the matricesT andT 2 are more amenable to numerical calculations. When use
numerical calculations,T andT 2, the row and column block matrices in Eqs.~157!–~160! have
the dimensions 434, 234, and 432, respectively.

2. Nonabsorbing structure

Now, let us consider some general properties of the reflection and transmission tensor
In a nonabsorbing stratified bianisotropic structure, the evolution operatorF (z,z0) ~21! sat-

isfies the identity

@F ~z,z0!#†[E
⇐

z

z0
~E1 ik0M† dz![J F ~z0 ,z!J , ~161!

which is readily apparent from the property~18! and the definition~21!. The normal componen
Sq5q–S of the averaged energy flux vectorS can be written as@see Eqs.~5! and ~18!#

Sq5
c

16p
q–~E3H* 1E*3H!5

c

16p
W†J W. ~162!

SubstitutingW(z) ~19! into this formula and taking into account the identity~161!, it is easy to
verify that, in such a structureSq is independent ofz, i.e., Sq(z)5Sq(z0).

Substituting Eqs.~155! and ~156! into ~152! and taking into account the arbitrariness of t
amplitudesHt1(20) andHt2( l 10) of the incident waves, we find

S d1

gn18 d1
D5C S I 1r 1

g111g12r 1
D , ~163!

S r 21I
gn18 r 21gn28

D5C S d2

g12d2
D . ~164!

It follows from Eqs. ~18! and ~161! that, in the nonabsorbing stratified bianisotropic structu
J M is a Hermitian matrix@(J M)†5J M#, andC 5F ( l ,0) satisfies Eq.~161!, i.e., C †J C

5J . Hence, first multiplying Eqs.~163! and ~164! by J and then multiplying the obtained
equations by their Hermitian conjugates, we obtain the following three independent relatio

d1
† @gn18 1~gn18 !†#d15~ I 1r 1!†~g111g12r 1!1~g111g12r 1!†~ I 1r 1!, ~165!

d2
† @g121~g12!†#d25~ I 1r 2!†~gn28 1gn18 r 2!1~gn28 1gn18 r 2!†~ I 1r 2!, ~166!

d1
† @gn28 1gn18 r 21~gn18 !†~ I 1r 2!#5@~ I 1r 1!†g121~g111g12r 1!†#d2 . ~167!

Naturally, the similar relations are also true for the substructure confined between thekth and the
mth interfaces (1<k,m<n). In the particular case when the structure is confined between
similar nonabsorbing isotropic media and the incident waves are homogeneous, we havg16

5gn68 56g ~45!, b* 5b, h* 5h, andg†5g. Therefore, the relations~165!–~167! reduce to

d6
† gd61r 6

† gr 65g, ~168!
J. Math. Phys., Vol. 38, No. 12, December 1997
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d1
† gr 21r 1

† gd250. ~169!

3. Reciprocity condition

It follows from Eqs.~157!–~160! that the reflection and transmission tensors for the wa
incident on the structure from the regionsz,0 andz. l coincide~r 15r 2 , d15d2! if T ~80!
andT 2 ~81! satisfy the reciprocity condition

T 25J T J , ~170!

i.e., (J T )25(T J )25E . By using the relation~154!, this condition can also be expressed
terms of the characteristic matrixC .

By way of illustration let us consider a homogeneous slab confined between two s
homogeneous linear media. In this case (n52), T ~154! becomes

T 5G 2 exp ~ ik0l M!G , ~171!

where M, G [G (20)5G ( l 10), and G 2 are defined by Eqs.~5!, ~57!, and ~60! with g6

[g6(20)5g6( l 10). Here,M and G depend on the material parameters of the slab and
medium outside it, respectively. SubstitutingT ~171! into Eq.~170!, one immediately obtains the
necessary and sufficient condition

MG J G 21G J G 2M50 ~172!

for the identical fulfillment~i.e., for any value of the slab thicknessl ! of the reciprocity condition.
If g252g1 , as with a slab placed in an isotropic medium@g656g ~45!#, this condition
reduces toA5D50 @see Eqs.~44! and~46!#. In particular, the latter is met@see Eqs.~6!, ~9!, ~11!,
and~12!# for a nongyrotropic slab (a5b50), if its interface normalq is an eigenvector of« and
m ~q«5«q5«qq, qm5mq5mqq!.

C. Guided propagation in a stratified bianisotropic structure

1. Dispersion equation and eigenmodes

In the absence of the incident waves@Ht1(20)5Ht2( l 10)50#, Eq. ~152! takes the form

S Ht1~ l 10!

gn18 Ht1~ l 10! D5C S Ht2~20!

g12Ht2~20! D . ~173!

Multiplying this relation by the row block matrix (gn18 2I ), we obtain the equation

wHt2~20!50, ~174!

where

w5~gn18 2I !C S I
g12

D ~175!

is a planar tensor~qw50 andwq50! by the construction of the right-hand side of Eq.~175!.
However, if Eq.~174! has a nonzero solutionHt2(20), the tensorw is a dyad, since it has two
linearly independent eigenvectorsq andHt2(20) @q–Ht2(20)50# with zero eigenvalues. The
adjoint of a dyad is equal to zero; hence, the dispersion equation for a stratified bianisotropic
guide can be written as

w̄t50 ~176!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



tensor
n

n
of

rs.
he

e

l

in the
basis

t

6350 George N. Borzdov: Frequency domain wave-splitting techniques

                    
or, what is the same@see Eq.~131!#,

~w2! t5~wt!
2. ~177!

Here, we have taken into account the identityw̄[w̄tq^ q which follows from the propertiesqw
50, andwq50. Since the above dispersion equations imply that, for each mode, the planar
w ~175! reduces to a dyad, instead of Eqs.~176! and ~177!, one also can use the dispersio
equations

wt6A2~w2! t2~wt!
250, ~178!

obtained by factorization of Eq.~177!. In the Cartesian coordinate system withe35q, Eq. ~176!
and the separated equations~178! can be written as

w11w222w12w2150, ~179!

w111w226A~w112w22!
214w12w21

50. ~180!

The tensorw ~175! depends on the frequencyv, the vector parameterb ~2!, and the material
parameters of both the structure and the medium outside it. Ifv is fixed, the dispersion equatio
~176! defines the spectrum of admissible values ofb. In particular, one can set the direction
mode propagation by a unit tangential vectorn ~b5bn, n251, andn–q50! and then, solving Eq.
~176! for the unknown scalar parameterb, find the admissible valuesbi5bin, i 51,2,... . Each of
these vectors specifies one of the wave guide modes of the frequencyv, which can propagate in
the given directionn. Alternatively, one can setb and then, solving Eq.~176! for the frequencyv,
find the frequenciesv i ( i 51,2,...) of the modes with given propagation parameterb. Naturally, in
this case, one should take into account the frequency dispersion of the material paramete

Once the frequencyv and the propagation vectorb of a mode have been established, t
solutions of Eq.~174!, for the general casewÞ0, can be written as

Ht2~20![h5pwqx, ~181!

wherep is an arbitrary vector satisfying the conditionpwÞ0. In particular, in terms of the abov
Cartesian coordinate system, one can useh5w12e12w11e2 or h5w22e12w21e2 . In this case (w
Þ0), w is a dyad, and the space of these solutions is one-dimensional. Ifw50 for some mode,
the space of the polarization parameterh is two-dimensional, i.e.,h is an arbitrary vector norma
to q. In any case, thez dependence of the field vectorW ~5! of the mode with the polarization
parameterh is defined by the evolution operatorF (z,0) as follows:

W~z!5F ~z,0!S h
g12hD . ~182!

The above general relations for a stratified bianisotropic wave guide have been obtained
dissertation in Ref. 16 and then some of them have been published in Ref. 21. They form a
for the wave-splitting technique suggested below.

2. Wave-splitting technique

A wave splitting, based on the use of continuous sectionally differentiable~in the interval
@0, l #) impedance functionsg1(z) and g2(z) ~see Sec. III B!, yields another very convenien
description of the wave guide modes. In this case, the characteristic matrixC takes the form
J. Math. Phys., Vol. 38, No. 12, December 1997
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C 5S I I

gn1 gn2
D S L1~ l ,0!

0
0

L2~ l ,0! D S I I

g118 g128
D 2

, ~183!

whereL6 are given by Eqs.~68! and~69!, and the pseudoinverse block matrix is defined by E
~57! and ~60!. SubstitutingC ~183! into Eq. ~175! gives

w5~gn18 2gn1!L1~ l ,0!~g118 2g128 !2~g122g128 !

1~gn18 2gn2!L2~ l ,0!~g118 2g128 !2~g118 2g12!, ~184!

i.e., calculation ofw is reduced to the operations with planar tensors~232 matrices in numerica
calculations!.

For the above wave splitting, one can use any continuous solutionsg1 andg2 of Eq. ~65!,
satisfying the conditions~58! and ~59!. Let us assume now thatg1 is the continuous sectionally
differentiable solution of Eq.~65!, satisfying the boundary conditiongn1[g1( l 20)5gn18 ,
wheregn18 [g1( l 10) is the surface impedance tensor of the evanescent wave in the regz
. l . In particular, this solution can be found by numerical integration of Eq.~65! from the point
z5 l to the pointz50. Taking into account the relations~58!–~60!, ~173!, and~183!, we obtain the
equation~174!, wherew ~175! can be replaced by

w5g118 2g12[g1~10!2g2~20!. ~185!

Here,g12[g2(20) is the surface impedance tensor of the evanescent wave in the regionz ,0.
Substitution ofw ~185! into Eq. ~176! or ~178! yields another form of dispersion equation for
stratified bianisotropic wave guide. Being written in terms of the impedance tensors, instead
characteristic matrix, it is more convenient for numerical calculations.

This approach also considerably facilitates the analysis of thez dependence of the field
vectors of the mode, since Eq.~182! reduces to

Ht~z!5L1~z,0!h, q3E~z!5g1~z!L1~z,0!h, ~186!

where the polarization parameterh is defined by Eq.~181!. This parameter specifies the polariz
tion state of the mode in terms of the boundary value ofHt at the first interface (z50) of the wave
guide. It is essential that the boundary conditiongn15gn18 ~or, similarly, g128 5g12! makes it
possible to find the dispersion equation and the properties of all wave guide modes by usin
one split field, namely,H1 ~or H2!.

The solutions of the tensor Riccati equation and the multiplicative integrals, which are us
the above general relations, can be found in analytical form only in very simple cases. In es
these relations provide a convenient scheme for numerical calculations. However, to gain a
insight into the way they describe the wave guide modes, let us apply them to the known par
cases of isotropic and biisotropic homogeneous planar wave guides.

3. Isotropic homogeneous layer

Let us consider an isotropic homogeneous layer with permittivity« and permeabilitym (z
P@0, l #), confined between isotropic media with material parameters«1 ,m1(z,0) and«2 ,m2(z
. l ).

The evanescent waves in the regionsz,0 and z. l have the complex refraction vector
m125b2 iu1q andm218 5b1 iu2q, respectively, and the surface impedance tensorsg1252g1

andg218 5g2 , where@see Eq.~45!#

uk5Ab22«kmk, gk5
1

iuk
S mkI 2

1

«k
a^ aD , k51,2. ~187!
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The tensor coefficients of Eq.~65! for the layer have the form@see Eqs.~52! and ~53! with a
5b50#

A5D50, B5«I 2
1

m
b^ b, C5mI 2

1

«
a^ a. ~188!

Assuming thatg1( l )5g2 and taking into account thatgk ~187!, B and C ~188!, and, hence,
g1(z) commute between themselves, we obtain the following solution of the Riccati equ
~65!:

g1~z!5~hI 1 iBg2 tan w!2~hg21 iC tan w!, ~189!

where

h5A«m2b2, w5k0h~z2 l !. ~190!

SubstitutingA and B ~188! and g1 ~189! into Eqs. ~68! and ~69!, we also find the evolution
operator

L1~z,l !5I cosw1
i

h
Bg2 sin w. ~191!

With g1252g1 ~187! and g118 5g1(0), Eqs. ~174! and ~185! immediately reduce to the
equation

@h~g11g2!2 i ~Bg1g21C!tan~k0h l !#h50. ~192!

Sincegk ~187! andB andC ~188! have the same set of eigenvectorsa, b, andq, this equation
splits into two independent dispersion equations for TM modes with the transverse magnet
(h5a) and TE modes with the transverse electric field (h5b):

u1

«1
1

u2

«2
1S u1u2«

«1«2h
2

h

« D tan~k0h l !50, ~193!

m1

u1
1

m2

u2
2S m1m2h

u1u2m
2

m

h D tan~k0h l !50, ~194!

respectively. Substitutingg1 ~189! andL1 ~191! into Eqs.~186!, we obtain the following expres
sions for these modes

Ht~z!5S cosw2
u2«

«2h
sin w Da, ~195!

q3E~z!5 i S u2

«2
cosw1

h

«
sin w Da, ~196!

Ht~z!5S cosw1
m2h

u2m
sin w Db, ~197!

q3E~z!5 i S 2
m2

u2
cosw1

m

h
sin w Db, ~198!
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where unessential constant factors are omitted so thatHt( l )5a and Ht( l )5b for TM and TE
modes, respectively. It is easy to verify that Eqs.~193!–~198! are equivalent to the well-known
relations for the nonsymmetric isotropic wave guide, obtained by other techniques.96

4. Biisotropic homogeneous layer

Now, let us consider a biisotropic homogeneous layer with permittivity«, permeabilitym,
chirality parameterk, and nonreciprocity parameterx(zP@0, l #). The media outside the layer ar
assumed to be the same as in Sec. IV C 3. In this case, the tensor coefficients of the
equation~65! are given by Eqs.~52! and~53!, and it is convenient to use the wave splitting defin
by Eqs.~66!–~69! and ~137!–~140!.

Substitutingn52, g1252g1 , g218 5g2 ~187!, g168 5g265g6 ~138!, andL6 ~140! into Eq.
~184! and leaving out an unessential factori«/(2nb2), we obtain

w5a^ ~w11a1w12b!1b^ ~w21a1w22b!, ~199!

where

w115
n

«
~c11c2!S u1

«1
1

u2

«2
D1 i

x

«
~c12c2!S u1

«1
2

u2

«2
D

1s1S u1u2n1

«1«2h1
2

mh1

«n1
D1s2S u1u2n2

«1«2h2
2

mh2

«n2
D , ~200!

w125~c12c2!S m1u2

u1«2
1

m

« D1
s1

« F2~n1 ix!
m1h1

u1n1
1~n2 ix!

u2n1

«2n1
G

1
s2

« F ~n2 ix!
m1h2

u1n2
2~n1 ix!

u2n2

«2h2
G , ~201!

w2152~c12c2!S u1m2

«1u2
1

m

« D1
s1

« F2~n1 ix!
u1n1

«1h1
1~n2 ix!

m2h1

u2n1
G

1
s2

« F ~n2 ix!
u1n2

«1h2
2~n1 ix!

m2h2

u2n2
G , ~202!

w2252
n

«
~c11c2!S m1

u1
1

m2

u2
D2 i

x

«
~c12c2!S m1

u1
2

m2

u2
D

1s1S m1m2h1

u1u2n1
2

mn1

«h1
D1s2S m1m2h2

u1u2n2
2

mn2

«h2
D , ~203!

c65cos~k0lh6!, s65sin~k0lh6!, ~204!

andn65n6k are the refractive indices of eigenwaves in the slab, andh6 , n, anduk are given by
Eqs.~137! and~187!. Substitution ofwik ~200!–~203! into Eq.~179! or ~180! gives the dispersion
equation for the biisotropic waveguide.

The polarization parametersh5Ht2(20) of the mode, i.e., the solution of Eq.~174!, are
given by Eq.~181!. In particular, one can useh5a2bw21/w22 (w22Þ0) or h5b2aw12/w11

(w11Þ0). From the relation~182! @see also Eqs.~61!, ~64!, ~71!, and~138!–~140!# we find thez
dependence of the mode field vectors
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Ht~z!5
i«

2n
@L1~z,0!~G2I 2qxg1!1L2~z,0!~qxg12G1I !#h, ~205!

q3E~z!5
i«

2n
qx@G1L1~z,0!~G2I 2qxg1!1G2L2~z,0!~qxg12G1I !#h. ~206!

If necessary, the field vectorsE andH can be restored from the tangential vectorsHt andq3E as
follows @see Eqs.~10! and ~15! and the designations in Eqs.~52! and ~53!#:

S E
H D5S m

d
q^ a

a

d
q^ b2qx

I 2
b

d
q^ a 2

«

d
q^ b

D S Ht

q3ED . ~207!

It is readily seen that in the particular case of isotropic slab (a5b50), w125w2150, and the
dispersive equation~179! with wik ~200!–~203!, splits into two independent equationsw1150
(h5a) andw2250 (h5b), which coincide with Eqs.~193! and~194!, respectively. In this case
Eqs.~205! and ~206! reduce to the relations~195!–~198!.

V. MULTIPLE REFLECTION METHOD

In this section we consider the wave-splitting technique based on the concept of mu
reflections in a stratified bianisotropic medium.

A. Sectionally continuous inhomogeneous structure

Let us consider the stratified bianisotropic structure described in Sec. III B. Its materia
rameters may be discontinuous only across the interfaces of slabs, i.e., atz5zk , k51,2,...,n. Let
g6 be sectionally continuous solutions of Eq.~65!, describing the downgoing and upgoing wav
~see Sec. III B!. By the relations~74!, ~75!, ~148!, and~149!, the amplitudes of these waves a
related at thekth boundary as

Ht1~zk10!5dk1Ht1~zk20!1r k2Ht2~zk10!, ~208!

Ht2~zk20!5r k1Ht1~zk20!1dk2Ht2~zk10!, ~209!

where the reflectionr k6 and transmissiondk6 tensors are given by

r k65dk62I 5~gk18 2gk2!2~gk62gk68 !. ~210!

The propagation of the wavesHt6 is described by the evolution operatorsL6 ~69!. It is
essential thatg6 andL6 , which we use in this subsection, specify the exact solutions of the w
equation for each continuously inhomogeneous slab. In other words, they take into accoun
tiple reflections on continuous inhomogeneities within the slab.

Although the multiple reflections at the discontinuities can be treated directly in terms o
field vectorsHt1 andHt2 , in some cases it is more advantageous to use other vector param
As an illustration, let us consider a stratified semi-infinite nonabsorbing isotropic medium. I
case of normal incidence of a plane wave onto the interface of two isotropic media wit
material parameters«1 ,m1 and «2 ,m2 , respectively, the reflection and transmission coefficie
for Ht andq3E vectors are given by@see Eqs.~45! and ~210!, a5b50#

r 6
~H !5d6

~H !2156
g12g2

g11g2
, ~211!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



in
n, by
nts of

n

ultiple
of the

lab.

se

field
e

6355George N. Borzdov: Frequency domain wave-splitting techniques

                    
d1
~H !5d2

~E!5
2g1

g11g2
, ~212!

d2
~H !5d1

~E!5
2g2

g11g2
, ~213!

where g i5Am i /« i , i 51,2. Hence,d1
(H)5d2

(E),1 and d2
(H)5d1

(E).1 when g1,g2 , and d1
(H)

5d2
(E).1, andd2

(H)5d1
(E),1 wheng1.g2 . Modeling the stratified medium by a system of th

homogeneous layers, one can describe the downgoing wave, in the initial approximatio
multiplicating the corresponding phase factors of the layers and the transmission coefficie
their interfaces. In particular, in the medium with the decreasing impedance functiong(z)
5Am(z)/«(z), this wave will have the increasing functionHt1

(0)(z) and the decreasing functio
q3E1

(0)(z). The opposite situation occurs in the medium with increasing functiong5g(z).
Clearly, to provide a better convergence to the exact solution of the series describing the m
reflected waves, it is most convenient to use the field vectors decreasing in the direction
wave propagation. This is also true for the bianisotropic structure.

On this basis, let us introduce the vector parametersu1 andu2 , defined by

u65x6Ht61y6q3E6[c6Ht6 , ~214!

where

c65x61y6g6 , ~215!

andx6 ,y6 are planar tensor functions ofz, which are assumed to be continuous within each s
By the relations~31!, ~69!, ~71!, ~208!, ~209!, and ~214!, the evolution operatorsF6 and the
reflection and transmission tensorsRk6 andDk6 for the split fieldsu6 are given by

F6~z,z0!5c6~z!L6~z,z0!c6
2~z0!5E

⇐

z0

z
@ I 1~Dzc61 ik0c6N6c6

2!dz#, ~216!

Dk15ck18 dk1ck1
2 , Rk25ck18 r k2~ck28 !2, ~217!

Rk15ck2r k1ck1
2 , Dk25ck2dk2~ck28 !2, ~218!

where the designations of the form~74! and ~75! are used. By settingx6 and y6 in an explicit
form, one can receive the desirable split fields. Thus, in the above example, one can ux1

5y250 andx25y15I , i.e., c15g1 , c25I , u15q3E1 , andu25Ht2 .
Now, let us assume that the incident waveu1

in propagates from the regionz,z1 . To an initial
approximation, all waves reflected by the discontinuities are disregarded, so that the
u1

(0)(z) in the kth slab (zk,z,zk11) and the amplitudeu1
(0)(zn10) of the transmitted wave ar

defined by

u1
~0!~z!5F1

~0!~z,z110!D11u1
in~z120!, ~219!

u1
~0!~zn10!5Dn1F1

~0!~zn20, z110!D11u1
in~z120!, ~220!

where

F1
~0!~z8,z!5F1~z8,zm10!Dm1F1~zm20, zm2110!•••D ~k11!1F1~zk1120, z!, m.k,

~221!
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F1
~0!~z8,z!5F1~z8,z!, m5k, ~222!

andzk,z,zk11 , zm,z8,zm11 .
The downgoing waveu1

(0) excites the upgoing first-order reflected waveu2
(1) which, in thekth

slab and at the first boundary, is defined by the expressions

u2
~1!~z!5 (

m5k11

n

F2
~0!~z,zm20!Rm1u1

~0!~zm20!, ~223!

u2
~1!~z120!5R11u1

in~z120!1D12 (
m52

n

F2
~0!~z110, zm20!Rm1u1

~0!~zm20!, ~224!

respectively. Here,

F2
~0!~z,z8!5F2~z,zk1120!D ~k11!2•••F2~zm2110, zm20!Dm2F2~zm10, z8!, m.k,

~225!

F2
~0!~z,z8!5F2~z,z8!, m5k. ~226!

Similarly, the multiple reflected waves are related as follows:

u1
~2s!~z!5 (

m51

k

F1
~0!~z,zm10!Rm2u2

~2s21!~zm10!, ~227!

u2
~2s11!~z!5 (

m5k11

n

F2
~0!~z,zm20!Rm1u1

~2s!~zm20!, ~228!

wheres51,2,... . Their contributions to the amplitudes of the waves leaving the structure are
by

u1
~2s!~zn10!5Dn1 (

m51

n21

F1
~0!~zn20, zm10!Rm2u2

~2s21!~zm10!, ~229!

u2
~2s11!~z120!5D12 (

m52

n

F2
~0!~z110, zm20!Rm1u1

~2s!~zm20!. ~230!

The total field in thekth layer consists of the downgoing and upgoing waves

u1~z!5(
s50

1`

u1
~2s!~z!, u2~z!5(

s50

1`

u2
~2s11!~z!, ~231!

where the partial waves are defined by Eqs.~219!, ~223!, ~227!, and~228!. By the construction of
u1

(2s) andu2
(2s11) , the partial wavesHt1

(2s)5c1
2u1

(2s) andHt2
(2s11)5c2

2u2
(2s11) and the total waves

Ht15c1
2u1 andHt25c2

2u2 as well are described by the impedance tensor functionsg6 and the
evolution operatorsL6 . The total waves, transmitted and reflected by the structure, have
following amplitudes:

u1~zn10!5(
s50

1`

u1
~2s!~zn10!5Dn1u1~zn20!, ~232!
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u2~z120!5(
s50

1`

u2
~2s11!~z120!5R11u1

in~z120!1D12u2~z110!, ~233!

where the partial amplitudes are given by Eqs.~220!, ~224!, ~229!, and~230!.
The obtained relations yield the exact covariant solution of the problem of reflection

transmission for the stratified bianisotropic structure in terms of multiple reflected waves.
make it possible to find both the internal field and the amplitudes of the reflected and trans
waves. Naturally, they are also valid for the systems of homogeneous bianisotropic slabs.
case the evolution operatorsL6 andF6 reduce to the exponentials described in Sec. III C.

B. Continuously inhomogeneous medium

Now, let us assume that a stratified bianisotropic medium situated in the region@z1 ,z`# is
continuously inhomogeneous, whereas the media in the regionsz,z1 and z.z` are homoge-
neous. Such inhomogeneous layers can be treated as a limit case~n→`, Dzk[zk112zk→0; k
51,2,...,n21! of a system of homogeneous bianisotropic slabs with the boundariesz5zk ~k
51,2,...,n; zn5z`! and the material parameters«(z)5«(zk), m(z)5m(zk), a(z)5a(zk), and
b(z)5b(zk) of the kth slab.

1. Coupled downgoing and upgoing waves

The downgoing and upgoing waves in thekth slab are described by the impedance tens
g6(zk) and the tensors of normal refractionN6(zk)5A(zk)1B(zk)g6(zk), whereg6(z) and
N6(z) are the solutions of the quadratic equations~83! and ~84! ~see also Sec. III C 3!. Let us
assume that the slab thicknessDzk is small enough for the evolution operatorsL6 to be approxi-
mated by

L6~z,zk!5I 1 ik0~z2zk!N6~zk!, zk,z,zk11 . ~234!

Substitutingg6 andL6 ~234! into the general relations~210! and~214!–~230! and reverting to the
original continuously inhomogeneous slab by the limit transitionn→`, we obtain the expression
for the internal partial waves and their contributions to the amplitudes of the waves transm
and reflected by the inhomogeneous layer

u1
~0!~z!5G1~z,z110!D11u1

in~z120!, ~235!

u1
~0!~zn10!5Dn1G1~zn20,z110!D11u1

in~z120!, ~236!

u2
~1!~z!5E

z

zn
G2~z,z!R1~z!u1

~0!~z !dz1G2~z,zn20!Rn1u1
~0!~zn20!, ~237!

u2
~1!~z120!5R11u1

in~z120!1D12E
z1

zn
G2~z110,z!R1~z!u1

~0!~z ! dz

1D12G2~z110,zn20!Rn1u1
~0!~zn20!, ~238!

u1
~2s!~z!5E

z

z1
G1~z,z!R2~z!u2

~2s21!~z ! dz1G1~z,z110!R12u2
~2s21!~z110!, ~239!

u1
~2s!~zn10!5Dn1E

zn

z1
G1~zn20,z!R2~z!u2

~2s21!~z ! dz

1Dn1G1~zn20,z110!R12u2
~2s21!~z110!, ~240!
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u2
~2s11!~z!5E

z

zn
G2~z,z!R1~z!u1

~2s!~z ! dz1G2~z,zn20!Rn1u1
~2s!~zn20!, ~241!

u2
~2s11!~z120!5D12E

z1

zn
G2~z110,z!R1~z!u1

~2s!~z ! dz

1D12G2~z110,zn20!Rn1u1
~2s!~zn20!, ~242!

wheres51,2,..., and

G6~z,z0!5E
⇐

z0

z

~ I 1S6 dz!, ~243!

S65Fc6~r 61 ik0N6!1
dc6

dz Gc6
2 , ~244!

R65c7r 6c6
2 , ~245!

r 657~g12g2!2
dg6

dz
. ~246!

After the limit transitionn→`, the material parameters of the structure and, hence, the imped
tensorsg6 remain discontinuous only across the boundariesz5z1 andz5z` . The reflection and
transmission tensorsR16 , Rn1 , andD16 , Dn1 take into account these two discontinuities. W
assume thatzn is independent ofn(zn5z`) but, to retain the same notations as in Sec. V A@see
also the definitions~74! and ~75!#, we use the notationzn rather thanz` . The tensorsR6 ~245!
and r 6 ~246! are the reflection tensors~in terms ofu6 andHt6 , respectively! per unit length of
the continuously inhomogeneous bianisotropic medium for the downgoing and upgoing w
The evolution operatorsG6 ~243! describe the propagation of these waves with consideration
their attenuation caused by the single reflection. In other words,G1 andG2 are the limit cases of
F1

(0) ~221! andF2
(0) ~225!.

The total fields are defined by the relations~231!–~233!. By the construction of the partia
wavesHt1

(0)5c1
2u1

(0) ~235!, Ht1
(2s)5c1

2u1
(2s) ~239!, and Ht2

(2s11)5c2
2u2

(2s11) ~241! and the corre-
sponding total downgoing and upgoing wavesHt65c6

2u6 ~231!, they are described by the im
pedance functionsg6 satisfying the algebraic equation~83! instead of the differential equatio
~65!. Unlike the downgoing and upgoing waves, treated in the previous subsection, whic
defined by the exact solutionsg6 of Eq. ~65! and, being the independent solutions of the wa
equations in each slab, are related only at their interfacesz5zk (k51,2,...,n) by the reflection and
transmission tensorsRk6 ,Dk6 , the downgoing and upgoing waves, treated in the current sub
tion, are related at each pointzP@z1 , zn#. Each of these coupled waves, taken by itself, is no
solution of the wave equation in the layer, whereas the fieldHt5Ht11Ht2 is.

By summing over all waves propagating in the same direction, we obtain the integral
tions

u1~z!5u1
~0!~z!1E

z

z1
G1~z,z!R2~z!u2~z! dz1G1~z,z110!R12u2~z110!, ~247!

u2~z!5E
z

zn
G2~z,z!R1~z!u1~z! dz1G2~z,zn20!Rn1u1~zn20!. ~248!
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In other words, in solving this system by the method of successive approximations, the
wavesu1

(2s) ~240! andu2
(2s11) ~241! are the terms of the Neyman series, andu1

(0) ~235! is the initial
approximation.

2. Fundamental solution

Differentiation of Eqs.~247! and ~248! with respect toz result in

d

dz S u1

u2
D5 ik0 N S u1

u2
D , ~249!

where

N 5
1

ik0
S S1 2R2

2R1 S2
D . ~250!

The fundamental solution of Eq.~249! is given by the multiplicative integralL(z,z0) ~40!. To put
it in reverse, Eqs.~249! and ~250! can easily be obtained from Eqs.~40!–~42! by substituting

G 5S I I

g1 g2
D S c1

2 0

0 c2
2D . ~251!

All one has to do is to take into account that for the split fieldsHt6 ~62! introduced in the frame
of the multiple reflection method,N6 and g6 satisfy Eqs.~82! and ~83! at each pointz
P@z1 , zn#.

The fundamental solutionL(z,z0) ~40! satisfies the differential equation

]

]z
L~z,z0!5 ik0N ~z!L~z,z0!. ~252!

As with Eqs.~247!, ~248!, and ~249!, given Eqs.~250! and ~252! one can derive the following
integral equation:

L~z,z0!5L~0!~z,z0!1E
z0

z

L~0!~z,z!R~z!L~z,z0! dz, ~253!

where

L~0!~z,z0!5S G1~z,z0! 0

0 G2~z,z0!
D , R5S 0 2R2

2R1 0 D . ~254!

Differentiation of Eq.~253! with respect toz immediately results in Eq.~249!, i.e., the solutionL
of Eq. ~253! satisfies Eq.~252! as well. Equation~253! produces a convenient iterative scheme
calculation ofL:

L ~s11!~z,z0!5L ~0!~z,z0!1E
z0

z

L ~0!~z,z!R~z!L ~s!~z,z0! dz, ~255!

where s50,1,... . The similar iterative scheme can be used for the calculation of the p
evolution operatorsG6 ~243!:
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G6
~s11!~z,z0!5G6

~0!~z,z0!1E
z0

z

G6
~0!~z,z!c6~z!r 6~z!c6

2~z!G6
~s!~z,z0! dz, ~256!

whereG6
(0)5F6 ~216! with N6 satisfying Eq.~84!.

By using Eqs.~40! or ~255! and~77!–~80! and~214!, one can find first the transmission matr

T 5BnS cn1
2 0

0 cn2
2 D L~zn20,z110!S c118 0

0 c128
D B1 ~257!

and then the reflection and transmission tensorsr 6 and d6 @~157! and ~158!# of the inhomoge-
neous slab under study.

It should be emphasized that the obtained general relations~211!–~248! are also applicable to
semi-infinite inhomogeneous bianisotropic media for which, of course, the characteristi
transmission matrices methods are inapplicable. In such media (zn51`), since the normal com-
ponentSq ~162! of the energy flux of the waveHt1

(0) is a decreasing function because of the los
by reflection~and absorption, if any!, the auxiliary parametersx6 ,y6 ~214! can be selected so tha

lim
z→1`

u6
~s!50, s50,1,2,..., ~258!

and the last terms on the right-hand sides of Eqs.~237!, ~238!, ~241!, ~242!, and ~248! are
vanishing. The similar equations describe the slabs with the nonreflecting second boundar~r n1

5Rn150, dn15I , Dn15cn18 cn1
2 , i.e., g1(z)5g1(zn) for z>zn! and the sufficiently thick

absorbing slabs in which the field near the second boundaryz5zn is negligible.

3. Semi-infinite inhomogeneous medium with z-independent commuting tensors S 6

and R 6

By way of illustration let us consider an interesting special case of the continuously inh
geneous semi-infinite medium. Let us assume that, for the medium under study, the au
tensor parametersx6 ,y6 ~214! are chosen so that the condition~258! is satisfied, and the tensor
S6 ~244! and R6 ~245! are z independent and commuting between themselves,S6R65R6S6

andS6R75R7S6 . In this case, the evolution operatorsG6 ~243! reduce to the exponentials:

G6~z,z0!5exp@~z2z0!S6#. ~259!

SubstitutingG6 ~259! into ~235!, ~237!, ~239!, and ~241! and taking into account the prop
erties ofS6 andR6 and the conditions at infinity~258!, one can readily calculate any one of th
partial waves. In particular, settingz150 andzn51`, we obtain

u1
~0!~z!5exp~zS1!D11u1

in~20!, ~260!

u2
~1!~z!5exp~zS1!R1D11u1

in~20!, ~261!

u1
~2!~z!5exp~zS1!~R122zR2!R1D11u1

in~20!, ~262!

u2
~3!~z!5exp~zS1!R1~R121R22zR2!R1D11u1

in~20!, ~263!

where

R152~S12S2!2R1 , R25~S12S2 !2R2 . ~264!
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The integral equations~247! and~248! for the total downgoing and upgoing waves in this ca
take the form

u1~z!5exp~zS1!@D11u1
in~20!1R12u2~10!#2R2E

0

z

exp@~z2z!S1#u2~z! dz, ~265!

u2~z!5R1E
z

1`

exp@~z2z!S2#u1~z! dz. ~266!

Knowing the initial approximationu1
(0) ~260! for the total downgoing waveu1 , let us seek the

latter in the exponential form:

u1~z!5exp~zl!u1~10!, ~267!

wherel is a planar tensor (ql5lq50), commuting withS6 andR6 . Substitution ofu1 ~267!
into Eqs.~265! and ~266! results in

u2~z!5R0 exp~zl!u1~10!5R0u1~z!, ~268!

u1~10!5~ I 2R12R0!2D11u1
in~20!, ~269!

~l2S1!~l2S2!5R1R2 , ~270!

where

R05~S22l!2R1 . ~271!

Thus, in the interior of the medium, the upgoing and downgoing total waves are lo
related byz-independent reflection tensorR0 ~271!, and both waves have the same different
propagation tensorl, defined by the quadratic equation~270!, i.e.,

l5 1
2$S11S21@~S12S2!214R1R2#1/2%, ~272!

where the branch of the square root should be selected in accordance to the condition
infinity ~258!. From Eqs.~233!, ~268!, and ~269! it follows that the reflection tensorR of the
inhomogeneous semi-infinite medium is defined by

u2~20!5Ru1
in~20!, ~273!

where

R5R111D12R0~ I 2R12R0!2D11 . ~274!

The total refracted wave is defined by the relation

u~z!5u1~z!1u2~z!5exp~zl!u~10!, ~275!

where

u~10!5Du1
in~20!, ~276!

D5~ I 1R0!~ I 2R12R0!2D11 . ~277!
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It is interesting that, propagating in the inhomogeneous medium, this wave is described in te
the vectorsu6 and u by the exponential evolution operator exp (zl) which is similar to the
operators describing the refracted waves in homogeneous media. However, the impedanc
of the total refracted wave depends onz and has the following form@see Eqs.~214! and ~268!#

g5~g11g2c2
2R0c1!~ I 1c2

2R0c1!2. ~278!

Substituting the surface impedancegd5g(10) ~278! into Eqs.~149!, one can find the reflection
and transmission tensorsr andd of the interface for the vectorHt . Of course, the same tenso
can be obtained fromR ~274! andD ~277! by application of Eqs.~217! and ~218!:

r 5I 1d5r 111d12Rc~ I 2r 12Rc!
2d11 , ~279!

d5~ I 1Rc!~ I 2r 12Rc!
2d11 , Rc5~c128 !2R0c118 . ~280!

The tangential field vectorsHt andq3E of the total refracted wave are given by

Ht~z!5@c1
2~z!1c2

2~z!R0#exp~zl!u1~10!, ~281!

q3E~z!5g~z!Ht~z!. ~282!

The fundamental solution of Eq.~249! with z-independentS6 and R6 is an exponential
operator which can be reduced to the block-diagonal form by a similarity transformation, s
the transmission matrix of the layer, situated in the region@z1 , zn#, is given by Eq.~257!, where

L~zn20, z110!5S I I

R01 R02
D S exp@~zn2z1!l1#

0
0

exp@~zn2z1!l2# D S I I

R01 R02
D 2

,

~283!

andl6 are two independent solutions of Eq.~270!, i.e., the values ofl corresponding to differen
branches of the square root on the right-hand side of Eq.~272!, andR065(S22l6)2R1 . Since
R06 are the planar tensors, the pseudoinverse block matrix in Eq.~283! is given by a relation of
the form ~60!.

The inhomogeneous media withz-independent commuting tensorsS6 andR6 do exist. Two
specific examples of such media are treated below.

4. Biisotropic media with z-independent commuting tensors S 6 and R 6

Let a plane wave be normally incident onto a stratified biisotropic medium. Settinga5b 50
in the expressions~52! and ~53! and substituting the resulting coefficientsA, B, C, D into Eqs.
~82!–~85!, we obtain

g65
1

«
~6nI 2xqx!, g6

25
1

m
~6nI 1xqx!, ~284!

N656nI 1 ikqx5~6n1k!r11~6n2k!r2 , ~285!

where

r65 1
2~ I 6 iqx! ~286!

are the circular projection operators, andn5A«m2x2. The reflection tensorsr 6 ~246! per unit
length of this medium have the form
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r 65
1

2 S 1

«

d«

dz
2

1

n

dn

dzD I 6
1

2n S dx

dz
2

x

«

d«

dzDqx. ~287!

Being treated locally, i.e., in terms of an infinitely thin homogeneous layer,N1 andg1 describe
the superposition of two downgoing circularly polarized waves with the refractive indicesn6

5n6k and the polarization operatorsr6 . Similarly, N2 and g2 describe the superposition o
two upgoing waves with the refractive indicesn6 and the polarization operatorsr7 , respectively.

In this section, we consider two types of inhomogeneous biisotropic media~media I and II!.
The chirality parameterk is assumed to bez independent for both the media, and thez dependence
of the other three material parameters is given by Eqs.~288!–~290! ~medium I! and Eqs.~291!–
~293! ~medium II!:

«5«1 exp~22hz!, ~288!

m5m1 exp~2hz!1
4

«1
~x11x2!sinh~hz!@x2 sinh~hz!2x1 cosh~hz!#, ~289!

x5~x11x2!exp~22hz!2x2 , ~290!

«5«1 exp~2hz!1
4

m1
~x22x1!sinh~hz!@x2 sinh~hz!1x1 cosh~hz!#, ~291!

m5m1 exp~22hz!, ~292!

x5~x12x2!exp~22hz!1x2 , ~293!

where«1 , m1 , andx1 are the boundary values of the permittivity«, the permeabilitym, and the
nonreciprocity parameterx, and x2 , and h are arbitrary scalar parameters. In these media,
parametern[A«1m12x1

2 and consequently the refractive indicesn65n6k are independent ofz.
Setting the auxiliary parameters@see Eqs.~214! and ~215!# x65I and y650 ~c65I , u6

5Ht6! for medium I andx650 andy65I ~c65g6 , u65q3E6! for medium II, in both cases
from Eqs.~243!–~246!, ~271!, ~272!, and~284!–~293! we obtain the same expressions:

R65h~2I 7x0qx!, ~294!

S65k0@~2h06 in!I 1~7h0x02k!qx#, ~295!

l65k0@~2h01 ik6 in1!r11~2h02 ik6 in2!r2#, ~296!

R015A1r11A2r2 , R025B1r11B2r2 , ~297!

where

A65
h0~7x02 i !

n6h0x01n6
, B65

h0~7x02 i !

n6h0x02n6
, ~298!

n65An22h0
262h0x2

, h05h/k0 , x05x2 /n. ~299!

Using the spectral expansions of the operatorsg6 ~284!, l6 ~296!, andR06 ~297!, we also obtain
the transmission matrixL ~283! and the characteristic matrixC :

L~zn20,z110!5L1E11L2E2 , ~300!
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C 5H~zn20!L~zn20,z110!H2~z110!5C 1E11C 2E2 , ~301!

where

L65S 1 1

A6 B6
D S exp w6

0
0

exp c6
D S 1 1

A6 B6
D 21

, ~302!

E65S r6

0
0

r6
D , ~303!

w65k0~zn2z1!~2h06 ik1 in6!, ~304!

c65k0~zn2z1!~2h06 ik2 in6!, ~305!

C 65H6~zn20!L6H 6
21~z120!, ~306!

H5S I I

g1 g2
D , H15S 1 1

g1 2g2
D , H25S 1 1

g2 2g1
D , ~307!

andg65(n6 ix)/« for medium I @see Eqs.~288!–~290!#,

H5S g1
2 g2

2

I I
D , H15S h1 2h2

1 1 D , H25S h2 2h1

1 1 D , ~308!

andh65(n7 ix)/m for medium II @see Eqs.~291!–~293!#.
The obtained relations give an exact and exhaustive description of the internal fields in

I and II. To find the reflection and transmission tensors of the layer situated in the region@z1 , zn#,
it is sufficient to substituteC ~301! into Eqs.~154!, ~157!, and~158!. In the case of semi-infinite
medium I or II, to find the reflection tensorR and the refracted waveu, it is necessary to substitut
l5l1 ~296! andR05R01 ~297! into Eqs.~274! and ~275!.

VI. CONCLUSION

The presented unified covariant wave splitting theory encompasses various types of
splitting in the frequency domain for plane stratified bianisotropic media. It is based on the u
the formula of integration by parts for multiplicative integrals and provides a convenient mea
both analytical investigation and numerical calculation of tensors of internal and surface im
ances and normal refraction, evolution operators~Green’s functions! of split waves, as well as
characteristic matrices and reflection and transmission tensors of stratified bianisotropic stru
By way of illustration of the potentialities of this approach, the covariant solution of the d
scattering problem for a plane stratified bianisotropic medium with multiple discontinuitie
obtained, the interrelations between reflection and transmission tensors of a nondissipative
fied structure are found, the covariant wave splitting technique for planar wave guides is
oped, and the method of multiple reflections is generalized to the cases of continuous an
tionally continuous stratified bianisotropic media.
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An approach to the relativistic brachistochrone problem
by sub-Riemannian geometry

Fabio Giannoni
Dipartimento di Energetica, Universita´ de L’Aquila, Italy

Paolo Piccione and José A. Verderesi
Instituto de Matema´tica e Estatı´stica, Universidade de Sa˜o Paulo, Brazil

~Received 12 May 1997; accepted for publication 27 May 1997!

We formulate a brachistochrone problem in Lorentzian geometry and we prove a
variational principle valid for brachistochrones in stationary manifolds. This varia-
tional principle is stated in terms of geodesics in a suitable sub-Riemannian struc-
ture onM. Moreover, we prove the regularity of the solutions of our variational
problem and we determine a differential equation satisfied by the brachistochrones.
Some explicit examples are computed. ©1997 American Institute of Physics.
@S0022-2488~97!03311-2#

I. FORMULATION OF THE BRACHISTOCHRONE PROBLEM

The classical brachistochrone problem dates back to the end of the 17th century, and it
of the most famous problems of Calculus of Variations. In its original formulation, the prob
was to determine the shape of a slide joining two fixed points in the space in such a way
mass moving along it under the action of the gravity would reach the final point in the sh
time. Several generalizations of the problem have been studied, and the most classical New
generalization can be formulated in modern terminology as follows. Given a manifoldM en-
dowed with a Riemannian metricg ~the state space! and a smooth functionV: M°R1 ~the
gravitational potential!, a brachistochrone of fixed energyE joining the pointsx0 , x1PM is a
curvex: @0,Tx#°M that minimizes the functionalF(x)5Tx in the space of all smooth curvesy:
@0,Ty#°M such thaty(0)5x0 , y(Ty)5x1 and satisfying the law of conservation of energy:

g~y~ t !!@ ẏ~ t !,ẏ~ t !#1V~y~ t !![E, ;tP@0,Ty#. ~1!

A well-known variational principle states that the curves of fixed energyE.0 that are solutions
to the brachistochrone variational problem are minimal geodesics in the manifoldM with respect
to a Riemannian metricg̃ that is conformally equivalent tog:

g̃~y!5
g~y!

E2V~y!
.

We will refer to this variational principle as theclassical variational principle for brachisto-
chrones.

Recently, some generalizations of the brachistochrone problem have been introduced
context of General Relativity, as in Refs. 1–3. In particular, in Ref. 3, it is defined a brach
chrone problem on a Lorentzian manifoldM, under the assumption that the Lorentzian metricg
be stationary with respect to a given time-like Killing vector fieldY, and thatM admit a global
space–time splittingU3R adapted to Y. Roughly speaking, this means thatM admits a global
coordinate system (x1 ,x2 ,...,xn ,t), with (x1 ,x2 ,...,xn)PU open subset ofRn, tPR, and Y
5]/]t. The Killing property ofY is given by the fact that the coefficients of the metric ofM do
not depend on the variablet. Under these hypotheses, the brachistochrone problem is reduc
a purely spatial geodesic problem inU, with the proof of the first relativistic version of th
classical variational principle for brachistochrones.
0022-2488/97/38(12)/6367/15/$10.00
6367J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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The aim of this paper is to define a general brachistochrone principle in stationary Lore
manifolds and to extend the classical variational principle for brachistochrones under int
assumptions on the relativistic space–time. Namely, we do not assume thatM admits a global
splitting adapted to a given time-like Killing vector field onM.

For the reduction to a spatial problem, we use the terminology and some techniqu
sub-Riemannian geometry. This branch of mathematics has attracted a great deal of interes
its applications to the Optimal Control Theory~see, e.g., Refs. 4, 5!, and it is particularly well
suited to study dynamical systems of particles subject to nonholonomic constraints.

A general formulation of the brachistochrone problem for stationary space–times m
stated as follows. We will denote byM an (n11)-dimensional smooth manifold,n>1, and byg
a Lorentzian metric onM. We will also denote bŷ•,•& the bilinear form induced on the tange
spaceTqM by g(q). Let Y be a smooth time-like Killing vector field onM, i.e. ^Y,Y&,0
everywhere, and the metric tensorg is invariant by the flow ofY. For the main properties o
Lorentzian geometry we refer to the classical textbooks like Refs. 6, 7, and 8.

Let g:]a,b@°M be an integral curve ofY andp¹g be an event ofM @we will also denote
by g the imageg(#a,b@) in M#.

Let kPR1 be a fixed constant. We consider the spaceBp,g
1 (k) of all piecewise smooth future

pointing, time-like curvesz from p to g, parametrized by proper time, and satisfying the cons
vation law2^ż,Y&[k.0:

Bp,g
1 ~k!5$z:@0,Tz#°M:z of class C1,

z~0!5p, z~Tz!Pg, ^ż,ż&[21, ~2!

2^ż,Y&[k.0 ~constant!%.

The curveg is interpreted as the world line of an observer; the curvesz in Bp,g
1 (k) represent the

world line of massive particles, starting at the eventp and eventually reaching the observerg. The
condition^ż,ż&521 means thatz is parameterized by proper time, so thatTz is thetravel timeof
z measured on the particle. The quantity^ż,Y& is the component alongY of the four-momentum
of the particlez; observe that, sinceY is Killing, then it is constant on geodesics. The conditi
2^ ż,Y&[k is the analog of the conservation law of the energy~1! in the Newtonian case. The
positivity of k says thatz is future pointing with respect to the time orientation induced onM by
Y. A perfectly similar theory may be developed by considering past pointing curves. If
modifies properly the definitions, it is easily checked that all the results proven in this paper
equally well in this case.

We denote byb(q) the positive smooth function2^Y(q),Y(q)&. Let us consider the open
subsetUk,M:

Uk5$qPM:b~q!,k2%. ~3!

Observe that, sinceY is Killing, then ^Y,Y& is constant on the flow lines ofY, and soUk is
invariant by the flow ofY. We will also consider the spaceUp,g

1 (k) consisting of all curvesz in
Bp,g

1 (k) lying in Uk :

Up,g
1 ~k!5$zPBp,g

1 ~k!:z~s!PUk ,;sP@0,Tz#%.

Observe that, by the wrong way Schwartz’s inequality, ifzPBp,g
1 (k) thenz is contained in the

closure ofUk . Indeed,2^Y,Y&5^ż,ż&^Y,Y&<^ż,Y&2. Moreover, if 2^ż,Y&[k, then z is en-
tirely contained inUk if and only if ż is never a multiple ofY.

We will assume thatg is a maximal integral curve ofY. For all q in M, gq will denote the
maximal integral line ofY such thatgq(0)5q.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Definition I.1: A curve zPBp,g
1 (k) is said to be aminimal brachistochrone of energy

betweenp andg if z is a minimal point for thetravel timefunctionalF: Bp,g
1 (k)→R1, given by

F~z!5Tz .

A curvezPBp,g
1 (k) is abrachistochrone of energy kif it minimizes locally its travel time, i.e., if

for all r P@0,Tz@ and for eP#0, Tz2r @ small enough, the curvez̄(s)5z(s2r ), defined on the
interval @0,e#, is a minimal brachistochrone betweenz(s) andgz(s1e) .

Our definition of brachistochrones extends the definition of thet brachistochronesgiven in
Ref. 3 in the case of a regular stationary manifold. In Ref. 3 it is also defined as a diff
brachistochrone problem~in Perlick’s terminology: thet-brachistochrones!, which are curvesz
PBp,g

1 (k) minimizing thearrival time functional:

AT~z!5g21
„z~Tz!…, zPBp,g

1 ~k!. ~4!

The duplicate notion of brachistochrones is justified by the fact that, in General Relat
there is no such concept as a global time, and there does not exist a universal way to mea
travel time of particles. The two different concepts of brachistochrones are referred to the
time of the particle in the case of thet brachistochrones, and the time measured by the observg
in the case of thet brachistochrones.

The two variational problems are essentially different. The arrival time functional, introd
in Ref. 9, has been also extensively studied to investigate the structure of causal~time-like or
light-like! geodesics in Lorentzian manifolds~see Ref. 10, 9, and 11!. A relativistic extension of
Fermat’s Principle states that the stationary points ofAT in suitable spaces are geodesics joini
an event with an observer in the space–time~see Ref. 10 for the time-like case and Ref. 11 for t
light-like case!.

In this paper we will only be concerned with the variational problem of Definition I.1.
prove an extension of the classical variational principle, stating that the brachistochrone
fixed energy correspond to the geodesics of a sub-Riemannian structure that is associate
Killing vector field Y.

For a physical interpretation of our brachistochrone problem, the time-like vector fieY
should be related to some observable quantities, i.e.,Y should be comoving with some bodies. F
instance, if we are in the solar system andY is comoving with the planets, the solutions to o
brachistochrone problem will give a world line of particles that minimize the travel time amon
curves that have a fixed specific energy in the rest system of the planets. IfY is at rest with respec
to the sun and to the distant stars, then the brachistochrones will be the world line of m
objects that minimize the travel time among all curves that have fixed energy in a reference s
oriented at distant stars.

It is also possible to return to the original interpretation of the brachistochrone problem
think of the body guided by a frictionless slide, in which caseY is determined by being the res
system of the slide.

The paper is organized as follows. In Sec. II we give a self-contained exposition o
problem of sub-Riemannian geodesics, which are minimal curves with respect to a positive
tensor defined on a sub-bundle of the tangent bundle ofM. In order to keep the exposition sho
and self-contained, the problem is willingly not discussed in its full generality, as it wil
remarked ahead. In our specific case, we are able to prove that sub-Riemannian geode
indeed smooth curves that satisfy the Euler–Lagrange equations associated to the sub-Riem
energy functional~see Remark II.4!.

In Sec. III, under the completeness assumption for the vector fieldY, we prove that the
brachistochrones can be deformed into geodesics with respect to a suitable sub-Riemannia
J. Math. Phys., Vol. 38, No. 12, December 1997
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ture onM, and vice versa, obtaining a relativistic version of the classical variational principl
brachistochrones. Moreover, using the properties of normal sub-Riemannian geodesics, we
mine a differential equation satisfied by the brachistochrones.

Finally, in Sec. IV, we compute explicitly the brachistochrones in a class of stationary Lo
zian manifolds generalizing the Heisenberg space and in the 3-sphereS3 endowed with its struc-
ture of a fiber bundle overS2 with fibers homeomorphic toS1.

Thanks to the use of sub-Riemannian geometry, the variational principle proven in this
generalizes the one obtained by Perlick in Ref. 3. In that paper, in order to reduce to a
problem, the Lorentzian manifoldM was assumed to have a global space–time splitting ada
to Y. From a sub-Riemannian point of view, this can be considered the case where the distr
on which the metric is defined is globally integrable.

In any case, a crucial point in the theory seems to be the fact that the manifoldM and its
metric have symmetries or invariance properties with respect to the time. In our case, the
metry is given by the Killing property of the vector fieldY. This also suggests that furthe
generalizations of the Principle might be obtained by considering more general symmetries,
for instance, by a conformal time-like field~conformally stationary manifolds!, or even by some
group action.

II. SUB-RIEMANNIAN GEODESICS

We denote byD the orthogonal distribution to the vector fieldY. SinceY is time-like, the
wrong way Schwartz’s inequality implies that the restriction of the Lorentzian metricg is positive
definite. To avoid confusion, we will denote bygsr the restriction ofg on D; the pair (D,gsr!
defines a sub-Riemannian structure onM. Observe that, by the Killing property, bothgsr andD
are invariant by the flow ofY, hence the sub-Riemannian structure onM is Y invariant.

Since there is no unanimous agreement in the literature on the proper definition of a
Riemannian geodesic~see Remark 1 of Ref. 4!, in this paper we give a self-contained presentat
of the subject in our special case of geodesics joining a point and the integral curve of a K
vector field. Having one degree of freedom in the choice of the final end point, we avoid a
technicalities and theabnormalitiesthat arise in the general treatment of the subject. The re
may find in Ref. 4 and in the references therein a detailed discussion and a classifica
geodesics for a general sub-Riemannian structure.

We fix once and for all an auxiliary Riemannian metricgR on M that coincides with the
Lorentzian metricg on the distributionD. For instance, forvPTqM, one can take

gR@v,v#5^v,v&~R!5^v,v&22
^v,Y~q!&2

^Y~q!,Y~q!&
. ~5!

The wrong way Schwartz’s inequality implies thatgR@v,v# defines a positive definite, symmetr
tensor onM.

Remark II.1:It is easily checked that the flow ofY preservesgR, so thatY is Killing with
respect togR also.

In view of developing an existence theory for sub-Riemannian geodesics, in this sectio
define our functional framework by requiring that the maps in our spaces only satisfy a Sob
type regularity. From an analyst’s viewpoint, this technicality allows us to use some resu
Calculus of Variations that require the completeness of the functional spaces. However, Co
II.7 proven below states that the solutions to our variational problems are smooth curves.

Let “ be the covariant derivative with respect to the Levi-Civita connection ofg. Using
standard notation, for a smooth functionf: M°R we also denote by“f theLorentzian gradient
of f, which is the vector field defined bydf(q)@•#5^“f(q),•&, for all qPM.

SinceY is Killing with respect tog, then for every pairv1 , v2 of smooth vector fields onM,
it is ~see Ref. 8!
J. Math. Phys., Vol. 38, No. 12, December 1997
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^“v1Y,v2&1^“v2Y,v1&50. ~6!

The characterization~6! of the Killing property ofY will be used implicitly or explicitly through-
out the paper.

Using the Riemannian metric, we define the spaceL2(@0,1#,TM), consisting of all measur-
able mapsz: @0,1#°TM, such that ^z,z& (R) is integrable on@0,1#. The Sobolev space
H1(@0,1#,M) is defined as the set of all absolutely continuous curvesz: @0,1#°M, such thatż is
in L2(@0,1#,TM). By a classical result of Global Analysis on Manifolds, the spa
L2(@0,1#,TM) andH1(@0,1#,M) actually do not depend on the choice of the Riemannian me
on M ~see Ref. 12!. Our functional framework consists of the following spaces:

Vp,g5$wPH1~@0,1#,M!:w~0!5p,w~1!Pg%, ~7!

Vp,g~D!5$wPVp,g :ẇ~s!PD a.e. on @0,1#%. ~8!

Moreover, forqPg, we denote byVp,q the space of all curveswPVp,g , such thatw(1)5q.
It is well known thatVp,g has the structure of a smooth Hilbertian manifold; forwPVp,g the

tangent spaceTwVp,g is identified with the Hilbert space:

TwVp,g5$z:@0,1#°TM:z absolutely continuous, z~0!50, z~1!iY~w~1!!,

“ ẇzPL2~@0,1#,TM!, z~s!PTw~s!M,;s%, ~9!

endowed with the Hilbert norm:

iziw5S E
0

1

^“ ẇz,“ ẇz&~R! dsD 1/2

.

For all qPg, Vp,q is a closed submanifold ofVp,g , and forwPVp,q the tangent spaceTwVp,q

is given by

TwVp,q5$zPTwVp,g :z~1!50%. ~10!

Lemma II.2:Vp,g ~D! is a smooth submanifold ofVp,g . For wPVp,g ~D!, the tangent space
TwVp,g ~D! is identified with the Hilbert subspace of TwVp,g:

TwVp,g~D!5$zPTwVp,g :^“ ẇz,Y&1^ẇ,“zY&[0%. ~11!

Proof: We consider the mapC: Vp,g°L2(@0,1#,R) given byC(w)5^ẇ,Y&. It is easily seen
that C is smooth, and, forzPTwVp,g , the Gateaux derivativeC8(w)@z# is given by

C8~w!@z#5^“ ẇz,Y&1^ẇ,“zY&.

Using the Implicit Function Theorem~see Ref. 13!, it suffices to prove thatC8(w) is surjective
for all wPVp,g(D). To see this, for allhPL2(@0,1#,R) we set

mh~s!5E
0

s h~r !

^Y„w~r !…,Y„w~r !…&
dr.

Clearly, zh5mh•Y is in TwVp,g , and, recalling~6!, a straightforward calculation givesC8(w)
3@z#5h. This gives the surjectivity ofC8(w) and concludes the proof. h

It is possible to give a more geometric proof of Lemma II.2 by showing that theend point
mapping, which is the mapend: Vp,g°M that assigns to each curvew its final pointw(1), is
transversal to the curveg ~see Ref. 5!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The regularity result proven in Lemma II.2 allows us to give the following definition of
sub-Riemannian geodesic.

Definition II.3: Let f: M°R1 be a smooth map that isY invariant, i.e.^Y,“f&[0. Con-
sider the sub-Riemannian metricg̃sr5f•gsr on D ~observe that, by the wrong way Schwartz
inequality, the orthogonal space to a time-like vector is always space-like!. A normal geodesic
betweenp andg with respect tog̃sr is a curvew that is a smooth critical point inVp,g(D) for the
energy functionalEf :

Ef~w!5
1

2 E
0

1

f~w!•^ẇ,ẇ&ds. ~12!

A normal geodesic is said to beminimal if it is a minimal point forEf .
Remark II.4:A sub-Riemannian manifold consists of a triple (M,D,gsr), where M is a

smooth manifold,D is a smooth distribution onM, andgsr is a positive definite metric tenso
defined only onD.

A ~piecewise! C1 curvez is said to be horizontal ifż(s) belongs toD for ~almost! all s. We
remark here that the choice of the adjectivenormalgiven to the critical points ofEf derives from
the fact that, in general sub-Riemannian manifolds, there exist the so-calledabnormalgeodesics,
which are singular points in the set of horizontal curves joining two fixed points~see, e.g. Ref. 14!.
Such geodesics do not, in general, satisfy the geodesic equation, and they cannot be reco
critical points of the sub-Riemannian energy functional.

Remark II.5:Observe that, sinceE is a smooth functional onVp,g , then, by Lemma II.2, its
restriction toVp,g(D) is also smooth. ForzPTwVp,g(D) the Gateaux derivativeEf8 (w)@z# is
easily computed as:

Ef8 ~w!@z#5E
0

1S f~w!^“ ẇz,ẇ&1
1

2
^“f~w!,z&^ẇ,ẇ& Dds. ~13!

Here, the gradient“f is computed with respect to the Lorentzian metricg.
We denote byH

*
1 (@0,1#,R) the space of all absolutely continuous functionsm: @0,1#°R with

a square integrable derivative and satisfyingm~0!50.
Lemma II.6: Let wPVp,g(D) and q5w(1). The following are equivalent:
(1) w is a normal geodesic between p andg with respect to g˜sr ;
(2) w is a critical point of the functional Ef in the spaceVp,g ;
(3) w is a critical point of the functional:

ER~w!5
1

2 E
0

1

f~w!•gR~z!@ ż,ż#ds,

on Vp,q , where gR is given by (5).
Proof: Let wPVp,g(D) be fixed. For allmPH

*
1 (@0,1#,R), let zm denote the vector field

alongw, given by

zm~s!5m~s!•Y„w~s!….

Since^“f(w),Y&[0, ^ẇ,Y&[0 andY is Killing ( ^“ ẇY,ẇ&[0), from ~13! one computes im-
mediately

Ef8 ~w!@zm#50, ;mPH
*
1 ~@0,1#,R!.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



tween
l.

y

6373Giannoni, Piccione, and Verderesi: Relativistic brachistochrones

                    
To prove the arrow~1!⇒~2!, it suffices to show thatTwVp,g(D) and the vectorszm , m
PH

*
1 (@0,1#,R) generate the spaceTwVp,g . To this aim, letz̃ be any vector inTzVp,g . Then, an

easy computation shows thatz̃ is written asz̃5z1zm , wherezPTwVp,g(D) andm is given by

m~s!5E
0

sS ^“ ẇz̃,Y&2^z̃,“ ẇY&

^Y,Y&
D dr.

To prove the implication~2!⇒~3!, observe that, by definition ofgR, we can write

ER~w!5Ef~w!2G~w!,

where

G~w!5E
0

1

f~w!
^ẇ,Y&2

^Y,Y&
ds.

SinceEf8 (w)@z#50 for all zPTwVp,g(D), and in particular for allzPTwVp,q , in order to prove
thatw is a critical point forER it suffices to show thatw is a critical point forG in Vp,q . To see
this, we observe thatG is a smooth functional onVp,q , whose derivativeG8(w)@z# in the
directionzPTwVp,q is easily computed as

G8~w!@z#5E
0

1F ^“f~w!,z&
^ẇ,Y&2

^Y,Y&
12f~w!

^ẇ,Y&^“ ẇz,Y&

^Y,Y& Gds.

Since^ẇ,Y&[0, it follows thatG8(w)50 on TwVp,q and ~3! is proven.
To pass from~3! to ~1!, observe that ifw is a critical point ofER on Vp,q , by standard

regularity results,w is a smooth curve. Moreover, since^Y,ẇ&[0, by ~5! we have that the
derivative Ef8 (w)@z# vanishes for all variationsz that satisfyz~0!5z~1!50. The computation
above shows thatEf8 (w)@z# vanishes also for all variationsz5zm5m•Y; henceEf8 vanishes in
TwVp,g(D), and we are done. h

As a Corollary to Lemma II.6, we obtain that the normal sub-Riemannian geodesics be
p andg are regular curves that satisfy the Euler–Lagrange equation of a smooth functiona

Corollary II.7: Let wPVp,g be a normal geodesic with respect to g˜sr . Then, w is a smooth
curve that satisfies the differential equation

“ ẇẇ1 K “f~w!

f~w!
,ẇL ẇ2

1

2

“f~w!

f~w!
^ẇ,ẇ&50. ~14!

Moreover, the quantity Ef(w)51/2(w(s))^ẇ(s),ẇ(s)& is constant along w.
Conversely, every smooth curve w:@0,1#°M joining p with g, satisfying (14) and

^ẇ(0),Y(w(0))&50, is a normal sub-Riemannian geodesic with respect to g˜sr.
Proof: Sincew is a geodesic for the Riemannian metricg̃R, thenw is smooth. It satisfies the

equationEf8 (w)@z#50 for all zPTwVp,q ; in particularz~0!5z~1!50 and we can integrate b
parts the formula~13!, obtaining

05Ef8 ~w!@z#5
1

2 E
0

1

^“f~w!,z&^ẇ,ẇ&ds5E
0

1

~2f~w!^z,“ ẇẇ&2^“f~w!,ẇ&^z,ẇ&!ds,

~15!

for all zPTwVp,g(D). Passing to a strong equality in~15!, we obtain thatw satisfies the equation
~14!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Clearly, the quantityEf(w)5 1
2f(w)^ẇ,ẇ& is constant along every geodesic in the Riema

ian metricg̃R.
Conversely, ifw is a smooth curve joiningp andg satisfying~14!, thenw is a geodesic with

respect to the metricg̃5f•g. SinceY is Killing with respect tog̃, thenf(w)^ẇ(s),Y„w(s)…&
[f(w)^ẇ(0),Y„w(0)…&50, so thatwPVp,g(D) and w is a normal sub-Riemannian geodes
betweenp andg with respect tog̃sr. h

We also have the following immediate Corollary.
Corollary II.8: The curve wPVp,g(D) is a normal geodesic with respect to g˜sr if and only if

w minimizes locally the energy functional Ef in Vp,g(D). h

III. THE VARIATIONAL PRINCIPLE

Let M be a stationary Lorentzian manifold andY a time-like Killing vector field onM,
which is assumed to be complete. We denote by

c:M3R°M

the flow ofY. The Killing property ofY is expressed by the fact that, for allt, the mapx°c(x,t)
is an isometry ofM. We recall that, denoting bydx anddt the differential operators with respec
to the variablesx and t, respectively, by definition of flow, for all (x,t)PM3R it is

~1! dtc(x,t)5Y„c(x,t)…;
~2! dxc(x,t)@Y(x)#5Y„c(x,t)….
Moreover, sinceY is Killing, dxc(x,t): TxM°Tc(x,t)M is an isometry. Observe that, i

particular, the quantitŷY,Y& is constant along the flow lines ofY:

^Y„c~x,t !…,Y„c~x,t !…&5^dxc~x,t !@Y~x!#,dxc~x,t !@Y~x!#&5^Y~x!,Y~x!&.

We use the flow ofY to define a map from the spaceBp,g
1 (k) to the spaceVp,g(D) as follows.

First of all, we introduce the spaceB̃p,g
1 (k) consisting of all curves inBp,g

1 (k) suitably reparam-
etrized on the interval@0,1#:

B̃p,g
1 ~k!5H s:@0,1#°M of class C1u s~0!5p, s~1!Pg, 'Ts ,

such that ^ṡ,ṡ&[2Ts
2,

^ṡ,Y~s!&
Ts

[2kJ . ~16!

Clearly, the mapR: Bp,g
1 (k)°B̃p,g

1 (k) defined byR(z)5s, where s(s)5z(Tz•s), gives a
bijection betweenBp,g

1 (k) andB̃p,g
1 (k).

The mapR is used to identify the spacesBp,g
1 (k) andB̃p,g

1 (k); a curvesPB̃p,g
1 (k) will be

called a brachistochrone of energyk if R21(s) is a brachistochrone of energyk.
We introduce the following mapF : B̃p,g

1 (k)°Vp,g(D):

F ~s!~s!5ws~s!5c„s~s!,ts~s!…, ~17!

where

ts~s!52E
0

s ^ṡ,Y~s!&

^Y~s!,Y~s!&
dr5k•TsE

0

s dr

^Y~s!,Y~s!&
. ~18!

The curvews is of classC1, moreover, the following calculation shows thatws is in Vp,g(D):

^ẇs ,Y&5^dxc@ṡ#,Y&1 ṫs^Y,Y&5^ṡ,Y&1 ṫs^Y,Y&50.
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Observe that, if for some positivek the curvesPB̃p,g
1 (k) has an image in the open setUk of ~3!,

then, sinceUk is Y invariant, alsoF ~s! has an image inUk .
Our variational principle states that the mapF is a bijection between the set of brachist

chrones of fixed energyk joining p with g and the set of normal sub-Riemannian geodesics w
respect to a suitable metric that is conformally equivalent togsr. For k.0, let us consider the
smooth function:

fk52
^Y,Y&

k21^Y,Y&
. ~19!

The mapfk is defined and positive in the open setUk . We are ready to state and prove o
variational principle for brachistochrones.

Proposition III.1: Let k be a fixed positive number. Ifs is a brachistochrone of energy
between p andg, then ws5F (s) is a normal geodesic joining p andg in Uk with respect to the
metric fk•gsr.

Conversely, if w is a normal geodesic in Uk between p andg with respect tofk•gsr , then
there exists a unique brachistochrones of energy k between p andg such that w5F (s).
Moreover, in either case, w is minimal if and only ifs is minimal.

Proof: Observe that the functionfk defined in~19! is Y invariant, becausêY,Y& is constant
on the flow lines ofY. Let s be any curve inB̃p,g

1 (k) with an image inUk and ws5F (s).
Recalling~18!, we have

fk~ws!^ẇs ,ẇs&52
^Y,Y&

k21^Y,Y&
^dxc@ṡ#1 ṫsY,dxc@ṡ#1 ṫsY&

52
^Y,Y&

k21^Y,Y&
~^ṡ,ṡ&12ṫs^Y,ṡ&1 ṫs

2^Y,Y&!

52
^Y,Y&

k21^Y,Y&
S ^ṡ,ṡ&2

^ṡ,Y&2

^Y,Y& D
52

^Y,Y&

k21^Y,Y&
S 2Ts

22Ts
2 k2

^Y,Y& D5Ts
2[2^ṡ,ṡ&. ~20!

If s is a brachistochrone of energyk, thens minimizes locally the quantityTs . It follows thatws

minimizes locally the functionalEfk
(w) @see~12!#, henceẇ is a normal geodesic with respect

fk•gsr.
Conversely, letw be any curve inVp,g(D). Let Lfk

(w) be the length ofw with respect to the
metric fk•gsr:

Lfk
~w!5E

0

1
Afk~w!^ẇ,ẇ&ds.

Define the curvesw by

sw~s!5c„w~s!,tw~s!…,

wheretw is given by

tw~s!52kLfk
~w!E

0

s dr

^Y~w!,Y~w!&
. ~21!
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Since

^dxc~w,tw!@ẇ#,Y~sw!&5^dxc~w,tw!@ẇ#,dxc~w!@Y~w!#&5^ẇ,Y~w!&50,

an easy computation shows that

^ṡw ,Y~sw!&[2kLfk
~w!

is constant. SetTsw
5Lfk

(w). If w is a normal geodesic inUk with respect tofk•gsr, thenw is
smooth, and thus alsos is smooth. Moreover, the quantity 2Efk

(w)5fk(w)^ẇ,ẇ&5Lfk
(w)2 is

constant, so

^ṡw ,ṡw&5^ẇ,ẇ&12ṫw^ẇ,Y&1 ṫw
2 ^Y,Y&5^ẇ,ẇ&1 ṫw

2 ^Y,Y&5^ẇ,ẇ&12k2
Efk

~w!

^Y,Y&

52Efk
~w!F2

k21^Y,Y&

^Y,Y&
1

k2

^Y,Y&G522Efk
~w!52Tsw

2 . ~22!

Hence,sw is in B̃p,g
1 (k). Since w minimizes locally the functionalEfk

, then, by ~22!, sw

minimizes locallyTsw
, and it is a brachistochrone of energyk.

Let w be a normal geodesic betweenp andg with respect tofk•gsr. Suppose thats1 , s2

PB̃p,g
1 (k) are two brachistochrones of energyk, such thatF (s1)5F (s2)5w; then, by~20!, it

is Ts1
5Ts2

. By definition of the spaceB̃p,g
1 (k) @see~16!#, this implies that̂ ṡ1 ,Y&[^ṡ2 ,Y&. But

s1(s) ands2(s) belong to the same integral line ofY for all s, while s1(0)5s2(0)5p. Then,
there exists a smooth functiont(s) such that

s2~s!5c~s1~s!,t~s!!, ;sP@0,1#,

andt~0!50. Then, recalling the main properties of a Killing vector field, it is

t85
^ṡ2 ,Y~s2!&2^dxc@ṡ1#,Y~s2!&

^Y~s2!,Y~s2!&
5

^ṡ2 ,Y&2^ṡ1 ,Y&

^Y,Y&
[0,

hence, it must bet[0, i.e.s1[s2 and the uniqueness is proven.
Finally, the equalities~20! and~22! imply immediately thats is a minimal brachistochrone i

and only if w5F (s) is a minimal geodesic. This concludes the proof. h

Using the variational principle of Proposition III.1 and the Euler–Lagrange equation~14!
satisfied by the sub-Riemannian geodesics, we can write the differential equation satisfied
relativistic brachistochrones.

Corollary III.2: Let z be a curve inBp,g
1 (k) with an image in Uk . Then, z is a brachisto-

chrone of energy k joining p andg if and only if z is a smooth curve satisfying the different
equation:

“ żż1
2k

^Y,Y&
“ żY12k2 ^“ żY,Y&

^Y,Y&~k21^Y,Y&!
ż22k

^“ żY,Y&

^Y,Y&~k21^Y,Y&!
Y50, ~23!

where“ is the covariant derivative with respect to the Levi-Civita connection of the Lorent
metric g.

Proof: Let zPUp,g
1 (k) be fixed andTz its travel time. We consider the curvess5R(z)

PB̃p,g
1 (k), given by s(s)5z(Tz•s) and w5F (s)PVp,g(D), given by w(s)5c„s(s),t(s)…,

wheret(s) satisfies~18!.
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By Proposition III.1,z is a brachistochrone of energyk if and only if w is a normal sub-
Riemannian geodesic with respect to the metricfk•gsr. Then, by Corollary II.7,z is a brachis-
tochrone of energyk if and only if w is a smooth curve that solves the differential equation~14!
@it satisfies antomaticallŷẇ,Y(w)&[0#.

In order to translate the differential equation~14! in terms ofz, we argue as follows. We
consider the mapF: @0,1#3R°M given by

F~s,t !5c„s~s!,t…,

wheres(s)5z(Tz•s). Denoting byT(s,t) the vector field alongF given by

T5
]F

]s
,

sinceY5]F/]t, a standard argument in calculus of connections~see, for instance, Proposition 6.
of Ref. 15! shows that

“YT2“TY50. ~24!

Sincew(s)5F„s,t(s)…, it is

ẇ5T~w!1 ṫY~w!,

and so, using~24!, we compute

“ ẇẇ5“ ẇ~T1 ṫY!5“ ẇT1 ẗY1 ṫ “ ẇY5“T1 ṫYT1 ẗY1 ṫ “T1 ṫYY

5“TT12ṫ “TY1 ṫ2
“YY1 ẗY. ~25!

It is

T~s,t !5dxc„s~s!,t…@ṡ~s!# and Y„w~s!…5dxc„s~s!,t…@Y~s!#. ~26!

Considering thatdxc is an isometry, then for every pair of smooth vector fieldsv1 andv2 on M

it is

“dxc@v1#dxc@v2#5dxc@“v1
v2#. ~27!

Putting together~25!, ~26!, and using~27!, we get

“ ẇẇ5dxc@“ ṡṡ12ṫ “ ṡY~s!1 ṫ2
“Y~s!Y~s!1 ẗY~s!#. ~28!

From ~19!, recalling that̂ “vY,Y&52^“YY,v&, the gradient“fk is computed easily as

“fk5
2k2

~^Y,Y&1k2!2
“YY, ~29!

namely, for every vector fieldv on M, it is

^“fk ,v&5“vfk5
22k2

~^Y,Y&1k2!2
^“vY,Y&5K 2k2

~^Y,Y&1k2!2
“YY,vL .

Recalling the conservation law~20!, we have
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



quare

pace–
eisen-

e
are

d

l

the

6378 Giannoni, Piccione, and Verderesi: Relativistic brachistochrones

                    
fk~w!^ẇ,ẇ&[2Efk
~w!5Tz

2; ~30!

moreover, it is easily computed:

“fk~w!

fk~w!
52

2k2

^Y,Y&~k21^Y,Y&!
“Y~w!Y~w!52

2k2

^Y,Y&~k21^Y,Y&!
dxc@“Y~s!Y~s!#;

~31!

ẇ5dxc@ṡ#1 ṫY~w!5dxc@ṡ1 ṫY~s!#; ~32!

and, from~18!,

ṫ5
kTz

^Y,Y&
, ẗ522kTz

^“ ṡY,Y&

^Y,Y&2
. ~33!

Recalling thatfk(w)^ẇ,ẇ&[Tz
2 and ^“YY,Y&[0, patiently substituting~28!, ~29!, ~30!, ~31!,

~32!, and~33! into ~14! gives

dxcF“ ṡṡ12
kTz

^Y,Y&
“ ṡY12k2 ^“ ṡY,Y&

^Y,Y&~k21^Y,Y&!
ṡ22kTz

^“ ṡY,Y&

^Y,Y&~k21^Y,Y&!
YG50.

~34!

Sincedxc is an isometry, this is equivalent to the vanishing of the argument inside the s
bracket of~34!.

Finally, sinceṡ5Tz• ż, we obtain easily~23!. h

Thus, the differential equation~23! characterizes the brachistochrones inBp,g
1 (k).

IV. EXAMPLES

To illustrate the results obtained, in this section we discuss two examples of stationary s
times and their brachistochrones. Our first example concerns a generalized version of the H
berg group, which is a manifold diffeomorphic toR3 such that the orthogonal distribution to th
Killing vector field Y5]/]t is not integrable. The family of Lorentzian metrics in this example
parametrized by a smooth functionv of the space variablesx andy. If one choosesv5x, then the
projection onto thexy plane of this metric coincides with the projection of the metric ofRinsler’s
model~see Ref. 16!, and we recover a result by Perlick obtained in Ref. 3.

In our second example we study a model of a stationary manifold built over the manifolS3,
considered as a bundle overS2 with a fiber diffeomorphic to circles~Hopf fibration S1°S3°S2!.
This model gives a stationary space–time that isnot regular, i.e. it does not admit a globa
space–time splitting adapted to the Killing vector fieldY.

A. Brachistochrones in the generalized Heisenberg space

We consider inM5R3, with coordinates (x,y,t), the Lorentzian metric,

g5dx21dy22v2~dt2y dx1x dy!2,

wherev5v(x,y) is a smooth map onR2. As the coefficients of the metric do not depend on
variable t, the time-like vector fieldY5]/]t is a Killing vector field in (M,g). Setting u1

5dx, u25dy, andu35v(dt2y dx1x dy), so thatg5(u1)21(u2)22(u3)2, then the Riemann-
ian metricgR in M is

gR5~u1!21~u2!21~u3!2.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



Lie

6379Giannoni, Piccione, and Verderesi: Relativistic brachistochrones

                    
If ( e1 ,e2 ,e3) denotes the dual basis of (u1,u2,u3), given by

e15
]

]x
1y

]

]t
, e25

]

]y
2x

]

]t
, e35

1

v
]

]t
,

then the Levi-Civita connection ofgR is given by

“e15vu3e21S vu21
vx

v
u3De3 ,

“e252vu3e12S vu12
vy

v
u3De3 ,

“e352S vu21
vx

v
u3De11S vu12

vy

v
u3De3 ,

If w(s)5„x(s),y(s),t(s)…, thenẇ5 ẋe11 ẏe21v( ṫ2yẋ1xẏ)e3 ; the normality conditionṫ2yẋ
1xẏ50 gives

ẇ5 ẋe11 ẏe;

hence

“ ẇẇ5 ẍe11 ÿe2 .

Considering the function

fk5
v2

k22v2
,

the equation~14! for the normal geodesics in the metricfk•gsr is given by the system

5
ẍ1

k2

v~k22v2!
„vx~ ẋ22 ẏ2!12vyẋẏ…50,

ÿ1
k2

v~k22v2!
„vy~ ẏ22 ẋ2!12vxẋẏ…50,

ṫ2yẋ1xẏ50.

~35!

Each solution of the system~35! gives a brachistochrones of energyk on M, given bys(s)
5„x(s),y(s),t(s)1t(s)…, with t(s)5k*0

sv22 dr.
Choosingv[1, the manifold (M,gR! coincides with the Heisenberg space. This is the

subgroup ofSL(3,R) consisting of upper triangular matrices

S 1 x z

0 1 y

0 0 1
D ;

the metricsg, gR, and the vector fieldY are left invariant. In this case the equations~35! reduce
to

ẍ50, ÿ50, ṫ50,
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whose solutions are straight linesw(s)5(as,bs,0), and the brachistochrones of energyk are of
the forms(s)5(as,bs,ks).

Observe also that, if we takev5x, the projection onto thexy plane of the metricg coincides
with the projection of the metric of Rindler’s model given bydx21dy22x2 dt2. The spatial part
of the brachistochrones in these two models are the same; it is easily checked that the fi
equations of~35! are equivalent to formulas~60! and ~61! of Ref. 3.

B. Brachistochrones in the 3-sphere S3

In C2, with coordinatesz5(z1 ,z2), we consider the 3-sphere,

S35$zPC2:z1z̄11z2z̄251%.

For z5(z1 ,z2), we writez'5(2 z̄2 ,z̄1); the triple (iz,z',iz') is a basis forTzS
3 as a real vector

subspace ofC2.
On S3 we consider the 1-forms:

u52 i ~ z̄1 dz11 z̄2 dz2! and w52z2 dz11z1 dz2 ,

and the Lorentz metricg5w ^ w̄2u2 ~observe thatu5 ū!.
Since w(z')51, w( iz)50, then, writing s5u11 iu2, (u1,u2,u) is the dual basis of

(z',iz',iz).
The metricgR is given by

gR5w ^ w̄1u2,

and the covariant derivative associated togR is given by

“z'52u iz'1u2iz,

“ iz'5uz'2u1iz,

“ iz52u2z'1u1iz.

The vector fieldY(z)5 iz is time-like and Killing, and̂ Y,Y&[21, hence, in the notation of Sec
III, we have

fk[
1

k221
, ¹fk[0.

The integral curves ofY are circles and the quotient space is diffeomorphic to the 2-sphereS2,
giving rise to the Hopf fibration ofS2 by S1.

The orthogonal distributionD to Y is the kernel of the 1-formu. The normal geodesics satisf
the system of equations:

z̄1ż11 z̄2ż250,

z1z̈22z2z̈150, ~36!

^ż,z&50, ^z̈,z̄'&50.

For eachz0PS3, the solutions of~36! throughz0 are given by

z~ t !5z0 cos t1az0
' sin t, uau51,
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they are maximal circles onS2.
The flow of the vector fieldY is c(z,t)5eitz; moreover,

t~s!52kE
0

s dr

^Y,Y&
52ks.

Hence, the brachistochrones throughz0 are given by

s~s!5e2 iks~z0 coss1az0
' sin s!.
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The ̄-dressing method and the solutions with constant
asymptotic values at infinity of DS-II equation
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Several classes of exact solutions with constant asymptotic values at infinity of
DS-II equation are constructed via the]-dressing method. Among these solutions
are the solutions with functional parameters, multi-line solitons and breathers, and
pure rational solutions. ©1997 American Institute of Physics.
@S0022-2488~97!01311-X#

I. INTRODUCTION

The Davey–Stewartson~DS! equation

iqt1
1
2~qxx1s2qyy!14euqu2q12qF50,

~1!

Fyy2s2Fxx14euquxx
2 50,

is the straightforward 211-dimensional integrable generalization of the nonlinear Schroedi
~NLS! equation.The DS-II equation corresponds to the cases2521 and was first derived in the
fluid dynamics1 as the shallow water limit of the Benney–Roskes equation.2 It describes the
evolution of waves of slowly varying amplitude on a two-dimensional water surface under gr
In this caseq is the amplitude of surface wave packet andF is the velocity potential. The DS
equation is a universal equation since it arises as the multiscale limit of the wide class of11-
dimensional nonlinear equations.3,4

We will consider two different equations~1! with s2521 corresponding to different signs o
the real constante. It will be shown that the character of solutions of~1! essentially depends on th
sign of e. Replacing F12euqu2 in ~1! by f and introducing the complex variablesz5x

1 iy , and z̄5x2iy one can rewrite the DS-II equation (s2521) ~1! in the form

iqt1qzz1q z̄ z̄12qf50, fz z̄1e~ uquzz
2 1uqu z̄ z̄

2
!50. ~2!

Here

fz :5
]f

]z
,

]

]z
5

1

2 S ]

]x
2 i

]

]yD ,
]

] z̄
5

1

2 S ]

]x
1 i

]

]yD
and so on.

The DS-II equation~2! is the reductionp5e q̄ of a more general system of equations:

a!Permanent address: Novosibirsk State Technical University, 630092, Novosibirsk, Russia.
b!European Institute for Nonlinear Studies via Transnationally Extended Interchanges.
0022-2488/97/38(12)/6382/19/$10.00
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iqt1qzz1q z̄ z̄12qf50, ipt2pzz2p z̄ z̄22pf50,
~3!

fz z̄1~pq!zz1~pq! z̄ z̄50.

One usually represents the DS-equation as the compatibility condition@L1 ,L2#50 of two
known auxiliary linear 232 matrix problems with some matrix differential operatorsL1 ,L2.5,6 In
the present paper we will follow another possibility and associate with the system~3! the follow-
ing two scalar auxiliary linear problems:

L1C5Cz z̄1VC z̄1UC50,
~4!

L2C5 iC t1Czz2C z̄ z̄1W1C z̄1W2C50,

where

V52
qz

q
,U52pq, ~5!

and

W152
q z̄

q
, W2 z̄52Uz522~pq!z . ~6!

The system~3! arises as the compatibility condition of the auxiliary linear problems~4! in the
form of triad representation:

@L1 ,L2#5~W1 z̄22Vz!L152~~ log q!zz1~ log q! z̄ z̄ !L1 . ~7!

It is interesting to note that the one-dimensional nonlinear Schroedinger system of equ
iqt12qxx14q2p50, and ipt22pxx24p2q50 ~and consequently the NLS equationiqt12qxx

14euqu2q50) one can also represent as the compatibility condition of two scalar linear prob

L1C5Cxx1VCx1UC50,

L2C5 iC t1W1Cx1W2C50,

with V52W1/252qx /q, and U5W2/252pq in the form of triad operator representatio
@L1 ,L2#54(logq)xxL1.

The main goal of the present paper is the calculation of a broad class of exact solutio
DS-II equation~2! with constant asymptotic values at infinity:

q→1 as uzu25x21y2→` ~8!

with the use of the modern and powerful]̄ -dressing method of Zakharov and Manakov,7,8 see also
Refs. 9–13. The present paper is the second in a series of papers devoted to the applicatio
]̄ -dressing method to some 211-dimensional integrable nonlinear evolution equations. In Ref
there has been calculated a broad class of exact solutions of such integrable nonlinear equa
DS-I, and 211-dimensional generalizations of dispersive long wave equation and the sinh-G
equation.

Using the ]̄ -dressing method and scalar triad representation~7! we have been calculated i
the present paper the following classes of exact solutions of DS-II equation~2! with constant
asymptotic values at infinity:

~i! solutions with functional parameters,
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ii ! multi-line soliton and breather solutions,
~iii ! pure rational solutions.

The results which have been obtained by this way are not completely new and overla~or

reproduce! the earlier one; but it should be stressed that by the]̄ -dressing method we have
powerful tool for the calculation of a variety of exact solutions of integrable nonlinear equat
The application of this method to the investigation of the structure and properties of exact
tions may be instructive and very useful.

The novelty of our paper is the application of the]̄ -dressing method for the calculation of
broad class of exact solutions of the DS-II equation with constant asymptotic values at infini
in particular of pure rational solutions, all calculations have been made for both casese.0,e
,0. The new peculiarity of our approach is the use of scalar triad operator representation~7! for

the DS equation. Let us mention also that the terms 2q(u1(z,t)1u2( z̄ ,t)) and 22p(u1(z,t)

1u2( z̄,t)), that arise in the DS system of equations~3! after excluding the functionf, have
been chosen in our calculations equal to zero, that is it has been considered the case o

boundariesu1(z,t)5u2( z̄ ,t)50. The calculation of exact solutions of the DS-II equation via

]̄ -dressing method at the presence of nontrivial boundariesu1(z,t) and u2( z̄ ,t) may be an
interesting problem and will be considered elsewhere.

In conclusion of this section let us review some of the earlier results for DS-II equation~2!.
Multi line solitons of the DS-II equation with constant asymptotic values at infinity there h
been obtained at first with the use of the old dressing method of Zakharov and Shabat15 in the
paper by Anker and Freeman16 for the casee.0.

In the paper of Satsuma and Ablowitz17 the rational exponential solutions~envelope lumps! of
the DS-II equation with constant asymptotic values at infinity have been obtained by the H
bilinear method. Nakamura,18,19 with the use of the same method, has calculated another typ
rational exponential solution: explode-decay lumps or ripplons.

Fokas and Ablowitz20 have been applied the]̄ -problem technique to the DS-II equation fo
the calculation of rational exponential solutions~envelope lumps! decreasing asuzu21 at infinity.
In the paper of Arkadiev, Pogrebkov and Polivanov,21 rational exponential solutions of the DS-

equation decreasing asuzu22 at infinity have been calculated also via the]̄ -problem technique.
In the paper by Bogdanov22 there was developed an IST method based on the combinatio

the ]̄ -problem and the nonlocal Riemann–Hilbert problem. This method also allows, in princ
the calculation of the solutions of the DS-II equation with constant asymptotic values at infi

In a recent paper23 the DS system of equations~3! has been considered and finite-gap so
tions of DS-II equation~2! have been constructed via an algebraic geometric technique. It
shown in that paper that the finite-gap solutions include some classes of rational and line
solutions with constant asymptotic values at infinity. The simplest examples of such solution
been presented.

In the more resent papers by Guil and Man˜as,24,25 it has been shown that the DS system
equations~3! arises as the result of finite-rank constraints for the right-derivatives of ce
automorphisms solving the heat equation. Using this fact the authors of Refs. 24 and 25 hav
constructed for the DS-II equation the classes of exact solutions in the form of Wronskia
Grammian determinants. The parametrizations of these solutions are different from those o
in the present paper.

In the paper by Pelinovsky26 the structure of explicit solutions of the DS-II equation has be
studied with the use of old dressing method of Zakharov and Shabat15 once again for the casee
.0. There have been obtained multi-line solitons and rational exponential solutions with co
asymptotic values at infinity.

Our present paper is organized as follows. In section II the basic ingredients of the]̄ -dressing
method are considered. The classes of exact solutions with functional parameters, multi-lin
J. Math. Phys., Vol. 38, No. 12, December 1997
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tons and breathers, and rational solutions, are constructed in sections III, IV, and V respec

II. SOME FORMULAS OF THE -DRESSING METHOD

Let us apply the]̄ -dressing method7,8 for the system~4! in the case whenU(z, z̄ ,t)52pq
has generically non-zero asymptotic valueU`52e at infinity:

U~z, z̄ ,t !52pq5Ũ~z, z̄ ,t !1U`5Ũ~z, z̄ ,t !2e, ~9!

whereŨ(z, z̄ ,t)→0 asuzu→`. We will suppose without disturbing generality that

q~z, z̄ ,t !→1, p~z, z̄ ,t !→e as uzu→`. ~10!

At first one postulates the nonlocal]̄ -problem:

]x~l,l̄!

]l̄
5~x* R!~l, l̄ !5E E

C

dl8`dl8

2p i
x~l8.l8!R~l8,l8;l,l̄!. ~11!

The functionsx andR in our case are the scalar complex-valued functions. For the functionx we
choose the canonical normalization (x→1 asl→`). We assume also that the problem~11! is
uniquely solvable.

Then one introduces the dependence of kernelR on space and time variablesz, z̄ , t:

]R

]z
5 il8R~l8,l8;l, l̄ ;z, z̄ ,t !2R~l8,l8;l, l̄ ;z, z̄ ,t !il,

]R

] z̄
52

i e

l8
R~l8,l8;l, l̄ ;z, z̄ ,t !1R~l8,l8;l, l̄ ;z, z̄ ,t !

i e

l
, ~12!

]R

]t
5S 2 il821

i e2

l82D R~l8,l8;l, l̄ ;z, z̄ ,t !2R~l8,l8;l, l̄ ;z, z̄ ,t !S 2 il21
i e2

l2 D ,

i.e.,

R~l8,l8;l, l̄ ;z, z̄ ,t !5R0~l8,l8;l, l̄ ! exp~F~l8!2F~l!! ~13!

where

F~l!:5 i S lz2
e

l
z̄ D2 i S l22

e2

l2D t. ~14!

With the use of ‘‘long’’ derivatives

Dz5]z1 il, D z̄5] z̄2
i e

l
, Dt5] t2 il21 i

e2

l2 , ~15!

the dependence ofR on z, z̄ , t can be expressed in the form

@Dz ,R#50, @D z̄ ,R#50, @Dt ,R#50. ~16!

By the use of derivatives~16! one constructs then linear operators
J. Math. Phys., Vol. 38, No. 12, December 1997
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L5( ulmn~z, z̄ ,t !Dz
l D z̄

m
Dt

n ~17!

which satisfy the condition

F ]

]l̄
,LG50 ~18!

of absence of singularities onl. For such operatorsL the functionLx obeys the same]-equation
as the functionx. If there are several operatorsLi of this type, then by virtue of the uniqu
solvability of ~11! one hasLix50. In our case one can construct two such operators:

L1x5~DzD z̄1ṼDz1VD z̄1U !x50,
~19!

L2x5~ iD t1Dz
22D z̄

2
1W̃1Dz1W1D z̄1W2!x50.

Indeed let us consider~19! for the series expansion ofx near pointsl50 and l5`: x5 x̃0

1lx11l2x21 . . . , x5x01x21 /l1x22 /(l2)1 . . . . In theneighbourhood ofl5`, equating
to zero the coefficients for degrees ofl, we obtain fromL1x50

l: ix0 z̄1 i Ṽx050,
~20!

l0:x0z z̄1Ṽx0z1Vx0 z̄1 ix21 z̄1 i Ṽx211~U1e!x050,

and, fromL2x50,

l:2ix0z1 iW̃1x050, l0:2ix21z1W̃1x0z1W1x0 z̄1W2x050. ~21!

Analogously, in the neighbourhood ofl50, from L1x50

l21:2 i x̃0z2 iV x̃050, ~22!

and, fromL2x50,

l21:2i x̃0 z̄2 iW1x̃050. ~23!

Due to canonical normalizationx051 and from~20! and ~21! it follows for Ṽ and W̃1: Ṽ50,
W̃150. Then from~20!–~23! we obtain forV, U, W1 andW2 following reconstruction formulas

V52 x̃0z / x̃0 , U52e2 ix21 z̄ ,
~24!

W152x̃0 z̄ / x̃0 , W2522ix21z .

Finally from ~5! and ~24! follow the reconstruction formulas for the solutionsq and p of the
system~3!:

q5 x̃0 , p5
e1 ix21 z̄

x̃0

. ~25!

In terms of wave functionc:5x exp@i(lz2e z̄/l)2i(l22e2/l2)t# one obtains from~19! our aux-
iliary problems~4!.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



6387V. G. Dubrovsky: The DBAR dressing method for DS-II equation

                    
The solution of]̄ -problem~11! with the canonical normalizationx051 is equivalent to the
solution of the following singular integral equation:

x~l!511E E
C

dl8`dl8

2p i ~l82l!
E E

C

dm`dm̄

2p i
x~m,m̄ !R0~m,m;l8,l8!eF~m!2F~l8!. ~26!

From ~26! one obtains for the coefficientsx̃0 andx21 of the series expansion ofx

x̃0511E E
C

dl`dl

2p il E E
C

dm`dm

2p i
x~m,m!R0~m,m;l,l!eF~m!2F~l!,

~27!

x2152E E
C

dl`dl

2p i E E
C

dm`dm

2p i
x~m,m!R0~m,m;l,l!eF~m!2F~l!,

whereF(l) is given by the formula~14!.
In conclusion of this section let us consider the condition of the reductionp5e q̄ from the

system of equations~3! to the DS-II equation~2!. Due to~9! the reductionp5e q̄ is equivalent to
the reality condition forU, which in the limit of weak fields leads from~24! and ~27! to the
following restriction on the kernelR of the ]-problem:

ulu2l̄ umu2m̄R0~m,m;l,l!52e3R0S e

m̄
,

e

m
;
e

l̄
,
e

l
D . ~28!

Different choices of the kernelR of ]-problem~11! satisfying the restriction~28! lead to different
classes of exact solutions of the DS-II equation.

III. THE SOLUTIONS WITH FUNCTIONAL PARAMETERS

In this section we show that if the kernelR0 is degenerate then q andf satisfying the DS-II
equation~2! can be found in the closed form. For the reductionp5e q̄ of the system~3! to DS-II
equation~2! corresponds for example due to~28! the following degenerate kernelR0(m,m̄;l, l̄ )
of ]̄ -problem~11!:

R0~m,m;l,l!5 i (
k51

N S Rk

f k~m,m̄ !

umu2

gk~l,l̄!

l̄
1 R̄k

f k~e/m̄,e/m!

m̄

gk~~e/ l̄ ,e/l!!

ulu2 D . ~29!

For convenience of further calculations let us introduce the quantitiesSp , Fp(m,m̄), and
Gp(l, l̄ ) (p51, . . . ,2N):
J. Math. Phys., Vol. 38, No. 12, December 1997
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S:5~R1 , . . . ,RN ;R1, . . . ,RN!,

F~m,m̄ !:5S f 1~m,m̄ !

umu2
, . . . ,

f N~m,m̄ !

umu2
;

f 1~e/m̄,e/m!

m̄
, . . . ,

f N~e/m̄,e/m!

m̄
D , ~30!

G~l, l̄ !:5S g1~l, l̄ !

l̄
, . . . ,

gN~l, l̄ !

l̄
;
g1~e/ l̄ ,e/l!

ulu2
, . . . ,

gN~e/ l̄ ,e/l!

ulu2 D .

The kernelR0 ~29! is then rewritten in the form

R0~m,m̄;l, l̄ !5 i (
k51

2N

SkFk~m,m̄ !Gk~l, l̄ !. ~31!

For the kernelR0 ~31! one obtains from~26! the integral equation which is equivalent to th
]̄ -problem~11!:

x~l,l!511 i (
k51

2N

SkE E
C

dl8`dl8

2p i ~l82l!
Gk~l8,l8!e2F~l8!E E

C

dm`m̄

2p i
x~m,m̄ !Fk~m,m̄ !eF~m!.

~32!

Introducing the unknowns functionsXp(z, z̄ ,t) (p51, . . . ,2n),

Xp~z, z̄ ,t !:5E E
C

dm`dm̄

2p i
x~m,m̄ !Fp~m,m̄ !eF~m!, ~33!

where

F~m!5 i S mz2
e

m
z̄ D2 i S m22

e2

m2D t, ~34!

and the quantitiesjp(z, z̄ ,t) (p51, . . . ,2N),

jp~z, z̄ ,t !:5E E
C

dl` l̄

2p il
Gp~l, l̄ !e2F~l!, ~35!

one can obtain from~32! due to~27! the following expressions forx̃0 andx21:

x̃0511 (
k51

2N

Skjk~z, z̄ ,t !Xk~z, z̄ ,t !, ~36!

x2152 i (
k51

2N

Skjkz~z, z̄ ,t !Xk~z, z̄ ,t !. ~37!

Then introducing the quantitieshp(z, z̄ ,t) (p51, . . . ,2N),

hp~z, z̄ ,t !:52 i E E
C

dl`dl

2p il
Fp~l,l!eF~l!, ~38!
J. Math. Phys., Vol. 38, No. 12, December 1997
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and using~33! and ~35! one can obtain from~32! the algebraic system of equations for th
unknown functionsXp(z, z̄ ,t):

(
q51

2N

ApqXq5hpz , ~39!

where the matrixApq has the form

Apq :5dpq2 iSqE E
C

dl` l̄

2p i
Fp~l, l̄ !eF~l!E E

C

dl8`dl8

2p i ~l82l!
Gq~l8,l8!e2F~l8!

5dpq2Sq]z
21S E E

C

dl`dl̄

2p i
Fp~l, l̄ !eF~l!E E

C

l8`dl8

2p i
Gq~l8,l8!e2F~l8!D

5dpq2]z
21~hpzjqz!Sq . ~40!

Here]z
21 denotes the operator inverse to]z in the sense

]z
21~ . . . !:5E

G

z

dz~ . . . !, ~41!

andG is the appropriate contour of integration.
The system~39! has the solution

Xp5 (
q51

2N

Apq
21hqz . ~42!

Then for thex̃0 andx21 one obtains from~36!, ~37! and ~42! the expressions

x̃0511 (
p,q51

2N

SpjpApq
21hqz , ~43!

x2152 i (
p,q51

2N

SpjpzApq
21hqz . ~44!

Introducing the matrices

Bpq :5hpzjqSq , Ãpq :5Apq1Bpq , ~45!

and using the identity

11trF5det~11F !, ~46!

which is valid for the matrix F of the first rank, we obtain from~25!, ~43!, ~45! and ~46! the
following expression for the solutionq of DS-II equation~2!:

q5 x̃0511tr~BA21!5det~11BA21!5
det Ã

det A
. ~47!

From ~5!, ~40! and~44! after some simple calculations one obtains forU52pq52euqu2 the
expression
J. Math. Phys., Vol. 38, No. 12, December 1997
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U52e2] z̄S (
p,q51

2N

SpjpzApq
21hqzD

52eF11 (
p,q51

2N

SpjpApq
21hqzGF11 (

p,q51

2N

SpjpzApq
21hqG52euqu2. ~48!

On another side, using~40!, ~48! and the relation

]z~ log detA!5tr ~A21Az!, ~49!

one can show that

e~ uqu221!52]z z̄
2

~ log detA!. ~50!

So due to~47!, ~50! and ~2! we obtain for the solutionq, f of the DS-II equation~2! the
simple determinant formulas

q5
det Ã

det A
, f5~]z

21] z̄
2
!log detA. ~51!

The formulas~51! represent the solution of the DS-II equation with functional parameters.
arbitrary functionsjp(z, z̄ ,t) and hp(z, z̄ ,t) (p51, . . . ,2N), from which depends the solutio
~51!, satisfy the equations

jpz z̄5ejp , hpz z̄5ehp ;
~52!

i jpt1jpzz2jp z̄ z̄50, ihpt1hpzz2hp z̄ z̄50.

Let us note that the exact solutions which have been constructed in Ref. 24 by F. Guil a
Mañas depend on another functional parameterss(z,t) and s(z,t) satisfying the equations
2 i ] ts5]z

2s and i ] ts5]z
2s. The functional parameters of exact solutions from Ref. 26 by

Pelinovsky satisfy the equations closely connected with the equations~52!.

IV. LINE SOLITON AND BREATHER SOLUTIONS

The class of exact solutions with functional parameters constructed in section III conta
particular cases the line solitons and breathers. These solutions of the DS-II equation corr
to the following choice of the functionsf k(m,m) and gk(l,l) (k51, . . . ,N) in the kernelR0

~29! of the ]̄ -problem:

f k~m,m̄ !5pumu2d~m2mk!, gk~l, l̄ !5pl̄d~l2lk!. ~53!

Herelk ,m l (k,l 51, . . . ,N) are arbitrary complex constants~distinct from the zero! such thatlk

Þm l for all k and l and d(m2lk) and so on are complex Dirac functions. One can obtain
general multi-line soliton solutions by specialization due to~53! of the corresponding formulas o
section III, but it is instructive to perform the calculations in this case in their own right.

To the reductionp5e q̄ ~or to the reality ofU52pq52euqu2) satisfies due to~29! and~53!
the kernelR0:

R0~m,m̄;l, l̄ !5 ip2(
k51

N FRkd~m2mk!d~l2lk!1
eR̄k

lkmk

dS m2
e

mk
D dS l2

e

lk
D G . ~54!
J. Math. Phys., Vol. 38, No. 12, December 1997
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One obtains from~26!, ~27! and ~54! for x(l,l̄), x̃0, andx21 the expressions

x~l, l̄ !511 i (
k51

N FRk

x~mk!e
F~mk!2F~lk!

lk2l
1eR̄k

xS e

m̄k
D eF~e/m̄k!2F~e/ l̄ k!

lk mkS e

lk

2l D G , ~55!

x̃0511 i (
k51

N FRk

lk

x~mk!e
F~mk!2F~lk!1

R̄k

mk

xS e

mk
D eF~e/mk!2F~e/lk!G , ~56!

x2152 i (
k51

N FRkx~mk!e
F~mk!2F~lk!1

eR̄k

lk mk

xS e

mk
D eF~e/mk!2F~e/lk!G , ~57!

where due to~14!

F~mk!2F~lk!5 i F ~mk2lk!z2S e

mk

2
e

lk
D z̄ G2 i Fmk

22lk
22

e2

mk
2

1
e2

lk
2G t[fk ,

~58!

FS e

mk
D 2FS e

lk
D 5 i F S e

mk

2
e

lk
D z2~mk2lk! z̄ G2 i F e2

mk
2

2
e2

lk
2

2mk
21lk

2G t:5f̄k .

For brevity the following notations have been introduced:

x~lk!:5x~lk ,lk!,xS e

lk
D :5xS e

lk

,
e

lk
D .

It is convenient to introduce the quantitiesLp , M p , Sp andFp (p51, . . . ,2N):

L:5S l1 , . . . ,lN ;
e

l1

, . . . ,
e

lN

D , M :5S m1 , . . . ,mN ;
e

m1

, . . . ,
e

mN

D ,

~59!

S:5S R1 , . . . ,RN ;
eR̄1

l1 m1

, . . . ,
eR̄N

lN mN

D , F:5~f1 , . . . ,fN ;f1 , . . . ,fN!.

In these notations the expressions forR0 , x 0̃, x21 and so on become shorter, for example,

R05 ip2(
p51

2N

Spd~m2M p!d~l2Lp!,

~60!

x̃0511 i (
p51

2N
Sp

Lp
x~M p!eFp, x2152 i (

p51

2N

Spx~M p!eFp.

One obtains for the quantities
J. Math. Phys., Vol. 38, No. 12, December 1997
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Xp :5x~M p!eFp, p51, . . . ,2N, ~61!

using ~55! and ~59!, the following system of equations:

(
q51

2N

ApqXq51, ~62!

where the matrixApq has the form

Apq :5e2Fpdpq 1
iSq

M p2Lq
. ~63!

From ~25! by the use of~60! and ~62! it follows for q that

q5 x̃0511tr ~A21B!5
det~A1B!

det A
:5

det Ã

det A
, ~64!

where the matrices B andÃ have been introduced by the formulas

Bpq :5
iSq

Lq
, Ãpq :5Apq1Bpq . ~65!

From the definition~63! it follows for (Apq
21) z̄ that

~Apq
21! z̄5 i e(

r 51

2N

Apr
21e2FrS 1

L r
2

1

Mr
DArq

21, ~66!

and then from~24!, ~60! and ~66! one finds forU52pq52euqu2 after some calculations

U52e2 ix21 z̄52eS 11 i (
p,q,r 51

2N

SpApq
21e2FqS 1

Lq
2

1

Mq
DAqr

21D
52eF11 i (

p,q51

2N
Sp

Lp
Apq

21GF12 i (
r ,s51

2N

SrArs
21 1

Ms
G . ~67!

From ~64! and ~67! it follows for p5e q̄ and uqu2 that

p5e q̄5eF12 i (
p,q51

2N

SpApq
21 1

Mq
G5eF 12 i (

p,q51

2N
S̄p

L̄p

Āpq
21G ,

~68!

uqu2511 i (
p,q,r 51

2N

SpApq
21e2FqS 1

Lq

2
1

Mq
D Aqr

215Udet Ã

det A
U2

.

Finally let us derive a convenient formula for the fieldf in ~2!. At first one can show that due
to ~49!, ~63!, ~66! and ~68!
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] z̄z
2 log detA5] z̄~ tr ~A21Az!!

52 (
p,q51

2N

Sp~Apq
21! z̄5 i e (

p,q,r 51

2N

SpApq
21e2FqS 1

Mq
2

1

Lq
DAqr

2152e~ uqu221!,

~69!

and due to~2! and ~69! one finds forf the compact formula

f5~]z
21] z̄

2
!log detA. ~70!

Due to ~58! the quantitiesfk (k51,2, . . . .,N) in the general case are complex,fk :5fkR

1 ifkI , where

fkR5
i

2 F ~mkz2mk z̄ !S 11
e

umku2D 1~lk z̄2lkz!S 11
e

ulku2D G
1

i

2 F ~mk
22mk

2!S 11
e2

umku4D t1~lk
22lk

2!S 11
e2

ulku4D tG ,

fkI5
1

2 F ~mkz1m k̄ z̄ !S 12
e

umku2
D 2~lkz1lk z̄ !S 12

e

ulku2D G
2

1

2 F ~mk
21mk

2!S 12
e2

umku4
D t2~lk

21lk
2!S 12

e2

ulku4
D tG .

Consequently the exact solutions~63!–~65! and ~70! of DS-II equation~2! which correspond to
the kernelR0 with two delta-functional parts in each term of the sum~54! have in general a line
breather character. Additionally, the properties of obtained solutions forq ~64! andf ~70! depend
on the sign ofe.

For the case of one term~N 5 1! in the sum~54! the simplest breather solution with consta
asymptotic value at infinity due to~63!–~65! and ~70! has the form

det A5Ue2f11
iR1

m12l1
U2

2
uR1u2e

um1l12eu2
,

det Ã5det A1
iR1

m1

e2f11
iR1

l1

e2f11
uR1u2~e2um1u2!~e2ul1u2!~m1l12m1l1!

l1m1ul12m1u2um1l12eu2
, ~71!

q5
det Ã

det A
, f5~]z

21] z̄
2
!log detA

and is nonsingular fore,0. The task of obtaining criterion of nonsingularity of solutions in t
general case is not so simple and will be studied elsewhere.

For umku25e and ulku25e it follows that fkI50 (k51, . . . ,N) and the solutions~63!–~65!
and ~70! of DS-II equation~2! are pure line soliton solutions. These solutions correspond in
to the following particular case of the kernelR0 ~54!:
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R0~m,m̄;l, l̄ !5 ip2(
k51

N

Rkd~m2mk!d~l2lk!. ~72!

Herelk andm l (k,l 51, . . . ,N) are complex constants~distinct from the zero! such thatlkÞm l

for all k and l , d(m2lk) and so on are complex Dirac functions, and

mk5
e

mk

,lk5
e

lk

, Rk5
eR̄k

mk lk

, e.0. ~73!

All of the above formulas~55!–~70! become, in this case, simpler. One obtains from~26!, ~27!

and ~72! for x(l,l̄!, x 0̃ andx21 instead the formulas~55!–~57!:

x~l, l̄ !511 i (
k51

N

Rk

x~mk!e
fk

lk2l
,

~74!

x 0̃511 i (
k51

N

Rk

x~mk!e
fk

lk
, x2152 i (

k51

N

Rkx~mk!e
fk.

For the quantitiesx(mk)e
fk (k51, . . . ,N) the linear system of equations follows from~74!:

(
l 51

N

Aklx~m l !e
f l51, ~75!

where the matrixAik has the form

Aik :5e2fkd ik1
iRk

m i2lk
. ~76!

By the use of~74! and ~76! one finds forq

q5x 0̃511 i (
k,l 51

N
Rk

lk
Akl

21511tr ~A21B!5
det Ã

det A
, ~77!

where the matrices B andÃ are given by the expressions

Bik :5 i
Rk

lk
, Ãik :5Aik1Bik . ~78!

The calculations analogous to those in~66!–~70! lead to the formulas

U52pq52euqu252e2 ix21 z̄52eS 11 i (
k,l ,m51

N

RkAkl
21e2f lS 1

l l
2

1

m l
DAlm

21D
52eF11 i(

l ,k

N
Rl

l l
Alk

21GF12 i (
l ,k51

N

RlAlk

1

mk
G ,

p5e q̄5eF12 i(
l ,k

N

RlAlk
21

1

mk
G5eF12 i (

l ,k51

N R̄l

l l

Ālk
21G , ~79!
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uqu2511 i (
k,l ,m51

N

RkAkl
21e2f lS 1

l l
2

1

m l
DAlm

215Udet Ã

det A
U2

, f5~]z
21] z̄

2
!log detA

with matricesA, Ã, andB given by the~76! and ~78!.
To the simplest one line soliton solution of the considered type correspond 131 matricesA

and Ã of the form

A5e2f11
iR1

m12l1
, Ã5e2f11

iR1m1

l1~m12l1!
, ~80!

where, due to~73!,

e

l1 m1

5
m1

l1

5
R1

R1

,m15l1

R1

R1

,

and, consequently due to~58!,

f15 i ~n2z2 n̄ 2 z̄2~n1n22 n̄ 1 n̄ 2!t !, ~81!

wherem16l15(l1R16l1R1)/R1 :5n6 . For q andf one obtains, using~77!, ~79!–~81!,

q511
iR1

l1S e2f11
uR1u2

2I ~l1R1!
D 5

e2f12d1eiu

e2f12d11
,

~82!

f5~]z
21] z̄

2
!logS e2f11

uR1u2

2I ~l1R1!
D 5~]z

21] z̄
2
!log~e2f12d11!.

Here ed:5uR1u2/2I (l 1̄R1) and eiu:5l1R1 /l1R1. It is evident from~82! that for I (l1R1).0
the solution~82! is a nonsingular line soliton solution of the DS-II equation withe.0. The
solution ~82! reproduces the well known line soliton solution of D. Anker and N. C. Freema16

V. RATIONAL SOLUTIONS

The ]-dressing method allows also the calculation of different types of rational solution
integrable nonlinear equations. The condition~28! of the reductionp5e q̄ ~or to the reality of
U52pq5euqu2) satisfies, for example, the following kernelR0 of ]-problem~11!:

R0~m,m̄;l, l̄ !

5 ip2(
k51

N F sk~m,l!d~m2lk!d~l2lk!1
e

lk
2
skS e

m̄
,

e

l̄
D dS m2

e

lk

D dS l2
e

lk

D G .

~83!

Herel1 , . . . ,lN is the set of isolated points distinct from the origin,d(l2lk) ~as also in~54!! is
the complex Dirac function andsk(m,l) are some functions.

For the kernelR0 of the form ~83! one has, from~26!,
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x~l, l̄ !512 ipE E
C

dl8`dl8

2p i ~l82l!
(
k51

N F sk~lk ,l8!x~lk!e
F~lk!2F~l8!d~l82lk!

1
e

lk
2
skS lk ,

e

l8
D xS e

lk

D dS l82
e

lk

D eF~e/lk!2F~l8!G . ~84!

For x̃0 andx21 one obtains from~84! the expressions

x̃0511 i (
k51

N F sk

lk

x~lk!1
sk

lk

xS e

lk
D G ,x2152 i (

k51

N F skx~lk!1
esk̄

lk
2
xS e

lk
D G . ~85!

Heresk :5sk(lk ,lk),x(lk):5x(lk ,lk) and so on.
Now let us obtain from~84! the system of equations for the quantitiesx(l i) and x(e/l i),

( i 51, . . . ,N). In calculation of these quantities special attention should be paid to the term
k5 i in the sum. The contribution of this term in the case ofx(l i), for example, is defined by the
relation

2Resx~l i !
si~l i ,l!eF~l i !2F~l!

~l2l i !
2 U

l5l i

5x~l i !@si82siF8~l i !#, ~86!

where

si8 :5
]

]l
si~l i ,l!ul5l i

,
~87!

2 iF 8~l i !:52 i
]

]l
F~l!ul5l i

5z1
e

l i
2
z̄22S l i1

e2

l i
3D t:5f i .

One can make analogous calculations in the case ofx(e/l i).
So for the quantitiesx(l i) andx(e/l i) one has from~84!, by using~86!, the linear system of

equations

x~lk!511 ix~lk!~sk82F8sk!ul5lk
1 i(

lÞk

slx~l l !

l l2lk

1 i(
l 51

N e

l l
2

sl̄xS e

l l
D

e

l l

2lk

,

~88!

xS e

lk
D 511 ixS e

lk
D ~sk̄82sk̄F8!ul5 e/lk

¯

e

lk
2

1 i(
l 51

N slx~l l !

l l2
e

l k̄

1 i(
lÞk

e

l l
2

slxS e

l l
D

e

l l

2
e

lk

.

Heresk8 and2 iF 8ul5lk
are given by~87! and
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sk̄8:5
]

]l
skS lk ,

e

l̄
DU

l5
e

lk

,

~89!

2 iF 8ul5 e/lk
5z1

l k̄
2

e
z̄22S e

lk

1
lk

3

e D t5
lk

2

e
f k̄.

Now let us introduce for convenience the quantitiesLp , Dp , Sp (p51, . . . ,2N) :

L:5S l1 , . . . ,lN ;
e

l1

, . . . ,
e

lN
D ,

D:52S f11g1 , . . . ,fN1gN ;
l1

2

e
~f 1̄1g 1̄!, . . . ,

lN
2

e
~f N̄1g N̄! D ,

S:5S s1 , . . . ,sN ;
e

l1
2
s1̄, . . . ,

e

lN
2
sN̄D . ~90!

where

gk :5
211 isk8

sk

, g k̄5

211 i
e

lk
2

sk8

sk̄

. ~91!

From the definitions ofsk8 ~87! andsk̄8 ~89! it is easy to see thatg k̄ is truly complex conjugate to
gk . With the use of~90! and ~91! the system of equations~88! is rewritten in the form

(
q51

2N

Apqx~Lq!Sq51, ~92!

where the matrixApq is given by the formula

Apq :5Dpdpq1
i ~12dpq!

Lp2Lq
. ~93!

With the use of quantities defined in~90! one has forx̃0 andx21

x̃0511 i (
p51

2N
Sp

Lp
x~Lp!, x2152 i (

p51

2N

Spx~lp!. ~94!

From ~25!, ~92!, and~94! one obtains forq:

q5 x̃0511 i (
p,q51

2N
1

Lp
Apq

21511tr ~A21B!5
det Ã

det A
, ~95!

where the matricesB and Ã are defined by the formulas
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Bpq :5
i

Lq
, Ãpq :5Apq1Bpq . ~96!

By the use of~5!, ~24!, ~92!–~94! and the relations

Apq z̄5Dp z̄dpq52
e

Lp
2

dpq , Apqz52dpq , ~97!

one has forU52pq

U52euqu252e2 ix21 z̄52eF11 (
p,q,r 51

2N

Apq
21 1

Lq
2

Aqr
21G . ~98!

Then one can show that it takes the place of the relation

(
p,r ,q51

2N

Apr
21 1

L r
2

Arq
215 i (

p,q51

2N
1

Lp
Apq

212 i (
p,q51

2N

Apq
21 1

Lq
1 (

p,q51

2N

Apq
21 1

Lq
(

r ,s51

2N
1

L r
Ars

21 . ~99!

Using ~99! one obtains from~98!

U52eF11 (
p,r ,q51

2N

Apr
21 1

L r
2

Arq
21G52eF11 i (

p,q51

2N
1

Lp
Apq

21GF12 i (
r ,s51

2N

Ars
21 1

Ls
G . ~100!

One can easily also obtain a very compact formula for the fieldf in ~2!. Using ~49! and~97!
one has

]zz̄
2 log detA5] z̄~ tr~A21Az!!52e (

p,q51

2N

Apq
21 1

Lq
2

Aqp
2152e (

p,q,r 51

2N

Apq
21 1

Lq
2

Aqr
21 . ~101!

Comparing~101! with ~100! one concludes that again as in~50! and ~69!:

2e~ uqu221!5] z̄z
2 log detA. ~102!

From ~2! and ~102! one obtains finally forf

f5~]z
21] z̄

2
!log detA. ~103!

The simplest solution of considered type which corresponds to one termN51 in the sum~83!
due to~95! and ~103! has the form

q511
i

det A
S D1

l1

1
D1

l1

1 i
1

l1
2D , f5~]z

21] z̄
2
!log detA, ~104!

where

D152f12g1 , detA5uf11g1u22
e

~e2ul1u2!2
, f15z1

e

l1
2
z̄22S l i1

e2

l i
3D t, ~105!
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andg1 is given by~91!. The formula~105! for e,0 represents the simplest nonsingular ‘‘loca
ized ’’ lump solution which tends to 1 asuzu→` in all directions of the plane. This solution is, i
our opinion, a new pure rational solution of the DS-II equation for the casee,0.

At the end of this section let us calculate another type of rational solution that correspo
simpler than~83! kernelR0 of the type:

R0~m,m̄;l, l̄ !5 ip2(
k51

N

sk~m,l!d~m2lk!d~l2lk!. ~106!

The kernelR0 ~106! satisfies the condition~28! of the reductionp5e q̄ if the relations are
fulfilled:

lmskS e

m̄
,

e

l̄
D 5esk~m,l!, lk5

e

lk

, e.0, k51, . . . ,N. ~107!

In particular, at the pointsm5mk5e/mk, andl5lk5e/lk,

sk̄:5sk~lk ,lk!̄5
lk

2

e
sk~lk ,lk!:5

lk
2

e
sk . ~108!

Using ~105! one obtains forx(l,l̄), x̃0 andx21 from ~26! and ~27!

x~l, l̄ !512 ipE E
C

dl8`dl8

2p i ~l82l!
(
k51

N

x~lk!e
F~lk!2F~l8!sk~lk ,l8!d~l82lk!,

~109!

x̃0511 (
k51

N
sk

lk
x~lk!, x2152 i (

k51

N

skx~lk!,

whereF(l) is given by the formula~14!.
For the quantitiesx(lk):5x(lk ,lk) one obtains with analogous calculations instead of~92!

the following system of equations:

(
k51

N

Aikx~lk!sk51, ~110!

where

Aik :5Did ik1
i ~12d ik!

l i2lk
, Dk :52fk2gk ;

~111!

fk :5
lkz1lk z̄

lk
22

lk
21lk

2

lk
t, gk :5

isk821

sk
, sk8 :5

]

]l
sk~lk ,l!ul5lk

.

For the solutionq, f of the DS-II equation one has, using~109!–~111!,

q5 x̃0511 i (
k,l 51

N
1

lk
Akl

21511tr ~BA21!5
det Ã

det A
,

~112!

f5~]z
21] z̄

2
!log detA,

where
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Bik :5
i

lk
, Ãik :5Aik1Bik , ~113!

and, due to~107!, ~108! and ~111!,

sk

lk

5
sk̄

lk

, gklk5gk lk,k51, . . . ,N. ~114!

To the caseN51 of one term in the sum~106! due to~109!–~111! correspond the quantities

det A5D152f12g1 , x̃0512
i /l1

f11g1

, x15
i

f11g1

~115!

and the simplest solution of the considered type according to~112! and ~115! has the form

q512
i

l1z1l1 z̄22~l1
21l1

2!t1l1g1

,

~116!

f5~]z
21] z̄

2
!log~l1z1l1 z̄22~l1

21l1
2!t1l1g1!.

The solutions corresponding to the kernel~106! are pure rational and due to~114! are singular.
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Starting from a known Lax pair, one can get some infinitely many coupled Lax
pairs, infinitely many nonlocal symmetries and infinitely many new integrable
models in some different ways. In this paper, taking the well known Kadomtsev–
Petviashvili ~KP! equation as a special example, we show that infinitely many
nonhomogeneous linear Lax pairs can be obtained by using infinitely many sym-
metries, differentiating the spectral functions with respect to the inner parameters.
Using a known Lax pair and the Darboux transformations~DT!, infinitely many
nonhomogeneous nonlinear Lax pairs can also be obtained. By means of the infi-
nitely many Lax pairs, DT and the conformal invariance of the Schwartz form of
the KP equation, infinitely many new nonlocal symmetries can be obtained natu-
rally. Infinitely many integrable models in (111)-dimensions, (211)-dimensions,
(311)-dimensions and even in higher dimensions can be obtained by virtue of
symmetry constraints of the KP equation related to the infinitely many Lax pairs.
© 1997 American Institute of Physics.@S0022-2488~97!02711-4#

I. INTRODUCTION

Symmetry study is always a powerful method in physics and other natural and ap
sciences.1 Especially, the study of the symmetries in soliton theory is more important becau
the following three important applications:

~i! Obtain new solutions from old ones. In principle, using every symmetry of a differentia
equation to a special solution will result in a more general new solution of the same equatio
instance, using the conformal invariance of the soliton equations to its vacuum~trivial constant
solution! solution will lead to the single soliton solution.2,3

~ii ! Reduce dimensions of a partial differential equation (PDE). Any one symmetry of a PDE
can be used to reduce its total number of dependent and independent number. For exam
traveling wave reduction~which is related to the space-time translation invariance! will reduce the
number of any (n11)-dimensional energy-momentum conserved PDE from (n11) to one.

~iii ! Get new soliton equations. In addition to the fact that any flow equation corresponding
a symmetry of integrable models is an integrable one, some different integrable hierarchies m
related to each other by symmetry constraints.4–7

There are many other interesting applications of the symmetry study.1,8,9 In this paper, we will
mainly focus on finding new symmetries of integrable models and the third application
above.

The existence of the Lax pair is another important property for an integrable model

a!Mailing address.
0022-2488/97/38(12)/6401/27/$10.00
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recent study shows that infinitely many nonlocal symmetries of various integrable mode
related to their Lax pairs.10–12 It is known that for an integrable model, its Lax pair is not uniqu
In this paper, in order to find out more symmetries, we will study the method to obtain infin
many coupled Lax pairs at first.

Because of the linearity of the Lax pairs of integrable models, the Darboux13 transformations
are widely used to construct the multisoliton solutions and their generalizations for various
linear PDEs.14–17 A symmetry of a PDE transforms one solution of the PDE to another on
infinitesimal form while a DT maps one solution to a new one in finite form. So for every fi
DT, there must be a corresponding symmetry. In Ref. 18, the corresponding symmetries rel
the once Darboux transformation of the Korteweg–de Vries~KdV!, KP, (111)-dimensional and
(211)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada~CDGKS! equations have been ob
tained. Actually, the DT not only transforms a solution of a PDE to a new one but, also trans
a linear Lax pair to a nonlinear one.18 Starting from this nonlinear Lax pair, infinitely man
nonlinear coupled Lax pairs will be obtained also in this paper.

On the other hand, to find integrable models~especially in higher dimensions! is also an
important topic in nonlinear science. Symmetry constraint~and/or reduction! method is one of the
most powerful tools to give out new integrable models from known ones. Usually, using sym
constraints, one obtains the lower dimensional integrable models from higher ones. For ins
various finite dimensional Hamiltonian systems@ordinary differential equation~ODE! systems#
can be obtained from the constraints of the (111)-dimensional integrable partial differentia
equations~PDEs!.4,5 Some types of known (111)-dimensional integrable models can be cons
ered as the constraints of some (211)-dimensional integrable models.6,7,19–22 Recently, after
embedding some (211)-dimensional integrable models such as the KP and modified KP~mKP!
equations into (311)-dimensions, some generalizations of the well known (111)-dimensional
equations can be extended to (211)-dimensions. For example, (211)-dimensional asymmetric
Davey–Stewartson~DS! and asymmetric Nizhnik–Novikov–Veselov~NNV! equations can be
obtained from the conformal invariance related symmetry constraints of the KP equation.23 A type
of (211)-dimensional derivative Ablowitz–Kaup–Newell–Segur~AKNS! @including derivative
nonlinear Schro¨dinger~DNLS! equation# systems, and the (211)-dimensional Burgers equation
can be obtained from the symmetry constraints of the mKP equation.24 The (111)-dimensional
Broer–Kaup system25,26 has also been extended to (211)-dimensions with help from the DT
related symmetry constraints of the KP equation.27

The organization of this paper is as follows: In Sec. II A, we derive the infinitely m
nonhomogeneous linear Lax pairs of the KP equation from the usual one. The infinitely
nonlinear Lax pairs due to the Darboux transformations of the KP equation are reported i
II B. In Sec. II C, we point out that starting from any one known linear and nonlinear Lax
another kind of infinitely many Lax pairs can be obtained by differentiating the known one
respect to the inner parameters. In Sec. III we study the infinitely many nonlocal symmetries
KP equation by means of the infinitely many Lax pairs obtained in Sec. II. After taking a si
review of the known symmetry of the KP equation in Sec. III A, we give out the first type
infinitely many nonlocal symmetries starting from the conformal invariance of the Schwart
equation. The second type of infinitely many nonlocal symmetries of the KP equation is giv
Sec. III B thanks to the KP equation possesses the DT and the binary DT. In Sec. III C, we
that starting from any one of the pseudopotential dependent symmetries, we can obtain in
many nonlocal symmetries by differentiating the known one with respect to inner param
Section IV is devoted to give out the (111)-dimensional symmetry reductions~constraints! of the
KP equation. In Sec. IV A, the usual 2N-component AKNS constraint6 is extended to
(N1M )-components for arbitraryN and M . The (111)-dimensional multicomponent BK sys
tems are obtained in Sec. IV B. A type of much more complicated (111)-dimensional integrable
models related to the multi-DT symmetry is discussed in Sec. IV C. After embedding th
equation into (311)-dimensional space-time, the usual symmetry constraint approach will giv
J. Math. Phys., Vol. 38, No. 12, December 1997
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many interesting (211)-dimensional integrable models. The (111)-dimensional models given in
the Secs. IV A, IV B, and IV C are extended to (211)-dimensions in Secs. V A, V B, and V C
respectively. The same trick given in Sec. V can be extended in higher dimensions. Especi
finding out some (311)-dimensional integrable model is one of the most important and inte
ing open topics in the nonlinear science. In Sec. VI, a special type of (311)-dimensional models
are obtained by means of the symmetry constraints of the KP equation. Section VII is a sum
and discussion.

II. LAX PAIRS OF THE KP EQUATION

A. Homogeneous and nonhomogeneous linear Lax pairs

It is well known that the KP equation,

qxt2Kx~q![qxt1~qxxx26qqx!x13qyy50, ~1!

where the subscripts denote derivatives, possesses the following Lax pair:

cxx2qc1cy[L1c50, ~2!

c t14cxxx26qcz23S qx2E qy dxDc[L2c50. ~3!

Naturally, because of the KP equation~1! being invariant under the transformationy→2y, there
is an adjoint Lax pair of~1!

cxx* 2qc* 2cy* [L1* c* 50, ~4!

c t* 14cxxx* 26qcx* 23S qx1E qy dxDc* [L2* c* 50. ~5!

Actually, we can find infinitely many kinds of extensions of the Lax pairs~2,3! and~4,5!. The
first type of extension is nonhomogeneous extension. The nonhomogeneous extensions of
pairs ~2,3! and ~4,5! are given by the following proposition.

Proposition 2.1: If the functions f, g, f * andg* are related by

L2f 5L1g, ~6!

L2* f * 5L1* g* , ~7!

then the KP equation (1) possesses the nonhomogeneous Lax pairs

L1c f5 f , ~8!

L2c f5g. ~9!

L1* c f*
* 5 f * , ~10!

L2* c f*
* 5g* . ~11!

Proof: Acting L2 on Eq.~8! andL1 on Eq.~9!, we have

L2L1c f5L2f , ~12!

L1L2c f5L1q. ~13!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Minus Eq.~13! by ~12! leads to

@L1 ,L2#c f[~L1L22L2L1!c f5L2f 2L1g50. ~14!

Equation~6! has been used in the last step of~14!. Equation~14! is obviously true because the K
equation~1! is equivalent to@L1 ,L2#50. The same conclusion is valid for the ajoint Lax pa
~10,11!. Thus we have proved the Proposition 2.1. h

It is clear that there are infinitely many nonhomogeneous Lax pairs which have the forms~8,9!
and ~10,11! because two of the functions (f ,g, f * ,g* ) may be arbitrary while the other two ar
given by~6,7!. To give out some concrete results we write down some detailed solutions of~6,7!
here.

Proposition 2.2: If s i is a symmetry of the KP equation and the functionc satisfies the
homogeneous Lax pair (2,3), then

L1c i5s ic, ~15!

L2c i56s icx13S s ix2E s iy dxDc. ~16!

is a nonhomogeneous Lax pair of the KP equation.
Proof: A symmetry of the KP equation is defined as a solution of the linearized equatio

~1!

sxt1~sxxx26sqx26qsx!x13syy50, ~17!

that means the KP equation~1! is form invariant under the transformation

q→q1es ~e being infinitesimal!. ~18!

Substitutingf 5s ic andg56s icx13(s ix2*s iy dx)c into ~6!, we have

~s ic! t14~s ic!xxx23S qx2E qy dxDs ic26q~s ic!x

5S 6s icx13S s ix2E s iy dxDc D
y

2qS 6s icx13S s ix2E s iydxDc D
1S 6s icx13S s ix2E s iy dxDc D

xx

. ~19!

Using the Lax pair~2,3!, the last equation becomes

~s ixt1~s ixxx26s iqx26qs ix!x13s iyy!cx50. ~20!

Comparing the last equation with the symmetry definition equation~17!, we finish the proof of the
Proposition 2.2. h

It is known that for the KP equation, there are infinitely many symmetries.28–30Starting from
every symmetry of the KP equation and using the Proposition 2.2, we can obtain a corresp
nonhomogeneous coupled linear Lax pair of the KP equation. Because of the inva
y→2y of ~1!, the coupled nonhomogeneous adjoint Lax pair can be obtained in the same

L1* c i* 5s ic* , ~21!
J. Math. Phys., Vol. 38, No. 12, December 1997
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L2* c i* 56s icx* 13S s ix1E s iy dxDc* . ~22!

A special interesting case is worth mentioning here. If we embed the KP equation~1! into
higher dimensional space-time, say, (t,x,y,z,z1 ,z2 ,...), then we can takes i asqz , qz1

, qz2
,...,

etc. In this special case more space variables have been included explicitly in the couple
pairs~15,16! and~21,22!. Appropriate symmetry constraints on these coupled Lax pairs will re
higher dimensional integrable models~see below!.

B. Nonlinear Lax pairs from the DT

Almost all the known integrable models possess linear Lax pairs. On one hand, because
linearity of the Lax pairs, one can get some DTs. On the other hand, because of the existe
the DT, the linear Lax pairs can be nonlinearized.18

For the KP equation~1!, the DT theorem reads:14,15

Proposition 2.3: If q is a solution of the KP equation (1) andc satisfies (2,3), then Q5q
22(]2/]x2)ln c is also a solution of (1).

Starting from the DT theorem, we have
Proposition 2.4: The KP equation possesses the following coupled nonlinear Lax pairs

fxx2S q12
]2

]x2 ln f Df1fy50, ~23!

f t14fxxx26S q12
]2

]x2 ln f Dfx23S S q12
]2

]x2 ln f D
x

2E S q12
]2

]x2 ln f D
y

dxDf50.

~24!

f̃xx2S q12
]2

]x2 ln f D f̃1f̃y50, ~25!

f̃ t14f̃xxx26S q12
]2

]x2 ln f D f̃x23S S q12
]2

]x2 ln f D
x

2E S q12
]2

]x2 ln f D
y

dxD f̃50.

~26!

Proof: Let c1 is a solution of spectral function in the linear Lax pair~2,3!, then Q5q
22(]2/]x2)ln c1 is also a solution of the KP equation. Substitutingq5Q12(]2/]x2)ln c1 into
~2,3! we have

cxx2S Q12
]2

]x2 ln c1Dc1cy50, ~27!

c t14cxxx26S Q12
]2

]x2 ln c1Dcx23S S Q12
]2

]x2 ln c1D
x

2E S Q12
]2

]x2 ln c1D
y

dxDc50.

~28!

Now takingc15c5f and replacing the notationQ by q finishes the proof of Eqs.~23,24!. In the
same way, the choicesc15f, c5f̃ and the replacementQ→q leads to~25,26!. The Proposition
2.4 is proved. h

Alternatively, using the KP equation~1!, one can also prove the Proposition 2.4 by check
the consistent conditionsfyt5f ty and f̃yt5f̃ ty directly.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The corresponding nonlinear adjoint Lax pairs can be obtained simply from~23–26! by the
transformationy→2y

fxx* 2S q12
]2

]x2 ln f* Df* 2fy* 50, ~29!

f t* 14fxxx* 26S q12
]2

]x2 ln f* Dfx* 23S S q12
]2

]x2 ln f* D
x

1E S q12
]2

]x2 ln f* D
y

dxDf*

50, ~30!

f̃xx* 2S q12
]2

]x2 ln f* D f̃* 2f̃y* 50, ~31!

f̃ t* 14f̃xxx* 26S q12
]2

]x2 ln f* D f̃x* 23S S q12
]2

]x2 ln f* D
x

1E S q12
]2

]x2 ln f* D
y

dxD f̃* 50.

~32!

Furthermore using the DT, the nonhomogeneous linear Lax pairs obtained in the last s
can also be nonlinearized. For instance, the coupled Lax pairs~2,3,15,16! can be nonlinearized a
~23,24! and

L1S q12
]2

]x2 ln f Df i5s i S q12
]2

]x2 ln f Df, ~33!

L2S q12
]2

]x2 ln f Df i56s i S q12
]2

]x2 ln f Dfx13S s ixS q12
]2

]x2 ln f D
2E s iyS q12

]2

]x2 ln f DdxDf. ~34!

It is also known that the DT can be used for any times. For the KP equation, theN-times DT
reads14

Proposition 2.5: Ifc1 ,c2 ,...,cN are linearly independent solutions of Lax pair (2,3) and q
a solution of the KP equation, then

Q5q22
]2

]x2 ln W ~35!

with the usual Wronskian determinant W of N functionsc1 ,c2 ,...,cN

W[W~c1 ,...,cN!5det A, Ai j 5
] i 21c j

]xi 21 , ~ i , j 51,2,...,N! ~36!

is also a solution of the KP equation.
Similar to the Proposition 2.4, using theN-times DT proposition 2.5, we can obtain
Proposition 2.6: The KP equation possesses the following coupled nonlinear Lax pair:

f ixx2S q12
]2

]x2 ln WDf i1f iy50, i 51,2,...,N, ~37!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



o-

f

ints

6407S.-Y. Lou and X.-B. Hu: Lax pairs and symmetry constraints of the KP equation

                    
f i t14f ixxx26S q12
]2

]x2 ln WDf ix23S S q12
]2

]x2 ln WD
x

2E S q12
]2

]x2 ln WD
y

dxDf i50;

~38!

f̃ ixx2S q12
]2

]x2 ln WD f̃ i1f̃ iy50, i 51,2,...,N, ~39!

f̃ i t14f̃ ixxx26S q12
]2

]x2 ln WD f̃ ix23S S q12
]2

]x2 ln WD
x

2E S q12
]2

]x2 ln WD
y

dxD f̃ i50,

~40!

where W5W(f1 ,f2 ,...,fN).
Starting from the Lax pair~2,3! and its adjoint~4,5!, one has obtained the binary DT prop

sition to get more general solutions of the KP equation:14

Proposition 2.7: Ifc1 ,c2 ,...,cN and c1* ,c2* ,...,cN* are linearly independent solutions o
Lax pairs ~2,3! and ~4,5! and q is a solution of the KP equation, then

Q5q22
]2

]x2 ln D, ~41!

is also a solution of the KP equation, where

D5U J1,N11

J1,N12

A
J1,N1M

c1

c1x

A
]x

N2M21c1

J2,N11

J2,N12

A
J2,N1M

c2

c2x

A
]x

N2M21c2

•••
•••
A

•••
•••
•••
A

•••

JN,N11

JN,N12

A
JN,N1M

cN

cNx

A
]x

N2M21cN

U , ~42!

Jjk5Ajk1BjkE
~x0 ,y0!

~x,y!

~c jck* dx1~c jckx* 2c jxck* !dy!, ~43!

Ajk ,Bjk are arbitrary constants and the integral is taken over an arbitrary path joining the po
(x0 ,y0) and (x,y) in the (x,y) plane.

Using the Proposition 2.7, we have
Proposition 2.8: The KP equation possesses the following coupled nonlinear Lax pair:

f ixx2S q12
]2

]x2 ln D Df i1f iy50, i 51,2,...N, ~44!

f i t14f ixxx26S q12
]2

]x2 ln D Df ix23S S q12
]2

]x2 ln D D
x

2E S q12
]2

]x2 ln D D
y

dxDf i50;

~45!

f̃ ixx2S q12
]2

]x2 ln D D f̃ i1f̃ iy50, i 51,2,...,N, ~46!
J. Math. Phys., Vol. 38, No. 12, December 1997
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f̃ i t14f̃ ixxx26S q12
]2

]x2 ln D D f̃ ix23S S q12
]2

]x2 ln D D
x

2E S q12
]2

]x2 ln D D
y

dxD f̃ i50,

~47!

fkxx* 2S q12
]2

]x2 ln D Dfk* 2fky* 50, k51,2,...,M , ~48!

fkt* 14fkxxx* 26S q12
]2

]x2 ln D Dfkx* 23S S q12
]2

]x2 ln D D
x

1E S q12
]2

]x2 ln D D
y

dxDfk* 50;

~49!

f̃kxx* 2S q12
]2

]x2 ln D D f̃k* 2f̃ky* 50, k51,2,...,M , ~50!

f̃kt* 14f̃kxxx* 26S q12
]2

]x2 ln D D f̃kx* 23S S q12
]2

]x2 ln D D
x

1E S q12
]2

]x2 ln D D
y

dxD f̃k* 50,

~51!

whereD is given by Eq. (42) with the replacement(c j ,ck* )→(f j ,fk* ).

C. Lax pairs from inner parameter differentiations

All the Lax pairs given in the last subsections are derived from one Lax pair~2,3! and its
adjoint ~4,5!. In order to get more Lax pairs we write down a general proposition:

Proposition 2.9: If Fi ,Gi ,F j* ,Gj* , ~i 51,2,...,N, j 51,2,...,M ! satisfy conditions

Fiq8 K~q!1 (
k51

N

Fick
8 Gk1(

j 51

M

Fic
j*

8 Gj* 5Giq8 qy1 (
k51

N

Gick
8 Fk1(

j 51

M

Gic
j*

8 F j* , ~52!

and

~F jq* !8K~q!1(
i 51

N

~F j c i
* !8Gi1 (

k51

M

~F j c
k*

* !8Gk* 5~Gjq* !8qy1(
i 51

N

~Gj c i
* !8Fi1 (

k51

M

~Gj c
k*

* !8Fk* ,

~53!

where Fi ,Gi ,F j* ,Gj* are functions of q,c i ,c j* and their space derivatives or integrations an
the linearized operators Fiq8 ,Fick

8 ,Fic
j*

8 ,..., are partial Gartaux derivatives, say,

Gick
8 Fk[ lim

e→0

]

]e
Gi~ck1eFk!, ~54!

then the KP equation possesses the following generalized coupled Lax pair:

c iy5Fi~q,c1 ,...,cN ,c1* ,...,cM* ![Fi , ~ i 51,2,...,N!, ~55!

c i t5Gi~q,c1 ,...,cN ,c1* ,...,cM* ![Gi , ~56!

c jy* 5F j* ~q,c1 ,...,cN ,c1* ,...,cM* ![F j* , ~ j 51,2,...,M !, ~57!

c j t* 5Gj* ~q,c1 ,...,cN ,c1* ,...,cM* ![Gj* . ~58!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proof: We call ~55–58! as a generalized Lax pair of the KP equation~1! means that the
compatibility conditions

c iyt5c i ty , c jy t* 5c j ty* ~59!

are satisfied ifq is a solution of the KP equation~1!. The direct calculation of the first conditio
of ~59! yields

Fiq8 qt1 (
k51

N

Fick
8 ckt1(

j 51

M

Fic
j*

8 c j t5Giq8 qy1 (
k51

N

Gick
8 cky1(

j 51

M

Gic
j*

8 c jy* . ~60!

Substituting Eqs.~1!, ~55–58! and~52! into ~60!, we see that~60! is true naturally. After finishing
the same calculation of the second condition of~59! we complete the proof of the Propositio
2.9. h

The concrete Lax pairs proposed in the last two subsections are all special cases
Proposition 2.9.

Because of the Lax pairs~55–58! are partial differential equations, we may introduce so
inner parameters into the psudopotentialsc i andc j* . When we obtained one nontrivial Lax pa
of ~1!, we may obtain infinitely many coupled Lax pairs by differentiating the seed Lax pair m
times with respect to the inner parameter~s!. Here is a special example:

Proposition 2.10: If

c0y5F0~q,c0 ,c0* ![F0 , ~61!

c0t5G0~q,c0 ,c0* ![G0 , ~62!

c0y* 5F0* ~q,c0 ,c0* ![F0* , ~63!

c0t* 5G0* ~q,c0 ,c0* ![G0* , ~64!

is a coupled Lax pair of (1), then

c iy5Fi~q,c0 ,c1 ,...,c i ,c0* ,c1* ,...,c i* ![Fi , i 50,1,2,...,N, ~65!

c i t5Gi~q,c0 ,c1 ,...,c i ,c0* ,c1* ,...,c i* ![Gi , ~66!

c iy* 5Fi* ~q,c0 ,c1 ,...,c i ,c0* ,c1* ,...,c i* ![Fi* , i 50,1,2,...,N, ~67!

c i t* 5Gi* ~q,c0 ,c1 ,...,c i ,c0* ,c1* ,...,c i* ![Gi* , ~68!

with

Fi5
di

dl i F0~q,c0~l!,c0* ~l!!U
c

0lk
* 5ck

*

c0lk5ck

, Gi5
di

dl i G0~q,c0~l!,c0* ~l!!U
c

0lk
* 5ck

*

c0lk5ck

, ~69!

Fi* 5
di

dl i F0* ~q,c0~l!,c0* ~l!!U
c

0lk
* 5ck

*

c0lk5ck

, Gi* 5
di

dl i G0* ~q,c0~l!,c0* ~l!!U
c

0lk
* 5ck

*

c0lk5ck

, ~70!

c0lk5
dkc0

dlk , c0lk* 5
dkc0*

dlk , ~k51,2,...,i !, ~71!
J. Math. Phys., Vol. 38, No. 12, December 1997
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is also a coupled Lax pair of (1).
More especially, if we take~23–26! as seed Lax pairs andN51, the Proposition 2.10 show

us that the following equation system:

fy52fxx1S q12
]2

]x2 ln f Df, ~72!

f t524fxxx16S q12
]2

]x2 ln f Dfx13S S q12
]2

]x2 ln f D
x

2E S q12
]2

]x2 ln f D
y

dxDf,

~73!

f̃y52f̃xx1S q12
]2

]x2 ln f D f̃, ~74!

f̃ t524f̃xxx16S q12
]2

]x2 ln f D f̃x13S S q12
]2

]x2 ln f D
x

2E S q12
]2

]x2 ln f D
y

dxD f̃,

~75!

f1y52f1xx1S q12
]2

]x2 ln f Df11S 2
]2

]x2

f1

f Df, ~76!

f1t524f1xxx16S q12
]2

]x2 ln f Df1x112S ]2

]x2

f1

f Dfx13S S q12
]2

]x2 ln f D
x

2E S q12
]2

]x2 ln f D
y

dxDf116S ]3

]x3

f1

f
2

]2

]x]y

f1

f Df, ~77!

f̃1y52f̃1xx1S q12
]2

]x2 ln f D f̃112S ]2

]x2

f1

f D f̃, ~78!

f̃1t524f̃1xxx16S q12
]2

]x2 ln f D f̃1x112S ]2

]x2

f1

f D f̃x13S S q12
]2

]x2 ln f D
x

2E S q12
]2

]x2 ln f D
y

dxD f̃116S ]3

]x3

f1

f
2

]2

]x]y

f1

f D f̃ ~79!

is a coupled Lax pair of~1!.
Though all the Lax pairs obtained here except~55–58! and~65–68! are derived from the usua

Lax pair~2,3! and its adjoint~4,5!, it will be shown that they are very useful to get infinitely man
nonlocal symmetries and new integrable models from symmetry constraints of the KP eq
~1!.

III. NONLOCAL SYMMETRIES OF THE KP EQUATION

A. Review of the known symmetries of the KP equation „1…

The symmetries of the KP equation have been studied by many authors.28–34 Some types of
spectral function independent symmetries have been obtained. For instance, using the mas
metry approach,29 a set of time independent symmetries,Kn , and a set of time linearly depende
symmetries,tn , can be obtained by means of the Lie products

Kn5~3/n!@t1,3, Kn21#, ~n51,2,••• K05qx!, ~80!
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



perator

ctral
to the
tion
ld like

d the
e.

tion-

6411S.-Y. Lou and X.-B. Hu: Lax pairs and symmetry constraints of the KP equation

                    
tn5~3/n!@t1,3, tn21#, ~n51,2,••• t05tqx1 1
6!, ~81!

where the mastersymmetryt1,3 and the Lie product@A,B# are defined as

t1,35
1

3 S yqxxx12xqy14E qy dx13yE E qyy dx26yut D ~82!

and

@A,B#5A8B2B8A[ lim
e→0

d

de
~A~q1eB!2B~q1eA!!, ~83!

respectively. The same result can also be obtained by using the extended recursion o
method.30

More generalized spectral function independent symmetries,Kn( f ), of the KP equation are
given by the formal series symmetry approach28

Kn~ f !5
1

2n!3n11 (
k50

n11

f ~n112k!~2]x
316]xq23]x

21]y
22] t!

kyn, n50,1,2,..., ~84!

where f 5 f (t) is an arbitrary function oft. When f 51 and f 5t, Kn(1) andKn(t) given in ~84!
coincide with those of~80! and ~81!.28 For f 5tn the symmetries shown by Eq.~84! are just that
of given by Chenet al.33

For a (111)-dimensional integrable models, one has found that in addition to the spe
function independent symmetries, there are infinitely many nonlocal symmetries related
spectral functions.3,10,35 However, there is little progress on the study of the spectral func
dependent nonlocal symmetries in higher dimensions. In the next two subsections, we wou
to focus on the spectral function related symmetries of the KP equation.

B. Nonlocal symmetries from the conformal invariance

Using the standard singularity analysis, many soliton equations like the KdV, CDGKS an
KP equations can be changed to their Schwartz forms which possess conformal invarianc36–40

For the KP equation, its Schwartz form reads40

F f t

fx
1$f;x%1

3

2 S fy

fx
D 2G

x

13S fy

fx
D

y

50, $f;x%[S fxx

fx
D

x

2
1

2 S fxx

fx
D 2

. ~85!

It is clear that the Schwartz KP equation~85! is conformal invariant, i.e.,~85! is form invariant
under the Mo¨bious transformation

f→
a1bf

c1df
, ~86!

wherea, b, c and d are four arbitrary constants with conditionadÞbc. The finite conformal
transformation~86! can be considered as a combination of three transformations: transla
inverse translation. Here we treat only a special case fora50, b5c51 and d5e!1. In this
special case, the conformal transformation~86! can be written to its infinitesimal form,

f→f2ef2, ~87!

i.e., we get a symmetry for thef equation~85!,
J. Math. Phys., Vol. 38, No. 12, December 1997
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sf[K0
f52f2, ~88!

corresponding to the conformal invariance.
As in the KdV equation, transforming back the symmetry~88! of f equation~85! to that of the

q equation~1!, we have6,11,34

sq5~cc* !x , ~89!

wherec andc* is just the spectral functions of the Lax pair~2,3! and the adjoint Lax pair~4,5!.
To get more spectral function dependent symmetries of the KP equation, we can u

known fact15

Proposition 3.1: Ifs1 and s2 are symmetries of an evolution equation

qt5K~q!, ~90!

then the Lie product

s125@s1 ,s2# ~91!

is also a symmetry of the same evolution equation (90).
Now using~89! and known spectral function independent symmetries as seeds, we can

infinitely many spectral function dependent nonlocal symmetries from the Proposition 3.1,

S i
K5@Ki ,~cc* !x#5Ki8~cc* !x2cc i* 2c ic* , i 50,1,2,..., ~92!

whereKi is given by~80! @i.e., ~84! for f 51#, Ki8 is the linearized operator ofKi with respect to
q, c i andc i* are the spectral functions of the nonhomogeneous Lax pairs~15,16! and its adjoint
~21,22! with s i5Ki . It is worth pointing out thatS i

KÞ0 except$qy5cy50%.

C. Nonlocal symmetries from the DT

A DT of an evolution equation is a finite transformation which maps one solution to a
one. If we can write a finite transformation to an infinitesimal one, then a corresponding sym
is obtained. To write the DT in infinitesimal form is a quite straightforward work. For insta
from the DT proposition 2.3, we have

Proposition 3.2: S5(f̃/f)xx is a symmetry of the KP equation (1), wheref̃(x,y,t),
f(x,y,t) satisfy the coupled nonlinear Lax pair (23–26).

Proof: SetQ(e)5q22(]2/]x2)ln c(e), c~e! satisfies the Lax pair~2,3! with inner parameter
e andq is e independent. From Proposition 2.3, we know thatQ(e) andQ5Q(e50) are solu-
tions of the KP equation~1!. Now expandingq̄[Q(e) in e power formally, we have

q̄5Q~e50!1eF S 22
]2

]x2 ln c D
e
U

e50
G1O~e2!. ~93!

Thus ((]2/]x2)ln c)eue505((]2/]x2)(ce /c))ue50 is a symmetry of the KP equation with respect
Q. Finally, substitutingq5Q12(]2/]x2)ln c into ~2,3! leads to~23–26! with replacement ofQ
by q, c by f andce by f̃. Thus we have completed the proof of Proposition 3.2. h

Alternatively, one can also substitutes5S5(]2/]x2)(f̃/f) into the symmetry definition
equation~17! directly to prove the Proposition 3.2 by using the coupled Lax pair~23–26!.

Similarly, from the general DT Proposition 2.5 and the binary DT Proposition 2.7, we can
Proposition 3.3: ( i

W5(Wf i
8 f̃ i /W)xx,( i

D5(Df i
8 f̃ i /D)xx , (i 51,2,...,N) and (k

D*

5(Df*
8 f̃k* /D)xx , (k51,2,...,M ) are all symmetries of the KP equation (1), wheref̃ i ,f i satisfy
k
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the coupled nonlinear Lax pair (37–40) for S i
W and f̃ i ,f i ,fk* ,f̃k* satisfy the coupled nonlinea

Lax pair (44–51) for the symmetriesS i
D andSk

D* , where the linearized operators Wf i
8 , Df i

8 and

Df
k*

8 are defined by

Wf i
8 f̃ i5 lim

e→0

]

]e
W~f i1ef̃ i !, Df i

8 f̃ i5 lim
e→0

]

]e
D~f i1ef̃ i !, Df

k*
8 f̃k* 5 lim

e→0

]

]e
D~fk* 1ef̃k* !.

~94!

The proof of the Proposition 3.3 is similar to that of the Proposition 3.2.
As in the case of Sec. III B, using any one of the nonlocal symmetries from the DT as s

we can get infinitely many new nonlocal symmetries thanks to the Proposition 3.1.

D. Nonlocal symmetries via differentiating a known one with respect to inner
parameters

In Ref. 12, to get more symmetries from a known one of an arbitraryl[$l1 ,l2 ,...,l r%
independent nonlinear system,

F~x,x2 ,...,xn ,q,qxi
,qxi xj

,...![F~q!50, ~95!

whereF(q) may be an arbitrary matrix function ofD independent variables$x1 ,x2 ,...,xD%, m
component fieldq, and any order of space derivatives ofq, we have proved a general propositio

Proposition 3.4: If al-dependent functions0(l) is a symmetry of al-independent nonlinear
system (95), then

s$n%[
d$n%

dl$n% s0~l![
d$n1%

dl1
$n1%

d$n2%

dl2
$n2% •••

d$nr %

dl r
$nr %

s0~l! ~96!

is also a symmetry of the same nonlinear system (95) for arbitrary$n%[$n1 ,n2 ,...,nr%.
Using the Proposition 3.4 to the KP equation and any one of the psuodopotential dep

symmetries given in the last subsection, we can get a set of infinitely many new nonlocal
metries. Here we write down two special examples:

~i! Trivial ones from(cc* )x . Because the Lax pair~2,3! and its adjoint~4,5! are PDEs, we
can introduce some inner parameters to the functionsc and c* . For instance, we assumec
5c(l1) andc* 5c* (l2) arel1 andl2 dependent, respectively, andq is (l1 ,l2) independent.
Then from the Proposition 3.4, we know that

s i j [~c ic j* !x[S dic

dl1
i

djc*

dl2
j D

x

~97!

is a symmetry of the KP equation for arbitrary (i , j ).
We say this example is trivial becausec i andc j* are still the special solution of the Lax pair

~2,3! and ~4,5!. However, this trivial result is useful to extend the usual 2N-component AKNS
~Ablowitz–Kaup–Newell–Segur! constraints to any multicomponents.

~ii ! Nontrivial symmetries from the DT related symmetries. Because of the nonlinearity of th
coupled Lax pairs~23–26!, ~37–40! and ~44–51!, the symmetries obtained from the differenti
tions of S5(f̃/f)xx , S i

W5(Wf i
8 f̃ i /W)xx , S i

D5(Df i
8 f̃ i /D)xx , and Sk

D* 5(Dfk
8 f̃k* /D)xx with

respect to the inner parameters are all nontrivial new symmetries. For instance, if we suppf
and f̃ are alll dependent andq is l independent, then
J. Math. Phys., Vol. 38, No. 12, December 1997
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S1[
d

dl
S f̃

f D
xx

5S f̃1

f
2

f̃f1

f2 D
xx

, ~98!

wheref̃, f, f̃1 andf1 satisfy the coupled Lax pair~72!–~79!, is a symmetry of the KP equation

IV. „111…-DIMENSIONAL CONSTRAINTS OF THE KP EQUATION

In principle, every symmetry of a higher dimensional model can be used to reduce the o
model to its lower form. For instance, the symmetry constraint conditions

qy50, qt50, qx50 ~99!

which are corresponding to the space–time translation invariance will reduce the KP equat~1!
to the KdV equation

qt1qxxx26qqx50, ~100!

the Bousinesq equation

qxxxx26qqxx26qx
213qyy50, ~101!

and the linear wave equation

qyy50, ~102!

respectively. The most general Lie point symmetry constraints and the conditional Lie
symmetry constraints reduce the KP equation~1! to the same equations~100–102! but with
different independent arguments.41,42In order to get more integrable models from the KP equati
one has to use the generalized symmetry constraints.

A. AKNS reductions

In Ref. 6, the authors had used the symmetry constraintqx5S i 51
N (c ic i* )x to get the

2N-component AKNS system. Actually, because of the trivial extension~97!, we can use

qx5(
i 51

N

(
j 51

M

ai j ~c ic j* !x , ~103!

whereai j , i 51,2,...,N, j 51,2,...,M are constants,c i andc j* are independent solutions of the La
pairs ~2,3! and ~4,5!, as a symmetry constraint condition to get more generalized AKNS sys
Substituting the constraint condition~103! to ~2! and ~4! for c5c i , c* 5c j* , we have the
generalized (N1M )-component AKNS system

c iy52c ixx1 (
n51

N

(
m51

M

anmcncm* c i , i 51,2,...,N, ~104!

c jy* 5c jxx* 2 (
n51

N

(
m51

M

anmcncm* c j* , j 51,2,...,M . ~105!

When

M5N, anm5dnm5 H0,
1,

nÞm
n5m,
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the equation system~104!, ~105! is reduced to the usual 2N-component AKNS system.6

Substituting~103! into ~3,5! and using~104,105!, the t-part of the Lax pair becomes th
generalized (N1M )-component modified KdV~mKdV! system

c i t524c ixxx16(
n51

N

(
m51

M

anmcncm* c ix16(
n51

N

(
m51

M

anmcnxcm* c i , i 51,2,...,N, ~106!

c j t* 524c jxxx* 16(
n51

N

(
m51

M

anmcncm* c jx* 16(
n51

N

(
m51

M

anmcncmx* c j* , j 51,2,...,M . ~107!

When M5N, anm5dnm , the equation system~106,107! is reduced to the usual 2N-component
mKdV system.6 More especially, whenN5M51, c15c, c1* 5c* , a1151, equation system
~104,105! is the usual nonlinear Schro¨dinger ~NLS! equation

cy52cxx1c2c* , ~108!

cy* 5cxx* 2cc* 2, ~109!

and the system~106,107! is just the mKdV equation,

c t524cxxx112cc* cx , ~110!

c t* 524cxxx* 112cc* cx* . ~111!

B. Broer–Kaup reductions

Starting from the DT related symmetry given in the Proposition 3.2,S5(f̃/f)xx , we use

qx522S, i.e., q522S f̃

f D
x

~112!

as symmetry constraint condition of the KP equation. Substituting~112! into the nonlinear coupled
Lax pair ~23–26!, the y part of the Lax pair becomes

fy52fxx22S f̃

f D
x

f12f
]2

]x2 ln f, ~113!

f̃y52f̃xx22S f̃

f D
x

f̃12f̃
]2

]x2 ln f. ~114!

The equation system~113,114! is just a variant form of the well known (111)-dimensional
Broer–Kaup system,43–45

Hy5Hxx22HHx22Gx , ~115!

Gy52Gxx22~HG!x , ~116!

where (f,f̃) and (H,G) are related by

f5expE H dx, f̃5fE G dx. ~117!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Under the transformation~117!, the coupled nonlinear Lax pair~23–26! becomes

Hy5Hxx22HHx1qx , ~118!

Gy52Gxx22~HG!x , ~119!

Ht524Hxxx212H2Hx16~qH!x23qxx23qy112~HHx!x , ~120!

Gt524Gxxx212~HGx!x16~qG!x212~GH2!x . ~121!

Now using the constraint condition~112! and relations~115,116! and~117!, the t part of the Lax
pair ~23–26! is constrained to the higher order Broer–Kaup system

Ht524~Hxx1H316GH23HHx!x , ~122!

Gt524~Gxx13HGx13H2G13G2!x . ~123!

As in the AKNS constraint case, the Broer–Kaup systems~115,116! and ~122,123! can be ex-
tended to their multicomponent form: If (Hi ,Gi), i 50,1,2,..., are independent solutions of t
coupled nonlinear Lax pair~118–121!, then we can take

qx522(
j 51

N

Gjx , N50,1,2,..., ~124!

as symmetry constraint conditions of the KP equation. Substituting Eq.~124! into ~118–121! with
(H,G)5(Hi ,Gi) leads to the multicomponent Broer–Kaup system

H jy5H jxx22H jH jx22(
i 51

N

Gix ~ j 51,2,...,N!, ~125!

Gjy52Gjxx22~GjH j !x , ~126!

and the higher order multicomponent Broer–Kaup system

H jt524S H jxx1H j
323H jH jx13H j(

i 51

N

Gi13(
i 51

N

GiHi D
x

, ~127!

Gjt524S Gjxx13GjxH j13H j
2Gj13Gj(

i 51

N

Gi D
x

. ~128!

Using the same transformation~117!, the symmetry~98! becomes

S15G1x , ~129!

and the coupled Lax pair~72–79! is transformed to~118–121! and

H1y5H1xx22H1Hx22HH1x , ~130!

G1y52G1xx22~H1G1HG1!x , ~131!

H1t52H1xxx212~H2H1!x16~qH1!x26H1xy , ~132!
J. Math. Phys., Vol. 38, No. 12, December 1997
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G1t524G1xxx212~H1Gx1HG1x!x16~qG1!x212~G1H212GHH1!x . ~133!

Now using symmetry constraint

qx522(
i 51

N

AiG1ix , N51,2,..., ~134!

with arbitrary constantsAi to the KP equation, we get another type of multicomponent exten
of the BK system,

H jy5H jxx22H jH jx22(
i 51

N

AiG1ix ~ j 51,2,...,N!, ~135!

Gjy52Gjxx22~GjH j !x , ~136!

H1 jy5H1 jxx22H1 jH jx22H jH1 jx , ~137!

G1 jy52G1 jxx22~H1 jGj1H jG1 j !x , ~138!

~139!

and the higher order BK system

H jt524S H jxx1H j
323H jH jx13H j(

i 51

N

G1i13(
i 51

N

Ai~GiH1i1G1iHi !D
x

, ~140!

Gjt524S Gjxx13GjxH j13H j
2Gj13Gj(

i 51

N

AiG1i D
x

, ~141!

H1 j t524S H1 jxx13H j
2H1 j23H jH1 jx23H1 jH jx13H1 j(

i 51

N

AiG1i D
x

, ~142!

G1 j t524S G1 jxx13GjxH1 j13H jG1 jx13H j
2G1 j16GjH jH1 j13G1 j(

i 51

N

AiG1i D
x

. ~143!

When we takeGj50, H1 j50, Ai51 the systems~136–139! and ~140–143! reduce to the first
type of multicomponent BK systems~125,126! and ~127,128!, respectively.

More generally, because of the proposition 3.4 and (f̄/f)xx being a symmetry of the KP
equation, the symmetry constraint condition~134! can be extended as

qx522(
i 50

M

(
j 50

N

Ai j Gi jx , ~144!

whereGi j ~andHi j !, ( j 50,1,2,...,N) are independent solutions of the following coupled Lax pa

Hiy5Hixx22(
k50

i
i !

k! ~ i 2k!!
HkH ~ i 2k!x1qxd i0 , i 50,1,2,...,M , ~145!

Giy52Gixx22(
k50

i
i !

k! ~ i 2k!!
~HkGi 2k!x , ~146!
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Hit524Hixxx24(
k50

i

(
l 50

k
i !

l ! ~k2 l !! ~ i 2k!!
~HlHk2 lHi 2k!x112(

k50

i
i !

k! ~ i 2k!!
~HkH ~ i 2k!x!x

16~qHi !x23~qxx1qy!d i0 , ~147!

Git524Gixxx212(
k50

i

(
l 50

k
i !

l ! ~k2 l !! ~ i 2k!!
~GlHk2 lHi 2k!x212(

k50

i
i !

k! ~ i 2k!!
~GkxHi 2k!x

16~qGi !x . ~148!

Substituting the constraint condition~144! into the coupled Lax pair~145–148! yields the gener-
alized multicomponent BK system~i 50,1,2,...,M , j 50,1,2,...,N!

Hi jy5Hi jxx22(
k50

i
i !

k! ~ i 2k!!
Hk jH ~ i 2k! jx22d i0 (

a50

M

(
b50

N

AabGabx , ~149!

Gi jy52Gi jxx22(
k50

i
i !

k! ~ i 2k!!
~Hk jG~ i 2k! j !x ~150!

and the generalized higher order BK system~i 50,1,2,...,M , j 50,1,2,...,N!

Hi jt 524S Hi jxx1 (
k50

i

(
l 50

k
i !

l ! ~k2 l !! ~ i 2k!!
Hl j H ~k2 l ! jH ~ i 2k! j23(

k50

i
i !

k! ~ i 2k!!
Hk jH ~ i 2k! jx

13Hi j (
a50

M

(
b50

N

AabGab13d i0 (
a50

M

(
b50

N

(
k50

a
a!

k! ~a2k!!
AabHkbG~a2k!bD

x

, ~151!

Gi jt 524S Gi jxx13(
k50

i

(
l 50

k
i !

l ! ~k2 l !! ~ i 2k!!
Gl j H ~k2 l ! jH ~ i 2k! j13(

k50

i
i !

k! ~ i 2k!!
Gk jxH ~ i 2k! j

13 (
a50

M

(
b50

N

AabGi j GabD
x

. ~152!

When M51, ~149–152! reduce back to ~135–143! with (H0 j ,G0 j ,H1 j ,G1 j )
5(H j ,Gj ,H1 j ,G1 j ).

C. Constraints from the multi-DT related symmetries

Similarly, using the multi-DT Proposition 2.5, multi-binary-DT Proposition 2.7, symme
Propositions 3.3 and 3.4, one can easily obtain many very complicated symmetry constra
the KP equation. For instance, substituting the symmetry constraint condition

qx522(
i 51

N

(
j 51

M S Wj f i j
8 f̃ i j

Wj
D

xx

, ~153!

whereWj[Wj (f1 j ,f2 j ,...,fN j), j 51,2,...,M are the Wronskian determinantW of N functions
of f1 j , f2 j ,...,fN j andf i j and f̃ i j areM independent solutions of the coupled Lax pair~37–
40!, into they part of the Lax pair~37–40!, we have~i 51,2,...,N, j 51,2,...,M !
J. Math. Phys., Vol. 38, No. 12, December 1997
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f i jy52f i jxx2S 2(
n51

N

(
m51

M S Wmfnm
8 f̃nm

Wm
D

x

22
]2

]x2 ln Wj D f i j , ~154!

f̃ i jy52f̃ i jxx2S 2(
n51

N

(
m51

M S Wmfnm
8 f̃nm

Wm
D

x

22
]2

]x2 ln Wj D f̃ i j . ~155!

The t part of the constraint equations can be obtained in the same way. However, we do no
them down here because of their complexity.

The simplest special case of~153! which is different from those of the last subsection has
form ~N52, M51 in ~153!!:

qx522S f̃1f2x2f̃1xf21f̃2xf12f̃2f1x

f1f2x2f2f1x
D

xx

. ~156!

In this case, they part and thet part of the constraint equations have the forms

f1y52f1xx12S Wx2W1

W D
x

f1 , ~157!

f2y52f2xx12S Wx2W1

W D
x

f2 , ~158!

f̃1y52f̃1xx12S Wx2W1

W D
x

f̃1 , ~159!

f̃2y52f̃2xx12S Wx2W1

W D
x

f̃2 , ~160!

and

f1t524f1xxx112S Wx2W1

W D
x

f1x26
W1Wxx

W2 f1112
W1

W2 ~f1xf2xx2f1xxf2x!f1

16
W1xx

W
f1212

1

W
~f1xf̃2xx1f2xxf̃1x2f1xxf̃2x2f2xf̃1xx!f1

16F 1

W S 2Wxx12f1xf2xx22f1xxf2x15S Wx2W1

W D
x
G

x

f1 , ~161!

f2t524f2xxx112S Wx2W1

W D
x

f2x26
W1Wxx

W2 f2112
W1

W2 ~f1xf2xx2f1xxf2x!f2

16
W1xx

W
f2212

1

W
~f1xf̃2xx1f2xxf̃1x2f1xxf̃2x2f2xf̃1xx!f2

16F 1

W S 2Wxx12f1xf2xx22f1xxf2x15S Wx2W1

W D
x
G

x

f2 , ~162!
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f̃1t524f̃1xxx112S Wx2W1

W D
x

f̃1x26
W1Wxx

W2 f̃1112
W1

W2 ~f1xf2xx2f1xxf2x!f̃1

16
W1xx

W
f̃1212

1

W
~f1xf̃2xx1f2xxf̃1x2f1xxf̃2x2f2xf̃1xx!f̃1

16F 1

W S 2Wxx12f1xf2xx22f1xxf2x15S Wx2W1

W D
x
G

x

f̃1 , ~163!

f̃2t524f̃2xxx112S Wx2W1

W D
x

f̃2x26
W1Wxx

W2 f̃2112
W1

W2 ~f1xf2xx2f1xxf2x!f̃2

16
W1xx

W
f̃2212

1

W
~f1xf̃2xx1f2xxf̃1x2f1xxf̃2x2f2xf̃1xx!f̃2

16F 1

W S 2Wxx12f1xf2xx22f1xxf2x15S Wx2W1

W D
x
G

x

f̃2 , ~164!

respectively, withW5f1f2x2f2f1x andW15f̃1f2x2f̃1xf21f̃2xf1x2f̃2f1x .
Both the equation systems~157–160! and~161–164! seem new to us and it is worth studyin

further these equation systems because if these two systems are solved, the corresponding
of the KP equation will be given at the same time due to~156!.

V. „211…-DIMENSIONAL CONSTRAINTS OF THE KP EQUATION

Usually, from the symmetry constraints of an (n11)-dimensional model, one can get on
some (m11)-dimensional models withm,n. So in order to get higher dimensional integrab
models from the symmetry constraints of the KP equation, we have to embed the KP equa
higher dimensions. We may consider the fieldq ~solution of the KP equation! is not only the
function of the explicit space-time$x,y,t% but also the function of the inner space variab
$z,z1 ,z2 ,...%. Now we may obtain some special types of integrable models in any dimens
space-time. In this section, we write down some significant (211)-dimensional reductions while
some types of (311)-dimensional symmetry constraint equations will be given in the next
tion.

A. Asymmetric DS and asymmetric modified NNV reductions

It is obvious that the KP equation is invariant under the inner parameter translation,z
translation. That is to sayqz is also a symmetry of the KP equation. So, similar
(111)-dimensional AKNS constraint condition~103!, we can use

qz5(
i 51

N

(
j 51

M

ai j ~c ic j* !x , ~165!

whereai j , i 51,2,...,N, j 51,2,...,M are constants,c i andc j* are independent solutions of the La
pairs ~2,3! and ~4,5!, as a new symmetry constraint condition to get a general
(211)-dimensional AKNS system. Substituting the constraint condition~165! to ~2! and ~4! for
c5c i , c* 5c j* , we get a generalized (N1M )-component (211)-dimensional AKNS exten-
sion:

c iy52c ixx1 (
n51

N

(
m51

M

anmc i]z
21~cncm* !x , i 51,2,...,N, ~166!
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c jy* 5c jxx* 2 (
n51

N

(
m51

M

anmc j* ]z
21~cncm* !x , j 51,2,...,M . ~167!

When we takeM5N5a1151, c15c, c1* 5c* , we get the simplest special case of~166,167!:

cy52cxx1c]z
21~cc* !x , ~168!

cy* 5cxx* 2c* ]z
21~cc* !x . ~169!

One can easily prove that equation system~168,169! is a flow equation of the well known DS
equation:23

cy52cxx2czz1c]z
21~cc* !x1c]x

21~cc* !z , ~170!

cy* 5cxx* 1czz* 2c* ]z
21~cc* !x2c* ]x

21~cc* !z . ~171!

Actually, the system~168,169! is a space$x,z% asymmetric form of the DS equation. So we c
~168,169! the asymmetric DS~ADS! system and the system~166,167! (N1M )-component ADS
system.

Substituting~103! into ~3,5! and using~104,105!, the t part of the Lax pair becomes th
generalized (N1M )-component (211)-dimensional modified KdV~mKdV! system

c i t524c ixxx16(
n51

N

(
m51

M

anm~c ix]z
21~cncm* !x1c i]z

21~cnxcm* !x!, i 51,2,...,N, ~172!

c j t* 524c jxxx* 16(
n51

N

(
m51

M

anm~c jx* ]z
21~cncm* !x1c j* ]z

21~cncmx* !x!, j 51,2,..,M . ~173!

Taking M5N5a1151, c15c, c1* 5c* , the equation system~172,173! becomes

c t524cxxx16cx]z
21~cncm* !x16c]z

21~cxc* !x , ~174!

c t* 524cxxx* 16cx* ]z
21~cc* !x16c* ]z

21~ccx* !x . ~175!

The system~174,175! reduces to the known asymmetric NNV~ANNV ! equation,43

c t524cxxx13~c]z
21c!x , ~176!

for c* 51/2. Forc* 5c andz5x, the system~174,175! becomes the modified KdV equation. S
we call system ~174,175! a modified ANNV equation and the system~172,173! the
(M1N)-component modified ANNV system. Both the symmetric and asymmetric NNV equa
have been studied by many authors.43–48

In Ref. 23, some special cases of this subsection like Eqs.~168,169,174,175! have been given.
While the systems~166,167! and ~172,173! are more general forms of those reported in Ref.

B. „211…-dimensional BK systems

Similarly, using the DT related symmetries and thez-translation symmetryqz , all the systems
reported in Sec. IV B can be extended to (211)-dimensional cases.

For instance, substituting the symmetry constraint condition
J. Math. Phys., Vol. 38, No. 12, December 1997
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qz522(
i 50

M

(
j 50

N

Ai j Gi jx ~177!

into the coupled Lax pair~145–148! yields a generalized (211)-dimensional multicomponen
BK system~i 50,1,2,...,M , j 50,1,2,...,N!

Hi jy5Hi jxx22(
k50

i
i !

k! ~ i 2k!!
Hk jH ~ i 2k! jx22d i0 (

a50

M

(
b50

N

Aab]z
21Gabxx , ~178!

Gi jy52Gi jxx22(
k50

i
i !

k! ~ i 2k!!
~Hk jG~ i 2k! j !x , ~179!

and a generalized higher order (211)-dimensional BK system~i 50,1,2,...,M , j 50,1,2,...,N!

Hi jt 524S Hi jxx1 (
k50

i

(
l 50

k
i !

l ! ~k2 l !! ~ i 2k!!
Hl j H ~k2 l ! jH ~ i 2k! j23(

k50

i
i !

k! ~ i 2k!!
Hk jH ~ i 2k! jz

13Hi j (
a50

M

(
b50

N

AabGab13d i0 (
a50

M

(
b50

N

(
k50

a
a!

k! ~a2k!!
Aab]z

21~HkbG~a2k!b!xD
x

,

~180!

Gi jt 524S Gi jxx13(
k50

i

(
l 50

k
i !

l ! ~k2 l !! ~ i 2k!!
Gl j H ~k2 l ! jH ~ i 2k! j13(

k50

i
i !

k! ~ i 2k!!
Gk jxH ~ i 2k! j

13 (
a50

M

(
b50

N

AabGi j ]z
21GabxD

x

. ~181!

The (211)-dimensional BK systems

Hy5Hxx22HHx22]z
21Gxx , ~182!

Gy52Gxx22~HG!x , ~183!

and

Ht524~HxxH
323HHx13HG13]z

21~HG!x!x , ~184!

Gt524~Gxx13GH213GxH13G]z
21Gx!x ~185!

reported in Ref. 27 are just the special cases of~178,179! and~180,181! for M5N5A0051, and
(H00,G00)[(H,G).

C. „211…-dimensional reductions related to multi-DT related symmetries

All the (111)-dimensional reduction equations from the DT related symmetries can b
tended to (211)-dimensional case. In this subsection, we extend only the simplest nont
cases ~157–160! and ~161–164! to (211)-dimensions while all the other types o
(211)-dimensional reductions can be obtained in the same way.

The symmetry constraint condition~156! can be modified as
J. Math. Phys., Vol. 38, No. 12, December 1997
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qz522S f̃1f2x2f̃1xf21f̃2xf12f̃2f1x

f1f2x2f2f1x
D

xx

[22S W1

W D
xx

. ~186!

Substituting Eq.~186! into Eqs.~37! and ~39! with i 51,2 yields

f1y52f1xx12S ln W2S ]z
21 W1

W D D
xx

f1 , ~187!

f2y52f2xx12S ln W2S ]z
21 W1

W D D
xx

f2 , ~188!

f̃1y52f̃1xx12S ln W2S ]z
21 W1

W D D
xx

f̃1 , ~189!

f̃2y52f̃2xx12S ln W2S ]z
21 W1

W D D
xx

f̃2 . ~190!

Using Eqs.~86!–~90!, Eqs.~38! and ~40! becomes

f1t524f1xxx112S ln W2]z
21 W1

W D
xx

f1x16F2
Wxx

W
f112

f1xf2xx2f1xxf2x

W

15S ln W2]z
21 W1

W D
xx
G

x

f126f1]z
21FWxxW12W1xxW

W2 1
2

W
~f1xf̃2xx1f2xxf̃1x

2f1xxf̃2x2f2xf̃1xx!2
2W1

W2 ~f1xf2xx2f1xxf2x!1
4W1

W S ln W2]z
21 W1

W D
xx
G

x

,

~191!

f2t524f2xxx112S ln W2]z
21 W1

W D
xx

f2x16F2
Wxx

W
f112

f1xf2xx2f1xxf2x

W

15S ln W2]z
21 W1

W D
xx
G

x

f226f2]z
21FWxxW12W1xxW

W2 1
2

W
~f1xf̃2xx1f2xxf̃1x

2f1xxf̃2x2f2xf̃1xx!2
2W1

W2 ~f1xf2xx2f1xxf2x!1
4W1

W S ln W2]z
21 W1

W D
xx
G

x

,

~192!
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f̃1t524f̃1xxx112S ln W2]z
21 W1

W D
xx

f̃1x16F2
Wxx

W
f112

f1xf2xx2f1xxf2x

W

15S ln W2]z
21 W1

W D
xx
G

x

f̃126f̃1]z
21FWxxW12W1xxW

W2 1
2

W
~f1xf̃2xx1f2xxf̃1x

2f1xxf̃2x2f2xf̃1xx!2
2W1

W2 ~f1xf2xx2f1xxf2x!1
4W1

W S ln W2]z
21 W1

W D
xx
G

x

,

~193!

f̃2t524f̃2xxx112S ln W2]z
21 W1

W D
xx

f̃2x16F2
Wxx

W
f112

f1xf2xx2f1xxf2x

W

15S ln W2]z
21 W1

W D
xx
G

x

f226f̃2]z
21FWxxW12W1xxW

W2 1
2

W
~f1xf2xx1f2xxf̃1x

2f1xxf̃2x2f2xf̃1xx!2
2W1

W2 ~f1xf2xx2f1xxf2x!1
4W1

W S ln W2]z
21 W1

W D
xx
G

x

.

~194!

VI. „311…-DIMENSIONAL CONSTRAINTS OF THE KP EQUATION

In order to find out some nontrivial (311)-dimensional integrable models from the symme
constraints of the KP equation, we have to introduce at least two inner parameters and
further inner parameter dependent symmetries in addition to the parameter translation symm
It is easy to find out some new inner parameter dependent symmetries by means of the sy
proposition 3.1 and the nonhomogeneous Lax pairs. For instance, the commutator betwee
metries (cc* )x andqz1

can be written as

s[@~cc* !x ,qz1
#5~cc1* 1c1c* 2]z1

cc* !x ~195!

by means of the linear homogeneous Lax pairs~2,3! and~4,5! and the nonhomogeneous Lax pa
~15,16! and ~21,22! with

s i5qz1
, c i5c1 , c i* 5c1* . ~196!

Now using symmetry constraint condition

qz5 (
m51

M

(
n51

N

~cmc1n* 1c1mcn* 2]z1
cmcn* !x[ (

m51

M

(
n51

N

smn , ~197!

wherecm , cn* , c1m andc1n* are independent solutions of the Lax pairs~2,3!, ~4,5!, ~15,16! and
~21,22! for all ~m51,2,...,M , n51,2,...,N!, to the y part of the Lax pairs, we can get an (M
1N)-component (311)-dimensional integrable system with ‘‘space variables’’$x,z,z1% and
‘‘time’’ y

c iy52c ixx1c i]z
21 (

m51

M

(
n51

N

smn , i 51,2,...,M , ~198!
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c jy* 5c jxx* 2c j* ]z
21 (

m51

M

(
n51

N

smn , j 51,2,...,N, ~199!

c1iy52c1ixx1 (
m51

M

(
n51

N

~c1i]z
21smn1c i]z

21smnz1
!, i 51,2,...,M , ~200!

c1 jy* 5c1 jxx* 2 (
m51

M

(
n51

N

~c1 j* ]z
21smn1c j* ]z

21smnz1
!, j 51,2,...,N. ~201!

Substituting the relations~197–201! into the t part of the Lax pairs~2,3!, ~4,5!, ~15,16! and
~21,22! leads to the higher order form of the system~198–201!

c i t524c ixxx16 (
m51

M

(
n51

N

~c ix]z
21smn1c i]z

21~cmxc1n* 1c1mxcn* 2]z1
cmxcn* !x!, ~202!

c j t* 524c jxxx* 16 (
m51

M

(
n51

N

~c jx* ]z
21smn1c j* ]z

21~cmc1nx* 1c1mcnx* 2]z1
cmcnx* !x!, ~203!

c1i t524c1ixxx16 (
m51

M

(
n51

N

~c1ix]z
21smn1c1i]z

21~cmxc1n* 1c1mxcn* 2]z1
cmxcn* !x

1c ix]z
21smnz1

1c i]z
21~cmxc1n* 1c1mxcn* 2]z1

cmxcn* !xz1
!, ~204!

c1 j t* 524c1 jxxx* 16 (
m51

M

(
n21

N

~c1 jx* ]z
21smn1c1 j* ]z

21~cmc1nx* 1c1mcnx* 2]z1
cmcnx* !x

1c jx* ]z
21smnz1

1c j* ]z
21~cmc1nx* 1c1mcnx* 2]z1

cmcnx* !xz1
!. ~205!

In our knowledge, there is no known integrable (311)-dimensional models in literature. So w
write down the simplest forms of~198–201! and ~202–205!, respectively.

For the system~198–201!, if we take M5N51, c1[c, c1* 5c* , c11[f, c11* [f* , y
5 i t 1[A21t1 and ‘‘* ’’ the usual complex conjugate, the Eqs.~198! and ~200! become

ic t1
52cxx1c]z

21~cf* 1fc* 2~cc* !z1
!x , ~206!

if t1
5f]z

21~cf* 1fc* 2~cc* !z1
!x2fxx1f]z

21~cf* 1fc* 2~cc* !z1
!xz1

, ~207!

while Eqs.~199! and ~201! are the complex conjugates of~206! and ~207!.
To get the simplest form of~202–205!, we takeM5N51, c15c1* [c, c115c11* [f. In this

special case, equation system~202–205! reduces to

c t524cxxx16~2cx]z
21~cf2ccz1

!x1c]z
21~cxf1fxc2]z1

cxc!x!, ~208!

f t524fxxx16~2fx]x
21~cf2ccz1

!x1f]z
21~cxf1fxc2]z1

cxc!x

12cx]z
21~cf2ccz1

!xz1
1c]z

21~cxf1fxc2]z1
cxc!xz1

!. ~209!

Actually, due to the symmetry proposition 3.1 and there are infinitely many nonlocal sym
tries ~see Sec. III!, we can get infinitely many inner parameter dependent nontrivial symmetri
J. Math. Phys., Vol. 38, No. 12, December 1997
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addition to the parameter translation symmetries. So using the inner parameter dependent
try constraints on the KP equation we can get not only infinitely many (111)-dimensional, (2
11)-dimensional integrable models but also infinitely many integrable models
(311)-dimensions and even in any higher dimensions. We do not discuss them furthe
because of the complexity.

VII. SUMMARY AND DISCUSSIONS

In this paper, we show that for an integrable model, if there is one homogeneous linea
pair, then starting from this Lax pair we can get infinitely many nonhomogeneous both linea
nonlinear Lax pairs in some different ways due to the existence of the infinitely many symme
multi-Darboux transformations and inner parameters. Some kinds of the concrete infinitely
linear and nonlinear Lax pairs of the KP equation are given.

Starting from some seed nonlocal symmetries, say, the symmetries related to the con
symmetries and the multi-Darboux transformation related symmetries, some types of the infi
many nonlocal symmetries can be obtained by means of the infinitely many Lax pairs. Va
types of new nonlocal symmetries of the KP equation are obtained.

Using every symmetry of an integrable model, one can get some new information not on
the original model but also on other integrable models. In this paper, our attention is focus
getting other types of integrable models from the symmetry constraints of the KP equation
usual (111)-dimensional 2N-component AKNS constraints6 are extended to (N1M )-component
for arbitraryN andM . Generalized (111)-dimensional BK systems are obtained from the on
DT related symmetry constraints. The multi-DT related symmetry constraints lead to much
complicated strange models.

Usually, one obtains lower dimensional integrable models from a higher dimensional
grable model by means of the symmetry constraints. By introducing some inner paramete
embed the KP equation in higher dimensional ‘‘space-time.’’ Then using the inner para
dependent symmetry constraints on the Lax pairs of the KP equations, various interesting
integrable models are obtained. For instance, using the inner parameter translation symme
the conformal invariance related symmetry, the usual (111)-dimensional AKNS system is ex
tended to a (211)-dimensional case in a special way. The asymmetric DS and NNV system
just two special cases. From this fact, we know that three most famous (211)-dimensional
integrable models, the KP, DS, and NNV equations, are linked to each other in this way
asymmetric DS and NNV equation are the symmetry constraints of the KP equation whi
symmetric DS and NNV systems are conserved flow equation of the asymmetric DS and
systems. Using the inner parameter translation symmetry and the DT related symmetry cons
the (111)-dimensional BK systems can be extended to (211)-dimensions also.

Especially, to our knowledge, one has not yet found some nontrivial (311)-dimensional
integrable models in literature. In principle, using the method proposed in this paper, one c
some kinds of integrable models in any dimensions starting from a known lower dimens
integrable model. For example, we can get infinitely many nontrivial higher dimensional
grable models from the symmetry constraints of the KP equation. A special type of multico
nent (311)-dimensional integrable model is written down in this paper for further study.
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Integrability and integrodifferential substitutions
A. G. Meshkov
Oryol State University, 95 Komsomolskaia, Oryol, Russia 302015

~Received 22 October 1996; accepted for publication 29 May 1997!

Chen, Lee, and Liu presented in 1979 an algorithm for establishing integrability of
two-dimensional partial differential systems. It is proved here that this algorithm is
invariant under the point transformations, differential substitutions, and some inte-
grodifferential substitutions. It is also proved that canonical conserved densities of
linearizable systems arising in the frameworks of the method are almost all trivial.
The integrability of the non-Newtonian liquid equations is investigated and it is
proved that there exist two integrable systems only. A preliminary classification of
the third-order integrable evolution systems is presented. ©1997 American Insti-
tute of Physics.@S0022-2488~97!02611-X#

I. INTRODUCTION

There are a few different approaches for the establishing of an integrability~or nonintegra-
bility ! of nonlinear partial differential systems with two independent variables. Most of them
presented in the bookWhat Is The Integrability?.1 The first systematic approach was the symme
one~Kumei,2 Olver,3 and Fokas4!. It deals with the Lie–Backlund vector fields. Then the ideas
the symmetry method were unified with the inverse scattering transform ideas and metho
Shabat and Ibragimov.5,6 Considering the evolution equationsut5K(u), they introduced the
notion of the formal symmetry as a formal pseudodifferential operatorL commuting with the
operatorDt2KiDx

i of the linearized equation. It was proved that the residues of the fracti
powers ofL are the conserved densities. This unified approach is often called now the sym
one. The most of the results of this approach and additional references one can find in the
article by Mikhailov, Shabat, and Sokolov7 and in the papers cited therein.

We must also mention the Painleve test method~see Weiss, Tabor, and Carnevale8 and the
review article by Flashka, Newell, and Tabor9! and the prolongation structures approach by E
tabrook and Wahlquist.10 The Painleve test deals with an expansion of the solution of a nonli
system near a singular manifold. The prolongation structures approach is as a matter of f
direct method for construction the zero curvature representation of a nonlinear system. We
going to consider these two methods here, as they are not relevant.

Another method was discovered by Chen, Lee, and C. S. Liu.11 It is closely related with the
symmetry approach and also gives the conserved densities~CD! of an evolution system unde
consideration. But in the frameworks of this method CD arise from the eigenfunction of a l
problem associated with the nonlinear one. The conserved densities, obtained by the both
sian’’ and ‘‘Chinese’’ method, coincide~up to total derivatives! for all known examples. These
densities are called the canonical ones. Flashka12 proved the equivalence of these two algorithm
in general form for a single evolution equation and many mathematicians are sure that it is tr
the systems too, but the proof does not exist. That is why we investigated the Chinese alg
explained why it works, and generalized it for nonevolution systems in the previous article.13 We
shall call this method the CD method for brevity~canonical densities method!.

Now we give the notation and a brief introduction in the CD method. Letx05t, andx15x be
the independent variables andua, a51,...,m be the functions ofxi . We consider the spac
C `(R 2,R m) of infinitely differentiable functionsua as the Frechet one. We shall write th
partial differential system under consideration in the general form

F~u!50, ~1!
0022-2488/97/38(12)/6428/16/$10.00
6428 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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where the differential operatorF:C `(R 2,R m)→C `(R 2,R m), is differentiable in the Had-
amard sense~see the textbook by Yamamuro,14 for instance!. We suppose that solutions of th
system~1! satisfy boundary conditions those define a manifoldM,C `(R 2,R m) and the system
~1! defines a submanifoldM,M . Let n5( i , j ) be the non-negative integer bi-index andunu5 i
1 j , then un

a5]nua5] t
i]x

j ua denotes theunu-th-order partial derivative ofua. We also use the
usual notationut5]u/]t, ux5]u/]x, utt5]2u/]t2, etc., and the ordinary summation rule ov
the repeated indices.

Definition 1: Let a functionF depend on t, x, and]nu(tx), where0<unu,`. ThenF is said
to be a local function of u.

Sometimes the following nonlocal variables appear:

wi5E w i~ t,x,u!dx, ~2!

wherew i are local functions.
Definition 2: Let Dt5d/dt be the total differentiation operator on the manifoldM. If the

nonlocal variables (2) satisfy the following equations:

Dtw
i5 f i~ t,x,u!1aj

i ~ t !wj , i , j 51,...,N,

where f i are local functions, thenwi are called the weakly nonlocal variables~see Sokolov and
Svinolupov15!.

Let D @a,b#,C `(R ,R m) be the space of the basic functions with the support@a,b# @that is,
]x

nv(x)50, ;n and ;x¹(a,b), if vPD @a,b##. The symbol^,& denotes a linear functional o
D @a,b#:

^g,v&5E
a

b

ga~x!va~x!dx, vPD @a,b#, gPC `~R ,R m!.

Let H5hi]x
i be a linear matrix operator onC `(R ,R m). Introducing the adjoint operatorH1

with the help of the equation̂f ,Hv&5^H1 f ,v&, we obtainH15(2]x)
ihi

T , where T is the
transposition symbol.

Admitting liberty of a language they call the system~1! the integrable if it is equivalent to on
of the following operator equations:

Ut2Vx1@U,V#50, ~3!

or

dL/dt5BL2LA. ~4!

Here the matricesU andV are local functions ofua and a complex parameterl; L, A, andB are
the linear scalar differential operators depending on]x only ~but not] t!. Coefficients of theL, A,
andB are local functions ofua andl ~see Zakharovet al.,16 for instance!. Equation~3! is called
the zero curvature representation of the system~1!. Equation~4! is called the triadic representatio
of the system~1! or (L,A,B) representation. Let us consider the triadic representation for
niteness. It is obvious that an operator equationH50 is equivalent to its adjointH150, therefore
the equation~4! implies

dL1/dt5L1B12A1L1. ~5!

Equations~4! and ~5! provide the compatibility for the following linear systems:
J. Math. Phys., Vol. 38, No. 12, December 1997
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Lw50, w t5Aw, ~6!

or

L1x50, x t52B1x ~7!

accordingly. One of these systems are usually exploited for deriving conserved densities
associated nonlinear system~see Zakharovet al.,16 Zakharov, and Shabat17!.

Definition 3: Suppose that the following conditions are valid: (i) the system (1) has a tri
representation (4); (ii) the operator L(l) has a pole at the pointl50; (iii) the systems (6) and
(7) have formal solutions in the following form:

w5expH E v dx1s dtJ , x5expH 2E j dx1h dtJ , v5(
i 50

`

v iz
i 2n,

s5(
i 50

`

s iz
i 2k, j5(

i 50

`

j iz
i 2n, h5(

i 50

`

s iz
i 2k, l5zp,

where Dtv5Ds, Dtj5Dh, (D5d/dx), and the numbers k, n, and p are natural; (iv) the
functionsv i , s i , j i andh i are local or weakly nonlocal. If the conditions (i)–(iv) are held we say
the system (1) to be formally integrable.

Let us denoteG8(u)@v# the Hadamard derivative of an operatorG at a pointu in a direction
v:

G8~u!@v#5S ]

]e
G~u1ev ! D

e50

.

And G81 denotes the adjoint forG8 operator with respect to the standard bilinear form:

^w,c&15E waca d2x.

We proved in the previous paper13 that for a wide set of two-dimensional formally integrab
systems~1! their canonical conserved densities arise from the following equation:

F~Dt1u,D1r!b50, ~8!

whereF(Dt ,D)[F81, the 1-formV5u dt1r dx is closed onM and the columnb satisfies
the normalization condition (c,b)51 with a constant vectorc.

Let us consider the normal differential system:

Fa~u!5] t
n~a!ua2Ha~uj

i !50. ~9!

Hereuj
a i5] t

i]x
j ua, n(a).0 and the functionsHg do not depend on the variables] t

n(a)1 iuj
a for all

i>0, a51,...,m. Note that forn(a)51 or 2 we have the evolution system or the Klein–Gordo
type system accordingly.

Theorem 1: Let the system (1) take the form (9) or can be reduced into this form with the
of the linear nondegenerate transformation:

x8 i5Cj
i xj , u85u, Cj

i 5const.

If the system (1) is formally integrable, then the system (8) has a solution in the form of the f
Laurent expansions,
J. Math. Phys., Vol. 38, No. 12, December 1997
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r5(
i 50

`

r iz
i 2n, u5(

i 5p

`

u iz
i 2n, b5(

i 50

`

biz
i , ~10!

where z is a parameter, n.0, or n2p.0; the coefficientsr i , u i , and bi are local or weakly
nonlocal functions of ua.

The closedness condition of the 1-formV yields an infinite set of conservation laws for th
system~1!:

Dtr i5Du i ~11!

~some of the currents$u i ,r i% may be trivial!. We remind that any trivial current takes the for
$u,r%5$Dtj,Dj%, wherej is a local function.

The definition 3 and the theorem 1 were presented in our paper.13 We would like to stress tha
the equation~8! generates some special conserved densitiesr i that are called the canonical con
served densities~CCD!. As we mentioned above, the CCD arising from the symmetry method
the CD method are equivalent probably. But the equation~8! is simpler for the computations of th
CD.

In Sec. II we prove that the equations~8!, ~10!, and ~11! are invariant under the poin
transformations, differential substitutions, and some integrodifferential substitutions.

In Sec. III the notion of thec integrability by Calogero is considered. It is proved th
canonical densities of linearizable systems are almost all trivial. The theorems presented in
and Sec. III have the same sense as the analogic theorems proved in the frameworks
symmetry method. But we hope, nevertheless, that our results are useful as the equivalenc
two methods is not proved.

In Sec. IV we investigate the integrability of the non-Newtonian liquid equations and p
that only two systems satisfy the integrability conditions.

In Sec. V we present a preliminary classification of the third-order integrable evolution
tems.

II. MAIN THEOREM

Let us consider a transformation (x,u)→(y,v):

yi5 f i~xk,u!, va5ga~xi ,u!, ~12!

where f andg are smooth differential or integrodifferential operators. Iff andg are the zeroth-
order differential operators we have a point transformation. Iff andg are differential operators o
a nonzero order, the transformation~12! was called by Sokolov18 the differential substitution.
Suppose that the transformation~12! maps the manifoldM into a manifoldN, and the operatorF
is transformed according to the formula

F~x,u!5P~y,v !F̃~y,v !, ~13!

whereP(y,v) is a linear operator that is invertible and differentiable on the manifoldN. Then the
system~1! is equivalent toF̃(y,v)50, vPN. Choosing the differentialsdxi50, anddu5w(x),
we obtaindy5 f u8w, anddv5gu8w. Then the differentiation of the equation~13! in the direction
$dy,dv% gives

Fu8w5~Py8@dy#1Pv8@dv# !F̃1P~ F̃y8 f u81F̃v8gu8!w. ~14!

SinceF̃y85DyF̃2F̃v8vy8 and F̃50 on the manifoldM then the equation~14! takes the following
form on M:
J. Math. Phys., Vol. 38, No. 12, December 1997
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Fu8w5PF̃v8Sw, ~15!

where

S5gu82vy8 f u8[gu82~]v/]yi !~ f i !u8 . ~16!

Operator~16! plays a fundamental role in the Lie–Ba¨cklund theory. It maps the tangent spa
TuM into the spaceTvN. In particular, it maps a set of the Lie–Ba¨cklund fields of the system~1!
into a corresponding set for the transformed system. If the transformation~12! is invertible in a
regionH,M, then the operator~16! is also invertible in a subspaceL,TuM , whereuPH.

Setting D05Dt , D15D, D̃ i5d/dyi we denote the inverse Jacobi matrix asa5(D f )21.
Then we haveD̃ i5ai

jD j , obviously. It can be easily verified that the system~3! is invariant under
the transformation~12!

]Ũ i

]yj 2
]Ũ j

]yi 1@Ũ i ,Ũ j #50,

whereŨ i5ai
kUk , U05V, U15U. So, the transformed system~1! has a zero curvature represe

tation. Therefore it has a triadic representation too. If the system~1! is formally integrable, then
the equations~8!, ~10!, and~11! are valid. But it is uncleara priori whether these equations a
valid for the transformed system?

Let us introduce the operatorF̃(D̃ i)5F̃v8* , where the asterisk denotes the conjugation w
respect to the new bilinear form:

^w,c&25E waca d2y, ^w,c&15^uauw,c&2 .

Then we can formulate the following theorem.
Theorem 2: Let us consider two differential operators F and F˜ on the manifolds M and N

accordingly, where N is the image of M under the map (12). If the operators F and F˜ are
connected by the formula (13), where

P~y,v !5 (
i , j 52k

r

f i j ~y,v !Dt
iD j ~17!

is an invertible on N operator with smooth coefficients and the set S(TuM ) is dense in the se
TvN; then (i) the system (8) is equivalent to the following one:

F̃~D̃01 ũ, D̃11 r̃ !b̃50; ~18!

(ii) the functionsũ, and r̃ satisfy the equation D˜
0r̃5D̃1ũ and take the following form:

r̃5a1
0u1a1

1r, ũ5a0
0u1a0

1r, ~19!

whereu, andr satisfy the equation (8);
(iii) b̃ is a linear function of b satisfying the condition( c̃,b̃)51 with a constant vector c˜ ;
(iv) the functionsr̃, ũ and b̃ take the form of the series expansions (10).

Proof: Let us perform the transformation~12! for the closed 1-formV: r dx1u dt
[v i dxi5v iaj

i dyj[ṽ jdyj . Denoting ṽ i5$ũ,r̃ %, we obtain the formulas~19! and the series
expansions~10! for r̃ andũ. Then, the equationdV50 is equivalent to the infinite sequence of th
J. Math. Phys., Vol. 38, No. 12, December 1997
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conservation lawsD̃0r̃ i5D̃1ũ i . To transform the equation~8! we consider the formula~15! that
is valid according to the invertibility of the operatorP. Multiplying the equation~15! by bev from
the left-hand side and setting

w5c exp~2v!, v5E V,

we obtain

^bev,Fu8ce2v&15^e2vFu8
1evb,c&15^F~Di1v i !b,c&1505^bev,PF̃v8Sw&1

5^uaubev,PF̃v8Sw&25^e2vF̃v8
* P* evuaub,evSw&25^F̃~D̃ i1ṽ i !b̃,c̃&2 .

Here we used the obvious identitye2vF̃(D̃ i)e
v5F̃(D̃ i1ṽ i), and denotedc̃5evSw ,b̃

5e2vP* evuaub[Ab. According to a denseness of the setS(TuM ) we obtain the equation~18!
with a broken normalization condition (c,b̃)5(c,Ab)Þ1. But we proved13 that one can change
normalization condition performing the gauge transformationV→V1dj that does not break the
conservation laws~11!. This transformation gives (c̃,b̃)51, wherec̃ is a constant vector. So
validity of the equations~18! and ~19! is proved.

To conclude the proof we must find a series expansion forb̃. Let us consider the following
expression:

h̃5e2vD1
kevh, where h5(

i 50

`

hiz
i , kPZ. ~20!

If k51, then substituting from~10! r into the formulah̃5(D1r)h, we easily obtain the follow-
ing series:

h̃5(
i 50

`

zi 2nS D1hi 2n1(
j 50

i

r jhi 2 j D ,

for any nPZ. If k521, then an elementary calculation gives

h̃5(
i 50

`

h̃iz
i 1n, h̃i5r0

21S hi2D1h̃i 2n2(
j 51

i

r j h̃i 2 j D , for n.0,

and

h̃5(
i 50

`

h̃iz
i , h̃i55 D1

21S hi2 (
j 50

i 2unu

r j h̃i 2 j 2unu D , for n,0

~D11r0!21S hi2(
j 51

i

r j h̃i 2 j D , for n50.

So, we have the power series forh̃ when k561. It is clear by induction that it is true for an
kPZ. Repeating the deduction for the expressionh̃5e2vD0

kevh, we conclude thath̃ is the power
series in this case too. According to the formula~17! the columnb̃(z) is the linear combination of
the termse2vD0

i D1
j evuaub5(e2vD0

i ev)(e2vD1
j ev)uaub(z), where b(z) is the Taylor series.

Therefore we can consider each term in theb̃ as the superposition of two transformations in t
form ~20! obviously. Hence the columnb̃(z) is the power series for any case. Multiplyingb̃ by an
appropriate positive power ofz, we can obtain the Taylor series. The theorem is proved.
J. Math. Phys., Vol. 38, No. 12, December 1997
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It is clear from this theorem that the functionsb̃i may be both local and nonlocal. But whe
the both expansions~10! for r(z) andu(z) have poles at the pointz50, then the functionsb̃i must
be local. Thus, Theorem 2 allow us simplify a nonlinear system with the help of a sui
transformation~12! before applying the CD method.

Let us consider the most popular transformations. For the point transformations, the ope
~16! and~17! are invertible matrices. Hence, the conditions of Theorem 2 are held. Besides,
functions$u i ,r i ,bi% are transformed into local$ũ i ,r̃ i ,b̃i%. For the Legendre transformation (m
51)yi5ui , v5xiui2u the operator~17! is a function andS521. Hence, the conditions o
Theorem 2 are held again. Local functions$u i ,r i ,bi% are transformed into local$ũ i ,r̃ i ,b̃i%. For
differential substitutions in the formxi5 f i(y), u5g(y,v), the operators~16! and~17! are differ-
ential. Therefore, the conditions of Theorem 2 must be checked for such cases. A local c
$u(u),r(u)% is transformed into a local one$ũ(v),r̃(v)%. But the inverse transformation
$ũ,r̃%→$u,r% can produce nonlocal currents. Let us consider the following nonlocal transfo
tion:

y05t, y15E r~u!dx1 j ~u!dt, va5ua, ~21!

whereDtr5D j on the manifoldM. ~It may be the transformation between the Lagrange
Euler variables in the fluid dynamics, for example.! For this case we haveP51, but the operator
~16! is integrodifferential. Nevertheless,S21 exists for an invertible transformation~21! and the
conditions of Theorem 2 are satisfied. A simple calculation gives the following expressions

Dx5rD̃1 , Dt5D̃01 j D̃ 1 , v15uxr
21, v05ut2 juxr

21. ~22!

If the third and fourth equations~22! are algebraically solvable with respect toux andut , then the
independent onx local currents are transformed into local currents.@The formulas~22! are exactly
invertible if the order ofr(u) is zero.# For other cases nonlocal currents may appear.

III. C INTEGRABILITY

The notion of thec integrability was introduced by Calogero and Xiaoda.19 Any c-integrable
nonlinear system may be reduced into a linear one under a transformation~12!. That is why we
start from a linear system with the constant coefficients:

F~x,u![F~Di !u50.

For a linear system we haveFu85F(Di), F(Di)5F1(Di); therefore the system~8! admits a
constant solution@r5k1 , u5k0 , b5b(ki)#:

F~ki !b50, detF~ki !50. ~23!

The second equation~23! is called the dispersion relation. It defines a flat algebraic curveg. The
first equation defines the columnb on the curveg. To obtain the expansions~10! we prove a
previous lemma.

Lemma: A complex irreducible flat algebraic curve h(x,y)50 possesses the following pa
rametrization:

x5z2n, y5(
i 50

`

ciz
i 1p, ~24!

where z is a parameter in a neighborhood of the zero, nPZ1 , pPZ.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proof: To investigate the curveh(x,y)50, whenx runs to infinity, we perform the substitu
tion x5t21. Then the equation of our curve can be written in the following form:

h~ t,y!5ym1 (
i PN

ym2 i tkiw i~ t !50, ~25!

wherekiPZ, N#$1,...,m%, w i(t)5cipi(t)/q(t)Ó0, ci5const,pi and q are polynomials,pi(0)
5q(0)51. If N5B, theny50 and we have the equation~24!, wheren51. If there are nonzero
functionsw i we were forced to consider some different cases.

~I! Let m51; theny52tkw(t). Expanding the fractionw(t) into the Taylor series, we obtain
the formulas~24!, wheren51, p5k. We considerm.1 below.

~II ! Let ki50 for i PIÞB, ki.0 for i PJ, andN5I % J, then we have

h~ t,y!5ym1(
i PI

ym2 iw i~ t !1(
i PJ

ym2 i tkiw i~ t !50. ~26!

When t50, this equation implies

g~y![ym1(
i PI

ciy
m2 i50⇒y5y0 .

Settingg(y)5(y2y0)nl(y), wherel(y0)Þ0, we can write

h~ t,y!5~y2y0!nl~y!1tc~ t,y!50, ~27!

wherec is a regular function,

c~ t,y!5(
i PI

ym2 i w̃ i~ t !1(
i PJ

ym2 i tki21w i~ t !, w̃ i~ t !5ci

pi2q

tq
.

Substitutingt5zn into ~27!, we obtain

S y2y0

z D n

l~y!1c~zn,y!50.

When z runs to zero we obtain„y8(0)…nl(y0)1c(0,y0)50. Sincel(y0)Þ0, theny8(0) exists
and the functiony(z) is holomorphic at zero. This implies the expressions~24!, wherep50 when
y0Þ0, andp.0 wheny050.

~III ! ki.0, for all i PN. Let us find the following simplified fraction:

min
i PN

ki

i
5

p

n
,

and perform the substitutiont5zn, y5uzp. Then there exist such setsIÞB andJ that nki2 ip
50 for i PI , nki2 ip5ni.0 for i PJ andN5I % J. Therefore the equation~25! is reduced into
the following form:

h~z,u!5um1(
i PI

um2 iw i~zn!1(
i PJ

um2 izniw i~zn!50, ~28!

analogous to the equation~26!. Hence, repeating the deduction from the point~II !, we obtain the
expressions~24!, wheren.0, p.0.
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~IV ! ki52r i,0 for i PAÞ0, ki>0 for i PB, andN5A% B. In that case we have

h~ t,y!5ym1(
i PA

ym2 i t2ziw i~ t !1(
i PB

ym2 i tkiw i~ t !50. ~29!

Let us find the following simplified fraction:

max
i PA

r i

i
5

p

n
,

and perform the substitutiont5zn, y5uz2p. There exists such subsetIÞB in A that ip2nri

50 for i PI and ip2nri5ni.0 for i PI 85A\I . It can be now verified that the equation~29! is
reduced into the form~28!, whereJ5I 8% B, ni.0. Therefore, repeating the deduction from t
point ~II !, we obtain the expressions~24!, wheren.0, p,0. The lemma is proved.

Theorem 3: If the system (1) can be reduced into a linear system with constant coefficien
means of an invertible transformation (12), then it possesses an infinite set of the trivial can
conserved densities.

Proof: To investigate the canonical conserved densities we may reduce the system~1! into the
linear form F̃(D̃)v50 according to Theorem 2. Let us consider now the constant solutioũ
5k0 , r̃5k1 , b̃5b(ki) of the system~23!. Choosing an irreducible component of the dispers
curve, we can represent its equation in the form~24!

k15z2n, k05 (
i 52p

`

ciz
i 2n, n.0,

according to the lemma. Then for the original system~1! we have

V5k0 dy01k1 dy15dFz2nf 1~x,u!1 f 0~x,u! (
i 52p

`

ciz
i 2nG[r dx1u dt.

Hence

r i5Dx~ci f 01d i0 f 1!, u i5Dt~ci f 01d i0 f 1!.

If the functionsf i are local, these currents are trivial, obviously. If we deal with a transforma
of the type~21!, then one or two currents can be nontrivial. The theorem is proved.

If a linear system possesses the CCD dependent on the variablest,x, then the previous
statement is also true. Really, the 1-formV5r(t,x)dx1u(t,x)dt is closed according to the
definition. HenceV5dc(t,x), and we obtain the trivial CCD under the transformation~12!. The
nontrivial CCD may arise for a linearizable system if the CCD of the corresponding linear sy
depends on the variablesua. The special case of this situation is considered in the next theo

Theorem 4: If the system (1) can be reduced into a linear evolution system of the ord
>2 by means of an invertible transformation~12!, then its CCDs are almost all trivial.

Proof: For the linear evolution systemut5K(D)u, whereK5KmDm1•••1K0 the equation
~8! takes the following form:

@Dt1u1K1~D1r!#b50. ~30!

If we set r5r0z2n1r1z12n1••• , then u5az2mn1bz12mn1••• and the function
(21)m11ar0

2mn is an eigenvalue of the matrixKm . Sincem.1 thenmn.n andDa50; hence
a5a(t) andr05r0(t,x), asKm does not depend onua. Other functionsrn ,bn are defined from
recursion relations that follow from the equation~30!:
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rn5Rn~r0 ,...,rn21 ,b0 ,...,bn21 ,u0 ,...,un21!,

bn5Qn~r0 ,...,rn21 ,b0 ,...,bn21 ,u0 ,...,un21!,

where Rn and Qn are some differential polynomials. The functionsun are defined from the
equations~11!. Keeping in mind that the coefficients of the equation~30! do not depend onua, we
conclude that the functionsrn , un , andbn do not depend onua. As it was mentioned above
r dx1u dt5dc(t,x) for this case. Hence the CCDs are almost all trivial for the original sys
~1!. One or two nontrivial densities may arise for a nonlocal linearizing transformation only.
theorem is proved.

If the system~1! is reducible to the normal linear system, Theorem 4 is true for this case

IV. NON-NEWTONIAN LIQUID

Let us consider the equations of the one-dimensional motion of a liquid without ext
forces

dv
dt

5vux ,
du

dt
5vPx , S d

dt
5

]

]t
1u

]

]xD , ~31!

de

dt
5v~Pux2qx!, T

ds

dt
1vqx5vd>0. ~32!

Herev5r21 is the specific volume,u is the velocity of the flow,P is a component of the stres
tensor,e is the density of the internal energy,s is the density of the entropy,q is a density of the
heat flow,d is a dissipation function, andT is the absolute temperature. Let us adopt the follow
assumptions:

P5P~v,T,ux!, ]P/]uxÞ0; e5e~v,T!, ]e/]TÞ0; q52vk~v,T!Tx ,

then the first equation~32! takes the form

dT

dt
5

P2ev

eT
vux1

v
eT

~vkTx!x . ~33!

We shall consider for simplicity that the second equation~32! defines the functiond. Then the
equations~31!, ~33! are the closed system. A direct investigation of the integrability of this sys
is cumbersome. But introducing the Lagrange variables (t,x)→(t8,y),

t85t, dy5v21~dx2u dt!,

we obtain the essential simplification,

v t5uy , ut5Py~v,T,uy!, Tt5g~v,T!@k~v,T!Ty#y1F~v,T,uy!. ~34!

It is denoted here thatg5eT
21, F5(P2ev)uyeT

21. The main theorem allows us to investigate t
integrability of the system~34! instead of the system~31!, ~33!. Applying the described method
we obtained two series of the CCD. A few first densities take the following form:

r05P1
21/2, 2r15D lnur0u2r0u0 ,

2r25r0P3F1~kg2P1!212r0
3P22r0

21r1
22r0u11r0

22r1Dr0 ,
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r̃05~kg!21/2, 2r̃15D lnur̃0g21u2 ũ0r̃022uy
3~ lnur̃0u!3 ,

2r̃25P3F1r̃0~P12kg!212 r̃0~ ũ11F3!2 r̃0DkDg2~ r̃0g!21r̃1Dg1 r̃0uy
3~kDg31k3Dg!

22r̃ 0
22r̃1uy

3r̃0,32 r̃ 0
21r̃ 1

21 r̃ 0
22r̃1D r̃0 .

Here we use the following notation for the derivativesP15]P/]uy , P25]P/]v, P35]P/]T,
etc. Besides,P1Þkg here. The caseP15kg was investigated separately. Assuming the we
nonlocality of the conserved currents, we checked ten integrability conditions~11! with the help of
the computer and found that two systems satisfy all conditions only:

ut5cuyy1bvy , v t5uy , Tt5gkTyy1gcuy
21w~v !uy , ~35!

ut5
cuyy

~uy1b!2 , v t5uy , Tt5gkTyy1guyS w~v !2
c

~uy1b! D . ~36!

Herec, b, g, andk are constants, andw is an arbitrary function. The system~35! has the linear
subsystem and can be solved directly. The first equation of the system~36! is reduced to the linea
form ut85cujj8 with the help of the following transformation:t5t, j5u1by, u85(uy1b)21. If
we find the functionu, then the functionsv andT can be easily obtained from the system~36!. In
the Euler variables the systems~35! and ~36! take the following form:

ut1uux5v~cvux1bv !x , v t1uvx5vux ,

Tt1uTx5gkv~vTx!x1cgv2ux
21vw~v !ux , ~37!

ut1uux5cv~vux!x~vux1b!22, v t1uvx5vux ,

Tt1uTx5gkv~vTx!x1gvux@w~v !2c~vux1b!21#. ~38!

It can be easily verified thatr05v21 is the unique nontrivial CCD andr i5u i5 r̃ i5 ũ i50 for i
.0 for both the system~37! and the system~38!. This fact is the consequence of the existence
the linear subsystems in the corresponding reduced systems.

V. QUASILINEAR EVOLUTION SYSTEMS OF THE THIRD ORDER

Here we shall consider the following system:

ut
i5Aj

i ~u0!u3
j 1Fi~u0 ,u1 ,u2!, i , j 51,2, ~39!

whereui
k5] iuk/]xi and the matrixA possesses a nonzero eigenvaluel. Assuming validity of the

first integrability condition, we shall try to simplify the system~39!. It is well known7,13 that the
first canonical density takes the formr5l21/3. Let u be a flux corresponding to the densityr.
Performing the transformation

t5t, dy5r dx1u dt, v i5ui , ~40!

we reduce the system~41! to the following form:

vt
i 1uvy

i 5Aj
i ~v !~rDy!3v j1Fi5l21Aj

i v3
j 1••• . ~41!

It is obvious that one eigenvalue of the matrixA85l21A is the unit. Let us denoteA81
15a,

A82
15b, A81

25c, A82
25d, then the characteristic equation for the matrixA takes the forml2

2l(a1d)1ad2bc50. Since the eigenvaluel51 exists, thenbc5(a21)(d21). If bc50,
J. Math. Phys., Vol. 38, No. 12, December 1997
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thenA8 is the triangular matrix. It is obvious that the casesb50 andc50 are equivalent with
respect to the permutationv1↔v2. Therefore we may consider two matrices only:

S a b

0 1D , S 1 b

0 dD .

If aÞ0 then a21/35r is the conserved density for the corresponding system~39!. Therefore,
performing the transformation~40!, we reduce the first matrix into the second one, whered
5a21. Thus we have three different triangular matrices,

A15S 1 g

0 f D , A25S 0 g

0 1D , A35S 1 g

0 0D , ~42!

where f Þ0.
Let us consider now the casebcÞ0. Performing a point transformationwi5 f i(v), we can

reduce the system~41! into the triangular form

wt
i5Ã j

i w3
j 1F̃ i , Ã j

i 5
]wi

]vs

]vk

]wj Ak8
s ,

where the matrixÃ takes the above formA1 . To check this statement we rewrite the transform
tion formula for Ã in another form,

w,k
j Ã j

i 5w,s
i Ak8

s ,

wherew,s
i 5]wi /]vs. Setting hereÃ5A1 , we obtain

~a21!w,1
1 1cw,2

1 5gw,1
2 , bw,1

1 1~d21!w,2
1 5gw,2

2 ,

bw,1
2 1~12a!w,2

2 50, ~12d!w,1
2 1cw,2

2 50. ~43!

We used here the equationf 5a1d21 that follows from the fact that the characterist
polynomials coincide for the matricesA8 andÃ. There are two independent equations only in
system~43! because of the identitybc5(a21)(d21). Besidesw,1

2 Þ0, w,2
2 Þ0 asbcÞ0. There-

fore we shall consider the first and the third equations for definiteness:

~a21!w,1
1 1cw,2

1 5gw,1
2 , bw,1

2 1~12a!w,2
2 50, ~44!

The second of these equations defines the functionw2, the first defines the functiong, andw1 is
an arbitrary function. Our statement is proved. Let us investigate now the first equation~44! more
carefully.

If the vectors$a21,c% and $b,12a% are linearly independent we can choosew1 as the
solution of the equation (a21)w,1

1 1cw,2
1 50. Then the functionsw1 andw2 will be independent

and g50. And vice versa, if$a21,c%5g$b,12a%, then we may requirebw,1
1 1(12a)w,2

1

5w,1
2 /g. For this case we obtaing5 f 51. Thus we obtain two nonequivalent matrices:

Ã15S 1 0

0 f D , Ã25S 1 1

0 1D .

This result means that the matrixA1 from ~42! can be reduced to one of these forms. The syste
~39! corresponding to the matricesA2 andA3 in the form~42! can be also simplified with the hel
of the transformationw15h(v1,v2), w25v2. Choosinggh,11h,250 for A2 andgh,12h,250 for
J. Math. Phys., Vol. 38, No. 12, December 1997
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A3 , we obtaing50. Thus, bothA2 andA3 give the same system that follows from the matrixÃ1

when f 50. Unifying the previous results, we have the following theorem.
Theorem 5: If the matrix A of the system (39) possesses a nonzero eigenvaluel5r23 that

satisfies the equation Dtr5Du with a local functionu, then the system (39) can be reduced in
one of the following forms (w15u, w25v):

ut5u31F~u0 ,v0 ,u1 ,v1 ,u2 ,v2!, v t5 f ~u,v !v31G~u0 ,v0 ,u1 ,v1 ,u2 ,v2!, ~45!

ut5u31v31F~u0 ,v0 ,u1 ,v1 ,u2 ,v2!, v t5v31G~u0 ,v0 ,u1 ,v1 ,u2 ,v2!, ~46!

by means of a superposition of the transformation (40) and a point transformation.
Remark 1:Settingf 50 in ~45! we obtain the mentioned system corresponding to the matr

A2 andA3 ~42!.
Remark 2:If the matrixA has the zero eigenvalues only, then the system~39! can be reduced

to the form

ut5v31F~u0 ,v0 ,u1 ,v1 ,u2 ,v2!, v t5G~u0 ,v0 ,u1 ,v1 ,u2 ,v2!, ~47!

with the help of a point transformation.
For the classification the systems~45!–~47! the groups of the equivalence transformation a

useful.
Theorem 6: The systems (45)–(47) possess the following equivalence groups:

~a! u85w(u), v85c(v) for (45), where fÞ1;
~b! u85w(u,v), v85c(u,v) for (45), where f51;
~c! u85uw8(v)1c(v), v85w(v), for the systems (46) and (47).

Both the transformation~40! and a point transformation are invertible and preserve a local
of canonical currents. Therefore one may investigate the integrability of the systems~45!–~47!
instead of~39!.

A. Classification of the systems „45…

The calculations are very cumbersome for the general case. Therefore we present here
the integrable systems~45! for the case ord(F,G)<1 only. Besides, we assume thatf ( f 21)
Þ0. ChoosingbT5(1,a) or bT5(ã,1) in the equation~8! we obtain two sequences of the CCDr i

and r̃ i . A few first densities take the following form:

r2151, r050, r152 1
3 F ,u1

, r25 1
3 F ,u0

,

r35
1

3
u11

G,u1
F ,v1

3~ f 21!
, r̃215 f 21/3, r052

2

3
D ln~ f !,

r̃15 1
3 r̃21ũ212 1

3 r̃ 21
2 G,v1

1 1
3 f ~D r̃21!2.

Checking 14 integrability conditions~11! with the help of the computer, we found that the
exist three integrable systems only:

ut5u316uu1212vv1 , v t522v326uv1 , ~48!

ut5u31uu11v1 , v t522v32uv1 , ~49!
J. Math. Phys., Vol. 38, No. 12, December 1997
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ut5u313~u1v !u11 3
2 @~a13!u2~1115a!v#v1 ,

v t5bv323@~a22!u1v#u12 3
2 ~a13!~u1v !v1 , ~50!

wherea255, b521/2(3a17). Besides, there are many triangular systems satisfying the
grability conditions. These systems are not interesting and we omit them. Hirota and Sats20

found theN-soliton solutions of the system~48! and it is called the Hirota–Satsuma system. T
zero curvature representation for the system~48! was found by Drinfeld and Sokolov21 and Dodd
and Fordy22 independently. The zero curvature representations for the systems~49! and~50! were
found by Drinfeld and Sokolov.23 But the system~50! was presented in another form therein:

ut54u323v31~6u23v/2!u113uv1 , v t523u31v326vu113~v2u!v1 .

So, there are three and only three nonequivalent integrable systems~45! when ord(F,G)
,2. For all of these systemsf 5const. After some preliminary calculations we suppose that th
do not exist the integrable systems~45! when f Þconst and ord(F,G)52 too. The classification of
the integrable systems~45! for the case ord(F,G)52 is being prepared now and will be present
in a separate publication.

B. Transformations of the integrable systems

The system~48! possesses the three zeroth-order conserved densitiesr i (Dtr i5Du i):

r15u, r25u222v2, r353tu226tv21xu,

u15u213u226v2, u252uu218vv22u1
224v1

214u3,

u356tuu21xu2124tvv223u1
2t2u1212v1

2t112u3t13u2x26v2x.

Performing the transformation~21! in the form t85t, dy5r1 dx1u1 dt, U(t8,y)5u(t,x),
V(t8,y)5v(t,x) we obtain the new integrable system,

Ut5U3U313U2U1U2212VUV113~U212V2!U1 ,

Vt522U3V323U2V1U226U2U1V223UV1U1
213~2V223U2!V1 ,

whereUn5]U/]yn. The transformations~21! corresponding to ther2 andr3 give too cumber-
some systems and we omit them. The system~48! also admits the following differential substitu
tion ~analogous to the Miura transformation for the KdV equation!:

u52U12U22V2, v5V112UV.

The system~48! is reduced under this substitution into the following one:

Ut5U316VV216V1
216~V22U2!U1112UVV11exp~22U21!

3„c1~ t !exp~22V21!2c2~ t !exp~2V21!…,

Vt522V326VU226U1V116~U22V2!V1112UVU11exp~22U21!

3„c1~ t !exp~22V21!1c2~ t !exp~2V21!…,

whereU215*U dx, V215*V dx, and ci(t) are arbitrary functions. Besides, the system~48!
admits the substitutionu→u1 .
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The system~49! possesses the three zeroth-order conserved densities:

r15u, r25u212v, r35tu212xu12tv,

u15u211/2u21v, u252uu224v22u1
212/3u3,

u352tuu212xu224tv22u1
2t22u112/3u3t1u2x12xv.

The transformationst85t, dy5rk dx1ukdt, U(t8,y)5u(t,x), V(t8,y)5v(t,x), k51,2, give
the following integrable evolution systems:

Ut5U3U313U2U1U211/2U2U11UV12U1V,

Vt522U3V323U2V1U226U2U1V223UV1U1
223/2U2V12VV1 ,

Ut5U3r316U2r2~V11U1U !16U1V2r213U1
3r2112UU1

2V1r112U1V1
2r

1U1U~2V11/3U2!1V1r,

Vt522V3r326UV1U2r2212V2r2~V11U1U !

23rU1
2V1~2V15U2!212UV1

2U1r21/3UV1~5U216V!,

accordingly (r5U212V). The analogous transformation with ther3 yields the following mixed
system:

Ut5U3 /X1
316~ tUU11UX11U1X1tV1!U2 /X1

216tU1V2 /X1
212UU1X2 /X1

212~6tXV1 /X1

12tU212XU16t2UV1 /X113/X1!U1
2112t2U1V1

2/X113tU1
3/X1

21V1 /X1

1~U/X122/3U3t2X/t/X112X2U/t14U2X1116V1tU !U1 ,

Vt522V3 /X1
326U2~X1tU !V1 /X1

2212V2~U1X1UX11tUU11tV1!/X1
224UV1X2 /X1

2

23~ t/X114X214t2U218tXU!U1
2V1 /X124~2tUX113tXU113t2UU1!V1

2/X1

22V1U1~3/X1110tU2110XU!1V1~2X2U/t28U2X122/3U3t2U/X12X/t/X1!,

Xt522/X1U2~X1tU !14/X1tV21~ t/X124X228tXU24t2U2!U1
218t2V1

224X1U1U~X1tU !

18tUV1X114t~X1tU !V1U112U112X1~X2U/t21/3U3t !2X/t,

Xy51/~ tU212tV12XU!,

where X5x(t,y). The system~49! admits the substitutionsu→u1 and v1→v. The previous
transformationdy5r1 dx1u1 dt will be the contact onet85t, x85u, u85u1 , v85v under the
first of the substitutions. If we differentiate the second equation~49! and perform the substitution
v1→v, then the new conserved densityr5v and the new transformation~21! arise. For the
original system this transformation takes the following formt85t, x85v, u85u, v85v1 and
yields the system~u85U, v85V!:

Ut5V3U313V2V1U213VU1~VV21V1
2!12UVU11V,

Vt522V3V326V2V1V22V2U1 .

The system~50! possesses the three zeroth-order conserved densities:
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r15u1v, r25u224v2a29v2, r352u2at13u2t27v2t23v2at12/3xu12/3vx,

u15u21bv219/2u223/2u2a221/2v229/2v2a,

u252uu228vabv2218vbv22u1
214v1

2ab19v1
2b12u319u2v

13u2va124v2au154v2u147v3121v3a,

u3522uatu216utu212/3xu212/3xbv2214vtbv226vatbv21u1
2at

23u1
2t22/3u122/3bv117v1

2tb13v1
2atb13u2x112u2vt2u2xa16u3t142v2tu

22u3at118v2atu27v2x116v3at136v3t23v2xa.

The transformationt85t, dy5r1 dx1u1 dt, U(t8,y)5u(t,x), V(t8,y)5v(t,x) yields the fol-
lowing system:

Ut5U3r313r2U2~U11V1!13/2r2V2U1~a13!13/2rU1
2V1~a13!13/2rU1V1

2~a13!

13/2U1~2U214UV19V21U2a13V2a!23/2rV1~23U111V15ra26Ua!,

Vt5bV3r323/2r2U2V1~a13!13r2bV2~U11V1!23/2rU1
2V1~a13!23/2rU1V1

2~a13!

23rU1~22r13V1ra2Va!23V1~3U213UV22V21VaU2V2a!,

wherer5U1V. Other transformations~21! corresponding to ther2 andr3 give too cumbersome
systems and we omit them.
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constructions in the action-angle variables
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A constructive method of transforming a completely integrable in Liouville’s sense
Hamiltonian system into Magri–Morosi–Gel’fand–Dorfman’s~MMGD! bi-
Hamiltonian form is presented. The approach is carried out by making use of the
action-angle coordinates. The classical Kepler problem is shown to be a MMGD
bi-Hamiltonian system. Explicit plethoras of higher-order conserved quantities for
the Kepler problem are derived by employing Oevel’s method based on the exis-
tence of the MMGD bi-Hamiltonian representation. ©1997 American Institute of
Physics.@S0022-2488~97!02112-9#

I. INTRODUCTION

Over the last almost 20 years Magri’s approach1 to integrability through bi-Hamiltonian
structures has become one of the classical methods of integrability of evolution equations
with, for example, the Hamilton–Jacobi method of separation of variables or the method
Lax representation.2 It has been proven to be a powerful tool in studying both finite- and infin
dimensional dynamical systems. In this paper we limit our consideration to the former ty
systems.

Given a general dynamical system defined on a 2k-dimensional manifoldM ,

ẋ~ t !5X~x!, xPM , XPTM. ~1!

Then, if the system~1! admits two different Hamiltonian representations:

ẋ~ t !5XH1,H2
5P1 dH15P2 dH2 , ~2!

its integrability as well as many other properties is subject to Magri’s approach. Here th
Hamiltonian vector fieldXH1,H2

is defined by two pairs of Poisson bivectorsP1 ,P2 and Hamil-
tonian functionsH1 ,H2 . In this case the manifoldM equipped with two Poisson bivectors
called adouble Poisson manifoldand the quadruple (M ,P1 ,P2 ,XH1,H2

)—bi-Hamiltonian system.
Remarkable properties of the finite-dimensional system~2! defined by means ofcompatible3

Poisson bivectorsP1 and P2 were discovered by Gel’fand and Dorfman,4 which were, in turn
generalized by Magri and Morosi.5 The main result was that the compatibility condition forP1

andP2 , providing complete integrability in Liouville’s sense, appeared to be intimately relate
the vanishing properties of the Nijenhuis tensor of the operatorA:5P1P2

21 ~assumingP2 nonde-
generate!. We call6 such systems theMagri–Morosi–Gel’fand–Dorfman (MMGD) bi-
Hamiltonian systems—to keep them distinct from the bi-Hamiltonian systems with incompat
Poisson pairs~see Olver and Nutku,7 Olver,8 and Bogoyavlenskij9!.

Since the time of Magri’s discovery~1978!, there have been published an impressive num
of papers devoted to the study of the MMGD bi-Hamiltonian systems and their properties
Dorfman,10 McKean,11 Olver,12 Bogoyavlenskij,9 and the relevant references herein. Most of

a!Electronic mail: smirnovr@mast.queensu.ca
0022-2488/97/38(12)/6444/11/$10.00
6444 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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known physical models with finite- as well as infinite-dimensional phase spaces have been
to be integrable in the framework of the MMGD approach~although there are slight deviations
the infinite-dimensional case!:

Theorem 1.1: (Magri-Morosi-Gel’fand-Dorfman) Given a MMGD bi-Hamiltonian system
(M ,P1 ,P2 ,XH1,H2

) defined on a manifold of the dimension2k. Then, if the linear operator A:5

P1P2
21 (assuming P2 is nondegenerate) has functionally independent eigenvalues of min

degeneracy i.e.,—exactly k eigenvalues, the dynamical system determined by the vect
XH1,H2

,

ẋ~ t !5XH1,H2
~x!,

is completely integrable in the Arnol’d–Liouville sense.
Besides integrability, the MMGD bi-Hamiltonian structure leads to many other useful p

erties. Thus, if a MMGD system~2! admits additionally a scaling invariance~a variant of
Fuchssteiner’s master symmetry13! for XH1,H2

, P1 , and P2 , one can derive a plethora of ne
invariant objects with respect toXH1,H2

. This result is due to Oevel14 ~see also Refs. 15–17!.
The major problem one has to overcome, while tackling a Hamiltonian system in this w

to find a second Poisson bivector compatible with the initial one, yet providing the Hamilto
vector field with a second Hamiltonian representation, which naturally implies the existenc
second Hamiltonian function. As a rule, such a problem is a very nontrivial matter in a
applications, and in most of the cases it has been solved in a rather empirical way~see, for
instance, Das and Okubo18!, involving a great deal of guesswork. In Ref. 6 we presented a me
of generating a second Poisson bivectorP2 compatible with the initial oneP1 , defining a general
Hamiltonian system: (M ,XH1

,P1), and thus transforming it~if certain assumptions are satisfie!
into the MMGD bi-Hamiltonian form, with all the ensuing consequences. This was carried o
introducing a new geometrical object related to a general Hamiltonian systemXH5P dH: a
master locally Hamiltonian (MLH) vector field, or a vector fieldYP which is not locally Hamil-
tonian (LYP

PÞ0), while the commutator@YP ,XH# is L @YP ,XH#P50. Then, if a proper MLH

vector field exists, one can generate via the Lie derivation a second Poisson bivectP̃:
5LYP

P, compatible with the given one, yet preserved by the Hamiltonian vector field. Altho
the approach has been successfully applied to study some physical models, including th
lattice, its drawback is thatP̃ may not be, in general, a Poisson bivector~or it may be highly
degenerate!, i.e., it does not necessarily satisfy the condition@P,P#50. Here and below the
bracket@ , # is that of Schouten.19

In this paper we show that the situation is different if the method is applied to a gen
completely integrable in the Arnol’d–Liouville sense, system admitting the action-angle varia
That it is always possible to choose an appropriate MLH vector field dependent on the
variables only and such that the corresponding tensor generated through it will be a P
bivector preserved by the Hamiltonian vector field. We note that an alternative method of
forming a general Hamiltonian system into the MMGD bi-Hamiltonian form~2!, employing the
Lax–Nijenhuis (LN) operators, was recently presented by Kosmann-Schwarzbach and Magr20

II. THE POWER OF THE ACTION-ANGLE VARIABLES

It is widely known that the idea of considering a Liouville-integrable Hamiltonian system
the action-angle coordinates leads to many interesting results elucidating general prope
Hamiltonian systems~see Abraham and Marsden21!. Starting from the work by Brouzet,22 where
the author classified all symmetries of a given completely integrable Hamiltonian system, the
have found many applications in studying Hamiltonian systems, including its bi-Hamilto
subclass~see Refs. 9, 23, and 24!. In this section we briefly enumerate the most important of th
results to be used in the forthcoming sections.
J. Math. Phys., Vol. 38, No. 12, December 1997
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According to the classical Arnol’d–Liouville theory,25,26 a Hamiltonian system (M ,XH ,P0)
admits the action-angle representation if it takes the following form on a 2k-dimensional Poisson
manifold (M ,P0):

J̇150,...,J̇k50, ẇ15v1~J!,...,ẇk5vk~J!,
~3!

v j~J!5
]H

]Jj
, H~J!5H~J1 ,...,Jk!,

in a toroidal domainO 5Ba3Tk,M . The action coordinatesJ1 ,...,Jk run over a ball
Ba :( i 51

k (Ji2Ji0)2,a2. The angle coordinatesw1 ,...,wk run over a torusTk, 0<w j<2p in the
compact case or over a toroidal cylinderTm3Rk2m, 0,m,k if the invariant manifolds of
constant levelJj (x)5const, j 51,...,k are noncompact. In the action-angle variables the co
sponding Poisson structureP0 has the canonical form

P05(
i 51

k
]

]Ji
∧

]

]w i
. ~4!

The action variables are in involution with respect to the Poisson bivector~4!.
Definition 1.1: The Hamiltonian system (3) is called aC -integrable Hamiltonian system in a

domainO ,M if it is completely Liouville integrable and in the domainO all invariant submani-
folds of constant level of the k involutive first integrals are compact.

Brouzet22 presented a complete classification in terms of the action-angle coordinates
the symmetries related to theC -integrable, nondegenerate@i.e., with the Hessian of maximum
rank onO ,M system~3!#. Thus it has been proven that an arbitrary symmetryY of the system
~3!: @Y,XH#50, Y has the following form:

Y5(
i 51

k

Ai~J1 ,...,Jk!
]

]w i
. ~5!

By now this result has had a number of interesting consequences proving to be quite fruit
Ref. 9, Bogoyavlenskij classified allC -integrable@i.e., invariant with respect to theC -integrable
system~3! symplectic formsvc in the toroidal domainO 5Ba3Tn,M :

vc5(
i 51

k

dS ]B~ I 1 ,...,I k!

]I i
D∧dw i1d fi∧dJi ,

I i5
]H~J1 ,...,Jk!

]Ji
, i 51,...,k, ~6!

whereB(I 1 ,...,I n) and f i(J1 ,...,Jn) are arbitrary functions ofk arguments defined in the ballBa .
Similarly, there were classified allC -invariant Poisson bivectors of~3!.

As a consequence of the formula~5! we derived23 an analogous classification formula of a
master symmetries of aC -integrable vector fieldXH :

Z5(
i 51

k

Bi~J1 ,...,Jk!
]

]Ji
1(

i 51

k

Ci~J1 ,...,Jk!
]

]w i
. ~7!

The action–angle variables approach has also proven to be quite useful in studying of
general questions. In Ref. 24 Fernandes found a necessary and sufficient condition for a
system~3! to admit a MMGD bi-Hamiltonian representation. Thus, it was observed that a c
J. Math. Phys., Vol. 38, No. 12, December 1997
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pletely integrable Hamiltonian system is a MMGD bi-Hamiltonian iff the graph of the Ham
tonian function is a hypersurface of translation with respect to the affine structure of the a
coordinates. Note that this result was a generalization of the earlier result for four-dimen
phase space presented by Brouzet in Ref. 27.

III. CANONICAL POISSON BIVECTOR šCOMPATIBLE POISSON PAIR

The key point in the theory of MMGD bi-Hamiltonian systems is the existence of a com
ible Poisson pair connected with the system. As it was already stated, for a given Poisson b
P it is possible to construct a compatible Poisson bivectorP̃ by acting on the former one via th
Lie derivative along some vector fieldP̃:5LYP. We get the compatible Poisson pairP,P̃,
provided the resulting geometrical objectP̃ is a Poisson bivector. In the general case it is
always assured.6 Let us see what happens if we initially consider the canonical Poisson biv
~4! in the neighborhood of a Liouville’s torus. Then for an arbitrary vector fieldY:

Y5(
i 51

k

Ai~J,w!
]

]Ji
1(

i 51

k

Bi~J,w!
]

]w i

J:5J1 ,...,Jk ; w:5w1 ,...,wk , ~8!

the resulting~2,0! skew-symmetric tensorP̃:5LYP0 takes the form

P̃5 (
i , j 51
i , j

k S ]Ai

]w j
2

]Aj

]w i
D ]

]Ji
∧

]

]w j
2 (

i , j 51

k S ]Ai

]Jj
2

]Bj

]w i
D ]

]w i
∧

]

]w j
2 (

i , j 51
i , j

k S ]Bi

]Jj
2

]Bj

]Ji
D ]

]w i
∧

]

]w j
.

~9!

The tensor~9! still, in general, is not a Poisson bivector, but now we can choose the func
Ai(J,w), Bi(J,w); i 51,...,k such thatP̃ satisfies the condition@ P̃,P̃#50, proving that it is a
Poisson bivector. Indeed, let the vector field~8! be a special form of the general master symme
~7!. Set

Ai :5Ai~J1!, Bi :5Bi~Ji !; i 51,...,k.

Then ~9! reduces to

P̃52 (
i , j 51

k
]Ai

]Jj

]

]Ji
∧

]

]w j
52( i 51

k ]Ai

]Ji

]

]Ji
∧

]

]w i
. ~10!

Now, using the basic properties of the Schouten bracket for the Grassmann algebraV (M )5
( % i 51

n
V i ,∧), whereV i denotes the space ofi vectors:28

@P,Q#5~21!pq@Q,P#,

@P,Q∧R#5@P,Q#∧R1~21!pq1qQ∧@P,R#,

PPV p~M !, QPV q~M !, RPV r~M !,

one easily checks that

@ P̃,P̃#50.

Therefore we arrive at the following conclusion.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proposition 3.1: Let P0 be a canonical Poisson bivector (4) related to the system~3!. Then for
a master symmetry Z of the type

Z5(
i 51

k

Ai~Ji !
]

]Ji
1(

i 51

k

Bi~Ji !
]

]w i
, ~11!

the tensors P0 and P̃ constitute a compatible Poisson pair, where P˜5LZP0 .

IV. CONSTRUCTION OF THE MMGD STRUCTURE

In the preceding section we showed that in a neighborhood of Liouville’s torus it is alw
possible to construct a compatible Poisson pair out of the canonical Poisson bivector~4! associated
with the system~3!. Although it is not enough for the Hamiltonian system to be of the MMG
bi-Hamiltonian type. The second Poisson bivectorP̃ ~10! must satisfy certain properties: first, b
preserved byXH : LXH

P̃50 and then provide the Hamiltonian vector field with a different Ham
tonian structure,

XH5 P̃ dH̃, ~12!

which clearly would imply the existence of the second Hamiltonian functionH̃ satisfying~12!. As
it was shown in Ref. 6, the first condition holds if the vector field~11! used in the construction o
P̃ is a MLH vector field for the system~3!, i.e., if it satisfies the conditions

LZP0Þ0, ~13!

L @Z,XH#P050. ~14!

Let us verify when the condition~14! holds for an arbitrary vector fieldY:

Z5( i 51
k Ci~J,w!

]

]Ji
1(

i 51

k

Di~J,w!
]

]w i
.

Compute

@Z,XH#52( i , j 51
k v j

]Ci

]w j

]

]Ji
1 (

i , j 51

k S Cj

]v i

]Jj
2v j

]Di

]w j
D ]

]w i
. ~15!

The vector field~15! must preserveP0 . Then, following the formula~9!, the condition~14!
transforms in terms of the action-angle coordinates into the following system of linear PDE

~a!
]Vi

]w j
5

]Vj

]w i
; i , j 51,...,k; iÞ j ,

~b!
]Vi

]Jj
52

]Wj

]w i
; i , j 51,...,k, ~16!

~c!
]Wi

]Jj
5

]Wj

]Ji
; i , j 51,...,k; iÞ j ,

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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Vi52(
j 51

k

v j

]Ci

]w j
, Wi5(

j 51

k S Cj

]v i

]Jj
2v j

]Di

]w j
D .

Here we have used the equivalenceLZP050⇔LZv050, v05P0
21 and the formulaLZv05v0 .

Clearly, in the case of the vector fieldY being a master symmetry of the type~11! the conditions
~a! and ~b! of ~16! are trivially satisfied. The last condition,~c! of ~16! becomes

]Ci~Ji !

]Ji

]v j

]Ji
1(

l 51

k

Cl~Jl !
]2v j

]Jl]Ji
5

]Cj~Jj !

]Jj

]v i

]Jj
1(

l 51

k

Cl~Jl !
]2v i

]Jl]Jj
,

imposing certain restrictions on the functionsCi , i 51,...,k and the frequenciesv1 ,...,vk of the
system~3!. The condition,~c! of ~16! is satisfied, for example, for a master symmetry~11! and the
set of functionsv1 ,...,vk each depending on a single action variable:v15v1(J1),...,vk

5vk(Jk). In such a case, therefore, the Poisson bivectorsP̃5LZP0 andP0 constitute a compat-
ible Poisson pair preserved by the Hamiltonian vector fieldXH . This means that the Hamiltonia
vector fieldXH ~3! is locally Hamiltonian with respect toP̃: LXH

P̃50⇔XH5 P̃a, aPT* M . In
this caseP is closed on its image.

Assume now that the graph of the Hamiltonian functionH of the system~3! is a hypersurface
of translation with respect to the affine structure of the action variables. It has been proven24 that
this fact is a necessary and sufficient condition for the system~3! to admit a MMGD bi-
Hamiltonian structure. Indeed, in this case the HamiltonianH admits a parametrization:

H→H~J1 ,...,Jk!5F1~J1!1F2~J2!1...1Fk~Jk!.

Let us show that the 1-forma,

a:XH5P0 dH5 P̃a, a~J!PT* M , ~17!

is closed. Indeed, from~17! it follows that

dH5P0
21P̃a5A* a; A* 5P0

21P̃,

where the linear operatorA* takes the form

A* 5(
i 51

k

Ai~Ji !dJi ^
]

]Ji
1(

i 51

k

Ai~Ji !dw i ^
]

]w i
.

Hence the 1-forma gets split up as follows:

a5(
i 51

k

a i~Ji !dJi , a i~Ji !5
]Fi~Ji !

]Ji
Ai

21~Ji !,

which leads to

da5( i , j 51
k S ]a i

]Jj
2

]a j

]Ji
DdJi∧dJj50.

Thereforea is closed and, by the Darboux theorem, exact in the global action variablesJ1 ,...,Jk

in the toroidal domainO ,M :

a5dH̃.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Hence, we have proved the following:
Theorem 4.1:Given the completely integrable Hamiltonian system (3). Suppose the gra

the Hamiltonian function H is a hypersurface of translation with respect to the affine structu
the action variables J1 ,...,Jk . Then, the master symmetry Z,

Z5(
i 51

k

Ai~Ji !
]

]Ji
1(

i 51

k

Bi~Ji !
]

]w i
,

transforms the Hamiltonian system into the MMGD bi-Hamiltonian form

XH5P0 dH5 P̃ dH̃,

provided the frequencies of~3! and functions Ai(Ji),i 51,...,k satisfy the condition~16c!. Here
P̃5LzP0 and H is the corresponding second Hamiltonian function.

We note that this approach, based on complete integrability of the initial Hamiltonian sy
~3!, allows us to investigate some particular properties of a MMGD bi-Hamiltonian system
constructed. For example, one can apply Oevel’s method14 of constructing plethoras of conserve
quantities of the system~3!. This is the subject of the section that follows.

V. THE KEPLER PROBLEM

The classical Kepler problem describes the motion of a moving particle in the gravity fie
an attracting center. In the physical position-momenta coordinates it has the canonical H
tonian representation inR6 of the form

ṗi52
]H~q,p!

]qi
, q̇i5

]H~q,p!

]pi
, P05(

i 51

3
]

]qi
∧

]

]pi
; ~18!

i 51,2,3,

with the Hamiltonian functionH:

H~q,p!5
1

2m
~p1

21p2
21p3

3!2
GM0m

r
,

where m is the mass of the moving center,M0 is the mass of the attracting center, andr
5Aq1

21q2
21q3

2. This system has three first integrals of angular momentum,

Mi5e i jkpjqk ,

and the three Lenz–Runge first integrals,

Ri5
1

m
e i jkpiMk1

GMm

r
qi ,

wheree i jk is the alternating tensor,i , j ,k51,2,3. In the spherical-polar coordinates (r ,u,f) the
system~18! admits the action-angle representation in the coordinates29 (Jr ,Ju ,Jf ,w r ,wu ,wf):

XH5
4p2mk2

~Jr1Ju1Jf!3 (
h

]

]wh
, Hf52

2p2mk2

~Jr1Ju1Jf!2,

P052(
h

]

]Jh
∧

]

]h
, h5~r ,u,f!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Note that Marmo and Vilasi30 have found a second Hamiltonian formulation in the coordina
(Jr ,Ju ,Jf ,w r ,wu ,wf) for the system~18!. Compatibility of its Poisson bivector with the initia
canonical Poisson bivector was proven by checking vanishing of the Nijenhuis tensor o
corresponding recursion operator.

To apply the result of Theorem 4.1, we transform the system of the action–angle var
(Jr ,Ju ,Jf ,w r ,wu ,wf) into the following form:

J15Jf ,
J25Jf1Ju ,
J35Jr1Ju1Jf ,

w15wf2wu ,
w25wu2w r ,
w35w r .

~19!

We note that the set of variablesJ1 , J2 , J3 , w1 , w2 , w3 differs from the classicalDelaunay
elements31 L, G, Q, l , g, u by constants.

In the new system of the action–angle coordinates~19! the Hamiltonian system takes
specially simple form:

XH5
4p2mk2

J3
3

]

]f3
, H52

2p2mk2

J3
2 , ~20!

P052(
i 51

3
]

]Ji
∧

]

]f i
. ~21!

Now the application of the result of Theorem 4.1 becomes fairly straightforward. Introduc
vector fieldZMLH :

ZMLH5(
i 51

3

Ji
2 ]

]Ji
1(

i 51

3

Ji
2 ]

]f i
, ~22!

which is both a MLH vector field and a master symmetry of the system~20!–~21!. Note, that both
the vector fieldZMLH and the vector field of~21! satisfy the requirements of Theorem 4.1. The
acting onP0 through the Lie derivative alongZMLH , we get the second Poisson bivectorP̃:

P̃5LZMLHP0522(
i 51

3

Ji

]

]Ji
∧

]

]w i
,

compatible with the initial one~21!, yet preserved byXH . The HamiltonianH ~20! is defined by
a hypersurface of translation. The second HamiltonianH̃ is easily found to be

H̃52
2p2mk2

3J3
3 ,

which altogether shows that the Kepler problem in the action–angle coordinates admi
MMGD bi-Hamiltonian representation:

XH,H̃5P0 dH5 P̃ dH̃, @P0 ,P̃#50.

This does not produce new functionally independent constants of motion, however, we can
Oevel’s approach14 to construct exact hierarchies of preserved quantities. All we need now
appropriate scaling invariance14 associated with the MMGD bi-Hamiltonian system. Choose
J. Math. Phys., Vol. 38, No. 12, December 1997
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ZSI5(
i 51

3

Ji

]

]Ji
1(

i 51

3

Ji

]

]f i
.

Then,

LZSI
XH,H̃52

12mk2

J3
3

]

]f3
523XH,H̃ a523,

LZSI
v05v0 ,

LZSI
P̃522P̃,

b51,
g522.

Defining the sets of vector fields,

$Xn ,Xn :5AnX0~X05XH,H̃!,nPM% and $Zn ,Zn :5AnZ0~Z05ZSI!,nPZ%,

whereA5 P̃P0
21, one finds, employing Oevel’s formulas,

LZn
~Xm!5„a1m~b1g!…Xm1n,

LZn
~Zm!5~b1g!~n2m!Zm1n ,

LZn
~A!5~b1g!An11, ~23!

LZn
~Pm!5„2g1~m1n!~b1g!…Pm1n ,

LZn
~vm!5„g1~m2n!~b1g!…vm1n .

for a523, b51, andg522 the following plethoras of conserved quantities for the Kep
problem:

LZn
~Xm!5~32m!Xm1n ,

LZn
~Zm!52~n2m!Zm1n ,

LZn
~A!52An11, ~24!

LZn
~Pm!5„22~m1n!…Pm1n ,

LZn
~vm!52„21~n2m!…vm1n ,

for all admissiblen andm. We note that the vector fieldsZn , nPZ are master symmetries of th
MMGD bi-Hamiltonian system~20!–~21! constituting a Virasoro-type Lie algebra. All the Poi
son bivectorsPn , nPZ and symplectic structuresvn , nPZ are mutually compatible.

Remark 5.1:Strictly speaking, the Kepler problem is not aC -integrable Hamiltonian system
in view of its complete degeneracy~i.e., the Hessian50!. Thus the formulas~5! and ~7! do not
classify all its symmetries and master symmetries, respectively, although the sufficient p
these statements definitely holds.
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VI. CONCLUSIONS

We have shown that the action-angle variables can be a powerful tool in solving the pro
of transforming of the related completely integrable Hamiltonian system~3! into its MMGD
bi-Hamiltonian form. The application of the result to the Kepler problem is due to the possi
of transforming the action–angle coordinates (Jr ,Ju ,Jf ,w r ,wu ,wf) connected with the
apherical-polar coordinates (r ,u,f) to the simpler form~19!. We note that in Ref. 30 the author
presented a MMGD bi-Hamiltonian representation for the Kepler problem in the spherical-
action-angle coordinates. The MMGD bi-Hamiltonian representation allows us to apply Oe
method of deriving exact plethoras of conserved quantities. Similar way of finding a se
Hamiltonian representation may be employed in the study of infinite-dimensional evolution
tions. The work in this direction is underway.
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895–898~1990!.

28I.e., skew-symmetric, contravariant tensors of valencei .
29H. Goldstein,Classical Mechanics~Addison–Wesley, Reading, 1980!.
30G. Marmo and G. Vilasi, ‘‘When do recursion operators generate new conservation laws?,’’ Phys. Lett. B277, 137–140

~1990!.
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Darboux and binary Darboux transformations
for the nonautonomous discrete KP equation

R. Willox,a) T. Tokihiro, and J. Satsuma
Graduate School of Mathematical Sciences, University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan

~Received 14 April 1997; accepted for publication 15 August 1997!

It is shown how Darboux and binary Darboux transformations for a nonautono-
mous discrete KP equation can be obtained from fermion analysis. This equation is
obtained by considering a generalized Miwa transformation; it is also shown to be
linked to the discrete KP equation by a special gauge transformation. The Darboux
and binary Darboux transformations are used to discuss general classes of solutions
in the form of Casorati- and Gramm-type determinants.N-soliton solutions are
discussed as well. ©1997 American Institute of Physics.
@S0022-2488~97!00412-X#

I. INTRODUCTION

In this paper we deal with explicit classes of solutions for the nonautonomous discre
~n-dKP! equation,

„b~m!2c~n!…t~ l ,m21, n21!t~ l 21, m,n!1„c~n!2a~ l !…t~ l 21,m,n21!t~ l ,m21,n!

1„a~ l !2b~m!…t~ l 21, m21, n!t~ l ,m,n21!50. ~1!

The nonautonomous equation differs from the well-known discrete KP~dKP! equation1 by the fact
that the coefficients appearing in the equation are allowed to depend on the discrete variable
It is noted that the dKP equation is equivalent to the Hirota–Miwa equation.2 Very recently, the
importance of this kind of nonautonomous equation was demonstrated in the connectio
soliton cellular automata.3

It is a well-known fact that the dKP equation can be recovered from the standard ferm
approach to the KP hierarchy, by virtue of the so-called Miwa transformation.1 A crucial obser-
vation is that a straightforward generalization of this transformation gives rise to the n
equation. Our aim in this paper is to demonstrate how one may take advantage of this fact in
to describe general classes of solutions for this equation. The method we adopt for const
explicit solutions for this system relies on finding Darboux4,5 and binary Darboux
transformations.6,7 In the case of continuous equations, such transformations are known to pr
a powerful tool for obtaining explicit solutions; recently, however, some attempts have been
to expand their applicability to discrete equations.8–10

In recent years, there has been considerable interest in the problem of elucidating the lin
exist between Sato theory and Darboux transformations or so-called binary Da
transformations.11,12 In a forthcoming paper,13 these links are discussed from the point of view
the fermionic analysis.14,15More specifically, it is explained that the action of a vertex operator
a tau function can be interpreted in terms of a specific potential that lies at the core o
definition of the binary Darboux transformation. The main advantage of this particular appro
that the identities that can be deduced from fermionic analysis take the form of difference
tions. It is therefore possible to adapt them in a very straightforward manner to the case of d
systems. The principal idea of the present paper therefore is to exploit these fermionic ide

a!Permanent address: Vrije Universiteit Brussel, Dienst Theoretische Natuurkunde, Pleinlaan 2, B-1050, Brussel, B
0022-2488/97/38(12)/6455/15/$10.00
6455J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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~for the proofs of which we refer the reader to Ref. 13! for constructing Darboux and binar
Darboux transformations for the n-dKP equation. Apart from this novel construction, we
establish the existence of a gauge transformation between the present n-dKP equation
special version of the dKP equation.9 This gauge transformation will allow us to connect t
binary Darboux transformations and Darboux transformations for both types of equations
thermore, as the recursive use of such transformations for the construction of determinan
tions is well established,9 the gauge transformation offers us a considerable shortcut when we
discuss the existence of solutions. However, it will also be explained that explicit solutions~such
as N-soliton solutions! are best discussed on the n-dKP equation, rather than through g
transformation of known ones. For this reason, and as it is clear that the general const
presented in this paper naturally leads to the nonautonomous setting, we feel that the exist
the gauge transformation does not detract from the importance of the n-dKP equation
integrable discrete system by itself.

In Sec. II, we shall explain how to use certain ‘‘fermionic’’ identities, expressed in term
wave and adjoint wave functions for the KP hierarchy to obtain the linear and ‘‘adjoint’’ lin
problems for the n-dKP equation. The basic notation regarding the discrete variables w
introduced as well. Section III is entirely devoted to the link that exists between the v
operator for the KP hierarchy and binary Darboux transformations for the n-dKP equatio
potential~defined in terms of a wave and an adjoint wave function! will be introduced, and it will
be shown that this potential is closely related to the action of the vertex operator on a tau fun
This potential is the main ingredient in the binary transformation, which we can then constru
Sec. IV a similar construction will be shown to give rise to Darboux~and adjoint Darboux!
transformations. Once these transformations are available, they can be used to generate c
explicit solutions. These solutions will have the form of special types of determinants expres
terms of solutions to the linear~and/or adjoint linear! problems of the n-dKP equation~the solu-
tions of which will be referred to as ‘‘eigenfunctions’’ and ‘‘adjoint eigenfunctions’’!. In Sec. V
we start by considering the gauge transformation that exists between the n-dKP and dKP
tions. We then proceed to establish the link between the binary Darboux transformation
Darboux transformations for both types of equations. A link that allows us to treat the existen
determinant solutions in terms of those already obtained for the dKP equation.9 In this manner,
binary Darboux transformations will be seen to give rise to solutions of the Gramm type, wh
~adjoint! Darboux transformations yield Casorati-type solutions. Finally, in Sec. VI, it will
explained howN-soliton solutions are incorporated in the previous results. It will be pointed
that these solitons are not the ones one would naturally obtain from the dKP soliton sol
through gauge transformation.

II. FERMION ANALYSIS, LINEAR PROBLEMS, AND THE NONAUTONOMOUS dKP

The crucial observation with respect to the n-dKP equation is that this integrable, fully
crete system can be derived from the fermion analysis for the KP hierarchy, by using a gene
Miwa transformation:

x5(
i

l

eS 1

a~ i ! D1(
j

m

eS 1

b~ j ! D1(
k

n

eS 1

c~k! D , ~2!

relating a set of continuous variablesx5(x1 ,x2 ,x3 ,...), to a set ofdiscrete variablesl , m, andn
~in this particular case we restrict the number of discrete variables to 3!. In the above transforma
tion formula,e(k21) stands for the ‘‘weighted’’ sequence (1/k,1/(2k2),1/(3k3),...). Here( i

l , etc.
denotes the convention
J. Math. Phys., Vol. 38, No. 12, December 1997
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(
i

l

[5 (
i 51

l

, for l>1,

0, for l 50,

2 (
i 5 l 11

0

, for l<21,

~3!

and the functionsa, b, andc only depend on a single variable each—in this casel , m, andn,
respectively. In what follows, this argument—specific to each of these functions—wil
dropped. A subscript, however, will be added to indicate an increment or decrement~in that case
denoted by primed subscripts! in that particular variable with respect to the ‘‘reference’’ valuel ,
m, or n; e.g., al stands fora( l 11), a(r ) l for a( l 1r ), whereasa(r ) l 8 denotesa( l 2r ) ~and
accordingly for the two remaining functionsb andc!. Clearly, taking the functionsa, b, c to be
constants, we recover the Miwa transformation, restricted to three discrete variables.

The key relation in our approach is the following difference equation13 @which can be checked
using the definition of the vertex operatorX̂(p,q)14#:

S X̂~p,q!t

t D „x1e~l21!…2S X̂~p,q!t

t D ~x!5
p2q

l
c„x1e~l21!,p…c* ~x,q!. ~4!

This equation will allow us to reinterpret the action of the vertex operator on a tau functiont, as
the multiplication of that tau function by a well-defined potential. As we shall see, two o
difference identities will be needed in order to prove the exactness of this potential an
constructing the binary Darboux transformation associated to it. These identities are

1

l
[c* ~x,q!c~x1e~l21!,p…2c* „x2e~m21!,q…c„x2e~m21!1e~l21!,p…#

52
1

m
@c* „x2e~m21!,q…c~x,p!2c* „x2e~m21!1e~l21!,q…c„x1e~l21!,p…#,

~5!

1

m
c* ~x,q!c(x1e~m21!,l…

5
1

l
@c„x1e~m21!,l…c* „x1e~m21!2e~l21!,q…2c~x,l!c* „x2e~l21!,q…#. ~6!

The wave functionsc~x,l! and adjoint wave functionsc* (x,l) appearing in these expression
have the standard representation in terms of a tau functiont :

c~x,l!5
t„x2e~l21!…

t~x!
ej~x,l! and c* ~x,l!5

t„x1e~l21!…

t~x!
e2j~x,l!, ~7!

where the functionj~x,l! is given byj(x,l)5(n>1xnln.
First, let us demonstrate how the transformation~2! can be used to obtain discrete versions

such difference relations, on yet another identity:

lc„x2e~l21!,p…c~x,l!5m@c~x,l!c„x2e~m21,p…2c„x2e~m21!,l…c~x,p!#. ~8!
J. Math. Phys., Vol. 38, No. 12, December 1997
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From the definition~2!, it is clear that ‘‘shifts’’ on the continuous variablex can be translated into
increments or decrements of one of the discrete variables:

x1e~l21!ul5al
5xu l→ l 11 or x2e~l21!ul5a5xu l→ l 21 . ~9!

By and large, in what follows we shall only be concerned with the behavior of functions
respect to the discrete variables. Hence the actual dependence of functions on the variablx will
be dropped@in this case, e.g., the wave functionsc~x,l! will be denoted asc~l!#. For that matter,
there will not be any explicit reference to the discrete variablesl , m, or n either, only increments
or decrements with respect to those variables will be indicated~in the way described above!. On
a few occasions, however, we do need to refer to some underlying continuous structure, in
case the variablesx will momentarily reappear in the appropriate way. Let us illustrate
approach.

Settingl5a, m5b in the identity~8!, we obtain

ac l 8~p!5bFcm8~p!2c~p!3S c„x2e~m21!,l…

c~x,l! D U
l5a,m5b

G . ~10!

Bearing in mind the tau function representation of eigenfunctions~7!, one easily finds that~for
a,b!

S c„x2e~m21!,l…

c~x,l! D U
l5a,m5b

5
t l 8m8t

t l 8tm8
S 12

a

bD . ~11!

Hence, we find that the wave functionsc(p) satisfy the following linear~discrete! equation:

c lm~p!5
1

bm2al

t ltm

tt lm
@bmc l~p!2alcm~p!#. ~12!

This result was obtained by making the particular choicel5a, m5b for the~spectral! parameters
l andm; of course, any other choice would have lead to a similar result. One possibility wou
to interchange the roles played byl andm; as it is natural, however, to require thatc lm5cml , we
find that Eq.~12! holds for allaÞb. Clearly, the wave functionsc(p) also have to satisfy two
additional linear equations, which can be obtained from~12! by replacing thel dependence (l ,a)
or m dependence (m,b) by (n,c).

Similarly, one can see that yet another difference identity:

lc* „x1e~l21!,q…c* ~x,l!5m@c* ~x,l!c* „x1e~m21!,q…2c* „x1e~m21!,l…c* ~x,q!#,
~13!

implies that adjoint wave functionsc* (q) satisfy ~setl5al , m5bm!

c* ~q!5
1

bm2al

t ltm

tt lm
@bmcm* ~q!2alc l* ~q!#, ~14!

as well as two additional such equations, again obtained by replacing (l ,a) or (m,b) by (n,c) in
~14!.

The nonautonomous dKP equation arises as the compatibility condition of these syste
linear equations~12!, ~14!:

~bm2cn!t ltmn1~cn2al !tmt ln1~al2bm!tnt lm50. ~15!
J. Math. Phys., Vol. 38, No. 12, December 1997
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III. BINARY DARBOUX TRANSFORMATION

As before, settingl5al in the difference relation~4!, we obtain

alF S „X̂~p,q!t…

t D
l

2
„X̂~p,q!t…

t G5~p2q!c l~p!c* ~q!. ~16!

The lhs of this equation suggests that we define the~forward! difference operator:

D l~• ![al@~• ! l2~• !#, ~17!

yielding

D l S „X̂~p,q!t…

t D 5~p2q!c l~p!c* ~q!. ~18!

We can now introduce the quantityV„c(p),c* (q)…, expressing the ratio ofX̂(p,q)t and t, or
equivalently,

X̂~p,q!t5~p2q!tV„c~p!,c* ~q!…. ~19!

From the derivation leading up to Eq.~18!, it is clear that this functionV has to satisfy the~three!
difference relations:

DkV„c~p!,c* ~q!…5ck~p!c* ~q!, for k5 l ,m,n. ~20!

From the identity~5! it follows immediately~l5al andm5b! that V, as defined by~20!, is an
exact potential:

Dm„c l~p!c* ~q!…5D l„cm~p!c* ~q!… ~21!

~and as such, is only defined up to an arbitrary constant!. In other words, we have succeeded
associating the action of the vertex operatorX̂(p,q) on a tau function, to the existence of
potentialV satisfying a set of linear~discrete! equations.

As is shown in Ref. 13 for the continuous case, this potential turns out to be the c
ingredient for the so-called binary Darboux transformation. In order to clarify this point, we
to derive two auxiliary relations. First, again making use of relation~5! (l5al), we find that

V„x2e~m21!…5V~x!2
1

m
c~x,p!c* „x2e~m21!,q…. ~22!

The second relation we need is obtained from the identity~6! by takingm5al :

@V„c~l!,c* ~q!…#~x!5
1

l
c~x,l!c* „x2e~l21!,q…. ~23!

All the ingredients now being in place, let us consider the action of the vertex operatorX̂(p,q) on
a tau functiont and let us denote the image of that tau function byt̂ :

t̂[X̂~p,q!t5~p2q!tV„c~p!,c* ~q!…. ~24!

Using the standard representation of wave functions~7!, we can express a general wave functi
associated to this new tau functiont̂ as
J. Math. Phys., Vol. 38, No. 12, December 1997
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ĉ~l!5
t̂„x2e~l21!…

t̂~x!
ej~x,l!5

c~l!

V„c~p!,c* ~q!… FV„c~p!,c* ~q!…2
1

l
c~p!c* „x2e~l21!,q…G ,

~25!

due to formula~22!. Using Eq.~23! we then find the binary Darboux transformation, mapping
wave functionc~l! to a new wave functionĉ(l) associated to the new tau functiont̂ :

ĉ~l!5c~l!2
c~p!

V„c~p!,c* ~q!…
V„c~l!,c* ~q!…. ~26!

A similar transformation can be obtained for the adjoint wave functions~we shall refer to it as
the ‘‘adjoint binary Darboux transformation’’!. The new adjoint wave functionĉ* (l) associated
to t̂ is given by

ĉ* ~l!5c* ~l!2
c* ~q!

V„c~p!,c* ~q!…
V„c~p!,c* ~l!…. ~27!

In the derivation of this result we used yet another difference identity that can be obtained
the fermionic approach, namely,

1

m
c* ~x,l!c„x1e~m21!,p…

5
1

l
@2c* „x1e~m21!,l…c„x1e~m21!1e~l21!,p…1c* ~x,l!c„x1e~l21!,p…#.

~28!

The crucial property that can be deduced from this identity is~at m5al!

V„c~p!,c* ~l!…52
1

l
c„x1e~l21!,p…c* ~l!. ~29!

Let us point out that the linear problem~12! can be obtained from this identity as well, by settin
l5a, m5bm . The adjoint linear problem~14! can be obtained from identity~6! by taking l
5a, m5bm .

A last and important remark concerns the nature of the binary transformations we ju
tained. It should be clear that the transformations~26! and~27! leave the linear problem~12! and
adjoint linear problem~14! invariant, upon introduction of the new tau functiont̂ @as given by
expression~24!#. This invariance is a purely algebraic property of the linear equations and o
binary transformations involved, and it can be checked as such. It does not require any
properties of the functionsc or c* making up the transformation or being transformed by it, ot
than that these functions solve the appropriate linear equations. In particular, this means t
same transformation properties hold for arbitrary solutions to the linear and adjoint linear
tions in general, i.e., also for those solutions that arenot wave functions. In the following, to make
this distinction, we shall refer to generic solutions of these linear equations aseigenfunctionsand
adjoint eigenfunctions; wave and adjoint wave functions being a subclass of these. Hence
binary transformations obtained above are transformations for eigenfunctions and adjoint
functions in general.
J. Math. Phys., Vol. 38, No. 12, December 1997
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IV. DARBOUX TRANSFORMATIONS

From fermionic analysis it is clear that given a wave functionc(p) and its associated ta
function t, their product is again a tau function:

t̃[tc~p!5t„x2e~p21!…ej~x,p!. ~30!

Now one can, of course, calculate the wave function, associated to this new tau functiont̃. In
order to perform this calculation, we need a formula that can be obtained from identity~8! by
settingm5b:

c„x2e~l21!,p…5
b

l

1

c~l!
@c~l!cm8~p!2cm8~l!c~p!#. ~31!

Then we have that, on account of~7!,

c̃~l!5c~l!
c„x2e~l21!,p…

c~p!
5

1

l

1

c~p!
b@c~l!cm8~p!2cm8~l!c~p!#, ~32!

i.e., we find the Darboux transformation mapping the wave functionc~l! ~corresponding tot! to
a wave functionc̃(l) associated to the new tau functiont̃. An important point to notice is tha
relation ~31! could just as easily have been obtained for thel or n variables~settingm5a or c,
respectively!. It should therefore be clear that the wave functionc̃(l) can be expressed using an
coordinate; i.e., the Darboux transformation itself will be coordinate independent. A remark
taining to eigenfunctions can be made here as well. Again, it should be clear that the trans
tion ~32! is such that it leaves the linear equations~12! invariant upon introducing the ‘‘trans
formed’’ tau functiont̃ in these equations. This invariance being purely algebraic in nature, it
requires that the functions involved in the transformation are solutions to these linear equ
Hence, although~32! was originally obtained for wave functions, exactly the same Darb
transformation will hold for eigenfunctions in general.

In order to derive a transformation for adjoint wave functions or eigenfunctions, we ne
relation similar to~31!. Such a relation can be obtained from identity~13!, e.g., by settingm
5bm :

c* „x1e~l21!,q…5
bm

l

1

c* ~l!
@c* ~l!cm* ~q!2cm* ~l!c* ~q!#. ~33!

Using this formula we can calculate the adjoint wave functionc̃* corresponding tot̃ :

c̃* ~l!52
1

l

1

c* ~q!
bm@c* ~q!cm* ~l!2cm* ~q!cl* #, ~34!

an expression that will define an ‘‘adjoint Darboux transformation;’’ i.e., mapping adjoint ei
functions into new adjoint eigenfunctions associated to the tau functiont̃.

V. CASORATI AND GRAMMIAN SOLUTIONS

We are now in a position to discuss explicit solutions for the n-dKP equation~15!. To this
purpose, the Darboux and binary Darboux transformations we derived earlier can be used
sively, starting from a suitable ‘‘seed’’ solution that we shall denote astvac. In this way it can be
seen that a binary Darboux transformation gives rise to Grammian determinant solutions w
a Darboux transformation will yield Casorati determinant solutions. As such results have
J. Math. Phys., Vol. 38, No. 12, December 1997
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ously been shown to hold in the case of the dKP equation,9 we can use a gauge transformation
which exists between this equation and the nonautonomous dKP equation—to establish th
tence of similar results in the present case.

The gauge transformation reads as

t85t3A~m,n!B~ l ,n!C~ l ,m!, ~35!

where

A~m,n!5)
i

m

)
j

n

@b~ i !2c~ j !#,

B~ l ,n!5)
i

l

)
j

n

@a~ i !2c~ j !#,

C~ l ,m!5)
i

l

)
j

m

@a~ i !2b~ j !#, ~36!

with the following multiplication convention:

)
i

k

F~ i , j ,...![5 )
i 51

k

F~ i , j ,...!, for k>1,

1, for k50,

)
i 5k11

0

F~ i , j ,...!21, for k<21,

~37!

for each multiplicationP i
k appearing. It can be easily verified that these transformed functiont8

satisfy a special version of the dKP equation:

t l8tmn8 2tm8 t ln8 1tn8t lm8 50. ~38!

Actually, the gauge transformation~35! is nothing but a generalization of a transformation th
exists between different~autonomous! versions of the dKP equation,8 with ~essentially! arbitrary
constant coefficients instead of the coefficients (1,21,1) appearing in~38!.

If we want to make use of the results regarding Darboux and binary Darboux transform
that have been shown for the dKP equation,9 we also need to ‘‘gauge transform’’ the associat
linear problems into each other. Noting that

AAmn

AmAn
5bm2cn ,

BBln

BlBn
5al2cn ,

CClm

ClCm
5al2bm , ~39!

it can be seen that the transformation,

c85c3F)
i

l

a~ i !G21F)
i

m

b~ i !G21F)
i

n

c~ i !G21

, ~40!

maps the linear equations~12! into the linear problem9 associated to the dKP equation~38!. A
similar transformation can be seen to map between the associated adjoint linear problems
J. Math. Phys., Vol. 38, No. 12, December 1997
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c* 85c* 3F)
i

l

a~ i !GF)
i

m

b~ i !GF)
i

n

c~ i !G . ~41!

Let us first consider the case of the binary Darboux transformation. As explained in Se
starting from an eigenfunctionf and adjoint eigenfunctionf* , a binary transformation BDTf,f*
can be defined as follows:

BDTf,f* :H t→ t̂5tV~f,f* !,

c→ĉ5UV~f,f* !

f
V~c,f* !

c UY V~f,f* !,
~42!

where the potentialsV are defined by the difference relations:

DkV~u,u* !5uku* , for k5 l ,m,n. ~43!

Using the transformation~40! and remembering formula~17!, these defining relations can b
transformed into

Vk2V5uk8u8* , for k5 l ,m,n, ~44!

showing that the nature of the binary transformation~42! is left unchanged under gauge transfo
mation if we take the relations~44! as the definition of a new potentialV(u8,u8* ). Hence, we can
simply ‘‘recycle’’ the results obtained for the dKP binary Darboux transformation9 for which it
was shown that, starting from a ‘‘vacuum’’ tau functiontvac, N successive iterations of thi
transformation—making use ofN sets of eigenfunctionsfk and adjoint eigenfunctionsfk* (k
51,...,N) associated totvac—yield the following Gramm-type tau function:

t5tvac3u~V i j !u, ~45!

where the matrix elementV i j is given by

V i j [V~f j ,f i* !, i , j 51,...,N. ~46!

The eigenfunctions associated to this tau function can be written as

c5U~V i j ! v~w!

F w
UY u~V i j !u, ~47!

where the ‘‘bordered’’ Grammian occurring in the numerator is made up out of theN3N matrix
(V i j ), the row vectorF5(f1 ,...,fN), the column vectorv(w)5„V(w,f1* ),...,V(w,fN* )…t, and
the ‘‘extra’’ eigenfunctionw. Similarly, we have for the adjoint binary transformation,

aBDTf,f* :H t→ t̂5tV~f,f* !,

c*→ĉ* 5UV~f,f* !

V~f,c* !

f*
c* UY V~f,f* !,

~48!

that it maps to adjoint eigenfunctions:

c* 5U ~V i j ! F*

v* ~w* ! w* UY u~V i j !u, ~49!
J. Math. Phys., Vol. 38, No. 12, December 1997
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with F* 5(f1* ,...,fN* ) t and wherev* (w* )5(V(f1 ,w* ),...,V(fN ,w* )) is defined in terms of
the extra adjoint eigenfunctionw* .

A similar treatment can be given for the Darboux and adjoint Darboux transformations
example, dropping the multiplicative factor 1/l in formula ~32!, we define the Darboux transfor
mation DTf of an eigenfunctionc as

DTf :H t→ t̃5tf,

c→c̃5C 82@f,c#/f,
~50!

where it is understood thatc andf solve the linear problem~12! for the tau functiont. In analogy
to Ref. 9, we have introduced the (N3N) Casorati determinant:

C N8 @f1 ,...,fN#[bN8U f1,~N21!m8 ••• f1,m8 f1

f2,~N21!m8 ••• f2,m8 f2

A � A A

fN,~N21!m8 ••• fN,m8 fN

U , ~51!

with bN8 5P j 50
N22(b( j )m8)

N212 j wheneverN.1, b1851. From the derivation in the previous sectio
it should be clear that this Darboux transformation could have been expressed in any of th
discrete variables, i.e., the definition~50! is invariant under a change (m,b)→( l ,a) or (n,c).

Performing the gauge transformation~35!, ~40! on this Darboux transformation, we notice th
the transformation formula for the eigenfunctions is mapped to the one found for the
equation.9

c̃85
1

f8
@fm8

8 c82f8cm8
8 #. ~52!

The transformation formulas for the tau functions, however, are not simply mapped into tho
the dKP equation, since they receive an extra multiplicative factor,

t̃ 85F)
i

l

a~ i !GF)
i

m

b~ i !GF)
i

n

c~ i !G3t8f8, ~53!

as compared to the standard expressiont̃5tf. Clearly, this extra factor being the only differenc
between the Darboux transformations for the dKP and n-dKP equations, there will exist Ca
determinant solutions for the n-dKP equation as well. As a matter of fact, after iteration o
Darboux transformation on a ‘‘seed’’ solutiontvac, one obtains the following Casorati determina
solutions for the n-dKP equation:

t5tvac3C N8 @f1 ,...,fN#; ~54!

the eigenfunctions associated to this tau function taking the form

c5
C N118 @f1 ,...,fN11#

C N8 @f1 ,...,fN#
~55!

@remember that the eigenfunctionsf i( i 51,...,N,N11) are solutions to the linear equations~12!
for tvac#. The factorsbN8 appearing in these expressions are an essential ingredient of the Ca
solutions in the nonautonomous case.

In a similar way, dropping the multiplicative factor21/l in formula ~34!, we define the
adjoint Darboux transformation aDTf* of an adjoint eigenfunctionc* as
J. Math. Phys., Vol. 38, No. 12, December 1997
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aDTf* :H t→ t̃5tf* ,

c*→c̃* 5C 2@f* ,c* #/f* ,
~56!

wherec* and f* solve the adjoint linear problem~14! for the tau functiont. Again, we have
introduced Casorati determinants:

C N@f1* ,...,fN* #[bNUf1* f1,m* ••• f1,~N21!m*

f2* f2,m* ••• f2,~N21!m*

A A � A

fN* fN,m* ••• fN,~N21!m*
U , ~57!

with bN5P j 51
N21(b( j )m)N2 j wheneverN.1, b151.

The new adjoint eigenfunctionc̃* solves the linear equations~14! for the new tau functiont̃.
Just as in the previous case~i.e., for Darboux transformations!, one can easily see that th

gauge transformation~35!, ~41! maps between the adjoint Darboux transformations of the n-d
and dKP equations, except for an extra multiplicative factor in the transformed tau func
Hence, we may conclude that using the transformation repeatedly, starting from a set of
equations~14! involving sometvac, it is possible to generate a general Casorati-type solution
the n-dKP equation:

t5tvac3C N@f1* ,...,fN* #, ~58!

whereas an adjoint eigenfunction associated to that particular tau function takes the form

c* 5
C N11@f1* ,...,fN* ,fN11* #

C N@f1* ,...,fN* #
. ~59!

The adjoint eigenfunctionsf i* ( i 51,...,N,N11) appearing in the solutions all have to solve t
linear equations~14! for tvac. As before, it should be clear that the actual discrete variable u
when expressing the Casorati determinants in the solutions~58!, ~59! is arbitrary: one may~if one
chooses so! replace (m,b) by (l ,a) or (n,c) in these formulas.

VI. SOLITON SOLUTIONS

Soliton solutions are contained in both the general Casorati- and Gramm-type solutio
described in the previous section. Generally speaking, they are part of the set of solutions t
be obtained by iterative application of Darboux or binary Darboux transformations on a con
‘‘vacuum’’ tau function. It is therefore instructive to discuss the case oftvac5constant, before
going on to describing theN-soliton solutions themselves. In this case, the linear equations~12!
that the eigenfunctions appearing in the solutions have to satisfy are reduced to a very
form. Take, e.g., Eq.~12! that can be written as

~bm2al !f lm5bmf l2alfm⇔b~f2fm8!5a~f2f l 8!. ~60!

Introducing the ‘‘backward’’ difference operatorD8,

D l8~• ![a@~• !2~• ! l 8# ~61!

~and accordingly forDm8 andDn8! the linear problem can be written in the form

D l8f5Dm8 f5Dn8f. ~62!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Hence, whenevert is constant, taking a~backward! difference of an eigenfunction is independe
of the actual direction in which it is taken. One is therefore at liberty to ‘‘count’’ the numbe
applications ofa difference operatorD8 on an eigenfunctionf, introducing a single ‘‘counter:’’

f~0!5f; Dk8f~s!5f~s11! ~k5 l ,m,n!. ~63!

Similarly, we find in casetvac is a constant, that the adjoint linear problem~14! tells us that taking
the ~forward! difference@as in definition~17!# of an adjoint eigenfunction is also independent
the direction. We can therefore introduce a similar countervariable for adjoint eigenfunction

f* ~0!5f* ; Dkf* ~s!5f* ~s11! ~k5 l ,m,n!. ~64!

Taking now the Casorati-type solution~54! defined in terms of eigenfunctions~tvac being
constant it can be omitted in all generality!:

t5~21!N~N21!/2 )
j 50

N22

~a~ j !l 8!
N212 j3Uf1 f1,l 8 ••• f1,~N21!l 8

A A � A

fN fN,l 8 ••• fN,~N21!l 8

U
5~21!N~N21!/2U f1 af1,l 8 aal 8f1,~2!l 8 ••• )

j 50

N22

a~ j !l 8f1,~N21!l 8

A A A � A

fN afN,l 8 aal 8fN,~2!l 8 ••• )
j 50

N22

a~ j !l 8fN,~N21!l 8

U
5Uf1 a@f12f1,l 8# D l8~D l8f1! ••• ~D l 8

8 !N21f1

A A A � A

fN a@fN2fN,l 8# D l8~D l8fN! ••• ~D l 8
8 !N21fN

U . ~65!

Hence, according to the linear equations~63!, we have the following solution for the n-dKP
equation:

t5Uf1~0! f1~1! ••• f1~N21!

A A � A

fN~0! fN~1! ••• fN~N21!
U . ~66!

Similarly, using the linear equations~64!, one can show that the Casorati-type solutions~58! can
be recast into the form

t5Uf1* ~0! f1* ~1! ••• f1* ~N21!

A A � A

fN* ~0! fN* ~1! ••• fN* ~N21!
U . ~67!

Let us point out that in this reformulation—Eqs.~63! and~64!—of the linear problems, the matrix
elements appearing in the Gramm-type solutions~45! are defined by the relations

DkV
i j 5„f j~0!…kf i* ~0!, k5 l ,m,n. ~68!

It is easily verified that the functions
J. Math. Phys., Vol. 38, No. 12, December 1997
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C~p!5apF)
i

l S 12
p

a~ i ! D)j

m S 12
p

b~ j ! D)k

n S 12
p

c~k! D G21

, ~69!

C* ~q!5aq* )
i

l S 12
q

a~ i ! D)j

m S 12
q

b~ j ! D)k

n S 12
q

c~k! D , ~70!

with the multiplication convention as defined in~37!, respectively, solve the linear~12! and adjoint
linear problems~14!, for t constant. Alternatively, one can check that they also satisfy the r
tions

Dk8C~l!5lC~l!,

DkC* ~l!52lC* ~l!, k5 l ,m,n ~71!

@cf. Eq. ~62!#. Note that the functionsC(p) andC* (q) are the ‘‘discrete analogs’’ of the expo
nentials expj(x,p) and exp2j(x,q) @cf. formulas~7!#, by virtue of the transformation~2!.

N-soliton solutions in the form of the particular Casorati determinants~66! or ~67! can be
easily obtained by taking the eigenfunctionsf i(0) or adjoint eigenfunctionsf i* (0) equal to

f i~0!5C~pi !1C~qi ! and f i* ~0!5C* ~pi !1C* ~qi !. ~72!

ExpressingN-soliton solutions in the Gramm form can be achieved by taking the ma
elements to be

V i j 5V„C~pj !,C* ~qi !…. ~73!

It is easily verified that these potentials satisfy the relation

D lV
i j 5

1

pj2qi
D l„C~pj !C* ~qi !…, ~74!

and hence we recover the typical matrix element for theN-soliton solution in Grammian form:

V i j 5ci j 1
C~pj !C* ~qi !

pj2qi
, ~75!

whereci j is an arbitrary constant.
Before concluding, we would like to point out that the above soliton solutions differ con

erably from the solutions one can obtain by gauge transforming the solitons of the autono
dKP equation. For example, the functions yielding the soliton solutions9 for the dKP equation~38!
have what one could call ‘‘fixed’’ singularities in the spectral parameter~the variablep in this
example!

c~p!5
a8b8c8p3

~a82p!~b82p!~c82p!
, ~76!

wherea8, b8, andc8 are constant wrt the discrete variablesl , m, andn. Clearly, as the gauge
transformation~35! is a purely multiplicative one, it can never account for the fact that in the c
of the n-dKP equation the solitons exhibit singular behavior in the spectral parameters thadoes
depend on the discrete variables@such behavior is evident from the expressions~69! and ~70!#.
This observation is, of course, tied up with the more fundamental fact that the gauge trans
tion does not map between the ‘‘obvious’’ vacuum solutions for the autonomous or nonau
J. Math. Phys., Vol. 38, No. 12, December 1997
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mous equations. Of course, the gauge transformation does admit the transfer of such so
between these different cases, but whereas the autonomous equations can be dealt with w
nonautonomous framework~by takinga, b, andc to be constant!, it is clear that finding ‘‘mani-
festly nonautonomous’’ solutions for the dKP equation would necessitate rather clever gues

VII. CONCLUSIONS

We have shown how difference identities that hold for wave functions and adjoint w
functions in the fermionic approach, can be discretized using a generalized Miwa transform
In doing so, we obtained the linear problem underlying the n-dKP equation as well as Da
and binary Darboux transformations leaving this linear problem invariant. Furthermore, we
lish a gauge transformation between the n-dKP equation and the dKP equation, as discu
Ref. 9. This gauge transformation can be seen to leave the structure of the binary Da
transformations and Darboux or adjoint Darboux transformations invariant~up to an extra scaling
of the tau functions in the latter cases!. Hence, we can immediately conclude from the results
the dKP equation9 that iteration of both the Darboux transformations and of the binary Darb
transformation, respectively, leads to Casorati-type solutions~expressed in either eigenfunctions
adjoint eigenfunctions for sometvac! and Gramm-type solutions~expressed in both eigenfunction
and adjoint eigenfunctions!. N-soliton solutions are found as part of those solutions for which
vacuum tau function is constant. We remark upon the difference between these soliton so
and solutions obtainable from the dKP solitons by use of the gauge transformation. The fa
this difference exists exemplifies the greater flexibility of the nonautonomous dKP equation
it comes to obtaining explicit solutions. Especially so, when it comes to finding so-called ‘‘sp
function solutions,’’ which are the topic of a forthcoming paper.

Finally, taking the parameters appearing in the n-dKP equation to be constant, we
Casorati- and Gramm-type, as well as the well-knownN-soliton solutions for the special case
the dKP equation treated in Ref. 16.
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The tetrad formalism is used to study a broad class of spherically symmetric kink
space–times whose Einstein tensor is computed and then diagonalized. A simple
example of such a space–time is shown to satisfy the weak energy condition and to
be extendible to a space–time that is geodesically complete. ©1997 American
Institute of Physics.@S0022-2488~97!02512-7#

I. INTRODUCTION

There has recently been some interest in exploring the conditions under which space
with Finkelstein–Misner kinks1 are geodesically complete and at the same time satisfy reason
strict energy conditions.2 Our purpose in this paper is to consider this topic in relation to a broa
class of kink space–times than that given in the authors’ previous paper3 and to construct a
particular example. The class of space–times that will be examined is a special case of the
spherically symmetric space–time given by Letelier and Wang,4,5 and can be written as

ds25e22L$2e2h cos 2a dt222 sin 2a dt dr1e22h cos 2a dr2%1r 2 dV2,

whereL, h, anda are functions only of the radial variabler , and are continuous. In the prese
context, thedt dr term cannot be globally transformed away since doing so would be equiv
to transforminga to zero, which cannot be done globally for a one-kink space–time sinca
measures the angle of tilt of the light cones and must be such thata(0) anda(`) differ by p. For
the special case ofL[0, it has been shown3 that the strong energy condition cannot hold wh
there are kinks present. In what follows, the curvature 2-forms are calculated for the
space–time and the resulting Einstein tensor is then diagonalized and used in a discus
energy conditions for a particular example of a one-kink space–time that has a nontrivialL. Note
that a somewhat different set of curvatures has been computed by Letelier and Wang us
Newman–Penrose formalism~Ref. 5, Appendix B!.

II. CURVATURE

Following Misner6 and Ellis,7 introduce an orthonormal tetrad of basis vectors$em% and
corresponding basis 1-forms$vm%, so that the metric can be written as

a!Dr. Kenneth Dunn died when this project was nearing completion.
b!Electronic mail address: tina.harriott@msvu.ca
c!Electronic mail address: williams@brandonu.ca
0022-2488/97/38(12)/6470/5/$10.00
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ds252~v t!21~v r !21~vu!21~vw!2.

The $vm% are

v t5e2L~eh cosa dt1e2h sin a dr !,

v r5e2L~eh sin a dt2e2h cosa dr !,

vu5r du,

vw5r sin u dw,

whence the connection 1-forms are found to be

v r
t 5v t

r5eL1h$sin a ] ra1cosa] r~L2h!%v t1eL1h$cosa ] ra2sin a] r~L2h!%v r ,

vu
t 5v t

u5r 21eL1h sin avu,

vw
t 5v t

w5r 21eL1h sin avw,

vu
r 52v r

u5r 21eL1h cosavu,

vw
r 52v r

w5r 21eL1h cosavw,

vw
u 52vu

w52r 21 cot uvw.

DefineL, M , andN by

L5e2h ] rL, M52221] r~e2h cos 2a!, N5r 21~e22L2e2h cos 2a!.

It follows that the curvature 2-forms can be written as

u r
t 5u t

r5e2L] r~M1L cos 2a!v t`v r ,

uu
t 5u t

u5r 21e2L$~M1L !v t`vu2L sin 2av r`vu%,

uw
t 5u t

w5r 21e2L$~M1L !v t`vw2L sin 2av r`vw%,

uu
r 52u r

u5r 21e2L$L sin 2av t`vu1~M2L !v r`vu%,

uw
r 52u r

w5r 21e2L$L sin 2av t`vw1~M2L !v r`vw%,

uw
u 52uu

w5r 21e2LNvu`vw.

The equation

un
m5Rnuabu

m va`vb

then leads to the Einstein tensor,Gmn , whose nonzero components are

Gtt5r 21e2L$2~M2L !1N%,

Gtr5Grt52r 21e2LL sin 2a,
J. Math. Phys., Vol. 38, No. 12, December 1997
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Grr 52r 21e2L$2~M1L !1N%,

Guu5Gww52e2L$] r~M1L cos 2a!12r 21M %.

III. DIAGONALIZATION OF Gmn

To conveniently discuss energy conditions,Gmn must first be diagonalized~Ref. 8, p. 89!. The
eigenvalue equation,

~Gmn2lgmn!jn50,

can be used to introduce a new orthonormal tetrad of basis vectors$Eâ% as the eigenvectors tha
correspond to the various choices ofl. The resultingGĝk̂5GmnEĝ

mEk̂
n will be diagonal.~Indices

with a hat,â, will refer to the tetrad$Eâ% and, as before, unhatted indices will refer to$em%.)
Substituting the previous expressions forGmn into the eigenvalue equation, one finds a dou
eigenvalue,l 2̂5l 3̂ , which can then be used to determine space-like eigenvectorsE2̂ and E3̂ .
There are also twodistinct eigenvalues,l 0̂ , l 1̂ , given by

l5r 21e2L$2~2M1N!62 ~L2 cos2 2a!1/2%.

The ambiguity resulting from different interpretations of6(L2 cos2 2a)1/2 can be resolved by the
requirement thatE0̂ be everywhere time-like andE1̂ be everywhere space-like. This leads to

l 0̂5r 21e2L$2~2M1N!12Lucos 2au%,

l 1̂5r 21e2L$2~2M1N!22Lucos 2au%,

l 2̂5l 3̂52e2L$] r~M1L !12r 21M %,

E0̂5~g2 ,h2 ,0,0!,

E1̂5~g1 ,h1 ,0,0!,

E2̂5~0,0,1,0!,

E3̂5~0,0,0,1!,

where

g65sin 2a$2 ucos 2au~16ucos 2au!%21/2,

h65$~16ucos 2au!~2ucos 2au!21%1/2.

Noting thatigâb̂i5igâb̂i5 diag(21,1,1,1), and usingGâb̂5gâĝgb̂k̂Gĝk̂ and the Einstein equa

tions,Gâb̂5Tâb̂, the energy–momentum tensor is found to beiTâb̂i5 diag(r,p1 ,p2 ,p3), where

r5r 21e2L$~2M1N!22Lucos 2au%,

p152r 21e2L$~2M1N!12Lucos 2au%,

p25p352e2L$] r~M1L cos 2a!12r 21M %.

The weak energy condition is equivalent to requiringr>0 andr1pi>0, i 51,2,3. The strong
energy condition is equivalent to requiringr1pi>0, i 51,2,3, andr1( i 51

3 pi>0.
J. Math. Phys., Vol. 38, No. 12, December 1997
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IV. EXAMPLE

Define

D:5~8r 3112r 216r 11!21,

and consider a space–time for which

cos 2a5122r 21S 3

211/r D
3

[1254r 2D[~8r 3242r 216r 11!D,

andh[0. For the moment, letL be unspecified. Note that cos 2a attains its maximum value o
11 at r 50 and atr 5`, and its minimum value of21 at r 51. This is a one-kink example and
for the special case ofL[0, the example reduces to that of the Finkelstein–McCollum kink
which is known to satisfy the weak energy condition.3,9 Keepinga the same as above, andh[0,
our objective is to find an example that has a nontrivialL and that also satisfies~at least! the weak
energy condition.

We have

L5] rL,

M52221] r~cos 2a!5254r ~4r 323r 21!D25227~64r 7196r 6280r 4260r 3218r 222r !D3,

N5r 21~e22L21!154rD,

so that

2M1N5r 21~e22L21!1162r ~4r 214r 11!D2.

Thus, 2M1N>0 if e22L>1, i.e. if L<0. Also, 2Lucos 2au>0 if ] rL<0. Hence, requiring
L<0 and] rL<0 results inr>0. It also results in

r1p1524r 21e2LLucos 2au>0.

Sincep25p3, there is only one further inequality to be satisfied for the weak energy conditio
hold, namelyr1p2>0. We have

r1p25r 21e2L$N22Lucos 2au2r ] r~M1Lcos 2a!%,

but this expression is difficult to handle without further assumptions. Thus, assume the sim
possible nontrivialL, namely L52kr, where k is a positive constant.~Hence L<0 and
L[] rL52k<0, as required.! Defining

F:554D1221] r
2~cos 2a!1k] r~cos 2a!,

one finds

r1p25r 21e22kr$r 21~e2kr21!12kucos 2au1rF %.

Sincee2kr>1 andk>0, the weak energy condition will hold ifF is positive. Straightforward
calculation gives
J. Math. Phys., Vol. 38, No. 12, December 1997
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F554D3$64r 61192r 51240r 41160r 3160r 2112r 11

264r 61144r 41128r 3136r 221

1k~64r 7196r 6280r 4260r 3218r 222r !%

554D3$64kr7196kr61192r 51~384280k!r 4

1~288260k!r 31~96218k!r 21~1222k!r %.

If k is restricted to the range 0<k<24/5, it is easily seen thatF>0, and so the weak energ
condition holds. Note that there are values ofr for which r1(pi>/ 0, and so the strong energ
condition isnot satisfied.

V. DISCUSSION

The diagonalization of the energy–momentum tensor was performed for a class of sphe
symmetric kink space–times and then used to formulate the weak and strong energy condit
specific example of such a kink space–time was constructed by taking the product o
Finkelstein–McCollum metric with a conformal factor,e22L5e2kr, the constantk being restricted
by 0<k<24/5. It was shown that this space–time satisfies the weak energy condition but n
strong energy condition. As is usual with kink space–times, there will be incomplete geod
approaching the roots of cos 2a and, following the general procedure outlined by Finkelstein a
McCollum,9 the geodesics can be completed by transformation to the standard form,

ds2522e22LF~U,V!dUdV1r 2 dV2,

whereF is everywhere finite and nonzero. The formulas used to introduce the new coordinatU,
V, are independent ofe22L ~Ref. 9, p. 2255! and so the procedure for extending the pres
example to a geodesically complete space–time is straightforward and exactly follows the
required for extending the usual~i.e. L[0) Finkelstein–McCollum space–time~Ref. 3, p. 5643!.
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Graphical classification of global SO „n … invariants
and independent general invariants
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Noriaki Ikeda
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japana)

~Received 29 January 1997; accepted for publication 3 September 1997!

This paper treats some basic points in general relativity and in its perturbative
analysis. Firstly a systematic classification of global SO(n) invariants, which ap-
pear in the weak-field expansion of n-dimensional gravitational theories, is pre-
sented. Through the analysis, we explain the following points:~a! a graphical
representation is introduced to express invariants clearly;~b! every graph of invari-
ants is specified by a set of indices;~c! a number, calledweight, is assigned to each
invariant. It expresses the symmetry with respect to the suffix-permutation within
an invariant. Interesting relations among the weights of invariants are given. Those
relations show the consistency and the completeness of the present classification;
~d! some reduction procedures are introduced in graphs for the purpose of classi-
fying them. Secondly the above result is applied to the proof of the independence of
general invariants with the mass-dimensionM6 for the general geometry in a gen-
eral space dimension. We take a graphical representation for general invariants too.
Finally all relations depending on each space-dimension are systematically ob-
tained for 2, 4, and 6 dimensions. ©1997 American Institute of Physics.
@S0022-2488~97!01512-0#

I. INTRODUCTION

In classical and quantum gravity, the most important elements are invariants under the g
coordinate transformation~referred to as general invariants! because they are independent of
chosen coordinate. Physical quantities can be expressed as functions of them. The main p
we address in this paper is how to find all independent general invariants for each s
dimension. It is highly non-trivial because of the high symmetry of Riemann tensors and
products.1,2 As far as general invariants with lower mass-dimensions3 are concerned, it is practi
cally no problem because we have much experience in the past. However we encounter
invariants with higher mass-dimensions in some cases such as when we consider gravi
theories in the higher space-dimensions~e.g., Weyl anomaly in a higher dimensional gravit
matter theory! or when we consider higher-order quantum corrections there~e.g., Counter-terms a
higher-order or higher-order effective action!. As the mass-dimension of general invariants
creases, the above problem becomes serious. Reference 1 took the group~symmetry group! the-
oretical approach to find complete and independent general invariants. We present an a
approach.

With such a direction in mind, an approach to treat general invariants is given in Ref. 2, w

a!Present and permanent address. Electronic mail: ichinose@momo1.u-shizuoka-ken.ac.jp
b!Electronic mail: nori@kurims.kyoto-u.ac.jp
0022-2488/97/38(12)/6475/47/$10.00
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a graphical representation is introduced. The problem of listing all general invariants is
formed to that of listing all closed graphs. It works for a general geometry in general s
dimension. Some graph relations are introduced to express some relations between R
tensors such as Bianchi identity and the cyclic identity. It is a powerful technique to find rela
between general invariants. However, as noted in the discussion of Ref. 2, the approach d
guarantee the independence between finally listed ones. It gives only the sufficient terms as
of complete and independent general invariants. The final list of terms could still involve lin
dependent terms. In this paper, we provide another approach to proving the independe
general invariants, as local functions, in the final list.

As far as local properties are concerned, it is sufficient to consider them in the weak
perturbation around flat space.

gmn5dmn1hmn , uhmnu!1, ~1!

where m,n51,...,n and dmn is the flat space metric. The advantages of this ‘‘weak-field’’~or
‘‘linear’’ ! representation, compared with the use of the full metricgmn and its inversegmn, are~a!
there are no ‘‘inverse’’ fields and every general invariant is expressed byhmn and its derivatives,
and ~b! if we express general tensors in terms of ‘‘weak-fields’’ representation, some non-
relations,4 such as the Bianchi identity and the cyclic identity, are automatically satisfied at
order ofh. Each general invariant is expanded as an infinite power series inhmn . Among many
expanded terms, we focus mainly on the ‘‘products’’ of]m]nhab , because they turn out to giv
sufficient information to determine important quantities. As for general terms, we will m
comments in Sec. VI and Sec. X. In Ref. 5~we call this paper~I!!, we introduced a graphica
representation for the ‘‘products’’ of]m]nhab , and examined some basic definitions and lemm
some features of the graphs. Paper~I! deals mainly with the case of]]h- and (]]h)2-tensors. In
this paper we study (]]h)3-tensors, where we can see a more general structure valid for ge
invariants with higher mass-dimensions. We classify (]]h)3-invariants completely. The result i
applied to the proof of independence of general invariants with dimensionM6. We prove it for a
general geometry in a general space-dimension.

After listing all independent general invariants in a general dimension, we examine the
each space-dimension in order to find additional relations depending on the space-dimensi
approach of Ref. 2 is applied and 2, 4, and 6 space-dimensions are considered.

Many graphs are presented to show their usefulness. We can easily identify a tenso
invariant with many suffixes involved. One of its important advantages is we can utilize the
topology in explicit tensor calculation~in computer!. We introduce someindicesto represent the
graph topology. The explicit calculational result of weak field expansion of general invari
presented in Appendix E, shows the power of the present approach.

In Sec. II, we review paper~I! and explain the basic ingredients necessary for the pre
classification. Every SO (n)-invariant is represented by a graph. Classification is done in a
fold way: one by the ‘‘bondless diagram,’’ which is explained in Sec. III, and the other
‘‘reduced graphs,’’ which is explained in Sec. IV. Every graph is named respecting both c
fication schemes. In Sec. V, we introduce some indices in order to specify every graph by a
topological numbers. The set of indices distinguishes each graph. Every graph has another
called the ‘‘weight,’’ which shows the ‘‘degree of symmetry’’ with respect to suffix-contracti
Various identities between weights are presented in Sec. VI. They show the consistenc
completeness of the present classification. Disconnected graphs are treated in Sec. VII. We
ourselves to the classification of SO(n)-invariants from Sec. II to Sec. VII. In Sec. VIII we appl
the results to general relativity and show the independence of general invariants. All s
relations, between general invariants, which depend on space-dimension are explicitly obtai
2, 4, and 6 dimensions in Sec. IX. The discussion and conclusion are made in Sec. X.
appendices are provided in order to show the content of the text more concretely. Appen
shows the full list of (]]h)3-invariants with their graphs and their graph names. Appendix B
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 1. 4-tensor]m]nhab .

FIG. 2. Graphical representation ofA15]s]lhmn•]s]nhml .

FIG. 3. Bondless diagram forA1 of Fig. 2.dd-vertices are explicitly represented by small circles.

FIG. 4. Graphical representation ofPQ5]2hll•]m]nhmn .
J. Math. Phys., Vol. 38, No. 12, December 1997
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the indices and the weights of all (]]h)3-invariants. Appendix C deals with general invariants
a type¹¹R3R where a graph for]m]n]l]shab is introduced. Appendix D deals with gener
invariants of another type¹R3¹R where a graph for]m]n]lhab is introduced. Appendix E lists
the contribution to (]]h)3-terms of some general invariants with mass-dimensionM6. Appendix
F shows all graphs of general invariants withM6-dimension. Some anti-symmetrized quantitie
which are used in Sec. IX, are defined graphically in Appendix G.

II. GRAPHICAL REPRESENTATION OF SO „n …-INVARIANTS

We briefly explain some basic terminology and an important lemma, introduced in pap~I!,
which are necessary for the present paper.

The 4-th rank global SO(n) tensor~4-tensor!, ]m]nhab is graphically represented in Fig. 1
Dotted lines, a rigid line, a vertex with and without a crossing mark are calledsuffix-lines, abond,
a h-vertexand add-vertex, respectively. We graphically represent suffix contraction by gluing
corresponding suffix-lines. As an example,A15]s]lhmn•]s]nhml is represented in Fig. 2.

Generally suffix-lines in a SO(n)-invariant are closed. We call thesesuffix-loops. Let us state
a useful lemma on a general SO(n)-invariant made ofs]]h-tensors. It will be used in Sec. III to

FIG. 5. Bondless diagrams and values of (v/w)- vcn, wherev, w andvcn are the number ofh-vertices,dd-vertices and
‘‘vertex changing,’’ respectively.
J. Math. Phys., Vol. 38, No. 12, December 1997
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classify graphs in terms of the vertex~ h or dd!-distribution in suffix-loops.
Lemma:Let a general (]]h)s-invariant (s51,2,...) havel suffix-loops. Let each loop havev i

h-vertices andwi dd-vertices (i 51,2,...,lI21,lI). We have the followingnecessaryconditions for
s, l , v i and wi .

(
i 51

lI

v i5s, (
i 51

lI

wi5s,

v i>0, wi>0, v i1wi>1, ~2!

v i , wi50,1,2,... , lI51,2,3,... ,2s21,2s.

It is useful, for classifying graphs, to introduce abondless diagramwhich is obtained by
deleting all bonds within a graph. ForA1 of Fig. 2, the corresponding bondless diagram is sho
in Fig. 3, where a small circle is used to represent add-vertex explicitly.

FIG. 6. Reduction procedure of identifying two vertex-types:dd-vertex andh-vertex.

FIG. 7. Classification of connected (]]h)3-graphs bybcn@ #, l 51.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Generally an SO(n)-invariant is composed of some suffix-loops. For each loop, we define
indices, thebond changing number(bcn) and thevertex changing number(vcn), in the following
way.

Def: bcn @andvcn# are defined for each suffix-loop as follows.6 When we trace the suffix-line
of a suffix-loop, starting from a vertex in a certain direction, we generally pass some vertice
finally come back to the starting vertex. When we move, in the tracing, from one vertex to the
vertex, we compare the bonds to which the two vertices belong, and their vertex types.
bonds are different, we setD bcn51, otherwiseD bcn50, If the vertex-types are different, we s
D vcn51, otherwiseD vcn50. For thei -th loop, we sum the numberD bcn andD vcn while
tracing the loop and assign as( along i 2loopD bcn[ bcn@ i #, ( along i 2loopD vcn[ vcn@ i #.

bcn@ # andvcn @ # will be used, in Sec. IV and Sec. III respectively, for classifying graph

FIG. 8. Classification of connected (]]h)3-graphs bybcn@ #, l 52.

FIG. 9. Classification of connected (]]h)3-graphs bybcn@ #, l 53.
J. Math. Phys., Vol. 38, No. 12, December 1997
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In paper~I!, we have shown, using the graphical representation, that all independent inva
are

P[]m]mhaa , Q[]a]bhab , ~3!

for ]]h-invariants and

A15]s]lhmn•]s]nhml , A25]s]lhlm•]s]nhmn , A35]s]lhlm•]m]nhns ,

B15]n]lhss•]l]mhmn , B25]2hln•]l]mhmn , B35]m]nhls•]m]nhls ,

B45]m]nhls•]l]shmn , Q25~]m]nhmn!2, ~4!

C15]m]nhll•]m]nhss , C25]2hmn•]2hmn , C35]m]nhll•]2hmn ,

PQ5]2hll•]m]nhmn , P25~]2hll!2,

for (]]h)2-invariants ~totally 13 invariants!. In Fig. 4, an invariantPQ in ~4! is graphically
shown. When a diagram is composed of some parts which are not connected by suffix-li
bonds, as in Fig. 4, we say it isdisconnected. Otherwise, as in Fig. 2, it is referred to asconnected.
A-terms,B-terms andC-terms above are, when graphically expressed, connected graphs wit
and 3 suffix-loops respectively.Q2-term, PQ-term andP2-term are expressed by disconnect
graphs.

III. CLASSIFICATION OF „h …

3-INVARIANTS BY BONDLESS DIAGRAMS

Let us first denote a suffix loop, withv h-vertices,w dd-vertices and a vertex changin
numbervcn as

S v

wD
vcn

. ~5!

FIG. 10. Classification of connected (]]h)3-graphs bybcn@ #, l 54.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



se

6482 S. Ichinose and N. Ikeda: Graphical classification of invariants

                    
In Fig. 5, all bondless diagrams that appear in suffix-loops of (]]h)3-invariants, are displayed
graphically with the above notation.

In this section, we classify (]]h)3-invariants by bondless diagrams. Takings53 in ~2!, we
list up all cases as follows. In the following,vcn is omitted when the omission does not cau
ambiguity in specifying a bondless diagram.
~i! lI51

~1A!:S 3

3D
6

, ~1B!:S 3

3D
4

, ~1C!:S 3

3D
2

. ~6!

~ii ! lI52

~2A!:S 0

3D S 3

0D , ~2B!:S 0

2D S 3

1D , ~2C!:S 1

3D S 2

0D , ~2D !:S 1

2D S 2

1D ,

~2Ea!:S 2

2D
2

S 1

1D , ~2Eb!:S 2

2D
4

S 1

1D , ~2Fa!:S 2

3D
2

S 1

0D , ~2Fb!:S 2

3D
4

S 1

0D , ~7!

~2Ga!:S 0

1D S 3

2D
2

, ~2Gb!:S 0

1D S 3

2D
4

.

~iii ! lI53

~3A!:S 3

1D S 0

1D S 0

1D , ~3B!:S 3

0D S 0

2D S 0

1D , ~3C!:S 2

0D S 1

0D S 0

3D ,

~3D !:S 2

1D S 1

0D S 0

2D , ~3E!:S 2

0D S 1

1D S 0

2D , ~3Fa!:S 2

2D
2

S 1

0D S 0

1D ,

FIG. 11. Reduction of graphs.

FIG. 12. Reduced graphs by the procedure Fig. 11.
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~3Fb!:S 2

2D
4

S 1

0D S 0

1D , ~3G!:S 2

0D S 1

2D S 0

1D , ~3H !:S 2

1D S 1

1D S 0

1D ,

~8!

~3I !:S 1

3D S 1

0D S 1

0D , ~3J!:S 1

2D S 1

1D S 1

0D , ~3K !:S 1

1D S 1

1D S 1

1D .

~iv! lI54

~4A!:S 3

0D S 0

1D S 0

1D S 0

1D , ~4B!:S 2

0D S 1

0D S 0

2D S 0

1D ,

~4C!:S 2

1D S 1

0D S 0

1D S 0

1D , ~4D !:S 2

0D S 1

1D S 0

1D S 0

1D ,

~9!

~4E!:S 1

0D S 1

0D S 1

0D S 0

3D , ~4F !:S 1

1D S 1

0D S 1

0D S 0

2D ,

~4G!:S 1

2D S 1

0D S 1

0D S 0

1D , ~4H !:S 1

1D S 1

1D S 1

0D S 0

1D .

FIG. 13. G51: 3FaQ.

TABLE I. Classification of ‘‘vertex-type-less’’ diagrams of Figs. 7–10 by reducing bonds to vertices.

\ class
\

l \

V
Fig. 12~a!

~No. of Tadpole 0!

S
Fig. 12~b!

~No. of Tadpole 1!

J
Fig. 12~c!

~No. of Tadpole 2!

Q
Fig. 12~d!

~No. of Tadpole 3!

l 51 1V1 , 1V2 1S 1J 1Q
l 52 2V1 , 2V2 2S1 , 2S2 2J1 , 2J2 2Q
l 53 3V 3S 3J1 , 3J2 3Q
l 54 4J 4Q
J. Math. Phys., Vol. 38, No. 12, December 1997
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~iv! lI55

~5A!:S20DS10DS01DS01DS01D,
~10!

~5B!:S 1

0D S 1

0D S 1

0D S 0

2D S 0

1D , ~5C!:S 1

1D S 1

0D S 1

0D S 0

1D S 0

1D .

~iv! lI56

~6A!:S 1

0D S 1

0D S 1

0D S 0

1D S 0

1D S 0

1D . ~11!

All these classification names, in addition to another classification names explained in Se
will be used when we label every (]]h)3-graph in Appendix A.

IV. CLASSIFICATION OF „h …

3-INVARIANTS BY REDUCED GRAPHS

In this section we classify all (]]h)3-invariants in a different way from Sec. III. We introduc
two reduction procedures in graphs, which are used to classify graphs.

~i! First reduction procedure. The first reduction procedure is defined by identifying
vertex-types as shown in Fig. 6. This reduction makes us classify allconnected
(]]h)3-invariants~totally 19 terms! as follows: ~1! l 51, Fig. 7; ~2! l 52, Fig. 8; ~3! l
53, Fig. 9;~4! l 54, Fig. 10. The classification naming will be explained in the next it
~ii !. For l 55 and 6, there are no connected graphs.

~ii ! Second reduction procedure. We define the second reduction procedure by reducing
to a vertex, as shown in Fig. 11. We get the 4 reduced graphs as shown in Fig. 12
classification naming of~i! is due to Fig. 12. We can classify all graphs of~i! as shown in

FIG. 14. Three graphs with the samel ,vcn andbcn.Vorder discriminate them.

FIG. 15. Two Graphs~G28,G30! with the samel ,vcn@ # andbcn@ #. Vorder discriminate them.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



ay
ls in
c.
ss of

suffix-

aph

to-one
of

as

6485S. Ichinose and N. Ikeda: Graphical classification of invariants

                    
Table I. The complete list of all (]]h)3-invariants, totally 90 invariants~66 connected, 24
disconnected!, are given in Appendix A, where graphs are classified in a two-fold w
using the classification schemes of Sec. III and IV. We notice the classification labe
Sec. III refer to the distribution ofdd- andh-vertices in suffix-loops, whereas those in Se
IV refer to the topology of a graph made of bonds and suffix-loops. The completene
the list of Appendix A will be shown in Sec. VI.

V. INDICES OF „h …

3-INVARIANTS

Every graph can be characterized by its topological numbers, such as the number of
loopsl , which we callindices. Besidesl , we have already explainedbond changing number(bcn)
andvertex changing number(vcn), which are also good indices. In order to specify every gr
completely, we need to introduce some other indices.

The following points are advantageous when we have a set of indices which has one-
correspondence with a graph~SO (n)-invariant!: ~1! We can clearly read the independence
graphs~or SO(n)-invariants! because the topologically different quantities must be distinct;~2! it
is indispensable in programming the calculation of quantities expressed by graphs.~Example,
weak-field expansion calculation of quantum gravity.!

A. Tadpole number and type of tadpole

Def: We call a closed suffix-loop which has only one vertex, atadpole. The number of
tadpoles a graph has, is called thetadpole number(tadpoleno) of the graph. When a tadpole h
a dd(h)-vertex, itstadpole type, tadtype@t#, is defined to be 0~1!. tadtype@t# is assigned for each
tadpole :t51,2,•••,tadpoleno.

For example, Fig. 13 has tadpoleno52 and tadtype@ #50 and 1 for each tadpole.

FIG. 16. Two Graphs with the samel ,vcn@ # andbcn@ #. ddverno@ # andhverno@ # discriminate them.

FIG. 17. Two graphs with the samel ,vcn andbcn. crossno@ # discriminates them.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Generally the indices tadpoleno and tadtype@ # are efficient for discriminating largel graphs,
whereas bcn@ # and vcn@ # are efficient for discriminating smalll graphs.

B. Indices for discriminating ‘‘fine structure’’ of „h …

3-invariants

1. Vertex-type order „Vorder …

Let us examine the graphs of Fig. 14. We cannot discriminate Graphs G9,G5, and G
( l ,vcn,bcn). It is necessary to introduce a ‘‘relative order’’ of four vertex-types at the ends of
crossed bonds. Here we assign 0 to add-vertex and 1 toh-vertex as shown in Fig. 14. Let u
define thevertex-type order(Vorder) for each graph as the sequence of the ‘‘vertex-type n
bers’’ in the order, shown by an arrow in each graph of Fig. 14, which is uniquely fixed b
‘‘isolated’’ bond. For example, we have Vorder5~0,0,1,1! for Graph G9. Furthermore we take 1
(DV), 2nd (DDV) and 3rd (DDDV) difference ofVorder. For this example of G9, we hav
DV5(0,1,0),DDV5(1,21), andDDDV522. Instead of the direct use ofVorder, DDV, and
DDDV are sufficient to discriminate between the three graphs.

Another case of usingVorder is that of Fig. 15. In this case, we cannot specify the orde
vertices because a ‘‘reference’’ is a vertex, not a bond. The ambiguity, however, disappe
taking the value ofuDDDVu, which is used here for the discrimination. The same situation oc
for 3 more pairs: G38,G36; G32,G33; G42,G39.

2. Number of dd-vertices „ddverno [ ]) and of h-vertices „hverno [ ])

In order to discriminate G18 and G20 of Fig. 16, we introduce the number ofdd-vertices
(ddverno@ i #,i 51,2,•••,l ) and that ofh-vertices (hverno@ i #,i 51,2,. ,l ) for each loopi as an

index.7 The same situation occurs inG17(2BS1) andG19(2CS1).

FIG. 18. Vertices and propagators of~19!.

FIG. 19. Vertices and propagators of~20!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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3. Number of crossing ( crossno[ ])

Def: When a bond has both its ends~ dd-vertex andh-vertex! in the same suffix-loop, we cal
it loop-bondof the suffix-loop.

Def: We consideri -th suffix-loop in a graph of (]]h)s-invariant (s>2). Let the suffix-loop
haver (0<r<s) loop-bonds. There arer (r 21)/2 pairs of them. For each pair, whether they a
‘‘crossed’’ or ‘‘not crossed’’ is definitely defined by tracing the vertices of both loop-bonds a
the suffix-loop in a fixed direction. We define, as the total number of the crossed pairs,crossing
number(crossno@ i #; i 51,2,... ,l ) of the i -th suffix-loop.

The following are examples. Fig. 13:crossno@1#50, crossno@2#50, crossno@3#50; Fig.
14: crossno@1#51 for G9, G5 and G6; Fig. 15:crossno@1#51, crossno@2#50 for G28 and G30.
G12 and G13 in Fig. 17 are discriminated bycrossno@ i #: crossno@1#52 for G12, whereas
crossno@1#53 for G13.

4. connectivity and disconnectivity

Def: Let us consider a graph of (]]h)s-invariant (s>2). There ares bonds ands(s21)/2
different pairs of bonds. We defineconnectivity of the graph as the total number of those pa
which are connected by at least one suffix-line. 0< connectivity<s(s21)/2.

As examples, we have the following:A1 ~Fig. 2! for connectivity51; PQ ~Fig. 4! for
connectivity50; G58 ~Fig. 29! for connectivity52; G5,G6,G9 ~Fig. 14! for connectivity53.

Def: Let us consider a graph of (]]h)s-invariant (s>1). Amongs bonds, we identify those
which are connected by at least one suffix-line. Let us define, as the total number of bond
the identification,disconnectivity11. 0< disconnectivity<s21.

As examples, we have the following:A1 ~Fig. 2! for disconnectivity50; PQ ~Fig. 4! for
disconnectivity51; G235A2Q ~Appendix A! for disconnectivity51; G695QQQ ~Appendix
A! for disconnectivity52. Two graphsG71 andG72 in Appendix A are examples which ar
discriminated bydisconnectivity.

The list of indices for all (]]h)3-invariants is provided in Appendix B.

VI. IDENTITIES BETWEEN WEIGHTS

Let us define theweightof a graph in the present case.~See paper~I! for a more general case.!

FIG. 20. The vertex of~21!.

TABLE II. ( ]]h)3-terms of disconnectivity52 and their weights.

G69: QQQ G85: PQQ G88: PPQ G90: PPP

weight 2358 132233512 12323356 1351
J. Math. Phys., Vol. 38, No. 12, December 1997
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Def: Let us consider a graph of (]]h)s-invariant (s>1). There are several ways to obtain th
invariant from s different 4-tensors (]m1

]n1
ha1b1

,... ,]ms
]ns

hasbs
) by contracting 4s different

suffixes. We define theweight of the graph as the number of all possible ways to obtain
invariant.

In Appendix B, all independent (]]h)3-invariants are listed up with weights.8 The total sum
of all weights satisfies a meaningful relation.

10395~5113937353331!

538439~G4,G5,G6,G7,G8,G9,G11,G12,G16!

1192317~G2,G10,G13,G15,G17,G19,G21,G22,G25,G29,G30,G31,G32,G37,

FIG. 21. Graphical representations for~a! Rmnls , ~b! ¹aRmnls and ~c! ¹a¹bRmnls .

TABLE III. ( ]]h)3-terms of disconnectivity51. Numbers are weights.~A1–C3! are connected (]]h)2-invariants. Q and
P are]]h-invariants.

Q, 2 P, 1

A1,16 G24: A1Q, 163233596 G54: A1P, 1633548

A2,16 G23: A2Q, 163233596 G53: A2P, 1633548

A3,16 G26: A3Q, 163233596 G56: A3P, 1633548

B1,16 G66: B1Q, 163233596 G81: B1P, 1633548

B2,16 G61: B2Q, 163233596 G74: B2P, 1633548

B3,4 G50: B3Q, 43233524 G72: B3P, 433512

B4,4 G68: B4Q, 43233524 G84: B4P, 433512

C1,2 G79: C1Q, 23233512 G87: C1P, 23356

C2,2 G76: C2Q, 23233512 G86: C2P, 23356

C3,4 G83: C3Q, 43233524 G89: C3P, 433512
J. Math. Phys., Vol. 38, No. 12, December 1997
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G38,G41,G42!112831~G1!

196326~G18,G20,G23,G24,G26,G27,G28,G33,G34,G35,G36,G39,G40,G44,

G48,G51,G52,G55,G58,G59,G60,G61,G62,G64,G65,G66!16432~G3,G14!

148312~G43,G45,G46,G47,G49,G53,G54,G56,G57,G63,G74,G81!

12439~G50,G68,G71,G73,G75,G78,G80,G82,G83!11631~G67!

11236~G72,G76,G79,G84,G85,G89!1833~G69,G70,G77!1633~G86,G87,G88!

1131~G90!. ~12!

Generally, the total number of different suffix-contractions of 4s suffixes m1 ,m2 ,...,m4s is

FIG. 22. Graphical representation for the Riemann scalarR.

FIG. 23. Graphical representation for~a! ¹2R, ~b! R2, ~c! RmnRmn, and~d! Rmnls
mnls.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~4s21!~4s23!•••3•15
~4s!!

2s
•~2s!!

. ~13!

The number, 10395, in the left-hand side of Eq.~12! is thes53 case. The weight calculation i
explained in Appendix H taking the example of G12. This relation~12! shows the completeness o
the listing of Appendix A.

Furthermore, we can see the structure of classification in relations between weights. In S
we have used two reduction procedures, Fig. 6 and Fig. 11. The procedure of Fig. 6 red
connected graphs~see Appendix A! to 19 ones cited in Figs. 7–10. That of Fig. 11 reduces the
graphs to 4 ones cited in Fig. 12. The following examples of relations between weights c
show the classification structure.
~i! 66→19

433432~1Q!55125128~1AQ!1384~1BQ!, ~14!

223332322~4J!596524~4BJ!124~4DJ!124~4FJ!124~4HJ!. ~15!

~ii ! 19→4

~4C2!3323~Q!517285512~1Q!1768~2Q!1384~3Q!164~4Q!, ~16!

FIG. 24. Graphical representation forI R
an2[Rab

ba2Rab
ab . In the figure, anti@a,b# means anti-symmetrization w.r.t.a

andb. The second-line figure demonstrates the present notation used in the following.

FIG. 25. Graphical definition forI RR
an3 and I RR

an4. In the figure, anti@a,b,g# and anti@a,b,g,d# mean totally anti-
symmetrization w.r.t. (a,b,g) and (a,b,g,d) respectively.
J. Math. Phys., Vol. 38, No. 12, December 1997
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333~432!323~V!517285768~1V1!1256~1V2!1256~2V1!1384~2V2!164~3V!.
~17!

~iii ! 66→4

103952891~ discon!5950451728~V!13456~S!12592~J!11728~Q!, ~18!

where the total weight for the disconnected part~891! will be explained in Sec. VII.
We can simply understand the above relations in the field theory language. The init

connected diagrams are produced by connected Feynman diagrams of the following Lagr
~See a general field theory text book.!

L5L01L I , L05 1
2 f21v1v2 , LI5g1f2v11g2f2v2 . ~19!

FIG. 26. ~i! l 51, 13~con!10~discon!513 terms, G1-13.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~Of course the 24 disconnected ones~see Appendix A! are produced as the disconnected Feynm
diagrams.! The vertices and propagators are shown in Fig. 18. The first reduction procedure~Fig.
6! corresponds to takingg15g25g/A2,v15v2[v/A2 in ~19!.

L85L081L I8, L085 1
2 f21 1

2 v2, LI85gf2v. ~20!

The vertices and propagators are shown in Fig. 19. The 19 diagrams of Figs. 7–10 are pr
from the above Lagrangian. Integrating out thev-integral, we obtain an effective actionL eff,

FIG. 27. ~ii ! l 52, 26~con!13~discon!529 terms, G14-42 No.1.
J. Math. Phys., Vol. 38, No. 12, December 1997
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E Dv expH E dnxS 1

2
f21

1

2
v21gf2v D J ;expH E dnxS 1

2
f22

1

2
g2f4D J [expH E dnxL effJ .

~21!

Figure 20 shows the vertex graphically. This corresponds to the second reduction proced
Fig. 11. In fact theg6-order connected Feynman diagrams of~21! produces the diagrams of Fig
12.

This field theory approach is important when we treat general invariants with higher m
dimensional (M8,M10, . . .! cases. We comment on further generalizations in Sec. X.

FIG. 28. ~ii ! l 52, 26~con!13~discon!529 terms, G14-42 No.2.
J. Math. Phys., Vol. 38, No. 12, December 1997
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VII. DISCONNECTED PART

Among the 90 invariants listed in Appendix A, there are 24 disconnected graphs. The
composed of lower dimensional invariants (]]h, (]]h)2) treated in paper~I!. The disconnected
invariants are classified bydisconnectivity.

~i! disconnectivity52, 4 terms. We have the 4 terms as listed in Table II. The total weigh
disconnectivity52 is 27.

~ii ! disconnectivity51, 20 terms. We have the 20 terms as listed in Table III. In Table
A1-C3 are (]]h)2-invariants and Q and P are]]h-invariants~Sec. II!. The total weight for
graphs withdisconnectivity51 is 864.

Summing~i! and ~ii !, we see the total weight for the disconnected graphs is 891.

FIG. 29. ~iii ! l 53, 19~con!18~discon!527 terms, G43-69 No.1.
J. Math. Phys., Vol. 38, No. 12, December 1997
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In sections from II to VII, we have explained the classification of (]]h)3-invariants only.
Other types of SO(n)-invariants are classified in Appendix C~for ]4h•]2h-invariants! and in
Appendix D ~for ]3h•]3h-invariants!.

VIII. INDEPENDENCE OF GENERAL INVARIANTS

So far we have discussed the global SO(n)-invariants which appear in the weak-field pertu
bation of gravity. In this section we discuss properties of general invariants themselve
consider the general space-dimension. Therefore ‘‘independence’’ in this section means tha
general space-dimension.

A. Graphical representation of general tensors and invariants

In this case also, a graphical representation is very useful.2 We briefly explain the represen
tation necessary for the present explanation. We can expressRmnls , ¹aRmnls , and
¹a¹bRmnls as in Fig. 21.9 They represent their own suffix-permutation symmetries. The arr
are introduced there, and we have a simple rule: when we change the direction of arrow
change the sign of the overall factor. This expresses the~anti-!symmetric properties:Rmnls

52Rnmls52Rmnsl51Rnmsl . Relations between general invariants, like the Bianchi iden
are introduced as graphical rules. We now examinelocal general invariants which are made
¹m , Rmnls , andgmn . As for those with lower mass dimensions, the independent ones are
known due to much experience in the past literature. ForM2-dimension, we have

R, ~22!

as a unique general invariant~except a cosmological constant!. It is graphically represented as i
Fig. 22. Generally suffix-lines~dotted lines! are closed for general invariants. When a clos
suffix-loop has an even number of vertices, the graph is invariant under the change of the di
of arrows. In this case we may drop the arrow in the graph~see Fig. 22!. For M4-dimension, we
have four independent ones.

¹2R, R2, RmnRmn, RmnlsRmnls. ~23!

They are graphically represented as in Fig. 23. The independence of four terms of~23! is well
known. They are those terms which appear in the Weyl anomaly in 4 dim gravity-matter the
A proper proof of their independence, in terms of weak expansion and its graphical represen
is given in paper~I!.

FIG. 30. ~iii ! l 53, 19~con!18~discon!527 terms, G43-69 No.2.
J. Math. Phys., Vol. 38, No. 12, December 1997
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B. Independent general invariants as local functions

As for higher mass-dimensional cases, listing of all independent invariants is not eas
must take into account all relations such as the Bianchi identity and the cyclic relation
graphical representation helps greatly.2 Using this method, we can easily list the following 1
invariants ~which were obtained, by non-graphical methods, in Refs. 10–12, 1! as the finally
reducedM6-invariants.13,14

P15RRR, P25RRmnRmn, P35RRmnlsRmnls,

P45RmnRnlRl
m , P552RmnlsRmlRns, P65RmnlsRt

nlsRmt,

A15RmnlsRtv
slRvtnm, B15RmntsRlv

nt Rlmsv,

O15¹mR•¹mR, O25¹mRls•¹mRls, ~24!

O35¹mRlrst
•¹mRlrst , O45¹mRln•¹nRm

l ,

T15¹2R•R, T25¹2Rls•Rls, T35¹2Rlrst•Rlrst,

T45¹m¹nR•Rmn , S5¹2¹2R.

FIG. 31. ~iv! l 54, 8~con!18~discon!516 terms, G70-85, No.1.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The above 17 terms are graphically given in Appendix F. The above listing, however, doe
guarantee that all terms of~24! are independent of each other.@Ref. 1 enumerated the 17 term
~24! and examined their independence from the group~symmetry group! theoretical viewpoint.
See a comment on their method in the final section.# We do not have a proper basis in the ‘‘fu
metric’’ treatment, which makes it difficult to show the independence. As an application o
results about the classification of SO(n)-invariants~Secs. II–VII!, we can prove the independenc
of the above 17 terms of~24! for a general geometry in a general space-dimension. In orde
show the independence as alocal function, we can safely use the weak field expansion:gmn

5dmn1hmn , uhmnu!1.

~i! S5¹2¹2R The leading order is given by]6h;O(h).
S5]2]2~]2h2]m]nhmn!1O~h2!. ~25!

Other terms do not haveO(h) contribution, thereforeS is independent from others.
~ii ! T1;T4. The leading order of every term is]4h3]2h;O(h2). The classification of]4h

•]2h-invariants are given in Appendix C. The expansions ofT1;T4, in terms of ]4h
•]2h-invariants are also given there. The explicit forms of their expansions show that
terms are independent. Because other terms, exceptS, do not contribute to terms of this
type, we see they can be taken as independent terms.

FIG. 32. ~iv! l 54, 8~con!18~discon!516 terms, G70-85, No.2.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~iii ! O1;O4. The leading order of every term is given by]3h3]3h;O(h2). In Appendix D,
the classification of]3h•]3h-invariants are given. The expansions ofO1;O4, in terms of
them, are also obtained explicitly. Their explicit forms show the 4 terms are independe
the similar way to~ii !, we see they can be taken as independent terms.

~iv! P1;P6 ,A1 ,B1. The leading order of every term is given by (]]h)3;O(h3).
(]]h)3-invariants are completely classified in the text, and the results~especially the set of
indices! allow us to easily calculate~by computer! the weak-field expansion. This show
the power of the present classification. The result is given in Appendix E, which show
eight terms$P1;P6 ,A1 ,B1% are independent of each other. Furthermore they are ‘
thogonal’’ in the space of 90 terms except the G3 and G13 ‘‘directions.’’~(A1 andB1 have

FIG. 33. ~v! l 55, 0~con!14~discon!54 terms, G86-89.
J. Math. Phys., Vol. 38, No. 12, December 1997
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common components to G3 and G13 ‘‘directions.’’ If some inner product can be defin
this ‘‘vector’’ space, orthogonal ones could be chosen by taking some linear combina
of A1 andB1.!

From ~i!–~iv!, we may say the 17 terms of~24! are independent each other as local functio
so far as symmetries valid for general space dimension are concerned.

IX. RELATIONS VALID FOR ONLY EACH DIMENSION

It is known that, for each fixed space-dimension, there generally appear additional rel
among general invariants and topological quantities~say, Refs. 1, 4, 15, 16!. This kind of relations
have been noticed rather fragmentally in specific situations so far. Here we explicitly derive
in a systematic way. We still keep a general space-dimensionn for a while.

FIG. 34. ~vi! l 56, 0~con!11~discon!51 term, G90.

TABLE IV. Index list of SO(n)-invariants (]]h)3. G1 –G13(l 51!.

Graph No:Graph
Name,weight l

tadpo
leno tadtype (bcn,vcn)

‘‘Fine
splitting’’

G1:1AQ,128 1 0 n (3,6)
G2:1AJ,192 1 0 n (4,6)
G3:1AV2 ,64 1 0 n (6,6)
G4:1BQ,384 1 0 n (3,4)
G5:1BS2a,384 1 0 n (5,4) #1Vorder
G6:1BS2b,384 1 0 n (5,4) #1Vorder
G7:1BV1 ,384 1 0 n (6,4)
G8:1BJ,384 1 0 n (4,4)
G9:1BS2c,384 1 0 n (5,4) #1 Vorder
G10:1CJ,192 1 0 n (4,2)
G11:1CS,384 1 0 n (5,2)
G12:1CV1 ,384 1 0 n (6,2) #2 crossno
G13:1CV2 ,192 1 0 n (6,2) #2 crossno
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Let us introduce the quantity,I R
an2, graphically defined in Fig. 24, where a convenient notat

is introduced and is used in the following. In the figure, anti@a,b# means anti-symmetrization
w.r.t. a andb. We define similar quantities in Fig. 25 where anti@a,b,g# and anti@a,b,g,d# mean
total anti-symmetrization w.r.t. (a,b,g) and (a,b,g,d) respectively. We can easily compu
them by the use of an algebraic computer calculation, and we obtain as follows.

I R
an252R, I RR

an352~22RmnRmn1R2!,
~26!

I RR
an454~R224RmnRmn1RmnabRmnab!.

When we anti-symmetrize some suffixes in a given graph~general invariant! G, we notice the
following general facts.

1. We generally obtain different anti-symmetrized quantities by taking different choice
the starting graphG and of the number of anti-symmetrized suffixes ([Nan).
2. Nan is maximized at the number of internal dotted lines ([NI):Nan<NI . ~Ex. In Fig. 25,
Nan53, NI54 for I R2

an3; Nan54, NI54 for I R2
an4.! When Nan,NI , there generally appea

some choices of suffixes to be anti-symmetrized.
3. There are two cases when we calculate anti-symmetrized quantities.

~a! It identically vanishes. In this case we do not have relations among invariants.
~b! It gives a sum of some invariants listed in Sec. VIII.

TABLE V. Index list of SO(n)-invariants (]]h)3. G14 –G42(l 52!.

Graph No:Graph
Name,weight l

tadpo
leno tadtype (bcn,vcn)

‘‘Fine
splitting’’

G14:2AV1 ,64 2 0 n (3,0),(3,0)
G15:2DV1 ,192 2 0 n (3,2),(3,2)
G16:2DJ1 ,384 2 0 n (2,2),(2,2)
G17:2BS1 ,192 2 0 n (2,0),(3,2) #3dd~h!verno
G18:2BV2 ,96 2 0 n (2,0),(4,2) #4dd~h!verno
G19:2CS1 ,192 2 0 n (2,0),(3,2) #3dd~h!verno
G20:2CV2 ,96 2 0 n (2,0),(4,2) #4dd~h!verno
G21:2EaS1 ,192 2 0 n (2,2),(3,2)
G22:2EaV2 ,192 2 0 n (2,2),(4,2)
G23:A2Q,96 2 0 n (0,2),(2,2)
G24:A1Q,96 2 0 n (0,2),(4,2)
G25:2EbS1 ,192 2 0 n (2,2),(3,4)
G26:A3Q,96 2 0 n (0,2),(2,4)
G27:2FaQ,96 2 1 1 (3,2)
G28:2FaS22a,96 2 1 1 (5,2) #5 Vorder
G29:2FaJ2 ,192 2 1 1 (4,2)
G30:2FaS22b,192 2 1 1 (5,2) #5 Vorder
G31:2FbJ2 ,192 2 1 1 (4,4)
G32:2FbQ2a,192 2 1 1 (3,4) #6 Vorder
G33:2FbQ2b,96 2 1 1 (3,4) #6 Vorder
G34:2FbS2 ,96 2 1 1 (5,4)
G35:2GaQ,96 2 1 0 (3,2)
G36:2GaS22a,96 2 1 0 (5,2) #7 Vorder
G37:2GaJ2 ,192 2 1 0 (4,2)
G38:2GaS22b,192 2 1 0 (5,2) #7 Vorder
G39:2GbQ2a,96 2 1 0 (3,4) #8 Vorder
G40:2GbS2 ,96 2 1 0 (5,4)
G41:2GbJ2 ,192 2 1 0 (4,4)
G42:2GbQ2b,192 2 1 0 (3,4) #8 Vorder
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For M2- and M4-invariants, all possible non-zero anti-symmetrized quantities are give
~26!.

We can do the same thing forM6-invariants. Anti-symmetrized quantities are defined
Appendix G. They are all linearly-independent non-zero ones~except a relation in~29!, which is
written for an interest! and are computed as follows. From Fig. 49 of Appendix G, we have

I P1

an35P123P212P4 , I A1

an35P423P61 5
4 A12B1 ,

I P3

an352P21P312P522P6 , I B1~a!
an3 54B1 , ~27!

I B1~b!
an3 52 1

2 A112B11P6 , I P5

an35P52 1
2 P6 .

The expression ofI B1(a)
an3 implies B1 is ‘‘self-dual.’’ From Fig. 50 of Appendix G, we have

I P1

an452P1210P218P414P5 ,

I A1

an454P414P5210P613A124B1 ,
~28!

I P3

an4522P212P318P528P61A124B1 ,

TABLE VI. Index list of SO(n)-invariants (]]h)3.G43 –G69(l 53!.

Graph No:Graph
Name,weight l

tadpo
leno tadtype (bcn,vcn)

‘‘Fine
splitting’’

G43:3AJ1 ,48 3 2 0,0 (4,2)
G44:3AQ,96 3 2 0,0 (3,2)
G45:3BS,48 3 1 0 (2,0),(3,0)
G46:3CS,48 3 1 1 (2,0),(3,0)
G47:3DS,48 3 1 1 (2,0),(3,2)
G48:3DJ2 ,96 3 1 1 (2,0),(2,2)
G49:3EV,48 3 0 n (2,0),(2,0),(2,2)
G50:B3Q,24 3 0 n (0,2),(2,0),(2,0)
G51:3FaQ,96 3 2 1,0 (3,2)
G52:3FaJ1 ,96 3 2 1,0 (4,2)
G53:A2P,48 3 2 0,1 (2,2)
G54:A1P,48 3 2 0,1 (4,2)
G55:3FbQ,96 3 2 0,1 (3,4)
G56:A3P,48 3 2 0,1 (2,4)
G57:3GS,48 3 1 0 (2,0),(3,2)
G58:3GJ2 ,96 3 1 0 (2,0),(2,2)
G59:3HS,96 3 1 0 (2,2),(3,2)
G60:3HJ2 ,96 3 1 0 (2,2),(2,2)
G61:B2Q,96 3 1 0 (0,2),(2,2)
G62:3IQ,96 3 2 1,1 (3,2)
G63:3IJ1 ,48 3 2 1,1 (4,2)
G64:3JS,96 3 1 1 (2,2),(3,2)
G65:3JJ2 ,96 3 1 1 (2,2),(2,2)
G66:B1Q,96 3 1 1 (0,2),(2,2)
G67:3KV,16 3 0 n (2,2),(2,2),(2,2)
G68:B4Q,24 3 0 n (0,2),(2,2),(2,2)
G69:QQQ,8 3 0 n (0,2),(0,2),(0,2)
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I P6

an4522P512P62 1
2 A112B1 .

From Fig. 51 of Appendix G, we have

I P1

an554~P128P21P318P418P524P6!52~ I P1

an624I A1

an5!,

I A1

an554~22P21P314P418P5210P612A124B1!, ~29!

I P1

an658~P1212P213P3116P4124P5224P614A128B1!.

FIG. 35. Graphs of 6-tensor]m]n]l]shab .

TABLE VII. Index list of SO(n)-invariants (]]h)3.G70 –G85(l 54), G86 –G89(l 55), G90(l 56!.

Graph No:Graph
Name,weight l

tadpo
leno tadtype (bcn,vcn)

‘‘Fine
splitting’’

G70:4AQ,8 4 3 0,0,0 (3,0)
G71:4BJ,24 4 2 0,1 (2,0),(2,0) #9disconnect
G72:B3P,12 4 2 0,1 (2,0),(2,0) #9disconnect
G73:4CQ,24 4 3 0,0,1 (3,2)
G74:B2P,48 4 3 0,0,1 (2,2)
G75:4DJ,24 4 2 0,0 (2,0),(2,2)
G76:C2Q,12 4 2 0,0 (0,2),(2,0)
G77:4EQ,8 4 3 1,1,1 (3,0)
G78:4FJ,24 4 2 1,1 (2,0),(2,2)
G79:C1Q,12 4 2 1,1 (0,2),(2,0)
G80:4GQ,24 4 3 0,1,1 (3,2)
G81:B1P,48 4 3 0,1,1 (2,2)
G82:4HJ,24 4 2 0,1 (2,2),(2,2) #10disconnect
G83:C3Q,24 4 2 0,1 (0,2),(2,2)
G84:B4P,12 4 2 0,1 (2,2),(2,2) #10disconnect
G85:PQQ,12 4 2 0,1 (0,2),(0,2)
G86:C2P,6 5 4 0,0,0,1 (2,0)
G87:C1P,6 5 4 0,1,1,1 (2,0)
G88:PPQ,6 5 4 0,0,1,1 (0,2)
G89:C3P,12 5 4 0,0,1,1 (2,2)
G90:PPP,1 6 6 0,0,0,1,1,1 n
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Eqs. ~27!–~29! show RRR-type invariants are closed within themselves for the a
symmetrization. From Fig. 52 of Appendix G, we have

I T1~a!
an3 52~T122T2!, I T1~b!

an3 52P41P51 1
2 T12T2 ,

I T1~c!
an3 52~T122T4!, I T3

an352P61 1
2 A112B1 , I T1~a!

an4 54~T124T21T3!, ~30!

I T1~b!
an4 524P414P512P62A124B11T124T21T3 .

These relations show¹¹R3R type invariants are not closed within themselves. In particularI T3

an3

does not haveT3. From Fig. 53 of Appendix G, we have

I O1~a!
an3 52~O122O2!, I O1~b!

an3 5 1
4 O12O21O4 , I O1

an454~O124O21O3!. ~31!

¹R3¹R type invariants are closed within themselves. So far we have kept the space
dimensionn general.

Let us examine relations for each space-dimension.
~i! n52. For then52 space dimension,I R

an2 gives the Gauss-Bonnet relation~Euler term!,

FIG. 36. Graphs forP8[]2]2hmm andQ8[]2]m]nhmn .

FIG. 37. Graphs forbridgeno50 ~disconnected!.
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E d2xAgIR
an25topological invariant. ~32!

The invariantR, ~22!, remains as the unique generalM2-invariant althoughAgR is a surface term
~total derivative!. I

*
ani50(i>3) give us relations. FromI R2

an3
50 andI R2

an4
50, we have the follow-

ing ones betweenM4-invariants.

RmnlsRmnls
52RmnRmn5R2. ~33!

Therefore we can take, as all independentM4-invariants in 2 space dimension,

¹2R, R2. ~34!

Relations~33! deduce the following ones betweenM6-invariants.

P152P25P3 . ~35!

From the vanishing of all quantities of~27!–~29!, we have

FIG. 38. Graphs forbridgeno52.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



6505S. Ichinose and N. Ikeda: Graphical classification of invariants

                    
P154P454P552P65A1 , B150. ~36!

From the vanishing of all quantities of~30!, we have

T152T252T45T3 . ~37!

From the vanishing of all quantities of~31!, we have

FIG. 39. Graphs forbridgeno54.

TABLE VIII. Classification of ]4h•]2h-invariants, their weights and weak-field expansion of¹¹R3R-type general
invariants.

Bridge-
No. l

Graph
Name

Weight,
Total 945 T1 T2 T3 T4

3 Q’Q 24 1 0 0 0
0 4 Q’P 12 21 0 0 0

4 P’Q 6 21 0 0 0
5 P’P 3 1 0 0 0

2 2H2a 96 0
1
2 0 0

2 2H2b 96 0
1
2 0 0

2 2H2c 96 0 0 0 1
3 3H2a 24 0 2

1
2 0 0

3 3H2b 48 0 2
1
2 0 21

3 3H2c 48 0 2
1
2 0 0

2 3 3H2d 48 0 2
1
2 0 0

3 3H2e 24 0 0 0 2
1
2

3 3H2f 24 0 0 0 2
1
2

4 4H2a 6 0
1
4 0 0

4 4H2b 6 0
1
4 0 0

4 4H2c 12 0
1
4 0

1
2

4 4H2d 12 0
1
4 0

1
2

2 2H4a 96 0 0 0 0
2 2H4b 96 0 0 0 0

4 2 2H4c 96 0 0 22 0
3 3H4a 24 0 0 0 0
3 3H4b 24 0 0 1 0
3 3H4c 24 0 0 1 0
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O152O25O354O4 . ~38!

Therefore we have the following four terms as independentM6-invariants:

P15RRR, O15¹mR•¹mR, T15¹2R•R, S5¹2¹2R. ~39!

We should note here that the above relations are derived without the use of the well-k
relation between Riemann tensors which is valid only in two space-dimensions,

Rmnls5 1
2 ~gmsgnl2gmlgns!R. ~40!

FIG. 40. Graphs of 5-tensor]m]n]lhab .

FIG. 41. Graphs forbridgeno51.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 42. Graphs forbridgeno53.

FIG. 43. Graphs forbridgeno55.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



eck of

-
space-

ll

6508 S. Ichinose and N. Ikeda: Graphical classification of invariants

                    
~Of course, the obtained relations are consistent with the above relation. This is a strong ch
the present approach.! Because the degree of local freedom of the Riemann tensor inn-dim space
is f (n)5n2(n221)/12,n>4, we do not have such simple relations as~40! in higher space dimen
sion. Hence the present approach is indispensable to obtain all relations in higher
dimension.

~ii ! n54. In then54 space dimension,I RR
an4 gives the Gauss-Bonnet relation,

E d4xAgIRR
an45topological invariant. ~41!

The four invariants~23! remain as independent generalM4-invariants. From the vanishing of a
quantities of~29!, we have two independent relations betweenM6-invariants,

TABLE IX. Classification of (]]]h)2-invariants, their weights and weak-field expansion of¹R3¹R-type general invari-
ants.

Bridge-
No. l

Graph
Name

Weight,
Total 945 O1 O2 O3 O4

2 2F1a 36 0 0 0 0
2 2F1b 36 1 0 0 0

1 2 2F1c 72 0 0 0 0
3 3F1a 36 0 0 0 0
3 3F1b 36 22 0 0 0
4 4F1 9 1 0 0 0

2 2F3a 36 0 0 0
1
4

2 2F3b 72 0 0 0 2
1
2

2 2F3c 144 0 21 0 2
1
2

2 2F3d 72 0
1
2 0

3
4

3 2 2F3e 144 0
1
2 0

1
4

3 3F3a 6 0
1
4 0

1
4

3 3F3b 18 0
1
4 0 0

3 3F3c 36 0
1
2 0

1
2

3 3F3d 72 0 21 0 21

2 2F5a 36 0 0 1 0
5 2 2F5b 72 0 0 22 0

3 3F5 12 0 0 1 0

TABLE X. Weak-expansion of invariants withM 6-Dim.: (]]h)3-Part,G1 –G13(l 51!.

Graph P1 P2 P3 P4 P5 P6 A1 B1

G1 0 0 0 2
1
4 0 0 0 0

G2 0 0 0 0
1
4 0 0 0

G3 0 0 0 0 0 0 21 2
1
4

G4 0 0 0 2
3
4 0 0 0 0

G5 0 0 0 0 0
1
2 0 0

G6 0 0 0 0 0
1
2 0 0

G7 0 0 0 0 0 0 0
3
2

G8 0 0 0 0
1
2 0 0 0

G9 0 0 0 0 0
1
2 0 0

G10 0 0 0 0
1
4 0 0 0

G11 0 0 0 0 0
1
2 0 0

G12 0 0 0 0 0 0 0
3
2

G13 0 0 0 0 0 0 23 2
3
4
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I P1

an550, I A1

an550. ~42!

There exist no relations betweenTi ’s andOi ’s. Therefore we have 1722515 terms as indepen
dentM6-invariants, say,

P1,P2,P3,P4,P5,A1,
~43!

T1 ,T2 ,T3 ,T4 ,O1 ,O2 ,O3 ,O4 ,S.

They are considered to appear in the higher-order of the Weyl anomaly due to the gravito
effect if they can be properly defined.~In the usual~1-loop! Weyl anomaly, 4 terms of~23!
appear.!

~iii ! n56. In then56 space-dimension,I P1

an6 gives the Gauss-Bonnet relation,

E d6xAgIP1

an65topological invariant. ~44!

The 17 invariants~24! remain as independent general invariants.
Therefore we have confirmed that, in n space-dimension, all independentMn-invariants~the

~1-loop! Weyl anomaly is given by them! are given in Sec. VIII:~22! for n52, ~23! for n54 and
~24! for n56. Only for general invariants with higher mass-dimensionMm,m.n, the number of
independent ones reduces from those given in Sec. VIII due to relations valid only for
dimension.

TABLE XI. Weak-expansion of invariants withM 6-Dim.: (]]h)3-Part,G14 –G42(l 52!.

Graph P1 P2 P3 P4 P5 P6 A1 B1

G14 0 0 0 0 0 0 1 0
G15 0 0 0 0 0 0 3 0
G16 0 0 0 0 21 0 0 0
G17 0 0 0 0 0 2

1
2 0 0

G18 0 0 0 0 0 0 0 2
3
4

G19 0 0 0 0 0 2
1
2 0 0

G20 0 0 0 0 0 0 0 2
3
4

G21 0 0 0 0 0 2
1
2 0 0

G22 0 0 0 0 0 0 0 2
3
2

G23 0 2
1
2 0 0 0 0 0 0

G24 0 0 2 0 0 0 0 0
G25 0 0 0 0 0 2

1
2 0 0

G26 0 2
1
2 0 0 0 0 0 0

G27 0 0 0
3
8 0 0 0 0

G28 0 0 0 0 0 2
1
4 0 0

G29 0 0 0 0 2
1
2 0 0 0

G30 0 0 0 0 0 2
1
2 0 0

G31 0 0 0 0 2
1
2 0 0 0

G32 0 0 0
3
4 0 0 0 0

G33 0 0 0
3
8 0 0 0 0

G34 0 0 0 0 0 2
1
4 0 0

G35 0 0 0
3
8 0 0 0 0

G36 0 0 0 0 0 2
1
4 0 0

G37 0 0 0 0 2
1
2 0 0 0

G38 0 0 0 0 0 2
1
2 0 0

G39 0 0 0
3
8 0 0 0 0

G40 0 0 0 0 0 2
1
4 0 0

G41 0 0 0 0 2
1
2 0 0 0

G42 0 0 0
3
4 0 0 0 0
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As a comparison, it is interesting to examine the situation in independent general invaria
counterterms. Generally the countertermsDL are defined in a space integral in such a way t
the action

E AgDLdnx, ~45!

cancels~ultra-violet! divergences due to the quantum fluctuation.DL is a sum of general invari-
ants with ‘‘divergent’’-constant coefficients. Here we have interest in what terms could appe
independent ones. Wemay neglect total derivative termsbecause the fields are usually assumed
damp sufficiently rapidly at the boundary. As a choice, we give a complete list of indepe
counterterms in the following.

~i! n52
M2-invariants~1-loop!: no terms

M4-invariants~2-loop!:R2

M6-invariants~3-loop!:P15RRR, O15¹mR•¹mR.
~ii ! n54

M4-invariants~1-loop!: R2, RmnRmn

M6-invariants~2-loop!: P1 , P2 , P3 , P4 , P5 , A1 , O1 , O2 , O3 , O4.
~iii ! n56

TABLE XII. Weak-expansion of invariants withM 6-Dim.: (]]h)3-Part,G43 –G69(l 53!.

Graph P1 P2 P3 P4 P5 P6 A1 B1

G43 0 0 0 0
1
4 0 0 0

G44 0 0 0 2
3
4 0 0 0 0

G45 0 0 0 0 0
1
4 0 0

G46 0 0 0 0 0
1
4 0 0

G47 0 0 0 0 0
1
4 0 0

G48 0 0 0 0
1
2 0 0 0

G49 0 0 0 0 0 0 0
3
4

G50 0 0 21 0 0 0 0 0
G51 0 0 0 2

3
4 0 0 0 0

G52 0 0 0 0
1
2 0 0 0

G53 0
1
2 0 0 0 0 0 0

G54 0 0 22 0 0 0 0 0
G55 0 0 0 2

3
4 0 0 0 0

G56 0
1
2 0 0 0 0 0 0

G57 0 0 0 0 0
1
4 0 0

G58 0 0 0 0
1
2 0 0 0

G59 0 0 0 0 0
1
2 0 0

G60 0 0 0 0
1
2 0 0 0

G61 0 1 0 0 0 0 0 0
G62 0 0 0 2

3
4 0 0 0 0

G63 0 0 0 0
1
4 0 0 0

G64 0 0 0 0 0
1
2 0 0

G65 0 0 0 0
1
2 0 0 0

G66 0 1 0 0 0 0 0 0
G67 0 0 0 0 0 0 0

1
4

G68 0 0 21 0 0 0 0 0
G69 21 0 0 0 0 0 0 0
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M6-invariants~1-loop!: P1 ,P2 ,P3 ,P4 ,P5 ,P6 ,A1 ,O1 ,O2 ,O3 ,O4.

If we consider pure gravity and impose the S-matrix condition~on-shell condition, Ricci flat
condition! Rmn50 on the above results, we see 2 dim pure gravity is finite, 4 dim case is not
at higher-loops from 2-loop, 6 dim case is not finite at higher-loops from 1-loop. In the latte
cases, non-finite term appears asA1 term. This is well known from the divergence problem in t
S-matrix in perturbative quantum gravity.17,18

X. DISCUSSIONS AND CONCLUSIONS

We have presented a way to classify SO(n)-invariants which generally appear in weak-fie
perturbations of~quantum! gravity. Taking the explicit example of (]]h)3-invariants, we have
presented the general way of classification. The following important items have been explain!
the graphical representation of global SO(n)-tensors and invariants, 2! the weight of a graph, 3!
indices characterizing a graph, 4! reduction procedures of graphs, and 5! bondless diagrams. In th
higher dimensional cases, such as (]]h)4 and (]]h)5 ~which appear, for example, in the Wey
anomaly in 8 dim and 10 dim gravity, respectively! the same procedure can be applied exc
some additional indices might be required.

We have mainly discussed (]]h)3-invariants in the text,]4h•]2h-invariants in Appendix C
and (]3h)2-invariants in Appendix D.]]h- and (]]h)2-invariants have been treated in paper~I!.
Clearly it must be generalized to treat all SO(n)-invariants which appear in the weak expansion
all general invariants. For such direction, we comment on the generalization of the field t
approach proposed in Sec. VI. Let us consider the following Lagrangian in 2 space-dimen19

L@f,v1 ,v2#5L01L I , L05 1
2 f21v1v2 ,

TABLE XIII. Weak-expansion of invariants withM 6-Dim.: (]]h)3-Part, G70 –G85(l 54), G86 –G89(l 55),
G90(l 56!.

Graph P1 P2 P3 P4 P5 P6 A1 B1

G70 0 0 0
1
8 0 0 0 0

G71 0 0 0 0 2
1
4 0 0 0

G72 0 0 1 0 0 0 0 0
G73 0 0 0

3
8 0 0 0 0

G74 0 21 0 0 0 0 0 0
G75 0 0 0 0 2

1
4 0 0 0

G76 0 2
1
4 0 0 0 0 0 0

G77 0 0 0
1
8 0 0 0 0

G78 0 0 0 0 2
1
4 0 0 0

G79 0 2
1
4 0 0 0 0 0 0

G80 0 0 0
3
8 0 0 0 0

G81 0 21 0 0 0 0 0 0
G82 0 0 0 0 2

1
4 0 0 0

G83 0 2
1
2 0 0 0 0 0 0

G84 0 0 1 0 0 0 0 0
G85 3 0 0 0 0 0 0 0

G86 0
1
4 0 0 0 0 0 0

G87 0
1
4 0 0 0 0 0 0

G88 23 0 0 0 0 0 0 0
G89 0

1
2 0 0 0 0 0 0

G90 1 0 0 0 0 0 0 0
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L I@f,v1 ,v2#5(
i 51

`

gif
iv11lf2v2 . ~46!

We assign mass-dimension as follows:

@L#5M2, @f#5M , @v1#5M2, @v2#5M0. ~47!

Then we obtain

@gi #5M 2 i , @l#5M0. ~48!

This result turns out to give the mass-dimension of each expanded term in the following
generating functional of all graphs~SO (n)-invariants, SO(n)-tensors! is given by

W@J,K1 ,K2#5expG@J,K1 ,K2#5E DfDv1Dv2 expF E d2x~L@f,v1 ,v2#1Jf1K1v11K2v2!G
5H (

r 50

`
1

r ! F E d2xL I S d

dJ~x!
,

d

dK1~x!
,

d

dK2~x! D
r J

FIG. 44. Graphs for P15RRR,P25RRmnRmn,P35RRmnlsRmnls,P45RmnRnlRl
m ,P552RmnlsRmlRns and P6

5RmnlsRt
nlsRmt.

FIG. 45. Graphs forA15RmnlsRsl
tvRvtnm andB15RmntsRn

lv
tRlmsv.
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3expE d2x~2 1
2 J~x!J~x!K1~x!K2~x!!. ~49!

All graphs of connectedn-tensors appear in then-point Green function,

1

n!

d

dJ~x1!

d

dJ~x2!
•••

d

dJ~xn!
G@J,K1 ,K2#uJ50,K150,K250 . ~50!

In particular all SO(n)-invariants appear in

FIG. 46. Graphs forT15¹2R•R,T25¹2Rls•Rls,T35¹2Rlrst•Rlrst, andT45¹m¹nR•Rmn .

FIG. 47. Graphs forO15¹mR•¹mR,O25¹mRls•¹mRls,O35¹mRlrst
•¹mRlrst , andO45¹mRln•¹nRm

l .
J. Math. Phys., Vol. 38, No. 12, December 1997
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G@J,K1 ,K2#uJ50,K150,K250 . ~51!

These quantities are given by perturbation with respect to the couplings (g1 ,g2 ,...;l) in L I . For
example, (]]h)s-invariants (s51,2,...) are given by (g2l)s-terms (r 52s) in ~51!.
]4h•]2h-invariants ~Appendix C! and ]3h•]3h-invariants ~Appendix D! are given by
g4•g2•l2-terms (r 54) andg3•g3•l2-terms (r 54) respectively. From the coupling-dependen
we can read the mass-dimension of each graph. For example@(g2l)s#5M 22s, @g4•g2•l2#
5M 26 and@g3•g3•l2#5M 26. They are the inverse of their mass-dimensions. The coefficien
front of each expanded term are related with the weight of the corresponding graph. The
alization using this field theory approach is useful for classification of general SO(n)-invariants.

The result is not only interesting as the mathematical~graphical! structure by itself, but also
provides a very efficient computer-algorithm for the tensor calculation.20 As an example of a
computer calculation, we have presented some results of weak-perturbation of g
M6-invariants in Appendix E. They are used to prove the independence of generalM6-invariants
in Sec. VIII. Further important applications of the present result are the anomaly and the~1-loop!
counterterm calculation in 6 dim quantum gravity. Generally in n-dim gravity, the Weyl anom
is given by some combination of general invariants with dimensionMn, andL-loop counterterms
are given by some combination of invariants with dimensionMn12L22. In both cases, all coeffi-
cients can be fixed by the weak-field perturbation.21

Fulling et al.1 approached the present problem in a contrasting way. They first characteri
Riemann tensors or its covariant derivatives by some Young tableaus which express some
sentations of the symmetry group. They obtain all independent general invariants and cova
which are generally made of the Riemann tensors and its covariant derivatives, by findin
irreducible representations of the corresponding product of the Young tableous. As far
present analysis is concerned, the group theoretical approach gives the same results as th
graphical approach. The group theoretical one can be applied to (]]h)s-invariants too. It rather
easily gives 2,13, and 90 as the number of independent invariants fors51,2, and 3, respectively
which is consistent with the present result. Furthermore the approach gives the number o
pendent invariants for each specific dimension. Taking the (]]h)3-invariants, for example, there
exist 1,18,62,85,89, and 90 independent ones forn51,n52,n53,n54,n55, andn>6, respec-
tively. This result is expected to be reproduced in the present approach by ana
(]]h)3-invariants in the same way as in Sec. IX.~We thank the referee for informing us of thes
results derived by the group theoretical approach.! It is very interesting that there exist so co
trastive approaches~group theoretical versus graphical! to the same problem. Both ones, at lea
up to terms with the dimensionM6, are consistent. They will complement each other for furt
analysis of this still-undeveloped but important area of the mathematical physics.

FIG. 48. Graphs foS5¹2¹2R.
J. Math. Phys., Vol. 38, No. 12, December 1997
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So far, we have been annoyed by the complicated tensor calculation in the analysis of~quan-
tum! gravity. It is serious especially in a higher-dimensional case or in a higher-order case. T
because we have not known an efficient way to manipulate tensors. It is not an exaggeration
that the complication has been a hindrance to understanding the theory of gravity. We belie

FIG. 49. Graphical definition forI P1

an3,I A1

an3,I P3

an3,I B1(a)
an3 ,I B1(b)

an3 and I P5

an3.
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present approach provides a new possibility in analyzing~quantum! gravity in such cases.
The results of Sec. IX, Appendix B, Appendix E, and some others are obtained by com

calculation~FORM, C-language program!.
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APPENDIX A: FULL LIST OF „h …

3-INVARIANTS

In this appendix we list graphs of all independent (]]h)3-invariants. Every graph is name
according to the classification scheme explained in Secs. III and IV. They are grouped with r
to the number of suffix-loopsl as follows. ~‘‘con’’ means ‘‘connected graphs’’ and ‘‘discon’’
means ‘‘disconnected graphs.’’!

~i! l 51 ~13~con!10~discon!513 terms!, Fig. 26.

FIG. 50. Graphical definition forI P1

an4,I A1

an4,I P3

an4 and I P6

an4.
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~ii ! l 52 ~26~con!13~discon!529 terms!, Fig. 27 and Fig. 28.
~iii ! l 53 ~19~con!18~discon!527 terms!, Fig. 29 and Fig. 30.
~iv! l 54 ~8~con!18~discon!516 terms!, Fig. 31 and Fig. 32.
~v! l 55 ~0~con!14~discon!54 terms!, Fig. 33.
~vi! l 56 ~0~con!11~discon!51 term!, Fig. 34.

APPENDIX B: LIST OF INDICES OF ALL „h …

3-INVARIANTS

Every graph can be specified completely by a set of indices which expresses its topolog~see
Secs. II and V!. Lists of indices (l ,tadpoleno,tadtype,bcn,vcn) and weight are given in Table IV

for G1 –G13, in Table V forG14 –G42, in Table VI for G43 –G69, and in Table VII for
G70 –G90. This result is coded into the program, which enables the present computer calcu
In the tables, there is a column of ‘‘fine splitting.’’ These boxes show how to discrimi
topologically quite similar graphs which are indicated by the same #-number in the boxes
explained in Sec. V B.

APPENDIX C: CLASSIFICATION OF 4h –2h -INVARIANTS AND WEAK-EXPANSION OF
¹¹R3R-TERMS

The leading order of the weak-field expansion for¹¹R3R-type general invariants (T1

;T4), is given by a sum of]4h•]2h-invariants. In order to treat them graphically, we introdu
a graphical representation, in Fig. 35, for a 6-tensor]m]n]l]shab . There are two]4h-invariants,
P8[]2]2hmm and Q8[]2]m]nhmn , which are graphically shown in Fig. 36. Let us consid
]4h•]2h-invariants and list all the independent ones. For the classification, we must first intro
a new index.

Def: Let us consider a general SO (n)-invariant of a binary type:] rh•]sh,r 1s5 even.~The
case of (r 54,s52) is the present case.! When we represent (r 12)-tensor] rh in a similar way to
Fig. 35 (r 54), the invariant] rh•]sh is represented by a graph with (r 1s14)/2 suffix-lines
where each of them connects two vertices in the graph. We definebridge-linesas those suffix-lines
which connect a vertex of one bond with another vertex of the other bond.

Def: For a general SO(n)-invariant of a binary type:] rh•]sh,r 1s5 even, we definebridge
number(bridgeno) as the number of bridge-lines of the graph.

FIG. 51. Graphical definition forI P1

an5,I A1

an5 and I P1

an6.
J. Math. Phys., Vol. 38, No. 12, December 1997
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bridgeno must be an even number in this case because both]4h-tensor and]2h-tensor have
even number of suffixes. The classification is done bybridgeno and the number of suffix-loops,l ,
as follows.

~i! bridgeno50 ~disconnected!, Fig. 37. Q’Q(l 53); Q’P, P’Q (l 54); P’P (l 55).
~ii ! bridgeno52, Fig. 38. 2H2a, 2H2b, 2H2c (l 52); 3H2a, 3H2b, 3H2c, 3H2d, 3H2e, 3H2

( l 53); 4H2a, 4H2b, 4H2c, 4H2d (l 54).
~iii ! bridgeno54, Fig. 39. 2H4a, 2H4b, 2H4c (l 52); 3H4a, 3H4b, 3H4c (l 53).

In Table VIII, the weak-field expansion ofT1;T4, the classification of]4h•]2h-invariants
and their weights are given. The total sum of weights is 9455937353331. We seeTi ’s are
independent of each other.

APPENDIX D: CLASSIFICATION OF „h …

2-INVARIANTS AND WEAK-EXPANSION OF
¹R3¹R-TERMS

The leading order of the weak-field expansion for¹R3¹R-type general invariants(O1

;O4), is given by a sum of (]]]h)2-invariants. We introduce a graphical representation, in F
40, for a 5-tensor]m]n]lhab . We list here all and independent (]]]h)2-invariants.bridgeno must
be an odd number in this case because the]]]h-tensor has an odd number of suffixes, especia
because there are no disconnected graphs. We classify them bybridgeno andl , as follows.

~i! bridgeno51, Fig. 41. 2F1a, 2F1b, 2F1c (l 52); 3F1a, 3F1b (l 53); 4F1 (l 54).
~ii ! bridgeno53, Fig. 42. 2F3a, 2F3b, 2F3c, 2F3d, 2F3e (l 52); 3F3a, 3F3b, 3F3c, 3F3d (l

53).
~iii ! bridgeno55, Fig. 43. 2F5a, 2F5b (l 52); 3F5 (l 53).

FIG. 52. Graphical definition forI T1(a)
an3 ,I T1(b)

an3 ,I T1(c)
an3 ,I T3

an3,I T1(a)
an4 and I T1(b)

an4 .
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In Table IX, the weak-field expansion ofO1;O4 , the classification of (]]]h)2-invariants
and their weights are given. The total sum of weights is 9455937353331. We seeOi ’s are
independent of each other.

APPENDIX E: WEAK FIELD EXPANSION OF GENERAL INVARIANTS

In this appendix we list, in Tables X–XIII, the weak expansion ofRRR-type general invari-
ants:P1;P6 ,A1 ,B1. We focus only in (]]h)3-terms among different types of expanded term
The classification of (]]h)3-invariants is the main theme of the text. The result is most fruitfu
utilized in this appendix, especially the set of indices, which characterizes every (]]h)3-invariant
by its graph topology, and is exploited in the~computer! calculation. The following results show
the power of the present approach. We see the 8 general invariants are locally independe
other, furthermore they are ‘‘orthogonal’’ in the space of (]]h)3-invariants except in the ‘‘direc-
tions’’ of G3 andG13 (A1 andB1 only are mixed in those ‘‘directions’’!.22

APPENDIX F: GRAPHS OF GENERAL INVARIANTS WITH M6 DIMENSION

In this section we graphically list all independent~in n-dim space! general invariants withM6

dimension. They are classified in the following ways.

~i! Fig. 44: RRR-type ~on-shell vanishing!.

FIG. 53. Graphical definition forI O1(a)
an3 ,I O1(b)

an3 and I O1

an4.

FIG. 54. Weight calculation of the graph G12 in Fig. 17.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ii ! Fig. 45: RRR-type ~on-shell non-vanishing!.
~iii ! Fig. 46: ¹¹R3R-type.
~iv! Fig. 47: ¹R3¹R-type.
~v! Fig. 48: ¹2¹2R-type.

APPENDIX G: GRAPHICAL DEFINITIONS OF TOTALLY ANTI-SYMMETRIZED
QUANTITIES

All independent non-vanishing totally anti-symmetrized quantities with the dimensionM6 are
graphically defined in this appendix. They are used, in Sec. IX of the text, to derive sp
relations, between general invariants, valid only in each dimension. The anti-symmetrized
tities are grouped, in the following, by the type of a starting general invariant: Figs. 49–5R
3R3R-type!, Fig. 52 (¹¹R3R-type! and Fig. 53 (¹R3¹R-type!.

APPENDIX H: WEIGHT CALCULATION

In Sec. VI, we have introduced a number calledweight for each graph. It expresses th
‘‘magnitude of symmetry’’ with respect to the exchange of suffixes. As an example of we
calculation, let us take the graph G12 in Fig. 17. As shown in Fig. 54, the graph G12 is de
posed into three parts~G12a, G12bx, G12by!. Its weight is calculated as

The weight of G1253$ No. of choices of G12a among three]]h’s%

3~434!$ No. of possible ways ofa- andb-contractions in making

G12b from two]]h’s%

3~2322!$ No. of possible ways ofm, n, l ands-contractions in

making G12 from G12a and G12b%5384. ~H1!

1S. A. Fulling, R. C. King, B. G. Wybourne, and C. J. Cummins, Class. Quantum Grav.9, 1151~1992!.
2S. Ichinose, Class. Quantum Grav.12, 1021~1995!.
3When we say ‘‘dimension,’’ there are two different meanings in this paper. One is the dimension of space, which
the space-dimension when clear separation is necessary. The other is the mass dimension of an operator. For
the Riemann tensor has anM 2 dimension in any space-dimension. We call it the mass-dimension when necessar

4The relations come from ‘‘Type 2’’ symmetry in Sec. II of Ref. 2. Note that the statement does not apply to
relations which come from ‘‘Type 3’’ symmetry. It is the symmetry depending on each dimension.

5S. Ichinose and N. Ikeda, University of Shizuoka, US-96-03,1996, hep-th/9609013, ‘‘Weak field expansion of g
and graphical representation’’~preprint!.

6bcn@ # imply a general element of an array:bcn @0#,...,bcn@ l #. The same thing is forvcn@ #. All quantities of indices are
underlined in the following.

7The introduced indices here are the same as those explained in Lemma of Sec. II:ddverno@ i #5wi ,hverno@ i #5v i .
8As a general tendency, we see, from the result of Appendix B, the weight of a graph decreases as its suffix-lool )
increases.

9In contrast with Ref. 2, we take here double solid lines to express the ‘‘bond’’ ofRmnls in order to avoid the confusion
with ]m]nhab of Fig. 1.

10H. Donnelly, Indiana Univ. Math. J.24, 603 ~1974!.
11P. B. Gilkey, J. Diff. Geom.10, 601 ~1975!.
12L. Bonora, P. Pasti, and M. Bregola, Class. Quantum Grav.3, 635 ~1986!.
13Note that in Ref. 2, total derivative terms are neglected, whereas they are not neglected in the present case.
14$P12P6%,A1,B1 and$O12O2% are the same notation as that in Ref. 2.O3 andO4 in ~24! correspond toQ2 andQ10 in

Ref. 2 respectively.@There is a typographical mistake in the figure caption of Fig. 15 of Ref. 2 where a minus si
missing in the literal~not graphical! definition of P5. The one given in~24! of the present text is the right one.#

15M. H. Goroff and A. Sagnotti, Nucl. Phys. B266, 709 ~1986!.
16S. Deser and A. Schwimmer, Phys. Lett. B309, 279 ~1993!.
17R. Kallosh, Nucl. Phys. B78, 293 ~1974!.
18P. van Nieuwenhuizen and C. C. Wu, J. Math. Phys.18, 182 ~1977!.
19The space-dimension is taken to be 2 in order to obtain the mass-dimensions of the couplings,~48!, without introducing
J. Math. Phys., Vol. 38, No. 12, December 1997
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any additional mass parameters. Note that the present purpose is the graph classification. There the important th
topological structure of graphs. The space-dimension of the field theory is irrelevant.

20S. Ichinose, University of Shizuoka, US-96-05,1996, hep-th/9609014, Int. J. Mod. Phys. C~to be published! ‘‘New
algorithm for tensor calculation in field thories’’~preprint!.

21S. Ichinose and N. Ikeda, hep-th/9509073; Phys. Rev. D53, 5932~1996!.
22Among 90 terms listed in Appendix A, G3 and G13 only have the crossing number 3. As for the definition o

crossing number, see Sec. V B.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



ang/
eld,

k-hole

rically

ave
we
of

tric
s.

                    
Reissner–Nordstro ¨ m-like solutions of the SU „2…

Einstein–Yang/Mills equations
J. A. Smoller and A. G. Wasserman
Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109

~Received 12 June 1997; accepted for publication 21 August 1997!

We introduce a new class of spherically symmetric solutions of the SU~2!
Einstein–Yang/Mills equations. These solutions have a Reissner–Nordstro¨m-type
essential singularity at the origin, and are well behaved in the far field. These
solutions are needed to classify all spherically symmetric solutions which are
smooth, asymptotically flat in the far field, and have finite~ADM ! mass. ©1997
American Institute of Physics.@S0022-2488~97!00312-5#

I. INTRODUCTION

In this paper we study a new type of solution of the spherically symmetric Einstein–Y
Mills ~EYM! equations with SU~2! gauge group. These solutions are well behaved in the far fi
and have a Reissner–Nordstro¨m-type ~see Refs. 1 and 2! essential singularity at the originr 50.
These solutions display some novel features that are not present in particlelike or blac
solutions.

In order to describe these solutions and their properties, we recall that for the sphe
symmetric EYM equations, the Einstein metric is of the form

ds252AC2 dt21A21 dr21r 2~du21sin2 u df2!, ~1.1!

and the SU~2! Yang–Mills curvature two-form is

F5w8t1 dr∧du1w8t2 dr∧~sin u df!2~12w2!t3 du∧~sin u df!. ~1.2!

HereA, C, andw are functions ofr , andt1 ,t2 ,t3 form a basis for the Lie algebra su~2!. These
equations have been studied in many papers; see, e.g., Refs. 3–21.

Smooth solutions of the EYM equations, defined for allr>0, are called~Bartnik–McKinnon,
BM! particlelike solutions; such solutions satisfy 1.A(r ).0 for all r .0, andA(0)51. The
EYM equations also admit black-hole solutions; i.e., solutions defined for allr>r.0, where
A(r)50. Here again, 1.A(r ).0 for all r .r. The classical Reissner–Nordstro¨m ~RN! solutions
of the Einstein equations with zero electric charge,A(r )512c/r 11/r 2, (c5const) and (AC2)
3(r )5(12c/r 11/r 2), are also solutions to the EYM equations, withw(r )[0. We note that for
this solution,A(r ).1 for r near 0. In this paper we prove the existence of solutions which h
this feature@A(r ).1 for r near 0# of the classical RN solution, and we study their properties;
call these Reissner–Nordstro¨m-like ~RNL! solutions.@We base the name RNL on the behavior
such solutions nearr 50. For such solutions which are connecting orbits and have finite~ADM !
mass, the results in Ref. 2, p. 393, show thatA(r )512c/r 10(1)/r 2, asr→`, and thus behave
differently atr 5` from the RN solutions.~The RN solutions that we consider have zero elec
charge and unit magnetic charge; c.f. Ref. 20. We thank P. Bizon for pointing this out to u!#

For these RNL solutions, we show that ifA(r 1)51 for somer 1.0, then the solution is
defined for all r , 0,r<r 1 , and limr↘0 A(r )5`5 limr↘0(AC2)(r ). However, the function
B(r )[r 2A(r ) is analytic, on 0<r<r 1 , as is the functionw(r ); moreover limr↘0 w8(r )50.

If we consider solutions that are defined in the far field, i.e., forr @1, then it was shown in
Ref. 12 that limr→`„A(r ),w2(r ),w8(r )…5(1,1,0). Thus the projection of the solution in thew-w8
plane for a particlelike solution starts at the ‘‘rest point’’ (61,0) and goes to a ‘‘rest point’’
0022-2488/97/38(12)/6522/38/$10.00
6522 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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(61,0). Black-hole solutions start at certain curves in thew-w8 plane.11 and end at a rest poin
(61,0). In both of these cases, there are an infinite number of solutions, distinguished b
nodal class.10,11For RNL solutions, there is a parameters.0 defined byA(s)51. We prove that
for fixed s, there are an infinite number of RNL solutions distinguished by their integral n
class, which must start atr 50 on the linew850 and end at a rest point (61,0). The RNL
solutions corresponding to the special casew(0)50 are tangent to the linew50; these give rise
to half-integral nodal classes.

The proof of the existence of locally defined RNL solutions relies on a local existence
rem atr 50, where we show that there is a three-parameter family of analytic solutions start
r 50 and w8(0)50. The proof of the existence of these local analytic solutions is nontr
because the associated vector field is not even continuous atr 50 ~see the last part of Sec. III!.
Some of these solutions have been found numerically in Ref. 20. It is interesting to note tha
the first parameterw(0)561, and the second parameterb150, we recover the BM solutions. I
b1.0, we get RNL solutions and ifb1,0 we get Schwarzschild-like solutions.

We also prove that for fixeds. 1
2, the~ADM ! masses of a sequence of our RNL solutions

s fixed, and increasing nodal class, tend to 1/s. Furthermore, the globally defined RNL solution
which we obtain all have naked singularities atr 50; there may well be other RNL solutions fo
which the singularity atr 50 is inside an event horizon. We prove that the singularity atr 50 for
these solutions is always nonremovable. We note that since our RNL solutions have no ho
r is always monotonic. In fact, if we look on at5const. slice, thenl , the distance in the radia
direction on this slice, satisfiesdl 5Agrr dr5A21/2 dr, so dr/dl 5A1/2.0, andr is a mono-
tonic function ofl . Hence our Schwarzschild coordinates cover the entire ‘‘physical’’ manif

In the last section, we show how the results which we have obtained enable us to clas
spherically symmetric EYM solutions, with SU~2! gauge group, which are smooth and satisfyA
.0 in the far field.

II. THE EQUATIONS

As discussed elsewhere,3–15 the static spherically symmetric EYM equations with gau
group SU~2! can be written in the form

rA81~112w82!A512u2/r 2, ~2.1!

r 2Aw91@r ~12A!2u2/r #w81wu50, ~2.2!

C8/C52w82/r , ~2.3!

where

u~r !512w2~r !. ~2.4!

Here w(r ) is the connection coefficient which determines the Yang–Mills curvature two-f
~1.2!, andA andC are the metric coefficients~1.1! ~see Refs. 4 and 7!.

If we define the functionF by

F~A,w,r !5r ~12A!2u2/r . ~2.5!

then ~2.1! and ~2.2! can be written in the compact form

rA812Aw825F/r , ~2.6!

r 2Aw91Fw81wu50. ~2.7!

If „A(r ),w(r )… is a specific solution of~2.1! and ~2.2!, then we write
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F~r !5F„A~r !,w~r !,r ….

We define the functionm(r ) by

m~r !5r „12A~r !….

Then, as shown in Ref. 9,m8.0. If

lim
r→`

m~r !,`, ~2.8!

such solutions are said to have finite~ADM ! mass~see Ref. 2!.
SinceA(r )→` asr↘0, for the solutions we consider in this paper, it is useful to rewrite

equations~2.1! and ~2.2! in terms ofw andB(r )5r 2A(r ). They become

rB81~2w8221!B5r 22u2, ~2.9!

Bw91~r 22B2u2!~w8/r !1uw50. ~2.10!

III. REISSNER–NORDSTRÖM-LIKE SOLUTIONS

In this section we take initial conditions atr 5s.0, and follow the solution backward fo
r ,s. We shall determine properties of such solutions in 0<r ,s.

Consider the initial-value problems defined by~1.1! and ~1.2! with initial conditions

A~s!51, ~3.1!

and

„w~s!,w8~s!…5~a,b!, ~3.2!

wheres.0 and (a,b)Þ(61,0). Such a solution is called a Reissner–Nordstro¨m–like ~RNL!
solution. We study RNL solutions on 0<r ,s. Note that for RNL solutions,sA8(s)522b2

2(12a2)2/s2,0, so thatA(r )Ó1.
We remark in passing that if we replace~3.1! by the conditionA(s)5k.1, then we cannot

be assured that such solutions have positive~ADM ! mass. Indeed, there are solutions of~2.1! and
~2.2! which satisfyA(r ).1 for all r .0. For example, ifm.0, then the Schwarzschild solutio
A(r )511m/r , w(r )[1, is one such solution. Note, however, that even ifA(r ).1 for all r
.0, thenA(r )→1 as r→`. This holds because if we writeÃ(r )5A(r )21, then from~2.1!,
(rÃ)85rÃ81Ã<0. Thus integrating fromr 0.0 to r .r 0 gives rÃ(r )<r 0Ã(r 0), and soÃ(r )
,(r 0 /r )Ã(r 0). This shows thatÃ(r )→0 asr→`, and yields the assertion.

Notice that solutions which satisfy~3.1! form a three-parameter family, indexed by~a,b,s!,
where (a,b)Þ(61,0). Thus we see that the space of RNL solutions is in 1–1 corresponden
the set

$~s,a,b!PR3:s.0, ~a,b!Þ~61,0!%.

which has the homotopy type of a figure eight. We impose the condition (a,b)Þ(61,0) because
if „A(r ),w(r )… is a solution satisfying~3.1! and (a,b)5(61,0), then, by uniqueness, the solutio
of ~2.1! and ~2.2! must satisfyA(r )[1 andw2(r )[1, and thus is the flat Minkowski metric.

Our first goal is to prove the following result.
Proposition 3.1:If ( A,w) is a local solution to the EYM equations~2.6! and~2.7!, with initial

conditions„A(s),w(s),w8(s)…5(1,a,b), wheres.0 and (a,b)Þ(61,0), then the following
hold:
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~i! A8(r ),0 on 0,r<s,
~ii ! w(r ) andw8(r ) are defined and bounded on 0<r<s,
~iii ! the maximum domain of definition of the solution includes the interval 0,r<s,
~iv! limr↘0 A(r )51`,
~v! w̄5 limr↘0w(r ) exists.

Remark: This justifies our calling solutions which satisfy~3.1! and ~3.2! RNL solutions
because the usual RN solutions

A~r !511c/r 11/r 2, w~r ![0,

satisfy these properties.
Proof: From ~2.1!, we have

rA8~r !5„12A~r !…22w82A~r !2u2/r 2,

and soA8(r ),0 if A(r ).1. Also, if A(s)51, then againA8(s),0 unlessw2(s)51, and
w8(s)50, but this is explicitly ruled out by hypothesis. Thus sinceA(s)Þ0, it follows by
standard existence and uniqueness theorems that the solution is defined on an interval 0,s2«
<r<s, for some«.0. Settingd5s2«, we have thatA(r ).1 if d<r ,s. Hence as long as the
solution exists,A8(r ),0. The solution can fail to exist only ifuwu or uw8u or A tends to infinity.
In fact, in order to show~i! and ~ii !, it suffices to show thatw8(r ) is bounded on 0<r<d @cf.
~2.1!#.

To show thatw8 is bounded, we show that

if uw8~r !u.maxF S 31A5

2 D 1/2 1

AA~d!21
,dG[t, then ~w8w9!~r !.0. ~3.3!

This implies thatuw8(r )u<max„t,w8(d)…. Since if, e.g.,w8(r ).t, then w9(r ).0 so w8 de-
creases asr decreases. To prove~3.3!, we shall assume thatw8(r ).0; the case wherew8(r )
<0 is similar, and will be omitted. Thus we must show thatw9(r ).0. Using~2.2!, this will hold
provided that

F r ~12A~r !!2
u2

r Gw81uw,0. ~3.4!

To show~3.4!, we consider two cases:~a! uwu.11A5, and~b! uwu<11A5.
Thus supposeuwu.11A5; then from~3.3! w8(r ).d.r , so 2w8(r )/r ,21, and

r „12A~r !…w82
u2

r
w81uw,r „12A~r !…w82u21uw

,u~2u1w!5~12w2!@w2211w#,0,

sinceuwu.11A5 implies 12w2,0 andw2211w.0. Thus~3.4! holds in this case.
Suppose now that we are in case~b!, uwu<11A5. Then
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F r ~12A~r !!2
u2

r Gw81uw5r H 2w8FA~r !211S u

r D 2G1
u

r
wJ

,r H 2w8~r !FA~d!211S u

r D 2G1
u

r
wJ

5r H 2w8~r !S u

r D 2

1wS u

r D1w8~r !„12A~d!…J .

We consider the term$ % as a quadratic form in (u/r ). It is clearly negative when (u/r )50, and its
determinant is

w2~r !14w8~r !2
„12A~s!…<612A514w8~r !2

„12A~d!…,

which is negative if

w8~r !.S 31A5

2 D 1/2 1

AA~d!21
.

Thus the term$ % is negative so~3.4! holds, and thusw8 and w are bounded on 0<r<t; this
proves~i! and ~ii !.

We next show thatA(r ) is finite if 0,r<s. Thus if 0, r̄ ,s and limr↘r A(r )5` ~the limit
exists sinceA8(r ),0 for r ,s, r̄ being maximal with respect to this property!, then as we have
shown thatw andw8 are bounded on@ r̄ ,s#, we can find constantsk.0 andm.0 such that on
this interval„112w82(r )…<k andu2(r )<m. Then from~2.1!, if r̄<r<s,

rA8~r !>2kA~r !2
m

r 2 or rA8~r !1kA~r !>2
m

r 2 ,

so that (r kA)8>2(m/r 2)r k21, and integrating fromr . r̄ to s gives

r 2kA~s!2r kA~r !>D,

for some constantD, and this shows thatr kA(r ) is bounded, which implies thatA is bounded at
r̄ . This is a contradiction. HenceA(r ) is finite on~0,s#, andw andw8 are bounded on@0,s!; this
proves~ii !. To complete the proof of the proposition, we must only prove~iv!. To do this, we have
already seen thatA8(r ),0 if 0,r<s so A(r ).1 for suchr , and if 0,r ,s/2, we can find an
«.0 such that 12A(r ),2«. Then from~2.1!, if 0,r ,s/2,

rA8~r !,2«,

so A8(r ),2«/r andA(s/2)2A(r ),2« ln(2r/s), soA(r )→` as r↘0.
By ~i! w(r ) is uniformly continuous on~0,s# sow extends to a continuous function on@0,s#.

This establishes~v!, and this completes the proof of Proposition 3.1. j

We next show that the projection of a RNL solution into the (w,w8) plane has finite rotation
on the interval 0,r<s. In fact, we shall show that the rotation is ‘‘uniform’’ nearr 50. To this
end, for any RNL solution define

s̃5min@ 1
3,$r :A~r !53%#. ~3.5!

Note that asA(s)51 andA(s̃)>3, it follows thats̃,s and s̃< 1
3.

In what follows, we setū512w̄2.
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Proposition 3.2:Let u(r ) be defined by Tanu(r )5w8(r )/w(r ). Thenu(s̃)2u(0).2p for
any RNL solution.

Remark:It is easy to see that the set of points inR4 that lie on a RNL solution is an open se
in fact, if (A,w) is any RNL solution, then there existr 1 andr 2 such thatA(r 1),1,A(r 2) and
this characterizes RNL solutions. On the other hand, by ‘‘continuous dependence,’’ nearby
tions have the same property. On this open set we have defined a continuous functions by
A(s)51. Similarly, we can define a continuous functions̃ on this open set by~3.5!. The propo-
sition states thatu(s̃)2u(0).2p for any RNL solution. It is in this sense that the rotation ne
r 50 is uniform over all RNL solutions.

Proof: An easy calculation shows that

u8~r !52sin2 u2
u

r 2A
cos2 u2

F

r 2A
sin u cosu

52
1

r 2A F r 2A sin2 u1u cos2 u1S r 2rA2
u2

r D sin u cosuG .
Note thatu8521 whenu5p/2. We will show thatu8(r ).0 if u(r )5p/4 andr ,s̃, and thus
the orbit is trapped outside the wedgep/4,u,p/2 for suchr .

Indeed, ifu5p/4, then

u852
1

2r 2A F r 2A1u1r 2rA2
u2

r G . ~3.6!

Now let @ #5r 2A1u1r 2rA2u2/r . Then

@ #5u1r 2
u2

r
1A~r 22r !.

However, sincer ,s̃, 1
3, r 22r ,0, and asA(r )>3, we have

@ #,u1r 2
u2

r
13~r 22r ![S. ~3.7!

We consider two cases:u>r andu,r . If u>r , then

S<u1r 13~r 22r !<2r 13~r 22r !5r ~3r 22!,0,

because 3r ,1. Thus@ #,0, sou8.0 at u5p/4, if r ,s̃. Now supposeu,r . Then

S,2r 13r 223r 5r ~3r 21!,0,

so the result holds in this case too. j

Lemma 3.3:If w̄2Þ1, thenF(r )→2` as r↘0.
Proof: F(r )5r 2rA2u2/r<r 2u2/r→2` as r↘0. j

Lemma 3.4:If w̄2Þ1, then limr↘0 rA(r )5`.
Proof: Write rA5A/r 21. Then, in view of Proposition 3.1, we may apply L’Hoˆpital’s rule to

obtain

lim
r↘0

rA~r !5 lim
r↘0

A8~r !

21/r 2 5 lim
r↘0

@2r 2A8~r !#5 lim
r↘0

@2F~r !12Aw82r #> lim
r↘0

@2F~r !#5`,

~3.8!
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in view of the last lemma. j

Lemma 3.5:If w̄2Þ1, then limr↘0 w8(r ) exists.
Proof: From Proposition 3.2,w8(r ) is of one sign nearr 50. Assume thatw8(r ),0 nearr

50. The proof in the casew8(r ).0 nearr 50 is similar, and will be omitted.
Thus suppose for contradiction that

lim
r↘0

w8~r !. lim
r↘0

w8~r !, ~3.9!

and chooseh,0 between these two numbers. Then ifw8(r )5h and Proposition 3.1, part~i!
implies A8(r ),0 on 0,r<s, ~2.7! implies

w9~r !5
1

r 2A~r !
@2hF~r !2~uw!~r !#,0, ~3.10!

if r is near 0, in view of Lemma 3.3. Thusw9(r ),0, so thatw8 can crossh at most once forr
near 0, and this contradicts~3.9!. It follows that limr↘0 w8(r ) exists. j

Proposition 3.6:If w̄2Þ1, then limr↘0 w8(r )50.
Proof: From Lemma 3.5, limr↘0 w8(r ) exists. Assume

lim
r↘0

w8~r !2.2«, ~3.11!

where«,1. Then forr near 0,w8(r )2>«. Setv5Aw8. Thenv satisfies the equation7

v81
2w82v

r
1

uw

r 2 50, ~3.12!

and u limr↘0 v(r )u5`. From ~3.12! we have

vv85
2rw82v22uwv

r 2 <
22«rv22uwv

r 2 . ~3.13!

But urv(r )u5urA(r )w8(r )u→` as r↘0, by Lemmas 3.4 and 3.5. Thus forr near 0,

22«rv22uwv<2r«v2, ~3.14!

so that this together with~3.14! gives

vv8<2«v2/r .

Then

v8

v
<

2«

r
, ~3.15!

so uv(r )u<r 2«k, sor «uv(r )u<k, or r «A(r )uw8(r )u<k, and as«,1, this contradicts Lemma 3.4
and completes the proof of the proposition. j

Proposition 3.7:limr↘0 w8(r )50.
Proof: In view of the last result, we may assume thatw̄251. We claim thatw8(r ) is of one

sign nearr 50. To see this, suppose first thatw̄51. If w(r 1).1 andw8(r 1),0, then the orbit
stays in the regionw.1 andw8,0 for all r , 0,r ,r 1 . Similarly, if w(r 1),1 andw8(r 1).0,
this persists for allr ,r 1 . If w(r 1).1, andw8(r 1).0, or w(r 1),1 andw8(r 1),0, thenw8 can
change sign at most once if 0,r ,r 1 . Similarly, if w̄521, then againw8(r ) is of one sign near
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r 50, and we shall assumew8(r ).0 for r near 0@as usual, the case wherew8(r ),0 nearr 50 is
treated similarly#. This implies that either21,w(r ),0 or w(r ).1 for r near 0~cf. Fig. 1!.

Now from ~2.2!, we have

rAw91S 12A2
u2

r 2 Dw81
u

r
w50. ~3.16!

Note that in both cases,

u~r !

r
w~r !,0. ~3.17!

Moreover, sinceA(r )→` as r↘0 ~Proposition 3.1!, we see that„12A(r )2u2(r )/r … w8(r )
,0, for r near zero. This, together with~3.17! and ~3.16!, shows thatw9(r ).0 if r is near 0;
hence

t5 lim
r↘0

w8~r ! exists and is finite. ~3.18!

Now t>0, so supposet.0. We shall show that this leads to a contradiction. Indeed, fr
~3.16!,

rAw95Aw81S u2

r 221Dw82
u

r
w. ~3.19!

Now asw̄251, L’Hôpital’s rule gives

lim
r↘0

u

r
5 lim

r↘0
22w~r !w8~r !522w̄t

so thatu(r )/r is bounded nearr 50. SinceA(r )→` as r↘0, it follows that forr near 0,

Aw8~r !1S u2

r 221Dw82
u

r
w.

1

2
Aw8~r !.

Thus, for suchr , ~3.19! gives

rAw9. 1
2Aw8,

so

FIG. 1. Behavior of (w,w8).
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w9

w8
.

1

2r
.

Integrating fromr ,s to s, we find

w8~s!

w8~r !
.S s

r D
1/2

,

and hencew8(r ),(r /s)1/2w8(s), sow8(r )→0 asr↘0. This contradiction completes the proof.j

We next consider the behavior ofA nearr 50; the casesw̄251 or w̄2.1 are quite different.
We begin with the following result.

Proposition 3.8:limr↘0 r 2A(r )5ū2[(12w̄2)2.
Proof: Defineh by

h~r !5r 2A~r !2u2~r !.

We first show

lim
r↘0

h~r !5L exists. ~3.20!

To do this we need the following lemma.
Lemma 3.9:Let «Þ0 be given. Then there exists anr 1.0 such that if 0,r<r 1 and h(r )

5«, then (hh8)(r ).0. Thush can assume the value« at most once.
Proof: We will assume thath(r ).0. The proof in the caseh(r ),0 is similar, and will be

omitted.
Thus assumeh(r ).«. Then, sincew8(r )→0 asr↘0, we have, forr near 0,

r 2A~r !„122w8~r !2
…2u2~r !.

«

2
. ~3.21!

Then for suchr ,

h8~r !5
1

r
@r 2A~r !22A~r !w82~r !r 21r 22u~r !224u~r !w~r !w8~r !r #

5
1

r
@r 2A~r !„122w82~r !…2u~r !21„r 224u~r !w~r !w8~r !r …#

>
1

r F«2 1„r 224u~r !w~r !w8~r !…G.0,

sincer 224uww8(r )→0 asr↘0. j

We can now prove~3.20!. Thus, if ~3.20! were false, then

a[ lim
r↘0

h~r !. lim
r↘0

h~r ![b,

so we can find an«Þ0, with a.«.b. Without loss of generality, let us assume«.0 ~the case
«,0 is treated similarly!. Then sincea.«.b, we can find a sequencer n↘0 with h(r n).« and
h8(r n),0 for all n. This contradicts Lemma 3.9, so that~3.20! holds.

Next, we show thatL is finite. Indeed since (h2)8.0 if h2.« for small r , this shows thatL
is finite.
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We now showL50. To do this, we consider two cases:w̄2Þ1 and w̄251. First suppose
w̄2Þ1. Then from Lemma 3.4, limr↘0 rA(r )5`, so that we may use L’Hoˆpitals rule to obtain

lim
r↘0

r 2A~r !5 lim
r↘0

rA

1/r
5 lim

r↘0
2r 2~rA !85 lim

r↘0
2r 2~A1rA8!5 lim

r↘0
2r 2S A1

f

r
22Aw82D

5 lim
r↘0

2r 2S A112A2
u2

r 222Aw82D5 lim
r↘0

~2r 21u212~r 2A!w82
…5ū2,

sincer 2A(r )→L, andL is finite, and limr↘0 w8(r )50. This proves Proposition 3.8 in the ca
w2Þ1.

Now assumew̄251. Supposew̄51 ~the casew̄521 is treated similarly!. Then we see tha
for large r ~cf. Fig. 1!,

~uww8!~r !,0. ~3.22!

We shall need the following lemma:
Lemma 3.10:If w̄251, then limr↘0(Aw82)(r )5l ,`.
Proof: Let f 5Aw82. Then~cf. Ref. 9! f satisfies the equation

r 2f 81r S 2 f 1
F

r Dw8212uww850. ~3.23!

Also asr→0,

2 f 1
F

r
5~2w8221!A112

u2

r 2→2`, ~3.24!

becausew8(r )→0 andA(r )→`. Then from~3.23! and~3.24!, we see thatf 8(r ).0 if r is near
0. This implies thatf has a finite limit atr 50. j

Now let us return to the main argument of our proof; namely, to prove Proposition 3
w̄251. Thus, from~2.1!,

~rA !8522w82A112u2/r 2,

and since lim
r↘0

u/r 5 lim
r↘0

22ww850, andAw82 is bounded, we see that (rA)8 is bounded nearr

50. ThusrA(r ) has a finite limit atr 50. It follows that limr↘0 r 2A(r )505ū2. This completes
the proof of Proposition 3.8. j

We have demonstrated above that ifū50, thenrA(r ) has a finite limit atr 50. Thus, using
Lemma 3.4, we have the following.

Corollary 3.11:

lim
r↘0

rA~r !5 Hb1,`, if w̄251 and b1.0,
`, if w̄2Þ1.

Proof: Clearly b1>0, sincerA(r )>0. We must only show thatb1Þ0. Thus, supposeb1

50. Then using L’Hoˆpital’s rule

lim
r↘0

A~r !5 lim
r↘0

rA~r !

r
5 lim

r↘0
S 12

u2

r 222Aw82D . ~3.25!
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But limr↘0 u/r 5 limr↘022(ww8)(r )50, and from Lemma 3.12, limr↘0(Aw82)(r ) exists and is
finite. Thus~3.25! gives the contradiction limr↘0 A(r ),`. j

Now if w̄251, and we definerA(r ) to be equal tob1 at r 50, then we seerA is continuous
at r 50.

Corollary 3.12:

lim
r↘0

F~r !5 H 2b1 , if w̄251,
2`, if w̄2Þ1,

whereb1 is as in the last corollary.
Proof: We have

F~r !5r 2rA~r !2u2/r .

If w̄251, L’Hôpital’s rule shows that

lim
r↘0

u

r
5 lim

r↘0
22ww850, ~3.26!

so thatu2/r→0 and hence

lim
r↘0

F~r !52b1 .

If w̄2Þ1, the result follows from Lemma 3.5. j

We will show thatw and

B5r 2A ~3.27!

are analytic functions atr 50. As a first step, we will show that they have derivatives of all ord
at r 50. To do this, note that, using~2.1!, B satisfies the equation

rB81~2w8221!B5r 22u2. ~3.28!

Next, we claim that (B,w)PC0@0,«#3C1@0,«#, for some«.0. Indeed, from Proposition 3.8
limr↘0 B(r ) exists, so definingB(0) to be that limit, we see thatB is continuous atr 50. Also
from Proposition 3.7, limr↘0 w8(r )50, and, using L’Hoˆpital’s rule,

w8~0!5 lim
h↘0

w~h!

h
5 lim

h↘0
w8~h!.

This shows thatw8 is continuous atr 50.
The proof of the regularity ofw andB is broken up into two cases:w̄251 andw̄2Þ1. We first

have the following.
Proposition 3.13:If w̄251, thenw andB have derivatives of all orders atr 50.
Proof: Since limr↘0 rA(r )5b1Þ0 ~Corollary 3.11!, to show that limr↘0 w9(r ) exists and is

finite, it suffices to show that

lim
r↘0

rA~r !w9~r ! exists and is finite. ~3.29!

To do this, we write~2.2! as
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2rAw95F12A2
u2

r 2Gw81
u

r
w. ~3.30!

Then using~3.26!, we see that~3.29! will hold provided that

lim
r↘0

v~r !5 lim
r↘0

~Aw8!~r ! exists and is finite. ~3.31!

Next we write~3.13! in the form

~eQv !85
2eQuw

r 2 , ~3.32!

whereQ8(r )52w82/r 52Aw82/rA. SincerA(r )→b1Þ0 asr→0 andAw82 has a finite limit at
r 50 ~Lemma 3.10!, we see thatQ8(r ), and henceQ(r ), has a finite limit atr 50.

Sincew̄251, the (w,w8) orbit must lie in one of the following four regions, forr near 0;
namely, ~i! w.1, w8.0; ~ii ! 0,w,1, w8,0; ~iii ! 21,w,0, w8.0; or ~iv! w,21, w8
,0. Suppose for definiteness thatw.1 andw8.0 nearr 50 ~the proofs for the other cases a
similar, and will be omitted!. Then for r near 0, v(r ).0, so eQv(r ).0, and from ~3.32!,
(eQv)8.0. Thus limr↘0 eQ(r )v(r ) exists and is finite. SinceQ has a finite limit atr 50, it follows
that ~3.31! holds. Thusw9 has a finite limit atr 50.

Now as

~rA !8522w82A112u2/r 2, ~3.33!

we see that (rA)8 is continuous atr 50 so thatrA is aC1 function nearr 50 and hence the sam
is true of (rA)21 sinceb1Þ0. It follows from ~3.30! that wPC2 nearr 50.

We next show thatwPC3 nearr 50. Using~3.30!, this will follow, provided that the right-
hand side of~3.30! is a C1 function. But

S u

r D 8
~0!5 lim

r↘0

u~r !/r 20

r
5 lim

r↘0

u~r !

r 2 5 lim
r↘0

22~ww8!~r !

2r
52w̄w9~0!,

and for rÞ0,

S u

r D 8
5

22rww82u

r 2 5
22ww8

r
2

u

r 2→2w̄w9~0!, ~3.34!

as r→0. Henceu(r )/r PC1, and asAw85v is a C1 function @cf. ~3.13!#, it follows thatwPC3

near r 50. Using this in~3.34!, we see that (rA)8 is a C1 function, sorAPC2. Using this in
~3.30!, we see thatwPC4, and hence from~3.34!, rAPC3, and continuing in this way, we se
that w and rA areC` at r 50. ThusB5r 2A is alsoC` at r 50. This completes the proof of th
proposition. j

To do the regularity in the caseūÞ0, we first show thatwPC2@0,«) for some«.0. For this
we need the following lemma~cf. Lemma 3.10!.

Lemma 3.14:Let f 5Aw82. Then if ūÞ0, f is bounded nearr 50.
Proof: Using ~3.23!, we see thatf satisfies the equation

r 2f 81w8@2r f w81F!w812uw] 50. ~3.35!

We shall show that ifr is near 0, andf (r ).72w̄22, then f 8(r ).0. This will prove thatf is
bounded nearr 50.

To do this, letg be defined by
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g~r !52r f w81Fw812uw. ~3.36!

Sincew8(r ) is of one sign nearr 50, ~cf. the proof of Proposition 3.7!, we shall assume tha
w8(r ).0 for r near 0. The proof in the case wherew8(r ),0 is similar, and will be omitted. Then
using ~2.5!, we have

g~r !5~2r 2A!
w83

r
1rw82r 2A

w8

r
2u2S w8

r D12uw

5
w8

r
@2r 2Aw821r 22r 2A2u2#12uw. ~3.37!

But asr 2A→ū2, w8(r )→0, and 2uw→2ūw̄, asr↘0, we see that we can find ad.0 such that
if 0 ,r ,d, then

2r 2Aw821r 22r 2A2u2,2ū2/2,

2uw,3uūw̄u, and r 2A,2ū2.

Thus, if 0,r ,d, then

g~r !,2
w8

r

ū2

2
13uūw̄u.

It follows that if 0,r ,d, and

w8

r
.6Uw̄ūU, ~3.38!

theng(r ),0 and so~3.35! and ~3.36! imply that f 8(r ).0; i.e., if ~3.38! holds, thenf 8(r ).0.
Now if 0,r ,d, then

f ~r !5r 2AS w8

r D 2

,2ū2S w8

r D 2

,

so if 0,r ,d, and f (r ).72w̄2, then ~3.38! holds, so f 8(r ).0 and f is bounded on this
r -interval. j

We next prove thatw9(r ) has a limit atr 50 namely, we have the following.
Proposition 3.15:If ūÞ0, then limr↘0 w9(r ) exists and is finite.
Proof: We shall estimatew-(r ) nearr 50, and show that it is integrable; this will imply th

desired result.
From ~2.7!, we find

r 2Aw-12rAw91r 2A8w91Fw91F8w81~123w2!w850,

so

r 2Aw-1@2rA1r ~rA8!1F#w91~F81123w2!w850,

and using~2.6!, together withF852u2/r 212Aw8214uww8/r ~cf. Ref. 9!, we obtain

w-5
2~rw92w8!~u2/r 21Aw82!

r 2A
2

2rw9

r 2A
2

w8

r 2A S 4uww8

r
1123w2D . ~3.39!
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Now let

h5rw92w8. ~3.40!

Then

h85rw-, ~3.41!

and in these terms~3.39! becomes

h82
2d

r
h5c ~3.42!

where

d5
u2

r 2A
1w82 ~3.43!

and

c~r !5
22r 2w9

r 2A
2

w8

r 2A
@4uww81r ~123w2!#

5
r

r 2A H 22rw92
4uww82

r
1~123w2!w8J . ~3.44!

But

rw95
2rFw82ruw

r 2A
5

2~r 22r 2A2u2!w82ruw

r 2A
,

so

rw9~r !→0 as r↘0. ~3.45!

Also,

w82

r
5

Aw82r

r 2A
→0

as r↘0, in view of Lemma 3.14. This, together with~3.45!, shows that we may write~3.44! as

c~r !5ru~r !, ~3.46!

where

u~r !5
1

r 2A H 22rw92
4uww82

r
1~123w2!w8J

and

u~0!50. ~3.47!

Now observe thatd(r )→1 asr↘0, ~cf. Proposition 3.1!, so if
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0,«, 1
4, ~3.48!

we can find ad.0 so that if 0,r ,d,

12«,d~r !,11«. ~3.49!

Then, if we let

q85
22d

r
, q~r 1!50, 0,r 1,d, ~3.50!

multiplying ~3.41! by

P5eq, ~3.51!

we obtain from~3.41!

~hP!85Pc. ~3.52!

From ~3.49! and ~3.50!, if 0,r ,r 1 ,

22~11«!

r
,q8,

22~12«!

r
,

so that integrating fromr ,r 0 to r 0 gives

logS r 0

r D 2~12«!

,q~r !< logS r 0

r D 2~11«!

,

and thus

S r 0

r D 2~12«!

,P~r !,S r 0

r D 2~11«!

. ~3.53!

Then integrating~3.52! from r ,r 0 to r 0 gives

c2h~r !P~r !5E
r

r 0
P~s!c~s! ds, c5h~r 0!P~r 0!,

and thus for 0,r ,d,

h~r !5
c

P~r !
2

1

P~r !
E

r

r 0
P~s!c~s! ds. ~3.54!

Now asP(r )→` when r↘0, we see

c/P~r !→0 as r↘0. ~3.55!

Also, from ~3.46!, we see thatc(r )→0 asr↘0, so that for smallr , uc(r )u,1. Thus from~3.53!,

U 1

P~r !
E

r

r 0
P~s!c~s! dsU<S r

r 0
D 2~12«!E

r

r 0S r 0

s D 2~11«!

ds5constr 2~12«!@s2122«ur
r 0#,
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and as 4«,1, the last term tends to zero. This together with~3.55! shows thath(0)→0 asr↘0.
Defining h(0)50, we see thath is continuous at 0. Then

h8~0!5 lim
r↘0

h~r !

r
,

and from~3.54! and ~3.46!

h~r !

r
5

c

rP~r !
2

1

rP~r !
E

r

r 0
sP~s!u~s! ds.

Now from ~3.53!, c/rP(r )→0 asr↘0, and for smallr , using~3.53!, we have

U 1

P~r !
E

r

r 0
sP~s!u~s! dsU< r 122«

r 0
2~12«! E

r

r 0
sP~s! ds

<
r 122«

r 0
2~12«! E

r

r 0
r 0

2~11«!s2122« ds

5r 0
4«r 122«

s22«

22«
ur
r 0

5
r 0

4«

2«
r 122«S 1

r 2«2
1

r 0
2«D .

Thus, since«, 1
4, we see that

h8~0!50. ~3.56!

Now, from ~3.41!,

w-~r !5
h8~r !

r
. ~3.57!

But, using~3.42! and ~3.46!,

h8~r !

r
5

c~r !

r
22d

h~r !

r 2 5u~r !22d
h~r !

r 2 . ~3.58!

Now limr↘0 u(r )50, and from~3.54!

h~r !

r 2 5
c

r 2P~r !
2

1

r 2P~r !
E

r

r 0
sP~s!u~s!ds.

But limr↘0 @1/r 2P(r )#50, and forr near 0,

U 1

r 2P~r !
E

r

r 0
sP~s!u~s!U<constr 22«E

r

r 0
sP~s!ds

<constr 22«E
r

r 0
s2122« ds

50~r 24«! as r→0.

Thus, nearr 50, w-(r )<0(r 24«), and hence, forr near 0,
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



the

6538 J. A. Smoller and A. G. Wasserman: Reissner–Nordström-like solutions

                    
w9~r 0!2w9~r !5E
r

r 0
w-~s!ds<0~r 124«!.

Since«, 1
4, this shows that limr↘0 w9(r ) exists, and is finite. j

Corollary 3.16: If ūÞ0, thenw is a C2 function atr 50.
Proof:

w9~0!5 lim
r↘0

w8~r !

r
5 lim

r↘0
w9~r !,

by L’Hôpital’s rule. Thusw9 is continuous atr 50. j

We now prove the analog of Proposition 3.13 in the case thatw̄2Þ1.
Proposition 3.17:If w̄2Þ1, thenw andB have derivatives of all orders atr 50.
Proof: By induction; namely, from the last result, we know thatw is C2 at r 50, andB is

continuous atr 50. Now we need the following lemma.
Lemma 3.18:If wPCk at r 50, thenBPCk21 at r 50.
Proof: Let B̃5B2ū0

2. Then from~3.18!, we see thatB̃ satisfies the following equation:

rB̃81~2w8221!B̃5r 22~u22ū2!22w82ū2. ~3.59!

Now if

Q8~r !52w82/r , Q~r 0!50, r 0.0, ~3.60!

thenQPCk21, and we may rewrite~3.59! as

S eQ

r
B̃D 8

5eQF12
~u22ū2!

r 2 2
22w82ū2

r 2 G . ~3.61!

If

h~r !512
u22ū2

r 2 2
22w82ū2

r 2 ,

thenhPCk22. Thus, integrating~3.61! from r ,r 0 to r 0 , we get

D2
eQ~r !

r
B̃~r !5E

r

r 0
eQ~s!h~d! ds S D5

eQ~r 0!

r 0
B̃~r 0! D ,

or

B̃~r !5
Dr

eQ~r !2
r

eQ~r ! E
r

r 0
eQ~s!h~s! ds.

Now eQ(s)h(s)PCk22, so B̃(r )PCk21 at r 50. j

Now returning to the proof of Proposition 3.17, we see that in view of Corollary 3.16 and
last lemma,wPC2 andBPC1, at r 50. Now assume that

BPCk21 and wPCk. ~3.62!

We shall show that

wPCk11 at r 50; ~3.63!
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this, together with the last lemma, will complete the proof of the proposition.
To show~3.63!, we first write~2.7! as

w95
2rF~w8/r !2uw

B
.

Then asrF5r 22r 2A2uPCk21, BPCk21, andB(0)5ū2Þ0, we see that if we prove

w8/r PCk21 ~3.64!

at r 50, thenw9PCk21 so wPCk11, at r 50. Thus the proof will be complete once we pro
~3.64!.

Let

z5rv, where v5Aw8.

Thenz5B(w8/r ), so if we show

zPCk21 ~3.65!

at r 50, then~3.64! holds so we will be done.
To show~3.65!, we first see from~3.13! that z satisfies the equation

rz85~122w82!z2uw, ~3.66!

so if Q is defined as above by~3.60!, thenQPCk21, and we can rewrite~3.66! as

S eQ

r
zD 8

5
2eQuw

r 2 . ~3.67!

so integrating fromr ,r 0 to r 0 gives

z~r !5
Cr

eQ 1
r

eQ E
r

r 0 eQ~s!~uw!~s!

s2 ds,

whereC5(eQ(r 0)/r 0)z(r 0). Now Cre2QPCk21, and if we defineg by

g~r !5eQ~r !~uw!~r !,

thengPCk21 andg8(0)50. Then integrating by parts gives

r E
r

r 0 g~s!

s2 ds5r F2g~s!

s U r
r 01E

r

r 0 g8~s!

s
dsG .

But asr @@2g(s)/s#ur
r 0#PCk21, we will havezPCk21 provided that we show

I[r E
r

r 0 g8~s!

s
dsPCk21, ~3.68!

at r 50.
Now as

g85uweQQ81eQ~123w2!w8,
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we see thatg8PCk21 andg8(0)50, sog8(s)/sPCk22 @in general, ifhPCk andh(0)50, then
h(s)/sPCk21#, and henceI PCk21 at r 50. This completes the proof of Proposition 3.17.j

Next we shall show that nearr 50, the phase portraits of the RNL solutions in the (w,w8)
plane have some surprising features, in the case wherew̄2Þ1. These will follow from the follow-
ing result.

Proposition 3.19:If w̄2Þ1, thenw9(0)5w̄/ū.
Proof: From ~2.7! we have

w9~r !5
2Fw82uw

r 2A
5F2rw8

r 2A
1

rAw8

r 2A
1

u2

r 2A

w8

r
2

uw

r 2AG .
Using Propositions 3.7, 3.8, and 3.15, we have

w9~0!5 lim
r↘0

F2rw8

r 2A
1

w8

r
1

u2

r 2A

w8

r
2

uw

r 2AG52w9~0!2
w̄

ū
,

and the result follows. j

Thus, in the case wherew̄2Þ1, the (w–w8) phase plane portrait nearr 950, is as shown in
Fig. 2 ~depending on whetherw̄,21, 21,w̄,0, 0,w̄,1, or w̄.1!.
These are quite different than the phase portraits for non-RNL solutions. For example, ifw850
and 0,w,1, then we have the picture, depicted in Fig. 3 because whenw850, w9,0.

FIG. 2. The RNL phase portrait.

FIG. 3. Non-RNL phase portrait.
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The difference is that for the RNL solutions atr 50, satisfyingw̄2Þ0,1, the functionF is infinite
andFw8 is not equal to zero, even thoughw8(0)50. Indeed, in this case

lim
r↘0

F~r !w8~r !5 lim
r↘0

F rw82rAw82
u2

r
w8G5 lim

r↘0
F2r 2A

w8

r
2u2

w8

r G522ūw̄,

where we have used Propositions 3.7 and 3.8.
As a final comment along these lines, note that the vector field@cf. ~2.9! and ~2.10!#

S B8
w8
v8
r 8

D 5S 1

r
@r 22u22~2v221!B#

v

2
1

B
@r 22B2u2#

v
r

2
uw

B
1

D
cannot be continuously extended from the regionr .0, v50, to r 50, v50; indeed if w̄
5w(0), 0,w̄,1, and~as usual! w9(B,w,w8,r )52Fw8/B2uw/B, then

lim
r↘0

w9~B,w,w8,r !5H w̄

ū
, along orbits

2
w̄

ū
, along the patht→~ ū2,w̄,0,t !.

Thusw9 cannot be extended to be a continuous function at (ū2,w̄,0,0). Therefore the vector field
is not continuous at this point, even though the functionsB(r ) andw(r ) are analytic inr>0 ~see
Sec. IV!. The point is that the analyticity ofw is a nontrivial statement and does not follow fro
the usual theorems about analytic vector fields, since the vector field is not continuous.

We close this section by studying the behavior of the metric coefficientAC2 nearr 50 @cf.
~1.1!#. Note that sincer 2A is analytic, we see that ifw̄2Þ1, then limr↘0 r 2A(r )5ū2Þ0 ~by
Proposition 3.8!, so thatA(r )5O(1/r 2), nearr 50. If w̄251, thenr 2A(r )5b1r 1O(r 2), where
b1.0 ~by Corollary 3.11!, so thatA(r )5O(1/r ) near r 50. We use these facts in proving th
following theorem.

Theorem 3.20: If „A(r ),w(r )… is a RNL solution, then the metric coefficientAC2 of the
metric ~1.1! satisfies, forr near 0,

A~r !C2~r !5H O~1/r 2!, if w̄2Þ1,

O~1/r !, if w̄251.
~3.69!

Proof: From our above remarks, the theorem will hold provided that we showC(r ) is
bounded nearr 50. To see this note that from~2.3!, if r .0,

C~r !5C~0!expS E
0

r 2w82~s!

s
dsD ,

whereC(0)Þ0, and sincew82(s)/s is bounded nearr 50, it follows thatC(r ) is also bounded for
r near 0. j
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IV. EXISTENCE AND UNIQUENESS OF LOCAL ANALYTIC RNL SOLUTIONS

In this section we shall prove that there is a unique three-parameter family of locaC2

solutions of the equations

rB81~2w8221!B5r 22u2, ~4.1!

Bw91~r 22B2u2!~w8/r !1uw50, ~4.2!

whereB5r 2A. This will imply that some of these solutions match up with those solutions wh
we specified in the previous section by the parameterss, a, andb, whereA(s)51, w(s)5a, and
w8(s)5b, s.0 and (a,b)Þ(61,0). The proof will be broken up into two cases:w(0)2Þ1 and
w(0)251. In the former case, we will show thatw(0)2 can be any value different from 1. We wi
also show that these local solutions are analytic.

Theorem 4.1: Given any triple p5(a,b,c), a2Þ1, there exists a unique local solutio
„wp(r ),Bp(r )…PC43C2 of ~4.1! and ~4.2!, defined on@0, R#, for someR.0, satisfyingwp(0)
5a, wp-(0)5b, andBp8(0)5c, and the solution depends continuously on these initial values.
solution is analytic atr 50.

In the case wherea251, we have the following theorem.
Theorem 4.2: Given any triple of the formq5(1,b,c), there exists a unique local solutio

„wq(r ),Bq(r )…PC43C2 of ~4.1! and ~4.2!, defined on@0, R#, for someR.0, satisfyingwq(0)
51, wq9(0)5b, andBq8(0)5c, and the solution depends continuously on these initial values.
solution is analytic atr 50.

Remarks:~1! That the solutions constructed in the above theorems are actually analyticr
50 ~and hence on@0, R#! follows as in Ref. 11, p. 401.

~2! The solutions constructed in the above theorems are not necessarily RNL solution
example, the solution of~2.1! and ~2.2!,

B~r !5r 21c2r , w~r ![1,

wherec2Þ0, satisfiesA(r )511c2/r .1 for all r .0.
~3! The solutions described in Theorem 4.2 that havec50 are not RNL solutions, by Corol

lary 3.11. In fact, these are the~local! Bartnik–McKinnon~particlelike! solutions whose existenc
was proved in Ref. 9. One can see this by noting that Proposition 3.8 implies thatB(0)50, so
r 2A(r )5B(r )5O(r 2) nearr 50, and thusA is analytic atr 50. Now if A(0),0, then from~2.1!
we see that forr near 0,rA8(r ).1 and this violates the analyticity ofA at r 50; thusA(0)
>0. If A(0)50, then from~2.1!, we see that sinceu(r )/r→22w(0)w8(0) asr→0, we obtain
124w8(0)250 so w8(0)25 1

4. On the other hand,~2.2! yields 2w8(0)50; this contradiction
shows thatA(0).0. The fact thatA(0)51 andw8(0)50 follows by expanding these function
in a Taylor series nearr 50 ~cf. Ref. 8!.

Proof of Theorem 4.1:To conform with our earlier notation, letū512a2. SinceūÞ0, we
defineB̃(r ) by

B̃~r !5B~r !2ū2.

Then ~4.1! and ~4.2! become

rB̃81~2w8221!B̃5r 22~u22ū2!22w82ū2 ~4.3!

and

~B̃1ū2!w91~r 22B̃2ū22u2!
w8

r
1uw50. ~4.4!
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We fix a, b, andc, and seek a solution of the form

w~r !5a1
a

2ū
r 21

b

6
r 31v~r ! ~4.5!

and

B̃5cr1g~r !, ~4.6!

where

vPC0000
4 @0, R#, z5v8PC000

3 @0, R#, ~4.7!

and

gPC00
2 @0, R#. ~4.8!

Here the zero subscripts denotev(0)5v8(0)5v9(0)5v-(0)50, and so on.
We let

v85z, ~4.9!

and then we can rewrite~4.3! and ~4.4! as the first-order system:

v85z, ~4.10!

z852
1

B̃1ū2 Fuw1S a

ū
1

rb

2
1

z

r
D ~r 22cr2g2ū22u2!G2br2

a

ū
, ~4.11!

g85
r 22~u22ū2!22w82ū22~2w8221!~cr1g!

r
2c, ~4.12!

wherew is given by~4.5!, andw85(a/ū)r 1br2/21z. Let X be the space defined by

X5~C0000
4 3C0000

3 3C00
2 !@0, R#,

and for fixedu, 0,u,1, we let

uvu45u sup
0<r<R

uv ~4!~r !u, uzu35 sup
0<r<R

uz-~r !u, ugu25 sup
0<r<R

ug9~r !u,

and as a norm onX, we take

i~v,z,g!i5max ~ uvu4 ,uzu3 ,ugu2!.

We rewrite~4.10!–~4.12! as integral equations, and we seek a local solution via iteration

ṽ~r !5E
0

r

z~s! ds, ~4.13!

z̃~r !5E
0

r H 2
1

~B̃1ū2!
Fuw1S a

ū
1

sb

2
1

z

s
D ~s22cs2g2ū22u2!G2b2

a

ū
J ds, ~4.14!
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g̃~r !5E
0

r H s22~u22ū2!22w82ū22~2w8221!~cs1g!

s
2cJ ds. ~4.15!

where 0<r<R, and againw is given by~4.5! andw85(a/ū)r 1br2/21z. We abbreviate~4.13!
and ~4.14! as (ṽ,z̃,g̃)5T(v,z,g).

We fix a real numberr.0, and assumei(v,z,g)i,r; i.e., (v,z,g)PBr(X). We shall show
that for smallR the following hold:

~a! T(Br),Br

~b! T is a contraction.

These will imply local existence of a solution inX.
We note that it is straightforward to show that (ṽ,z̃,g̃)PX, and that~a! holds if R is small. To

show thatT is a contraction for smallR, we consider the differentialdT, evaluated at a poin
(v,z,g)PX, and show that

idTi<C,1, ~4.16!

if R is small. HereidTi is defined by

idTi5 sup
i~a,b,d!i51

id~v,z,g!T~a,b,d!i5 max
i 51,2,3

sup
i~a,b,d!i51

id~v,z,g!~p i+T!~a,b,d!i , ~4.17!

whereṽ5p1+T(v,z,g), z̃5p2+T(v,z,g), g̃5p3+T(v,z,g), and (a,b,d)PX.
Now (p1+T)(v,z,g)5 ṽ, so

ud~p1+T!~a,b,d!u45U E
0

r

b~s!dsU
4

5uubu3<ui~a,b,d!i5u. ~4.18!

Next (p2+T)(v,z,g)5 z̃, so

ud~p2+T!~a,b,d!u35U ] z̃

]v
a1

] z̃

]z
b1

] z̃

]g
dU

3

.

Now write

s15dz̃~v,z,g!~a,0,0!5
d

dt
z̃~v1at,z,g!

5
] z̃

]v
a

52E
0

r 1

~B̃1ū2!
F ~123w2!14uwS a

ū
1

sb

2
1

z

s
D Ga~s! ds,

s25dz̃~v,z,g!~0,b,0!5
] z̃

]z
b5E

0

r

2
1

~B̃1ū2!
~s22cs2g2ū22u2!

1

s
b~s! ds,

s35dz̃~v,z,g!~0,0,d!5
] z̃

]g
d

5E
0

r

2
1

~B̃1ū2!
F2

w̄

ū
1

sb

2
1

z

s
Gd~s! ds,1E

0

r

2
1

~B̃1ū2!

3Fuw1S a

ū
1

sb

2
1

z

s
D ~s22cs2g2ū22u2!Gd~s! ds.
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Then

ud~p2+T!~a,b,d!u35us11s21s3u35U2
1

~B̃1ū2!
H F ~123w2!14uwS a

ū
1

sb

2
1

z

r
D Ga~r !

1~r 22cr2g2ū22u2!
b~r !

r
1F2

a

ū
1

sb

2
1

z

r
Gd~r !J 2

1

~B̃1ū2!
Fuw

1S a

ū
1

sb

2
1

z

r
D ~r 22cr2g2ū22u2!Gd~r !U

2

,

and it is easily seen that for smallR, we have an estimate of the form

ud~p2+T!~a,b,d!u3<c1Ru~a,b,d!u5c1R,1, ~4.19!

wherec1 is a constant depending only onr, a, b andc. Similarly,

ud~p3+T!~a,b,d!u25U]g̃

]v
a1

]g̃

]z
b1

]g̃

]g
dU

2

,

]g̃

]v
a5E

0

r 22u

s
a~s! ds

]g̃

]z
b5E

0

r

2
24w8~ ū21cs1g!

s
b~s! ds,

]g̃

]g
d5E

0

r 2~2w8221!

s
d~s! ds,

so that

ud~p3+T!~a,b,d!u25U22ua~r !

r
24w8~ ū21cr1g!

b~r !

r
2~2w8221!

d~r !

r U
1

,

and it is again easy to see that for smallR

ud~p3+T!~a,b,d!u2<c2Ru~a,b,d!u5c2R,1, ~4.20!

wherec2 depends only onr, a, b, andc. It follows from ~4.17!–~4.20! that for R small,

idTi< c̄,1,

soT is a contraction. This proves that for smallR.0, Eqs.~4.1! and~4.2! have a unique solution
(B,w)P(C23C4)@0, R#, for any choice ofaÞ61, b, andc.

To complete the proof of Theorem 4.1, we must show thatR depends continuously on (a,b,c)
and that the solution is analytic atr 50. However, the fact thatR depends continuously on (a,b,c)
follows as in Ref. 9, p. 147, and the fact that the solution is analytic atr 50 follows as in Ref. 11,
p. 401. This completes the proof of Theorem 4.1. j

We now turn to the following proof.
Proof of Theorem 4.2:The details here are similar to those in the last theorem, so we

merely sketch them.
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We consider the equations~4.1! and ~4.2!, and write

w~r !511
br2

2
1v~r !, vPC000

3 @0, R# ~4.21a!

and

B~r !5cr1g~r !, gPC00
2 @0, R#. ~4.21b!

Note thatcÞ0; otherwiseA(r )—/→` as r↘0. Again we let

v85z, zPC00
2 @0, R# ~4.21c!

and we rewrite~4.1! and ~4.2! as the system

v85z, ~4.22!

z85
2uw/r 2~r 2c2g/r 2u2/r !~b1z/r !

c1g/r
2b, ~4.23!

g85
r 22u22~2w8221!~cr1g!

r
2c, ~4.24!

wherew is given by~4.21a! andw85br1z. Now let Y be defined by

Y5~C000
3 3C00

2 3C00
2 !@0, R#,

and for fixedu, 0,u,1, we let

uvu35u sup
0<r<R

uv-~r !u, uzu25 sup
0<r<R

uz9~r !u, ugu25 sup
0<r<R

ug9~r !u,

and as a norm onY, we take

i~v,z,g!i5max~ uvu3 ,uzu2 ,ugu2!.

We rewrite~4.22!–~4.24! as integral equations:

ṽ~r !5E
0

r

z~s! ds, ~4.25!

z̃~r !5E
0

r F2uw/s2~s2c2g/s2u2/s!~b2z/s!

c1g/s
2bG ds, ~4.26!

g̃~r !5E
0

r Fs22u22~2w8221!~cs1g!

s
2cG ds, ~4.27!

where 0<r<R, w is given by ~4.20!, and w85br1z. We write ~4.25!–~4.27! as (ṽ,z̃,g̃)
5S(v,z,g).

Again fix r.0 and assumei(v,z,g)i,r. Then it is easy to check that (ṽ,z̃,g̃)PY and that
S(Br),Br if R is small. To show thatS is a contraction for smallR, we show that the differential
dS, evaluated at a point (v,z,g)PY, satisfies
J. Math. Phys., Vol. 38, No. 12, December 1997
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idSi<c8,1, ~4.28!

if R is small, wheredS is defined by@cf. ~4.17!#

idSi5 max
i 51,2,3

sup
i~a,b,d!i51

id~v,z,g!~p i+S!~a,b,d!i , ~4.29!

where (ṽ,z̃,g̃)5„p1+T(v,z,g),p2+T(v,z,g),p3+T(v,z,g)… and (a,b,d)PY. As in the proof of
Theorem 4.1,

ud~p1+S!~a,b,d!u3<u

and

ud~p2+S!~a,b,d!u25U ] z̃

]v
a1

] z̃

]z
b1

] z̃

]g
dU

2

.

Moreover,

] z̃

]v
a5E

0

r 2~123w2!~1/s!2~4uw/s!~b2z/s!

c1
g

s

a~s! ds,

] z̃

]z
b5E

0

r ~1/s!~s2c2g/s2u2/s!

c1g/s
b~s! ds,

and

]g̃

]g
d5E

0

r ~1/s!~b2z/s!

c1g/s
d~s! ds.

Thus

ud~p2+S!~a,b,d!u25UF1

r S r 2c2
g

r
2

u2

r Da2F ~123w2!
b

r
1S 4uw

b

r
2

d

r D S b2
z

r D G
S c1

g

r D U
1

,

and it is easy to see that

ud~p2+S!~a,b,d!u2<c3R, ~4.30!

wherec3 depends only onb, c, andr. Finally,

ud~p3+S!~a,b,d!u25U]g̃

]v
a1

]g̃

]z
b1

]g̃

]g
dU

2

,

and

]g̃

]v
a5E

0

r 4uw

s
a~s! ds
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]g̃

]z
b5E

0

r 24w8~cs1g!

s
b~s! ds,

]g̃

]g
d5E

0

r 2~2w8221!

s
d~s! ds.

Then again one easily shows

ud~p3+S!~a,b,d!u2<c4R, ~4.31!

wherec4 depends only onb, c, andr. As in the proof of Theorem 4.1,~4.29!–~4.31! yield the
theorem. j

V. EXISTENCE OF INFINITELY MANY RNL CONNECTING ORBITS

As was shown in Ref. 12, any solution of~2.1! and~2.2! defined in the far field, and satisfyin
0,A(r ),1 for sufficiently larger , must satisfy limr→` A(r )51, the solution has finite~ADM !
mass; i.e., limr→` r „12A(r )…,` and limr→` w(r )P$61,0%. Such solutions will be calledcon-
necting orbitsor connectors. In Ref. 10, it was shown that there exist an infinite number
particlelike solutions~i.e., defined for allr>0!, distinguished by the nodal class of the connect
coefficientw. In Ref. 11, it was shown that given any event horizonr.0, there exist an infinite
number of black hole solutions distinguished by the nodal class of the connection coefficiew.

In this section, we shall show that given anys. 1
2, then there are an infinite number of RN

connectors having integral rotation numbers for the connection coefficientw. Moreover, we shall
also prove that ifs. 1

2, there are an infinite number of RNL solutions having half-integer rota
numbers; i.e., limr↘0 w(r )50 and limr→`„w2(r ),w8(r )…5(1,0) ~see the discussion below!. The
solutions we consider here satisfy„w(r ),w8(r )…Þ(0,0) for anyr .0. @Given any solution (A,w)
of ~2.6! and ~2.7! for which w(r 1)505w8(r 1), andA(r 1).0, for somer 1.0, then by unique-
ness,w(r )[0 andA(r )511c/r 11/r 2 for some constantd; i.e., the solution is a RN solution
Thus the solutions we obtain here aredifferent from these RN solutions.#

We begin by defining the regionG,R4 ~cf. Ref. 10! by

G5$~A,w,w8,r !:1>A.0,w2,1, r .0,~w,w8!Þ~0,0!%.

Then if P5(1,w,w8,s)PG, we denote the orbit throughP by „AP(r ),wP(r ),wP8 (r ),r …—when
there is no danger of confusion, we shall suppress theP. We let theexit-time re(P) be the first
value of r .s for which the orbit throughP exits G; r e(P)5` if the orbit stays inG for all r
.s.

For PPG, we defineu(r ) by tanu(r)5w8(r)/w(r), and u(s)5tan21 (w8(s)/w(s)); thus we
chooseu(s)P@2p,p#. Sincew8(0)50 for RNL solutions~Proposition 3.7!, we see thatu(0)
[0 (mod 2p), if w(0).0, andu(0)[0 (modp), if w(0),0. On the other hand, ifw(0)50,
then Propositions 3.7 and 3.19 imply thatw8(0)505w9(0). Thus for r near 0,w(r ) has an
expansion of the form

w~r !5cr31O~r 4!,

wherecÞ0 ~otherwise the solution is a RN solution, and we are not considering these!. Thus
w8(r )53cr21O(r 3), so that nearr 50, w8(r )/w(r )5O(1/r ), and hence

lim
r↘0

u~r ![6
p

2
~mod 2p!, if w~0!50. ~5.1!
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The rotation number,V5Vs , of this solution is defined by~cf. Ref. 8!

V52
1

p
@u~0!2u~r e!#. ~5.2!

Thus, on connecting orbits, ifw(0)50, thenV5(2n11)/2, i.e., V is a half-integer, while if
w(0)Þ0, thenV is an integer. Our first result yields infinitely many RNL solutions with ha
integral rotation numbers.

Theorem 5.1: Let s. 1
2 be given. Then there is an integerN5N(s).0 such that ifnPZ,

n.N, there exists a RNL connector satisfyingA(s)51, having rotation number (n1 1
2).

Note that the solution is defined for allr .0, w(0)5w8(0)50, and limr↘0 „w(r )/w8(r )…
50.

Before proving Theorem 5.1, we recall, and slightly restate, a result from Ref. 10 whic
shall need.

Theorem A~Ref. 10, Proposition 3.1!: Suppose that

Ln~r !5$~An~r !,wn~r !,wn8~r !,r !:an<r<bn%, n51,2,...,

is a sequence of orbit segments inG satisfying the following hypotheses:

~i! The set$un(bn)2un(an):n51,2,...% is uniformly bounded; sayuun(bn)2un(an)u<M , n
51,2,... .

~ii ! limn→` Ln(an)5PL[(AL ,wL ,wL8 ,a)PG, and limn→` Ln(bn)5PR[(AR ,wR ,wR8 ,b)
PG.

Then there is an orbit segment

L̄~r !5$„A~r !,w~r !,w8~r !,r …:a<r<b%

in G joining PL to PR , such that for eachr , a<r<b, limn→` Ln(r )5L̄(r ), and uū(a)2 ū(b)u
<M .

The proof of Theorem 5.1 will require a few preliminary results, the first of which is
‘‘intermediate-value’’ theorem for rotation numbers,~cf. Ref. 10, Cor. 3.6!. To formulate this, we
first recall from Theorem 4.1, ifw(0)2Þ1, we can parametrize the RNL solutions by the triple
numbers (a,b,c), wherea5w(0), b5w-(0), andc5B8(0). Recall thatB(r )[r 2A(r ). In these
terms, we can state the intermediate-value theorem as follows.

Proposition 5.2: Let s.0 be given and fixa50. Suppose that there are pointsP0

5(0,b0 ,c0), P15(0,b1 ,c1), and an arcg lying in the planea50, connectingP0 to P1 and such
that for everyP5(a,b,c)Pg the corresponding solution„A(r ),w(r )… satisfiesA(s)51. Assume
that the orbit throughP0 either lies inG for all r .0, or else exitsG throughw251 @in particular
A(r ).0 for all r<r e#. Assume thatV1.V0 , whereV i denotes the rotation number of the orb
throughPi , i 50,1. Then ifkPZ satisfiesV0,k1 1

2,V1 , there exists a pointP on g such that
VP5k1 1

2.
Proof: We parametrize the curveg by p(t), 0<t<1, wherep(0)5P0 andp(1)5P1 . Denote

by V t the rotation number of the orbit through the pointp(t). Let

X5$tP@0,1#:V t<k1 1
2%.

ThenXÞf since 0PX. Thus, let

t̃5supX.
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We claim thatV t̃ <k1 1
2. To see this, suppose thatV t̃ .k1 1

2. Then we can find anr 1.0 such
that (1/p)@u t̃ (0)2u t̃ (r 1)#.k1 1

2, so by ‘‘continuous dependence,’’ fort near t̃, tPX, (1/p)
3@u t(0)2u t(r 1)#.k1 1

2, and this contradicts the definition oft̃. ThusV t̃ <k1 1
2.

We next prove thatV t̃ is a half-integer, i.e.,r e( t̃)5`, so that the orbit throughp( t̃) is a
connecting orbit. To do this, we first show that the orbit cannot exitG via A50. Thus sincet̃ is a
limit of a sequencetnPX and each orbit lies inG and has rotation bounded byk1 1

2, it follows
from Theorem A~recalled above! that thet̃-orbit cannot exitG throughA50. Next, thet̃-orbit

cannot exitG through w251 and w8Þ0. Indeed, if this happens, then (1/p)@u t̃ (r e
t̃ )2u t̃ (0)#

,k1 1
2, so we can find an«.0 such that (1/p)@u t̃ (r e

t̃ 1«)2u t̃ (0)#,k1 1
2, and hencew

t̃

2
(r e

t̃

1«).1, so by ‘‘continuous dependence’’,wt
2(r e

t̃ 1«).1, for t. t̃, t neart̃. But then for theset ’s,
kp2p/2,u t(r e),kp1p/2, and this violates the definition oft̃. Finally, thet̃-orbit cannot go to

(w,w8)5(0,0) for finite r since this would imply~by uniqueness! w(r )[0. Thusr e
t̃ 5`, so the

t̃-orbit is a connecting orbit. Sincew(0)50, we see thatV t̃ is a half-integer<k1 1
2. If V t̃ 5 j

1 1
2<(k21)1 1

2, then by Ref. 8, Proposition 3.4, we can find at, t̃,t,1, such thatV t,( j
11)1 1

2<(k11)1 1
2, and this again violates the definition oft̃. This proves thatV t̃ 5k1 1

2. j

Remark:By a completely analogous method, if the curveg lies in the complement of the
planea50, we can prove an intermediate value theorem for integral rotation numbers; i.e., w
we replacek1 1

2 by k in Proposition 5.2. We omit the details of the proof.
Proof of Theorem 5.1:In (a,b,c) parameter space, we may considers as a function defined

on an open subsetU of this space. Namely, given any triple (a,b,c), we consider the local RNL
solution „A(r ),w(r )…, obtained via Theorem 4.1, satisfyingw(0)5a, w-(0)5b, and B8(0)
5c. HereU consists of those solutions which satisfyA(s)51 for somes. 1

2. The corresponding
set of points (a,b,c) clearly lies in an open subsetU. We thus have a mapping
(a,b,c,r )→Aabc(r ), and for (a0 ,b0 ,c0)PU, we have for somes, s. 1

2, Aa0b0c0
(s)51. Since

]Aa0b0c0
~s!/]r 52F S 2w82~s!1

u2~s!

s2 G Y sÞ0,

we see that the equationAabc(s)51 definess implicitly as a function of (a,b,c) nears0 , for any
point (a0 ,b0 ,c0) in U.

Next, if a505b, andc5c0Þ0, then by uniqueness, the corresponding solution is the
solution

w~r ![0, A~r !512
1

s0r
1

1

r 2 ,

wheres052c0
21. For this solution, we see that]s/]c5c0

225s0
2Þ0. Thus grads has a nonzero

component in thec direction, so from the implicit function theorem, we may represent the sur
s5s0 asc5c(a,b,s0), in a neighborhooduau,«, ubu,«, near the hyperplanec5c0 .

Now fix a50, and forubu,«, let g0 denote the curve in the planea50 determined by the
intersection of the surfaces5s0 with thec–b plane, and let (c̄,0) ~c̄ nearc0! denote the point of
intersection in the planea50, of g0 with thec axis ~cf. Fig. 4 where we have assumedc̄.c0!. At
this point we will need the following result.

Proposition 5.3:Given anys0. 1
2 anda50, we can find a sequence of points (cn ,bn) lying

on g0 such that (cn ,bn)→( c̄,0) and the rotation numberVn of the orbit „An(r ),wn(r )… through
the point (a,b,c)5(0,bn ,cn), whereAn(sn)51 satisfiesVn→` as n→`. Moreover, if (c,b)
lies ong0 , and is close to (c̄,0), the orbit through this point either lies inG for all r .0, or else
it exits G via w251.

We defer the proof of Proposition 5.3 until later, and we show here how it allows u
complete the proof of Theorem 5.1. The orbit through (0,0,c̄) is the RN solutionA(r )51
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



h

.2,

nse-

,’’

s

6551J. A. Smoller and A. G. Wasserman: Reissner–Nordström-like solutions

                    
21/sr 11/s2, w(r )[0, and hence, from Proposition 5.3, solutions through nearby points (0,b,c)
lying on g0 must lie inG, for s,r ,2. ChooseP0 on g0 in this neighborhood; the orbit throug
P0 either lies inG for all r .0, or else it exitsG via w251 and the same is true for points ong0

betweenP0 and (0,0,c̄). From Proposition 5.3, points (cn ,bn) lying on g0 ~in the planea50!
betweenP0 and (0,0,c̄) can be found satisfyingVn→`. Thus, given any half-integerN1 1

2

.VP0
, choosen so large thatVn.N1 1

2. Then the intermediate-value theorem, Proposition 5
shows that there is a pointQ on g0 with VQ5N1 1

2, and the corresponding orbit throughQ is a
RNL solution satisfyingA(s)51. This proves Theorem 5.1, ifN(s)5@VP0

#.
To complete the proof of Theorem 5.1, we must prove Proposition 5.3. This will be a co

quence of the following lemma.
Lemma 5.4:Fix s. 1

2, and fix a positive integern. Then if ~a,b! is sufficiently close to~0,0!,
the orbit through~1,a,b,s! has rotation number exceedingn.

Proof: Define the distance functionr by

r2
„P~r !…5w~r !21w82~r !, P~r !5„w~r !,w8~r !….

Let « be such that 0,«, 1
4, and letT.0 be arbitrary.

Sinces. 1
2, ARN(r ).0 for all r .0. Thus by ‘‘continuous dependence on initial conditions

we can findd.0 such that

if r„P~s!…,d, then r„P~r !…,«, if s<r<s1T. ~5.3!

Define an ‘‘angle’’g by

tan g5rv/w,

wherev5Aw8. ~Note that the zeros ofg and the zeros ofu5tan21(w8/w) occur at the same value
of r .! We shall show that ifd is small,g can be made large by takingT large; this will imply the
desired result. Now using~3.13!, we find

g852
1

r Fu cos2 g1
sin2 g

A
1~2w8221!

sin 2g

2 G . ~5.4!

Thus ifs<r<s1T, ~5.3! implies thatu>12«2 andu2w8221u,1. SinceA21>12«2, we have

@ #>~12«!2 cos2 g1~12«2!sin2 g2 1
25

1
22«2> 1

4.

FIG. 4. Intersection ofs5s0 , with a50.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Thus from~5.4!, we get for 0<r<s1T,

g8~r !<21/4r ,

and hence

g~s1T!2g~s!5E
s

s1T

g8~r !<2
1

4 E
s

s@1T# dr

r
.

Since the last integral can be made arbitrarily large by takingT large, the results follows. j

To see how this lemma implies Proposition 5.3, we proceed as follows. First, if atr 50 the
solution determined by (a,b,c) is close to the RN solutionw(r )[0, then by ‘‘continuous depen
dence on initial conditions,’’ the solution through (a,b,c) will be close to this RN solution atr
5s. Hence takinga21b2 sufficiently small andc̃ sufficiently close to21/s we can make
„w(s),w8(s)… as close as we wish to~0,0!. Then applying Lemma 5.4 shows that the or
through„1,w(s),w8(s),s… has arbitrarily high rotation forr .s, if a21b2 is sufficiently small.
This proves Proposition 5.3 and hence completes the proof of Theorem 5.1. j

Using Theorem 5.1, we shall show how to obtain RNL connectors of sufficiently high inte
rotation numbers, ifs. 1

2. This is the content of the next theorem.
Lemma 5.5.Let s. 1

2 be given. Then there is an integerN5N(s).0 such that ifnPZ, n
.N, there exists a RNL connector satisfyingA(s)51, having rotation numbern.

Remark: Nis the same integer as in Theorem 5.1.
Proof: We shall obtain these integral connectors by perturbing off the half-integral conne

obtained in Theorem 5.1.
Fix s5s0. 1

2. Then as shown in the proof of Theorem 5.1, the surfacesa50 ands5s0

intersect transversally since gradsÞ0 at the pointa50, b50, c5c0Þ0. Thus gradsÞ0 at the
point a5«, b50, c5c0 , if «.0 is sufficiently small, so the surfaces5s0 intersects the surface
a5« transversally. Letg« denote the curve in the planea5«, determined by the intersection o
the surfaces5s0 , and let (0,c̃), ~c̃ nearc0! denote the point of intersection in the planea5« of
g« with the c axis ~cf. Fig. 4 where we here replaceg0 by g« , a50 by a5«, and c̄ by c̃!.

As in the proof of Theorem 5.1, we shall show that there is a pointP« ong« such that the orbit
throughP« either lies inG for all r .0, or else it exitsG via w251, and the same is true for a
points ong« ‘‘below’’ P« .

Now the orbit throughP05(0,b̄,c̄) ~cf. Fig. 4! hasA0(r ).0 for r ,r 0
e . If it exits G via w2

51, then there is anr 1 such thatw0
2(r 1).1. Thus if« is small, the orbit throughP«5(«,b̄,c̄) also

satisfiesw«
2(r 1).1, andA«(r ).0 for 0,r<r 1 . If the orbit throughP0 is a connecting orbit, then

at r 5s11, the orbit lies inG, so if « is small enough, the orbit throughP« lies in G for s<r
<s11, and hence hasA«(r ).0 for s<r<r «

e . Thus the orbit throughP« either lies inG for all
r .0, or else it exitsG via w251. Now from Theorem 5.1, given anyn.N(s), there is a point
QnPg0 in the a50 plane, and there is anr 2.s such that the orbit throughQn satisfiesu0(r 2)
2u0(0).np. Thus, if «5«n,1/n is small, we can find a pointQn

« on g« , in the a5«n plane,
such that the orbit throughQn

« satisfiesu«(r 2)2u«(0).np. It follows then from the intermediate
value theorem~for RNL connectors with integral rotation numbers, cf. the remark after the p
of Proposition 5.2! that we can find RNL connectors with rotation numbern, if n.N(s). This
completes the proof of Theorem 5.5. j

We next show that given anys.0, we can find a RNL connector having rotation numb
zero.

Lemma 5.6:For everys.0, there is a RNL solution~a,b,s! having rotation number 0; tha
is there is a RNL solution„A(r ),w(r )… of ~2.1! and ~2.2! with zero rotation number satisfying
„A(s),w(s),w8(s)…5(1,a,b).
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proof: Let p andq be points in thes5s0 plane:p5(21,1), q5(22,0), and letL denote
the line segment joiningp andq; cf. Fig. 5. We consider the solutions of~2.6! and~2.7! alongL.
At p the orbit immediately enters the regionw.21, w8.0, and atq the orbit immediately enters
the regionw,21, w8,0; cf. Fig. 5. Since orbits cross the linesw521 andw850 transversally,
the set of points onL which cross any one of these two sets is open. Thus by connectedness,
must be a pointt in L whose orbit tends to (21,0) asr→`. If we consider the orbit throught for
r ,s, it must tend tow850, asr↘0, as depicted since no orbit crosses the half-linew850, w
,1 in backwardsr , andw8(0)50 ~Proposition 3.7!. This orbit is thus a RNL solution having
zero rotation. j

Remarks:

~1! In the proof of the lemma, we showed that if an orbit ever gets into the regionw2.1, ww8
,0 with A.0 at some pointr 5 r̃ , then the orbit„w(r ),w8(r )… stays in this region forr
, r̃ , and limr↘0„A(r ),w(r ),w8(r )…5(`,w̄,0), wherew̄ is finite. This thus gives an improve-
ment of Ref. 12, Proposition 2.3, where it was only shown thatA(r ).1 for somer , r̃ .

~2! Note that all of our connecting orbit RNL solutions haveA(r ).0 for all r .0. The question
of the existence of ‘‘black-hole’’ RNL solutions defined for allr .0, which are different from
the usual RN black-hole solutions, will be addressed in a future publication.

~3! Although the last theorem shows that for eachs we have a zero connector, and Lemma 5
shows that ifs. 1

2, we can find orbits with arbitrarily high rotation, we cannot invoke th
intermediate-value-type theorems~Proposition 5.2!, which we used for particlelike, and black
hole solutions~cf. Refs. 10 and 11! to obtain RNL solutions in each rotation class. This
because for RNL solutions, there are jumps in angle atr 50, as well as atr 5`.

We next investigate the behavior of the masses for the families of RNL solutions ha
unbounded rotation numbers.

Theorem 5.7: Let s0. 1
2 be given, and suppose thatLn(r )5„An(r ),wn(r ),wn8(r ),r …, n

51,2,..., is a sequence of RNL connectors constructed in either Theorem 5.1 or Theorem
satisfyingAn(s)51, whose rotation numbersVn→`. If mn5 limn→` r „12An(r )… is the~ADM !
mass of thenth solution, thenmn→1/s0 asn→`.

Proof: In both Theorems 5.1 and 5.5, the RNL connectors are parametrized by the
(an ,bn ,cn) where an50, for connectors with half-integral rotation numbers, or 0,an5«n

,1/n for connectors with integral rotation numbers, and in both cases,bn→0 andcn→c, where
the points (an ,bn ,cn) lie in the surfacess5s0 . The orbit through (an ,bn ,cn) enters the region
G for small r .0. Since these orbits correspond to RNL connectors, they lie inG for all r .0. At
r 50, Ln(0) converges toP5(0,0,21/s0,0). The unique solution of the (B2w) equations~2.9!
and ~2.10! is wRN(r )[0 andBRN(r )5r 22(1/s)r 11; thus

FIG. 5. The RNL solution with zero rotation.
J. Math. Phys., Vol. 38, No. 12, December 1997
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wRN~r ![0, ARN~r !512
1

s0r
1

1

r 2 . ~5.5!

This solution has~ADM ! mass 1/s0 . By ‘‘continuous dependence’’~sinces0. 1
2! these solutions

converge to the RN solution~5.5! at any r .0. Thus, as in Ref. 13, the corresponding~ADM !
masses satisfymn→1/s0 . j

Based on numerical evidence, we conjecture that for any sequence of RNL connectors,Ln(r ),
n51,2,..., satisfyingA(s)51, whose rotation numbersVn→`, the corresponding~ADM ! masses
mn satisfy

lim
n→`

mn5H 2, if s<
1

2
,

1

s
, if s.

1

2
.

VI. CONCLUDING REMARKS

We first show that for any RNL solution, the Yang–Mills field strengthuFu2 is infinite at r
50, but the energy densityT0

0 is finite atr 50 if and only if w(0)251. We shall then show tha
the singularity in the metric atr 50 is nonremovable by any coordinate transformation. Fina
we shall classify all solutions of the SU~2! EYM equations which are well-behaved in the far fie
~Theorem 6.3!.

Theorem 6.1:For any RNL solution, the Yang–Mills fields strengthuFu2 satisfies

lim
r↘0

uFu25`, ~6.1!

and the energy densityT0
0 is finite at r 50 if and only if w̄251.

Proof: It is easy to show thatuFu2 is a constant multiple ofT00. Thus for~6.1! it suffices to
show

lim
r↘0

T00~r !5`. ~6.2!

From Ref. 3, we have

8pT00~r !5
2Aw82

r 2 1
u2

r 4 ,

so if w̄2Þ1, then as above limr↘0 T00(r )5`. If w̄251, then from Corollary 3.11,
limr↘0 rA(r )5b1Þ0. Also we can write

8pT00~r !5
2~rA !w82

r 3 1
u2

r 4 . ~6.3!

Now notice that

lim
r↘0

w82

r 3 5 lim
r↘0

2w8w9

3r 2 5 lim
r↘0

1

3

w8w-1w92

r
.

Thus T00 is finite at r 50 if and only if w250. In this case, the solutionw(r )[1, B(r )5b1r
1r 2, of ~4.1! and ~4.2! satisfiesw̄51, w8(0)50, w250, andB(0)50, so that it is the unique
J. Math. Phys., Vol. 38, No. 12, December 1997
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solution of ~4.1! and ~4.2! satisfying these initial conditions. Thusr 2A(r )5B(r )5b1r 1r 2, or
A(r )511b1 /r , so the corresponding solution is a Schwarzschild solution. Note, however
from Corollary 3.11b1.0, so the solution is not a RNL solution.

To study the behavior ofT0
0 nearr 50, we first note thatT0

05g00T00, so that

T0
0~r !5

T00~r !

AC2 52
1

8p

1

C2 F2w82

r 2 1
u2

Ar4G .
Now in the proof of Theorem 3.20, we have shown that limr↘0 C(r ) is a finite nonzero constant
Moreover, limr↘0 w8(r )/r 5w9(0) exists and is finite. Using~3.69!, we see that ifw(0)2Þ1,
thenT0

0 is infinite at r 50. On the other hand, ifw(0)251, then

u2

Ar4 5OS u2

r 3 D ,

and, using L’Hôpital’s rule,

lim
r↘0

u2

r 3 5 lim
r↘0

H 2
4

3
w

u

r

w8

r J 5
8

3
w~0!2w9~0!50.

j

Now we consider the singularity in the metric atr 50. A computation~using Maple! gives
~whereRbgd

a is the Riemann curvature tensor!

RabcdR
abcd5

6F2

r 6 1
4u2

r 8 1
8~Aw82!2

r 4 >
6F2

r 6 .

Now if w̄2Þ1, then asF5r 2rA2u2/r , we see that nearr 50, F is well-approximated by
22ū2/r so that

lim
r↘0

RabcdR
abcd5`. ~6.4!

Similarly, if w̄251, rA(r )→b1Þ0, and soF→2b1 as r↘0, and hence~6.4! holds in this case
too. It follows that the singularity in the metric atr 50 cannot be removed by any change
coordinates.

We next give a classification of spherically symmetric SU~2! solutions of the EYM equations
which are well behaved in the ‘‘far field;’’ i.e.r @1. We shall show that they basically fall int
three classes: particlelike solutions, black-hole solutions, and RNL solutions.

As a first step, before stating the main result, we shall strengthen the results in Ref. 12. I
12 we considered solutions defined and smooth in the far field, which satisfied

0,A~r !,1 for r @1. ~6.5!

For such solutions, set

r5 inf $r :A~s!>0 for all s.r %,

and define such a solution to beregular if 1 .A(r )>0 for r .r. We proved, among other things
that such solutions satisfy

lim
r→`

„w2~r !,w8~r !…5~1,0!. ~6.6!
J. Math. Phys., Vol. 38, No. 12, December 1997
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lim
r→`

A~r !51, ~6.7!

and

m̄5 lim
r→`

r „12A~r !…,`. ~6.8!

We shall show here that the conditionA(r ),1 for r .r is superfluous. This is the content of th
following proposition.

Proposition 6.2:Assume that„A(r ),w(r )… is a solution of~2.1! and ~2.2!, which for some
r 1.0 is defined and smooth forr>r 1 and satisfies

A~r !.0 for all r>r 1 . ~6.9!

Then ~6.6!–~6.8! hold.
Proof: If ( A,w) is a RN solution,

A~r !511
c

r
1

1

r 2 , w~r ![0, ~6.10!

then certainly~6.6!–~6.8! hold. Thus assume that (A,w) is not a RN solution. Then ifA(s)51 for
somes, ~2.1! implies that

sA8~s!522w82~s!2
u2~s!

s2 ,0.

ThusA8(s),0 so we have eitherA(r ),1 for all sufficiently larger , or

A~r !.1 for all r .0. ~6.11!

The caseA(r ),1 was considered in Ref. 10 so we may assume that~6.11! holds.
Now if Ã(r )5A(r )21, thenÃ(r ).0 for all r .0, and so from~2.1!,

rÃ~r !<2Ã~r !2u2/r 2 ~6.12!

for all r .0. We now show that~6.6! and ~6.7! hold, considering three cases; namely for so
r̄ .0,

~a! w2( r̄ ).1 and (ww8)( r̄ ).0 ~in this case,A→0 anduw8u is unbounded near somer 1. r̄ !,
~b! w2( r̄ ).1 and (ww8)( r̄ ),0, and
~c! w2( r̄ )<1.

Case (a): w2( r̄ ).1 and (ww8)( r̄ ).0.
In this case, we see that there is a constantc.0 such thatu(r )2.c for r . r̄ , so that~6.12!

implies (rÃ)8<2c/r 2. Therefore integrating gives, forr . r̄ ,

rÃ~r !<c11c/r , c15const,

and hence given any«.0, Ã(r ),« so

A~r !,11« for large r . ~6.13!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Our strategy is to show thatw grows at least linearly inr , which will imply thatA(r ),1 for some
r , and hence, from the results in Ref. 10w8 becomes unbounded near somer , thereby violating
our smoothness assumption in the far field.

To carry out this program, we see from~2.2!

r 2Aw95F r ~A21!1
u2

r Gw82uw>
u2

r
w8>

c

r
w8,

so w9/w8>c/(11«)r 3, and integrating gives, for larger ,

ln w8>c22
c

2~11«!

1

r 2 >c3 ,

wherec2 andc3 are constants. Thusw8(r )>ec3[d8, so w(r )>d8r 1k, wherek is a constant.
Thus there is a constantd.0 such that

w~r !>dr if r>1. ~6.14!

Then from~2.1!, if r is large, we can findk1.0 such that

rA852~112w82!A112
u2

r 2 <
2u2

r 2 <
2k1r 4

r 2 52k1r 2,

and so for theser , A8(r )<2k1r . This implies that for some larger , A(r ),1, and as we have
noted above, this gives a contradiction, and completes the argument in case~a!.

We now consider the next case.
Case (b): w2( r̄ ).1 and (ww8)( r̄ ),0.
In this case, it is easy to see that either~6.7! holds, or (ww8)(r ).0 for somer . r̄ @in which

case we are done by case~a!#, or w2(r )<1 for somer . r̄ . In this latter case, if the orbit exits th
regionw2<1, it must get into the regionww8.0, and again we would be finished by case~a!.
Thus we may assume that the orbit stays in the regionw2,1 for all sufficiently larger . Since the
projection of orbit into thew2w8 plane has finite rotation~Ref. 17, Cor. 3.4!, it follows as in Ref.
11 that~6.6!–~6.8! hold. Finally we note that case~c! is subsumed by what we have proved in ca
~b!. This completes the proof of the proposition. j

We can now state the classification theorem for spherically symmetric solutions of
equations with gauge group SU~2!.

Theorem 6.3:Let „A(r ),w(r )… be a solution of~2.1! and~2.2! which is defined and smooth
for r .r 1 and satisfiesA(r ).0 if r .r 1 . Then every such solution must be in one of the followi
classes:

~i! A(r ).1 for all r .0;
~ii ! Schwarzschild solution: A(r )512m/r , w2(r )[1, wheremPR;
~iii ! Reissner–Nordström solution: A(r )512c/r 11/r 2, w(r )[0, wherecPR;
~iv! Bartnik–McKinnon particlelike solution:„A(r ),w(r )… is defined for allr>0, A(0)51,

w2(0)51, w8(0)50;
~v! Black-hole solution: A(r)50 for somer.0, A(r ).0 if r .r, „w(r),w8(r)… lies onCr

5$(w,w8):@r2(12w2)2/r#w81w(12w2)50%, and „A(r ),w(r )… is defined for all r
.r;

~vi! Reissner–Nordström-like solution: „A(r ),w(r )… is defined for all r .0,
limr↘0 „A(r ),w(r )w8(r )…5(`,w̄,0), wherew̄ is finite.

In each case limr→` w2(r )51 or 0 ~0 only for RN solutions!, limr→` rw8(r )50, and
limr→` A(r )51. The solution also has finite~ADM ! mass.
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



e

a

do

egral

s for

ua-

les,’’

qc/

ions,’’

–Mills

ions,’’

ang/

6558 J. A. Smoller and A. G. Wasserman: Reissner–Nordström-like solutions

                    
Observe that the Schwarzschild solution

w~r ![1, A~r !512m/r , m,0,

is an example of a solution of type~i!.
Proof: If the solution is not of type~i!, there exists anr 2.0 such thatA(r 2),1. We consider

solutions defined in the far field, say forr>r 1 , and see what happens as we decreaser to values
less thanr 1 . If the solution satisfiesA(r ),1 for r ,r 1 , then it was proved in Ref. 12 that th
solution lies in one of the sets described in~i!–~iv!. If A(s)51 for somes.0, then the solution
is a RNL solution, while ifA(r ).1 for all r .0, the solution is either a RNL solution or
Schwarzschild solution as described in~i! with m,0, or a RN solution as described in~ii ! with
c,0. The last statement follows from Proposition 6.1. j

Note: The behavior of black-hole solutions in the regionr ,r requires further investigation
and will be considered in a separate publication.

Problem 1:Do there exist RNL solutions, different from the classical RN solutions, which
not have a naked singularity?

In this paper we have proved the existence of RNL connectors, with sufficiently large int
or half-integral rotation numbers, ifs. 1

2.
Problem 2:Is this true ifs< 1

2?
Problem 3:Do there exist integral and half-integral RNL connectors in each rotation clas

any s.0?
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Hamiltonian structures for spatially compact locally homogeneous vacuum uni-
verses are investigated, provided that the set of dynamical variables contains the
Teichmüller parameters, parameterizing the purely global geometry. One of the key
ingredients of our arguments is a suitable mathematical expression for quotient
manifolds, where the universal cover metric carries all the degrees of freedom of
geometrical variations, i.e., the covering group is fixed. We discuss general prob-
lems concerned with the use of this expression in the context of general relativity,
and demonstrate the reduction of the Hamiltonians for some examples. For our
models, all the dynamical degrees of freedom in Hamiltonian view are unambigu-
ously interpretable as geometrical deformations, in contrast to the conventional
open models. ©1997 American Institute of Physics.@S0022-2488~97!03012-0#

I. INTRODUCTION

Homogeneous cosmological models1–3 have been served as a good arena for, e.g., quan
cosmology~e.g., Refs. 4, 5!, as well as observational cosmology~e.g., Ref. 6!, after first investi-
gated in connection with the singularity problem.7 As for their Hamiltonian structures, howeve
there are controversies. For example, it is well known that the models known as Bianchi c
do not possess a natural Hamiltonian reduced from the full Hamiltonian~see, e.g., Ref. 2, p. 193!.
Even for the class A models, a sort of discrepancy of dynamical degrees of freedom is point
by Ashtekar and Samuel.8 For example, the Kasner solution, which is the vacuum solution
Bianchi I, gives one for the number of dynamical degrees of freedom, i.e., the number o
parameters which can be specified freely at an initial Cauchy surface. An odd number of dy
cal degrees of freedom, however, cannot come out from a Hamiltonian system. So, w
Hamiltonian is needed, people usually work with the diagonal model, which has three dyna
variables and gives four dynamical degrees of freedom in the Hamiltonian view. Moreover,
work with the full, not diagonal model, which may be the most natural in the Hamiltonian v
we have ten dynamical degrees of freedom with six dynamical variables. Thus, three numbe~i.e,
1, 4, and 10! of dynamical degrees of freedom are possible for Bianchi I!

However, this discrepancy is for the conventionalopenmodel. It is with recent progress9,10

that a satisfactory framework has been established for the construction of spatiallycompactlocally
homogeneous spacetimes.~We shall hereafter refer to Refs. 9 and 10 as I and II, respectively.! We
can now also unambiguously count the dynamical degrees of freedom in the above sense
framework, we ‘‘compactify’’ a usual spatially open homogeneous model by identifying sp
points appropriately. So, the new parameters come into the model which parameterize the
fications. An important point in dynamical view is that this compactification gives rise to
degrees of freedom of spatial deformations, known in mathematics as Teichm¨ller

a!JSPS Research Fellow.
0022-2488/97/38(12)/6560/18/$10.00
6560 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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deformations.11,12 Teichmüller deformations obviously do not vary any local geometries. We
the parameters which parameterize the Teichmu¨ller deformationsTeichmu¨ller parameters, and
denote them collectively ast. The natural dynamical variables of a spatially compact homo
neous~SCH! spacetime therefore consist of (r ,t,v), wherer are the~local! curvature parameters
andv is the total spatial volume.~For definiteness, we consider a vacuum case.! We denote the
space spanned by (r ,t,v) and the cotangent bundle of it asF andP5T* F, respectively, and cal
P the pseudophase space. What we shall investigate in this paper is whetherP admits a Hamil-
tonian structure, so in other words, whether it is good enough to call it a phase space.

We shall concentrate on the natural Hamiltonian structures, i.e., we take interest only
phase spaces reduced from the full phase space which is made from the Einstein–Hilbert
Thus, all the dynamical parameters (r ,t,v) should appear as the metric components. Note tha
our approach in II, parameters (r ,t,v) appeared both in the universal cover metric and the c
ering map—that is, the dynamical degrees of freedom were distributed in the two parts. T
them together into the universal cover metric, we need to be able to fix the covering map
appropriate sense. In other words, all the dynamical degrees of freedom of the compact
need to be able to be expressed in the universal cover metric with a fixed covering map. T
at first sight this always seems possible, we should note that the metric obtained in this way,
has finite degrees of freedom of variation, does not always define a consistent cut in the full
space.~This is the same situation as that for a partial differential equation, an arbitrary ans
solution does not lead to a true solution.! We will show for which models we can do this, an
show why we cannot for the models we cannot.

The organization of this paper is as follows. In Sec. II, we review the previous work bri
which gives a basis of our argument in the subsequent sections. In Sec. III, we show how w
fix the covering map and thereby the universal cover metric can carry all the dynamical degr
freedom. A class of diffeomorphisms~TDs! and a subclass of it~HPTDs! are introduced. Section
IV is devoted to explicit examples. Section V is for conclusions and remarks.

As we have already done, we abbreviate the wordsspatially compact homogeneous~or more
precisely,spatially compact and spatially locally homogeneous! spacetimes as SCH spacetime.
Words in the titlecompact homogeneous universesare equivalent to the wordsSCH spacetimes.

II. CONSTRUCTION AND DYNAMICAL ASPECTS OF COMPACT HOMOGENEOUS
UNIVERSES

In this section, we briefly review the previous work, which concerns the construction of
spacetimes, and the dynamical aspects of them, namely, the time-developments of the dy
variables and the dynamical degrees of freedom. We refer the reader to II for explicit exam

First, let us summarize the construction of the smooth set of compact homogeneous un
as a natural dynamical system. We assume that the topology of the compact homogeneo
verses we consider isM3R, whereM is a spatial manifold andR corresponds to time. The
fundamental groupp1(M ) of the space is supposed to be fixed in what follows.

Consider a spatially homogeneous spacetime ((4)M̃ ,g̃ab) and a homogeneous spatial secti
(M̃ t ,h̃ab) of ((4)M̃ ,g̃ab). We denote the isometry groups of them as Isom(4)M̃ and IsomM̃ t ,
respectively.@Here, the subscriptt parameterizes the spatial sections of ((4)M̃ ,g̃ab), but we only
consider a fixed value oft for a while, so thatt is just a reminder forM̃ t being a section of(4)M̃ .#
Note that the subgroup of Isom(4)M̃ which preservesM̃ t can be identified with a subgroup o
IsomM̃ t . We call this subgroup theextendible isometry groupof (M̃ t ,h̃ab), and denote it as
EsomM̃ t . To compactify (M̃ t ,h̃ab), we embedp1(M ) not into IsomM̃ t but into EsomM̃ t , since
by doing so, we can obtain a total smooth SCH spacetime ((4)M ,gab). This is simply because
EsomM̃ t and therefore the embeddingG,EsomM̃ t are also subgroups of Isom(4)M̃ , so that the
quotient ((4)M̃ ,g̃ab)/G5((4)M ,gab) is guaranteed to be smooth.
J. Math. Phys., Vol. 38, No. 12, December 1997
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This construction of a compact homogeneous universe tells us whatdefinethe natural smooth
set of compact homogeneous universes as our dynamical system. We think they are the
mental group of the spatial sectionp1(M ) and the group structure of EsomM̃ t . We therefore fix
the two groups, as well as an Einstein’s equation, then think of the setC of all possible compact
homogeneous universes prescribed by them as a candidate of the natural smooth set. TheC is,
more explicitly, defined as the smooth set of all possible pairs (u,G) of a universal covering
spacetimeu and a covering groupG such that—~1! Eachu has a spatial section admitting the sam
extendible isometry group EsomM̃ t . ~2! Eachu satisfies the same Einstein’s equation.~3! EachG
acting onu is a possible embedding ofp1(M ) into EsomM̃ t . We also defineU as the smooth se
of universal covers which satisfy the conditions~1! and ~2!.

Each element (u,G) in C is naturally identified with the compact homogeneous universeu/G.
Our natural smooth setC̄ of compact homogeneous universes shall be obtained by identifying
isometric elements inC. To do this, we summarize key facts on diffeomorphisms on a cove
space shortly.

Let (M̃ ,q̃ab) be an arbitrary homogeneous manifold, and (M̃ ,q̃ab)/G be its quotient. If we
consider a diffeomorphismf: M̃→M̃ , then the following two quotients are manifestly isometr

~M̃ ,q̃ab!/G.~M̃ ,f* q̃ab!/f
21+G+f, ~1!

wheref* is the ‘‘pullback’’ ~i.e., the induced map! of f. ~Since bothG and f act on M̃ , the
composition of them in the right hand side is well-defined.! We can benefit from this relation in
two ~or more! practical contexts—the first is just to simplify the universal cover metricq̃ab , while
the second is to deform the covering groupG suitably. Though we will utilize the second in th
next section, our main focus in this section is in the first. Another importance comeswhenf is an
isometryof the universal cover (M̃ ,q̃ab), i.e., f* q̃ab5q̃ab . In this case, it holds

~M̃ ,q̃ab!/G.~M̃ ,q̃ab!/f
21+G+f. ~2!

So, we can define an equivalence relation in the covering group by

G;f21+G+f, ~3!

calledconjugation. With this, we can simplify the covering group, even after we have exhau
diffeomorphisms onM̃ to simplify q̃ab .

Now, the subsequent procedure to getC̄ is almost straightforward. Introducing the equiv
lence relation by diffeomorphism inU, we obtain a smooth setŪ of representative elements. Fo
convenience, we often identifyŪ with a universal covering spacetime withn5dim Ū smooth
parameters, and denote these parameters and the~parametric! universal cover asu and
((4)M̃ ,g̃ab@u#), respectively.

For a fixeduPŪ, we give all the possibleG’s, and denote the smooth set of the pai
(u,G)’s, asCu . Then, we construct the conjugacy classC̄u of Cu by EsomM̃ t , i.e., equivalence
class defined by (u,G);(u,a+G+a21), whereaPEsomM̃ t . We finally consider the smooth setC̄
of spacetimes obtained fromC̄u with varyingu, i.e., C̄[$cucPC̄u ,uPŪ%. We think ofC̄ as the
natural dynamical system we wanted, consisting of compact homogeneous universes. LikeŪ, we
identify C̄ with a compact homogeneous universe withn1m smooth parameters, wherem
5dim C̄u . We denote them parameters inC̄u and the~parameteric! compact homogeneou
universe as, respectively,g and ((4)M̃ ,g̃ab@u#)/Gg . The number of dynamical degrees of freedo
is now simply given by dimC̄5dim Ū1dim C̄u5n1m. This completes our construction.

For example, when the extendible isometry group is given by a Bianchi group, we can
without loss of generality, the universal cover metric as
J. Math. Phys., Vol. 38, No. 12, December 1997
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ds252dt21hmn~ t !smsn, ~4!

wheresm are the invariant 1-forms of the Bianchi group, andhmn is a nondegenerate symmetr
333 matrix function of t. We substitute this into Einstein’s equation, and then subtract
degrees of freedom of diffeomorphisms from the solution obtained. We usually do this las
with the homogeneity preserving diffeomorphisms (HPDs),8 which are defined by the conditio
that they induce ‘‘rotations’’ among the invariant 1-forms, i.e., for an HPDh, it holds

h* :sm→ f m
nsn, ~5!

where f m
n is a constant 333 matrix. ~Possiblef m

n’s comprise a subgroup of GL~3!.! The final
form of the solution takes, in many cases, a diagonal form

ds252dt21h11~ t;u!~s1!21h22~ t;u!~s2!21h33~ t;u!~s3!2. ~6!

This gives the setŪ, or the metricg̃ab@u#. ~The explicit form ofhmn(t;u) depends, of course
upon the given Bianchi group.! Gg is obtained by exhausting possible conjugations with respec
the extendible isometries, in the possible embeddings of the fundamental groupp1(M ) into the
extendible isometry group.

We note that the dynamical variables in configuration space are defined with respect
intrinsic geometry of the spatial section. Hence, like that it was important to subtract the de
of freedom of diffeomorphisms and conjugations of thespacetimewhen determining the numbe
of dynamical degrees of freedom, it is important to subtract the degrees of freedom of diffe
phisms and conjugations of thespaceto determine the values of the dynamical variables. T
process is basically the same as what has been presented for spacetime, except for con
IsomM̃ t instead of EsomM̃ t . In I, we have presented parameterizations for almost all com
locally homogeneous three-manifolds—Each parameterization is like

~M̃ ,h̃ab
std@r # !/At , ~7!

where the standard universal cover (M̃ ,h̃ab
std@r #) is parameterized so as to contain no degrees

freedom of diffeomorphisms onM̃ , and the covering groupAt acting on (M̃ ,h̃ab
std@r #) is param-

eterized so as to be free from the conjugations with respect to the~intrinsic! isometry group
IsomM̃.IsomM̃ t . As in II, we call the parameters~r ,t! the dynamical variables. Each compa
locally homogeneous spatial section (M̃ t ,h̃ab@u#)/Gg of the solution ((4)M̃ ,g̃ab@u#)/Gg is isomet-
ric to (M̃ ,h̃ab

std@r #)/At for somer andt. The dynamical variables~r ,t! can therefore be identified
with functions of timer5r (t;u), andt5t(t;u,g), containing~u,g! as constant parameters.~r is
determined only from the universal cover metrich̃ab@u#, so thatr is independent ofg.! When
considering a Bianchi group as the extendible isometry group,r andt depend ont andu through
the component functionsh[(h11(t;u),h22(t;u),h33(t;u)) in Eq. ~6!, so that we may write asr
5r (h), andt5t(h,g). We executed this procedure for some explicit models in II.

For convenience, we often reparametrizeh̃ab
std@r # or At , and factor outv to parameterize the

volume. In such a case, the dynamical variables are (r ,t,v), and they are functions of time
containing ~u,g! as constant parameters. We shall refer to the steps here of finding the
development of the dynamical variables as thespacetime approach, in distinction from the dy-
namical approach which will be presented in the next section.

III. FIXING COVERING MAPS AND THE NATURAL HAMILTONIAN STRUCTURES

As is well known, general relativity possesses Hamiltonian formalism~e.g., Ref. 3!. In this
section, we consider how we can obtain, from the full phase space, a reduced phase space
dynamical system of compact homogeneous universe. In our mathematical representatio
J. Math. Phys., Vol. 38, No. 12, December 1997
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compact homogeneous universe in the previous section, part of dynamical degrees of freed
contained in the covering map, which cannot be a canonical dynamical variable in ordinary
In some cases, however, we can move to another representation in which the coverin
contains no dynamical degrees of freedom and the universal cover metric carry all the on
these cases we may obtain the natural reduced Hamiltonian.

We first consider a reparametrization of compact locally homogeneous 3-manifolds. Re
ber that our standard parameterization of compact locally homogeneous 3-manifolds is lik
~7!. ~For simplicity, we do not factor out the total volumev in this section.! This parameterization
is of particular importance in that it is the most natural one among those of containing no r
dant parameters. However, once we find such a parameterization, we can reparametrize th
tions of the manifold appropriately, following Eq.~1!. In particular, we can fix the covering map
using a diffeomorphismft :M̃→M̃ such that

At5ft + A0+ft
21, ~8!

where A0 is the covering group for a set of fixed Teichmu¨ller parameterst5t0 . With this
diffeomorphism, we obtain parameterization

~M̃ ,h̃ab
dyn@r ,t# !/A0 , ~9!

where

h̃ab
dyn@r ,t#[ft * h̃ab

std@r #. ~10!

It is worth noting thatft is a diffeomorphism which maps a fundamental region of the projec
map p0 of A0 to a fundamental region ofpt of At . We shall refer toft as aTeichmu¨ller
diffeomorphism~TD!.

We may be able to see the metric~10! as a ‘‘dynamical’’ metric. That is, we expect ther
exists a spacetime metricg̃ab

dyn(r ,t) whose spatial part is given by Eq.~10!, wherer and t are
functions of timet. If we start with such a ‘‘dynamical’’ spacetime metric withr (t) and t(t)
being free functions oft, then we would be able to find the time-development of them dire
from Einstein’s equation.~Note that by definition, the quotient of the solution obtained in this w
is free from the degrees of freedom of diffeomorphisms.! This may give another approach, whic
we call the dynamical approach, to obtain the time-development of the dynamical variab
(r (t),t(t)). This is similar to the treatment employed in (211)-gravity.13

We notice, however, that TDs are not unique, so that many possibilities of different pa
eterizations of Eq.~9! exist. Moreover, even for a given parameterization of Eq.~9!, there seem to
exist many possibilities of ways of taking the dynamical spacetime metric, i.e., of taking the
vector. ~The spatial dependence of the lapse function results in an undesirable change of
foliation, but justt-dependence of the lapse function simply results in a reparametrizationt,
which is not essential for our purpose. We therefore fix the lapse function to unity.! However, the
ambiguity of the shift vector is not essential. What is essential is the choice of TD. To see
suppose we are given the solution constructed unambiguously in the spacetime approach fo
EsomM̃ t andp1(M ).

For an SCH spacetime to yield (M̃ t ,h̃ab
dyn@r ,t#)/A0 as its spatial part, this SCH spacetime ne

be of the form ((4)M̃ ,g̃ab
dyn(r ,t))/A0 with A0 being a discrete subgroup of the extendible isome

group. Moreover, this SCH spacetime must be isometric to the SCH spacetime constructed
spacetime approach, ((4)M̃ ,g̃ab@u#)/Gg . Hence, we must have the following commutative d
gram;
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ ~4!M̃ ,g̃ab@u#~ t !!/Gg ←
cg

~ ~4!M̃ ,g̃ab
dyn~r ~ t !,t~ t !!!/A0

↓ ↓

~M̃ t ,h̃ab@ t,u# !/Gg ← ~M̃ ,h̃ab
std@r ~ t !# !/At~ t ! ←

ft

~M̃ t ,h̃ab
dyn@r ~ t !,t~ t !# !/A0

. ~11!

Here, the vertical arrows stand for restricting to spatial manifolds, the horizontal arrow
mapping by diffeomorphisms, and we have insertedt-dependence explicitly.@We are consistently
using square brackets@ # to denote the parametric dependence of the arguments, while u
parentheses~ ! to denote the usual dependence of the arguments.#

Let cg be the diffeomorphismcg : (4)M̃→ (4)M̃ which connects the two spacetime manifol
in Eq. ~11!. That is,cg is a diffeomorphism such that

Gg5cg+A0+cg
21. ~12!

Also, cg preserves each spatial section~i.e., preserves the spatial foliation!. With cg , the two
universal cover metrics relate through

g̃ab
dyn~r ,t!5cg* g̃ab@u#. ~13!

Note that the diffeomorphism which connects the left two spatial manifolds in Eq.~11! is uniquely
specified. For example, when the extendible isometry group is given by a Bianchi group, it w
composition,h +i:M̃→M̃ t , of an HPDh, used to simplify the universal cover metric to th
standard metric, and an isometryi, corresponding to the conjugation. This, in turn, implies that
TD ft andcg are in one-to-one correspondence

cg5h +i +ft . ~14!

~Sincecg preserves the spatial foliation,cg can be naturally identified with spatial diffeomo
phisms. Conversely, sinceh, i, andft containt as parameter, they can be naturally identified w
diffeomorphisms on the spacetime manifold. Equation~14! is therefore well-defined on bothM̃ t

and (4)M̃ . Note, however, thati is not in general an isometry when acting on the spacet
((4)M̃ ,g̃ab).! Thus, we can focus oncg’s, instead of thinking of TDs. We may always find man
varieties of foliation preserving diffeomorphismscg’s which satisfy Eq.~12!, so that there still
seem to exist many varieties of dynamical spacetime metrics. Note, however, that for ar
choices ofcg , the right hand side of Eq.~13! would depend freely ont, u andg

cg* g̃ab@u#~ t !5~cg* g̃ab!@u,g#~ t !. ~15!

Since we cannot, in general, ‘‘invert’’ the functionsr5r (t;u), andt5t(t;u,g), i.e., we cannot
find t5t(r ,t), u5u(r ,t), and g5g(r ,t), we would not be able to have the right dynamic
metric as a functional ofr (t) andt(t)

~cg* g̃ab!@u,g#~ t !Þg̃ab
dyn~r ~ t !,t~ t !!. ~16!

Obviously, to have the right dynamical metric, the pullback ofg̃ab@u# by cg must take a specia
form wheret, u, and g appears as algebraic combinations ofr5r (t;u) and t5t(t;u,g). This
shows the origin of the fact that an arbitrary choice of TD in the dynamical approach leads
only a bad ansatz for the solution of the field equation, no matter how we choose the shift v
Conversely, if we choose a right TD, the right dynamical metric is unique due to a correspon
such as Eq.~14!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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In general it is not trivial to find right TDs. Even worse, in some cases they may not e
However, in special cases shown below the existence of the right TDs is guaranteed and
carry out the dynamical approach.

Suppose the extendible isometry group is given by a Bianchi groupG, and consider a class o
SCH spacetimes such that we can find the TDs in the HPDs. We call the TDs implemente~a
subgroup of! the HPDs thehomogeneity preserving Teichmu¨ller diffeomorphisms (HPTDs). The
dynamical metric~with zero shift vector! with the HPTDs becomes of the form~4!, which is
expected to consistently describe the time-development of the dynamical variables, since it
an ordinary, but nondiagonal generally, Bianchi type spacetime metric. EsomM̃ t5G is also sat-
isfied. ~One might still care about that possible momentum constraints would excessively r
the number of dynamical degrees of freedom, but this is not the case. The momentum con
correspond to the inner automorphisms, Inn(G), of the Bianchi groupG,8 which in turn corre-
spond to the conjugations in the quotient space. Since we have so defined the TDs t
conjugations are contained in the quotient space, the dynamical metric will be free from
momentum constraints.! Thus, the HPTDs will give a right dynamical metric. This constitutes
essential ingredient of our actual reduction of the Hamiltonian.

Finally, we can easily find a necessary condition to have the HPTDs, which is given b

x>dim C̄u , ~17!

where dimC̄u equals the number of the parametersg, and

x[dim Out~G!5dim HPDs2dim Inn~G!. ~18!

Here, Out(G) is the outer automorphism group ofG, and we have used the fact that the HP
comprise the automorphism group ofG. The condition~17! can be understood from the observ
tion that thecg must be~time-independent! HPDs, modulo the gauge orbits generated by
momentum constraints.

In the next section, we demonstrate the dynamical approach and show the Hamiltonia
means of the HPTDs.

IV. FOUR EXAMPLES

We in this section apply our argument to the four vacuum models investigated previou
II, namely, theb/1, f 1/1(n), a1/1, anda2/1 models. The definitions of the four compact hom
geneous universes are summarized in Table I, where the extendible isometry groups a
fundamental groups of the spatial sections are given. We have abbreviated the Bianchi N g
‘‘BN.’’ Explicit representations ofp1(Mb/1) andp1(M f 1/1(n)) are presented in, respectively, Eq
(14)II and (37)II . ~For simplicity, we in this section refer to equations in I and II as (1)I , (1)II ,
etc.!

We will see that the HPTDs are found, the dynamical metrics can be written, and there
Hamiltonians are obtained, for theb/1, f 1/1(n), anda2/1 models. For these models,x 5dim C̄u

holds, so that the condition~17! is satisfied. Thea1/1 model does not satisfy this condition~but
0,x,dim C̄u!. Nevertheless, we will succeed to have a Hamiltonian also for this model, i
admit a ‘‘degeneracy’’ of the dynamical variables.~See Sec. IV C.!

All the arguments in the following subsections are basically parallel to the first one,
IV A.

A. The b /1 model

We begin with preparing the HPDsh of Bianchi II, which are obtained from the invarianc
under Eq.~5! of the Maurer-Cartan relation

ds150, ds250, ds352s1∧s2. ~19!
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The invariant 1-formss i here of Bianchi II are defined by

s1[dx, s2[dy, s3[dz2x dy, ~20!

using a local coordinate basis (x,y,z). We find

f 1
35 f 2

350, f 3
35 f̄ 3

3[ f 1
1f 2

22 f 1
2f 2

1, ~21!

and so that

h* :S s1

s2

s3
D→S f 1

1

f 2
1

f 3
1

f 1
2

f 2
2

f 3
2

0
0

f̄ 3
3

D S s1

s2

s3
D . ~22!

Moreover, by integration we have

h:S x
y
z
D→S f 1

1x1 f 1
2y

f 2
1x1 f 2

2y

~1/2!~ f 1
1f 2

1x21 f 1
2f 2

2y2!1 f 1
2f 2

1xy1 f̄ 3
3z1 f 3

1x1 f 3
2y
D . ~23!

We have set the integral constants, corresponding to isometries, zero. This is the general
HPDs, up to isometry. There are six free parameters in it, which are constant with respect
spatial coordinates (x,y,z), but possibly depend on timet, depending upon the context.

Our standard universal cover metric, up to constant conformal factor, is@cf. Eq. (75)I#

dl25~s1!21~s2!21~s3!2, ~24!

and the parameterization of the Teichmu¨ller space is given by the following generators acting
the standard universal cover@cf. Eq. (129)I#

At5H S a1
1

0
0
D ,S a2

1

a2
2

0
D ,S 0

0
a1

1a2
2
D J . ~25!

So, there are no universal cover parameters, and three Teichmu¨ller parameters

TABLE I. In this table,Rg3 is the rotation matrix by angleg3, and the usual multiplication rule for matrix is understoo
The multiplication rules in this table will be applied without any notice in the subsequent subsections.

Model EsomM̃ t Multiplication rule for EsomM̃ t p1

b/1 BII Sg1

g2

g3
DSh1

h2

h3
D5S g11h1

g21h2

g31h31g1h2
D p1(Mb/1)

f 1/1(n) BVI0 Sg1

g2

g3
DSh1

h2

h3
D5Sg11e2g3

h1

g21eg3
h2

g31h3
D p1(M f 1/1(n))

a1/1 BVII0 Sg1

g2

g3
DSh1

h2

h3
D5SSg1

g2D1Rg3Sh1

h2D
g31h3

D p1(T3)

a2/1 BI Sg1

g2

g3
DSh1

h2

h3
D5Sg11h1

g21h2

g31h3
D p1(T3)
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r5B, t5~a1
1,a2

1,a2
2!. ~26!

We taket05(1,0,1), for later convenience. The dynamical variables aret and the volumev,
which has been omitted from the standard universal cover metric basically for simplicity, bu
come into the dynamical metric finally.

We can choose the unit cube~Fig. 1! in 0<x<1, 0<y<1 and 0<z<1 as a fundamenta
region ofp0 . If we choose a fundamental region ofpt such that the projection onto thex–y plane
is a parallelogram shown in Fig. 2, then the HPTDs are determined by the requirement tha
comprise a subgroup of HPDs. In fact, for thex–y plane, TDft must be the linear transformatio

ft : S x
yD→S a1

1x1a2
1y

a2
2y D , ~27!

so that we have

ft* : S s1

s2D→S a1
1

0
a2

1

a2
2D S s1

s2D . ~28!

This in turn implies@cf. Eq. ~22!#

FIG. 1. The unit cube~a fundamental region ofp0! and its image~a fundamental region ofpt! by an HPTD.

FIG. 2. The parallelogram shows the projection of a fundamental region ofpt on thex–y plane.
J. Math. Phys., Vol. 38, No. 12, December 1997
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ft* : S s1

s2

s3
D→S a1

1

0
0

a2
1

a2
2

0

0
0

a1
1a2

2
D S s1

s2

s3
D . ~29!

It is easy to observe that the TDs of Eq.~29! certainly comprise a subgroup of HPDs. Compari
with Eq. ~23!, we finally have

ft : S x
y
z
D→S a1

1x1a2
1y

a2
2y

1
2a2

1a2
2y21a1

1a2
2z
D . ~30!

The image of the unit cube by this ‘‘HPTD’’ must be a fundamental region ofpt ~Fig. 1!, i.e.,
must satisfy Eq.~8!. In fact, for the generators ofA0

A05H S 1
0
0
D ,S 0

1
0
D ,S 0

0
1
D J , ~31!

we can calculate

ft+A0+ft
215H S a1

1

0
0
D ,S a2

1

a2
2

1
2a2

1a2
2
D ,S 0

0
a1

1a2
2
D J , ~32!

which certainly coincides withAt , up to conjugation.~The third component of the second ge
erator of Eq.~32! differs from that of Eq.~25!, but this is not essential for our purpose, since
can make it zero by using an isometryi, i.e., ft→ft+i in Eq. ~32!. This change does not affec
the form of the dynamical metric.! Thus, Eq.~30! is the right HPTDs.

The induced metric of Eq.~24! by ft is obtained from the direct substitution of Eq.~29!.
Normalizing the induced metric to givev2 as determinant,~and attaching ‘‘2dt2,’’ ! we obtain the
dynamical metric

ds252dt21Habsasb, ~33!

where

H115S v
~a1

1!2~a2
2!2D 2/3

~a1
1!2, H225S v

~a1
1!2~a2

2!2D 2/3

~~a2
1!21~a2

2!2!,
~34!

H125S v
~a1

1!2~a2
2!2D 2/3

a1
1a2

1, H335S v
~a1

1!2~a2
2!2D 2/3

~a1
1!2~a2

2!2.

The inverse is also useful

a1
15H33AH11

H
, a2

15
H33H12

AHH11

, a2
25AH33

H11
, v5AH, ~35!

whereH[det(Hab)5(H11H222(H12)
2)H33. Now, we can think of the set of metric componen

(H11, H22, H12, H33), which are functions oft, as an alternative set of the dynamical variabl
In such a case, the geometrical meaning of them should be understood with respect to Eq~34!.

We can also find the diffeomorphismcg on (4)M̃ defined by Eq.~12!, which is given by
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cg* :S s1

s2

s3
D→S g1

1

g1
2

0

g2
1

g2
2

0

0
0

ḡ3
3
D S s1

s2

s3
D , ~36!

or

cg :S x
y
z
D→S g1

1x1g2
1y

g1
2x1g2

2y
~1/2!~g1

1g1
2x21g2

1g2
2y2!1g1

2g2
1xy1ḡ3

3z
D , ~37!

whereḡ3
3[g1

1g2
22g1

2g2
1. In fact, we can easily calculate

cg+A0+cg
215H S g1

1

g1
2

1
2g1

1g1
2
D ,S g2

1

g2
2

1
2g2

1g2
2
D ,S 0

0
ḡ3

3
D J , ~38!

which coincides withGg given in Eq. (18)II , up to unessential conjugation, again.~Note that Eq.
~36! corresponds to a case off 3

15 f 3
250 for the general HPDs~22!. The spacetime metric with

f 3
1 and f 3

2 as constant parameters was possible as a solution of Einstein’s equation, but the
spanned byf 3

1 and f 3
2 in the space of solutions corresponds to the gauge orbits generated b

momentum constraints, so that they cannot be true dynamical degrees of freedom.!
If we make the dynamical metric following Eq.~13! ~with the universal cover metric~6!!, and

substitute into Eq.~35!, we obtain the time development in terms ofh of the dynamical variables
previously obtained in II~see Eqs. (31)II and (32)II). This guarantees the rightness of the dynam
cal metric~33!.

Finally, our phase spaceP is spanned by (a1
1,a2

1,a2
2,v,p1

1,p2
1,p2

2,pv), wherepi
j andpv

are the conjugate momenta ofai
j andv, respectively. The Hamiltonian onP is naturally obtained

from the dynamical metric~33! and the usual Einstein–Hilbert action as

H5
1

2v
$~a1

1a2
2v !4/31~a1

1!2~p1
1!21~~a2

1!21~a2
2!2!~p2

1!21~a2
2!2~p2

2!212a1
1a2

1p1
1p2

1

1a1
1a2

2p1
1p2

21a2
1a2

2p2
1p2

2%2 3
8v~pv!2. ~39!

The Hamiltonian constraint, given byH'0, reduces the dynamical degrees of freedom fr
dim P58 to six, which agrees with the count given in II, i.e., two foru, and four for g
5$g1

1,g1
2,g2

1,g2
2%.

B. The f1/1„n … model

As in Bianchi II, the HPDsh of Bianchi VI0 are obtained from the invariance under Eq.~5!
of the Maurer–Cartan relation

ds15s2∧s3, ds252s3∧s1, ds350, ~40!

with respect to the invariant 1-formss i of Bianchi VI0, given by

s1[
1

&

~ez dx1e2z dy!, s2[
1

&

~2ez dx1e2z dy!, s3[dz. ~41!

We find
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h* :S s1

s2

s3
D→S f 1

1

6 f 1
2

0

f 1
2

6 f 1
1

0

f 1
3

f 2
3

61
D S s1

s2

s3
D . ~42!

We need only the identity component of the HPDs, which correspond to the plus signs in Eq~42!.
Integratingh* for the plus signs, we have

h:S x
y
z
D→S ~ f 1

12 f 1
2!x2

1

&

~ f 1
32 f 2

3!e2z

~ f 1
11 f 1

2!y1
1

&

~ f 1
31 f 2

3!ez

z

D . ~43!

We have again set the integral constants zero.
Our standard universal cover metric is~cf. Eq. (80)I!

dl25e2l~s1!21e22l~s2!21~s3!2, ~44!

and our parameterization of the Teichmu¨ller space is given by the following generators acting
the standard universal cover~cf. Eqs. (156)I and (157)I!:

At5H S au1

au2

0
D ,S av1

av2

0
D ,S 0

0
c3

D J , for n.2, ~45!

and

At5H S au1

au2

0
D ,S av1

av2

0
D ,h+S 0

0
c3

D J , for n,22, ~46!

whereec3[un1An224u/2,

S u1

v1
D[

1

Aunu SAun1An224u
2

Aun2An224u
2

D , S u2

v2
D[

1

Aunu SAun2An224u
2

Aun1An224u
2

D , ~47!

andh is defined byh:(x,y,z)→(2x,2y,z). So, we have

r5$l%, t5$a%. ~48!

Adding the volumev, we have three dynamical variables (r ,t,v).
It is quite easy to find the~HP!TDs, if noting the fact that the compact manifoldf 1/1(n) is a

torus bundle over the circle. Since the Teichmu¨ller parametera is the size of the torus fiber, laid
in x–y plane, relative to the circle, laid inz axis, the HPTDs are supposed to be

ft :~x,y,z!→~ax,ay,z!. ~49!
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This is apparently an element of the HPDs~43!, i.e., corresponding to the case off 1
15a, f 1

2

5 f 1
35 f 2

350. We can even make sure the relation~8! if letting t05$1%. The diffeomorphisms
~49! are therefore the HPTDs.

As in theb/1 case, normalizing the induced metric of Eq.~44! to givev as its volume element
we obtain the dynamical metric

ds252dt21H11~s1!21H22~s2!21H33~s3!2, ~50!

where

H115~v2a24!1/3e2la2, H225~v2a24!1/3e22la2, H335~v2a24!1/3. ~51!

The inverse is also useful

a5
~H11H22!

1/4

AH33

, l5
1

4
ln

H11

H22
, v5AH11H22H33. ~52!

We can easily check that thecg defined by Eq.~12! with g5$a0% is given by

cg :~x,y,z!→~a0x,a0y,z!. ~53!

In the same manner as theb/1 case, we obtain the time development of the dynamical variab

a5
~h11h22!

1/4

Ah33

a0 , l5
1

4
ln

h11

h22
, v5Ah11h22h33~a0!2, ~54!

which coincides with Eq. (46)II . Again, this guarantees the rightness of the dynamical metric~50!.
~There are factor or power errors in the last paragraph of Sec. IV B of II, for the values ofl and
v.!

Our phase spaceP is spanned by (l,a,v,pl ,pa ,pv), wherepl , pa andpv are the conjugate
momenta ofl, a, and v, respectively. The Hamiltonian onP is naturally obtained from the
dynamical metric~50! as

H5
1

2v H 4 cosh2 2l~av !4/31
1

4
pl

21
3

4
a2pa

2 J 2
3

8
v~pv!2. ~55!

The Hamiltonian constraintH'0 reduces the dynamical degrees of freedom from dimP56 to
four, which agrees with the count given in II, i.e., three foru, and one forg5$a0%.

C. The a1/1 model

The pullback of HPDs for Bianchi VII0 are found to be

h* :S s1

s2

s3
D→S f 1

1

7 f 1
2

0

f 1
2

6 f 1
1

0

f 1
3

f 2
3

61
D S s1

s2

s3
D , ~56!

for the invariant 1-forms defined by

s15cosz dx1sin z dy, s252sin z dx1cosz dy, s35dz. ~57!

We need only the identity component of the HPDs, which correspond to the upper set of si
Eq. ~56!. Integratingh* for the identity component, and setting the integral constants zero
obtain the following HPDs:
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h:S x
y
z
D→S f 1

1x1 f 1
2y1 f 1

3 sin z1 f 2
3 cosz

2 f 1
2x1 f 1

1y2 f 1
3 cosz1 f 2

3 sin z
z

D . ~58!

Our standard universal cover metric is~cf. Eq. (72)I!

dl25e2l~s1!21e22l~s2!21~s3!2, ~59!

and our parameterization of the Teichmu¨ller space is given by the following generators acting
the standard universal cover~cf. Eq. (100)I!:

At5H S a1
1

0
2lp

D ,S a2
1

a2
2

2mp
D ,S a3

1

a3
2

2np
D J , ~60!

wherel , m, andn are integers.~The choice of Eq. (101)I will give the same dynamical metric a
that of Eq. (100)I , since they differ by just a discrete element. So, we focus on the case o
~60!.!

Note that we havesevenvariables (r ,t,v), where

r5$l%, t5$a1
1,a2

1,a2
2,a3

1,a3
2%, ~61!

andv is the volume. We know, however, that all the Teichmu¨ller parameterst develop in timein
the same manner~see Eq. (54)II!

ai
j5

~h11h22!
1/4

Ah33

gi
j , ~ i , j !5~1,1!, ~2,1!, ~2,2!, ~3,1!, and ~3,2!, ~62!

where g[$gi
j% are the constant parameters in theGg ~cf. Eq. (50)II!. This may suggest tha

dynamically, and at least classically, the five Teichmu¨ller parameters degenerate and we sho
think of only one of them as a true dynamical variable, though geometrically all of them re
true degrees of freedom of smooth deformations of the compact manifolda1/1. We in this sub-
section take this standpoint, since only by doing so we can succeed to have the dyn
spacetime metric.~See below.!

Now, our dynamical variables are (r ,t8,v), wheret85$a% is one of the elements int. We
also defineg8[$g%, which is one ofg, corresponding toa. The HPTDs, thecg8 , and the
dynamical spacetime metric are most similar to those of thef 1/1(n) model. The HPTDs are given
by

ft8 :~x,y,z!→~ax,ay,z!, ~63!

which is a case off 1
25 f 1

35 f 2
350 of Eq. ~58!. Thecg8 is given by

cg8 :~x,y,z!→~gx,gy,z!. ~64!

The dynamical spacetime metric is given by

ds252dt21H11~s1!21H22~s2!21H33~s3!2, ~65!

where

H115~v2a24!1/3e2la2, H225~v2a24!1/3e22la2, H335~v2a24!1/3. ~66!

Then, as in thef 1/1(n) case, we should have
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a5
~h11h22!

1/4

Ah33

g, ~67!

which reproduces~a representative of! Eq. ~62!. In this sense, metric~65! is the right dynamical
metric. This diagonal type of metric was, in fact, the only possibility of the dynamical metric m
from the HPTDs, since if we wrote the general Bianchi VII0 spacetime metric, the off-diagona
three components would have become nondynamical, due to the three momentum constra8

Our phase spaceP is spanned by (l,a,v,pl ,pa ,pv), wherepl , pa andpv are the conjugate
momenta ofl, a and v, respectively. The Hamiltonian onP is naturally obtained from the
dynamical metric~65! as

H5
1

2v H 4 sinh2 2l~av !4/31
1

4
pl

21
3

4
a2pa

2J 2
3

8
v~pv!2. ~68!

The Hamiltonian constraintH'0 reduces the dynamical degrees of freedom from dimP56 to
four, which doesnot, of course, agree with the count given in II, because variablea is a repre-
sentative of the five Teichmu¨ller parametersai

j .

D. The a2/1 „flat torus … model

Both the HPDs for Bianchi I and the pullback of them are the general linear transforma

h : xm→(
n

f m
nxn; h* :sm→(

n
f m

nsn, ~69!

where det(fm
n)Þ0, (x1,x2,x3)[(x,y,z), and (s1,s2,s3)[(dx,dy,dz).

Our standard universal cover is simply~cf. Eq. (66)I!

dl25~s1!21~s2!21~s3!2, ~70!

and our parameterization of the Teichmu¨ller space is given by the following generators acting
the standard universal cover:

At5H S a1
1

0
0
D ,S a2

1

a2
2

0
D ,S a3

1

a3
2

a3
3
D J . ~71!

That is, we have no curvature parameter and six Teichmu¨ller parameters

r5B, t5$a1
1,a2

1,a2
2,a3

1,a3
2,a3

3%. ~72!

We chooset05$1,0,1,0,0,1%, for later convenience. In the parameterization~71!, the dynamical
variables are only the Teichmu¨ller parameterst ; the freedom of volume variations are contain
in them. This is due to the fact that a conformal transformation on the standard universal
with constant conformal factor is just the pullback of a diffeomorphism on the cover. This o
only in the case of Bianchi I. If one wants to factor out the volumev from the dynamical
variables, one can do so by normalizingt to give the unit volume for the quotient, but we don
as in II.

Let a5S a1

a2

a3
D , x5S x

y
z
D PBI. Then,
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h + a + h21 + x5h + a + ~ f 21x!5h + ~a1 f 21x!5 f a1x, ~73!

where f [( f m
n) is the matrix composed off m

n , and the usual multiplication rule for matrix i
understood whenever ‘‘+’’ does not appear. Thus, the induced element ofa by h is the linear
transformation ofa

h + a + h215 f a. ~74!

The TDs must satisfy Eq.~8!, which is now equivalent to

f M05M t , ~75!

whereM t is the matrix composed of the generators ofAt

M t[S a1
1

0
0

a2
1

a2
2

0

a3
1

a3
2

a3
3
D . ~76!

SinceM0 is the identity matrix, this implies

f 5M t . ~77!

We have found the TDs in the HPDs, so this is the HPTDs. The pullback of the standard m
~70! by these HPTDs immediately gives~the spatial part of! the dynamical metric; we have

ds252dt21Habsasb, ~78!

where

~Hab!5S (
g

M tgaM tgbD 5S ~a1
1!2 a1

1a2
1 a1

1a3
1

~a2
1!21~a2

2!2 a2
1a3

11a2
2a3

2

~sym.! ~a3
1!21~a3

2!21~a3
3!2

D . ~79!

Now, the metric components (H11, H12, H13, H22, H23, H33) are an alternative set of th
dynamical variablest. We can use the general Bianchi I spacetime metric~78! as the universal
cover metric of the flat torus (a2/1) universe. In such a case, the geometrical interpretation o
components should be understood with respect to Eq.~79!.

The cg defined by Eq.~12! is found to be

cg* :sm→(
n

gn
msn, ~80!

or

cg :xm→(
n

gn
mxn. ~81!

In fact, we can easily check that Eq.~12! holds for theGg given by ~cf. Eq. (58)II!

Gg5H S g1
1

g1
2

g1
3
D ,S g2

1

g2
2

g2
3
D ,S g3

1

g3
2

g3
3
D J . ~82!
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If we make the dynamical metric following Eq.~13! ~with the universal cover metric~6!!, the
spatial componentsHab are found to beHab5(m,nhmnga

mgb
n . Here, hmn5diag(t2p1,t2p2,t2p3),

and pa’s are constant parameters satisfyingp11p21p3515(p1)21(p2)21(p3)2, for vacuum.
Comparison with Eq.~79! will give the same time development of the Teichmu¨ller parameters as
Eq. (65)II , which fact justifies the use of our dynamical metric.

Finally, our phase spaceP is spanned by the sixai
j ’s and the corresponding conjuga

momentapi
j ’s. Though the present parameterization may not be convenient for practical pur

we, for completeness, present the Hamiltonian onP, which is naturally obtained from the dy
namical metric~78! with Eq. ~79!

H5
1

8a1
1a2

2a3
3 $~a1

1p1
11a2

1p2
12a2

2p2
21a3

1p3
12a3

2p3
22a3

3p3
3!2

14~a2
2p2

11a3
2p3

1!214~a3
3!2~~p3

1!21~p3
2!2!24a3

3p3
3~a2

2p2
21a3

2p3
2!%. ~83!

The Hamiltonian constraintH'0 reduces the dynamical degrees of freedom from dimP512 to
10, which agrees with the count given in II, i.e., one foru ~the independent Kasner parameter!, and
9 for g5$gm

n % ~the constant parameters needed for the compactification!.

V. CONCLUDING REMARKS

We have defined a class of diffeomorphisms, called Teichmu¨ller diffeomorphisms~TDs!,
which induce the Teichmu¨ller deformations of the quotient, in conjunction with a fixed coveri
group. A subclass of the TDs, called the HPTDs, has also been defined. They match the dyn
evolution of the Teichmu¨ller parameters. We have obtained the Hamiltonians for the spacP
5T* F, by restricting the spacetime metric to the dynamical metric, i.e., to the metric induce
the HPTDs.

The Hamiltonian structure thus found is the same as the one which would have obtaine
the general Bianchi metric which is free from the momentum constraints. However,8 the dynami-
cal degrees of freedom do not have clear meaning in the context of the usualopenmodel. In our
compactmodel, in contrast to this, all the dynamical variables, and thus all the dynamical de
of freedom, have explicit geometrical meaning, since our approach is ‘‘constructive.’’ One
nevertheless, also regard our results as giving geometrical interpretation of the known Hami
for a Bianchi metric.

Our approach will be applicable to larger classes of spacetimes, e.g., spacetimes of
space isnoncompact locally homogeneous but has nontrivial fundamental group, and space
of which space possesses less than three local Killing vectors. One in the former case h
Teichmüller parameters than the compact case. Whether a consistent Hamiltonian is obtai
not will, however, depend upon each model.

We end this final section with some remarks on the compact models on Bianchi VIII,
compact models such that~the identity component of! the extendible isometry group is given b
the Bianchi VIII group, i.e., Esom0M̃ t5BVIII. We simply call these models the ‘‘d/* ’’ models,
where, as usual,d stands for the type of the universal cover and* is a characterization of the
compact quotient.~See I, for explicit description of ‘‘* .’’ ! For definiteness, we show the standa
universal cover metric, up to constant conformal factor, of thed/* models; it is given by

dl25e2~l1 /)1l2!~s1!21e2~l1 /)2l2!~s2!21e2~4/) !l1~s3!2, ~84!

wherel1 andl2 are constants, and the invariant 1-formssm are

s15
1

y
~sin z dx2cosz dy!, s25

1

y
~cosz dx1sin z dy!, s35

1

y
~dx1y dz!. ~85!
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~The present choice of the invariant 1-forms differs from the one listed in I. This is, of cour
matter of preference. But it was an erroneous claim of I that14 to admit a compact quotient, th
universal cover should admit four dimensional isometry group and therefore thel2 should vanish.
Actually, there exist many cases such that we can embed the fundamental groupp1(d/* ) into
BVIII itself with the discrete but generic isometriesj :z→z12np, wheren is an integer. The
coefficients of the invariant 1-forms~i.e., the curvature parameters! in Tables I and II of Paper I
should, accordingly, read as Eq.~84!, and the ‘‘Degrees of freedom of the universal coverU ’’ in
Table III of the same paper should read ‘‘2.’’!

We know that the vacuum solution of the conventional Bianchi VIII model is diagonaliz
~e.g., Ref. 2!, which means that the universal cover metricg̃ab@u# of the spacetime approach is o
the form of Eq.~6!. So, its spatial parth̃ab@u# is also diagonal. On the other hand, the stand
metric h̃ab

std@r #5e2a(dl2)ab , wheredl2 is given by Eq.~84! ande2a is a conformal factor, is of the
diagonal form of which three components can be freely specified. So, the spatial metrich̃ab@u# can
be directly identified with the standard metric, i.e.,h̃ab

std@r #5h̃ab@u#. Moreover, since it holds
EsomM̃ t5IsomM̃ t , we do not need take conjugations ofGg to have it coincide withAt . There-
fore, we haveGg5At , implying

t~ t !5g5constants. ~86!

Namely, the Teichmu¨ller parameters of thed/* models do not develop in time. In this sense, t
Teichmüller parameters of thed/* models may be regarded as nondynamical, though we defi
any Teichmu¨ller parameter as a dynamical variable. If on this standpoint, the dynamical vari
are only the curvature parameters (l1 ,l2 ,a), or equivalently the three diagonal components
the Bianchi VIII metric, so that the reduced Hamiltonian with its geometrical interpretatio
trivial. In fact, sincex50 holds, the HPDs for Bianchi VIII have no freedom to store the TD

Note after the completion of this work:Recently, Kodama15 has studied the canonical stru
ture for SCH spacetimes by a different approach, the diffeomorphism-invariant phase spa
proach, giving consistent Hamiltonians with ours.
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Intrinsic characterization of the variable separation
in the Hamilton–Jacobi equation

Sergio Benenti
Institute of Mathematical Physics ‘‘J.-L. Lagrange,’’ Department of Mathematics,
University of Turin, 10123 Torino, Italy

~Received 31 December 1996; accepted for publication 25 June 1997!

The nonorthogonal separation of variables in the Hamilton–Jacobi equation corre-
sponding to a natural HamiltonianH5 1

2g
i j pipj1V, with a metric tensor of any

signature, is intrinsically characterized by geometrical objects on the Riemannian
configuration manifold: Killing vectors, Killing tensors, and Killing webs. Com-
parisons with previous characterizations and some illustrative examples are given.
© 1997 American Institute of Physics.@S0022-2488~97!01412-6#

I. INTRODUCTION

In this paper we investigate the intrinsic characterization in terms of Riemannian geome
the additive separation of variables in the Hamilton–Jacobi equation. We are concerned
Hamiltonian of the kind

H5 1
2g

i j pipj1V, ~1.1!

where gi j (qI ) are the contravariant components of a metric tensorg on a differentiable
n-dimensional manifoldQ and V(qI ) is a smooth function onQ. We denote by (qI ,pI )5(qi ,pi)
canonical coordinates onT* Q corresponding to coordinatesqI 5(qi) on Q ~indices, i , j ,... run
from 1 to n!. The coordinatesqI are calledseparableif the corresponding Hamilton–Jacob
equation

1

2
gi j ] iW] jW1V5h S ] i5

]

]qi D ~1.2!

has a complete solution of the form

W~qI ,cI !5W1~q1,cI !1•••1Wn~qn,cI !, ~1.3!

wherecI 5(ci) are integration constants. We say that the HamiltonianH5G1V is separablewhen
such a coordinate system exists.

Hamiltonian systems of this kind form a large class of integrable systems and, moreov
additive separation of the HJ-equation is related to the multiplicative separation of the corres
ing Helmholtz~or Schrödinger! equation. It is known that the first integrals in involution arisi
from the additive separation of the HJ-equation~1.2! are linear or quadratic in the momentapI .
This is shown by the general procedure of the integration by separation of variables o
HJ-equation based on the general expressions of the functionsgi j andV in separable coordinates
Finding these expressions has been for a long time one of the main problems in the the
separation of the HJ-equation, after the solution given by Sta¨ckel1 in 1893 for orthogonal coordi-
nates. The general setting of this problem was clearly formulated by Levi-Civita,2 who wrote the
partial differential equations characterizing the separation of a HamiltonianH(qI ,pI ), and pointed
out that the separation of the geodesic Hamiltonian,
0022-2488/97/38(12)/6578/25/$10.00
6578 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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G5 1
2g

i j pipj ~1.4!

is a crucial problem, since it is a necessary condition for the separation of the Hamiltonian~1.1!.
He also suggested a method for discussing his equations, based on a division of the se
coordinates into two classes~as we shall see below!. After various significant contributions
~among which we mention those of Dall’Acqua,3 Agostinelli,4 Forbat,5 Iarov-Iarovoi,6 Havas7!
Levi-Civita equations for a nonhomogenous quadratic time-dependent Hamiltonian have
completely and rigorously solved by Cantrijn8 in the case of a positive-definite metric. For
nondefinite metric further technical difficulties arise from the occurrence of ‘‘null coordina
~for which gii 50!. A complete solution has been given in Ref. 9~see also Refs. 10, 11!.

Since quadratic first integrals correspond to Killing 2-tensors~K-tensors! and linear first
integrals to Killing vectors~K-vectors!, these objects can be used for an intrinsic characteriza
of the separation for both HJ-equation and Helmholtz equation. General theorems on the re
ships between separation and Killing vectors and tensors have been proved by Eisenhart,12 Kalnins
and Miller,13 and Shapovalov14 for the separation in orthogonal coordinates, by Woodhouse15 ~see
also Refs. 16, 17! for the separation of a single coordinate, and by Kalnins and Miller18 for the
general nonorthogonal separation in a metric of any signature. SinceK-vectors and tensors ar
related to first and second order symmetry operators of the Laplace–Beltrami operator, a
group-theoretical aspect of separation on general or special manifolds has been widely ex
~for a review see Ref. 19!.

The intrinsic characterization of the additive separation of the HJ-equation proposed i
paper is focused over the following two points:~i! Since separable coordinates occur in equi
lence classes~two systems separable coordinates are equivalent if they provide intrinsicall
same complete integral of the HJ-equation! the separation phenomenon is related to the geom
cal properties of the particular ‘‘webs’’ formed by the coordinate hypersurfaces.~ii ! While in the
previous characterizations~Refs. 12–18! a numberm<n of independentK-tensors~m5n for the
orthogonal case! and a complementary numberr 5n2m of K-vectors are involved, here it is
shown how the separation can be characterized by a singleK-tensor with suitable properties
together with an Abelian subalgebra ofK-vectors. The main statements are truly coordina
independent~although for their proofs local coordinate representations are used!. As usual, all
objects are assumed to be smooth (C`). The classical approach to the separation of the
equation ~1.2! based on the Levi-Civita equations is revisited from the very beginning w
valuable simplifications and in a way suitable for our purposes. The problem of relatin
additive separation of the HJ-equation with the multiplicative separation of the Helmholtz e
tion, i.e., of extending the Robertson conditions12,20 to the general nonorthogonal separation fo
nonpositive metric, is not considered.

II. MAIN RESULTS

Our approach will be similar to that followed in a previous paper for the orthogo
separation,21 based on the following simple remark: since the orthogonal separation is pres
under coordinate transformations with diagonal Jacobian~each coordinated is transformed sep
rately! then the separation has to be considered as a geometrical property of the orthogon
formed by the coordinate hypersurfaces. Let us consider the following definitions. Anorthogonal
web on a Riemannian manifoldQn is a setS n5(S i)5(S 1,...,S n) of n pairwise transversa
and orthogonal foliations of connected submanifolds of codimension 1.~Two submanifolds of
codimension 1 are orthogonal if their normal vectors are orthogonal; in a nondefinite m
orthogonality does not imply transversality.! A coordinate systemqI is adaptedto a webS if its
leaves are locally represented by equationsqi5constant. An orthogonal web isseparableif in the
adapted coordinates the geodesic HamiltonianG is separable. A potentialV is separablein an
orthogonal webS if in the adapted coordinates the HamiltonianH5G1V is separable.
J. Math. Phys., Vol. 38, No. 12, December 1997
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A simple example is the following~see also Sec. VI!: on the Euclidean spaceQ5R2

5$(x,y)% a system of confocal conics form an orthogonal web—let us consider for instanc
case of ellipses and hyperbola: a system of functions constant on these curves is cleq1

5uPF1u1uPF2 , q25uPF1u2uPF2u, whereP is the generic point of the plane, (F1 ,F2) are the
two focuses, andu•u denotes the distance between points. These functions form a coord
system adapted to the web only locally, since two different points could have the same val
(q1,q2). Another system of functions constant on the conics is given by the roots (u1,u2) of the
equation

x2

u2a
1

y2

u2b
51.

where 0,a,b, 2(b2a)5uF1F2u2. They are calledelliptic coordinatesof the plane, although
only locally they form coordinate systems in a strict sense~as in the previous case!. As we know
~see the comments in Sec. VI! such a web is separable and the separability can be characteriz
the existence of a Killing tensor, according to the following statement, proved in Ref. 21~see also
Refs. 22, 23!.

Theorem 1:An orthogonal web on a Riemannian manifoldQ is separable if and only if there
exists aK-tensorK , ~i! with pointwise simple real eigenvalues and~ii ! with eigenvectors orthogo
nal to the leaves of the web. A potentialV is separable in this web if and only ifd(K•dV)50.

HereK•dV is the image of the 1-formdV by the linear endomorphismK . We say thatK is
a characteristic Killing tensorof the separable web. Notice that it is not uniquely determined.
can restate this property in an equivalent form as follows:

Theorem 2:A HamiltonianH5G1V is separable in orthogonal coordinates if and only if
the manifoldQ there exists aK-tensorK with pointwise simple real eigenvalues, orthogona
integrable eigenvectors~or closed eigenforms! and such thatd(K•dV)50.

We say that a vector field isorthogonally integrableif the orthogonal distribution is com
pletely integrable~see below!. A vector field with this property is also callednormal or
normalizable.13 With respect the geometrical characterization given by Kalnins and Miller in
13 ~Theorem 6!—for the geodesic case only—wheren K-tensors are involved, here we have t
advantage of dealing with only oneK-tensor but the disadvantage of the practical difficulty
checking if a givenK-tensor has normalizable eigenvectors.~In some cases it is possible to answ
this question, without knowing the eigenvectors, by computing the Nijenhuis torsion of a re
conformalK-tensor, see Ref. 21.!

Remark 1: ~i! An orthogonal separable web as well as the corresponding characte
K-tensor may be defined only onQ2S whereS is a suitable closedsingularset~for instance, on
the Euclidean plane the two focuses are the singular points of the web made of confocal c!.
Similar remark will apply to the ‘‘existence’’ of the objects considered in the following sta
ments.~ii ! Starting from a characteristicK-tensorK it is possible to construct an-dimensional
spaceK of commutingK-tensors, including the metric tensor andK itself, having common
eigenvectors withK and such that the conditiond(K 8•dV)50 holds for all elementsK 8PK .
The spaceK can be constructed by using separable coordinates and the so-calledStäckel matrices
associated with the metric~see for instance Refs. 9, 13, 21!. In some cases it is possible t
construct a basis ofK by an intrinsic iterative process, which avoids the use of the separ
coordinates~this is the case of the asymmetric separable webs on Euclidean spaces, see R!.
~iii ! If ( Ka) (a51,...,n) is a basis ofK and if the closed 1-formsKa•dV are exact i.e.,Ka

•dV5dUa , then then functions
J. Math. Phys., Vol. 38, No. 12, December 1997
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Fa5 1
2Ka

i j pipj1Ua ~2.1!

are independent first integrals in involution. Notice that we can take the metric tensorg and the
characteristicK-tensorK as elements of this basis.

In the general case of the nonorthogonal separation there are equivalent coordinate tr
mations with nondiagonal Jacobian.9 Indeed, the separable coordinates are divided into
classes: a coordinateqi is of first classif the ratio (]H/]qi)(]H/]pi)

21 is linear~homogeneous!
in the momenta, otherwise it is ofsecond class~see Sec. III!. The numbers (r ,m) of first and
second class coordinates are invariant within an equivalence class and moreover only the
class coordinates are related by separated transformations. In Sec. III, it will be shown how
nonorthogonal separation, instead of an orthogonal web, we are led to consider a more
geometrical structure described in the following definition.

Definition 1:A Killing web ~K-web! on a Riemannian manifoldQn is a pair (S m ,Dr), where

~i! S m5(S 1,...,S m)5(S a) (a51,...,m) is a set ofm<n pairwise transversal and orthogo
nal foliations of connected submanifolds of codimension 1.

~ii ! Dr is an r -dimensional Abelian algebra ofK-vectors tangent to the leaves ofS m , r 5n
2m, spanning a distributionD with constant rankr and such that also the distributionI
5DùD' has a constant rankm0 .

We shall omit the dimensional indices (m,r ) when they are not needed. The rank of
distribution D at a pointqPQ is the dimension of the spaceDq5DùTqQ. A distribution with
constant rank will be calledregular. The distribution orthogonal toD is denoted byD'. Notice
that under the assumption thatD is an Abelian subalgebra ofK-vectors the dimensionm0 of the
subspaceI q is constant on each orbit ofD, but in general it could depend on the orbit. It follow
from this definition that the leaves ofS are D-invariant and that their complete intersectio
coincide with the orbits ofD. Moreover, the distributionI is made of null vectors. Notice tha
m050 for positive metrics andm0<1 for Lorentzian~hyperbolic! metrics. Whenm050 each
subspaceDq is metrically nondegenerate. AK-web withm050 will be callednondegederate. The
dimensionr of D will be called thedegree of symmetryof the web. We say thatD is orthogonally
integrableif D' is completely integrable.

In Sec. III it will be proved that
Theorem 3:If the HamiltonianH5G1V is separable, then

~i! There exists aK-web (S m ,Dr) such thatD is orthogonally integrable.
~ii ! There exists am-dimensional spaceK m of commuting andD-invariantK-tensors, includ-

ing the metric tensor, withm common eigenvectors orthogonal to the leaves ofS . In K

there are elements with pairwise distinct real eigenvalues corresponding to the co
eigenvectors.

~iii ! For eachK-tensorKPK and for any basis (Xa) of D, d(K•dgab)50, wheregab are the
inverse elements of the matrixgab5Xa•Xb (a,b5m11,...,n).

~iv! The potentialV is D-invariant andd(K•dV)50 for each elementKPK .

The numbers (r ,m,m0) entering in this statement coincide, respectively, with the numbe
the first class, second class, and null second class coordinates. Moreover, the foliationsS a)
(a51,...,m) are coordinate hypersurfaces of the second class coordinates, while the deriv
with respect to the first class coordinates~interpreted as vector fields! span the distributionD.

Remark 2:Point~iii ! of Remark 1 also holds for this case: if (Ka) (a51,...,m) is a basis of the
spaceK ~the metric tensor can be included, as well as the characteristic tensor considered!
and if all the closed formsKa•dV are exact, i.e.,Ka•dV5dUa , then them functions~2.1! are
first integrals in involution. To thesem quadratic first integrals we add ther linear first integrals
J. Math. Phys., Vol. 38, No. 12, December 1997
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Fa5Xa
i pi , ~2.2!

corresponding to a basis ofD, and we get a complete system ofn independent first integrals in
involution.

The conditions listed in Theorem 3 are also sufficient for the separation, but as suffi
conditions they are redundant. A way of obtaining a minimal set of sufficient conditions wi
investigated in Sec. IV. Assume that aK-web (S ,D) is given; then it generates local coordinat
(qa,qa) ~a51,...,m; a5m11,...,n! by choosing~i! a system ofm independent functions (qa)
which are constant on the leaves of the foliations (S a), ~ii ! a basis (Xa) of D and ~iii ! a local
sectionW of the orbits ofD ~W is a submanifold of dimensionm transversal to the orbits!. The
coordinates (qa) are the affine parameters of the integral curves of the vector fields (Xa) starting
from the points ofW. Since these areK-vectors the coordinates (qa) are ignorable. Coordinate
of this kind will be calledadaptedto the web~or generatedby the web!. We say that the web is
a separable Killing webif in adapted coordinates the geodesic HamiltonianG is separable. Hence
as it has been done for the orthogonal separation, we characterize the separability of aK-web by
means of a singlecharacteristic K-tensorK .

Theorem 4:A K-web (S ,D) is separable if and only if there exists aD-invariantK-tensorK
with pairwise and pointwise distinct real eigenvalues corresponding to eigenvectors orthogo
the leaves ofS and moreover, form0.1, d(K•dgab)50 for any basis (Xa) of D.

We emphasize the fact that this last condition drops out whenm0<1, for instance for positive-
definite or Lorentzian metrics~further comments on thisadditional conditionwill be given at the
end of the proof of this theorem!. Notice that the ‘‘only if’’ part of this statement is included i
Theorem 3. Theorem 4 is an extension of Theorem 1 to the general nonorthogonal separat~for
a geodesic Hamiltonian!.

The separability of a general Hamiltonian~1.1! can be characterized by the existence of a p
(Dr ,K ) whereDr is anr -dimensional Abelian algebra ofK-vectors andK is aK-tensor, accord-
ing to the following:

Theorem 5:The HamiltonianH5G1V is separable if and only if onQ there exists a pair
(Dr ,K ) such that

~a! Dr is ar -dimensional Abelian algebra ofK-vectors spanning a regular distributionD of rank
r such thatI 5DùD' has a constant rankm0 .

~b! K is a D-invariantK-tensor withm5n2r pointwise and pairwise distinct real eigenvalu
with orthogonally integrable eigenvectors.

~c! The manifolds orthogonal to these eigenvectors areD-invariant.
~d! The potentialV is D-invariant andd(K•dV)50.
~e! For m0.1, d(K•dgab)50.

This is an extension of Theorem 2 to the general nonorthogonal separation. Notice th
orthogonal integrability ofD does not appear in this statement, but it remains a crucial nece
condition.

Remark 3:The extreme casesr 50 andr 5n are included in Theorem 5. Forr 50 the space
D disappears andK plays the essential role. Forr 5n no K-tensor is involved,V is constant and
the manifoldQ is locally flat. The separable coordinates determined by an orthogonal basisD
are rectangular Cartesian coordinates. Also the caser 5n21 is in some sense trivial, since as
characteristicK-tensor we can take the metric tensorg itself. In all these three cases the separat
is orthogonal andm050.

The nondegenerate separable systems (m050) are of particular interest. Among them we fin
all the separable systems in positive definite metrics and all the orthogonal separable sy
They are examined in Sec. V.
J. Math. Phys., Vol. 38, No. 12, December 1997
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III. NECESSARY CONDITIONS FOR THE SEPARATION

We base our discussion on the following known properties concerning separable coord
~a! A HamiltonianH(qI ,pI ) is separable in a coordinate systemqI if and only if equations

] i] j H] i H] j H2]i]
j H] i H]j H1]i]j H] i H] j H2] i]j H] i H] j H50 ~3.1!

are identically satisfied, foriÞ j ~no summation over these indices!. Here the notation] i5]/]qi

and ] i5]/]pi is used. These are theseparability conditions of Levi-Civitamentioned in the
Introduction.2

~b! If a HamiltonianH is separable in two separable and overlapping coordinate systems
these two systems are calledequivalentif in the intersection of their domains they yield the sam
complete solution of the H–J equation.

~c! Let a HamiltonianH be separable in a coordinate systemqI . A coordinateqi is of first class
if the ratio ] iH/] iH is a linear~homogeneous! function in the momentapI , otherwise it is of
second class.2,3,8,9,18 When ] iH50 the coordinateqi is ignorable. An ignorable coordinate is
obviously of first class. It is convenient to denote by (qa) ~with Greek indices running fromm
11 to n! the first class coordinates and by (qa) ~with first Latin indices running from 1 tom! the
second class coordinates. Working on the separability conditions of Levi-Civita~3.1! it can be
proved that9,10 ~1! the numbers (r ,m) of first and second class coordinates are invariant; they
the same in two equivalent systems of separable coordinates;~2! by a coordinate transformatio
preserving the separation all first class coordinates are reducible to ignorable coordinate]aH
50.

~d! Let G be the geodesic Hamiltonian of a Riemannian manifold andV a potential function.
If the HamiltonianH5G1V is separable then alsoG is separable in the same coordinates.2 Thus
the separation of the geodesic HamiltonianG is a necessary condition for the separation of
complete HamiltonianH5G1V.

~e! For a geodesic HamiltonianG the partial derivatives (]a) with respect to the ignorable
coordinates (qa), interpreted as vector fields, are independent and commutingK-vectors. We
recall that aK-vector is a vector fieldX on Q such that the functionEX5Xipi is a ~linear! first
integral of the geodesic flow:$G,EX%50. A K-vector generates a local one-parameter group
isometries. We recall that two vector fields commute, i.e., their Lie-brackets are zero, if and
if the corresponding linear functions onT* Q are in involution.

~f! For a geodesic HamiltonianG it can be shown that9,10 ~1! in two equivalent separable
systems the second class coordinates are related by separated transformations i.e. by a
mations with diagonal Jacobian matrix;~2! the second class coordinates are orthogonal, i.e.,gab

50 for aÞb ~see Ref. 3 for a positive-definite metric and Ref. 10 for a nondefinite metric!.
~g! Among the second class coordinates we consider a further classification. A second

coordinateqa is null if gaa50. We label the second class null coordinates byqā and the non-null
coordinates byqâ, with â51,....m1 , ā5m111,...,m5m11m0 . Due to~f!-1 also the numberm0

of the null coordinates is invariant. It will be shown that

m0<min~p,q!, m0<r, ~3.2!

where (p,q) is the signature of the metric.
~h! There exist equivalent coordinate systems (qâ,qā,qa) such that all first class coordinate

(qa) are ignorable andgâa50 for any non-null second class indexâ.9 These coordinates ar
callednormal separable coordinates. In these coordinates the matrix of the contravariant com
nents of the metric tensor assumes thestandard form
J. Math. Phys., Vol. 38, No. 12, December 1997
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~3.3!

In the proof of this property, which is based on the separability conditions of Levi-Civita~3.1!, we
find the equations9 ]b]aG5 f b

a]aG, for aÞb indices of second class, wheref b
a are functions of the

coordinatesq only. These equations are equivalent to

]bg
ai5f b

agai ~3.4!

and are used for generating an equivalent separable coordinate system such thatgâa50. From the
standard form~3.3! we can see that~3.2! holds sincem0.r would imply det(gij)50.

Let us examine the geometrical implications of these results for a geodesic HamiltoniaG.
Assume that onQ2S, whereS is a closed singular set, there is an atlas of equivalent sepa
charts. Since second class coordinates remain essentially unchanged in an equivalent co
transformation@points ~c!-1 and ~f!-1#, the corresponding coordinate hypersurfaces build upm
transversal foliations (S a). Due to~f!-2; these foliations are pairwise orthogonal. Let us consi
a subatlas of separable charts with ignorable first class coordinates@this subatlas exists because
~c!-2#. The K-vectors corresponding to the ignorable coordinates are tangent to the leaves
foliations Sa, since]aqa50. They commute and span a regular distributionD, which is com-
pletely integrable and whose integral submanifolds~of dimensionr ! coincide with the complete
intersections of the leaves of (S a). Let (Xa) be the vector fields corresponding to the differenti
(dqa) of the second class coordinates. Since the vector fields (]a) span the distributionD and
Xa

•]a5]aqa50, it follows that the independent vector fields (Xa) span the orthogonal distribu
tion D'. Moreover, fromXa5gai] i5gaa]a1gaa]a it follows in particular thatX ā5gāa]a . This
shows that these vector fields also belong to the distributionD, thus they belong to the distributio
I 5DùD'. Furthermore, no linear combinationf âXâ belongs toD, since from f âXâ5 f a]a by

scalar multiplication byXb̂ it follows 05 f âXâ
•Xb̂5 f âgâb̂5 f b̂gb̂b̂ ~no summation onb̂!, that is

f b̂50. This shows that them5m11m0 vector fields (Xâ
•X ā) spanD' and them0 vector fields

(X ā) span the intersection distributionI . As a consequence,m05dim(I q). Since this number is
invariant@point ~g!# the distributionI is regular. Since the vector fields (Xa) span the orthogona
distributionD' and in normal separable coordinatesXâ5gâa]a1gââ] â reduces toXâ5gââ] â , this
distribution is also spanned by the vector fields (] â ,X ā). Since (qa) are ignorable coordinates,

follows that @X ā,X b̄#5@gāa]a ,gb̄b]b#50. Moreover, due to ~3.4!, @] â ,X ā#5] âgāa]a

5 f â
āgāa]a5 f â

āX ā. This proves that bothD' and I are involutive, thus completely integrable~it
is a general property that if bothD andD' are involutive thenI 5DùD' is involutive!. Thus we
have proved that

Proposition 1:An atlas of equivalent separable coordinate systems withr first class coordi-
nates andm0 null second class coordinates generatesm5n2r pairwise transversal and orthogon
foliations (S a)5(S 1,...,S m) of submanifolds of codimension 1, whose complete intersect
form a foliationE of submanifolds of dimensionr which are the orbits of the action of an Abelia
group of isometries. IfD is the distribution of vectors tangent to the foliationE , then the orthogo-
J. Math. Phys., Vol. 38, No. 12, December 1997
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nal distributionD' and the intersectionI 5DùD' are completely integrable. The rank of th
distribution I is m0 .

Notice that the distributionI is made of null vectors~this is equivalent toI #I'!. This implies
the bound~3.2!1. Possibly by enlarging the critical setS on Q, we can assume that there is
global r -dimensional spaceD of commutingK-vectors generatingD, then we have aK-web
according to Definition 2 of Sec. II. Hence, Proposition 1 leads to point~i! of Theorem 3.

Now we consider the connection between separation andK-tensors. A Killing 2-tensor is a
contravariant 2-tensorK5(Ki j ) such that the function

EK5 1
2 Ki j pipj

is a ~quadratic! first integral of the geodesic flow:$G,EK%50. In the theory of separation the rol
played by these tensors is essentially algebraic; interpreted as linear endomorphisms on
and 1-forms they produce eigenvalues, eigenvectors, and eigenforms, and the properties
objects are used for characterizing the separation. For our purposes, it is convenient to sum
this crucial topic in the following three propositions.

Proposition 2:For a metric tensor of the standard form~3.3! with (qa) ignorable coordinates
the H–J equation is separable if and only if9

gāa5u ā
aw ā ~ ā n.s.!, gââ5w â, ~3.5!

where eachu ā
a is a function ofxā only, and the functions (wa)5(w â,w ā) and gab satisfy the

following differential equations:

H ]a]bwc2]a ln wb]bwc2]b ln wa]awc50,
]a]bgab2]a ln wb]bgab2]b ln wa]agab50. ~aÞb! ~3.6!

Proof: For a metric of the form~3.3! the geodesic Hamiltonian is

G5 1
2g

ââpâ
2
1gāapāpa1 1

2g
abpapb ,

and since the coordinates (qa) are ignorable the separability conditions of Levi-Civita are n
trivial only for pairs of indices of second class (i , j )5(a,b). By these conditions it is possible t
prove thatgāa has the form~3.5!1. ~see the proof of Theorem 5.4 in Ref. 10!. Thus a straightfor-
ward calculation shows that the separability conditions, which are polynomial equations of
degree in the momenta, are equivalent to~3.6!. j

In ~3.6! and in the following discussion by]a ln wc we actually mean]a lnuwcu5(wc)21]aw
c

whenwc,0. Now we examine Eqs.~3.6! from a different point of view.
Proposition 3:The differential equations~3.6! are the necessary and sufficient conditions

the complete integrability of the linear differential system

H ]a%b5~%a2%b!]a ln wb,
]aKab5%a]agab, ~3.7!

in the unknown functions (%a ,Kab) of the variables (qa).
Proof: A straightforward calculation shows that the integrability conditions]a]b%c5]b]a%c

of the system~3.7! are ~a, b n.s.!

~%a2%b!~]a]bwc2]a ln wb]bwc2]b ln wa]awc!50. ~3.8!

If Eqs. ~3.6!1. hold, then~3.8! are identically satisfied. Conversely, if the linear system (3.7)1 is
completely integrable then it has local solutions such that%aÞ%b for aÞb ~indeed in a vector
J. Math. Phys., Vol. 38, No. 12, December 1997
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space there are vectors with distinct components with respect to any fixed basis! so that~3.8!
implies ~3.6!1. Under the assumption that~3.7! is integrable the integrability condition of~3.7!
becomes

~%a2%b!~]a]bgab2]b ln wa]agab2]a ln wb]bgab!50. ~3.9!

Following the same reasoning as before, we conclude that Eqs.~3.9! are equivalent to~3.6!2. j

Remark 1:This proof shows that the complete integrability of the subsystem~3.7! is equiva-
lent to the existence of a solution such that%aÞ%b for aÞb.

Proposition 4.Let (gi j ) be a metric tensor of the form~3.3! with (qa) ignorable coordinates
and such that~3.5! hold. Then the 2-tensorK5(Ki j ) defined by

~Ki j !5S % âgââ 0 0

0 0 % b̄gb̄b

0 % āga ā Kab
D ~3.10!

is a K-tensor if and only if Eqs.~3.7! are satisfied. AllK-tensors of this kind commute~i.e., the
corresponding functionsEK are all in involution!.

Proof: The left-hand side of the Killing equation$G,EK%50 is a third degree polynomial in
the momentap, so that all the coefficients must vanish. In the present case

H G5 1
2 w âpâ

2
1u ā

aw āpāpa1 1
2 gabpapb ,

EK5 1
2 % âw âpâ

2
1% āu ā

aw āpāpa1 1
2 Kabpapb .

A straightforward calculation shows that$G,EK%50 is equivalent to~3.7! and$EK ,EK8%50 for
two K-tensorsK andK 8 determined by two solutions of~3.7!. j

The functions (%a) entering in this discussion are eigenvalues ofK corresponding to eigen
forms (dqa). The metric tensorg (%a51) is always a solution of~3.7!. The first-class~ignorable!
coordinates (qa) do not appear at all, so that]aKi j 50. This means that theK-tensors are
D-invariant. Thus from Propositions 2, 3, 4 and Remark 1 we derive point~ii ! of Theorem 3.

Remark 2:Equations (3.7)2 are equivalent to

dKab5K•dgab. ~3.11!

Indeed, for a functionF the components of the 1-formh5K•dF are h i5gi j K
jh]hF. If ]aF

50 by ~3.10! we find

H ha5ga j%agja]aF5da
a%a]aF50,

ha5ga j%bgjb]bF5da
b%b]bF5%a]aF.

so that~3.11! is equivalent to (3.7)2 . The integrability condition of~3.11! is

d~K•dgab!50. ~3.12!

This proves point~iii ! of Theorem 3.
So far we considered a geodesic HamiltonianG. Now we examine a separable Hamiltonia

H5G1V. All the preceding procedure should be repeated from the very beginning, by div
the coordinates into two classes and so on. However, this long way can be avoided since
reduce again to a geodesic case by considering the so-calledEisenhart metric.24 Let us consider
the manifoldQ̄5R3Q with local coordinates (q0,qi) ~q0 is the natural coordinate overR! and
the cotangent bundleT* Q̄5R23T* Q with momenta (p0 ,pi). Since at this level we deal with
J. Math. Phys., Vol. 38, No. 12, December 1997
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local objects we can assume thatVÞ0, so that we can consider locally onQ̄ a contravariant metric
tensorḡ whose contravariant components aregi j , g0i50 andg0052V. Then the geodesic Hamil
tonian is

Ḡ5G1Vp0
25 1

2g
i j pipj1

1
2g

00p0
2.

Sinceq0 is ignorable,p0 is a constant of motion. If we consider onT* Q̄ the geodesic flow ofḠ
then we can see that the integral curves withp051 are projected ontoT* Q in the integral curves
of the HamiltonianH5G1V. Moreover, the separation of the H–J equation corresponding tH
is equivalent to the separation of the H–J equation corresponding toḠ, which is a geodesic
Hamiltonian. Indeed, ifW(qI ,cI )5W(q1,cI )1•••1Wn(qn,cI ) is a separated complete integral
H5G1V, then W̄5W(q1,cI )1•••1Wn(qn,cI )1c0q0 is a separated complete integral ofḠ,
wherec0 is a further constant.

By applying toḠ the results concerning the separation of the geodesic H–J equation w
on Q̄ a K-web (S̄ ,D̄), where the spaceD̄ contains theK-vector]0 , and aK-tensorK̄ . Since they
are]0-invariant, they project onto aK-web (S ,D) and aK-tensorK of Q, satisfying the prop-
erties considered above. Moreover, since the metricḡ is represented by the pair (g,V) and K̄ by
a pair (K ,U), it follows that K̄ is a K-tensor if and only ifK is a K-tensor and

dU5K•dV. ~3.13!

This implies

d~K•dV!50. ~3.14!

Moreover, sinceḡ is D̄-invariant, it follows thatV is D-invariant. This completes the proof o
Theorem 3 of Sec. II.

Remark 3:Equations~3.6! and ~3.7! hold for the extended metric, thus also forg0052V
~notice that]aV50 sinceV is D-invariant!. Hence, the separability conditions (3.6)2 as well
equations (3.7)2 are implemented by the analogous equations corresponding toV, namely,

]a]bV2]a ln wb]bV2]b ln wa]aV50. ~3.15!

and

]aU5%a]aV, ~3.16!

whereK0052U. This last equation is equivalent to~3.13! and the separability conditions~3.15!
are equivalent to the integrability condition~3.14! ~since the eigenvalues are distinct!.

Remark 4:We say that aK-web (S m ,Dr) is reducible if there exists aK-web (S m8
8 ,Dr 8

8 )
such thatm8,m, D,D8 andS 8 is a subweb ofS . The necessary conditions listed in Theore
3 do not exclude the existence of a reducedK-web (S 8,D8) satisfying the same conditions, bu
such that the potentialV is no moreD8-invariant. A simple concrete example is the following~see
also Sec. VI!. Let (S 2 ,D1) be theK-web in Q5R35$(x,y,z)% ~the Euclidean space! whereD1

are the rotations around thez-axis andS 5(S 1,S 2) are the cylinders around thez-axis and the
planes orthogonal to thez-axis, respectively. This web is reducible to (S 18 ,D28) whereD28 con-
tainsD1 and the translations along thez-axis, andS 18 is the subweb made of the cylinders. The
we observe that the HamiltonianH5G1V with a potential of the kindV5A(z)1B(r ) is sepa-
rable in the cylindrical coordinates (q1,q2,q3)5(z,r ,u) and theK-web produced by the proof o
Theorem 3 is just (S 2 ,D1). However the cylindrical coordinates by themselves generate
reduced web (S 18 ,D28), whereV is not D8-invariant.

Remark 5:Let us consider onT* Q the HamiltonianH5G1V and the functions
J. Math. Phys., Vol. 38, No. 12, December 1997
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EK5 1
2 Ki j pipj , FK5EK1U,

whereK is a symmetric 2-tensor. ThenFK is a first integral, that is$H,FK%50, if and only if

$G,EK%50, dU5K•dV.

This first equation means thatK is aK-tensor. The second one is just Eq.~3.13!. Thus Eq.~3.14!
whereK is a Killing tensor is a necessary condition for the existence of a first integral of the
FK5EK1U. This also shows that if we know a basis (Ka) of K then locally we can constructm
quadratic first integrals in involution of this kind by integrating the closed 1-formsKa•dV ~Re-
marks 1, 2, Sec. II!.

IV. SUFFICIENT CONDITIONS FOR SEPARATION

Let (S m ,Dr) be aK-web and let (qa,qa) be adapted coordinates defined as in Sec. II; (qa)
are independent functions such that the differentials (dqa) are characteristic 1-forms of the folia
tions (S a) and the coordinates (qa) are the affine parameters of the integral curves of a b
(Xa) of D, based on the points of an arbitrary chosen local sectionW of these foliations. Since
these vectors are tangent to the foliations (S a) we have^Xa ,dqa&50. Since they commute, a
local coordinate system (qa,qa) is defined such thatXa5]a . Since they areK-vectors, the
coordinates (qa) are ignorable, i.e.,]agi j 50. The vector fieldXa corresponding to the 1-formdqa

is orthogonal to the manifolds of the foliationS a. Since these foliations are orthogonal it follow
thatgab5Xa

•Xb50 ~for aÞb!. Moreover, by the same reasoning used in Sec. III, it follows t
the m independent vector fields (Xa) span the orthogonal distributionD' and that m0

5dim(DpùDp
') is the number of those coordinates (qā) for which gā ā50 ~null coordinates!.

Hence, in the coordinates (qa,qa) the matrix (gi j ) has the form

. ~4.1!

Let us assume that there exists aD-invariantK-tensorK such the vector fields orthogonal t
the foliations (S a) are eigenvectors corresponding to distinct eigenvalues (%a). Since qa

5constant onS a, it follows that the 1-forms (dqa) satisfy the eigenform equation

K•dqa5%adqa, ~4.2!

equivalent to

Kai5%agai.

We have in particular

Kaa5%agaa, Kââ5% âgââ, K ā ā50, Kab50 ~aÞb!. ~4.3!

Thus the matrix (Ki j ) has a form similar to~4.1!. SinceK is aK-tensor, the Killing equation holds
$G,EK%50, where
J. Math. Phys., Vol. 38, No. 12, December 1997
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H G5 1
2 gi j pipj5

1
2 gââppâ

2
1gaapapa1 1

2 gabpapb ,

EK5 1
2 Ki j pipj5

1
2 Kââpâ

2
1Kaapapa1 1

2K
abpapb .

SinceK is D-invariant, the components (Ki j ) do not depend on the ignorable coordinates (qa);
]aKi j 50. Thus we find the equation

gââpâ] âEK1gabpb]aEK2Kââpâ] âG2Kabpb]aG50. ~4.4!

The left-hand side is a homogeneous polynomial of third degree in the momentap whose coef-
ficients must vanish. This leads to seven equations, corresponding to seven different ki
coefficients, which we analyze separately.

~1! The equation corresponding to the coefficient ofpâp
b̂

2
is

gââ] âKb̂b̂2Kââ] âgb̂b̂50.

Due to ~4.3! this is equivalent to

] â% b̂5~% â2r b̂!] â ln gb̂b̂. ~4.5!

For â5b̂ we have in particular] â% â50.
~2! The equation corresponding to the coefficient ofpâpb̂pa for âÞb̂ is

gââ] âKb̂a1gb̂b̂] b̂Kâa2Kââ] âgb̂a2Kb̂b̂] b̂gâa50.

This is equivalent to

gââ~gb̂a] â% b̂2~% â2% b̂!] âgb̂a!1gb̂b̂~gâa] b̂% â2~% b̂2% â!] b̂gâa!50.

By ~4.5! and the assumption% âÞ% b̂ , this last equation reduces to

gââ~gb̂a] â ln gb̂b̂2] âgb̂a!5gb̂b̂~gâa] b̂ ln gââ2] b̂gâa!,

that is

] âS gb̂a

gb̂b̂D 5] b̂S gâa

gââD ~ âÞb̂!.

It is a remarkable fact that these equations can be interpreted as the integrability conditions
following linear differential system in ther unknown functionsva(qâ),

] âva52
gâa

gââ .

Indeed, a solution of this system provides a coordinate transformation

qa85qa1va~qâ!,

such thatgâa850. From a geometrical point of view this coordinate transformation correspon
a change of the local sectionW considered in the definition of the coordinates adapted to the w
Hence, from now on we can assume thatgâa50, so that the matrix (gi j ) @as well as the matrix
J. Math. Phys., Vol. 38, No. 12, December 1997
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(Ki j )# assumes the standard form~3.3!. After this point we are in the situation discussed
Kalnins and Miller in Ref. 18—proof of Theorem 3, which we shall follow with suitable mod
cations.

~3! The coefficient ofpâ
2pa yields the equation~sum overb!

gba]b~% âgââ!5%bgba]bgââ,

which reduces to~sum overā!

gāa@] ā% â2~% ā2% â!] ā ln gââ#50.

Since the submatrix (gāa) has maximal rank andm0<r , it follows that

] ā% â5~% ā2% â!] ā ln gââ. ~4.6!

~4! The equation corresponding to the coefficient ofpâpāpa is ] â(% āgāa)5% â] āgāa. For
gāaÞ0 this is equivalent to

] â% ā5~% â2% ā !] â ln gāa. ~4.7!

However, for any fixed indexā there is at least one indexb for which gābÞ0 @otherwise
det(gij)50#. Let us set

w ā5gb āÞ0 ~4.8!

and write for any indexa

ga ā5u ā
aw ā. ~4.9!

By subtracting term by term Eq.~4.7! and the same equation written fora5b we find

] âu ā
a50. ~4.10!

Thus Eq.~4.7! can be written

] â% ā5~% â2% ā !] â ln w b̄. ~4.11!

We remark that at this point we can prove thatD is orthogonally integrable. Indeed, as w
have seen in Sec. III@the metric tensor has the standard form~3.3!#, the orthogonal distribution is

spanned by the vector fields (] â ,X ā) whereX ā5gāa]a and @X ā,X b̄#50. Moreover@] â ,X ā#
5gāa]a5u ā

a] âw ā]a5(w ā)21gāa]a5(w ā)21X ā, and this shows thatD' is involutive.
~5! The equation corresponding to the coefficientpb̄papb is ~sum overa!

ga~a]aKb) b̄5Ka~a]agb) b̄,

and it is equivalent to

gā~a~ gb) b̄] ā% b̄2~% ā2% b̄ !] āgb) b̄!50, ~4.12!

with no summation overb̄. As shown in Ref. 18, the discussion of this equation leads to
following conclusion: Eq.~4.8! hold with

] b̄u ā
a50 ~ b̄Þā!. ~4.13!
J. Math. Phys., Vol. 38, No. 12, December 1997
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and

] ā% b̄5~% ā2% b̄ !] ā ln w b̄. ~4.14!

At this point by setting

w â5gââ

we can see that Eqs.~4.5!, ~4.6!, ~4.11!, and~4.14! form a system of the kind (3.7)1 ,

]a%b5~%a2%b!]a ln wb,

including]a%a50 for a5b. This linear system has a solution such that%aÞ%b for aÞb, so it is
completely integrable~Remark 1 of Sec. III!. On the other hand, Eqs.~4.10! and~4.13! show that
each functionu ā

a entering in the representation~4.9! depends on the variableqā only. Thus by
Propositions 2 and 3 of Sec. III we conclude that the separability conditions (3.6)1 are satisfied. It
remains to show that also (3.6)2 are fulfilled, and for this we can use the remaining two equati
following from the Killing Eq. ~4.4!.

~6! The equation corresponding to the coefficientpâpapb is

] âKab5% â] â] âgab. ~4.15!

~7! The part of Eq.~4.4! corresponding to the monomialspapbpg can be written

gāa~]ā Kbg2%ā]ā gbg!pa pb pg50, ~4.16!
with summation onā. If m050 ~no null coordinates! this equation is meaningless. Ifm051, this
equation implies

~] āKab2% ā] āgab!pa pb50,

i.e.,

] āKab5% ā] āgab. ~4.17!

We can put together~4.15! and ~4.17! by writing

]aKab5%a]agab. ~4.18!

These are the second equations in~3.7!. Thus the separability conditions are all satisfied a
Theorem 4 in Sec. II is proved form051.

Remark 1:For m0.1 Eqs.~4.17! do not follow from~4.16! so that they must be considere
as further conditions to be imposed onK for the separability of the web. They involve the nu
second class coordinates and the corresponding eigenvalues. Unfortunately their intrinsic m
remains obscure. Thus we return to the whole system~4.18!, which includes~4.17!; as we re-
marked in Sec. III this system is equivalent todKab5K•dgab and we can take the integrabilit
condition

d~K•dgab!50 ~4.19!

as an additional condition onK in order to get the separation of theK-web in the casem0.1.
Finally, we prove Theorem 5 of Sec. II. The conditions listed in the statement are nece

for the separation because of Theorem 3. They are also sufficient: if a pair (D,K ) satisfying these
conditions is given, then the foliations (S 1,...,S m) orthogonal to them eigenvectors ofK
corresponding to the distinct eigenvalues and the algebraD form aK-web, because of condition
J. Math. Phys., Vol. 38, No. 12, December 1997
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~a!, ~b!, ~c!. Moreover, conditions~b! and~e! imply that thisK-web is separable, due to Theore
4. Finally, theD-invariance ofV means that]aV50 for the ignorable coordinates adapted to t
web, so that conditiond(K•dV)50 is equivalent to the separability conditions~3.15!, since the
eigenvalues are distinct. Thus Theorem 5 is proved.

V. NONDEGENERATE SEPARATION

We say that the separation isnondegenerateor regular if all second class coordinates a
non-null;gaaÞ0 (a51... .,m), i.e.,m050. Intrinsically this means thatDqùDq

'50 at each point
q, so that the subspaceDq spanned byD is metrically nondegenerate. This is always the case
a definite metric. SinceD' is completely integrable, there is a foliationW of m-dimensional
submanifolds orthogonal to the orbits ofD. These submanifolds are isometric under the action
D. Let Q8 be the quotient set of the orbits ofD. Locally Q8 can be identified with one of the
leaves ofW . Moreover, the potentialV reduces to a function onQ8. The second class coordinate
(qa) can be interpreted as orthogonal coordinates onQ8. Whenm050 the standard form of the
metric is

~gi j !5S gaa 0

0 gabD
and the separability conditions of Levi-Civita are equivalent to the following equations:

H ]a]bgcc2]a ln gbb]bgcc2]b ln gaa]agcc50,
]a]bgab2]a ln gbb]bgab2]b ln gaa]agab50.
]a]bV2]a ln gbb]bV2]b ln gaa]aV50,

~5.1!

with aÞb ~not summed!. Thus the coordinates (qa) on Q8 are separable and the manifoldQ8 has
an orthogonal separable web.

If D has an orthogonal basis, then also the submatrix (gab) can be diagonalized and th
separation occurs in orthogonal coordinates. In Ref. 25 it is proved that on a manifold
positive metric and constant curvature an Abelian algebra ofK-vectorsD which is orthogonally
integrable has an orthogonal basis~this property also holds for an hyperbolic metric with consta
positive curvature, whenD is metrically nondegenerate!, so that in these manifolds the separati
is orthogonal. This property was previously proved by Kalnins and Miller~see Refs. 26–28! by
another method.

If ( Xa) is an orthogonal basis ofD, then

K* 5K1caXa ^ Xa ~caPR! ~5.2!

is a K-tensor with eigenvectors (Xa,Xa). We can choose the constants (ca) in order to get all
distinct eigenvalues forK* . Thus the tensorK* characterizes the orthogonal separation accord
to Theorem 1 of Sec. II.

These remarks suggest the following inverse problem. Assume that on a Riemannian m
Q there is a linearr -dimensional spaceD of commutingK-vectors such that~i! the distributionD
spanned byD is regular and metrically nondegenerate and~ii ! D' is completely integrable.
Furthermore, assume that on an integral manifoldQ8 of D' there is an orthogonal separable w
S 8. Then by the action ofD we can extend this web to aK-web (S ,D) on Q. When is this
K-web separable? An answer is given by the following:

Proposition 1: Assume that the orthogonal sepable webS 8 on Q8 is characterized by a
K-tensorK

*
8 with pointwise simple eigenvalues and orthogonally integrable eigenvectors.

the orthogonalK-web (S ,D) is separable if and only if onQ8
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



d

o

i-

s

pair

e the

e

6593Sergio Benenti: Intrinsic characterization of variable separation

                    
d~K
*
8 •dgab!50, ~5.3!

where (gab) is the inverse matrix of (gab), gab5Xa•Xb and (Xa) is a local basis ofD. In this
case a characteristicK-tensor of the separable web (S ,D) is

K5K̄
*
8 1 1

2 KabXaùXb , ~5.4!

whereK̄
*
8 is the extension ofK

*
8 to Q by the action ofD, ù is the symmetric tensor product, an

dKab5K
*
8 •dgab. ~5.5!

Proof: Notice that the functionsgab as well asgab are D-invariant, so that they reduce t
functions onQ8. As we already observed Eqs.~5.3! are the integrability conditions of Eqs. (3.7)2 ,
which coincide with the separability conditions (5.1)2 . Furthermore, let us consider local coord
nates (qa,qa) adapted to the splitting (Q8,D); (qa) are coordinates onQ8 and the coordinates
(qa) are such that]a5Xa form a basis ofD ~thus they are ignorable!. The geodesic Hamiltonian
G8 andG on Q8 andQ, respectively, are

G85 1
2g

abpapb , G5 1
2g

abpapb1 1
2g

abpapb5G81R.

Moreover, if

EK
*
8 5 1

2K
abpapb , ~5.6!

then

EK5 1
2K

abpapb1 1
2K

abpapb5EK
*
8 1S. ~5.7!

Since $G8,EK
*
8 %50 ~K

*
8 is a K-tensor onQ8! and $R,S%50, equation$G,EK%50 ~K is a

K-tensor! is equivalent to$G8,S%1$R,EK
*
8 %50, that is todKab5K

*
8 •dgab50. Finally, we

observe that the characteristic conditions of Theorem 5 of Sec. II are satisfied by the
(D,K ). j

A longer discussion is needed when the orthogonal separation onQ8 is determined by a pair
(D8,K 8) whereD8 is a r 8-dimensional space of commutingK-vectors onQ8 ~with an orthogonal
basis! and K 8 is a K-tensor characterizing the separation. However, we can always reduc
problem to the previous case by considering onQ8 a characteristicK-tensor of the form~5.2!,

K
*
8 5K 81ca8Xa8^ Xa8 , ~ca8PR!, ~5.8!

where (Xa8) is an orthogonal basis ofD8. With this choice Eqs.~5.3! split in the two subsystems

d~^Xa8 ,dgab&ja8!50, d~K 8•dgab!50, ~5.9!

whereja8 is the 1-form corresponding toXa8 .
In this situation a further question arises. By the action ofD an elementX8PD8 is extended

to a vector fieldX̄8 on Q; when is this vector aK-vector?@Notice that when this happens then th
K-web (S a,D) is reducible.# The answer is given by the following:

Proposition 2:The vector fieldX̄8 is a K-vector if and only if

^X8,dgab&50. ~5.10!

Proof: In the local coordinates used in the preceding proof we haveEX85E X̄85Xapa . Since
$G8,EX̄8%50, equation$G,EX8%50 is equivalent toXa]agab50, i.e., to~5.8!. j
J. Math. Phys., Vol. 38, No. 12, December 1997
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VI. ILLUSTRATIVE EXAMPLES

In order to illustrate how the intrinsic method works we consider some examples conce
the general theory and the separation in the Euclidean spaces of dimension 2 and 3. Only
gular Cartesian coordinates and ordinary vector calculus will be used for representing and d
with the intrinsic objects. For the sake of brevity we shall not write the coordinate transforma
relating the Cartesian coordinates with the separable coordinates adapted to the separab
encountered in the following examples.

A. The Bertrand–Darboux–Whittaker theorem

In a two-dimensional manifold a separable web is characterized by a singleK-tensorK with
simple eigenvalues, since the orthogonal integrability of the eigenvectors is obviously sat
The points where the two eigenvalues coincide~or are not real, in the case of a hyperbo
metric23! aresingular points. A potentialV is separable in the separable web characterized bK
if and only if the 1-formw5K•dV is closed. Ifw5dU, then the function

F5EK1U5 1
2K

i j pipj1U ~6.1!

is a first integral. Thus forn52 the separation is equivalent to the existence of a quadratic
integral ~different from the energy!. This is essentially the content of the so-called Bertran
Darboux–Whittaker theorem for the Euclidean plane~see Ref. 29, Secs. 152, 153, and also Re
30, 31!, which however holds for any two-dimensional manifold. This theorem can be extend
a manifold of any dimension, provided theK-tensor corresponding to the quadratic first integ
satisfies the conditions of Theorem 2 of Sec. II~for the orthogonal separation! or of Theorem 3
~for the nonorthogonal separation!. For instance, since the separation on a Riemannian man
with positive metric and constant curvature is orthogonal, we can affirm that

Proposition 1:On a Riemannian manifold with positive metric and constant curvature
separation ofH5G1V occurs if and only if there exists a quadratic first integral such that
correspondingK-tensor has pointwise single eigenvectors and orthogonally integrable eige
tors ~or closed eigenforms!.

In Ref. 30 we find an analogus statement, but restricted to a flat metric and involvingn first
integrals.

B. Separation in the Euclidean plane R2

Let us consider a Hamiltonian of the form

H5 1
2~px

21py
2!1V~x,y!. ~6.2!

We can interpret (x,y) as rectangular Cartesian coordinates. For establishing that it is sepa
in these coordinates or in some other system of coordinates, we can check if equationdw5d(K
•dV)50 is satisfied for a genericK-tensor in the Euclidean plane. Since the components of s
a tensor are

H Kxx5A12ay1gy2,
Kyy5B12bx1gx2,
Kxy5C2ax2by2gxy,

~6.3!

where (A,B,C,a,b,g) are constant, we can translate the separability conditiond(K•dV)50 into
a differential equation onV(x,y) ~see Ref. 30, where such a differential equation is obtained
another method!. However, it is known that onR2 there are four kinds of separable orthogon
webs, made of confocal conics, including degenerate cases. They can be characterized
K-tensors of the form21
J. Math. Phys., Vol. 38, No. 12, December 1997
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K5RF1
ùRF2

, ~6.4!

where ù is the symmetric tensor product (AùB5A^ B1B^ A) and RF denotes the unitary
rotation vector field around the pointF; RF(rF)5v3rF , whererF is the position vector with
respect to the pointF andv is a unitary vector orthogonal to the plane. The centerF can go to
infinity; in this caseRF is a unitary constant vector field orthogonal to the direction ofF ~a
translation field!. The centers (F1 ,F2) are the focuses of the conics. When the two focuses
distinct we have the elliptic–hyperbolic web; when the focuses coincide we have the polar
when one focus goes to infinity we have the parabolic web and finally, when both focuses
infinity, we have the Cartesian web. The focuses are the singular points of theK-tensors and form
the singular set of the web. Thus it is possible to check if the Hamiltonian~6.2! is separable or no
by trying if equationdw5d(K•dV)50 is satisfied for one of the four kinds ofK-tensors~6.4!.
For the elliptic web theK-tensor has the formK5v3(r2r1)ùv3(r2r2), wherer , r1 , andr2

are the radius vectors, with respect to the originO of the coordinates, of the generic pointP
5(x,y) and of the two focusesF15(x1 ,y1), F25(x2 ,y2), respectively. A straightforward cal
culation shows that the separability conditiondw50 is equivalent to the differential equation

@~y2y1!~x2x2!1~y2y2!~x2x1!#~Vxx2Vyy!12@~y2y1!~y2y2!2~x2x1!~x2x2!#Vxy

13~2y2y12y2!Vx23~2x2x12x2!Vy50. ~6.5!

For r 15r 2 we have the polar web and the separability Eq.~6.5! reduces to

~y2y1!~x2x1!~Vxx2Vyy!1@~y2y1!22~x2x1!2#Vxy13~y2y1!Vx26~x2x1!Vy50.
~6.6!

For the parabolic web theK-tensor has the formK5v3(r2r1)ùX, where X5ai1bj is a
constant vector@we denote by (i,j ) the unitary vectors of the coordinates (x,y)#. In this case the
separability condition is

@a~x2x1!2b~y2y1!#~Vxx2Vyy!12@b~x2x1!1a~y2y1!#Vxy13aVx13bVy50. ~6.7!

Finally the Cartesian web is characterized by aK-tensor of the kindK5X^ X so that the sepa
rability condition is

~a22b2!Vxy1ab~Vyy2Vxx!50. ~6.8!

Thus we have proved
Proposition 2:The Hamiltonian~6.2! is separable if and only if one of the Eqs.~6.5!, ~6.6!,

~6.7!, and~6.8! is satisfied with some values of the constant parameters (x1 ,y1), (x2 ,y2), (a,b).
The values of these parameters locate the focuses of the web and the directions of the r

axes, so that the corresponding separable coordinates can be immediately determined@this is an
advantage with respect to the use of the genericK-tensor~6.3!#.

By applying Proposition 2 we can find as particular cases some separable systems kn
the literature~see for instance Refs. 30, 32!. Let us consider for instance a cubic potential

V5ax1by1gx21dy21exy1lx31my31%x2y1sxy2. ~6.9!

By applying Eq.~6.7! it can be seen that this potential is separable in a parabolic web if and
if the following six equations are satisfied@they correspond to the six coefficients of the seco
degree polynomial resulting from~6.7!#,
J. Math. Phys., Vol. 38, No. 12, December 1997
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5
7b%15al22as50,
7as115bm22b%50,
2a%12bs2am2bl50,
8ag22ad15be12~3l2s!~by12ax1!24%~bx11ay1!50,
8bd22bg15ae12~%23m!~by12ax1!24s~bx11ay1!50,
2~g2d!~by12ax1!22e~bx11ay1!13aa13bb50.

~6.10!

The known integrable cases of the so-called Henon–Heiles potential can be found. For in
the casee5m5%50, that is the potential

V5ax1by1gx21dy21lx31sxy2, ~6.11!

leads to equations

5
a~15l22s!50,
as50.
b~2s2l!50,
4ag2ad1~3l2s!~by12ax1!50,
4bd2bg22s~bx11ay1!50,
2~g2d!~by12ax1!13aa13bb50.

~6.12!

The second equation is satisfied fora50 or s50. In the casea50 ~so thatbÞ0! andsÞ0 we
find

l52s, y150, x15
4d2g

2s
, b50.

This means that the potential

V5ax1gx21dy21s~2x31xy2! ~6.13!

is separable in the parabolic web with focus at the point@(1d2g)/2s,0# and axis thex-axis.
Assuminga5s50, Eq. ~6.12! imply

l50, g54d, y150, b50.

We conclude that the potential

V5ax1d~4x21y2! ~6.14!

is separable in all the parabolic webs with axis thex-axis. The caseaÞ0 ands50 leads to the
trivial potentialV50. It is interesting to remark that Eq.~6.8! is satisfied by the potential~6.11!
for a5b, d5g ands53l. This means that the potential

V5ax1by1g~x21y2!1lx~x213y2! ~6.15!

is separable in the Cartesian web obtained from that corresponding to the coordinates (x,y) by a
rotation ofp/4.

When a potential is known to be separable in a web characterized by aK-tensorK , then by
using an integral functionU of the form w we can construct the first integralF ~6.1!. Let us
consider for example the separable potential~6.13! with g54d,

V5ax1d~4x21y2!1s~2x31xy2!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The parabolic web is now centered at the origin of the coordinates (x,y). In this web the com-
ponents of theK-tensor and of the formw ~6.11! are

Kxx50, Kxy52y, Kyy5x,

and

wx522dy222sxy2, wy524dxy22sx2y2ay2sy3,

so thatw5dU with

U522dxy22sx2y22 1
2ay22 1

4sy4.

Thus we find the first integral

F5 1
2xpy

22ypxpy22dxy22 1
2ay22s~x2y21 1

4y
4!.

C. Separation in the Euclidean space R3

By discussing the differential equations arising from the separability conditions and the
ishing of the Riemann tensor Eisenhart12 proved that inR3 there are 11 kinds of inequivalen
orthogonal separable coordinates and that the corresponding coordinate surfaces are c
quadrics, including planes.~The separation in the Euclidean 3-space was previously investig
by Weinacht;33 from his analysis, based on results of Dall’Acqua34 concerning the separation o
3-manifolds, it follows that any possible separable system inR3 have an orthogonal equivalent. A
we already mentioned, the orthogonal separation on manifolds of constant curvature can be
by an intrinsic method.! However, all the separable webs inR3 can be determined and classifie
by means of Proposition 1 of Sec. V. We have to consider all possibler -dimensional orthogonally
integrable spacesDr of commuting K-vectors~with r 50,1,2,3! and all the separable orthogon
webs on a transversal manifoldQ8 of the orbits ofDr characterized by aK-tensorK* .

Case r50: This case corresponds to asymmetric orthogonal separable webs. It is know
there are exactly three kinds of such webs, generated by three differentK-tensors with simple
eigenvalues and orthogonally integrable eigenvectors. How to find these Killing tensors
plained in Refs. 21 and 22~for any dimensionn!. Two of them can be interpreted as the iner
tensors of an asymmetric body of massive points with total massmÞ0 or m50 ~the masses are
assumed to be eighter positive or negative numbers!. Both tensors have the form

K5tr~L !g2L . ~6.16!

For the casemÞ0 the tensorL is defined by

L5A1mr ^ r , ~6.17!

wherer is the radius vector with respect to the center of mass andA is a constant linear operato
with simple eigenvalues (aa) (a51,...,n) ~the inertia tensor at the center of mass!. For m50 the
tensorL is defined by

L5A1r ^ w1w^ r , ~6.18!
J. Math. Phys., Vol. 38, No. 12, December 1997
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wherer is the radius vector with respect to a certain focal pointO, w is a constant vector such tha
A•w50, and againA is a constant linear operator with simple eigenvalues (aa) (a51,...,n) ~in
this case one of them is zero!. The explicit expressions of the correspondingK-tensors are

HKe5~ tr~A!1mr2!g2A2mr ^ r ,
K p5~ tr~A!12r•w!g2A2r ^ w2w^ r ~A–w50!. ~6.19!

TheK-tensors determined in this way have simple eigenvalues everywhere and their eigenv
generate theelliptic-hyperbolic weband theparabolic web, respectively. Both webs are made
confocal quadrics. Each one of these two tensors generates a whole spaceK of commuting
K-tensors by an iterative process described in Ref. 21. In the casemÞ0 all these tensors are linea
nonhomogeneous functions ofm. Taking the coefficients ofm ~which in a sense corresponds
consider the limit form→`! we get a new space of commutingK-tensors generating a new
separable web, thespherical-conical web. A K-tensor with simple eigenvalues corresponding
this web is

K s5~r 2 tr~A!2r–A–r !g2r 2A2tr~A!r ^ r1A–r ^ r1r ^ A–r , ~6.20!

where A is a constant linear operator with simple eigenvalues (aa). Notice that forn52 the
spherical web reduces to the polar web, which is symmetric; thus inR2 we have only two
asymmetric separable webs.

For n53 theK-tensors~6.19! and~6.20! have an equivalent representation in terms of tra
lations and rotations. A translation is a constant vector and a rotation is a vector fieldR5v3r ,
wherev is a constant~unitary! vector andr is the generic position vector with respect to a fix
point O belonging to the axisA of rotation. If we consider inR3 an orthogonal unitary frame
( i,j,k ) corresponding to Cartesian coordinates (x,y,z), then the~unitary! rotations around the axis
are defined as follows:

Rx5yk2zj , Ry5zi2xk, Rz5xj2yi. ~6.21!

If ( a,b,c) are the distinct eigenvalues of the matrixA corresponding to the eigenvectors (i,j,k ),
then it can be shown that~see Ref. 21 for any dimensionn!

H Ke5m~Rx
21Ry

21Rz
2!1~b1c!i21~c1a!j21~a1b!k2,

K p5w~Rzù j2Ryùk!1~b1c!i21~c1a!j21~a1b!k2,
K s5aRx

21bRy
21cRz

2,
~6.22!

whereRx
25Rx^ Rx and so on. In the definition~6.19! of K p we have consideredw5wi.

Case r51: D1 is generated by a singleK-vector. It is know that there are only two kinds o
orthogonally integrableK-vectors: the translations and the rotations. Let us consider both c
separately.

Translational case:Let us take a planeQ8 orthogonal to a translation~constant vector! X. Let
us consider onQ8 the two asymmetric separable webs, the elliptic-hyperbolic web and the
bolic web, corresponding toK-tensorsKe8 andK p8 defined as in~6.19! or in ~6.22!. In the present
case the matrix (gab) is of one element only,g115X•X5constant and Eq.~5.3! is trivially
satisfied. Hence we get two cylindrical separable webs: theelliptic-hyperbolic cylindrical weband
the parabolic cylindrical web. The remaining two separable webs on the planeQ8, the polar and
J. Math. Phys., Vol. 38, No. 12, December 1997
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the Cartesian ones, generates thepolar cylindrical weband theCartesian webon the space. But
these webs are reducible to the casesr 52 andr 53, respectively~see Remark 4, Sec. III!.

Rotational case:Let us take a planeP orthogonal to a rotation vectorR. This plane contains
the axis of rotationA. One halfpane ofP having A as a boundary will play the role of th
manifoldQ8 in Proposition 1 of Sec. V. Up to an inessential constant factor,g115R–R is now the
square of the distanceF from this line and Eq.~5.3! with g115F22 becomes

Fd~K
*
8 •dF!23dF∧~K

*
8 •dF!50. ~6.23!

Up to a constant factorF(r )5u–r1c, whereu is a constant vector orthogonal toA andcPR.
Thus we have to find all pairs (u,c) such that Eq.~6.23! is identically satisfied. In terms of vecto
operations this equation is equivalent to

F curl~K
*
8 •u!23u3~K

*
8 •u!50. ~6.24!

We have to consider forK
*
8 the two possible cases~6.19!. By developing the differential condition

~6.24!, we can prove the following propositions.
Proposition 3:If Ke8 is the inertiaK-tensor of a planar distribution of masses with total ma

mÞ0, then the rotation around a straight lineA belonging to this plane generates a separable w
in R3 if and only if A is a central axis of inertia~i.e., a principal axis of inertia relative to th
center of mass!.

Since the central moments of inertia~i.e., the eigenvalues ofA! are different, according to ou
assumptions we generate in this way two different separable webs: theoblate spheroidal web
corresponding to the maximal moment of inertia~it generates, in particular, the so-called obla
spheroidal coordinates28,35! and theprolate spheroidal webcorresponding to the minimal one.

Proposition 4:If K p8 is the inertiaK-tensor of a planar distribution of masses with total ma
m50, then the rotation around a straight lineA belonging to this plain generates a separable w
in R3 if and only if A is the central axis of inertia~i.e., the line parallel tow and containing the
focusO!.

The separable web obtained in this way is theparabolic spheroidal web~generating, in
particular, the so-called parabolic spheroidal coordinates!. For the rotational case it remains t
consider onP the polar and the Cartesian webs. For the polar web it is easy to check t
generates inR3 a separable web if and only if the center belongs to the axis of rotationA. Thus
we get thespherical polar webonly ~corresponding to the spherical coordinates!. The Cartesian
web onP generates the cylindrical polar web inR3 when one of the two orthogonalK-vectors on
P is parallel toA. This belongs, as we have already remarked, to the caser 52. Thus in the
rotational case we have four separable webs withr 51.

Case r52: There are two kinds of orthogonally integrableD2 . One is generated by two
orthogonal translations (X1 ,X2), the second by a translationX and a rotationR with axis parallel
to X. In both cases the foliations orthogonal toD2 are made of straight lines. In the first case the
lines are orthogonal to the translations, and the web generated inR3 is a Cartesian web~caser
53!. In the second case they are the half-lines orthogonal to the axis of rotation, and we
polar cylindrical web.

Case r53: This case corresponds to the Cartesian rectangular web, i.e., to the Car
rectangular coordinates, generated by three constant and orthogonalK-vectors.

In conclusion, within this approach the 11 orthogonal separable webs in the Euclidean 3
can be classified as in the following table~to be compared with those of Refs. 27, 28, 35!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Separable webs inR3

D. Separation in the spherically symmetric space–times

Many examples of separable geodesic Hamiltonian come from exact solutions of Ei
field equations~see for instance Refs. 10, 15, 16, 36! which could be re-examined within th
framework presented here; for instance the Kerr metric, where in the equatorial plane we
web of confocal conics~r 5constant,u5constant!.37 Another example is the connection betwe
separation and the existence of an Abelian orthogonally transitive isometry group~i.e., of an
Abelian and orthogonally integrable algebra ofK-vectors, according to our terminology! which is
considered in Refs. 36, 38, 39.

Here we briefly discuss the simple case of a spherically symmetric space-time. InQ5R4 with
coordinates (t,x,y,z) let us consider a metric of the kind

ds25A~r !~dx21dy21dz2!1B~r !dt2,

wherer 25x21y21z2 andA(r ) andB(r ) are smooth functions ofr .0. This kind of metric has
four fundamentalK-vectors; the time translationT5] t and the rotationsRx , Ry , andRz , defined
as in ~6.28!. Thus we recognize the existence of two orthogonal separable webs with deg
symmetryr 51 andr 52.

Case r51: The vector fieldT is orthogonally integrable. The orthogonal manifolds aret
5constant with coordinates (x,y,z) and metricds25A(r )(dx21dy21dz2). On the manifoldQ8
J. Math. Phys., Vol. 38, No. 12, December 1997
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defined byt50 we have a separable web, the spherical-conical web characterized by theK-tensor
K s defined as in (6.22)3 . Sincegtt5B21 is a function ofr alone, it follows thatK s•dgtt50 so
that Eq.~5.3! is satisfied. Thus a separable web is defined onQ.

Case r52: The spaceD2 generated by theK-vectors (X0 ,X1)5(T,Rz) is orthogonally
integrable. The orthogonal 2-manifolds are defined by equationst5constant andax1by
50(a,bPR). We can consider the manifoldQ8 defined byt50 andy50 with coordinates (x,z)
and metricds25A(r )(dx21dz2), r 25x21z2. The manifoldQ8 admits the polar web as
separable web, whose characteristicK-tensor isK

*
8 5Ry

2, whereRy5zi2xk. Since

g005
1

X0•X0
5B21, g115

1

X1•X1
5A21x22,

a straightforward calculation shows thatK
*
8 •dg0050 and thatw5K

*
8 •dg11 is the 1-form

w52S z

x2 dz2
z2

x3 dxD5d
z2

x2 ~6.25!

so that Eqs.~5.3! are fulfilled. The separable web onQ generated byD2 andK
*
8 is that commonly

used in a space–time of this kind. Adapted coordinates are the spherical coordinates (t,f,r ,u) for
which the metric has the formds25A(r )(dr21r 2(du21cos2 udf2))1B(r)dt2. It follows from
~6.25! that the characteristicK-tensorK determined by Eq.~5.4! is

K5Ry
21

z2

x2 Rz
2.

In spherical coordinates this corresponds to the well known first integralEK5pu
21tan2 upf

2.
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Hypergeometric integrals arising in atomic collisions
physics

F. D. Colavecchia,a) G. Gasaneo,b) and C. R. Garibotti
Centro Atómico Bariloche and Consejo Nacional de Investigaciones Cientificas y
Técnicas, 8400 San Carlos de Bariloche, Argentina

~Received 16 January 1997; accepted for publication 25 June 1997!

We introduce a method of obtaining volume integrals involving confluent hyper-
geometric functions. This method is based on the integral representation of these
functions and enabled us to write a generalized Nordsieck integral in terms of
hypergeometric functions of many variables. We explore some particular results
that could be useful when calculating transition matrices in collision theories.
© 1997 American Institute of Physics.@S0022-2488~97!01312-1#

I. INTRODUCTION

Integrals involving confluent hypergeometric functions are spread through a variety of t
in physics. Most of these integrals appear in the field of atomic collisions theories. It is
known that the solution of a system of two charged particles is analytically described us
confluent Kummer function1F1(a,c,x). For example, the computation of transition matrices
ionization processes or normalization factors of wave functions involve the calculation of inte
with two Kummer functions. Three body processes such as electron or ion-atom collisions
include more complicated forms of these integrals.

The first results concerning the integrals with hypergeometric functions are related t
calculation of transition matrices in the First Born Approximation.1 In this case, the integral look
like

JFBA5E dr

r
e2zr1 iq.r

1F1~ ia1,1,ip1r 1 ip1.r !, ~1!

where the exponential decreasing factor describes the bounded 1s state of an hydrogenic a
inverse function represents the Coulomb potential and the confluent hypergeometric is th
continuum state of the ionized electron. The oscillatory exponential arises from the plane wa
the initial and final states of the projectile. This integral can be solved by using a contour
sentation for the Kummer function.2

A natural extension of~1! arises when dealing with the bremsstrahlung of heavy elemen
relativistic high energies

J15E dr

r
e2zr1 iq.rF 1F 2 ~2!

with F j51F1( ia j ,1,ip j r 1 ipj .r). The first calculation of such integral has been performed
Bess.3 He expressed the1F1(a,1,x) function through an integral representation in terms of Bes
J0(x) and extensively used properties of all Bessel functions. Although Bess solved comp
the problem and gave an analytic expression of~2!; Nordsieck4 retrieved his result from an elegan
and concise calculation using a contour representation of1F1(a,1,x) and the wide use of his
method finally named these type of integrals.

a!To whom correspondence should be addressed. Electronic mail: flavioc@cab.cnea.edu.ar
b!Also at Dep. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca, Argentina.
0022-2488/97/38(12)/6603/10/$10.00
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This work is motivated from a recent proposal of Gasaneoet al.5 They obtained an approxi
mate solution of the three body continuum Coulomb problem in terms of the two variable h
geometric functionF2. This function has a series expression in terms of products of two Kum
functions. In order to be able to obtain transition matrices of an ionization process, it is nec
to extend the Bess and Nordsieck results to the cases where the second parameter of the c
hypergeometric functions of~2! is no longer 1, but any real positive number. Our result is
restricted to this case and many other applications of the following formulas can be found
example, it allows to obtain transition matrices of excitation or ionization processes from ex
states of hydrogenic atoms in a natural way.

The plan of the paper is as follows. In section II we briefly discuss the methodology
present the main result in some useful ways. In section III we obtain some restricted re
provide the guidelines for the calculation of some other Nordsieck-like integrals, and summ
our work. The Appendix reviews the definition of multiple variable hypergeometric funct
thoroughly used.

II. THE GENERALIZED NORDSIECK’S INTEGRAL J 1
8

We are interested in obtaining an analytical expression for the integral

J1
85E dr

r
e2zr1 iq.rF 18F 28 ~3!

with Re(z).0 andF j851F1( ia j ,bj ,ip j r 1 ipj .r). The Nordsieck’s integralJ1 is defined as6

J15J1
8~b15b251!.

As a general notation, the primed integrals or functions will include the parametersbjÞ1. As we
pointed out before, the methods used to solve the integralJ1 cannot be easily extended to treat t
general caseb1Þb2Þ1. Instead of previous works, we consider here the integral representati
the confluent hypergeometric function

1F1~a,c,x!5
G~c!

G~a!G~c2a!
E

0

1

exuua21~12u!c2a21 du ~4!

with Re(c).Re(a).0.7 These conditions limits the election of the parametersbi . Besides, in
order to properly use this expression, we should include a real positive integrating factor« in the
first parameters of the hypergeometric functions in~3!, that is to say we should replac
iai→ iai1«, and take the limit«→01 after solving the integral. However, for the sake of sim
plicity, we will not include this parameter explicitly in the next formulas. We note that using
integral representations, the triply integral~3! transforms into a five dimensional integral

J1
85E

0

1

uia121~12u!b12 ia121 duE
0

1

v ia221~12v !b22 ia221 dv ~5!

3E dr

r
e2zr1 iq.r eiu~p1r 1p1.r !eiv~p2r 1p2.r !.

However, this procedure converts the hypergeometricsF j8 into simple exponential functions an
the spatial integral is easily solved

I 5E dr

r
e2zr1 iq.reiu~p1r 1p1.r !eiv~p2r 1p2.r !5E dr

r
e2lr 1 iQ.r5

4p

l21Q2
, ~6!
J. Math. Phys., Vol. 38, No. 12, December 1997
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where we have defined

l5z2 iup12 ivp2 Q5q1up11vp2 . ~7!

Following Gravielle and Miraglia,6 we introduce the shorthand notation

D5z21q2, ~8!

Si5q.pi2 izpi i 51,2, ~9!

S35p1p22p1.p2 , ~10!

and

Ui5
2Si

D
, Ai511Ui with i 51,2,3. ~11!

Then we have

I 5
4p

D
@11uU11vU21uvU3#21. ~12!

The key step in the present method is to re-write the last expression in such a way th
remaining two integrals resembles a representation of a multiple variable hypergeometric fu
After some algebra we find

I 5
4p

DA1A2
F S 12u

A1
1uD S 12v

A2
1v D2uvx0G21

~13!

with

x0512
A11A22A3

A1A2
. ~14!

The last expression forI suggest the following change of variables:

s5
A1u

11uU1
, t5

A2v
11vU2

, ~15!

which conserves the limits of the integral. Then we obtain the following expression forJ18 :

J1
854p

G~b1!

G~ ia1!G~b12 ia1!

G~b2!

G~ ia2!G~b22 ia2!

A1
2 ia1A2

2 ia2

D

3E
0

1

ds E
0

1

dt sia121t ia221~12s!b12 ia121~12t !b22 ia221

3~12sz1!12b1~12tz2!12b2~12stx0!21, ~16!

where

zi5
Ui

Ai
. ~17!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The double integral in~16! corresponds to a representation of a three variable hypergeom
function,8 but, for the sake of clarity, we go a step further to obtain the corresponding s
representation. Taking into account the series behavior

~12ax!2q5 (
n50

`

~q!n

~ax!n

n!
with uaxu,1, ~18!

we can expand the factors which include the variables$x0 ,z1 ,z2% using this formula to get

J1
854p

G~b1!

G~ ia1!G~b12 ia1!

G~b2!

G~ ia2!G~b22 ia2!

A1
2 ia1A2

2 ia2

D

3(
l 50

`

(
m50

`

(
n50

`

~b121! l~b221!m~1!n

z1
l

l !

z2
m

m!

x0
n

n!

3E
0

1

sia1211 l 1n~12s!b12 ia121dsE
0

1

t ia2211n1m~12t !b22 ia221 dt. ~19!

The remaining integrals can be associated with the confluent hypergeometric1F1 evaluated in
zero:

E
0

1

exuua21~12u!c2a21 du51F1~a,c,0!5
G~a!G~c2a!

G~c!
~20!

Then we obtain a series representation forJ18 that can be identified with the three variable hype
geometric functionF (3)

J1
854p

A1
2 ia1A2

2 ia2

D (
l 50

`

(
m50

`

(
n50

`
~ ia1! l 1n~ ia2!m1n~b121! l~b221!m~1!n

~b1! l 1n~b2!m1n

z1
l

l !

z2
m

m!

x0
n

n!
, ~21!

54p
A1

2 ia1A2
2 ia2

D
F ~3!F2; ia1 ,ia2 ,2;b121,b221,1

2;b1 ,b2 ,2;2
Uz1 ,z2 ,x0G , ~22!

where we have used the notation of Srivastava and Manocha8 for the generalized hypergeometr
function of three variables~see the Appendix!. Expression~22! is the main result of this work and
the most compact form ofJ1

8 , but since the properties of these generalized hypergeometric f
tions are not well known, we will search some other useful expressions.

Instead of using the series form~18! for all variables, we can expand only (12stx0)21

J1
854p

G~b1!

G~ ia1!G~b12 ia1!

G~b2!

G~ ia2!G~b22 ia2!

A1
2 ia1A2

2 ia2

D (
n50

`

~1!n

x0
n

n!

3E
0

1

ds sia11n21~12s!b12 ia121~12sz1!12b1

3E
0

1

dt tia21n21~12t !b22 ia221~12tz2!12b2, ~23!

where we immediately recognize the integral representation of hypergeometric function2F1
J. Math. Phys., Vol. 38, No. 12, December 1997
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I i5E
0

1

ds siai1n21~12s!bi2 iai21~12sz1!12bi

5
G~ iai1n!G~bi2 iai !

G~bi1n! 2F1~bi21,iai1n,bi1n,zi ! ~24!

and then

J1
854p

A1
2 ia1A2

2 ia2

D (
n50

`
~ ia1!n~ ia2!n~1!n

~b1!n~b2!n

x0
n

n!

32F1~b121,ia11n,b11n,z1! 2F1~b221,ia21n,b21n,z2!. ~25!

Finally, the last expression we will give here corresponds to the expansion of the unco
kernels that include the variableszi

J1
854p

G~b1!

G~ ia1!G~b12 ia1!

G~b2!

G~ ia2!G~b22 ia2!

A1
2 ia1A2

2 ia2

D

3(
l 50

`

(
m50

`

~b121! l~b221!m

z1
l

l !

z2
m

m!

3E
0

1E
0

1

ds dt sia1211 l~12s!b12 ia121t ia2211m~12t !b22 ia221~12stx0!21. ~26!

In this case the double integral can be identified with the one variable generalized hypergeo
function 3F2

7

I 5E
0

1E
0

1

ds dt sia1211 l~12s!b12 ia121t ia2211m~12t !b22 ia221~12stx0!21

5
G~ ia11 l !G~b12 ia1!

G~b11 l !

G~ ia21m!G~b22 ia2!

G~b21m!

33F2~1,ia11 l ,ia21m,b11 l ,b21m,x0!, ~27!

and then

J1
854p

A1
2 ia1A2

2 ia2

D (
l 50

`

(
m50

`
~b121! l~b221!m~ ia1! l~ ia2!m

~b1! l~b2!m

z1
l

l !

z2
m

m!

33F2~1,ia11 l ,ia21m,b11 l ,b21m,x0!. ~28!

We note that Eqs.~25! and~28! can be viewed as different series representations of functionF (3)

for the given set of parameters.

III. SOME PARTICULAR CASES

Now we will study several interesting cases of the generalized Nordsieck integral. We
follow the notation of Gravielle and Miraglia.6
J. Math. Phys., Vol. 38, No. 12, December 1997
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A. Nordsieck integrals

In order to check our results, we restrict the parameters to the caseb15b251 and hence we
obtain the integral

J154p
1

G~ ia1!G~12 ia1!

1

G~ ia2!G~12 ia2!

A1
2 ia1A2

2 ia2

D

3E
0

1E
0

1

ds dt sia121~12s!2 ia1t ia221~12t !2 ia2~12stx0!21

54p
A1

2 ia1A2
2 ia2

D 2F1~ ia1 ,ia2,1,x0!, ~29!

where we have used the formula~A5! presented in the Appendix. This is the restricted res
obtained by Bess3 and Nordsieck.4 A second useful expression can be given when eitherb151 or
b251. For the sake of brevity we chooseb151. From Eq. ~25! we can see that sinc

2F1(0,ia11n,11n,z1)51

J1
8~b151,b2Þ1!54p

A1
2 ia1A2

2 ia2

D (
n50

`
~ ia1!n~ ia2!n

~b2!n

x0
n

n! 2F1~b221,ia21n,b21n,z2!. ~30!

After expanding the2F1 function in power series we can write this integral in terms of t
variables Appell hypergeometric function9

J1
8~b151,b2Þ1!54p

A1
2 ia1A2

2 ia2

D (
m50

`

(
n50

`
~b221!m~ ia1!n~ ia2!m1n

~b2!m1n

z2
m

m!

x0
n

n!

54p
A1

2 ia1A2
2 ia2

D
F1~ ia2 ,b221,ia1 ,b2 ,z2 ,x0!. ~31!

Another useful integral is

J2
85E dre2zr1 iq.rF 18F 28

52
]J1

8

]z
54p

A1
2 ia1A2

2 ia2

D2 H J21F
~3!@z1 ,z2 ,x0#1

1

A1A2
F ia1ia2

b1b2
J22

0 F ~3!@z1 ,z2 ,x0
1#

1
~b121!ia1

b1
J22

1 F ~3!@z1
1 ,z2 ,x0#1

~b221!ia2

b2
J22

2 F ~3!@z1 ,z2
1 ,x0#G J

~32!

with

J2152z2
ia1B1

A1
2

ia2B2

A2
, ~33!

J22
0 5

~A22A3!

A1
B11

~A12A3!

A2
B21B3 , ~34!
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J22
1 5

A2B1

A1
, J22

2 5
A1B2

A2
, ~35!

Bi52~ ip j1zUj !, B352zU3 , ~36!

and

F ~3!@z1
1 ,z2 ,x0#5F ~3!F2; ia111,ia2 ,2;b1 ,b221,1

2;b111,b2 ,2;2
Uz1 ,z2 ,x0G , ~37!

F ~3!@z1 ,z2
1 ,x0#5F ~3!F2; ia1 ,ia211,2;b121,b2,1

2;b1 ,b211,2;2
Uz1 ,z2 ,x0G , ~38!

F ~3!@z1 ,z2 ,x0
1#5F ~3!F2; ia111,ia211,2;b121,b221,2

2;b111,b211,2;2
Uz1 ,z2 ,x0G , ~39!

represent the partial derivatives of the functionF (3)@z1 ,z2 ,x0#.
The integrals which involves gradients of hypergeometric functions appear in the calcu

of radiative processes and can be derived from

J3
85E dr e2zr1 iq.rF 18¹ r F 285p2¹p2

J1
8 . ~40!

B. Integrals with eikonal phases

We can derive in a similar way the integrals involving eikonal phases. We define

E i85g i8 lim
pi→`

1F1~ iai ,bi ,ipi r 1 ipi .r !

5exp@2 iai ln~pir 1pi .r !# ~41!

with g i85 exp(pai /2)G(bi2 iai)/G(bi). Then it is easy to see that the eikonal phases do
depend on the specific values of the constantsbi , that is to sayE i85E i and then integrals such a

J4
85E dr

r
e2zr1 iq.rE 18E 28 ~42!

are the same as those obtained by Reinhold and Miraglia.10 For completeness we write their resu

J4
85J45g18g28 lim

p1 ,p2→`

J1
854pg1g2

U1
2 ia1U2

2 ia2

D 2F1~ ia1 ,ia1,1,x3! ~43!

with x3511U3 /(U1U2) and as usualg i5g i8 (bi51). Similar procedures to those applied in th
context ofJ18 , lead to the integrals

J5
85J55E dr e2zr1 iq.rE 18E 2852

]J4

]z
, ~44!

J6
85J65E dr e2zr1 iq.rE 18¹ rE 285p2¹p2

J4 . ~45!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The situation is slightly different when dealing with integrals like

J7
85E dr e2zr1 iq.rE 28F 185g28 lim

p2→`

J2
8 ~46!

because the hypergeometricF 18 has in factb1Þ1. After taking the limit we have

J7
854pg28

A1
2 ia1U2

2 ia2

D2 H J71F
~3!@z1,1,x2#1

1

A1U2
F ia1ia2

b1b2
J72

0 F ~3!@z1,1,x2
1#

1
~b121!ia1

b1
J72

1 F ~3!@z1
1,1,x2#G J ~47!

and

x25 lim
p2→`

x0512
U22U3

A1U2
, ~48!

J7152z2
ia1B1

A1
2

ia2B2

U2
, ~49!

J72
0 5

~U22A3!

A1
B11

~A12A3!

U2
B21B3 , ~50!

J72
1 5

U2B1

A1
. ~51!

The functionsF (3)@z1,1,x2# can be reduced to a two variableF1 function9

F ~3!@z1,1,x2#5
G~b2!G~12 ia2!

G~b22 ia2!
F1~ ia1 ,b121,ia2 ,b1 ,z1 ,x2!. ~52!

This result can be used to evaluate the derivatives ofF (3)@z1,1,x2# appearing in~47!. From the set
of integralsJ18•••J78 many other integrals can be obtained in similar ways.

C. Integrals involving only one hypergeometric function

Finally, we show a particular result with one functionF 18 . These integrals can be reduce
from theJ1

8 by

Ln85E dr e2zr1 iq.rr nF 185~21!n11
]n11

]zn11
J1

8~a250!. ~53!

We present the following expressions useful for the evaluation of integrals similar to thos
tained by Belkic11,12

L218 5J1
8~a250!54p

A1
2 ia1

D 2F1~b121,ia1 ,b1 ,z1! ~54!
J. Math. Phys., Vol. 38, No. 12, December 1997
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L05J2
8~a250!52

]J1
8~a250!

]z

5
4pA1

2 ia1

D2 FL01 2F1~b121,ia1 ,b1 ,z1!1
~b121!ia1

b1

3L02
1

2F1~b1 ,ia111,b111,z1!G ~55!

with

L0152z2
ia1B1

A1
, L02

1 5
B1

A1
2

.

In summary, we have obtained a closed form for a set of hypergeometric integrals. We
an integral representation of the confluent hypergeometric functions that allow us to repla
F j8 functions by simple exponentials, but introducing two more integrals in the calculation
make use of multiple variables hypergeometric functions to get analytic compact forms of
integrals. We have treated some particular extensions, such as some Nordsieck integra
described the way to obtain other results that have not been included here. Further research
carried out in order to extend this work to six dimensional integrals which involves three or
Kummer hypergeometric functions that also appear in atomic theories.
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APPENDIX: DEFINITION OF THE HYPERGEOMETRIC FUNCTION F „3…

Following Srivastava and Manocha,8 we define here the three variables hypergeometric fu
tion

F ~3!F ~a!;~b!,~b8!,~b9!;~g!,~g8!,~g9!

~«!;~z!,~z8!,~z9!;~d!,~d8!,~d9!
Ux,y,zG5(

l 50

`

(
m50

`

(
n50

`

L~ l ,m,n!
xl

l !

ym

m!

zn

n!
, ~A1!

where (a) abbreviates the array of A parametersa1 ,a2 , . . . ,aA , etc. and

L~ l ,m,n!5

)
j 51

A

~a j ! l 1m1n)
j 51

B

~b j ! l 1m)
j 51

B8

~b j8!m1n)
j 51

B9

~b j9! l 1n

)
j 51

E

~« j ! l 1m1n)
j 51

G

~z j ! l 1m)
j 51

G8

~z j8!m1n)
j 51

G9

~z j9! l 1n

3

)
j 51

C

~g j ! l)
j 51

C8

~g j8!m)
j 51

C9

~g j9!n

)
j 51

D

~d j ! l)
j 51

D8

~d j8!m)
j 51

D9

~d j9!n

. ~A2!

We refer to the book of Srivastava and Manocha8 for convergence and general properties of the
series.
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The F (3) function is defined as a generalization of Lauricella hypergeometric function
three variables. Among some of the advantages of this notation, we note that all hypergeo
functions of three variables can be expressed in this way. For our purposes, we can rest
attention to the function

F ~3!F2;b,b8,2;g,g8,g9

2;z,z8,2;2
Ux,y,zG

5(
l 50

`

(
m50

`

(
n50

`
~b! l 1n~b8!m1n~g! l~g8!m~g9!n

~z! l 1n~z8!m1n

xl

l !

ym

m!

zn

n!
. ~A3!

When b151 ~The caseb251 is symmetrical!, we should selectg50, z5g9 in ~A1!, which
reduces to

F ~3!F2; ia1 ,ia2 ,2;0,b221,1

2;1,b2 ,2;2
Uz1 ,z2 ,x0G5F1~ ia2 ,b221,ia1 ,b2 ,z2 ,x0!. ~A4!

If we also selectb251, i.e.,g850, z85g9 we have

F ~3!F2; ia1 ,ia2 ,2;0,0,1

2;1,1,2;2
Uz1 ,z2 ,x0G5 2F1~ ia1 ,ia2,1,x0!. ~A5!
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On quantum cohomology rings for hypersurfaces
in CPN21

Masao Jinzenji
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

~Received 3 June 1996; accepted for publication 12 July 1996!

Using the torus action method, we construct a one-variable polynomial representa-
tion of quantum cohomology ring for degreek hypersurface inCPN21. The results
interpolate the well-known result ofCPN22 model and the one of Calabi–Yau
hypersuface inCPN21. We find in thek<N22 case, the principal relation of this
ring has a very simple form compatible with toric compactification of moduli space
of holomorphic maps fromCP1 to CPN21. © 1997 American Institute of Phys-
ics. @S0022-2488~97!00608-7#

I. INTRODUCTION

In recent years, study of the topological sigma model has made great progress. In my p
view, these models are classified into the following types.

A. Topological sigma model~pure matter theory! with the
1. target spaceM with c1(T8M ).0,
2. target spaceM with c1(T8M )50 ~Calabi–Yau manifold!,
3. target spaceM with c1(T8M ),0.

B. Topological sigma model coupled to topological gravity with the
1. target spaceM with c1(T8M ).0,
2. target spaceM with c1(T8M )50 ~Calabi–Yau manifold!,
3. target spaceM with c1(T8M ),0.

HereT8M denotes the holomorphic part of the tangent bundle of Ka¨hler manifoldM .
For cases A.2 and B.2, we can solve these models using mirror symmetry.1–3 We may also

consider the case when the target manifoldM is of the Fano variety, i.e.,c1(T8M )>0. In Refs. 4
and 5, it was shown that models coupled to gravity~small phase space, tree level! can be solved
imposing the associativity condition of operator algebra. In fact, calculation of amplitudes fo
general Fano variety by using this method is tedious, but we cannot deny the effectiveness
approach. On the other hand, when the target space isCP1, the simplest Fano variety, the matr
integral representation of partition function of the model coupled to gravity~large phase space, a
genus! was given in Ref. 6 by constructing Lax operator formalism of flows induced from in
tion of all BRST closed operators. Then we can naturally ask whether we can construc
operator representation of sigma models on general Fano varieties. However, we do not
this problem in this paper.

In this paper we consider the case A.1, topological sigma models on Fano varieties w
coupling to gravity. In this case, Vafa and Intriligator7 conjectured quantum cohomology rings th
correspond to the solutions of sigma models on Grassmannians. They first considered the L
Ginzburg potentialW(X) that determines the relations~ideal! of classical cohomology ring o
Grassmannians. For example,W(X) in CPN model is given by

WCPN
~X!5

XN12

N12
, ~1!

whereX represents the Ka¨hler form of CPN, the generator ofH* (CPN,C). Then the relation of
H* (CPN,C) is obtained from]XW(X)50,
0022-2488/97/38(12)/6613/26/$10.00
6613J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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]XWCPN
~X!5XN1150. ~2!

From this we can determine ring structure ofH* (CPN,C). Then they argued that relations of th
quantum cohomology ring are generated by Landau–Ginsburg potential perturbed along
rection of the Ka¨hler form,

Wq
CPN

~X!5
XN12

N12
2Xq, ~3!

whereq(:5e2t) is the deformation parameter which counts the degree of instanton~holomorphic
maps from Riemann surface toCPN!. Relation of the quantum cohomology ring is derived in t
same way as the classical case,

]XWq
CPN21

~X!5XN112q50. ~4!

For a general Grassmannian, Gr (N,N1M ), whose cohomology ring hasN generators, the situ
ation is the same. LetWN1M11

(N) (X1 ,...,XN) be the Landau–Ginzburg potential for Gr (N,N
1M ). @Let X(N)(t)5( i 50

N Xit
i . Then WN1M11

(N) (X1 ,...,XN) is given by tN1M11 coefficient of
W(N)(t)52 log (X(N)(2t))5(iWi

(N)(X1,...,XN)t i.# Then the Landau–Ginzburg potential of quantu
cohomology ring is

Wq
Gr ~N,N1M !~X1 ,...,XN!:5WN1M11

~N! ~X1 ,...,XN!1~21!NqX1 , ~5!

and relations of this ring are given by]Xi
Wq

Gr (N,N1m)50. One can evaluate the correlation fun
tions of these models from the residue formula,

K )
j 51

m

O Aj
~zj !L 5 R

C`

••• R
C`

P j 51
m f Aj

~X!

P i 51
N

„]Xi
Wq

Gr ~N,N1M !~X!…
dX1•••dXN , ~6!

where f Ai
(X) representsAiPH* „Gr (N,N1M ),C… in Landau–Ginzburg representation

H* „Gr (N,N1M ),C… and O Ai
denotes the BRST closed operator of the sigma model indu

from Ai . In this case,f Ai
(X) receives no quantum correction. Correlation functions evalua

from ~6! take integer values and are nonvanishing only if the topological selection rule of s
model is satisfied.

In this construction, the geometrical aspect of sigma models, i.e., counting of instantons
Riemann surface to target spaceM , is not clear. However, let us assume the fusion rule
correlation function of pure matter theory which can be derived from taking the positio
operator insertion pointsz1 , z2 in an infinitesimally small disc, or equivalently from puttingz1 ,
z2 on one component of a stable curve with one branch point andz3 ,...,zk on the other:

K )
j 51

m

O Aj
~zj !L 5^O A1

~z1!O A1
~z2!O A2

~zs1!&habK O Ab
~zs2!)

j 53

m

O Aj
~zj !L . ~7!

In ~7!, zs1 andzs2 are the positions of the double singularities on each component andhab is the
flat metric defined from two-point functions of the model which receives no quantum correc

hab :5^O Aa
~z1!O Ab

~z2!&5E
M

Aa`Ab ,

~8!

habhbc5dc
a .
J. Math. Phys., Vol. 38, No. 12, December 1997
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This relation naturally leads us to consider the algebra defined by

O A1
•O A2

5^O A1
O A2

O Aa
&habO Ab

. ~9!

Note that we can regard this definition as the generalized form of the multiplication ru
classical cohomology algebra:

A1•A25S E
M

A1`A2`AaDhabAb . ~10!

Then the geometrical evaluation of three-point functions should reproduce the quantum coh
ogy algebra of Grassmannians and coincide with the result of the Landau–Ginzburg app
This line of discussion was done by Bertram and Ruanet al.8,9

In this paper we treat sigma models on degreek hypersurface inCPN21, MN
k . MN

k has a
unique Kähler form e that descends from the Ka¨hler form of CPN21. We can considere as the
generator of the subring ofH* (MN

k ,C), which consists ofek(k51,2,...,N22). We denote it as
He* (MN

k ,C). Classically,He* (MN
k ,C) has the following ring structure:

eN2150. ~11!

One can see from~2! that ~11! is the same as the relation ofH* (CPN22,C). Of course, we can
also derive the same ring structure by using classical three-point functions and metric

ea
•eb5S E

MN
k
ea`eb`egDhgded, ~12!

where

E
MN

k
ea`eb`eg5k•da1b1g,N22 ,

~13!

hab5
1

k
da1b,N22.

Then our assertion is that the quantum version ofHe* (MN
k ,C) @we denote it asHq,e* (MN

k ,C)# is
given by

O ea•O eb5^O eaO ebO eg&hgdO ed. ~14!

Degree counting parameterq reveals itself in̂ O eaO ebO eg&. This is equivalent to the assumptio
of the restricted fusion rule,

K )
j 51

m

O ea j~zj !L 5^O ea1~z1!O ea2~z2!O ea~zs1!&habK O eb~zs2!)
j 53

m

O ea j~zj !L . ~15!

In ~15!, we assumed that ann-point correlation function with (n21) insertions ofO ea’s and 1
insertion fromO A@A¹He* (MN

k ,C)# vanishes. IfN is odd @i.e., dim(MN
k ) is odd#, justification of

this assumption is easy, because there is no other analytic class inH* (MN
k ,C) ~with equal

holomorphic and antiholomorphic form degree! except for elements ofHe* (MN
k ,C). Then the

above correlation function vanishes from the topological selection rule. In caseN is even, analytic
classes which are not included inHe* (MN

k ,C) do appear inHN/221, N/221(MN
k ,C), but numerical

results of this paper make no contradiction with~15!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Then what remains to be considered is the evaluation of three-point functions. The
computed from two facts:

~1! Three-point functions of pure matter theory and of theory coupled to gravity coincide.
~2! Three-point functions of theory coupled to gravity are evaluated by using the torus a

method.10

In this way, we determined the ring structure ofHq,e* (MN
k ,C) and find the quantum general

zation of the relation~11! if k is no more thanN22:

O e
N212kkO e

k21q50. ~16!

By settingO e :5X, we can regard~16! as a generalization of~4!,

]XW
q

MN
k

5XN212kkXk21q:5 f rel~X!, ~17!

which reduces to the result of theCPN22 model in thek51 case. Equation~16! tells us that for
the k>2 case, the direction of deformation is no longer the one of the Ka¨hler operator, and
O ea(a>2) indeed receives quantum correction in this case:

O ea5Xa2 (
d51

@a/N2k#

ga,d
N,kXa2~N2k!dqd:5 f a~X! ~a52,...,N22!. ~18!

We found some curious relations amongga,d
N,k’s which seems to suggest that higher quant

corrections (d>2) are written in terms ofga,1
N,k’s, i.e., degree 1 instanton corrections. This

natural because relation~17! receives corrections only from the degree 1 sector.
With these results we obtain the residue formula of correlation functions with full insertio

elements ofHq,e* (MN
k ,C):

K )
j 51

m

O ea j~zj !L 5k• R̀ P j 51
m f a j

~X!

f rel~X!
dX. ~19!

This is the generalization of~6!.
The relation~16! has some geometrical meaning. Using~19!, we can easily see

K )
j 51

~N22!1~N2k!d

O e~zj !L 5kkd11qd. ~20!

In Ref. 3, we found that correlation function̂P j 51
N22

O e(zj )&5(d50
` ^P j 51

N22
O e(zj )&dqd of the

sigma model on Calabi–Yau hyper surface inCPN21(MN
N) has the following structure:

K )
i 51

N22

O e~zi !L
d

5„NdN112~correction terms!…, ~21!

using mirror symmetry. We asserted there that the top term (NdN11) can be evaluated from simpl

compactification of moduli spaceM0,d
CPN21

of instantons~holomorphic maps! from CP1 to

CPN21 ~we compactifiedM0,d
CPN21

into CP(d11)N21! and that correction terms appear as t
effect of boundary components added in the process of compactification. This argument is
to correspond to the result of the gauged linear sigma model in Ref. 11. Equation~20! tells us that
there are no correction terms in thek<N22 case. This fact can be explained from the above p
of view. Boundary components are irrelevant in this case in view of the dimensional count
J. Math. Phys., Vol. 38, No. 12, December 1997
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In Sec. II, we review fundamental facts of the topological sigma model~A-model! for the pure
matter case, introduce the notion of quantum cohomology algebra, and discuss its applica
the pure A-model.

In Sec. III, we briefly explain the strategy of the construction of quantum cohomology rin
MN

k . In Sec. IV, we reformulate this ring as the polynomial algebra ofO e and discuss its char
acteristic structure whenk<N22. In Sec. V, we try to understand the geometrical reason of

bound k<N22 and explain why under this bound boundaries ofCPd(N11)212M0,d
CPN21

are
irrelevant in integration of forms.

All numerical results used in this paper are collected at the end of this paper.

II. TOPOLOGICAL SIGMA MODEL „A-MODEL …

The topological sigma model is constructed from the twistingN52 supersymmetric sigma
model that describes maps from Riemann surfaceS to Kähler manifoldM . ~In this paper we limit
genus of Riemann surface to 0.! Then we have the following Lagrangian:

L52tE
S
d2z„

1
2gi j̄ ~]zf

i] z̄f j̄ 1]zf
j̄ ] z̄f i !1 icz

ī D z̄x igi ī 1 ic z̄
i Dzx

ī gi ī 2Ri ī j j̄ c z̄
i cz

ī x jx j̄
…,

~22!

wheref is the map fromCP1 to M , the only bosonic degrees of freedom of this model, andx is
fermionic ghost fields with ghost number 1 andc are anti-ghosts with ghost number21. This
Lagrangian is invariant under the BRST transformation:

df i5 iax i , df ī 5 iax ī , dx i50, ]x ī 50,

dcz
ī 52a]zf

ī 2 iax j̄ G
j̄ m̄

ī
cz

m̄, ~23!

dc z̄
i 52a] z̄f i2 iax jG jm

i c z̄
m .

We define the generator of this transformation asQ, i.e., Q acts asdV52a$Q,V% for any field
V. This transformation is nilpotent and we only have to consider the BRST closed opera
observables of this theory.

The BRST closed observables are constructed from closed form onM . Let A
5Ai 1i 2••• i k

df i 1`•••`df i k be a k-form on M and we define a corresponding operatorO A :
5Ai 1i 2••• i k

x i 1•••x i k. Then from BRST transformation rules, we have

$Q,O A%52O dA . ~24!

This tells us that we can construct BRST closed observableO A from the elementA of the de
Rham cohomology ringH* (M ).

Of course, LagrangianL statisfies$Q,L%50. Moreover, we can rewriteL moduloc equation
of motion in the following form:

L5 i t E
S
dz$Q,V%1tE

S
F* ~e!, ~25!

where

V5gi j̄ ~cz
ī ] z̄f j1]zf

ī c z̄
j !, ~26!
J. Math. Phys., Vol. 38, No. 12, December 1997
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E
S
F* ~e!5E

S
~]zf

i] z̄f j̄ gi j̄ 2] z̄f i]zf
j̄ gi j̄ !. ~27!

Here *SF* (e) is the integral of pull-back of the Ka¨hler form e of M and equals
F* ~S!ùPD~e!, where PD(W) denotes Poincare dual ofWPH* (M ). We call
F* (S)ùPD(e) as the degree of maps ad divide the phase space into sectorsBd with fixed degree
d. In Bd , the second term of~25! is fixed to td. Then since the first term of~25! is BRST exact,
the path integral is invariant under the variation of the coupling constant. We can easily che
by taking infinitesimal variation oft. Also, we can take the weak coupling limitt→`. In this
limit, the saddle point approximation of the path integral becomes exact and the saddle p
given by the fixed point of the BRST transformation,

x i50, x ī 50, cz
ī 50, c z̄

i 50, ]zf
ī 50, ] z̄f i50. ~28!

Especially, the saddle point of bosonic degrees of freedom is given by the holomorhic map
CP1 to M . This saddle point has moduli and we denote this moduli space asM0,d

M whered is the
degree of holomorphic maps. We can count the dimension ofM0,d

M by Riemann–Roch theorem

dim ~M0,d
M !5dim ~H0

„S, f * ~T8M !…!5dim ~M !1d•c1~T8M !1dim ~H1
„S, f * ~T8M !…!,

~29!

ad :5dim ~M !1d•c1~T8M !, ~30!

wheref denotes the holomorphic map fromS to M considered as the point ofM0,d
M . Correspond-

ingly, x zero modes (x0), the number of which is equal to dim (H0
„S, f * (T8M )…), andc zero

modes (c0), the number of which is equal to dim (H1
„S, f * (T8M )…), occur. Then by integrating

over nonzero modes, we obtain effective LagrangianLeff containingc0 andx0 .
SinceLeff conserves ghost number, we have to compensate this ghost number anom

external opertor insertions. To make situations simpler, we treat observables induced from a
cohomology elementsAPHi ,i(M ,C). We define ghost number ofO A as dimC (A)5 i . Then the
cancellation condition of the ghost number anomaly reduces to

K )
j 51

k

O Aj
~zj !L

d

5E dM0,d
M dx0dc0 exp ~2Leff!)

j 51

k

O wj
~zj !Þ0

⇒(
j 51

k

dimC ~Ak!

5dim ~H0
„S, f * ~T8M !…!2dim ~H1

„S, f * ~T8M !…!

5dim ~M !1d•c1~T8M !. ~31!

This is the topological selection rule.
With this selection rule, we can rewrite^P j 51

k
O Aj

(zj )& into the following form:

K )
j 51

k

O Aj
~zj !L 5 (

d50

`

d~(
j 51
k dimC~Aj !,ad!E dM0,d

M dx0dc0 exp~2Leff!)
j 51

k

O Aj
~zj !•qd:

5 (
d50

`

d~(
j 51
k dimC~Aj !,ad!K )

j 51

k

O Aj
~zj !L

d

•qd,

~32!
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q:5e2t.

With this setup, we evaluate path integral. Note that remaining degrees of freedom is modul
of holomorphic maps fromS to M andc andx zero modes. First, we consider the generic c
when dim (H1

„S, f * (T1,0M )…)50. In this case,Leff equals zero because it conserves ghost nu
ber. By takingAjPHi ,i(M ,C) as the form which has delta function support onPD(Aj ), we pick
up holomorphic maps which satisfies the following condition in integration of moduli space

f ~zj !PPD~Aj ! ~ j 51,...,k!. ~33!

These conditions impose dimC (Aj ) dimensional constraint onM0,d
M for each j because we use

„dimC (Aj )21… degrees of freedom to makef (CP1) intersectPD(Aj ) and 1 degree of freedom
to makef (zj )PPD(Aj ). These constraints kill all the moduli degrees of freedom as we can e
see from~31!. Remaining fermionic fields are balanced by the measure of zero modes i
Grassmann integrand, and the correlation function results in

K )
j 51

k

O Aj
~zj !L

d

5]$ f :S→
hol

M udeg~ f !5d, f ~zj !PPD~Aj ! ~ j 51,...,k!%. ~34!

We can rewrite~34! into more compact form using the evaluation map

f j :M0,d
M °M ,

~35!

f PM0,d
M ° f ~zj !,

as follows:

K )
j 51

k

O Aj
~zj !L

d

5E
M0,d

M
`
j 51

k

f j* ~Aj !. ~36!

Next, we consider the nongeneric case when dimC (H1
„CP1, f * (T8M )…)Þ0. From Kodaira–

Serre duality, we have

~H1
„CP1, f * ~T8M !…!* 5H0

„CP1,KCP1^ f * ~T8M !…5H0
„CP1,O CP1~22! ^ f * ~T8M !….

~37!

On the other hand, sincec1„f * (T8M )…5 f * „c1(T8M )…5d•c1(T8M ) and f * (T8M ) is rank
dimC (M ) bundle onCP1, f * (T8M ) is decomposed into a direct sum of line bundles onCP1 as
follows:

f * ~T8M !5 %

j 51

dimC ~M !

O CP1~aj ! S (
j 51

dimC ~M !

aj5d•c1~T8M !D dim ~H0
„CP1, f * ~T8M !…!

5 (
aj>0

~aj11!. ~38!

From ~37! and ~38!, we obtain

O ~22! ^ f * ~T8M !5 %

j 51

dimC ~M !

O CP1~222aj ! ~39!

and
J. Math. Phys., Vol. 38, No. 12, December 1997
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dim ~H1
„CP1, f * ~T8M !…!5 (

222aj>0
~212aj !. ~40!

Then we assume the following:
Assumption: For an irreducible map f (having no multiple cover map component),

(H1
„CP1, f * (T8M )…) equals 0. And H0„CP1, f * (T8M )… has at least oneO CP1(2) component

that corresponds to an automorphism of f(CP1) and minimalO CP1(2m) (m positive integer)
insertion.

Under this assumption, we obtain two cases whenf * „T8(M )… hasO CP1(2m) ~m positive
integer! insertion.

Case 1: f * ~T8M !5O CP1~2! % O CP1~21! % O CP1~21! % O
CP1
dimM23

„c1~T8M !

50,d:arbitrary…,
~41!

Case 2: f * ~T8M !5O CP1~2! % O CP1~21! % O
CP1
dimM22

„c1~T8M !51,d51….

The reason why we pick the above two cases is that the reduced mapf̃ (5 f +w, w is degreen
holomorphic map fromCP1 to CP1! indeed has nonzeroH1. For these cases,f̃ * (T8M )’s are

Case 1: f̃ * ~T8M !5O CP1~2n! % O CP1~2n! % O CP1~2n! % O
CP1
dimM23

,
~42!

Case 2: f̃ * ~T8M !5O CP1~2n! % O CP1~2n! % O
CP1
dimM22

,

and dimH1’s are counted as follows:

Case 1: dim~H1
„CP1, f̃ * ~T8M !…!52n22,

~43!

Case 2: dim~H1
„CP1, f̃ * ~T8M !…!5n21.

In such cases, theseH1’s are stable and we can integrate out correspondingc0 with weight
exp (2Leff). In Refs. 12 and 13, it was shown that these integration results in the top Chern
of obstruction bundleF ~H1 bundle! on M0,d,n

M . ~We denoteM0,d,n
M as components of modul

space of reduced maps of degreed with n multiple cover.! Then we obtain the following formula:

K )
j 51

m

O Aj
~zj !L

d

5(
n,d

E
M0,d,n

M
CT~F !`S `

j 51

m

f j* ~Aj ! D . ~44!

Of course, the generic case is included in~44!, if we considerF as rank 0 bundle in this case. I

case 1, we can further reduceF as a bundle onM0,n
CP1

and derive well-known multiple cove
formula for models on Calabi–Yau manifolds. In case 2, we cannot argue heuristically thatF is

a bundle onM0,n
CP1

because, in this case, dim (M0,n
CP1

)2dim „(H1
„CP1, f̃ * (T8M )…)…5n12 and

we have nontrivial mixture of the top Chern class and the evaluation map contribution. We
have to note that in this case, nontrivial contribution should come only fromd5n part. Anyway,
further analysis is needed.14

Last, we explain the notion of the quantum cohomology ring onM as the extension of the
classical cohomology rings onM . Ring structure of the classical cohomology ring onM is
determined by the classical three-point functionCi jk and the metrich i j defined by
J. Math. Phys., Vol. 38, No. 12, December 1997
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Ci jk :5E
M

Ai`Aj`Ak , h i j :5E
M

Ai`Aj ,

~45!

h i j h
jk5d i

k .

In this definition multiplication rules are written as follows:

Ai•Aj5Ci jkhklAl . ~46!

Then we define the quantum cohomology ring onM . In this ring we changeCi jk into Ci jk
q , which

we set to three-point functions of the topological sigma model~A-model! having as world sheet a
CP1. The metric is unchanged under the assumption of flat metric condition. Then multiplic
rules are defined as

O Ai
•O Aj

5Ci jk
q hklO Al

,
~47!

Ci jk
q :5^O Ai

~z1!O Aj
~z2!O Ak

~zk!&.

SinceM0,0
M is the moduli space of constant maps fromCP1 to M , it can be identified withM

itself. Then if we expandCi jk
q by q, we can see the coefficients ofq0 equals classicalCi jk . In this

sense, this algebra is a natural extension of the classical cohomology ring onM . We can see this
algebra is commutative by definition. We assume it is also associative algebra. In the
coupled with gravity, this condition is powerful to determine correlation functions in the s
phase space.4

The quantum cohomology ring is an effective notion in treating pure matter theory. Sin
pure matter theory,uO Ai

& ’s span entire Hilbert space, we can insert identity opera
uO Ai

^h i j &O Aj
u into correlation functions. Especially fusion rules follow from this fact:

^O Ai
O Aj* &5^O Ai

O Aj
O Ak

&hkl^O Al* &. ~48!

This relation can be rewritten using~47! as follows:

^O Ai
O Aj* &5^~O Ai

•O Aj
!* &. ~49!

Then, by taking the product of quantum cohomology ring successively, we can reduce the n
of inserted operators to two. In this way correlation functions of pure matter theory having w
sheet asCP1 are reduced to the problem of determination of all the three-point functions.

We make one final remark in this section. If this algebra has some relationR(O Ai
)50, we

can easily see from~49! that

^R~O Ai
!* &50. ~50!

So we can compute correlation functions more effectively if we find a nontrivial relation o
ring.

III. STRATEGY FOR DETERMINATION OF THE QUANTUM COHOMOLOGY RING OF MN
k

In this paper, we treat the topological sigma model with a target space which is the d
k hypersurface (k<N) in CPN21, MN

k :

MN
k :5$~X1 :X2 :•••:XN!PCPN21uX1

k1•••1XN
k 50%. ~51!
J. Math. Phys., Vol. 38, No. 12, December 1997
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SinceMN
k is a hypersurface ofCPN21, we can choose a subringHe* (MN

k ) generated by Kah¨ler
class ePH1,1(MN

k ). Correspondingly, we assume that BRST closed observablesO ea (a
50,1,...,N22) form a closed subalgebra in the quantum cohomology ring ofMN

k ~operator
algebra in pure matter theory!. Then we investigate this subalgebraHq,e* (MN

k ) in the following
way. Operator product algebra is constructed by three-point functions and metric as we men
in Sec. II:

O ea•O eb5^O eaO ebO eg&hgdO ed,

hgd :5^O e0O egO ed&5E
MN

k
eg`ed5kdg1d,N22 , ~52!

habhbg5da
g .

Correlation functions in pure matter theory satisfy the fusion rule:

^O eaO eb* &5^O eaO ebO eg&hgd^O ed* &. ~53!

In ~52! and~53! we assumed that insertion ofO w¹Hq,e* (MN
k ) into correlation functions consisting

of elements ofHq,e* (MN
k ) gives zero. This assumption is justified in the case ofMN

N in Ref. 15.
Other cases are discussed in Sec. I. From the above definition we can easily seeO e0 acts trivially
on Hq,e* (MN

k ), and we regardO e0 as identity. Three-point functions are determined from
geometrical evaluation of correlation functions of topological sigma model in the previous se

^O ea~z1!O eb~z2!O eg~z3!&5 (
d50

`

da1b1g,~N2k!d1N22

3E
M

0,d

MN
k cT~F !`f1* ~ea!`f2* ~eb!`f3* ~eg!•qd

5 (
d50

`

da1b1g,~N2k!d1N22

3E
M

0,d,3

MN
k cT~F 8!`f̃1* ~ea!`f̃2* ~eb!`f̃3* ~eg!•qd, ~54!

where

f i :M
0,d
MN

k

°MN
k f i~ f !5 f ~zi !,

~55!

f̃ i :M
0,d,3
MN

k

°MN
k f̃ i~$ f ,z1 ,z2 ,z3%/SL~2,C!!5 f ~zi !.

Here M
0,d
MN

k

and M
0,d,3
MN

k

denote moduli spaces of holomorphic maps of degreed from CP1 to
MN

k of pure matter theory and those of the theory coupled to gravity with three punctures~operator
insertion points!, respectively.F and F 8 are obstruction bundle coming fromH1. We insert
da1b1g,(N2k)d1N22 to represent the topological selection rules explicitly:

K )
j 51

m

O ea j~zj !L
d

Þ0⇒(
j 51

m

a j5dimC ~MN
k !1d•c1~T8MN

k !5~N22!1~N2k!d. ~56!
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Here c1(T8MN
k ) is calculated from c(T8MN

k )5 j * „c(T8CPN21)…/ j * (c„O CPN21(kH)…)5(1
1e)N/(11ke), where j represents natural embedding fromMN

k to CPN21 and e is the Kähler
form of MN

k .
The equality between the first line and the second line of~54! can be explained as follows

M
0,d
MN

k

has an internalSL(2,C) which moves$ f (z1), f (z2), f (z3)% without changing the position o

f (CP1) in MN
k . In M

0,d,3
MN

k

, these degrees of are killed by dividing bySL(2,C), but the degrees o
freedom that change the position of$z1 ,z2 ,z3% on CP1 are added. SinceSL(2,C) can be consid-
ered as the degrees of freedom which map$0,1,̀ % to any distinct points$z1 ,z2 ,z3%, this difference
cannot be distinguished under the action of the evaluation mapsf i , f̃ i . As to the equivalence o
cT(F ) andcT(F 8), we have to rely on numerical results. Equivalence in the Calabi–Yau
was examined in Refs. 10 and 16.

Then we determineHe,q* (MN
k ) with the following strategy.

~1! Using the equality of~54!, we evaluate all the three-point functions using the torus ac
method with the following equation:16

E
M

0,d,3

MN
k cT~F 8!`f̃1* ~ea!`f̃2* ~eb!`f̃3* ~eg!

5E
M0,d,3~gravity!

CPN21 cT„p̃3* ~Ekd11!…`w̃1* „c1
a~H !…`w̃2* „c1

b~H !…`w̃3* „c1
g~H !…

5] ta
] tb

] tg
ReszReshS 1

z
logS det„~gi j , j 8 i 8,d!21

…

1

h E df i j ,d

3expS 2
1

2 (
i , j ,d

2d„N222~N2k!d…~5iz25 j z!2P l 51
N Pa51

d21
„5iaz15 j~d2a!z25ldz…

Pa51
kd21

„5iaz15 j~kd2a!z…

3f i j ,df j i ,d1(
i 51

N
5ikz

P j Þ i~5iz25 j z! (
l 51

`
1

l ! (
d1 ,•••,dl ,d

*
>1

j 1 ,•••, j l , j
*

Þ i

S v i j 1 ,d1

z
1•••1

v i j l ,dl

z
D l 23

3f i j 1 ,d1
•••f i j l ,dl

expS ~5i t1z1•••15i ~N22!tN22zN22!

3S v i j 1 ,d1

z
1•••1

v i j l ,dl

z
D D D D D U

t* 50

, ~57!

where

gi j , j 8 i 8,d :5
2d„N222~N2k!d…~5iz25 j z!2P l 51

N Pa51
d21

„5iaz15 j~d2a!z2d5lz…

Pa51
kd21

„5iaz15 j~kd2a!z…

, ~58!

v i j ,d :5
d

5i25 j ,
~59!

w̃ i :M0,d,3
CPN21

°CPN21, w̃„$~z1 ,z2 ,z3!, f %/SL~2,C!…5 f ~zi !,
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereH is the hyperplane bundle onCPN21, p̃3 is the threefold forgetful map fromM0,d,3
CPN21

to

M0,d,0
CPN21

and Ekd11 denotes direct image sheafRp1

0
„w̃1* (kH)… coming from forgetful mapp1

from M0,d,1
CPN21

to M0,d,0
CPN21

.
~2! We can considerO e as the generator ofHq,e* (MN,k), and we only have to determine th

multiplication rule forO e . In other words, if we set

Fa
N,k :O e•O ea5 (

d50

@11a/N2k#

^O eO eaO eN232a1~N2k!d&
1

k
O e11a2~N2k!d ~k,N!, ~60!

Fa
N,N :O e•O ea5^O eO eaO eN232a&

1

N
O e11a ~k5N!, ~61!

Hq* (MN
k ) is constructed under the assumption of its commutativity and associativity as follo

C@O e ,O e2,...,O eN22#/I @F1
N,k ,F2

N,k ,•••,FN22
N,k #, ~62!

where C@O e ,O e2,...,O eN22# denotes the polynomial ring generated byO ea and
I @F1

N,k ,F2
N,k ,...,FN22

N,k # is the ideal generated byFa
N,k’s.

We calculateFa
N,k for the k<N22 andN<9 case and find the ideal includes the followin

relation:

~O e!
N212kk

•q•~O e!
k2150. ~63!

Numerical results are shown in Appendix A. In this case, using~63! and^P i 51
N22

O e(zi)&05k, we
can easily see from~50!

K )
i 51

N221~N2k!d

O e~zi !L 5kkd11
•qd. ~64!

IV. REFORMULATION AS A ONE-VARIABLE POLYNOMIAL ALGEBRA

With some algebra, we can rewrite the relations~62! into the form

Ga
N,k :O ea5~O e!

a2 (
d51

@a/~N2k!#

ga,d
N,k~O e!

a2~N2k!d
•qd, ~65!

2<a<N22, ~66!

Grel
N,k :05~O e!

N212 (
d51

@N21/~N2k!#

dd
N,k~O e!

N212~N2k!d
•qd ~N.k! ~67!

Ga
N,N :O ea5S )

j 51

a

g j
N,N~q!D ~O e!

a ~2<a<N22!, ~68!

Grel
N,N :05S )

j 51

N22

g j
N,N~q!D ~O e!

N21 ~N5k!, ~69!

where

g j
N,N~q!:5N/^O eO ej 21O eN222 j&. ~70!
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Then we can realizeHq,e* (MN
k ) as a one-variable polynomial algebra by regardingO e0 as 1,O e as

X, O ea as the rhs ofGa
N,k , andGrel

N,k as a relation. And if we set

f 0
N,k~X!:51, f 1

N,k~X!:5X,

f a
N,k~X!:5rhs of Ga

N,k ~a52,...,N22!, ~71!

f rel
N,k~X!:5rhs of Grel

N,k ,

correlation functions are written in the residue form which follows from~53! as is well known in
Ref. 7,

^O ea1O ea2•••O ea l&M
N
k 5k• R

C`

S f a1

N,k~X!• f a2

N,k~X!••• f a l

N,k~X!

f rel
N,k~X!

D dX, ~72!

where the integration contourC` is a small circle aroundX5` in the counterclockwise direction
These results are collected in Appendix B.

Proof of (72):
First, we assume the following relation,

f a1

N,k~X!• f a2

N,k~X!5h~X! f rel
N,k~X!1^O ea1O ea2O eh&hhmf m

N,k~X!, ~73!

where h(X) is a certain polynomial ofX. To be more precise, we have to ‘‘check’’~73! by
numerical calculation to justify our construction but we heuristically rely on completeness o
algebra. Then

~rhs! of ~72!5k• R
C`

h~X!•„f a3

N,k~X!• f a4

N,k~X!••• f a l

N,k~X!… dX

1^O ea1O ea2O eh&hhmk• R
C`

S f m
N,k~X!• f a3

N,k~X!••• f a l

N,k~X!

f rel
N,k~X!

D dX. ~74!

The first term of~74! vanishes because if we setX851/x, we have terms with degree no more th
22 in the integrand. And we have shown fusion rule for representation of~72!.

Then by induction, we only have to show the following formula:

k• R
C`

f a1

N,k~X!• f a2

N,k~X!

f rel
N,k~X!

5k•da11a2N22 . ~75!

But, by insertingO e051 formally ~this insertion does not change the value of correlation fu
tion!, and using~73! again, we only have to show the following relation instead of~75!:

k• R
C`

f a
N,k~X!

f rel
N,k~X!

5k•da,N22 . ~76!

Equation~76! is trivial if we change the variableX into X851/X.
At first sight, this reformulation seems to be superficial, but we find some curious rel

betweenga,d
N,k for the k<N22 case.

Relation 1:

ga,1
N,k5ga21,1

N21,k ~k<N22!. ~77!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Relation 2:

gN22,2
N,k 5

~gN2k,1
N,k !2

2
„~N2k!25N22…. ~78!

gN23,2
N,k 5gN2k,1

N,k S gN2k11,1
N,k

2
2

gN2k,1
N,k

4 D , ~79!

gN22,2
N,k 5gN2k,1

N,k S gN2k11,1
N,k

2
1

gN2k,1
N,k

4 D „~N2k!25N23…. ~80!

gN24,2
N,k 5gN2k,1

N,k S gN2k12,1
N,k

2
2

gN2k11,1
N,k

4
2

gN2k,1
N,k

8 D , ~81!

gN23,2
N,k 5

~gN2k11,1
N,k !2

2
, ~82!

gN22,2
N,k 5gN2k,1

N,k S gN2k12,1
N,k

2
1

gN2k11,1
N,k

4
1

gN2k,1
N,k

8 D „~N2k!25N24…. ~83!

gN25,2
N,k 5gN2k,1

N,k S gN2k13,1
N,k

2
2

gN2k12,1
N,k

4
2

gN2k11,1
N,k

8
2

gN2k,1
N,k

16 D , ~84!

gN24,2
N,k 5gN2k11,1

N,k S gN2k12,1
N,k

2
2

gN2k11,1
N,k

4 D 1
gN2k,1

N,k

2 S gN2k12,1
N,k

2
2

gN2k11,1
N,k

4
2

gN2k,1
N,k

8 D , ~85!

gN23,2
N,k 5gN2k11,1

N,k S gN2k12,1
N,k

2
1

gN2k11,1
N,k

4 D 2
gN2k,1

N,k

2 S gN2k12,1
N,k

2
2

gN2k11,1
N,k

4
2

gN2k,1
N,k

8 D , ~86!

gN22,2
N,k 5gN2k,1

N,k S gN2k13,1
N,k

2
1

gN2k12,1
N,k

4
1

gN2k11,1
N,k

8
1

gN2k,1
N,k

16 D „~N2k!25N25…. ~87!

Relation 3:

gN22,3
N,k 5gN2k,1

N,k g2~N2k!,2
N,k

„~N2k!35N22…. ~88!

We can reconstruct some of the above relations from the compatibility of the expansion fo
~37! and relation~63!, but we are not sure that all of them follow from it at this stage. With th
relations, we can figure out some characteristic feature ofHq,e* (MN

k ).
First, quantum correction of degree 1 toHq,e* (MN

k ) does not depend onN, which can be easily
seen from relation 1. So we think these correction coefficientsga,1

k (:5gN2k1a21,1
N,k ) play a central

role in the ring whenk<N22. In other words, we expect all the higher degree quantum correc
coefficients are determined byga,1

k . Relation 2 are found from these speculations. Second, f
the expansion form of~66!, degreed coefficients ofO ea occur whena>(N2k)d holds. Then if
k<@N/2#11, no corrections occur from sectors with degree greater than 1. However, deg
corrections remain stable since they exist as long asa is no less thanN2k. This seems to suppor
our first speculation. We will show some examples of these features using the resu
Hq,e* (MN

6 ).
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Hq,e* (M8
6):

O e5X,

O e25X22g1,1
6 q,

O e35X32g2,1
6 Xq,

~89!

O e45X42g3,1
6 X2q2g1,1

6 S g3,1
6

2
2

g2,1
6

4
2

g1,1
6

8 Dq2,

O e55X52g4,1
6 X3q2

~g2,1
6 !2

2
Xq2,

O e65X62g5,1
6 X4q2g1,1

6 S g3,1
6

2
1

g2,1
6

4
1

g1,1
6

8 DX2q22~g1,1
6 !2S g3,1

6

2
2

g2,1
6

4
2

g1,1
6

8 Dq3.

Hq,e* (M9
6):

O e5X,

O e25X2,

O e35X32g1,1
6 q,

O e45X42g2,1
6 X1q, ~90!

O e55X52g3,1
6 X2q,

O e65X62g4,1
6 X3q2g1,1

6 S g2,1
6

2
2

g1,1
6

4 Dq2,

O e75X72g5,1
6 X4q2g1,1

6 S g2,1
6

2
1

g1,1
6

4 DXq2.

Hq,e* (M10
6 ):

O e5X,

O e25X2,

O e35X3,

O e45X42g1,1
6 q, ~91!

O e55X52g2,1
6 Xq,

O e65X62g3,1
6 X2q,

O e75X72g4,1
6 X3q,
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



p

6628 Masao Jinzenji: On quantum cohomology rings for hypersurfaces

                    
O e85X82g5,1
6 X4q2

~g1,1
6 !2

2
q2. ~92!

Hq,e* (MN
6 ) (N>11):

O ek5Xk ~1<k<N27!,
~93!

O eN271a5XN271a2ga,1
6 Xa21q ~1<a<5!,

where

g1,1
6 5720, g2,1

6 56984, g3,1
6 523328, g4,1

6 539672, g5,1
6 545936. ~94!

V. GEOMETRICAL INTERPRETATION

In this section, we will briefly discuss why relation~63! or Eq. ~64! holds from the geometri-
cal point of view. SinceMN

k is hypersurface inCPN21, MN,k,(matter)
d is submanifold of

MCPN21,(matter)
d . So, we can expect the following formula:

K )
i 51

N221~N2k!d

O e~zi !L 5E
M

0,d

MN
k `

i 51

N221~N2k!d

f i* ~e!5E
M0,d

CPN21c~N,k!`S `
i 51

N221~N2k!d

w i* ~e!D ,

~95!

where

f i :M
0,d
MN

k

°MN
k , f i~ f !5 f ~zi !, w i :M0,d

CPN21
°CPN21, w i~ f !5 f ~zi !. ~96!

c(N,k) is the form which imposes the following condition onf PM0,d
CPN21

.

f ~CP1!,MN
k . ~97!

Since the holomorphic map fromCP1 to CPN21 of degreed is described by the polynomial ma

as follows, we can roughly compactifyM0,d
CPN21

into CPN(d11)21:

~s:t !°S (
j 50

d

aj
1sj td2 j :(

j 50

d

aj
2sj td2 j :•••:(

j 50

d

aj
Nsj td2 j D :5„Ad

1~s,t !:Ad
2~s,t !:•••:Ad

N~s,t !…,

~98!

M̄0,d
CPN21

5~a0
1:a0

1:•••:ad
1:•••:•••:a0

N :•••:ad
N!. ~99!

Using this compactification, we can realizec(N,k) as follows:

f ~CP1!,MN
k ⇔(

i 51

N S (
j 50

d

aj
i sj td2 j D k

50 for all ~s,t !

⇔(
l 51

kd

f l~aj
i !skd2 l t l50 for all ~s,t !

⇔ f l~aj
i !50, l 50,1,...,kd11. ~100!
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Since eachf l(aj
i ) is a homogeneous polynomial ofaj

i of degreek, we can regard them a
kẽ:5kc1(H̃) whereH̃ is hyperplane bundle ofCPN(d11)21. Then we have

c~N,k!5~kẽ!kd11. ~101!

We can easily see thatw i* (e)5ẽ from the definition ofw i and we have

K )
i 51

N221~N2k!d

O e~zi !L
c

5E
CPN~d11!21

~kẽ!kd11`~ ẽ!N221~N2k!d5kkd11. ~102!

Our calculation in Sec. III tells us this compactification gives an exact result whenk<N22. To
derive this bound geometrically, we have to analyze points inCPN(d11)21 added in the process o
compactification. As was said in Refs. 3 and 11, these points are characterized by the fact
Ad

i ’s have a common divisor. This situation can be described by the following sequence of

CPN~d11!21←
h1

CPN~d!213CP1←
h2

CPN~d21!213~CP1!2←
h3

•••CPN~d2k11!213~CP1!k

←
hk11

CPN~d2k!213~CP1!k11 ←
hk12

•••CP2N213~CP1!d21←
hd

CPN213~CP1!d,

~103!

where

h j :CPN~d2 j 11!213~CP1! j°CPN~d2 j 12!213~CP1! j 21

3~„Ad2 j
1 ~s,t !,...,Ad2 j

N ~s,t !…,~a1s1b1t !,...,~ajs1bj t !!

°~„Ad2 j
1 ~s,t !~a1s1b1t !,...,Ad2 j

N ~s,t !

3~a1s1b1t !…,~a2s1b2t !,...,~ajs1bj t !). ~104!

In the calculation, we must treat Im (hj) carefully. Then why is~102! correct in thek<N22 case?
This can be understood as follows. Consider the first nontrivial boundary Im (h1):

h1~CPNd213CP1!5„~as1bt!Ad21
1 ~s,t !,...,~as1bt!Ad21

N ~s,t !…. ~105!

For these points, the conditionf (CP1),MN
k acts only onAd21

i (s,t)’s and the remaining degree
of freedom come fromCP1 and constrainedAd21

i (s,t)’s, i.e.,

#~degrees of freedom!511Nd212„k~d21!11…5~N2k!d1k21. ~106!

Then if the conditionk<N22 is satisfied, we have

~N2k!d1k21,~N2k!d1N225dim ~M
0,d
MN

k

!. ~107!

Equation~106! tells us that condition~100! may make the contribution from Im (h1) be a space

whose dimension is no less than dim (M
0,d
MN

k

). However, in thek<N22 case,~107! assures us
that it is irrelevant in view of the dimensional counting.
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VI. CONCLUSION

Our main result of this paper is the determination of the boundk<N22. Under this bound,
the principal relation of the quantum cohomology ring is written in a simple form, (O e)

N21

5kkq(O e)
k21, which is a natural generalization of the well-known result of theCPN22 model,

(O e)
N215q.17 The ringHq,e* (MN

k ) is mainly characterized byk, so polynomial representations o
operators with differentN are alike. These seem to be determined by the correction coeffic
ga,1

k coming from holomorphic maps of degree 1 which are invariant under variation ofN, though
we cannot give complete formulation in this paper.

We give geometrical interpretation of this bound in Sec. V, but this argument does not ex
why insertion of operatorsO e2 and (O e)

2 are distinct even ifk<N22. These insertions cannot b
distinguished by our simple logic. Looking at the situations, it seems to be effective only wit
insertion of a BRST-closed operator induced from Ka¨hler forms in treating hypersurface i
weighted projective space. Of course, as can be seen in Ref. 8, moduli spaces of manifo
Grassmannians which are defined as homogeneous spaces are compactified without am
process like the one in~100!. In this case, such troubles do not arise.

Finally, we discuss what our results tell us with respect to thek5N21,N case. At least it
supports our assertion that the first term ofN-expansion of̂ P i 51

N22
O e(zi)& on Calabi–Yau mani-

fold MN
N comes from the compactification treated in this paper, but explanation of correction

from this point of view is still not clear.
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Appendix A: MULTIPLICATION RULES OF Hq,e* „MN
k
…

Hq,e* (MN
1 ):

O e•O ea5O ea11 ~0<a<N23!, O e•O eN225q. ~108!

Hq,e* (MN
2 ):

O e•O ea5O ea11 ~0<a<N24!, O e•O eN235O eN2212q,
~109!

O e•O eN2252O qq.

Hq,e* (M5
3):

O e•O e5O e216q, O e•O e25O e3115O eq,
~110!

O e•O e356O e2q136q2.

Hq,e* (MN
3 ) (N>6):

O e•O ea5O ea11 ~0<a<N25!,

O e•O eN245O eN2316q, O e•O eN235O eN22115O eq, ~111!

O e•O eN2256O e2q.

Hq,e* (M6
4):

O e•O e5O e2124q,
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O e•O e25O e31104O eq,
~112!

O e•O e35O e41104O e2q12784q2,

O e•O e4524O e3q12784O eq
2.

Hq,e* (M7
4):

O e•O e5O e2,

O e•O e25O e3124q,

O e•O e35O e41104O eq, ~113!

O e•O e45O e51104O e2q,

O e•O e5524O e3q1576q2.

Hq,e* (MN
4 ):

O e•O ea5O ea11 ~0<a<N26!,

O e•O eN255O eN24124q,

O e•O eN245O eN231104O eq, ~114!

O e•O eN235O eN221104O e2q,

O e•O eN22524O e3q.

Hq,e* (M7
5):

O e•O e5O e21120q,

O e•O e25O e31770O eq,

O e•O e35O e411345O e2q1211200q2, ~115!

O e•O e45O e51770O e3q1692500O eq
2,

O e•O e55120O e4q1211200O e2q2131320000q.

Hq,e* (M8
5):

O e•O e5O e2,

O e•O e25O e31120q,

O e•O e35O e41770O eq,
~116!

O e•O e45O e511345O e2q,

O e•O e55O e61770O e3q199600q2,
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O e•O e65120O e4q199600O eq
2.

Hq,e* (M9
5):

O e•O e5O e2,

O e•O e25O e3,

O e•O e35O e41120q,

O e•O e45O e51770O eq, ~117!

O e•O e55O e611345O e2q,

O e•O e65O e71770O e3q,

O e•O e751120O e4q114400q2.

Hq,e* (MN
5 ), (N>10):

O e•O ea5O ea11 ~0<a<N27!,

O e•O eN265O eN251120q,

O e•O eN255O eN241770O eq,
~118!

O e•O eN245O eN2311345O e2q,

O e•O eN235O eN221770O e3q,

O e•O eN225120O e4q.

Hq,e* (M8
6):

O e•O e5O e21720q,

O e•O e25O e316264O eq,

O e•O e35O e4116344O e2q118843840q2,
~119!

O e•O e45O e5116344O e3q1131458464O eq
2,

O e•O e55O e616264O e4q1131458464O e2q21144069995520q3,

O e•O e651720O e5q118843840O e3q21144069995520O eq
3.

Hq,e* (M9
6):

O e•O e5O e2,

O e•O e25O e31720q,

O e•O e35O e416264O eq,
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O e•O e45O e5116344O e2q, ~120!

O e•O e55O e6116344O e3q114152320q2,

O e•O e65O e716264O e4q144006976O eq
2,

O e•O e75720O e5q114152320O e2q2.

Hq,e* (M10
6 ):

O e•O e5O e2,

O e•O e25O e3,

O e•O e35O e41720q,

O e•O e45O e516264O eq,
~121!

O e•O e55O e6116344O e2q,

O e•O e65O e6116344O e3q,

O e•O e75O e816264O e4q14769280O eq
2,

O e•O e85720O e5q14769280O e2q2.

Hq,e* (M9
7):

O e•O e5O e215040q,

O e•O e25O e3156196O eq,

O e•O e35O e41200452O e2q12056259520q2,

O e•O e45O e51300167O e3q124699506832O eq
2, ~122!

O e•O e55O e61200452O e4q153751685624O e2q21534155202302400q3,

O e•O e65O e7156196O e5q124699506832O e3q211920365635990032O eq
3,

O e•O e755040O e6q12056259520O e4q21534155202302400O e2q315112982794486067200q4.

Hq,e* (M10
7 ):

O e•O e5O e2,

O e•O e25O e315040q,

O e•O e35O e4156196O eq,

O e•O e45O e51200452O e2q,
~123!

O e•O e55O e61300167O e3q12091962880q2,
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O e•O e65O e71200452O e4q113570681320O eq
2,

O e•O e75O e8156196O e5q113570681320O e2q2,

O e•O e855040O e6q12091962880O e3q2113462263763200q3.

Hq,e* (M11
8 ):

O e•O e5O e2,

O e•O e25O e3140320q,

O e•O e35O e41554112O eq,

O e•O e45O e512552192O e2q,

O e•O e55O e615241984O e3q1345655618560q2, ~124!

O e•O e65O e715241984O e4q13857214283776O eq
2,

O e•O e75O e812552192O e5q18150222448640O e2q2,

O e•O e85O e91554112O e6q13857214283776O e3q21235354398279598080q3,

O e•O e9540320O e7q1345655618560O e4q21235354398279598080q3O e .

APPENDIX B: ONE-VARIABLE POLYNOMIAL REPRESENTATION OF Hq,e* „MN
k
…

Hq,e* (MN
1 ):

f rel~X!5XN212q,
~125!

O ea5Xa ~0<a<N22!.

Hq,e* (MN
2 ):

f rel~X!5XN21222Xq,

O ea5Xa ~0<a<N23!. ~126!

O eN225XN2222qX.

Hq,e* (MN
3 ):

f rel~X!5XN21233X2q,

O ea5Xa ~0<a<N24!.
~127!

O eN235XN2326q,

O eN225XN22221Xq.

Hq,e* (M6
4):
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f rel~X!5X5244X3q,

O e051,

O e5X,
~128!

O e25X2224q,

O e35X32128Xq,

O e45X42232X2q2288q2.

Hq,e* (MN
4 ) (N>7):

f rel~X!5XN21244X3q,

O ea5Xa ~0<a<N25!,

O eN245XN24224q, ~129!

O eN235XN232128Xq,

O eN225XN222232X2q.

Hq,e* (M7
5):

f rel~X!5X6255X4q,

O e051,

O e5X,

O e25X22120q, ~130!

O e35X32890Xq,

O e45X422235X2q249800q2,

O e55X523005X3q257000Xq2.

Hq,e* (M8
5):

f rel~X!5X7255X4q,

O e051,

O e5X,

O e25X2,
~131!

O e35X32120q,

O e45X42890Xq,
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O e55X522235X2q,

O e65X623005X3q27200q2.

Hq,e* (MN
5 ) (N<9):

f rel~X!5XN21255X4q,

O ea5Xa ~0<a<N26!,

O eN255XN252120q,
~132!

O eN245XN242890Xq,

O eN235XN2322235X2q,

O eN225XN2223005X3q.

Hq,e* (M8
6):

f rel~X!5X7266X5q,

O e051,

O e5X,

O e25X22720q,
~133!

O e35X326984Xq,

O e45X4223328X2q27076160q2,

O e55X5239672X3q224388128Xq2,

O e65X6245936X4q29720000X2q225094835200q3.

Hq,e* (M9
6):

f rel~X!5X8266X5q,

O ea5Xa ~1<a<2!,

O e35X32720q,

O e45X426984Xq, ~134!

O e55X5223328X2q,

O e65X6239672X3q22384640q2,

O e65X7245936X4q22643840Xq2.

Hq,e* (M10
6 ):
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f rel~X!5X9266X5q,

O ea5Xa ~1<a<3!,

O e45X42720q,

O e55X526984Xq, ~135!

O e65X6223328X2q,

O e75X7239672X3q,

O e65X8245936X4q2259200Xq2.

Hq,e* (M9
7):

f rel~X!5X8277X6q,

O e051,

O e5X,

O e25X225040q,

O e35X3261236Xq, ~136!

O e45X42261688X2q21045981440q2,

O e55X52561855X3q27364461860Xq2,

O e65X62762307X4q28660264508X2q2253577635146560q3,

O e75X72818503X5q21785767760X3q2247590972087680q3.

Hq,e* (M10
7 ):

f rel~X!5X9277X6q,

O e051,

O e5X,

O e25X2,

O e35X325040q,
~137!

O e45X4261236Xq,

O e55X52261688X2q,

O e65X62561855X3q2579121200q2,

O e75X72762307X4q21874923848Xq2,
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O e85X82818503X5q2739786320X2q2.

Hq,e* (M11
8 ):

f rel~X!5X10288X7q,

O e051,

O e5X,

O e25X2,

O e35X3240320q,

O e45X42594432Xq, ~138!

O e55X523146624X2q,

O e65X628388608X3q2134298823680q2,

O e75X7213630592X4q2875510074368Xq2,

O e85X8216182784X5q2994943923200X2q2,

O e95X9216736896X6q2203929850880X3q225414928570777600q3.
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Transformation brackets between U „N…'SO„N…'SO„Na…

% SO„Nb… and U „N…'U„Na…% U„Nb…'SO„Na…% SO„Nb…

V. K. B. Kota
Physical Research Laboratory, Ahmedabad 380 009, India

~Received 23 April 1997; accepted for publication 14 July 1997!

Transformation brackets between U(N).SO(N).SO(Na) % SO(Nb) and
U(N).U(Na) % U(Nb).SO(Na) % SO(Nb) for symmetric U(N) irreducible repre-
sentations are derived forNa , Nb>2 by using bispherical coordinates inN5Na

1Nb dimensions and a convolution identity for generalized Laguerre polynomials.
The formula derived for the transformation brackets also applies to the special
cases withNa>2, Nb51 andNa51, Nb>2. © 1997 American Institute of Phys-
ics. @S0022-2488~97!03211-8#

I. INTRODUCTION

In the last 20 years, the algebraic group theory approach with bosonization and in term
U(N) spectrum generating algebra~SGA! is proved to be extremely successful in nuclea1

molecular,2,3 and hadron spectroscopy.4 The key to algebraic theory is the identification of sub
gebras of the U(N) SGA and that only the symmetric irreducible representations~irreps! $n% of
U(N), n is a positive integer, are relevant; this is because the physical description throughN)
is in terms of interacting bosons and the bosons represent some ‘‘collective’’ degrees of fre
Two important subalgebras of U(N) are ~with some restrictions forN<2! U(N).U(Na)
% U(Nb).SO(Na) % SO(Nb).K and U(N).SO(N).SO(Na) % SO(Nb).K; N5Na1Nb and
K is a subalgebra or a set of subalgebras. In this paper the algebraK plays no role. Of these two
algebras, usually the first subalgebra is easy to handle and therefore the problem of d
formulas for the transformation brackets between U(N).SO(N).SO(Na) % SO(Nb) and
U(N).U(Na) % U(Nb).SO(Na) % SO(Nb) for any (N;Na ,Nb) is an extremely important prob
lem in algebraic models based on U(N) SGA. However, so far only the special case withNb

51, Na>2 ~or equivalentlyNa51, Nb>2! is solved. The solution is due to Santopintoet al.5 and
they employed hyperspherical coordinates for solving the oscillator Schro¨dinger equation inNa

11 dimensions, Dragt’s theorem and quasispin SU~1,1! algebra associated with U(N).SO(N)
for symmetric U(N) irreps. It should be mentioned that in the interacting boson model of ato
nuclei one has1 ~N56, Na55, Nb51!, in the vibron model of diatomic molecules one has2,3 ~N
54, Na53, Nb51!, the cases~N53, Na52, Nb51! and ~N510, Na59, Nb51! are also of
interest, as pointed out in Ref. 5, in molecular spectroscopy and finally in a valence quark
of baryons4,6 there is a case with~N57, Na56, Nb51!. In more recent applications of th
algebraic approach6–10 the cases with general values ofNa andNb are encountered, and hence t
need to solve the problem of deriving transformation brackets for anyNa andNb . The complete
solution to this problem is given in Secs. II–IV. Described briefly in Sec. V are applications
~N56, Na53, Nb53!, ~N515, Na56, Nb59!, ~N518, Na53, Nb515!, ~N536, Na518, Nb

518!, and~N536, Na56, Nb530!.
The problem of transformation brackets, for symmetric U(N) irreps, between

U(N).SO(N).SO(Na) % SO(Nb) and U(N).U(Na) % U(Nb).SO(Na) % SO(Nb) is solved for
Na , Nb>2 by using bispherical coordinates inN5Na1Nb dimensions~Ref. 11, p. 489! and a
convolution result for generalized Laguerre polynomials derived recently by Van der Jeugt.12 This
method is straightforword and the final result is that the transformation brackets are relate
terminating3F2(1) generalized hypergeometric function. This result is true, even for theNa>2,
Nb51 case solved in Ref. 5, although this was not recognized in that paper. The exercis
0022-2488/97/38(12)/6639/9/$10.00
6639J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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sented in this paper represents the first application of the convolution results for ortho
polynomials from Lie algebra representations.

II. U„N…'O„N…'SO„Na…% SO„Nb… AND U„N…'U„Na…% U„Nb…'SO„Na…% SO„Nb… CHAINS

Let us begin with the general case whereNa , Nb>3 ~we will return to other special cases i
the later part of the paper!. For symmetric U(N) irreps $n% in the U(N).U(Na)
% U(Nb).SO(Na) % SO(Nb).K chain, the irrep labels for other groups in the chain and th
reductions are given by~the irreps are labeled according to the Young tableaux notation13!,

UU~N! . U~Na! % U~Nb! . SO~Na! % SO~Nb! . K

$n% $na% $nb% @va# @vb# a L , ~1!

na50,1,2,...,n,

nb5n2na ,
~2!

na52r a1va , r a50,1,2,...,Fna

2 G ,
nb52r b1vb , r b50,1,2,...,Fnb

2 G .
In ~2!, @x/2# denotes the integer part ofx/2. The label~s! a for the irreps ofK in ~1! need not be
specified, as the algebraK do not play any role in the present work. On the other hand,
symmetric U(N) irreps $n% in the U(N).SO(N).SO(Na) % SO(Nb).K chain, the irrep labels
for other groups in the chain and their reductions are

UU~N! . SO~N! . SO~Na! % SO~Nb! . K

$n% @v# @va# @vb# a L , ~3!

n52r 1v, r 50,1,2,...,Fn

2G ,
~4!

v52r ab1va1vb , r ab50,1,2,...,Fv2 G .
The reductionv→(vavb) given by ~4! follows easily from the first equation of~4! and the
reductionsn→(nanb)→(vavb) from ~2! by successive substraction, starting withn50. As n
5na1nb , from ~2! and ~4! we have the important relationr 1r ab5r a1r b . The basis states
defined by~1! and~3! generate a complete set of states, and therefore, in general, it is poss
expand the statesunv(vavb)a& that correspond to~3! in terms of the statesun(nanb)(vavb)a&
that correspond to~1!,

unv~vavb!a&5 (
na~nb!

C
~nanb!

n,v,~vavb!un~nanb!~vavb!a&. ~5!

The problem at hand is to derive a formula for the expansion coefficientsC22
22 in ~5!.

III. TRANSFORMATION BRACKETS

A realization of the statesunv(vavb)a& is in terms of the eigenstates of anN-dimensional
harmonic oscillator solved in bispherical coordinates inN5Na1Nb dimensions. This recognition
J. Math. Phys., Vol. 38, No. 12, December 1997
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follows easily from the results in Refs. 5, 11, 14, and 15. At this stage it is useful to point ou
the eigenvalues of the quadratic Casimir operatorC2„SO(N)… of SO(N) over the states~3! is
^C2„SO(N)…&n,v,(vavb)a5v(v1N22). Similar results are valid forC2„SO(Na)… and
C2„SO(Nb)…. Given the vectorsxa5(xa ,Va); Va5(u1 ,u2 ,...,uNa21) and xb5(xb ,Vb); Vb

5(f1 ,f2 ,...,fNb21), the bispherical coordinates are defined by11

xa:15x sin j sin uNa21 sin uNa22•••sin u2 sin u1 ,

xa:25x sin j sin uNa21 sin uNa22•••sin u2 cosu1 ,

xa:35x sin j sin uNa21 sin uNa22•••sin u3 cosu2 ,

– –5 – – – – – – – – – – – – – – – – –

xa:Na
5x sin j cosuNa21 ,

~6!

xb:15x cosj sin fNb21 sin fNb22•••sin f2 sin f1 ,

xb:25x cosj sin fNb21 sin fNb22•••sin f2 cosf1 ,

xb:35x cosj sin fNb21 sin fNb22•••sin f3 cosf2 ,

– – –5 – – – – – – – – – – – – – – – – –

xb:Nb
5x cosj cosfNb21 ,

where the hyper-radiusx5(xa
21xb

2)1/2, hyperanglej5tan21 xa /xb , xa5x sin j, andxb5x cosj.
Note that 0<x<`, 0<j<p/2, 0<uk , fk<p for kÞ1 and 0<u1 , f1<2p. The volume ele-
ment in (x,j,Va ,Vb) space is

dv5xN21 sinNa21 j cosNb21 j sinNa22 uNa21 sinNa23 uNa22•••sin u2

3sinNb22 fNb21 sinNb23 fNb22•••sin f2 dx dj duNa21•••du1 dfNb21•••df1 . ~7!

The wave functionsC(x,j,Va ,Vb) for the oscillator„V51/2x251/2(xa
21xb

2)… in N dimensions
follow by writing the Laplacian, separating the Schro¨dinger equation intox andj parts~and the
remaining coordinates!, using the eigenvalue formulas forC2„SO(N)…, C2„SO(Na)…, and
C2„SO(Nb)…, and the oscillator Hamiltonian eigenvaluen1N/2 ~in Refs. 14 and 15 this problem
is solved forN56, Na5Nb53!. The final result is

Cnv~vavb!a~x,j,Va ,Vb!5~21!fr1fr abN nv~vavb!x
ve2x2/2Lr

v1N/221~x2!~cosj!vb~sin j!va

3Pr ab

va1Na/221,vb1Nb/221
~cos 2j!F~vavb!a~Va ,Vb!. ~8!

In ~8!, Pr ab

va1Na/221,vb1Nb/221
~cos 2j! is a Jacobi polynomial,

Pk
a,b~y!5

1

2k (
m50

k S k1a
m D S k1b

k2mD ~y21!k2m~y11!m; a.21, b.21, ~9!

andLr
v1N/221(x2) is a generalized Laguerre polynomial,

Lk
a~y!5 (

m50

k

~21!mS k1a
k2mD 1

m!
ym; a.21. ~10!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The numbersr andr ab in ~8! are given by~4! and the phase factorsf r andf r ab
@they should not

be confused with thef’s in ~6!# follow from the normal phase conventions~cf. Ref. 3!,

f r50 or r , f r ab
50 or r ab . ~11!

Finally, the normalization factorN in ~8! follows from the properties of Jacobi polynomials an
generalized Laguerre polynomials16 and the volume element~7!,

N nv~vavb!5F 4~r ! !~r ab! !~v1N/221!G~v1N/22r ab21!

G~v1N/21r !G~va1Na/21r ab!G~vb1Nb/21r ab!
G1/2

. ~12!

Note that we are assuming that the functionF (vavb)a(VaVb) is normalized to unity. Just as in~8!,
the corresponding realization ofun(nanb)(vavb)a& basis states is obtained by solving the osc
lator equation in (xa ,Va) and (xb ,Vb) coordinates separately. The eigenfunctio
C(xa ,Va ,xb ,Vb) carry the irrep labels (nanb) and (vavb) with n5na1nb ,

Cn~nanb!~vavb!a~xa ,Va ,xb ,Vb!5~21!fr a
1fr bMn~nanb!~vavb!~xa!va~xb!vbe2~xa

2
1xb

2
!/2

3Lr a

va1Na/221
~xa

2!Lr b

vb1Nb/221
~xb

2!F~vavb!a~Va ,Vb!. ~13!

The phase factorsf r a
andf r b

and the normalization factorM in ~13! are given by

f r a
50 or r a , f r b

50 or r b
~14!

Mn~nanb!~vavb!5F 4~r a! !~r b! !

GS va1r a1
Na

2 DGS vb1r b1
Nb

2 D G 1/2

.

Expansion of the states~8! in terms of the states~13! then gives the transformation brackets~C’s!
in ~5!. To this end a convolution identity for Laguerre polynomials derived recently by Va
Jeugt12 is used. For the SU(1,1) algebra,~i! using the generatorsJ0 , J6 and expanding the
simultaneous eigenstatesukx& of the SU(1,1) Casimir operatorC 5J0

22J02J1J2 and the opera-
tor X52J02J12J2 in terms of the standard (C ,J0) eigenstatesukm&; ~ii ! defining ~Laguerre!
polynomials viâ kxukm&/^kxuk0&; ~iii ! writing SU(1,1) Clebsch–Gordan coefficients in terms
a terminating generalized hypergeometric series;~iv! introducing~Jacobi! polynomials as in~ii !
but via the tensor product of two irreps (k1) ^ (k2), Van der Jeugt derived,12 by extending the
results in Ref. 17, the following convolution result for generalized Laguerre polynomials, a
involves Jacobi polynomials,

(
k50

i 1 j

3F2S a1b1 j 11,2k,2 j
a11,2 i 2 j ;1DLk

a~x1!Li 1 j 2k
b ~x2!

5
~21! j i ! j !

~a11! j~ i 1 j !!
~x11x2! jL i

a1b12 j 11~x11x2!Pj
a,bS x22x1

x21x1
D . ~15!

In ~15!, (a) l5a(a11)•••(a1 l 21) @and (a)051# is the Pochhammer symbol and the3F2(1) is
a terminating generalized hypergeometric function.18 The substitutionsx15xa

2, x25xb
2, a5va

1Na/221, b5vb1Nb/221, i 5r , j 5r ab , and k5r a in ~15!, and noting that (x22x1)/(x2

1x1)5cos 2j, (x11x2)5x2, andr a1r b5r 1r ab , give the expansion of the states~8! in terms of
the states~13!. The final result is
J. Math. Phys., Vol. 38, No. 12, December 1997
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unv~vavb!a&5~21!fr1fr abN nv~vavb! (
r a50

r 1r ab

~21!fr a
1fr b

C~r ,r ab ,r a ,va ,vb!

Mn~nanb!~vavb!

3un~nanb!~vavb!a&;

C~r ,r ab ,r a ,va ,vb!5

~21!r abGS va1r ab1
Na

2 D ~r 1r ab!!

r ! r ab!GS va1
Na

2 D

33F2S va1vb1r ab1
N

2
21,2r a ,2r ab

va1
Na

2
,2r 2r ab

;1D ,

n52r 1v, v52r ab1va1vb , ~16!

r a1r b5r 1r ab , na52r a1va , nb52r b1vb ,

N5Na1Nb , Na>3, Nb>3.

The phase factorsf2 and the coefficientsN andM appearing in~16! are defined by Eqs.~11!,
~12! and ~14!. Standard phase convention3,5 is to usefk5k, k5r ,r ab ,r a ,r b . It should be noted
that the final formula for theC22

22 coefficients in~5! given by~16! is independent of the specifi
realizations~8!, ~13! used in the derivation. The formula involves a terminating3F2(1) general-
ized hypergeometric series. Equation~16! for N56, Na5Nb53 was first reported@derived using
~15!# in Ref. 19. The case withn5v is important in many applications~cf. Refs. 7–9, and 20!.
Here r 50 and hence the3F2(1) in ~16! reduces to a2F1(1). Using the result18 that

2F1Sa,2k
b ;1D5@~b!k#21~b2a!k

and simplifying~16! gives

uvv~vavb!a&5(
r a50

r ab

~21!fr ab
1fr a

1fr b
1r ab1r a

3F GS va1
Na

2
1r abDGS vb1

Nb

2
1r abDGS v1

N

2
2r ab21D S v1

N

2
21D ~r ab! !

GS va1
Na

2
1r aDGS vb1

Nb

2
1r bDGS v1

N

2 D ~r a! !~r b! !
G 1/2

3uv~nanb!~vavb!a&,

~17!

v52r ab1va1vb , na52r a1va , nb52r b1vb , r a1r b5r ab .

IV. SPECIAL CASES

In the situationNb52, vb takes positive and negative values; for a givennb , vb56(nb),
6(nb22),...,61 or 0. Similar is the case withva when Na52. Thenva and vb in ~2!, ~4!
change touvau and uvbu, respectively. Equivalently,
J. Math. Phys., Vol. 38, No. 12, December 1997
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C
~na ,nb!

n,v,~va ,vb!→C
~na ,nb!

n,v,~ uvau,uvbu! , for Na52, Nb52,

C
~na ,nb!

n,v,~va ,vb!→C
~na ,nb!

n,v,~va ,uvbu! , for Na>3, Nb52, ~18!

C
~na ,nb!

n,v,~va ,vb!→C
~na ,nb!

n,v,~ uvau,vb! , for Na52, Nb>3.

With these changes,~16!, ~17! remain valid forNa , Nb>2. For illustration, let us consider th
Schrödinger equation forNa5Nb52. With the parametrization~6!, the eigenvalue equation fo
oscillator in four dimensions in terms of (x,j,u1 ,f1) coordinates is

H 2
1

2 F 1

x3

]

]x
x3

]

]x
1

1

x2 sin j cosj

]

]j
sin j cosj

]

]j
1

1

x2 sin2 j

]2

]u1
2 1

1

x2 cos2 j

]2

]f1
2G

1
x2

2 J C~x,j,u1 ,f1!5EC~x,j,u1 ,f1!. ~19!

The eigenvalues are given byE5(n12) and solving~19! with the help of Eqs.~22.6.4! and
~22.6.18! of Ref. 16 gives back ~8! with va→uvau, vb→uvbu, and F (vavb)(u1 ,f1)
5(2p)21eivau1eivbf1. Similarly solving the Schro¨dinger equation in (xa ,u1 ,xb ,f1) coordinates
gives back~13! with va→uvau andvb→uvbu, andF, as given above. Thus, forNa5Nb52, Eqs.
~16!, ~17! are valid with conditions in~18!.

The remaining special cases areNa5Nb51 and Na>2, Nb51 ~and vice versa!. For Na

5Nb51, the group chains are@as the SO(1) group does not exist#, U(2).U(1)% U(1) and
U(2).SO(2) with un,(nanb)&↔un,na& and un,v& being the respective basis states. The ir
reductions arena50,1,...,n, nb5n2na , andv56n, 6(n22),...,61 or 0. The transformation
brackets for this case are worked out in detail by Frank and Van Isacker@see Eq.~1.82! of Ref. 3#.
Similarly, transformation brackets forNa>2 andNb51 are given in detail by Santopintoet al.,5

and it is interesting to note that their results can be obtained from~16!, ~17!. For Na>2 andNb

51 the group chains are U(N).U(N21)% U(1).SO(N21) and U(N).SO(N).SO(N21),
and the corresponding basis states areunnava& and unvva&. As SO(Nb)5SO(1) does not exist
there will not be anyvb label ~therefore in this casef r b

50 always!. Moreover, thev→va

reduction isva50,1,2,...,v; va5uvau for Na52, as before. Although there is novb label in this
case, it is seen that~16! and~17! are applicable@they reproduce Eqs.~23! and~24!, respectively,
of Ref. 5! with vb

eff , r ab
eff , andr b

eff , such that

v52r ab
eff1va1vb

eff , nb5n2na52r b
eff1vb

eff ,

vb
eff50, for v2va , even positive integer, ~20!

vb
eff51, for v2va , odd positive integer.

For illustration, let us consider~17!, wheren5v ~i.e., r 50!. With standard phase conventions th
phase factor in~17! becomes positive, and then~for both vb

eff50,1!

uvvvaa&5 (
na5va ,va12,•••

Cna

v,vauvnavaa&;
~21!

Cna

v,va5F GS v1va1N22

2
1

1

2DGS v1va1N22

2 DGS v2va11

2 DGS v2va11

2
1

1

2D S 2v1N22

2 D
GS v2na11

2 DGS v2na11

2
1

1

2DGS na1va1N21

2 DGS 2v1N

2 D S na2va

2
! D G 1/2

.
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Using properties of Gamma functions,16 the simplified formula for theCna

v,va factors is

Cna

v,va5F G~v1va1N22!G~v2va11!

G~v2na11!~na2va!!! ~na1va1N23!!! ~2v1N24!!! G
1/2

, ~22!

and this is same as Eq.~24! of Ref. 5. The results forNa>2, Nb51 given in Ref. 5 are recovere
because the Gegenbauer polynomials can be written in terms of Jacobi polynomialsPj

a,b , with a
special value forb @cf. Eqs.~22.5.25!, ~22.5.26! of Ref. 16#, and similarly Hermite polynomials
can be written in terms of generalized Laguerre polynomialsL j

a with special value fora @cf. Eqs.
~22.5.40!, ~22.5.41! of Ref. 16#.

V. APPLICATIONS

Turning now to applications, in theU(7) model~for the spatial part! of baryonsN56, Na

5Nb53 appears withU(6) generated by two 12 bosons corresponding to the two Jacobi co
dinates of the three quark system.6,19 In the sdg Interacting Boson Model~sdgIBM! of atomic
nuclei21 that includes quadrupole (d) and hexadecupole (g) bosons, the SGA isU(15), and here
one has a situation withN515, Na56, Nb59. In the IBM-3 model of atomic nuclei22 the SGA is
U(18) with scalar (s) and quadrupole (d) bosons carrying isospinT51. It is argued recently tha
this model is appropriate forN;Z ~N is a neutron number andZ is a proton number! drip line
nuclei, and the dynamical symmetry defined by the chain~3! with N518, Na53, Nb515 may be
present in someN;Z nuclei.7,8 In applications of this chain the transformations given by~16!,
~17! are useful, as chain~1! for this problem is much easier to handle. Equation~17!, as modified
by quasispin considerations~see the Appendix!, is given ~without proof! for this case in Ref. 7.
Another problem of current interest in nuclear structure is understanding the role ofT51 vs T
50 pairing inA.56 nuclei.23 Here the IBM-4 model22 that includess, d bosons withT51, S
50, andT50, S51 degrees of freedom~S representing ‘‘spin’’! is appropriate. Then the SGA i
U(36) and a interpolating Hamiltonian for the symmetries defined by the chains~1! and~3! with
N536, Na518, Nb518 gives signatures forT51 vs T50 pairing. Note that here the irreps o
one of theU(18) give number ofT51 pairs and otherU(18) irreps give number ofT50 pairs.9

Another approach to study this problem withinU(36) SGA is to use the decompositio
U(36).Uorbital(6)^ UTS(6) and use the two chains given by~1! and ~3! for UTS(6) with N56,
Na5Nb53 by assuming that the totally symmetric irrep ofUorbital(6) lies lowest in energy.10 For
some purposes the caseN536, Na56, Nb530 within the IBM-4 U(36) SGA is also useful.9

Finally, it is important to mention that the transformation coefficients given by~16!, ~17! allow
one to derive analytical formulas for observables in the situation that the dynamical symm
defined by chain~3! is a good symmetry. For example, let us consider^na&

n,v,(vavb) for n5v,

^na&
v,v,~vavb!5^2r a1va&

vv~vavb!5va12(
r a

uC
~nanb!

v,v,~vavb!u2r a . ~23!

Substituting~17! for C22
22 and simplifying the sum using the property thatC22

22’s are normalized
to unity, the compact formula for̂na& is derived,

^na&5va1
~v2va1vb1Nb22!~v2va2vb!

~2v1N24!
. ~24!

For N56, Na55, Nb51, ~24! gives back Eq.~6.4! of Ref. 20; note that herevb→vb
eff50 or 1.

Similarly for N518,Na515,Nb53, ~24! reproduces Eq.~9! of Ref. 7. Finally, changinga⇔b in
~24! gives the formula for̂ nb&.
J. Math. Phys., Vol. 38, No. 12, December 1997
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VI. CONCLUSION

Results given by Eqs.~16!, ~18!, and~20! completely determine the transformation brack
between U(N).SO(N).SO(Na) % SO(Nb) and U(N).U(Na) % U(Nb).SO(Na) % SO(Nb),
with N5Na1Nb , for symmetric U(N) irreps and for anyNa>1, Nb>1 andN>3. These trans-
formation brackets are essential for a variety of problems that are being investigated in n
molecular, and hadron spectroscopy using the algebraic approach based on U(N) SGA.
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APPENDIX: PAIR STRUCTURE OF U „N…'O„N… STATES

In applications of the U(N) SGA,24 the fundemental irrep of U(N) is generated byN boson
creation operatorsbj

† acting on a vaccum state,$1%U(N)⇔bj
†u0&, j 50,1,2,...,N. The generators of

U(N) are the operatorsbj
†bj . Similarly, the generators of SO(N), U(Na), U(Nb), SO(Na), and

SO(Nb) can be defined.5 One important result for U(N).O(N) is that there always exists a pa
creation operatorS1 written in termsbj

† operators, such that

un,v,b&5F GS v1
N

2 D
GS n2v

2
11DGS n1v

2
1

N

2 D G
1/2

~S1!~n2v!/2uv,v,b&. ~A1!

In the situation that the bosons carry angular momentuml , the single boson creation operators a
blm

† and N52l 11. Then the pair creation operator isS151/2bl
†
•bl

† . Similarly, pair creation
operators can be defined1,3 when the bosons carry angular momentuml 1 ,l 2 ,...; N5((2l i11).
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Conditions for the existence of higher symmetries
of evolutionary equations on the lattice
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In this paper we construct a set of five conditions necessary for the existence of
generalized symmetries for a class of differential-difference equations depending
only on nearest neighboring interaction. These conditions are applied to prove the
existence of new integrable equations belonging to this class. ©1997 American
Institute of Physics.@S0022-2488~97!02411-0#

I. INTRODUCTION

Nonlinear differential-difference equations are always more important in applications.
enter as models for many biological chains, are encountered frequently in queuing problem
as discretizations of field theories. So, both as themselves and as approximations of con
problems, they play a very important role in many fields of mathematics, physics, biology
engineering.

Not many tools are available to solve such kinds of problems. Apart from a few excep
cases the solution of nonlinear differential-difference equations can be obtained only by num
calculations or by going to the continuous limit when the lattice spacing vanishes and the s
is approximated by a continuous nonlinear partial differential equation. Exceptional case
those equations that, in one way or another, are either linearizable or integrable via the solu
an associated spectral problem on the lattice. In such cases we can write down a denumer
of exact solutions corresponding to symmetries of the nonlinear differential-difference equa
Such symmetries can be either, depending just on the dependent field and independent v
and are denoted as point symmetries, or can depend on the dependent field in various pos
the lattice, and in this case we speak of generalized symmetries. Any differential-difference
tion can have point symmetries, but the existence of generalized symmetries is usually ass
only to the integrable ones.

Few classes of integrable nonlinear differential-difference equations are known1–5 and are
important for all kind a of applications, both as themselves and as a starting point for pertur
analysis.6 However, not all cases of physical interest are covered, and so it would be nice
able to recognize if a given nonlinear differential-difference equation is integrable or not, so
be used as a model of nonlinear systems on the lattice or as a starting point of perturbation
A way to accomplish such a goal can be obtained using the so-called formal symmetry ap
introduced by A. Shabat and collaborators in Ufa~see e.g., review articles7–9! by which the
authors classified all equations of a certain class that possess few generalized symmetr
certain kind. Such an approach has been introduced at first to classify partial differential equ
but then the procedure has been extended to the case of differential-difference equation2–4 In
such an approach, one introduces conditions under which one can prove the existence of

a!Electronic mail: levi@roma1.infn.it
b!On leave from: Ufa Institute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky Street, Ufa 4

Russia. Electronic mail: yamilov@imat.rb.ru
0022-2488/97/38(12)/6648/27/$10.00
6648 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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one ~or more! generalized symmetries. These conditions are basic tools to start the proced
classification, i.e. to look for the form of the nonlinear differential difference equations, whic
compatible with these conditions. This process gives rise to classes of equations. These co
can be used as they are; for examples, they have been used in the programDELIA10 to discover if
an evolutionary scalar equation is integrable.

The class of nonlinear differential-difference equations we will consider in the followin
given by

un,t~ t !5 f n„un21~ t !,un~ t !,un11~ t !…, ~1.1!

whereun(t) is a complex-dependent field expressed in terms of its dependent variables,t varying
over the complex numbers whilen is varying over the integers. Equation~1.1! is a differential
functional relation that correlates the ‘‘time’’ evolution of a function calculated at the pointn to
its values in its nearest neighboring points~n11, n21!. A peculiarity of the choice of Eq.~1.1!
is the fact that the right-hand side of it not just a function, i.e. it is not the same for all poin
the lattice but for each point of the lattice one has ana priori different right-hand side. In fact, we
can think of Eq.~1.1! as an infinite system of different differential equations for the infin
number of functionsun . By proper choices of the functionsf n , Eq. ~1.1! can be reduced to a
system ofk coupled differential difference equations for thek unknownum

k or to a system of
dynamical equations on the lattice. In fact, for example, by imposing periodicity conditions o
dependent field in the lattice variables one is able to rewrite Eq.~1.1! as a coupled system o
nonlinear differential difference equations. Let us assume thatf n andun are periodic functions of
n of periodk, i.e.

f n„un21~ t !,un~ t !,un11~ t !…5 (
j 50

k21

Pn2 j
k f j

„um21~ t !,um~ t !,um11~ t !…,

un5 (
j 50

k21

Pn2 j
k um

j ,

where we have defined the projection operatorPn
k such that for any integerm such thatn5km

1 j with 0< j <k21, we have

Pkm
k 51, Pkm1 j

k 50 ~ j 51,2,...,k21!, ~1.2!

then Eq.~1.1! becomes the system:

um,t
0 5 f 0

„um21
k21 ~ t !,um

0 ~ t !,um
t ~ t !…,

um,t
1 5 f 1

„um
0 ~ t !,um

1 ~ t !,um
2 ~ t !…,

~1.3!

••• •••

um,t
k215 f k21

„um
k22~ t !,um

k21~ t !,um11
0 ~ t !….

Of particular interest is the case of periodicityk52, when we have

um,t
0 5 f 0~um21

1 ,um
0 ,um

1 !,
~1.4!

um,t
1 5 f 1~um

0 ,um
1 ,um11

0 !.
J. Math. Phys., Vol. 38, No. 12, December 1997
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A subclass of Eq.~1.4!, of particular relevance for its physical applications, is given by dynam
systems on the lattice, i.e. equations of the type

xn,tt5g~xn112xn ,xn2xn21!. ~1.5!

Equation ~1.5! is obtained from Eq.~1.4! for un
05xn,t , un

15xn112xn by choosing f 0

5g(un
1,un21

1 ) and f 15un
02un11

0 . Then, by choosing

g~z,z8!5ez2ez8,

Eq. ~1.1! reduces to the Toda lattice equation,

xn,tt5exn112xn2exn2xn21. ~1.6!

In terms of the projection operator~1.2!, Eq. ~1.6! can obviously also be written in polynomia
form as

un,t5~Pn11
2 un1Pn

2!~un112un21!, ~1.7!

the polynomial Toda Lattice.
In the present paper, the general theory of the symmetry approach in the differe

difference case is discussed in detail for the first time and an explicit dependence onn is intro-
duced. In the previous literature, in the framework of the formal symmetry approach,
n-independent differential difference equations were considered; the following classes of
tions were completely classified:

un,t5 f ~un21 ,un ,un11! ~1.8!

~Volterra-type equations, see Ref. 2! and

un,tt5 f ~un,t ,un21 ,un ,un11! ~1.9!

~Toda-type equations; see Ref. 3!. Reference 2 is a one page paper in Russian in which only
classification theorem is formulated with a few examples. A detailed version of Ref. 2 ca
found only in the unpublished work.11 It should be remarked that the classification of chains~1.8!
is also briefly discussed in Ref. 7. Theoretically, in our class, we can consider chains that
expressed as systems of 2,3,4,...,n-independent equations, and chains that are systems o
infinite number of different equations. In fact, if in the case of the class of equations~1.8! an
equation is defined by a functionf , in the case of~1.1! we have an infinite set$ f n% of a priori
quite different functions. So, this paper is a further step in the development of the general
of the formal symmetry approach~readers can find elements of a previous version of the gen
theory in Refs. 3 and 7!.

Section II is devoted to the construction of a certain number of conditions~the simpler ones!
necessary to prove that an equation of the class~1.1! has generalized symmetries and higher-or
conservation laws. Section III is devoted to a discussion of the results presented in Sec. I
cially in connection with the reductions~1.4! and ~1.5!. The obtained conditions are applied
Sec. IV to a few examples of interest. In particular, we will study three classes of system
nonlinear differential equations on the lattice:

~1! un,t5b~un!~un112un21!; ~1.10!

this class of equations includes the well-known Volterra equation;

~2! un,t5Pn11
2 eun11gn~un112un21!1Pn

2ln~un112un21!. ~1.11!
J. Math. Phys., Vol. 38, No. 12, December 1997
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This equation describes a class of dynamical equations,

vktt5expS vk112vk

ek11
DGkS vk112vk

ek11
2

vk2vk21

ek
D , ~1.12!

where

u2k5
vk112vk

ek11
, u2k215vkt , g2k215Gk , l2k5ek11

21 , ~1.13!

having a four-dimensional group of point symmetries and including the Toda lattice as one
members.12 Here Pn

2 is the projection operator of period 2, as introduced in Eq.~1.2!, gn is an
arbitrary analytic function of its argument andln are arbitraryn-dependent constants.

~3! un,t5wn~un112un21!. ~1.14!

By setting

w2n~z!5bn z, bnÞ0, w2n219 ~z!5Fn~z!Þ0, ;n, ~1.15!

and rewritingu2n5wn , u2n215vn , one gets from~1.14! chains of the form

Mnvn,t5vn112vn , vn,t5Fn~vn2vn21!, ~1.16!

which correspond to a dynamical system of the following form:

Mnvn,tt5Fn11~vn112vn!2Fn~vn2vn21!. ~1.17!

If we set

Fn~z!5Bnz21Cnz, ~1.18!

and defineyn5v2n and xn5v2n21 , Eqs ~1.17!, ~1.18! reduce, by an appropriate choice of th
constantsBn , Cn , andMn to the system

M2yn95 f ~xn112yn!2g~yn2xn!, M1xn95g~yn2xn!2 f ~xn2yi 2n!, ~1.19!

with

f ~z!5eb2z21k2z, g~z!5eb1z21k1z,

which describes the evolution of diatomic chains13 and explicitly reads as

M1xn,tt5k1~yn2xn!2k2~xn2yn21!1e@b1~yn2xn!22b2~xn2yn21!2#,
~20!

M2yn,tt5k2~xn112yn!2k1~yn2xn!1e@b2~xn112yn!22b1~yn2xn!2#.

As a last example, at the end of Sec. IV, we will use the obtained conditions to stud
integrability of ann-dependent generalization of a discrete analog of the Krichever–Nov
equation:

un,t5
p~un!un11un211q~un!~un111un21!1r ~un!

un112un21
, ~1.21!

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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p~un!5aun
212bun1g, ~1.22a!

r ~un!5gun
212dun1v, ~1.22b!

q~un!5bun
21lun1d. ~1.22c!

Equation ~1.21! depends on six arbitrary complex constants and is invariant under lin
fractional transformations, as under those transformations only the coefficients of the polyn
p, q, r are changed, but not the polynomials themselves. Equation~1.21! was obtained for the firs
time in Ref. 2 when classifying discrete evolutionary equations of the form~1.8!. It satisfies all the
five integrability conditions, has an infinite set of higher local conservation laws and should
an infinite set of generalized symmetries~but nobody has yet proved it!. It is the only example of
a nonlinear chain of the form~1.8!, up to now obtained, which cannot be reduced to the Toda
Volterra equations by Miura transformations. By carrying out the continuous limit, in the s
way as one does to obtain the Korteweg–de Vries equation from the Volterra equation, we
Krichever–Novikov equation:14

ut5uxxx2
3

2

uxx
2

ux
1

R~u!

ux
, ~1.23!

whereR(u) is an arbitrary fourth degree polynomial of its argument with constant coefficien
The complete classification of all the classes of equations of the form~1.1! that satisfy the

conditions obtained in Sec. II is left to a future work. Few conclusive remarks are contain
Sec. V.

II. CONSTRUCTION OF THE CLASSIFYING CONDITIONS

If Eq. ~1.1! is to represent an evolutionary difference equation, then the functionf n must
depend in an essential way from the points (n61), the nearest neighboring points with respect
the pointn in which we compute the ‘‘time’’ evolution. This implies that we must add to Eq.~1.1!
the condition

] f n

]un11
Þ0,

] f n

]un21
Þ0, for any n. ~2.1!

Before considering in detail the problem of costructing generalized symmetries to Eq.~1.1!, we
will introduce few definitions necessary for the future calculations.

A function gn depending on the set of fieldsun , for n varying on the lattice, will be called a
rectricted function and will be denoted by the symbol RF if it is defined on a compact suppo
if

gn5gn~un1 i ,un1 i 21 ,...,un1 j 11 ,un1 j !, i> j , ~2.2!

and i and j are finite integer numbers. If there exist, in the range of the possible valuesn,
valuesk andm such that

]gk

]uk1 i
Þ0,

]gm

]um1 j
Þ0, ~2.3!

then we say that the functiongn has a lengthi 2 j 11. For example,gn could be given by the
function

gn5nun111un1@11~21!n#un21 ;
J. Math. Phys., Vol. 38, No. 12, December 1997
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theni 51, j 521 and the length ofgn is equal to 3 even if only the even functions are depend
on un21 .

Let us define the shift operatorD such that

Dgn~un1 i ,...,un1 j !5gn11~un1 i 11 ,...,un1 j 11!.

Then we can split the RF into equivalent classes.
Definition: Two RF,

an~un1 i a
,...,un1 j a

! and bn~un1 i b
,...,un1 j b

!

are said to beequivalent,

an;bn ,

iff

an2bn5~D21!cn , ~2.4!

wherecn is a RF.
If, for example, we havean5un1un11 , it is immediate to see thatan is equivalent to a

function bn52un , asan2bn5un112un5(D21)un .
Let us notice that any function that is equal to a total difference is equivalent to zero

an5(D21)cn;0. If a RFan of length i 2 j 11(i . j ) is equivalent to zero, then there will exis
by necessity, a RFcn of the lengthi 2 j such thatan5(D21)cn . As

an~un1 i ,...,un1 j !5cn11~un1 i ,...,un1 j 11!2cn~un1 i 21 ,...,un1 j !,

one can easily see that

]an

]un1 i
5

]cn11~un1 i ,...,un1 j 11!

]un1 i
,

and consequently,

]2an

]un1 i ]un1 j
50. ~2.5!

In the casei 5 j ,

an~un1 i !5cn11~un1k111 ,...,un1k211!2cn~un1k1
,...,un1k2

!.

As for k2, i ]an /]un1k2
52]cn /]un1k2

50, then cn5dn(un1k1
,...,un1 i). For k1> i also

]an /]un1k11150, thendn cannot depend onun1k for any k, and consequently,

dan

dun1 i
50, ~2.6!

i.e., an is an invariant function, where by it we mean a function that depends only onn.
We can moreover define the‘‘formal’’ variational derivative of a RFan of lengthi 2 j 11 as

]an

]un
5 (

k5n2 i

n2 j
]ak

]un
. ~2.7!
J. Math. Phys., Vol. 38, No. 12, December 1997
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If an is linear inun , then]an /]un is an invariant function, but if it is nonlinear, then]an /]un

5g̃n(un1N ,...,un2N), where for somek ]g̃k /]uk1NÞ0 and for somem ]g̃m /]um2NÞ0. Con-
sequently, this quantity is strictly related to the notion of a variational derivative, and this i
reason for its name. It is immediate to prove that ifan is a RF equivalent to zero, then the form
variational derivative ofan is zero. The vice versa is also true, i.e., if]an /]un50, thenan is
equivalent to zero. In fact, using Eq.~2.7! we have]2an /]un1 i ]un1 j50, which implies that
an5bn(un1 i ,...,un1 j 11)1cn(un1 i 21 ,...,un1 j );dn(un1 i 21 ,...,un1 j ), i.e.,an is equivalent to a
RF of lengthi 2 j . Carrying out recursively this reasoning, we arrive at the conclusion thaan

;Fn(un) with Fn850, i.e.an must be an invariant function, i.e., equivalent to zero.
Given a nonlinear chain~1.1!, we will say that the RFgn(un1 i ,...,un1 j ) is a generalized~or

higher! local symmetry oforder i ~more precisely, of left orderi ! of our equation iff

un,t5gn~un1 i ,...,un1 j !, ~2.8!

is compatible with~1.1!, i.e. iff

] t]t~un!5]t] t~un!. ~2.9!

Explicitating condition~2.9!, we get

] tgn5]t f n5
] f n

]un11
un11,t1

] f n

]un
un,t1

] f n

]un21
un21 ,

t5F ] f n

]un11
D1

] f n

]un
1

] f n

]un21
D21Ggn5 f n* gn ,

i.e.,

~] t2 f n* !gn50, ~2.10!

where byf n* we mean the Frechet derivative of the functionf n , given by

f n* 5
] f n

]un11
D1

] f n

]un
1

] f n

]un21
D215 f n

~1!D1 f n
~0!1 f n

~21!D21. ~2.11!

Equation~2.10! is an equation forgn once the functionf n is given, an equation for the symmetrie
In this work we limit ourselves to local symmetries, i.e. symmetries that are given by
A nonlocal extension can be carried out by introducing, for example, a new fieldvn : (D21)vn

5un , i.e. vn52( j 5n
` uj or vn5( j 52`

n21 uj ~compare Ref. 7!. Extension in such a direction will be
carried out in future work.

Given a symmetry we can construct a new symmetry by applying a recursive operator,
operator that transforms symmetries into symmetries. Given a symmetrygn of Eq. ~1.11!, an
operator

Ln5 (
j 52`

m

l n
~ j !~ t !D j , ~2.12!

will be a recursive operator for Eq.~1.1! if g̃n , given by

g̃n5Lngn , ~2.13!

is a new generalized symmetry associated to~1.1!. Equation~2.10! and Equation~2.13! imply that
J. Math. Phys., Vol. 38, No. 12, December 1997
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A~Ln!5Ln,t2@ f n* ,Ln#50. ~2.14!

Moreover, from~2.10! it follows that

A~gn* !5]t~ f n* !. ~2.15!

In fact, from ~2.10! we get

Bn5] t~gn!5(
k

]gn

]un1k
f n1k ,

and consequently we have

Bn* 5(
m

]Bn

]un1m
Dm5(

m,k

]2gn

]un1k ]un1m
f n1k Dm1(

m,k

]gn

]un1k

] f n1k

]un1m
Dm5] t~gn* !1gn* f n* .

~2.16!

Equation~2.15! is then obtained by introducing~2.16! into the Frechet derivative of~2.9!. Equa-
tion ~2.15! implies that, as its right-hand side~rhs! is an operator of the order 1@see~2.11!#, the
highest terms on the left-hand side~lhs! must be zero.

We can define asapproximatesymmetry oforder i and length m, the operator

Gn5 (
k5 i 2m11

i

gn
~k!Dk,

such that the highestm terms of the operator,

A~Gn!5 (
k5 i 2m

i 11

an
~k!Dk,

are zeros. Taking into account Eq.~2.15!, we find that we must havei 2m12.1 if the equation

A~Gn!50 ~2.17!

is to be satisfied.
From these results we can derive the first integrability condition, which can be stated

following theorem, whose proof is contained in Appendix A.
Theorem 1: If Eq. ~1.1! has a local generalized symmetry of orderi>2, then it must have a

conservation law given by

]n log f n
~1!5~D21!qn

~1! , ~2.18!

whereqn
(1) is a RF.

In this way we have shown the existence of the firstcanonicalconservation law. The nex
canonical conservation laws could be obtained in the same way, by assuming the existen
higher symmetry, so that we are allowed to consider an approximate symmetry of higher l
These canonical conservation laws would, however, be very complicated~they will depend on the
order of the generalized symmetry! and very difficult to reduce to simple expressions not depe
ing on its order. So we prefer to follow an alternative approach that requires the existence
higher symmetries. This procedure can be carried out, as we already know one canonical
vation law.
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Let us now assume that there exist two RFgn andg̃n that generate symmetries of orderi and
i 11, respectively. In correspondence to these symmetries, we can construct two appro
symmetriesGn andG̃n of ordersi and i 11, respectively, and from~2.1!, gn

( i ) and g̃n
( i 11) will be

different from zero for alln @see~A3!, Appendix A#. Starting fromGn andG̃n , we can construct
the operator

Ĝn5Gn
21G̃n . ~2.19!

As from ~2.14! we have

A~Gn
21!52Gn

21A~Gn!Gn
21, A~LnKn!5A~Ln!Kn1LnA~Kn!,

we obtain

A~Ĝn!5Gn
21@2A~Gn!Ĝn1A~G̃n!#. ~2.20!

Let us notice that, asGn is an approximate symmetry, its inverse will be an operator with
infinite number of terms. ConsequentlyĜn , though it is an approximate symmetry of order 1 a
lengthi ~the lowest of the lengths ofGn andG̃n! is represented by an infinite sum. This shows th
under the hypothesis that two local higher symmetries exist, we can restrict ourselves to co
approximate symmetries of order 1. In such a waygn

(1)5 f n
(1) , and forqn

(1) the following simple
formula can be obtained:qn

(1)5gn
(0)2 f n

(0) . We can now state the following theorem, proved
Appendix B.

Theorem 2: If Eq. ~1.1! satisfies conditions~2.1! and it has two generalized local symmetri
of order i and i 11, with i>4, then the following conservation laws must be true:

] tpn
~k!5~D21!qn

~k! ~k51, 2, 3!,

pn
~1!5 log

] f n

]un11
, pn

~2!5qn
~1!1

] f n

]un
, ~2.21!

pn
~3!5qn

~2!1
1

2
~pn

~2!!21
] f n

]un11

] f n11

]un
,

whereqn
(k) (k51, 2, 3) are some RFs.

So, if Eq.~1.1! has local generalized symmetries of high enough order, we can construct
conservation laws depending on the function at the rhs of Eq.~1.1!.

One can divide the conservation laws into conjugacy classes under an equivalence con
Two conservation laws,

pn,t5~D21!qn , r n,t5~D21!sn ,

areequivalentif

pn;r n . ~2.22!

A local conservation law istrivial if pn;0. If pn;r n(un), with r n8Þ0 at least for somen, then we
have a conservation law ofzeroth order, while if

pn;r n~un1N ,...,un!, N.0,

and
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]2r n

]un ]un1N
Þ0,

for at least somen, the conservation law is oforder N.
An alternative way to define equivalence classes of local conservation laws is via the f

variational derivative. Let us denote byp̃n the formal variational derivative of the densitypn of a
local conservation law, i.e.

p̃n5
dpn

dun
. ~2.23!

If the local conservation law is trivial, thenp̃n50, if it is of zeroth order, thenp̃n5 p̃n(un)Þ0 for
at least somen while if it is of order N, then

p̃n5 p̃n~un1N ,...,un ,...,un2N!,

where

] p̃n

]un1N
Þ0,

] p̃n

]un2N
Þ0,

for at least somen. Then, for any conserved densitypn , by direct calculation, we derive that th
following relation is valid:

pn,t; p̃n f n;0. ~2.24!

By carrying out the formal variational derivative of Eq.~2.24!, taking into account that in a
summation the following equality is valid:

] p̃n1k

]un
5

] p̃n

]un1k
,

we get that the formal variational derivativep̃n of a conserved densitypn satisfies the following
equation:

~] t1 f n*
T! p̃n50, ~2.25!

where the transposed Frechet derivative off n is given by

f n*
T5

] f n11

]un
D1

] f n

]un
1

] f n21

]un
D215 f n11

~21!D1 f n
~0!1 f n21

~1! D21. ~2.26!

Let us consider the Frechet derivative ofp̃n for a local conservation law of orderN. In such
a case, we have

p̃n* 5 (
k52N

N

p̃n
~k!Dk, p̃n

~k!5
] p̃n

]un1k
. ~2.27!

We can construct the following operator:

B~Sn!5Sn,t1Sn f n* 1 f n*
TSn , ~2.28!

where
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Sn5 (
j 52`

l

sn
~ j !~ t !D j . ~2.29!

Taking into account~2.10! and ~2.25!, one can easily prove that

p̃n5Sngn . ~2.30!

Let us construct

B~ p̃n* !5(
k

bn
~k!~ t !Dk, ~2.31!

wherebn
(k)(t) are some RFs, then from Eq.~2.28! it follows that

bn
~k!5 p̃n,t

~k!1(
j

~ p̃n
~ j ! f n1 j

~k2 j !1 f n1 j
~2 j !p̃n1 j

~k2 j !!, ~2.32!

and then by differentiating Eq.~2.25! with respect toun1k , we can rewrite Eq.~2.32!, after a long
but straight forward calculation, in the form

bn
~k!52(

j
p̃n1 j

]2f n1 j

]un]un1k
, ~2.33!

and thus prove, asf n depends just onun and un61 , that bn
(k) are different from zero only for

22<k<2.
In such a way, for a sufficiently high-order conserved densitypn , we can require that

B~ p̃n* !50, ~2.34!

is approximately solved. If the firstm,N21 terms of the Frechet derivative ofp̃n satisfy Eq.
~2.34!, then we say that we have an approximate conserved density oforder N and length m.

Let us mention here that sometimes thep̃n solution of~2.25!, is called a conserved covarian
while Hn5Sn

21 and the solutions of~2.34! are called, respectively, a Noether operator and
inverse Noether operator.15 The Noether operator maps conserved covariants into symme
while the inverse Noether operator maps symmetries into conserved covariants. This corre
to the familiar relation between symmetries and conservation laws in Lagrangian or Hamilt
mechanics~Noether’s theorem!. In some casesHn can be the Hamiltonian operator for our equ
tion and the inverse of formula~2.30!,

gn5Hn

dpn

dun
, ~2.35!

will be local.
Taking all the results up to now obtained into account, we can state the following theo

which will be proved in Appendix C.
Theorem 3: If the chain ~1.1! satisfies conditions~2.1!, it has a conservation law of orde

N>3, and condition~2.18! is satisfied, then the following conditions must take place:

r n
~k!5~D21!sn

~k! ~k51,2!, ~2.36a!

with
J. Math. Phys., Vol. 38, No. 12, December 1997
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r n
~1!5 log@2 f n

~1!/ f n
~21!#, r n

~2!5sn,t
~1!12 f n

~0! , ~2.36b!

wheresn
(k) are RFs.

III. DISCUSSION OF THE CONDITIONS

First of all let us notice that the request that nontrivial local conservation laws exist is
restrictive than that of the existence of symmetries. In fact, there are many instances in
generalized symmetries do exist, but not nontrivial conservation laws. This may be the ca
manyc-integrable equations, i.e. nonlinear equations that can be transformed into linear o
an invertible transformation.7

If one compares Theorem 1 and Theorem 2 of Sec. II, one can think that among cond
~2.18! and~2.21! with k52, 3 there is a difference of importance, as conditions~2.21! require the
existence of two generalized symmetries, while for condition~2.18! only one generalized symme
try is sufficient. However, we could obtain conditions~2.21! with k52,3, assuming that only on
symmetry of orderi>4 exists, but calculations in the proof would be more difficult. For exam
in the casek52, following the notation of Appendix A, we can define

ĝn5
gn

~ i 21!

)k5n
n1 i 22f k

~1! 5 (
k5n

n1 i 21

pk
~2! .

Then, for i>3, it follows that

] tĝn1ĝn~pn1 i 21
~2! 2pn

~2!!5~D21!F gn
~ i 22!

)k5n
n1 i 23f k

~1!2 (
k5n

n1 i 21

f k
~21! f k21

~1! G;0,

and hence we get the wanted result:

ĝn~pn1 i 21
~2! 2pn

~2!!;0, ] tĝn; i ] tpn
~2! .

Conditions~2.21! required only thatf n
(1)Þ0. An analogous set of conditions could be deriv

if we requested that justf n
(21)Þ0 for all n. They can be derived in a straightforward wa

considering expansions in negative powers ofD, instead of positive, as we have done up to no
This derivation is left to the readers as an exercise. This set of conditions also will have the
of canonical conservation laws:

] t p̂n
~k!5~D21!q̂n

~k! , ~3.1!

and conserved densities will be symmetric to the ones of~2.21!. For example,

p̂n
~1!5 logS 2

] f n

]un21
D . ~3.2!

Let us notice, moreover, that ifHn
(1) andHn

(2) are two solutions of~2.34! of different order, the
operator

Kn5~Hn
~1!!21Hn

~2! ~3.3!

satisfies~2.14!, and thus it is a recursive operator. Consequently, if we start from two approxi
solutions of ~2.34!, i.e. two Frechet derivatives of formal variational derivatives of conser
densities, we can, using~2.34!, get an approximate symmetry. So, one can derive all the condit
J. Math. Phys., Vol. 38, No. 12, December 1997
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~2.21!, ~2.36!, ~3.1!, assuming the existence of two higher-order local conservation laws. In
case of conditions~3.1!, one should use the same formula~3.3!, but (Hn

(1))21 will be a series in
positive powers of the shift operatorD:

~Hn
~1!!215 (

k52N

1`

hn
~k!Dk.

This proves the statement written at the beginning of this section that conservation laws are
fundamental’’ than symmetries, as from conservations laws we get symmetries.

If we compare conditions~2.21!, ~2.36!, ~3.1!, we can see, for example, that

r n
~1!5pn

~1!2 p̂n
~1! , ~3.4!

i.e. the first of conditions~2.36! implies thatpn
(1); p̂n

(1) , i.e. the first canonical conservation law
of ~2.21! and~3.1! are equivalent. The same result could be obtained for the second conditi
~2.32!. In particular, the set of conditions~3.1! can be derived, starting from conditions~2.21! and
~2.36!. However, these conditions are of great importance in themselves, as there might be
tions of interest that satisfy~2.21! and ~3.1!, but not~2.36!.

The solution of the conditions, be those obtained by requesting the existence of the ge
ized symmetries or those of local conservation laws, provide the highest-order coefficients
Frechet derivative of a symmetry or of the formal variational derivative of a conserved de
Those coefficients are the building blocks for the reconstruction of the symmetries or of the f
variational derivatives of the conserved densities. In fact the knowledge ofgn

(k)5]gn /]un1k with
k5 i , i 21,..., for a few values ofk, gives a set of partial differential equations forgn with respect
to its variable, whose solution provides the needed symmetry. In the same way we can reco
variational derivatives of conserved densities. There is, however, a more direct way to
conserved densities. In fact, if we know the highest coefficients ofLn , the solution of Eq.~2.14!,
we can obtain several conserved densities by the following formula:

pn
~ j !5res~Ln

j ! ~ j 51,2,...!

~see Appendix B!.
Equation~1.1! with the conditions~2.1! can be splitted into two different classes. In fact, E

~2.21! with k51 can be written in the form

pn,t
~1!;

]pn
~1!

]un11
f n111

]pn
~1!

]un
f n1

]pn11
~1!

]un
f n5Fn;0,

Fn5Fn~un12 ,un11 ,un ,un21!.

As Fn is a RF equivalent to zero, we have

]2Fn

]un12 ]un21
5rn

] f n11

]un12
1rn11

] f n

]un21
50, ;n, ~3.5!

where

rn5
]2pn

~1!

]un11 ]un21
.

Conditions~2.1! and ~3.5! imply that there are only two possibilities:
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rn50, ;n, ~A!

rnÞ0, ;n. ~B!

Both classes are not empty. The Toda and Volterra equation belong to class~A! while the
discrete analogue of Krichever Novikov equation14 belongs to class~B!. One can prove the
following statement for chains of the class~B!: if a chain~1.1! satisfies~2.1! and~2.21!, then this
chain has conservation laws of the orders 2, 3, 4, which will be given just by the cano
conservation laws~2.21!. In fact, it is obvious that the first of conservation laws~2.21! has order
2. So, let us consider~2.21! with k51, 2 and use them to obtain informations aboutqn

(1) , qn
(2) .

The functionqn
(1) depends onun11 ,...,un22 and

]qn
~1!

]un22
52

]pn
~1!

]un21
f n21

~21! . ~3.6!

The functionqn
(2) depends onun11 ,..,un23 and

]qn
~2!

]un23
52

]pn
~2!

]un22
f n22

~21!5
]pn

~1!

]un21
f n21

~21! f n22
~21! .

Now one easily can show that

]2pn
~2!

]un11 ]un22
52rnf n21

~21! ,
]2r n

]un11 ]un23
5rn f n21

~21! f n22
~21! , ~3.7!

where r n5qn
(2)1 1

2(pn
(2))21(] f n21 /]un) (] f n /]un21);pn

(3) . Taking into account Eq.~2.1! the
functions~3.7! are different from zero for anyn, thus showing that the conservation laws~2.21!
for k52, 3 are of the orders 3 and 4, respectively.

The same formulas~3.7! show that in the case of chains of the class~A! canonical conserva
tion laws~2.21! have orders less than 2, 3, 4, respectively. For example, for the Toda chain~1.6!,
~1.7!, formulas~2.21! give three inequivalent nontrivial conservation laws of order 0. In the c
of the chain

un,t5~un112un!1/2~un2un21!1/2, ~3.8!

all three canonical conservation laws are trivial.
If the chain satisfies all five conditions and the conservation laws are all of low order, th

case~A! the chain might be linearizable. In the case of Eq.~3.8!, such a transformation isvn

5(un112un)1/2 and leads to the linear equation

2vn,t5vn112vn21 . ~3.9!

It is worthwhile to show here how all five conditions~2.21!, ~2.36! can be rewritten in explicit
form. Such explicit conditions can be easily verified using the computer and thus they can
starting point for the construction of a program of the kind ofDELIA10 to check the integrability of
differential-difference equations of the form~1.1!.

A condition isexplicit if it has the formAn50, ;n, whereAn is a function depending only on
f n and its partial derivatives with respect to allun1 i . Let us define the functions

Pn
~k!5

d

dun
] tpn

~k! , Rn
~k!5

d

dun
r n

~k! , k51, 2,
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and

Pn
~3!5

d

dun
] tpn

~3!2qn
~1!Pn

~2! .

The five explicit conditions are given by

Pn
~k!50, Rn

~ l !50, ;n , k51, 2, 3; l 51, 2. ~3.10!

The functionspn
(1) , r n

(1) are already explicit and from them one can derive all partial der
tives ]qn

(1)/]un1 i , ]sn
(1)/]un1 i @see, e.g.,~3.6!# and then express] tpn

(2) , r n
(2) in an explicit form.

For example, from~2.36! we have

r n
~2!5

]r n21
~1!

]un
f n2

]r n
~1!

]un21
f n2112

] f n

]un
.

Let us now considerPn
(3) . On one hand we have

] tpn
~3!5] tS qn

~2!1
] f n

]un11

] f n11

]un
D1S qn

~1!1
] f n

]un
D ] tpn

~2! .

Using ~2.21! with k52, one can find all the partial derivatives ofqn
(2) and consequently get a

explicit expression for] tqn
(2) . Using ~2.21! with k51, we can obtain not only the function

]qn1 i
(1) /]un but also all differencesqn1 i

(1) 2qn
(1) . Consequently, as

d

dun
~qn

~1!] tpn
~2!!2qn

~1!Pn
~2!5(

i

]qn1 i
~1!

]un
] tpn1 i

~2! 1(
i

~qn1 i
~1! 2qn

~1!!
]

]un
] tpn1 i

~2! , ~3.11!

we can easily write down the explicit form ofPn
(3) .

Let us end this discussion by looking into the connection between the symmetries an
servation laws for Eq.~1.1! and those belonging to the reduced case~1.3!. For simplicity of
exposition we just present the results in the case of periodicity 2, where Eq.~1.1! reduces to Eq.
~1.4!.

Generalized symmetries and conservation laws for Eq.~1.4! can be defined in the same wa
as those for Eq.~1.1!. For example, a local conservation law of Eq.~1.4! is of the form

Cn,t5Dn112Dn , ~3.12!

whereCn , Dn are RFs of variablesun
0, un

1, un61
0 , un61

1 ,... . Let usconsider conservation laws o
order N for N>1. For such a conservation law to exist, we need it to be represented bCn

;hn(un
0, un

1,..., un1N
0 , un1N

1 ), with

S ]2hn

]un
0 ]un1N

0

]2hn

]un
0 ]un1N

1

]2hn

]un
1 ]un1N

0

]2hn

]un
1 ]un1N

1
D Þ0.

There is the following one-to-one correspondence between Eqs.~1.1! and the system~1.4!: un
0

5u2n11 , un
15u2n , f n

05 f 2n11 , f n
15 f 2n .

The same transformation allows one to rewrite the generalized symmetries. Let us se
happens to the conservation laws. Ifpn,t5qn112qn is a conservation law of~1.1!, then
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Cn5p2n111p2n , Dn5q2n , ~3.13!

gives a conservation law for~1.4!. Given the conservation law~3.12!, we have

p̄2n115Cn , p̄2n50, q̄2n112q̄2n5Dn , ~3.14!

and thus equivalent conservation laws are turned into equivalent ones. In fact, if we pass frpn

to Cn and then back top̄n , we have

p̄n5Pn11
2 ~pn1pn21!;~Pn11

2 1Pn
2!pn5pn .

It can be checked that if we use formulas~3.13!, then ordCn'1/2 ordpn ; in the case of transition
~3.14!, ord p̄n'2 ord Cn . For example, the Toda chain~1.6!, written in the form ~1.4!, has
conserved densities,

log un
0, un

1, 2un
01~un

1!2, un
0~un11

1 1un
1!1 1

3~un
1!3,

while in the form~1.17! the conserved densities are

Pn11 log un , Pnun , 2Pn11un1Pnun
2, un11un1 1

3Pnun
3.

IV. APPLICATIONS

In the following we will find out about the integrability of differential difference equations
the form ~1.1! by going through all examples considered in the Introduction, following the e
meration given there.

~1! In the case~1.10! the first canonical conservation law~2.18! implies that

] t log bn;0, ~4.1!

i.e.,

bn8~un112un21!;bn8un112bn118 un;0. ~4.2!

So bn9 must be ann-independent constant:

bn5Aun
21Bnun1Cn . ~4.3!

Inserting this result into~4.2!, we get that

~Bn212Bn11!un;0, i.e. Bn5B1~21!nB̃,

and thus the first canonical conservation law gives

qn
~1!52Aunun211B~un1un21!2B̃@~21!nun1~21!n21un21#. ~4.4!

Introducing~1.10! and ~4.4! into the second canonical conservation law, we get, after a stra
forward but lengthy calculation, that

pn,t
~2!;~Cn212Cn11!~Aun

21Bnun!.

It follows, in particular, that ifAÞ0, then

Cn5C1~21!nC̃. ~4.5!
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Using the last canonical conservation law, one can prove thatCn must have always the form~4.5!,
and thus the most general chain of the form~1.10! that satisfies all five conditions is

un,t5@Aun
21~B1~21!nB̃!un1C1~21!nC̃#~un112un21!, ~4.6!

which depends on five arbitrary complex constants.
By obvious point transformations, we can reduce any nonlinear chain of the form~4.6! to one

of the following chains: the Toda chain~1.7!, or

un,t5un~un112un21!, ~4.7!

the Volterra equation, or

un,t5~Cn2un
2!~un112un21!, ~4.8!

where

Cn51 or Cn50 or Cn5Pn11
2 , ~4.9!

corresponding to three modifications of the Volterra equation. Unlike the discrete version
Krichever–Novikov equation~1.21!, ~1.22!, all the chains~4.7!–~4.9! can be reduced to the Tod
chain by Miura transformations. For example, in the case of the Volterra equation, we ha
transformation

ũn5Pn11
2 un11un1Pn

2~un111un!, ~4.10!

which brings any solutionun of the Volterra equation into a solutionũn of the Toda chain.
Transformations of the modified Volterra equations~4.8!, ~4.9! into the Volterra equation are
given by the formula

ũn5~Cn1un!~Cn112un11!. ~4.11!

Consequently, due to transformations~4.10!, ~4.11!, together with point transformations, an
nonlinear chain of the form~4.7!–~4.9! possesses local conservation laws of an arbitrary h
order. This means, in particular, that the chains~4.7!–~4.9! satisfy not only classifying conditions
~2.21!, ~2.36! but also all other conditions of higher order we could derive using approxim
symmetries and conserved densities.

~2! We now classify chains of the form~1.11!. Equation ~2.1! reduces to the following
conditions:

] f n

]un11
5Pn11

2 eun11~gn1gn8!1Pn
2lnÞ0, ~4.12!

2
] f n

]un21
5Pn11

2 eun11gn81Pn
2lnÞ0. ~4.13!

This means, in particular, thatlnÞ0 for evenn. As ln do not exist in our equation forn odd, we
can take them arbitrary forn odd and then assume thatlnÞ0 for all n. Analogously, we have to
require thatgn8Þ0, gn1gn8Þ0 for all n. We can then formulate the following theorem.

Theorem: A chain of the form~1.11! satisfies the classifying conditions~2.21!, ~2.36! iff it is
related by a point transformation of the formũn5anun1bn to one of two following chains:

un,t5Pn11
2 ~exp un112exp un21!1Pn

2~un112un21!, ~4.14a!
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un,t5Pn11
2 expS un112un21

an
D1Pn

2an11an21~un112un21!, ~4.14b!

with an5an1b, wherea andb are arbitrary constants.
To prove this theorem we consider at first the conditions~2.36!. As we have~3.4!,

pn
~1!5 log

] f n

]un11
5Pn11

2
„un111 log~gn1gn8!…1Pn

2 log ln , ~4.15!

p̃n
~1!5 logS 2

] f n

]un21
D5Pn11

2 ~un111 log gn8!1Pn
2 log ln , ~4.16!

then

r n
~1!5Pn11

2 Hn , Hn5 log~gn1gn8!2 log gn8 .

Hence

Pn11
2 Hn950, i.e., Pn11

2 Hn5anvn1bn , ~4.17!

where vn5un112un21 , and an , bn are somen-dependent constants. Consequently, we m
havean215an11 for all n. As a2k50 @see~4.17!#, anda2k215a2k11 , we have that

an5Pn11
2 a, ~4.18!

wherea is a pure constant. So, the conditionr n
(1);0 implies~4.17! and~4.18!. We find, moreover,

that

sn
~1!5cn1~D21!~aPn11

2 un21!;2aPn
2un ,

and as in this case] f n /]un50, thenr n
(2)5] tsn

(1) . Consequently,

r n
~2!;2aPn

2 f n52aPn
2lnun;2aPn11

2 ~ln212ln11!un ,

and the last condition gives, for alln,

aPn11
2 ~ln212ln11!50. ~4.19!

Let us pass over to the first canonical conservation law. It follows from~3.4! that this condition is
equivalent to the condition] t p̃n

(1);0. Sincep̃n
(1);Pn

2un1Pn11
2 log gn8 @see~4.16!#, then

] t p̃n
~1!;Pn

2f n1Pn11
2 ~ log gn8!8~ f n112 f n21!

;Pn
2lnvn1Pn11

2 ln11vn11~ log gn8!81Pn
2lnvn~ log gn118 !8.

Applying the operator]2/]un12]un21 to it, we obtain

Pn11
2 ln11~ log gn8!92Pn

2ln~ log gn118 !950,

which means that for alln we must have

Pn11
2 ~ log gn8!950, i.e. Pn11

2 log gn85cnvn1dn , ~4.20!

wherecn , dn are somen-dependent constants.
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By comparing~4.17! and~4.20! we obtain an explicit formula forgn . As for any functionun

the formulaPn11
2 exp(Pn11

2 un)5Pn11
2 expun is valid:

Pn11
2 gn85Pn11

2 exp~ log gn8!5Pn11
2 exp~Pn11

2 log gn8!,

and consequently from Eq.~4.20! we get

Pn11
2 gn85Pn11

2 exp~cnvn1dn!. ~4.21!

Using ~4.17! we are led to the following formula forgn :

Pn11
2 gn5Pn11

2 exp„~a1cn!vn1bn1dn…2Pn11
2 exp~cnvn1dn!. ~4.22!

Moreover, the consistency between~4.21! and ~4.22! implies that we must have

Pn11
2 ~11cn!5Pn11

2 ~a1cn!exp~avn1bn!,

from which it follows that

a~a21!50, ~4.23!

Pn11
2 ~11cn!a50. ~4.24!

Condition ~4.23! implies that eithera51 or a50. Let us, at first, consider the casea51.
Condition ~4.24! gives Pn11

2 cn52Pn11
2 , and then it follows from~4.19! that l2k5l2k225l,

wherel is a constant different from zero. Taking into account formula~4.22!, we get that the
obtained chain is of the form

un,t5Pn11
2

„exp~un111an!2exp~un211bn!…1~un112un21!Pn
2l,

wherean , bn are somen-dependent constants.
This chain can be further simplified, using simple point transformations. If we apply firs

transformationũn5(Pn11
2 l1Pn

2)un and thenũn5un1Pn
2an21 , we can reduce it to the form

un,t5Pn11
2

„expun112exp~un211gn!…1~un112un21!Pn
2,

wheregn are somen-dependent constants. Moreover, we have

] tpn
~2!;2Pn

2 exp~un!~12exp gn11!.

As Pn11
2 expgn5Pn11

2 for all n, the chain takes the form~4.14a!. There are no problems to chec
that all the five classifying conditions are satisfied for~4.14a!. Let us consider now the casea50.
It follows from ~4.22! that

Pn11
2 gn5Pn11

2 exp~cnvn1dn!~exp bn21!,

so that the function expbn21 cannot be zero for oddn, asgnÞ0. This means we can redefinedn

so that~1.11! takes the form

un,t5Pn11
2 exp@~11cn!un112cnun211dn#1~un112un21!Pn

2ln . ~4.25!

Let us notice that 11cn andcn are different from zero for alln, as~2.1! must be valid.
As in the previous case, the chain~4.25! can be simplified, using point transformations of t

form ũn5anun1bn , and we get the following chain:
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un,t5 f n5Pn11
2 exp

vn

an
1Pn

2bnvn , ~4.26!

wherevn5un112un21 andan , bn are somen-dependent constants different from zero for anyn.
To fix an and bn we will use two of the conditions~2.21! that will give us two other

constraints. It is easy to see thatpn
(1)5Pn11

2 (vn /an)1dn , and then

] tpn
~1!;unPn11

2 ~Bn212Bn11!, Bn5bnS 1

an21
2

1

an11
D ,

from which it follows that

Pn11
2 ~Bn212Bn11!50. ~4.27!

Now

qn
~1!5const1Pn

2 bn

an21
vn1Pn11

2 bn21

an
vn211Pn11

2 Bn21un1Pn
2Bnun21;2unPn11

2 An ,

An5
bn21

an22
2

bn11

an12
,

and thus

] tpn
~2!;2Pn11

2 An exp
vn

an
.

So we get the second constraint:

Pn11
2 An50. ~4.28!

Introducingb̃n such thatbn5b̃nan11an21 , we obtain from~4.28! that Pn
2b̃n5Pn

2b, whereb is a
constant different from zero. Therefore

Pn
2bn5bPn

2an11an21 . ~4.29!

Taking into account~4.27! and using~4.29!, we obtain

Pn11
2 ~an1222an1an22!50.

From this it follows that, forn odd,an will have the form

a2k215c~2k21!1d,

wherec, d are constants. As our chain~4.26! does not contain anyan with evenn, we can set
an5cn1d for all n.

The chain~4.26! with bn satisfying~4.29! has the form

un,t5Pn11
2 exp

vn

an
1bPn

2an11an21vn ,

i.e. coincides with~4.14b! up to the constantb. This constant, however, can be easily remov
using an obvious point transformation.

If we go over to the class~1.12!, we see that in case~4.14a!
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ek51, Gk512exp„~vk2vk21!2~vk112vk!…,

and this is nothing but the Toda model~1.6! for the functionvk . The chain~4.14b! is a new
example of integrable~andn-dependent! equation. In this case, the chain equation can be rewri
as, setting for semplicity,ck5a2k21!

vk,tt5exp@ck11~vk112vk!2ck21~vk2vk21!#. ~4.30!

It belongs to the class~1.12!, as

Gk~zk!5exp~dkzk!, dk5ck21ek , ck11ek112ck21ek51.

As ck is linear ink, Eq. ~4.30! can be written as

vk,tt5exp~ck11vk1122ckvk1ck21vk21!,

and by an obvious point transformation, we can remove theck and will have the potential Toda
equation:

vk,tt5exp~vk1122vk1vk21!, ~4.31!

which reduces to the Toda by the following transformation:

ṽk5vk112vk .

This implies that Eq.~4.30! is completely integrable.
~3! In the case of the classification problem~1.14! we present here just the final results.

integrability conditions~2.21!, ~2.36! are satisfied for a chain of the form~1.14!, then such a chain
up to a point transformation of the formũn5aun1bn , t̃5ct, must have the form

un,t5Pn11
2 S expS vn

an
D1

ln

an
D1Pn

2an11an21vn , ~4.32a!

where

vn5un112un21 , ~4.32b!

an5an1bÞ0, ;n, ln5gn1d. ~4.32c!

It turns out that there exists a complicated and not obvious transformation:

ũn5Pn11
2 en expS vn

en
D1Pn

2~en11un112en21un2122gt !, ~4.33!

which turns~4.32! into the polynomial Toda chain~1.7!. This shows that~4.32! is integrable. Two
of its three canonical conservation laws are nontrivial. More precisely,

pn
~1!;2arn

~1! , rn
~1!5

Pn
2

an11an21
un , pn

~2!;0,

pn
~3!;rn

~2!52Pn11
2 an expS vn

en
D1Pn

2~an11un112an21un21!2,

wherern
(1) andrn

(2) are densities of conservation laws of the orders 0 and 2.
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The chain~4.32! depends essentially on the spatial variablen, as point transformations do no
allow us to remove this dependence. This dependence is nonlinear~unlike local master
symmetries15!.

Local conservation laws of~4.32! are constructed using the transformation~4.33!, which is of
the form ũn5cn(un11 ,un21). If pn,t5(D21)qn is of ~1.7!, via ~4.33! we obtain a local conser
vation law of ~4.32!. As a result, we have local conservation laws of~4.32! of ordersm>3 ~we
already have written down two local conservation laws of the orders 0 and 2!. Indeed, let us
consider a conserved density of~1.7! of orderM ,

pn5pn~un1 i ,...,un1 j !, i 2 j 5M>1,

where ]2pn /]un1 i ]un1 jÞ0 for at least somen. Using ~4.33!, we are led to the conserve
density,

p̂n~un1 i 11 ,...,un1 j 21!5pn~cn1 i ,...,cn1 j !,

of ~4.32!. It is easy to see that, ifM>1, then

]2p̂n

]un1 i 11 ]un1 j 21
5

]2pn

]cn1 i ]cn1 j

]cn1 i

]un1 i 11

]cn1 j

]un1 j 21
Þ0, ;n.

Then the local conservation law of~4.32! is of the orderm5M12. So, the new chain~4.32! has
local conservation laws of an arbitrary high order. In general, these local conservation laws d
on the timet. If g50, the transformation~4.33! does not depend ont but, however, still depends
on n.

Let us rewrite Eq.~4.32! as a dynamical system. If we introduce

ũk5u2k1~ad2bg!t2,

and denoteck5a2k21 , we are led to an integrable~in the sense that we can construct solution!
lattice equation of the form~1.17!

uk,tt

ck11ck
5exp

uk112uk

ck11
2exp

uk2uk21

ck
, ck5ak1bÞ0, ;k. ~4.34!

Equation~4.34! can be reduced directly to the potential Toda equation~4.31! by the following
transformation:

uk

ckck11
5~D21!S vk

ck
1lkD .

Such a transformation is not invertible and transform point symmetries in potential symm
~i.e., it does not provide local conservation law!. One can see that the chain~4.34! is a direct and
very close generalization of the exponential Toda model. Surely it has physical application
in any case, this chain seems interesting in itself.

Let us now consider the following generalization of the discrete analog of the Kriche
Novikov equation~1.21!, ~1.22!, obtained by introducing into Eq.~1.22! arbitrary n-dependent
coefficients, i.e.

pn5anun
212bnun1gn , ~4.35a!

qn5b̃nun
21lnun1 d̃n , ~4.35b!
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r n5g̃nun
212 dnun1vn . ~4.35c!

Let us definef n , the rhs of~1.21!, as

f n5
Qn

vn
2

1

2

]Qn

]un11
5

Q̃n21

vn
1

1

2

]Q̃n21

]un21
,

wherevn5un112un21 is the denominator of~1.21!, and

Qn5un11
2 pn12un11qn1r n , Q̃n5pn11un

212qn11un1r n11 .

One can easily prove that

] tpn
~1!;2

Qn2Q̃n

vn11vn
1hn~un11 ,un ,un21!;0,

and consequently

Qn5Q̃n .

This condition can be rewritten as a condition for the coefficients appearing in the equatio
solution gives

an115an5a, ln115ln5l, vn115vn5v, ~4.36a!

bn125bn , gn125gn , dn125dn , ~4.36b!

b̃n5bn11 , g̃n5gn11 , d̃n5dn11 . ~4.36c!

As for this chain, the conditions

] tpn
~1!;] tpn

~2!;r n
~1!;r n

~2!;0,

are identically satisfied, we can say that it is integrable. We have conservation laws of the
2 and 3 with the following densities:

pn
~1!; log Qn22 log vn , pn

~2!;22
Qn

vn11vn
2

1

2

]2Qn

]un11 ]un
.

Transformations of the type

ũn5anUn , ũn5un1an , an125an ,

and

ũn51/un

~and, therefore, any linear–fractional transformation with two-periodic coefficients! do not change
the form~1.21!, ~4.35!, and the conditions~4.36!, but, in general, would allow us to remove on
one of three two-periodic constantsbn , gn , dn . This implies that one has written down a
integrable two-field extension of the Krichever–Novikov equation.
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V. CONCLUSIONS

In this paper we have constructed a set of five conditions necessary for the existence of
symmetries and conservation laws for differential difference equations of the class~1.1!. By
applying these conditions to a few subcases of particular interest, we have been able to pro
this class of equations contains new integrable nonlinear equations related to the Toda~1.7! or to
the discrete Krichever–Novikov equation~1.21!. In this way we have proved the validity of thes
conditions for stating the integrability of equations of the form~1.1!. We have, moreover, show
that these conditions are, in a certain sense, not only necessary but also sufficient as, w
they are satisfied the equation is integrable. So they can be used as a very convenient tes
integrability of equations of the form~1.1!. The explicit form of these conditions, presented in S
III, allows us to check them easily, even using a computer.

The complete classification of the equations of the form~1.1! is left to a future work together
with the extension of the method for the case of difference–difference equations, the exten
the class of symmetries from that of the restricted function to unrestricted ones and to the c
potential symmetries.

ACKNOWLEDGMENTS

The research of R.Y. is partially supported by grants from INTAS, Russian Foundatio
Fundamental Research and NATO—Royal Society Fellowship Program~NATO/JS/96A!. The
visits to Rome of R.Y. had been possible thanks to a fellowship from GNFM of CNR.

APPENDIX A: PROOF OF THEOREM 1

For a sufficiently high-order symmetry, i.e.i @1, the highest terms of

gn* 5(
k5 j

i

gn
~k!Dk,

will satisfy the following equation:

(
l 52

i

gn,t
~ l !Dl1(

k

i

(
m521

1

gn
~k! f n1k

~m!Dk1m2(
k

i

(
m521

1

f n
~m!gn1m

~k! Dk1m50, ~A1!

where the sum is over thosek such thatk1m.1, as otherwise the lhs of~A1! is different from
zero. In ~A1! the coefficients of any power ofD must vanish; so the highest coefficient, that
Di 11, reads as

gn
~ i ! f n1 i

~1! 2 f n
~1!gn11

~ i ! 50. ~A2!

As, due to~2.1!, f n
(1)Þ0, ;n, we have

gn
~ i !5 )

k5n

n1 i 21

f k
~1! , ~A3!

where we have, with no restriction, set to unity the arbitrary integration constant.
Let us consider now the coefficient ofDi ; this comes from more than one term~k5 i , m

50 or k5 i 21, m51! and involves the time evolution ofgn
( i ) . It can be cast in the following

form:
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gn,t
~ i !

gn
~ i !

5
gn11

~ i 21!

)k5n11
n1 i 21 f k

~1!
2

gn
~ i 21!

)k5n
n1 i 22f k

~1!
2~D21! (

k5n

n1 i 21

f k
~0! , ~A4!

from which we derive

] t log gn
~ i !5~D21!F gn

~ i 21!

)k5n
n1 i 22f k

~1!
2 (

k5n

n1 i 21

f k
~0!G . ~A5!

Introducing~A3! onto the lhs of~A5!, we get

] t log )
k5n

n1 i 21

f k
~1!5 (

k5n

n1 i 21

] log f k
~1!; i ] t log f n

~1!;0 c.v.d.

APPENDIX B: PROOF OF THEOREM 2

From Theorem I, we deduce that we have an approximate symmetry of orderi 51,

Gn5gn
~1!D1gn

~0!1gn
~21!D211gn

~22!D221••• , ~B1!

where, from~A3!,

gn
~1!5 f n

~1! . ~B2!

Instead of~A5! we have

] t log f n
~1!5~D21!~gn

~0!2 f n
~0!! ~B3!

@see the coefficient ofD in the equationA(Gn)50 with A defined by~2.14!#. Consequently, the
function on the rhs of the first canonical conservation law is

qn
~1!5gn

~0!2 f n
~0! ,

from which we get

gn
~0!5 f n

~0!1qn
~1! . ~B4!

Let us now consider the coefficient ofD0 in the equationA(Gn)50:

] tgn
~0!5~D21!@ f n21

~1! ~gn
~21!2 f n

~21!!#. ~B5!

Equation~B5! is the second canonical conservation law with the lhs given by~B4!:

pn
~2!5gn

~0!5 f n
~0!1qn

~1! , qn
~2!5 f n21

~1! ~gn
~21!2 f n

~21!!. ~B6!

From ~B6! we get

gn
~21!5 f n

~21!1qn
~2!/ f n21

~1! . ~B7!

This last relation is obtained in a simpler way using the following lemma.
If Hn5hn

( i )Di1hn
( i 21)Di 211••• is an approximate symmetry, which satisfies the firstm> i

12 terms of the equationHn,t5@ f n* ,Hn#, then

res~Hn![hn
~0! , ~B8!
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will be a conserved density.
In fact,

] t res~Hn!5res~Hn,t!5res@ f n* ,Hn#. ~B9!

The coefficient ofD0 of @ f n* ,Hn# can be obtained only from terms of the type

@r nDm,snD2m#,

which are equivalent to zero.
As any power of an approximate symmetry is also an approximate symmetry of the

length, we can construct a new conserved density, calculating the residue ofGn
2. In such a case

after a long but straightforward calculation, we get

res~Gn
2!5res@~gn

~1!D1gn
~0!1gn

~21!D211••• !2#

5gn
~1!gn11

~21!1~gn
~0!!21gn

~21!gn21
~1! ;2gn

~1!gn11
~21!

1~gn
~0!!2;2qn

~2!1~pn
~2!!212 f n

~1! f n11
~21!52pn

~3! .

As, from the previous lemma,] t resGn
2;0,

] tpn
~3!;0 c.v.d.

APPENDIX C: PROOF OF THEOREM 3

Let us assume that we have a solution of

] tSn1Sn f n* 1 f n*
TSn50, ~C1!

whereSn is an approximate conserved density,

Sn5 (
k5N2m11

N

sn
~k!Dk, ~C2!

of order N>3 and lengthm>2. In such a case, introducing~C2! into ~C1!, the coefficient of
DN11 in ~C1! reads as

sn
~N! f n1N

~1! 1 f n11
~21!sn11

~N! 50. ~C3!

As f n
(61)Þ0 for anyn, it follows thatsn

(N)Þ0 for anyn. Then we get

2 f n1N
~1! / f n11

~21!5sn11
~N! /sn

~N! , ~C4!

and thus, by taking the logarithm of both sides, we are led to

r n
~1!5 log@2 f n

~1!/ f n
~21!#. ~C5!

From ~C4! and ~C5! we get

sn
~N!5 s̃n11f n11

~1! f n12
~1! ••• f n1N21

~1! , ~C6!

wheres̃n is such that

s̃n f n
~1!1 f n

~21!s̃n1150. ~C7!
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The coefficient at orderDN of ~C1! gives

] t log ~ s̃n11f n11
~1! ••• f n1N21

~1! !1 f n
~0!1 f n1N

~0! ;0,

from which

~N21!] t log f n
~1!1] t log s̃n12 f n

~0!;0.

As condition~2.18! is satisfied, and logs̃n5s̃n
(1) @compare~C7! and the first of the conditions

~2.32!#, we are led to

r n
~2!5] ts̃n

~1!12 f n
~0! c.v.d.
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The role of information measures in the determination
of the maximum entropy-minimum norm solution
of the generalized inverse problem
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We discuss here the role of different information measures vis-a-vis the maximum
entropy-minimum norm method of Baker Jarviset al. ~BJ! for dealing with under-
determined inverse linear transforms. It is shown that the structure of the approxi-
mate solutions provided by the BJ approach does not depend upon the functional
form of the information measure. ©1997 American Institute of Physics.
@S0022-2488~97!02011-2#

I. INTRODUCTION

A new maximum entropy scheme for solving ordinary and partial differential equations
been recently introduced by Baker-Jarvis and his collaborators.1–3 The main feature that distin
guishes the BJ method from other maxent approaches is that the approximate solution
regarded as a probability distribution whose entropy is maximized. Instead, after an appro
discretization, the space of possible solutions is endowed with a probability distribution
approximate solution to the differential equation is then identified with a suitable mean value
the maxent probability distribution compatible with the constraints imposed by the pre
known partial information. The BJ leit motif is the consideration of an statistical ensemble
which an appropriately devised probability distribution ‘‘weights’’ the ensemble members so
averages agree with the scarce data supply. In any statistical ensemble the nature of the i
tion measure~IM ! plays a critical role and Shannon’s IM is the conventional choice.4,5

Nowadays, however, for a variety of physical reasons much work has been devoted
exploration of alternative or generalized information measures, based upon entropy func
different form the standard Boltzmann-Gibbs-Shannon-Jaynes entropy.4 Despite its great overal
success, this orthodox formalism is unable to deal with a variety of interesting physical pro
such as the thermodynamics of self-gravitating systems, some anomalous diffusion phen
Levy flights and distributions, and turbulence among others~see Ref. 4 for a more detailed list!.
The approach of Jaynes to statistical mechanics5,6 is also compatible with the possibility of build
ing up a thermostatistics starting with a nonlogarithmic entropy. In a similar vein, Tsallis
introduced a family of generalized IM’s~or generalized entropies!,7 namely,

Sq5
12*@ f ~x!#qdx

q21
, ~1!

a!Permanent address: Facultad de Ciencias Astrono´micas y Geofı´sicas de la Universidad Nacional de La Plata, C. C. 7
1900 La Plata, Argentina.

b!Electronic mail: hmiller@scientia.up.c.za
c!Electronic mail: plastino@venus.fisica.unlp.edu.ar
0022-2488/97/38(12)/6675/8/$10.00
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whereq is a real parameter characterizing the entropy functionalSq , and f (x) is a probability
distribution defined forxPRN. In the limiting caseq→1 the standard logarithmic entropy,S15
2* f (x)lnf(x)dx, is recovered.

The Tsallis entropy preserves or suitably generalizes the relevant features of the Boltz
Gibbs entropy.7,8 It has been shown to be compatible with the information theory foundation
statistical mechanics of Jaynes9 and with the dynamical thermostating approach to statist
ensembles.10 Increasing attention is being devoted to exploring the mathematical properti
Tsallis formalism.11–15

The Tsallis formalism has already been applied to astrophysical self-gravitating system16–18

cosmology,19 the solar neutrino problem,20 Lévy flights and distributions,21–23 turbulence
phenomena,24,25 simulated annealing and other optimization technics,26 etc. The interested reade
is referred to Ref. 4 for additional references.

Other alternative measures of entropy or information have also been successfully app
different areas of theoretical physics. For instance, Renyi information is a very useful tool
study of chaotic dynamical systems.27 However, it lacks a definite concavity, crucial for th
discussion of thermodynamical stability. Tsallis entropy, on the other hand, does exhibit su
important mathematical property, and was thus historically the first one~besides the standar
Boltzmann-Gibbs! employed to develop an entirely consistent Statistical Mechanics formalis

It has been recently shown that general thermostatistical formalisms based on max
entropy principles share some important universal properties.28,29In particular, the Legendre trans
form structure relating relevant mean values with their concomitant Lagrange multipliers, w
constitutes the basis of the connection between statistical mechanics and thermodynamic
not depend on the specific form of the entropy functional.28

The aim of the present paper is to study the above mentioned BJ ensemble~employed in the
maximum entropy-minimum norm method for the solution of inverse problems! in order to as-
certain the precise role of the information measure in the workings of such an approach
should be of interest in order to clarify the meaning of the ensemble, identifying what ar
essential assumptions required in order to obtain the minimum norm solution from an en
variational principle.

It will be shown that the BJ ensemble approach is very robust:It does not depend upon th
specific form of the entropy functional employed.

The paper is organized as follows. In section II we give a brief review of the concepts ne
for building up our ensemble. The main results of this work are given in section III, where the
of the generalized information measures is considered. In section IV the particular case of
entropy is analyzed as an illustrative example. Our main conclusions are drawn in section

II. THE ENSEMBLE APPROACH TO UNDER-DETERMINED LINEAR PROBLEMS

Following BJ we consider a differential equation

L1V~r !5C~r !, ~2!

whereL1 is a general linear differential operator,V(r ) is function ofr andC(r ) is a source term.
Multiplying the differential equation by appropriate moment functionsf n (n51, . . . ,M ) and
integrating over the solution region yields,

E
2`

1`

f n@L1V~r !2C~r !#dr50. ~3!

After integration by parts and use of the boundary conditions, we arrive at
J. Math. Phys., Vol. 38, No. 12, December 1997
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E
2`

1`

an~r !V~r !dr5An , ~4!

whereAn contains information on the boundary conditions and C~r !.
We now discretize the problem, introducing the solution vectorV

V5~V1 , . . . ,VN! t, ~5!

such that the discretized form of the moment equation is given by

BV5A. ~6!

Now, in generalN.M , and we are faced with an under-determined linear inversion prob
Many distinct solution vectors,V, can be found which comply with the ‘‘constraints’’ contained
A.

Let us focus our attention upon the linear set~6!. Assume that we can construct a statistic
ensemble with all the possible~distinct! vectorsV. Each such vector populates this ensemble
such a manner that one can characterize it with an unknown~at this stage! probability distribution
P(V). The crucial BJ idea is to reinterpret~6! in the following way:

B^V&5A, ~7!

where the mean values^V& are evaluated with the probability distributionP(V) ~defined on the
space of possible solution vectorsVPRN). The maximum entropy principle will be used t
determine the best choice for the solution vector. In other words, we shall determineP(V) such
that the ensemble information measure is maximized and with this probability distribution we
construct a solution vector with components^Vi& ( i 51, . . . ,N). In order to guarantee that th
integrals over the probability distribution are well defined an additional constraint on the no

^VV t&5(
i

^Vi
2&. ~8!

is introduced. The maxent prescription of Jaynes used by BJ entails maximizing Shannon
tropy

S52E
2`

1`

P~V!lnP~V!dV, ~9!

with the constraints imposed by normalization, the linear relations between the mean value^V i&
~eq.~ 7!!, and the mean valuêV2& ~eq.~8!!. Lagrange multipliersa, l i andb associated with the
normalization, thê V i& and ^V2&, respectively are introduced. It is easy to see that the resu
variational problem is amenable to an exact, analytical treatment and one finds1

^V&52
G

2b
, ~10!

where

G†5l†B ~11!

andl is a vector containing the Lagrange multipliersl i .
The above relations imply that the BJ maxent solution coincides with the minimum n

solution given by1
J. Math. Phys., Vol. 38, No. 12, December 1997

                                                                                                                



od to

6678 Plastino et al.: Maximum entrophy-minimum norm solution

                    
^V&5B†~BB†!21A. ~12!

III. THE ROLE OF THE INFORMATION MEASURE

A. Standard mean values

Consider now generalized information measures of the form

S@P#5E
2`

1`

f ~P!dV. ~13!

As in the particular case of the logarithmic entropy, we use the Lagrange multipliers meth
take into account the relevant constraints. Introducing the quantity

I 5E
2`

1`H f ~P~V!!2aP~V!2(
j 51

N

G jVj P~V!2b(
j 51

N

Vj
2P~V!J dV, ~14!

the variational principle adopts the form

dI 5E
2`

1`

dPH f 8~P!2a2(
j 51

N

G jVj2b(
j 51

N

Vj
2J dV50. ~15!

Let g(x) now be the inverse function of the derivative off (x),

g@ f 8~x!#5 f 8@g~x!#5x. ~16!

The solution of the variational problem~15! is then given by

PMaxEnt~V!5gS a1(
j 51

N

G jVj1b(
j 51

N

Vj
2D . ~17!

The main quantities, the mean values of theVi ’s, are now

^Vi&5E
2`

1`

VigS a1(
j 51

N

G jVj1b(
j 51

N

Vj
2D dV. ~18!

In order to evaluatêVi& we make the following change of variables

Xj5AbVj1
G j

2Ab
, ~19!

so that the maxent distribution is now given by

PMaxEnt~V!5gS a2(
j 51

N
G j

2

4b
1(

j 51

N

Xj
2D , ~20!

and the normalization condition is

E
2`

1`

gS a2(
j 51

N
G j

2

4b
1(

j 51

N

Xj
2D dX5bN/2. ~21!

In terms of the new variables the mean value ofVi is
J. Math. Phys., Vol. 38, No. 12, December 1997
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^Vi&5b2N/2E
2`

1`F Xi

Ab
2

G i

2bGgS a2(
j 51

N
G j

2

4b
1(

j 51

N

Xj
2D dX. ~22!

From parity considerations it is easy to see that the mean value ofXi vanishes and we therefor
obtain

^Vi&52
G i

2b
. ~23!

Hence the relation between the mean values^Vi& and the Lagrange multipliers does n
depend on the specific functional form of the entropy. This fact, in turn, implies that the mini
norm solution is also a universal consequence of the BJ approach.

B. Generalized mean values

In some cases it is convenient to introduce generalized mean values, non-linear in the
abilities,

^Vi&5E
2`

1`

Vih@P~V!#dV, ~24!

whereh@P(V)# is an appropriate function of the probability distributionP(V). As an important
example of non-standard mean values we have Tsallis’ generalized mean values8,13,23~see section
IV !, that are given by

^Vi&q5E
2`

1`

Vi@P~V!#qdV. ~25!

Following the same reasoning as before we introduce the quantity

I 5E
2`

1`H f ~P~V!!2aP~V!2(
j 51

N

G jVjh@P~V!#2b(
j 51

N

Vj
2h@P~V!#J dV, ~26!

and consider the concomitant variational problem

dI 5E
2`

1`

dPH f 8~P!2a2(
j 51

N

G jVjh8@P#2b(
j 51

N

Vj
2h8@P#J dV50, ~27!

whose solution will, in general, be of the form

PMaxEnt~V!5gS a;(
j 51

N

G jVj1b(
j 51

N

Vj
2D . ~28!

It is easy to see that in this case the relevant mean values are of the form

^Vi&52d
G i

2b
, ~29!

where

d5b2N/2E
2`

1`

h@g#dX. ~30!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The relation between the mean values and the Lagrange multipliers is now more comp
than in the previous case. However, sinced is the same for all theVi ’s, we again arrive at the
minimum norm solution. We have thus proved the remarkable fact that the maxent derivat
the minimum norm solution is still valid even for non-linear generalized mean values.

IV. EXAMPLE: TSALLIS MAXENT FORMALISM

The Tsallis entropy is given by

Sq@P#5E
2`

1`12Pq~V!

q21
dV, ~31!

and the Tsallis generalized mean values are of the form

^Vi&q5E
2`

1`

Vi P
q~V!dV. ~32!

In the Tsallis formalism, the BJ maxent distribution is given by

PMaxEnt~V!5
1

Zq
S 12~12q!(

j 51

N

G jVj2~12q!b(
j 51

N

Vj
2D 1/~12q!

, ~33!

where the generalized partition function is

Zq5E
2`

1`S 12~12q!(
j 51

N

G jVj2~12q!b(
j 51

N

Vj
2D 1/~12q!

dV. ~34!

In what follows we will assumeq,1. In that case Tsallis’ distribution is required to vani
~the so called Tsallis’ cut-off condition7,8! when

12~12q!(
j 51

N

G jVj2~12q!b(
j 51

N

Vj
2,0. ~35!

The partition function can be cast in the form

Zq5b2N/2~12q!2N/2~11~12q!C!1/~12q!1N/2E S 12(
j 51

N

Wj
2D 1/~12q!

dW, ~36!

where

W5S ~12q!

11~12q!CD 1/2S AbV1
G

2Ab
D , ~37!

C5(
j 51

N
G j

2

4b
, ~38!

and the integration is performed over the volume inside theN-dimensional sphere of unit radiu
~Tsallis’ cut-off requirement!. In order to evaluate this integral it is convenient to use spher
coordinates in theW space

~W1 , . . . ,WN!→~w,u1 , . . . .uN21!. ~39!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The angular part can be integrated immediately yielding

Zq5
2pN/2

G~N/2!
@~12q!b#2N/2@11~12q!C#1/~12q!1N/2E

0

1

w~N21!~12w2!1/~12q!dw, ~40!

With the change of variablesw5cosf, the integral overw can be written as

E
0

p/2

cosN21f sin~32q!/~12q!fdf5
1

2
GS N

2 D G@~22q!/~12q!#

G@N/21~22q!/~12q!#
, ~41!

such that the partition function is simply

Zq5S p

~12q!b D N/2F11~12q!(
j 51

N
G j

2

4bG1/~12q!1N/2
G@~22q!/~12q!#

G@N/21~22q!/~12q!#
. ~42!

We now introduce Jaynes parameter9

lJ5
Zq

12q21

12q
, ~43!

which plays, within the Tsallis generalized context, the role usually assigned to the logarith
the partition function. It can be shown that the mean values are related tolJ by9

^Vi&q52
]lJ

]G i
, ~44!

so that we finally obtain

^Vi&q52d
G i

2b
, ~45!

where

d5S 11~12q!
N

2 D F p

~12q!b G ~12q!N/2H G@~22q!/~12q!#

G@N/21~22q!/~12q!#J
12q

3F11~12q!(
j 51

N
G j

2

4bG ~12q!N/2

. ~46!

V. CONCLUSIONS

The BJ method for solving inverse problems has been investigated with regard to dif
possibilities of measuring the information content. The method transforms the under-deter
linear inverse problem into one of statistical inference by considering a statistical ensembl
taining all admissible solutions and a probability distribution that weights their relative ense
population. The maximum entropy principle is then used as a decision criterium to se
solution, consistent with the given data, which is maximally non-committed with respect t
lack of information. The question we have investigated in detail is that of determining what
different information measures play in the BJ approach. We conclude that the maxent
obtained by BJ with a Boltzmann-Gibbs-Jaynes logarithmic entropy can be generalized and
to be independent of the entropy functional used.
J. Math. Phys., Vol. 38, No. 12, December 1997
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It is worthwhile to stress that the minimum norm solution is obtained even when non-sta
mean values are employed. However, it should be noted that this is only the case when a qu
constraint of the form given by eq.~8! is used to guarantee that integrals involving the max
probability distribution are well defined. In this case the necessary Lagrange multipliers can
be determined and one always obtains, in straightforward manner, the minimum norm so
Hence, within the BJ approach, the quantities whose mean values are chosen as constrain
maxent variational prescription play a more essential role than that assigned to the inform
measure.

The present considerations allow one to conclude that, as in the case of the Legendre
form structure,28 the minimum norm solution isanotheruniversal feature of the maximum entrop
formalism.
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Uq„e„3,1…… and Uq„e„N…… and the representation
theory of Uq„e„3……

Sebastian Sachse
Departamento de Matema´tica Pura, Instituto de Matema´tica e Estatı´stica,
Universidade de Sa˜o Paulo, Rua do Mata˜o 1010, 05508-900 Butanta,̃ S.P., Brazil

Ralf Weixler
Sektion Physik der Universita¨t München, Lehrstuhl Professor Wess, Theresienstrasse 37,
D-80333 München, Germany

~Received 30 January 1997; accepted for publication 31 July 1997!

We construct the Hopf algebras ofUq„iso(N)… andUq„iso(3,1)… as regular func-
tionals on their function algebras, examine the possible* -involutions on these
objects, derive the quantized Euclidean algebrasUq„e(N)…, and finally give the
irreducible representations ofUq„e(3)… depending on two parameters which fix the
value of the Casimir operators. ©1997 American Institute of Physics.
@S0022-2488~97!01611-3#

I. INTRODUCTION

In the framework of quantum groups~for conventions used in this article, see Ref. 1! there
have been several suggestions for a generalization of Euclidean symmetry inN dimensions2,3 and
the Poincare´ algebra.4 For all deformations with a real deformation parameter two main obsta
persist. The first one consists in a scalar operator which invokes dilatations and seems
indispensable at least for the representation theory.5 The second problem lies in the doubling
space dimensions as soon as a star structure of the Hopf algebra is considered.~For a unimodular
parameter the situation does not seem to be any better since, even for the homogeneous
bras, no Hilbert space representation could be found.6!

Both bugs are connected to the coproduct structure and could be neglected on a
algebraic level. However, this would not allow us to consider anything other than single-pa
systems. Hence there has been some work devoted to curing the difficulties by modifyin
* -Hopf algebra structure. This work has just been started,2,3,5and no convincing solution has bee
proposed.

We as well are pointing out our point of view, which might give an idea how to proc
towards a solution.

In Sec. II we summarize the Hopf algebra structure of the function algebrasAI of q-Euclidean
groupsISOq(N). Then we construct the universal enveloping algebrasUq„iso(N)… dual toAI as
its regular functionals. Notice that only with additional conditions will we have the identityAI9
5AI ~8 designates the dual object!. This can be obtained by taking the Pontryagin dual o
C* -algebra~see as an example Ref. 7!. Therefore Hilbert space representations ofISOq(3) have
been given in Ref. 8. However, we do not proceed here in this direction but rather perfor
dualization on a purely algebraic level by considering left invariant operators on the fun
algebra. This corresponds to the well-known fact that left invariant vector fields on a Lie g
generate its Lie algebra. We discuss as well the Casimir elements of the universal enve
algebras.

In the last section we give the irreducible Hilbert space representations ofUq„e(3)…. As we
are dealing with a noncompact algebra we necessarily obtain faithful representations whi
infinite dimensional. Like in conventional space–time, particles existing in such quantum s
have to be attached to such representations. In this respect these representations have s
0022-2488/97/38(12)/6683/9/$10.00
6683J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics
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nificance for the behavior of quantum systems inq-deformed Euclidean space~see, for instance
Ref. 9!.

II. THE * -HOPF ALGEBRA STRUCTURE OF INHOMOGENEOUS QUANTUM GROUPS

A. Function algebras

To constructUq„iso(N)… and theq-Poincare´ algebra we start with the function algebra
SOq(N) andSOq(3,1). The noncommutative algebra structure is controlled by anR̂-matrix ful-
filling the quantum Yang–Baxter equationR̂12R̂23R̂125R̂23R̂12R̂23. We refer toR̂-matrices for the
seriesBn andCn in their standard form given in Ref. 1 or forSOq(N) in Ref. 10. They are defined
by their projector decomposition, making use of the antisymmetrizerÂq

i j
kl , the symmetrizerŜq

i j
kl ,

and the trace projectorT̂q
i j

kl}Ci j Ckl with the metricCi j .

R̂i j
kl5qŜq

i j
kl2q21Âq

i j
kl1q12NT̂q

i j
kl . ~1!

The algebra relations for the generatorsMi
j of the unital C-algebraA are expressed by th

invariance of these projectors:

R̂i j
j 8 i 8M

j 8
j 9M

i 8
i 95Mi

i 8M
j
j 8R̂

i 8 j 8
j 9 i 9 ~2!

and

Ci j M
i
i 8M

j
j 85Ci 8 j 81. ~3!

In order to obtain inhomogeneous quantum groupsISOq(N), the set of generators has to b
enlarged not only by the coordinate functionsxi obeying the relationsxixj Âq

i j
kl , but by an invert-

ible scaling operatorw as well. Its existence is required by consistency of the comultiplicat
The additional algebra relations of the extended Hopf algebraAI are11,12

~i! xiM
j
k5M j

lxmR̂lm
ik , ~iv! wMi

j5Mi
jw,

~ii ! w̄w51, ~v! w̄xi5qxiw̄,

~iii ! w̄M i
j5Mi

jw̄, ~vi! wxi5
1

q
xiw.

~4!

The comultiplicationF: AI→AI
^AI , counit e: AI→C, and the antipodek : AI→AI are very

easily given in matrix notation.
With

MI5S wM 0

x 1D ~5!

it is

F~MI !5MI
^̇ MI ~6!

and

e~MI !5S E 0

0 1D ~7!

with the unity matrixE.
The antipode is given as
J. Math. Phys., Vol. 38, No. 12, December 1997
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k~MI !5S k~M !w̄ 0

2xk~M !w̄ 1D . ~8!

B. Universal enveloping algebras

The connection to the enveloping algebra is being made by dualizingAI . We want to sum-
marize the results from Ref. 2 which are analogous to those of Ref. 13.

The algebra of generators$L6 i

j ,pi ,h%, 1< i , j <N, is the Hopf algebra of linear functional
of the corresponding inhomogeneous quantum group with comultiplicationD, counit«, and anti-
podeS. The algebraic relations are

~i!
~ii !
~iii !

R̂6 i j
i 8 j 8L

6 j 8
nL6 i 8

m5L6 j
j 8L

6 i
i 8R̂

6 i 8 j 8
mn ,

R̂6 i j
i 8 j 8L

1 j 8
nL2 i 8

m5L2 j
j 8L

1 i
i 8R̂

6 i 8 j 8
mn ,

L6 i
j p

k5R̂7ki
lmpmL6 l

j ,

~iv! Âq
i j

klp
lpk50,

~v! hL6 i
j5L6 i

jh,
~vi! hp5q21ph.

~9!

The coproduct is

DL6 i
k5L6 i

j ^ L6 j
k , Dh5h^ h,

~10!

Dpi5L2 i
j ^ pj1pi

^ h.

Counit « and antipodeS follow from the axioms of a Hopf algebraH. For eachaPH

~« ^ id!Da5~ id^ «!Da5a ~11!

leads to

«~L6 i
j !5d j

i , «~p!50, e~h!50. ~12!

The antipode is determined by

“~S^ id!Da5“~ id^ S!Da5h«~a!, ~13!

where“ designates the algebra multiplication to be

S~L6 i
l !5ClkL6k

jC
ji , S~h!5h21, S~pi !52S~L2 i

j !p
jh21. ~14!

We designate these Hopf algebras withUq(AI) with AIP$ iso(N),iso(3,1)%. MoreoverAI and
Uq(AI) are dual pairs of Hopfalgebras with the pairing bracket^•,•&:

^L6 i
j ,Mk

l&5R̂6 ik
l j , ^pi ,Mk

l&50, ^h,Mi
j&5d j

i ,

^L6 i
j ,xm&50, ^pi ,xj&5d j

i , ^h,xi&50, ~15!

^L6 i
j ,w&5d j

i , ^pi ,w&50, ^h,w&5q.

The scalar generatorh appears necessarily in the coproduct of the momentapi in order to preserve
relation ~9! ~iv! under comultiplication.

For the remainder of this paragraph let us consider compact quantum groupsA only. Follow-
ing the arguments of Refs. 14–16 we define a vector operator of the contragradient corep
tation to be a set ofn operators,n being the dimension of a corepresentationui j

(a) of A, which is
carrying a left regular right coaction given byt+(k ^ id)+dA . Let u5(aui j

a be the direct sum of
irreducible matrix representations ofA in the sense defined by Ref. 17. Then
J. Math. Phys., Vol. 38, No. 12, December 1997
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Adu~pk!5u~pk!u* 5pl
^ k~ukl! ~16!

and together with~15! we obtain the leftA8-module structure

L6 i
j~pk!5L6 i

j„k~Mk
l !…p

l5R̂7ki
jmpm. ~17!

This envokes the mixed commutation relation

L6 i
j~pka!5R̂7ki

nmpmL6n
j~a!, aPMPA8M. ~18!

Vector operators of the fundamental corepresentation form comodule algebras by
q-symmetric orq-antisymmetric commutation relations. For this reason the algebraic relation~9!
~iii ! and ~iv! are compatible. This can be seen from

L6 i
j~pkpl !Aq

nm
lk5pkplR̂7k8 i

i 8kR̂
7 l 8 i 8

j l Âq
nm

l 8k85pkplÂq
n8m8

lkR̂7mi
i 8m8R̂

7ni8
jn850. ~19!

The generatorsl of Uq„iso(N)… are shown to be left invariant on the corresponding funct
algebraAI by the actionDl :AI→AI :

Dl~a!5~ id^ l !F~a!, aPAI ,

since it obeys

~ id^ Dl !F~a!5FDl~a!, ; l PUq„iso~N!….

C. Complex conjugation

There are several possibilities in defining a*-structure on a Hopf algebra. The most conv
nient form is an antilinear, antimultiplicative involution which is in addition a coalge
homomorphism.11,12

For the function algebras of Euclidean type it is given as follows:

w* 5w̄, ~Mi
j !* 5k~M j

i !, ~xi !* 5 x̄i . ~20!

The coordinate functions cannot be chosen to be real. The*-operation on the function algebraA
induces naturally a complex structure on its dual spaceA8 which is formed by the elements of th
universal envelop via

F * ~a!5F „k21~a* !… for aPA, F PA8. ~21!

~In Refs. 17 and 18k has been used instead ofk21, which are completely isomorphic.! Thus we
obtain

~L6 i
j !* 5S~L7 j

i !. ~22!

Then from the coproduct ofpi it becomes evident that for the momenta as well no rea
condition is possible in a natural way. We have to admit conjugated momenta

p̄i :5~pi !* , ~23!

with coproduct, counit, and antipode

D p̄i5S~L1 j
i ! ^ p̄ j1 p̄i ^ h,

~24!

e~ p̄i !50, and S~ p̄i !52L1 j
i p̄ jh

21.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The scalar generator turns out to be Hermitian:

h* ~w!5h~w!5q. ~25!

The commutation relations with the second set of momenta are

~i! L6 i
j p̄n5 p̄mL6k

j R̂
7 im

nk , ~iii ! hp̄i5qp̄ih,

~ii ! p̄i p̄ j Âq
i j

mn50, ~iv! pi p̄j5qp̄kp
lR̂ik

j l .
~26!

Now the pairing is completed by

^pi ,x̄n&52q~N21!Cni, ^ p̄i ,xn&5Cni , ^ p̄i ,x̄n&52q~N21!CimCnm. ~27!

All other pairing brackets vanish. Together with the*-operation we obtain the*-Hoft algebras
Uq* (AI). We have mentioned that they cannot be considered to be satisfactory deformati
classical Euclidean Lie algebras. If, however, we are interested in the representation the
single particles, we are free to take into account only a projection ofUq* (AI) without coproduct
which we will call Uq„e(N)… or Uq„(e(3,1)…, respectively. The corresponding subalgebras
Uq(AI) are generated by the set$L6 i

j ,pi% and we are allowed to impose the reality condition

~pi !* 5Ci j p
j . ~28!

Since the scalar operator did show up on the coproduct level, only it can be omitted fo
definition of Uq„e(N)… andUq„e(3,1)….

D. Comment on a unitary scalar operator

It is equally possible to findUq* (AI)s in which the scalar operatorh is unitary. Then the scala
operator of the corresponding function algebra has to be chosen Hermitic. All relations in tha
are the same as above except for the coproduct~24! and relations~26! ~iii ! and ~iv!

D p̄i5S~L1 j
i ! ^ p̄ j1 p̄i ^ h21,

~29!

~iii ! hp̄i5q21p̄ih, ~iv! pi p̄j5q21p̄kp
lR̂ik

j l .

The new aspect for this setting is that in the case ofUq* „ISOq(3,1)…, it is possible to impose~28!
on the representations of light cone momenta~i.e., Ci j p

j pi50! since

pipmCnm5q21R̂ni
n8 i 8p

i 8pn8Cjn2
q12N21

QN
Cklp

lpkd n
i . ~30!

In spite of the problems described above it should be possible to find representations for m
particles~even for systems of more then one massless particles! in which momenta have rea
expectation values.

E. Casimir operators

We find two Casimir operators forUq„e(N)… andUq„(3,1)… and one for the*-Hopf algebras
Uq* (AI). For the first group they are

p25Ci j p
j pi ,
J. Math. Phys., Vol. 38, No. 12, December 1997
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w25ClkCnmL2k
iL

1m
jC

ji pnpl2
q

@2#q
L2p2, ~31!

with q-numbers

@n#q5
qn2q2n

q2q21 ,

andL2 designates the Casimir of the corresponding homogeneous subalgebra. Forp2 this follows
directly from the commutation relations~9! whereas for the second Casimir we find for its co
muting with the momenta

paClkCnmL2k
iL

1m
jC

ji pnpl5CvkCsmL2k
iL

1m
jC

ji R̂21rs
ntR̂

qv
lr p

tpnpl

5ClkCnmL2k
iL

1m
jC

ji pnplpa1
q2q21

@11q2N#q

3 ~qN21ClkL2a
iL

1k
jC

ji pl2q12NClkL1a
iL

2k
jC

ji pl !p2, ~32!

and with the Hecke relation

R̂i j
kl2R̂21i j

kl5~q2q21!~d k
i d l

j2Ci j Ckl!, ~33!

we find

paL25L2pa1~q2q21!~CklL
1 i

j p
lL2k

mCm j1ClkL1k
mplL2 i

jC
jm!

5L2pa1~q2q21!~qN21ClkL2a
iL

1k
jC

ji pl2q12NClkL1a
iL

2k
jC

ji pl !. ~34!

They are called theq-length or mass operator and the ‘‘q-Pauli Lubanski’’ operator. ForUq* (AI)
the Casimir operator has the form

p45h22Ci j p
j piCnmp̄mp̄n . ~35!

A deformed ‘‘q-Pauli Lubanski’’ operator is still missing in this case.

III. THE IRREDUCIBLE REPRESENTATIONS OF Uq„e„3……

As discussed previously theN-dimensional momentum spacepi provides a modul algebra o
each correspondingUq„e(N)…. It forms a vector operator for the universal enveloping algebra
its matrix elements are given~by the q-version of Wigner Ekkard theorem! as the product of
reduced matrix elementŝl 8upu l &, where l 85 l 61, l and deformed Clebsch Gordan coefficien

@ i
1

m
l

m1 i
l 8 #q . The reduced matrix elements depend on the minimal angular momentum occurr

the representation which as usual can be interpreted as the particle’s spin and the value op2.
The algebraic relations forUq„e(N)… in explicit form are withS15L11

2 , S25L23
2 , K

5L11

1 for the homogeneous part

q21/2S1S22q1/2S2S15~q2q21!~12K2!
~36!

S1K5q21KS1, S2K5qKS2.

The classical amngular momenta are obtained in the limit
J. Math. Phys., Vol. 38, No. 12, December 1997
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L65 lim
q→1

A@2#

q2q21 S6, K5q2H.

The mixed relations are

S1p15q21p1S1, S1p05p0S12~q2q21!p1 ,

S1p25qp2S1q1/2~q2q21!p1 ,

S2p15q21p1S22q21/2~q2q21!p0 , ~37!

S2p05p0S21~q2q21!p2 , S2p25qp2S2,

Kp15q21p1K, Kp05p0K, Kp25p2K,

and for the covariant momenta

p1p25p2p11~q1/22q21/2!p0
2,

~38!

p1p05q21p0p2 , p2p05qp0p2 .

The metricCi j which enters the reality condition~28! is in the basis (p1 ,p0 ,p2)

Ci j 5S 0 0 q21/2

0 1 0

q1/2 0 0
D . ~39!

The subalgebra of angular momenta has for each~half! integer positive valuel the
(2l 11)-dimensional representation onH l :

S6u l ,m&5
q2q21

A@2#
q2~m61!/2A@ l 6m#@ l 6m11#u l ,m61& ,

~40!

Ku l ,m&5q2mu l ,m&.

The noncompact generators have to be represented on the direct sums( l> l 0
%

H l . The matrix

elements in the orthonormal basis are

^ l 11,m11up1u l ,m&52pl ,l 11q~m2 l 21!/2A@ l 1m11#@ l 1m12#,

^ l ,m11up1u l ,m&5pl ,lq
m/2A@ l 2m#@ l 1m11#,

^ l 21,m11up1u l ,m&5pl ,l 21q~ l 1m!/2A@ l 2m#@ l 2m21#,

^ l 11,mup0u l ,m&5pl ,l 11qm/2A@2#A@ l 2m11#@ l 1m11#,

^ l ,mup0u l ,m&5
pl ,l

q1/2
A@2#21

„@2#qm2~ql 11/21q2 l 21/2!…, ~41!

^ l 21,mup0u l ,m&5pl ,l 21qm/2A@2#A@ l 2m#@ l 1m#,
J. Math. Phys., Vol. 38, No. 12, December 1997
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^ l 11,m21up2u l ,m&52pl ,l 11q~ l 1m11!/2A@ l 2m11#@ l 1m22#,

^ l ,m21up2u l ,m&5pl ,lq
m/2A@ l 1m#@ l 2m11#,

^ l 21,m21up2u l ,m&52pl ,l 21q~m21!/2A@ l 1m#@ l 1m21#.

Here we have omitted eachAq-number index so that one should identify@n#[@n#Aq . The reduced
matrix elements are

pl ,l5
C

@ l #q@ l 11#q
, ~42!

pl ,l 215S C0
22

C2

@ l #q
2D 1

@2l #221
. ~43!

The value ofp2 is related toC0
2 by p25@2#C0

2 andC is related to the minimal angular momentu
by C25@ l 0#q

2C0
2.

The dependence on the Clebsch Gordan coefficients is calculated from inserting the
known action of the compact generators first intoS1p15q21p1S1 and then intoS2p1

5q21p1S22q21/2(q2q21)p0 .
Next one computes the reduced matrix elements like in the classical case from the re

p1p05q21p0p1 . For the transitionl→ l 11 we obtain

pl ,l

pl 11,l 11

5
$~@ l 12#q2@ l 11#q!q2~ l 12!/22q~ l 12!/2%

$~@ l 11#q2@ l #q!q21/22q1/2%
, ~44!

and this implies~42! whereas the transitionl→ l yields

@2#~@2l 13#pl ,l 11
2 2@2l 21#pl ,l 21

2 !2pl ,l
2 ~ql 11/21q2~ l 11/2!!50. ~45!

We putf( l )5:pl ,l 11
2 @2l 13#@2l 11# such that

f~ l !2f~ l 21!5C2
@ l 1 1

2#q

@ l #q
2@ l 11#q

2 5
C2

@ l #q
22

C2

@ l 11#q
2 . ~46!

This verifies~43!. In order to inhibit negative values forl , the constantC0 has to be put equal to
C2/@ l 0#q

2, which shows thatl 0 is the smallest occurring angular momentum in a representation
can be identified with the spin of the represented object. At last we check the dependence op2 on
C0 :

^ l ,mup2u l ,m&5
@2#

@2l 11# H S C0
22

C2

@ l 11#q
2D ql 11/22qm21/2

q1/22q21/2 1S C0
22

C2

@ l #q
2D qm21/22q2 l 21/2

q1/22q21/2 J
1

C2

@ l #q
2@ l 11#q

2 S ql 1m1qm2 l 21

q1/22q21/2 1D~ l !D ~47!

with

D~ l !5
q21~ql 11/21q2 l 21/2!22~q1/21q21/2!2

~q2q21!~q1/22q21/2!3 . ~48!
J. Math. Phys., Vol. 38, No. 12, December 1997
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A few steps later we obtain

p25@2#C0
2.

The ~in the classical limit! unusual factor 2 which is showing up in these results is due to
differing normalization for the operators of the commutator@L1,L2#5H.
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